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Preface

Mathematicians continue to make major contributions to the classical but contin-
ually evolving discipline of Fluid Mechanics, which is often included in advanced
undergraduate and postgraduate applied mathematics or engineering programmes.
On the other hand, Magnetohydrodynamics (MHD) is more often left to under-
graduate and postgraduate physics programmes, and relatively few research
mathematicians proceed to work on MHD or plasma theory. However, Fluid
Mechanics and MHD are both branches of Continuum Mechanics, often drawing
upon much the same mathematics and yielding many closely related results.
Moreover, both are fundamental to many fascinating areas in geophysics and
astrophysics, and have a wide variety of human and laboratory or engineering
applications (from blood flow to power generation).

This book is primarily intended to enable graduate research students in science
and engineering to enhance their understanding and expertise in Fluid Mechanics
and MHD, which are no longer treated in isolation as in other texts. A previous
background or preliminary reading in either could be an advantage, and prior
knowledge of multivariate calculus and differential equations is expected. However,
we write in a didactic way that reflects our scientific inclination and experience (not
least as past research student supervisors), and the mathematical development is
largely self-contained. Our presentation could be supplemented by historical or
more descriptive material (including relevant basic physics) readily obtained from
elsewhere if desired—in particular, research students are now generally well aware
that the Internet can be a source of quite accessible ideas and information.
Incidentally, the mathematical theory and applications of Fluid Mechanics and
MHD are usually presented in the classical Newtonian context as in this book, but
there are relativistic formulations in the literature for motion nearer the speed of
light.

Common fluids (such as air or water) flow so readily that early theory in Fluid
Mechanics, sometimes called “classical” but usually ideal in this book, entirely
neglected viscosity. Wave motion is one area where the ideal (inviscid) model is
often appropriate, although an observer of water waves on the surface of a lake
might notice that some insects exploit the force of surface tension rather well there!
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Ideal MHD is the corresponding inviscid model that Hannes Alfvén invented last
century, to predict the famous new wave named after him (in a plasma permeated
by a magnetic field). Air flow past a streamlined object such as an aerofoil
(a cross-section of an aircraft wing) may appear to be well described by the ideal
fluid model, but the air does not slip past freely close to its surface as envisaged in
that theory—and even more obviously, it does not predict flow past a blunter object,
typically associated with trailing swirls and drag. As is now well known, there is a
boundary layer near the surface of an obstacle where even quite small fluid vis-
cosity cannot be neglected, and in MHD (including stability theory) non-ideal
properties may similarly be expected to modify an otherwise largely acceptable
ideal MHD model in particular regions. Mathematically, one may proceed to invoke
singular perturbation theory, where an ideal “outer” solution is matched to a
non-ideal “inner” solution at the relevant transition layer boundaries. Variational
formulations and energy principles also provide a common and often powerful
mathematical approach, particularly for ideal theory but sometimes to investigate
non-ideal effects.

As indicated above, we have deliberately correlated essential theory in Fluid
Mechanics and MHD, and we also proceed to some notable applications with
which we are most familiar. Three sections indicated by a star (�) are not referenced
later, but introduce aspects that some readers may find interesting. Certain funda-
mental topics are dealt with more briefly than elsewhere, for there are several well
written basic textbooks on either fluid mechanics or MHD, such as Acheson
(“Elementary Fluid Mechanics”, Clarendon Press, Oxford) and Davidson (“An
Introduction to Magnetohydrodynamics”, Cambridge University Press). We do
provide more detail in some areas—e.g. where we have personally contributed or
where we believe future research work may prove fruitful, trusting our readers will
enjoy that personal touch without in any way losing an appreciation of the essential
component. Our orientation in the application of MHD is not to fluids but to
plasmas, mainly in the context of magnetic confinement in controlled thermonu-
clear fusion research, although we also discuss some aspects in astrophysics and
solar physics that caught our interest in the past. Incidentally, we recommend
Prof. Kulsrud’s book on “Plasma Physics for Astrophysics” (Princeton University
Press) as an excellent point of departure for research students interested in astro-
physical applications.

The mathematical development from Newton’s basic description of the motion
of a single particle to modern mathematical modelling of complex dynamical
systems is a remarkable scientific achievement, and the evolution of Fluid
Mechanics and MHD is no small part of that tapestry to which a new generation of
young scientists can be expected to contribute. While our mathematical develop-
ment here is largely self-contained, there are inevitably quite important areas that
cannot be included in a book of this size—e.g. nonlinear modelling underlying the
description of turbulence or chaos, phenomena that often follow or precede
coherent structures in fluids and plasmas. Indeed, given the rapid increase in
computing power, numerical simulation has become increasingly important in Fluid
Mechanics and MHD, especially in nonlinear calculations. However, the
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fundamental theory and analytical procedures represented in this book are
essentially indispensable for any emerging researcher in Fluid Mechanics and
MHD, and we hope that more established members of the research community may
also enjoy our correlated presentation. We list various books in the bibliography to
cover further material in many areas, ranging from introductory to classical and
more specialist treatments. Further, we occasionally include additional comments in
footnotes to the text, often with reference to relevant original sources.

Each chapter in this book begins with a brief preamble, but it may be helpful to
comment on our overall presentation here. Chapter 1 on Vectors and Tensors
incorporates notable material on dyadics and vector and dyadic representations, not
only in familiar orthogonal coordinate systems but in general as non-orthogonal
coordinates are needed later. The additional topics that follow in this chapter then
complete a deliberately chosen near-sufficient “mathematical toolkit” for the rest
of the book. After briefly introducing the concept of conservation equations and
discussing several basic topics often found elsewhere, in Chap. 2 on the
Fundamental Equations we proceed to a unified derivation that in particular clearly
distinguishes the viscosity of a neutral fluid from the viscosity of a plasma in a
magnetic field (to be subsequently described by MHD). Thus although this detailed
derivation of the macroscopic equations from a Boltzmann-like equation may seem
quite complicated at first sight, it applies to either a collection of molecules in a
fluid or of charged particles in a plasma, and we encourage our readers to follow
it (with the help of some associated analysis in related Exercises) as a suitable
theoretical foundation at the outset with results for reference later. The adopted
closure at thirteen moments also allows for a generalisation of the classical law of
heat conduction, but this section is starred as that aspect is not pursued in this book.
Chapter 2 concludes with a brief summary of forms of the magnetic induction
equation needed to complete any MHD model, either the ideal or some non-ideal
model to be discussed.

Only then do we proceed to discuss Basic Fluid Mechanics in Chap. 3 and
Waves in Fluids in Chap. 4, before returning again to MHD in Chap. 5 followed by
MHD Stability Theory in Chap. 6. Given the diversity of formal background in
Fluid Mechanics or MHD previously mentioned, we anticipate that certain topics
will already be familiar to our readers but others less so—some in Chaps. 3 and 4
with an entertaining history in fluid mechanics but others more recent, often serving
as precursors to our discussion of various topics in Chaps. 5 and 6. The emphasis on
waves rather than instabilities in Chap. 4, but on stability theory rather than waves
in Chap. 6, is quite deliberate as there are already some excellent books on
hydrodynamic stability. Moreover, we consider important aspects of wave propa-
gation in appropriate places in Chap. 5; and in Chap. 6 we emphasise further
developments in both ideal and non-ideal MHD stability from the perspective
of our personal research experience, given the extensive classical treatise by
Chandrasekhar on “Hydrodynamic and Hydromagnetic Stability” (Dover).

The Exercises throughout the book often serve to provide additional quite
significant knowledge or develop mathematical skill, and may also fill in certain
details or enhance understanding of some essential concept—or even to extend the
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discussion in the text in some interesting way. We strongly recommend that any
student first attempt to answer each Exercise personally and independently, before
participating in a group discussion or referring to the Answers we have provided for
help (available online). Over many years, we have often found that the independent
effort involved significantly assists student learning.

One of us (RJH) acknowledges the hospitality of Prof. Ian Craig and his group at
the University of Waikato, and that of Prof. John Howard and Dr. Matthew Hole
and his group at the Australian National University, during two important stages in
completing this book. Michael Howard and several others provided perceptive and
helpful comments that led to a clearer exposition at various places in the discussion,
and we dedicate it more generally to the continual stimulation and enthusiasm of so
many of our students and colleagues over the years.

March 2015 R.J. Hosking
R.L. Dewar
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Chapter 1
Vectors and Tensors

Vector and dyadic (second-order tensor) fields are basic entities in Fluid Mechan-
ics and MHD. The term “field” in this book means that the quantity is a function
of position in three-dimensional space, in addition to any time dependence. This
spatial dependence is conveniently represented by the associated position vector r
that may itself be a function of the time t (in a dynamical system), so any field is
an invariant function of the form f(r(t), t). On the other hand, vector and tensor
representations depend upon the reference coordinate system chosen, and we dis-
cuss the representation of vectors as a useful prelude to the following sections on
dyadics and their representation. The vector differential operator then introduced
is used more extensively, from determining basis sets for coordinate systems to its
role in so many mathematical expressions throughout the book. Although there is
a brief section on the familiar special case of orthogonal curvilinear coordinates, it
is notable that the previous and following sections on the integral theorems apply
to any three-dimensional coordinate system (non-orthogonal curvilinear coordinate
systems are particularly important in MHD). The remaining three sections on Green
identities andHeaviside, Dirac andGreen functions complete this chapter on relevant
mathematical topics. The associated bibliography provides recommended sources on
vectors and tensors, on distribution theory and mathematical methods, and on partial
differential equations for further reading.

1.1 Introduction

Although certain physical quantities such as temperature and electric charge may be
represented by numbers (scalars), over a century ago it was recognised that others
with both magnitude and direction—such as position, velocity, force, or electric or
magnetic field—are invariant but their representations change whenever a new coor-
dinate system is adopted. An early mathematical approach to acknowledge this was
the theory of quaternions devised by Hamilton, but the vector algebra and calculus
due to Gibbs and Heaviside is mainly used nowadays. A directed line segment is

© Springer Science+Business Media Singapore 2016
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2 1 Vectors and Tensors

the primitive notion for a vector, defined to be an entity with a representation that
transforms under coordinate transformations in the same way as an infinitesimal line
element in space. Vector algebra and calculus may be regarded as a branch of tensor
analysis developed by Ricci and Levi-Civita, where any tensor is invariant but its
representation changes according to a specific transformation law, when another
coordinate system is adopted.1

Modern mathematics and physics textbooks use bold face symbols to denote a
vector—e.g. dr for a line element, B for a magnetic field, etc. Bold face sans serif or
calligraphic notationmaybeused for higher order tensors, includingdyadics (second-
order tensors) such as the important pressure tensor p in this book. The elementary
dot and cross product operations involving vectors are well known, including the
respective commutative and anti-commutative properties

a · b = b · a,

a × b = −b × a,
(1.1)

and various identities such as

a · b × c = b · c × a = c · a × b,

(invariance under cyclic permutation)

a × (b × c) = a · c b − a · b c,

(a × b) × c = a · c b − b · c a.

(1.2)

Dot and cross product operations also apply to dyadics, or to tensors of even higher
order, via basis sets appropriate to the tensor order (cf. Sect. 1.4).

In this book, only representationswith respect to any three-dimensional coordinate
system are needed, although generalisation to higher dimensions is straightforward.
After detailing the representation of vectors in the next section, we discuss dyadics
(second-order tensors) and their representation in Sects. 1.3 and 1.4. The fundamen-
tal vector differential operator ∇ is introduced in Sect. 1.5 and immediately applied
in Sects. 1.6–1.9 (on curvilinear coordinates, the integral theorems and Green iden-
tities), and then almost everywhere in the equations of subsequent chapters! The
preparatory “mathematical toolkit” provided in this chapter is completed with a dis-
cussion of the Heaviside step and Dirac delta functions in Sect. 1.10, followed by a
short section on Green functions.

Exercises

(Q1) The unit vector corresponding to any vector a, considered to be a directed
line segment in three-dimensional Euclidean space, is denoted and defined by

1Encyclopedia Britannica provides accurate biographies on many of the mathematicians and physi-
cists mentioned throughout this book, and there are various other (sometimes less reliable) sources
of information available nowadays on the internet—e.g. Wikipedia.



1.1 Introduction 3

â ≡ a/|a|where |a| is themagnitude of a.2 The unit vector defines the direction
of the line segment, and the magnitude is its length. The elementary dot and
cross products of a vector a with a vector b are then defined as

a · b ≡ |a||b| cos(â, b̂)

and a × b ≡ |a||b| sin(â, b̂)ê

respectively, where (â, b̂) denotes the angle between the two vectors, and ê
is a unit vector perpendicular to both a and b such that {a, b, ê} constitute a
right-handed set. From these definitions, deduce that

a · b = b · a,

a × b = −b × a,

and a · b × c = b · c × a = c · a × b.

(Q2) A vector space over K (either real or complex numbers) is a non-empty set V
closed under the two operations “addition” (+) and “multiplication by scalars”
(elements of K ), subject to the following eight axioms:
∀ a, b, c ∈ V and α,β ∈ K ,

a + b = b + a

(a + b) + c = a + (b + c)

there is 0 ∈ V such that a + 0 = a

and − a ∈ V such that a + (−a) = 0

α(βa) = (αβ)a

α(a + b) = αa + αb

(α + β)a = αa + βa

1 · a = a.

Define familiar operations of “addition” and “multiplication by scalars” when
V is (i) a set of ordered n-tuples {a ≡ (a1, a2, . . . , an)} where ai ∈ K and
(ii) a set of m × n matrices {[aij]} where aij ∈ K . Do the eight axioms hold in
each case?

1.2 Vector Representations

Although it can be convenient to undertake vector (or tensor) algebra or calculus in
terms of the invariant quantities, it is common to resolve them onto some basis set.
Thus in the case of vectors, a vector basis set {e1, e2, e3} is selected, consisting of

2The superposed hat symbol is used to denote unit vectors throughout this book.



4 1 Vectors and Tensors

three linearly independent (non-coplanar) vectors that span the three-dimensional
space. The Cartesian basis set {î, ĵ, k̂}, consisting of constant unit vectors directed
along orthogonal axes in a chosen system of Cartesian coordinates (x, y, z), is most
familiar—butmoregenerally the three basis vectors are functions of position andneed
not be orthonormal (mutually orthogonal unit) vectors. The Jacobian is defined by

J ≡ e1 · e2 × e3, (1.3)

such that J �= 0 is necessary and sufficient for linear independence and J = 1 if the
vectors are orthonormal.

The general contravariant representation of any vector a is thus the ordered triple
(a1, a2, a3) such that

a =
3∑

i=1

ai ei , (1.4)

where it is customary to omit the summation symbol under the convention that
summation over i = 1, 2, 3 is implied by any repeated index. Note that the vector
basis set may readily be obtained in any arbitrary curvilinear coordinate system
(x1, x2, x3) by taking partial derivatives such that

ei = ∂r
∂xi

, (1.5)

where the Cartesian coordinates in the position vector r = x î + y ĵ + zk̂ are
expressed in terms of the curvilinear coordinates under a coordinate transformation—
e.g. cylindrical coordinates (r, θ, z) that are polar coordinates in the x, y-plane,
x = r cos θ and y = r sin θ, but remainCartesian in the z-direction (cf. alsoSect. 1.6).
The complementary set of reciprocal basis vectors

{
e1 ≡ e2 × e3

e1 · e2 × e3
, e2 ≡ e3 × e1

e1 · e2 × e3
, e3 ≡ e1 × e2

e1 · e2 × e3

}
(1.6)

satisfies the orthogonality property

ei · e j = δ
j
i (i, j ∈ {1, 2, 3}), (1.7)

where the Kronecker delta symbol is defined by

δ
j
i =

{
1, i = j

0, 1 �= j.
(1.8)

From (1.3) and (1.6) we obtain the reciprocity property
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e1 · e2 × e3 = J−1, (1.9)

which implies that the reciprocal basis vectors are also linearly independent (non-
coplanar). Each component ai in the contravariant representation (1.4) may be found
by resolving vector a onto the corresponding reciprocal basis vector ei—i.e.

ai = ei · a. (1.10)

The alternative covariant representation (a1, a2, a3) is defined such that

a = ai ei (1.11)

under the summation convention, where

ai = ei · a. (1.12)

The algebraic distributive law produces the dot product representation

a · b = ai ei · b j e j = ai b jδ
j
i = ai bi , (1.13)

or alternatively a · b = ai bi , under the summation convention. Similarly, the cross
product may be represented by

a × b = ai b j ei × e j = Jεijkai b j ek = Jεijka j bkei , (1.14)

where the Levi-Civita symbol εijk is +1 (−1) for (i, j, k) an even (odd) permutation
of (1, 2, 3) and 0 in all other cases (when two or more subscript values are identical).

The metric coefficient defined by

gij = ei · e j (1.15)

facilitates the transformation from the covariant to the contravariant representation—
thus invoking (1.11) in (1.10) gives ai = ei · a = a j ei · e j = gija j , so the metric
coefficient is said to raise the index. Likewise, the coefficient

gij = ei · e j (1.16)

facilitates the transformation from the contravariant to the covariant representation—
thus invoking (1.4) in (1.12) gives ai = ei · a = a j ei · e j = gija j , so the coefficient
gij lowers the index. These raising and lowering operations also extend to indices
in dyadic representations (cf. Sect. 1.4) and higher order tensor representations
generally.3

3The adjective “metric” refers to the coefficient gij defining the length ds of a line element at
any point in space, corresponding to ds2 = dr · dr = dxi ei · dx j e j = gijdxi dx j where r denotes
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An orthonormal basis set (êi · ê j = δij) is self-reciprocal (ê j ≡ ê j , ∀ j ∈
{1, 2, 3}), when we need not distinguish between the two representations. (Evidently,
gij ≡ δij for any orthonormal basis set.) The simplest case is of course the Cartesian
basis {î, ĵ, k̂}, which is convenient to use to prove vector and tensor identities—
because there is then no need to distinguish superscripts (only subscripts are needed)
nor to carry the basis vectors, and such identities are invariant. For example, from
(1.13) and (1.14)

a · b × c = ai (εijkb j ck) = (εkijai b j )ck = a × b · c,

where the brackets are not essential but included to aid interpretation. The other
equivalent forms of the scalar triple product (b · c × a and c · a × b) also follow
from the invariance of the symbol εijk under cyclic permutation of its indices {ijk}.
The vector cross product identities in (1.2) follow with the help of the property

εijkεklm = δilδjm − δjlδim, (1.17)

which can be proven case by case (by choosing all conceivable combinations of the
indices). Thus for example, the i th component

[a × (b × c)]i = εijka j (b × c)]k = εijka j εklmblcm = (δilδjm − δjlδim)a j blcm

= a j c j bi − a j b j ci = [ a · c b − a · b c ]i ,

on noting that δij acts essentially as a “substitution operator” (implies a zero outcome
unless i = j). This is sufficient to prove the vector identity, since the result is true
∀ i ∈ {1, 2, 3} and the vector identity is invariant.

The Cartesian basis set {î, ĵ, k̂} is global, in the sense that its orientation is fixed
when the corresponding set of Cartesian coordinates has been chosen, but it is not
the only orthonormal basis set. For example, inMHD it is often convenient to choose
a local basis set where one basis vector is aligned with the magnetic field and the
others are, respectively, tangent and perpendicular to the magnetic surface. Thus
in simplified analysis where the magnetic surface is assumed planar with normal
k̂, the corresponding basis set {b̂(z), k̂ × b̂(z), k̂} is orthonormal but the direction
of the magnetic field B(z) defined by the unit vector b̂(z) ≡ B(z)/|B(z)| may vary.
However, since actual magnetic surfaces are not usually planar, it is more appropriate
to adopt non-Cartesian magnetic coordinates (cf. Sect. 5.11). We then return to (1.5)
to define the basis set {ei }, and render the reciprocal basis set either as {ei = ∇xi }
under (1.41) below or invoke (1.6) with Jacobian J �= 1 given by (1.3).

(Footnote 3 continued)
the position vector of the point. From their definitions, the coefficients are obviously symmetric (i.e.
gij = gji and gij = gji); and given the unit dyadic projection I · ek = ek noted in the next section, we
also have gijg

jk = ei · e j e j · ek = ei · I · ek = ei · ek = δk
i , a result which is sometimes collected

into the matrix form [gij][gij] = I where I is the 3 × 3 unit matrix.

http://dx.doi.org/10.1007/978-981-287-600-3_5
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Exercises

(Q1) Use a Cartesian representation to prove the identity

(a × b) × c = a · c b − b · c a.

(Q2) Given J ≡e1 ·e2×e3 and {e1, e2, e3} satisfies (1.7), show that e1 ·e2×e3= J−1.

1.3 Dyadics

Although scalar and vector quantities may be more familiar, the pressure tensor
dyadic p mentioned in Sect. 1.1 is fundamental in representing so-called surface
forces in fluid mechanics and MHD, and there are distinct expressions for p in
a fluid or magnetised plasma as discussed in the next chapter. Another important
dyadic in MHD is the magnetic stress tensor T , which represents the characteristic
additional magnetic force arising in the equation of motion (cf. Sects. 2.7 and 5.7 in
particular).

A dyadic is a linear superposition of ordered pairs of vectors, called dyads. Thus
if a and b are different vectors, then ab and ba are different dyads, and ab + cd is
a dyadic that may be denoted by A. Their fundamental algebraic properties may be
summarised by saying that associative and distributive laws hold for both post- and
pre-dot and cross multiplication, such as

(ab + cd) · e = ab · e + cd · e, (1.18)

e · (ab + cd) × f = e · a b × f + e · c d × f . (1.19)

Since the projection of a dyadic A onto a vector such as in (1.18) produces a vector,
a further dot product projection of course produces a scalar. As discussed in the next
section, this process may be used to identify respective representations of the dyadic,
and the dot and cross product operations also extend to two or more dyadics.

The transpose AT of a dyadic A is the sum of its component dyads with their
order reversed. For example, if

A = ab + cd, (1.20)

then
AT = ba + dc. (1.21)

Note also that a dyadicmay be symmetric (such thatAT = A) or antisymmetric (such
that AT = −A). The post-dot product A · v of the dyadic A with any vector v is a
vector, which differs from the vector produced by the pre-dot product v · A unless
A is symmetric.

http://dx.doi.org/10.1007/978-981-287-600-3_2
http://dx.doi.org/10.1007/978-981-287-600-3_5
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The inverse (or reciprocal) A−1 of a dyadic A is defined by

A−1 · A = A · A−1 = I, (1.22)

where I is the unit dyadic (or idemfactor) defined by

I · v = v · I = v, ∀ vector v. (1.23)

Exercise

(Q1) Show that any dyadic may be written as the sum of a symmetric and antisym-
metric part—viz.

A = 1

2
[A + AT ] + 1

2
[A − AT ]. (1.24)

1.4 Dyadic Representations

The vectors in any dyadic

A = a1b1 + a2b2 + · · · + anbn (1.25)

may of course be resolved onto any arbitrary basis set {e1, e2, e3}. Resolving the
vectors b1, b2, . . . , bn yields

A =
n∑

i=1

ai (b
1
i e1 + b2i e2 + b3i e3) = f1e1 + f2e2 + f3e3, (1.26)

where vectors f j ≡ ∑n
i=1 b j

i ai . Thus any dyadic may be expressed as a sum of just
three dyads, which respectively incorporate the arbitrary basis vectors. Moreover,
resolution of the companion vectors f1, f2, f3 onto the same basis set {e1, e2, e3}
yields

A =
3∑

j=1

3∑

k=1

Ajke j ek, (1.27)

expressing the dyadic in terms of the resulting set of nine basis dyads {e j ek}. The
3 × 3 matrix of coefficients denoted by [Ajk] constitutes the corresponding con-
travariant tensor representation of the dyadic A. It is again customary to omit the
summation symbols under the summation convention, in this case for the two repeated
indices j and k.
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Projecting the dyadic A onto the corresponding reciprocal basis set {e1, e2, e3}
yields the vector

el · A = Ajkel · e j ek = Alkek, (1.28)

and hence the contravariant representation entries via a second dot product

el · A · em = Alkek · em = Alm. (1.29)

The order of the two dot product operations producing the contravariant entries
may be reversed, but note that the intermediate vectors A · em = Ajme j

(for m = 1, 2, 3) are different from the vectors el · A = Alkek (for l = 1, 2, 3) unless
the dyadic A is symmetric (when Alk = Akl). With reference to the reciprocal
basis set, the above discussion likewise leads to the covariant representation [Ajk]
corresponding to the expression A = Ajke j ek , or mixed representations correspond-
ing to either A = A j

k e j ek or A = A j
k e j ek . Corresponding valid projections of A

produce the respective tensor elements Alm = el · A · em , Al
m = el ·A · em , and

Al
m = el ·A · em .
Dyadic products may be interpreted via dyadic representations. Thus the dyadic

dot product

A · B = A j
k e j ek · Bl

m elem

= A j
k Bl

m ek · el e j em

= A j
k Bk

m e j em (1.30)

is a dyadic; and we define the double dot (or dyadic scalar) product4

A : B = A j
k Bl

m ek · el e j · em = A j
k Bk

j . (1.31)

Further, the algebra is readily extended to pre- or post-cross products of a vector with
a dyadic such that

a × A = ai Ajlei × e j el = Jεijkai Ajlekel (1.32)

and
A × b = Ajkble j ek × el = Jεklm Ajkble j em (1.33)

are both dyadics. There are again of course covariant or mixed representations, cor-
responding to the three other forms of basis dyads.

Further extension of the algebra, for example to render the cross product of two
dyadics or some product of more than two dyadics, leads to higher order tensors
(triadics in terms of basis triads, etc.)—the process is quite straightforward, but
unnecessary for this book. Note also that many textbooks define contravariant and

4Some authors define this product as A : B = A j
k B j

k .
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covariant “vectors and tensors” by transformation laws, which relate vector and
tensor representations in two different coordinate systems. This has the attraction
that the transformation laws may refer to n-tuples or n × n matrices for example,
as the respective representations of vectors or dyadics in n-dimensional space—but
the essential invariance of any vector or tensor is sometimes overlooked! Examples
of the transformation laws for vector and dyadic representations appear in two of
the following exercises, with reference to coordinate transformations in both three-
dimensional and n-dimensional space. Any dot product reduces the tensor order by
two, and any cross product reduces the tensor order by one—cf. (1.30)–(1.33).5

Exercises

(Q1) If {ei } and {ei } (where i ∈ {1, 2, 3}) are mutually reciprocal vector basis sets,
show that the unit dyadic

I = ei ei = ei ei . (1.34)

Hence, deduce the mixed dyadic representation

A = Ai
j ei e j ,

where Ai
j ≡ ei · A · e j . Similarly, deduce that

A · B = Ai
j B j

k ei ek .

(Q2) Show that I × a = a × I, where a is any vector and I is the unit dyadic.
(Q3) Show that the trace of a dyadic A

Tr A ≡
3∑

i=1

Ai
i

and its determinant
det A ≡ det(Ai

j )

are invariant—i.e. their values are independent of the choice of the basis set
{ei }.

(Q4) Find det(I + ab), where a and b are arbitrary vectors and I is the unit dyadic.
(Q5) Show that (AT)ij = Aji, (AT)ij = Aji, (AT)i

j = A j
i , and (AT)i

j = A j
i .

(Q6) Suppose that the position vector r of any point in space has the representations
r = x j e j and r = x ′ke′

k in two different coordinate systems, related by the
coordinate transformation

5Tensor order (or rank) refers to the number of juxtaposed vectors in the entity, so that a scalar is
a zeroth-order tensor, a vector is a first-order tensor, a dyadic a second-order tensor, etc.—i.e. in
each case equivalent to the number of times the coordinate transformation matrix is applied in the
transformation law, or the number of free (non-summation) indices in the tensor representation.
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x ′i = x ′i (x1, x2, x3), i ∈ {1, 2, 3}

consisting of independent single-valued continuously differentiable functions
(a one-to-one invertible mapping). Noting that any infinitesimal line element
at the point may be expressed as

dr = e j dx j = e′
kdx ′k,

deduce that

dx ′i = ∂x ′i

∂x j
dx j , where e′i · e j ≡ ∂x ′i

∂x j
.

Hence show that the representation of any vector field v(r) transforms under the
coordinate transformation in the same way as the infinitesimal line element—
i.e.

v′i = ∂x ′i

∂x j
v j .

(Q7) Suppose the position vector r of any point in n-dimensional space has the repre-
sentations (x1, x2, . . . , xn) and (x ′1, x ′2, . . . , x ′n) in two different coordinate
systems, related by the coordinate transformation

x ′k = x ′k(x1, x2, . . . , xn), k ∈ {1, 2, . . . , n}

consisting of independent single-valued continuously differentiable functions
(a one-to-one invertible mapping). Given that a mixed representation of any
dyadic field A(r) transforms as

A′ j
k = ∂x ′ j

∂x p

∂xq

∂x ′k Ap
q ,

deduce the corresponding transformation law for a mixed representation of the
dyadic dot product A · B. Then show that the double dot product A : B is a
scalar—i.e. a zeroth-order tensor.

1.5 Vector Differential Operator

The familiar del (or nabla) vector differential operator

∇ = î
∂

∂x
+ ĵ

∂

∂y
+ k̂

∂

∂z
(1.35)

in Cartesian coordinates (x, y, z) may be generalised to the form
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∇ = ei ∂

∂xi
(1.36)

for any curvilinear coordinates {x1(x, y, z), x2(x, y, z), x3(x, y, z)}, where the vec-
tors ei ≡ ∇xi (i ∈ {1, 2, 3}) belong to the reciprocal basis set complementary to the
vector basis set defined by (1.5). The first-order differential operator ∇ acts in turn
on every field quantity (function of position vector r) to its right, and obeys the laws
of vector algebra.

The expressions∇φ,∇· v and∇× v are called and sometimes, respectively, writ-
ten grad φ, div v and curl v, where φ and v are scalar and vector fields. The∇ notation
is preferred in this book, since it is then easier to remember or construct identities
such as

∇×∇φ = 0 (1.37)

∇(u · v) = (∇u) · v + (∇v) · u (1.38)

∇· (u × v) = (∇× u) · v − (∇× v) · u (1.39)

∇× (u × v) = (∇· v) u + v · ∇u − (∇· u) v − u · ∇v. (1.40)

Where there is possible ambiguity about the range of action of the differential oper-
ator, this is eliminated by enclosing the affected terms in parentheses. The notational
advantage in using the symbol ∇ also extends to other expressions and identities
involving dyadics or higher order tensor fields. The dyadic∇v involving the velocity
field v is particularly important in fluid mechanics and MHD, not only when con-
tracted to ∇· v and ∇× v but also elsewhere—including in the expression for the
rate of deformation tensor s and the nonlinear term v · ∇v in the equation of motion,
discussed in the next chapter.

Points for which the scalar field φ(r) = constant are said to lie on a level surface.
The increment in the scalar field dφ = dr · ∇φ at any point depends upon the direc-
tion of the infinitesimal displacement vector (directed line element) dr emanating
from that point; and in particular, if dr is restricted to the tangential plane at any
point on a level surface, we have the important result that ∇φ is normal to the level
surface at that point (corresponding to dφ = 0). Sometimes, we also consider the
increment in a vector field dv = dr · ∇v(r) at any point (e.g. for a velocity field),
similarly dependent upon the direction of the infinitesimal displacement vector dr.

Finally, when the position vector r(x1, x2, x3) is a continuously differentiable
function we note the important result (cf. Exercise 1 below)

∇r = ∂r
∂xi

∇xi = I, (1.41)

where {ei = ∂r/∂xi } is the general basis set as defined in Sect. 1.2 and now {ei =
∇xi } is consequently identified as the reciprocal basis set.
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Exercises

(Q1) (a) If r = x î + y ĵ + zk̂ is the position vector in a Cartesian coordinate system
(x, y, z), show that ∇r = I, ∇· r = 3 and ∇× r = 0 where I is the unit dyadic.
(b) Deduce (1.34) from ∇r = I, assuming that the position vector r may be
expressed as a continuously differentiable function of the arbitrary coordinates
(x1, x2, x3).
Now consider the level surfaces xi = constant (i ∈ {1, 2, 3}) defined by the
arbitrary curvilinear coordinates, to confirm geometrically that the basis set
defined by (1.5) and the set {ei ≡ ∇xi } satisfy the orthogonality property (1.7).

(Q2) Show that

∇v = 1

J

∂

∂xi
(Jei v) (1.42)

for any vector field v(r), where xi are arbitrary curvilinear coordinates and
J ≡ e1 · e2 × e3 = [e1 · e2 × e3]−1 as before. Deduce forms for ∇· v and
∇× v.

(Q3) Show that
(∇ψ) · ∇× (ξ × B) = B · ∇ (ξ · ∇ψ),

given that ∇· B = 0 and B · ∇ψ = 0.

1.6 Orthogonal Curvilinear Coordinates

Let us recall that cylindrical coordinates (r, θ, z), related to a system of Carte-
sian coordinates (x, y, z) via x = r cos θ and y = r sin θ, define a familiar three-
dimensional curvilinear coordinate system. In this case, we readily obtain the appro-
priate orthonormal basis set that varieswith position—viz. {êr ≡∇r, êθ ≡r∇θ, êz ≡
∇z}, where the position vector is r = r êr + zêz and |r| =√

r2 + z2 �= r unless z = 0
(cf. Exercise 1 below). Thus Eq. (1.36) becomes

∇ = êr
∂

∂r
+ êθ

r

∂

∂θ
+ êz

∂

∂z
. (1.43)

Since the basis vectors êr and êθ are functions of θ, there are non-zero curvature
contributions êθ · ∇êr = êθ/r and êθ · ∇êθ = −êr/r , which arise in applying the
differential operator ∇. This is all summarised by the dyadic set

∇êr = êθ êθ

r
, (1.44)

∇êθ = − êθ êr

r
, (1.45)

∇êz = 0. (1.46)
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Thus for an arbitrary vector field v = vr êr + vθ êθ + vz êz in cylindrical coordinates,
there are the well-known results

∇· v = 1

r

∂

∂r
(rvr ) + 1

r

∂vθ

∂θ
+ ∂vz

∂z
, (1.47)

and

∇× v = êr

(
1

r

∂vz

∂θ
− ∂vθ

∂z

)
+ êθ

(
∂vr

∂z
− ∂vz

∂r

)
+ êz

(
∂vθ

∂r
+ vθ

r
− 1

r

∂vr

∂θ

)
.

(1.48)

The Laplacian ∇2 ≡ ∇· ∇ operating on a scalar field φ is therefore

∇2φ = 1

r

∂

∂r

(
r
∂φ

∂r

)
+ 1

r2
∂2φ

∂θ2
+ ∂2φ

∂z2
, (1.49)

and there are additional curvature contributions when the Laplacian operates on
a vector field v. The divergence of a dyadic field T = Trrêr êr + Trθ êr êθ + . . . in
cylindrical coordinates may also be obtained directly, bearing in mind the curvature
contributions that arise.

Cylindrical polar coordinates are one example of an orthogonal curvilinear coor-
dinate system—i.e. where the vector basis set defined by (1.5) is orthogonal. Another
example is spherical polar coordinates, depicted in Fig. 1.1. Cylindrical and spheri-
cal coordinates are particularly appropriate for treating systems that are axisymmetric
in their unperturbed states—i.e. when these states are rotationally symmetric about
the z-axis (when scalar fields and vector components or tensor elements of dyadics
with respect to the cylindrical or spherical coordinate basis set are independent of θ
or φ, respectively).

Themagnitudes hi ≡ |ei | of the basis vectors {e1, e2, e3} in any coordinate system
(x1, x2, x3) are often called scale factors. In a system of orthogonal curvilinear
coordinates, we immediately deduce that the Jacobian may be expressed as J =
h1h2h3 and the gradient as

∇ = ê1
h1

∂

∂x1
+ ê2

h2

∂

∂x2
+ ê3

h3

∂

∂x3
, (1.50)

where {êi ≡ ei/hi } denotes the relevant orthonormal basis set. Thus for example,
the scale factors in cylindrical coordinates are evidently h1 = 1, h2 = r and h3 = 1.

Exercises

(Q1) The coordinate transformation from Cartesian to cylindrical coordinates is
of course equivalent to r(r, θ, z) = r cos θî + r sin θĵ + zk̂. Identify the unit
orthogonal (orthonormal) basis vectors {êr , êθ, êz} in terms of {î, ĵ, k̂}, obtain
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Fig. 1.1 Spherical
coordinates (r, θ,φ)

the basis set {e1 = êr , e2 = r êθ, e3 = êz} from the definition (1.5), and then
obtain the reciprocal basis from (1.6). Hence verify the vector differential oper-
ator (1.43) in cylindrical coordinates.

(Q2) Using (1.44)–(1.46), represent ∇v in cylindrical coordinates, where the vec-
tor field is written v = vr êr + vθ êθ + vz êz as above. Hence obtain (1.47) and
(1.48) by contraction, and then deduce (1.49).

(Q3) If a dyadic field is represented as

T = Trrêr êr + Trθ êr êθ + Trzêr êz + Tθr êθ êr + Tθθ êθ êθ + Tθz êθ êz

+ Tzrêz êr + Tzθ êz êθ + Tzzêz êz,

derive ∇· T in cylindrical coordinates. Hence or otherwise, represent ∇2v in
cylindrical coordinates.

(Q4) Spherical coordinates (r, θ,φ) are defined by the coordinate transformation

x = ρ cosφ, y = ρ sin φ, z = r cos θ

where ρ = r sin θ, as shown in Fig. 1.1. Define a corresponding orthonormal
basis set {êr , êθ, êφ}, and directly obtain ∇· v in spherical coordinates. Check
your result using (1.42).
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(Q5) In any orthogonal curvilinear coordinates (x1, x2, x3) with orthonormal basis
set {êi }, show that the divergence and curl of a vector field v(r) = vi êi may be
expressed as

∇· v = 1

h1h2h3

[
∂

∂x1

(
h2h3v

1
)

+ ∂

∂x2

(
h3h1v

2
)

+ ∂

∂x3

(
h1h2v

3
)]

,

and (in terms of a determinant)

∇× v = 1

h1h2h3

h1ê1 h2ê2 h3ê3
∂

∂x1
∂

∂x2
∂

∂x3
h1v

1 h2v
2 h3v

3

,

respectively. Also show that

∇2φ = 1

h1h2h3

[
∂

∂x1

(
h2h3

h1

∂φ

∂x1

)

+ ∂

∂x2

(
h3h1

h2

∂φ

∂x2

)
+ ∂

∂x3

(
h1h2

h3

∂φ

∂x3

)]
,

for any scalar field φ(r).
Verify that (1.47)–(1.49) follow from these results.

1.7 Stokes Theorem

Stokes Theorem is one of a family of integral theorems that relate surface to line
integrals, and a generalisation of the Green Theorem in the Plane

∫ ∫

R

(
∂Q

∂x
− ∂P

∂y

)
dxdy =

∮

C
(Pdx + Qdy). (1.51)

Here P(x, y), Q(x, y) are continuous functions with continuous partial derivatives
in the region R of the xy-plane bounded by a simple closed curve C , and the line
integral on the right-hand side of (1.51) is taken in the anticlockwise direction (curve
C is traversed such that region R is always to the left). This result is given in many
elementary calculus textbooks, and follows readily by noting the following:
(i) for a regular region R (where any line parallel to either Cartesian axis cuts C in
at most two points),

∫ ∫

R

∂Q

∂x
dxdy =

∫
[Q(x2, y) − Q(x1, y)]dy
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on integrating with respect to x from the left component x1 = g1(y) to the right
component x2 = g2(y) of the boundary C , hence the right-hand side of this equation
is equivalent to ∮

C
Q(x, y) dy;

(ii) similarly, by integrating with respect to y,

∫ ∫

R

∂P

∂y
dxdy = −

∮

C
P(x, y)dx; and

(iii) the extension to any irregular region (where a line parallel to at least oneCartesian
axis cuts the boundary curve C in more than two points), and also to a multiply-
connected region, is immediate since such regions can always be sub-divided into
several regular sub-regions.

The generalised Stokes Theorem can be expressed in the following way. If f(r)
is a continuously differentiable tensor field over any open surface S with boundary
curve C , then ∫

S
n̂ × ∇ f d S =

∮

C
T̂ f ds, (1.52)

where n̂ is the unit normal at any point on the surface S and T̂ is the unit tangent at any
point on the boundary C , and the integral with respect to s along C is again directed
such that the surface S is always to the left. By writing dS = n̂ d S and dr = T̂ds,
(1.52) may be written more succinctly as

∫

S
dS × ∇ f =

∮

C
dr f . (1.53)

In order to prove the generalised Stokes Theorem, first consider the position vector
r(u, v) of any point on the open surface S, where (u, v) is the pair of curvilinear
coordinates in the surface for that point [2]. The surface element there is

dS = rudu × rvdv = ru × rv dudv ≡ n̂ d S, (1.54)

where n̂ ≡ J−1ru × rv is the unit normal at the point and it is convenient in this
section to follow Ref. [2] in using subscripts to denote partial differentiation with
respect to the subscripted variables. The gradient of any differentiable tensor field
f(r) at the surface is ∇f = ∇u fu + ∇v fv + n̂ fn , where

{∇u ≡ J−1rv × n̂, ∇v ≡ J−1n̂ × ru, n̂ ≡ J−1ru × rv}

is the reciprocal to the basis set {ru, rv, n̂}—cf. (1.5), (1.6) and (1.41). Thus from
the vector identity (1.2) and n̂ · ru = n̂ · rv = 0 we have
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n̂ × ∇f = J−1[n̂ × (rv × n̂)fu + n̂ × (n̂ × ru)fv] = J−1[(rvf)u − (ruf)v],

and since d S = Jdudv the result
∫

S
n̂ × ∇f d S =

∫

S′
[(rvf)u − (ruf)v] dudv, (1.55)

where S′ is the region in the uv-plane that contains all the points corresponding to
the points on the surface S. Then application of the Green Theorem in the Plane to
the integral on the right-hand side of (1.55) yields

∫

S′
[(rvf)u − (ruf)v] dudv =

∮

C ′
(rufdu + rvfdv), (1.56)

where C ′ is the boundary of the surface S′ in the uv-plane. Since u(s) and v(s) are
functions of the arc length s along the boundary C of the original surface S, the
right-hand side of (1.56) is

∮

C ′

(
ruf

du

ds
+ rvf

dv

ds

)
ds =

∮

C
T̂ f ds

where

T̂ ≡ dr
ds

= ru
du

ds
+ rv

dv

ds

is the unit tangent vector along C , so from (1.55) and (1.56) the proof is complete. �
Stokes Theorem is the special case of (1.53) involving a dot product contraction

and a vector field v(r)—viz.

∫

S
(∇× v) · dS =

∮

C
v · dr. (1.57)

This integral theorem was applied in fluid mechanics and electromagnetic theory
from the late nineteenth century, with v interpreted as the velocity field or an elec-
tromagnetic field, respectively.

Exercises

(Q1) Use (1.53) to show that ∮

C
r · dr = 0
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and ∮

C
r × dr = 2

∫

S
dS,

where r denotes the position vector of any point P and S is any open surface
capping the closed curve C .

(Q2) Verify Stokes Theorem (1.57) for the vector

v(r) = (2x − y)î − yz2 ĵ − y2zk̂,

where S is the upper half surface of the sphere x2 + y2 + z2 = 1with boundary
curve C at z = 0 (cf. Fig. 1.2 when a = 1).

Fig. 1.2 Hemispherical surface of radius a
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1.8 Divergence Theorem

The well-knownDivergence Theorem is one of a family of integral theorems relating
volume to surface integrals, which can be expressed as follows. If f(r) is a continu-
ously differentiable tensor field over a region V bounded by a closed surface S with
a sectionally continuous external (outward) unit normal n̂, then

∫

V
∇f dτ =

∮

S
n̂ f d S. (1.58)

By again writing dS = n̂ d S, (1.58) may be written even more succinctly as

∫

V
∇f dτ =

∮

S
dS f . (1.59)

In order to prove this result, first consider a regular closed surface S (a surface
where any line parallel to any axis of a Cartesian coordinate system cuts the surface
in no more than two points). The regular surface may be sub-divided into upper and
lower portions, say S1(x, y, z1) and S2(x, y, z2) with reference to the z-axis, where
z1 = z2 defines the closed curve separating S1 from S2. Then the volume integral

∫

V

∂f
∂z

dτ =
∫

A
f(x, y, z1)dxdy −

∫

A
f(x, y, z2)dxdy

on integration with respect to z, where the integrals on the right-hand side are taken
over the common projection area A of both S1 and S2 on the xy-plane. The surface
element on both S1 and S2 is dS = rx × ry dxdy, where r = x î + y ĵ + z1,2(x, y)k̂
such that rx × ry = k̂ − zx î − zy ĵ, which is an outward normal vector everywhere
on S1 but an inward normal vector everywhere on S2. Thus the vector projection
k̂ · dS = ±dxdy, and the volume integral

∫

V

∂f
∂z

dτ =
∫

S
f(x, y, z)k̂ · dS =

∫

S
k̂ · n̂ f(x, y, z) d S.

Similar considerations with reference to the x-axis and y-axis yield

∫

V

∂f
∂x

dτ =
∫

S
î · n̂ f(x, y, z) d S

and ∫

V

∂f
∂y

dτ =
∫

S
ĵ · n̂ f(x, y, z) d S,

respectively. Combining these last three results appropriately yields (1.59)—i.e.
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∫

v

∇f dτ =
∫

V

(
î
∂f
∂x

+ ĵ
∂f
∂y

+ k̂
∂f
∂z

)
dτ

=
∫

S
(î î + ĵ ĵ + k̂ k̂) · n̂ f d S =

∫

S
n̂ f d S,

since I = î î + ĵ ĵ + k̂ k̂ and I · n̂ = n̂. Any volume V with an irregular surface S or
any multiply-connected region can always be sub-divided into volumes with regular
surfaces, so extension of the proof to irregular or multiply-connected regions is
immediate.

The Divergence Theorem is the special case of (1.59) involving a dot product
contraction and a vector field v(r)—viz.

∫

V
∇· v dτ =

∫

S
v · dS. (1.60)

Gauss established many related results. For example, if S is a closed surface and
r denotes the position vector of any point relative to any origin O , then

∫

S

dS · r
r3

=
{

0 if O lies outside S
4π if O lies inside S.

(1.61)

This corresponds to the Divergence Theorem (1.60) when v = r/r3, a vector that
may represent the electric field due to a unit charge. Thus when O is outside of V ,

∫

S

dS · r
r3

=
∫

V
∇· r

r3
dτ = 0,

since ∇· r/r3 = 0 almost everywhere inside V (i.e. everywhere except at r = 0). If
O is inside V , then it may be surrounded by a small sphere σ of radius ε, such that

∫

S

dS · r
r3

+
∫

σ

dS · r
r3

=
∫

V −σ
∇· r

r3
dτ = 0,

whence ∫

S

dS · r
r3

= −
∫

σ

dS · r
r3

.

Now on σ the unit normal pointing outward from V − σ is n̂ = −r/ε, hence
dS · r/r3 = −d S r · r/ε4 = −d S/ε2 and therefore

∫

S

dS · r
r3

=
∫

σ

d S

ε2
= 1

ε2

∫

S
d S = 1

ε2
4πε2 = 4π.
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Geometrically, the quantity dS · r/r3 is the solid angle subtended at O by the surface
elementd S, so that (1.61) states that the total solid angle subtendedby a closed surface
is zero at an exterior point and 4π at an interior point.

The Divergence Theorem is often used to derive field equations in mathemat-
ical physics, including the fundamental equations of Fluid Mechanics and MHD
introduced in the next chapter.

Exercises

(Q1) If V is a volume bounded by a closed surface S and a is a constant vector, use
(1.59) to show that

V a = 1

2

∮

S
n̂ × (a × r)d S,

where n̂ is the unit normal to S at any point with position vector r (on the
surface S).

(Q2) Verify the Divergence Theorem (1.60) for the following vector fields F and
closed surfaces S:

(a) F = x2 î + zĵ + yzk̂, S a unit cube;

(b) F = y î + x ĵ + z2k̂, cylinder S bounded by x2 + y2 = a2, z = 0, z = h;

(c) F = 2xz î + yzĵ + z2k̂, hemisphere S where x2 + y2 + z2 = a2 (z ≥ 0).

(Q3) When the volume element �V with surface �S enclosing any point P tends
to zero, shows that

∫
�S φdS

�V
→ ∇φ,

∫
�S v · dS

�V
→ ∇· v, and

∫
�S dS × v

�V
→ ∇× v.

(Since the ratio on the right-hand side of the second result represents the flux
or nett outflow per unit volume if v is the velocity vector in a fluid, and the
limit implies that the volume �V shrinks towards a point, the fluid flow in the
neighbourhood of a fixed point in space divergeswhen∇· v > 0, and converges
when ∇· v < 0 !)
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1.9 Green Identities

Application of the Divergence Theorem (1.60) to the vector field v = φ∇ψ, where
the scalar fields φ(r) and ψ(r) respectively have continuous derivatives to first and
second order, yields the first Green identity

∫

V
∇φ · ∇ψdτ +

∫

V
φ∇2ψdτ =

∮

S
φ∇ψ · dS, (1.62)

since ∇· (φ∇ψ) = ∇φ · ∇ψ + φ∇2ψ. If both φ and ψ have continuous derivatives
to second order, interchanging φ and ψ in this first identity and subtracting yields
the second Green identity

∫

V
(φ∇2ψ − ψ∇2φ)dτ =

∫

S
(φ∇ψ − ψ∇φ) · dS. (1.63)

Now let ψ = 1/r , where r is the distance to any point P from another point O .
If O is inside the closed surface S, the singularity in ψ at O may be excluded by
surrounding it by a small sphere σ of radius ε, so the second identity (1.63) applied
to the volume between σ and S gives

−
∫

V

1

r
∇2φ dτ =

∮

σ

(
φ∇ 1

r
− 1

r
∇φ

)
· dS +

∮

S

(
φ∇ 1

r
− 1

r
∇φ

)
· dS. (1.64)

The surface integral on σ is

∮

σ

(
φ

ε2
+ 1

ε

∂φ

∂r

)
d S =

∮

σ
φ d� + ε

∮

σ

∂φ

∂r
d� = 4πφ̄ + O(ε), (1.65)

where d� and φ̄ denote the solid angle subtended by d S and the value of φ at some
point of σ, respectively. In the limit ε → ∞, one thus has the third Green identity

4πφ(0) = −
∫

V

∇2φ

r
dτ +

∮

S

(
1

r
∇φ − φ∇ 1

r

)
· dS. (1.66)

If the point O is outside the closed surface S, this result less the second term on the
right-hand side is obtained by setting ψ = 1/r in the second identity (1.63).

The result (1.66) is valid with reference to any field point. Thus at any point with
position vector r0,

4πφ(r0) = −
∫

V

∇2φ

|r − r0|dτ +
∮

S

(
1

|r − r0|∇φ − φ∇ 1

|r − r0|
)

· dS (1.67)
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gives the scalar field φ(r0) in terms of its Laplacian ∇2φ and the values of φ and
∇φ on the closed surface S. Indeed, since r0 is any field point, this result may also
be used to find derivatives of φ. In Sect. 1.11, a formula is derived that defines a
potential function φ(r0) in terms of its Laplacian and its values on S, provided a
suitable function can be found.

Exercise

(Q1) Consider the Laplacian ∇2
0 with respect to r0 operating on (1.67), to show that

∀r0 ∈ V any function 4πρ(r0) ≡ ∇2
0φ(r0) equals the Laplacian of

−
∫

V

ρ(r)
|r − r0|dτ .

Deduce a particular solution of the Poisson equation∇2φ = 4πρ, for the poten-
tial φ due to a source density ρ.

1.10 Heaviside Step and Dirac Delta Functions

The Heaviside step function can be used to represent instantaneous switching (on
or off) in electrical applications—and in an operational calculus later understood to
relate to the Laplace transform, Heaviside readily dealt with the step function deriv-
ative that is zero everywhere except at a single point. This derivative was already
familiar in mechanics, where a finite impulse corresponds to a force acting for an
infinitesimally small interval of time (a suddenblow), and is nowoften called the “unit
impulse function” in modern electronics and signal processing. However, this deriv-
ative is obviously not a function in the classical sense, and for some time Heaviside’s
operational approach was not appreciated as a precursor to the modern widespread
use of integral transforms in science and engineering. It was not until 1930 that
Dirac introduced the notation δ(x) reflecting the only non-zero value at z = 0 that
provides the sifting operation below, somewhat reminiscent of the Kronecker delta,
and accounted for other of its properties that mathematicians eventually recognised
in developing the theory of distributions (or generalised functions). Here we choose
to restrict our discussion to a somewhat novel approach to theHeaviside step function
H(x) andDirac delta function δ(x) together with some relevant properties, in prepar-
ing to discuss jump or boundary conditions and also associated “weak solutions” of
conservation equations in the theory of shock waves later in this book.

Let us consider a single rectangular pulse of width b and height 1/b (and hence
of unit area), centred at the value x = x0. When the width of the pulse is reduced by
half, the unit area remains if the pulse height is doubled. The delta function δ(x − x0)
may be regarded as the limit of this process, where the pulse width b → 0 and the
pulse height 1/b → ∞. It is non-zero only at x = x0, where it is notionally infinite
such that the unit area is preserved—i.e. such that
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∫ q

p
δ(x − x0) dx = 1 if p < x0 < q,

and indeed ∫ x0+

x0−
δ(x − x0) dx = 1.

This non-zero outcome for an integrand zero almost everywhere (zero everywhere
except at x = x0) means that δ(x) cannot be a classical function. The sifting property

∫ q

p
f (x)δ(x − x0) dx = f (x0),

where f (x) is a function defined on any interval p < x < q and x0 ∈ (p, q), is
especially useful. Recall for example the Laplace transforms

L{δ(t − a)} =
∫ ∞

0
e−stδ(t − a) dt = e−as

and

L{ f (t)δ(t − a)} =
∫ ∞

0
e−st f (t)δ(t − a) dt = f (a)e−as,

when a > 0. As mentioned above, Dirac noted many of the important properties
involving δ(x), but it was another two decades before distribution theory provided a
firm mathematical foundation for the delta function.

Although the expression y = f (x) is often regarded as a map of the values of the
independent variable x (the domain of f ) to the values of the dependent variable y
(the range of f ), it is possible to characterise a classical function in other ways. A
second way is the inner product (functional)6

〈 f,φ〉 =
∫ ∞

−∞
f (x)φ(x) dx,

regarded as a mapping of φ(x) into the value 〈 f,φ〉 by f (x). Consequently, f (x)

can be characterised by its moments

∫ ∞

−∞
f (x) dx,

∫ ∞

−∞
x f (x) dx,

∫ ∞

−∞
x2 f (x) dx, . . .

where {φ(x) = xn, n = 0, 1, 2, . . .} is a countably infinite set, which is a result that
extends to distributions as is well known in statistics (cf. Exercise 5 below). In

6A functional is a map between one or more function spaces and the real or complex numbers, typ-
ically involving integration. The arguments of functionals are often surrounded by square brackets
[·], rather than the parentheses (·) used for those of “ordinary” functions.
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another familiar example, if a function f (x) is integrablewith bounded total variation
on � and limε→0[ f (x + ε) + f (x − ε) − 2 f (x)] = 0 ∀x ∈ �, then f (x) can be
characterised by the Fourier transform

〈
f, eikx

〉
=

∫ ∞

−∞
f (x)eikx dx

where {φ(x) = eikx, k ∈ �} is an uncountably infinite set. Laurent Schwartz and
others used the inner product in their development of distribution theory,7 but we
prefer to provide a firm foundation for the delta function via the convolution product

∫ ∞

−∞
f (x − y)φ(y) dy,

which characterises f (x) as a mapping of any function φ(x) into another function.
Nevertheless, if either the inner product or the convolution product is to characterise a
distribution unambiguously, the class {φ(x)}must be chosen such that f1(x) �= f2(x)

implies there exists φ(x) such that the inner or convolution product is different.
Let us define the test function φ(x) to be differentiable to any order and to vanish

outside some finite interval (the property often referred to as compact support), which
may be different for different test functions. For example,

φ(x) =
{
exp[1/(x2 − a2)] if |x | < a

0 if |x | ≥ a

belongs to this class. Consequently, if a function f (x) is integrable on � and
limε→0[ f (x + ε) + f (x − ε) − 2 f (x)] = 0 ∀x ∈ �, we adopt the convolution
product

f (x) φ ≡
∫ ∞

−∞
f (x − y)φ(y) dy =

∫ ∞

−∞
f (y)φ(x − y) dy

to define the distribution f (x) corresponding to the function f (x)with the following
properties:

(1) f (x) maps the test function φ(x) into the function

∫ ∞

−∞
f (x − y)φ(y) dy,

such that f1(x) = f2(x) almost everywhere ⇐⇒ f1(x) = f2(x);
(2) f (x) is a linear operator—i.e. f1(x)+ f2(x)= f1(x) + f2(x) , a f1(x)=a f1(x);

and
(3) f (x) = 0 ⇐⇒ f (x) = 0.

7The five volume set by Gel’fand and Shilov on Generalized Functions (Academic Press, 1964) is
often referenced. The book by Vladimirov [10] may also be consulted.
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Further, the derivative f ′(x) of a distribution f (x) may be defined by

f ′(x) φ = f (x) φ′.

If the distribution f (x) corresponds to an integrable function f (x) on � that
satisfies limε→0[ f (x + ε) + f (x − ε) − 2 f (x)] = 0 ∀x ∈ �, then

f ′(x) φ =
∫ ∞

−∞
f (x − y)φ′(y) dy

=
∫ ∞

−∞
f (y)φ′(x − y) dy

= d

dx

∫ ∞

−∞
f (y)φ(x − y) dy

= d

dx
[ f (x) φ].

Indeed, if the function f (x) is differentiable and its derivative f ′(x) also satisfies
the condition limε→0[ f ′(x + ε) + f ′(x − ε) − 2 f ′(x)] = 0 ∀x ∈ �, then

f ′(x)φ = ∫ ∞
−∞ f (x − y)φ′(y) dy

= ∫ ∞
−∞ f ′(x − y)φ(y) dy

—i.e. the distribution f ′(x) then corresponds to the function f ′(x).
However, it is notable that the derivative function f ′(x) corresponding to the

distribution f ′(x) as defined above need not exist! This is the case for the Dirac
delta function, which is defined as the distribution δ(x) ≡ H ′(x). The Heaviside
step function

H(x) =
⎧
⎨

⎩

0 if x < 0
1
2 if x = 0
1 if x > 0

(1.68)

is integrable and satisfies limε→0[H(x + ε) + H(x − ε) − 2H(x)] = 0, such that
the corresponding distribution H(x) is defined by

H(x) φ =
∫ ∞

−∞
H(x − y)φ(y) dy =

∫ x

−∞
φ(y) dy,

and its derivative is

δ(x) φ ≡ H ′(x) φ = d

dx

[
H(x) φ

] = φ(x).
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Thus although there is no classical function corresponding to δ(x) everywhere, we
may omit the underlining and refer to δ(x) as the delta function on the understanding
that any equation involving δ(x) refers to distributions.

Differentiation readily extends to the nth order (for any n): thus

f (n)(x) φ = f (x) φ(n),

so a distribution is differentiable to the same order as the class of test functions. It
similarly follows that

f (n)(x) φ = dn

dxn

[
f (x) φ

]
,

if the distribution f (x) corresponds to an integrable function f (x) on � satisfy-
ing limε→0[ f (x + ε) + f (x − ε) − 2 f (x)] = 0 ∀x ∈ �. Further, if the distribution
product f (x)g(x) corresponds to an integrable product of two differentiable func-
tions on � where this condition is likewise satisfied, then

d

dx

[
f (x)g(x) φ

]
=

∫ ∞

−∞
f (x − y)g(x − y)φ′(y) dy

=
∫ ∞

−∞
[

f ′(x − y)g(x − y) + f (x − y)g′(x − y)
]

φ(y) dy

= f ′(x)g(x) φ + f (x)g ′(x) φ.

Moreover, when g(x) is differentiable but f (x) is not we may define

f ′(x)g(x) φ = d

dx

[
f (x)g(x)

]
φ − f (x)g ′(x) φ

provided f (x)g′(x) also satisfies the condition, with the extension under such con-
ditions to

f (n)(x)g(x) φ = d

dx

[
f (n−1)(x)g(x)

]
φ − f (n−1)(x)g ′(x) φ

for n = 2, 3, . . . . Some consequent properties of the delta function are (cf. also
Exercise (Q4)):

(1) δ(n) φ = φ(n)(x).
(2) δ(x) f (x) = f (0)δ(x).
(3) δ′(x) f (x) = f (0)δ′(x) − f ′(0)δ(x).8

Finally, if a test functionφ(x) satisfies
∫ ∞
−∞ φ(y)dy = 0 then�(x) = ∫ x

−∞ φ(y)dy
is also a test function, so the indefinite integral

8In passing, we note that any distribution product f (x)g(x)where the underlining is omitted means
f (x)g(x), not f (x) g(x).
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F(x) =
∫ x

f (y) dy

of a distribution f (x) may be defined by

F(x) φ = f (x) � ∀φ such that
∫ ∞

−∞
φ(y) dy = 0.

Note F(x + a) is also an indefinite integral of f (x) as a φ=∫ ∞
−∞ aφ(y) dy =0;

and F ′(x) = f (x) since F ′(x) � = F(x) �′ = F(x) φ = f (x) �. In general, there
is no definite integral of a distribution. However, if the distribution F(x) corresponds
to function F(x), then ∫ b

a
f (x) dx = F(b) − F(a)

is the definite integral of the distribution f (x) over [a, b]. Note that f (x) need not
correspond to a function f (x), but the definite integral is a value (not a distribution).
In particular, we readily obtain the following results:

∫ b

a
δ(x − x0) dx = H(b − x0) − H(a − x0) =

⎧
⎪⎨

⎪⎩

0 if x0 < a or x0 > b
1
2 if x0 = a or x0 = b

1 if a < x0 < b

,

since H(x − x0) is the indefinite integral of δ(x − x0); and the sifting property

∫ ∞

−∞
δ(x) f (x) dx =

∫ ∞

−∞
f (0)δ(x) dx

= f (0)
∫ ∞

−∞
δ(x) dx = f (0) [H(x)]∞−∞ = f (0),

which is extended in Exercise Q4 below.

Exercises

(Q1) For

f (x) = sgn (x) =
{

d|x |/dx if x �= 0
0 if x = 0

,

show that f (x) = 2H(x) − 1 and f ′(x) = 2 δ(x).
(Q2) Show that the general solution of the algebraic equation xk y = f (x) is

y = x−k f (x) +
k∑

j=1

c jδ
( j−1)(x), where δ(0)(x) = δ(x).
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(Q3) Provided f ′(x) exists, show that δ(x − x0) f (x) = f (x0)δ(x − x0) where
x0 ∈ � is a constant, and deduce the sifting property

∫ ∞

−∞
δ(x − x0) f (x)dx = f (x0).

Similarly, show that δ′(x − x0) f (x) = f (x0) δ′(x − x0) − f ′(x0) δ(x − x0) if
f ′′(x) exists, and deduce that

∫ ∞

−∞
δ ′(x − x0) f (x)dx = − f ′(x0).

(Q4) Solve the following boundary value problems:

(a)
dy

dx
= δ(x − 1), y(0) = 0;

(b)

d2y

dx2
= δ(x − 1) + δ ′(x − 1), y = 0 and

dy

dx
= 0 when x = 0;

(c)

x
d2(xy)

dx2
= δ(x), y(±∞) = 0.

(Q5) Show that ∫ ∞

−∞
eixy dy = 2πδ(x),

and hence ∫ ∞

−∞
eixy yn dy = 2π(−i)nδ (n)(x).

Deduce that any distribution f (x) can be constructed from its moments—i.e.

f (x) =
∞∑

n=0

(−1)n fn δ(n)(x)/n!, where fn =
∫ ∞

−∞
xn f (x) dx .
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1.11 Green Functions

Potential theory is an important branch of mathematics.9 Solutions of the Laplace
equation∇2φ = 0, commonly called harmonic functions, frequently arise in applied
mathematics—e.g. gravitational, velocity, electrostatic ormagnetohydrostatic poten-
tials discussed in this book. The real and imaginary parts of a complex analytic func-
tion also satisfy the Laplace equation. The Poisson equation ∇2φ = 4πρ defines the
potential due to sources—e.g. the gravitational potential due to a mass distribution,
or the electric or magnetic potential due to charge or current distributions.

Closed solutions of boundary value problems involving the Laplace and Poisson
equations, and indeed many other ordinary or partial differential equations, may be
written in terms of a Green function. Thus let G(r, r0) be a function such that

∇2G(r, r0) = δ(r − r0) (1.69)

where δ(r) is a three-dimensional Dirac delta function.10 Then taking ψ = G(r, r0)
in (1.63) yields

φ(r0) =
∫

S
[φ∇G(r, r0) − G(r, r0)∇φ] · dS +

∫

V
G(r, r0)∇2φdτ , (1.70)

where r0 ∈ V . Now if φ is an harmonic function in V (∇2φ = 0 in V ) and Dirichlet
boundary conditions apply on S (φ is specified on S), and G is chosen such that

G(r, r0) = 0 for any r ∈ S, (1.71)

then (1.70) yields the solution to the Laplace equation ∇2φ = 0 in the form

φ(r0) =
∫

S
[φ∇G(r, r0)] · dS, r0 ∈ V . (1.72)

In the case of the Poisson equation∇2φ = 4πρ, the comparable solution is of course

φ(r0) =
∫

S
[φ∇G(r, r0)] · dS + 4π

∫

V
G(r, r0)ρ(r)dτ , r0 ∈ V . (1.73)

TheGreen functionG(r, r0) specified here, for theDirichlet problem involving either
the Laplace or Poisson equation, is the solution of the boundary value problem for a
point source located at the position r = r0. The second term on the right-hand side

9Potential theory was developed by many famous mathematicians—including not only Green and
Gauss but also Riemann, Poincaré and Hilbert.
10In Euclidean n-space Rn we have δ(x) = δ(x1)δ(x2) · · · δ(xn), where the distribution product
must be suitably interpreted as discussed in Sect. 1.10. Alternatively, we may choose to define the
delta function as the measure such that

∫
Rn φ(x)δ(dx) = φ(0) ∀ compactly supported continuous

function φ(x), when δ(x) = δ(x1)δ(x2) · · · δ(xn) corresponds to the product measure of the {δ(xi )}.
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of (1.73) is the contribution to the scalar field φ(r0) from the total distributed source
(mass or charge sources or whatever) represented by ρ(r). In passing, we note that
there is no standard notation for the Green function—and that a factor of ±4π may
be introduced on the right-hand side of (1.69), or the respective roles of r and r0 may
be interchanged.

Since∇2φ = ∇· ∇φ, integration of (1.69) over any volume V containing the field
point r0 yields ∫

V
∇2G(r, r0) dτ =

∮

S
dS · ∇G(r, r0) = 1,

from the Divergence Theorem and the integral property of the delta function. Thus
integration over a spherical surface of radius r , for convenience centred at r0 = 0,
yields

4πr2
dG

dr
= 1 and hence G(r, 0) = − 1

4π| r| + constant,

where the constant may be chosen to satisfy the Dirichlet condition (1.71).
The familiar Coulomb potential function −1/(4π|r − r0|) due to a unit charge at

r0 (on relocating the origin) satisfies (1.71) when the volume V is infinite (i.e. the
surface S is at infinity). The potential difference

G(r, 0) = − 1

4π

(
1

|r| − 1

a

)
(1.74)

between a unit charge at the origin (r0 = 0) and a finite spherical surface S of radius
a (centred on the unit charge) satisfies (1.71) for a finite volume V . In this case,
Eq. (1.70) becomes

φ(0) = − 1

4π

∫

S

[
φ∇

(
1

|r| − 1

a

)]
· dS − 1

4π

∫

V

(
1

|r| − 1

a

)
∇2φ dτ

or

φ(0) = 1

4πa2

∫

S
φ d S − 1

4π

∫

V

(
1

|r| − 1

a

)
∇2φ dτ , (1.75)

since the unit outward normal n̂ equals r/|r| = r/a on S, and hence

[
∇

(
1

|r|
)]

· dS = − r
|r|3 · r

|r|d S = − 1

a2 d S on S.

The first term on the right-hand side of (1.75) is the average value of φ on the
spherical surface S, hence the difference between the value of any scalar field φ at
any point (since the choice of origin is arbitrary) and its average over surrounding
points is determined by its Laplacian ∇2φ. In particular, if φ is an harmonic function
(∇2φ = 0), its value at a point is the average of its values over a sphere centred at that
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point. Thus for example, an harmonic temperature field corresponds to zero heat flux,
since the temperature at any point is the average temperature of its neighbourhood.

The volume V may be multiply-connected, with one or more internal surfaces.
For example, the Green function to determine the electrostatic field in the presence
of a conducting spherical surface at r = a (with the second surface at infinity) is

G(r, r0) =

⎧
⎪⎪⎨

⎪⎪⎩

−1

4π|r − r0| + a

4π|r0||r − r′
0|

if |r| > a

−1

4π|r − r′
0|

+ |r0|
4πa|r − r0| if |r| < a

(1.76)

corresponding to two “image” source points (electrical charges of opposite sign)
situated at |r0| > a and |r′

0| < a respectively, such that (1.71) is not only satisfied at
infinity but also on the spherical surface r = a.

The reciprocity relation
G(r0, r) = G(r, r0), (1.77)

evident in all of the above real Green functions, reflects the symmetry (in r and r0) of
the delta function δ(r − r0) in the definitive equation (1.69). Physically, the response
at r0 due to a point source at r is the same as the response at r due to a point source
at r0.

As previously mentioned, Green functions may also be used for boundary value
problems involving ordinary differential equations or other partial differential equa-
tions. Moreover, Green functions may be found when the derivative of the func-
tion rather than the function is specified on the boundary (Neumann conditions), or
for mixed homogeneous boundary conditions. Thus the solution of a more general
boundary value problem involving the non-homogeneous equation Lφ = f , where
L is a known differential operator and f is a known input function, may be found
by defining a Green function such that

LG(r, r0) = δ(r − r0), r0 ∈ V (1.78)

where δ(r − r0) is again a three-dimensional delta function and demanding G(r, r0)
satisfy the same boundary conditions as φ. Then subtracting (1.78) multiplied by φ
from the equation Lφ = f multiplied by G, and integrating over volume V , yields
(∀r0 ∈ V )

∫

V
[φ(r)LG(r, r0) − G(r, r0)Lφ(r)]dτ =

∫

V
[φ(r)δ(r − r0) − G(r, r0) f (r)]dτ

= φ(r0) −
∫

V
G(r, r0) f (r)dτ .

(1.79)
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The left-hand side may simplify as in the discussion above; or may even be zero
under appropriate boundary conditions such that

φ(r0) =
∫

V
G(r, r0) f (r)dτ , (1.80)

when the operator L is said to be self-adjoint. This result has a form similar to the
sifting property

f (r0) =
∫

V
δ(r − r0) f (r)dτ ,

where r0 is any point in V . However, in contrast to the delta function, the Green
function is typically differentiable and hence continuous in the classical sense, so it
“spreads out” the effect of the input function f (r) in closed integral solutions such
as (1.73) and (1.80) above. It is also notable that

Lφ(r0) =
∫

V
LG(r, r0) f (r)dτ =

∫

V
δ(r − r0) f (r)dτ = f (r0),

if the operator L (interpreted as an operator with reference to r0) is formally applied
to (1.80).

Green functions, and indeed desired closed solutions analogous to (1.73) and
(1.80), are often conveniently obtained using integral transform (Laplace, Fourier,
Mellin, etc.) techniques, where the kernel function and hence the choice of integral
transform depends upon the particular differential operator L and the domain of
integration (as is typical of the Green function). Note also that any problem where an
homogeneous equation is subject to non-homogeneous boundary conditions may be
re-expressed as Lφ = f subject to homogeneous conditions, or an adjoint boundary
value problem may be defined to deal with inhomogeneity.

Exercises

(Q1) Assuming (1.76) and that positions r0 and r′
0 of the “image” point sources

satisfy
|r − r′

0|
|r − r0| = a

|r0| ,

derive the vector form of the Poisson integral formulae for the potential:

φ(r0) =

⎧
⎪⎪⎨

⎪⎪⎩

|r0|2 − a2

4πa

∫

|r|=a

φ(r)
|r − r0|3 d S if |r0| > a

a2 − |r0|2
4πa

∫

|r|=a

φ(r)
|r − r′

0|3
d S if |r0| < a

.
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(Q2) A Green function G(r, t; r0, t0) satisfies

∇2G − 1

c2
∂2G

∂t2
= δ(r − r0)δ(t − t0), ∀ r and ∀ t.

Noting that G is consequently a function of r − r0 and t − t0, such that r0 and
t0 can be set zero for convenience, use the Fourier transform

Ĝ(k,ω) =
∫

G(r, t)e−i(k·r−ωt)drdt

to obtain on inversion

G(r, t) = 1

(2π)4

∫
c2

ω2 − k2c2
ei(k·r−ωt)dkdω.

Given that after contour integration in the complex ω-plane the essential part
of the Green function is

G(r, t) =
{

0 if t < t0
− c
4π|r| δ(|r| − ct) if t > t0

,

obtain the “retarded potential” solution

φ(r0, t0) = − c

4π

∫
f (r, t0 − |r − r0|/c)

|r − r0| dr

to the forced wave equation

∇2φ − 1

c2
∂2φ

∂t2
= f (r, t).
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Chapter 2
Fundamental Equations

Conservation equations are the foundation for FluidMechanics andMHD, but others
are needed to close the mathematical models. Although fluid pressure was at first
assumed to be isotropic, when viscous stress was considered early in the eighteenth
century it was evident that the assumption of incompressibility or the inclusion
of a simple equation of state was no longer sufficient. The classical macroscopic
equations (for mass, momentum and energy) follow from underlying microscopic
theory, which also provides the relevant pressure tensor to incorporate viscosity.
Except nearmagnetic null points, the pressure tensor for a plasma in amagneticfield is
found to differ significantly from the classical shear viscosity form for a neutral fluid.
There is also a brief introduction to the additional equation of magnetic induction
required in MHD. The bibliography includes some references that provide further
background to our presentation in this chapter, a worthy source on thermodynamics,
and two books by Lamb and Prager particularly recommended for supplementary
reading (more books on Fluid Mechanics are listed for Chap.3).

2.1 Conservation Equations

The conservation of physical quantities such as mass, momentum and energy is an
essential feature of any fluid mechanics or MHD model. A conservation equation is
a differential equation of the form

∂σ

∂t
+ ∇· � = s, (2.1)

where σ, � and s are fields of appropriate tensor rank.
To appreciate the important notion of “conservation” introduced here, consider

the integral of (2.1) over any fixed volume V in space bounded by a closed surface
S, and use a dot contraction of (1.59) to get
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d

dt

∫

V
σ dτ = −

∫

S
dS · � +

∫

V
s dτ . (2.2)

Equation (2.2) states that the quantity
∫

V σ dτ would be conserved, if it were not for
the flux

∫
S dS · � of the quantity � across the boundary S and the contribution from

any term s (a source if s > 0, or a sink if s < 0). Thus if some closed surface S exists
such that � vanishes on S, and there is no source or sink term in V , then

∫
V σ dτ is

conserved in the corresponding volume V and σ may be called the density of this
conserved quantity. In passing, we note that the fixed volume in space is often called
a “control volume” in the engineering literature.

We first consider the identification of σ with the field ρ(r, t) denoting the mass
density of a fluid, with the mass flux vector ρv where v(r, t) is the fluid velocity, to
produce the mass conservation equation

∂ρ

∂t
+ ∇· (ρv) = 0 (2.3)

if there is no source or sink (s = 0).1 This scalar conservation equation is often
called the continuity equation, due to an alternative derivation where the evolution
of any finite volume of the fluid is considered (cf. Sect. 2.5). Equations of energy
conservation constitute another important class, where σ is seen to be identified with
some scalar field later.

A vector conservation equation has the form (2.1) with σ and s vectors and � a
dyadic. Of specific interest is the momentum conservation equation

∂(ρv)

∂t
+ ∇· T = F, (2.4)

where the dyadicT defines the totalmomentumflux,with both advective and pressure
components as discussed in the following section, and F denotes the external force
density.2 The corresponding form of (2.2) in this case is of course

d

dt

∫

V
ρvdτ = −

∫

S
dS · T +

∫

V
Fdτ . (2.5)

The volume integral on the left-hand side of (2.5) is the total momentum of the fluid
in V , so the mass flux vector ρv is alternatively called the fluid momentum density.
The surface integral on the right-hand side represents the internal surface forces,
and the volume integral represents the total external force acting on the fluid in the
volume V . Note that the corresponding vector quantity−n̂ · T in the surface integral,

1This outcome may be recognised by considering the motion of an infinitesimal cylinder of fluid,
slanted in the direction of v, crossing the surface S. The cylindrical volume�τ = d S n̂·v �t carries
the mass �m = ρ�τ = ρv · dS�t , with (2.2) obtained from the Divergence Theorem (1.60) in
this case.
2In solid mechanics the dyadic T in the equation for the displacement field corresponding to (2.5)
is usually called the stress tensor—but in Fluid Mechanics and MHD we prefer to emphasise the
pressure tensor p, which is the pressure component of T.

http://dx.doi.org/10.1007/978-981-287-600-3_1
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where the unit normal n̂ such that dS = n̂d S points outward from the volume V ,
usually has both tangential and normal components at any point on the surface S.

The fluid pressure tensor in the total momentum flux dyadic T is first discussed
in the next section. Some basic concepts (gravity, the two classical alternative view-
points, and material rates of change) are then considered in Sects. 2.3–2.5, before
we proceed to derive the macroscopic equations of Fluid Mechanics and MHD in
Sects. 2.6 and 2.7. We explore extended mathematical models in Sect. 2.8, and dis-
tinguish the pressure tensor for magnetised plasma from the fluid pressure tensor in
Sects. 2.9 and 2.10. There is then a brief discussion on the heat flux in the starred
Sect. 2.11, before the final Sect. 2.12 on the additional equation ofmagnetic induction
introduced in MHD.

2.2 Fluid Pressure Tensor

Fluid is often transported across the boundary S of a fixed volume V in space (i.e.
n · v is not zero), when one part of the surface term −n̂ · T above represents advec-
tion of momentum across the boundary. (We prefer to use the term “advection” rather
than “convection”, which more strictly applies to transport due to buoyancy.) The
microscopic fluid constituents (atoms or molecules) carry momentum, as they ran-
dom walk back and forth between collisions with each other. As discussed later in
this chapter, the microscopic particle motion is often described by kinetic theory, and
the conservation equations of fluid mechanics or MHDmay be derived in detail from
a resultant mathematically exact basic equation of change. However, let us now first
identify the advective and pressure components of the tensor T for a typical fluid in
an heuristic fashion.

If the atoms or molecules of a fluid with velocities in a narrow range are grouped
to constitute a beam with density ρi and average velocity ui , then summing over
many such beams yields the aggregate quantities

ρ =
∑

i

ρi (total density) (2.6)

ρv =
∑

i

ρi ui (total mass flux) (2.7)

T =
∑

i

ρi ui ui (total momentum flux). (2.8)

Note that the velocity v is actually the mass-weighted mean of the various average
velocities of the constituents. It is often convenient to think of a composite fluid
element moving with this velocity v and the related average peculiar velocity of the
i th beam

wi ≡ ui − v, (2.9)
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which immediately splits out the advective and pressure components. Thus substi-
tuting (2.9) in (2.8) we have

advective pressure

component component

↓ ↓
T = ρvv + p (2.10)

where
p ≡

∑

i

ρi wi wi , (2.11)

since from (2.6) and (2.7) ∑

i

ρi wi = 0. (2.12)

The total momentum conservation equation (2.5) may therefore be rewritten as

∂(ρv)

∂t
+ ∇· (ρvv + p) = F, (2.13)

where the term∇· p represents the surface forcedensitywithin thefluid.As discussed
below, the diagonal components of the pressure tensor combine to produce a normal
total hydrostatic pressure, and tangential viscous forces arise from the off-diagonal
components in its representation—cf. the integrand of the surface integral in the
corresponding integral form (2.5).

Since the pressure tensor p is symmetric, there is an orthonormal set {ê1, ê2, ê3}
of principal axes such that p is diagonal—i.e.

p = λ1ê1ê1 + λ2ê2ê2 + λ3ê3ê3,

where λi are the eigenvalues of p. Now let us suppose that λmfp � L , where λmfp
is the mean free path length between the microscopic particle collisions and L is
the characteristic length scale for gradients in the macroscopic fields, such as the
density ρ and the fluid velocity v say. Thus for a typical fluid, to the zeroth order in
λmfp/L the wi distribution is isotropic—i.e. there is no preferred direction, which
implies that any orthonormal set {ei} defines principal axes such that λ1 = λ2 = λ3
(= p say). Let us therefore anticipate a pressure tensor of form p = pI + t, in which
the second term t of order λmfp/L is linear in the velocity gradient ∇v (∼ v/L by
dimensional analysis) that defines the rate of deformation, because dv = dr · ∇v is
the relative velocity of neighbouring fluid elements distance dr apart.

Now the only two symmetric dyadics that can be formed from ∇v are ∇· v I
and ∇v + (∇v)T , so it follows that t must be a linear combination of them. In solid
mechanics, the two “constants” (scalar fields) in an analogous linear combination are
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the Lamé parameters, although two other related coefficients (viz. Young’s modulus
and Poisson’s ratio) are often preferred. We may write the corresponding relation for
fluids as

t = −2μs − μv∇· v I (2.14)

on defining the rate of deformation tensor

s ≡ {∇v} = 1

2
[∇v + (∇v)T ] − 1

3
∇· v I, (2.15)

where μ and μv denote the shear viscosity coefficient and the volume viscosity coef-
ficient (or “coefficient of expansive friction”), respectively.3 Thus the fluid pressure
tensor is

p = p I − μ

[
∇v + (∇v)T − 2

3
∇· v I

]
− μv∇· v I, (2.16)

where the combination p − μv∇· v is the total hydrostatic pressure.
The traceless nature of the rate of deformation tensor s ensures it makes no con-

tribution to the pressure tensor if the fluid dilates (expands or contracts) isotropically,
and the associated shear viscosity coefficient μ is often small enough for that viscos-
ity contribution to be negligible except in regions of strong velocity shear (boundary
layers—cf. Sect. 3.8). Although the volume viscosity coefficient μv in a fluid other
than a monatomic gas is non-zero, many authors do not explicitly include the volume
viscosity term μv∇· v I that corresponds to dilatation (cf. Sect. 2.5), as we now do
too—i.e. henceforth, we also adopt theNewtonian fluid relation t = −2μs, where the
volume viscosity may be regarded as implicit in the total hydrostatic pressure field p.
Finally, we note that any variation in the coefficient μ (and μv if the volume viscosity
is retained) is usually assumed to be negligible over the characteristic timescale for
the flow. There are fluids where this is not an appropriate approximation, such as a
good house paint!

Exercise

Determine the shear and volume viscosity contributions to the pressure tensor if:

(a) the fluid velocity v = ky î, where y is a Cartesian coordinate in the direction
perpendicular to the basis vector î, and k is a constant; and

(b) the fluid velocity v = kr/3, where r is the position vector and k is a constant.

3The operator { } introduced here and often invoked later is defined by

{F} ≡ 1

2
(F + FT ) − 1

3
F : I I

for any dyadic F, where FT denotes its transpose. Since Tr F ≡ F : I and Tr I = 3, the resulting
symmetric dyadic is also traceless.

http://dx.doi.org/10.1007/978-981-287-600-3_3
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2.3 Gravity

A gravitational field can exert a force on a fluid. An external force (�m)g acting on
each fluid element of mass �m = ρ�τ corresponds to the force density F = ρg,
when the momentum conservation equation (2.13) becomes

∂(ρv)

∂t
+ ∇· (ρvv + p) = ρg. (2.17)

In a self-gravitating system, such as an interstellar gas cloud, the force density ρg
may be written as −∇· G, where

G = gg
4πG

− |g|2
8πG

I (2.18)

denotes the gravitational field stress dyadic and G is the gravitational constant. Thus
we have ∇× g = 0 since g is a conservative field, and Newton’s law of gravitation
in differential form is ∇· g = −4πGρ, so that

∇· G = (∇· g)g
4πG

+ g ·∇ g
4πG

− (∇g) · g
4πG

= −ρg − g × (∇× g)

4πG
= −ρg.

Consequently, the momentum equation can be expressed in conservation form

∂

∂t
(ρv) + ∇· (ρvv + p + G) = 0. (2.19)

Note that this is a conservation equation for the total system, consisting of both
the fluid subsystem and the gravitational subsystem, which just happens to have a
vanishing momentum density! The previous form (2.17), where the interaction with
the gravitational subsystem is represented as an external force density, describes the
fluid subsystem alone.

Exercise

(Archimedes’ Principle.) Show that when a body is partly or completely immersed
in a static incompressible fluid (a “liquid”), the resultant force due to the fluid
(“upthrust”) is equal and opposite to the weight of fluid displaced. Assume con-
stant gravity, and ignore the weight of the air above the fluid.
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2.4 Eulerian and Lagrangian Descriptions

The density ρ in the frequently occurring combination ∂t (ρF) + ∇· (ρvF), where
∂t denotes ∂/∂t and F is an arbitrary tensor field, can be commuted outside the
derivatives upon invoking the continuity equation (2.3). Thus although the momen-
tum equation (2.17) is in conservation form, it is often replaced by the equation of
motion

ρ

(
∂

∂t
+ v · ∇

)
v + ∇ · p = ρg, (2.20)

since from (2.3)
∂

∂t
(ρv) + ∇· (ρvv) = ρ

(
∂

∂t
+ v · ∇

)
v (2.21)

for the velocity field v(r, t). The differential operator (∂t + v · ∇) is called the
material derivative (or convective derivative, although strictly this term should be
“advective derivative”), or referred to as “differentiation following the motion”. It is
often denoted by D/Dt , but the notation

d

dt
≡ ∂

∂t
+ v · ∇ (2.22)

is adopted in this book. The various terminology and notation originates from two
distinct views of fluid behaviour, as described below and illustrated in the case of
two-dimensional steady flow in Fig. 2.1.

In the Eulerian view, an observer at any fixed point in space r watches the fluid
flow by, so that r is an independent coordinate and the partial time derivative

(a) (b)

Fig. 2.1 a Eulerian picture of a fluid flow—a velocity field v indicated by the larger arrows. In this
simple example v is tangential to streamlines, the continuous curves with small arrows. b The more
dynamical Lagrangian picture is based on the map taking an ensemble of fluid elements from their
positions r0 at the initial time, t = 0, along their trajectories to their positions r at time t



44 2 Fundamental Equations

∂

∂t
≡

(
∂

∂t

)

r
(2.23)

is used, where the subscript r means that r is held fixed. On the other hand, in the
Lagrangian view the observer moves with a given fluid element andwatches changes
“as seen by the fluid”. Thus r is no longer an independent variable, since it changes
with time as the fluid elementmoves [7]. The Lagrangian time derivative is defined by

d

dt
=

(
∂

∂t

)

r0

, (2.24)

where r0 is the initial position of the fluid element at some fixed initial time, say t0.
However, suppose r0 lies in a volume of fluid occupying the region V0 at time t0,

and advected to the region V at time t . Consider the trajectory of the fluid element
as it moves from r0 at time t0 to another position r = R(t; r0, t0) at time t . The
trajectory function R is defined by

Ṙ ≡
(

∂R
∂t

)

r0

= v(R, t) (2.25)

subject to the initial condition

R(t0; r0, t0) = r0. (2.26)

Provided the velocity field is smooth and finite, and fluid elements are neither created
nor destroyed (with no two fluid elements occupying the same region in space at the
same time), the mapping r = R(t; r0, t0) is a diffeomorphism between V0 and V
that is parameterised by t (and also by t0, regarded as a constant). Applying the chain
rule of partial differentiation, (2.24) becomes

d

dt
=

(
∂

∂t

)

r
+

(
∂R
∂t

)

r0

· ∂

∂r
≡ ∂

∂t
+ v · ∇

from (2.23) and (2.25). Thus the two forms of derivative d/dt , the Eulerian (2.22)
and the Lagrangian (2.24), are equivalent.

Consequently, the continuity equation (2.3) may be rewritten as

dρ

dt
+ ρ∇· v = 0; (2.27)

and since thematerial derivative dv/dt is the acceleration of the fluid elementmoving
with velocity v at the position r = R(t; r0, t) at time t , the equation of motion (2.20)
may be rendered as

ρ
dv
dt

= ρg − ∇· p, (2.28)
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where the terms deliberately written on the right-hand side may be interpreted as
the total force density acting on the fluid element, in analogy with the well-known
Newton equation of motion for a particle. It is also often useful to envisage discrete
fluid particles, each represented by the mass in a localised fluid element of infini-
tesimally small volume from the macroscopic viewpoint, such that the density field
corresponds to their mass to volume ratios.

Sometimes, it is appropriate to consider motion relative to a moving system of
coordinates—e.g. a Cartesian reference frame Ox ′y′z′ rotating with (instantaneous)
angular velocity ω0 relative to another Oxyz with common origin O . The velocity
of a particle is

v = dr
dt

∣∣∣
F

= dr
dt

∣∣∣
M

+ ω0 × r =
(

d

dt

∣∣∣
M

+ ω0×
)

r

where r(t) is the position vector of a fluid particle at time t relative to O as seen in
the moving frame, the subscript M referring to the moving reference frame Ox ′y′z′
and F to the “fixed” (inertial) reference frame Oxyz. Moreover, the acceleration in
the rotating reference frame is likewise

dv
dt

∣∣∣
F

= d

dt

∣∣∣
F

d

dt

∣∣∣
F

r

=
(

d

dt

∣∣∣
M

+ ω0×
)2

r, (2.29)

whichmay be expanded if desired. Amoving reference framewith another origin O ′,
not coincident with the origin O of the inertial reference frame, is likewise readily
considered (cf. Sect. 3.14).

Exercises

(Q1) A cylindrical container rotates about its vertical axis with constant angular
velocity ω0. If there is liquid in the container, and assuming the atmospheric
pressure is uniform over the surface of the liquid, by integrating the equation
of motion show that the surface of the liquid is a paraboloid of revolution about
the vertical axis.
(Assume constant gravity and a centrifugal acceleration.)

(Q2) A region of homogeneous self-gravitating fluid rotates about a fixed axis with
constant angular velocity ω0. Assuming there is no external pressure, show
that there is an upper limit to |ω0|.
(Introduce the gravitational potential V such that g = −∇V , and consider∇2 p
over the fluid volume.)

(Q3) Since p is a symmetric dyadic, from the momentum conservation equa-
tion (2.17) derive the angular momentum conservation equation

http://dx.doi.org/10.1007/978-981-287-600-3_3
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∂

∂t
(r × ρv) + ∇· (vr × ρv − p × r) = r × ρg, (2.30)

where r is the position vector.

2.5 Rates of Change of Material Integrals

The material derivative d/dt may also be applied to any integral over a collection
of fluid elements that remain identifiable and usually well connected during their
motion [8]. Indeed, let us assume that the fluid is a continuum such that any closed
fluid surface always consists of the same fluid elements, and any fluid element in
the enclosed fluid volume always remains inside that fluid volume. (The explicit
reference is to a material volume, in contrast to a fixed volume in space that is
often called a control volume in the engineering literature.) Thus for any tensor field
F(r, t), the integral

I (F) =
∫

V
F(r, t) dτ (2.31)

over a simply connected fluid volume V has the rate of change

d I

dt
= lim

�t→0

∫
V ′ F(r′, t + �t)dτ ′ − ∫

V F(r, t)dτ

�t
. (2.32)

Here any element in the fluid volume V , with position vector r(t) and velocity v(r, t)
at time t , has the position vector r′ = r + v�t to linear order in �t at time t + �t ;
and the fluid volume V occupies the volume V in space (with closed surface S say)
at time t , but then volume V ′ in space (with closed surface S′ say) at time t + �t .

Now if the spatial volume element dτ is not only an element of V but also of
V ′, there is a contribution ∂t F dτ in the integrand appearing on the right-hand side
of (2.32), where the partial derivative is taken at the position of the element dτ at
time t . However, if a spatial volume element dτ ′ in V ′ has no counterpart in V ,
then dτ ′ = dS · vdt and this element contributes Fv · dS to the integrand arising
from the volume integral over V ′; and a spatial element dτ in V with no counterpart
in V ′ contributes Fv · dS to the integrand arising from the volume integral over
V , where an opposite sign in n̂ · v (recall that n̂ is the unit outward normal to any
closed surface) compensates for the negative sign on the volume integral over V . In
summary, on taking the limit �t → 0 in (2.32) we obtain the Reynolds transport
theorem as applied to material elements—i.e.

d

dt

∫

V
F(r, t) dτ =

∫

V

∂F
∂t

dτ +
∫

S
F v · dS, (2.33)
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or from the relevant dot contraction of (1.59)

d

dt

∫

V
F(r, t) dτ =

∫

V

[
∂F
∂t

+ ∇· (v F)

]
dτ , (2.34)

or on invoking (2.22)

d

dt

∫

V
F(r, t) dτ =

∫

V

(
dF
dt

+ F∇· v
)

dτ . (2.35)

Identifying F ≡ 1 in either (2.34) or (2.35) yields

d

dt

∫

V
dτ =

∫

V
∇· v dτ , (2.36)

defining the rate of dilatation (expansion or contraction) of the fluid volume V ,
measured by the divergence ∇· v as mentioned in Sect. 2.2. In particular,

d

dt

∫

V
dτ = 0

for any arbitrary fluid volume V implies the incompressibility condition ∇· v = 0
everywhere in the fluid, which from (2.35) is evidently necessary and sufficient for
the material derivative and volume integral operations to commute. Identifying F in
(2.34) with the fluid density ρ(r, t) yields

d

dt

∫

V
ρ(r, t) dτ =

∫

V

[
∂ρ

∂t
+ ∇· (ρv)

]
dτ = 0, (2.37)

if the fluid body is conserved (there is no internal source or sink). Thus (2.37) implies
the continuity equation (2.3) everywhere in the fluid, if (2.37) applies to any arbitrary
fluid volume V . Identifying F in (2.35) with the fluid density ρ(r, t) likewise yields
the alternative form (2.27).

The time rate of change of momentum of an arbitrary fluid volume corresponds to
setting F = ρv in (2.34). Then by postulating that this rate of change of momentum
equals the sum (over the volume elements) of the total force acting on each as in
(2.28), on applying the relevant dot contraction of (1.59) we have

d

dt

∫

V
ρv dτ =

∫

V

[
∂

∂t
(ρv) + ∇· (ρvv)

]
dτ =

∫

V
ρg dτ −

∫

S
p · dS, (2.38)

which identifies the gravity ρg as a “body force” density and the pressure tensor p
with a “surface force” acting on the surface S of the fluid volume V . Conversely,
since the fluid volume V is arbitrary, (2.38) may be regarded as the origin of (2.20)
on invoking (2.21)—or of course (2.28), after also invoking (2.22).

http://dx.doi.org/10.1007/978-981-287-600-3_1
http://dx.doi.org/10.1007/978-981-287-600-3_1
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The field F may be identified with other quantities such as the energy density,
but there is often a simple relation between the fluid pressure p and density ρ that
leads to a relatively simple complete dynamical description. This is discussed further
in the following sections, which are devoted to the derivation of the macroscopic
equations of Fluid Mechanics and MHD from a kinetic description of the motion of
the microscopic constituents of fluids and plasmas.

For later reference, let us also note here that the rate of change of the material line
integral of a vector field f , taken over a collection of fluid elements forming a closed
curve C that remains simple and connected, is

d

dt

∮

C
f · dr =

∮

C

(
df
dt

+ (∇v) · f
)

· dr

=
∮

C

(
df
dt

− (∇f) · v
)

· dr (2.39)

since ∇(v · f) = (∇v) · f + (∇f) · v. In particular, identifying f ≡ v in (2.39) yields
the rate of change of the fluid circulation

d

dt

∮

C
v · dr =

∮

C

dv
dt

· dr (2.40)

since (∇v) · v = ∇(v · v/2) = ∇(v2/2)—i.e. thematerial derivative and line integral
operations commute in this case. There is also the rate of change result for a material
surface, discussed and invoked in Sect. 5.8.

Exercise

(Q1) Sketch a proof for the result (2.39), noting that values of the velocity field
at the end-points of any infinitesimal directed material line segment dr′ are
respectively v and v + dv, where dv = dr · ∇v.

2.6 Equations of Change

As mentioned earlier, on a microscopic scale the motion of gases and liquids (fluids)
is described in terms of their constituent atoms or molecules—and in the case of
ionised gases (plasmas), their constituent ions and electrons [3]. A kinetic equation
that allows for encounters between the microscopic particles was first considered by
Boltzmann in 1872, to describe the classical dynamics of gases. Thus for fluids it is
normally assumed that the atoms or molecules are correlated due to binary collisions
over distances much less than the macroscopic length scale and at frequencies much
greater than any characteristic macroscopic frequency, as previously indicated in
Sect. 2.2. The rapid mobility of electrons in plasma, due to their significantly smaller
mass relative to any other species, ensures that they are almost instantaneously

http://dx.doi.org/10.1007/978-981-287-600-3_5
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positioned such that the electric field of any charge is screened out on a scale charac-
terised by the Debye length—and consequently, any collision between the charged
particles in a plasma is also predominantly binary over distances bounded below by
the Coulomb length and above by the Debye length [10]. This notion of charged
particle screening was introduced in the theory of electrolytes developed by Debye
and Hückel.4 The term plasma normally implies that the Debye length scale is much
less than the macroscopic length scale, and that electric charge oscillations due to
small perturbations from the typical quasi-neutral configuration in plasmas occur at
frequencies much greater than any characteristic macroscopic frequency.

For each constituent species s, a Boltzmann-type kinetic equation may be intro-
duced to define the evolution in time t of a velocity distribution function fs(r, c, t)
in phase space with coordinates the particle position r and velocity c:

∂ fs

∂t
+ c · ∇ fs + as(r, c, t) · ∇c fs = δ fs

δt
, (2.41)

where the acceleration of the particle of mass ms and charge es is

as(r, c, t) = g + es

ms
[E(r, t) + c × B(r, t)],

if both gravitational and electromagnetic components are included (g,E andB denote
the respective gravitational, electric and magnetic fields) [3, 9]. The symbol ∇c
denotes the gradient operator relative to the independent velocity vector c, analogous
to ∇ relative to the position vector r in phase space, and the right-hand side of (2.41)
represents the time rate of change of the velocity distribution function due to the
microscopic particle collisions.

Any macroscopic field equation of interest corresponds to taking some moment
of Eq. (2.41). If w = c − c0 denotes the peculiar velocity for the species relative to
some reference velocity c0, the moment corresponding to any related function �(w)

is defined by

ns〈�〉 =
∫

fs(r, c, t)�(w) dc, (2.42)

including the particle number density (number of particles in a unit volume)

ns(r, t) =
∫

fs(r, c, t) dc.

We prefer to identify c0 with the mass-weighted mean velocity v, defined via the
total density and total mass flux

ρ = �sρs , ρv = �sρsvs,

4P. Debye and E. Hückel, Physikalische Zeitschrift 24, 183 and 305 (1923).
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analogous to (2.6) and (2.7) in Sect. 2.2 except that the summation is now over all
species present (rather than beams)—i.e. where the summations involve the density
ρs and the mean flow velocity vs = 〈c〉 of the particular species (cf. below). The
consequent general equation of change that follows from (2.41) may be written in
the form

∂(ns〈�〉)
∂t

+ ∇· (ns〈(v + w)�〉)

−ns

〈 (
fs + es

ms
w × B − w · ∇v

)
· ∇w�

〉
= Cs(�), (2.43)

which involves the acceleration

fs = g + es

ms
[E + v × B] − dv

dt

and the collision integral

Cs(�) =
∫

δ fs

δt
� dc. (2.44)

This form is a simplification of the Enskog equation, analogous to an equation of
change due to Maxwell, because � is only explicitly dependent on w (cf. Chapman
and Cowling [3]). Equation (2.43) replaces (2.41) as our starting point. In passing,
we note that the subscript s has been omitted from both c and w = c − v, since c
becomes a dummy integration variable.

Fundamental field quantities in FluidMechanics andMHDare related to the lower
moments defined by (2.42) for each species s of particle mass ms—viz.

ρs ≡ nsms (density)

us ≡ 〈w〉 (mean relative velocity)

ps ≡ ns

〈
1

3
msw

2
〉

(pressure)

ps ≡ ns〈msww〉 (pressure tensor)

qs ≡ ns

〈
1

2
msw

2w
〉

(thermal flux).

In passing, we note that us = vs − v is the mean species velocity relative to the
reference velocity v, the species pressure tensor ps = ps I + ts has the symmetric
traceless part ts ≡ {ps} = ns〈ms{ww}〉, and the pressure ps and thermal flux vector
qs respectively determine the species contribution to the pressure and heat transfer.
(The fundamental macroscopic equations discussed in Sect. 2.7 involve the reference
velocity v and the respective total fields ρ, p, p and q obtained by summation over
the species present, together with the current density and electromagnetic fields in
the case of MHD as considered there.)
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Other unnamed highermoments arising in the basic equations of change below are
the third-degree Hs = ns〈mswww〉 = (2/3) qs I + hs where hs = ns〈msw{ww}〉,
and the fourth-degree �s = ns〈 12msw

2ww〉 or

Ls = �s − 5

2

ps

ρs
ps . (2.45)

Thus if � is identified with ms, msw, 1
2msw

2, ms{ww}, 1
2msw

2w, etc., succes-
sively, then for each species the general equation of change (2.43) produces the basic
equations for the mass (continuity), momentum, thermal energy, ts and qs , etc.:

∂ρs

∂t
+ ∇· (ρsv + ρsus) = Cs(ms) (2.46)

∂(ρsus)

∂t
+ ∇· (ρsvus + ps) (2.47)

− ρs fs − ρs
es

ms
us × B + ρsus · ∇v = Cs(msw)

∂( 32 ps)

∂t
+ ∇· (

3

2
ps v + qs ) − ρs fs · us + ps : ∇v = Cs

(
1

2
msw

2
)

(2.48)

∂ts

∂t
+ ∇· (vts + hs) − 2ρs{fs us} + 2{ps · ∇v} (2.49)

−2
es

ms
{ts × B} = Cs(ms{ww})

∂qs

∂t
+∇· (vqs + �s) − fs · ps − 3

2
psfs − es

ms
qs × B (2.50)

+ qs · ∇v + Hs : ∇v = Cs

(
1

2
msw

2w
)

etc. On writing ps = nskTs , where k denotes the Boltzmann constant and Ts the
kinetic temperature of the species, Eq. (2.50) for qs may be replaced by subtracting
5
2 ps/ρs times equation (2.48) from (2.50)—i.e.

∂Rs

∂t
+ ∇· (vRs + Ls) − fs · ts − es

ms
Rs × B + 5

2

k

ms
ps · ∇Ts (2.51)

+ 5

2
nskus

dTs

dt
+ Rs · ∇v + Hs : ∇v = Cs

(
1

2
ms

(
w2 − 5kTs

ms

)
w

)
,

which we invoke to analyse thermal effects (cf. Sect. 2.11).
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Each equation in the hierarchy of basic equations of change introduces a higher
moment. The necessary closure for the subsequent derivation of any related fluid
mechanics or MHD model corresponds to either simply ignoring a higher moment
at some level or approximating the velocity distribution function in some acceptable
way, as discussed further in the following sections. Subsets of these basic equations
of change, or an extension to even higher levels in the hierarchy, could be used as
the macroscopic description for each species in terms of the associated variables one
chooses to retain. In this book we continue to adopt the more traditional classical
macroscopic equations obtained from (2.46)–(2.48) as discussed in the next section—
but then we use (2.49) and (2.51) to derive appropriate explicit relations for ts in
Sect. 2.9 and Rs (and hence qs) in Sect. 2.11, in our subsequent discussion of the
extended macroscopic models we do consider.

Finally, we remark that following Braginskii many plasma theorists have adopted
the mean flow velocity vs of the particular species as the reference velocity c0 in
defining the moments [5], rather than the universal mass-weighted mean velocity
v as in Chapman and Cowling [3] that we prefer. Thus recalling w = c − v and
vs = 〈c〉, from (2.42) we have

ns〈w〉=
∫

fs(r, c, t)(c − v) dc=
∫

fs(r, c, t)c dc − v
∫

fs(r, c, t) dc = ns〈c〉−nsv

such that (as mentioned above) us = vs − v or vs = v + us , so Eq. (2.46) may be
rewritten as

∂ρs

∂t
+ ∇· (ρsvs) = C(ms). (2.52)

The corresponding momentum equation for the species is

msns

(
∂vs

∂t
+ vs · ∇vs

)
+ ∇· Ps − nses(E + vs × B) − msnsg = Fcoll

s , (2.53)

involving the pressure tensor

Ps(r, t) =
∫

ms fs(r, c, t)(c − vs)(c − vs) dc

defined using the mean flow velocity vs of the particular species. Noting that Ps =
ps − msnsusus where ps is our form for the pressure tensor, Eq. (2.53) is equivalent
to (2.47) on writing Fcoll

s for Cs(msw). Moreover, the heat balance equation for each
species is written as

3

2
nsk

(
∂Ts

∂t
+ vs · ∇Ts

)
+ ∇· Qs + Ps : ∇vs = Gcoll

s (2.54)

where Ts denotes the kinetic temperature defined such that Ps = ns k Ts is the
associated hydrostatic pressure, the thermal flux
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Qs =
∫

1

2
ms fs(r, c, t) (c − vs) · (c − vs) (c − vs) dc

is likewise defined using the mean flow velocity vs of the species, and Gcoll
s is the

relevant collision integral.5

Exercises

(Q1) Verify Ps = ps − msnsusus , and show that (2.53) is equivalent to (2.47).
(Q2) Show that

3

2
nsk

(
∂Ts

∂t
+ vs · ∇Ts

)
= ∂

( 3
2 Ps

)

∂t
+ ∇·

(
3

2
Psvs

)
,

and hence that the heat balance equation (2.54) may be rewritten as

∂
( 3
2 Ps

)

∂t
+ ∇·

(
3

2
Psvs + Qs

)
+ Ps : ∇vs = Gcoll

s .

Then show that this equation is consistent with (2.48), when the collision term
Gcoll

s is suitably identified.
Hint: Use (2.46), and an energy transport equation given by the dot product of
(2.47) with us .

(Q3) When the mean flow velocity of the species vs is again used as the reference
velocity, the next equation in the hierarchy involves the corresponding even
higher moment Qs = ∫

ms fs(r, c, t) (c − vs) (c − vs) (c − vs) dc (note the
heat flux Qs defined in the text is an immediate contraction of Qs):

∂ Ps

∂t
+ ∇· (vs Ps + Qs) + vs

←∇ · Ps + Ps ·∇vs − 2
es

ms
{Ps ×B} = Gcoll

s ,

where the leftward pointing arrow on the ∇ operator introduced here means
it applies to the left, Gcoll

s is the appropriate collisional term, and the other
notation is the same as in the previous two Exercises. Derive this equation
directly by expanding ∇· Qs .
Hint: Invoke the Boltzmann-type Eq. (2.41) in the tensor calculus. (We note
the traceless part of this higher moment equation is analogous to (2.49), and
the analogy to (2.50) is derived in the answer to this Exercise.)6

5In the case of a plasma consisting of electrons and only one ion species, the mean velocity is
effectively the ion velocity (v � vi corresponding to me � mi and ui � 0) so the defined fields
such as Pi and Qi for example are essentially the same as pi and qi , respectively. However, this
is not so for the electrons, since the alternative reference velocities for the electron component are
quite distinct corresponding to inter-species (electron) diffusion—i.e. ue 
= 0.
6The corresponding extension of the hierarchy of equations (where the moments are defined using
the species mean flow velocity vs as the reference velocity) was originally obtained by J.J. Ramos
(Physics of Plasmas 14, 052506, 2007).
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2.7 Classical Macroscopic Equations

When the sum over all of the species present in the fluid or plasma is taken and
it is assumed the combined contributions from the respective collision integrals
Cs(ms), Cs(msw) and Cs(

1
2msw

2) vanish (i.e. the binary collisions summed over all
species preserve mass, momentum and energy), noting that �sρsus = 0 we obtain
the classical macroscopic equations of mass conservation (continuity), motion and
energy (cf. also [3]):

dρ

dt
+ ρ∇· v = 0 (2.55)

ρ
dv
dt

+ ∇· p = ρg + j × B (2.56)

d

dt

(
3

2
p

)
+ 3

2
p∇· v + p : ∇v + ∇· q = j · (E + v × B). (2.57)

Here the material derivative d/dt = ∂t + v · ∇ appropriately refers to the mass-
weightedmean flow velocity v, the variable subset {ρ, p = p I + t, q} and implicitly
p are total quantities (the respective sums over all of the species present), and

j ≡ �snses〈cs〉 = �s
es

ms
ρs〈cs〉

denotes and defines the total current density. Equation (2.55) is identical to (2.27),
and the equation of motion (2.56) is comparable with (2.28). An electric force term
does not appear in (2.56) because the medium is assumed to be quasi-neutral on the
macroscopic scale, due to the charged particle screening outlined in the previous
section in the case of a plasma, but the gravitational force ρg in the equation of
motion is supplemented with the electromagnetic body force j × B that is of major
interest in MHD—i.e. whenever the system is electrically conducting.

Noting (2.55), the first two terms on the left-hand side of (2.57) are sometimes re-
expressed as (3/2)n k dT/dt , where T denotes a systemic temperature.Alternatively,
from (2.55) the energy equation (2.57) may be rewritten as

3

2
ρ

5
3

d

dt
(pρ− 5

3 ) = −t : ∇v − ∇· q + j · (E + v × B), (2.58)

where the first term on the right-hand side represents viscous dissipation, the second
term the heat transfer (thermal conduction), and the third term the electromagnetic
heating. The well-known adiabatic equation of state

d

dt
(pρ−γ) = 0 or

dp

dt
+ γ p∇· v = 0

(
identifying γ = 5

3

)
(2.59)
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corresponds to neglecting all the terms on the right-hand side of (2.58)—i.e. we
assume all three dissipation contributions are negligible. The term “adiabatic” (no
heat transfer) used above is more common, but a more precise term is isentropic—
i.e. (2.59) corresponds to no change in entropy (any reversible adiabatic process is
isentropic) [2]. Another useful term is barotropic, which means that there is some
relation between the fluid pressure p and fluid density ρ, but no third thermodynamic
variable—e.g. pρ−γ = constant (following the motion), corresponding to (2.59).

In ideal fluid mechanics and various inviscid MHD models, the traceless compo-
nent t of the pressure tensor is simply ignored such that∇· p = ∇ p, when the system
is described in terms of the field variables {ρ, v, p} by (2.55) and (2.56) together with
a barotropic equation of state. There can be similar acceptable dynamical descrip-
tions in viscous Fluid Mechanics and MHD too, if an appropriate expression for p
is adopted (cf. Sects. 2.2 and 2.9). An expression for the thermal flux vector q may
also be included if there is significant heat conduction (cf. Sect. 2.11). They are often
called constitutive relations in the literature, and sometimes viewed as phenomeno-
logical inputs, but we emphasise that the explicit expressions for ts and Rs (and
hence qs) presented below are obtained from their respective higher basic equations
of change. In the case of MHD, where the additional body force j × B is significant,
supplementary electromagnetic equations must be included (cf. Sect. 2.12).

2.8 Extended Macroscopic Models

As indicated, ideal fluid mechanics and various inviscid MHDmodels correspond to
truncation of the hierarchy of basic equations of change where only (2.46) and (2.47)
are retained, to consider just five scalar field variables {ρs, vs, ps}. This is sometimes
referred to as the “five-moment” description, albeit with additional electromagnetic
variables in MHD. However, the extension to non-ideal Fluid Mechanics and MHD
corresponds to including ts in a “ten-moment” description, or both ts and qs in a
“thirteen-moment” description, and so on. Thus if the term ∇· t is to be retained
in expressing ∇· p in (2.56), one may proceed to derive an extended macroscopic
model by augmenting the lowest level Eqs. (2.46) and (2.47) with the additional basic
equation of change (2.49) for ts in the underlying hierarchy; and if thermal effects
are to be considered, then the extension also involves including (2.50) for qs , or
equivalently (2.51) for Rs .

In collisionless theory, the terms on the right-hand sides of the fundamental
equations of change are omitted entirely, but various representations have also been
considered. Here we retain the collisional terms for each species s in the simplest
way—viz. linear expressions for the integrals in (2.49) and (2.51). On tensor rank
alone, these expressions must involve their respective moments and are thus

Cs(ms{ww}) = −
∑

j

ϑs j

τs j
t j , (2.60)
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Cs

(
1

2
ms

(
w2 − 5kTs

ms

)
w

)
= −

∑

j

(
1

τs j
R j + ζs jρ j u j

)
, (2.61)

with the coefficients {τs j ,ϑs j , ζs j } functions of number density and temperature.
As previously indicated, the “ten moment” description is closed if we may ignore
terms in the two higher moments qs and hs from (2.49), in truncating at one level
beyond the “five moment” description to include the term∇· ts from∇· ps in (2.47).
The “thirteen moment” description, corresponding to also including Eq. (2.50) for
qs or equivalently Eq. (2.51) for Rs together with Eqs. (2.46)–(2.49) as previously
mentioned, could likewise be achieved at that level in the hierarchy of basic equations
by omitting terms inhs and �s—and yet higher “nmoment” (n > 13) closure could be
considered by including evenmore of the hierarchy and neglecting terms inmoments
beyond the corresponding set.

Although the ultimate test of the accuracy of the closure at any level is of course
experimental or observational agreement with the consequent mathematical model,
there have been two major theoretical approaches to this issue. In deriving macro-
scopic field equations from the kinetic equation (2.41), various asymptotic schemes
based upon some small parameter in a particular physical context have been pro-
posed in order to estimate the approximation involved [5]. There is also an elegant
procedure where the velocity distribution function is represented as a series expan-
sion, appropriately truncated for an assumed level of closure of the hierarchy of exact
equations of change. A well-known example consistent with the expressions (2.60)
and (2.61) is Grad’s expansion in multidimensional Hermite polynomials, where the
truncated expression

fs � f 0s

[
a0

s + a1s · w + a2
s : ww + a3s · w

(
αsw

2 − 5

2

)]
(2.62)

with the Maxwellian zeroth-order form

f 0s = ns

(αs

π

) 3
2
exp(−αsw

2) (2.63)

provides his “thirteen moment approximation”.7 Particle collisions tend to drive
the distribution function towards this Maxwellian form, which is associated with
“local thermodynamic equilibrium”. Consequently, on adopting (2.62) and (2.63)
and substituting into (2.42), from the respective lower moments 〈1〉, 〈w〉, 〈 12msw

2〉,
〈{msww}〉 and 〈{ 12msww2}〉 we obtain

a0
s = 1, a1s = 2αsus,

αs = ms/2kT ,

a2s = (αs/ps) ts, a3s = 4
5 (αs/ps) Rs,

(2.64)

7H. Grad (Communications in Pure and Applied Mathematics 2, 231– 407, 1949—cf. also Hand-
buch der Physik, S. Flügge (Editor), Volume 12, Chapter X, Springer, Berlin, 1958).
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together with the relevant results for the higher moments

∇· hs = 4

5
{∇qs } , Hs : ∇v = 2

5
[ qs · ∇v + qs∇· v + (∇v) · qs ] , Ls = ps

ρs
ts

(2.65)

and the coefficients in the expressions (2.60) and (2.61) for the collision integrals.
Closure therefore occurs at a level involvingnomore than the thirteen scalar fields cor-
responding to the variables ρs = msns ,us , ps = nskTs , ts , andqs . Retaining only the
first three expansion coefficients listed in (2.64) produces the related “ten moment”
description in {ρs, us, ps, ts}, and the heat flux vector Rs (and hence qs) included in
the “thirteenmoment” description is completely determined by the fourth coefficient.
Balescu [1] followed Grad by expanding fs in terms of Hermite polynomials, and
other authors have considered truncated expansions involving alternative basis func-
tions (e.g. Sonine-Laguerre polynomials in a “fifteen moment” approximation). The
expansion could also be taken about some other zeroth-order distribution function.
Indeed, an appropriate number of leading terms in an integrable series expansion of
orthogonal functions about the most suitable zeroth-order form (not necessarily the
Maxwellian) probably represents almost everywhere the best possible expression for
the relevant velocity distribution function, given the corresponding number of basic
equations of change for the species one chooses to retain. Thus the fluid or MHD
models eventually obtained, upon truncation of the underlying hierarchies of exact
equations of change, may be more widely applicable than is traditionally thought.

2.9 Plasma Pressure Tensor

2.9.1 Invariant Form for the Traceless Component

Let us now proceed to consider the traceless pressure tensor component ts , implicit
in (2.49) for any species, with the ultimate objective to render an appropriate form
for the pressure tensor in plasma. In a magnetic field, it emerges that the consequent
explicit relation for ts is usually quite different for charged species than for neutrals.
Thus the total pressure tensor p in (2.56) for a magnetised plasma differs from
the form for a fluid, which was previously obtained in Sect. 2.2 using an heuristic
argument. We adopt the linear representation (2.60), but for notational simplicity
now suppress the subscript s denoting the chosen species where there is no chance
of confusion (including writing ϑ/τ = ϑss/τss), so (2.49) may be re-expressed as
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dt
dt

+ ϑ

τ
t + t∇· v − 2ρ{f u} + 2{p · ∇v}

− 2
e

m
{t × B} + ∇· h = −

∑

j 
=s

ϑs j

τs j
t j . (2.66)

It is convenient to introduce a characteristic frequency ω to represent the time deriv-
ative term dt/dt as ωt in Eq. (2.66), which may then be rewritten in the notationally
convenient form as

t − 2{t × a} = −2μs (2.67)

where the symmetric and traceless generalised rate of deformation (or strain) tensor
s is given by

2p s = −2ρ{f u} + 2p{∇v} + t∇· v + 2{t · ∇v} + ∇· h +
∑

j 
=s

ϑs j

τs j
t j . (2.68)

The coefficient μ = p τ

ωτ + ϑ
and the vector a = eB

m

τ

ωτ + ϑ
(proportional to the

gyrofrequency ωc = eB/m) introduced in (2.67) reflect the first time derivative
and the second collisional terms in (2.66), with one or the other predominant if
the magnitude of the parameter ωτ is, respectively, sufficiently large or small. Note
that we refer here to collisions between particles of the particular species under
consideration (with its appropriate factorϑ typically of order one), and any collisional
coupling between the different species is represented by the summation for j 
= s
incorporated in s. The form (2.67) isolates the term {t × a} proportional to the
magnetic field B, which enables us to obtain t as an explicit function of s below—
an important outcome even though there are two residual terms involving t in the
generalised deformation tensor defined by (2.68), a point we examine further in the
supplementary discussion for a simple ion-electron plasma in Sect. 2.10.

Using tensor identities, we may re-express (2.67) as (cf. Exercises)

t = − 2μ

(1 + |a|2)(1 + 4|a|2) [ (s + 2{s × a})(1 + |a|2)
+ 6 ({s · aa} + 2{{s · aa} × a}) + 6s : aa{aa} ].

(2.69)

The Cartesian representation of this exact form (2.69) appears in Chapman and
Cowling [3], who assumed a uniform magnetic field B—but we now recognise that
(2.69) is an invariant result (i.e. valid in any system of coordinates) without restriction
on themagnetic field. Equation (2.67) and likewise the result (2.69) obviously always
reduce to t = −2μs for a neutral species and for every species if there is no magnetic
field (i.e. for a = 0), whenwe recover the shear viscosity form familiar from Sect. 2.2
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on identifying s = {∇v}. However, the terms involving the vector a usually dominate
for charged particles in the presence of a magnetic field, producing characteristically
anisotropic plasma viscosity contributions as follows.

2.9.2 Parallel, Cross and Perpendicular Components

For any species of charged particles in magnetised plasma (i.e. with a permeating
magnetic field), typically |a| � 1 except in the near neighbourhood of magnetic null
points. Thus on noting

− 2μ

(1 + | a|2)(1 + 4| a|2) = μ

2

[
−| a|−4 + 5

4
| a|−6 + · · ·

]
,

the general explicit form (2.69) may consequently be expanded to obtain

t = t‖ + tg + t⊥ + · · · , (2.70)

where the parallel, cross (or gyroviscous) and perpendicular components

t‖ = −3μ s : b̂b̂{b̂b̂}, (2.71)

tg = − μ

|a|
{
s × b̂ + 6{s · b̂b̂} × b̂

}
and (2.72)

t⊥ = − μ

2|a|2
[
s + 6{s · b̂b̂} − 15

2
s : b̂b̂{b̂b̂}

]
(2.73)

are named with reference to the magnetic field direction b̂ ≡ B/|B|. The coefficient
μ/|a | in (2.72) is entirely independent of the collision time τ , and this second-order
component is often called the gyroviscous or alternatively the “finite Larmor radius”
(FLR) contribution due to an association with the charged particle gyration in the
magnetic field. It has been derived elsewhere from the Vlasov (“collisionless Boltz-
mann”) equation, on assuming that the microscopic particles are correlated through
their interaction with the magnetic field. However, the leading parallel component
(2.71) remains in the low collisional limit (cf. μ as defined above and also Sect. 2.10),
and the magnetic field need not be strong to satisfy |a| � 1 nor otherwise restricted
in any way.

The parallel component (2.71) produces an anisotropic plasma pressure on its
own, for the resulting pressure tensor may be written as p = p‖b̂b̂ + p⊥I⊥ with
p‖ = p + t‖,‖ and p⊥ = p − (1/2)t‖,‖ where the projector into the plane locally
perpendicular to B is defined by

I⊥ = I − b̂b̂, (2.74)
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since we have t‖,‖ ≡ t : b̂b̂ = t‖ : b̂b̂ = −2μs : b̂b̂ and

{b̂b̂} = b̂b̂ − 1

3
I = −1

3
(I⊥ − 2b̂b̂). (2.75)

Further, on noting s : b̂b̂ = b̂ · s · b̂ we may re-express (2.71) as

t‖ = μ b̂ · s · b̂ (I⊥ − 2b̂b̂). (2.76)

The right-hand sides of (2.72) and (2.73) may also be expanded to yield alternative
expressions for the gyroviscous (cross) and perpendicular components (ExerciseQ3):

tg= μ

2|a|
[
b̂ × s · I⊥ − I⊥ · s × b̂ + 4

(
b̂ × s · b̂b̂ − b̂b̂ · s × b̂

)]
, (2.77)

t⊥ =− μ

2|a|2
[
I⊥ · s · I⊥ + 1

2
b̂ · s · b̂ I⊥ + 4

(
I⊥ · s · b̂b̂ + b̂b̂ · s · I⊥

)]
. (2.78)

In summary, except in the near neighbourhood of a magnetic null, in a magnetic
field the components (2.71)–(2.73)—or their equivalents (2.76)–(2.78)—provide the
appropriate representation for the traceless pressure tensor component ts for either
ions or electrons, in any coordinate system.8

Exercises

(Q1) If t is a symmetric traceless dyadic and a is a vector, show that

2{{t × a} × a} = 3{t · aa} − 2|a|2t,

6 {t · aa} · a = 3 t · a |a|2 + a t : aa

and
{{t × a} · aa} = {t · aa} × a.

(Q2) Take a post-cross product of (2.67) with a, followed by the bracket operator
defined in the footnote in Sect. 2.2, to obtain

8The result (2.69) was originally obtained by B.S. Liley, and the successive terms (2.71)–(2.73)
for a sufficiently large magnetic field (when |a| � 1) were identified by R.J. Hosking and G.M.
Marinoff (Plasma Physics 15, 327–341, 1971). The alternative forms (2.76)–(2.78) were presented
by J.D. Callen,W.X. Qu, K.D. Siebert, B.A. Carreras, K.C. Shaing andD.A. Spong (Plasma Physics
and Controlled Nuclear Fusion Research, Volume II, IAEA, Vienna, 1987), and essentially earlier
by S.I. Braginskii (Reviews of Plasma Physics 1, 205–311, 1965) in the collisional limit—cf. the
traceless component of his pressure tensor. In the absence of collisions, an anisotropic plasma
pressure p = p‖b̂b̂ + p⊥I⊥ was first discussed by G.E. Chew, M.L. Goldberger and F.E. Low
(Proceedings of the Royal Society of London A 236, 112–118, 1956).



2.9 Plasma Pressure Tensor 61

−4μ{s × a} + 4{{t × a} × a} = 2{t × a} = 2μs + t (*).

Then use the first identity above, to obtain

−4μ{s × a} + 6{t · aa} − 2μs = (1 + 4|a|2)t;

and remove the dot product t · a using a post-dot product of (*) with a and the
second identity, to obtain

(1 + |a|2) t · a = −4μ{s × a} · a − 2μ(s : aaa + s · a)

since t : aa = −2μs : aa also follows from (2.67). Finally, eliminate t · a
between these last two equations with the help of the third identity above, to
obtain the result (2.69).

(Q3) Expand the original expressions (2.72) and (2.73) for the components tg and
t⊥, to obtain the respective alternative forms (2.77) and (2.78).

(Q4) Deduce the representations for the successive components t‖, tg and t⊥ in a
local orthonormal coordinate system where b̂ = ê3 in terms of the entries in
the tensor s, recalling that s is also symmetric and traceless.
(Analogous representations were obtained by Braginskii for the traceless com-
ponent of his pressure tensor, where the peculiar velocity is identified with
the mean species velocity—cf. the Exercises in Sect. 2.6, and for example
Ref. [4]. The distinction between fluid and plasma viscosity is also emphasised
in the celebrated L.D. Landau & E.M. Lifshitz Course of Theoretical Physics
(Elsevier)—cf. Volume 10 by L.P. Pitaevskii and E.M. Lifschitz in particular.)

2.10 Parallel Viscosity in an Ion-Electron Plasma

Let us now specifically consider the leading parallel component t‖ in the case of a
magnetised fully ionised plasma consisting of electrons and only one ion species
(usually protons). There are then useful simplifications due to the much smaller
electron mass relative to the ion mass (me � mi ). Collisional coupling between
the ion and electron species is negligible, so the collision integral for the ions has
the simple form Ci (mi {ww}) � −(ϑi i/τi i )ti . Further, the viscosity coefficient μ
is much greater for the ions than for the electrons when the electron and ion tem-
peratures are comparable, so the dominant ∇· t contribution to render ∇· p in the
macroscopic equation ofmotion (2.56) is due to the ion species. The ion velocity vi is
also approximately themass-weightedmean velocity v (i.e. the ion diffusion velocity
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ui � 0),9 so we may conveniently continue to entirely omit subscripts when dis-
cussing the ion species but later include the subscript e to specify the electrons.

The b̂b̂ projection of the basic equation (2.66) for ts produces the equation defining
the scalar part (3/2)t‖,‖ = p‖− p⊥ of the parallel viscosity tensor t‖ defined in (2.71)
for either the ions or the electrons, since t‖,‖ ≡ t : b̂b̂ = t‖ : b̂b̂ = −2μ s : b̂b̂ as
we noted in the previous subsection. Let us first consider the usually dominant ion
contribution, where since u � 0 we have

dt‖,‖
dt

+ ϑ

τ
t‖,‖ + 4

3
t‖,‖∇· v + t‖,‖ b̂b̂ : ∇v + 2p {∇v } : b̂b̂ = 0 (2.79)

on ignoring the∇· h term, which corresponds to neglecting thermal effects under the
Grad approximation—cf. (2.65). Equation (2.79) could be invoked directly in simu-
lations involving parallel ion viscosity, but let us proceed to extract some approxi-
mations for t‖,‖ by considering the various terms in this equation.

In the collisional Braginskii limit (i.e. for sufficiently small τ ), balancing the
second termwith the last term on the left-hand side of (2.79) yields t‖,‖ = −2μ{∇v} :
b̂b̂whereμ = p τ/ϑ.When ion–ion collisions are rarer (i.e. at larger τ ), the other t‖,‖
terms in (2.79) may also be significant. In fast evolving system phases for example—
i.e. at large Strouhal numbersωL/U , whereω denotes the characteristicmacroscopic
frequency and L andU a characteristic length and velocity—the time derivative term
may be important. Indeed, when the first two terms in t‖,‖ jointly balance the last term
on the left-hand side of (2.79), the appropriate coefficient is μ = p/(ω + ϑ/τ ) =
p τ/(ωτ +ϑ) in t‖,‖ = −2μ{∇v} : b̂b̂ as defined in Sect. 2.9. Consequently, in either
case

t‖,‖ = −2μ{∇v} : b̂b̂ = −2μ

[
b̂ · ∇(v · b̂) − v · (b̂ · ∇b̂) − 1

3
∇· v

]
, (2.80)

where it is notable that the second term on the right-hand side of (2.80) proportional
to the magnetic field curvature

κ = b̂ · ∇b̂ (2.81)

supplements the two velocity gradient terms.Moreover, further curvature terms result
on then taking the divergence, to express ∇· t‖ with t‖ = (3/2)t‖,‖ {b̂b̂} in the
macroscopic equation of motion (2.56).

In brief, so far we have proceeded beyond the collisional Braginskii limit for the
ions to allow for the contribution dt‖,‖/dt in (2.79) from the time derivative term
in the basic equation (2.66). Reference back to (2.68) shows that representing t‖
with t‖,‖ rendered by (2.80) corresponds to approximating the generalised rate of

9The definition of all ionfield quantities followingBraginskii can therefore be considered to coincide
with ours in an ion-electron plasma. On the other hand, if the electron temperature is so much higher
than the ion temperature such that the electron viscosity contribution remains of interest, recall that
the Braginskii pressure tensor for the electrons is pe −meneueue in our notation—cf. Exercise (Q1)
of Sect. 2.6.
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deformation tensor s with {∇v}. This velocity gradient approximation s � {∇v},
previously familiar in the fluid mechanics context (cf. Sect. 2.2) but that we now find
arises more generally from the second term in (2.68), has also been widely adopted
for the ion species in plasmas. However, there is a further generalisation due to
the residual terms in (2.68) involving t that we previously noted in Sect. 2.9, which
produce additional contributions from the third and fourth terms involving t‖,‖ on
the left-hand side of Eq. (2.79) for the ions—i.e. we find—cf. Exercise (Q2):

t‖,‖ = −2pτ {∇v} : b̂b̂
[
ϑ + τ

(
ω + 4

3
∇· v + b̂b̂ : ∇v

)]−1

, (2.82)

involving additional contributions from the∇v dyadic that could be significant when
ion–ion collisions are rare (when the ion–ion collision time τ is relatively large).

In the occasional application where the electron temperature is so very much
higher than the ion temperature such that the electron viscosity contribution cannot
be ignored, we observe that additional terms from {fe ue} due to relative inter-species
diffusion arise in the basic equation (2.66) for the electrons. For example, in an ion-
electron plasma where the ions are singly charged such that ne = ni = n for
quasi-neutrality, on retaining only the electron–electron collision term (and ignoring
the ∇· he term) the corresponding b̂b̂ projection is

dt‖,‖e

dt
+ ϑee

τee
t‖,‖e + 4

3
t‖,‖e∇· ve + t‖,‖e b̂b̂ : ∇ve

+ 2pe{∇ve} : b̂b̂ − 2E · b̂ j · b̂ + 2

3
j · (E + ve × B) = 0 (2.83)

where the electron velocity ve � v − j/(ne) and (e/me)(E + ve × B) is a notable
contribution in fe. Thus there are further terms to incorporate in the generalised
rate of deformation tensor for the electrons, in addition to the term 2pe {∇ve} : b̂b̂
with form similar to that arising for the ions—viz. those arising from the inter-species
contribution, the term involving the product of the parallel electric field E‖ = E·b̂ and
the parallel current density j‖ = j·b̂, andperhaps also the last electromagnetic heating
term. Incidentally, the possible inclusion of electron viscosity therefore provides one
example where the electric field would need to be retained, whereas usually both E
and j are readily eliminated in MHD by invoking two electromagnetic equations (cf.
Chap. 5).

Finally, if there are significant gradients in the thermal flux for either species
such that the basic equation (2.51) for the heat flux vector Rs = qs − (5/2)psus

should be considered together with the lower level basic equations (2.46)–(2.49), we
observe that the ∇· hs term then appropriately re-enters Eqs. (2.79) and (2.83) to
produce associated thermal contributions to t‖. Thus for the Grad approximation in
particular, from (2.65) we have (∇ · h) : b̂b̂ = 4/5{∇q} : b̂b̂ and hence

http://dx.doi.org/10.1007/978-981-287-600-3_5
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t‖,‖ =−2pτ {∇v+ 2

5p
∇q } : b̂b̂

[
ϑ + τ

(
ω + 4

3
∇· v + b̂b̂ : ∇v

)]−1

(2.84)

as the relevant modification of (2.80) for the ions, with the subscript omitted once
again—and there would be a similar modification for the electrons.

Exercises

(Q1) Deduce Eq. (2.79) in t‖,‖ for the ions from (2.66), on neglecting the ∇· h term
and assuming negligible collisional coupling between the ions and electrons—
i.e. from the relevant moment equation (2.49) with the collisional integral
C(m{ww}) = (ϑ/τ )t, on omitting the subscript.

(Q2) Retain the two terms involving t in (2.68) to derive

t‖,‖ = −2p τ {∇v} : b̂b̂
[
ϑ + τ

(
ω + 4

3
∇· v + b̂b̂ : ∇v

)]−1

for the scalar part in the parallel ion viscosity component t‖ = (3/2)t‖‖ {b̂b̂}
in a simple ion-electron plasma, consistent with retaining all of the terms in
(2.79).

(Q3) Noting ρe = neme and now choosing to omit subscript e, show that

−2 ρ

[
e

m
(E + v × B)

j
ne

]
: b̂b̂ = −2E · b̂ j · b̂ + 2

3
j · (E + v × B),

representing some of the additional electromagnetic terms arising in equa-
tion (2.83) for the electrons.

(Q4) It is easy to expand∇· t‖ = ∇· [(3/2)t‖,‖ {b̂b̂}] to express the predominant ion
viscosity contribution to the macroscopic equation of motion (2.56). It takes
much more effort to derive the lower order gyroviscous contribution ∇· tg,
which leads to a consequence known as “gyroviscous cancellation” in the ion
momentum equation and thus in (2.56) for an ion-electron plasma. Although
this cancellation in the advective derivative is nowmainly of historical interest,
show that the gyroviscous component for the ions may be rewritten as

tg = μ

2|a|
[
b̂ × s ·

(
I + 3b̂b̂

)
−

(
I + 3b̂b̂

)
· s × b̂

]
,

and then assume the velocity gradient approximation s = {∇v} to obtain

∇· tg = −ρ(v∗ · ∇)v − ∇χ + 2B · ∇(B−1A)

−∇×
[

μ

|a|
(

b̂ · ∇v + 1

2
(∇· v − 3 b̂b̂ : ∇v)b̂

)]
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where three entities introduced here (with ω = ∇× v the vorticity vector) are

v∗ = −1

ρ
∇×

(
μ

|a| b̂
)

, χ = μ

|a| b̂ ·ω, A = μ

|a| b̂×(3 b̂ ·∇v+ b̂×ω)+χb̂.

[The first term on the right-hand side of this expression for∇· tg, involving the
amended “magnetisation velocity” v∗, produces the legendary cancellation.]
Hint: From the identity ∂v j/∂xi = ∂vi/∂x j + εi jkωk , first verify that

b̂× [∇v + (∇v)T ] · (I + 3b̂b̂)

= 2 b̂ × ∇v − b̂ · ωI + [6b̂ × (b̂ · ∇v) − 2ω + 3b̂ · ωb̂] b̂ ,

and then also consider the identity

μ

2|a| b̂ × ∇v = −∇×
(

μ

2|a| b̂ v
)

+
[
∇×

(
μ

2|a| b̂
)]

v.

2.11 Heat Flux�

The derivation of an explicit form for the heat flux vector Rs is more straightforward
than that for ts , although its basic equation may appear more cumbersome. Thus
adopting the collision integral representation (2.61) and again suppressing the sub-
script s where there is no chance of confusion, the relevant basic equation of change
(2.51) is

dR
dt

+ 1

τ
R + R∇· v + ∇· L − f · t − e

m
R × B + 5

2

k

m
p · ∇T (2.85)

+ 5

2
nku

dT

dt
+ R · ∇v + H : ∇v = −

∑

s 
= j

1

τ js
Rs −

∑

s

ζ jsρsus .

Equation (2.85) may be rewritten in a notationally convenient vector form, analogous
to the tensor form (2.67) for the traceless component of the pressure tensor t—viz. as

R − R × a0 = −λd, (2.86)

where the first two terms and the sixth term are represented on the left-hand side,
and all the other terms are incorporated in d on the right-hand side. Thus on writing
dR/dt = ωR , the thermal conductivity coefficient and the vector

λ = 5

2

k

m

pτ

ωτ + 1
and a0 = eB

m

τ

ωτ + 1
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introduced here reflect the time derivative and collisional terms. Well-known vector
identities then immediately yield the corresponding general explicit form

R = − λ

1 + |a|20
(d + d × a0 + d · a0 a0), (2.87)

which reduces to the classical Fourier law of heat conduction in the limit a0 = 0.
Once again, the explicit form can be expanded in typical magnetised plasma

(where |a0| � 1), except in the neighbourhood of null points in the magnetic field.
Thus from (2.87) we obtain

R = R‖ + Rg + R⊥ + · · · (2.88)

in notation analogous to that used for the pressure tensor, where

R‖ = −λd · b̂b̂ , Rg = − λ

a0
d × b̂ and R⊥ = − λ

a20
d · I⊥. (2.89)

Further, in an ion-electron plasma the negligible collisional coupling between the
two species again simplifies the relevant collision integral. Thus in this context we
have Cs(

1
2ms(w

2 − 5kTs/ms)w) = −(Rs/τss + ζsρsus), and we may proceed to
consider the leading component R‖ in conjunction with t‖. For the ions R � q, so
on again omitting the subscript and noting that b̂ · p = p‖b̂ where p‖ = p + t‖,‖,
the b̂ projection of the basic equation of change (2.85) for q‖ = R‖ = R · b̂ is

dq‖
dt

+ 1

τ
q‖ + q‖∇· v + q‖b̂b̂ : ∇v − t‖,‖f · b̂

+ 5

2
p‖

k

m
b̂ · ∇T + b̂ · (∇· L) + b̂ · H : ∇v = 0. (2.90)

It is conceivable that the last two terms on the left-hand side are negligible, such
that the temperature gradient term familiar from the classical Fourier law predom-
inates and therefore determines the heat flux in the direction of the magnetic field.
On the other hand, we may invoke Grad’s approximation such that

b̂ · ∇· L = kT

m
∇· (t‖,‖ b̂) + kT

m
t‖,‖ b̂b̂ : ∇b̂ + t‖,‖

k

m
b̂ · ∇T

and b̂ · H : ∇v = 2

5
q‖ (2b̂b̂ : ∇v + ∇· v),

from (2.65), associated with t‖,‖ given by (2.84). For the electrons, there are again
additional terms to include due to inter-species diffusion (ue 
= 0).
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2.12 Magnetic Induction

As indicated in Sect. 2.7, any dynamical macroscopic model includes equations of
continuity and motion, supplemented by a barotropic equation of state (i.e. a relation
between the pressure p and density ρ) and a constitutive relation for either the fluid or
the plasma pressure tensor p rendered in Sects. 2.2 and 2.9, respectively. Let us also
recall that this is a complete (closed) system of equations unless the medium carries
an electric current, when the electromagnetic body force term j × B in the equation
of motion becomes significant. As discussed further in Sect. 5.3, the pre-Maxwell
electromagnetic equation

∇× B = μ0j (μ0 a constant) (2.91)

may then be adopted to eliminate j, but another equation involving the magnetic field
variable B is obviously required to complete the system of equations. This equation
is obtained from another constitutive relation known as Ohm’s law for a conducting
fluid, or a generalised Ohm’s law in the case of plasma.

The usual form of Ohm’s law for an electrically conducting fluid is

E + v × B = 1

σ
j, (2.92)

where σ here denotes the conductivity coefficient, inversely related to the resistivity
coefficient η ≡ 1/(μ0σ). The terms on the left-hand side of (2.92) are often referred
to as ideal, as they remain in the limit of zero resistivity, when σ is infinite. Both
the current density j and the electric field E may be eliminated using (2.91) and the
additional electromagnetic equation

∇× E = −∂B
∂t

, (2.93)

respectively (cf. Chap. 5). Equation (2.92) yields the equation of magnetic induc-
tion as

∂B
∂t

= ∇× (v × B) − ∇× (η∇× B), (2.94)

although another term due to the Hall effect may also arise if a generalised Ohm’s
law is used [cf. (2.100)].

For a plasma, a generalised Ohm’s law is often identified as the second level
of another hierarchy of moment equations, obtained by multiplying the Boltzmann
equation (2.41) by es/ms beforehand. Thus there is the charge conservation equation

∂q

∂t
+ ∇· j = 0, (2.95)

http://dx.doi.org/10.1007/978-981-287-600-3_5
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at the first level, where q denotes the charge density (cf. also Chap.5); and at the
second level,

E + ve × B = 1

σ
j − 1

nee
∇ p e + · · · (2.96)

where the subscript e again denotes electron field quantities.10 In passing, we note
that on introducing the unit vector b̂ = B/|B| in the direction of the magnetic field,
Eq. (2.96) implies that the component of the electron velocity perpendicular to the
magnetic field is

ve⊥ = E × B
B2 − 1

neeB
b̂ × ∇ p e + · · · . (2.97)

The terms on the right-hand side of (2.97) may be identified from quite elemen-
tary physical considerations as “polarisation”, “diamagnetic”, etc., contributions—
although plasma physicists may also use such terminology to identify analogous
contributions in the perpendicular velocity of the much more massive positive ions
in a plasma, derived from the corresponding ion momentum equation.

In a neutral plasma containing an equal number of single-charge ions and electrons
(ni = ne = n), on noting the electron velocity is ve � v − j/(ne) we may rewrite
Eq. (2.96) as

E + v × B = 1

σ
j + 1

ne
j × B − 1

ne
∇ pe + · · · , (2.98)

where the second term (1/ne) j × B on the right-hand side is due to the Hall effect
corresponding to the relative inter-species. The finite conductivity or resistive term
arising when the conductivity coefficient σ is finite, and also the Hall term or any
other term retained on the right-hand side of (2.98), may be referred to as non-ideal.

The current density j and electric field E appearing in (2.98) can be eliminated
using the electromagnetic Eqs. (2.91) and (2.93). The electron pressure term in (2.96)
or (2.98) has often been neglected—indeed, it has been argued thatwhen the electrons
are largely isothermal (Te � constant) we have

∇×
(

1

ne
∇ pe

)
� −k Te

n2e
∇n × ∇n = 0, (2.99)

on writing pe = nk Te (where the subscript is again suppressed on the electron
number density and k is the Boltzmann constant). Retaining the other four terms in
(2.98) then produces the magnetic induction equation

10Most authors have associated the generalised Ohm’s lawwith the electron momentum equation in
some way. Another viewpoint that produces the terms of interest as in (2.96), but with an alternative
identification of the conductivity coefficient σ, was proposed by H.S. Green (Physics of Fluids 2,
341–349, 1959).

http://dx.doi.org/10.1007/978-981-287-600-3_5
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∂B
∂t

= ∇× (v×B) − ∇× (η∇× B) − ∇×
(

1

μ0ne
(∇× B)×B

)
, (2.100)

with the resistivity coefficient η ≡ 1/(μ0σ) and 1/(μ0ne) the Hall coefficient. How-
ever, the electron pressure term would necessarily be retained if we were to account
for electron temperature gradients.

On incorporating p = p I and invoking (2.91), Eqs. (2.55), (2.56), (2.59) and
the appropriate equation of magnetic induction constitute a complete system in the
variables {ρ, v, p, B}. The ideal MHD model corresponds to omitting all non-ideal
terms from the equation of magnetic induction, as discussed further in Sect. 5.7
in the plasma context. Resistive MHD corresponds to the retention of the term
∇× (η∇× B), and when the Hall term is retained we have a Hall MHD model
(ideal or resistive)—cf. Sect. 5.5 on conducting liquids, and Sect. 5.14 and Sect. 5.15
in the plasma context. All of these models may be modified further, such as when
the plasma viscosity is important—using the pressure tensor discussed in Sect. 2.2
for a conducting fluid, or as in Sect. 2.9 for a plasma.
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Chapter 3
Basic Fluid Dynamics

Although the classical ideal fluid model entirely neglects fluid viscosity, it neverthe-
less describes some features in certain realistic flows or flow regions, and it is often
applicable to wave motion as discussed in the next chapter. The inherent nonlinearity
of this ideal model was addressed in remarkable ways by many famous mathemati-
cians, who developed various concepts and results that still remain important. First
integrals of the inviscid equation of motion (known as Bernoulli equations), aspects
of vorticity, and potential theory for incompressible irrotational flow are landmarks
of the classical ideal theory. An ordering procedure establishes that the incompress-
ibility assumption applies in any subsonic flow, and confirms the relevant Bernoulli
equation for the pressure variation in the ideal model. We then observe that the
shear viscosity (whether large or small) must be included to account for the drag
and enhanced vorticity in flow past an obstacle, and that perturbation or numeri-
cal methods are usually required since exact viscous solutions are rare. The chapter
concludes with an optional (starred) section as an introduction to some simplified
equations of motion in dynamical meteorology and oceanography, with some refer-
ences for further reading. Some other notable fluid mechanics textbooks and several
related sources (on asymptotic and perturbationmethods, potential theory and hydro-
dynamic stability) are listed in the bibliography for this chapter.

3.1 Fundamental Model

As discussed in Chap. 2, fluid motion is traditionally described by no more than five
macroscopic field variables—viz. the fluid density ρ(r, t), the fluid velocity v(r, t),
and the fluid pressure p(r, t). Thus a complete set of macroscopic equations in the
Eulerian description consists of the continuity equation

dρ

dt
+ ρ∇· v = 0, (3.1)
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the equation of motion including gravity

ρ
dv
dt

+ ∇· p = ρg, (3.2)

and the adiabatic equation of state

d

dt
(pρ−γ) = 0 or

dp

dt
+ γ p∇· v = 0, (3.3)

with the Newtonian fluid pressure tensor

p = p I − 2μ {∇v} (3.4)

where the shear viscosity is explicitly retained [9]. Incidentally, we recall from
Sect. 2.2 that the field p is interpreted as the total hydrostatic pressure when the
volume viscosity term is implicitly incorporated.

It is notable that the fluid mechanics model is inherently nonlinear, since the
material derivative

d

dt
= ∂

∂t
+ v · ∇

produces advective terms throughout, including the advective term v · ∇v in the
equation of motion which only vanishes in special flow configurations. However,
when the shear viscosity term may be omitted from (3.2) such that p = p I and
hence ∇· p = ∇ p, the mathematical difficulty presented by the nonlinearity may
sometimes be avoided—viz. when a pressure equation can be combined with poten-
tial theory. The ideal fluidmodel and vorticity are first considered in Sects. 3.2 and 3.3
respectively, before our asymptotic ordering procedure is introduced in Sect. 3.4 to
establish the incompressible approximation that applies in any subsonic flow. After
a brief discussion of consequent potential theory for irrotational flow in Sects. 3.5
and 3.6, in Sect. 3.7 we not only recover the ideal equations of motion and vortic-
ity conservation but also confirm the relevant Bernoulli equation for the pressure
variation, under the subsonic asymptotic ordering procedure of Sect. 3.4.

On the other hand, other approaches are needed when the shear viscosity must be
retained, including analytical techniques that depend upon whether the shear viscos-
ity coefficientμ is small or relatively large. In Sect. 3.8, we firstmention d’Alembert’s
Paradox and the “no slip” boundary condition, before obtaining the Navier–Stokes
equation of motion on assuming a larger viscosity coefficient under our asymptotic
ordering procedure. The Reynolds number Re defined in Sect. 3.12 is often used
to characterise the importance of the viscous term relative to the advective term in
this equation, and the necessary retention of the viscous term in any boundary layer
leads us to consider possible perturbation solutions (matched asymptotic expansions)
when Re � 1. After discussing vortices in Sect. 3.9, we turn to Stokes flow past a
sphere (slow Re � 1 fluid motion) in Sect. 3.10, briefly mention some classical
exact viscous flow solutions in Sect. 3.11, and then summarise various characteristic

http://dx.doi.org/10.1007/978-981-287-600-3_2
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numbers (including the Reynolds number) in further briefly considering singular
perturbation theory in Sect. 3.12. The Oseen correction for slow flow past a sphere
in Sect. 3.13 then illustrates the use of matched asymptotic expansions, via the small
parameter Re � 1; and dynamic meteorology and oceanography models are then
considered very briefly in the starred Sect. 3.14, for those who may be interested in
an introduction to these environmental scientific areas.

3.2 Ideal Fluid Model

When the shear viscosity contribution is negligible, Eq. (3.2) reduces to the ideal
(inviscid) equation of motion

ρ
dv
dt

+ ∇ p = ρg (3.5)

in the Eulerian form [8]. The evolution of the fluid density ρ is of course governed
by the continuity equation (3.1); and the evolution of the scalar fluid pressure p by
the adiabatic equation (3.3), corresponding to neglecting heat flow between fluid
elements (i.e. thermal conduction), which is justified if timescales are not too long.
As also foreshadowed in Sect. 2.7, this system of equations in {ρ, v, p} constituting
the ideal fluid (or inviscid fluid) model is mathematically complete. Its solution is
often subject to the kinematic (non-cavitation) boundary condition

n̂ · v = n̂ · V, (3.6)

applicablewhen the fluid is confined by an impenetrable boundarymoving at velocity
V and with unit normal n̂ (usually directed away from the fluid). Note that the
tangential component of v is not constrained, however, for there is no tangential
surface force acting on the fluid at the boundarywhen the shear viscosity is neglected.

Energy transport during the motion of an ideal fluid may be considered by taking
the dot product of (3.5) with v, whence

ρ
d

dt

(
1

2
v2

)
+ v·∇ p = ρg · v

or
∂

∂t

(
1

2
ρv2

)
+ ∇·

(
1

2
ρv2v

)
− p∇· v = ρg · v − ∇· (pv), (3.7)

on invoking the commutation result

ρ
d f

dt
= ∂

∂t
(ρ f ) + ∇· (ρv f )

http://dx.doi.org/10.1007/978-981-287-600-3_2
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with f ≡ v2/2. Equation (3.7) has been arranged such that the right-hand side
represents the rate of work done by the body and surface forces (the gravity and
hydrostatic pressure, respectively).

Although (3.7) is not in conservation form due to the third term −p∇· v on the
left-hand side, we can proceed to derive a total energy conservation equation as
follows. From (3.1) and (3.3)

ρ

p

d

dt

(
p

ρ

)
= 1

p

dp

dt
− 1

ρ

dρ

dt
= −(γ − 1)∇· v,

such that (provided γ �= 1) we obtain

− p∇· v = ρ

γ − 1

d

dt

(
p

ρ

)
= 1

γ − 1

(
∂ p

∂t
+ ∇· (pv)

)
, (3.8)

on invoking the commutation result with f ≡ p/ρ—i.e.

ρ
d

dt

(
p

ρ

)
= ∂ p

∂t
+ ∇· (pv).

Thus we replace −p∇· v in (3.7) using (3.8), to obtain the conservation equation for
the total energy—viz.

∂U

∂t
+ ∇· S = ρg · v, (3.9)

where the total (kinetic plus adiabatic) energy density is

U = 1

2
ρv2 + p

γ − 1
(3.10)

and the energy flux vector (including the work done by the hydrostatic pressure) is

S =
(
1

2
ρv2 + γ

γ − 1
p

)
v. (3.11)

Thus the energy flux in the ideal fluid model is purely advective, consistent with neg-
ligible thermal conduction under the adiabatic assumption reducing (2.58) to (3.3).

Occasionally, it is more realistic to go to the opposite limit of very strong ther-
mal conduction, and assume the temperature is constant everywhere on the longer
timescale of interest. This is the isothermal assumption, where the equation of state is

d

dt

(
p

ρ

)
= 0, (3.12)

which formally corresponds to setting γ = 1 in (3.3)—but where of course the
adiabatic energy conservation equation (3.9) is singular.

http://dx.doi.org/10.1007/978-981-287-600-3_2
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Let us now consider Bernoulli equations, beginning with the case of steady flow
relative to some observer, when the dependent variables are functions of position r
but not explicitly functions of time t (all ∂t terms are zero). Writing g in terms of the
gravitational potential V

g = −∇V, (3.13)

and noting that (3.1) is ∇· (ρv) = 0 for steady flow, reduces Eq. (3.9) to the form

v · ∇
(
1

2
v2 + γ

γ − 1

p

ρ
+ V

)
= 0. (3.14)

In order to integrate this first-order partial differential equation, let us consider a
streamline (or flowline)—i.e. a curve on which v is always tangential. In the case of
steady flow, the streamlines are identical to the Lagrangian fluid trajectories men-
tioned in Sect. 2.4. Thus on any streamline defined by dr = λv (with parameter λ),
Eq. (3.14) becomes

dr · ∇
(
1

2
v2 + γ

γ − 1

p

ρ
+ V

)
= 0, (3.15)

with first integral a form of Bernoulli equation for steady flow—viz.

1

2
v2 + γ

γ − 1

p

ρ
+ V = const (3.16)

on any streamline.1 Ignoring V (gravity) in (3.16), we have Bernoulli’s Principle—
viz. that the faster the flow the lower the pressure, which is exploited to produce the
lift on an aircraft wing for example. Since ρ = const. p1/γ for any adiabatic fluid
element, we have ∫

dp

ρ
= γ

γ − 1

p

ρ
(3.17)

and hence from (3.16) that

1

2
v2 +

∫
dp

ρ
+ V = const (3.18)

on any streamline, a more general form of Bernoulli equation for the steady flow of
any barotropic fluid (including the isothermal case γ = 1). Note that the constant
on the right-hand side of (3.16) or (3.18) is typically different for each streamline,
unless the flow is irrotational (cf. the next section).

1This procedure is a simple example of the solution of a quasilinear partial differential equation by
the method of characteristics.
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It is notable that Bernoulli equations may also be derived in the following way,
which identifies them as first integrals of the Euler equation. Substituting (3.13) and
the vector identity

v · ∇v = ∇
(
1

2
v2

)
− v × (∇× v) (3.19)

into the ideal equation of motion (3.5) yields

∂v
∂t

+ ∇
(
1

2
v2 + V

)
+ ∇ p

ρ
= v × (∇× v).

For a barotropic fluid (so ρ is a function of p only), or more generally in isentropic
flow, we have ∇ p/ρ = ∇h where h = ∫

dp/ρ is called the (specific) enthalpy so
that

∂v
∂t

+ ∇
(
1

2
v2 + h + V

)
= v × (∇× v). (3.20)

For steady flow, the dot product of (3.20) with v yields the generalised form of (3.14)
corresponding to (3.17), leading to (3.18).

We have observed that the Bernoulli equation (3.18) applies on a streamline in
any steady ideal barotropic flow, and it evidently determines the pressure if the flow
field is somehow found. The form of Bernoulli equation applicable in any ideal flow
that is irrotational (∇× v = 0) but not necessarily completely steady (∂v/∂t �= 0
everywhere) is met in Exercise (Q2) of the next section, where the important concept
of vorticity is introduced. As then discussed in Sects. 3.5 and 3.6, an incompressible
irrotational flow field may be obtained from classical potential theory. The ordering
process in Sect. 3.4, justifying the incompressibility assumption whenever the flow
is subsonic, is extended in Sect. 3.7 to produce the corresponding incompressible
irrotational form of Bernoulli equation that determines the pressure variation. As we
noted at the endof the previous section,we thenproceed to include shear viscosity that
(however small) typically produces rotational flow (vorticity) past any sufficiently
“blunt” object, with flow separation and vortex sheets in its wake and associated
viscous drag.

Exercises

(Q1) Steam escapes from a boiler through a conical pipe with diameter d1 at the
boiler and diameter d2 at the open end. If v1, v2 denote the corresponding
magnitudes of the velocities of the steam (both uniform over the respective
pipe cross-sections) at the ends, and if the streamlines diverge from the vertex
of the cone, assuming an isothermal equation of state p = kρ (k a constant)
and neglecting gravity show that

v1

v2
= d22

d12
exp

v1
2 − v2

2

2k
.
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(Q2) Derive the energy principle for the barotropic flow under gravity of a fluid
volume V bounded by closed fluid surface S—viz. that the material rate of
change

d

dt
(K + V) =

∫

V
p∇· vdτ −

∫

S
pv · dS,

where the total kinetic energy of the fluid volume V is

K ≡ 1

2

∫
ρv2dτ

and its total potential energy is

V ≡
∫

ρV dτ .

Interpret each of the terms on the right-hand side of the energy principle.

3.3 Vorticity and Irrotational Flow

Recall that any dyadic may be written as the sum of a symmetric and antisymmetric
part. Thus the velocity gradient ∇v may be written as

∇v = ε + �,

where ε = 1

2
[∇v + (∇v)T ] and � = 1

2
[∇v − (∇v)T ]

denote symmetric and antisymmetric dyadics, respectively. Let us also recall from
Sect. 2.2 that the rate of deformation tensor {∇v} incorporates the symmetric part ε,
which is sometimes called the rate of strain tensor.

The antisymmetric part � is associated with fluid rotation, so it may be called the
rotation (or vorticity [13]) tensor. Thus the vorticity

ω ≡ ∇× v (3.21)

has the i th component (where i ∈ {1, 2, 3})

ωi = [∇× v]i = εi jk
∂vk

∂x j
= εi jk

1

2

(
∂vk

∂x j
− ∂v j

∂xk

)
= εi jk[�] jk, (3.22)

http://dx.doi.org/10.1007/978-981-287-600-3_2


78 3 Basic Fluid Dynamics

such that the local rotation of a fluid line element dr is

1

2
ω × dr = (dr) · �, (3.23)

since the vorticity is twice its angular velocity. One may also recall Stokes Theorem
(1.57), to observe that the circulation K around any closed curve corresponds to the
vorticity field—i.e.

K ≡
∮

C
v · dr =

∫

S
dS · ∇× v =

∫

S
ω · dS. (3.24)

The circulation is conserved in ideal (inviscid) flow as outlined immediately below,
arises in constraints when solving the Laplace equation for the velocity potential (cf.
Sect. 3.5), and is directly related to the lift on a body in a flow (cf. Sect. 3.6).

The surface integral in the vorticity on the right-hand side of (3.24)may be equated
to 2πκ, where κ is the strength of the vortex tube defined by vortex lines in the
vorticity field, analogous to streamlines in the velocity field—i.e. such that dr = λω,
whereλ is a parameter—emanating from the closed curveC . The solenoidal property
∇·ω = 0 and theDivergence Theorem (1.60) imply that the strength is characteristic
of the vortex tube, since ∫

S1
ω · dS =

∫

S2
ω · dS

where S1 and S2 are two surfaces of cross-section anywhere along the tube.
Now the curl of the ideal equation of motion (3.20) gives the vorticity equation

∂ω

∂t
= ∇× (v × ω) (3.25)

or
dω

dt
= ω · ∇v − ω∇· v = ω · (∇v − I∇· v), (3.26)

where the material rate of change of the vorticity is dependent upon the velocity and
vorticity fields alone. In the next section, we find that ∇· v = 0 in subsonic flow,
so this ideal equation suggests that the vorticity is often conserved (assuming there
are no regions of large velocity gradient)—in particular, if the vorticity of any fluid
element is zero then it remains zero as the fluid element is advected in the flow. The
well-known related result (Kelvin’s circulation theorem) is that the circulation over
anymaterial closed curve remains constant in any ideal constant density or barotropic
flow under conservative body forces. Thus from (2.40), (3.5) and (3.13) the material
rate of change of the circulation

d K

dt
= d

dt

∮

C
v · dr =

∮

C

dv
dt

· dr = −
∮

C
dr ·

(∇ p

ρ
+ ∇V

)
= 0, (3.27)

http://dx.doi.org/10.1007/978-981-287-600-3_1
http://dx.doi.org/10.1007/978-981-287-600-3_1
http://dx.doi.org/10.1007/978-981-287-600-3_2
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whether or not ω = 0 on the closed curve C .2 Moreover, Eq. (3.26) was essentially
first obtained by Helmholtz. Thus substituting in (3.26) for ∇· v from the continuity
equation (3.1) yields

d

dt

(
ω

ρ

)
= ω

ρ
· ∇v, (3.28)

so the material rate of change of ω/ρ depends upon its instantaneous value and the
local velocity gradient.

The above results in the classical ideal model were largely obtained with water or
air in mind, and the physical importance of the small but finite viscosity in boundary
layers was only appreciated much later—cf. Sect. 3.8. Although the fluid viscosity
introduces a dissipative term into (3.26), significant vorticity is generated in the neigh-
bourhoodof the boundary,where the velocity gradient is very largewhen the viscosity
is small.3 Nevertheless, there are circumstances where the ideal fluid assumption is
almost universally appropriate such that the bulk of the flow remains irrotational (i.e.
ω = 0 almost everywhere)—e.g. the flow field over a smooth streamlined object,
where the flow is irrotational upstream of the object and remains largely irrotational
downstream. An important mathematical observation is that the irrotational (zero
vorticity) flow condition ∇× v = 0 is both necessary and sufficient for the existence
of a velocity potential φ such that

v = −∇φ, (3.29)

when we may proceed to exploit potential theory if the flow is subsonic as discussed
below.

Exercises

(Q1) Use a Cartesian representation to derive (3.23) from (3.22).
(Q2) For incompressible irrotational but not necessarily steady flow, from (3.20)

derive the equation

− ∂φ

∂t
+ 1

2
|∇φ|2 + h + V = 0, (3.30)

where enthalpy h = ∫
dp/ρ and we may also adopt (3.17) as before.

2The consequence that a flow irrotational at any time remains irrotational was originally suggested
by Lagrange and proven by Cauchy.
3The terminology “Hydrodynamics” and “Aerodynamics” reflects the history of the subject—i.e.
with reference to incompressible fluids (“liquids”) and compressible fluids, respectively. However,
the incompressible approximation is also applicable to aubsonic aerodynamic flow (as shown in
the next section) and a “magnetohydrodynamic” (MHD) model may be compressible, so the his-
torical distinction has become blurred. Incidentally, some might prefer to substitute “Dynamics”
for “Mechanics” in the title to this chapter, but we trust the qualifier “Basic” serves to indicate the
nature of the topics presented!
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Hint: Note that the velocity potential is defined within an arbitrary function of
time t , and in particular that v = −∇φ′ = −∇φ where φ′ = φ − ∫ t

φ(u)du.

3.4 Subsonic Flow and the Incompressible Approximation

It can often be assumed that the motion is incompressible such that

∇· v = 0, (3.31)

corresponding to no change in volume (no expansion nor contraction) anywhere in
the fluid (cf. Sect. 2.5). This assumption is widely made for liquids such as water,
sometimes with passing reference to the limit of (3.3) when γ → ∞. However,
it turns out to be a good approximation for highly compressible fluids such as air
too, provided the flow speed |v| is everywhere much less than the sound speed
cs ≡ √

γ p/ρ. We can reach this conclusion as an example of a simplification under
an asymptotic ordering scheme, which is often quite useful in applied mathematics.
Thus rather than merely introducing (3.31) ad hoc, let us treat subsonic flow as a
case study in “asymptotology”.

Consider an asymptotic analysis in terms of the small parameter

ε = |v|/cs � 1.

The theory of asymptotic expansions [10] deals with behaviour in a limit, in this case
ε → 0. The “big oh” asymptotic ordering notation f = O(εn) means that f scales
like εn (i.e. ε−n f → const) as ε → 0 whereas the “little oh” notation f = o(εn)

means f approaches zero faster than εn (i.e. ε−n f → 0) as ε → 0.
All physical quantities are formally expanded in powers of ε—i.e.

ρ = ρ(0) + ερ(1) + ε2ρ(2) + O(ε3)

p = p(0) + εp(1) + ε2 p(2) + O(ε3)

v = εv(1) + ε2v(2) + O(ε3), (3.32)

where the velocity is notably one order smaller than the other two quantities, which
define the larger sound speed cs. The inertia term ρv · ∇v in the equation of motion
(3.2) therefore appears at second order, an issue that is taken up in Sect. 3.7 and again
later in this chapter. Let us also assume the gravity g is sufficiently weak such that
buoyancy forces are not dominant—i.e. adopt

g = ε2g(2) + O(ε3). (3.33)

http://dx.doi.org/10.1007/978-981-287-600-3_2
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Finally, let us assume there are no sound waves excited in the fluid so that time
variations are sufficiently slow, represented by defining a “slow” time variable t(1) ≡
εt = O(1) such that

∂

∂t
= ε

∂

∂t(1)
. (3.34)

Equations (3.33) and (3.34) are substituted into the fundamental equations (3.1)–
(3.3), and like powers of ε equated. At order ε0, only the equation of motion (3.2)
contributes—i.e.

∇ p(0) = 0, (3.35)

which on trivial integration yields

p(0) = const (3.36)

(and assumed to be time independent). At order ε,

(3.1)(1) =⇒ ∂ρ(0)

∂t(1)
= −∇·

(
ρ(0)v(1)

)
(3.37)

(3.2)(1) =⇒ ∇ p(1) = ∇· (2μ{∇v(1)}) (3.38)

(3.3)(1) =⇒
(

∂

∂t(1)
+ v(1) · ∇

)
p(0) = −γ p0∇· v(1)

=⇒ ∇· v(1) = 0 (3.39)

on using (3.36). Thus to first order there is the continuity equation (3.37) in the
lowest order quantities ρ(0) and v(1)—but the equation of motion reduces to (3.38)
that expresses pressure balance against any substantial viscous stress, and in (3.39)
the incompressibility condition (3.31) emerges from the adiabatic equation as a con-
straint arising from a solvability condition (cf. [10], pp. 358–360). This is quite
typical of such an asymptotic procedure, where the general rule is to introduce an
ordering that builds in a constraint. (It may be said that “sound waves have been
eliminated”.)

In passing, we note from Exercise (Q3) in Sect. 1.8 that

∮
�S v · dS

�V
→ ∇· v

when the volume element �V enclosed by the surface �S shrinks towards a point,
which is sometimes viewed as defining divergence. The ratio on the left-hand side
represents the outflow per unit spatial volume when v denotes the fluid velocity
vector, and if fluid is neither created nor destroyed then ∇· v = 0—i.e. we have the
incompressibility constraint (3.31) wherever there is neither divergent flow from any
source (∇· v > 0) nor convergent flow to any sink (∇· v < 0). Combining (3.31)
with (3.29) for subsonic irrotational flow is discussed in the next section.

http://dx.doi.org/10.1007/978-981-287-600-3_1
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Exercises

(Q1) A stream of water flows steadily through a horizontal pipe at a rate of k m3

per second, and the water emerges at atmospheric pressure. The cross section
of the pipe has area Am2, everywhere except at a short radial contraction of
cross-sectional area B m2 (B < A), where there is a tap leading to a vertical
open tube connected to the pipe. Assuming the water has a constant density
but ignoring gravity, show that the eventual height of water in the tube above
the pipe reaches up to k2(A2 − B2)/(2gA2B2) metres when the tap is opened.

(Q2) At time t = 0 a vacuous (negligible pressure) bubble arises at the centre of a
spherical volume of water. If the pressure p0 at the water boundary of radius
S(t) is kept constant, and if R(t) denotes the radius of the bubble at time t ,
show that

S3 = R3 + b3 − a3 and Ṙ2 = 2p0
3ρ

a3 − R3

R4

(
1

R
− 1

S

)−1

,

where Ṙ(0) = Ṡ(0) = 0, R(0) = a, S(0) = b and ρ is the constant water
density.

3.5 Potential Flow

When the incompressibility constraint (3.31) is combined with the irrotational flow
result (3.29), we obtain the Laplace equation for the velocity potential

∇2φ = 0. (3.40)

Thus for subsonic irrotational flow the original nonlinear hyperbolic equation of
motion is replaced by this linear elliptic equation of potential theory wementioned in
Sect. 1.11, significantly simplifying calculations [7]. Indeed, in this contextNeumann
boundary conditions also apply. In particular, from (3.6) the boundary condition at
a stationary impenetrable wall is

∂φ

∂n
≡ n̂ · ∇φ = 0. (3.41)

It is well-known but nevertheless quite remarkable that the Laplace equation (3.40)
subject to the relevant boundary conditions supplemented by a finite number of
constraints (the circulation constants) determines subsonic irrotational flow—there
is no need to know the pressure, although one may solve for the pressure after finding
the fluid velocity v (cf. Sect. 3.7). A brief discussion of existence and uniqueness of
the solutions to (3.40) and (3.41) follows.

http://dx.doi.org/10.1007/978-981-287-600-3_1
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First, consider the case of flow in a simply connected region V , which is com-
pletely enclosed by a fixed impenetrable boundary S. The unique solution to (3.40)
and (3.41) is φ = constant, so v(1) ≡ 0. This follows immediately from

∫

V
|∇φ|2 dτ =

∫

S
[φ∇φ] · dS =

∫

S
φ

∂φ

∂n
d S = 0, (3.42)

for any harmonic function φ—cf. the first Green identity (1.62).
Now consider flow in a doubly connected region V , which means that V can

be filled with two distinct families of closed curves. All the closed curves within
each family are topologically equivalent, since they can be continuously deformed
into each other while remaining in V . However, the curves in one family {CR} can
be deformed to a point (they are reducible), but not the curves in the other family
{CI } (they are irreducible). Because of the assumed irrotational nature of the flow, it
follows that the circulations

K R ≡
∮

CR

v · dr and K I ≡
∮

CI

v · dr (3.43)

for any curve in each of the respective families are topological invariants (in fact,
K R ≡ 0). Consequently, the only solution of (3.40) and (3.41) such that K I = 0 is
the trivial solution φ = const.

This is proven by first noting that K I = 0 implies that φ(r) = − ∫ r
r0

v · dr is
a single-valued function of r, returning to the same value even if the line integral
completely encompasses a CI contour. Suppose V is now cut to make a simply
connected domain V ′. Since φ is single-valued, the contributions to the surface
integral in (3.42) from either side of the cut cancel because ∂φ/∂n changes sign,
hence |∇φ| ≡ 0. Therefore, any two solutions with the same non-zero value of K I

can differ only by a constant, since their difference is a solution with K I = 0. Note
that solutions with K I �= 0 are not single-valued. If there is flow across the boundary
S, then ∂φ/∂n �= 0. However, applying the Divergence Theorem (1.60) to ∇2φ = 0
demonstrates that the constraint

∫

S
[∇φ] · dS =

∫

S

∂φ

∂n
d S = 0 (3.44)

must be satisfied for a solution to exist. (Since v = −∇φ, this is merely a statement
of mass conservation.) Given K I , uniqueness within an additive constant follows as
before. The analysis generalises to n-ply connected domains, where n−1 circulation
integrals are required for uniqueness.

http://dx.doi.org/10.1007/978-981-287-600-3_1
http://dx.doi.org/10.1007/978-981-287-600-3_1
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3.6 Solving the Laplace Equation

Various analytical and numerical methods have been devised to solve the Laplace
equation. In this section, we restrict the discussion to two approaches for flows that
do not vary in one direction (the z-direction) in which there is no flow (vz = 0)—i.e.
when the coordinate z is ignorable and themotion is two-dimensional (“planar”). The
first is the use of a complex potential, and in the second the solution is represented
by a series expansion in terms of a basis set of harmonic functions. The classic text
by Lamb [8] is an excellent starting point for further reading on ideal (inviscid)
incompressible irrotational flows, in both two and three dimensions.

When a complex potential can be introduced, the theory of complex functions
may be used, including images or conformal transformations. Typically, planes of
symmetry are exploited in the method of images. Thus the image of any line source
or line vortex in a flow bounded by an infinite plane is a reflection through that plane
that is then notionally removed, analogous to the adoption of the complex potential in
the solution to the flow past a semicircular cylinder here. The method of images may
also be exploited in three dimensions, such as for point sources or sinks. Conformal
transformations preserve the Laplace equation.

Thus for planar steady flow, in Cartesian coordinates we set out to construct the
complex potential

f (ζ) = φ(x, y) + iψ(x, y),

an analytic function of the complex variable ζ = x + iy under continuous first
derivatives of the real and imaginary parts φ and ψ satisfying the Cauchy–Riemann
equations

∂φ

∂x
= ∂ψ

∂y
,

∂ψ

∂x
= −∂φ

∂y

such that ∇2φ = 0 and ∇2ψ = 0. The variable φ is of course the velocity potential,
and the stream function ψ defines the flux everywhere in the two-dimensional flow.
Correspondingly, ψ = const along a streamline dr = λv (i.e. dx/u = dy/v where
v = u î + v ĵ). Put another way, the streamlines lie within the level surfaces of ψ,
because the total differential

dψ(x, y) = ∂ψ

∂x
dx + ∂ψ

∂y
dy = vdx − udy = 0;

and the equipotential lines φ = const are perpendicular to the streamlines since

∇φ · ∇ψ = ∂φ

∂x

∂ψ

∂x
+ ∂φ

∂y

∂ψ

∂y
= 0.

In plane polar coordinates where f (z) = φ(r, θ) + iψ(r, θ), the Cauchy–Riemann
equations are
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∂φ

∂r
= 1

r

∂ψ

∂θ
,

∂ψ

∂r
= −1

r

∂φ

∂θ
.

The flow field may be obtained from the first derivative of the complex potential
function, or the conjugate—cf. Exercise (Q1) below. Note also that the linearity of
∇2φ = 0 and∇2ψ = 0 enables superposition of specific complex potential functions
representing particular contributions to the total flow, such as sources or sinks in an
otherwise uniform flow. Indeed, even if the flow is not irrotational (when the potential
function does not exist), a stream function may still be defined such that

v = k̂ × ∇ψ, (3.45)

which implies not only vz = 0 and ∇· v = −k̂ ·∇×∇ψ = 0 (planar subsonic flow)
but also v · ∇ψ = 0—i.e. ψ = const along a streamline.

There are various theorems on the complex potential for planar flows in the lit-
erature, including the following that we choose to quote here (cf. [11] for further
relevant discussion):

• (Milne–Thomson Circle Theorem) When a solid circular cylinder |ζ| = a is
introduced into a flowwhere there are no rigid boundaries,with a complex potential
f (z) where any singularity is in ζ > a, the complex potential becomes f (ζ) +
f ∗(a2/ζ), f ∗ denoting the complex conjugate of f ;

• (Blasius Theorem) if f (ζ) is the complex potential in a flow past a solid cylinder
of any shape, then neglecting external forces (a) the thrust per unit length on the
cylinder X î + Y ĵ is given by

X − iY = 1

2
i ρ

∮

C

(
d f

dζ

)2

dζ,

and (b) the moment M about the origin of the thrust per unit length is the real part
of

−1

2
ρ

∮

C
ζ

(
d f

dζ

)2

dζ,

where ρ is the fluid density and the integrals are taken around the cylinder contour;
and

• (Theorem of Kutta and Joukovskii) when a solid cylinder of any shape is placed in
a uniform stream of speedU , the resultant thrust is perpendicular to the stream (the
“lift”) with magnitude ρU K , where ρ is the fluid density and K is the circulation
around the cylinder.

The lift on an aerofoil can be determined using ideal (inviscid) theory, but a discussion
of the drag requires the introduction of shear viscosity (cf. Sect. 3.8).

For series expansion solutions in potential theory, the appropriate basis set is
determined by the geometry of the problem—in particular, by the boundaries. For the
two-dimensional Laplace equation in plane polar coordinates, two countably infinite
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sets of single-valued basis functions (“polar harmonics”) may also be obtained by
separation of variables:

um(r, θ) ≡ r |m|eimθ ; m = 0,±1,±2, . . . , (3.46)

regular at r = 0 (including the trivial constant solution when m = 0); and

vm(r, θ) ≡ r−|m|eimθ ; m = ±1,±2, . . . , (3.47)

regular at r = ∞. There is also an m = 0 solution that is singular at both 0 and
∞—viz. the solution (corresponding to a source at infinity and a sink at r = 0)

v0(r, θ) ≡ ln r; (3.48)

and finally, ∇2θ = 0 so that θ can be used as a particular multi-valued solution
(corresponding to flows with circulation about r = 0). Thus the series expansion for
any planar flow is

φ =
∞∑

m=−∞
Amr |m|eimθ + B0 ln r +

∞∑

m=−∞
Bmr−|m|eimθ − K1

2π
θ, (3.49)

where Am and Bm are coefficients to be determined from the boundary conditions
(at r = 0 and ∞), and K1 is the circulation about r = 0. (Note that the m = 0 term
can be omitted under either of the two summation symbols in this result.)

For example, suppose that ∂φ/∂n is specified by its Fourier expansion on con-
centric circular cylindrical surfaces at r = a and r = b:

∂φ

∂r

∣∣∣∣
r=a

=
∞∑

m=−∞
αmeim θ (3.50)

∂φ

∂r

∣∣∣∣
r=b

=
∞∑

m=−∞
βmeim θ. (3.51)

Comparing the partial derivative with respect to r of (3.43) at r = a and b, and
equating coefficients of eim θ, yields

m = 0 : B0/a = α0, (3.52)

B0/b = β0; (3.53)

m �= 0 : |m|
(

Am a|m |−1 − Bm a−|m |−1
)

= αm, (3.54)

|m|
(

Am b|m |−1 − Bm b−|m |−1
)

= βm . (3.55)
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The relations B0 = aα0 and B0 = bβ0 form = 0 are compatible only if the existence
condition (3.44) is satisfied. For m �= 0,

Am = |m|−1
(

b2 |m | − a2|m |)−1 (
b|m |+1βm − a|m |+1αm

)
, (3.56)

Bm = |m |−1
(

b2|m | − a2|m |)−1 (
a2|m |b|m |+1βm − b2|m |a|m |+1αm

)
. (3.57)

Thus the solution to the Neumann problem has been found explicitly, and the conver-
gence of (3.49) is assured. Note that this series solution depends upon the boundaries
being symmetric about r = 0. However, for any planar flow the method of conformal
mapping may be used to convert a non-symmetric into a suitably symmetric domain.

Exercises

(Q1) Show that u − iv = −d f/dζ, where v = u î + v ĵ is the two-dimensional fluid
velocity; and that |v|2 = (d f/dζ)(d f/dζ)∗, with the star superscript denoting
the complex conjugate. Then deduce the flow field corresponding to each of
the following complex potential functions:

(a) f (ζ) = −Ue−iαζ (U,α constants); (b) f (ζ) = −m ln ζ (m constant);
(c) f (ζ) = iκ ln ζ (κ constant).

(Q2) Consider steady ideal planar subsonic flow over

y =
{

0, for x ≤ −a, x ≥ a√
a2 − x2, for | x | < a

,

the surface of a semicircular cylinder of radius a. Assuming the flow originates
as a uniform stream from left to right so the complex potential is f (ζ) = −Uζ
at infinity, ignoring gravity find the resultant vertical and horizontal forces on
the cylinder.

(Q3) The Laplace equation ∇2φ = 0 is to be solved in the region V between two
circular cylindrical surfaces, with axes of symmetry parallel but distinct. In
particular, assume that φ is independent of the axial coordinate z and consider
the area of cross-section defined between an outer cylindrical surface of radius
r = 1 and an inner cylindrical surface where |r − 2/5| = 2/5. Consider the
bilinear conformal transformation

w = ζ − α

α∗ζ − 1
, |α| < 1
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to map the area of cross-section to an annular region 1/2 ≤ |w| ≤ 1, and hence
obtain the velocity potential

φ(x, y) = c1 ln

(
2ζ − 1

ζ − 2

)
+ c0

where ζ = x + iy and c0, c1 are constants.

3.7 Pressure Variation in Ideal Subsonic Flow

As we have found, it is often important to know the pressure variation (e.g. to cal-
culate the lift on an aerofoil), and in this section it is considered more carefully in
ideal subsonic flow. From the ordering in Sect. 3.4 that led to the incompressible
approximation, we recall that p(0) is constant; and we now observe that p(1) is also
constant, if the shear viscosity μ is small enough to render the right-hand side of
(3.38) zero. Thus the pressure variation is O(ε2), and appears in the next (second)
order equation obtained from (3.2)—viz.

ρ(0)

(
∂v(1)

∂t(1)
+ v(1) · ∇v(1)

)
+ ∇ p(2) = ρ(0)g(2) (3.58)

if μ= o(ε), recalling the “little oh” asymptotic ordering notation introduced above
(3.32). It is notable that all of the quantities in (3.58) are leading order under the
subsonic asymptotic analysis, with the exception of the pressure variation in the
flow—and as the pressure variation is the fluid pressure within a constant, this is
consistent with the ideal equation of motion (3.5).

For a barotropic equation of state (when p is a function of ρ alone), constant p(0)

implies that ρ(0) = constant. Then dividing through by ρ(0) and adopting g(2) =
−∇V (2) yields the equation

∂v(1)

∂t(1)
+ ∇

(
1

2
|v(1)|2 + p(2)

ρ(0)
+ V (2)

)
= v(1) ×

(
∇× v(1)

)

in the form of (3.20), from the identity v ·∇v = ∇ ( 1
2 |v|2)− v × (∇× v) introduced

before. This result is to be solved for p(2)/ρ(0), but the equation ∇[p(2)/ρ(0)] = f
cannot have a solution unless ∇× f = 0. Hence we have

∂(∇× v(1))

∂t(1)
= ∇× [v(1) × (∇× v(1))]

—i.e. the conservation of vorticity equation (3.25) to lowest order, which has already
been used in Sect. 3.4 to justify irrotational flow and hence the existence of a scalar
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potential for v(1). The derivation of information about a lower order quantity from
the solvability condition for a higher order quantity, in this case about v(1) from p(2),
is a common feature of asymptotic expansion procedures [10]. It is often said that
one annihilates the higher order information, and in this case the annihilator is the
operator ∇× .

Thus introducing the irrotational flow velocity potential, the equation for p(2)

becomes

∇
(

−∂φ(1)

∂t(1)
+ 1

2
|∇φ(1)|2 + p(2)

ρ(0)
+ V (2)

)
= 0;

which on integrating yields

− ∂φ(1)

∂t(1)
+ 1

2
|∇φ(1)|2 + p(2)

ρ(0)
+ V (2) = F(t) (3.59)

throughout the flow, where the arbitrary function of time F(t) may be removed
by redefining the velocity potential to be φ(1) − ∫ t F(u)du as in Exercise (Q2) of
Sect. 3.3. The pressure variation due to the flow is therefore defined by the leading
order approximations to the density and velocity fields—i.e.

p(2) = ρ(0) ∂φ(1)

∂t(1)
− 1

2
ρ(0)|∇φ(1)|2 − ρ(0)V (2), (3.60)

where of course the nonlinear contribution on the right-hand side is due to the advec-
tion term v · ∇v in the consistent second-order rendition (3.58) of the equation of
motion. The ordering indices are also usually omitted from (3.59) and (3.60), and
sometimes the pressure variation p(2) is written as δ p (rather than p) to emphasise
that it is the pressure perturbation due to the flow.

Equation (3.60) is the appropriate equation for the pressure variation throughout
an ideal but not necessarily steady subsonic flow. While (3.60) is the reduced form
of the Bernoulli equation (3.30) derived in Exercise (Q2) of Sect. 3.3 in the limit
γ → ∞, our asymptotic analysis has demonstrated the validity of (3.60) for arbitrary
γ provided the flow is subsonic, as was the case with (3.31) in Sect. 3.4. Pressure
variations are immediately transmitted throughout the fluid because the sound speed
is considered indefinitely fast on the subsonic time-scale—and notions of cause and
effect are altered. Rather than pressure variations “causing” fluid accelerations and
thus changes in fluid velocity, the fluid velocity is completely determined by the
boundary conditions through the Laplace equation, and the pressure variations are
then “caused” by the variations in fluid velocity as specified by Eq. (3.60).

In the following sections, the shear viscosity is retained in the equation of motion,
such that the vorticity is no longer conserved throughout the flow under Kelvin’s cir-
culation theorem—cf. Eq. (3.27). We begin with a brief discussion of the production
of vorticity in regions where velocity gradients are large, although the shear viscosity
coefficient is small.
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Exercises

(Q1) Consider a planar irrotational flow field described by the velocity potential

φ(r, θ) = a |v0| θ − |v∞|
(

r + a2

r

)
cos θ

in the domain r > a, where (r, θ) denote polar coordinates and a, |v0| and
|v∞| are constants.

(a) Calculate the flow velocity v = −∇φ, and consider the streamlines for (i)
v0 = 0 and (ii) v0 = v∞. Is the flow compatible with the presence of a solid
body in the region r ≤ a?

(b) What is the vorticity ω of the flow? Calculate the circulation about two
circuits in the plane—viz. (i) the circle r = 2a, 0 ≤ θ < 2πwith centre at the
origin; and (ii) the circle of radius a with centre at the point r = 3a, θ = 0.

(c) Does the flow satisfy the incompressibility constraint? Assuming that the
density is constant (ρ0 say) far upstream, what is the density elsewhere in
the flow?

(d) If the fluid is assumed to be ideal, show that:
(i) if v0 �= 0, there is a lift (a force in the vertical θ = π/2 direction); but
(ii) there is no drag (no force in the horizontal θ = 0 direction).

(Q2) Consider steady subsonic flow past a sphere of radius a. Assuming that the flow
originates as a uniform stream with constant velocity U and ignoring gravity,
show that the ideal (inviscid) theory once again predicts there is no drag on the
sphere.

3.8 Boundary Layers

The zero drag predicted on an obstacle in a flow, such as on a cylinder or sphere as
considered in the previous Exercises and earlier in Sect. 3.6, is d’Alembert’s Paradox
from the eighteenth century that was not resolved for about 250 years! It is nowwell-
known that this absurd theoretical result is due to the inviscid assumption underlying
the Bernoulli equation—and in particular, that the viscosity causes a fluid to adhere
to any boundary such that there is a “no slip” boundary condition (see below). The
shear viscosity generates vorticity in any flow past a “blunt” object as mentioned
before, so the irrotational flow assumption (ω = ∇× v = 0) must be abandoned,
at least in regions adjacent to and behind the object in the flow. Even if the shear
viscosity coefficient is small, there is typically a wake generated downstream, behind
a boundary layer (itself a layer of vorticity) adhering to the surface of the object.
Indeed, the boundary layer may detach at some point along the surface of the object,
producing a wake with very strong velocity shear (a vortex sheet, described further in
Sect. 3.9). The unrealistic arbitrary transverse fluid velocity n̂ ×v at any boundary in
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the ideal fluid model is incompatible with the more physical (viscous fluid) boundary
condition v = V, such that we also have the “no slip” condition

n̂ × v = n̂ × V (3.61)

in addition to the non-cavitation condition (3.6) at any boundary. Mathematically,
the loss of any boundary condition is a classical sign of singular behaviour, typically
associated with a reduction of order in the governing differential equation. All fluid
viscosity terms have been ordered out in the preceding analysis in this chapter, not
only in (3.38) at first order but also in (3.58) at second order, with the shear viscosity
coefficient assumed to be o(ε).

Let us therefore consider the restoration of fluid viscosity in the subsonic model,
beginning with the modification of (3.58). Formally, when the shear viscosity coef-
ficient μ is O(ε) the ideal equation of motion (3.58) is replaced by

ρ

(
∂v
∂t

+ v · ∇v
)

+ ∇ p = ρg + μ∇2v, (3.62)

where the ordering indices are again omitted. Once again, the quantities in the equa-
tion are leading order under the subsonic asymptotic analysis, except for the pressure
variation that is nevertheless the total fluid pressure within a constant as before—cf.
Sect. 3.7. Thus this equation agrees with the fundamental equation of motion (3.2)
with the Newtonian pressure tensor (3.4) when the fluid is uniform (ρ and μ are
both constant) and the flow is subsonic (∇· v = 0). A secondary asymptotic expan-
sion in powers of any smaller shear viscosity coefficient μ = o(ε)—i.e. writing
ρ = ρ(0) +μρ(1) +· · · and similar expressions for p and v in (3.62)—reproduces the
previous ideal (inviscid) equation of motion (3.58), assuming that r and t do not scale
withμ (i.e. both ∂/∂t and∇ are O(1) operators). Equation (3.62) is commonly called
the Navier–Stokes equation, sometimes even when the fluid has variable density ρ.

Following Prandtl, the apparent conflicts in the limit μ → 0 mentioned in the
first paragraph above were resolved by recognising that for small but finite μ there
is a narrow boundary layer in the region of fluid near any solid boundary (a region
with a very short scale length in the direction normal to its surface).4 Although
the magnitude of the viscous term μ∇2v relative to the inertia term ρv · ∇v may
indeed be very small elsewhere in the flow such that the Reynolds number Re � 1
(cf. Sect. 3.12), in the boundary layer the fluid velocity shear and hence ∇2v is
so large that the viscous term μ∇2v remains comparable with the other terms in

4Ludwig Prandtl’s revolutionary contribution to fluid mechanics was presented at the Third Inter-
national Mathematics Congress held in Heidelberg, Germany in 1904. His subsequent article
was published in the Congress proceedings—cf. Early Developments of Modern Aerodynamics,
J.A.K. Ackroyd, B.P. Axell and A.I. Rubin (eds.), Butterworth-Heinemann (Oxford, 2001), p. 77
for an English translation. His contribution was a major step in convincing the engineering com-
munity that mathematical and later computational fluid mechanics can realistically describe fluid
motion, replacing some scepticism of the classical ideal theory. There is a well-written historical
article by John D. Anderson Jr. in Physics Today, pp. 42–48, December 2005.
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Fig. 3.1 Planar boundary layer flow near a solid surface (horizontal wall) with no-slip boundary
condition using a stretched length scale such that the rapid, y/ε, variation in the normal direction
is resolved, but on which the streamwise x variation is negligible

(3.62). Omission of the viscosity term μ∇2v, involving higher order (second order)
spatial derivatives, in the ideal fluid model represents the singular mathematical
feature anticipated above. Thus the flow may include a substantial essentially ideal
(inviscid) region outside the boundary layer, where the irrotational assumption is
generally adequate. In a formal asymptotic analysis taking μ = O(ε3), the solution
involving viscosity in the boundary layer, often referred to as the “inner” region, may
be “matched” to the solution in the inviscid “outer” region—as in the simple planar
flow v = u(x, y) î shown schematically in Fig. 3.1 for example.

Some of the mathematical features can be illustrated by a one-dimensional model
problem:

εy′′ − y′ = 0, y(0) = 0, y(1) = 1.

This is a singular boundary value problem, because the ε → 0 limit of the equation
with y′′ = O(1) is y′ = 0, which cannot satisfy the boundary conditions—i.e. no
solution exists to the problem if ε is strictly zero and the boundary conditions are as
given. However, for arbitrarily small ε the exact solution is

y(x) = ex/ε − 1

e1/ε − 1
.

Thus when ε → 0+ there are two regions—viz. the outer region, where y(0) = 0
is a good solution of the “ideal” equation y′ = 0; and the narrow boundary layer or
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inner region where the solution varies rapidly, so a different asymptotic ordering is
appropriate. A similar simple boundary value problem to illustrate this behaviour is
given in Ref. [12], where related perturbation methods are applied to a remarkably
wide variety of applications. Reference may also be made to Refs. [1, 3], for further
aspects of boundary layer theory.

3.9 Vortices

A vortex is a region of fluid in which the vorticity ω is non-zero. Let us recall from
Sect. 3.3 that vortex lines have tangents parallel to ω, the direction of the swirl in
the flow, perpendicular to the flow direction associated with the otherwise analogous
streamlines. The vortex line density, the number of lines per unit area passing through
an infinitesimal surfacewith normal parallel toω, is of course proportional to |ω|.We
recall that (3.24) associated the circulation K ≡ ∫

C v · dr around a closed material
curve C with the corresponding strength κ of a vortex tube.

We also recall that that the strength is a characteristic of any vortex tube, since it is
constant along the tube. This immediately implies that in the absence of dissipation
a vortex tube can not terminate within the fluid, for any geometric continuation of
the tube into a region where ω ≡ 0 produces a contradiction. Thus a vortex tube
either has a closed form in the fluid (e.g. a “smoke ring”), or ends at a fluid boundary.
Moreover, the strength of any vortex tube completely surrounded by an inviscid
irrotational flow region is conserved according to the Kelvin theorem (3.27), since
the curve C may be any topologically equivalent circuit in that region.

All of this advances the important concept that vortex lines move with the fluid
(Helmholtz theorem)—or equivalently, that vortex tubes move with the fluid—
implicit in the ideal vorticity equation (3.26).Whereas previously (3.26) was invoked
to justify the persistence of irrotationalmotion in an ideal fluid and therefore the intro-
duction of a velocity potential, the emphasis here has shifted to the implication that
any fluid element with vorticity must subsequently possess vorticity, and hence that
the fluid in a vortex line (or vortex tube) must subsequently form a vortex line (or
vortex tube). The respective magnitude and direction of the fluid vorticity varies with
the length and direction of the corresponding vortex line. Some aspects of whirlwinds
or tornados may be recognised in several of the above remarks!

We have recognised that additional vorticity can be generated due to the shear
viscosity—e.g. in the case of formerly irrotational flow past an obstacle, from where
new vortex lines and vortex tubes originate. The curl of the Navier–Stokes equation
(3.62) yields

dω

dt
= ω · (∇v − I∇· v) + ν∇2ω = ω · ∇v − ω∇· v + ν∇2ω. (3.63)

The coefficient ν = μ/ρ is often called the kinematic viscosity, or alternatively the
diffusivity because the viscous term ν∇2ω produces vorticity diffusion. Since the
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coefficient ν is often small, the vorticity diffusion termmay be small in regions where
the vorticity gradient remains small—i.e. there can be slow dissipation of an ideal
(inviscid) solution, such as occurs for example with a “smoke ring”. However, let us
recall that the viscous term μ∇2v must be retained in (3.62) to describe boundary
layers, where the velocity gradient is large. The corresponding viscous term ν∇2ω
in (3.63), omitted from (3.26), must be retained to predict the vortex wake generated
in flow past an obstacle. As already mentioned in Sect. 3.8, a boundary layer may be
viewed as a layer of vorticity. Due to the “no slip” boundary condition, vorticity is
produced at the obstacle and diffused outward by the surface viscous forces, and then
swept along by the flow. Mathematically speaking, the major interest in the inviscid
limit ν → 0 (equivalent to μ → 0) is therefore again when it is singular, with an
associated loss of boundary conditions.

Sometimes the vorticity is confined to a set of vortex tubes, each of which has
a diameter much less than the distances separating them. Such a vortex tube may
be idealised as having negligible thickness but finite strength (cf. the Dirac delta
function) and called a line vortex. Ideal flowsolutions in this context have singularities
along the line vortices, and the circulation around them must take the values they
prescribe. Another useful concept is the vortex sheet mentioned in the previous
section,whereω is non-zero onlywithin a sheet of negligiblewidth,which can also be
thought of as a distributed line vortex. If an infinitesimal rectangular circuit γ is drawn
through a vortex sheet, coincident with a level surface of a curvilinear coordinate
χ, from Stokes Theorem the tangential velocity has a discontinuity. Specifically,
�v� · τ = K · n̂ × τ for any arbitrary unit tangent vector τ , and hence

�v� = K × n̂, (3.64)

where n̂ is the unit normal to the sheet and K is the surface vorticity. Thus

ω = K δ(χ), (3.65)

where χ is a function such that its level surface χ = 0 coincides with the sheet, and
n̂ · ∇χ = 1 on the sheet. In terms of χ, the jump in v is defined by

�v� ≡ lim
δ→0

(v(χ = δ) − v(χ = −δ)) , (3.66)

and the jump condition n̂ · �v� = 0 from ∇· v = 0 is used.
In cylindrical coordinates (r, θ, z), for incompressible axisymmetric flow with a

swirl the velocity and vorticity fields are

v = −1

r

∂ψ

∂z
êr + vθ êθ + 1

r

∂ψ

∂r
êz, (3.67)

ω = −∂vθ

∂z
êr −

[(
1

r

∂2

∂r2
− 1

r

∂

∂r
+ ∂2

∂z2

)
ψ

]
êθ + 1

r

∂vθ

∂r
êz, (3.68)
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where ψ(r, z, t) is the relevant Stokes stream function and vθ(r, z, t) is the swirl
velocity component (cf. also the next section). The Helmholtz equation (3.28) has
azimuthal and meridional components

d

dt

(ωθ

r

)
= 1

r2
∂v2θ

∂z
, (3.69)

d(rvθ)

dt
= 0, (3.70)

respectively. If the shape of the vorticity is preserved such that the flow is steady in
some moving reference frame, then from (3.70) we have rvθ = C(ψ) where C(ψ) is
an arbitrary function. Since dψ = rvzdr − rvr dz, the right-hand side of (3.69) can
be rewritten as

1

r2
∂

∂z

(
C2

r2

)
= −vr

1

r3
dC2

dψ
= 1

2

d

dt

(
1

r2
dC2

dψ

)
(3.71)

because dψ/dt = 0 and dr/dt = vr . Consequently, (3.69) can be integrated to give

ωθ

r
= d H

dψ
+ C

r2
dC

dψ
(3.72)

where H is an arbitrary function of ψ in (3.20) written as −∇H = v × ω for steady
flow, on noting that

∇H = rvz
d H

dψ
êr − rvr

d H

dψ
, (3.73)

v × ω =
(

C

r2
∂C

∂r
− vzωθ

)
êr +

(
C

r2
∂C

∂z
+ vrωθ

)
êz . (3.74)

Finally, on substituting the expression for ωθ into the θ-component of the vorticity
we have (

∂2

∂r2
− 1

r

∂

∂r
+ ∂2

∂z2

)
ψ + r2

d H

dψ
+ C

dC

dψ
= 0. (3.75)

This equation has the same form as the Grad-Shafranov equation (5.68) in Sect. 5.10,
expressed as

(
∂2

∂R2 − 1

R

∂

∂R
+ ∂2

∂Z2

)
ψ + μ0R2 dp

dψ
+ F

d F

dψ
= 0, (3.76)

corresponding to ω × v = −∇H and ω = ∇× v having the respective MHD
counterparts j × B = −∇ p and μ0j = ∇× B.

http://dx.doi.org/10.1007/978-981-287-600-3_5
http://dx.doi.org/10.1007/978-981-287-600-3_5
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A particular historical case is Hill’s spherical vortex that corresponds to H =
−Aψ and C = 0, where the vorticity is confined to the interior of a uniformly
translating sphere of fluid of radius a. In this axisymmetric flow, the vortex lines are
circles about an axis through the sphere and the streamlines lie in the meridional
planes. Thus with the origin instantaneously coinciding with the centre of the sphere
of radius a, we have

ωθ =
{

Ar, if r2 + z2 < a2,

0, if r2 + z2 > a2.
(3.77)

and the governing elliptic partial differential equation

∂2ψ

∂r2
− 1

r

∂ψ

∂r
+ ∂2ψ

∂z2
= −Ar2. (3.78)

Sinceψ and ∂ψ/∂z are continuous at the surface
√

r2 + z2 = a (velocity continuity),
the solution for the stream function is

ψ =
{−A(r4 + r2z2 + 5

3r2a2)/10, r2 + z2 < a2,

Aa5r2/15(r2 + z2)3/2, r2 + z2 > a2,
(3.79)

and the correspondingvelocity potential for the irrotationalmotionwhen r2+z2 > a2

is φ = −Aa5z/15(r2 + z2)3/2—i.e. the ideal incompressible flow outside the radius
a is equivalent to that due to a rigid sphere moving with a velocity of magnitude
2Aa2/15. Further discussion on vortex dynamics is given in the excellent book by
Saffman [13].

Exercises

(Q1) Two line vortices of the same strength and direction of circulation initially
occupy the lines x = ±a, y = 0, −∞ < z < ∞ in an infinite liquid.
Determine the flow.

(Q2) (Karman vortex street) Line vortices of equal strength lie in two parallel rows
x = ±na(n = 0,±1,±2, ...), y = ±b, −∞ < z < ∞ in an infinite liquid
at time t = 0, where the vortices in the upper row y = b all have anticlockwise
circulation and those in the lower row all have clockwise circulation. Given
the result ∞∑

n=0

α

α2 + (2n + 1)2
= π

4
tanh

(πα

2

)
,

show that each line vortex moves in the x-direction with uniform speed

K

2a
tanh

(
2πb

a

)
,

where K is the circulation of each line vortex.
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(Q3) If a uniformvortex sheet in the plane y = 0 is assumed to consist of a continuous
distribution of line vortices, aligned in the z-direction and with strength κ per
unit length of the x-axis, show that the corresponding fluid velocity at any point
P(x, y, z) is v(x, y) = u(x, y)î + v(x, y)ĵ where

u = −κ

∫ ∞

−∞
y

y2 + (x − ξ)2
dξ, v = κ

∫ ∞

−∞
x − ξ

y2 + (x − ξ)2
dξ.

3.10 Stokes Flow Past a Sphere

The formal ordering initiated in Sect. 3.4 indicates that slow flow of a more strongly
viscous uniformfluidmay be described by Eqs. (3.38) and (3.39). Thus if the constant
shear viscosity coefficient μ is assumed to be O(1) rather than O(ε) as in Sect. 3.8,
the resulting viscous model is

∇ p = μ∇2v = −μ∇× (∇× v), (3.80)

∇· v = 0. (3.81)

Stokes carried out one of the earliest viscous flow analyses, in essentially solving
Eqs. (3.80) and (3.81) subject to the non-cavitation condition (3.6) and the “no slip”
condition (3.61) for slow flow past a sphere.

In an otherwise uniform flow, with constant velocityU far away from the sphere, a
system of spherical coordinates (r, θ,φ) may be oriented such that θ = 0 in the direc-
tion of U, whence v = vr (r, θ)êr +vθ(r, θ)êθ—i.e. the flow is entirely axisymmetric,
independent ofφ. Stokes introduced a stream function to satisfy the incompressibility
condition

∇· v = 1

r2
∂

∂r
(r2vr ) + 1

r sin θ

∂

∂θ
(sin θvθ) = 0,

which defines the exact differential

dψ(r, θ) = (r2 sin θ)vr dθ − (r sin θ)vθdr

such that

vr = 1

r2 sin θ

∂ψ

∂θ
, vθ = − 1

r sin θ

∂ψ

∂r
, (3.82)

or in vector form
v = ∇ψ × ∇φ, (3.83)

the analogue for spherical coordinates of the planar stream function representation
(3.45). Indeed, apart from the appearance of the angle around the symmetry axis, the
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representation (3.83) is of course coordinate independent and therefore also applies
to the cylindrical coordinates used in Sect. 3.9.

Thus Stokes had effectively shown it remained to solve

∇2(∇× v) = ∇×
(
1

μ
∇ p

)
= 1

μ
∇× ∇ p = 0, (3.84)

the curl of the equation of motion (3.80), or

[
∂2

∂r2
+ sin θ

r2
∂

∂θ

(
1

sin θ

∂

∂θ

)]2
ψ = 0 (3.85)

on introducing the stream function. This partial differential equation admits solutions
of formψ(r, θ) = f (r) sin2 θ, where f (r) satisfies the ordinary differential equation:

d4 f

dr4
− 4

r2
d2 f

dr2
+ 8

r3
d f

dr
− 8

r
f = 0. (3.86)

Substituting the trial form f (r) = rα produces the indicial equation

α(α−1)(α−2)(α−3)−4α(α−1)+8α−8 = (α−4)(α−2)(α−1)(α+1) = 0,

so that the general solution of (3.86) is

f (r) = c1r4 + c2r2 + c3r + c4
r

(where the ci are constants).

For the uniform incoming flow, the boundary condition from (3.82) is

ψ(r, θ) ∼ 1

2
r2 sin θ as r → ∞

and hence c1 = 0 and c2 = 1/2. The variable r may be scaled in terms of the sphere’s
radius, so that “no slip” boundary conditions at the sphere ψ(1, θ) = ψr (1, θ) = 0
(corresponding to vθ(1, θ) = 0) yield

1

2
+ c3 + c4 = 0 and 1 + c3 − c4 = 0,

whence c1 = −3/4, c4 = 1/4. Thus the Stokes solution for the stream function in
the flow past a stationary sphere is

ψ(r, θ) = 1

4

(
2r2 − 3r + 1

r

)
sin2 θ; (3.87)



3.10 Stokes Flow Past a Sphere 99

or in “dimensional form”, for a uniform flow of speed U past a sphere of radius a:

ψ(r, θ) = 1

4
U

(
2r2 − 3ar + a3

r

)
sin2 θ. (3.88)

Note that the stream function is defined within an arbitrary constant factor, because
(3.84) is an homogeneous equation. It follows that the viscous force per unit area on
the sphere includes a component (3μ/2a)U, producing the viscous drag ofmagnitude
6πμaU found by Stokes.

Exercises

(Q1) Deduce (3.85) from (3.80), and then also directly from (3.84).
(Q2) Derive the Stokes drag D = 6πμaU from (3.88), noting that the viscous force

per unit area follows from

êr · P = êr ·
(
−pI + μ[∇v + (∇v)T ]

)
,

since êr is the unit normal n̂ at any point on the sphere.
(Q3) (Hele-Shaw cell) A viscous liquid flows slowly between two parallel plates a

distance 2a apart,which ismuch less than the length andwidth of the plates. The
pressure distribution along the edge of the liquid layer is arbitrary, but varies
slowly with respect to the scale of the separation. Adopt Cartesian axes Oxyz
with z = 0 the mid-plane of the layer, and make the orderings μ = O(1) and
a/L = O(ε), ε → 0, where L is a characteristic horizontal length. Assume
that p and v are functions of {X, Y, z} where X ≡ εx and Y ≡ εy, and expand
p and v in the formal asymptotic series

p = p(0) + εp(1) + · · ·
v = εv(1) + ε2v(2) + · · ·

From (3.80) and (3.81), show that p(0) and p(1) are functions of X and Y only,
and that

v(1)
z = v(2)

z = 0, v(1) = − (a2 − z2)

2μ
∇⊥ p(0) where ∇⊥ ≡ î

∂

∂X
+ k̂

∂

∂Y
.

Also show that p(0) obeys the planar Laplace equation

∇2⊥ p(0) = 0.
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3.11 Exact Viscous Flow Solutions

Exact viscous flow solutions often depend upon special mathematical or geomet-
ric features, and include unidirectional shear flows where the nonlinear inertia
term v ·∇v in the Navier–Stokes equation (3.62) is zero—e.g. flows between infinite
parallel plates or through a straight pipe. Other exact viscous solutions include steady
plane flow between divergent plates, axial or azimuthal flow between concentric cir-
cular cylinders, flow due to steady rotation of an infinite disc, plane or axisymmetric
flow against a flat plate, or flow due to the impulsive or sinusoidal motion of an
infinite flat plate in its own plane.

However, we recall that a stream functionψ can always be introduced for subsonic
planar flow. Thus if z again denotes an ignorable coordinate, Eq. (3.45) enforces both
vz = 0 and ∇· v = −k̂ · ∇× ∇ψ = 0. Moreover,

v · ∇ψ = 0. (3.89)

so thatψ is constant on a streamline—i.e. the streamlines lie within the level surfaces
of ψ.

Exercises

(Q1) A uniform fluid of density ρ and shear viscosity coefficient μ is contained
between two fixed parallel plates, which are distance d apart and at an angle α
to the horizontal. Assuming steady subsonic unidirectional flow under gravity,
show that the flow volume per unit width passing between the plates is

Q = (G + ρg sinα)d3

12μ
,

where G denotes the negative downward pressure gradient.
(Q2) A pressure gradient (−G say) is suddenly applied to a uniform fluid of density

ρ and viscosity μ in a long circular cylindrical pipe of radius r = a. Show that
the magnitude of the time-dependent unidirectional velocity along the pipe is
given by

v(r, t) = G

4μ
(a2 − r2) − 2Ga2

μ

∞∑

n=1

J0 (λnr/a)

λ3
n J1(λn)

exp
(
−λ2

nμt/(ρa2)
)

,

where J0 and J1 denote Bessel functions of the first kind, and the λn are the
successive positive roots of J0(λ) = 0.

(Q3) (Couette Flow): A uniform liquidwith shear viscosity coefficientμ is contained
in the annular region between an inner cylinder of radius a, slowly rotating
with angular velocity ω0 about its axis of symmetry, and an outer fixed coaxial
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cylinder of radius b > a. Assuming no slip boundary conditions and steady
flow, show that the angular velocity ω = r × v/r2 of the liquid at radius r is

ω = a2

r2
b2 − r2

b2 − a2 ω0,

and that

−4πμ
a2b2

b2 − a2ω0

is the torque per unit length exerted by the liquid on the central cylinder.5

3.12 Singular Perturbation Theory

Since exact solutions of theNavier–Stokes equation (3.62) are so exceptional, numer-
ical or perturbation solutions are often sought. However, a modern perspective places
both boundary layer theory introduced in Sect. 3.8 and the Stokes solution discussed
in Sect. 3.10 in the context of singular asymptotic expansions in perturbation theory
[2]—and this provides another insight into boundary layer theory, and a suitable
preparation for further discussion of slow viscous flow past a sphere in the next
section. Indeed, the relevant asymptotic analysis for both can be developed with
reference to a dimensionless form of the Navier–Stokes equation (3.62) as follows.

If L and T denote a characteristic length and a characteristic time for the flow,
then r∗ = r/L and t∗ = t/T are dimensionless independent variables. Let us also
introduce the dimensionless dependent variables ρ∗ = ρ/ <ρ>, p∗ = p/ <p> and
v∗ = v/U , where <ρ>, <p> and U denote characteristic reference quantities. On
dropping the asterisks, the consequent dimensionless form of (3.62) is

L

T U
ρ
∂v
∂t

+ ρv · ∇v + <p>

<ρ> U 2∇ p = gL

U 2 ρĝ + μ

<ρ> U L
∇2v. (3.90)

There are several important characteristic numbers in (3.90), associated with famous
names in fluid mechanics—viz.
• a dimensionless frequency L/(T U ), sometimes called the Strouhal number, such
that L/(T U ) � 1 defines steady flow;
• a pressure to kinetic energy ratio < p >/(< ρ> U 2)—written (γM2)−1 for an
adiabatic fluid where M ≡ U/cs is the Mach number, the ratio of the flow speed to
the sound speed;

5Couette flow is a classical area of investigation in hydrodynamic stability, where theoretical
and experimental investigations of ideal and viscous flow were first carried out by Rayleigh and
G.I. Taylor [4, 6]. In particular, Taylor showed that viscous Couette flow is stable only if the angular
speed | ω0| of the inner cylinder is sufficiently small, and there is a similar stability condition when
the outer cylinder rotates and the inner cylinder is fixed.
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• a potential energy to kinetic energy ratio gL/U 2, the Froude number, which is
usually denoted by Fr; and
• a viscous dissipation to kinetic energy ratio μ/(<ρ>U L) = (Re)−1, where Re is
the Reynolds number.
Each of these dimensionless numbers is ameasure of the importance of the associated
term relative to the nonlinear inertia term ρv · ∇v in a particular flow. Flows that
have identical dimensionless numbers and boundary conditions are called similar,
and this concept is exploited in physical modelling (e.g. in wind tunnels), although
typically not all similarity conditions may be met simultaneously—i.e. they are not
usually entirely compatible.

As mentioned in Sect. 3.8, boundary layer theory corresponds to the Reynolds
number Re � 1, when the viscous term in (3.90) with coefficient Re−1 � 1 is
neglected except where ∇2v is large. Thus a perturbation expansion in terms of the
small parameter Re−1� 1 renders the dimensionless form of the inviscid equation
(3.5) to leading order, except in the boundary layer where the length must be scaled
such that the viscous term is retained. As mentioned in Sect. 3.8, an inner boundary
layer solution satisfying “no slip” boundary conditions may then be matched to an
outer ideal (inviscid) solution, to obtain perturbation solutions in high Reynolds
number flows.

In contrast, the steady slow flow discussed in Sect. 3.10 corresponds to a low
kinetic energy to pressure ratio < ρ > U 2/p >� 1 and a low Reynolds number
Re � 1, such that the pressure gradient and viscous terms in (3.90) are dominant and
comparable to leading order. However, at some distance from the sphere considered
the omitted inertia term ρv · ∇v becomes comparable to these terms. In brief, a
perturbation expansion in terms of the small parameter Re�1 introduces the inertia
term at first order. Consequently, although the zeroth-order Stokes solution is valid
throughout the flow, the straightforward perturbation solution to first order is singular
(not “uniformly valid”)—and this led Oseen to a development we discuss in the
following section, from the modern perspective of matched asymptotic expansions.

3.13 The Oseen Correction

Let us first recall that the Navier–Stokes equation (3.62) is obtained on introducing
the fluid viscosity at the second order under the the formal procedure begun in
Sect. 3.4. On the other hand, the fluid viscosity term is essentially treated as first
order in adopting Eq. (3.80) to investigate slow viscous flow, where the fluid inertia
term appearing in (3.62) is omitted. If the fluid inertia is retained, the equation
replacing (3.80) is

ρv · ∇v + ∇ p = μ∇2v = −μ∇× (∇× v), (3.91)

with its corresponding dimensionless form obtained from (3.90) when the Strouhal
and Froude numbers are small—a notion refining the assumption of steady flow and
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omission of the gravity term. Equation (3.85) in the Stokes stream function ψ(r, θ)
is then replaced by

L2ψ = Re

r2 sin θ

(
ψθ

∂

∂r
− ψr

∂

∂θ
+ 2 cot θ ψr − 2ψθ

r

)
Lψ (3.92)

where for convenience below the subscripts r and θ on the right-hand side denote the
respective first partial derivatives of ψ, the linear second-order differential operator

L ≡ ∂2

∂r2
+ sin θ

r2
∂

∂θ

(
1

sin θ

∂

∂θ

)
,

and where the radius of the sphere a and the speed U of the original uniform flow
are appropriate characteristic parameters to use in defining the Reynolds number Re.
The right-hand side of (3.92) vanishes in the limit Re → 0, when it reduces to (3.85)
solved by Stokes for slow flow past a sphere.

Let us first develop a perturbation solution of (3.92) for Re � 1 in the form

ψ(r, θ;Re) =
∞∑

n=0

(Re)n ψn(r, θ). (3.93)

On substituting (3.93) into (3.92), Eq. (3.85) in ψ0 is obtained at the leading (zeroth)
order as one would expect; and application of the zeroth-order boundary conditions
ψ0(1, θ) = 0 and ψ0r (1, θ) = 0 at the sphere (of dimensionless unit radius) and

ψ0(r, θ) ∼ 1

2
r2 sin θ as r → ∞

then of course produces the Stokes solution (3.87) for ψ0(r, θ) as before. At the next
order in the small perturbation parameter Re, the equation

L2ψ1 = 1

r2 sin θ

(
ψ0θ

∂

∂r
− ψ0r

∂

∂θ
+ 2 cot θ ψ0r − 2

r
ψ0θ

)
Lψ0 (3.94)

yields the first-order contribution ψ1(r, θ). By substituting the Stokes solution (3.87)
into the right-hand side of (3.94), and then noting that this equation has a solution
of the form ψ1(r, θ) = g(r) sin2 θ cos θ, there again remains an ordinary differential
equation to solve—viz.

d4g

dr4
− 12

r2
d2g

dr2
+ 24

r

dg

dr
= −9

4

(
2

r2
− 3

r3
+ 1

r5

)
, (3.95)



104 3 Basic Fluid Dynamics

which has the solution

g(r) = d−2

r2
+ d0 + d3r3 + d5r5 − 3

16
r2 + 9

32
r + 3

32

1

r

where the {di } are constants. The first-order boundary conditions ψ1(r, θ) = o(r2)
as r → ∞, ψ1(1, θ) = 0 and ψ1r (1, θ) = 0 (at the sphere) respectively require that
d5 = d3 = 0 and d2 = d0 = −3/32, whence

ψ1(r, θ) = − 3

32

(
2r2 − 3r + 1 − 1

r
+ 1

r2

)
sin2 θ cos θ. (3.96)

However, the term −(3/16) r2 in (3.96) means that this particular solution does not
satisfy the condition at infinity; and there is no complementary solutionψ1C of (3.94)
that can be added (3.96), to render a first-order solution o(r2) as r → ∞. Thus the
perturbation solution (3.93) to first-order

ψ(r, θ) = 1

4

(
2r2 − 3r + 1

r

)
sin2 θ

− 3

32
Re

(
2r2 − 3r + 1 − 1

r
+ 1

r2

)
sin2 θ cos θ + O(Re2) (3.97)

satisfies the “no slip” boundary conditions at the sphere but not the condition
ψ(r, θ) ∼ (1/2)r2 sin θ when r → ∞. This solution was found by Whitehead,
who pointed out its nonuniformity in what became known as “Whitehead’s Para-
dox”, and its resolution by Oseen implicitly recognised the singular nature of the
boundary value problem.

The perturbation solution (3.97) is an asymptotic expansion in the limit Re → 0,
but it is evidently not valid when the term (3/16)Re r2 sin2 θ cos θ becomes greater
than (3/4)r sin2 θ—i.e. for r > Re−1. Indeed, Oseen had noticed that terms
O(Re r−2) are ignored on the right-hand side of (3.92) in rendering (3.85) in the
limit Re → 0, whereas the term

∂2

∂r2

[
sin θ

r2
∂

∂θ

(
1

sin θ

∂

∂θ

)]
ψ

on the left-hand side of (3.92) is O(r−3). Thus rather than the limit Re → 0 with r
fixed, Oseen considered the limit Re → 0 with a new variable r (−1) = Re r fixed—
i.e. the independent variable is “contracted” (since Re � 1), enhancing the focus
on the distant flow field away from the sphere.6 Introducing this new independent
variable into (3.92) leads to

6In contrast, the term “stretched” is used whenmagnifying the thin inner viscous region in boundary
layer theory (when Re � 1).
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L2ψ= Re2

(r (−1))2 sin θ

(
∂ψ

∂θ

∂

∂r (−1)
− ∂ψ

∂r (−1)

∂

∂θ
+2 cot θ

∂ψ

∂r (−1)
− 2

r (−1)

∂ψ

∂θ

)
Lψ,

(3.98)

where here and henceforth

L ≡ ∂2

∂(r (−1))2
+ sin θ

(r (−1))2

∂

∂θ

(
1

sin θ

∂

∂θ

)
,

and we may proceed to obtain an outer solution from (3.98) that matches the inner
solution (3.97) in the neighbourhood of r = Re−1.

Oseen’s expansion may be obtained by first rewriting the uniformly valid (i.e.
valid ∀ r ) Stokes solution, the leading term in (3.97), in the variable r (−1)—i.e.

1

4

(
2
(r (−1))2

(Re)2
− 3

r (−1)

Re
+ Re

r (−1)

)
sin2 θ

= 1

2

1

(Re)2
(r (−1))2 sin2 θ − 3

4

1

Re
r (−1) sin2 θ + O(Re)

suggests an expansion of the form

ψ(r (−1), θ) = 1

2

1

(Re)2
(r (−1))2 sin2 θ + 1

Re
ψ1(r

(−1), θ) + ψ2(r
(−1), θ) + . . . .

(3.99)

Then noting that (1/2)(r (−1))2 sin2 θ ≡ ψ0 say in the leading term satisfies Lψ = 0,
and that

1

(r (−1))2 sin θ

∂ψ0

∂θ
= cos θ

(Re)2
,

1

(r (−1))2 sin θ

∂ψ0

∂r (−1)
= sin θ

r (−1)(Re)2

and 2 cot θ
∂ψ0

∂r (−1)
= 2

r (1)

∂ψ0

∂θ
,

substituting (3.99) into (3.98) produces the Oseen equation

(
L − cos θ

∂

∂r (−1)
+ sin θ

r (−1)

∂

∂θ

)
Lψ1(r

(−1), θ) = 0. (3.100)

On setting Lψ1 = φ exp[(r (−1)/2) cos θ], Eq. (3.100) yields (L−1/4)φ=0, with a
solution in the form φ = f (r (−1)) sin2 θ where
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d2 f

dr (−1)2
−

(
2

(r (−1))2
+ 1

4

)
f = 0. (3.101)

Now the solution of Eq. (3.101) that does not grow exponentially is

f (r (−1)) = C

(
1 + 2

r (−1)

)
exp

(
−1

2
r (−1)

)
(3.102)

where C is a constant, so that Lψ1 = C(1 + 2/r (−1)) exp[−(r (−1)/2)(1 − cos θ)]
has the particular solution

ψ1P = 3

2
(1 + cos θ) exp[−(r (−1)/2)(1 − cos θ)], (3.103)

where the value 3/2 has been chosen in anticipation ofmatching theOseen expansion
with the dominant terms of (3.97) as follows. Thus upon adding the complementary
function ψ1C = −(3/2)(1 + cos θ) obviously satisfying Lψ1 = 0, we obtain the
Oseen asymptotic expansion

ψ(r (−1), θ) = 1

2

1

Re 2 (r (−1))2 sin2 θ

− 3

2

1

Re
(1 + cos θ)

(
1 − exp[−(r (−1)/2)(1 − cos θ)]

)
+ O(1) (3.104)

that produces

ψ(r, θ) = 1

2
r2 sin2 θ − 3

4
r sin2 θ + Re

3

16
r2 sin2 θ (1 − cos θ) + . . .

when rewritten in terms of r and expanding the exponential. Thus (3.104) matches
the asymptotic expansion (3.97) near r = Re−1 � 1, and satisfies the boundary
condition ψ ∼ (1/2)(r (−1)/Re)2 sin2 θ = (1/2) r2 sin2 θ as r → ∞ as sought.

Matching an inner asymptotic expansionwritten in terms of the outer variable to an
outer asymptotic expansion written in terms of the inner variable, which determines
the constant C and complementary function ψ1C in this case, has become a well-
known analytic technique [2].

Exercises

(Q1) Obtain the modified dimensionless equation (3.92) for slow steady viscous
flow from (3.91).

(Q2) Derive (3.101) from the Oseen equation (3.100). Then verify (3.102) and the
consequent particular solution (3.103).

(Q3) Darcy’s law for flow through porous media, first deduced experimentally and
now sometimes viewed as a statistical development from the Navier–Stokes
equation, has led to various potential flow problems. For example, when water
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seeps through homogeneous soil to drain away into small gaps between hori-
zontal hollow circular cylindrical pipes of equal length placed in a row, the flow
may be represented by a velocity potential φ(r, z) satisfying an axisymmetric
boundary value problem in dimensionless independent variables—viz.

1

r

∂

∂r

(
∂φ

∂r

)
+ ∂2φ

∂z2
= 0 (λ1 < r < λ2, |z| < 1)

subject to φ(λ1, z) = V0 (a constant) for |z| < ε but φr (λ1, z) = 0 for
ε < |z| < 1 where ε � 1 is the dimensionless small gap width, φ(λ2, z) = 0
and φz(r,±1) = 0. (The dimensionless λ1 and λ2 are the respective ratios of
the pipe radius and the seepage distance to the horizontal reference length.)
One may obtain an outer asymptotic solution some distance away from the
drainpipe

φouter(r, z) = 1

2
λ1 ln(λ2/r) + 1

π

∞∑

n=1

1

n
Rn(r) cos(nπz) − 1

π

√
λ1

r
ln |1 − x |

− 1

8π2

√
λ

r

(
1

r
+ 3

λ1

)
�[x + (1 − x) ln(1 − x)] + O(ε2),

where x = exp[−π(r − λ1) − i z] and the Rn(r) are known functions; and an
inner asymptotic solution near any gap φinner(X, Z) � V0 − (1/π)u(X, Z) +
O(ε), in terms of stretched variables X ≡ (r − λ1)/ε = sinh u sin v, Z ≡
z/ε = cosh u cos v involving convenient elliptic cylindrical coordinates (u, v).
Show that these solutions match provided

V0 = 1

2
ln

(
λ2

λ1

)
+ 1

π
ln

(
2

πε

)
− 1

2π2λ1
+ 1

π

∞∑

n=1

1

n
Rn(λ1).

3.14 Dynamical Meteorology and Oceanography�

We close this chapter with our brief presentation of the dynamical equations of mete-
orology and oceanography, as a point of departure for those interested in either of
these two scientific disciplines. The predominant new feature is the Coriolis acceler-
ation due to the rotation of the Earth, in the reformulated equation ofmotion in a local
terrestrial frame of reference—i.e. in a moving reference frame with origin at a point
on the surface of the Earth. Although it also revolves around the Sun, the Earth’s
rotation about its axis in about 24h (at angular velocity ω0 � 7.3 × 10−5 rad/s)
produces the dominant centripetal acceleration for geophysical phenomena.
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Fig. 3.2 The related inertial
and terrestrial frames

Let r and v denote the position and velocity of the fluid particle P with reference
to the moving terrestrial frame with origin O′. The true acceleration in the equation
of motion (3.2) is relative to the “fixed” inertial frame with origin O denoted by the
subscript F (cf. the last paragraph in Sect. 2.4)—t.e.

dv
dt

∣∣∣
F

= d

dt

∣∣∣
F

d

dt

∣∣∣
F
ρ = d2R

dt2

∣∣∣
F

+ dv
dt

+ dω0

dt
× r + 2ω0 × v + ω0 × (ω0 × r)

on expanding (2.29)withρ = R+r in lieu of r,whereρ andR denote position vectors
relative to the inertial frameOxyz—cf. Fig. 3.2. It is conventional to chooseCartesian
axes in the terrestrial frame, with axis O′z′ vertically upward, O′x ′ eastwards and
O′y′ northwards.

Now the Earth’s rotation varies slowly on the geophysical timescales of interest,
so we may take dω0/dt � 0; and the acceleration of the origin O′ of the terrestrial
frame relative to to the origin O of the inertial frame is

d2R
dt2

∣∣∣
F

= ω0 × (ω0 × R).

Further, assuming |r| � R and noting that gravitational acceleration corresponds
to a combination of Newton’s law of attraction and the predominant centripetal
acceleration

g ≡ −G MEarth

ρ2
ρ̂ − ω0 × (ω0 × R),

we obtain the equation of motion in the terrestrial frame

dv
dt

+ 2ω0 × v + 1

ρ
∇ p = g + F′, (3.105)

http://dx.doi.org/10.1007/978-981-287-600-3_2
http://dx.doi.org/10.1007/978-981-287-600-3_2
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where 2ω0 × v is known as the Coriolis acceleration and F′ includes specific body
forces other than gravity. The Coriolis acceleration is usually resolved into its com-
ponents in the terrestrial frame. If φ denotes the latitude (the angle of the radial
line OO′ in degrees from the equatorial plane xOy), the components of the Earth’s
angular velocity are

ω0 = (ω0 · î) î + (ω0 · ĵ ) ĵ + (ω0 · k̂) k̂ = ω0 (cosφ ĵ + sin φ k̂),

so the Coriolis acceleration is

2ω0 × v = 2ω0(w cosφ − v sin φ) î + 2ω0u sin φ ĵ − 2ω0u cosφ k̂

where v = u î + v ĵ + w k̂.

Approximations can be made for large-scale motion in the atmosphere or the
sea. First of all, both the vertical acceleration and Coriolis acceleration are usually
much smaller than the gravity g, so the vertical component of the equation of motion
(3.105) is approximately

1

ρ

∂ p

∂z
+ g = 0, (3.106)

known as the hydrostatic equation. The two horizontal velocity components u and v

then satisfy the remaining two scalar equations obtained from the equation of motion
(3.105). Thus since the vertical velocity component w is negligible (|w| � |u|, |v|),
the equations for essentially planar motion in the atmosphere or ocean are

∂u

∂t
− (2ω0 sin φ) v + 1

ρ

∂ p

∂x
= F ′

x

∂v

∂t
+ (2ω0 sin φ) u + 1

ρ

∂ p

∂y
= F ′

y, (3.107)

where φ again denotes the latitude angle and it is common to write f = 2ω0 sin φ .
When the Rossby number Ro = U/ f L is small (U again denotes a characteristic

velocity and L a characteristic length), the motion is often treated as steady. The
geostrophic equations

− f v + 1

ρ

∂ p

∂x
= 0

f u + 1

ρ

∂ p

∂y
= 0 (3.108)

are then suitable for upper atmospheric motion, assuming friction is negligible. On
the other hand, friction is important in the atmospheric boundary layer, when certain
non-zero inputs for F ′

x and F ′
y in (3.107) are required. Friction is also important at
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the top or bottom of the ocean, and equations that have been used to describe ocean
circulation are

− f V + 1

ρ

∂P

∂x
= X top − Xbottom

f U + 1

ρ

∂P

∂y
= Ytop − Ybottom, (3.109)

obtained by integrating (3.107) through the depth of the ocean, where

U ≡
∫ h

0
u dz, V ≡

∫ h

0
v dz, P ≡

∫ h

0
p dz

and F′ = (∂X/∂z, ∂Y /∂z).
Large-scale motion is emphasised in A.E. Gill, Atmosphere-Ocean Dynamics

(Academic Press, 1982), and we also recommend J.R. Holton and G.J. Hakim,
An Introduction to Dynamic Meteorology (5th Edition, Academic Press, 2012) and
J. Pedlosky, Geophysical Fluid Dynamics (2nd Edition, Springer, 1987) as further
reading. Incidentally, the meteorologist Lorenz was the first to note that nonlinear
terms in a deterministic model can lead to a lack of predictability associated with
chaos—cf. Drazin [5], for an excellent discussion of nonlinear dynamical systems.
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Chapter 4
Waves in Fluids

Sound and water waves are familiar longitudinal and transverse disturbances
relative to the direction of propagation in a fluid, respectively. Sound waves arise
in a compressible fluid, but water (gravity) waves are well described in the subsonic
incompressible approximation. Our main emphasis in this chapter is on linear wave
theory, where the disturbances from an equilibrium or steady state are assumed small
and solutions may be obtained by superposition as Fourier series or integral forms.
Our analysis is extended to superposed fluids, where hydrodynamic instability may
occur—and the other topics chosen either consolidate earlier concepts or are relevant
to developments in the following two chapters. The additional bibliographic entries
at the end of this chapter provide relevant supplementary reading.

4.1 Introduction

Waves are often propagated through fluids or solids, when some equilibrium or
quasi-steady state is disturbed. Waves in fluids result from restoring forces such
as pressure or gravity that tend to return displaced fluid elements to their original
relative positions, causing bounded oscillatory perturbations of the field variables
(the velocity, pressure or density). If the wave source does not persist, the wave
energy may propagate away from the local vicinity or the waves may be damped
out due to viscous effects (when the fluid kinetic energy dissipates as heat), so the
system returns to its original state. On the other hand, if the perturbations grow such
that the system departs from its original equilibrium or quasi-steady state, the system
is unstable [1, 3].

A wave may have a fairly regular oscillation frequency and wavelength between
adjacent crests. It may be a simple infinite wave train represented by the form

ζ(x, t) = a cos(kx − ωt), (4.1)
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where x is a space coordinate and t is the time. Equation (4.1) is a special case of
the wave form

ζ(r, t) = a exp[i(k · r − ωt)] (4.2)

where r is the position vector, representing wave propagation in the direction of
the wave vector k. (It is usually implicit that the real part of such an exponential
form is intended.) The amplitude a need not be constant, in what is known as a
Fourier component in the context of linear wave theory. A Fourier component is
evidently characterised by the amplitude, the wave number k or wavelength 2π/k ,
and the frequency ω or period 2π/ω. Linear theory is appropriate for small-amplitude
waves, where all products (quadratic and higher degree terms) in the time-dependent
variables are neglected and Fourier components may be superposed to provide the
complete signal as a linear wave form—cf. Exercise (Q1). Waves are said to be
dispersive when the phase speed c = ω/k is not constant but depends upon k, such
that the components propagate at different speeds and a wave form represented by a
superposition of Fourier components changes shape (suffers dispersion). However,
a wave form may appear to be more random, whether linear or nonlinear—when it
is sometimes called a signal. Moreover, it often distorts or changes in magnitude or
velocity, but yet remains recognisable [14].

Small-amplitude waves are not always described using the traditional Fourier
components (4.1) or (4.2). Consider the wave form

ζ = a cos S, (4.3)

where the amplitude a and the phase function S are both functions of x and t . This
form includes (4.1) when S = kx − ωt , but with inhomogeneous media in mind one
may define a local wave number k(x, t) and local frequency ω(x, t) by

k(x, t) = ∂S

∂x
and ω(x, t) = −∂S

∂t
, (4.4)

to more generally identify k as the phase density (radians/unit length) and ω the
phase flux (radians/unit time) satisfying the conservation equation

∂k

∂t
+ ∂ω

∂x
= 0. (4.5)

Indeed, if the local frequency is related to the wave number k by a dispersion relation
ω = �(k, x, t), (4.5) produces the first-order hyperbolic partial differential equation

∂k

∂t
+ cg(k, x, t)

∂k

∂x
= −∂�

∂x
(4.6)

—i.e. a wave equation for the local wave number k involving the group speed
cg(k, x, t) = ∂�/∂k, which is also associated with energy transport [14]. In
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particular, if the frequencies and wave numbers of components of form (4.1) are
confined to quite narrow bands, then the envelope of the wave packet given by their
superposition changes slowly and propagates at the group speed.

The above discussion is extended in the next section on the short wave approxi-
mation, subsequently used in our presentation on sound waves in Sects. 4.3 and 4.4.
Waterwaves are then analysed in Sect. 4.5,modifications due to either a floating flexi-
ble plate or surface tension are considered in Sect. 4.6, and two classical hydrodynam-
ical instabilities are identified in Sect. 4.7. Local averaging in Sect. 4.8 can provide
a general formulation that is applied in Sect. 4.9; the oscillation-centre description
in Sect. 4.10 is related to variational stability analysis discussed in Chap. 6; and
Sects. 4.11 and 4.12 on shock waves and shock structure preface some important
developments in Chap.5.

Exercises

(Q1) Consider awave component a(k) exp[i(kx−ωt)]withwave number in the near
neighbourhood of a particular value k0, so the dispersion relation is approxi-
mated by the truncated Taylor series

ω(k) � ω(k0) + dω

dk

∣∣∣∣
k=k0

(k − k0) = ω(k0) + cg(k0) (k − k0).

Noting that superposition defines the wave form

ζ(x, t) =
∫

D
a(k) exp[i(kx − ωt)] dk

over its domain D, show that:

ζ(x, t) � F(x − cg(k0)t) exp[i(k0x − ω(k0))t],

with F(ξ) = ∫
D a(k) exp[i(k − k0)ξ] dk; and, if the amplitudes have a

Gaussian distribution a(k) = a0 exp[−λ(k − k0)2] where λ � 1 (correspond-
ing to wave numbers localised about k0), show that the travelling wave form
is the real part of

ζ(x, t) � a0

√
π

λ
exp

[
− (x − cg(k0))2

4λ

]
exp[i(k0x − ω(k0))t].

(Q2) Denoting the phase velocity by c = (ω/k)êk , show the group velocity cg for
a wave with dispersion relation ω = k f (kx/k, ky/k, kz/k) and f an arbitrary
function is the hypotenuse of a right-angled triangle where c is the base.

http://dx.doi.org/10.1007/978-981-287-600-3_6
http://dx.doi.org/10.1007/978-981-287-600-3_5


116 4 Waves in Fluids

4.2 Short-Wavelength Approximation

In this section, we describe a well-known asymptotic approximation method in wave
theory to be invoked in the following two sections, applicable when the wavelength
may be regarded as small. This short-wavelength assumption may be introduced
through the eikonal ansatz

q1 = q̄(r, t, ε) exp

[
i

S(r, t)

ε

]
(4.7)

suggested on extending (4.3) as discussed in detail below, and the method is some-
times called the JWKB orWKB approximation following work by Jeffreys,Wentzel,
Kramers andBrillouin in the early years of quantummechanics [7, p. 310]—although
it was introduced much earlier by others including Liouville and Green, and is alter-
natively called the Liouville–Green method. The basic notion is to seek solutions of
the form (4.7), where the amplitude q̄ is slowly varying but the exponential compo-
nent (primarily oscillatory) varies rapidly.

As in the previous section, the eikonal function (or phase function) S is a gener-
alisation of the wave phase to take into account the variation with position and time
in an inhomogeneous medium, but now as a function of r and t relevant to k · r – ωt .
The generalised wave vector and frequency corresponding to (4.4) are

k ≡ ∇S, (4.8)

ω ≡ −∂S

∂t
, (4.9)

from which we obtain

∇× k = 0
[
or equivalently, ∇k = (∇k)T

]
, (4.10)

∂k
∂t

+ ∇ω = 0
[
analogous to (4.5)

]
. (4.11)

In our context, (4.7) represents an array of linearised perturbations of the physical
variables involved in the wave motion, ε → 0 is a formal asymptotic ordering
parameter to express the smallness of the wavelength with respect to typical length
and time scales of the background system that are slowly varying compared with
the waves, and q̄ is the array of slowly varying wave amplitudes. The “dummy”
parameter ε is included to get the ordering correct, but then set to 1 at the end of
the calculation. The background scale length and characteristic time are considered
to be O(1), and the amplitude functions q̄(r, t, ε) are also assumed to vary on these
scales. To develop the formal short-wavelength expansion, the amplitude quantities
are expanded in ε—i.e.

q̄ = q̄(0) + εq̄(1) + O(ε2), (4.12)
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and the linearised equations of motion are required to be satisfied order by order in
ε. As the coefficients q̄(n) may be complex, we have not taken S to be a function of ε,
becausewe assume that small phase corrections can be handled through the amplitude
expansion. Incidentally, since k and ω are given by (4.8) and (4.9), in general the
eikonal S(r, t) satisfies a partial differential equation of Hamilton–Jacobi form with
� acting as the Hamiltonian—viz.

∂S

∂t
+ �(∇S, r, t) = 0, (4.13)

which can be solved by the method of characteristics.
Let us now extend the analysis of the previous section to consider a dispersion

relation of the form

ω = �(k, r, t), (4.14)

relating the generalised frequency ω and wave vector k. On substituting (4.14) into
(4.11), we obtain

∂k
∂t

+ ∂�

∂k
· (∇k)T + ∂�

∂r
= 0, (4.15)

where ∂/∂k is now the vector differential operator with r held fixed, and ∂/∂r has
the same form as ∇ but differs from it because the partial derivatives are taken with
k fixed. From (4.10), Eq. (4.15) may be rewritten as the generalisation of (4.6)—viz.

(
∂

∂t
+ cg · ∇

)
k = −∂�

∂r
, (4.16)

involving the group velocity

cg = ∂�

∂k
. (4.17)

Further, we may also write

dk
dt

= −∂�

∂r
(4.18)

on defining an advective derivative d/dt ≡ ∂/∂t + cg · ∇ in this context, so the
group velocity defines the propagation of wave phase information—and for linear
waves, amplitude information.

To complete the solution by characteristics, let us adopt the Lagrangian viewpoint
where the group velocity cg may be interpreted as the velocity of a fictitious particle
with position r and velocity cg, according to
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dr
dt

= ∂�

∂k
. (4.19)

(In the case of soundwaves considered in the next sections, the particle is often called
a phonon.) Equations (4.18) and (4.19) have the form of the Hamiltonian equations
of motion with k the “momentum” conjugate to r, and they map the values of k
and r at time t0 to their values at time t . Thus ∇k remains symmetric (∇× k = 0
is preserved), so in principle S can be constructed at any later time by integrating
∇S = k, because the identity �k1 · �r2 − �k2 · �r1 = 0 is preserved by the
Hamiltonian flow (cf. the Exercise below). The trajectories of the fictitious particles
are called rays, and the Hamiltonian equations the ray equations.

A more practical way to calculate S is by integrating along the ray trajectories.
From the definitions (4.8) and (4.9), the dispersion relation for an arbitrary wave
(4.14) and the definition of group velocity (4.17) yield

d S

dt
= k · ∂�

∂k
− �. (4.20)

This equation is analogous to that for the action
∫

L dt in classical mechanics, where
L ≡ p · ∂H/∂p − H is the Lagrangian function. The dispersion relation (4.31) for
sound waves derived in the next section is homogeneous and linear in k such that
they are non-dispersive, so the right-hand side of (4.20) vanishes and the phase S is
constant on a ray trajectory. However, this is not so for dispersive waves (where the
dispersion relations are nonlinear in k).

Exercise

(Q1) Consider ray trajectories starting from the points r, r + �r1, r + �r2, and
define �k1 ≡ �r1 · ∇k,�k2 ≡ �r2 · ∇k. Initial conditions {(r, k)|t} are
not arbitrary, since k must be derivable from an eikonal such that ∇× k = 0
or ∇k = (∇k)T . Show that �k1 · �r2 − �k2 · �r1 = 0, and that this result
is propagated in time by the ray equation.

4.3 Sound Waves on a Slowly Varying Background Flow

We consider an ideal barotropic fluid (i.e. the density ρ is a function of the fluid
pressure p) to discuss sound wave propagation. The flow is described by (3.5) and
(3.3) conveniently rewritten as

dv
dt

= −∇
∫

dp

ρ
(4.21)

d ln p

dt
= −γ∇· v, (4.22)

http://dx.doi.org/10.1007/978-981-287-600-3_3
http://dx.doi.org/10.1007/978-981-287-600-3_3
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and we consider the behaviour of small-amplitude short-wavelength perturbations—
i.e. short with respect to the scale lengths for variations in the background density
and fluid velocity. (We shall comment on a consequence of omitting the continuity
Eq. (3.1) at the end of this section.)

Thus, substituting v = v0 + v1 and p = p0 + p1, where v1 and p1 denote small
perturbations of the background (“quasi-equilibrium”) values v0 and p0, into (4.21)
and (4.22) and linearising (retaining only first-order terms):

dv1
dt

+ v1 · ∇v = −∇
(

p1
ρ

)
(4.23)

d

dt

(
p1
p

)
+ v1 · ∇ p

p
= −γ∇· v1. (4.24)

Note that ln p = ∫
dp/p, and for convenience the zero subscript on background

quantities has been omitted.
Using the eikonal ansatz in (4.7)–(4.12) with q̄ denoting {v̄, p̄}, at O(ε−1)

Eqs. (4.23) and (4.24) yield

ω′v̄(0) = k p̄(0)

ρ
(4.25)

ω′ p̄(0) = γ p k · v̄(0), (4.26)

where ω ′ ≡ ω − k · v is the Doppler shifted frequency seen by an observer moving
with the local background fluid velocity. Consequently, substituting (4.26) into (4.25)
yields

(
ω ′ 2I − c2s kk

)
· v̄(0) = 0, (4.27)

where

cs ≡
√

γ p

ρ
(4.28)

is the sound speed. The dyadic dotting v̄(0) can be diagonalised by using as basis
vectors ê1 ≡ k/k, a unit vector in the k (longitudinal) direction, and two mutually
orthogonal unit vectors ê2 and ê3 orthogonal (transverse) to k—i.e.

[(
ω ′ 2 − k2c2s

)
ê1ê1 + ω ′ 2 (

ê2ê2 + ê3ê3
)] · v̄(0) = 0. (4.29)

Equation (4.27) has nontrivial (i.e. nonzero) solutions provided the determinant of
the dyadic representation vanishes, giving the dispersion relation

http://dx.doi.org/10.1007/978-981-287-600-3_3
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ω′ 4(ω′ 2 − k2c2s ) = 0. (4.30)

The solution ω′ 2 = k2c2s corresponds to sound waves in the compressible fluid [8].
The dispersion relation for sound waves thus has two branches in the form assumed
in (4.14), with

�(k, r) ≡ k · v ± |k|cs, (4.31)

linear in k so that sound waves are non-dispersive (the phase speed is independent
of the wave number, and coincides with the group speed).

The solution ω′ 4 = 0 corresponds to transverse perturbations (i.e. v̄(0) perpen-
dicular to k), which have zero frequency in the fluid reference frame because any
transverse restoring force such as gravity has been neglected in the equation ofmotion
(4.21). If we had not ignored the continuity equation (3.1) in the above derivation,
we would have found another zero-frequency branch corresponding to wave-like
modulations of density and temperature compensating each other in such a way as to
leave the pressure unaffected. This branch is known as the entropy wave [4, p. 189].

Exercises

(Q1) If x ′ = x − V t, y′ = y, z′ = z, t ′ = t define the transformation relating the
space coordinates (x ′, y′, z′) and time t ′ in a Cartesian reference framemoving
along the x-axis with velocity V = V î relative to another Cartesian frame with
space coordinates (x, y, z) and time t , show that ω′ = ω −k ·v is an invariant.
(The familiar transformation is called Galilean, and the form ω′ = ω − k · v
is said to be Galilean invariant—cf. also Sect. 5.4.)

(Q2) Find the frequency of the lowest mode of sound vibration in a long, thin tube
of length �: (a) connected end-to-end to form a toroidal cavity; and (b) with
closed ends. Assume the pressure, density and ratio of specific heats of the air
(taken to be an ideal fluid) in the tube to be given.
Hint: Assume purely axial flow, and first obtain the wave equation for the
velocity perturbation.

Q3) Invoking (3.13) for the gravitational potential V , the self-gravitation equa-
tion ∇· g = −4πGρ introduced in Sect. 2.3 becomes ∇2V = 4πGρ. Hence
obtain the dispersion relation ω2 = k2c2s −4πGρ in a uniform compressible
self-gravitating fluid, on assuming “plane wave” disturbances of form
C exp[i(k · r − ωt)] where C is a constant. Then determine when the self-
gravitation renders the corresponding sound waves unstable.

4.4 The Sonic Wake from a Point Source

Byexamining the solvability condition fork×v̄(1) in the asymptotic expansion (4.12),
it can be shown that the wave amplitude variation is determined by the equation

http://dx.doi.org/10.1007/978-981-287-600-3_3
http://dx.doi.org/10.1007/978-981-287-600-3_5
http://dx.doi.org/10.1007/978-981-287-600-3_3
http://dx.doi.org/10.1007/978-981-287-600-3_2
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∂N

∂t
+ ∇ · (

Ncg
) = 0 , (4.32)

where

N ≡ 2ρ|v̄(1)|2
ω′ = 2| p̄(0)|2

ρcs2ω′ . (4.33)

The quantity N is known as the wave action density and (4.32) is a conservation
equation for wave action, where the associated flux vector is Ncg. An elegant alter-
native derivation of (4.32)may be obtained by usingWhitham’s averaged Lagrangian
method [14], showing that (4.33) is a very general result, by nomeans limited to sound
waves. Although the result (4.32) is purely classical, an appealing picture for sound
waves is that N/� (where � is the Planck constant) is the number density of the
phonons that move at the group velocity cg. Their number is conserved because of
the slow variation of the background flow, corresponding to constancy of the occu-
pation number in the adiabatic approximation of quantum mechanics, and because
dissipation (e.g. due to viscosity) has been neglected they are not absorbed.

Let us now proceed to illustrate the general ray trajectory equations set out in
Sect. 4.2, using sound waves as a simple example representative of non-dispersive
waves. A sound source such as a jet plane may be treated as quite localised on
an atmospheric scale, so let us consider a uniform fluid moving with velocity v0ê1
past a monochromatic point source of sound waves located at r = 0, to model a
single Fourier component of the noise from a jet plane viewed in a Galilean frame
of reference in which it is at rest. From (4.31), on choosing the positive branch the
group velocity is

cg = v0ê1 + csêk, (4.34)

where êk ≡ k/|k| as before. Since ∂�/∂r = 0, from (4.18) we have that k is
constant on a ray trajectory. The ray trajectories emanating from r = 0 at t0 are thus
r = cg(t − t0), or from (4.34)

r = (v0ê1 + csêk)(t − t0). (4.35)

The set of such trajectories for fixed t−t0 but arbitrary êk (in any arbitrary direction) is
a circle centred on r0 = v0(t −t0)ê1 with radius cs(t −t0). Because S(r, t) is constant
on a ray trajectory for sound waves, they are circles of constant phase or wavefronts.
There are two fundamentally different cases—viz. subsonic and supersonic flow.

As illustrated in Fig. 4.1a, for subsonic flow (v0 < cs) the circular wavefronts do
not intersect and can fill all space. For a monochromatic source of frequency ω we
have S(0, t0) = −ωt0, and thus the solution for S(r, t) is found by solving (4.35) for
t0 as a function of r and t . Writing (4.35) as

cs(t − t0)êk = r − v0(t − t0)ê1, (4.36)
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Fig. 4.1 Circular phase fronts of a selected frequency component in the sound wake behind an
object moving to the left: a subsonic case; b supersonic case, showing a point r on the Mach cone
(dashed)

and squaring to remove the arbitrary direction of êk , we obtain the quadratic equation

(
c2s − v20

)
(t − t0)

2 + 2v0(ê1 · r)(t − t0) − |r|2 = 0 (4.37)

and hence

t − t0 = −v0(ê1 · r) ± [
v20(ê1 · r)2 + (

c2s − v20

) |r|2] 1
2

c2s − v20
,

so on choosing the causal root t − t0 > 0 the eikonal function is

S(r, t) = −ωt + ω|r|
(
c2s − v20 sin

2 θ
) 1
2 − v0 cos θ

c2s − v20
(4.38)

in spherical polar coordinates. Given (t − t0), we can then also solve (4.35) to obtain

cg = r
t − t0

=
(
c2s − v20

)
êr

(
c2s − v20 sin

2 θ
) 1
2 − v0 cos θ

(4.39)

where êr ≡ r/|r|, so that cg is purely radial and outwards. (This outgoing wave
condition is a consequence of the causal choice t − t0 > 0.) Assuming ∂N/∂t = 0
and integrating over a narrow cone with apex at the origin, we find from (4.32) that
N decreases as |r|−2 in all directions. Variations in amplitude at fixed |r| are thus
produced purely by the radiation pattern of the source at the origin.

Since the eikonal approximation breaks down near the singularity at r = 0, the
determination of the radiation pattern is beyond the scope of the present analysis and
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depends upon the geometry of the device exciting the sound waves. Nevertheless,
let us consider what seems the most reasonable definition of an isotropic radiator. If
the wave is represented by independently propagating infinitesimal spherical com-
pression and rarefaction wavelets, the pressure disturbance is constant on a spherical
wavefront and decreases as R−1, where R is the magnitude of

R ≡ r − v0e1(t − t0). (4.40)

Here t − t0 is the positive root of R = cs(t − t0), so from (4.37)

R = |r|cs
[(

c2s − v20 sin
2 θ

) 1
2 − v0 cos θ

]
/
(

c2s − v20

)
(4.41)

in spherical polar coordinates. Consequently, the pressure perturbation is

p1 = K
exp [i (k0R − ωt) /ε]

R
+ complex conjugate, (4.42)

where K = const and k0 ≡ ω/cs. Thus (4.33) yields

N = 2K 2

ρcs2
1

R2ω′ , (4.43)

and (4.34) yields

êk = (
cg − v0ê1

)
/cs = R/R. (4.44)

Since k · cg = ω from (4.20), we have from (4.39), (4.41) and (4.44) that

|k| = ω

(êk · cg)
= ω

cs

R2

r · R
, (4.45)

and hence

ω′ = |k|cs = ωR2

r · R
(4.46)

and

N = 2K 2ω

ρcs2
r · R
R4 .

Thus the wave action density is lower in the upwind direction (θ = π) where R is
larger, than downwind (θ = 0). Since cg = csr/R, this is even more so for the action
flux vector Ncg. Indeed, for θ = π and R → ∞ we have Ncg → 0 as v0 → cs−,
so the sonic limit corresponds to the point at which no wave information propagates
upwind.
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As illustrated in Fig. 4.1b, in supersonic flow (v0 > cs) the phase fronts intersect
and occupy a cone in the downwind direction. The quadratic equation (4.37) then
has two valid solutions, and S(r, t) becomes a “double valued” function. The surface
that the phase fronts touch tangentially is the Mach cone, where the two solutions
for S(r, t) match up—an example of a caustic, a region where the wave amplitude
becomes exceptionally large. Indeed, here the Mach cone is a singular surface where
the eikonal approximation breaks down in such a way that the amplitude goes to
infinity, and recognisable as the cause of sonic booms behind jet aircraft for example.

A closely related phenomenon in supersonic fluid flow is the shock wave, where
there are jumps in velocity, density, etc. (cf. Sect. 4.11). We can try to represent
small-amplitude shocks using linear theory by making a Fourier superposition of
monochromatic waves. However, this only works in the case of non-dispersive waves
such as the sound waves studied in this section, because the location of the caus-
tics is then independent of frequency. Dispersive waves are not so prone to shock
formation, because wave dispersion can lead to spreading of an initial discontinuity
into a smoother pattern at later times—although for large amplitude waves nonlinear
effects can overcome dispersion, to produce wave steepening and ultimately shock
formation. Wakes in a dispersive wave example (waves on ice sheets) are discussed
in Sect. 4.6. Caustics and sometimes “supercaustics” are also an interesting feature
of the flexural–gravity or capillary–gravity wave patterns briefly discussed there,
provided the source on the surface moves sufficiently fast—cf. also [9].

4.5 Water Waves

The mathematical description of the familiar waves on an otherwise horizontal water
surface under gravity, knownas surfacewater waves orgravity waves, is an instructive
introduction to transverse wave propagation [10]. Such waves are transverse because
the vertical oscillation of the surface is perpendicular to the horizontal direction of the
wave propagation. This terminology may prevail even for standing waves, which are
due to appropriately interfering travelling waves, and for waves within a fluid that are
usually distinguished as internal gravity waves. However, we now restrict our discus-
sion to the surface waves commonly seen on the upper boundary of a body of water.

Water waves usually propagate either into a region at rest or through a uniform
stream such that the essentially ideal subsonic flow remains irrotational (cf. Sect. 3.3),
and therefore may be described via a velocity potential φ(r, t) satisfying the Laplace
equation (3.40). Thus the fluid velocity is again given by (3.29) and the pressure vari-
ation by (3.60), but the new feature is the perturbation z = ζ(x, y, t) of the original
horizontal free surface z = 0 at time t = 0, if we adopt Cartesian coordinates.1

1Fluid particles near the water surface actually move forward as a wave peak passes, and then back-
ward as a wave trough passes, so there are local circulations that flatten with depth into horizontal
oscillatory motions within a surface layer. However, for small-amplitude waves it is reasonable to
assume that the flow remains irrotational outside this narrow layer.

http://dx.doi.org/10.1007/978-981-287-600-3_3
http://dx.doi.org/10.1007/978-981-287-600-3_3
http://dx.doi.org/10.1007/978-981-287-600-3_3
http://dx.doi.org/10.1007/978-981-287-600-3_3
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Let us proceed to formulate the relevant boundary conditions. The requirement
that the fluid does not cross this free surface is

n̂ · v = n̂ · vs (4.47)

at any point moving with velocity vs on the surface, where n̂ is the normal at the
surface and v the local fluid velocity. Since it may be assumed that any point on this
free surface moves in the z-direction such that vs = k̂ ∂ζ/∂t , and the normal to the
level surface z − ζ(x, y, t) = 0 is n̂ = ∇(z − ζ) = k̂ − î ∂ζ/∂x − ĵ ∂ζ/∂y, the
kinematic condition (4.47) in Cartesian coordinates is

w(r, t) − u
∂ζ

∂x
− v

∂ζ

∂y
= ∂ζ

∂t
(4.48)

where the fluid velocity field v=(u, v, w)= −∇φ. Linearising (4.48) and introducing
the velocity potential φ therefore produces

− ∂φ

∂z
= ∂ζ

∂t
, (4.49)

for small perturbations on water initially at rest. The corresponding linearised form
of the Bernoulli equation (3.60) for incompressible irrotational flow provides the
pressure variation at the surface z = ζ

p = ρ

(
∂φ

∂t
− gζ

)
, (4.50)

on adopting the gravitational potential V = gz for g = −∇V = −gk̂ under (3.13).
Then assuming the atmospheric pressure as constant, the pressure variation is set
zero at the surface z = ζ, whence

∂φ

∂t
− gζ = 0. (4.51)

Moreover, in the linearised theory the free surface conditions (4.49) and (4.51)maybe
applied at z = 0 rather than z = ζ, since only zeroth-order terms in Taylor expansions
for the perturbation quantities about z = 0 need be retained, and combining the two
conditions gives

∂2φ

∂t2
+ g

∂φ

∂z
= 0 at z = 0. (4.52)

http://dx.doi.org/10.1007/978-981-287-600-3_3
http://dx.doi.org/10.1007/978-981-287-600-3_3
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Finally, assuming the waves propagate on water above an impenetrable bed of con-
stant depth z = −H say, the corresponding boundary condition is

∂φ

∂z
= 0 at z = −H. (4.53)

The Fourier form for the solution of the Laplace equation (3.40) for the velocity
potential is φ(x, y, z, t) = f (z) exp[i(k · r − ωt)] where k = kx î + ky ĵ . Thus we
have

d2 f

dz2
− k2 f = 0, (4.54)

with solution f (z) ∼ cosh k(z + H) to satisfy the boundary condition (4.53). The
remaining condition (4.52) then yields the dispersion relation

ω2 = gk tanh k H, (4.55)

which has two branches ω = ±�(k)where�(k) = √
gk tanh k H . We recall that the

phase speed c(k) = ω/k defines the rate of propagation of the wave components, and
the group speed cg(k) = dω/dk defines their associated energy transfer. In passing,
let us also note that from (4.51) applied at z = 0 we have

φ(x, y, z, t) = − ig

ω
a
cosh k(z + H)

cosh k H
exp[i(k · r − ωt)], (4.56)

corresponding to the elementary form for the displacement (4.2).
At shorter wavelengths on sufficiently deep water such that k H � 1 and hence

tanh k H � 1, the dispersion relation (4.55) reduces to ω2 � gk, when the waves
are strongly dispersive corresponding to c � √

g/k � 2cg. This approximation
applies to surface waves on a deep ocean for example, where it is well-known that
ocean waves disperse and the longer wavelengths travel faster. Indeed, water waves
are characteristically dispersive, but significantly less so at the longest wavelengths
where k H � 1 such that tanh k H � k H , when Eq. (4.55) yields ω � ±√

gHk such
that c � cg � ±√

gH .
The superposition to produce any general solution in linearised wave theory is

typically an expression in Fourier series or Fourier integrals. For example, in the
one-dimensional case of a surface initially at rest such that ζ(x, 0) = ζ0(x) say and
∂tζ = 0 at t = 0 [consistent with φ(x, z, 0) = 0], the water wave solution is

ζ(x, t) = 1

2

∫ ∞

−∞
ζ̃0(k) exp[i(kx − �t)]dk

+ 1

2

∫ ∞

−∞
ζ̃0(k) exp[i(kx + �t)]dk (4.57)

http://dx.doi.org/10.1007/978-981-287-600-3_3
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for |x | < ∞ and t > 0, involving

ζ̃0(k) = 1

2π

∫ ∞

−∞
ζ0(x) exp(−ikx)dx .

Wave propagation to the right (in the positive x-direction) and to the left (in the
negative x-direction) appear in both integrals in (4.57), since�(k) is an even function.
Thus the initial surface displacement is split into equal components that propagate
along characteristics defined by x ± c(k)t = constant where c(k) = �/k, which
has proven to be an especially useful concept in nonlinear wave theory [14]. Note
that the dispersion changes the wave shape, as each component travels at a different
phase speed.

Exercises

(Q1) Find data to justify the approximation ω2 � gk of dispersion relation (4.55)
for most waves on a deep ocean, and then consider the case of tsunamis.

(Q2) A train of waves on a deep ocean (with wavelengthmuch shorter than the ocean
depth) is obliquely incident on a current channel. The current channel occupies
the region y > 0 adjacent to a region y < 0 of still water, and the velocity
field in the current is a shear flow v = V y î with V constant (independent of
depth), where (x, y) denote the relevant plane Cartesian coordinates on the
ocean surface. Assuming the suitably modified water wave dispersion relation
in the local rest frame of reference, use the ray equations to show that provided
kx V > 0 (there is downstreamdirected incidence) thewavenumber component
kx remains constant with respect to y but the other component ky reverses sign
at a finite value of y given by

yc =
√

g[(k20 + k2x )
1/4 − |kx |1/2]

kx V
,

where k0 is the incident value of ky . (This sign reversal implies that the waves
are refracted out of the channel.)

(Q3) Assuming the general solution form

ζ(x, t) =
∫ ∞

−∞
a(k) exp i[kx − �(k)t] dk +

∫ ∞

−∞
b(k) exp i[kx + �(k)t] dk

corresponding to superposition of Fourier components for the one-dimensional
wave propagation, derive the result (4.57). Show that (4.57) may be re-
expressed more concisely as

ζ(x, t) =
∫ ∞

−∞
ζ̃0(k) exp(ikx) cos(�t) dk ;
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and finally obtain the solution where the rightward and leftward are explicit,
if the initial form ζ(x, 0) = ζ0(x) is an even function.

(Q4) A stone thrown into a pond produces small ripples that propagate in ever
widening circles. Assuming the initial disturbance represented by

ζ(x, 0) =
{

Q , if |x | ≤ R
0 , if |x | > R

with ∂tζ = 0 at t = 0 produces the propagation along any straight line through
the origin, show that

ζ(x, t) = Q

2π

∫ ∞
−∞

sin(k R)

k
exp[i(kx −�t)]dk + Q

2π

∫ ∞
−∞

sin(k R)

k
exp[i(kx +�t)]dk.

Noting that the exponential factor exp[ih(k)]where h(k) = kx −�(k)t varies
rapidly when either x or t is sufficiently large, use the asymptotic (“stationary
phase”) result for a single stationary point k0 ∈ D

∫

D
f (k) exp[ih(k)] dk �

√
2π

h′′(k0)
f (k0) exp[ih(k0) + i

π

4
sgn h′′(k0)]

where h′(k0) = 0 but h′′(k0) �= 0 to obtain the eventual wave form propagating
away to the right on a deep pond as

ζR(x, t) � 4Q

t

√
x

πg
sin

(
gt2R

4x2

)
cos

(
gt2

4x
− π

4

)
.

4.6 Floating Flexible Plates and Surface Tension

As mentioned, water waves are often called gravity waves, which is because grav-
itation is the dominant restoring force towards the static equilibrium characterised
by the pressure balance equation ∇ p0 = ρg implicitly assumed in the analysis of
the previous section. In order to discuss a floating ice sheet for example [9], shown
schematically in Fig. 4.2, the mathematical model may be extended to include a
flexible plate at the surface that will introduce one or two additional restoring forces.

The governing equation for the deflexion ζ(r, t) of a thin elastic plate is

D∇4ζ + N∇2ζ + ρ′h ∂2ζ

∂t2
= p − f, (4.58)

which involves an elastic restoring force proportional to flexural rigidity D, in addi-
tion to an in-plane stress (tensile and restoring when N < 0, but compressive and just
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ζ

z = −H

z = 0Floating Flexible Plate

Water

Bed

Fig. 4.2 Schematic of the deflected floating flexible plate. (Reproduced with permission of Cam-
bridge University Press)

the opposite when the coefficient N > 0). The term ρ′h∂2ζ/∂t2 is the plate accelera-
tion, where ρ′ denotes the plate density and h its thickness; p denotes the underlying
water pressure variation given by the linearised Bernoulli equation (4.50) as before,
which together with the assumption that the water always remains in contact with the
deflected plate (no cavitation) once again defines the gravitational restoring force;
and the forcing function f represents some load located on the surface. Thus on
invoking (4.50), the fundamental equation (4.58) for the deflexion at the surface
becomes

D∇4ζ + N∇2ζ + ρ′h ∂2ζ

∂t2
= ρ

∂φ

∂t

∣∣∣∣
z=0

− ρgζ − f, (4.59)

with reference again to z = 0 rather than z = ζ in the linearised theory.
For free waves proportional to exp[i(k · r − ωt)], the consequent generalisation

of dispersion relation (4.55) follows by first substituting the result (4.56) for the
velocity potential φ into the kinematic non-cavitation condition (4.49) applied at
z = 0. Adopting Cartesian coordinates as before, we therefore have

∂ζ

∂t
= k tanh(k H)φ(x, y, 0, t),

and substituting in (4.59) with the forcing function omitted ( f (x, y, t) ≡ 0) yields

ω2 = Dk5/ρ − Nk3/ρ + gk

kh′ + coth(k H)
, where h′ = ρ′h

ρ
. (4.60)

Provided the wavelength is large compared with plate thickness (kh′ � 1), the plate
acceleration term may be neglected, so the dispersion relation (4.60) reduces to
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ω2 =
(

Dk4 − Nk2

ρg
+ 1

)
gk tanh(k H). (4.61)

The more classical dispersion relation for water waves with surface tension corre-
sponds to either (4.60) or (4.61), where in the absence of the plate (D = 0 when
h = 0) the tensile restoring force is usually characterised by T = −N > 0—i.e.

ω2 =
(

T k2

ρg
+ 1

)
gk tanh k H. (4.62)

When the forcing function f (x, y, t) �= 0, the formal solution of (4.59) may be
expressed as a multiple Fourier integral—viz.

ζ(x, y, t) = −
∫

f̃ (l, m,ω)ei (lx+my−ωt)dl dm dω

Dk4 − Nk2 + ρg − ρ ′h ω2 − (ρω2/k) coth k H
(4.63)

for
√

x2 + y2 < ∞ and t > 0, where the wave vector k = l î + m ĵ and

f̃ (l, m,ω) = 1

8π3

∫
f (x, y, t)e−i (lx+my−ωt)dl dm dω

is the associated multiple Fourier transform. Dispersion relation (4.60) corresponds
to setting the denominator in the integrand of (4.63) to zero—but (4.63) yields wave
patterns generated by a surface source, such as a steadily moving load representing
a vehicle moving with uniform velocity V î say, when the forcing function is of the
form f (x, y, t) = F(x − V t, y). There are three typical length scales—a short scale
characterised by the modified plate thickness h′, a long scale characterised by the
water depth H , and an intermediate scale corresponding to a reciprocal wave number
k−1
min where the phase speed has a minimum cmin. We note also that the phase speed
is generally reduced by compressive stress (N > 0)—until the stress has become so
large that the plate buckles, despite the two restoring forces due to its flexibility and
the underlying water foundation—cf. Exercise (Q1) below.

Neglecting the in-plane stress (N = 0), typical dispersion curves for sea ice
at McMurdo Sound (Antarctica) are shown in Fig. 4.3, where the parameters are
D = 7.32422 × 109 Nm−2, ρ = 1000 kgm−3, g = 9.8m s−2 and H = 350m.2 The
load speed V = 30ms−1 is representative for an aircraft landing on the ice sheet,
and the unmarked points of intersection of the corresponding horizontal line with
the phase speed curve define the wave numbers of the propagated waves. (The wave
numbers kA and kB shown at the intersections with the group speed curve define
points of stationary phase in time-dependent theory, which was pursued to confirm
that the ice response to a uniformly moving load rapidly approaches a steady state as

2The relevant traditional analysis assumed a steadily moving line load corresponding to the forcing
function f (x, t) = const. δ(x − V t), which essentially renders the response in the direction the
load moves.
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Fig. 4.3 The phase speed c(k) and group speed cg(k) versus wave number k. (Reproduced with
permission of Cambridge University Press)

mentioned again below.) Note that the group speed curve intersects the phase speed
curve at its local minimum cmin, and the two curves asymptotically coincide in the
limit k → 0 (when c = cg = √

gH , the long wavelength water wave speed identified
in the previous section).

Flexural–gravity wave patterns are generated for all load speeds V greater than
cmin. For quite short waves (sufficiently large wave number k), the dispersion relation
(4.60) reduces to

ω2 � D

ρh′ k4 = D

ρ′h
k4, (4.64)

when the group speed is twice the phase speed. For longer waves and typical values
of D and N in an ice sheet, the dispersion relation (4.60) or (4.61) renders the group
speed less than the phase speed. Thus a characteristic flexural–gravity wave pattern
has predominantly flexural waves of relatively short-wavelength ahead of a travel-
ling pressure distribution, and rather longer predominantly gravity waves behind.
In passing, we note this corresponds to the group speed characterising the energy
propagation, relatively faster ahead of the load and slower behind. There is a pro-
nounced localised response at the critical load speed V = cmin = cg, the speed at
which energy tends to accumulate beneath the moving load. Asymptotic solutions at
a distance from the load, which perhaps surprisingly may usually be treated as a con-
centrated point source (due to the relatively long wavelengths involved), produced
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remarkably successful predictions for the set of two-dimensional surface wave pat-
terns generated when a load moves over a floating ice sheet at various speeds.3 This
included the emergence of a “shadow zone” behind the load when the load speed
V >

√
gH , corresponding to only one point of intersection in Fig. 4.3 with each of

the phase and group speed curves (at the higher wave number) for any horizontal
line representing such a high load speed.

However, the anelastic behaviour of ice led to the replacement of the elastic
restoring force D∇4ζ(x, y, t) in (4.58) by

D∇4
(

ζ(x, y, t) −
∫ ∞

0
�(τ )ζ(x, y, t − τ )

)
dτ ,

involving a Boltzmann hereditary delay integral where �(t) is the viscoelastic
memory function. This viscoelastic model reflects instantaneous and delayed elas-
tic behaviour deemed appropriate for a moving load [9]. There is consequently a
pronounced but finite response at the critical load speed V = cmin = cg for a
two-parameter representation of �(t) consistent with the standard model of linear
viscoelastic theory (visualised as a spring in serieswith aVoigt unit), whereas the pre-
dicted deflexion at this critical load speed is infinite in the linear elastic plate model.
(The coincidence of V with cg along the line of motion tends to allow energy to con-
tinuously accumulate beneath the moving load.) The linear viscoelastic theory also
predicts that the maximum deflexion generally occurs behind the load, and explains
other observed phenomena—e.g. the asymmetric (rather than symmetric) quasi-static
response when V < cmin, and the more severe attenuation of the predominantly flex-
ural waves and why the two-dimensional flexural–gravity wave pattern may appear
“swept back” to some extent (when V > cmin). Stratification of the underlying
water has been considered, when there may be internal water waves generated. On
the other hand, explicit consideration of finite plate thickness largely confirmed the
validity of the thin plate assumption [9]. Later viscoelastic time-dependent theory4

demonstrated the emergence of the pronounced but finite steady state response at the
critical load speed V = cmin = cg; and that the steady state is approachedmuchmore
rapidly at all other load speeds, compared with earlier predictions from the linear
elastic plate model. The upper part of Fig. 4.4 essentially illustrates the response in
the line of motion of the load just above the critical speed (at V = 22.5m s−1), for
the parameters of Fig. 4.3 and the two-parameter representation of �(t). The lower
part of Fig. 4.4 shows the wave patterns likewise obtained for various supercritical
load speeds—viz. (a) V = 22.5m s−1, (b) V = 40.0m s−1, (c) V = 58.6m s−1 and
(d) V = 70.0m s−1.

3The two-dimensional wave patterns were originally predicted by J.W. Davys, R.J. Hosking and
A.D. Sneyd (Journal of Fluid Mechanics 158, 269–287, 1985). The corresponding time-dependent
asymptotic analysis for an impulsively started concentrated point source demonstrated that a steady
state is approached for all load speeds other thanV = cmin = cg, including the load speedV = √

gH
in the long wavelength limit k → 0—cf. W.S. Nugroho, K. Wang, R.J. Hosking & F. Milinazzo
(Journal of Fluid Mechanics 381, 337–355, 1999).
4K. Wang, R.J. Hosking and F. Milinazzo (Journal of Fluid Mechanics 521, 295–317, 2004).
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Fig. 4.4 Viscoelastic evolution at cmin (above) and V >cmin wave patterns (below). (Reproduced
with permission of Cambridge University Press)
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It is well-known that analogous capillary–gravity water wave patterns are gener-
ated by small surface disturbances moving relative to the water flow, when there is
no plate (D = 0 when h = 0) but surface tension (T = −N > 0) is included [5, 6].
Thus for typical values of T , at rather short-wavelengths such that T k2/(ρg) � 1 the
dispersion relation (4.62) becomes ω2 � (T k3/ρ) tanh k H , when the waves are pre-
dominantly capillary, but at more typical moderate to long wavelengths their gravity
wave character defined by (4.55) predominates. Reduced surface tension (smaller
coefficient T ) lowers the frequency ω and hence the propagation speed of the waves
(“pouring oil on troubled waters”), somewhat analogous to the lower frequency of
vibration in a stretched string or membrane when the tension is reduced (although
there is then no underlyingwater providing another restoring force). The point source
assumption may seem more justifiable for water waves produced by a twig or a fish-
ing line in a stream, or by a small bugmoving on the surface of a pond, than for waves
produced by a ship on a lake—but shorter predominantly capillary waves ahead and
longer predominantly gravity waves behind are nevertheless observed in each case.
Once again, the relative magnitudes of the phase speed and the group speed define
this feature—cf. also Exercise (Q2) below.

Although linear theory seems adequate to describe the response due to a typical
moving load on sea ice several metres thick, this may not be so on thinner ice sheets.
In particular, the relatively large deflexion associated with the critical speed cmin has
led to the development of nonlinear analysis for the floating thin elastic plate model,
where (4.49) and (4.59) are replaced by

−∂φ

∂t
− ∂φ

∂x

∂ζ

∂x
− ∂φ

∂y

∂ζ

∂y
= ∂φ

∂z

and

D∇4ζ + ρ′h ∂2ζ

∂t2
= ρ

(
∂φ

∂t
+ 1

2
|∇φ|2

) ∣∣∣∣
z=0

− ρgζ − f,

respectively5—and more recently, by allowing for plate curvature where D∇4ζ is
replaced by

D
∂

∂x2

(
∂2ζ/∂x2

1 + (∂ζ/∂x)2

)
.

The wave pattern at supercritical speed V > cmin is similar (cf. Fig. 4.5), but nonlin-
earity permits the evolution of solitary waves (“solitons”) near critical speed analo-
gous to earlier results in the nonlinear theory of capillary–gravity waves [12].

5E. Parau and F. Dias (Journal of Fluid Mechanics 460 281–305, 2002); F. Bonnefoy, M.H. Meylan
andP. Ferrant (Journal of Fluid Mechanics 621 215–242, 2009); J.-M.Vanden-Broeck andE.I. Parau
(Philosophical Transactions of the Royal Society A 369, 2957–2972, 2011); and E.I. Parau and
J.-M. Vanden-Broeck (Philosophical Transactions of the Royal Society A 369, 2973–2988, 2011).
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Fig. 4.5 Representative nonlinear deflexion for V >cmin (courtesy Emilian Parau)

Finally, we remark that practical applications of flexural–gravity waves include
the deliberate breakup of ice sheets by moving sources (notably hovercraft travelling
near critical speed and submarines operating below the ice), and in determining the
hydroelastic behaviour of very large floating structures (VLFS) that can serve as
aircraft runways.6

Exercises

(Q1) For intermediate wavelengths where kh′ � 1 but k H � 1, show that the
phase speed of flexural–gravity waves in a thin floating flexible plate is given
by

c(k) = ±
√

Dk3 − Nk

ρ
+ g

k
.

Then consider the positive branch, and show that the associated minimum
phase speed is

cmin = 2

(
Dg3

27 ρ

)1/8

e−ε/4
√

(3 − e2ε)/2, where ε = sinh−1

√
N

12 ρgD
.

(Q2) From the dispersion relation (4.62) for capillary–gravity waves, deduce that
c < cg for the shortest waves and that c > cg for the longer waves on water of
finite depth, where c denotes the phase speed and cg the group speed.

6V.A. Squire (International Journal of Offshore and Polar Engineering, 18, 241–253, 2008).
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4.7 An Interface Between Two Fluids

The subsonic analysis for water waves in Sect. 4.5 may also be extended to include
fluid pressure changes in a medium above the surface z = ζ(x, y, t). Thus let us
now consider the case of an initially plane horizontal surface z = 0 separating two
uniform incompressible fluid layers, on which a small-amplitude disturbance is to be
imposed. Let us also suppose that there is horizontal flow in their unperturbed state,
where the upper fluid of constant density ρ1 has uniform velocity U1 and the lower
fluid of constant density ρ2 has uniform velocity U2. Since the unperturbed motion
is irrotational except for a vortex sheet at the interface, once again it is reasonable to
presume that any subsequent perturbed flow within each of the two essentially ideal
fluid layers beyond the intervening vortex sheet is also irrotational (cf. Sect. 3.3).

If neither cavitation nor mixing of the two fluids occurs at the interface, then the
kinematic condition replacing (4.47) is

n̂ · v1 = n̂ · v2 = n̂ · vs . (4.65)

Consequently, on recalling that the normal to the level surface z − ζ(x, y, t) = 0 is
n̂ = ∇(z − ζ) = k̂ − î ∂ζ/∂x − ĵ ∂ζ/∂y, there are now two linearised free surface
conditions generalising (4.49)—viz.

− ∂φi

∂z
=

(
∂

∂t
+ Ui · ∇

)
ζ, (4.66)

in terms of the perturbation velocity potentialsφi (i = 1, 2) for each of the two fluids.
However, we now have continuity of the pressure perturbation across the interface,
assuming no shock wave is excited since the disturbance is presumed to be small (cf.
Sect. 4.11). The Bernoulli equation (3.60) provides the pressure perturbations

pi = ρi

(
∂φi

∂t
+ Ui · ∇φi − gζ

)
(4.67)

at the interface z = ζ as generalisations of (4.50), on again adopting the gravitational
potential V = gz for g = −∇V = −gk̂.

Let us consider initial parallelmainstreamflows in the x-direction (i.e.Ui = Ui î ),
and one-dimensional perturbations of form f (z) exp[i(kx − ωt)]. The elementary
solutions of Fourier form are then the surface displacement ζ = a exp[i(kx − ωt)]
and the respective perturbation velocity potentials φ1 = C1 exp[i(kx −ωt)−kz] and
φ2 = C2 exp[i(kx − ωt) + kz], where a, C1 and C2 are constants—i.e. with φ1 and
φ2 satisfying the Laplace equation and hence f (z) given by (4.54), and each suitably
decaying away from the interface provided the two fluids are many wavelengths deep
(effectively both semi-infinitely deep such that φ1 → 0 as z → ∞ and φ2 → 0 as
z → −∞, assuming k > 0). Substituting these elementary solutions into the three
conditions resulting from (4.66) and (4.67) with pressure continuity (p1 = p2), once

http://dx.doi.org/10.1007/978-981-287-600-3_3
http://dx.doi.org/10.1007/978-981-287-600-3_3


4.7 An Interface Between Two Fluids 137

again applied at z = 0 in the linearised theory for small perturbations, we have
respectively

− i(ω − kU1)a = kC1, i(ω − kU2)a = kC2, (4.68)

ρ1[i(ω − kU1)C1 + ga] = ρ2[i(ω − kU2)C2 + ga]. (4.69)

Eliminating C1 and C2 from (4.69) using (4.68) gives

ρ1[(ω − kU1)
2 + gk] = ρ2[−(ω − kU2)

2 + gk] ; (4.70)

and expanding this result yields the dispersion relation

(ρ2 +ρ1)ω
2 − 2kω(ρ2U2 +ρ1U1)+ k2(ρ2U 2

2 +ρ1U 2
1 )− gk(ρ2 −ρ1) = 0, (4.71)

a quadratic with two roots such that

ω

k
= ρ2U2 + ρ1U1

ρ2 + ρ1
±

√
g

k

ρ2 − ρ1

ρ2 + ρ1
− ρ2ρ1

(ρ2 + ρ1)2
(U2 − U1)2. (4.72)

Thus once again there are two branches of the dispersion relation, but there is a new
feature that the roots are complex conjugates if

(U2 − U1)
2 >

g

k

ρ22 − ρ21
ρ2ρ1

. (4.73)

When there is no flow (U1 = U2 = 0), the dispersion relation (4.71) reduces to

ω2 = ρ2 − ρ1

ρ2 + ρ1
gk, (4.74)

and the roots are either real when the lower fluid is denser than the upper fluid
(ρ2 > ρ1), or pure imaginary when it is less dense (ρ1 > ρ2). In the limit ρ1 → 0,
dispersion relation (4.74) reduces to the surface gravity wave result ω2 = gk, which
is independent of the lower fluid density and consistent with dispersion relation
(4.55) in the short-wavelength approximation k H � 1—such as for waves on a
deep ocean previously considered in Sect. 4.5, where the density of the upper fluid
(air) is neglected. Similarly, if there is a layer of lighter water above a layer of denser
water due to different salinities or temperatures (ρ1 < ρ2), then (4.74) shows that
internal gravity waves can propagate along the interface at somewhat lower speeds.7

On the other hand, if the upper fluid is heavier (4.74) yields

7Atmospheric internal gravity waves, where the buoyancy of the air due to a vertical potential
temperature gradient rather than gravity alone is the restoring force, are of course quite different—
and the alternative term buoyancy waves is actually more appropriate. Buoyancy waves have the
remarkable property that their group velocity is perpendicular to the direction of phase propagation,
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ω = ± i
ρ1 − ρ2

ρ1 + ρ2

√
gk, (4.75)

so the disturbance is now proportional to exp(± |ω| t) and the positive exponent
corresponds to an exponentially growing instability. This departure from an initial
static equilibrium state is often called Rayleigh–Taylor instability, and the ratio
(ρ1 − ρ2)/(ρ1 + ρ2) when ρ1 > ρ2 is sometimes called the Atwood number. Thus a
denser upper fluid tends to sink towards the bottom, as it penetrates the lower fluid
in a phenomenon known as “fingering”. According to (4.75), the largest growth rate
at any particular wavelength can approach

√
gk (when ρ1 � ρ2). It also appears that

short-wavelengths grow fastest since the growth rate |ω| → ∞ as k → ∞, but there
is an upper bound to |ω| since surface tension is important at shorter wavelengths
(cf. also Sect. 4.6 and Chandrasekhar [1]).

When the two fluids are in relative motion, the inequality (4.73) implies that
the interface can also be unstable even if the lower fluid is denser than the upper
fluid (ρ2 > ρ1) provided |U1 −U2| is sufficiently large. Such a shear velocity driven
disruption of an equilibrium flow is often called Kelvin–Helmholtz instability [1, 3].
If ρ2U2 +ρ1U1 �= 0, the real part on the right-hand side of (4.72) implies the surface
oscillates as the disturbances grow—when the system is often called “overstable”
(cf. also Chap.6). Condition (4.73) can always be satisfied by taking k large enough,
predicting that the flow is always unstable to short waves, but once again we note
that surface tension has been neglected (and also finite interface thickness).

Exercise

(Q1) The velocity fieldmagnitude for the two unperturbed parallelmainstreamflows
in the x-direction may be expressed as U (z) = U2 + (U1 − U2)H(z), where
H(z) is the Heaviside step function. As discussed in Sect. 1.10, the derivative
d H/dz is the impulse or Dirac delta function δ(z). Obtain the vorticity ω in
the vortex sheet at z = 0, and then verify (3.24) over a rectangular region
R : | x | ≤ l/2, |z| ≤ b/2 at the interface.

4.8 Local Averaging

There is a general basic formalism for wave motion if no interaction with emitters
or boundaries is considered, which avoids complications specific to particular kinds
of waves. Let us consider a slowly varying background flow with a superimposed
short-wavelength wave, or a spectrum of short-wavelength waves. For mathematical

(Footnote 7 continued)
so they can propagate energy high into the atmosphere. The rotation of the Earth provides another
restoring force, leading to further important atmospheric wave types (e.g. “inertio-gravity” and
Rossby waves) not discussed here, and the interested reader is referred to the book by Holton cited
in the previous chapter.

http://dx.doi.org/10.1007/978-981-287-600-3_6
http://dx.doi.org/10.1007/978-981-287-600-3_1
http://dx.doi.org/10.1007/978-981-287-600-3_3
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convenience, let us also also suppose the flow extends to infinity (i.e. its domain is
R
3.)
The first consideration is how to distinguish the background component from the

fluctuation, given that both are varying in space and time. The key assumption is that
there be an asymptotic ordering λ/L = O(ε), where λ is a typical wavelength and
L a background scale length. One then seeks to prove asymptotic equality between
certain expressions as discussed below, where asymptotic equality to all orders in ε
between two functions f and g (say) is denoted by

f ∼ g (4.76)

and implies that f − g = O(εN ) ∀N . For example, when f − g = c1 exp(−c2/ε)
for ε → 0+ and c2 > 0, f is not exactly equal to g but the error approaches zero
exceedingly rapidly. Then introducing the idea of local averaging, we can decompose
an arbitrary function f into a slowly varying “average part” 〈 f 〉 and a “fluctuating
part” f̃ with local average zero to all orders in ε. An operational method to separate
off the slowly varying part would be to apply a low wavelength bandpass filter to
f —i.e. to convolute f with a smoothing function of width intermediate between the
λ and L scales. Rather than specify an arbitrary smoothing function, we may adopt
a more general approach.

Suppressing the t-dependence for simplicity, let us define an acceptable local aver-
age of an arbitrary function f (r, r/ε, ε) to be the slowly varying function 〈 f 〉(r, ε),
such that

1

〈 f 〉
∂N 〈 f 〉

∂xi · · · ∂xk
= O(1) ∀ arbitrary integer N and i, . . . , k ∈ {1, 2, 3} (4.77)

and
∫

R3
( f − 〈 f 〉)φ(r) d3r ∼ 0 ∀φ(r) ∈ T3, (4.78)

where any member of the class of test functions T3 chosen here satisfies the require-
ment

∫
IR3

∣∣∂N φ/∂xi∂xk
∣∣ d3r < ∞ ∀ N , i, . . . , k ∈ {1, 2, 3}. Clearly (4.77) is easy

enough to satisfy; and to show that (4.78) can be satisfied to all orders for the functions
of interest, let us first define the fluctuating part

f̃ = f − 〈 f 〉, (4.79)

so that (4.78) becomes the “orthogonality” condition

∫

R3
f̃ φ d3r ∼ 0 ∀φ ∈ T3. (4.80)
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Now if

f̃ =
∑

j

a j exp

[
i S j

ε

]
+ c.c., (4.81)

where a j and S j are slowly varying and “cc” denotes the complex conjugate, then
(4.80) follows from a slight generalisation of the following result:

∫ ∞

−∞
exp

(
i x

ε

)
φ(x) dx ∼ 0 ∀φ(x) ∈ T1, (4.82)

where any member of the class T1 here is such that
∫ ∞
−∞

∣∣φ(n)
∣∣ dx < ∞ ∀ n.

To prove (4.82), which is similar to the well-known Riemann–Lebesgue lemma
but with the integral extending over an infinite interval, we may use integration by
parts:

∫ ∞

−∞
exp

(
i x

ε

)
φ(x) dx = −iε

∫ ∞

−∞
φ(x)

d

dx
exp

(
i x

ε

)
dx

= iε
∫ ∞

−∞
φ ′(x) exp

(
i x

ε

)
dx,

since the finiteness of
∫ ∞
−∞ |φ(x)| dx implies that |φ(x)| must decrease faster than

|x |−1 as |x | → ∞, so the endpoint contributions vanish. Repeated integration by
parts yields

∫ ∞

−∞
exp

(
i x

ε

)
φ(x) dx = (iε)N

∫ ∞

−∞
exp

(
i x

ε

)
φ(N )(x) dx (4.83)

for arbitrary integer N . Thus

∣∣∣∣
∫ ∞

−∞
exp

(
i x

ε

)
φ(x) dx

∣∣∣∣ < εN
∫ ∞

−∞

∣∣∣φ(N )(x)

∣∣∣ dx,

or
∫ ∞

−∞
exp

(
i x

ε

)
φ(x) dx = O(εN ) ∀N ,

which by (4.76) is the meaning of (4.82). [This does not mean that the left-hand side
is actually zero, but merely that it is “exponentially small” as ε → 0, for instance
exp(−1/ε)]. The extension to prove (4.80) is straightforward. Thus the space of
rapidly varying functions for which the local average exists is not null; and it is
relevant if the rapidly varying parts are wave-like or oscillatory, such as for subsonic
flows without vortex sheets or density discontinuities.
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To complete the theory, another result is needed—analogous to the fundamental
lemma of variational calculus: thus if f̄ is a slowly varying function satisfying (4.77),
and

∫

IR3
f̄ φ d3r ∼ 0 ∀φ ∈ T3, (4.84)

then

f̄ ∼ 0. (4.85)

This can be proven by choosing a sequence {φn(r)} of test functions, each of which
approximates the complex conjugate f ∗ over some region � but is zero outside, so
that

0 ∼
∫

IR3
f φn d3r →

∫

�

∣∣ f̄
∣∣2 d3r ≥ 0,

which can only be consistent if f ∼ 0. The result can now be used to prove several
basic properties of local averaging.
Linearity:

〈a f + bg〉 ∼ a〈 f 〉 + b〈g〉, where a and b are constants. (4.86)

This property follows by writing

〈a f + bg〉 − (a〈 f 〉 + b〈g〉) ≡ 〈a f + bg〉 − (a f + bg) + a f − a〈 f 〉 + bg − b〈g〉

and then applying (4.78) to the various local averages on the right-hand side, such
that the left-hand side satisfies (4.84) and therefore vanishes to all orders in ε. Any
reasonable prescription for performing local averaging would indeed be linear rather
than merely asymptotic, but this demonstrates consistency with that requirement.
Projective Property:

〈〈 f 〉〉 ∼ 〈 f 〉. (4.87)

This property follows immediately by applying (4.83) to 〈 f 〉, and a corollary from
the definition (4.79) of f̃ and linearity is

〈 f̃ 〉 ∼ 0. (4.88)

(If this property were not satisfied, the approach would not fit our intuitive concept
of local averaging.)
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Commutativity of Averaging and Differentiation:

∂〈 f 〉
∂t

∼ 〈∂ f

∂t
〉, (4.89)

∇〈 f 〉 ∼ 〈∇ f 〉. (4.90)

These properties follow by subtracting and adding ∂t f and ∇ f , respectively:

∂〈 f 〉
∂t

− 〈∂ f

∂t
〉 ≡ ∂

∂t
(〈 f 〉 − f ) +

(
∂ f

∂t
− 〈∂ f

∂t
〉
)

,

∇〈 f 〉 − 〈∇ f 〉 ≡ ∇(〈 f 〉 − f ) + (∇ f − 〈∇ f 〉).

Multiplying by φ and integrating over R
3, commuting the first ∂t on the right-hand

side outside the integral, integrating the first ∇ on the right-hand side by parts, and
using (4.78) (noting that êi ·∇ φ ∈ T3), shows that the left-hand sides of these two
expressions satisfy the required condition and thus vanish to all orders.

4.9 Wave Reaction on a Background Mean Flow

The commutation results (4.89) and (4.90) may be used to develop conservation
equations for the system of background flow and waves. Let ρ∗, p∗ and v∗ denote
the “excited state” variables—i.e. the background flow with waves imposed, and let
us first define the background density to be the Eulerian mean density

ρ̄ ≡ 〈ρ∗〉. (4.91)

Then the background velocity may be defined to be the mass-weighted local Eulerian
average velocity

v̄ ≡ 〈ρ∗v∗〉
〈ρ∗〉 . (4.92)

This is completely analogous to the definition of the macroscopic fluid velocity from
the mass-weighted microscopic velocities in Sect. 2.2. In the next section, it is shown
to closely approximate the Lagrangian mean or oscillation-centre velocity—and to
be the natural velocity to assign to the background fluid, because (4.89) and (4.90)
applied to the continuity equation (2.3) immediately yield

∂ρ̄

∂t
+ ∇· (ρ̄v̄) = 0. (4.93)

Thus just as a fluid may be regarded as a collection of fluid elements, the back-
ground fluid may be regarded as consisting of fictitious fluid elements moving along

http://dx.doi.org/10.1007/978-981-287-600-3_2
http://dx.doi.org/10.1007/978-981-287-600-3_2
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trajectories (oscillation-centre trajectories) from which the wave oscillations have
been averaged out. This concept is developed further in the next section.

Since ε has been used as the eikonal expansion parameter, let us use the symbol α
to denote the expansion parameter expressing the smallness of the wave amplitude.
Because the natural length for measuring the nonlinearity of oscillations is λ rather
than L , we assume λ = O(1), L = O(ε−1) rather than the ordering adopted in
Sect. 4.8. The results of Sect. 4.8 are unaffected however, since they are valid to all
orders. Expanding in powers of α,

ρ∗ = ρ0 + αρ1 + α2ρ2 + . . . (4.94)

p∗ = p0 + αp1 + α2 p2 + . . . (4.95)

v∗ = v0 + αv1 + α2v2 + . . . . (4.96)

The linear O(α) terms average to zero, since they are of the form (4.81), so (4.88)
applies. The O(α2) terms do not in general average to zero, but modify (“renor-
malise”) the unperturbed quantities

ρ̄ ≡ 〈ρ∗〉 ∼ ρ0 + α2〈ρ2〉 + O
(
α4

)
, (4.97)

ρ̄ v̄ ≡ 〈ρ∗v∗〉 ∼ ρ0v0 + α2 (ρ0〈v2〉 + 〈ρ1v1〉 + 〈ρ2〉v0) + O
(
α4

)
; (4.98)

then dividing (4.98) by (4.97) yields

v̄ ∼ v0 + α2
(

〈v2〉 + 〈ρ1v1〉
ρ0

)
+ O

(
α4

)
, (4.99)

using the ∼ symbol for asymptotic equality to all orders as in Sect. 2.2. Note that v̄
differs from the Eulerian mean velocity 〈v∗〉 by the term α2〈ρ1v1〉/ρ0.

We can also calculate the momentum flux dyadic

〈ρ∗v∗v∗〉 ∼ ρ0v0v0 + α2 (ρ0〈v1v1〉 + 〈ρ1v1〉v0 + v0〈ρ1v1〉
+ 〈ρ2〉v0v0 + ρ0〈v2〉v0 + ρ0v0〈v2〉) + 0

(
α4

)
,

= ρ̄v̄v̄ + α2ρ0〈v1v1〉 + O
(
α4

)
,

using (4.83) and (4.84)—i.e.

〈ρ∗v∗v∗〉 = ρ̄v̄v̄ + α2ρ̄〈v1v1〉 + O
(
α4

)
. (4.100)

Assuming for simplicity that an adiabatic equation of state p = Kργ applies, and
defining the background pressure p̄ by

p̄ ≡ K ρ̄ γ, (4.101)

http://dx.doi.org/10.1007/978-981-287-600-3_2
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from (4.98) the renormalised pressure to O
(
α2

)
is

p̄ = Kρ
γ
0

(
1 + α2γ

〈ρ2〉
ρ0

)
. (4.102)

This is to be compared with

〈p∗〉 = Kρ
γ
0

〈
1 + αγ

ρ1

ρ0
+ α2

[
γ

(γ − 1)

2

ρ21
ρ20

+ γ
ρ2

ρ0

]〉
,

or

〈p∗〉 = p̄

(
1 + α2γ

(γ − 1)

2

〈ρ21〉
p̄ 2

)
+ O

(
α4

)
. (4.103)

These results can be used to find an equation of motion for the background flow,
by averaging the ideal equation of motion (3.5) written in the conservation form
(2.17). From the commutation results (4.89) and (4.90), together with (4.100) and
(4.103), we have

∂

∂t
(ρ̄v̄) + ∇ · (ρ̄v̄v̄ + p̄I + PW ) = ρ̄g, (4.104)

where the wave or radiation stress dyadic PW is given by

PW = α2

[
ρ̄〈v1v1〉 + γ(γ − 1)

2
p̄
〈ρ21〉
ρ̄ 2 I

]
+ 0

(
α4

)
,

= α2ρ̄

[
〈v1v1〉 + γ − 1

2
〈|v1|2〉I

]
,

since ρ1 = ρ̄|v1|/cs and c2s = γ p̄/ρ̄.
For a monochromatic wave, 〈v1v1〉 = 2|v̂(0)

1 |êk êk where êk ≡ k/|k|. Comparing
with (4.33), we have

PW = α2Nω′
[

êk êk + (γ − 1)

2
I
]

+ O
(
α4

)
. (4.105)

If the momentum conservation equation (4.102) is regarded as an equation of
motion for the background flow, the term −∇· PW is the radiation pressure or “pon-
deromotive force” density acting, arising from the nonlinear reaction of the waves
on the background. Although nonlinear O

(
α2

)
, the only surviving terms are prod-

ucts of linear terms, as the perturbation expansions were expressed in terms of the
“renormalised” background quantities (ρ̄, p̄ and v̄), so such calculations are often
called quasilinear.

http://dx.doi.org/10.1007/978-981-287-600-3_3
http://dx.doi.org/10.1007/978-981-287-600-3_2
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4.10 Oscillation-Centre (OC) Description

The procedure adopted in the previous section is straightforward and applicable to
other than ideal fluids, but it is a little cumbersome. The more elegant Oscillation-
Centre (OC) description discussed in this section is especially suited (but not
restricted) to ideal fluids, and leads to variational formulations in stability analy-
sis to be considered later.

The OC description is related to the Lagrangian description in Sect. 2.4. For con-
venience, let r∗ denote the true fluid element position and r the averaged position or
oscillation-centre. The mapping

r∗ = r + ξ(r, t), (4.106)

from r to r∗ in terms of the fluid displacement ξ, changes the variables r∗, t in the
Eulerian description to r, t in the OC description. Let us use ρ(r, t), p(r, t) and
v(r, t) to denote the OC position, density and velocity. The point of view now is that
a fictitious OC fluid, which is a subsystem of the total system, interacts weakly with
the wave subsystem. Then

v∗(r∗, t) ≡
(

∂r∗
∂t

)

r0

= v(r, t) + ξ̇(r, t), (4.107)

ρ∗(r∗, t) = ρ(r, t)/J (r), (4.108)

p∗(r∗, t) = p(r, t)/J γ(r), (4.109)

where

ξ̇(r, t) ≡
[

∂

∂t
+ v(r, t)·∇

]
ξ(r, t) (4.110)

and

J (r, t) ≡ det

(
∂r∗
∂r

)
= det (I + ∇ξ) (4.111)

is the Jacobian of the transformation (4.106)—i.e. the ratio of the volume elements
�τ∗ and �τ . The relation (4.108) simply expresses mass conservation: ρ∗�τ∗ =
ρ�τ , while (4.109) ensures that p∗/ργ∗ = p/ργ .

The essential simplification achieved by this approach is that the two scalar vari-
ables ρ∗ and p∗, together with the vector v∗, have been reduced to functionals of
the single vector variable ξ. In the case of ρ∗ and p∗, it has been recognised that
the Eqs. (3.1) and (3.3) can be integrated to give holonomic constraints on ρ∗ and
p∗ (constraints that depend explicitly on the position coordinates). Calculations with
these representations are greatly facilitated by two results itemised as follows.

http://dx.doi.org/10.1007/978-981-287-600-3_2
http://dx.doi.org/10.1007/978-981-287-600-3_3
http://dx.doi.org/10.1007/978-981-287-600-3_3
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• If D1(λ) ≡ det(I+λA) and D2(λ) ≡ exp
[
Tr ln(I + λA)

]
, where λ is an arbitrary

scalar and A an arbitrary dyadic, then

D1(λ) = D2(λ).

Proof D′
1(λ) = ∑

i j Ai j Ci j , where Ci j are the cofactors of (δi j + λAi j ). This
follows from varying each element of (δi j + λAi j ) in turn, using the appropriate
expansion of the determinant in terms of cofactors. Thus

D′
1(λ)/D1(λ)

=
∑

i j

Ai j (I + λA)−1
j i

from the standard expression for the matrix inverse

≡ Tr
[
A · (I + λA)−1

]
;

but D′
2(λ)/D2(λ) = Tr

[
A · (I + λA)−1

]

and D1(0) = D2(0) = 1, so both D1(λ) and D2(λ) obey the same first-order ordi-
nary differential equationwith the same initial conditions. Provided that D(λ′) �= 0
anywhere in the interval 0 < λ′ ≤ λ, the uniqueness theorem for an ordinary dif-
ferential equation initial value problem implies D2 ≡ D1. �
This result is useful for evaluating the Jacobian (4.111), since

Tr ln(I + ∇ξ) = ∇· ξ − 1

2
∇ξ : ∇ξ + O

(
α3

)
,

on recalling that the double dot product A : B ≡ Tr(A · B) from Chap.1: thus

J = exp

(
∇· ξ − 1

2
∇ξ : ∇ξ

)
+ O

(
α3

)

= 1 + ∇· ξ + 1

2

[
(∇· ξ)2 − ∇ξ : ∇ξ

]
+ O

(
α3

)
. (4.112)

• Let f∗(r, t) be an arbitrary function, varying on both the fast and slow scales of
Sect. 4.8. Then on suppressing the t-dependence,

〈 f∗(r)〉 ∼ 〈J (r) f∗(r∗)〉−∇· 〈ξJ (r) f∗(r∗)〉 + 1

2!∇∇ : 〈ξξJ (r) f∗(r∗)〉

− 1

3!
∑

i jk

∂

∂xi

∂

∂x j

∂

∂xk
〈ξkξ jξi J (r) f∗(r∗)〉 + . . .

(4.113)

http://dx.doi.org/10.1007/978-981-287-600-3_1
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Proof

∫

R3
φ(r) f∗(r)d3r

=
∫

R3
f∗(r∗)φ(r∗)d3r∗ [changing dummy]

=
∫

R3
J (r) f∗(r∗)φ(r + ξ)d3r [using (4.106)]

=
∫

R3
J (r) f∗(r∗)

[
φ(r) + ξ ·∇ φ

1

2!ξξ : ∇∇φ + . . .

]
d3r

=
∫

R3
φ(r)

{
J (r) f∗(r∗) − ∇ · [ξJ (r) f∗(r∗)]

+ ∇∇ :
[
1

2
ξξJ (r) f∗(r∗)

]
+ . . .

}
d3r [parts integration].

From (4.78) the coefficients of φ(r) in the first and last expressions above may be
replaced by their local averages, and then from (4.85) and (4.90) the desired result
follows. �
This asymptotic equality (4.113) is useful to average quantities involving J .

Various Eulerian averages can be evaluated—e.g. from (4.108) and (4.113),

〈ρ∗(r, t)〉 ∼ ρ(r, t) − ∇ · 〈ξρ〉 + 1

2
∇∇ : 〈ξξρ〉 + O

(
α2ε2

)
.

To make the OC unique to all orders, we may impose the condition

〈ξ(r, t)〉 ∼ 0. (4.114)

Thus ∇ · 〈ξρ〉 ∼ 0 by (4.78) since ρφ ∈ T3, so that

ρ̄(r, t) ≡ 〈ρ∗(r, t)〉 ∼ ρ(r, t) + O
(
α2ε2

)
, (4.115)

on using the bar notation for background quantities as defined by Eulerian averaging
in (4.80) and (4.81). Thus the Eulerian average definition and the OC definition of
background density are equivalent, to good approximation. Similarly,

ρ̄v̄ ≡ 〈ρ∗v∗〉 ∼ ρv + 1

2
∇∇ : 〈ξξρv〉 − ∇ · 〈ξρ ξ̇〉 + . . . ,

such that

v̄ = v + O
(
α2ε

)
. (4.116)
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Thus the mass-weighted Eulerian average velocity is, to a good approximation, equal
to the OC velocity. (For linearly polarised waves such as sound waves, the error is
actually O

(
α2ε

)
because the leading order contribution to 〈ξρ ξ̇〉 vanishes.)

From these expected identifications of ρ̄ and v̄, we can nowproceed to calculate the
averages required for the averaged momentum equation. Using (4.107) and (4.108)
in (4.113),

〈ρ∗v∗v∗〉 ∼
〈
ρ
(

v + ξ̇
) (

v + ξ̇
)〉

− ∇ ·
〈
ρξ

(
v + ξ̇

) (
v + ξ̇

)〉

+ 1

2
∇∇ :

〈
ρξξ

(
v + ξ̇

) (
v + ξ̇

)〉
+ . . .

= ρ
(
vv + 〈ξ̇ξ̇〉

)
− ∇ ·

[
ρ
〈
ξ
(

vξ̇ + ξ̇v
)〉]

+ 1

2
∇∇ : [〈ξξ〉ρvv] + . . .

= ρ
(

vv + 〈ξ̇ξ̇〉
)

+ O
(
α2ε

)
, (4.117)

expanding (4.117) up to O
(
α2

)
. From a comparison of (4.96) and (4.107), we have

that ξ̇ = αv1 to O(α). Thus (4.117) is in agreement with (4.100), to leading order
in ε.

Finally, the local average pressure follows by using (4.109) in (4.113), yielding

〈p∗〉 − 〈p J 1−γ〉 − ∇ · 〈ξ p J 1−γ〉 + 1

2
∇ · 〈ξξ p J 1−γ〉 + . . . ; (4.118)

and from (4.112),

J 1−γ = exp

[
−(γ − 1)

(
∇· ξ − 1

2
∇ξ : ∇ξ

)]
+ . . .

= 1 − (γ − 1)

(
∇· ξ − 1

2
∇ξ : ∇ξ

)
+ 1

2
(γ − 1)2(∇· ξ)2 + . . .

= 1 − (γ − 1)∇· ξ − 1

2
γ(γ − 1)(∇· ξ)2

+ 1

2
(γ − 1)∇· (ξ · ∇ξ − ξ∇· ξ)

to O(α3), on invoking the identity

∇ξ : ∇ξ ≡ (∇· ξ)2 + ∇· (ξ · ∇ξ − ξ∇· ξ). (4.119)

Proof

∇ξ : ∇ξ = ∇· (ξ · ∇ξ) − ξ · ∇∇· ξ

= ∇· (ξ · ∇ξ) − ∇· (ξ∇· ξ) + (∇· ξ)2
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Substituting (4.119) in (4.118) yields

〈p∗〉 ∼ p + 1

2
γ(γ − 1)p〈(∇· ξ)2〉 + 1

2
(γ − 1)p∇· 〈ξ · ∇ξ − ξ · ∇ξ〉

+ (γ − 1)∇· [p〈ξ∇· ξ〉] + . . .

= p

[
1 + 1

2
γ(γ − 1)〈(∇· ξ)2〉

]
+ O

(
εα2

)
(4.120)

Using (4.112) in (4.108) and comparing with (4.94), we have αρ1 = ρ∇· ξ such that
(4.120) agrees with (4.103).

4.11 Shock Waves

In this chapter, we first discussed linear wave propagation that corresponds to small
perturbations from some equilibrium state—notably longitudinal sound waves as
disturbances in a background flow of an adiabatic (compressible) fluid, and trans-
verse gravity waves as sub-sonic (incompressible) disturbances of an hydrostatic
equilibrium.We noted that gravity waves are usually dispersive, but sound waves are
not. However, the sound speed in any flow depends on the fluid density and pressure.

Moreover, as indicated in Sect. 4.4, supersonic flow leads to the formation of
interfaces within the fluid, where field variations become so large that the linear
theory must break down. Indeed, because there is no natural length scale in the invis-
cid equation of motion, one might expect that discontinuities or even “infinities”
can occur. One such discontinuity has already been encountered—viz. the tangen-
tial discontinuity at a vortex sheet, where the tangential velocity at the interface is
discontinuous (cf. Sect. 4.7). As mentioned there, a shock occurs when the normal
velocity is discontinuous.

Since field variable derivatives do not exist at discontinuities, itmight seem that the
corresponding differential forms of the conservation equations break down.However,
as indicated in Sect. 1.10, they do apply in what is known as the weak sense. The
relevant test functions now consist of all sufficiently differentiable functions φ(r, t)
with compact support, nonzero over finite regions of space–time so that there is again
no need to consider boundary conditions at infinity. For simplicity, it is sufficient to
consider the case of one space dimension, although the discussion could be extended
to higher dimensions. Thus a weak solution of a conservation equation

∂u

∂t
+ ∂ f (u)

∂x
= 0 (4.121)

is a solution u(x, t) of the integral equation

∫ ∞

−∞

∫ ∞

−∞

(
∂u

∂t
+ ∂ f (u)

∂x

)
φ(x, t) dxdt = 0 ∀φ ∈ T , (4.122)

http://dx.doi.org/10.1007/978-981-287-600-3_1
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where T is the set of test functions and the integral is interpreted as

∫ ∞

−∞

∫ ∞

−∞

(
∂u

∂t
+ ∂ f (u)

∂x

)
φ(x, t) dxdt ≡ −

∫ ∞

−∞

∫ ∞

−∞

(
u

∂φ

∂t
+ f (u)

∂φ

∂x

)
dxdt.

(4.123)

Equation (4.123) is a natural definition, because it is a result obtained by integrat-
ing the left-hand side by parts when u is sufficiently smooth such that the integral
in (4.122) is well defined. Since the support of φ in x, t-space may be arbitrarily
localised about any point, (4.122) is equivalent to the usual localised (pointwise)
interpretation of (4.121) when u is sufficiently smooth—i.e. the test function acts as
a probe, which tests the value of the expression at any point. The integral in (4.122)
and the left-hand side of (4.123) is not classically defined when u is discontinuous,
because its derivative is then not defined pointwise everywhere. On the other hand,
the form on the right-hand side of (4.123) is uniquely and classically defined, because
the derivatives now act on the well-behaved test functions.

We now proceed to derive jump conditions for a plane (one-dimensional) shock.
Thus let us suppose that at x = 0 the otherwise classically differentiable momentum
flux ρv has a jump—i.e. across x = 0,

�ρv� = (ρv)|x=0+ − (ρv)|x=0− �= 0 such that ρv = (ρv)|x=0− + �ρv� H(x)

where H(x) is the Heaviside step function, hence

∂(ρv)

∂x
= �ρv� δ(x) + a continuous function (4.124)

where δ(x) is theDirac delta function (cf. Sect. 1.10). The fluid equations areGalilean
invariant, so we may conveniently adopt a reference frame moving with the discon-
tinuity such that the one-dimensional mass conservation equation (2.3) reduces to

∂(ρv)

∂x
= 0. (4.125)

Equation (4.124) is only compatible with (4.125) if the coefficient of the delta func-
tion vanishes, yielding

�ρv� = 0 (4.126)

as the first jump condition. Thus ρv is unchanged across the shock, so the mass
flux entering equals the mass flux leaving. This is precisely the condition obtained
by integrating (4.125) across the shock—i.e. from the integral form of the mass
conservation equation. Indeed, a weak solution of a conservation equation in diffe-
rential form (2.1) generally corresponds to the physical interpretation in its integral
form (2.2).

http://dx.doi.org/10.1007/978-981-287-600-3_1
http://dx.doi.org/10.1007/978-981-287-600-3_2
http://dx.doi.org/10.1007/978-981-287-600-3_2
http://dx.doi.org/10.1007/978-981-287-600-3_2
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Let us now consider the ideal (inviscid) equation (3.5), written in momentum
conservation form—cf. (2.19). Thus with one space dimension and ignoring gravity,
we have

∂

∂t
(ρv) + ∂

∂x
(ρv2 + p) = 0, (4.127)

whence the second jump condition in the reference frame moving with the shock:

�
ρv2 + p

�
= 0. (4.128)

The conservation of energy equation (3.9) in one space dimension likewise yields
a third jump condition—i.e.

∂

∂t

(
1

2
ρv2 + p

γ − 1

)
+ ∂

∂x

(
1

2
ρv3 + γ

γ − 1
pv

)
= 0 (4.129)

produces
�
1

2
ρv3 + γ

γ − 1
pv

�

= 0, (4.130)

or using (4.126)
�
1

2
v2 + γ

γ − 1

p

ρ

�

= 0. (4.131)

The set of three jump conditions (4.126), (4.128) and (4.131) involving ρ, v and p
are known as the Rankine–Hugoniot equations.

It is notable that continuity of any one of the variables v, ρ and p implies con-
tinuity of the other two—so all three must change across a shock. Note also that
it is important to use the conservation form of the relevant macroscopic equation,
expressing the vanishing of a space–time divergence, in deriving the corresponding
jump condition—one should not divide (4.125) by ρ for example, since the weak
interpretation of the resulting equation does not necessarily give the same result.
The second law of thermodynamics (the entropy of an isolated system can never
decrease) implies that

�
pρ−γ

	 ≥ 0. (4.132)

An important consequence is that steady flow through a shock proceeds from a low
pressure (often supersonic) region to a high pressure subsonic region.

http://dx.doi.org/10.1007/978-981-287-600-3_3
http://dx.doi.org/10.1007/978-981-287-600-3_2
http://dx.doi.org/10.1007/978-981-287-600-3_3
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Exercise

(Q1) (a) Deduce (4.132) from the second law of thermodynamics, and note why this
result can be reconciled with the equation of state (3.3).
(b) Assuming an entropy increase across the shock such that the flow is super-
sonic behind (upstream) and subsonic ahead (downstream), show that the tem-
perature behind the shock exceeds the temperature ahead of it.

4.12 Shock Structure

In the previous section, weak solutions of ideal fundamental conservation equations
of form

∂ρ

∂t
+ ∂q

∂x
= 0, (4.133)

led to jump conditions across shock discontinuities. However, it must be expected
that fluid viscosity and heat conduction are important within a more realistic narrow
transition region across any such shock, where fundamental field quantities vary
rapidly. It follows that corresponding dissipative terms must be included in the fluid
model to determine the shock structure in this transition region.
For a brief insight here, let us summarise some discussion fromWhitham [14], where
more detail may be found. Thus suppressing the velocity field for simplicity such that
q = Q(ρ) − ν∂ρ/∂x where ν is a constant, the conservation form (4.133) becomes

∂ρ

∂t
+ c(ρ)

∂ρ

∂x
= ν

∂2ρ

∂x2
, where c(ρ) = Q′(ρ). (4.134)

Mathematical aspects of shock structure can thus be explored to some extent in the
context of a quadratic Q(ρ) such that Q′′(ρ) = 0, when multiplying (4.134) through
by c′(ρ) yields

∂c

∂t
+ c

∂c

∂x
= ν

∂2c

∂x2
. (4.135)

This is often called Burgers’ equation, a model equation combining nonlinearity
on the left-hand side with diffusion on the right-hand side. An explicit solution of
(4.135) follows from the Cole–Hopf transformation, which can be represented in
two steps, such that on introducing c = ∂ψ/∂x a first integral of equation (4.133) is

∂ψ

∂t
+ 1

2

(
∂ψ

∂x

)2

= ν
∂2ψ

∂x2
, (4.136)

http://dx.doi.org/10.1007/978-981-287-600-3_3
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and then introducing ψ = −2ν ln φ produces the well-known linear diffusion equa-
tion

∂φ

∂t
= ν

∂2φ

∂x2
. (4.137)

Assuming the initial condition c = F(x) at t = 0, which corresponds to

φ(x, 0) = �(x) ≡ exp

(
− 1

2ν

∫ x

0
F(η)dη

)
,

under the composite Cole–Hopf transformation

c = −2ν
∂φ/∂x

φ

the solution of the diffusion equation (4.137) is

φ(x, t) = 1√
4πνt

∫ ∞

−∞
�(η) exp

(
− (x − η)2

4νt

)
dη, (4.138)

and hence the solution of (4.135) is

c(x, t) =
∫ ∞
−∞(x − η) e−G/2ν/t dη

∫ ∞
−∞ e−G/2νdη

(4.139)

where

G(η; x, t) =
∫ η

0
F(η′)dη′ + (x − η)2

2t
. (4.140)

In the limit ν → 0 with x, t and F(x) held fixed, the dominant contributions to the
integrals in (4.138) come from the neighbourhood of the stationary points of G—i.e.
points where

∂G

∂η
= F(η) − x − η

t
= 0. (4.141)

If η = ξ(x, t) is such a stationary point, then the classical Laplace asymptotic formula
is

∫ ∞

−∞
g(η)e−G(η)/2νdη � g(ξ)

√
4πν

|G ′′(ξ)| exp(−G(ξ)/2ν) as ν → 0.
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For example, if there is only one stationary point ξ(x, t) we have

∫ ∞

−∞
x − η

t
e−G/2νdη � x − ξ

t

√
4πν

|G ′′(ξ)|

and

∫ ∞

−∞
e−G/2νdη �

√
4πν

|G ′′(ξ)| ,

so that (4.139) yields

c � x − ξ

t
, (4.142)

where η = ξ(x, t) satisfies (4.141). This asymptotic solution may be rewritten

c = F(ξ) , x = ξ + F(ξ)t, (4.143)

which is the parametric solution of the nonlinear dissipationless (ν = 0) first-order
wave equation

∂c

∂t
+ c

∂c

∂x
= 0, (4.144)

where the stationary point ξ(x, t) is identified as its characteristic variable. Equation
(4.143) may have a multi-valued solution after a sufficient time has elapsed, when
weak solutions and shock discontinuities are introduced, although the solution
(4.139) is single-valued and continuous ∀ t . The explanation is that a multi-valued
solution of (4.139) corresponds to there being more than one stationary point satis-
fying (4.141).
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Chapter 5
Magnetohydrodynamics (MHD)

Wementioned in the Preface that Fluid Mechanics and MHD often draw upon much
the same mathematics and yield many closely related results. The mathematical kin-
ship of the fundamental mathematical models was quite evident in Chap.2, where
novelties forMHDnevertheless emerged—viz. additional terms arising in themacro-
scopic equations (notably the Lorentz force in the equation of motion), the distinctive
anisotropic plasma pressure tensor due to amagnetic field and the necessity to invoke
suitable electromagnetic equations. This chapter explores the origin of the ideal and
non-ideal MHD models briefly mentioned there, and then various important topics
in MHD that are often prerequisite for our subsequent discussion of MHD stabil-
ity theory. The additional bibliography for this chapter provides further background
reading.

5.1 Introduction

In Chap.3, we discussed the ideal model for fluid motion and the important con-
sequences when fluid shear viscosity is introduced, before proceeding to consider
wave propagation in fluids in Chap.4. Now we build upon the discussion in Chap.2
to describe themotion not only of an electrically conducting fluid but also of a plasma
in the “fluid approximation”—viz. via magnetohydrodynamics, or MHD for short.1

Once again, there is an ideal model to consider, and then non-ideal modifications.
While some early authors restricted the application of MHD theory to liquids (cf.

Sect. 5.5), MHD models have been used much more extensively in describing labo-
ratory and astrophysical plasmas—cf. Sect. 5.6 and thereafter, and also Refs. [2, 7]
for example. Indeed, Alfvén invented MHD to explain energy transport in the Sun,
and the field of plasma astrophysics quickly evolved [1]. Moreover, geophysical

1MHD is sometimes called hydromagnetics, less frequently but rather more comprehensively
magneto-fluid-dynamics, and occasionally magnetogasdynamics in the context of dense partially
ionised gases.
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questions such as the maintenance of the Earth’s magnetic field and the interaction
of the solar wind with the magnetosphere continue to be addressed [3, 4]. The rela-
tively late emergence of MHD and plasma physics during the twentieth century may
also seem an historical irony, given the ubiquity of the plasma state beyond our Earth
and the primarily classical nature of the theory.

It is generally accepted that the energy radiated by the Sun and other stars (for
much of their lives) is produced by thermonuclear fusion of the largely hydrogen and
helium plasma they contain, which is confined by their self-gravitational fields. The
goal of designing and building a controlled thermonuclear fusion reactor to produce
substantial clean sustainable energy on Earth has been a major stimulus for interest
in MHD over more than fifty years, in the approach where extremely hot plasma is to
be isolated from the material walls of the reactor by appropriately designed magnetic
fields under various magnetic confinement schemes. Indeed, magnetic confinement
research has led to many contributions toMHD from an extraordinarily large number
of research scientists worldwide. We therefore often have in mind high-temperature
plasmas of interest in fusion research, in addition to some astrophysical applications.

Let us now recall that the equation of motion (2.56) in a conducting fluid or a
plasma introduces the electromagnetic body force j × B, where j denotes the cur-
rent density and B the magnetic field. As mentioned in Sect. 2.12, the “pre-Maxwell”
electromagnetic equation (2.91) may be invoked to relate those two vector fields, and
this aspect associated with Galilean invariance is now considered more closely in
Sects. 5.2–5.4. Liquidmetals such as mercury or liquid sodium are briefly considered
inSect. 5.5, followedby some remarks inSect. 5.6 on the plasmacontext subsequently
emphasised in this book.We consider the idealMHDmodel in Sect. 5.7, including the
interpretation of important terms and a summary of associatedmomentumand energy
conservation—and then discuss the associated “frozen-in” magnetic field concept in
Sect. 5.8, leading to our description of Alfvén and magnetosonic wave propagation
in Sect. 5.9. A discussion of magnetohydrostatics is presented in Sect. 5.10, andmag-
netic coordinates are described in Sect. 5.11. IdealMHD-advected discontinuities are
discussed in Sect. 5.12, and plasma magnetic confinement experiments in Sect. 5.13.
The resistive and Hall MHDmodels foreshadowed in Sect. 2.12 are then explored in
Sects. 5.14 and 5.15, where the respective modifications to the equation of magnetic
induction assume a prominent role, and corresponding non-ideal advected disconti-
nuities are discussed in the optional (starred) Sect. 5.16.

5.2 Maxwell Equations

Rewritten in SI units (Systéme International d’Unités) and modern vector notation,
the electromagnetic equations assembled by Maxwell are

∇· B = 0 (“no magnetic monopoles”), (5.1)(
ε0

)

http://dx.doi.org/10.1007/978-981-287-600-3_2
http://dx.doi.org/10.1007/978-981-287-600-3_2
http://dx.doi.org/10.1007/978-981-287-600-3_2
http://dx.doi.org/10.1007/978-981-287-600-3_2


5.2 Maxwell Equations 159

∇× B = μ0j + 1

c2
∂E
∂t

(“modified Oersted/Ampère law”), (5.2)

(
ε0

) (
ε0

) (
ε2

)

∇· E = q/ε0 (“Poisson/Coulomb law”), (5.3)(
ε0

) (
ε0

)

∇× E = −∂B
∂t

(“Faraday law of induction”),
(
ε0

) (
ε0

)
(5.4)

where the additional field variables introduced here are the electric field E and the
total electric charge density q. The constant c = √

μ0ε0 denotes the speed of light,
where μ0 and ε0 are the magnetic permeability and electric permittivity in a vac-
uum, respectively. It is presumed that the medium is not significantly polarisable
or magnetisable, which is appropriate for highly conducting media where currents
are predominantly due to free electrons. The superscripted ε in brackets beneath
each equation are explained below, and should not be confused with the electric
permittivity ε0.

5.3 Pre-Maxwell Equations

Typical low frequency MHD behaviour, on a time scale T much longer than the
transit time for light waves across a system of length scale L , corresponds to the
ordering

L/cT = O(ε), ε � 1. (5.5)

Thus for characteristic length and time scales L = O(1) and T = O(1), we have
c = O(ε−1)—i.e. the speed of light is much larger than any characteristic velocity.
Also ∇× E ∼ B/T from (5.4), where ∼ may be interpreted as “scales like” rather
than strict asymptotic equality. Moreover, MHD phenomena of interest are not pri-
marily electrostatic, so that ∇× E ∼ E/L (except for static fields). Consequently, in
Maxwell’s equations (5.1)–(5.4) above, the orderings of the terms with respect to ε
are as indicated in the aforementioned brackets beneath each of them. All terms are
of the same zeroth-order, except for the displacement current term c−2∂E/∂t that is
only O(ε2). Substituting the following formal expansions in ε for the electromagnetic
variables

E = E(0) + εE(1) + · · · , (5.6)

B = B(0) + εB(1) + · · · , (5.7)

μ0j = (μ0j)(0) + ε (μ0j)(1) + · · · , (5.8)
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q/ε0 = (q/ε0)
(0) + ε (q/ε0)

(1) + · · · , (5.9)

into Maxwell’s equations (5.1)–(5.4) therefore yields to lowest order

∇· B(0) = 0, (5.10)

∇× B(0) = (μ0j)(0) , (“Ampère’s law”) (5.11)

∇· E(0) = (q/ε0)
(0) , (5.12)

∇× E(0) = −∂B(0)

∂t
, (5.13)

and also to first order O(ε) with superscripts (1) replacing the superscripts (0). We
call the set (5.10)–(5.13) “pre-Maxwell equations” because one ofMaxwell’s famous
contributions to electromagnetism has been undone by dropping the displacement
current from (5.2), a characteristic feature of classical MHD.

An immediate consequence of the divergence of (5.11) and its first order-
counterpart is that

∇· (μ0j)(0) = ∇· (μ0j)(1) = 0, (5.14)

hence the charge conservation equation obtained from (5.2) and (5.3) becomes

∂

∂t
(q/ε0)

(0) + c2∇· (μ0j)(2) = 0 (5.15)

to lowest order. Consequently, except in a vacuumwhere (μ0j)(2) ≡ 0, the zero order
charge density q(0) cannot be determined directly by integrating (5.15) because it
involves the unknown second order current density. However, it turns out that (5.12)
is not needed to determine E(0) except in a vacuum, so this equation can be used to
give q(0) if desired. On the other hand, there is usually no need to know the charge
density, so (5.12) is often omitted from the set of essential pre-Maxwell equations.

5.4 Galilean Invariance

Let us, henceforth, omit the implicit ordering superscript from the essential pre-
Maxwell equations (5.10), (5.11) and (5.13). Thus we adopt

∇· B = 0, (5.16)

∇× B = μ0j, (5.17)

∇× E = −∂B
∂t

, (5.18)
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a set of model equations that may be expected to have invariance and conservation
properties, although not the same as for the fundamental Maxwell equations. Indeed,
since the ordering where c = O(ε−1) → ∞ is basically non-relativistic, we might
anticipate that the pre-Maxwell equations share with Newton’s laws the property of
Galilean invariance under transformation to another uniformly moving coordinate
system (inertial reference frame) as demonstrated below.

The Galilean transformation from a reference frame with Cartesian coordinates
(x ′, y′, z′)movingwith constant velocityV = V î relative to anotherwith coordinates
(x, y, z) is

x ′ = x − V t, y′ = y, z′ = z, t ′ = t. (5.19)

Applying the chain rule to functions of the primed variables identifies

∇ = (∇x ′) ∂

∂x ′ + (∇y′) ∂

∂y′ + (∇z′) ∂

∂z′ + (∇t ′
) ∂

∂t ′

= î
∂

∂x ′ + ĵ
∂

∂y′ + k̂
∂

∂z′
≡ ∇′ (5.20)

and
∂

∂t
=

(
∂x ′

∂t

)
∂

∂x ′ +
(

∂y′

∂t

)
∂

∂y′ +
(

∂z′

∂t

)
∂

∂z′ +
(

∂t ′

∂t

)
∂

∂t ′

= ∂

∂t ′
− V · ∇′

≡ ∂

∂t ′
− V · ∇ (5.21)

from (5.19), such that
∂

∂t ′
= ∂

∂t
+ V · ∇. (5.22)

This is similar to the advective derivative d/dt introduced in Sect. 2.4, although here
V is not necessarily a fluid velocity. Consequently, equations (5.16)–(5.18) transform
to

∇′ · B = 0, (5.23)

∇′ × B = μ0j, (5.24)

(
∂

∂t ′
−V ·∇′

)
B + ∇′ × E = 0 or

∂B
∂t ′

+ ∇′ × (E + V × B) = 0, (5.25)

on using the identity

∇′ × (V × B) = V ∇′ · B − V ·∇′ B

= −V · ∇′ B

http://dx.doi.org/10.1007/978-981-287-600-3_2
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from (5.23). Equations (5.23)–(5.25) have the same form as (5.16)–(5.18), provided
the electric and magnetic fields transform as

B′ = B, (5.26)

E′ = E + V × B. (5.27)

The pre-Maxwell equations (5.16)–(5.18) are thus invariant under Galilean transfor-
mation, where the electric and magnetic fields in the moving frame are, respectively,
defined by (5.26) and (5.27).2 Equations (5.16)–(5.18) are therefore compatible with
the macroscopic equations discussed in Chap.2, and so may be combined with an
appropriate subset to constitute a suitableMHDmodel as foreshadowed in Sect. 2.12.
A common characterisation of MHD is that electric currents modify the flow of a
conducting fluid or plasma while at the same time the flow induces electric currents
in the medium. Thus the principal field variables describing this interaction are the
velocity v and the magnetic field B, and to a lesser extent the density ρ and pres-
sure p. Nevertheless, sometimes the electric field E or the current density j are also
relevant in the discussion. While j is given directly by the pre-Maxwell equation
(5.17), Eq. (5.18) is insufficient to give E even if the relevant boundary conditions
are known, as we do not know ∇· E. Instead. E must be found from a constitutive
equation—viz. Ohm’s law (2.92) or the generalised Ohm’s law (2.98).

5.5 Conducting Liquids

As indicated in Sect. 5.1, MHD refers to the dynamics of electrically conducting
fluids and plasmas in a magnetic field, but let us first consider the simpler case of
electrically conducting liquids such asmoltenmetals (e.g. iron in the core of theEarth,
considered to produce the terrestrial magnetic field by dynamo action) or electrolytes
(e.g. flowing seawater producing a measurable voltage due to its interaction with the
magnetic field of the Earth). Their flow is usually described by an extended Navier–
Stokes model, involving the additional Lorentz electromagnetic body force term
j ×B on the right-hand side of the equation of motion. Thus the governing equations
include the incompressible approximation for a liquid or subsonic gas

∇· v = 0, (5.28)

and the modified Navier–Stokes equation of motion

ρ
dv
dt

+ ∇p = ρg + μ−1
0 (∇ × B) × B + μ∇2v (5.29)

2SinceE andB appear only as derivatives in (5.16)–(5.18), it might seem that we could add constants
to E′ and B′, but this possibility is ruled out because the Lorentz force E + v × B on a particle must
be invariant.

http://dx.doi.org/10.1007/978-981-287-600-3_2
http://dx.doi.org/10.1007/978-981-287-600-3_2
http://dx.doi.org/10.1007/978-981-287-600-3_2
http://dx.doi.org/10.1007/978-981-287-600-3_2
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obtained from (2.56) for constant shear viscosity coefficient μ, on adopting the clas-
sical fluid pressure tensor (2.16) for a neutral fluid and invoking (5.17).

The term ∇p can be annihilated from (5.29) by taking its curl when the fluid
density ρ is constant throughout the flow, but of course another equation to account
forB is required to close the system.As indicated in Sect. 2.12, the simple constitutive
relation j = σE′ referred to asOhm’s law is often assumed to hold between the current
density j and the electric fieldE′ in the local rest frameof thefluid,whereσ denotes the
electrical conductivity of the fluid. Thus from the Galilean transformation (5.27), on
settingV = v, we find an expression for the electric fieldE = j/σ−v×B, to provide
(2.92) and hence the resistive equation of magnetic induction (2.94) reproduced here
for convenience:

∂B
∂t

= ∇× (v × B) − ∇× (η∇× B). (5.30)

The flow is typically over solid boundaries, which in ducts are often (although not
always) considered to be perfect insulators, such that any magnetically induced elec-
tric currents in the liquid remain inside it. The earliest laboratory experiments used
mercury, corresponding to a relatively smallmagneticReynolds numberRm ≡ UL/η
(resembling theReynolds number Re of Chap. 3), so themagnetic field diffusion gov-
erned by the resistive term ∇× (η∇× B) in (5.30) is relatively large compared to
the inductive term ∇× (v × B). This was frustrating, since MHD theory at the time
emphasised ideal models that inter alia neglect resistivity (Rm → ∞), and the
resistive term is significant in mercury (cf. Sect. 5.14). A Hall term similar to that
previously identified for plasmas in Sect. 2.12 may also be significant, as it produces
topologically important contributions.3

Exercises

(Q1) A finitely conducting liquid swirls with velocity v = v(r)êθ in the presence
of a magnetic field B = ∇× (ψêz) specified by the stream function analogue
ψ(r, θ, t), in terms of cylindrical coordinates. Show that

∂ψ

∂t
+ v

r

∂ψ

∂θ
= η∇2ψ

where η = (μ0σ)−1 is the constant resistivity, provided there is no prevailing
electric field. When

v(r) =
{

k/r , if r < a
0 , if r > a

3The conducting liquid is often but not always treated as uniform, such that all essential coefficients
(of viscosity, resistivity or the Hall term) are taken to be known and constant. A non-uniform liquid
with position-dependent coefficients may be considered, to discuss MHD motion in the Earth’s
core for example—given of course suitable modifications and additional definitive equations such
as dρ/dt = 0 to account for the variable density and the variable coefficients.

http://dx.doi.org/10.1007/978-981-287-600-3_2
http://dx.doi.org/10.1007/978-981-287-600-3_2
http://dx.doi.org/10.1007/978-981-287-600-3_2
http://dx.doi.org/10.1007/978-981-287-600-3_2
http://dx.doi.org/10.1007/978-981-287-600-3_2
http://dx.doi.org/10.1007/978-981-287-600-3_3
http://dx.doi.org/10.1007/978-981-287-600-3_2
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where k and a are constants, and B → B0 î (where B0 is constant) as r → ∞
in analogy with uniform ideal flow past a cylinder, obtain the following steady
solution in the region r < a :

ψ(r, θ) = 2B0a√
(1 + α)2 + β2

( r

a

)α
sin[β ln

( r

a

)
+ θ − ε],

where α + iβ = √
1 + ik/η and tan ε = β/(1 + α), with α > 0.

Hint: First writeψ = f (r) exp(iθ), and proceed to consider its imaginary part.
(Q2) (Hartmann flow) A viscous finitely conducting uniform liquid occupies a rigid

straight duct of rectangular cross-section,with vertical dimension |z| < a much
smaller than its horizontal dimension. If the liquid is subjected to a constant
axial pressure gradient −G î and a constant vertical magnetic field B0k̂, so
the resulting component of the current density is jy = σ(E0 − B0v) where
E0 denotes the y-component of an electric field, show that the velocity field
v = v(z)î in the bulk of the steady flow satisfies the differential equation

d2v

dz2
− M2

a2 v = − 1

μ
(G + σB0E0),

where M = B0 a
√

σ/μ is the Hartmann number. Hence obtain the velocity
profile

v(z) = a2

M2μ
(G + σE0B0)

(
1 − cosh(Mz/a)

coshM

)
.

If the distant side walls of the duct are insulated from each other so that the net
electric current flow in the y-direction is zero, show that

E0 = G

σB0

(
M

tanhM
− 1

)
.

When M 
 1, demonstrate that v(0) � U0/M for an insulated duct but that
v(0) � U0/M2 if the duct is perfectly conducting such that E0 = 0, where
U0 = Ga2/μ.

5.6 Plasma MHD

By the middle of the last century, it was widely appreciated that hydrogen is the
predominant element in the Universe, and that in many cases it can be treated as a
simple ion-electron plasma because the kinetic temperature is high enough to ensure
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almost complete ionisation.4 As discussed in detail in Chap. 2, a plasma may be
described in terms of more fundamental kinetic theory that explicitly involves a
distribution function in phase space for each of its microscopic constituents, but an
MHD model can often be adopted [3, 4].

We mentioned in Sect. 5.1 that MHD was associated at first with the question
of solar energy transport—and theories for the sunspot cycle and sunspot equilib-
ria, the solar wind and its interaction with the Earth’s magnetosphere, magnetic
fields in interstellar plasma and other cosmic questions were addressed [1]. The
kinetic temperature of laboratory plasma can also be high enough that it is essen-
tially fully ionised almost everywhere, as in various magnetic confinement devices
being explored in controlled thermonuclear fusion research programmes.Wave prop-
agation and stability, topics central to the earliest astrophysical applications, are also
of major interest in the laboratory context. As mentioned in the previous section,
the resistivity (finite conductivity) of mercury was found to significantly influence
wave propagation in early experiments and it soon emerged that resistivity and other
non-ideal effects have important consequences in plasmas. However, it is appropriate
to begin with the ideal MHD model and related matters such as ideal MHD wave
propagation, before introducing non-ideal effects into the discussion.

5.7 Ideal MHD Model

As first mentioned in Sect. 2.12, both the inviscid (zero viscosity) and the perfect
conductivity (zero resistivity) assumptions are implicit in the ideal MHD model.
One may also continue to neglect heat flow (especially perpendicular to the local
magnetic field), treating the plasma as a compressible medium with p/ργ constant
for any given fluid element, as in the earlier fluidmechanics discussion (cf. Sect. 3.2).
Thus the ideal compressibleMHDequations comprise the continuity equation (2.55),
the ideal (inviscid) equation of motion (3.5) with the j × B term added to the right-
hand side as first envisaged in (2.56), the adiabatic equation of state (3.3), Ohm’s law
(2.92) with its right-hand side set to zero, and the pre-Maxwell equations of Sect. 5.4.

From (5.17), the MHD forcing term j × B entering the equation of motion can be
written as

μ−1
0 (∇× B) × B = μ−1

0 B · ∇B − μ−1
0 ∇(B2/2)

= B2

μ0
b̂ · ∇b̂ + b̂b̂ · ∇

(
B2

2μ0

)
− ∇

(
B2

2μ0

)

= B2

μ0
κ − ∇⊥

B2

2μ0
. (5.31)

4However, not all plasmas are simple and fully ionised—e.g. in theMHD power generation context,
the MHD fluid is a complex mix of partially ionised plasma and burning coal dust!

http://dx.doi.org/10.1007/978-981-287-600-3_2
http://dx.doi.org/10.1007/978-981-287-600-3_2
http://dx.doi.org/10.1007/978-981-287-600-3_3
http://dx.doi.org/10.1007/978-981-287-600-3_2
http://dx.doi.org/10.1007/978-981-287-600-3_3
http://dx.doi.org/10.1007/978-981-287-600-3_2
http://dx.doi.org/10.1007/978-981-287-600-3_3
http://dx.doi.org/10.1007/978-981-287-600-3_2
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Here κ denotes the magnetic field line curvature, the derivative of the parallel unit
vector b̂ = B/B with respect to length along the magnetic field line as previously
defined in (2.81), and

∇⊥ = ∇ − b̂b̂ · ∇ (5.32)

is the perpendicular gradient operator. Thus the essential term that encapsulates the
electric current modification of the plasma dynamics consists of a magnetic tension
(B2/μ0)κ acting towards the centre ofmagnetic field curvature, and amagnetic pres-
sure gradient ∇⊥ B2/(2μ0). These two contributions on the right-hand side of (5.31)
also produce definitive waves in Hall MHD, briefly discussed later—cf. Sect. 5.15.

In summary therefore, on invoking (5.17) the fundamental ideal compressible
equations in the fields ρ, v, p, E and B are

dρ

dt
+ ρ∇· v = 0, (5.33)

ρ
dv
dt

+ ∇ p = ρg + μ−1
0 (∇× B) × B, (5.34)

dp

dt
+ γ p∇· v = 0, (5.35)

E + v × B = 0, (5.36)

∇× E = −∂B
∂t

. (5.37)

The gravitational term ρg in the equation of motion (5.34) is often quite important
in astrophysical applications—and it has also been used as a pseudo-centrifugal
external force to model the actual magnetic field curvature term (B2/μ0)κ of (5.31)
in MHD stability analyses undertaken in Cartesian geometry (cf. Chap.6), although
this notion proved to be rather less satisfactory than had been hoped.

This set of ideal compressible equations (5.33)–(5.37) is complete. In particular,
we observe that the divergence of (5.37) implies ∂(∇· B)/∂t = 0. Thus the pre-
Maxwell equation (5.16) is not a constraint, but merely an initial condition that is
propagated to later times by an equation of evolution for B—viz. the relevant ideal
equation of magnetic induction

∂B
∂t

= ∇× (v × B), (5.38)

obtained by eliminatingE between (5.36) and (5.37) as noted previously in Sect. 2.12.
The notable similarity of (5.38) and (3.25) suggests there is a strong analogy between
the vorticity and magnetic fields (cf. Sect. 5.8).

The reduced system of ideal MHD equations (5.33)–(5.35) and (5.38) obtained
on eliminating E is of course a complete set in the field variables ρ, v, p and B that
were specified at the end of Sect. 5.4.Moreover, recalling that compressible fluids are
effectively incompressible to leading order in the slow subsonic expansion introduced

http://dx.doi.org/10.1007/978-981-287-600-3_2
http://dx.doi.org/10.1007/978-981-287-600-3_6
http://dx.doi.org/10.1007/978-981-287-600-3_2
http://dx.doi.org/10.1007/978-981-287-600-3_3
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in Sect. 3.4, we might anticipate that compressible plasma may often also behave in
an approximately incompressible manner. Rather than assuming incompressibility
ad hoc, this may be shown to follow from the compressible MHD equations under an
analogous consistent ordering scheme. As previously indicated, there are no plasma
viscosity terms retained in the equation ofmotion (5.34), and the neglect of resistivity
in the equation of magnetic induction (5.38) is sometimes said to correspond to
infinite magnetic Reynolds number Rm (cf. Sect. 5.5).

We can re-express the equation of motion (5.34) as

ρ
dv
dt

= −∇· (p I + T ) + ρg, (5.39)

which involves the magnetic stress tensor

T = B2

2μ0
I − BB

μ0
, (5.40)

upon invoking the two identities (∇× B) × B = B · ∇B − ∇(B2/2) and ∇· (BB) =
B · ∇B since ∇· B = 0. Alternatively, we may write (5.39) in momentum conserva-
tion form as

∂(ρv)

∂t
+ ∇· ρvv = −∇· (p I + T ) + ρg (5.41)

on recalling the material derivative d/dt = ∂t + v · ∇ and invoking (5.33). Thus the
MHD forcing term j × B produces an isotropic magnetic pressure B2/2μ0, which
in combination with the hydrostatic pressure p constitutes a total isotropic pressure;
and in addition there is an anisotropic second term BB/μ0, which corresponds to a
magnetic tension, twice the strength of the isotropic magnetic pressure, acting along
the field lines. We also note that the magnetic stress tensor may be rewritten

T = B2

2μ0
I⊥ − B2

2μ0
b̂b̂, (5.42)

where I⊥ = I − b̂b̂ as in (2.74), giving a net parallel magnetic tension equal to
the perpendicular magnetic pressure. Further, since ∇· B = 0 the divergence of
either (5.40) or (5.42) reproduces (5.31), with the previously associated alternative
interpretation.

We have retained the gravitational body force ρg in (5.39) and (5.41), although it is
usually omitted in considering laboratory applications—i.e. unless this term is used
to simulate magnetic field curvature, as previously mentioned. However, gravity is of
course instrumental in many astrophysical applications, and the term ρg is retained
in representing the gravitational field of a neighbouring massive body for example.
On the other hand, for a self-gravitating system one may introduce the gravitational
field stress tensor (2.18), such that the right-hand sides of (5.39) and (5.41) may be
rewritten as

∇· (p I + T + G)

http://dx.doi.org/10.1007/978-981-287-600-3_3
http://dx.doi.org/10.1007/978-981-287-600-3_2
http://dx.doi.org/10.1007/978-981-287-600-3_2
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if desired—cf. also (2.19) and Ref. [7]. Both self-gravitation and the case of a central
gravitational force are considered in our discussion of magnetorotational instability
later—cf. Sect. 6.8.

Dotting (5.34) with v yields the mechanical subsystem energy equation general-
ising (3.7)—i.e.

∂

∂t

(
1

2
ρv2

)
+ ∇·

(
1

2
ρv2v

)
− p∇· v = ρ g · v − ∇· (pv) + j ·E, (5.43)

where (5.17) and (5.36) have been used to rewrite the μ−1
0 (∇× B) × B · v term

as the familiar electric power term j · E (supplementing the rate of work done by
the gravity and hydrostatic pressure on the right-hand side). The thermodynamic
energy Eq. (3.8) remains appropriate here, since none of the j · E power goes into
the thermodynamic subsystem (there is no Ohmic dissipation term ηE2 in the ideal
MHD model where the resistivity η = 0).

A conservation equation for the magnetic subsystem is also necessary for closure,
in order to obtain the equation of total energy conservation. Dotting (5.37) with B
readily yields

∂

∂t

(
1

2
B2

)
+ ∇· (E × B) + E ·∇ × B = 0,

so invoking (5.17) we have the magnetic energy equation

∂

∂t

(
B2

2μ0

)
+ ∇·

(
E × B

μ0

)
= −j · E, (5.44)

where the magnetic energy flux term μ−1
0 E × B is recognised as the Poynting vector

of electromagnetic theory, and the magnetic energy density B2/2μ0 is the surviv-
ing component of the electromagnetic energy (formerly B2/2μ0 + ε0E2/2) in the
pre-Maxwell MHD ordering. Invoking (3.8) and adding Eqs. (5.43) and (5.44) then
provides the equation for the total energy density (kinetic plus adiabatic plus mag-
netic energy densities)

∂

∂t

(
1

2
ρv2 + p

γ − 1
+ B2

2μ0

)
+ ∇·

(
1

2
ρv2v + γ

γ − 1
pv + E × B

μ0

)
= ρg · v

generalising (3.9); and eliminating E using (5.36) produces the alternative form

∂

∂t

(
1

2
ρv2 + p

γ − 1
+ B2

2μ0

)
(5.45)

+ ∇·
[(

1

2
ρv2 + γ

γ − 1
p + B2

2μ0

)
v + T · v

]
= ρg · v.

http://dx.doi.org/10.1007/978-981-287-600-3_2
http://dx.doi.org/10.1007/978-981-287-600-3_6
http://dx.doi.org/10.1007/978-981-287-600-3_3
http://dx.doi.org/10.1007/978-981-287-600-3_3
http://dx.doi.org/10.1007/978-981-287-600-3_3
http://dx.doi.org/10.1007/978-981-287-600-3_3
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Finally, it is notable that the ideal equation of magnetic induction (5.38) can be
rewritten as

dB
dt

= B · (∇v − I∇· v) = B · ∇ v − B∇· v. (5.46)

This evolution equation for the vector field B is similar in form to Eqs. (5.33) and
(5.35) for the scalar fields ρ and p, and can be integrated via a generalisation of the
procedure outlined in Sect. 4.10. Furthermore, (5.46) is isomorphic to the vorticity
equation (3.26), as foreshadowed with reference to (5.38) and (3.25) before.

Exercise

(Q1) Consider steady unidirectional ideal MHD flow where the magnetic field is
perpendicular to the plane of the flow. Show that (d/dt)(B/ρ) = 0; and also that

1

2
|∇φ|2 + h + V + B2

2μ0
= constant

throughout, the modified form of the Bernoulli equation (3.30) for steady irro-
tational flow.

5.8 “Frozen-In” Magnetic Field

A useful concept associated with ideal MHD is that the magnetic field is “frozen-in”,
and advects with the ideal MHD fluid. The “frozen-in” flux condition was first intro-
duced byAlfvén in his pioneering paper onMHDpublished in 1942 (cf. alsoRef. [1]),
and the analogy between vortex flux tubes and magnetic flux tubes implicit in the
isomorphic forms (3.26) and (5.46) eventually became more widely appreciated.

Let us consider a surface S in the MHD fluid bounded by the closed material
curve C , which is advected from the contour Ct = ∂St in space at time t to a new
contour ∂St+dt at time t +dt as the material surface S is continuously advected from
the surface St at time t to the corresponding new surface Ct+dt = St+dt at time
t + dt (cf. Fig. 5.1). From (5.16) and the Divergence Theorem (1.60), the magnetic
flux leaving the volume swept out is equal to the sum of the flux entering through S
at time t and the surface strip swept out by C in the time interval dt. The time rate of
change of the magnetic flux �(t) threading the material surface is therefore

d�

dt
=

[∫

St+dt

B · dS −
∫

St

B · dS
]

=
∫

S

∂B
∂t

· dS +
∫

C
B · v × dr

= −
∫

S
∇× E · dS −

∫

C
v × B · dr

= −
∫

S
(E + v × B) · dr (5.47)

http://dx.doi.org/10.1007/978-981-287-600-3_4
http://dx.doi.org/10.1007/978-981-287-600-3_3
http://dx.doi.org/10.1007/978-981-287-600-3_3
http://dx.doi.org/10.1007/978-981-287-600-3_3
http://dx.doi.org/10.1007/978-981-287-600-3_3
http://dx.doi.org/10.1007/978-981-287-600-3_1
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Fig. 5.1 Advection of a small surface element St of MHD fluid, of area dS and unit normal n̂,
to St+dt during the infinitesimal time interval (t, t + dt). The vector surface element dS = n̂dS is
indicated, as well as the side vector surface element vdt×ds as the boundary ∂St advects to ∂St+dt

by (5.37) and Stokes Theorem, whence from (5.36) the rate of change of the material
integral is zero—i.e.

d�

dt
= d

dt

∫

S
B · dS = 0. (5.48)

At the second line of (5.47), note that our discussion in Sect. 2.5 has now been
extended to the rate of change of a material surface integral.

Equation (5.48) is the “frozen-in flux condition” such that the magnetic flux
linking a closed curve carried along by an ideal MHD fluid is conserved, provided
the topological integrity of the closed curve is preserved by the flow. Indeed, the
magnetic flux � is invariant under any topologically equivalent deformation of the
surface S that leaves its boundary curve C unchanged, since ∇· B = 0, so we may
choose to consider a surface S that entirely advects with the fluid (i.e. corresponds
to a material surface). Further, by considering an arbitrarily small tube of magnetic
field lines, (5.48) is seen to be consistent with the idea that the field lines themselves
are carried along with the flow—i.e. unless the flow takes the lines through a singular
non-ideal plasma region where the topological integrity of a magnetic flux tube is
destroyed, when the magnetic field lines break and so may reconnect as the plasma
construct is said to tear. Moreover, since the circulation in Keivin’s Theorem (3.27)
is K ≡ ∮

C v·dr = ∫
S ω ·dS, the result (5.48) is another manifestation of the analogy

between the vorticity ω and the magnetic field B.
As discussed in Sect. 5.13 and depicted in Fig. 5.2, in the laboratory it is of interest5

to consider a ribbon-like surface �k in a vacuum, bounded on one side by an ideal
plasma and on the other side by perfectly conducting surfaces, with a gap across

5R.L. Dewar (Nuclear Fusion 18, 1541–1553, 1978).

http://dx.doi.org/10.1007/978-981-287-600-3_2
http://dx.doi.org/10.1007/978-981-287-600-3_3
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Fig. 5.2 Schematic of the plasma-vacuum-conductor model for a confined high-temperature
plasma, to be discussed in Sect. 5.13. Although the conductors (including the vacuum vessel wall)
on which the loops �k lie are often taken to be perfectly conducting, in describing slow large-scale
plasma evolution they may be regarded as having breaks that allow magnetic flux to enter or leave
as the plasma interacts with the external circuitry

which there is a voltage Vk . Thus with its boundary Ck = ∂�k consisting of a
contour �k on the conductor and a contour �p on the plasma, the analysis leading to
(5.47) holds on �k (where of course v = 0), so that

d�

dt
= −

∫

�k

E · dr. (5.49)

The application of a suitable boundary condition introduced later (cf. Sect. 5.12) then
yields

d�

dt
= Vk, (5.50)

which may be interpreted as saying that the magnetic flux is trapped between the
plasma and the conductor, except for flux injected through the gap at the rate Vk .

5.9 Ideal MHD Waves

Since thermal conduction could not account for the rapid energy transfer observed
through the interior of the Sun, and it could not be due to electromagnetic waves
because they are strongly absorbed in highly ionised media, Alfvén initiated MHD
in proposing the famous new transverse wave type subsequently named after him [1].
In the “frozen-in” scenario of the ideal MHD model discussed in Sect. 5.8, he
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envisaged that any plasma displacement transverse to a magnetic field line is accom-
panied by the same displacement of that field line, so that the magnetic tension of
magnitude B2/μ0 identified in Sect. 5.7 produces wave propagation along magnetic
field lines (the isotropic pressure not contributing because the motion is incompress-
ible). This is analogous to the classical case of transverse waves with phase speed√

T/ρ propagated in a stretched string, where T is the tension and ρ is the density
per unit length of the string, which suggested an MHD wave speed

√
B2/(μ0ρ) .

If plasma compressibility is included, in a magnetic field the longitudinal sound
waves discussed in Sect. 4.3 are replaced by hybrid magnetosonic waves, decoupled
from the Alfvén waves. To demonstrate this, we reconsider the propagation of small
amplitude waves on a similar slowly varying background flow, but in the ideal MHD
model of Sect. 5.7 with a quasi-uniform magnetic field.

Ignoring gravity, the linearised perturbation equation obtained from the equation
of motion (5.34) is

ρω′v1 − k p1 = μ−1
0 B ×(k × B1) (5.51)

where ω′ = ω−k ·v is the frequency in the local rest frame of the plasma, analogous
to the case of the fluid in Sect. 4.3. From the adiabatic Eq. (5.35), we again have

p1 = γ p

ω′ k · v1, (5.52)

but now, in addition, the linearised perturbation equation from the ideal equation of
magnetic induction (5.38)—viz.

ω′B1 = k × (B × v1) = (B k − k · B I) · v1, (5.53)

on omitting the term B1 · ∇v since the background flow is slowly varying.
Writing B × (k × B1) as (k B − k · B I) · B1 and multiplying by ω′, on using

(5.52) and (5.53) to eliminate p1 and B1 from (5.51) we have

D · v1 = 0, (5.54)

where

D ≡ ρω′2 I − γ p kk − μ−1
0 (k B − k · B I) · (Bk − k · B I). (5.55)

When k is not parallel to B, the vectors

e1 = k, e2 = B, e3 = k × B (5.56)

form a natural (but non-orthogonal) basis for converting (5.54) into a matrix eigen-
value problem. From (1.6), the reciprocal basis is

http://dx.doi.org/10.1007/978-981-287-600-3_4
http://dx.doi.org/10.1007/978-981-287-600-3_4
http://dx.doi.org/10.1007/978-981-287-600-3_1
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e1 = B × (k × B)

|k × B|2 , e2 = (k × B) × k
|k × B|2 , e3 = k × B

|k × B|2 .

Thus on writing
v1 = v11e1 + v21e2 + v31e3

and resolving D · v1 onto the reciprocal basis vectors ei , from (5.54) we have the
system of linear equations (i = 1, 2, 3)

3∑

j=1

Di
jv

j
1 = 0, (5.57)

where the coefficient matrix with entries Di
j ≡ ei · D · e j is

[
Di

j

]
=

⎡

⎢⎣
ρω′2 −

(
γ p + μ−1

0 B2
)

k2 −γ p k · B 0

μ−1
0 k2 k · B ρω′2 0

0 0 ρω′2 − μ−1
0 (k · B)2

⎤

⎥⎦ . (5.58)

Consequently

det[Di
j ] =

(
ρω′2 − μ−1

0 (k · B)2
)
det

(
ρω′2 −

(
γ p + μ−1

0 B2
)

k2 −γ p k · B

μ−1
0 k2 k · B ρω′2

)

(5.59)

= ρ3
(
ω′2 − k2‖c2A

) [
ω′4 − k2

(
c2s + c2A

)
ω′2 + k2k2‖c2s c2A

]
,

where

cs ≡
√

γ p

ρ

is the sound speed as before,

cA ≡
√

B2

μ0ρ
(5.60)

defines the anticipated Alfvén speed analogous to the phase speed
√

T/ρ in the
stretched string, and the parallel wave number k‖ is defined by k‖ ≡ k · b̂ where
b̂ ≡ B/B as before. The MHD dispersion relation det[Di

j ] = 0, corresponding to
a nontrivial solution of (5.57), factorises into three separate relations for the MHD
waves—respectively
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Alfvén waves: ω′2 = k2‖c2A, (5.61a)

slow MS waves: ω′2 = 1

2
k2

(
c2s + c2A

)
(1 −

√
1 − α2 ), (5.61b)

fast MS waves: ω′2 = 1

2
k2

(
c2s + c2A

)
(1 +

√
1 − α2 ), (5.61c)

where “MS” stands for “magnetosonic” and

α2 = 4
k2‖
k2

c2s c2A
(c2s + c2A)2

. (5.62)

In passing, let us note that D · v1 could have been resolved onto the basis vectors
ei such that the dispersion relation would have come from the determinant of the
symmetric matrix Di j , which only differs from det[Di

j ] by a positive factor and
therefore has the same zeros.

In laboratory plasmas, the pressure is typically much less than the magnetic
pressure, which is usually expressed as β � 1 where β ≡ 2μ0 p̄/B̄2, with p̄
and B̄ denoting representative values of p and B. Consequently, cs � cA and
(1 − α2)1/2 � 1 − α2/2, such that the slow magnetosonic wave tends to propagate
at the sound speed (ω′2 � k2‖c2s ) and the fast magnetosonic wave speed approaches

the Alfvén speed (ω′2 � k2c2A). Indeed, cs < cA is usually assumed in making polar
plots of the rest frame phase speeds c′ = ω′/k (i.e. plots of each phase speed versus
the direction of propagation). On the other hand, in the incompressible limit γ → ∞
the slow magnetosonic wave degenerates to the Alfvén wave (ω′2 → k2‖c2A), and the

fast magnetosonic wave speed becomes infinite.6

Exercise

(Q1) As discussed in the following section, there is no background flow in mag-
netohydrostatic configurations, which are often considered in MHD stability
investigations (cf. Chap. 6). Indeed, in linearised theory, a Lagrangian dis-
placement ξ such that v1(r, t) = ∂ξ/∂t is often introduced (cf. Sect. 6.5).
When the parallel wave number component k‖ = k · b̂ is much less than
the magnitude of the perpendicular wave number component k⊥ = |k × b̂|
(where b̂ = B/B), deduce the following results for the Alfvén, slow and fast
magnetosonic branches (ω = ωA,ωS and ωF ) of the dispersion relation and
their respective polarisation vectors (arbitrary normalisation) to be invoked in
Sect. 6.7:

6This is discussed further in B.F. McMillan, R.L. Dewar and R.G. Storer (Plasma Physics and
Controlled Fusion, 46, 1027–1038, 2004).

http://dx.doi.org/10.1007/978-981-287-600-3_6
http://dx.doi.org/10.1007/978-981-287-600-3_6
http://dx.doi.org/10.1007/978-981-287-600-3_6
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ρω2
A = μ−1

0 (k · B)2, ξA = k × B/(k B),

ρω2
S = μ−1

0 γ p(k · B)2

μ−1
0 B2 + γ p

, ξS = (1 + μ0γ p/B2)B/B − μ0γ pk · Bk⊥/(k2⊥B3),

ρω2
F = (μ−1

0 B2 + γ p)k2, ξF = μ0γ pk · BB/(k⊥ B4)+(1 + μ0γ p/B2)k⊥/k⊥.

5.10 MHD Equilibria (Magnetohydrostatics)

An equilibrium state is an unperturbed steady configuration—i.e. there exists a rest
frame in which all fields are time-independent. Thus on setting ∂v/∂t = 0 in (5.34),
we obtain

ρv · ∇v + ∇ p = ρg + μ−1
0 (∇× B) × B, (5.63)

expressing the balance of the inertia, pressure gradient and the gravitational and
Lorentz forces. In fluid mechanics, an equilibrium where there is no flow (v = 0)
in the rest frame is called static. Here we again omit the gravitational term, and
restrict our attention to magnetohydrostatic equilibria—i.e. we also neglect the term
ρv ·∇v, although recently there has been increasing interest in equilibria with strong
flows [5]. Thus we consider the equilibrium equation (5.63) reduced to

∇ p = μ−1
0 (∇× B) × B ≡ j × B, (5.64)

which is the form usually considered in the laboratory plasma literature, and its
general solution is far from trivial. Indeed, just how to pose the corresponding three-
dimensional magnetohydrostatic problem such that solutions can be shown to exist
remains a topic of current research. Explicit solutions have been identified for some
special axisymmetric cases, and computational procedures may generally be used to
find accurate numerical solutions in other axisymmetric cases.

To better understand the implications of (5.64), let us resolve it in the magnetic
field and current vector directions. Thus on dotting both sides with B and j, we obtain
the pair of scalar necessary conditions B · ∇ p = 0 and j · ∇ p = 0, respectively.
There are two standard alternatives for satisfying these conditions throughout a finite
plasma volume P—viz. (a) p = const in P , so ∇ p ≡ 0 ; or (b) p is a continuously
varying differentiable function in P , so ∇ p �= 0 almost everywhere. The simpler
alternative (a) will be discussed in Sect. 5.10.2, while alternative (b) is discussed
below. A third hybrid case is even more interesting for magnetic confinement than
(a), and less problematic for treating non-axisymmetric equilibria than (b)—viz.
(c) p is a piecewise constant function, constant in subregions of P but changing
discontinuously across interfaces separating these subregions. However, except to
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remark on a relevant force-free aspect below, we shall not discuss case (c) further
in this book,7 although we do give the relevant jump conditions at discontinuities in
Sect. 5.12.

5.10.1 Magnetically Confined Plasma Equilibria

The aim of many plasma experiments is to confine a plasma with a high temperature
at its centre. For instance, in a successful fusion reactor the temperature T must be at
least 108 ◦Knear the centre of the plasma, so although the particle density n may only
be about a millionth of that in atmospheric air the corresponding pressure (given by
p = nkT) is of the order of an atmosphere. However, near the walls of the confining
vessel, the temperature can only be of the order of 103 ◦K (for otherwise the walls
would vaporise); so, the pressure must vary by at least 5 orders of magnitude across
the plasma!

Suppose p(r) is a continuous function corresponding to such a magnetically
confinedplasma,monotonically decreasing from thehottest region such that∇ p �= 0,
so theremust be level surfaces p = const nesting the hottest region. The force balance
conditions B · ∇ p = 0 and j · ∇ p = 0 imply the magnetic field B and its curl (in
the direction of the current j) are everywhere tangential to these level surfaces—i.e.
these pressure isosurfaces are traced out by the magnetic and current field lines, and
so are called magnetic flux surfaces (or magnetic surfaces or flux surfaces, for short).

Let n̂ ≡ ∇ p/|∇ p| be the unit normal at each point on thesemagnetic surfaces, and
consider the implications of resolving the pressure balance condition (5.64) in this
remaining independent direction—i.e. |∇ p| = n̂ · j × B. The magnetic confinement
condition ∇ p �= 0 is then seen to imply that j and B can neither be parallel to
each other nor vanish anywhere. The non-vanishing of these fields tangential to
the magnetic surfaces has profound topological implications for the design of any
magnetic plasma confinement device (at least, any that can be described by MHD),
due to an important result in algebraic topology—viz. any tangent field on a sphere
must have at least one zero.8 Thuswe cannot confine a topologically spherical plasma
magnetically, as the required non-vanishing of j and B is inconsistent with this
topological result. Fortunately, this does not apply to tori and henceforth we shall
assume that the magnetic surfaces are toroidal.

The integrability condition that vector fields such as j and B are everywhere
tangential to smoothly nested tori is rather special, except in the casewhere the system

7A detailed discussion of case (c) is given in S. R. Hudson, R. L. Dewar, G. Dennis, M. J. Hole,
M. McGann, G. von Nessi and S. Lazerson (Physics of Plasmas 19, 112502, 2012) and references
therein; and we also note that the “stepped pressure model” discussed there was envisaged much
earlier by David Potter (in Methods in Computational Physics 16 edited by John Killeen, pp. 43–83,
Academic Press, 1976).
8This result is amusingly called the “Hairy Ball Theorem,” for it may be visualised as the impos-
sibility of combing finite-length hairs on such a ball flat to its surface everywhere—it must have a
bald spot or cowlick.
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Fig. 5.3 An axisymmetric torus, depicting the two topologically distinct directions—viz. toroidal
(the “long”way), and poloidal (the “short”way). SeeGlossary 3 and Sect. 5.11 for further discussion
of this terminology

has a continuous symmetry. We therefore restrict our attention to systems that are
invariant under rotation about a line—i.e. to axisymmetric configurations. (Without
such a symmetry assumption we would be led into chaos theory, which is beyond
the scope of this book.) Axisymmetric equilibrium models are of interest as a first
approximation in both the laboratory (e.g. the tokamak configuration discussed—
cf. Sect. 5.13) and in astrophysics (e.g. planetary magnetospheres). The magnetic
field lines wind helically on these tori so that, while the vector B at each point on a
magnetic surface has no normal component, it has both a toroidal component (i.e.
in the direction the long way around the torus) and a poloidal component (i.e. in the
direction the short way around)—cf. Fig. 5.3.

Axisymmetric configurations in fusion research are typically described using
cylindrical coordinates denoted by (R,φ, Z ), with R the distance from the axis of
symmetry and the toroidal angle φ the angle of rotation about this axis. That is, with
respect to a Cartesian coordinate system, x, y, z, x = R cosφ, y = R sin φ, z = Z .
Then the representation

B = ∇φ × ∇ψ + F(ψ)∇φ (5.65)

is used to enforce ∇· B = 0. Thus the divergence of the first term (the poloidal
magnetic field) vanishes quite generally since ∇×∇ f ≡ 0 (with f representing φ
and ψ); and the divergence of the second term vanishes because F ′(ψ)∇ψ ·∇φ = 0
and ∇2φ = 0, for the assumed axisymmetric toroidal magnetic field such that ψ =
ψ(R, Z).

The so-called poloidal flux function ψ is again analogous to the velocity stream
function in fluid mechanics—cf. Sects. 3.9, 3.10 and 3.13. As discussed further in

http://dx.doi.org/10.1007/978-981-287-600-3_3
http://dx.doi.org/10.1007/978-981-287-600-3_3
http://dx.doi.org/10.1007/978-981-287-600-3_3
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Sect. 5.11, ψ is constant on each magnetic surface and hence p = p(ψ). Thus on
taking the curl of (5.65) and invoking the identity ∇ψ · ∇∇φ − ∇φ · ∇∇ψ =
−(2/R)∇R · ∇ψ∇φ, we obtain

μ0j = �∗ψ ∇φ + F ′(ψ)∇ψ × ∇φ, (5.66)

where the elliptic operator �∗ is defined by

�∗ψ ≡ R2∇·
(∇ψ

R2

)
. (5.67)

Consequently, the equilibrium condition ∇ p = j × B is satisfied if and only if the
Grad-Shafranov equation

�∗ψ + F(ψ)F ′(ψ) + R2μ0 p′(ψ) = 0 (5.68)

for static axisymmetric MHD equilibria is satisfied. In general, this nonlinear partial
differential equation can only be solved numerically, given the two arbitrary “profile”
functions p(ψ) and F(ψ) and appropriate boundary conditions—but as indicated
earlier, there are analytic solutions for some special choices of p(ψ) and F(ψ). We
also recall the fluid mechanics analogy on writing the Grad-Shafranov equation as
(3.76), mentioned in the discussion leading to Hill’s spherical vortex in Sect. 3.9.

5.10.2 Force-Free Equilibria

Force-free magnetic fields [8] are defined by the property

∇× B = α(r)B, (5.69)

implying that j is parallel to B such that j × B = ∇ p ≡ 0 and hence p is constant
(e.g. zero). Taking the divergence of both sides of (5.69), since ∇· (∇× B) = 0 and
∇· B = 0 we have B · ∇α = 0 such that α is constant along each field line.

A linear force-free field is such that α = const throughout a finite volume V , and
arises in particular when field lines wander chaotically throughout V . A nonlinear
force-free field is such that α is not constant throughout the entire volume V , and,
when the field lines are integrable(lie on nested flux surfaces), can be described by
the Grad-Shafranov equation (5.68) with p′ set to zero. Force-free magnetic fields
were originally discussed in astrophysics, but also have application in modelling
fusion plasma equilbria even if p is piecewise constant rather than continuous.

http://dx.doi.org/10.1007/978-981-287-600-3_3
http://dx.doi.org/10.1007/978-981-287-600-3_3
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5.10.3 Variational Principles for MHD Equilibrium

We recall Eq. (5.45) for the conservation of energy, from which we can identify the
total plasma energy density as the sumof the energy density for an ideal gas (3.10) and
the energy density B2/2μ0 of the magnetic field entrained in the plasma. Integrating
over the plasma volume P , under suitable boundary conditions, we find the total
energy of the plasma system Wtot is the sum of the kinetic energy

∫
P

1
2ρv2dτ and a

potential energy

W =
∫

P

(
p

γ − 1
+ B2

2μ0

)
dτ , (5.70)

the sum of the thermodynamic (adiabatic) and magnetic energies.
We can approach the equilibrium energy principle in an intuitive way through

a “thought experiment”.9 Suppose the plasma is initially stationary (so its initial
kinetic energy is zero) but not in equilibrium so there are unbalanced forces that
cause it to move, converting potential energy into kinetic energy—i.e. the poten-
tial energy is reduced, since the total energy Wtot is conserved. Now we imagine
a friction-like interaction with some background medium is switched on, which
removes momentum and absorbs the friction-generated heat such that each fluid ele-
ment of the inviscid fluid continues to obey the isentropic equation of state (2.59). Our
hypothetical damping mechanism consequently removes kinetic energy but not the
potential energy W directly, which is only reduced through its conversion to kinetic
energy. Thus assuming a stable equilibrium exists, it is reached when all possible
motion is eventually damped out, corresponding to W having reached a minimum
where no more potential energy can be converted to kinetic energy. The equilibrium
variational energy principle may then be stated as:
A stable static ideal MHD equilibrium is found by minimising the potential energy W
subject to the ideal constraints of conservation of mass, entropy and magnetic flux.
If extra constraints are imposed, an equilibrium can still be constructed from this
principle—but in particular, it may not be stable to symmetry-breaking perturbations
if axisymmetry is imposed. The investigation of stability is then often a further
step, using a variational principle for linearised perturbations about a symmetric
equilibrium (cf. Sect. 6.5).

A variant of this energy principle is often used for force-free fields, based on the
observation that the above thought experiment can also be applied to cases where
not all of the constraints of ideal MHD are strictly conserved, such that W relaxes to
a lower energy. In particular, a single magnetic helicity functional

K0 = 1

2μ0

∫

P
A · B dτ (5.71)

9This is essentially the “imagined experiment” described by M.D. Kruskal and R.M. Kulsrud,
(Physics of Fluids 1, 265–274, 1958).

http://dx.doi.org/10.1007/978-981-287-600-3_3
http://dx.doi.org/10.1007/978-981-287-600-3_2
http://dx.doi.org/10.1007/978-981-287-600-3_6
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with A a magnetic potential for B (i.e. B = ∇× A) has been proposed as the robust
constraint, in allowing for a much wider class of perturbations where field lines can
break and reconnect.10 Then on introducing a Lagrangemultiplier λ, the correspond-
ing equilibrium variational principle for a linear force-free-field equilibrium is that
the free energy

W − λK0 (5.72)

is a minimum under variations in A, where p is taken to be constant and not varied.

Exercises

(Q1) (“Straight cylinder”) For a cylindrical plasma of arbitrary cross-section (not
necessarily circular), verify that B = ∇z × ∇ψ + F(ψ)∇z is a general rep-
resentation for the equilibrium magnetic field, where ψ = ψ(x, y) is the flux
function and {x, y, z} are Cartesian coordinates with z directed along the axis
of symmetry. Show that the corresponding analogue of the Grad-Shafranov
equation is

∇2ψ + F(ψ)F ′(ψ) + μ0 p′(ψ) = 0, (5.73)

where ∇2 is the two-dimensional Laplacian ∂2/∂x2 + ∂2/∂y2.
(Q2) In a force-free region where ∇× B = α(r)B, show that the electric current

lines lie on surfaces of constant α.
(Q3) Show that (5.64) is the Euler–Lagrange equation corresponding to the ideal

energy principle involving (5.70); and (5.69) with α = λ is the Euler equation
corresponding to the force-free energy principle involving (5.72), where p is
not varied.

5.11 Magnetic Coordinates

We indicated in the previous section that the calculation of an axisymmetric MHD
equilibrium is often just a first step towards a stability investigation, to be taken up
in the next chapter. As foreshadowed in Sect. 1.2, because of the extreme anisotropy
imposed on plasma dynamics by a strongmagnetic field, a stability analysis is prefer-
ably carried out in a curvilinear coordinate system (usually non-orthogonal) that
conforms to the field line geometry as much as possible. Moreover, since the mag-
netic field lines lie in flux surfaces, it is natural to include a coordinate such as the
radius r that uniquely labels magnetic surfaces in cylindrical geometry. Accordingly,
in toroidal coordinates we adopt as one coordinate an analogous parameter s (say)
that labels the continuously nested flux surfaces, with the value zero at the “magnetic
axis” in the middle of the plasma (i.e. where the innermost flux surface degenerates

10This is often called “Taylor relaxation”. For a review see J.B. Taylor (Reviews of Modern Physics,
58, 741–763, 1986).

http://dx.doi.org/10.1007/978-981-287-600-3_1
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Fig. 5.4 A schematic
showing half a toroidal flux
surface s = const and the
circular magnetic axis s = 0,
in relation to Cartesian
coordinates x, y, z. Also
shown are level curves of the
generalised angle
coordinates θ and ζ on the
magnetic surface, tangential
basis vectors eθ and eζ (not
to scale) from Eq. (1.5) for
the contravariant
representation and the
normal basis vector es = ∇s
to the surface s = constant
(cf. Sect. 1.5)

to a closed circular field line) and increasing values outwards to the edge of the
plasma. It is sometimes convenient to use ψ as this parameter, since B · ∇ψ = 0
from (5.65) implies that the level surfaces of ψ(R, Z) introduced in the previous
section are magnetic surfaces—but for a general discussion it is preferable to leave
ψ(s) as a function to be determined by both geometry and physics.11

The “radial” coordinate s can be complemented by twogeneralised angles θ(R, Z)

and ζ(R,φ, Z), which define a two-dimensional coordinate system on each torus
s = const—cf. Fig. 5.4. The poloidal angle θ shown is a polar angle the “short way”
around, directed so that {∇s,∇θ,∇φ} form a right-handed basis; and the toroidal
angle ζ = φ + f (R, Z) shown is a polar angle the “longway” around each torus, with
the function f as yet arbitrary.12 In the reciprocal basis {es, eθ, eζ} = {∇s,∇θ,∇ζ},
from (1.36) the vector differential operator is then

∇ = (∇s)
∂

∂s
+ (∇θ)

∂

∂θ
+ (∇ζ)

∂

∂ζ
, (5.74)

and from (1.9) and (1.41) the Jacobian is J = (∇s · ∇θ × ∇ζ)−1 > 0.
The poloidal flux �P contained within a magnetic surface s = const is the mag-

netic flux through any ribbon-like surface SP where θ = const, extending from the
magnetic axis s = 0 to s = const at the given magnetic surface. Let dS = êθd S

11The parameter s has been adopted in some important computer codes, and of course should not
be confused with our previous usage as a “line length”.
12Wehave followed the convention illustrated inFig. 1 ofR.C.Grimm,R.L.Dewar and J.Manickam
(Journal of Computational Physics 49, 94–117, 1983). The choice of direction of∇θ is not universal
in the literature—cf. O. Sauter and S. Yu. Medvedev (Plasma Physics Communications 184, 293–
302, 2013). However, it is usual for {∇s,∇θ,∇ζ} to be a right-handed set, so if the angle θ is
reversed then so too is ζ—i.e. to increase in the opposite sense to φ.
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denote an area element, where êθ = eθ/|eθ| is the unit normal in the direction of∇θ.
Since ∇φ · êθ = 0, the toroidal field term in (5.65) does not contribute to �P. The
surface integral is readily determined by writing the poloidal field term in the vector
potential form −∇× (ψ∇φ) such that �P = − ∫ ∇× (ψ∇φ) · dS = − ∮

φ ψ∇φ · dr
from Stokes Theorem (1.57), with

∮
φ denoting integration around the perimeter of

SP. As seen in Fig. 5.4, this perimeter is the union of a contour on the magnetic axis
from φ = 0 to φ = 2π and a return contour on the magnetic surface s = const from
φ = 2π to φ = 0. Thus

�P(s) =
∫

SP
êθ · B dS = 2π[ψ(s) − ψ(0)], (5.75)

so that ψ is a poloidal flux (apart from the factor 2π), and therefore commonly called
the poloidal flux function rather than a stream function (as previously mentioned).

The toroidal flux �T through a surface of section ST where φ = const, composed
of the points r(s′, θ,φ) such that s′ ≤ s and 0 ≤ θ < 2π, is similarly (taking ζ = φ)

�T(s) =
∫

ST
êφ · B dS =

∫ s

0

∮

θ

ds′|drθ|
|∇s|(s′, θ)

F(s′)
R(s′, θ)

, (5.76)

where êφ = ∇φ/|∇φ| and drθ = dθ ∂r/∂θ = dθ eθ(s′, θ,φ) is a line element on a
poloidal loop around the surface s′ = const, on which θ runs from 0 to 2π. Here the
distance between the two surfaces s′ = const and s′ = const+ds′ is ds′/|∇s|(s′, θ),
so that dS = ds′|drθ|/|∇s|(s′, θ) is the surface element.

It is often convenient to specialise the (θ, ζ) coordinate systemon each flux surface
such that the slope

q(s) = dζ

dθ
(5.77)

of the magnetic field lines of the torus in the (θ, ζ)-plane (sometimes called the
covering space) is constant—cf. Fig. 5.5. To relate this requirement to the geometry
of the magnetic field lines, suppose the angle differentials in (5.77) correspond to a
spatial displacement dr = dl B/B a distance dl along a field line, so that dθ = dr·∇θ
and dζ = dr ·∇ζ = q(s) dθ. Then (5.77) is seen as the condition that B ·∇ζ/B ·∇θ
is the constant q(s) at all points on the flux surface s = const. Since ∇s is normal
to a flux surface, we also require B · ∇s = 0 at all points on the surface. These two
conditions are evidently satisfied by the general representation

B = ∇ζ × ∇ψ + q(s)∇ψ × ∇θ, (5.78)

such that from (5.74) we have

B · ∇ = ψ′(s)
J

(
∂

∂θ
+ q(s)

∂

∂ζ

)
. (5.79)
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Fig. 5.5 Graph of a
magnetic field line plotted
in straight-field-line
coordinates θ and ζ on the
covering space of a toroidal
flux surface, as discussed
in the text

α

field line:
ζ = α + qθ

2π 4π
θ

2π

4π
ζ

In passing, we note that (5.78) satisfies the propagated condition ∇· B = 0.
Such coordinates are appropriately called straight-field-line coordinates,13 with

the slope q(ψ) called the safety factor. This historical terminology reflects the sta-
bility requirement q > 1 at the plasma edge, which is a rough criterion (the Kruskal-
Shafranov condition) that limits the amount of toroidal current a tokamak plasma can
safely carrywithout disrupting.14 In the theory of devices (stellarators) that donot rely
on toroidal current to generate poloidal magnetic field, its inverse ι- ≡ 1/q = dθ/dζ
called the rotational transform15 is often used instead of q to characterise the pitch
of the magnetic field lines. In either type of device, rational magnetic surfaces (i.e.
those on which q or ι- is the ratio of two integers) have special significance in the
discussion of “flute-like” modes extensively discussed in Chap.6, and in calculating
the response to non-axisymmetric perturbations.

The generalised flute ordering requires wavelengths across magnetic field lines to
be much shorter than the scale along field lines. For suchmodes in toroidal geometry,
including interchange instabilities and so-called ballooning modes, it is useful to
introduce a hybrid toroidal-poloidal coordinate variable

α ≡ ζ − q(s)θ (5.80)

that labels individual field lines on a flux surface as depicted in Fig. 5.5. Rewriting
(5.78) in terms of α, we have the Clebsch representation

13Some authors reserve the terminology “magnetic coordinates” for straight-field-line coordinates,
referring to the more general coordinates with arbitrary θ and ζ as “flux coordinates”.
14TheKruskal=Shafranov conditionwas earlier identified in stability analysis for simpler cylindrical
geometry—cf. Sect. 6.6.
15By analogy with � we use the notation ι- to denote ι/2π, where ι is the increment in poloidal
angle in radians after one toroidal circuit.

http://dx.doi.org/10.1007/978-981-287-600-3_6
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B = ∇α × ∇ψ, (5.81)

hence the constancy of α and ψ (and hence s) on a magnetic field line through the
identities B · ∇α = B · ∇ψ = 0. If we transform from (s, θ, ζ) coordinates to
(α, s, θ) coordinates, then (5.79) is replaced by

B · ∇ = ψ′(s)
J

∂

∂θ
, (5.82)

where ∂/∂θ denotes the partial derivative with α constant rather than ζ.
Although s(r) is a single-valued function of r, the angular coordinates are not.

Thus the poloidal angle θ(r) is single-valued over multiple toroidal circuits, but
increases by 2π over each poloidal circuit in the êθ direction (analogous to the
corresponding cylindrical coordinate), so α decreases by 2πq; and the toroidal angle
ζ(r) is also single-valued over multiple poloidal circuits, but increases by 2π over
each toroidal circuit in the êζ direction, as does α.

Exercise

(Q1) Using the straight-field-line representation above and the tensor calculus tech-
niques of Chap.1 show:
(a) The poloidal and toroidal fluxes through surfaces of section θ = const
and ζ = const, respectively, are independent of the constants chosen and the
precise choice of the θ and ζ coordinates.
(b) The safety factor is given by

q(s) = F(ψ)

2π

∮

θ

dl

R|∇ψ| . (5.83)

5.12 Advected Ideal MHD Discontinuities

As in fluid mechanics (cf. Sect. 4.11), there are shock wave solutions describing
discontinuities propagating with finite velocity relative to the MHD fluid. Indeed,
there is a richer variety of cases in MHD, with three types of shock corresponding
to the three branches of linear MHD waves treated in Sect. 5.9—cf. [6]. However,
except for an Exercise generalising the Rankine–Hugoniot conditions of Sect. 4.11
to MHD shocks, in this section we consider a different class of discontinuities with
zero propagated speed relative to the fluid.We call this class advected discontinuities
because they are propagated purely by advection, so unlike shocks no matter passes
through the interface on which the discontinuity occurs.We find that this class in turn
decomposes into two types, contact discontinuities and tangential discontinuities.

Nevertheless, as for shock waves in Sect. 4.11 we consider infinitesimally thin
transition regions where field variations become so large that one might expect dis-
continuities or even “infinities” to occur, since in ideal MHD there is also no natural

http://dx.doi.org/10.1007/978-981-287-600-3_1
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length scale. Thus we again envisage interfaces that can be represented mathemati-
cally as surfaces, where now some or all in the set of principal ideal MHD fields
{ρ(r, t), v(r, t), p(r, t), B(r, t)} may change discontinuously. Once again we do
not attempt to resolve the physical structure of the transition region, but analyse
the discontinuities purely from the ideal MHD equations via generalised function
theory—in particular, using the Heaviside step and Dirac delta functions discussed
in Sect. 1.10, presuming that none of these principal fields has Dirac delta func-
tion behaviour at the interface but their derivatives may be singular there (although
bounded elsewhere).16 We represent the interface via an arbitrary smooth parameter
ς(r, t), changing monotonically across the interface and such that the interface is on
the level surface ς(r, t) = 0 where ς(r, t) changes sign. Then we can write

ρ = ρ− + (ρ+ − ρ−)H(ς) , (5.84)

v = v− + (v+ − v−)H(ς), (5.85)

p = p− + (p+ − p−)H(ς), (5.86)

B =B− + (B+− B−)H(ς), (5.87)

where the subscripts + and − denote the regions at either side of the transition layer,
with the ± functions smoothly extended across it.17 The Heaviside step function
H(ς) selects the + or − branch according to which side the point r is on. The
condition that the interface is advected by the flow is

dς

dt
= 0 on ς = 0, (5.88)

where dς/dt at the interface can be written either as (∂t +v− ·∇)ς or (∂t +v+ ·∇)ς .
Substituting (5.84)–(5.87) into the system of ideal MHD equations in Sect. 5.7,

and setting the coefficients of the Dirac delta functions arising from the derivatives to
zero, produces the relevant boundary conditions.18 Thus (5.84) and (5.85) substituted
into (5.33) yields (

�ρ�
dς

dt
+ ρ̄ �v� · ∇ς

)
δ(ς) = 0, (5.89)

16A more general mathematical perspective is provided by the theory of matched asymptotic
expansions—cf. [9, pp. 321–342]. This theory gives the leading order “outer region” behaviour—
and when more physics is included as in Sect. 5.16, further resolves the discontinuity through an
“inner region” expansion on smaller length scales and longer timescales.
17Dirac delta function behaviour is ruled out for the fundamental fields v and B on physical grounds
(the kinetic and magnetic energies must be finite), such that both of these fields are in L2–space.
While it is sometimes useful to imagine a delta functionmass density formathematical convenience,
there is no physical motivation for this and for simplicity we do not allow for that here.
18The product of a Heaviside step function and a delta function can usually be interpreted using
δ(·)H(·) = 1

2 δ(·) that follows from δ(x) f (x) = f (0)δ(x) with f (x) = H(x) defined in (1.68),
although we could work with conservation forms such as (5.41) to avoid having to use this formula.

http://dx.doi.org/10.1007/978-981-287-600-3_1
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where � f � again denotes the jump in any enclosed function f at the interface
ς(r, t) = 0 (i.e. � f � ≡ f+ − f− evaluated at ς = 0) and ρ̄ = (ρ+ + ρ−)/2 is
the average density across the transition layer. On using the advection condition
(5.88), condition (5.89) yields

n̂ · �v� = 0 on ς = 0, (5.90)

where n̂ = ∇ς/|∇ς| is the unit normal to the interface. As previously appreciated in
Sect. 4.7 and elsewhere, the condition (5.90) implies non-cavitation at the interface,
consistent with the advection assumption (5.88). The pressure evolution Eq. (5.35)
is automatically satisfied for arbitrary �p� under (5.88) and (5.90), but the equations
of motion and magnetic induction remain to be considered. This is readily achieved
by also noting that the magnetic field condition ∇· B = 0 applies globally such that

∇· B = �B� · ∇ς δ(ς) (5.91)

at any interface, whence
n̂ · �B� = 0 on ς = 0. (5.92)

Thus the equation of motion in the form (5.39) or (5.41) immediately yields

n̂ · � p I + T � =
�

p + B2

2μ0

�

n̂ − n̂ · B
μ0

�B� = 0 on ς = 0, (5.93)

on equating the coefficient of δ(ς) to zero; and the equation of induction in the form
(5.46) likewise immediately yields

n̂ · B �v� = 0 on ς = 0, (5.94)

where B can represent either B− or B+ because (5.92) implies n̂ · B is continuous.19

The normal component of (5.93) yields the result that the total pressure (plasma
pressure plus magnetic pressure) must be continuous—i.e.

�

p + B2

2μ0

�

= 0 on ς = 0, (5.95)

and crossing (5.93) with n̂ yields the transverse component

n̂ · B n̂ × �B� = 0 on ς = 0. (5.96)

19The results (5.93) and (5.94) may also be derived from the original Eqs. (5.34) and (5.38) respec-
tively, noting that ∂t B = dB/dt − v · ∇ B in particular.

http://dx.doi.org/10.1007/978-981-287-600-3_4
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The condition (5.94) implies

n̂ · B− = n̂ · B+ = 0 or n̂ × �v� = 0 on ς = 0 (5.97)

in addition to (5.90) above, and (5.96) implies

n̂ · B− = n̂ · B+ = 0 or n̂ × �B� = 0 on ς = 0, (5.98)

with the “or” the logical inclusive disjunction.
Under the first alternative in each of (5.97) and (5.98), such that magnetic flux

surfaces align with the interface, there may be a flow discontinuity (n̂ × �v� �= 0)—
i.e. a vortex sheet. The magnetic field could of course still be continuous across the
transition layer (�B� = 0), when both alternatives in condition (5.98) are satisfied,
and from (5.95) the plasma pressure is continuous (�p� = 0). On the other hand,
there could be a jump in the magnetic field B and an accompanying jump in the
pressure p across the transition layer, in accordance with (5.95).20

Note that both alternatives in (5.97) and (5.98) may be satisfied. However, if the
first alternative (n̂ · B± = 0) is notmet, given (5.90) and (5.92) the second alternatives
in (5.97) and (5.98) imply that �v� = 0 and �B� = 0 on ς = 0, whereupon (5.95)
again reduces to �p� = 0 on ς = 0. Thus in this case the only possible jump in
the essential MHD fields envisaged at the interface under (5.84)–(5.87) is in the
density ρ.

The possible jump in B under the first alternative in each of (5.97) and (5.98)
corresponds to a strongly localised current flow in the narrow transition region illus-
trated in Fig. 5.6—cf. also [10, 11]. In analogy with the vortex sheet described by
(3.64), such a singular current is called a current sheet. Thus on substituting (5.87)
into the underlying pre-Maxwell equation (5.17), the second alternative in (5.98) is
replaced by

n̂ × �B� = μ0j∗ on ς = 0, (5.99)

the sharply peaked component of the current density being idealised to a surface
current j∗ (a surface intensity) at the interface such that

j = j−+ ( j+ − j−)H(ς) + j∗|∇ς|δ(ς) (5.100)

in the infinitesimally thin (delta function) transition layer limit.
The relative length and time scale of the actual transition layer generally determine

whether or not to consider introducing any such surface intensity at a discontinuity.
Given that electric charge separation may occur in plasmas on the Debye length
scale, which must be much smaller than the width of the transition layer in MHD
modelling, we might also envisage an electric field intensity E∗ due to charge sheets

20The implications of this condition for the existence or otherwise of equilibrium solutions in
non-symmetric systems are discussed in M. McGann, S.R. Hudson, R.L. Dewar and G. von Nessi
(Physics Letters A, 374, 3308–3314, 2010).

http://dx.doi.org/10.1007/978-981-287-600-3_3
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Fig. 5.6 Cross-section of a plasmawith translational symmetry in the z-direction.A typical “Sweet-
Parker” current sheet is indicatedby thehorizontal black line, andmagneticfield lines by the contours
of a flux function ψ, the magnitude of which is shown by shading—cf. also Exercises (Q1) and
(Q2) below. Field lines change direction at the current sheet that is formed when they reconnect,
which may occur during the nonlinear phase of a resistive tearing instability—cf. Sect. 6.10

of opposite sign (dipole sheets or double layers), causing a discontinuity in the
electrostatic potential. While v and B are functions in L2 space, the ideal MHD
equation (5.36) giving E = −v ×B does not imply that the electric field E is square-
integrable, because the product of two L2 functions is not necessarily in L2. While
the possibility of double layers cannot be ruled out from an ideal MHD analysis,
we shall defer consideration of such a possibility to Sect. 5.16, and here assume
E = E− + (E+ − E−)H(ς) with no delta function intensity in the transition region,
leading to the condition

n̂ × �E� = n̂ · v �B� on ς = 0 (5.101)

from the field equation (5.37). The implied jump in the transverse components of
E when �B� �= 0 is certainly consistent with the ideal Eq. (5.36) applied outside
the transition layer. Thus when n̂ · B− = 0 and n̂ · B+ = 0, from (5.90) and
n̂×�E + v × B� = 0 we have (5.101). For the second alternative where �v� = 0 and
�B� = 0 under (5.97) and (5.98), we have �E� = − �v × B� = 0 such that (5.101)
is trivially satisfied.

In summary, the resulting idealMHDboundary conditions at an advected interface
are:

(1) the normal components of v and B must be continuous—i.e.

n̂ · �v� = n̂ · �B� = 0; (5.102)

(2) the total pressure, kinetic plus magnetic, must be continuous—i.e.

�

p + B2

2μ0

�

= 0; and (5.103)
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(3) the remaining conditions depend on what further continuity assumptions are
made, and there are two cases.

(a) Contact discontinuities: The tangential components of both v and of B are
continuous—i.e.

n̂ × �v� = n̂ × �B� = 0, (5.104)

so together with (5.102) we have both v and B continuous. In particular,
B need not be tangential to the interface (n̂ · B may be nonzero), and from
(5.103) we also have that p is continuous. Thus only ρmay be discontinuous
across the interface, so this case may be viewed as a form of entropy wave
[6, p. 195].

(b) Tangential discontinuities: Either v or B or both are discontinuous, and B
must be tangential to the interface (n̂ · B± = 0). Condition (5.103) now
implies that p is discontinuous if the magnitude of the magnetic field |B|
changes across the interface. Finally, in common with the contact disconti-
nuity case (a), ρ may be discontinuous.

Exercises

(Q1) Revisit theExercise inSect. 5.10, leading to theGrad-Shafranov equation (5.73)
for the static equilibrium of a plasma with translational symmetry in the z-
direction. Suppose the plasma supports a discontinuity inB at a surface S, where
ψ(r) switches between two smooth flux functions ψ±(r), each continuously
differentiable in the neighbourhood S. (Assume Bz and p are discontinuous
across S.)
Express the boundary and jump conditions in terms ofψ(r) and F(ψ), and show
that ψ must be constant on and continuous across S—i.e. ψ−(r) = ψ+(r) =
const for r ∈ S.

(Q2) (Syrovatsky current sheet) Preparatory to using the complex variable method
described in Sect. 3.6, define ζ = (x + iy)/� and

w(ζ) = sgn(�ζ)
[
ζ
√

ζ2 + 1 + ln
(
ζ +

√
ζ2 + 1

)]
,

defined on the complex ζ-plane cut along the imaginary axis between ζ = ±i .
Show that a flux function given byψ = (B0�)�w(ζ) satisfies the equilibrium
conditions in (Q1) above for a tangential discontinuity (current sheet) located
on the y-axis between y = ±�. (Assume Bz = 0 and p = 0.)

http://dx.doi.org/10.1007/978-981-287-600-3_3
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(Q3) Neglecting gravity, deduce the generalised Rankine–Hugoniot equations for
a plane shock from the ideal MHD equations, when the magnetic field B is
parallel to the plane of the shock—viz.

� ρv � = 0, [cf. equation (4.126)]
�

p + ρv2 + B2

2μ0

�

= 0,

�
v2

2
+ γ

γ − 1

p

ρ
+ B2

μ0ρ

�

= 0,

Hence obtain the result

1

γ − 1

�
p

ρ

�

+
�

B2

2μ0ρ

�

+
�
1

ρ

� (
p + B2

2μ0

)
= 0,

where the bars denote the average of the quantities p and 1/ρ across the shock.
(Hint: Initially solve for v2 on either side of the shock, using the second equation
and the square of the first.)

5.13 Vacuum Fields

A standard model used in designing and interpreting magnetically confined plasmas
in fusion research assumes a highly conductive hot toroidal plasma volume is sur-
rounded by a vacuum region, as depicted schematically in Figs. 5.2 and 5.7—e.g. as
in tokamaks [12]. In this section, we develop this useful although somewhat idealised
picture.

In a vacuum there is no current flow (j ≡ 0), so (5.17) reduces to

∇× B = 0. (5.105)

As in the case of irrotational flowwhere∇× v = 0, Eq. (5.105) implies the existence
of a scalar potential χ (the magnetic potential in this context) such that

B = ∇χ, (5.106)

so from (5.1) χ satisfies the Laplace equation

∇2χ = 0. (5.107)

Thus the “subluminal” approximation (5.5) has reduced the equation for B from a
wave equation to an elliptic partial differential equation in the spatial coordinates
only (cf. the subsonic approximation discussed in Sect. 3.4). As in Sect. 3.5, χ can

http://dx.doi.org/10.1007/978-981-287-600-3_3
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Fig. 5.7 Schematic of a general toroidal configuration (showing plasma region and conductor
producing a poloidal magnetic field, and wall). Three sides of the wall may go to infinity, leaving a
conductor along the major axis producing a toroidal magnetic field. The currents Ik , Ip and Ampère
contours Ck , C p are also shown

be multi-valued if the vacuum region is not simply connected. For a unique χ, the
boundary conditions must be supplemented by specifying a sufficient number of
circulation integrals [cf. (3.43)]

Kk ≡
∮

�k

B · dr, (5.108)

where the Ck = ∂�k are irreducible circuits of the vacuum region taken anti-
clockwise relative to the normals to the topologically distinct surfaces �k that cut
the vacuum domain.

Applying Stokes Theorem to (5.108) demonstrates that the circulations are related
to the total currents Ik flowing through the surfaces �k—i.e.

Kk = μ0

∫

�k

j · dS = μ0 Ik . (5.109)

These currents may be carried either by the plasma, by external conductors, or by
a conducting wall or solenoid surrounding the vacuum and plasma—cf. Fig. 5.7,

http://dx.doi.org/10.1007/978-981-287-600-3_3


192 5 Magnetohydrodynamics (MHD)

a schematic of a toroidal magnetic plasma-containment device where a plasma is
confined by toroidal and poloidal magnetic fields produced by the currents in the
coils and the plasma (Fig. 5.7). All of these devices are characterised by relatively
low plasma beta, which as mentioned in Sect. 5.9 is the ratio of the plasma pressure
p to the magnetic field pressure |B|2/(2μ0). Some higher beta devices, such as the
reversed field pinch, exploit much larger plasma currents (and consequently much
larger ratios of poloidal to toroidal magnetic fields) within the plasma itself.

In order to solve (5.107) uniquely, appropriate boundary conditions must be
applied. Mathematically helpful (if physically idealised) boundary conditions on
electrical conductors are often adopted—specifically, they are assumed to be per-
fect conductors (i.e. with infinite conductivity), so that Ohm’s law E = j/σ within
the conductors reduces to E = 0 (as σ → ∞).21 Applying (5.4) over a narrow
rectangular circuit at the surface of the conductor (cf. the rectangular circuit drawn
through the vortex sheet in Sect. 3.9), and again assuming that the electromagnetic
fields (E and B) behave smoothly without any peaks there, it follows that the tan-
gential component of E is continuous across the surface of the conductor—i.e. the
corresponding boundary conditions to be applied in the region adjacent to a fixed
perfect conductor are

n̂ × E = 0 (5.110)

and n̂ · v = 0, where n̂ denotes the unit normal at the surface of the conductor.
As mentioned in Sect. 5.12, under the sharp boundary model in ideal MHD the

plasma is taken to be confined by magnetic pressure, corresponding to a tangential
discontinuity such that

n̂ · Bp = 0 and n̂ · Bv ≡ n̂ · ∇χ = 0 on ς = 0 (5.111)

in which Bv and Bp denote the respective vacuum and plasma magnetic fields. Thus
there is a magnetic field jump at the plasma-vacuum interface (�B� ≡ Bv −Bp �= 0),
and �ρ� ≡ −ρ and �p� ≡ −p simply refer to the plasma density and pressure if
these fields are presumed to be zero in the vacuum. On the other hand, in passing we
observe that a velocity field v may be defined in the vacuum to within an arbitrary
parallel component b̂v · v (where b̂v = Bv/|Bv|), by requiring that (5.36) hold there
such that (5.85) in addition to (5.87) is meaningful.

Even if it is envisaged that the hot plasma is surrounded by a vacuum region
rather than colder plasma, in the ideal MHD stability discussion of Chap. 6 it can
be useful theoretically to assume that the plasma level surface ς = 0 coincides with
the surface of the conductor. In that case n̂ and ∇ς are parallel at the surface, so
we have (5.110) with n̂ replaced by ∇ς , since (5.4) applies in both the plasma and
the conductor.Consequently, taking the dot product of (5.4) with∇ς and noting from

21Unless the coils are superconductors, this is only an acceptable approximation over times that
are short compared with the resistive skin time δ2/η, where δ is the thickness of the conductor and
η ≡ 1/(μ0σ) is the resistivity introduced in Sect. 2.12.

http://dx.doi.org/10.1007/978-981-287-600-3_3
http://dx.doi.org/10.1007/978-981-287-600-3_6
http://dx.doi.org/10.1007/978-981-287-600-3_2


5.13 Vacuum Fields 193

Fig. 5.8 Vacuum gap
electric field: close-up of the
electric field in the vicinity
of an insulating gap, showing
how the tangential
component is essentially a
delta function

(5.111) that (∇ς) ·∇×E = −∇· (∇ς×E) = 0 on the surface of a perfect conductor,
we obtain

∂(B · ∇ς)

∂t
= 0 (5.112)

if it is stationary (so ∂t ς = 0). Thus the boundary condition at the conductor is
equivalent to

n̂ · B = constant in time t, (5.113)

and frequently B can be split into a steady background value B0 and a fluctuating
time-dependent perturbation B̃—i.e. the boundary condition at the stationary perfect
conductor for the time-dependent component reduces to n̂ · B̃ = 0, so in an ideal
MHDmodel we have simple Cauchy boundary conditions on the normal components
of the velocity and magnetic field fluctuations.

However, we note that (5.110) must be modified if the conductor is connected
to external circuitry such as a power supply and the current is changing with time.
This is a consequence of the conductor being broken somewhere (Fig. 5.8), in order
to run out leads to the external world or to prevent the copper shell shorting out the
Ohmic heating transformer in the case of an old-fashioned tokamak. This break may
be idealised as a gap of infinitesimal width. Although E is almost everywhere normal
to the surface of the conductor, its tangential component is then infinite across the
gap, so effectively (5.110) must be replaced by

n̂ × E = −Vk δ(ζ) n̂ ×∇ζ (on a conductor, k say), (5.114)

where ζ is a tangential coordinate such that the break in the conductor corresponds to
the surface ζ = 0 and δ(ζ) is the Dirac delta function. The quantity Vk is the “voltage
across the gap” or electromotive force applied to the conductor k. Since there is no
gap in the plasma, Vk = 0 when k is plasma. Although E is highly singular at
the gap, this does not affect B since it is determined by (5.107)–(5.113), none of
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which involve E directly. However, (5.114) does have the important consequence
of relaxing a constraint on the magnetic flux φk enclosed by a conductor, which
follows by applying Stokes Theorem (1.57) to a circuit Ck around the surface of the
conductor. Thus (5.4) yields

�̇k = Vk, (5.115)

where �k ≡ ∫
Sk

B · dS and �̇k ≡ d�k/dt, independent of the choice of Sk—cf.
(5.112). In Sect. 5.8, it was shown that (5.115) holds even if the topology of the
conductor is such that Sk is partly bounded by an ideal plasma. Often, �k is written
in terms of the matrix of self and mutual inductances Lkl—i.e.

�k =
∑

l

Lkl Il , (5.116)

where Il are the currents flowing in the l’th conductor (or plasma). Then (5.114)
yields

∑

l

d

dt
(Lkl Il) = Vk, (5.117)

where the Lkl cannot be assumed independent of time due to the plasma motion.

5.14 Resistive MHD Model

We recall that Alfvén initially predicted the existence of MHD waves under the
incompressible approximation. This led to early laboratory experiments using liquid
mercury to investigate MHD waves—but as mentioned in Sect. 5.5, the resistivity of
mercury is significant, so let us now again include the resistive equation of magnetic
induction (5.30) in the mathematical model.

On neglecting gravity and assuming a slowly varying background flow in a quasi-
uniform magnetic field, we recall that the equation of motion yielded the linearised
perturbation Eq. (5.51), involving the frequency ω′ = ω − k · v in the local rest
frame. Since B × (k × B1) = k B · B1 − k · B B1, this perturbation equation may be
rewritten

ρω′v1 = k(p1 + μ−1
0 B · B1) − μ−1

0 k · BB1. (5.118)

The incompressible approximation ∇· v1 = 0 is appropriate for liquid mercury such
thatk · v1 = 0, andwe also havek · B1 = 0 since∇· B1 = 0. Thus p1+μ−1

0 B · B1 =
0 from (5.118), and hence also

ρω′v1 = −μ−1
0 k · B B1. (5.119)

http://dx.doi.org/10.1007/978-981-287-600-3_1
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The linearised ideal magnetic induction perturbation equation (5.53) is replaced
by the resistive form from (5.30) for an incompressible fluid—i.e.

(ω′ + iηk2)B1 = k × (B × v1) = − k · B v1. (5.120)

Equations (5.119) and (5.120) immediately produce the resistive dispersion relation
ω′2 + iηk2ω′ − k2‖c2A = 0 where cA = B/

√
μ0ρ is the Alfvén speed as before, so

the Alfvén wave dispersion relation ω′2 = k2‖c2A is recovered in the ideal MHD limit

η → 0. However, the roots ω′ = −iηk2 ±
√

k2‖c2a + η2k4/2 of the resistive relation

imply the phase speed of theAlfvénwave is significantly increased due to the positive
definite resistive term under the square root, while the resistivity produces significant
damping defined by the first term. These resistive effects therefore obscured Alfvén
wave propagation in the laboratory experiments using mercury.

A compressible resistiveMHDmodel is sometimes considered, whenEqs. (5.33)–
(5.35) are supplemented by (5.30). Gravity may also be included—e.g. in a gener-
alisation of the analysis of Sect. 4.7 to the interface between conducting fluids or
plasmas in magnetic fields, including simplistic stability investigations where the
gravity is presumed to simulate magnetic field curvature.

Let us also note that the term proportional to k · B in Eq. (5.120) becomes small
in any neighbourhood where k becomes parallel to B. Although this may not be so
important when the resistivity η is large, as in the case of mercury in the discussion
above, there can again be singular perturbations associated with higher derivatives
introduced by the resistive term ∇× (η∇× B) in (5.30) to consider when η is small.
Indeed, in analogy with boundary layers in fluids of small shear viscosity (high
Reynolds number flows), the small resistivity may only be significant in a narrow
region where k · B � 0, an observation particularly important in plasma stability
theory—cf. Sect. 6.4 and subsequently. Thus in the next chapter we will first discuss
ideal MHD stability on assuming the model outlined in Sect. 5.7, before proceeding
to consider several important resistive instabilities that may arise.Wewill then incor-
porate plasma viscosity as another important non-ideal property in Sect. 6.11, since
it reduces the growth rate of the singular resistive modes and produces enhanced
plasma heating in the resulting viscoresistive layer—before finally discussing non-
ideal instabilities due to the Hall effect, when theMHDmodel is modified as outlined
in the next section.

5.15 Hall MHD Model

Hall MHD is widely interpreted to mean theory for a collisionless quasi-neutral
plasma, where the generalised Ohm’s law (2.98) is reduced to

E + v × B = 1

ne
( j × B − ∇ pe), (5.121)

http://dx.doi.org/10.1007/978-981-287-600-3_4
http://dx.doi.org/10.1007/978-981-287-600-3_6
http://dx.doi.org/10.1007/978-981-287-600-3_6
http://dx.doi.org/10.1007/978-981-287-600-3_2
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when both the inter-species and the electron pressure gradient are included. Some
authors have omitted the electron pressure gradient term on the right-hand side of
(5.121) such that

E + v × B = 1

ne
j × B. (5.122)

From either (5.122) or (5.121) when (2.99) applies, the consequent Hall equation of
magnetic induction is

∂B
∂t

= ∇× (v × B) − ∇×
(

1

ne
j × B

)
(5.123)

= ∇× (v × B) − ∇×
(

1

μ0ne
(∇× B) × B

)
,

on taking the curl and invoking (5.18) as before. Since

− ∇×
(

1

ne
j × B

)
= − 1

ne
∇× (j × B) + 1

n2e
∇n × (j × B), (5.124)

the induction equation (5.123) includes aHall termeven if the plasma is homogeneous
(n is constant), and a second contribution if it is not (∇n �= 0). In the Exercise below,
it emerges that the first term is responsible for socalledwhistler waves, and the second
term for Hall drift and shock-like waves. Alternatively, from (5.31) we have

− ∇×
(

1

μ0ne
(∇× B) × B

)
= ∇×

[
1

μ0ne

(
∇⊥

B2

2
− B2κ

)]
, (5.125)

where in particular we note the term involving the magnetic field curvature vector κ
defined by (2.81). Moreover, the Hall term in (5.123) carries higher derivatives into
the ideal magnetic induction equation (5.38) that are a potential source of singular
behaviour, similar to but independent of the singular behaviour that may arise due
to including the resistive term (or perhaps other terms) in the generalised Ohm’s law
(2.98).

In a quasi-neutral ion-electron plasma, the reduced form (5.122) is equivalent to
E + ve × B � 0 because the electron velocity is ve � v − j/(ne) and v � vi since
me � mi , aswenoted inSect. 2.10.Thus the electrons are “frozen-in” to themagnetic
field but not the ions, which are therefore sometimes called “un-magnetised”. It is
also said that the Hall term decouples the ion and electron motion on ion inertial
length scales, when collisionless Hall MHD is invoked to describe plasmas where
the ion gyroradius is very large indeed. However, a Hall MHD model need not be
collisionless. Thus in particular, when the term j/σ is retained in the generalised
Ohm’s law (2.98) in a resistive Hall model, the magnetic field is not “frozen-in” to
either the ions or the electrons, and we recall the corresponding equation of magnetic
induction is then (2.100)—i.e.

http://dx.doi.org/10.1007/978-981-287-600-3_2
http://dx.doi.org/10.1007/978-981-287-600-3_2
http://dx.doi.org/10.1007/978-981-287-600-3_2
http://dx.doi.org/10.1007/978-981-287-600-3_2
http://dx.doi.org/10.1007/978-981-287-600-3_2
http://dx.doi.org/10.1007/978-981-287-600-3_2
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∂B
∂t

= ∇× (v × B) − ∇× (η∇× B) − ∇×
(

1

μ0ne
(∇× B) × B

)
, (5.126)

involving the resistivity term with coefficient η due to particle collisions in addition
to the Hall term as in (5.123). The relevant system of MHD equations again includes
(5.33), (5.34) and either (5.35) or ∇· v = 0. In Sect. 6.12, we discuss instabilities
due to the Hall effect that arise in the collisionless and the collisional models—i.e.
when either (5.123) or (5.126) is adopted, respectively.

Exercise

(Q1) Consider a Hall plasma of infinite extent permeated by a uniform magnetic
field B = B ĵ (B constant).
(a) If the plasma is uniform (number density n constant), such that the corre-
sponding perturbed magnetic induction equation is

∂B1

∂t
= − 1

μ0ne
∇× [(∇× B1) × B] = − 1

μ0ne
B · ∇ ∇× B1

on neglecting any velocity perturbation (given that the ion component is not
“frozen-in” to the magnetic field), show that the frequency of plane waves with
wave number k propagating in the direction of the magnetic field B is

ω = k2B

μ0ne
.

(b) If the plasma is stratified perpendicular to the magnetic field, such that the
number density is n(z) say and the corresponding perturbedmagnetic induction
equation is well approximated by

∂B1

∂t
= 1

μ0n2e
∇n × (∇× B1 × B),

show that the frequency of plane waves with wave number k propagating trans-
verse to the magnetic field B is

ω = k B

μ0ne
κ (where κ ≡ 1

n

dn

dz
characterises the stratification).

5.16 Advected Non-ideal MHD Discontinuities�

Advected discontinuities in the ideal MHD model were considered in Sect. 5.12,
where under particular assumptions on field behaviour we found that there may
be: (1) a contact discontinuity, when only the density may be discontinuous; or

http://dx.doi.org/10.1007/978-981-287-600-3_6
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(2) a tangential discontinuity, when not only the density but also either or both
of the tangential velocity and magnetic fields—and hence the pressure—may be
discontinuous. We mentioned that there is no natural small scale length in ideal
MHD, and represented an assumed infinitesimally thin transition layer that may
change spatially in negligible time as an interface on the kinematic level surface
ς(r, t) = 0 where ς(r, t) changes sign. Nevertheless, in principle we could proceed
to consider many non-ideal plasma effects localised within the transition layer of
finite width, analogous to the simpler inclusion of viscosity in the brief discussion
of fluid shock structure in Sect. 4.12. On the other hand, when the ideal MHDmodel
is abandoned and some non-ideal model is to be applied extensively throughout
the plasma, for every non-ideal effect included in the model there is an associated
characteristic length scale that is larger than the width of any conceivable transition
region where other excluded non-ideal effects might be considered localised. Thus
rather than attempt to resolve the physical structure within the associated transition
region due to the excluded non-ideal effects, it may still be possible to envisage
discontinuities in the particular extensive non-ideal MHD model adopted. On the
other hand, unless the length scale over which some field variable varies significantly
is rather smaller than the width of the transition layer associated with the particular
non-ideal model, there may be no need to envisage a corresponding surface intensity.

In adopting a resistive MHD model, it is implicit that the resistive length scale is
larger than thewidth of any conceivable transition region,with the resistive term in the
equation of magnetic induction to be retained in the outer region. As in electromag-
netic theory, it is then often assumed that no surface current j∗ need be introduced—
i.e. j = j− + ( j+ − j−)H(ς) may be assumed in addition to (5.84)–(5.87) at the
interface, such that none in the extended set of MHD field quantities {ρ, p, v, B, j}
has Dirac delta function behaviour at the interface although their derivatives may be
singular there. Thus (5.92) is recovered, but (5.99) is replaced by

n̂ × �B� = 0 on ς = 0 (5.127)

such that �B� = 0—i.e. themagnetic fieldB is continuous. The equation of motion in
the form (5.39) then implies �p� = 0—i.e. the pressure is also continuous.22 Further,
the condition from the third pre-Maxwell equation (5.18) is reduced to

n̂ × �E� = 0 on ς = 0. (5.128)

22In passing, we note that this pressure continuity condition does not challenge the traditional notion
of plasma confinement by a magnetic field, because any jump in the magnetic field envisaged under
the idealMHDmodel (when j∗ �= 0) corresponds to a continuous but steep variation in themagnetic
field under any resistiveMHDmodel—i.e. the surface current in the idealMHD boundary condition
(5.99) occupies a thicker transition layer than that envisaged under condition (5.127), but which is
nevertheless less than the macroscopic length scale of any field quantity outside it. The resistive
diffusion time is also relatively long in most time-dependent scenarios—e.g. much longer than the
time scale of the ideal and non-ideal MHD instabilities considered in the following chapter.

http://dx.doi.org/10.1007/978-981-287-600-3_4
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In addition to (5.90) from (5.33), for a plasma-plasma interface there are again
conditions obtained from the relevant equation of magnetic induction. For example,
if the resistive Hall equation of magnetic induction (5.126) rewritten as

dB
dt

= B · ∇ v − B∇· v − ∇×
[

j
σ

+ 1

ne
j × B

]
(5.129)

is adopted, then

n̂ · B �v� − n̂ ×
�

j
σ

+ 1

ne
j × B

�

= 0 on ς = 0. (5.130)

Thus inter alia, if either n̂ · B = 0 or �v� = 0 holds, then the tangential component
of j/σ +1/(ne) j × B must be continuous. If the Hall term is omitted, then condition
(5.130) obviously reduces to

n̂ · B �v� − n̂ × � j/σ� = 0 on ς = 0, (5.131)

such that in the resistive MHDmodel of Sect. 5.14 the corresponding condition from
the equation of magnetic induction reduces to continuity of the tangential component
of j/σ. (If neither n̂ · B = 0 nor �v� = 0 hold, then of course the complete form of
the relevant condition applies.)

On the other hand, in any extensive non-resistiveMHDmodel there is no reference
resistive length, and also the propensity for charged particle separation on the very
small Debye length scale foreshadowed in Sect. 5.12. Thus even if it is realistic to
assume there are similar transition regions where the resistivity is localised and the
principal MHD fields {ρ, p, v, B} are smooth and once again represented by (5.84)–
(5.87), and that there are such expressions for the ion and electron pressures pi and
pe individually, there may be an electric field intensity E∗ to also include, similar
to the current density j∗ in (5.100) previously considered—i.e. the electric field is
represented as

E = E−+ � E � H(ς) + E∗|∇ς| δ(ς) (5.132)

corresponding to significant charge separation and an associated double (dipole) layer
at the interface, as foreshadowed in Sect. 5.12 and well known in electromagnetic
theory (cf. p. 191 in Ref. [11]). For example, in the collisionless Hall MHD model
there is then not only the condition

n̂ · � p I + T � = 0 on ς = 0 (5.133)

from the equation of motion (5.34) but also

(ne E)∗ = −n̂ · �peI + T � = �pi � n̂ on ς = 0 (5.134)
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(where p = pi + pe) from (5.121), on recalling that j × B = μ−1
0 (∇× B) × B =

−∇·T where T denotes the magnetic stress tensor defined in Sect. 5.7. Condition
(5.134) implies continuity of ion pressure (�pi � = 0) if and only if (ne E)∗ = 0—and
nonzero E∗ implies

n̂ × �E� − n̂ × ∇2E∗ = n̂ · v �B� on ς = 0 (5.135)

from (5.37), where ∇2 denotes the two-dimensional vector differential operator in
the plane of the level surface ς = 0. There is also observational evidence for even
more complicated physics, such as double discontinuities.

It seems that such physical complexities may have led some authors to avoid any
discussion of a free boundary, and to consider only boundary conditions at a rigid
wall that is usually assumed to be perfectly conducting, not only in MHD duct flow
but also in analysing plasma stability—i.e. to adopt the conditions n̂ · v = 0 and
n̂ · B = 0, and sometimes but not always n̂ × E = 0, familiar from fluid mechanics
and electromagnetic theory. However, any double layer or plasma sheath at the wall
renders not only n̂ × E �= 0 from (5.135) but also

(∇ς) · ∇× E = −∇· (∇ς × E ) = −∇· (∇ς × ∇2E∗),

when the relevant result (5.113) no longer follows. Moreover, there are some signifi-
cant ideal andnon-idealMHDinstabilities inherently associatedwith a free boundary,
including important cases directly related to the classical Rayleigh–Taylor instability
that was briefly discussed in Sect. 4.7.
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Chapter 6
MHD Stability Theory

As in the earlier discussion on waves, disturbances from an initial equilibrium are
usually assumed small enough to justify linearisation of the perturbed equations in
themathematicalmodel, as an important first step to define the evolution of a complex
system in this chapter. Normal mode analysis involving Fourier forms for the distur-
bance is therefore often invoked when the initial state is one-dimensional (dependent
on only one spatial variable), except that the time exponent is assumed to carry a real
part, often with the additional imaginary part (when there is an accompanying oscil-
lation). The sign of the real part then determines whether or not the disturbance grows
or decays exponentially—i.e. whether or not the system is linearly unstable or stable,
respectively. Identification of the stabilising and destabilising forces is particularly
important in MHD stability analysis, in both laboratory and astrophysical applica-
tions. In the case of the ideal MHD model, a variational formulation (an energy
principle) permits the analysis of more complicated geometries, such as in mod-
ern experiments in controlled thermonuclear fusion research. Important stabilising
and destabilising forces are identified under this formulation, which is then applied
to investigate the stability of cylindrical and toroidal configurations. More direct
analysis is usually followed to investigate instability in non-ideal MHD models, but
we demonstrate an extension of the variational formulation that includes viscosity.
Although the main application we consider is magnetic confinement in thermonu-
clear research, the final section on Hall instability includes an aspect relevant to
laser-driven fusion, and some topics of interest in astrophysics and solar physics
are discussed there and elsewhere. The additional bibliography for this chapter once
again provides suggested further reading.

6.1 Introduction

In Sect. 4.7, we discussed how a small perturbation of an initial state in a fluid may
grow under gravity (Rayleigh–Taylor instability) or due to velocity shear (Kelvin–
Helmholtz instability). Since the goal of magnetic confinement demands a design
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that contains very hot plasma long enough for thermonuclear fusion to occur, the like-
lihood that certain perturbations grow significantly in that time presents an obvious
obstacle [1, 2, 11]. A comprehensive theoretical investigation of the stability of any
initial state of a dynamical system requires the consideration of all possible perturba-
tions, but to some extent that task in relevant fusion research may be reduced by first
considering the competition between stabilising forces such as magnetic tension and
the various destabilising forces thatmay exist.We previouslymentioned an early sug-
gestion that gravity in Cartesian geometry might be regarded as a pseudo-centrifugal
term simulatingmagnetic field curvature (cf. Sect. 5.7)—i.e. the gravitational acceler-
ation g might be assumed to represent v2th/Rc, where vth is the representative thermal
speed of the charged particles following the magnetic field lines with radius of curva-
ture Rc. Although simplistic, this idea does provide some preliminary understanding
prior to incorporating more realistic magnetic field geometry in the mathematical
theory presented later in this chapter. Although we cannot attempt to provide a very
thorough presentation ofMHD stability in this book, we identify some important sta-
bilising and destabilising mechanisms, and then extend our stability discussion from
ideal MHD to non-ideal models as previously mentioned at the end of Sect. 5.14.

Over the years, various definitions of stability have been proposed. One definition
is that a dynamical system is stable if and only if its undisturbed path of evolution
is the limit of any disturbed path, a definition which extends the concept to time-
dependent initial states. However, our purposes are well served by the earlier notion
of a departure from an initially static state (cf. Sect. 5.10), or else from a steady
(time-independent) state. The simplest stability theory assumes small perturbations
of the initial state, such that the governing equations in the fundamental field variable
perturbations are linear [3]. Sometimes the resulting initial value problem may be
solveddirectly to decidewhether the perturbation growsor decays in time (or possibly
remains constant), but more commonly the Fourier form

f (r, t) = f (r) exp(−iωt) (6.1)

is again exploited, as also mentioned in the preamble above. Thus the initial value
problem for the evolution of the small perturbations becomes an eigenvalue prob-
lem as before, where a system of differential equations is solved subject to relevant
boundary conditions, which we discussed in Sect. 5.12 for ideal MHD and subse-
quently in Sect. 5.16 for some non-ideal models. However, we now anticipate that
the eigenfrequency ω may have an imaginary part that renders a real exponent in
time, as first encountered in Sect. 4.7. The perturbation then decays exponentially if
the imaginary part of ω is negative, and the initial state is said to be exponentially
stable when that is so for all allowable small perturbations. On the other hand, if
the imaginary part of ω is positive for even one such perturbation, which therefore
grows exponentially, the initial state is exponentially unstable. A perturbation is of
course oscillatory whenever the real part of ω is nonzero, and if this perturbation
grows the initial state is sometimes called overstable, as we mentioned at the end of
Sect. 4.7. When the imaginary part of ω goes through zero for certain values of the
system parameters, we may refer to a marginally (or neutrally) stable point that can
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often separate a stable from an unstable region in parameter space. This transition
is often notable in developing stability theory—e.g. to suggest the appropriate flute
ordering in toroidal geometry in Sect. 6.7, or wave number ranges where non-ideal
instabilities are found to be significant such as in Sect. 6.9. There could be other than
exponential instability, but that is not explored here.

An eigenvalue problem may be treated in at least two ways. The direct approach
exploiting Fourier analysis often provides the solution for the perturbation functions
satisfying the relevant system of governing differential equations and boundary con-
ditions. Another way is to express the eigenvalue problem as a variational problem,
involving a suitable functional. At the end of the eighteenth century, Laplace noted
that any disturbance of a liquid in stable equilibrium under gravity increases the
potential energy. In the second half of the nineteenth century, Lord Rayleigh showed
that minimising the potential energy determines the eigenfrequencies of an elas-
tic system, and after Hamilton the variational approach became a frequent feature in
modernmathematical physics. A variational energy principle to investigatemagneto-
hydrostatic equilibria under the ideal MHDmodel is discussed in Sect. 6.5. However,
an initial state that is stable under the ideal MHD model may be rendered unstable
when non-ideal plasma properties such as resistivity or Hall current are included, so
further investigation is necessary. Variational formulations and analytical solutions
are sometimes still possible. On the other hand, numerical simulation is often needed
to investigate the stability of complex magnetic field designs, even in the linear ideal
MHD model.

It is alsowell known that a linearly stable initial statemay be unstable to larger per-
turbations, when linearisation of the perturbation equations is no longer valid. Ana-
lytical investigations of nonlinear behaviour are usually qualitative rather than quan-
titative, where phase diagrams or the construction of non-negative energy integrals or
associated Lyapunov functions can assist [4]. Undergraduate textbooks sometimes
refer to a ball under gravity on a surface, to illustrate linear and nonlinear stability
considerations in an elementary way. Thus there is a stable point in a valley, about
which the ball oscillates for small perturbations, but this point can be rendered unsta-
ble by a perturbation large enough to take the ball over a neighbouring hill through
its peak, which is of course a linearly unstable point. Indeed, a sufficiently large
perturbation could take the ball from the valley onto a neighbouring plane, which
consists of marginally stable points according to linear theory but may likewise be
unstable for such large perturbations. Friction might be expected to inhibit the per-
turbation, but it would need to be particularly strong to entirely prevent any of those
outcomes. On the other hand, with or without friction a ball at the peak of a hill could
conceivably access a neighbouring valley, so that a linearly unstable configuration
may be stable to larger perturbations.

However, linearMHDstability theory has been emphasised historically—not only
because linearity permits the powerful superposition techniques of Fourier analy-
sis, but also because fast instabilities readily identified in the linear theory must
be avoided altogether for a successful magnetic confinement design. We shall see
that ideal MHD instabilities proceed on the time scale associated with the Alfvén
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speed, and that non-ideal instabilities can also proceed much faster than the resistive
diffusion time.

We begin with a discussion of normal modes in a simple model in the next section,
which leads to an elementary but informative analysis of ideal interchange instabili-
ties in Sect. 6.3. Magnetic field shear introduced in Sect. 6.4 localises the instability;
and in Sect. 6.5 we develop the powerful variational approach to ideal MHD stability
analysis, prior to discussing ideal instabilities in cylindrical geometry in Sect. 6.6 and
then toroidal geometry in Sect. 6.7. There is then a discussion of magnetorotational
theory (a topic of astrophysical interest) in Sect. 6.8, before we proceed to consider
resistive instabilities in Sects. 6.9 and 6.10. The role of plasma viscosity in damping
instability on the one hand and enhancing the energy released in magnetic reconnex-
ion on the other is discussed in Sect. 6.11, and finally we devote Sect. 6.12 to Hall
instability.

6.2 Normal Modes in a Plasma Slab

Let us assume a magnetohydrostatic configuration defined by (5.63) when v = 0, and
again distinguish perturbation fields by the subscript 1 as in earlier chapters. In the
ideal MHD model of Sect. 5.7, the corresponding first order linearised equations for
small magnitude perturbations are

∂ρ1

∂t
+ v1 · ∇ρ + ρ∇· v1 = 0, (6.2)

ρ
∂v1
∂t

+ ∇ p1 = ρ1g + μ−1
0 [(∇× B) × B1 + (∇× B1) × B], (6.3)

∂ p1
∂t

+ v1 · ∇ p + γ p0∇· v1 = 0, (6.4)

∂B1

∂t
= ∇× (v1 × B), (6.5)

with the propagated condition
∇· B1 = 0. (6.6)

These linear perturbation equations of course yield the ideal Alfvén and magne-
tosonic waves discussed in Sect. 5.9, but there can also be various MHD instabilities
analogous to the Rayleigh–Taylor and Kelvin–Helmholtz instabilities discussed in
Sect. 4.7. As mentioned in the previous section, we could investigate instability by
considering such perturbation equations subject to appropriate initial and boundary
conditions—i.e. as initial value problems. The solution of such an initial value prob-
lem in principle defines the time evolution of any assumed initial perturbation, and
that approach has been followed in numerical simulation. However, the consideration
of normal modes [Glossary Section“Normal Mode”] usually provides an efficient
method for stability analysis.

http://dx.doi.org/10.1007/978-981-287-600-3_5
http://dx.doi.org/10.1007/978-981-287-600-3_5
http://dx.doi.org/10.1007/978-981-287-600-3_5
http://dx.doi.org/10.1007/978-981-287-600-3_4
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A comprehensively analytic approach to determining the full spectrum of normal
modes is usually only feasible for one-dimensional cases—i.e. when the unperturbed
configuration is inhomogeneous with respect to a single spatial coordinate only—
although some analytic simplification can be effected in more complicated geome-
tries using suitably chosen asymptotic limits. For fuller normal mode analysis, large
computer MHD codes are routinely used in the design of expensive fusion research
facilities (to avoid building a potentially unstable system), but the insight gained from
studying simple geometries and asymptotic limits is useful in the delicate numerical
analysis required towrite such codes. Thus in this chapterwe first concentrate on one-
dimensional slab and circular-cylinder models [Glossary Section“SlabModel”], and
later an asymptotic short-wavelength approach to understanding more general cases.

For the slab geometry studied in this section, we adopt the gravitational con-
finement Cartesian coordinate convention [Glossary Section“Slab Model”]. As in
Chap.4, we can factor out the nontrivial z-dependence by separation of variables
using the Fourier form

f (r, t) = f (z) exp[i(k · r − ωt)] (6.7)

where k = kx î + ky ĵ (ω and k are constant), representing a normal mode [Glos-
sary Section“Normal Mode”] eigenfunction. As in the discussion of sound waves in
Sect. 4.3, we note it is sometimes assumed that the disturbances have length scale
rather smaller than the extent of the medium or the equilibrium scale, and an analo-
gous eikonal ansatz may be introduced to represent such localised modes. However,
larger scale instabilities can also be important, when appropriate plasma boundary
conditions apply. In any case, the main objective is to derive the dispersion relation
as before, except now as a relation between the generally complex frequency ω and
the two-dimensional wave number vector k.

6.3 Ideal Gravitational Interchange Instabilities

Hydrodynamic Rayleigh–Taylor instabilities arise whenever there is a decreasing
pressure gradient (decreasing density) in the direction of any applied acceleration,
but it is again useful to first discuss a sharp density discontinuity between two homo-
geneous regions in a vertical gravitational field (cf. Sect. 4.7). Thus let us consider a
magnetohydrostatic configuration (no flow),where plasma under gravity in a uniform
horizontal magnetic field has a density discontinuity at the plane interface z = 0 (an
ideal MHD contact discontinuity, discussed in Sect. 5.12) such that

ρ = ρ1H(z) + ρ2H(−z), g = −g k̂, v = 0, B = Bx î + By ĵ, (6.8)

where ρ1, ρ2, g and now B are all constants and H(z) again denotes the Heavi-
side step function. As before, the hydrostatic pressure is continuous but its gradient
dp/dz = −ρg (z �= 0) is discontinuous (with density) at the interface z = 0, since the

http://dx.doi.org/10.1007/978-981-287-600-3_4
http://dx.doi.org/10.1007/978-981-287-600-3_4
http://dx.doi.org/10.1007/978-981-287-600-3_4
http://dx.doi.org/10.1007/978-981-287-600-3_5
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magnetic field is assumed to be horizontal and identical on both sides of the interface
in this simple case. Once again, assuming an infinitesimally thin transition region
means in practice that the perturbation wavelengths must be significantly larger than
its thickness, and there is no shock.

The “frozen-in” magnetic field concept discussed in Sect. 5.8, and the implied
increase in magnetic tension when the interface is perturbed, suggests that the mag-
netic field should oppose the pressure-driven instabilities that always occur when
ρ1 > ρ2 in the absence of the magnetic field (B = 0). If incompressible disturbances
are considered such that ∇· v1 = 0, where the subscript 1 denotes the perturbation
quantity as before, from (6.2) the density is unperturbed everywhere outside the tran-
sition region at the interface in the present simple mathematical discussion. Thus as
in Sect. 4.7, the gravity only enters the analysis in the pressure boundary condition at
the perturbed interface, where there is the density discontinuity. On invoking (6.7),
the residual linearised ideal MHD perturbation equations (6.3) and (6.5) reduce to

− iωρ v1 + ∇ �1 = iμ−1
0 k · B B1, (6.9)

− ωB1 = k · B v1, (6.10)

where �1 = p1 + μ−1
0 B · B1 denotes the total pressure perturbation and B · ∇

is replaced by i k · B. This system reduces to the hydrodynamic case for pre-
cisely perpendicular propagation (where k‖ = k · B/B = 0), so the initial
uniformmagnetic field cannot stabilise the corresponding particularRayleigh–Taylor
mode found in Sect. 4.7—and provides us with an early indication that k‖ � 0 (the
“flute condition”, in nomenclature clarified in Sect. 6.6) can be quite significant in
MHD stability theory.

Assuming ρω2 �= μ−1
0 (k · B)2 to exclude stable Alfvén waves, the dispersion

relation for MHD perturbations (when B1 �= 0) follows for the resulting irrotational
flow—i.e.wehave∇× v1 = 0 and∇× B1 = 0, in addition to∇· v1 = 0 and∇· B1 =
0. The non-cavitation condition (4.65) met in the hydrodynamic discussion remains
for theMHDcontact discontinuity, rendering �v1z� = 0 in the linearised theory—but
we now have the linearised condition of total pressure balance ��1 + ζ(dp/dz)� = 0
or ��1� + �ρ� gζ = 0 (cf. Sect. 5.12) to combine with the kinematic condition
−iωζ = v1z , which we apply to good approximation at z = 0 (cf. also Sect. 4.7).

The bounded velocity perturbation satisfying ∇× v1 = 0 and ∇· v = 0 and the
continuity condition �v1z� = 0 is v1z = C exp[−k|z| + i(k · r − ωt)] where C is a
constant, and the equation

d�1

dz
= (−iω)−1[ρω2 − μ−1

0 (k · B)2] v1z

obtained from the z-components of (6.9) and (6.10) then produces the dispersion
relation. Thus we obtain

��1� =
∫ 0+

0−
d�1

dz
dz = (iωk)−1[(ρ2 + ρ1)ω2 − 2μ−1

0 (k · B)2] v1z

http://dx.doi.org/10.1007/978-981-287-600-3_5
http://dx.doi.org/10.1007/978-981-287-600-3_4
http://dx.doi.org/10.1007/978-981-287-600-3_4
http://dx.doi.org/10.1007/978-981-287-600-3_4
http://dx.doi.org/10.1007/978-981-287-600-3_5
http://dx.doi.org/10.1007/978-981-287-600-3_4
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at z = 0, to render

ω2 = (ρ2 − ρ1)gk + 2μ−1
0 (k · B)2

ρ2 + ρ1
(6.11)

as the generalisation of (4.74). Themagnetic field term in (6.11) opposes the pressure-
driven instability that would otherwise occur for ρ1 > ρ2, and the magnetic field is
usually large enough such that ω2 is non-negative except when k‖ = k · B/B � 0.
Thus there are ideal MHD interchange instabilities when

(
k‖
k

)2

<
ρ1 − ρ2

ρ2 + ρ1

g

kc2A
(6.12)

even if the magnetic field B �= 0 is so large that cA = B/
√

μ0ρ (the Alfvén speed)
is dominant, as is typical in magnetic confinement systems. On the other hand,
the essentially hydrodynamic case when k‖ = 0 involves no increase in magnetic
energy, for the horizontal magnetic flux tubes associated with the higher density
region readily interchange with their neighbours in the lower density region across
the interface. Indeed, when ρ1 � ρ2 the corresponding interchange mode localised
over a distance O(k−1) has the classical Rayleigh–Taylor growth rate approaching√

gk—cf. Sect. 4.7.

6.4 Magnetic Field Shear and Slab Modes

As the simple analysis for a density discontinuity in the previous section indicates,
flute-like (k‖ � 0) ideal MHD interchange instabilities can eliminate any density
gradient at the rapid rate characterised by theAlfvén speed.However, itwas suggested
that MHD interchange instabilities would be inhibited when the direction of the
magnetic field varies spatially—i.e. if there is magnetic field shear. The underlying
physical notionwas that the interchange of neighbouring flux tubes should then imply
an increase in the magnetic energy of the system that reduces the energy available
for their displacement, but it soon emerged that shear stabilisation is not effective
everywhere.

Let us consider a plane slab of inhomogeneous plasma vertically stratified under
gravity—i.e.

∇ρ = dρ

dz
k̂, g = −g k̂, v = 0, (6.13)

with the magnetic field B(z) again in the horizontal plane (Bz = 0) but now varying
in direction (dB/dz �= 0). The initial pressure balance then corresponds to

d

dz

(
p + μ−1

0 B2
)

+ ρ(z)g = 0, (6.14)

http://dx.doi.org/10.1007/978-981-287-600-3_4
http://dx.doi.org/10.1007/978-981-287-600-3_4
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and on again invoking the Fourier form (6.7) the essential linearised perturbation
equations for incompressible perturbations become

− iωρ1 + v1z
dρ

dz
= 0, (6.15)

−iρωv1 + ∇�1 = ρ1g + μ−1
0

(
ik · B B1 + B1z

dB
dz

)
, (6.16)

−ωB1 = k · B v1, (6.17)

∇· v1 = 0, (6.18)

and the propagated condition ∇· B1= 0, where �1 = p1 + μ−1
0 B · B1 is the total

pressure perturbation as before. The gravity term ρ1g now appears in the perturbation
equation (6.16), introducing the density gradient dρ/dz to that equation on eliminat-
ing the perturbed density ρ1 using (6.15). Elimination of�1 between the component
equations of (6.16) then yields

d

dz

(
ρω

dv1z

dz

)
− ρωk2v1z

= k2g

ω

dρ

dz
v1z + 1

μ0

[
d2(k · B)

dz2
B1z − k · B

(
d2

dz2
− k2

)
B1z

]
, (6.19)

and then elimination of B1z using the z-component of (6.17) produces the governing
differential equation

d

dz

([
ρω2 − μ−1

0 (k · B)2
] dv1z

dz

)

− k2
[
ρω2 − μ−1

0 (k · B)2
]
v1z − k2g

dρ

dz
v1z = 0. (6.20)

Assuming the plasma is confined by horizontal rigid walls or the plasma is infinitely
deep (such that v1z vanishes at the plasma boundaries), on integrating (6.20) over
the domain of z we obtain the corresponding Rayleigh variational form

ω2 =
∫

ρ
[

k2‖c2A| dv1z/dz|2 + k2
(

k2‖c2A − gκ
)

|v1z|2
]

dz
∫

ρ
(| dv1z/dz|2 + k2| v1z |2

)
dz

(6.21)

where κ = ρ−1 dρ/dz = d(ln ρ)/dz is a measure of the density gradient, with k‖
and cA again denoting the parallel component of the wave number and the Alfvén
speed, respectively. Thus in particular the plasma configuration is unstable to flute-
like interchange modes localised in the neighbourhood of the resonance surface
where k‖ = 0 (z = zs say), provided gκ is sufficiently positive there—i.e. sufficient
to overcome the positive definite stabilising contributions from the terms involving
k2‖c2A, in the integral in the numerator of (6.21) evaluated over that neighbourhood.



6.4 Magnetic Field Shear and Slab Modes 211

It is notable that the governing differential equation (6.20) is singular where

ρω2 = μ−1
0 (k · B)2, (6.22)

which is the dispersion relation for Alfvén waves. The associated inertial term ρω2

is evidently significant near k‖ = 0, and this term shall be reconsidered later when
non-ideal effects are incorporated.

Exercise

(Q1) When there is no field shear, the governing equation (6.20) reduces to

d

dz

(
ρ

dv1z

dz

)
− k2ρ v1z − k2g

ω2

dρ

dz
v1z = 0

—i.e. for interchange modes where k · B = 0 everywhere. If the density
ρ(z) → 0 when z ≤ 0, show that the solution v1z = C exp(−kz) in the
half-space z > 0 defines modes with the maximum classical Rayleigh–Taylor
growth rate

√
gk (cf. also the discussion at the end of the previous section).

6.5 Ideal MHD Variational Principle

6.5.1 Linearised Equation of Motion

Let us now formulate ideal MHD stability analysis in another way, which readily
allows identification of key sources of instability and has been used to investigate
various plasma configurations. Intuitively, we anticipate that a physical system is
unstable if it may move to a position of lower potential energy, as first envisaged in
Sect. 5.10.3 and then in the simple case of the ball on a surface under gravity men-
tioned in Sect. 6.1. Since the ideal MHD model excludes dissipation, any decrease
in potential energy produces an equal increase in the kinetic energy of the system.
Mathematically, it emerges that a static plasma is ideal MHD stable if and only if a
certain homogeneous quadratic form is positive definite. This form corresponds to the
variation in the potential energy due to an arbitrary virtual displacement (consistent
with the constraints).

The Lagrangian displacement ξ of a plasma fluid particle under the perturbation
is defined by

r = r0 + ξ(r0, t), (6.23)

where r0 is the original position of the particle prior to the virtual displacement. The
corresponding Lagrangian velocity perturbation v1(r0, t) = ∂tξ equalsthe lowest

http://dx.doi.org/10.1007/978-981-287-600-3_5
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order approximation to the Eulerian velocity for small ξ because

v1(r, t) = v1(r0, t) + ξ · ∇v1 + · · · (6.24)

(ξ · ∇v1 is second order), such that the linearised perturbation equations (6.2)–(6.5)
of the ideal MHD model become

∂ρ1

∂t
+ ∂ξ

∂t
· ∇ρ + ρ∇· ∂ξ

∂t
= 0, (6.25)

ρ
∂2ξ

∂t2
+ ∇ p1 = ρ1g + μ−1

0 [(∇× B) × B1 + (∇× B1) × B], (6.26)

∂ p1
∂t

+ ∂ξ

∂t
· ∇ p + γ p∇· ∂ξ

∂t
= 0, (6.27)

∂B1

∂t
= ∇×

(
∂ξ

∂t
× B

)
. (6.28)

Integrating (6.25) and (6.27) with respect to time and then eliminating ρ1 and p1
from (6.26) yields

ρ
∂2ξ

∂t2
= F · ξ, (6.29)

involving the linear dyadic operator F such that

F · ξ = μ−1
0 [(∇× B1) × B + (∇× B) × B1]

+ ∇(ξ · ∇ p + γ p∇· ξ) − g∇· (ρξ) (6.30)

where
B1 = ∇× (ξ × B), (6.31)

on integrating (6.28) with respect to time. In passing, we note that the propagated
condition ∇· B1 = 0 follows trivially from (6.31).

6.5.2 Identification of �W and Self-adjointness

In simple geometry, Eq. (6.29) can be reduced to the solution of ordinary differential
equations using separation of variables, but in more complicated geometries a vari-
ational approach is more powerful for approximation and numerical purposes. The
variational approach is based on the kinetic energy

K [ξ] = 1

2

∫

P
ρ

(
∂ξ

∂t

)2

dτ (6.32)
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and the change �W [ξ] = W [ξ] − W0 in the potential energy, where W and W0
are the respective potential energies in the perturbed and equilibrium states given by
(5.70) on neglecting gravity.1

Since there is no dissipation in ideal MHD, the sum K + �W of the kinetic and
potential energy changes must be conserved, as can be seen by integrating (5.45)
over the plasma volume P .2 Thus we must be able to obtain the equation of total
energy conservation

∂

∂t

∫

P

(
1

2
ρ

∂ξ

∂t
· ∂ξ

∂t
+ �W [ξ]

)
= 0, (6.33)

as a first integral of (6.29). Dotting both sides of (6.29) with ∂ξ/∂t , and then inte-
grating over P and rearranging appropriately, we have

∂

∂t

∫

P
1

2

[
ρ

∂ξ

∂t
· ∂ξ

∂t
− ξ· F · ξ

]
= 1

2

∫

P

{
∂ξ

∂t
· F · ξ − ξ · F · ∂ξ

∂t

}
dτ . (6.34)

Comparing (6.33) and (6.34), we first observe that they are the same form if and
only if the right-hand side of (6.34) vanishes for all possible spatial functions ξ and
∂ξ/∂t . It is notable that these are arbitrary functions, because position and velocity
may be specified independently as initial data for a second order differential equation
such as (6.29), and any instant in time can be regarded as the initial instant. Thus F
must be a self-adjoint operator, and indeed Hermitian because the coefficients of the
operators on the right-hand side of (6.30) are real.3 Although this can of course be
established explicitly from (6.30) using integration by parts (cf. [6, pp. 465–467]),
the above argument is not only much easier but also more fundamental.

1The remarkable article by Bernstein et al. (I. Bernstein, E.A. Frieman,M.D. Kruskal and R.M. Kul-
srud, Proceedings of the Royal Society London A 244, 17–40, 1958) first discussed the variational
approach to stability analysis considered in this section. Although Bernstein et al. used the notation
δW , we have designated this perturbation �W to avoid confusion with the first variation of W that
vanishes at equilibrium, as we now consider the leading term involving the second variation in the
increment to the potential energy [7]. We have also used square brackets, since W is a functional
of ξ—cf. the first footnote in Sect. 1.10.
2We will emphasise the model where the plasma extends to a fixed perfectly conducting boundary
(the wall), so that it is the plasma contribution to the potential energy perturbation that we usually
consider in this chapter, butBernstein et al. (1958) discussed the configuration described in Sect. 5.13
where there is a vacuum region between the plasma edge and the wall (cf. Sect. 6.5.3). In the course
of that extended analysis, the vector potential A replaces ξ as the field to be varied in the vacuum,
unless ξ is defined through a special “Newcomb gauge” choice A = ξ × B in order to unify the
pressureless plasma and vacuum cases [6, Sect. 8.10].
3An operator F is said to be self-adjoint in some space of interest if (η, Fξ) = (ξ, Fη) for any η
and ξ in the range of F , where the brackets denote the relevant function-space inner product—in
our case, (f, g) = ∫ f ·g dτ . The operator F is said to be Hermitian if (η∗, Fξ) = (ξ∗, Fη)∗, where
the superscript denotes the complex conjugate.

http://dx.doi.org/10.1007/978-981-287-600-3_5
http://dx.doi.org/10.1007/978-981-287-600-3_5
http://dx.doi.org/10.1007/978-981-287-600-3_1
http://dx.doi.org/10.1007/978-981-287-600-3_5
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Having established how (6.33) and (6.34) can be regarded as the same equation,
we can now identify �W [ξ] = �W [ξ, ξ], where the two-argument functional on
the right-hand side is the Hermitian form defined for general complex η and ξ by

�W [η, ξ] = −1

2

∫

P
η∗ · F · ξ dτ . (6.35)

The negative of the right-hand side F · ξ in (6.29) evidently represents the restoring
force density acting on theMHDfluid elements to resist the perturbation of the system
away from equilibrium, so �W [ξ, ξ] may be interpreted as the total work done by
the displacement εξ against the force −εF ·ξ as the time-like “switching parameter”
ε runs from 0 to 1, providing a continuous connection between the equilibrium and
perturbed states. In this pseudo-time evolution, ∂(εξ)/∂ε = ξ plays the role of
velocity and the factor 1/2 in (6.35) comes from the integral

∫ 1
0 ε dε.

Identifying �W [ξ] with an Hermitian form rather than a bilinear form has the
advantage that it is real even for normal modes in the complex exponential form

ξ(r, t) = ξ(r) exp(−iωt) (6.36)

where ω �= 0, when Eq. (6.29) becomes

− ω2ρ ξ = F · ξ. (6.37)

For constant ρ Eq. (6.37) is an eigenvalue equation, with ω2 the eigenvalue of −F/ρ
and ξ(r) the eigenvector. If ρ is not constant, then (6.37) is a generalised eigenvalue
equation,4 which can be handled in a similar way to the ordinary eigenvalue equation
by modifying the definition of inner product to include ρ as a weight function.

As in quantum mechanics, the (generalised) eigenvalue ω2 is real because F is
Hermitian, even though the eigenvector can be complex. This follows by taking a
dot product of (6.37) with ξ∗, integrating over the plasma volume to give

ω2
∫

P
ρ |ξ|2 dτ = −

∫

P
ξ∗ · F[ξ] dτ , (6.38)

and then subtracting the similar result obtained from the complex conjugate of (6.37)
and invoking the Hermitian property of F to obtain

(ω2 − ω∗2)
∫

P
ρ|ξ|2 dτ = 0,

whence ω2 − ω∗2 = 0—i.e. ω2 is real (though not necessarily positive). Thus the
system is exponentially stable (pure oscillatory) when ω2 > 0, and exponentially
unstable when ω2 < 0 (when ω is pure imaginary), with the transition from stability

4A generalised eigenvalue equation is of the form Ax = λBx .
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to instability (marginal stability) at ω2 = 0. Another well known result due to the
Hermitian property is that discrete normal modes are orthogonal, in this case with
weight function ρ.

As with �W , we extend the kinetic energy K defined in (6.32) to an Hermitian
form to allow complex normal modes in the form (6.36), by writing K = ω2Kwhere
the kinetic energy factor K is defined as the Hermitian form

K[ξ] = 1

2

∫

P

(
ρ‖|ξ‖|2 + ρ⊥|ξ⊥|2

)
dτ . (6.39)

For generality (cf. Sect. 6.7), in this definition we have allowed for MHD models
when the density is anisotropic—i.e. ρ = ρ‖b̂b̂ + ρ⊥I⊥, involving parallel and
perpendicular co to the anisotropic pressure tensor in Sect. 2.9.2. An example of the
use of this generality is in the implementation of Freidberg’s “collisionless MHD”
model (cf. [6, pp. 32–38 and 260]), which corresponds to taking ρ‖ = 0.

However, in this section we are assuming ρ‖ = ρ⊥ = ρ. Dividing both sides of
(6.38) by

∫
ρ|ξ|2 dτ and comparing with (6.35) and (6.39) suggests the functional

λ[ξ] = �W [ξ]
K[ξ] (6.40)

known as the Rayleigh quotient, with (6.38) then the statement that λ[ξ] is a gener-
alised eigenvalueω2 when ξ is a generalised eigenvector. The utility of the functional
λ[ξ] derives from the principle that the first variation δλ = (δ�W − λδK)/K van-
ishes for all δξ if and only if ξ satisfies (6.37) with ω2 = λ[ξ]. This principle allows
approximate eigenvectors to be constructed by extremising (not necessarily min-
imising) λ[̃ξ] over a class of ansatz trial functions ξ̃ in a Rayleigh–Ritz procedure,
involving a superposition of basis functions with undetermined amplitudes useful
for numerical work or an asymptotic approximation as in Sect. 6.7.

The Rayleigh quotient (6.40) provides a simple test of stability, given that the
infimum minξ(λ[ξ]) is bounded below but may be negative. Thus we can readily
identify the least stable mode, including the fastest exponential instability when
the infimum is less than zero. Since the denominator in (6.40) is obviously positive
definite, to demonstrate instability it is sufficient to identify just one permissible
displacement ξ that renders the numerator negative. On the other hand, the system
is stable if and only if the numerator in (6.40) is positive definite for all permissible
displacements. Indeed, we can interpret this stability criterion as the requirement
that the form �W [ξ∗, ξ] be positive definite, upon introducing the 1/2 factor to
identify this form with the total perturbation in the potential energy (5.70) associated
with the displacement away from equilibrium. Thus a configuration that is (locally)
stable in the ideal MHD model corresponds to a minimum in the potential energy,
as envisaged in Sect. 5.10.3—and in the simple case of the ball on a surface under
gravity, where the ball is at the bottom of a valley.

http://dx.doi.org/10.1007/978-981-287-600-3_2
http://dx.doi.org/10.1007/978-981-287-600-3_5
http://dx.doi.org/10.1007/978-981-287-600-3_5
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6.5.3 Heuristic Form of �W

Various explicit forms of �W [ξ, ξ] have been derived. On setting (6.30) in (6.35)
we have

�W [ξ, ξ] = − 1

2

∫
ξ∗ · [μ−1

0 (∇× B1) × B + μ−1
0 (∇× B) × B1

+ ∇(ξ · ∇ p + γ p∇· ξ) − g∇· (ρ ξ)] dτ , (6.41)

where the integration is over the plasma volume. Then with the help of the identities

ξ∗ · (∇× B1) × B = ∇· [(ξ∗ × B) × B1] − B1 · ∇× (ξ∗ × B), (6.42)

ξ∗ · ∇(ξ · ∇ p + γ p∇· ξ) = ∇· [(ξ · ∇ p + γ p∇· ξ) ξ∗]
− (ξ · ∇ p + γ p∇· ξ)∇· ξ∗,

(6.43)

from the Divergence Theorem (1.60) it immediately follows that

�W [ξ, ξ] =1

2

∫ [
μ−1
0 |B1|2 − ξ∗ · j × B1

+ (∇· ξ∗) ξ · ∇ p + γ p |∇· ξ|2 + ξ∗ · g∇· (ρ ξ)
]

dτ

− 1

2

∫
[ μ−1

0 (ξ∗ × B) × B1 + (ξ · ∇ p + γ p∇· ξ) ξ∗] · dS

(6.44)

where B1(ξ) = ∇× (ξ × B) on recalling (6.31). The surface integral vanishes if the
plasma is unbounded (ξ → 0 suitably at infinity) or bounded by a rigid conductor
(n̂ · ξ = 0 and n̂ · B = 0), but any negative term in the integrand of the volume
integral is of course a potential source of instability. Although the third and fourth
terms are zero for incompressible perturbations (where ∇· ξ = 0), the second and
last terms of the volume integral remain as obvious destabilising candidates. Indeed,
it is the last term reduced to ξ∗ · g ξ · ∇ρ that drives the gravitational interchange
instability of Sects. 6.3 and 6.4, when the respective density jump or density gradient
is negative in the direction of the gravity g.

Let us now neglect gravity (set g = 0) and consider a tangential discontinuity in
the classical magnetic confinement context (cf. Sect. 5.13), involving flux surfaces
defined by ∇ p = j × B (cf. Sect. 5.10). The total potential energy variation given
by (6.44) may then be expressed as—cf. Exercise (Q1):

�W [ξ, ξ] = �Wp + �Ws + �Wv, (6.45)

http://dx.doi.org/10.1007/978-981-287-600-3_1
http://dx.doi.org/10.1007/978-981-287-600-3_5
http://dx.doi.org/10.1007/978-981-287-600-3_5


6.5 Ideal MHD Variational Principle 217

in terms of the plasma contribution

�Wp = 1

2

∫
[μ−1

0 |B1|2 − ξ∗⊥ · j × B1

+ (∇· ξ∗⊥) ξ⊥ · ∇ p + γ p |∇· ξ|2] dτ

(6.46)

involving B1 = ∇× (ξ⊥ × B), the surface contribution

�Ws = 1

2

∫
|n̂ · ξ⊥|2

�

∇
(

p + B2

2μ0

)�

· dS, (6.47)

and the vacuum contribution

�Wv =
∫ |Bv

1|2
2μ0

dτ v. (6.48)

Here ξ = ξ⊥+ ξ‖b̂where ξ‖ = ξ·b̂, the double brackets denote a jump discontinuity
as before, and Bv

1 is the perturbed magnetic field in the vacuum. The corresponding
formulation with the gravity retained (g �= 0) was essentially given in the Bernstein
et al. (1958) article previously cited in a footnote on p. 213.

6.5.4 Physical Interpretation of Terms in the Plasma
Contribution

If the current density is separated into parallel and perpendicular components by
writing j = σ B + B−2 B × ∇ p where σ ≡ j · B/B2 (from the magnetohydrostatic
equation∇ p = j ×B assumed here), and we also recall the magnetic field curvature
vector κ defined in (2.81) and noted again in Sect. 5.7, the plasma contribution
(6.46) may be re-expressed in a suitable form to provide physical understanding of
the stabilising and destabilising terms—cf. Exercise (Q2):

�Wp = 1

2

∫ [
μ−1
0 |B1⊥|2 + μ−1

0 B−2 |B1 · B − μ0 ξ⊥ · ∇ p |2 + γ p |∇· ξ |2

−2 ξ∗⊥ · κ ξ⊥ · ∇ p − σ ξ∗⊥ × B · B1⊥
]

dτ . (6.49)

Thus the five terms in the integrand have physical interpretations as follows:

(1) μ−1
0 |B1⊥|2, magnetic field-line bending5 term involving the perpendicular com-

ponent B1⊥ = B1 − B1‖b̂;

5The extent to which the descriptions “field-line bending” and “field-line compression” can be
rigorously justified is critiqued in Sect. 6.7.5.

http://dx.doi.org/10.1007/978-981-287-600-3_2
http://dx.doi.org/10.1007/978-981-287-600-3_5
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(2) μ−1
0 B−2 |B1 ·B−μ0 ξ⊥ ·∇ p |2, magnetic field-line compression term involving

the parallel component B1‖ = B1 · b̂;
(3) γ p |∇· ξ |2, plasma fluid compression term;
(4) −2 ξ∗⊥ · κ ξ⊥ · ∇ p , proportional to both the curvature vector and the pressure

gradient, the curvature term (cf. the omitted gravity term ξ∗ · g ξ · ∇ρ
(5) −σ ξ∗⊥ × B · B1⊥ proportional to the parallel current component, the kink term.

The first three of these terms are non-negative and therefore stabilising, and they
are associated with plasma wave propagation as detailed below (cf. also Sect. 5.9).
However, sufficiently negative contributions from either the fourth term or the fifth
term drive instability. The degree to which displacements ξ(r) that isolate the field-
line bending,magnetic field-line compression and curvature terms can be constructed
(so as to make the interpretations above meaningful) is discussed in Sect. 6.7.5.

Wenowexpandon theheuristic explanations of thefive termsof (6.49) enumerated
above6:

Term (1): This positive-definite stabilising term represents themagnetic energyvari-
ation associated with the Alfvén wave.

Term (2): This stabilising term may be rewritten, with the aid of the identity in Q2,
in the alternative form

μ−1
0 B2|∇· ξ⊥ + 2ξ⊥ · κ|2, (6.50)

so approximates the energy variation associated with the fast magne-
tosonic wave.

Term (3): This stabilising term is the energy variation associated with the slow
magnetosonic wave.

Term (4): This term may be destabilising (negative), driving magnetic interchanges
in regions of unfavourable magnetic field curvature.

Term (5): This term can also be destabilising, driving current-driven or kink insta-
bilities, in reference to their source or to the related distortion of current-
carrying plasma columns.

Term (2) can be large in magnetised plasma, but for incompressible perpendicular
perturbations (such that ∇· ξ⊥ = 0) the field curvature remnant 4μ−1

0 B2|ξ⊥ · κ|2
maynot completely offset the destabilisingTerm (4) andTerm (5).Moreover, any par-
allel displacement component ξ‖ = b̂b̂ · ξ contributes to Term (3) alone. In passing,
we note that the fourth term only involves the perpendicular displacement compo-
nent ξ⊥ but otherwise resembles the omitted gravity term, so magnetic interchange
instabilities are similar to but distinct from the gravitationally driven interchanges
discussed previously.

6We will make these interpretations more precise in Sect. 6.7 via a short-wavelength ordering.

http://dx.doi.org/10.1007/978-981-287-600-3_5
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6.5.5 Brief Note on the Eigenvalue Spectrum

The force operator F admits eigenvalue continua—i.e. not only discrete eigenval-
ues as discussed above. The spectrum of F (for constant ρ) depends upon whether
or not F/ρ − λI can be inverted for complex λ. Indeed, the discrete spectra we
assumed corresponds to λ such that (F/ρ−λI) ·ξ = 0 has a nontrivial solution—i.e.
when F/ρ − λI is not invertible. The continua correspond to F/ρ − λI invertible
but unbounded on some plasma surface [8]. However, to date it has been found that
eigenvalue continua only occur on the positive real axis (i.e. such that ω2 > 0).
There can be an accumulation of discrete negative eigenvalues near the origin (i.e.
the point of marginal stability) when it is the lower bound of a continuum, but the
normal mode analysis nevertheless determines whether or not there is exponential
stability.

Exercises

(Q1) Derive the formulation (6.45)–(6.48), on setting g = 0 in (6.41) and invoking
the corresponding magnetohydrostatic equation ∇ p = j × B.

(Q2) Show that B1 · B = −2B2ξ⊥ · κ + μ0 ξ⊥ · ∇ p − B2∇· ξ⊥, and then derive
the form of �Wp in (6.49) from (6.46).

6.6 Ideal Instabilities in Cylindrical Geometry

We recall from Sect. 5.10 that magnetohydrostatic configurations defined by ∇ p =
j × B involve families of flux surfaces of particular interest for magnetic confine-
ment. Let us now consider the idealMHDmagnetic interchange and kink instabilities
identified in the previous section, assuming simply nested cylindrical flux surfaces.
This is the configuration for plasma confinement in a current-carrying plasma cylin-
der, where there may be containment related to the well known mutual attraction of
two conducting wires. If the plasma cylinder has circular cross-section, conventional
cylindrical coordinates (r, θ, z) are suitable, with each cylindrical flux surface simply
denoted by its radius. In the next section, we choose a generic curvilinear straight-
field-line magnetic coordinate system to discuss toroidal flux surfaces, where each
nested invariant magnetic surface is labelled by its enclosed poloidal flux. A toroidal
configuration obviously introduces further magnetic field curvature, but the results
obtained in simpler cylindrical geometry also considerably enhance an understanding
of the ideal MHD instabilities identified in previous sections. Moreover, the analytic
power of the ideal MHD variational principle for plasma stability analysis is evident
in both non-Cartesian geometries.

In a cylindrical plasma configurationwith pressure p(r) andmagnetic fieldB(r) =
Bθ(r)êθ + Bz(r)êz corresponding to a current density j(r) = jθ(r)êθ + jz(r)êz , the
magnetohydrostatic pressure balance equation ∇ p = j × B becomes

http://dx.doi.org/10.1007/978-981-287-600-3_5
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dp

dr
+ Bθ

μ0r

d

dr
(r Bθ) + Bz

μ0

d Bz

dr
= 0. (6.51)

The current-carrying plasma region may be a column of radius a, but the plasma
current may reverse or flow in an annular cross-section, and there could also be a
surrounding current-free region. In any case, it is evident that the current-carrying
plasmamay be compressed by axial or azimuthal current flows, the fundamental idea
behind pinch and θ-pinch operation. The components of the plasma displacement
ξ(r, t) = ξr êr + ξθ êθ + ξz êz may be represented via normal modes of the form

f (r, θ, z, t) = f (r) exp[i(mθ + kzz − ωt)]. (6.52)

Indeed, the ends of a certain length L of the cylinder may also be identified such that
kz = −2πn/L where n is an integer, so the modes are specified by the integer pair
(m, n). Toroidal topology is therefore addressed, but not yet toroidal curvature.

However, it is convenient to adopt the dependent variable set7

ξ = êr · ξ = ξr ,

η = i k · ξ = i
(m

r
ξθ + kzξz

)
= ∇· ξ − 1

r

d

dr
(rξr ),

ζ = i (ξ × B) · êr = i (ξθ Bz − ξz Bθ).

(6.53)

Thus for a fixed plasma boundary (when the surface term is zero) and omitting the
gravity term, on excluding the case m = n = 0 and dropping the exponential factor
we obtain from (6.44)

� Wm,n[ξ, η, ζ] = π

2

∫
r

[
�

(
ξ,

dξ

dr

)
+ γ p

∣∣∣η + 1

r

d

dr
(rξ)

∣∣∣
2

+ μ−1
0 (m2 + kzr2)

∣∣∣ζ − ζ0(ξ,
dξ

dr
)

∣∣∣
2
/ r2
]

dr (6.54)

per unit length of cylinder, where—cf. Exercise (Q1):

�

(
ξ,

dξ

dr

)
= μ−1

0 (m2 + k2z r2)−1
∣∣∣(m Bθ + kzr Bz)

dξ

dr
− (m Bθ − kzr Bz)

ξ

r

∣∣∣
2

+ μ−1
0

[
(m Bθ + kzr Bz)

2 − 2 Bθ
d

dr
(r Bθ)

] |ξ|2
r2

and

ζ0

(
ξ,

dξ

dr

)
= −(m2 + k2z r2)−1r

[
(m Bz − kzr Bθ)

dξ

dr
+ (m Bz + kzr Bθ)

ξ

r

]
.

7We follow the notation used in the elegant classical article by W.A. Newcomb (Annals of Physics
10, 232–267, 1960).
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It follows immediately that there is ideal MHD stability if

Bθ
d

dr
(r Bθ) ≤ 0 ∀ r (i.e. on all cylindrical flux surfaces), (6.55)

but this quite stringent sufficiency condition is not readily satisfied—although it is in
the hard-core (inverse) pinch, where the plasma current of near annular cross-section
is returned through a central conductor.

The non-negative terms in η and ζ in (6.54) vanish on setting

η = −1

r

d

dr
(rξ) and ζ = ζ0

(
ξ,

dξ

dr

)
,

such that the functional for further consideration is

�W [ξ] = Minη,ζ �Wm,n(ξ, η, ζ) = π

2

∫
r�

(
ξ,

dξ

dr

)
dr. (6.56)

It is notable that this choice of η corresponds to an incompressible displacement
(∇· ξ = 0), annulling the plasma fluid compression contribution in (6.49) associated
with the slow magnetosonic wave. Under the boundary condition ξ = 0 at the fixed
plasma boundary, on integrating by parts we obtain

�W [ξ] = π

2

∫ [
f (r)

∣∣∣
dξ

dr

∣∣∣
2 + g(r)|ξ|2

]
dr (6.57)

where f (r) = μ−1
0 r(m2 + k2z r2)−1(m Bθ + kzr Bz)

2,

and g(r) = (m2 + k2z r2)−1 2k2z r2
dp

dr
+μ−1

0 (m2 + k2z r2)−1(m2 + k2z r2 − 1)(m Bθ + kzr Bz)
2/r

−μ−1
0 (m2 + k2z r2)−2 2k2z r (m2B2

θ − k2z r2B2
z ).

The function f (r) is non-negative, but it is zero at radii such that k·B = m Bθ/r +
kz Bz = 0—i.e. on a (mode) rational flux surface, which occurs at a radius rs such
that q(rs) is the rational fraction m/n. The safety factor q(rs), defined generally in
(5.77), is given more explicitly in the cylindrical case by

q(r) = h(r)/L = 1/ ι-(r) = 2πr Bz(r)

L Bθ(r)
. (6.58)

It characterises the pitch h(r) and rotational transform ι-(r) of the magnetic field
lines on the flux surface of radius r (cf. also Sect. 5.11). Instability corresponds to
contributions to the integrand in (6.57) from intervals where g(r) < 0 (such that

http://dx.doi.org/10.1007/978-981-287-600-3_5
http://dx.doi.org/10.1007/978-981-287-600-3_5
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�W [ξ] < 0), notably in the neighbourhood of the rational flux surfaces where f (r)

is small.
Normal modes satisfying the “flute condition” k · B = k‖B � 0 for the approxi-

mate vanishing of f (r) in a region of the plasma around a rational surface (cf. also
Sects. 6.3, 6.4) and 6.7 are often called flute-like modes. This terminology reflects an
architectural analogy illustrated in Fig. 6.1, as the associated wave perturbations ξ
deform the rational surface into a shape resembling a fluted column where the waves
(flutes) are approximately aligned with the helical magnetic field lines.

The {rs} are the resonance values in cylindrical geometry, previously noted in the
elementarydiscussionofmagneticfield shear inCartesiangeometry inSect. 6.4.They
are singular points of the Sturm–Liouville equation for the displacement extremal
obtained from the Rayleigh quotient (6.40). If no such resonance value exists, it
follows from Sturm–Liouville theory that the least eigenvalue is positive, so the
system is stable. The {rs} are likewise singular points of the Euler–Lagrange equation
in the plasma displacement ξ that minimises �W [ξ] in (6.57)—viz.

d

dr

(
f (r)

dξ

dr

)
− g(r) ξ = 0. (6.59)

In the neighbourhood of rs , on defining x = r − rs we have f (r)= f ′′(rs)x2/2 +
O(x3)with f ′′(rs) > 0 provided q ′(rs) �= 0; and g(r) = g(rs)+O(x)with g(rs) �= 0

Fig. 6.1 Spiral fluted columns in the Great Colonnade at Apamea in Syria (Wikimedia Commons).
Plasma waves with phase fronts aligned with the field lines on a magnetic surface are termed “flute
modes” by analogy



6.6 Ideal Instabilities in Cylindrical Geometry 223

provided p ′(rs) �= 0—i.e. provided themagnetic field is not force-free at the singular
surface. Thus near rs the displacement satisfies—cf. Exercise (Q2):

x2
d2ξ

dx2
+ 2x

dξ

dx
+ Dsξ = 0 (6.60)

where the parameter Ds = −2g(rs)/ f ′′(rs). This classical Euler equation has a
regular singularity at x = 0, and the familiar trial solution ξ = |x |α yields the
indicial equation α(α − 1) + 2α + Ds = 0 with roots α1,2 = (−1 ± √

1 − 4Ds)/2
such that the solution may be irregular near the resonance value rs . Thus if Ds > 1/4
the general solution of (6.60) for x �= 0 is

ξ(x) = Cξ|x |−1/2 cos

(
1

2

√
4Ds − 1 ln |x | + φ

)

where Cξ and φ are constants—and this solution is highly oscillatory as x → 0,
violating a basic requirement of the classical calculus of variations used to obtain
(6.60). However, reference back to the original form (6.57) shows that (in an interval
where g(r) < 0) a localised displacement such that ξ � constant in the immediate
neighbourhood of x = 0 is unstable—i.e. �W [ξ] < 0. The Ds < 1/4 requirement
for a regular solution renders the necessary condition for stability against ideal inter-
change modes in a negative pressure gradient, a result due to Suydam that may be
expressed as

dp

dr
+ r B2

z

8μ0

(
q ′

q

)2

> 0 (6.61)

everywhere, supplemented by

dp

dr
+ r

8μ0

(
d Bz

dr

)2

> 0 (6.62)

at any zero of Bz for m = 0 modes. The second term in each case represents the
stabilisation due to the magnetic field shear, as previously introduced in Cartesian
geometry in Sect. 6.4, but which is now the variation in the magnetic field direction
over the family of nested cylindrical flux surfaces (i.e. with radius r ).8

In addition to the localised magnetic interchange modes just discussed, associated
with the plasma pressure gradient and unfavourable magnetic field curvature, let us
recall from Sect. 6.5 that there may also be current-driven instabilities. Indeed, the

8When (6.60) is valid its singular solutions can be represented by square integrable generalised
functions with supports on either side of the singularity (i.e. on x > 0 or x < 0), where each single-
sided generalised function corresponds to the classical solution on one side of the singularity.
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function g(r) is quadratic in the variable u = −kzr Bz/Bθ = nq(r) and negative
between the two real roots

u1,2 = E−1
(

m A ±
√
4m2k2z r4 − 2k2z r2(m2 + k2z r2)Eμ0r(dp/dr)/B2

θ

)
,

where A = m2(m2 −1)+ (2m2 −1)k2z r2 +k4z r4 and E = m2(m2 −1)+ (2m2 +1)
k2z r2 + k4z r4. By an appropriate choice of ξ, it follows that there are internal current-
driven modes for the narrow range m(1 − 4k2z )r

2
s E−1 < nq(rs) < m. However, it

was soon confirmed that free boundary contributions to �W drive more dangerous
external kink modes, which had been anticipated earlier on physical grounds. These
current-driven kink modes produce large-scale displacements of the plasma cylinder.

Let us consider a plasma column of radial extent 0 ≤ r < a carrying the current
j(r) = jθ(r) êθ + jz(r) êz , surrounded by current-free (and therefore magnetically
force-free) plasma in the second region a < r < b extending to a co-axial conducting
wall at r = b. The current-carrying plasma contributionmust again be supplemented,
because the interface at r = a is not fixed. Equation (6.59) is recovered from the
volume integral in (6.44) over the current-carrying plasma region when the gravity
term is neglected, but integration by parts with the condition ξ(a) = ξa at the
displaced interface now yields the additional contribution

�Wsurf = π

2μ0

[m Bθ(a) + kzaBz(a)] 2 − 2m Bθ(a)[m Bθ(a) + kzaBz(a)]
m2 + k2z a2 ξa .

(6.63)

On the other hand, the contribution (6.47) previously obtained for a plasma–vacuum
interface is now zero because the magnetic field is continuous at the plasma-plasma
interface r = a, but using∇· B = 0 and∇× B = 0 in the surface integral in (6.44) to
eliminate the perturbation components B1θ and B1z in the surface integral produces
the further additional contribution

�Wregion 2 = π

2μ0

∫ b

a

[
1

m2 + k2z r2

∣∣∣
dη

dr

∣∣∣
2 + |η|2

r2

]
dr

where η(r) ≡ −ir B1r = (m Bθ + kzr Bz) ξ. Minimising �Wregion 2 subject to the
boundary conditionsη(a) = [m Bθ(a)+kzaBz(a)]ξa andη(b) = 0yields the relevant
Euler–Lagrange equation

d

dr

(
r

m2 + k2z r2
dη

dr

)
− η

r
= 0, a < r < b. (6.64)

In the “tokamak limit” m2�k2z r2 (|Bθ|2�|Bz|2), this equation reduces to

r2
d2η

dr2
+ r

dη

dr
− m2η = 0,
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when the extremal satisfying the two boundary conditions is

η(r) =
(
1 − a2m

b2m

)−1

ξa Bθ(a) m

(
1 − nq(a)

m

)(
bm

rm
− rm

bm

)
am

bm

as nq(a) = −kzaBz(a)/Bθ(a). The minimum of this further additional contribution
is therefore

Min{�Wregion 2} = π

2μ0

(
1 − nq(a)

m

)2

m λ ξ 2
a , (6.65)

where λ ≡ (1+ a2m/b2m)/(1− a2m/b2m). Hence the total variation per unit length
to consider is

�W = �Wregion 1

+ π

2μ0
ξ2a Bθ(a)2

[(
1 − nq(a)

m

)2

(1 + mλ) − 2

(
1 − nq(a)

m

)]
, (6.66)

when the two contributions from (6.63) and (6.65) are combined. We recall the first
term �Wregion 1 arising from the current-carrying region 0 < r < a can only be
negative in the very narrow range of q(r) values defined by m(1 − 4k2z )r

2
s E−1 <

nq(rs)<m, and when |Bθ|2 � |Bz |2 it is also relatively small. However, there can
now be kink modes due to the second term in (6.66) if q(a) < m/n. The stability
condition q(a) > 1, whichwas deduced byKruskal and independently by Shafranov,
corresponds to the fundamental mode m = n = 1.

It may seem odd to abandon the notion of a jump in the magnetic field at a
plasma–vacuum interface envisaged for various magnetic confinement devices (cf.
Sect. 5.13), which can be addressed using the separate energy contributions for the
plasma, surface and vacuum (cf. Sect. 6.5). However, the replacement of the vacuum
by a current-free plasma clearly has a physical basis, for there is often a hot current-
carrying plasma core surrounded by a relatively cold current-free plasma. Freidberg
reports that the ideal MHD stability for the external vacuum case is identical if there
is no singular surface in the current-free plasma—but if there is, then the current-free
plasma case is more stable, with the conducting wall effectively moved inward to the
singular surface—cf. [6, pp. 264–266]. Reference may also be made to Chap.9 in
Ref. [8], for further discussion of the idealMHDstability of cylindrical plasmas—e.g.
the classical result that axisymmetric modes (where m = 0, including the degenerate
mode m = n = 0) are all ideal MHD stable if there is stability when m = 0 and
kz → 0.

Exercise

(Q1) Show that

B1 = i
(m

r
Bθ + kz Bz

)
ξ êr +

(
kzζ − d(ξBθ)

dr

)
êθ −

(
1

r

d(rξBz)

dr
+ m

r
ζ

)
êz .

http://dx.doi.org/10.1007/978-981-287-600-3_5
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Then noting (6.51), develop the integrand in the volume integral component
of (6.44) in terms of ξ and ζ and hence verify (6.54).

6.7 Ideal Instabilities in Toroidal Geometry

Stability analysis in the toroidal geometry discussed in Chap.5 is complicated by
the fact that there is only one continuous spatial symmetry coordinate (the toroidal
angle ζ in the axisymmetric case) or none (in the most general toroidal geometry).
However, if we are considering the linear theory for an equilibrium state, the time-
translation symmetry that allows normal mode analysis [Glossary Section“Normal
Mode”] remains, but separation of variables cannot be used in toroidal geometry to
factor an eigenfunction into a product of simple Fourier harmonics and a nontrivial
function of only one variable—unlike the cylindrical case, where we have the form
(6.52). In the axisymmetric toroidal case, the toroidalmodenumbern remains a “good
quantum number”, but the θ and s dependence must be represented by an infinite
Fourier sum over the poloidal mode numberm with s-dependent Fourier coefficients.
In the general non-axisymmetric case, both the m and n Fourier harmonics become
coupled and the normal mode spectrum is no longer simply classifiable, instead
becoming “quantum chaotic” [13].

Nevertheless, as foreshadowed in Sect. 6.2, some analytic progress can be made
using asymptotic methods—and in this section we develop a short-wavelength
asymptotic ordering scheme, adapted to the special needs of MHD stability analysis.
However, we cannot simply use the approach of Sect. 4.2, where the direction of k
is arbitrary. To leading order in the slow-variation parameter ε (the ratio of wave-
length to equilibrium scale length L), this is locally the plane wave case analysed in
Sect. 5.9, and we recall from (5.61) that all three branches of the ideal MHD disper-
sion relation have ω2 ≥ 0.9 Thus the general approach is valid for approximating
the high-frequency part of the MHD spectrum, but it cannot determine instability.
The plane-wave dispersion relations do provide a clue as to where to look—viz. in
the neighbourhood of marginal stability ω2 = 0, where small negative corrections
can drive ω2 negative. From (5.61a), we see that ω2 = 0 when k‖ = 0 for the Alfvén
branch; and from (5.61b), for the slow magnetosonic branch ω2 = 0 when α = 0,
which also occurs only when k‖ = 0—cf. (5.62). On the other hand, ω2 never van-
ishes on the fast magnetosonic branch, so unstable perturbations cannot include a fast
magnetosonic component. For small k‖, we may eliminate α from (5.61) and also
simplify the eigenvectors of (5.58) to give the approximate dispersion relations and

9The prime on ω can be dropped, as we are considering only the stability of static equilibria (v = 0
at equilibrium).

http://dx.doi.org/10.1007/978-981-287-600-3_5
http://dx.doi.org/10.1007/978-981-287-600-3_4
http://dx.doi.org/10.1007/978-981-287-600-3_5
http://dx.doi.org/10.1007/978-981-287-600-3_5
http://dx.doi.org/10.1007/978-981-287-600-3_5
http://dx.doi.org/10.1007/978-981-287-600-3_5
http://dx.doi.org/10.1007/978-981-287-600-3_5
http://dx.doi.org/10.1007/978-981-287-600-3_5
http://dx.doi.org/10.1007/978-981-287-600-3_5
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polarisations of the two branches (Alfvén and slowmagnetosonic) that are important
near marginal stability—viz. (cf. Exercise on pp. 174–175)

ρω2
A = (k · B)2

μ0
, ξA = k̂ × b̂, (6.67a)

ρω2
S = γ p (k · b̂)2

1 + 1
2γβ

, ξS =
(
1 + γβ

2

)
b̂ − γβ

2

k‖k⊥
k2⊥

, (6.67b)

where β = 2μ0 p/B2 and the polarisation vectors ξA and ξS indicate direction only
(they are dimensionless).

For a potentially unstable arbitrary perturbation f (r, t), these considerations are
consistent with the following generalised flute ordering10 with respect to the formal
asymptotic expansion parameter ε → 0 :

L and | f |−1∇‖ f are both O(1), (6.68a)

| f |−1∇⊥ f is O(ε−1), (6.68b)

B and ξ⊥ and ξ‖ are all O(1), (6.68c)

where∇‖ = b̂b̂ ·∇ and∇⊥ = ∇−∇‖ as in (5.32). Note that f is not necessarily the
singlewave that guided the choice of ordering, for it may also be any perturbation that
could in principle be represented as a superposition of Alfvén and slowmagnetosonic
waves. In the following discussion, we extend the wave terminology longitudinal
to mean a vector field that is curl-free to leading order in ε, and the terminology
transverse to mean a vector field that is divergence-free to leading order in ε. It is
readily verified that these definitions are consistent in the eikonal representation (4.7),
involving the usual application of these terms to wave fields with vector amplitudes
(polarisations) parallel or transverse to k, respectively.

This ordering will allow us to develop reduced forms of the potential energy
�W given by (6.49)11 in terms of one or two scalar fields, leading to the socalled
ballooning equation. This equation describes flute-like modes with strong variation
along the magnetic field lines (ballooning modes), and also modes with weak vari-
ation (Mercier modes) that are the toroidal generalisation of the interchange modes
discussed in Sect. 6.6.

10The architectural analogy with fluted columns from the cylindrical case treated in the previous
section (cf. Fig. 6.1) is carried over to the toroidal case, so waves satisfying the ordering k‖/k⊥ =
O(ε) are termed “flute-like”.
11In this section, only the plasma component of the energy variation under the fixed boundary
assumption is considered, but we choose to drop the suffix p.

http://dx.doi.org/10.1007/978-981-287-600-3_5
http://dx.doi.org/10.1007/978-981-287-600-3_4


228 6 MHD Stability Theory

6.7.1 Reduced K and �W in the Generalised Flute Ordering

Since the Alfvén and slow magnetosonic frequencies are proportional to k‖, the
ordering (6.68a) is necessary for them to be finite in the generalised flute ordering.
However, as previously mentioned there is no propagation direction such that the
frequency of the fast magnetosonic wave is finite in this limit, so the fast magne-
tosonic branch must be excluded in the lowest order approximation. Consequently,
although both parallel and perpendicular components of ξ are allowed under (6.67a)
and (6.67b), the exclusion of the primarily longitudinal fast magnetosonic wave
constrains ξ to be a transverse field and thus leads to the orderings

ξ and ∇· ξ and ∇· ξ⊥ are all O(1), (6.69a)

B1⊥ and B1‖ are both O(1). (6.69b)

It is notable that these last quantities would be O(ε−1) if the fast magnetosonic
mode were admitted—and as a final check, the orderings (6.68) and (6.69) render
ω2 = O(1) in the Rayleigh quotient variational form (6.40).

Under (6.67), the motion perpendicular to B is dominated by the Alfvén branch,
which has transverse polarisation—but the slowmagnetosonic wave provides a small
perpendicular component through the second term in (6.67b), which has longitudinal
polarisation. This structure is achieved through the representation

ξ = ηB + B × ∇ϕ

B2 − [∇χ ](1), (6.70)

where we flag subdominant O(ε) but nevertheless important terms through the nota-
tion [·](1). This representation uses η = O(1) to represent the dominant component of
the parallel displacement ξ‖ = ηB +O(ε2), a stream-like function ϕ = O(ε) for the
dominant transverse displacement, and a potentialχ = O(ε2) to provide the subdom-
inant longitudinal component. Thus the representation is complete and in principle
exact, where the variable set {η,ϕ,χ} provides the three degrees of freedom needed
to replace the three components of ξ.

We note that η, ϕ and χ are assumed to satisfy the ordering (6.68b), with
the O(ε2) discrepancy between ξ‖ and ηB arising from b̂ · ∇χ, and that |ξ⊥| =
|b̂ × ∇⊥ϕ/B − ∇⊥χ| = |∇ϕ|/B + O(ε). Another consequence is that all of the
terms in the divergence

∇· ξ = B · ∇η + ∇×
(

B
B2

)
· ∇ϕ − ∇2χ (6.71)

from (6.70) areO(1) and so consistent with (6.69a), with∇· ξ⊥ the sum of the second
and third terms to leading order.
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Using the representation (6.70), to lowest order the kinetic energy factor (6.39)
becomes

K(0)[η,ϕ] = 1

2

∫

P

(
ρ‖ B2|η|2 + ρ⊥

|∇ϕ|2
B2

)
dτ , (6.72)

where the superscript (0) is introduced to emphasise that this Hermitian form is
O(ε0).

The magnetic field perturbation B1 = ∇× (ξ × B) at (6.31) may now be deter-
mined by first noting from (6.70) that

ξ × B = ∇ϕ + [B × ∇χ − b̂b̂ · ∇ϕ](1), (6.73)

whence

B1 = B
B2 × ∇(B · ∇ϕ) + B∇2χ

+
[
∇χ · ∇B − B · ∇∇χ −

(
∇× B

B2

)
B · ∇ϕ

](1)

,

(6.74)

so that the perpendicular and parallel components of B1 are both O(1) as required
by (6.69b).

Although χ does not contribute to ξ at leading order, we note that it does make
leading-order contributions to B1 in (6.74) and to ∇· ξ in (6.71), and thus to �W in
(6.49), which we can therefore write to leading order in ε as

�W (0) = 1

2

∫

P

[ |∇ (B · ∇ϕ)|2
μ0B2 + |B2∇· ξ⊥ + 2κ × B · ∇ϕ|2

μ0B2

+ γ p
∣∣∇· ξ⊥ + B · ∇η

∣∣2

− (κ × B · ∇ϕ∗)(∇ p × B · ∇ϕ)

B4

− (∇ p × B · ∇ϕ∗)(κ × B · ∇ϕ)

B4

]
dτ .

(6.75)

The first, second and third terms in this form precisely correspond to Terms enu-
merated in Sect. 6.5.4—viz. (1) field-line bending, (2) field-line compression (6.50),
and (3) fluid compression in (6.49), while Term (4) represents the curvature term
symmetrised to demonstrate that �W (0) is an Hermitian form. (The other terms are
already clearly Hermitian, since the ∇ is an anti-Hermitian operator, as is B · ∇
because ∇· B = 0.) Term (5), the kink term, does not contribute at leading order and
is therefore omitted.12

12On the symmetrisation of the curvature term and the question of whether or not to retain the kink
term, see R.L. Dewar (Journal of Plasma Fusion Research 73, 1123, 1997).



230 6 MHD Stability Theory

We now proceed to define a reduced Rayleigh quotient

λ(0)[ξ‖,ϕ,χ] = �W (0)

K(0)
(6.76)

in lieu of (6.40), and use the Rayleigh variational principle to deduce a reduced
eigenvalue problem for the lowest eigenvalue.

6.7.2 2-Field Reduction: Elimination of χ

In (6.75), χ is “hidden” in the field-line and fluid compression terms through ∇· ξ⊥
in (6.71). Rather than vary χ explicitly, we can treat ∇· ξ⊥ as the independent scalar
field with respect to which λ(0) is minimised, with χ varied only implicitly.13 Since
χ does not appear in K(0), we need to minimise only �W (0)—and its variation with
respect to ∇· ξ⊥ vanishes if the Euler–Lagrange equation

(
B2

μ0
+ γ p

)
∇· ξ⊥ = −2κ × B · ∇ϕ

μ0
− γ pB · ∇η (6.77)

is satisfied. We can thus eliminate χ in (6.75) using (6.77), to reduce �W (0) (and
hence λ(0)) to a functional in only η and ϕ—viz.

�W (0)[η,ϕ] = 1

2

∫

P
d3x

[ |∇ (B · ∇ϕ)|2
μ0B2

+ γ p

(
1 + γβ

2

)
|∇· ξ|2

− (∇ p × B · ∇⊥ϕ∗)(κ × B · ∇⊥ϕ)

B4 + c.c.

]
,

(6.78)

where the term in β = 2μ0 p/B2 arises from the field-line compression term in
(6.75). Since β = o(1) in typical fusion experiments, the compressional effects are
mainly dominated by the fluid term, so there is no significant error in setting the field-
line compressibility term in (6.49) to zero from the outset. Indeed, the assumption of
magnetic field-line incompressibility has been found to give accurate computational
results for various toroidal devices, even for low-n modes—and decreased memory

13The existence of δχ for an arbitrary δ∇· ξ⊥ is justified by the invertibility of the Laplacian operator
∇2 in (6.71).
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requirements and increased computational speed under the two-field reduction of the
Rayleigh quotient. In (6.78), we have

∇· ξ = 1

1 + 1
2γβ

[
B · ∇η − 2κ × B · ∇ϕ

B2

]
, (6.79)

the reduced form after elimination of χ from (6.71).

6.7.3 1-Field Reduction: Elimination of ξ‖

We observe that η only appears in the stabilising combined fluid and magnetic-field
compression term in (6.78)—cf. (6.79). Consequently, the stationarity of λ(0)(η,ϕ)

under arbitrary variations of η∗ yields the Euler–Lagrange equation

− b̂ · ∇ γ p

1 + 1
2γβ

[
B · ∇η − 2κ × B · ∇⊥ϕ

B2

]
= ω2ρ‖Bη (6.80)

recalling that ρ = ρ‖b̂b̂ + ρ⊥I⊥, or on gathering terms involving η on the left:

DS(ω
2)η = − 1

B2 B · ∇
(

2γ p

1 + 1
2γβ

κ × B · ∇⊥ϕ

B2

)
, (6.81)

where the slow magnetosonic wave operator

DS(ω
2) = 1

B2 B · ∇ γ p

1 + 1
2γβ

B · ∇ + ω2ρ‖ (6.82)

with the operators B · ∇ acting on everything to their right. This slow wave magne-
tosonic operator may be shown to be singular for some ω2 ≥ 0 on each magnetic
surface, and produces the slow magnetosonic continuum in the MHD spectrum.
However, in this section we only consider the unstable case ω2 < 0, and in principle
solve (6.81) in terms of the inverse operator D−1

S to give η as a functional of ϕ—thus
reducing both K(0) and �W (0) to functionals in ϕ only.

This 1-field reduction might be mainly of academic or numerical interest, if it
were not for the special case ρ‖ = 014 corresponding to the “collisionless MHD”
model that Freidberg argues may be more appropriate to describe the physics of
high-temperature plasmas than conventional MHD—cf. [6, pp. 32–38 and 260]. On
setting ρ‖ = 0 in (6.80) and comparing with (6.79), we see that b̂ · ∇∇· ξ = 0,

14As discussed in the article cited in the footnote after (6.75), ρ‖ → 0 is a rather singular limit
because ∇· ξ → 0 requires the resonant Fourier component of ξ‖ = Bη to diverge on a rational
magnetic surface. However,we do not need to know ξ‖ explicitly, so we ignore this issue here.
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which is satisfied when ∇· ξ = 0 everywhere—i.e. on assuming incompressibility.
Consequently, on omitting the compression term from (6.78) we have the 1-field
collisionless MHD model stability functional

�W (0) = 1

2

∫

P

[ |∇ (B · ∇ϕ)|2
μ0B2 − (κ × B · ∇ϕ∗)(∇ p × B · ∇ϕ)

B4

− (∇ p × B · ∇ϕ∗)(κ × B · ∇ϕ)

B4

]
dτ . (6.83)

SinceK(0) = 1
2

∫
ρ⊥|∇⊥ϕ|2/B2 dτ nowdepends only onϕ, so doesλ(0). Varyingϕ∗

in the Rayleigh principle δ�W (0) = ω2δK(0) then gives the generalised eigenvalue
equation for normal modes

B · ∇
[
∇· 1

μ0B2∇ (B · ∇ϕ)

]
+ ∇·

[
κ × B

B4 ∇ p × B · ∇ϕ

]

+ ∇·
[∇ p × B

B4 κ × B · ∇ϕ

]
+ ω2 ∇· ρ⊥

B2∇ϕ = 0.

(6.84)

In Sect. 6.6 on cylindrical geometry, we noted that radially localised ideal inter-
change instabilities occur in the neighbourhood of rational magnetic surfaces—i.e.
on singular surfaces of radius rs where q(rs) = m/n (and B · ∇ terms are zero).
Equation (6.84) would provide an alternative starting point to treat such high-n cylin-
drical modes, but it is mainly used for the toroidal case where the curvature of any
magnetic field line depends upon the poloidal angle θ, coupling different Fourier
components m.

The toroidal curvature on the inside of a toroidal flux surface (closest to the Z -axis)
is favourable (i.e. stabilising for interchanges) but that on the outside of the surface
(furthest from the Z -axis) is unfavourable, so that the plasma along a given field line
experiences alternating regions of favourable and unfavourable magnetic field cur-
vature. This suggested that there could be configurations with stabilising “magnetic
wells”, where the average curvature around the torus would be favourable enough to
avoid interchanges. However, while this is true for cylindrical configurations, it was
soon recognised that in toroidal geometries additional pressure-driven perturbations
can develop with even larger amplitude, localised in those regions of unfavourable
magnetic field curvature—viz. socalled ballooning modes, with flux surface defor-
mations that resemble aneurysms or blowouts in weak regions of pneumatic tyres.
Both interchange and ballooning modes in toroidal geometry can be analysed using
the techniques that we sketch in the next subsection.

6.7.4 Ballooning Equation

The Euler–Lagrange equation (6.84) is a partial differential equation that is not
separable in general geometry. The numerical solution of this equation (to calculate
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normal mode frequencies and growth rates) is simpler than starting with (6.49), but
nevertheless also takes considerable effort. Instead, (6.84) can be solved
asymptotically—cf. [11, pp. 263–268 and Chap.8]. However, once again we cannot
simply use the approach of Sect. 4.2 where the direction of k is arbitrary, since we
need a more specialised approach that respects the generalised flute ordering (6.68)
by constraining k to be locally perpendicular to B. This constraint can be enforced
by transforming to (α, s, θ) coordinates, where the field-line label α (5.80) is such
that B = ∇α × ∇ψ (5.81), and then choosing the representation

ϕ(s, θ, ζ) = ϕ̄(θ|α, s) exp[i S(α, s) − iωt] (6.85)

where ϕ̄(θ|α, s) is assumed to vary on the equilibrium scale but the phase variation
is rapid. Specifically, k = ∇S is ordered large as O(ε−1), and the frequency ω is
taken to be O(1). Adopting this eikonal ansatz (6.85), to lowest order we obtain the
ballooning equation

B · ∇
(

k2

μ0B2 B · ∇ϕ̄

)
+ 2k · ∇ p × B κ × B · k

B4 ϕ̄ + ω2
k

ρ⊥k2

B2 ϕ̄ = 0, (6.86)

an ordinary differential equation to be solved as a generalised eigenvalue equation
by integration along each magnetic field line α = const, s = const—with θ the
independent variable in (6.86), as is indicated in (6.85) by separating the variable
and constant arguments of ϕ̄ with a | divider symbol. Since this eigenvalue problem
is local to a field line, rather than global over the whole plasma like (6.84), it does not
immediately give us a normal mode. We therefore use the notation ω2

k to distinguish
the local eigenvalues on each field line from the global normal mode eigenvalue ω2,
and discuss how such local solutions can be combined to form a normal mode below.

The eikonal S(α, s) is a constant on each field line, so k · B = 0 automatically.
Explicitly, the wave vector is k = kα∇α + ks∇s, where kα = ∂S/∂α and ks =
∂S/∂s are also constant along magnetic field lines. While kα and θk are constant
local to a field line, k itself is far from constant because ∇α and ∇s vary along
a field line. In terms of the curvilinear basis set {es(s, θ, ζ), eθ(s, θ, ζ).eζ(s, θ, ζ)}
for the straight-field-line coordinates (cf. Sect. 5.11) that are periodic in θ and ζ, in
(α, s, θ)-coordinates we have the basis vectors ∇α = eζ − q(s)eθ − q ′(s)θ es and
∇s = es(s, θ,α + qθ) that are functions of (s, θ,α + qθ). We note two remarkable
properties of these vectors: (a) for irrational q, ∇s is not periodic but quasi-periodic
in θ—i.e. its “waveform” never exactly repeats along a field line15; and (b) ∇α has

15This vector quasi-periodicity is not actually manifest in axisymmetric systems, because only
scalars appear in the coefficients of the ballooning equation that are not functions of ζ, and so are
periodic in θ. However, it has profound implications in non-axisymmetric systems—cf. P. Cuthbert
and R.L. Dewar (Physics of Plasmas 7, 2302, 2000).

http://dx.doi.org/10.1007/978-981-287-600-3_4
http://dx.doi.org/10.1007/978-981-287-600-3_5
http://dx.doi.org/10.1007/978-981-287-600-3_5
http://dx.doi.org/10.1007/978-981-287-600-3_5
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a “secular” term −q ′θ es , linear in θ. Replacing ∇α and ∇s with the designated
explicit forms above, we therefore obtain

k = kα

[
eζ − q(s)eθ − q ′(s)(θ − θk)es

]
, (6.87)

involving the angle-like constant θk = ks/q ′(s)kα.16

As a consequence of the secular terms, the solution to (6.86) cannot be periodic but
is more or less localised (depending on q ′) in the vicinity θ ≈ θk . Thus the ordinary
differential equation (6.86)may be solved numerically under the boundary conditions
ϕ̄(θ) → 0 as θ → ±∞, to give the local eigenvalue ω2

k (α, s, θk), depending only on
the ratio ks/kα inωk because k2α may be factored out of (6.86). The set of all solutions
for different (α, s, θk) forms a dispersion relation with two degrees of freedom (cf.
Chap. 4), defining a component of a normal mode through the solution of the eikonal
equation ω2

k (α, s, kα, ks) = ω2
k (α, s, θk) = ω2, regarded as a partial differential

equation for S with ray equations in (α, s, kα, ks) phase space as its characteristics.
Before proceeding to consider the global normalmode problem, let us first address

a paradoxical aspect of the ballooning equation—viz. how its solutions that are not
periodic in θ can produce a physical normal mode. In order to allow non-periodic
boundary conditions, we implicitly lifted the problem to the (θ, ζ) ∈ R×R covering
space of a given torus s = const—i.e. we abandoned the topological identification
of angles under 2π increments. However, not all of the periodicity information is
lost in doing so, for apart from the secular terms in (θ − θk) the scalar coefficients
in the ballooning equation remain periodic. As elsewhere in this book, we consider
only the axisymmetric case so that ζ is an “ignorable” coordinate here—i.e. apart
from the independent variable θ, the ballooning eigenfunctions ϕ̄ depend only on the
parameters s and θk . As θk occurs in the ballooning equation only through the secular
terms in (θ − θk), it can readily be shown that all functions ϕ̄(θ + 2πl|s, θk + 2πl)
for integer l obey the same equation as a given ballooning eigenfunction ϕ̄(θ|s, θk),
so the solutions of (6.86) are unique up to a constant normalising factor for given
s, θk and ω2

k . Thus on using a normalisation that is invariant under 2π shifts in θ,
we identify these functions ϕ̄(θ + 2πl|s, θk + 2πl) = ϕ̄(θ|s, θk). Equivalently, on
replacing θ by θ − 2πl we see that an infinity of ballooning eigenfunctions with the
sameω2

k but different θk can be generated, simply by translating a given eigenfunction
by integer multiples of 2π in θ using the shift identity

ϕ̄(θ|s, θk + 2πl) = ϕ̄(θ − 2πl|s, θk). (6.88)

A corollary is that ω2
k is a periodic function of θk .

On setting the toroidal mode number kα = n, we can separate the eikonal as
S = nα + ∫ s

s<
ks(s′) ds′, where ks(s) is a solution of ω2

k (s, ks/nq ′) = ω2 and s<

16This constant ks/q ′(s)kα is often denoted by θ0, but the notation θk fromR.L.Dewar, J.Manickam,
R.C. Grimm and M.S. Chance (Nuclear Fusion 21, 493, 1981) seems more appropriate, to indicate
its relation to k.

http://dx.doi.org/10.1007/978-981-287-600-3_4
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(a turning point) is the smallest value of s for which a solution exists. We can now
resolve the ballooning paradox by generating a periodic solution through an infinite
superposition of degenerate solutions in the form of (6.85) with different θk (and
hence ks), but brought back to the same θk (and ks) by using the shift identity (6.88),
to obtain the ballooning representation

ϕ̄k(s, θ, ζ) = exp

(
inζ + i

∫ s

s<
ks(s

′) ds′ − iωt

)
×

∞∑

l=−∞
ϕ̄(θ − 2πl|s, θk) exp[−inq(θ − 2πl)].

(6.89)

The sum converges unconditionally provided ϕ̄(θ) decays at infinity faster than
1/|θ|, which is assured in the ballooning unstable case ω2

k < 0, when the decay
is exponential. Assuming convergence, periodicity in θ readily follows by replacing
θ with θ + 2π on both sides and making the change of dummy summation index
l = l ′ + 1, clarifying that the right-hand side has been left unchanged.

In the marginal case ω2
k = 0, where asymptotic analysis of the |θ| → ∞ limit

shows that the decay proceeds as an inverse fractional power of |θ|, the convergence
issue is much more delicate and non-analytic behaviour develops at the rational sur-
faces sm where q(sm) = m/n. It may be shown that the condition that the singularity
at a rational surface be square integrable coincides with the Mercier criterion for
stability to localised interchange modes (an extension of the Suydam criterion (6.61)
in cylindrical geometry to toroidal geometry), which involves an average over each
magnetic flux surface [6, 9].

However, (6.89) represents a travelling rather than a standingwave, and no normal
mode. Indeed typically, and certainly near the maximum growth rate, there is a range
s< ≤ s ≤ s> well within the plasmawhere there are two solutions θk = θ±

k (s)within
the range θk ∈ (−π,π) of the 1-degree-of-freedom eikonal equationω2

k (s, θk) = ω2.
Correspondingly, there are two travelling wave branches k±

s = nq ′θ±
k (s) that convert

from one to the other on reflection at the turning points s< and s>. The eikonal
formalism breaks down near these points, but asymptotic matching to a local Airy
function asymptotic approximation can be used to show there is a phase change ofπ/2
at each reflection, making a net change of π after two reflections—cf. [11, pp. 300–
304]. The requirement that this doubly reflected wave be the same as the original
unreflected wave provides the quantisation condition for normal modes—viz.

n
∮

θk(s)q
′(s)ds = 2π

(
N + 1

2

)
(6.90)

where N is a positive integer, so the most unstable normal mode for given n corre-
sponds to N = 0. The loop integral symbol

∮
signifies the sum of the phase integrals
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over the original and reflected waves, which is indeed an integral around the contour
ω2

k (s, θk) = ω2 surrounding the minimum of ω2
k in the s, θk-plane.17

6.7.5 Geometric Interpretations

Another feature of the asymptotic ordering approach is that it allows us to explore,
whether and in what sense, some of the terms in the form for �W given in (6.49)
are distinct in a rigorously geometric way. Rather than restrict ourselves to the more
specialised generalised flute ordering, in the following discussion we simply assume
a short-wavelength ordering such that all components of k (including k‖) are O(ε−1).
More precisely, we replace (6.68a) and (6.68b) with the orderings

L = O(1) , | f |−1∇ f = O(ε−1), (6.91)

while retaining the ordering (6.68c). As we retain only linear order in displacements
ξ, their ordering in ε is arbitrary so we still take ξ = O(1), but do not impose the
orderings (6.69a) and (6.69b). In particular, let us reconsider the field-line bending
and compression terms, to make precise the definition of a displacement field ξ that
either (a) bends but does not compress or (b) compresses but does not bend the
magnetic field lines. If the geometric identifications of “field-line bending term” and
“field-line compression term” are precise, the second term of �Wp should vanish
under displacements of type (a), while the first term should vanish under displace-
ments of type (b).

Let us now introduce the concept of a Lagrangian variation operator � on a field
quantity, when the plasma is displaced from its original background position to its
perturbed state as ξ is “turned on” at fixed time t , such that

� ≡ δ + ξ · ∇ (6.92)

where δ produces the more usual Eulerian variation—i.e. the variation of a field
quantity at a fixed point in space. Thus the Lagrangian variation is the change seen
by a fluid element as it is perturbed from its background to its final position. It is
a property of ideal MHD that the Lagrangian variation of the density, pressure and
magnetic field can all be expressed in terms of the strain dyadic ∇ξ. Moreover, these
fields are all O(ε−1) in the short-wavelength ordering (6.91). Lagrangian variations
also have the advantage that they vanish for uniform translations of the system,
which should not change any energy terms. We now define Lagrangian measures for
magnetic field-line compression and magnetic field-line bending variations with the

17Although N = 0 is the case least appropriate for the asymptotic analysis, it is known that the
analogous quantisation condition in the case of the quantum oscillator is exact, and numerical
comparisons in the R.L. Dewar et al. (1981) article cited in the previous footnote have found good
agreement with full normal mode calculations.
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dimension of magnetic field. We now proceed to reconsider the displacement fields
of type (a) and (b) defined above.

Magnetic Field-Line Compression
As magnetic field-line density is measured by B, we use �B = (�B2)/2B as

the natural measure for magnetic field-line compression. This may be calculated as
follows

�B = B−1
[

B · B1 + ξ · ∇
(

B2

2

)]

= B−1 [B · B1 − μ0ξ⊥ · ∇ p + B · (∇B) · ξ
]
,

(6.93)

where reference to (6.31) led us to B1 = ∇× (ξ × B) = O(ε−1) for the Eulerian
variation δB, and the identity ξ · (∇B2/2) = B · (∇B) · ξ − μ0ξ⊥ · ∇ p obtained
by dotting the magnetohydrostatic condition μ0∇ p = (∇× B) × B with ξ is used
to eliminate the subdominant O(1) term ξ · (∇B2/2). This provides a form that is
directly comparable with Term (2) of (6.49), with which it agrees if the equilibrium
magnetic field is constant along field lines, B · ∇B = 0 as in Cartesian (slab)
geometry. As our motivation for the generalised flute mode orderings in Sect. 6.7
was in fact based on plane waves in a uniform magnetic field, the description of
Term (2)—i.e. |B · B1 −μ0ξ⊥ ·∇ p|2/μ0B—as the “field-line compression term” is
justified for heuristic purposes, but the omission of the subdominant termB·(∇B)·ξ
means that we cannot regard such a description as exact for general equilibria.

Magnetic Field-Line Bending
For a measure of magnetic field-line bending we calculate the Eulerian change

of the unit tangent vector b̂ = B/B (i.e. the change of the magnetic field direction
caused by a plasma displacement), and multiply by B in order to give the variation
the dimensions of magnetic field:

B δb̂ = B1 − b̂ δB = B1 − b̂b̂ · B1. (6.94)

This is precisely the B1⊥ used in Term (1) of (6.49), but it differs from the corre-
sponding Lagrangian definition B�b̂ by the subdominant term Bξ ·∇b̂ that vanishes
only for an equilibrium magnetic field of constant direction. If we accept that the
Lagrangian definition is the more fundamental, then we again conclude that the
heuristic identification of Term (1) as the “field-line bending term” is reasonable
although not exact.

6.8 Magnetorotational Theory

MHDstability theory has interesting applications in astrophysics. For example, in the
early twentieth century Jeans suggested that the galactic spiral structures observed
byHubble could bematerial arms shed from the galactic centre andwound into spiral
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forms by galactic rotation. However, he also recognised that a material arm could
break up into clumps under self-gravitation, the phenomenon that became known
as Jeans instability. Chandrasekhar and Fermi then represented a material arm as an
infinite self-gravitating plasma cylinder of radius 250 parsecs with density 2×10−24

grams per cubic centimetre, to show that incompressible transverse perturbations are
insignificant on the galactic time scale in the presence of a uniform axial magnetic
field above 7× 10−6 gauss according to ideal MHD stability theory. Thus the wave-
length and e-folding time of the fastest instability at 2.7× 103 parsecs and 1.0× 108

years in the absence of amagnetic field became 3.4×105 parsecs and 1.1×1010 years
(the approximate age of our Galaxy) in a uniform axial magnetic field of 7 × 10−6

gauss, and there was some observational support at the time for a magnetic field of
this magnitude. Their work also addressed other consequences of self-gravitation,
such as star formation.

Many astrophysicists have since considered the stability of thin discs. One moti-
vation for this was the rapid stellar rotation in our Galaxy eventually observed,
indicating that the large-scale spiral pattern would become so wound up as to be
indistinguishable in a rotation period of about 108 years (much less than the esti-
mated age of the Universe) if the arms largely consisted of the same material. Since
strong differential rotation was also observed, Lin and Shu proceeded to consider the
hydrodynamic stability of an infinitesimally thin pressureless (cold) differentially
rotating disc to explore the maintenance of the spiral pattern as a density wave, a
concept originally due to B. Lindblad and others. Two essential assumptions in the
Lin and Shu analysis are self-gravitation and that the motion is always in the plane
of the thin disc. They assumed a quasi-stationary spiral structure (QSSS) as a work-
ing hypothesis, but Jeans instability was again an issue. In particular, Toomre found
that short-wavelength axisymmetric perturbations remain unstable in a thin disc of
stars with a large-scale Schwarzschild velocity distribution unless their root-mean-
square radial speed is at least O(Gσ0/κ), where σ0 denotes the stellar surface density
(κ is the socalled epicyclic frequency dependent on the stellar angular velocity �

defined below and G is Newton’s universal constant of gravitation). Consequently,
Lin and Shu included random stellar motion by multiplying the surface density in
the dispersion relation for the stars by a reduction factor

Fν(x) = 1 − ν2

x

(
1 − νπ

sin(νπ)

1

2π

∫ π

−π
e−x(1+cos s) cos(νs) ds

)
,

where ν = (ω − m�)/κ is a frequency ratio involving the mode eigenfrequency ω
and azimuthal wave number m, and x = α2

〈
c2
ω̂

〉
/κ2 (α is the dimensionless radial

wave number and
〈
c2
ω̂

〉
denotes the mean-square value of the stellar radial speed).

However, Toomre then found that the group velocity of the density waves seemed
sufficient to obliterate any spiral pattern in a thin stellar disc within a few rotation
periods—and since tight spirals also did not appear as instabilities in many-body
computer simulations, he subsequently proposed another mechanism called swing
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amplification that generated large-scale spiral patterns as tidal transients in a thin
disc of stars.

The focus on the stellar component in the work of those authors reflected the
view that the stars constitute most of the disc material in our Galaxy—but its spiral
pattern is primarily outlined by the youngest and brightest stars that appear to be
born at density maxima in the interstellar gas, suggesting that there is a continual
renewal process primarily associated with the gas rather than the stellar component.
Further, the interstellar gas dynamics must be influenced by any prevailing magnetic
field, and this is true whether or not the equation of state (3.3) is included in the
mathematical model—i.e. whether or not the gas is so tenuous that its pressure may
be neglected. In this section, we derive an ideal MHD criterion for the stabilisation
of an infinitesimally thin pressureless plasma disc against the short wavelength self-
gravitational perturbations Lin and Shu considered in their hydrodynamic analysis,
assuming an initial magnetic field that is perpendicular at the plane of the disc. This
MHD criterion is not only applicable in the spiral pattern context, but also wherever
the underlying mathematical model is appropriate—e.g. a magnetised plasma disc
has also been considered in modelling a quasar or galactic nucleus.

Many astrophysicists have also considered accretion or protostellar discs, tomodel
planetary and star formation for example. In particular, Balbus and Hawley recog-
nised the relevance of a magnetorotational instability due to a weak magnetic field
in a thin Keplerian disc, where self-gravitation does not play an important role. This
interesting instability has no hydrodynamic counterpart, and undermines an other-
wise stable angular velocity distribution in the strong central gravitational field in
the disc. Originally found by Velikov and Chandrasekhar, the motivation that led to
its rediscovery together with some intuitive insight is discussed in Ref. [10], and we
present some simplified further analysis below.

6.8.1 Planar Short-Wavelength Self-gravitational
Modes in a Thin Disc

In an infinitesimally thin plasma disc, the mass and electric current distributions may
be written

ρ(r, θ, z, t) = σ(r, θ, t) δ(z) and j (r, θ, z, t) = J(r, θ, t) δ(z),

where δ(z) denotes the Dirac delta function, so the continuity equation (5.33) yields

∂σ

∂t
+ 1

r

∂

∂r
[rσvr (r, θ, t)] + 1

r

∂

∂θ
[σvθ(r, θ, t)] = 0 (6.95)

http://dx.doi.org/10.1007/978-981-287-600-3_3
http://dx.doi.org/10.1007/978-981-287-600-3_5
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on the plane z = 0, where σ(r, θ, t) is the surface density; and ignoring the pressure
term, the equation of motion (2.56) becomes

σ
dv
dt

= σ∇φ + J × B, (6.96)

where φ denotes the gravitational potential (such that g = ∇φ) and B(r, θ, 0, t) is the
magnetic field at z = 0 due to some planar flow. For ideal MHD motion, there is
also the equation of magnetic induction (5.38)—i.e.

∂B
∂t

= ∇× (v × B), (6.97)

again applicable on z = 0. In addition, throughout all space we have the Poisson
equation for the gravitational potential

∇2φ(r, θ, z, t) = −4πGσδ(z), (6.98)

where

∇2 = ∂2

∂r2
+ 1

r

∂

∂r
+ 1

r2
∂2

∂θ2
+ ∂2

∂z2
. (6.99)

Finally, we have the electromagnetic equations (5.16) and (5.17)—viz. ∇· B = 0
and now

∇× B = μ0J δ(z). (6.100)

The Fourier form is f1(r) exp[i(mθ − ωt)] for planar azimuthal perturbations,
where as beforem is an integer but both f1(r) andω are generally complex.Moreover,
the form σ1(r) exp[i(mθ−ωt)] for the surface density perturbation may be rendered

σ1(r, θ, t) = a(r) exp(ωI t) cos[mθ − ωRt + b(r)]

on writing σ1(r) = a(r) exp[ib(r)], where a(r) varies slowly while b(r) varies
rapidlywith r in an eikonal (“local”) short-wavelength approximation. The perturbed
density distribution maxima then defines a spiral pattern of form m(θ − θ0) =
b(r) − b(r0) in which (r0, θ0) is any chosen reference point, rotating with angular
velocity ωR—and with an angle of inclination ϑi given by

tan ϑi = m

[
r

d b(r)

d r

]−1

,

and trailing arms for m ≥ 0 if db(r)/dr > 0 (or leading arms if db(r)/dr < 0).
Furthermore, the solution for the three-dimensional self-gravitational potential

perturbation over 0 < r0 < r < ∞ satisfying the perturbation equation obtained
from (6.98) and bounded as r → ∞ may be expressed as

http://dx.doi.org/10.1007/978-981-287-600-3_2
http://dx.doi.org/10.1007/978-981-287-600-3_5
http://dx.doi.org/10.1007/978-981-287-600-3_5
http://dx.doi.org/10.1007/978-981-287-600-3_5
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φ1(r, θ, z, t) = C Hm(αr) e−α|z| exp[i(mθ − ωt)], (6.101)

where C is a constant and Hm(αr) is an mth order Hankel function. Thus the surface
density perturbation in the plasma disc is

σ1(r) = α

2πG
φ1(r), (6.102)

if we assume the stellar background and any other nearby material is passive (unper-
turbed) on the time-scale of interest. It is notable that

Hm(αr) �
√

2

παr
exp

[
±i

(
αr − 1

2
mπ − 1

4
π

)]
(6.103)

for αr � 1, where the + and − correspond to the respective Hankel functions
H (1)

m and H (2)
m . Indeed, in the short radial wavelength eikonal approximation near

r = R say, where Hm(αr) is taken to vary much more rapidly with r than any
initial quantity (and then may be treated as constant), the perturbation forms are
f1(r, θ, t) ∼ exp[i(ωt − mθ ± αr)] on z = 0 and Eq. (6.95) produces

i(ω − m�)σ1 = σ0
1

r

(
d

dr
(rv1r ) + imv1θ

)
� σ0

dv1r

dr
= ± iσ0 αv1r , (6.104)

assuming that v1r ∼ v1θ. Near the radius r = R (where αr � 1), we also have

∂φ1

∂r

∣∣∣∣
z=0

= ±2πiGσ1 and
∂φ1

∂θ

∣∣∣∣
z=0

= O
(σ1

α

)
. (6.105)

Let us now consider an initial magnetic field that is perpendicular at the plane
of the disc—i.e. such that B = Bz(r)êz at z = 0. This magnetic field may be quite
weak, as emerges below, and it may originate either internally or externally. Thus
it may correspond to a poloidal magnetic field generated by an azimuthal electric
current distribution j(r, z) = Jθ(r) δ(z)êθ in the disc, or it could be due to a seed
field emanating from elsewhere. The analysis below relates to the first case, but the
ideal MHD stability criterion obtained is precisely the same in either case—as one
would expect for the eikonal (“local”) perturbations considered.

From (6.100) and ∇· B = 0, the components of the magnetic field perturbation
corresponding to planar current perturbations J1r and J1θ are

B1r (r, θ, z, t) = μ0 J1θ sgn(z) exp(−α|z| ) (6.106)

B1θ(r, θ, z, t) = −μ0 J1r sgn(z) exp(−α|z| ) (6.107)

B1z(r, θ, z, t) = μ0

[
∂ (r J1θ)

∂r
− ∂ J1r

∂θ

]
1

α
exp(−α|z| ). (6.108)
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Thus if we ignore any accompanying background disturbances, the linearised pertur-
bation equations for the infinitesimally thin plasma disc at z = 0 with initial surface
density σ are (presuming v1r ∼ v1θ):

i(ω − m�)σ1 = ±iσαv1r

−i(ω − m�)v1r − 2�v1θ = ±2πi G σ1 + Bz

σ
J1θ + Jθ

σ
B1z − Jθ Bz

σ2 σ1

−i(ω − m�)v1θ + κ2

2�
v1r = − Bz

σ
J1r

i(ω − m�)B1z = ±iαBz J1z

B1z = ±iαμ0 J1θ
±αJ1r − (m/R)J1θ = 0,

from (6.96) and (6.105), (6.97), (6.107) and ∇· J = 0. Here

κ2 = 4�2(R)

(
1 + r

2�

d�

dr

)∣∣∣∣
r=R

=
(
4�2 + r

d�2

dr

)∣∣∣∣
r=R

(6.109)

defines the epicyclic frequency κ at any radius R. (In our Galaxy the epicyclic
frequency κ is often written in terms of socalled local Oort constants, and varies only
slowly with radius.)

Elimination between these perturbation equations yields the dispersion relation

(ω − m�)2 = κ2 −
(
2πGσ − B2

z

μ0σ

)
α, (6.110)

so the vertical magnetic field strength B0 stabilises the localised short-wavelength
perturbations according to the MHD stability criterion

Bz >
√
2πGμ0σ2. (6.111)

For example, if we assume a surface density σ = O(10−3)gmcm−2, the critical
magnitude of the magnetic field

√
2πGμ0σ2 for marginal stability is only O(10−6)

gauss—i.e. a similar magnitude to that previously found sufficient to prevent the
breakup of the plasma cylinder model for a material galactic arm on the galactic time
scale. Any accompanying perturbation in the stellar background or neighbourhood
may increase this order of magnitude estimate, but the plasma density σ0 probably
remains the major factor in defining the critical magnetic field under the stability
criterion (6.111). Thus short-wavelength disturbances that produce tight spiral wave
patterns may be stabilised by a relatively small magnetic field, independent of any
finite plasma pressure effect analogous to the stabilisation of a thin disc of stars due
to their random motion. Finally, we note that the MHD stability criterion (6.111) is
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also applicable to magnetised disc equilibria even if there is little or no rotation, as
in some quasar modelling.

6.8.2 Magnetorotational Instabilities in a Keplerian Disc

Let us now consider a differentially rotating Keplerian disc of small but finite thick-
ness, where self-gravitation is negligible relative to a strong central gravitational
force. Let us continue to assume that the plasma is subject to a magnetic field
B = Bz êz , which may now be weak such that the equilibrium condition becomes
r�2(r) � G M/r2—i.e. the angular momentum is largely balanced by the cen-
tral gravitational force. We denote the projected surface density by σ(r) and the
azimuthal angular speed by �(r) as before, but here invoke the ideal compressible
model of Sect. 5.7 and consider axial eikonal (“local”) perturbations of Fourier form
f1(r) exp[i(kz − ωt)]. Thus for f1(r) varying slowly with r and kr � 1, from
(5.33)–(5.35) and (5.38) the linearised perturbation equations (in our usual subscript
notation) are

− ω
σ1

σ
+ kv1z = 0 (6.112)

iωv1r + 2�v1θ + i
k Bz

μ0σ
B1r = 0 (6.113)

−iωv1θ + κ2

2�
v1r − i

k Bz

μ0σ
B1θ = 0 (6.114)

−ωv1z + k
p1
σ

= 0 (6.115)

p1
p

− γ
σ1

σ
= 0 (6.116)

ωB1r + k Bzv1r = 0 (6.117)

iωB1θ + ik Bzv1θ + d �

d ln R
B1r = 0 (6.118)

B1z = 0, (6.119)

where κ is again the epicyclic frequency given by (6.109). There is decoupling
in this simplified system for an axial magnetic field, such that the subset in
{v1r , v1θ, B1r , B1θ} renders the dispersion relation we seek as the condition for the
corresponding nontrivial solution—viz.

det

⎛

⎜⎜⎝

iω 2� ik Bz/(μ0σ) 0
κ2/(2�) −iω 0 −ik Bz/(μ0σ)

k Bz 0 ω 0
0 ik Bz d�/d ln R iω

⎞

⎟⎟⎠ = 0.

http://dx.doi.org/10.1007/978-981-287-600-3_5
http://dx.doi.org/10.1007/978-981-287-600-3_5
http://dx.doi.org/10.1007/978-981-287-600-3_5
http://dx.doi.org/10.1007/978-981-287-600-3_5
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where cA =
√

B2
z /(μ0σ) is the Alfvén speed, or

ω4 −
(
2k2c2A + κ2

)
ω2 + k2c2A

(
k2c2A + d �2(r)

d ln r

)
= 0. (6.120)

Consequently, if d �2(r)/d ln r < 0 there is an exponentially growing instability
(ω2 < 0) for wave numbers satisfying

k2c2A < −d �2(r)

d ln r
. (6.121)

Moreover, on setting cA = 0 it follows that this magnetorotational instability has no
hydrodynamic counterpart—cf. also the Exercise below.

Since �2(r)=G M/r3 implies d�2(r)/d ln r ≡ rd�2(r)/dr = −3�2(r)<0 at
the arbitrary radius r in the Keplerian disc, the unstable wave numbers k are more
restricted for larger magnetic field magnitude Bz , according to the criterion (6.121).
However, the maximum growth rate 3�(r)/4 that occurs at the wave number k
where k2c2A = 15�(r)2/16 is so large that the perturbation amplifies more than 100
times each rotation period. Numerical simulations have shown that turbulence due
to this instability strongly enhances radial transport of angular momentum, possibly
explaining various astrophysical phenomena such as star formation and intenseX-ray
sources associated with black holes or neutron stars.

Exercise

(Q1) Consider a rotating reference frame with origin located at the unperturbed
position R(t) of an arbitrary element moving in a circular orbit of radius R, in
a Keplerian plasma disc distribution. Thus if� = �(R) êz denotes the angular
velocity about the disc centre, the pressureless equation of motion is (cf. the
discussion of rotating reference frames in Sect. 3.14):

σ

(
dv
dt

+ 2� × v − �2ρ

)
= − G M

ρ2
êr ,

where v(r, t) is the velocity of the element of density σ relative to the origin
of the rotating frame, ρ = R + r is its position relative to the disc centre, and
−G M/ρ2êr is the gravitational force due to the localised mass M at ρ = 0.
(a) Noting that�2(R +ξr )[(R +ξr )êr +ξθ êθ] � �2(R)R êr +ξr d�2/dr |R êr

under a small planar displacement ξ = ξr êr +ξθ êθ (|ξ| � R), derive the appro-
priate linearised equations for axial perturbations of form f (t) exp(ikz), on
writing the perturbation velocity v1 = ξ̇ (where the dot denotes differentiation
with respect to the time t).

http://dx.doi.org/10.1007/978-981-287-600-3_3


6.8 Magnetorotational Theory 245

(b) Deduce the hydrodynamic dispersion relation (at r = R)

ω2 = 4�2(R) + R
d �2(r)

dr

∣∣∣∣
r=R

= κ2,

where κ is the epicyclic frequency defined by Eq. (6.109).
(c) Show that

κ2 = 1

r3
d (r2�(r))2

dr

∣∣∣∣
r=R

,

such that the disc is hydrodynamically stable when the angular momentum
r2�(r) increases with radius.

6.9 Resistive-g Instabilities

We now recall that there are various non-ideal features that may be introduced into
the MHD model. In particular, if the resistive term is retained in the equation of
magnetic induction (2.100) and we assume the resistivity coefficient is unperturbed,
the ideal linearised perturbation equation (6.17) is replaced by the resistive form

− iωB1 = ik · B v1 − ∇× (η∇× B1). (6.122)

As foreshadowed in Sect. 5.14, this resistive modification may be significant even
if the resistivity coefficient is small (η � 1)—viz. for modes where once again
k is almost parallel to B, so the resistive term ∇× (η∇× B1) in (6.122) becomes
comparable with ik · B v1. It emerges that the relaxation of the “frozen-in field”
constraint (due to the nonzero resistivity) leads to new resistive modes.

Let us reconsider the slab model assuming (6.13) in this section, in an initial
discussion of resistive interchange (“resistive-g”) instabilities. For a vertical density
gradient and horizontal magnetic field, Eqs. (6.15) and (6.16) that allow for mag-
netic field shear again yield (6.19). However, from (6.122) the equation of magnetic
induction for resistive perturbations is

− iωB1z = ik · B v1z + η

(
d2

dz2
− k2

)
B1z, (6.123)

on assuming constant but nonzero resistivity η.

http://dx.doi.org/10.1007/978-981-287-600-3_2
http://dx.doi.org/10.1007/978-981-287-600-3_5
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6.9.1 Uniform Magnetic Field

In the case of a uniform horizontal magnetic field (cf. Sect. 6.3), we might consider
plane wave propagation where the z-dependence is entirely ignored, when (6.19) and
(6.123) produce a nontrivial solution provided

∣∣∣∣∣∣
ρω + g

ω

dρ

dz
μ−1
0 k · B

k · B ω + iηk2

∣∣∣∣∣∣
= 0 (6.124)

or
ω3 + iηk2ω2 − (k2‖c2A − gκ)ω + iηk2gκ = 0, (6.125)

where as before κ = ρ−1dρ/dz, k‖ = k · B/B and cA = B/
√

μ0ρ is the Alfvén
speed. In the absence of resistivity (η = 0), the dispersion relation (6.125) reduces to
the ideal MHD form ω2 = k2‖c2A − gκ, which implies stability when k‖ >

√
gκ/cA.

However, when k‖ >
√

gκ/cA and the resistivity η is small but finite, there is a new
root such that

σ ≡ −iω = ηk2gκ

k2‖c2A − gκ
. (6.126)

Thus at short wavelengths where the configuration is stable according to the ideal
MHD stability criterion, there are new resistive interchange (“resistive-g”) modes for
small but finite η, with significant real growth rates σ where k‖ → kcrit ≡ √

gκ/cA
from above.

6.9.2 Sheared Magnetic Field

In the ideal MHD analysis for a sheared magnetic field in Sect. 6.4, the governing
differential equation (6.20) is singular at the resonance surface z = zs where k‖ =
k · B/B = 0. When η is small but finite, (6.123) reduces to the ideal form (6.17)
except near z = zs , where the resistive term should be retained. Thus in the presence
of magnetic field shear, the resonance region near k‖ = 0 may now be referred to as
the resistive region. Let us also recall the fluid mechanics analogy when the shear
viscosity coefficient is small, where the higher order viscous term must be retained
in boundary layers although the flowmay be treated as ideal elsewhere (cf. Sect. 3.8).

Consider a sheared magnetic field B = (îz/L S + ĵ)B0, where L S is the represen-
tative shear length and B0 measures the field strength, and consider flute-like modes
where k · B � (k B0/L S)z in the resistive region (narrow for small η) near z = 0
where k = ky and kz = 0. Thus the first term on the right-hand side of (6.19) still
does not arise, leaving the focus of the present analysis on the gravitational term. Let
us seek a shock-like solution in the narrow resistive region, where the field variables

http://dx.doi.org/10.1007/978-981-287-600-3_3
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in the coupled equations (6.19) and (6.123) are presumed to vary rapidly, such that
the higher order derivative terms dominate all others independent of ω or the space
variable z. Under the ad hoc assumption that the resistive growth rate is real, it is
again convenient to write σ = −iω and introduce the scaled variables

w = z

δ
, δ4 = η σL2

S

k2c2A
, G = gκL2

S

c2A
, a = gκk2δ2

σ2 and V = k B0δ

σL S
v1z

into the perturbation equations (6.19) and (6.123), to obtain after some algebra

(
d2

dw2 + a − w2
)

V = iwB1z (6.127)

d2B1z

dw2 = G
a

(B1z − iwV ). (6.128)

The parameter δ is a measure of the resistive region thickness (where δ → 0 as the
resistivity η → 0), G is the gravity parameter, and the growth rate σ is implicit in
the eigenvalue a.

When G > 1, ideal instabilities grow on the fast Alfvén time scale defined by
(6.22) such that the ratio G/a → ∞ as η → 0, so B1z − iwV � 0 and (6.127)
corresponds to (6.20). However, this ratio G/a in (6.128) is finite as η → 0 for the
resistive instabilities that arise with growth rate σ = O(η1/3) as discussed below.
Nevertheless, since |w| → ∞ as η → 0 the resistive equations (6.127) and (6.128)
do reduce to

B1z − iwV � 0 ,
d2

dw2 B1z + G
w2 B1z � 0 (6.129)

near the resistive region boundaries (i.e. where |z| � δ or |w| � 1), equivalent
to the ideal equations. Thus there is an “inner” dissipative region and an “outer”
ideal region, as in classical Prandtl boundary layer theory (cf. Sect. 3.8). Moreover,
if our discussion is restricted to G � 1 such that the configuration is strongly stable
under the ideal MHD criterion, the dominant approximate solution for |w| � 1 is
B1z � |w|G . We may therefore adopt B1z � C (a constant) as a first approximation
in the resistive region, and proceed to solve

(
d2

dw2 + a − w2
)

V = iCw (6.130)

on −∞ < w < ∞, treating w as a “stretched” variable as η → 0 in the terminology
of asymptotic theory. In passing, let us note that the higher order term on the left-hand
side of (6.128) defines the fluctuation in the magnetic field perturbation across the
resistive region, where the magnitude of B1z is approximately constant. In contrast,
the magnitude of the associated velocity field perturbation varies substantially across
the resistive region, such that B1z − iwV � 0 near the resistive region boundaries.

http://dx.doi.org/10.1007/978-981-287-600-3_3
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On taking the Fourier transform

V̂ (α) =
∫ ∞

−∞
eiαw V (w) dw,

(6.130) becomes (
d2

dα2 + a − α2
)

V̂ (α) = −2πCδ′(α), (6.131)

where the right-hand side involves the derivative of the Dirac delta function. The
corresponding homogeneous equation is valid almost everywhere (except at α = 0),
and readily solved by setting V̂ (α) = e−α2/2 W (α) such that

d2

dα2 W (α) − 2α
dW

dα
+ (a − 1)W = 0.

The general solution of this equation is W (α) = c1Hν(α)+c2 eα2
H−ν−1(α), where

Hν(α) is the Hermite function of degree ν = (a −1)/2. However, we require c2 = 0
and ν an integer to ensure that V̂ (α) is bounded as |α| → ∞. Thus the solutions are
V (α) = c(±)e−α2/2Hn(α), where the + and − superscripts specify the constants in
the respective sub-intervals α > 0 and α < 0, involving the Hermite polynomials.
Moreover, integrating (6.131) over (0−,α) where α > 0 produces

dV̂

dα
− dV̂

dα

∣∣∣∣
0−

= −2πCδ(α)

such that

dV̂

dα

∣∣∣∣
0+

− dV̂

dα

∣∣∣∣
0−

= 0 and V̂ (0+) − V̂ (0−) = −2πC �= 0.

The solution compatible with this discontinuity at α = 0 is such that V̂ (0) �= 0
and V̂ (0+) � −V̂ (0−), which requires ν = 2 n (i.e. ν must be an even integer)
because all oddHermite polynomials are zero at the origin. The fastest growingmode
corresponds to n = 0, when

1 = gκk2δ2

σ2 = gκk2

σ2

(
ησL S

2

k2cA2

)1/2

.

Thus the growth rate

σ = η1/3
(

gκkL S

cA

)2/3

(6.132)
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is proportional to η1/3 (asymptotically as η → 0) as anticipated, and reduced by the
magnetic field shear (proportional to L2/3

S ). It may also be verified immediately that
the resistive region thickness is

δ = η1/3
(

gκL S
4

k2cA4

)1/6

. (6.133)

It is notable that the eigenvalue a is determined from the “inner” resistive region
solution alone. This corresponds to local destabilisation, as the “frozen-in” constraint
is removed in this region due to the nonzero resistivity.Nevertheless, outside the resis-
tive region both of the field perturbations vary slowly across the entire plasma slab
(the perturbations are not localised), and the response is said to be electromagnetic
because B1z �= 0 almost everywhere (except at highly conducting slab boundaries, for
example). There is a localised electrostatic mode where B1z � C = 0 everywhere,
when the discontinuity requirement detailed above does not apply and therefore ν
may also be an odd integer. However, the fastest growing electrostatic mode again
corresponds to n = 0, so its growth rate is also given by (6.132).

6.10 Resistive Tearing Instabilities

In the previous section, it emerged that the growth rate of both local and global
resistive-g modes in a sheared magnetic field is proportional to η1/3 as η → 0.
Unlike the ideal MHD pressure-driven interchange modes under gravity we dis-
cussed in Sects. 6.3 and 6.4, the resistive-g modes are not prevented by magnetic
field shear, although their growth rate is reduced. Thus on introducing the charac-
teristic number S = τR/τH , the ratio of the hydromagnetic time τH = L/cA and
the resistive diffusion time τR = L2/η (where L is a suitable characteristic length),
the dimensionless growth rate of the resistive-g modes is σ̂ = στR ∼ S 2/3 where
S � 1. This Lundquist number S (sometimes less appropriately called the magnetic
Reynolds number) is typically O(103) or greater in magnetic confinement configu-
rations, and usually much larger in astrophysics.

There are two other resistive modes with dimensionless growth rates σ̂ ∼ S ζ

where 0 < ζ < 1 and S � 1. The more important is the large-scale resistive coun-
terpart to the ideal kink instability called tearing, due to the pattern of significant
disruption it causes driven by the release of magnetic field tension following mag-
netic reconnexion in the resistive region. Matching of an “outer” ideal solution to
the “inner” resistive solution is required to define the growth rate of this characteris-
tically non-local tearing mode, analogous to matching the outer ideal solution with
the solution in the viscous boundary layer in fluid mechanics (cf. Sect. 3.8). In the
previous section, the magnetic field shear was assumed linear in z and it was found
to reduce the growth rate of the resistive-g modes. In contrast, the long-wavelength
resistive tearing modes arise in regions of strongmagnetic field shear associated with

http://dx.doi.org/10.1007/978-981-287-600-3_3
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significant current flow, such that the first term in the square brackets on the right-
hand side of (6.19) previously omitted becomes dominant. Magnetic reconnexion
was first suggested as the probable mechanism for solar flares [5], although it has
emerged that the resistive plasma model is inadequate in that context (cf. Sects. 6.11
and 6.12). However, magnetic reconnexion due to some non-ideal modification is
relevant much more generally, including plasma relaxation as mentioned in the brief
commentary near the end of Sect. 5.10. The pioneering resistive stability analysis
due to Furth and others, briefly represented below (cf. also [12]), allows for arbitrary
field shear and also introduces a resistivity gradient that drives the third resistive
mode known as rippling.

The Cartesian slab model is again adopted—but it is assumed that the plasma,
with not only the density but also the resistivity dependent on z (to allow for rippling),
is permeated by the more general horizontal magnetic field B(z) = Bx (z)î + By(z)ĵ
and bounded by perfectly conducting walls at z = ±zw. Let us introduce the dimen-
sionless variables

ζ = z

L
, ψ = B1z

B0
, V = ikxv1zτR,

α = kL , F = k · B
k B0

, σ̂ = στR,

τR = L2

η
, τH = L

cA
, S = τR

τH

(6.134)

with L a characteristic length in the vertical z direction and k =
√

k2x + k2y the usual

wave number, which are similar but not identical to those in the original analysis of
Furth and others. From (6.19) and (6.122), the linearised perturbation equations for
the vertical field components may then be written

(ρV ′)′ − α2
(

ρ − S2G

σ̂2

)
V = α2S2F

σ̂

[
ψ′′ −

(
α2 + F ′′

F

)
ψ

]
, (6.135)

ψ′′ − α2
(
1 + σ̂

ηα2

)
ψ = F

η

(
1 + η′F ′

σ̂F

)
V, (6.136)

where the derivatives are taken with respect to the dimensionless spatial variable
ζ, ρ is the normalised density, η is the normalised resistivity, G (proportional to
gκ) represents the gravity that we recall may crudely simulate the magnetic field
curvature, and the characteristic Lundquist number S � 1. The first term in the
square bracket on the right-hand side of (6.19) produces the additional current-
dependent term in (6.135) with coefficient F ′′/F , which was lost in the resistive-g
analysis given in the previous section. Thus there is again a fourth order system of
ordinary differential equations to consider that reduces to the corresponding second
order ideal perturbation equation in the limit S → ∞, except in the resistive region
near the resonance surface where F = 0—i.e. near where the wave vector k is
perpendicular to the magnetic field B.

http://dx.doi.org/10.1007/978-981-287-600-3_5
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The previous assumption that the growth rate is real can be proven to extend
to any resistive instability admitted by the generalised model (6.135) and (6.136).
Normalising the resistivity so that ηF ′ = 1 and noting that V = 0 and ψ = 0 at
the rigid perfectly conducting boundaries, on multiplying (6.135) and (6.136) by
appropriate complex conjugates and then integrating one obtains

∫
dζ

{
σ̂2

|σ̂|2α2S2

[
ρ|V ′|2 + α2

(
ρ − S2G

σ̂2

)
|V |2

]

+ σ̂F ′ − F ′′/F

|σ̂F ′ − F ′′/F |
∣∣∣∣ψ

′′ −
(

α2 + F ′′

F

)
ψ

∣∣∣∣
2

+|ψ′|2 +
(

α2 + F ′′

F

)
|ψ|2

}
= 0. (6.137)

Taking the imaginary part of (6.137) implies �(σ̂) ≤ 0 if �(σ̂) �= 0, so there are no
overstable modes, validating our assumption introduced in Sect. 6.9 that any unstable
perturbation has real growth rate.

Adopting the stretched variable θ = [ζ − ζs + η′/(2σ̂)]/ε (where ε � 1), we
obtain the scaled forms of the field equations (6.135) and (6.136) for the narrow
resistive layer—viz.

d2U

dθ2
+
(

� − 1

4
θ2
)

U = (θ − δ)ψ, (6.138)

d2ψ

dθ2
− ε2α2ψ = ε�[4ψ + (θ + δ1)U ] (6.139)

in the notation of Furth and others, where

ε =
(

σ̂ηρ

4α2S2(F ′)2

)1/4

, U = 4εF ′

σ̂
V,

� = (η′)2

16ε2σ̂2 + S2ε2α2G

σ̂2ρ
− ε2α2, δ =

(
F ′′

F ′ + η′

2η

)/
(4�),

� = εσ̂

4η
, δ1 = η′

8η�
.

(6.140)

In the limit S → ∞ such that ε → 0, from (6.139) we may infer that ψ � constant
over the resistive region—i.e. B1z � constant as before.When the resistivity gradient
term is ignored, and the field shear is relatively small such that the term proportional
to F ′′ is also negligible as in Sect. 6.9, then δ � 0 and (6.138) reduces to

d2U

dθ2
+
(

� − 1

4
θ2
)

U = const. θ (6.141)

consistent with (6.130) where w = θ/
√
2. In the present notation, the fastest

short wavelength (α � 1) resistive-g mode driven by the gravity term (when
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� � S2ε2α2G/(σ̂2ρ) = 1/2) has the growth rate

σ̂ = η1/3
(

SαG

ρ1/2|F ′|
)2/3

(6.142)

consistent with (6.132), where we first observed that the growth is inhibited but not
eliminated by the magnetic field shear (F ′ �= 0 here).

As anticipated, tearing modes are characteristically non-localised and relatively
long wavelength (α < 1), and arise when the resistivity gradient and gravity terms
in � are relatively small. The limiting ideal equation (in the limit S → ∞) for the
outer region is evidently

ψ′′ −
(

α2 + F ′′

F

)
ψ = 0 (6.143)

from (6.135), with an asymptotic expansion solution

ξ ∼ exp[−α(ζ − ζs)](ψ0 + α ψ1 + · · · ), α � 1, (6.144)

such that ψ0 ∼ |F | and at first order

ψ′′
1 − F ′′

F
ψ1 = 2ψ0 sgn(ζ − ζs), (6.145)

so ψ1 ∼ F2±/F ′ near ζs . The matching requirement is effectively met in this context
by equating the jump in the logarithmic derivative across the resistive region

� = d lnψ

dζ

∣∣∣∣
ζ+

ζ−

evaluated in the outer region with the appropriate form for � in the inner region,
because this represents the desired dispersion relation. Thus we have from the
outer region

�outer � (F ′)2 (F−2+ + F−2− ) /α,

where F± denote the values of F at the respective boundaries ζs±. For the inner
region, Furth et al. chose to expand in terms of the orthonormal Hermite polynomials
to render (for ψ � constant)

�inner = 27/2�
∞∑

m=0

�(m + 1
2 )

�(m + 1)

[
� − 1

2

� − (2m + 3
2 )

− δδ1/4

� − (2m + 1
2 )

]

= 27/2π�

[
�( 34 − 1

2�)

�( 14 − 1
2�)

+ δδ1

8

�( 14 − 1
2�)

�( 34 − 1|
2 �)

]

� 12�,



6.10 Resistive Tearing Instabilities 253

on noting that δ1 � 0 and � � 1 when resistivity gradient and gravity contributions
are negligible. Equating �outer to �inner produces the dispersion relation

σ̂ = (F ′)2
(
2Sη3/2

9αρ1/2

)2/5

(F−2+ + F−2− )4/5 (6.146)

for the tearing mode, driven by the strong magnetic field shear (with growth rate
proportional to the square of F ′ �= 0).

The resistive rippling mode corresponds to dominance of the resistivity gradient
in �, with maximum growth rate when � � (η′)2/(16ε2σ̂2) = 1/2—viz.

σ̂ =
[
(η′)2αS|F ′|
4η1/2ρ1/2

]2/5
. (6.147)

The resistivity gradient term is larger than the gravity term in � when

σ̂ <
(η′)2(F ′)2

4η|G| , (6.148)

such that resistive-g instabilities typically have the faster growth rate when G > 0
and the magnetic field shear (represented by F ′) is not too large, but rippling may
become more evident at plasma–vacuum boundaries for example (where the resis-
tivity gradient η′ is rather large).

6.11 Effect of Plasma Viscosity on Stability

Even if a well designed configuration avoids ideal MHD instabilities, we now know
that the resistive-g (or pressure-driven resistive interchange) and resistive tearing
(the current-driven resistive kink) modes can produce large-scale plasma displace-
ments. Indeed, although the growth rate of the resistive-g instability is moderated
somewhat in the presence of magnetic field shear, the tearing instability is driven
by the magnetic field shear and reduces the current density gradient as the magnetic
field lines in the resistive region break and reconnect. Moreover, although no resis-
tive instability grows on the fast Alfvén time-scale of ideal MHD modes, they all
develop at a rate much faster than classical resistive diffusion (characterised by the
resistive time τR). However, the continuing strong interest in magnetic confinement
prompted many theoretical investigations of resistive instabilities in cylindrical and
toroidal geometry—again usually by normal mode analysis or various supplemen-
tary numerical simulations in both linear and nonlinear regimes, rather than by a
variational approach that had proven so powerful in extending the ideal MHD sta-
bility theory to non-Cartesian geometries, as discussed in Sects. 6.5–6.7. Variational
techniques to analyse dissipative and nonlinear systems can give useful qualitative
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insights, but not necessarily all the explicit quantitative outcomes often sought. In
brief, in addition to smaller scale disturbances it became clear that major insta-
bilities to counter in magnetic confinement designs include: (1) ideal and resistive
interchanges (or ballooning modes in toroidal configurations) driven by the pressure
gradient, wherever there is unfavourable magnetic field curvature; and (2) ideal and
resistive kink (tearing) instabilities driven by a current term involving the magnetic
field shear in the MHD equation of motion.

Various experimental magnetic confinement programmes have been partly suc-
cessful. Tearingmodes in tokamaks, where the toroidal magnetic surfaces are created
by a large applied longitudinal magnetic field and a longitudinal current, can be con-
trolled by a rather stringent upper limit on the magnitude of that current [14]. High
current, highmagnetic field shear devices such as the reverse-field-pinch allowhigher
β (i.e. a desirably higher ratio of plasma pressure to magnetic pressure for a ther-
monuclear reactor) and do promise plasma confinement at safety factor values much
less than 1. Robinson found ideal and tearing mode stable configurations in such
devices for central β values approaching 20%, but the resistive-g mode was seen
to be a continuing threat. Other instabilities have been identified over the years too,
and not all of them are relatively localised like the resistive rippling mode mentioned
above. The need to control persistent instability in any attempt at magnetic confine-
ment, and of course to better understand the physics in the laboratory and elsewhere,
have motivated the inclusion of further non-ideal effects in the plasma model. In this
section, we discuss the inclusion of plasma viscosity (cf. Sects. 2.9 and 2.10), which
provides (1) partial stabilisation of ideal and resistivemodes and (2) enhanced energy
release due to magnetic field reconnexion, of particular interest in solar physics.

6.11.1 Magnetoviscous Stabilisation of Ideal and Resistive
Instabilities

Let us again consider a magnetohydrostatic configuration defined by (5.63) when
v = 0, but now introduce plasma viscosity so the equation of motion in the set of
linearised perturbation equations becomes

ρ
∂v1
∂t

+ ∇ p1 + ∇· t1 = μ−1
0 [(∇× B) × B1 + (∇× B1) × B] + ρ1g, (6.149)

and as before adopt the resistive equation of magnetic induction

∂B1

∂t
= ∇× (v1 × B) − ∇× (η∇× B1). (6.150)

http://dx.doi.org/10.1007/978-981-287-600-3_2
http://dx.doi.org/10.1007/978-981-287-600-3_2
http://dx.doi.org/10.1007/978-981-287-600-3_5
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Introducing the Lagrangian displacement vector ξ and magnetic vector R, defined
by

∂ξ

∂t
= v1(r0, t) and

∂R
∂t

= B1(r0, t) (6.151)

relative to any initial reference position r0, the system of linearised perturbation
equations reduces to

P ξ̈ + K ξ̇ + D ξ = 0. (6.152)

Here the dot once again denotes time differentiation, the underlined symbol ξ denotes

the column six-vector (ξ, R)T , and the coefficient matrices are

P =
[

ρ 0

0 0

]
, K =

[
L0 0
0 μ−1

0 L2

]
, D =

[
L1L3 + L4 −L1L2

−μ−1
0 L2L3 μ−1

0 L2
2

]
(6.153)

with the implicit linear operators

L0 ξ̇ = ∇· t1(ξ̇),

L1 (R) = μ−1
0 [(∇× B) × R + (∇× R) × B],

L2R = ∇× (η∇× R),

L3ξ = ∇× (ξ × B),

L4ξ = g∇· (ρ0 ξ) − ∇(γ p∇· ξ + ξ · ∇ p). (6.154)

Equation (6.152) is a generalised form for the dissipative system, with plasma viscos-
ity and resistivity combined in the dissipative coefficient matrix K and the resistivity
also rendering the otherwise ideal MHD coefficient matrix D nondiagonal. Thus
when the resistivity η is zero, (6.152) reduces to the plasma viscosity modification
of the earlier ideal MHD form (6.29) in the displacement three-vector ξ. One may
readily identify the relevant driving terms in the implicit linear operators, for the now
familiar ideal or resistive instabilities.

Let us again consider an inner product over the solution space, but now for the
6-vector entities. For real exponential growth rates (∼ eσt ), from (6.152) we have
the quadratic relation

σ2 + 2κσ + α = 0 (6.155)

with coefficients

2κ =
∫

V ξ∗ · K ξ dτ
∫

V ξ∗ · P ξ dτ
and α =

∫
V ξ∗ · D ξ dτ
∫

V ξ∗ · P ξ dτ
, (6.156)

where again the asterisk denotes the complex conjugate and the integration is taken
over the plasma volume V . Equation (6.155) is similar to the eigenvalue equation for
an harmonic oscillator with damping coefficient κ. However, the Rayleigh quotient
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α is usually no restoring force here, for it is the source of instabilities driven by
the unfavourable magnetic field contributions from the linear operator L1 to the
matrix D. Thus for κ > 0 the necessary and sufficient condition for instability is
�{√κ2 − α } > κ, which reduces to α < 0 for real α. Nevertheless, the growth rate
of any instability is reduced from

√|α| when the coefficient κ is zero to |α|/(2κ) for
large positive κ—i.e. the instability remains, but it is significantly damped.

We have seen in Sect. 2.9 that the plasma pressure tensor involves an expansion
t = t‖ + tg + t⊥ + · · · in magnetised plasma where ωcτ � 1, except in the near
neighbourhood of any magnetic null. Further, if we adopt the simple form for the
deformation tensor

s ≡ {∇v} = 1

2
[∇v + (∇v)T ] − 1

3
∇· v I

corresponding to the result (2.80) in Sect. 2.10 valid for sufficiently small τ , from
(2.71) the parallel ion viscosity component entering (6.149) is

t‖ = −3μ

[
b̂ · ∇(v · b̂) − v · (b̂ · ∇b̂) − 1

3
∇· v

] (
b̂b̂ − 1

3
I
)

(6.157)

where b̂ = B/B. Except in Cartesian geometry, the second term in the square brack-
ets in (6.157) proportional to magnetic field curvature ensures that parallel viscosity
enters the theory, although the first and third terms are both small in the neigh-
bourhood of the resonance surfaces for the most damaging incompressible modes
previously considered (where the parallel wave number k‖ � 0 and ∇· v � 0).
In particular, if it is again assumed that the plasma is bounded by a rigid perfectly
conducting wall, the boundary conditions include: (1) vanishing n̂ · ξ (and possibly
other components of ξ in the presence of plasma viscosity); (2) vanishing n̂ · R (or
vanishing R if the wall is “at infinity”); and (3) vanishing n̂ × E, so that n̂ × (∇× R)

vanishes. For such Cauchy-type conditions the dissipative numerator is

∫

V
ξ∗ · K ξ dτ =

∫

V
ξ∗ · L0 ξ dτ + μ−1

0

∫

V
R∗ · L2R dτ

=
∫

V

[
3μ

∣∣∣∣

(
b̂b̂ − 1

3
I
)

: ∇ξ

∣∣∣∣
2

+ μ−1
0 η|∇× R|2

]
, (6.158)

so that κ > 0. Linear stability calculations for cylindrical flux surfaces showed that
parallel ionviscosity could significantly reduce thegrowth rate of the resistive-gmode
in tearing mode stable magnetic field configurations identified for the reverse-field
pinch, except for the axisymmetric (m = 0) mode where the nonlinear response was
followed. Critical local pressure gradients dependent on the magnetic field shear
were determined, implying a critical pressure profile with an average β value of
around 10%. However, since not only the pressure p but also the ion-ion collision
time τ is expected to rapidly increase as the plasma temperature increases, there are
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additional terms in the modified form (2.82) of t‖,‖ that may become important. As
previously mentioned, in simulations Eq. (2.79) could be invoked directly to render
the scalar field t‖,‖ in the parallel viscosity component t‖ = (3/2)t‖,‖{b̂b̂}.

Parallel ion viscosity had earlier been overlooked—partly because the classical
shear viscosity appropriate for fluids but not for magnetised plasma (except in the
near neighbourhood of amagnetic null) was adopted bymany authors; partly because
gyrokinetic theory had only produced the gyroviscous (cross) component tg given
by (2.72) as previously mentioned in Sect. 2.9; and also partly because the analysis
was undertaken for the plasma slab—i.e. in Cartesian coordinates, where there is no
geometric magnetic field curvature term as in (6.157), so the dominant contribution
in the resonance (or resistive) region from the leading parallel viscosity component
t‖ was lost but one or both of the two lower order components tg and t⊥ in the expan-
sion (2.70) were included. There may be exceptions in non-Cartesian geometries
where the magnetic field curvature term is locally negligible, when one or both of
these additional components do become more important than the parallel viscosity.
However, it does seem that stabilisation has generally been found—whether in the
non-dissipative context of ideal modes where the gyroviscous component tg only is
included, or when either or both of the gyroviscous or perpendicular viscosity com-
ponents tg and t⊥ are retained in resistive theory. This is of course entirely consistent
with the universal result in the above analysis when κ > 0.

Other non-ideal effects have been included in extensive numerical calculations,
where both the initial linear and subsequent nonlinear mode behaviour may be fol-
lowed, and there have been some further related theoretical developments. For exam-
ple, when electron diamagnetic effects are included in the generalised Ohm’s law
(2.96) together with ion viscosity, the tearing instability splits into two branches—
viz. the socalled drift-tearing (or reconnecting) mode in addition to the resistive kink.
There is stabilisation of both of these branches, with the drift-tearing branch being
completely stabilised even if collisions are relatively rare, although the resistive kink
mode may remain unstable very close to the ideal MHD stability boundary. More
work to incorporate magnetic field curvature or other physical features such as elec-
tron trapping is being undertaken. In short, the inclusion of non-ideal effects remains
an active area of research in plasma stability theory at the time of writing.

6.11.2 Enhanced Energy Release in Magnetic Reconnexion

An outstanding question in the physics of the Sun is the explosive release of energy
in coronal solar flares, which observations have confirmed are localised phenomena.
Magnetic reconnexion is the widely favoured mechanism for this phenomenon, but
on its own the very low resistivity in the corona cannot account for the release rate
[12]. However, it has been found that the reconnexion can be sufficiently fast for the
observed rapid energy release if theHall term is retained in the generalisedOhm’s law
(2.96), as discussed in the following Sect. 6.12. In this subsection, we consider the
separate issue of the extremely large amount of energy released in solar flares, which
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can be accounted for by the dominant parallel ion viscosity since any reconnexion
model typically exhibits strong plasma flows.

Let us adopt the simplest viscoresistive model, where homogeneous incompress-
ible plasma (ρ constant and ∇· v = 0) is described by

ρ

(
∂v
∂t

+ v · ∇v
)

+ ∇ p + ∇· t‖ = j × B, (6.159)

∂B
∂t

= ∇× (v × B) − η∇×∇× B, (6.160)

in addition to j = μ−1
0 ∇× B and ∇· B = 0. The energy release is implicit in the

energy transport equation

∂

∂t

(
1

2
ρv2+ B2

2μ0

)
+ ∇·

(
(p +1

2
ρv2)v + μ−1

0 B × (v × B) + η j × B + t‖ · v
)

= −μ0η j2+ t‖ : ∇v, (6.161)

derived from (6.159) in similar fashion to the derivationof (3.7) from (3.5) inSect. 3.2.
Moreover, for steady state solutions sustained by advective flows within a plasma
volume V bounded by a closed surface S, the Divergence Theorem (1.60) identi-
fies the kinetic, magnetic and dissipative (resistive plus viscous) fluxes through the
boundary S with the additional resistive and viscous components represented by vol-
ume integrals obtained from the terms on the right-hand side of (6.161). On recalling
the resistive Ohm’s law (2.92), the terms on the right-hand side include the electro-
magnetic dissipation j · (E + v × B) in the energy Eq. (2.57) in addition to the power
of the parallel viscous stress t‖ : ∇v, and the term η j × B on the left-hand side can
be interpreted as a Poynting flux involving the electric field in the moving plasma
reference frame—cf. (2.92) and (5.27).

In several papers, Craig and Litvinenko have considered the energy dissipa-
tion due to anisotropic parallel ion viscosity during magnetic merging. For exam-
ple, the stream function ψ(x, y) = x f (y) + g(y) producing the velocity field
v = (∂ψ/∂y) î − (∂ψ/∂x) ĵ = (x f ′(y) + g′(y)) î − f (y) ĵ defines two streams
colliding at the plane y = 0, where a localised current layer is associated with
piling up oppositely directed straight magnetic field lines B = B(y) î—i.e. with
B(0−) = −B(0+) and B(0) = 0. The merging rate for this large-scale vor-
tex flow may be characterised by the Alfvén Mach number Me = ve/vAe where
vAe = Be/

√
μ0ρ is the reference Alfvén speed, with ve and Be respectively denoting

the inflow speed and magnetic field magnitude at some external boundary a distance
y = L away (the representative global length scale of the active solar region). From
(6.157) we have t‖ = −μ f ′(y) [2 î î − ( ĵ ĵ + k̂ k̂ )] such that ∇· t‖ = μ∇ f ′(y) in
this simple two-dimensional Cartesian steady state, hence for constant ρ and μ the
curl of (6.159) implies

f f ′′′ − f ′ f ′′ = 0 and f g′′′ − f ′′g′ = 0, (6.162)
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so that irrespective of the consequent form of g(y) the familiar particular solution
f (y) = ve sin(λ y/L)/sin λ (0 ≤ λ < L) obtained earlier for inviscid merging
prevails in the presence of parallel ion viscosity. Thus neither the velocity profile
nor the magnetic field profile (subsequently defined by the equation of magnetic
induction) is altered, but the energy loss due to the viscous term

t‖ : ∇v = −3μ( f ′)2 = −3μ

(
ve

L

λ

sin λ

)2

cos2
(

λ y

L

)
(6.163)

in Eq. (6.161) is typically very much larger than that due to the resistive term μ0η j2.
Enhanced dissipation rates due to parallel ion viscosity have also been demon-

strated in planar reconnexion under compressible collapse at a magnetic field X -
point. The predicted corrugatedmagnetic field profiles providemany locationswhere
plasma can readily flow along the magnetic field and rapid wave damping may
occur—again significantly faster than dissipation due to resistivity. Magnetic recon-
nexion models in three dimensions include socalled fan and spine structures corre-
sponding to strongly localised current sheets and quasi-cylindrical tubes, respectively
[12]. Spines may be less effective for fast energy release due to their small dissipative
volume, and for current sheets Craig and Litvinenko found that both the associated
large-scale advective flows and the coalescence of magnetic islands lead to similar
substantially enhanced energy losses due to parallel ion viscosity. They have also
recognised that parallel viscosity alone is probably inadequate in the near neigh-
bourhood of a magnetic null, where recourse may be made to the exact form (2.69).
Once again the magnetic field curvature may be significant in non-Cartesian geom-
etry, such that additional terms in t (other than the collisional term) should also be
retained as discussed in Sect. 2.10.

Exercises

(Q1) Derive the energy transport equation (6.161).
(Q2) Derive ∇v for the two-dimensional flow defined by the stream function

ψ(x, y) = x f (y) + g(y), where f (y) and g(y) are arbitrary functions. Hence
deduce that the flow is incompressible, and t‖ = −μ f ′(y) [2 î î − ( ĵ ĵ + k̂ k̂ )]
such that f f ′′′ − f ′ f ′′ = 0 in the magnetic field B = B(y)î. Show that
this nonlinear differential equation in f (y) can be solved in terms of two quite
familiar linear second order differential equations, and identify the consequent
solution types.

6.12 Hall Instability

We recall from Sects. 5.5 and 5.15 that the Hall term has often been retained in
the MHD modelling of both conducting fluids and plasmas, and despite some null
results in the literature it is now well known that the Hall effect can produce further

http://dx.doi.org/10.1007/978-981-287-600-3_2
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instability. As previously discussed, Hall MHD recognises that there is inter-species
diffusion in plasmas, where the electrons but not the ions are considered “frozen-in”
to the prevailing magnetic field when Eq. (2.98) is reduced to E + ve × B = 0. The
equation of magnetic induction (5.123) is then adopted. However, we also noted that
the Hall term may be retained in a resistive plasma model where the corresponding
form of themagnetic induction equation is (5.126).We first consider the gravitational
instability of an ion-electron plasma where (5.123) is invoked, but then the magneto-
gravitational instability of a plasma where the ionisation is weak and the resistive
form (5.126) is adopted.

6.12.1 Gravitational Interchange Instability in Ion-Electron
Plasma

On recalling our observation in Sect. 5.15 that the Hall term introduces higher deriva-
tives into the induction equation (5.123), we again anticipate that singular behaviour
may render some new instability. Let us first write the fundamental MHD equations
of continuity and motion (2.55) and (2.56) as

∂ρ

∂t
+ ∇· (ρv) = 0, (6.164)

ρ
dv
dt

+ ∇ p = ρg + j × B, (6.165)

where μ0 j = ∇× B. From Sect. 3.2, for a barotropic fluid we have ∇ p/ρ = ∇h
where h = ∫ dp/ρ is the specific enthalpy, when the curl of (6.165) yields

∇×
(

dv
dt

)
= ∇×

(
1

ρ
j × B

)
. (6.166)

In a quasi-neutral ion-electron plasma in which ρ � nmi , where n(r, t) denotes the
particle number density (ni = ne = n) andmi the ionmass, the Hall term is therefore

∇×
(

1

ne
j × B

)
= mi

e
∇× dv

dt
. (6.167)

Consequently, from (6.164)–(6.166) and (5.123)we have the following simple closed
system of equations:

∂n

∂t
+ ∇· (nv) = 0, (6.168)

nmi
dv
dt

+ T ∇n = nmi g + μ−1
0 (∇× B) × B, (6.169)
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as ∇ p = T ∇n with T constant and the Boltzmann constant suppressed for conve-
nience, and the equation of magnetic induction rewritten as

∂B
∂t

= ∇× (v × B) − mi

e
∇× dv

dt
. (6.170)

Note that variable density is not only accounted for in the equation of motion (6.169)
but also in the equation of magnetic induction (6.170), corresponding to the retention
of n(r, t) within the curl of the Hall term—cf. (6.167).

Let us once again consider a plasmavertically stratified under gravity in amagnetic
field, in equilibrium where

∇n = dn

dz
k̂, g = −g k̂, v = 0, B = B(z) ĵ (6.171)

and hence the initial pressure balance equation

d

dz

(
nT + B2

2μ0

)
= −nmig (6.172)

—i.e. an equilibrium in Cartesian geometry similar to that considered in Sect. 6.3,
except that now B(z) is variable but uni-directional (there is no magnetic field shear).

Recalling the magnetic field stabilisation in Sects. 6.3 and 6.4, let us consider
perturbations of Fourier form f1(r, t) = f1(z) exp[i(kx − ωt)] such that k · B = 0,
when the essential linearised perturbation equations from the Hall model (6.168)–
(6.170) are

iωn1 = n
dv1z

dz
+ iknv1x + dn

dz
v1z,

iωnmiv1x = ikT n1 + iμ−1
0 k B1y,

iωnmiv1z = T
dn1

dz
+ μ−1

0

(
B

d B1y

dz
+ B1y

d B

dz

)
+ n1mig,

iωB1y =B
dv1z

dz
− iω

mi

e

dv1x

dz
+ ik Bv1x +

(
d B

dz
− mi

e
ωk

)
v1z, (6.173)

and the elimination of n1 and B1y between them produces two coupled first order
differential equations in {v1x , v1z} that of course can always be rendered as a single
second order differential equation.

However, let us restrict our attention to modes that do not alter the magnetic
energy—i.e. such that B1 · B = 0 so B1y = 0. These modes are quasi-electrostatic
(as B1 · B = 0 implies ∇× E1 · B = 0 and consequently E1 = −∇⊥φ, where
φ is the relevant electric potential), and the magnetic field terms from the Lorentz
force in the two perturbation equations obtained from the equation of motion prove
to be unimportant. Moreover, we have B � constant if the equilibrium magnetic
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pressure B2/(2μ0) is presumed to be large compared to the plasma pressure and
the hydrostatic pressure—indeed, the equilibrium pressure balance equation (6.172)
rewritten as

d B

dz
= −β

(
g

c2s
+ 1

n

dn

dz

)

(where cs = √
T/mi is the sound speed) implies the initial magnetic field gradient

is negligible for sufficiently small plasma beta (β = μ0nT/B2 � 1). Thus we set
B1y = 0 and omit the term involving d B/dz but retain the Hall contributions in
the perturbation equation obtained from the equation of magnetic induction (6.170),
such that the governing second order differential equation for the gravitational inter-
changes is (cf. Exercise below)

d

dz

(
n

dV

dz

)
− k2nV = k D

dn

dz
V, (6.174)

where V = v1z − i(ω/ωci )v1x and D = (ω+gk/ωci )
−1(ω2/ωci +gk/ω) involve the

ion cyclotron frequency ωci = eB/mi that characterises the Hall effect. For V → 0
as |z| → ∞, the generalised Rayleigh form obtained from (6.174) by integrating
over −∞ < z < ∞ is therefore

∫
n
( |dV /dz|2 + k2|V |2 ) dz∫

k (dn/dz) |V |2 dz
= −D = −ω2/ωci + gk/ω

ω + gk/ωci
, (6.175)

so on denoting the integral quotient on the left-hand side by Q(k; n, dn/dz) we have
the dispersion relation (a cubic)

(
ω

ωci

)3

+ Q

(
ω

ωci

)2

+ Q
gk

ω2
ci

(
ω

ωci

)
+ gk

ω2
ci

= 0. (6.176)

When ωci is so large that gk/ω2
ci �ω/ωci � 1, the left-hand side of the dispersion

relation (6.176) is approximated by the sum of the second and fourth terms that ren-
ders the idealMHDdispersion relationω2 = −gk/Q in the limit of large wavelength
(small k). However, when gk/ω2

ci � ω/ωci � 1 the left-hand side is approximated
by the sum of the first and third terms such that we obtain ω2 = −gk Q, the dis-
persion relation distinguishing the Hall instability in the limit of small wavelength
(large k). Further, in a “local approximation” where |dV/dz| � |V |, the integral
quotient reduces to Q(k; n, dn/dz) � kn/(dn/dz), so again writing σ = −iω the
first case renders the Rayleigh–Taylor growth rate σ = √

gκ and the second the
growth rate σ = k

√
g/κ of the Hall interchange mode (where we have introduced

κ = ρ−1 dρ/dz = d(ln ρ)/dz � d(ln n)/dz as in Sect. 6.4—cf. also (6.21) in the
“local approximation” when k‖ = 0).18

18The Hall model (6.168)–(6.170) was first investigated by Huba and co-authors in a series of
articles, and particular reference may be made to J.D. Huba, A.B. Hassan and P. Satyanarayana
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Fig. 6.2 Growth rates � (in
units of ωci ) versus wave
number k (in units of ω2

ci /g)
for the first ten instability
eigenmodes with
n = 0, 1, . . . , 9 for s = 1
(courtesy A.L. Velikovich)

Power law density profiles of form n(z) = n̄ exp(z/L)s (s > 0) in the half-space
z ≥ 0 have also been considered, where the solution to the low-beta equation (6.174)
satisfies V → 0 as z → ∞ and is regular at its singular point z = 0. This solution is

V (z) = exp(−kz)Ls−1
n (2kz), (6.177)

where Lα
n (z) is the generalised Laguerre polynomial and n = 0, 1, 2, . . . denotes

the number of the perturbation eigenmode, and the corresponding dispersion rela-
tion for each eigenmode is the cubic D = −1 − 2n/s. The spectra calculated for
s = 1, n = 0 , . . . , 9 are shown in Fig. 6.2, where the growth rate � = �(ω) is in
units of ωci and the wave number k is in units of ω2

ci/g, together with the eigenfunc-
tions V (z) calculated for s = 1, n = 0, 1, 2, 3 in the insert. For each eigenmode, we
have

�(k) =
{

μ−1/2√gk, if |k| � ω2
ci/g,

μ1/2√gk, if |k| � ω2
ci/g,

(6.178)

where μ = 1 + 2n/s. The dispersion curves �(k) are seen to be nested for the
predominantly ideal smaller k and much more extensive for the predominantly Hall

(Footnote 18 continued)
(Physics of Fluids B 1, 931, 1989). In passing, we note that the terminology “large Larmor radius”
(LLR) was introduced for the regime where ω�ωci and ρi � L (with ρi the ion gyroradius and L
the scale length of interest), of particular interest in space physics and elsewhere, when the electrons
are “frozen-in” under the assumption E + ve × B = 0 but the “un-magnetised” ions are not. These
authors also refer to the reference length Ln = (d(ln n)/dz)−1, the reciprocal of κ that we again
use here.
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end of the spectrum at larger k, and there is instability for all values of the wave
number k. Incidentally, the curves do not depend on the n and s separately but on
their combination μ, so the curves in Fig. 6.2 labelled 0, 2, 4, 6, 8 also correspond to
the eigenmodes n = 0, 1, 2, 3, 4 for example. Indeed, the successive curves become
rarer in the plane (k, �) as the value of s decreases, until in the sharp boundary
limit s → 0 only the “global Rayleigh-Taylor” mode remains—cf. the answer to the
Exercise in Sect. 6.4. On the other hand, as the density profile becomes smoother
near the boundary z = 0 (i.e. as s increases), the more densely the dispersion curves
populate the area below the envelope defined by�max (k) � k at large k, such that we
have the fastest growth rate �max (k) = gk/ωci in the limit gk/ω2

ci → ∞ (bearing in
mind the chosen units of � and k in Fig. 6.2). Moreover, this result follows for any
density profile where n(0) = 0, since the larger the value of k the greater the number
of the dominating eigenmode, which is influenced by the finite part of the density
profile of depth O(g/ω2

ci ).
19

We recall that magnetic field terms from the Lorentz force in the equation of
motion are implicit in driving the classical ideal MHD waves and instabilities, but
they played no role in the Hall interchange instability discussed above. Similarly, the
equation of motion was not involved in the earlier derivation of the whistler and Hall
drift wave dispersion relations—cf. Sect. 5.15, where in the Exercise we noted that
the retention of the number density n(r, t) within the curl of the Hall term renders
not only the contribution −(ne)−1∇× ( j1× B ) that produced whistlers but also the
term (n2e)−1(∇n) ×( j1× B ) responsible for Hall drift waves in an inhomogeneous
plasma, which are related to the Hall instability discussed here. Finally, let us also
recall that there is the component proportional to the magnetic field curvature in
non-Cartesian geometry (in both homogeneous and inhomogeneous plasma), which
has not been explored here.

6.12.2 Hall Effect in Kepler Disc Dynamics

In Sect. 6.8, it was shown that the stability of a differentially rotating plasma disc is
significantly altered by a perpendicular magnetic field. Thus in ideal MHD, planar
short wavelength self-gravitational modes can be stabilised, but in a Keplerian disc

19See A.L. Velikovich (Physics of Fluids B 3, 492–494, 1991). Subsequent analysis for the
Rayleigh–Taylor instability in a Hall plasma slab explicitly considered acceleration by the mag-
netic field, in the context of an imploding plasma liner—cf. A.V. Gordeev (Plasma Physics Reports
25, 70–76 and 202–206, 1999; and Plasma Physics Reports 29, 459–465, 2003). We also note
that gk/ωci is the growth rate of the incompressible Hall instability when k · B �= 0 found much
earlier for a density discontinuity under gravity, with the perturbations no longer constrained to
satisfy ∇×v1 = 0 and j1 = μ−1

0 ∇×B1 = 0 everywhere as the ideal MHD analysis in Sect. 6.3
requires—cf. R.J. Hosking (Physical Review Letters 15, 344–345, 1965). Reference may also be
made to the theory of ElectronMagnetohydrodynamics (EMD), where the quasi-neutrality assump-
tion is usually preserved and the ion component is “un-magnetised”, subsequently developed by
the Russian school at the Kurchatov Institute—cf. A.V. Gordeev, A.S. Kingsep and L.I. Rudakov
(Physics Reports 243, 215–315, 1994).

http://dx.doi.org/10.1007/978-981-287-600-3_5
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the magnetic field offsets favourable angular rotation such that axial modes can
become unstable, with a maximum growth rate characterised by the angular velocity.
However, the implicit “frozen-in” magnetic field condition is inappropriate (at least
for the ions) when the density is high but the ionisation is low, as envisaged in
protostellar discs for example. Moreover, the ideal magnetorotational instability is
restricted to wavelengths defined by (6.121), typically rather longer than the disc
thickness in protostellar models.

In a weakly ionised gas, although the more mobile electrons may be considered
“frozen-in” to the magnetic field, the motion of the much more massive positive ions
is expected to be largely coupled with that of the ubiquitous neutrals. Thus if v now
denotes the velocity of the neutrals, and electrons and ions are again denoted by e and
i subscripts, on assuming there is an equal number of electrons and singly charged
ions in the gas (ne = ni = n) we have

ve = v + (ve − vi ) + (vi − v) � v − j
ne

provided the contribution from the socalled ambipolar diffusion term vi − v is
negligible—e.g. at typical densities in protostellar discs, except perhaps in their outer
reaches. Consequently, the resistive Hall induction equation (5.126) may be invoked
at such low as well as the high ionisation levels previously envisaged. Moreover,
there are now formerly quite familiar field equations for the predominant neutrals
in weakly ionised gas—including the equation of motion (5.34) dominated by the
neutrals, on equating the ion-neutral drag term with the Lorentz force j × B under
the low inertia limit for the ion momentum. Let us therefore investigate the stability
of the thin differentially rotating Kepler disc in the resistive Hall context, subject to
an initial constant magnetic field B = Bθ êθ + Bz êz . We consider local eikonal per-
turbations of the form f1(r) exp[i(k · r − ωt)], where k = αêr + kz êz and the radial
dependence of f1(r) is negligible. (The previous ideal MHD discussion in Sect. 6.8
assumed a perpendicular magnetic field B = Bz k̂ and axial wave numbers such that
k ≡ kz = k‖.) Thus in a Boussinesq-type approximation there are the following
system of linearised perturbation equations in the neighbourhood of any radius r :

αv1r + kzv1z = 0

−iωv1r − 2�v1θ − i
kz Bz

ρ
B1r + i

α

μ0ρ
(Bθ B1θ + Bz B1z) + iα

p1
ρ

= 0

−iωv1θ + κ2

2�
v1r − i

k · B
μ0ρ

B1θ = 0

−iωv1z − i
αBz

μ0ρ
B1z + i

kz

μ0ρ
(Bθ B1θ + Bz B1z) + ikz

p1
ρ

= 0

http://dx.doi.org/10.1007/978-981-287-600-3_5
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from continuity and the equation of motion, and (using ∇· B1 = 0)

−iωB1r + k · B
μ0ne

kz B1θ − ik · B v1r + ηk2B1r = 0

−iωB1θ −
(

r
d�

dr
+ k · B

μ0ne
kz

)
B1r + k · B

μ0ne
αB1z − ik · B v1θ + ηk2B1θ = 0

−iωB1z − k · B
μ0ne

αB1θ − ik · B v1z + ηk2B1z = 0

from the resistiveHall induction equation (5.126),where k2 = α2+k2z . The nontrivial
solution of this system of equations yields the dispersion relation—viz. on again
writing σ = −iω (conveniently rendering all of its coefficients real):

σ4 + 2ηk2σ3 + C2 σ2 + 2ηk2
(

k2z
k2

κ2 + k2‖c2A

)
σ + C0 = 0, (6.179)

where

C2 = k2z
k2

κ2 + 2k2‖c2A + η2k4 + kzk‖c2A
2ωci�

(
r

d �2

dr
+ 2

kz� k‖c2A
ωci

k2

k2z

)
, (6.180)

C0 = η2k2z k2κ2 +
(

k2‖c2A + 2
kz� k‖c2A

ωci
+ k2z

k2
r

d �2

dr

∣∣∣∣
R

)
(6.181)

×
(

k2‖c2A + κ2

2�2

kz� k‖c2A
ωci

)
,

κ is the epicyclic frequency (cf. Sect. 6.8), and each Hall term is again identified by
the ion cyclotron frequency ωci = eB/mi in its denominator.

The quartic (6.179) has at least one positive root when C0 < 0, such that when
d �2/dr < 0 the ideal MHD instability condition (6.121) is replaced by

k2‖c2A + 2
kz� k‖c2A

ωci
< −k2z

k2
r

d �2

dr
, (6.182)

so the Hall term

2
kz� k‖c2A

ωci
= 2

(k · �)(k · B)

μ0ne

is either destabilising or stabilising when the combination (k · �)(k · B) is nega-
tive or positive, respectively. The Hall effect is therefore destabilising or stabilising
according as � · B is negative or positive, respectively.

http://dx.doi.org/10.1007/978-981-287-600-3_5
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6.12.3 Hall Reconnexion

We began this section with a discussion of the enhanced interchange instability in
collisionless (non-resistive) Hall MHD, where the electrons are “frozen in” but the
ions are not. The Hall model of the ion-electron plasma considered there is a sim-
ple case of a “two fluid” description, where the ion and electron number densities
are assumed to be equal everywhere so the plasma remains quasi-neutral during
the separate motion of the two species. We then discussed the application of resis-
tive Hall MHD to partially ionised plasma, where the ions and neutrals but not the
electrons tend to be strongly correlated. However, it has usually been in the context
of fully ionised plasma that we contemplated the resistivity, where the “frozen-in”
field concept of ideal MHD no longer applies but the species are again correlated
on the Debye length scale and move as a single quasi-neutral fluid. Near the end
of Sect. 5.10, we first mentioned the notion that magnetic field lines may break and
reconnect, and in Sect. 6.10 we discussed the resistive tearing instability that renders
typically large-scale topological changes to the magnetic field configuration involv-
ing magnetic field reconnexion. Associated self-organisation and relaxation to lower
magnetic energy configurations were attributed to confinement devices such as the
reverse-field-pinchmentioned in Sect. 6.11, where we discussed viscous stabilisation
and demonstrated that the very large thermal energy release in solar flares can be
explained by anisotropic viscous dissipation in the large plasma flows accompanying
the magnetic reconnexion. In brief, it seems clear that not only global constraints but
also local plasma processes in the reconnexion region are important.

Indeed, it was soon recognised that resistive reconnexion times are much too long
in comparison to the very short timescales of the energy release in solar flares, unless
the resistivity was somehow quite anomalous. It also became clear that the current
layer envisaged in the traditional “Sweet-Parker” model (cf. Fig. 5.6 of Sect. 5.12),
which Dungey had shown could form in the collapse of the magnetic field near
a neutral point under ideal MHD, was incompatible with the collisionless length
scale of reconnexion layers observed in the magnetosphere—i.e. the ion skin depth,
or the ion gyroradius when the plasma pressure p is comparable to the magnetic
pressure B2/(2μ0). It seems fitting to conclude this book with brief mention of the
associated numerical simulation, which is a good case example of the importance
of modern computational work in MHD—much as numerical simulation has proven
to be indispensable in applications of fluid mechanics, such as the solution of the
governing Navier–Stokes equations in various areas of engineering design. Thus
extensive numerical simulations have consistently shown that the Hall effect is a key
factor in producing significantly enhanced magnetic reconnexion rates, irrespective
of othermodel assumptions. Rather than the doubleY-point geometry associatedwith
the “Sweet-Parker”model, the computer simulations demonstrated that there is an X -
point geometry. The mechanism appears to be that the ions become “un-magnetised”
as they enter a neutral sheet and sharply turn perpendicularly in the reconnexion
plane, before they flow away from an X -point. On the other hand, the electrons are
governed by the approximate generalised Ohm’s law E + ve× B � 0 as they mainly

http://dx.doi.org/10.1007/978-981-287-600-3_5
http://dx.doi.org/10.1007/978-981-287-600-3_5
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flow inward along the separatrices toward the X -point where the magnetic field is
weaker, so they are ejected with the correspondingly large velocity ve = E×B/|B|2.
The strong electron flow generates circular currents in the reconnexion plane, which
produce an out-of-plane magnetic field with a quadrupole profile that is recognised
as a “signature” of the Hall effect. The increased electric field caused by the Hall
term produces a steady laminar cross-field electron current, and consequently fast
moving magnetic flux lines in the reconnexion plane (i.e. the fast rate of magnetic
reconnexion). There is also considerable supporting experimental evidence for the
role of the Hall effect in fast magnetic reconnexion.20

Exercise

(Q1) For quasi-electrostatic modes and B � constant, show that the perturbation
equations (6.173) to be considered reduce to

d

dz
(nv1x ) − iknv1z = i

gk

ω2

(
d

dz
(nv1z) + iknv1x

)
,

B
dv1z

dz
− iω

mi

e

dv1x

dz
+ ik Bv1x − mi

e
ωkv1z = 0.

Then introduce the ion gyrofrequency ωci = eB/mi , and derive the governing
second order differential equation (6.174).
Hint: Combine −iω2/ωci times the first equation with the derivative of ω n
times the second equation.
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Glossary

Normal Mode

A normal mode of a continuous system disturbed from an equilibrium (with or with-
out flow) is a pattern of motion where all fields describing the system oscillate with
the same frequency. This definition includes the case of nonlinear normal modes,
where this frequency typically depends on amplitude. However, in this book we
restrict attention to the linear case where the normal mode frequencies are eigenfre-
quencies of the operator describing linearised perturbations, and the normal modes
are the corresponding eigenfunctions—so eigenmode could be used as a synonym
for normal mode.

The nature of the frequency spectrum depends on the symmetries of the sys-
tem. Historically, the term “normal mode” arose in acoustics (cf. J.W. Strutt, Baron
Rayleigh, The Theory of Sound, Vol. 1, MacMillan, London, 1877), but “normal
mode analysis” is now used in various engineering and physics applications—e.g.
computing vibration modes in structures or analysing plasma instabilities as in this
book. Quantummechanics provides well-known examples and terminology, ranging
from the complete set of “good quantum numbers” describing the hydrogen atom to
the statistical characterisations of “quantum chaotic” spectra arising when all con-
tinuous symmetries are strongly broken—e.g. see H.J. Stöckmann, Quantum Chaos:
an Introduction (Cambridge University Press, 1999).

In linear theory we can easily generalise to consider complex frequency, with the
imaginary part determining the rate of exponential damping or growth of the mode.

Slab Model

Aslabmodel is an idealised three-dimensional systembounded by twoparallel planes
(one of which may be at infinity), uniform in directions parallel to these planes—i.e.
essentially one-dimensional in its undisturbed state.
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The main virtue of a slab model is that a simple Cartesian coordinate system
{x, y, z} can be used. In this book, we use two common conventions depending upon
the physical context, and the reader needs to be alert to the interchange of x and y
in switching between these “gravitational” and “magnetic confinement” conventions
as follows.

• Gravitational confinement convention. In geophysical and astrophysical systems,
where there is a strong uniform gravitational field g, we take the z-axis to be
vertical (i.e. antiparallel to g). Thus when the slab model is a local approximation
to the neighbourhood of a point on the surface of a planet or star for example,
the x-axis is in the latitudinal (east-west or zonal) direction and the y-axis in the
meridional (north-south) direction.

• Magnetic confinement convention. Inmagnetospheric applications or fusion power
research, where the plasma is confined by the magnetic field and gravity is weak
or negligible, a slab model is often used as an approximation to a localised plasma
subregion. Thus in considering a tokamak for example, the main longitudinal
magnetic field is in the z-direction and the transverse magnetic field component
is in the y-direction, and any equilibrium density or pressure variation is in the
x-direction.

Analogies are sometimes made between gravitationally confined systems and mag-
netically confined systems, where the term “zonal” is often used to refer to the
x-direction rather than to the y-direction!

Toroidal and Poloidal

Historically, the toroidal-poloidal terminology was introduced in the context of geo-
physical dynamo theory, with the adjective “toroidal” for magnetic fields directed
east or west and “poloidal” to those directed north or south. (Clearly, “poloidal”
refers to the directions of the Earth’s poles—but as “toroidal” does not relate to
the Earth’s shape, the terminology presumably refers to the fact that axisymmetric
toroidal fields lie in tori.) However, this terminology has been adopted to describe
magnetically confined plasmas where the field lines lie in nested tori. In that context,
the toroidal direction is taken to be the long way around a torus (cf. Fig. 5.3), with the
corresponding coordinate denoted by φ or ζ in magnetic coordinates (cf. Sect. 5.11);
and the poloidal direction is then the short way around the torus, with the corre-
sponding coordinate denoted by θ in magnetic coordinates. On adopting the slab
approximation, the toroidal coordinate is denoted by z and the poloidal coordinate
by y in the laboratory plasma confinement literature—cf. item Slab Model above.

http://dx.doi.org/10.1007/978-981-287-600-3_5
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Appendix Tables

SI quantities and nomenclature
Quantity Name Symbol
Length metre m
Mass kilogramme kg
Time second s
Temperature Kelvin K
Frequency Hertz Hz (s−1)

Force Newton N(kgm s−2)
Pressure Pascal Pa (N m−2)
Energy Joule J (N m)
Power Watt W (J s−1)

Electric charge Coulomb C
Electric potential Volt V
Electric current Ampere A (C s−1)

Magnetic field Tesla (104 Gauss) T (Nm−1 A−1) (104 G)

Physical constants
Quantity Symbol Value
Gravitational constant G 6.671 × 10−11 m3 kg−1 s−1

Boltzmann constant k 1.381 × 10−23 JK−1

Electron charge e 1.602 × 10−19 C
Electron mass me 9.109 × 10−31 kg
Proton mass m p 1.673 × 10−27 kg
Vacuum permittivity ε0 8.854 × 10−12 Cm−1V−1

Vacuum permeability μ0 4π × 10−7 J m−1A−2

Speed of light c (= √
ε0μ0) 2.998 × 108 m s−1
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Fluid and plasma parameters
Quantity Symbol and definition
Thermal speed vT = √

2kT/m
Sound speed cs = √

γ p/ρ

Plasma frequency ωpe = √
ne2/(ε0me)

Debye length λD = √
ε0kTe/(ne2)

Gyrofrequency (or cyclotron frequency) ωc = eB/m
Gyroradius rg = vT /ωc

Alfvén speed cA = B/
√

μ0ρ

Magnetic energy density E = B2/(2μ0)

Electron skin depth δe = c/ωpe

Electron-ion (proton) collision frequency,
when Te = Ti

νei = 6 (ln�) ωpe/� where � = 24πnλ3
D

Electric conductivity σ = √
π/6 ne2/(meνei )

Note For plasma species the density ρ equals nm where n denotes the number density,
and subscripts e and i are added to denote the respective electron and ion components.



Index

A
Asymptotic

boundary layer theory, 90–93
eikonal method, 116, 233
expansion, 80
JWKB or WKB method, 116
ordering, 56, 80
singular perturbation theory, 101–102
solvability condition, 81

annihilator, 89
subsonic flow theory, 80–82, 88–90
viscous flow theory, 99, 102–107

Atwood number, 138
Axisymmetry, 14, 97, 100, 107, 175, 177–

180, 225, 238, 256, 272

B
Basis vectors, 4

Cartesian, 4, 6
orthonormal, 6
reciprocal, 4

Boundary layer, 90–93

C
Characteristic number

Rossby number, 109
Strouhal number, Mach number, Froude
number, Reynolds number, 102

Charge
sheet, 187

Conductivity coefficient, 67
Conservation equation, 37

continuity equation, 38, 44
mass, 38
momentum, 38

Conservation form
total momentum, 42

Contact discontinuity, 184, 189
Coordinates

Cartesian, 4, 7, 11, 79, 99, see also slab
geometry
gravitational convention, 108, 209,

210, 249, 250, 272
magnetic confinement convention,

166, 187, 272
planar, 84

curvilinear, 12
cylindrical polar, 4, 13, 14, 219
magnetic, see magnetic coordinates
orthogonal, 13–16
plane polar, 84
spherical polar, 14, 15, 122
surface, 17

magnetic, see magnetic coordinates
moving, 45
phase-space, 49

Couette flow, 101
Current

-free plasma, 224
azimuthal, 241
density, 67, 68, 158, 160, 163, 164

gradient, 253
parallel, 63, 217, 218
perpendicular, 217
total, 54

displacement, 159, 160
driven instabilities, see plasma instability
electric, 31, 67, 159, 162, 166
external, 190–194
Hall, 205
lines, 180
localised, 258
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longitudal, 254
planar, 240, 241
return, 221
sheet, 187–189, 258, 259
vector, 175

Curvature
corrections, 62
corrections, curvilinear coordinates, 62
field-line, 62, 165–167, 195, 196, 204,
217–220, 223, 232, 250, 254, 256, 257,
259, 264

surface, 134
toroidal, 232

D
Dirac delta function, 24, 185

definition as a distribution, 27
three-dimensional, 31

Distribution theory, 25
definite and indefinite integrals, 29
derivatives, 28
test functions, 26

Divergence Theorem, 21
generalised, 20

Double layer, 188
Doubly and singly connected regions, 83
Dyadic, 7

antisymmetric, 7
dot product, 9
double dot product, 9
inverse, 8
pre- or post-cross products, 9
symmetric, 7
transpose, 7
unit, 8

Dyadic representation
contravariant, 8
covariant, 9
mixed, 9

E
Eigenvalue equation

for ideal MHD normal modes, 214
generalised, 214

Elements
chemical, 164
fluid, 39, 40, 42, 44–46, 48, 73, 75, 78,
93, 113, 142, 145, 165

line, 2, 11, 12, 48
MHD fluid, 169, 179, 236, 244
of a vector space, 3
surface, 17, 20, 22, 170

tensor, 8, 9, 14, 146
volume, 22, 46, 47, 81, 145

Equation of magnetic induction, 67
Equation of state

adiabatic, 54
barotropic, 55, 67, 75–78, 88
isentropic, 55
barotropic, 118

Equilibrium
MHD, 175
static axisymmetric MHD, 178
static MHD, 175

F
Flow

Eulerian viewpoint, 43
Lagrangian viewpoint, 44

Fluid equation of motion, 44
Fluid instability

Jeans, 238
Kelvin–Helmholtz, 138
Rayleigh–Taylor, 138

Fluid stability
Rayleigh–Taylor, 207

Flux
energy, 74
function, 178, 180, 188, 189
heat, 33, 50, 51, 55, 57, 63, 65–66
in conservation equation, 38
magnetic

conservation, 179
energy, 168
frozen-in, 169, 170, 208
leakage, 171, 194
poloidal, 178, 181
toroidal, 181
tube, 170, 209

mass, 38, 39, 49
shock, 150

momentum
shock, 150

momentum-pressure tensor, 38, 39
phase, 114
volume, 22, 84
wave action, 121, 123
wave momentum, 143

Flux coordinates, see magnetic coordinates
Flux surface, 176

cylindrical, 219
discontinuity, 187
equilibrium, 216
nested, 178
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rational, 183, 221, 232
Functional

action, 118
convolution product, 26
definition, 25
energy, 213, 214, 221
inner product, 25, 26
magnetic helicity, 179
of vectors, 145
Rayleigh quotient, 215
variational objective, 205

G
Galilean invariance, 120, 161
Grad-Shafranov equation, 178
Gravitational field, 42
Gravity wave

capillary, 134
flexural, 123, 124, 128–135
interface, 136–138
internal, 124, 137
surface, 124–128, 131

Green function
Dirichlet conditions, 32
Laplace equation, 31
mixed boundary conditions, 33
Neumann boundary conditions, 33
Poisson equation, 31

Green functions, 31
Green identity

first, 23
second, 23

H
Hall effect, 68

coefficient, 69
Harmonic function, 31
Heaviside step function, 24, 185

corresponding distribution, 27
Hermitian

form, 214
symmetry, 212–215

I
Instability

exponential, 106, 138, 204, 215
overstability, 138, 204

Invariance
vector and tensor, 10

J
Jacobian, 4

K
Kronecker delta, 4

L
Lagrangian function, 118
Level surface, 12
Levi-Civita symbol, 5
Lundquist number, 249

M
Mach cone, 124
Magnetic coordinates, 180, 219, 226, 272

straight field line, 183
Magnetic field

force-free, 178
integrable field lines, 178
linear and nonlinear force-free, 178
poloidal and toroidal, 177, 184, 191, 192,
219, 241, 272

shear, 209–211
Magnetic field shear, 209
Magnetic reconnexion, 170, 188, 249–253,

257–259
Magnetic Reynolds number, see Lundquist

number or Reynolds number
Magnetic stress tensor, 167
Magnetic surface, see flux surface
Material derivative, 43

differentiation following the motion, 43
MHD, 157

Hall, 69
ideal, 69
non-ideal, 69
resistive, 69
invariant, 179
power generator, 165

Moving coordinate systems, 45
Moving load, 132

N
Normal mode, 120, 195, 206–211, 240, 271

O
Ohm’s law, 67

generalised, 67
Oseen equations, 102–107
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P
Peculiar velocity, 39
Phase or eikonal function, 116
Phonon, 118
Plasma energy

kinetic, 179
potential, 179
thermodynamic and magnetic, 179

Plasma instability, 204
flute condition, 226–228
pressure-driven, 232
toroidal geometry, 226–235

Plasma stability
ballooning, 232
current-driven, 218, 223, 253
cylindrical geometry, 219–226
energy principle, see plasma stability,
variational analysis

flute condition, 183, 208–210, 222, 246
gravitational interchange, 207–209, 216
Hall MHD, 259–268
ideal interchange, 207–209
kink, 218, 249
magnetorotational, 237–245
pressure-driven, 208, 209, 253
resistive-g, 245–249
stabilisation

magnetoviscous, 254–257
shear, 209, 223
short-wavelength, 242

tearing, 188, 249–253
variational analysis, 211–219

Pressure tensor
fluid, 39

R
Rate of deformation tensor

fluid, 40
Ray

trajectory, 118
Ray equations, 118
Resistivity, 68

coefficient, 67
Resonance surface, 210
Reynolds number, 72, 106

magnetic, 163, 167
Rotational symmetry, 14
Rotational transform, 183, 221

S
Safety factor, 183, 221, 254
Scalar, 1

Scale factors
curvilinear coordinates, 14

Self-adjoint vs. Hermitian, 212, 213
Self-gravitation, 42
Separation of variables, 86, 207
Shock, 24, 124, 136, 149–154

jump conditions, 150
MHD, 184, 190, 196, 246
Rankine–Hugoniot equations, 151, 190
structure, 152

Slab geometry, 99, 206, 209, 210, 249, 250
Slowly varying, 116
Stability

linear, 138, 205, 206
marginal, 204, 205, 215, 226
nonlinear, 205

Stokes flow, 97
Stokes Theorem, 18

generalised, 17
Green Theorem in the Plane, 16

Stream function, 84, 85, 97–100, 163, 177,
228

T
Tangential discontinuity, 184, 189
Tensor, 9

order, 10
Terrestrial frame of reference

Coriolis acceleration, 109
equation of motion, 108
geostrophic equations, 109
hydrostatic equation, 109
ocean circulation equations, 109, 110

V
Vacuum region, 190
Variational analysis

energy principle, 77, 179–181, 205
Rayleigh quotient, 215, 222, 228, 255

Vector, 2
cross product representation, 5
dot and cross products, 3
dot product representation, 5
identities, 2
identity proofs, 6
linear independence, 4
orthogonality, 4
unit, 2

Vector differential operator ∇
grad, div and curl, 12

Vector differential operator del, 11
Vector representation
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contravariant, 4
covariant, 5

Viscosity
anisotropic, 59–61
boundary layer, 90
cross or gyroviscous, 59, 60
effect on plasma stability, 253
electron, 63
implicit volume, 72
ion, 61
kinematic, 93
parallel, 59–65, 254–257
perpendicular, 59, 60
shear coefficient, 41, 58, 72, 91, 100, 163
strong, 97, 99
volume coefficient, 41
vorticity production, 90, 93

Vortex, 93–97
line, 94
sheet, 76, 90, 94, 97, 136, 138, 140, 149,
187, 192

tube, 78
Vorticity, 76–80, 88, 89, 166, 169

W
Wave

action, 121
amplitude, 114, 116
amplitude equation, 121
caustic, 124

dispersion relation, 114
dispersive, 114, 124, 149
entropy, 120, 189
form, 113
Fourier component, 114
frequency, 114
gravity, see gravity wave
group speed, 114
length, 114
longitudinal, 118–120, 149
non-dispersive, 118, 120, 121, 124
nonlinear, 127
packet, 115
phase speed, 114
point-source, 120, 131, 133
ray equations, 116–118, 120–124
shock, see shock
short-wavelength approximation, 116–
121, 228

small amplitude, 114
sound, 118–120
stress dyadic, 144
superposition, 115
train, 113
transverse, 120, 149
vector, 114
water, 124–128, 130, 134–136
wave form, 114
wavefront, 121

Weak solution, 149
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