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Preface

The purpose of this book is to introduce students of the physical sciences to several mathemati-
cal methods often essential to the successful solution of real problems. The methods chosen are
those most frequently used in typical physics and engineering applications. The treatment is not
intended to be exhaustive; the subject of each chapter can be found as the title of a book that
treats the material in much greater depth. The reader is encouraged to consult such a book should
more study be desired in any of the areas introduced.

Perhaps it would be helpful to discuss the motivation that led to the writing of this text.
Undergraduate education in the physical sciences has become more advanced and sophisticated
with the advent of the space age and computers, with their demand for the solution of very diffi-
cult problems. During the recent past, mathematical topics usually reserved for graduate study
have become part of the undergraduate program. It is now common to find an applied mathe-
matics course, usually covering one topic, that follows differential equations in engineering and
physical science curricula. Choosing the content of this mathematics course is often difficult. In
each of the physical science disciplines, different phenomena are investigated that result in a
variety of mathematical models. To be sure, a number of outstanding textbooks exist that present
advanced and comprehensive treatment of these methods. However, these texts are usually writ-
ten at a level too advanced for the undergraduate student, and the material is so exhaustive that
it inhibits the effective presentation of the mathematical techniques as a tool for the analysis of
some of the simpler problems encountered by the undergraduate. This book was written to pro-
vide for an additional course, or two, after a course in differential equations, to permit more than
one topic to be introduced in a term or semester, and to make the material comprehensive to the
undergraduate. However, rather than assume a knowledge of differential equations, we have
included all of the essential material usually found in a course on that subject, so that this text
can also be used in an introductory course on differential equations or in a second applied course
on differential equations. Selected sections from several of the chapters would constitute such
courses.

Ordinary differential equations, including a number of physical applications, are reviewed in
Chapter 1. The use of series methods is presented in Chapter 2. Subsequent chapters present
Laplace transforms, matrix theory and applications, vector analysis, Fourier series and trans-
forms, partial differential equations, numerical methods using finite differences, complex vari-
ables, and wavelets. The material is presented so that more than one subject, perhaps four sub-
jects, can be covered in a single course, depending on the topics chosen and the completeness of
coverage. The style of presentation is such that the reader, with a minimum of assistance, may
follow the step-by-step derivations from the instructor. Liberal use of examples and homework
problems should aid the student in the study of the mathematical methods presented.

Incorporated in this new edition is the use of certain computer software packages. Short tuto-
rials on Maple, demonstrating how problems in advanced engineering mathematics can be
solved with a computer algebra system, are included in most sections of the text. Problems have
been identified at the end of sections to be solved specifically with Maple, and there are also
computer laboratory activities, which are longer problems designed for Maple. Completion of
these problems will contribute to a deeper understanding of the material. There is also an ap-
pendix devoted to simple Maple commands. In addition, Matlab and Excel have been included

xi
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in the solution of problems in several of the chapters. Excel is more appropriate than a computer
algebra system when dealing with discrete data (such as in the numerical solution of partial dif-
ferential equations).

At the same time, problems from the previous edition remain, placed in the text specifically
to be done without Maple. These problems provide an opportunity for students to develop and
sharpen their problem-solving skills—to be human algebra systems." Ignoring these sorts of
exercises will hinder the real understanding of the material.

The discussion of Maple in this book uses Maple 8, which was released in 2002. Nearly all
the examples are straightforward enough to also work in Maple 6, 7, and the just-released 9.
Maple commands are indicated with a special input font, while the output also uses a special font
along with special mathematical symbols. When describing Excel, the codes and formulas used
in cells are indicated in bold, while the actual values in the cells are not in bold.

Answers to numerous even-numbered problems are included just before the Index, and a
solutions manual is available to professors who adopt the text. We encourage both students and
professors to contact us with comments and suggestions for ways to improve this book.

Merle C. Potter/J. L. Goldberg/Edward F. Aboufadel

'We thank Susan Colley of Oberlin College for the use of this term to describe people who derive formulas and
calculate answers using pen and paper.
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Ordinary Differential
Equations

1.1 INTRODUCTION

Differential equations play a vital role in the solution of many problems encountered when
modeling physical phenomena. All the disciplines in the physical sciences, each with its own
unique physical situations, require that the student be able to derive the necessary mathematical
equations (often differential equations) and then solve the equations to obtain the desired
solutions. We shall consider a variety of physical situations that lead to differential equations,
examine representative problems from several disciplines, and develop the standard methods to
solve these equations.

An equation relating an unknown function to its various derivatives is a differential equation;

thus
du
d*f :
W‘szf:e (1.1.2)
u  u
Py + 8_y2 =0 (1.1.3)

are examples of differential equations. A solution of a differential equation is a function defined
and differentiable sufficiently often so that when the function and its derivatives are substituted
into the equation, the resulting expression is an identity. Thus u(x) = e* is a solution of
Eq. 1.1.1 because' u/(x) = ¢* = u(x). The function e sin y is a solution of Eq. 1.1.3 because

2

W(ex siny) = e*siny (1.1.4)
52
a—yz(e" siny) = —e*siny (1.1.5)
and hence, for all x and y,
0° 0?
@(ex siny) + a—yz(e" siny) =0 (1.1.6)

"Primes or dots will often be used to denote differentiation. Hence u'(x) = du/dx and it(t) = du/dt.
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Often it is not possible to express a solution in terms of combinations of “elementary” func-
tions. Such is the case with Eq. 1.1.2. In these circumstances we must turn to alternative meth-
ods for describing the solutions. Under this category we list numerical methods, power series,
asymptotic series, iteration methods, and phase-plane analysis. In this chapter we confine
ourselves primarily to differential equations for which elementary functions, or their integrals,
suffice to represent the solution.

1.2 DEFINITIONS

An ordinary differential equation is one in which only the derivatives with respect to one vari-
able appear. A partial differential equation contains partial derivatives with respect to more than
one independent variable. Equations 1.1.1 and 1.1.2 are ordinary differential equations, while
Eq. 1.1.3 is a partial differential equation. Using our convention,

0F (x,1)
— 7 =t
dt

is an ordinary differential equation but

PF(x,1)
ar dx

is a partial differential equation.” The variable F is the dependent variable, and the variables x
and ¢ are independent variables. The variable F' depends on the variables x and 7.

The dependent variable usually models the unknown quantity sought after in some physical
problem, or some quantity closely related to it. For example, if the lift on an airfoil is the quan-
tity desired, we would solve a partial differential equation to find the unknown velocity v(x, y)—
the dependent variable—from which we can calculate the pressure and consequently the lift.

The order of a differential equation is the order of the highest derivative occurring in the
equation. The order of both Egs. 1.1.2 and 1.1.3 is 2; the order of Eq. 1.1.1 is 1 and the order of
the equation

d*u y sd?u
ﬁ-i-x u E—smuzo (L.2.1)

is 3. The most general first-order equation that we® consider is
u' = f(x,u) (1.2.2)

where f(x, u) represents any arbitrary function and we select x as the independent variable.
Similarly, the most general second-order equation is

u' = f(x,u,u’) (1.2.3)

2Some authors would consider both equations as partial differential equations. The techniques for solution do
not depend on so arbitrary a matter as a name.

3Some authors allow the more general representation F (x, u, u’) = 0.
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In the nth-order case
' = f(x,u,u’, ...,u(”_l)) (1.2.4)
The nth-order equation is called linear if f has the special form
u™ = g(x) — Py_1 () — Pys(x)tt — -+ — Py(x)u"P (1.2.5)
Rewriting this expression gives us the standard form for the nth-order linear equation:
u™ + Po)u D 4 Py (U’ + Py (0u = g(x) (1.2.6)

If g(x) = 0, the linear equation is called homogeneous; otherwise, it is nonhomogeneous. An
equation that is not linear is nonlinear. The equation

2

1
W+ —u + <1 _ n—z) w=0 1.2.7)
X X

is a homogeneous, second-order, linear differential equation. The equation
' +4duu' =0 (1.2.8)

is nonlinear but also of second order. (We do not distinguish between homogeneous and non-
homogeneous equations in the nonlinear case.)

Some differential equations are particularly easy to solve. For example, the linear differential
equation

du
d_ = g(x) (1.2.9)
X
has the solution
u(x) = /g(x) dx +C (1.2.10)

where C is an arbitrary constant. This follows from the Fundamental Theorem of Calculus,
which implies that

du d d
Tr = T |:/g(x)dx +C:| = T /g(x)dx =gx) (1.2.11)

Unless g(x) is one of a relatively sparse family of functions, it will not be possible to express
u(x) in any simpler form than the indefinite integral of g(x).
Equation 1.2.10 raises a notational issue. Writing u(x) in the form

u(x) =/g(x)dx+C (1.2.12)
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even when C is specified, does not readily suggest a means for expressing or computing indi-
vidual values of u, such as u(0). An alternative form for u is

u(x) =/x gls)yds+C (1.2.13)

Note carefully that u is a function of x, the upper limit of integration, not s, the “dummy”
variable. Indeed, u is also expressible as

u(x) =/Xg(t)dt+C (1.2.14)

X0
It is not advisable to write
u(x) = / gx)dx+C (1.2.15)
X0

This will often lead to errors, especially when attempting to differentiate the equation.
For certain rather special equations, repeated integrations provide a means for obtaining
solutions. For example,

L (1.2.16)
dx"
has the family of solutions
u(x) =co+cix + -+ cpyx"! (1.2.17)
obtained by integrating Eq. 1.2.16 n times; the n arbitrary constants, cg, ¢y, ..., C,—1, are con-

stants of integration. The differential equations considered in this chapter possess solutions that
will be obtained with more difficulty than the above; however, there will be times when simple
equations such as ™ = g(x) do model phenomena of interest.

A general solution of an nth-order, linear equation is a family of solutions containing n
“essential” arbitrary constants. The family of solutions given by Eq. 1.2.17 is one example.
Another is the family

f(x) = Ax+ B(x*+1) (1.2.18)
that is, a general solution of the linear equation
QX —=Df" —6x*f +6xf =0 (1.2.19)

In contrast, f(x) = Ae**? is a solution of y” — y = 0 for each choice of A and B, but this
family of solutions is not a general solution since both A and B are not essential, for

AP = AeBe* = Ce* (1.2.20)

Thus, in spite of the appearance of the two arbitrary constants A and B, the family of solutions
described by the set of functions Ae**? is the same family described by Ae*. (A precise
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definition of a general solution—and hence of essential arbitrary constants—will be given in
Section 1.5; until then we make do with the intuitive ideas suggested earlier.)

We do not define general solutions* for nonlinear equations because experience has shown
that this notion plays a minor role in the theory of these equations. Part of the reason for this is
the sparsity of interesting nonlinear equations for which general solutions are known. In most
applications it is the specific solutions that are of most importance anyway. A specific solution is
a single function® that solves the given differential equation. When a general solution is known,
specific solutions are obtained by assigning values to each of its arbitrary constants. The non-
linear equation®

yi4+xy —y=0 (1.2.21)

has a family of solutions y,(x) = cx + c?. [Since the differential equation is nonlinear, we
refrain from calling y, (x) a general solution.] Each choice of ¢ results in a specific solution of
Eq. 1.2.21; the function y(x) = —x2/4 is also a specific solution, but not one that can be
obtained from the family y, (x).

Under certain reasonable assumptions, a unique specific solution to a first-order equation is
determined by demanding that the solution meet an initial condition, a condition that specifies
the value of the solution at some x = xg. The differential equation together with the initial con-
dition is an initial-value problem. The equations

u' = f(x,u)

u(xo) = uop

(1.2.22)

form the most general, first-order, initial-value problem. Two conditions must be given for
second-order equations; the initial-value problem is
u' = f(x,u,u’)

, ) (1.2.23)
u(xo) = uo, u'(xo) = uy

Here both conditions are obtained at the same point, x = x. If the conditions are given at dif-
ferent points, a boundary-value problem results. A very common boundary-value problem is

u" = f(x,u,u’)

(1.2.24)
u(xo) = uo, u(x)) =u

Other boundary-value problems are possible; for example, a derivative may be specified at one
of the points.

1.2.1 Maple Applications

Review Appendix C for a short Maple tutorial if desired. Maple commands for solving differen-
tial equations include: dsolve, DEplot,and dfieldplot (all inthe DEtools package),

“This viewpoint is not taken by all authors. The student will find many texts in which general solutions are
defined for some nonlinear equations.

SA function is a rule that assigns to each x in some domain a unique value denoted by f(x); there are no arbi-
trary constants in f(x). The domains for ordinary differential equations are one of the following types:
—0 <X <00,—00<x<b,a<x<oo,anda < x < b, where a and b are finite.

®This equation is one member of a family of nonlinear equations known collectively as Clairaut’s equation.
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piecewise, wronskian (linalg package), along with basic commands found in
Appendix C.

In order to use Maple to study ordinary differential equations, we must load commands from
the DEtools package. To do this, we enter:

>with (DEtools):

Maple has a powerful differential equation solver called dsolve, which can handle many
types of differential equations. To solve Eq. 1.2.19 with Maple, we first need to enter the equa-
tion as follows:

>ode:=(2*x"3-1)*diff (f(x), x$2) - 6*x"2*diff(f(x), x) +
6*x*f(x) = 0;

The output is

2

9 9
ode : = (2;8—1)(3—}{2f(x)) —6x <g{f(x))+6xf(x)=0

It is important to understand the syntax here. For instance, there are two equal signs in the com-
mand. The first one is part of the : = pair, which in Maple means “is defined as.” The second
equal sign is from the differential equation. Also, notice how the diff command is used to
indicate f" and f” in the input. In the output, Maple uses the partial derivative symbol with all
derivatives, but the interpretation should be the usual full derivative. Finally, since Maple inter-
prets £ and f (x) differently, it is important to be clear that f is a function of x.

To get the general solution of Eq. 1.2.19, we type the following:

>dsolve (ode, f(x));

The output here is f (x) =_Cl*x+_C2* (x~3+1), which resembles Eq. 1.2.18. Maple uses
symbols such as _C1 and _C2 to represent arbitrary constants.

Problems [ 1 [ 1 [ ]

In each case decide whether the equation is linear or nonlinear, ~ 10. u’ = sinx + e*

homogeneous or nonhomogeneous, and state its order. M. o =x+cosx

1. u/u=1+x 12. w’ =2x

2. uw' =1+x 13, u” =x?

3. sinu' =u 14. u®=x-2

4. u” —2u' +u =cosx

5y a2 15.  Verify that each member of the family of functions the
s =a sum of which is given by Eq. 1.2.17, solves Eq. 1.2.16.

" __

S S 16. Verify that Ax + B(x> + 1) satisfies Eq. 1.2.19 for each

7w =u? choice of A and B.

8. W' =-u 17. Show that A(x — ¢1)(x — ¢2) + B(x — ¢3) + C has only

. . . . . . three essential arbitrary constants.
Find families of solutions to each differential equation.

9. u=x>+2




Verify that the given function satisfies the differential

equation.

18. u = cos2x, u +4u=0

19. u =%, u —4u =0

20. u?®+x2 =10, uu' +x =0

21. u=e ¥ 4 12¢7 %, u +5u +6u=0

22. The acceleration of an object is given by a = d’s/dt?,
where s is the displacement. For a constant deceleration
of 20 m/s?, find the distance an object travels before
coming to rest if the initial velocity is 100 m/s.

23. An object is dropped from a house roof 8 m above
the ground. How long does it take to hit the ground?
Use a = —9.81 m/s® in the differential equation a =
d?y/dt?*, y being positive upward.

24. Verify that y(x) = cx + ¢? is a solution of Eq. 1.2.21 for
each c. Verify that y(x) = —x?/4 is also a solution of the
same equation.

25. Verify that the initial-value problem

Y +xy —y=0
y(2)=-1
has two specific solutions

2

=3
palke) = o2 Al sl = =

26.

78

28.
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Verify that the initial-value problem

Y2+xy —y=0

y=1) =2
has specific solutions
yix)=1—x and yy(x) =2(x+2)

Verify that u(x) = Asin(ax) + B cos(ax) is a solution
tou” + a*u = 0. If u(0) = 10 and u (77 /2a) = 20, deter-
mine the specific solution.
The deflection of a 10-m-long cantilever beam with con-
stant loading is found by solving #® = 0.006. Find the

maximum deflection of the beam. Each cantilever end re-
quires both deflection and slope to be zero.

Use Maple to solve:

29.
30.
31.
32.
33.
34.

Problem 9

Problem 10
Problem 11
Problem 12
Problem 13
Problem 14

1.3 DIFFERENTIAL EQUATIONS OF FIRST ORDER

1.3.1 Separable Equations

Some first-order equations can be reduced to

which is equivalent to

d
hw'7= = g(x)

h(u)du = g(x)dx

(1.3.1)

(1.3.2)

This first-order equation is separable because the variables and their corresponding differentials
appear on different sides of the equation. Hence, the solution is obtained by integration:

/h(u)du:/g(x)dx+C

(1.3.3)
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Unless the indefinite integral on the left-hand side of Eq. 1.3.3 is a particularly simple function
of u, Eq. 1.3.3 is not an improvement over Eq. 1.3.2. To illustrate this point, let (1) = sin /u
and g(x) = ¢’ Then Eq. 1.3.3 becomes

fsinﬁdu = /exzdx +C (1.3.4)

which is an expression that defines # with no more clarity than its differential form,
sin /i du = e* dx (1.3.5)

The following example is more to our liking.

EXAMPLE 1.3.1 \ | | |

Find the solutions to the nonlinear equation

d
x—u+u2=4

» Solution

The equation is separable and may be written as

du dx

4—u?  x
To aid in the integration we write

1 /4  1/4

4 —y? _2—u+2+u

Our equation becomes

1 du 1 du dx

42—y +12+u X
This is integrated to give
—Im@-w+in@+u) =Inx+{InC

where % In C'is constant, included because of the indefinite integration. In this last equation u, x, and C are re-
stricted so that each logarithm is defined (i.e., || < 2, x > 0,and C > 0). After some algebra this is put in the
equivalent form

24u

=x*C
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EXAMPLE 1.3.1 (Continued) \ | | |

which can be written as

@) 2(Cx* —1)
ux) = —————
Cx*+1
If the constant of integration had been chosen as just plain C, an equivalent but more complicated expression
would have resulted. We chose % In C to provide a simpler appearing solution. The restrictions on u, x, and

C, introduced earlier to ensure the existence of the logarithms, are seen to be superfluous. An easy differenti-
ation verifies that for each C, the solution is defined for all x, —00 < x < 00.

The linear, homogeneous equation

du
— +pX)u = (1.3.6)
dx
is separable. It can be written as
du
— = —px)dx (1.3.7)
u
and hence the solution is
Inu = —/p(x) dx +C (1.3.8)

If we write F (x) = e/ ?™4% then the solution takes the form

C

pr— 1-3.9
lu(x)] Fx) ( )
T'his last form suggests examining
(x) = F (1.3.10)
u(x) = ) .3.10

In fact, for each K this represents a solution of Eq. 1.3.6. Therefore, Eq. 1.3.10 represents a fam-
ily of solutions of Eq. 1.3.6.

Certain equations that are not separable can be made separable by a change of variables. An
important class of such equations may be described by the formula

du u
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Then, setting u = vx to define the new dependent variable v, we obtain

du dv + (1.3.12)
— =x—+40v 3.
dx dx
Substituting into Eq. 1.3.11 results in
d
L= (13.13)
dx
which, in turn, leads to the equation
dv B dx (13.14)
fvy—v  «x o

which can be solved by integration.

EXAMPLE 1.3.2 \ | | |

Determine a family of solutions to the differential equation

» Solution

The equation in the given form is not separable and it is nonlinear. However, the equation can be put in the
form

wdu u?
et |
xdx x?

by dividing by x2. This is in the form of Eq. 1.3.11, since we can write

du 1+ (u/x)?
dx u/x

Define a new dependent variable to be v = u/x, so that

Substitute back into the given differential equation and obtain

v, 1=1
V|IX— V) —UV =
dx
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EXAMPLE 1.3.2 (Continued) l | | |

This can be put in the separable form
d
vdv =2
X

Integration of this equation yields

2
%:mm+c

Substitute v = u/x and obtain u(x) to be
u(x) = V2x(C +In|x|)'/?

This represents a solution for each C such that C 4 In |x| > 0, as is proved by differentiation and substitution
into the given equation.

1.3.2 Maple Applications

The dsolve command in Maple can also be used when an initial condition is given. For the
differential equation of Example 1.3.2, suppose that the initial condition is u(1) = 2+/2. To find
the unique solution, we can enter the following:

>ode:=x*u(x)*diff(u(x), x) - (u(x))"2 = x"2;
>dsolve ({ode, u(l)=2*sgrt(2)}, u(x));
In this case, Maple’s solutionis u (x) = sqgrt (2*1In(x)+8) *x.

Problems

Find a family of solutions to each differential equation. Find a family of solutions to each equation.
1. ' =10u 9. xu'+2x =u
2. u' =10u? 10. x%u' = xu + u?
3. u'=2u+3 1. 23 +ud —xuPu' =0
4. u' =usinx 12 3u+ (w+x)u' =0
5. u' = cotusinx 13, xu' = (x —u)® +u (letx —u=y)
6. x*u' +u?=1 14. (x +2u+ Du' =x +2u+4 (Hint: Let x +2u =y.)
7. x(x +2u = u?
8. Sxdu-+x*udx =0
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Solve each initial-value problem. 25. Problem 7
15. w' =2u—1, u(0) =2 26. Problem 8
16. u'tanx =u+1, u@)=0 27. Problem 9
17. xu' +u = 2x, u(l) =10 28. Problem 10
18 xu' =@ —x)>+u,u(l)=2 (Hint: Letv =u — x.) 29. Problem 11

Use Maple to solve:

30. Problem 12

19.
20.
21.
22.
23.
24.

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6

31. Problem 13
32. Problem 14
33. Problem 15
34. Problem 16
35. Problem 17
36. Problem 18

1.3.3 Exact Equations

The equation du/dx = f(x, u) can be written in many different forms. For instance, given any
N (x, u), define M(x, u) by the equation

Mx,u) =—f(x,u)N(x,u) (1.3.15)
Then

du B B _M(x,u)

T fx,u)= 7N(x, " (1.3.16)
leads to

Mx,u)dx + N(x,u)du =0 (1.3.17)

In this form the differential equation suggests the question, Does there exist ¢ (x, u) such that
d¢ = M dx + N du? The total differential of ¢ (x, u) is defined
d d
d¢ = —¢dx+—¢du (1.3.18)
ax ou
Note that if ¢ (x, u) = K, thend¢p = 0.
The equation M dx + N du = 0 is exact if there exists ¢ (x, u) such that

dp = M(x,u)dx + N(x,u)du (1.3.19)
or, equivalently,
d ad
9% _y and 22— n (1.3.20)
ax ou

a consequence of Eq. 1.3.18. If M dx + N du = 0 is known to be exact, then it follows that

dp=Mdx+Ndu=0 (1.3.21)
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so that
¢(x,u) =K (1.3.22)

If Eq. 1.3.22 is simple enough, it may be possible to solve for u as a function of x and then verify
that this u is a solution of Eq. 1.3.17. This is the tack we take.

EXAMPLE 1.3.3 [ | | |

Verify, by finding ¢, that
1
—12 dx +—-du=20
by by
is exact. Find u from ¢ (x, u) = K and verify that u solves the given differential equation.

» Solution

We determine all possible ¢ by solving (see Eq. 1.3.20),

0
0 _ oM
x x?2

Integration implies that ¢ (x, u) = u/x + h(u) if the given differential equation is exact. The function A (u) is
an arbitrary differentiable function of u, analogous to an arbitrary constant of integration. The second equa-
tion in Eq. 1.3.20 yields.

0 9
e =l

u
%t h|
X
1 , 1
X X
Therefore,

u
¢(xvu):_+c
X

which, for any C, satisfies both parts of Eq. 1.3.20. Hence, the given differential equation is exact. Moreover,
we determine, using Eq. 1.3.22,

u(x) = Ax
where A = K — C, and verify that

u 1 Ax 1
——dx+—du=——dx+ —(Adx) =0
x2 X x2 X

If it had been the case that our given differential equation in Example 1.3.3 was not exact, it would have been
impossible to solve Eq. 1.3.20. The next example illustrates this point.
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EXAMPLE 1.3.4 \ | | |

Show that
—udx +xdu=0
is not exact.
» Solution
We find that
0
—¢ = M = —U
0x
requires ¢ (x, u) = —xu + h(u). However,
0 0
%9 = —[-xu+hw)]=—x+hu)=N=x
ou ou

requires 4’'(u) = 2x, an obvious contradiction.
The student should note that

1
—udx +xdu=x> (—%dx—i——du) =x2d<z> =0
X X X

and thus the apparently trivial modification of multiplying an exact equation by x? destroys its exactness.

The pair of equations in Eq. 1.3.20 imply by differentiation that

= — an = —
dx du du ou 0x 0x

9% M q ¢ N

Hence, assuming that the order of differentiation can be interchanged, a situation that is assumed
in all our work in this text, we have

oM ON
— = (1.3.23)
ou ox
We use Eq. 1.3.23 as a negative test. If it fails to hold, then M dx + N du = 0 is not exact’ and
we need not attempt to solve for ¢. In Example 1.3.4, M = —u and N = x and hence
oM oN
—=—-1#4—=1 (1.3.24)
ou ox

This saves much useless labor.

"We do not prove that dM/du = dN /dx implies that M dx + Ndu = 0 is exact because such a proof would
take us far afield. Moveover, in any particular case, knowing that Mdx 4+ Ndu = 0 is exact does not circum-
vent the need to solve Eq. 1.3.20 for ¢. Once ¢ is found, M dx 4+ N du = 0 is exact by construction.
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EXAMPLE 1.3.5 \ | | |

Find the specific solution of the differential equation

d
(2+x2u)d—”+xu2=o it u(l) =2
X

» Solution

The differential equation is found to be exact by identifying

N=2+x2u, M = xu?®
Appropriate differentiation results in
oN
— = 2xu, — = 2xu
ox u
From
d
—¢ =M= xu’
ox

we deduce that

‘We continue as follows:

0
9 =x’u+hw)=N=2+xu
ou
We deduce that 4’ (1) = 2 and hence that 4 (u) = 2u so that
x2u?
¢(x,u) = — + 2u
Using Eq. 1.3.22, we can write

x2u?

2

+2u =K
which defines u(x). Given that u(1) = 2, we find K = 6. Finally, using the quadratic formula,
2 2
u(x) = 2 + ;\/ 1 4 3x?

We use the plus sign so that u(1) = 2. Implicit differentiation of x?u®/2 4 2u = 6 is the easiest way of
verifying that u is a solution.
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Problems

L1 1 [

Verify that each exact equation is linear and solve by separat-
ing variables.

u 1
1. ——2dx + —du=0
3 X

2. 2xudx +x%*du=0

Show that each equation is exact and find a solution.

d
3. 2+ fou=0
dx

d
4, x2+3u2—u=0
dx

d
5. sin2x au +2ucos2x =0
dx

6 o (24 0
.| —+u)=
dx
7. Show that the equation u’' = f(x,u), written as

f(x,u)dx —du =0, is exact if and only if f is a func-
tion of x alone. What is ¢ when this equation is exact?

8. The separable equation /(u) dx + g(x) du = 0 is exact.
Find ¢ and thus verify that it is exact.

9. Find ¢ and thus verify that
/PO b0 (0w — g(x)] dx + /PP gy = 0

is exact.

1.3.4 Integrating Factors

Solve each initial-value problem.

10. (1 +x3u’ +2xu =0, u) =1
11, (x+wu' +u=x, u(l)=0
12. (' +u)e* =0, u(0) =0

13. If
M(x,u)dx + N(x,u)du =0
is exact, then so is
kM (x,u)dx +kN(x,u)du =0

for any constant k. Why? Under the same assumptions
show that

fOO)Mx,u)dx + f(x)N(x,u)du =0

is not exact unless f(x) = k, a constant.

14. Show that
M(x,u)dx + N(x,u)du =0
is exact if and only if
[M(x,u)+ g(x)]dx + [N(x,u) + h(u)]du =0

is exact.
Use Maple to solve:
15. Problem 10
16. Problem 11
17. Problem 12

The equation M dx + N du = 0 is rarely exact. This is not surprising since exactness depends
so intimately on the forms of M and N. As we have seen in Example 1.3.4, even a relatively in-
significant modification of M and N can destroy exactness. On the other hand, this raises the
question of whether an inexact equation can be altered to make it exact. The function 7 (x, u) is

an integrating factor if

I(x,u)[M(x,u)dx + N(x,u)du] =0

is exact. To find I, we solve

(1.3.25)

8(IM)_8(IN)
du  ox

(1.3.26)
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a prospect not likely to be easier than solving M dx + N du = 0. In at least one case, however,

we can find / (x, u). Consider the general, linear equation
u' + pou = g(x)
which can be put in the form

du +[p(x)u — g(x)]dx =0

(1.3.27)

(1.3.28)

We search for an integrating factor which is a function of x alone, thatis, I (x, u) = F(x). Then,

from Eq. 1.3.26, noting that M (x, u) = p(x)u — g(x) and N(x,u) =1,
a ad
8—{F(X)[p(X)M —g)} = —FKx)
u ax

is the required condition on F(x). Hence,
F(x)p(x) = F'(x)
This is a homogeneous first-order equation for F'(x). By inspection we find
F(x) = /P
Using this expression for F'(x) we can form the differential

d(Fu)=Fdu+udF
=Fdu+upx)F(x)dx = F(x)g(x)dx

using Eqgs. 1.3.30 and 1.3.28. Integrating the above gives us
F(xX)u(x) = / F(x)g(x)dx + K

Solving for u gives

1 K
u(x) = W/F(x)g(x)dx—l— m

(1.3.29)

(1.3.30)

(1.3.31)

(1.3.32)

(1.3.33)

(1.3.34)

This formula is the standard form of the general solution of the linear, first-order, homogeneous

equation

d
d—“ + peou = g(x)
X

(1.3.35)

If g(x) =0 then Eq. 1.3.35 is homogeneous and Eq. 1.3.34 reduces to u(x) = K/F(x);

compare this with Eq. 1.3.10.
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EXAMPLE 1.3.6 \ | | |

Solve the linear equation

,du
x“— 4+ 2u = 5x
dx

for the standard form of the general solution.

» Solution

The differential equation is first order and linear but is not separable. Thus, let us use an integrating factor to
aid in the solution.
Following Eq. 1.3.35, the equation is written in the form

du+ 2
Sy, =2
dx = x? X

The integrating factor is provided by Eq. 1.3.31 and is

F(x) = o/ @dx — p=2/x

Equation 1.3.34 then provides the solution

5
u(x) = ¥~ [/ Ze M dx + Ki|
X

This is left in integral form because the integration cannot be written in terms of elementary functions. If the
integrals that arise in these formulas can be evaluated in terms of elementary functions, this should be done.

Equation 1.3.34 does not readily lend itself to solving the initial-value problem

du
— + pu = g(x)

dx (1.3.36)

u(xo) = ug

since, as we have remarked earlier, we cannot conveniently express u(xp) when u is defined by

indefinite integrals. To remedy this deficiency, let F'(x) be expressed by

F(x) =exp |:/x p(s) dsi| (1.3.37)

so that F'(xg) = 1. Then an alternative to Eq. 1.3.34 is

1 x K
u(x) = o) /xo F(t)g(t)dt + ) (1.3.38)
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At xg,
(x0) L /XO F(1) (t)dt—l——K K (1.3.39)
Uu (X = == I
Y= Fan f, 8 F(x0)
Hence,
( )—foF(t) (t) di+—2 (13.40
YT ), T8 F(x) 340

solves the initial-value problem (Eq. 1.3.36).

EXAMPLE 1.3.7 \ | | |

Solve the initial-value problem

d
W ow=2 wO0)=2
dx

» Solution

Here p(x) =2, so

F(x) =exp (/des> =
0

Thus,

i 2
u(x) = e_zx/ e* . 2dt + — = eEF — D42 F =14
0 e

EXAMPLE 1.3.8 \ | | |

Solve the initial-value problem

du
— +2u =2, u(0)=0
dx

» Solution

Since only the initial condition has been changed, we can utilize the work in Example 1.3.7 to obtain

0
u@) =e (e -+ - =1—e?
e X
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1.3.5 Maple Applications

The three solution methods in this section are all built into Maple’s dso1ve command. In fact,
the derivation of Eq. 1.3.34, with initial condition #(x¢) = u, can be accomplished with these

commands:
>ode:=diff (u(x), x) +p(X)*u(x) = g(x);
>dsolve ({ode, u(x_0) = u_0}, u(x));

Problems [ 1 [ 1 [ |

1. It is not necessary to include a constant of integration 16. Computer Laboratory Activity: Consider the initial-

in the expression for the integrating factor F(x) = value problem:
exp [ p(x) dx. Include an integration constant and show e —u
= 1)=5b kn tant
that the solution (Eq. 1.3.34), is unaltered. L= o u(1) =b, anunknown constan
2. If g(x) = 0in Eq. 1.3.35, show that u(x) = K/F(x) by  Solve the differential equation with Maple and use your solu-
solving the resulting separable equation. tion to determine the unique value of b so that «(0) will exist.
Find the general solution to each differential equation. How do you solve this problem without Maple? Create a
; graph of u(x), using your value of b. Explore what happens to
3. wtu=2 solutions if you vary your value of b slightly.
/ —
4 u/ R Use Maple to solve:
5. =10
. u/ + ;u . 17. Problem 3
7' u/ = e_x 18. Problem 4
8. u/ = e 19. Problem 5
LT cosy 20. Problem 6
9. xu' —2u = xe*

21. Problem 7

e — i
10. x*u' —u = 2sin (1/x) 22. Problem 8

Solve each initial-value problem. 23. Problem 9

M. u +2u=2%, w0 =2 24. Problem 10
12w +xu=e™, u(l)y =0 25. Problem 11
13. u —u=x, u() =1 26. Problem 12
14. u —2u =4, u(0) =0 27. Problem 13

28. Problem 14

15. Construct a first-order equation that has the property that
all members of the family of solutions approach the limit
of 9 as x — oo.

1.4 PHYSICAL APPLICATIONS

There are abundant physical phenomena that can be modeled with first-order differential equa-
tions that fall into one of the classes of the previous section. We shall consider several such phe-
nomena, derive the appropriate describing equations, and provide the correct solutions. Other
applications will be included in the Problems.
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Inductor Figure 1.1 RLC circuit.

900>
L

Resistor ——~ Capacitor

M\
Y
a
\

(1)
O O
Voltage source

1.4.1 Simple Electrical Circuits

Consider the circuit in Fig. 1.1, containing a resistance R, inductance L, and capacitance C in
series. A known electromotive force v(#) is impressed across the terminals. The differential
equation relating the current i to the electromotive force may be found by applying Kirchhoff’s
first law,8 which states that the voltage impressed on a closed loop is equal to the sum of the volt-
age drops in the rest of the loop. Letting ¢ be the electric charge on the capacitor and recalling
that the current i flowing through the capacitor is related to the charge by

dq
| = — 1.4.1
i= ( )
we can write
d’*q dq 1
t)y=L— +R— + — 142
v =Ly Ry e (142)

where the values, ¢, v, L, R, and C are in physically consistent units—coulombs, volts, henrys,
ohms, and farads, respectively. In Eq. 1.4.2 we have used the following experimental observa-
tions:

voltage drop across a resistor = i R

voltage drop across a capacitor = (14.3)

Q=

di
voltage drop across an inductor = LE
Differentiating Eq. 1.4.2 with respect to time and using Eq. 1.4.1, where i is measured in am-
peres, we have
dv d?i di

] 1
Ay S ST 1.4.4
dt dt? + dt + Cl ( )

If dv/dt is nonzero, Eq. 1.4.4 is a linear, nonhomogeneous, second-order differential equation.
If there is no capacitor in the circuit, Eq. 1.4.4 reduces to
dv d%i di

—=L—+ R— 1.4.5
dt dr? + dt ( )

8Kirchhoff’s second law states that the current flowing into any point in an electrical circuit must equal the
current flowing out from that point.
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Integrating, we have (Kirchhoff’s first law requires that the constant of integration be zero)

Ldl + Ri ) (1.4.6)
—_— I =10 N
dt

The solution to this equation will be provided in the following example.

EXAMPLE 1.4.1 [ | | |

Using the integrating factor, solve Eq. 1.4.6 for the case where the electromotive force is given by
v = Vsinowt.

» Solution

First, put Eq. 1.4.6 in the standard form
di R

+ —i Vi t
— —1 = — SIn
P T

Using Eq. 1.3.31 we find that the integrating factor is
F(t) — e(R/L)t

According to Eq. 1.3.34 the solution is
Vv
i(t) = e R/ [ / T sinet R K]

where K is the constant of integration. Simplification of this equation yields, after integrating by parts,

Rsinwt — wL cos wt
i(=V Ke (R/DX
® |: R? + ?L? ] +
If the current i = i at ¢+ = 0, we calculate the constant K to be given by
K —io+ VwL
=iy+ ———
"T Rt L2
and finally that
Rsinwt — wL cos wt VoL
it=V o+ —— e~ (R/L)t
R? + w?L? R? + @?L?

In this example we simplified the problem by removing the capacitor. We can also consider a similar problem
where the capacitor is retained but the inductor is removed; we would then obtain a solution for the voltage.
In Section 1.7 we consider the solution of the general second-order equation 1.4.4 where all components are
included.
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1.4.2 Maple Applications

Note that we get the same solution as in Example 1.4.1 using Maple:

>ode:=diff(i(t), t) + R*i(t)/L = V*sin(omega*t)/L;
>dsolve ({ode, 1(0)=1i_0}, i(t));

(8, ) Ri(® Vsinw?t

ode: = —1i® -

ot L L
- ) Wit i0R + 10012 Vwcosw L — Rsinw o)
1 = —

R2 +w?[? R2 + w2 L2

1.4.3 The Rate Equation

A number of phenomena can be modeled by a first-order equation called a rate equation. It has
the general form

du

o= fu, 1 (1.4.7)

indicating that the rate of change of the dependent quantity # may be dependent on both time and
u. We shall derive the appropriate rate equation for the concentration of salt in a solution. Other
rate equations will be included in the Problems.

Consider a tank with volume V' (in cubic meters, m3), containing a salt solution of concen-
tration C (¢). The initial concentration is Cy (in kilograms per cubic meter, kg/m3). A brine con-
taining a concentration C; is flowing into the tank at the rate ¢ (in cubic meters per second,
m?/s), and an equal flow of the mixture is issuing from the tank. The salt concentration is kept
uniform throughout by continual stirring. Let us develop a differential equation that can be
solved to give the concentration C as a function of time. The equation is derived by writing a bal-
ance equation on the amount (in kilograms) of salt contained in the tank:

amount in — amount out = amount of increase (1.4.8)
For a small time increment At this becomes
CigAt —CqgAt =C(t+ A)V —C@)V (1.4.9)

assuming that the concentration of the solution leaving is equal to the concentration C(¢) in the
tank. The volume V of solution is maintained at a constant volume since the outgoing flow rate
is equal to the incoming flow rate. Equation 1.4.9 may be rearranged to give

q(C; —C) = iU AA? —C@ (1.4.10)
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Now, if we let the time increment At shrink to zero and recognize that

Ct+Ar)—C@) dC

lim = — 1.4.11
At—0 At dt ( )
we arrive at the rate equation for the concentration of salt in a solution,
dC ¢ qCy
— 4+ =C=— 1.4.12
dt + Vv \% ( )

The solution is provided in the following example.

EXAMPLE 1.4.2 \ | | |

The initial concentration of salt in a 10-m? tank is 0.02 kg/m?. A brine flows into the tank at 2 m?/s with a con-
centration of 0.01 kg/m®. Determine the time necessary to reach a concentration of 0.011 kg/m? in the tank if
the outflow equals the inflow.

» Solution

Equation 1.4.12 is the equation to be solved. Usingg = 2, V = 10 and C; = 0.01, we have

dc 2 2 x 0.01
c o 2X

@ T 1o
The integrating factor is

F(t) — ef(l/s)dt — ez/S

The solution, referring to Eq. 1.3.34, is then
C(t)y=e' [ f 0.002¢'° dr + A} = 0.01 + Ae™'/3

where A is the arbitrary constant. Using the initial condition there results
0.02=0.01+A
so that
A =0.01
The solution is then

C@t) =0.01[1 4+
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EXAMPLE 1.4.2 (Continued) \ | | |

Setting C(¢) = 0.011 kg/m?, we have
0.011 = 0.01[1 4+ e~*/]
Solving for the time, we have
0.1=¢'
or

t=11.51s

1.4.4 Maple Applications

Example 1.4.2 can also be solved using Maple, using dsolve and some commands from

Appendix C:

>ode:=diff(C(t), t) + 0.2*C(t) = 0.002;

>dsolve({ode, C(0)=0.02}, C(t));
>concentration:=rhs(%); #use the right-hand side of the
output

>fsolve (0.0ll=concentration) ;

a
ode := (—C (t)) +.2C({)=.002
ot

1 1
ClO=—=+——e/°"
© 100 100
: 1 =1/5106)
concentration := — 4+ —e
100 100

11.51292546

A graph of the direction field of this differential equation can help lead to a deeper understand-
ing of the situation. To draw a direction field, first rewrite the differential equation so that the de-
rivative term is alone on the left side of the equation:

dcC C
— =0.002 — —
dt 5

Then, for specific values of t and C, this equation will define a derivative, and hence a slope, at
that point. For example, at the point (¢, C) = (0, 1), ”fi—f = —0.198, and on the direction field,
we would draw a line segment with that slope at the point (0, 1). (Here, ¢ will be represented on
the x-axis, and C(¢) on the y-axis.) All of this can be done efficiently with Maple, along with

drawing solution curves, using the DEplot command in the DEtools package:
>ode2:= diff(C(t), t)=0.002-2*C(t)/10;

d 1
ode2 := —C(({ =0.002—-—=C()
dt 5
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>DEplot (ode2, C(t), t=0..12, [[C(0)=0.02]1,([C(0)=0.05]],
C=0..0.06, arrows=MEDIUM) ;
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Here, we see two solutions. One has initial condition C(0) = 0.02, while the other uses
C(0) = 0.05. In both cases, the solutions tend toward C = 0.01 as ¢ increases, which is consis-
tent with the fact that the general solution is C (t) = 0.01 + Ae™/>.

To draw a direction field without a solution, use the dfieldplot command instead:

>dfieldplot (ode2, C(t), t=0..5, C=0..0.06, arrows=MEDIUM) ;

1.4.5 Fluid Flow

In the absence of viscous effects it has been observed that a liquid (water, for example) will flow
from a hole with a velocity

v=12gh mis (1.4.13)

where / is the height in meters of the free surface of the liquid above the hole and g is the local
acceleration of gravity (assumed to be 9.81 m/s?). Bernoulli’s equation, which may have been
presented in a physics course, will yield the preceding result. Let us develop a differential equa-
tion that will relate the height of the free surface and time, thereby allowing us to determine how
long it will take to empty a particular reservoir. Assume the hole of diameter d to be in the bot-
tom of a cylindrical tank of diameter D with the initial water height 4y meters above the hole.
The incremental volume AV of liquid escaping from the hole during the time increment Af? is

dZ
AV:vAAhan?rAt (14.14)
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This small volume change must equal the volume lost in the tank due to the decrease in liquid
level Ah. This is expressed as

nD?
AV:—TAh (1.4.15)
Equating Egs. 1.4.14 and 1.4.15 and taking the limit as Az — 0, we have
dh d?
— = —/2gh— 1.4.16
7 8h 3 ( )
This equation is immediately separable and is put in the form
1/2 a’
h='"%dh = —,/ZgEdt (1.4.17)
which is integrated to provide the solution, using 7 = hg att = 0,
2
g d’
ht)=|—,/=—t h 1.4.18
(1) |: \/; el TV 0:| ( )
The time 7, necessary to drain the tank completely would be (set &z = 0)
D?* [2hy
t, = — | —— seconds (1.4.19)
a*\ g

Additional examples of physical phenomena are included in the Problems.

1 [ 1 L[]

Problems

A constant voltage of 12 V is impressed on a series circuit
composed of a 10-Q resistor and a 10~*-H inductor.
Determine the current after 2 ps if the current is zero at
t=0.

An exponentially increasing voltage of 0.2¢* V is im-
pressed on a series circuit containing a 20-£2 resistor and
a 1073-H inductor. Calculate the resulting current as a
function of time usingi = 0 atz = 0.

A series circuit composed of a 50-2 resistor and a
10~7-F capacitor is excited with the voltage 12 sin 2¢.
What is the general expression for the charge on the
capacitor? For the current?

A constant voltage of 12 V is impressed on a series
circuit containing a 200-Q resistor and a 107°-F
capacitor. Determine the general expression for the

charge. How long will it take before the capacitor is
half-charged?

The initial concentration of salt in 10 m® of solution
0.2 kg/m?. Fresh water flows into the tank at the rate of
0.1 m*/s until the volume is 20 m®, at which time ¢, the
solution flows out at the same rate as it flows into the
tank. Express the concentration C as a function of time.
One function will express C () for t < t¢ and another for
t>tr.

An average person takes 18 breaths per minute and each
breath exhales 0.0016 m? of air containing 4% CO,. At
the start of a seminar with 300 participants, the room air
contains 0.4% CO,. The ventilation system delivers 10 m?
of air per minute to the 1500-m? room. Find an expression
for the concentration level of CO; in the room.
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Determine an expression for the height of water in the
funnel shown. What time is necessary to drain the funnel?

/

45°

150 mm

l 6 mm

A square tank, 3 m on a side, is filled with water to a
depth of 2 m. A vertical slot 6 mm wide from the top to
the bottom allows the water to drain out. Determine the
height % as a function of time and the time necessary for
one half of the water to drain out.

A body falls from rest and is resisted by air drag.
Determine the time necessary to reach a velocity of
50 m/s if the 100-kg body is resisted by a force equal to
(@) 0.01v and (b) 0.004v2. Check if the equation
M(dv/dt) = Mg — D, where D is the drag force, de-
scribes the motion.

Calculate the velocity of escape from the earth for a
rocket fired radially outward on the surface
(R = 6400km) of the earth. Use Newton’s law of gravi-
tation, which states that dv/dr = k/ r2, where, for the
present problem, k = —gR?. Also, to eliminate ¢, use
dt =dr)v.

The rate in kilowatts (kW) at which heat is conducted in
a solid is proportional to the area and the temperature
gradient with the constant of proportionality being the
thermal conductivity k(kW/m - °C). For a long, laterally
insulated rod this takes the form ¢ = —kA(dT /dx). At
the left end heat is transferred at the rate of 10 kW.
Determine the temperature distribution in the rod if the
right end at x = 2 m is held constant at 50°C. The cross-
sectional area is 1200 mm? and k = 100 kW/m - °C.

1.5 LINEAR DIFFERENTIAL EQUATIONS

12.

14.

An object at a temperature of 80°C to be cooled is placed
in a refrigerator maintained at 5°C. It has been observed
that the rate of temperature change of such an object is
proportional to the surface area A and the difference be-
tween its temperature 7' and the temperature of the sur-
rounding medium. Determine the time for the tempera-
ture to reach 8°C if the constant of proportionality
a=0.02(s-m?>)""and A = 0.2 m?.

The evaporation rate of moisture from a sheet hung on a
clothesline is proportional to the moisture content. If one
half of the moisture is lost in the first 20 minutes, calcu-
late the time necessary to evaporate 95% of the moisture.

Computer Laboratory Activity: Consider the initial-
value problem:

dy

2
= = xy?, —2)=3
aie xy y(=2)

(a) Create a direction field for this equation, without any
solution drawn. What would you expect would be the
behavior of solutions whose initial conditions are in
the second quadrant?

(b) Solve the initial-value problem.

(c) Create another direction field with the solution
included.

(d) Follow the same instructions for this initial value
problem:

;l_izco;x7 y(—%):l

Use Maple to create direction fields for the differential equa-
tions created in these problems:

15.
16.
17.
18.
19.
20.

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6

1.5.1 Introduction and a Fundamental Theorem

Many of the differential equations that describe physical phenomena are linear differential
equations; among these, the second-order equation is the most common and the most impor-
tant special case. In this section we present certain aspects of the general theory of the second-
order equation; the theory for the nth-order equation is often a straightforward extension of

these ideas.
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Figure 1.2 Some common forcing functions with jump discontinuities.

In the general, the second-order equation is

d*u d
— + po(x)

ax2 “ 4 pr(x)u = g(x), a<x<b (1.5.1)

dx

The function g(x) is the forcing function and po(x), p;(x) are coefficient functions; in many ap-
plications the forcing function has jump discontinuities. Figure 1.2 illustrates three common
forcing functions, each with jump discontinuities. The graphs in Fig. 1.2 suggest the following
definition of a jump discontinuity for g(x) at x = x¢:

limit from the left = lim g(x) = gy
X—X0
X <Xo

limit from the right = lim g(x) = g7
X—Xo

X>X0

Functions with jump discontinuities can be plotted and used in Maple by using commands. The
following three commands will create a step function, a sawtooth function, and a square wave.

>fl:= x -> plecewise(x < 2, 1, x>=2, 3);
>f2:= x -> pilecewise(x <-1, x+3, x < 1, x+1, x < 3, x-1);
>f3:= x -> plecewise(x <= -1, -2, x < 1, 3, x >= 1, -2);

The jump is [g — g, ’ and is always finite. Although we do not require g(x) to have a value at
X0, we usually define g(xo) as the average of the limits from the left and the right:

|
g(Xo)ZE(g +g7) (1.5.2)

Figure 1.3 illustrates this point. Two ways in which a function can have a discontinuity that is not
a jump are illustrated in Fig. 1.4.

We study Eq. 1.5.1 in the interval I: @ < x < b, an interval in whicha = —oo or b = 400
or both are possible. We assume:

1. po(x) and p;(x) are continuous in /.
2. g(x) is sectionally continuous in /.

A sectionally continuous function g(x) ina < x < b is a function with only a finite number of
jump discontinuities in each finite subinterval of / and in which, for a and b finite, g} and g,
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8(x)

Figure 1.3 The definition of g(xo) where a jump discontinuity exists at xg.

g(x) . 8(x)
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|
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glx) = #XO g(x) = sin g

Figure 1.4 Functions with a discontinuity that is not a jump discontinuity.

exist.” Thus, the unit-step, the sawtooth, and the squarewave are sectionally continuous func-
tions (see Fig. 1.2). The function graphed in Fig. 1.3 is sectionally continuous. If po(x) and
p1(x) are continuous and g(x) sectionally continuous in /, then Eq. 1.5.1 and its corresponding
initial-value problem are called standard.

Theorem 1.1: (The Fundamental Theorem): The standard initial-value problem

P o™ 4 prou = g(x) b

) X)—— X)u = g(x), a<x<

dx2 PO T § (153)
u(x,) = uo, u' (x0) = uy, a<xy<b

has one and only one solution in I.

For a proof of this existence and uniqueness theorem, we refer the reader to a textbook on
ordinary differential equations.

%It is unreasonable to expect g to exist since g is, presumably, undefined for x < a. Similarly, g; is the only
reasonable limit at the right end point of /.
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It follows immediately from this theorem that u(x) = 0 is the only solution of

d*u du
Pl + PO(X)E +p1(x)u=0

u(xp) =0, u'(xg) =0

(1.5.4)

in /. This corollary has a physical analog: A system at rest and in equilibrium and undisturbed
by external forces remains at rest and in equilibrium.

Problems

Which of the following functions have a discontinuity at . @) = I, 0<x=<1
x = 0? Indicate whether the discontinuity is a jump © Ee= 0, otherwise
discontinuity.
p 1 14. What is the analog of the Fundamental Theorem for the
- 8 =lnx following first-order initial-value problem?
2. g(x)=In|x| du
3. g(x) = x| a*‘P(X)M:g(x), a<x<b
4. gx) = 1/162 u(xp) = ug, a<xy<b
5. glx)y=¢e* 15. Inview of Problem 14, consider this paradox: The initial-
(sinx)/x, x ?é 0 value problem
6. gx)= 0 —0 du
) = x— —2u=0, u(0) =0

xsinw/x, x #0 e
7. glx) = 0 X =0 has the two solutions u;(x) = x% and u»(x) = —x2.
Resolve the dilemma.
Which of the following functions are sectionally continuous?  Use Maple to create a graph of the function in

8 gx)=Inx, x>0 16. Problem 6
9. g(x)=Inx, x>1 17. Problem 7
10. g(x) = { ez, =0 for —1 <x <1 i il 1Y
0, x=0 19. Problem 11
<l iz =0 20. Problem 12
ik gl = o) = = %f * <0 21. Problem 13
0 if x=0
0, x <0
12. =
&) { [sinx|, x>0

1.5.2 Linear Differential Operators
Given any twice differentiable function u(x), the expression
d*u d

Liul= "> + Po(u)ﬁ + P = r(x) (15.5)
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defines the function r (x). For example, set

d*u du
Lu] = ﬁ+3d 2u (1.5.6)

Then, for u(x) =1 —x, e", e, and K, we have

r(x)=L[—x+1]=3(-D+2(—x+1)=-2x -1
r(x) = Lle’] =e* + 3¢* + 2¢* = 6e*
r(x) =Lle"]=¢" —3e* +2* =0
r(x) =L[K]=2K
The formula L[u] = r(x) may be viewed in an operator context: For each allowable input

u(x), L produces the output r(x). We call L a differential operator. It is linear'® because, as we
may easily verify,

Llciuy + cous] = e L{uy] + c2L[us] (1.5.7)

for each pair of constants ¢; and ¢; (see Problem 1 at the end of this section).
Three consequences of Eq. 1.5.7 are
(1) L[0]=0
2) Llcu] = cL[u] (1.5.8)
(3) Llu+v]=Llu]+ L[v]

Item (1) follows by choosing ¢; = ¢, = 0 in Eq. 1.5.7; the other two are equally obvious.
We may now interpret the differential equation

d*u

Llu] = I

+m@%—+m@ﬂ—g@) (1.5.9)

in this manner: Given L and g(x), find u(x) such that

Llu] = g(x), a<x<b (1.5.10)

Theorem 1.2: (The Superposition Principle): If u; and u, are solutions of

d*u
d2+mu%—+m@m—0 (1.5.11)
then so is
u(x) = cruy(x) + couz(x) (1.5.12)

for every constant ¢| and c;.

19There are other linear operators besides differential operators. In Chapter 3 we study an important linear
integral operator called the Laplace transform.
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Proof: In terms of operators, L[u] = L[u>] = 0 by hypothesis. But

Llciuy + coup] = i L{uil + coL[uz] =¢1 -0+ ¢2-0=0 (1.5.13)

by linearity (Eq. 1.5.7).

Problems

1. Let Ly[u] = du/dx + po(x)u. Verify that L; is a linear
operator by using Eq. 1.5.7.

2. Let L, be defined as follows:

L[] d"u + pol )d"_lu
ul = — xX)——
" dan PO
Verify that this operator is linear by showing that
Lylciuy + couz] = e Lyui] + c2 Ly [uz]

3. Prove that L[cu] = cL[u] for every ¢ and L[u + v] =
L[u] + L[v] implies Eq. 1.5.7. (Note: it is unnecessary to
know anything at all about the structure of L except what
is given in this problem.)

+o o P ()

4. A second Principle of Superposition: Suppose that L is a
linear operator and L[u] = g1, L[v] = g». Prove that
Llu+v] =g + &.

Suppose that ¢; + ¢, =1 and L[u] = L[v] = g. Prove
that L[ciu + cov] = g.
d? d
Let Lu] = an +2b—u + cu =0, where b and ¢ are
dx? dx

constants. Verify that

L[e™] = ™ (W2 4 2bA + ¢)

Suppose that L is a linear operator. Suppose that
Llu,] =0and L[u,] = g(x). Show that L[cu, +u,] =
g(x) for every scalar c.

Suppose that L is a linear operator and L[u;] =
Lluy] = g(x). Show that L[u; — us] = 0.

1.5.3 Wronskians and General Solutions

If u; (x) and u,(x) are solutions of

2

d
L = —
L] dx?

du
+ po(x)d— +p1(x)u=0
X

(1.5.14)

then we define the Wronskian, W (x; uy, u»), as follows:

W(x) = W(x;ur,u) =

Now,

uy up
’ ’
1 2

= uyu — upu (1.5.15)

/

4 " s / 4
Wi(x) = uyuy + uyuy — usuy — uputy

= uuy — uou

= uy[—pou’, — pruz] — us[—pou; — pruil

= —po(uuy — uru)

= —poW(x)

(1.5.16)
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This is a first-order equation whose general solution may be written
W(x) = Ke /@ (1.5.17)

A critical fact follows directly from this equation.

Theorem 1.3: On the interval I: a < x < b, either

W(x)=0
or

W(x) >0
or

W(x) <0

Proof: Since py(x) is continuous on 7, so is f po(x) dx. Therefore,

e/PWdx - on T

Hence, W = O if and only if K = 0, it is positive if and only if K > 0 and is negative if and only
if K <0.

We say that u;(x) and u,(x) are independent if W(x) is not zero on a < x < b. (see
Problem 7). A pair of independent solutions is called a basic solution set.

Theorem 1.4: If u;(x) and uy(x) is a basic solution set of

d2

o po(x) ~ 4 piou =0 (15.18)

and 1 is any solution, then there are constants ¢| and ¢, such that

n(x) = cru1(x) + counr(x) (1.5.19)
Proof: Define the numbers r; and r, by

ri=i(x), r2=1i'(x) (1.5.20)
Now consider the initial-value problem

d2
=0
) + Po(x) + pr(x)u = (1.521)

u(xop) = ry, u'(xo) =2
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By construction u solves this problem. By the Fundamental Theorem (Theorem 1.1) u is the
only solution. However, we can always find ¢; and ¢; so that cju; 4+ couy will also solve the
initial-value problem 1.5.21. Hence, the theorem is proved.

To find the values of ¢; and ¢, we set

ri = cuy(xo) + cauz(xo)

, , (1.5.22)
ry = ciuy(xo) + couy(xo)
But this system has a solution (unique at that) if
ui(xo) uz(xo)
, 0 1.5.23
Uy (xo)  us(xo) 7 ( )

It is a well-known theorem of linear algebra (see Chapter 4) that a system of n equations in n un-
knowns has a unique solution if and only if the determinant of its coefficients is not zero. This
determinant is W (xp) and by hypothesis W(x) # 0 on I [recall that u; and u; is a basic set,
which means that W (x) cannot vanishona < x < b].

Because of this theorem, the family of all functions {cju| + cyu»} is the set of all solutions
of Eq. 1.5.14 in /. For this reason, we often call

u(x) = crui(x) + counr(x) (1.5.24)

the general solution of Eq. 1.5.14.

Note that the proof is constructive. It provides a precise computation for ¢; and ¢, given the
initial values and basic solution set. From this point of view, the constants c¢; and ¢; in Eq. 1.5.24
are “essential” if W(x) # 0.

One last point. There is no unique basic solution set. Every pair of solutions from the set
{c1uy + coun} for which W (x) # 0 provides a satisfactory basic solution pair (see Problem 8—10).

1.5.4 Maple Applications

There is a Maple command that will compute the Wronskian. The wronskian command, part
of the 1 inalg package, actually computes the matrix in Eq. 1.5.15, and not its determinant, so
the following code is needed:

>with(linalg) :

>det (wronskian ([ul (x),u2(x)],x));

Find the Wronskians of each equation. 4. u" +1(x)u =0, —0 <X <00
1. u’ ! =0 , tant . .
w' tau + fu ’ @, B constants 5. One solution of u” + 2au’ + o?u =0, « constant, is
2w+ lu’ +pi@u=0, 0<x<o0 e~ **. Find the Wronskian and, by using the definition
X

W (x) = uu’, — uou'y, find asecond independent solution.

1
3. u”—;u'—l—pl(x)u:O, 0<x <o0
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6. Use Cramer’s rule to solve the system (1.5.22) and Show that if u; and u, is a basic solution set of L[u] = 0 so

thereby find are these:
ri uz(xo) uy(xo) 8. uy+uy, U —us.
/ /
_ 1w 4@ n 9.y, us + .
W (x0) W (xo0)

7. Suppose that u; and u, is a basic solution set of

10. auy + Bua, yu; + Suy. For which choice of «, B, y, §?

Eq. 1.5.14. Suppose also that ui(xo) =0,a <x <b. 11, Ifu, = kuy, show that W (x; uy, us) = 0.
Use the definition of the Wronskian and Theorem 1.3 to

prove that us(xp) # 0.

1.5.5 The General Solution of the Nonhomogeneous Equation
Suppose that u;(x) and u,(x) form a basic solution set for the associated homogeneous
equation of

d*u d

Ll =5+ po(x)ﬁ T pioOu = g(x) (1.5.25)

Then L[u;] = L[us] =0 and W(x) # 0 for all x,a < x < b. Letu,(x) be a particular solu-
tion of Eq. 1.5.25; that is, there’s a particular choice for u,(x) that will satisfy L(u,) = g(x).
Methods to obtain u,,(x) will be presented later. Then, for every choice of ¢ and ¢3,

u(x) = u,(x) + crui(x) + couz(x) (1.5.26)
also solves Eq. 1.5.25. This is true since

Llul = L{u, + ciu; + cous]
= Llu,] + ¢ L[u1] + c2 L[us]
=g(x) (1.5.27)

by linearity and the definitions of u,, u1, and u,. We call u(x) the general solution of Eq. 1.5.25
for this reason.

Theorem 1.5: If it is a solution of Eq. 1.5.25, then there exists constants ¢ and ¢, such that
iu(x) = u,(x) + crur(x) + couz(x) (1.5.28)

Proof: We leave the details to the student. A significant simplification in the argument occurs, by
observing that & — u,, solves the associated homogeneous equation and then relying on Theorem 1.4.

EXAMPLE 1.5.1 \ | | |

Verify that u(x) = x* and v(x) = x — 1 is a basic solution set of

Llul=x(x =2u”" —2(x — Du' +2u =0, 0<x<?2
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EXAMPLE 1.5.1 (Continued) \ | | |

» Solution

It is easy to differentiate and show that
LIx*1=L[x—-1]=0

The Wronskian, W (x) = uv’ — u'v, is also easy to check:

W(x) = =x?—2x(x—-D=x(x—-2)#0, 0O0<x<2

2x 1

x2 x—l’

Thus, u(x) and v(x) is a basic solution set of L[u].

EXAMPLE 1.5.2 \ | | |

Let L be defined as in Example 1.5.1. Show that the particular solution u, = x3 is a solution of L[u] =

2x%(x — 3) and find a specific solution of the initial-value problem

Llu]l = x(x —2)u” —2(x — Du' 4+ 2u = 2x*(x — 3), u(l) =0, uw'(1)=0
» Solution
To show that u, = x* solves L[u] = 2x?(x — 3), we substitute into the given L[u] and find

L[x*] = x(x —2)(6x) —2(x — D(3x?) +2(x%)
=6x> — 12x% — 6x° + 6x% + 24 = 2x%(x — 3)

The general solution,'! by Theorem 1.5, using #(x) and v(x) from Example 1.5.1, is
ux) = x4 ex 4+ cox —1)
but
u(l) =1+cy, ' (1) =3+2c1+c
We determine ¢y and ¢; by setting u(1) = u’(1) = 0; that is,

14+¢ =0, 342ci+c=0

"Technically, we ought to put the equation in standard form by dividing by x (x — 2); but all steps would be essentially the same.

37
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EXAMPLE 1.5.2 (Continued) l | |

which leads to the unique solution ¢; = ¢, = —1, and therefore

2

ux)=x>—x*—x+1

is the unique solution to the given initial-value problem.

1.6 HOMOGENEOUS, SECOND-ORDER, LINEAR EQUATIONS
WITH CONSTANT COEFFICIENTS

We will focus out attention on second-order differential equations with constant coefficients.

The homogeneous equation is written in standard form as

d*u du
— — +bu=0
dx? +adx +ou

We seek solutions of the form
u=-e
When this function is substituted into Eq. 1.6.1, we find that
M m*+am+b)=0
Thus, u = €™* is a solution of Eq. 1.6.1 if and only if
m>+am+b=0

This is the characteristic equation. It has the two roots

1 1
m1=—c—l+§\/a2—4b, m2=—%—§ a’>—4b

2
It then follows that
uy =M, up, ="
are solutions of Eq. 1.6.1. The Wronskian of these solutions is

emlx emzx ( i )
_ _ _ my+my)x
W(x) - mlemlx mox | T (m2 ml)e

nmope
which is zero if and only if m; = m;. Hence, if m; # m., then a general solution is

u(x) = cre™* + cre™”

(1.6.1)

(1.6.2)

(1.6.3)

(1.6.4)

(1.6.5)

(1.6.6)

(1.6.7)

(1.6.8)
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Let us consider two cases (a*> — 4b) > 0 and (a®> — 4b) < 0. If (a®> — 4b) > 0, the solution
takes the form

ux) = e—ax/Z(CleV a?—4b x/2 + Cze—«/a2—4b x/2) (1.6.9)
Using the appropriate identities,'? this solution can be put in the following two equivalent forms:

u(x) = e[ Asinh (1y/a? — 4bx) + Bcosh (3va? — 4bx)] (1.6.10)
u(x) = cze”"/?sinh (%\/MX +C4) (1.6.11)
If (a® — 4b) < 0, the general solution takes the form, using i = =1,
u(x) = €2 (0 VI 2 | o pin/Ab=ax/2) (1.6.12)
which, with the appropriate identities,!? can be put in the following two equivalent forms:
u(x) = e~ ““/*[Asin (%\/Mx) + Bcos (%\/Mx)] (1.6.13)
u(x) = e3¢/ cos (%MX + c4) (1.6.14)

If a particular form of the solution is not requested, the form of Eq. 1.6.9 is used if (a> — 4b) > 0
and the form of Eq. 1.6.13 is used if (a> — 4b) < 0.

If (a* —4b) =0, m; = m, and a double root occurs. For this case the solution 1.6.8 no
longer is a general solution. What this means is that the assumption that there are two linearly
independent solutions of Eq. 1.6.1 of the form ™ is false, an obvious conclusion since
W (x) = 0. To find a second solution we make the assumption that it is of the form

ur(x) = v(x)e™ (1.6.15)

where m? + am + b = 0. Substitute into Eq. 1.6.1 and we have

2 mx mx mx mx mx dv mx d2U
(m°e™ + ame™ + be" v + 2me™ + ae™)— 4+ " — =0 (1.6.16)
dx dx?
The coefficient of v is zero since m? 4+ am + b = 0. The coefficient of dv/dx is zero since we
are assuming that m?+am + b = 0 has equal roots, that is, m = —a /2. Hence,
d*v
—=0 1.6.17
e ( )

12The appropriate identities are
e* = coshx + sinhx
sinh(x 4+ y) = sinhx cosh y 4 sinh y coshx
cosh? x — sinh®x = 1
13The appropriate identities are
¢! = cost +isinf
cos(a + B) = cosacos B — sinw sin
cos? B +sin’ g =1
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Therefore, v(x) = x suffices; the second solution is then

Ur (x) = xe™* = xe /2 (1.6.18)
A general solution is
u(x) = cre™? 4+ coxe™? = (¢; + crx)e /2 (1.6.19)
Note that, using u; = e %/? and u, = xe~*/2, the Wronskian is
Wkx)y=e**>0 for all x (1.6.20)

The arbitrary constants in the aforementioned solutions are used to find specific solutions to
initial or boundary-value problems.

The technique described earlier can also be used for solving differential equations with
constant coefficients of order greater than 2. The substitution u = ¢ leads to a characteristic
equation which is solved for the various roots. The solution follows as presented previously.

EXAMPLE 1.6.1 [ | | |

Determine a general solution of the differential equation

d? d
_u+5_u

6u=0
dx? dx+ "

Express the solution in terms of exponentials.

» Solution

We assume that the solution has the form u (x) = e™*. Substitute this into the differential equation and find the
characteristic equation to be

m>+5m+6=0

This is factored into

(m+3)(m+2)=0

The roots are obviously

The two independent solutions are then

3x

ui(x) =e ", ur(x) = e ¥

These solutions are superimposed to yield the general solution

u(x) =cre ¥ + cre ™
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EXAMPLE 1.6.2 \ | | |

Find the solution of the initial-value problem

d%u du du
— +6— +9u =0, 0) =2, —(@0)=0
dx? + dx +ou u(0) dx( )

» Solution
Assume a solution of the form u(x) = ¢™*. The characteristic equation
m*+6m+9=0

yields the roots

The roots are identical; therefore, the general solution is (see Eq. 1.6.19)
u(x) =cre ¥ + coxe™
This solution must satisfy the initial conditions. Using u(0) = 2, we have
2=cq

Differentiating the expression for u(x) gives

d
ﬁ = (c1 + c2x)(=3e™) + cre™*

and therefore
du
“2(0) = 3¢ + 02 =0
dx
Hence,
Cy) = 6
The specific solution is then

u(x) =2(1 4+ 3x)e >

EXAMPLE 1.6.3 [ | | |

Find a general solution of the differential equation

d? d
_u_|_2_u

Su=0
dx? dx+ "
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EXAMPLE 1.6.3 (Continued) \ | | |

» Solution

The assumed solution u(x) = ¢™* leads to the characteristic equation
m*+2m+5=0
The roots to this equation are
m; = —1+2i, my =—1—2i
A general solution is then
U(x) = ¢TI 4 (—1-200x

Alternate general solutions, having the virtue that the functions involved are real, can be written as (see
Egs. 1.6.13 and 1.6.14)

u(x) =e *(A cos2x + B sin2x)
or
u(x) = cze " sin(2x + c4)

Note that the second of these forms is equivalent to Eq. 1.6.14 since cos(2x + a) = sin(2x + b) for the
appropriate choices of a and b. Also, note that

e ¥ cos2x e ¥sin2x )
Wkx)=|d d =2 >0
) —(e7"cos2x) — (e Fsin2x)
dx dx

for all real x.

1.6.1 Maple Applications

Second-order initial-value problems can also be solved with Maple. Define a differential equa-
tion ode as usual, and suppose u(xg) = a, u'(xg) = b. Then, use the following code:

>dsolve({ode, u(x_0)=a, D(u) (x_0)=b}, u(x));

For Example 1.6.2, we would use these commands:

>ode:=diff(u(x), x$2) + 6*diff(u(x), x) + 9*u(x)=0;
>dsolve({ode, u(0)=2, D(u) (0)=0}, u(x));

and get this output:

ux) =2e™¥ 4 ek
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L1 1 [

Problems

Find a general solution in terms of exponentials for each 31. u” +2u’'+5u =0

differential equation. 32 w45 +3u=0
1. v —u—6u=0 )
gy =0 Solve each initial-value problem. Express each answer in the
2o SRS form of Eq. 1.6.10, 1.6.13, or 1.6.19.
" _
z' : o ‘g 3. u”+9u =0, w0 =0, w0 =1
o +4“/‘ oo M w5 +6u=0,  u®=2  u(©0)=0
ao 4“/ * 4“ . 5. u' +4u +4u=0, w0 =0, u(0)=2
6. witdu+du= 36, u’ —d4u =0, w0 =2, wWO=1
7. u' —4u' —4u=0
8 u' +4u —du=0 Find the} ar;lswfer to efa]cih irlligial-vallug i)roblem. Express each
9. W' —du—=0 answer in the form of Eq. 1.6.9 or 1.6.13.
" — — !/ —
10. M”—4M’+8M=O 37. u +9u—0, M(O)—O, u(O)_l
" !/ — — / —
M w420 + 100 =0 38. u" +5u" +6u=0, u(0) =2, u'(0) =0
39. u" —4u =0, u(0) =2, u'(0) =1

12. 2u” +6u’ +5u =0

Determine the solution to each initial-value problem. Express

Write a general solution, in the form of Eq. 1.6.9 or 1.6.13, for e s i e B 9, 116106 1G5,

each equation.

" — — ! —

B w—u —6u=0 40. u” +9u =0, u(0) =0, u'0)=1

14 W —9u=0 41. u” +5u' + 6u =0, u(0) =2, u'(0) =0
4. u' —4u=0, u(0) =2, uW' (0) =1

15. u”"4+9u =0

16. 4u” +u=0 43. Consider the differential equation

17.
18.
19.
20.
21.
22,

u' —4u' —4u =0
u +4u —4u =0
u —4u =0

u —4u' +8u =0
u +2u' +10u =0
u +5u +3u=0

Find a general solution, in the form of Eq. 1.6.11 or 1.6.14, for
each equation.

u® + a4+ a, ' Fau=0
The characteristic equation for this differential equation is
m" +am" '+ +a,_m+a,=0

Let my, my, ..
Explain why "%, e™2* ...
ential equation.

Use the result of Problem 43 to solve each differential equation.

., m, be the roots of this algebraic equation.
, e are solutions of the differ-

4. u® —yu=0
45. u® —24@ — D 42y =0

23. u —u —6u=0

24. v —%u=0 46. u® —u® =0
25 u"+%u =0 47. u® —u=0
26. 4u"+u=0 8 _u®—u®=0
27. W' —4u —4u =0 Use Maple to solve
28. u' +4u' —4u=0 49. Problem 29

29. v —4u=0 50. Problem 30

30. u" —4u' +8u=0 51. Problem 31
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52
53.
54.
55.
56.
57.
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Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37

58. Problem 44
59. Problem 45
60. Problem 46
61. Problem 47
62. Problem 48

1.7 SPRING-MASS SYSTEM: FREE MOTION

There are many physical phenomena that are described with linear, second-order homogeneous
differential equations. We wish to discuss one such phenomenon, the free motion of a spring—
mass system, as an illustrative example. We shall restrict ourselves to systems with I degree of
freedom; that is, only one independent variable is needed to describe the motion. Systems
requiring more than one independent variable, such as a system with several masses and springs,
lead to simultaneous ordinary differential equations and will not be considered in this section.
However, see Chapter 5.

Consider the simple spring—mass system shown in Fig. 1.5. We shall make the following
assumptions:

1. The mass M, measured in kilograms, is constrained to move in the vertical directions
only.

2. The viscous damping C, with units of kilograms per second, is proportional to the
velocity dy/dt. For relatively small velocities this is usually acceptable; however, for
large velocities the damping is more nearly proportional to the square of the velocity.

3. The force in the spring is Kd, where d is the distance measured in meters from the
unstretched position. The spring modulus K, with units of newtons per meter (N/m), is
assumed constant.

Unstretched spring Equilibrium Free-body diagram
c®
K dt K(y + h)

« Lt B, ]

Equilibrium

—y=0 - ..
position
M | y(@® Mg

(a) (b) (c)
Figure 1.5 Spring—mass system.
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4. The mass of the spring is negligible compared with the mass M.
5. No external forces act on the system.

Newton’s second law is used to describe the motion of the lumped mass. It states that the sum
of the forces acting on a body in any particular direction equals the mass of the body multiplied
by the acceleration of the body in that direction. This is written as

Z F, = Ma, (1.7.1)

for the y direction. Consider that the mass is suspended from an unstretched spring, as shown in
Fig. 1.5a. The spring will then deflect a distance 4, where 4 is found from the relationship

Mg = hK (1.7.2)

which is a simple statement that for static equilibrium the weight must equal the force in the
spring. The weight is the mass times the local acceleration of gravity. At this stretched position we
attach a viscous damper, a dashpot, and allow the mass to undergo motion about the equilibrium
position. A free-body diagram of the mass is shown in Fig. 1.5¢. Applying Newton’s second law,
we have, with the positive direction downward,

d’y

dy
Mg—-C——-K h)y=M— 1.7.3
g o y+h 72 (1.7.3)
Using Eq. 1.7.2, this simplifies to
Mdzy—i-Cdy—i-K =0 (1.7.4)
dr? dt y= o

This is a second-order, linear, homogeneous, ordinary differential equation. Let us first consider
the situation where the viscous damping coefficient C is sufficiently small that the viscous
damping term may be neglected.

1.7.1 Undamped Motion

For the case where C is small, it may be acceptable, especially for small time spans, to neglect
the damping. If this is done, the differential equation that describes the motion is

d’y
M— +Ky=0 1.7.5
g y (1.7.5)
We assume a solution of the form e, which leads to the characteristic equation

K
2.2 1.7.6
m +M ( )
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The two roots are

JK' K, (1.7.7)
mi = —1, m-yr = —,/ —1 o
! M : M

The solution is then
y(t) = creVEMit o eV KMt (1.7.8)

or equivalently (see Eq. 1.6.13),

H=A Kt+B i Kt (1.7.9)
= COS — sin — .
Y VM VM

where ¢ + ¢ = A andi (¢; — ¢) = B. The mass will undergo its first complete cycle as t goes
from zero to 2 //K /M. Thus, one cycle is completed in 27t //K /M second, the period. The
number of cycles per second, the frequency, is then \/K /M /21 . The angular frequency wy is
given by

K (1.7.10)
wy =4/ — .
T VM
The solution is then written in the preferred form,
y(t) = A coswyt + B sin wyt (1.7.11)

This is the motion of the undamped mass. It is often referred to as a harmonic oscillator. It is
important to note that the sum of the sine and cosine terms in Eq. 1.7.11 can be written as (see
Eq. 1.6.14)

y(t) = A cos(wot — §) (1.7.12)

where the amplitude A is related to A and B by A = «/A2 + B2 and tan § = A/B. In this form
A and § are the arbitrary constants.

Two initial conditions, the initial displacement and velocity, are necessary to determine the
two arbitrary constants. For a zero initial velocity the motion is sketched in Fig. 1.6.

Zero 1n1t1al

N\ \/ N\ \/

Figure 1.6 Harmonic oscillation.




Problems

Derive the differential equation that describes the motion
of a mass M swinging from the end of a string of length
L. Assume small angles. Find the general solution of the
differential equation.

Determine the motion of a mass moving toward the ori-
gin with a force of attraction proportional to the distance
from the origin. Assume that the 10-kg mass starts at rest
at a distance of 10 m and that the constant of proportion-
ality is 10 N/m. What will the speed of the mass be 5 m
from the origin?

A spring—mass system has zero damping. Find the gen-
eral solution and determine the frequency of oscillation if
M =4kgand K = 100 N/m.

Calculate the time necessary for a 0.03-kg mass hanging
from a spring with spring constant 0.5 N/m to undergo
one complete oscillation.

1.7.2 Damped Motion

1.7 SPRING—MASS SYSTEM: FREE MOTION 47

L1 1 [

5. A4-kgmassis hanging from a spring with K = 100 N/m.

Sketch, on the same plot, the two specific solutions found
from (a) y(0) = 0.50 m, y(0) =0, and (b) y(0) =0,
¥(0) = 10 m/s. The coordinate y is measured from the
equilibrium position.

Solve the initial-value problem resulting from the un-
damped motion of a 2-kg mass suspended by a 50-N/m
spring if y(0) = 2 m and y(0) = —10 m/s.

Sketch, on the same plot, the motion of a 2-kg mass and
that of a 10-kg mass suspended by a 50-N/m spring
if motion starts from the equilibrium position with
¥y(0) = 10 m/s.

Let us now include the viscous damping term in the equation. This is necessary for long time
spans, since viscous damping is always present, however small, or for short time periods, in
which the damping coefficient C is not small. The describing equation is

d’y dy
M—+C—+Ky=0 1.7.13
dt? + dt ARy ( )
Assuming a solution of the form e, the characteristic equation,
Mm*+Cm+K =0 (1.7.14)

results. The roots of this equation are

c 1 C 1
mi= =gt o VO AMK, o my = o = /€2 = AMK (17.15)

oM 2M Y]

Let Q = +/C? — 4K M /2M . The solution for m| # m; is then written as

—(C/2M)t+Qt 4 Cze—(C/ZM)t—Qt

Y1) =cie (1.7.16)

or, equivalently,

—(C/2M)t [Cl te

yt)=e + c2e” ] (1.7.17)
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y @ Positive initial velocity Figure 1.7 Overdamped motion.

@ @ Zero initial velocity

@ Negative initial velocity

(a) Positive initial displacement

O]
©)

®

(b) Zero initial displacement

The solution obviously takes on three different forms depending on the magnitude of the damp-
ing. The three cases are:

Case 1: Overdamping C? —4KM > 0. m; and m; are real.
Case 2: Critical damping C? —4KM =0. mp = mj.
Case 3: Underdamping C? —4KM < 0. m; and m, are complex.

Let us investigate each case separately.

Case 1. Overdamping. For this case the damping is so large that C> > 4KM. The roots m
and m are real and the solution is best presented as in Eq. 1.7.17. Several overdamped motions
are shown in Fig. 1.7. For large time the solution approaches y = 0.

Case 2. Critical damping. For this case the damping is just equal to 4KM. There is a double
root of the characteristic equation, so the solution is (see Eq. 1.6.19)

y(t) = cre™ + cote™ (1.7.18)
For the spring—mass system this becomes
y(6) = e M0 [e) 4 ent] (1.7.19)

A sketch of the solution is quite similar to that of the overdamped case. It is shown in Fig. 1.8.

Case 3. Underdamping. The most interesting of the three cases is that of underdamped
motion. If C? — 4K M is negative, we may write Eq. 1.7.17 as, using Q = v/4KM — C2/2M,

—(C/2M)t [616[9[

y(t) =e + cpe ™ (1.7.20)
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y Figure 1.8 Critically damped
@ @ Positive initial velocity motion.

@ Zero initial velocity

@ Negative initial velocity

(a) Positive initial displacement

y

®
©)
®

(b) Zero initial displacement

This is expressed in the equivalent form (see Eq. 1.6.13)
y(t) = e /21 (¢ cos Q1 4 ¢4 5in Q1] (1.7.21)

The motion is an oscillating motion with a decreasing amplitude with time. The frequency of
oscillation is ~/4KM — C?/4wr M and approaches that of the undamped case as C — 0.
Equation 1.7.21 can be written in a form from which a sketch can more easily be made. It is (see

Eq. 1.6.14)
y(t) = Ae= 21 cos (Q — §) (1.7.22)

ans ==, A=.,/c+c (1.7.23)
C4

The underdamped motion is sketched in Fig. 1.9 for an initial zero velocity. The motion
damps out for large time.

where

The ratio of successive maximum amplitudes is a quantity of particular interest for under-
damped oscillations. We will show in Example 1.7.1 that this ratio is given by

I _ emcram (1.7.24)
Yn+42

It is constant for a particular underdamped motion for all time. The logarithm of this ratio is
called the logarithmic decrement D:

D=1In - (1.7.25)
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So Ae*(C/2M)[

Figure 1.9 Underdamped motion.

Returning to the definition of €2, we find

2nC
VAKM — C?
In terms of the critical damping, C. = 2~/ KM,

or, alternatively,

CC RY D2+47T2

(1.7.26)

(1.7.27)

(1.7.28)

Since y, and y, .+, are easily measured, the logarithmic decrement D can be evaluated quite sim-
ply. This allows a quick method for determining the fraction of the critical damping that exists

in a particular system.

EXAMPLE 1.7.1

y(t) = Ae= 21 cos (Qt — §)

dt — | 2M

The displacement function for an underdamped spring—mass system can be written as

d c
o [— cos(x — 8) + Qsin(Qr — 5)] Ae~ (€121 _

Determine the ratio of successive maximum amplitudes for the free motion of an underdamped oscillation.

To find the maximum amplitude we set dy/dt = 0 and solve for the particular ¢ that yields this condition.
Differentiating, we have
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EXAMPLE 1.7.1 (Continued)

This gives

tan(2r — §) = —

or, more generally,

C
tan~! (—m> +nm =Qt —§

The time at which a maximum occurs in the amplitude is given by

8 1

= — — —ta

Q Q

where n = 0 represents the first maximum, n = 2 the second maximum, and so on. For n = 1, a minimum re-

sults. We are interested in the ratio y, /y,+». If we let
8 1

B=—-—
Q

this ratio becomes

Yn

2MQ + Q
-1

— t
Qa

Ae—(C2MB+07/ )] oo [Q<B n ﬂ) 3 8]
Q

C
2M Q2

C nmw

2MQ

Yn+2 Ae—(C/ZM)[B+(n+2/Q)JT] Ccos |:Q <B + n+ 2;1) — 8j|
Q

_ rc/am cos[BQ —l—V’l 3]

7C/QM

cos[BQ T — 8 + 2] -

Hence, we see that the ratio of successive maximum amplitudes is dependent only on M, K, and C and is
independent of time. It is constant for a particular spring—mass system.

Problems

1.

A damped spring—mass system involves a mass of 4 kg,
a spring with K =64 N/m, and a dashpot with
C = 32 kg/s. The mass is displaced 1 m from its equilib-
rium position and released from rest. Sketch y(#) for the
first 2 s.

A damped spring—mass system is given an initial velocity
of 50 m/s from the equilibrium position. Find y(z) if
M =4kg, K = 64 N/m, and C = 40 kg/s.

Abody weighs 50 N and hangs from a spring with spring
constant of 50 N/m. A dashpot is attached to the body.
If the body is raised 2 m from its equilibrium position
and released from rest, determine the solution if (a) C =
17.7 kg/s and (b) C = 40 kg/s.

After a period of time a dashpot deteriorates, so the
damping coefficient decreases. For Problem 1 sketch
y(¢) if the damping coefficient is reduced to 20 kg/s.
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10.

11.
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Solve the overdamped motion of a spring—mass system
with M =2 kg, C = 32 kg/s, K = 100 N/m if y(0) =0
and y(0) = 10 m/s. Express your answer in the form of
Eq. 1.7.17.

Show that the general solution of the overdamped motion
of a spring—mass system can be written as

VC?2—4KM t

pp Y& T HRME
Sin M +

y(t) = cre” /2
A maximum occurs for the overdamped motion of curve 1
of Fig. 1.7. For Problem 5 determine the time at which
this maximum occurs.

For the overdamped motion of curve 1 of Fig. 1.7, show
that the maximum occurs when

oM VT AKM
an e

= ———
C2—4KM c

Find ym,x for the motion of Problem 5.

Using the results of Problems 6 and 8, find an expression
for ymax of curve 1 of Fig. 1.7 if vy is the initial velocity.
Determine the time between consecutive maximum am-

plitudes for a spring—mass system in which M = 30 kg,
K = 2000 N/m, and C = 300 kg/s.

1.7.3 The Electrical Circuit Analog

12.

13.

14.

15.

Find the damping as a percentage of critical damping for
the motion y(¢) = 2¢"sint. Also find the time for the
first maximum and sketch the curve.

Find the displacement y(¢) for a mass of 5 kg hanging
from a spring with K = 100 N/m if there is a dashpot at-
tached having C = 30 kg/s. The initial conditions are
y(0) = Im and dy/dt(0) = 0. Express the solution in all
three forms. Refer to Eqs. (1.7.20), (1.7.21), (1.7.22).

Computer Laboratory Activity (part I): Consider a
damped spring system, where a 3-kg mass is attached to
a spring with modulus 170/3 N/m. There is a dashpot at-
tached that offers resistance equal to twice the instanta-
neous velocity of the mass. Determine the equation of
motion if the weight is released from a point 10 cm above
the equilibrium position with a downward velocity of
0.24 m/s. Create a graph of the equation of motion.

Computer Laboratory Activity (part II): 1t is possible
to rewrite the equation of motion in the form
ae’ sin(ct + d). Determine constants a, b, ¢, and d. In
theory, it will take infinite time for the oscillations of the
spring to die out. If our instruments are not capable of
measuring a change of motion of less than 2 mm, deter-
mine how long it will take for the spring to appear to be
at rest, based on the measurements by our instruments.

We now consider the solution to Eq. 1.4.4 for the case dv/dt = 0. By comparing Eq. 1.4.4 with
Eq. 1.7.4, we see that we can interchange the spring-mass system parameters with the circuit

parameters as follows:

Spring-Mass

Series Circuit

M
C
K

— L
— R
— 1/C

The solutions that we have just considered for y(#) may then be taken as solutions for i (z).
Thus, for the undamped circuit, we have R = 0, and there is no dissipation of electrical
energy. The current in this case is given by (see Eq. 1.7.11)

where

i(t) = Acoswyt + B sin wyt (1.7.29)
=,/ ! (1.7.30)
wy = LC ..

This value is typically very large for electrical circuits, since both L and C are usually quite

small.
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For the damped circuit the solution for i () may be deduced from Eq. 1.7.17 to be
i(t) = ef(R/ZL)t[Cle4/R274L/C(t/2L) + C2674/R274L/C(t/2L)] (1.7.31)

Now the damping criteria become

4L
Case 1: Overdamped

RP——=>0
C
. , 4L

Case 2: Critically damped R — T = 0
, 4L

Case 3: Underdamped R — Yol <0

EXAMPLE 1.7.2

Use Kirchhoff’s second law to establish the differential equation for the parallel electrical circuit shown. Give the
appropriate analogies with the spring—mass system and write the solution to the resulting differential equation.

1 L

/1

i(r)
O O
Current source

» Solution

Kirchhoff’s second law states that the current flowing to a point in a circuit must equal the current flowing
away from the point. This demands that

it)=i1+ir+1i3
Use the observed relationships of current to impressed voltage for the components of our circuit,

. . v
current flowing through a resistor = —

) . dv
current flowing through a capacitor = C —

1
current flowing through an inductor = — / v dt

The equation above becomes

'(t)—U+CdU+1/ dt
WERT ) ?
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EXAMPLE 1.7.2 (Continued) l | | |

If we assume the current source to be a constant and differentiate our expression for i (¢), we find the differ-

ential equation to be
d>v  ldv v
C—+—-——+—-—=0
dr? * R dt * L

The analogy with the spring—mass system is

The solution to the homogeneous equation above is

v(t) = ¢~ /2CR [Cl eV I/RH=GC/L)2C) 026—\/<1/R2>—<4C/L>(t/20>]

Problems

An electrical circuit is composed of an inductor with
L = 1073 H, a capacitor with C =2 x 107 F, and a re-
sistor. Determine the critical resistance that will just lead
to an oscillatory current if the elements are connected
(a) in series and (b) in parallel.

The amplitudes of two successive maximum currents in a
series circuit containing an inductor with L = 10~*H
and a capacitor with C = 10~° F are measured to be 0.02
A and 0.01 A. Determine the resistance and write the
solution for i (¢) in the form of Eq. (1.7.22).

Determine the current i () in a series circuit containing a
resistor with R = 20 L, a capacitor with C = 107%/2 F,

and an inductor with L = 1073 H. The initial conditions
are i (0) = 10 A and (di/dt)(0) = 0.

An input torque on a circular shaft is 7'(¢). It is resisted
by a clamping torque proportional to the rate of angle
change d6/dt and an elastic torque proportional to the
angle itself, the constants of proportionality being ¢ and
k, respectively. We have observed that the moment of
inertia / times the angular acceleration d%6/dt” equals
the net torque. Write the appropriate differential equation
and note the analogy with the spring-mass system.

1.8 NONHOMOGENEOUS, SECOND-ORDER, LINEAR EQUATIONS

WITH CONSTANT COEFFICIENTS

A general solution of the second-order equation of the form

d*u

dx?

d
+a—u + bu = g(x)

o (1.8.1)
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is found by adding any particular solution u,(x) to a general solution u,, (x) of the homogeneous
equation

duy Ao (1.8.2)
—_— a— u = 0.
dx dx

The solution of the homogeneous equation was presented in Section 1.6; therefore, we must only
find u, (x). One approach that may be taken is called the method of undetermined coefficients.

Three common types of functions, which are terms often found in g(x), are listed below. Let us
present the form of u, (x) for each.

1. g(x) is a polynomial of degree n and k = 0 is not a root of the characteristic equation.
Choose

Up(X) = Ao+ Arx + -+ Ayx” (1.8.3)

where Ay, Ay, ..., A, are undetermined coefficients. If k = 0 is a single root of the
characteristic equation, choose

up(x) =x(Ag+ Aix + -+ Ax") (1.8.4)
If kK = 0 is a double root, choose
up(x) = x*(Ag + Ajx + - - + A,x") (1.8.5)

2. g(x) is an exponential function CeX*, and k is not a root of the characteristic equation.
Choose

u,(x) = Aet (1.8.6)
If k is a single root of the characteristic equation,
up(x) = Axe (1.8.7)
and if k is a double root,
up(x) = Ax?ek* (1.8.8)

3. g(x) is a sine or cosine function (e.g., C cos kx), and ik is not a root of the
characteristic equation. Choose

up(x) = Acoskx + Bsinkx (1.8.9)
If ik is a single root of the characteristic equation,
up(x) = Ax coskx + Bx sinkx (1.8.10)

(Note: ik cannot be a double root, since a and b are real. The real equation
m?* 4+ am + b has ik and —ik as roots)
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Should g(x) include a combination of the above functions, the particular solution would be
found by superimposing the appropriate particular solutions listed above. For functions g(x)
that are not listed above, the particular solution must be found using some other technique.
Variation of parameters, presented in Section 1.11, will always yield a particular solution.

EXAMPLE 1.8.1 \ | | |

Find a general solution of the differential equation

d*u n )
—tu=x
dx?

» Solution

The solution of the homogeneous equation
d’u
ae Te=0

is found to be (use the method of Section 1.6)
up(x) = cycosx + ¢psinx
A particular solution is assumed to have the form
uy(x) = Ax* + Bx + C
This is substituted into the original differential equation to give
24+ Ax*+ Bx +C = x*
Equating coefficients of the various powers of x, we have
X’ 24+C=0
xl B=0
X A=1
These equations are solved simultaneously to give the particular solution
u,(x) = x2=2
Finally, a general solution is

u(x) = up(x) +up(x)

= (1 COSX + ¢pSinx +x2=-2
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EXAMPLE 1.8.2 \ | | |

Find the general solution of the differential equation

d2
ﬁ + 4y = 2sin2x

» Solution
The solution of the homogeneous equation is
up(x) = cycos2x + c; sin 2x
One root of the characteristic equation is 2i; hence, we assume a solution
up(x) = Ax cos2x + Bx sin2x
Substitute this into the original differential equation:

—2Asin2x +2Bcos2x —2Asin2x + 2B cos2x — 4A cos2x
— 4Bxsin2x +4Ax cos2x +4Bx sin2x = 2sin2x

Equating coefficients yields

sin2x: —2A—-2A=2
cos2x: 2B+2B =0
xsin2x: —4B+4B =0
xcos2x: —4A+4A=0

These equations require that A = —% and B = 0. Thus,
1
up(x) = —5% cos 2x

A general solution is then
u(x) =up(x) +up(x)

1
=1 Cco82x + ¢y sin2x — Ex cos2x

EXAMPLE 1.8.3 [ | | |

Find a particular solution of the differential equation

d’u  du ; 2
W+a+2u=4e +2x
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EXAMPLE 1.8.3 (Continued) l | | |

» Solution

Assume the particular solution to have the form
uy(x) = Ae* + Bx*+ Cx + D
Substitute this into the given differential equation and there results
Ae* +2B + Ae* +2Bx + C +2Ae" +2Bx* +2Cx + 2D = 4e* + 2x?

Equating the various coefficients yields

ev: A+A+2A=4
x%: 2B+C+2D =0
xl: 2B+4+2C =0
x2: 2B =2
From the equations above we find A =1,B=1,C = —1,and D = —%.Thus,
1

X 2 .=
up,(x) =e" +x X 7

We conclude this section with one more illustration. The equation

du 1 (1.8.11)
— —u=— 8.
dx?
has general solutions
u(x) =Ae* +Be ™" +1 (1.8.12)
and
ii(x) = c1¢" + cre~* + 2 cosh? % (1.8.13)

I3

which explains why we refer to “a” general solution rather than “the” general solution. We leave
it to the student (see Problem 21) to show that the family of solutions described by i and i are
identical, despite the radical difference in appearance between i and ii.

Problems

Find a particular solution for each differential equation. d’u

- — X
=y 3. dx2+u e
1. ﬁ+2u=2x dzu .
2 4. m—u:e
d d
2. —u+—u+2u=2x

dx? = dx



5. P4 jou=ss

. — = 5sin

2 u sin x
d2

6. ﬁ+9u:cos3x
d*u du

7. — 44— +du=e¢%"
dx2+ dx+ u=-ce
d2

8. u+9u—x + sin 3x
dx?

Find a general solution for each differential equation

d2u 2x
9. m +u=e
d*u du
10. ﬁ+4d—+4u_x +x+4
d2
11. d—'; +9u = x? + sin2x
X
d2
12. d—‘; + 4u = sin2x
X
d2
13. d—I; —16u = *
x
d*u du
14. dixz =+ SE =+ 6u = 3sin2x

Find the solution for each initial-value problem.

d2u du du
C o HA— tdu =27 =0, —0) =

B G s T st 2R
d2 d

16. dTZ +4u =2 sin x, u(0) = 1, (Tz 0=
d’u du du

17. = +4— —Su=x>+5,u(0)=0, —(©0) =0
T3 HA —Su=x"45 O
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d’u du

18. +4u = 2sin2x, u(0) = —(O) =0
dx? dx
@’ d

19. dL;+7d—u+10u_cos2x u(0) = —Z(O):O
d*u ax du

20. 2 16u = 2™, u(0) =0, g(O) =0

21.  Show that the solutions # and # of Eqs. 1.8.12 and 1.8.13
are identical.

22. Suppose that & is a root (real or complex) of the charac-
teristic equation of u” + au’ + bu = 0. Explain why
Ae** cannot be a solution of u” + au’ + bu = g(x), for
any g(x) # 0 regardless of the choice of A.

23. If k=0 is a root of the characteristic equation of
u” + au’ + bu = 0, show that b = 0.

24. Use the result of Problem 23 to show that no choice of

undetermined constants, Ag, Ay, ...,
solution of the form Ag+ Ajx +---
equation

u +au +bu=coy+cix+---+cpx"

if k=0 is a root of the characteristic equation of
u”" + au' + bu = 0.

A, will yield a
+ A,x" for the

Use Maple to solve

25.
26.
27.
28.
29.
30.

Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20

1.9 SPRING-MASS SYSTEM: FORCED MOTION

The spring—mass system shown in Fig. 1.5 is acted upon by a force F(¢), a forcing function, as
shown in Fig. 1.10. The equation describing this motion is again found by applying Newton’s

second law to the mass M. We have

F)+ Mg — K(y +h)— 2 _ mY (1.9.1)
& Y dt  dr? o
where £ is as defined in Fig. 1.5, so that Mg = Kh. The equation above becomes
dy
+C—+Ky—F(t) (1.9.2)

dt2

dt
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Figure 1.10 Spring—mass system with a
forcing function.
C% K(y + h)
el £ L]
Mg
F(r)
_ﬂ'f_l

y=0
Lo

F(1)

It is a nonhomogeneous equation and can be solved by the techniques introduced in Section 1.8.
We shall discuss the form of the solution for a sinusoidal forcing function,

F(t) = Fycoswt (1.9.3)
The particular solution has the form
Vp(t) = Acoswt + Bsinwt (1.9.4)

Substitute into Eq. 1.9.2 to obtain
[(K — Mw*)A + wCBlcoswt + [(K — Mw?)B — wCA]sinwt = Fycoswt  (1.9.5)

Equating coefficients of cos wt and sin wt results in

(K — Mo®)A+ wCB = F,

(1.9.6)
—wCA+ (K —Mo*>B =0
A simultaneous solution yields
A F K — Mo’
" YK = Mw?)? + 02C?
c (1.9.7)
B=F e
(K — Mw?)? + 0?C?
The particular solution is then
(t) (K — M) Fy t+ in owr (1.9.8)
= cos ———sin 9.
Ir K —M? +02C? | Tk M2 O
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This is added to the homogeneous solution presented in Section 1.7 to form the general solution

y(t) = e~ (€121 [clem(t/ZM) i cze‘\/m(f/m’)]

(K — M) F,
(K — Mw?)? 4+ 02C?

oC
K — Mo?

|:cos wt + sin a)t] (1.9.9)

Let us now discuss this solution in some detail.

1.9.1 Resonance

An interesting and very important phenomenon is observed in the solution above if we let
the damping coefficient C, which is often very small, be zero. The general solution is then (see
Eq. 1.7.11 and let C = 0 in Eq. 1.9.8)

F
y(t) = c1 coswpt + ¢o sinwpt + 270 cos wt (1.9.10)
M(a)0 — a)z)

where wy = /K /M and wy/27m is the natural frequency of the free oscillation. Consider the
condition w — wy; that is, the input frequency approaches the natural frequency. We observe
from Eq. 1.9.10 that the amplitude of the particular solution becomes unbounded as w — wy.
This condition is referred to as resonance.'* The amplitude, of course, does not become un-
bounded in a physical situation; the damping term may limit the amplitude, the physical situa-
tion may change for large amplitude, or failure may occur. The latter must be guarded against in
the design of oscillating systems. Soldiers break step on bridges so that resonance will not occur.
The spectacular failure of the Tacoma Narrows bridge provided a very impressive example of
resonant failure. One must be extremely careful to make the natural frequency of oscillating sys-
tems different, if at all possible, from the frequency of any probable forcing function.

If w = wy, Eq. 1.9.10 is, of course, not a solution to the differential equation with no
damping. For that case i wy is a root of the characteristic equation

m* +w} =0 (1.9.11)
of the undamped spring—mass system. The particular solution takes the form
Vp(t) = t(Acoswot + B sinwot) (1.9.12)

By substituting into the differential equation

2

d y 2 F()
ﬁ + wyy = M COS wyt (1913)

we find the particular solution to be

Fy
ZMC()()

V() = t sin wot (1.9.14)

14In some engineering texts, resonance may be defined as the condition that exists for small damping when
w ~ wg.
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Vp Figure 1.11 The particular solution
Fyt - for resonance.

As time ¢ becomes large, the amplitude becomes large and will be limited by either damping, a
changed physical condition, or failure. The particular solution y,(¢) for resonance is shown in
Fig. 1.11.

1.9.2 Near Resonance

Another phenomenon occurs when the forcing frequency is approximately equal to the natural
frequency; that is, the quantity wy — w is small. Let us consider a particular situation for which
dy/dt(0) = 0 and y(0) = 0. The arbitrary constants in Eq. 1.9.10 are then

0 fo (1.9.15)
=0, ()= ——rs5—— 9.
’ T M(0 — o)
The solution then becomes
) Fo [cos wt ] (1.9.16)
=————[coswt — cos w, 9.
YT M — o) 0
With the use of a trigonometric identity, this can be put in the form'?
() 210 in | (wn+ @) - [ sin | ¢ ) (1.9.17)
=—— —sin| (wy 4+ )= | sin| (wy — w) = 9.
YT M(wd — o) 0T 03

The quantity wy — w is small; thus, the period of the sine wave sin[(wy — w)(¢/2)] is large
compared to the period of sin [(wy + @) (t/2)].
For wy = w, we can write

%;w;@ s B (19.18)

5This is accomplished by writing

; w + wy - w — wy ;
COS wt = COoS
2 2
; w + wo ; w — Wy ;
cos = -
wop cos ) 2

and then using the trigonometric identity

and

cos(a + ) = cosa cos B — sinw sin
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y(0)

Figure 1.12 Near resonance—‘beats.”

where € is small. Then the near-resonance equation 1.9.17 is expressed as

()= | 2Hosimer | o (1.9.19)
fd w .
Y M(a)g — wz)

where the quantity in brackets is the slowly varying amplitude. A plot of y(¢) is sketched in
Fig. 1.12. The larger wavelength wave appears as a “beat” and can often be heard when two
sound waves are of approximately the same frequency. It’s this beat that musicians hear when an
instrument is out of tune with a piano.

Problems [ 1 [ 1 [ ]

1. Find the solution for M(d?y/dt?) + C(dy/dt) + 6. A 2-kg mass is suspended by a spring with K = 32 N/m.

Mg = 0. Show that this represents the motion of a body A force of 0.1 sin 4¢ is applied to the mass. Calculate the
rising with drag proportional to velocity. time required for failure to occur if the spring breaks
2. For Problem 1 assume that the initial velocity is 100 m/s when the amplitude of the oscillation exceeds 0.5 m. The
upward, C = 0.4 kg/s, and M = 2 kg. How high will the motion starts from rest and damping is neglected.
body rise? Solve each initial-value problem.
3. For the body of Problem 2 calculate the time required for 7. § 4 9y = 8 cos 2¢, y(0) =0, y(0) =0
the body to rise to the maximum height and compare this to 8. 49y =8cos3t ¥(0) =0, $(0) =0

the time it takes for the body to fall back to the original po-

sition. Note: The equation for a body falling will change. 9. y+16y =—2sindt, yoO=2 30=0

4. A body weighing 100 N is dropped from rest. The drag 10. 'y + 16y =2sin¢ y@ =0, y0)=10
is assumed to be proportional to the first power of the 11. y +25y =1 —2 yO) =1, y0) =4
velocity with the constant of proportionality being 0.5. 12, § 4 y =2¢~* y(0) =0, y(0) =2

Approximate the time necessary for the body to attain
terminal velocity. Define terminal velocity to be equal to  For each simple series circuit (see Fig. 1.1), find the current
0.99V,, where V, is the velocity attained as t — oo. i(t) if i(0) = q(0) = 0.

(For a blunt body the drag would depend on the velocity 3 ~ _ 2 F,L =05H, R=0,andv = 10sin 10¢
squared.)

5. Find a general solution to the equation M (d?y/dt*) +
Ky = Fycoswt and verify Eq. 1.9.10 by letting

a)0=\/K/M.

14. C=10"*F,L =1.0H,R =0, and v = 120sin 1007
15. C=103F, L =0.1H, R =0, and v = 240cos 10t
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16.

17.
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A 20-N weight is suspended by a frictionless spring with
k =98 N/m. A force of 2cos7t acts on the weight.

Use Maple to solve

. 18. Problem 7

Calculate the frequency of the “beat” and find the maxi- 19. Problem 8
mum amplitude of the motion, which starts from rest. - froblem

. T .. 3 . 20. Problem 9
A simple series circuit, containing a 10~ F capacitor and
a 0.1 H inductor, has an imposed voltage of 120 cos 101z. 21. Problem 10
Determine the frequency of the “beat” and find the max-  22. Problem 11
imum current. 23. Problem 12

1.9.3 Forced Oscillations with Damping

The homogeneous solution (see Eq. 1.7.17)
y(t) = e~ (/201 [cle«/C2—4Mk(t/2M) + cze—«/C2—4MK(t/2M)] (1.9.20)

for damped oscillations includes a factor e~ (¢/?")" which is approximately zero after a suffi-
ciently long time. Thus, the general solution y(#) tends to the particular solution y,(¢) after a
long time; hence, y,(t) is called the steady-state solution. For short times the homogeneous
solution must be included and y(¢) = y,(¢) + y,(t) is the transient solution.

With damping included, the amplitude of the particular solution is not unbounded as
w — wy, but it can still become large. The condition of resonance can be approached, for the
case of extremely small damping. Hence, even with a small amount of damping, the condition
w = wy 18 to be avoided, if at all possible.

We are normally interested in the amplitude. To better display the amplitude for the input
Fy cos wt, write Eq. 1.9.8 in the equivalent form

Fy
yp(t) = cos(wt — ) (1.9.21)
\/Mz(a)?) — w2)2 + @?C?

where we have used a)(z) = K /M. The angle « is called the phase angle or phase lag. The
amplitude A of the oscillation is

Fo
A =
\/Mz(w(z) - w2)2 + w?C?

(1.9.22)

We can find the maximum amplitude for any forcing function frequency by setting dA /dw = 0.
Do this and find that the maximum amplitude occurs when
2 c?

0 = 0} — e (1.9.23)

Note that for sufficiently large damping, C? > 2M 20)(2), there is no value of w that represents a

maximum for the amplitude. However, if C 2 2M za)%, then the maximum occurs at the value
of w as given by Eq. 1.9.23. Substituting this into Eq. 1.9.22 gives the maximum amplitude as

2FoM

C/4M>w} — C?

Amax = (1.9.24)
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Figure 1.13 Amplitude as a
function of w for
various degrees
of damping.

Small C

The amplitude given by Eq. 1.9.22 is sketched in Fig. 1.13 as a function of w. Large relative
amplitudes can thus be avoided by a sufficient amount of damping, or by making sure |w — wy|
is relatively large.

EXAMPLE 1.9.1 \ | | |

The ratio of successive maximum amplitudes for a particular spring—mass system for which K = 100 N/m
and M = 4 kg is found to be 0.8 when the system undergoes free motion. If a forcing function F = 10 cos 4¢
is imposed on the system, determine the maximum amplitude of the steady-state motion.

» Solution

Damping causes the amplitude of the free motion to decrease with time. The logarithmic decrement is found
to be (see Eq. 1.7.25)

. 1
o — = 0223

Yn+2 0.8

D =1In

The damping is then calculated from Eq. 1.7.28. It is
D D

C,————— =2VKM ——«—
c«/Dz + 472 V' D? + 472

0.223
=2v/100 X 4 ——7=
£/0.223% 4 472

C =

= 1.42kg/s

The natural frequency of the undamped system is

K /100
wy =4/ — =,/ —— = 5rad/s
M 4
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EXAMPLE 1.9.1 (Continued) \ | | |

The maximum deflection has been expressed by Eq. 1.9.24. It is now calculated to be

2FoM

Amax -
C/4M?w} — C?

2x10x4

= =141m
1.42+/4 x 42 x 52 — 1.422

EXAMPLE 1.9.2

For the network shown, using Kirchhoff’s laws, determine the currents i;(¢) and i»(¢), assuming all currents
to be zero atr = 0.

R, = 40 ohms L= 10"*henry

AT
i li3
o

v = 12 volts C = 107 % farad
o
i
<2
4"A'AY

R, = 20 ohms

» Solution

Using Kirchhoff’s first law on the circuit on the left, we find that (see Eqs. 1.4.3)

. q
40 — =12 1
1+ 10 ey
where ¢ is the charge on the capacitor. For the circuit around the outside of the network, we have
di
40i, + 10—4£ 420, = 12 @)
Kirchhoff’s second law requires that
1 =i+ 13 3)
Using the relationship
dq
i3 =— 4
3= (4)

and the initial conditions, that i; = i, = i3 = 0 at t = 0, we can solve the set of equations above. To do this,
substitute (4) and (1) into (3). This gives

1 d
—(12—-10%) — —+ =i
20" D= g =0
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EXAMPLE 1.9.2 (Continued) l | | |

Substituting this and (1) into (2) results in

d’q dq
4 6, _
d2+225d—|—15x10q 6

The appropriate initial conditions can be found from (1) and (4)tobe ¢ = 12 x 107® anddg/dt = O att = 0.
Solving the equation above, using the methods of this chapter, gives the charge as

10~

g(t) = e 121 ¢ 05 48,2007 + ¢ 5in48,200¢] + 4 x 1076
The initial conditions allow the constants to be evaluated. They are
c=8x10"°%  ¢,=0468 x 107°
The current i1 (¢) is found using (1) to be
i1(1) = 0.2 — ¢ "12X19°7[0.2 cos 48,200 + 0.468 sin 48,2001
The current i5(¢) is found by using (4) and (3). It is
ir(t) = 0.2 4+ e 12101 0.2 cos 48,2007 + 2.02 sin 48,200¢]

Note the high frequency and rapid decay rate, which is typical of electrical circuits.

Problems

1. Using the sinusoidal forcing function as Fpsinwt, and - d’y ) d_y 45 ¢ 2cos3t
with C =0 show that the amplitude Fo/M(w2 —?) " a2 " “dr " >~ Sl — 255
of the particular solution remains unchanged for the o
spring—mass system. 8. prs A i + 2y = cost — sin 2t

2. Show that the particular solution given by Eq. 1.9.14 for

@ = wy follows from the appropriate equations for Determine the transient solution for each differential equation.
F(t) = Fycoswt.

d’y . dy
Find the steady-state solution for each differential equation. ~ 9- a2 +5 dar +4y =cos2t
d*y  dy 2
= d dy
3. dztz + dr +4y =2sin2s 10. dt;] +7 — + 10y = 2sint — cos 2t
d-y dy
= = d’ d
4. a2 +2d Y= o530 11. y+4—y+4y—4smt
, dr? dt
d7y dy 2
= = d°y d
& d,z+d,+y ARE o O 12 22 4012 42y = cos2s
2 dy dr? dt
6. y+01—+2y—251n2t

dt? dt
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Solve for the specific solution to each initial-value problem.

13.

14.

15.

16.

17.

18.

d? d
_y+5_y

dy
6y = 52cos2t,y(0) =0, —(0) =0
i ar + 6y cos2t, y(0) dt()

d*y _dy dy

S o Ly —2sing, y(0) =0, =2 (0) =0
dt2+ dt+y sint, y(0) dt()

a2 d
A o

dy
== 10y = 26sin2¢,y(0) = 1, —(0) = 0
i o + 10y sin2¢, y(0) dt()

d*y

d
=5+l d—f 42y =202cos?,

=020 =10
y - ’E -

d*y

dy . dy
—= 4+3-—= +2y=10sint, y(0) =0, —(0) = 0
dt2+ dt+ y sinz, y(0) dt()

d?y

dy . dy
— 4+ 0.02—= + 16y = 2sin4zt,y(0) =0, —(0) =0
i a4 i + 16y sin y(0) dt( )

19.

20.

21.

22.

23.

24.

25.

The motion of a 3-kg mass, hanging from a spring with
K = 12 N/m, is damped with a dashpot with C = 5 kg/s.
(a) Show that Eq. 1.9.22 gives the amplitude of the
steady-state solution if F(#) = Fp sin wt. (b) Determine
the phase lag and amplitude of the steady-state solution if
aforce F = 20 sin 2¢ acts on the mass.

For Problem 19 let the forcing function be F(r) =
20sinwt. Calculate the maximum possible amplitude
of the steady-state solution and the associated forcing-
function frequency.

A forcing function F = 10sin2¢ is to be imposed on
a spring-mass system with M = 2 kg and K = 8 N/m.
Determine the damping coefficient necessary to limit the
amplitude of the resulting motion to 2 m.

A constant voltage of 12 V is impressed on a series circuit
containing elements with R =30 2, L = 10~* H, and
C = 107° F. Determine expressions for both the charge
on the capacitor and the current if ¢ =i =0 at r = 0.

A series circuit is composed of elements with
R=60Q,L=10"%H, and C = 107 F. Find an ex-
pression for the steady-state current if a voltage of
120 cos 1207t is applied at r = 0.

A circuit is composed of elements with R = 80 €2,
L =10"*H, and C = 10~° F connected in parallel. The
capacitor has an initial charge of 10~ C. There is no cur-
rent flowing through the capacitor at + = 0. What is the
current flowing through the resistor at # = 10~* s?

The circuit of Problem 24 is suddenly subjected to a cur-
rent source of 2 cos200z. Find the steady-state voltage
across the elements.

26.

The inductor and the capacitor are interchanged in
Example 1.9.2. Determine the resulting current i (t)
flowing through R,. Also, find the steady-state charge on
the capacitor.

Use Maple to solve

27. Problem 3
28. Problem 4
29. Problem 5
30. Problem 6
31. Problem 7
32. Problem 8
33. Problem 9
34. Problem 10
35. Problem 11
36. Problem 12
37. Problem 13
38. Problem 14
39. Problem 15
40. Problem 16
41. Problem 17
42. Problem 18
43. Computer Laboratory Activity. Every forcing function

considered so far has been a polynomial, a sine or cosine,
or an exponential function. However, there are other
forcing functions that are used in practice. One of these is
the square wave. Here is how we can define a square
wave in Maple with period 277 :

>sgqw:= t -> plecewise(sin(t)>0, 1,
sin(t) <0, 0);
>plot (sqw(t), t=0..12*Pi,y=-3..3);

First, use Maple to create and graph a square wave with
period 5. Next, invent a spring—mass system with that is
slightly under-damped, with no forcing, and that the pe-
riod of the sines and cosines in the solution is 277 /3. (Use
Maple to confirm that you’ve done this correctly. If C is
too large, the solution will approach zero so fast that
you won’t see any oscillation.) Finally, modify your
spring—mass system by using the square wave as the forc-
ing function. For this problem, dsolve gives nonsense
for output, but we can use DEplot (with stepsize =
.005) to draw the solution, if we specity initial conditions.
Use these initial conditions, x(0) =2 and x'(0) = —1,
and draw a solution using DEp1ot. How does the period
of the forcing term, S, emerge in the solution?
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1.10 VARIATION OF PARAMETERS

In Section 1.8 we discussed particular solutions arising from forcing functions of very special
types. In this section we present a method applicable to any sectionally continuous input
function.

Consider the equation

d’u du
T T P+ Piu = g(x) (1.10.1)

A general solution u(x) is found by adding a particular solution u,(x) to a general solution of
the homogeneous equation, to obtain

u(x) = cruy(x) + cour(x) + up(x) (1.10.2)
where u1(x) and u,(x) are solutions to the homogeneous equation

d*u du
T2 + PO(x)E + Pi(x)u =0 (1.10.3)

To find a particular solution, assume that the solution has the form
up(x) = vi(x)u(x) + va(x)us(x) (1.10.4)

Differentiate and obtain

— = — — — 1.10.5
ax - Vax TV T TR (1.10.5)
We seek a solution such that
dv1 dvz
— — =0 1.10.6
u1 dx + 2 dx ( )

We are free to impose this one restriction on v;(x) and v,(x) without loss of generality, as the
following analysis shows. We have

dp _ 2,4 (1.10.7)
X

Differentiating this equation again results in

dzup d2M1 d2M2 dl)] du1 dv2 duz (1 10 8)
= v — 10.
dx? Vdx? 2 dx? dx dx dx dx
Substituting into Eq. 1.10.1, we find that
dzul + P dul + P + d2u2 + P duz + p n dvl du1
v —_— v _ — -
"\ dx2 0 dx 1 2\ ax? O dx 1 dx dx
dv2 du2
+ ——=gx) (1.10.9)

dx dx
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The quantities in parentheses are both zero since u#; and u, are solutions of the homogeneous
equation. Hence,

dU] dbl1 dU2 duz

= 1.10.10
dx dx dx dx 8 ( )

This equation and Eq. 1.10.6 are solved simultaneously to find

dv; U8 (x) dv, uig(x)
dx  du duy’ dx  duy du, (1.10.11)
1= —Uy—— Uy—— —uy——
dx dx dx dx
The quantity in the denominator is the Wronskian W of u;(x) and u»(x),
W) = 2,4 (1.10.12)
X)=u— —uUp—— .10.
Vdx > dx
We can now integrate Eqs. 1.10.11 and obtain
v (x) = — %dx, vy (x) = %dx (1.10.13)
A particular solution is then
ug upg
up(x) = —uy / de + u2/ de (1.10.14)

A general solution of the nonhomogeneous equation follows by using this expression for u,(x)
in Eq. 1.10.2. This technique is referred to as the method of variation of parameters.

EXAMPLE 1.10.1 \ | | |

A general solution of d?u/dx* 4+ u = x* was found in Example 1.8.1. Find a particular solution to this equa-

tion using the method of variation of parameters.

» Solution

Two independent solutions of the homogeneous equation are

uy(x) = sinx, Ur(x) = cosx
The Wronskian is then
du2 dl/l]
Wkx)=u— —up—
(x) 1y 27

= —sin’x —cos’x = —1

A particular solution is then found from Eq. 1.10.14 to be

up(x) :sinx/xzcosxdx —(:osx/)c2 sinx dx
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EXAMPLE 1.10.1 (Continued) l | | |

This is integrated by parts twice to give
up(x) = x2=2

The particular solution derived in the preceding example is the same as that found in Example 1.8.1. The
student should not make too much of this coincidence. There are, after all, infinitely many particular solutions;
for instance, two others are

ip(x) =sinx +x2=2
R 5 (1.10.15)
Up(x) =cosx +x"—2

The reason no trigonometric term appeared in u, (x) was due to our implicit choice of zero for the arbitrary
constants of integration in Eq. 1.10.14.

One way to obtain a unique particular solution is to require that the particular solution satisfy the initial
conditions, u, (xo) = u; (x0) = O for some convenient x¢. In this example xo = 0 seems reasonable and con-
venient. Let

u(x) = cysinx + ¢ cos x +x2=2 (1.10.16)
Then, imposing the initial conditions,
ul) =c—-2=0
,( ) =c2 (1.10.17)
uQ)=c =0
Hence,

up(x) =2cosx +x*—2 (1.10.18)

is the required particular solution. Note that this method does not yield the “intuitively obvious” best choice,
2
Uy(x) =x"—2.
P

Problems

Find a general solution for each differential equation. 10. xu” —u' = (1 +x)x

1.

© S N o U1k W N

u” +u = xsinx

u” +5u' + 4u = xe*
u +4u +4u = xe
u” +u =secx

W —2u' +u = x%e

Find a particular solution for each differential equation.

11. y+ y=tsint
12 545y +4y =te
13. j+4y +4y=te

W — 4y 4y = xe* 14. (a) Show that Eq. 1.10.14 may be rewritten as

X2u +xu —u=9 _ T g(s) [ui(s) ua(s)
up(x) =

X2y +xu —u= 252 X0 W(s) ui(x) wus(x)

x2u" — 2xu’ — 4u = x cosx
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(b) Use the result in part (a) to show that the solution
of Eq. 1.10.1 with initial conditions u#(xp) = 0 and

u'(xp) = 01is
u(x) = /x ( )MI(S)Mz(x) —up (x)ua(s)
x0 ui ()uh(s) — uj (s)ua(s)

Hint: If F(x) = [ g(x, s)ds then

F'(x) = g(x, x) +[ ig()c,s) ds
« 0X

15. Use the results in Problem 14 to

1.10.1 satisfying «(0) = 0, u’(0) = 0.

16. Use the results of Problem 14 to write a particular solu-

tion of u” 4+ b*u = g(x) in the form

1.11 THE CAUCHY-EULER EQUATION

obtain
up(x) =2cosx + x?> —2 as the solution of Example

17.

18.

19.

up(x) = % /Ox g(s)sinb(x — s)ds

Use the results of Problem 14 to write a particular solu-
tion of u” — b?u = g(x) in the form

up(x) = é/: g(s)sinhb(x — s)ds

Verify that the functions u,(x) in Problems 16 and 17
satisfy u, (0) = u;,(O) =0.
Use the results of Problem 14 to show that

p(x) = fo T g6)x — )0 ds

is a particular solution of u” + 2au’ + a*u = 0.

In the preceding sections we have discussed differential equations with constant coefficients. In
this section we present the solution to a class of second-order differential equations with variable
coefficients. Such a class of equations is called the Cauchy—Euler equation of order 2. It in

‘We search for solutions of the form

This function is substituted into Eq. 1.11.1 to obtain

or, equivalently,

X dz—u—kaxd—u—i—buzo (1.11.1)
dx? dx
u(x) =x" (1.11.2)
2m(m — Dx" 2 +ax mx" '+ bx™ =0 (1.11.3)
[m@m — 1) +am + blx™ =0 (1.11.4)

By setting the quantity in brackets equal to zero, we can find two roots for m. This characteris-

tic equation, written as

m*+(@—1m+b=0

yields the two distinct roots m; and m, with corresponding independent solutions

up = |x|™

The general solution, for distinct roots, is then

(1.11.5)
and uy = |x|™ (1.11.6)
u(x) =cilx|™ + cofx|™ (1.11.7)

valid in every interval'® not containing x = 0.

16The Wronskian is W (x) = (m| — m2)x' .
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If a double root results from the characteristic equation, that is, m; = m, then u; and u, are
not independent and Eq. 1.11.7 is not a general solution. To find a second independent solution,
assuming that u; = x™ is one solution, we assume, as in Eq. 1.6.15, that

uy; = v(x)u; (1.11.8)
Following the steps outlined in the equations following Eq. 1.6.15, we find that

v(x) = In|x| (1.11.9)
A general solution, for double roots, is then

u(x) = (¢ +crIn|x|) |x|™ (1.11.10)

valid in every interval (a, b) provided that x = 0 is not in (a, b).
We note in passing that m; = m, can occur only if

a—1\2
b:( 7 > (1.11.11)

so thatm = —(a — 1)/2 and Eq. 1.11.8 becomes

u(x) = (c; + ¢ In|x|) |x| @ D/2 (1.11.12)

EXAMPLE 1.11.1 \ | | |

Find a general solution to the differential equation

d*u du

2

— —5x— +8u=0
xdxz xdx+ "

» Solution

The characteristic equation is
2 —
m-—6m+8=0

The two roots are

with corresponding independent solutions

A general solution is then

u(x) = cxt 4 eox
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EXAMPLE 1.11.2 l | | |

Determine the solution to the initial-value problem
d*u du
2
— —3x—+4+4u=0
* dx? * dx +au
u(l) =2,u'(1) =8.
» Solution
The characteristic equation is
m* —4m+4=0
A double root m = 2 occurs; thus, the general solution is (see Eq. 1.11.10)

u(x) = (c; + ¢ In|x))x?

To use the initial conditions, we must have du/dx. We find

du o\ 5
— = | = )x"+ (c1 + 2 In|x])2x
dx X

The initial conditions then give 0

2=(c1+o /Ln/{)IZ
0
— ()2
8 — (T)l + (1 + e D2
These two equations result in
) = 2, C) = 4
Finally, the solution is

u(x) =2(1 4 21n|xPx* = 2(1 + Inx*)x?

Problems

Determine a general solution for each differential equation. 6. x%u” +2xu’ —12u =12, u(1) =0, u'(1)=0
2.1 / _
1o x7u’+7xu +8u =0 7. Show that v(x) = In|x| does, in fact, follow by using
2. x2u” +9xu' +12u =0 Eq. 1.10.8.
3. xu —12u = 24x 8. The Cauchy—Euler equation of nth order is
4. x*u” 4+ 2xu’ — 12u =24

"u® +ax" ™V 4 g, xu +au=0

Solve each initial-value problem.
5 x2u +9%xu' +12u=0 u(l)=2, u'(1)=0
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Find a general solution for the Cauchy—Euler equation of 11. Problem 2
order n = 1; assume that u(x) = x™ is a solution. 12. Problem 3
9. Find the characteristic equation for the Cauchy—Euler 13. Problem 4
equation of order n = 3. 14. Problem 5
Use Maple to solve 15. Problem 6

10. Problem 1

1.12 MISCELLANIA

1.12.1 Change of Dependent Variables

By carefully choosing f (x), the change of dependent variables from u to v via the transforma-
tion u(x) = f(x)v(x) can be extremely useful, as we now illustrate. This change of variables,

ux) = f(x)v(x) (1.12.1)
converts
u” + Py(x)u' + Pi(x)u = g(x) (1.12.2)
into a second-order equation in v(x). There results
u= fv
u'=fv'+ flv (1.12.3)
u//zf//v+2f/v/+fv//

which, when substituted into Eq. 1.12.2 and rearranged, gives
S+ Qf + po )V + (7 + pof + prfHv=gx) (1.12.4)

Equation 1.12.4 takes on different forms and serves a variety of purposes depending on the
choice of f(x). As an illustration, suppose that g(x) = 0 and f(x) is a solution of Eq. 1.12.2.
Then

f"+pof +pif=0 (1.12.5)
and hence, Eq. 1.12.4 reduces to
fv"+Qf 4+ pofHv' =0 (1.12.6)

The latter equation is a linear, first order equation in v’ and its general solution is easy to get. This
is precisely the method used in Section 1.6, Eq. 1.6.15, and in Section 1.11, Eq. 1.11.8, to obtain
a second solution to the equations

u +au +bu=0 (1.12.7)

and 5
xu” +axu' +bu=0 (1.12.8)

when m| = m,. (See Problems 5 and 6.)
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The substitution 1.12.1 is useful in the nth-order case. Given a solution f(x) of the associ-
ated homogeneous equation the change of variables u = f(x)v leads to an (n — 1)st-order

equation in v’.

Problems

Use the fact that f(x) = e solves (x — Du” — xu’ +
1 = 0 to find the general solution of

x—Du" —xu'+u=1
Use u(x) = e¢*v(x) and Eq. 1.12.4.
Find the general solution of
u + 4 44y = e
using the ideas of this section.
The function f(x) = sinx solves
tan® xu” — 2 tanxu’ + (2 + tan’ x)u = 0
Find its general solution.

Find an “elementary” method that yields the general
solution of

' — xp)u' + p(x)u =0

Hint: Change dependent variables and try to find a clever
choice for f(x).

1.12.2 The Normal Form

Suppose that the characteristic equation of u” + au’ +
bu =0 has equal roots, m; =my = —a/2. Use the
method of this section to obtain a second solution.

Suppose that the characteristic equation of x2u” +
axu' +bu =0 has roots m; =my = —a/2. It is as-
sumed that one solution of the form |x|”" exists; find the
second solution using the method of this section.

Suppose that f(x) is a solution of u” + po(x)u’+
pi(x)u =0. Show that a particular solution of
u” + po(x)u’ 4+ p1(x)u = g(x) can always be found in
the form u, (x) = f(x)v(x).

Use the result of Problem 7 to find a general solution of
u” + po(x)u’ 4+ xpy(x)u = g(x), given that f(x) is a
solution of the corresponding homogeneous equation.

In Section 1.12.1 we chose f(x) so that the coefficient of v is zero. We may choose f so that the

coefficient of v’ is zero. Let f(x) be any solution of

2f 4+ pox)f =0 (1.12.9)
That is,
f(x) = e WD pol)dx (1.12.10)
From the hypothesis that the coefficient of the v’ term in Eq. 1.12.4 is zero, we have
FV P () f + po) f + v =0 (1.12.11)
By differentiating Eq. 1.12.9 we have
2f"=—=pof — pof’ (1.12.12)
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Substituting the expressions for f” and f” in Egs. 1.12.9 and 1.12.12 into Eq. 1.12.11, we obtain
v+ [p1(x) = 1pgx) — S pp(0)lv =0 (1.12.13)
This is the normal form of
u” + po(x)u’ + pr1(x)u =0 (1.12.14)
The coefficient of v,

L(x) = pi(x) — 1 pdx) — L p)(x) (1.12.15)

is the invariant of Eq. 1.12.14. This terminology is motivated by the following rather surprising
theorem.

Theorem 1.6: Suppose that
w” + po(x)w’ + pr(x)w =0 (1.12.16)

results from the change of variables, u = h(x)w, applied to Eq. 1.12.14. Then the normal forms
of Egs. 1.12.14 and 1.12.16 are identical.

Proof: The invariant for Eq. 1.12.16 is
Ly (x) = p1(x) = 3P5(x) = 3 Pp(x) (1.12.17)

In view of Eq. 1.12.4, the relationships between p; and py and pg and p) are these:

/

A

T + Po = Po
n W (1.12.18)
o + pos +pi=p
Thus,
- X 2 5 n
po=4\—1| +py +4—po (1.12.19)
h h
and
n n\?
po =2 —2| A 1.12.20
Po A (h ) + Po ( )
Substituting these two expressions into Eq. 1.12.17 results in
I,(x) = p1 — 1P — 1p6 = L/(x) (1.12.21)

which completes the proof.
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EXAMPLE 1.12.1 I

Find the normal form of

u" 4+ au' +bu=0

» Solution

The invariant is

The normal form of the equation is then

EXAMPLE 1.12.2 I

Find the normal form of
x2u” = 2xu' + (@®x*+2u =0
and thus find its general solution.

» Solution

Here, po(x) = —2/x and p;(x) = a® + 2/x2. Thus

I(x)=a2+£—l i _l 3 — 42
" x2 4\ x2 2 \ x2

Therefore, the normal form is
V' +a*v=0
Now, using Eq. 1.12.10, we have
fx) = e~ (1/2) [po(x)dx

— ef(l/x)dx — elnx = x

so that

u(x) = f(x)v(x) = x(c; cosax + ¢, sinax)
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Find the normal form of each differential equation.
1. x(0—x)u”"+[y —(@+ B+ Dxlu' —afu=0
(A =x>u" = 2xu' +n(n+ Hu=0

xu"+ (@ —x)u' —au=0
2w +xu + P —nPHu=0
xu'+ A=y’ +u=0

u”" —2xu’ +2nu =0

7

I U

The preceding equations are “classical”: (1) the hypergeomet-
ric equation, (2) the Legendre equation, (3) the confluent
hypergeometric equation, (4) the Bessel equation, (5) the
Bessel-Clifford equation, and (6) the Hermite equation.

7. Find a general solution of
xu” —2(x — Du' +2(x — Du =0
by showing that its normal form has constant coefficients.

8. Prove that u” + po(x)u’ + p1(x)u =0 can be trans-
formed into an equation with constant coefficients using
u = fv if and only if 7, (x) = const.

9. Suppose that u = fv transforms u” + po(x)u’ + p1(x)
u = 0 into its normal form. Suppose that u = hw trans-
forms u” + po(x)u’ + p1(x)u = 0 into w” + po(x)w'+
p1(x)w = 0. Find r(x) so that w = r(x)v transforms
w” + po(x)w’ + p1(x)w = 0 into its normal form. What
is the relationship, if any, between r(x), h(x), and f(x)?

1.12.3 Change of Independent Variable

It is sometimes useful to change the independent variable; to change from the independent
variable x to the independent variable y, we define

y = h(x) (1.12.22)
Then
d
Y ww (1.12.23)
dx
and, using the chain rule, we have
du dudy du
= W)= 1.12.24
dx dydx (x)dy ( )
Also, by the chain rule and the product rule,
Cu_d (duy_d ([, du
dx* dx \dx x dy
du d (du
— h// - h/ _ -
(X)dy + (x)dx <dy>
du d (du\ dy
— h// _ h/ . - _7
(x)dy * (x)dz (dy) dx
d d?
SN e A et (1.12.25)

dy dy?
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‘We substitute into

d*u du
z;+m@7;+m@m=0 (1.12.26)
to obtain
7 du " / du
h*—— 4+ (h" +h'po)—— + piu=0 (1.12.27)
dy? dy

In Eq. 1.12.27, it is understood that 2", h’, py, and p; must be written as functions of y using
y = h(x) and x = h~'(y). Therefore, the efficacy of this substitution depends, in part, on the
simplicity of the inverse, 27! (). An example will illustrate.

EXAMPLE 1.12.3 \ | | |

Introduce the change of variables y = Inx(x = e”) in the Cauchy—Euler equation.

d*u du
2 _
X el —l—axdx +bu=0

Solve the resulting equation and thereby solve the Cauchy—Euler equation.

» Solution

We have dy/dx = 1/x and d*y/dx* = —1/x*. Therefore, using Egs. 1.12.24 and 1.12.25, there results

from which

5 1 du n 1 d*u n 1 du Yb 0
NN-=—+—=5—)+tax|—— u=
x2dy = x%dy? xdy

d*u

- =0
dy? “ dy =

This constant-coefficient equation has the following solution:

or

or

u(y) = c1e"™”’ + ™’ for real m; # m,

u(y) = (c1 +c2y)e™ formy =my =m

u(y) = e* (cy cos By + c» sin By) for complex m = o & i
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EXAMPLE 1.12.3 (Continued) \ |

In terms of x we get, using " = ™ Inlx| — [x|™,

u(x) = cilx|™ + ca|x|™

or
u(x) = (c1 + ez InfxPlx|™
or
u(x) = |x|*[cr cos(BIn |x]) + ¢z cos(B1n|x|)]
respectively.

EXAMPLE 1.12.4 \ |

Introduce the change of variables x = cos ¢ in

2d2u du

» Solution

The new variable ¢ can be written as

¢ =cos ' x

It then follows that
1—x*=1—cos’¢ =sin’¢

dp 1
dx  sing

ﬁ__i 1 \do cos¢ (1 \  cos¢
dx> "~ d¢ (sin¢) dx  sin’¢ ( sin¢) C sin’ ¢

Also,

The coefficients are

—2x cos ¢ A+ A+ 1)

pox) =15 =2 . )=

—X sin’ ¢
Therefore, in terms of ¢ (see Eq. 1.12.27),

1 d%u (cos¢ 2cos¢)du A+ 1)
— u

&= bt -0
sin® ¢ d¢? sin¢  sin’¢

do sin’ ¢

2 gin? ¢

81
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EXAMPLE 1.12.4 (Continued)

Simplifying yields

d’u

d¢2 +cot¢ 49 +)»(k+ Du =
This can be put in the alternative form

1 d

sin ¢ %

Either is acceptable, although the latter form is more useful.

<51n¢d¢) + 1A+ Du=0

Problems

1. Show thaty = h(x) =
d*u
dx2

into an equation with constant coefficients if
P1(x) +2po(x) p1 (x)
@)

S/ p1(x) dx changes

+ Po(x)— + p1(Xu =

is constant.

Use the result of Problem 1 to find a general solution to each
equation.

2. u” +tanxu’ + cos?xu =0

Table 1.1 Differential Equations

Differential Equation

xu” —3u' 4+ 16x"u =0

xtu” +x2Q2x =3’ +2u =0
2xu” + (5x2 = 2u' +2x%u =0
xu” 4+ (8x% — D’ +20x3u =0

S 1 kW

7. Consider the change of independent variable

y = [x*2dx, k # —2, for the equation
1
u” + u +xfu=0
Show that the equatlon inyis

2" + yu' +yu=0

Method of Solution

Separable equation:

fix) g1 w)dx + fa(x)g2(u) du =0

=C

fi(x) /gz(u)
d d
Ao T g

Exact equation:
M(x,u)dx + N(x,u)du =0,
where M /0u = N /dx.

0
/M3x+/(N——/M8x>du=C,
du

where dx indicates that the integration is to be performed
with respect to x keeping u constant.

Linear first-order equation:

d
d—” + p)u = g(x)
X

ue!Pax =/gefpdxdx+C
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Differential Equation
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Method of Solution

Bernoulli’s equation:

d
=5 p)u = gx)u"
dx

vel=mIPdx — (1 — ) /ge(l’")fpdxdx +C
where v = u!~". If n = 1, the solution is

lnu:/(g—p)dx—i—c.

Homogeneous equation:

du (u)
T _Fl 2
dx X

where v = u/x. If F(v) = v, the solution is u = Cx.

Reducible to homogeneous:
(a1x +bju+cy)dx
+ (arx + bou + ¢2) du =0
ar , b

an b

Setv = a1x + bju + ¢y
w = axx + byu + c»

Eliminate x and u and the equation becomes homogeneous.

Reducible to separable:
(a1x +bju+cy)dx
+ (arx + bou + ¢) du =0
ar b
o b

Setv =ajx + byu
Eliminate x or u and the equation becomes separable.

First-order equation:

uF(xu)dx +xG(xu)du =0

/‘ G(v)dv
Inx=| ———
v[G(v) — F(v)]

where v = xu. If G(v) = F(v), the solution is xu = C.

Linear, homogeneous
second-order equation:
d*u du

a, b are real constants

Let m;, m» be roots of m? 4+ am + b = 0.
Then there are three cases;

Case 1. my, m, real and distinct:

mix mox

u=cpe + e
Case 2. m, mj real and equal:

u =cre™ + crxe™*
Case3. my=p+qi,my=p—gqi:

u = eP*(cjcosgx + cysingx),

where p = —a/2,q = </4b — a?/2.

Linear, nonhomogeneous

second-order equation:
d*u n du ‘b )
— t+a— u=g(x
dx? dx §

a, b real constants

There are three cases corresponding to those
immediately above:

Case 1. u = c1e™"”* + cre™”

eMix
+7/e_””xg(x)dx
mp —my

e

/ e M g(x)dx

myp —mj
(Continued)



CHAPTER 1 / ORDINARY DIFFERENTIAL EQUATIONS

Table 1.1 Differential Equations (Continued)

Differential Equation

Method of Solution

mix

Case 2. u = c1™* + copxe™”

+ xe™* / e MYg(x)dx

— M / e MYg(x)dx

Case 3. u = eP"(cy cosgx + ¢, singx)
eP*singx
+ ¢ smngx f e Pg(x)cosgx dx
q

eP* cosgx

/ e M g(x)singx dx
q

Cauchy—Euler equation:

2d2u n du
ax—
dx? dx

a, b real constants

+ bu = g(x)

Putting x = ¢, the equation becomes
d2

o L 4@ —1>—+bu—g<e>)

and can then be solved as a linear second-order equation.

Bessel’s equation:

2d2 n du PR IPEN 0
x—+(n u=

dx? dx

u = c1J,(nx) + Yy (nx)

Transformed Bessel’s equalion:
2,

d2
+((x2 2r+ﬁ)M:

+ 2p+ l)x—

(7]

u=x7r [C]J (gx’> + Y,
q/r - 2%q/r

where g = v/ p% — B2.

Legendre’s equation:

d’ d
(a —xz)d—x”; —2x£ FAG+Du=0

u=c P(x)+c20:(x)

Riccati’s equation:

Z—u + P+ q(u® = g(x)
x

Setu = v'/(qv), where v' = dv/dx. There results

d*v q"\ dv
ot (r=5) G =0

This second-order, linear equation is then solved.

Error function equation:

d? du
d’;+2xd——2nu—0

n integer

u = i"erfc x
o0
where i" erfc x = / i"Verfe 1 dt
X

i%rfc x = erfc x
efrcx =1 —erfx
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Series Method

2.1 INTRODUCTION

We have studied linear differential equations with constant coefficients and have solved such equa-
tions using exponential functions. In general, a linear differential equation with variable coeffi-
cients cannot be solved in terms of exponential functions. We did, however, solve a special equa-
tion with variable coefficients, the Cauchy—Euler equation, by assuming a solution of the form x".
A more general method will be presented that utilizes infinite sums of powers to obtain a solution.

2.2 PROPERTIES OF POWER SERIES

A power series is the sum of the infinite number of terms of the form by (x — a)* and is written

o0
bo+bi(x —a) + by(x —a) + - =Y bylk—a)" Q.2.1)
n=0
where a, by, by, . . . are constants. A power series does not include terms with negative or frac-

tional powers. None of the following are power series:

@l+x-DH+x-Dx-2)+x—-Dx-2)(x=3)+---
O 1+ =D+ =D+ =D -

© L+l4x4x2+--

(d) x2 4 x32 4 52 4

There are several properties of power series that we will consider before we look at some
examples illustrating their use. The sum s, of the first m terms is

Sm=bo+bi(x —a)+ -+ bu(x —a)" (2.2.2)
and is called the mth partial sum of the series. The series converges at x = xg if
lim s,,(xg) = lim [bg + bi(xog —a) + -+ + b, (xog — a)™] 2.2.3)
m— 00 m—00

exists; otherwise, it diverges at x = x. Clearly, every power series converges at x = a. Usually,
there is an interval over which the power series converges with midpoint at x = a. That is, the
series converges for those x for which

|x —al < R (2.2.4)
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Table 2.1 Taylor Series Expansions of Some Simple Functions

ﬁ:l—i—x—i—xz—i—n-, x| <1
52
e’”:l—i—x—i—a—l—---, |x| < oo
x3' x°
smx:x—§+§—~'-, x| < oo
x2 x4
cosx:1—2—!+4—!—~'-, x| < o0
In(1 + x) 2 E l<x<l1
n X)=Xx——+——---, -1<x<
2 3
3%
51nhx:x+§+§+~-~, [x] < 00
xz xt
coshx:1+2—!+4—!+~--, [x] < 00
1
(1+x)"‘:1+ax+5zx(ot—l)x2+~-~, x| <1

where R is the radius of convergence. This radius is given by

li bn-H
— = 11m

R n—00

(2.2.5)

n

when this limit exists. This formula will not be developed here.

A function f(x) is analytic' at the point x = a if it can be expressed as a power series
Yo o bu(x — a)" with R > 0. (We use the terms “expressed,” “expanded,” and “represented”
interchangeably.) It follows from techniques of elementary calculus that the coefficients in the
series 2.2.1 are related to the derivatives of f(x) at x = a by the formula

1 ()
b, = ;f (a) (2.2.6)
for each n, and Z:O:O b,(x —a)" converges to f(x) in |x —a| < R. We write

f) =) b(x—a), |x—al<R (2.2.7)
n=0

This power series is called the Taylor series of f(x), expanded about the center x = a. If
expanded about the special point x = 0, it may then be referred to as a Maclaurin series.
Taylor series expansions of some well-known functions expanded about x = 0 are tabulated in
Table 2.1.

The symbol (Z) is a convenient notation for the binomial coefficient

ny\ _ n! _n(n—1)~-~(n—k+l)
(k) T kln—k)! k! 228

It can be used whenever the expressions above occur.

'The term “regular” is often used synonymously with “analytic.”
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Two important properties of a power series are contained in the following theorem:

Theorem 2.1: If

fx) = 2 by(x —a)" (2.2.9)
then
[l = inbn(x —ay! (2.2.10)
p
and
/:f(t)dt=§nb+”l(x—a)"“ 2.2.11)

Inwords, if f(x) is analytic at x = a then f'(x) and ff dx are also analytic at x = a and their
power-series expansions about the center x = a may be obtained by term-by-term differentia-
tion and integration, respectively. Note that R does not change.

Maple commands for this chapter: series, sum, LegendreP, LegendreQ, GAMMA,
Besseld, and BesselY, along with commands from Chapter 1 (such as dsolwve), and

Appendix C.

EXAMPLE 2.2.1 [ | | |

Derive the Taylor series expansion of sin x about the center x = 0.

» Solution

For the function f(x) = sinx, Eq. 2.2.6 yields the b, so that

0 2 0 3
sinx=/si1ﬂ)+xcosO—%§irf()—%cosO+---
B 3
T

Taylor series can be generated using the series command in Maple, although the output must be interpreted
properly. In this example, this command

>series(sin(x), x=0);

yields the output x — %XB + %OXS + O (x°). The first three terms here are the same as above, since 3! = 6

and 5! = 120. The term O (x°) refers to additional terms in the series that have order 6 or higher (and is
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EXAMPLE 2.2.1 (Continued) \ | | |

comparable to the ellipsis above.) If we want more terms in the series, we can modify the command, such as
>series(sin(x), x=0, 9);
which yields terms up to order 9. If we wish to use a different center, such as x = 1, use

>series(sin(x), x=1, 9);

EXAMPLE 2.2.2 [ | | |

By using the expansion in Table 2.1, find a series expansion for 1/(x> — 4).

» Solution

First we factor the given function,

Next, we write the fractions in the form

1 11 1
x—2 2—x  2\1-x/2

(R 1
x+2 24x 2\14x/2

Now, we use the first expansion in Table 2.1, replacing x with x /2 for the first fraction and x with (—x/2) for
the second fraction. There results

RO

=
ST [
)
I
N
P
_l’_
+ /T\
| =
SN——"
_l’_
|
N | =
N——"
[ %)
_l’_
|
N | =
SN——"
(98]
_l’_
1

1 1 2x
x—2 x+2 x2—4
x X X
=—>-F -3
1 1 x2 x*
xz_4“1<+7+ﬁ+ )

We could also have multiplied the two series to obtain the desired result.
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EXAMPLE 2.2.3 [ | | |

Find the Taylor series expansions for the functions (1 — X)) *fork=2,3,---

» Solution

We use the first expansion in Table 2.1 and repeated differentiation:

1 2
—:1+x+x + ..

1—x
d 1 1
il — =142 324 ...
dx <1—x> QT
¢y 2 =2+ 6x + 12x> +
dx>\1—x/) (1—=x)3" * *
d* ( 1 ) k! >
— = =Y nn—1)--(n—k+ Hx"*
dxk \ 1 —x (1 — x)k+! ;
Therefore, foreachk =1,2, ...,
1 oo

=%Zn(n—1)-.-(n—k+1)x"*k

(1 — x)k+! —

or, using our special notation (Eq. 2.2.8),
1 S n n—k S n+k n
e ()= ()

Now, replace k by k — 1 to obtain

where, by convention,

EXAMPLE 2.2.4 \ | | |

Find the Taylor series expansion of tan~! x about x = 0.

» Solution

We know that

) /* dt
tan " x = S
0o 1+12
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EXAMPLE 2.2.4 (Continued) \ | | |

Using Table 2.1, the function 1/(1 + #?) is expanded about x = 0, obtaining

1
=1—->+—. ..
1+ *
Hence, we have
*odr * X
tan'x= [ — = -4+ = )dt=x—"—4+"——...
/01+t2 /0( ) 3 5

by integrating. In fact, the series for tan~! x converges at x = 1 by the alternating series test, which states that
a series converges if the signs of the terms of the series alternate, and the nth term tends monotonically to zero.
We then have the interesting result that

b4

tan~' 1 1 1+1 1+
an = — = — — - — =
4 35 7

We will have occasion to need the first few coefficients of a Taylor series in cases in which
x) cannot be readily computed. Consider the following examples.
™ (x) b dil d. Consider the followi 1

EXAMPLE 2.2.5 \ | | |

Find the first three nonzero coefficients in the Taylor series expansion for 1/ cosx about x = 0.

» Solution
The function cos x is expanded about x = 0 as follows:

1 1
cosx 1 —x2/204x4/41 — ...
1
I — (220 —x*/41+ -+ )

Using the first series in Table 2.1 and replacing x which appears there with (x2/2! — x*/4! 4 - . .), there results

1 xz oyt xz Xt :
=1 T, o 4.
Ccos X +(2! 4! + )+<2! 4! + ) +

Note: To obtain the first three terms, we can ignore all but the square of the first term in
(x2/2! — x*/4! 4 .. )2 and all the terms in the higher powers of this series because they generate the coeffi-
cients of x%* k > 2.



2.2 PROPERTIES OF POWER SERIES 91

EXAMPLE 2.2.6 \ | | |

Find the first three coefficients of the expansion of *"* about x = 0.
» Solution
We have
X 1 x2
e =1l+x+ 51 T+
so that
sin? x

M =1+sinx +

x3 1 x3 ?
=1+(X—§—I—~-~>+§<x—§+-~-) + ..

lxs sy
= X —
2

Note that these are the same first terms for the series expansion of e*. This is not surprising since for small x
we know that x approximates sin x. If we were to compute additional terms in the series, they would, of course,
differ from those of the expansion of e*.

We conclude this section by studying a more convenient and somewhat simpler
method for determining the radius of convergence than determining the limit in
Eq. 2.2.5. A point is a singularity of f(x) if f(x) is not analytic at that point. For in-
stance, x = 0 is a singularity of each of the functions 1/x, In x, ﬁ ,and |x|. Locate all
the singularities of a proposed f(x) in the complex plane. In so doing, consider x to be
a complex variable with real and imaginary parts. As an example, consider the function
x/[(x% +9)(x — 6)]. It has singularities at the following points: x = 6, 3i, —3i. The
singular points are plotted in Fig. 2.1a. If we expand about the origin, the radius of con-
vergence is established by drawing a circle, with center at the origin, passing through the
nearest singular point, as shown in Fig. 2.1b. This gives R = 3, a rather surprising result,
since the first singular point on the x axis is at x = 6. The singularity at x = 3i prevents
the series from converging for x > 3. If we expand about x = 5, that is, in powers
of (x —5), the nearest singularity would be located at (6, 0). This would give a radius of
convergence of R = 1 and the series would converge for 6 > x > 4. It is for this reason
that sin x, cos x, sinh x, cosh x, and e¢* have R = 00; no singularities exist for these func-
tions (technically, we should say no singularities in the finite plane).

If the functions py(x) and p;(x) in

2
% + pO(x);Z_Z +pix)u=0 (2.2.12)
are analytic at x = a, then x = a is an ordinary point of the equation; otherwise, it is
a singular point of the equation. Thus, x = a is a singular point of the equation if it is a
singular point of either py(x) or p;(x).
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Imaginary Imaginary
axis axis

axis axis

(0,30) ¢
(6;0) Real / A Real

0, =3i) ¢

(a) (b)
Figure 2.1 Singular points and convergence regions of the function x/ [(x%2 +9)(x — 6)].

Theorem 2.2: If x = 0 is an ordinary point of Eq. 2.2.12, then there exists a pair of basic
solutions

o0 o0
up(x) = Za,,x”, usr(x) = anx” (2.2.13)
n=0 n=0

in which the series converges in |x| < R. The radius of convergence is at least as large as the
distance from the origin to the singularity of po(x) or p(x) closest to the origin.

It then follows immediately that if po(x) and p;(x) are polynomials, the series representa-
tions of the solutions converge for all x.

Suppose that pg(x) or p;(x) is the function of Fig. 2.1. And suppose that we are interested in
the series solution in the interval 3 < x < 6. For that situation we could expand about the point
Xxo = 4.5, halfway between 3 and 6, and express the basic solutions as

() =Y an(x —x0)",  wua(x) =Y bylx — x0)" (2.2.14)
n=0 n=0

Or, we could transform the independent variable from x to ¢ using t = x — x¢. Then, the solu-
tions are

o0 o0
ui(t) = Zant", us (1) = anr" (2.2.15)
n=0 n=0

The final result could then be expressed in terms of x by letting t = x — xg.

2.2.1 Maple Applications
The first power series in Egs. 2.2.15 can be entered into Maple with this command:

>ul:= t -> sum(b[n]*t"n, n=0..infinity);
o0

ul:=t—> Y byt”
n=0

This command defines u; as a function of 7.
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Problems [ 1 [ [

Derive a power series expansion of each function by expand- 23 / .
ing in a Taylor series about a = 0.

1 1 24. f sinx cos x dx
T 1l—x
2. ¢ 25. The function (x2 — 1)/[(x —4)(x2 + 1)] is to be ex-
3. sinx panded in a power series about (a) the origin, (b) the
4. cosx point @ = 1, and (c) the point a = 2. Determine the ra-
5 Inx dius of convergence for each expansion.
6. 1l + x) For each equation, list all singular points and determine the ra-
: nl o dius of convergence if we expand about the origin.
7. 42
14+x 26. —L;+(x2—1)u=x2
\ 1 dx »
T x 42 27. (xz—l)—b;+u:x2
1 dx
Y == d? d
x2+3x+2 28. x(x2+4)—u+x )
dx? d
10, —1 d*u
. — a’u .
x*—x—12 29. dx2+xu_l—x
1. X d’u  x—ldu
12. e 20 E+x+1ﬁ+"=0
d 2 d2
13, sinx 31. cosx—lz+u=sinx
14. tanx dx
15. In dhidl Determine the radius of convergence for each series.
2 0
4 — 52 32. "
16. In—> Zx
4 n=l
¢ 33 i L
7 . o
x+4 = n!
o0
18. e *sinx nn—1 ,
34.
Find a power series expansion for each integral by first ex- o
panding the integrand about a = 0. 35. Z 21y
*odt n=0
19. 1__H o0 1
n
0 36. Z;} —x=2)
20 / C_di n°_°
! —1)n
o 4-1 37. ) " 1y
. = Cn)!
tdt
n [
o I+t Find a series expansion abouta = 1 for each function.

22. / sin® x dx 38. l
X
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1

30, 5 42. Problem 6
X(xl -2 43. Problem 8
40. o 44. Problem 11
i 1 45. Problem 39
Cx(x24+4x+4) 46. Problem 41

For Problems 4246, use Maple to generate the partial sum  47. Solve Problem 21 with Maple, by first defining a power
sm. Then, create a graph comparing the original function and series, and then integrating.
the partial sum near x = 0.

2.3 SOLUTIONS OF ORDINARY DIFFERENTIAL EQUATIONS

The existence of the power series solutions of

d*u d
— + po(x)

L pu=0, x| <R 2.3.1)
dx? X

dx
is guaranteed by Theorem 2.2. In this section we show how to obtain the coefficients of the
series. The method is best explained by using a specific example. Let us solve the differential

equation
d*u 2
Using power series, assume that
o0
u(x) =y byx" (2.3.3)
n=0
Substitute into the given differential equation and find
o0 o0
Z n(n — Dbyx" 2 + x2 Z byx" =0 (2.3.4)
n=2 n=0

Let n — 2 = m in the first series and multiply the x? into the second series. Then

D+ 2)(m + Dbyyox"+ Y byx™™ =0 (2.3.5)
m=0 n=0

Now let n + 2 = m in the second series. We have

o0 o0
Z (m +2)(m + Dbyox"+ Z bpox™ =0 (2.3.6)
m=0 m=2

The first series starts at m = 0, but the second starts at 7m = 2. Thus, in order to add the series,
we must extract the first two terms from the first series. There results, letting m = n,

o0 o0
2by + 6b3x + (1 +2)(n+ Dbyiox"+ Y byox" =0 (2.3.7)
n=2 n=2
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Now we can combine the two series, resulting in

o0
2b, + 6byx + Z [(n+2)(n + Dbyyr + byslx" =0 (2.3.8)
n=2

Equating coefficients of the various powers of x gives

X% 2p,=0 S by=0
x': 63 =0 S by=0
X" (n+2)(n+ Dbyy2+by2=0
b,_

b= — 2 p>2 (2.3.9)

n+2)(n+1)
With b, =0, Eq. 2.3.9 implies that bg = bjg = b1y =--- =0; with b3 =0, we have
b7 = by = bjs = --- = 0. Equation 2.3.9 also implies a relationship between by, by, bg, . . .
and by, bs, b, ... . We call Eq. 2.3.9 a two-term recursion and digress to explore a simple tech-

nique for obtaining its solution.
Consider the following tabulation:

b
1 n=2 b4:——0
4.3
by
" ST 787
: : : bas
k n=dak—2 by = ———2
4k(4k — 1)

The kth line provides a general formula for computing any given line. The first line in the table
is obtained by setting k = 1 in the kth line. In fact, the kth line is obtained by generalizing from
the first two (or three) lines. Line 2 is constructed so that Eq. 2.3.9 has b4 on its right-hand side.
Therefore, in line 2, n = 6. If the pattern is obvious, we jump to the kth line; if not, we try line
3 and continue until the general line can be written. Once the table is completed we multiply all
the equations in the third column:

bo by -bg-- by

by -bs - bag_a by = (—DF 2.3.10
4 - by ak—4 - bar = ( )3-4-7~8---(4k—1)4k ( )

We cancel by, bg, . .., by_4 from both sides to obtain

b
by = (=) 0 2.3.11)
3.4.7-8.-- (4k — 1)dk

fork =1,2,3,.... Since Eq. 2.3.11 expresses each coefficient by, bg, by, . . . as a function of
by, we call Eq. 2.3.11 a solution of recursion.
The solution of the recursion leads directly to a solution represented by Eq. 2.3.3. We choose
by = 1 without loss of generality and find
(_ l)kx‘”‘

o0 o0
1 hax¥ =1 2.3.12
u(x) +; 4 X +;3,4,7.8...(4]¢—1)4k ( )
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Having taken care of by we now explore how bs, by, bi3, . . . are related to b;. This provides
us with the first line in our table so that the table takes the form
1 3 b L
n —= = —
T 5.4
bs
2 n=7 by = ———
9.8
' ' ' bai—3
k =4k —1 b =
" WET T Ak DAk
Again, a multiplication and cancellation yield a second solution of recursion:
by
bagpr = (=1 (2.3.13)

4.5.8-9---4k(4k + 1)
k=1,2,3,.... Nowset by = | and from Eq. 2.3.3

i (_l)kx4k+1
ur(x) = x + (2.3.14)
£:4.5.8

-9 14k(4k + 1)
The solutions u; (x) and u,(x) form a basic set because

up(x) ux(x)

W(X;Ml, u2) = u/l(x) u’z(x)

implies that

1 0

W(0; u1(0), u2(0)) = '0 1

’ =1 (2.3.15)
and, by Theorem 1.5, that W(x) > 0. The general solution is

u(x) =crui(x) + cauz(x)

o0 (_l)kx4k
—c |1
Cl[ +kz=;3~4~7-8~-~(4k—1)4k

00 (_l)kx4k+1
23.16
to x+k2:;4-5~8~9--~4k(4k+1) (2.3.16)

We often expand the above, showing three terms in each series, as

x* x® x> x?
u(x)—Cl(1—E+ﬁ+"‘>+62<)€—%+m+"'> (2.3.17)
Since po(x) = 0 and p;(x) = x2, the two series converge for all x by Theorem 2.2. The ratio?
test also establishes this conclusion.

We could have found the first three terms in the expressions for #; (x) and u,(x), as shown in
Eq. 2.3.17, without actually solving the recursion. The advantage of having the general term in
the expansion of the solution is both theoretical and practical.

The ratio test for convergence states that if the absolute value of the ratio of the (n + 1)th term to the nth term
approaches a limit r, then the series converges if r < 1.
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EXAMPLE 2.3.1 \ |

Find a power series solution to the initial-value problem

21/[

— 4% =0, u0=1, «0)=0
dx?

» Solution

Assume the solution to be the power series.

u(x) = ib,,x”
n=0

The second derivative is
d*u s o
—— =Y _n(n— Dbx
dx o

Substitute these back into the given differential equation to get

]

Zn(n — Dbx"2+ i9bnx” =0

n=2 n=0
In the leftmost series replace n by n + 2:
[o¢] [o¢] o0
D2+ Dbyaax” + Y 9b,x" =) [ +2) (1 + Dbyyz +9b,1x" =0
n=0 n=0 n=0
Now, for this equation to be satisfied for all x we demand that every coefficient of each power of x be zero. That is,

x0: 2by +9by =0
x': 6b3+9b, =0

x": (m+2)(n+ Dby, +9b, =0
Since u(0) = by = 1 and u’(0) = b; = 0, we deduce that
by=by=bs=---=0

and that b,, by, be, . . . are determined by by = 1. The two-term recursion forces n = 0 in line 1 and n = 2 in
line 2. Specifically, our table takes the following form:

-9
2.1
—9

2 n=2 by = Ob
4.3

k n=2%k—2 61 —Obai2

~ 2k —1)2%
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EXAMPLE 2.3.1 (Continued) l | | |

Hence, multiplying all equations in the third column and simplifying, we obtain

(=9
bry =
* 7 20
Usingn =2k and k = 1,2, 3, ..., in our original expansion, we obtain the result

This can be written in the equivalent form

In expanded form

This is recognized as

which is the solution we would expect using the methods of Chapter 1. It is not always possible, however, to
put the power-series solution in a form that is recognizable as a well-known function. The solution is usually
left in series form with the first few terms written explicitly.

9k 2k
u(x) _1+Z( (23()'

1 k 3 2k
u(x)—l-l—Z( S

(Bx)*  (3x)*
T TR

ux)y=1-

u(x) = cos3x

Problems

2.3.1 Maple Applications
As described earlier, power series can be defined in Maple, and, in fact, be differentiated or in-
tegrated. (See, for instance, Problem 47 in the previous problem set.) However, using Maple to
complete individual steps of the method described in this section to solve ordinary differential
equations is unwieldy.

The powerful dsolwve command can solve certain differential equations with power series.
To solve Eq. 2.3.2 with dsolve, define the ode variable, and then use this command:

>dsolve (ode,u(x), 'formal_series', 'coeffs'='polynomial') ;

Note that the solution has two constants that can then be determined from initial conditions.

Solve each differential equation for a general solution using 3. (- x)d_” +u=0

the power-series method by expanding about a = 0. Note the

radius of convergence for each solution. 4. d_” +xu=0
d
1 du n d;C
St
dx 2 —qu=0
o dx
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d2
(xz—l)d—l;—4u=0
X

d*u +2du
dx? dx
d’u  du

P + 6d_ +5u=0

+u=0

Find a specific solution to each differential equation by ex-
panding about a = 0. State the limits of convergence for each
series.

du .
9. x— +u sinx =0,

0)=1
e u(0) )
10. (4—x2)—l; +2u=0 w© =0, o=
dx
1 P u=o O=1, ™0 =0
. —X)u = u = ll; —_ =
dx? dx
2 EU et =0 w =0, =1
. — —x"— 4 usinx = u0) =0, —(0) =
dx? dx dx
13. Solve (1 —x)df/dx — f = 0 using a power series ex-
pansion. Let f = 6 for x = 0, and expand about x = 0.
Obtain five terms in the series and compare with the
exact solution for values of x = 0, . 7o 2, 1, and 2.
14. The solution to (1 — x)df/dx — f = 0 is desired in the

interval from x = 1 to x = 2. Expand about a = 2 and
determine the value of f(x) at x =19 if f(2) =1.
Compare with the exact solution.

2.3.2 Legendre’s Equation

Find a general solution of each differential equation by ex-
panding about the point specified.

15. (x — )— +u=0 abouta =1

d2

16. xzd—xlz+u=0 abouta =1
d2

17. dL;—i—xu_O abouta =2

18. Solve the differential equation (d*u/dx®) + x*u =0
using the power-series method if u(0) = 4 and u’(0) =
—2. Find an approximate value for u(x) ata = 2.

19. Solve the differential equation x?(d’u/dx*) +4u =0
by expanding about the point x = 2. Find an approxi-
mate value for u(3) if u(2) = 2 and u/(2) = 4.

20. If x(d?u/dx*) + (x — D)u = 0 find approximate values

for u(x) at x = 1 and at x = 3. We know that u(2) =
andu/(2) =0

Use Maple to solve

21.
22,
23.
24.

Problem 9

Problem 10
Problem 11
Problem 12

A differential equation that attracts much attention in the solution of a number of physical prob-

lems is Legendre’s equation,

du
(1 —x2)— —2x—

+ 1A+ DHu=0 (2.3.18)

dx

It is encountered most often when modeling a phenomenon in spherical coordinates. The para-
meter ) is a nonnegative, real constant.’ Legendre’s equation is written in standard form as

d*u

dx?  1—x2dx

2x

du IA+1)

2 4= 0 (2.3.19)

The variable coefficients can be expressed as a power series about the origin and thus are ana-
lytic at x = 0. They are not analytic at x = 1. Let us find the power-series solution of
Legendre’s equation valid for —1 < x < 1.

Assume a power-series solution

o0
u(x) =y byx" (2.3.20)
n=0
3The solution for a negative value of A, say A,, is the same as that for A = —(X,, + 1); hence, it is sufficient to

consider only nonnegative values.
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Substitute into Eq. 2.3.18 and let A(A + 1) = «. Then

o0 o0 o0
(1 =x) nn— Dbyx" = 2x Y nbyx""' + oY byx" =0 (2.3.21)
n=2 n=1 n=0
This can be written as
o0 o0 o0 o0
Zn(n — Db, — Zn(n — Db,x" — Zannx” +a Zabnx” =0 (2322
n=2 n=2 n=1 n=0
The first sum can be rewritten as
o0 o0
Zn(n — Dbpx" 2 = Z (n+2)(n + Dbyyax” (2.3.23)
n=2 n=0

Then, extracting the terms for n = 0 and n = 1, Eq. 2.3.22 becomes

D A+ 21+ Dbz — [n(n — 1) +2n — alby "
n=2

+ 2by + aby + (6b; — 2by + aby)x =0 (2.3.24)

Equating coefficients of like powers of x to zero, we find that

o

by = = bo
2—«a
by = 5 by (2.3.25)
2,
by = 7Y L =234,

T m+2m+1)
Substituting A(A + 1) = « back into the coefficients, we have

n—Nm+r+1)
by = b,, =2,3,4,... 2.3.26
SR I Y ! (2:3.20)

There are two arbitrary coefficients by and b;. The coefficients with even subscripts can be
expressed in terms of by and those with odd subscripts in terms of b;. The solution can then be

written as
u(x) = bouy(x) + biuz(x) (2.3.27)
where
o) = 1— A(AZ-:— sz n (A — 2)A(A4—:— DA+ 3)x4 L
)\.112 A§A1A2A4 (23:28)
wm=x—(_;f+)ﬁ+(_)(_;f+)(+)f+m

are the two independent solutions.

We can solve the two-term recursion in Eq. 2.3.25 by the technique of Section 2.2—and the
student is asked to do so in the homework problems but the resulting expression is not conve-
nient. Temporarily, we are content to leave the answer in the forms of Eqs. 2.3.28.
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2.3.3 Legendre Polynomials and Functions
Let us investigate the solution i (x) and u,(x) (Egs. 2.3.28), for various positive values of A. If
A is an even integer,
A=0, ux)=1
A=2, wu(x)=1-—3x2 (2.3.29)
A=4, w(x)=1-10x" + 2x*, etc.
All the higher-power terms contain factors that are zero. Thus, only polynomials result. For odd
integers,
A=1, wu(x)=x

5,3

A=3, ux)=x—3

(2.3.30)

A=5 u(x)=x-— %x3 + %xs, etc.

The aforementioned polynomials represent independent solutions to Legendre’s equation for the

various A’s indicated; that is, if . = 5, one independent solution is x — %xS + %xs. Obviously,

if u1(x) is a solution to the differential equation, then Cu;(x), where C is a constant, is also a
solution. We shall choose the constant C such that the polynomials above all have the value unity
at x = 1. If we do that, the polynomials are called Legendre polynomials. Several are

Po(x) =1, Pi(x)=x
Py(x) = 33x* = 1), P3(x) = 3(5x* = 3x) (2.3.31)
Py(x) = §(35x* —30x% + 3), Ps(x) = 3(63x> — 70x* + 15x)
We can write Legendre polynomials in the general form
2Ar —2n)! "2
2l =)\ —2m)1

N
Pi(x) =) (=) (23.32)
n=0

where N = A/2 if X iseven and N = (A — 1)/2 if A is odd. Some Legendre polynomials are
sketched in Fig. 2.2.

Py(x) Figure 2.2 Legendre polynomials.
P, W
o
Py

2y
|
! X

Py 1

Py
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When A is an even integer, u,(x) has the form of an infinite series, and when A is an odd
integer, u1 (x) is expressed as an infinite series. Legendre’s functions of the second kind are mul-
tiples of the infinite series defined by

. ui(Duy(x), Aeven
0,(x) = { —u(Duy(x), A odd (2.3.33)
The general solution of Legendre’s equation is now written as
u(x) =c1Pi(x) +c20;(x) (2.3.34)

Several Legendre functions of the second kind can be shown, by involved manipulation,
to be

1 1
Qo) = 311
01(x) =xQo(x) — 1
0>(x) = P2(x) Qo(x) — 3x (2.3.35)

Q3(x) = P3(x)Qo(x) — 3x* + 2
Q4(x) = Ps(x)Qo(x) — %x3 + 2x
Os(x) = Ps(x)Qo(x) — Cx* + x> — &
Note that all the functions are singular at the point x = 1, since Qyp(x) — oo asx — 1, and thus

the functions above are valid only for |x| < 1.
If we make the change of variables x = cos ¢, we transform Legendre’s equation 2.3.18 into*

u +eotd P £ A+ Du =0 (2.3.36)
- - u = ..
d¢? do
or, equivalently,
L4 ( ¢du +r(A+ 1) 0 (2.3.37)
— [ singp— u= 3.
sing d¢ do

Legendre’s equations of this form arise in various physical problems in which spherical coordi-
nates are used.

“This is a change of independent variable (see Section 1.12.3, Example 1.12.4).

EXAMPLE 2.3.2 \ | | |

Find the specific solution to the differential equation

& d
(l—xz)d—L;—Zxd—u—l—lZu:O it W0 =4
X X

and the function u(x) is well behaved at x = 1. The latter condition is often imposed in physical situations.
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EXAMPLE 2.3.2 (Continued) l | | |

» Solution

We note that the given differential equation is Legendre’s equation with A determined from

AA+1) =12
This can be written as

r+HR-3)=0
giving
Ar=-43
We choose the positive root and write the general solution as
u(x) = c1P3(x) + c203(x)

If the function is to be well behaved at x = 1, we must let ¢; = 0, since Q3(1) is not defined. The other con-
dition gives

wloo

4=cPj(0)=—3c; or ¢ =-—
The solution is then

u(x) = —%(5)63 —3x)

2.3.4 Maple Applications

In the case of Legendre’s equation, invoking the dsolve command with the formal
series option produces blank output, meaning dsolve cannot solve this equation. However,

the Legendre polynomials of Egs. 2.3.32 and 2.3.33 are built into Maple and can be accessed
using LegendreP and LegendreQ. For example, LegendreQ (0, x) yields % In (il)

x—1

Problems

1. Verify by substitution that the Legendre polynomials of 5. Verify that the formula

Eqgs. 2.3.31 satisty Legendre’s equation. 1 A
5 . P(x) = ——@x*—1)*
. rite expressions for (a) Ps(x), (b) P7(x), and (c) Pg(x). AN dxr
Show that yields the first four Legendre polynomials. This is known
3. Pu(—x) = (=P, (x) as the Rodrigues formula and can be used for all

dP, i dPy Legendre polynomials with A a positive integer.
4 (0 = D@
dx dx
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6. Verify the formulas
dPy1  dPyy
dx dx

i 1
/); Pi(x)dx = m[Px—l(x) — Prr1(x)]

for A =2 and A = 4.

Determine the general solution for each differential equation
valid near the origin.

=Q2r+ 1P,

7. d 2)dz” 2™ 41w =0
. —x7)— —2x— =
dx? dx "
d*u du
2 _
8. (1 — X )E—ZXE +6u—x
d*u du
9. 41 —x*)—— —8x— +3u=0
(1—x )dx2 Y dx o
10. L d sind;du + 6 0 (Hint: Let cos¢.)
., —— — u= int: %= .
sin¢g d¢ do
11. Find the specific solution to the differential equation
a xz)@ 2 4 20w = 14x2
dx? dx -

2.3.5 Hermite Polynomials

The equation

At x =0, u = 3 and the function has a finite value at
x = 1. In addition, use Maple to create a graph of your
solution.

12. Expand (1 — 2x¢ + t>)~'/2 in powers of . Set
[e°]
(1 —2xt + 13712 = Z P, (x)t"
n=0

Show that P,(x) is the Legendre polynomial of degree n.
(Hint: Use Table 2.1.) Use the result in Problem 12 to show that

13. Py(—x) = (=1)" Py(x)
14. P,(1)=1, Pu(-1)=(-D"
(=D*1-3-5---2n —1)

15. Pos1(0) =0, o

P2, (0) =

16. Use the Rodrigues formula in Problem 5 and integration
by parts to show that

1
(a)/ Py(x) Py(x)dx =0, n#m
=i

1
2
2 _
®) /,1 Frxdx =5 -7

d%u du

E—QJCE—FQ)\.M:O

(2.3.38)

provides another “classical” set of solutions known as Hermite polynomials when A is a non-
negative integer. These polynomials play a significant role in statistics. To find a solution, set

o0
u(x) = Z bux" (2.3.39)
n=0
Then
o0 oo
u'(x) = annx”_l, u’(x) = Zn(n — Db,x"? (2.3.40)
n=1 n=2
Substituting in Eq. 2.3.38 and making the usual adjustments in the indices of summation, there
results
o0
2b, + 2by + Z [(n+2)(n + Dbyys —2(n — Mby)x" =0 (2.3.41)
n=1
Hence,
2(—X)
0 b, = b
X 2 1 0
2(1 —A)
1. br = b 2.3.42
x 3 32 D ( )
2(n — X
Xt by (n—2)

CED e
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This two-term recursion is easy to solve and we find

=R =M@ =) Rk—2—2)

by = 20! by (2.3.43)
and
A -MB—A) 2k —1— A)
bys1 = P (2.3.44)

Choose by = b; = 1 and these relationships lead to the basic solution pair

k 0
u1(x)—1+22( ne - A()Zk),(z" 270

(2.3.45)

k(1 — 303 — -
s (x) = x +Z 2d-16 (221 1)v(2k L= M) o (2.3.46)

It is now apparent that Eq. 2.3.38 will have polynomial solutions when A is a nonnegative
integer. For A even,
A=0: u(x)=1
A=20 u(x) =1-2x (2.3.47)
Ar=4: u](x)=1—4xz—|—‘3—‘x4
For A odd,
A=1: u(x)=x
A=3:1 wmn() =x =5 (2.3.48)
5

A=5: uz(x)zx—%x3+%x

Certain multiples of these polynomials are called Hermite polynomials. They are

Hy(x) =1
Hi(x) =2x
) (2.3.49)
Hy(x) = -2+ 4x
Hi(x) = —12x + 8x°
and, in general,
1 k 2x)— 2k
H,(x) = 'Z S (2.3.50)

k! (n —2k)!
where N =n/2ifnisevenand N = (n — 1)/2 if n is odd.

2.3.6 Maple Applications

The Hermite polynomials are not built into Maple like the Legendre polynomials. However,
after defining specific values of n and N in Maple, the following code will generate the Hermite
polynomials:

>factorial (n)*sum((-1)"k*(2*x) " (n-2*k)/

(factorial (k) *factorial (n-2*k)), k=0..N);
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Problems

1. Expand 2= ip powers of . Set 6. Verify that Eq. 2.3.50 yields Eq. 2.3.49 for n =1, 2, 3.
pi? i H,(x) p Find Hy(x).
¢ - < nl 7. Compute H, (x) and evaluate H, (0) by
Show that H, (x) is given by Eq. 2.3.50. (a) Differentiating Eq. 2.3.50.
Use the result of Problem 1 to show that (b) Differentiating the expansion in Problem 1 with re-

spect to x.
H,(—x) = (=1)"Hy(x)

Hy+1(0) = 0; Hp, (0) = (—1)"2*"1-3-5---2n — 1)
Hy(x) = (= 1)re™ (o)

dx"

Which method is easier?
8. For three different values of x, use Maple to compare

the graphs of *~" and the partial sum ZZ:O Hx)
See Problem 1.

5. Use the result in Problem 4 to show that

/oo e Hy()Hp(x)dx =0, m#n

—00

(Hint: Try integration by parts.)

2.4 THE METHOD OF FROBENIUS: SOLUTIONS ABOUT REGULAR
SINGULAR POINTS

There are second-order differential equations that appear in physical applications which have co-
efficients that cannot be expressed in power series about the center a = 0; the origin is a singu-
lar point of such equations. Even so, the method described in Section 2.3 may yield a solution
valid about the origin for such equations. The Cauchy—Euler equation

2 d’u 3 du 1

x— ——u=0 2.4.1
xdx2+2xdx Zu ( )

is an example in which the power-series method fails. A pair of basic solutions is u;(x) = x~!

and u»(x) = /X; neither function is analytic® at x = 0.
Consider the equation
d’u du
Llu] = xz—2 4+ xpox)— + p1(x)u =0 (2.4.2)
dx dx
where po(x) and p;(x) are analytic at x = 0. As we have seen above, we cannot expect a power
series solution for this equation. The following more general series always provides at least one
solution:

w(x) =x" Y apx", ag#0 (2.4.3)
n=0

3In the sections that follow, x” (r = an integer) and In x appear repeatedly. In each case we assume that x > 0
to avoid writing |x|” and In |x|. For x < 0 we make the transformation # = —x and solve the resulting equa-
tion for ¢ > 0. Often the equation in ¢ is identical to the equation in x.
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Such a series is a Frobenius series. It reduces to a power series if 7 is a nonnegative integer. If
x = 0is not an ordinary point of Eq. 2.4.2, it is a regular singular point. The power-series part
of the Frobenius series will converge in |x| < R, where R is at least as great as the distance from
the origin to the nearest of the singular points of po(x) and p;(x).

To solve Eq. 2.4.2, we assume a solution in Frobenius series and expand po(x) and p;(x) in
the series forms

Po(x) =Y byx" (2.4.4)
n=0

pix) =) cpx” (2.4.5)
n=0

If it happens that by = ¢y = ¢; = 0, then x = 0 is an ordinary point—not a regular singular
point—because Eq. 2.4.2 would have a factor of x* and, after division by this factor, the result-
ing equation would have an ordinary point at the origin.

Differentiating the series expansion 2.4.3 yields

du - n+r—1
= Z (n + r)a,x (2.4.6)
X
n=0
and
d*u >
2= Z n+r—1D0n+rax" 2 (2.4.7)
n=0

Substitution of these series expressions into Eq. 2.4.2 gives, in expanded form,
Llul =[r(r — Daogx" + (r + Dra;x™' 4+ -]
+ (o +brx + - ) (ragx” + (r + Darx™ ' -]
+ [(co + c1x + - aox” +arx"™ + -] (2.4.8)

If we collect like powers of x, we get

Llul =[r(r — 1) + bor + colapx”

+ Y AL+ 1) +r—1) +bo(n+r) + colay

n=1
n

+ [(n —k 4+ )b + crlan_i}x"*" (2.4.9)
k=1

We call the bracketed coefficient of the x” term, F (r); that is, since ag # 0, then F(r) = 0 is
necessary for L(u) = 0:

F@r)=r(r—1)+bor+co=0 (2.4.10)
This equation is known as the indicial equation. It has roots r; and r,. Now, note that

Fn+ry=m+r(n+r—1)4+bo(n+r)+co (2.4.11)



108

CHAPTER 2 / SERIES METHOD

Hence, L (1) may be written as

Llu]l = F(raox" + Y _{a,F(n+r)

n=1

+ ) L=k + )by + cxlan i )x"
k=1

If we write

G,(1)=m—14+r)by +c;
G,(2)=m—=2+r)by+ 2

Guky = —k+r)b, + ¢

then

Llul = F(Naox" + ) {a,F(n + 1)+ Y Gu(k)a, i }x"

n=1

Since L[u] = 0, each coefficient must vanish:

n

k=1

F(r)ap =0

F(n+r)a, =— Z G,(k)a,—i
=1

forn =1, 2,3, ....[As we remarked above, ap # 0 implies that F(r) = 0.]
It is common practice in this method to use the substitution

S=r—n

in which ry > r; if rq is real. Then

Fir)y=@—r)r —r)

so that

Fn+r)=m+r—r)n+r —r)=nn+s)

while

Fn+r)=m0+rn—-—r)n+rn—r)=nmn-—s)

Therefore, if we set r = ry in the recursion 2.4.15, we obtain

O~a0=0

n(n + s)a,

= Guka, «
k=1

(2.4.12)

(2.4.13)

(2.4.14)

(2.4.15)

(2.4.16)

(2.4.17)

(2.4.18)

(2.4.19)

(2.4.20)
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and if r = 1y,

0- ag = 0
n
2.4.21)
nn—s)ay ==Y  Guy(k)ap
k=1
We may always solve recursion 2.4.20 since n(n + s) is never zero. Hence, a;, a, as, ... can
all be determined as multiples of ag and
o0
wy(x) =x" Y anx", ap =1 (2.4.22)
n=0
is a Frobenius representation of one of the solutions of Eq. 2.4.2. If s is not an integer, recursion
2.4.21 generates coefficients, say di, d», ds, . . . , which are all multiples of ay. Hence,
o0
Uy (x) = x" Y dyx", do=1 (2.4.23)
n=0

represents a second, independent solution.
However, if s = N, a positive integer, then

N
N-0-ay=-> Gykay_i (2.4.24)
k=1
This equation does not determine ay and the method becomes vastly more complicated when
finding the second solution. This case will be treated in Section 2.9.2.

If s = 0, then recursions 2.4.20 and 2.4.21 are the same and only one solution of the form
2.4.22 exists. The technique for obtaining the second independent solution will be presented in
Section 2.9.1.

We illustrate the use of these ideas in the following sections by applications to some impor-
tant differential equations. In order to do so in a convenient fashion, we digress to study the
gamma function, I"(A). Before this excursion, let us consider an example.

EXAMPLE 2.4.1 \ | | |

Find a general solution, valid near the origin, of the differential equation

d’u du
2 —
8x d?+6xa+(x—l)u—0
» Solution
For this equation po(x) = % and p;(x) = (—1 + x)/8. Thus, by = %, by=by=---=0,¢cp = —é,cl = é,
¢y = c3 = --- = 0. The indicial equation is then

Firy=r*+ G —Dr—4

— 21,1
=gl Ty

= +He-H=0
1 1

=3, =g
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EXAMPLE 2.4.1 (Continued) \ | |

Equation 2.4.12 yields

Llul =@+ D0 — Daox” +[ar(r + 1+ Hr +1— 1) + gaolx™!

00
+ Z[an(r +n+ %)(7‘ +n— %) + %anil]xr-i—n -0

n=2

The above then demands that

— o
8(r+5/4)(r+1/2)
ap—1

C8(r4n+ 1N +n—1/2)

a) =

=2,3,...

a, =

The recursion above gives

_ (=D*ay
SN+ DI+ D+ k= P)]

Ay

We can let ap = 1 without loss of generality, and, referring to Eq. 2.4.3, we have

=+ 3 CO
' S+ DT+ Hhk+ DN+ D+ k=D

1

Setting r; = % and r, = —7, respectively, the two independent solutions are

(_ 1)kxk+1/2

o0
up(x) = x'% +
2 G e
(_l)kxk—1/4

o0
_—1/4
= e

A general solution is then
u(x) = Auy(x) + Bus(x)
We can put the solution in the alternative form by expanding for the first three terms in each series:

12 1. .3/2, 1 572 —l/4 _ 1.3/4  1.7/4
u(x) = Alx"/ —mx/ —i—mx/ + -1+ Blx /—Ex/ —i—Ex/ + -]
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Problems

Find a general solution, valid in the vicinity of the origin, for 9. 2x%u" +xCx+3)u' +Bx—Du=0
each differential equation (roots not differing by an integer). 1o 2y =D’ +3x - —u=0

2
Lo 120+ (1= —u =0
32 * 120 3xu’ +2(1 —x)u' —4u =0
2. wﬁ;%+N1+UMu=0 13. 322" —xu' —du =0
Pn @ 14, 2x%u” +x(4x — D/ +2@x — Du =0
3. 2x(l —x)— 4+ — —u=
) dx?  dx Use the Frobenius method to solve each differential equation
4. 2xd—1; +(1+ 4x)d_” =10 about a = 0, an ordinary point of the equation.
dx > dx 15. u’'+u=0
d*u du ’ -
5. 4x2(1—x)ﬁ—xa+(1—x)u=0 16. u//+(1_x)u=O
P A 17. The equation of Example 2.3.1.
2 _
6. 2x W—xa—l—(x—lO)—O 18. u//+au/+bu=0
2
7 2x2d_': +x(x — l)d_” +u=0 19. In the expansions assumed for po(x) and p;(x) given by
dx dx Egs. 2.4.4 and 2.4.5, let ¢o = ¢; = by = 0. Show that
224" 5 xzd_u + 20 Eq. 2.4.2 has an ordinary point at x = 0.

2.5 THE GAMMA FUNCTION

Because of its importance and common use, we present this introduction to the gamma function
I'(}). The gamma function is defined by the improper integral

r(x+1)=f e 't dt (2.5.1)
0

which converges for all A > —1.
To deduce some of the properties of the gamma function, let us integrate by parts:

o0 00 o0
/ et dt = —e_tt)‘) + A/ et dr
0 0 0

(2.5.2)
u=rt" dv=e"dt
du = r*"'dt v=—¢"
The quantity e~'t* vanishes at # = oo and ¢ = 0. Thus, we have
[e.¢]
FrL+1) = ,\/ e 't dt (2.5.3)
0
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The last integral is simply I"(A). Thus, we have the important property
'iv+1)=1"'(») (2.5.4)

If we let A = 0 in Eq. 2.5.1, there results
ra = / e 'dt
0

[e.¢]
_ ot f -1 (2.5.5)
0
Using Eq. 2.5.4, there follows
re)y=1-r{)=1
rag) =2-1r2=2! (2.5.6)

@) =3-T3) =3!

Equations 2.5.6 represent another important property of the gamma function. If A is a positive
integer,

TO o+ 1) =A! 2.5.7)

It is interesting to note that I" (1) is defined for all real A except A = 0, —1, —2, ..., by the
functional equation I'(A + 1) = AI"(X); in fact, we need to know I'(X) only for 1 < T <2 to
compute I'(X) for all real values of A. This tabulation is given in Table B1 of the Appendix.
Figure 2.3 illustrates the graph of T'(4).

The gamma function at half-integer values are multiples of /7 (see Eq. 2.5.13 below). To
see this, we begin with the known result (see Table B2 in the Appendix),

f e dx = N (2.5.8)
0 2

r Figure 2.3 The gamma function.

S
I
—_— o ——
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Set x> =t so that dx = t~'/2 dt /2 and therefore

o0 N 1 o0

/ eV dx = —/ e 'tV dr

0 2 Jo
(o (3 (2.5.9)
2 \2)  \2 o

From the tabulated results in the Appendix (Table B1), we verify the foregoing result, namely,
that \/7 /2 = T'(3/2) = 0.886227.

EXAMPLE 2.5.1 \ | | |

Evaluate the integral fooo x34e vV dx.

» Solution

The gamma functions are quite useful in evaluating integrals of this type. To make the exponent of the expo-
nential function equal to —¢, we let

x =12, dx=2tdt

Then the integral becomes (the limits remain unchanged)

o0 o0
f X eV gy = Zf %7 dt
0 0

By using Eq. 2.5.1, we have

The recursion 2.5.4 gives
From Eq. 2.5.9

Finally, the value of the integral is

oo
/ eV dx =2 x 1B % 0.8862 = 23.27
0
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EXAMPLE 2.5.2 \ |

Express the product
fr)y=rr+h)(@+2h)---[r+@©n—1Dh]
as a quotient of gamma functions.

» Solution

We have

fry=@/hr/h+1)F/h+2)---(r/h+n—1)h"
L/ h+ DT (r/h+2) C(r/h+r)
L@/ Tr/h+1) T@r/h+n—1)
_ hnF(r/h +n)
I'(r/h)

obtained by using the recursion 2.5.4 with A = r/ h.

Some special cases of the result of Example 2.5.2 are interesting. For a particular case, set

r=1and h = 2. Then
I'(n
1-3.5---2n—1)=2"—=

But 1T () =T'(3) = /7 /2. Hence,

2n 1
1-3-5---2n—1)= —T -
RV (”*2)
However,
1:3:5-Qn—=1)=1-3-5---(2 1)2'4'6"'2"
2-4.6---2n
_(n)!
© 2mp!

So combining the two equations above, we get

r<n+1>— (2n)!ﬁ

2] 22

forn=1,2,....
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2.5.1 Maple Applications

The gamma function is built into Maple using the syntax GAVMMA. Figure 2.3 can be reproduced
with the following command:

>plot (GAMMA (x), x=-4..4, y=-10..10, discont=true);

The discont=true option in the plot command forces Maple to respect the asymptotes of
the function.

Problems [ 1 [ [

“mﬁﬁmmwﬁ MImMM:%mHM%wmm
1. / Jxe ™ dx 1 1 1

L 2 \If(A+n+1)=m+m+~--+m+wa+1)
2. /0 e dx where 7 is a positive integer. Hence,

1 1
f xle dx Yo+ =1+7++—+¥(D)
0
® 4k [W(1) = —y = —0.57721566490, approximately. This
/0 roeda constant is the Euler constant.]
/°° 1 -2y 15. Show that
—e X
0 Vx d [ 1 ] %)
J
J
J

re| - To)

Use Maple to evaluate these integrals

- el
a- x)3e‘/; dx e

x2e' = dx 16. Problem 1

17. Problem 2
e dx 18. Problem 3
19. Problem 4

Use the results in Example 2.5.2 to write each product as a 90, Problem 5
quotient of the gamma function. 21. Problem 6

9. 2-4.-6---(2n) 22. Problem 7
10. 1-4.7---(3n—2) 23. Problem 8
1. a@+1)---(a+n—1)

A

19. Computer Laboratory Activity: In this activity, we ex-

12. Use Eq. 2.5.4 to explain why either I"(0) is meaningless plore the gamma function further. We can see that, in
or this equation is invalid for A = 0. Figure 2.3, there are several values of x where the gamma
13. Show that the improper integral fooo e~'t* dt converges function has a local maximum or minimum. Use Maple
for A > —1 and diverges for A < —1. (Hint: Write the in- to determine these values of x. Explain where the
tegral as digamma function is important in this activity. Is
o 1 o x = —m/2 alocal minimum? What happens to the value
/ e lthdt = / e 't dt + / e~ lth dt of I'(x) at these maximums and minimums as we move

0 0 1

left along the x-axis?
and note that e < 1for0 <7 <1 and e "/t — 0 as
t — 400.)
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2.6 THE BESSEL-CLIFFORD EQUATION

As an example of the method of Frobenius, consider the Bessel-Clifford equation,
2

u a0 2.6.1)
Y dx? Vg T = -

where the parameter y > 0. Since po(x) = 1 — y and p;(x) = x (see Eq. 2.4.2), we have

b() == 1 - yv cl =
b1=b2=-~-=0, C0202=C3=~-~=0 (2.6.2)
The indicial equation is
Fry=rc—1D)+0—=—p)r=rr—y)=0 (2.6.3)

Thus, r1 =y, =0,and s =ry —r, = y. Since by =0 for all k > 0 and ¢; = 0 for all k
except k = 1 and

Gu(k) =(n—k+r)b + c, l<k<n (2.6.4)
we have
G,(1)=¢c; =1 and G,(k) =0, k>1 (2.6.5)
The recursions 2.4.20 and 2.4.21 reduce to the convenient forms
nn+y)a, = —a,_1, n=1,2,... (2.6.6)
and
nn—y)a, =—a,_1, n=12,... (2.6.7)

For y neither zero nor a positive integer, we have

Uy (x) = x7 1+i (=Dt (2.6.8)

and

uy(x) = 1 + i (=Dt (2.6.9)
=Hkld=y)2—-y)--(k=y)

so that u(x) = Au;(x) + Bu,(x) is the general solution. If y =0, then u#; = u, and this
method fails to yield a second, independent solution. If y is a positive integer, then
n(n — y)a, = —a,—; breaks down when n = y, and again, the method does not yield a second,
independent solution. Methods for obtaining the second, independent solution for y = 0 or for
y a positive integer will be presented in a subsequent section.
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Problems

1. Set y =0 in the Bessel-Clifford equation and verify 2. Set y =1 in the Bessel-Clifford equation and verify

that that
O, (—1)kx* x2 X3 2, (—1Dkxk x  x2
U i Z 2, ) DA R S S
= &) 4 36 = klk+ 1! 2 12
is a solution by direct substitution. is a solution by direct substitution.

2.7 LAGUERRE POLYNOMIALS

The equation

d*u

du
— 1—x)— +Nu=0 2.7.1
xdx2 =+ ( x)a'x + Nu ( )

has a polynomial solution for each positive integer N. To see this, we begin by identifying
po(x) =1 —x and p;(x) = Nx (see Eq. 2.4.2) so that

b() = 1, b] = —1, bk = 0, k>1 (272)
co =0, ci1 =N, =0, k>1

Hence, the indicial equation is
Firy=rr—=D+r=r>=0 (2.7.3)
Therefore, ry =r, =0 and s = 0. Foreachn > 1,

G,(k) = (n — k)b + cx, l<k<n

=0 it k> 1 @74)
Thus,
G,(1)=1—-n+N
= (2.7.5)
G,(k) =0, k=2,3,...,n
and the recursions 2.4.20 and 2.4.21 reduce to the single recursion
na, = —(—n+1+N)a,_;, n=12,... (2.7.6)
Set ag = 1. Then, for each k > 1,°
—D*N(N=1---(N—k+1
4 = (=D"N( ) ( +1) 2.7.7)

(k)?

Whenk=N+1,N+2,...,a, =0.
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The binomial coefficient

N NN—-1)---(N—k+1 N!
_ M ) ( +D _ (2.7.8)
k k! k'(N —k)!
leads to a neater solution:
“H(Y)
a = ———=—, k=1,2,... (2.7.9)
k!
and therefore
v EDH) e i (Y) (2.7.10)
_ _ k _ k
u(x)_LN(x)_l—i—Z T _Z P
k=1 k=0
is a polynomial solution of Eq. 2.7.1. The family of polynomials
Lo(x) =1
Ll(x) =1—-x
x2
Ly(x)=1—-2x+ o7 (2.7.11)
v (=DH(Y)
- k
Ly(x) = ; T

are the Laguerre polynomials.

Problems
1. Prove the validity of the Rodrigues formula, 2. Use the Rodrigues formula in Problem 1 and integration
e* 4" by parts to establish that
Ly(x) = ———(x"e™)
n! dx"

/'00 e “L,(x)L,,(x)dx =0, n#m
0

o0
/ efoﬁ(x) dx =1
0

2.8 ROOTS DIFFERING BY AN INTEGER: THE WRONSKIAN METHOD

We have seen in Section 2.7 that

& d
2 e 4+ piou=0 2.8.1)
dx? dx
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always has a solution of the form
[o¢]
u(x) = x" Zanx”, ag #0 (2.8.2)
n=0

for some r;. We know from general principles that there exists an independent solution u#, (x) in
some interval 0 < x < b. The Wronskian W (x) of u;(x) and u»(x) is defined as

W (x) = uy (x)ub(x) — u) (x)uz(x) (2.8.3)
and we know from Eq. 1.5.17 that
W(x) = Ke~/pot0/xldx (2.8.4)

Equating the two relationships in Eqs. 2.8.3 and 2.8.4, we can write

u (Duy(x) —uy(Du(x) K

—Jpo(x)/x]dx
= e (2.8.5)
ui (x) ui(x)
This is
d (ux(x)
dx \up(x)
so Eq. 2.8.5 can be integrated to yield
L) _ g f —21 e~/ Po@/xldx g (2.8.6)
uy(x) uj(x)

This last relationship yields u,(x) for any choice of u;(x). With no loss of generality we can
pick” K = ap = 1 and substitute the known series expansion 2.8.2 for u(x) in Eq. 2.8.6. First,

po(x) = by + bix 4+ box? + - - (2.8.7)
so that
1
—f PO e — bty — brx — —bax? — .. (2.8.8)
X 2
Hence,

e—j'[po(x)/x] dx _ e—b(] Inx—bjx—--

_ e—bo lnxe—blx—b2x2/2—~»-

=xb |:1 — (bix + %bzxz +--0)

(blx + %bzxz + - ')2

=x20 = bix +hox® +kx® 4+ ) (2.8.9)

"We take K = 1 and @y = 1 throughout this section.
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where k; are functions of by, b, ..., b;. Next,
1 1 : : (I=2a1x+--) (2.8.10)
—_—_—= e = — — 2a1x - 8.
u%(x) 2 (I+ax+--)2  x2n 1
and we find that
! e/ o)/ )]dx ! A=bix+--90 =2a1x+--)
u%(x) Y 2ri+bo 1 1
[1— (b +2a)x+--] (2.8.11)

= x2r1+b0

But since F(r) = (r —r))(r —ry) =r(r — 1) + bor + co, we see that rj +r, = 1 — by. By
definition, we know that s = r| — r, so that, by adding these equations, we get

2ri+by=1+s (2.8.12)
and therefore
1 1
Z_e*f[PO(X)/dex — T[1 —(by +2a)x + -] (2.8.13)
uy(x) x1ts

Let us now consider two special cases.

Case 1. Equal roots so that s = 0. Substituting Eq. 2.8.13 into Eq. 2.8.6 gives us

ur(x) = up(x) |:/ %dx — /(b1 +2a))dx + - - j|
=u1(x)Inx + u; (x)[—(b1 + 2a)x + - -] (2.8.14)
We can go one step further. Because ayp = 1,
ur(x) = up(x) Inx + x"[—(by +2a;)x + - -] (2.8.15)

[Note: It s = 0, the expansion for u, (x) will always include a term containing In x.]

Case 2. Roots differing by an integer, s = N, N positive. As in case 1, substitute Eq. 2.8.13
into Eq. 2.8.6 and obtain

d by +2
MZ(X):ul(x)[/fo-l _/ lxNaldx+~--+f§dx+~-~]

1 by +2
= uy(x) [—NxN + %X’N“ +clnx +-- :|
1
= cuy(x) Inx + u; (x) |:—N+d1x+--~]xN (2.8.16)

where ¢ represents a constant. Since u;(x) =x"(1+ax+--)andry — N =r; —s =1y,
we can express this second independent solution as

ur(x) = cuy(x) Inx + x" —l—i—(d —ﬂ)x—l—--- (2.8.17)
2(x) = cuy N 1Ty 8.

If ¢ = 0, the In x term will not appear in the solution u,(x).
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Although a few of the coefficients in Eq. 2.8.15 or 2.8.17 can be computed in this manner, no
pattern in the formation of the coefficients can usually be discerned. In the next section we
explore an alternative method which often yields formulas for the coefficients in the second
solution. The main importance of the technique illustrated here resides in these conclusions.

1. If the roots of the indicial equation are equal, then a second solution always contains a
Inx term and is of the form

o0
ur(x) = u(x)Inx + x" Zdnx" (2.8.18)
n=0

2. If the roots of the indicial equation differ by an integer, either

o0
Ur(x) = x" Zdnx" (2.8.19)
n=0
or
o0
ur(x) = cup(x) Inx + x” Z d,x" (2.8.20)
n=0

represents a second solution.
3. If po(x) = 0 or po(x) = by, the integral in Eq. 2.8.6 simplifies. If po(x) = 0, then

us(x) = ul(x)/ (2.8.21)

2(x)
If po(x) = by, then

Ur(x) = 1y (x) f (2.8.22)

bou2<x>

Problems

1. Verify that k, = %(b% — by) in Eq. 2.8.9. 4. Let s = 0 in the result of Problem 3 and thus obtain the
2. Extend Eq. 2.8.10 to following extended form for Eq. 2.8.15:
1 1

—2ax + (3a7 — 2ax) x* + -] ua(x) = uy (x) Inx +x" [—(by +2a1)x +

—— =1
W) X 1 (=16, —l—lbz—a1 2a2)x +-]

3. Use the results of Problems 1 and 2 to obtain the follow-

ing extended expression for Eq. 2.8.13: 5. In the Bessel-Clifford equation (Eq. 2.6.1), with y =0,
1 show that
— [Ipo(x)/x]dx
u%(x)e " us(x) =u1(x)1nx+2x—%x2+~--
1 where
= F [1 = (bl —+ 2611))6 0 (—l)kxk

up(x) =
+ (2a1by + 16 — 1by +3a} — 2a2) x* + -] £ klk!
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6. In the Laguerre equation (Eq. 2.7.1) with N = 0, show (b) Suppose that s # 0. Use Eq. 2.8.6 to show that
that 1
4 . Mz(x) = __xrlfs
Y s
U (x) = / ) X Reconcile this with the expected second solution s (x) =

using Eq. 2.8.6.
7. In the Laguerre

have L{(x) = 1 — x = u;(x). Show that

xr2

9. One solution of x2u” —x(1 +x)u' +u =0 is u;(x) =

tion (Eq. 2.7.1) with N =1, . . .
equation (Eq ) Wi we xe*. Verify this. Show that a second solution can be

written
ur(x) = (1 —x)Inx +3x +--- uz(x)zul(x)lnx—xz—l----
using Eq. 2.8.15, and 10. Show that
uz(x):(l—x)lnx—{—Sx—%x2+--- N Zaal2
ui(x) = (2
using the results of Problem 4. o a0 2" (Y
an
8. Show that
ow e uz(x)=u1(x)lnx+x1/2[—x—]3—6x2—---]
U - [imwpmax _ 1 . 5
uf(x) = e are solutions of 4x“u" + (1 — 2x)u = 0.

11.  Verify that u;(x) = x is a solution of x?u” — x(1 — x)
for the Cauchy—Euler equation, x2u” 4 boxu’ + cou = 0. u' 4+ (1 — x)u = 0. Use Eq. 2.8.6 to show that
Letul(x)zx”. 0 (_l)nxn
(a) Suppose that s = 0. Use Eq. 2.8.6 to show that HC S e ezn e Zl n-n!

n=
ur(x) = x"'Inx is a second solution.
2.9 ROOTS DIFFERING BY AN INTEGER: SERIES METHOD
Once again denote
,d*u du
Llu]l = x" == + xpo(x) — + pi1(x)u (29.1)
dx dx
and let
o0
u(x) =x" Yy ax", ag#0 (2.9.2)
n=0
Following the analysis in Section 2.4, we find
o0 n
Liul = F(rax" + Y [F(n +ra,+ Y G,,(k)ank] X" (2.9.3)
n=1 k=1
We want L[u(x)] = 0. For the purposes of this section we show that for any r, we can get
Llu] = F(r)apx" (2.9.4)
That is, we can find ay, ay, . . ., so that the infinite series part of Eq. 2.9.3 is identically zero. To

do this we solve the recursion

n
Fin+ Day ==Y Gy(K)ay4, n=12,- (2.9.5)
k=1
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without choosing . Obviously, in order that L[u] = 0, Eq. 2.9.4 demands that F () = 0, but we
ignore this for the time being. A specific equation will be used to illustrate the procedure. The
equation is

d’u

T u=0 (2.9.6)

For this equation F(r) = r2 —r,sothat r; =0, and r, = 1; all b, are zero since po(x) =0,
and all ¢, = 0 except c; = —1 since p;(x) = —x2. Referring to Eq. 2.4.12, we have

Llu]l = (r*> = Paox” + (> + rya;x"™*!

o0
+ Z ([r + 1) = (r +n)la, — ap_o)x"" (2.9.7)
n=2
So we set
2
r“+rya =0
( Jar (2.9.8)
r+n)r+n—a, =a,_,, n=>2
Thus, a; =0 and the recursion gives a3 = as = --- = 0. For the coefficients with even

subscripts the recursion gives

do

oy = , k=>1 2.9.9
KT+ DT +2) -+ 2k (29.9)
We can arbitrarily set ap = 1, so that u,(x) is defined as (see Eq. 2.4.3)
00 x2k+r
u(x) =x"+ (2.9.10)

= r+Dr+2)---(r+2k)

We can readily verify that Lu,] = (r> — r)x”, thus confirming Eq. 2.9.4. Setting r; = 0 and
r, = 1, respectively, gives

0 2%k

=1 2.9.11
up(x) =1+ ;; 0! 2.9.11)

o 2kt
u(x) =x + T E—— 2.9.12
2(r) ; 2k + 1)! (2.9.12)

The general solution of Eq. 2.9.6 is then

u(x) = Auy(x) + Bua(x) (2.9.13)

A homework problem at the end of this section will show that this is equivalent to the solution
found using the methods of Chapter 1, that is,

u(x) =cre’ +ce” (2.9.14)
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291s=0
In this case F(r) = (r — r1)? and Eq. 2.9.4 becomes
Liu,(x)] = (r — r1)*aox” (2.9.15)

Set ap = 1. In the present notation, u,(x)|,—, is a solution. Consider

8L _ I ad
P [, (x)] = a—rur(x)

_ 0 2.r
= 5[0 —rp)°x']
=2(r —r)x" + (r —r)*x" Inx (2.9.16)

If we set r = rq, Eq. 2.9.16 shows us that

d
L [—u,(x)|,:,]] =0 (2.9.17)
ar
Hence,
i €3]
—Ur(X)|r=r
dr ]

is also a solution. Thus,

u,(x)|r=r] and ;—ru,(x)|r=rl

are, as we shall see, a basic solution set. An example will illustrate the details.

EXAMPLE 2.9.1 \ | | |

Find two independent solutions of

d*u " du B
xdxz dx "=
» Solution

For this equation by = 1, ¢; = —1, and F(r) = r2, so that r; = r» = 0. It then follows that (see Eq. 2.4.12),

o0
Llul = rPagx” +[(r + D’ar — aglx™ + Y " [ay(r +n)* — a,(1x"*
n=2

so that
(r+ 1)2611 —ap=0

(r+n’a, —a,.1 =0, n>2
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EXAMPLE 2.9.1 (Continued) \ | | |

‘We then have
ap

a) = —(r n 1)2

- 40 . k=2
(r+D*r+22--(r+k)?

Ak

Thus, letting ap = 1,

r N Xk
S [1 +; T+ DX+ +’<)2}

The first independent solution is then, setting r = 0,

xk

r r=0 = =14+ —_—
1 (X)],—0 = U (x) ;(W

Using the result of this section, we find the second independent solution to beb

0
ur(x) = PP (X)],—0
r

r - Xk
= {x Inx |:1 —i—kz:; T 1)2(r+2)2"'(r+k)2:|

+ o Zxk%[w1>—2<r+2>‘2~-'(’+k)_2]}
k=1

r=0

The easiest way to compute the derivative of the product appearing in the second series is to use logarithmic
differentiation, as follows. Set

) =+D2 4+ (r+ b7

so that
1
— _2. _2... _22 _
fO)=2 3 k e
Then,
In[f(r)] = =2[In(r +1)+In(r +2)+ -+ 1In(r + k)]
and thus

d N L
ar "WON= Ty = 2|:r+1+r+2+ ' +r+k]

8Recall that da* /dx = a* Ina.
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EXAMPLE 2.9.1 (Continued)

Finally,

r+1

1
f') = =2fr) [— +

Substitute this into the series above and obtain, setting r = 0,

00 k
12() = -y () |y = Inx [1 +y x—]

= (

[—2f(0)<1+%+%+-~-+%>]

ar

o8]

—i—Zxk

k=1

=u;(x)Inx — Z 2x

where the kth partial sum of the harmonic series (1 + % + % + -4 % -+ ---) is written as

me=1+o4tp ]
k= 3 k

2

1

k!)?

o k

=
= &2

Problems

Determine the general solution for each differential equation
by expanding in a series about the origin (equal roots).

d*u  du
1. x—+ —+2u=0
xdx2 2= dx + 2u
d*u  du
2. 1—x)— + — =0
x( x)dx2 +dx tu
d*u du
2 _
3. x W—3xa+(4—x)u—0

4. Solve the Bessel-Clifford equation (Eq. 2.6.1), with
y = 0. Compare with the answer given in Problem 5 of
Section 2.8.

5. Find a general solution of the Laguerre equation (Eq.
2.7.1) and compare with the answer to Problem 7 of
Section 2.8. Use N = 1.

6. Show that the general solution given by Eq. 2.9.13 is the
same family of functions as the general solution given by
Eq.2.9.14.

7. Show that
Ll Lo, ]
+§+§+~~+m— 2n_§hn
where

1 1
hy=14+-+ -+ —
2 n

8. Use the method of this section to show that

€9 e &, hpx"
uﬂx):me, uz(x)zul(x)lnx—xz .
n=0 """ n=1 :

are solutions of x%u” — x(1 + x)u’ +u = 0.
9. Solve 4xu” + (1 — 2x)u = 0.
10. Solve xu” + (1 — x)u’ —u = 0.
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2.9.2 s = N, N a Positive Integer
We suppose that

s=ri—rn=N (2.9.18)
where N is a positive integer. Two very different possibilities exist. In some circumstances, we
get two independent Frobenius series solutions. The Cauchy—Euler equation is an illustration of
this situation. A second alternative is one Frobenius series and a solution involving In x. (See

Section 2.8 for a discussion of how these disparate cases arise.) The indicial equation is
F(r) = (r —r))(r — ry), and therefore we have (see Eq. 2.9.4)

Lluy(x)] = (r —r))(r — r2)apx” (2.9.19)

In Section 2.9.1 we obtained a second solution by computing du, /dr and noting that
|: du

L=

ar

But this fortunate circumstance is due entirely to the fact that r; is a double root; that is,
F(r) = (r — r1)?. This method fails if r; % r,. We can force a double root into the coefficient
of x" in Eq. 2.9.19 by choosing

0
] = —L[uy]ly—r, =0 (2.9.20)
r=rj ar

ap = (r —ryc (2.9.21)

where c is an arbitrary constant. Now

8 o [ow]_ .
5 Llurl = |:8r } = 5, =r)(r = r) ex’)

= —r)cx" +20 —r)(r —r)ex” 4+ (r —r)(r —r)?ex" Inx  (2.9.22)
which vanishes identically for r = r;. Thus, our second solution will be

ou,

=us(x) (2.9.23)

or r=ry

where u, is defined by using Eq. 2.9.21. An example will make this clearer.

EXAMPLE 2.9.2 \ | | |

Using Eq. 2.9.23 find the second solution of the differential equation

d%u

fp— —I—xd—u + ()c2 —Du=0
dx? dx N
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EXAMPLE 2.9.2 (Continued) \ | | |

» Solution

We have po(x) = 1 and p;(x) = —1 + x%,sothatby =1,co = —1,and ¢; = 1. The remaining coefficients
are zero. Since r; = 1 and r, = —1, we have s = 2 and
Firy=r*—1
=r—-Dr+1)

SFm4+r)=m+r—Dm+r+1)
From Eq. 2.4.12, with by = b, = ¢; =0 and ¢; = 1, we have
Llul = (r — )(r + Daox” + ayr(r +2)x"*!

oo
+ Z [(m+r—Dm+r+ Da, + a,_]x"*"

n=2

Thus, we are forced to set
ar(r+2)=0
m+r—0Dn+r+a, =—a, >, n=2,3,...

to ensure that L[u] = (r — 1)(r + 1)apx”. Since we do not wish to specify r, we must select a; = 0. Thus,
the recursion implies that a3 = as = --- = 0. For k > 1, the recursion yields
_ (—DFag 1
D H3) -+ 2%k =D () FS) (2 1)

Ak

Define f(r) = (r +3)2(r +572---(r +2k — 1)"2(r +2k + 1)~! and set ay = r + 1. Then it follows

that
ay = (=D fr).  k=12,...
and
Llul=(r — )+ 1)*x"
and

u(x) = x [(r +D+Y (—l)kf(r)xzk}
k=1

Hence, withr = 1,

o (—1)kX2k
—xl2 _=x
ui(x) x|: +;22k—lky(k+1)g:|
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EXAMPLE 2.9.2 (Continued) \ | | |

since

1

42 - -2 1_
F()=4"2.62...2k) 22k +2)" b=y

We now differentiate u, (x) and obtain

Au, e
811 =u,(x)Inx + x" |:1 + ; (—l)kf’(r)x2k:|
Set r = —1 and then
(r) = 2
et = 8r r=—1
o0
=u,(x)| __ Inx+x"! [1 + Z (-1)’7’(—1)#"}
k=1
Now, f(=1) =224 2k —2)"2(2k)""
B 1
T22%k=1(k — 1)k!
and

/ 2 2 -2 -1
rn= f(r)[—+?+ "+r+2k—1+r+2k+1]

so that

—1 1 1 1
") ——— (14—
F=h 22/<1(1<—1)!1<!<+2Jr +k—1+2k>

Since hy — hy—; = 1/k, we may write

1 !
f(=1) = m[hkq + 5(hk — hi-1)]
-1 hi + hi—y

Tk — k! 2

We can now express the second solution u;(x) as follows:

3 x (_1)kx2k B e (_l)kak
) =" [Z m}* 1 [1 - ;mmk”k—')]
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EXAMPLE 2.9.2 (Continued) l | | |

Finally, we adjust the form of u,(x) by altering the index of summation:

o (_1)k+1x2k+1 1 00 (_1)k+1x2k+1
uz(x) = kX_O: gD ML kZ(; gk 5 1 et T )

This is the preferred form of the second solution. Note that the function multiplying In x is related to # (x) and
that 11 (x) can be written as

0 (_l)kak
= 2 R
ui(x) =x |: + ; PG T 1)!:|
e (_l)kak 0 (—l)kX2k+1

= 2T+ D! 2 2211 (k + 1)

k=0 k=0

Problems

Solve each differential equation for the general solution valid 4. Solve the Bessel-Clifford equation (Eq. 2.6.1), with

about x = 0 (roots differing by an integer). y = N a positive integer.
d’u 5. Solve x?u” 4+ x*u’ — 2xu = 0.
1. x— —u=0
dx 6. Solve xu”" 4+ (3 + 2x)u’ + 4u = 0.
d? d "y =
2 xz—lz+x—u+(x2—1)u=0 7. Solve xu” +u = 0.
dx* = dx 8. Solve xu” + (4 + 3x)u’ +3u = 0.

&2 d
3, 4x2d—’; —4x(1—x)d—”+3u —0
X X

2.10 BESSEL'S EQUATION

The family of linear equations

d’u du
2 2 PAV
X —2+x—x+(x —AH)u =0 (2.10.1)

known collectively as Bessel’s equation, is perhaps the single most important nonelementary
equation in mathematical physics. Its solutions have been studied in literally thousands of re-
search papers. It often makes its appearance in solving partial differential equations in cylindri-
cal coordinates.

The parameter X is real and nonnegative and, as we shall see, affects the nature of the solu-
tion sets in a very dramatic way. Since the Bessel equation has a regular singular point at x = 0,
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we apply the Frobenius method by assuming a solution of the form

o0
u(x) = Za,pc"” (2.10.2)
n=0

2.10.1 Roots Not Differing by an Integer

Instead of applying the formulas® developed in Section 2.4, it is simpler and more instructive to
substitute #(x) and its derivatives into Eq. 2.10.1. This yields

o0 o0
Z(n —r)(n+r — Da,x"™ + Z(n + F)a,x"t"
i=0 n=0
oo o0
+ Y =N W a,xt =0 (2.10.3)
n=0 n=0

Changing the third summation so that the exponent on x is n 4 r, we have

o0 o0
S +rm+r—D+@+r) = Aax"™ + > a,0x" =0 (2.104)
n=0 n=2

Writing out the first two terms on the first summation gives
r(r—1) 4+r —Alagx” +[(1+r)r + (1 +7r) — Alagx't"

+ Z ((n+rm+r—14+0+r) —2a, + a_o}x"" =0 (2.10.5)
n=2

Equating coefficients of like powers of x to zero gives

(r* = 2*ag =0 (2.10.6)
P 4+2r+1=2%a; =0 (2.10.7)
[(n+r)* — A*lay + a2 =0 (2.10.8)
Equation 2.10.6 requires that
P =2=0 (2.10.9)

since ap # 0 according to the method of Frobenius. The indicial equation above has roots
ri=Aandr, = —A\.

Next, we shall find u;(x) corresponding to r; = A. Equation 2.10.7 gives a; = 0, since the
quantity in parentheses is not zero. From the recursion relation 2.10.8, we find that

°The student is asked to use these formulas in the Problems following this section.
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az = as = a7 = --- = 0. All the coefficients with an odd subscript vanish. For the coefficients
with an even subscript, we find that

ao
aHh = ——
2T 72041
a ap
ay = — =
N 22.2(0+2) 24200+ DA +2) (2.10.10)
ay ao
46 = etc.

T2230+3) 29320+ DA+ +3)’

In general, we can relate the coefficients with even subscripts to the arbitrary coefficient ag by
the equation

(=D"ao
22nl A+ DA +2) - (A +n)’

ayp = n=0,1,2,... (2.10.11)

Because q is arbitrary, it is customary to normalize the a,’s by letting

ap = m (2.10.12)
With the introduction of the normalizing factor 2.10.12, we have
="
ary, = TR ——— n=20,1,2,... (2.10.13)
where we have used
ro‘+n+H)=Rx+nA+n—-10---A+DICA+1) (2.10.14)

By substituting the coefficients above into our series solution 2.10.2 (replace n with 2n), we
have found one independent solution of Bessel’s equation to be

o (_l)nx2n+A

Ji(x) = ; T e (2.10.15)

where J; (x) is called the Bessel function of the first kind of order A. The series converges for all
values of x, since there are no singular points other than x = 0; this results in an infinite radius
of convergence. Sketches of Jy(x) and J;(x) are shown in Fig. 2.4. Table B3 in the Appendix
gives the numerical values of Jy(x) and J;(x) for0 < x < 15.

The solution corresponding to r, = —A is found simply by replacing A with (—A). This can
be verified by following the steps leading to the expression for J; (x). Hence, if A is not an inte-
ger, the solution

J_3(x) i CLra (2.10.16)
X)) = A0
g £ D=0 (n — A+ 1)

is a second independent solution. It is singular at x = 0. The general solution is then

ulx) =AJ,(x)+ BJ_;(x) (2.10.17)
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Figure 2.4 Bessel functions of the

1 first kind.
Jo(x)

If A is zero or an integer, J_, (x) is not independent but can be shown to be related to J; (x)
by the relation (see Problem 10)

J @) = (=1D"Ji(x) (2.10.18)

A second, independent solution for A zero or a positive integer is given in subsequent sections.

2.10.2 Maple Applications

The Bessel functions of the first kind can be accessed in Maple by using BesselJ (v, x),
where v is the order of the function (X in our formulas), and x is the variable. Figure 2.4 can be
reproduced with this command:

>plot ({BesselJd (0,x), BesselJd(1l, x)}, x=0..14);

Problems

1. Apply the formulas developed in Section 2.4 and findex- 8. 4xu” 4 4xu’ + 4x> — Du =0

pressions for J; (x) and J_; (x).

9. Solve u” + u = 0 by substituting u = \/xv and solving
the resulting Bessel’s equation. Then show that the solu-
tion is equivalent to A sinx + B cos x.

2. Write out the first four terms in the expansion for (a)
Jo(x) and (b) Ji(x).

3. From the expansions in Problem 1, calculate Jy(2) and
J1(2) to four decimal places. Compare with the tabulated
values in the Appendix.

10. Suppose that A > 0 is an integer. Use the infinite series
expansion of J_, (x) to show that

If we were interested in Jy(x) and J; (x) for small x only
(say, for x < 0.1), what algebraic expressions could be
used to approximate Jo(x) and J; (x)?

Using the expressions from Problem 4, find Jy(0.1) and

J1(0.1) and compare with the tabulated values in the
Appendix.

Write the general solution for each equation.

6. x%u’ +xu' + (x2 - %)u =0
1 —
7. xu”+u/+(x—§)u_0

11.

I () = (=D*J(x)

(Hint: When A is an integer, the series for J_, begins
withn = A.)

Let 1,,(x) be a solution of the modified Bessel equation,

d*u du
2 2 2y, —
X W—f—xa—(x +A)u =0

Find I,(x) by the Frobenius method. (Assume that the
roots do not differ by an integer.)



134

12.

13.
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Use the results of Problem 11 to verify that
L(x) =i "J,(ix)

where i = «/—1 and A = n.

Show that

2 \1/2
J1/2(x)=(5> sin x

9 1/2
J,]/z(x) = (E) COoS x

and

2.10.3 Equal Roots

by examining the respective power series.

Use Maple to solve these differential equations:

14. Problem 6.
15. Problem 7.
16. Problem 8.

If A = 0, Bessel’s equation takes the form

d’u d
Zd—z +xd—u +x%u=0

In this case, by = 1, ¢; = 1, and F(r) = r2, the case of equal roots; hence,

o0
Llu]l = rlapx” + (r + D?a1x" ! + Z [(n+ 1) 2ay, + ap_o]x"*"

So we set

and

Thus, we have a; = 0 and the recursion gives a3 = a5 =

even subscript

Set ag = 1 and define u, as follows:

r+ 1?%a; =0

(n+ r)zan =—a,,, n=23,...

(=DFag

T DN+ (r + 2K

( )k 2k+r

= +Z 4270+ 47 (r + 267

Note that setting r = 0 gives L[u,(x)|,—o] = 0 and

( l)k 2k

up(x) =1+ Z ANV ERCT

(2.10.19)

(2.10.20)

(2.10.21)

(2.10.22)

- = 0. For the coefficients with an

(2.10.23)

(2.10.24)

(2.10.25)
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This is the same solution as before. It is the second independent solution that is now needed. It
is found by expressing u, (x) as

ey (D™ 2.10.26
e R D T T (21020

Differentiating the expression above gives

au, o o0 (_1)kx2k
TR |:1+k2_1:(r+2)2(r+4)2~~(r+2k)2:|
RS 9 B B
+x {;(—l)kxz"g[(wz) 2 r+2k) 2]} (2.10.27)

The derivative of the product appearing in the second sum is computed using logarithmic differ-
entiation. Set

FO)=C+)20+472 42007 (2.1028)

so that

F0)=27"%-472...(2k)2
1
- (2.10.29)
and

)= -2 ! ! ! 2.1030
fr——f(r)<m+m+"'+r+2k> (2.10.30)

We substitute f'(r) into Eq. 2.10.27 and obtain

38”; = x"Inx [1 +3° (—l)kx2kf(r):|

k=1

> 1 1
+x" Z (=D (=2) f(r) (m +-F P 2k>

k=1

_ r - 1Yk, 2k 1 1
= u, (x) Inx + x k;( Dfx(=2) £ (r) (—r+2+ +r+2k) (2.10.31)

Setting r = 0 yields
u,
or

ur(x) = o

(_1)k+1x2k

I (2.10.32)

o0
= Jo(x)Inx + Z
k=1
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The Bessel function of the second kind of order zero is a linear combination of Jy(x) and u,(x).
Specifically,

2 2
Yo(x) = ;uz(x) + ;(y —In2)Jo(x) (2.10.33)

where y is the Euler constant, y = 0.57721566490. Finally, we write

2 X o (_1)k+1x2k
Yot) = = {Jo(x) [ln 5+ y] + ; T (2.10.34)
and the general solution is
u(x) = AJo(x) + BYp(x) (2.10.35)

Problems
1. Find the “logarithmic” solution of the modified Bessel part of the definition of Y(x) with its first two nonzero
equation, A = 0, terms.
5 d’u du 2 3. Explain how Eq. 2.10.34 arises from Eq. 2.10.32.
xX*— +x— —xu=0
dx? dx
2. Use Eq.2.10.34 and Table A4 for Jy(x) to compute Yo (x)
forx =0.1,0.2, ..., 1.0. Approximate the infinite series

2.10.4 Roots Differing by an Integer

The Bessel equation with A = 1 was solved in Example 2.9.2. The expression for the second so-
lution was found to be

3 (_1)k+1x2k+1 1 0 (_1)k+1x2k+1
MZ()C) = kXZ(; m nx -+ ; - kg(; m(k/H_l + hk) (21036)

Using —J; (x) to represent the series multiplying In x,

1 1 (_l)kx2k+1
ur(x) = —Ji(x)Inx + T 2 kg(; Uk + 1)!

(Mig1 + hi) (2.10.37)

A standard form for this “second” solution is denoted by Y} (x) and is called Bessel’s function of
the second kind of order 1. It is defined as

2 2
Vi) = = Zua(x) + —(y = InDJ1(x) (2.10.38)
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where y is Euler’s constant. (Compare with Eq. 2.10.34.) In neater form,

(=D 5 (hyeyy + hy)

Y (x) = —Jl(x) [m T4 y] o4t Z S D) (2.10.39)
Hence, the general solution of Bessel’s equation of order 1 is
u(x) = AJi(x) + BY:(x) (2.10.40)

A similar analysis holds for Bessel’s equation of order N, where N is a positive integer. The
equation is

2d2”+ du + @2 =NHu=0 (2.10.41)
x— 4+ (x" — u= .10.
dx? dx

and a pair of basic solutions is (see Eq. 2.10.15)

e (_ l)nx2n+N

J = —_— 2.10.42
v ; 225N pl(n + N)! ( )
and
2 X
V() = Zy) [1n S+ y]
(=1)"x 2n+N 1 N-1 (N_n_l)!XanN
- Z 22”+Nn'(n + N)'( N+ hn) = - Z(; 22—N | (2.10.43)
with the general solution
ulx) =AJy(x)+ BYy(x) (2.10.44)

Graphs of Yy(x) and Y;(x) are shown in Fig. 2.5. Since Yy(x) and Y;(x) are not defined at
x =0, that is, Y5(0) = Y;(0) = —o0, the solution 2.10.44 for a problem with a finite boundary
condition at x = 0 requires that B = 0; the solution would then only involve Bessel functions of
the first kind.

2.10.5 Maple Applications
Maple also has available the Bessel functions of the second kind. Figure 2.5 can be created with
this command:

>plot ({BesselY (0,x), BesselY(1l, x)}, x = 0..14,
y = =2..2);

Figure 2.5 Bessel functions of the
second kind.

Yo(x) Y,00

/\>1/\x
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Problems

1. Derive Eq. 2.10.39 from Eq. 2.10.38.
2. Derive Eq. 2.10.43 by obtaining the second solution of

[Hint: Use Problems 14 and 15 of Section 2.5 and the fact
thath, = V(n+1) + y.]

Eq. 2.10.41 by the method of Frobenius. 8. Show that the Wronskian is given by
Show that Y, satisfies each relationship. W (s Yo) = i1 Yo — Jn¥upt = %
3. xY/ (x) =xY,_1(x) —nY,(x)
': ! 9. Show that
4. xY,(x) = —xYp41(x) +nY,(x) d d
5. 2Y/(x) = Yoy (x) — Yop1 (%) EYo(x) =" ), Elo(x) =—-Ji(x)
6. 2nY,(x) = x[Y,—1(x) — Yur1(x)] 10. Prove that Wronskian, for x not an integer, is

W, J_n) =k/x, k#0

Use the results of Problem 13, Section 2.10.1 and
Problem 10 above to evaluate W (J1 2, J_1/2).

7. Use Eq. 2.10.15 to show that

20 = heom: —(3) >

and hence

DFOO+k+ D% T
2T (A +k+1) k!

oA

d T
s -y
—~ h| a7e)

2.10.6 Basic Identities

In the manipulation of Bessel functions a number of helpful identities can be used. This section
is devoted to presenting some of the most important of these identities. Let use first show that

d
d—[x“lJM(x)] =7 (x) (2.10.45)
X
The series expansion (2.10.15) gives
0 — 1)y 22242
L =Y D' (2.10.46)

L Pt IT (A + 1 +2)

This is differentiated to yield

i (—1)"(21’1 + 20+ 2)x2n+2)L+I

Ly I D+ n+2)

- i (—1)"2(}1 + A+ 1)x2n+2k+1
L.l n4+ DA +n+ 1)

d
a[x“‘ml(x)] =

n=0
_ x)»+1 i (_l)nx2n+)»
£ 225D (L +n + 1)
=x"" 7 (x) (2.10.47)
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This proves the relationship (2.10.45). Following this procedure, we can show that
d. —A
E[x i) = —x""Jp1(x) (2.10.48)

From the two identities above we can perform the indicated differentiation on the left-hand sides
and arrive at

dJ.
x % + O+ Dt gy =3
x (2.10.49)
_,dJy, a1 —A
X t— —Ax J)L = —X J)L_;_]
dx

Let us multiply the first equation above by x *~! and the second by x*. There results

dhy1  A+1
di: + P Jry1 =
T , , (2.10.50)
I T The
If we now replace A + 1 with X in the first equation, we have
dJ, A
I =J (2.10.51)
dx x
This equation can be added to the second equation of 2.10.50 to obtain
dJ
== = (o1 — 1) (2.10.52)
dx

Equation 2.10.51 can also be subtracted from the second equation of 2.10.50 to obtain the im-
portant recurrence relation

2\
Jrp1(x) = ;Jx(x) —Jio1(x) (2.10.53)

This allows us to express Bessel functions of higher order in terms of Bessel functions of lower
order. This is the reason that tables only give Jy(x) and Jj(x) as entries. All higher-order Bessel
functions can be related to Jy(x) and J; (x). By rewriting Eq. 2.10.53, we can also relate Bessel
functions of higher negative order to Jo(x) and J;(x). We would use

20
Jro1(x) = ;Jx(x) = Jip1(x) (2.10.54)

In concluding this section, let us express the differentiation identities 2.10.45 and 2.10.48 as
integration identities. By integrating once we have

/leJ,\(x) dx =X x0) +C
(2.10.55)
/x_’\JHl(x) dx = —x L (x)+C

These formulas are used when integrating Bessel functions.
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EXAMPLE 2.10.1 \ | | |

Find numerical values for the quantities J4(3) and J_4(3) using the recurrence relations.

» Solution

We use the recurrence relation 2.10.53 to find a value for J4(3). It gives

2.3
Ja3) = —=150) - LB)

2.2
=2 [TJZ(S) - J1(3)} — 103)

5

2

8 5
=5/ 3) =350

8 5
=3 x 0.339 — 3 x (—=0.260) = 0.132

Now, to find a value for J_4(3) we use Eq. 2.10.54 to get
2(-3)

J4(3) = TL3(3) —J203)
2(-2)
= -2 [T J2(3) — J—1(3)} —J2(3)
5[2(-1
=3 [%1—1(3) - 10(3)} +2J.1(3)
8

5
= 5l=h3)] = 3h(3) = 0.132

We see that J4(x) = J_4(x).

EXAMPLE 2.10.2 \ | | |

Integrals involving Bessel functions are often encountered in the solution of physically motivated problems.
Determine an expression for

/ x> (x)dx
» Solution
To use the second integration formula of 2.10.55, we put the integral in the form

/lez(x)dx = /x3[x_l.12(x)]dx

u=x’ dv=x""Dx)dx
du = 3x? v=—x"1J(x)
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EXAMPLE 2.10.2 (Continued) l | | |

Then

/szz(x) dx = —x>Ji(x) + 3/xJ1 (x)dx

Again we integrate by parts:

u=x dv=J(x)dx
du=dx v=—Jyx)

There results
/xz.lz(x)dx = —x2J1(x) = 3xJo(x) +3 f Jo(x) dx

The last integral, [Jo(x) dx, cannot be evaluated using our integration formulas. Because it often appears
when integrating Bessel functions, it has been tabulated, although we will not include it in this work.
However, we must recognize when we arrive at [ J(x) dx, our integration is complete. In general, whenever
we integrate [x"J,(x) dx and n + m is even and positive, the integral [Jo(x) dx will appear.

Problems

Evaluate each term. Ja(x)
9. dx
1. J3(2) 2
2. J5(5) 10. /le(x)dx
dJy
3. —atx=2
dx 11. /x311(x)dx
s 2y J5(x)
. — atx = X
dx 12. / 3 dx
X
dJ;
5. —atx =
dx 13. We know that
dJs 2\ 12 2\ 12
6. —atx =1 J == i J_ ==
dx 1/2()(3) (nx) sin x, 1/2()6) (JTX) COS X
Find an expression in terms of Jj(x) and Jy(x) for each Use Eq. 2.10.53 to find expressions for J3/>(x) and
integral. J5/2(x).

X Prove each identity for the modified Bessel functions of
7. /X Jr(x) dx Problem 11 of Section 2.10.1.

14. xI)(x) =x1,—1(x) —nl,(x)
15. xI)(x) = x141(x) + nl,(x)

8. /x]z(x) dx
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16. 21, (x) = Li—1(x) + Li+1(x) 19. Computer Laboratory Activity: As Problems 3—6 show,
17. 2nl,(x) = x[Li—1(x) — Li41(0)] the Bessel function of the first kind is a differentiable
function. Use Maple to create graphs of J3 near x = 3.5.
18. Express I12(x) and I_j;;(x) in terms of elementary Use data from your graphs to approximate the derivative
functions analogous to the expressions for Ji2(x) and there. Then, compute dJ3/dx at x =3.5 using Eq.
J_1/2(x) in Problem 13. 2.10.52 and compare your answers.
2.11 NONHOMOGENEOUS EQUATIONS
A general solution of
d*u du
S+ o) S+ pr(u = f(x) (2.11.1)
dx dx
is the sum of a general solution of
d’u du
-+ po(x)— + pi1(x)u =0 (2.11.2)
dx dx

and any particular solution of Eq. 2.11.1. If a general solution of Eq. 2.11.2 is known, the method
of variation of parameters will always generate a particular solution of Eq. 2.11.1. When
Eq. 2.11.2 has its solution expressed as a power or Frobenius series, the general solution of
Eq. 2.11.1 will also be in series form. An example will illustrate.

EXAMPLE 2.11.1 \ | | |

Find a particular solution of
d’u 42
— +xu=x
dx?

» Solution

The point x = 0 is an ordinary point of the given equation and the technique of Section 2.2 provides the fol-
lowing pair of independent solutions:

4 8

()_1 X + X
M= T3 T3 478
5 x9
Ur(X) = x — —— +

4.5 4.5.8.9

In the method of variation of parameters, we assume a solution in the form

up(x) = viuy + vouy
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EXAMPLE 2.11.1 (Continued) \ | | |

and determine v; (x) and v, (x). The equations for v; and v, are (see Section 1.11)
viuy 4 vhus =0
viu) + vy = x

which have the unique solution

vﬁ ) = _xu;fx)
xuy(x)
vy(x) = W)

where W (x) is the Wronskian of u; and u,. However,

W(x) = Ke /po/xldxy _ 0 — g

143

since po(x) = 0. We pick K = 1, since retaining K simply generates a multiple of u, (x). Hence, the preced-

ing expressions can be integrated to give

vi(x) = —/xuz(x)dx

and

XS .X9
_ _ _ _..)a
f( 3.4 3.4.7.8 ) *

x2 xé xlO

2346347810

The regular pattern of the coefficients is obscured when we substitute these series into the expression for

up(x):

x x 1 x4

X )CS
+<7‘3 4 6+'“> (“ﬁ*“')
7

i +
6 6-6-7
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An alternative method sometimes yields the pattern of the coefficients. We replace the non-
homogeneous term f (x) by its power series and substitute

1p(x) =Y byx" (2.11.3)
n=0

into the left-hand side of Eq. 2.11.1 It is usually convenient to add the conditions that
u(0) = 0 = u’(0), which means that by = b; = 0 in Eq. 2.11.3. The following example illus-
trates this method.

EXAMPLE 2.11.2 \ | | |

Find the solution to the initial-value problem

d’u ) ,
E+xu=x, u@)=u0)=0

» Solution

We ignore u;(x) and u>(x) and proceed by assuming that u,(x) can be expressed as the power series of
Eq. 2.11.3. We have

o0 o0
x%u,(x) = E byx"T? = E by_rx"
n=0 n=2

and
o0 o.¢]
) (x) = Z (n—Dnb,x" 2= (n+ D(n +2)byiox"
n=2 n=0
Hence,
o0
u; + xzup = 2b, + 6b3x + Z [(m+ 1)+ 2)byir + b, 2]x" =x
n=2
Identifying the coefficients of like powers of x leads to

X9 b, =0
xb: 6b; =1
X" m+2)(n+ Dbyya+ by 2 =0, n=>?2



2.11T NONHOMOGENEOUS EQUATIONS

EXAMPLE 2.11.2 (Continued) \ | | |

In view of the fact that by = b; = b, = 0 and that the subscripts in the two-term recursion differ by four, we
solve the recursion by starting with n = 5. The table

b
1 n=5 by = ———
7.6
2 9 b by
n —= = —
! 11-10
bap—1
k n=4k+1 bpyo—=—— 1
. T s = T @1 2)

leads to the solution

(=1DFbs
6-7-10-11--- (4 + 2)(4k + 3)

byyz =

Thus, noting that b3 = %,

sy (=Dt
u,,(X)—g X JrkX::6.7...(4k-|-2)(4k+3)

1

This method is preferred whenever it can be effected, since it generates either the pattern of the coefficients or,
failing that, as many coefficients as desired. The first two terms in the expansion in Example 2.11.1 are veri-
fied using the aforementioned series.

The general solution is, then, using u(x) and u,(x) from Example 2.11.1,

u(x) = Auy(x) + Bus(x) +u,(x)

Using u(0) = 0 requires that A = 0; using u'(0) = 0 requires that B = 0. The solution is then

- 1 X ) (_1)kx4k+1
u(x) = 6 [x +;6.7...(4k+2)(4k+3)}

Any variation in the initial conditions from #(0) = u'(0) = 0 brings in the series for 1 (x) or u,(x). For
instance, since

u(x) = Auy(x) + Bua(x) +u,(x)

the initial conditions, #(0) = —1, u’(0) = 2, lead to the solution

()= m+2()+1[3—i1+~}
u(x) = —uy(x uy(x 6x 57

145
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2.11.1 Maple Applications

Note on computer usage: In Maple, the formal_ series option for dsolve only works for

certain homogenous equations.

Problems

Solve each initial-value problem by expanding about x = 0.
1. @ —xMu" +2u=x*+2x,u(0) =0, u'(0) =0
2. w4+ -—x)u=4x,u0)=1,u'0)=0
3. u’ —x%u' +usinx =4cosx, u(0) =0, u'(0) =1

4. Solve (1 —x)f’ — f = 2x using a power-series expan-
sion. Let f =6 at x =0, and expand about x = 0.
Obtain five terms in the series and compare with the

exact solution for values of x = 0, %, %, 1, and 2.

5. Solve the differential equation u” + x?u = 2x using a
power-series expansion if u(0) =4 and u'(0) = —2.
Find an approximate value for u(x) atx = 2.

Solve each differential equation for a general solution using
the power-series method by expanding about x = 0. Note the
radius of convergence for each solution.

6o M,y
. — tu=x
dx
7. A-0Z yu=x
du 5 .
8. x— +x"u =sinx
dx
d*u du
9, — 42— = x?
dx? + dx tu=x
d? d
10. é+6£+5u=x2+251nx
11. The solution to (1 —x)df/dx — f = 2x is desired in

the interval from x = 1 to x = 2. Expand about x = 2
and determine the value of f(x) atx = 1.9if f(2) = 1.
Compare with the exact solution.
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Laplace Transforms

3.1 INTRODUCTION

The solution of a linear, ordinary differential equation with constant coefficients may be ob-
tained by using the Laplace transformation. It is particularly useful in solving nonhomogeneous
equations that result when modeling systems involving discontinuous, periodic input functions.
It is not necessary, however, when using Laplace transforms that a homogeneous solution and a
particular solution be added together to form the general solution. In fact, we do not find a gen-
eral solution when using Laplace transforms. The initial conditions must be given and with them
we obtain the specific solution to the nonhomogeneous equation directly, with no additional
steps. This makes the technique quite attractive.

Another attractive feature of using Laplace transforms to solve a differential equation is that
the transformed equation is an algebraic equation. The algebraic equation is then used to deter-
mine the solution to the differential equation.

The general technique of solving a differential equation using Laplace transforms involves
finding the transform of each term in the equation, solving the resulting algebraic equation in
terms of the new transformed variable, then finally solving the inverse problem to retrieve the
original variables. We shall follow that order in this chapter. Let us first find the Laplace trans-
form of the various quantities that occur in our differential equations.

3.2 THE LAPLACE TRANSFORM

Let the function f () be the dependent variable of an ordinary differential equation that we wish
to solve. Multiply f(¢) by e and integrate with respect to 7 from 0 to infinity. The independent
variable ¢ integrates out and there remains a function of s, say F(s). This is expressed as

F(s) = / h f(t)e ™ dt (3.2.1)
0

The function F (s) is called the Laplace transform of the function f(¢). We will return often to
this definition of the Laplace transform. It is usually written as

L(f) = F(s) = / h (e dt (3.2.2)
0
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where the script &£ denotes the Laplace transform operator. We shall consistently use a lower-
case letter to represent a function and its capital to denote its Laplace transform; that is, ¥ (s)
denotes the Laplace transform of y(¢). The inverse Laplace transform will be denoted by %,
resulting in

f)=%7'(F) (3.2.3)

There are two threats to the existence of the Laplace transform; the first is that

/ " Fe di
0

may not exist because, for instance, lim f(#) = +o00. The second is that, as an improper integral
=1y

f - f(t)e ™ dt
0

diverges. We avoid the first pitfall by requiring f () to be sectionally continuous (see Fig. 3.1
and Section 3.3). The second problem is avoided by assuming that there exists a constant M such
that

| f()] < Me” forall >0 (3.2.4)

Functions that satisfy Eq. 3.2.4 are of exponential order as t — oco. If f(¢t) is of exponential
order, then

(3.2.5)

/oo ft)e™" dt
0

o0 o0
S/ |f()| e dt < M/ e qr =
0 0

s —

The function e'” does not possess a Laplace transform; note that it is not of exponential order. It
is an unusual function not often encountered in the solution of real problems. By far the major-
ity of functions representing physical quantities will possess Laplace transforms. Thus, if f(¢)
is sectionally continuous in every finite interval and of exponential order as t — oo, then

LfH] = fo fe " dt (3.2.6)

S

J—

=
~

S

S

Figure 3.1 A sectionally continuous function.
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exists. Moreover, the inequality proved in Eq. 3.2.5 leads to

(i) s F(s) is bounded as s — 00, from which it follows that
(i) lim F(s) =0.
§—>00

Thus, F(s) = 1, for instance, is not a Laplace transform of any function in our class. We will as-
sume that any f(¢) is sectionally continuous on every interval 0 < ¢ < fy and is of exponential
order as t — o0. Thus £(f) exists.

Before considering some examples that demonstrate how the Laplace transforms of various
functions are found, let us consider some important properties of the Laplace transform. First,
the Laplace transform operator &£ is a linear operator. This is expressed as

Llaf (@) +bg(t)] = a¥(f) +bL(g) (3.2.7)

where a and b are constants. To verify that this is true, we simply substitute the quantity
[af(¢) + bg(t)] into the definition for the Laplace transform, obtaining

Flaf () + bg(t)] = fo [Wf (1) + be(t)]le~ di

[o¢] o0
= a/ f(e ™ dt + b/ g)e " dt
0 0
=aZ(f)+ Db¥(g) (3.2.8)
The second property is often called the first shifting property. It is expressed as

Ll f(1)] = F(s —a) (3.2.9)

where F (s) is the Laplace transform of f (7). This is proved by using e*’ f(¢) in place of f(¢) in
Eq. 3.2.2; there results

Ll f(1)] = / " e f(rye di = / Y ye st g (32.10)
0 0

Now, let s — a = 4. Then we have

Lle" f(1)] = f h fe 3 de
0
=FG)=F(s—a) (3.2.11)

We assume that s > a so that 4 > 0.
The third property is the second shifting property. It is stated as follows: If the Laplace trans-
form of f(¢) is known to be

E(f) = F(s) (3.2.12)

and if

(1) = {(f;“ —a), ; ~ (3.2.13)
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then the Laplace transform of g () is
F(g) = e “F(s) (3.2.14)
To show this result, the Laplace transform of g(¢), given by Eq. 3.2.13, is

F(g) = / ge™ " dt = / 0-e*dt +/ f(t—a)e*"dt (3.2.15)
0 0 a

Make the substitution T = ¢t — a. Then dt = dt and we have

L(g) = /00 F@)e D gr = 7 /00 f(D)e*Tdt = e “F(s) (3.2.16)
0 0

and the second shifting property is verified.
The fourth property follows from a change of variables. Set t = af (a is a constant) in

F(s) = / e () dt (3.2.17)
0
Then, since dt = dt/a,
l o0
F(s) = —/ oGl g (3) dt (3.2.18)
a Jo a

which may be written, using 4 = s/a,

aF(as) =§E|:f <é):| (3.2.19)

The four properties above simplify the task of finding the Laplace transform of a particular
function f(¢), or the inverse transform of F'(s). This will be illustrated in the following exam-
ples. Table 3.1, which gives the Laplace transform of a variety of functions, is found at the end
of this chapter.

EXAMPLE 3.2.1 \ | | |

Find the Laplace transform of the unit step function

u(t)

I, t>0
“0(”:{0 (20
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EXAMPLE 3.2.1 (Continued) \ | | |

»Solution

Using the definition of the Laplace transform, we have

gg(l/to) = / uo([)e—“ dt = / e—st dt = __e_st _ 2
0 0

N 0 N

This will also be used as the Laplace transform of unity, that is (1) = 1/s, since the integration occurs
between zero and infinity, as above.

EXAMPLE 3.2.2 [ | | |

at

Use the first shifting property to find the Laplace transform of e®’.

»Solution

Equation 3.2.9 provides us with
L") = F(s —a)
where the transform of unity is, from Example 3.2.1
1
F(s) = -
s
We simply substitute s — a for s and obtain

jf(e‘”) = S%

a

EXAMPLE 3.2.3 \ | | |

Use the second shifting property and find the Laplace transform of the unit step function u,(t) defined by

u, (1)

1, t>a

““(t)z{o t<a
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EXAMPLE 3.2.3 (Continued) \ | | |

Check the result by using the definition of the Laplace transform.

»Solution

Using the second shifting theorem given by Eq. 3.2.14, there results
L(uy) = e ¥ F(s)
1
= —e
s
where F'(s) is the Laplace transform of the unit step function.
To check the preceding result, we use the definition of the Laplace transform:

00 a 00 1 00 1
Lu,) = / u,()e ' dt = / 0-e*"dt +/ e dt = ——e| = -
0 0 a

S a S

as

This, of course, checks the result obtained with the second shifting theorem.

EXAMPLE 3.2.4 \ | | |

Determine the Laplace transform of sin wt and cos wt by using
¢’ =cosf +isinf

the first shifting property, and the linearity property.

»Solution
The first shifting property allows us to write (see Example 3.2.2)
; 1
Py = —
s—iw
1 s+io s+io s 1)

— = — +i
s—iws+io sT+w? s+ 52+ w?

Using the linearity property expressed by Eq. 3.2.7, we have
L) = L(coswt + i sinwt) = L(cos wt) + i L(sin wt)

Equating the real and imaginary parts of the two preceding equations results in

w
F(sinwt) = —
(sin wt) 1o
s
£ )= ——
(cos wt) e

These two Laplace transforms could have been obtained by substituting directly into Eq. 3.2.2, each of which
would have required integrating by parts twice.
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EXAMPLE 3.2.5 \ | | |

Find the Laplace transform of ¢X.

»Solution

The Laplace transform of X is given by
[o.¢]
Pk = / ket dr
a

To integrate this, we make the substitution

There then results

k kst 1 ke 1
where the gamma function I (k + 1) is as defined by Eq. 2.5.1. If k is a positive integer, say k = n, then
'n+1) =n!
and we obtain

Sn+l

P =

EXAMPLE 3.2.6 [ | | |

Use the linearity property and find the Laplace transform of cosh wr.
»Solution
The cosh wt can be written as

coshwt = %(e“” + e

The Laplace transform is then

F(coshwr) = L(3e + Je™) = L) + 3L(e™")

Using the results of Example 3.2.2, we have

1 1 K

Fleoshor) = 2(s — ) + 2(s + ) T 52— o2
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EXAMPLE 3.2.7 \ | | |

[

Find the Laplace transform of the function

S

| a b t
0, t<a
f(t):{A, a<t<b
0, b<t

Use the result of Example 3.2.3.

»Solution

The function f () can be written in terms of the unit step function as
J @) = Aug(t) — Auy(t)

The Laplace transform is, from Example 3.2.3,

A A A
ig(f) — _e_a“‘ _ _e—hf — _[e—as _ e—bs]
N Ky s

EXAMPLE 3.2.8 \ | | |

An extension of the function shown in Example 3.2.7 is the function shown. If € — 0, the unit impulse func-
tion results. It is often denoted by 8o (). It! has an area of unity, its height approaches oo as its base approaches
zero. Find £( f) for the unit impulse function if it occurs (a) at # = 0 as shown, and (b) at t = a.

J

/e

1Strictly speaking, 8o(¢) is not a function. Moreover, lim._.o £(f) = £(8y) does not make sense; witness the fact that
F(80) = 1 contradicts lims_, oo L[ f ()] = 0. The resolution of these logical difficulties requires the theory of distributions, a
subject we do not explore in this text.
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EXAMPLE 3.2.8 (Continued) \ | | |

»Solution
Let us use the results of Example 3.2.7. With the function f(¢#) shown, the Laplace transform is, using
A=1Je,

1
L(f)=—[1-e*]
€S

—€s

To find the limit as ¢ — 0, expand e~** in a series. This gives

e’”:l—es—l—z—j—%
Hence,
1—e® es  e*s?
T a3 T
As € — 0, the preceding expression approaches unity. Thus,
L(8p) =1

If the impulse function occurs at a time ¢ = a, it is denoted by §,(¢). Then, using the second shifting property,
we have

3(84) =e

Examples of the use of the impulse function are a concentrated load P§,(x) located at x = a, or an
electrical potential V§,(¢) applied instantaneously to a circuit at t = a.

EXAMPLE 3.2.9 \ | | |

Find the Laplace transform of

0, O0<t<l1
foy=1{ 1<t<2
0, 2<t

»Solution
The function f () is written in terms of the unit step function as
f@) = w0 —ur(0)r?

We cannot apply the second shifting property with f () in this form since, according to Eq. 3.2.13, we must
have for the first term a function of (¢ — 1) and for the second term a function of (¢ — 2). The function f(¢) is
thus rewritten as follows:

FO =uiO[ — D> 420 — 1)+ 1] —ur ([t — 2)* + 4@t — 2) + 4]
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EXAMPLE 3.2.9 (Continued) \ | | |

Now, we can apply the second shifting property to the preceding result, to obtain,
L) = Lhur L@ — 17 420 = 1) + 11} = Llus (D[t — 2)* + 4t — 2) + 41}
For the first set of braces f(t) = > + 2¢ + 1, and for the second set of braces f(¢) = > + 4t + 4. The result is
2 2 1 2 4 4
P(f)=e"* [7+7+—:| —e [—3+—2+—}
s s s s s s

Note that, in general, f(¢) is not the function given in the statement of the problem, which in this case was

f() =12

EXAMPLE 3.2.10 [ | | |

The square-wave function is as shown. Determine its Laplace transform.

J
A

»Solution

The function f(¢) can be represented using the unit step function. It is
F (@) = Auo(t) — 2Au, (1) + 2Aur, (1) — 2Auz, (1) + - - -

The Laplace transform of the preceding square-wave function is, referring to Example 3.2.3,

12 _ 0 2 2 !
i(f):A[___e—aa_i__e—Zas__e—3as+_._i|
S N S S
A , , !
— _[1 _ 26—(15(1 — s 4 6—243 . )]
N
Letting e™** = &, we have

A
££<f)=;[1—2s<1—s+s2—s3+-~>]

The quantity in parentheses is recognized as the series expansion for 1/(1 + &). Hence, we can write

A 2e7%
S“f)::[“lfﬁ}
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EXAMPLE 3.2.10 (Continued) \ | |

This can be put in the form
Al —e A eas/2 _ e—a.v/2 e—as/2 A eas/2 _ e—a‘v/Z

B == = =

s 1+eas ? eas/2 + e—as/2 g—as/2 ? eas/2 + e—as/2

This form is recognized as

A
Pf) =2 tann &
s 2

EXAMPLE 3.2.11 \ | |

Use the Laplace transforms from Table 3.1 and find f () when F (s) is given by

2s 6s 4o~

- b —
2+ 4 ® i3 © 576

(a)

»Solution

(a) The Laplace transform of cos wt is

Flcoswt) = ——

Then,

2s

F2cos2t) =2% 2t) = ——

(2cos2t) (cos2t) o
Thus, if F(s) = 2s/(s> +4), then f(¢) is given by

2s

foy=%" <S2+4> = 2cos 2t

(b) Let us write the given F(s) as (this is suggested by the term 4s in the denominator)

6s _6(s+2)—12  6(s+2) 12

F = = — _
O = T T3 612719 G249 612749

Using the first shifting property, Eq. 3.2.9, we can write

s+2
(s+22+9
3
(s+22+4+9

P(e ™ cos3r) =

P(e % sin3t) =

157
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EXAMPLE 3.2.11 (Continued) \

It then follows that

6
(Sg_l <2—}_47S_|_13> = 66_2t cos 3t — 46_2t sin 37
N S

or we have
f@t) =2e 2 (3cos 3t — 2sin3t)

(c) The second shifting property suggests that we write

4e L[ 4
s2—16 s2—16

and find the f(¢) associated with the quantity in brackets; that is,

F(sinh4t) =
(sinh4) = 576

or

Finally, there results, using Eq. 3.2.13,

Ft) = {(s)1nh4(t —2), ; i ;

In terms of the unit step function, this can be written as

F(t) = us(t) sinh4(t — 2)

3.2.1 Maple Applications

Maple commands for this chapter are: 1aplace and invlaplace (inttrans package)
assume, about, convert (parfrac), Heaviside, GAMMA, and Dirac, along with

commands from Chapter 1 (such as dsolve), and Appendix C.

The Laplace transform and the inverse transform are built into Maple as partof the intt rans
package. The commands in this package must be used with care. To load this package, we enter

>with (inttrans) :



3.2 THE LAPLACE TRANSFORM 159

The problem in Example 3.2.2 can be solved with this command:
>laplace (exp(a*t), t, s);

where the second entry is the variable for the original function (usually #), and the third entry is
the variable for the Laplace transform (usually s). The output is

1

s —a

The unit step function in also called the Heaviside function (in honor of British engineer
Oliver Heaviside), and this function is built into Maple. A graph of the function can be created
using
>plot (Heaviside(t), t=-10..10, axes=boxed);
and its Laplace transform, %, can be determined by
>laplace (Heaviside(t), t, s);

Attempting to reproduce Example 3.2.5 with Maple can be a bit tricky. The command
>laplace(t"k, t, s);

generates an error message because it is not clear to Maple what kind of number & is. The
assume command can be used to put more conditions on a variable. For example,

>assume (k, integer, k>0);

tells Maple to treat k as an integer, and a positive one at that, in any future calculations. In order
to remind a user that k has extra conditions, Maple replaces k in any future output with k ~. The
assumptions on a variable can be checked by using the about command:

>about (k) ;
Originally k, renamed k~:
is assumed to be: AndProp (integer,RealRange (1, infinity))
After executing the assume command for k, Maple can compute the Laplace transform of ¢¥:

>laplace(t™k, t, s);
S(_kw_l)r(k"“—}—l)

Even at this point, Maple will not determine the value of the Gamma function at k 4 1. Thisis a
reminder that, like any other tool, a computer algebra system has limitations.

The unit impulse function is also called the Dirac delta function (named after the twentieth-
century physicist Paul Dirac), and it, too, is built into Maple. The calculations in Example 3.2.8
can be reproduced by

>laplace(Dirac(t), t, s);
1
>laplace(Dirac(t-a), t, s);
0 a<o
™59 _ o sdegviside (—a) + | {
—el®0 0 <ga

The output of the second calculation is revealing, because we see that the Laplace transform
depends on the sign of a. If @ > 0, then Heaviside(—a) = 0, and the Maple output reduces to
0. If a < 0, then Heaviside(—a) = 1, and the Maple output also reduces to 0. On the other
hand,
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>laplace(Dirac(t-2), t, s);

e(—2S)

The lesson here is, when using Maple in examples such as these, the less parameters (such as a
above) that are used, the better.

To solve Example 3.2.9 with Maple, it is necessary to rewrite the function in terms of the unit
step function:
>f:= t -> Heaviside(t-1)*t"2 - Heaviside(t-2)*t"2;

>laplace(f(t), t, s);
e(—s) Ze(—s) Ze(—s) 4e(—2s) 46(—2s) Ze(—2s)

+ + - —~ -
s 2 s° s s2 s°

The function could also be defined using the piecewise command, but Maple will not com-
pute the Laplace transform in that situation.

The three parts of Example 3.2.11 demonstrate computing the inverse Laplace transform.
There are no parameters in these examples, so Maple will compute the inverse transforms
quickly and correctly. This is true for parts (a) and (b).

>invlaplace(2*s/(s"2+4), s, t);
>invlaplace(6*s/(s"2+4*s+13), s, t);
2cos (20
6e Y cos Bt —4esin@0)
For part (c), we get
>invlaplace(4/(s"2-16)*exp(-2*s), s, t);
—IHeaviside(t—2)sin (@ I(t—2))

The output here is defined with 7 = 4/—1. In order to get a real-valued function, we can use the
evalc command and obtain a result equivalent to what was previously described:

>evalc (%) ;

Heaviside(t—2)sinh (@t— 8)

Problems

Find the Laplace transform of each function by direct 5. cos4t

integration. 6. t/2

1. 2t 7. 24312

2R 8 42-3
3

3. & 9. sinh2s

4, 2sint 10. (t—2)2



11. cosh4t
12. -1

13. §i0)

14. 1@

15. F@)

Use the first shifting property and Table 3.1 to find the Laplace

transform of each function.

16. 3te’

17. t2e™!

18. e~ cos 4t

19. ¢ sinh2¢

20. 37'sin2z

21. 4e=% cosht

22. e '(cos4t — 2sin4t)

23. e 2 (sinh 2t + 3 cosh2¢)
24, e (2 +4145)

Use the second shifting property and Table 3.1 to find the
Laplace transform of each function. Sketch each function.

25. uy(t)
26. uq(t)sint
0, O0<tr<?2
27. f@t)y=432t, 2<t<4
0, 4<t

28, ! o
-5 Uy >

29. ug(t)(6 —1) —ue(t)(6 —1)
t, 0<t<?2

30 f(t)z{z 2<t

sint, 0<t<2mw
0, 2w <t

31. (1) = {

32.
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sint, O<t<m

f(t)={

sin 2¢, T <t

Express each hyperbolic function in terms of exponential
functions and, with the use of Table 3.1, find the Laplace
transform.

33.
34.
35.
36.
37.
38.

2 cosh 2¢ sin 2¢
2 sinh 3¢ cos 2t
4 cosh 2¢ sinh 3¢
6sinht cost

4 sinh 27 sinh 4¢
2 cosh cos 2t

Use Table 3.1 to find the function f(¢) corresponding to each
Laplace transform.

39.

40.

41.

42,

43.

4.

45.

46.

47.

48.

49.

50.

51.

52.

53.

1 2+1 )
s\s2 s

1 /3
(242
s2<s+)

2s
(s +3)2
s
(s +1)3
1
s(s+1)
1
s2(s —2)

1
(s—=2)(s+ 1)
1
(s =D +2)
2s
(s=DXs+1)

-5

e
s+ 1
o2
s(s + 1)2
4
s2+2s+5
4s +3
s24+4s+13
2
s2—25s—3
3s + 1
s2—4s—5
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4se=27s 3
54, — 70
s24+25s+5 71.

2

55, < 72.
(s2—1)(s2+1) 73,
25 +3 74
2445 1 13)? i
(*+ds+19) 75.

57. IfL[f(t)] = F(s), show that L[ f (at)] = (1/a)F(s/a); 76.
use the definition of a Laplace transform. Then, if 77.
P(cost) = s/(s%+ 1), find L(cos 4t).

78.
Use Maple to solve

79.
58. Problem 13 80.
59. Problem 14 81
60. Problem 15 8.
61. Problem 16 83.
62. Problem 17 84
63. Problem 18 85.
64. Problem 19 86.
65. Problem 20 87,
66. Problem 26 88.
67. Problem 27 89.
68. Problem 28 9%.
69. Problem 29

Problem 30
Problem 31
Problem 32
Problem 39
Problem 40
Problem 41
Problem 42
Problem 43
Problem 44
Problem 45
Problem 46
Problem 47
Problem 48
Problem 49
Problem 50
Problem 51
Problem 52
Problem 53
Problem 54
Problem 55
Problem 56

3.3 LAPLACE TRANSFORMS OF DERIVATIVES AND INTEGRALS

The operations of differentiation and integration are significantly simplified when using
Laplace transforms. Differentiation results when the Laplace transform of a function is
multiplied by the transformed variable s and integration corresponds to dividing by s, as we

shall see.

Let us consider a function f(¢) that is continuous and possesses a derivative f'(¢) that is sec-
tionally continuous. An example of such a function is sketched in Fig. 3.2. We shall not allow
discontinuities in the function f (¢), although we will discuss such a function subsequently. The
Laplace transform of a derivative is defined to be

2(f = /OOO f'@®e™"dt (3.3.1)

This can be integrated by parts if we let
st

u=e ",
du = —se " dt

dv= f'(t)dt =df (3.32)

: v=f
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S S'@®
,\_/1'

\‘/bt \ia I‘b/t

Figure 3.2 Continuous function possessing a sectionally continuous derivative.

Then

L) =fe‘”|§°+s/ f()e™" dt (3.3.3)
0

—st

Assuming that the quantity fe ™" vanishes at the upper limit, this is written as

L(fH=-f0)+ S/O fe™"dt =sE(f) — f(0) (3.34)

This result can be easily extended to the second-order derivative; however, we must demand
that the first derivative of f () be continuous. Then, with the use of Eq. 3.3.4, we have

L") =L — f(0)
= s[sL(f) — £O)]— f'(0)
= s2L(f) — sf(0) — f'(0) (3.3.5)

Note that the values of f and its derivatives must be known at t+ = 0 when finding the Laplace
transforms of the derivatives.
Higher-order derivatives naturally follow giving us the relationship,

L(F™) =s"L(f) =" FO) —s"2f(0) = — fF77D(0) (3.3.6)

where all the functions f(¢), f'(t), ..., f =D (t) are continuous, with the quantities f (n=1) g=st
vanishing at infinity; the quantity £ (¢) is sectionally continuous.

Now, let us find the Laplace transform of a function possessing a discontinuity. Consider the
function f(¢) to have one discontinuity at # = a, with f(a™) the right-hand limit and f(a~) the
left-hand limit as shown in Fig. 3.3. The Laplace transform of the first derivative is then

L(f) = / fl(e™ dt+/oo f (e ™" dt (3.3.7)
0 a

Integrating by parts allows us to write
_ a” (o]
L(fy= fe |, + s/o f(e " dt + fe*”|;’i +s f+ f(e ™ dt
= fla)e ™ — f(0) + S/ f@e " dt — f(ah)e ™™
0

+s / h (e dt (3.3.8)
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S Figure 3.3 Function f(¢) with one
I discontinuity.
fa®)

I

l

I —

$ fla™)

|

t=a t

The two integrals in Eq. 3.3.8 can be combined, since there is no contribution to the integral
betweent = a~ and r = a’. We then have

L) = s fo Fe™ di — fO) — [f @) — fa)le™
=sL(f)— fO) = [fl@a®) — f@a)]le ™ (3.3.9)

If two discontinuities exist in f(¢), the second discontinuity would be accounted for by adding
the appropriate terms to Eq. 3.3.9.

We shall now find the Laplace transform of a function expressed as an integral. Let the
integral be given by

gt) = / f(o)ydr (3.3.10)
0

where the dummy variable of integration is arbitrarily chosen as t; the variable ¢ occurs only as
the upper limit. The first derivative is then?

g = f (3.3.11)
We also note that g(0) = 0. Now, applying Eq. 3.3.4, we have
0
3.3.12
L) = sL(g) —&(0) G312
or, using Eq. 3.3.11, this can be written as
FgH 1
*(g) = Sg = ;SE(f) (3.3.13)
Written explicitly in terms of the integral, this is
1
1
< (/ f(@) d‘L’) =-%L(f) (3.3.14)
0 N

These transforms of derivatives and integrals are obviously necessary when solving differen-
tial equations or integro-differential equations. They will also, however, find application in
obtaining the Laplace transforms of various functions and the inverse transforms. Before we turn
to the solution of differential equations, let us illustrate the latter use.

’Liebnitz’s rule of differentiating an integral is

d (o

db da bar
- dt=—fb,t)— — f(a,t ey
at Lo f(z.t)ydr drf( ) dtf(a )+fa ar 47
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EXAMPLE 3.3.1 \ | | |

Find the Laplace transform of f(¢) = 2. Use the transform of a derivative.

»Solution

We can use the Laplace transform of the third derivative obtained in Eq. 3.3.6. From the given function we
have f(0) =0, f/(0) =0, and f”(0) = 2; this allows us to write

(5 = SE0P) — 4O 3 — 170
and, recognizing that /" = 0,
L0)=s’L(f)—2=0
since £(0) = 0. This results in

L) = 33
N

EXAMPLE 3.3.2 [ | | |

Use the transform of a derivative and find the Laplace transform of f(z) = ¢ sint assuming that £(cost) is
known.

f/(t) =tcost +sint
f'(t) =2cost —tsint

The transform of a second derivative is

0 0
L) = SLS) - £0) — FO)

where we have used f(0) = 0 and f'(0) = 0. Thus, Eq. 3.3.5 gives
PQ2cost — tsint) = s>L(t sint)
This can be written as

2%(cost) — L(tsint) = s>L(t sint)

or

(s> + DL(tsint) = 2L (cos 1) =

s24+1
Finally, we have
2s

gg(t Sint) = m
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EXAMPLE 3.3.3 l | | |

Find f(¢) if F(s) = 8/(s2 + 4)2 by using £(t sin 2¢) = 2s/(s2 +4)2,

»Solution

We write the given transform as

1 8
P(f) = Fls) = ;ﬁ

Equation 3.3.14 allows us to write

t
£ /4tsin2rdr 218—5
0 2 (s2 +4)?

t
f(@) :4/ Tsin2tdt
0

Hence,

This is integrated by parts. If we let
u=r, dv =sin2tdt
du = dr, v=—%cos2t

there results

t
f(t) = —2tcos2t + 2/ cos 2t dt = —2t cos 2t + sin 2t
0

Problems

q q (iv)
1. Write an expression for £(f™)). 10. If £() = { t, 0<t<l1 find £( ). Also, find Z(f").
2. Write an expression for £(f’) if two discontinuities L T<t

occur in f (), one at t = a and the other at t = b. Is Eq. 3.3.4 verified for this f()?

3. Use Eq. 3.3.4 to find the Laplace transform of f (1) =¢'. {1 ¢ f() = t, 0<r<l1 find £(f). Also, find L(f").

. 0, 1<t
Use Eq. 3.3.5 to find the Laplace transf f each function. ’ y
= 0 1in@ the ~apace Talls orM of each THAchon Does Eq. 3.3.4 hold for this f(£)? Verify that Eq. 3.3.9
4. sinot holds for this f(z).
5. coswt . . .
. Using the equations for the Laplace transforms of derivatives
6. sinhat from Section 3.3 and Table 3.1, find the transform of each
7. coshat function.
8. ¥ 12, te'
9. t 13. tsin2t




14.
15.
16.
17.
18.
19.
20.

tcost
t2sint

te' sint

(t2 + 1) cos 2¢

t cosh 2t

12e!

t sinh 2¢
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6
s* — 952

2
st + 252
1s—1
§s+1
1 s—1
252+ 1

26.

27/

28.

295

Find the function f(f) corresponding to each Laplace Use Maple to solve
transform.

30. Problem 10

21.

22,

23.

24.

258

1
s2+2s
2
s2—s
4

st + 452

53 —9s

31. Problem 11
32. Problem 17
33. Problem 19
34. Problem 21
35. Problem 22
36. Problem 23
37. Problem 24
38. Problem 29

3.4 DERIVATIVES AND INTEGRALS OF LAPLACE TRANSFORMS

The problem of determining the Laplace transform of a particular function or the function cor-
responding to a particular transform can often be simplified by either differentiating or integrat-
ing a Laplace transform. First, let us find the Laplace transform of the quantity #f (¢). It is, by
definition,

Lf) = /ootf(t)e*‘” dt (3.4.1)
0

Using Liebnitz’s rule of differentiating an integral (see footnote 2), we can differentiate Eq. 3.2.2
and obtain

d [ o d
Fo = [ rwerar= [ sagena
ds 0 0 as
o0
= —/ tf (e ' dt (3.4.2)
0
Comparing this with Eq. 3.4.1, there follows

L@f)=—F'(s) (3.4.3)
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The second derivative is

%) 2 o0
F'(s) = / f(t)a—z(e_”) dt = / 12 f(t)e™*" dt (3.4.4)
0 s 0
or
L@ f)=F"(s) (3.4.5)
In general, this is written as
L@ f) = (=1)"F"(s) (3.4.6)

Next, we will find the Laplace transform of f(¢)/f. Let
f() =1tg(1) (3.4.7)
Then, using Eq. 3.4.3, the Laplace transform of Eq. 3.4.7 is

F(s) = 2L(f) = L(1g) = =G'(s) (3.4.8)
This is written as
—dG = F(s)ds (3.4.9)
Thus
—G(s) = /s F(s)ds (3.4.10)

where® G(s) — 0 ass — o0o. The dummy variable of integration is written arbitrarily as ¢. We
then have

G(s) = /oo F(s)ds (3.4.11)

where the limits of integration have been interchanged to remove the negative sign. Finally, re-
ferring to Eq. 3.4.7, we see that

L) = L(g) = G(s) = /OO F(s)ds (3.4.12)

The use of the expressions above for the derivatives and integral of a Laplace transform will
be demonstrated in the following examples.

3This limit is a consequence of the assumption that g(¢) is sectionally continuous, as well as a consequence of
item (ii) following Eq. 3.2.6, where £[g(1)] = G(s).

EXAMPLE 3.4.1 \ | | |

Differentiate the Laplace transform of f(#) = sin wt, thereby determining the Laplace transform of ¢ sin wt.
Use L(sinwt) = w/(s* + w?).
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EXAMPLE 3.4.1 (Continued) \ | | |

»Solution

Equation 3.4.3 allows us to write

L(t sin wt) d F(sin wt) d @ 2w
inwt) = ——%(sinwt) = —— =
ds ds \ s? 4+ o? (s2 4+ w?)?

This transform was obviously much easier to obtain using Eq. 3.4.3 than the technique used in Example 3.3.2.

EXAMPLE 3.4.2 [ | | |

Find the Laplace transform of (e~" — 1)/# using the transforms

1 1
—t _ 1
Fe™) = oY and £(1) = .

»Solution
The Laplace transform of the function f (1) = e~ — 1 is
1 1
F(f)=— — -
(f) SE1 s

Equation 3.4.12 gives us

o0 1 1
§B(f/t)=/ <4+1 _ Z)dd

=[In(s +1)—Ins]° =In

s +1
4

o0
N

=In
s s4+1

This problem could be reformulated to illustrate a function that had no Laplace transform. Consider the
function (e~" — 2)/t. The solution would have resulted in In(s + 1) /s> |5 . At the upper limit this quantity is
not defined and thus &( f/t) does not exist.

EXAMPLE 3.4.3 \ | | |

Determine the inverse Laplace transform of In[s?/(s*> + 4)].

»Solution

We know that if we differentiate In[s?/(s> +4)] we will arrive at a recognizable function. Letting
G(s) = In[s?/(s> +4)] = Ins?> — In(s?> + 4), we have (see Eq. 3.4.8)

F(s) G'(s) 2s+ 2s
$)=—-G@G6)=——+ ——
s2 0 s24+4

2 2s

=4 =
s s24+4
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EXAMPLE 3.4.3 (Continued)

Now, the inverse transform of F'(s) is, referring to Table 3.1,
f({t) =—2+2cos2t

Finally, the desired inverse transform is

- s\ f 2
£ <ln s2+4> == —;(1 — cos 2t)

Problems
Determine the Laplace transform of each function using Table 17 4s
3.1 and the equations of Section 3.4. T (524 4)2
1. 2fsin 3¢ Y
18 —/———
2 2
2. tcos2t (2 =4
3. t2sin2r 19. In s
s—2
4, t?sinht )
t 20. In
5. te'cos2t s+3
6. t(e' —e™) 2_4
' -2t 21. In
7. t(e —e ) 2+ 4
8. te'sint 241
o n it
9. t2e7'sint s2+4
2
10. tcosht 23 In 25
2 s +4
11. —(1 —cos2r) s2+4s+5
t 24. In - o e
) s +25 +5
12. —(1 — cosh?2r)
! Use Maple to solve
13. l(eZ’ =@ %) 25. Problem 2
i 26. Problem 11
4. (e —1) 27. Problem 12

t

28. Problem 13
15. Use Eq. 3.4.3 to find an expression for the Laplace trans- 99 problem 14
— ¢nat 2 aty __ _
form of f(t) = t"e* using L(e”) = 1/(s — a). 30. Problem 16
Find the function f(¢) that corresponds to each Laplace trans-

form using the equations of Section 3.4. 31 Problem 19
1 32. Problem 20

6 5122 33. Problem 21
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3.5 LAPLACE TRANSFORMS OF PERIODIC FUNCTIONS

Before we turn to the solution of differential equations using Laplace transforms, we shall con-
sider the problem of finding the transform of periodic functions. The nonhomogeneous part of
differential equations often involve such periodic functions. A periodic function is one that is
sectionally continuous and for some « satisfies

f@®) = f(t+a) = f(t+2a)

f(t +3a)
=...=f(t+na)=---. (3.5.1)

This is illustrated in Fig. 3.4. We can write the transform of f(¢) as the series of integrals

P(f) = fo Fe ™ dt

2a 3a

= /a f@®e " dt + Ff®e™*"dt + f@®e*dt +--- (3.5.2)
0 a 2a

In the second integral, let # = t + a; in the third integral, let 1 = 7 + 2a; in the fourth, let
t = t + 3a; etc; then the limits on each integral are 0 and a. There results

L(f) = / f(e s dr + / f(r+a)e™"T dr
0 0
a
+ / f(T +2a)e™ 2D dr 4 ... (3.5.3)
0
The dummy variable of integration 7 can be set equal to ¢, and with the use of Eq. 3.5.1 we have
a a a
L) = / f®e™'dt +e* / f@e st dt + e / f@e " dt + -
0 0 0
=[l+e ™ e 4.. -]/ f@e " dt (3.5.4)
0
Using the series expansion, 1/(1 —x) = 1 +x 4+ x> + - - -, we can write Eq. 3.5.4 as
1 a
L(f) = 7/ f@e"dt (3.5.5)
1 —eas 0
Note: The integral by itself is not the Laplace transform since the upper limit is not co.
f

period
a

a a a

~
N

Figure 3.4 Periodic function.

RNEIAN
N 1

Ve
Ve
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EXAMPLE 3.5.1 I | | |

Determine the Laplace transform of the square-wave function shown. Compare with Example 3.2.10.

f®

»Solution

The function f(¢) is periodic with period 2a. Using Eq. 3.5.5, we have

1 2a
_ —st
£(f) = T_ e J, f@)e " dt
1 [ ¢ —st 2 —st
= T o Ae dt + (—A)e dt
1—e | JO a
1 A—sta+A—s12a
=—| ——e —e
1 —e2as s 0 S Y
1 (A
— 1_76_2‘” ?(_e—as S e—Zas _ e—aS)]
Al —=2e" + e 2as A=) —e™)
T 1 — e 2as T s (1 —em®) (1 4 e79)
_Al—e®
s 14e s

This is the same result obtained in Example 3.2.10. It can be put in the more desired form, as in Example
3.2.10,

F(f) = étanhE
s 2

EXAMPLE 3.5.2 I | | |

Find the Laplace transform of the half-wave-rectified sine wave shown with period 27t and amplitude 1.

S0

NN~

T t
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EXAMPLE 3.5.2 (Continued) \ | | |

»Solution

The function f(¢) is given by

sint, O<t<m
0, T<t<?2m

f(t)={

Equation 3.5.5 provides us with

2w

1 1 o
«55(f)=? ; f(t)e*”dtzm/o sinte™" dt

—21s

Integrate by parts:

u =sint dv =e"dt

1 —st

du = cost dt v=——¢"
s

Then

0
T 1
f sinte™ dt = ——e*' sit
0 A

bLg e
1 —st
+—/ coste ' dt
0

0o S
Integrate by parts again:
u = cost, dv=e"dt
. 1 —st
du = —sint dt, v=——e¢
s

This provides

" : —st 1 1 —st
sinte™'dt = — | ——e "' cost
0 S S

This is rearranged to give

Finally,

14em B 1
_ efzm)(sz +D - (1— efm)(sz +1)

L) = a

173
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EXAMPLE 3.5.3 l | | |

Find the Laplace transform of the periodic function shown.

()

——

»Solution
We can find the transform for the function by using Eq. 3.5.5 with

h
—1, O<t<a
a

[ =

—Q2a—1), a<t<2a
a

This is not too difficult a task; but if we recognize that the f(¢) of this example is simply the integral of the
square wave of Example 3.5.1 if we let 7 = Aa, then we can use Eq. 3.3.14 in the form

1
1
wp = ( | g(r)dr) = %)
0
where £(g) is given in Example 3.5.1. There results
h as
i(f) = E tanh 7

This example illustrates that some transforms may be easier to find using the results of the preceding sections.

Problems

Determine the Laplace transform for each periodic function. 5. f)y=12, O<t<m
The first period is stated. Also, sketch several periods of each 1. 0<t<?2
function. 6. f()= 0 2<t<4

1. f(@)=sint, O<t<m 7 P )= f, 2<t<4

2. f(H=t, 0<t<2 ’ “lo, 0<tr<2
3. f)=2-1, 0<t<2 _f2-1 0<i<1
4 fO)=1-2, O<t<4 8 fO =1, l<t<2
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2, 0<t<l1 with Maple. Carefully consider what Maple can calculate
9. f(t)= 0, I<r<2 for you, and develop a Maple worksheet that will com-
-2, 2<t<3 pute Laplace transforms of periodic functions. Use the

0, 3<t<4 worksheet to solve all nine problems above.

10. Computer Laboratory Activity: Solving Laplace trans-
form problems of periodic functions is not simple to do

3.6 INVERSE LAPLACE TRANSFORMS: PARTIAL FRACTIONS

When solving differential equations using Laplace transforms we must frequently make use of
partial fractions in finding the inverse of a transform. In this section we shall present a technique
that will organize this procedure.

3.6.1 Unrepeated Linear Factor (s — a)

Consider the ratio of two polynomials P(s) and Q(s) such that the degree of Q(s) is greater
than the degree of P(s). Then a theorem of algebra allows us to write the partial-fraction ex-

pansion as
P(s A A A A
Fisy= L& _ A R L (3.6.1)
o) s—a s—a s—as s — ay
where it is assumed that Q(s) can be factored into n factors with distinct roots a;, a», as, . . ., a,.

Let us attempt to find one of the coefficients—for example, A3. Multiply Eq. 3.6.1 by (s — a3)
and let s — as; there results

P(s)

Q(s)

since all other terms are multiplied by (s — a3), which goes to zero as s — as.
Now, we may find the limit shown earlier. It is found as follows:

(s —az) = Az (3.6.2)

lim
s—=a3

P(s)
im
s=as Q(s)

s —as

O(s)

(s —a3) = lim |:P(s) } - P(a3)g (3.6.3)

Because the quotient 0/0 appears, we use L’Hospital’s rule and differentiate both numerator and
denominator with respect to s and then let s — a3. This yields

A = P(as) tim —— = @) (3.6.4)
= 1mm = 0.
T IL06 T 0@
We could, of course, have chosen any coefficient; so, in general,
P(a; P(aq;
= 2@ 4= (@) (3.6.5)
Q' (a) [Q(s)/(s — ai)]s=q,

This second formula is obtained from the limit in Eq. 3.6.2. With either of these formulas, the co-
efficients of the partial fractions are quite easily obtained.
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EXAMPLE 3.6.1 [ | | |

Find f(¢) if the Laplace transform F (s) of f(¢) is given as

S 4352 25 +4
sts — 1)(s —2)(s2 +4s +3)

»Solution
Since s2 + 4s + 3 = (s + 3)(s + 1), the partial-fraction representation of F(s) is

F(s) A1+ Aj n Aj N Ay n As
s) = —
s s—1 s—2 s+1 s+3

The A; will be found using the second formula of Eq. 3.6.5. For the given F(s), we have

P(s) =s>+3s> — 25+ 4
O@)=s(s =D =2 +3)E+1)

For the first root, a; = 0. Letting s = 0 in the expressions for P(s) and Q(s)/s, there results

_ P(0) 4
' 0®)/sl=o 6
Similarly, we have, witha, = 1, a3 =2,a4 = —1, and as = -3,
P(1) 6 P(2) 20
P=E o = — Az

T 2O6 - Dlo -8 T 06)/G—Dls 30
_ P(=1) _8 P(-3) 10
T 0@/ + D)y —127 7

Ay

T 10G)/G +5)—s 120

The partial-fraction representation is then

2 3 2
Fo) =2 - —4 23—

3.6.2 Maple Applications

Included in Maple is a conversion utility for partial fractions. In Example 3.6.1 the partial-
fraction representation of F'(s) can be computed by

>convert ((s"3+3*s"2-2*s+4)/(s*(s-1)*(s-2)
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*(s"2+4*s+3)) ,parfrac, s);

2 2 3 n 2 n 1
3s 3(s+1) 4(—1) 3((—2) 12(s+3)

With this conversion, the inverse transform of each term can be computed separately. Of course,
the inverse transform could also be computed directly via

>invlaplace ((s"3+3*s72-2%s+4)/(s* (s-1)*(s-2)*(s"2+4*%s+3)),s,t);
3 . 2 2 5 1 2
_letpfpfoeoy = 030260
4 3 3 12 3

3.6.3 Repeated Linear Factor (s — a)™

If there are repeated roots in Q(S), such as (s — a)™, we have the sum of partial fractions

_P(s) By B, B, Az A3z

00 Goar Tt Car e Tia Tia TG00

F(s)

The A;, the coefficients of the terms resulting from distinct roots, are given in Eq. 3.6.5. But the
B; are given by

p__ L a [ P(s) }
o m—Dlds" [ Q9)/(s —aD” ],

B P(ay)

Q6 / (s — an)™ly=a,

(3.6.7)

m

EXAMPLE 3.6.2 \ | | |

Find the inverse Laplace transform of

s2—1

(s —2)2(s2 4+ 5 — 6)

F(s) =

The denominator Q(s) can be written as

0(s) = (s —2)°(s +3)

Thus, a triple root occurs and we use the partial-fraction expansion given by Eq. 3.6.6, that is,

B; n B, n B, n As
(s—=2)3 (=2 s—2 s+3

F(s) =
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EXAMPLE 3.6.2 (Continued) \ |

The constants B; are determined from Eq. 3.6.7 to be

s2—1 3
B3= = —
S+3 s=2 5
B_ld s2—1 B s2 4+ 65+ 1 _17
*Tlds [ s+3 ], | +3? |, 25
1 d? [s*—1 82
Blz—— = —
20ds? | s+3],, 125

The constant A, is, using a, = —3,

_ P(ay) _ 8
T OG)/(5 4+ 3)s=a 125

Ay

Hence, we have

3 17 82 8

Fls)— 3 % s, 15
=52 T oo 52543

Table 3.1, at the end of the chapter, allows us to write f(¢) as

3 2 2t 17 2t 82 2t 8 —3t
1 =—t —t — —
F@O=1pre” T o5t 1554 T 135¢

3.6.4 Unrepeated Quadratic Factor [(s — a)? + b?]

Suppose that a quadratic factor appears in Q(s), such as [(s — a)? + b?]. The transform F(s)

written in partial fractions is

_ P(S) _ B]S+Bz Al + A2
T 06) (—a)l+b2 s—a s—a

F(s)

where B and B, are real constants. Now, multiply by the quadratic factor and let s — (a + ib).

There results

Bi(a+ib)+ B —{ PGs) } (3.6.9)
! 2Tl oo/t —a? + 021 iy -

The equation above involves complex numbers. The real part and the imaginary part allow both
By and B; to be calculated. The A; are given by Eq. 3.6.5.
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EXAMPLE 3.6.3 \ | | |

The Laplace transform of the displacement function y(¢) for a forced, frictionless, spring—mass system is
found to be
a)F() / M

Y(s) = Fra)e o)

for a particular set of initial conditions. Find y(¢).

»Solution

The function Y (s) can be written as

The functions P(s) and Q(s) are, letting wFy/M = C,

P(s)=C
0(s) = (s2 + a)(z))(s2 + a)z)

With the use of Eq. 3.6.9, we have

Ai(iawg) + A ¢ ¢
iw = =
P 2 (i) +*  ?— o}
B (iw) + B ¢ ¢
iw = =—
: : (iw)? + w} 0 — w}

where a = 0 and b = w, in the first equation; in the second equation ¢ = 0 and b = w. Equating real and
imaginary parts:

The partial-fraction representation is then

Y(s) C 1 1

s) = —
=} L2+ ] 2+ ?

Finally, using Table 3.1, we have

wFy/M [ 1 1
y(t) = 207/2 |:— sin wgt — — sinwt:|
w* — wy | o w
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3.6.5 Repeated Quadratic Factor [(s — a)? + b*]™

If the square of a quadratic factor appears in Q(s), the transform F(s) is expanded in partial
fractions as

P(s Cis+C Bis+ B A A
F(s) = Qis; - —la)—;+2172]2 G :a; +2b2 - _lal + _2a2 TR (3.6.10)
The undetermined constants are obtained from the equations
Cila+ib)+Cy = { P&) } 3.6.11)
0@)/[(s —a)> + 6217 | _ 1
and
Bi(a+ib)+ B, = % l 0/l (SP_(sa))z SWSIE Lmb (3.6.12)

The A; are again given by Eq. 3.6.5.

Problems
Find the function f(¢#) corresponding to each Laplace S22 1
transform. s+ D2(s2+4)
120s 50
1. 11. ——————————
(s —1)(s +2)(s2 — 25 — 3) (s +4)*(s*+ 1)
2 5S2 + 20 12. 10
C s — D(s2+ 55 + 4) (s> + 4> + 1)
3
3. S +2s Use Maple to Solve
(24+35+2)(s2+5—6)
) 13. Problem 1
" sc+2s+ 1
" G-DG2+25-3) 14. Problem 2
8 15. Problem 3
5. 25 —2)(2 —4s + 4) 16. Problem 4
s2—3542 17. Problem 5
6. s2(s — D2(s — 55 + 4) 18. Problem 6
s2 -1 19. Problem 7
Ty m—m———————
GZ24+HE2+D 20. Problem 8
: 5 21. Problem 9
(52 +400)(s% 4 441) 22. Problem 10
9 s—1 23. Problem 11

(s+D(s>+4) 24. Problem 12
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3.7 A CONVOLUTION THEOREM

The question arises whether we can express g1 [F(s)G(s)] in terms of

FPUFS)1=f@) and L7'[G()]=g) (3.7.1)
To see how this may be done, we first note that
F(s)G(s) = / e *TF(s)g(r)dt (3.7.2)
0
since
G(s) = / e*Tg(r)dr (3.7.3)
0
Also,
P NeTF(s)] = f(t — Du.(t) (3.7.4)

where u, (¢) is the unit step function of Example 3.2.3. (See Eq. 3.2.16 and the discussion of the
second shifting property.)
Equation 3.7.4 implies that

oo
e *TF(s) = / e f(t — Du.(t)dt (3.7.5)
0
This latter expression can be substituted into Eq. 3.7.2 to obtain

F(s)G(s) = /OO /ooef”f(t —1)g(Du(t)drdr
0 0

= / / e f(t —1)g(r)dtdr (3.7.6)
0 T

since u,(t) =0for0 <t < t and u,(t) = 1 fort > t. Now, consider the T = ¢ line shown in
Fig. 3.5. The double integral may be viewed as an integration using horizontal strips: first
integrate in dt from t to oo followed by an integration in d 7 from 0 to co. Alternatively, we may

T

dr

Q
Il
~

— 1

Figure 3.5 The integration strips.
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integrate using vertical strips: First integrate in dt from O to ¢ followed by an integration in dt
from 0 to 00; this results in the expression

F()G(s) = /00/ e f(t—1)g(r)dr dt
o Jo

= foo e |:/ f(t—1)g(T) dr:| dt (3.7.7)
0 0

But referring to Eq. 3.2.2, Eq. 3.7.7 says that

N4 |:/ f@— r)g(r)dri| =F(s)G(s) (3.7.8)
0
or, equivalently,
t
FTF($)Gs)] = / f(t—1)g(r)dr
0

= / gt —1)f(v)dr (3.7.9)
0

The second integral in Eq. 3.7.9 follows from a simple change of variables (see Problem 1).
Equation 3.7.9 is called a convolution theorem and the integrals on the right-hand sides are con-
volution integrals.

We often adopt a simplified notation. We write

Suppose that PUF ()] = f (). Find

frg= f ft—1)g(r)dr (3.7.10)
0
and hence the convolution theorem (Eq. 3.7.9) may be expressed as
LLf () xg(t)] = F(s)G(s) (3.7.11)
(See Problem 1.)
EXAMPLE 3.7.1 \ | | |
¢! |:l F(s)]
s

»Solution

Since £ [1/s] = 1 we have, from Eq. 3.7.9,

%! [%F(s)i| = /0, f(r)dt

Compare with Eq. 3.3.14.
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3.7.1 The Error Function

A function that plays an important role in statistics is the error function,

2 o,
erf(x) = —f e " dt (3.7.12)
v Jo
In Table 3.1, with f(z) = t*"1e% leta = —1 and k = % Then
et | T
— =% 3.7.13
NG |:\/s +1 ( )
But F(%) = /7 (see Section 2.5), so
e’ 1
= [ ] 3.7.14
A% Vs +1 ( )

From the convolution theorem,

e—T
dt (3.7.15)
T

o=l 0%

Set /T = x. Then $77!/>dt = dx and hence

. 1 2 /W e
K% Lm} 7, e dx = erf(\1) (3.7.16)
EXAMPLE 3.7.2
Show that
9! [;] — lterf(Vh 4
1+VT+s Jrt
»Solution
‘We have

L1 -VTes 1 VTS
l+/T+s 1—1—s s s

1 I+ 1 1 1

+ ——=——+ +
s s/l +s s s/l +s JV1+s

Using Eqs. 3.7.9 and 3.7.13, the inverse transform is

1 1 1 1
[t () ) ()
[l—i— 1—|—s] s sa/1+s 1+s

= 1 +erf(VD) + \e/ﬁ

as proposed.
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Problems

L1 1 [

Use the definition of f * g as given in Eq. 3.7.10 to show each
of the following.

1. fxg=g+*f by use of the change of variable
p=t—r.

2. fx(gxh)=(f*g) *h
Frl@+h)y=fxrg+ fxh
[ xkg =k(f % g) for any scalar k

5. l*fzftf(r)dr
0

- Lx f(0) = f() — f(0)
7. (f*8) =gO)f(t)+ g (1) * f(r)
= f(O)g®) +g@®) * f'(1)

Compute f * g given the following.
8. f(t)=gt)=e"
9. f(t) =sint, g(t) = e

10. f(t) = g(t) = sinwt

Use the convolution theorem to find each inverse Laplace
transform.

o 1
" £ [7@2 HZ)Z}

2
&
12. 7!
E=d

13. ¢! [

1
s2(s2 + a)z)i|

14. Let F(s) = £[f(t)]. Use the convolution theorem to
show that
- F(s) | .
1
[m] = e ‘”/0‘ f(T)e’Tsinb(t — t)dt

15. Let F(s) = £[f(¢)]. Use the convolution theorem to

show that
t
F(S) ] =/ re—aff(t_l.)d.[
0

1
[(s + a)?

16. Computer Laboratory Activity: As we shall see in
Section 3.8, a transform, such as the Laplace transform,
is useful for transforming a complicated problem in a
certain domain into an easier problem in another domain.
For example, the Laplace transform converts a problem
in the # domain to a problem in the s domain.

Convolutions often arise in signal processing, and as
we learn in this activity, transforming a convolution with
the Laplace transform gives rise to a product of func-
tions, with which it is usually algebraically easier to
work. The purpose of this activity is to better understand
convolutions.

We are going to explore convoluting different func-
tions. After defining functions f and g in Maple, f x g
can be plotted simply by defining the c onv function and

then using p Lot:
>conv:= t -> int (f(v)*g(t-v),
v=0..t):

t==2..6) g

(a) Let g(¢) be the identity function (equal to 1 for all ¢.)
For three different functions (quadratic, trigonomet-
ric, absolute value), create graphs of f * g. Why is it
fair to say that convolution with the identity function
causes an accumulation of f?

(b) Let g(¢) be the following function known as a spline:

>plot (conv(t),

2
B —t<0andr <1
3
g= —t2—|—3t—5 l—r<O0andf <2
n—3)2
( 2) 2—t<0andt <3

This function is equal to zero outside of 0 <7 < 3.
Explore what happens for different functions f such
as: a linear function, a trigonometric function, and a
function with an impulse (such as g itself). How does
the idea of accumulation apply here?

3.8 SOLUTION OF DIFFERENTIAL EQUATIONS

We are now in a position to solve linear ordinary differential equations with constant coefficients.
The technique will be demonstrated with second-order equations, as was done in Chapter 1.
The method is, however, applicable to any linear, differential equation. To solve a differential
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equation, we shall find the Laplace transform of each term of the differential equation, using the
techniques presented in Sections 3.2 through 3.5. The resulting algebraic equation will then be
organized into a form for which the inverse can be readily found. For nonhomogeneous equa-
tions this usually involves partial fractions as discussed in Section 3.6. Let us demonstrate the
procedure for the equation

d’y  dy

W—l—aﬁ—i—by =r(1) (3.8.1)

Equations 3.3.4 and 3.3.5 allow us to write this differential equation as the algebraic equation
$7Y (5) — sy(0) — Y'(0) + alsY (s) — y(0)] + bY (s) = R(s) (3.8.2)

where Y (s) = £(y) and R(s) = £(r). This algebraic equation (3.8.2) is referred to as the sub-
sidiary equation of the given differential equation. It can be rearranged in the form

(s +a)y(0) +y'(0) R(s)

Y =
) s24as+b s24as+b

(3.8.3)

Note that the initial conditions are responsible for the first term on the right and the nonhomo-
geneous part of the differential equation is responsible for the second term. To find the desired
solution, our task is simply to find the inverse Laplace transform

y() =% 7(Y) (3.8.4)

Let us illustrate with several examples.

EXAMPLE 3.8.1 \ | | |

Find the solution of the differential equation that represents the damped harmonic motion of the spring—mass

system shown,

C=dkg/s |+ |

=8N/m

I

e
?\\@
>
T

M = 1kg

T
y(f)

d*y  dy
— +4-—=+8y=0
dt2+ dt+y

with initial conditions y(0) = 2, y(0) = 0. For the derivation of this equation, see Section 1.7.



186 CHAPTER 3 / LAPLACE TRANSFORMS

EXAMPLE 3.8.1 (Continued)

»Solution

The subsidiary equation is found by taking the Laplace transform of the given differential equation:

0
s2Y — sy(0) —)/(6) +4[sY — y(0)] +8Y =0

This is rearranged and put in the form

2s + 8
Y(s) = PR
s +4s +8
To use Table 3.1 we write this as
2(s+2)+4_ 2(s +2) 4

= s +rd T v e

The inverse transform is then found to be

y(t) = e *'2cos 2t + e ¥2sin 2t = 2¢~ (cos 2t + sin 2r)

EXAMPLE 3.8.2 [ | | |

An inductor of 2 H and a capacitor of 0.02 F is connected in series with an imposed voltage of 100 sin wt volts.
Determine the charge ¢ (¢) on the capacitor as a function of w if the initial charge on the capacitor and current
in the circuit are zero.

L = 2 henrys
0
v(1) ()
|
I\
C = 0.02 farad

»Solution

Kirchhoff’s laws allow us to write (see Section 1.4)

di
25 4 L 100sinwr
dt  0.02
where i (¢) is the current in the circuit. Using i = dq/dt, we have
d*q

2 + 50¢g = 100 sin wt

dt?
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EXAMPLE 3.8.2 (Continued) \ | | |

The Laplace transform of this equation is
, Q@/O A0 100e
250 — 2040 — )1 + 500 = 5=
using i (0) = ¢’(0) = 0 and ¢(0) = 0. The transform of ¢ (¢) is then

50w
(s2 + w?)(s2 4 25)

0@s) =

The appropriate partial fractions are

The constants are found from (see Eq. 3.6.9)

Al(iw)+A2:5207‘°, By(S5i)+ By = 20
—w? 425 —25 + w?
They are
Ar=0 Az:%’ =0 Bz_wzs(iwzs
Hence,
0(s) = 50 |: w o :|
25 —w? |2+ w? 52425

The inverse Laplace transform is

q(t) = [sin wt — sin 5¢]

25 — w?

This solution is acceptable if @ # 5 rad/s, and we observe that the amplitude becomes unbounded as
o — 5 rad/s. If w = 5 rad/s, the Laplace transform becomes
Q( ) 250 A1S+A2 B1S+Bz
S) = =
(s2+25)2  (s2+25)? 52425

Using Egs. 3.6.11 and 3.6.12, we have

A1(5i) + Ay =250, Bi(5i)+ By = %(250) =0
We have
A =0, A, =250, B; =0, B,=0
Hence,

250

0@s) = 15y
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EXAMPLE 3.8.2 (Continued)

The inverse is

1 .
q(t) =250 [m(sm 5t — 5t cos 5t):|

= sin 5t — 5t cos 5t

Observe, in Example 3.8.2, that the amplitude becomes unbounded as ¢ gets large. This is reso-
nance, a phenomenon that occurs in undampened oscillatory systems with input frequency equal
to the natural frequency of the system. See Section 1.9.1 for a discussion of resonance.

EXAMPLE 3.8.3

As an example of a differential equation that has boundary conditions at two locations, consider a beam loaded
as shown. The differential equation that describes the deflection y(x) is
d*y _w
dx* EI
with boundary conditions y(0) = y”(0) = y(L) = y”(L) = 0. Find y(x).
y
w N/m

L X

» Solution

The Laplace transform of the differential equation is, according to Eq. 3.3.6,

0 0
w
Y = 2570) = 575/ 0) - () — 3O =
The two unknown initial conditions are replaced with
y(0)=c¢; and y"(0)=c>
We then have
C1 2 w

Yis)=24+2
) 52+s4 Els>

The inverse Laplace transform is

3 wx4

X
YW=t et g
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EXAMPLE 3.8.3 (Continued) \ | \ | |

The boundary conditions on the right end are now satisfied:

D=aLtal 2L g
= C CHy— —_—— =
Y T TRl 24
w L?
(L) =L+ —— =0
Y(L)=c +EI >
Hence,
wlL wL3
C) = — 9 1=
2E1 El

Finally, the desired solution for the deflection of the beam is

y(x) = w [XL3 —2X3L + x4]
24E1
EXAMPLE 3.8.4 \ | | \
Solve the differential equation
d’y dy
— +0.02 — +25y = f(t
g2t o TRY=10

which describes a slightly damped oscillating system where f(¢) is as shown. Assume that the system starts
from rest.

1@

5 ——

»Solution

The subsidiary equation is found by taking the Laplace transform of the given differential equation:
$2Y — sy(0) — y'(0) + 0.02[sY — y(0)] 4+ 25Y = F(s)

where F'(s) is given by (see Example 3.2.10)

5
F(s) = Z[1 =277 42727 — 2737 .. ]
S
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EXAMPLE 3.8.4 (Continued)

Since the system starts from rest, y(0) = y’(0) = 0. The subsidiary equation becomes

F(s)
s2+0.025 +25

= > [1—2e7™ 42727 —...]
s(s2 4 0.02s + 25)

Y(s) =

Now let us find the inverse term by term. We must use®

5
p—l —0.017 :
|:—(s+001)2+52:| =e tSlnSt

With the use of Eq. 3.3.14, we have, for the first term (see Example 3.5.2 for integration by parts),

_ gl 5
) =2 |:s[(s 10.00)2 + 52]]

t
:/ e 0% gin 57 dt
0

1
=1- ge’omt[cos 5t +0.002 sin 5¢]

The inverse of the next term is found using the second shifting property (see Eq. 3.2.14):

5
) = ;Pfl —7s
ne [e 5(s + 0.025 + 25)]

1
= —2u,(t) {1 - ge—"-‘““—”)[cos 5(t — ) + 0.002sin5(r — n)}

= —2u, (H{1 + [1 — yo(1)]e*'™}

where u,(t) is the unit step function and we have used cos(t — ) = —cost and sin(t — 7) = —sint. The
third term provides us with

5
_ 58_1 —27s
ya(t) |:e s(s2 4+ 0.02s + 25):|

1
= — Uy (1) {1 - gefo‘m(’*z”)[cosS(t —27) + 0.002sin 5(r — 271)]}

= —2u2, ({1 — [1 — yo(1)1e""}

4We write s> + 0.02s + 25 = (s + 0.01)> 4+ 24.9999 = (s 4+ 0.01)% + 5°.
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EXAMPLE 3.8.4 (Continued) \ | | |

and so on. The solution y(¢) is
1
y(t) =yo(t) =1— ge*“"”[cos 5t + 0.002 sin 57], O<t<m

1
y() = yo(t) + y1(t) = —1 — ge—(’““[cos. 5¢ + 0.002 sin 5¢]

[14 2e%017, T<t<2mw

1
y(t) = yo(t) + y1(t) + y2(t) =1 — ge*0~°“[cos 5¢ 4+ 0.002 sin 5¢]

[1 4 20017 4 200277 2r <t < 3w
Now let us find the solution for large ¢, that is, for nm <t < (n + )7, with n large. Generalize the results

above and obtain’
(@) = yo(t) + y1 () + - + yu (1), nw <t <@m+hrm

1
= (=" — ge—°~0”[cos 5t 4 0.002 sin 57][1 + 2¢"07
+ 260.0027r + . + 260.01n7r]

1
=(—=D)"+ ge—‘“’“[cos 5t 4+ 0.002 sin 5¢]
2
- ge*O-O“[cos 5¢ 4+ 0.002sin 5¢][1 4 2e%017 4 ... 4 20017

a U oou .
=(—1 +ge M cos 5¢ + 0.002 sin 5¢]

1— e(n-H)OAOlJT

— ge_o'o“[cos 5¢ 4+ 0.002 sin 5¢]
5 ' 1 — 0017

1 2
5 5(1— e00lir)
28(n+1)0.0171—0.01t

+ 5(1 — e001m)

=(—D"+ |: :| e %% [cos 5¢ 4 0.002 sin 5¢]

[cos 5¢ 4+ 0.002 sin 57]

°In the manipulations we will use
1 2 3 n n+1
——=l+x+x"+x 4+ x4
1+x
=l+x+x2+ "+ A+ +0)
=l4+x+x> 4+ +x"+x"/1-x)
Hence,
1 — xntl

=1l4+x+x>+ - +x"
I—x
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EXAMPLE 3.8.4 (Continued) l | l | |

—0.01¢

Then, letting  be large and in the interval nwr <t < (n + D)m, e — 0 and we have

(n4+1)0.017—0.01

n € .
y@) = (D" + W(COS 5t +0.002 sin 5¢)

> (—1)" — 12.5e"0M0+DT=1 g 54

This is the steady-state response due to the square-wave input function shown in the example. One period
is sketched here. The second half of the period is obtained by replacing n with n 4+ 1. Note that the input
frequency of 1 rad/s results in a periodic response of 5 rad/s. Note also the large amplitude of the response, a
resonance-type behavior. This is surprising, since the natural frequency of the system with no damping is
5 rad/s. This phenomenon occurs quite often when systems with little damping are subjected to nonsinusoidal
periodic input functions.

y()

Input
function

ln+m 1

—11.9
—13.5

—13.9
(For this sketch, n is considered even)

3.8.1 Maple Applications

The dsolve command in Maple has amethod=1aplace option that will force Maple to use
Laplace transforms to solve differential equations. Using this option reveals little about how the
solution was found. In Example 3.8.1 we use Maple as follows:

>del := diff(y(t), ts$2) + 4*diff(y(t), t) + 8*y(t) = 0;

del := d—2 )+ 4 g O)+8y =0
“\ae”Y ac” v

>dsolve ({del, yv(0)=2, D(y) (0)=0}, v(t), method=laplace);

v=2e"Ycost+2e™?Psin@y
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If we replace the 0 in this example with the unit impulse function, with the impulse at# = 1, then
we get the correct result whether or not the method=1aplace option is used:

>de2 := diff(y(t), t$2) + 4*diff(y(t), t) + 8*y(t) = Dirac(t-1);

d? d _
de2 := (@y(t)) +4 (Ety(t)) + 8y(t) =Dirac(t—1)

>dsolve ({de2, y(0)=2, D(y) (0)=0}, y(t));
1
vi=2e"9sin@t+2e"cos Rt + EHeaviside (t—1)e®2Ysin (=2 428
>dsolve ({de2, v(0)=2, D(y)(0)=0}, v (t), method=laplace);

1
v =2e"Psin@o+2e%cos 28+ EHeaviside t—1)e®?Ysin(=24+20

Another example, showing the pitfalls of using Maple with the Dirac function, can be found in
the Problems.

Problems
. . o el K ) dz d
Detern;me the solution for each initial-value problem 1. d_tz 42 d_i) by =20 y(0) =0,y (0) =0
d
1 S+ =0, YO0) =0, y(0) =10 2y dy
2 12. WHE +4y =4sin2¢,y(0) =1, y'(0) =0
y
2 o5 -4y =0, YO =2 Y(©)=0 2y dy
2 13. v +4E + 104y =2 cos 10z, y(0) = 0, y'(0) = 0
Yy /
3. W"')’:Z, y(0) =0, y(0)=2 2y dy
2 14. el + ZE + 101y =5 sin 10z, y(0) =0, y'(0) = 20
4 d—f + 4y = 2cost, y(0) =0, y(0)=0
2t Solve for the displacement y(z) if y(0) = 0, y'(0) = 0. Use a
d . . . . . . .
5. @y 44y = 2cos2t, y0) =0, y(0)=0 combination of the following friction coefficients and forcing

dr* functions.
R CEUE CEU N
7. %+5%+6y=0, Y©0) =0, '(0)=20 :; g:zg: c| K =72 N/m

L
2y _dy (© F(1) = 10sin6r e
9 — —2——-8y=0, 0) =1, "(0) =0 &
ar ~ “ar 7 ) i @) F() = 10[uo(t) — ttar ()] ——

y(@®
d , (e) F(t) = 10e 02 )
10. L2459 L6y =12, 0)=0, (0) =10
aiz a7 YO y© ) F() = 10080() F()
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For a particular combination of the following resistances and @ £
input voltages, calculate the current i (¢) if the circuit is quies-
cent at + = 0, that is, the initial charge on the capacitor 2
¢(0) = 0 and i (0) = 0. Sketch the solution.
19. R=0Q C = 0.01 farad o o t
20. R=16% )|
0 6 ll ®) )
21. R=20Q
o 21
22. R = 25 Q U(t) §R
o}
(a v@r)=10V i(f) 2m t
(b) wv(t) = 10sin 10z 000,
(¢) wv(t) = 5sin 10z L = 1 henry ©  fo
() v(®) = 10[ug(t) — uzx ()] 101
(e) v(r) = 1030(r)
() v(t) =20e! 2w t
Calculate the response due to the input function f(¢) for one ()
of the systems shown. Assume each system to be quiescent at f®
t = 0. The function f(¢) is given as sketched. 4
23.
2m 4 6m 8m t
= ©) fa
=K =50N/m al
2
\
M=2 kgI 4 t
()
1 N ® s
F(t) = f(1) 10—
24 v = (1)
o ©
t
& fo
10—
——~ C = 0.005 farad
2 t
i(f)
000, Determine the response function due to the input function for
L = 2 henry one of the systems shown. Each system is quiescent at = 0.

Use an input function f(¢) from Problems 23 and 24.



25.
K=1OON C =4 kg/s
T
y()
\
F(1) = f(1)
26. v(t) = f(1)
O O
q(t) =~ C = 0.01 farad § R = 4 ohms

27. Find the deflection y(x) of the beam shown. The differ-
ential equation that describes the deflection is

4
Y20 w =

e £l Pdpp(x) + wlug(x) —up(x)]

3.9 SPECIAL TECHNIQUES

3.9 SPECIAL TECHNIQUES 195

L/2 L/2

28. Computer Laboratory Activity: Replace the 0 in
Example 3.8.1 with the unit impulse function (impulse at
t = 0), and enter these commands:

>de2 := diff (v ,£82) + 4*diff
(y(t),t) + 8*y (t) = Dirac(t) ;
>dsolve ({de2, y(0)=2, D(y) (0)=0},
y(t));

>dsolve ({de2, y(0)=2, D(y) (0)=0},

vy (t), method=laplace) ;

Note that the output here is inconsistent. Now solve the
problem by hand, using the fact that the Laplace trans-
form of §p is 1. What is the correct answer to the prob-
lem? What is Maple doing wrong? (Hint: infolevel
[dsolve] : =3;)

3.9.1 Power Series

If the power series for f(), written as

(3.9.1)

[ =) a,"
n=0

has an infinite radius of convergence—or equivalently, if f () has no singularities—and if f(¢)

has exponential order as t — 00, then

=4L(f) =

F(s)

(3.9.2)

00 00 1
ny — | -
S0 =Y nta L
n=0 n=0

If the series 3.9.2 is easily recognized as combinations of known functions, this technique can be

quite useful.

EXAMPLE 3.9.1

Find the Laplace transform of f () = (e™" — 1)/t (see Example 3.4.2).

» Solution

Since the given f(#) can be expanded in a power series (see Section 2.2), we can write

-1 (— 1)"
Z
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EXAMPLE 3.9.1 (Continued)

It then follows that

I
e
~~
s |
3| Z
=

Il

I

= =)
N +

—_

+
“ |
N———"

EXAMPLE 3.9.2

Find the Laplace transform of f(¢) = t~'/% erf (J/1).

»Solution
By definition (see Eq. 3.7.12),

212 Vi
=1 2erf(V1) = f e dx
0

b &
2t—1/ 3 ( l)n(J)2n+1
JT Z (2n + Dn!

Therefore,

Elr~Perf (V)] = Z

= n+1s’“rl

The power series in 1/s can be recognized as (2//7s) tan~'(1//s). So

Ll erf (V)] = \/% tan~! %




EXAMPLE 3.9.3

Show that
L] =
’ s24+1
where Jy(t) is the Bessel function of index zero.
»Solution
The Taylor series for Jy(t) is given in Eq. 2.10.15:
00 k 42k
(=D
O =2
Hence,
) k
(=D*@k! 1
PO = 5
k=0
but
Qk)!'=2-4-6---2k-1-3---
=21 1-3... 2k —1)
Thus,

3.9 SPECIAL TECHNIQUES

1 X (=DF1-3.. 2k —1
L] = ~ [1+Z( ) ( ):|
k=1

2k 1g2k

Use of the binomial theorem is one way of establishing that

1\ 2 (- (—H(=H(=D)
(1) = SR ) e

( DFHB) -2k —1) 1
2k! 57

Finally, using Eq. 2 in Eq. 1 we have

1 1\ 2
LlJo()] = N (1 + s_Z) =

197

6]

@
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Problems

1. Expand siny/7 in an infinite series and show that 3. Show that

P(sin/1) = (V7T /253/2)e /4

2. Use the identity ¢! [%e‘l/s] = "2 J,(2/1)
sn

d
dt Jo@) == 4. Expand 1/t sin(zk) in powers of ¢ to prove that

i 1 k
and the Laplace transform of Jj to derive @ I:; in (kt):| -1 ¥
s

N

L] =1— —
! V21 5. Find £[Jo(20)].

Table 3.1 Laplace Transforms

f(t) F(s) = £{f(t)}
1
1 1 -
S
1
2 t =
S
-
3 tn—l (nsn ) ( =1,2,. )
4 172 Nl
S
1/2 N
5 t 57
r
6 ! —(,'f) (k > 0)
S
7 eat 1
s —a
1
t at
8 e 7@ — )2
— !
9 et (=D 1)
(s —a)
_ (k)
k—1 at
10 t" e G_aF (k > 0)
11 e — o _a=b s
(s —a)(s —b)
(a —b)s
12 at _ b bt o b
ae e G—aG b (a #b)
13 8o(t) 1
14 8a(1) Pl

15 uy(t) e—as/s



Table 3.1 (Continued)
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f(t) F(s) = £{f(1)}
1 1
16 Int —({In—-—0.5772156- - -
K s
17 sin wt e
52 4+ w?
18 cos wt s
52 4+ w?
19 sinh at %
s?—a
K
20 h at —-—
cosh a o
21 e sin wt e
(s —a)? + o?
22 e cos wt _sTa
(s —a)? + o?
2
23 1 —coswt e
5(s2 4+ w?)
’;
3
24 t — sin wt -
wt — sinw 267 1 D)
2 3
25 sinwt — wt cos wt v
(s2 + w2)2
2
26 t sin wt v
(52 4+ w?)?
2 2
27 sin wt 4 wt cos wt v
(32 + w2)2
(b — a?)s 2 2
28 t— bt _— b
cosa cos T D 1 b (a” #b%)
4 3
29 sinat coshat — cos at sinh at e
s + 4a*
2 2
30 sin at sinh at s
s4 + 4a*
2 3
31 sinhat — sinaz =
st —a
2 2
32 coshat — cosat 4a s4
st —a
33 e f (1) F(s —a)
1 t
U ay o (1
35 Ee f p F(as +b)
36 f(t —cuc(t) e “F(s)
t
37 f f(Dgt—1)dr F(s)G(s)
0
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The Theory of Matrices

4.1 INTRODUCTION

The theory of matrices arose as a means to solve simultaneous, linear, algebraic equations. Its
present uses span the entire spectrum of mathematical ideas, including numerical analysis, sta-
tistics, differential equations, and optimization theory, to mention a few of its applications. In
this chapter we develop notation, terminology, and the central ideas most closely allied to the
physical sciences.

4.1.1 Maple Applications

Maple has two different packages for linear algebra. The commands in this chapter come from
the 1 inalg package. Similar commands can be found in the LinearAlgebra package. The
commands used in this chapter are: addrow, adjoint, augment, col, delcols, det,
diag, gausselim, genmatrix, inverse, matadd, matrix, mulrow, row, rref,
scalarmul, swaprow, transpose, along with commands from Appendix C.

Built into Excel are several worksheet functions that act on matrices. The functions in this
chapter are: INDEX, TRANSPOSE, MMULT, MINVERSE, and MDETERM.

4.2 NOTATION AND TERMINOLOGY

A matrix is a rectangular array of numbers; its order is the number of rows and columns that
define the array. Thus, the matrices

-2 1 1 X

1 -1 .

[2(5’ 7] 000/, |yl 1 1-i11 [0
1 1 1 z

have orders2 x 3, 3 x 3, 3 x 1, 1 x3,and 1 x 1, respectively. (The order 2 x 3 is read “two

by three.”)
In general, the matrix A, defined by

ap aiz - dig

a axp -+ dy
A= . 42.1)

dapr dp2 -+ dpg
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is order p x g. The numbers q;; are called the entries or elements of A; the first subscript defines
its row position, the second its column position.

In general, we will use uppercase bold letters to represent matrices, but sometimes it is con-
venient to explicitly mention the order of A or display a typical element by use of the notations
Apxg and (aij),

' 1 1 1
Ap3=(0)=1|2 22 23
3 3 3 4.2.2)
. 0o -1 -2 =3
A2><4—(l_])—|:1 0 —1 _2]
In the system of simultaneous equations
2x1 —xo+x3—x4 = 1
X1 - X3 = 1 (4.2.3)
Xo 4+ x3+x4 =—1
the matrix
2 —1 —1
A=1|1 0 —1 0 (4.2.4)
0 1 1
is the coefficient matrix and
2 —1 1 -1
B={1 0 -1 0 1 (4.2.5)
0 1 1 I -

is the augmented matrix. The augmented matrix is the coefficient matrix with an extra column
containing the right-hand-side constants.

The ith row of the general matrix of 4.2.1 is denoted by A;,, the jth column by A, ;. Thus, in
the matrix of 4.2.4,

A =[2 -1 1 —1]
Ay, =[1 0 —1 0] (4.2.6)
Ay, =[0 1 1 1]

while
2 —1 1 -1
A*l = 1 ) A*Z = 01, A*3 = —1 ) A*4 = 0 (427)
0 1 1 1

Square matrices have the same number of rows and columns. The diagonal entries of
the A, matrix are ai, ax, ..., au,; the off-diagonal entries are a;;, i # j. Matrices with
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off-diagonal entries of zero are diagonal matrices. The following are diagonal matrices:
| 0 0 0 0 1 00
A=|:O _1j|, B=|0 0 0|, C=[0 2 0|, D=[-2] 428
0 0 0 0 0 1

The identity matrix I,, is the n x n diagonal matrix in which a;; = 1 for all i. So

I 0
L=(1], Iz=[0 1}, L=

SO =
(= ]

0
0 (4.2.9)
1

When the context makes the order of I, clear, we drop the subscript 7.

Upper triangular matrices are square matrices whose entries below the diagonal are all zero.
Lower triangular matrices are square matrices whose off-diagonal entries lying above the diag-
onal are zero. We use U and L as generic names for these matrices. For example,

1 0 0 0
L]_[2 _1i|, Lz_[o O:|’ L; =1 (4.2.10)

are all lower triangular—the subscript here simply distinguishes different lower triangular
matrices. Similarly,

Ulz[g _” U,=[7], Us=1I 4.2.11)

are all upper triangular. Note that diagonal matrices are both upper and lower triangular and
every matrix that is both upper and lower triangular is a diagonal matrix.

Finally, we define the O matrix to have all entries equal to zero; that is, the entries of the
square matrix O, are a;; = 0. Thus, for instance,

0, = [8 8] (4.2.12)

4.2.1 Maple, Excel, and MATLAB Applications
In order to use any Maple command for matrices, we must first load the 1inalg package:
>with(linalg) :

We will demonstrate how to enter the two matrices 4.2.2. There are several ways to define a ma-
trix in Maple. One way involves listing all of the entries in the matrix, row by row:

>Al:=matrix(3, 3, [1, 1, 1, 2, 272, 273, 3, 372, 3731);

Al :=

w N e
[CoYT G
< ©
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>A2:=matrix (2, 4, [0, -1,-2, -3, 1, 0, -1, -21);

0 -1 -2 -3
A2‘_[1 0 -1 —2]

Notice how the first two numbers in the command indicate the number of rows and columns in
the matrix. You can also keep the columns separated by square brackets, and then the number of
rows and columns is not necessary:

>A2:=matrix([[0, -1, -2, -3], [1, O, -1, -211);

Another approach, which matrices 4.2.2 are based on, is to define the entries of a matrix as a
function of i and j:

>Al:=matrix (3,3, (i,3) -> i"7);
1 1 1
Al := |2 4 8
3 9 27

>A2:=matrix (2,4, (i,3) -> 1-3);

0 -1 -2 -3
A2'_[1 0 -1 —2]

It is important to know all three methods to define a matrix.
In Maple the row or column of a matrix can be extracted using the row or col command.
Using the matrix A defined by Eqs. 4.2.6:

>A:=matrix(3, 4, [2, -1, 1, -1, 1, O, -1, O, O, 1, 1, 17);

2 —1 1 -1
A:=|1 0 -1 0
0 1 1 1
>row (A, 1); row(A, 2); row(A, 3);
[21_1111_1]
[(1,0,—-1,0]
[0,1,1,1]

>col (A, 1); col(A, 2); col(A, 3); col(Aa, 4);

[2,1,0]
[_11011]
(1,-1,1]

[_lloll]
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Both commands give output as vectors, which Maple always writes as row vectors. In Maple,
there is a difference between a vector and a 1 x 4 or 3 x 1 matrix.
A command such as

>A[1,2];

will produce the entry in row 1, column 2, of matrix A.
Although the 1inalg package does not have a shortcut to create identity matrices, the fol-
lowing command will work:

>I3:=matrix (3,3, (i,j) -> pilecewise(i=j, 1, 0));

I3 :=

o O
o = O
= O O

This command will also work:
>I3:=diag(1l, 1, 1);

In Excel, any rectangular block of cells can be thought of as a matrix, although the Excel help
pages refer to them as arrays. Here is the first of matrices 4.2.2 in Excel:

A B @

1 1 1 1
2 2 4 8
3 3 9 27

To enter this matrix, all nine entries can be entered one at a time. Another way to enter the ma-
trix is to first type “1” in cell A1, followed by “=A172" in Bl and “=A1"3" in C1. Then in A2,
enter “=A1+1". Now we can do some copying and pasting. Copy cell A2 into A3. Because
Excel uses relative cell references, the formula in A3 will be “=A2+41" and not “=A1+1".
Similarly, cells B1 and C1 can be copied into cells B2 and C2, and then B3 and C3. (Excel’s “fill
down” action can be used here, too.) After these various copyings and pastings, the cells would
hold the following formulas:

A B C
1 1 Al1"2 Al1"3
2 Al +1 A2"2 A2"3
3 A2 +1 A3"2 A3"3

Using Excel’s syntax for arrays, this matrix is located at A1:C3.

Once a matrix is entered in a spreadsheet, a specific entry can be listed in another cell via the
INDEX function. For the matrix in this example, the formula =INDEX(A1:C3, 2, 3) will pro-
duce the entry in the second row, third column of A1:C3, which is 8.

We can enter matrices in MATLAB in a variety of ways. For example, the matrix 4.2.4 is
entered by typing

» = [2-11-1; 10 -10; 01 111];

There are four issues to consider:

1. The rows are separated by a semicolon.
2. The entries in a row are separated by a space.
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3. The semicolon that ends the line prohibits the display of A.
4. The right-hand side symbol, A, is defined by the left-hand side and stored in memory
by pressing <return> (or <enters).
To view the definition of A, we simply type A and press <return>,
»A

>
I
SIEEN
o
|
=
o

The 3 x 4 matrix of zeros is entered by using

zeros (3,4)

0 0 0 O
ans=|0 0 0 O
0 0 0 O

The arguments of zeros is the size of the matrix of zeros. If only one argument is given,
MATLAB assumes the matrix is square. So zeros (3) returns the same matrix as
zeros (3, 3). Here is a matrix of ones:

ones(3,4)

ans =

=
=
e
e

The command eyes is reserved for the identity matrix L. Its argument structure is the same as that
for zeros and ones:

eyes(3,4)
1 0 0 O
ans=|0 1 0 0
0O 0 1 0
eyes (4, 3)
1 0 O
0 1 0
ans =
0 0 1
0 0 O

MATLAB can extract groups of entries of A by using arguments to the definition of A. For
example, we can obtain the entry in the second row, third column by the following device:

A(2,3)

Ans = [0]
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All the entries in the third column of A are given by

A(:,3)
1
ans = | —1
1
In the analogous manner, 2 (2, : ) extracts the second row:
A(2,:)

Ans=[1 0 —1 0]

Problems
1. Given 9. x1=Xx2
5 2 0 -3 ) =25
SR
10. x; =0, x=1, x3=1
-2 4 0 9
identify the following elements: 11. Is O, upper triangular? Lower triangular? Diagonal?
@) axn 12. Identify which of the following groups of numbers are
matrices.
(b) azxn o o
(¢) ax @ [0 2]
(d) an (b) _0]
(e) a 2
Write each matrix in full. ©Tf 0 ]
2. A = [if] L 2
3. Az =[] @@7fo 1
4. Aoxa =i +j] |2 3]
5. Asxz = [i] @r. o
. e
6. Asyxz =1[j] 1 3 3]
What are the coefficient and augmented matrices for each of _
. ® [1 2
the following? 5
7. X1 =0 -
X2 =0 (@ [2x «?
x3=0 12 0

8 x1+xm+x3=0 (h) [2x  x2]
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15. Problem 3
16. Problem 4

Enter the matrix A of Problem 1 into MATLAB and perform
the following:

17.  Extract the third row.
18. Extract the second column.
19. Extract the (3,2) entry.

] 20. Use the command diag on A.

Create the following matrices using Maple:

13. Problem 1
14. Problem 2

21. Perform the same four operations using MATLAB on
Problem 12(j) as requested in Problems 17-20.

4.3 THE SOLUTION OF SIMULTANEOUS EQUATIONS
BY GAUSSIAN ELIMINATION

Our first application of matrix theory is connected with its oldest use—the solution of a system
of algebraic equations. Consider, for example, the following equations:

X + z=1
2x+y+ z=0 4.3.1)
x+y+2z=1

We can solve these equations by elimination by proceeding systematically, eliminating the first
unknown, x, from the second and third equations using the first equation. This results in the
system

x +z= 1
y—z=-2 (4.3.2)
y+z= 0

Next, eliminate y from the third equation and get

x + z= 1
y— z=-2 (4.3.3)
2= 2
We now have z = 1 from the third equation, and from this deduce y = —1 from the second

equation and x = 0 from the first equation.

It should be clear that the elimination process depends on the coefficients of the equations
and not the unknowns. We could have collected all the coefficients and the right-hand sides in
Egs. 4.3.1 in a rectangular array, the augmented matrix,

—_— N =
—_—= O
DO =

1
0 (4.3.4)
1
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and eliminated x and y using the rows of the array as though they were equations. For instance,
(—2) times each entry in the first row added, entry by entry, to the second row and (—1) times
each entry in the first row added to the third row yields the array

(4.3.5)

oS O =
—_— O
|
—
|
)

which exhibits the coefficients and right-hand sides of Eqs. 4.3.2. The zeros in the first column
of Eq. 4.3.5 refer to the fact that x no longer appears in any equation but the first. The elimina-
tion of y from the third equation requires the replacement of the 1 in the third row, second col-
umn, by 0. We do this by subtracting the second row from the third and thus obtain the coeffi-
cients and right-hand sides of Egs. 4.3.3 displayed in the array

1 0 1 1
01 -1 =2 (4.3.6)
o0 2 2

Once the equations have been manipulated this far, it is not essential to perform any further
simplifications. For the sake of completeness we observe that dividing the third row by 2 (which
amounts to dividing the equation 2z = 2 by 2), then adding the new third row to the second and
subtracting it from the first, leads to the array

1 00
01 0 -1 (4.3.7)
0 0 1 1
This corresponds to the equations
= 0
y=-—1 (4.3.8)
z= 1

The equations used to simplify Eqs. 4.3.1 to 4.3.8 are elementary row operations. They are of
three types:

1. Interchange any two rows.
2. Add the multiple of one row to another.
3. Multiply a row by a nonzero constant.

The crucial point here is that an elementary row operation replaces a system of equations by
another system, the latter having exactly the same solution as the former. Sox =0, y = —1,
and z = 1 is the unique solution of Eq. 4.3.1.

The foregoing reduction of several variables in each equation of a system to one variable in
each equation is referred to as Gaussian elimination.
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EXAMPLE 4.3.1 \ | | |

Solve the equations

X +z=1
2x +z=0
x+y+z=1
» Solution
We begin with the augmented matrix
10 1 1]
2 010
11 1 1

Then proceed to manipulate the matrix in the following manner:

I 01 1 1 0 1 1 I 0 0 -1
2010[{—]0O0 -1 =2|—1]0 0 -1 =2
11 1 0 1 0 o0 0 1 0 0

The arrows denote the application of one or more elementary row operations. The rightmost matrix in this arrow
diagram represents the system

x=-—1
—7=-2
y= 0
Thus, the solution of the given systemis x = —1, y =0, and z = 2.
EXAMPLE 4.3.2 \ | | |
Solve the system
—X +z=—
x+y = 0
z= 0

» Solution
We apply elementary row operations to the augmented matrix of this system, so
—1 1

1 -1 —

1

(=R
(=i ]

-1 0 1 1
1 10 O0|—|0
0 0 1 0 0

(=]
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EXAMPLE 4.3.2 (Continued) \ | | |

Hence x

=1,y = —1, and z = 0 is the unique solution. The solution could also be expressed as the column
1
matrix [1 i|
0

EXAMPLE 4.3.3 \ | | |

Solve the system

x+y+z=1
x—y+z=3
by +z=2
» Solution
We have
1111 1 1 1 1]
I -1 3{— |0 =2 0 2
1 0 1 2 K 1 0 1]
11 1 1] 101 2
— 1 0 -1|—1]0 1 0 -1
01 0 —1] 000 O
Hence,
x+z= 2
y=-1
0= 0
and there are infinitely many solutions of the given system. Let z =c. Thenx =2 —¢, y=—1l,andz =c¢

is a solution for every choice of c.

The system in Example 4.3.3 is inconsistent if any constant but 2 appears on the right-hand
side of the last equation. If we attempt to solve

x+y+z=1
x—y+z=3 (4.3.9)
X +z=K
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we get
111 1 1111
1 -1 1 3|—1]0 -2 0 2
1 01 K |0 -1 0 K-—1
111 1 111 1
— 10 1 0 -1 — |0 1 0 -1 (4.3.10)
(01 0 1-K 000 2-K
This represents the system
x+y+z=1
y=-—1 4.3.11)
0=2-K

and the last equation is contradictory unless K = 2. This conclusion holds for Eqs. 4.3.9 as well.
The number of equations need not be the same as the number of unknowns. The method out-
lined above is still the method of choice. Two examples will illustrate this point.

EXAMPLE 4.3.4 \ | | |

Find all the solutions of

t+x+y+z=1
t—x—y+z=0
2+x+y—z=2

» Solution

The augmented matrix is

Hence, with elementary row operations the matrix above becomes

1 1 1 1 1 1 1 1 1 1
0 -2 -2 0 —-1|— 1|0 1 1 !
0 -1 -1 =3 0 0 -1 -1 =3 0

(111 11 1001 3

— |0 11 03l —lo1 10 !

3 1 1

000 =3 3 0001 -1
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EXAMPLE 4.3.4 (Continued) \ | | |

This last matrix is the augmented matrix for the system

t+z=3
X+y= %
r=-1
Starting with the last equation, 7 = — %. From the second equation, we find x = % — cif y = c. From the first

2

equation, t = % Thus, the family of all solutions is the sett = 5

x=1—c, y=c, z=—1 andcarbitrary.

EXAMPLE 4.3.5 [ | | |

Find all solutions to

t—x+2y— z=
t + y+ z= 0
—x+ y—2z=-1

» Solution

‘We have
1 -1 2 -1 1 1 -1 2 -1 1]
1 o1 1 o|l—1]0 1 =1 2 -1
0 -1 1 =2 -1 0 -1 1 -2 -1

-1 2 -1 1
— o 1 -1 2 -1
0 0 0 0 —2

The third row of the last matrix in this arrow diagram stands for the contradictory equation
0r +0x +0y +0z=-2

Hence, the given system has no solutions.

4.3.1 Maple and MATLAB Applications

The Maple command genmatrix can be used to create the augmented matrix, while
swaprow, addrow, and mulrow will perform the three elementary row operations. In addi-
tion, rref will perform all the steps of Gaussian elimination at once, including extra steps to
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put the matrix in row-echelon normal form (see Section 4.4). Here is how Example 4.3.1 would
be solved with Maple:

>A :=genmatrix ({x+z=1, 2*x+z=0, x+y+z=1}, [x,v,z], flag);
1 0 1 1
A:=|2 0 1 0
11 1 1

>Al:=addrow (A, 1, 2, -2);

>A2:=addrow (Al, 1, 3, -1);

A2 1=

o
o
|
—
|
N

>A3:=addrow (A2, 2, 1, 1);

A3 1=

o
o
|
—
|
)

>Ad :=swaprow (A3, 2, 3);

>AS5:=mulrow (A4, 3, -1);

1 0 0 -1
A5:=|0 1 0O O
o o0 1 2
>rref (A) ;
1 0 0 -1
o 1 0 0
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The examples in Section 4.3 show the power of elementary row operations in the solution of
simultaneous (linear) equations. MATLAB’s command rref'is used to take the arithmetic tedium
out of the process. The simplified system (in terms of the matrix of its coefficients) given by rref
is unique and in some sense, the simplest form for a given set of equations. (In this course, it is
unnecessary to define this form, or show that it is unique or explore its various properties.) Here
we redo Example 4.3.2 using rref. See also Section 4.4.

EXAMPLE 4.3.6 \ | | |

Solve the system in Example 4.3.2 by using the command rref.

» Solution

Enter the augmented coefficient matrix calling it 2 and suppress the output.
»A=[-1 01 -1; 1 1 0 0; 0 O 1 01;

»B=rref (A)

1 0 O 1
B=10 1 0 -1
0 0 1 0
EXAMPLE 4.3.7 \ | | |
Solve the system in Example 4.3.4 using rref.
» Solution
»»=[11111; 1 -1 -1 10; 211 -1 2];
»B=rref (A)
1.0000 0 0 0 0.6667
B = 0 1.0000 1.0000 0 0.5000
0 0 0 1.0000 -—0.1667

Here it is important to notice that rref converts all the entries (except 0) into decimal form. This is a conse-
quence of the method used by MATLAB to ensure speed and accuracy. It is a mild inconvenience in this case.
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Problems [ 1 [ [

Reduce each matrix to upper triangular form by repeated use  14. x —3y +z = -2
of row operation 2. x—3y—z= 0
1. [ 1 0 0 —3}7 +z= 0
-2 2 0 15, x4+ xpx+x3=4
1 3 —1 X] — X2 —X3 = 2
- -2 =0
ZTo1 o0 S
100 Find the column matrix representing the solution to each set of
L 0 01 algebraic equations.
3. M _— =
a b] Ca%0 16. x—y=2
Lc d x+y=0
4 Ta b 17. x+ z=4
, a=0
c d 2x +3z=28
5. '1 2 1 18. x+2y+z=-2
2 4 -2 xty =3
= 19. x1— x4+ x3=5
6. Explain why a system of equations whose matrix of co- 2x1 —4xy +3x3 =0
efficients is upper triangular can be solved without fur- x| — 6x9 4 2x3 = 3

ther simplification, provided that there is a solution.
Write an example illustrating the case with no solutions.  [jge Maple to solve

7. Find all solutions of 20. Problem 10
xta—x=1 21. Problem 11
8. Find all solutions of 22. Problem 12
Xptxy—x3 =1 23. Problem 13
Xy +x2+x3 =—1 24. Problem 14
9. Relate the set of solutions of Problem 8 to that of 25. Problem 15
Problem 7. 26. Problem 16
Solve each system of linear, algebraic equations. 27. Problem 17
10. x—y=6 28. Problem 18
x+y=0 29. Problem 19
1. 2x—2y=4 In each of the following problems use rref in MATLAB and
2x+y=3 compare your answers to the work you have done by hand.
12. 3x+4y=7 30. Problem 13
2x — 5y =2 31. Problem 14
13. 3x+2y—62=0 32. Problem 15

33. Problem 18
34. Problem 19

x—yt+ z=4
y+ z=3
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4.4 RANK AND THE ROW REDUCED ECHELON FORM

Suppose that a sequence of elementary row operations is applied to A, resulting in the arrow
diagram

A— A — A — - — Ap 4.4.1

For any A, it is always possible to arrange the row operations so that Az has these four
properties:

1. All the zero rows of A are its last rows.

2. The first nonzero entry in a nonzero row is 1. This is called the leading one of a
NONZero row.

3. The leading one is the only nonzero entry in its column.

4. The leading one in row i is to the left of the leading one in row jif i < j.

Any matrix with these four properties is said to be in row reduced echelon form, RREF for short.
A crucial theorem follows:

Theorem 4.1: Every matrix has a unique RREF which can be attained by a finite sequence of
row operations.

The existence of the RREF, A, is not difficult to prove—the uniqueness provides something of
a challenge. We invite the reader to construct both arguments!

Here are some matrices! in RREF:

1 * % x
(@ I, (b) Ouxn © [0 0 00 (A [1 % ]
(00 00
: 1 0
I 0 % -+ =x 0 1
(e) 8 () [0 1 % ... *} (@ 0 0
[0 0

Note that O, «, satisfies the last three criteria in the definition of RREF vacuously; there are no
leading ones.

If Ay is the RREF of A, then the rank of A, written rank A, is the number of nonzero rows of
Ag. The matrices (a)—(g) in the preceding paragraph have ranks of n, 0, 1, 1, 1, 2, and 2, respec-
tively. The following theorem regards the rank.

Theorem 4.2: For each A, «,,

rank A <m and rankA <n 4.4.2)

'The entries designated with * in a matrix represent any number.
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Proof: By definition, rank A is a count of a subset of the number of rows, so rank A < m is ob-
vious. But rank A is also the number of leading ones. There cannot be more leading ones than
columns, so rank A < n is also trivial.

Consider the system

ap Xy +apxy + -+ apx, =

a xy + axxy; + -+ ayuXx, =1

(4.4.3)
A1 X1 + QX2 + <+ QunXp = Ty
with coefficient matrix A and augmented matrix B:
air  aip - A aiy  aip - aip T
dayy axp - 4 dayy dxp - Ay 12
A=| "l B=| ) ! (4.4.4)
Aml  Am2 - dpn ml  Am2  c Aup Ty
Theorem 4.3: System 4.4.3 is consistent? if and only if
rank A = rank B (4.4.5)

Proof: Let B be the RREF of B. The RREF of A can be obtained from By by striking out the
last column?® of Bg. Then rank B = rank A or rank B = rank A + 1 because either Bg contains
the same number of leading ones or one more leading one. In the latter case, the last nonzero row
of By is

[0,0,...,0,1] (4.4.6)

which, as in Example 4.3.5, signals no solutions to the given system. In the former case, the
system always has at least one solution.

Corollary 4.4: Ifr; =0 fori = 1,2, ..., m, then system 4.4.3 is consistent.

Arow such as 4.4.6 is impossible in this case, so rank A = rank B. The corollary is trivial for
another reason: x| = x, = -+ - = x,, = 0 is always a solution when r; = 0.

In a row-echelon normal form matrix, columns containing a leading one are leading columns;
the remaining columns are free columns. The number of leading columns is equal to the rank

%A consistent system is a set of simultaneous equations with at least one solution. An inconsistent system has
no solutions.

3See Problem 1.
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of A. If we set rank A = r and 1 = number of free columns then r is the number of leading
columns, and

n=r+n (4.4.7)

There is only one new MATHLAB command for this section and that is rank. So, for
example,

»A=[1 1 1;2 2 2;3 3 3;4 4 47;

»rank (A)

ans = [1]

Problems 1 [ 1 [

1. Suppose that B is in row reduced echelon form (RREF) ® [0 = 0
and B is m x n. Explain why the matrix obtained by L0 0 1
striking out the last columns of B is a matrix also
in RREF. [Examine the matrices (a)—(g) preceding GDrJro 10
Eq.4.4.2.] [0 0 1
2. Which of the following matrices are in RREF? ®To 1 2 3
@01 o 1 10 0 0 1
0 0 1 Mmoo 1 2 0
0 0 0 L0 0 0 1
) [2] 3. Find the ranks of the matrices (a)—(g) in the text preced-
ing Eq. 4.4.2. For each matrix determine the leading
(©) [1] columns.
(d) [0] 4. Find the ranks of the matrices in Problem 2. For each
matrix determine the leading columns.
© To o 5. Explain why the number of leading columns of A is the
0 1 rank of A.
100 Use rank in MATLAB to find and confirm the ranks of
_ _ 6. eyes(4)
® [0 0 1 ; Y T
0 0 0 . ones(3,4)
8. zeros(4,5)
@1 % 0] ] ]
0 0 1 9. Use rrefin MATLAB on the matrix ones(3, 4) to confirm
- - the result rank(ones(3, 4)).
M1 % 0]
L0 0 0]
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4.5 THE ARITHMETIC OF MATRICES

We have seen the convenience afforded by simply operating on the array of coefficients of a

system of equations rather than on the equations themselves. Further work along these lines will

support this view. Ultimately, mathematicians thought of giving these arrays an existence of their

own apart from their connection with simultaneous equations. It is this aspect we now explore.
Let the m x n matrices A and B be given by

ay  ap - ay byt by -+ by,
a axp - ay byy by -+ by,

A= | . B=| . 45.1)
am1 am?2 o Amn bml bm2 e bmn

Then A = B if a;; = b;j foreachi = 1,2,...,m and foreach j = 1,2, ..., n. Implicit in the
definition of equality is the assumption that the orders of A and B are the same. The equality of
two matrices implies the equality of m times n numbers, the corresponding entries of the
matrices.

In addition to matrix equality, we define addition of matrices and multiplication of matrices
by a constant. For the matrices A and B of Eq. 4.5.1 and any scalar k, we define A + B and kA
by the expressions

[ an+by an+bo o ay+bi,
a +b a» +b <o oy + by
A+B= 21 . 21 22 22 2 2
L dm1 + bml am2 + bm2 Amn + bmn
(4.5.2)
[ kay,  kap, - kai,
ka ka - kany,
KA — .21 22 2
_kaml kamZ to kamn
The definitions of Egs. 4.5.2 easily imply that
A A+B=B+A ®A+B+CO)=A+B)+C
) A+0=A (d A+ (-DA=0 453
() 0A = O () k(hA) = (kh)A (4.5.3)
(g) k(A+B)=kA + kB (h) (k+h)A = kA + hA

If we understand by B — A, a matrix such that (B — A) + A = B, then (d) enables us to find
such a matrix and provides a definition of subtraction, for

B+ (—DA]+A =B+ [(—DA + A]
=B+ [A+ (-DA]
—B+0O
-B 4.5.4)



220

CHAPTER 4 / THE THEORY OF MATRICES

Thus, B — A is defined as
B—-A=B+(—DA 4.5.5)

Matrices having a single column are so important that an exception is made to our convention
that matrices are always written in boldface uppercase letters. We call the matrix

r=| . (4.5.6)

a vector and use a boldface lowercase letter.

We shall find it helpful occasionally to interchange the rows with the columns of a matrix.
The new matrix that results is called the transpose of the original matrix. The transpose A7 of
the matrix displayed by Eq. 4.5.1 is

ayp dar - Am
dajpp dyp - dp2

AT = . 4.5.7)
dip d2p - dmp

Note that if a matrix is square, its transpose is also square; however, if a matrix is m X n, its
transpose is 7 X m. An example of a matrix and its transpose is

2 0
13 -1 r 2 310
A=17 T |. A _[0 - 0} 4.5.8)
0 0

The transpose of a vector is a matrix with a single row, a row vector. So
T _
r' ={[r,r, ..., 0l (4.5.9)

The commas in a row vector are omitted if the meaning is clear. If C = A + B, then
CT = AT 4+ BT follows from the definitions.

A matrix A is symmetric if AT = A; it is antisymmetric (or skew-symmetric) if AT = —A.
Note that symmetric and antisymmetric matrices must be square. The matrix

2 1 3 4

1 0o -2 0
3 =2 1 -1
4 0 -1 0
is symmetric, and the matrix
0 -1 2
1 0 -3
-2 3 0

is skew-symmetric.
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Any square matrix can be written as the sum of a symmetric matrix and a skew-symmetric
matrix. This is done as follows:

A= A A A_A 4.5.10
_<E+7>+ 5—7 (4.5.10)

where the symmetric matrix A and the antisymmetric matrix A, are given by

A AT A AT
2,4 A, == —— 4.5.11)

A .
2+2 2 2

Note that (AT)T = A is needed in establishing this result.

EXAMPLE 4.5.1 \ | | |

Given the two matrices

AN o
S = O

find A + B, 5A, and B — 5A.

» Solution

To find the sum A + B, we simply add corresponding elements a;; + b;; and obtain

Following Eq. 4.5.2, the product 5A is

—1 4 5

A+B= 1 0 2
8§ =3 1

0 10 25

SA=| 5 —10 5
10 15 5

Now we subtract each element of the preceding matrix from the corresponding element of B, that is,
b,‘j — Sa,-j, and find

-1 -8 -25
B-SA=|-5 12 —4
-4 —21 -5
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EXAMPLE 4.5.2 \ | |

Express the matrix

A=

[SSIN (S ]
~ O O
oo W

as the sum of a symmetric matrix and a skew-symmetric matrix.

» Solution

First, let us write the transpose AT . It is

2 2 =3
AT=10 0 4
32 2
Now, using Eq. 4.5.11, the symmetric part of A is
1 11420 2 10
AS=§(A+AT)=§ 2 0 6[=|103
0 6 4 0 3 2
The skew-symmetric part is given by
1 1 0 -2 6 0 - 3
Aa=§(A—AT)=E 2 0 2= 1 -1
-6 2 0 -3 1 0
Obviously, the given matrix A is the sum
A=A;+A,
2 10 0 -1 3 2 0 3
=1 0 3|+ 1 0 —-1]|= 2 0 2
0 3 2 — 1 0 -3 4 2

This provides us with a check on the manipulations presented earlier.

4.5.1 Maple, Excel, and MATLAB Applications

Matrix addition, scalar multiplication, and matrix transposition can all be done with Maple. Here

are a few examples:

>A:=matrix (2, 3, [1,
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>B:=matrix (2, 3, [-3, 6, 2, 0, 4, 11);
>matadd (A, B);

>scalarmul (A, 10);

10 30 50
20 =30 60

>transpose (A) ;

Several of these examples can also be done in Excel, although, for good reason, there are only
a few matrix functions built into this speadsheet program. One operation for which there is no
special function is matrix addition. Suppose in Excel that there are two 2 x 3 matrices located at
A1:C2 and E1:G2, and let’s say we wish to have the sum of these matrices placed in J1:L2. In
J1, we would enter the formula “=A1+E1” and then paste this formula into the other five cells.
For scalar multiplication, a formula such as “=10%*A1" could be put in J1 and then pasted in the
other cells.

Excel does have a function called TRANSPOSE, and it is an example of an array formula,
which means that the output of the function is an array. Consequently, entering this function
correctly is a little tricky. The following steps will work for any array function:

1. Select the rectangle of cells where the result of the function is to go.
2. Type the function using syntax like A1:C2 to indicate the argument.
3. Use the CTRL+4-SHIFT+ENTER keys, rather than just the ENTER key.

So, suppose that we wish to find the transpose of the matrix in A1:C2, and this new matrix will
be in J1:K3. First, select J1:K3. Then enter the formula

=TRANSPOSE (A1:C2)

Finally, use CTRL+SHIFT+ENTER, and J1:K3 will be filled with the transpose of our matrix.
A clue that the TRANSPOSE function is special is that if you select one of the cells of J1:K3,
the formula now has set brackets around it:

{=TRANSPOSE (A1:C2)}

The definitions of scalar product and matrix addition have counterparts in MATLAB using *
for multiplication and + for addition.
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EXAMPLE 4.5.3 l | | |

We form A and B and use MATLAB to compute A + B and 2*A + 1.

» Solution

»A=[1 1 1; 2 2 2; 3 3 37;
»B=[0 1 2; 1 1 1; 0 0 07];
»>A+B

1 2 3
ans=1|3 3 3
3 3 3
»2*A + eyes(3)
3 2 2
ans=1|4 5 4
6 6 7

Problems
1. For arbitrary A, prove (kA)” = kAT . Let
2. Prove that a symmetric (or skew-symmetric) matrix must > 1 0] 1 1 1
be a square matrix. A=|1 -1 —2|, B=|0 0 0/,
3. What matrices are simultaneously symmetric and skew- 4 2 0 2 1 =3
symmetric? _
Prove that (AT)T = A. c 23 1
Prove that (A + B)” = AT +B”. B (1) ; (1)
6. Show that A/2 + AT /2 is symmetric and A/2 — AT /2 is - -
skew-symmetric. Determine the following:

7. Explain why the diagonal entries of a skew-symmetric 9. A+ Band B + A
matrix are all zero. 10. A—BandB — A

8. Show that an upper triangular symmetric matrix is a diag- 1, A +B-C)and (A +B) — C
onal matrix and that an upper triangular skew-symmetric

matrix is O. 12. 4A +4B and 4(A + B)
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13. 2A —4C and 2(A — 20) 26. Problem 17

14. AT

27. Problem 18

15. For the matrices A, B, and C above, show that 28. Problem 19
(A+B)T =AT + BT,

16. For the matrix A above, show that A + AT is symmetric

Use Excel to solve

and A — AT is skew-symmetric. 29. Problem 9
Let 30. Problem 10
2 6 0 -8 6 31. Problem 11
ha= 0 2|, B=-2 02 32. Problem 12
—4 9) 2 —4 4
33. Problem 13
Find the following:

34. Problem 14

17. Ay and A, (see Eq. 4.5.11)

18. B and B,.

35. Problem 17
36. Problem 18

19. (A + B); and (A — B);

Use Maple to solve

37. Problem 19

20. Problem 9

21. Problem 10
22. Problem 11
23. Problem 12
24. Problem 13
25. Problem 14

Use MATLAB to solve
38. Problem 9

39. Problem 10
40. Problem 11
41. Problem 12
42. Problem 13

4.6 MATRIX MULTIPLICATION: DEFINITION

There are several ways that matrix multiplication could be defined. We shall motivate our defin-
ition by considering the simultaneous set of equations

ap Xy + apx; +apxs =r;
a1 Xy + anxs +anxy =nr 4.6.1)
az1x; + azpxy + azzxz =r;3

These equations could be written, using the summation symbol, as

3
Zaijxj =T (4.6.2)
j=1

where the first equation is formed by choosing i = 1, the second equation letting i = 2, and the
third equation with i = 3. The quantity a;; contains the nine elements a1, a2, a3, .. ., ass; it
is a3 x 3 matrix. The quantities x; and r; each contain three elements and are treated as vectors.
Hence, we write Eqs. 4.6.1 in matrix notation as

Ax=r (4.6.3)
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‘We must define the product of the matrix A and the vector x so that Eqgs. 4.6.1 result. This, will
demand that the number of rows in the vector x equal the number of columns in the matrix A.
Matrix multiplication is generalized as follows: The matrix product of the matrix A and the ma-
trix B is the matrix C whose elements are computed from

cij = Y _ aiby (4.6.4)
k=1

For the definition above to be meaningful, the number of columns in A must be equal to the num-
ber of rows in B. If A is an m X r matrix and B an » x n matrix, then Cis an m X n matrix. Note
that the matrix multiplication AB would not be defined if both A and B were 2 x 3 matrices. AB
is defined, however, if A is 2 x 3 and B is 3 x 2; the product AB would then be a 2 x 2 matrix
and the product BA is a 3 x 3 matrix. Obviously, matrix multiplication is not, in general, com-
mutative; that is,

AB # BA (4.6.5)

must be assumed unless we have reason to believe the contrary. In fact, the product BA may not
even be defined, even if AB exists.
The multiplication of two matrices A and B to form the matrix C is displayed as

i o . o . | i ari aipp -+ dyy |
21 (%)) e Con . . . b“ b12 bln
. . . . . . b2] b22 bzn
cil ce Cl] c e Cin = | @i aip - dif : .
brl br2 bm
| Cm1 Cm2 . Cmn _| L 9m1 dm2 - dmr ] (4 ] 6)

Observe that the element ¢;; depends on the elements in row i of A and the elements in column
Jj of B. If the elements of row i of A and the elements of column j of B are considered to be the
components of vectors, then the element ¢;; is simply the scalar (dot) product of the two vectors.
Written out we have

cij = ainbij + ainbyj + aizbzj + - - + ai by (4.6.7)

This is, of course, the same equation as Eq. 4.6.4.

In the matrix product AB the matrix A is referred to as the premultiplier and the matrix B as
the postmultiplier. The matrix A is postmultiplied by B, or B is premultiplied by A.

It is now an easier task to manipulate matrix equations such as Eq. 4.6.3. For example, sup-
pose that the unknown vector x were related to another unknown vector y by the matrix equation

x = By (4.6.8)

where B is a known coefficient matrix. We could then substitute Eq. 4.6.8 into Eq. 4.6.3 and
obtain

ABy =r (4.6.9)

The matrix product AB is determined following the multiplication rules outlined earlier.
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EXAMPLE 4.6.1

Several examples of the multiplication of two matrices will be given here using the following:

2
A=| 3|, B=[2, -1, 0], C:[Z 3 _1],
01 4
| —4
(3 0 1 2 -1 1
D=|2 -2 1|, E=|1 0 0
(0 2 2 0 1

» Solution

Ais a3 x 1 matrix and B is a 1 x 3 matrix. The product matrices BA and AB are

2
BA=[2 -1, O]| 3[=[12-24+D@B)+0(-dH]=1[1]
—4
[ 2 2.2 2.(=1) 2.0
AB=| 3[[2, -1, 0]=| 3.2 3.(=1) 3.0
| —4 —4.2 —4.(=1) —-4-0
[ 4 -2 0
=/ 6 =3 0
| -8 40

From these expressions it is obvious that AB # BA. In fact, the rows and columns of the product matrix are
even different. The first product is often called a scalar product, since the product yields a matrix with only

one scalar element.
Now consider the product of a 2 x 3 matrix and a 3 x 1 matrix, CA. The product matrix is

ca_f23 -1 g 2243341 (=] _[ 17
Lot oaff ST lo2+13s 4T3

The product AC does not exist since matrix multiplication of a3 x 1 matrix with a2 x 3 matrix is not defined.
The product of two 3 x 3 matrices will now be attempted. We have

3 0 1 2 -1 1 8§ -3 4
DE=|2 -2 1 1 0 0|=(4 -2 3
0o 20 2 0 1 2 00

Check this result using the procedure discussed preceding Eq. 4.6.7. Then verify that

2 -1 1 3 0 1 4 4 1
ED=| 1 0 0 2 =2 1|=(3 01
2 0 1 0 2 0 6 2 2
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In certain special circumstances, AB = BA. Two simple illustrations are

(1) AI=1JA=A (4.6.10)
and
2) OA=A0=0 (4.6.11)

It is true, that for all A, B, and C,

ABC) = (AB)C
AB+ C) =AB + AC (4.6.12)
B+ CA=BA+CA

provided that the orders in each multiplication are correct.
A striking example of the peculiarity of matrix multiplication is the product

I N R T 00
[—1 —1“—1 —1}2[0 0} (46.13)

Thus, AB = O does not imply that either A or B are zero. Also,

1 1 1 1 1 11/0 O 1 1
[—1 —1]|:0 0:|_|:—1 —l:||:1 lj|_|:—1 —11| (#.6.14)
shows that AB = AC does not imply that B = C even though A # O. That is, there is no “law
of cancellation,” at least without more restrictive conditions than A # O.

The failure of the commutivity of multiplication complicates the rules of algebra. For
example,

(A+B)>=(A+B)(A+B)
=(A+BA+(A+B)B
= A2+ BA + AB +B? £ A% + 2AB + B? (4.6.15)

unless A and B commute. However, it is true that
A+D*=A>+2A+1 (4.6.16)

The transpose of the product of two matrices equals the product of the transposes taken in re-
verse order; that is,

(AB)T = BTAT (4.6.17)

This is most readily verified by writing the equation in index form. Let C = AB. Then
C” = (AB) and is given by

n

cg =cj = Zajkbk,- = Za,{ibiTk = ZbiTkaij (4.6.18)
k=1 k=1 k=1
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This expression is observed to be the index form of the product BT A”, thereby verifying
Eq. 4.6.17. The preceding should also be verified using some particular examples.

EXAMPLE 4.6.2 [ | | |

Verify the statement expressed in Eq. 4.6.17 if

3
A= 0 and B=[2, -1, 1]
—1
» Solution
The matrix product AB is found to be
6 -3 3
AB = 0o o0
-2 1 -1
The transpose matrices are
AT =13, 0, —1], B'=]| —1
|1
The product BT AT is found to be
6 0 —2]
B'AT=|-3 0 1
30 -1

This, obviously, is the transpose of the matrix product AB.

4.6.1 Maple, Excel, and MATLAB Applications

Matrix multiplication is also defined in Maple:
>A:=matrix (3, 1, [3, 0, -1]); B:=matrix(1l, 3, [2, -1, 11);

3
A= 0
-1

B:=[2 -1 1]

>multiply (A, B) ;
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To multiply matrices in Excel, we use an array function MMULT. For instance, if we wish to
multiply the matrix located at A1:C4 by the one at E1:H2, first we select a rectangle with one
row and two columns. Then, we enter this formula:
=MMULT (Al1:C4, E1l:H2)

As before, the CTRL, SHIFT, and ENTER must be pressed simultaneously, and then the prod-
uct of the matrices is calculated.

Matrix multiplication is clearly an arithmetically tedious operation when done by hand. It is
especially easy using MATLAB. The multiplication operator is * and it is required in all cases.
The example to follow illustrates a number of points discussed earlier in this section.

EXAMPLE 4.6.3 l | | |

For the two row matrices A and B, we construct A x B and B * A:
»A=[3; 0; 1]

3
A=|0
1
»B=[2 -1 1]
B=[2 -1 1]
»A*B
6 3 3
ans =10 0 0
2 =1 1
»BFA
ans = [7]

Problems

Find each product. 2. 1 1 0 1 -2 2

L [1 37[1 4 vonze 22
[3 1:||:4 1] 0 0 1 0 0 1
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—

S
<

Y
B | | ]

7. [01[1, 7, =2]

8. Verifty A(B + C) = AB + AC when

o U A

9. Find A2, A3, A* where

10. Find a formula for A" where

1 2
LetA = [0 1] . Compute

11. 3A% — 9A + 61
12. 3(A —D(A —2I)
13. 3(A —2D(A —1)

Verify (A +I)3 = A% + 3A% + 3A + I for each equation.

14. A=1

15. A=0
(111

6. A=|1 1 1
111
1 0 -1

1. A=| 1 2 2
11 0

Expand each expression.

18. [x1, x2, x3]({0 I 1 X2
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2 00 X
19. [x1, x, x31[/0 1 O X7
1 1 1 X3
20. Prove (AB)T = BTAT,
21. Find two examples of 3 x 3 matrices such that AB = O
but A # O and B # O.
22. Use your answers to Problem 21 to construct two exam-
ples of matrices A, B, and C such that AB = AC but
B #C.
23. If AB = BA prove that A and B are square matrices with
the same dimensions.
24. Prove that AB is upper triangular if A and B are.
25. Using the matrices of Problem 2, show that matrix multi-
plication given by Eq. 4.6.6 can be written as
C =[AB,, AB,,, ..., AB,,].
26. Prove each equation in Eq. 4.6.12.
27. Use Eq. 4.6.17 to show that (ABC)” = CTBTAT.
28. Show by example that (AB)> % A’B? in general. Show
that AB = BA does imply (AB)" = A"B".
29. Suppose that A is upper triangular and a;; =0,
i=1,2,...,n.Show that A" = O.
30. Show that A”A and AAT are symmetric.
Let
1
A=|-1|, B=[2, 4, -1]
| 2
3 2 1
C=|-2 0 -1 ] )
1 0 1
—1 0o 2
D= 1 2 1
| 2 -1 -1
Find the following.
31. AB
32. BA
33. (AB)C
34. ABC)
35. CA
36. CD
37. BD
38. DA
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39. Let A and B be 3 x 3 diagonal matrices. What is AB?
BA? Does this result generalize to n x n diagonal

matrices?
Let
0 31 100
A=|-1 2 0|, B=|-1 2 1],
0 0 1 310
[ 2
C= 0|, D=[1, 2, 0]
—1

Determine the following sums and products and identify those
that are not defined.

40. (A+B)Cand AC +BC
41. A(BC) and (AB)C

42. D(A + B) and DA + DB
43. (AB)T and BTAT

44. ATA and AAT

45. CTCand CCT

46. A% and A3

47. C?

48. A+C

49. A? —2B+3I

50. 2AC + DB — 41

Let
2 0 0 2 13
A=|0 -1 0|, B=|1 -1 2],
0 0 3 1 3 2
[ 2
C= 1
-1
Find the following.
51. AB and BA. Are they equal?
52. AC.
53. CTA.

Use Maple to solve
54. Problem 31
55. Problem 32
56. Problem 33
57. Problem 34

58.

61.
62.
63.

65.
66.
67.

69.
70.
71.
72.
73.
74.
75.

Problem 35
Problem 36
Problem 37
Problem 38
Problem 40
Problem 41
Problem 42
Problem 43
Problem 44
Problem 45
Problem 46
Problem 47
Problem 48
Problem 49
Problem 50
Problem 51
Problem 52
Problem 53

Use Excel to solve

76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
9.

Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38
Problem 40
Problem 41
Problem 42
Problem 43
Problem 44
Problem 45
Problem 46
Problem 47
Problem 48
Problem 49
Problem 50
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96
97

. Problem 51
. Problem 52
. Problem 53
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107. Problem 48
108. Problem 50
109. Problem 51

Use MATLAB to solve

110. Problem 53

98

929
100.
101
102
103
104
105
106.

. Problem 31
. Problem 33
. Problem 35
. Problem 37
. Problem 40
. Problem 42
. Problem 31
. Problem 44
. Problem 46

Using A above Problem 51
111. use MATLAB to obtain ones(3)*A and A*ones(3).
112. use MATLAB to obtain

(@) Ax[1; 0; 0]

(b) Ax[0; 15 0]

() Ax[0; 0; 1]

113. Reverse the order of the multiplications in Problem 112
and deduce a rule for finding the kth row of A.

4.7 THE INVERSE OF A MATRIX

Division is not a concept defined for matrices. In its place and to serve similar purposes, we in-
troduce the notion of the inverse. The square matrix A is nonsingular, or has an inverse (or is in-
vertible), if there exists a square matrix B such that

AB=BA =1 4.7.1)

It is immediately clear that not all matrices have inverses since if A = O Eq. 4.7.1 is false for
every B. However, if there exists a B that satisfies Eq. 4.7.1 for a given A, there is only one such
B. For suppose that AC = I. Then

B(AC) =B(I) =B 4.7.2)
But
B(AC) = (BA)C=DC=C 4.7.3)

Hence, B = C.
Since there is never more than one matrix satisfying Eq. 4.7.1 for a given A, we call the
matrix B the inverse of A and denote it by A~!, so that Eq. 4.7.1 can be written

AA'=ATTA=1 (4.7.4)

A matrix that is not invertible, that is, one for which A~ does not exist, is called singular or
noninvertible.
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The following matrices are singular:

(@ [0]

W N =
W N =
[OSTN NS

1 1 1
@111 o [2 2] ©
11 1

EXAMPLE 4.7 .1 \ | | |

Verify that the matrix in (c) of Problem 112 is singular.

» Solution

To verify that the matrix in (c) is indeed singular, we attempt to find a matrix such that AB = I. Hence, we set

1 1 1 biy by b3 1 00
2 2 2 b21 b22 b23 = 0 1 0
3 3 3 b3y by b33 0 0 1

But we arrive at a contradiction by computing the entries in the (1, 1) and (2, 1) positions:

b+ by +b3 =1
2by1 4 2by1 4+ 2b3; =0

Thus, we cannot find a matrix B and we conclude that A is singular.

Except in rather special circumstances, it is not a trivial task to discover whether A is singu-
lar, particularly if the order of the square matrix A is rather large, say 8 or more. Before dis-
cussing systematic methods for finding A~!, when it exists, it is helpful to exhibit two matrices
whose inverses are easy to compute:

1. The diagonal matrix D with diagonal elements (a1, azs, . . . , duy,) is singular if and
only if a;; = 0 forsome i = 1,2, ..., n. Its inverse is a diagonal matrix with diagonal
entries (afll, a;zl, e a,;ll).

2. If ad — bc # 0, then [Z Z] is nonsingular and adlbc [ ¢ _b] is its inverse.

—C a

Finally, let us note some properties associated with the inverse matrix.

1. The inverse of the product of two matrices is the product of the inverse in the reverse
order:

(AB)"' =B 'A"! (4.7.5)
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The argument to show this follows:
ABB'A™H) =ABB HA™!
=AJAH =AA"" =1 (4.7.6)
2. The inverse of the transpose is the transpose of the inverse:
AH =@™h’ (4.7.7)

We prove this by taking transposes of AA~! and A=A ; the details are left for the
Problems.
3. The inverse of the inverse is the given matrix:

A HTT=A (4.7.8)

The proof is Problem 5 at the end of this section.

The existence of an inverse is a remedy for the lack of a law of cancellation. For suppose that
AB = AC and A is invertible. Then we can conclude that B = C. We cannot simply cancel A
on both sides; however, because

AB = AC (4.7.9)
we can write
A'AB) = A'(AC) = A'A)C=I)C=C (4.7.10)
Also,
A"'(AB) = (A"'A)B=(D)B=B (4.7.11)
Hence, we may write
B=C (4.7.12)

A second illustration relates to the matrix representation for a system of n equations and n
unknowns. Suppose that

Ax=b (4.7.13)
and A~! exists; then, since A~ (AX) = x,
A'Ax) =A"'b (4.7.14)
implies that
x=A"'b (4.7.15)

To determine the solution vector x we must compute A~!. In the next section we present an
efficient algorithm for computing A~! and several illustrative examples.
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L1 1 [

10.
11.

If A—! exists and A has dimensions n x n, what are the
dimensions of A='? Must A~! be square?

If A has dimensions n x n and AC = B and A~! exists,
then A~! and B have dimensions that allow A~'B. Why?
Is the same true for BA™!?

If AC =B, A isn xn and C is a column matrix, what
are the dimensions of B?

Prove that (A7)~! = (A—1HT.

Prove that (A~")~! = A.

Show by example that (A +B)~!£A~!'+B~!, in
general.

b
Verify that A = [i d} implies that

_ 1 d —b
ad —bc | —c a
if ad — be # 0.

Explain why the matrices (a)-(d) in the text after
Eq. 4.7.4 are all singular.

Show that (A~'BA)2 = A 'B*A. Generalize to
(A~'BA)".
Show that (A")~! = (A1),

Suppose that u” = [uy, us, ..., u,]. Write out un” and
following the argument in Example 4.7.1, show that uu”

4.8 THE COMPUTATION OF A~!

12.

13.

is singular for n > 2. Under what conditions is uu”

singular if n = 1?

It is possible to establish a weak form of definition 4.7.1:

If A is square and there is a B such that either

AB =TorBA =1, then B = A~'. Assume this theorem

and show the following:

(a) If AB is invertible, then so are A and B.

(b) Use part (a) to establish: if A is singular, so is AB for
every B, and likewise BA.

Let
alg 0 0
0 ann 0
A= . .
0 0 g
Show that
a;’ 0 0
=i
. 0 ay 0
0 0 ... gl

by computing AA~" and A~'A.

Given A, we wish to find X so that AX = I. Suppose that

X = [X,1, X2, ...

s X (4.8.1)

Then, by definition of matrix multiplication (see Eq. 4.6.6 and Problem 25 of Section 4.6),

AX = [AX*lv AX,o,.

L AX ] =1 (4.8.2)

Therefore, to find X we need to solve the following n systems simultaneously:

1
0
AX*I - . b

AX*ZZ . . ey

0 0
1 0
: 4.8.3)
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We can do this by forming the augmented matrix
A 1 (4.8.4)

and using row reduction until the elements of A reduce to an identity matrix. An example will
illustrate this point.

EXAMPLE 4.8.1 \ | | |

1 2
. _]. _
Find A 1fA—|:_1 1].

» Solution

Here we have

i)
where the unknown A~! will be represented by
vefi ]
This yields two systems of two equations in two unknowns; namely
1 2||a 1 1 2||c 0
BT L] e [ 3=

We now augment A with both right-hand sides and proceed to solve both systems at once by row reduction of
the augmented matrix
1 210
-1 1 0 1

We select our operations so as to reduce A to an identity matrix. Thus, adding the first row to the second and
then —% of the second to the first yields

- 1 .

10 3 -3

0 3 1 1

Dividing the second row by 3 gives

- 1 =

0 3 —3

1 1
[0 1 3 5]
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EXAMPLE 4.8.1 (Continued) \ | | |

‘We have deduced that

and hence,

-1_|a c¢c| _
wrof 5[
We have found a matrix A~', such that AA~! = I. One may verify that A~'A = I also. It is true* in general
that for square matrices A and B, AB = I if an only if BA = 1.

W= W=

“We do not prove this theorem here.

EXAMPLE 4.8.2 \ | | |

Invert the matrix

>

Il
—_— DN =
—_—— O
DN = =

» Solution

The augmented matrix may be reduced as follows:

1 01 1 0O 1 0 1 00
21 1 01 O0fl—10 1 —-1 =2 1 0
1 1 2 0 0 1 L0 0 1 -1 1
(100 & -
—loo -3 by
0 1 o _1 1
Thus, the inverse of A is - ? ? :
1 o _1
2 2 2 1 1 1 -
-1 _ 3 1 |
Al=l—- 5 3|=5|3 1
o1 1 I -1
2 2 2

In the next example we see how this method detects singular matrices.
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EXAMPLE 4.8.3 \ | |

Show that A is singular if

» Solution

The student is invited to complete the details in the following arrow diagram:

2 2 1 1 0 0 2 2 1 0 0
33 201 0|— — 1 1 -3 - 1 0
1 1 =3 0 0 1 00 0 1 -1 1
Thus, AA~' =T is equivalent to
2 2 1 0 0
1 1 =3|AT=]— 10
0 0 0 -1 1
But
2 2 1 * ok %
1 1 3|A"'=|x% % =«
0 0 0 0 0 O

a contradiction of the equation preceding it. Hence, A is singular.

The preceding examples are illustrations of this principle:

239

Theorem 4.5: The RREF of a square matrix is either the identity matrix or an upper triangular

matrix with at least one row of zeros.

Proof: Every RREF of a square matrix is upper triangular, call it U. If the leading ones are the
diagonal entries, then the RREF is I,,. So suppose that at least one diagonal entry of the RREF is
zero. Then the number of leading ones must be less than n. Hence, one row, at least, must be a

row of zeros. In fact, by definition of RREF, the last row of U is a row of zeros.

The implication of this theorem is that row reduction on Eq. 4.8.4 yields I or detects that A is

singular, whichever is the case; for

(4.8.5)



240

CHAPTER 4 / THE THEORY OF MATRICES

implies that
I—---—B (4.8.6)

where U is the RREF of A. Suppose that A is singular. Then the last row of U is a row of zeros.
Since AX =T implies that UX = B, the last row of B is a row of zeros. The diagram 4.8.6
states® that Ix = 0 has the same solution sets as Bx = 0. But Ix = 0 implies that x = 0. Since
the last row of B is a zero row,

B|:|=0 4.8.7)

1

and Ix = 0 and Bx = 0 do not have the same solution sets. Hence, AX = I is a contradiction
and A cannot be nonsingular.

4.8.1 Maple, Excel, and MATLAB Applications

The calculations in Example 4.8.1 can be carried out using Maple. In particular, the augment
and delcols commands are useful:

>A:=matrix (2,2, [1, 2, -1, 1]):
>I2:=matrix (2,2, (1,3j) -> piecewise(i=j, 1, 0)):

>Al:=augment (A, I2);

1 2 1 0
Al __—1 1 0 l_
>A2:=rref (Al) ;
[1 0 1 =27
L 3 3
A2 1= 0o 1 L 1
L 3 3
>delcols (A2, 1..2);
M1 —_2:|
3 3
11
| 3 3

It should come as no surprise that Maple will calculate the inverse directly using inverse (A).
There is also a function in Excel to compute matrix inverses. MINVERSE is an array func-
tion. If the matrix to be inverted is in A1:D4, then we would use this formula:

=MINVERSE (Al1:D4)

As usual, the steps to enter an array function must be followed.

3In the following discussion and throughout Chapters 4 and 5 we will use a boldface zero to denote a vector
with all components equal to zero.
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If A is a square matrix, the MATLAB command rref seen in earlier sections can be used to
compute the inverse of A if this inverse exists. We can also use the MATLAB command inv for
the same purpose.

EXAMPLE 4.8.4 [ | | |

Use the commands rref and inv to compute the inverse of the matrix given in Example 4.8.2.
»A=[1 0 1;2 1 1;1 1 27;

»B=[A eyes(3)]

sl

Il
L S
e o
N
o ok
or o
— oo

9% Note the syntax for the augmented matrix B. It is in row-vector form.
% Note the space between A and eyes(3)

»rref (B)
1.0000 0 0 0.5000 0.5000 —0.5000
ans = 0 1.0000 0 —1.5000 0.5000 0.5000
0 0 1.0000 0.5000 —0.5000 0.5000
»>inv (A)

0.5000 0.5000 —=0.5000
—1.5000 0.5000 0.5000
0.5000 —0.5000 0.5000

Problems
Use row operations to decide whether each matrix is singular. 3. [ 1 2
‘When the inverse does exist, find it. | 2 1
1. | =1 0 1 4 Mo o0 1
Lo O 100
212 01 5 [ cos® sin@
03 4 | —sinf cosf
0 0 7
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8.

—_

W= W

|

WIN W= W

W= Wl— W|—

10. Explain why the diagram I — --

- — B means that

Ix = 0 has the same solution as Bx = 0.

11. Explain why UX = B implies that B has a row of zeros if

U has a row of zeros. What row of B is a row of zeros?

12. Explain why Eq. 4.8.7 is true.

Find the inverse of each symmetric matrix and conclude that
the inverse of a symmetric matrix is also symmetric.

20.

21.

22.

25.

o2
[0 0

—_ 0 O
—_— = =
—_— = O

Use Maple to solve

13.

14.

15.

16.

1
—_— = N

2

1
1

]

(=)

[\

S O N =

_— O O =

N = O =

Find the inverse matrix A~' (if one exists) if A is given by

17.

18.

19. [

1
1

— N

[« ]

=1

6
3

0
1

1

]
]

)

26. Problem 17
27. Problem 18
28. Problem 19
29. Problem 20
30. Problem 21
31. Problem 22
32. Problem 23
33. Problem 24
34. Problem 25
35. Computer Laboratory Activity: Each elementary row op-

eration (see Section 4.3) has a corresponding elementary
matrix. In the case where we are applying Gaussian elim-
ination to an m by n matrix, we create elementary matri-
ces of size n by n by starting with the identity matrix I,
and applying an elementary row operation. For example,
if n = 4, then interchanging the first and fourth rows cor-
responds to this elementary matrix (use Maple):

R O O O
o O O
o P O O
o O O =



Start with this matrix:

1 -1 0
A:=|2 1 -4
0 3 =3

Apply row operations to this matrix A, one at a time, to
put it in RREF. Then, create the elementary matrices for
each row operation, and call them E;, E,, and so on.
Multiply the first elementary matrix by A, to get EjA.
Multiply the second elementary matrix by E;A, and so
on. Eventually, you should recognize this equation:

Ex...EsE4E;E; E;A =1

where k is the number of elementary matrices you cre-
ated. Notice that

A ' =Ey... EsE4E;E, E;

So, use matrix multiplication to compute the inverse
of A. Finally, create the inverses of all the elementary
matrices. After computing a few, describe a simple
procedure for doing this.

Use Excel to solve

36. Problem 17

4.9 DETERMINANTS OF n x n MATRICES

37.
38.
39.
40.
41.
42.
43.
4.

4.9 DETERMINANTS OF N X N MATRICES

Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
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Use MATLAB to solve

45.
46.
47.
48.
49.
50.
51.
52.
53.

Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25

The reader has probably encountered determinants of 2 x 2 and 3 x 3 matrices and may recall

the formulas

aiy ap as
da; daz a4
as; dasy dass

ap
azl

apn
a

—da|3ddsz; — djpdz1asz — d11dz3as;

= a11a2a33 + a12a23a31 + a13a2143

The determinant has many uses. We cite a few:

1. The system

anx +apy+apnz=0
azx +any +anz=0
az1x +any +apz=0

= dapdax —azdiz

(4.9.1)

4.9.2)

(4.9.3)
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vi

A}

vi

Figure 4.1. A parallelogram. Figure 4.2. A parallelopiped.

has a nontrivial solution (x, y, and z not all zero) if and only if the determinant of the
coefficient matrix vanishes, that is, if and only if

apr dpp a3
azy dpp A3 | = 0 (4.9.4)
asy  aszn Az
2. The construction of the solutions to simultaneous equations using Cramer’s rule®
involves the quotients of various determinants.
3. If vi and v, are vectors with two entries, defining the sides of a parallelogram, as
sketched in Fig. 4.1, and if [v;, v,] denotes the matrix with these as columns, then,
abbreviating absolute value by “abs,”

abs|vy, vo| = area of the parallelogram (4.9.5)

4. If vy, vp, and v3 are vectors with three entries, defining the sides of a parallelepiped
(see Fig. 4.2), and if [vy, V2, V3] denotes the matrix with these as columns, then

abs|vy, V2, v3| = volume of the parallelepiped (4.9.6)

The determinant can be defined for any square matrix in such a way that these applications,
among many others, are preserved in higher dimensions.

Formula 4.9.2 for the value of IAl when A is 3 x 3 can be remembered by the following
familiar device. Write the first two columns of the determinant to the right of A and then sum
the products of the elements of the various diagonals using negative signs with the diagonals
sloping upward:

(=) (=) (=)
ar a2 413 4%
“21>a22))§023 “21\922
a

a3y 32 433 031\ 2w
(+) (+) (+)

®Cramer’s rule was part of your course in algebra; it is presented again as Eq. 4.9.23.
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In general, the determinant of the matrix A is given by
Al =D (—=Dragiaz; - ans (4.9.7)

where the summation extends over all possible arrangements of the n second subscripts and & is
the total number of inversions’ in the sequence of the second subscript. We do not, however, use
this definition in actual calculations. Rather, the value of the nth-order determinant is most gen-
erally found by exploiting a number of consequences of this definition. We list these without
proof: The interested reader is referred to a textbook on linear algebra.

Some important properties of a determinant are:

1. If two rows or columns of A are interchanged to form A’, then

Al = —|A] (4.9.8)
2. If arow or column of A is multiplied by « to form A’, then

alAl = |A] (4.9.9)

3. If a multiple of one row (or column) of A is added to another row (or column) of A to
form A’, then

Al =A"] (4.9.10)

4. If A is either upper or lower triangular with diagonal entries a1, a2, . . ., du,, then
Al = arax - ap, (4.9.11)
5. |AB| = |A||B|. (4.9.12)
6. |AT| = |A]. (4.9.13)

Now suppose that A — A by a single elementary row operation. In view of Egs. 4.9.8 to
4.9.10, |A| = a|A|| where @ #0. If A - A; — --- —> A,,, then |A| = a|A,,|, @ # 0. This
leads to an easy proof of the following especially important theorem.

Theorem 4.6: A is singular if and only if |A| = 0.

Proof: From Theorem 4.5 and the discussion immediately following it, we know that A has an
inverse if and only if

A s 1 (4.9.14)

It follows from the analysis made earlier—after Eq. 4.9.13—that |A| = «|I| = « # 0. Hence,
|A| = 0 is a contradiction, implying that A is singular, and conversely.

"The number of inversions is the number of pairs of elements in which a larger number precedes a smaller one;
for example, the numbers (1, 5, 2, 4, 3) form the four inversions (5, 2), (5, 4), (5, 3), and (4, 3).
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EXAMPLE 4.9.1 I |

Calculate IAl, using row operations, given

>
I
S = O
S O~
—_—O =

» Solution

‘We add the second row to the first, then substract the first row from the second:

1 1 1 1 1 1
Al=11 0 0|=|0 -1 —-1|=1-—-1-1=-1
0 0 1 0 0 1
EXAMPLE 4.9.2 I |
Calculate |Al where
1 2 1 3
| -1 1 3 2
A= 1 0 2 3
-1 1 1 4

» Solution

By various applications of elementary row operations we can express the determinant of A as

1 2 1 3 1 2 1 3
IAI_0 3 45 |03 4 5
o -2 10/ |00 I D
0 3 27 00 —2 -2
Continuing, we have
1 2 1 3
0 3 4 5
00 0 £

—
—_
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EXAMPLE 4.9.3 I | | |

Show that |kA| = k" |A|, where A isn x n.

» Solution

This follows from Eq. 4.9.9 after noting that kA has each row of A multiplied by k and there are n rows in A.

EXAMPLE 4.9.4 I | | |

Show that |[A~!| = |A|~!.
» Solution
Since
AA™'=1 and |I|=1
we have
IAAT' = |AlIATY =1
from Eq. 4.9.12. Thus,

O R
ATl == A

EXAMPLE 4.9.5 I | | |

Compute the determinant of the matrix given in Example 4.9.2 using MATLAB. (The determinant of A is
written det in MATLAB.)

» Solution
»A=[1 2 13; -1 132; 1023; -11147;

»det (A)

ans = [42]
»det (2*A)

ans = [672]
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Problems

L1 1 [

1. Show that [S~TAS| = |A|.
Show that |A"| = |A|".
Find A and B to illustrate that |[A + B| = |A| + |B| is
false, in general.
The following problems illustrate the definition 4.9.7. We call
ajjaz;j - - - aps a term.
4. Show that the right-hand side of Eq. 4.9.7 is a sum of n!
terms.
5. Show that ajjay; - - - ay, is a term.
Explain why a term is the product of n entries in A, one
from each row and each column. Hence, no term contains

two entries of A from the same row or two from the same
column.

7. Use the results of Problems 5 and 6 to explain why the
determinant of an upper triangular matrix is the product
of its diagonal entries.

8. Show that Eq. 4.9.9 is an immediate consequence of
Eq.4.9.7.

9. Show that Egs. 4.9.1 and 4.9.2 are consequences of the
definition 4.9.7.

Using the products of the diagonal elements, evaluate each
determinant.

10. 2 0
-1 3
1. (1 2
1 3
12. 2 =2
=1 1
13. |13 1 0
1 3 -1
2 -1 0
14. (4 -1 3
2 2 2
1 -2 4
Show the following, by computation.
15. (3 2 -1 1 2 -1
6 3 0|/=3[2 3 0
31 2 11 2

16. (3 2 -1 2 3 -1
6 3 0j=—13 6 0
3 1 2 1 3 2
17. |13 2 -1 3+2 2 -1
6 3 0|=3[6+3 3 0
3 1 2 3+1 1 2
18. |13 2 -1 3+10 2 —1
6 3 0O|=|6+15 3 0
3 1 2 3+ 5 1 2
19. |13 2 -1 J4d 241 =142
6 3 0j=| 6 3 0
3 1 2 3 1 2
2. (3 -3 -1
-6 0|=02
3 -3 2

Evaluate each determinant by using row operations and
Eq. 4.9.11.

210 3 1 3

22. 2 3 4

23. 1 1 1

-1 -2 2
1 2 3
24. 2 1 3
4 2 6
-3 1 0
25. |4 3 1 4
3 0 0 3
1 2 21
0 -1 3 2
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26. 31 -1 0 30. Problem 22
2.2 21 31. Problem 23
chao o 32. Problem 24
8 6 -2 2 . Problem
33. Problem 25
z. | 11 11 34. Problem 26
-2 3 1 0
4 3 3 1 35. Problem 27
75 =2 0 36. Problem 28
28. 2 —1 6 3 37. Verify using MATLAB the fifth property listed for a de-
) 4 5 —1 terminant, using
54 d 2 2 3 1 2 —1
Ltz ¢ A=|-10 2|, B=|l6 7 -1
3 4 1 3 4

Use MATLAB and evaluate

29. Problem 21

4.9.1 Minors and Cofactors

The determinant of the matrix formed from A by striking out the ith row and jth column of A is
called the minor of a;;. For example, if

1 -1 2
A=|0 -2 3 (4.9.15)
4 -4 6

then the three minors of the elements in the first row of A are, respectively,

—2 3
—4 6

0 3
’ 4 6

0 -2
’ 4 —4

The cofactor of a;; is A;; and is (—1)'™/ times its minor. Hence, the cofactors of the three
elements above are, respectively,

o a]-2 03 . al003 a0 =2
An = (=1 4 6| Ap =1 4 6l A= (=1 4 4 (4.9.16)
The importance of the cofactors is due to the following®:
n n
|A| = Za,-inj = Zaj,-Aji (4917)
j=1 j=1

That is, the value of the determinant of the square matrix A is given by the sum of the products
of the elements of any row or column with their respective cofactors.

8See any textbook on linear algebra.
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EXAMPLE 4.9.5 \ |

Using cofactors, find the determinant of

3 2 1
A=|-1 0 1
1 2 2
by expanding by the first row and then the first column.
» Solution
Expanding by the first row, we have
3 2 1
0 1 -1 1 -1 0
-1 0 1 =3‘2 2‘—2‘ | 2'-}—1‘ 1 2’
1 2

=3(=2) —2(=2— 1)+ 1(=2) = -2

Expanding by the first column, there results

3 2 1
0 1 2 1 2 1
-1 0 1 —3‘2 2‘—(—1)’2 2‘—!—1’0 1‘
1 2 2

=32+ 14 -2 +12) =2

EXAMPLE 4.9.6 \ |

Evaluate the determinant of Example 4.9.2 by expanding, using cofactors of the first row.

» Solution
The determinant of the matrix is
Al = Aj1 +2A1 + A3 +3A1

We evaluate each 3 x 3 determinant by expanding, using its first row:
Ap=18-3)-30-3)+2(0-2) =10
Ap=-[(-D@=3) =34 +3)+2(1+2)] =20
Ap=(-=D0O-=-3)-1)@+3)+2(1-0=-2
A =—-[(=D0O0-2) - DHA+2)+3(1-0]=-2

Hence,

Al=1-10+2-20+1-(=2)+3-(=2) =42
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4.9.2 Maple and Excel Applications

The calculation of the determinant can be done with Maple through this command: det (A).
MDETERM is the function in Excel to compute the determinant. It is not an array function,
since the output is a scalar.

Problems 1 [ 1 [ ]

Using cofactors, evaluate 13. |1 2 2
3 2 _1 1 1 2
30 3 1 -2 2
b2l 1w | 31 2
1. Expand by the first row. -1 21
2. Expand by the second row. wer
3. Expand by the first column. 15. 12 1 1 1
4. Expand by the second column. 1 2 0 0
Using cofactors, evaluate 1 8 (1) ;
2 0 8 6
1 4 2 0 16. (0 1 1 0
0 -1 3 0 RO
3 5 7 3 1 0 1 1
1 1 1 1
5. Expand by the first row.
6. Expand by the third row. Use Maple to solve
7. Expand by the first column. 17. Problem 9
8. Expand by the fourth column. 18. Problem 10

Use the method of cofactors to find the value of each 19. Problem 11
determinant. 20. Problem 12

9. |2 0 21. Problem 13
0 1 22. Problem 14
10. |1 2 23. Problem 15
0 0 24. Problem 16
1. ([0 2 3 25. Determine a specific set of values for a, b, and ¢ so that
2 0 2 the following matrix is nonsingular.
320
12. |1 0 2 a b c
. 2 1 1 8 3b 4
3 4b 1
111
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Computer Laboratory Activity: After using Maple to
explore different examples, complete the following
sentences:

(a) The determinant of an elementary matrix that comes
from swapping rows is

(b) The determinant of an elementary matrix that comes
from multiplying a row by a constant is

(c) The determinant of an elementary matrix that comes
from multiplying a row by a constant and then
adding it to another row is .

(d) Use your answers to justify Eqgs. 4.9.8, 4.9.9, and
4.9.10.

Use Excel to solve

2o
28.
29.
30.
31.
32.
33.
34.

Problem 9

Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16

4.9.3 The Adjoint

We are now in a position to define a matrix closely related to A~'. The adjoint matrix A™ is the
transpose of the matrix obtained from the square matrix A by replacing each element a;; of A
with its cofactor A;;. It is displayed as

An Aay -0 Ap
Ap Axn - Ap
At =], ! (4.9.18)
Aln A2n e Arm
Note that the cofactor A;; occupies the position of a;;, not the position of a;;.
One can now establish the relationship
AAT = ATA = |A|I (4.9.19)

(The proof is left to the reader; see Problem 16.) Hence, if A~ exists, we have the result

+
A (4.9.20)
Al
This formula for A~! is not convenient for computation, since it requires producing n> determi-
nants of (n — 1) x (n — 1) matrices to find |A].
Equation 4.9.20 does, however, lead to the well-known Cramer’s rule: Suppose that A is
n X n and

X1 r
X2 L)

A: [A*lvA*21 "'7A*n]1 X = . s r= . (4-921)
Xn I'n

then the system

Ax=r (4.9.22)
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has solution

— |[l‘,A*2,...,A*n]| — |[A*17r’A*3,-~-7A*n]|

X1 |A| X2 |A| yoeee

= 253
— I[A*l’ A*27 MR r]l
(4.9.23)

The proof follows: Let A} = [r, Ao, ..., Ay ]. Expand |A|| by cofactors of the first column.

This results in

Al =riAn +1rAy + - +1An

Now, consider the first component of

Afr
x=Ar="
A

The first component is

Ay +rAy 4+ A

e Al

The argument is essentially the same for each component of x.
The adjoint may be calculated in Maple with adjoint (A).

Problems

(4.9.24)

(4.9.25)

(4.9.26)

Find the adjoint matrix AT and the inverse matrix A~! (ifone 6 [ (o 2
exists) if A is given by 2 1 1
1. [1 -1 L LR
| 1 1 7. [ 1 9l 2_
_ _ 1 1 2
2 2 6 1 -2 2
|1 3] = =
- 8 12
3 2 0 -1 2 1
0 1] 11
s 2 % o110
L0 0] 00 11
s o1
2 6 L
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Solve each system of linear, algebraic equations by Cramer’s  16. The following result, analogous to Eq. 4.9.1, may be

rule. found in any text on linear algebra:
10. x—y=6 n n
0 x+§=0 o:;aijij:;ajkAﬁ ifk #i
1. x—-2y=4 Now use Eq. 4.9.1 and this result to establish
2x+ y=3 ATA = AAT = AT
12. 3x+4y=7 17. Use the result of Problem 16 to prove that A~! exists if
2w —Sy=2 and only if |A| # 0.
Use Maple to solve
s Srapdy =g ST 18. Problem 1
x— y+ z=4 19. Problem 2
y+ z=3 20. Problem 3
14 x—3y+z=-2 21. Problem 4
x=3y-z= 0 22. Problem 5
—3y+z= 0 23. Problem 6
15, xi+ x+x3=4 24. Problem 7
X — Xp—x3=2 25. Problem 8
X1 —2xp =0 26. Problem 9

4.10 LINEAR INDEPENDENCE

In Chapter 1 we saw the importance of the linear independence of a set of solutions of a differ-
ential equation. The central idea was that a sufficiently large set of independent solutions enabled
us to solve any initial-value problem. An analogous situation exists for the theory of systems of
algebraic equations. We explore this idea in detail in this section.

Suppose that vector y is defined by the sum

y=a1Xy +aXo + - +apxg, k>1 (4.10.1)

Then y is a linear combination of {X, Xy, ..., X;}. The scalars a;, a, ..., a; may be real or
complex numbers. If all the scalars are zero, then Eq. 4.10.1 is called trivial and, of course,
y = 0. On the other hand, y may be the zero vector without all the scalars zero as seen in the
sum, 07 = 2[1, 1] — [2, 2]. When a linear combination is the zero vector without all the scalars
being zero, we call the combination nontrivial.
A set of vectors {Xi,Xo, ..., X,} is linearly dependent if 0 is a nontrivial combination of
vectors from this set:
O0=axi+ax+ - +axk, k=>1 (4.10.2)

where at least one scalar is not zero. If the given vectors are not linearly independent, they are
linearly dependent. 1t then follows that if {X;, X,, ..., X;} is linearly independent and
0=ax; +axo + -+ arx; (4.10.3)

then
a1=a2=~--=ak=0 (4104)
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EXAMPLE 4.10.1 \ | | |

Demonstrate the linear dependence of the following vectors:

(a) [17 17O]T7 [_19 150]T’ [07 170]T
(b) 0,xy,x2, X3
() x1,Xp —X1,2x; +Xp

» Solution

First of all, for the vectors of part (a), we attempt to select the scalar coefficients such that zero results on the
right-hand side. Hence,

-1 0 0
+ 1{=211]=10
0 0 0 0
Next,
10 +0x; +0x, + 0x3 =0
and

3 + (X — X)) — (2X; +%x) =0

The above shows the dependence of the vectors given in parts (a), (b), and (c), respectively.

EXAMPLE 4.10.2 [ | | |

Show that [1,1, 0, 1], [1, O, O, 1], [1, —1, O, 1], and [O, O, 1, O] is a linearly dependent set by finding the
scalars so that Eq. 4.10.2 holds.

» Solution

We apply elementary row operations to the matrix

1 1.0 1 x
1 001 x
1 =1 0 1 x;
0 1 0 x4
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EXAMPLE 4.10.2 (Continued) \ | | |

The rows of this matrix are the given row vectors, while the last column is simply used to keep track of the
various row operations used in the reduction. Note, for instance, that the last column of the matrix

1 1 0 1 X
0 -1 0 O X — X1
0 -2 0 0 X3 — X]
0 010 x4

exhibits the row operations used. Continuing, we obtain

1 0 1 X|

0 -1 0 O Xy — X1

0 0 0 O X3 — X] — 2(X2 — Xl)
0 0 10 X4

The third row shows that
[0, 0, O, O0]=x3—x; —2(X2 —X1)
or, more neatly,
X —2X, +x3 =0

which is the required nontrivial sum.

The point illustrated by this example is that there is a simple algorithm to detect whether a set
is linearly dependent and, if linearly dependent, evaluate the scalars in the dependency relation-

ship 4.10.2.
The special case in which we have n vectors X, Xo, ..., X,, each with n entries, leads to a
determinant test. Set
T
X]
X3
X= ; (4.10.5)
x!
. . n dpxn
Using an arrow diagram
X— . ..-.—U (4.10.6)

where U is the RREF of X and is upper triangular. By Theorem 4.5, U is either I or has a row of
zeros. Using the properties of a determinant, we know that

IX| =k|U|, k#0 (4.10.7)
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If U has a row of zeros, |U| = 0, which implies that |X| = 0. If | X| = 0, then U must have a row
of zeros since U cannot be 1. Thus, we have the following theorem.

Theorem 4.7: If X is a square matrix,
X|=0 (4.10.8)

if and only if the columns of X form a linearly dependent set.

EXAMPLE 4.10.3 \ | | |

Find those numbers 7 for which [1 — ¢, 0, 0], [1, 1 — ¢, 0], and [1, 1, I — ¢] are linearly dependent.

» Solution

Consider the matrix

Then

if and only if

EXAMPLE 4.10.4 \ | | |

Show that the n vectors

—
—
OO

er=1.1, e=|.1], ..., € =

are linearly independent.
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EXAMPLE 4.10.4 (Continued) l | | |

» Solution

The appropriate matrix is I. We know that
I =1

so that the given vectors are linearly independent by Theorem 4.7.

4.10.1 Maple Applications

Keep in mind that Maple is a “computer algebra system,” meaning it can complete calculations
on variables and not just numbers. Thus, it is ideal to solve problems such as that of Example
4.10.2. Here is how it would work:

>A:=-matrix(4, 5, [1, 1, 0, 1, x1, 1, O, O, 1, x2, 1, -1, O, 1,
x3, 0, 0, 1, 0, x41);

1 1 0 1 xI
A= 1 0 0 1 x2
1 -1 0 1 x3
0 0 1 0 x4

>Al:=addrow (A, 1, 2, -1): A2:=addrow(Al, 1, 3, -1):
A3:=addrow (A2, 2, 3, -2);

1 1 0 1 x1
23 .= 0 -1 0 O x2 — x1
0 0 0 0 x3 + x1 — 2x2
0 0 1 0 x4
Another approach is to use this command:
>gausselim(A) ;

1 1 0 1 x1

0 -1 0 O x2 — x1

0 0 1 0 x4

0 0 0 0 x3 4+ x1 — 2x2

In either case, we conclude that x3 + x; — 2x, = 0.



Problems

Which of the following sequences of row vectors are linearly
dependent?

1.
23
3.

L, @, 1), [0l 1l =i}, (=1, 1L, =3
(L1, 1,0, 1], [-1,2,0,0] [0,0,1,0], [1, -1, =1, 1]
[-1,0,0,1],[2, 1,1, 11,10, -1, 1, 3]

Find k so that [k, O, 1], [1, k, —1],[—1, 1, k] are linearly
dependent.

If x1, X2, X3, X4 is a linearly independent sequence, is the
sequence X;, Xp, X3 linearly independent? Why?
Generalize.

If X1, X2, X3, X4 is a linearly dependent sequence, is the
sequence X1, X2, X3, linearly dependent? Explain.

For each sequence of linearly dependent row vectors, express

0 as a nontrivial linear combination.

10.

Problem 1

Problem 3

[-1,2,0,0], [1,2,—1,0], [1,1,0, 1], [1,5, —1,1]
[1, 1,0, 1],[1, 0,0, 1], [0, O, 1, O], [1, —1, O, 1]

11.

A sequence consisting of a single vector, x # 0, is lin-
early independent. Why?

4.11 HOMOGENEOUS SYSTEMS

12.

13.
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L1 1 [

Give a linearly dependent sequence of at least two vec-
tors, none of which is zero, such that

0 =aix; +axXs + -+ + axXe

is nontrivial. Prove that at least two of the scalars are not
Zero.

Use Maple to solve the following: Call the vectors in
Problem 1 x;, x5, and x3. Let x4 = [a, b, ¢, d]. Determine
constants a,b,c,d SO that the equation
a1X| + arXp + azxsz = X4 has no solutions for a;, a,, and
as.

Use Maple to solve

14.
15.
16.
17.
18.
19.

Problem 1
Problem 2
Problem 3
Problem 4
Problem 9
Problem 10

We return to the solution of m equations in n unknowns represented by

Ax=r (4.11.1)

In this section we assume that r = 0 and call

Ax =0 (4.11.2)

homogeneous. Every homogeneous system is consistent because AQ = 0 shows that Eq. 4.11.2
always has the trivial solution x = 0. Our interest, therefore, centers on those matrices A, for
which Ax = 0 has nontrivial solutions. If Eq. 4.11.2 has the solution x = x; # 0, then

A(ex)) =cAx; =c0=0

(4.11.3)

shows that cx is a solution for every choice of the scalar c¢. Thus, if Ax = 0 has even one non-
trivial solution, it has infinitely many solutions.
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Suppose that A is m x n. We say that A has full rank if rank A = n. The following matrices
in (a) have full rank; those in (b) do not:

1 0 1 = O
1.0 0 0 1 0 0 1
@]|0 1 0, * % (b) 0 0 0], [(1) (1) : Ij|
0 0 1 :
* % 0 0 O

The critical difference between the cases in which Ax = 0 has the unique, trivial solution
x = 0 and the cases in which Ax = 0 has infinitely many solutions is most easily seen by study-
ing an example. We choose A in RREF but not with full rank. We shall discover that it is pre-
cisely when A does not have full rank that Ax = 0 has nontrivial solutions.

Let

1 2 0 -1 =2
10 0 1 1 1
A= 00 0 0 0 (4.11.4)
0 0 O 0 0
Then, Ax = 0 represents
X1 +2x —x4—2x5=0
+xs+ x5=0
T s 4.115)
0=0
0=0

The coefficients of the unknowns x; are the entries in the ith column of A. For instance, x5 has
the coefficients —2, 1, 0, 0, in Eq. 4.11.5, the entries in column 5 of A. The unknowns whose co-
efficients are the entries in a leading column are basic variables; the remaining unknowns are
free variables. In the system 4.11.5, x| and x3 are basic and x;, x4, X5 are free. Since, in RREF,
each basic variable appears in one and only one equation, each choice of free variables leads to
a unique determination of the basic variables, and therefore to a unique solution. We distinguish
basic solutions of Ax = 0 by the following definition:

A basic solution is one in which a single free variable is assigned the value one and the
remaining free variables (if any) are set to zero.

For the A in Eq. 4.11.4 we obtain three basic solutions corresponding to the three free
variables:

Solution 1. Set x, = 1, x4 = x5 = 0. Then

X =

oS oo~



4.11T HOMOGENEOUS SYSTEMS 261

Solution 2. Set x4 = 1, x, = x5 = 0. Then

S
0
Xy = —1
1
- O_
Solution 3. Set x5 = 1, x, = x4 = 0. Then
5
0
X3 = -1
- 1_

We call the set of all basic solutions a basic set of solutions. A basic set of solutions is a linearly
independent set. To see why this is the case, consider

* * *

1 0 0
ci1X]toXot+aXz=cy | x|+ | x| 63| % =0 (4.11.6)

0 1 0

0 0 1

where the basic variables are ignored. Equation 4.11.6 clearly shows that c; = ¢, = ¢3 = 0. In
the general case, assuming for convenience that the free variables are the last k variables,

[ ] IER [ %]
* * *
1 0 0
el 0 + 0y X 4+t 0l = 0 (4.11.7)
0 0 0
L0 | L 0| L1 ]
implies thatc; = ¢, =--- = ¢ = 0.

EXAMPLE 4.11.1 [ | | |

Find the basic set of solutions of
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EXAMPLE 4.11.1 (Continued) \ | | |

» Solution
‘We must first reduce A to its RREF:

1 1 11 1 1 I 1 11 1 1

I -1 -1 1{—]0 -2 =2 0|—]0 1 1 O

2 0 01 2 0 0 2 2 0 0 2
1 1 11 11 11 1 0 0 1
— |0 1 1 0|l —1]0 1 1 Of— 10 1 1 0
0 -2 -2 0 0000 0 0 0 O

Since the first two columns are the leading columns, the variables x; and x; are basic and x3 and x4 are free.
There are, therefore, two basic solutions. The equations are

X1 +x4=0
Xo4+x3=0
So set x3 = 1, x4 = 0 and obtain
X = -
So set x4 = 1, x3 = 0 and obtain
R
< — 0
71 oo
— 1_

Note the placement of the zeros and the ones among the free variables:

S = ¥ ¥
—_— O ¥ ¥

Theorem 4.8: The homogeneous system Ax = 0 has the unique solution x = 0 if and only
if A has full rank.

Proof: Suppose that A is m x n and A has full rank. Then rank A = n and the RREF of A,
written A = U, is either

I,
U=I, or U= [} (4.11.8)
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In either case Ux = 0 implies that x = 0. Hence, Ax = 0 implies that x = 0 when A has full
rank. Conversely, suppose that rank A = r < n. Then at least one variable is free and there is a
basic solution. But basic solutions are never trivial, so if Ax = 0 has only the trivial solution,
then rank A = n.

For square matrices, full rank is equivalent to the following:

1. A~ exists.
2. |A] #0.
3. The rows or columns of A are linearly independent.

Let Xy, Xp, ..., X; be the basic set of solutions of Ax = 0. Then
X, = C1X] + Xp + - - -+ kX (4.11.9)

is a general solution. It is understood that Eq. 4.11.9 represents a family of solutions, one for

each choice of the & scalars, ¢y, ¢, . .., cx. To warrant the name “general solution,” we need to
show two things: First, that x;, is a solution; but this is trivial, for
k
Ax, = A Z CiX;
i=1
k
:ZciAx,- =0 (4.11.10)
i=1

since for each i, Ax; = 0. Second, that for each solution X, there is a choice of constants such
that

k
Xo = Zcixi (4.11.11)
i=1

The argument for the second point is more subtle. Let’s examine the argument for a particular
example.

EXAMPLE 4.11.2 [ | | |

Show that

Xy =

is a solution of the system in Example 4.11.1 and find ¢, ¢; so that

Xp = C1X] + 2Xp
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EXAMPLE 4.11.2 (Continued)

» Solution

First,
11 11 :; 0
1 -1 -1 1 ) | = 0
-2 0 2 0
1
Second, to find ¢; and ¢, we use the following:
-1 * *
-2
| = Cl T + Zk)
1 0 1

Clearly, ¢c; = 2 and ¢, = 1 and these are the only choices. Once ¢ and ¢, are fixed, the free variables are de-
termined; namely, x3 = ¢; and x4 = ¢,. When the free variables are fixed, the solution is defined.

In general, suppose that the variables x,, 1, Xy—k+2, - - ., X, are free—these are the last k
variables in x. Let X be a solution of Ax = 0. Say that

*
*
XOZ o (41112)
o
(073
Then
[ %] S S ES
* * * *
Xo=|a |=c |1l |+c|0]|+-+ca]|O (4.11.13)
o) 0 1 0
o _O_ _O_ _1_

Thus, ¢; = a1, ¢ = aa, ..., ¢ = o and the basic variables take care of themselves.
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Thus, for Ax = 0, we have the following principle: The general solution is a family of solu-
tions containing every solution of Ax = 0. In the event that A has full rank, the general solution
is a set with a single member, x = 0.

Although we do not make explicit use of the fact, in some more complete accounts, attention
is paid to the number of basic solutions. This number is the nullity of A, written n(A), and
abbreviated by 1. Since 7 is exactly the number of free columns, and r (the rank of A) is the
number of leading columns,

n+r=n (4.11.14)
where A ism X n; or

n(A) + rank A = number of columns of A (4.11.15)

Problems [ 1 [ 1 [ ]

In the following problems, A is a square matrix. 12 x1+x+x3=0
1. Prove: A~! exists if and only if A has full rank. X2+x3=0
2. Prove: |A| # 0 if and only if A has full rank. 13. x1—x+x3=0
3. Prove: The rows (or columns) of A are a linearly inde- X1 +2x —x3=0

pendent set if and only if A has full rank. 4 x -0

x1+x+x3=0
15. x1+ x—x3=0
3x1 +4xy —x3=0

Matrix multiplication is a linear operator. Show that this
is the case by explaining why

A(ax| + Bx2) = aAx| + BAX,

Use the result of Problem 4 to establish this theorem: if
. . x1+2x+x3=0
X1, X2, ..., X, are solutions of Ax = 0, then so is every
linear combination of these solutions. 16. [1,1,...,1]x=0
If A has full rank, explain why the number of rows isnot ~ 17. Jx = 0, where J is an n x n matrix of all 1’s.
greater than the number of columns. 18. uu’x=0u#0

In each problem find a basic solution set, a general solution, 19, yZux = 0

and verify Eq. 4.11.2.

10.
11.

20. u'vx=0,u’v+#£0

1+ %7 — x5+ % =0 21, uv'x=0,u#0,v#0
X|— X2+ x3+x4=0

22. If A~! exists, explain why A has no free variables. Use
Eq. 4.11.2.

Use Maple to solve
23. Problem 7
x1=x=x3=0 24. Problem 8
x1+x=0 25. Problem 9
x1—x=0 26. Problem 10

x4 =0

xp—x2+x3+ x4=0

X3—ZX4=0
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27. Problem 11

28. Problem 12

29. Problem 13

30. Problem 14

31. Problem 15

32. Computer Laboratory Activity: One type of matrix that

4.12 NONHOMOGENEOUS EQUATIONS

has full rank is a trigonometric matrix that arises from
sampling the sine and cosine functions. These matrices
are made up of N linearly independent columns, where N
is a power of 2. For N = 4, we create the columns by
sampling these functions:

.
sin(%), j=0,1,2,3

i
cos (O%), j=0,1,2,3

.
cos(l%), i=0,1,2,3

o
cos <2%>, i=0,1,2,3

(a) Create the trigonometric matrix for N =4, and
demonstrate that it has full rank.

(b) Create the trigonometric matrix for N =8, and
demonstrate that it has full rank.

33.

(Hint: You will need 3 sine functions and 5 cosine func-

tions, and you will need to sample on eighths rather than

quarters.)

(c) Write code that will create the trigonometric matrix
for any N which is a power of 2.

Computer Laboratory Activity: A linear combination of
the columns of A is of the form cja;+
cray + c3az + --- + c,a,, where aj,a», a3, ...,a, are
the vectors that make up the columns of A, and
c1, €2, €3, ..., Cy are any scalars. The column space of A
is the set of all linear combinations of the columns of A.
For this problem, let

4 1
A= 6 —8
-1 3

(a) Create 10 different vectors that belong to the column
space of A.

(b) Determine a vector in R? (the xyz space) that does
not belong to the column space of A. Use your an-
swer to write down a system of equations that has no
solution. Explain your results with a discussion of a
plane in R3.

(c) Solve Ax = 0, and determine the nullity and rank of
A. Explain the connection between your answers and
the column space of A.

The theory, associated with the solution of the nonhomogeneous system

AXx =r,

r#£0 (4.12.1)

parallels the corresponding theory associated with the solution of linear, nonhomogeneous dif-
ferential equations. We find a general solution, X, of the associated homogeneous system

Ax=0 (4.12.2)

and add to it a particular solution of Eq. 4.12.1. We must first take care of one minor difference
between these theories; system 4.12.1 may be inconsistent. We can check this by comparing the
ranks of A and [A : r] (see Section 4.4). So assume that Eq. 4.12.1 is consistent and that x,, is a

“particular” solution; that is,

Ax, =1 (4.12.3)
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Let x;, be the general solution of Ax = 0. Then,
AKX, +x;) =Ax, +Ax;, =r+0=r 4.12.4)

So, as expected, the family {x;, +x,} is a set of solutions. We must show that it contains all
solutions. This is surprisingly easy. Let x( be any particular solution so that

Axg=r 4.12.5)

Now

A(xp — x,) = AXy + AX),

=r—-r=0 (4.12.6)
Hence, X — X, is a solution of the associated homogeneous system. By the results of Section
4.11,
X — X, = C1X|] + Xp + -+ + X 4.12.7)
and hence,
X0 =X, + (C1X] + X + - - - + X)) (4.12.8)

That is, Xo is a member of {x, + x;}.

We conclude this section with an observation on constructing particular solutions. A funda-
mental solution of AX = r is the solution obtained by setting all free variables of Ax equal to
Zero.

EXAMPLE 4.12.1 [ | | |

Find the fundamental solution and the general solution of

X1+ x4+ x3=1,
2x1 4+ 2xy + 2x3 = 2,
3x1 +3x+3x3 =3

» Solution

We have
1 1 1 1 1 1 1 1
22 2 2|1—=10 0 0O
3 3 3 3 00 0 O
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EXAMPLE 4.12.1 (Continued) \ | | |

Hence, x; is a basic variable and x,, x3 are free. The associated homogeneous system, in RREF, is
X1 +x+x3=0
Thus, there are two basic solutions:

—1 -1
X| = 1], x=
0 1

The fundamental solution is obtained by setting x, = x3 = 0 in

X1+x+x3=1
Therefore,

The general solution is

1 1
X=X, +X, =] 1|+ O|+1|0
1 0

(e

EXAMPLE 4.12.2 \ | | |

Find the fundamental solution of

120 -1110 3 3
0 0 1 1 0 0 0 -1 <= =5
000 0001 7
000 O0O0O0OO0O O 0

» Solution

Since the coefficient matrix is already in RREF, we can identify the free variables by inspection. They are x,
X4, X5, Xg, Xg. We set these zero and see that x; = 3, x3 = —5, x7 = 7. So

(=N NN o NeY et}

is the fundamental solution.
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EXAMPLE 4.12.2 (Continued) l | | |

As an additional note: there are 7 = 5 basic solutions, so the general solution has the form

X = X, + C1X] + 2Xo + €3X3 + C4X4 + C5Xs

Problems 1 [ 1 [ |

1. Find a general solution of the system in Example 4.12.2. 12, x; — xp+x3 =1

Find a particular solution of each system. X1 4+2x —x3 =1
2. x+y+Z=1 13. X1+XZ+X3=0
X=Y =1 X1 =l
3. x—y=1
1
4. x+ytz=-1 14. Jx=| . | (see Problem 17 in Section 4.11)
X—y—2z= 0 .
1
2x = 0
5. x+y+z+t=1 15. Ifx; and x; are solutions of Ax = b, show that x; — x; is
a solution of Ax = 0.
ytzt+i=1 )
16. If x1,Xo,...,X; are solutions of Ax =b, show that
i+t=1 o1X] + Xy + - - - + o, X, is also a solution of Ax = b if
6. x—y+ z—t=-1 and only if oy +op + -+ -+, = 1.
x—y+2z—t= 1 17. If A is nonsingular, explain why the general solution of
Ax = b is xo = A~ 'b. Hint: Show that A~'b is a solu-
7. Find a general solution for each choice of b; and by of tion and the only solution.
x+y+z=h Use Maple to solve
_ 18. Problem 8
X =Yy = b2

19. Problem 9
20. Problem 10
21. Problem 11

Find a general solution for each system.

8 x1+xx—x3+x54=1

9. x1—x2+xzt+xs= 1 22. Problem 12
x4 = —1 23. Problem 13
10. x1—x3+x3+ x4=0 24. Determine numbers a, b, c so that the following equation
has no solution (x, y):
X3 —2x4 =2
3 1 a
M. x1+x2+x=-1 x| =2 |+y| 9|=|»b
x+x3= 0 4 =5 c
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25. Create a 3 x 1 vector X. Is it true that there are coeffi- (a) If possible, express b as a linear combination of the
cients a, b, and ¢ so that x is equal to: columns of A. Is b in the column space of A?

-2 5 —4 (b) Can we write every vector in R? (the xyz space) as a

a O(+b| =1 | +c¢ 1 linear combination of the columns of A? What does

3 5 _4 your answer have to do with the column space of A?

(c) Prove whether or not the columns of A are lin-
early independent, through an appropriate matrix
calculation.

Justify your answer.
26. Computer Laboratory Activity: Define:
(4 1 -1 23
A=|2 4 31, b=|24
6 -2 -5 24
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Matrix Applications

5.1 INTRODUCTION

In this chapter we study two of the many important applications of the theory of matrices: the
method of “least squares” and the solution of systems of linear differential equations. To ac-
complish these aims we need to introduce the notions of length and direction and solve the so-
called eigenvalue problem.

Section 5.2 is essential to both problems; but the reader may skip Sections 5.3 and 5.4 if only
the solutions of systems of differential equations are of interest. If neither application is of inter-
est, one may still profit from a study of Sections 5.2, 5.5, and 5.6.

5.1.1 Maple and Excel Applications

As in Chapter 4, the 1 inalg package in Maple will be used, along with the commands from
that chapter and Appendix C. New commands include: norm, 1 insolve, map, sum, arrow,
display, eigenvalues, eigenvectors, conjugate, and implicitplot. Both
dsolve and DEplot from the DEt ool s package are incorporated into this chapter.

The 11inalg package is loaded as follows:

>with (linalg):

Excel functions that will be utilized in this chapter are LINEST and LOGEST. Both are array
functions, and they need to be entered into a spreadsheet following the directions for TRANS-
POSE in Chapter 4.

5.2 NORMS AND INNER PRODUCTS

The vector X = |:§1 ] is represented geometrically as the directed line segment from O: (0, 0)
2

to P: (x1, x2). The length of x is the length of this line segment; that is,

lengthof x = \/x} + x3 (5.2.1)

In n dimensions the norm of x, written ||x||, is defined as

) 12
x|l = (Zx,?) (5.2.2)
k=1
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Figure 5.1 A vector in three
- dimensions.
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where X is the n-dimensional vector
X1
X2
Xx=| . (5.2.3)
Xn

Thus, the norm of x is a generalization to n dimensions of the two-dimensional notion of length.
In one dimension ||x|| = abs(x;), the absolute value of x;. In three dimensions ||x|| is the length
of the directed line segment form O: (0, 0, 0) to P: (x;, x2, x3); see Fig. 5.1.

There are three immediate consequences of the definition of norm. For all x and each scalar k:

@ [IxI =0
(i) [|x|| = Oifandonlyifx =0 (5.2.4)
(i) [lkx|| = abs (k) [Ix]l

Property (iii) is proved as follows; by definition we have
kx| = (kxi)?
i=1
=k x7 =K |x|? (5.2.5)
i=1

Since Vk2 = abs (k), (iii) is proved.
A concept closely related to the norm of X is the inner product of x and y, written (X, y);
that is,

¥ =) xy (5.2.6)
i=1

Like the norm, (X, y) is a scalar. A common alternative notation for the inner product is X - y,
which is read “the dot product of x and y,” or simply “x dot y.” So

(x,y)=x-y (5.2.7)
An extremely useful observation results from the identity

X"y =[x ylixi (5.2.8)
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We usually drop the brackets around x - y and write Eq. 5.2.8 in the technically incorrect way
xX'y=x-y=xy (5.2.9)
Normally, no confusion results from this notational abuse. It is easy to prove the following:

0 x> = (x,x) =x"x

(i) (x,y) = (y,x)

(iii) (kx,y) = (x, ky) =k (x,y)
(iv) (x+y.z) = (x,z) + (y, z)

We illustrate the proofs by writing out the details that establish (iv). We have

(5.2.10)

x+y.z)=x+y'z
=" +y)z
=x'z+y'z=(x,2)+ (y, z) (5.2.11)

Properties (i) and (ii) lead to the deeper result which we now state as a theorem.

Theorem 5.1: If A has full rank, where A is m x n, then AT A is invertible.

Proof: Although A need not be square, ATA isn x n and it is sensible to ask whether AT A is
singular or not. Now ATA is invertible if and only if AT Ax = 0 has only the trivial solution
x = (. So, by way of contradiction, suppose that

ATAx) =0, Xo # 0 (5.2.12)
Then, multiplying on the left by x¢, we obtain
xgATAX) =xj0=0 (5.2.13)
However, x) ATAxy = (Axo)” Axo = ||Axol|* by (i) of Egs. 5.2.10. Thus Eq. 5.2.13 asserts
1AXo* =0 (5.2.14)

which, by property (ii) of Egs. 5.2.4, asserts that Ax) = 0. But A has full rank. Hence, Axp = 0
implies that xg = 0, contradicting Eq. 5.2.12. Therefore, AT A is invertible.

Another interesting consequence of Eq. 5.2.9 is
(Ax,y) = (x,ATy) (5.2.15)
For, by Eq. 5.2.7,

(Ax,y) = (A)y
=x'ATy = (x,ATy) (5.2.16)

Just as norm generalizes length, inner product generalizes direction. For, let x and y be the

vectors
X1 Y1
X = s = 5217
[Xz} ' [Yz] G210
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Figure 5.2 A triangle with sides x, y, and L.

o: (y]’ y2)

y P: (xy, x)

and let P: (x1, x2), Q: (y1, y2) denote the points at the ends of X and y, respectively (see Fig. 5.2).
The side L in the triangle QOP of Fig. 5.2 has length equal to the norm of y — x. So, by the law
of cosines,

ly — xII> = [IxI* + llyl* = 2 Ix[| [yl cos 6 (5.2.18)
However,

ly —xlI* = (y —x,y — x)
=(y,y) + (=x,y) + (y, —x) + (=X, —x)
= llyl* — 2(x, y) + IIx]1? (5.2.19)

Comparing this expression for ||y — x||? to the one given in Eq. 5.2.18, we deduce that
(x,y) = lIx|[[lyll cos & (5.2.20)

Although this equation was derived assuming X and y to be two-dimensional vectors, it is triv-
ially true if X and y are one-dimensional, and easy to prove if they are three-dimensional. For
n > 3, we use Eq. 5.2.20 to define the cosine of the angle between x and y. Moreover, if X is per-
pendicular to y, cos = 0 and hence (x,y) = 0. This motivates the definition of “orthogonal-
ity” in n-dimensions. We say that X is orthogonal to 'y and write x Ly if (x, y) = 0 and hence,
the zero vector is orthogonal to all vectors. It is the only such vector, for if x is orthogonal to
every vector it is orthogonal to itself and hence (x,x) = 0; but (x,X) = Ix||> and therefore
x = 0.
Since abs (cos6) < 1, Eq. 5.2.20 suggests' the inequality

abs (x,y) < [Ix[ [yl (5.2.21)

called the Cauchy-Schwarz inequality.
A theorem that is familiar to us all is the Pythagorean theorem. It states that

Ix + ylI* = x> + llylI? (5.2.22)

if and only if x L y. An example will contain its proof.

!A simple proof, valid for n-dimensions, is outlined in Problem 29 of this section.
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EXAMPLE 5.2.1

Prove the Pythagorean theorem.

» Solution
Since
Ix+ylI*> = (x+y,x+y)
= (X, X) +2(x,y) + {y,¥)
= IxII* +2 (x, y) + llyll®
Eq. 5.2.22 follows if and only if (x,y) = 0, and hence x L y.

EXAMPLE 5.2.2

Compute the norms of

-1
-1
Verify that x L y and that Eq. 5.2.22 holds.

» Solution

We compute
IXIP=14+14+14+4=7
IyI?=9+1+0+1=11
Ix+yl>=16+0+1+1=18

Thus, ||x + y|I> = [Ix]|> + [ly]|*. Also, (x,y) =3 —14+0—-2=0

EXAMPLE 5.2.3

For every pair of nonzero scalars « and 8, ax L By if and only if x L y.

» Solution
‘We have
(ax, By) = aB (x,y)

from which the conclusion follows.
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EXAMPLE 5.2.4 l | | |

The triangle equality: Show that the third side of a triangle has shorter length than the sum of the lengths of
the other two sides, as shown.

s
-

///Ypmaﬂdtoy)

-
A - <
>

» Solution

If x and y are two sides of a triangle, X 4y is the third side. But

Ix +yl? = IxI* + IylI* +2 (x, y)
< X1+ Iyl + 2 ] 1yl
= (IxIl + llyl)?

by the Cauchy—Schwarz inequality. Hence,
Ix+yll < lixl + lyll

and this is the required inequality.

5.2.1 Maple and MATLAB Applications

In Maple, there are two versions of the norm command. If the 1 inalg package is not loaded,
then norm will compute the norm of a polynomial, which is not required here. With the pack-
age, the norm command will compute the norm of a vector. For example:

>x:= matrix(5, 1, [1, 2, 3, 4, 5]);

X
Il
U W N e

>norm(x, 2);
/55

It is necessary to include the “2” in the command because there are actually several different
norms of a vector, including a “1 norm” and an “infinity norm.” The norm of Eq. 5.2.2 is the
“2 norm.”
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As the dot product is a special case of matrix multiplication, the multiply command in
Maple can be used to calculate it:
>x:=matrix(5, 1, [1, 2, 3, 4, 5]); y:=matrix(5, 1, [-2, 3, 2,
5, 41);

X
I
U W e
N
I

>multiply (transpose(x), y) [1, 171;

50

Note that the [1, 1] is necessary in order to convert the 1 x 1 matrix to a scalar.

If x and y are column vectors of the same size then dot (x, y) in MATLAB returns the dot (or
scalar product) of x and y. The command norm (x) returns the length of x. MATLAB is some-
what more generous than we have just mentioned. MATLAB permits either X or y to be a row or
a column.

Problems

1. Verify (i) and (ii) in properties 5.2.4. Find the inner product.
Verify (i)—(iii) in properties 5.2.10.
Show that ||y — x||> = [ly|> + [l — 2 (x.y) by using
definitions 5.2.2 and 5.2.6.
4. Prove the Cauchy—Schwarz inequality 5.2.21 from the
definitions 5.2.2 and 5.2.6 when x and y have only two cos @ —sin@
components. 1. <[ i@ [ c0s.0 :|>
Find the norm.
ST 12, (e e)i #
1 13. (e, ;)
1 14. (x, x)
6. 0 15 cos 6 cos 6
7. 1 ’ sin 6 sin 6
? 16. (0, x)
: 17. (e,~, x)
L1
- " (A0
[ V3 M)
—1//3
V3/3
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19. Apply the Cauchy—Schwarz inequality to <|: g] ,
|: vx ]> and thereby deduce that

4D
Vxy < % 0<x, 0=y

20. Ifx_lyandy .z, does it follow that x | z? Explain.

21. Ifxlyandy.lz,isy.l z?Explain.

22. Ifxlyandx.lz isxl (y+z)?Explain.

23. Find « so that (b — cu) L u.

24. Suppose that [Ju]| = 1. Show that (uu”)? = uu’.

25. Show that every solution of Ax =b is orthogonal to
every solution of y" A = 07,

26. Suppose that b = > a;x; and u_Lx; for each i. Show
that u L b. Suppose that x is not a multiple of y.

27. Show that for each real A,

1%+ 2yl = IIxI> + 2(x, y) + 2> [lylI®

28. Set a = |ly|l>, b = (x,y), ¢ = |x]|* and using Problem
27 explain why aA? 4 2b). + ¢ never vanishes (as a func-
tion of A), or is identically zero.

29. Conclude from No. 28 that b> — ac < 0 and thus prove
the Cauchy—Schwarz inequality (Eq. 5.2.21), if X is not a
multiple of y.

30. Verify that Eq. 5.2.21 is an equality if x = ky.

Use Maple to solve

31. Problem 9

32. Problem 10

33. Problem 11

34. Problem 15

35. Problem 18

36. Computer Laboratory Activity: As indicated in Eq.

5.2.10, the square of the norm of a vector is simply the
dot product of a vector with itself, and Fig. 5.1 demon-
strates how the norm of a vector can be thought of as its
length. The unit circle is the set of points of length 1 from
the origin. In this activity, we will explore how the unit
circle changes, if the inner product changes.

If A=1,, and all vectors have dimension 2, then
x -y = x! Ay. In Maple, we can implement this idea by

5.3 ORTHOGONAL SETS AND MATRICES

>A:=diag(1l,1);

b ]

>dp:=(x, y)->
multiply (transpose(x), A, v):

The dp function will now calculate the dot product for
us. For example,

>dp ([1, 2], 41) g

11

For the unit circle, we want to know, for a generic vector
X = [u, v]’, whenisx-x = 1? In Maple, we can use the
implicitplot command in the plots package to
get a picture:

>with (plots) :

>implicitplot (dp([u,v], [u,v])=1,
u=-2..2, v=-2..2,
scaling=constrained) ;

The second command will create a graph of a circle
with radius 1. (Note the syntax of this command: First,
there is an equation to graph, followed by ranges for the
two variables, and finally a sca 1 1ng option so that the
two axes are drawn with the same scale.)

(a) Determine the unit circle in the case where

a6 3]

(b) Determine the unit circle in the case where

1 -1
A =]
o )
(c) What happens in the situation where A is singular?
(d) For each of the three problems above, use the defini-

tion of the inner product to find the equation of the
unit circle.

Use MATLAB to solve

37.
38.
39.
40.

Problem 10
Problem 11
Problem 15
Problem 18

The set {X;, X, ..
and J,

XiJ_Xj,

., Xi} is orthogonal if the vectors are mutually orthogonal; that is, for each i

i ] (5.3.1)
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An orthonormal set, {qi, q2, . . . , qx} is an orthogonal set in which each vector has norm one. So
{qi1, q2, . .. qx} is orthonormal if

(4:,9;) =q; - q; = &5 (5.3.2)
where §;; is the Kronecker delta: 6;; = 0 if i # j and §;; = 1 if i = j. The unit vectors e¢;,
ey, ..., € in the directions of Xy, Xa, . .., X¢, respectively, are the most natural orthonormal set.

The pair
1 1
x=1|1]1. y= 0 (5.3.3)
1 —1

form an orthogonal, but not orthonormal, set. If each of these vectors is divided by length, the re-
sulting pair does form an orthonormal set. In that case,

X 1 1 y 1
—=—1 — 0 (5.34)

TRV I ATV

since ||x]|> =3 and |y||*> =2. This modest example illustrates a general principle:
If{vi, va, ..., Vi}, is an orthogonal set of nonzero vectors, then the set {qy, qa, . . . , Qi }, where
q; = v;i/ IVill, is an orthonormal set.

Let Q be a square matrix whose columns form an orthonormal set. By the definitions of or-
thogonality and matrix multiplication,

QQ" =Q'Q=1 (5.3.5)

and hence Q is nonsingular and Q" = Q. Such matrices are called orthogonal®. Orthogonal
matrices have many interesting properties. Some are illustrated in the examples, and others are
included in the Problems.

%A more appropriate name would have been orthonormal.

EXAMPLE 5.3.1 \ | | |

Show that

sin 6 cos

Q= |:cose —sin9:|

is an orthogonal matrix for all 6.

» Solution

Clearly, we can write

Similarly,

QQT=|:0059 —sin91||: cos sin0:|

sin & cos b —sinf cosd

Q'Q=I

Thus, Q is orthogonal.
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EXAMPLE 5.3.2

If Q is orthogonal, show that |Q| = £1.

» Solution
From Eq. 5.3.5 we have
QQ" | =1 =1
But
1QQ" | = QIIQ"| = QP
since
Q" = Q|
Therefore,

QP =1 and |Q|=+I

EXAMPLE 5.3.3

For each x and y show that
(Qx, Qy) = (x,y)

» Solution

‘We have

(Qx, Qy) = (x, Q" Qy)
= (x,y)

EXAMPLE 5.3.4

For each x, show that
Qx| = [Ix|l

» Solution

Substitute y = x in (see Example 5.3.3)

(Qx, Qy) = (x.y)
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EXAMPLE 5.3.4 (Continued) | |

and recall the formula

Ix[I* = (x, x)

Thus,
(Qx, Qx) = (x, x)
.
1QxI = [IxIl
EXAMPLE 5.3.5 I |
Show that
2
-
1

is a linear combination of the orthonormal vectors

1 1 -1

_1 1 _1 -1 _1 1
QI—E BE QZ—E 1l ‘I3—§ 1
1 1 1

» Solution

We need to find scalars x1, x5, x3 such that

X1q; + x2q2 +x3q3 = b

There are two apparently different but essentially equivalent methods. We illustrate both.

Method 1. Set
X1
Q= [ql: qQ2, q3]’ X = X2

X3

Then (1) may be written

ey
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EXAMPLE 5.3.5 (Continued) \ | | |

Since Q is not a square matrix, Q is not orthogonal. However, Q" Q = I3 and hence, we deduce that

x=Q"Qx=Q’b
oo (2) 2
LIRS R O I -1

Thus, x; = 2,x, = 1,and x3 = —1; hence, 2q; + @2 — q3 = b.
Method 2. Multiply (1) by qiT (i =1, 2, 3) and, because qiTq,-j = dij,

x1qjq; =x; =q{b=2

ne Q@ =x=qb=1

GG =x=qb=-1

5.3.1 The Gram-Schmidt Process and the Q-R Factorization Theorem

From the linearly independent set {a;, a5, ..., a,} it is always possible to construct an ortho-
normal set {q;, q2, ..., (,} so that every vector which is a linear combination of the vectors in
one of these sets is also a linear combination of the vectors in the other. The method with which
we choose to construct {q;, q2, - . . , q, } uses an algorithm known as the Gram—Schmidt process.
The steps follow.

Step 1. Define

Vi = (536)
The norm of vy is r; = ||vy||. Then
Vi
q=— (5.3.7)
r
is of unit norm.
Step 2. Define
V2 =ay — (q - a)q (5.3.8)
The norm of v, is r, = ||v,||. Then
\f)
qQ=— (5.3.9)
rn

is of unit norm.
Step 3. Define

vi=a3 —(q; -a3)q; — (q2 - a3)q2 (5.3.10)
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The norm is v3 is r3 = ||v3||. Then

V3

QG =— (5.3.11)
r3
S0 q3 is of unit norm.
ith step. Define?
i—1
vi=a— ) (Qa)q. Q> (53.12)
k=1
The norm of v; is r; = ||v;||. Then
Vi
q = — (5.3.13)
Ti

so q; is of unit norm.
Aslong as r; # 0, these steps produce qy, (2, - - - , qy, in that order, and ||q; || = 1. Therefore,
ifr; #0foralli,q; L q;,i # j. We shall return to these items later.

3t is standard practice to define the empty sum 22: 1 as zero. Then Eq. 5.3.12 holds even fori = 1.

EXAMPLE 5.3.6 \ | | |

Use the Gram—Schmidt process to construct an orthonormal set from

» Solution

a =

We simply follow the steps in the process outlined above:

Step 1

= aj

[ S —y

n=lvill =v4=2

1
Q1—2 1
1
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EXAMPLE 5.3.6 (Continued)

Step 2
1
1 2
0 1
V2 =ay— (qr-a)q = ol~ i
1 1
2
rp=v2| =1
1| —
q = 5 —
Step 3
vz =a3 — (q; - a3)q; — (q2 - a3)q2
1 1
-1 2 —1 2
| ool 0 -3
2| |1 BN U
1 i 1 i
2 2

ry=|lvsl =2

1
_Lha
B=31 -
1

Itis easy to check that q; - q; = §;;.

EXAMPLE 5.3.7

Find the orthonormal vectors corresponding to

S

» Solution

We have

_—0 O =
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EXAMPLE 5.3.7 (Continued)

Next

R

vall = X2

7y = = —
2 \{) )
Varoa

q = > _1

EXAMPLE 5.3.8

Find the orthonormal vectors corresponding to

» Solution

Now

and

=[] b be-D

These last two examples illustrate that the order of the vectors aj, ay, ..
portant role in determining the q;, but that once the order of the vectors aj, a, .
the ¢; and their order is uniquely determined by the algorithm.

B

285

., a, plays an im-
.., a, is fixed,

Although it is not obvious, Eq. 5.3.12 can be written in matrix form. The easiest way to see
this is, first replace v; by r;q; and then solve for a;; thus,

i—1
a; =71iq; +
k=1

Now let A = [aj,a,...,a,] and Q = [q;, q2, . ..

ryornp
R=| "
0 0

(qr - a;)q

’ qn]- Let

(5.3.14)

(5.3.15)

(5.3.16)
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Then

A=QR

Equation 5.3.17 is the O-R factorization of A.

EXAMPLE 5.3.9

Find the O-R factorization of

(5.3.17)

11 -1
110 o
@ A=11 0 22
11 1
11
11
© A=[O 1}

» Solution

These matrices are constructed from the vectors given in Examples 5.3.6 to 5.3.8, respectively.

~
S
N
>
[l
Rl 12— R]— 19—
Rl—= 12— Nl— 19—
|
RI—= = N]— 1=

S O

O ==

Note that the columns of Q are just q;, q2, q3 of Example 5.3.6. The diagonal entries in R are r, 5, 3. The
remaining entries in R were computed using Eq. 5.3.16 as follows:

rp=qi-a =
r3=(q-az =
3 =(q2 a3 =

1
2
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EXAMPLE 5.3.9 (Continued) \ | | |

(b) and (c)

117 _[v22 ﬁ/znﬁ ﬁ/z}
1 o]~ [ V272 —v22[[ 0 V22

LT 1772 1
211 =1]]0 1
(1 17 _[1 o1 1
(0 1] [0 1]]0 1

Thus, the factorization of A may be interpreted as the matrix counterpart of the
Gram—Schmidt process. It is time then to prove:

1. v; # 0 for all i and therefore each q; may be defined.
Both proofs are inductive and, naturally, use the defining formula (Eq. 5.3.12).

Proof of 1. Since {a;, a, ..., a,} is linearly independent, a; # 0. Then v; = a; # 0. Now,

V2 =a; — (qr - a)qq

q-a q-a
Vi =a; —
ry ry

a (5.3.18)

ZaZ_

Therefore, if v, = 0, we would have {a;, a,} linearly dependent. This is not the case, so v, # 0.
The reader may supply the proof that vs is also nonzero, and so on.

Proof of 2. To show that q; L q; we show that q; L v,, for

Vo =ay — (q1 - a2)q (5.3.19)

implies that
Qi -v2=4qi -2 — (q - a2)(qr - q) (5.3.20)
But q; - q1 = |lqu > = 1. Hence, q; - vo = 0. Again, we invite the reader to use the fact that

q; L q» and Eq. 5.3.12 to show that v3 L q; and v3 L (. From this step, the complete induction
is reasonably straightforward.
We thus have the following theorem.

Theorem 5.2: If A is m x n and has full rank,* then
A=QR (5.3.21)

where Q is m x n with orthonormal columns and R is an n x n, nonsingular, upper triangular
matrix.

4 The columns of A form a linearly independent set.
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» Solution
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Since R is nonsingular and upper triangular, it has an inverse S = R~! which is also upper
triangular. Therefore, Eq. 5.3.21 implies that

AS=Q (5.3.22)
The reader may verify that this equation proves that q; is a linear combination of a;, ay, ..., a;
just as A = QR shows that a; is a linear combination of qy, qa, . . ., ;. Note also that although

Q is not generally a square matrix, Q" Q = I,,, and QQ7 is singular unless Q is n X n, in which
case Q7 = Q~!. It is interesting to observe that if the Q—R factorization of A is known, then

Ax = b implies QRx = b (5.3.23)
and therefore
Q"QRx=Q’b (53.24)
Since QTQ =1,
Ax = b implies Rx = Q" b (5.3.25)

The latter system is easily solved by back-substitution since R is upper triangular.

5.3.2 Projection Matrices

Any square matrix P satisfying the two conditions

) P =P
(ii) P>’=P (5.3.26)

is a projection matrix (a projection, for short). It is a trivial observation that I, and O,,«, are
projections.

EXAMPLE 5.3.10 \ | | |

Verify that the following symmetric matrix is a projection:

nxn

That the given matrix is a projection follows from the fact that

Jﬁ =nl,
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EXAMPLE 5.3.11 \ | |

Show that all projections except I are singular.

» Solution

Suppose that P is a projection and P~ exists. Then, from P? = P we obtain by multiplication
PP =P 'P=1

But, P~'P? = P. So P = I follows from the existence of P~!.

EXAMPLE 5.3.12 \ | |

Suppose that ||[u|| = 1. Show that uu” is a projection.

» Solution

We easily verify that uu’ is symmetric. Also,

(uu’)? = (uu")(uu’)

= u(uTu)uT
Since
vu=u-u=|u| =1
it follows that

(u'w)? = uu”

289

The next example provides a motivation for using that word “projection” for matrices
satisfying Eq. 5.3.26, at least in the special case where P = uu’ . Consider Fig. 5.3, wherein
u is a unit vector making a 30° angle with the negative x axis, and b is a vector terminat-
ing at (+/3, 1). The vector b makes a 30° angle with the positive x axis. The “projection of b
onto the line defined by u” is the vector denoted by p, which in this case points opposite
to u. By elementary geometry, the coordinates of the terminus of p are (v/3/2, —%).
Now consider

(uu’)b = [ _\/5/2} [—/3/2,1/2] [{3]

1/2
om0 e

Hence, (uu”)b = p. That is, uu’ projects an arbitrary vector b onto the line determined by u.
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o _
7 (3, 1)
/
N /
N //
" e(-13/2.1/2) b /
/
u )/
//
30° 60° /
/
/
/
P //
/
_ o
(3/2,-1/2) >~_
L

Figure 5.3 p is the projection of b on the line L.

We conclude this section with an example and a theorem, both of which are essential to the
material in Section 5.4.

EXAMPLE 5.3.13 \ |

Verify that for every A,,«, with full rank,
P=AATA)'AT
is a projection.

» Solution

If A has full rank, then ATA is invertible (see Theorem 5.1). [Of course, (ATA)~! cannot be written as
A~'(AT)"! since neither A nor AT are necessarily square matrices.] Now

PT — {A(ATA)—IAT}T
=A{ATA)"HTAT =P
since (ATA)! is symmetric. More interesting is
P> = (A(ATA)'ATHAATA)'AT)
=AATA)"ATA)ATA) AT
=AATA) AT =P

Theorem 5.3: If P is a projection, then for every b and'y,

Py L (Pb—b) (5.3.28)
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Proof: We show the theorem to be true by showing that (Py)” (Pb — b) = 0. But
(Py)" (Pb —b) = y"P"(Pb —b)
=y'P(Pb —b) (5.3.29)
since PPT = P. Hence,
(Py)" (Pb — b) =y’ (P’b — Pb)
=y’ (Pb — Pb) (5.3.30)
since P2 = P. Thus, we have

Py)" (Pb—b) =y'0
=0 (5.3.31)

5.3.3 Maple and MATLAB Applications
The computations of Example 5.3.6 can be done with Maple, using commands described earlier:
>al:=matrix(4, 1, [1, 1, 1, 11):
>a2:=matrix(4, 1, [1, O, O, 11):

>a3:=matrix(4, 1, [-1, 0, -2, 11):
>vl:=al:
>rl:=norm(vl, 2): gl:=scalarmul (vl, 1/rl);
1
2
1
2
gl :=| |
2
1
2

>v2:=a2-scalarmul (gl , multiply (transpose(gl), a2) [1,1]):

>r2:=norm(v2, 2): g2:=scalarmul (v2, 1/r2);

g2 :=

IS RS LRES)
= |H |H I

>v3:=a3-scalarmul (gl , multiply (transpose(gl), a3)[1, 11)-
scalarmul (g2, multiply (transpose(g2), a3) [1,1]):

>r3:=norm(v3,2): g3:=scalarmul (v3, 1/r3);

=

= |H 1= |
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There is also a command in Maple, GramSchmidt, which will compute the q vectors quickly,
but obscures the rationale behind the calculations.

EXAMPLE 5.3.14 l | | |

Consider the situation where

—
p—
p—

Determine P = uu”, Py, and Pb — b.

» Solution

Bos s 4 A
P=w'=|'"5 5 %], Py =% |, Pb—b= %
5o s s %

An illustration of this situation can be created using the arrow command and plots package of Maple.
From the illustration, we can see that Py and Pb — b are perpendicular vectors. Note that P projects every
vector onto the line parallel to u.

>Py := arrow(<4/3,4/3,4/3>, shape=double_arrow) :
Pbb := arrow(<-4/3,2/3,2/3>, shape=double_arrow) :
display (Py, Pbb, scaling=CONSTRAINED, axes=BOXED) ;

EXAMPLE 5.3.15 l | | |

Use the MATLAB command gr that returns matrices Q and R such that A = QR and R is upper triangular and
Q is a matrix with orthonormal columns for the matrix given by

1 -1
A=|1 0
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EXAMPLE 5.3.15 (Continued) l | | |

» Solution

»A = [11-1; 10 0; 1 1 17;

[Q,R] =qr(a,0)

[ —0.5774  0.4082 —0.7071
Q0 =|-0.5774 —0.8165 0.0000
| —0.5774  0.4082  0.7071

[ —1.7321 —1.1547 0
R= 0 0.8165 0
0 0 1.4142

Problems [ 1 [ 1 [

1. Show that Write the equivalent Q—R factorization of A, the matrix
singcosd sinpsin®  cosd whose columns are the vectors aj, ap, ... , for each set of
P= —sin6 cosf 0 vectors.
cos¢pcosf) cospsinf —siné 7. The set of Problem 2.
is orthogonal. 8. The set of Problem 3.
Use the Gram—Schmidt process to orthogonalize each set. 9. The set of Problem 4.
2 — - — - 10. The set of Problem 5.
! ! 11. The set of Problem 6.
ag= 1], a=]|1
| 1] | 0] 12. Show that every orthogonal set is linearly independent.
3. T BN Hint: Use method 2 of Example 5.3.5 or
ag=|1]|, a=|1 aqitoq - +oqr =0
| 0] 1] 13. Show that every solution of Ax = 0 is orthogonal to the
4. 1] M1 ] 0 rows of A. Use this result to find z orthogonal to x and y
a=|0|. am=|1]. a=|1 in Eq. 5.3.3.
0 0 1 14. Show that v3 # 0. Knowing that q; L qp, show that
- - - - Eq. 5.3.10 implies that q; L q3 and q> L q3.
5. M r
1 1 1 15. Explain why A = QR shows that each column a; of A is
ag=|0]|, a= 0], a3s= |1 a linear combination of the first i columns of Q, namely,
L 1] | 1 1 q,9,---,q-
6. BN [ 4 16. Suppose that A is k x n, k > n. Show that AAT must be
i singular. Hint: Rank AAT < number of columns of AA”
=10, m=1], w3=ow and rank A < n.
L o _ L ! = 17. If P is a projection, show that P¥ is also a projection for

each k.
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18. If Py and P, are projections, is P;P, a projection? If
PP, = P,Py, is PP, a projection?

19. If P; and P, are projections, is P; + P, a projection?
Explain.

20. Find u so that ||u]|=1 and wu’” = (1/n)J, (see
Example 5.3.10).

1
21. LetA = |: l] in Example 5.3.13. What is P? Show that
P cannot be defined if A = [1, 1]. (Note: [1, 1] does not
have full rank).
11
22. LetA = |:O | :| in Example 5.3.13. Compute P using
this A.

23. If P is a projection, then so is (I —P). Prove this
theorem.

24. Solve the system Ax = b where

1 1 -1 2
A= 1 0 O , b= —1
1 0 -2 1
1 1 1 0

by using Eq. 5.3.25 and the Q—R factorization of A given
in Example 5.3.9.

25. Prove for any vectors y and u (where u has norm 1) if
P = uu’, then Py = (u - y)u. (This gives us another way
to compute the projection of the vector y in the direction
of u.)

Use Maple to solve
26. Problem 2

5.4 LEAST SQUARES FIT OF DATA

2o
28.
29.
30.
31.

Problem 3
Problem 4
Problem 5
Problem 6
Problem 24

32.

Computer Laboratory Activity: The O—R factorization
makes uses of the Gram—Schmidt process applied to
columns of a matrix, along with the creation of matrices
by augmenting vectors. Create a Maple worksheet that
will automatically apply the Gram—Schmidt process to
the columns of any matrix A. (This will require using
for/do loops.) Then, after that calculation, matrices Q
and R are created. Use your worksheet to find the Q—R
factorization of:

4 1 2 5 9
36 7 -3 4
A=|9 0 0 1 2
3 4 —1 2 0
11 8 5 6
Use the MATLAB command gr to solve
33. Problem 2
34. Problem 3
35. Problem 4
36. Problem 5
37. Problem 6
38. Use MATLAB to solve Problem 24.

A problem common to most experimental scientists is the fitting of curves to data. Often we have
theoretical reasons for believing that the output of some experiment is related to the input by a
specific functional dependence containing suitable parameters. For instance, suppose that theory

predicts that

y=ax+b (5.4.1)

relates the input x to the output y in an experiment that generates the data of Table 5.1. The
parameters a and b in Eq. 5.4.1 are related to the physical properties of the material used in the
experiment. If these data are plotted, as in Fig. 5.4, the linear hypothesis expressed in Eq. 5.4.1
is reasonable. The question is; what are the values of a and b that best fit the data? Indeed, what

does “best” mean?
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Table 5.1 Experimental Data

X = input -1 0 1
y = output —0.5 0.5 1.1 2.1
y Figure 5.4 The data of Table 5.1 and

the line of best fit.

V= 0.84x + 0.34

AN

The data overdetermines a and b, for we have the following:

x=—1: —a+b=-05
x=0: b=0.5
(5.4.2)
x=1: a+b=1.1
x=2: 2a +b=2.1

These four equations for @ and b are inconsistent. Statisticians have determined that under cer-
tain reasonably broad assumptions one can do no better than choosing a and b so as to minimize
the sum of the squares of the “deviations.” In the present illustration this sum of squares of the
deviations is

(—a+b+05)7+>B—-057+@+b— 1.1+ 2a +b—2.1)*
Figure 5.5 illustrates the meaning of deviation in a slightly more general setting.
To present the ideas above most generally, suppose that A has full rank and we are interested
in the system
Ax=Db (54.3)

which may be inconsistent. The vector r is the residual and is defined as

r=>b—Ax (5.4.4)
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Figure 5.5 The deviations.

dy Sum of the squares 4
of the deviations = 2, d?

i=1

d

We are interested in finding x so that ||r|| is as small as possible. This may be phrased in two
equivalent ways:

1. Find x = X so that ||]Ax — b|| is minimized by X.
2. Find x = X such that for all z,

[|AX — b|| < [|Az —b|| (5.4.5)
We shall prove in Section 5.4.1 that
£=(ATA)'ATb (5.4.6)

is the solution of inequality 5.4.5. Note that A need not be square so that (AT A)~! cannot be
simplified without further restrictions on A. For instance, if A~! exists, then

ATA) ' = A 1AT)! (5.4.7)
and thus
£=A"b (5.4.8)

In this case AX = b and thus inequality 5.4.5 reduces to the triviality, 0 < ||Az — b|| for all z.
The system

ATAx =ATp (5.4.9)

obtained formally by multiplying Eq. 5.4.3 by A”, are the normal equations. We are asuming
that A has full rank. Therefore, (AT A)~! exists (see Theorem 5.1 and Example 5.3.13) and thus
the normal equations have the unique solution x as given by Eq. 5.4.6.

One of the following examples generalizes the process and solves the problem of fitting a
straight line to n data points. This technique is often called linear regression.
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EXAMPLE 5.4.1 \ | | |

Find the line of best fit for the data of Table 5.1.

» Solution
The system 5.4.2 takes the form
7 m—0.5

bl | 05
al ™ 1.1

_ L 2.1

—

so the normal equations are

Hence,
a| 1034
b|  ]0.38

y = 0.84x + 0.38

Thus, the line of best fit is

EXAMPLE 5.4.2 \ | | |

Given n points {(x;, y;)}, find the line
y=ax+b

which is the best fit of data in the sense of inequality 5.4.5.

» Solution

The system is of full rank and is overdetermined:

1 x Vi
I x|[Tp »
Co al |

I x, Yn

The corresponding normal equations are

EREHE R
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EXAMPLE 5.4.2 (Continued) \ | | |

Let X be the mean of xy, xo, ..., x, and y the mean of y;, y», ..., y,. That is,
_ in — Zyi
X = N y:
n n

Then applying elementary row operations to the augmented matrix results in

n DX DV N 1 X y
PIETIEDDED DAY X Y xi/n Y xiyi/n

X
Hence,
X:Xiyl_fy
n
a= )
> _ 32
n
We then have
1 x vy 1 0 y—ax
o1 o)=Y
so that
b=y —ax

As we show in the problems, a can be rewritten as

u D =X — )
- > (xi —x)?

The above computation of a and b is extremely useful and commonplace in data handling. The
next example illustrates how the technique can be applied to more general curve fitting.

EXAMPLE 5.4.3 \ | | |

Plot the data

0.5 1 1.5 2 2.5
y 3 2.34 1.82 1.42 1.1 0.86

=
=]

and find the best estimate of the parameters M and k assuming that

y = Me™*
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EXAMPLE 5.4.3 (Continued)

» Solution
The data are plotted as shown. The expected curve is sketched. We can cast this problem into a linear regres-

sion by taking logarithms. Then the given equation is equivalent to
z=Iny=—kx+InM

where we let a = —k and b = In M. The data can now be presented as follows:
X 0 0.5 1 1.5 2 2.5
0.35 0.10 —0.15

1.1 0.85 0.60

z=Iny
We compute
> _ 20U
S ‘T
3 x? > xizi
L =12.29, =0.23
6 6
Therefore,
a = —0.50, b=1.10
Hence,
M =e’ =3.00
and
y =2.94¢7%3

5.4.1 Minimizing ||Ax — b ||
Recall Theorem 5.3 which asserts that if P is a projection and b and y are arbitrary vectors,
(5.4.10)

Py L (Pb —b)
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Therefore, by the Pythagorean theorem (Example 5.2.1),
|[Pb — b + Py||* = [|[Pb — b||> + [|Py||* (5.4.11)
Suppose that z is a given vector. Define y = Az. Then ATy = AT Az and hence
z=(ATA) ATy (5.4.12)
and it follows that
Az=AATA)'ATy (5.4.13)
LetP = A(ATA)~'A” . Then P is a projection (see Example 5.3.13). So, using Eq. 5.4.13,
Az = Py (5.4.14)
Therefore,
||Az — b||* = ||Az — b + Pb — Pb||?
= [Py — b+ Pb — Pb|| (5.4.15)
using Eq. 5.4.14. It then follows that
||Az — b||* = ||Pb — b + Py — Pb||*
=[|Pb—b +P(y —b)||’
= [IPb —b|* + [[P(y — b)||? (5.4.16)
The last equality is Eq. 5.4.11, in which 'y — b plays the role of y. Thus, for every z,
[|Az — b||*> > ||Pb — b]||? (5.4.17)

ButPb = AATA)A"'b by definition of P, and by definition of X, Eq. 5.4.6, Pb = AX. Hence,
inequality 5.4.17 is
[|Az — b||* > ||A% — b||? (5.4.18)

and we have proved that X is the vector minimizing ||Ax — bl|.

5.4.2 Maple and Excel Applications

One way to solve Example 5.4.1 with Maple is to use commands in the 1 inalg package. The
linsolve command can be used to solve linear equations of the form A;x = b; for x:

>A:=matrix (4, 2, [1, -1, 1, 0, 1, 1, 1, 2]): b:=matrix(4, 1,
[-0.5, 0.5, 1.1, 2.11):

>Al:=multiply (transpose(A), A);

4 2
st 2]

>bl:=multiply (transpose(A), Db);

3.2
e [32]
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>linsolve (Al, bl);

0.3800000000
0.8400000000

One of the main purposes of Excel is to perform statistical calculations, and finding the line
of best fit can be accomplished using the array function LINEST. To use LINEST, place the x
values in one column and the y values in the other. For instance, in Example 5.4.1, we place the
x values in A1:A4 and the y values in C1:C4

A B ©
1 -1 —0.5
2 0 0.5
3 1 1.1
4 2 2.1

Then, the formula to get the slope and y-intercept of the line of best fit (a and b above) is:
=LINEST(C1:C4, Al:A4)

Note that the list of y values occurs first in this formula, and that the CTRL, SHIFT, and ENTER
keys must be pressed at the same time in order to get both a and b.

The calculations in Example 5.4.3 can also be performed with Maple, by making use of the
sum command. First, we define two lists of data:

>x:=[0, 0.5, 1, 1.5, 2, 2.5]: y:=[3.0, 2.34, 1.82, 1.42, 1.1,
0.86]:

Any entry in either list can then be accessed with commands such as:
>y [2];
[2.34]
The map command can be used to apply the logarithm map to the y values:

>map (1ln, vy);

[1.098612289, 0.8501509294, 0.5988365011, 0.3506568716,
0.09531017980, -0.1508228897]

Next, we compute the means:

>xX_bar:=sum(x[1], 1=1..6)/6; z_ bar:=sum(z[i], 1=1..6)/6;

>x2 _bar:=sum((x[1])"2, 1i=1..6)/6; xz_ bar:=sum(x[i]*z[1],
i=1..6)/6;

x_bar := 1.250000000
z_bar := 0.4737906468
x2_bar := 2.291666667

xz_bar := 0.2272434015
Finally, we compute M and k:

>k:=—-(xz_bar-x_bar*z_bar) / (x2_bar-(x_bar)"2);
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M:=exp (z_bar+k*x_bar) ;

k:=0.5005644437
M:=3.002652909

To fit data to an exponential function, Excel has the LOGEST function. This array function
will fit data to y = Mc* by determining ¢ and M. Once those numbers are determined, k in
Example 5.4.3 can be calculated from c.

As with LINEST, put the data into two columns in Excel. For Example 5.4.3 we have

A B ©
1 0 3.00
2 0.5 2.34
3 1 1.82
4 1.5 1.42
5 2 1.10
6 25 0.86

Then, enter this formula, which has the y values first:
=LOGEST (C1:C6,A1:A6)

The output of this formula is ¢ = 0.606188404 and M = 3.002652912. Then, since ¢* = e kx,
we have that ¢ = ¢ %, ork = — Inc = 0.5005644 in Excel, using a formula “~LN(F1)” (where
the output for LOGEST was placed in F1:G1).

Problems [ 1 [ 1 [ ]

1. Show th tZ(xi — x)? - lez o 5. Course grades are based on the following conversion
. ow tha n T on e from letter grades to numerical grades; A =4,
— = A—=3.7,B4+=33,B=3,B— =2.7, and so on. The

xi =00 =) Xi¥i ’ ’ ’ ’
2. Show that b3 " P Zn n final grades for a class of students in ENG 106 and

ENG 107 are tabulated by using the aforementioned
3. Use Problems 1 and 2 to show that Eq. 1 of Example

conversion.
5.4.2 can be written as
. _ ENG 106 ENG 107 ENG 106 ENG 107
ue Y =D — )

>0 — %)2 2.0 1.3 2.7 3.0
4. Given the data (x1, y1), (x2, y2), ..., (xn, ya), find the S 3.3 4.0 4.0
normal equations for the system 3.7 33 3.7 3.0
ot By + yad = 2.0 2.0 3.0 2.7
SR 23 1.7 23 3.0

a+pr+yxi =y

Calculate the least squares regression line for these data.
: Predict the grade in ENG 107 for a student who received
o+ By +yxi =y, a B+ in ENG 106.
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6. In Table B3 the Bessel function Jy(x) has been tabulated 1 5 250
for various values of x. Data from this table follow. A=| -2 21|, b:=1|500
X Jo 35 750
6.0 0.15065 (a) Prove that A has full rank.
6.2 0.20175 (b) Determine A”A and (ATA)~!.
6.4 0.24331 (c) Determine X.
(d) Determine & = b — AX.
e U2 (e) Use Eq. 5.4.1 to prove that T is perpendicular to Ay,

Find the least squares regression line and use this line
to predict Jp(6.3) and Jy(7.0). Compare with the actual
values in the table.

w for any vector y.

(f) In a manner similar to Example 5.3.14, create a fig-
ure with £ and Ay, for some vector y of your choos-
ing. (To get a good figure, choose y so its length is
comparable to b.)

7. Same as Problem 6 but assume a quadratic fit (g) Create another figure with b, Ay, and b — Ay, so that
o + Bx + yx? = y. Estimate Jy(6.3) and Jo(7.0) and these three vectors form a triangle. Is it a right trian-
compare with the answers in Problem 6. gle? Prove your answer.

Use Maple to solve

(h) For which vectors y will you get a right triangle?

8. Problem 5
9. Problem 6
10. Problem 7

Explain.
Use Excel to solve
12. Problem 5

11. Computer Laboratory Activity: 1t is proved in Section
5.4.1 that x = (ATA)~'ATb is the least squares solution

13. Problem 6
14. Problem 7

of Ax =b. The geometry of this result is important.
Consider this matrix and vector:

5.5 EIGENVALUES AND EIGENVECTORS

Suppose that x(¢) and y(¢) are unknown, differentiable functions of 7 which satisfy the differen-
tial equations
X =x+
, Y (5.5.1)
y =4x+y
As is usual in the case of constant coefficient, linear differential equations, we assume exponen-
tial solutions. So set
x(t) = ue

552
y(t) = upe™ 622

where uy, uy, and A are constants. After substitution of these functions into Eqgs. 5.5.1, we obtain

aupe = uie + ure

(5.5.3)
Aire = duye + upe
Since e* > 0 for all A and 7, Eqs. 5.5.3 can be simplified to
Ay =u;+u
P (5.54)

Ay = 4uy + us
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These are the equations determining A, u;, up and therefore x(¢) and y(¢). In matrix—vector
form these equations can be written as

1 1 Ui _ uj
-

This system is an example of the algebraic eigenvalue problem: For the square matrix A, find
scalars A and nonzero vectors x such that

AX = AX (5.5.6)

The scalar A represents the eigenvalues of A, and the corresponding nonzero vectors x are the
eigenvectors. From Ax = Ax we deduce that Ax — Ax = 0, or, using Ax = Alx,

A—-ADx=0 (5.5.7)

This homogeneous system is equivalent to the original formulation Ax = Ax but has the advan-

tage of separating the computation of A from that of x, for Eq. 5.5.7 has a nontrivial solution if
and only if

[A—2AI =0 (5.5.8)

Examples illustrate.

EXAMPLE 5.5.1 \ | | |

Find the eigenvalues of the matrix

appearing in Eq. 5.5.6.

» Solution
We have

A-ar=| 0 L
=1-22—4=0-3)(+1)=0

'1—x 1 ‘

Hence, the eigenvalues are
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EXAMPLE 5.5.2

Find the eigenvalues of

» Solution

In this case

Hence, the only eigenvalue’ is

0 1—x
=(1-2*=0

r=1

3Tt is usual to say that A = 1 is a double root of (1 — 1)> = 0. We would then write A; = A, = 1.

EXAMPLE 5.5.3

Find the eigenvalues of

» Solution

Here

After some simplification

So the eigenvalues are

-1 2 2
A=| 2 2 2
-3 -6 —6
—1-2 2 2
A — Al = 2 22 2
-3 -6 —6-—x
—1-2 2 0
A — Al = 2 2—1 A
-1 —4-x 0
—1—x 2
i S TR

=-2A+2)*+3)=0
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These examples suggest that |A — AI| is a polynomial of degree n in A when A is n X n.

Indeed, for constants cg, ¢y, ..., ¢,—1 which are functions of the entries in A, we can show that
ayy — A ain e aiy,
any ary — Ao ary,
A — Al =
(2} ap2 Apn — A
= (W) e ()" (=0 + e (55.9)
We write
C(h) =|A— A (5.5.10)

and call C(A) the characteristic polynomial of A; it is a polynomial of degree n and it has n
roots, some or all of which may be repeated, some or all of which may be complex. If complex
roots are encountered, it may be advisable to review Section 10.2 on complex variables.

Once an eigenvalue has been determined, say A = A, then A — A1 is a specific, singular

matrix and the homogeneous system 5.5.7 may be solved. Here are some illustrations.

EXAMPLE 5.5.4 \ | | |

Find the eigenvectors for the matrix in Example 5.5.2,

» Solution

In that example, C (1) = (1 — A)?, so there is only one distinct eigenvalue, A = 1. Therefore, the eigenvectors

of A satisfy
0 1
[0 o}‘_o

Therefore, for all nonzero choices of the scalar k, the eigenvectors are given by

[}

EXAMPLE 5.5.5

Find the eigenvectors of the identity matrix,

10
IZ_[O 1}
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EXAMPLE 5.5.5 (Continued) \ | | |

» Solution

In this problem, as in the one just preceding, C(1) = (1 — A)?. Hence, the eigenvectors are the nontrivial

solutions of
0 0
[ 0 0:| x=0

ol el

These eigenvectors are unit vectors, but they could be any multiple of these vectors since there is a zero on the
right-hand side of Eq. 5.5.7; for example,

The two eigenvectors are

would also be acceptable eigenvectors.

EXAMPLE 5.5.6 \ | | |

Find the eigenvectors of the matrix of Example 5.5.3,

—1 2 2
A= 2 2 2
-3 -6 -6

» Solution
We have already found that
C)=-2(+2)(A +3)

‘We have, therefore, three cases:
(i) Seti; =0.Then

-1 2 2
2 2 2 [x=0
-3 -6 -6

1 00
01 1|x=0
0 0 0
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EXAMPLE 5.5.6 (Continued) \ |

So the eigenvector, corresponding to A; = 0, is

X|] = -1
1
(ii) For A, = —2, we have
1 2 2 1 2
A+21= 2 4 2| —--— |0 0 1
-3 -6 -4 0 0
Hence, the eigenvector, corresponding to A, = —2, is
-2
Xy = 1
0
(>iii) For A3 = —3, we have
2 2 2 1 0 1
A+3l= 2 5 2|—--— |0 1
-3 -6 -3 0 0 O
Here the eigenvector, corresponding to A3 = —3, is
-1
X3 = 0
1

Note: We could have insisted that the eigenvectors be unit vectors. Then we would have

1 0 1| 2 1| !
Xi=— | 1|, =—| 1|, s=—| 0
| 7 ! 2 7 : 3 7 !

EXAMPLE 5.5.7 \ |

Find the eigenvectors for the matrix

St

of Example 5.5.1 and thereby solve the system of differential equations 5.5.1.
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EXAMPLE 5.5.7 (Continued) \ | \

» Solution

We have already found that Ay = —1, and A, = 3. For A; = —1 we have
4 2 0 0
Thus, the eigenvector corresponding to A; = —1 is

— =

where u; represents the eigenvector.

For A, = 3 we have
4 =2 0 0

Thus, the eigenvector corresponding to Ay = 3 is

[

For the eigenvalue 1; = —1 we have
x) =—te, @) =e
and for A, = 3
n) =1 @ =e

We shall show later that the general solution of Egs. 5.5.1 is a superposition of these solutions as follows:

1

x(t) = —5cie™" + %0263’

y(t) = cre” + cre*

5.5.1 Some Theoretical Considerations
We know that

C(h) =1|A = Al
= (=" + o (=R e (=0 F e
is an identity in A; by setting A = 0 we learn that

CO)=IAl=co

(5.5.11)

(5.5.12)
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On the other hand, if we denote the roots of C(L) = 0 as Ay, Ay, ..., A,, by elementary algebra
C(A) has the factored form
CH=h =G —=A) (A —A) (5.5.13)
Hence,
CO) =212z Ay (5.5.14)

This leads to the surprising result
Al =21 A2+ Ay (5.5.15)

Theorem 5.5: The determinant of A is the product of its eigenvalues.

Since |A| = 0 if and only if A is singular, Theorem 5.5 leads to the following corollary.

Corollary 5.6: A is singular if and only if it has a zero eigenvalue.

Equation 5.5.13 reveals another connection between the eigenvalues and the entries of A. It
follows from Eq. 5.5.13 that

C)=(N"+ 0 +Ar+Aiz+ - +r)(=D"" 4+ (5.5.16)
by multiplying the n factors together, Hence,
Cooi=M+2+--+4, (5.5.17)
In Problems 51 and 52 we show that
CO) = (=" + (@i +an+-+au)(=2)"" +-- (5.5.18)

Since the coefficients of C(A) are the same regardless of how they are represented, Egs. 5.5.16
and 5.5.18 show that

M+ 4+, =an+an+--+au (5.5.19)

The latter sum, aj; + ax + - - - + a,, the sum of the diagonal elements of A, is known as the
trace of A and is written tr A. Thus, analogous to Theorem 5.5, we have the following theorem.

Theorem 5.7: The trace of A is the sum of its eigenvalues.

This theorem can sometimes be used to find eigenvalues in certain special cases. It is most
effective when used in conjunction with the next theorem.

Theorem 5.8: If A is an eigenvalue of A and
rank (A —AD) =n—k

then L1 is repeated k times as a root of C(A) = 0.

Proof: In fact, 1} may be repeated more than k times, but in any case, A; is a factor of C(1). The
proof is not difficult and is left to the reader (see Problem 32 of Section 5.6).
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EXAMPLE 5.5.8 \ | | |

Find the eigenvalues of

» Solution

Jn =

nxn

Since J,, is singular, A = 0 is an eigenvalue from Corollary 5.6. Also, rank (J, — 0I) = rank J,, = 1, the root
A = 0of C(}) is repeated n — 1 times. Therefore, by Theorem 5.7,

trJ,=n=04+0+---+2,

and the sole remaining eigenvalue is

It is often possible to find the eigenvalues of B from the eigenvalues of A if A and B are re-
lated. We state without proof (see Problem 64 for a partial proof) the most remarkable theorem
of this type.

Theorem 5.9: Let
px) =apx" +ax"' +--- +a, (5.5.20)
be a polynomial of degree n. Define
P(A) = apA" + ;A" + - +a,l (5.5.21)

Then if Ay, A2, ..., Ay are the eigenvalues of A, p(A1), p(L2), ..., p(A,) are the eigenvalues of
p(A). Moreover, the eigenvectors of A are the eigenvectors of p(A).

An illustration of this follows.

EXAMPLE 5.5.9 \ | | |

Find the eigenvalues of
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EXAMPLE 5.5.9 (Continued) \ |

» Solution

We recognize that K,, = J,, — I, where J, is defined in Example 5.5.8. Soif p(x) =x — 1, p(J,) =J, — 1

and Theorem 5.9 is relevent. The eigenvalues of J, were shown to be
O=M=h="=k-1, n=h,
so the eigenvalues of K,, are
—l=M=k=-=X_, n—1=2x,

The characteristic polynomial of K, is, therefore,

CO=(1=""=n+1-2)=CD"0C+D""h+n-1

5.5.2 Maple and MATLAB Applications

Maple has built-in commands in the 1 inalg package to compute the eigenvalues, eigenvectors,
and trace of a matrix. Consider the matrix in Example 5.5.6, for example; if only the eigenval-
ues are desired, enter

>eigenvalues (A7) ;

If both the eigenvalues and eigenvectors are of interest, enter
>eigenvectors (A) ;
(-2, 1, {f-2, 1, 0J}1, to0, 1, {0, -1, 1131,0-3, 1,{[-1, O, 1]}]

To interpret the output, note that first an eigenvalue is listed, followed by the number of times it
is repeated as a solution of C(A) = 0, and then the eigenvector. Since an eigenvalue might have
more than one eigenvector, the eigenvectors are listed as a set. In this example, each set of eigen-
vectors has only one element.

Finally, to compute the trace (the sum of the eigenvalues):

>trace(A) ;
[-5]

Sometimes, solutions of C (1) = 0 will come in complex conjugate pairs, as in this example.
Define a 3 x 3 matrix A:

hN
Il
S~ o P
W W
;oo

>eigenvalues (A7) ;

[5,14++61 1—+6 I
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(Recall that Maple uses T to represent «/—1.) In this situation, some of the eigenvectors will also
be complex-valued, which will be addressed in Section 5.7.2. Review Section 10.2 on complex

variables if more information on 4/ —1 is desired.
The command eig in MATLAB is used to find the eigenvalues and eigenvectors of a given
square matrix. The syntax of eig controls the format of the output as we see in the following

examples.

EXAMPLE 5.5.10 \ | | |

Compute the eigenvalues and eigenvectors of the matrix

01 1
1 0 1
1 1 1
» Solution
The values are found using MATLAB:
»K3 = [0 1 1;1 0 1;1 1 1]
0 1 1
K3I=|1 0 1
1 1 1
»eig (K3)
—1.0000
ans = | —1.0000
2.000

This syntax has generated a column of eigenvalues.

»[V,D] = eig(K3)

0.3891  0.7178 0.5774 ]
V= 0.4271 —0.6959 0.5774
| —0.8162 —0.0219 0.5774

[ —1.0000 0 0
D= 0 —1.0000 0
0 0 2.0000 |

In this form of eig MATLAB returns a matrix of the eigenvectors of K3 followed by a diagonal matrix of the
corresponding eigenvalues.

We know that multiples of eigenvectors of A are also eigenvectors (corresponding to the same
eigenvalue.) The command eig in MATLAB returns the eigenvectors normalized to have length
one. Here is another working of Example 5.5.6.
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EXAMPLE 5.5.11 l | | |

Find the eigenvalues and eigenvectors for the matrix A in Example 5.5.6:

» Solution

We find the solution using MATLAB:
»A = [-1, 2, 2; 2 2 2; -3 -6 -6]

-1 2 2
A= 2 2 2
-3 -6 =6

»[V,D] = eig(A)

[ —0.0000 0.8944 —0.7071
V=1 0.7071 —0.4472 —0.0000
| —0.7071  0.0000  0.7071

[ 0.0000 0 0
D = 0 —2.0000 0
0 0 —3.0000

Problems

Find the characteristic polynomial and the eigenvalues for 8. [1]

each matrix. 9. Opun
1. [1 4] 10. I,
2 e 1. [3 1
2. [0 4 5 —1
1 0
- 122 | -1 3 0
3. [2 0:| 3 7 0
|10 —1 0 0 6
4. [0 3
13 8 For the matrix in Problem 12:
5. T 2 2 13. Find the eigenvalues of A” .
-1 -1 ] 14. Find the eigenvalues of A=!.
6. I5 4 15.  Find the eigenvalues of A%,
|4 -1 :| 16. What are the connections between the eigenvalues of A
2 Ty o and those of AT?A~17A29
2 2 :|



Find the characteristic polynomial and the eigenvalues for

each matrix.

17.

18.

19.

20.

21.

22,

23.

24.

25.

26.

[0 1
|—b —a

0 1
0 0

[cos® sin6

| siné cos6

2
1
1
0

cos@ sinf
| —sinf cosé

)

0

)

|

—c —b -—a

Find the eigenvectors for the matrix in each problem. State if
each has n linearly independent eigenvectors.

27.
28.
29.
30.
31.
32.
33.
34.

Problem 1
Problem 3
Problem 5
Problem 7
Problem 9
Problem 11
Problem 12
Problem 17

35.
36.
37.
38.
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Problem 19
Problem 20
Problem 21
Problem 22

Verify Theorems 5.5 and 5.7 for the matrix in each problem.

39.
40.
41.
42.

Example 5.5.1
Example 5.5.2
Example 5.5.3
Example 5.5.5

Show without use of Theorem 5.9 that

43.
4.

If B = oA, the eigenvalues of B are aX, ks, ..., a),.

If B=A —kI, the eigenvalues of B are X; —k,
A —k, ... h — k.

45.

46.

47.

48.

49.

50.

51.

How do the eigenvectors of B relate to those of A in
Problem 43?

Show that the characteristic polynomials of A and
S—! AS are identical.

Show that the eigenvalues of A7 and A are identical. Are
the eigenvectors the same?

If A is invertible and B = A~!, show that the eigenvalues
of B are

I 1 1

TRV
Suppose that u# 0 and v # 0. If u”v # 0, show that
the characteristic polynomial of wuv’ is C(}) =
(=2)" (o = 1), where « = u”'v. Hint: uv” is of rank 1
and u is an eigenvector of uv?’ .

(a) Use definition 5.5.11 to show that

(=n"C G) =co(=A)" + (2" + - 4 1
(b) Suppose that A~! exists and C~! (1) is its character-
istic polynomial. Use
C') = A = Al = AT — 2A|
and part (a) to show that
C'W) = W) +erlAT )
(c) Prove that

11 1
=AltA = Al —+—+- -+ —
¢ = Al II(M+/\2+ +/\,,>

Refer to the definition of a determinant to show that

A=A = (ai1 — ) (@2 —A) -+ (@mn — A) + On—2 (V)

where O,_> (A) is a polynomial of degree n — 2 in A.
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52. Use the result in Problem 51 to prove Eq. 5.5.18. 69. Problem 4

53. Let C(1) be the characteristic polynomial of A and set ~ 70. Problem 5
B = C(A). Show that the eigenvalues of B are all zero. 71. Problem 6

54. If P is a projection matrix and A # 0 is an eigenvalue of 72. Problem 7
P, show that A = 1. Hint: Multiply Px = Ax by P and 73. Problem 8
sibaTpllify: 74. Problem 9

75. Problem 10

76. Problem 11

77. Problem 12

78. Problem 13

55. If M2 = L, show that the eigenvalues of M are either 1 or
—1. (Use the hint in Problem 54.) If ||u|| = 1, show that
I —2uu? is just such a matrix.

56. Show that the characteristic polynomial of

1

8 0 8 79. Problem 14
A . 80. Problem 15
- . 0 | 81. Problem 17
82. Problem 18

—dy, —dy—1 -+ —ap
) 83. Problem 19
* 84. Problem 20
CO)=(=D"A"+ar" ™ +ar" 4+ +ay). 85. Problem 21
Use the result of Problem 56 to construct a matrix whose char- 86. Problem 22
acteristic polynomial is given by each of the following. 87. Problem 23
57. A2 —1 88. Problem 24
58. A2 +1 89. Problem 25
59. 2424041 90. Problem 26
60. A*—1 91. Problem 27
61. (A—X)(A—Ap) 92. Problem 28
62. (A —A)(Ax —A)(A3 —A) 93. Problem 29

N Q 94. Problem 30
63. Suppose that Axp = AoXo, Xo # 0. Show that 95. Problem 31

(@A")xo = (hf) Xo 96. Problem 32
foreachintegerk = 1,2, ....Hence, show that p(A)xo = 97. Problem 33
p(A0)Xo. [This proves that every p()»().) is an eigenvalue 98. Problem 34
of p(A). It does not prove that every eigenvalue of p(A)
is obtained in this manner. It also shows that x,, is always 29 Problem 35
an eigenvector of p(A) but does not prove that every  100. Problem 36

eigenvector of p(A) is an eigenvector of A.] 101. Problem 37
64. Show that Problem 63 establishes Theorem 5.9 if Ahasn  102. Problem 38
distinct eigenvalues. 103. Problem 39

65. Suppose that A is n xn and rank (A—XD)= 104, Problem 40
n—k, k> O Show .that A= Apis .an eigenvalue anq that 105. Problem 41
there are k linearly independent eigenvectors associated
with this eigenvalue. 106. Problem 42

Use Maple to solve Use eig in MATLARB to solve
66. Problem 1 107. Problem 17
67. Problem 2 108. Problem 18

68. Problem 3 109. Problem 19
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110. Problem 20
111. Problem 21
112. Problem 22

Since the characteristic polynomial of A is just the polynomial
whose roots are the eigenvalues of A, we can reconstruct this
polynomial by using eig(A). Find the characteristic polyno-

113.
114.
115.
116.
117.
118.

Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22

mial using MATLAB for

5.6 SYMMETRIC AND SIMPLE MATRICES

An n x n matrix can have no more than n linearly independent eigenvectors® but may have as

few as one. The example

2 1
0 2
A=|:
0 0
0 0

o O

(5.6.1)

DN =

nxn

illustrates this point. Its characteristic polynomial is (2 — A)" and, hence, A = 2 is the only dis-

tinct eigenvalue. The system

has only one linearly independent eigenvector:

X =€ =

1 0
0 1
0
0
1
0
0

0

0
x=0 (5.6.2)

1

0
(5.6.3)

Ann x n matrix with n linearly independent eigenvectors is a simple matrix. The matrices I,
and those in Example 5.5.1 and 5.5.3 are simple. A matrix that is not simple is defective. The ma-
trices in Example 5.5.2 and Eq. 5.6.1 are defective. In fact, all matrices of the form

- O OR

0

1
o
0

0

0 0
* ok
ok
0 0

0
*

* (5.6.4)

o

Since each eigenvector is a vector with n entries, no set of n + 1 or more such vectors can be linearly

independent.
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are defective because A = « is the only eigenvalue and, hence, the only eigenvectors are the
nontrivial solutions of (A — aI)x = 0. The reader may show that this homogeneous system can
have at most n — 1 linearly independent solutions. The problems exhibit various families of de-
fective matrices.

One of the most remarkable theorems in matrix theory is that real, symmetric matrices are
simple.”

EXAMPLE 5.6.1 [ | | |

Show that the following symmetric matrices are simple by finding n linearly independent eigenvectors for
each.

1 1
1 1
(a) J. =
1 1 1
(b) K,=1J,—-1

» Solution

(a) The eigenvalue A = 0 of J,, has n — 1 eigenvectors corresponding to it; namely,

-1 —1 —1

1 0 0

Xl = 0 ’ X2= 1 L] Xl‘l—l = O
0 0 1

the n — 1 basic solutions of J,x = 0. The eigenvector corresponding to the remaining eigenvalue A = n can
be found by inspection, for

1
J.l. | =n

—_
—_

Thus, J, is simple.
(b) For the matrix K,,, we note that if x is an eigenvector of J,, J,x = Ax. Then,
KnX - (Jn - I)X
= Jnx —X
=Axx—x=(A\—1D)x

and x is an eigenvector of K, as well. So the n linearly independent eigenvectors of J,, are eigenvectors of K,
and hence K, is simple.

7 We forgo the proof in this text.
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EXAMPLE 5.6.2 \ | | |

Show that the following matrix is sample:

O = O =
—_— o = O
S = O =
— O = O

» Solution

Since A is singular, A = 0 is an eigenvalue and we compute two independent eigenvectors

—1 0
X| = 0 X -1
1= E 2= 0
0 1
By inspection,
1 1 0 0
0 0 1 1
= A =2
A 1 2 1]’ 0 0
0 0 1 1
so that
1 0
X3 = 0 X4 = 1
=1 4=
0 1

are eigenvectors. The set (X;, X», X3, X4) is linearly independent.

Here are three useful facts about real symmetric matrices.

1. They are simple.
2. Their eigenvalues are real.
3. Eigenvectors corresponding to different eigenvalues are orthogonal.

We prove 2 and 3 in Section 5.6.1. Note in Example 5.6.1 thatx, = [1, I, ..., 11" is orthog-
onal to Xy, Xp, .. ., X,—1 because X, corresponds to the eigenvalue A = n, while the others cor-
respond to A = 0. In Example 5.6.2, X3 and x4 are orthogonal to X; and X, and, by accident, are
also mutually orthogonal. In regard to this last point, we can always use the Gram—Schmidt
process to orthogonalize eigenvectors corresponding to the same eigenvalues since linear com-
binations of eigenvectors corresponding to the same eigenvalue are eigenvectors.
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EXAMPLE 5.6.3 \ | | |

Orthogonalize the eigenvectors X;, Xp, ..., X,— corresponding to A = 0 for the matrix J,, of Example 5.6.1.

» Solution

We are interested in the orthogonal set of eigenvectors corresponding to A = 0, not necessarily an orthonormal
set. The reader is invited to verify that the Gram—Schmidt process yields orthonormal vectors proportional to

—1 —1 -1

1 —1 —1
y1= O £ y2: 2 E) LRI ] Yn—lz E
: : ~1
0 0 n—1

Note that J,,yy =0 fork =1,2,..., n — 1, and that {yy, y2, ..., Yu—1, X,} with
1

1
X, =

form an orthogonal set of eigenvectors of A.

5.6.1 Complex Vector Algebra

It is convenient at this point to review complex numbers with an eye towards extending our
matrix theory into the complex domain. We briefly remind the reader that the complex number
« is defined as

a=a+ib (5.6.5)
where a and b are real and i = /—1. The complex conjugate of « is o, defined by
o=a—ib (5.6.6)

Hence, « is a real number if and only if « = @. The extension of these ideas to matrices and vec-
tors is straightforward. Suppose that

a ap -+ dip
a] axp -+ Ay

A= (aij)mxn = . . (567)
ml  Am2  * dpn

Then, by definition,

X = (Eij)mxn (568)
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A special case of the preceding definition is

X1 f1
X2 X2

Xx=| . impliesX = | . (5.6.9)
Xn fn

From the definition of o, we find that
od = do = a’ + b? (5.6.10)
Since a and b are real numbers, ce is nonnegative; indeed, or is zero if and only if « = 0. There
is a vector analog of Eq. 5.6.10. Consider
x'X = X1X1 + XX + -+ - 4+ XX,

=[x 1?4 [l + -+ [x,)? (5.6.11)

Hence, x’X > 0 and x’x = 0 if and only if x = 0.
The complex conjugation operator applied to matrix algebra yields the following results:

() AB=AB

(2) Ax = AX

(3) oA =aA (5.6.12)
4 A+fB=A+B

(5) |Al=A]

All five results follow from the definition of A and @ (see the Problems at the end of this section).

5.6.2 Some Theoretical Considerations

We are now in a position to prove the following theorem.

Theorem 5.10: Real symmetric matrices have real eigenvalues.
Proof: Suppose that x is one eigenvector of A corresponding to the eigenvalue A, so that

Ax = AX (5.6.13)

Take the complex conjugate of both sides and find
AX = AX (5.6.14)

because Ax = AX = AX since A has only real entries. Now, consider

Ax)'x = (x)'x = Ax"x (5.6.15)

and

Ax)"x =x"(ATx) = x" AX (5.6.16)
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sinceAT = A . Thus, using Eq. 5.6.14, we have

(Ax)"x = x" (A%) = Ax'X. (5.6.17)

From Egs. 5.6.15 and 5.6.17, we can write

AxTx = ax'x (5.6.18)

However, x’X > 0 since x # 0, so that Eq. 5.6.18 implies that A = A, which in turn means that
A is real.

Theorem 5.11: If A is real symmetric and A # [ are two eigenvalues of A with corresponding
eigenvectors X and 'y, respectively, then x Ly.

Before we present the proof, we should note that x and y may always be taken as real vectors.
The reason for this is that

Ax = Ax (5.6.19)
and
Ay = ny (5.6.20)

with A and p real, always have real solutions. If x is a real eigenvector of A, then iX is an eigen-
vector of A which is not real. We explicitly exclude this possibility by convention—we use only
the real solution to the homogeneous equations.

Proof: Consider (Ax)”y. On the one hand, using Eq. 5.6.19,
A%y = (x)"y
=x"y (5.6.21)

and on the other hand,
A"y = (x" ANy
=x' Ay (5.6.22)
since AT = A. Thus, from Eqg. 5.6.20,
Ax)"y =x" py (5.6.23)

Therefore, Ax”y = ux"y and o # 1. Hence, x”y = 0, which implies that x Ly.

5.6.3 Simple Matrices

Suppose that A is simple and X, Xy, . .., X, are n linearly independent eigenvectors of A corre-
sponding to the eigenvalues Ay, Ay, ..., A,, respectively. That is,

AX; = A;X;, i=1,2,...,n (5.6.24)
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Define S as
S=1[x1,%, ..., %] (5.6.25)
so that S is the matrix whose columns are the eigenvectors of A. Now, using Eq. 5.6.24, we see
that
AS = A[Xl,Xg, ey Xn]
= [AX|, AXy, ..., AX,]

= [)\'lxla )"2X25 M) )\'nxn]

A 0 - 0
0 2 -+ 0
=S| . . (5.6.26)
0 0 - A,
Since the columns of S are linearly independent, S~! exists and we have
A 0 -0 0
. 0 2 --- 0
STAS=| . . (5.6.27)
0 0 --- A,
It is common to write
Ao 0 0
0 A --- 0
A= . . (5.6.28)
0 O An
Theorem 5.12: If A is simple, there exists a nonsingular matrix S such that
STIAS=A (5.6.29)

The columns of S are eigenvectors of A and the diagonal entries of A are their corresponding
eigenvalues.

EXAMPLE 5.6.4

Verify Theorem 5.12 for
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EXAMPLE 5.6.4 (Continued) \ |

» Solution

The eigenvectors of J3 are

and hence,

SO

as required.

-1 —1 1
1, o, |1
0 1 1
-1 -1 1 -t o2 -
S = 1 01,S—1=g -1 -1 2
0 1 1 11 1
0 0 3 000
ST'158=S"'10 0 3|=(0 0 0
0 0 3 0 0 3

Which matrices are simple? We have asserted without proof that symmetric matrices are sim-
ple (and incidentally, A is a real matrix in that case). We now show that matrices with distinct

eigenvalues are simple. The whole proof hinges on showing that the set {xj, X, ..

., X,} of

eigenvectors corresponding to A1, A2, ..., A, is linearly independent if A; # A;. The heart of the
proof is seen by considering the special case of Az.3. So, suppose that x;, X;, X3, are eigenvec-

tors of A and
c1Xp + X +c3xz3 =0
We will multiply this equation by A — A ;L. Note that

(A — )\.II)XZ = AX2 — )LlXQ

=X — MXo = (A — A)X2
and, similarly,
(A—=2Dx3 = (A3 —A)x3
Therefore,
ci(A = MDx; + (A — A Dxp +c3(A =4 Dx3 =0
leads to
2(h —ADX +c3(As — A)x3 =0
Now multiply this equation by (A — A,I). So
(A2 — ADA = 2Dxo + c3(A3 — AD(A — AaDx3 =0

(5.6.30)

(5.6.31)

(5.6.32)

(5.6.33)

(5.6.34)

(5.6.35)



N o &1 ok ®

10.

which leads to

(A3 =AM —A)x3 =0
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(5.6.36)

Since Az # A; and A3 # Ay, Eq. 5.6.36 implies that c3 = 0. This in turn implies that ¢c; = 0,
from Eq. 5.6.34. But then ¢; = 0 from Eq. 5.6.30, so {X;, X;, X3} is linearly independent. This

proves:

Theorem 5.13: If A has n distinct eigenvalues, then A is simple.

Compute x” % for x = i | . Compute x”x for this x.

—1

1
Compute x”X and x”x for x = [ ; ] :

Prove item (1) in Eq. 5.6.12.
Prove item (2) in Eq. 5.6.12.
Prove item (3) in Eq. 5.6.12.
Prove item (4) in Eq. 5.6.12.

Show that if A has eigenvalues Ay, Ao, ...
has eigenvalues A1, Az, ..., A,

Use Problem 7 to show that [A| = [A] [see item (5) in
Eq. 5.6.12].

Show that the diagonal entries of AA™, where A isn x n
and symmetric, are nonnegative, real numbers. Are the
off-diagonal entries of AAT necessarily real?

Show that

, A, then A

—1 —1 1
X| = 1, x%=|-11|, x3=1]1
0 2 1

is a set of linearly independent eigenvectors of J3. Verify
Theorem 5.12 for this set.

Verify that each matrix is defective.

11.

12.

o 1]

a 1 0
0 o =«
0 0 B

Problems 1 [ 1 [

S © © R
S O R =
O R ¥ O©
S ¥ % O

Verify, by computing the eigenvectors, that each matrix is

simple.
14. ok
(6 5] s
15. a 1 0
0 B 1|, a#p#y
0 0 y
16. If u”v # 0, show that uv” is simple. Verify that uv’ is

17.

18.

19.

20.

21.

defective if u = [ 1:| and v =[1, 1].

—1
If Q is orthogonal, show that |A| = 1. Hint: Consider
Q)7 (QX).

Let P be a projection matrix. Show that rank P = tr P.
Hint: Use Problem 54 of Section 5.5.

Let C (&) be the characteristic polynomial of A. For the
matrices of Problems 12 and 15, show that C(A) = O.

Suppose that A is real and skew-symmetric, AT = —A.
Following the proof of Theorem 5.10, show that
—x"X = Ax”X. Why does this prove that the eigenval-
ues of A are pure imaginary? Explain why A” has non-
positive eigenvalues.

Find an example of a symmetric matrix with at least one
nonreal entry which does not have real eigenvalues.

In the proof of Theorem 5.12, explain

22,

AlXy, X2, ..., X, ] = [AX], AXp, ..., AX,]
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23. [A1x1, AoXa, ...\ AnXy]
A 0 0
0 A O
=[x, X2, ..., %, ]| . .
0 0 A,

24. Suppose that Ax = Ax and Ay = py, A # . Show that
(A —ADy = (u — Ny.

25. What is the converse of Theorem 5.13? If it is true, prove
it. If it is false, give an example illustrating its falsity.

Suppose that A is simple and ST'AS = A. Show that:

26. A" =SA"S™!

27. p(A) =Sp(A)S~!
ax" 4. +a,

28. A~' =SAT'S™!if A=! exists.

29. C(A) = O (use Problem 53 of Section 5.5).

where px) = apx" +

30. Letxy, X, ..., X; be eigenvectors of A corresponding to
A= )»() and [X],Xz, coes Xko Yit1s -0 y,,] = T have lin-
early independent columns. Show that

<—k—>l
A 0 - 0}
0 A --- 01
—1 o H
T 'AT =k : i B
0 0 --- X!

[ 6 i¢c]

Hint: Argue by analogy with the text preceding Eq. 5.6.27.
31. Under the assumptions in Problem 30, show that

g Fpfoe B ]

—il _ ='
T~'AT — A1 [ o Leeu

Hence, show that

IT~'AT — AL = |A — A

implies that
A — ALl = (Ao — M)FP(R)
32. Use the results of Problem 65 in Section 5.5 and
Problem 31 to prove Theorem 5.8.
Use Maple to solve
33. Problem 11
34. Problem 12
35. Problem 13
36. Problem 14
37. Problem 15

38. Computer Laboratory Activity: An example of a simple
matrix with complex-valued entries comes from the
study of rotations. Fix a positive integer N, and let

=2mi 2w . (27
W=en =cos|—|)—isin|—
N N

so that

—2mi, 2 2
Wp=e2Np=cos S —isin e
N N

W is called a rotation operator, and W? is a point on the
unit circle in the complex plane. We can now create a
simple N x N matrix.

wo  wo  wo
(a) For N = 3, the matrixis | W0 w~! w2
wo w2 w

Compute this matrix, and show that it is simple.

(b) In general, the columns of the matrix are created by
computing W™ wheren =0,1,2,...,N — 1, and
k=0,1,2,..., N — 1. Create the 4 x 4 matrix and
show that it is simple.

(c) Write code that will create the trigonometric matrix
for any positive integer N.

5.7 SYSTEMS OF LINEAR DIFFERENTIAL EQUATIONS:

THE HOMOGENEOUS CASE

The system of linear, first-order differential equations

of Section 5.5 is a special case of

=6t (5.7.1)
Xy =4x; + x2 o

X = Ax (5.7.2)
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where
xi(1) x; (1)
x2(1) x5 (1)
X = . , X = . (5.7.3)
(1) x;kt)
and A is a constant matrix. This system is homogeneous. The system
X =Ax+f (5.7.4)
where
@)
_ | 2@ £0 (5.1.5)
ﬁkt)

is a vector of known functions, is nonhomogeneous. A knowledge of the “general” solution of
the homogeneous problem will be shown to lead to a complete solution of the nonhomogeneous
system.

The initial-value problem is the system

X = Ax +f, X(19) = Xxg (5.7.6)

Here X is a given, fixed vector of constants. By the simple substitution T = ¢ — #;, we can con-
vert the system 5.7.6 into a standard form

X =Ax -+, x(0) = xy (5.7.7)

Unless otherwise specified, we shall assume that #y) = 0, as in Eq. 5.7.7. In this section we wish
to study a homogeneous system, so we use f = 0.
The vector function, with u constant,

x(1) = ue™ (5.7.8)
is a solution of X' = Ax if and only if
ruet = Aue’ (5.7.9)
Since ¢* > 0, this system is equivalent to
Au = \u (5.7.10)

We assume that u # 0, for otherwise x(¢) = 0, and this is a trivial solution of Eq. 5.7.2. Thus,
we can find a solution to the homogeneous problem if we can solve the corresponding algebraic
eigenvalue problem, Eq. 5.7.10. We shall assume that A is simple and hence that A has n linearly
independent eigenvectors up, up, ..., u, corresponding to the eigenvalues A, Ay, ..., A,.
Hence, system 5.7.2 has n solutions

x; (1) = w; e, i=1,2,....n (5.7.11)
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By taking linear combinations of the solutions (Eq. 5.7.11), we generate an infinite family of
solutions,

X(1) =X (1) + X (t) + -+ + X, (1)

= Z cpuge (5.7.12)
k=1

If we wish to choose a function from the family 5.7.12 which assumes the value X at = 0, we
must solve

x(0) = xp = chuk (5.7.13)
k=1

which is always possible since there are n linearly independent u;. We may rewrite Eq. 5.7.13 as

Uc =xo (5.7.14)
where
C1
(&)
U=[u,u,...,u,], c=| . (5.7.15)
Cl‘l

Because we can use Eq. 5.7.12 to solve any initial-value problem, we call x(¢) (see Eq. 5.7.12)
the general solution of X' = Ax.

EXAMPLE 5.7.1 \ |

Find the general solution of the system 5.7.1 and then solve
11 1
<[] o[

In Example 5.5.7 we have found eigenvectors for A; corresponding to A} = —1 and A, = 3,

_1 1
u = 2 and w = | 2
: 1 T

» Solution

The general solution is then
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EXAMPLE 5.7.1 (Continued) \ | | |

We find ¢; and ¢; by solving

Hence,

Therefore,

solves the initial-value problem.

EXAMPLE 5.7.2 \ | | |

Solve the initial-value problem

01 0 1
X=[00 1[x xO=]0
2 1 =2 1

» Solution

After some labor, we find
CAH=—-A+1DA-DR+2)

and therefore,

We compute

1 1
ul = _1 9 u2 = 1 ’ u3 = _2
1 4
The general solution is then
1 1

x)=c | =1 |e"+e|1|e+ez| =2 |
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EXAMPLE 5.7.2 (Continued)

Hence,
| _
x0O=|0|=]|-
1 —
yields
1
2
c=|1
2
_0
Finally,

is the required solution.

EXAMPLE 5.7.3

Show that an eigenvalue problem results when solving for the displacements of the two masses shown.

yi(0)

6 N/m

Static
equilibrium

6d,

1 6d,

} 3¢

I4(Y1 +dy)
}2
6(y, =y +dy)

I 6(y, =y +dy)

i
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EXAMPLE 5.7.3 (Continued) \ | | |

» Solution

We isolate the two masses and show all forces acting on each. The distances d; and d5 are the amounts the
springs are stretched while in static equilibrium. Using Newton’s second law we may write:

Static equilibrium In motion
0 = 6d> — 4d; +2g 2y) = 6(y2 — y1 +do) +2g —4(n +dy)
0 =3¢ —6d, 3y) =3¢ —6(y2 — y1 +do)

These equations may be simplified to
yi = =5y1+3»
¥y =2y1 =2y
These two equations can be written as the single matrix equation

y// — Ay

) a2

We note that the coefficients of the two independent variables are all constants; hence, as is usual, we assume
a solution in the form

where

y = ue™

where u is a constant vector to be determined, and m is a scalar to be determined. Our differential equation is
then

um’e™ = Aue™
or
Au = \u

where the parameter A = m?. This is an eigenvalue problem. The problem is solved by finding the eigenval-
ues A; and corresponding eigenvectors X;. The solutions y;(#) and y,(¢) are then determined.

EXAMPLE 5.7 .4

Solve the eigenvalue problem obtained in Example 5.7.3 and find the solutions for y; () and y,(¢).

» Solution

The eigenvalues are

7433 —7-4/33
A = % = —0.6277, = ——— =637
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EXAMPLE 5.7.4 (Continued) \ | | |

u = 1 u = 1
" 146 | 27| —0.457

where the first component was arbitrarily chosen to be unity. The solutions y; () and y,(¢) will now be deter-
mined. The constant m is related to the eigenvalues by m? = A. Thus,

The two eigenvectors are then

mi =—0.6277 and m} = —6.372
These give
my = £0.7923i, my = £2.524i
We use both positive and negative roots and write the solution as
y(1) = uy (c1 %795 1 =0 TOBity |y (02521 gy 2524ity

where we have superimposed all possible solutions introducing the arbitrary constants cy, dj, ¢2, and d», to ob-
tain the most general solution. The arbitrary constants are then calculated from initial conditions.
The components of the solution vector can be written as
y1(t) = a; c0s0.7923t 4 by sin 0.7923¢ 4 a, cos 2.524t + b, sin 2.524¢
y2(t) = 1.46[a; cos 0.7923¢ + by sin0.7923¢] — 0.457[a; cos 2.524t + b, sin 2.524¢]

Note that if we had made the eigenvectors of unit length, the arbitrary constants would simply change ac-
cordingly for a particular set of initial conditions.

5.7.1 Maple and MATLAB Applications

There are many ways to solve this example with Maple. For example, the eigenvectors
command can be used to get the components of the general solution. However, the dsolve
command, described in Chapter 1, can also be used here. In this case, we need to be careful with
the syntax in order to solve a system of equations.

To begin, load the DEt ool s package:

>with (DEtools) :
Then, without using matrices, define the system of equations:

>sysl := diff(x1(t),t) = x1(t)+x2(t), diff(x2(t),t) =
4*x1 (L) +x2 (L) ;

d d
sysl := ale () =x1 () +x2 (), th2 () = 4x1 () + x2 (B

To get the general solution, use the dsolve command, with set brackets placed appropriately
(in order to solve the set of differential equations):

>dsolve ({sysl});
[xlio=_c1e®+_c2e" x2(n=2.c1e"%7—-2_Cc2e""}
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Note that this solution is not quite the same as above. Factors of 2 and —2 have been absorbed

into the constants. Consequently, when the initial conditions are applied, the values of constants

in the Maple output will be different from ¢; and ¢;, but, in the end, the solution will be the same.
To solve the initial-value problem:

>dsolve ({sysl, x1(0)=1, x2(0)=1}, {x1(t), x2(t)});
3 1 3 1
{x2 t) = Ee(m — Ee(_t),xl B = Ze(w + —e(_t)}

In addition to solving the system of equations, a plot of the solution in the xy-plane can be cre-
ated. With DEp 1 ot, the solution is drawn, and, in the case where the system is homogenous, so
is the direction field of the system. The direction field indicates the direction in which solutions
starting at other initial conditions will go, as ¢ increases.

>DEplot ([sysl], [x1(t),x2(t)], t=-3..1, [[x1(0)=1,x2(0)=1]1,
stepsize=.05);

x2

RV} = g g P G P P P P P P 4
T 7
T AAATAAIT AT
T
TG AAATTT
W rm T A d A A AAAAAA N
T TTLTIAAAAT TS
T IAIAAAAAATAT
g I
Bt/ M G 4
AAAAAITTATAT T AT S S
AIAATIAAATAATTT T AT TS S

10

AT
VAV
NI,
I/ Ay /Xl
rrrr777
frtfrd
)
ttttrt

Maple uses a numerical solver to create this graph, so stepsize is required. A smaller
stepsize will make the solution smoother, but will also take longer to compute.

An equilibrium point of a system of differential equations is a point where X' = 0 for all 7. In
the case of linear, first-order, homogeneous systems, the origin is an equilibrium point. In this
situation, we can classify the origin as a sink, a source, a saddle, or indeterminate, depending on
the behavior of solutions as t — o0. If all solutions approach the origin as t — 00, then the ori-
gin is a sink. In this case, we can also label the origin as stable. The origin is a source if all so-
Iutions move away from the origin as t — o0, and then we say the origin is unstable. When the
origin is a saddle, then nearly all solutions move away from the origin, but there are a few that
approach it.

The origin is classified using the eigenvalues of A. If all eigenvalues are real and negative,
then the origin is a sink. For a source, all eigenvalues are real and positive. If some of the
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eigenvalues are negative and some are positive, then the origin is a saddle. (Example 5.7.1 is an
example of a saddle.) If there is an eigenvalue of 0, then the origin is indeterminate. This classi-
fication can be extended to complex eigenvalues, which will be discussed in the next section.

The terms sink, source, and saddle become clearer when considering direction fields for two-
dimensional systems. For example, here is another direction field for Example 5.7.1, this time
using the Maple command dfieldplot, whichis the DEtools package (sy sl is defined as
before):

>dfieldplot ([sysl], [x1(t),x2(t)], t=-3..3, x1l=-15..15,

x2=-20..20, arrows=large) ;

x2
\\N\\SS—B A LA LYY
\\NNN\NS—> A A7 FPPTY
\\N\\S—>r A ALY
\\\N—>AV 77777777
\\S>AP 777777777
y \N\WA 77777777
by \SAIF7777777Y
i
I anaaT
5 10, 5 5 1 15 xl
//////////—(( fffﬁ
AL AA A N 1111
LAAASAA AN S S =N 11
AR N 1
IASAAAA S PN
///////////’*\Q\\
AR A
IAAAAAAAA A== NNNN
AIAASAA A 7PN\
Notice that solutions that begin near the line y = —2x will initially tend toward the origin as ¢

increases, but then start to move into the first or third quadrants. For example, if

w-[ 1]

then the solution, after finding ¢ and ¢, is

1
xa)=-aos[]5]a4+015[ }ét

When ¢ begins to increase, the term with e~ dominates, because 2.05 is much larger than 0.15,
so the solution moves towards the origin. However, as ¢ gets larger, e~" approaches 0, and the
term with e becomes the dominant term. In this situation, the solution will end up in the first
quadrant.

— =
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However, solutions that begin on the line y = —2x will approach the