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Preface

The purpose of this book is to introduce students of the physical sciences to several mathemati-
cal methods often essential to the successful solution of real problems. The methods chosen are
those most frequently used in typical physics and engineering applications. The treatment is not
intended to be exhaustive; the subject of each chapter can be found as the title of a book that
treats the material in much greater depth. The reader is encouraged to consult such a book should
more study be desired in any of the areas introduced.

Perhaps it would be helpful to discuss the motivation that led to the writing of this text.
Undergraduate education in the physical sciences has become more advanced and sophisticated
with the advent of the space age and computers, with their demand for the solution of very diffi-
cult problems. During the recent past, mathematical topics usually reserved for graduate study
have become part of the undergraduate program. It is now common to find an applied mathe-
matics course, usually covering one topic, that follows differential equations in engineering and
physical science curricula. Choosing the content of this mathematics course is often difficult. In
each of the physical science disciplines, different phenomena are investigated that result in a
variety of mathematical models. To be sure, a number of outstanding textbooks exist that present
advanced and comprehensive treatment of these methods. However, these texts are usually writ-
ten at a level too advanced for the undergraduate student, and the material is so exhaustive that
it inhibits the effective presentation of the mathematical techniques as a tool for the analysis of
some of the simpler problems encountered by the undergraduate. This book was written to pro-
vide for an additional course, or two, after a course in differential equations, to permit more than
one topic to be introduced in a term or semester, and to make the material comprehensive to the
undergraduate. However, rather than assume a knowledge of differential equations, we have
included all of the essential material usually found in a course on that subject, so that this text
can also be used in an introductory course on differential equations or in a second applied course
on differential equations. Selected sections from several of the chapters would constitute such
courses.

Ordinary differential equations, including a number of physical applications, are reviewed in
Chapter 1. The use of series methods is presented in Chapter 2. Subsequent chapters present
Laplace transforms, matrix theory and applications, vector analysis, Fourier series and trans-
forms, partial differential equations, numerical methods using finite differences, complex vari-
ables, and wavelets. The material is presented so that more than one subject, perhaps four sub-
jects, can be covered in a single course, depending on the topics chosen and the completeness of
coverage. The style of presentation is such that the reader, with a minimum of assistance, may
follow the step-by-step derivations from the instructor. Liberal use of examples and homework
problems should aid the student in the study of the mathematical methods presented.

Incorporated in this new edition is the use of certain computer software packages. Short tuto-
rials on Maple, demonstrating how problems in advanced engineering mathematics can be
solved with a computer algebra system, are included in most sections of the text. Problems have
been identified at the end of sections to be solved specifically with Maple, and there are also
computer laboratory activities, which are longer problems designed for Maple. Completion of
these problems will contribute to a deeper understanding of the material. There is also an ap-
pendix devoted to simple Maple commands. In addition, Matlab and Excel have been included

xi



in the solution of problems in several of the chapters. Excel is more appropriate than a computer
algebra system when dealing with discrete data (such as in the numerical solution of partial dif-
ferential equations).

At the same time, problems from the previous edition remain, placed in the text specifically
to be done without Maple. These problems provide an opportunity for students to develop and
sharpen their problem-solving skills—to be human algebra systems.1 Ignoring these sorts of
exercises will hinder the real understanding of the material.

The discussion of Maple in this book uses Maple 8, which was released in 2002. Nearly all
the examples are straightforward enough to also work in Maple 6, 7, and the just-released 9.
Maple commands are indicated with a special input font, while the output also uses a special font
along with special mathematical symbols. When describing Excel, the codes and formulas used
in cells are indicated in bold, while the actual values in the cells are not in bold.

Answers to numerous even-numbered problems are included just before the Index, and a
solutions manual is available to professors who adopt the text. We encourage both students and
professors to contact us with comments and suggestions for ways to improve this book.

Merle C. Potter/J. L. Goldberg/Edward F. Aboufadel

1We thank Susan Colley of Oberlin College for the use of this term to describe people who derive formulas and
calculate answers using pen and paper.
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Differential equations play a vital role in the solution of many problems encountered when
modeling physical phenomena. All the disciplines in the physical sciences, each with its own
unique physical situations, require that the student be able to derive the necessary mathematical
equations (often differential equations) and then solve the equations to obtain the desired
solutions. We shall consider a variety of physical situations that lead to differential equations,
examine representative problems from several disciplines, and develop the standard methods to
solve these equations.

An equation relating an unknown function to its various derivatives is a differential equation;
thus

du

dx
= u (1.1.1)

d2 f

dx2
+ 2x f = ex (1.1.2)

∂2u

∂x2
+ ∂2u

∂y2
= 0 (1.1.3)

are examples of differential equations. A solution of a differential equation is a function defined
and differentiable sufficiently often so that when the function and its derivatives are substituted
into the equation, the resulting expression is an identity. Thus u(x) = ex is a solution of
Eq. 1.1.1 because1 u′(x) = ex = u(x). The function ex sin y is a solution of Eq. 1.1.3 because

∂2

∂x2
(ex sin y) = ex sin y (1.1.4)

∂2

∂y2
(ex sin y) = −ex sin y (1.1.5)

and hence, for all x and y,

∂2

∂x2
(ex sin y) + ∂2

∂y2
(ex sin y) = 0 (1.1.6)

1.1 INTRODUCTION

1 Ordinary Differential
Equations

1Primes or dots will often be used to denote differentiation. Hence u′(x) = du/dx and u̇(t) = du/dt .



Often it is not possible to express a solution in terms of combinations of “elementary” func-
tions. Such is the case with Eq. 1.1.2. In these circumstances we must turn to alternative meth-
ods for describing the solutions. Under this category we list numerical methods, power series,
asymptotic series, iteration methods, and phase-plane analysis. In this chapter we confine
ourselves primarily to differential equations for which elementary functions, or their integrals,
suffice to represent the solution.

An ordinary differential equation is one in which only the derivatives with respect to one vari-
able appear. A partial differential equation contains partial derivatives with respect to more than
one independent variable. Equations 1.1.1 and 1.1.2 are ordinary differential equations, while
Eq. 1.1.3 is a partial differential equation. Using our convention,

∂ F(x, t)

∂t
= xt

is an ordinary differential equation but

∂2 F(x, t)

∂t ∂x
= t

is a partial differential equation.2 The variable F is the dependent variable, and the variables x
and t are independent variables. The variable F depends on the variables x and t .

The dependent variable usually models the unknown quantity sought after in some physical
problem, or some quantity closely related to it. For example, if the lift on an airfoil is the quan-
tity desired, we would solve a partial differential equation to find the unknown velocity v(x, y)—
the dependent variable—from which we can calculate the pressure and consequently the lift.

The order of a differential equation is the order of the highest derivative occurring in the
equation. The order of both Eqs. 1.1.2 and 1.1.3 is 2; the order of Eq. 1.1.1 is 1 and the order of
the equation

d3u

dx3
+ x4u5 d2u

dx2
− sin u = 0 (1.2.1)

is 3. The most general first-order equation that we3 consider is

u′ = f (x, u) (1.2.2)

where f (x, u) represents any arbitrary function and we select x as the independent variable.
Similarly, the most general second-order equation is

u′′ = f (x, u, u′) (1.2.3)

1.2 DEFINITIONS

2 � CHAPTER 1  / ORDINARY DIFFERENTIAL EQUATIONS

2Some authors would consider both equations as partial differential equations. The techniques for solution do
not depend on so arbitrary a matter as a name.
3Some authors allow the more general representation F(x, u, u′) = 0.



In the nth-order case

u(n) = f
(
x, u, u′, . . . , u(n−1)

)
(1.2.4)

The nth-order equation is called linear if f has the special form

u(n) = g(x) − Pn−1(x)u − Pn−2(x)u′ − · · · − P0(x)u(n−1) (1.2.5)

Rewriting this expression gives us the standard form for the nth-order linear equation:

u(n) + P0(x)u(n−1) + · · · + Pn−2(x)u′ + Pn−1(x)u = g(x) (1.2.6)

If g(x) = 0, the linear equation is called homogeneous; otherwise, it is nonhomogeneous. An
equation that is not linear is nonlinear. The equation

u′′ + 1

x
u′ +

(
1 − n2

x2

)
u = 0 (1.2.7)

is a homogeneous, second-order, linear differential equation. The equation

u′′ + 4uu′ = 0 (1.2.8)

is nonlinear but also of second order. (We do not distinguish between homogeneous and non-
homogeneous equations in the nonlinear case.)

Some differential equations are particularly easy to solve. For example, the linear differential
equation

du

dx
= g(x) (1.2.9)

has the solution

u(x) =
∫

g(x) dx + C (1.2.10)

where C is an arbitrary constant. This follows from the Fundamental Theorem of Calculus,
which implies that

du

dx
= d

dx

[∫
g(x) dx + C

]
= d

dx

∫
g(x) dx = g(x) (1.2.11)

Unless g(x) is one of a relatively sparse family of functions, it will not be possible to express
u(x) in any simpler form than the indefinite integral of g(x).

Equation 1.2.10 raises a notational issue. Writing u(x) in the form

u(x) =
∫

g(x) dx + C (1.2.12)

1.2 DEFINITIONS � 3



even when C is specified, does not readily suggest a means for expressing or computing indi-
vidual values of u, such as u(0). An alternative form for u is

u(x) =
∫ x

x0

g(s) ds + C (1.2.13)

Note carefully that u is a function of x , the upper limit of integration, not s, the “dummy”
variable. Indeed, u is also expressible as

u(x) =
∫ x

x0

g(t) dt + C (1.2.14)

It is not advisable to write

u(x) =
∫ x

x0

g(x) dx + C (1.2.15)

This will often lead to errors, especially when attempting to differentiate the equation.
For certain rather special equations, repeated integrations provide a means for obtaining

solutions. For example,

dnu

dxn
= 0 (1.2.16)

has the family of solutions

u(x) = c0 + c1x + · · · + cn−1xn−1 (1.2.17)

obtained by integrating Eq. 1.2.16 n times; the n arbitrary constants, c0, c1, . . . , cn−1, are con-
stants of integration. The differential equations considered in this chapter possess solutions that
will be obtained with more difficulty than the above; however, there will be times when simple
equations such as u(n) = g(x) do model phenomena of interest.

A general solution of an nth-order, linear equation is a family of solutions containing n
“essential” arbitrary constants. The family of solutions given by Eq. 1.2.17 is one example.
Another is the family

f (x) = Ax + B(x3 + 1) (1.2.18)

that is, a general solution of the linear equation

(2x3 − 1) f ′′ − 6x2 f ′ + 6x f = 0 (1.2.19)

In contrast, f (x) = Aex+B is a solution of y′′ − y = 0 for each choice of A and B, but this
family of solutions is not a general solution since both A and B are not essential, for

Aex+B = AeBex = Cex (1.2.20)

Thus, in spite of the appearance of the two arbitrary constants A and B, the family of solutions
described by the set of functions Aex+B is the same family described by Aex . (A precise

4 � CHAPTER 1  / ORDINARY DIFFERENTIAL EQUATIONS



definition of a general solution—and hence of essential arbitrary constants—will be given in
Section 1.5; until then we make do with the intuitive ideas suggested earlier.)

We do not define general solutions4 for nonlinear equations because experience has shown
that this notion plays a minor role in the theory of these equations. Part of the reason for this is
the sparsity of interesting nonlinear equations for which general solutions are known. In most
applications it is the specific solutions that are of most importance anyway. A specific solution is
a single function5 that solves the given differential equation. When a general solution is known,
specific solutions are obtained by assigning values to each of its arbitrary constants. The non-
linear equation6

y′2 + xy′ − y = 0 (1.2.21)

has a family of solutions yg(x) = cx + c2. [Since the differential equation is nonlinear, we
refrain from calling yg(x) a general solution.] Each choice of c results in a specific solution of
Eq. 1.2.21; the function y(x) = −x2/4 is also a specific solution, but not one that can be
obtained from the family yg(x).

Under certain reasonable assumptions, a unique specific solution to a first-order equation is
determined by demanding that the solution meet an initial condition, a condition that specifies
the value of the solution at some x = x0. The differential equation together with the initial con-
dition is an initial-value problem. The equations

u′ = f (x, u)

u(x0) = u0
(1.2.22)

form the most general, first-order, initial-value problem. Two conditions must be given for
second-order equations; the initial-value problem is

u′′ = f (x, u, u′)
u(x0) = u0, u′(x0) = u′

0

(1.2.23)

Here both conditions are obtained at the same point, x = x0. If the conditions are given at dif-
ferent points, a boundary-value problem results. A very common boundary-value problem is

u′′ = f (x, u, u′)
u(x0) = u0, u(x1) = u1

(1.2.24)

Other boundary-value problems are possible; for example, a derivative may be specified at one
of the points.

1.2.1 Maple Applications
Review Appendix C for a short Maple tutorial if desired. Maple commands for solving differen-
tial equations include: dsolve, DEplot, and dfieldplot (all in the DEtools package),

1.2 DEFINITIONS � 5

4This viewpoint is not taken by all authors. The student will find many texts in which general solutions are
defined for some nonlinear equations.
5A function is a rule that assigns to each x in some domain a unique value denoted by f (x); there are no arbi-
trary constants in f (x). The domains for ordinary differential equations are one of the following types:
−∞ < x < ∞,−∞ < x < b, a < x < ∞, and a < x < b, where a and b are finite.
6This equation is one member of a family of nonlinear equations known collectively as Clairaut’s equation.



piecewise, wronskian (linalg package), along with basic commands found in
Appendix C.

In order to use Maple to study ordinary differential equations, we must load commands from
the DEtools package. To do this, we enter:

>with(DEtools):

Maple has a powerful differential equation solver called dsolve, which can handle many
types of differential equations. To solve Eq. 1.2.19 with Maple, we first need to enter the equa-
tion as follows:

>ode:=(2*x^3-1)*diff(f(x), x$2) - 6*x^2*diff(f(x), x) +
6*x*f(x) = 0;

The output is

ode:= (2x3 − 1)

(
∂2

∂x2
f(x)

)
− 6x2

(
∂

∂x
f(x)

)
+ 6 xf(x)= 0

It is important to understand the syntax here. For instance, there are two equal signs in the com-
mand. The first one is part of the := pair, which in Maple means “is defined as.” The second
equal sign is from the differential equation. Also, notice how the diff command is used to
indicate f ′ and f ′′ in the input. In the output, Maple uses the partial derivative symbol with all
derivatives, but the interpretation should be the usual full derivative. Finally, since Maple inter-
prets f and f(x) differently, it is important to be clear that f is a function of x .

To get the general solution of Eq. 1.2.19, we type the following:

>dsolve(ode, f(x));

The output here is f(x) =_C1*x+_C2*(x^3+1), which resembles Eq. 1.2.18. Maple uses
symbols such as _C1 and _C2 to represent arbitrary constants.
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Problems

In each case decide whether the equation is linear or nonlinear,
homogeneous or nonhomogeneous, and state its order.

1. u′/u = 1 + x

2. uu′ = 1 + x

3. sin u′ = u

4. u′′ − 2u′ + u = cos x

5. u′′ = x2

6. u′′ = u

7. u′′ = u2

8. (u2)′ = −u

Find families of solutions to each differential equation.

9. u′ = x2 + 2

10. u′ = sin x + ex

11. u′ = x + cos2 x

12. u′′ = 2x

13. u′′′ = x2

14. u(4) = x − 2

15. Verify that each member of the family of functions the
sum of which is given by Eq. 1.2.17, solves Eq. 1.2.16.

16. Verify that Ax + B(x3 + 1) satisfies Eq. 1.2.19 for each
choice of A and B.

17. Show that A(x − c1)(x − c2) + B(x − c3) + C has only
three essential arbitrary constants.



1.3.1 Separable Equations
Some first-order equations can be reduced to

h(u)
du

dx
= g(x) (1.3.1)

which is equivalent to

h(u) du = g(x) dx (1.3.2)

This first-order equation is separable because the variables and their corresponding differentials
appear on different sides of the equation. Hence, the solution is obtained by integration:

∫
h(u) du =

∫
g(x) dx + C (1.3.3)

1.3 DIFFERENTIAL EQUATIONS OF FIRST ORDER
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Verify that the given function satisfies the differential
equation.

18. u = cos 2x , u′′ + 4u = 0

19. u = e2x , u′′ − 4u = 0

20. u2 + x2 = 10, uu′ + x = 0

21. u = e−3x + 12e−2x , u′′ + 5u′ + 6u = 0

22. The acceleration of an object is given by a = d2s/dt2,
where s is the displacement. For a constant deceleration
of 20 m/s2, find the distance an object travels before
coming to rest if the initial velocity is 100 m/s.

23. An object is dropped from a house roof 8 m above
the ground. How long does it take to hit the ground?
Use a = −9.81 m/s2 in the differential equation a =
d2 y/dt2, y being positive upward.

24. Verify that y(x) = cx + c2 is a solution of Eq. 1.2.21 for
each c. Verify that y(x) = −x2/4 is also a solution of the
same equation.

25. Verify that the initial-value problem

y′ 2 + xy′ − y = 0

y(2) = −1

has two specific solutions

y1(x) = 1 − x and y2(x) = −x2

4

26. Verify that the initial-value problem

y′ 2 + xy′ − y = 0

y(−1) = 2

has specific solutions

y1(x) = 1 − x and y2(x) = 2(x + 2)

27. Verify that u(x) = A sin(ax) + B cos(ax) is a solution
to u′′ + a2u = 0. If u(0) = 10 and u(π/2a) = 20, deter-
mine the specific solution.

28. The deflection of a 10-m-long cantilever beam with con-
stant loading is found by solving u(4) = 0.006. Find the
maximum deflection of the beam. Each cantilever end re-
quires both deflection and slope to be zero.

Use Maple to solve:

29. Problem 9

30. Problem 10

31. Problem 11

32. Problem 12

33. Problem 13

34. Problem 14



Unless the indefinite integral on the left-hand side of Eq. 1.3.3 is a particularly simple function
of u, Eq. 1.3.3 is not an improvement over Eq. 1.3.2. To illustrate this point, let h(u) = sin

√
u

and g(x) = ex2
. Then Eq. 1.3.3 becomes

∫
sin

√
u du =

∫
ex2

dx + C (1.3.4)

which is an expression that defines u with no more clarity than its differential form,

sin
√

u du = ex2
dx (1.3.5)

The following example is more to our liking.
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Find the solutions to the nonlinear equation

x
du

dx
+ u2 = 4

� Solution

The equation is separable and may be written as

du

4 − u2
= dx

x

To aid in the integration we write

1

4 − u2
= 1/4

2 − u
+ 1/4

2 + u

Our equation becomes

1

4

du

2 − u
+ 1

4

du

2 + u
= dx

x

This is integrated to give

− 1
4 ln(2 − u) + 1

4 ln(2 + u) = ln x + 1
4 ln C

where 1
4 ln C is constant, included because of the indefinite integration. In this last equation u, x , and C are re-

stricted so that each logarithm is defined (i.e., |u| < 2, x > 0, and C > 0). After some algebra this is put in the
equivalent form

2 + u

2 − u
= x4C

EXAMPLE 1.3.1



The linear, homogeneous equation

du

dx
+ p(x)u = 0 (1.3.6)

is separable. It can be written as

du

u
= −p(x) dx (1.3.7)

and hence the solution is

ln u = −
∫

p(x) dx + C (1.3.8)

If we write F(x) = e∫ p(x)dx , then the solution takes the form

|u(x)| = ec

F(x)
(1.3.9)

This last form suggests examining

u(x) = K

F(x)
(1.3.10)

In fact, for each K this represents a solution of Eq. 1.3.6. Therefore, Eq. 1.3.10 represents a fam-
ily of solutions of Eq. 1.3.6.

Certain equations that are not separable can be made separable by a change of variables. An
important class of such equations may be described by the formula

du

dx
= f

(
u

x

)
(1.3.11)

1.3 DIFFERENTIAL EQUATIONS OF FIRST ORDER � 9

which can be written as

u(x) = 2(Cx4 − 1)

Cx4 + 1

If the constant of integration had been chosen as just plain C , an equivalent but more complicated expression
would have resulted. We chose 1

4 ln C to provide a simpler appearing solution. The restrictions on u, x , and
C , introduced earlier to ensure the existence of the logarithms, are seen to be superfluous. An easy differenti-
ation verifies that for each C , the solution is defined for all x,−∞ < x < ∞.

EXAMPLE 1.3.1 (Continued)



Determine a family of solutions to the differential equation

xu
du

dx
− u2 = x2

� Solution

The equation in the given form is not separable and it is nonlinear. However, the equation can be put in the
form

u

x

du

dx
− u2

x2
= 1

by dividing by x2. This is in the form of Eq. 1.3.11, since we can write

du

dx
= 1 + (u/x)2

u/x

Define a new dependent variable to be v = u/x , so that

du

dx
= x

dv

dx
+ v

Substitute back into the given differential equation and obtain

v

(
x

dv

dx
+ v

)
− v2 = 1

EXAMPLE 1.3.2

Then, setting u = vx to define the new dependent variable v, we obtain

du

dx
= x

dv

dx
+ v (1.3.12)

Substituting into Eq. 1.3.11 results in

x
dv

dx
+ v = f (v) (1.3.13)

which, in turn, leads to the equation

dv

f (v) − v
= dx

x
(1.3.14)

which can be solved by integration.

10 � CHAPTER 1  / ORDINARY DIFFERENTIAL EQUATIONS



1.3.2 Maple Applications
The dsolve command in Maple can also be used when an initial condition is given. For the
differential equation of Example 1.3.2, suppose that the initial condition is u(1) = 2

√
2. To find

the unique solution, we can enter the following:

>ode:=x*u(x)*diff(u(x), x) - (u(x))^2 = x^2;

>dsolve({ode, u(1)=2*sqrt(2)}, u(x));

In this case, Maple’s solution is u(x) = sqrt(2*ln(x)+8)*x.

1.3 DIFFERENTIAL EQUATIONS OF FIRST ORDER � 11

This can be put in the separable form

v dv = dx

x

Integration of this equation yields

v2

2
= ln |x | + C

Substitute v = u/x and obtain u(x) to be

u(x) =
√

2x(C + ln |x |)1/2

This represents a solution for each C such that C + ln |x | > 0, as is proved by differentiation and substitution
into the given equation.

EXAMPLE 1.3.2 (Continued)

Problems

Find a family of solutions to each differential equation.

1. u′ = 10 u

2. u′ = 10 u2

3. u′ = 2u + 3

4. u′ = u sin x

5. u′ = cot u sin x

6. x2u′ + u2 = 1

7. x(x + 2)u′ = u2

8. 5x du + x2u dx = 0

Find a family of solutions to each equation.

9. xu′ + 2x = u

10. x2u′ = xu + u2

11. x3 + u3 − xu2u′ = 0

12. 3u + (u + x)u′ = 0

13. xu′ = (x − u)2 + u (let x − u = y)

14. (x + 2u + 1)u′ = x + 2u + 4 (Hint: Let x + 2u = y .)



Solve each initial-value problem.

15. u′ = 2u − 1 , u(0) = 2

16. u′ tan x = u + 1, u(2) = 0

17. xu′ + u = 2x , u(1) = 10

18. xu′ = (u − x)3 + u, u(1) = 2 (Hint: Let v = u − x .)

Use Maple to solve:

19. Problem 1

20. Problem 2

21. Problem 3

22. Problem 4

23. Problem 5

24. Problem 6

25. Problem 7

26. Problem 8

27. Problem 9

28. Problem 10

29. Problem 11

30. Problem 12

31. Problem 13

32. Problem 14

33. Problem 15

34. Problem 16

35. Problem 17

36. Problem 18

1.3.3 Exact Equations
The equation du/dx = f (x, u) can be written in many different forms. For instance, given any
N (x, u), define M(x, u) by the equation

M(x, u) = − f (x, u)N (x, u) (1.3.15)

Then

du

dx
= f (x, u) = − M(x, u)

N (x, u)
(1.3.16)

leads to

M(x, u) dx + N (x, u) du = 0 (1.3.17)

In this form the differential equation suggests the question, Does there exist φ(x, u) such that
dφ = M dx + N du? The total differential of φ(x, u) is defined

dφ = ∂φ

∂x
dx + ∂φ

∂u
du (1.3.18)

Note that if φ(x, u) = K , then dφ = 0.
The equation M dx + N du = 0 is exact if there exists φ(x, u) such that

dφ = M(x, u) dx + N (x, u) du (1.3.19)

or, equivalently,

∂φ

∂x
= M and

∂φ

∂u
= N (1.3.20)

a consequence of Eq. 1.3.18. If M dx + N du = 0 is known to be exact, then it follows that

dφ = M dx + N du = 0 (1.3.21)
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so that

φ(x, u) = K (1.3.22)

If Eq. 1.3.22 is simple enough, it may be possible to solve for u as a function of x and then verify
that this u is a solution of Eq. 1.3.17. This is the tack we take.

1.3 DIFFERENTIAL EQUATIONS OF FIRST ORDER � 13

EXAMPLE 1.3.3

Verify, by finding φ, that

− u

x2
dx + 1

x
du = 0

is exact. Find u from φ(x, u) = K and verify that u solves the given differential equation.

� Solution

We determine all possible φ by solving (see Eq. 1.3.20),

∂φ

∂x
= M = − u

x2

Integration implies that φ(x, u) = u/x + h(u) if the given differential equation is exact. The function h(u) is
an arbitrary differentiable function of u, analogous to an arbitrary constant of integration. The second equa-
tion in Eq. 1.3.20 yields.

∂φ

∂u
= ∂

∂u

[u

x
+ h(u)

]

= 1

x
+ h′(u) = N = 1

x

Therefore,

φ(x, u) = u

x
+ C

which, for any C , satisfies both parts of Eq. 1.3.20. Hence, the given differential equation is exact. Moreover,
we determine, using Eq. 1.3.22,

u(x) = Ax

where A = K − C , and verify that

− u

x2
dx + 1

x
du = − Ax

x2
dx + 1

x
(A dx) ≡ 0

If it had been the case that our given differential equation in Example 1.3.3 was not exact, it would have been
impossible to solve Eq. 1.3.20. The next example illustrates this point.
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EXAMPLE 1.3.4

Show that

−u dx + x du = 0

is not exact.

� Solution

We find that

∂φ

∂x
= M = −u

requires φ(x, u) = −xu + h(u). However,

∂φ

∂u
= ∂

∂u
[−xu + h(u)] = −x + h′(u) = N = x

requires h′(u) = 2x , an obvious contradiction.
The student should note that

−u dx + x du = x2

(
− u

x2
dx + 1

x
du

)
= x2d

(
u

x

)
= 0

and thus the apparently trivial modification of multiplying an exact equation by x2 destroys its exactness.

The pair of equations in Eq. 1.3.20 imply by differentiation that

∂2φ

∂x ∂u
= ∂M

∂u
and

∂2φ

∂u ∂x
= ∂ N

∂x

Hence, assuming that the order of differentiation can be interchanged, a situation that is assumed
in all our work in this text, we have

∂M

∂u
= ∂ N

∂x
(1.3.23)

We use Eq. 1.3.23 as a negative test. If it fails to hold, then M dx + N du = 0 is not exact7 and
we need not attempt to solve for φ. In Example 1.3.4, M = −u and N = x and hence

∂M

∂u
= −1 �= ∂ N

∂x
= 1 (1.3.24)

This saves much useless labor.

7We do not prove that ∂M/∂u = ∂ N/∂x implies that M dx + Ndu = 0 is exact because such a proof would
take us far afield. Moveover, in any particular case, knowing that Mdx + Ndu = 0 is exact does not circum-
vent the need to solve Eq. 1.3.20 for φ. Once φ is found, M dx + N du = 0 is exact by construction.
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EXAMPLE 1.3.5

Find the specific solution of the differential equation

(2 + x2u)
du

dx
+ xu2 = 0 if u(1) = 2

� Solution

The differential equation is found to be exact by identifying

N = 2 + x2u, M = xu2

Appropriate differentiation results in

∂ N

∂x
= 2xu,

∂M

∂u
= 2xu

From

∂φ

∂x
= M = xu2

we deduce that

φ(x, u) = x2u2

2
+ h(u)

We continue as follows:

∂φ

∂u
= x2u + h′(u) = N = 2 + x2u

We deduce that h′(u) = 2 and hence that h(u) = 2u so that

φ(x, u) = x2u2

2
+ 2u

Using Eq. 1.3.22, we can write

x2u2

2
+ 2u = K

which defines u(x). Given that u(1) = 2, we find K = 6. Finally, using the quadratic formula,

u(x) = − 2

x2
+ 2

x2

√
1 + 3x2

We use the plus sign so that u(1) = 2. Implicit differentiation of x2u2/2 + 2u = 6 is the easiest way of
verifying that u is a solution.



1.3.4 Integrating Factors
The equation M dx + N du = 0 is rarely exact. This is not surprising since exactness depends
so intimately on the forms of M and N. As we have seen in Example 1.3.4, even a relatively in-
significant modification of M and N can destroy exactness. On the other hand, this raises the
question of whether an inexact equation can be altered to make it exact. The function I (x, u) is
an integrating factor if

I (x, u)[M(x, u) dx + N (x, u) du] = 0 (1.3.25)

is exact. To find I , we solve

∂(I M)

∂u
= ∂(I N )

∂x
(1.3.26)
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Problems

Verify that each exact equation is linear and solve by separat-
ing variables.

1. − u

x2
dx + 1

x
du = 0

2. 2xu dx + x2 du = 0

Show that each equation is exact and find a solution.

3. (2 + x2)
du

dx
+ 2xu = 0

4. x2 + 3u2 du

dx
= 0

5. sin 2x
du

dx
+ 2u cos 2x = 0

6. ex
(

du

dx
+ u

)
= 0

7. Show that the equation u′ = f (x, u), written as
f (x, u) dx − du = 0, is exact if and only if f is a func-
tion of x alone. What is φ when this equation is exact?

8. The separable equation h(u) dx + g(x) du = 0 is exact.
Find φ and thus verify that it is exact.

9. Find φ and thus verify that

e∫p0(x)dx [p0(x)u − g(x)] dx + e∫p0(x)dx du = 0

is exact.

Solve each initial-value problem.

10. (1 + x2)u′ + 2xu = 0, u(0) = 1

11. (x + u)u′ + u = x, u(1) = 0

12. (u′ + u)ex = 0, u(0) = 0

13. If

M(x, u) dx + N (x, u) du = 0

is exact, then so is

kM(x, u) dx + k N (x, u) du = 0

for any constant k. Why? Under the same assumptions
show that

f (x)M(x, u) dx + f (x)N (x, u) du = 0

is not exact unless f (x) = k , a constant.

14. Show that

M(x, u) dx + N (x, u) du = 0

is exact if and only if

[M(x, u) + g(x)] dx + [N (x, u) + h(u)] du = 0

is exact.

Use Maple to solve:

15. Problem 10

16. Problem 11

17. Problem 12



a prospect not likely to be easier than solving M dx + N du = 0. In at least one case, however,
we can find I (x, u). Consider the general, linear equation

u′ + p(x)u = g(x) (1.3.27)

which can be put in the form

du + [p(x)u − g(x)] dx = 0 (1.3.28)

We search for an integrating factor which is a function of x alone, that is, I (x, u) = F(x). Then,
from Eq. 1.3.26, noting that M(x, u) = p(x)u − g(x) and N (x, u) = 1,

∂

∂u
{F(x)[p(x)u − g(x)]} = ∂

∂x
F(x) (1.3.29)

is the required condition on F(x). Hence,

F(x)p(x) = F ′(x) (1.3.30)

This is a homogeneous first-order equation for F(x). By inspection we find

F(x) = e∫p(x)dx (1.3.31)

Using this expression for F(x) we can form the differential

d(Fu) = F du + u d F

= F du + up(x)F(x) dx = F(x)g(x) dx (1.3.32)

using Eqs. 1.3.30 and 1.3.28. Integrating the above gives us

F(x)u(x) =
∫

F(x)g(x) dx + K (1.3.33)

Solving for u gives

u(x) = 1

F(x)

∫
F(x)g(x) dx + K

F(x)
(1.3.34)

This formula is the standard form of the general solution of the linear, first-order, homogeneous
equation

du

dx
+ p(x)u = g(x) (1.3.35)

If g(x) = 0 then Eq. 1.3.35 is homogeneous and Eq. 1.3.34 reduces to u(x) = K/F(x);
compare this with Eq. 1.3.10.
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Equation 1.3.34 does not readily lend itself to solving the initial-value problem

du

dx
+ p(x)u = g(x)

u(x0) = u0

(1.3.36)

since, as we have remarked earlier, we cannot conveniently express u(x0) when u is defined by
indefinite integrals. To remedy this deficiency, let F(x) be expressed by

F(x) = exp

[∫ x

x0

p(s) ds

]
(1.3.37)

so that F(x0) = 1. Then an alternative to Eq. 1.3.34 is

u(x) = 1

F(x)

∫ x

x0

F(t)g(t) dt + K

F(x)
(1.3.38)
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EXAMPLE 1.3.6

Solve the linear equation

x2 du

dx
+ 2u = 5x

for the standard form of the general solution.

� Solution

The differential equation is first order and linear but is not separable. Thus, let us use an integrating factor to
aid in the solution.

Following Eq. 1.3.35, the equation is written in the form

du

dx
+ 2

x2
u = 5

x

The integrating factor is provided by Eq. 1.3.31 and is

F(x) = e∫(2/x2)dx = e−2/x

Equation 1.3.34 then provides the solution

u(x) = e2/x

[∫
5

x
e−2/x dx + K

]

This is left in integral form because the integration cannot be written in terms of elementary functions. If the
integrals that arise in these formulas can be evaluated in terms of elementary functions, this should be done.



At x0,

u(x0) = 1

F(x0)

∫ x0

x0

F(t)g(t) dt + K

F(x0)
= K (1.3.39)

Hence,

u(x) = 1

F(x)

∫ x

x0

F(t)g(t) dt+ u0

F(x)
(1.3.40)

solves the initial-value problem (Eq. 1.3.36).
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EXAMPLE 1.3.7

Solve the initial-value problem

du

dx
+ 2u = 2, u(0) = 2

� Solution

Here p(x) = 2, so

F(x) = exp

(∫ x

0
2 ds

)
= e2x

Thus,

u(x) = e−2x
∫ x

0
e2t · 2 dt + 2

e2x
= e−2x(e2x − 1) + 2e−2x = 1 + e−2x

EXAMPLE 1.3.8

Solve the initial-value problem

du

dx
+ 2u = 2, u(0) = 0

� Solution

Since only the initial condition has been changed, we can utilize the work in Example 1.3.7 to obtain

u(x) = e−2x(e2x − 1) + 0

e2x
= 1 − e−2x



1.3.5 Maple Applications
The three solution methods in this section are all built into Maple’s dsolve command. In fact,
the derivation of Eq. 1.3.34, with initial condition u(x0) = u0, can be accomplished with these
commands:

>ode:=diff(u(x), x) +p(x)*u(x) = g(x);

>dsolve({ode, u(x_0) = u_0}, u(x));

20 � CHAPTER 1  / ORDINARY DIFFERENTIAL EQUATIONS

Problems

1. It is not necessary to include a constant of integration
in the expression for the integrating factor F(x) =
exp

∫
p(x) dx . Include an integration constant and show

that the solution (Eq. 1.3.34), is unaltered.

2. If g(x) = 0 in Eq. 1.3.35, show that u(x) = K/F(x) by
solving the resulting separable equation.

Find the general solution to each differential equation.

3. u′ + u = 2

4. u′ + 2u = 2x

5. u′ + xu = 10

6. u′ − 2u = ex

7. u′ + u = xe−x

8. u′ − u = cos x

9. xu′ − 2u = xex

10. x2u′ − u = 2 sin (1/x)

Solve each initial-value problem.

11. u′ + 2u = 2e−2x , u(0) = 2

12. u′ + xu = e−x2
, u(1) = 0

13. u′ − u = x, u(0) = 1

14. u′ − 2u = 4, u(0) = 0

15. Construct a first-order equation that has the property that
all members of the family of solutions approach the limit
of 9 as x → ∞.

16. Computer Laboratory Activity: Consider the initial-
value problem:

u′ = ex − u

x
, u(1) = b, an unknown constant

Solve the differential equation with Maple and use your solu-
tion to determine the unique value of b so that u(0) will exist.
How do you solve this problem without Maple? Create a
graph of u(x), using your value of b. Explore what happens to
solutions if you vary your value of b slightly.

Use Maple to solve:

17. Problem 3

18. Problem 4

19. Problem 5

20. Problem 6

21. Problem 7

22. Problem 8

23. Problem 9

24. Problem 10

25. Problem 11

26. Problem 12

27. Problem 13

28. Problem 14

There are abundant physical phenomena that can be modeled with first-order differential equa-
tions that fall into one of the classes of the previous section. We shall consider several such phe-
nomena, derive the appropriate describing equations, and provide the correct solutions. Other
applications will be included in the Problems.

1.4 PHYSICAL APPLICATIONS



1.4.1 Simple Electrical Circuits 
Consider the circuit in Fig. 1.1, containing a resistance R, inductance L , and capacitance C in
series. A known electromotive force v(t) is impressed across the terminals. The differential
equation relating the current i to the electromotive force may be found by applying Kirchhoff’s
first law,8 which states that the voltage impressed on a closed loop is equal to the sum of the volt-
age drops in the rest of the loop. Letting q be the electric charge on the capacitor and recalling
that the current i flowing through the capacitor is related to the charge by

i = dq

dt
(1.4.1)

we can write

v(t) = L
d2q

dt2
+ R

dq

dt
+ 1

C
q (1.4.2)

where the values, q , v, L , R, and C are in physically consistent units—coulombs, volts, henrys,
ohms, and farads, respectively. In Eq. 1.4.2 we have used the following experimental observa-
tions:

voltage drop across a resistor = i R

voltage drop across a capacitor = q

C

voltage drop across an inductor = L
di

dt

(1.4.3)

Differentiating Eq. 1.4.2 with respect to time and using Eq. 1.4.1, where i is measured in am-
peres, we have

dv

dt
= L

d2i

dt2
+ R

di

dt
+ 1

C
i (1.4.4)

If dv/dt is nonzero, Eq. 1.4.4 is a linear, nonhomogeneous, second-order differential equation.
If there is no capacitor in the circuit, Eq. 1.4.4 reduces to

dv

dt
= L

d2i

dt2
+ R

di

dt
(1.4.5)
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Inductor

Resistor

Voltage source

v(t)

Capacitor

L

R C

Figure 1.1 RLC circuit.

8Kirchhoff’s second law states that the current flowing into any point in an electrical circuit must equal the
current flowing out from that point.



Integrating, we have (Kirchhoff’s first law requires that the constant of integration be zero)

L
di

dt
+ Ri = v(t) (1.4.6)

The solution to this equation will be provided in the following example.
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EXAMPLE 1.4.1

Using the integrating factor, solve Eq. 1.4.6 for the case where the electromotive force is given by
v = V sin ωt .

� Solution

First, put Eq. 1.4.6 in the standard form

di

dt
+ R

L
i = V

L
sin ωt

Using Eq. 1.3.31 we find that the integrating factor is

F(t) = e(R/L)t

According to Eq. 1.3.34 the solution is

i(t) = e−(R/L)t

[∫
V

L
sin ωt e(R/L)t dt + K

]

where K is the constant of integration. Simplification of this equation yields, after integrating by parts,

i(t) = V

[
R sin ωt − ωL cos ωt

R2 + ω2L2

]
+ K e−(R/L)t

If the current i = i0 at t = 0, we calculate the constant K to be given by

K = i0 + V ωL

R2 + ω2L2

and finally that

i(t) = V

[
R sin ωt − ωL cos ωt

R2 + ω2L2

]
+

[
i0 + V ωL

R2 + ω2L2

]
e−(R/L)t

In this example we simplified the problem by removing the capacitor. We can also consider a similar problem
where the capacitor is retained but the inductor is removed; we would then obtain a solution for the voltage.
In Section 1.7 we consider the solution of the general second-order equation 1.4.4 where all components are
included.



1.4.2 Maple Applications 
Note that we get the same solution as in Example 1.4.1 using Maple:

>ode:=diff(i(t), t) + R*i(t)/L = V*sin(omega*t)/L;

>dsolve({ode, i(0)=i_0}, i(t));

ode: =
(

∂

∂t
i(t)

)
+ R i(t)

L
= V sin(ω t)

L

i(t)= e
(
− R t

L

)
(V L ω + i–0 R2 + i–0ω2L2)

R2 + ω2L2
− V(ω cos(ω t)L − R sin(ω t))

R2 + ω2L2

1.4.3 The Rate Equation 
A number of phenomena can be modeled by a first-order equation called a rate equation. It has
the general form

du

dt
= f (u, t) (1.4.7)

indicating that the rate of change of the dependent quantity u may be dependent on both time and
u. We shall derive the appropriate rate equation for the concentration of salt in a solution. Other
rate equations will be included in the Problems.

Consider a tank with volume V (in cubic meters, m3), containing a salt solution of concen-
tration C(t). The initial concentration is C0 (in kilograms per cubic meter, kg/m3). A brine con-
taining a concentration C1 is flowing into the tank at the rate q (in cubic meters per second,
m3/s), and an equal flow of the mixture is issuing from the tank. The salt concentration is kept
uniform throughout by continual stirring. Let us develop a differential equation that can be
solved to give the concentration C as a function of time. The equation is derived by writing a bal-
ance equation on the amount (in kilograms) of salt contained in the tank:

amount in − amount out = amount of increase (1.4.8)

For a small time increment �t this becomes

C1q�t − Cq�t = C(t + �t)V − C(t)V (1.4.9)

assuming that the concentration of the solution leaving is equal to the concentration C(t) in the
tank. The volume V of solution is maintained at a constant volume since the outgoing flow rate
is equal to the incoming flow rate. Equation 1.4.9 may be rearranged to give

q(C1 − C) = V
C(t + �t) − C(t)

�t
(1.4.10)
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Now, if we let the time increment �t shrink to zero and recognize that

lim
�t→0

C(t + �t) − C(t)

�t
= dC

dt
(1.4.11)

we arrive at the rate equation for the concentration of salt in a solution,

dC

dt
+ q

V
C = qC1

V
(1.4.12)

The solution is provided in the following example.
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The initial concentration of salt in a 10-m3 tank is 0.02 kg/m3. A brine flows into the tank at 2 m3/s with a con-
centration of 0.01 kg/m3. Determine the time necessary to reach a concentration of 0.011 kg/m3 in the tank if
the outflow equals the inflow.

� Solution

Equation 1.4.12 is the equation to be solved. Using q = 2, V = 10 and C1 = 0.01, we have

dC

dt
+ 2

10
C = 2 × 0.01

10

The integrating factor is

F(t) = e∫(1/5)dt = et/5

The solution, referring to Eq. 1.3.34, is then

C(t) = e−t/5

[∫
0.002 et/5 dt + A

]
= 0.01 + Ae−t/5

where A is the arbitrary constant. Using the initial condition there results

0.02 = 0.01 + A

so that

A = 0.01

The solution is then

C(t) = 0.01[1 + e−t/5]

EXAMPLE 1.4.2



1.4.4 Maple Applications
Example 1.4.2 can also be solved using Maple, using dsolve and some commands from
Appendix C:

>ode:=diff(C(t), t) + 0.2*C(t) = 0.002;
>dsolve({ode, C(0)=0.02}, C(t));
>concentration:=rhs(%); #use the right-hand side of the 
output
>fsolve(0.011=concentration);

ode :=
(

∂

∂t
C(t)

)
+ .2C(t)= .002

C(t)= 1

100
+ 1

100
e(−1/5t)

concentration := 1

100
+ 1

100
e(−1/5t)

11.51292546

A graph of the direction field of this differential equation can help lead to a deeper understand-
ing of the situation. To draw a direction field, first rewrite the differential equation so that the de-
rivative term is alone on the left side of the equation:

dC

dt
= 0.002 − C

5

Then, for specific values of t and C , this equation will define a derivative, and hence a slope, at
that point. For example, at the point (t, C) = (0, 1), dC

dt = −0.198, and on the direction field,
we would draw a line segment with that slope at the point (0, 1). (Here, t will be represented on
the x-axis, and C(t) on the y-axis.) All of this can be done efficiently with Maple, along with
drawing solution curves, using the DEplot command in the DEtools package:

>ode2:= diff(C(t), t)=0.002-2*C(t)/10;

ode2 := d

dt
C(t)= 0.002− 1

5
C(t)
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Setting C(t) = 0.011 kg/m3, we have

0.011 = 0.01[1 + e−t/5]

Solving for the time, we have

0.1 = e−t/5

or

t = 11.51 s

EXAMPLE 1.4.2 (Continued)



>DEplot(ode2, C(t), t=0..12, [[C(0)=0.02],[C(0)=0.05]],
C=0..0.06, arrows=MEDIUM);

Here, we see two solutions. One has initial condition C(0) = 0.02, while the other uses
C(0) = 0.05. In both cases, the solutions tend toward C = 0.01 as t increases, which is consis-
tent with the fact that the general solution is C(t) = 0.01 + Ae−t/5 .

To draw a direction field without a solution, use the dfieldplot command instead:

>dfieldplot(ode2, C(t), t=0..5, C=0..0.06, arrows=MEDIUM);

1.4.5 Fluid Flow
In the absence of viscous effects it has been observed that a liquid (water, for example) will flow
from a hole with a velocity

v =
√

2gh m/s (1.4.13)

where h is the height in meters of the free surface of the liquid above the hole and g is the local
acceleration of gravity (assumed to be 9.81 m/s2). Bernoulli’s equation, which may have been
presented in a physics course, will yield the preceding result. Let us develop a differential equa-
tion that will relate the height of the free surface and time, thereby allowing us to determine how
long it will take to empty a particular reservoir. Assume the hole of diameter d to be in the bot-
tom of a cylindrical tank of diameter D with the initial water height h0 meters above the hole.
The incremental volume �V of liquid escaping from the hole during the time increment �t is

�V = vA �t =
√

2gh
πd2

4
�t (1.4.14)

0.06

0.05

0.04

C(t)

0.03

0.02

0.01

2 4 6 8 10 12
t
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This small volume change must equal the volume lost in the tank due to the decrease in liquid
level �h. This is expressed as

�V = −π D2

4
�h (1.4.15)

Equating Eqs. 1.4.14 and 1.4.15 and taking the limit as �t → 0, we have

dh

dt
= −

√
2gh

d2

D2
(1.4.16)

This equation is immediately separable and is put in the form

h−1/2dh = −
√

2g
d2

D2
dt (1.4.17)

which is integrated to provide the solution, using h = h0 at t = 0,

h(t) =
[
−

√
g

2

d2

D2
t +

√
h0

]2

(1.4.18)

The time te necessary to drain the tank completely would be (set h = 0)

te = D2

d2

√
2h0

g
seconds (1.4.19)

Additional examples of physical phenomena are included in the Problems.
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Problems

1. A constant voltage of 12 V is impressed on a series circuit
composed of a 10-� resistor and a 10−4-H inductor.
Determine the current after 2 µs if the current is zero at
t = 0.

2. An exponentially increasing voltage of 0.2e2t V is im-
pressed on a series circuit containing a 20-� resistor and
a 10−3-H inductor. Calculate the resulting current as a
function of time using i = 0 at t = 0.

3. A series circuit composed of a 50-� resistor and a 
10−7-F capacitor is excited with the voltage 12 sin 2t .
What is the general expression for the charge on the
capacitor? For the current?

4. A constant voltage of 12 V is impressed on a series
circuit containing a 200-� resistor and a 10−6-F 
capacitor. Determine the general expression for the

charge. How long will it take before the capacitor is
half-charged?

5. The initial concentration of salt in 10 m3 of solution
0.2 kg/m3. Fresh water flows into the tank at the rate of
0.1 m3/s until the volume is 20 m3, at which time t f the
solution flows out at the same rate as it flows into the
tank. Express the concentration C as a function of time.
One function will express C(t) for t < t f and another for
t > t f . 

6. An average person takes 18 breaths per minute and each
breath exhales 0.0016 m3 of air containing 4% CO2. At
the start of a seminar with 300 participants, the room air
contains 0.4% CO2. The ventilation system delivers 10 m3

of air per minute to the 1500-m3 room. Find an expression
for the concentration level of CO2 in the room.



7. Determine an expression for the height of water in the
funnel shown. What time is necessary to drain the funnel?

8. A square tank, 3 m on a side, is filled with water to a
depth of 2 m. A vertical slot 6 mm wide from the top to
the bottom allows the water to drain out. Determine the
height h as a function of time and the time necessary for
one half of the water to drain out.

9. A body falls from rest and is resisted by air drag.
Determine the time necessary to reach a velocity of
50 m/s if the 100-kg body is resisted by a force equal to
(a) 0.01v and (b) 0.004v2. Check if the equation
M(dv/dt) = Mg − D , where D is the drag force, de-
scribes the motion.

10. Calculate the velocity of escape from the earth for a
rocket fired radially outward on the surface
(R ∼= 6400 km) of the earth. Use Newton’s law of gravi-
tation, which states that dv/dt = k/r2, where, for the
present problem, k = −gR2. Also, to eliminate t , use
dt = dr/v.

11. The rate in kilowatts (kW) at which heat is conducted in
a solid is proportional to the area and the temperature
gradient with the constant of proportionality being the
thermal conductivity k(kW/m · ◦C). For a long, laterally
insulated rod this takes the form q = −k A(dT/dx). At
the left end heat is transferred at the rate of 10 kW.
Determine the temperature distribution in the rod if the
right end at x = 2 m is held constant at 50◦C. The cross-
sectional area is 1200 mm2 and k = 100 kW/m · ◦C.

6 mm

150 mm

45�

12. An object at a temperature of 80◦C to be cooled is placed
in a refrigerator maintained at 5◦C. It has been observed
that the rate of temperature change of such an object is
proportional to the surface area A and the difference be-
tween its temperature T and the temperature of the sur-
rounding medium. Determine the time for the tempera-
ture to reach 8◦C if the constant of proportionality
α = 0.02(s · m2)−1 and A = 0.2 m2.

13. The evaporation rate of moisture from a sheet hung on a
clothesline is proportional to the moisture content. If one
half of the moisture is lost in the first 20 minutes, calcu-
late the time necessary to evaporate 95% of the moisture.

14. Computer Laboratory Activity: Consider the initial-
value problem:

dy

dx
= xy2, y(−2) = 3

(a) Create a direction field for this equation, without any
solution drawn. What would you expect would be the
behavior of solutions whose initial conditions are in
the second quadrant?

(b) Solve the initial-value problem.

(c) Create another direction field with the solution
included.

(d) Follow the same instructions for this initial value
problem:

dy

dx
= cos x

y
, y

(
−π

2

)
= 1

Use Maple to create direction fields for the differential equa-
tions created in these problems:

15. Problem 1

16. Problem 2

17. Problem 3

18. Problem 4

19. Problem 5

20. Problem 6

1.5.1 Introduction and a Fundamental Theorem
Many of the differential equations that describe physical phenomena are linear differential
equations; among these, the second-order equation is the most common and the most impor-
tant special case. In this section we present certain aspects of the general theory of the second-
order equation; the theory for the nth-order equation is often a straightforward extension of
these ideas.

1.5 LINEAR DIFFERENTIAL EQUATIONS
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In the general, the second-order equation is

d2u

dx2
+ p0(x)

du

dx
+ p1(x)u = g(x), a < x < b (1.5.1)

The function g(x) is the forcing function and p0(x), p1(x) are coefficient functions; in many ap-
plications the forcing function has jump discontinuities. Figure 1.2 illustrates three common
forcing functions, each with jump discontinuities. The graphs in Fig. 1.2 suggest the following
definition of a jump discontinuity for g(x) at x = x0:

limit from the left = lim
x→x0
x<x0

g(x) ≡ g−
0

limit from the right = lim
x→x0
x>x0

g(x) ≡ g+
0

Functions with jump discontinuities can be plotted and used in Maple by using commands. The
following three commands will create a step function, a sawtooth function, and a square wave.

>f1:= x -> piecewise(x < 2, 1, x>=2, 3);

>f2:= x -> piecewise(x <-1, x+3, x < 1, x+1, x < 3, x-1);

>f3:= x -> piecewise(x <= -1, -2, x < 1, 3, x >= 1, -2);

The jump is 
∣∣g+

0 − g−
0

∣∣ and is always finite. Although we do not require g(x) to have a value at
x0, we usually define g(x0) as the average of the limits from the left and the right:

g(x0) = 1

2
(g+ + g−) (1.5.2)

Figure 1.3 illustrates this point. Two ways in which a function can have a discontinuity that is not
a jump are illustrated in Fig. 1.4.

We study Eq. 1.5.1 in the interval I: a < x < b, an interval in which a = −∞ or b = +∞
or both are possible. We assume:

1. p0(x) and p1(x) are continuous in I.
2. g(x) is sectionally continuous in I.

A sectionally continuous function g(x) in a < x < b is a function with only a finite number of
jump discontinuities in each finite subinterval of I and in which, for a and b finite, g+

a and g−
b
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u

x

(a) Step

u

x

(b) Saw tooth (c) Square wave

u

x

Figure 1.2 Some common forcing functions with jump discontinuities.



exist.9 Thus, the unit-step, the sawtooth, and the squarewave are sectionally continuous func-
tions (see Fig. 1.2). The function graphed in Fig. 1.3 is sectionally continuous. If p0(x) and
p1(x) are continuous and g(x) sectionally continuous in I , then Eq. 1.5.1 and its corresponding
initial-value problem are called standard.

Theorem 1.1: (The Fundamental Theorem): The standard initial-value problem

d2u

dx2
+ p0(x)

du

dx
+ p1(x)u = g(x), a < x < b

u(xo) = u0, u′(x0) = u′
0, a < x0 < b

(1.5.3)

has one and only one solution in I.

For a proof of this existence and uniqueness theorem, we refer the reader to a textbook on
ordinary differential equations.
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g(x)

x

g�

g�

g0

x0

g(x0) � (g0 � g0
�)�1

2

Figure 1.3 The definition of g(x0) where a jump discontinuity exists at x0.

g(x) g(x)

x0 xx

g(x) �  
1

x � x0
g(x) � sin �

x

Figure 1.4 Functions with a discontinuity that is not a jump discontinuity.

9It is unreasonable to expect g−
a to exist since g is, presumably, undefined for x < a. Similarly, g−

b is the only
reasonable limit at the right end point of I .



It follows immediately from this theorem that u(x) ≡ 0 is the only solution of

d2u

dx2
+ p0(x)

du

dx
+ p1(x)u = 0

u(x0) = 0, u′(x0) = 0

(1.5.4)

in I . This corollary has a physical analog: A system at rest and in equilibrium and undisturbed
by external forces remains at rest and in equilibrium.
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Problems

Which of the following functions have a discontinuity at
x = 0? Indicate whether the discontinuity is a jump
discontinuity.

1. g(x) = ln x

2. g(x) = ln |x |
3. g(x) = |x |
4. g(x) = 1/x2

5. g(x) = e−x

6. g(x) =
{

(sin x)/x, x �= 0
0, x = 0

7. g(x) =
{

x sin π/x, x �= 0
0, x = 0

Which of the following functions are sectionally continuous?

8. g(x) = ln x, x > 0

9. g(x) = ln x, x > 1

10. g(x) =
{

1/x, x �= 0
0, x = 0

for −1 < x < 1

11. g(x) = sgn (x) =



+1 if x > 0
−1 if x < 0

0 if x = 0

12. g(x) =
{

0, x < 0
| sin x |, x ≥ 0

13. g(x) =
{

1, 0 ≤ x ≤ 1
0, otherwise

14. What is the analog of the Fundamental Theorem for the
following first-order initial-value problem?

du

dx
+ p(x)u = g(x), a < x < b

u(x0) = u0, a < x0 < b

15. In view of Problem 14, consider this paradox: The initial-
value problem

x
du

dx
− 2u = 0, u(0) = 0

has the two solutions u1(x) = x2 and u2(x) = −x2.
Resolve the dilemma.

Use Maple to create a graph of the function in

16. Problem 6

17. Problem 7

18. Problem 10

19. Problem 11

20. Problem 12

21. Problem 13

1.5.2 Linear Differential Operators
Given any twice differentiable function u(x), the expression

L[u] ≡ d2u

dx2
+ p0(u)

du

dx
+ p1(x)u = r(x) (1.5.5)



defines the function r(x). For example, set

L[u] = d2u

dx2
+ 3

du

dx
+ 2u (1.5.6)

Then, for u(x) = 1 − x, ex , e−x , and K , we have

r(x) = L[−x + 1] = 3(−1) + 2(−x + 1) = −2x − 1

r(x) = L[ex ] = ex + 3ex + 2ex = 6ex

r(x) = L[e−x ] = ex − 3ex + 2ex = 0

r(x) = L[K ] = 2K

The formula L[u] = r(x) may be viewed in an operator context: For each allowable input
u(x), L produces the output r(x). We call L a differential operator. It is linear10 because, as we
may easily verify,

L[c1u1 + c2u2] = c1L[u1] + c2L[u2] (1.5.7)

for each pair of constants c1 and c2 (see Problem 1 at the end of this section).
Three consequences of Eq. 1.5.7 are

(1) L[0] = 0

(2) L[cu] = cL[u]

(3) L[u + v] = L[u] + L[v]

(1.5.8)

Item (1) follows by choosing c1 = c2 = 0 in Eq. 1.5.7; the other two are equally obvious.
We may now interpret the differential equation

L[u] = d2u

dx2
+ p0(x)

du

dx
+ p1(x)u = g(x) (1.5.9)

in this manner: Given L and g(x), find u(x) such that

L[u] ≡ g(x), a < x < b (1.5.10)

Theorem 1.2: (The Superposition Principle): If u1 and u2 are solutions of

d2u

dx2
+ p0(x)

du

dx
+ p1(x)u = 0 (1.5.11)

then so is

u(x) = c1u1(x) + c2u2(x) (1.5.12)

for every constant c1 and c2.
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Proof: In terms of operators, L[u1] = L[u2] = 0 by hypothesis. But

L[c1u1 + c2u2] = c1L[ui ] + c2L[u2] = c1 · 0 + c2 · 0 = 0 (1.5.13)

by linearity (Eq. 1.5.7).
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Problems

1. Let L1[u] = du/dx + p0(x)u . Verify that L1 is a linear
operator by using Eq. 1.5.7.

2. Let Ln be defined as follows:

Ln[u] ≡ dnu

dxn
+ p0(x)

dn−1u

dxn−1
+ · · · + pn−1(x)u

Verify that this operator is linear by showing that

Ln[c1u1 + c2u2] = c1 Ln[u1] + c2 Ln[u2]

3. Prove that L[cu] = cL[u] for every c and L[u + v] =
L[u] + L[v] implies Eq. 1.5.7. (Note: it is unnecessary to
know anything at all about the structure of L except what
is given in this problem.)

4. A second Principle of Superposition: Suppose that L is a
linear operator and L[u] = g1, L[v] = g2 . Prove that
L[u + v] = g1 + g2 .

5. Suppose that c1 + c2 = 1 and L[u] = L[v] = g. Prove
that L[c1u + c2v] = g.

6. Let L[u] ≡ d2u

dx2
+ 2b

du

dx
+ cu = 0 , where b and c are 

constants. Verify that

L[eλx ] = eλx (λ2 + 2bλ + c)

7. Suppose that L is a linear operator. Suppose that
L[un] = 0 and L[up] = g(x). Show that L[cun + up] =
g(x) for every scalar c.

8. Suppose that L is a linear operator and L[u1] =
L[u2] = g(x). Show that L[u1 − u2] = 0.

1.5.3 Wronskians and General Solutions 
If u1(x) and u2(x) are solutions of

L[u] = d2u

dx2
+ p0(x)

du

dx
+ p1(x)u = 0 (1.5.14)

then we define the Wronskian, W (x; u1, u2), as follows:

W (x) = W (x; u1, u2) =
∣∣∣∣ u1 u2

u′
1 u′

2

∣∣∣∣ = u1u′
2 − u2u′

1 (1.5.15)

Now,

W ′(x) = u1u′′
2 + u′

1u′
2 − u′

2u′
1 − u2u′′

1

= u1u′′
2 − u2u′′

1

= u1[−p0u′
2 − p1u2] − u2[−p0u′

1 − p1u1]

= −p0(u1u′
2 − u2u′

1)

= −p0W (x) (1.5.16)



This is a first-order equation whose general solution may be written

W (x) = K e−∫p0(x)dx (1.5.17)

A critical fact follows directly from this equation.

Theorem 1.3: On the interval I: a < x < b, either

W (x) ≡ 0

or

W (x) > 0

or

W (x) < 0

Proof: Since p0(x) is continuous on I , so is 
∫

p0(x) dx . Therefore,

e∫p0(x) dx > 0 on I

Hence, W = 0 if and only if K = 0, it is positive if and only if K > 0 and is negative if and only
if K < 0.

We say that u1(x) and u2(x) are independent if W (x) is not zero on a < x < b. (see
Problem 7). A pair of independent solutions is called a basic solution set.

Theorem 1.4: If u1(x) and u2(x) is a basic solution set of

d2u

dx2
+ p0(x)

du

dx
+ p1(x)u = 0 (1.5.18)

and û is any solution, then there are constants c1 and c2 such that

û(x) = c1u1(x) + c2u2(x) (1.5.19)

Proof: Define the numbers r1 and r2 by

r1 = û(x0), r2 = û′(x0) (1.5.20)

Now consider the initial-value problem

d2u

dx2
+ p0(x)

du

dx
+ p1(x)u = 0

u(x0) = r1, u′(x0) = r2

(1.5.21)
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By construction u solves this problem. By the Fundamental Theorem (Theorem 1.1) u is the
only solution. However, we can always find c1 and c2 so that c1u1 + c2u2 will also solve the
initial-value problem 1.5.21. Hence, the theorem is proved.

To find the values of c1 and c2 we set

r1 = c1u1(x0) + c2u2(x0)

r2 = c1u′
1(x0) + c2u′

2(x0)
(1.5.22)

But this system has a solution (unique at that) if∣∣∣∣ u1(x0) u2(x0)

u′
1(x0) u′

2(x0)

∣∣∣∣ �= 0 (1.5.23)

It is a well-known theorem of linear algebra (see Chapter 4) that a system of n equations in n un-
knowns has a unique solution if and only if the determinant of its coefficients is not zero. This
determinant is W (x0) and by hypothesis W (x) �= 0 on I [recall that u1 and u2 is a basic set,
which means that W (x) cannot vanish on a < x < b].

Because of this theorem, the family of all functions {c1u1 + c2u2} is the set of all solutions
of Eq. 1.5.14 in I . For this reason, we often call

u(x) = c1u1(x) + c2u2(x) (1.5.24)

the general solution of Eq. 1.5.14.
Note that the proof is constructive. It provides a precise computation for c1 and c2 given the

initial values and basic solution set. From this point of view, the constants c1 and c2 in Eq. 1.5.24
are “essential” if W (x) �= 0.

One last point. There is no unique basic solution set. Every pair of solutions from the set
{c1u1 + c2u2} for which W (x) �= 0 provides a satisfactory basic solution pair (see Problem 8–10).

1.5.4 Maple Applications
There is a Maple command that will compute the Wronskian. The wronskian command, part
of the linalg package, actually computes the matrix in Eq. 1.5.15, and not its determinant, so
the following code is needed:

>with(linalg):

>det(wronskian([u1(x),u2(x)],x));
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Problems

Find the Wronskians of each equation.

1. u′′ + αu′ + βu = 0, α, β constants

2. u′′ + 1

x
u′ + p1(x)u = 0, 0 < x < ∞

3. u′′ − 1

x
u′ + p1(x)u = 0, 0 < x < ∞

4. u′′ + I (x)u = 0, −∞ < x < ∞

5. One solution of u′′ + 2αu′ + α2u = 0, α constant, is
e−αx . Find the Wronskian and, by using the definition
W (x) = u1u′

2 − u2u′
1, find a second independent solution.



6. Use Cramer’s rule to solve the system (1.5.22) and
thereby find

c1 =

∣∣∣∣ r1 u2(x0)

r2 u′
2(x0)

∣∣∣∣
W (x0)

, c2 =

∣∣∣∣ u1(x0) r1

u′
1(x0) r2

∣∣∣∣
W (x0)

7. Suppose that u1 and u2 is a basic solution set of
Eq. 1.5.14. Suppose also that u1(x0) = 0, a < x < b.
Use the definition of the Wronskian and Theorem 1.3 to
prove that u2(x0) �= 0.

Show that if u1 and u2 is a basic solution set of L[u] = 0 so
are these:

8. u1 + u2, u1 − u2.

9. u1, u1 + u2.

10. αu1 + βu2, γ u1 + δu2 . For which choice of α, β, γ, δ?

11. If u2 = ku1, show that W (x; u1, u2) = 0.

1.5.5 The General Solution of the Nonhomogeneous Equation
Suppose that u1(x) and u2(x) form a basic solution set for the associated homogeneous
equation of

L[u] = d2u

dx2
+ p0(x)

du

dx
+ p1(x)u = g(x) (1.5.25)

Then L[u1] = L[u2] = 0 and W (x) �= 0 for all x, a < x < b. Let up(x) be a particular solu-
tion of Eq. 1.5.25; that is, there’s a particular choice for up(x) that will satisfy L(up) = g(x).
Methods to obtain up(x) will be presented later. Then, for every choice of c1 and c2,

u(x) = up(x) + c1u1(x) + c2u2(x) (1.5.26)

also solves Eq. 1.5.25. This is true since

L[u] = L[up + c1u1 + c2u2]

= L[up] + c1L[u1] + c2L[u2]

= g(x) (1.5.27)

by linearity and the definitions of up, u1, and u2. We call u(x) the general solution of Eq. 1.5.25
for this reason.

Theorem 1.5: If û is a solution of Eq. 1.5.25, then there exists constants c1 and c2 such that

û(x) = up(x) + c1u1(x) + c2u2(x) (1.5.28)

Proof: We leave the details to the student. A significant simplification in the argument occurs, by
observing that û − up solves the associated homogeneous equation and then relying on Theorem 1.4.
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Verify that u(x) = x2 and v(x) = x − 1 is a basic solution set of

L[u] = x(x − 2)u′′ − 2(x − 1)u′ + 2u = 0, 0 < x < 2

EXAMPLE 1.5.1
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� Solution

It is easy to differentiate and show that

L[x2] = L[x − 1] = 0

The Wronskian, W (x) = uv′ − u′v , is also easy to check:

W (x) =
∣∣∣∣ x2 x − 1
2x 1

∣∣∣∣ = x2 − 2x(x − 1) = x(x − 2) �= 0, 0 < x < 2

Thus, u(x) and v(x) is a basic solution set of L[u].

EXAMPLE 1.5.1 (Continued)

11Technically, we ought to put the equation in standard form by dividing by x(x − 2); but all steps would be essentially the same.

Let L be defined as in Example 1.5.1. Show that the particular solution up = x3 is a solution of L[u] =
2x2(x − 3) and find a specific solution of the initial-value problem

L[u] = x(x − 2)u′′ − 2(x − 1)u′ + 2u = 2x2(x − 3), u(1) = 0, u′(1) = 0

� Solution

To show that up = x3 solves L[u] = 2x2(x − 3), we substitute into the given L[u] and find

L[x3] = x(x − 2)(6x) − 2(x − 1)(3x2) + 2(x3)

= 6x3 − 12x2 − 6x3 + 6x2 + 2x3 = 2x2(x − 3)

The general solution,11 by Theorem 1.5, using u(x) and v(x) from Example 1.5.1, is

u(x) = x3 + c1x2 + c2(x − 1)

but

u(1) = 1 + c1, u′(1) = 3 + 2c1 + c2

We determine c1 and c2 by setting u(1) = u′(1) = 0; that is,

1 + c1 = 0, 3 + 2c1 + c2 = 0

EXAMPLE 1.5.2



We will focus out attention on second-order differential equations with constant coefficients.
The homogeneous equation is written in standard form as

d2u

dx2
+ a

du

dx
+ bu = 0 (1.6.1)

We seek solutions of the form

u = emx (1.6.2)

When this function is substituted into Eq. 1.6.1, we find that

emx(m2 + am + b) = 0 (1.6.3)

Thus, u = emx is a solution of Eq. 1.6.1 if and only if

m2 + am + b = 0 (1.6.4)

This is the characteristic equation. It has the two roots

m1 = −a

2
+ 1

2

√
a2 − 4b, m2 = −a

2
− 1

2

√
a2 − 4b (1.6.5)

It then follows that

u1 = em1x , u2 = em2x (1.6.6)

are solutions of Eq. 1.6.1. The Wronskian of these solutions is

W (x) =
∣∣∣∣ em1x em2x

m1em1x m2em2x

∣∣∣∣ = (m2 − m1)e
(m1+m2)x (1.6.7)

which is zero if and only if m1 = m2. Hence, if m1 �= m2, then a general solution is

u(x) = c1em1x + c2em2x (1.6.8)

1.6 HOMOGENEOUS, SECOND-ORDER, LINEAR EQUATIONS
WITH CONSTANT COEFFICIENTS
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which leads to the unique solution c1 = c2 = −1, and therefore

u(x) = x3 − x2 − x + 1

is the unique solution to the given initial-value problem.

EXAMPLE 1.5.2 (Continued)



Let us consider two cases (a2 − 4b) > 0 and (a2 − 4b) < 0. If (a2 − 4b) > 0, the solution
takes the form

u(x) = e−ax/2(c1e
√

a2−4b x/2 + c2e−
√

a2−4b x/2) (1.6.9)

Using the appropriate identities,12 this solution can be put in the following two equivalent forms:

u(x) = e−ax/2[A sinh
(

1
2

√
a2 − 4b x

) + B cosh
(

1
2

√
a2 − 4b x

)]
(1.6.10)

u(x) = c3e−ax/2 sinh
(

1
2

√
a2 − 4b x + c4

)
(1.6.11)

If (a2 − 4b) < 0, the general solution takes the form, using i = √−1,

u(x) = e−ax/2(c1ei
√

4b−a2 x/2 + c2ei
√

4b−a2 x/2) (1.6.12)

which, with the appropriate identities,13 can be put in the following two equivalent forms:

u(x) = e−ax/2[A sin
(

1
2

√
a2 − 4b x

) + B cos
(

1
2

√
a2 − 4b x

)]
(1.6.13)

u(x) = c3e−ax/2 cos
(

1
2

√
a2 − 4b x + c4

)
(1.6.14)

If a particular form of the solution is not requested, the form of Eq. 1.6.9 is used if (a2 − 4b) > 0
and the form of Eq. 1.6.13 is used if (a2 − 4b) < 0.

If (a2 − 4b) = 0, m1 = m2 and a double root occurs. For this case the solution 1.6.8 no
longer is a general solution. What this means is that the assumption that there are two linearly
independent solutions of Eq. 1.6.1 of the form emx is false, an obvious conclusion since
W (x) = 0. To find a second solution we make the assumption that it is of the form

u2(x) = v(x)emx (1.6.15)

where m2 + am + b = 0. Substitute into Eq. 1.6.1 and we have

(m2emx + amemx + bemx)v + (2memx + aemx)
dv

dx
+ emx d2v

dx2
= 0 (1.6.16)

The coefficient of v is zero since m2 + am + b = 0. The coefficient of dv/dx is zero since we
are assuming that m2 + am + b = 0 has equal roots, that is, m = −a/2. Hence,

d2v

dx2
= 0 (1.6.17)
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12The appropriate identities are

ex = cosh x + sinh x

sinh(x + y) = sinh x cosh y + sinh y cosh x

cosh2 x − sinh2 x = 1
13The appropriate identities are

eiθ = cos θ + i sin θ

cos(α + β) = cos α cos β − sin α sin β

cos2 β + sin2 β = 1



Therefore, v(x) = x suffices; the second solution is then

u2(x) = xemx = xe−ax/2 (1.6.18)

A general solution is

u(x) = c1e−ax/2 + c2xe−ax/2 = (c1 + c2x)e−ax/2 (1.6.19)

Note that, using u1 = e−ax/2 and u2 = xe−ax/2, the Wronskian is

W (x) = e−ax > 0 for all x (1.6.20)

The arbitrary constants in the aforementioned solutions are used to find specific solutions to
initial or boundary-value problems.

The technique described earlier can also be used for solving differential equations with
constant coefficients of order greater than 2. The substitution u = emx leads to a characteristic
equation which is solved for the various roots. The solution follows as presented previously.
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EXAMPLE 1.6.1

Determine a general solution of the differential equation

d2u

dx2
+ 5

du

dx
+ 6u = 0

Express the solution in terms of exponentials.

� Solution

We assume that the solution has the form u(x) = emx . Substitute this into the differential equation and find the
characteristic equation to be

m2 + 5m + 6 = 0

This is factored into

(m + 3)(m + 2) = 0

The roots are obviously

m1 = −3, m2 = −2

The two independent solutions are then

u1(x) = e−3x , u2(x) = e−2x

These solutions are superimposed to yield the general solution

u(x) = c1e−3x + c2e−2x
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EXAMPLE 1.6.2

Find the solution of the initial-value problem

d2u

dx2
+ 6

du

dx
+ 9u = 0, u(0) = 2,

du

dx
(0) = 0

� Solution

Assume a solution of the form u(x) = emx . The characteristic equation

m2 + 6m + 9 = 0

yields the roots

m1 = −3, m2 = −3

The roots are identical; therefore, the general solution is (see Eq. 1.6.19)

u(x) = c1e−3x + c2xe−3x

This solution must satisfy the initial conditions. Using u(0) = 2, we have

2 = c1

Differentiating the expression for u(x) gives

du

dx
= (c1 + c2x)(−3e−3x) + c2e−3x

and therefore

du

dx
(0) = −3c1 + c2 = 0

Hence,

c2 = 6

The specific solution is then

u(x) = 2(1 + 3x)e−3x

Find a general solution of the differential equation

d2u

dx2
+ 2

du

dx
+ 5u = 0

EXAMPLE 1.6.3



1.6.1 Maple Applications
Second-order initial-value problems can also be solved with Maple. Define a differential equa-
tion ode as usual, and suppose u(x0) = a, u′(x0) = b. Then, use the following code:

>dsolve({ode, u(x_0)=a, D(u)(x_0)=b}, u(x));

For Example 1.6.2, we would use these commands:

>ode:=diff(u(x), x$2) + 6*diff(u(x), x) + 9*u(x)=0;

>dsolve({ode, u(0)=2, D(u)(0)=0}, u(x));

and get this output:

u(x)= 2e(−3x)+ 6e(−3x)x
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� Solution

The assumed solution u(x) = emx leads to the characteristic equation

m2 + 2m + 5 = 0

The roots to this equation are

m1 = −1 + 2i, m2 = −1 − 2i

A general solution is then

u(x) = c1e(−1+2i)x + c2e(−1−2i)x

Alternate general solutions, having the virtue that the functions involved are real, can be written as (see
Eqs. 1.6.13 and 1.6.14)

u(x) = e−x(A cos 2x + B sin 2x)

or

u(x) = c3e−x sin(2x + c4)

Note that the second of these forms is equivalent to Eq. 1.6.14 since cos(2x + a) = sin(2x + b) for the
appropriate choices of a and b. Also, note that

W (x) =
∣∣∣∣∣∣

e−x cos 2x e−x sin 2x
d

dx
(e−x cos 2x)

d

dx
(e−x sin 2x)

∣∣∣∣∣∣ = 2e−2x > 0

for all real x .

EXAMPLE 1.6.3 (Continued)
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Problems

Find a general solution in terms of exponentials for each
differential equation.

1. u′′ − u′ − 6u = 0

2. u′′ − 9u = 0

3. u′′ + 9u = 0

4. 4u′′ + u = 0

5. u′′ − 4u′ + 4u = 0

6. u′′ + 4u′ + 4u = 0

7. u′′ − 4u′ − 4u = 0

8. u′′ + 4u′ − 4u = 0

9. u′′ − 4u = 0

10. u′′ − 4u′ + 8u = 0

11. u′′ + 2u′ + 10u = 0

12. 2u′′ + 6u′ + 5u = 0

Write a general solution, in the form of Eq. 1.6.9 or 1.6.13, for
each equation.

13. u′′ − u′ − 6u = 0

14. u′′ − 9u = 0

15. u′′ + 9u = 0

16. 4u′′ + u = 0

17. u′′ − 4u′ − 4u = 0

18. u′′ + 4u′ − 4u = 0

19. u′′ − 4u = 0

20. u′′ − 4u′ + 8u = 0

21. u′′ + 2u′ + 10u = 0

22. u′′ + 5u′ + 3u = 0

Find a general solution, in the form of Eq. 1.6.11 or 1.6.14, for
each equation.

23. u′′ − u′ − 6u = 0

24. u′′ − 9u = 0

25. u′′ + 9u = 0

26. 4u′′ + u = 0

27. u′′ − 4u′ − 4u = 0

28. u′′ + 4u′ − 4u = 0

29. u′′ − 4u = 0

30. u′′ − 4u′ + 8u = 0

31. u′′ + 2u′ + 5u = 0

32. u′′ + 5u′ + 3u = 0

Solve each initial-value problem. Express each answer in the
form of Eq. 1.6.10, 1.6.13, or 1.6.19.

33. u′′ + 9u = 0, u(0) = 0, u′(0) = 1

34. u′′ + 5u′ + 6u = 0, u(0) = 2, u′(0) = 0

35. u′′ + 4u′ + 4u = 0, u(0) = 0, u′(0) = 2

36. u′′ − 4u = 0, u(0) = 2, u′(0) = 1

Find the answer to each initial-value problem. Express each
answer in the form of Eq. 1.6.9 or 1.6.13.

37. u′′ + 9u = 0, u(0) = 0, u′(0) = 1

38. u′′ + 5u′ + 6u = 0, u(0) = 2, u′(0) = 0

39. u′′ − 4u = 0, u(0) = 2, u′(0) = 1

Determine the solution to each initial-value problem. Express
each answer in the form Eq. 1.6.10 or 1.6.13.

40. u′′ + 9u = 0, u(0) = 0, u′(0) = 1

41. u′′ + 5u′ + 6u = 0, u(0) = 2, u′(0) = 0

42. u′′ − 4u = 0, u(0) = 2, u′(0) = 1

43. Consider the differential equation

u(n) + a1u(n−1) + · · · + an−1u′ + anu = 0

The characteristic equation for this differential equation is

mn + a1mn−1 + · · · + an−1m + an = 0

Let m1, m2, . . . , mn be the roots of this algebraic equation.
Explain why em1x , em2x , . . . , emn x are solutions of the differ-
ential equation.

Use the result of Problem 43 to solve each differential equation.

44. u(3) − u = 0

45. u(3) − 2u(2) − u(1) + 2u = 0

46. u(4) − u(2) = 0

47. u(4) − u = 0

48. u(4) − u(3) = 0

Use Maple to solve

49. Problem 29

50. Problem 30

51. Problem 31



52. Problem 32

53. Problem 33

54. Problem 34

55. Problem 35

56. Problem 36

57. Problem 37

58. Problem 44

59. Problem 45

60. Problem 46

61. Problem 47

62. Problem 48

There are many physical phenomena that are described with linear, second-order homogeneous
differential equations. We wish to discuss one such phenomenon, the free motion of a spring–
mass system, as an illustrative example. We shall restrict ourselves to systems with 1 degree of
freedom; that is, only one independent variable is needed to describe the motion. Systems
requiring more than one independent variable, such as a system with several masses and springs,
lead to simultaneous ordinary differential equations and will not be considered in this section.
However, see Chapter 5.

Consider the simple spring–mass system shown in Fig. 1.5. We shall make the following
assumptions:

1. The mass M , measured in kilograms, is constrained to move in the vertical directions
only.

2. The viscous damping C , with units of kilograms per second, is proportional to the
velocity dy/dt . For relatively small velocities this is usually acceptable; however, for
large velocities the damping is more nearly proportional to the square of the velocity.

3. The force in the spring is K d , where d is the distance measured in meters from the
unstretched position. The spring modulus K , with units of newtons per meter (N/m), is
assumed constant.

1.7 SPRING–MASS SYSTEM: FREE MOTION
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Unstretched spring

K

K

M
y � 0

h

Equilibrium

(a)

K
C

M

y(t)

Equilibrium
position

(b)

Mg

K(y � h)C 
dy
dt

Free-body diagram

(c)
Figure 1.5 Spring–mass system.



4. The mass of the spring is negligible compared with the mass M .
5. No external forces act on the system.

Newton’s second law is used to describe the motion of the lumped mass. It states that the sum
of the forces acting on a body in any particular direction equals the mass of the body multiplied
by the acceleration of the body in that direction. This is written as

∑
Fy = May (1.7.1)

for the y direction. Consider that the mass is suspended from an unstretched spring, as shown in
Fig. 1.5a. The spring will then deflect a distance h, where h is found from the relationship

Mg = hK (1.7.2)

which is a simple statement that for static equilibrium the weight must equal the force in the
spring. The weight is the mass times the local acceleration of gravity. At this stretched position we
attach a viscous damper, a dashpot, and allow the mass to undergo motion about the equilibrium
position. A free-body diagram of the mass is shown in Fig. 1.5c. Applying Newton’s second law,
we have, with the positive direction downward,

Mg − C
dy

dt
− K (y + h) = M

d2 y

dt2
(1.7.3)

Using Eq. 1.7.2, this simplifies to

M
d2 y

dt2
+ C

dy

dt
+ K y = 0 (1.7.4)

This is a second-order, linear, homogeneous, ordinary differential equation. Let us first consider
the situation where the viscous damping coefficient C is sufficiently small that the viscous
damping term may be neglected.

1.7.1 Undamped Motion
For the case where C is small, it may be acceptable, especially for small time spans, to neglect
the damping. If this is done, the differential equation that describes the motion is

M
d2 y

dt2
+ K y = 0 (1.7.5)

We assume a solution of the form emt , which leads to the characteristic equation

m2 + K

M
= 0 (1.7.6)
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The two roots are

m1 =
√

K

M
i, m2 = −

√
K

M
i (1.7.7)

The solution is then

y(t) = c1e
√

K /M it + c2e−
√

K /M it (1.7.8)

or equivalently (see Eq. 1.6.13),

y(t) = A cos

√
K

M
t + B sin

√
K

M
t (1.7.9)

where c1 + c2 = A and i (c1 − c2) = B . The mass will undergo its first complete cycle as t goes
from zero to 2π/

√
K/M . Thus, one cycle is completed in 2π/

√
K/M second, the period. The

number of cycles per second, the frequency, is then 
√

K/M/2π . The angular frequency ω0 is
given by

ω0 =
√

K

M
(1.7.10)

The solution is then written in the preferred form,

y(t) = A cos ω0t + B sin ω0t (1.7.11)

This is the motion of the undamped mass. It is often referred to as a harmonic oscillator. It is
important to note that the sum of the sine and cosine terms in Eq. 1.7.11 can be written as (see
Eq. 1.6.14)

y(t) = � cos(ω0t − δ) (1.7.12)

where the amplitude � is related to A and B by � = √
A2 + B2 and tan δ = A/B . In this form

� and δ are the arbitrary constants.
Two initial conditions, the initial displacement and velocity, are necessary to determine the

two arbitrary constants. For a zero initial velocity the motion is sketched in Fig. 1.6.
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1.7.2 Damped Motion
Let us now include the viscous damping term in the equation. This is necessary for long time
spans, since viscous damping is always present, however small, or for short time periods, in
which the damping coefficient C is not small. The describing equation is

M
d2 y

dt2
+ C

dy

dt
+ K y = 0 (1.7.13)

Assuming a solution of the form emt , the characteristic equation,

Mm2 + Cm + K = 0 (1.7.14)

results. The roots of this equation are

m1 = − C

2M
+ 1

2M

√
C2 − 4M K , m2 = − C

2M
− 1

2M

√
C2 − 4M K (1.7.15)

Let � = √
C2 − 4K M/2M . The solution for m1 �= m2 is then written as

y(t) = c1e−(C/2M)t+�t + c2e−(C/2M)t−�t (1.7.16)

or, equivalently,

y(t) = e−(C/2M)t [c1e�t + c2e−�t ] (1.7.17)
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Problems

1. Derive the differential equation that describes the motion
of a mass M swinging from the end of a string of length
L . Assume small angles. Find the general solution of the
differential equation.

2. Determine the motion of a mass moving toward the ori-
gin with a force of attraction proportional to the distance
from the origin. Assume that the 10-kg mass starts at rest
at a distance of 10 m and that the constant of proportion-
ality is 10 N/m. What will the speed of the mass be 5 m
from the origin?

3. A spring–mass system has zero damping. Find the gen-
eral solution and determine the frequency of oscillation if
M = 4 kg and K = 100 N/m.

4. Calculate the time necessary for a 0.03-kg mass hanging
from a spring with spring constant 0.5 N/m to undergo
one complete oscillation.

5. A 4-kg mass is hanging from a spring with K = 100 N/m.
Sketch, on the same plot, the two specific solutions found
from (a) y(0) = 0.50 m, ẏ(0) = 0, and (b) y(0) = 0,
ẏ(0) = 10 m/s. The coordinate y is measured from the
equilibrium position.

6. Solve the initial-value problem resulting from the un-
damped motion of a 2-kg mass suspended by a 50-N/m
spring if y(0) = 2 m and ẏ(0) = −10 m/s.

7. Sketch, on the same plot, the motion of a 2-kg mass and
that of a 10-kg mass suspended by a 50-N/m spring
if motion starts from the equilibrium position with
ẏ(0) = 10 m/s.



The solution obviously takes on three different forms depending on the magnitude of the damp-
ing. The three cases are:

Case 1: Overdamping C2 − 4KM > 0. m1 and m2 are real.
Case 2: Critical damping C2 − 4KM = 0. m1 = m2.
Case 3: Underdamping C2 − 4KM < 0. m1 and m2 are complex.

Let us investigate each case separately.

Case 1. Overdamping. For this case the damping is so large that C2 > 4KM . The roots m1

and m2 are real and the solution is best presented as in Eq. 1.7.17. Several overdamped motions
are shown in Fig. 1.7. For large time the solution approaches y = 0.

Case 2. Critical damping. For this case the damping is just equal to 4KM. There is a double
root of the characteristic equation, so the solution is (see Eq. 1.6.19)

y(t) = c1emt + c2temt (1.7.18)

For the spring–mass system this becomes

y(t) = e−(C/2M)t [c1 + c2t] (1.7.19)

A sketch of the solution is quite similar to that of the overdamped case. It is shown in Fig. 1.8.

Case 3. Underdamping. The most interesting of the three cases is that of underdamped
motion. If C2 − 4KM is negative, we may write Eq. 1.7.17 as, using � = √

4KM − C2/2M ,

y(t) = e−(C/2M)t [c1ei�t + c2e−i�t ] (1.7.20)
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This is expressed in the equivalent form (see Eq. 1.6.13)

y(t) = e−(C/2M)t [c3 cos �t + c4 sin �t] (1.7.21)

The motion is an oscillating motion with a decreasing amplitude with time. The frequency of
oscillation is 

√
4KM − C2/4π M and approaches that of the undamped case as C → 0.

Equation 1.7.21 can be written in a form from which a sketch can more easily be made. It is (see
Eq. 1.6.14)

y(t) = Ae−(C/2M)t cos (�t − δ) (1.7.22)

where

tan δ = c3

c4
, A =

√
c2

3 + c2
4 (1.7.23)

The underdamped motion is sketched in Fig. 1.9 for an initial zero velocity. The motion
damps out for large time.

The ratio of successive maximum amplitudes is a quantity of particular interest for under-
damped oscillations. We will show in Example 1.7.1 that this ratio is given by

yn

yn+2
= eπC/�M (1.7.24)

It is constant for a particular underdamped motion for all time. The logarithm of this ratio is
called the logarithmic decrement D:

D = ln
yn

yn+2
= πC

�M
(1.7.25)
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Returning to the definition of �, we find

D = 2πC√
4KM − C2

(1.7.26)

In terms of the critical damping, Cc = 2
√

KM ,

D = 2πC√
C2

c − C2
(1.7.27)

or, alternatively,

C

Cc
= D√

D2 + 4π2
(1.7.28)

Since yn and yn+2 are easily measured, the logarithmic decrement D can be evaluated quite sim-
ply. This allows a quick method for determining the fraction of the critical damping that exists
in a particular system.
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Figure 1.9 Underdamped motion.

Determine the ratio of successive maximum amplitudes for the free motion of an underdamped oscillation.

� Solution

The displacement function for an underdamped spring–mass system can be written as

y(t) = Ae−(C/2M)t cos (�t − δ)

To find the maximum amplitude we set dy/dt = 0 and solve for the particular t that yields this condition.
Differentiating, we have

dy

dt
= −

[
C

2M
cos(�t − δ) + � sin(�t − δ)

]
Ae−(C/2M)t = 0

EXAMPLE 1.7.1
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Problems

1. A damped spring–mass system involves a mass of 4 kg,
a spring with K = 64 N/m, and a dashpot with
C = 32 kg/s. The mass is displaced 1 m from its equilib-
rium position and released from rest. Sketch y(t) for the
first 2 s.

2. A damped spring–mass system is given an initial velocity
of 50 m/s from the equilibrium position. Find y(t) if
M = 4 kg, K = 64 N/m, and C = 40 kg/s.

3. A body weighs 50 N and hangs from a spring with spring
constant of 50 N/m. A dashpot is attached to the body.
If the body is raised 2 m from its equilibrium position
and released from rest, determine the solution if (a) C =
17.7 kg/s and (b) C = 40 kg/s.

4. After a period of time a dashpot deteriorates, so the
damping coefficient decreases. For Problem 1 sketch
y(t) if the damping coefficient is reduced to 20 kg/s.

This gives

tan(�t − δ) = − C

2M�

or, more generally,

tan−1

(
− C

2M�

)
+ nπ = �t − δ

The time at which a maximum occurs in the amplitude is given by

t = δ

�
− 1

�
tan−1 C

2M�
+ nπ

�

where n = 0 represents the first maximum, n = 2 the second maximum, and so on. For n = 1, a minimum re-
sults. We are interested in the ratio yn/yn+2. If we let

B = δ

�
− 1

�
tan−1 C

2M�

this ratio becomes

yn

yn+2
=

Ae−(C/2M)[B+(nπ/�)] cos

[
�

(
B + nπ

�

)
− δ

]

Ae−(C/2M)[B+(n+2/�)π] cos

[
�

(
B + n + 2

�
π

)
− δ

]

= eπC/�M cos[B� + nπ − δ]

cos[B� + nπ − δ + 2π]
= eπC/�M

Hence, we see that the ratio of successive maximum amplitudes is dependent only on M , K , and C and is
independent of time. It is constant for a particular spring–mass system.

EXAMPLE 1.7.1 (Continued)
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5. Solve the overdamped motion of a spring–mass system
with M = 2 kg, C = 32 kg/s, K = 100 N/m if y(0) = 0
and ẏ(0) = 10 m/s. Express your answer in the form of
Eq. 1.7.17.

6. Show that the general solution of the overdamped motion
of a spring–mass system can be written as

y(t) = c1e−(C/2M)t sinh

√
C2 − 4K M t

2M
+ c2

7. Amaximum occurs for the overdamped motion of curve 1
of Fig. 1.7. For Problem 5 determine the time at which
this maximum occurs.

8. For the overdamped motion of curve 1 of Fig. 1.7, show
that the maximum occurs when

t = 2M√
C2 − 4K M

tanh−1

√
C2 − 4K M

C

9. Find ymax for the motion of Problem 5.

10. Using the results of Problems 6 and 8, find an expression
for ymax of curve 1 of Fig. 1.7 if ν0 is the initial velocity.

11. Determine the time between consecutive maximum am-
plitudes for a spring–mass system in which M = 30 kg,
K = 2000 N/m, and C = 300 kg/s.

12. Find the damping as a percentage of critical damping for
the motion y(t) = 2e−t sin t . Also find the time for the
first maximum and sketch the curve.

13. Find the displacement y(t) for a mass of 5 kg hanging
from a spring with K = 100 N/m if there is a dashpot at-
tached having C = 30 kg/s. The initial conditions are
y(0) = 1m and dy/dt (0) = 0. Express the solution in all
three forms. Refer to Eqs. (1.7.20), (1.7.21), (1.7.22).

14. Computer Laboratory Activity (part I): Consider a
damped spring system, where a 3-kg mass is attached to
a spring with modulus 170/3 N/m. There is a dashpot at-
tached that offers resistance equal to twice the instanta-
neous velocity of the mass. Determine the equation of
motion if the weight is released from a point 10 cm above
the equilibrium position with a downward velocity of
0.24 m/s. Create a graph of the equation of motion.

15. Computer Laboratory Activity (part II): It is possible
to rewrite the equation of motion in the form
aebt sin(ct + d). Determine constants a, b, c, and d . In
theory, it will take infinite time for the oscillations of the
spring to die out. If our instruments are not capable of
measuring a change of motion of less than 2 mm, deter-
mine how long it will take for the spring to appear to be
at rest, based on the measurements by our instruments.

1.7.3 The Electrical Circuit Analog
We now consider the solution to Eq. 1.4.4 for the case dv/dt = 0. By comparing Eq. 1.4.4 with
Eq. 1.7.4, we see that we can interchange the spring-mass system parameters with the circuit
parameters as follows:

Spring–Mass Series Circuit

M → L

C → R

K → 1/C

The solutions that we have just considered for y(t) may then be taken as solutions for i(t).
Thus, for the undamped circuit, we have R = 0, and there is no dissipation of electrical

energy. The current in this case is given by (see Eq. 1.7.11)

i(t) = A cos ω0t + B sin ω0t (1.7.29)

where

ω0 =
√

1

LC
(1.7.30)

This value is typically very large for electrical circuits, since both L and C are usually quite
small.
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For the damped circuit the solution for i(t) may be deduced from Eq. 1.7.17 to be

i(t) = e−(R /2L)t
[
c1e

√
R2−4L/C(t/2L) + c2e−

√
R2−4L/C(t/2L)

]
(1.7.31)

Now the damping criteria become

Case 1: Overdamped R2 − 4L

C
> 0

Case 2: Critically damped R2 − 4L

C
= 0

Case 3: Underdamped R2 − 4L

C
< 0
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Use Kirchhoff’s second law to establish the differential equation for the parallel electrical circuit shown. Give the
appropriate analogies with the spring–mass system and write the solution to the resulting differential equation.

� Solution

Kirchhoff’s second law states that the current flowing to a point in a circuit must equal the current flowing
away from the point. This demands that

i(t) = i1 + i2 + i3

Use the observed relationships of current to impressed voltage for the components of our circuit,

current flowing through a resistor = v

R

current flowing through a capacitor = C
dv

dt

current flowing through an inductor = 1

L

∫
v dt

The equation above becomes

i(t) = v

R
+ C

dv

dt
+ 1

L

∫
v dt

i2

i3

R

i(t)

Current source

i C

L
i1

EXAMPLE 1.7.2
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Problems

1. An electrical circuit is composed of an inductor with
L = 10−3 H, a capacitor with C = 2 × 10−5 F, and a re-
sistor. Determine the critical resistance that will just lead
to an oscillatory current if the elements are connected
(a) in series and (b) in parallel.

2. The amplitudes of two successive maximum currents in a
series circuit containing an inductor with L = 10−4 H
and a capacitor with C = 10−6 F are measured to be 0.02
A and 0.01 A. Determine the resistance and write the
solution for i(t) in the form of Eq. (1.7.22).

3. Determine the current i(t) in a series circuit containing a
resistor with R = 20 �, a capacitor with C = 10−6/2 F,

and an inductor with L = 10−3 H. The initial conditions
are i(0) = 10 A and (di/dt)(0) = 0.

4. An input torque on a circular shaft is T (t). It is resisted
by a clamping torque proportional to the rate of angle
change dθ/dt and an elastic torque proportional to the
angle itself, the constants of proportionality being c and
k, respectively. We have observed that the moment of
inertia I times the angular acceleration d2θ/dt2 equals
the net torque. Write the appropriate differential equation
and note the analogy with the spring-mass system.

A general solution of the second-order equation of the form

d2u

dx2
+ a

du

dx
+ bu = g(x) (1.8.1)

1.8 NONHOMOGENEOUS, SECOND-ORDER, LINEAR EQUATIONS 
WITH CONSTANT COEFFICIENTS

If we assume the current source to be a constant and differentiate our expression for i(t), we find the differ-
ential equation to be 

C
d2v

dt2
+ 1

R

dv

dt
+ v

L
= 0

The analogy with the spring–mass system is

M −→ C

C −→ 1

R

K −→ 1

L
The solution to the homogeneous equation above is

v(t) = e−(t/2C R)
[
c1e

√
(1/R2)−(4C/L)(t/2C) + c2e−

√
(1/R2)−(4C/L)(t/2C)

]

EXAMPLE 1.7.2 (Continued)



is found by adding any particular solution up(x) to a general solution uh(x) of the homogeneous
equation

d2u

dx
+ a

du

dx
+ bu = 0 (1.8.2)

The solution of the homogeneous equation was presented in Section 1.6; therefore, we must only
find up(x). One approach that may be taken is called the method of undetermined coefficients.
Three common types of functions, which are terms often found in g(x), are listed below. Let us
present the form of up(x) for each.

1. g(x) is a polynomial of degree n and k = 0 is not a root of the characteristic equation.
Choose

up(x) = A0 + A1x + · · · + An xn (1.8.3)

where A0, A1, . . . , An are undetermined coefficients. If k = 0 is a single root of the
characteristic equation, choose

up(x) = x(A0 + A1x + · · · + An xn) (1.8.4)

If k = 0 is a double root, choose

up(x) = x2(A0 + A1x + · · · + An xn) (1.8.5)

2. g(x) is an exponential function Cekx , and k is not a root of the characteristic equation.
Choose

up(x) = Aekx (1.8.6)

If k is a single root of the characteristic equation,

up(x) = Axekx (1.8.7)

and if k is a double root,

up(x) = Ax2ekx (1.8.8)

3. g(x) is a sine or cosine function (e.g., C cos kx ), and ik is not a root of the
characteristic equation. Choose

up(x) = A cos kx + B sin kx (1.8.9)

If ik is a single root of the characteristic equation,

up(x) = Ax cos kx + Bx sin kx (1.8.10)

(Note: ik cannot be a double root, since a and b are real. The real equation
m2 + am + b has ik and −ik as roots)
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Should g(x) include a combination of the above functions, the particular solution would be
found by superimposing the appropriate particular solutions listed above. For functions g(x)

that are not listed above, the particular solution must be found using some other technique.
Variation of parameters, presented in Section 1.11, will always yield a particular solution.
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EXAMPLE 1.8.1

Find a general solution of the differential equation

d2u

dx2
+ u = x2

� Solution

The solution of the homogeneous equation

d2u

dx2
+ u = 0

is found to be (use the method of Section 1.6)

uh(x) = c1 cos x + c2 sin x

A particular solution is assumed to have the form

up(x) = Ax2 + Bx + C

This is substituted into the original differential equation to give

2A + Ax2 + Bx + C = x2

Equating coefficients of the various powers of x , we have

x0 : 2A + C = 0

x1 : B = 0

x2 : A = 1

These equations are solved simultaneously to give the particular solution

up(x) = x2 − 2

Finally, a general solution is

u(x) = uh(x) + up(x)

= c1 cos x + c2 sin x + x2 − 2
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EXAMPLE 1.8.2

Find the general solution of the differential equation

d2u

dx2
+ 4u = 2 sin 2x

� Solution

The solution of the homogeneous equation is

uh(x) = c1 cos 2x + c2 sin 2x

One root of the characteristic equation is 2i ; hence, we assume a solution

up(x) = Ax cos 2x + Bx sin 2x

Substitute this into the original differential equation:

−2A sin 2x + 2B cos 2x − 2A sin 2x + 2B cos 2x − 4A cos 2x

− 4Bx sin 2x + 4Ax cos 2x + 4Bx sin 2x = 2 sin 2x

Equating coefficients yields

sin 2x : −2A − 2A = 2
cos 2x : 2B + 2B = 0

x sin 2x : −4B + 4B = 0
x cos 2x : −4A + 4A = 0

These equations require that A = − 1
2 and B = 0. Thus,

up(x) = −1

2
x cos 2x

A general solution is then

u(x) = uh(x) + up(x)

= c1 cos 2x + c2 sin 2x − 1

2
x cos 2x

Find a particular solution of the differential equation

d2u

dx2
+ du

dx
+ 2u = 4ex + 2x2

EXAMPLE 1.8.3



We conclude this section with one more illustration. The equation

d2u

dx2
− u = −1 (1.8.11)

has general solutions

û(x) = Aex + Be−x + 1 (1.8.12)

and

ũ(x) = c1ex + c2e−x + 2 cosh2 x

2
(1.8.13)

which explains why we refer to “a” general solution rather than “the” general solution. We leave
it to the student (see Problem 21) to show that the family of solutions described by û and ũ are
identical, despite the radical difference in appearance between û and ũ.
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� Solution

Assume the particular solution to have the form

up(x) = Aex + Bx2 + Cx + D

Substitute this into the given differential equation and there results

Aex + 2B + Aex + 2Bx + C + 2Aex + 2Bx2 + 2Cx + 2D = 4ex + 2x2

Equating the various coefficients yields

ex : A + A + 2A = 4
x0 : 2B + C + 2D = 0
x1 : 2B + 2C = 0
x2 : 2B = 2

From the equations above we find A = 1, B = 1, C = −1, and D = − 1
2 . Thus,

up(x) = ex + x2 − x − 1

2

EXAMPLE 1.8.3 (Continued)

Problems

Find a particular solution for each differential equation.

1.
d2u

dx2
+ 2u = 2x

2.
d2u

dx2
+ du

dx
+ 2u = 2x

3.
d2u

dx2
+ u = e−x

4.
d2u

dx2
− u = ex



5.
d2u

dx2
+ 10u = 5 sin x

6.
d2u

dx2
+ 9u = cos 3x

7.
d2u

dx2
+ 4

du

dx
+ 4u = e−2x

8.
d2u

dx2
+ 9u = x2 + sin 3x

Find a general solution for each differential equation

9.
d2u

dx2
+ u = e2x

10.
d2u

dx2
+ 4

du

dx
+ 4u = x2 + x + 4

11.
d2u

dx2
+ 9u = x2 + sin 2x

12.
d2u

dx2
+ 4u = sin 2x

13.
d2u

dx2
− 16u = e4x

14.
d2u

dx2
+ 5

du

dx
+ 6u = 3 sin 2x

Find the solution for each initial-value problem.

15.
d2u

dx2
+ 4

du

dx
+ 4u = x2, u(0) = 0,

du

dx
(0) = 1

2

16.
d2u

dx2
+ 4u = 2 sin x, u(0) = 1,

du

dx
(0) = 0

17.
d2u

dx2
+ 4

du

dx
− 5u = x2 + 5, u(0) = 0,

du

dx
(0) = 0

18.
d2u

dx2
+ 4u = 2 sin 2x, u(0) = 0,

du

dx
(0) = 0

19.
d2u

dx2
+ 7

du

dx
+ 10u = cos 2x, u(0) = 0,

du

dx
(0) = 0

20.
d2u

dx2
− 16u = 2e4x , u(0) = 0,

du

dx
(0) = 0

21. Show that the solutions û and ũ of Eqs. 1.8.12 and 1.8.13
are identical.

22. Suppose that k is a root (real or complex) of the charac-
teristic equation of u′′ + au′ + bu = 0. Explain why
Aekx cannot be a solution of u′′ + au′ + bu = g(x), for
any g(x) �= 0 regardless of the choice of A.

23. If k = 0 is a root of the characteristic equation of
u′′ + au′ + bu = 0, show that b = 0.

24. Use the result of Problem 23 to show that no choice of
undetermined constants, A0, A1, . . . , An will yield a
solution of the form A0 + A1x + · · · + An xn for the
equation

u′′ + au′ + bu = c0 + c1x + · · · + cn xn

if k = 0 is a root of the characteristic equation of
u′′ + au′ + bu = 0.

Use Maple to solve

25. Problem 15

26. Problem 16

27. Problem 17

28. Problem 18

29. Problem 19

30. Problem 20

The spring–mass system shown in Fig. 1.5 is acted upon by a force F(t), a forcing function, as
shown in Fig. 1.10. The equation describing this motion is again found by applying Newton’s
second law to the mass M . We have

F(t) + Mg − K (y + h) − C
dy

dt
= M

d2 y

dt2
(1.9.1)

where h is as defined in Fig. 1.5, so that Mg = K h . The equation above becomes

M
d2 y

dt2
+ C

dy

dt
+ K y = F(t) (1.9.2)
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It is a nonhomogeneous equation and can be solved by the techniques introduced in Section 1.8.
We shall discuss the form of the solution for a sinusoidal forcing function,

F(t) = F0 cos ωt (1.9.3)

The particular solution has the form

yp(t) = A cos ωt + B sin ωt (1.9.4)

Substitute into Eq. 1.9.2 to obtain 

[(K − Mω2)A + ωC B] cos ωt + [(K − Mω2)B − ωC A] sin ωt = F0 cos ωt (1.9.5)

Equating coefficients of cos ωt and sin ωt results in

(K − Mω2)A + ωC B = F0

−ωC A + (K − Mω2)B = 0
(1.9.6)

A simultaneous solution yields

A = F0
K − Mω2

(K − Mω2)2 + ω2C2

B = F0
ωC

(K − Mω2)2 + ω2C2

(1.9.7)

The particular solution is then

yp(t) = (K − Mω2)F0

(K − Mω2)2 + ω2C2

[
cos ωt + ωC

K − Mω2
sin ωt

]
(1.9.8)
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K(y � h)C 
dy
dt

Mg

Figure 1.10 Spring–mass system with a
forcing function.



This is added to the homogeneous solution presented in Section 1.7 to form the general solution

y(t) = e−(C/2M)t
[
c1e

√
C2−4M K (t/2M) + c2e−

√
C2−4M K (t/2M)

]
+ (K − Mω2)F0

(K − Mω2)2 + ω2C2

[
cos ωt + ωC

K − Mω2
sin ωt

]
(1.9.9)

Let us now discuss this solution in some detail.

1.9.1 Resonance
An interesting and very important phenomenon is observed in the solution above if we let
the damping coefficient C , which is often very small, be zero. The general solution is then (see
Eq. 1.7.11 and let C = 0 in Eq. 1.9.8)

y(t) = c1 cos ω0t + c2 sin ω0t + F0

M
(
ω2

0 − ω2
) cos ωt (1.9.10)

where ω0 = √
K/M and ω0/2π is the natural frequency of the free oscillation. Consider the

condition ω → ω0; that is, the input frequency approaches the natural frequency. We observe
from Eq. 1.9.10 that the amplitude of the particular solution becomes unbounded as ω → ω0.
This condition is referred to as resonance.14 The amplitude, of course, does not become un-
bounded in a physical situation; the damping term may limit the amplitude, the physical situa-
tion may change for large amplitude, or failure may occur. The latter must be guarded against in
the design of oscillating systems. Soldiers break step on bridges so that resonance will not occur.
The spectacular failure of the Tacoma Narrows bridge provided a very impressive example of
resonant failure. One must be extremely careful to make the natural frequency of oscillating sys-
tems different, if at all possible, from the frequency of any probable forcing function.

If ω = ω0, Eq. 1.9.10 is, of course, not a solution to the differential equation with no
damping. For that case iω0 is a root of the characteristic equation

m2 + ω2
0 = 0 (1.9.11)

of the undamped spring–mass system. The particular solution takes the form

yp(t) = t (A cos ω0t + B sin ω0t) (1.9.12)

By substituting into the differential equation

d2 y

dt2
+ ω2

0 y = F0

M
cos ω0t (1.9.13)

we find the particular solution to be

yp(t) = F0

2Mω0
t sin ω0t (1.9.14)
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As time t becomes large, the amplitude becomes large and will be limited by either damping, a
changed physical condition, or failure. The particular solution yp(t) for resonance is shown in
Fig. 1.11.

1.9.2 Near Resonance
Another phenomenon occurs when the forcing frequency is approximately equal to the natural
frequency; that is, the quantity ω0 − ω is small. Let us consider a particular situation for which
dy/dt (0) = 0 and y(0) = 0. The arbitrary constants in Eq. 1.9.10 are then

c2 = 0, c1 = − F0

M
(
ω2

0 − ω2
) (1.9.15)

The solution then becomes 

y(t) = F0

M
(
ω2

0 − ω2
) [cos ωt − cos ω0t] (1.9.16)

With the use of a trigonometric identity, this can be put in the form15

y(t) = 2F0

M
(
ω2

0 − ω2
) sin

[
(ω0 + ω)

t

2

]
sin

[
(ω0 − ω)

t

2

]
(1.9.17)

The quantity ω0 − ω is small; thus, the period of the sine wave sin[(ω0 − ω)(t/2)] is large
compared to the period of sin [(ω0 + ω)(t/2)].

For ω0
∼= ω, we can write

ω0 + ω

2
∼= ω,

ω0 − ω

2
= ε (1.9.18)
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F0t

2M�0

yp

t

Figure 1.11 The particular solution
for resonance.

15This is accomplished by writing

cos ωt = cos

[(
ω + ω0

2

)
t +

(
ω − ω0

2

)
t

]
and

cos ω0t = cos

[(
ω + ω0

2

)
t −

(
ω − ω0

2

)
t

]
and then using the trigonometric identity

cos(α + β) = cos α cos β − sin α sin β



where ε is small. Then the near-resonance equation 1.9.17 is expressed as

y(t) =
[

2F0 sin εt

M
(
ω2

0 − ω2
)
]

sin ωt (1.9.19)

where the quantity in brackets is the slowly varying amplitude. A plot of y(t) is sketched in
Fig. 1.12. The larger wavelength wave appears as a “beat” and can often be heard when two
sound waves are of approximately the same frequency. It’s this beat that musicians hear when an
instrument is out of tune with a piano.
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t

y(t)

Figure 1.12 Near resonance—“beats.”

Problems

1. Find the solution for M(d2 y/dt2) + C(dy/dt) +
Mg = 0. Show that this represents the motion of a body
rising with drag proportional to velocity.

2. For Problem 1 assume that the initial velocity is 100 m/s
upward, C = 0.4 kg/s, and M = 2 kg. How high will the
body rise?

3. For the body of Problem 2 calculate the time required for
the body to rise to the maximum height and compare this to
the time it takes for the body to fall back to the original po-
sition. Note: The equation for a body falling will change.

4. A body weighing 100 N is dropped from rest. The drag
is assumed to be proportional to the first power of the
velocity with the constant of proportionality being 0.5.
Approximate the time necessary for the body to attain
terminal velocity. Define terminal velocity to be equal to
0.99V∞, where V∞ is the velocity attained as t → ∞.
(For a blunt body the drag would depend on the velocity
squared.)

5. Find a general solution to the equation M(d2 y/dt2) +
K y = F0 cos ωt and verify Eq. 1.9.10 by letting
ω0 = √

K/M .

6. A 2-kg mass is suspended by a spring with K = 32 N/m.
A force of 0.1 sin 4t is applied to the mass. Calculate the
time required for failure to occur if the spring breaks
when the amplitude of the oscillation exceeds 0.5 m. The
motion starts from rest and damping is neglected.

Solve each initial-value problem.

7. ÿ + 9y = 8 cos 2t, y(0) = 0, ẏ(0) = 0

8. ÿ + 9y = 8 cos 3t y(0) = 0, ẏ(0) = 0

9. ÿ + 16y = −2 sin 4t , y(0) = 2, ẏ(0) = 0

10. ÿ + 16y = 2 sin t y(0) = 0, y(0) = 10

11. ÿ + 25y = t − 2 y(0) = 1, ẏ(0) = 4

12. ÿ + y = 2e−t y(0) = 0, ẏ(0) = 2

For each simple series circuit (see Fig. 1.1), find the current
i(t) if i(0) = q(0) = 0.

13. C = 0.02 F, L = 0.5 H, R = 0, and v = 10 sin 10t

14. C = 10−4 F, L = 1.0 H,R = 0, and v = 120 sin 100t

15. C = 10−3 F, L = 0.1 H, R = 0, and v = 240 cos 10t



16. A 20-N weight is suspended by a frictionless spring with
k = 98 N/m. A force of 2 cos 7t acts on the weight.
Calculate the frequency of the “beat” and find the maxi-
mum amplitude of the motion, which starts from rest.

17. A simple series circuit, containing a 10−3 F capacitor and
a 0.1 H inductor, has an imposed voltage of 120 cos 101t.
Determine the frequency of the “beat” and find the max-
imum current.

Use Maple to solve

18. Problem 7

19. Problem 8

20. Problem 9

21. Problem 10

22. Problem 11

23. Problem 12

1.9.3 Forced Oscillations with Damping
The homogeneous solution (see Eq. 1.7.17)

yh(t) = e−(C/2M)t
[
c1e

√
C2−4Mk(t/2M) + c2e−

√
C2−4M K (t/2M)

]
(1.9.20)

for damped oscillations includes a factor e−(C/2M)t which is approximately zero after a suffi-
ciently long time. Thus, the general solution y(t) tends to the particular solution yp(t) after a
long time; hence, yp(t) is called the steady-state solution. For short times the homogeneous
solution must be included and y(t) = yh(t) + yp(t) is the transient solution.

With damping included, the amplitude of the particular solution is not unbounded as
ω → ω0, but it can still become large. The condition of resonance can be approached, for the
case of extremely small damping. Hence, even with a small amount of damping, the condition
ω = ω0 is to be avoided, if at all possible.

We are normally interested in the amplitude. To better display the amplitude for the input
F0 cos ωt , write Eq. 1.9.8 in the equivalent form

yp(t) = F0√
M2

(
ω2

0 − ω2
)2 + ω2C2

cos(ωt − α) (1.9.21)

where we have used ω2
0 = K/M . The angle α is called the phase angle or phase lag. The

amplitude � of the oscillation is

� = F0√
M2

(
ω2

0 − ω2
)2 + ω2C2

(1.9.22)

We can find the maximum amplitude for any forcing function frequency by setting d�/dω = 0.
Do this and find that the maximum amplitude occurs when

ω2 = ω2
0 − C2

2M2
(1.9.23)

Note that for sufficiently large damping, C2 > 2M2ω2
0 , there is no value of ω that represents a

maximum for the amplitude. However, if C2 < 2M2ω2
0 , then the maximum occurs at the value

of ω as given by Eq. 1.9.23. Substituting this into Eq. 1.9.22 gives the maximum amplitude as

�max = 2F0 M

C
√

4M2ω2
0 − C2

(1.9.24)
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The amplitude given by Eq. 1.9.22 is sketched in Fig. 1.13 as a function of ω. Large relative
amplitudes can thus be avoided by a sufficient amount of damping, or by making sure |ω − ω0|
is relatively large.
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C � 0

C � ��2 �0M

�0

�

�

C �2�
0 M (Critical damping)

F0

M�0
2

Figure 1.13 Amplitude as a
function of ω for
various degrees
of damping.

The ratio of successive maximum amplitudes for a particular spring–mass system for which K = 100 N/m
and M = 4 kg is found to be 0.8 when the system undergoes free motion. If a forcing function F = 10 cos 4t
is imposed on the system, determine the maximum amplitude of the steady-state motion.

� Solution

Damping causes the amplitude of the free motion to decrease with time. The logarithmic decrement is found
to be (see Eq. 1.7.25)

D = ln
yn

yn+2
= ln

1

0.8
= 0.223

The damping is then calculated from Eq. 1.7.28. It is

C = Cc
D√

D2 + 4π2
= 2

√
K M

D√
D2 + 4π2

= 2
√

100 × 4
0.223√

0.2232 + 4π2
= 1.42 kg/s

The natural frequency of the undamped system is

ω0 =
√

K

M
=

√
100

4
= 5 rad/s

EXAMPLE 1.9.1
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For the network shown, using Kirchhoff’s laws, determine the currents i1(t) and i2(t), assuming all currents
to be zero at t = 0.

� Solution

Using Kirchhoff’s first law on the circuit on the left, we find that (see Eqs. 1.4.3)

40i1 + q

10−6
= 12 (1) 

where q is the charge on the capacitor. For the circuit around the outside of the network, we have

40i1 + 10−4 di2

dt
+ 20i2 = 12 (2)

Kirchhoff’s second law requires that

i1 = i2 + i3 (3)

Using the relationship

i3 = dq

dt
(4)

and the initial conditions, that i1 = i2 = i3 = 0 at t = 0, we can solve the set of equations above. To do this,
substitute (4) and (1) into (3). This gives

1

40
(12 − 106q) − dq

dt
= i2

v � 12 volts

R2 � 20 ohms

R1 � 40 ohms

i1

L � 10�4 henry

C � 10�6 farad

i3

i2

EXAMPLE 1.9.2

The maximum deflection has been expressed by Eq. 1.9.24. It is now calculated to be

�max = 2F0 M

C
√

4M2ω2
0 − C2

= 2 × 10 × 4

1.42
√

4 × 42 × 52 − 1.422
= 1.41 m

EXAMPLE 1.9.1 (Continued)
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Substituting this and (1) into (2) results in

10−4 d2q

dt2
+ 22.5

dq

dt
+ 1.5 × 106q = 6

The appropriate initial conditions can be found from (1) and (4) to be q = 12 × 10−6 and dq/dt = 0 at t = 0.
Solving the equation above, using the methods of this chapter, gives the charge as

q(t) = e−1.12×105t [c1 cos 48,200t + c2 sin 48,200t] + 4 × 10−6

The initial conditions allow the constants to be evaluated. They are

c1 = 8 × 10−6, c2 = 0.468 × 10−6

The current i1(t) is found using (1) to be

i1(t) = 0.2 − e−1.12×105t [0.2 cos 48,200t + 0.468 sin 48,200t]

The current i2(t) is found by using (4) and (3). It is

i2(t) = 0.2 + e−1.12×105t [−0.2 cos 48,200t + 2.02 sin 48,200t]

Note the high frequency and rapid decay rate, which is typical of electrical circuits.

EXAMPLE 1.9.2 (Continued)

Problems

1. Using the sinusoidal forcing function as F0 sin ωt , and
with C = 0 show that the amplitude F0/M(ω2

0 − ω2)

of the particular solution remains unchanged for the
spring–mass system.

2. Show that the particular solution given by Eq. 1.9.14 for
ω = ω0 follows from the appropriate equations for
F(t) = F0 cos ω0t .

Find the steady-state solution for each differential equation.

3.
d2 y

dt2
+ dy

dt
+ 4y = 2 sin 2t

4.
d2 y

dt2
+ 2

dy

dt
+ y = cos 3t

5.
d2 y

dt2
+ dy

dt
+ y = 2 sin t + cos t

6.
d2 y

dt2
+ 0.1

dy

dt
+ 2y = 2 sin 2t

7.
d2 y

dt2
+ 2

dy

dt
+ 5y = sin t − 2 cos 3t

8.
d2 y

dt2
+ dy

dt
+ 2y = cos t − sin 2t

Determine the transient solution for each differential equation.

9.
d2 y

dt2
+ 5

dy

dt
+ 4y = cos 2t

10.
d2 y

dt2
+ 7

dy

dt
+ 10y = 2 sin t − cos 2t

11.
d2 y

dt2
+ 4

dy

dt
+ 4y = 4 sin t

12.
d2 y

dt2
+ 0.1

dy

dt
+ 2y = cos 2t



Solve for the specific solution to each initial-value problem.

13.
d2 y

dt2
+ 5

dy

dt
+ 6y = 52 cos 2t , y(0) = 0,

dy

dt
(0) = 0

14.
d2 y

dt2
+ 2

dy

dt
+ y = 2 sin t , y(0) = 0,

dy

dt
(0) = 0

15.
d2 y

dt2
+ 2

dy

dt
+ 10y = 26 sin 2t , y(0) = 1,

dy

dt
(0) = 0

16.
d2 y

dt2
+ 0.1

dy

dt
+ 2y = 20.2 cos t ,

y(0) = 0,
dy

dt
(0) = 10

17.
d2 y

dt2
+ 3

dy

dt
+ 2y = 10 sin t , y(0) = 0,

dy

dt
(0) = 0

18.
d2 y

dt2
+ 0.02

dy

dt
+ 16y = 2 sin 4t , y(0) = 0,

dy

dt
(0) = 0

19. The motion of a 3-kg mass, hanging from a spring with
K = 12 N/m, is damped with a dashpot with C = 5 kg/s.
(a) Show that Eq. 1.9.22 gives the amplitude of the
steady-state solution if F(t) = F0 sin ωt . (b) Determine
the phase lag and amplitude of the steady-state solution if
a force F = 20 sin 2t acts on the mass.

20. For Problem 19 let the forcing function be F(t) =
20 sin ωt . Calculate the maximum possible amplitude
of the steady-state solution and the associated forcing-
function frequency.

21. A forcing function F = 10 sin 2t is to be imposed on
a spring-mass system with M = 2 kg and K = 8 N/m.
Determine the damping coefficient necessary to limit the
amplitude of the resulting motion to 2 m.

22. A constant voltage of 12 V is impressed on a series circuit
containing elements with R = 30 �, L = 10−4 H, and
C = 10−6 F. Determine expressions for both the charge
on the capacitor and the current if q = i = 0 at t = 0.

23. A series circuit is composed of elements with
R = 60 �, L = 10−3 H, and C = 10−5 F. Find an ex-
pression for the steady-state current if a voltage of
120 cos 120π t is applied at t = 0.

24. A circuit is composed of elements with R = 80 �,
L = 10−4 H, and C = 10−6 F connected in parallel. The
capacitor has an initial charge of 10−4 C. There is no cur-
rent flowing through the capacitor at t = 0. What is the
current flowing through the resistor at t = 10−4 s?

25. The circuit of Problem 24 is suddenly subjected to a cur-
rent source of 2 cos 200t . Find the steady-state voltage
across the elements.

26. The inductor and the capacitor are interchanged in
Example 1.9.2. Determine the resulting current i2(t)
flowing through R2. Also, find the steady-state charge on
the capacitor.

Use Maple to solve

27. Problem 3

28. Problem 4

29. Problem 5

30. Problem 6

31. Problem 7

32. Problem 8

33. Problem 9

34. Problem 10

35. Problem 11

36. Problem 12

37. Problem 13

38. Problem 14

39. Problem 15

40. Problem 16

41. Problem 17

42. Problem 18

43. Computer Laboratory Activity. Every forcing function
considered so far has been a polynomial, a sine or cosine,
or an exponential function. However, there are other
forcing functions that are used in practice. One of these is
the square wave. Here is how we can define a square
wave in Maple with period 2π :

>sqw:= t -> piecewise(sin(t)>0, 1,
sin(t) <0, 0);

>plot(sqw(t), t=0..12*Pi,y=-3..3);

First, use Maple to create and graph a square wave with
period 5π . Next, invent a spring–mass system with that is
slightly under-damped, with no forcing, and that the pe-
riod of the sines and cosines in the solution is 2π/3. (Use
Maple to confirm that you’ve done this correctly. If C is
too large, the solution will approach zero so fast that
you won’t see any oscillation.) Finally, modify your
spring–mass system by using the square wave as the forc-
ing function. For this problem, dsolve gives nonsense
for output, but we can use DEplot (with stepsize =
.005) to draw the solution, if we specify initial conditions.
Use these initial conditions, x(0) = 2 and x ′(0) = −1,
and draw a solution using DEplot. How does the period
of the forcing term, 5π , emerge in the solution?
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In Section 1.8 we discussed particular solutions arising from forcing functions of very special
types. In this section we present a method applicable to any sectionally continuous input
function.

Consider the equation

d2u

dx2
+ P0(x)

du

dx
+ P1(x)u = g(x) (1.10.1)

A general solution u(x) is found by adding a particular solution up(x) to a general solution of
the homogeneous equation, to obtain

u(x) = c1u1(x) + c2u2(x) + up(x) (1.10.2)

where u1(x) and u2(x) are solutions to the homogeneous equation

d2u

dx2
+ P0(x)

du

dx
+ P1(x)u = 0 (1.10.3)

To find a particular solution, assume that the solution has the form

up(x) = v1(x)u1(x) + v2(x)u2(x) (1.10.4)

Differentiate and obtain

dup

dx
= v1

du1

dx
+ v2

du2

dx
+ u1

dv1

dx
+ u2

dv2

dx
(1.10.5)

We seek a solution such that

u1
dv1

dx
+ u2

dv2

dx
= 0 (1.10.6)

We are free to impose this one restriction on v1(x) and v2(x) without loss of generality, as the
following analysis shows. We have

dup

dx
= v1

du1

dx
+ v2

du2

dx
(1.10.7)

Differentiating this equation again results in

d2up

dx2
= v1

d2u1

dx2
+ v2

d2u2

dx2
+ dv1

dx

du1

dx
+ dv2

dx

du2

dx
(1.10.8)

Substituting into Eq. 1.10.1, we find that

v1

(
d2u1

dx2
+ P0

du1

dx
+ P1u1

)
+ v2

(
d2u2

dx2
+ P0

du2

dx
+ P1u2

)
+ dv1

dx

du1

dx

+ dv2

dx

du2

dx
= g(x) (1.10.9)

1.10 VARIATION OF PARAMETERS
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The quantities in parentheses are both zero since u1 and u2 are solutions of the homogeneous
equation. Hence,

dv1

dx

du1

dx
+ dv2

dx

du2

dx
= g(x) (1.10.10)

This equation and Eq. 1.10.6 are solved simultaneously to find

dv1

dx
= − u2g(x)

u1
du2

dx
− u2

du1

dx

,
dv2

dx
= u1g(x)

u1
du2

dx
− u2

du1

dx

(1.10.11)

The quantity in the denominator is the Wronskian W of u1(x) and u2(x),

W (x) = u1
du2

dx
− u2

du1

dx
(1.10.12)

We can now integrate Eqs. 1.10.11 and obtain

v1(x) = −
∫

u2g

W
dx, v2(x) =

∫
u1g

W
dx (1.10.13)

A particular solution is then

up(x) = −u1

∫
u2g

W
dx + u2

∫
u1g

W
dx (1.10.14)

A general solution of the nonhomogeneous equation follows by using this expression for up(x)

in Eq. 1.10.2. This technique is referred to as the method of variation of parameters.
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A general solution of d2u/dx2 + u = x2 was found in Example 1.8.1. Find a particular solution to this equa-
tion using the method of variation of parameters.

� Solution

Two independent solutions of the homogeneous equation are

u1(x) = sin x, u2(x) = cos x

The Wronskian is then

W (x) = u1
du2

dx
− u2

du1

dx
= − sin2 x − cos2 x = −1

A particular solution is then found from Eq. 1.10.14 to be

up(x) = sin x
∫

x2 cos x dx − cos x
∫

x2 sin x dx

EXAMPLE 1.10.1
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Problems

Find a general solution for each differential equation.

1. u′′ + u = x sin x

2. u′′ + 5u′ + 4u = xex

3. u′′ + 4u′ + 4u = xe−2x

4. u′′ + u = sec x

5. u′′ − 2u′ + u = x2ex

6. u′′ − 4u′ + 4u = x−1ex

7. x2u′′ + xu′ − u = 9

8. x2u′′ + xu′ − u = 2x2

9. x2u′′ − 2xu′ − 4u = x cos x

10. xu′′ − u′ = (1 + x)x

Find a particular solution for each differential equation.

11. ÿ + y = t sin t

12. ÿ + 5ẏ + 4y = tet

13. ÿ + 4ẏ + 4y = te−2t

14. (a) Show that Eq. 1.10.14 may be rewritten as

up(x) =
∫ x

x0

g(s)

W (s)

∣∣∣∣ u1(s) u2(s)
u1(x) u2(x)

∣∣∣∣ ds

This is integrated by parts twice to give

up(x) = x2 − 2

The particular solution derived in the preceding example is the same as that found in Example 1.8.1. The
student should not make too much of this coincidence. There are, after all, infinitely many particular solutions;
for instance, two others are

ũ p(x) = sin x + x2 − 2

û p(x) = cos x + x2 − 2
(1.10.15)

The reason no trigonometric term appeared in up(x) was due to our implicit choice of zero for the arbitrary
constants of integration in Eq. 1.10.14.

One way to obtain a unique particular solution is to require that the particular solution satisfy the initial
conditions, up(x0) = u′

p(x0) = 0 for some convenient x0. In this example x0 = 0 seems reasonable and con-
venient. Let

u(x) = c1 sin x + c2 cos x + x2 − 2 (1.10.16)

Then, imposing the initial conditions,

u(0) = c2 − 2 = 0

u′(0) = c1 = 0
(1.10.17)

Hence,

up(x) = 2 cos x + x2 − 2 (1.10.18)

is the required particular solution. Note that this method does not yield the “intuitively obvious” best choice,
up(x) = x2 − 2.

EXAMPLE 1.10.1 (Continued)



(b) Use the result in part (a) to show that the solution
of Eq. 1.10.1 with initial conditions u(x0) = 0 and
u′(x0) = 0 is

u(x) =
∫ x

x0

g(s)
u1(s)u2(x) − u1(x)u2(s)

u1(s)u′
2(s) − u′

1(s)u2(s)
ds

Hint: If F(x) = ∫ x
a g(x, s) ds then

F ′(x) = g(x, x) +
∫ x

a

∂

∂x
g(x, s) ds

15. Use the results in Problem 14 to obtain
up(x) = 2 cos x + x2 − 2 as the solution of Example
1.10.1 satisfying u(0) = 0, u′(0) = 0.

16. Use the results of Problem 14 to write a particular solu-
tion of u′′ + b2u = g(x) in the form

up(x) = 1

b

∫ x

0
g(s) sin b(x − s) ds

17. Use the results of Problem 14 to write a particular solu-
tion of u′′ − b2u = g(x) in the form

up(x) = 1

b

∫ x

0
g(s) sinh b(x − s) ds

18. Verify that the functions up(x) in Problems 16 and 17
satisfy up(0) = u′

p(0) = 0.

19. Use the results of Problem 14 to show that

up(x) =
∫ x

0
g(s)(x − s)e−a(x−s) ds

is a particular solution of u′′ + 2au′ + a2u = 0.

In the preceding sections we have discussed differential equations with constant coefficients. In
this section we present the solution to a class of second-order differential equations with variable
coefficients. Such a class of equations is called the Cauchy–Euler equation of order 2. It in

x2 d2u

dx2
+ ax

du

dx
+ bu = 0 (1.11.1)

We search for solutions of the form

u(x) = xm (1.11.2)

This function is substituted into Eq. 1.11.1 to obtain

x2m(m − 1)xm−2 + ax mxm−1 + bxm = 0 (1.11.3)

or, equivalently,

[m(m − 1) + am + b]xm = 0 (1.11.4)

By setting the quantity in brackets equal to zero, we can find two roots for m. This characteris-
tic equation, written as

m2 + (a − 1)m + b = 0 (1.11.5)

yields the two distinct roots m1 and m2 with corresponding independent solutions

u1 = |x |m1 and u2 = |x |m2 (1.11.6)

The general solution, for distinct roots, is then

u(x) = c1|x |m1 + c2|x |m2 (1.11.7)

valid in every interval16 not containing x = 0.

1.11 THE CAUCHY–EULER EQUATION
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16The Wronskian is W (x) = (m1 − m2)x1−a .



If a double root results from the characteristic equation, that is, m1 = m2 then u1 and u2 are
not independent and Eq. 1.11.7 is not a general solution. To find a second independent solution,
assuming that u1 = xm is one solution, we assume, as in Eq. 1.6.15, that

u2 = v(x)u1 (1.11.8)

Following the steps outlined in the equations following Eq. 1.6.15, we find that

v(x) = ln|x | (1.11.9)

A general solution, for double roots, is then

u(x) = (c1 + c2 ln |x |) |x |m (1.11.10)

valid in every interval (a, b) provided that x = 0 is not in (a, b).
We note in passing that m1 = m2 can occur only if

b =
(

a − 1

2

)2

(1.11.11)

so that m = −(a − 1)/2 and Eq. 1.11.8 becomes

u(x) = (c1 + c2 ln |x |) |x |−(a−1)/2 (1.11.12)
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EXAMPLE 1.11.1

Find a general solution to the differential equation

x2 d2u

dx2
− 5x

du

dx
+ 8u = 0

� Solution

The characteristic equation is

m2 − 6m + 8 = 0

The two roots are

m1 = 4, m2 = 2

with corresponding independent solutions

u1 = x4, u2 = x2

A general solution is then

u(x) = c1x4 + c2x2
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EXAMPLE 1.11.2

Determine the solution to the initial-value problem

x2 d2u

dx2
− 3x

du

dx
+ 4u = 0

u(1) = 2, u′(1) = 8.

� Solution

The characteristic equation is

m2 − 4m + 4 = 0

A double root m = 2 occurs; thus, the general solution is (see Eq. 1.11.10)

u(x) = (c1 + c2 ln |x |)x2

To use the initial conditions, we must have du/dx . We find

du

dx
=

(
c2

x

)
x2 + (c1 + c2 ln |x |)2x

The initial conditions then give
2 = (c1 + c2 ln 1)12

8 =
(

c2

1

)
12 + (c1 + c2 ln 1)2

These two equations result in

c1 = 2, c2 = 4

Finally, the solution is

u(x) = 2(1 + 2 ln |x |)x2 = 2(1 + ln x2)x2

Problems

Determine a general solution for each differential equation.

1. x2u′′ + 7xu′ + 8u = 0

2. x2u′′ + 9xu′ + 12u = 0

3. x2u′′ − 12u = 24x

4. x2u′′ + 2xu′ − 12u = 24

Solve each initial-value problem.

5. x2u′′ + 9xu′ + 12u = 0 u(1) = 2, u′(1) = 0

6. x2u′′ + 2xu′ − 12u = 12, u(1) = 0, u′(1) = 0

7. Show that v(x) = ln |x | does, in fact, follow by using
Eq. 1.10.8.

8. The Cauchy–Euler equation of nth order is

xnu(n) + a1xn−1u(n−1) + · · · + an−1xu′ + anu = 0

0

0



Find a general solution for the Cauchy–Euler equation of
order n = 1; assume that u(x) = xm is a solution.

9. Find the characteristic equation for the Cauchy–Euler
equation of order n = 3.

Use Maple to solve

10. Problem 1

11. Problem 2

12. Problem 3

13. Problem 4

14. Problem 5

15. Problem 6

1.12.1 Change of Dependent Variables
By carefully choosing f (x), the change of dependent variables from u to v via the transforma-
tion u(x) = f (x)v(x) can be extremely useful, as we now illustrate. This change of variables,

u(x) = f (x)v(x) (1.12.1)

converts

u′′ + P0(x)u′ + P1(x)u = g(x) (1.12.2)

into a second-order equation in v(x). There results

u = f v

u′ = f v′ + f ′v
u′′ = f ′′v + 2 f ′v′ + f v′′

(1.12.3)

which, when substituted into Eq. 1.12.2 and rearranged, gives

f v′′ + (2 f ′ + p0 f )v′ + ( f ′′ + p0 f ′ + p1 f )v = g(x) (1.12.4)

Equation 1.12.4 takes on different forms and serves a variety of purposes depending on the
choice of f (x). As an illustration, suppose that g(x) = 0 and f (x) is a solution of Eq. 1.12.2.
Then

f ′′ + p0 f ′ + p1 f = 0 (1.12.5)

and hence, Eq. 1.12.4 reduces to

f v′′ + (2 f ′ + p0 f )v′ = 0 (1.12.6)

The latter equation is a linear, first order equation in v′ and its general solution is easy to get. This
is precisely the method used in Section 1.6, Eq. 1.6.15, and in Section 1.11, Eq. 1.11.8, to obtain
a second solution to the equations

u′′ + au′ + bu = 0 (1.12.7)
and

x2u′′ + axu′ + bu = 0 (1.12.8)

when m1 = m2. (See Problems 5 and 6.)

1.12 MISCELLANIA
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The substitution 1.12.1 is useful in the nth-order case. Given a solution f (x) of the associ-
ated homogeneous equation the change of variables u = f (x)v leads to an (n − 1)st-order
equation in v′.
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Problems

1. Use the fact that f (x) = ex solves (x − 1)u′′ − xu′ +
u = 0 to find the general solution of

(x − 1)u′′ − xu′ + u = 1

Use u(x) = exv(x) and Eq. 1.12.4.

2. Find the general solution of

u′′ + 4u′ + 4u = e−2x

using the ideas of this section.

3. The function f (x) = sin x solves

tan2 xu′′ − 2 tan xu′ + (2 + tan2 x)u = 0

Find its general solution.

4. Find an “elementary” method that yields the general
solution of

u′′ − xp(x)u′ + p(x)u = 0

Hint: Change dependent variables and try to find a clever
choice for f (x).

5. Suppose that the characteristic equation of u′′ + au′ +
bu = 0 has equal roots, m1 = m2 = −a/2. Use the
method of this section to obtain a second solution.

6. Suppose that the characteristic equation of x2u′′ +
axu′ + bu = 0 has roots m1 = m2 = −a/2. It is as-
sumed that one solution of the form |x |m1 exists; find the
second solution using the method of this section.

7. Suppose that f (x) is a solution of u′′ + p0(x) u′ +
p1(x)u = 0. Show that a particular solution of
u′′ + p0(x)u′ + p1(x)u = g(x) can always be found in
the form up(x) = f (x)v(x).

8. Use the result of Problem 7 to find a general solution of
u′′ + p0(x)u′ + xp1(x)u = g(x), given that f (x) is a
solution of the corresponding homogeneous equation.

1.12.2 The Normal Form
In Section 1.12.1 we chose f (x) so that the coefficient of v is zero. We may choose f so that the
coefficient of v′ is zero. Let f (x) be any solution of

2 f ′ + p0(x) f = 0 (1.12.9)

That is,

f (x) = e−(1/2)∫ p0(x) dx (1.12.10)

From the hypothesis that the coefficient of the v′ term in Eq. 1.12.4 is zero, we have

f v′′ + [p1(x) f + p0(x) f ′ + f ′′]v = 0 (1.12.11)

By differentiating Eq. 1.12.9 we have

2 f ′′ = −p′
0 f − p0 f ′ (1.12.12)



Substituting the expressions for f ′ and f ′′ in Eqs. 1.12.9 and 1.12.12 into Eq. 1.12.11, we obtain

v′′ + [p1(x) − 1
4 p2

0(x) − 1
2 p′

0(x)]v = 0 (1.12.13)

This is the normal form of

u′′ + p0(x)u′ + p1(x)u = 0 (1.12.14)

The coefficient of v,

Iu(x) = p1(x) − 1
4 p2

0(x) − 1
2 p′

0(x) (1.12.15)

is the invariant of Eq. 1.12.14. This terminology is motivated by the following rather surprising
theorem.

Theorem 1.6: Suppose that

w′′ + p̂0(x)w′ + p̂1(x)w = 0 (1.12.16)

results from the change of variables, u = h(x)w, applied to Eq. 1.12.14. Then the normal forms
of Eqs. 1.12.14 and 1.12.16 are identical.

Proof: The invariant for Eq. 1.12.16 is

Iw(x) = p̂1(x) − 1
4 p̂2

0(x) − 1
2 p̂′

0(x) (1.12.17)

In view of Eq. 1.12.4, the relationships between p̂1 and p̂0 and p0 and p1 are these:

2h′

h
+ p0 = p̂0

h′′

h
+ p0

h′

h
+ p1 = p̂1

(1.12.18)

Thus,

p̂2
0 = 4

(
h′

h

)2

+ p2
0 + 4

h′

h
p0 (1.12.19)

and

p̂′
0 = 2

h′′

h
− 2

(
h′

h

)2

+ p′
0 (1.12.20)

Substituting these two expressions into Eq. 1.12.17 results in

Iw(x) = p1 − 1
4 p2

0 − 1
2 p′

0 = Iu(x) (1.12.21)

which completes the proof.
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EXAMPLE 1.12.1

Find the normal form of

u′′ + au′ + bu = 0

� Solution

The invariant is

Iu = b − a2

4

The normal form of the equation is then

v′′ + (b − 1
4 a2)v = 0

EXAMPLE 1.12.2

Find the normal form of

x2u′′ − 2xu′ + (a2x2 + 2)u = 0

and thus find its general solution.

� Solution

Here, p0(x) = −2/x and p1(x) = a2 + 2/x2. Thus

Iu(x) = a2 + 2

x2
− 1

4

(
4

x2

)
− 1

2

(
2

x2

)
= a2

Therefore, the normal form is

v′′ + a2v = 0

Now, using Eq. 1.12.10, we have

f (x) = e−(1/2)∫p0(x)dx

= e∫(1/x)dx = eln x = x

so that

u(x) = f (x)v(x) = x(c1 cos ax + c2 sin ax)



1.12.3 Change of Independent Variable
It is sometimes useful to change the independent variable; to change from the independent
variable x to the independent variable y, we define

y = h(x) (1.12.22)

Then

dy

dx
= h′(x) (1.12.23)

and, using the chain rule, we have

du

dx
= du

dy

dy

dx
= h′(x)

du

dy
(1.12.24)

Also, by the chain rule and the product rule,

d2u

dx2
= d

dx

(
du

dx

)
= d

dx

(
h′(x)

du

dy

)

= h′′(x)
du

dy
+ h′(x)

d

dx

(
du

dy

)

= h′′(x)
du

dy
+ h′(x)

d

dz

(
du

dy

)
dy

dx

= h′′ du

dy
+ h′2 d2u

dy2 (1.12.25)
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Problems

Find the normal form of each differential equation.

1. x(1 − x)u′′ + [γ − (α + β + 1)x]u′ − αβu = 0

2. (1 − x2)u′′ − 2xu′ + n(n + 1)u = 0

3. xu′′ + (γ − x)u′ − αu = 0

4. x2u′′ + xu′ + (x2 − n2)u = 0

5. xu′′ + (1 − γ )u′ + u = 0

6. u′′ − 2xu′ + 2nu = 0

The preceding equations are “classical”: (1) the hypergeomet-
ric equation, (2) the Legendre equation, (3) the confluent
hypergeometric equation, (4) the Bessel equation, (5) the
Bessel–Clifford equation, and (6) the Hermite equation.

7. Find a general solution of

xu′′ − 2(x − 1)u′ + 2(x − 1)u = 0

by showing that its normal form has constant coefficients.

8. Prove that u′′ + p0(x)u′ + p1(x)u = 0 can be trans-
formed into an equation with constant coefficients using
u = f v if and only if Iu(x) = const.

9. Suppose that u = f v transforms u′′ + p0(x)u′ + p1(x)

u = 0 into its normal form. Suppose that u = hw trans-
forms u′′ + p0(x)u′ + p1(x)u = 0 into w′′ + p̂0(x)w′+
p̂1(x)w = 0. Find r(x) so that w = r(x)v transforms
w′′ + p̂0(x)w′ + p̂1(x)w = 0 into its normal form. What
is the relationship, if any, between r(x), h(x), and f (x)?



We substitute into

d2u

dx2
+ p0(x)

du

dx
+ p1(x)u = 0 (1.12.26)

to obtain

h′2 d2u

dy2
+ (h′′ + h′ p0)

du

dy
+ p1u = 0 (1.12.27)

In Eq. 1.12.27, it is understood that h′′, h′, p0, and p1 must be written as functions of y using
y = h(x) and x = h−1(y). Therefore, the efficacy of this substitution depends, in part, on the
simplicity of the inverse, h−1(y). An example will illustrate.
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Introduce the change of variables y = ln x(x = ey) in the Cauchy–Euler equation.

x2 d2u

dx2
+ ax

du

dx
+ bu = 0

Solve the resulting equation and thereby solve the Cauchy–Euler equation.

� Solution

We have dy/dx = 1/x and d2 y/dx2 = −1/x2. Therefore, using Eqs. 1.12.24 and 1.12.25, there results

x2

(
− 1

x2

du

dy
+ 1

x2

d2u

dy2

)
+ ax

(
1

x

du

dy

)
+ bu = 0

from which

d2u

dy2
+ (a − 1)

du

dy
+ bu = 0

This constant-coefficient equation has the following solution:

u(y) = c1em1 y + c2em2 y for real m1 �= m2

or

u(y) = (c1 + c2 y)emy for m1 = m2 = m

or

u(y) = eαy(c1 cos βy + c2 sin βy) for complex m = α ± iβ

EXAMPLE 1.12.3
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Introduce the change of variables x = cos φ in

(1 − x2)
d2u

dx2
− 2x

du

dx
+ λ(λ + 1)u = 0

� Solution

The new variable φ can be written as 

φ = cos−1 x

It then follows that

1 − x2 = 1 − cos2 φ = sin2 φ

dφ

dx
= − 1

sin φ

Also,

d2φ

dx2
= − d

dφ

(
1

sin φ

)
dφ

dx
= cos φ

sin2 φ

(
− 1

sin φ

)
= − cos φ

sin3 φ

The coefficients are

p0(x) = −2x

1 − x2
= −2

cos φ

sin2 φ
, p1(x) = λ(λ + 1)

1 − x2
= λ(λ + 1)

sin2 φ

Therefore, in terms of φ (see Eq. 1.12.27),

1

sin2 φ

d2u

dφ2
+

(
− cos φ

sin3 φ
+ 2 cos φ

sin3 φ

)
du

dφ
+ λ(λ + 1)

sin2 φ
u = 0

EXAMPLE 1.12.4

In terms of x we get, using emy = em ln |x | = |x |m ,

u(x) = c1|x |m1 + c2|x |m2

or

u(x) = (c1 + c2 ln |x |)|x |m

or

u(x) = |x |α[c1 cos(β ln |x |) + c2 cos(β ln |x |)]
respectively.

EXAMPLE 1.12.3 (Continued)
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Simplifying yields

d2u

dφ2
+ cot φ

du

dφ
+ λ(λ + 1)u = 0

This can be put in the alternative form

1

sin φ

d

dφ

(
sin φ

du

dφ

)
+ λ(λ + 1)u = 0

Either is acceptable, although the latter form is more useful.

EXAMPLE 1.12.4 (Continued)

Problems

1. Show that y = h(x) = ∫√
p1(x) dx changes

d2u

dx2
+ p0(x)

du

dx
+ p1(x)u = 0

into an equation with constant coefficients if

p′
1(x) + 2p0(x)p1(x)

p3/2
1 (x)

is constant.

Use the result of Problem 1 to find a general solution to each
equation.

2. u′′ + tan xu′ + cos2 xu = 0

3. xu′′ − 3u′ + 16x7u = 0

4. x4u′′ + x2(2x − 3)u′ + 2u = 0

5. 2xu′′ + (5x2 − 2)u′ + 2x3u = 0

6. xu′′ + (8x2 − 1)u′ + 20x3u = 0

7. Consider the change of independent variable
y = ∫

xk/2 dx, k �= −2, for the equation

u′′ + 1

x
u′ + xku = 0

Show that the equation in y is

y2u′′ + yu′ + y2u = 0

Differential Equation Method of Solution

Separable equation:

f1(x)g1(u) dx + f2(x)g2(u) du = 0
∫

f1(x)

f2(x)
dx +

∫
g2(u)

g1(u)
du = C

Exact equation:

M(x, u) dx + N (x, u) du = 0,
∫

M ∂x +
∫ (

N − ∂

∂u

∫
M ∂x

)
du = C ,

where ∂M/∂u = ∂ N/∂x . where ∂x indicates that the integration is to be performed
with respect to x keeping u constant.

Linear first-order equation:
du

dx
+ p(x)u = g(x) ue∫pdx =

∫
ge∫pdx dx + C

Table 1.1 Differential Equations
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Differential Equation Method of Solution

Bernoulli’s equation:
du

dx
+ p(x)u = g(x)un ve(1−n)∫pdx = (1 − n)

∫
ge(1−n)∫pdx dx + C

where v = u1−n . If n = 1, the solution is

ln u =
∫

(g − p) dx + C .

Homogeneous equation:

du

dx
= F

(
u

x

)
ln x =

∫
dv

F(v)
− v + C

where v = u/x . If F(v) = v, the solution is u = Cx .

Reducible to homogeneous:

(a1x + b1u + c1) dx Set v = a1x + b1u + c1

+ (a2x + b2u + c2) du = 0 w = a2x + b2u + c2

a1

a2
�= b1

b2
Eliminate x and u and the equation becomes homogeneous.

Reducible to separable:

(a1x + b1u + c1) dx Set v = a1x + b1u

+ (a2x + b2u + c2) du = 0 Eliminate x or u and the equation becomes separable.
a1

a2
= b1

b2

First-order equation:

uF(xu) dx + xG(xu) du = 0 ln x =
∫

G(v) dv

v[G(v) − F(v)]
+ C

where v = xu. If G(v) = F(v), the solution is xu = C.

Linear, homogeneous Let m1, m2 be roots of m2 + am + b = 0.
second-order equation: Then there are three cases;

d2u

dx2
+ a

du

dx
+ bu = 0 Case 1. m1, m2 real and distinct:

a, b are real constants

u = c1em1x + c2em2x

Case 2. m1, m2 real and equal:

u = c1em1x + c2xem2x

Case 3. m1 = p + qi, m2 = p − qi :

u = epx (c1 cos qx + c2 sin qx),

where p = −a/2, q = √
4b − a2/2.

Linear, nonhomogeneous There are three cases corresponding to those 
second-order equation: immediately above:

d2u

dx2
+ a

du

dx
+ bu = g(x) Case 1. u = c1em1x + c2em2x

a, b real constants + em1x

m1 − m2

∫
e−m1x g(x) dx

+ em2x

m2 − m1

∫
e−m2x g(x) dx

Table 1.1 (Continued )

(Continued)
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Differential Equation Method of Solution

Case 2. u = c1em1x + c2xem1x

+ xem1x
∫

e−m1x g(x) dx

− em1x
∫

e−m1x g(x) dx

Case 3. u = epx (c1 cos qx + c2 sin qx)

+ epx sin qx

q

∫
e−px g(x) cos qx dx

− epx cos qx

q

∫
e−px g(x) sin qx dx

Cauchy–Euler equation: Putting x = ey , the equation becomes

x2 d2u

dx2
+ ax

du

dx
+ bu = g(x)

d2u

dy2
+ (a − 1)

du

dy
+ bu = g(ey)

a, b real constants and can then be solved as a linear second-order equation.

Bessel’s equation:

x2 d2u

dx2
+ x

du

dx
+ (n2x2 − λ2)u = 0 u = c1 Jλ(nx) + c2Yλ(nx)

Transformed Bessel’s equation:

x2 d2u

dx2
+ (2p + 1)x

du

dx
u = x−p

[
c1 Jq/r

(α

r
xr

)
+ c2Yq/r

(α

r
xr

)]
+ (α2x2r + β2)u = 0 where q =

√
p2 − β2 .

Legendre’s equation:

(1 − x2)
d2u

dx2
− 2x

du

dx
+ λ(λ + 1)u = 0 u = c1 Pλ(x) + c2 Qλ(x)

Riccati’s equation: Set u = v′/(qv), where v′ = dv/dx . There results

du

dx
+ p(x)u + q(x)u2 = g(x)

d2v

dx2
+

(
p − q ′

q

)
dv

dx
− gqv = 0

This second-order, linear equation is then solved.

Error function equation:

d2u

dx2
+ 2x

du

dx
− 2nu = 0 u = i nerfc x

n integer where in erfc x =
∫ ∞

x
in−1 erfc t dt

i0erfc x = erfc x

efrc x = 1 − erf x

= 2√
π

∫ ∞

x
e−t2

dt

Table 1.1 Differential Equations (Continued )



We have studied linear differential equations with constant coefficients and have solved such equa-
tions using exponential functions. In general, a linear differential equation with variable coeffi-
cients cannot be solved in terms of exponential functions. We did, however, solve a special equa-
tion with variable coefficients, the Cauchy–Euler equation, by assuming a solution of the form xn.
A more general method will be presented that utilizes infinite sums of powers to obtain a solution.

A power series is the sum of the infinite number of terms of the form bk(x − a)k and is written

b0 + b1(x − a) + b2(x − a)2 + · · · =
∞∑

n=0

bn(k − a)n (2.2.1)

where a, b0, b1, . . . are constants. A power series does not include terms with negative or frac-
tional powers. None of the following are power series:

(a) 1 + (x − 1) + (x − 1)(x − 2) + (x − 1)(x − 2)(x − 3) + · · ·
(b) 1 + (x2 − 1) + (x2 − 1)2 + (x2 − 1)3 + · · ·
(c) 1

x + 1 + x + x2 + · · ·
(d) x1/2 + x3/2 + x5/2 + · · ·

There are several properties of power series that we will consider before we look at some
examples illustrating their use. The sum sm of the first m terms is

sm = b0 + b1(x − a) + · · · + bm(x − a)m (2.2.2)

and is called the mth partial sum of the series. The series converges at x = x0 if

lim
m→∞ sm(x0) = lim

m→∞[b0 + b1(x0 − a) + · · · + bm(x0 − a)m] (2.2.3)

exists; otherwise, it diverges at x = x0. Clearly, every power series converges at x = a. Usually,
there is an interval over which the power series converges with midpoint at x = a. That is, the
series converges for those x for which

|x − a| < R (2.2.4)

2.2 PROPERTIES OF POWER SERIES

2.1 INTRODUCTION

2 Series Method



where R is the radius of convergence. This radius is given by

1

R
= lim

n→∞

∣∣∣∣bn+1

bn

∣∣∣∣ (2.2.5)

when this limit exists. This formula will not be developed here.
A function f (x) is analytic1 at the point x = a if it can be expressed as a power series∑∞
n=0 bn(x − a)n with R > 0. (We use the terms “expressed,” “expanded,” and “represented”

interchangeably.) It follows from techniques of elementary calculus that the coefficients in the
series 2.2.1 are related to the derivatives of f (x) at x = a by the formula

bn = 1

n!
f (n)(a) (2.2.6)

for each n, and 
∑∞

n=0 bn(x − a)n converges to f (x) in |x − a| < R . We write

f (x) =
∞∑

n=0

bn(x − a)n, |x − a| < R (2.2.7)

This power series is called the Taylor series of f (x), expanded about the center x = a. If
expanded about the special point x = 0, it may then be referred to as a Maclaurin series.
Taylor series expansions of some well-known functions expanded about x = 0 are tabulated in
Table 2.1.

The symbol 
(

n
k

)
is a convenient notation for the binomial coefficient

(
n
k

)
= n!

k!(n − k)!
= n(n − 1) · · · (n − k + 1)

k!
(2.2.8)

It can be used whenever the expressions above occur.
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1The term “regular” is often used synonymously with “analytic.” 

1
1−x = 1 + x + x2 + · · · , |x | < 1

ex = 1 + x + x2

2!
+ · · · , |x | < ∞

sin x = x − x3

3!
+ x5

5!
− · · · , |x | < ∞

cos x = 1 − x2

2!
+ x4

4!
− · · · , |x | < ∞

ln(1 + x) = x − x2

2
+ x3

3
− · · · , −1 ≤ x < 1

sinh x = x + x3

3!
+ x5

5!
+ · · · , |x | < ∞

cosh x = 1 + x2

2!
+ x4

4!
+ · · · , |x | < ∞

(1 + x)α = 1 + αx + 1

2!
α(α − 1)x2 + · · · , |x | < 1

Table 2.1 Taylor Series Expansions of Some Simple Functions



Two important properties of a power series are contained in the following theorem:

Theorem 2.1: If

f (x) =
∞∑

n=0

bn(x − a)n (2.2.9)

then

f ′(x) =
∞∑

n=1

nbn(x − a)n−1 (2.2.10)

and ∫ x

a
f (t) dt =

∞∑
n=0

bn

n + 1
(x − a)n+1 (2.2.11)

In words, if f (x) is analytic at x = a then f ′(x) and
∫

f dx are also analytic at x = a and their
power-series expansions about the center x = a may be obtained by term-by-term differentia-
tion and integration, respectively. Note that R does not change.

Maple commands for this chapter: series, sum, LegendreP, LegendreQ, GAMMA,
BesselJ, and BesselY, along with commands from Chapter 1 (such as dsolve), and
Appendix C.
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Derive the Taylor series expansion of sin x about the center x = 0.

� Solution

For the function f (x) = sin x , Eq. 2.2.6 yields the bn so that

sin x = sin 0 + x cos 0 − x2

2!
sin 0 − x3

3!
cos 0 + · · ·

= x − x3

3!
+ x3

5!
− · · ·

Taylor series can be generated using the series command in Maple, although the output must be interpreted
properly. In this example, this command

>series(sin(x), x=0);

yields the output x− 1
6x

3 + 1
120x

5 + O(x6). The first three terms here are the same as above, since 3! = 6
and 5! = 120. The term O(x6) refers to additional terms in the series that have order 6 or higher (and is

EXAMPLE 2.2.1

0 0
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comparable to the ellipsis above.) If we want more terms in the series, we can modify the command, such as

>series(sin(x), x=0, 9);

which yields terms up to order 9. If we wish to use a different center, such as x = 1, use

>series(sin(x), x=1, 9);

EXAMPLE 2.2.1 (Continued)

EXAMPLE 2.2.2

By using the expansion in Table 2.1, find a series expansion for 1/(x2 − 4).

� Solution

First we factor the given function,

1

x2 − 4
= 1

x − 2

1

x + 2

Next, we write the fractions in the form

1

x − 2
= − 1

2 − x
= −1

2

(
1

1 − x/2

)
1

x + 2
= 1

2 + x
= 1

2

(
1

1 + x/2

)

Now, we use the first expansion in Table 2.1, replacing x with x/2 for the first fraction and x with (−x/2) for
the second fraction. There results

1

x − 2
= −1

2

[
1 + x

2
+

( x

2

)2
+

( x

2

)3
+ · · ·

]

= −1

2
− x

4
− x2

8
− x3

16
− · · ·

1

x + 2
= 1

2

[
1 +

(
− x

2

)
+

(
− x

2

)2
+

(
− x

2

)3
+ · · ·

]

= 1

2
− x

4
+ x2

8
− x3

16
+ · · ·

Finally, we add these two series to obtain

1

x − 2
+ 1

x + 2
= 2x

x2 − 4

= − x

2
− x3

8
− x5

32
− · · ·

∴ 1

x2 − 4
= −1

4

(
1 + x2

4
+ x4

16
+ · · ·

)

We could also have multiplied the two series to obtain the desired result.
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EXAMPLE 2.2.3

Find the Taylor series expansions for the functions (1 − x)−k for k = 2, 3, · · ·

� Solution

We use the first expansion in Table 2.1 and repeated differentiation:

1

1 − x
= 1 + x + x2 + · · ·

d

dx

(
1

1 − x

)
= 1

(1 − x)2
= 1 + 2x + 3x2 + · · ·

d2

dx2

(
1

1 − x

)
= 2

(1 − x)3
= 2 + 6x + 12x2 + · · ·

...

dk

dxk

(
1

1 − x

)
= k!

(1 − x)k+1
=

∞∑
n=k

n(n − 1) · · · (n − k + 1)xn−k

Therefore, for each k = 1, 2, . . . ,

1

(1 − x)k+1
= 1

k!

∞∑
n=k

n(n − 1) · · · (n − k + 1)xn−k

or, using our special notation (Eq. 2.2.8),

1

(1 − x)k+1
=

∞∑
n=k

(
n
k

)
xn−k =

∞∑
n=0

(
n + k

k

)
xn

Now, replace k by k − 1 to obtain

1

(1 − x)k
=

∞∑
n=0

(
n + k − 1

k − 1

)
xn, k ≥ 1

where, by convention, (
n
0

)
= 1

Find the Taylor series expansion of tan−1 x about x = 0.

� Solution

We know that

tan−1 x =
∫ x

0

dt

1 + t2

EXAMPLE 2.2.4



We will have occasion to need the first few coefficients of a Taylor series in cases in which
f (n)(x) cannot be readily computed. Consider the following examples.
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Using Table 2.1, the function 1/(1 + t2) is expanded about x = 0, obtaining

1

1 + t2
= 1 − t2 + t4 − · · ·

Hence, we have

tan−1 x =
∫ x

0

dt

1 + t2
=

∫ x

0
(1 − t2 + t4 − · · ·) dt = x − x3

3
+ x5

5
− · · ·

by integrating. In fact, the series for tan−1 x converges at x = 1 by the alternating series test, which states that
a series converges if the signs of the terms of the series alternate, and the nth term tends monotonically to zero.
We then have the interesting result that

tan−1 1 = π

4
= 1 − 1

3
+ 1

5
− 1

7
+ · · ·

EXAMPLE 2.2.4 (Continued)

EXAMPLE 2.2.5

Find the first three nonzero coefficients in the Taylor series expansion for 1/ cos x about x = 0.

� Solution

The function cos x is expanded about x = 0 as follows:

1

cos x
= 1

1 − x2/2! + x4/4! − · · ·
= 1

1 − (x2/2! − x4/4! + · · ·)
Using the first series in Table 2.1 and replacing x which appears there with (x2/2! − x4/4! + · · ·), there results

1

cos x
= 1 +

(
x2

2!
− x4

4!
+ · · ·

)
+

(
x2

2!
− x4

4!
+ · · ·

)2

+ · · ·

= 1 + x2

2!
+

(
1

(2!)2
− 1

4!

)
x4 + · · ·

= 1 + x2

2
+ 5x4

24
+ · · ·

Note: To obtain the first three terms, we can ignore all but the square of the first term in
(x2/2! − x4/4! + · · ·)2 and all the terms in the higher powers of this series because they generate the coeffi-
cients of x2k , k > 2.
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EXAMPLE 2.2.6

Find the first three coefficients of the expansion of esin x about x = 0.

� Solution

We have

ex = 1 + x + x2

2!
+ · · ·

so that

esin x = 1 + sin x + sin2 x

2
+ · · ·

= 1 +
(

x − x3

3!
+ · · ·

)
+ 1

2

(
x − x3

3!
+ · · ·

)2

+ · · ·

= 1 + x + x2

2
+ · · ·

Note that these are the same first terms for the series expansion of ex . This is not surprising since for small x
we know that x approximates sin x. If we were to compute additional terms in the series, they would, of course,
differ from those of the expansion of ex .

We conclude this section by studying a more convenient and somewhat simpler
method for determining the radius of convergence than determining the limit in
Eq. 2.2.5. A point is a singularity of f (x) if f (x) is not analytic at that point. For in-
stance, x = 0 is a singularity of each of the functions 1/x , ln x, 

√
x , and |x |. Locate all

the singularities of a proposed f (x) in the complex plane. In so doing, consider x to be
a complex variable with real and imaginary parts. As an example, consider the function
x/[(x2 + 9)(x − 6)]. It has singularities at the following points: x = 6, 3i , −3i . The
singular points are plotted in Fig. 2.1a. If we expand about the origin, the radius of con-
vergence is established by drawing a circle, with center at the origin, passing through the
nearest singular point, as shown in Fig. 2.1b. This gives R = 3, a rather surprising result,
since the first singular point on the x axis is at x = 6. The singularity at x = 3i prevents
the series from converging for x ≥ 3. If we expand about x = 5, that is, in powers
of (x − 5), the nearest singularity would be located at (6, 0). This would give a radius of
convergence of R = 1 and the series would converge for 6 > x > 4. It is for this reason
that sin x, cos x, sinh x, cosh x, and ex have R = ∞; no singularities exist for these func-
tions (technically, we should say no singularities in the finite plane).

If the functions p0(x) and p1(x) in

d2u

dx2
+ p0(x)

du

dx
+ p1(x)u = 0 (2.2.12)

are analytic at x = a, then x = a is an ordinary point of the equation; otherwise, it is
a singular point of the equation. Thus, x = a is a singular point of the equation if it is a
singular point of either p0(x) or p1(x).



Theorem 2.2: If x = 0 is an ordinary point of Eq. 2.2.12, then there exists a pair of basic
solutions

u1(x) =
∞∑

n=0

an xn, u2(x) =
∞∑

n=0

bn xn (2.2.13)

in which the series converges in |x | < R. The radius of convergence is at least as large as the
distance from the origin to the singularity of p0(x) or p1(x) closest to the origin.

It then follows immediately that if p0(x) and p1(x) are polynomials, the series representa-
tions of the solutions converge for all x.

Suppose that p0(x) or p1(x) is the function of Fig. 2.1. And suppose that we are interested in
the series solution in the interval 3 < x < 6. For that situation we could expand about the point
x0 = 4.5, halfway between 3 and 6, and express the basic solutions as

u1(x) =
∞∑

n=0

an(x − x0)
n, u2(x) =

∞∑
n=0

bn(x − x0)
n (2.2.14)

Or, we could transform the independent variable from x to t using t = x − x0. Then, the solu-
tions are

u1(t) =
∞∑

n=0

antn, u2(t) =
∞∑

n=0

bntn (2.2.15)

The final result could then be expressed in terms of x by letting t = x − x0.

2.2.1 Maple Applications
The first power series in Eqs. 2.2.15 can be entered into Maple with this command:

>u1:= t -> sum(b[n]*t^n, n=0..infinity);

ul:= t→
∞∑
n=0

bnt
n

This command defines u1 as a function of t.
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Figure 2.1 Singular points and convergence regions of the function x/[(x2 + 9)(x − 6)].
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Problems

Derive a power series expansion of each function by expand-
ing in a Taylor series about a = 0.

1.
1

1 − x
2. ex

3. sin x

4. cos x

5. ln x

6. ln(1 + x)

7.
1

1 + x

8.
1

x + 2

9.
1

x2 + 3x + 2

10.
7

x2 − x − 12

11. e2x+1

12. e−x2

13. sin x2

14. tan x

15. ln
x + 1

2

16. ln
4 − x2

4

17.
ex

x + 4

18. e−x sin x

Find a power series expansion for each integral by first ex-
panding the integrand about a = 0.

19.
∫ x

0

dt

1 + t

20.
∫ x

0

dt

4 − t2

21.
∫ x

0

t dt

1 + t2

22.
∫

sin2 x dx

23.
∫

tan x dx

24.
∫

sin x cos x dx

25. The function (x2 − 1)/[(x − 4)(x2 + 1)] is to be ex-
panded in a power series about (a) the origin, (b) the
point a = 1, and (c) the point a = 2. Determine the ra-
dius of convergence for each expansion.

For each equation, list all singular points and determine the ra-
dius of convergence if we expand about the origin.

26.
d2u

dx2
+ (x2 − 1)u = x2

27. (x2 − 1)
d2u

dx2
+ u = x2

28. x(x2 + 4)
d2u

dx2
+ x

du

dx
= 0

29.
d2u

dx2
+ xu = 1

1 − x

30.
d2u

dx2
+ x − 1

x + 1

du

dx
+ u = 0

31. cos x
d2u

dx2
+ u = sin x

Determine the radius of convergence for each series.

32.
∞∑

n=0

xn

33.
∞∑

n=0

1

n!
xn

34.
∞∑

n=0

n(n − 1)

2n
xn

35.
∞∑

n=0

2n xn

36.
∞∑

n=0

1

n!
(x − 2)n

37.
∞∑

n=0

(−1)n

(2n)!
(x − 1)n

Find a series expansion about a = 1 for each function.

38.
1

x



39.
1

x(x − 2)

40.
1

x2 − 4

41.
1

x(x2 + 4x + 4)

For Problems 42–46, use Maple to generate the partial sum
sm . Then, create a graph comparing the original function and
the partial sum near x = 0.

42. Problem 6

43. Problem 8

44. Problem 11

45. Problem 39

46. Problem 41

47. Solve Problem 21 with Maple, by first defining a power
series, and then integrating.

The existence of the power series solutions of

d2u

dx2
+ p0(x)

du

dx
+ p1(x)u = 0, |x | < R (2.3.1)

is guaranteed by Theorem 2.2. In this section we show how to obtain the coefficients of the
series. The method is best explained by using a specific example. Let us solve the differential
equation

d2u

dx2
+ x2u = 0 (2.3.2)

Using power series, assume that

u(x) =
∞∑

n=0

bn xn (2.3.3)

Substitute into the given differential equation and find

∞∑
n=2

n(n − 1)bn xn−2 + x2
∞∑

n=0

bn xn = 0 (2.3.4)

Let n − 2 = m in the first series and multiply the x2 into the second series. Then

∞∑
m=0

(m + 2)(m + 1)bm+2xm+
∞∑

n=0

bn x2+n = 0 (2.3.5)

Now let n + 2 = m in the second series. We have

∞∑
m=0

(m + 2)(m + 1)bm+2xm+
∞∑

m=2

bm−2xm = 0 (2.3.6)

The first series starts at m = 0, but the second starts at m = 2. Thus, in order to add the series,
we must extract the first two terms from the first series. There results, letting m = n,

2b2 + 6b3x +
∞∑

n=2

(n + 2)(n + 1)bn+2xn+
∞∑

n=2

bn−2xn = 0 (2.3.7)

2.3 SOLUTIONS OF ORDINARY DIFFERENTIAL EQUATIONS
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Now we can combine the two series, resulting in

2b2 + 6b3x +
∞∑

n=2

[(n + 2)(n + 1)bn+2 + bn−2]xn = 0 (2.3.8)

Equating coefficients of the various powers of x gives

x0 : 2b2 = 0 ∴ b2 = 0

x1 : 6b3 = 0 ∴ b3 = 0

xn : (n + 2)(n + 1)bn+2 + bn−2 = 0

∴ bn+2 = − bn−2

(n + 2)(n + 1)
, n ≥ 2 (2.3.9)

With b2 = 0, Eq. 2.3.9 implies that b6 = b10 = b14 = · · · = 0; with b3 = 0, we have
b7 = b11 = b15 = · · · = 0. Equation 2.3.9 also implies a relationship between b0, b4, b8, . . .
and b1, b5, b9, . . . . We call Eq. 2.3.9 a two-term recursion and digress to explore a simple tech-
nique for obtaining its solution.

Consider the following tabulation:

1 n = 2 b4 = − b0

4 · 3

2 n = 6 b8 = − b4

8 · 7
...

...
...

k n = 4k − 2 b4k = − b4k−4

4k(4k − 1)

The kth line provides a general formula for computing any given line. The first line in the table
is obtained by setting k = 1 in the kth line. In fact, the kth line is obtained by generalizing from
the first two (or three) lines. Line 2 is constructed so that Eq. 2.3.9 has b4 on its right-hand side.
Therefore, in line 2, n = 6. If the pattern is obvious, we jump to the kth line; if not, we try line
3 and continue until the general line can be written. Once the table is completed we multiply all
the equations in the third column:

b4 · b8 · · · b4k−4 · b4k = (−1)k b0 · b4 · b8 · · · b4k−4

3 · 4 · 7 · 8 · · · (4k − 1)4k
(2.3.10)

We cancel b4, b8, . . . , b4k−4 from both sides to obtain

b4k = (−1)k b0

3 · 4 · 7 · 8 · · · (4k − 1)4k
(2.3.11)

for k = 1, 2, 3, . . . . Since Eq. 2.3.11 expresses each coefficient b4, b8, b12, . . . as a function of
b0, we call Eq. 2.3.11 a solution of recursion.

The solution of the recursion leads directly to a solution represented by Eq. 2.3.3. We choose
b0 = 1 without loss of generality and find

u1(x) = 1 +
∞∑

n=1

b4k x4k = 1 +
∞∑

k=1

(−1)k x4k

3 · 4 · 7 · 8 · · · (4k − 1)4k
(2.3.12)
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Having taken care of b0 we now explore how b5, b9, b13, . . . are related to b1. This provides
us with the first line in our table so that the table takes the form

1 n = 3 b5 = − b1

5 · 4

2 n = 7 b9 = − b5

9 · 8
...

...
...

k n = 4k − 1 b4k+1 = − b4k−3

(4k + 1)4k
Again, a multiplication and cancellation yield a second solution of recursion:

b4k+1 = (−1)k b1

4 · 5 · 8 · 9 · · · 4k(4k + 1)
(2.3.13)

k = 1, 2, 3, . . . . Now set b1 = 1 and from Eq. 2.3.3

u2(x) = x +
∞∑

k=1

(−1)k x4k+1

4 · 5 · 8 · 9 · · · 14k(4k + 1)
(2.3.14)

The solutions u1(x) and u2(x) form a basic set because

W (x; u1, u2) =
∣∣∣∣ u1(x) u2(x)

u′
1(x) u′

2(x)

∣∣∣∣
implies that

W (0; u1(0), u2(0)) =
∣∣∣∣ 1 0
0 1

∣∣∣∣ = 1 (2.3.15)

and, by Theorem 1.5, that W (x) > 0. The general solution is

u(x) = c1u1(x) + c2u2(x)

= c1

[
1 +

∞∑
k=1

(−1)k x4k

3 · 4 · 7 · 8 · · · (4k − 1)4k

]

+ c2

[
x +

∞∑
k=1

(−1)k x4k+1

4 · 5 · 8 · 9 · · · 4k(4k + 1)

]
(2.3.16)

We often expand the above, showing three terms in each series, as

u(x) = c1

(
1 − x4

12
+ x8

672
+ · · ·

)
+ c2

(
x − x5

20
+ x9

1440
+ · · ·

)
(2.3.17)

Since p0(x) = 0 and p1(x) = x2, the two series converge for all x by Theorem 2.2. The ratio2

test also establishes this conclusion.
We could have found the first three terms in the expressions for u1(x) and u2(x), as shown in

Eq. 2.3.17, without actually solving the recursion. The advantage of having the general term in
the expansion of the solution is both theoretical and practical.
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Find a power series solution to the initial-value problem

d2u

dx2
+ 9u = 0, u(0) = 1, u′(0) = 0

� Solution

Assume the solution to be the power series.

u(x) =
∞∑

n=0

bn xn

The second derivative is

d2u

dx2
=

∞∑
n=2

n(n − 1)bn xn−2

Substitute these back into the given differential equation to get
∞∑

n=2

n(n − 1)bn xn−2 +
∞∑

n=0

9bn xn = 0

In the leftmost series replace n by n + 2:

∞∑
n=0

(n + 2)(n + 1)bn+2xn +
∞∑

n=0

9bn xn =
∞∑

n=0

[(n + 2)(n + 1)bn+2 + 9bn]xn = 0

Now, for this equation to be satisfied for all x we demand that every coefficient of each power of x be zero. That is,

x0 : 2b2 + 9b0 = 0
x1 : 6b3 + 9b1 = 0
...

xn : (n + 2)(n + 1)bn+2 + 9bn = 0

Since u(0) = b0 = 1 and u′(0) = b1 = 0, we deduce that

b1 = b3 = b5 = · · · = 0

and that b2, b4, b6, . . . are determined by b0 = 1. The two-term recursion forces n = 0 in line 1 and n = 2 in
line 2. Specifically, our table takes the following form:

1 n = 0 b2 = −9

2 · 1

2 n = 2 b4 = −9b2

4 · 3
...

...
...

k n = 2k − 2 62k = −9b2k−2

(2k − 1)2k

EXAMPLE 2.3.1



2.3.1 Maple Applications
As described earlier, power series can be defined in Maple, and, in fact, be differentiated or in-
tegrated. (See, for instance, Problem 47 in the previous problem set.) However, using Maple to
complete individual steps of the method described in this section to solve ordinary differential
equations is unwieldy.

The powerful dsolve command can solve certain differential equations with power series.
To solve Eq. 2.3.2 with dsolve, define the ode variable, and then use this command:

>dsolve(ode,u(x),'formal_series','coeffs'='polynomial');

Note that the solution has two constants that can then be determined from initial conditions.

98 � CHAPTER 2  / SERIES METHOD

Hence, multiplying all equations in the third column and simplifying, we obtain

b2k = (−9)k

(2k)!
Using n = 2k and k = 1, 2, 3, . . . , in our original expansion, we obtain the result

u(x) = 1 +
∞∑

k=1

(−9)k x2k

(2k)!

This can be written in the equivalent form

u(x) = 1 +
∞∑

k=1

(−1)k(3x)2k

(2k)!

In expanded form

u(x) = 1 − (3x)2

2!
+ (3x)4

4!
− · · ·

This is recognized as

u(x) = cos 3x

which is the solution we would expect using the methods of Chapter 1. It is not always possible, however, to
put the power-series solution in a form that is recognizable as a well-known function. The solution is usually
left in series form with the first few terms written explicitly.

EXAMPLE 2.3.1 (Continued)

Problems

Solve each differential equation for a general solution using
the power-series method by expanding about a = 0. Note the
radius of convergence for each solution.

1.
du

dx
+ u = 0

2.
du

dx
+ ku = 0

3. (1 − x)
du

dx
+ u = 0

4.
du

dx
+ xu = 0

5.
d2u

dx2
− 4u = 0



6. (x2 − 1)
d2u

dx2
− 4u = 0

7.
d2u

dx2
+ 2

du

dx
+ u = 0

8.
d2u

dx2
+ 6

du

dx
+ 5u = 0

Find a specific solution to each differential equation by ex-
panding about a = 0. State the limits of convergence for each
series.

9. x
du

dx
+ u sin x = 0, u(0) = 1

10. (4 − x2)
d2u

dx2
+ 2u = 0 u(0) = 0,

du

dx
(0) = 1

11.
d2u

dx2
+ (1 − x)u = 0 u(0) = 1,

du

dx
(0) = 0

12.
d2u

dx2
− x2 du

dx
+ u sin x = 0 u(0) = 0,

du

dx
(0) = 1

13. Solve (1 − x) d f/dx − f = 0 using a power series ex-
pansion. Let f = 6 for x = 0, and expand about x = 0.
Obtain five terms in the series and compare with the
exact solution for values of x = 0, 1

4 , 1
2 , 1, and 2.

14. The solution to (1 − x) d f/dx − f = 0 is desired in the
interval from x = 1 to x = 2. Expand about a = 2 and
determine the value of f (x) at x = 1.9 if f (2) = 1.
Compare with the exact solution.

Find a general solution of each differential equation by ex-
panding about the point specified.

15. (x − 2)
d2u

dx2
+ u = 0 about a = 1

16. x2 d2u

dx2
+ u = 0 about a = 1

17.
d2u

dx2
+ xu = 0 about a = 2

18. Solve the differential equation (d2u/dx2) + x2u = 0
using the power-series method if u(0) = 4 and u′(0) =
−2. Find an approximate value for u(x) at a = 2.

19. Solve the differential equation x2(d2u/dx2) + 4u = 0
by expanding about the point x = 2. Find an approxi-
mate value for u(3) if u(2) = 2 and u′(2) = 4.

20. If x(d2u/dx2) + (x − 1)u = 0 find approximate values
for u(x) at x = 1 and at x = 3. We know that u(2) = 10
and u′(2) = 0.

Use Maple to solve

21. Problem 9

22. Problem 10

23. Problem 11

24. Problem 12

2.3.2 Legendre’s Equation
A differential equation that attracts much attention in the solution of a number of physical prob-
lems is Legendre’s equation,

(1 − x2)
d2u

dx2
− 2x

du

dx
+ λ(λ + 1)u = 0 (2.3.18)

It is encountered most often when modeling a phenomenon in spherical coordinates. The para-
meter λ is a nonnegative, real constant.3 Legendre’s equation is written in standard form as

d2u

dx2
− 2x

1 − x2

du

dx
+ λ(λ + 1)

1 − x2
u = 0 (2.3.19)

The variable coefficients can be expressed as a power series about the origin and thus are ana-
lytic at x = 0. They are not analytic at x = ±1. Let us find the power-series solution of
Legendre’s equation valid for −1 < x < 1.

Assume a power-series solution

u(x) =
∞∑

n=0

bn xn (2.3.20)
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Substitute into Eq. 2.3.18 and let λ(λ + 1) = α. Then

(1 − x2)

∞∑
n=2

n(n − 1)bn xn−2 − 2x
∞∑

n=1

nbn xn−1 + α

∞∑
n=0

bn xn = 0 (2.3.21)

This can be written as
∞∑

n=2

n(n − 1)bn xn−2 −
∞∑

n=2

n(n − 1)bn xn −
∞∑

n=1

2nbn xn + α

∞∑
n=0

αbn xn = 0 (2.3.22)

The first sum can be rewritten as
∞∑

n=2

n(n − 1)bn xn−2 =
∞∑

n=0

(n + 2)(n + 1)bn+2xn (2.3.23)

Then, extracting the terms for n = 0 and n = 1, Eq. 2.3.22 becomes

∞∑
n=2

{(n + 2)(n + 1)bn+2 − [n(n − 1) + 2n − α]bn}xn

+ 2b2 + αb0 + (6b3 − 2b1 + αb1)x = 0 (2.3.24)

Equating coefficients of like powers of x to zero, we find that

b2 = −α

2
b0

b3 = 2 − α

6
b1

bn+2 = n2 + n − α

(n + 2)(n + 1)
bn, n = 2, 3, 4, . . .

(2.3.25)

Substituting λ(λ + 1) = α back into the coefficients, we have

bn+2 = (n − λ)(n + λ + 1)

(n + 2)(n + 1)
bn, n = 2, 3, 4, . . . (2.3.26)

There are two arbitrary coefficients b0 and b1. The coefficients with even subscripts can be
expressed in terms of b0 and those with odd subscripts in terms of b1. The solution can then be
written as

u(x) = b0u1(x) + b1u2(x) (2.3.27)

where

u1(x) = 1 − λ(λ + 1)

2!
x2 + (λ − 2)λ(λ + 1)(λ + 3)

4!
x4 + · · ·

u2(x) = x − (λ − 1)(λ + 2)

3!
x3 + (λ − 3)(λ − 1)(λ + 2)(λ + 4)

5!
x5 + · · ·

(2.3.28)

are the two independent solutions.
We can solve the two-term recursion in Eq. 2.3.25 by the technique of Section 2.2—and the

student is asked to do so in the homework problems but the resulting expression is not conve-
nient. Temporarily, we are content to leave the answer in the forms of Eqs. 2.3.28.
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2.3.3 Legendre Polynomials and Functions
Let us investigate the solution u1(x) and u2(x) (Eqs. 2.3.28), for various positive values of λ. If
λ is an even integer,

λ = 0, u1(x) = 1

λ = 2, u1(x) = 1 − 3x2

λ = 4, u1(x) = 1 − 10x2 + 35
3 x4, etc.

(2.3.29)

All the higher-power terms contain factors that are zero. Thus, only polynomials result. For odd
integers,

λ = 1, u2(x) = x

λ = 3, u2(x) = x − 5
3 x3

λ = 5, u2(x) = x − 14
3 x3 + 21

5 x5, etc.

(2.3.30)

The aforementioned polynomials represent independent solutions to Legendre’s equation for the
various λ’s indicated; that is, if λ = 5, one independent solution is x − 14

3 x3 + 21
5 x5. Obviously,

if u1(x) is a solution to the differential equation, then Cu1(x), where C is a constant, is also a
solution. We shall choose the constant C such that the polynomials above all have the value unity
at x = 1. If we do that, the polynomials are called Legendre polynomials. Several are

P0(x) = 1, P1(x) = x

P2(x) = 1
2 (3x2 − 1), P3(x) = 1

2 (5x3 − 3x)

P4(x) = 1
8 (35x4 − 30x2 + 3), P5(x) = 1

8 (63x5 − 70x3 + 15x)

(2.3.31)

We can write Legendre polynomials in the general form

Pλ(x) =
N∑

n=0

(−1)n (2λ − 2n)!

2λn!(λ − n)!(λ − 2n)!
xλ−2n (2.3.32)

where N = λ/2 if λ is even and N = (λ − 1)/2 if λ is odd. Some Legendre polynomials are
sketched in Fig. 2.2.
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When λ is an even integer, u2(x) has the form of an infinite series, and when λ is an odd
integer, u1(x) is expressed as an infinite series. Legendre’s functions of the second kind are mul-
tiples of the infinite series defined by

Qλ(x) =
{

u1(1)u2(x), λ even
−u2(1)u1(x), λ odd

(2.3.33)

The general solution of Legendre’s equation is now written as

u(x) = c1 Pλ(x) + c2 Qλ(x) (2.3.34)

Several Legendre functions of the second kind can be shown, by involved manipulation,
to be

Q0(x) = 1

2
ln

1 + x

1 − x
Q1(x) = x Q0(x) − 1

Q2(x) = P2(x)Q0(x) − 3
2 x

Q3(x) = P3(x)Q0(x) − 5
2 x2 + 2

3

Q4(x) = P4(x)Q0(x) − 35
8 x3 + 55

24 x

Q5(x) = P5(x)Q0(x) − 63
8 x4 + 49

8 x2 − 8
15

(2.3.35)

Note that all the functions are singular at the point x = 1, since Q0(x) → ∞ as x → 1, and thus
the functions above are valid only for |x | < 1.

If we make the change of variables x = cos φ, we transform Legendre’s equation 2.3.18 into4

d2u

dφ2
+ cot φ

du

dφ
+ λ(λ + 1)u = 0 (2.3.36)

or, equivalently,

1

sin φ

d

dφ

(
sin φ

du

dφ

)
+ λ(λ + 1)u = 0 (2.3.37)

Legendre’s equations of this form arise in various physical problems in which spherical coordi-
nates are used.
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4This is a change of independent variable (see Section 1.12.3, Example 1.12.4).

Find the specific solution to the differential equation

(1 − x2)
d2u

dx2
− 2x

du

dx
+ 12u = 0 if u′(0) = 4

and the function u(x) is well behaved at x = 1. The latter condition is often imposed in physical situations.

EXAMPLE 2.3.2



2.3.4 Maple Applications
In the case of Legendre’s equation, invoking the dsolve command with the formal_
series option produces blank output, meaning dsolve cannot solve this equation. However,
the Legendre polynomials of Eqs. 2.3.32 and 2.3.33 are built into Maple and can be accessed
using LegendreP and LegendreQ. For example, LegendreQ(0,x) yields 12 ln

(
x + 1
x − 1

)
.

2.3 SOLUTIONS OF ORDINARY DIFFERENTIAL EQUATIONS � 103

� Solution

We note that the given differential equation is Legendre’s equation with λ determined from

λ(λ + 1) = 12

This can be written as

(λ + 4)(λ − 3) = 0

giving

λ = −4, 3

We choose the positive root and write the general solution as

u(x) = c1 P3(x) + c2 Q3(x)

If the function is to be well behaved at x = 1, we must let c2 = 0, since Q3(1) is not defined. The other con-
dition gives

4 = c1 P ′
3(0) = − 3

2 c1 or c1 = − 8
3

The solution is then

u(x) = − 4
3 (5x3 − 3x)

EXAMPLE 2.3.2 (Continued)

Problems

1. Verify by substitution that the Legendre polynomials of
Eqs. 2.3.31 satisfy Legendre’s equation.

2. Write expressions for (a) P6(x), (b) P7(x), and (c) P8(x).

Show that

3. Pλ(−x) = (−1)λ Pλ(x)

4.
d Pλ

dx
(−x) = (−1)λ+1 d Pλ

dx
(x)

5. Verify that the formula

Pλ(x) = 1

2λλ!

dλ

dxλ
(x2 − 1)λ

yields the first four Legendre polynomials. This is known
as the Rodrigues formula and can be used for all
Legendre polynomials with λ a positive integer.



6. Verify the formulas

dPλ+1

dx
− dPλ−1

dx
= (2λ + 1)Pλ∫ 1

x
Pλ(x) dx = 1

2λ + 1
[Pλ−1(x) − Pλ+1(x)]

for λ = 2 and λ = 4.

Determine the general solution for each differential equation
valid near the origin.

7. (1 − x2)
d2u

dx2
− 2x

du

dx
+ 12u = 0

8. (1 − x2)
d2u

dx2
− 2x

du

dx
+ 6u = x

9. 4(1 − x2)
d2u

dx2
− 8x

du

dx
+ 3u = 0

10.
1

sin φ

d

dφ

(
sin φ

du

dφ

)
+ 6u = 0 (Hint: Let x = cos φ.)

11. Find the specific solution to the differential equation

(1 − x2)
d2u

dx2
− 2x

du

dx
+ 20u = 14x2

At x = 0, u = 3 and the function has a finite value at
x = 1. In addition, use Maple to create a graph of your
solution.

12. Expand (1 − 2xt + t2)−1/2 in powers of t. Set

(1 − 2xt + t2)−1/2 =
∞∑

n=0

Pn(x)tn

Show that Pn(x) is the Legendre polynomial of degree n.
(Hint: Use Table 2.1.) Use the result in Problem 12 to show that

13. Pn(−x) = (−1)n Pn(x)

14. Pn(1) = 1, Pn(−1) = (−1)n

15. P2n+1(0) = 0, P2n(0) = (−1)n1 · 3 · 5 · · · (2n − 1)

2nn!

16. Use the Rodrigues formula in Problem 5 and integration
by parts to show that

(a)
∫ 1

−1
Pn(x) Pm(x) dx = 0, n �= m

(b)
∫ 1

−1
P2

n (x) dx = 2

2n + 1

2.3.5 Hermite Polynomials
The equation

d2u

dx2
− 2x

du

dx
+ 2λu = 0 (2.3.38)

provides another “classical” set of solutions known as Hermite polynomials when λ is a non-
negative integer. These polynomials play a significant role in statistics. To find a solution, set

u(x) =
∞∑

n=0

bn xn (2.3.39)

Then

u′(x) =
∞∑

n=1

nbn xn−1, u′′(x) =
∞∑

n=2

n(n − 1)bn xn−2 (2.3.40)

Substituting in Eq. 2.3.38 and making the usual adjustments in the indices of summation, there
results

2b2 + 2λb0 +
∞∑

n=1

[(n + 2)(n + 1)bn+2 − 2(n − λ)bn]xn = 0 (2.3.41)

Hence,

x0 : b2 = 2(−λ)

2 · 1
b0

x1 : b3 = 2(1 − λ)

3 · 2
b1

xn : bn+2 = 2(n − λ)

(n + 2)(n + 1)
bn

(2.3.42)
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This two-term recursion is easy to solve and we find

b2k = 2k(−λ)(2 − λ)(4 − λ) · · · (2k − 2 − λ)

(2k)!
b0 (2.3.43)

and

b2k+1 = 2k(1 − λ)(3 − λ) · · · (2k − 1 − λ)

(2k + 1)!
b1 (2.3.44)

Choose b0 = b1 = 1 and these relationships lead to the basic solution pair

u1(x) = 1 +
∞∑

k=1

2k(−λ)(2 − λ) · · · (2k − 2 − λ)

(2k)!
x2k (2.3.45)

u2(x) = x +
∞∑

k=1

2k(1 − λ)(3 − λ) · · · (2k − 1 − λ)

(2k + 1)!
x2k+1 (2.3.46)

It is now apparent that Eq. 2.3.38 will have polynomial solutions when λ is a nonnegative
integer. For λ even,

λ = 0 : u1(x) = 1
λ = 2 : u1(x) = 1 − 2x2

λ = 4 : u1(x) = 1 − 4x2 + 4
3 x4

(2.3.47)

For λ odd,

λ = 1 : u2(x) = x
λ = 3 : u2(x) = x − 2

3 x3

λ = 5 : u2(x) = x − 4
3 x3 + 4

15 x5
(2.3.48)

Certain multiples of these polynomials are called Hermite polynomials. They are

H0(x) = 1

H1(x) = 2x

H2(x) = −2 + 4x2

H3(x) = −12x + 8x3

(2.3.49)

and, in general,

Hn(x) = n!
N∑

k=0

(−1)k(2x)n−2k

k! (n − 2k)!
(2.3.50)

where N = n/2 if n is even and N = (n − 1)/2 if n is odd.

2.3.6 Maple Applications
The Hermite polynomials are not built into Maple like the Legendre polynomials. However,
after defining specific values of n and N in Maple, the following code will generate the Hermite
polynomials:

>factorial(n)*sum((-1)^k*(2*x)^(n-2*k)/

(factorial(k)*factorial(n-2*k)), k=0..N);

2.3 SOLUTIONS OF ORDINARY DIFFERENTIAL EQUATIONS � 105



Problems

1. Expand e2xt−t2
in powers of t . Set

e2xt−t2 =
∞∑

n=0

Hn(x)

n!
tn

Show that Hn(x) is given by Eq. 2.3.50.

Use the result of Problem 1 to show that

2. Hn(−x) = (−1)n Hn(x)

3. H2n+1(0) = 0; H2n(0) = (−1)n22n1 · 3 · 5 · · · (2n − 1)

4. Hn(x) = (−1)nex2 dn

dxn (e−x2
)

5. Use the result in Problem 4 to show that∫ ∞

−∞
e−x2

Hn(x)Hm(x) dx = 0, m �= n

(Hint: Try integration by parts.)

6. Verify that Eq. 2.3.50 yields Eq. 2.3.49 for n = 1, 2, 3.
Find H4(x).

7. Compute H ′
n(x) and evaluate H ′

n(0) by

(a) Differentiating Eq. 2.3.50.

(b) Differentiating the expansion in Problem 1 with re-
spect to x.

Which method is easier?

8. For three different values of x, use Maple to compare
the graphs of e2xt−t2

and the partial sum 
∑5

n=0
Hn(x)

n! tn .
See Problem 1.

There are second-order differential equations that appear in physical applications which have co-
efficients that cannot be expressed in power series about the center a = 0; the origin is a singu-
lar point of such equations. Even so, the method described in Section 2.3 may yield a solution
valid about the origin for such equations. The Cauchy–Euler equation

x2 d2u

dx2
+ 3

2
x

du

dx
− 1

2
u = 0 (2.4.1)

is an example in which the power-series method fails. A pair of basic solutions is u1(x) = x−1

and u2(x) = √
x ; neither function is analytic5 at x = 0.

Consider the equation

L[u] = x2 d2u

dx2
+ xp0(x)

du

dx
+ p1(x)u = 0 (2.4.2)

where p0(x) and p1(x) are analytic at x = 0. As we have seen above, we cannot expect a power
series solution for this equation. The following more general series always provides at least one
solution:

u(x) = xr
∞∑

n=0

an xn, a0 �= 0 (2.4.3)

2.4 THE METHOD OF FROBENIUS: SOLUTIONS ABOUT REGULAR
SINGULAR POINTS
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5In the sections that follow, xr (r = an integer) and ln x appear repeatedly. In each case we assume that x > 0
to avoid writing |x |r and ln |x |. For x < 0 we make the transformation t = −x and solve the resulting equa-
tion for t > 0. Often the equation in t is identical to the equation in x .



Such a series is a Frobenius series. It reduces to a power series if r is a nonnegative integer. If
x = 0 is not an ordinary point of Eq. 2.4.2, it is a regular singular point. The power-series part
of the Frobenius series will converge in |x | < R, where R is at least as great as the distance from
the origin to the nearest of the singular points of p0(x) and p1(x).

To solve Eq. 2.4.2, we assume a solution in Frobenius series and expand p0(x) and p1(x) in
the series forms

p0(x) =
∞∑

n=0

bn xn (2.4.4)

p1(x) =
∞∑

n=0

cn xn (2.4.5)

If it happens that b0 = c0 = c1 = 0, then x = 0 is an ordinary point—not a regular singular
point—because Eq. 2.4.2 would have a factor of x2 and, after division by this factor, the result-
ing equation would have an ordinary point at the origin.

Differentiating the series expansion 2.4.3 yields

du

dx
=

∞∑
n=0

(n + r)an xn+r−1 (2.4.6)

and

d2u

dx2
=

∞∑
n=0

(n + r − 1)(n + r)an xn+r−2 (2.4.7)

Substitution of these series expressions into Eq. 2.4.2 gives, in expanded form,

L[u] =[r(r − 1)a0xr + (r + 1)ra1xr+1 + · · ·]
+ [(b0 + b1x + · · ·)(ra0xr + (r + 1)a1xr+1 + · · ·]
+ [(c0 + c1x + · · ·)(a0xr + a1xr+1 + · · ·)] (2.4.8)

If we collect like powers of x, we get

L[u] = [r(r − 1) + b0r + c0]a0xr

+
∞∑

n=1

{[(n + r)(n + r − 1) + b0(n + r) + c0]an

+
n∑

k=1

[(n − k + r)bk + ck]an−k}xn+r (2.4.9)

We call the bracketed coefficient of the xr term, F(r); that is, since a0 �= 0, then F(r) = 0 is
necessary for L(u) = 0:

F(r) = r(r − 1) + b0r + c0 = 0 (2.4.10)

This equation is known as the indicial equation. It has roots r1 and r2. Now, note that

F(n + r) = (n + r)(n + r − 1) + b0(n + r) + c0 (2.4.11)
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Hence, L(u) may be written as

L[u] = F(r)a0xr +
∞∑

n=1

{an F(n + r)

+
n∑

k=1

[(n − k + r)bk + ck]an−k}xn+r (2.4.12)

If we write

Gn(1) = (n − 1 + r)b1 + c1

Gn(2) = (n − 2 + r)b2 + c2

...

Gn(k) = (n − k + r)bk + ck

(2.4.13)

then

L[u] = F(r)a0xr +
∞∑

n=1

{an F(n + r)+
n∑

k=1

Gn(k)an−k}xn+r (2.4.14)

Since L[u] = 0, each coefficient must vanish:

F(r)a0 = 0

F(n + r)an = −
n∑

k=1

Gn(k)an−k
(2.4.15)

for n = 1, 2, 3, . . .. [As we remarked above, a0 �= 0 implies that F(r) = 0.]
It is common practice in this method to use the substitution

s = r1 − r2 (2.4.16)

in which r1 ≥ r2 if r1 is real. Then

F(r) = (r − r1)(r − r2) (2.4.17)

so that

F(n + r1) = (n + r1 − r1)(n + r1 − r2) = n(n + s) (2.4.18)

while

F(n + r2) = (n + r2 − r1)(n + r2 − r2) = n(n − s) (2.4.19)

Therefore, if we set r = r1 in the recursion 2.4.15, we obtain

0 · a0 = 0

n(n + s)an = −
n∑

k=1

Gn(k)an−k
(2.4.20)
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and if r = r2,

0 · a0 = 0

n(n − s)an = −
n∑

k=1

Gn(k)an−k
(2.4.21)

We may always solve recursion 2.4.20 since n(n + s) is never zero. Hence, a1, a2, a3, . . . can
all be determined as multiples of a0 and

u1(x) = xr1

∞∑
n=0

an xn, a0 = 1 (2.4.22)

is a Frobenius representation of one of the solutions of Eq. 2.4.2. If s is not an integer, recursion
2.4.21 generates coefficients, say d1, d2, d3, . . . , which are all multiples of a0. Hence,

u2(x) = xr2

∞∑
n=0

dn xn, d0 = 1 (2.4.23)

represents a second, independent solution.
However, if s = N , a positive integer, then

N · 0 · aN = −
N∑

k=1

G N (k)aN−k (2.4.24)

This equation does not determine aN and the method becomes vastly more complicated when
finding the second solution. This case will be treated in Section 2.9.2.

If s = 0, then recursions 2.4.20 and 2.4.21 are the same and only one solution of the form
2.4.22 exists. The technique for obtaining the second independent solution will be presented in
Section 2.9.1.

We illustrate the use of these ideas in the following sections by applications to some impor-
tant differential equations. In order to do so in a convenient fashion, we digress to study the
gamma function, �(λ). Before this excursion, let us consider an example.
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Find a general solution, valid near the origin, of the differential equation

8x2 d2u

dx2
+ 6x

du

dx
+ (x − 1)u = 0

� Solution

For this equation p0(x) = 6
8 and p1(x) = (−1 + x)/8. Thus, b0 = 3

4 , b1 = b2 = · · · = 0, c0 = − 1
8 , c1 = 1

8 ,
c2 = c3 = · · · = 0. The indicial equation is then

F(r) = r2 + ( 3
4 − 1)r − 1

8

= r2 − 1
4r − 1

8

= (r + 1
4 )(r − 1

2 ) = 0

∴ r1 = 1
2 , r2 = − 1

4

EXAMPLE 2.4.1
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Equation 2.4.12 yields

L[u] = (r + 1
4 )(r − 1

2 )a0xr + [a1(r + 1 + 1
4 )(r + 1 − 1

2 ) + 1
8 a0]xr+1

+
∞∑

n=2

[an(r + n + 1
4 )(r + n − 1

2 ) + 1
8 an−1]xr+n = 0

The above then demands that

a1 = − a0

8(r + 5/4)(r + 1/2)

an = − an−1

8(r + n + 1/4)(r + n − 1/2)
, n = 2, 3, . . .

The recursion above gives

ak = (−1)ka0

8k[(r + 5
4 )(r + 9

4 ) · · · (r + k + 1
4 )][(r + 1

2 )(r + 3
2 ) · · · (r + k − 1

2 )]

We can let a0 = 1 without loss of generality, and, referring to Eq. 2.4.3, we have

ur (x) = xr +
∞∑

k=1

(−1)k xk+r

8k[(r + 5
4 )(r + 9

4 ) · · · (r + k + 1
4 )][(r + 1

2 )(r + 3
2 ) · · · (r + k − 1

2 )]

Setting r1 = 1
2 and r2 = − 1

4 , respectively, the two independent solutions are

u1(x) = x1/2 +
∞∑

k=1

(−1)k xk+1/2

8k · 7
4 · 11

4 · · · (k + 3
4

)
k!

u2(x) = x−1/4 +
∞∑

k=1

(−1)k xk−1/4

8k · 1
4 · 5

4 · · · (k − 3
4

)
k!

A general solution is then

u(x) = Au1(x) + Bu2(x)

We can put the solution in the alternative form by expanding for the first three terms in each series:

u(x) = A[x1/2 − 1
14 x3/2 + 1

616 x5/2 + · · ·] + B[x−1/4 − 1
2 x3/4 + 1

40 x7/4 + · · ·]

EXAMPLE 2.4.1 (Continued)



Because of its importance and common use, we present this introduction to the gamma function
�(λ). The gamma function is defined by the improper integral

�(λ + 1) =
∫ ∞

0
e−t tλ dt (2.5.1)

which converges for all λ > −1.
To deduce some of the properties of the gamma function, let us integrate by parts:

∫ ∞

0
e−t tλ dt = −e−t tλ

∣∣∣∞
0

+ λ

∫ ∞

0
e−t tλ−1 dt(

u = tλ

du = λtλ−1 dt

dυ = e−t dt

υ = −e−t

) (2.5.2)

The quantity e−t tλ vanishes at t = ∞ and t = 0. Thus, we have

�(λ + 1) = λ

∫ ∞

0
e−t tλ−1 dt (2.5.3)

2.5 THE GAMMA FUNCTION
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Problems

Find a general solution, valid in the vicinity of the origin, for
each differential equation (roots not differing by an integer).

1. 2x
d2u

dx2
+ (1 − x)

du

dx
+ u = 0

2. 16x
d2u

dx2
+ 3(1 + 1/x)u = 0

3. 2x(1 − x)
d2u

dx2
+ du

dx
− u = 0

4. 2x
d2u

dx2
+ (1 + 4x)

du

dx
+ u = 0

5. 4x2(1 − x)
d2u

dx2
− x

du

dx
+ (1 − x)u = 0

6. 2x2 d2u

dx2
− x

du

dx
+ (x − 10) = 0

7. 2x2 d2u

dx2
+ x(x − 1)

du

dx
+ u = 0

8. 2x2 d2u

dx2
+ x2 du

dx
+ 9

4
u = 0

9. 2x2u′′ + x(2x + 3)u′ + (3x − 1)u = 0

10. 2x(x − 1)u′′ + 3(x − 1)u′ − u = 0

11. 2xu′′ + (1 − x)u′ − u = 0

12. 3xu′′ + 2(1 − x)u′ − 4u = 0

13. 3x2u′′ − xu′ − 4u = 0

14. 2x2u′′ + x(4x − 1)u′ + 2(3x − 1)u = 0

Use the Frobenius method to solve each differential equation
about a = 0, an ordinary point of the equation.

15. u′′ + u = 0

16. u′′ + (1 − x)u = 0

17. The equation of Example 2.3.1.

18. u′′ + au′ + bu = 0

19. In the expansions assumed for p0(x) and p1(x) given by
Eqs. 2.4.4 and 2.4.5, let c0 = c1 = b0 = 0. Show that
Eq. 2.4.2 has an ordinary point at x = 0.



The last integral is simply �(λ). Thus, we have the important property

�(λ + 1) = λ�(λ) (2.5.4)

If we let λ = 0 in Eq. 2.5.1, there results

�(1) =
∫ ∞

0
e−t dt

= −e−t
∫ ∞

0
= 1 (2.5.5)

Using Eq. 2.5.4, there follows

�(2) = 1 · �(1) = 1

�(3) = 2 · �(2) = 2!

�(4) = 3 · �(3) = 3!

(2.5.6)

Equations 2.5.6 represent another important property of the gamma function. If λ is a positive
integer,

�(λ + 1) = λ! (2.5.7)

It is interesting to note that �(λ) is defined for all real λ except λ = 0, −1, −2, . . . , by the
functional equation �(λ + 1) = λ�(λ); in fact, we need to know �(λ) only for 1 ≤ � ≤ 2 to
compute �(λ) for all real values of λ. This tabulation is given in Table B1 of the Appendix.
Figure 2.3 illustrates the graph of �(λ).

The gamma function at half-integer values are multiples of 
√

π (see Eq. 2.5.13 below). To
see this, we begin with the known result (see Table B2 in the Appendix),∫ ∞

0
e−x2

dx =
√

π

2
(2.5.8)
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Figure 2.3 The gamma function.



Set x2 = t so that dx = t−1/2 dt/2 and therefore

∫ ∞

0
e−x2

dx = 1

2

∫ ∞

0
e−t t−1/2 dt

= 1

2
�

(
1

2

)
= �

(
3

2

)
(2.5.9)

From the tabulated results in the Appendix (Table B1), we verify the foregoing result, namely,
that 

√
π/2 = �(3/2) = 0.886227.

2.5 THE GAMMA FUNCTION � 113

EXAMPLE 2.5.1

Evaluate the integral 
∫ ∞

0 x5/4e−√
x dx .

� Solution

The gamma functions are quite useful in evaluating integrals of this type. To make the exponent of the expo-
nential function equal to −t , we let

x = t2, dx = 2t dt

Then the integral becomes (the limits remain unchanged)

∫ ∞

0
x5/4e−√

x dx = 2
∫ ∞

0
t7/2e−t dt

By using Eq. 2.5.1, we have

2
∫ ∞

0
e−t t7/2 dt = 2�

(
9
2

)

The recursion 2.5.4 gives

�
(

9
2

) = 7
2 · 5

2 · 3
2�

(
3
2

) = 105
8 �

(
3
2

)
From Eq. 2.5.9

�
(

9
2

) = 105
8

√
π

2 = 105
8 · 0.8862

Finally, the value of the integral is 

∫ ∞

0
x5/4e−√

x dx = 2 × 105
8 × 0.8862 = 23.27



Some special cases of the result of Example 2.5.2 are interesting. For a particular case, set
r = 1 and h = 2. Then

1 · 3 · 5 · · · (2n − 1) = 2n �(n + 1
2 )

�( 1
2 )

(2.5.10)

But 1
2�( 1

2 ) = �( 3
2 ) = √

π/2. Hence,

1 · 3 · 5 · · · (2n − 1) = 2n

√
π

�

(
n + 1

2

)
(2.5.11)

However,

1 · 3 · 5 · · · (2n − 1) = 1 · 3 · 5 · · · (2n − 1)
2 · 4 · 6 · · · 2n

2 · 4 · 6 · · · 2n

= (2n)!

2nn!
(2.5.12)

So combining the two equations above, we get

�

(
n + 1

2

)
= (2n)!

22nn!

√
π (2.5.13)

for n = 1, 2, . . . .
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EXAMPLE 2.5.2

Express the product

f (r) = r(r + h)(r + 2h) · · · [r + (n − 1)h]

as a quotient of gamma functions.

� Solution

We have

f (r) = (r/h)(r/h + 1)(r/h + 2) · · · (r/h + n − 1)hn

= hn �(r/h + 1)

�(r/h)

�(r/h + 2)

�(r/h + 1)
· · · �(r/h + r)

�(r/h + n − 1)

= hn �(r/h + n)

�(r/h)

obtained by using the recursion 2.5.4 with λ = r/h.



Problems

Evaluate each integral.

1.
∫ ∞

0

√
xe−x dx

2.
∫ ∞

0
x2e−x2

dx

3.
∫ ∞

0
x3e−x dx

4.
∫ ∞

0
x−4e−√

x dx

5.
∫ ∞

0

1√
x

e−x2
dx

6.
∫ ∞

0
(1 − x)3e

√
x dx

7.
∫ ∞

1
x2e1−x dx

8.
∫ ∞

0
x3e−x1/2

dx

Use the results in Example 2.5.2 to write each product as a
quotient of the gamma function.

9. 2 · 4 · 6 · · · (2n)

10. 1 · 4 · 7 · · · (3n − 2)

11. a(a + 1) · · · (a + n − 1)

12. Use Eq. 2.5.4 to explain why either �(0) is meaningless
or this equation is invalid for λ = 0.

13. Show that the improper integral 
∫ ∞

0 e−t tλ dt converges
for λ > −1 and diverges for λ ≤ −1. (Hint: Write the in-
tegral as∫ ∞

0
e−t tλ dt =

∫ 1

0
e−t tλ dt +

∫ ∞

1
e−t tλ dt

and note that e−t ≤ 1 for 0 ≤ t ≤ 1 and e−t/2tλ → 0 as
t → +∞.)

14. Let �(λ) = d

dλ
ln �(λ) . Show that

�(λ + n + 1) = 1

λ + 1
+ 1

λ + 2
+ · · · + 1

λ + n
+ �(λ + 1)

where n is a positive integer. Hence,

�(n + 1) = 1 + 1

2
+ · · · + 1

n
+ �(1)

[�(1) = −γ = −0.57721566490, approximately. This
constant is the Euler constant.]

15. Show that

d

dλ

[
1

�(λ)

]
= −�(λ)

�(λ)

Use Maple to evaluate these integrals

16. Problem 1

17. Problem 2

18. Problem 3

19. Problem 4

20. Problem 5

21. Problem 6

22. Problem 7

23. Problem 8

19. Computer Laboratory Activity: In this activity, we ex-
plore the gamma function further. We can see that, in
Figure 2.3, there are several values of x where the gamma
function has a local maximum or minimum. Use Maple
to determine these values of x. Explain where the
digamma function is important in this activity. Is
x = −π/2 a local minimum? What happens to the value
of �(x) at these maximums and minimums as we move
left along the x-axis?

2.5.1 Maple Applications
The gamma function is built into Maple using the syntax GAMMA. Figure 2.3 can be reproduced
with the following command:

>plot(GAMMA(x), x=-4..4, y=-10..10, discont=true);

The discont=true option in the plot command forces Maple to respect the asymptotes of
the function.
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As an example of the method of Frobenius, consider the Bessel–Clifford equation,

x
d2u

dx2
+ (1 − γ )

du

dx
+ u = 0 (2.6.1)

where the parameter γ ≥ 0. Since p0(x) = 1 − γ and p1(x) = x (see Eq. 2.4.2), we have

b0 = 1 − γ, c1 = 1
b1 = b2 = · · · = 0, c0 = c2 = c3 = · · · = 0

(2.6.2)

The indicial equation is

F(r) = r(r − 1) + (1 − γ )r = r(r − γ ) = 0 (2.6.3)

Thus, r1 = γ , r2 = 0, and s = r1 − r2 = γ . Since bk = 0 for all k > 0 and ck = 0 for all k
except k = 1 and

Gn(k) = (n − k + r)bk + ck, 1 ≤ k ≤ n (2.6.4)

we have

Gn(1) = c1 = 1 and Gn(k) = 0, k > 1 (2.6.5)

The recursions 2.4.20 and 2.4.21 reduce to the convenient forms

n(n + γ )an = −an−1, n = 1, 2, . . . (2.6.6)

and

n(n − γ )an = −an−1, n = 1, 2, . . . (2.6.7)

For γ neither zero nor a positive integer, we have

u1(x) = xγ

[
1 +

∞∑
k=1

(−1)k xk

k!(1 + γ )(2 + γ ) · · · (k + γ )

]
(2.6.8)

and

u2(x) = 1 +
∞∑

k=1

(−1)k xk

k!(1 − γ )(2 − γ ) · · · (k − γ )
(2.6.9)

so that u(x) = Au1(x) + Bu2(x) is the general solution. If γ = 0, then u1 = u2 and this
method fails to yield a second, independent solution. If γ is a positive integer, then
n(n − γ )an = −an−1 breaks down when n = γ , and again, the method does not yield a second,
independent solution. Methods for obtaining the second, independent solution for γ = 0 or for
γ a positive integer will be presented in a subsequent section.

2.6 THE BESSEL–CLIFFORD EQUATION
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The equation

x
d2u

dx2
+ (1 − x)

du

dx
+ Nu = 0 (2.7.1)

has a polynomial solution for each positive integer N . To see this, we begin by identifying
p0(x) = 1 − x and p1(x) = N x (see Eq. 2.4.2) so that

b0 = 1, b1 = −1, bk = 0, k > 1
c0 = 0, c1 = N , ck = 0, k > 1

(2.7.2)

Hence, the indicial equation is

F(r) = r(r − 1) + r = r2 = 0 (2.7.3)

Therefore, r1 = r2 = 0 and s = 0. For each n ≥ 1,

Gn(k) = (n − k)bk + ck, 1 ≤ k ≤ n
= 0 if k > 1

(2.7.4)

Thus,

Gn(1) = 1 − n + N

Gn(k) = 0, k = 2, 3, . . . , n
(2.7.5)

and the recursions 2.4.20 and 2.4.21 reduce to the single recursion

n2an = −(−n + 1 + N )an−1, n = 1, 2, . . . (2.7.6)

Set a0 = 1. Then, for each k ≥ 1,6

ak = (−1)k N (N − 1) · · · (N − k + 1)

(k!)2
(2.7.7)
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Problems

1. Set γ = 0 in the Bessel–Clifford equation and verify
that

∞∑
k=0

(−1)k xk

(k!)2
= 1 − x + x2

4
− x3

36
+ · · ·

is a solution by direct substitution.

2. Set γ = 1 in the Bessel–Clifford equation and verify
that

∞∑
k=0

(−1)k xk

k!(k + 1)!
= 1 − x

2
+ x2

12
− · · ·

is a solution by direct substitution.

6When k = N + 1, N + 2, . . . , ak = 0.



The binomial coefficient(
N

k

)
= N (N − 1) · · · (N − k + 1)

k!
= N !

k!(N − k)!
(2.7.8)

leads to a neater solution:

ak =
(−1)k

(
N
k

)
k!

, k = 1, 2, . . . (2.7.9)

and therefore

u(x) = L N (x) = 1 +
N∑

k=1

(−1)k
(

N
k

)
k!

xk =
N∑

k=0

(−1)k
(

N
k

)
k!

xk
(2.7.10)

is a polynomial solution of Eq. 2.7.1. The family of polynomials

L0(x) = 1

L1(x) = 1 − x

L2(x) = 1 − 2x + x2

2!

L N (x) =
N∑

k=0

(−1)k
(

N
k

)
k!

xk

(2.7.11)

are the Laguerre polynomials.
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Problems

1. Prove the validity of the Rodrigues formula,

Ln(x) = ex

n!

dn

dxn
(xne−x )

2. Use the Rodrigues formula in Problem 1 and integration
by parts to establish that∫ ∞

0
e−x Ln(x)Lm(x) dx = 0, n �= m∫ ∞

0
e−x L2

n(x) dx = 1

We have seen in Section 2.7 that

x2 d2u

dx2
+ xp0(x)

du

dx
+ p1(x)u = 0 (2.8.1)
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always has a solution of the form

u1(x) = xr1

∞∑
n=0

an xn, a0 �= 0 (2.8.2)

for some r1. We know from general principles that there exists an independent solution u2(x) in
some interval 0 < x < b. The Wronskian W (x) of u1(x) and u2(x) is defined as

W (x) = u1(x)u′
2(x) − u′

1(x)u2(x) (2.8.3)

and we know from Eq. 1.5.17 that

W (x) = K e−∫ [p0(x)/x]dx (2.8.4)

Equating the two relationships in Eqs. 2.8.3 and 2.8.4, we can write

u1(x)u′
2(x) − u′

1(x)u2(x)

u2
1(x)

= K

u2
1(x)

e−∫ [p0(x)/x]dx (2.8.5)

This is

d

dx

(
u2(x)

u1(x)

)

so Eq. 2.8.5 can be integrated to yield

u2(x)

u1(x)
= K

∫
1

u2
1(x)

e−∫ [p0(x)/x]dx dx (2.8.6)

This last relationship yields u2(x) for any choice of u1(x). With no loss of generality we can
pick7 K = a0 = 1 and substitute the known series expansion 2.8.2 for u1(x) in Eq. 2.8.6. First,

p0(x) = b0 + b1x + b2x2 + · · · (2.8.7)

so that

−
∫

p0(x)

x
dx = −b0 ln x − b1x − 1

2
b2x2 − · · · (2.8.8)

Hence,

e−∫[p0(x)/x] dx = e−b0 ln x−b1x−···

= e−b0 ln x e−b1x−b2x2/2−···

= x−b0

[
1 − (b1x + 1

2 b2x2 + · · ·)

+ (b1x + 1
2 b2x2 + · · ·)2

2!
+ · · ·

]

= x−b0(1 − b1x + k2x2 + k3x3 + · · ·) (2.8.9)
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7We take K = 1 and a0 = 1 throughout this section.



where ki are functions of b1, b2 . . . , bi . Next,

1

u2
1(x)

= 1

x2r1

1

(1 + a1x + · · ·)2
= 1

x2r1
(1 − 2a1x + · · ·) (2.8.10)

and we find that

1

u2
1(x)

e−∫ [p0(x)/(x)] dx = 1

x2r1+b0
(1 − b1x + · · ·)(1 − 2a1x + · · ·)

= 1

x2r1+b0
[1 − (b1 + 2a1)x + · · ·] (2.8.11)

But since F(r) = (r − r1)(r − r2) = r(r − 1) + b0r + c0 , we see that r1 + r2 = 1 − b0. By
definition, we know that s = r1 − r2, so that, by adding these equations, we get

2r1 + b0 = 1 + s (2.8.12)

and therefore

1

u2
1(x)

e−∫ [p0(x)/x]dx = 1

x1+s
[1 − (b1 + 2a1)x + · · ·] (2.8.13)

Let us now consider two special cases.

Case 1. Equal roots so that s = 0. Substituting Eq. 2.8.13 into Eq. 2.8.6 gives us

u2(x) = u1(x)

[∫
1

x
dx −

∫
(b1 + 2a1) dx + · · ·

]
= u1(x) ln x + u1(x)[−(b1 + 2a1)x + · · ·] (2.8.14)

We can go one step further. Because a0 = 1,

u2(x) = u1(x) ln x + xr1 [−(b1 + 2a1)x + · · ·] (2.8.15)

[Note: If s = 0, the expansion for u2(x) will always include a term containing ln x .]

Case 2. Roots differing by an integer, s = N , N positive. As in case 1, substitute Eq. 2.8.13
into Eq. 2.8.6 and obtain

u2(x) = u1(x)

[∫
dx

x N+1
−

∫
b1 + 2a1

x N
dx + · · · +

∫
c

x
dx + · · ·

]

= u1(x)

[
− 1

N
x−N + b1 + 2a1

N − 1
x−N+1 + c ln x + · · ·

]

= cu1(x) ln x + u1(x)

[
− 1

N
+ d1x + · · ·

]
x−N (2.8.16)

where c represents a constant. Since u1(x) = xr1(1 + a1x + · · ·) and r1 − N = r1 − s = r2 ,
we can express this second independent solution as

u2(x) = cu1(x) ln x + xr2

[
− 1

N
+

(
d1 − a1

N

)
x + · · ·

]
(2.8.17)

If c = 0, the ln x term will not appear in the solution u2(x).
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Although a few of the coefficients in Eq. 2.8.15 or 2.8.17 can be computed in this manner, no
pattern in the formation of the coefficients can usually be discerned. In the next section we
explore an alternative method which often yields formulas for the coefficients in the second
solution. The main importance of the technique illustrated here resides in these conclusions.

1. If the roots of the indicial equation are equal, then a second solution always contains a
ln x term and is of the form

u2(x) = u1(x) ln x + xr1

∞∑
n=0

dn xn (2.8.18)

2. If the roots of the indicial equation differ by an integer, either

u2(x) = xr2

∞∑
n=0

dn xn (2.8.19)

or

u2(x) = cu1(x) ln x + xr2

∞∑
n=0

dn xn (2.8.20)

represents a second solution.
3. If p0(x) = 0 or p0(x) = b0, the integral in Eq. 2.8.6 simplifies. If p0(x) = 0, then

u2(x) = u1(x)

∫
dx

u2
1(x)

(2.8.21)

If p0(x) = b0, then

u2(x) = u1(x)

∫
dx

xb0 u2
1(x)

(2.8.22)
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Problems

1. Verify that k2 = 1
2 (b2

1 − b2) in Eq. 2.8.9.

2. Extend Eq. 2.8.10 to
1

u2
1(x)

= 1

x2r1

[
1 − 2a1x + (

3a2
1 − 2a2

)
x2 + · · ·]

3. Use the results of Problems 1 and 2 to obtain the follow-
ing extended expression for Eq. 2.8.13:

1

u2
1(x)

e−∫[p0(x)/x]dx

= 1

x1+s

[
1 − (b1 + 2a1)x

+ (
2a1b1 + 1

2 b2
1 − 1

2 b2 + 3a2
1 − 2a2

)
x2 + · · ·]

4. Let s = 0 in the result of Problem 3 and thus obtain the
following extended form for Eq. 2.8.15:

u2(x) = u1(x) ln x + xr1
[−(b1 + 2a1)x +

1
2

(− 1
2 b2 + 1

2 b2
1 − a2

1 − 2a2
)

x2 + · · ·]
5. In the Bessel–Clifford equation (Eq. 2.6.1), with γ = 0,

show that

u2(x) = u1(x) ln x + 2x − 3
4 x2 + · · ·

where

u1(x) =
∞∑

k=0

(−1)k xk

k!k!



6. In the Laguerre equation (Eq. 2.7.1) with N = 0, show
that

u2(x) =
∫

ex

x
dx

using Eq. 2.8.6.

7. In the Laguerre equation (Eq. 2.7.1) with N = 1, we
have L1(x) = 1 − x = u1(x). Show that

u2(x) = (1 − x) ln x + 3x + · · ·
using Eq. 2.8.15, and

u2(x) = (1 − x) ln x + 3x − 1
4 x2 + · · ·

using the results of Problem 4.

8. Show that

1

u2
1(x)

e−
∫

[p0(x)/x]dx = 1

x1+s

for the Cauchy–Euler equation, x2u′′ + b0xu′ + c0u = 0.
Let u1(x) = xr1.

(a) Suppose that s = 0. Use Eq. 2.8.6 to show that

u2(x) = xr1 ln x

(b) Suppose that s �= 0. Use Eq. 2.8.6 to show that

u2(x) = −1

s
xr1−s

Reconcile this with the expected second solution u2(x) =
xr2.

9. One solution of x2u′′ − x(1 + x)u′ + u = 0 is u1(x) =
xex . Verify this. Show that a second solution can be
written

u2(x) = u1(x) ln x − x2 + · · ·
10. Show that

u1(x) =
∞∑

n=0

xn+1/2

2n(n!)2

and

u2(x) = u1(x) ln x + x1/2[−x − 3
16 x2 − · · ·]

are solutions of 4x2u′′ + (1 − 2x)u = 0.

11. Verify that u1(x) = x is a solution of x2u′′ − x(1 − x)

u′ + (1 − x)u = 0. Use Eq. 2.8.6 to show that

u2(x) = x ln x + x
∞∑

n=1

(−1)n xn

n · n!

is a second solution.

Once again denote

L[u] = x2 d2u

dx2
+ xp0(x)

du

dx
+ p1(x)u (2.9.1)

and let

u(x) = xr
∞∑

n=0

an xn, a0 �= 0 (2.9.2)

Following the analysis in Section 2.4, we find

L[u] = F(r)a0xr +
∞∑

n=1

[
F(n + r)an +

n∑
k=1

Gn(k)an−k

]
xn+r (2.9.3)

We want L[u(x)] = 0. For the purposes of this section we show that for any r , we can get

L[u] = F(r)a0xr (2.9.4)

That is, we can find a1, a2, . . . , so that the infinite series part of Eq. 2.9.3 is identically zero. To
do this we solve the recursion

F(n + 1)an = −
n∑

k=1

Gn(k)an−k, n = 1, 2, · · · (2.9.5)
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without choosing r . Obviously, in order that L[u] = 0, Eq. 2.9.4 demands that F(r) = 0, but we
ignore this for the time being. A specific equation will be used to illustrate the procedure. The
equation is

d2u

dx2
− u = 0 (2.9.6)

For this equation F(r) = r2 − r , so that r1 = 0, and r2 = 1; all bn are zero since p0(x) = 0,
and all cn = 0 except c2 = −1 since p1(x) = −x2. Referring to Eq. 2.4.12, we have

L[u] = (r2 − r)a0xr + (r2 + r)a1xr+1

+
∞∑

n=2

{[(r + n)2 − (r + n)]an − an−2}xn+r (2.9.7)

So we set

(r2 + r)a1 = 0

(r + n)(r + n − 1)an = an−2, n ≥ 2
(2.9.8)

Thus, a1 = 0 and the recursion gives a3 = a5 = · · · = 0. For the coefficients with even
subscripts the recursion gives

a2k = a0

(r + 1)(r + 2) · · · (r + 2k)
, k ≥ 1 (2.9.9)

We can arbitrarily set a0 = 1, so that ur (x) is defined as (see Eq. 2.4.3)

ur (x) = xr +
∞∑

k=1

x2k+r

(r + 1)(r + 2) · · · (r + 2k)
(2.9.10)

We can readily verify that L[ur ] = (r2 − r)xr , thus confirming Eq. 2.9.4. Setting r1 = 0 and
r2 = 1, respectively, gives

u1(x) = 1 +
∞∑

k=1

x2k

(2k)!
(2.9.11)

u2(x) = x +
∞∑

k=1

x2k+1

(2k + 1)!
(2.9.12)

The general solution of Eq. 2.9.6 is then

u(x) = Au1(x) + Bu2(x) (2.9.13)

A homework problem at the end of this section will show that this is equivalent to the solution
found using the methods of Chapter 1, that is,

u(x) = c1ex + c2e−x (2.9.14)
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2.9.1 s = 0
In this case F(r) = (r − r1)

2 and Eq. 2.9.4 becomes

L[ur (x)] = (r − r1)
2a0xr (2.9.15)

Set a0 = 1. In the present notation, ur (x)|r=r1 is a solution. Consider

∂

∂r
L[ur (x)] = L

[
∂

∂r
ur (x)

]

= ∂

∂r
[(r − r1)

2xr ]

= 2(r − r1)xr + (r − r1)
2xr ln x (2.9.16)

If we set r = r1, Eq. 2.9.16 shows us that

L

[
∂

∂r
ur (x)|r=r1

]
= 0 (2.9.17)

Hence,

∂

dr
ur (x)|r=r1

is also a solution. Thus,

ur (x)
∣∣
r=r1

and
∂

∂r
ur (x)

∣∣
r=r1

are, as we shall see, a basic solution set. An example will illustrate the details.
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Find two independent solutions of

x
d2u

dx2
+ du

dx
− u = 0

� Solution

For this equation b0 = 1, c1 = −1, and F(r) = r2, so that r1 = r2 = 0. It then follows that (see Eq. 2.4.12),

L[u] = r2a0xr + [(r + 1)2a1 − a0]xr+1 +
∞∑

n=2

[an(r + n)2 − an−1]xn+r

so that
(r + 1)2a1 − a0 = 0

(r + n)2an − an−1 = 0, n ≥ 2

EXAMPLE 2.9.1
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We then have

a1 = a0

(r + 1)2

ak = a0

(r + 1)2(r + 2)2 · · · (r + k)2
, k ≥ 2

Thus, letting a0 = 1,

ur (x) = xr

[
1 +

∞∑
k=1

xk

(r + 1)2(r + 2)2 · · · (r + k)2

]

The first independent solution is then, setting r = 0,

ur (x)|r=0 = u1(x) = 1 +
∞∑

k=1

xk

(k!)2

Using the result of this section, we find the second independent solution to be8

u2(x) = ∂

∂r
ur (x)|r=0

=
{

xr ln x

[
1 +

∞∑
k=1

xk

(r + 1)2(r + 2)2 · · · (r + k)2

]

+ ′xr
∞∑

k=1

xk ∂

∂r
[(r + 1)−2(r + 2)−2 · · · (r + k)−2]

}
r=0

The easiest way to compute the derivative of the product appearing in the second series is to use logarithmic
differentiation, as follows. Set

f (r) = (r + 1)−2(r + 2)−2 · · · (r + k)−2

so that

f (0) = 2−2 · 3−2 · · · k−2 = 1

(k!)2

Then,

ln[ f (r)] = −2[ln(r + 1) + ln(r + 2) + · · · + ln(r + k)]

and thus

d

dr
ln[ f (r)] = f ′(r)

f (r)
= −2

[
1

r + 1
+ 1

r + 2
+ · · · + 1

r + k

]

EXAMPLE 2.9.1 (Continued)

8Recall that dax/dx = ax ln a .
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Finally,

f ′(r) = −2 f (r)

[
1

r + 1
+ 1

r + 2
+ · · · + 1

r + k

]

Substitute this into the series above and obtain, setting r = 0,

u2(x) = ∂

∂r
ur (x) |r=0 = ln x

[
1 +

∞∑
k=1

xk

(k!)2

]

+
∞∑

k=1

xk

[
−2 f (0)

(
1 + 1

2
+ 1

3
+ · · · + 1

k

)]

= u1(x) ln x −
∞∑

k=1

2xk

(k!)2
hk

where the kth partial sum of the harmonic series (1 + 1
2 + 1

3 + · · · + 1
m + · · ·) is written as

hk = 1 + 1

2
+ 1

3
+ · · · + 1

k

EXAMPLE 2.9.1 (Continued)

Problems

Determine the general solution for each differential equation
by expanding in a series about the origin (equal roots).

1. x
d2u

dx2
+ du

dx
+ 2u = 0

2. x(1 − x)
d2u

dx2
+ du

dx
+ u = 0

3. x2 d2u

dx2
− 3x

du

dx
+ (4 − x)u = 0

4. Solve the Bessel–Clifford equation (Eq. 2.6.1), with
γ = 0. Compare with the answer given in Problem 5 of
Section 2.8.

5. Find a general solution of the Laguerre equation (Eq.
2.7.1) and compare with the answer to Problem 7 of
Section 2.8. Use N = 1.

6. Show that the general solution given by Eq. 2.9.13 is the
same family of functions as the general solution given by
Eq. 2.9.14.

7. Show that

1 + 1

3
+ 1

5
+ · · · + 1

2n − 1
= h2n − 1

2
hn

where

hn = 1 + 1

2
+ · · · + 1

n

8. Use the method of this section to show that

u1(x) = x
∞∑

n=0

xn

n!
, u2(x) = u1(x) ln x − x

∞∑
n=1

hn xn

n!

are solutions of x2u′′ − x(1 + x)u′ + u = 0.

9. Solve 4x2u′′ + (1 − 2x)u = 0.

10. Solve xu′′ + (1 − x)u′ − u = 0.



2.9.2 s = N, N a Positive Integer
We suppose that

s = r1 − r2 = N (2.9.18)

where N is a positive integer. Two very different possibilities exist. In some circumstances, we
get two independent Frobenius series solutions. The Cauchy–Euler equation is an illustration of
this situation. A second alternative is one Frobenius series and a solution involving ln x . (See
Section 2.8 for a discussion of how these disparate cases arise.) The indicial equation is
F(r) = (r − r1)(r − r2), and therefore we have (see Eq. 2.9.4)

L[ur (x)] = (r − r1)(r − r2)a0xr (2.9.19)

In Section 2.9.1 we obtained a second solution by computing ∂ur/∂r and noting that

L

[
∂u

∂r

∣∣∣
r=r1

]
= ∂

∂r
L[ur ]|r=r1 = 0 (2.9.20)

But this fortunate circumstance is due entirely to the fact that r1 is a double root; that is,
F(r) = (r − r1)

2. This method fails if r1 �= r2. We can force a double root into the coefficient
of xr in Eq. 2.9.19 by choosing

a0 = (r − r2)c (2.9.21)

where c is an arbitrary constant. Now

∂

∂r
L[ur ] = L

[
∂ur

∂r

]
= ∂

∂r
{(r − r1)(r − r2)

2cxr }

= (r − r2)
2cxr + 2(r − r1)(r − r2)cxr + (r − r1)(r − r2)

2cxr ln x (2.9.22)

which vanishes identically for r = r2. Thus, our second solution will be

∂ur

∂r

∣∣∣
r=r2

= u2(x) (2.9.23)

where ur is defined by using Eq. 2.9.21. An example will make this clearer.
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Using Eq. 2.9.23 find the second solution of the differential equation

x2 d2u

dx2
+ x

du

dx
+ (x2 − 1)u = 0

EXAMPLE 2.9.2
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� Solution

We have p0(x) = 1 and p1(x) = −1 + x2, so that b0 = 1, c0 = −1, and c2 = 1. The remaining coefficients
are zero. Since r1 = 1 and r2 = −1, we have s = 2 and

F(r) = r2 − 1

= (r − 1)(r + 1)

∴ F(n + r) = (n + r − 1)(n + r + 1)

From Eq. 2.4.12, with b1 = b2 = c1 = 0 and c2 = 1, we have

L[u] = (r − 1)(r + 1)a0xr + a1r(r + 2)xr+1

+
∞∑

n=2

[(n + r − 1)(n + r + 1)an + an−2]xn+r

Thus, we are forced to set

a1r(r + 2) = 0

(n + r − 1)(n + r + 1)an = −an−2, n = 2, 3, . . .

to ensure that L[u] = (r − 1)(r + 1)a0xr . Since we do not wish to specify r , we must select a1 = 0. Thus,
the recursion implies that a3 = a5 = · · · = 0. For k ≥ 1, the recursion yields

a2k = (−1)ka0

(r + 1)(r + 3) · · · (r + 2k − 1)

1

(r + 3)(r + 5) · · · (r + 2k + 1)
.

Define f (r) = (r + 3)−2(r + 5)−2 · · · (r + 2k − 1)−2(r + 2k + 1)−1 and set a0 = r + 1. Then it follows
that

a2k = (−1)k f (r), k = 1, 2, . . .

and

L[u] = (r − 1)(r + 1)2xr

and

ur (x) = xr

[
(r + 1) +

∞∑
k=1

(−1)k f (r)x2k

]

Hence, with r = 1,

u1(x) = x

[
2 +

∞∑
k=1

(−1)k x2k

22k−1k!(k + 1)!

]

EXAMPLE 2.9.2 (Continued)
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since

f (1) = 4−2 · 6−2 · · · (2k)−2(2k + 2)−1 = 1

22k−1k!(k + 1)!

We now differentiate ur (x) and obtain

∂ur

∂r
= ur (x) ln x + xr

[
1 +

∞∑
k=1

(−1)k f ′(r)x2k

]

Set r = −1 and then

u2(x) = ∂ur

∂r

∣∣∣
r=−1

= ur (x)
∣∣
r=−1 ln x + x−1

[
1 +

∞∑
k=1

(−1)k f ′(−1)x2k

]

Now, f (−1) = 2−2 · 4−2 · · · (2k − 2)−2(2k)−1

= 1

22k−1(k − 1)!k!

and

f ′(r) = f (r)

[ −2

r + 3
+ −2

r + 5
+ · · · + −2

r + 2k − 1
+ −1

r + 2k + 1

]

so that

f ′(−1) = −1

22k−1(k − 1)!k!

(
1 + 1

2
+ · · · + 1

k − 1
+ 1

2k

)

Since hk − hk−1 = 1/k , we may write

f ′(−1) = −1

22k−1(k − 1)!k!
[hk−1 + 1

2 (hk − hk−1)]

= −1

22k−1(k − 1)!k!

hk + hk−1

2

We can now express the second solution u2(x) as follows:

u2(x) = x−1

[ ∞∑
k=1

(−1)k x2k

22k−1(k − 1)!k!

]
ln x + x−1

[
1 −

∞∑
k=1

(−1)k x2k

22k(k − 1)!k!
(hk + hk−1)

]

EXAMPLE 2.9.2 (Continued)
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Finally, we adjust the form of u2(x) by altering the index of summation:

u2(x) =
∞∑

k=0

(−1)k+1x2k+1

22k+1k!(k + 1)!
ln x + 1

x
−

∞∑
k=0

(−1)k+1x2k+1

22k+2k!(k + 1)!
(hk+1 + hk)

This is the preferred form of the second solution. Note that the function multiplying ln x is related to u1(x) and
that u1(x) can be written as

u1(x) = x

[
2 +

∞∑
k=1

(−1)k x2k

22k−1k!(k + 1)!

]

= x
∞∑

k=0

(−1)k x2k

22k−1k!(k + 1)!
=

∞∑
k=0

(−1)k x2k+1

22k−1k!(k + 1)!

EXAMPLE 2.9.2 (Continued)

Problems

Solve each differential equation for the general solution valid
about x = 0 (roots differing by an integer).

1. x
d2u

dx2
− u = 0

2. x2 d2u

dx2
+ x

du

dx
+ (x2 − 1)u = 0

3. 4x2 d2u

dx2
− 4x(1 − x)

du

dx
+ 3u = 0

4. Solve the Bessel–Clifford equation (Eq. 2.6.1), with
γ = N a positive integer.

5. Solve x2u′′ + x2u′ − 2xu = 0.

6. Solve xu′′ + (3 + 2x)u′ + 4u = 0.

7. Solve xu′′ + u = 0.

8. Solve xu′′ + (4 + 3x)u′ + 3u = 0.

The family of linear equations

x2 d2u

dx2
+ x

du

dx
+ (x2 − λ2)u = 0 (2.10.1)

known collectively as Bessel’s equation, is perhaps the single most important nonelementary
equation in mathematical physics. Its solutions have been studied in literally thousands of re-
search papers. It often makes its appearance in solving partial differential equations in cylindri-
cal coordinates.

The parameter λ is real and nonnegative and, as we shall see, affects the nature of the solu-
tion sets in a very dramatic way. Since the Bessel equation has a regular singular point at x = 0,
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we apply the Frobenius method by assuming a solution of the form

u(x) =
∞∑

n=0

an xn+r (2.10.2)

2.10.1 Roots Not Differing by an Integer
Instead of applying the formulas9 developed in Section 2.4, it is simpler and more instructive to
substitute u(x) and its derivatives into Eq. 2.10.1. This yields

∞∑
i=0

(n − r)(n + r − 1)an xn+r +
∞∑

n=0

(n + r)an xn+r

+
∞∑

n=0

an xn+r+z −
∞∑

n=0

λ2an xn+r = 0 (2.10.3)

Changing the third summation so that the exponent on x is n + r , we have

∞∑
n=0

[(n + r)(n + r − 1) + (n + r) − λ2]an xn+r +
∞∑

n=2

an−2xn+r = 0 (2.10.4)

Writing out the first two terms on the first summation gives

[r(r − 1) + r − λ2]a0xr + [(1 + r)r + (1 + r) − λ2]a1x1+r

+
∞∑

n=2

{[(n + r)(n + r − 1) + (n + r) − λ2]an + an−2}xn+r = 0 (2.10.5)

Equating coefficients of like powers of x to zero gives

(r2 − λ2)a0 = 0 (2.10.6)

(r2 + 2r + 1 − λ2)a1 = 0 (2.10.7)

[(n + r)2 − λ2]an + an−2 = 0 (2.10.8)

Equation 2.10.6 requires that

r2 − λ2 = 0 (2.10.9)

since a0 �= 0 according to the method of Frobenius. The indicial equation above has roots
r1 = λ and r2 = −λ.

Next, we shall find u1(x) corresponding to r1 = λ. Equation 2.10.7 gives a1 = 0, since the
quantity in parentheses is not zero. From the recursion relation 2.10.8, we find that
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9The student is asked to use these formulas in the Problems following this section.



a3 = a5 = a7 = · · · = 0. All the coefficients with an odd subscript vanish. For the coefficients
with an even subscript, we find that

a2 = − a0

22(λ + 1)

a4 = − a2

22 · 2(λ + 2)
= a0

24 · 2(λ + 1)(λ + 2)

a6 = − a4

22 · 3(λ + 3)
= − a0

26 · 3 · 2(λ + 1)(λ + 2)(λ + 3)
, etc.

(2.10.10)

In general, we can relate the coefficients with even subscripts to the arbitrary coefficient a0 by
the equation

a2n = (−1)na0

22nn!(λ + 1)(λ + 2) · · · (λ + n)
, n = 0, 1, 2, . . . (2.10.11)

Because a0 is arbitrary, it is customary to normalize the an’s by letting

a0 = 1

2λ�(λ + 1)
(2.10.12)

With the introduction of the normalizing factor 2.10.12, we have

a2n = (−1)n

22n+λn!�(λ + n + 1)
, n = 0, 1, 2, . . . (2.10.13)

where we have used

�(λ + n + 1) = (λ + n)(λ + n − 1) · · · (λ + 1)�(λ + 1) (2.10.14)

By substituting the coefficients above into our series solution 2.10.2 (replace n with 2n), we
have found one independent solution of Bessel’s equation to be

Jλ(x) =
∞∑

n=0

(−1)n x2n+λ

22n+λn!�(λ + n + 1)
(2.10.15)

where Jλ(x) is called the Bessel function of the first kind of order λ. The series converges for all
values of x , since there are no singular points other than x = 0; this results in an infinite radius
of convergence. Sketches of J0(x) and J1(x) are shown in Fig. 2.4. Table B3 in the Appendix
gives the numerical values of J0(x) and J1(x) for 0 < x < 15.

The solution corresponding to r2 = −λ is found simply by replacing λ with (−λ). This can
be verified by following the steps leading to the expression for Jλ(x). Hence, if λ is not an inte-
ger, the solution

J−λ(x) =
∞∑

n=0

(−1)n x2n−λ

22n−λ�(n − λ + 1)
(2.10.16)

is a second independent solution. It is singular at x = 0. The general solution is then

u(x) = AJλ(x) + B J−λ(x) (2.10.17)
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If λ is zero or an integer, J−λ(x) is not independent but can be shown to be related to Jλ(x)

by the relation (see Problem 10)

J−λ(x) = (−1)n Jλ(x) (2.10.18)

A second, independent solution for λ zero or a positive integer is given in subsequent sections.

2.10.2 Maple Applications
The Bessel functions of the first kind can be accessed in Maple by using BesselJ(v,x),
where υ is the order of the function (λ in our formulas), and x is the variable. Figure 2.4 can be
reproduced with this command:

>plot({BesselJ(0,x), BesselJ(1, x)}, x=0..14);
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Problems

1. Apply the formulas developed in Section 2.4 and find ex-
pressions for Jλ(x) and J−λ(x).

2. Write out the first four terms in the expansion for (a)
J0(x) and (b) J1(x).

3. From the expansions in Problem 1, calculate J0(2) and
J1(2) to four decimal places. Compare with the tabulated
values in the Appendix.

4. If we were interested in J0(x) and J1(x) for small x only
(say, for x < 0.1), what algebraic expressions could be
used to approximate J0(x) and J1(x)?

5. Using the expressions from Problem 4, find J0(0.1) and
J1(0.1) and compare with the tabulated values in the
Appendix.

Write the general solution for each equation.

6. x2u′′ + xu′ +
(

x2 − 1
16

)
u = 0

7. xu′′ + u′ +
(

x − 1
9x

)
u = 0

8. 4x2u′′ + 4xu′ + (4x2 − 1)u = 0

9. Solve u′′ + u = 0 by substituting u = √
xυ and solving

the resulting Bessel’s equation. Then show that the solu-
tion is equivalent to A sin x + B cos x .

10. Suppose that λ ≥ 0 is an integer. Use the infinite series
expansion of J−λ(x) to show that

J−λ(x) = (−1)λ Jλ(x)

(Hint: When λ is an integer, the series for J−λ begins
with n = λ.)

11. Let In(x) be a solution of the modified Bessel equation,

x2 d2u

dx2
+ x

du

dx
− (x2 + λ2)u = 0

Find In(x) by the Frobenius method. (Assume that the
roots do not differ by an integer.)

1
J0(x)

J1(x)

x

Figure 2.4 Bessel functions of the
first kind.



12. Use the results of Problem 11 to verify that

In(x) = i−n Jn(i x)

where i = √−1 and λ = n.

13. Show that

J1/2(x) =
(

2

πx

)1/2

sin x

and

J−1/2(x) =
(

2

πx

)1/2

cos x

by examining the respective power series.

Use Maple to solve these differential equations:

14. Problem 6.

15. Problem 7.

16. Problem 8.

2.10.3 Equal Roots
If λ = 0, Bessel’s equation takes the form

x2 d2u

dx2
+ x

du

dx
+ x2u = 0 (2.10.19)

In this case, b0 = 1, c2 = 1, and F(r) = r2, the case of equal roots; hence,

L[u] = r2a0xr + (r + 1)2a1xr+1 +
∞∑

n=2

[(n + r)2an + an−2]xn+r (2.10.20)

So we set

(r + 1)2a1 = 0 (2.10.21)

and

(n + r)2an = −an−2, n = 2, 3, . . . (2.10.22)

Thus, we have a1 = 0 and the recursion gives a3 = a5 = · · · = 0. For the coefficients with an
even subscript

a2k = (−1)ka0

(r + 2)2(r + 4)2 · · · (r + 2k)2
(2.10.23)

Set a0 = 1 and define ur as follows:

ur (x) = xr +
∞∑

k=1

(−1)k x2k+r

(r + 2)2(r + 4)2 · · · (r + 2k)2
(2.10.24)

Note that setting r = 0 gives L[ur (x)|r=0] = 0 and

u1(x) = 1 +
∞∑

k=1

(−1)k x2k

22 · 42 · · · (2k)2

= 1 +
∞∑

k=1

(−1)k x2k

22k(k!)2
= J0(x) (2.10.25)
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This is the same solution as before. It is the second independent solution that is now needed. It
is found by expressing ur (x) as

ur (x) = xr

[
1 +

∞∑
k=1

(−1)k x2k

(r + 2)2(r + 4)2 · · · (r + 2k)2

]
(2.10.26)

Differentiating the expression above gives

∂ur

∂r
= xr ln x

[
1 +

∞∑
k=1

(−1)k x2k

(r + 2)2(r + 4)2 · · · (r + 2k)2

]

+ xr

{ ∞∑
k=1

(−1)k x2k ∂

∂r
[(r + 2)−2 · · · (r + 2k)−2]

}
(2.10.27)

The derivative of the product appearing in the second sum is computed using logarithmic differ-
entiation. Set

f (r) = (r + 2)−2(r + 4)−2 · · · (r + 2k)−2 (2.10.28)

so that

f (0) = 2−2 · 4−2 · · · (2k)−2

= 1

22k(k!)2
(2.10.29)

and

f ′(r) = −2 f (r)

(
1

r + 2
+ 1

r + 4
+ · · · + 1

r + 2k

)
(2.10.30)

We substitute f ′(r) into Eq. 2.10.27 and obtain

∂ur

∂r
= xr ln x

[
1 +

∞∑
k=1

(−1)k x2k f (r)

]

+ xr
∞∑

k=1

(−1)k x2k(−2) f (r)

(
1

r + 2
+ · · · + 1

r + 2k

)

= ur (x) ln x + xr
∞∑

k=1

(−1)k x2k(−2) f (r)

(
1

r + 2
+ · · · + 1

r + 2k

)
(2.10.31)

Setting r = 0 yields

u2(x) = ∂ur

∂r

∣∣∣
r=0

= J0(x) ln x +
∞∑

k=1

(−1)k+1x2k

22k(k!)2
hk (2.10.32)
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The Bessel function of the second kind of order zero is a linear combination of J0(x) and u2(x).
Specifically,

Y0(x) = 2

π
u2(x) + 2

π
(γ − ln 2)J0(x) (2.10.33)

where γ is the Euler constant, γ = 0.57721566490. Finally, we write

Y0(x) = 2

π

{
J0(x)

[
ln

x

2
+ γ

]
+

∞∑
k=1

(−1)k+1x2k

22k(k!)2
hk

}
(2.10.34)

and the general solution is

u(x) = AJ0(x) + BY0(x) (2.10.35)
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Problems

1. Find the “logarithmic” solution of the modified Bessel
equation, λ = 0,

x2 d2u

dx2
+ x

du

dx
− x2u = 0

2. Use Eq. 2.10.34 and Table A4 for J0(x) to compute Y0(x)

for x = 0.1, 0.2, . . . , 1.0. Approximate the infinite series

part of the definition of Y0(x) with its first two nonzero
terms.

3. Explain how Eq. 2.10.34 arises from Eq. 2.10.32.

2.10.4 Roots Differing by an Integer
The Bessel equation with λ = 1 was solved in Example 2.9.2. The expression for the second so-
lution was found to be

u2(x) =
∞∑

k=0

(−1)k+1x2k+1

22k+1k!(k + 1)!
ln x + 1

x
−

∞∑
k=0

(−1)k+1x2k+1

22k+2k!(k + 1)!
(hk+1 + hk) (2.10.36)

Using −J1(x) to represent the series multiplying ln x ,

u2(x) = −J1(x) ln x + 1

x
− 1

2

∞∑
k=0

(−1)k x2k+1

22k+1k!(k + 1)!
(hk+1 + hk) (2.10.37)

A standard form for this “second” solution is denoted by Y1(x) and is called Bessel’s function of
the second kind of order 1. It is defined as

Y1(x) = − 2

π
u2(x) + 2

π
(γ − ln 2)J1(x) (2.10.38)



where γ is Euler’s constant. (Compare with Eq. 2.10.34.) In neater form,

Y1(x) = 2

π
J1(x)

[
ln

x

2
+ γ

]
− 2

πx
+ x

π

∞∑
k=0

(−1)k−1x2k(hk+1 + hk)

22k+1k!(k + 1)!
(2.10.39)

Hence, the general solution of Bessel’s equation of order 1 is

u(x) = AJ1(x) + BY1(x) (2.10.40)

A similar analysis holds for Bessel’s equation of order N , where N is a positive integer. The
equation is

x2 d2u

dx2
+ x

du

dx
+ (x2 − N 2)u = 0 (2.10.41)

and a pair of basic solutions is (see Eq. 2.10.15)

JN (x) =
∞∑

n=0

(−1)n x2n+N

22n+N n!(n + N )!
(2.10.42)

and

YN (x) = 2

π
JN (x)

[
ln

x

2
+ γ

]

− 1

π

∞∑
n=0

(−1)n x2n+N

22n+N n!(n + N )!
(hn+N + hn) − 1

π

N−1∑
n=0

(N − n − 1)!x2n−N

22n−N n! (2.10.43)

with the general solution

u(x) = AJN (x) + BYN (x) (2.10.44)

Graphs of Y0(x) and Y1(x) are shown in Fig. 2.5. Since Y0(x) and Y1(x) are not defined at
x = 0, that is, Y0(0) = Y1(0) = −∞, the solution 2.10.44 for a problem with a finite boundary
condition at x = 0 requires that B = 0; the solution would then only involve Bessel functions of
the first kind.

2.10.5 Maple Applications
Maple also has available the Bessel functions of the second kind. Figure 2.5 can be created with
this command:

>plot({BesselY(0,x), BesselY(1, x)}, x = 0..14,
y = -2..2);
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x

Figure 2.5 Bessel functions of the
second kind.
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Problems

1. Derive Eq. 2.10.39 from Eq. 2.10.38.

2. Derive Eq. 2.10.43 by obtaining the second solution of
Eq. 2.10.41 by the method of Frobenius.

Show that Yn satisfies each relationship.

3. xY ′
n(x) = xYn−1(x) − nYn(x)

4. xY ′
n(x) = −xYn+1(x) + nYn(x)

5. 2Y ′
n(x) = Yn−1(x) − Yn+1(x)

6. 2nYn(x) = x[Yn−1(x) − Yn+1(x)]

7. Use Eq. 2.10.15 to show that

∂

∂λ
Jλ(x) = Jλ(x) ln

x

2
−

( x

2

)λ ∞∑
k=0

(−1)k�(λ + k + 1)

2k�(λ + k + 1)

x2k

k!

and hence
∂

∂λ
Jλ(x)

∣∣∣
λ=0

= π

2
Y0(x)

[Hint: Use Problems 14 and 15 of Section 2.5 and the fact
that hn = �(n + 1) + γ .]

8. Show that the Wronskian is given by

W (Jn, Yn) = Jn+1Yn − JnYn+1 = 2

πx
9. Show that

d

dx
Y0(x) = −Y1(x),

d

dx
J0(x) = −J1(x)

10. Prove that Wronskian, for x not an integer, is

W (Jn, J−n) = k/x, k �= 0

11. Use the results of Problem 13, Section 2.10.1 and
Problem 10 above to evaluate W (J1/2, J−1/2).

2.10.6 Basic Identities
In the manipulation of Bessel functions a number of helpful identities can be used. This section
is devoted to presenting some of the most important of these identities. Let use first show that

d

dx
[xλ+1 Jλ+1(x)] = xλ+1 Jλ(x) (2.10.45)

The series expansion (2.10.15) gives

xλ+1 Jλ+1(x) =
∞∑

n=0

(−1)n x2n+2λ+2

22n+λ+1n!�(λ + n + 2)
(2.10.46)

This is differentiated to yield

d

dx
[xλ+1 Jλ+1(x)] =

∞∑
n=0

(−1)n(2n + 2λ + 2)x2n+2λ+1

22n+λ+1n!�(λ + n + 2)

=
∞∑

n=0

(−1)n2(n + λ + 1)x2n+2λ+1

2 · 22n+λn!(λ + n + 1)�(λ + n + 1)

= xλ+1
∞∑

n=0

(−1)n x2n+λ

22n+λn!�(λ + n + 1)

= xλ+1 Jλ(x) (2.10.47)



This proves the relationship (2.10.45). Following this procedure, we can show that

d

dx
[x−λ Jλ(x)] = −x−λ Jλ+1(x) (2.10.48)

From the two identities above we can perform the indicated differentiation on the left-hand sides
and arrive at

xλ+1 d Jλ+1

dx
+ (λ + 1)xλ Jλ+1 = xλ+1 Jλ

x−λ d Jλ

dx
− λx−λ−1 Jλ = −x−λ Jλ+1

(2.10.49)

Let us multiply the first equation above by x−λ−1 and the second by xλ. There results

d Jλ+1

dx
+ λ + 1

x
Jλ+1 = Jλ

d Jλ

dx
− λ

x
Jλ = −Jλ+1

(2.10.50)

If we now replace λ + 1 with λ in the first equation, we have

d Jλ

dx
+ λ

x
Jλ = Jλ−1 (2.10.51)

This equation can be added to the second equation of 2.10.50 to obtain

d Jλ

dx
= 1

2 (Jλ−1 − Jλ+1) (2.10.52)

Equation 2.10.51 can also be subtracted from the second equation of 2.10.50 to obtain the im-
portant recurrence relation

Jλ+1(x) = 2λ

x
Jλ(x) − Jλ−1(x) (2.10.53)

This allows us to express Bessel functions of higher order in terms of Bessel functions of lower
order. This is the reason that tables only give J0(x) and J1(x) as entries. All higher-order Bessel
functions can be related to J0(x) and J1(x). By rewriting Eq. 2.10.53, we can also relate Bessel
functions of higher negative order to J0(x) and J1(x). We would use

Jλ−1(x) = 2λ

x
Jλ(x) − Jλ+1(x) (2.10.54)

In concluding this section, let us express the differentiation identities 2.10.45 and 2.10.48 as
integration identities. By integrating once we have∫

xλ+1 Jλ(x) dx = xλ+1 Jλ+1(x) + C∫
x−λ Jλ+1(x) dx = −x−λ Jλ(x) + C

(2.10.55)

These formulas are used when integrating Bessel functions.
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EXAMPLE 2.10.1

Find numerical values for the quantities J4(3) and J−4(3) using the recurrence relations.

� Solution

We use the recurrence relation 2.10.53 to find a value for J4(3). It gives

J4(3) = 2 · 3

3
J3(3) − J2(3)

= 2

[
2 · 2

3
J2(3) − J1(3)

]
− J2(3)

= 5

3

[
2

3
J1(3) − J0(3)

]
− 2J1(3)

= −8

9
J1(3) − 5

3
J0(3)

= −8

9
× 0.339 − 5

3
× (−0.260) = 0.132

Now, to find a value for J−4(3) we use Eq. 2.10.54 to get

J−4(3) = 2(−3)

3
J−3(3) − J−2(3)

= −2

[
2(−2)

3
J−2(3) − J−1(3)

]
− J−2(3)

= 5

3

[
2(−1)

3
J−1(3) − J0(3)

]
+ 2J−1(3)

= 8

9
[−J1(3)] − 5

3
J0(3) = 0.132

We see that J4(x) = J−4(x).

Integrals involving Bessel functions are often encountered in the solution of physically motivated problems.
Determine an expression for ∫

x2 J2(x) dx

� Solution

To use the second integration formula of 2.10.55, we put the integral in the form∫
x2 J2(x) dx =

∫
x3[x−1 J2(x)] dx

u = x3

du = 3x2
dv = x−1 J2(x) dx
v = −x−1 J1(x)

EXAMPLE 2.10.2
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Then ∫
x2 J2(x) dx = −x2 J1(x) + 3

∫
x J1(x) dx

Again we integrate by parts:

u = x
du = dx

dv = J1(x) dx
v = −J0(x)

There results ∫
x2 J2(x) dx = −x2 J1(x) − 3x J0(x) + 3

∫
J0(x) dx

The last integral, 
∫

J0(x) dx , cannot be evaluated using our integration formulas. Because it often appears
when integrating Bessel functions, it has been tabulated, although we will not include it in this work.
However, we must recognize when we arrive at 

∫
J0(x) dx , our integration is complete. In general, whenever

we integrate 
∫

xn Jm(x) dx and n + m is even and positive, the integral 
∫

J0(x) dx will appear.

EXAMPLE 2.10.2 (Continued)

Problems

Evaluate each term.

1. J3(2)

2. J5(5)

3.
d J0

dx
at x = 2

4.
d J2

dx
at x = 4

5.
d J1

dx
at x = 1

6.
d J3

dx
at x = 1

Find an expression in terms of J1(x) and J0(x) for each
integral.

7.
∫

x3 J2(x) dx

8.
∫

x J2(x) dx

9.
∫

J4(x)

x
dx

10.
∫

x J1(x) dx

11.
∫

x3 J1(x) dx

12.
∫

J3(x)

x
dx

13. We know that

J1/2(x) =
(

2

πx

)1/2

sin x, J−1/2(x) =
(

2

πx

)1/2

cos x

Use Eq. 2.10.53 to find expressions for J3/2(x) and
J5/2(x).

Prove each identity for the modified Bessel functions of
Problem 11 of Section 2.10.1.

14. x I ′
n(x) = x In−1(x) − nIn(x)

15. x I ′
n(x) = x In+1(x) + nIn(x)



16. 2I ′
n(x) = In−1(x) + In+1(x)

17. 2nIn(x) = x[In−1(x) − In+1(x)]

18. Express I1/2(x) and I−1/2(x) in terms of elementary
functions analogous to the expressions for J1/2(x) and
J−1/2(x) in Problem 13.

19. Computer Laboratory Activity: As Problems 3–6 show,
the Bessel function of the first kind is a differentiable
function. Use Maple to create graphs of J3 near x = 3.5.
Use data from your graphs to approximate the derivative
there. Then, compute d J3/dx at x = 3.5 using Eq.
2.10.52 and compare your answers.

A general solution of

d2u

dx2
+ p0(x)

du

dx
+ p1(x)u = f (x) (2.11.1)

is the sum of a general solution of

d2u

dx2
+ p0(x)

du

dx
+ p1(x)u = 0 (2.11.2)

and any particular solution of Eq. 2.11.1. If a general solution of Eq. 2.11.2 is known, the method
of variation of parameters will always generate a particular solution of Eq. 2.11.1. When
Eq. 2.11.2 has its solution expressed as a power or Frobenius series, the general solution of
Eq. 2.11.1 will also be in series form. An example will illustrate.

2.11 NONHOMOGENEOUS EQUATIONS
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Find a particular solution of

d2u

dx2
+ x2u = x

� Solution

The point x = 0 is an ordinary point of the given equation and the technique of Section 2.2 provides the fol-
lowing pair of independent solutions:

u1(x) = 1 − x4

3 · 4
+ x8

3 · 4 · 7 · 8
− · · ·

u2(x) = x − x5

4 · 5
+ x9

4 · 5 · 8 · 9
− · · ·

In the method of variation of parameters, we assume a solution in the form

up(x) = v1u1 + v2u2

EXAMPLE 2.11.1
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and determine v1(x) and v2(x). The equations for v1 and v2 are (see Section 1.11)

v′
i u1 + v′

2u2 = 0

v′
1u′

1 + v′
2u′

2 = x

which have the unique solution

v′
1(x) = − xu2(x)

W

v′
2(x) = xu1(x)

W (x)

where W (x) is the Wronskian of u1 and u2. However,

W (x) = K e−∫ [p0(x)/x]dx = K e0 = K

since p0(x) = 0. We pick K = 1, since retaining K simply generates a multiple of up(x). Hence, the preced-
ing expressions can be integrated to give

v1(x) = −
∫

xu2(x) dx

= −
∫ (

x2 − x6

4 · 5
+ x10

4 · 5 · 8 · 9
− · · ·

)
dx

= − x3

3
+ x7

4 · 5 · 7
− x11

4 · 5 · 8 · 9 · 11
+ · · ·

and

v2(x) =
∫

xu1(x) dx

=
∫ (

x − x5

3 · 4
+ x9

3 · 4 · 7 · 8
− · · ·

)
dx

= x2

2
− x6

3 · 4 · 6
+ x10

3 · 4 · 7 · 8 · 10
− · · ·

The regular pattern of the coefficients is obscured when we substitute these series into the expression for
up(x):

up(x) =
(

− x3

3
+ x7

4 · 5 · 7
− · · ·

)(
1 − x4

3 · 4
+ · · ·

)

+
(

x2

2
− x6

3 · 4 · 6
+ · · ·

)(
x − x5

4 · 5
+ · · ·

)

= x3

6
− x7

6 · 6 · 7
+ · · ·

EXAMPLE 2.11.1 (Continued)



An alternative method sometimes yields the pattern of the coefficients. We replace the non-
homogeneous term f (x) by its power series and substitute

up(x) =
∞∑

n=0

bn xn (2.11.3)

into the left-hand side of Eq. 2.11.1 It is usually convenient to add the conditions that
u(0) = 0 = u′(0), which means that b0 = b1 = 0 in Eq. 2.11.3. The following example illus-
trates this method.
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Find the solution to the initial-value problem

d2u

dx2
+ x2u = x, u(0) = u′(0) = 0

� Solution

We ignore u1(x) and u2(x) and proceed by assuming that up(x) can be expressed as the power series of
Eq. 2.11.3. We have

x2up(x) =
∞∑

n=0

bn xn+2 =
∞∑

n=2

bn−2xn

and

u′′
p(x) =

∞∑
n=2

(n − 1)nbn xn−2 =
∞∑

n=0

(n + 1)(n + 2)bn+2xn

Hence,

u′′
p + x2up = 2b2 + 6b3x +

∞∑
n=2

[(n + 1)(n + 2)bn+2 + bn−2]xn = x

Identifying the coefficients of like powers of x leads to

x0 : b2 = 0
x1 : 6b3 = 1
xn : (n + 2)(n + 1)bn+2 + bn−2 = 0, n ≥ 2

EXAMPLE 2.11.2
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In view of the fact that b0 = b1 = b2 = 0 and that the subscripts in the two-term recursion differ by four, we
solve the recursion by starting with n = 5. The table

1 n = 5 b7 = − b3

7 · 6

2 n = 9 b11 = − b7

11 · 10
...

...
...

k n = 4k + 1 b4k+3 = − b4k−1

(4k + 3)(4k + 2)

leads to the solution

b4k+3 = (−1)kb3

6 · 7 · 10 · 11 · · · (4k + 2)(4k + 3)

Thus, noting that b3 = 1
6 ,

up(x) = 1

6

[
x3 +

∞∑
k=1

(−1)k x4k+1

6 · 7 · · · (4k + 2)(4k + 3)

]

This method is preferred whenever it can be effected, since it generates either the pattern of the coefficients or,
failing that, as many coefficients as desired. The first two terms in the expansion in Example 2.11.1 are veri-
fied using the aforementioned series.

The general solution is, then, using u1(x) and u2(x) from Example 2.11.1,

u(x) = Au1(x) + Bu2(x) + up(x)

Using u(0) = 0 requires that A = 0; using u′(0) = 0 requires that B = 0. The solution is then

u(x) = 1

6

[
x3 +

∞∑
k=1

(−1)k x4k+1

6 · 7 · · · (4k + 2)(4k + 3)

]

Any variation in the initial conditions from u(0) = u′(0) = 0 brings in the series for u1(x) or u2(x). For
instance, since

u(x) = Au1(x) + Bu2(x) + up(x)

the initial conditions, u(0) = −1, u′(0) = 2, lead to the solution

u(x) = −u1(x) + 2u2(x) + 1

6

[
x3 − x5

6 · 7
+ · · ·

]

EXAMPLE 2.11.2 (Continued)



2.11.1 Maple Applications
Note on computer usage: In Maple, the formal_series option for dsolve only works for
certain homogenous equations.
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Problems

Solve each initial-value problem by expanding about x = 0.

1. (4 − x2)u′′ + 2u = x2 + 2x, u(0) = 0, u′(0) = 0

2. u′′ + (1 − x)u = 4x, u(0) = 1, u′(0) = 0

3. u′′ − x2u′ + u sin x = 4 cos x, u(0) = 0, u′(0) = 1

4. Solve (1 − x) f ′ − f = 2x using a power-series expan-
sion. Let f = 6 at x = 0, and expand about x = 0.
Obtain five terms in the series and compare with the
exact solution for values of x = 0, 1

4 , 1
2 , 1, and 2.

5. Solve the differential equation u′′ + x2u = 2x using a
power-series expansion if u(0) = 4 and u′(0) = −2.
Find an approximate value for u(x) at x = 2.

Solve each differential equation for a general solution using
the power-series method by expanding about x = 0. Note the
radius of convergence for each solution.

6.
du

dx
+ u = x2

7. (1 − x)
du

dx
+ u = x

8. x
du

dx
+ x2u = sin x

9.
d2u

dx2
+ 2

du

dx
+ u = x2

10.
d2u

dx2
+ 6

du

dx
+ 5u = x2 + 2 sin x

11. The solution to (1 − x) d f/dx − f = 2x is desired in
the interval from x = 1 to x = 2. Expand about x = 2
and determine the value of f (x) at x = 1.9 if f (2) = 1.
Compare with the exact solution.



The solution of a linear, ordinary differential equation with constant coefficients may be ob-
tained by using the Laplace transformation. It is particularly useful in solving nonhomogeneous
equations that result when modeling systems involving discontinuous, periodic input functions.
It is not necessary, however, when using Laplace transforms that a homogeneous solution and a
particular solution be added together to form the general solution. In fact, we do not find a gen-
eral solution when using Laplace transforms. The initial conditions must be given and with them
we obtain the specific solution to the nonhomogeneous equation directly, with no additional
steps. This makes the technique quite attractive.

Another attractive feature of using Laplace transforms to solve a differential equation is that
the transformed equation is an algebraic equation. The algebraic equation is then used to deter-
mine the solution to the differential equation.

The general technique of solving a differential equation using Laplace transforms involves
finding the transform of each term in the equation, solving the resulting algebraic equation in
terms of the new transformed variable, then finally solving the inverse problem to retrieve the
original variables. We shall follow that order in this chapter. Let us first find the Laplace trans-
form of the various quantities that occur in our differential equations.

Let the function f (t) be the dependent variable of an ordinary differential equation that we wish
to solve. Multiply f (t) by e−st and integrate with respect to t from 0 to infinity. The independent
variable t integrates out and there remains a function of s, say F(s). This is expressed as

F(s) =
∫ ∞

0
f (t)e−st dt (3.2.1)

The function F(s) is called the Laplace transform of the function f (t). We will return often to
this definition of the Laplace transform. It is usually written as

�( f ) = F(s) =
∫ ∞

0
f (t)e−st dt (3.2.2)

3.2 THE LAPLACE TRANSFORM

3.1 INTRODUCTION

3 Laplace Transforms



where the script � denotes the Laplace transform operator. We shall consistently use a lower-
case letter to represent a function and its capital to denote its Laplace transform; that is, Y (s)
denotes the Laplace transform of y(t). The inverse Laplace transform will be denoted by �−1,
resulting in

f (t) = �−1
(F) (3.2.3)

There are two threats to the existence of the Laplace transform; the first is that

∫ t0

0
f (t)e−st dt

may not exist because, for instance, lim
t→t0

f (t) = +∞. The second is that, as an improper integral

∫ ∞

0
f (t)e−st dt

diverges. We avoid the first pitfall by requiring f (t) to be sectionally continuous (see Fig. 3.1
and Section 3.3). The second problem is avoided by assuming that there exists a constant M such
that

| f (t)| ≤ Mebt for all t ≥ 0 (3.2.4)

Functions that satisfy Eq. 3.2.4 are of exponential order as t → ∞. If f (t) is of exponential
order, then

∣∣∣∣
∫ ∞

0
f (t)e−st dt

∣∣∣∣ ≤
∫ ∞

0
| f (t)| e−st dt ≤ M

∫ ∞

0
e(b−s)t dt = M

s − b
(3.2.5)

The function et2
does not possess a Laplace transform; note that it is not of exponential order. It

is an unusual function not often encountered in the solution of real problems. By far the major-
ity of functions representing physical quantities will possess Laplace transforms. Thus, if f (t)
is sectionally continuous in every finite interval and of exponential order as t → ∞, then

�[ f (t)] =
∫ ∞

0
f (t)e−st dt (3.2.6)
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Figure 3.1 A sectionally continuous function. 

t1 t2 t3 t4 t5 t

f(t)



exists. Moreover, the inequality proved in Eq. 3.2.5 leads to

(i) s F(s) is bounded as s → ∞, from which it follows that
(ii) lim

s→∞ F(s) = 0.

Thus, F(s) = 1, for instance, is not a Laplace transform of any function in our class. We will as-
sume that any f (t) is sectionally continuous on every interval 0 < t < t0 and is of exponential
order as t → ∞. Thus �( f ) exists.

Before considering some examples that demonstrate how the Laplace transforms of various
functions are found, let us consider some important properties of the Laplace transform. First,
the Laplace transform operator � is a linear operator. This is expressed as

�[a f (t) + bg(t)] = a�( f ) + b�(g) (3.2.7)

where a and b are constants. To verify that this is true, we simply substitute the quantity
[a f (t) + bg(t)] into the definition for the Laplace transform, obtaining

�[a f (t) + bg(t)] =
∫ ∞

0
[a f (t) + bg(t)]e−st dt

= a
∫ ∞

0
f (t)e−st dt + b

∫ ∞

0
g(t)e−st dt

= a�( f ) + b�(g) (3.2.8)

The second property is often called the first shifting property. It is expressed as

�[eat f (t)] = F(s − a) (3.2.9)

where F(s) is the Laplace transform of f (t). This is proved by using eat f (t) in place of f (t) in
Eq. 3.2.2; there results

�[eat f (t)] =
∫ ∞

0
eat f (t)e−st dt =

∫ ∞

0
f (t)e−(s−a)t dt (3.2.10)

Now, let s − a = s. Then we have

�[eat f (t)] =
∫ ∞

0
f (t)e−st dt

= F(s) = F(s − a) (3.2.11)

We assume that s > a so that s > 0.
The third property is the second shifting property. It is stated as follows: If the Laplace trans-

form of f (t) is known to be

�( f ) = F(s) (3.2.12)

and if

g(t) =
{

f (t − a), t > a
0, t < a

(3.2.13)
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then the Laplace transform of g(t) is

�(g) = e−as F(s) (3.2.14)

To show this result, the Laplace transform of g(t), given by Eq. 3.2.13, is

�(g) =
∫ ∞

0
g(t)e−st dt =

∫ a

0
0 · e−st dt +

∫ ∞

a
f (t − a)e−st dt (3.2.15)

Make the substitution τ = t − a. Then dτ = dt and we have

�(g) =
∫ ∞

0
f (τ)e−s(τ+a) dτ = e−as

∫ ∞

0
f (τ)e−sτ dτ = e−as F(s) (3.2.16)

and the second shifting property is verified.
The fourth property follows from a change of variables. Set τ = at (a is a constant) in

F(s) =
∫ ∞

0
e−st f (t) dt (3.2.17)

Then, since dt = dτ/a,

F(s) = 1

a

∫ ∞

0
e−(s/a)τ f

(τ

a

)
dτ (3.2.18)

which may be written, using s = s/a,

aF(as) = �

[
f

(
t

a

)]
(3.2.19)

The four properties above simplify the task of finding the Laplace transform of a particular
function f (t), or the inverse transform of F(s). This will be illustrated in the following exam-
ples. Table 3.1, which gives the Laplace transform of a variety of functions, is found at the end
of this chapter.
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Find the Laplace transform of the unit step function

u0(t) =
{

1, t > 0
0, t < 0

u(t)

1

t

EXAMPLE 3.2.1
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�Solution

Using the definition of the Laplace transform, we have

�(u0) =
∫ ∞

0
u0(t)e

−st dt =
∫ ∞

0
e−st dt = −1

s
e−st

∣∣∣∞
0

= 1

s

This will also be used as the Laplace transform of unity, that is �(1) = 1/s , since the integration occurs
between zero and infinity, as above.

EXAMPLE 3.2.1 (Continued)

EXAMPLE 3.2.2

Use the first shifting property to find the Laplace transform of eat .

�Solution

Equation 3.2.9 provides us with

�(eat) = F(s − a)

where the transform of unity is, from Example 3.2.1

F(s) = 1

s

We simply substitute s − a for s and obtain

�(eat) = 1

s − a

Use the second shifting property and find the Laplace transform of the unit step function ua(t) defined by

ua(t) =
{

1, t > a
0, t < a

ua(t)

tt � a

1

EXAMPLE 3.2.3
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Check the result by using the definition of the Laplace transform.

�Solution

Using the second shifting theorem given by Eq. 3.2.14, there results

�(ua) = e−as F(s)

= 1

s
e−as

where F(s) is the Laplace transform of the unit step function.
To check the preceding result, we use the definition of the Laplace transform:

�(ua) =
∫ ∞

0
ua(t)e

−st dt =
∫ a

0
0 · e−st dt +

∫ ∞

a
e−st dt = −1

s
e−st

∣∣∣∞
a

= 1

s
e−as

This, of course, checks the result obtained with the second shifting theorem.

EXAMPLE 3.2.3 (Continued)

EXAMPLE 3.2.4

Determine the Laplace transform of sin ωt and cos ωt by using

eiθ = cos θ + i sin θ

the first shifting property, and the linearity property.

�Solution

The first shifting property allows us to write (see Example 3.2.2)

�(eiωt ) = 1

s − iω

= 1

s − iω

s + iω

s + iω
= s + iω

s2 + ω2
= s

s2 + ω2
+ i

ω

s2 + ω2

Using the linearity property expressed by Eq. 3.2.7, we have

�(eiωt ) = �(cos ωt + i sin ωt) = �(cos ωt) + i�(sin ωt)

Equating the real and imaginary parts of the two preceding equations results in

�(sin ωt) = ω

s2 + ω2

�(cos ωt) = s

s2 + ω2

These two Laplace transforms could have been obtained by substituting directly into Eq. 3.2.2, each of which
would have required integrating by parts twice.
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EXAMPLE 3.2.5

Find the Laplace transform of t k .

�Solution

The Laplace transform of t k is given by

�(t k) =
∫ ∞

a
tke−st dt

To integrate this, we make the substitution

τ = st, dt = dτ

s

There then results

�(t k) =
∫ ∞

0
t ke−st dt = 1

sk+1

∫ ∞

0
τ ke−τ dτ = 1

sk+1
�(k + 1)

where the gamma function �(k + 1) is as defined by Eq. 2.5.1. If k is a positive integer, say k = n, then

�(n + 1) = n!

and we obtain

�(tn) = n!

sn+1

EXAMPLE 3.2.6

Use the linearity property and find the Laplace transform of cosh ωt .

�Solution

The cosh ωt can be written as

cosh ωt = 1
2 (eωt + e−ωt)

The Laplace transform is then

�(cosh ωt) = �
(

1
2 eωt + 1

2 e−ωt
) = 1

2 �(eωt ) + 1
2 �(e−ωt)

Using the results of Example 3.2.2, we have

�(cosh ωt) = 1

2(s − ω)
+ 1

2(s + ω)
= s

s2 − ω2
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EXAMPLE 3.2.7

Find the Laplace transform of the function

f (t) =
{ 0, t < a

A, a < t < b
0, b < t

Use the result of Example 3.2.3.

�Solution

The function f (t) can be written in terms of the unit step function as

f (t) = Aua(t) − Aub(t)

The Laplace transform is, from Example 3.2.3,

�( f ) = A

s
e−as − A

s
e−bs = A

s
[e−as − e−bs]

f (t)

a b t

A

An extension of the function shown in Example 3.2.7 is the function shown. If ε → 0, the unit impulse func-
tion results. It is often denoted by δ0(t). It1 has an area of unity, its height approaches ∞ as its base approaches
zero. Find �( f ) for the unit impulse function if it occurs (a) at t = 0 as shown, and (b) at t = a.

f (t)

t�

1��

EXAMPLE 3.2.8

1Strictly speaking, δ0(t) is not a function. Moreover, limε→0 �( f ) = �(δ0) does not make sense; witness the fact that
�(δ0) = 1 contradicts lims→∞ �[ f (t)] = 0. The resolution of these logical difficulties requires the theory of distributions, a
subject we do not explore in this text. 
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�Solution

Let us use the results of Example 3.2.7. With the function f (t) shown, the Laplace transform is, using
A = 1/ε,

�( f ) = 1

εs
[1 − e−εs]

To find the limit as ε → 0, expand e−εs in a series. This gives

e−εs = 1 − εs + ε2s2

2!
− ε3s3

3!
+ · · ·

Hence,

1 − e−εs

εs
= 1 − εs

2!
+ e2s2

3!
− · · ·

As ε → 0, the preceding expression approaches unity. Thus,

�(δ0) = 1

If the impulse function occurs at a time t = a, it is denoted by δa(t). Then, using the second shifting property,
we have

�(δa) = e−as

Examples of the use of the impulse function are a concentrated load Pδa(x) located at x = a, or an
electrical potential V δa(t) applied instantaneously to a circuit at t = a.

EXAMPLE 3.2.8 (Continued)

Find the Laplace transform of

f (t) =
{ 0, 0 < t < 1

t2, 1 < t < 2
0, 2 < t

�Solution

The function f (t) is written in terms of the unit step function as

f (t) = u1(t)t
2 − u2(t)t

2

We cannot apply the second shifting property with f (t) in this form since, according to Eq. 3.2.13, we must
have for the first term a function of (t − 1) and for the second term a function of (t − 2). The function f (t) is
thus rewritten as follows:

f (t) = u1(t)[(t − 1)2 + 2(t − 1) + 1] − u2(t)[(t − 2)2 + 4(t − 2) + 4]

EXAMPLE 3.2.9
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Now, we can apply the second shifting property to the preceding result, to obtain,

�( f ) = �{u1(t)[(t − 1)2 + 2(t − 1) + 1]} − �{u2(t)[(t − 2)2 + 4(t − 2) + 4]}
For the first set of braces f (t) = t2 + 2t + 1, and for the second set of braces f (t) = t2 + 4t + 4. The result is

�( f ) = e−s

[
2

s3
+ 2

s2
+ 1

s

]
− e−2s

[
2

s3
+ 4

s2
+ 4

s

]

Note that, in general, f (t) is not the function given in the statement of the problem, which in this case was
f (t) = t2.

EXAMPLE 3.2.9 (Continued)

The square-wave function is as shown. Determine its Laplace transform.

�Solution

The function f (t) can be represented using the unit step function. It is

f (t) = Au0(t) − 2Aua(t) + 2Au2a(t) − 2Au3a(t) + · · ·
The Laplace transform of the preceding square-wave function is, referring to Example 3.2.3,

�( f ) = A

[
1

s
− 2

s
e−as + 2

s
e−2as − 2

s
e−3as + · · ·

]

= A

s
[1 − 2e−as(1 − e−as + e−2as − · · ·)]

Letting e−as = ξ , we have

�( f ) = A

s
[1 − 2ξ(1 − ξ + ξ 2 − ξ 3 + · · ·)]

The quantity in parentheses is recognized as the series expansion for 1/(1 + ξ). Hence, we can write

�( f ) = A

s

[
1 − 2e−as

1 + e−as

]

f (t)

A

�A

a 2a 3a 4a t

EXAMPLE 3.2.10
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This can be put in the form

�( f ) = A

s

1 − e−as

1 + e−as
= A

s

eas/2 − e−as/2

eas/2 + e−as/2

e−as/2

e−as/2
= A

s

eas/2 − e−as/2

eas/2 + e−as/2

This form is recognized as

�( f ) = A

s
tanh

as

2

EXAMPLE 3.2.10 (Continued)

Use the Laplace transforms from Table 3.1 and find f (t) when F(s) is given by

(a)
2s

s2 + 4
(b)

6s

s2 + 4s + 13
(c)

4e−2s

s2 − 16

�Solution

(a) The Laplace transform of cos ωt is

�(cos ωt) = s

s2 + ω2

Then,

�(2 cos 2t) = 2�(cos 2t) = 2s

s2 + 22

Thus, if F(s) = 2s/(s2 + 4), then f (t) is given by

f (t) = �−1
(

2s

s2 + 4

)
= 2 cos 2t

(b) Let us write the given F(s) as (this is suggested by the term 4s in the denominator)

F(s) = 6s

s2 + 4s + 13
= 6(s + 2) − 12

(s + 2)2 + 9
= 6(s + 2)

(s + 2)2 + 9
− 12

(s + 2)2 + 9

Using the first shifting property, Eq. 3.2.9, we can write

�(e−2t cos 3t) = s + 2

(s + 2)2 + 9

�(e−2t sin 3t) = 3

(s + 2)2 + 9

EXAMPLE 3.2.11
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It then follows that

�−1
(

6s

s2 + 4s + 13

)
= 6e−2t cos 3t − 4e−2t sin 3t

or we have

f (t) = 2e−2t(3 cos 3t − 2 sin 3t)

(c) The second shifting property suggests that we write

4e−2s

s2 − 16
= e−2s

[
4

s2 − 16

]

and find the f (t) associated with the quantity in brackets; that is,

�(sinh 4t) = 4

s2 − 16

or

�−1
(

4

s2 − 16

)
= sinh 4t

Finally, there results, using Eq. 3.2.13,

f (t) =
{

sinh 4(t − 2), t > 2
0, t < 2

In terms of the unit step function, this can be written as

f (t) = u2(t) sinh 4(t − 2)

EXAMPLE 3.2.11 (Continued)

3.2.1 Maple Applications
Maple commands for this chapter are: laplace and invlaplace (inttrans package)
assume, about, convert(parfrac), Heaviside, GAMMA, and Dirac, along with
commands from Chapter 1 (such as dsolve), and Appendix C.

The Laplace transform and the inverse transform are built into Maple as part of theinttrans
package. The commands in this package must be used with care. To load this package, we enter

>with(inttrans):
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The problem in Example 3.2.2 can be solved with this command:

>laplace(exp(a*t), t, s);

where the second entry is the variable for the original function (usually t), and the third entry is
the variable for the Laplace transform (usually s). The output is

1

s − a

The unit step function in also called the Heaviside function (in honor of British engineer
Oliver Heaviside), and this function is built into Maple. A graph of the function can be created
using

>plot(Heaviside(t), t=-10..10, axes=boxed);

and its Laplace transform, 1
s , can be determined by

>laplace(Heaviside(t), t, s);

Attempting to reproduce Example 3.2.5 with Maple can be a bit tricky. The command

>laplace(t^k, t, s);

generates an error message because it is not clear to Maple what kind of number k is. The
assume command can be used to put more conditions on a variable. For example,

>assume(k, integer, k>0);

tells Maple to treat k as an integer, and a positive one at that, in any future calculations. In order
to remind a user that k has extra conditions, Maple replaces k in any future output with k ∼. The
assumptions on a variable can be checked by using the about command:

>about(k);

Originally k, renamed k~:

is assumed to be: AndProp(integer,RealRange(1,infinity))

After executing the assume command for k, Maple can compute the Laplace transform of t k :

>laplace(t^k, t, s);

s(−k∼−1)�(k∼ +1)
Even at this point, Maple will not determine the value of the Gamma function at k + 1. This is a
reminder that, like any other tool, a computer algebra system has limitations.

The unit impulse function is also called the Dirac delta function (named after the twentieth-
century physicist Paul Dirac), and it, too, is built into Maple. The calculations in Example 3.2.8
can be reproduced by

>laplace(Dirac(t), t, s);

1

>laplace(Dirac(t-a), t, s);

e(−sa)− e(−sa)Heaviside(−a)+
(

0 a≤ 0
{
−e(−sa) 0 < a

)

The output of the second calculation is revealing, because we see that the Laplace transform
depends on the sign of a. If a > 0, then Heaviside(−a) = 0, and the Maple output reduces to
0. If a < 0, then Heaviside(−a) = 1, and the Maple output also reduces to 0. On the other
hand,
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>laplace(Dirac(t-2), t, s);

e(−2s)

The lesson here is, when using Maple in examples such as these, the less parameters (such as a
above) that are used, the better.

To solve Example 3.2.9 with Maple, it is necessary to rewrite the function in terms of the unit
step function:

>f:= t -> Heaviside(t-1)*t^2 - Heaviside(t-2)*t^2;

>laplace(f(t), t, s);

e(−s)

s
+ 2e(−s)

s2
+ 2e(−s)

s3
− 4e(−2s)

s
− 4e(−2s)

s2
− 2e(−2s)

s3

The function could also be defined using the piecewise command, but Maple will not com-
pute the Laplace transform in that situation.

The three parts of Example 3.2.11 demonstrate computing the inverse Laplace transform.
There are no parameters in these examples, so Maple will compute the inverse transforms
quickly and correctly. This is true for parts (a) and (b).

>invlaplace(2*s/(s^2+4), s, t);

>invlaplace(6*s/(s^2+4*s+13), s, t);

2cos(2t)

6e(−2t)cos(3t)− 4e(−2t)sin(3t)
For part (c), we get

>invlaplace(4/(s^2-16)*exp(-2*s), s, t);

−IHeaviside(t− 2)sin(4I(t− 2))

The output here is defined with I= √−1. In order to get a real-valued function, we can use the
evalc command and obtain a result equivalent to what was previously described:

>evalc(%);

Heaviside(t− 2)sinh(4t− 8)

Problems

Find the Laplace transform of each function by direct
integration.

1. 2t

2. t − 3

3. e3t

4. 2 sin t

5. cos 4t

6. t1/2

7. 2t3/2

8. 4t2 − 3

9. sinh 2t

10. (t − 2)2



11. cosh 4t

12. e2t−1

13.

14.

15.

Use the first shifting property and Table 3.1 to find the Laplace
transform of each function.

16. 3te3t

17. t2e−t

18. e−2t cos 4t

19. e2t sinh 2t

20. 3−t sin 2t

21. 4e−2t cosh t

22. e−t (cos 4t − 2 sin 4t)

23. e−2t (sinh 2t + 3 cosh 2t)

24. e−2t (t2 + 4t + 5)

Use the second shifting property and Table 3.1 to find the
Laplace transform of each function. Sketch each function.

25. u2(t)

26. u4(t) sin π t

27. f (t) =



0, 0 < t < 2
2t, 2 < t < 4
0, 4 < t

28.
t

2
− u4(t)

t

2

29. u4(t)(6 − t) − u6(t)(6 − t)

30. f (t) =
{

t, 0 < t < 2
2, 2 < t

31. f (t) =
{

sin t, 0 < t < 2π

0, 2π < t

6

f (t)

t

2

4

f (t)

t

2

4

10

f (t)

t

2

5

32. f (t) =
{

sin t, 0 < t < π

sin 2t, π < t

Express each hyperbolic function in terms of exponential
functions and, with the use of Table 3.1, find the Laplace
transform.

33. 2 cosh 2t sin 2t

34. 2 sinh 3t cos 2t

35. 4 cosh 2t sinh 3t

36. 6 sinh t cos t

37. 4 sinh 2t sinh 4t

38. 2 cosh t cos 2t

Use Table 3.1 to find the function f (t) corresponding to each
Laplace transform.

39.
1

s

(
2

s2
+ 1

s
− 2

)

40.
1

s2

(
3

s
+ 2

)

41.
2s

(s + 3)2

42.
s

(s + 1)3

43.
1

s(s + 1)

44.
1

s2(s − 2)

45.
1

(s − 2)(s + 1)

46.
1

(s − 1)(s + 2)

47.
2s

(s − 1)2(s + 1)

48.
e−s

s + 1

49.
e−2s

s(s + 1)2

50.
4

s2 + 2s + 5

51.
4s + 3

s2 + 4s + 13

52.
2

s2 − 2s − 3

53.
3s + 1

s2 − 4s − 5
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54.
4se−2πs

s2 + 2s + 5

55.
2

(s2 − 1)(s2 + 1)

56.
2s + 3

(s2 + 4s + 13)2

57. If �[ f (t)] = F(s), show that �[ f (at)] = (1/a)F(s/a);
use the definition of a Laplace transform. Then, if
�(cos t) = s/(s2 + 1), find �(cos 4t).

Use Maple to solve

58. Problem 13

59. Problem 14

60. Problem 15

61. Problem 16

62. Problem 17

63. Problem 18

64. Problem 19

65. Problem 20

66. Problem 26

67. Problem 27

68. Problem 28

69. Problem 29

70. Problem 30

71. Problem 31

72. Problem 32

73. Problem 39

74. Problem 40

75. Problem 41

76. Problem 42

77. Problem 43

78. Problem 44

79. Problem 45

80. Problem 46

81. Problem 47

82. Problem 48

83. Problem 49

84. Problem 50

85. Problem 51

86. Problem 52

87. Problem 53

88. Problem 54

89. Problem 55

90. Problem 56

The operations of differentiation and integration are significantly simplified when using
Laplace transforms. Differentiation results when the Laplace transform of a function is
multiplied by the transformed variable s and integration corresponds to dividing by s, as we
shall see.

Let us consider a function f (t) that is continuous and possesses a derivative f ′(t) that is sec-
tionally continuous. An example of such a function is sketched in Fig. 3.2. We shall not allow
discontinuities in the function f (t), although we will discuss such a function subsequently. The
Laplace transform of a derivative is defined to be

�( f ′) =
∫ ∞

0
f ′(t)e−st dt (3.3.1)

This can be integrated by parts if we let

u = e−st , dv = f ′(t) dt = d f

du = −se−st dt, v = f
(3.3.2)

3.3 LAPLACE TRANSFORMS OF DERIVATIVES AND INTEGRALS
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Then

�( f ′) = f e−st
∣∣∞
0 + s

∫ ∞

0
f (t)e−st dt (3.3.3)

Assuming that the quantity f e−st vanishes at the upper limit, this is written as

�( f ′) = − f (0) + s
∫ ∞

0
f (t)e−st dt = s�( f ) − f (0) (3.3.4)

This result can be easily extended to the second-order derivative; however, we must demand
that the first derivative of f (t) be continuous. Then, with the use of Eq. 3.3.4, we have

�( f ′′) = s�( f ′) − f ′(0)

= s[s�( f ) − f (0)] − f ′(0)

= s2�( f ) − s f (0) − f ′(0) (3.3.5)

Note that the values of f and its derivatives must be known at t = 0 when finding the Laplace
transforms of the derivatives.

Higher-order derivatives naturally follow giving us the relationship,

�
(

f (n)
) = sn�( f ) − sn−1 f (0) − sn−2 f ′(0) − · · · − f (n−1)(0) (3.3.6)

where all the functions f (t), f ′(t), . . . , f (n−1)(t) are continuous, with the quantities f (n−1)e−st

vanishing at infinity; the quantity f (n)(t) is sectionally continuous.
Now, let us find the Laplace transform of a function possessing a discontinuity. Consider the

function f (t) to have one discontinuity at t = a, with f (a+) the right-hand limit and f (a−) the
left-hand limit as shown in Fig. 3.3. The Laplace transform of the first derivative is then

�( f ′) =
∫ a

0
f ′(t)e−st dt +

∫ ∞

a
f ′(t)e−st dt (3.3.7)

Integrating by parts allows us to write

�( f ′) = f e−st
∣∣a−

0 + s
∫ a−

0
f (t)e−st dt + f e−st

∣∣∞
a+ + s

∫ ∞

a+
f (t)e−st dt

= f (a−)e−as − f (0) + s
∫ a−

0
f (t)e−st dt − f (a+)e−as

+ s
∫ ∞

a+
f (t)e−st dt (3.3.8)

a

f (t)

b t a

f '(t)

b t

Figure 3.2 Continuous function possessing a sectionally continuous derivative. 
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The two integrals in Eq. 3.3.8 can be combined, since there is no contribution to the integral
between t = a− and t = a+. We then have

�( f ′) = s
∫ ∞

0
f (t)e−st dt − f (0) − [ f (a+) − f (a−)]e−as

= s�( f ) − f (0) − [ f (a+) − f (a−)]e−as (3.3.9)

If two discontinuities exist in f (t), the second discontinuity would be accounted for by adding
the appropriate terms to Eq. 3.3.9.

We shall now find the Laplace transform of a function expressed as an integral. Let the
integral be given by

g(t) =
∫ t

0
f (τ) dτ (3.3.10)

where the dummy variable of integration is arbitrarily chosen as τ ; the variable t occurs only as
the upper limit. The first derivative is then2

g′(t) = f (t) (3.3.11)

We also note that g(0) = 0. Now, applying Eq. 3.3.4, we have

�(g′) = s�(g) − g(0)
(3.3.12)

or, using Eq. 3.3.11, this can be written as

�(g) = �(g′)
s

= 1

s
�( f ) (3.3.13)

Written explicitly in terms of the integral, this is

�

(∫ t

0
f (τ) dτ

)
= 1

s
�( f ) (3.3.14)

These transforms of derivatives and integrals are obviously necessary when solving differen-
tial equations or integro-differential equations. They will also, however, find application in
obtaining the Laplace transforms of various functions and the inverse transforms. Before we turn
to the solution of differential equations, let us illustrate the latter use.

f (t)

f (a�)

f (a�)

t � a t

Figure 3.3 Function f (t) with one
discontinuity. 

2Liebnitz’s rule of differentiating an integral is

d

dt

∫ b(t)

a(t)
f (τ, t) dτ = db

dt
f (b, t) − da

dt
f (a, t) +

∫ b

a

∂ f

∂t
dτ

0
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EXAMPLE 3.3.1

Find the Laplace transform of f (t) = t2. Use the transform of a derivative.

�Solution

We can use the Laplace transform of the third derivative obtained in Eq. 3.3.6. From the given function we
have f (0) = 0, f ′(0) = 0, and f ′′(0) = 2; this allows us to write

�( f ′′′) = s3�( f ) − s2 f (0) − s f ′(0) − f ′′(0)

and, recognizing that f ′′′ = 0,

�(0) = s3�( f ) − 2 = 0

since �(0) = 0. This results in

�(t2) = 2

s3

EXAMPLE 3.3.2

Use the transform of a derivative and find the Laplace transform of f (t) = t sin t assuming that �(cos t) is
known.

f ′(t) = t cos t + sin t

f ′′(t) = 2 cos t − t sin t

The transform of a second derivative is

�( f ′′) = s2�( f ) − s f (0) − f ′(0)

where we have used f (0) = 0 and f ′(0) = 0. Thus, Eq. 3.3.5 gives

�(2 cos t − t sin t) = s2�(t sin t)

This can be written as

2�(cos t) − �(t sin t) = s2�(t sin t)

or

(s2 + 1)�(t sin t) = 2�(cos t) = 2s

s2 + 1

Finally, we have

�(t sin t) = 2s

(s2 + 1)2

0 0

0 0
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EXAMPLE 3.3.3

Find f (t) if F(s) = 8/(s2 + 4)2 by using �(t sin 2t) = 2s/(s2 + 4)2 .

�Solution

We write the given transform as

�( f ) = F(s) = 1

s

8s

(s2 + 4)2

Equation 3.3.14 allows us to write

�

(∫ t

0
4τ sin 2τ dτ

)
= 1

2

8s

(s2 + 4)2

Hence,

f (t) = 4
∫ t

0
τ sin 2τ dτ

This is integrated by parts. If we let

u = τ, dv = sin 2τ dτ

du = dτ, v = − 1
2 cos 2τ

there results

f (t) = −2t cos 2t + 2
∫ t

0
cos 2τ dτ = −2t cos 2t + sin 2t

Problems

1. Write an expression for �( f (iv)).

2. Write an expression for �( f ′) if two discontinuities
occur in f (t), one at t = a and the other at t = b.

3. Use Eq. 3.3.4 to find the Laplace transform of f (t) = et .

Use Eq. 3.3.5 to find the Laplace transform of each function.

4. sin ωt

5. cos ωt

6. sinh at

7. cosh at

8. e2t

9. t

10. If f (t) =
{

t, 0 < t < 1
1, 1 < t,

find �( f ). Also, find �( f ′).

Is Eq. 3.3.4 verified for this f (t)?

11. If f (t) =
{

t, 0 < t < 1
0, 1 < t,

find �( f ). Also, find �( f ′).

Does Eq. 3.3.4 hold for this f (t)? Verify that Eq. 3.3.9
holds for this f (t).

Using the equations for the Laplace transforms of derivatives
from Section 3.3 and Table 3.1, find the transform of each
function.

12. tet

13. t sin 2t



14. t cos t

15. t2 sin t

16. tet sin t

17. (t2 + 1) cos 2t

18. t cosh 2t

19. t2et

20. t sinh 2t

Find the function f (t) corresponding to each Laplace
transform.

21.
1

s2 + 2s

22.
2

s2 − s

23.
4

s3 + 4s

24.
4

s4 + 4s2

25.
6

s3 − 9s

26.
6

s4 − 9s2

27.
2

s4 + 2s2

28.
1

s

s − 1

s + 1

29.
1

s2

s − 1

s2 + 1

Use Maple to solve

30. Problem 10

31. Problem 11

32. Problem 17

33. Problem 19

34. Problem 21

35. Problem 22

36. Problem 23

37. Problem 24

38. Problem 29
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The problem of determining the Laplace transform of a particular function or the function cor-
responding to a particular transform can often be simplified by either differentiating or integrat-
ing a Laplace transform. First, let us find the Laplace transform of the quantity t f (t). It is, by
definition,

�(t f ) =
∫ ∞

0
t f (t)e−st dt (3.4.1)

Using Liebnitz’s rule of differentiating an integral (see footnote 2), we can differentiate Eq. 3.2.2
and obtain

F ′(s) = d

ds

∫ ∞

0
f (t)e−st dt =

∫ ∞

0
f (t)

∂

∂s
(e−st) dt

= −
∫ ∞

0
t f (t)e−st dt (3.4.2)

Comparing this with Eq. 3.4.1, there follows

�(t f ) = −F ′(s) (3.4.3)

3.4 DERIVATIVES AND INTEGRALS OF LAPLACE TRANSFORMS
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The second derivative is

F ′′(s) =
∫ ∞

0
f (t)

∂2

∂s2
(e−st) dt =

∫ ∞

0
t2 f (t)e−st dt (3.4.4)

or

�(t2 f ) = F ′′(s) (3.4.5)

In general, this is written as

�(tn f ) = (−1)n F (n)(s) (3.4.6)

Next, we will find the Laplace transform of f (t)/t . Let

f (t) = tg(t) (3.4.7)

Then, using Eq. 3.4.3, the Laplace transform of Eq. 3.4.7 is

F(s) = �( f ) = �(tg) = −G ′(s) (3.4.8)

This is written as

−dG = F(s) ds (3.4.9)

Thus

−G(s) =
∫ s

∞
F(s) ds (3.4.10)

where3 G(s) → 0 as s → ∞. The dummy variable of integration is written arbitrarily as s. We
then have

G(s) =
∫ ∞

s
F(s) ds (3.4.11)

where the limits of integration have been interchanged to remove the negative sign. Finally, re-
ferring to Eq. 3.4.7, we see that

�( f/t) = �(g) = G(s) =
∫ ∞

s
F(s) ds (3.4.12)

The use of the expressions above for the derivatives and integral of a Laplace transform will
be demonstrated in the following examples.

3This limit is a consequence of the assumption that g(t) is sectionally continuous, as well as a consequence of
item (ii) following Eq. 3.2.6, where �[g(t)] = G(s).

Differentiate the Laplace transform of f (t) = sin ωt , thereby determining the Laplace transform of t sin ωt .
Use �(sin ωt) = ω/(s2 + ω2).

EXAMPLE 3.4.1
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�Solution

Equation 3.4.3 allows us to write

�(t sin ωt) = − d

ds
�(sin ωt) = − d

ds

(
ω

s2 + ω2

)
= 2ωs

(s2 + ω2)2

This transform was obviously much easier to obtain using Eq. 3.4.3 than the technique used in Example 3.3.2.

EXAMPLE 3.4.1 (Continued)

EXAMPLE 3.4.2

Find the Laplace transform of (e−t − 1)/t using the transforms

�(e−t) = 1

s + 1
and �(1) = 1

s

�Solution

The Laplace transform of the function f (t) = e−t − 1 is

�( f ) = 1

s + 1
− 1

s

Equation 3.4.12 gives us

�( f/t) =
∫ ∞

s

(
1

s + 1
− 1

s

)
ds

= [ln(s + 1) − ln s]∞s = ln
s + 1

s

∣∣∣∣
∞

s

= ln
s

s + 1

This problem could be reformulated to illustrate a function that had no Laplace transform. Consider the
function (e−t − 2)/t . The solution would have resulted in ln(s + 1)/s2|∞s . At the upper limit this quantity is
not defined and thus �( f/t) does not exist.

Determine the inverse Laplace transform of ln[s2/(s2 + 4)].

�Solution

We know that if we differentiate ln[s2/(s2 + 4)] we will arrive at a recognizable function. Letting
G(s) = ln[s2/(s2 + 4)] = ln s2 − ln(s2 + 4) , we have (see Eq. 3.4.8)

F(s) = −G ′(s) = −2s

s2
+ 2s

s2 + 4

= −2

s
+ 2s

s2 + 4

EXAMPLE 3.4.3



170 � CHAPTER 3  / LAPLACE TRANSFORMS

Now, the inverse transform of F(s) is, referring to Table 3.1,

f (t) = −2 + 2 cos 2t

Finally, the desired inverse transform is

�−1
(

ln
s2

s2 + 4

)
= f (t)

t
= −2

t
(1 − cos 2t)

EXAMPLE 3.4.3 (Continued)

Problems

Determine the Laplace transform of each function using Table
3.1 and the equations of Section 3.4.

1. 2t sin 3t

2. t cos 2t

3. t2 sin 2t

4. t2 sinh t

5. tet cos 2t

6. t (et − e−t )

7. t (et − e−2t )

8. te−t sin t

9. t2e−t sin t

10. t cosh t

11.
2

t
(1 − cos 2t)

12.
2

t
(1 − cosh 2t)

13.
1

t
(e2t − e−2t )

14.
1

t
(e2t − 1)

15. Use Eq. 3.4.3 to find an expression for the Laplace trans-
form of f (t) = tneat using �(eat ) = 1/(s − a).

Find the function f (t) that corresponds to each Laplace trans-
form using the equations of Section 3.4.

16.
1

(s + 2)2

17.
4s

(s2 + 4)2

18.
s

(s2 − 4)2

19. ln
s

s − 2

20. ln
s − 2

s + 3

21. ln
s2 − 4

s2 + 4

22. ln
s2 + 1

s2 + 4

23. ln
s2

s2 + 4

24. ln
s2 + 4s + 5

s2 + 2s + 5

Use Maple to solve

25. Problem 2

26. Problem 11

27. Problem 12

28. Problem 13

29. Problem 14

30. Problem 16

31. Problem 19

32. Problem 20

33. Problem 21



Before we turn to the solution of differential equations using Laplace transforms, we shall con-
sider the problem of finding the transform of periodic functions. The nonhomogeneous part of
differential equations often involve such periodic functions. A periodic function is one that is
sectionally continuous and for some a satisfies

f (t) = f (t + a) = f (t + 2a) = f (t + 3a)

= · · · = f (t + na) = · · · . (3.5.1)

This is illustrated in Fig. 3.4. We can write the transform of f (t) as the series of integrals

�( f ) =
∫ ∞

0
f (t)e−st dt

=
∫ a

0
f (t)e−st dt +

∫ 2a

a
f (t)e−st dt +

∫ 3a

2a
f (t)e−st dt + · · · (3.5.2)

In the second integral, let t = τ + a; in the third integral, let t = τ + 2a; in the fourth, let
t = τ + 3a; etc; then the limits on each integral are 0 and a. There results

�( f ) =
∫ a

0
f (t)e−st dt +

∫ a

0
f (τ + a)e−s(τ+a) dτ

+
∫ a

0
f (τ + 2a)e−s(τ+2a) dτ + · · · (3.5.3)

The dummy variable of integration τ can be set equal to t, and with the use of Eq. 3.5.1 we have

�( f ) =
∫ a

0
f (t)e−st dt + e−as

∫ a

0
f (t)e−st dt + e−2as

∫ a

0
f (t)e−st dt + · · ·

= [1 + e−as + e−2as + · · ·]
∫ a

0
f (t)e−st dt (3.5.4)

Using the series expansion, 1/(1 − x) = 1 + x + x2 + · · ·, we can write Eq. 3.5.4 as

�( f ) = 1

1 − e−as

∫ a

0
f (t)e−st dt (3.5.5)

Note: The integral by itself is not the Laplace transform since the upper limit is not ∞.

3.5 LAPLACE TRANSFORMS OF PERIODIC FUNCTIONS
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f (t)

period
a

a a a

t

Figure 3.4 Periodic function.
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EXAMPLE 3.5.1

Determine the Laplace transform of the square-wave function shown. Compare with Example 3.2.10.

�Solution

The function f (t) is periodic with period 2a. Using Eq. 3.5.5, we have

�( f ) = 1

1 − e−2as

∫ 2a

0
f (t)e−st dt

= 1

1 − e−2as

[∫ a

0
Ae−st dt +

∫ 2a

a
(−A)e−st dt

]

= 1

1 − e−2as

[
− A

s
e−st

∣∣∣∣
a

0

+ A

s
e−st

∣∣∣∣
2a

a

]

= 1

1 − e−2as

[
A

s
(−e−as + 1 + e−2as − e−as)

]

= A

s

1 − 2e−as + e−2as

1 − e−2as
= A

s

(1 − e−as)(1 − e−as)

(1 − e−as)(1 + e−as)

= A

s

1 − e−as

1 + e−as

This is the same result obtained in Example 3.2.10. It can be put in the more desired form, as in Example
3.2.10,

�( f ) = A

s
tanh

as

2

t

f (t)

a 2a 3a
2A

Find the Laplace transform of the half-wave-rectified sine wave shown with period 2π and amplitude 1.

f (t)

� 2� 3� 4� 5� 6� 7�

1

t

EXAMPLE 3.5.2
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�Solution

The function f (t) is given by

f (t) =
{

sin t, 0 < t < π

0, π < t < 2π

Equation 3.5.5 provides us with

�( f ) = 1

1 − e−2πs

∫ 2π

0
f (t)e−st dt = 1

1 − e−2πs

∫ π

0
sin te−st dt

Integrate by parts:

u = sin t dv = e−st dt

du = cos t dt v = −1

s
e−st

Then

∫ π

0
sin te−st dt = −1

s
e−st sin t

∣∣∣∣
π

0

+ 1

s

∫ π

0
cos te−st dt

Integrate by parts again:

u = cos t, dv = e−st dt

du = − sin t dt, v = −1

s
e−st

This provides

∫ π

0
sin te−st dt = 1

s

[
−1

s
e−st cos t

∣∣∣∣
π

0

− 1

s

∫ π

0
sin te−st dt

]

This is rearranged to give

∫ π

0
sin te−st dt = s2

s2 + 1

[
1

s2
(e−sπ + 1)

]
= 1 + e−πs

s2 + 1

Finally,

�( f ) = 1 + e−πs

(1 − e−2πs)(s2 + 1)
= 1

(1 − e−πs)(s2 + 1)

EXAMPLE 3.5.2 (Continued)

0
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EXAMPLE 3.5.3

Find the Laplace transform of the periodic function shown.

�Solution

We can find the transform for the function by using Eq. 3.5.5 with

f (t) =




h

a
t, 0 < t < a

h

a
(2a − t), a < t < 2a

This is not too difficult a task; but if we recognize that the f (t) of this example is simply the integral of the
square wave of Example 3.5.1 if we let h = Aa, then we can use Eq. 3.3.14 in the form

�( f ) = �

(∫ t

0
g(τ) dτ

)
= 1

s
�(g)

where �(g) is given in Example 3.5.1. There results

�( f ) = h

as2
tanh

as

2

This example illustrates that some transforms may be easier to find using the results of the preceding sections.

f (t)

h

2a 3a 4a 5a 6a ta

Problems

Determine the Laplace transform for each periodic function.
The first period is stated. Also, sketch several periods of each
function.

1. f (t) = sin t, 0 < t < π

2. f (t) = t, 0 < t < 2

3. f (t) = 2 − t, 0 < t < 2

4. f (t) = t − 2, 0 < t < 4

5. f (t) = t2, 0 < t < π

6. f (t) =
{

1, 0 < t < 2
0 2 < t < 4

7. f (t) =
{

t, 2 < t < 4
0, 0 < t < 2

8. f (t) =
{

2 − t, 0 < t < 1
0, 1 < t < 2



9. f (t) =




2, 0 < t < 1
0, 1 < t < 2

−2, 2 < t < 3
0, 3 < t < 4

10. Computer Laboratory Activity: Solving Laplace trans-
form problems of periodic functions is not simple to do

with Maple. Carefully consider what Maple can calculate
for you, and develop a Maple worksheet that will com-
pute Laplace transforms of periodic functions. Use the
worksheet to solve all nine problems above.
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When solving differential equations using Laplace transforms we must frequently make use of
partial fractions in finding the inverse of a transform. In this section we shall present a technique
that will organize this procedure.

3.6.1 Unrepeated Linear Factor (s − a)
Consider the ratio of two polynomials P(s) and Q(s) such that the degree of Q(s) is greater
than the degree of P(s). Then a theorem of algebra allows us to write the partial-fraction ex-
pansion as

F(s) = P(s)

Q(s)
= A1

s − a1
+ A2

s − a2
+ A3

s − a3
+ · · · + An

s − an
(3.6.1)

where it is assumed that Q(s) can be factored into n factors with distinct roots a1, a2, a3, . . ., an .
Let us attempt to find one of the coefficients—for example, A3. Multiply Eq. 3.6.1 by (s − a3)

and let s → a3; there results

lim
s→a3

P(s)

Q(s)
(s − a3) = A3 (3.6.2)

since all other terms are multiplied by (s − a3), which goes to zero as s → a3.
Now, we may find the limit shown earlier. It is found as follows:

lim
s→a3

P(s)

Q(s)
(s − a3) = lim

s→a3

[
P(s)

s − a3

Q(s)

]
= P(a3)

0

0
(3.6.3)

Because the quotient 0/0 appears, we use L’Hospital’s rule and differentiate both numerator and
denominator with respect to s and then let s → a3. This yields

A3 = P(a3) lim
s→a3

1

Q′(s)
= P(a3)

Q′(a3)
(3.6.4)

We could, of course, have chosen any coefficient; so, in general,

Ai = P(ai )

Q′(ai )
or Ai = P(ai )

[Q(s)/(s − ai )]s=ai

(3.6.5)

This second formula is obtained from the limit in Eq. 3.6.2. With either of these formulas, the co-
efficients of the partial fractions are quite easily obtained.

3.6 INVERSE LAPLACE TRANSFORMS: PARTIAL FRACTIONS



3.6.2 Maple Applications
Included in Maple is a conversion utility for partial fractions. In Example 3.6.1 the partial-
fraction representation of F(s) can be computed by

>convert((s^3+3*s^2-2*s+4)/(s*(s-1)*(s-2)
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EXAMPLE 3.6.1

Find f (t) if the Laplace transform F(s) of f (t) is given as

s3 + 3s2 − 2s + 4

s(s − 1)(s − 2)(s2 + 4s + 3)

�Solution

Since s2 + 4s + 3 = (s + 3)(s + 1), the partial-fraction representation of F(s) is

F(s) = A1

s
+ A2

s − 1
+ A3

s − 2
+ A4

s + 1
+ A5

s + 3

The Ai will be found using the second formula of Eq. 3.6.5. For the given F(s), we have

P(s) = s3 + 3s2 − 2s + 4

Q(s) = s(s − 1)(s − 2)(s + 3)(s + 1)

For the first root, a1 = 0. Letting s = 0 in the expressions for P(s) and Q(s)/s , there results

A1 = P(0)

[Q(s)/s]s=0
= 4

6

Similarly, we have, with a2 = 1, a3 = 2, a4 = −1, and a5 = −3,

A2 = P(1)

[Q(s)(s − 1)]s=1
= 6

−8
, A3 = P(2)

[Q(s)/(s − 2)]s=2
= 20

30

A4 = P(−1)

[Q(s)/(s + 1)]s=−1
= 8

−12
, A5 = P(−3)

[Q(s)/(s + 5)]s=−5
= 10

120

The partial-fraction representation is then

F(s) =
2
3

s
−

3
4

s − 1
+

2
3

s − 2
−

2
3

s + 1
+

1
12

s + 3

Table 3.1 is consulted to find f (t). There results

f (t) = 2
3 − 3

4 et + 2
3 e2t − 2

3 e−t + 1
12 e−3t
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*(s^2+4*s+3)),parfrac, s);

2

3s
− 2

3(s+ 1)
− 3

4(s− 1)
+ 2

3(s− 2)
+ 1

12(s+ 3)

With this conversion, the inverse transform of each term can be computed separately. Of course,
the inverse transform could also be computed directly via

>invlaplace((s^3+3*s^2-2*s+4)/(s*(s-1)*(s-2)*(s^2+4*s+3)),s,t);

−3

4
et+ 2

3
+ 2

3
e(2t)+ 1

12
e(−3t)− 2

3
e(−t)

3.6.3 Repeated Linear Factor (s − a)m

If there are repeated roots in Q(S), such as (s − a)m , we have the sum of partial fractions

F(s) = P(s)

Q(s)
= Bm

(s − a1)m
+ · · · + B2

(s − a1)2
+ B1

s − a1
+ A2

s − a2
+ A3

s − a3
+ · · · (3.6.6)

The Ai , the coefficients of the terms resulting from distinct roots, are given in Eq. 3.6.5. But the
Bi are given by

Bi = 1

(m − i)!

dm−i

dsm−i

[
P(s)

Q(s)/(s − a1)m

]
s=a1

Bm = P(a1)

[Q(s)/(s − a1)m]s=a1

(3.6.7)

Find the inverse Laplace transform of

F(s) = s2 − 1

(s − 2)2(s2 + s − 6)

�Solution

The denominator Q(s) can be written as

Q(s) = (s − 2)3(s + 3)

Thus, a triple root occurs and we use the partial-fraction expansion given by Eq. 3.6.6, that is,

F(s) = B3

(s − 2)3
+ B2

(s − 2)2
+ B1

s − 2
+ A2

s + 3

EXAMPLE 3.6.2



3.6.4 Unrepeated Quadratic Factor [(s − a)2 + b2]
Suppose that a quadratic factor appears in Q(s), such as [(s − a)2 + b2]. The transform F(s)
written in partial fractions is

F(s) = P(s)

Q(s)
= B1s + B2

(s − a)2 + b2
+ A1

s − a1
+ A2

s − a2
+ · · · (3.6.8)

where B1 and B2 are real constants. Now, multiply by the quadratic factor and let s → (a + ib).
There results

B1(a + ib) + B2 =
{

P(s)

Q(s)/[(s − a)2 + b2]

}
s=a+ib

(3.6.9)

The equation above involves complex numbers. The real part and the imaginary part allow both
B1 and B2 to be calculated. The Ai are given by Eq. 3.6.5.
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The constants Bi are determined from Eq. 3.6.7 to be

B3 =
[

s2 − 1

s + 3

]
s=2

= 3

5

B2 = 1

1!

d

ds

[
s2 − 1

s + 3

]
s=2

=
[

s2 + 6s + 1

(s + 3)2

]
s=2

= 17

25

B1 = 1

2!

d2

ds2

[
s2 − 1

s + 3

]
s=2

= 82

125

The constant A2 is, using a2 = −3,

A2 = P(a2)

[Q(s)/(s + 3)]s=a2

= 8

125

Hence, we have

F(s) =
3
5

(s − 2)3
+

17
25

(s − 2)2
+

82
125

s − 2
+

8
125

s + 3

Table 3.1, at the end of the chapter, allows us to write f (t) as

f (t) = 3

10
t2e2t + 17

25
te2t + 82

125
e2t + 8

125
e−3t

EXAMPLE 3.6.2 (Continued)
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EXAMPLE 3.6.3

The Laplace transform of the displacement function y(t) for a forced, frictionless, spring–mass system is
found to be

Y (s) = ωF0/M(
s2 + ω2

0

)
(s2 + ω2)

for a particular set of initial conditions. Find y(t).

�Solution

The function Y (s) can be written as

Y (s) = A1s + A2

s2 + ω2
0

+ B1s + B2

s2 + ω2

The functions P(s) and Q(s) are, letting ωF0/M = C ,

P(s) = C

Q(s) = (
s2 + ω2

0

)
(s2 + ω2)

With the use of Eq. 3.6.9, we have

A1(iω0) + A2 = C

(iω0)2 + ω2
= C

ω2 − ω2
0

B1(iω) + B2 = C

(iω)2 + ω2
0

= − C

ω2 − ω2
0

where a = 0 and b = ω0 in the first equation; in the second equation a = 0 and b = ω. Equating real and
imaginary parts:

A1 = 0, A2 = C

ω2 − ω2
0

B1 = 0, B2 = − C

ω2 − ω2
0

The partial-fraction representation is then

Y (s) = C

ω2 − ω2
0

[
1

s2 + ω2
0

− 1

s2 + ω2

]

Finally, using Table 3.1, we have

y(t) = ωF0/M

ω2 − ω2
0

[
1

ω0
sin ω0t − 1

ω
sin ωt

]
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3.6.5 Repeated Quadratic Factor [(s − a)2 + b2]m

If the square of a quadratic factor appears in Q(s), the transform F(s) is expanded in partial
fractions as

F(s) = P(s)

Q(s)
= C1s + C2

[(s − a)2 + b2]2
+ B1s + B2

(s − a)2 + b2
+ A1

s − a1
+ A2

s − a2
+ · · · (3.6.10)

The undetermined constants are obtained from the equations

C1(a + ib) + C2 =
{

P(s)

Q(s)/[(s − a)2 + b2]2

}
s=a+ib

(3.6.11)

and

B1(a + ib) + B2 = d

ds

{
P(s)

Q(s)/[(s − a)2 + b2]2

}
s=a+ib

(3.6.12)

The Ai are again given by Eq. 3.6.5.

Problems

Find the function f (t) corresponding to each Laplace
transform.

1.
120s

(s − 1)(s + 2)(s2 − 2s − 3)

2.
5s2 + 20

s(s − 1)(s2 + 5s + 4)

3.
s3 + 2s

(s2 + 3s + 2)(s2 + s − 6)

4.
s2 + 2s + 1

(s − 1)(s2 + 2s − 3)

5.
8

s2(s − 2)(s2 − 4s + 4)

6.
s2 − 3s + 2

s2(s − 1)2(s − 5s + 4)

7.
s2 − 1

(s2 + 4)(s2 + 1)

8.
5

(s2 + 400)(s2 + 441)

9.
s − 1

(s + 1)(s2 + 4)

10.
s2 + 1

(s + 1)2(s2 + 4)

11.
50

(s2 + 4)2(s2 + 1)

12.
10

(s2 + 4)2(s2 + 1)2

Use Maple to Solve

13. Problem 1

14. Problem 2

15. Problem 3

16. Problem 4

17. Problem 5

18. Problem 6

19. Problem 7

20. Problem 8

21. Problem 9

22. Problem 10

23. Problem 11

24. Problem 12
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The question arises whether we can express �−1[F(s)G(s)] in terms of

�−1[F(s)] = f (t) and �−1[G(s)] = g(t) (3.7.1)

To see how this may be done, we first note that

F(s)G(s) =
∫ ∞

0
e−sτ F(s)g(τ) dτ (3.7.2)

since

G(s) =
∫ ∞

0
e−sτ g(τ) dτ (3.7.3)

Also,

�−1[e−sτ F(s)] = f (t − τ)uτ (t) (3.7.4)

where uτ (t) is the unit step function of Example 3.2.3. (See Eq. 3.2.16 and the discussion of the
second shifting property.)

Equation 3.7.4 implies that

e−sτ F(s) =
∫ ∞

0
e−st f (t − τ)uτ (t) dt (3.7.5)

This latter expression can be substituted into Eq. 3.7.2 to obtain

F(s)G(s) =
∫ ∞

0

∫ ∞

0
e−st f (t − τ)g(τ)uτ (t) dt dτ

=
∫ ∞

0

∫ ∞

τ

e−st f (t − τ)g(τ) dt dτ (3.7.6)

since uτ (t) = 0 for 0 < t < τ and uτ (t) = 1 for t ≥ τ . Now, consider the τ = t line shown in
Fig. 3.5. The double integral may be viewed as an integration using horizontal strips: first
integrate in dt from τ to ∞ followed by an integration in dτ from 0 to ∞. Alternatively, we may

3.7 A CONVOLUTION THEOREM

�

� � t

dt

t

d�

Figure 3.5 The integration strips.



integrate using vertical strips: First integrate in dτ from 0 to t followed by an integration in dt
from 0 to ∞; this results in the expression

F(s)G(s) =
∫ ∞

0

∫ t

0
e−st f (t − τ)g(τ) dτ dt

=
∫ ∞

0
e−st

[∫ t

0
f (t − τ)g(τ) dτ

]
dt (3.7.7)

But referring to Eq. 3.2.2, Eq. 3.7.7 says that

�

[∫ t

0
f (t − τ)g(τ) dτ

]
= F(s)G(s) (3.7.8)

or, equivalently,

�−1 [F(s)G(s)] =
∫ t

0
f (t − τ)g(τ) dτ

=
∫ t

0
g(t − τ) f (τ) dτ (3.7.9)

The second integral in Eq. 3.7.9 follows from a simple change of variables (see Problem 1).
Equation 3.7.9 is called a convolution theorem and the integrals on the right-hand sides are con-
volution integrals.

We often adopt a simplified notation. We write

f ∗ g =
∫ t

0
f (t − τ)g(τ) dτ (3.7.10)

and hence the convolution theorem (Eq. 3.7.9) may be expressed as

�[ f (t) ∗ g(t)] = F(s)G(s) (3.7.11)

(See Problem 1.)
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EXAMPLE 3.7.1

Suppose that �−1[F(s)] = f (t). Find

�−1
[

1

s
F(s)

]

�Solution

Since �−1 [1/s] = 1 we have, from Eq. 3.7.9,

�−1
[

1

s
F(s)

]
=

∫ t

0
f (τ) dτ

Compare with Eq. 3.3.14.
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3.7.1 The Error Function
A function that plays an important role in statistics is the error function,

erf(x) = 2√
π

∫ x

0
e−t2

dt (3.7.12)

In Table 3.1, with f (t) = t k−1 eat , let a = −1 and k = 1
2 . Then

e−t

√
t

= �−1

[
�( 1

2 )√
s + 1

]
(3.7.13)

But �( 1
2 ) = √

π (see Section 2.5), so

e−t

√
tπ

= �−1
[

1√
s + 1

]
(3.7.14)

From the convolution theorem,

�−1
[

1

s
√

s + 1

]
=

∫ t

0
(1)

e−τ

√
πτ

dτ (3.7.15)

Set 
√

τ = x . Then 1
2τ−1/2 dτ = dx and hence

�−1
[

1

s
√

s + 1

]
= 2√

π

∫ √
t

0
e−x2

dx = erf(
√

t) (3.7.16)

EXAMPLE 3.7.2

Show that

�−1
[

1

1 + √
1 + s

]
= −1 + erf(

√
t) + e−t

√
π t

�Solution

We have

1

1 + √
1 + s

= 1 − √
1 + s

1 − 1 − s
= −1

s
+

√
1 + s

s

= −1

s
+ 1 + s

s
√

1 + s
= −1

s
+ 1

s
√

1 + s
+ 1√

1 + s

Using Eqs. 3.7.9 and 3.7.13, the inverse transform is

�−1
[

1

1 + √
1 + s

]
= �−1

(
−1

s

)
+ �−1

(
1

s
√

1 + s

)
+ �−1

(
1√

1 + s

)

= −1 + erf(
√

t) + e−t

√
π t

as proposed.
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Problems

Use the definition of f ∗ g as given in Eq. 3.7.10 to show each
of the following.

1. f ∗ g = g ∗ f by use of the change of variable
β = t − τ .

2. f ∗ (g ∗ h) = ( f ∗ g) ∗ h

3. f ∗ (g + h) = f ∗ g + f ∗ h

4. f ∗ kg = k( f ∗ g) for any scalar k

5. 1 ∗ f =
∫ t

0
f (τ) dτ

6. 1 ∗ f ′(t) = f (t) − f (0)

7. ( f ∗ g)′ = g(0) f (t) + g′(t) ∗ f (t)

= f (0)g(t) + g(t) ∗ f ′(t)

Compute f ∗ g given the following.

8. f (t) = g(t) = eat

9. f (t) = sin t, g(t) = e−at

10. f (t) = g(t) = sin ωt

Use the convolution theorem to find each inverse Laplace
transform.

11. �−1
[

1

(s2 + a2)2

]

12. �−1
[

s2

s2 − a2

]

13. �−1
[

1

s2(s2 + ω2)

]

14. Let F(s) = �[ f (t)]. Use the convolution theorem to
show that

�−1
[

F(s)

(s + a)2 + b2

]
= 1

b
e−at

∫ t

0
f (τ)eaτ sin b(t − τ) dτ

15. Let F(s) = �[ f (t)]. Use the convolution theorem to
show that

�−1
[

F(s)

(s + a)2

]
=

∫ t

0
τe−aτ f (t − τ) dτ

16. Computer Laboratory Activity: As we shall see in
Section 3.8, a transform, such as the Laplace transform,
is useful for transforming a complicated problem in a
certain domain into an easier problem in another domain.
For example, the Laplace transform converts a problem
in the t domain to a problem in the s domain.

Convolutions often arise in signal processing, and as
we learn in this activity, transforming a convolution with
the Laplace transform gives rise to a product of func-
tions, with which it is usually algebraically easier to
work. The purpose of this activity is to better understand
convolutions.

We are going to explore convoluting different func-
tions. After defining functions f and g in Maple, f ∗ g
can be plotted simply by defining the conv function and
then using plot:

>conv:= t -> int(f(v)*g(t-v),
v=0..t):

>plot(conv(t), t=-2..6);

(a) Let g(t) be the identity function (equal to 1 for all t .)
For three different functions (quadratic, trigonomet-
ric, absolute value), create graphs of f ∗ g. Why is it
fair to say that convolution with the identity function
causes an accumulation of f ?

(b) Let g(t) be the following function known as a spline:

g =




t2

2
−t ≤ 0 and t < 1

−t2 + 3 t − 3

2
1 − t ≤ 0 and t < 2

(t − 3)2

2
2 − t ≤ 0 and t < 3

This function is equal to zero outside of 0 ≤ t ≤ 3.
Explore what happens for different functions f such
as: a linear function, a trigonometric function, and a
function with an impulse (such as g itself). How does
the idea of accumulation apply here?

We are now in a position to solve linear ordinary differential equations with constant coefficients.
The technique will be demonstrated with second-order equations, as was done in Chapter 1.
The method is, however, applicable to any linear, differential equation. To solve a differential

3.8 SOLUTION OF DIFFERENTIAL EQUATIONS
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equation, we shall find the Laplace transform of each term of the differential equation, using the
techniques presented in Sections 3.2 through 3.5. The resulting algebraic equation will then be
organized into a form for which the inverse can be readily found. For nonhomogeneous equa-
tions this usually involves partial fractions as discussed in Section 3.6. Let us demonstrate the
procedure for the equation

d2 y

dt2
+ a

dy

dt
+ by = r(t) (3.8.1)

Equations 3.3.4 and 3.3.5 allow us to write this differential equation as the algebraic equation

s2Y (s) − sy(0) − y′(0) + a[sY (s) − y(0)] + bY (s) = R(s) (3.8.2)

where Y (s) = �(y) and R(s) = �(r). This algebraic equation (3.8.2) is referred to as the sub-
sidiary equation of the given differential equation. It can be rearranged in the form

Y (s) = (s + a)y(0) + y′(0)

s2 + as + b
+ R(s)

s2 + as + b
(3.8.3)

Note that the initial conditions are responsible for the first term on the right and the nonhomo-
geneous part of the differential equation is responsible for the second term. To find the desired
solution, our task is simply to find the inverse Laplace transform

y(t) = �−1
(Y ) (3.8.4)

Let us illustrate with several examples.

Find the solution of the differential equation that represents the damped harmonic motion of the spring–mass
system shown,

d2 y

dt2
+ 4

dy

dt
+ 8y = 0

with initial conditions y(0) = 2, ẏ(0) = 0. For the derivation of this equation, see Section 1.7.

K � 8 N�m
C � 4 kg�s

M � 1 kg

y(t)

EXAMPLE 3.8.1
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EXAMPLE 3.8.1 (Continued)

�Solution

The subsidiary equation is found by taking the Laplace transform of the given differential equation:

s2Y − sy(0) − y′(0) + 4[sY − y(0)] + 8Y = 0

This is rearranged and put in the form

Y (s) = 2s + 8

s2 + 4s + 8

To use Table 3.1 we write this as

Y (s) = 2(s + 2) + 4

(s + 2)2 + 4
= 2(s + 2)

(s + 2)2 + 4
+ 4

(s + 2)2 + 4

The inverse transform is then found to be

y(t) = e−2t 2 cos 2t + e−2t 2 sin 2t = 2e−2t(cos 2t + sin 2t)

An inductor of 2 H and a capacitor of 0.02 F is connected in series with an imposed voltage of 100 sin ωt volts.
Determine the charge q(t) on the capacitor as a function of ω if the initial charge on the capacitor and current
in the circuit are zero.

�Solution

Kirchhoff’s laws allow us to write (see Section 1.4)

2
di

dt
+ q

0.02
= 100 sin ωt

where i(t) is the current in the circuit. Using i = dq/dt , we have

2
d2q

dt2
+ 50q = 100 sin ωt

L � 2 henrys

C � 0.02 farad

v(t)

EXAMPLE 3.8.2

0
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The Laplace transform of this equation is

2[s2 Q − 2q(0) − q ′(0)] + 50Q = 100ω

s2 + ω2

using i(0) = q ′(0) = 0 and q(0) = 0. The transform of q(t) is then

Q(s) = 50ω

(s2 + ω2)(s2 + 25)

The appropriate partial fractions are

Q(s) = A1s + A2

s2 + ω2
+ B1s + B2

s2 + 25

The constants are found from (see Eq. 3.6.9)

A1(iω) + A2 = 50ω

−ω2 + 25
, B1(5i) + B2 = 50ω

−25 + ω2

They are

A1 = 0, A2 = 50ω

25 − ω2
, B1 = 0, B2 = 50ω

ω2 − 25

Hence,

Q(s) = 50

25 − ω2

[
ω

s2 + ω2
− ω

s2 + 25

]

The inverse Laplace transform is

q(t) = 50

25 − ω2
[sin ωt − sin 5t]

This solution is acceptable if ω 	= 5 rad/s, and we observe that the amplitude becomes unbounded as
ω → 5 rad/s. If ω = 5 rad/s, the Laplace transform becomes

Q(s) = 250

(s2 + 25)2
= A1s + A2

(s2 + 25)2
+ B1s + B2

s2 + 25

Using Eqs. 3.6.11 and 3.6.12, we have

A1(5i) + A2 = 250, B1(5i) + B2 = d

ds
(250) = 0

We have

A1 = 0, A2 = 250, B1 = 0, B2 = 0

Hence,

Q(s) = 250

(s2 + 25)2

EXAMPLE 3.8.2 (Continued)

0 0



Observe, in Example 3.8.2, that the amplitude becomes unbounded as t gets large. This is reso-
nance, a phenomenon that occurs in undampened oscillatory systems with input frequency equal
to the natural frequency of the system. See Section 1.9.1 for a discussion of resonance.
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The inverse is

q(t) = 250

[
1

2 × 53
(sin 5t − 5t cos 5t)

]
= sin 5t − 5t cos 5t

EXAMPLE 3.8.2 (Continued)

As an example of a differential equation that has boundary conditions at two locations, consider a beam loaded
as shown. The differential equation that describes the deflection y(x) is

d4 y

dx4
= w

E I

with boundary conditions y(0) = y′′(0) = y(L) = y′′(L) = 0. Find y(x).

�Solution

The Laplace transform of the differential equation is, according to Eq. 3.3.6,

s4Y − s3 y(0) − s2 y′(0) − sy′′(0) − y′′′(0) = w

E I s

The two unknown initial conditions are replaced with

y′(0) = c1 and y′′′(0) = c2

We then have

Y (s) = c1

s2
+ c2

s4
+ w

E I s5

The inverse Laplace transform is

y(x) = c1x + c2
x3

6
+ w

E I

x4

24

�Q���QQ�� �Q��Q�
y

w N/m

xL

EXAMPLE 3.8.3

0 0
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The boundary conditions on the right end are now satisfied:

y(L) = c1L + c2
L3

6
+ w

E I

L4

24
= 0

y′′(L) = c2L + w

E I

L2

2
= 0

Hence,

c2 = − wL

2E I
, c1 = wL3

E I

Finally, the desired solution for the deflection of the beam is

y(x) = w

24E I
[x L3 − 2x3L + x4]

EXAMPLE 3.8.3 (Continued)

Solve the differential equation

d2 y

dt2
+ 0.02

dy

dt
+ 25y = f (t)

which describes a slightly damped oscillating system where f (t) is as shown. Assume that the system starts
from rest.

�Solution

The subsidiary equation is found by taking the Laplace transform of the given differential equation:

s2Y − sy(0) − y′(0) + 0.02[sY − y(0)] + 25Y = F(s)

where F(s) is given by (see Example 3.2.10)

F(s) = 5

s
[1 − 2e−πs + 2e−2πs − 2e−3πs + · · ·]

f (t)

5

�5

� 2� 3� 4� t

EXAMPLE 3.8.4
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4We write s2 + 0.02s + 25 = (s + 0.01)2 + 24.9999 ∼= (s + 0.01)2 + 55.

Since the system starts from rest, y(0) = y′(0) = 0. The subsidiary equation becomes

Y (s) = F(s)

s2 + 0.02s + 25

= 5

s(s2 + 0.02s + 25)
[1 − 2e−πs + 2e−2πs − · · ·]

Now let us find the inverse term by term. We must use4

�−1
[

5

(s + 0.01)2 + 52

]
= e−0.01t sin 5t

With the use of Eq. 3.3.14, we have, for the first term (see Example 3.5.2 for integration by parts),

y0(t) = �−1
[

5

s[(s + 0.01)2 + 52]

]

=
∫ t

0
e−0.01τ sin 5τ dτ

= 1 − 1

5
e−0.01t [cos 5t + 0.002 sin 5t]

The inverse of the next term is found using the second shifting property (see Eq. 3.2.14):

y1(t) = �−1
[

e−πs 5

s(s2 + 0.02s + 25)

]

= −2un(t)

{
1 − 1

5
e−0.01(t−π)[cos 5(t − π) + 0.002 sin 5(t − π)

}
= −2un(t){1 + [1 − y0(t)]e

0.01π }

where un(t) is the unit step function and we have used cos(t − π) = − cos t and sin(t − π) = − sin t . The
third term provides us with

y2(t) = �−1
[

e−2πs 5

s(s2 + 0.02s + 25)

]

= −2u2π(t)

{
1 − 1

5
e−0.01(t−2π)[cos 5(t − 2π) + 0.002 sin 5(t − 2π)]

}
= −2u2π(t){1 − [1 − y0(t)]e

0.02π}

EXAMPLE 3.8.4 (Continued)
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5In the manipulations we will use

1

1 + x
= 1 + x + x2 + x3 + · · · + xn + xn+1 + · · ·

= 1 + x + x2 + · · · + xn + xn+1(1 + x + x2 + · · ·)
= 1 + x + x2 + · · · + xn + xn+1/(1 − x)

Hence,

1 − xn+1

1 − x
= 1 + x + x2 + · · · + xn

and so on. The solution y(t) is

y(t) = y0(t) = 1 − 1

5
e−0.01t [cos 5t + 0.002 sin 5t], 0 < t < π

y(t) = y0(t) + y1(t) = −1 − 1

5
e−0.01t [cos 5t + 0.002 sin 5t]

[1 + 2e0.01π ], π < t < 2π

y(t) = y0(t) + y1(t) + y2(t) = 1 − 1

5
e−0.01t [cos 5t + 0.002 sin 5t]

[1 + 2e0.01π + 2e0.02π ], 2π < t < 3π

Now let us find the solution for large t, that is, for nπ < t < (n + 1)π , with n large. Generalize the results
above and obtain5

y(t) = y0(t) + y1(t) + · · · + yn(t), nπ < t < (n + 1)π

= (−1)n − 1

5
e−0.01t [cos 5t + 0.002 sin 5t][1 + 2e0.01π

+ 2e0.002π + · · · + 2e0.01nπ ]

= (−1)n + 1

5
e−0.01t [cos 5t + 0.002 sin 5t]

− 2

5
e−0.01t [cos 5t + 0.002 sin 5t][1 + 2e0.01π + · · · + 2e0.01nπ ]

= (−1)n + 1

5
e−0.01t [cos 5t + 0.002 sin 5t]

− 2

5
e−0.01t [cos 5t + 0.002 sin 5t]

1 − e(n+1)0.01π

1 − e0.01π

= (−1)n +
[

1

5
− 2

5(1 − e0.01π)

]
e−0.01t [cos 5t + 0.002 sin 5t]

+ 2e(n+1)0.01π−0.01t

5(1 − e0.01π)
[cos 5t + 0.002 sin 5t]

EXAMPLE 3.8.4 (Continued)
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Then, letting t be large and in the interval nπ < t < (n + 1)π, e−0.01t → 0 and we have

y(t) = (−1)n + 2e(n+1)0.01π−0.01t

5(1 − e0.01π)
(cos 5t + 0.002 sin 5t)

∼= (−1)n − 12.5e0.01[(n+1)π−t] cos 5t

This is the steady-state response due to the square-wave input function shown in the example. One period
is sketched here. The second half of the period is obtained by replacing n with n + 1. Note that the input
frequency of 1 rad/s results in a periodic response of 5 rad/s. Note also the large amplitude of the response, a
resonance-type behavior. This is surprising, since the natural frequency of the system with no damping is
5 rad/s. This phenomenon occurs quite often when systems with little damping are subjected to nonsinusoidal
periodic input functions.

y(t)

Input
function

�11.9

�13.9
�13.5

13.9
13.5

n� (n � 2)� t(n � 1)�

(For this sketch, n is considered even)

EXAMPLE 3.8.4 (Continued)

3.8.1 Maple Applications
The dsolve command in Maple has a method=laplace option that will force Maple to use
Laplace transforms to solve differential equations. Using this option reveals little about how the
solution was found. In Example 3.8.1 we use Maple as follows:

>de1 := diff(y(t), t$2) + 4*diff(y(t), t) + 8*y(t) = 0;

del:=
(
d2

dt2
y(t)

)
+ 4

(
d

dt
y(t)

)
+ 8y(t)= 0

>dsolve({de1, y(0)=2, D(y) (0)=0}, y(t), method=laplace);

y(t)= 2e(−2t)cos(2t)+ 2e(−2t)sin(2t)
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If we replace the 0 in this example with the unit impulse function, with the impulse at t = 1, then
we get the correct result whether or not the method=laplace option is used:

>de2 := diff(y(t), t$2) + 4*diff(y(t), t) + 8*y(t) = Dirac(t-1);

de2 :=
(
d2

dt2
y(t)

)
+ 4

(
d

dt
y(t)

)
+ 8y(t)= Dirac(t− 1)

>dsolve({de2, y(0)=2, D(y)(0)=0}, y(t));

y(t)= 2e(−2t)sin(2t)+ 2e(−2t)cos(2t)+ 1

2
Heaviside(t− 1)e(2−2t)sin(−2+ 2t)

>dsolve({de2, y(0)=2, D(y)(0)=0}, y(t), method=laplace);

y(t)= 2e(−2t)sin(2t)+ 2e(−2t)cos(2t)+ 1

2
Heaviside(t− 1)e(2−2t)sin(−2+ 2t)

Another example, showing the pitfalls of using Maple with the Dirac function, can be found in
the Problems.

Problems

Determine the solution for each initial-value problem.

1.
d2 y

dt2
+ 4y = 0, y(0) = 0, y′(0) = 10

2.
d2 y

dt2
− 4y = 0, y(0) = 2, y′(0) = 0

3.
d2 y

dt2
+ y = 2, y(0) = 0, y′(0) = 2

4.
d2 y

dt2
+ 4y = 2 cos t, y(0) = 0, y′(0) = 0

5.
d2 y

dt2
+ 4y = 2 cos 2t, y(0) = 0, y′(0) = 0

6.
d2 y

dt2
+ y = et + 2, y(0) = 0, y′(0) = 0

7.
d2 y

dt2
+ 5

dy

dt
+ 6y = 0, y(0) = 0, y′(0) = 20

8.
d2 y

dt2
+ 4

dy

dt
+ 4y = 0, y(0) = 1, y′(0) = 0

9.
d2 y

dt2
− 2

dy

dt
− 8y = 0, y(0) = 1, y′(0) = 0

10.
d2 y

dt2
+ 5

dy

dt
+ 6y = 12, y(0) = 0, y′(0) = 10

11.
d2 y

dt2
+ 2

dy

dt
+ y = 2t, y(0) = 0, y′(0) = 0

12.
d2 y

dt2
+ 4

dy

dt
+ 4y = 4 sin 2t, y(0) = 1, y′(0) = 0

13.
d2 y

dt2
+ 4

dy

dt
+ 104y = 2 cos 10t, y(0) = 0, y′(0) = 0

14.
d2 y

dt2
+ 2

dy

dt
+ 101y = 5 sin 10t, y(0) = 0, y′(0) = 20

Solve for the displacement y(t) if y(0) = 0, y′(0) = 0. Use a
combination of the following friction coefficients and forcing
functions.

15. C = 0 kg/s

16. C = 2 kg/s

17. C = 24 kg/s

18. C = 40 kg/s

(a) F(t) = 2N

(b) F(t) = 10 sin 2t

(c) F(t) = 10 sin 6t

(d) F(t) = 10[u0(t) − u4π (t)]

(e) F(t) = 10e−0.2t

(f) F(t) = 100δ0(t)

K � 72 N/mC

M � 2 kg

F(t)

y(t)



For a particular combination of the following resistances and
input voltages, calculate the current i(t) if the circuit is quies-
cent at t = 0, that is, the initial charge on the capacitor
q(0) = 0 and i(0) = 0. Sketch the solution.

19. R = 0 �

20. R = 16 �

21. R = 20 �

22. R = 25 �

(a) v(t) = 10 V

(b) v(t) = 10 sin 10t

(c) v(t) = 5 sin 10t

(d) v(t) = 10[u0(t) − u2π (t)]

(e) v(t) = 10δ0(t)

(f) v(t) = 20e−t

Calculate the response due to the input function f (t) for one
of the systems shown. Assume each system to be quiescent at
t = 0. The function f (t) is given as sketched.

23.

24.

L � 2 henry

C � 0.005 farad

v(t) � f (t)

i(t)

K � 50 N/m

M � 2 kg

F(t) � f (t)

y(t)

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Determine the response function due to the input function for
one of the systems shown. Each system is quiescent at t = 0.
Use an input function f (t) from Problems 23 and 24.

f (t)

t

10

2�

f (t)

t

10

f (t)

t

2

4

4�

f (t)

t

4

2� 6�4� 8�

f (t)

t

10

2�

f (t)

t

2

2�

f (t)

t

2

2� 4�
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L � 1 henry

C � 0.01 farad

v(t)

i(t)

R



25.

26.

27. Find the deflection y(x) of the beam shown. The differ-
ential equation that describes the deflection is

d4 y

dx4
= w(x)

E I
, w(x) = PδL/2(x) + w[u0(x) − uL/2(x)]

v(t) � f (t)

C � 0.01 farad R � 4 ohmsq(t)

K � 100 N C � 4 kg/s

y(t)

F(t) � f(t)

28. Computer Laboratory Activity: Replace the 0 in
Example 3.8.1 with the unit impulse function (impulse at
t = 0), and enter these commands:

>de2 := diff(y(t),t$2) + 4*diff
(y(t),t) + 8*y(t) = Dirac(t);

>dsolve({de2, y(0)=2, D(y)(0)=0},
y(t));

>dsolve({de2, y(0)=2, D(y)(0)=0},
y(t), method=laplace);

Note that the output here is inconsistent. Now solve the
problem by hand, using the fact that the Laplace trans-
form of δ0 is 1. What is the correct answer to the prob-
lem? What is Maple doing wrong? (Hint: infolevel
[dsolve]:=3;)

w
P

L�2 L�2
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3.9.1 Power Series
If the power series for f (t), written as

f (t) =
∞∑

n=0

antn (3.9.1)

has an infinite radius of convergence—or equivalently, if f (t) has no singularities—and if f (t)
has exponential order as t → ∞, then

F(s) = �( f ) =
∞∑

n=0

an�(tn) =
∞∑

n=0

n! an
1

sn+1
(3.9.2)

If the series 3.9.2 is easily recognized as combinations of known functions, this technique can be
quite useful.

3.9 SPECIAL TECHNIQUES

Find the Laplace transform of f (t) = (e−t − 1)/t (see Example 3.4.2).

�Solution

Since the given f (t) can be expanded in a power series (see Section 2.2), we can write

e−t − 1

t
=

∞∑
n=1

(−1)n

n!
tn−1

EXAMPLE 3.9.1
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It then follows that

�

[
e−t − 1

t

]
=

∞∑
n=1

(−1)n

n!

(n − 1)!

sn

=
∞∑

n=1

(−1)n

nsn

= −1

s
+ 1

2s2
− 1

3s3
+ · · ·

= − ln

(
1 + 1

s

)

EXAMPLE 3.9.1 (Continued)

EXAMPLE 3.9.2

Find the Laplace transform of f (t) = t−1/2 erf (
√

t).

�Solution

By definition (see Eq. 3.7.12),

t−1/2erf(
√

t) = 2t−1/2

√
π

∫ √
t

0
e−x2

dx

= 2t−1/2

√
π

∫ √
t

0

∞∑
n=0

(−1)n x2n

n!
dx

= 2t−1/2

√
π

∞∑
n=0

(−1)n(
√

t)2n+1

(2n + 1)n!

= 2√
π

∞∑
n=0

(−1)ntn

(2n + 1)n!

Therefore,

�[t−1/2erf (
√

t)] = 2√
π

∞∑
n=0

(−1)n

2n + 1

1

sn+1

The power series in 1/s can be recognized as (2/
√

πs) tan−1(1/
√

s). So

�[t−1/2erf (
√

t)] = 2√
πs

tan−1 1√
s
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EXAMPLE 3.9.3

Show that

�[J0(t)] = 1√
s2 + 1

where J0(t) is the Bessel function of index zero.

�Solution

The Taylor series for J0(t) is given in Eq. 2.10.15:

J0(t) =
∞∑

k=0

(−1)k t2k

22kk! k!

Hence,

�[J0(t)] =
∞∑

k=0

(−1)k(2k)!

22kk! k!

1

s2k+1

but

(2k)! = 2 · 4 · 6 · · · 2k · 1 · 3 · · · (2k − 1)

= 2kk! · 1 · 3 · · · (2k − 1)

Thus,

�[J0(t)] = 1

s

[
1 +

∞∑
k=1

(−1)k · 1 · 3 · · · (2k − 1)

2kk!s2k

]
(1)

Use of the binomial theorem is one way of establishing that

(
1 + 1

s2

)−1/2

= 1 + (−1)( 1
2 )

1!

(
1

s2

)
+ (− 1

2 )(− 3
2 )(− 5

2 )

2!

(
1

s

)2

+ · · ·

+ (−1)k(1)(3) · · · (2k − 1)

2kk!

1

s2k
+ · · · (2)

Finally, using Eq. 2 in Eq. 1 we have

�[J0(t)] = 1

s

(
1 + 1

s2

)−1/2

= 1√
s2 + 1



198 � CHAPTER 3  / LAPLACE TRANSFORMS

Problems

1. Expand sin
√

t in an infinite series and show that
�(sin

√
t) = (

√
π/2s3/2)e−1/4s .

2. Use the identity

d

dt
J0(t) = −J1(t)

and the Laplace transform of J0 to derive

�[J1(t)] = 1 − s√
s2 + 1

3. Show that

�−1
[

1

sn+1
e−1/s

]
= tn/2 Jn(2

√
t)

4. Expand 1/t sin(tk) in powers of t to prove that

�

[
1

t
sin(kt)

]
= tan−1 k

s

5. Find �[J0(2t)].

f(t ) F(s) = �{f(t )}

1 1
1

s

2 t
1

s2

3 tn−1 (n − 1)!

sn
(n = 1, 2, . . .)

4 t−1/2
√

π

s

5 t1/2
√

π

2s3/2

6 tk−1 �(k)

sk
(k > 0)

7 eat 1

s − a

8 teat 1

(s − a)2

9 tn−1eat (n − 1)!

(s − a)n
(n = 1, 2, . . .)

10 tk−1eat �(k)

(s − a)k
(k > 0)

11 eat − ebt a − b

(s − a)(s − b)
(a 	= b)

12 aeat − bebt (a − b)s

(s − a)(s − b)
(a 	= b)

13 δ0(t) 1

14 δa(t) e−as

15 ua(t) e−as/s

Table 3.1 Laplace Transforms
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f(t ) F(s) = �{f(t )}

16 ln t
1

s

(
ln

1

s
− 0.5772156 · · ·

)

17 sin ωt
ω

s2 + ω2

18 cos ωt
s

s2 + ω2

19 sinh at
a

s2 − a2

20 cosh at
s

s2 − a2

21 eat sin ωt
ω

(s − a)2 + ω2

22 eat cos ωt
s − a

(s − a)2 + ω2

23 1 − cos ωt
ω2

s(s2 + ω2)

24 ωt − sin ωt
ω3

s2(s2 + ω2)

25 sin ωt − ωt cos ωt
2ω3

(s2 + ω2)2

26 t sin ωt
2ωs

(s2 + ω2)2

27 sin ωt + ωt cos ωt
2ωs2

(s2 + ω2)2

28 cos at − cos bt
(b2 − a2)s

(s2 + a2)(s2 + b2)
(a2 	= b2)

29 sin at cosh at − cos at sinh at
4a3

s4 + 4a4

30 sin at sinh at
2a2s

s4 + 4a4

31 sinh at − sin at
2a3

s4 − a4

32 cosh at − cos at
2a2s

s4 − a4

33 eat f (t) F(s − a)

34
1

a
f

(
t

a

)
F(as)

35
1

a
e−(b/a)t f

(
t

a

)
F(as + b)

36 f (t − c)uc(t) e−cs F(s)

37
∫ t

0
f (τ)g(t − τ) dτ F(s)G(s)

Table 3.1 (Continued )



The theory of matrices arose as a means to solve simultaneous, linear, algebraic equations. Its
present uses span the entire spectrum of mathematical ideas, including numerical analysis, sta-
tistics, differential equations, and optimization theory, to mention a few of its applications. In
this chapter we develop notation, terminology, and the central ideas most closely allied to the
physical sciences.

4.1.1 Maple Applications
Maple has two different packages for linear algebra. The commands in this chapter come from
the linalg package. Similar commands can be found in the LinearAlgebra package. The
commands used in this chapter are: addrow, adjoint, augment, col, delcols, det,
diag, gausselim, genmatrix, inverse, matadd, matrix, mulrow, row, rref,
scalarmul, swaprow, transpose, along with commands from Appendix C.

Built into Excel are several worksheet functions that act on matrices. The functions in this
chapter are: INDEX, TRANSPOSE, MMULT, MINVERSE, and MDETERM.

A matrix is a rectangular array of numbers; its order is the number of rows and columns that
define the array. Thus, the matrices

[
1 0 −1
2 5 7

]
,


−2 1 1

0 0 0
1 1 1


 ,


 x

y
z


 , [ 1 1 − i 1 ], [0]

have orders 2 × 3, 3 × 3, 3 × 1, 1 × 3, and 1 × 1, respectively. (The order 2 × 3 is read “two
by three.”)

In general, the matrix A, defined by

A =




a11 a12 · · · a1q

a21 a22 · · · a2q
...

ap1 ap2 · · · apq


 (4.2.1)

4.2 NOTATION AND TERMINOLOGY

4.1 INTRODUCTION

4 The Theory of Matrices
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is order p × q . The numbers ai j are called the entries or elements of A; the first subscript defines
its row position, the second its column position.

In general, we will use uppercase bold letters to represent matrices, but sometimes it is con-
venient to explicitly mention the order of A or display a typical element by use of the notations
Ap×q and (ai j ),

A3×3 = (i j ) =

 1 1 1

2 22 23

3 32 33




A2×4 = (i − j) =
[

0 −1 −2 −3
1 0 −1 −2

] (4.2.2)

In the system of simultaneous equations

2x1 − x2 + x3 − x4 = 1

x1 − x3 = 1

x2 + x3 + x4 = −1

(4.2.3)

the matrix

A =

 2 −1 1 −1

1 0 −1 0
0 1 1 1


 (4.2.4)

is the coefficient matrix and

B =

 2 −1 1 −1 1

1 0 −1 0 1
0 1 1 1 −1


 (4.2.5)

is the augmented matrix. The augmented matrix is the coefficient matrix with an extra column
containing the right-hand-side constants.

The ith row of the general matrix of 4.2.1 is denoted by Ai∗, the jth column by A∗ j . Thus, in
the matrix of 4.2.4,

A1∗ = [ 2 −1 1 −1 ]

A2∗ = [ 1 0 −1 0 ]

A3∗ = [ 0 1 1 1 ]

(4.2.6)

while

A∗1 =

 2

1
0


 , A∗2 =


−1

0
1


 , A∗3 =


 1

−1
1


 , A∗4 =


−1

0
1


 (4.2.7)

Square matrices have the same number of rows and columns. The diagonal entries of
the An×n matrix are a11, a22, . . . , ann ; the off-diagonal entries are ai j , i �= j . Matrices with



off-diagonal entries of zero are diagonal matrices. The following are diagonal matrices:

A =
[

1 0
0 −1

]
, B =


 0 0 0

0 0 0
0 0 0


 , C =


 1 0 0

0 2 0
0 0 1


 , D = [ −2 ] (4.2.8)

The identity matrix In is the n × n diagonal matrix in which aii = 1 for all i. So

I1 = [ 1 ] , I2 =
[

1 0
0 1

]
, I3 =


 1 0 0

0 1 0
0 0 1


 (4.2.9)

When the context makes the order of In clear, we drop the subscript n.
Upper triangular matrices are square matrices whose entries below the diagonal are all zero.

Lower triangular matrices are square matrices whose off-diagonal entries lying above the diag-
onal are zero. We use U and L as generic names for these matrices. For example,

L1 =
[

1 0
2 −1

]
, L2 =

[
0 0
0 0

]
, L3 = I (4.2.10)

are all lower triangular—the subscript here simply distinguishes different lower triangular
matrices. Similarly,

U1 =
[

0 1
0 −1

]
, U2 = [ 7 ] , U3 = I (4.2.11)

are all upper triangular. Note that diagonal matrices are both upper and lower triangular and
every matrix that is both upper and lower triangular is a diagonal matrix.

Finally, we define the O matrix to have all entries equal to zero; that is, the entries of the
square matrix On are ai j = 0. Thus, for instance,

O2 =
[

0 0
0 0

]
(4.2.12)

4.2.1 Maple, Excel, and MATLAB Applications
In order to use any Maple command for matrices, we must first load the linalg package:

>with(linalg):

We will demonstrate how to enter the two matrices 4.2.2. There are several ways to define a ma-
trix in Maple. One way involves listing all of the entries in the matrix, row by row:

>A1:=matrix(3, 3, [1, 1, 1, 2, 2^2, 2^3, 3, 3^2, 3^3]);

A1 :=

1 1 1
2 4 8
3 9 27



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>A2:=matrix(2, 4, [0, -1,-2, -3, 1, 0, -1, -2]);

A2 :=
[
0 −1 −2 −3
1 0 −1 −2

]

Notice how the first two numbers in the command indicate the number of rows and columns in
the matrix. You can also keep the columns separated by square brackets, and then the number of
rows and columns is not necessary:

>A2:=matrix([[0, -1, -2, -3], [1, 0, -1, -2]]);

Another approach, which matrices 4.2.2 are based on, is to define the entries of a matrix as a
function of i and j:

>A1:=matrix(3,3,(i,j) -> i^j);

A1 :=

1 1 1
2 4 8
3 9 27




>A2:=matrix(2,4,(i,j) -> i-j);

A2 :=
[
0 −1 −2 −3
1 0 −1 −2

]

It is important to know all three methods to define a matrix.
In Maple the row or column of a matrix can be extracted using the row or col command.

Using the matrix A defined by Eqs. 4.2.6:

>A:=matrix(3, 4, [2, -1, 1, -1, 1, 0, -1, 0, 0, 1, 1, 1]);

A :=

2 −1 1 −1
1 0 −1 0
0 1 1 1




>row(A, 1); row(A, 2); row(A, 3);

[2,−1,1,−1]
[1,0,−1,0]
[0,1,1,1]

>col(A, 1); col(A, 2); col(A, 3); col(A, 4);

[2,1,0]

[−1,0,1]
[1,−1,1]
[−1,0,1]



Both commands give output as vectors, which Maple always writes as row vectors. In Maple,
there is a difference between a vector and a 1 × 4 or 3 × 1 matrix.

A command such as

>A[1,2];

will produce the entry in row 1, column 2, of matrix A.
Although the linalg package does not have a shortcut to create identity matrices, the fol-

lowing command will work:

>I3:=matrix(3,3,(i,j) -> piecewise(i=j, 1, 0));

I3 :=

1 0 0
0 1 0
0 0 1




This command will also work:

>I3:=diag(1, 1, 1);

In Excel, any rectangular block of cells can be thought of as a matrix, although the Excel help
pages refer to them as arrays. Here is the first of matrices 4.2.2 in Excel:

To enter this matrix, all nine entries can be entered one at a time. Another way to enter the ma-
trix is to first type “1” in cell A1, followed by “=A1^2” in B1 and “=A1^3” in C1. Then in A2,
enter “=A1+1”. Now we can do some copying and pasting. Copy cell A2 into A3. Because
Excel uses relative cell references, the formula in A3 will be “=A2+1” and not “=A1+1”.
Similarly, cells B1 and C1 can be copied into cells B2 and C2, and then B3 and C3. (Excel’s “fill
down” action can be used here, too.) After these various copyings and pastings, the cells would
hold the following formulas:

Using Excel’s syntax for arrays, this matrix is located at A1:C3.
Once a matrix is entered in a spreadsheet, a specific entry can be listed in another cell via the

INDEX function. For the matrix in this example, the formula =INDEX(A1:C3, 2, 3) will pro-
duce the entry in the second row, third column of A1:C3, which is 8.

We can enter matrices in MATLAB in a variety of ways. For example, the matrix 4.2.4 is
entered by typing

»A = [2 -1 1 -1; 1 0 -1 0; 0 1 1 1 1];

There are four issues to consider:

1. The rows are separated by a semicolon.
2. The entries in a row are separated by a space.

C

A1^3

A2^3

A3^3

B

A1^2

A2^2

A3^2

A

1

A1 � 1

A2 � 1

1

2

3

C

1

8

27

B

1

4

9

A

1

2

3

1

2

3

204 � CHAPTER 4  / THE THEORY OF MATRICES



4.2 NOTATION AND TERMINOLOGY � 205

3. The semicolon that ends the line prohibits the display of A.
4. The right-hand side symbol, A, is defined by the left-hand side and stored in memory

by pressing <return> (or <enter>).

To view the definition of A, we simply type A and press <return>,

»A

A =

2 −1 1 −1
1 0 −1 0
0 1 1 1




The 3 × 4 matrix of zeros is entered by using

zeros(3,4)

ans =

0 0 0 0
0 0 0 0
0 0 0 0




The arguments of zeros is the size of the matrix of zeros. If only one argument is given,
MATLAB assumes the matrix is square. So zeros(3) returns the same matrix as
zeros(3,3). Here is a matrix of ones:

ones(3,4)

ans =

1 1 1 1
1 1 1 1
1 1 1 1




The command eyes is reserved for the identity matrix I. Its argument structure is the same as that
for zeros and ones:

eyes(3,4)

ans =

1 0 0 0
0 1 0 0
0 0 1 0




eyes(4,3)

ans =



1 0 0
0 1 0
0 0 1
0 0 0




MATLAB can extract groups of entries of A by using arguments to the definition of A. For
example, we can obtain the entry in the second row, third column by the following device:

A(2,3)

Ans = [0]



All the entries in the third column of A are given by

A(:,3)

ans =

 1

−1
1




In the analogous manner, A(2,:) extracts the second row:

A(2,:)

Ans = [1 0 − 1 0]
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Problems

1. Given

A =




5 2 0 −3
4 −2 7 0
1 0 6 8

−2 4 0 9




identify the following elements:

(a) a22

(b) a32

(c) a23

(d) a11

(e) a14

Write each matrix in full.

2. A2×2 = [i j ]

3. A3×3 = [ j i ]

4. A2×4 = [i + j]

5. A3×3 = [i]

6. A3×3 = [ j]

What are the coefficient and augmented matrices for each of
the following?

7. x1 = 0
x2 = 0

x3 = 0

8. x1 + x2 + x3 = 0

9. x1 = x2

x2 = x3

x3 = 1

10. x1 = 0, x2 = 1, x3 = 1

11. Is On upper triangular? Lower triangular? Diagonal?

12. Identify which of the following groups of numbers are
matrices.

(a) [0 2]

(b)
[

0
2

]

(c)
[

0
1 2

]

(d)
[

0 1
2 3

]

(e)
[

0
1 3

3

]

(f)
[

1 2
3

]

(g)
[

2x x2

2 0

]

(h) [ 2x x2 ]



(i)

 x

xy
z




( j)

 x y z

1 0 1
x2 y2 z2




(k)
[

2 − i i
2 3 + i

]
Create the following matrices using Maple:

13. Problem 1

14. Problem 2

15. Problem 3

16. Problem 4

Enter the matrix A of Problem 1 into MATLAB and perform
the following:

17. Extract the third row.

18. Extract the second column.

19. Extract the (3,2) entry.

20. Use the command diag on A.

21. Perform the same four operations using MATLAB on
Problem 12(j) as requested in Problems 17–20.
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Our first application of matrix theory is connected with its oldest use—the solution of a system
of algebraic equations. Consider, for example, the following equations:

x + z = 1

2x + y + z = 0

x + y + 2z = 1

(4.3.1)

We can solve these equations by elimination by proceeding systematically, eliminating the first
unknown, x, from the second and third equations using the first equation. This results in the
system

x + z = 1

y − z = −2

y + z = 0

(4.3.2)

Next, eliminate y from the third equation and get

x + z = 1

y − z = −2

2z = 2

(4.3.3)

We now have z = 1 from the third equation, and from this deduce y = −1 from the second
equation and x = 0 from the first equation.

It should be clear that the elimination process depends on the coefficients of the equations
and not the unknowns. We could have collected all the coefficients and the right-hand sides in
Eqs. 4.3.1 in a rectangular array, the augmented matrix,

 1 0 1 1
2 1 1 0
1 1 2 1


 (4.3.4)

4.3 THE SOLUTION OF SIMULTANEOUS EQUATIONS
BY GAUSSIAN ELIMINATION



and eliminated x and y using the rows of the array as though they were equations. For instance,
(−2) times each entry in the first row added, entry by entry, to the second row and (−1) times
each entry in the first row added to the third row yields the array


 1 0 1 1

0 1 −1 −2
0 1 1 0


 (4.3.5)

which exhibits the coefficients and right-hand sides of Eqs. 4.3.2. The zeros in the first column
of Eq. 4.3.5 refer to the fact that x no longer appears in any equation but the first. The elimina-
tion of y from the third equation requires the replacement of the 1 in the third row, second col-
umn, by 0. We do this by subtracting the second row from the third and thus obtain the coeffi-
cients and right-hand sides of Eqs. 4.3.3 displayed in the array


 1 0 1 1

0 1 −1 −2
0 0 2 2


 (4.3.6)

Once the equations have been manipulated this far, it is not essential to perform any further
simplifications. For the sake of completeness we observe that dividing the third row by 2 (which
amounts to dividing the equation 2z = 2 by 2), then adding the new third row to the second and
subtracting it from the first, leads to the array


 1 0 0 0

0 1 0 −1
0 0 1 1


 (4.3.7)

This corresponds to the equations

x = 0

y = −1

z = 1

(4.3.8)

The equations used to simplify Eqs. 4.3.1 to 4.3.8 are elementary row operations. They are of
three types:

1. Interchange any two rows.
2. Add the multiple of one row to another.
3. Multiply a row by a nonzero constant.

The crucial point here is that an elementary row operation replaces a system of equations by
another system, the latter having exactly the same solution as the former. So x = 0, y = −1,
and z = 1 is the unique solution of Eq. 4.3.1.

The foregoing reduction of several variables in each equation of a system to one variable in
each equation is referred to as Gaussian elimination.
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EXAMPLE 4.3.1

Solve the equations
x + z = 1

2x + z = 0

x + y + z = 1

� Solution

We begin with the augmented matrix 
 1 0 1 1

2 0 1 0
1 1 1 1




Then proceed to manipulate the matrix in the following manner:
 1 0 1 1

2 0 1 0
1 1 1 1


 −→


 1 0 1 1

0 0 −1 −2
0 1 0 0


 −→


 1 0 0 −1

0 0 −1 −2
0 1 0 0




The arrows denote the application of one or more elementary row operations. The rightmost matrix in this arrow
diagram represents the system

x = −1

−z = −2

y = 0

Thus, the solution of the given system is x = −1, y = 0, and z = 2.

Solve the system

−x + z = −1

x + y = 0

z = 0

� Solution

We apply elementary row operations to the augmented matrix of this system, so


−1 0 1 −1

1 1 0 0
0 0 1 0


 −→


 1 0 −1 1

0 1 1 −1
0 0 1 0


 −→


 1 0 0 1

0 1 0 −1
0 0 1 0




EXAMPLE 4.3.2
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Hence x = 1, y = −1, and z = 0 is the unique solution. The solution could also be expressed as the column

matrix 

[
1

−1
0

]
EXAMPLE 4.3.2 (Continued)

EXAMPLE 4.3.3

Solve the system

x + y + z = 1

x − y + z = 3

x + z = 2

� Solution

We have


 1 1 1 1

1 −1 1 3
1 0 1 2


 −→


 1 1 1 1

0 −2 0 2
0 −1 0 1




−→

 1 1 1 1

0 1 0 −1
0 1 0 −1


 −→


 1 0 1 2

0 1 0 −1
0 0 0 0




Hence,

x + z = 2

y = −1

0 = 0

and there are infinitely many solutions of the given system. Let z = c. Then x = 2 − c, y = −1, and z = c
is a solution for every choice of c.

The system in Example 4.3.3 is inconsistent if any constant but 2 appears on the right-hand
side of the last equation. If we attempt to solve

x + y + z = 1

x − y + z = 3

x + z = K

(4.3.9)
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we get


 1 1 1 1

1 −1 1 3
1 0 1 K


 −→


 1 1 1 1

0 −2 0 2
0 −1 0 K − 1




−→

 1 1 1 1

0 1 0 −1
0 1 0 1 − K


 −→


 1 1 1 1

0 1 0 −1
0 0 0 2 − K


 (4.3.10)

This represents the system

x + y + z = 1

y = −1

0 = 2 − K

(4.3.11)

and the last equation is contradictory unless K = 2. This conclusion holds for Eqs. 4.3.9 as well.
The number of equations need not be the same as the number of unknowns. The method out-

lined above is still the method of choice. Two examples will illustrate this point.

Find all the solutions of

t + x + y + z = 1

t − x − y + z = 0

2t + x + y − z = 2

� Solution

The augmented matrix is 
 1 1 1 1 1

1 −1 −1 1 0
2 1 1 −1 2




Hence, with elementary row operations the matrix above becomes


 1 1 1 1 1

0 −2 −2 0 −1
0 −1 −1 −3 0


 −→


 1 1 1 1 1

0 1 1 0 1
2

0 −1 −1 −3 0




−→


 1 1 1 1 1

0 1 1 0 1
2

0 0 0 −3 1
2


 −→




1 0 0 1 1
2

0 1 1 0 1
2

0 0 0 1 − 1
6




EXAMPLE 4.3.4
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This last matrix is the augmented matrix for the system

t + z = 1
2

x + y = 1
2

z = − 1
6

Starting with the last equation, z = − 1
6 . From the second equation, we find x = 1

2 − c if y = c. From the first
equation, t = 2

3. Thus, the family of all solutions is the set t = 2
3 , x = 1

2 − c, y = c, z = − 1
6 , and c arbitrary.

EXAMPLE 4.3.4 (Continued)

EXAMPLE 4.3.5

Find all solutions to

t − x + 2y − z = 1

t + y + z = 0

−x + y − 2z = −1

� Solution

We have


 1 −1 2 −1 1

1 0 1 1 0
0 −1 1 −2 −1


 −→


 1 −1 2 −1 1

0 1 −1 2 −1
0 −1 1 −2 −1




−→

 1 −1 2 −1 1

0 1 −1 2 −1
0 0 0 0 −2




The third row of the last matrix in this arrow diagram stands for the contradictory equation

0t + 0x + 0y + 0z = −2

Hence, the given system has no solutions.

4.3.1 Maple and MATLAB Applications
The Maple command genmatrix can be used to create the augmented matrix, while
swaprow, addrow, and mulrow will perform the three elementary row operations. In addi-
tion, rref will perform all the steps of Gaussian elimination at once, including extra steps to
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put the matrix in row-echelon normal form (see Section 4.4). Here is how Example 4.3.1 would
be solved with Maple:

>A :=genmatrix({x+z=1, 2*x+z=0, x+y+z=1}, [x,y,z], flag);

A :=

1 0 1 1
2 0 1 0
1 1 1 1




>A1:=addrow(A, 1, 2, -2);

A1 :=

1 0 1 1
0 0 −1 −2
1 1 1 1




>A2:=addrow(A1, 1, 3, -1);

A2 :=

1 0 1 1
0 0 −1 −2
0 1 0 0




>A3:=addrow(A2, 2, 1, 1);

A3 :=

1 0 0 −1
0 0 −1 −2
0 1 0 0




>A4:=swaprow(A3, 2, 3);

A4 :=

1 0 0 −1
0 1 0 0
0 0 −1 −2




>A5:=mulrow(A4, 3, -1);

A5 :=

1 0 0 −1
0 1 0 0
0 0 1 2




>rref(A);


1 0 0 −1
0 1 0 0
0 0 1 2






The examples in Section 4.3 show the power of elementary row operations in the solution of
simultaneous (linear) equations. MATLAB’s command rref is used to take the arithmetic tedium
out of the process. The simplified system (in terms of the matrix of its coefficients) given by rref
is unique and in some sense, the simplest form for a given set of equations. (In this course, it is
unnecessary to define this form, or show that it is unique or explore its various properties.) Here
we redo Example 4.3.2 using rref. See also Section 4.4.
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EXAMPLE 4.3.6

Solve the system in Example 4.3.2 by using the command rref.

� Solution

Enter the augmented coefficient matrix calling it A and suppress the output.

»A=[-1 0 1 -1; 1 1 0 0; 0 0 1 0];

»B=rref(A)

B =

1 0 0 1
0 1 0 −1
0 0 1 0




EXAMPLE 4.3.7

Solve the system in Example 4.3.4 using rref.

� Solution

»A=[1 1 1 1 1; 1 -1 -1 1 0; 2 1 1 -1 2];

»B=rref(A)

B =

1.0000 0 0 0 0.6667

0 1.0000 1.0000 0 0.5000
0 0 0 1.0000 −0.1667




Here it is important to notice that rref converts all the entries (except 0) into decimal form. This is a conse-
quence of the method used by MATLAB to ensure speed and accuracy. It is a mild inconvenience in this case.
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Problems

Reduce each matrix to upper triangular form by repeated use
of row operation 2.

1.

 1 0 0

−2 2 0
1 3 −1




2.

 0 1 0

1 0 0
0 0 1




3.
[

a b
c d

]
, a �= 0

4.
[

a b
c d

]
, a = 0

5.

 1 2 1

2 4 −2
0 0 1




6. Explain why a system of equations whose matrix of co-
efficients is upper triangular can be solved without fur-
ther simplification, provided that there is a solution.
Write an example illustrating the case with no solutions.

7. Find all solutions of

x1 + x2 − x3 = 1

8. Find all solutions of
x1 + x2 − x3 = 1

x1 + x2 + x3 = −1

9. Relate the set of solutions of Problem 8 to that of
Problem 7.

Solve each system of linear, algebraic equations.

10. x − y = 6

x + y = 0

11. 2x − 2y = 4

2x + y = 3

12. 3x + 4y = 7

2x − 5y = 2

13. 3x + 2y − 6z = 0

x − y + z = 4

y + z = 3

14. x − 3y + z = −2

x − 3y − z = 0

−3y + z = 0
15. x1 + x2 + x3 = 4

x1 − x2 − x3 = 2

x1 − 2x2 = 0

Find the column matrix representing the solution to each set of
algebraic equations.

16. x − y = 2

x + y = 0

17. x + z = 4

2x + 3z = 8

18. x + 2y + z = −2

x + y = 3

x + z = 4

19. x1 − x2 + x3 = 5

2x1 − 4x2 + 3x3 = 0

x1 − 6x2 + 2x3 = 3

Use Maple to solve

20. Problem 10

21. Problem 11

22. Problem 12

23. Problem 13

24. Problem 14

25. Problem 15

26. Problem 16

27. Problem 17

28. Problem 18

29. Problem 19

In each of the following problems use rref in MATLAB and
compare your answers to the work you have done by hand.

30. Problem 13

31. Problem 14

32. Problem 15

33. Problem 18

34. Problem 19



Suppose that a sequence of elementary row operations is applied to A, resulting in the arrow
diagram

A −→ A1 −→ A2 −→ · · · −→ AR (4.4.1)

For any A, it is always possible to arrange the row operations so that AR has these four
properties:

1. All the zero rows of AR are its last rows.
2. The first nonzero entry in a nonzero row is 1. This is called the leading one of a

nonzero row.
3. The leading one is the only nonzero entry in its column.
4. The leading one in row i is to the left of the leading one in row j if i < j .

Any matrix with these four properties is said to be in row reduced echelon form, RREF for short.
A crucial theorem follows:

Theorem 4.1: Every matrix has a unique RREF which can be attained by a finite sequence of
row operations.

The existence of the RREF, AR , is not difficult to prove—the uniqueness provides something of
a challenge. We invite the reader to construct both arguments!

Here are some matrices1 in RREF:

(a) In (b) Om×n (c)


 1 ∗ ∗ ∗

0 0 0 0
0 0 0 0


 (d) [ 1 ∗ ∗ ]

(e)


 1

0
0


 (f)

[
1 0 ∗ · · · ∗
0 1 ∗ · · · ∗

]
(g)




1 0
0 1
0 0
0 0




Note that Om×n satisfies the last three criteria in the definition of RREF vacuously; there are no
leading ones.

If AR is the RREF of A, then the rank of A, written rank A, is the number of nonzero rows of
AR . The matrices (a)–(g) in the preceding paragraph have ranks of n, 0, 1, 1, 1, 2, and 2, respec-
tively. The following theorem regards the rank.

Theorem 4.2: For each Am×n

rank A ≤ m and rank A ≤ n (4.4.2)

4.4 RANK AND THE ROW REDUCED ECHELON FORM

1The entries designated with * in a matrix represent any number. 
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Proof: By definition, rank A is a count of a subset of the number of rows, so rank A ≤ m is ob-
vious. But rank A is also the number of leading ones. There cannot be more leading ones than
columns, so rank A ≤ n is also trivial.

Consider the system

a11x1 + a12x2 + · · · + a1n xn = r1

a21x1 + a22x2 + · · · + a2n xn = r2

...

am1x1 + am2x2 + · · · + amn xn = rm

(4.4.3)

with coefficient matrix A and augmented matrix B:

A =




a11 a12 · · · a1n

a21 a22 · · · a2n
...

am1 am2 · · · amn


 , B =




a11 a12 · · · a1n r1

a21 a22 · · · a2n r2
...

am1 am2 · · · amn rm


 (4.4.4)

Theorem 4.3: System 4.4.3 is consistent2 if and only if

rank A = rank B (4.4.5)

Proof: Let BR be the RREF of B. The RREF of A can be obtained from BR by striking out the
last column3 of BR . Then rank B = rank A or rank B = rank A + 1 because either BR contains
the same number of leading ones or one more leading one. In the latter case, the last nonzero row
of BR is

[0, 0, . . . , 0, 1] (4.4.6)

which, as in Example 4.3.5, signals no solutions to the given system. In the former case, the
system always has at least one solution.

Corollary 4.4: If ri = 0 for i = 1, 2, . . . , m, then system 4.4.3 is consistent.

A row such as 4.4.6 is impossible in this case, so rank A = rank B. The corollary is trivial for
another reason: x1 = x2 = · · · = xn = 0 is always a solution when ri = 0.

In a row-echelon normal form matrix, columns containing a leading one are leading columns;
the remaining columns are free columns. The number of leading columns is equal to the rank

2A consistent system is a set of simultaneous equations with at least one solution. An inconsistent system has
no solutions.
3See Problem 1.
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of A. If we set rank A = r and η = number of free columns then r is the number of leading
columns, and

n = r + η (4.4.7)

There is only one new MATHLAB command for this section and that is rank. So, for
example,

»A=[1 1 1;2 2 2;3 3 3;4 4 4];

»rank(A)

ans = [1]

Problems

1. Suppose that B is in row reduced echelon form (RREF)
and B is m × n. Explain why the matrix obtained by
striking out the last columns of B is a matrix also
in RREF. [Examine the matrices (a)–(g) preceding
Eq. 4.4.2.]

2. Which of the following matrices are in RREF?

(a)

 1 0 1

0 0 1
0 0 0




(b) [2]

(c) [1]

(d) [0]

(e)

 0 0

0 1
0 0




(f)
[

0 0 1
0 0 0

]

(g)
[

1 ∗ 0
0 0 1

]

(h)
[

1 ∗ 0
0 0 0

]

(i)
[

0 ∗ 0
0 0 1

]

( j)
[

0 1 0
0 0 1

]

(k)
[

0 1 2 3
0 0 0 1

]

(l)
[

0 1 2 0
0 0 0 1

]

3. Find the ranks of the matrices (a)–(g) in the text preced-
ing Eq. 4.4.2. For each matrix determine the leading
columns.

4. Find the ranks of the matrices in Problem 2. For each
matrix determine the leading columns.

5. Explain why the number of leading columns of A is the
rank of A.

Use rank in MATLAB to find and confirm the ranks of

6. eyes(4)

7. ones(3, 4)

8. zeros(4, 5)

9. Use rref in MATLAB on the matrix ones(3, 4) to confirm
the result rank(ones(3, 4)).
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We have seen the convenience afforded by simply operating on the array of coefficients of a
system of equations rather than on the equations themselves. Further work along these lines will
support this view. Ultimately, mathematicians thought of giving these arrays an existence of their
own apart from their connection with simultaneous equations. It is this aspect we now explore.

Let the m × n matrices A and B be given by

A =




a11 a12 · · · a1n

a21 a22 · · · a2n
...

am1 am2 · · · amn


 , B =




b11 b12 · · · b1n

b21 b22 · · · b2n
...

bm1 bm2 · · · bmn


 (4.5.1)

Then A = B if ai j = bi j for each i = 1, 2, . . . , m and for each j = 1, 2, . . . , n . Implicit in the
definition of equality is the assumption that the orders of A and B are the same. The equality of
two matrices implies the equality of m times n numbers, the corresponding entries of the
matrices.

In addition to matrix equality, we define addition of matrices and multiplication of matrices
by a constant. For the matrices A and B of Eq. 4.5.1 and any scalar k, we define A + B and kA
by the expressions

A + B =




a11 + b11 a12 + b12 · · · a1n + b1n

a21 + b21 a22 + b22 · · · a2n + b2n
...

am1 + bm1 am2 + bm2 amn + bmn




kA =




ka11 ka12 · · · ka1n

ka21 ka22 · · · ka2n
...

kam1 kam2 · · · kamn




The definitions of Eqs. 4.5.2 easily imply that

(a) A + B = B + A (b) A + (B + C) = (A + B) + C
(c) A + O = A (d) A + (−1)A = O
(e) 0A = O (f) k(hA) = (kh)A
(g) k(A + B) = kA + kB (h) (k + h)A = kA + hA

(4.5.3)

If we understand by B − A, a matrix such that (B − A) + A = B, then (d) enables us to find
such a matrix and provides a definition of subtraction, for

[B + (−1)A] + A = B + [(−1)A + A]

= B + [A + (−1)A]

= B + O

= B (4.5.4)

(4.5.2)

4.5 THE ARITHMETIC OF MATRICES
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Thus, B − A is defined as

B − A = B + (−1)A (4.5.5)

Matrices having a single column are so important that an exception is made to our convention
that matrices are always written in boldface uppercase letters. We call the matrix

r =




r1

r2
...

rm


 (4.5.6)

a vector and use a boldface lowercase letter.
We shall find it helpful occasionally to interchange the rows with the columns of a matrix.

The new matrix that results is called the transpose of the original matrix. The transpose AT of
the matrix displayed by Eq. 4.5.1 is

AT =




a11 a21 · · · am1

a12 a22 · · · am2
...

a1n a2n · · · amn


 (4.5.7)

Note that if a matrix is square, its transpose is also square; however, if a matrix is m × n, its
transpose is n × m . An example of a matrix and its transpose is

A =




2 0
3 −1
1 1
0 0


 , AT =

[
2 3 1 0
0 −1 1 0

]
(4.5.8)

The transpose of a vector is a matrix with a single row, a row vector. So

rT = [r1, r2, . . . , rn] (4.5.9)

The commas in a row vector are omitted if the meaning is clear. If C = A + B, then
CT = AT + BT follows from the definitions.

A matrix A is symmetric if AT = A; it is antisymmetric (or skew-symmetric) if AT = −A.
Note that symmetric and antisymmetric matrices must be square. The matrix


2 1 3 4
1 0 −2 0
3 −2 1 −1
4 0 −1 0




is symmetric, and the matrix 
 0 −1 2

1 0 −3
−2 3 0




is skew-symmetric.
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Any square matrix can be written as the sum of a symmetric matrix and a skew-symmetric
matrix. This is done as follows:

A =
(

A
2

+ AT

2

)
+

(
A
2

− AT

2

)
(4.5.10)

where the symmetric matrix As and the antisymmetric matrix Aa are given by

As = A
2

+ AT

2
, Aa = A

2
− AT

2
(4.5.11)

Note that (AT )T = A is needed in establishing this result.

EXAMPLE 4.5.1

Given the two matrices

A =

 0 2 5

1 −2 1
2 3 1


 , B =


−1 2 0

0 2 1
6 −6 0




find A + B, 5A, and B − 5A.

� Solution

To find the sum A + B, we simply add corresponding elements ai j + bi j and obtain

A + B =

−1 4 5

1 0 2
8 −3 1




Following Eq. 4.5.2, the product 5A is

5A =

 0 10 25

5 −10 5
10 15 5




Now we subtract each element of the preceding matrix from the corresponding element of B, that is,
bi j − 5ai j , and find

B − 5A =

−1 −8 −25

−5 12 −4
−4 −21 −5



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EXAMPLE 4.5.2

Express the matrix

A =

 2 0 3

2 0 2
−3 4 2




as the sum of a symmetric matrix and a skew-symmetric matrix.

� Solution

First, let us write the transpose AT . It is

AT =

 2 2 −3

0 0 4
3 2 2




Now, using Eq. 4.5.11, the symmetric part of A is

As = 1

2
(A + AT ) = 1

2


 4 2 0

2 0 6
0 6 4


 =


 2 1 0

1 0 3
0 3 2




The skew-symmetric part is given by

Aa = 1

2
(A − AT ) = 1

2


 0 −2 6

2 0 −2
−6 2 0


 =


 0 −1 3

1 0 −1
−3 1 0




Obviously, the given matrix A is the sum

A = As + Aa

=

 2 1 0

1 0 3
0 3 2


 +


 0 −1 3

1 0 −1
−3 1 0


 =


 2 0 3

2 0 2
−3 4 2




This provides us with a check on the manipulations presented earlier.

4.5.1 Maple, Excel, and MATLAB Applications
Matrix addition, scalar multiplication, and matrix transposition can all be done with Maple. Here
are a few examples:

>A:=matrix(2, 3, [1, 3, 5, 2, -3, 6]);

A :=
[
1 3 5
2 −3 6

]
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>B:=matrix(2, 3, [-3, 6, 2, 0, 4, 1]);

B :=
[−3 6 2

0 4 1

]

>matadd(A, B);

[−2 9 7
2 1 7

]

>scalarmul(A, 10);

[
10 30 50
20 −30 60

]

>transpose(A);


1 2
3 −3
5 6




Several of these examples can also be done in Excel, although, for good reason, there are only
a few matrix functions built into this speadsheet program. One operation for which there is no
special function is matrix addition. Suppose in Excel that there are two 2 × 3 matrices located at
A1:C2 and E1:G2, and let’s say we wish to have the sum of these matrices placed in J1:L2. In
J1, we would enter the formula “=A1+E1” and then paste this formula into the other five cells.
For scalar multiplication, a formula such as “=10*A1” could be put in J1 and then pasted in the
other cells.

Excel does have a function called TRANSPOSE, and it is an example of an array formula,
which means that the output of the function is an array. Consequently, entering this function
correctly is a little tricky. The following steps will work for any array function:

1. Select the rectangle of cells where the result of the function is to go.
2. Type the function using syntax like A1:C2 to indicate the argument.
3. Use the CTRL+SHIFT+ENTER keys, rather than just the ENTER key.

So, suppose that we wish to find the transpose of the matrix in A1:C2, and this new matrix will
be in J1:K3. First, select J1:K3. Then enter the formula

=TRANSPOSE(A1:C2)

Finally, use CTRL+SHIFT+ENTER, and J1:K3 will be filled with the transpose of our matrix.
A clue that the TRANSPOSE function is special is that if you select one of the cells of J1:K3,
the formula now has set brackets around it:

{=TRANSPOSE(A1:C2)}

The definitions of scalar product and matrix addition have counterparts in MATLAB using *
for multiplication and + for addition.
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EXAMPLE 4.5.3

We form A and B and use MATLAB to compute A + B and 2∗A + I.

� Solution

»A=[1 1 1; 2 2 2; 3 3 3];

»B=[0 1 2; 1 1 1; 0 0 0];

»A+B

ans =

1 2 3
3 3 3
3 3 3




»2*A + eyes(3)

ans =

3 2 2
4 5 4
6 6 7




Problems

1. For arbitrary A, prove (kA)T = kAT .

2. Prove that a symmetric (or skew-symmetric) matrix must
be a square matrix.

3. What matrices are simultaneously symmetric and skew-
symmetric?

4. Prove that (AT )T = A.

5. Prove that (A + B)T = AT + BT .

6. Show that A/2 + AT /2 is symmetric and A/2 − AT /2 is
skew-symmetric.

7. Explain why the diagonal entries of a skew-symmetric
matrix are all zero.

8. Show that an upper triangular symmetric matrix is a diag-
onal matrix and that an upper triangular skew-symmetric
matrix is O.

Let

A =


 2 1 0

1 −1 −2
4 2 0


 , B =


 1 1 1

0 0 0
2 1 −3


 ,

C =


 2 3 1

0 2 0
−1 2 −1




Determine the following:

9. A + B and B + A

10. A − B and B − A

11. A + (B − C) and (A + B) − C

12. 4A + 4B and 4(A + B)



13. 2A − 4C and 2(A − 2C)

14. AT

15. For the matrices A, B, and C above, show that
(A + B)T = AT + BT .

16. For the matrix A above, show that A + AT is symmetric
and A − AT is skew-symmetric.

Let

A =


 2 4 6

0 4 −2
−4 2 2


 , B =


 0 −8 6

−2 0 2
2 −4 4




Find the following:

17. As and Aa (see Eq. 4.5.11)

18. Bs and Ba .

19. (A + B)s and (A − B)s

Use Maple to solve

20. Problem 9

21. Problem 10

22. Problem 11

23. Problem 12

24. Problem 13

25. Problem 14

26. Problem 17

27. Problem 18

28. Problem 19

Use Excel to solve

29. Problem 9

30. Problem 10

31. Problem 11

32. Problem 12

33. Problem 13

34. Problem 14

35. Problem 17

36. Problem 18

37. Problem 19

Use MATLAB to solve

38. Problem 9

39. Problem 10

40. Problem 11

41. Problem 12

42. Problem 13
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There are several ways that matrix multiplication could be defined. We shall motivate our defin-
ition by considering the simultaneous set of equations

a11x1 + a12x2 + a13x3 = r1

a21x1 + a22x2 + a23x3 = r2

a31x1 + a32x2 + a33x3 = r3

(4.6.1)

These equations could be written, using the summation symbol, as

3∑
j=1

ai j xj = ri (4.6.2)

where the first equation is formed by choosing i = 1, the second equation letting i = 2, and the
third equation with i = 3. The quantity ai j contains the nine elements a11, a12, a13, . . . , a33; it
is a 3 × 3 matrix. The quantities xj and ri each contain three elements and are treated as vectors.
Hence, we write Eqs. 4.6.1 in matrix notation as

Ax = r (4.6.3)
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We must define the product of the matrix A and the vector x so that Eqs. 4.6.1 result. This, will
demand that the number of rows in the vector x equal the number of columns in the matrix A.
Matrix multiplication is generalized as follows: The matrix product of the matrix A and the ma-
trix B is the matrix C whose elements are computed from

ci j =
r∑

k=1

aikbk j (4.6.4)

For the definition above to be meaningful, the number of columns in A must be equal to the num-
ber of rows in B. If A is an m × r matrix and B an r × n matrix, then C is an m × n matrix. Note
that the matrix multiplication AB would not be defined if both A and B were 2 × 3 matrices. AB
is defined, however, if A is 2 × 3 and B is 3 × 2; the product AB would then be a 2 × 2 matrix
and the product BA is a 3 × 3 matrix. Obviously, matrix multiplication is not, in general, com-
mutative; that is,

AB �= BA (4.6.5)

must be assumed unless we have reason to believe the contrary. In fact, the product BA may not
even be defined, even if AB exists.

The multiplication of two matrices A and B to form the matrix C is displayed as


c11 c12 · · · c1n

c21 c22 · · · c2n
...

...
...

ci1 · · · Ci j · · · cin
...

...
...

cm1 cm2 · · · cmn




=




a11 a12 · · · a1r
...

...
...

ai1 ai2 · · · air
...

...

am1 am2 · · · amr







b11 b12 · · · b1 j · · · b1n

b21 b22 · · · b2 j · · · b2n
...

...
...

...

br1 br2 · · · br j · · · brn




(4.6.6)

Observe that the element ci j depends on the elements in row i of A and the elements in column
j of B. If the elements of row i of A and the elements of column j of B are considered to be the
components of vectors, then the element ci j is simply the scalar (dot) product of the two vectors.
Written out we have

ci j = ai1b1 j + ai2b2 j + ai3b3 j + · · · + air br j (4.6.7)

This is, of course, the same equation as Eq. 4.6.4.
In the matrix product AB the matrix A is referred to as the premultiplier and the matrix B as

the postmultiplier. The matrix A is postmultiplied by B, or B is premultiplied by A.
It is now an easier task to manipulate matrix equations such as Eq. 4.6.3. For example, sup-

pose that the unknown vector x were related to another unknown vector y by the matrix equation

x = By (4.6.8)

where B is a known coefficient matrix. We could then substitute Eq. 4.6.8 into Eq. 4.6.3 and
obtain

ABy = r (4.6.9)

The matrix product AB is determined following the multiplication rules outlined earlier.
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EXAMPLE 4.6.1

Several examples of the multiplication of two matrices will be given here using the following:

A =

 2

3
−4


 , B = [ 2, −1, 0 ] , C =

[
2 3 −1
0 1 4

]
,

D =

 3 0 1

2 −2 1
0 2 0


 , E =


 2 −1 1

1 0 0
2 0 1




� Solution

A is a 3 × 1 matrix and B is a 1 × 3 matrix. The product matrices BA and AB are

BA = [ 2, −1, 0 ]


 2

3
−4


 = [2 · 2 + (−1)(3) + 0(−4)] = [1]

AB =

 2

3
−4


 [ 2, −1, 0 ] =


 2 · 2 2 · (−1) 2 · 0

3 · 2 3 · (−1) 3 · 0
−4 · 2 −4 · (−1) −4 · 0




=

 4 −2 0

6 −3 0
−8 4 0




From these expressions it is obvious that AB �= BA. In fact, the rows and columns of the product matrix are
even different. The first product is often called a scalar product, since the product yields a matrix with only
one scalar element.

Now consider the product of a 2 × 3 matrix and a 3 × 1 matrix, CA. The product matrix is

CA =
[

2 3 −1
0 1 4

]
 2

3
−4


 =

[
2 · 2 + 3 · 3 + −1 · (−4)

0 · 2 + 1 · 3 + 4 · (−4)

]
=

[
17

−13

]

The product AC does not exist since matrix multiplication of a 3 × 1 matrix with a 2 × 3 matrix is not defined.
The product of two 3 × 3 matrices will now be attempted. We have

DE =

 3 0 1

2 −2 1
0 2 0





 2 −1 1

1 0 0
2 0 1


 =


 8 −3 4

4 −2 3
2 0 0




Check this result using the procedure discussed preceding Eq. 4.6.7. Then verify that

ED =

 2 −1 1

1 0 0
2 0 1





 3 0 1

2 −2 1
0 2 0


 =


 4 4 1

3 0 1
6 2 2



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In certain special circumstances, AB = BA. Two simple illustrations are

(1) AI = IA = A (4.6.10)

and

(2) OA = AO = O (4.6.11)

It is true, that for all A, B, and C,

A(BC) = (AB)C

A(B + C) = AB + AC

(B + C)A = BA + CA

(4.6.12)

provided that the orders in each multiplication are correct.
A striking example of the peculiarity of matrix multiplication is the product

[
1 1

−1 −1

] [
1 1

−1 −1

]
=

[
0 0
0 0

]
(4.6.13)

Thus, AB = O does not imply that either A or B are zero. Also,

[
1 1

−1 −1

] [
1 1
0 0

]
=

[
1 1

−1 −1

] [
0 0
1 1

]
=

[
1 1

−1 −1

]
(4.6.14)

shows that AB = AC does not imply that B = C even though A �= O. That is, there is no “law
of cancellation,” at least without more restrictive conditions than A �= O.

The failure of the commutivity of multiplication complicates the rules of algebra. For
example,

(A + B)2 = (A + B)(A + B)

= (A + B)A + (A + B)B

= A2 + BA + AB + B2 �= A2 + 2AB + B2 (4.6.15)

unless A and B commute. However, it is true that

(A + I)2 = A2 + 2A + I (4.6.16)

The transpose of the product of two matrices equals the product of the transposes taken in re-
verse order; that is,

(AB)T = BT AT (4.6.17)

This is most readily verified by writing the equation in index form. Let C = AB. Then
CT = (AB)T and is given by

cT
i j = cji =

n∑
k=1

ajkbki =
n∑

k=1

aT
kj b

T
ik =

n∑
k=1

bT
ikaT

k j (4.6.18)
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This expression is observed to be the index form of the product BT AT , thereby verifying
Eq. 4.6.17. The preceding should also be verified using some particular examples.

4.6.1 Maple, Excel, and MATLAB Applications
Matrix multiplication is also defined in Maple:

>A:=matrix(3, 1, [3, 0, -1]); B:=matrix(1, 3, [2, -1, 1]);

A :=

 3

0
−1




B := [
2 −1 1

]
>multiply(A,B); 

 6 −3 3
0 0 0

−2 1 −1




EXAMPLE 4.6.2

Verify the statement expressed in Eq. 4.6.17 if

A =

 3

0
−1


 and B = [ 2, −1, 1 ]

� Solution

The matrix product AB is found to be

AB =

 6 −3 3

0 0 0
−2 1 −1




The transpose matrices are

AT = [ 3, 0, −1 ] , BT =

 2

−1
1




The product BT AT is found to be

BT AT =

 6 0 −2

−3 0 1
3 0 −1




This, obviously, is the transpose of the matrix product AB.



230 � CHAPTER 4  / THE THEORY OF MATRICES

To multiply matrices in Excel, we use an array function MMULT. For instance, if we wish to
multiply the matrix located at A1:C4 by the one at E1:H2, first we select a rectangle with one
row and two columns. Then, we enter this formula:

=MMULT(A1:C4, E1:H2)

As before, the CTRL, SHIFT, and ENTER must be pressed simultaneously, and then the prod-
uct of the matrices is calculated.

Matrix multiplication is clearly an arithmetically tedious operation when done by hand. It is
especially easy using MATLAB. The multiplication operator is * and it is required in all cases.
The example to follow illustrates a number of points discussed earlier in this section.

EXAMPLE 4.6.3

For the two row matrices A and B, we construct A ∗ B and B ∗ A:

»A=[3; 0; 1]

A =

3
0
1




»B=[2 -1 1]

B = [2 −1 1]

»A*B

ans =

6 −3 3
0 0 0
2 −1 1




»B*A

ans = [7]

Problems

Find each product.

1.
[

1 3
3 1

] [
1 4
4 1

] 2.

 1 1 0

0 1 2
0 0 1





 1 −2 2

0 2 2
0 0 1






3.

 2 0 0

0 1 0
0 1 −1





 x

y
z




4. [ a, b, c ]


 a

b
c




5.
[−6 7

7 −8

] [
8 7
7 6

]

6.
[

2 5
1 3

] [
11 30
−4 −11

] [
3 −5

−1 2

]

7. [ 0 ] [ 1, 7, −2 ]

8. Verify A(B + C) = AB + AC when

A =
[

1 2
3 −1

]
, B =

[
0 1
2 3

]
, C =

[
1 1
0 1

]
9. Find A2, A3, A4 where

A =


 0 1 1

0 0 1
0 0 0




10. Find a formula for An where

A =
[

1 1
0 1

]

Let A =
[

1 2
0 1

]
. Compute

11. 3A2 − 9A + 6I

12. 3(A − I)(A − 2I)

13. 3(A − 2I)(A − I)

Verify (A + I)3 = A3 + 3A2 + 3A + I for each equation.

14. A = I

15. A = O

16. A =


 1 1 1

1 1 1
1 1 1




17. A =


 1 0 −1

1 2 2
−1 1 0




Expand each expression.

18. [x1, x2, x3]


 1 −1 0

0 1 1
0 1 −1





 x1

x2

x3




19. [x1, x2, x3]


 2 0 0

0 1 0
1 1 1





 x1

x2

x3




20. Prove (AB)T = BT AT .

21. Find two examples of 3 × 3 matrices such that AB = O
but A �= O and B �= O.

22. Use your answers to Problem 21 to construct two exam-
ples of matrices A, B, and C such that AB = AC but
B �= C.

23. If AB = BA prove that A and B are square matrices with
the same dimensions.

24. Prove that AB is upper triangular if A and B are.

25. Using the matrices of Problem 2, show that matrix multi-
plication given by Eq. 4.6.6 can be written as
C = [AB∗1, AB∗2, . . . , AB∗n].

26. Prove each equation in Eq. 4.6.12.

27. Use Eq. 4.6.17 to show that (ABC)T = CT BT AT .

28. Show by example that (AB)2 �= A2B2 in general. Show
that AB = BA does imply (AB)n = AnBn .

29. Suppose that A is upper triangular and aii = 0,
i = 1, 2, . . . , n . Show that An = O.

30. Show that AT A and AAT are symmetric.

Let

A =


 1

−1
2


, B = [ 2, 4, −1 ]

C =


 3 2 1

−2 0 −1
1 0 1


 ,

D =


−1 0 2

1 2 1
2 −1 −1




Find the following.

31. AB

32. BA

33. (AB)C

34. A(BC)

35. CA

36. CD

37. BD

38. DA
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39. Let A and B be 3 × 3 diagonal matrices. What is AB?
BA? Does this result generalize to n × n diagonal
matrices?

Let

A =


 0 3 1

−1 2 0
0 0 1


 , B =


 1 0 0

−1 2 1
3 1 0


 ,

C =


 2

0
−1


 , D = [ 1, 2, 0 ]

Determine the following sums and products and identify those
that are not defined.

40. (A + B)C and AC + BC

41. A(BC) and (AB)C

42. D(A + B) and DA + DB

43. (AB)T and BT AT

44. AT A and AAT

45. CT C and CCT

46. A2 and A3

47. C2

48. A + C

49. A2 − 2B + 3I

50. 2AC + DB − 4I

Let

A =


 2 0 0

0 −1 0
0 0 3


 , B =


 2 1 3

1 −1 2
1 3 2


 ,

C =


 2

1
−1




Find the following.

51. AB and BA. Are they equal?

52. AC.

53. CT A.

Use Maple to solve

54. Problem 31

55. Problem 32

56. Problem 33

57. Problem 34

58. Problem 35

59. Problem 36

60. Problem 37

61. Problem 38

62. Problem 40

63. Problem 41

64. Problem 42

65. Problem 43

66. Problem 44

67. Problem 45

68. Problem 46

69. Problem 47

70. Problem 48

71. Problem 49

72. Problem 50

73. Problem 51

74. Problem 52

75. Problem 53

Use Excel to solve

76. Problem 31

77. Problem 32

78. Problem 33

79. Problem 34

80. Problem 35

81. Problem 36

82. Problem 37

83. Problem 38

84. Problem 40

85. Problem 41

86. Problem 42

87. Problem 43

88. Problem 44

89. Problem 45

90. Problem 46

91. Problem 47

92. Problem 48

93. Problem 49

94. Problem 50
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95. Problem 51

96. Problem 52

97. Problem 53

Use MATLAB to solve

98. Problem 31

99. Problem 33

100. Problem 35

101. Problem 37

102. Problem 40

103. Problem 42

104. Problem 31

105. Problem 44

106. Problem 46

107. Problem 48

108. Problem 50

109. Problem 51

110. Problem 53

Using A above Problem 51

111. use MATLAB to obtain ones(3)*A and A*ones(3).

112. use MATLAB to obtain

(a) A∗ [ 1; 0; 0 ]

(b) A∗ [ 0; 1; 0 ]

(c) A∗ [ 0; 0; 1 ]

113. Reverse the order of the multiplications in Problem 112
and deduce a rule for finding the kth row of A.

4.7 THE INVERSE OF A MATRIX � 233

Division is not a concept defined for matrices. In its place and to serve similar purposes, we in-
troduce the notion of the inverse. The square matrix A is nonsingular, or has an inverse (or is in-
vertible), if there exists a square matrix B such that

AB = BA = I (4.7.1)

It is immediately clear that not all matrices have inverses since if A = O Eq. 4.7.1 is false for
every B. However, if there exists a B that satisfies Eq. 4.7.1 for a given A, there is only one such
B. For suppose that AC = I. Then

B(AC) = B(I) = B (4.7.2)

But

B(AC) = (BA)C = (I)C = C (4.7.3)

Hence, B = C.
Since there is never more than one matrix satisfying Eq. 4.7.1 for a given A, we call the

matrix B the inverse of A and denote it by A−1, so that Eq. 4.7.1 can be written

AA−1 = A−1A = I (4.7.4)

A matrix that is not invertible, that is, one for which A−1 does not exist, is called singular or
noninvertible.

4.7 THE INVERSE OF A MATRIX
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EXAMPLE 4.7.1

Verify that the matrix in (c) of Problem 112 is singular.

� Solution

To verify that the matrix in (c) is indeed singular, we attempt to find a matrix such that AB = I. Hence, we set


 1 1 1

2 2 2
3 3 3





 b11 b12 b13

b21 b22 b23

b31 b32 b33


 =


 1 0 0

0 1 0
0 0 1




But we arrive at a contradiction by computing the entries in the (1, 1) and (2, 1) positions:

b11 + b21 + b31 = 1

2b11 + 2b21 + 2b31 = 0

Thus, we cannot find a matrix B and we conclude that A is singular.

Except in rather special circumstances, it is not a trivial task to discover whether A is singu-
lar, particularly if the order of the square matrix A is rather large, say 8 or more. Before dis-
cussing systematic methods for finding A−1, when it exists, it is helpful to exhibit two matrices
whose inverses are easy to compute:

1. The diagonal matrix D with diagonal elements (a11, a22, . . . , ann ) is singular if and
only if aii = 0 for some i = 1, 2, . . . , n . Its inverse is a diagonal matrix with diagonal
entries (a−1

11 , a−1
22 , . . . , a−1

nn ).

2. If ad − bc �= 0, then 
[

a b
c d

]
is nonsingular and 1

ad−bc

[
d −b

−c a

]
is its inverse.

Finally, let us note some properties associated with the inverse matrix.

1. The inverse of the product of two matrices is the product of the inverse in the reverse
order:

(AB)−1 = B−1A−1 (4.7.5)

The following matrices are singular:

(a)


 1 1 1

1 1 1
1 1 1


 (b)

[
0 0
a b

]
(c)


 1 1 1

2 2 2
3 3 3


 (d) [ 0 ]
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The argument to show this follows:

AB(B−1A−1) = A(BB−1)A−1

= A(IA−1) = AA−1 = I (4.7.6)

2. The inverse of the transpose is the transpose of the inverse:

(AT )−1 = (A−1)T (4.7.7)

We prove this by taking transposes of AA−1 and A−1A; the details are left for the
Problems.

3. The inverse of the inverse is the given matrix:

(A−1)−1 = A (4.7.8)

The proof is Problem 5 at the end of this section.
The existence of an inverse is a remedy for the lack of a law of cancellation. For suppose that

AB = AC and A is invertible. Then we can conclude that B = C. We cannot simply cancel A
on both sides; however, because

AB = AC (4.7.9)

we can write

A−1(AB) = A−1(AC) = (A−1A)C = (I)C = C (4.7.10)

Also,

A−1(AB) = (A−1A)B = (I)B = B (4.7.11)

Hence, we may write

B = C (4.7.12)

A second illustration relates to the matrix representation for a system of n equations and n
unknowns. Suppose that

Ax = b (4.7.13)

and A−1 exists; then, since A−1(Ax) = x,

A−1(Ax) = A−1b (4.7.14)

implies that

x = A−1b (4.7.15)

To determine the solution vector x we must compute A−1. In the next section we present an
efficient algorithm for computing A−1 and several illustrative examples.
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Given A, we wish to find X so that AX = I. Suppose that

X = [X∗1, X∗2, . . . , X∗n] (4.8.1)

Then, by definition of matrix multiplication (see Eq. 4.6.6 and Problem 25 of Section 4.6),

AX = [AX∗1, AX∗2, . . . , AX∗n] = I (4.8.2)

Therefore, to find X we need to solve the following n systems simultaneously:

AX∗1 =




1
0
...

0


 , AX∗2 =




0
1
...

0


 , . . . , AX∗n =




0
0
...

1


 (4.8.3)

Problems

1. If A−1 exists and A has dimensions n × n, what are the
dimensions of A−1? Must A−1 be square?

2. If A has dimensions n × n and AC = B and A−1 exists,
then A−1 and B have dimensions that allow A−1B. Why?
Is the same true for BA−1?

3. If AC = B, A is n × n and C is a column matrix, what
are the dimensions of B?

4. Prove that (AT )−1 = (A−1)T .

5. Prove that (A−1)−1 = A.

6. Show by example that (A + B)−1 �= A−1 + B−1 , in
general.

7. Verify that A =
[

a b
c d

]
implies that

A−1 = 1

ad − bc

[
d −b

−c a

]

if ad − bc �= 0.

8. Explain why the matrices (a)–(d) in the text after
Eq. 4.7.4 are all singular.

9. Show that (A−1BA)2 = A−1B2A. Generalize to
(A−1BA)n .

10. Show that (An)−1 = (A−1)n .

11. Suppose that uT = [u1, u2, . . . , un]. Write out uuT and
following the argument in Example 4.7.1, show that uuT

is singular for n ≥ 2. Under what conditions is uuT

singular if n = 1?

12. It is possible to establish a weak form of definition 4.7.1:
If A is square and there is a B such that either
AB = I or BA = I, then B = A−1. Assume this theorem
and show the following:

(a) If AB is invertible, then so are A and B.
(b) Use part (a) to establish: if A is singular, so is AB for

every B, and likewise BA.

13. Let

A =




a11 0 · · · 0
0 a22 · · · 0
...

...

0 0 · · · ann




Show that

A−1 =




a−1
11 0 · · · 0

0 a−1
22 · · · 0

...
...

0 0 · · · a−1
nn




by computing AA−1 and A−1A.

4.8 THE COMPUTATION OF A−1
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We can do this by forming the augmented matrix

[
A

... I
]

(4.8.4)

and using row reduction until the elements of A reduce to an identity matrix. An example will
illustrate this point.

Find A−1 if A =
[

1 2
−1 1

]
.

� Solution

Here we have

[
1 2

−1 1

]
A−1 =

[
1 0
0 1

]

where the unknown A−1 will be represented by

A−1 =
[

a c
b d

]

This yields two systems of two equations in two unknowns; namely[
1 2

−1 1

] [
a
b

]
=

[
1
0

]
and

[
1 2

−1 1

] [
c
d

]
=

[
0
1

]

We now augment A with both right-hand sides and proceed to solve both systems at once by row reduction of
the augmented matrix [

1 2 1 0
−1 1 0 1

]

We select our operations so as to reduce A to an identity matrix. Thus, adding the first row to the second and
then − 2

3 of the second to the first yields [
1 0 1

3 − 2
3

0 3 1 1

]

Dividing the second row by 3 gives [
1 0 1

3 − 2
3

0 1 1
3

1
3

]

EXAMPLE 4.8.1
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We have deduced that

[
a
b

]
=

[
1
3
1
3

]
and

[
c
d

]
=

[
− 2

3
1
3

]

and hence,

A−1 =
[

a c
b d

]
=

[
1
3 − 2

3
1
3

1
3

]

We have found a matrix A−1, such that AA−1 = I. One may verify that A−1A = I also. It is true4 in general
that for square matrices A and B, AB = I if an only if BA = I.

EXAMPLE 4.8.1 (Continued)

4We do not prove this theorem here.

Invert the matrix

A =

 1 0 1

2 1 1
1 1 2




� Solution

The augmented matrix may be reduced as follows:


 1 0 1 1 0 0

2 1 1 0 1 0
1 1 2 0 0 1


 −→


 1 0 1 1 0 0

0 1 −1 −2 1 0
0 0 2 1 −1 1




−→




1 0 0 1
2

1
2 − 1

2

0 1 0 − 3
2

1
2

1
2

0 0 1 1
2 − 1

2
1
2




Thus, the inverse of A is

A−1 =




1
2

1
2 − 1

2

− 3
2

1
2

1
2

1
2 − 1

2
1
2


 = 1

2


 1 1 −1

−3 1 1
1 −1 1




In the next example we see how this method detects singular matrices.

EXAMPLE 4.8.2
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Show that A is singular if

A =

 2 2 1

3 3 −2
1 1 −3




� Solution

The student is invited to complete the details in the following arrow diagram:


 2 2 1 1 0 0

3 3 −2 0 1 0
1 1 −3 0 0 1


 −→ · · · −→


 2 2 1 1 0 0

1 1 −3 −1 1 0
0 0 0 1 −1 1




Thus, AA−1 = I is equivalent to


 2 2 1

1 1 −3
0 0 0


 A−1 =


 1 0 0

−1 1 0
1 −1 1




But


 2 2 1

1 1 −3
0 0 0


 A−1 =


 ∗ ∗ ∗

∗ ∗ ∗
0 0 0




a contradiction of the equation preceding it. Hence, A is singular.

EXAMPLE 4.8.3

The preceding examples are illustrations of this principle:

Theorem 4.5: The RREF of a square matrix is either the identity matrix or an upper triangular
matrix with at least one row of zeros.

Proof: Every RREF of a square matrix is upper triangular, call it U. If the leading ones are the
diagonal entries, then the RREF is In . So suppose that at least one diagonal entry of the RREF is
zero. Then the number of leading ones must be less than n. Hence, one row, at least, must be a
row of zeros. In fact, by definition of RREF, the last row of U is a row of zeros.

The implication of this theorem is that row reduction on Eq. 4.8.4 yields I or detects that A is
singular, whichever is the case; for

[
A

... I
] −→ · · · −→ [

U
... B

]
(4.8.5)
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implies that

I −→ · · · −→ B (4.8.6)

where U is the RREF of A. Suppose that A is singular. Then the last row of U is a row of zeros.
Since AX = I implies that UX = B, the last row of B is a row of zeros. The diagram 4.8.6
states5 that Ix = 0 has the same solution sets as Bx = 0. But Ix = 0 implies that x = 0. Since
the last row of B is a zero row,

B




0
0
...

0
1


 = 0 (4.8.7)

and Ix = 0 and Bx = 0 do not have the same solution sets. Hence, AX = I is a contradiction
and A cannot be nonsingular.

4.8.1 Maple, Excel, and MATLAB Applications
The calculations in Example 4.8.1 can be carried out using Maple. In particular, the augment
and delcols commands are useful:

>A:=matrix(2,2, [1, 2, -1, 1]):

>I2:=matrix(2,2,(i,j) -> piecewise(i=j, 1, 0)):

>A1:=augment(A, I2);

A1 :=
[

1 2 1 0
−1 1 0 1

]

>A2:=rref(A1);

A2 :=
[
1 0 1

3
−2
3

0 1 1
3

1
3

]

>delcols(A2, 1..2); [
1
3

−2
3

1
3

1
3

]

It should come as no surprise that Maple will calculate the inverse directly using inverse(A).
There is also a function in Excel to compute matrix inverses. MINVERSE is an array func-

tion. If the matrix to be inverted is in A1:D4, then we would use this formula:

=MINVERSE(A1:D4)

As usual, the steps to enter an array function must be followed.

5In the following discussion and throughout Chapters 4 and 5 we will use a boldface zero to denote a vector
with all components equal to zero.
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If A is a square matrix, the MATLAB command rref seen in earlier sections can be used to
compute the inverse of A if this inverse exists. We can also use the MATLAB command inv for
the same purpose.

Use the commands rref and inv to compute the inverse of the matrix given in Example 4.8.2.

»A=[1 0 1;2 1 1;1 1 2];

»B=[A eyes(3)]

B =

1 0 1 1 0 0
2 1 1 0 1 0
1 1 2 0 0 1




% Note the syntax for the augmented matrix B. It is in row-vector form.
% Note the space between A and eyes(3)

»rref(B)

ans =

1.0000 0 0 0.5000 0.5000 −0.5000

0 1.0000 0 −1.5000 0.5000 0.5000
0 0 1.0000 0.5000 −0.5000 0.5000




»inv(A) 
 0.5000 0.5000 −0.5000

−1.5000 0.5000 0.5000
0.5000 −0.5000 0.5000




EXAMPLE 4.8.4

Problems

Use row operations to decide whether each matrix is singular.
When the inverse does exist, find it.

1.

−1 0 1

1 0 0
0 0 1




2.

 2 0 1

0 3 4
0 0 7




3.
[

1 2
−2 1

]

4.

 0 0 1

0 1 0
1 0 0




5.
[

cos θ sin θ

− sin θ cos θ

]



6.

 2 0 0

4 −1 0
0 1 −1




7.

 1 0 2

0 1 0
0 5 0




Verify that each pair of matrices are inverses of each other.

8.
[

1 2
−1 1

] [
1
3 − 2

3
1
3

1
3

]

9. 
 1 0 1

2 1 1
1 2 2







0 2
3 − 1

3

−1 1
3

1
3

1 − 2
3

1
3




10. Explain why the diagram I → · · · →B means that
Ix = 0 has the same solution as Bx = 0.

11. Explain why UX = B implies that B has a row of zeros if
U has a row of zeros. What row of B is a row of zeros?

12. Explain why Eq. 4.8.7 is true.

Find the inverse of each symmetric matrix and conclude that
the inverse of a symmetric matrix is also symmetric.

13.
[

2 1
1 1

]
14.


 3 1 2

1 0 1
2 1 −1




15.

 0 2 3

2 0 2
3 2 0




16.



2 1 1 1
1 2 0 0
1 0 0 1
1 0 1 2




Find the inverse matrix A−1 (if one exists) if A is given by

17.
[

1 −1
1 1

]
18.

[
2 6
1 3

]
19.

[
2 0
0 1

]

20.
[

1 2
0 0

]

21.
[−3 5

−2 6

]

22.

 1 0 2

2 1 1
1 1 1




23.

 1 2 2

1 1 2
1 −2 2




24.

 3 1 2

−1 2 1
0 1 1




25.



0 1 1 0
0 0 1 1
1 0 1 1
1 1 1 1




Use Maple to solve

26. Problem 17

27. Problem 18

28. Problem 19

29. Problem 20

30. Problem 21

31. Problem 22

32. Problem 23

33. Problem 24

34. Problem 25

35. Computer Laboratory Activity: Each elementary row op-
eration (see Section 4.3) has a corresponding elementary
matrix. In the case where we are applying Gaussian elim-
ination to an m by n matrix, we create elementary matri-
ces of size n by n by starting with the identity matrix In

and applying an elementary row operation. For example,
if n = 4, then interchanging the first and fourth rows cor-
responds to this elementary matrix (use Maple):

E :=



0 0 0 1

0 1 0 0

0 0 1 0

1 0 0 0



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Start with this matrix:

A :=


1 −1 0

2 1 −4
0 3 −3




Apply row operations to this matrix A, one at a time, to
put it in RREF. Then, create the elementary matrices for
each row operation, and call them E1, E2, and so on.
Multiply the first elementary matrix by A, to get E1A.
Multiply the second elementary matrix by E1A, and so
on. Eventually, you should recognize this equation:

Ek. . . E5 E4 E3 E2 E1 A = I

where k is the number of elementary matrices you cre-
ated. Notice that

A−1 = Ek. . . E 5E4 E3 E2 E1

So, use matrix multiplication to compute the inverse
of A. Finally, create the inverses of all the elementary
matrices. After computing a few, describe a simple
procedure for doing this.

Use Excel to solve

36. Problem 17

37. Problem 18

38. Problem 19

39. Problem 20

40. Problem 21

41. Problem 22

42. Problem 23

43. Problem 24

44. Problem 25

Use MATLAB to solve

45. Problem 17

46. Problem 18

47. Problem 19

48. Problem 20

49. Problem 21

50. Problem 22

51. Problem 23

52. Problem 24

53. Problem 25
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The reader has probably encountered determinants of 2 × 2 and 3 × 3 matrices and may recall
the formulas

∣∣∣∣ a11 a12

a21 a22

∣∣∣∣ = a11a22 − a21a12 (4.9.1)

∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣ = a11a22a33 + a12a23a31 + a13a21a32

−a13a22a31 − a12a21a33 − a11a23a32 (4.9.2)

The determinant has many uses. We cite a few:

1. The system

a11x + a12 y + a13z = 0

a21x + a22 y + a23z = 0

a31x + a32 y + a33z = 0

(4.9.3)

4.9 DETERMINANTS OF n × n MATRICES
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has a nontrivial solution (x, y, and z not all zero) if and only if the determinant of the
coefficient matrix vanishes, that is, if and only if∣∣∣∣∣∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣ = 0 (4.9.4)

2. The construction of the solutions to simultaneous equations using Cramer’s rule6

involves the quotients of various determinants.
3. If v1 and v2 are vectors with two entries, defining the sides of a parallelogram, as

sketched in Fig. 4.1, and if [v1, v2] denotes the matrix with these as columns, then,
abbreviating absolute value by “abs,”

abs|v1, v2| = area of the parallelogram (4.9.5)

4. If v1, v2, and v3 are vectors with three entries, defining the sides of a parallelepiped
(see Fig. 4.2), and if [v1, v2, v3] denotes the matrix with these as columns, then

abs|v1, v2, v3| = volume of the parallelepiped (4.9.6)

The determinant can be defined for any square matrix in such a way that these applications,
among many others, are preserved in higher dimensions.

Formula 4.9.2 for the value of |A| when A is 3 × 3 can be remembered by the following
familiar device. Write the first two columns of the determinant to the right of A and then sum
the products of the elements of the various diagonals using negative signs with the diagonals
sloping upward:

a11
a21
a31

a12
a22
a32

a13
a23
a33

a11
a21
a31

a12
a22
a32

(−) (−) (−)

(+) (+) (+)

v2

v1

Figure 4.1. A parallelogram.

v1
v2

v3

Figure 4.2. A parallelopiped.

6Cramer’s rule was part of your course in algebra; it is presented again as Eq. 4.9.23.



4.9 DETERMINANTS OF n × n MATRICES � 245

In general, the determinant of the matrix A is given by

|A| =
∑

(−1)ka1i a2 j · · · ans (4.9.7)

where the summation extends over all possible arrangements of the n second subscripts and k is
the total number of inversions7 in the sequence of the second subscript. We do not, however, use
this definition in actual calculations. Rather, the value of the nth-order determinant is most gen-
erally found by exploiting a number of consequences of this definition. We list these without
proof: The interested reader is referred to a textbook on linear algebra.

Some important properties of a determinant are:

1. If two rows or columns of A are interchanged to form A′, then

|A| = −|A′| (4.9.8)

2. If a row or column of A is multiplied by α to form A′, then

α|A| = |A′| (4.9.9)

3. If a multiple of one row (or column) of A is added to another row (or column) of A to
form A′, then

|A| = |A′| (4.9.10)

4. If A is either upper or lower triangular with diagonal entries a11, a22, . . . , ann , then

|A| = a11a22 · · · ann (4.9.11)

5. |AB| = |A||B|. (4.9.12)
6. |AT | = |A|. (4.9.13)

Now suppose that A → A1 by a single elementary row operation. In view of Eqs. 4.9.8 to
4.9.10, |A| = α|A1| where α �= 0. If A → A1 → · · · → Am , then |A| = α|Am |, α �= 0. This
leads to an easy proof of the following especially important theorem.

Theorem 4.6: A is singular if and only if |A| = 0.

Proof: From Theorem 4.5 and the discussion immediately following it, we know that A has an
inverse if and only if

A −→ · · · −→ I (4.9.14)

It follows from the analysis made earlier—after Eq. 4.9.13—that |A| = α|I| = α �= 0. Hence,
|A| = 0 is a contradiction, implying that A is singular, and conversely.

7The number of inversions is the number of pairs of elements in which a larger number precedes a smaller one;
for example, the numbers (1, 5, 2, 4, 3) form the four inversions (5, 2), (5, 4), (5, 3), and (4, 3).
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EXAMPLE 4.9.1

Calculate |A|, using row operations, given

A =

 0 1 1

1 0 0
0 0 1




� Solution

We add the second row to the first, then substract the first row from the second:

|A| =
∣∣∣∣∣∣
1 1 1
1 0 0
0 0 1

∣∣∣∣∣∣ =
∣∣∣∣∣∣
1 1 1
0 −1 −1
0 0 1

∣∣∣∣∣∣ = 1 · −1 · 1 = −1

EXAMPLE 4.9.2

Calculate |A| where

A =




1 2 1 3
−1 1 3 2

1 0 2 3
−1 1 1 4




� Solution

By various applications of elementary row operations we can express the determinant of A as

|A| =

∣∣∣∣∣∣∣∣
1 2 1 3
0 3 4 5
0 −2 1 0
0 3 2 7

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣

1 2 1 3
0 3 4 5
0 0 11

3
10
3

0 0 −2 −2

∣∣∣∣∣∣∣∣∣
Continuing, we have

|A| =

∣∣∣∣∣∣∣∣∣

1 2 1 3
0 3 4 5
0 0 11

3
10
3

0 0 0 42
11

∣∣∣∣∣∣∣∣∣
= 1 · 3 · 11

3 · 42
11 = 42
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EXAMPLE 4.9.3

Show that |kA| = kn |A|, where A is n × n.

� Solution

This follows from Eq. 4.9.9 after noting that kA has each row of A multiplied by k and there are n rows in A.

EXAMPLE 4.9.4

Show that |A−1| = |A|−1.

� Solution

Since

AA−1 = I and |I| = 1

we have

|AA−1| = |A||A−1| = 1

from Eq. 4.9.12. Thus,

|A−1| = 1

|A| = |A|−1

EXAMPLE 4.9.5

Compute the determinant of the matrix given in Example 4.9.2 using MATLAB. (The determinant of A is
written det in MATLAB.)

� Solution
»A=[1 2 1 3; -1 1 3 2; 1 0 2 3; -1 1 1 4];

»det(A)

ans = [42]

»det(2*A)

ans = [672]
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Problems

1. Show that 
∣∣S−1AS

∣∣ = |A|.
2. Show that |An | = |A|n .

3. Find A and B to illustrate that |A + B| = |A| + |B| is
false, in general.

The following problems illustrate the definition 4.9.7. We call
a1i a2 j · · · ans a term.

4. Show that the right-hand side of Eq. 4.9.7 is a sum of n!
terms.

5. Show that a11a22 · · · ann is a term.

6. Explain why a term is the product of n entries in A, one
from each row and each column. Hence, no term contains
two entries of A from the same row or two from the same
column.

7. Use the results of Problems 5 and 6 to explain why the
determinant of an upper triangular matrix is the product
of its diagonal entries.

8. Show that Eq. 4.9.9 is an immediate consequence of
Eq. 4.9.7.

9. Show that Eqs. 4.9.1 and 4.9.2 are consequences of the
definition 4.9.7.

Using the products of the diagonal elements, evaluate each
determinant.

10.
∣∣∣∣ 2 0
−1 3

∣∣∣∣
11.

∣∣∣∣ 1 2
1 3

∣∣∣∣
12.

∣∣∣∣ 2 −2
−1 1

∣∣∣∣
13.

∣∣∣∣∣∣∣
3 1 0
1 3 −1
2 −1 0

∣∣∣∣∣∣∣
14.

∣∣∣∣∣∣∣
4 −1 3
2 2 2
1 −2 4

∣∣∣∣∣∣∣
Show the following, by computation.

15.
∣∣∣∣∣∣∣
3 2 −1
6 3 0
3 1 2

∣∣∣∣∣∣∣ = 3

∣∣∣∣∣∣∣
1 2 −1
2 3 0
1 1 2

∣∣∣∣∣∣∣

16.
∣∣∣∣∣∣∣
3 2 −1
6 3 0
3 1 2

∣∣∣∣∣∣∣ = −

∣∣∣∣∣∣∣
2 3 −1
3 6 0
1 3 2

∣∣∣∣∣∣∣
17.

∣∣∣∣∣∣∣
3 2 −1
6 3 0
3 1 2

∣∣∣∣∣∣∣ = 3

∣∣∣∣∣∣∣
3 + 2 2 −1
6 + 3 3 0
3 + 1 1 2

∣∣∣∣∣∣∣
18.

∣∣∣∣∣∣∣
3 2 −1
6 3 0
3 1 2

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
3 + 10 2 −1
6 + 15 3 0
3 + 5 1 2

∣∣∣∣∣∣∣
19.

∣∣∣∣∣∣∣
3 2 −1
6 3 0
3 1 2

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
3 + 3 2 + 1 −1 + 2

6 3 0
3 1 2

∣∣∣∣∣∣∣
20.

∣∣∣∣∣∣∣
3 −3 −1
6 −6 0
3 −3 2

∣∣∣∣∣∣∣ = 02

Evaluate each determinant by using row operations and
Eq. 4.9.11.

21.
∣∣∣∣∣∣∣

3 1 3
2 0 4

−1 2 −2

∣∣∣∣∣∣∣
22.

∣∣∣∣∣∣∣
2 3 4

−1 0 3
1 2 3

∣∣∣∣∣∣∣
23.

∣∣∣∣∣∣∣
1 1 1

−1 −2 2
1 2 3

∣∣∣∣∣∣∣
24.

∣∣∣∣∣∣∣
2 1 3
4 2 6

−3 1 0

∣∣∣∣∣∣∣
25.

∣∣∣∣∣∣∣∣∣

4 3 1 4
3 0 0 3
1 2 2 1
0 −1 3 2

∣∣∣∣∣∣∣∣∣



26.
∣∣∣∣∣∣∣∣∣

3 1 −1 0
2 2 2 1

−1 3 0 4
8 6 −2 2

∣∣∣∣∣∣∣∣∣
27.

∣∣∣∣∣∣∣∣∣

1 1 1 1
−2 3 1 0

4 3 8 1
7 5 −2 0

∣∣∣∣∣∣∣∣∣
28.

∣∣∣∣∣∣∣∣∣

2 −1 6 3
−2 4 5 −1

3 4 3 2
1 −1 2 3

∣∣∣∣∣∣∣∣∣
Use MATLAB and evaluate

29. Problem 21

30. Problem 22

31. Problem 23

32. Problem 24

33. Problem 25

34. Problem 26

35. Problem 27

36. Problem 28

37. Verify using MATLAB the fifth property listed for a de-
terminant, using

A =


 2 3 1

−1 0 2
3 4 1


 , B =


 2 −1 3

6 7 −1
3 4 2



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4.9.1 Minors and Cofactors
The determinant of the matrix formed from A by striking out the i th row and j th column of A is
called the minor of ai j . For example, if

A =


 1 −1 2

0 −2 3
4 −4 6


 (4.9.15)

then the three minors of the elements in the first row of A are, respectively,

∣∣∣∣−2 3
−4 6

∣∣∣∣ ,
∣∣∣∣ 0 3
4 6

∣∣∣∣ ,
∣∣∣∣ 0 −2
4 −4

∣∣∣∣
The cofactor of ai j is Ai j and is (−1)i+ j times its minor. Hence, the cofactors of the three
elements above are, respectively,

A11 = (−1)2

∣∣∣∣−2 3
−4 6

∣∣∣∣ , A12 = (−1)3

∣∣∣∣ 0 3
4 6

∣∣∣∣ , A13 = (−1)4

∣∣∣∣ 0 −2
4 −4

∣∣∣∣ (4.9.16)

The importance of the cofactors is due to the following8:

|A| =
n∑

j=1

ai j Ai j =
n∑

j=1

aji Aji (4.9.17)

That is, the value of the determinant of the square matrix A is given by the sum of the products
of the elements of any row or column with their respective cofactors.

8See any textbook on linear algebra. 
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EXAMPLE 4.9.5

Using cofactors, find the determinant of

A =


 3 2 1

−1 0 1
1 2 2




by expanding by the first row and then the first column.

� Solution

Expanding by the first row, we have∣∣∣∣∣∣∣
3 2 1

−1 0 1
1 2 2

∣∣∣∣∣∣∣ = 3

∣∣∣∣ 0 1
2 2

∣∣∣∣ − 2

∣∣∣∣−1 1
1 2

∣∣∣∣ + 1

∣∣∣∣−1 0
1 2

∣∣∣∣
= 3(−2) − 2(−2 − 1) + 1(−2) = −2

Expanding by the first column, there results∣∣∣∣∣∣∣
3 2 1

−1 0 1
1 2 2

∣∣∣∣∣∣∣ = 3

∣∣∣∣ 0 1
2 2

∣∣∣∣ − (−1)

∣∣∣∣ 2 1
2 2

∣∣∣∣ + 1

∣∣∣∣ 2 1
0 1

∣∣∣∣
= 3(−2) + 1(4 − 2) + 1(2) = −2

EXAMPLE 4.9.6

Evaluate the determinant of Example 4.9.2 by expanding, using cofactors of the first row.

� Solution

The determinant of the matrix is

|A| = A11 + 2A12 + A13 + 3A14

We evaluate each 3 × 3 determinant by expanding, using its first row:

A11 = 1(8 − 3) − 3(0 − 3) + 2(0 − 2) = 10

A12 = −[(−1)(8 − 3) − 3(4 + 3) + 2(1 + 2)] = 20

A13 = (−1)(0 − 3) − (1)(4 + 3) + 2(1 − 0) = −2

A14 = −[(−1)(0 − 2) − (1)(1 + 2) + 3(1 − 0)] = −2

Hence,

|A| = 1 · 10 + 2 · 20 + 1 · (−2) + 3 · (−2) = 42
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4.9.2 Maple and Excel Applications
The calculation of the determinant can be done with Maple through this command: det(A).

MDETERM is the function in Excel to compute the determinant. It is not an array function,
since the output is a scalar.

Problems

Using cofactors, evaluate∣∣∣∣∣∣∣
3 2 −1
3 0 3

−1 2 1

∣∣∣∣∣∣∣
1. Expand by the first row.

2. Expand by the second row.

3. Expand by the first column.

4. Expand by the second column.

Using cofactors, evaluate∣∣∣∣∣∣∣∣∣

2 0 8 6
−1 4 2 0

0 −1 3 0
3 5 7 3

∣∣∣∣∣∣∣∣∣
5. Expand by the first row.

6. Expand by the third row.

7. Expand by the first column.

8. Expand by the fourth column.

Use the method of cofactors to find the value of each
determinant.

9.
∣∣∣∣ 2 0
0 1

∣∣∣∣
10.

∣∣∣∣ 1 2
0 0

∣∣∣∣
11.

∣∣∣∣∣∣∣
0 2 3
2 0 2
3 2 0

∣∣∣∣∣∣∣
12.

∣∣∣∣∣∣∣
1 0 2
2 1 1
1 1 1

∣∣∣∣∣∣∣

13.
∣∣∣∣∣∣∣
1 2 2
1 1 2
1 −2 2

∣∣∣∣∣∣∣
14.

∣∣∣∣∣∣
3 1 2

−1 2 1
0 1 1

∣∣∣∣∣∣
15.

∣∣∣∣∣∣∣∣∣

2 1 1 1
1 2 0 0
1 0 0 1
1 0 1 2

∣∣∣∣∣∣∣∣∣
16.

∣∣∣∣∣∣∣∣∣

0 1 1 0
0 0 1 1
1 0 1 1
1 1 1 1

∣∣∣∣∣∣∣∣∣
Use Maple to solve

17. Problem 9

18. Problem 10

19. Problem 11

20. Problem 12

21. Problem 13

22. Problem 14

23. Problem 15

24. Problem 16

25. Determine a specific set of values for a, b, and c so that
the following matrix is nonsingular.


 a b c

8 3b 4
3 4b 1






26. Computer Laboratory Activity: After using Maple to
explore different examples, complete the following
sentences:

(a) The determinant of an elementary matrix that comes
from swapping rows is ______________________.

(b) The determinant of an elementary matrix that comes
from multiplying a row by a constant is __________.

(c) The determinant of an elementary matrix that comes
from multiplying a row by a constant and then
adding it to another row is ____________________.

(d) Use your answers to justify Eqs. 4.9.8, 4.9.9, and
4.9.10.

Use Excel to solve

27. Problem 9

28. Problem 10

29. Problem 11

30. Problem 12

31. Problem 13

32. Problem 14

33. Problem 15

34. Problem 16
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4.9.3 The Adjoint
We are now in a position to define a matrix closely related to A−1. The adjoint matrix A+ is the
transpose of the matrix obtained from the square matrix A by replacing each element ai j of A
with its cofactor Ai j . It is displayed as

A+ =




A11 A21 · · · An1

A12 A22 · · · An2
...

A1n A2n · · · Ann


 (4.9.18)

Note that the cofactor Ai j occupies the position of aji , not the position of ai j .
One can now establish the relationship

AA+ = A+A = |A| I (4.9.19)

(The proof is left to the reader; see Problem 16.) Hence, if A−1 exists, we have the result

A−1 = A+

|A| (4.9.20)

This formula for A−1 is not convenient for computation, since it requires producing n2 determi-
nants of (n − 1) × (n − 1) matrices to find |A|.

Equation 4.9.20 does, however, lead to the well-known Cramer’s rule: Suppose that A is
n × n and

A = [A∗1, A∗2, . . . , A∗n], x =




x1

x2
...

xn


 , r =




r1

r2
...

rn


 (4.9.21)

then the system

Ax = r (4.9.22)
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has solution

x1 = |[r, A∗2, . . . , A∗n]|
|A| , x2 = |[A∗1, r, A∗3, . . . , A∗n]|

|A| , . . . , xn = |[A∗1, A∗2, . . . , r]|
|A|

(4.9.23)

The proof follows: Let A1 = [r, A∗2, . . . , A∗n]. Expand |A1| by cofactors of the first column.
This results in

|A1| = r1 A11 + r2 A21 + · · · + rn An1 (4.9.24)

Now, consider the first component of

x = A−1r = A+r
|A| (4.9.25)

The first component is

x1 = r1 A11 + r2 A21 + · · · + rn An1

|A| (4.9.26)

The argument is essentially the same for each component of x.
The adjoint may be calculated in Maple with adjoint(A).

Problems

Find the adjoint matrix A+ and the inverse matrix A−1 (if one
exists) if A is given by

1.
[

1 −1
1 1

]

2.
[

2 6
1 3

]

3.
[

2 0
0 1

]

4.
[

1 2
0 0

]

5.
[−3 5

−2 6

]

6.

 1 0 2

2 1 1
1 1 1




7.

 1 2 2

1 1 2
1 −2 2




8.

 3 1 2

−1 2 1
0 1 1




9.



0 1 1 0
0 0 1 1
1 0 1 1
1 1 1 1






Solve each system of linear, algebraic equations by Cramer’s
rule.

10. x − y = 6

x + y = 0

11. x − 2y = 4

2x + y = 3

12. 3x + 4y = 7

2x − 5y = 2

13. 3x + 2y − 6z = 0

x − y + z = 4

y + z = 3

14. x − 3y + z = −2

x − 3y − z = 0

−3y + z = 0

15. x1 + x2 + x3 = 4

x1 − x2 − x3 = 2

x1 − 2x2 = 0

16. The following result, analogous to Eq. 4.9.1, may be
found in any text on linear algebra:

0 =
n∑

j=1

akj Ai j =
n∑

j=1

ajk Aji if k �= i

Now use Eq. 4.9.1 and this result to establish

A+A = AA+ = |A|I
17. Use the result of Problem 16 to prove that A−1 exists if

and only if |A| �= 0.

Use Maple to solve

18. Problem 1

19. Problem 2

20. Problem 3

21. Problem 4

22. Problem 5

23. Problem 6

24. Problem 7

25. Problem 8

26. Problem 9
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In Chapter 1 we saw the importance of the linear independence of a set of solutions of a differ-
ential equation. The central idea was that a sufficiently large set of independent solutions enabled
us to solve any initial-value problem. An analogous situation exists for the theory of systems of
algebraic equations. We explore this idea in detail in this section.

Suppose that vector y is defined by the sum

y = a1x1 + a2x2 + · · · + akxk, k ≥ 1 (4.10.1)

Then y is a linear combination of {x1, x2, . . . , xk}. The scalars a1, a2, . . . , ak may be real or
complex numbers. If all the scalars are zero, then Eq. 4.10.1 is called trivial and, of course,
y = 0. On the other hand, y may be the zero vector without all the scalars zero as seen in the
sum, 0T = 2[1, 1] − [2, 2]. When a linear combination is the zero vector without all the scalars
being zero, we call the combination nontrivial.

A set of vectors {x1, x2, . . . , xn} is linearly dependent if 0 is a nontrivial combination of
vectors from this set:

0 = a1x1 + a2x2 + · · · + akxk, k ≥ 1 (4.10.2)

where at least one scalar is not zero. If the given vectors are not linearly independent, they are
linearly dependent. It then follows that if {x1, x2, . . . , xk} is linearly independent and

0 = a1x1 + a2x2 + · · · + akxk (4.10.3)

then
a1 = a2 = · · · = ak = 0 (4.10.4)

4.10 LINEAR INDEPENDENCE
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EXAMPLE 4.10.1

Demonstrate the linear dependence of the following vectors:

(a) [1, 1, 0]T , [−1, 1, 0]T , [0, 1, 0]T

(b) 0, x1, x2, x3

(c) x1, x2 − x1, 2x1 + x2

� Solution

First of all, for the vectors of part (a), we attempt to select the scalar coefficients such that zero results on the
right-hand side. Hence,


 1

1
0


 +


−1

1
0


 − 2


 0

1
0


 =


 0

0
0




Next,

10 + 0x1 + 0x2 + 0x3 = 0

and

3x1 + (x2 − x1) − (2x1 + x2) = 0

The above shows the dependence of the vectors given in parts (a), (b), and (c), respectively.

Show that [1,1, 0, 1], [1, 0, 0, 1], [1, −1, 0, 1], and [0, 0, 1, 0] is a linearly dependent set by finding the
scalars so that Eq. 4.10.2 holds.

� Solution

We apply elementary row operations to the matrix




1 1 0 1 x1

1 0 0 1 x2

1 −1 0 1 x3

0 0 1 0 x4




EXAMPLE 4.10.2
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The point illustrated by this example is that there is a simple algorithm to detect whether a set
is linearly dependent and, if linearly dependent, evaluate the scalars in the dependency relation-
ship 4.10.2.

The special case in which we have n vectors x1, x2, . . . , xn , each with n entries, leads to a
determinant test. Set

X =




xT
1

xT
2
...

xT
n




n×n

(4.10.5)

Using an arrow diagram

X −→ · · · −→ U (4.10.6)

where U is the RREF of X and is upper triangular. By Theorem 4.5, U is either I or has a row of
zeros. Using the properties of a determinant, we know that

|X| = k|U|, k �= 0 (4.10.7)

The rows of this matrix are the given row vectors, while the last column is simply used to keep track of the
various row operations used in the reduction. Note, for instance, that the last column of the matrix




1 1 0 1 x1

0 −1 0 0 x2 − x1

0 −2 0 0 x3 − x1

0 0 1 0 x4




exhibits the row operations used. Continuing, we obtain




1 1 0 1 x1

0 −1 0 0 x2 − x1

0 0 0 0 x3 − x1 − 2(x2 − x1)

0 0 1 0 x4




The third row shows that

[ 0, 0, 0, 0 ] = x3 − x1 − 2(x2 − x1)

or, more neatly,

x1 − 2x2 + x3 = 0

which is the required nontrivial sum.

EXAMPLE 4.10.2 (Continued)
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If U has a row of zeros, |U| = 0, which implies that |X| = 0. If |X| = 0, then U must have a row
of zeros since U cannot be I. Thus, we have the following theorem.

Theorem 4.7: If X is a square matrix,

|X| = 0 (4.10.8)

if and only if the columns of X form a linearly dependent set.

Find those numbers t for which [1 − t, 0, 0], [1, 1 − t, 0], and [1, 1, 1 − t] are linearly dependent.

� Solution

Consider the matrix

A =

 1 − t 0 0

1 1 − t 0
1 1 1 − t




Then

|A| = (1 − t)3 = 0

if and only if

t = 1

EXAMPLE 4.10.3

Show that the n vectors

e1 =




1
0
...

0


 , e2 =




0
1
...

0


 , . . . , en =




0
0
...

1




are linearly independent.

EXAMPLE 4.10.4
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4.10.1 Maple Applications
Keep in mind that Maple is a “computer algebra system,” meaning it can complete calculations
on variables and not just numbers. Thus, it is ideal to solve problems such as that of Example
4.10.2. Here is how it would work:

>A:=matrix(4, 5, [1, 1, 0, 1, x1, 1, 0, 0, 1, x2, 1, -1, 0, 1,
x3, 0, 0, 1, 0, x4]);

A :=



1 1 0 1 x1
1 0 0 1 x2
1 −1 0 1 x3
0 0 1 0 x4




>A1:=addrow(A, 1, 2, -1): A2:=addrow(A1, 1, 3, -1):
A3:=addrow(A2, 2, 3, -2);

A3 :=



1 1 0 1 x1
0 −1 0 0 x2 − x1
0 0 0 0 x3 + x1 − 2x2
0 0 1 0 x4




Another approach is to use this command:

>gausselim(A);



1 1 0 1 x1
0 −1 0 0 x2 − x1
0 0 1 0 x4
0 0 0 0 x3 + x1 − 2x2




In either case, we conclude that x3 + x1 − 2x2 = 0.

� Solution

The appropriate matrix is I. We know that

|I| = 1

so that the given vectors are linearly independent by Theorem 4.7.

EXAMPLE 4.10.4 (Continued)
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Problems

Which of the following sequences of row vectors are linearly
dependent?

1. [1, 0, 1], [1, 1, −1], [−1, 1, −3]

2. [1, 1, 0, 1], [−1, 2, 0, 0], [0, 0, 1, 0], [1, −1, −1, 1]

3. [−1, 0, 0, 1], [2, −1, 1, 1], [0, −1, 1, 3]

4. Find k so that [k, 0, 1], [1, k, −1], [−1, 1, k] are linearly
dependent.

5. If x1, x2, x3, x4 is a linearly independent sequence, is the
sequence x1, x2, x3 linearly independent? Why?
Generalize.

6. If x1, x2, x3, x4 is a linearly dependent sequence, is the
sequence x1, x2, x3, linearly dependent? Explain.

For each sequence of linearly dependent row vectors, express
0 as a nontrivial linear combination.

7. Problem 1

8. Problem 3

9. [−1, 2, 0, 0], [1, 2, −1, 0], [1, 1, 0, 1], [1, 5, −1, 1]

10. [1, 1, 0, 1], [1, 0, 0, 1], [0, 0, 1, 0], [1, −1, 0, 1]

11. A sequence consisting of a single vector, x �= 0, is lin-
early independent. Why?

12. Give a linearly dependent sequence of at least two vec-
tors, none of which is zero, such that

0 = a1x1 + a2x2 + · · · + akxk

is nontrivial. Prove that at least two of the scalars are not
zero.

13. Use Maple to solve the following: Call the vectors in
Problem 1 x1, x2, and x3. Let x4 = [a, b, c, d]. Determine
constants a, b, c, d so that the equation
a1x1 + a2x2 + a3x3 = x4 has no solutions for a1, a2, and
a3.

Use Maple to solve

14. Problem 1

15. Problem 2

16. Problem 3

17. Problem 4

18. Problem 9

19. Problem 10

We return to the solution of m equations in n unknowns represented by

Ax = r (4.11.1)

In this section we assume that r = 0 and call

Ax = 0 (4.11.2)

homogeneous. Every homogeneous system is consistent because A0 = 0 shows that Eq. 4.11.2
always has the trivial solution x = 0. Our interest, therefore, centers on those matrices A, for
which Ax = 0 has nontrivial solutions. If Eq. 4.11.2 has the solution x = x1 �= 0, then

A(cx1) = cAx1 = c0 = 0 (4.11.3)

shows that cx1 is a solution for every choice of the scalar c. Thus, if Ax = 0 has even one non-
trivial solution, it has infinitely many solutions.
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Suppose that A is m × n. We say that A has full rank if rank A = n. The following matrices
in (a) have full rank; those in (b) do not:

(a)


 1 0 0

0 1 0
0 0 1


 ,




1 0
0 1
∗ ∗
...

∗ ∗


 (b)




1 ∗ 0
0 0 1
0 0 0
...

0 0 0


 ,

[
1 0 ∗ · · · ∗
0 1 ∗ · · · ∗

]

The critical difference between the cases in which Ax = 0 has the unique, trivial solution
x = 0 and the cases in which Ax = 0 has infinitely many solutions is most easily seen by study-
ing an example. We choose A in RREF but not with full rank. We shall discover that it is pre-
cisely when A does not have full rank that Ax = 0 has nontrivial solutions.

Let

A =




1 2 0 −1 −2
0 0 1 1 1
0 0 0 0 0
0 0 0 0 0


 (4.11.4)

Then, Ax = 0 represents

x1 + 2x2 − x4 − 2x5 = 0

x3 + x4 + x5 = 0

0 = 0

0 = 0

(4.11.5)

The coefficients of the unknowns xi are the entries in the ith column of A. For instance, x5 has
the coefficients −2, 1, 0, 0, in Eq. 4.11.5, the entries in column 5 of A. The unknowns whose co-
efficients are the entries in a leading column are basic variables; the remaining unknowns are
free variables. In the system 4.11.5, x1 and x3 are basic and x2, x4, x5 are free. Since, in RREF,
each basic variable appears in one and only one equation, each choice of free variables leads to
a unique determination of the basic variables, and therefore to a unique solution. We distinguish
basic solutions of Ax = 0 by the following definition:

A basic solution is one in which a single free variable is assigned the value one and the
remaining free variables (if any) are set to zero.

For the A in Eq. 4.11.4 we obtain three basic solutions corresponding to the three free
variables:

Solution 1. Set x2 = 1, x4 = x5 = 0. Then

x1 =




−2
1
0
0
0



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Solution 2. Set x4 = 1, x2 = x5 = 0. Then

x2 =




1
0

−1
1
0




Solution 3. Set x5 = 1, x2 = x4 = 0. Then

x3 =




2
0

−1
0
1




We call the set of all basic solutions a basic set of solutions. A basic set of solutions is a linearly
independent set. To see why this is the case, consider

c1x1 + c2x2 + c3x3 = c1




∗
1
∗
0
0


 + c2




∗
0
∗
1
0


 + c3




∗
0
∗
0
1


 = 0 (4.11.6)

where the basic variables are ignored. Equation 4.11.6 clearly shows that c1 = c2 = c3 = 0. In
the general case, assuming for convenience that the free variables are the last k variables,

c1




∗
...

∗
1
0
0
...

0




+ c2




∗
...

∗
0
1
0
...

0




+ · · · + ck




∗
...

∗
0
0
0
...

1




= 0 (4.11.7)

implies that c1 = c2 = · · · = ck = 0.
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Find the basic set of solutions of


 1 1 1 1

1 −1 −1 1
2 0 0 1


 x = 0

EXAMPLE 4.11.1
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� Solution

We must first reduce A to its RREF:
 1 1 1 1

1 −1 −1 1
2 0 0 1


 −→


 1 1 1 1

0 −2 −2 0
2 0 0 2


 −→


 1 1 1 1

0 1 1 0
2 0 0 2




−→

 1 1 1 1

0 1 1 0
0 −2 −2 0


 −→


 1 1 1 1

0 1 1 0
0 0 0 0


 −→


 1 0 0 1

0 1 1 0
0 0 0 0




Since the first two columns are the leading columns, the variables x1 and x2 are basic and x3 and x4 are free.
There are, therefore, two basic solutions. The equations are

x1 + x4 = 0

x2 + x3 = 0

So set x3 = 1, x4 = 0 and obtain

x1 =




0
−1

1
0




So set x4 = 1, x3 = 0 and obtain

x2 =




−1
0
0
1




Note the placement of the zeros and the ones among the free variables:


∗
∗
1
0


 ,




∗
∗
0
1




EXAMPLE 4.11.1 (Continued)

Theorem 4.8: The homogeneous system Ax = 0 has the unique solution x = 0 if and only
if A has full rank.

Proof: Suppose that A is m × n and A has full rank. Then rank A = n and the RREF of A,
written AR = U, is either

U = In or U =
[

In

O

]
(4.11.8)



In either case Ux = 0 implies that x = 0. Hence, Ax = 0 implies that x = 0 when A has full
rank. Conversely, suppose that rank A = r < n. Then at least one variable is free and there is a
basic solution. But basic solutions are never trivial, so if Ax = 0 has only the trivial solution,
then rank A = n.

For square matrices, full rank is equivalent to the following:

1. A−1 exists.
2. |A| �= 0.
3. The rows or columns of A are linearly independent.

Let x1, x2, . . . , xk be the basic set of solutions of Ax = 0. Then

xh = c1x1 + c2x2 + · · · + ckxk (4.11.9)

is a general solution. It is understood that Eq. 4.11.9 represents a family of solutions, one for
each choice of the k scalars, c1, c2, . . . , ck . To warrant the name “general solution,” we need to
show two things: First, that xh is a solution; but this is trivial, for

Axh = A
k∑

i=1

ci xi

=
k∑

i=1

ci Axi = 0 (4.11.10)

since for each i, Axi = 0. Second, that for each solution x0, there is a choice of constants such
that

x0 =
k∑

i=1

ci xi (4.11.11)

The argument for the second point is more subtle. Let’s examine the argument for a particular
example.
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Show that

x0 =




−1
−2

2
1




is a solution of the system in Example 4.11.1 and find c1, c2 so that

x0 = c1x1 + c2x2

EXAMPLE 4.11.2



In general, suppose that the variables xn−k+1, xn−k+2, . . . , xn are free—these are the last k
variables in x. Let x0 be a solution of Ax = 0. Say that

x0 =




∗
...

∗
α1

α2
...

αk




(4.11.12)

Then

x0 =




∗
...

∗
α1

α2
...

αk




= c1




∗
...

∗
1
0
...

0




+ c2




∗
...

∗
0
1
...

0




+ · · · + ck




∗
...

∗
0
0
...

1




(4.11.13)

Thus, c1 = α1, c2 = α2, . . . , ck = αk and the basic variables take care of themselves.

264 � CHAPTER 4  / THE THEORY OF MATRICES

� Solution

First,


 1 1 1 1

1 −1 −1 1
−2 0 0 2







−1
−2

2
1


 =


 0

0
0




Second, to find c1 and c2 we use the following:




−1
−2

2
1


 = c1




∗
∗
1
0


 + c2




∗
∗
0
1




Clearly, c1 = 2 and c2 = 1 and these are the only choices. Once c1 and c2 are fixed, the free variables are de-
termined; namely, x3 = c1 and x4 = c2. When the free variables are fixed, the solution is defined.

EXAMPLE 4.11.2 (Continued)



Thus, for Ax = 0, we have the following principle: The general solution is a family of solu-
tions containing every solution of Ax = 0. In the event that A has full rank, the general solution
is a set with a single member, x = 0.

Although we do not make explicit use of the fact, in some more complete accounts, attention
is paid to the number of basic solutions. This number is the nullity of A, written η(A), and
abbreviated by η. Since η is exactly the number of free columns, and r (the rank of A) is the
number of leading columns,

η + r = n (4.11.14)

where A is m × n; or

η(A) + rank A = number of columns of A (4.11.15)
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Problems

In the following problems, A is a square matrix.

1. Prove: A−1 exists if and only if A has full rank.

2. Prove: |A| �= 0 if and only if A has full rank.

3. Prove: The rows (or columns) of A are a linearly inde-
pendent set if and only if A has full rank.

4. Matrix multiplication is a linear operator. Show that this
is the case by explaining why

A(αx1 + βx2) = αAx1 + βAx2

5. Use the result of Problem 4 to establish this theorem: if
x1, x2, . . . , xn are solutions of Ax = 0, then so is every
linear combination of these solutions.

6. If A has full rank, explain why the number of rows is not
greater than the number of columns.

In each problem find a basic solution set, a general solution,
and verify Eq. 4.11.2.

7. x1 + x2 − x3 + x4 = 0

8. x1 − x2 + x3 + x4 = 0

x4 = 0

9. x1 − x2 + x3 + x4 = 0

x3 − 2x4 = 0

10. x1 = x2 = x3 = 0

11. x1 + x2 = 0

x1 − x2 = 0

12. x1 + x2 + x3 = 0

x2 + x3 = 0

13. x1 − x2 + x3 = 0

x1 + 2x2 − x3 = 0

14. x1 = 0

x1 + x2 + x3 = 0

15. x1 + x2 − x3 = 0

3x1 + 4x2 − x3 = 0

x1 + 2x2 + x3 = 0

16. [1, 1, . . . , 1]x = 0

17. Jx = 0, where J is an n × n matrix of all 1’s.

18. uuT x = 0, u �= 0

19. uT ux = 0

20. uT vx = 0, uT v �= 0

21. uvT x = 0, u �= 0, v �= 0

22. If A−1 exists, explain why A has no free variables. Use
Eq. 4.11.2.

Use Maple to solve

23. Problem 7

24. Problem 8

25. Problem 9

26. Problem 10



27. Problem 11

28. Problem 12

29. Problem 13

30. Problem 14

31. Problem 15

32. Computer Laboratory Activity: One type of matrix that
has full rank is a trigonometric matrix that arises from
sampling the sine and cosine functions. These matrices
are made up of N linearly independent columns, where N
is a power of 2. For N = 4, we create the columns by
sampling these functions:

sin

(
2π j

4

)
, j = 0, 1, 2, 3

cos

(
0

2π j

4

)
, j = 0, 1, 2, 3

cos

(
1

2π j

4

)
, j = 0, 1, 2, 3

cos

(
2

2π j

4

)
, j = 0, 1, 2, 3

(a) Create the trigonometric matrix for N = 4, and
demonstrate that it has full rank.

(b) Create the trigonometric matrix for N = 8, and
demonstrate that it has full rank.

(Hint: You will need 3 sine functions and 5 cosine func-
tions, and you will need to sample on eighths rather than
quarters.)
(c) Write code that will create the trigonometric matrix

for any N which is a power of 2.

33. Computer Laboratory Activity: A linear combination of
the columns of A is of the form c1a1+
c2a2 + c3a3 + · · · + cnan , where a1, a2, a3, . . . , an are
the vectors that make up the columns of A, and
c1, c2, c3, . . . , cn are any scalars. The column space of A
is the set of all linear combinations of the columns of A.
For this problem, let

A =


 4 1

6 −8
−1 3




(a) Create 10 different vectors that belong to the column
space of A.

(b) Determine a vector in R3 (the xyz space) that does
not belong to the column space of A. Use your an-
swer to write down a system of equations that has no
solution. Explain your results with a discussion of a
plane in R3.

(c) Solve Ax = 0, and determine the nullity and rank of
A. Explain the connection between your answers and
the column space of A.

The theory, associated with the solution of the nonhomogeneous system

Ax = r, r �= 0 (4.12.1)

parallels the corresponding theory associated with the solution of linear, nonhomogeneous dif-
ferential equations. We find a general solution, xh , of the associated homogeneous system

Ax = 0 (4.12.2)

and add to it a particular solution of Eq. 4.12.1. We must first take care of one minor difference
between these theories; system 4.12.1 may be inconsistent. We can check this by comparing the
ranks of A and [A

... r] (see Section 4.4). So assume that Eq. 4.12.1 is consistent and that xp is a
“particular” solution; that is,

Axp = r (4.12.3)

4.12 NONHOMOGENEOUS EQUATIONS

266 � CHAPTER 4  / THE THEORY OF MATRICES



4.12 NONHOMOGENEOUS EQUATIONS � 267

Let xh be the general solution of Ax = 0. Then,

A(xp + xh) = Axp + Axh = r + 0 = r (4.12.4)

So, as expected, the family {xh + xp} is a set of solutions. We must show that it contains all
solutions. This is surprisingly easy. Let x0 be any particular solution so that

Ax0 = r (4.12.5)

Now

A(x0 − xp) = Ax0 + Axp

= r − r = 0 (4.12.6)

Hence, x0 − xp is a solution of the associated homogeneous system. By the results of Section
4.11,

x0 − xp = c1x1 + c2x2 + · · · + ckxk (4.12.7)

and hence,

x0 = xp + (c1x1 + c2x2 + · · · + ckxk) (4.12.8)

That is, x0 is a member of {xp + xh}.
We conclude this section with an observation on constructing particular solutions. A funda-

mental solution of Ax = r is the solution obtained by setting all free variables of Ax equal to
zero.

Find the fundamental solution and the general solution of

x1 + x2 + x3 = 1,

2x1 + 2x2 + 2x3 = 2,

3x1 + 3x2 + 3x3 = 3

� Solution

We have


 1 1 1 1

2 2 2 2
3 3 3 3


 →


 1 1 1 1

0 0 0 0
0 0 0 0




EXAMPLE 4.12.1
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Find the fundamental solution of


1 2 0 −1 1 1 0 3
0 0 1 1 0 0 0 −1
0 0 0 0 0 0 1 2
0 0 0 0 0 0 0 0


 x =




3
−5

7
0




� Solution

Since the coefficient matrix is already in RREF, we can identify the free variables by inspection. They are x2,
x4, x5, x6, x8. We set these zero and see that x1 = 3, x3 = −5, x7 = 7. So

xp =




3
0

−5
0
0
0
7
0




is the fundamental solution.

EXAMPLE 4.12.2

Hence, x1 is a basic variable and x2, x3 are free. The associated homogeneous system, in RREF, is

x1 + x2 + x3 = 0

Thus, there are two basic solutions:

x1 =

−1

1
0


 , x2 =


−1

0
1




The fundamental solution is obtained by setting x2 = x3 = 0 in

x1 + x2 + x3 = 1

Therefore,

xp =

 1

0
0




The general solution is

x = xh + xp = c1


−1

1
0


 + c2


−1

0
1


 +


 1

0
0




EXAMPLE 4.12.1 (Continued)
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Problems

1. Find a general solution of the system in Example 4.12.2.

Find a particular solution of each system.

2. x + y + z = 1

x − y = 1

3. x − y = 1

4. x + y + z = −1

x − y − z = 0

2x = 0

5. x + y + z + t = 1

y + z + t = 1

z + t = 1

6. x − y + z − t = −1

x − y + 2z − t = 1

7. Find a general solution for each choice of b1 and b2 of

x + y + z = b1,

x − y = b2

Find a general solution for each system.

8. x1 + x2 − x3 + x4 = 1

9. x1 − x2 + x3 + x4 = 1

x4 = −1

10. x1 − x2 + x3 + x4 = 0

x3 − 2x4 = 2

11. x1 + x2 + x3 = −1

x2 + x3 = 0

12. x1 − x2 + x3 = 1

x1 + 2x2 − x3 = 1

13. x1 + x2 + x3 = 0

x1 = 1

14. Jx =




1
1
...

1


 (see Problem 17 in Section 4.11)

15. If x1 and x2 are solutions of Ax = b, show that x1 − x2 is
a solution of Ax = 0.

16. If x1, x2, . . . , xk are solutions of Ax = b, show that
α1x1 + α2x2 + · · · + αnxn is also a solution of Ax = b if
and only if α1 + α2 + · · · + αn = 1.

17. If A is nonsingular, explain why the general solution of
Ax = b is x0 = A−1b. Hint: Show that A−1b is a solu-
tion and the only solution.

Use Maple to solve

18. Problem 8

19. Problem 9

20. Problem 10

21. Problem 11

22. Problem 12

23. Problem 13

24. Determine numbers a, b, c so that the following equation
has no solution (x, y):

x


 3

−2
4


 + y


 1

9
−5


 =


 a

b
c




As an additional note: there are η = 5 basic solutions, so the general solution has the form

x = xp + c1x1 + c2x2 + c3x3 + c4x4 + c5x5

EXAMPLE 4.12.2 (Continued)



25. Create a 3 × 1 vector x. Is it true that there are coeffi-
cients a, b, and c so that x is equal to:

a


−2

0
3


 + b


 5

−1
5


 + c


−4

1
−4




Justify your answer.

26. Computer Laboratory Activity: Define:

A =


 4 1 −1

2 4 3
6 −2 −5


 , b =


 23

24
24




(a) If possible, express b as a linear combination of the
columns of A. Is b in the column space of A?

(b) Can we write every vector in R3 (the xyz space) as a
linear combination of the columns of A? What does
your answer have to do with the column space of A?

(c) Prove whether or not the columns of A are lin-
early independent, through an appropriate matrix
calculation.
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In this chapter we study two of the many important applications of the theory of matrices: the
method of “least squares” and the solution of systems of linear differential equations. To ac-
complish these aims we need to introduce the notions of length and direction and solve the so-
called eigenvalue problem.

Section 5.2 is essential to both problems; but the reader may skip Sections 5.3 and 5.4 if only
the solutions of systems of differential equations are of interest. If neither application is of inter-
est, one may still profit from a study of Sections 5.2, 5.5, and 5.6.

5.1.1 Maple and Excel Applications
As in Chapter 4, the linalg package in Maple will be used, along with the commands from
that chapter and Appendix C. New commands include: norm, linsolve, map, sum, arrow,
display, eigenvalues, eigenvectors, conjugate, and implicitplot. Both
dsolve and DEplot from the DEtools package are incorporated into this chapter.

The linalg package is loaded as follows:

>with (linalg):

Excel functions that will be utilized in this chapter are LINEST and LOGEST. Both are array
functions, and they need to be entered into a spreadsheet following the directions for TRANS-
POSE in Chapter 4.

The vector x =
[

x1

x2

]
is represented geometrically as the directed line segment from O: (0, 0)

to P: (x1, x2). The length of x is the length of this line segment; that is,

length of x =
√

x2
1 + x2

2 (5.2.1)

In n dimensions the norm of x, written ‖x‖, is defined as

‖x‖ =
(

n∑
k=1

x2
k

)1/2

(5.2.2)

5.2 NORMS AND INNER PRODUCTS

5.1 INTRODUCTION
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where x is the n-dimensional vector

x =




x1

x2
...

xn


 (5.2.3)

Thus, the norm of x is a generalization to n dimensions of the two-dimensional notion of length.
In one dimension ‖x‖ = abs(x1), the absolute value of x1. In three dimensions ‖x‖ is the length
of the directed line segment form O: (0, 0, 0) to P: (x1, x2, x3); see Fig. 5.1.

There are three immediate consequences of the definition of norm. For all x and each scalar k:

(i) ‖x‖ ≥ 0
(ii) ‖x‖ = 0 if and only if x = 0 (5.2.4)

(iii) ‖kx‖ = abs (k) ‖x‖
Property (iii) is proved as follows; by definition we have

‖kx‖2 =
n∑

i=1

(kxi )
2

= k2
n∑

i=1

x2
i = k2 ‖x‖2 (5.2.5)

Since 
√

k2 = abs (k), (iii) is proved.
A concept closely related to the norm of x is the inner product of x and y, written 〈x, y〉;

that is,

〈x, y〉 =
n∑

i=1

xi yi (5.2.6)

Like the norm, 〈x, y〉 is a scalar. A common alternative notation for the inner product is x · y,
which is read “the dot product of x and y,” or simply “x dot y.” So

〈x, y〉 = x · y (5.2.7)

An extremely useful observation results from the identity

xT y = [x · y]1×1 (5.2.8)
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x1

x3
P: (x1, x2, x3)

x2

x

Figure 5.1 A vector in three
dimensions.



We usually drop the brackets around x · y and write Eq. 5.2.8 in the technically incorrect way

xT y = x · y = 〈x, y〉 (5.2.9)

Normally, no confusion results from this notational abuse. It is easy to prove the following:

(i) ‖x‖2 = 〈x, x〉 = xT x
(ii) 〈x, y〉 = 〈y, x〉

(iii) 〈kx, y〉 = 〈x, ky〉 = k 〈x, y〉 (5.2.10)

(iv) 〈x + y, z〉 = 〈x, z〉 + 〈y, z〉
We illustrate the proofs by writing out the details that establish (iv). We have

〈x + y, z〉 = (x + y)T z

= (xT + yT )z

= xT z + yT z = 〈x, z〉 + 〈y, z〉 (5.2.11)

Properties (i) and (ii) lead to the deeper result which we now state as a theorem.

Theorem 5.1: If A has full rank, where A is m × n, then AT A is invertible.

Proof: Although A need not be square, AT A is n × n and it is sensible to ask whether AT A is
singular or not. Now AT A is invertible if and only if AT Ax = 0 has only the trivial solution
x = 0. So, by way of contradiction, suppose that

AT Ax0 = 0, x0 �= 0 (5.2.12)

Then, multiplying on the left by x0, we obtain

xT
0 AT Ax0 = xT

0 0 = 0 (5.2.13)

However, xT
0 AT Ax0 = (Ax0)

T Ax0 = ‖Ax0‖2 by (i) of Eqs. 5.2.10. Thus Eq. 5.2.13 asserts

‖Ax0‖2 = 0 (5.2.14)

which, by property (ii) of Eqs. 5.2.4, asserts that Ax0 = 0. But A has full rank. Hence, Ax0 = 0
implies that x0 = 0, contradicting Eq. 5.2.12. Therefore, AT A is invertible.

Another interesting consequence of Eq. 5.2.9 is

〈Ax, y〉 = 〈x, AT y〉 (5.2.15)

For, by Eq. 5.2.7,

〈Ax, y〉 = (Ax)T y

= xT AT y = 〈x, AT y〉 (5.2.16)

Just as norm generalizes length, inner product generalizes direction. For, let x and y be the
vectors

x =
[

x1

x2

]
, y =

[
y1

y2

]
(5.2.17)
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and let P: (x1, x2), Q: (y1, y2) denote the points at the ends of x and y, respectively (see Fig. 5.2).
The side L in the triangle QOP of Fig. 5.2 has length equal to the norm of y − x. So, by the law
of cosines,

‖y − x‖2 = ‖x‖2 + ‖y‖2 − 2 ‖x‖ ‖y‖ cos θ (5.2.18)

However,

‖y − x‖2 = 〈y − x, y − x〉
= 〈y, y〉 + 〈−x, y〉 + 〈y,−x〉 + 〈−x,−x〉
= ‖y‖2 − 2〈x, y〉 + ‖x‖2 (5.2.19)

Comparing this expression for ‖y − x‖2 to the one given in Eq. 5.2.18, we deduce that

〈x, y〉 = ‖x‖ ‖y‖ cos θ (5.2.20)

Although this equation was derived assuming x and y to be two-dimensional vectors, it is triv-
ially true if x and y are one-dimensional, and easy to prove if they are three-dimensional. For
n > 3, we use Eq. 5.2.20 to define the cosine of the angle between x and y. Moreover, if x is per-
pendicular to y, cos θ = 0 and hence 〈x, y〉 = 0. This motivates the definition of “orthogonal-
ity” in n-dimensions. We say that x is orthogonal to y and write x ⊥ y if 〈x, y〉 = 0 and hence,
the zero vector is orthogonal to all vectors. It is the only such vector, for if x is orthogonal to
every vector it is orthogonal to itself and hence 〈x, x〉 = 0; but 〈x, x〉 = ‖x‖2 and therefore
x = 0.

Since abs (cos θ) < 1, Eq. 5.2.20 suggests1 the inequality

abs 〈x, y〉 ≤ ‖x‖ ‖y‖ (5.2.21)

called the Cauchy–Schwarz inequality.
A theorem that is familiar to us all is the Pythagorean theorem. It states that

‖x + y‖2 = ‖x‖2 + ‖y‖2 (5.2.22)

if and only if x ⊥ y. An example will contain its proof.
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O

x

y
L

Q: (y1, y2)

P: (x1, x2)

�

Figure 5.2 A triangle with sides x, y, and L.

1A simple proof, valid for n-dimensions, is outlined in Problem 29 of this section.
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EXAMPLE 5.2.1

Prove the Pythagorean theorem.

� Solution

Since

‖x + y‖2 = 〈x + y, x + y〉
= 〈x, x〉 + 2 〈x, y〉 + 〈y, y〉
= ‖x‖2 + 2 〈x, y〉 + ‖y‖2

Eq. 5.2.22 follows if and only if 〈x, y〉 = 0, and hence x ⊥ y.

EXAMPLE 5.2.2

Compute the norms of

x =




1
1

−1
2


 , y =




3
−1

0
−1




Verify that x ⊥ y and that Eq. 5.2.22 holds.

� Solution

We compute

‖x‖2 = 1 + 1 + 1 + 4 = 7

‖y‖2 = 9 + 1 + 0 + 1 = 11

‖x + y‖2 = 16 + 0 + 1 + 1 = 18

Thus, ‖x + y‖2 = ‖x‖2 + ‖y‖2 . Also, 〈x, y〉 = 3 − 1 + 0 − 2 = 0

EXAMPLE 5.2.3

For every pair of nonzero scalars α and β , αx ⊥βy if and only if x ⊥ y.

� Solution

We have

〈αx, βy〉 = αβ 〈x, y〉
from which the conclusion follows.



5.2.1 Maple and MATLAB Applications
In Maple, there are two versions of the norm command. If the linalg package is not loaded,
then norm will compute the norm of a polynomial, which is not required here. With the pack-
age, the norm command will compute the norm of a vector. For example:

>x:= matrix(5, 1, [1, 2, 3, 4, 5]);

x :=



1
2
3
4
5




>norm(x, 2);

√
55

It is necessary to include the “2” in the command because there are actually several different
norms of a vector, including a “1 norm” and an “infinity norm.” The norm of Eq. 5.2.2 is the
“2 norm.”
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EXAMPLE 5.2.4

The triangle equality: Show that the third side of a triangle has shorter length than the sum of the lengths of
the other two sides, as shown.

� Solution

If x and y are two sides of a triangle, x + y is the third side. But

‖x + y‖2 = ‖x‖2 + ‖y‖2 + 2 〈x, y〉
≤ ‖x‖2 + ‖y‖2 + 2 ‖x‖ ‖y‖
= (‖x‖ + ‖y‖)2

by the Cauchy–Schwarz inequality. Hence,

‖x + y‖ ≤ ‖x‖ + ‖y‖

and this is the required inequality.

y

x

x � y

(parallel to y)



As the dot product is a special case of matrix multiplication, the multiply command in
Maple can be used to calculate it:

>x:=matrix(5, 1, [1, 2, 3, 4, 5]); y:=matrix(5, 1, [-2, 3, 2,
5, 4]);

x :=



1
2
3
4
5


 y:=




−2
3
2
5
4




>multiply(transpose(x), y) [1, 1];

50

Note that the [1, 1] is necessary in order to convert the 1 × 1 matrix to a scalar.
If x and y are column vectors of the same size then dot (x, y) in MATLAB returns the dot (or

scalar product) of x and y. The command norm (x) returns the length of x. MATLAB is some-
what more generous than we have just mentioned. MATLAB permits either x or y to be a row or
a column.
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Problems

1. Verify (i) and (ii) in properties 5.2.4.

2. Verify (i)–(iii) in properties 5.2.10.

3. Show that ‖y − x‖2 = ‖y‖2 + ‖x‖ − 2 〈x, y〉 by using
definitions 5.2.2 and 5.2.6.

4. Prove the Cauchy–Schwarz inequality 5.2.21 from the
definitions 5.2.2 and 5.2.6 when x and y have only two
components.

Find the norm.

5.

 1

−1
1




6. 0
7.




1
1
...

1




8. ek

9.

 1/

√
3

−1/
√

3√
3/3




Find the inner product.

10.

 1

−1
1


 ,


 0

1
1




11.
〈[

cos θ

sin θ

]
,

[− sin θ

cos θ

]〉

12. 〈ei , ej 〉i �= j

13. 〈ei , ei 〉
14. 〈x, x〉

15.
〈[

cos θ

sin θ

]
,

[
cos θ

sin θ

]〉

16. 〈0, x〉
17. 〈ei , x〉
18.

〈[√
y√
x

]
,

[√
x√
y

]〉



19. Apply the Cauchy–Schwarz inequality to

〈[√
y√
x

]
,[ √

x√
y

]〉
and thereby deduce that

√
xy ≤ x + y

2
, 0 ≤ x, 0 ≤ y

20. If x ⊥ y and y ⊥ z, does it follow that x ⊥ z? Explain.

21. If x ⊥ y and y ⊥ z, is y ⊥ z? Explain.

22. If x ⊥ y and x ⊥ z, is x ⊥ (y + z)? Explain.

23. Find α so that (b − αu)⊥ u.

24. Suppose that ‖u‖ = 1. Show that (uuT )2 = uuT .

25. Show that every solution of Ax = b is orthogonal to
every solution of yT A = 0T .

26. Suppose that b = ∑
ai xi and u ⊥ xi for each i. Show

that u ⊥ b. Suppose that x is not a multiple of y.

27. Show that for each real λ,

‖x + λy‖2 = ‖x‖2 + 2λ〈x, y〉 + λ2 ‖y‖2

28. Set a = ‖y‖2, b = 〈x, y〉, c = ‖x‖2 and using Problem
27 explain why aλ2 + 2bλ + c never vanishes (as a func-
tion of λ), or is identically zero.

29. Conclude from No. 28 that b2 − ac < 0 and thus prove
the Cauchy–Schwarz inequality (Eq. 5.2.21), if x is not a
multiple of y.

30. Verify that Eq. 5.2.21 is an equality if x = ky.

Use Maple to solve

31. Problem 9

32. Problem 10

33. Problem 11

34. Problem 15

35. Problem 18

36. Computer Laboratory Activity: As indicated in Eq.
5.2.10, the square of the norm of a vector is simply the
dot product of a vector with itself, and Fig. 5.1 demon-
strates how the norm of a vector can be thought of as its
length. The unit circle is the set of points of length 1 from
the origin. In this activity, we will explore how the unit
circle changes, if the inner product changes.

If A = I2, and all vectors have dimension 2, then
x · y = xT Ay. In Maple, we can implement this idea by

>A:=diag(1,1);

A :=
[
1 0

0 1

]
>dp:=(x, y)->
multiply(transpose(x), A, y):

The dp function will now calculate the dot product for
us. For example,

>dp([1, 2], [3, 4]);

11

For the unit circle, we want to know, for a generic vector
x = [u, v]T , when is x · x = 1? In Maple, we can use the
implicitplot command in the plots package to
get a picture:

>with(plots):

>implicitplot(dp([u,v],[u,v])=1,
u=-2..2, v=-2..2, 
scaling=constrained);

The second command will create a graph of a circle
with radius 1. (Note the syntax of this command: First,
there is an equation to graph, followed by ranges for the
two variables, and finally a scaling option so that the
two axes are drawn with the same scale.)

(a) Determine the unit circle in the case where

A =
[

1 0
0 3

]
(b) Determine the unit circle in the case where 

A =
[

1 −1
0 3

]
(c) What happens in the situation where A is singular?

(d) For each of the three problems above, use the defini-
tion of the inner product to find the equation of the
unit circle.

Use MATLAB to solve

37. Problem 10

38. Problem 11

39. Problem 15

40. Problem 18
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The set {x1, x2, . . . , xk} is orthogonal if the vectors are mutually orthogonal; that is, for each i
and j,

xi ⊥ xj , i �= j. (5.3.1)

5.3 ORTHOGONAL SETS AND MATRICES



An orthonormal set, {q1, q2, . . . , qk} is an orthogonal set in which each vector has norm one. So
{q1, q2, . . . qk} is orthonormal if 

〈qi , qj 〉 = qi · qj = δi j (5.3.2)

where δi j is the Kronecker delta: δi j = 0 if i �= j and δi j = 1 if i = j . The unit vectors ei ,
e2, . . . , ek in the directions of x1, x2, . . . , xk , respectively, are the most natural orthonormal set.

The pair

x =

 1

1
1


 , y =


 1

0
−1


 (5.3.3)

form an orthogonal, but not orthonormal, set. If each of these vectors is divided by length, the re-
sulting pair does form an orthonormal set. In that case,

x
‖x‖ = 1√

3


 1

1
1


 ,

y
‖y‖ = 1√

2


 1

0
−1


 (5.3.4)

since ‖x‖2 = 3 and ‖y‖2 = 2. This modest example illustrates a general principle:
If {v1, v2, . . . , vk}, is an orthogonal set of nonzero vectors, then the set {q1, q2, . . . , qk}, where
qi = vi/ ‖vi‖, is an orthonormal set.

Let Q be a square matrix whose columns form an orthonormal set. By the definitions of or-
thogonality and matrix multiplication,

QQT = QT Q = I (5.3.5)

and hence Q is nonsingular and QT = Q−1. Such matrices are called orthogonal2. Orthogonal
matrices have many interesting properties. Some are illustrated in the examples, and others are
included in the Problems.
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2A more appropriate name would have been orthonormal.

EXAMPLE 5.3.1

Show that

Q =
[

cos θ − sin θ

sin θ cos θ

]
is an orthogonal matrix for all θ .

� Solution

Clearly, we can write

QQT =
[

cos θ − sin θ

sin θ cos θ

] [
cos θ sin θ

− sin θ cos θ

]
= I

Similarly,

QT Q = I

Thus, Q is orthogonal.
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EXAMPLE 5.3.2

If Q is orthogonal, show that |Q| = ±1.

� Solution

From Eq. 5.3.5 we have

|QQT | = |I| = 1

But

|QQT | = |Q||QT | = |Q|2

since

|QT | = |Q|
Therefore,

|Q|2 = 1 and |Q| = ±1

EXAMPLE 5.3.3

For each x and y show that

〈Qx, Qy〉 = 〈x, y〉

� Solution

We have

〈Qx, Qy〉 = 〈x, QT Qy〉
= 〈x, y〉

For each x, show that

‖Qx‖ = ‖x‖

� Solution

Substitute y = x in (see Example 5.3.3)

〈Qx, Qy〉 = 〈x, y〉

EXAMPLE 5.3.4
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and recall the formula

‖x‖2 = 〈x, x〉
Thus,

〈Qx, Qx〉 = 〈x, x〉
or

‖Qx‖ = ‖x‖

EXAMPLE 5.3.4 (Continued)

Show that

b =




2
0
1
1




is a linear combination of the orthonormal vectors

q1 = 1

2




1
1
1
1


 , q2 = 1

2




1
−1
−1

1


 , q3 = 1

2




−1
1

−1
1




� Solution

We need to find scalars x1, x2, x3 such that

x1q1 + x2q2 + x3q3 = b (1)

There are two apparently different but essentially equivalent methods. We illustrate both.
Method 1. Set

Q = [q1, q2, q3], x =

 x1

x2

x3




Then (1) may be written

Qx = b

EXAMPLE 5.3.5



5.3.1 The Gram–Schmidt Process and the Q–R Factorization Theorem
From the linearly independent set {a1, a2, . . . , an} it is always possible to construct an ortho-
normal set {q1, q2, . . . , qn} so that every vector which is a linear combination of the vectors in
one of these sets is also a linear combination of the vectors in the other. The method with which
we choose to construct {q1, q2, . . . , qn} uses an algorithm known as the Gram–Schmidt process.
The steps follow.

Step 1. Define

v1 = a1 (5.3.6)

The norm of v1 is r1 = ‖v1‖. Then

q1 = v1

r1
(5.3.7)

is of unit norm.
Step 2. Define

v2 = a2 − (q1 · a2)q1 (5.3.8)

The norm of v2 is r2 = ‖v2‖. Then

q2 = v2

r2
(5.3.9)

is of unit norm.
Step 3. Define

v3 = a3 − (q1 · a3)q1 − (q2 · a3)q2 (5.3.10)
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Since Q is not a square matrix, Q is not orthogonal. However, QT Q = I3 and hence, we deduce that

x = QT Qx = QT b

= 1

2


 1 1 1 1

1 −1 −1 1
−1 1 −1 1







2
0
1
1


 =


 2

1
−1




Thus, x1 = 2, x2 = 1, and x3 = −1; hence, 2q1 + q2 − q3 = b.
Method 2. Multiply (1) by qT

i (i = 1, 2, 3) and, because qT
i qi j = δi j ,

x1qT
1 q1 = x1 = qT

1 b = 2

x2qT
2 q2 = x2 = qT

2 b = 1

x3qT
3 q3 = x3 = qT

3 b = −1

EXAMPLE 5.3.5 (Continued)



The norm is v3 is r3 = ‖v3‖. Then

q3 = v3

r3
(5.3.11)

so q3 is of unit norm.
ith step. Define3

vi = ai −
i−1∑
k=1

(qk · ai )qk, i > 1 (5.3.12)

The norm of vi is ri = ‖vi‖. Then

qi = vi

ri
(5.3.13)

so qi is of unit norm.
As long as ri �= 0, these steps produce q1, q2, . . . , qn , in that order, and ‖qi‖ = 1. Therefore,

if ri �= 0 for all i, qi ⊥ qj , i �= j . We shall return to these items later.

5.3 ORTHOGONAL SETS AND MATRICES � 283

3It is standard practice to define the empty sum 
∑0

k=1 as zero. Then Eq. 5.3.12 holds even for i = 1.

Use the Gram–Schmidt process to construct an orthonormal set from

a1 =




1
1
1
1


 , a2 =




1
0
0
1


 , a3 =




−1
0

−2
1




� Solution

We simply follow the steps in the process outlined above:

Step 1

v1 =




1
1
1
1


 = a1

r1 = ‖v1‖ =
√

4 = 2

q1 = 1

2




1
1
1
1




EXAMPLE 5.3.6
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Step 2

v2 = a2 − (q1 · a2)q1 =




1
0
0
1


 −




1
2
1
2
1
2
1
2


 ·




1
0
0
1


 q1 = 1

2




1
−1
−1

1




r2 = ‖v2‖ = 1

q2 = 1

2




1
−1
−1

1




Step 3

v3 = a3 − (q1 · a3)q1 − (q2 · a3)q2

=




−1
0

−2
1


 −




1
2
1
2
1
2
1
2


 ·




−1
0

−2
1


 q1 −




1
2

− 1
2

− 1
2
1
2


 ·




−1
0

−2
1


 q2 =




−1
1

−1
1




r3 = ‖v3‖ = 2

q3 = 1

2




−1
1

−1
1




It is easy to check that qi · qj = δi j .

EXAMPLE 5.3.6 (Continued)

Find the orthonormal vectors corresponding to

a1 =
[

1
1

]
, a2 =

[
1
0

]

� Solution

We have

v1 = a1 =
[

1
1

]
r1 = ‖v1‖ =

√
2

q1 =
√

2

2

[
1
1

]

EXAMPLE 5.3.7
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Next

v2 =
[

1
0

]
−

√
2

2

[
1
1

]
·
[

1
0

]
q1 =

[
1
2

− 1
2

]

r2 = ‖v2‖ =
√

2

2

q2 =
√

2

2

[
1

−1

]

EXAMPLE 5.3.7 (Continued)

EXAMPLE 5.3.8

Find the orthonormal vectors corresponding to

a1 =
[

1
0

]
, a2 =

[
1
1

]

� Solution

Now

v1 =
[

1
0

]
= q1

and

v2 =
[

1
1

]
−

[
1
0

]
·
[

1
1

]
q1 =

[
0
1

]
= q2

These last two examples illustrate that the order of the vectors a1, a2, . . . , an plays an im-
portant role in determining the qi , but that once the order of the vectors a1, a2, . . . , an is fixed,
the qi and their order is uniquely determined by the algorithm.

Although it is not obvious, Eq. 5.3.12 can be written in matrix form. The easiest way to see
this is, first replace vi by ri qi and then solve for ai ; thus,

ai = ri qi +
i−1∑
k=1

(qk · ai )qk (5.3.14)

Now let A = [a1, a2, . . . , an] and Q = [q1, q2, . . . , qn]. Let

R =




r1 r12 · · · r1n

0 r2 r2n
...

0 0 . . . rn


 (5.3.15)

rki = qk · ai , k ≤ i − 1 (5.3.16)



Then

A = QR (5.3.17)

Equation 5.3.17 is the Q–R factorization of A.
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Find the Q–R factorization of

(a) A =




1 1 −1
1 0 0
1 0 −2
1 1 1




(b) A =
[

1 1
1 0

]

(c) A =
[

1 1
0 1

]

� Solution

These matrices are constructed from the vectors given in Examples 5.3.6 to 5.3.8, respectively.

(a) A =




1
2

1
2 − 1

2
1
2 − 1

2
1
2

1
2 − 1

2 − 1
2

1
2

1
2

1
2





 2 1 −1

0 1 1
0 0 2




Note that the columns of Q are just q1, q2, q3 of Example 5.3.6. The diagonal entries in R are r1, r2, r3. The
remaining entries in R were computed using Eq. 5.3.16 as follows:

r12 = q1 · a2 = 1

2




1
1
1
1


 ·




1
0
0
1


 = 1

r13 = q1 · a3 = 1

2




1
1
1
1


 ·




−1
0

−2
1


 = −1

r23 = q2 · a3 = 1

2




1
−1
−1

1


 ·




−1
0

−2
1


 = 1

EXAMPLE 5.3.9



Thus, the factorization of A may be interpreted as the matrix counterpart of the
Gram–Schmidt process. It is time then to prove:

1. vi �= 0 for all i and therefore each qi may be defined.
2. qi ⊥ qj if i �= j .

Both proofs are inductive and, naturally, use the defining formula (Eq. 5.3.12).

Proof of 1. Since {a1, a2, . . . , an} is linearly independent, a1 �= 0. Then v1 = a1 �= 0. Now,

v2 = a1 − (q1 · a2)q1

= a2 − q1 · a2

r1
v1 = a2 − q1 · a2

r1
a1 (5.3.18)

Therefore, if v2 = 0, we would have {a1, a2} linearly dependent. This is not the case, so v2 �= 0.
The reader may supply the proof that v3 is also nonzero, and so on.

Proof of 2. To show that q1 ⊥ q2 we show that q1 ⊥ v2, for

v2 = a2 − (q1 · a2)q1 (5.3.19)

implies that

q1 · v2 = q1 · a2 − (q1 · a2)(q1 · q1) (5.3.20)

But q1 · q1 = ‖q1‖2 = 1. Hence, q1 · v2 = 0. Again, we invite the reader to use the fact that
q1 ⊥ q2 and Eq. 5.3.12 to show that v3 ⊥ q1 and v3 ⊥ q2. From this step, the complete induction
is reasonably straightforward.

We thus have the following theorem.

Theorem 5.2: If A is m × n and has full rank,4 then

A = QR (5.3.21)

where Q is m × n with orthonormal columns and R is an n × n, nonsingular, upper triangular
matrix.
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(b) and (c) [
1 1
1 0

]
=

[√
2/2

√
2/2√

2/2 −√
2/2

] [√
2

√
2/2

0
√

2/2

]

= 1

2

[
1 1
1 −1

] [
2 1
0 1

]
[

1 1
0 1

]
=

[
1 0
0 1

] [
1 1
0 1

]

EXAMPLE 5.3.9 (Continued)

4 The columns of A form a linearly independent set.



Since R is nonsingular and upper triangular, it has an inverse S = R−1 which is also upper
triangular. Therefore, Eq. 5.3.21 implies that

AS = Q (5.3.22)

The reader may verify that this equation proves that qi is a linear combination of a1, a2, . . . , ai

just as A = QR shows that ai is a linear combination of q1, q2, . . . , qi . Note also that although
Q is not generally a square matrix, QT Q = In , and QQT is singular unless Q is n × n, in which
case QT = Q−1. It is interesting to observe that if the Q–R factorization of A is known, then

Ax = b implies QRx = b (5.3.23)

and therefore

QT QRx = QT b (5.3.24)

Since QT Q = I,

Ax = b implies Rx = QT b (5.3.25)

The latter system is easily solved by back-substitution since R is upper triangular.

5.3.2 Projection Matrices
Any square matrix P satisfying the two conditions

(i) PT = P
(ii) P2 = P (5.3.26)

is a projection matrix (a projection, for short). It is a trivial observation that In and On×n are
projections.
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EXAMPLE 5.3.10

Verify that the following symmetric matrix is a projection:

1

n
Jn = 1

n




1 1 . . . 1
1 1 . . . 1
...

1 1 . . . 1




n×n

� Solution

That the given matrix is a projection follows from the fact that

J2
n = nJn



The next example provides a motivation for using that word “projection” for matrices
satisfying Eq. 5.3.26, at least in the special case where P = uuT . Consider Fig. 5.3, wherein
u is a unit vector making a 30◦ angle with the negative x axis, and b is a vector terminat-
ing at (

√
3, 1). The vector b makes a 30◦ angle with the positive x axis. The “projection of b

onto the line defined by u” is the vector denoted by p, which in this case points opposite
to u. By elementary geometry, the coordinates of the terminus of p are (

√
3/2,− 1

2 ) .
Now consider

(uuT )b =
[−√

3/2
1/2

]
[−

√
3/2, 1/2]

[√
3

1

]

=
[

3/4 −√
3/4

−√
3/4 1/4

] [√
3

1

]
=

[√
3/2

−1/2

]
(5.3.27)

Hence, (uuT )b = p. That is, uuT projects an arbitrary vector b onto the line determined by u.
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EXAMPLE 5.3.11

Show that all projections except I are singular.

� Solution

Suppose that P is a projection and P−1 exists. Then, from P2 = P we obtain by multiplication

P−1(P2) = P−1P = I

But, P−1P2 = P. So P = I follows from the existence of P−1.

EXAMPLE 5.3.12

Suppose that ||u|| = 1. Show that uuT is a projection.

� Solution

We easily verify that uuT is symmetric. Also,

(uuT )2 = (uuT )(uuT )

= u(uT u)uT

Since

uT u = u · u = ||u||2 = 1

it follows that

(uT u)2 = uuT



We conclude this section with an example and a theorem, both of which are essential to the
material in Section 5.4.
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30� 60�

p

b

u

L

(��3�2, 1�2)

(�3�2, �1�2)

(�3, 1)

Figure 5.3 p is the projection of b on the line L.

EXAMPLE 5.3.13

Verify that for every Am×n with full rank,

P = A(AT A)−1AT

is a projection.

� Solution

If A has full rank, then AT A is invertible (see Theorem 5.1). [Of course, (AT A)−1 cannot be written as
A−1(AT )−1 since neither A nor AT are necessarily square matrices.] Now

PT = {A(AT A)−1AT }T

= A{(AT A)−1}T AT = P

since (AT A)−1 is symmetric. More interesting is

P2 = {A(AT A)−1AT }{A(AT A)−1AT }
= A(AT A)−1(AT A)(AT A)−1AT

= A(AT A)−1AT = P

Theorem 5.3: If P is a projection, then for every b and y,

Py ⊥ (Pb − b) (5.3.28)



Proof: We show the theorem to be true by showing that (Py)T (Pb − b) = 0. But

(Py)T (Pb − b) = yT PT (Pb − b)

= yT P(Pb − b) (5.3.29)

since PPT = P. Hence,

(Py)T (Pb − b) = yT (P2b − Pb)

= yT (Pb − Pb) (5.3.30)

since P2 = P. Thus, we have

(Py)T (Pb − b) = yT 0

= 0 (5.3.31)

5.3.3 Maple and MATLAB Applications
The computations of Example 5.3.6 can be done with Maple, using commands described earlier:

>a1:=matrix(4, 1, [1, 1, 1, 1]):

>a2:=matrix(4, 1, [1, 0, 0, 1]):

>a3:=matrix(4, 1, [-1, 0, -2, 1]):

>v1:=a1:

>r1:=norm(v1, 2): q1:=scalarmul(v1, 1/r1);

q1 :=




1
2

1
2

1
2

1
2




>v2:=a2-scalarmul(q1,multiply(transpose(q1), a2) [1,1]):

>r2:=norm(v2, 2): q2:=scalarmul(v2, 1/r2);

q2 :=




1
2

−1
2

−1
2

1
2




>v3:=a3-scalarmul(q1,multiply(transpose(q1), a3)[1, 1])-
scalarmul(q2,multiply(transpose(q2), a3) [1,1]):

>r3:=norm(v3,2): q3:=scalarmul(v3, 1/r3);

q3 :=




−1
2

1
2

−1
2

1
2



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There is also a command in Maple, GramSchmidt, which will compute the q vectors quickly,
but obscures the rationale behind the calculations.
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EXAMPLE 5.3.14

Consider the situation where

u = 1√
3


 1

1
1


 , b =


 1

−1
−1


 , y =


 1

2
1




Determine P = uuT , Py, and Pb − b.

� Solution

P = uuT =




1/3
1/3

1/3
1/3

1/3
1/3

1/3
1/3

1/3


 , Py =


 4/3

4/3
4/3


 , Pb − b =


−4/3

2/3
2/3




An illustration of this situation can be created using the arrow command and plots package of Maple.
From the illustration, we can see that Py and Pb − b are perpendicular vectors. Note that P projects every
vector onto the line parallel to u.

>Py := arrow(<4/3,4/3,4/3>, shape=double_arrow):

Pbb := arrow(<-4/3,2/3,2/3>, shape=double_arrow):

display(Py, Pbb, scaling=CONSTRAINED, axes=BOXED);

1.2

0.8

0.4

0

�1 �0.5 0 0.5 1
0

0.5
1

Use the MATLAB command qr that returns matrices Q and R such that A = QR and R is upper triangular and
Q is a matrix with orthonormal columns for the matrix given by

A =

 1 1 −1

1 0 0
1 1 1




EXAMPLE 5.3.15
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� Solution

»A = [1 1 -1; 1 0 0; 1 1 1];

[Q,R] = qr(A,0)

Q =

−0.5774 0.4082 −0.7071

−0.5774 −0.8165 0.0000
−0.5774 0.4082 0.7071




R =

−1.7321 −1.1547 0

0 0.8165 0
0 0 1.4142




EXAMPLE 5.3.15 (Continued)

Problems

1. Show that

P =


 sin φ cos θ sin φ sin θ cos θ

− sin θ cos θ 0
cos φ cos θ cos φ sin θ − sin θ




is orthogonal.

Use the Gram–Schmidt process to orthogonalize each set.

2.

a1 =


 1

1
1


 , a2 =


 1

1
0




3.

a1 =


 1

1
0


 , a2 =


 1

1
1




4.

a1 =


 1

0
0


 , a2 =


 1

1
0


 , a3 =


 0

1
1




5.

a1 =


 1

0
1


 , a2 =


 1

0
−1


 , a3 =


 1

1
1




6.

a1 =


 1

0
0


 , a2 =


 1

1
1


 , a3 =


α1

α2

α3




Write the equivalent Q–R factorization of A, the matrix
whose columns are the vectors a1, a2, . . . , for each set of
vectors.

7. The set of Problem 2.

8. The set of Problem 3.

9. The set of Problem 4.

10. The set of Problem 5.

11. The set of Problem 6.

12. Show that every orthogonal set is linearly independent.
Hint: Use method 2 of Example 5.3.5 or

c1q1 + c2q2 + · · · + ckqk = 0

13. Show that every solution of Ax = 0 is orthogonal to the
rows of A. Use this result to find z orthogonal to x and y
in Eq. 5.3.3.

14. Show that v3 �= 0. Knowing that q1 ⊥ q2, show that 
Eq. 5.3.10 implies that q1 ⊥ q3 and q2 ⊥ q3.

15. Explain why A = QR shows that each column a1 of A is
a linear combination of the first i columns of Q, namely,
q1, q2, . . . , qi .

16. Suppose that A is k × n, k > n. Show that AAT must be
singular. Hint: Rank AAT ≤ number of columns of AAT

and rank A ≤ n.

17. If P is a projection, show that Pk is also a projection for
each k.



18. If P1 and P2 are projections, is P1P2 a projection? If
P1P2 = P2P1, is P1P2 a projection?

19. If P1 and P2 are projections, is P1 + P2 a projection?
Explain.

20. Find u so that ||u|| = 1 and uuT = (1/n)Jn (see
Example 5.3.10).

21. Let A =
[

1
1

]
in Example 5.3.13. What is P? Show that

P cannot be defined if A = [1, 1]. (Note: [1, 1] does not
have full rank).

22. Let A =
[

1 1
0 1

]
in Example 5.3.13. Compute P using

this A.

23. If P is a projection, then so is (I − P). Prove this
theorem.

24. Solve the system Ax = b where

A =




1 1 −1
1 0 0
1 0 −2
1 1 1


 , b =




2
−1

1
0




by using Eq. 5.3.25 and the Q–R factorization of A given
in Example 5.3.9.

25. Prove for any vectors y and u (where u has norm 1) if
P = uuT , then Py = (u · y)u. (This gives us another way
to compute the projection of the vector y in the direction
of u.)

Use Maple to solve

26. Problem 2

27. Problem 3

28. Problem 4

29. Problem 5

30. Problem 6

31. Problem 24

32. Computer Laboratory Activity: The Q –R factorization
makes uses of the Gram–Schmidt process applied to
columns of a matrix, along with the creation of matrices
by augmenting vectors. Create a Maple worksheet that
will automatically apply the Gram–Schmidt process to
the columns of any matrix A. (This will require using
for/do loops.) Then, after that calculation, matrices Q
and R are created. Use your worksheet to find the Q–R
factorization of:

A =




4 1 2 5 9
3 6 7 −3 4
9 0 0 1 2
3 4 −1 2 0
1 1 8 5 6




Use the MATLAB command qr to solve

33. Problem 2

34. Problem 3

35. Problem 4

36. Problem 5

37. Problem 6

38. Use MATLAB to solve Problem 24.

A problem common to most experimental scientists is the fitting of curves to data. Often we have
theoretical reasons for believing that the output of some experiment is related to the input by a
specific functional dependence containing suitable parameters. For instance, suppose that theory
predicts that

y = ax + b (5.4.1)

relates the input x to the output y in an experiment that generates the data of Table 5.1. The
parameters a and b in Eq. 5.4.1 are related to the physical properties of the material used in the
experiment. If these data are plotted, as in Fig. 5.4, the linear hypothesis expressed in Eq. 5.4.1
is reasonable. The question is; what are the values of a and b that best fit the data? Indeed, what
does “best” mean?
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The data overdetermines a and b, for we have the following:

x = −1 :

x = 0 :

x = 1 :

x = 2 :

−a + b = −0.5

b = 0.5

a + b = 1.1

2a + b = 2.1

(5.4.2)

These four equations for a and b are inconsistent. Statisticians have determined that under cer-
tain reasonably broad assumptions one can do no better than choosing a and b so as to minimize
the sum of the squares of the “deviations.” In the present illustration this sum of squares of the
deviations is

(−a + b + 0.5)2 + (b − 0.5)2 + (a + b − 1.1)2 + (2a + b − 2.1)2

Figure 5.5 illustrates the meaning of deviation in a slightly more general setting.
To present the ideas above most generally, suppose that A has full rank and we are interested

in the system

Ax = b (5.4.3)

which may be inconsistent. The vector r is the residual and is defined as

r = b − Ax (5.4.4)
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x = input −1 0 1 2

y = output −0.5 0.5 1.1 2.1

Table 5.1 Experimental Data

2

1

�1 1 2 3
x

y

y � 0.84x � 0.34

Figure 5.4 The data of Table 5.1 and
the line of best fit.



We are interested in finding x so that ||r|| is as small as possible. This may be phrased in two
equivalent ways:

1. Find x = x̂ so that ||Ax − b|| is minimized by x̂.
2. Find x = x̂ such that for all z,

||Ax̂ − b|| ≤ ||Az − b|| (5.4.5)

We shall prove in Section 5.4.1 that

x̂ = (AT A)−1AT b (5.4.6)

is the solution of inequality 5.4.5. Note that A need not be square so that (AT A)−1 cannot be
simplified without further restrictions on A. For instance, if A−1 exists, then

(AT A)−1 = A−1(AT )−1 (5.4.7)

and thus

x̂ = A−1b (5.4.8)

In this case Ax̂ = b and thus inequality 5.4.5 reduces to the triviality, 0 ≤ ||Az − b|| for all z.
The system

AT Ax = AT b (5.4.9)

obtained formally by multiplying Eq. 5.4.3 by AT , are the normal equations. We are asuming
that A has full rank. Therefore, (AT A)−1 exists (see Theorem 5.1 and Example 5.3.13) and thus
the normal equations have the unique solution x as given by Eq. 5.4.6.

One of the following examples generalizes the process and solves the problem of fitting a
straight line to n data points. This technique is often called linear regression.
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d1

d2

d3

d4 Sum of the squares
of the deviations � �

4

 i � 1
 di

2

Figure 5.5 The deviations.
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EXAMPLE 5.4.1

Find the line of best fit for the data of Table 5.1.

� Solution

The system 5.4.2 takes the form 


1 −1
1 0
1 1
1 2


[

b
a

]
=




−0.5
0.5
1.1
2.1




so the normal equations are [
4 2
2 6

] [
b
a

]
=

[
3.2
5.8

]

Hence, [
a
b

]
=

[
0.84
0.38

]

Thus, the line of best fit is

y = 0.84x + 0.38

Given n points {(xi , yi )}, find the line

y = ax + b

which is the best fit of data in the sense of inequality 5.4.5.

� Solution

The system is of full rank and is overdetermined:


1 x1

1 x2
...

...

1 xn




[
b
a

]
=




y1

y2
...

yn




The corresponding normal equations are[
n

∑
xi∑

xi
∑

x2
i

][
b
a

]
=

[ ∑
yi∑

xi yi

]

EXAMPLE 5.4.2



The above computation of a and b is extremely useful and commonplace in data handling. The
next example illustrates how the technique can be applied to more general curve fitting.

298 � CHAPTER 5  / MATRIX APPLICATIONS

Let x be the mean of x1, x2, . . . , xn and y the mean of y1, y2, . . . , yn . That is,

x =
∑

xi

n
, y =

∑
yi

n

Then applying elementary row operations to the augmented matrix results in[
n

∑
xi

∑
yi∑

xi
∑

x2
i

∑
xi yi

]
→

[
1 x y

x
∑

x2
i /n

∑
xi yi/n

]

Hence,

a =

∑
xi yi

n
− x y∑

x2
i

n
− x2

(1)

We then have [
1 x y
0 1 a

]
→

[
1 0 y − ax
0 1 a

]

so that

b = y − ax

As we show in the problems, a can be rewritten as

a =
∑

(xi − x)(yi − y)∑
(xi − x)2

EXAMPLE 5.4.2 (Continued)

Plot the data

and find the best estimate of the parameters M and k assuming that

y = Me−kx

x 0 0.5 1 1.5 2 2.5

y 3 2.34 1.82 1.42 1.1 0.86

EXAMPLE 5.4.3



5.4.1 Minimizing ||Ax − b||
Recall Theorem 5.3 which asserts that if P is a projection and b and y are arbitrary vectors,

Py ⊥ (Pb − b) (5.4.10)
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� Solution

The data are plotted as shown. The expected curve is sketched. We can cast this problem into a linear regres-
sion by taking logarithms. Then the given equation is equivalent to

z = ln y = −kx + ln M

where we let a = −k and b = ln M . The data can now be presented as follows:

We compute

x =
∑

xi

6
= 1.25, z =

∑
zi

6
= 0.47∑

x2
i

6
= 2.29,

∑
xi zi

6
= 0.23

Therefore,

a = −0.50, b = 1.10

Hence,

M = eb = 3.00

and

y = 2.94e−0.5

x 0 0.5 1 1.5 2 2.5

z = ln y 1.1 0.85 0.60 0.35 0.10 −0.15

3

2

1

1 2 x

y

y � Me�kx

EXAMPLE 5.4.3 (Continued)



Therefore, by the Pythagorean theorem (Example 5.2.1),

||Pb − b + Py||2 = ||Pb − b||2 + ||Py||2 (5.4.11)

Suppose that z is a given vector. Define y = Az. Then AT y = AT Az and hence

z = (AT A)−1AT y (5.4.12)

and it follows that

Az = A(AT A)−1AT y (5.4.13)

Let P = A(AT A)−1AT . Then P is a projection (see Example 5.3.13). So, using Eq. 5.4.13,

Az = Py (5.4.14)

Therefore,

||Az − b||2 = ||Az − b + Pb − Pb||2
= ||Py − b + Pb − Pb||2 (5.4.15)

using Eq. 5.4.14. It then follows that

||Az − b||2 = ||Pb − b + Py − Pb||2
= ||Pb − b + P(y − b)||2
= ||Pb − b||2 + ||P(y − b)||2 (5.4.16)

The last equality is Eq. 5.4.11, in which y − b plays the role of y. Thus, for every z,

||Az − b||2 ≥ ||Pb − b||2 (5.4.17)

But Pb = A(AT A)A−1b by definition of P, and by definition of x̂, Eq. 5.4.6, Pb = Ax̂. Hence,
inequality 5.4.17 is

||Az − b||2 ≥ ||Ax̂ − b||2 (5.4.18)

and we have proved that x̂ is the vector minimizing ||Ax − b||.

5.4.2 Maple and Excel Applications
One way to solve Example 5.4.1 with Maple is to use commands in the linalg package. The
linsolve command can be used to solve linear equations of the form A1x = b1 for x:

>A:=matrix(4, 2, [1, -1, 1, 0, 1, 1, 1, 2]): b:=matrix(4, 1, 
[-0.5, 0.5, 1.1, 2.1]):

>A1:=multiply(transpose(A), A);

A1 :=
[
4 2
2 6

]

>b1:=multiply(transpose(A), b);

b1 :=
[
3.2
5.8

]
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>linsolve(A1, b1); [
0.3800000000
0.8400000000

]

One of the main purposes of Excel is to perform statistical calculations, and finding the line
of best fit can be accomplished using the array function LINEST. To use LINEST, place the x
values in one column and the y values in the other. For instance, in Example 5.4.1, we place the
x values in A1:A4 and the y values in C1:C4

Then, the formula to get the slope and y-intercept of the line of best fit (a and b above) is:

=LINEST(C1:C4, A1:A4)

Note that the list of y values occurs first in this formula, and that the CTRL, SHIFT, and ENTER
keys must be pressed at the same time in order to get both a and b.

The calculations in Example 5.4.3 can also be performed with Maple, by making use of the
sum command. First, we define two lists of data:

>x:=[0, 0.5, 1, 1.5, 2, 2.5]: y:=[3.0, 2.34, 1.82, 1.42, 1.1,
0.86]:

Any entry in either list can then be accessed with commands such as:

>y[2];

[2.34]

The map command can be used to apply the logarithm map to the y values:

>map(ln, y);

[1.098612289, 0.8501509294, 0.5988365011, 0.3506568716,
0.09531017980, -0.1508228897]

Next, we compute the means:

>x_bar:=sum(x[i], i=1..6)/6; z_bar:=sum(z[i], i=1..6)/6;

>x2_bar:=sum((x[i])^2, i=1..6)/6; xz_bar:=sum(x[i]*z[i],
i=1..6)/6;

x_bar := 1.250000000

z_bar := 0.4737906468

x2_bar := 2.291666667

xz_bar := 0.2272434015

Finally, we compute M and k:

>k:=-(xz_bar-x_bar*z_bar)/(x2_bar-(x_bar)^2);

C

�0.5

0.5

1.1

BA

�1

0

1

1

2

3

4 2.12
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M:=exp(z_bar+k*x_bar);

k := 0.5005644437

M := 3.002652909

To fit data to an exponential function, Excel has the LOGEST function. This array function
will fit data to y = Mcx by determining c and M. Once those numbers are determined, k in
Example 5.4.3 can be calculated from c.

As with LINEST, put the data into two columns in Excel. For Example 5.4.3 we have

Then, enter this formula, which has the y values first:

=LOGEST(C1:C6,A1:A6)

The output of this formula is c = 0.606188404 and M = 3.002652912. Then, since cx = e−kx ,
we have that c = e−k , or k = − ln c = 0.5005644 in Excel, using a formula “–LN(F1)” (where
the output for LOGEST was placed in F1:G1).

C

3.00

2.34

1.82

BA

0

0.5

1

1

2

3

1.1025

4

6

1.421.5

0.862.5
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Problems

1. Show that 

∑
(xi − x)2

n
=

∑
x2

i

n
− x2 .

2. Show that 

∑
(xi − x)(yi − y)

n
=

∑
xi yi

n
− x y

3. Use Problems 1 and 2 to show that Eq. 1 of Example
5.4.2 can be written as

a =
∑

(xi − x)(yi − y)∑
(xi − x)2

4. Given the data (x1, y1), (x2, y2), . . . , (xn, yn), find the
normal equations for the system

α + βx1 + γ x2
1 = y1

α + βx2 + γ x2
2 = y2

...

α + βxn + γ x2
n = yn

5. Course grades are based on the following conversion
from letter grades to numerical grades; A = 4,

A− = 3.7, B+ = 3.3, B = 3, B− = 2.7, and so on. The
final grades for a class of students in ENG 106 and
ENG 107 are tabulated by using the aforementioned
conversion.

ENG 106 ENG 107 ENG 106 ENG 107

2.0 1.3 2.7 3.0

3.3 3.3 4.0 4.0

3.7 3.3 3.7 3.0

2.0 2.0 3.0 2.7

2.3 1.7 2.3 3.0

Calculate the least squares regression line for these data.
Predict the grade in ENG 107 for a student who received
a B+ in ENG 106.



6. In Table B3 the Bessel function J0(x) has been tabulated
for various values of x. Data from this table follow.

x J0

6.0 0.15065

6.2 0.20175

6.4 0.24331

6.6 0.27404

6.8 0.29310

Find the least squares regression line and use this line
to predict J0(6.3) and J0(7.0). Compare with the actual
values in the table.

7. Same as Problem 6 but assume a quadratic fit
α + βx + γ x2 = y . Estimate J0(6.3) and J0(7.0) and
compare with the answers in Problem 6.

Use Maple to solve

8. Problem 5

9. Problem 6

10. Problem 7

11. Computer Laboratory Activity: It is proved in Section
5.4.1 that x̂ = (AT A)−1AT b is the least squares solution
of Ax = b. The geometry of this result is important.
Consider this matrix and vector:

A :=


 1 5

−2 2
3 5


 , b :=


 250

500
750




(a) Prove that A has full rank.
(b) Determine AT A and (AT A)−1 .
(c) Determine x̂.
(d) Determine r̂ = b − Ax̂.
(e) Use Eq. 5.4.1 to prove that r̂ is perpendicular to Ay,

for any vector y.
(f) In a manner similar to Example 5.3.14, create a fig-

ure with r̂ and Ay, for some vector y of your choos-
ing. (To get a good figure, choose y so its length is
comparable to b.)

(g) Create another figure with b, Ay, and b − Ay, so that
these three vectors form a triangle. Is it a right trian-
gle? Prove your answer.

(h) For which vectors y will you get a right triangle?
Explain.

Use Excel to solve

12. Problem 5

13. Problem 6

14. Problem 7

Suppose that x(t) and y(t) are unknown, differentiable functions of t which satisfy the differen-
tial equations

x ′ = x + y

y′ = 4x + y
(5.5.1)

As is usual in the case of constant coefficient, linear differential equations, we assume exponen-
tial solutions. So set

x(t) = u1eλt

y(t) = u2eλt
(5.5.2)

where u1, u2, and λ are constants. After substitution of these functions into Eqs. 5.5.1, we obtain

λu1eλt = u1eλt + u2eλt

λu2eλt = 4u1eλt + u2eλt
(5.5.3)

Since eλt > 0 for all λ and t, Eqs. 5.5.3 can be simplified to

λu1 = u1 + u2

λu2 = 4u1 + u2
(5.5.4)

5.5 EIGENVALUES AND EIGENVECTORS
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These are the equations determining λ, u1, u2 and therefore x(t) and y(t). In matrix–vector
form these equations can be written as

[
1 1
4 1

] [
u1

u2

]
= λ

[
u1

u2

]
(5.5.5)

This system is an example of the algebraic eigenvalue problem: For the square matrix A, find
scalars λ and nonzero vectors x such that

Ax = λx (5.5.6)

The scalar λ represents the eigenvalues of A, and the corresponding nonzero vectors x are the
eigenvectors. From Ax = λx we deduce that Ax − λx = 0, or, using λx = λIx,

(A − λI)x = 0 (5.5.7)

This homogeneous system is equivalent to the original formulation Ax = λx but has the advan-
tage of separating the computation of λ from that of x, for Eq. 5.5.7 has a nontrivial solution if
and only if

|A − λI| = 0 (5.5.8)

Examples illustrate.
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EXAMPLE 5.5.1

Find the eigenvalues of the matrix

A =
[

1 1
4 1

]

appearing in Eq. 5.5.6.

� Solution

We have

|A − λI| =
∣∣∣∣ 1 − λ 1

4 1 − λ

∣∣∣∣
= (1 − λ)2 − 4 = (λ − 3)(λ + 1) = 0

Hence, the eigenvalues are

λ1 = 3, λ2 = −1
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EXAMPLE 5.5.2

Find the eigenvalues of

A =
[

1 1
0 1

]

� Solution

In this case

|A − λI| =
∣∣∣∣ 1 − λ 1

0 1 − λ

∣∣∣∣
= (1 − λ)2 = 0

Hence, the only eigenvalue5 is

λ = 1

5It is usual to say that λ = 1 is a double root of (1 − λ)2 = 0. We would then write λ1 = λ2 = 1.

EXAMPLE 5.5.3

Find the eigenvalues of

A =

−1 2 2

2 2 2
−3 −6 −6




� Solution

Here

|A − λI| =

−1 − λ 2 2

2 2 − λ 2
−3 −6 −6 − λ




After some simplification

|A − λI| =

−1 − λ 2 0

2 2 − λ λ

−1 −4 − λ 0




= −λ

∣∣∣∣−1 − λ 2
−1 −4 − λ

∣∣∣∣
= −λ(λ + 2)(λ + 3) = 0

So the eigenvalues are

λ1 = 0, λ2 = −2, λ3 = −3



These examples suggest that |A − λI| is a polynomial of degree n in λ when A is n × n.
Indeed, for constants c0, c1, . . . , cn−1 which are functions of the entries in A, we can show that

|A − λI| =

∣∣∣∣∣∣∣∣
a11 − λ a12 . . . a1n

a21 a22 − λ . . . a2n
...

an1 an2 ann − λ

∣∣∣∣∣∣∣∣
= (−λ)n + cn−1(−λ)n−1 + · · · + c1(−λ) + c0 (5.5.9)

We write

C(λ) = |A − λI| (5.5.10)

and call C(λ) the characteristic polynomial of A; it is a polynomial of degree n and it has n
roots, some or all of which may be repeated, some or all of which may be complex. If complex
roots are encountered, it may be advisable to review Section 10.2 on complex variables.

Once an eigenvalue has been determined, say λ = λ1, then A − λ1I is a specific, singular
matrix and the homogeneous system 5.5.7 may be solved. Here are some illustrations.
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EXAMPLE 5.5.4

Find the eigenvectors for the matrix in Example 5.5.2,

A =
[

1 1
0 1

]

� Solution

In that example, C(λ) = (1 − λ)2, so there is only one distinct eigenvalue, λ = 1. Therefore, the eigenvectors
of A satisfy [

0 1
0 0

]
x = 0

Therefore, for all nonzero choices of the scalar k, the eigenvectors are given by

x = k

[
1
0

]

Find the eigenvectors of the identity matrix,

I2 =
[

1 0
0 1

]
EXAMPLE 5.5.5
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� Solution

In this problem, as in the one just preceding, C(λ) = (1 − λ)2. Hence, the eigenvectors are the nontrivial
solutions of [

0 0
0 0

]
x = 0

The two eigenvectors are

x1 =
[

1
0

]
, x2 =

[
0
1

]

These eigenvectors are unit vectors, but they could be any multiple of these vectors since there is a zero on the
right-hand side of Eq. 5.5.7; for example,

x1 =
[

2
0

]
, x2 =

[
0
2

]

would also be acceptable eigenvectors.

EXAMPLE 5.5.5 (Continued)

Find the eigenvectors of the matrix of Example 5.5.3,

A =

−1 2 2

2 2 2
−3 −6 −6




� Solution

We have already found that

C(λ) = −λ(λ + 2)(λ + 3)

We have, therefore, three cases:
(i) Set λ1 = 0. Then 

−1 2 2
2 2 2

−3 −6 −6


 x = 0

which, after some elementary row operations, is equivalent to
 1 0 0

0 1 1
0 0 0


 x = 0

EXAMPLE 5.5.6
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So the eigenvector, corresponding to λ1 = 0, is

x1 =

 0

−1
1




(ii) For λ2 = −2, we have

A + 2I =

 1 2 2

2 4 2
−3 −6 −4


 −→ · · · −→


 1 2 0

0 0 1
0 0 0




Hence, the eigenvector, corresponding to λ2 = −2, is

x2 =

−2

1
0




(iii) For λ3 = −3, we have

A + 3I =

 2 2 2

2 5 2
−3 −6 −3


 −→ · · · −→


 1 0 1

0 1 0
0 0 0




Here the eigenvector, corresponding to λ3 = −3, is

x3 =

−1

0
1




EXAMPLE 5.5.6 (Continued)

Note: We could have insisted that the eigenvectors be unit vectors. Then we would have

x1 = 1√
2


 0

−1
1


 , x2 = 1√

5


−2

1
0


 , x3 = 1√

2


−1

0
1




Find the eigenvectors for the matrix

A =
[

1 1
4 1

]

of Example 5.5.1 and thereby solve the system of differential equations 5.5.1.

EXAMPLE 5.5.7



5.5.1 Some Theoretical Considerations
We know that

C(λ) = |A − λI|
= (−λ)n + cn−1(−λ)n−1 + · · · + c1(−λ) + c0 (5.5.11)

is an identity in λ; by setting λ = 0 we learn that

C(0) = |A| = c0 (5.5.12)
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� Solution

We have already found that λ1 = −1, and λ2 = 3. For λ1 = −1 we have[
2 1
4 2

]
−→ · · · −→

[
1 1

2
0 0

]

Thus, the eigenvector corresponding to λ1 = −1 is

u1 =
[− 1

2
1

]

where u1 represents the eigenvector.
For λ2 = 3 we have [−2 1

4 −2

]
−→ · · · −→

[
1 − 1

2
0 0

]

Thus, the eigenvector corresponding to λ2 = 3 is

u2 =
[ 1

2

1

]

For the eigenvalue λ1 = −1 we have

x1(t) = − 1
2 e−t , y1(t) = e−t

and for λ2 = 3

x2(t) = 1
2 e3t , y2(t) = e3t

We shall show later that the general solution of Eqs. 5.5.1 is a superposition of these solutions as follows:

x(t) = − 1
2 c1e−t + 1

2 c2e3t

y(t) = c1e−t + c2e3t

EXAMPLE 5.5.7 (Continued)



On the other hand, if we denote the roots of C(λ) = 0 as λ1, λ2, . . . , λn , by elementary algebra
C(λ) has the factored form

C(λ) = (λ1 − λ)(λ2 − λ) · · · (λn − λ) (5.5.13)

Hence,

C(0) = λ1 · λ2 · · · λn (5.5.14)

This leads to the surprising result

|A| = λ1 · λ2 · · · λn (5.5.15)

Theorem 5.5: The determinant of A is the product of its eigenvalues.

Since |A| = 0 if and only if A is singular, Theorem 5.5 leads to the following corollary.

Corollary 5.6: A is singular if and only if it has a zero eigenvalue.

Equation 5.5.13 reveals another connection between the eigenvalues and the entries of A. It
follows from Eq. 5.5.13 that

C(λ) = (−λ)n + (λ1 + λ2 + λ3 + · · · + λn)(−λ)n−1 + · · · (5.5.16)

by multiplying the n factors together, Hence,

Cn−1 = λ1 + λ2 + · · · + λn (5.5.17)

In Problems 51 and 52 we show that

C(λ) = (−λ)n + (a11 + a22 + · · · + ann)(−λ)n−1 + · · · (5.5.18)

Since the coefficients of C(λ) are the same regardless of how they are represented, Eqs. 5.5.16
and 5.5.18 show that

λ1 + λ2 + · · · + λn = a11 + a22 + · · · + ann (5.5.19)

The latter sum, a11 + a22 + · · · + ann , the sum of the diagonal elements of A, is known as the
trace of A and is written tr A. Thus, analogous to Theorem 5.5, we have the following theorem.

Theorem 5.7: The trace of A is the sum of its eigenvalues.

This theorem can sometimes be used to find eigenvalues in certain special cases. It is most
effective when used in conjunction with the next theorem.

Theorem 5.8: If λ1 is an eigenvalue of A and

rank (A − λI) = n − k

then λ1 is repeated k times as a root of C(λ) = 0.

Proof: In fact, λ1 may be repeated more than k times, but in any case, λ1 is a factor of C(λ). The
proof is not difficult and is left to the reader (see Problem 32 of Section 5.6).
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EXAMPLE 5.5.8

Find the eigenvalues of

Jn =




1 1 · · · 1
1 1 · · · 1
...

1 1 · · · 1




n×n

� Solution

Since Jn is singular, λ = 0 is an eigenvalue from Corollary 5.6. Also, rank (Jn − 0I) = rank Jn = 1, the root
λ = 0 of C(λ) is repeated n − 1 times. Therefore, by Theorem 5.7,

tr Jn = n = 0 + 0 + · · · + λn

and the sole remaining eigenvalue is

λn = n

It is often possible to find the eigenvalues of B from the eigenvalues of A if A and B are re-
lated. We state without proof (see Problem 64 for a partial proof) the most remarkable theorem
of this type.

Theorem 5.9: Let

p(x) = a0xn + a1xn−1 + · · · + an (5.5.20)

be a polynomial of degree n. Define

p(A) = a0An + a1An−1 + · · · + anI (5.5.21)

Then if λ1, λ2, . . . , λn are the eigenvalues of A, p(λ1), p(λ2), . . . , p(λn) are the eigenvalues of
p(A). Moreover, the eigenvectors of A are the eigenvectors of p(A).

An illustration of this follows.

Find the eigenvalues of

Kn =




0 1 1 · · · 1
1 0 1 · · · 1
...

...

1 1 1 · · · 0




n×n

EXAMPLE 5.5.9



5.5.2 Maple and MATLAB Applications
Maple has built-in commands in the linalg package to compute the eigenvalues, eigenvectors,
and trace of a matrix. Consider the matrix in Example 5.5.6, for example; if only the eigenval-
ues are desired, enter

>eigenvalues(A);

[0, -2, -3]

If both the eigenvalues and eigenvectors are of interest, enter

>eigenvectors(A);

[-2, 1, {[-2, 1, 0]}], [0, 1, {[0, -1, 1]}],[-3, 1,{[-1, 0, 1]}]

To interpret the output, note that first an eigenvalue is listed, followed by the number of times it
is repeated as a solution of C(λ) = 0, and then the eigenvector. Since an eigenvalue might have
more than one eigenvector, the eigenvectors are listed as a set. In this example, each set of eigen-
vectors has only one element.

Finally, to compute the trace (the sum of the eigenvalues):

>trace(A);

[-5]

Sometimes, solutions of C(λ) = 0 will come in complex conjugate pairs, as in this example.
Define a 3 × 3 matrix A:

A :=

1 3 0
0 1 2
4 −3 5




>eigenvalues(A);

[5,1+ √
6 I,1− √

6 I]
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� Solution

We recognize that Kn = Jn − I, where Jn is defined in Example 5.5.8. So if p(x) = x − 1, p(Jn) = Jn − I
and Theorem 5.9 is relevent. The eigenvalues of Jn were shown to be

0 = λ1 = λ2 = · · · = λn−1, n = λn

so the eigenvalues of Kn are

−1 = λ1 = λ2 = · · · = λn−1, n − 1 = λn

The characteristic polynomial of Kn is, therefore,

C(λ) = (−1 − λ)n−1(−n + 1 − λ) = (−1)n(λ + 1)n−1(λ + n − 1)

EXAMPLE 5.5.9 (Continued)



(Recall that Maple uses I to represent 
√−1.) In this situation, some of the eigenvectors will also

be complex-valued, which will be addressed in Section 5.7.2. Review Section 10.2 on complex
variables if more information on 

√−1 is desired.
The command eig in MATLAB is used to find the eigenvalues and eigenvectors of a given

square matrix. The syntax of eig controls the format of the output as we see in the following
examples.
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EXAMPLE 5.5.10

Compute the eigenvalues and eigenvectors of the matrix
 0 1 1

1 0 1
1 1 1




� Solution

The values are found using MATLAB:

»K3 = [0 1 1;1 0 1;1 1 1]

K3 =

0 1 1
1 0 1
1 1 1




»eig(K3)

ans =

−1.0000

−1.0000
2.000




This syntax has generated a column of eigenvalues.

»[V,D] = eig(K3)

V =

 0.3891 0.7178 0.5774

0.4271 −0.6959 0.5774
−0.8162 −0.0219 0.5774




D =

−1.0000 0 0

0 −1.0000 0
0 0 2.0000




In this form of eig MATLAB returns a matrix of the eigenvectors of K3 followed by a diagonal matrix of the
corresponding eigenvalues.

We know that multiples of eigenvectors of A are also eigenvectors (corresponding to the same
eigenvalue.) The command eig in MATLAB returns the eigenvectors normalized to have length
one. Here is another working of Example 5.5.6.
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EXAMPLE 5.5.11

Find the eigenvalues and eigenvectors for the matrix A in Example 5.5.6:

� Solution

We find the solution using MATLAB:

»A = [-1, 2, 2; 2 2 2; -3 -6 -6]

A =

−1 2 2

2 2 2
−3 −6 −6




»[V,D] = eig(A)

V =

−0.0000 0.8944 −0.7071

0.7071 −0.4472 −0.0000
−0.7071 0.0000 0.7071




D =

0.0000 0 0

0 −2.0000 0
0 0 −3.0000




Problems

Find the characteristic polynomial and the eigenvalues for
each matrix.

1.
[

1 4
2 3

]

2.
[

0 4
1 0

]

3.
[

2 0
0 −1

]

4.
[

0 3
3 8

]

5.
[

2 2
−1 −1

]

6.
[

5 4
4 −1

]

7.
[

2 −2
2 2

]

8. [1]

9. On×n

10. In

11.
[

3 1
5 −1

]

12.

−1 3 0

3 7 0
0 0 6




For the matrix in Problem 12:

13. Find the eigenvalues of AT .

14. Find the eigenvalues of A−1.

15. Find the eigenvalues of A2.

16. What are the connections between the eigenvalues of A
and those of AT ? A−1? A2?



Find the characteristic polynomial and the eigenvalues for
each matrix.

17.

 2 2 0

1 2 1
1 2 1




18.

 1 2 4

0 1 0
0 2 1




19.

 1 1 0

0 1 1
0 0 1




20.

 3 0 1

0 2 0
5 0 −1




21.

 10 8 0

8 −2 0
0 0 4




22.



1 1 −1 2
0 2 0 1
0 0 −1 1
0 0 0 0




23.
[

cos θ sin θ

− sin θ cos θ

]

24.
[

0 1
−b −a

]

25.

 0 1 0

0 0 1
−c −b −a




26.
[

cos θ sin θ

sin θ cos θ

]

Find the eigenvectors for the matrix in each problem. State if
each has n linearly independent eigenvectors.

27. Problem 1

28. Problem 3

29. Problem 5

30. Problem 7

31. Problem 9

32. Problem 11

33. Problem 12

34. Problem 17

35. Problem 19

36. Problem 20

37. Problem 21

38. Problem 22

Verify Theorems 5.5 and 5.7 for the matrix in each problem.

39. Example 5.5.1

40. Example 5.5.2

41. Example 5.5.3

42. Example 5.5.5

Show without use of Theorem 5.9 that

43. If B = αA, the eigenvalues of B are αλ1, αλ2, . . . , αλn .

44. If B = A − kI, the eigenvalues of B are λ1 − k,

λ2 − k, . . . , λn − k .

45. How do the eigenvectors of B relate to those of A in
Problem 43?

46. Show that the characteristic polynomials of A and
S−1 AS are identical.

47. Show that the eigenvalues of AT and A are identical. Are
the eigenvectors the same?

48. If A is invertible and B = A−1, show that the eigenvalues
of B are

1

λ1
,

1

λ2
, . . . ,

1

λn

49. Suppose that u �= 0 and v �= 0. If uT v �= 0, show that
the characteristic polynomial of uvT is C(λ) =
(−λ)n−1(α − λ), where α = uT v. Hint: uvT is of rank 1
and u is an eigenvector of uvT .

50. (a) Use definition 5.5.11 to show that

(−λ)nC

(
1

λ

)
= c0(−λ)n + c1(−λ)n−1 + · · · + 1

(b) Suppose that A−1 exists and C−1(λ) is its character-
istic polynomial. Use

C−1(λ) = |A−1 − λI| = |A−1||I − λA|
and part (a) to show that

C−1(λ) = (−λ)n + c1|A−1| (−λ)n−1 + · · ·
(c) Prove that

c1 = |A| tr A−1 = |A|
(

1

λ1
+ 1

λ2
+ · · · + 1

λn

)
51. Refer to the definition of a determinant to show that

|A − λI| = (a11 − λ) (a22 − λ) · · · (ann − λ) + Qn−2 (λ)

where Qn−2 (λ) is a polynomial of degree n − 2 in λ.
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52. Use the result in Problem 51 to prove Eq. 5.5.18.

53. Let C(λ) be the characteristic polynomial of A and set
B = C(A). Show that the eigenvalues of B are all zero.

54. If P is a projection matrix and λ �= 0 is an eigenvalue of
P, show that λ = 1. Hint: Multiply Px = λx by P and
simplify.

55. If M2 = I, show that the eigenvalues of M are either 1 or
−1. (Use the hint in Problem 54.) If ‖u‖ = 1, show that
I − 2uuT is just such a matrix.

56. Show that the characteristic polynomial of

A =




0 1 · · · 0
0 0 · · · 0
...

...

0 0 · · · 1
−an −an−1 · · · −a1




is

C(λ) = (−1)n(λn + a1λ
n−1 + a2λ

n−2 + · · · + an).

Use the result of Problem 56 to construct a matrix whose char-
acteristic polynomial is given by each of the following.

57. λ2 − 1

58. λ2 + 1

59. λ3 + λ2 + λ + 1

60. λ4 − 1

61. (λ − λ1)(λ − λ2)

62. (λ1 − λ)(λ2 − λ)(λ3 − λ)

63. Suppose that Ax0 = λ0x0, x0 �= 0 . Show that

(αAk)x0 = (
αλk

0

)
x0

for each integer k = 1, 2, . . . . Hence, show that p(A)x0 =
p(λ0)x0. [This proves that every p(λ0) is an eigenvalue
of p(A). It does not prove that every eigenvalue of p(A)

is obtained in this manner. It also shows that xo is always
an eigenvector of p(A) but does not prove that every
eigenvector of p(A) is an eigenvector of A.]

64. Show that Problem 63 establishes Theorem 5.9 if A has n
distinct eigenvalues.

65. Suppose that A is n × n and rank (A − λ1I) =
n − k, k > 0. Show that λ = λ1 is an eigenvalue and that
there are k linearly independent eigenvectors associated
with this eigenvalue.

Use Maple to solve

66. Problem 1

67. Problem 2

68. Problem 3

69. Problem 4

70. Problem 5

71. Problem 6

72. Problem 7

73. Problem 8

74. Problem 9

75. Problem 10

76. Problem 11

77. Problem 12

78. Problem 13

79. Problem 14

80. Problem 15

81. Problem 17

82. Problem 18

83. Problem 19

84. Problem 20

85. Problem 21

86. Problem 22

87. Problem 23

88. Problem 24

89. Problem 25

90. Problem 26

91. Problem 27

92. Problem 28

93. Problem 29

94. Problem 30

95. Problem 31

96. Problem 32

97. Problem 33

98. Problem 34

99. Problem 35

100. Problem 36

101. Problem 37

102. Problem 38

103. Problem 39

104. Problem 40

105. Problem 41

106. Problem 42

Use eig in MATLAB to solve

107. Problem 17

108. Problem 18

109. Problem 19
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110. Problem 20

111. Problem 21

112. Problem 22

Since the characteristic polynomial of A is just the polynomial
whose roots are the eigenvalues of A, we can reconstruct this
polynomial by using eig(A). Find the characteristic polyno-
mial using MATLAB for

113. Problem 17

114. Problem 18

115. Problem 19

116. Problem 20

117. Problem 21

118. Problem 22

An n × n matrix can have no more than n linearly independent eigenvectors6 but may have as
few as one. The example

A =




2 1 0 · · · 0
0 2 1 · · · 0
...

...

0 0 · · · 1
0 0 · · · 2




n×n

(5.6.1)

illustrates this point. Its characteristic polynomial is (2 − λ)n and, hence, λ = 2 is the only dis-
tinct eigenvalue. The system

(A − 2I)x =




0 1 0 · · · 0
0 0 1 · · · 0
...

...

1 0 · · · 1
0 0 · · · 0


 x = 0 (5.6.2)

has only one linearly independent eigenvector:

x1 = e1 =




1
0
...

0


 (5.6.3)

An n × n matrix with n linearly independent eigenvectors is a simple matrix. The matrices In

and those in Example 5.5.1 and 5.5.3 are simple. A matrix that is not simple is defective. The ma-
trices in Example 5.5.2 and Eq. 5.6.1 are defective. In fact, all matrices of the form

A =




α 1 0 0 · · · 0
0 α ∗ ∗ · · · ∗
0 0 α ∗ ∗
...

0 0 0 0 · · · α


 (5.6.4)

5.6 SYMMETRIC AND SIMPLE MATRICES
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are defective because λ = α is the only eigenvalue and, hence, the only eigenvectors are the
nontrivial solutions of (A − αI)x = 0. The reader may show that this homogeneous system can
have at most n − 1 linearly independent solutions. The problems exhibit various families of de-
fective matrices.

One of the most remarkable theorems in matrix theory is that real, symmetric matrices are
simple.7

318 � CHAPTER 5  / MATRIX APPLICATIONS

7 We forgo the proof in this text.

EXAMPLE 5.6.1

Show that the following symmetric matrices are simple by finding n linearly independent eigenvectors for
each.

(a) Jn =




1 1 · · · 1
1 1 · · · 1
...

1 1 · · · 1




(b) Kn = Jn − I

� Solution

(a) The eigenvalue λ = 0 of Jn has n − 1 eigenvectors corresponding to it; namely,

x1 =




−1
1
0
...

0


 , x2 =




−1
0
1
...

0


 , . . . , xn−1 =




−1
0
0
...

1




the n − 1 basic solutions of Jnx = 0. The eigenvector corresponding to the remaining eigenvalue λ = n can
be found by inspection, for

Jn




1
1
...

1


 = n




1
1
...

1




Thus, Jn is simple.
(b) For the matrix Kn , we note that if x is an eigenvector of Jn , Jnx = λx. Then,

Knx = (Jn − I)x

= Jnx − x

= λx − x = (λ − 1)x

and x is an eigenvector of Kn as well. So the n linearly independent eigenvectors of Jn are eigenvectors of Kn

and hence Kn is simple.
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EXAMPLE 5.6.2

Show that the following matrix is sample:

A =




1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1




� Solution

Since A is singular, λ = 0 is an eigenvalue and we compute two independent eigenvectors

x1 =




−1
0
1
0


 , x2 =




0
−1

0
1




By inspection,

A




1
0
1
0


 = 2




1
0
1
0


 , A




0
1
0
1


 = 2




0
1
0
1




so that

x3 =




1
0
1
0


 , x4 =




0
1
0
1




are eigenvectors. The set (x1, x2, x3, x4) is linearly independent.

Here are three useful facts about real symmetric matrices.

1. They are simple.
2. Their eigenvalues are real.
3. Eigenvectors corresponding to different eigenvalues are orthogonal.

We prove 2 and 3 in Section 5.6.1. Note in Example 5.6.1 that xn = [1, 1, . . . , 1]T is orthog-
onal to x1, x2, . . . , xn−1 because xn corresponds to the eigenvalue λ = n, while the others cor-
respond to λ = 0. In Example 5.6.2, x3 and x4 are orthogonal to x1 and x2 and, by accident, are
also mutually orthogonal. In regard to this last point, we can always use the Gram–Schmidt
process to orthogonalize eigenvectors corresponding to the same eigenvalues since linear com-
binations of eigenvectors corresponding to the same eigenvalue are eigenvectors.



5.6.1 Complex Vector Algebra
It is convenient at this point to review complex numbers with an eye towards extending our
matrix theory into the complex domain. We briefly remind the reader that the complex number
α is defined as

α = a + ib (5.6.5)

where a and b are real and i = √−1. The complex conjugate of α is α, defined by

α = a − ib (5.6.6)

Hence, α is a real number if and only if α = α. The extension of these ideas to matrices and vec-
tors is straightforward. Suppose that

A = (
ai j

)
m×n =




a11 a12 · · · a1n

a21 a22 · · · a2n
...

...

am1 am2 · · · amn


 (5.6.7)

Then, by definition,

A = (ai j )m×n (5.6.8)
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EXAMPLE 5.6.3

Orthogonalize the eigenvectors x1, x2, . . . , xn−1 corresponding to λ = 0 for the matrix Jn of Example 5.6.1.

� Solution

We are interested in the orthogonal set of eigenvectors corresponding to λ = 0, not necessarily an orthonormal
set. The reader is invited to verify that the Gram–Schmidt process yields orthonormal vectors proportional to

y1 =




−1
1
0
...

0


 , y2 =




−1
−1

2
...

0


 , . . . , yn−1 =




−1
−1

...

−1
n − 1




Note that Jnyk = 0 for k = 1, 2, . . . , n − 1, and that {y1, y2, . . . , yn−1, xn} with

xn =




1
1
...

1




form an orthogonal set of eigenvectors of A.



A special case of the preceding definition is

x =




x1

x2
...

xn


 implies x =




x1

x2
...

xn


 (5.6.9)

From the definition of α, we find that

αα = αα = a2 + b2 (5.6.10)

Since a and b are real numbers, αα is nonnegative; indeed, α
α is zero if and only if α = 0. There
is a vector analog of Eq. 5.6.10. Consider

xT x = x1x1 + x2x2 + · · · + xn xn

= |x1|2 + |x2|2 + · · · + |xn|2 (5.6.11)

Hence, xT x ≥ 0 and xT x = 0 if and only if x = 0.
The complex conjugation operator applied to matrix algebra yields the following results:

(1) AB = 
A
B
(2) Ax = 
A
x
(3) αA = 
α
A
(4) A+B = 
A + 
B
(5) |A| = |
A|

(5.6.12)

All five results follow from the definition of A and α (see the Problems at the end of this section).

5.6.2 Some Theoretical Considerations
We are now in a position to prove the following theorem.

Theorem 5.10: Real symmetric matrices have real eigenvalues.

Proof: Suppose that x is one eigenvector of A corresponding to the eigenvalue λ, so that

Ax = λx (5.6.13)

Take the complex conjugate of both sides and find

Ax = λx (5.6.14)

because Ax = Ax = Ax since A has only real entries. Now, consider

(Ax)T x = (λx)T x = λxT x (5.6.15)

and

(Ax)T x = xT (AT x) = xT Ax (5.6.16)
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since AT = A . Thus, using Eq. 5.6.14, we have

(Ax)T x = xT (λx) = λxT x. (5.6.17)

From Eqs. 5.6.15 and 5.6.17, we can write

λxT x = λxT x (5.6.18)

However, xT x > 0 since x �= 0, so that Eq. 5.6.18 implies that λ = λ, which in turn means that
λ is real.

Theorem 5.11: If A is real symmetric and λ �= µ are two eigenvalues of A with corresponding
eigenvectors x and y, respectively, then x ⊥ y.

Before we present the proof, we should note that x and y may always be taken as real vectors.
The reason for this is that

Ax = λx (5.6.19)

and

Ay = µy (5.6.20)

with λ and µ real, always have real solutions. If x is a real eigenvector of A, then ix is an eigen-
vector of A which is not real. We explicitly exclude this possibility by convention—we use only
the real solution to the homogeneous equations.

Proof: Consider (Ax)T y. On the one hand, using Eq. 5.6.19,

(Ax)T y = (λx)T y

= λxT y (5.6.21)

and on the other hand,

(Ax)T y = (xT AT )y

= xT Ay (5.6.22)

since AT = A. Thus, from Eq. 5.6.20,

(Ax)T y = xT µy (5.6.23)

Therefore, λxT y = µxT y and µ �= λ. Hence, xT y = 0, which implies that x ⊥ y.

5.6.3 Simple Matrices
Suppose that A is simple and x1, x2, . . . , xn are n linearly independent eigenvectors of A corre-
sponding to the eigenvalues λ1, λ2, . . . , λn , respectively. That is,

Axi = λi xi , i = 1, 2, . . . , n (5.6.24)
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Define S as

S = [x1, x2, . . . , xn] (5.6.25)

so that S is the matrix whose columns are the eigenvectors of A. Now, using Eq. 5.6.24, we see
that

AS = A[x1, x2, . . . , xn]

= [Ax1, Ax2, . . . , Axn]

= [λ1x1, λ2x2, . . . , λnxn]

= S




λ1 0 · · · 0
0 λ2 · · · 0
...

...

0 0 · · · λn


 (5.6.26)

Since the columns of S are linearly independent, S−1 exists and we have

S−1AS =




λ1 0 · · · 0
0 λ2 · · · 0
...

...

0 0 · · · λn


 (5.6.27)

It is common to write

� =




λ1 0 · · · 0
0 λ2 · · · 0
...

...

0 0 · · · λn


 (5.6.28)

Theorem 5.12: If A is simple, there exists a nonsingular matrix S such that

S−1AS = � (5.6.29)

The columns of S are eigenvectors of A and the diagonal entries of � are their corresponding
eigenvalues.
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Verify Theorem 5.12 for

A = J3 =

 1 1 1

1 1 1
1 1 1




EXAMPLE 5.6.4



Which matrices are simple? We have asserted without proof that symmetric matrices are sim-
ple (and incidentally, � is a real matrix in that case). We now show that matrices with distinct
eigenvalues are simple. The whole proof hinges on showing that the set {x1, x2, . . . , xn} of
eigenvectors corresponding to λ1, λ2, . . . , λn is linearly independent if λi �= λj . The heart of the
proof is seen by considering the special case of A3×3. So, suppose that x1, x2, x3, are eigenvec-
tors of A and

c1x1 + c2x2 + c3x3 = 0 (5.6.30)

We will multiply this equation by A − λ1I. Note that

(A − λ1I)x2 = Ax2 − λ1x2

= λ2x2 − λ1x2 = (λ2 − λ1)x2 (5.6.31)

and, similarly,

(A − λ1I)x3 = (λ3 − λ1)x3 (5.6.32)

Therefore,

c1(A − λ1I)x1 + c2(A − λ1I)x2 + c3(A − λ1I)x3 = 0 (5.6.33)

leads to

c2(λ2 − λ1)x2 + c3(λ3 − λ1)x3 = 0 (5.6.34)

Now multiply this equation by (A − λ2I). So

c2(λ2 − λ1)(A − λ2I)x2 + c3(λ3 − λ1)(A − λ2I)x3 = 0 (5.6.35)
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� Solution

The eigenvectors of J3 are 
−1

1
0


 ,


−1

0
1


 ,


 1

1
1




and hence,

S =

−1 −1 1

1 0 1
0 1 1


 , S−1 = 1

3


−1 2 −1

−1 −1 2
1 1 1




so

S−1J3S = S−1


 0 0 3

0 0 3
0 0 3


 =


 0 0 0

0 0 0
0 0 3




as required.

EXAMPLE 5.6.4 (Continued)



which leads to

c3(λ3 − λ1)(λ3 − λ2)x3 = 0 (5.6.36)

Since λ3 �= λ1 and λ3 �= λ2, Eq. 5.6.36 implies that c3 = 0. This in turn implies that c2 = 0,
from Eq. 5.6.34. But then c1 = 0 from Eq. 5.6.30, so {x1, x2, x3} is linearly independent. This
proves:

Theorem 5.13: If A has n distinct eigenvalues, then A is simple.
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Problems

1. Compute xT x̄ for x =


 1

i
−1


 . Compute xT x for this x.

2. Compute xT x and xT x for x =
[

1
i

]
.

3. Prove item (1) in Eq. 5.6.12.

4. Prove item (2) in Eq. 5.6.12.

5. Prove item (3) in Eq. 5.6.12.

6. Prove item (4) in Eq. 5.6.12.

7. Show that if A has eigenvalues λ1, λ2, . . . , λn , then A
has eigenvalues λ1, λ2, . . . , λn .

8. Use Problem 7 to show that |A| = |A| [see item (5) in
Eq. 5.6.12].

9. Show that the diagonal entries of AAT, where A is n × n
and symmetric, are nonnegative, real numbers. Are the
off-diagonal entries of AAT necessarily real?

10. Show that

x1 =


−1

1
0


 , x2 =


−1

−1
2


 , x3 =


 1

1
1




is a set of linearly independent eigenvectors of J3. Verify
Theorem 5.12 for this set.

Verify that each matrix is defective.

11.
[

α 1
0 α

]

12.

α 1 0

0 α ∗
0 0 β




13.



α 1 0 0
0 α ∗ ∗
0 0 γ ∗
0 0 0 δ




Verify, by computing the eigenvectors, that each matrix is
simple.

14.
[

α ∗
0 β

]
, α �= β

15.

α 1 0

0 β 1
0 0 γ


 , α �= β �= γ

16. If uT v �= 0, show that uvT is simple. Verify that uvT is 

defective if u =
[

1
−1

]
and vT = [1, 1].

17. If Q is orthogonal, show that |λ| = 1. Hint: Consider
(Qx)T (Qx̄).

18. Let P be a projection matrix. Show that rank P = tr P.
Hint: Use Problem 54 of Section 5.5.

19. Let C(λ) be the characteristic polynomial of A. For the
matrices of Problems 12 and 15, show that C(A) = O.

20. Suppose that A is real and skew-symmetric, AT = −A.
Following the proof of Theorem 5.10, show that
−λxT x = λxT x. Why does this prove that the eigenval-
ues of A are pure imaginary? Explain why A2 has non-
positive eigenvalues.

21. Find an example of a symmetric matrix with at least one
nonreal entry which does not have real eigenvalues.

In the proof of Theorem 5.12, explain

22. A[x1, x2, . . . , xn] = [Ax1, Ax2, . . . , Axn]



23. [λ1x1, λ2x2, . . . , λnxn]

= [x1, x2, . . . , xn]




λ1 0 0
0 λ2 0
...

...

0 0 λn




24. Suppose that Ax = λx and Ay = µy, λ �= µ. Show that
(A − λI)y = (µ − λ)y.

25. What is the converse of Theorem 5.13? If it is true, prove
it. If it is false, give an example illustrating its falsity.

Suppose that A is simple and S−1AS = �. Show that:

26. An = S�nS−1

27. p(A) = Sp(�)S−1 where p(x) = a0xn +
a1xn−1 + · · · + an

28. A−1 = S�−1S−1 if A−1 exists.

29. C(A) = O (use Problem 53 of Section 5.5).

30. Let x1, x2, . . . , xk be eigenvectors of A corresponding to
λ = λ0 and [x1, x2, . . . , xk , yk+1, . . . , yn] = T have lin-
early independent columns. Show that

T−1AT = k

k


λ0 0 · · · 0
0 λ0 · · · 0
... B
0 0 · · · λ0

O C




Hint:Argue by analogy with the text preceding Eq. 5.6.27.

31. Under the assumptions in Problem 30, show that

T−1AT − λI =
[

(λ0 − λ)I B
O C − λI

]
Hence, show that

|T−1AT − λI| = |A − λI|

implies that

|A − λI| = (λ0 − λ)k P(λ)

32. Use the results of Problem 65 in Section 5.5 and
Problem 31 to prove Theorem 5.8.

Use Maple to solve

33. Problem 11

34. Problem 12

35. Problem 13

36. Problem 14

37. Problem 15

38. Computer Laboratory Activity: An example of a simple
matrix with complex-valued entries comes from the
study of rotations. Fix a positive integer N, and let

W = e
−2π i

N = cos

(
2π

N

)
− i sin

(
2π

N

)
so that

W p = e
−2π i p

N = cos

(
2πp

N

)
− i sin

(
2πp

N

)
W is called a rotation operator, and W p is a point on the
unit circle in the complex plane. We can now create a
simple N × N matrix.

(a) For N = 3, the matrix is 


 W 0 W 0 W 0

W 0 W −1 W −2

W 0 W −2 W −4


 . 

Compute this matrix, and show that it is simple.

(b) In general, the columns of the matrix are created by
computing W nk , where n = 0, 1, 2, . . . , N − 1, and
k = 0, 1, 2, . . . , N − 1. Create the 4 × 4 matrix and
show that it is simple.

(c) Write code that will create the trigonometric matrix
for any positive integer N.
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The system of linear, first-order differential equations

x ′
1 = x1 + x2

x ′
2 = 4x1 + x2

(5.7.1)

of Section 5.5 is a special case of

x′ = Ax (5.7.2)

5.7 SYSTEMS OF LINEAR DIFFERENTIAL EQUATIONS:
THE HOMOGENEOUS CASE



where

x =




x1(t)
x2(t)

...

xn(t)


 , x′ =




x ′
1(t)

x ′
2(t)
...

x ′
n(t)


 (5.7.3)

and A is a constant matrix. This system is homogeneous. The system

x′ = Ax + f (5.7.4)

where

f =




f (t)
f2(t)

...

fn(t)


 �= 0 (5.7.5)

is a vector of known functions, is nonhomogeneous. A knowledge of the “general” solution of
the homogeneous problem will be shown to lead to a complete solution of the nonhomogeneous
system.

The initial-value problem is the system

x′ = Ax + f, x(t0) = x0 (5.7.6)

Here x0 is a given, fixed vector of constants. By the simple substitution τ = t − t0, we can con-
vert the system 5.7.6 into a standard form

x′ = Ax + f, x(0) = x0 (5.7.7)

Unless otherwise specified, we shall assume that t0 = 0, as in Eq. 5.7.7. In this section we wish
to study a homogeneous system, so we use f = 0.

The vector function, with u constant,

x(t) = ueλt (5.7.8)

is a solution of x′ = Ax if and only if

λueλt = Aueλt (5.7.9)

Since eλt > 0, this system is equivalent to

Au = λu (5.7.10)

We assume that u �= 0, for otherwise x(t) = 0, and this is a trivial solution of Eq. 5.7.2. Thus,
we can find a solution to the homogeneous problem if we can solve the corresponding algebraic
eigenvalue problem, Eq. 5.7.10. We shall assume that A is simple and hence that A has n linearly
independent eigenvectors u1, u2, . . . , un corresponding to the eigenvalues λ1, λ2, . . . , λn .
Hence, system 5.7.2 has n solutions

xi (t) = ui e
λi t , i = 1, 2, . . . , n (5.7.11)
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By taking linear combinations of the solutions (Eq. 5.7.11), we generate an infinite family of
solutions,

x(t) = c1x1(t) + c2x2(t) + · · · + cnxn(t)

=
n∑

k=1

ckukeλk t (5.7.12)

If we wish to choose a function from the family 5.7.12 which assumes the value x0 at t = 0, we
must solve

x(0) = x0 =
n∑

k=1

ckuk (5.7.13)

which is always possible since there are n linearly independent uk . We may rewrite Eq. 5.7.13 as

Uc = x0 (5.7.14)

where

U = [u1, u2, . . . , un], c =




c1

c2
...

cn


 (5.7.15)

Because we can use Eq. 5.7.12 to solve any initial-value problem, we call x(t) (see Eq. 5.7.12)
the general solution of x′ = Ax.
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Find the general solution of the system 5.7.1 and then solve

x′ =
[

1 1
4 1

]
x, x(0) =

[
1
1

]

� Solution

In Example 5.5.7 we have found eigenvectors for A; corresponding to λ1 = −1 and λ2 = 3,

u1 =
[

− 1
2

1

]
and u2 =

[
1
2

1

]

The general solution is then

x(t) = c1

[
− 1

2

1

]
e−t + c2

[
1
2

1

]
e3t

EXAMPLE 5.7.1
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We find c1 and c2 by solving

x(0) =
[

1
1

]
=

[
− 1

2
1
2

1 1

][
c1

c2

]

Hence,

c =
[

− 1
2
3
2

]

Therefore,

x(t) = −1

2

[
− 1

2

1

]
e−t + 3

2

[
1
2

1

]
e3t

solves the initial-value problem.

EXAMPLE 5.7.1 (Continued)

Solve the initial-value problem

x′ =

 0 1 0

0 0 1
2 1 −2


 x, x(0) =


 1

0
1




� Solution

After some labor, we find

C(λ) = −(λ + 1)(λ − 1)(λ + 2)

and therefore,

λ1 = −1, λ2 = 1, λ3 = −2

We compute

u1 =

 1

−1
1


 , u2 =


 1

1
1


 , u3 =


 1

−2
4




The general solution is then

x(t) = c1


 1

−1
1


 e−t + c2


 1

1
1


 et + c3


 1

−2
4


 e−2t

EXAMPLE 5.7.2
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Hence,

x(0) =

 1

0
1


 =


 1 1 1

−1 1 −2
1 1 4


 c

yields

c =




1
2
1
2
0




Finally,

x(t) = 1

2

[ 1
−1

1

]
e−t + 1

2


 1

1
1


 et

=




1
2 (et + e−t)

1
2 (et − e−t)

1
2 (et + e−t)


 =


 cosh t

sinh t
cosh t




is the required solution.

EXAMPLE 5.7.2 (Continued)

Show that an eigenvalue problem results when solving for the displacements of the two masses shown.

K2 6 N/m

3 kg

K1 4 N/m

y1(t)

y2(t)

2 kgM1

Static
equilibrium

M2

2g

4d1

6d2

3g

6d2

2g

4(y1 � d1)

6(y2 � y1 � d2)

3g

6(y2 � y1 � d2)

EXAMPLE 5.7.3
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� Solution

We isolate the two masses and show all forces acting on each. The distances d1 and d2 are the amounts the
springs are stretched while in static equilibrium. Using Newton’s second law we may write:

Static equilibrium In motion

0 = 6d2 − 4d1 + 2g

0 = 3g − 6d2

2y′′
1 = 6(y2 − y1 + d2) + 2g − 4(y1 + d1)

3y′′
2 = 3g − 6(y2 − y1 + d2)

These equations may be simplified to

y′′
1 = −5y1 + 3y2

y′′
2 = 2y1 − 2y2

These two equations can be written as the single matrix equation

y′′ = Ay

where

y =
[

y1

y2

]
, A =

[−5 3
2 −2

]

We note that the coefficients of the two independent variables are all constants; hence, as is usual, we assume
a solution in the form

y = uemt

where u is a constant vector to be determined, and m is a scalar to be determined. Our differential equation is
then

um2emt = Auemt

or

Au = λu

where the parameter λ = m2. This is an eigenvalue problem. The problem is solved by finding the eigenval-
ues λi and corresponding eigenvectors xi . The solutions y1(t) and y2(t) are then determined.

EXAMPLE 5.7.3 (Continued)

Solve the eigenvalue problem obtained in Example 5.7.3 and find the solutions for y1(t) and y2(t).

� Solution

The eigenvalues are

λ1 = −7 + √
33

2
= −0.6277, λ2 = −7 − √

33

2
= −6.372

EXAMPLE 5.7.4



5.7.1 Maple and MATLAB Applications
There are many ways to solve this example with Maple. For example, the eigenvectors
command can be used to get the components of the general solution. However, the dsolve
command, described in Chapter 1, can also be used here. In this case, we need to be careful with
the syntax in order to solve a system of equations.

To begin, load the DEtools package:

>with(DEtools):

Then, without using matrices, define the system of equations:

>sys1 := diff(x1(t),t) = x1(t)+x2(t), diff(x2(t),t) =
4*x1(t)+x2(t);

sys1 := d

dt
x1(t)= x1(t)+ x2(t),

d

dt
x2(t)= 4x1(t)+ x2(t)

To get the general solution, use the dsolve command, with set brackets placed appropriately
(in order to solve the set of differential equations):

>dsolve({sys1});{
x1(t)= —C1 e

(3t)+ —C2 e
(−t),x2(t)= 2—C1 e

(3t)− 2—C2 e
(−t)}
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The two eigenvectors are then

u1 =
[

1
1.46

]
, u2 =

[
1

−0.457

]

where the first component was arbitrarily chosen to be unity. The solutions y1(t) and y2(t) will now be deter-
mined. The constant m is related to the eigenvalues by m2 = λ. Thus,

m2
1 = −0.6277 and m2

2 = −6.372

These give

m1 = ±0.7923i, m2 = ±2.524i

We use both positive and negative roots and write the solution as

y(t) = u1(c1e0.7923i t + d1e−0.7923i t) + u2(c2e2.524i t + d2e−2.524i t)

where we have superimposed all possible solutions introducing the arbitrary constants c1, d1, c2, and d2, to ob-
tain the most general solution. The arbitrary constants are then calculated from initial conditions.

The components of the solution vector can be written as

y1(t) = a1 cos 0.7923t + b1 sin 0.7923t + a2 cos 2.524t + b2 sin 2.524t

y2(t) = 1.46[a1 cos 0.7923t + b1 sin 0.7923t] − 0.457[a2 cos 2.524t + b2 sin 2.524t]

Note that if we had made the eigenvectors of unit length, the arbitrary constants would simply change ac-
cordingly for a particular set of initial conditions.

EXAMPLE 5.7.4 (Continued)



Note that this solution is not quite the same as above. Factors of 2 and −2 have been absorbed
into the constants. Consequently, when the initial conditions are applied, the values of constants
in the Maple output will be different from c1 and c2, but, in the end, the solution will be the same.

To solve the initial-value problem:

>dsolve({sys1, x1(0)=1, x2(0)=1}, {x1(t), x2(t)});{
x2(t)= 3

2
e(3t)− 1

2
e(−t),x1(t)= 3

4
e(3t)+ 1

4
e(−t)

}

In addition to solving the system of equations, a plot of the solution in the xy-plane can be cre-
ated. With DEplot, the solution is drawn, and, in the case where the system is homogenous, so
is the direction field of the system. The direction field indicates the direction in which solutions
starting at other initial conditions will go, as t increases.

>DEplot([sys1], [x1(t),x2(t)], t=-3..1, [[x1(0)=1,x2(0)=1]],
stepsize=.05);

Maple uses a numerical solver to create this graph, so stepsize is required. A smaller
stepsize will make the solution smoother, but will also take longer to compute.

An equilibrium point of a system of differential equations is a point where x′ = 0 for all t. In
the case of linear, first-order, homogeneous systems, the origin is an equilibrium point. In this
situation, we can classify the origin as a sink, a source, a saddle, or indeterminate, depending on
the behavior of solutions as t → ∞. If all solutions approach the origin as t → ∞, then the ori-
gin is a sink. In this case, we can also label the origin as stable. The origin is a source if all so-
lutions move away from the origin as t → ∞, and then we say the origin is unstable. When the
origin is a saddle, then nearly all solutions move away from the origin, but there are a few that
approach it.

The origin is classified using the eigenvalues of A. If all eigenvalues are real and negative,
then the origin is a sink. For a source, all eigenvalues are real and positive. If some of the
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eigenvalues are negative and some are positive, then the origin is a saddle. (Example 5.7.1 is an
example of a saddle.) If there is an eigenvalue of 0, then the origin is indeterminate. This classi-
fication can be extended to complex eigenvalues, which will be discussed in the next section.

The terms sink, source, and saddle become clearer when considering direction fields for two-
dimensional systems. For example, here is another direction field for Example 5.7.1, this time
using the Maple command dfieldplot, which is the DEtools package (sys1 is defined as
before):

>dfieldplot([sys1],[x1(t),x2(t)], t=-3..3, x1=-15..15,

x2=-20..20, arrows=large);

Notice that solutions that begin near the line y = −2x will initially tend toward the origin as t
increases, but then start to move into the first or third quadrants. For example, if

x(0) =
[

1.1
−1.9

]

then the solution, after finding c1 and c2, is

x(t) = −2.05

[
− 1

2

1

]
e−t + 0.15

[
1
2

1

]
e3t

When t begins to increase, the term with e−t dominates, because 2.05 is much larger than 0.15,
so the solution moves towards the origin. However, as t gets larger, e−t approaches 0, and the
term with e3t becomes the dominant term. In this situation, the solution will end up in the first
quadrant.

�15 �10 �5

�10
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20

�20

0 5 10 15

x2

x1

334 � CHAPTER 5  / MATRIX APPLICATIONS



However, solutions that begin on the line y = −2x will approach the origin as t → ∞. In
this case, c2 = 0, and the solution is of the form

x(t) = c1

[
− 1

2

1

]
e−t

Sinks and sources will be explored further in the problems.
We have seen that a complete set of eigenvectors and their corresponding eigenvalues enables

us to write a general solution to the homogeneous system x′ = A x. Since the MATLAB com-
mand [V,D] � eig(A) provides us with both the eigenvalues and the eigenvectors, our work in
Section 5.5 may be used here as well. Two notes of caution, however: The eigenvectors com-
puted “by hand” tend not to be normalized, while those obtained by eig are always normalized.
And, when the eigenvalues and eigenvectors are complex, further work must be done on the
MATLAB answers to insure a real solution. On the other hand, MATLAB can solve the initial-
value problems directly by use of ODE45. We illustrate these cases in the following examples.
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EXAMPLE 5.7.5

Find the general solution of the system given in Example 5.7.1 by using eig in MATLAB. Then solve the
initial-value problem and compare the answer given by MATLAB to the answer given in the example.

� Solution

MATLAB allows the following solution:

»A=[1,1;4 1];

»[V D]=eig(A)

V =
[
0.4472 −0.4472
0.8944 0.8944

]

D =
[
3.0000 0

0 −1.0000

]

From this information, the general solution can be written using Eq. (5.7.12).
At t = 0, the exponential functions evaluate to 1, so from Eq. (5.7.4), we solve the system Uc = x(0).

Here, V = U :

»x0=[1 1];

»c=V\x0

C =
[

1.6771
−0.5590

]

Now the unique solution is obtained by replacing c1 by 1.6771 and c2 by −0.5590 in the general solution.
We leave the work to the exercises of verifying that the solutions obtained here and in Example 5.7.1 are
identical.



336 � CHAPTER 5  / MATRIX APPLICATIONS

Problems

Find the general solution of the differential system x′ = Ax
for each matrix A.

1.
[

1 3
1 −3

]

2.
[

1 1
3 −1

]

3.
[

1 α2 − 1
1 −1

]
α �= 0

4.
[

2 1
2 3

]

5.

 4 −3 −2

2 −1 −2
3 −3 −1




6.

 1 1 1

0 2 1
0 0 3




7.

 1 1 1

1 −1 1
0 0 0




8.

 1 1 −1

0 0 1
0 −2 −3




Solve the initial-value problem x′ = Ax, x(0) = x0 for each
system.

9. Problem 1, x0 =
[

1
0

]

10. Problem 1, x0 =
[

0
1

]

11. Problem 1, x0 =
[

1
1

]

12. Problem 8, x0 =


 0

1
0




13. Problem 8, x0 =


 1

0
1




14. Problem 8, x0 =


 0

0
1




15. Problem 8, x0 =

−1

2
−2




Consider the electrical circuit shown.

16. Derive the differential equations that describe the cur-
rents i1(t) and i2(t).

17. Write the differential equations in the matrix from i′′ =
Ai and identify the elements in the coefficient matrix A.

18. Let i = xemt and show that an eigenvalue problem results.

19. Find the eigenvalues and unit eigenvectors if L1 = 1,
L2 = 2, C1 = 0.02, and C2 = 0.01.

20. Determine the general form of the solutions i1(t) and
i2(t).

21. Find the specific solutions for i1(t) and i2(t) if i1(0) = 1,
i2(0) = 0, i ′

1(0) = 0, and i ′
2(0) = 0.

Reassign the elements of the spring–mass system of
Example 5.7.3 for the values M1 = 2, M2 = 2, K1 = 12, and
K2 = 8.

22. What are the eigenvalues and unit eigenvectors?

23. What is the most general solution?

24. Find the specific solutions for y1(t) and y2(t) if
y1(0) = 0, y2(0) = 0, y′

1(0) = 0, and ẏ2(0) = 10.

25. For the circuit of Problem 16, find the specific solution if
L1 = 10

3 , L2 = 5, C1 = 1
200 , C2 = 1

300 , i1(0) = 0,
i2(0) = 0, i ′

1(0) = 50, i ′
2(0) = 0.

C1

i1

L1

C2

i2

L2



26. For the system of Example 5.7.3, find the specific solu-
tion if M1 = 1, M2 = 4, K1 = 20, K2 = 40, y1(0) = 2,
y2(0) = 0, y′

1(0) = 0, y′
2(0) = 0.

Use Maple to solve the following and to create a direction
field. Classify the stability of the origin.

27. Problem 1

28. Problem 2

29. Problem 3

30. Problem 4

Use Maple to solve the following. Identify the origin as a
source, sink, or saddle.

31. Problem 5

32. Problem 6

33. Problem 7

34. Problem 8

35. Prove that the solution from Example 5.7.1 is found
along a straight line in the xy-plane, as suggested by the
output from DEplot.

Use Maple to solve the following problems.

36. Problem 9 (In addition, create a plot of the direction field
and solution.)

37. Problem 10 (In addition, create a plot of the direction
field and solution.)

38. Problem 11 (In addition, create a plot of the direction
field and solution.)

39. Problem 12

40. Problem 13

41. Problem 14

41. Problem 15

42. Problem 21 (In addition, classify the stability of the
origin, and create a direction field.)

43. Problem 24 (In addition, classify the stability of the
origin, and create a direction field.)

44. Problem 25

45. Problem 26

5.7.2 Solutions with Complex Eigenvalues
We begin this section by assuming that the matrix A is size 2 × 2, with 2 complex conjugate
eigenvalues λ1 = a + bi and λ2 = a − bi , where a and b are real numbers, and b �= 0. In this
case, A will have two linearly independent eigenvectors u1 and u2. From this, there will be two
solutions, one that is

x1(t) = u1e(a+bi)t

= u1eat eibt
(5.7.16)

As written, this is not a useful answer, because there are two unanswered questions. First, how
do we interpret eibt ? Second, what do eigenvectors of complex eigenvalues look like? Aren’t
these eigenvectors also complex-valued?

As described in Section 10.2, we can write

eiθ = cos θ + i sin θ (5.7.17)

This equation is known as Euler’s formula.
It is true that u1 is complex valued, so let u1 = j + ki , where j and k are real-valued vectors.

(Then it is not hard to show that u2 = j − ki .) Thus, our solution becomes

x1(t) = (j + ki)eat(cos bt + i sin bt)

= eat(j cos bt − k sin bt + i(k cos bt + j sin bt))

= eat(j cos bt − k sin bt) + ieat(k cos bt + j sin bt) (5.7.18)
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A similar argument for x2(t) = u2e(a−bi)t
yields

x2(t) = eat(j cos bt − k sin bt) − ieat(k cos bt + j sin bt) (5.7.19)

From these solutions, two real-valued, linearly-independent solutions emerge. The average of
these two solutions is eat(j cos bt − k sin bt), while the difference of these solutions (divided
by i) is eat(k cos bt + j sin bt). Our general solution will then be

x(t) = c1eat(j cos bt − k sin bt) + c2eat(k cos bt + j sin bt) (5.7.20)
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Solve the initial-value problem

x′ =
[

1 −15
7 2

]
x, x(0) =

[
1
2

]

� Solution

The eigenvalues are:

λ1 = 3 + i
√

419

2
= 1.5 + 10.2347i, λ2 = 3 − i

√
419

2
= 1.5 − 10.2347i

Thus, a = 1.5 and b = 10.2347. The two eigenvectors are

u1 =
[−.0714 + 1.4621i

1

]
, u2 =

[−.0714 − 1.4621i

1

]

Therefore,

j =
[−0.0714

1

]
, k =

[
1.4621

0

]

Thus, the general solution is

x(t) = c1e1.5t

[−0.0714 cos 10.2347t − 1.4621 sin 10.2347t

cos 10.2347t

]

+ c2e1.5t

[ 1.4621 cos 10.2347t − 0.0714 sin 10.2347t

sin 10.2347t

]

When t = 0, we have

x(0) = c1j + c2k

A calculation reveals that c1 = 2 and c2 = 0.7816.

EXAMPLE 5.7.5
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Since a > 0, eat will grow as t increases, so the origin in this situation is a source. This is apparent from
the direction field using Maple:

>sys1 := diff(x1(t),t) = x1(t)-15*x2(t), diff(x2(t),t) = 7*x1(t)+2*x2(t) ;

sys1 := d

dt
x1(t)= x1(t)− 15x2(t),

d

dt
x2(t)= 7x1(t)+ 2x2(t)

>DEplot([sys1],[x1(t),x2(t)], t=-3..1,
[[x1(0)=1,x2(0)=2]], stepsize=.05);
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EXAMPLE 5.7.5 (Continued)

Problems

Find the general solution of the differential system x′ = Ax
for each matrix A:

1.
[

4 1
−2 6

]

2.
[−17 169

−1 −27

]

3.
[

2 −3
7 4

]

4. Prove that if A is a 2 × 2 matrix with eigenvalues
λ1 = a + bi and λ2 = a − bi , and u1 = j + ki is the
eigenvector associated with λ1, then u2 = j − ki is the
eigenvector associated with λ2.



Solve each system of equations with Maple, and then deter- 

mine the solution if x(0) =
[

1
2

]
. Create a direction field with 

the solution included, and classify the origin as a source or
sink for each of the following:

5. Problem 1

6. Problem 2

7. Problem 3

8. Computer Laboratory Activity: In the January 28, 2000
issue of Science,8 a system of four differential equations
known as a SEIR model is described to analyze measles
in the populations of four cities. In the equations, E(t) is
the percentage exposed, but not yet technically infected,
while S(t) is the percentage that is susceptible but not yet
exposed.

We will use i(t) for the percentage infected and not
recovered. (Save I for 

√−1 in Maple.) The percentage
recovered is R(t). Therefore S + E + i + R = 1. The
birth rate per capita of the population is b = 0.02 per
year and the death rate per capita is d = b. The rate of
disease transmission is r = 700 per day.

The latency period, the amount of time between being
exposed and being infected, is the reciprocal of l = 0.125

per day, so the latency period is 8 days. The infection
period, the amount of time you are actually sick with
measles, is the reciprocal of g = 0.2 per day, so the
infection period is 5 days.

The SEIR model is

dS(t)

dt
= b − ri(t)S(t) − dS(t)

d E(t)

dt
= ri(t)S(t) − l E(t) − d E(t)

di(t)

dt
= l E(t) − gi(t) − di(t)

d R(t)

dt
= gi(t) − d R(t)

An equilibrium point is a point where all of the
derivatives are zero. One of the equilibrium points of the
system is (1, 0, 0, 0), the situation before a new disease is
introduced into the population, and everyone is suscepti-
ble. Determine the other equilibrium point of the system.
How can we determine if this equilibrium point is a
source or sink?

In this section we find the general solution of the nonhomogeneous system

x′ = Ax + f, f �= 0 (5.8.1)

We call

x′ = Ax (5.8.2)

the associated homogeneous system and assume that its general solution is

x(t) =
n∑

k=1

ckukeλk t (5.8.3)

or, equivalently,

x(t) = [u1eλ1t , u2eλ2t , . . . , uneλn t ]




c1

c2
...

cn


 (5.8.4)

We are assuming that A is simple and that {u1, u2, . . . , un} is a linearly independent set of
eigenvectors of A. Write

�(t) = [u1eλ1t , u2eλ2t , . . . , uneλn t ] (5.8.5)
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Then the general solution of x′ = Ax may be written as

x(t) = �(t)c, c =




c1

c2
...

cn


 (5.8.6)

The matrix �(t), whose columns are solutions of x′ = Ax, is a fundamental matrix of x′ = Ax
if �(0) is nonsingular. This is the case considered here since �(0) = [u1, u2, . . . , un].

We use �(t) to find a solution of the nonhomogeneous system 5.8.1 by the method of
variation of parameters. Assume that there exists a function u(t) such that

xp(t) = �(t)u(t) (5.8.7)

is a solution of x′ = Ax + f. Then

x′
p(t) = �′(t)u(t) + �(t)u′(t) (5.8.8)

However,

�′(t) = [λ1u1eλ1t , . . . , λnuneλn t ]

= [Au1eλ1t , . . . , Auneλn t ]

= A[u1eλ1t , . . . , uneλn t ] = A�(t) (5.8.9)

Therefore, from Eqs. 5.8.8 and 5.8.9,

x′
p(t) = A�(t)u(t) + �(t)u′(t)

= A�(t)u(t) + f(t) (5.8.10)

since we are assuming that x′
p(t) = Axp(t) + f(t). Equation 5.8.10 simplifies to

�(t)u′(t) = f(t) (5.8.11)

a necessary and sufficient condition that �(t)u(t) is a solution of Eq. 5.8.1.
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Find a particular solution of

x′ =
[

1 0
−1 3

]
x +

[
et

1

]

using the variation-of-parameters formula 5.8.11.

EXAMPLE 5.8.1
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� Solution

After some labor we determine

�(t) =
[

2et 0
et e3t

]

Note that

�′(t) =
[

2et 0
et 3e3t

]

=
[

1 0
−1 3

] [
2et 0
et e3t

]

as required by Eq. 5.8.9, a good check on our arithmetic. Equation 5.8.11 requires that

[
2et 0
et 3e3t

]
u′ =

[
et

1

]

which, by elementary row operations, is equivalent to

[
2et 0
0 e3t

]
u′ =

[
et

1 − et/2

]

Hence,

u′(t) =
[

1
2

e−3t − e−2t/2

]

and therefore,

u(t) =
[

t/2
−e−3t/3 + e−2t/4

]

We compute

xp(t) = �(t)u(t)

=
[

tet

tet/2 − 1
3 + et/4

]

The reader is invited to verify that

x′
p = Axp + f

EXAMPLE 5.8.1 (Continued)



It is proved in advanced texts on differential equations (see also Problem 9) that �(t) is
invertible for each t. Hence, Eq. 5.8.11 can be written

u′(t) = �−1(t)f(t) (5.8.12)

and therefore,

u(t) =
∫ t

0
�−1(s)f(s)ds + c (5.8.13)
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EXAMPLE 5.8.2

Find a particular solution of

x′ =
[

0 −1
−1 0

]
x +

[
e2t

e2t

]

� Solution

For this system, the fundamental matrix is

�(t) =
[

et e−t

−et e−t

]

and therefore,

�(t)u′(t) = e2t

[
1
1

]

determines u′(t). Elementary row operations lead to the equivalent system[
et 0
0 e−t

]
u′(t) =

[
0

e2t

]

from which

u′(t) =
[

0
e3t

]

Therefore,

u(t) =
[

0
e3t/3

]

and

xp(t) =
[

et e−t

−et e−t

] [
0

e3t/3

]
= 1

3

[
e2t

e2t

]
= 1

3
e2t

[
1
1

]



Theorem 5.14: The function

xp(t) = �(t)u(t) (5.8.14)

where

u(t) =
∫ t

0
�−1(s)f(s) ds + C (5.8.15)

is a solution of x′ = Ax + f, which vanishes at t = 0.
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EXAMPLE 5.8.3

Find a particular solution of the system in Example 5.8.1 which vanishes at t = 0.

� Solution

In Example 5.8.1 we computed

u′(t) =
[

1
2

e−3t − e−2t/2

]

Hence,

u(t) =
∫ t

0

[
1
2

e−3s − e−2s/2

]
ds

=
[ t

2
−e−3t/3 + e−2t/4 + 1

12

]

From this we find that

xp(t) = �(t)u(t) =
[

tet

tet/2 − 1
3 + et/4 + e3t/12

]

We define the general solution of x′ = Ax + f by the equation

x(t) = �(t)c + xp(t) (5.8.16)

in which xp(t) is any particular solution of x′ = Ax + f and �(t)c is the general solution of
the associated homogeneous system x′ = Ax. Thus, the general solution of the system in
Example 5.8.1 is

x(t) =
[

2et 0
et e3t

]
c +

[
tet

tet/2 − 1
3 + et/4

]

If the particular solution of Example 5.8.3 is used to form the general solution, the constant
vector c would be different from that in the above solution.



5.8.1 Special Methods
In solving x′ = Ax + f, we look for any particular solution of x′ = Ax + f, to which we then
add the general solution of x′ = Ax. The method of the variation of parameters always yields a
particular solution once a knowledge of the general solution of x′ = Ax is available. It some-
times happens that we may entirely bypass this general solution and discover a particular solu-
tion by inspection. This happens frequently enough to warrant the inclusion of this technique in
its own section. The method is known as the method of undetermined coefficients. It takes full
advantage of the “forcing” function f(t). For instance, in the system

x′ = Ax − b (5.8.17)

where b is a constant, we might reasonably expect a constant solution, say

x(t) = k (5.8.18)

Since x′(t) = 0 when x(t) = k, k must satisfy 0 = Ax − b. If A−1 exists, then k = A−1b and

x(t) = A−1b (5.8.19)

solves Eq. 5.8.17. Consider the next theorem, which provides a general context for the example
above.

Theorem 5.15: The system

x′ = Ax − beωt (5.8.20)

has a particular solution

xp(t) = keωt (5.8.21)

if ω is not an eigenvalue of A.

Proof: The proof consists of simply substituting xp as given by Eq. 5.8.21 into Eq. 5.8.20. This
leads to

(A − ωI)k = b (5.8.22)

which has a solution if (A − ωI) is nonsingular, that is, if ω is not an eigenvalue of A. If ω = 0
in Eq. 5.8.20, then we are in the case given by Eq. 5.8.17. If ω = 0 is not an eigenvalue of A,
then A is nonsingular and Eqs. 5.8.19 and 5.8.22 are equivalent.
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Find a particular solution of

x′ =
[

0 −1
−1 0

]
x + e2t

[
1
1

]
EXAMPLE 5.8.4



The uses of Theorem 5.15 can be extended in a number of ways. Consider the systems

(a) x′ = Ax − beiωt

(b) x′ = Ax − b cos ωt (5.8.23)

(c) x′ = Ax − b sin ωt

where A is a real matrix, b a real constant vector, and ω is a real scalar. If we assume that xp(t)
solves Eq. 5.8.23a, then 

x′
p(t) = Axp(t) − beiωt (5.8.24)

and by taking real and imaginary parts9

[Re xp(t)]
′ = A[Re xp(t)] − b cos ωt

[Im xp(t)]
′ = A[Im xp(t)] − b sin ωt

(5.8.25)

The expressions in Eq. 5.8.25 are interpreted as asserting that the real part of a solution of
Eq. 5.8.23a solves Eq. 5.8.23b, and the imaginary part solves Eq. 5.8.23c.
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� Solution

We try

xp(t) = ke2t

Then

2ke2t =
[

0 −1
−1 0

]
ke2t + e2t

[
1
1

]

determines k. We divide by e2t and collect terms to obtain

[−2 −1
−1 −2

]
k =

[−1
−1

]

Then

k = 1
3

[
1
1

]
and xp(t) = 1

3 e2t

[
1
1

]

EXAMPLE 5.8.4 (Continued)

9We write xp(t) = Re xp(t) + i Im xp(t); then Re eiωt = cos ωt , Im eiωt = sin ωt , since eiωt =
cos ωt + i sin ωt .
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EXAMPLE 5.8.5

Using undetermined coefficients, find a particular solution of

x′ =
[

0 −2
1 −1

]
x + sin t

[
0
1

]

� Solution

We solve

x′ =
[

0 −2
1 −1

]
x + eit

[
0
1

]

by assuming a solution of the form

xp(t) = keit

and then using the imaginary part of the solution. For this function

ieit k = eit

[
0 −2
1 −1

]
k + eit

[
0
1

]

and hence, [−i −2
1 −1 − i

]
k =

[
0

−1

]

Therefore,

k =
[ −1 + i

1
2 (1 + i)

]

and thus

xp(t) = eit

[ −1 + i
(1 + i)/2

]

= (cos t + i sin t)

[ −1 + i
(1 + i)/2

]

=
[ − cos t − sin t

(cos t − sin t)/2

]
+ i

[ − sin t + cos t
(cos t + sin t)/2

]

so

Im xp(t) =
[

cos t − sin t
(cos t + sin t)/2

]

The usefulness of Theorem 5.15 is further enhanced by the principle of superposition, which
is presented in the following theorem.



Theorem 5.16: If xp1(t) and xp2(t) solve

x′ = Ax + f1 (5.8.26)

and

x′ = Ax + f2 (5.8.27)

respectively, then

xp(t) = xp1(t) + xp2(t) (5.8.28)

solves

x′ = Ax + f1 + f2 (5.8.29)

Proof: We have

x′
p(t) = x′

p1(t) + x′
p2(t)

= [Axp1(t) + f1] + [Axp2(t) + f2]

= A[xp1(t) + xp2(t)] + f1 + f2 (5.8.30)
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Find a particular solution of

x′ =
[

0 −2
1 −1

]
x + (1 + cos t)

[
0
1

]

� Solution

We set

f1 =
[

0
1

]
, f2 = cos t

[
0
1

]

For the system

x′ = Ax +
[

0
1

]

we try xp1(t) = k, which leads to

xp1(t) = −
[

1
0

]

EXAMPLE 5.8.6



5.8.2 Initial-Value Problems
The general solution provides sufficiently many solutions to solve the initial-value problem

x′ = Ax + f, x(t0) = x0 (5.8.31)

For, as we have seen earlier,

x(t) = �(t)c + xp(t) (5.8.32)

is a solution of x′ = Ax + f if �(t) is a fundamental matrix of x′ = Ax and xp(t) is a particular
solution of x′ = Ax + f. Then

x(t0) = x0 = �(t0)c + xp(t0) (5.8.33)

has the solution for c,

c = �−1(t0){x0 − xp(t0)} (5.8.34)
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For the system

x′ = Ax + cos t

[
0
1

]

we use the real part of xp2(t) as computed in Example 5.8.5. So

xp2(t) =
[ − cos t − sin t

(cos t − sin t)/2

]

and therefore

xp(t) = −
[

1
0

]
+

[ − cos t − sin t
(cos t − sin t)/2

]
=

[−1 − cos t − sin t
(cos t − sin t)/2

]

is the required solution.

EXAMPLE 5.8.6 (Continued)

Find a solution of the initial-value problem

x′ =
[

1 0
−1 3

]
x +

[
et

1

]
, x(0) =

[
2
1

]
EXAMPLE 5.8.7



From a mathematical viewpoint there remains the issue of whether initial-value problems
can have more than one solution. Suppose that x(t) and y(t) are both solutions of
x′ = Ax + f, x(t0) = x0 . Then

x′ = Ax + f, y′ = Ay + f (5.8.35)

so that by subtraction

(x − y)′ = A(x − y) (5.8.36)

Also x(t0) − y(t0) = x0 − x0 = 0. So setting z(t) = x(t) − y(t),

z′(t) = Az(t), z(t0) = 0 (5.8.37)

Equation 5.8.37 is the homogeneous, initial-value problem and one can prove that it has only the
trivial solution, z(t) = 0. Hence, there is one and only one solution to any initial-value problem.

5.8.3 Maple Applications
Note in Example 5.8.1 that

xp(0) =
[

0
−1/12

]
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� Solution

The system is solved in Example 5.8.1, from which we can write the general solution as

x(t) =
[

2et 0
et e3t

]
c +

[
tet

tet/2 − 1
3 + et/4

]

We find c from

x(0) =
[

2
1

]
=

[
2 0
1 1

]
c +

[
0

− 1
12

]

Hence,

c =
[

1
1
12

]

and

x(t) =
[

2et 0
et e3t

] [
1
1
12

]
+

[
tet

tet/2 − 1
3 + et/4

]

=
[

2et + tet

5et/4 + e3t/12 + tet/2 − 1
3

]

is the required solution.

EXAMPLE 5.8.7 (Continued)



We can plot the solution, for −3 ≤ t ≤ 1, using Maple:

>sys1 := diff(x1(t),t) = x1(t)+exp(t), diff(x2(t),t)
= -x1(t)+3*x2(t)+1:

>DEplot([sys1],[x1(t),x2(t)], t=-3..1,[[x1(0)=0,x2(0)=-1/12]]);

�0.5 0

�0.5

0.5

1

x2

0.5 1 1.5 x12 2.5

1.5
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Problems

Find the general solution of x′ =
[

0 1
1 0

]
x + f, where f is

given by

1.
[

1
−1

]

2.
[

0
et

]

3.
[

1
1

]

4.
[

1
1 − et

]

5.
[

t
t

]

Given the fundamental matrix

�(t) = et
[

1 −1 + t
1 t

]

of the system x′ = Ax, where A =
[

0 1
−1 2

]
, find the 

solutions of x′ = Ax + f, x(0) = x0 , where

6. f(t) =
[

0
1

]
, x0 =

[
0
1

]

7. f(t) =
[

1
1

]
, x0 =

[
0
1

]

8. f(t) =
[

1
−1

]
e−t , x0 =

[
0
0

]

9. Show that � = �B satisfies �′ = A�, where B is an in-
vertible constant matrix.

10. Verify by direct substitution that

xp(t) =
[

tet

tet/2 − 1
3 + et/4

]

is a solution of the system in Example 5.8.1.



11. Verify by direct substitution that

xp(t) =
[

tet

tet/2 − 1
3 + et/4 − e3t/12

]
is a solution of the system in Example 5.8.1.

Use the method of variation of parameters to find a particular
solution of

12. The system in Example 5.8.4.

13. The system in Example 5.8.5.

14. The system in Example 5.8.6.

15. Solve x′ = Ax + b by the method of variation of
parameters—assume that A = 2 × 2.

Use the method of undetermined coefficients to find a particu-

lar solution of x′ =
[

1 0
−1 3

]
x + f, where f is given by

16.
[

1
1

]

17.
[

1
1 − e−t

]

18.
[

sin t
cos t

]

Use the method of undetermined coefficients to find a particu-

lar solution of x′ =
[

0 −2
1 −1

]
x + f, where

19. f(t) = cos t

[
1
0

]

20. f(t) =
[

cos t
sin t

]

21. Using the method of undetermined coefficients, find a
particular solution of

x′ =


 2 1 0

0 2 0
0 0 −1


 x +


 et

1
0




22. Suppose that �(t) is a fundamental matrix of x′ = Ax
and that �(0) = I. Differentiate

xp(t) =
∫ t

0
�(t − s)f(s) ds

to show that xp(t) is a solution of 

x′ = Ax + f, x(0) = 0

Use Maple to solve the system of differential equations, and
plot a solution:

23. Problem 1

24. Problem 2

25. Problem 3

26. Problem 4

27. Problem 5

28. Problem 6

29. Problem 7

30. Problem 8

31. Problem 16

32. Problem 17

33. Problem 18

34. Solve Problem 21 using Maple.
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The use of vector analysis comes rather naturally, since many of the quantities encountered in
the modeling of physical phenomena are vector quantities; examples of such quantities are
velocity, acceleration, force, electric and magnetic fields, and heat flux. It is not absolutely nec-
essary that we use vector analysis when working with these quantities; we could use the compo-
nents of the vectors and continue to manipulate scalars. Vector analysis, though, simplifies many
of the operations demanded in the solution of problems or in the derivation of mathematical
models; thus, it has been introduced in most undergraduate science curricula.

When vectors are used in the physical sciences they usually refer to descriptions in two or
three dimensions. Under such restrictions, special notations and operations, different from those
in Chapters 4 and 5, seem to be useful and convenient. The notation for vectors in one such
example and the operation of the “cross product” is another. The purpose of this chapter is part
a review of vectors in the “classical” notation, part an introduction to vector analysis as it is used
in dynamics, and part a presentation of the vector calculus, including vector operators and the
vector integral theorems of Green and Stokes.

As in Chapters 4 and 5, the linalg package will be used, along with the commands from
those chapters and Appendix C. New commands include: evalm, dotprod, crossprod,
display, grad, and implicitplot3d.

6.2.1 Definitions
A quantity that is completely defined by both magnitude and direction is a vector. Force is such
a quantity. We must be careful, though, since not all quantities that have both magnitude and
direction are vectors. Stress is such a quantity; it is not completely characterized by a magnitude
and a direction and thus it is not a vector. (It is a second-order tensor, a quantity that we will not
study in this text.) A scalar is a quantity that is completely characterized by only a magnitude.
Temperature is one such quantity.

A vector will be denoted in boldface, e.g., A. The magnitude of the vector will be denoted by
the italic letter, e.g., A or with bars, e.g., ‖A‖. A vector A is graphically represented by an arrow
that points in the direction of A and whose length is proportional to the magnitude of A, as in
Fig. 6.1. Two vectors are equal if they have the same magnitude and direction; they need not act at
the same location. A vector with the same magnitude as A but acting in the opposite direction will

6.2 VECTOR ALGEBRA

6.1 INTRODUCTION

6 Vector Analysis



be denoted −A. Although we allow vectors to originate from an arbitrary point in space, as in
Fig. 6.1, we will, later on, assume that vectors, in general, emanate from the origin of coordinates.

A unit vector is a vector having a magnitude of 1. If we divide a vector A by the magnitude
A we obtain a unit vector in the direction of A. Such a unit vector will be denoted iA , where the
boldface lowercase signifies a unit vector. It is given by

iA = A
A

(6.2.1)

Any vector can be represented by its unit vector times its magnitude.
Three unit vectors which are used extensively are the unit vectors in the coordinate directions

of the rectangular, Cartesian reference frame (this reference frame will be used primarily in this
chapter). No subscripts will be used to denote these unit vectors. They are i, j, and k acting in
the x , y, and z directions, respectively, and are shown in Fig. 6.2. In terms of the vectors of
Chapter 5, we see that

i =

 1

0
0


 = e1, j =


 0

1
0


 = e2, k =


 0

0
1


 = e3 (6.2.2)

6.2.2 Addition and Subtraction
Two vectors A and B are added by placing the beginning of one at the tip of the other, as shown
in Fig. 6.3. The sum A + B is the vector obtained by connecting the point of beginning of the
first vector with the tip of the second vector, as shown. If the two vectors to be added are the
sides of a parallelogram, their sum is given by the diagonal as shown in the figure. It is clear from
the geometry that vector addition is commutative,

A + B = B + A (6.2.3)
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A

(x, y, z)

y

z

x

Figure 6.1 Graphical representation of a vector.

y

z

x

i

k

j

Figure 6.2 The three unit vectors, i, j, and k.
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Subtraction of vectors may be taken as a special case of addition; that is,

A − B = A + (−B) (6.2.4)

Subtraction is illustrated in Fig. 6.4. Note that A − B is the other diagonal (see Fig. 6.3) of the
parallelogram whose sides are A and B.

Finally, we show in Fig. 6.5 a graphical demonstration that vector addition is associative;
that is,

A + (B + C) = (A + B) + C (6.2.5)

The resultant vector is written A + B + C since this sum is independent of the grouping.

A

B

A � B
A

B

A � B
A

B

A � B

Figure 6.3 Vector addition.

A

B

A � B
A � B

�B B

A

Figure 6.4 Vector subtraction.

A

A � B � C

B � C

C

B

A

A � B � C

A � B

C

B

Figure 6.5 The associative property of vector addition.

Prove that the diagonals of a parallelogram bisect each other,

A
C

D

BO

EXAMPLE 6.2.1



6.2.3 Components of a Vector
So far we have not actually written a vector with magnitude and direction. To do so, we must
choose a coordinate system and express the vector in terms of its components, which are the pro-
jections of the vector along the three coordinate axes. We illustrate this using a rectangular,
Cartesian coordinate system. Consider the beginning of the vector to be at the origin, as shown
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� Solution

From the parallelogram shown, we observe that

A + B = C, B − A = D

The vector from point O to the intersection of the two diagonals is some fraction of C, say mC; and the vector
representing part of the shorter diagonal is assumed to be nD. If m and n are both 1

2 , then the diagonals bisect
each other.

Now, using the triangle formed with the vectors shown, we can write

A + nD = mC

Substituting for the vectors C and D, the equation above becomes

A + n(B − A) = m(A + B)

Rearranging, we have

(1 − n − m)A = (m − n)B

The quantity on the left is a vector in the direction of A, and the quantity on the right is a vector in the direc-
tion of B. Since the direction of A is different from the direction of B, we must demand that the coefficients
be zero. Thus,

1 − n − m = 0

m − n = 0

The solution to this set of equations is

n = m = 1
2

Hence, the diagonals bisect each other.

A

mC

nD

EXAMPLE 6.2.1 (Continued)



in Fig. 6.6. The projections on the x , y, and z axes are Ax , Ay , and Az , respectively. Using the
unit vectors defined earlier, we can then write the vector A as

A = Ax i + Ayj + Azk (6.2.6)

The vector A makes angles α, β , and γ with the x , y, and z axes, respectively. Thus, we have

Ax = A cos α, Ay = A cos β, Az = A cos γ (6.2.7)

where A, the magnitude of A, is related geometrically to the components by

A =
√

A2
x + A2

y + A2
z (6.2.8)

In the notation of Chapters 4 and 5,

A =

 Ax

Ay

Az


 =


 A cos α

A cos β

A cos γ


 (6.2.9)

where A = ‖A‖.
Substituting Eqs. 6.2.7 into Eq. 6.2.8, we have the familiar result,

cos2 α + cos2 β + cos2 γ = 1 (6.2.10)

Also, if we use Eqs. 6.2.7 in Eq. 6.2.6, we see that

A = A(cos α i + cos β j + cos γ k) (6.2.11)

Comparing this with Eq. 6.2.1, can express the unit vector iA as

iA = cos α i + cos β j + cos γ k (6.2.12)

The quantities cos α, cos β , and cos γ are often denoted �, m, and n, respectively, and are called
the direction cosines of A.
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y

z

x

Ax

Az

Ay

A

�

�

�

Figure 6.6 The components of a vector.



Two other coordinate systems are naturally encountered in physical situations, a cylindrical
coordinate system and a spherical coordinate system. These coordinate systems will be pre-
sented in Section 6.5.
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EXAMPLE 6.2.2

Find a unit vector in the direction of A = 2i + 3j + 6k.

� Solution

The magnitude of the vector A is

A =
√

A2
x + A2

y + A2
z

=
√

22 + 32 + 62 = 7

The unit vector is then

iA = A
A

= 2i + 3j + 6k
7

= 2

7
i + 3

7
j + 6

7
k

6.2.4 Multiplication
There are three distinct multiplications which can be defined for vectors. First, a vector may be
multiplied by a scalar. Consider the vector A multiplied by the scalar φ. The scalar φ simply
multiplies each component of the vector and there results

φA = φ Ax i + φ Ayj + φ Azk (6.2.13)

The resultant vector acts in the same direction as the vector A, unless φ is negative, in which
case φA acts in the opposite direction of A.

The second multiplication is the scalar product, also known as the dot product. It involves the
multiplication of two vectors so that a scalar quantity results. The scalar product is defined to be
the product of the magnitudes of the two vectors and the cosine of the angle between the two
vectors. This is written as

A · B = AB cos θ (6.2.14)

where θ is the angle shown in Fig. 6.7. Note that the scalar product A · B is equal to the length
of B multiplied by the projection of A on B, or the length of A multiplied by the projection of B

A

B

A

B

� �

A

B

�

Figure 6.7 The dot product.



on A. We recall that the scalar quantity work was defined in much the same way, that is, force
multiplied by the distance the force moved in the direction of the force, or

W = F · d (6.2.15)

If the two vectors A and B are perpendicular, so that θ = 90◦, then A · B = 0. This particular
property of the dot product will be used quite often in applications. From the definition of the dot
product we note that the dot product is commutative, so that

A · B = B · A (6.2.16)

The dot product is also distributive, that is,

A · (B + C) = A · B + A · C (6.2.17)

Using the unit vectors i, j, and k, the definition of the dot product yields

i · i = 1, j · j = 1, k · k = 1 (6.2.18)

and

i · j = 0, i · k = 0, j · k = 0 (6.2.19)

These allow us to express the dot product in rectangular coordinates as

A · B = (Ax i + Ayj + Azk) · (Bx i + Byj + Bzk)

= Ax Bx + Ay By + Az Bz (6.2.20)

The dot product of a vector A with itself can be written as

A · A = A2 = A2
x + A2

y + A2
z (6.2.21)

Finally, in our discussion of the dot product we note that the component of A in the x direc-
tion is found by taking the dot product of A with i; that is,

A · i = (Ax i + Ayj + Azk) · i = Ax (6.2.22)

Similarly,

A · j = (Ax i + Ayj + Azk) · j = Ay (6.2.23)

In general, the component of a vector in any direction is given by the dot product of the vector
with a unit vector in the desired direction.
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Using the definition of the dot product of two vectors, show that cos(α − β) = cos α cos β + sin α sin β .

� �

y

x

B

A

EXAMPLE 6.2.3
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� Solution

The dot product of the two vectors A and B is

A · B = AB cos θ

where θ is the angle between the two vectors, that is

θ = α − β

We know that

A =
√

A2
x + A2

y, B =
√

B2
x + B2

y

and

A · B = Ax Bx + Ay By

Thus,

cos θ = A · B
AB

= Ax Bx + Ay By√
A2

x + A2
y

√
B2

x + B2
y

This can be written as

cos(α − β) = Ax√
A2

x + A2
y

Bx√
B2

x + B2
y

+ Ay√
A2

x + A2
y

By√
B2

x + B2
y

= cos α cos β + sin α sin β

and the trigonometric identity is verified.

EXAMPLE 6.2.3 (Continued)

Find the projection of A on B, if A = 12i − 3j + 6k and B = 2i + 4j + 4k.

� Solution

Let us first find a unit vector iB in the direction of B. Then the projection of A on B will be A · iB . We have

iB = B
B

= 2i + 4j + 4k√
22 + 42 + 42

= 2i + 4j + 4k
6

EXAMPLE 6.2.4



The third multiplication operation is the vector product, also called the cross product. It is a
vector, the magnitude of which is defined to be the product of the magnitudes of the two vectors
comprising the product and the sine of the angle between them. the product acts in a direction
perpendicular to the plane of its two factors so that the three vectors form a right-handed set of
vectors. We write the cross product as

C = A × B (6.2.24)

The magnitude of C is given by

C = AB sin θ (6.2.25)

The vectors are shown in Fig. 6.8. We see that the magnitude of C is equal to the area of the par-
allelogram with sides A and B. The cross product is an operation that has no obvious extension
to dimensions higher than three.
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The projection of A on B is then

A · iB = (12i − 3j + 6k) · ( 1
3 i + 2

3 j + 2
3 k

) = 4 − 2 + 4 = 6

To relate this to our study of matrices consider the following. The projection of A on B is the magnitude of the
vector obtained by “projecting A on B.” In Chapter 5 we found that uuT b is the projection vector in the
direction of u. We set u = iB and b = A. Then

u =




2
6
4
6
4
6


 , b =


 12

−3
6




Hence,

uuT b = 1

9


 1 2 2

2 4 4
2 4 4





 12

−3
6


 = 1

9


 18

36
36


 =


 2

4
4




The magnitude of this vector is

∥∥uuT b
∥∥ = √

4 + 16 + 16 = 6

EXAMPLE 6.2.4 (Continued)

B

B

A

A

�

�

B

A

A sin �
�

C

C

Figure 6.8 The cross product.



There are two other common techniques for determining the sense of the vector C. First, C
acts in the direction of the advance of a right-handed screw as it is turned from A to B. Second,
if the fingers curl A into B, the thumb will point in the direction of C.

From the definition we see that the cross product is not commutative, since

A × B = −B × A (6.2.26)

However, it is true that

A × (B + C) = A × B + A × C (6.2.27)

If two vectors act in the same direction, the angle θ is zero degrees and the cross product van-
ishes. It follows that

A × A = 0 (6.2.28)

The unit vectors i, j, and k form the cross products

i × i = 0, j × j = 0, k × k = 0 (6.2.29)

and

i × j = k, j × k = i, k × i = j,
j × i = −k, k × j = −i, i × k = −j

(6.2.30)

These relationships are easily remembered by visualizing a display of unit vectors. The cross
product of a unit vector into its neighbor is the following vector when going clockwise, and is
the negative of the following vector when going counterclockwise.

Using the visual above we can express the cross product of A and B in rectangular coordi-
nates as

A × B = (Ax i + Ayj + Azk)× (Bx i + Byj + Bzk)

= (Ay Bz − Az By)i + (Az Bx − Ax Bz)j + (Ax By − Ay Bx)k (6.2.31)

A convenient way to recall this expansion of the cross product is to utilize a determinant formed
by the unit vectors, the components of A, and the components of B. The cross product of A × B
is then related to the determinant by

A × B =
∣∣∣∣∣

i j k
Ax Ay Az

Bx By Bz

∣∣∣∣∣ (6.2.32)

in which we may expand the determinant by cofactors of the first row.
Two applications of the cross product are the torque T produced about a point by a force F

acting at the distance r from the point, and the velocity V induced by an angular velocity � at a

i

jk
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point r from the axis of rotation. The magnitude of the torque is given by the magnitude of F
multiplied by the perpendicular distance from the point to the line of action of the force, that is,

T = Fd (6.2.33)

where d is r sin θ (see Fig. 6.9a). It can be represented by a vector normal to the plane of F and r,
given by

T = r × F (6.2.34)

where T is perpendicular to the plane of F and r. We are often interested in the torque produced
about an axis, for example the z axis. It is the vector T dotted with the unit vector in the direc-
tion of the axis. About the z axis it is

Tz = T · k (6.2.35)

The magnitude of the velocity induced by an angular velocity � is the magnitude ω of the an-
gular velocity multiplied by the perpendicular distance d from the axis to the point where the ve-
locity is desired, as shown in Fig. 6.9b. If r is the position vector from the origin of a coordinate
system to the point where the velocity is desired, then r sin θ is the distance d , where θ is the
angle between � and r. The velocity V is then given by

V = � × r (6.2.36)

where in the figure we have let the axis of rotation be the z axis. Note that the vector V is per-
pendicular to the plane of � and r.
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x
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Figure 6.9 Examples of the cross product.

Find a unit vector iC perpendicular to the plane of A and B, if A = 2i + 3j and B = i − j + 2k.

� Solution

Let C = A × B. Then C is perpendicular to the plane of A and B. It is given by

C = A × B =
∣∣∣∣∣∣

i j k
2 3 0
1 −1 2

∣∣∣∣∣∣ = 6i − 4j − 5k

EXAMPLE 6.2.5



We conclude this section by presenting the scalar triple product. Consider three vectors A, B,
and C, shown in Fig. 6.10. The scalar triple product is the dot product of one of the vectors with
the cross product of the remaining two. For example, the product (A × B) · C is a scalar quan-
tity given by

(A × B) · C = ABC sin α cos β (6.2.37)

where α is the angle between A and B, and β is the angle between A × B and C. The quantity
AB sin α is the area of the parallelogram with sides A and B. The quantity C cos β is the com-
ponent of C in a direction perpendicular to the parallelogram with sides A and B. Thus the scalar
triple product represents the volume of the parallelepiped with sides A, B, and C. Since the vol-
ume is the same regardless of how we form the product, we see that

(A × B) · C = A · (B × C) = (C × A) · B (6.2.38)

Also, the parentheses in the equation above are usually omitted since the cross product must be
performed first. If the dot product were performed first, the quantity would be meaningless since
the cross product requires two vectors.

Using rectangular coordinates the scalar triple product is

A × B · C = Cx(Ay Bz − Az By) + Cy(Az Bx − Ax Bz) + Cz(Ax By − Ay Bx)

=
∣∣∣∣∣∣

Ax Ay Az

Bx By Bz

Cx Cy Cz

∣∣∣∣∣∣
(6.2.39)
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The unit vector is then

iC = C
C

= 6i − 4j − 5k√
62 + 42 + 52

= 0.684i − 0.456j − 0.570k

EXAMPLE 6.2.5 (Continued)

�

�

A � B

A

C

B

Figure 6.10 The scalar triple product.
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For the vectors A = 3i − 2j + k and B = 2i − k, determine (a) A · B, and (b) A × B · A.

� Solution

(a) The dot product is given by

A · B = (3i − 2j + k) · (2i − k)

= 6i · i − 3i · k − 4j · i + 2j · k + 2k · i − k · k
= 6 − 1 = 5

(b) To perform the indicated product we must first find A × B. It is

A × B = (Ay Bz − Az By)i + (Az Bx − Ax Bz)j + (Ax By − Ay Bx)k

= [(−2)(−1) − 1 · 0]i + [1 · 2 − 3(−1)] j + [3.0 − (−2)(2)]k

= 2i + 5j + 4k

We then dot this vector with A and obtain

A × B · A = (2i + 5j + 4k) · (3i − 2j + k) = 6 − 10 + 4 = 0

We are not surprised that we get zero, since the vector A × B is perpendicular to A, and the dot product of two
perpendicular vectors is always zero, since the cosine of the angle between the two vectors is zero.

EXAMPLE 6.2.6

Find an equivalent vector expression for the vector triple product (A × B)× C.

� Solution

We expand the triple product in rectangular coordinates. First, the cross product A × B is

A × B = (Ay Bz − Az By)i + (Az Bx − Ax Bz)j + (Ax By − Ay Bx)k

Now, write the cross product of the vector above with C. It is

(A × B)× C = [(Az Bx − Ax Bz)Cz − (Ax By − Ay Bx)Cy]i

+ [(Ax By − Ay Bx)Cx − (Ay Bz − Az By)Cz] j

+ [(Ay Bz − Az By)Cy − (Az Bx − Ax Bz)Cx ]k

The above can be rearranged in the form

(A × B)× C = (AzCz + AyCy + Ax Cx)Bx i − (BzCz + ByCy + Bx Cx)Ax i

+ (Ax Cx + AzCz + AyCy)Byj − (Bx Cx + BzCz + ByCy)Ayj

+ (AyCy + Ax Cx + AzCz)Bzk − (ByCy + Bx Cx + BzCz)Azk

EXAMPLE 6.2.7

0 0 0 0



6.2.5 Maple Applications
It was observed in the introduction that the notation in this chapter would be different than the
previous two chapters. In particular, we are focusing on vectors in their own right, rather than as
a special case of matrices. Users of Maple can make a distinction between matrices and vectors,
too. After loading the linalg package, vectors can be defined as follows:

>v1 := vector([2, -6, 4]);

v1 := [2, −6, 4]

>v2 := vector([1, 7, -3]);

v2 := [1, 7, −3]
The various operations described in Section 6.2 can then be performed with Maple. Some of
the commands used are the same that were described in Chapter 4. Here are addition and
subtraction:

>matadd(v1, v2);

[3, 1, 1]

>matadd(v1, -v2);

[1, −13, 7]

The following commands are used to extract a component of a vector and compute its norm:

>v1[2];

−6
>norm(v1, 2);

2
√
14
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where the last terms in the parentheses have been inserted so that they cancel each other but help to form a dot
product. Now we recognize that the preceding equation can be written as

(A × B)× C = (A · C)Bx i + (A · C)Byj + (A · C)Bzk

− (B · C)Ax i − (B · C)Ayj − (B · C)Azk

or, finally,

(A × B)× C = (A · C)B − (B · C)A

Similarly, we can show that

A × (B × C) = (A · C)B − (B · A)C

Note that

(A × B)× C �= A × (B × C)

unless A, B, and C are rather special vectors. For instance, (A × B)× C = A × (B × C) if any of the vectors
is zero.

EXAMPLE 6.2.7 (Continued)



There are commands to multiply by a scalar and to compute the dot and cross products:

>scalarmul(v1, 3);

[6, −18, 12]

>dotprod(v1, v2);

−52
>crossprod(v1, v2);

[−10, 10, 20]

When combining several commands together, it is sometimes necessary to use evalm
(“evaluate the matrix”) on a vector. There are a number of examples of using evalm in this
chapter.
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Problems

1. State which of the following quantities are vectors.

(a) Volume (b) Position of a particle

(c) Force (d) Energy

(e) Momentum (f) Color

(g) Pressure (h) Frequency

(i) Magnetic field (j) Centrifugal 
intensity acceleration

(k) Voltage

Two vectors A and B act as shown. Find A + B and A − B for
each by determining both magnitude and direction.

2.

3.

4.

Express each vector in component form, and write an expres-
sion for the unit vector that acts in the direction of each.

A

B

10

5

A

B10

10

45�

A

B15

10

45�

5.

6.

7.

Given the vectors A = 2i − 4j − 4k, B = 4i + 7j − 4k, and
C = 3i − 4k. Find

8. A + B

9. A − C

10. A + B − C

z

x

y

15

50�

110�
�

z

x

�

y120�

60�
20

z

x

y60�

60�
45�

10



11. |A − B|
12. A · B

13. A × C

14. |A × B|
15. A × B · C

16. A · A × B

17. (A × B)× C

18. A × (B × C)

19. |A × (B × C)|
Two vector fields are given by A = x i − yj + 2tk and
B = (x2 − z2)i − y2j. Find each quantity at the point (0, 2, 2)
at t = 2.

20. A · B

21. A × B

22. |(A × B)× A|
23. A · A × B

24. Show that the diagonals of a rhombus (a parallelogram
with equal sides) are perpendicular.

Verify each trigonometric identity.

25. cos(α + β) = cos α cos β − sin α sin β

26. sin(α − β) = sin α cos β − sin β cos α

27. sin(α + β) = sin α cos β + sin β cos α

Find the projection of A on B if

28. A = 3i − 6j + 2k, B = 7i − 4j + 4k

29. A = 3i − 6j + 9k, B = 4i − 4j + 2k

30. A = 4i − 3j + 7k, B = 2i − 5j − 7k

31. Determine a unit vector ic perpendicular to the plane of
A = 3i + 6j − k and B = 2i − 3j + 4k.

32. Find a unit vector ic perpendicular to both A = 3i − 2j
and B = i − 2j + k.

33. Determine m such that A = 2i − mj + k is perpendicular
to B = 3i − 2j.

34. The direction cosines of a vector A of length 15 are 1
3 , 2

3 ,
− 2

3 . Find the component of A along the line passing
through the points (1, 3, 2) and (3, −2, 6).

35. Find the equation of the plane perpendicular to
B = 3i + 2j − 4k. (Let r = x i + yj + zk be a point on
the plane.)

36. An object is moved from the point (3, 2, −4) to the point
(5, 0, 6), where the distance is measured in meters. If the
force acting on the object is F = 3i − 10j newtons, de-
termine the work done.

37. An object weighs 10 newtons and falls 10 m while a
force of 3i − 5j newtons acts on the object. Find the work
done if the z axis is positive upward. Include the work
done by the weight.

38. A rigid device is rotating with a speed of 45 rad/s about
an axis oriented by the direction cosines 7

9 , − 4
9 , and 4

9 .
Determine the velocity of a point on the device located
by the position vector r = 2i + 3j − k meters.

39. The velocity at the point (−4, 2, −3), distances measured
in meters, due to an angular velocity � is measured to be
V = 10i + 20j m/s. What is � if ωx = 2 rad/s?

40. A force of 50 N acts at a point located by the position
vector r = 4i − 2j + 4k meters. The line of action of the
force is oriented by the unit vector iF = 2

3 i − 2
3 j + 1

3 k.
Determine the moment of the force about the (a) x axis,
and (b) a line oriented by the unit vector iL =
− 2

3 i + 2
3 j − 1

3 k.

Use Maple to solve

41. Problem 8

42. Problem 9

43. Problem 10

44. Problem 11

45. Problem 12

46. Problem 13

47. Problem 14

48. Problem 15

49. Problem 16

50. Problem 17

51. Problem 18

52. Problem 19

53. Problem 20

54. Problem 21

55. Problem 22

56. Problem 23

57. Problem 28

58. Problem 29

59. Problem 30

60. Problem 31

61. Problem 32

62. Problem 33

63. Problem 34

64. Problem 35

65. Problem 36
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66. Problem 37

67. Problem 38

68. Problem 39

69. Problem 40

70. Computer Laboratory Activity: Maple can be used to
plot vectors in three dimensions using the arrow com-
mand in the plots package. For example, to plot the
vectors A = 2i − 4j − 5k and B = −3i + j − 4k, both
with tails at the origin:

>A := arrow(<2, -4, -5>):

>B := arrow(<-3, 1, -4>):

>display(A, B, scaling=CONSTRAINED,
axes=BOXED) ;

Note that the scaling=CONSTRAINED option is im-
portant if you wish to observe the angle between vectors.
There are many options that can be used with the arrow

command, such as shape=arrow, which will create
thin, flat vectors rather than thicker vectors.

To plot 2i − 4j − 5k with its tail at the point (6, 7, 8),
use

>A := arrow(<6, 7, 8>, <2, -4, -5>) :

(a) Compute the cross product of the two vectors A and
B above, then create a plot of all three vectors to-
gether. Explain how the picture is consistent with
the result of Example 6.2.6b.

(b) Create a plot like one in the first part of Fig. 6.3, using
A and B above. Assume the tail of A is at the origin.

(c) Decompose the vector v = 4i + 4j + 4k into two
vectors, one that is parallel to u = i + 3j − k, and
one that is perpendicular to u. Then create a plot of v
and the two new vectors together, in such a way so
that you can see—by having the head of one vector
touch the tail of another—how the sum of the paral-
lel vector and the perpendicular vector is equal to v.

6.3.1 Ordinary Differentiation
We study vector functions of one or more scalar variables. In this section we examine differen-
tiation of vector functions of one variable. The derivative of the vector u(t) with respect to t is
defined, as usual, by

du
dt

= lim
�t→0

u(t + �t) − u(t)

�t
(6.3.1)

where

u(t + �t) − u(t) = �u (6.3.2)

This is illustrated in Fig. 6.11. Note that the direction of �u is, in general, unrelated to the
direction of u(t).
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y

z

x

u(t)
u(t � �t)

�u Figure 6.11 Vectors used in the definition of the
derivative du/dt .



From this definition it follows that the sums and products involving vector quantities can be
differentiated as in ordinary calculus; that is,

d

dt
(φu) = φ

du
dt

+ u
dφ

dt
d

dt
(u · v) = u · dv

dt
+ v · du

dt
d

dt
(u × v) = u × dv

dt
+ du

dt
× v

(6.3.3)

If we express the vector u(t) in rectangular coordinates, as

u(t) = ux i + uyj + uzk (6.3.4)

if can be differentiated term by term to yield

du
dt

= dux

dt
i + duy

dt
j + duz

dt
k (6.3.5)

provided that the unit vectors i, j, and k are independent of t . If t represents time, such a refer-
ence frame is referred to as an inertial reference frame.

We shall illustrate differentiation by considering the motion of a particle in a noninertial ref-
erence frame. Let us calculate the velocity and acceleration of such a particle. The particle
occupies the position (x , y, z) measured in the noninertial xyz reference frame which is rotating
with an angular velocity �, as shown in Fig. 6.12. The xyz reference frame is located by the vec-
tor s relative to the inertial XY Z reference frame.1 The velocity V referred to the XY Z frame is

V = d

dt
(s + r) = ds

dt
+ dr

dt
(6.3.6)
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1This reference frame is attached to the ground in the case of a projectile or a rotating device; it is attached to
the sun when describing the motion of satellites.
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�� � � �t
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��i� � � �t

i(t)s

k

Particle

r

a

j

i
x

Figure 6.12 Motion referred to a noninertial reference frame.



The quantity ds/dt is the velocity of the xyz reference frame and is denoted Vref. The vector
dr/dt is, using r = x i + yj + zk,

dr
dt

= dx

dt
i + dy

dt
j + dz

dt
k + x

di
dt

+ y
dj
dt

+ z
dk
dt

(6.3.7)

To determine an expression for the time derivatives of the unit vectors, which are due to the an-
gular velocity � of the xyz frame, consider the unit vector i to rotate through a small angle dur-
ing the time �t , illustrated in Fig. 6.12. Using the definition of a derivative, there results

di
dt

= lim
�t→0

i(t + �t) − i(t)
�t

= lim
�t→0

�i
�t

= lim
�t→0

ω�t
(

�× i
ω

)
�t

= � × i (6.3.8)

where the quantity � × i/ω is a unit vector perpendicular to i in the direction of �i. Similarly,

dj
dt

= � × j,
dk
dt

= � × k (6.3.9)

Substituting these and Eq. 6.3.7 into Eq. 6.3.6, we have

V = Vref + dx

dt
i + dy

dt
j + dz

dt
k + x� × i + y� × j + z� × k (6.3.10)

The velocity v of the particle relative to the xyz frame is

v = dx

dt
i + dy

dt
j + dz

dt
k (6.3.11)

Hence, we can write the expression for the absolute velocity as

V = Vref + v + � × r (6.3.12)

The absolute acceleration A is obtained by differentiating V with respect to time to obtain

A = dV
dt

= dVref

dt
+ dv

dt
+ d�

dt
× r + � × dr

dt
(6.3.13)

In this equation

dVref

dt
= Aref (6.3.14)

dv
dt

= d

dt
(vx i + vyj + vzk)

= dvx

dt
i + dvy

dt
j + dvz

dt
k + vx

di
dt

+ vy
dj
dt

+ vz
dk
dt

= a + � × v (6.3.15)

dr
dt

= v + � × r (6.3.16)
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where a is the acceleration of the particle observed in the xyz frame. The absolute acceleration
is then

A = Aref + a + � × v + d�

dt
× r + � × (v + � × r) (6.3.17)

This is reorganized in the form

A = Aref + a + 2� × v + � × (� × r) + d�

dt
× r (6.3.18)

The quantity 2� × v is often referred to as the Coriolis acceleration, and d�/dt is the angular
acceleration of the xyz frame. For a rigid body a and v are zero.
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Using the definition of a derivative, show that

d

dt
(u · v) = u · dv

dt
+ v · du

dt

� Solution

The definition of a derivative allows us to write

d

dt
(u · v) = lim

�t→0

u(t + �t) · v(t + �t) − u(t) · v(t)

�t

But we know that (see Fig. 6.11)

u(t + �t) − u(t) = �u

v(t + �t) − v(t) = �v

Substituting for u(t + �t) and v(t + �t), there results

d

dt
(u · v) = lim

�t→0

[�u + u(t)] · [�v + v(t)] − u(t) · v(t)

�t

This product is expanded to yield

d

dt
(u · v) = lim

�t→0

�u · �v + u · �v + v · �u + u · v − u · v
�t

In the limit as �t → 0, both �u → 0 and �v → 0. Hence,

lim
�t→0

�u · �v
�t

→ 0

EXAMPLE 6.3.1
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We are left with

d

dt
(u · v) = lim

�t→0

(
u · �v

�t
+ v · �u

�t

)

= u · dv
dt

+ v · du
dt

and the given relationship is proved.

EXAMPLE 6.3.1 (Continued)

EXAMPLE 6.3.2

The position of a particle is given by r = t2i + 2j + 5(t − 1)k meters, measured in a reference frame that has
no translational velocity but that has an angular velocity of 20 rad/s about the z axis. Determine the absolute
velocity at t = 2 s.

� Solution

Given that Vref = 0 the absolute velocity is

V = v + � × r

The velocity, as viewed from the rotating reference frame, is

v = dr
dt

= d

dt
[t2i + 2j + 5(t − 1)k]

= 2t i + 5k

The contribution due to the angular velocity is

� × r = 20k × [t2i + 2j + 5(t − 1)k]

= 20t2j − 40i

Thus, the absolute velocity is

V = 2t i + 5k + 20t2j − 40i

= (2t − 40)i + 20t2j + 5k

At t = 2 s this becomes

V = −36i + 80j + 5k m/s



6.3.2 Partial Differentiation
Many phenomena require that a quantity be defined at all points of some region of interest. The
quantity may also vary with time. Such quantities are often referred to as field quantities: elec-
tric fields, magnetic fields, velocity fields, and pressure fields are examples. Partial derivatives
are necessary when describing fields. Consider a vector function u(x, y, z, t).

The partial derivative of u with respect to x is defined to be

∂u
∂x

= lim
�x→0

u(x + �x, y, z, t) − u(x, y, z, t)

�x
(6.3.19)

In terms of the components we have

∂u
∂x

= ∂ux

∂x
i + ∂uy

∂x
j + ∂uz

∂x
k (6.3.20)

where each component could be a function of x, y, z, and t .
The incremental quantity �u between the two points (x, y, z) and (x + �x, y + �y,

z + �z) at the same instant in time is

�u = ∂u
∂x

�x + ∂u
∂y

�y + ∂u
∂z

�z (6.3.21)

At a fixed point in space �u is given by

�u = ∂u
∂t

�t (6.3.22)
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EXAMPLE 6.3.3

A person is walking toward the center of a merry-go-round along a radial line at a constant rate of 6 m/s. The
angular velocity of the merry-go-round is 1.2 rad/s. Calculate the absolute acceleration when the person
reaches a position 3 m from the axis of rotation.

� Solution

The acceleration Aref is assumed to be zero, as is the angular acceleration d�/dt of the merry-go-round. Also,
the acceleration a of the person relative to the merry-go-round is zero. Thus, the absolute acceleration is

A = 2� × v + � × (� × r)

Attach the xyz reference frame to the merry-go-round with the z axis vertical and the person walking along
the x axis toward the origin. Then

� = 1.2k, r = 3i, v = −6i

The absolute acceleration is then

A = 2[1.2k × (−6i)] + 1.2k × (1.2k × 3i)

= −4.32i − 14.4j m/s2

Note the y component of acceleration that is normal to the direction of motion, which makes the person sense
a tugging in that direction.



If we are interested in the acceleration of a particular particle in a region fully occupied
by particles, a continuum, we write the incremental velocity �v between two points, shown in
Fig. 6.13, as

�v = ∂v
∂x

�x + ∂v
∂y

�y + ∂v
∂z

�z + ∂v
∂t

�t (6.3.23)

where we recognize that not only is the position of the particle changing but so is time increas-
ing. Acceleration is defined by

a = dv
dt

= lim
�t→0

v(t + �t) − v(t)

�t
= lim

�t→0

�v
�t

(6.3.24)

Using the expression from Eq. (6.3.23), we have

dv
dt

= lim
�t→0

[
∂v
∂x

�x

�t
+ ∂v

∂y

�y

�t
+ ∂v

∂z

�z

�t

]
+ ∂v

∂t
(6.3.25)

Realizing that we are following a particular particle,

lim
�t→0

�x

�t
= vx , lim

�t→0

�y

�t
= vy, lim

�t→0

�z

�t
= vz (6.3.26)

Then there follows

a = Dv
Dt

= vx
∂v
∂x

+ vy
∂v
∂y

+ vz
∂v
∂z

+ ∂v
∂t

(6.3.27)

where we have adopted the popular convention to use D/Dt to emphasize that we have fol-
lowed a material particle. It is called the material or substantial derivative, and from Eq. 6.3.27
is observed to be

D

Dt
= vx

∂

∂x
+ vy

∂

∂y
+ vz

∂

∂z
+ ∂

∂t
(6.3.28)

We may form derivatives in a similar manner for any quantity of interest. For example, the
rate of change of temperature of a particle as it travels along is given by

DT

Dt
= vx

∂T

∂x
+ vy

∂T

∂y
+ vz

∂T

∂z
+ ∂T

∂t
(6.3.29)
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Figure 6.13 Motion of a particle.



6.3.3 Maple Applications
Ordinary differentiation of u(t) can be done with Maple, and an animation can be created to
demonstrate the relation between u(t) and du/dt on an ellipse. Using the example of
u(t) = 7 cos t i + 3 sin t j, we can define this vector-valued function in Maple by

>u:= t -> vector([7*cos(t), 3*sin(t)]);

In order to compute du/dt , we will use the diff command. However, diff is designed to
work with scalar-valued functions, so the map command must be used to force Maple to differ-
entiate a vector:

>du:=map(diff, u(t), t);

du := [−7sin(t),3cos(t)]
For the animation, we need the derivative to also be a defined as a function. This is accomplished
with the following:

>u1:=x -> subs(t=x, evalm(du));

u1 := x→ subs(t= x,evalm(du))

This defines u1(x), but we can use any variable:

>u1(t);

[−7sin(t),3cos(t)]
The following group of commands will create an animation of u(t) for 0 ≤ t ≤ 2π . First, the

plots package is loaded. Then, a sequence of vector plots is created using the arrow
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EXAMPLE 6.3.4

A velocity field is given by v = x2i + xyj + 2t2k m/s. Determine the acceleration at the point (2, 1, 0) meters
and t = 2 s.

� Solution

The acceleration is given by

a = Dv
Dt

=
[
vx

∂

∂x
+ vy

∂

∂y
+ vz

∂

∂z
+ ∂

∂t

]
v

=
[

x2 ∂

∂x
+ xy

∂

∂y
+ 2t2 ∂

∂z
+ ∂

∂t

]
(x2i + xyj + 2t2k)

= x2(2x i + yj) + xy(xj) + 2t2 · 0 + 4tk

= 2x3i + 2x2 yj + 4tk

At the point (2, 1, 0) and at t = 2 s, there results

a = 16i + 8j + 8k m/s2



command and a simple for-next loop. Finally, the sequence is combined into an animation using
the display command:

>with(plots):

>for i from 0 to 32 do

>uplot[i] :=display(arrow(u(i/5), shape=arrow), color=RED):

>od:

>display(seq(uplot[i], i=0..32), insequence=true,
scaling=CONSTRAINED);

Finally, we can create an animation of u(t) and du/dt together. Here, du/dt is drawn so that
the tail of the vector is the position of an object moving on the ellipse:

>for i from 0 to 32 do

>duplot[i] :=display({arrow(u(i/5), u1(i/5), shape=arrow,
color=blue), uplot[i]}):

>od:

>display(seq(duplot[i], i=0..32), insequence=true,
scaling=constrained);
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Problems

1. By using the definition of the derivative show that

d

dt
(φu) = φ

du
dt

+ u
dφ

dt

Given the two vectors u = 2t i + t2k and v = cos 5t i +
sin 5tj − 10k. At t = 2, evaluate the following:

2.
du
dt

3.
dv
dt

4.
d

dt
(u · v)

5.
d

dt
(u × v)

6.
d2

dt2
(u · v)

7. Find a unit vector in the direction of du/dt if
u = 2t2i − 3tj, at t = 1.

8. The velocity of a particle of water moving down a dish-
water arm at a distance of 0.2 m is 10 m/s. It is deceller-
ating at a rate of 30 m/s2. The arm is rotating at 30 rad/s.
Determine the absolute acceleration of the particle.

9. Show why it is usually acceptable to consider a reference
frame attached to the earth an an inertial reference frame.
The radius of the earth is 6400 km.

10. The wind is blowing straight south at 90 km/hr. At a lati-
tude of 45◦, calculate the magnitudes of the Coriolis
acceleration and the � × (� × r) component of the
acceleration of an air particle.

11. A velocity field is given by v = x2i − 2xyj + 4tk m/s.
Determine the acceleration at the point (2, 1, −4)
meters.

12. A temperature field is calculated to be T (x, y, z, t) =
e−0.1t sin 5x . Determine the rate at which the temperature
of a particle is changing if v = 10i − 5j m/s. Evaluate
DT/Dt at x = 2 m and t = 10 s.

13. Use Maple to create an animation to plot u and du/dt
from Problems 2–6.

Particle�

v x

y



14. Use Maple to create an animation to plot v and dv/dt
from Problems 2–6.

15. Use Maple to create an animation of the position and
velocity vectors of a particle moving on a hyperbola.

For Problems 16–20: Set the center of the earth at the origin,
and let r(t) be the position of a satellite in orbit around the
earth. (This motion will be in a plane.) Define v(t) to be the
velocity vector of the satellite and r to be the length of r(t).
(Note that r is not constant.) Use g for the gravitational con-
stant and M is the mass of the earth, and let µ = Mg. Define
the inverse square law function by f (r) = µ/r2. Define two
important vectors: h = r × v (called the angular momentum 

vector) and e = 1

µ
(v × h) − 1

r
r (called the eccentricity 

vector). We will use Newton’s second law of motion, which
implies that

d

dt
v(t) = − f (r)

r
r(t)

16. Prove that h is constant with respect to time by showing 

that 
d

dt
h(t) = 0 .

17. Prove that 
d

dt

(
r
r

)
= 1

r3
(r × v × r) .

18. Prove that e is constant with respect to time, by showing 

that 
d

dt
e(t) = 0 .

19. Let h = ‖h‖. Derive the equation e · r + r = h2

µ
. 

Hint: a · (b × c) = (a × b) · c for any three vectors a, b,
and c.

20. Let e = ‖e‖. Let φ be the angle between e and r. Derive
the equation

r = h2

µ(1 + e cos φ)

This is the polar variable version of the ellipse, hence proving
that orbits are elliptical. (Note that φ is a function of t , while
the rest of the symbols in the formula are constants. For the
orbit of the moon around the earth, h = 391 500 × 106 and
e = 0.0549.)

When studying phenomena that occur in a region of interest certain variables often change from
point to point, and this change must often be accounted for. Consider a scalar variable repre-
sented at the point (x, y, z) by the function φ(x, y, z).2 This could be the temperature, for
example. The incremental change in φ, as we move to a neighboring point
(x + �x, y + �y, z + �z), is given by

�φ = ∂φ

∂x
�x + ∂φ

∂y
�y + ∂φ

∂z
�z (6.4.1)

where ∂φ/∂x , ∂φ/∂y, and ∂φ/∂z represent the rate of change of φ in the x , y, and z directions,
respectively. If we divide by the incremental distance between the two points, shown in
Fig. 6.14, we have, using |�r| = �r ,

�φ

�r
= ∂φ

∂x

�x

�r
+ ∂φ

∂y

�y

�r
+ ∂φ

∂z

�z

�r
(6.4.2)

Now we can let �x , �y, and �z approach zero and we arrive at the derivative of φ in the
direction of �r,

dφ

dr
= ∂φ

∂x

dx

dr
+ ∂φ

∂y

dy

dr
+ ∂φ

∂z

dz

dr
(6.4.3)
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2We use rectangular coordinates in this section. Cylindrical and spherical coordinates will be presented in
Section 6.5.



This is the chain rule applied to φ[x(r), y(r), z(r)]. The form of this result suggests that it may
be written as the dot product of two vectors; that is,

dφ

dr
=

(
∂φ

∂x
i + ∂φ

∂y
j + ∂φ

∂z
k
)

·
(

dx

dr
i + dy

dr
j + dz

dr
k
)

(6.4.4)

Recognizing that

dr = dx i + dyj + dzk (6.4.5)

we can write Eq. (6.4.4) as

dφ

dr
=

(
∂φ

∂x
i + ∂φ

∂y
j + ∂φ

∂z
k
)

· dr
dr

(6.4.6)

The vector in parentheses is called the gradient of φ and is usually written

�φ = grad φ = ∂φ

∂x
i + ∂φ

∂y
j + ∂φ

∂z
k (6.4.7)

The symbol � is called del and is the vector differential operator

� = ∂

∂x
i + ∂

∂y
j + ∂

∂z
k (6.4.8)

The quantity dr/dr is obviously a unit vector in the direction of dr. Thus, returning to Eq. 6.4.6
we observe that the rate of change of φ in a particular direction is given by �φ dotted with a unit
vector in that direction; that is,

dφ

dn
= �φ · in (6.4.9)

where in is a unit vector in the n direction.
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Figure 6.14 Change in the position vector.



Another important property of �φ is that �φ is normal to a constant φ surface. To show this,
consider the constant φ surface and the differential displacement vector dr, illustrated in
Fig. 6.15. If �φ is normal to a constant φ surface, then �φ · dr will be zero since dr is a vector
that lies in the surface. The quantity �φ · dr is given by (see Eqs. 6.4.5 and 6.4.7)

�φ · dr = ∂φ

∂x
dx + ∂φ

∂y
dy + ∂φ

∂z
dz (6.4.10)

380 � CHAPTER 6  / VECTOR ANALYSIS

EXAMPLE 6.4.1

Find the derivative of the function φ = x2 − 2xy + z2 at the point (2,−1, 1) in the direction of the vector
A = 2i − 4j + 4k.

� Solution

To find the derivative of a function in a particular direction we use Eq. 6.4.9. We must first find the gradient of
the function. It is

�φ =
(

∂

∂x
i + ∂

∂y
j + ∂

∂z
k
)

(x2 − 2xy + z2)

= (2x − 2y)i − 2xj + 2zk

At the point (2,−1, 1), it is

�φ = 6i − 4j + 2k

The unit vector in the desired direction is

in = A
A

= 2i − 4j + 4k
6

= 1

3
i − 2

3
j + 2

3
k

Finally, the derivative in the direction of A is

dφ

dn
= �φ · in

= (6i − 4j + 2k) · ( 1
3 i − 2

3 j + 2
3 k)

= 2 + 8
3 + 4

3 = 6

x

z

dr

r � dr

��

� � Constant

r

y

Figure 6.15 Constant φ surface.
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EXAMPLE 6.4.2

Find a unit vector in normal to the surface represented by the equation x2 − 8y2 + z2 = 0 at the point (4, 2, 4).

� Solution

We know that the gradient �φ is normal to a constant φ surface. So, with

φ = x2 − 8y2 + z2

we form the gradient, to get

�φ = ∂φ

∂x
i + ∂φ

∂y
j + ∂φ

∂z
k = 2x i − 16yj + 2zk

At the point (8, 1, 4) we have

�φ = 8i − 32j + 8k

This vector is normal to the surface at (4, 2, 4). To find the unit vector, we simply divide the vector by its mag-
nitude, obtaining

in = �φ

|�φ| = 8i − 32j + 8k√
64 + 1024 + 64

=
√

2

6
i − 2

√
2

3
j +

√
2

6
k

Find the equation of the plane which is tangent to the surface x2 + y2 − z2 = 4 at the point (1, 2,−1).

� Solution

The gradient φ is normal to a constant φ surface. Hence, with φ = x2 + y2 − z2, the vector

�φ = ∂φ

∂x
i + ∂φ

∂y
j + ∂φ

∂z
k = 2x i + 2yj − 2zk

is normal to the given surface. At the point (1, 2,−1) the normal vector is

�φ = 2i + 4j + 2k

EXAMPLE 6.4.3

We recognize that this expression is simply dφ. But dφ = 0 along a constant φ surface; thus,
�φ · dr = 0 and �φ is normal to a constant φ surface.

We also note that �φ points in a direction in which the derivative of φ is numerically the
greatest since Eq. 6.4.9 shows that dφ/dn is maximum when in is in the direction of �φ.
Because of this, �φ may be referred to as the maximum directional derivative.



The vector character of the del operator suggests that we form the dot and cross products with
� and a vector function. Consider a general vector function u(x, y, z) in which each component
is a function of x , y, and z. The dot product of the � operator with u(x, y, z) is written in rec-
tangular coordinates3 as

� · u =
(

∂

∂x
i + ∂

∂y
j + ∂

∂z
k
)

· (ux i + uyj + uzk)

= ∂ux

∂x
+ ∂uy

∂y
+ ∂uz

∂z
(6.4.11)

It is known as the divergence of the vector field u.
The cross product in rectangular coordinates is

� × u =
(

∂

∂x
i + ∂

∂y
j + ∂

∂z
k
)

× (ux i + uyj + uzk)

=
(

∂uz

∂y
− ∂uy

∂z

)
i +

(
∂ux

∂z
− ∂uz

∂x

)
j +

(
∂uy

∂x
− ∂ux

∂y

)
k (6.4.12)
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Consider the sketch shown. The vector to the given point r0 = i + 2j − k subtracted from the vector to the
general point r = x i + yj + zk is a vector in the desired plane. It is

r − r0 = (x i + yj + zk) − (i + 2j − k)

= (x − 1)i + (y − 2)j + (z + 1)k

This vector, when dotted with a vector normal to it, namely �φ, must yield zero; that is,

�φ · (r − r0) = (2i + 4j + 2k) · [(x − 1)i + (y − 2)j + (z + 1)k]

= 2(x − 1) + 4(y − 2) + 2(z + 1) = 0

Thus, the tangent plane is given by

x + 2y + z = 4

x

y

z

r0

r � r0

r

��

(x, y, z)

EXAMPLE 6.4.3 (Continued)

3Expressions in cylindrical and spherical coordinates will be given in Section 6.5.



and is known as the curl of the vector field u. The curl may be expressed as a determinant,

� × u =

∣∣∣∣∣∣∣∣
i j k
∂

∂x

∂

∂y

∂

∂z
ux uy uz

∣∣∣∣∣∣∣∣
(6.4.13)

The divergence and the curl of a vector function appear quite often in the derivation of the
mathematical models for various physical phenomena. For example, let us determine the rate at
which material is leaving the incremental volume shown in Fig. 6.16. The volume of material
crossing a face in a time period �t is indicated as the component of velocity normal to a face
multiplied by the area of the face and the time �t . If we account for all the material leaving the
element, we have

net loss =
(

vx + ∂vx

∂x
�x

)
�y�z�t − vx�y�z�t +

(
vy + ∂vy

∂y
�y

)
�x�z�t

− vy�x�z�t +
(

vz + ∂vz

∂z
�z

)
�x�y�t − vz�x�y�t

=
(

∂vx

∂x
+ ∂vy

∂y
+ ∂vz

∂z

)
�x�y�z�t (6.4.14)

If we divide by the elemental volume �x�y�z and the time increment �t , there results

rate of loss per unit volume = ∂vx

∂x
+ ∂vy

∂y
+ ∂vz

∂z
= � · v (6.4.15)

For an incompressible material, the amount of material in a volume remains constant; thus, the
rate of loss must be zero; that is,

� · v = 0 (6.4.16)

for an incompressible material. It is the continuity equation. The same equation applies to a static
electric field, in which case v represents the current density.
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Figure 6.16 Flow from an incremental volume.



As we let �x , �y, and �z shrink to zero, we note that the volume element approaches a
point. If we consider material or electric current to occupy all points in a region of interest, then
the divergence is valid at a point, and it represents the flux (quantity per second) emanating per
unit volume.

For a physical interpretation of the curl, let us consider a rectangle undergoing motion while
a material is deforming, displayed in Fig. 6.17. The velocity components at P are vx and vy , at
Q they are [vx + (∂vx/∂x)�x] and [vy + (∂vy/∂x)�x], and at R they are [vx + (∂vx/∂y)�y]
and [vy + (∂vy/∂y)�y]. Point P will move to P ′ a distance vy�t above P and a distance vx�t
to the right of P ; Q will move to Q′ a distance [vy + (∂vy/∂x)�x]�t above Q; and R′ will
move a distance [vx + (∂vx/∂y)�y]�t to the right of R. The quantity (d/dt)[(α + β)/2)],
approximated by (�α + �β)/(2�t) (the angles �α and �β are shown), would represent the
rate at which the element is rotating. In terms of the velocity components, referring to the figure,
we have

d

dt

(
α + β

2

)

∼= �α + �β

2�t

=

[(
vy + ∂vy

∂x
�x

)
�t − vy�t

]/
�x +

[
vx�t −

(
vx + ∂vx

∂y
�y

)
�t

]/
�y

2�t

= 1

2

(
∂vy

∂x
− ∂vx

∂y

)
(6.4.17)

where we have used �α ∼= tan �α since �α is small. Thus, we see that the z component of
� × v, which is [(∂vy/∂x) − (∂vx/∂y)], represents twice the rate of rotation of a material ele-
ment about the z axis. Likewise, the x and y components of � × v represent twice the rate of
rotation about the x and y axes, respectively. If � represents the angular velocity (rate of rota-
tion), then

� = 1
2 � × v (6.4.18)
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Figure 6.17 Displacement of a material element due to velocity components vx and vy .



As we let �x and �y again approach zero, we note that the element again approaches a point.
Thus, the curl of a vector function is valid at a point and represents twice the rate at which a ma-
terial element occupying the point is rotating. In electric and magnetic fields, the curl does not
possess this physical meaning; it does, however, appear quite often and for a static field the elec-
tric current density J is given by the curl of the magnetic field intensity H; that is,

J = � × H (6.4.19)

There are several combinations of vector operations involving the � operator which are
encountered in applications. A very common one is the divergence of the gradient of a scalar
function, written as � · �φ. In rectangular coordinates it is

� · �φ =
(

∂

∂x
i + ∂

∂y
j + ∂

∂z
k
)

·
(

∂φ

∂x
i + ∂φ

∂y
j + ∂φ

∂z
k
)

= ∂2φ

∂x2
+ ∂2φ

∂y2
+ ∂2φ

∂z2
(6.4.20)

It is usually written �2φ and is called the Laplacian of φ. If it is zero, that is,

�2φ = 0 (6.4.21)

the equation is referred to as Laplace’s equation.
The divergence of the curl of a vector function, and the curl of the gradient of a scalar func-

tion are also quantities of interest, but they can be shown to be zero by expanding in rectangular
coordinates. Written out, they are

� · � × u = 0

� × �φ = 0
(6.4.22)

Two special kinds of vector fields exist. One is a solenoidal vector field, in which the diver-
gence is zero, that is,

� · u = 0 (6.4.23)

and the other is an irrotational (or conservative) vector field, in which the curl is zero, that is

� × u = 0 (6.4.24)

If the vector field u is given by the gradient of a scalar function φ, that is,

u = �φ (6.4.25)

then, according to Eq. 6.4.22, the curl of u is zero and u is irrotational. The function φ is referred
to as the scalar potential function of the vector field u.

Several vector identities are often useful, and these are presented in Table 6.1. They can be
verified by expanding in a particular coordinate system.
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� × �φ = 0

� · � × u = 0

� · (φu) = �φ · u + φ� · u

� × (φu) = �φ × u + φ� × u

� × (� × u) = �(� · u) − �2u

u × (� × u) = 1
2 �u2 − (u · �)u

� · (u × v) = (� × u) · v − u · (� × v)

� × (u × v) = u(� · v) − v(� · u) + (v · �)u − (u · �)v

�(u · v) = (u · �)v + (v · �)u + u × (� × v)+ v × (� × u)

Table 6.1 Some Vector Identities

EXAMPLE 6.4.4

A vector field is given by u = y2i + 2xyj − z2k. Determine the divergence of u and curl of u at the point
(1, 2, 1). Also, determine if the vector field is solenoidal or irrotational.

� Solution

The divergence of u is given by Eq. 6.4.11. It is

� · u = ∂ux

∂x
+ ∂uy

∂y
+ ∂uz

∂z

= 0 + 2x − 2z

At the point (1, 2, 1) this scalar function has the value

� · u = 2 − 2 = 0

The curl of u is given by Eq. 6.4.12. It is

� × u =
(

∂uz

∂y
− ∂uy

∂z

)
i +

(
∂ux

∂z
− ∂uz

∂x

)
j +

(
∂uy

∂x
− ∂ux

∂y

)
k

= 0i + 0j + (2y − 2y)k

= 0

The curl of u is zero at all points in the field; hence, it is an irrotational vector field. However, � · u is not zero
at all points in the field; thus, u is not solenoidal.

For the vector field u = y2i + 2xyj − z2k, find the associated scalar potential function φ(x, y, z), providing
that one exists.

EXAMPLE 6.4.5
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� Solution

The scalar potential function φ(x, y, z) is related to the vector field by

�φ = u

providing that the curl of u is zero. The curl of u was shown to be zero in Example 6.4.4; hence, a potential
function φ does exist. Writing the preceding equation using rectangular components, we have

∂φ

∂x
i + ∂φ

∂y
j + ∂φ

∂z
k = y2i + 2xyj − z2k

This vector equation contains three scalar equations which result from equating the x component, the y com-
ponent, and the z component, respectively, from each side of the equation. This gives

∂φ

∂x
= y2,

∂φ

∂y
= 2xy,

∂φ

∂z
= −z2

The first of these is integrated to give the solution

φ(x, y, z) = xy2 + f (y, z)

Note that in solving partial differential equations the “constant of integration” is a function. In the first equa-
tion we are differentiating with respect to x , holding y and z fixed; thus, this “constant of integration” may be
a function of y and z, namely f (y, z). Now, substitute the solution above into the second equation and obtain

2xy + ∂ f

∂y
= 2xy

This results in ∂ f/∂y = 0, which means that f does not depend on y. Thus, f must be at most a function of
z. So substitute the solution into the third equation, and there results

d f

dz
= −z2

where we have used an ordinary derivative since f = f (z). This equation is integrated to give

f (z) = − z3

3
+ C

where C is a constant of integration. Finally, the scalar potential function is

φ(x, y, z) = xy2 − z3

3
+ C

To show that �φ = u, let us find the gradient of φ. It is

�φ = ∂φ

∂x
i + ∂φ

∂y
j + ∂φ

∂z
k = y2i + 2xyj − z2k

This is equal to the given vector function u.

EXAMPLE 6.4.5 (Continued)



6.4.1 Maple and MATLAB Applications
In Maple, the grad command is part of the linalg package. Like the diff command, it is
important to include in the grad command the variables that we are taking derivatives with
respect. Solving Example 6.4.1 with Maple:

>gp:=grad(x^2-2*x*y + z^2, [x,y,z]);

gp := [2x− 2y,−2x,2z]
>gradient:=subs({x=2, y=-1, z=1}, evalm(gp));

gradient := [6,−4,2]
>i_n:=vector([1/3, -2/3, 2/3]);

i—n :=
[
1

3
,

−2
3
,
2

3

]
>dotprod(gradient, i_n);

6

To create an image of the surface in Example 6.4.2 using Maple, we can use the
implicitplot3d command in the plots package. We can also include a normal vector by
using arrow and display. Here is how it works for this example. First, load the plot package
and create a plot of the surface:

>with(plots):

>surf:=implicitplot3d(x^2-8*y^2+z^2 = 0, x=2..6, y=0..4,
z=2..6, axes=boxed):

Note that the user can specify the ranges of x , y, and z, and in this example the ranges have been
chosen near the point in question. To see this surface, we can now simply enter

>surf;

We then define the normal vector and create the plot:

>grad:=arrow([4, 2, 4], [1/(2*sqrt(3)), -4/(2*sqrt(3)),
1/(2*sqrt(3))], color=RED):

>display(surf, grad);

Both divergence and curl can be calculated in Maple. These commands are in the linalg
package. As with the grad command, the independent variables must be listed separately. For
example:

>with(linalg):

>diverge([x^3, 2*x^2-y, x*y*z], [x,y,z]);

−1+ 3x2 + xy

>curl([x^3, 2*x^2-y, x*y*z], [x,y,z]);

[xz,−yz,4x]

To calculate the Laplacian in Maple, there is a command in the linalg package. For exam-
ple, if φ = x3z − 2x2 − y + xyz , then

>laplacian(x^3*z - 2*x^2-y + x*y*z, [x,y,z]);

6xz− 4

So this function does not satisfy Laplace’s equation.
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Let us suppose that U is a function of two variables, say x and y. Then, in MATLAB,
grad(U) is a vector field called the gradient and, for every constant C , the functions U = C de-
fines a curve in the x–y plane called a level curve or a contour line. MATLAB provides excel-
lent tools for graphing contour lines and gradients. We explore some of these capabilities in this
subsection. The relevant commands are these:

(1) gradient: computes a gradient field.
(2) meshgrid: computes a grid.
(3) contour: plots a series of level lines.
(4) quiver: plots a vector field.
(5) hold on: holds the existing graph.
(6) hold off: turns off the hold on command.

For a complete description of these commands refer to the help menu in MATLAB.
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EXAMPLE 6.4.6

Write the MATLAB commands that would plot, on the same axis, level lines and the gradient of the function

U = xe−(x2+y2)

� Solution

Here is the script with some explanatory notes:

»[x,y] = meshgrid(-2:.2:2, -2:.2:2);

%This provides a grid in the x–y plane from −2 < x, y < 2 in step sizes of .2.

»U=x.*exp(-x.^2-y.^2);

Defines U. Note the “dot” after x and y.

»[px,py]=gradient(U,.2,.2);

The gradient vector px i + py j.

»contour(U)

Draws level curves of U.

»hold on

hold on holds the current plot so that new graphs can be added to the existing graph.

»quiver(px,py)

Plots the gradient field and contour lines on the same graph.

»hold off

»title(‘The Gradient and Level Curves of U’)

»xlabel(‘x’)

»ylabel(‘y’)
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Problems

Find the gradient of each scalar function. Use r = x i +
yj + zk if required.

1. φ = x2 + y2

2. φ = 2xy

3. φ = r2

4. φ = ex sin 2y

5. φ = x2 + 2xy − z2

6. φ = ln r

7. φ = 1/r

8. φ = tan−1 y/x

9. φ = rn

Find a unit vector in normal to each surface at the point
indicated.

10. x2 + y2 = 5, (2, 1, 0)

11. r = 5, (4, 0, 3)

12. 2x2 − y2 = 7, (2, 1,−1)

13. x2 + yz = 3, (2,−1, 1)

14. x + y2 − 2z2 = 6, (4, 2, 1)

15. x2 y + yz = 6, (2, 3,−2)

Determine the equation of the plane tangent to the given
surface at the point indicated.

16. x2 + y2 + z2 = 25, (3, 4, 0)

17. r = 6, (2, 4, 4)

18. x2 − 2xy = 0, (2, 2, 1)

19. xy2 − zx + y2 = 0, (1,−1, 2)

The temperature in a region of interest is determined to
be given by the function T = x2 + xy + yz . At the point
(2, 1, 4), answer the following questions.

20. What is the unit vector that points in the direction of
maximum change of temperature?

21. What is the value of the derivative of the temperature in
the x direction?

22. What is the value of the derivative of the temperature in
the direction of the vector i − 2j + 2k?

Find the divergence of each vector field at the point (2, 1,−1).

23. u = x2i + yzj + y2k

24. u = yi + xzj + xyk

25. u = x i + yj + zk

26. u = xyi + y2j + z2k

27. u = r/r

28. u = r/r3

29. Show that � · (φu) = φ� · u + u · �φ by expanding in
rectangular coordinates.

30. One person claims that the velocity field in a certain
water flow is v = x2i − y2j + 2k, and another claims
that it is v = y2i − x2j + 2k. Which one is obviously
wrong and why?

31. It is known that the x component of velocity in a certain
plane water flow (no z component of velocity) is given
by x2. Determine the velocity vector if vy = 0 along the
x axis.

Find the curl of each vector field at the point (−2, 4, 1).

32. u = x2i + y2j + z2k

33. u = y2i + 2xyj + z2k

34. u = xyi + y2j + xzk

35. u = sin y i + x cos y j

36. u = ex sin y i + ex cos y j + ex k

37. u = r/r3

Using the vector functions u = xyi + y2j + zk and v = x2i +
xyj + yzk, evaluate each function at the point (−1, 2, 2).

38. � · u

39. � · v

40. � × u

41. � × v

42. � · u × v

43. (� × u)× v

44. � × (u × v)

45. u × (� × v)

46. (u × �)× v

47. (u · �)v

48. �(u · v)

49. (v · �)v

Determine if each vector field is solenoidal and/or irrotational.

50. x i + yj + zk



51. x i − 2yj + zk

52. yi + xj

53. x2i + y2j + z2k

54. y2i + 2xyj + z2k

55. yzi + xzj + xyk

56. sin y i + sin x j + ezk

57. x2 yi + y2xj + z2k

58. r/r3

Verify each vector identity by expanding in rectangular
coordinates.

59. � × �φ = 0

60. � · � × u = 0

61. � · (φu) = �φ · u + φ� · u

62. � × (φu) = �φ × u + φ� × u

63. � × (u × v) = u (� · v) − v(� · u) +
(v · �)u − (u · �)v

64. � × (� × u) = �(� · u) − �2u

65. � · (u × v) = � × u · v − u · � × v

66. u × (� × u) = 1
2 �u2 − (u · �)u

Determine the scalar potential function φ, provided that one
exists, associated with each vector field.

67. u = x i + yj + zk

68. u = x2i + y2j + z2k

69. u = y2i + 2xyj + zk

70. u = ex sin y i + ex cos y j

71. u = 2x sin y i + x2 cos y j + z2k

72. u = 2xzi + y2j + x2k

Use Maple to solve

73. Problem 4

74. Problem 5

75. Problem 6

76. Problem 7

77. Problem 8

78. Problem 9

Use Maple to solve, and create a plot of the surface with the
normal vector.

79. Problem 10

80. Problem 11

81. Problem 12

82. Problem 13

83. Problem 14

84. Problem 15

Use Maple to solve, and create a plot of the surface with the
tangent plane and the normal vector.

85. Problem 16

86. Problem 17

87. Problem 18

88. Problem 19

Use Maple to solve

89. Problem 23

90. Problem 24

91. Problem 25

92. Problem 26

93. Problem 27

94. Problem 28

95. Problem 32

96. Problem 33

97. Problem 34

98. Problem 35

99. Problem 36

100. Problem 37

101. Problem 67

102. Problem 68

103. Problem 69

104. Problem 70

105. Problem 71

106. Problem 72

107. Explain what the difference is between a constant φ

surface and a plane parallel to the xy plane.

108. Computer Laboratory Activity: Example 6.4.3 demon-
strates how to create the equation of the tangent plane
from the gradient vector. This equation comes from the
fact that any vector on the tangent plane is perpendicular
to the gradient vector. In this activity, we will attempt to
visualize this relationship.
(a) Find the gradient of the scalar function φ = x3+

xy + xz2 + 2y , at the point (1, −6, 2).
(b) Create 10 vectors that are perpendicular to the

gradient at (1, −6, 2), that is, vectors u that satisfy
∇φ · u = 0.

(c) Using Maple, create a plot of the 10 vectors and the gra-
dient vector. Where is the tangent plane in your plot?
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(d) Determine the equation of the plane tangent to
φ = −13 at the point (1, −6, 2).

(e) Create a plot of the 10 vectors, the gradient vector,
and the tangent plane.

Use MATLAB to graph on the same axis the level lines and
gradient fields for the functions given in the following
problems:

109. Problem 3

110. Problem 4

111. Problem 6

112. Problem 7

113. Problem 8

114. Problem 9

There are several coordinate systems that are convenient to use with the various geometries en-
countered in physical applications. The most common is the rectangular, Cartesian coordinate
system (often referred to as simply the Cartesian coordinate system or the rectangular coordinate
system), used primarily in this text. There are situations, however, when solutions become much
simpler if a coordinate system is chosen which is more natural to the problem at hand. Two other
coordinate systems that attract much attention are the cylindrical coordinate system and the
spherical coordinate system. We shall relate the rectangular coordinates to both the cylindrical
and spherical coordinates and express the various vector quantities of previous sections in cylin-
drical and spherical coordinates.

The cylindrical coordinates4 (r, θ, z), with respective orthogonal unit vectors ir , iθ , and iz ,
and the spherical coordinates (r, θ, φ), with respective orthogonal unit vectors ir , iθ , and iφ , are
shown in Fig. 6.18. A vector is expressed in cylindrical coordinates as

A = Ar ir + Aθ iθ + Aziz (6.5.1)

where the components Ar , Aθ , and Az are functions of r , θ , and z. In spherical coordinates a
vector is expressed as

A = Ar ir + Aθ iθ + Aφiφ (6.5.2)

where Ar , Aθ , and Aφ are functions of r , θ , and φ.
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392 � CHAPTER 6  / VECTOR ANALYSIS

4Note that in cylindrical coordinates it is conventional to use r as the distance from the z axis to the point of
interest. Do not confuse it with the distance from the origin |r|.
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Figure 6.18 The cylindrical and spherical coordinate systems.



We have, in previous sections, expressed all vector quantities in rectangular coordinates. Let
us transform some of the more important quantities to cylindrical and spherical coordinates. We
will do this first for cylindrical coordinates.

The cylindrical coordinates are related to rectangular coordinates by (refer to Fig. 6.18)

x = r cos θ, y = r sin θ, z = z (6.5.3)

where we are careful5 to note that r �= |r|, r being the position vector. From the geometry of Fig.
6.18 we can write

ir = cos θ i + sin θ j

iθ = − sin θ i + cos θ j

iz = k

(6.5.4)

These three equations can be solved simultaneously to give

i = cos θ ir − sin θ iθ
j = sin θ ir + cos θ iθ
k = iz

(6.5.5)

We have thus related the unit vectors in the cylindrical and rectangular coordinate systems. They
are collected in Table 6.2.

To express the gradient of the scalar function 
 in cylindrical coordinates, we observe from
Fig. 6.19 that

dr = dr ir + r dθ iθ + dz iz (6.5.6)

The quantity d
 is, by the chain rule,

d
 = ∂


∂r
dr + ∂


∂θ
dθ + ∂


∂z
dz (6.5.7)
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5This is a rather unfortunate choice, but it is the most conventional. Occasionally, ρ is used in place of r , which
helps avoid confusion.

Cylindrical/Rectangular

x = r cos θ r =
√

x2 + y2

y = r sin θ θ = tan−1 y/x

z = z z = z

ir = cos θ i + sin θ j

iθ = − sin θ i + sin θ j

iz = k

i = cos θ ir − sin θ iθ

j = sin θ ir + cos θ iθ

k = iz

Table 6.2 Relationship of Cylindrical Coordinates to Rectangular Coordinates



The gradient of 
 is the vector

�
 = λr ir + λθ iθ + λziz (6.5.8)

where λr , λθ , and λz are the components of �θ that we wish to determine. We refer to Eq. 6.4.10
and recognize that

d
 = �
 · dr (6.5.9)

Substituting the preceding expressions for d
, �
, and dr into this equation results in

∂


∂r
dr + ∂


∂θ
dθ + ∂


∂z
dz = (λr ir + λθ iθ + λziz) · (dr ir + r dθ iθ + dziz)

= λr dr + λθr dθ + λz dz (6.5.10)

Since r , θ , and z are independent quantities, the coefficients of the differential quantities allow
us to write

λr = ∂


∂r
, rλθ = ∂


∂θ
, λz = ∂


∂z
(6.5.11)

Hence, the gradient of 
, in cylindrical coordinates, becomes

�
 = ∂


∂r
ir + 1

r

∂


∂θ
iθ + ∂


∂z
iz (6.5.12)

The gradient operator � is, from Eq. 6.5.12,

� = ∂

∂r
ir + 1

r

∂

∂θ
iθ + ∂

∂z
iz (6.5.13)

Now we wish to find an expression for the divergence � · u. In cylindrical coordinates, it is

� · u =
(

∂

∂r
ir + 1

r

∂

∂θ
iθ + ∂

∂θ
iz

)
· (ur ir + uθ iθ + uziz) (6.5.14)

394 � CHAPTER 6  / VECTOR ANALYSIS

z

x

y
r

zr

�

Element
enlarged

dz
dr

dr

rd�

Figure 6.19 Differential changes in cylindrical coordinates.



When we perform the dot products above, we must be sure to account for the changes in ir and
iθ as the angle θ changes; that is, the quantities ∂ir/∂θ and ∂iθ /∂θ are not zero. For example,
consider the term [(1/r)(∂/∂θ)iθ ] · (ur ir ). It yields

(
1

r

∂

∂θ
iθ

)
· (ur ir ) = 1

r

∂u

∂θ
iθ · ir + ur

r
iθ · ∂ir

∂θ
(6.5.15)

The product iθ · ir = 0 since iθ is normal to ir . The other term, however, is not zero. By referring
to Fig. 6.20, we see that

∂ir
∂θ

= lim
�θ→0

�ir
�θ

= lim
�θ→0

�θ iθ
�θ

= iθ

∂iθ
∂θ

= lim
�θ→0

�iθ
�θ

= lim
�θ→0

−�θ ir
�θ

= −ir

(6.5.16)

Since iz never changes direction, ∂iz/∂θ = 0. Recalling that

ir · ir = iθ · iθ = iz · iz = 1, ir · iθ = ir · iz = iθ · iz = 0 (6.5.17)

the divergence is then, referring to Eqs. 6.5.14 and 6.5.16,

� · u = ∂ur

∂r
+ 1

r

∂uθ

∂θ
+ ∂uz

∂z
+ ur

r
iθ · ∂ir

∂θ
+ uθ

r
iθ · ∂iθ

∂θ

= ∂ur

∂r
+ 1

r

∂uθ

∂θ
+ ∂uz

∂z
+ ur

r
(6.5.18)

This can be rewritten in the more conventional form

� · u = 1

r

∂

∂r
(rur ) + 1

r

∂uθ

∂θ
+ ∂uz

∂z
(6.5.19)

We now express the curl � × u in cylindrical coordinates. It is

� × u =
(

∂

∂r
ir + 1

r

∂

∂θ
iθ + ∂

∂z
iz

)
× (ur ir + uθ iθ + uziz) (6.5.20)
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Carrying out the cross products term by term, we have

� × u =
(

1

r

∂uz

∂θ
− ∂uθ

∂z

)
ir +

(
∂ur

∂z
− ∂uz

∂r

)
iθ +

(
∂uθ

∂r
− 1

r

∂ur

∂θ

)
iz

+ur

r
iθ × ∂ir

∂θ
+ uθ

r
iθ × ∂iθ

∂θ
(6.5.21)

where we have used Eq. 6.5.16 and

ir × ir = iθ × iθ = iz × iz = 0

ir × iθ = iz, iθ × iz = ir , iz × ir = iθ
(6.5.22)

Using Eqs. 6.5.16 and writing (∂uθ /∂r) + (uθ /r) = (1/r)(∂/∂r)(ruθ ), we get

� × u =
[

1

r

∂uz

∂θ
− ∂uθ

∂z

]
ir +

[
∂ur

∂z
− ∂uz

∂r

]
iθ +

[
1

r

∂

∂r
(ruθ ) − 1

r

∂ur

∂θ

]
iz (6.5.23)

Finally, the Laplacian of a scalar function 
, in cylindrical coordinates, is

� · �
 = �2
 =
(

∂

∂r
ir + 1

r

∂

∂θ
iθ + ∂

∂z
iz

)
·
(

∂


∂r
ir + 1

r

∂


∂θ
iθ + ∂


∂z
iz

)

= ∂2


∂r2
+ 1

r2

∂2


∂θ2
+ ∂2


∂z2
+ 1

r

∂


∂r
iθ · ∂ir

∂θ

= 1

r

∂

∂r

(
r
∂


∂r

)
+ 1

r2

∂2


∂θ2
+ ∂2


∂z2 (6.5.24)
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0

EXAMPLE 6.5.1

A particle is positioned by

r = x i + yj + zk

in rectangular coordinates. Express r in cylindrical coordinates.

� Solution

We use Eq. 6.5.3 to write

r = r cos θ i + r sin θ j + z k

and then Eq. 6.5.4 to obtain

r = r ir + ziz
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EXAMPLE 6.5.2

Express u = 2x i − zj + yk in cylindrical coordinates.

� Solution

Using Eqs. 6.5.3 and 6.5.4, we obtain

u = 2r cos θ (cos θ ir − sin θ iθ ) − z(sin θ ir + cos iθ ) + r sin θ iz

This is rearranged in the conventional form

u = (2r cos2 θ − z sin θ)ir − (2r cos θ sin θ + z cos θ)iθ + r sin θ iz

A particle moves in three-dimensional space. Determine an expression for its acceleration in cylindrical
coordinates.

� Solution

The particle is positioned by the vector

r = r ir + ziz

The velocity is found by differentiating with respect to time; that is,

v = dr
dt

= dr

dt
ir + r

dir
dt

r + dz

dt
iz

We find an expression for dir/dt by using Eq. 6.5.4 to get

dir
dt

= − sin θ
dθ

dt
i + cos θ

dθ

dt
j = dθ

dt
(− sin θ i + cos θj) = dθ

dt
iθ

Thus, using a dot to denote time differentiation,

v = ṙ ir + r θ̇ iθ + żiz

Differentiate again with respect to time. We have

a = r̈ ir + ṙ
dir
dt

+ ṙ θ̇ iθ + r θ̈ iθ + r θ̇
diθ
dt

+ z̈iz

EXAMPLE 6.5.3



If we follow the same procedure using spherical coordinates, we find that the coordinates are
related by

x = r sin φ cos θ, y = r sin φ sin θ, z = r cos φ (6.5.25)

The unit vectors are related by the following equations:

ir = sin φ cos θ i + sin φ sin θ j + cos φk

iθ = − sin θ i + cos θ j

iφ = cos φ cos θ i + cos φ sin θ j − sin φk

(6.5.26)

and

i = sin φ cos θ ir − sin θ iθ + cos φ cos θ iφ
j = sin φ sin θ ir + cos θ iθ + cos φ sin θ iφ
k = cos φ ir − sin φ iφ

(6.5.27)

Table 6.3 relates the unit vectors in spherical and rectangular coordinates. Using Fig. 6.21, the
gradient of the scalar function 
 is found to be

�
 = ∂


∂r
ir + 1

r sin φ

∂


∂θ
iθ + 1

r

∂


∂φ
iφ (6.5.28)

allowing us to write

� = ∂

∂r
ir + 1

r sin φ

∂

∂θ
iθ + 1

r

∂

∂φ
iφ (6.5.29)

The divergence of a vector field is

� · u = 1

r2

∂

∂r
(r2ur ) + 1

r sin φ

∂uθ

∂θ
+ 1

r sin φ

∂

∂φ
(uφ sin φ) (6.5.30)
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The quantity diθ /dt is (see Eq. 6.5.4)

diθ
dt

= (− cos θ i − sin θ j)
dθ

dt
= −ir θ̇

The acceleration is then

a = r̈ ir + ṙ θ̇ iθ + ṙ θ̇ iθ + r θ̈ iθ − r θ̇2ir + z̈iz

= (r̈ − r θ̇2)ir + (2ṙ θ̇ + r θ̈ )iθ + z̈iz

EXAMPLE 6.5.3 (Continued)



and the curl is

� × u = 1

r sin φ

[
∂

∂φ
(uθ sin φ) − ∂uφ

∂θ

]
ir + 1

r

[
∂

∂r
(ruφ) − ∂ur

∂φ

]
iθ

+ 1

r

[
1

sin φ

∂ur

∂θ
− ∂

∂r
(ruθ )

]
iφ (6.5.31)

The Laplacian of a scalar function 
 is

�2
 = 1

r2

∂

∂r

(
r2 ∂


∂r

)
+ 1

r2 sin2 φ

∂2


∂θ2
+ 1

r2 sin φ

∂

∂φ

(
sin φ

∂


∂φ

)
(6.5.32)
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Spherical/Rectangular

x = r sin φ cos θ

y = r sin φ sin θ

z = r sin φ

r =
√

x2 + y2 + z2

θ = tan−1 y/x

φ = tan−1
√

x2 + y2/z

ir = sin φ cos θ i + sin φ sin φj + cos φk

iθ = − sin θ i + cos θj

iφ = cos φ cos θ i + cos φ sin θj − sin φk

i = sin φ cos θ ir − sin θ iθ + cos φ cos φiφ

j = sin φ sin θ ir + cos θ iθ + cos φ sin θ iφ

k = cos ir − sin iφ

Table 6.3 Relationship of Spherical Coordinates to Rectangular Coordinates

z

r

r  sin � d�
dr

dr

r d�

x

y

�

�

Element
enlarged

Figure 6.21 Differential changes in spherical coordinates.
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Rectangular

�
 = ∂


∂x
i + ∂


∂y
j + ∂


∂z
k

� · u = ∂ux

∂x
+ ∂uy

∂y
+ ∂uz

∂z

� × u =
(

∂uz

∂y
− ∂uy

∂z

)
i +

(
∂ux

∂z
− ∂uz

∂x

)
j +

(
∂uy

∂x
− ∂ux

∂y

)
k

∇2
 = ∂2


∂x2
+ ∂2


∂y2
+ ∂2


∂z2

∇2u = ∇2ux i + ∇2uyj + ∇2uzk

Cylindrical

�
 = ∂


∂r
ir + 1

r

∂


∂θ
iθ + ∂


∂z
iz

� · u = 1

r

∂

∂r
(rur ) + 1

r

∂uθ

∂θ
+ ∂uz

∂z

� × u =
[

1

r

∂uz

∂θ
− ∂uθ

∂z

]
ir +

[
∂ur

∂z
− ∂uz

∂r

]
iθ +

[
1

r

∂

∂r
(ruθ ) − 1

r

∂ur

∂θ

]
iz

∇2
 = 1

r

∂

∂r

(
r
∂


∂r

)
+ 1

r2

∂2


∂θ2
+ ∂2


∂z2

∇2u =
(

∇2ur − ur

r2
− 2

r2

∂uθ

∂θ

)
ir +

(
∇2uθ − uθ

r2
+ 2

r2

∂ur

∂θ

)
iθ + ∇2uz iz

Spherical

�
 = ∂


∂r
ir + 1

r sin φ

∂


∂θ
iθ + 1

r

∂


∂φ
iφ

� · u = 1

r2

∂

∂r
(r2ur ) + 1

r sin φ

∂uθ

∂θ
+ 1

r sin φ

∂

∂φ
(uφ sin φ)

� × u = 1

r sin φ

[
∂

∂φ
(uθ sin φ) − ∂uφ

∂θ

]
ir + 1

r

[
∂

∂r
(ruφ) − ∂ur

∂φ

]
iθ + 1

r

[
1

sin φ

∂ur

∂θ
− ∂

∂r
(ruθ )

]
iφ

∇2
 = 1

r2

∂

∂r

(
r2 ∂


∂r

)
+ 1

r2 sin2 φ

∂2


∂θ2
+ 1

r2 sin φ

∂

∂φ

(
sin φ

∂


∂φ

)

∇2u =
[
∇2ur − 2ur

r2
− 2

r2 sin φ

∂uθ

∂θ
− 2

r2 sin φ

∂

∂φ
(uφ sin φ)

]
ir

+
[
∇2uθ − uθ

r2 sin φ
+ 2 cos φ

r2 sin2 φ

∂uθ

∂θ
+ 2

r2 sin θ

∂ur

∂θ

]
iθ

+
[
∇2uθ − 2 cos φ

r2 sin φ

∂uθ

∂θ
− uφ

r2 sin2 φ
+ 2

r2

∂ur

∂φ

]
iφ

Table 6.4 Relationships Involving � in Rectangular, Cylindrical, 
and Spherical Coordinates
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EXAMPLE 6.5.4

Express the position vector

r = x i + yj + zk

in spherical coordinates.

� Solution

Note that

r = r sin φ cos θ i + r sin φ sin θ j + r cos φk

= r ir

from Eqs. 6.5.25 and 6.5.26.

EXAMPLE 6.5.5

Express the vector u = 2x i − zj + yk in spherical coordinates.

� Solution

For spherical coordinates use Eqs. 6.5.25 and 6.5.27. There results

u = 2r sin φ cos θ(sin φ cos θ ir − sin θ iθ + cos φ cos θ iφ)

− r cos φ(sin φ sin θ ir + cos θ iθ + cos φ sin θ iφ)

+ r sin φ sin θ(cos φ ir − sin φ iφ)

= 2r sin2 φ cos2 θ ir + r cos θ(2 sin φ sin θ − cos φ)iθ

+ r(2 sin φ cos φ cos2 θ − sin θ)iφ

Note the relatively complex forms that the vector takes when expressed in cylindrical and spherical coordi-
nates. This, however, is not always the case; the vector u = x i + xj + zk becomes simply u = r ir in spheri-
cal coordinates. We shall obviously choose the particular coordinate system that simplifies the analysis.

The relationships above involving the gradient operator � are collected in Table 6.4.

Problems

1. By using Eqs. 6.5.4, show that dir/dt = θ̇ iθ and
diθ /dt = −θ̇ ir . Sketch the unit vectors at two neighbor-
ing points and graphically display �ir and �iθ .

Find an expression for each of the following at the same point.
The subscript c identifies cylindrical coordinates and subscript
s spherical coordinates.

2. i · irc

3. i · irs

4. j · irs

5. irc · irs

6. iθc · iφ



7. iθc · iθs

8. iz · irs

9. irs · iθs

10. iφ · irc

Show that the unit vectors are orthogonal in

11. The cylindrical coordinate system.

12. The spherical coordinate system.

13. Relate the cylindrical coordinates at a point to the spher-
ical coordinates at the same point.

14. A point is established in three-dimensional space by the
intersection of three surfaces; for example, in rectangular
coordinates they are three planes. What are the surfaces
in (a) cylindrical coordinates, and (b) spherical coordi-
nates? Sketch the intersecting surfaces for all three coor-
dinate systems.

Express each vector as indicated.

15. u = 2r ir + r sin φ iθ + r2 sin φ iφ in rectangular co-
ordinates.

16. u = rs iθ in rectangular coordinates.

17. u = 2zi + xj + yk in spherical coordinates.

18. u = 2zi + xj + yk in cylindrical coordinates.

19. Express the square of the differential arc length, ds2, in
all three coordinate systems.

20. Following the procedure leading to Eq. 6.5.12, derive the
expression for the gradient of scalar function 
 in spher-
ical coordinates, Eq. 6.5.28.

Determine the scalar potential function provided that one ex-
ists, associated with each equation.

21. u = r ir + iz

22. u =
(

A − B

r2

)
cos θ ir −

(
A + B

r2

)
iθ (cylindrical 

coordinates)

23. u =
(

A − B

r3

)
cos φ ir −

(
A + B

2r3

)
sin φ iφ

Many of the derivations of the mathematical models used to describe physical phenomena make
use of integral theorems, theorems that enable us to transform surface integrals to volume inte-
grals or line integrals to surface integrals. In this section, we present the more commonly used
integral theorems, with emphasis on the divergence theorem and Stokes’ theorem, the two most
important ones in engineering applications.

6.6.1 The Divergence Theorem
The divergence theorem (also referred to as Gauss’ theorem) states that if a volume V is com-
pletely enclosed by the surface S, then for the vector function u(x, y, z), which is continuous
with continuous derivatives, ∫∫∫

V

� · u dV =
∫∫
©
S

u · n dS (6.6.1)

where n is an outward pointing unit vector normal to the elemental area dS. In rectangular
component form the divergence theorem is∫∫∫

V

(
∂ux

∂x
+ ∂uy

∂y
+ ∂uz

dz

)
dx dy dz =

∫∫
©
S

(ux i + uyj + uzk) · n dS (6.6.2)

To prove the validity of this equation, consider the volume V of Fig. 6.22. Let S be a special sur-
face which has the property that any line drawn parallel to a coordinate axis intersects S in at
most two points. Let the equation of the lower surface S1 be given by f (x, y) and of the upper
surface S2 by g(x, y), and the projection of the surface on the xy plane be denoted R. Then the
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third term of the volume integral of Eq. 6.6.2 can be written as∫∫∫
V

∂uz

∂z
dx dy dz =

∫∫
R

[∫ g(x,y)

f (x,y)

∂uz

∂z
dz

]
dx dy (6.6.3)

The integral in the brackets is integrated to give (we hold x and y fixed in this integration)∫ g(x,y)

f (x,y)

∂uz

∂z
dz =

∫ g(x,y)

f (x,y)

duz = uz(x, y, g) − uz(x, y, f ) (6.6.4)

Our integral then becomes∫∫∫
V

∂uz

∂z
dx dy dz =

∫∫
R

[uz(x, y, g) − uz(x, y, f )] dx dy (6.6.5)

The unit vector n is related to the direction cosines by n = cos αi + cos βj + cos γ k. Hence, for
the upper surface S2, we have

cos γ2 dS2 = n2 · k dS2 = dx dy (6.6.6)

For the lower surface S1, realizing that γ1 is an obtuse angle so that cos γ1 is negative, there
results

cos γ1dS1 = n1 · k dS1 = −dx dy (6.6.7)

Now, with the preceding results substituted for dx dy, we can write Eq. 6.6.5 as∫∫∫
V

∂uz

∂z
dx dy dz =

∫∫
S2

uz(x, y, g)n2 · k dS2 +
∫∫
S1

uz(x, y, f )n1 · k dS1

=
∫∫
S2

uzn · k dS2 +
∫∫
S1

uzn · k dS1

=
∫∫
©
S

uzn · k dS (6.6.8)

where the complete surface S is equal to S1 + S2.
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y

S2:  z � g(x, y)

S1: z � f (x, y)

R

dS2
n2

n1

�2

�1

dS1

Figure 6.22 Volume used in proof of
the divergence theorem.



Similarly, by taking volume strips parallel to the x axis and the y axis, we can show that∫∫∫
V

∂ux

∂x
dx dy dz =

∫∫
©
S

ux n · i dS

∫∫∫
V

∂uy

∂y
dx dy dz =

∫∫
©
S

uyn · j dS
(6.6.9)

Summing Eqs. 6.6.8 and 6.6.9, we have∫∫∫
V

[
∂ux

∂x
+ ∂uy

∂y
+ ∂uz

∂z

]
dx dy dz =

∫∫
©
S

[ux n · i + uyn · j + uzn · k] dS

=
∫∫
©
S

[ux i + uyj + uzk] · n dS (6.6.10)

This is identical to Eq. 6.6.2, and the divergence theorem is shown to be valid. If the surface is
not the special surface of Fig. 6.22, divide the volume into subvolumes, each of which satisfies
the special condition. Then argue that the divergence theorem is valid for the original region.

The divergence theorem is often used to define the divergence, rather than Eq. 6.4.11, which
utilizes rectangular coordinates. For an incremental volume �V , the divergence theorem takes
the form

� · u �V =
∫∫
©

�S

u · n dS (6.6.11)
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∫∫
V

∫
� · u dV =

∫∫
©
S

u · n dS

∫∫
V

∫
�2φ dV =

∫∫
©
S

∂φ

∂n
dS

∫∫
V

∫
�φ dV =

∫∫
©
S

φ n dS

∫∫
V

∫
� × u dV =

∫∫
©
S

n × u dS

∫∫
V

∫
(ψ�2φ − φ�2ψ) dV =

∫∫
©
S

(
ψ

∂φ

∂n
− φ

∂ψ

∂n

)
dS

∫∫
V

∫
(ψ�2φ + �φ · �ψ) dV =

∫∫
©
S

ψ
∂φ

∂n
dS

∫∫
S

∫
(� × u) · n dS =

∮
C

u · dl

∫∫
S

(n × �)× u dS = −
∮

C
u × dl

Table 6.5 Integral Formulas



where �S is the incremental surface area surrounding �V , and � · u is the average value of
� · u in �V . If we then allow �V to shrink to a point, � · u becomes � · u at the point, and
there results

� · u = lim
�V →0

∫∫
©

�S

u · n dS

�V
(6.6.12)

This definition of the divergence is obviously independent of any particular coordinate system.
By letting the vector function u of the divergence theorem take on various forms, such as �φ,

φi, and ψ�φ, we can derive other useful integral formulas. These will be included in the exam-
ples and problems. Also, Table 6.5 tabulates these formulas.
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EXAMPLE 6.6.1

In the divergence theorem let the vector function u = φi, where φ is a scalar function. Derive the resulting
integral theorem.

� Solution

The divergence theorem is given by Eq. 6.6.1. Let u = φi and there results

∫∫
V

∫
� · (φi) dV =

∫∫
©
S

φi · n dS

The unit vector i is constant and thus � · (φi) = i · �φ (see Table 6.1). Removing the constant i from the
integrals yields

i ·
∫∫

V

∫
�φ dV = i ·

∫∫
©
S

φn dS

This can be rewritten as

i ·

∫∫

V

∫
�φ dV −

∫∫
©
S

φn dS


 = 0

Since i is never zero and the quantity in brackets is not, in general, perpendicular to i, we must demand that
the quantity in brackets be zero. Consequently,∫∫∫

V

�φ dV =
∫∫
©
S

φn dS

This is another useful form Gauss’ theorem.
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EXAMPLE 6.6.2

Let u = ψ�φ in the divergence theorem, and then let u = φ�ψ . Subtract the resulting equations, thereby
deriving Green’s theorem.

� Solution

Substituting u = ψ�φ into the divergence theorem given by Eq. 6.6.1, we have∫∫∫
V

� · (ψ �φ) dV =
∫∫
©
S

ψ�φ · n dS

Using Table 6.1, we can write

� · (ψ�φ) = �ψ · �φ + ψ�2φ = �ψ · �φ + ψ�2φ

The divergence theorem takes the form, using Eq. 6.4.9,∫∫∫
V

[ψ�2φ + �ψ · �φ] dV =
∫∫
©
S

ψ
∂φ

∂n
dS

Now, with u = φ�ψ , we find that∫∫∫
V

[φ�2ψ + �ψ · �φ] dV =
∫∫
©
S

φ
∂ψ

∂n
dS

Subtract the two preceding equations and obtain∫∫∫
V

[ψ�2φ − φ�2ψ] dV =
∫∫
©
S

[
ψ

∂φ

∂n
− φ

∂ψ

∂n

]
dS

This is known as Green’s theorem, or alternately, the second form of Green’s theorem.

Let the volume V be the simply connected region shown in the following figure. Derive the resulting form of
the divergence theorem if

u = u(x, y) = φi + ψj.

� Solution

The divergence theorem, Eq. 6.6.1, takes the form∫∫
R

[∫ H

0
� · u dz

]
dx dy =

∫∫
©
S

u · n dS

EXAMPLE 6.6.3
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The quantity � · u is independent of z, since u = u(x, y). Thus,

∫ H

0
� · u dz = H� · u

Also, on the top surface u · n2 = u · k = 0, since u has no z component. Likewise, on the bottom surface
u · n1 = 0. Consequently, only the side surface contributes to the surface integral. For this side surface we can
write dS = H dl and perform the integration around the closed curve C. The divergence theorem then takes
the form

H
∫∫
R

� · u dx dy =
∮

C
u · nH dl

Since

u = φi + ψj and n = dy

dl
i − dx

dl
j

(see the small sketch in the figure of this example), there results

� · u = ∂φ

∂x
+ ∂ψ

∂y

u · n = φ
dy

dl
− ψ

dx

dl

Finally, we have the useful result∫∫
R

(
∂φ

∂x
+ ∂ψ

∂y

)
dy dx =

∮
C

(φ dy − ψ dx)

It is known as Green’s theorem in the plane.

x

z

dS dV

dl
n

n1

n2

n

C dy

dl

dx

R

H

y

EXAMPLE 6.6.3 (Continued)



6.6.2 Stokes’ Theorem
Let a surface S be surrounded by a simple curve C as shown in Fig. 6.23. For the vector function
u(x, y, z). Stokes’ theorem states that∮

C
u · dl =

∫∫
S

(� × u) · n dS (6.6.13)

where dl is a directed line element of C and n is a unit vector normal to dS.
Using rectangular coordinates, this can be written as

∮
C

ux dx + uy dy + uz dz =
∫∫

S

[(
∂uz

∂y
− ∂uy

∂z

)
i · n

+
(

∂ux

∂z
− ∂uz

dx

)
j · n +

(
∂uy

∂x
− ∂ux

∂y

)
k · n

]
dS (6.6.14)

We will show that the terms involving ux are equal; that is,

∮
C

ux dx =
∫∫

S

[
∂ux

∂z
j · n − ∂ux

∂y
k · n

]
dS (6.6.15)

To show this, assume that the projection of S on the xy plane forms a simple curve C ′, which is
intersected by lines parallel to the y axis only twice. Let the surface S be located by the function
z = f (x, y); then a position vector to a point on S is

r = x i + yj + zk

= x i + yj + f (x, y)k (6.6.16)

If we increment y an amount �y the position vector locating a neighboring point on S becomes
r + �r = x i + (y + �y)j + ( f + � f )k , so that �r is a vector approximately tangent to the
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nS

C

(x, y)

C'

R
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d l

dS
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Figure 6.23 Surface used in the proof of
Stokes’ theorem.



surface S. In the limit as �y → 0, it is tangent. Hence, the vector

∂r
∂y

= lim
�y→0

�r
�y

= j + ∂ f

∂y
k (6.6.17)

is tangent to S and thus normal to n. We can then write

n · ∂r
∂y

= n · j + ∂ f

∂y
n · k = 0 (6.6.18)

so

n · j = −∂ f

∂y
n · k (6.6.19)

Substitute this back into Eq. 6.6.15 and obtain∮
C

ux dx = −
∫∫

S

[
∂ux

∂z

∂ f

∂y
+ ∂ux

∂y

]
n · k dS (6.6.20)

Now, on the surface S,

ux = ux [x, y, f (x, y)] = g(x, y) (6.6.21)

Using the chain rule from calculus we have, using z = f (x, y),

∂g

∂y
= ∂ux

∂y
+ ∂ux

∂z

∂ f

∂y
(6.6.22)

Equation 6.6.20 can then be written in the form (see Eq. 6.6.6)∮
C

ux dx = −
∫∫
R

∂g

∂y
dx dy (6.6.23)

The area integral above can be written as6 (see Fig. 6.24)

∫∫
R

∂g

∂y
dx dy =

∫ x2

x1

[∫ h2(x)

h1(x)

∂g

∂y
dy

]
dx =

∫ x2

x1

[g(x, h2) − g(x, h1)] dx

= −
∫

C2
′
g dx −

∫
C1

′
g dx (6.6.24)

where the negative sign on the C ′
2 integral is necessary to account for changing the direction of

integration. Since C ′
1 + C ′

2 = C ′ , we see that∮
C

ux dx =
∫

C ′
g dx (6.6.25)

From Eq. 6.6.21 we see that g on C ′ is the same as ux on C. Thus, our proof of Eq. 6.6.15 is
complete.
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6This can also be accomplished by using Green’s theorem in the plane, derived in Example 6.6.3, by letting
φ = 0 in that theorem.



Similarly, by projections on the other coordinate planes, we can verify that∮
C

uy dy =
∫∫

S

[
∂uy

∂x
k · n − ∂uy

∂z
i · n

]
dS

∮
C

uz dz =
∫∫

S

[
∂uz

∂y
i · n − ∂uz

∂x
j · n

]
dS

(6.6.26)

If we add Eq. 6.6.15 to Eqs. 6.6.26, then Eq. 6.6.14 results and our proof of Stokes’ theorem is
accomplished, a rather difficult task!

The scalar quantity resulting from the integration in Stokes’ theorem is called the circulation
of the vector u around the curve C. It is usually designated � and is

� =
∮

C
u · dl (6.6.27)

It is of particular interest in aerodynamics since the quantity ρ�U (ρ is the density of air and U
is the speed) gives the magnitude of the lift on an airfoil. Note that for an irrotational vector field
the circulation is zero.
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dx dy

R

y

x

Lower part
y � h1 (x)

Upper part
y � h2 (x)

C'2

C'1

C'1 � C'2 � C'

Figure 6.24 Plane surface R from Fig. 6.23.

Determine the circulation of the vector function u = 2yi + xj around the curve shown, by (a) direct integra-
tion and (b) Stokes’ theorem.

x

y

(2, 0)

(2, 4)

2

3

1

EXAMPLE 6.6.4
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� Solution

(a) The circulation is given by

� =
∮

C
u · dI =

∮
C

ux dx + uy dy + uz dz

For the three parts of the curve, we have

� =
∫

1
ux dx + uy dy + uz dz +

∫
2

ux dx + uy dy + uz dz +
∫

3
ux dx + uy dy + uz dz

Along part 1, ux = 2y = 0; along part 2, uy = x = 2; and along part 3, 2x = y, so 2 dx = dy . Thus, we have

� =
∫ 4

0
2 dy +

∫ 0

2
(2 · 2x dx + x 2dx)

= 2 · 4 + 3x2
∣∣0
2 = −4

(b) Using Stokes’ theorem, we have

� =
∫∫

S

� × u · n dS

=
∫∫

S

[(
∂uz

∂y
− ∂uy

∂z

)
i +

(
∂ux

∂z
− ∂uz

∂x

)
j +

(
∂uy

∂x
− ∂ux

∂y

)
k
]

· k dS

=
∫∫

S

(1 − 2)k · k dS = −
∫∫

dS = −4

EXAMPLE 6.6.4 (Continued)

Problems

By using the divergence theorem, evaluate 
∫∫
©

S
u · n dS , where

1. u = x i + yj + zk and S is the sphere x2 + y2 + z2 = 9.

2. u = xyi + xzj + (1 − z)k and S is the unit cube bounded
by z = 0, y = 0, z = 0, x = 1, y = 1, and z = 1.

3. u = x i + xj + z2k and S is the cylinder x2 + y2 = 4
bounded by z = 0 and z = 8.

Recognizing that i · n dS = dy dz , j · n dS = dx dz , and
k · n dS = dx dy , evaluate the following using the divergence
theorem.

4.
∫∫

S
(x dy dz + 2y dx dz + y2 dx dy) , where S is the 

sphere x2 + y2 + z2 = 4.

5.
∫∫

S
(x2 dy dz + 2xy dx dz + xy dx dy) , where S is the 

cube of Problem 2.

6.
∫∫

S
z2 dx dy , where S is the cylinder of Problem 3.

7. Let u = �φ, and derive one of the forms of the diver-
gence theorem given in Table 6.5.

0 0 0 0 0

0 0



8. With u = v × i, derive one of the forms of the diver-
gence theorem given in Table 6.5.

Assume that φ is a harmonic function, that is, φ satisfies
Laplace’s equation �2φ = 0. Show that

9.
∫∫
©
S

∂φ

∂n
dS = 0

10.
∫∫∫

V

�φ · �φ dV =
∫∫
©
S

φ
∂φ

∂n
dS

11. If no fluid is being introduced into a volume V, that is,
there are no sources or sinks, the conservation of mass is
written in integral form as

−
∫∫∫

V

∂ρ

∂t
dV =

∫∫
©
S

ρv · n dS

where the surface S surrounds V, ρ(x, y, z, t) is the den-
sity (mass per unit volume), and v(x, y, z, t) is the veloc-
ity. Convert the area integral to a volume integral and
combine the two volume integrals. Then, since the equa-
tion is valid for any arbitrary volume, extract the differ-
ential form of the conservation of mass.

12. The integral form of the energy equation of a stationary
material equates the rate of change of energy contained
by the material to the rate at which heat enters the mater-
ial by conduction; that is,∫∫∫

V

ρ
∂e

∂t
dV = −

∫∫
©
S

q · n dS

where ρ is the density, e is the internal energy, and q is
the heat flux. Empirical evidence allows us to write

�e = c�T and q = −k�T
where c is the specific heat and k is the conductivity. If
this is true for any arbitrary volume, derive the differen-
tial heat equation if the coefficients are assumed constant.

13. Derive Green’s theorem in the plane by letting u =
φi + ψj and S be the xy plane in Stokes’ theorem.

14. Calculate the circulation of the vector u = y2i +
xyj + z2k around a triangle with vertices at the origin,
(2, 2, 0) and (0, 2, 0), by (a) direct integration and
(b) using Stokes’ theorem.

15. Calculate the circulation of u = yi − xj + zk around a
unit circle in the xy plane with center at the origin by
(a) direct integration, and (b) using Stokes’ theorem.

Evaluate the circulation of each vector function around the
curve specified. Use either direct integration or Stokes’
theorem.

16. u = 2zi + yj + xk; the triangle with vertices at the
origin, (1, 0, 0) and (0, 0, 4).

17. u = 2xyi + y2zj + xyk; the rectangle with corners at
(0, 0, 0), (0, 4, 0), (6, 4, 0), (6, 0, 0)

18. u = x2i + y2j + z2k; the unit circle in the xy plane with
center at the origin.
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We have seen in Chapter 1 that nonhomogeneous differential equations with constant coeffi-
cients containing sinusoidal input functions (e.g., A sin ωt ) can be solved quite easily for any
input frequency ω . There are many examples, however, of periodic input functions that are not
sinusoidal. Figure 7.1 illustrates four common ones. The voltage input to a circuit or the force
on a spring–mass system may be periodic but possess discontinuities such as those illustrated.
The object of this chapter is to present a technique for solving such problems and others con-
nected to the solution of certain boundary-value problems in the theory of partial differential
equations.

The technique of this chapter employs series of the form

a0

2
+

∞∑
n=1

(
an cos

nπ t

T
+ bn sin

nπ t

T

)
(7.1.1)

the so-called trigonometric series. Unlike power series, such series present many pitfalls and
subtleties. A complete theory of trigonometric series is beyond the scope of this text and most
works on applications of mathematics to the physical sciences. We make our task tractable by
narrowing our scope to those principles that bear directly on our interests.

Let f (t) be sectionally continuous in the interval −T < t < T so that in this interval f (t)
has at most a finite number of discontinuities. At each point of discontinuity the right- and left-
hand limits exist; that is, at the end points −T and T of the interval −T < t < T we define

7.1 INTRODUCTION

7 Fourier Series

f (t)

t

f (t)

t

f (t)

t

f (t)

t

Figure 7.1 Some periodic input functions. 



f (−T +) and f (T −) as limits from the right and left, respectively, according to the following
expressions:

f (−T +) = lim
t→−T
t>−T

f (t), f (T −) = lim
t→T
t<T

f (t) (7.1.2)

and insist that f (−T +) and f (T −) exist also. Then the following sets of Fourier coefficients of
f (t) in −T < t < T exist:

a0 = 1

T

∫ T

−T
f (t) dt

an = 1

T

∫ T

−T
f (t) cos

nπ t

T
dt

bn = 1

T

∫ T

−T
f (t) sin

nπ t

T
dt, n = 1, 2, 3, . . .

(7.1.3)

The trigonometric series 7.1.1, defined by using these coefficients, is the Fourier series expan-
sion of f (t) in −T < t < T . In this case we write

f (t) ∼ a0

2
+

∞∑
n=1

(
an cos

nπ t

T
+ bn sin

nπ t

T

)
(7.1.4)

This representation means only that the coefficients in the series are the Fourier coefficients of
f (t) as computed in Eq. 7.1.3. We shall concern ourselves in the next section with the question
of when “~” may be replaced with “=”; conditions on f (t) which are sufficient to permit this
replacement are known as Fourier theorems.

We conclude this introduction with an example that illustrates one of the difficulties under
which we labor. In the next section we shall show that f (t) = t , −π < t < π has the Fourier
series representation

t = 2
∞∑

n=1

(−1)n+1

n
sin nt (7.1.5)

where the series converges for all t,−π < t < π . Now f ′(t) = 1. But if we differentiate the
series 7.1.5 term by term, we obtain

2
∞∑

n=1

(−1)n+1 cos nt (7.1.6)

which diverges in −π < t < π since the nth term, (−i)n+1 cos nt , does not tend to zero as n
tends to infinity. Moreover, it is not even the Fourier series representation of f ′(t) = 1. This is
in sharp contrast to the “nice” results we are accustomed to in working with power and
Frobenius series.

In this chapter we will use Maple commands from Appendix C, assume from Chapter 3, and
dsolve from Chapter 1. New commands include: sum and simplify/trig.

7.1.1 Maple Applications
It will be useful to compare a function to its Fourier series representation. Using Maple, we can
create graphs to help us compare. For example, in order to compare Eq. 7.1.5 with f (t) = t , we
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can start by defining a partial sum in Maple:

>fs:=(N, t) -> sum(2*(-1)^(n+1)* sin(n*t)/n, n=1..N);

fs := (N,t)→
N∑

n=1

(
2(−1)(n+1) sin(n t)

n

)
In this way, we can use whatever value of N we want and compare the Nth partial sum with the
function f (t):

>plot({fs(4, t), t}, t=-5..5);

Observe that the Fourier series does a reasonable job of approximating the function only on the
interval −π < t < π . We shall see why this is so in the next section.

0�2 2 t

2

�2

�4

4

4�4

7.1 INTRODUCTION � 415

Problems

1. (a) What is the Fourier representation of f (t) = 1,
−π < t < π?

(b) Use Maple to create a graph of f (t) and a partial
Fourier series.

2. Verify the representation, Eq. 7.1.5, by using Eqs. 7.1.3
and 7.1.4.

3. Does the series (Eq. 7.1.5) converge if t is exterior to
−π < t < π? At t = π? At t = −π? To what values?

4. Show that the Fourier series representation given as
Eq. 7.1.4 may be written

f (t) ∼ 1

2T

∫ T

−T
f (t) dt

+ 1

T

∞∑
n=1

∫ T

−T
f (s) cos

nπ t

T
(s − t) dt

5. Explain how
π

4
= 1 − 1

3
+ 1

5
− 1

7
+ · · ·

follows from Eq. 7.1.5. Hint: Pick t = π/2. Note that
this result also follows from

tan−1 x = x − x3

3
+ x5

5
− x7

7
+ · · · , −1 < x ≤ 1

6. What is the Fourier series expansion of f (t) = −1,

−T < t < T ?

7. Create a graph of tan−1 x and a partial sum, based on the
equation in Problem 5.

8. One way to derive Eqs. 7.1.3 is to think in terms of a least
squares fit of data (see Section 5.4). In this situation, we
let g(t) be the Fourier series expansion of f (t), and we



strive to minimize:∫ T

−T
( f (t) − g(t))2 dt

(a) Explain why this integral can be thought of as a func-
tion of a0, a1, a2, etc., and b1, b2, etc.

(b) Replace g(t) in the above integral with a1 cos( π t
T ),

creating a function of just a1. To minimize this func-
tion, determine where its derivative is zero, solving
for a1. (Note that it is valid in this situation to switch
the integral with the partial derivative.)

(c) Use the approach in part (b) as a model to derive all
the equations in Eqs. 7.1.3.

9. Computer Laboratory Activity: In Section 5.3 in
Chapter 5, one problem asks for a proof that for any
vectors y and u (where u has norm 1), the projection of

the vector y in the direction of u can be computed by
(u · y)u. We can think of sectionally continuous func-
tions f (t) and g(t), in the interval −T < t < T , as
vectors, with an inner (dot) product defined by

〈 f, g〉 =
∫ T

−T
f (t)g(t) dt

and a norm defined by

|| f || =
√

〈 f, f 〉
(a) Divide the functions 1, cos

nπ t

T
, and sin

nπ t

T
by

appropriate constants so that their norms are 1.

(b) Derive Eqs. 7.1.3 by computing the projections of 

f (t) in the “directions” of 1, cos
nπ t

T
, and sin

nπ t

T
.

As we have remarked in the introduction, we shall assume throughout this chapter that f (t) is
sectionally continuous in −T < t < T . Whether f (t) is defined at the end points −T or T or
defined exterior1 to (−T, T ) is a matter of indifference. For if the Fourier series of f (t) con-
verges to f (t) in (−T, T ) it converges almost everywhere since it is periodic with period 2T.
Hence, unless f (t) is also periodic, the series will converge, not to f (t), but to its “periodic
extension.” Let us make this idea more precise. First, we make the following stipulation:

(1) If t0 is a point of discontinuity of f (t),−T < t0 < T , then redefine f (t0), if necessary, so
that

f (t0) = 1
2 [ f (t−

0 ) + f (t+
0 )] (7.2.1)

In other words, we shall assume that in (−T, T ) the function f (t) is always the average of the
right- and left-hand limits at t. Of course, if t is a point of continuity of f (t), then
f (t+) = f (t−) and hence Eq. 7.2.1 is also true at points of continuity. The periodic extension
f̃ (t) of f (t) is defined

(2) f̃ (t) = f (t), −T < t < T (7.2.2)

(3) f̃ (t + 2T ) = f̃ (t) for all t (7.2.3)

(4) f̃ (T ) = f̃ (−T ) = 1
2 [ f (−T +) + f (T −)] (7.2.4)

Condition (2) requires f̃ (t) and f (t) to agree on the fundamental interval (−T, T ).
Condition (3) extends the definition of f (t) so that f̃ (t) is defined everywhere and is periodic
with period 2T. Condition (4) is somewhat more subtle. Essentially, it forces stipulation (1)
(see Eq. 7.2.1) on f̃ (t) at the points ±nT (see Examples 7.2.1 and 7.2.2).

7.2 A FOURIER THEOREM
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EXAMPLE 7.2.1

Sketch the periodic extension of f (t) = t/π,−π < t < π .

� Solution

In this example, f (π−) = 1 and f (−π+) = −1, so that f̃ (π) = f̃ (−π) = 0. The graph of f̃ (t) follows.

Note that the effect of condition (4) (See Eq. 7.2.4) is to force f̃ (t) to have the average of its values at all
t; in particular, f̃ (nπ) = f̃ (−nπ) = 0 for all n.

�� � 3� t

�1

1

f
~

EXAMPLE 7.2.2

Sketch the periodic extension of f (t) = 0 for t < 0, f (t) = 1 for t > 0, if the fundamental interval is (−1, 1).

� Solution

There are two preliminary steps. First, we redefine f (t) at t = 0; to wit,

f (0) = 1 + 0

2
= 1

2

Second, since f (1) = 1 and f (−1) = 0, we set

f̃ (−1) = f̃ (1) = 1 + 0

2
= 1

2

The graph of f (t) is as shown.

�1

1

1 2 t

f
~

1
2



A Fourier theorem is a set of conditions sufficient to imply the convergence of the Fourier se-
ries f (t) to some function closely “related” to f (t). The following is one such theorem.

Theorem 7.1: Suppose that f (t) and f ′(t) are sectionally continuous in −T < t < T . Then
the Fourier series of f (t) converges to the periodic extension of f (t), that is, f̃ (t), for all t.

We offer no proof for this theorem.2 Note, however, that the Fourier series for the functions
given in Examples 7.2.1 and 7.2.2 converge to the functions portrayed in the respective figures
of those examples. Thus, Eq. 7.1.4 with an equal sign is a consequence of this theorem.

There is another observation relevant to Theorem 7.1; in the interval −T < t < T ,
f̃ (t) = f (t). Thus, the convergence of the Fourier series of f (t) is to f (t) in (−T, T ).
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Problems

The following sketches define a function in some interval
−T < t < T . Complete the sketch for the periodic extension
of this function and indicate the value of the function at points
of discontinuity.

1.

2.

3.

4.

�� �

1

t

sin t�2

�1 1

1

t

�1 1

1

t

1
2

�1 1

1

t

5.

6.

7.

Sketch the periodic extensions of each function.

8. f (t) =
{−1, −π < t < 0

1, 0 < t < π

9. f (t) = t + 1, −π < t < π

10. f (t) =
{

t + π, −π < t < 0
−t + π, 0 < t < π

�1 1

Parabola
1

t

�1 1

1

t
�

1
2

1
2

�a a

1

�1

t

2 A proof is given in many textbooks on Fourier series.



11. f (t) = | sin t |, −π < t < π

12. f (t) =
{

0, −2 < t < 0
sin π t/2, 0 < t < 2

13. f (t) = t2, −π < t < π

14. f (t) =




−1, −1 < t < − 1
2

0, − 1
2 < t < 1

2
1, 1

2 < t < 1

15. f (t) = |t |, −1 < t < 1

16. f (t) =
{

0, −π < t < 0
sin t, 0 < t < π

17. f (t) =
{−1, −1 < t < 0

1, 0 < t < 1

18. f (t) = cos t, −π < t < π

19. f (t) = sin 2t, −π < t < π

20. f (t) = tan t, −π
2 < t < π

2

21. f (t) = t, −1 < t < 1

22. Explain why f (t) = √|t | is continuous in −1 < t < 1
but f ′(t) is not sectionally continuous in this interval.

23. Explain why f (t) = |t |3/2 is continuous and f ′(t) is also
continuous in −1 < t < 1. Contrast this with Problem
22.

24. Is ln | tan t/2| sectionally continuous in 0 < t < π/4?
Explain.

25. Is

f (t) =
{

ln | tan t/2|, 0 < ε ≤ |t | < π/4
0, |t | < ε

sectionally continuous in 0 < t < π/4? Explain.

7.3.1 Kronecker’s Method
We shall be faced with integrations of the type∫

xk cos
nπx

L
dx (7.3.1)

for various small positive integer values of k. This type of integration is accomplished by re-
peated integration by parts. We wish to diminish the tedious details inherent in such computa-
tions. So consider the integration-by-parts formula∫

g(x) f (x) dx = g(x)

∫
f (x) dx −

∫ [
g′(x)

∫
f (x) dx

]
dx (7.3.2)

Let

F1(x) =
∫

f (x) dx

F2(x) =
∫

F1(x) dx

...

Fn(x) =
∫

Fn−1(x) dx

(7.3.3)

Then Eq. 7.3.2 is ∫
g(x) f (x) dx = g(x)F1(x) −

∫
g′(x)F1(x) dx (7.3.4)

7.3 THE COMPUTATION OF THE FOURIER COEFFICIENTS
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from which

∫
g(x) f (x) dx = g(x)F1(x) − g′(x)F2(x) +

∫
g′′(x)F2(x) dx (7.3.5)

follows by another integration by parts. This may be repeated indefinitely, leading to

∫
g(x) f (x) dx = g(x)F1(x) − g′(x)F2(x) + g′′(x)F3(x) + · · · (7.3.6)

This is Kronecker’s method of integration.
Note that each term on the right-hand side of Eq.7.3.6 comes from the preceding term by dif-

ferentiation of the g function and an indefinite integration of the f function as well as an alterna-
tion of sign.
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EXAMPLE 7.3.1

Compute 
∫ π

−π
x cos nx dx.

� Solution

We integrate by parts (or use Kronecker’s method) as follows:

∫ π

−π

x cos nx dx = x

n
sin nx

∣∣π
−π

− 1

(
− 1

n2
cos nx

) ∣∣∣∣
π

−π

= 0 + 1

n2
(cos nπ − cos nπ) = 0

EXAMPLE 7.3.2

Compute 
∫ π

−π
x2 cos nx dx .

� Solution

For this example, we can integrate by parts twice (or use Kronecker’s method):

∫ π

−π

x2 cosnx dx =
[

x2

n
sin nx − 2x

(
− 1

n2
cos nx

)
+ 2

(
− 1

n3
sin nx

)]π

−π

= 2

n2
(π cos nπ + π cos nπ) = 4π

n2
(−1)n
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Use Kronecker’s method and integrate 
∫

ex cos ax dx .

� Solution

Let g(x) = ex . Then∫
ex cos ax dx = ex 1

a
sin ax − ex

(
− 1

a2
cos ax

)
+ ex

(−1

a3
sin ax

)
+ · · ·

= ex

(
1

a
sin ax + 1

a2
cos ax − 1

a3
sin ax + · · ·

)

= ex sin ax

(
1

a
− 1

a3
+ · · ·

)
+ ex cos ax

(
1

a2
− 1

a4
+ · · ·

)

= ex 1

a

1

1 + 1/a2
sin ax + ex 1

a2

1

1 + 1/a2
cos ax

= ex

a2 + 1
(a sin ax + cos ax)

EXAMPLE 7.3.3

Problems

Find a general formula for each integral as a function of the
positive integer n.

1.
∫

xn cos ax dx

2.
∫

xn sin ax dx

3.
∫

xnebx dx

4.
∫

xn sinh bx dx

5.
∫

xn cosh bx dx

6.
∫

xn(ax + b)α dx

Find each integral using as a model the work in Example
7.3.3.

7.
∫

ebx cos ax dx

8.
∫

ebx sin ax dx

7.3.2 Some Expansions
In this section we will find some Fourier series expansions of several of the more common func-
tions, applying the theory of the previous sections.

Write the Fourier series representation of the periodic function f (t) if in one period

f (t) = t, −π < t < π

EXAMPLE 7.3.4

f (t)

�� � t
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� Solution

For this example, T = π . For an we have

a0 = 1

π

∫ π

−π

f (t) dt = 1

π

∫ π

−π

t dt = t2

2π

∣∣∣∣
π

−n

= 0

an = 1

π

∫ π

−π

f (t) cos nt dt, n = 1, 2, 3, . . .

= 1

π

∫ π

−π

t cos nt dt = 1

π

[
t

n
sin nt + 1

n2
cos nt

]π

−π

= 0

recognizing that cos nπ = cos(−nπ) and sin nπ = − sin(−nπ) = 0. For bn we have

bn = 1

π

∫ π

−π

f (t) sin nt dt, n = 1, 2, 3, . . .

= 1

π

∫ π

−π

t sin nt dt = 1

π

[
− t

n
cos nt + 1

n2
sin nt

]π

−π

= −2

n
cos nπ

The Fourier series representation has only sine terms. It is given by

f (t) = −2
∞∑

n=1

(−1)n

n
sin nt

where we have used cos nπ = (−1)n . Writing out several terms, we have

f (t) = −2[− sin t + 1
2 sin 2t − 1

3 sin 3t + · · ·]
= 2 sin t − sin 2t + 2

3 sin 3t − · · ·

Note the following sketches, showing the increasing accuracy with which the terms approximate the f (t).
Notice also the close approximation using three terms. Obviously, using a computer and keeping, say 50
terms, a remarkably good approximation can result using Fourier series.

2 sin t

f (t)

t

2 sin t � sin 2t

f (t)

t

f (t)

t

2 sin t � sin 2t � sin 3t2
3

EXAMPLE 7.3.4 (Continued)
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Find the Fourier series expansion for the periodic function f (t) if in one period

f (t) =
{

0, −π < t < 0
t, 0 < t < π

� Solution

The period is again 2π ; thus, T = π . The Fourier coefficients are given by

a0 = 1

π

∫ π

−π

f (t) dt = 1

π

∫ π

−0
t dt = π

2

an = 1

π

∫ π

−π

f (t) cos nt dt = 1

π

∫ 0

−π

0 cos nt dt

+ 1

π

∫ π

0
t cos nt dt

= 1

π

[
t

n
sin nt + 1

n2
cos nt

]π

0

= 1

πn2
(cos nπ − 1), n = 1, 2, 3, . . .

bn = 1

π

∫ π

−π

f (t) sin nt dt = 1

π

∫ 0

−π

0 sin nt dt + 1

π

∫ π

0
t sin nt dt

= 1

π

[
− t

n
cos nt + 1

n2
sin nt

]π

0

= −1

n
cos nπ, n = 1, 2, 3, . . .

The Fourier series representation is, then, using cos nπ = (−1)n ,

f (t) = π

4
+

∞∑
n=1

[
(−1)n − 1

πn2
cos nt − (−1)n

n
sin nt

]

= π

4
− 2

π
cos t − 2

9π
cos 3t + · · · + sin t

− 1

2
sin 2t + 1

3
sin 3t + · · ·

EXAMPLE 7.3.5

f (t)

t�� �
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Find the Fourier series for the periodic extension of

f (t) =
{

sin t, 0 ≤ t ≤ π

0, π ≤ t ≤ 2π

� Solution

The period is 2π and the Fourier coefficients are computed as usual except for the fact that a1 and b1 must be
computed separately—as we shall see. We have

a0 = 1

π

∫ π

0
sin t dt = 1

π
(− cos t)

∣∣∣∣
π

0

= 2

π

2�����2�
t

f
~

EXAMPLE 7.3.6

In the following graph, partial fourier series with n equal to 5, 10, and 20, respectively, have been plotted.

�2.00 �1.00 0.00

1.00

2.00

3.00

f(t)

1.00 2.00 3.00
t

n � 5

n � 10
n � 20

EXAMPLE 7.3.5 (Continued)
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For n 
= 1:

an = 1

π

∫ π

0
sin t cos nt dt

= 1

2π

∫ π

0
[sin(t + nt) + sin(t − nt)] dt

= − 1

2π

[
cos(n + 1)t

n + 1
− cos(n − 1)t

n − 1

]π

0

= − 1

2π

[
(−1)n+1

n + 1
− (−1)n−1

n − 1

]
+ 1

2π

[
1

n + 1
− 1

n − 1

]

= 1

π(n2 − 1)
[(−1)n+1 − 1]

bn = 1

π

∫ π

0
sin t sin nt dt

= 1

2π

∫ π

0
[−cos(n + 1)t + cos(n − 1)t] dt

= 1

2π

[−sin(n + 1)t

n + 1
+ sin(n − 1)t

n − 1

]π

0

= 0

For n = 1 the expressions above are not defined; hence, the integration is performed specifically for n = 1:

a1 = 1

π

∫ π

0
sin t cos t dt

= 1

π

sin2 t

2

∣∣∣∣
π

0

= 0

b1 = 1

π

∫ π

0
sin t sin t dt = 1

π

∫ π

0

(
1

2
− 1

2
cos 2t

)
dt

= 1

π

(
1

2
t − 1

4
sin 2t

) ∣∣∣∣
π

0

= 1

2

Therefore, when all this information is incorporated in the Fourier series, we obtain the expansion

f̃ (t) = 1

π
+ 1

2
sin t + 1

π

∞∑
n=2

(−1)n+1

n2 − 1
cos nt

= 1

π
+ 1

2
sin t − 2

π

∞∑
n=1

cos 2nt

4n2 − 1

The two series representations for f̃ (t) are equal because (−1)2k+1 − 1 = −2 and (−1)2k − 1 = 0. This se-
ries converges everywhere to the periodic function sketched in the example. For t = π/2, we have

sin
π

2
= 1

π
+ 1

2
sin

π

2
− 2

π

∞∑
n=1

(−1)n

4n2 − 1

EXAMPLE 7.3.6 (Continued)



7.3.3 Maple Applications
Clearly the key step in determining Fourier series representation is successful integration to
compute the Fourier coefficients. For integrals with closed-form solutions, Maple can do these
calculations, without n specified, although it helps to specify that n is an integer. For instance,
computing the integrals from Example 7.3.6, n 
= 1, can be done as follows:

>assume(n, integer);

>a_n:=(1/Pi)*(int(sin(t)*cos(n*t), t=0..Pi));

a—n := − (−1)n∼ + 1

π(1+ n∼)(−1+ n∼)
>b_n:=(1/Pi)*(int(sin(t)*sin(n*t), t=0..Pi));

b—n := 0

Some integrals cannot be computed exactly, and need to be approximated numerically. An ex-
ample would be to find the Fourier series of the periodic extension of f (t) = √

t + 5 defined on
−π ≤ t ≤ π . A typical Fourier coefficient would be

a3 = 1

π

∫ π

−π

√
t + 5 cos 3t dt

In response to a command to evaluate this integral, Maple returns complicated output that in-
volves special functions. In this case, a numerical result is preferred, and can be found via this
command:

>evalf((1/Pi)*(int(sqrt(t+5)*cos(3*t), t=-Pi..Pi)));

0.006524598965
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which leads to

π

4
= 1

2
−

∞∑
n=1

(−1)n

4n2 − 1
= 1

2
+ 1

3
− 1

15
+ 1

35
− 1

63
+ · · ·

The function f̃ (t) of this example is useful in the theory of diodes.

EXAMPLE 7.3.6 (Continued)

Problems

Write the Fourier series representation for each periodic func-
tion. One period is defined for each. Express the answer as a
series using the summation symbol.

1. f (t) =
{−t, −π < t < 0

t, 0 < t < π

2. f (t) = t2, −π < t < π



3. f (t) = cos t
2 , −π < t < π

4. f (t) = t + 2π, −2π < t < 2π

5.

6.

7.

8.

t

f(t)

�2 2

Parabola

8

Straight line

t

f (t)

�1 1

Parabola1

t

f(t)

1

�1 1

2

f(t)

1�1 t

9. Problem 7 of Section 7.2

10. Problem 8 of Section 7.2

11. Problem 9 of Section 7.2

12. Problem 11 of Section 7.2

13. Problem 14 of Section 7.2

Use Maple to compute the Fourier coefficients. In addition,
create a graph of the function with a partial Fourier series for
large N.

14. Problem 1

15. Problem 2

16. Problem 3

17. Problem 4

18. Problem 5

19. Problem 6

20. Problem 7

21. Problem 8

22. Problem 9

23. Problem 10

24. Problem 11

25. Problem 12

26. Problem 13
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7.3.4 Even and Odd Functions
The Fourier series expansions of even and odd functions can be accomplished with significantly
less effort than needed for functions without either of these symmetries. Recall that an even
function is one that satisfies the condition

f (−t) = f (t) (7.3.7)

and hence exhibits a graph symmetric with respect to the vertical axis. An odd function satisfies

f (−t) = − f (t) (7.3.8)

The functions cos t , t2 − 1, tan2 t , k, |t | are even; the functions sin t , tan t , t , t |t | are odd.
Some even and odd functions are displayed in Fig. 7.2. It should be obvious from the definitions
that sums of even (odd) functions are even (odd). The product of two even or two odd functions
is even. However, the product of an even and an odd function is odd; for suppose that f (t) is
even and g(t) is odd and h = f g. Then

h(−t) = g(−t) f (−t) = −g(t) f (t) = −h(t) (7.3.9)



The relationship of Eqs. 7.3.7 and 7.3.8 to the computations of the Fourier coefficients arises
from the next formulas. Again, f (t) is even and g(t) is odd. Then

∫ T

−T
f (t) dt = 2

∫ T

0
f (t) dt (7.3.10)

and ∫ T

−T
g(t) dt = 0 (7.3.11)

To prove Eq. 7.3.10, we have∫ T

−T
f (t) dt =

∫ 0

−T
f (t) dt +

∫ T

0
f (t) dt

= −
∫ 0

T
f (−s) ds +

∫ T

0
f (t) dt (7.3.12)

by the change of variables −s = t, −ds = dt . Hence,∫ T

−T
f (t) dt =

∫ T

0
f (−s) ds +

∫ T

0
f (t) dt

=
∫ T

0
f (s) ds +

∫ T

0
f (t) dt (7.3.13)

since f (t) is even. These last two integrals are the same because s and t are dummy variables.
Similarly, we prove Eq. 7.3.11 by∫ T

−T
g(t) dt =

∫ T

0
g(−s) ds +

∫ T

0
g(t) dt

= −
∫ T

0
g(s) ds +

∫ T

0
g(t) dt = 0 (7.3.14)

because g(−s) = −g(s).
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f(t)

t

f(t)

t

f(t)

t

f(t)

t

(a) Even (b) Odd

Figure 7.2 Some even and odd functions. 



We leave it to the reader to verify:

1. An even function is continuous at t = 0, redefining f (0) by Eq. 7.2.1, if necessary.
2. The value (average value, if necessary) at the origin of an odd function is zero.
3. The derivative of an even (odd) function is odd (even).

In view of the above, particularly Eqs. 7.3.10 and 7.3.11, it can be seen that if f (t) is an even
function, the Fourier cosine series results:

f (t) = a0

2
+

∞∑
n=1

an cos
nπ t

T
(7.3.15)

where

a0 = 2

T

∫ T

0
f (t) dt, an = 2

T

∫ T

0
f (t) cos

nπ t

T
dt (7.3.16)

If f (t) is an odd function, we have the Fourier sine series,

f (t) =
∞∑

n=1

bn sin
nπ t

T
(7.3.17)

where

bn = 2

T

∫ T

0
f (t) sin

nπ t

T
dt (7.3.18)

From the point of view of a physical system, the periodic input function sketched in Fig. 7.3
is neither even or odd. A function may be even or odd depending on where the vertical axis,
t = 0, is drawn. In Fig. 7.4 we can clearly see the impact of the placement of t = 0; it generates
an even function f1(t) in (a), an odd function f2(t) in (b), and f3(t) in (c) which is neither even
nor odd. The next example illustrates how this observation may be exploited.
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t

f1(t)

t

(a)

f2(t)

t

(b)

f3(t)

t

(c)

Figure 7.3 A periodic input.

Figure 7.4 An input expressed as various functions. 
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A periodic forcing function acts on a spring–mass system as shown. Find a sine-series representation by con-
sidering the function to be odd, and a cosine-series representation by considering the function to be even.

� Solution

If the t = 0 location is selected as shown, the resulting odd function can be written, for one period, as

f1(t) =
{−2 −2 < t < 0

2, 0 < t < 2

For an odd function we know that

an = 0

Hence, we are left with the task of finding bn . We have, using T = 2,

bn = 2

T

∫ T

0
fl(t) sin

nπ t

T
dt, n = 1, 2, 3, . . .

= 2

2

∫ 2

0
2 sin

nπ t

2
dt = − 4

nπ
cos

nπ t

2

∣∣∣∣
2

0

= − 4

nπ
(cos nπ − 1)

The Fourier sine series is, then, again substituting cos nπ = (−1)n ,

f1(t) =
∞∑

n=1

4[1 − (−1)n]

nπ
sin

nπ t

2

= 8

π
sin

π t

2
− 8

3π
sin

3π t

2
+ 8

5π
sin

5π t

2
− · · ·

If we select the t = 0 location as displayed, an even function results. Over one period it is

f2(t) =



−2, −2 < t < −1
2, −1 < t < 1

−2, 1 < t < 2 31�1�3

f2(t)

t

2

�2 2

�2

f1(t)

t

2 2

2

2

EXAMPLE 7.3.7



We can take a somewhat different view of the problem in the preceding example. The rela-
tionship between f1(t) and f2(t) is

f1(t + 1) = f2(t) (7.3.19)

Hence, the odd expansion in Example 7.3.7 is just a “shifted” version of the even expansion.
Indeed,

f1(t + 1) = f2(t) =
∞∑

n=1

4
[1 − (−1)n]

nπ
sin

nπ(t + 1)

2

=
∞∑

n=1

4
[1 − (−1)n]

nπ

(
sin

nπ

2
cos

nπ t

2
+ cos

nπ

2
sin

nπ t

2

)

= 8

π

∞∑
n=1

(−1)n−1

2n − 1
cos

2n − 1

2
π t (7.3.20)

which is an even expansion, equivalent to the earlier one.
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For an even function we know that

bn = 0

The coefficients an are found from

an = 2

T

∫ T

0
f2(t) cos

nπ t

T
dt; n = 1, 2, 3, . . .

= 2

2

[∫ 1

0
2 cos

nπ t

2
dt +

∫ 2

1
(−2) cos

nπ t

2
dt

]

= 4

nπ
sin

nπ t

2

∣∣∣∣
1

0

− 4

nπ
sin

nπ t

2

∣∣∣∣
2

1

= 8

nπ
sin

nπ

2

The result for n = 0 is found from

a0 = 2

T

∫ T

0
f2(t) dt

= 2

2

[∫ 1

0
2 dt +

∫ 2

1
(−2) dt

]
= 2 − 2 = 0

Finally, the Fourier cosine series is

f2(t) =
∞∑

n=1

8

nπ
sin

nπ

2
cos

nπ t

2

= 8

π
cos

π t

2
− 8

3π
cos

3π t

2
+ 8

5π
cos

5π t

2
+ · · ·

EXAMPLE 7.3.7 (Continued)
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Problems

1. In Problems 1 to 8 of Section 7.3.2, (a) which of the
functions are even, (b) which of the functions are odd,
(c) which of the functions could be made even by shifting
the vertical axis, and (d) which of the functions could be
made odd by shifting the vertical axis?

Expand each periodic function in a Fourier sine series
and a Fourier cosine series.

2. f (t) = 4t, 0 < t < π

3. f (t) =
{

10, 0 < t < π

0, π < t < 2π

4. f (t) = sin t, 0 < t < π

5.

6.
2

4

f(t)

t

Parabola

10

2

f(t)

t

7.

8. Show that the periodic extension of an even function
must be continuous at t = 0.

9. Show that the period extension of an odd function is zero
at t = 0.

10. Use the definition of derivative to explain why the deriv-
ative of an odd (even) function is even (odd).

Use Maple to compute the Fourier coefficients. In addition,
create a graph of the function with a partial Fourier series for
large N.

11. Problem 2

12. Problem 3

13. Problem 4

14. Problem 5

15. Problem 6

16. Problem 7

100

21

f(t)

t

7.3.5 Half-Range Expansions
In modeling some physical phenomena it is necessary that we consider the values of a function
only in the interval 0 to T. This is especially true when considering partial differential equations,
as we shall do in Chapter 8. There is no condition of periodicity on the function, since there is no
interest in the function outside the interval 0 to T. Consequently, we can extend the function ar-
bitrarily to include the interval −T to 0. Consider the function f (t) shown in Fig. 7.5. If we ex-
tend it as in part (b), an even function results; an extension as in part (c) results in an odd func-
tion. Since these functions are defined differently in (−T, 0) we denote them with different
subscripts: fe for an even extension, fo for an odd extension. Note that the Fourier series for
fe(t) contains only cosine terms and contains only sine terms for fo(t). Both series converge to
f (t) in 0 < t < T . Such series expansions are known as half-range expansions. An example
will illustrate such expansions.
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f (t)

t tT

fe(t)

T�T t

fo(t)

T�T

(a) f (t) (b) Even function (c) Odd function

Figure 7.5 Extension of a function. 

A function f (t) is defined only over the range 0 < t < 4 as

f (t) =
{

t, 0 < t < 2
4 − t, 2 < t < 4

Find the half-range cosine and sine expansions of f (t).

� Solution

A half-range cosine expansion is found by forming a symmetric extension f (t). The bn of the Fourier series is
zero. The coefficients an are

an = 2

T

∫ T

0
f (t) cos

nπ t

T
dt, n = 1, 2, 3, · · ·

= 2

4

∫ 2

0
t cos

nπ t

4
dt + 2

4

∫ 4

2
(4 − t) cos

nπ t

4
dt

= 1

2

[
4t

nπ
sin

nπ t

4
+ 16

π2n2
cos

nπ t

4

]2

0

+ 1

2

[
16

nπ
sin

nπ t

4

]4

2

− 1

2

[
4t

nπ
sin

nπ t

4
+ 16

n2π2
cos

nπ t

4

]4

2

= − 8

n2π2

[
1 + cos nπ − 2 cos

nπ

2

]

For n = 0 the coefficient a0 is

a0 = 1
2

∫ 2

0
t dt + 1

2

∫ 4

2
(4 − t) dt = 2

EXAMPLE 7.3.8

2 4
t

f (t)
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The half-range cosine expansion is then

f (t) = 1 +
∞∑

n=1

8

n2π2

(
2 cos

nπ

2
− cos nπ − 1

)
cos

nπ t

4

= 1 − 8

π2

[
cos

π t

2
+ 1

9
cos

3π t

2
+ · · ·

]
, 0 < t < 4

It is an even periodic extension that graphs as follows:

Note that the Fourier series converges for all t, but not to f (t) outside of 0 < t < 4 since f (t) is not defined
there. The convergence is to the periodic extension of the even extension of f (t), namely, f̃e(t).

For the half-range sine expansion of f (t), all an are zero. The coefficients bn are

bn = 2

T

∫ T

0
f (t) sin

nπ t

T
dt, n = 1, 2, 3, . . .

= 2

4

∫ 2

0
t sin

nπ t

4
dt + 2

4

∫ 4

2
(4 − t) sin

nπ t

4
dt = 8

n2π2
sin

nπ

2

The half-range sine expansion is then

f (t) =
∞∑

n=1

8

n2π2
sin

nπ

2
sin

nπ t

4

= 8

π2

[
sin

π t

4
− 1

9
sin

3π t

4
+ 1

25
sin

5π t

4
− · · ·

]
, 0 < t < 4

This odd periodic extension appears as follows:

Here also we denote the periodic, odd extension of f (t) by f̃o(t). The sine series converges to f̃o(t) every-
where and to f (t) in 0 < t < 4. Both series would provide us with good approximations to f (t) in the inter-
val 0 < t < 4 if a sufficient number of terms are retained in each series. One would expect the accuracy of the
sine series to be better than that of the cosine series for a given number of terms, since fewer discontinuities
of the derivative exist in the odd extension. This is generally the case; if we make the extension smooth,
greater accuracy results for a particular number of terms.

fo(t)

t

~

�4 4 8

t

fe(t)
~

�4�2 4 8

EXAMPLE 7.3.8 (Continued)
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Problems

1. Rework Example 7.3.8 for a more general function. Let
the two zero points of f (t) be at t = 0 and t = T . Let the
maximum of f (t) at t = T/2 be K.

2. Find a half-range cosine expansion and a half-range sine
expansion for the function f (t) = t − t2 for 0 < t < 1.
Which expansion would be the more accurate for an
equal number of terms? Write the first three terms in each
series.

3. Find half-range sine expansion of

f (t) =
{

t, 0 < t < 2
2, 2 < t < 4

Make a sketch of the first three terms in the series.

Use Maple to solve

4. Problem 2

5. Problem 3

7.3.6 Sums and Scale Changes
Let us assume that f (t) and g(t) are periodic functions with period 2T and that both functions
are suitably3 defined at points of discontinuity. Suppose that they are sectionally continuous in
−T < t < T . It can be verified that

f (t) ∼ a0

2
+

∞∑
n=1

(
an cos

nπ t

T
+ bn sin

nπ t

T

)
(7.3.21)

and

g(t) ∼ α0

2
+

∞∑
n=1

(
αn cos

nπ t

T
+ βn sin

nπ t

T

)
(7.3.22)

imply

f (t) ± g(t) ∼ a0 ± α0

2
+

∞∑
n=1

[
(an ± αn) cos

nπ t

T
+ (bn ± βn) sin

nπ t

T

]
(7.3.23)

and

c f (t) ∼ c
a0

2
+

∞∑
n=1

(
can cos

nπ t

T
+ cbn sin

nπ t

T

)
(7.3.24)

These results can often be combined by shifting the vertical axis—as illustrated in
Example 7.3.7—to effect an easier expansion.

3As before, the value of f (t) at a point of discontinuity is the average of the limits from the left and the right. 
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EXAMPLE 7.3.9

Find the Fourier expansion of the even periodic extension of f (t) = sin t, 0 < t < π , as sketched, using the
results of Example 7.3.6.

� Solution

Clearly, f1(t) + f2(t) = f̃e(t) as displayed below, where, as usual, f̃e(t) represents the even extension of
f (t) = sin t, 0 < t < π . But

f1(t + π) = f2(t)

and, from Example 7.3.6,

f1(t) = 1

π
+ 1

2
sin t − 2

π

∞∑
n=1

cos 2nt

4n2 − 1

Therefore,

f2(t) = f1(t + π) = 1

π
+ 1

2
sin(t + π) − 2

π

∞∑
n=1

cos 2n(t + π)

4n2 − 1

Since sin(t + π) = − sin t and cos [2n(t + π)] = cos 2nt , we have

f2(t) = 1

π
− 1

2
sin t − 2

π

∞∑
n=1

cos 2nt

4n2 − 1

Finally, without a single integration, there results

f̃e(t) = f1(t) + f2(t)

= 2

π
− 4

π

∞∑
n=1

cos 2nt

4n2 − 1

��
t

f2

2��2� ����2�
t

f1

2��

�� ��2�

fe
~

t2�



It is also useful to derive the effects of a change of scale in t. For instance, if

f (t) ∼ a0

2
+

∞∑
n=1

(
an cos

nπ t

T
+ bn sin

nπ t

T

)
(7.3.25)

then the period of the series is 2T . Let

t = T

τ
t̂ (7.3.26)

Then

f̂ (t̂) = f

(
T

τ
t̂

)
∼ a0

2
+

∞∑
n=1

(
an cos

nπ t̂

τ
+ bn sin

nπ t̂

τ

)
(7.3.27)

is the series representing f̂ (t̂) with period 2τ . The changes τ = 1 and τ = π are most common
and lead to expansions with period 2 and 2π , respectively.
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Find the Fourier series expansion of the even periodic extension of

g(t) =
{

t, 0 ≤ t < 1
2 − t, 1 ≤ t < 2

� Solution

This periodic input resembles the input in Example 7.3.8. Here the period is 4; in Example 7.3.8 it is 8. This
suggests the scale change 2t̂ = t . So if

f (t) =
{

t, 0 ≤ t < 2
4 − t, 2 ≤ t < 4

f̂ (t̂ ) = f (2t̂ ) =
{

2t̂, 0 ≤ 2t̂ < 2
4 − 2t̂, 2 ≤ 2t̂ < 4

Note that g(t̂ ) = f̂ (t̂ )/2. So

g(t̂) =
{

t̂, 0 ≤ t̂ < 1
2 − t̂, 1 ≤ t̂ < 2

EXAMPLE 7.3.10

�2 �1 1 2 t

g
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But from g(t̂ ) = f̂ (t̂ )/2 we have (see Example 7.3.8)

g(t̂ ) = 1

2

[
1 − 8

π2

(
cos π t̂ + 1

9
cos 3π t̂ + · · ·

)]

Replacing t̂ by t yields

g(t) = 1

2
− 4

π2

(
cos π t + 1

9
cos 3π t + · · ·

)
, 0 ≤ t < 2

EXAMPLE 7.3.10 (Continued)

Problems

1. Let

f (t) =
{

0, −π < t < 0
f1(t), 0 < t < π

have the expansion

f (t) = a0

2
+

∞∑
n=1

an cos nt + bn sin nt

(a) Prove that

f (−t) =
{

f1(−t), −π < t < 0
0, 0 < t < π

and, by use of formulas for the Fourier coefficients, that

f (−t) = a0

2
+

∞∑
n=1

an cos nt − bn sin nt, π < t < π

(b) Verify that

fe(t) = a0 + 2
∞∑

n=1

an cos nt, −π < t < π

where fe(t) is the even extension of f1(t), 0 < t < π .

2. Use the results of Problem 1 and the expansion of

f (t) =
{

0, −π < t < 0
t, 0 < t < π

which is

π

4
+

∞∑
n=1

(−1)n − 1

πn2
cos nt − (−1)n

n
sin nt

to obtain the expansion of

f (t) = |t |, −π < t < π

3. Use the result in Problems 1 and 2 and the methods of
this section to find the Fourier expansion of

f (t) =
{

t + 1, −1 < t < 0
−t + 1, 0 < t < 1

�� �

�

t

�� �

�

t



4. The Fourier expansion of

f̂ (t) =
{−1, −π < t < 0

1, 0 < t < π

is

4

π

∞∑
n=1

sin(zn − 1)t

2n − 1

Use this result to obtain the following expansion:

f (t) =
{

0, −π < t < 0
1, 0 < t < π

by observing that f (t) = [1 + f̂ (t)]/2.

5. Use the information given in Problem 4 and find the
expansion of

f (t) =
{−1, −π < t < 0

0, 0 < t < π

6. If f (t) is constructed as in Problem 1, describe the func-
tion f (t) − f (−t).

7. Use Problems 2 and 6 to derive

t = 2
∞∑

n=1

(−1)n−1

n
sin nt, −π < t < π

We shall now consider an important application involving an external force acting on a spring-
mass system. The differential equation describing this motion is

M
d2 y

dt2
+ C

dy

dt
+ K y = F(t) (7.4.1)

If the input function F(t) is a sine or cosine function, the steady-state solution is a harmonic mo-
tion having the frequency of the input function. We will now see that if F(t) is periodic with fre-
quency ω but is not a sine or cosine function, then the steady-state solution to Eq. 7.4.1 will con-
tain the input frequency ω and multiples of this frequency contained in the terms of a Fourier
series expansion of F(t). If one of these higher frequencies is close to the natural frequency of
an underdamped system, then the particular term containing that frequency may play the domi-
nant role in the system response. This is somewhat surprising, since the input frequency may be
considerably lower than the natural frequency of the system; yet that input could lead to serious
problems if it is not purely sinusoidal. This will be illustrated with an example.

7.4 FORCED OSCILLATIONS
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Consider the force F(t) acting on the spring–mass system shown. Determine the steady-state response to this
forcing function.

� Solution

The coefficients in the Fourier series expansion of an odd forcing function F(t) are (see Example 7.3.7)

an = 0

bn = 2

1

∫ 1

0
100 sin

nπ t

1
dt = −200

nπ
cos nπ t

∣∣∣∣
1

0

= −200

nπ
(cos nπ − 1), n = 1, 2, . . .

EXAMPLE 7.4.1
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The Fourier series representation of F(t) is then

F(t) =
∞∑

n=1

200

nπ
(1 − cos nπ) sin nπ t = 400

π
sin π t − 400

3π
sin 3π t + 80

π
sin 5π t − · · ·

The differential equation can then be written

10
d2y

dt2
+ 0.5

dy

dt
+ 1000y = 400

π
sin π t − 400

3π
sin 3π t + 80

π
sin 5π t − · · ·

Because the differential equation is linear, we can first find the particular solution (yp)1 corresponding to the first
term on the right, then (yp)2 corresponding to the second term, and so on. Finally, the steady-state solution is

yp(t) = (yp)1 + (yp)2 + · · ·
Doing this for the three terms shown, using the methods developed earlier, we have

(yp)1 = 0.141 sin π t − 2.5 × 10−4 cos π t

(yp)2 = −0.376 sin 3π t + 1.56 × 10−3 cos 3π t

(yp)3 = −0.0174 sin 5π t − 9.35 × 10−5 cos 5π t

Actually, rather than solving the problem each time for each term, we could have found a (yp)n corresponding
to the term [−(200/nπ)(cos nπ − 1) sin nπ t] as a general function of n. Note the amplitude of the sine term
in (yp)2. It obviously dominates the solution, as displayed in a sketch of yp(t):

yp(t)

Input F(t)

t

Output y(t)

F(t)

1 2�1

�100

100

C � 0.5 kg/s

10 kg

K � 1000 N/m

F(t)

EXAMPLE 7.4.1 (Continued)



7.4.1 Maple Applications
There are parts of Example 7.4.1 that can be solved using Maple, while other steps are better
done in one’s head. For instance, by observing that F(t) is odd, we immediately conclude that
an = 0. To compute the other coefficients:

>b[n]:=2*int(100*sin(n*Pi*t), t=0 . .1);

bn := −200(cos(nπ)− 1)

nπ

This leads to the differential equation where the forcing term is an infinite sum of sines. We can
now use Maple to find a solution for any n. Using dsolve will lead to the general solution:

>deq:=10*diff(y(t), t$2)+0.5*diff(y(t),
t)+1000*y(t)=b[n]*sin(n*Pi*t);

deq := 10

(
d2

dt2
y(t)

)
+ 0.5

(
d

dt
y(t)

)
+ 1000y(t)= −200(cos(nπ)− 1)sin(nπt)

nπ

>dsolve(deq, y(t));

y(t)=e(−
t
40)sin

(√
159999t

40

)
—C2+ e(−

t
40)cos

(√
159999t

40

)
—C1

+ (−400000+ 4000n2π2)sin(nπt− nπ)+ 200nπ cos(nπt + nπ)

− 400000 sin(nπt + nπ)+ 4000n2π2 sin(nπt + nπ)

+ 800000 sin(nπt)− 400 cos(nπt)nπ + 200nπ cos(nπt− nπ)

− 8000n2π2 sin(nπt))/(4000000nπ − 79999n3π3 + 400n5π5)

The first two terms of this solution are the solution to the homogeneous equation, and this part
will decay quickly as t grows. So, as t increases, any solution is dominated by the particular so-
lution. To get the particular solution, set both constants equal to zero, which can be done with
this command:

>ypn:= op(3, op(2, %));

ypn :=((−400000+ 4000n2π2)sin(nπt− nπ)+ 200nπ cos(nπt + nπ)

− 400000 sin(nπt + nπ)+ 4000n2π2 sin(nπt + nπ)

+ 800000 sin(nπt)− 400 cos(nπ t)nπ + 200nπ cos(nπt− nπ)

− 8000n2π2 sin(nπt))/(4000000nπ − 79999n3π3 + 400n5π5)
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Yet (yp)2 has an annular frequency of 3π rad/s, whereas the frequency of the input function was π rad/s. This
happened because the natural frequency of the undamped system was 10 rad/s, very close to the frequency of
the second sine term in the Fourier series expansion. Hence, it is this overtone that resonates with the system,
and not the fundamental. Overtones may dominate the steady-state response for any underdamped system that
is forced with a periodic function having a frequency smaller than the natural frequency of the system.

EXAMPLE 7.4.1 (Continued)



This solution is a combination of sines and cosines, with the denominator being the constant:

4000000nπ − 79999n3π3 + 400n5π5

The following pair of commands can be used to examine the particular solution for fixed values
of n. The simplify command with the triq option combines the sines and cosines. When
n = 1, we get

>subs(n=1, ypn):

>simplify(%, trig);

−800(−2000 sin(πt)+ 20π2 sin(πt)+ cos(πt)π)

π(4000000− 79999π2 + 400π4)

Finally,

>evalf(%);

0.1412659590 sin(3.141592654 t) − 0.0002461989079 cos(3.141592654 t)

which reveals (yp)1 using floating-point arithmetic. Similar calculations can be done for other
values of n.
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Problems

Find the steady-state solution to Eq. 7.4.1 for each of the
following.

1. M = 2, C = 0, K = 8, F(t) = sin 4t

2. M = 2, C = 0, K = 2, F(t) = cos 2t

3. M = 1, C = 0, K = 16, F(t) = sin t + cos 2t

4. M = 1, C = 0, K = 25, F(t) = cos 2t + 1
10 sin 4t

5. M = 4, C = 0, K = 36, F(t) =
N∑

n=1
an cos nt

6. M = 4, C = 4, K = 36, F(t) = sin 2t

7. M = 1, C = 2, K = 4, F(t) = cos t

8. M = 1, C = 12, K = 16, F(t) =
N∑

n=1
bn sin nt

9. M = 2, C = 2, K = 8, F(t) = sin t + 1
10 cos 2t

10. M = 2, C = 16, K = 32,

F(t) =
{

t −π/2 < t < π/2
π − t π/2 < t < 3π/2

s

and F(t + 2π) = F(t)

11. What is the steady-state response of the mass to the
forcing function shown?

F(t)

t�1 1

50 N

3�3

C � 0.4 kg/s

M � 2 kg

K � 50 N/m

F(t)



12. Determine the steady-state current in the circuit shown.

22. Problem 9

23. Problem 10

24. Problem 11

25. Problem 12

26. Solve the differential equation in Example 3.8.4 using
the method described in this section. Use Maple to sketch
your solution, and compare your result to the solution
given in Example 3.8.4.

27. Solve Problem 12 with Laplace transforms. Use Maple to
sketch your solution, and compare your result to the
solution found in Problem 12.

7.5.1 Integration
Term-by-term integration of a Fourier series is a valuable method for generating new expan-
sions. This technique is valid under surprisingly weak conditions, due in part to the “smoothing”
effect of integration.

Theorem 7.2: Suppose that f (t) is sectionally continuous in −π < t < π and is periodic with
period 2π . Let f (t) have the expansion

f (t) ∼
∞∑

n=1

(an cos nt + bn sin nt) (7.5.1)

Then ∫ t

0
f (s) ds =

∞∑
n=1

bn

n
+

∞∑
n=1

(
−bn

n
cos nt + an

n
sin nt

)
(7.5.2)

Proof: Set

F(t) =
∫ t

0
f (s) ds (7.5.3)

7.5 MISCELLANEOUS EXPANSION TECHNIQUES
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0.001 0.002 0.003s

20 ohms

10�3 henry

10�5 faradv(t)

t

v(t)

120

13. Prove that (yp)n from Example 7.4.1 approaches 0 as
n → ∞.

Use Maple to solve

14. Problem 1

15. Problem 2

16. Problem 3

17. Problem 4

18. Problem 5

19. Problem 6

20. Problem 7

21. Problem 8



and verify F(t + 2π) = F(t) as follows:

F(t + 2π) =
∫ t+2π

0
f (s) ds

=
∫ t

0
f (s) ds +

∫ t+2π

t
f (s) ds (7.5.4)

But f (t) is periodic with period 2π , so that

∫ t+2π

t
f (s) ds =

∫ π

−π

f (s) ds = 0 (7.5.5)

since 1/π
∫ π

−π
f (s) ds = a0 , which is zero from Eq. 7.5.1. Therefore, Eq. 7.5.4 becomes

F(t + 2π) = F(t). The integral of a sectionally continuous function is continuous from
Eq. 7.5.3 and F ′(t) = f (t) from this same equation. Hence, F ′(t) is sectionally continuous. By
the Fourier theorem (Theorem 7.1) we have

F(t) = A0

2
+

∞∑
n=1

(An cos nt + Bn sin nt) (7.5.6)

valid for all t. Here

An = 1

π

∫ π

−π

F(t) cos nt dt, Bn = 1

π

∫ π

−π

F(t) sin nt dt (7.5.7)

The formulas 7.5.7 are amenable to an integration by parts. There results

An = 1

π

∫ π

−π

F(t) cos nt dt

= 1

π
F(t)

sin nt

n

∣∣∣∣
π

−π

− 1

π

∫ π

−π

f (t)
sin nt

n
dt

= −bn

n
, n = 1, 2, . . . (7.5.8)

Similarly,

Bn = 1

π

∫ π

−π

F(t) sin nt dt

= 1

π
F(t)

(
−cos nt

n

) ∣∣∣∣
π

−π

+ 1

π

∫ π

−π

f (t)
cos nt

n
dt

= an

n
, n = 1, 2, . . . (7.5.9)

because F(π) = F(−π + 2π) = F(−π) and cos ns = cos(−ns) so that the integrated term is
zero. When these values are substituted in Eq. 7.5.6, we obtain

F(t) = A0

2
+

∞∑
n=1

(
−bn

n
cos nt + an

n
sin nt

)
(7.5.10)
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Now set t = 0 to obtain an expression for A0:

F(0) =
∫ 0

0
f (t) dt = 0 = A0

2
−

∞∑
n=1

bn

n
(7.5.11)

so that

A0

2
=

∞∑
n=1

bn

n
(7.5.12)

Hence, Eq. 7.5.2 is established.
It is very important to note that Eq. 7.5.2 is just the term-by-term integration of relation 7.5.1;

one need not memorize Fourier coefficient formulas in Eq. 7.5.2.
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Find the Fourier series expansion of the even periodic extension of f (t) = t2, −π < t < π . Assume the ex-
pansion

t = 2
∞∑

n=1

(1)n−1

n
sin nt

� Solution

We obtain the result by integration:∫ t

0
s ds = 2

∞∑
n=1

(−1)n−1

n

∫ t

0
sin ns ds

= 2
∞∑

n=1

(−1)n−1

n2
(− cos ns)

∣∣∣∣
t

0

= 2
∞∑

n=1

(−1)n−1

n2
− 2

∞∑
n=1

(−1)n−1

n2
cos nt

Of course, 
∫ t

0 s ds = t2/2, so that

t2

2
= 2

∞∑
n=1

(−1)n−1

n2
− 2

∞∑
n=1

(−1)n−1

n2
cos nt

The sum 2�∞
n=1[(−1)n−1/n2] may be evaluated by recalling that it is a0/2 for the Fourier expansion of t2/2.

That is,

a0 = 1

π

∫ π

−π

s2

2
ds = 1

π

s3

6

∣∣∣∣
π

−π

= 1

6π
[π3 − (−π)3] = π2

3

EXAMPLE 7.5.1
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Hence,

a0

2
= 2

∞∑
n=1

(−1)n−1

n2
= π2

6

so

t2 = π2

3
− 4

∞∑
n=1

(−1)n−1

n2
cos nt

EXAMPLE 7.5.1 (Continued)

EXAMPLE 7.5.2

Find the Fourier expansion of the odd periodic extension of t3, −π < t < π .

� Solution

From the result of Example 7.5.1 we have

t2

2
− π2

6
=

∞∑
n=1

−2(−1)n−1

n2
cos nt

This is in the form for which Theorem 7.2 is applicable, so∫ t

0

(
s2

2
− π2

6

)
ds = t3

6
− π2t

6

= −2
∞∑

n=1

(−1)n−1

n3
sin nt

Therefore,

t3 = π2t − 12
∞∑

n=1

(−1)n−1

n3
sin nt

which is not yet a pure Fourier series because of the π2t term. We remedy this defect by using the Fourier ex-
pansion of t given in Example 7.5.1. We have

t3 = π22
∞∑

n=1

(−1)n−1

n
sin nt − 12

∞∑
n=1

(−1)n−1

n3
sin nt

=
∞∑

n=1

(
2π2

n
− 12

n3

)
(−1)n−1 sin nt



In summary, note these facts:

1. �∞
n=1bn/n converges and is the value A0/2; that is,

1

2π

∫ π

−π

F(s) ds =
∞∑

n=1

bn

n
(7.5.13)

2. The Fourier series representing f (t) need not converge to f (t), yet the Fourier series
representing F(t) converges to F(t) for all t.

3. If

f (t) ∼ a0

2
+

∞∑
n=1

(an cos nt + bn sin nt) (7.5.14)

we apply the integration to the function f (t) − a0/2 because

f (t) − a0

2
∼

∞∑
n=1

(an cos nt + bn sin nt) (7.5.15)
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Problems

Use the techniques of this section to obtain the Fourier expan-
sions of the integrals of the following functions.

1. Section 7.2, Problem 1

2. Section 7.2, Problem 3

3. Section 7.2, Problem 5

4. Section 7.2, Problem 6

5. Section 7.2, Problem 9

6. Section 7.2, Problem 13

7. Section 7.2, Problem 14

8. Example 7.3.5

9. Example 7.3.6

10. Section 7.3.2, Problem 4

11. Section 7.3.2, Problem 7

12. Show that we may derive

π2x − x3

12
=

∞∑
n=1

(−1)n+1 sin nx

n3

by integration of

π2 − 3x2

12
=

∞∑
n=1

(−1)n+1 cos nx

n2

7.5.2 Differentiation
Term-by-term differentiation of a Fourier series does not lead to the Fourier series of the differ-
entiated function even when that derivative has a Fourier series unless suitable restrictive hy-
potheses are placed on the given function and its derivatives. This is in marked contrast to term-
by-term integration and is illustrated quite convincingly by Eqs. 7.1.4 and 7.1.5. The following
theorem incorporates sufficient conditions to permit term-by-term differentiation.



Theorem 7.3: Suppose that in −π < t < π, f (t) is continuous, f ′(t) and f ′′(t) are
sectionally continuous, and f (−π) = f (π). Then

f (t) = a0

2
+

∞∑
n=1

an cos nt + bn sin nt (7.5.16)

implies that

f ′(t) = d

dt

(a0

2

)
+

∞∑
n=1

d

dt
(an cos nt + bn sin nt)

=
∞∑

n=1

nbn cos nt − nan sin nt (7.5.17)

Proof: We know that d f/dt has a convergent Fourier series by Theorem 7.1, in which theorem
we use f ′ for f and f ′′ for f ′. (This is the reason we require f ′′ to be sectionally continuous.)
We express the Fourier coefficients of f ′(t) by αn and βn so that

f ′(t) = α0

2
+

∞∑
n=1

αn cos nt + βn sin nt (7.5.18)

where, among other things,

α0 = 1

π

∫ π

−π

f ′(s) ds

= 1

π
[ f (π) − f (−π)] = 0 (7.5.19)

by hypothesis. By Theorem 7.2, we may integrate Eq. 7.5.18 term by term to obtain

∫ t

0
f ′(s) ds = f (t) − f (0)

=
∞∑

n=1

βn

n
+

∞∑
n=1

−βn

n
cos nt + αn

n
sin nt (7.5.20)

But Eq. 7.5.16 is the Fourier expansion of f (t) in −π < t < π . Therefore, comparing the co-
efficients in Eqs. 7.5.16 and 7.5.20, we find

an = −βn

n
, bn = αn

n
, n = 1, 2, . . . (7.5.21)

We obtain the conclusion (Eq. 7.5.17) by substitution of the coefficient relations (Eq. 7.5.21) into
Eq. 7.5.18.
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EXAMPLE 7.5.3

Find the Fourier series of the periodic extension of

g(t) =
{

0, −π < t < 0
cos t, 0 < t < π

� Solution

The structure of g(t) suggests examining the function

f (t) =
{

0, −π < t < 0
sin t, 0 < t < π

In Example 7.3.6 we have shown that

f̃ (t) = 1

π
+ 1

2
sin t − 2

π

∞∑
n=1

cos 2nt

4n2 − 1

Moreover, f (π) = f (−π) = 0 and f (t) is continuous. Also, all the derivatives of f (t) are sectionally con-
tinuous. Hence, we may apply Theorem 7.3 to obtain

g̃(t) = 1

2
cos t + 4

π

∞∑
n=1

n sin 2nt

4n2 − 1

where g̃(t) is the periodic extension of g(t). Note, incidentally, that

g̃(0) = g(0+) + g(0−)

2
= 1

2

and this is precisely the value of the Fourier series at t = 0.

Problems

1. Let g(t) be the function defined in Example 7.5.3. Find
g′(t). To what extent does g′(t) resemble

f (t) =
{

sin t, 0 ≤ t < π

0, −π ≤ t < 0

Differentiate the Fourier series expansion for g(t) and explain
why it does not resemble the Fourier series for − f (t).

2. Show that in −π < t < π, t 
= 0,

d

dt
| sin t | =

{− cos t, −π < t < 0
cos t, 0 < t < π

Sketch d/dt | sin t | and find its Fourier series. Is Theorem
7.3 applicable?

3. What hypotheses are sufficient to guarantee k-fold term-
by-term differentiation of

f (t) = a0

2
+

∞∑
n=1

an cos nt + bn sin nt

g

�� � 2� 3�
t



7.5.3 Fourier Series from Power Series4

Consider the function ln(1 + z). We know that

ln(1 + z) = z − z2

2
+ z3

3
− · · · (7.5.22)

is valid for all z, |z| ≤ 1 except z = −1. On the unit circle |z| = 1 we may write z = eiθ and
hence,

ln(1 + eiθ ) = eiθ − 1
2 e2iθ + 1

3 e3iθ − · · · (7.5.23)

except for z = −1, which corresponds to θ = π . Now

eiθ = cos θ + i sin θ (7.5.24)

so that einθ = cos nθ + i sin nθ and

1 + eiθ = 1 + cos θ + i sin θ

= 2

(
cos2 θ

2
+ i sin

θ

2
cos

θ

2

)

= 2

(
cos

θ

2
+ i sin

θ

2

)
cos

θ

2
= 2eiθ/2 cos

θ

2
(7.5.25)

Now

ln u = ln |u| + i arg u (7.5.26)

so that

ln(1 + eiθ ) = ln

∣∣∣∣2 cos
θ

2

∣∣∣∣ + i
θ

2
(7.5.27)

which follows by taking logarithms of Eq. 7.5.25. Thus, from Eqs. 7.5.23, 7.5.24, and 7.5.27, we
have

ln

∣∣∣∣2 cos
θ

2

∣∣∣∣ + i
θ

2
= cos θ − 1

2
cos 2θ + · · ·

+ i

(
sin θ − 1

2
sin 2θ + · · ·

)
(7.5.28)

and therefore, changing θ to t,

ln

∣∣∣∣2 cos
t

2

∣∣∣∣ = cos t − 1

2
cos 2t + 1

3
cos 3t + · · · (7.5.29)
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topic we explore in Chapter 10.



t

2
= sin t − 1

2
sin 2t + 1

3
sin 3t + · · · (7.5.30)

Both expansions are convergent in −π < t < π to their respective functions. In this interval
|2 cos t/2| = 2 cos t/2 but ln(2 cos t/2) is not sectionally continuous. Recall that our Fourier
theorem is a sufficient condition for convergence. Equation 7.5.29 shows that it is certainly not
a necessary one.

An interesting variation on Eq. 7.5.29 arises from the substitution t = x − π . Then

ln

(
2 cos

x − π

2

)
= ln

(
2 sin

x

2

)

=
∞∑

n=1

(−1)n−1

n
cos n(x − π)

=
∞∑

n=1

(−1)n−1(−1)n

n
cos nx (7.5.31)

Therefore, replacing x with t,

− ln

(
2 sin

t

2

)
=

∞∑
n=1

1

n
cos nt (7.5.32)

which is valid5 in 0 < t < 2π . Adding the functions and their representations in Eqs. 7.5.29 and
7.5.32 yields

− ln tan
t

2
= 2

∞∑
n=1

1

2n − 1
cos(2n − 1)t (7.5.33)

Another example arises from consideration of

a

a − z
= 1

1 − z/a

= 1 + z

a
+ z2

a2
+ · · ·

= 1 + cos θ

a
+ cos 2θ

a2
+ · · · + i

(
sin θ

a
+ sin 2θ

a2
+ · · ·

)
(7.5.34)

But

a

a − eiθ
= a

a − cos θ − i sin θ

= a
(a − cos θ) + i sin θ

(a − cos θ)2 + sin2 θ

= a
a − cos θ + i sin θ

a2 − 2a cos θ + 1
(7.5.35)
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Separating real and imaginary parts and using Eq. 7.5.34 results in the two expansions

a
a − cos t

a2 − 2a cos t + 1
=

∞∑
n=0

a−n cos nt (7.5.36)

a sin t

a2 − 2a cos t + 1
=

∞∑
n=1

a−n sin nt (7.5.37)

The expansion are valid for all t, assuming that a > 1.
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Problems

1. Explain why ln |2 cos t/2| and ln(tan t/2) in
−π < t < π or in 0 < t < π are not sectionally
continuous.

In each problem use ideas of this section to construct f (t) for
the given series.

2. 1 +
∞∑

n=1

cos nt

n!

3.
∞∑

n=1

(−1)n+1 sin 2nt

(2n)!

4.
∞∑

n=1

(−1)n cos(2n + 1)t

(2n + 1)!

5. 1 +
∞∑

n=1

cos 2nt

(2n)!

6. Use Eq. 7.5.36 to find the Fourier series expansion of

f (t) = 1

a2 − 2a cos t + 1

Hint: Subtract 1
2 from both sides of Eq. 7.5.36.

Equations 7.5.36 and 7.5.37 are valid for a > 1. Find f (t)
given

7.
∞∑

n=1
bn cos nt, b < 1

8.
∞∑

n=1
bn sin nt, b < 1

What Fourier series expansions arise from considerations of
the power series of each function?

9.
a

(a − z)2
, a < 1

10.
a2

a2 − z2
, a < 1

11. e−z

12. sin z

13. cosh z

14. tan−1 z



The physical systems studied thus far have been described primarily by ordinary differential
equations. We are now interested in studying phenomena that require partial derivatives in the
describing equations. Partial differential equations arise when the dependent variable is a func-
tion of two or more independent variables. The assumption of lumped parameters in a physical
problem usually leads to ordinary differential equations, whereas the assumption of a continu-
ously distributed quantity, a field, generally leads to a partial differential equation. A field
approach is quite common now in such undergraduate courses as deformable solids, electro-
magnetics, heat transfer, and fluid mechanics; hence, the study of partial differential equations
is often included in undergraduate programs. Many applications (fluid flow, heat transfer, wave
motion) involve second-order equations; for this reason we place great emphasis on such
equations.

The order of the highest derivative is again the order of the equation. The questions of lin-
earity and homogeneity are answered as before in ordinary differential equations. Solutions are
superposable as long as the equation is linear and homogeneous. In general, the number of solu-
tions of a partial differential equation is very large. The unique solution corresponding to a par-
ticular physical problem is obtained by use of additional information arising from the physical
situation. If this information is given on the boundary as boundary conditions, a boundary-value
problem results. If the information is given at one instant as initial conditions, an initial-value
problem results. A well-posed problem has just the right number of these conditions specified to
determine a solution. We shall not delve into the mathematical theory of formulating a well-
posed problem. We shall, instead, rely on our physical understanding to determine problems that
are well posed. We caution the reader that:

1. A problem that has too many boundary and/or initial conditions specified is not well
posed and is an overspecified problem.

2. A problem that has too few boundary and/or initial conditions does not possess a
unique solution.

In general, a partial differential equation with independent variables x and t which is second
order in each of the variables requires two conditions (this could be dependent on time t) at some
x location (or x locations) and two conditions at some time t, usually t = 0.

We present a mathematical tool by way of physical motivation. We shall derive the describing
equations of some common phenomena to illustrate the modeling process; other phenomena could

8.1 INTRODUCTION

8 Partial Differential Equations



have been chosen such as those encountered in magnetic fields, elasticity, fluid flows, aerody-
namics, diffusion of pollutants, and so on.An analytical solution technique will be reviewed in this
chapter. In the next chapter numerical methods will be reviewed so that approximate solutions
may be obtained to problems that cannot be solved analytically.

We shall be particularly concerned with second-order partial differential equations involving
two independent variables, because of the frequency with which they appear. The general form
is written as

A
∂2u

∂x2
+ B

∂2u

∂x∂y
+ C

∂2u

∂y2
+ D

∂u

∂x
+ E

∂u

∂y
+ Fu = G (8.1.1)

where the coefficients may depend on x and y. The equations are classified according to the
coefficients A, B, and C. They are said to be

(1) Elliptic if B2 − 4AC < 0

(2) Parabolic if B2 − 4AC = 0

(3) Hyperbolic if B2 − 4AC > 0

(8.1.2)

We shall derive equations of each class and illustrate the different types of solutions for each.
The type of boundary conditions that is specified depends on the class of the partial differential
equation. That is, for an elliptic equation the function (or its derivative) will be specified around
the entire boundary enclosing a region of interest, whereas for the hyperbolic and parabolic
equations the function cannot be specified around an entire boundary. It is also possible to have
an elliptic equation in part of a region of interest and a hyperbolic equation in the remaining part.
A discontinuity separates the two parts of such regions; a shock wave is an example of such a
discontinuity.

In the following three sections we shall derive the mathematical equations that describe sev-
eral phenomena of general interest. The remaining sections will be devoted to the solutions of
these equations.

8.1.1 Maple Applications
Maple commands for this chapter include commands from Appendix C, pdsolve (including
the HINT and INTEGRATE options), display in the plots package, and fourier (in the
inttrans package), assuming, re, Im.
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Problems

Classify each equation.

1. The wave equation: 
∂2u

∂t2
= a2 ∂2u

∂x2

2. The heat equation: 
∂u

∂t
= C

∂2u

∂x2

3. Laplace’s equation: 
∂2u

∂x2
+ ∂2u

∂y2
= 0

4. Poisson’s equation: 
∂2u

∂x2
+ ∂2u

∂y2
= f (x, y)

5.
∂2u

∂x2
− ∂2u

∂x∂y
− ∂2u

∂y2
= 0



6. (1 − x)
∂2u

∂x2
+ 2y

∂2u

∂x∂y
+ (1 + x)

∂2u

∂y2
= 0

7.
∂2u

∂x2
+

√
1 +

(
∂u

∂x

)2
∂2u

∂y2
+ k

∂u

∂y
= G(x, y)

8.

(
∂u

∂x

)2

= u(x, y)

9.
du

dx
= u(x)

Verify each statement.

10. u(x, y) = ex sin y is a solution of Laplace’s equation,
∇2u = 0.

11. T (x, t) = e−kt sin x is a solution of the parabolic heat
equation, ∂T/∂t = k∂2T/∂x2 .

12. u(x, t) = sin ωx sin ωat is a solution of the wave equa-
tion, ∂2u/∂t2 = a2∂2u/∂x2 .

Maple can be used to verify solutions. First, define the solu-
tion u(x, y), and then enter the equation. For example,
Problem 10 can be completed as follows:

>u:=(x,y) -> exp(x)*sin(y);

u := (x,y)→ exsin(y)

>diff(u(x,y), x$2)+diff(u(x,y),
y$2); #This is del-squared

0

13. Use Maple to complete Problem 11.

14. Use Maple to complete Problem 12.

One of the first phenomena that was modeled with a partial differential equation was wave
motion. Wave motion occurs in a variety of physical situations; these include vibrating strings,
vibrating membranes (drum heads), waves traveling through a solid bar, waves traveling through
a solid media (earthquakes), acoustic waves, water waves, compression waves (shock waves),
electromagnetic radiation, vibrating beams, and oscillating shafts, to mention a few. We shall
illustrate wave motion with several examples.

8.2.1 Vibration of a Stretched, Flexible String
The motion of a tightly stretched, flexible string was modeled with a partial differential equation
approximately 250 years ago. It still serves as an excellent introductory example. We shall derive
the equation that describes the motion and then in later sections present methods of solution.

Suppose that we wish to describe the position for all time of the string shown in Fig. 8.1. In
fact, we shall seek a describing equation for the deflection u of the string for any position x and
for any time t. The initial and boundary conditions will be considered in detail when the solution
is presented.

8.2 WAVE MOTION
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Figure 8.1 Deformed, flexible string at an instant t. 



Consider an element of the string at a particular instant enlarged in Fig. 8.2. We shall make
the following assumptions:

1. The string offers no resistance to bending so that no shearing force exists on a surface
normal to the string.

2. The tension P is so large that the weight of the string is negligible.
3. Every element of the string moves normal to the x axis.
4. The slope of the deflection curve is small.
5. The mass m per unit length of the string is constant.
6. The effects of friction are negligible.

Newton’s second law states that the net force acting on a body of constant mass equals the
mass M of the body multiplied by the acceleration a of the center of mass of the body. This is
expressed as ∑

F = Ma (8.2.1)

Consider the forces acting in the x direction on the element of the string. By assumption 3 there
is no acceleration of the element in the x direction; hence,∑

Fx = 0 (8.2.2)

or, referring to Fig. 8.2,

(P + �P) cos(α + �α) − P cos α = 0 (8.2.3)

By assumption 4 we have

cos α ∼= cos(α + �α) ∼= 1 (8.2.4)

Equation 8.2.3 then gives us

�P = 0 (8.2.5)

showing us that the tension is constant along the string.
For the y direction we have, neglecting friction and the weight of the string,

P sin(α + �α) − P sin α = m �x
∂2

∂t2

(
u + �u

2

)
(8.2.6)
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P � �P

� � ��

Mass
center

� �W

�x

Figure 8.2 Small element of the vibrating string. 



where m�x is the mass of the element and ∂2/∂t2(u + �u/2) is the acceleration of the mass
center. Again, by assumption 4 we have

sin(α + �α) ∼= tan(α + �α) = ∂u

∂x
(x + �x, t)

sin α ∼= tan α = ∂u

∂x
(x, t)

(8.2.7)

Equation 8.2.6 can then be written as

P

[
∂u

∂x
(x + �x, t) − ∂u

∂x
(x, t)

]
= m�x

∂2

∂t2

(
u + �u

2

)
(8.2.8)

or, equivalently,

P

∂u

∂x
(x + �x, t) − ∂u

∂x
(x, t)

�x
= m

∂2

∂t2

(
u + �u

2

)
(8.2.9)

Now, we let �x → 0, which also implies that �u → 0. Then, by definition,

lim
�x→0

∂u

∂x
(x + �x, t) − ∂u

∂x
(x, t)

�x
= ∂2u

∂x2
(8.2.10)

and our describing equation becomes

P
∂2u

∂x2
= m

∂2u

∂t2
(8.2.11)

This is usually written in the form

∂2u

∂t2
= a2 ∂2u

∂x2
(8.2.12)

where we have set

a =
√

P

m
(8.2.13)

Equation 8.2.12 is the one-dimensional wave equation and a is the wave speed. It is a transverse
wave; that is, it moves normal to the string. This hyperbolic equation will be solved in a subse-
quent section.

8.2.2 The Vibrating Membrane
A stretched vibrating membrane, such as a drumhead, is simply an extension into a second space
dimension of the vibrating-string problem. We shall derive a partial differential equation that
describes the deflection u of the membrane for any position (x, y) and for any time t. The sim-
plest equation results if the following assumptions are made:

1. The membrane offers no resistance to bending, so shearing stresses are absent.
2. The tension τ per unit length is so large that the weight of the membrane is negligible.
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3. Every element of the membrane moves normal to the xy plane.
4. The slope of the deflection surface is small.
5. The mass m of the membrane per unit area is constant.
6. Frictional effects are neglected.

With these assumptions we can now apply Newton’s second law to a typical element of the
membrane as shown in Fig. 8.3. Assumption 3 leads to the conclusion that τ is constant through-
out the membrane, since there are no accelerations of the element in the x and y directions. This
is shown on the element. In the z direction we have∑

Fz = Maz (8.2.14)

For each element this becomes

τ�x sin(α + �α) − τ�x sin α

+ τ�y sin(β + �β) − τ�y sin β = m �x �y
∂2u

∂t2
(8.2.15)

where the mass of the element is m�x�y and the acceleration az is ∂2u/∂t2. For small angles

sin(α + �α) ∼= tan(α + �α) = ∂u

∂y

(
x + �x

2
, y + �y, t

)

sin α ∼= tan α = ∂u

∂y

(
x + �x

2
, y, t

)

sin(β + �β) ∼= tan(β + �β) = ∂u

∂x

(
x + �x, y + �y

2
, t

)

sin β ∼= tan β = ∂u

∂x

(
x, y + �y

2
, t

)
(8.2.16)
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Figure 8.3 Element from a stretched, flexible membrane. 



We can then write Eq. 8.2.15 as

τ�x

[
∂u

∂y

(
x + �x

2
, y + �y, t

)
− ∂u

∂y

(
x + �x

2
, y, t

)]

+ τ�y

[
∂u

∂x

(
x + �x, y + �y

2
, t

)
− ∂u

∂x

(
x, y + �y

2
, t

)]
= m �x �y

∂2u

∂t2 (8.2.17)

or, by dividing by �x�y,

τ




∂u

∂y

(
x + �x

2
, y + �y, t

)
− ∂u

∂y

(
x + �x

2
, y, t

)
�y

+
∂u

∂x

(
x + �x, y + �y

2
, t

)
− ∂u

∂x

(
x, y + �y

2
, t

)
�x


 = m

∂2u

∂t2
(8.2.18)

Taking the limit as �x → 0 and �y → 0, we arrive at

∂2u

∂t2
= a2

(
∂2u

∂x2
+ ∂2u

∂y2

)
(8.2.19)

where

a =
√

τ

m
(8.2.20)

Equation 8.2.19 is the two-dimensional wave equation and a is the wave speed.

8.2.3 Longitudinal Vibrations of an Elastic Bar
As another example of wave motion, let us determine the equation describing the motion of an
elastic bar (steel, for example) that is subjected to an initial displacement or velocity, such as
striking the bar on the end with a hammer (Fig. 8.4). We make the following assumptions:

1. The bar has a constant cross-sectional area A in the unstrained state.
2. All cross-sectional planes remain plane.
3. Hooke’s law may be used to relate stress and strain.
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Figure 8.4 Wave motion in an elastic bar. 



We let u(x, t) denote the displacement of the plane of particles that were at x at t = 0.
Consider the element of the bar between x1 and x2, shown in Fig. 8.5. We assume that the bar
has mass per unit volume ρ. The force exerted on the element at x1 is, by Hooke’s law,

Fx = area × stress = area × E × strain (8.2.21)

where E is the modulus of elasticity. The strain ε at x1 is given by

ε = elongation

unstrained length
(8.2.22)

Thus, for �x1 small, we have the strain at x1 as

ε = u(x1 + �x1, t) − u(x1, t)

�x1
(8.2.23)

Letting �x1 → 0, we find that

ε = ∂u

∂x
(8.2.24)

Returning to the element, the force acting in the x direction is

Fx = AE

[
∂u

∂x
(x2, t) − ∂u

∂x
(x1, t)

]
(8.2.25)

Newton’s second law states that

Fx = ma = ρ A(x2 − x1)
∂2u

∂t2
(8.2.26)

Hence, Eqs. 8.2.25 and 8.2.26 give

ρ A(x2 − x1)
∂2u

∂t2
= AE

[
∂u

∂x
(x2, t) − ∂u

∂x
(x1, t)

]
(8.2.27)

We divide Eq. 8.2.27 by (x2 − x1) and let x1 → x2, to give

∂2u

∂t2
= a2 ∂2u

∂x2
(8.2.28)

where the longitudinal wave speed a is given by

a =
√

E

ρ
(8.2.29)
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Therefore, longitudinal displacements in an elastic bar may be described by the one-
dimensional wave equation with wave speed 

√
E/ρ .

8.2.4 Transmission-Line Equations
As a final example of wave motion, we derive the transmission-line equations. Electricity flows
in the transmission line shown in Fig. 8.6, resulting in a current flow between conductors due to
the capacitance and conductance between the conductors. The cable also possesses both resis-
tance and inductance resulting in voltage drops along the line. We shall choose the following
symbols in our analysis:

v(x, t) = voltage at any point along the line
i(x, t) = current at any point along the line

R = resistance per meter
L = self-inductance per meter
C = capacitance per meter
G = conductance per meter

The voltage drop over the incremental length �x at a particular instant (see Eqs. 1.4.3) is

�v = v(x + �x, t) − v(x, t) = −i R �x − L �x
∂i

∂t
(8.2.30)

Dividing by �x and taking the limit as �x → 0 yields the partial differential equation relating
v(x, t) and i(x, t),

∂v

∂x
+ i R + L

∂i

∂t
= 0 (8.2.31)
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Figure 8.6 Element from a transmission line. 



Now, let us find an expression for the change in the current over the length �x . The current
change is

�i = i(x + �x, t) − i(x, t) = −G �x v − C �x
∂v

∂t
(8.2.32)

Again, dividing by �x and taking the limit as �x → 0 gives a second equation,

∂i

∂x
+ v G + C

∂v

∂t
= 0 (8.2.33)

Take the partial derivative of Eq. 8.2.31 with respect to x and of Eq. 8.2.33 with respect to t.
Then, multiplying the second equation by L and subtracting the resulting two equations, using
∂2i/∂x ∂t = ∂2i/∂t ∂x , presents us with

∂2v

∂x2
+ R

∂i

∂x
= LG

∂v

∂t
+ LC

∂2v

∂t2
(8.2.34)

Then, substituting for ∂i/∂x from Eq. 8.2.33 results in an equation for v(x, t) only. It is

∂2v

∂x2
= LC

∂2v

∂t2
+ (LG + RC)

∂v

∂t
+ RGv (8.2.35)

Take the partial derivative of Eq. 8.2.31 with respect to t and multiply by C; take the partial
derivative of Eq. 8.2.33 with respect to x, subtract the resulting two equations and substitute for
∂v/∂x from Eq. 8.2.31; there results

∂2i

∂x2
= LC

∂2i

∂t2
+ (LG + RC)

∂i

∂t
+ RGi (8.2.36)

The two equations above are difficult to solve in the general form presented; two special cases
are of interest. First, there are conditions under which the self-inductance and leakage due to the
conductance between conductors are negligible; that is, L ∼= 0, and G ∼= 0. Then our equations
become

∂2v

∂x2
= RC

∂v

∂t
,

∂2i

∂x2
= RC

∂i

∂t
(8.2.37)

Second, under conditions of high frequency, a time derivative increases1 the magnitude of a
term; that is, ∂2i/∂t2 � ∂i/∂t � i . Thus, our general equations can be approximated by

∂2v

∂t2
= 1

LC

∂2v

∂x2
,

∂2i

∂t2
= 1

LC

∂2i

∂x2
(8.2.38)

These latter two equations are wave equations with 
√

1/LC in units of meters/second.
Although we shall not discuss any other wave phenomenon, it is well for the reader to be

aware that sound waves, light waves, water waves, quantum-mechanical systems, and many
other physical systems are described, at least in part, by a wave equation.
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1As an example, consider the term sin(ωt + x/L) where ω � 1. Then

∂

∂t

[
sin

(
ωt + x

L

)]
= ω cos

(
ωt + x

L

)
We see that ∣∣∣ω cos

(
ωt + x

L

)∣∣∣ �
∣∣∣sin

(
ωt + x

L

)∣∣∣



Another class of physical problems can be characterized by diffusion equations. Diffusion may
be likened to a spreading, smearing, or mixing. A physical system that has a high concentra-
tion of some substance in volume A and a low concentration in volume B may be subject to
the diffusion of the substance so that the concentrations in A and B approach equality. This
phenomenon is exhibited by the tendency of a body toward a uniform temperature. One of the
most common diffusion processes that is encountered is the transfer of energy in the form
of heat.

From thermodynamics we learn that heat is thermal energy in transit. It may be transmitted
by conduction (when two bodies are in contact), by convection (when a body is in contact with
a liquid or a gas), and by radiation (when energy is transmitted by energy waves). We shall
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Problems

1. In arriving at the equation describing the motion of a vi-
brating string, the weight was assumed to be negligible.
Include the weight of the string in the derivation and de-
termine the describing equation. Classify the equation.

2. Derive the describing equation for a stretched string sub-
ject to gravity loading and viscous drag. Viscous drag per
unit length of string may be expressed by c(∂u/∂t); the
drag force is proportional to the velocity. Classify the
resulting equation.

3. A tightly stretched string, with its ends fixed at the points
(0, 0) and (2L , 0), hangs at rest under it own weight. The
y axis points vertically upward. Find the describing equa-
tion for the position u(x) of the string. Is the following
expression a solution?

u(x) = g

2a2
(x − L)2 − gL2

2a2

where a2 = P/m . If so, show that the depth of the vertex
of the parabola (i.e., the lowest point) varies directly with
m (mass per unit length) and L2, and inversely with P,
the tension.

4. Derive the torsional vibration equation for a circular
shaft by applying the basic law which states that
Iα = 	 T , where α is the angular acceleration, T is
the torque (T = G Jθ/L , where θ is the angle of twist of
the shaft of length L and J and G are constants), and I
is the mass moment of inertia (I = k2m , where the radius
of gyration k = √

J/A and m is the mass of the shaft).

Choose an infinitesimal element of the shaft of length
�x , sum the torques acting on it, and using ρ as the mass
density, show that this wave equation results,

∂2θ

∂t2
= G

ρ

∂2θ

∂x2

5. An unloaded beam will undergo vibrations when sub-
jected to an initial disturbance. Derive the appropriate
partial differential equation which describes the motion
using Newton’s second law applied to an infinitesimal
section of the beam. Assume the inertial force to be a dis-
tributed load acting on the beam. A uniformly distributed
load w is related to the vertical deflection y(x, t) of
the beam by w = −E I∂4 y/∂x4 , where E and I are
constants.

6. For the special situation in which LG = RC , show that
the transmission-line equation 8.2.36 reduces to the wave
equation

∂2u

∂t2
= a2 ∂2u

∂x2
if we let i(x, t) = e−abt u(x, t)

where a2 = 1/LC and b2 = RG .

7. For low frequency and negligibly small G, show that the
telegraph equations result:

∂v

∂t
= 1

RC

∂2v

∂x2
,

∂i

∂t
= 1

RC

∂2i

∂x2



consider the first of these mechanisms in some detail. Experimental observations have shown
that we may make the following two statements:

1. Heat flows in the direction of decreasing temperature.
2. The rate at which energy in the form of heat is transferred through an area is

proportional to the area and to the temperature gradient normal to the area.

These statements may be expressed analytically. The heat flux through an area A oriented normal
to the x axis is

Q = −K A
∂T

∂x
(8.3.1)

where Q (watts, W) is the heat flux, ∂T/∂x is the temperature gradient normal to A, and K
(W/m · ◦C) is a constant of proportionality called the thermal conductivity. The minus sign is
present since heat is transferred in the direction opposite the temperature gradient.

The energy (usually called an internal energy) gained or lost by a body of mass m that under-
goes a uniform temperature change �T may be expressed as

�E = Cm�T (8.3.2)

where �E(J) is the energy change of the body and C (J/kg · ◦C) is a constant of proportionality
called the specific heat.

Conservation of energy is a fundamental law of nature. We use this law to make an energy bal-
ance on the element in Fig. 8.7. The density ρ of the element is used to determine its mass, namely,

m = ρ�x�y�z (8.3.3)

By energy balance we mean that the net energy flowing into the element in time �t must
equal the increase in energy in the element in �t . For simplicity, we assume that there are no
sources inside the element. Equation 8.3.2 gives the change in energy in the element as

�E = Cm�T = Cρ�x�y�z�T (8.3.4)
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The energy that flows into the element through face ABCD in �t is, by Eq. 8.3.1,

�EABCD = QABCD�t = −K�x�z�t
∂T

∂y

∣∣∣∣∣∣ x+�x/2
y
z+�z/2

(8.3.5)

where we have approximated the temperature derivative by the value at the center of the face.
The flow into the element through face EFGH is

�EEFGH = K�x�z�t
∂T

∂y

∣∣∣∣∣∣ x+�x/2
y+�y
z+�z/2

(8.3.6)

Similar expressions are found for the other four faces. The energy balance then provides us
with

�E = �EABCD + �EEFGH + �EADHE + �EBCGF + �EDHGC + �EBFEA (8.3.7)

or, using Eqs. 8.3.5, 8.3.6, and their counterparts for the x and z directions,

Cρ�x�y�z�T = K�x�z�t


∂T

∂y

∣∣∣∣∣∣ x+�x/2
y+�y
z+�z/2

−∂T

∂y

∣∣∣∣∣∣ x+�x/2
y
z+�z/2




+ K�y�z�t


∂T

∂x

∣∣∣∣∣∣ x+�x
y+�y/2
z+�z/2

−∂T

∂x

∣∣∣∣∣∣ x
y+�y/2
z+�z/2




+ K�x�y�t


∂T

∂z

∣∣∣∣∣∣ x+�x/2
y+�y/2
z+�z

−∂T

∂z

∣∣∣∣∣∣ x+�x/2
y+�y/2
z


 (8.3.8)

Both sides of the equation are divided by Cρ�x�y�z�t ; then, let �x → 0, �y → 0,
�z → 0, �t → 0. There results (see Eq. 8.2.10)

∂T

∂t
= k

[
∂2T

∂x2
+ ∂2T

∂y2
+ ∂2T

∂z2

]
(8.3.9)

where k = K/Cρ is called the thermal diffusivity and is assumed constant. It has dimensions of
square meters per second (m2/s). Equation 8.3.9 is a diffusion equation.

Two special cases of the diffusion equation are of particular interest. For instance, a number
of situations involve time and only one coordinate, say x, as in a long, slender rod with insulated
sides. The one-dimensional heat equation then results. It is given by

∂T

∂t
= k

∂2T

∂x2
(8.3.10)

which is a parabolic equation.
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In some situations ∂T/∂t is zero and we have a steady-state condition; then we no longer
have a diffusion equation, but the equation

∂2T

∂x2
+ ∂2T

∂y2
+ ∂2T

∂z2
= 0 (8.3.11)

This equation is known as Laplace’s equation. It is sometimes written in the shorthand form

∇2T = 0 (8.3.12)

If the temperature depends only on two coordinates x and y, as in a thin rectangular plate, an
elliptic equation is encountered:

∂2T

∂x2
+ ∂2T

∂y2
= 0 (8.3.13)

Cylindrical or spherical coordinates (see Fig. 8.8) should be used in certain geometries. It is
then convenient to express ∇2T in cylindrical coordinates as

∇2T = 1

r

∂

∂r

(
r
∂T

∂r

)
+ 1

r2

∂2T

∂θ2
+ ∂2T

∂z2
(8.3.14)

and in spherical coordinates as

∇2T = 1

r2

∂

∂r

(
r2 ∂T

∂r

)
+ 1

r2 sin2 φ

∂2T

∂θ2
+ 1

r sin φ

∂

∂φ

(
sin φ

∂T

∂φ

)
(8.3.15)

See Table 6.4.
Our discussion of heat transfer has included heat conduction only. Radiative and convective

forms of heat transfer would necessarily lead to other partial differential equations. We have also
assumed no heat sources in the volume of interest, and have assumed the conductivity K to be
constant. Finally, the specification of boundary and initial conditions makes our problem state-
ment complete. These will be reserved for a later section in which a solution to the diffusion
equation is presented.
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There are a number of physical situations that are modeled by Laplace’s equation. We choose the
force of attraction of particles to demonstrate its derivation. The law of gravitation states that
a lumped mass m located at the point (X, Y, Z ) attracts a unit mass located at the point (x, y, z)
(see Fig. 8.9), with a force directed along the line connecting the two points with magnitude
given by

F = −km

r2
(8.4.1)

where k is a positive constant and the negative sign indicates that the force acts toward the mass
m. The distance between the two points is provided by the expression

r =
√

(x − X)2 + (y − Y )2 + (z − Z)2 (8.4.2)

positive being from Q to P.
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Problems

1. Use an elemental slice of length �x of a long, slender,
laterally insulated rod and derive the one-dimensional
heat equation

∂T

∂t
= k

∂2T

∂x2

using Eqs. 8.3.1 and 8.3.2.

2. Modify Eq. 8.3.10 to account for internal heat generation
within the rod. The rate of heat generation is denoted φ
(W/m3).

3. Allow the sides of a long, slender circular rod to transfer
heat by convection. The convective rate of heat loss is
given by Q = h A(T − Tf ), where h(W/m2 · ◦C) is the
convection coefficient, A is the surface area, and Tf is the
temperature of the surrounding fluid. Derive the describ-
ing partial differential equation. (Hint: Apply an energy
balance to an elemental slice of the rod.)

4. The tip of a 2-m-long slender rod with lateral surface in-
sulated is dipped into a hot liquid at 200◦C. What differ-
ential equation describes the temperature? After a long

time, what is the temperature distribution in the rod if the
other end is held at 0◦C? The lateral surfaces of the rod
are insulated.

5. The conductivity K in the derivation of Eq. 8.3.10 was as-
sumed constant. Let K be a function of x and let C and ρ be
constants. Write the appropriate describing equation.

6. Write the one-dimensional heat equation that could be
used to determine the temperature in (a) a flat circular
disk with the flat surfaces insulated and (b) a sphere with
initial temperature a function of r only.

7. Determine the steady-state temperature distribution in
(a) a flat circular disk with sides held at 100◦C with the
flat surfaces insulated and (b) a sphere with the outer
surface held at 100◦C.

8. Use a hollow cylinder of thickness �r and derive the
one-dimensional heat equation for a solid cylinder as-
suming that T = T (r, t).

9. Use a hollow sphere of thickness �r and derive the one-
dimensional heat equation for a solid sphere assuming
that T = T (r, t).



A gravitational potential φ is defined by

φ = km

r
(8.4.3)

This allows the force F acting on a unit mass at P due to a mass at Q to be related to φ by the
equation

F = ∂φ

∂r
= −km

r2
(8.4.4)

Now, let the mass m be fixed in space and let the unit mass move to various locations P(x, y, z).
The potential function φ is then a function of x, y, and z. If we let P move along a direction par-
allel to the x axis, then

∂φ

∂x
= ∂φ

∂r

∂r

∂x

= −km

r2

1

2
(2)(x − X)[(x − X)2 + (y − Y )2 + (z − Z)2]−1/2

= −km

r2

x − X

r
= F cos α = Fx (8.4.5)

where α is the angle between r and the x axis, and Fx is the projection of F in the x direction.
Similarly, for the other two directions,

Fy = ∂φ

∂y
, Fz = ∂φ

∂z
(8.4.6)

The discussion above is now extended to include a distributed mass throughout a volume V.
The potential dφ due to an incremental mass dm is written, following Eq. 8.4.3, as

dφ = kρ dV

r
(8.4.7)

where ρ is the mass per unit volume. Letting dV = dx dy dz , we have

φ = k
∫∫∫

V

ρ dx dy dz

[(x − X)2 + (y − Y )2 + (z − Z)2]1/2
(8.4.8)
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This is differentiated to give the force components. For example, Fx is given by

Fx = ∂φ

∂x
= −k

∫∫∫
V

x − X

r

ρ

r2
dx dy dz (8.4.9)

This represents the x component of the total force exerted on a unit mass located outside the
volume V at P(x, y, z) due to the distributed mass in volume V.

If we now differentiate Eq. 8.4.9 again with respect to x, we find that

∂2φ

∂x2
= −k

∫∫∫
V

[
1

r3
− 3(x − X)2

r5

]
ρ dx dy dz (8.4.10)

We can also show that

∂2φ

∂y2
= −k

∫∫∫
V

[
1

r3
− 3(y − Y )2

r5

]
ρ dx dy dz

∂2φ

∂z2
= −k

∫∫∫
V

[
1

r3
− 3(z − Z)2

r5

]
ρ dx dy dz

(8.4.11)

The sum of the bracketed terms inside the three integrals above is identically zero, using
Eq. 8.4.2. Hence, Laplace’s equation

∂2φ

∂x2
+ ∂2φ

∂y2
+ ∂2φ

∂z2
= 0 (8.4.12)

results, or, in our shorthand notation,

∇2φ = 0 (8.4.13)

Laplace’s equation is also satisfied by a magnetic potential function and an electric potential
function at points not occupied by magnetic poles or electric charges. We have already observed
in Section 8.3 that the steady-state, heat-conduction problem leads to Laplace’s equation.
Finally, the flow of an incompressible fluid with negligible viscous effects also leads to
Laplace’s equation.

We have now derived several partial differential equations that describe a variety of physical
phenomena. This modeling process is quite difficult to perform in a situation that is new and dif-
ferent. The confidence gained in deriving the equations of this chapter and in finding solutions,
as we shall presently do, will hopefully allow the reader to derive and solve other partial differ-
ential equations arising in other applications.
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Problems

1. Differentiate Eq. 8.4.8 and show that Eq. 8.4.9 results.
Also verify Eq. 8.4.10.

2. Express Laplace’s equation using spherical coordinates.
Assume that � = �(r, θ) (see Table 6.4).



It is possible to solve all the partial differential equations that we have derived in this chapter by
a general method, the separation of variables. The wave equation can, however, be solved by a
special technique that will be presented in this section. It gives a quick look at the motion of a
wave. We obtain a general solution to the wave equation

∂2u

∂t2
= a2 ∂2u

∂x2
(8.5.1)

by an appropriate transformation of variables. Introduce the new independent variables

ξ = x − at, η = x + at (8.5.2)

Then, using the chain rule we find that

∂u

∂x
= ∂u

∂ξ

∂ξ

∂x
+ ∂u

∂η

∂η

∂x
= ∂u

∂ξ
+ ∂u

∂η

∂u

∂t
= ∂u

∂ξ

∂ξ

∂t
+ ∂u

∂η

∂η

∂t
= −a

∂u

∂ξ
+ a

∂u

∂η

(8.5.3)

and

∂2u

∂x2
=

∂

(
∂u

∂x

)
∂ξ

∂ξ

∂x
+

∂

(
∂u

∂x

)
∂η

∂η

∂x
= ∂2u

∂ξ 2
+ 2

∂2u

∂ξ ∂η
+ ∂2u

∂η2

∂2u

∂t2
=

∂

(
∂u

∂t

)
∂ξ

∂ξ

∂t
+

∂

(
∂u

∂t

)
∂η

∂η

∂t
= a2 ∂2u

∂ξ 2
− 2a2 ∂2u

∂ξ ∂η
+ a2 ∂2u

∂η2

(8.5.4)

Substitute the expressions above into the wave equation to obtain

a2

[
∂2u

∂ξ 2
− 2

∂2u

∂ξ ∂η
+ ∂2u

∂η2

]
= a2

[
∂2u

∂ξ 2
+ 2

∂2u

∂ξ ∂η
+ ∂2u

∂η2

]
(8.5.5)

and there results

∂2u

∂ξ ∂η
= 0 (8.5.6)

Integration with respect to ξ gives

∂u

∂η
= h(η) (8.5.7)

where h(η) is an arbitrary function of η. A second integration yields

u(ξ, η) =
∫

h(η) dη + g(ξ) (8.5.8)

The integral is a function of η only and is replaced by f (η), so the solution is

u(ξ, η) = g(ξ) + f (η) (8.5.9)

8.5 THE D’ALEMBERT SOLUTION OF THE WAVE EQUATION
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or, equivalently,

u(x, t) = g(x − at) + f (x + at) (8.5.10)

This is the D’Alembert solution of the wave equation.
Inspection of Eq. 8.5.10 shows the wave nature of the solution. Consider an infinite string,

stretched from −∞ to +∞, with an initial displacement u(x, 0) = g(x) + f (x), as shown in
Fig. 8.10. At some later time t = t1 the curves g(x) and f (x) will simply be displaced to the
right and left, respectively, a distance at1. The original deflection curves move without distortion
at the speed of propagation a.

To determine the form of the functions g(x) and f (x) when u(x, 0) is given, we use the
initial conditions. The term ∂2u/∂t2 in the wave equation demands that two conditions be given
at t = 0. Let us assume, for example, that the initial velocity is zero and that the initial displace-
ment is given by

u(x, 0) = f (x) + g(x) = φ(x) (8.5.11)

The velocity is

∂u

∂t
= dg

dξ

∂ξ

∂t
+ d f

dη

∂η

∂t
(8.5.12)

At t = 0 this becomes (see Eqs. 8.5.2 and 8.5.10)

∂u

∂t
= dg

dx
(−a) + d f

dx
(a) = 0 (8.5.13)

Hence, we have the requirement that
dg

dx
= d f

dx
(8.5.14)

which is integrated to provide us with

g = f + C (8.5.15)

Inserting this in Eq. 8.5.11 gives

f (x) = φ(x)

2
− C

2
(8.5.16)
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(a) Initial displacement.

(b) Displacement after a time t1. 
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Figure 8.10 Traveling wave in a string.



so that

g(x) = φ(x)

2
+ C

2
(8.5.17)

Finally, replacing x in f (x) with x + at and x in g(x) with x − at, there results the specific
solution for the prescribed initial conditions,

u(x, t) = 1
2 φ(x − at) + 1

2 φ(x + at) (8.5.18)

Our result shows that, for the infinite string, two initial conditions are sufficient to determine
a solution. A finite string will be discussed in the following section.
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Consider that the string in this article is given an initial velocity θ(x) and zero initial displacement. Determine
the form of the solution.

� Solution

The velocity is given by Eq. 8.5.12:

∂u

∂t
= dg

dξ

∂ξ

∂t
+ d f

dη

∂η

∂t

At t = 0 this takes the form

θ(x) = a
d f

dx
− a

dg

dx

This is integrated to yield

f − g = 1

a

∫ x

0
θ(s) ds + C

where s is a dummy variable of integration. The initial displacement is zero, giving

u(x, 0) = f (x) + g(x) = 0

or,

f (x) = −g(x)

The constant of integration C is thus evaluated as

C = 2 f (0) = −2g(0)

Combining this with the relation above results in

f (x) = 1

2a

∫ x

0
θ(s) ds + f (0)

g(x) = − 1

2a

∫ x

0
θ(s) ds + g(0)

EXAMPLE 8.5.1
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Returning to Eq. 8.5.10, we can obtain the solution u(x, t) using the forms above for f (x) and g(x) simply by
replacing x by the appropriate quantity. We then have the solution

u(x, t) = 1

2a

[∫ x+at

0
θ(s) ds −

∫ x−at

0
θ(s) ds

]

= 1

2a

[∫ x+at

0
θ(s) ds +

∫ 0

x−at
θ(s) ds

]

= 1

2a

∫ x+at

x−at
θ(s) ds

For a given θ(x) this expression provides us with a solution.

EXAMPLE 8.5.1 (Continued)

An infinite string is subjected to the initial displacement

φ(x) = 0.02

1 + 9x2

Find an expression for the subsequent motion of the string if it is released from rest. The tension is 20 N and
the mass per unit length is 5 × 10−4 kg/m. Also, sketch the solution for t = 0, t = 0.002 s, and t = 0.01 s.

� Solution

The motion is given by Eq. 8.5.18 of this section:

u(x, t) = 1

2

0.02

1 + 9(x − at)2
+ 1

2

0.02

1 + 9(x + at)2

The wave speed a is given by

a =
√

P

m
=

√
20

5 × 10−4
= 200 m/s

The solution is then

u(x, t) = 0.01

1 + 9(x − 200t)2
+ 0.01

1 + 9(x + 200t)2

EXAMPLE 8.5.2



8.5.1 Maple Applications
Analogous to dsolve, Maple has a command called pdsolve to solve partial differential
equations. The command first determines if the partial differential equation that is in the input
belongs to a certain family (e.g., elliptic, parabolic, hyperbolic) and then attempts to use standard
methods, such as the methods described in this chapter, to solve it. If Maple cannot classify the
partial differential equation, then the method of separation of variables (see next section) is
applied. Sometimes the results are as expected, and sometimes not, which is why it is critically
important to understand the solution methods in this chapter.

For instance, when solving the wave equation (8.5.1), with no initial conditions given, Maple
produces D’Alembert’s solution (8.5.10):

>pde:=diff(u(x,t), t$2)=a^2*diff(u(x,t), x$2);

pde:= ∂2

∂t2
u(x,t)= a2

(
∂2

∂x2
u(x,t)

)

>pdsolve(pde);

u(x,t)= —F1(a t + x)+ —F2(a t − x)
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The sketches are presented on the following figure.

x

t � 0 s

u 0.02
1 � 9x2� � 

x

t � 0.002 s

u

1

0.01
1 � 9(x � 2)2

0.01
1 � 9(x � 2)2

x

t � 0.01 s

u

�2 2

EXAMPLE 8.5.2 (Continued)



The interpretation of the output is that —F1 and —F2 are arbitrary functions, like f and g in
Eq. 8.5.10.

Example 8.5.2 can also be solved using Maple. First, define φ(x), and then u(x, t), using
Eq. 8.5.18:

>phi:=x -> 0.02/(1+9*x^2):

>u:= (x,t) -> (1/2)*(phi(x-a*t)+phi(x+a*t)):

>u(x,t);

0.01000000000

1+ 9(x − a t)2
+ 0.01000000000

1+ 9(x + a t)2

Now define a to be 200 m/s, and we get the solution:

>a:=200;

a := 200

>u(x,t);

0.01000000000

1+ 9(x− 200 t)2
+ 0.01000000000

1+ 9(x+ 200 t)2

Here is the plot of the solution when t = 0.002 s:

>plot(u(x, 0.002), x=-1..1);

The following commands will create an animation of the solution, as t varies from 0 to 0.01 s:

>for i from 1 to 10 do

>frame[i]:=plot(u(x, i/1000), x=-4..4):

>od:

>with(plots):

>movie:=display(seq(frame[i], i=1..10), insequence=true):

>movie;

For more information about animations in Maple, see the problems in Section 9.7.
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We shall now present a powerful technique used to solve many of the partial differential equa-
tions encountered in physical applications in which the domains of interest are finite. It is the
method of separation of variables. Even though it has limitations, it is widely used. It involves
the idea of reducing a more difficult problem to several simpler problems; here, we shall reduce
a partial differential equation to several ordinary differential equations for which we already
have a method of solution. Then, hopefully, by satisfying the initial and boundary conditions, a
solution to the partial differential equation can be found.

To illustrate the details of the method, let us use the mathematical description of a finite string
of length L that is fixed at both ends and is released from rest with an initial displacement (refer
to Fig. 8.1). The motion of the string is described by the wave equation

∂2u

∂t2
= a2 ∂2u

∂x2
(8.6.1)

We shall, as usual, consider the wave speed a to be a constant. The boundary conditions of fixed
ends may be written as

u(0, t) = 0 (8.6.2)

and

u(L , t) = 0 (8.6.3)

8.6 SEPARATION OF VARIABLES
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Problems

1. A very long string is given an initial displacement φ(x)

and an initial velocity θ(x). Determine the general form
of the solution for u(x, t). Compare with the solution
8.5.18 and that of Example 8.5.1.

2. An infinite string with a mass of 0.03 kg/m is stretched
with a force of 300 N. It is subjected to an initial dis-
placement of cos x for −π/2 < x < π/2 and zero for all
other x and released from rest. Determine the subsequent
displacement of the string and sketch the solution for
t = 0.01 s and 0.1 s.

3. An infinite string is subject to the initial displacement

φ(x) =




0, x < −1
0.2(x + 1), −1 ≤ x ≤ 0
0.2(1 − x), 0 < x ≤ 1
0, 1 < x

If the string is released from rest, find u(x, t). At what
time t0 is the displacement zero at x = 0? Sketch u(x) at
t = t0/2 and at t = 2t0. Use a = 40 m/s.

4. An infinite string is given the initial velocity

θ(x) =




0, x < −1
10(x + 1), −1 ≤ x ≤ 0
10(1 − x), 0 < x ≤ 1
0, 1 < x

If the string has zero initial displacement and a = 40,
find u(x, t). Sketch the displacement at t = 0.025 s and
t = 0.25 s.

5. Use Maple to create an animated solution to Problem 3.

6. Use Maple to create an animated solution to Problem 4.



Since the string is released from rest, the initial velocity is zero; hence,

∂u

∂t
(x, 0) = 0 (8.6.4)

The initial displacement will be denoted by f (x). We then have

u(x, 0) = f (x) (8.6.5)

We assume that the solution of our problem can be written in the separated form

u(x, t) = X (x)T (t) (8.6.6)

that is, the x variable separates from the t variable. Substitution of this relationship into Eq. 8.6.1
yields

X (x)T ′′(t) = a2 X ′′(x)T (t) (8.6.7)

where the primes denote differentiation with respect to the associated independent variable.
Rewriting Eq. 8.6.7 results in

T ′′

a2T
= X ′′

X
(8.6.8)

The left side of this equation is a function of t only and the right side is a function of x only. Thus,
as we vary t holding x fixed, the right side cannot change; this means that T ′′(t)/a2T (t) must be
the same for all t. As we vary x holding t fixed the left side must not change. Thus, the quantity
X ′′(x)/X (x) must be the same for all x. Therefore, both sides must equal the same constant
value µ, sometimes called the separation constant. Equation 8.6.8 may then be written as two
ordinary differential equations:

T ′′ − µa2T = 0 (8.6.9)

X ′′ − µX = 0 (8.6.10)

We note at this point that we have separated the variables and reduced a partial differential
equation to two ordinary differential equations. If the boundary conditions can be satisfied, then
we have succeeded with our separation of variables. We shall assume that we need to consider µ
only as a real number. Thus, we are left with the three cases:

µ > 0, µ = 0, µ < 0 (8.6.11)

For any nonzero value of µ, we know that the solutions of these second-order ordinary differen-
tial equations are of the form emt and enx , respectively (see Section 1.6). The characteristic
equations are

m2 − µa2 = 0 (8.6.12)

n2 − µ = 0 (8.6.13)

The roots are

m1 = a
√

µ, m2 = −a
√

µ (8.6.14)

n1 = √
µ, n2 = −√

µ (8.6.15)
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The resulting solutions are

T (t) = c1e
√

µat + c2e−√
µat (8.6.16)

and

X (x) = c3e
√

µx + c4e−√
µx (8.6.17)

Now let us consider the three cases, µ > 0, µ = 0, and µ < 0. For µ > 0, we have the result
that 

√
µ is a real number and the general solution is

u(x, t) = T (t)X (x) = (c1e
√

µat + c2e−√
µat )(c3e

√
µx + c4e−√

µx) (8.6.18)

which is a decaying or growing exponential. The derivative of Eq. 8.6.18 with respect to time
yields the velocity and it, too, is growing or decaying with respect to time. This, of course, means
that the kinetic energy of an element of the string is increasing or decreasing in time, as is the
total kinetic energy. However, energy remains constant; therefore, this solution violates the basic
law of physical conservation of energy. The solution also does not give the desired wave motion
and the boundary and initial conditions cannot be satisfied; thus we cannot have µ > 0. Similar
arguments prohibit the use of µ = 0. Hence, we are left with µ < 0. For simplicity, let

√
µ = iβ (8.6.19)

where β is a real number and i is 
√−1. In this case, Eq. 8.6.16 becomes

T (t) = c1eiβat + c2e−iβat (8.6.20)

and Eq. 8.6.17 becomes

X (x) = c3eiβx + c4e−iβx (8.6.21)

Using the relation

eiθ = cos θ + i sin θ (8.6.22)

Eqs. 8.6.20 and 8.6.21 may be rewritten as

T (t) = A sin βat + B cos βat (8.6.23)

and

X (x) = C sin βx + D cos βx (8.6.24)

where A, B, C, and D are new constants. The relation of the new constants in terms of the
constants c1, c2, c3, and c4 is left as an exercise.

Now that we have solutions to Eqs. 8.6.9 and 8.6.10 that are periodic in time and space, let us
attempt to satisfy the boundary conditions and initial conditions given in Eqs. 8.6.2 through
8.6.5. Our solution thus far is

u(x, t) = (A sin βat + B cos βat)(C sin βx + D cos βx) (8.6.25)

The boundary condition u(0, t) = 0 states that u is zero for all t at x = 0; that is,

u(0, t) = (A sin βat + β cos βat)D = 0 (8.6.26)
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The only way this is possible is if D = 0. Hence, we are left with

u(x, t) = (A sin βat + β cos βat)C sin βx (8.6.27)

The boundary condition u(L , t) = 0 states that u is zero for all t at x = L ; this is expressed as

u(L , t) = (A sin βat + B cos βat)C sin βL = 0 (8.6.28)

which is possible if and only if

sin βL = 0 (8.6.29)

For this to be true, we must have

βL = nπ, n = 1, 2, 3, . . . (8.6.30)

or β = nπ/L ; the quantity β is called an eigenvalue. When β is substituted back into sin βx , the
function sin nπx/L is called an eigenfunction. Each eigenvalue corresponding to a particular
value of n produces a unique eigenfunction. Note that the n = 0 eigenvalue (µ = 0) has already
been eliminated as a possible solution, so it is not included here. The solution given in Eq. 8.6.27
may now be written as

u(x, t) =
(

A sin
nπat

L
+ B cos

nπat

L

)
C sin

nπx

L
(8.6.31)

For simplicity, let us make the substitutions

AC = an, BC = bn (8.6.32)

since each value of n may require different constants. Equation 8.6.31 is then

un(x, t) =
(

an sin
nπat

L
+ bn cos

nπat

L

)
sin

nπx

L
(8.6.33)

where the subscript n has been added to u(x, t) to allow for a different function for each 
value of n.

For the vibrating string, each value of n results in harmonic motion of the string with fre-
quency na/2L cycles per second (hertz). For n = 1 the fundamental mode results, and for n > 1
overtones result (see Fig. 8.11). Nodes are those points of the string which do not move.

The velocity ∂un/∂t is then

∂un

∂t
= nπa

L

(
an cos

nπat

L
− bn sin

nπat

L

)
sin

nπx

L
(8.6.34)

Thus, to satisfy the boundary conditions 8.6.4,

∂un

∂t
(x, 0) = nπa

L
an sin

nπx

L
= 0 (8.6.35)

for all x, we must have an = 0. We are now left with

un(x, t) = bn cos
nπat

L
sin

nπx

L
(8.6.36)
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Finally, we must satisfy boundary condition (8.6.5),

un(x, 0) = f (x) (8.6.37)

But unless f (x) is a multiple of sin (nπx/L), no one value of n will satisfy Eq. 8.6.37. How do
we then satisfy the boundary condition u(x, 0) = f (x) if f (x) is not a sine function?

Equation 8.6.36 is a solution of Eq. 8.6.1 and satisfies Eqs. 8.6.2 through 8.6.4 for all n,
n = 1, 2, 3, . . .. Hence, any linear combination of any of the solutions

un(x, t) = bn cos
nπat

L
sin

nπx

L
, n = 1, 2, 3, . . . (8.6.38)

is also a solution, since the describing equation is linear and therefore superposition is possible.
If we assume that for the most general function f (x) we need to consider all values of n, then
we should try

u(x, t) =
∞∑

n=1

un(x, t) =
∞∑

n=1

bn cos
nπat

L
sin

nπx

L
(8.6.39)

To match the initial conditions (8.6.5) we have

u(x, 0) =
∞∑

n=1

bn sin
nπx

L
= f (x) (8.6.40)

If constants bn can be determined to satisfy Eq. 8.6.40, then Eq. 8.6.39 represents a solution for
those domains in which Eq. 8.6.39 converges. The series in Eq. 8.6.40 is a Fourier sine series. It
was presented in Section 7.3.3, but the essential features will be repeated here.

To find the bn’s, multiply the right side of Eq. 8.6.40 by sin (mπx/L) to give

sin
mπx

L

∞∑
n=1

bn sin
nπx

L
= f (x) sin

mπx

L
(8.6.41)
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Figure 8.11 Harmonic motion. The solution of various values of time t is as shown.



Now integrate both sides of Eq. 8.6.41 from x = 0 to x = L . We may take sin mπx/L inside
the sum, since it is a constant as far as the summation on n is concerned. The integral and the
summation may be switched if the series converges properly. This may be done for most
functions of interest in physical applications. Thus, we have

∞∑
n=1

bn

∫ L

0
sin

nπx

L
sin

mπx

L
dx =

∫ L

0
f (x) sin

mπx

L
dx (8.6.42)

With the use of trigonometric identities2 we can verify that

∫ L

0
sin

nπx

L
sin

mπx

L
dx =

{
0, if m 
= n
L

2
, if m = n

(8.6.43)

Hence, Eq. 8.6.42 gives us

bn = 2

L

∫ L

0
f (x) sin

nπx

L
dx (8.6.44)

if f (x) may be expressed by

f (x) =
∞∑

n=1

bn sin
nπx

L
(8.6.45)

Equation 8.6.45 gives the Fourier sine series representation of f (x) with the coefficients given
by Eq. 8.6.44. Examples will illustrate the use of the preceding equations for particular functions
f (x).
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2Use the trigonometric identities sin α sin β = 1
2 [cos(α − β) − cos(α + β)] and sin2 α = 1

2 − 1
2 cos 2α.

A tight string 2 m long with a = 30 m/s is initially at rest but is given an initial velocity of 300 sin 4πx from
its equilibrium position. Determine the maximum displacement at the x = 1

8 m location of the string.

� Solution

We assume that the solution to the describing differential equation

∂2u

∂t2
= 900

∂2u

∂x2

can be separated as

u(x, t) = T (t)X (x)

Following the procedure outlined in this section, we substitute into the describing equation to obtain

1

900

T ′′

T
= X ′′

X
= −β2

EXAMPLE 8.6.1
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where we have chosen the separation constant to be −β2 so that an oscillatory motion will result. The two or-
dinary differential equations that result are

T ′′ + 900β2T = 0, X ′′ + β2 X = 0

The general solutions to the equations above are

T (t) = A sin 30βt + B cos 30βt

X (x) = C sin βx + D cos βx

The solution for u(x, t) is

u(x, t) = (A sin 30βt + B cos 30βt)(C sin βx + D cos βx)

The end at x = 0 remains motionless; that is, u(0, t) = 0. Hence,

u(0, t) = (A sin 30βt + β cos 30βt)(0 + D) = 0

Thus, D = 0. The initial displacement u(x, 0) = 0. Hence,

u(x, 0) = (0 + B)C sin βx = 0

Thus, B = 0. The solution reduces to

u(x, t) = AC sin 30βt sin βx

The initial velocity ∂u/∂t is given as 300 sin 4πx . We then have, at t = 0,

∂u

∂t
= 30βAC sin βx = 300 sin 4πx

This gives

β = 4π, AC = 300

30(4π)
= 2.5

π

The solution for the displacement is finally

u(x, t) = 2.5

π
sin 120π t sin 4πx

We have not imposed the condition that the end at x = 2 m is motionless. Put x = 2 in the preceding ex-
pression and it is obvious that this boundary condition is satisfied; thus we have found an acceptable solution.

The maximum displacement at x = 1/8 m occurs when sin 120π t = 1. thus, the maximum displacement is

umax = 2.5

π
m

Note that we did not find it necessary to use the general expression given by Eq. 8.6.39. We could have, but
it would have required more work to obtain a solution. This happened because the initial condition was given
as a sine function. Other functions may require the more general form given by Eq. 8.6.39.

EXAMPLE 8.6.1 (Continued)
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Determine several coefficients in the series solution for u(x, t) if

f (x) =
{

0.1x, 0 ≤ x ≤ 1
0.2 − 0.1x, 1 < x ≤ 2

The string is 2 m long. Use the boundary and initial conditions of Section 8.6.

� Solution

The solution for the displacement of the string is given by Eq. 8.6.39. It is

u(x, t) =
∞∑

n=1

bn cos
nπat

2
sin

nπx

2

where we have used L = 2 m. The coefficients bn are related to the initial displacement f (x) by Eq. 8.6.44,

bn = 2

2

∫ 2

0
f (x) sin

nπx

2
dx

Substituting for f (x) results in

bn = 0.1
∫ 1

0
x sin

nπx

2
dx + 0.1

∫ 2

1
(2 − x) sin

nπx

2
dx

Performing the integrations (integration by parts3 is required) gives

bn = 0.1

[
− 2x

nπ
cos

nπx

2
+ 4

n2π2
sin

nπx

2

]1

0

+ 0.1

[
− 4

nπ
cos

nπx

2
+ 2x

nπ
cos

nπx

2
− 4

n2π2
sin

nπx

2

]2

1

By being careful in reducing this result, we have

bn = 0.8

π2n2
sin

nπ

2

This gives several bn’s as

b1 = 0.8

π2
, b2 = 0, b3 = − 0.8

9π2
, b4 = 0, b5 = 0.8

25π2

EXAMPLE 8.6.2

3We shall integrate 
∫ π

0 x sin x dx by parts. Let u = x and dv = sin x dx . Then du = dx and v = − cos x . The integral is then∫ π

0
x sin x dx = −x cos x |π0 +

∫ π

0
cos x dx = π

These integrations can also be done using Maple, as described in Section 7.3.3. 
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The solution is, finally,

u(x, t) = 0.8

π2

[
cos

πat

2
sin

πx

2
− 1

9
cos

3πat

2
sin

3πx

2

+ 1

25
cos

5πat

2
sin

5πx

2
+ · · ·

]

We see that the amplitude of each term is getting smaller and smaller. A good approximation results if we keep
several terms (say five) and simply ignore the rest. This, in fact, was done before the advent of the computer.
With the computer many more terms can be retained, with accurate numbers resulting from the calculations.
A computer plot of the preceding solution is shown for a = 100 m/s. One hundred terms were retained.

0.10

0.06

�0.06

�0.10
0.00 0.40 0.80 1.20 1.60

0.02

�0.02

u(x, t)

t � 0.0

t � 0.008 s

t � 0.016 s

t � 0.02 s

x

EXAMPLE 8.6.2 (Continued)

A tight string, π m long and fixed at both ends, is given an initial displacement f (x) and an initial velocity
g(x). Find an expression for u(x, t).

� Solution

We begin with the general solution of Eq. 8.6.25:

u(x, t) = (A sin βat + B cos βat)(C sin βx + D cos βx)

Using the boundary condition in which the left end is fixed, that is, u(0, t) = 0, we have D = 0. We also have
the boundary condition u(π, t) = 0, giving

0 = (A sin βat + B cos βat)C sin βπ

If we let C = 0, a trivial solution results, u(x, t) = 0. Thus, we must let

βπ = nπ

EXAMPLE 8.6.3
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or β = n, an integer. The general solution is then

un(x, t) = (an sin nat + bn cos nat) sin nx

where the subscript n on un(x, t) allows for a different u(x, t) for each value of n. The most general u(x, t)
is then found by superposing all of the un(x, t); that is,

u(x, t) =
∞∑

n=1

un(x, t) =
∞∑

n=1

(an sin nat + bn cos nat) sin nx (1)

Now, to satisfy the initial displacement, we require that

u(x, 0) =
∞∑

n=1

bn sin nx = f (x)

Multiply by sin mx and integrate from 0 to π . Using the results indicated in Eq. 8.6.43, we have

bn = 2

π

∫ π

0
f (x) sin nx dx (2)

Next, to satisfy the initial velocity, we must have

∂u

∂t
(x, 0) =

∞∑
n=1

anan sin nx = g(x)

Again, multiply by sin mx and integrate from 0 to π . Then

an = 2

anπ

∫ π

0
g(x) sin nx dx (3)

Our solution is now complete. It is given by Eq. 1 with the bn provided by Eq. 2 and the an by Eq. 3. If f (x)

and g(x) are specified, numerical values for each bn and an result.

EXAMPLE 8.6.3 (Continued)

A tight string, π m long, is fixed at the left end but the right end moves, with displacement 0.2 sin 15t. Find
u(x, t) if the wave speed is 30 m/s and state the initial conditions if a solution using separation of variables is
to be possible.

� Solution

Separation of variables leads to the general solution as

u(x, t) = (A sin 30βt + B cos 30βt)(C sin βx + D cos βx)

EXAMPLE 8.6.4
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The left end is fixed, requiring that u(0, t) = 0. Hence, D = 0. The right end moves with the displacement
0.2 sin 15t; that is,

u(π, t) = 0.2 sin 15t = (A sin 30βt + B cos 30βt)C sin βπ

This can be satisfied if we let

B = 0, β = 1

2
, AC = 0.2

The resulting solution for u(x, t) is

u(x, t) = 0.2 sin 15t sin
x

2

The initial displacement u(x, 0) must be zero and the initial velocity must be

∂u

∂t
(x, 0) = 3 sin

x

2

Any other set of initial conditions would not allow a solution using separation of variables.

EXAMPLE 8.6.4 (Continued)

A tight string is fixed at both ends. A forcing function (such as wind blowing over a wire), applied normal to the
string, is given by �(t) = K m sin ωt kilograms per meter of length. Show that resonance occurs whenever
ω = anπ/L .

� Solution

The forcing function �(t) multiplied by the distance �x can be added to the right-hand side of Eq. 8.2.8.
Dividing by m�x results in

a2 ∂2u

∂x2
= ∂2u

∂t2
+ K sin ωt

where a2 = P/m . This is a nonhomogeneous partial differential equation, since the last term does not contain
the dependent variable u(x, t). As with ordinary differential equations that are linear, we can find a particular
solution and add it to a family of solutions of the associated homogeneous equation to obtain a set of solutions
of the nonhomogeneous equation.

We assume that the forcing function produces a displacement having the same frequency as the forcing
function, as is the case with lumped systems. This suggests that the particular solution has the form

up(x, t) = X (x) sin ωt

Substituting this into the partial differential equation gives

a2 X ′′ sin ωt = −Xω2 sin ωt + K sin ωt

EXAMPLE 8.6.5
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The sin ωt divides out and we are left with the ordinary differential equation

X ′′ + ω2

a2
X = K

a2

The general solution of this nonhomogeneous differential equation is (see Chapter 1)

X (x) = c1 sin
ω

a
x + c2 cos

ω

a
x + K

ω2

We will force this solution to satisfy the end conditions that apply to the string. Hence,

X (0) = 0 = c2 + K

ω2

X (L) = 0 = c1 sin
ωL

a
+ c2 cos

ωL

a
+ K

ω2

The preceding equations give

c2 = − K

ω2
, c1 =

K

ω2

(
cos

ωL

a
− 1

)
sin(ωL/a)

The particular solution is then

up(x, t) = K

ω2


cos

ωL

a
− 1

sin(ωL/a)
sin

ωx

a
− cos

ωx

a
+ 1


 sin ωt

The amplitude of the preceding solution becomes infinite whenever sin ωL/a = 0 and cos ωL/a 
= 1. This
occurs if and only if

ωL

a
= (2n − 1)π

Hence, if the input frequency is such that

ω = (2n − 1)πa

L
, n = 1, 2, 3, . . .

the amplitude of the resulting motion becomes infinitely large. This input frequency is the natural frequency
corresponding to the fundamental mode or one of the significant overtones of the string, depending on the
value of n. Thus, we see that a number of input frequencies can lead to resonance in the string. This is true of
all phenomena modeled by the wave equation. Although we have neglected any type of damping, the ideas
presented in this example carry over to the realistic cases of problems involving small damping.

EXAMPLE 8.6.5 (Continued)



8.6.1 Maple Applications
Example 8.6.1 illustrates the difficulty of using Maple to solve partial differential equations.
Applying the pdsolve command results in D’Alembert’s solution:

>pde:=diff(u(x,t), t$2)=900*diff(u(x,t), x$2);

pde:= ∂2

∂t2
u(x,t)= 900

(
∂2

∂x 2
u(x,t)

)
>pdsolve(pde);

u(x,t)= —F1(30t + x)+ —F2(30t− x)

We can suggest to Maple to try separation of variables by using the HINT option:

>pdsolve(pde, HINT=T(t)*X(x));

(u(x,t)= T(t)X(x))&where

[{
d 2

dt2
T(t)= 900T(t)—c1,

d 2

dx 2
X(x)= —c1X(x)

}]
This result is unsatisfactory for two reasons. First, we have no control over the separation con-
stant (in this case —c1), so we can’t specify that it is negative. Second, we are left with two dif-
ferential equations to solve. We can make some more progress on this by using the INTEGRATE
option in pdsolve to tell Maple to solve the differential equations:

>pdsolve(pde, HINT=T(t)*X(x), INTEGRATE);

(u(x,t)= T(t)X(x))&where[{
{T(t)= —C1e

(30
√
—c1 t)+ —C2 e

(−30√
—c1 t)},{X(x)= −C3 e(

√
—c1 x)+ −C4 e(−

√
—c1 x)}

}]
If —C1 < 0, then the exponents will be complex-valued, leading to sines and cosines (see
Chapter 10). At this point, it is apparent that the use of Maple has made solving this problem
more difficult, but it is the best we can do at this time.

It is easy, however, to verify that the solution is correct using Maple. First define the solution:

>u:= (x,t) -> 2.5*sin(120*Pi*t)*sin(4*Pi*x)/Pi;

u := (x,t)→ 2.5sin(120πt)sin(4πx)

π

Then check the initial conditions, including the initial velocity:

>u(x,0);
0

>u(0,t);
0

>diff(u(x,t), t);
300.0cos(120πt)sin(4πx)

>eval(subs(t=0, %));

300.0sin(4πx)

Finally, check the solution with the partial differential equation:

>pde;

−36000.0sin(120πt)π sin(4πx)= −36000.0sin(120πt)π sin(4πx)

This output is an equation that is true for all values of x and t, so the solution is verified.
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With Maple, we can reproduce many of the calculations of Example 8.6.5, provided we use
pdsolve correctly. First define the partial differential equation. As before, pdsolve will de-
termine D’Lambert’s solution:

>pde:=a^2*diff(u(x,t), x$2)=diff(u(x,t), t$2)+K*sin(W*t);

pde:= a2
(

∂2

∂x 2
u(x,t)

)
=

(
∂2

∂t2
u(x,t)

)
+ K sin(w t)

>pdsolve(pde);

u(x,t)= —F1(at + x)+ —F2(at− x)+ K sin(w t)

w2

However, we can use the HINT option to suggest the form of the solution that we want. In this
case, the ordinary differential equation that results is not solved:

>pdsolve(pde, HINT=X(x)*sin(w*t));

(u(x,t)= X(x)sin(w t))&where

[{
d2

dx2
X(x)= −X(x)w2 + K

a2

}]

With the INTEGRATE option, we can make further progress:

>pdsolve(pde, HINT=X(x)*sin(w*t), INTEGRATE);

(u(x,t)= X(x)sin(w t))&where

[{{
X(x)= sin

(w x

a

)
—C2+ cos

(w x

a

)
—C1+ K

w2

}}]

For the examples in the next three sections, it is not reasonable to use a computer algebra sys-
tem like Maple. The methods in these sections lead to solutions that are infinite series, including
Fourier series, which are beyond the scope of the pdsolve command. Some of the derivations
of solutions in the rest of this chapter use integrals that can be done with Maple, and we leave to
the reader to calculate these integrals with the int command, or to write a Maple worksheet
to reproduce a complete derivation.
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Problems

1. Express the solution (8.6.36) in terms of the solution
(8.5.10). What are f and g?

2. Determine the general solution for the wave equation
using separation of variables assuming that the separa-
tion constant is zero. Show that this solution cannot sat-
isfy the boundary and/or initial conditions.

3. Verify that

u(x, t) = bn cos
nπat

L
sin

nπx

L
is a solution to Eq. 8.6.1 and to the conditions 8.6.2
through 8.6.4.

4. Find the constants A, B, C, and D in Eqs. 8.6.23 and
8.6.24 in terms of the constants c1, c2, c3, and c4 in
Eqs. 8.6.20 and 8.6.21.

5. Determine the relationship of the fundamental frequency
of a vibrating string to the mass per unit length, the length
of the string, and the tension in the string.

6. If, for a vibrating wire, the original displacement of the 2-
m-long stationary wire is given by (a) 0.1 sin x π/2, (b)
0.1 sin 3πx/2, and (c) 0.1(sin πx/2 − sin 3πx/2), find
the displacement function u(x, t). Both ends are fixed,
P = 50 N, and the mass per unit length is 0.01 kg/m.



With what frequency does the wire oscillate? Write the
eigenvalue and eigenfunction for part (a).

7. The initial displacement in a 2-m-long string is given by
0.2 sin πx and released from rest. Calculate the maxi-
mum velocity in the string and state its location.

8. A string π m long is stretched until the wave speed is 40
m/s. It is given an initial velocity of 4 sin x from its equi-
librium position. Determine the maximum displacement
and state its location and when it occurs.

9. A string 4 m long is stretched, resulting in a wave speed
of 60 m/s. It is given an initial displacement of
0.2 sin πx/4 and an initial velocity of 20 sin πx/4. Find
the solution representing the displacement of the string.

10. A 4-m-long stretched string, with a = 20 m/s, is fixed at
each end. The string is started off by an initial displace-
ment u(x, 0) = 0.2 sin πx/4. The initial velocity is zero.
Determine the solution for u(x, t).

11. Suppose that we wish to generate the same string vibra-
tion as in Problem 10 (a standing half-sine wave with the
same amplitude), but we want to start with a zero-
displacement, nonzero velocity condition, that is,
u(x, 0) = 0, ∂u/∂t (x, 0) = g(x). What should g(x) be?

12. For u(x, 0) = 0.1 sin πx/4 and ∂u/∂t (x, 0) =
10 sin πx/4, what are the arbitrary constants? What is the
maximum displacement value umax(x, t), and where
does it occur? Let a = 40 m/s and L = 4 m in the tight
string.

Suppose that a tight string is subjected to the following condi-
tions: u(0, t) = 0, u(L , t) = 0, ∂u/∂t (x, 0) = 0. Calculate
the first three nonzero terms of the solution u(x, t) if

13. u(x, 0) = k

14. u(x, 0) =
{

k, 0 < x < L/2
0, L/2 < x < L

15. u(x, 0) =
{

kx, 0 < x < L/2
k(L − x), L/2 < x < L

16. Astring π m long is started into motion by giving the mid-
dle one-half an initial velocity of 20 m/s. The string is
stretched until the wave speed is 60 m/s. Determine the re-
sulting displacement of the string as a function of x and t.

17. The right end of a 6-m-long wire, which is stretched until
the wave speed is 60 m/s, is continually moved with the
displacement 0.5 cos 4π t . What is the maximum ampli-
tude of the resulting displacement?

18. The wind is blowing over some suspension cables on a
bridge, causing a force that is approximated by the func-
tion 0.02 sin 21π t . Is resonance possible if the force in
the cable is 40 000 N, the cable has a mass of 10 kg/m,
and it is 15 m long?

19. A circular shaft π m long is fixed at both ends. The mid-
dle of the shaft is twisted through an angle α, the remain-
der of the shaft through an angle proportional to the dis-
tance from the nearest end, and then the shaft is released
from rest. Determine the subsequent motion expressed as
θ(x, t). Problem 4 of Section 8.2 gives the appropriate
wave equation.

20. Use Maple to create an animation of the solution from
Example 8.6.2.

21. Recall that attempting to solve Example 8.6.5 using
Maple yields the following:

>pdsolve(pde);

u(x,t)= —F1(a t + x)

+ —F2(a t − x)+ K sin(w t)

w2

Show that the particular solution in that example can be
written in D’Lambert’s form, by determining _F1
and _F2.

22. Use Maple to solve Problem 18, and create an animation
of the solution.

23. Use Maple to solve Problem 19, and create an animation
of the solution.

This section is devoted to a solution of the diffusion equation developed in Section 8.3. Recall
that the diffusion equation is

∂T

∂t
= k

(
∂2T

∂x2
+ ∂2T

∂y2
+ ∂2T

∂z2

)
(8.7.1)
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This very important phenomenon will be illustrated by heat transfer. The procedure developed
for the wave equation is used, but the solution is quite different, owing to the presence of the first
derivative with respect to time rather than the second derivative. This requires only one initial
condition instead of the two required by the wave equation. We illustrate the solution technique
in three separate situations.

8.7.1 A Long, Insulated Rod with Ends at Fixed Temperatures
A long rod, shown in Fig. 8.12, is subjected to an initial temperature distribution along its axis;
the rod is insulated on the lateral surface, and the ends of the rod are kept at the same constant
temperature.4 The insulation prevents heat flux in the radial direction; hence, the temperature
will depend on the x coordinate only. The describing equation is then the one-dimensional heat
equation, given by Eq. 8.3.10, as

∂T

∂t
= k

∂2T

∂x2
(8.7.2)

We hold the ends at T = 0◦. These boundary conditions are expressed as

T (0, t) = 0, T (L , t) = 0 (8.7.3)

Let the initial temperature distribution be represented by

T (x, 0) = f (x) (8.7.4)

Following the procedure developed for the solution of the wave equation, we assume that the
variables separate; that is,

T (x, t) = θ(t)X (x) (8.7.5)

Substitution of Eq. 8.7.5 into Eq. 8.7.2 yields

θ ′ X = kθ X ′′ (8.7.6)

where θ ′ = dθ/dt and X ′′ = d2 X/dx2. This is rearranged as

θ ′

kθ
= X ′′

X
(8.7.7)
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x

L Figure 8.12 Heated rod.

4We choose the temperature of the ends in the illustration to be 0◦C. Note, however, that they could be held at
any temperature T0. Since it is necessary to have the ends maintained at zero, we simply define a new variable
θ = T − T0, so that θ = 0 at both ends. We would then find a solution for θ(x, t) with the desired temperature
given by T (x, t) = θ(x, t) + T0 . 



Since the left side is a function of t only and the right side is a function of x only, we set Eq. 8.7.7
equal to a constant λ. This gives

θ ′ − λkθ = 0 (8.7.8)

and

X ′′ − λX = 0 (8.7.9)

The solution of Eq. 8.7.8 is of the form

θ(t) = c1eλkt (8.7.10)

Equation 8.7.9 yields the solution

X (x) = c2e
√

λx + c3e−√
λx (8.7.11)

Again, we must decide whether

λ > 0, λ = 0, λ < 0 (8.7.12)

For λ > 0, Eq. 8.7.10 shows that the solution has unbounded temperature for large t due to
exponential growth; of course, this is not physically possible. For λ = 0, the solution is inde-
pendent of time. Again our physical intuition tells us this is not possible. Therefore, we are left
with λ < 0. Let

β2 = −λ (8.7.13)

so that

β2 > 0 (8.7.14)

The solutions, Eqs. 8.7.10 and 8.7.11, may then be written as

θ(t) = Ae−β2kt (8.7.15)

and (refer to Eqs. 8.6.17 and 8.6.24)

X (x) = B sin βx + C cos βx (8.7.16)

where A, B, and C are constants to be determined. Therefore, the solution is

T (x, t) = Ae−β2kt [B sin βx + C cos βx] (8.7.17)

The first condition of Eq. 8.7.3 implies that

C = 0 (8.7.18)

Therefore, the solution reduces to

T (x, t) = De−β2kt sin βx (8.7.19)

where D = AB . The second boundary condition of Eq. 8.7.3 requires that

sin βL = 0 (8.7.20)

This is satisfied if

βL = nπ, or β = nπx/L (8.7.21)
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The constant β is the eigenvalue, and the function sin nπx/L is the eigenfunction. The solution
is now

T (x, t) =
∞∑

n=1

Tn(x, t) =
∞∑

n=1

Dne−kn2π2t/L2
sin

nπx

L
(8.7.22)

The initial condition, 8.7.4, will be satisfied at t = 0 if

T (x, 0) = f (x) =
∞∑

n=1

Dn sin
nπx

L
(8.7.23)

that is, if f (x) can be expanded in a convergent Fourier sine series. If such is the case, the coef-
ficients will be given by (see Eq. 8.6.44)

Dn = 2

L

∫ L

0
f (x) sin

nπx

L
dx (8.7.24)

and the separation-of-variables technique is successful.
It should be noted again that all solutions of partial differential equations cannot be found by

separation of variables; in fact, it is only a very special set of boundary conditions that allows us
to separate the variables. For example, Eq. 8.7.20 would obviously not be useful in satisfying the
boundary condition T (L , t) = 20t . Separation of variables would then be futile. Numerical
methods could be used to find a solution, or other analytical techniques not covered in this book
would be necessary.
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A long copper rod with insulated lateral surface has its left end maintained at a temperature of 0˚C and its right
end, at x = 2 m, maintained at 100˚C. Determine the temperature as a function of x and t if the initial condi-
tion is given by

T (x, 0) = f (x) =
{

100x, 0 < x < 1
100, 1 < x < 2

The thermal diffusivity for copper is k = 1.14 × 10−4 m2/s.

� Solution

We again assume the variables separate as

T (x, t) = θ(t)X (x)

with the resulting equation,
1

k

θ ′

θ
= X ′′

X
= λ

In this problem the eigenvalue λ = 0 will play an important role. The solution for λ = 0 is

θ(t) = C1, X (x) = A1x + B1

resulting in

T (x, t) = C1(A1x + B1)

EXAMPLE 8.7.1



To satisfy the two end conditions T (0, t) = 0 and T (2, t) = 100, it is necessary to require B1 = 0 and
A1C1 = 50. Then

T (x, t) = 50x (1)

This solution is, of course, independent of time, but we will find it quite useful.
Now, we return to the case that allows for exponential decay of temperature, namely λ = −β2. For this

eigenvalue (see Eq. 8.7.17) the solution is

T (x, t) = Ae−β2kt [B sin βx + C cos βx] (2)

We can superimpose the above two solutions and obtain the more general solution

T (x, t) = 50x + Ae−β2kt [B sin βx + C cos βx]

Now let us satisfy the boundary conditions. The left-end condition T (0, t) = 0 demands that C = 0. The
right-end condition demands that

100 = 100 + ABe−β2kt sin βL

This requires sin βL = 0, which occurs whenever

βL = nπ or β = nπ/L , n = 1, 2, 3, . . .

The solution is then

T (x, t) = 50x +
∞∑

n=1

Dne−n2π2kt/4 sin
nπx

2

using L = 2. Note that this satisfies the describing equation (8.7.2) and the two boundary conditions. Finally,
it must satisfy the initial condition

f (x) = 50x +
∞∑

n=1

Dn sin
nπx

2

We see that if the function [ f (x) − 50x] can be expanded in a convergent Fourier sine series, then the solu-
tion will be complete. The Fourier coefficients are

Dn = 2

L

∫ L

0
[ f (x) − 50x] sin

nπx

L
dx

= 2

2

∫ 1

0
(100x − 50x) sin

nπx

2
dx + 2

2

∫ 2

1
(100 − 50x) sin

nπx

2
dx

= 50

[
− 2x

nπ
cos

nπx

2
+ 4

n2π2
sin

nπx

2

]1

0

− 200

nπ
cos

nπx

2

∣∣∣∣
2

1

− 50

[
− 2x

nπ
cos

nπx

2
+ 4

n2π2
sin

nπx

2

]2

1

= 400

n2π2
sin

nπ

2
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Using k = 1.14 × 10−4 m/s for copper, we have

T (x, t) = 50x +
∞∑

n=1

40.5

n2
sin

nπ

2
e−2.81×10−4n2t sin

nπx

2

which converges for all t ≥ 0 and all k, 0 ≤ x < 2. Note that the time t is measured in seconds.
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EXAMPLE 8.7.1 (Continued)

8.7.2 A Long, Totally Insulated Rod
The lateral sides of the long rod are again insulated so that heat transfer occurs only in the x direc-
tion along the rod. The temperature in the rod is described by the one-dimensional heat equation

∂T

∂t
= k

∂2T

∂x2
(8.7.25)

For this problem, we have an initial temperature distribution given by

T (x, 0) = f (x) (8.7.26)

Since the rod is totally insulated, the heat flux across the end faces is zero. This condition gives,
with the use of Eq. 8.3.1,

∂T

∂x
(0, t) = 0,

∂T

∂x
(L , t) = 0 (8.7.27)

We assume that the variables separate,

T (x, t) = θ(t)X (x) (8.7.28)

Substitute into Eq. 8.7.25, to obtain

θ ′

kθ
= X ′′

X
= −β2 (8.7.29)

where −β2 is a negative real number. We then have

θ ′ = −β2kθ (8.7.30)

and

X ′′ + β2 X = 0 (8.7.31)

The equations have solutions in the form

θ(t) = Ae−β2kt (8.7.32)

and

X (x) = B sin βx + C cos βx (8.7.33)

The first boundary condition of 8.7.27 implies that B = 0, and the second requires

∂ X

∂x
(L) = −Cβ sin βL = 0 (8.7.34)

This can be satisfied by setting

sin βL = 0 (8.7.35)



Hence, the eigenvalues are

β = nπ

L
, n = 0, 1, 2, . . . (8.7.36)

Thus, the independent solutions are of the form

Tn(x, t) = ane−n2π2kt/L2
cos

nπx

L
(8.7.37)

where the constant an replaces AC. A family of solutions is then

T (x, t) =
∞∑

n=0

ane−(n2π2k/L2)t cos
nπx

L
(8.7.38)

Note that we retain the β = 0 eigenvalue in the series.
The initial condition is given by Eq. 8.7.26. It demands that

f (x) =
∞∑

n=0

an cos
nπx

L
(8.7.39)

Using trigonometric identities (see Eq. 8.6.43) we can show that∫ L

0
cos

nπx

L
cos

mπx

L
dx =

{ 0, m 
= n
L/2, m = n 
= 0
L , m = n = 0

(8.7.40)

Multiply both sides of Eq. 8.7.39 by cos mπx/L and integrate from 0 to L. We then have5

a0 = 1

L

∫ L

0
f (x) dx, an = 2

L

∫ L

0
f (x) cos

nπx

L
dx (8.7.41)

The solution is finally

T (x, t) =
∞∑

n=0

ane−(n2π2k/L2)t cos
nπx

L
(8.7.42)

Thus, the temperature distribution can be determined provided that f (x) has a convergent
Fourier cosine series.
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5Note that it is often the practice to define a0 as a0 = (2/L)
∫ L

0 f (x) dx and then to write the solution as
T (x, t) = a0/2 + 	∞

n=1ane−n2π2kt/L2
cos(nπx/L) . This was done in Chapter 7. Both methods are, of course,

equivalent.

A long, laterally insulated stainless steel rod has heat generation occurring within the rod at the constant rate
of 4140 w/m3. The right end is insulated and the left end is maintained at 0°C. Find an expression for T (x, t)
if the initial temperature distribution is

T (x, 0) = f (x) =
{

100x, 0 < x < 1
200 − 100x, 1 < x < 2

for the 2-m-long rod. Use the specific heat C = 460 J/kg · ◦C, ρ = 7820 kg/m3, and k = 3.86 × 10−6 m2s.

EXAMPLE 8.7.2
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� Solution

To find the appropriate describing equation, we must account for the heat generated in the infinitesimal ele-
ment of Fig. 8.7. To Eq. 8.3.8 we add a heat-generation term,

φ(x, y, z, t)�x�y�z�t

where φ(x, y, z, t) is the amount of heat generated per volume per unit time. The one-dimensional heat equa-
tion then takes the form

∂T

∂t
= k

∂2T

∂x2
+ φ

ρC

For the present example the describing equation is

∂T

∂t
= k

∂2T

∂x2
+ 4140

7820 · 460

This nonhomogeneous, partial differential equation is solved by finding a particular solution and adding it to
the solution of the homogeneous equation

∂T

∂t
= k

∂2T

∂x2

The solution of the homogeneous equation is

T (x, t) = Ae−β2kt [B sin βx + C cos βx]

The left-end boundary condition is T (0, t) = 0, resulting in C = 0. The insulated right end requires that
∂T/∂x (L , t) = 0. This results in cos βL = 0. Thus, the quantity βL must equal π/2, 3π/2, 5π/2, . . . This
is accomplished by using

β = (2n − 1)π

2L
. n = 1, 2, 3, . . .

The homogeneous solution is, using k = 3.86 × 10−6 and L = 2,

T (x, t) =
∞∑

n=1

Dne−2.38×10−6(2n−1)2t sin

(
2n − 1

4
πx

)

To find the particular solution, we note that the generation of heat is independent of time. Since the ho-
mogeneous solution decays to zero with time, we anticipate that the heat-generation term will lead to a steady-
state temperature distribution. Thus, we assume the particular solution is independent of time, that is,

Tp(x, t) = g(x)

Substituting this into the describing equation leads to

0 = 3.86 × 10−6g′′ + 1.15 × 10−3

EXAMPLE 8.7.2 (Continued)



8.7.3 Two-Dimensional Heat Conduction in a Long, Rectangular Bar
A long, rectangular bar is bounded by the planes x = 0, x = a, y = 0, and y = b. These faces
are kept at T = 0◦C, as shown by the cross section in Fig. 8.13. The bar is heated so that the
variation in the z direction may be neglected. Thus, the variation of temperature in the bar is
described by

∂T

∂t
= k

(
∂2T

∂x2
+ ∂2T

∂y2

)
(8.7.43)

The initial temperature distribution in the bar is given by

T (x, y, 0) = f (x, y) (8.7.44)

We want to find an expression for T (x, y, t). Hence, we assume that

T (x, y, t) = X (x)Y (y)θ(t) (8.7.45)
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The solution of this ordinary differential equation is

g(x) = −149x2 + c1x + c2

This solution must also satisfy the boundary condition at the left end, yielding c2 = 0 and the boundary con-
dition at the right end (g′ = 0), giving c1 = 596. The complete solution, which must satisfy the initial condi-
tion, is

T (x, t) = −149x2 + 596x +
∞∑

n=1

Dne−2.38×10−6(2n−1)2t sin

(
2n − 1

4
πx

)

To find the unknown coefficients Dn we use the initial condition, which states that

f (x) = −149x2 + 596x +
∞∑

n=1

Dn sin

(
2n − 1

4
πx

)

The coefficients are then

Dn = 2

2

∫ 2

0
[ f (x) + 149x2 − 596x] sin

(
2n − 1

4
πx

)
dx

=
∫ 1

0
(149x2 − 496x) sin

(
2n − 1

4
πx

)
dx

+
∫ 2

1
(149x2 − 696x + 200) sin

(
2n − 1

4
πx

)
dx

The integrals can be integrated by parts and the solution is thereby completed.

EXAMPLE 8.7.2 (Continued)



After Eq. 8.7.45 is substituted into Eq. 8.7.43, we find that

XY θ ′ = k(X ′′Y θ + XY ′′θ) (8.7.46)

Equation 8.7.46 may be rewritten as

X ′′

X
= θ ′

kθ
− Y ′′

Y
(8.7.47)

Since the left-hand side of Eq. 8.7.47 is a function of x only and the right side is a function of t
and y, we may deduce both sides equal the constant value −λ. (With experience we now antici-
pate the minus sign.) Therefore, we have

X ′′ + λX = 0 (8.7.48)

and

Y ′′

Y
= θ ′

kθ
+ λ (8.7.49)

We use the same argument on Eq. 8.7.49 and set it equal to a constant −µ. That is,

Y ′′

Y
= θ ′

kθ
+ λ = −µ (8.7.50)

This yields the two ordinary differential equations

Y ′′ + µY = 0 (8.7.51)

and

θ ′ + (λ + µ)kθ = 0 (8.7.52)

The boundary conditions on X (x) are

X (0) = 0, X (a) = 0 (8.7.53)
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x

T � 0

T � 0

T � 0
T � 0

(a, 0, 0)

(0, b, 0)

Figure 8.13 Cross section of a
rectangular bar.



since the temperature is zero at x = 0 and x = a. Consequently, the solution of Eq. 8.7.48,

X (x) = A sin
√

λx + B cos
√

λx (8.7.54)

reduces to

X (x) = A sin
nπx

a
(8.7.55)

where we have used

λ = n2π2

a2
, n = 1, 2, 3, . . . (8.7.56)

Similarly, the solution to Eq. 8.7.51 reduces to

Y (y) = C sin
mπy

b
(8.7.57)

where we have employed

µ = m2π2

b2
, m = 1, 2, 3, . . . (8.7.58)

With the use of Eqs. 8.7.56 and 8.7.58 we find the solution of Eq. 8.7.52 is

θ(t) = De−π2k(n2/a2+m2/b2)t (8.7.59)

Equations 8.7.55, 8.7.57, and 8.7.59 may be combined to give

Tmn(x, y, t) = amne−π2k(n2/a2+m2/b2)t sin
nπx

a
sin

mπy

b
(8.7.60)

where the constant amn replaces ACD. The most general solution is then obtained by superposi-
tion, namely,

T (x, y, t) =
∞∑

m=1

∞∑
n=1

Tmn (8.7.61)

and we have

T (x, y, t) =
∞∑

m=1

∞∑
n=1

amne−π2k(n2/a2+m2/b2)t sin
nπx

a
sin

mπy

b
(8.7.62)

This is a solution if coefficients amn can be determined so that

T (x, y, 0) = f (x, y) =
∞∑

m=1

[ ∞∑
n=1

amn sin
nπx

a

]
sin

mπy

b
(8.7.63)

We make the grouping indicated by the brackets in Eq. 8.7.63. Thus, for a given x in the range
(0, a), we have a Fourier series in y. [For a given x, f (x, y) is a function of y only.] Therefore,
the term in the brackets is the constant bn in the Fourier sine series. Hence,

∞∑
n=1

amn sin
nπx

a
= 2

b

∫ b

0
f (x, y) sin

mπy

b
dy = Fm(x) (8.7.64)
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The right-hand side of Eq. 8.7.64 is a series of functions of x, one for each m = 1, 2, 3, . . . .
Thus, Eq. 8.7.64 is a Fourier sine series for Fm(x). Therefore, we have

amn = 2

a

∫ a

0
Fm(x) sin

nπx

a
dx (8.7.65)

Substitution of Eq. 8.7.64 into Eq. 8.7.65 yields

amn = 4

ab

∫ a

0

∫ b

0
f (x, y) sin

mπy

b
sin

nπx

a
dy dx (8.7.66)

The solution of our problem is Eq. 8.7.62 with amn given by Eq. 8.7.66, assuming, as usual, that
the various series converge.

The latter problem is an extension of the ideas presented earlier. It deals with functions of
three independent variables and expansions utilizing two-dimensional Fourier series.

The applications studied so far were presented in rectangular coordinates. One consequence
of our choice of problem and coordinate system is the need to expand the function represent-
ing the initial condition as a series of sine and cosine terms, the so-called Fourier series. For
problems better suited to cylindrical coordinates, a series of Bessel functions is the natural
tool; in spherical coordinates, expansions in a series of Legendre polynomials is more natural.
The following two sections will present the solutions to Laplace’s equation in spherical coor-
dinates and cylindrical coordinates, respectively. But, first, we give an example and some
problems.
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The edges of a thin plate are held at the temperatures shown in the sketch. Determine the steady-state temper-
ature distribution in the plate. Assume the large flat surfaces to be insulated.

� Solution

The describing equation is the heat equation

∂T

∂t
= k

(
∂2T

∂x2
+ ∂2T

∂y2
+ ∂2T

∂z2

)

x

y

0�C

0�C

0�C 50 sin �y �C

2

1

EXAMPLE 8.7.3
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6If the right-hand edge were held at a constant temperature, we would also choose the separation constant so that cos βy and
sin βy appear. This would allow a Fourier series to satisfy the edge condition.

For the steady-state situation there is no variation of temperature with time; that is, ∂T/∂t = 0. For a thin plate
with insulated surfaces we have ∂2T/∂z2 = 0. Thus,

∂2T

∂x2
+ ∂2T

∂y2
= 0

This is Laplace’s equation. Let us assume that the variables separate; that is,

T (x, y) = X (x)Y (y)

Then substitute into the describing equation to obtain

X ′′

X
= −Y ′′

Y
= β2

where we have chosen the separation constant to be positive to allow for a sinusoidal variation6 with y. The or-
dinary differential equations that result are

X ′′ − β2 X = 0, Y ′′ + β2Y = 0

The solutions are

X (x) = Aeβx + Be−βx

Y (y) = C sin βy + D cos βy

The solution for T (x, y) is then

T (x, y) = (Aeβx + Be−βx)(C sin βy + D cos βy)

Using T (0, y) = 0, T (x, 0) = 0, and T (x, 1) = 0 gives

0 = A + B, 0 = D, 0 = sin β

The final boundary condition is

T (2, y) = 50 sin πy = (Ae2β + Be−2β)C sin βy

From this condition we have

β = π, 50 = C(Ae2β + Be−2β)

From the equations above we can solve for the constants. We have

B = −A, AC = 50

e2π − e2π
= 0.0934

EXAMPLE 8.7.3 (Continued)
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Finally, the expression for T (x, y) is

T (x, y) = 0.0934(eπx − e−πx) sin πy

Note that the expression above for the temperature is independent of the material properties; it is a steady-state
solution.

EXAMPLE 8.7.3 (Continued)

Problems

Find T (x, t) in a laterally insulated, 2-m-long rod if 
k = 10−4 m2/s and

1. T (x, 0) = 100 sin πx/2, T (0, t) = 0, T (2, t) = 0

2. T (x, 0) = 100 sin πx/4, T (0, t) = 0, T (2, t) = 100

3. T (x, 0) = 80 cos 3πx/4, T (0, t) = 80, T (2, t) = 0

4. T (x, 0) = 200(1 + sin πx), T (0, t) = 200,

T (2, t) = 200

5. T (x, 0) = 100, T (0, t) = 0, T (2, t) = 0

6. T (x, 0) = 100, T (0, t) = 0, T (2, t) = 100

7. T (x, 0) =
{

100x, 0 < x < 1

200 − 100x, 1 < x < 2.

T (0, t) = 0, T (2, t) = 0

8. T (x, 0) = 100(2x − x2), T (0, t) = 0, T (2, t) = 0

9. T (x, 0) = 50x2, T (0, t) = 0, T (2, t) = 200

Find the temperature at the center of the rod for each problem.

10. Problem 1 at t = 1000 s.

11. Problem 1 at t = ∞.

12. Problem 2 at t = ∞.

13. Problem 3 at t = ∞.

14. Problem 5 at t = 1 hr.

15. Problem 7 at t = 1 hr.

Calculate the time needed for the center of the rod to reach 50◦

for each problem.

16. Problem 1

17. Problem 6

18. Problem 2

19. Problem 5

20. Problem 7

Find the heat transfer rate from the left and if d = 20 cm and
K = 800 W/m · ◦C for each problem.

21. Problem 1 at t = 0.

22. Problem 4 at t = 0.

23. Problem 1 at t = 1000 s.

24. Problem 5 at t = 0.

25. Problem 5 at t = 1000 s.

26. Problem 6 at t = 1000 s.

Sketch the temperature distribution at t = 0, 1000 s, and 1 hr
for each problem.

27. Problem 1

28. Problem 4

29. Problem 6

30. Problem 5

31. Problem 7

Find T (x, t) in a laterally insulated, π -m-long rod if k =
10−4 m2/s and

32. T (x, 0) = 100 cos x,
∂T

∂x
(0, t) = 0,

∂T

∂x
(π, t) = 0

33. T (x, 0) = 100
∂T

∂x
(0, t) = 0,

∂T

∂x
(π, t) = 0

34. T (x, 0) = 100 sin x/2, T (0, t) = 0,

∂T

∂x
(π, t) = 0

35. T (x, 0) = 100 sin x,
∂T

∂x
(0, t) = 0, T (π, t) = 0



36. T (x, 0) =
{

100, 0 < x < π/2,

0, π/2 < x < π,

T (0, t) = 0,
∂T

∂x
(π, t) = 0

For Problem 36, if d = 10 cm and K = 600 W/m · ◦C, find

37. The maximum heat transfer rate from the left end.

38. The temperature at the center of the rod at t = 1000 s.

39. The time needed for the center of the rod to reach 10◦C.

Heat generation occurs at the rate of 2000 W/m3 in a laterally in-
sulated, 2-m-long rod. If C = 400 J/kg·◦C, ρ = 9000 kg/m3,
and k = 10−4 m2/s, find the steady-state temperature distribu-
tion if

40. T (0, t) = 0 and T (2, t) = 0

41. T (0, t) = 0 and
∂T

∂x
(2, t) = 0

42. T (0, t) = 100 and
∂T

∂x
(2, t) = 0

Find T (x, t) in the rod if the initial temperature distribution is
constant at 100◦ for

43. Problem 40

44. Problem 41

45. Problem 42

Find the steady-state temperature distribution in a 1 m × 1 m
slab if the flat surfaces are insulated and the edge conditions
are as follows:

46. T (0, y) = 0, T (x, 0) = 0, T (1, y) = 0

T (x, 1) = 100 sin πx

47. T (0, y) = 0, T (x, 0) = 0, T (1, y) = 100 sin πy,

T (x, 1) = 0

48. T (1, y) = 0, T (x, 0) = 0,
∂T

∂x
(1, y) = 0,

T (x, 1) = 100

49. T (0, y) = 0,
∂T

∂x
(x, 0) = 0,

∂T

∂y
(1, y) = 0,

T (x, 1) = 100

50. T (0, y) = 100, T (x, 0) = 100, T (1, y) = 200,

T (x, 1) = 100

51. The initial temperature distribution in a 2 m × 2 m rec-
tangular slab is 100◦C. Find T (x, t) if all sides are main-
tained at 0◦ and k = 10−4 m2/s.

52. Computer Laboratory Activity: Burgers’ equation from
fluid dynamics can be used to model fluid flow. Imagine
that a fluid-like substance is distributed along the x-axis
(one idea is automobile traffic on a road) and let v(x, t)
represent the velocity of the fluid at point x and time t.
Burger’s equation is a partial differential equation whose
solution is v(x, t):

∂v

∂t
+ v

∂v

∂x
= µ

∂2v

∂x2

where µ is a positive constant.

(a) Suppose that u(x, t) satisfies v(x, t) =
−2µ

u(x, t)
· ∂

∂x
u(x, t) and that

ũ(x, t) =
(

µ
∂2

∂x2
− ∂

∂t

)
u(x, t) = µ

∂2

∂x2
u(x, t) − ∂

∂t
u(x, t)

Use the algebra capabilities of Maple to show that
Burgers’ equation is equivalent to

1

u(x, t)
· ∂

∂x
u(x, t) · ũ(x, t) − ∂

∂x
(ũ(x, t)) = 0

(b) Suppose that Burgers’ equation has the initial condi-
tion v(x, 0) = 1 + sin 2πx . Determine the related initial
condition for u(x, 0). (This condition will depend on a
constant of integration.)
(c) Create three different functions that satisfy
ũ(x, t) = 0, which is the diffusion equation. For each
function, determine the associated v(x, t), and use Maple
to verify that these functions satisfy Burgers’ equation.

Consider a spherical surface maintained at an electrical potential V. The potential depends only
on φ and is given by the function f (φ). The equation that describes the potential in the region
on either side of the spherical surface in Laplace’s equation, written in spherical coordinates
(shown in Fig. 8.8) as

∂

∂r

(
r2 ∂V

∂r

)
+ 1

sin φ

∂

∂φ

(
sin φ

∂V

∂φ

)
= 0 (8.8.1)

8.8 ELECTRIC POTENTIAL ABOUT A SPHERICAL SURFACE
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Obviously, one boundary condition requires that

V (r0, φ) = f (φ) (8.8.2)

The fact that a potential exists on the spherical surface of finite radius should not lead to a po-
tential at infinite distances from the sphere; hence, we set

V (∞, φ) = 0 (8.8.3)

We follow the usual procedure of separating variables; that is, assume that

V (r, φ) = R(r)�(φ) (8.8.4)

This leads to the equations

1

R

d

dr

(
r2 d R

dr

)
= − 1

φ sin θ

d

dφ
(� sin φ) = µ (8.8.5)

which can be written as, letting cos φ = x , so that � = �(x),

r2 R′′ + 2r R′ − µR = 0

(1 − x2)�′′ − 2x� + µ� = 0
(8.8.6)

The first of these is recognized as the Cauchy–Euler equation (see Section 1.10) and has the
solution

R(r) = c1r−1/2+
√

µ+1/4 + c2r
−1/2−

√
µ+1/4

(8.8.7)

This is put in better form by letting − 1
2 +

√
µ + 1

4 = n . Then

R(r) = c1rn + c2

rn+1
(8.8.8)

The equation for � becomes Legendre’s equation (see Section 2.3.2)

(1 − x2)�′′ − 2x�′ + n(n + 1)� = 0 (8.8.9)

where n must be a positive integer for a proper solution to exist. The general solution to this
equation is

�(x) = c3 Pn(x) + c4 Qn(x) (8.8.10)

Since Qn(x) → ∞ as x → 1 (see Eq. 2.3.35), we set c4 = 0. This results in the following
solution for V (r, x):

V (r, x) =
∞∑

n=0

Vn(r, x) =
∞∑

n=0

[Anrn Pn(x) + Bnr−(n+1) Pn(x)] (8.8.11)

Let us first consider points inside the spherical surface. The constants Bn = 0 if a finite
potential is to exist at r = 0. We are left with

V (r, x) =
∞∑

n=0

Anrn Pn(x) (8.8.12)



This equation must satisfy the boundary condition

V (r0, x) = f (x) =
∞∑

n=0

Anrn
0 Pn(x) (8.8.13)

The unknown coefficients An are found by using the property

∫ 1

−1
Pm(x)Pn(x) dx =




0, m 
= n
2

2n + 1
, m = n

(8.8.14)

Multiply both sides of Eq. 8.8.13 by Pm(x) dx and integrate from −1 to 1. This gives

An = 2n + 1

2rn
0

∫ 1

−1
f (x)Pn(x) dx (8.8.15)

For a prescribed f (φ), using cos φ = x , Eq. 8.8.12 provides us with the solution for interior
points with the constants An given by Eq. 8.8.15.

For exterior points we require that An = 0 in Eq. 8.8.11, so the solution is bounded as
x → ∞. This leaves the solution

V (r, x) =
∞∑

n=0

Bnr−(n+1) Pn(x) (8.8.16)

This equation must also satisfy the boundary condition

f (x) =
∞∑

n=0

Bnr−(n+1)
0 Pn(x) (8.8.17)

Using property 8.8.14, the Bn’s are given by

Bn = 2n + 1

2
rn+1

0

∫ 1

−1
f (x)Pn(x) dx (8.8.18)

If f (x) is a constant we must evaluate ∫1
−1 Pn(x) dx . Using Eq. 2.3.31, we can show that∫ 1

−1
P0(x) dx = 2,

∫ 1

−1
Pn(x) dx = 0, n = 1, 2, 3, . . . (8.8.19)

An example will illustrate the application of this presentation for a specific f (x).
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Find the electric potential inside a spherical surface of radius r0 if the hemispherical surface when
π > φ > π/2 is maintained at a constant potential V0 and the hemispherical surface when π/2 > φ > 0 is
maintained at zero potential.

� Solution

Inside the sphere of radius r0, the solution is

V (r, x) =
∞∑

n=0

Anrn Pn(x)

EXAMPLE 8.8.1



where x = cos φ. The coefficients An are given by Eq. 8.8.15,

An = 2n + 1

2rn
0

∫ 1

−1
f (x) Pn(x) dx

= 2n + 1

2rn
0

[∫ 0

−1
V0 Pn(x) dx +

∫ 1

0
0 · Pn(x) dx

]

= 2n + 1

2rn
0

V0

∫ 0

−1
Pn(x) dx

where we have used V = V0 for π > φ > π/2 and V = 0 for π/2 > φ > 0. Several An’s can be evaluated,
to give (see Eq. 2.3.31)

A0 = V0

2
, A1 = −3 V0

4r0
, A2 = 0, A3 = 7 V0

16r3
0

, A4 = 0, A5 = −11 V0

32r5
0

This provides us with the solution, letting cos φ = x ,

V (r, φ) = A0 P0 + A1r P1 + A2r2 P2 + · · ·

= V0

[
1

2
− 3

4

r

r0
cos φ + 7

16

(
r

r0

)3

P3(cos φ) − 11

32

(
r

r0

)5

P5 (cos φ) + · · ·
]

where the Legendre polynomials are given by Eq. 2.3.31. Note that the preceding expression could be used to
give a reasonable approximation to the temperature in a solid sphere if the hemispheres are maintained at T0

and zero degrees, respectively, since Laplace’s equation also describes the temperature distribution in a solid
body.
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Problems

1. The temperature of a spherical surface 0.2 m in diameter
is maintained at a temperature of 250◦C. This surface is
interior to a very large mass. Find an expression for the
temperature distribution inside and outside the surface.

2. The temperature on the surface of a 1-m-diameter sphere
is 100 cos φ ◦C. What is the temperature distribution in-
side the sphere?

3. Find the potential field between two concentric spheres
if the potential of the outer sphere is maintained at
V = 100 and the potential of the inner sphere is main-
tained at zero. The radii are 2 m and 1 m, respectively.

EXAMPLE 8.8.1 (Continued)

A complete analysis requires an investigation of the convergence properties of se-
ries of Legendre polynomials, a subject best left for advanced texts.



Boundary-value problems involving a boundary condition applied to a circular cylindrical sur-
face are encountered quite often in physical situations. The solution of such problems invariably
involve Bessel functions, which were introduced in Section 2.10. We shall use the problem of
finding the steady-state temperature distribution in the cylinder shown in Fig. 8.14 as an exam-
ple. Other exercises are included in the Problems.

The partial differential equation describing the phenomenon illustrated in Fig. 8.14 is

∂T

∂t
= k∇2T (8.9.1)

where we have assumed constant material properties. For a steady-state situation using cylindri-
cal coordinates (see Eq. 8.3.14), this becomes

∂2T

∂r2
+ 1

r

∂T

∂r
+ ∂2T

∂z2
= 0 (8.9.2)

where, considering the boundary conditions shown in the figure, we have assumed the tempera-
ture to be independent of θ . We assume a separated solution of the form

T (r, z) = R(r)Z(z) (8.9.3)

which leads to the equations

1

R

(
R′′ + 1

r
R′

)
= − Z ′′

Z
= −µ2 (8.9.4)

where a negative sign is chosen on the separation constant since we anticipate an exponential
variation with z. We are thus confronted with solving the two ordinary differential equations

R′′ + 1

r
R′ + µ2 R = 0 (8.9.5)

Z ′′ − µ2 Z = 0 (8.9.6)

The solution to Eq. 8.9.6 is simply

Z(z) = c1eµz + c2e−µz (8.9.7)

8.9 HEAT TRANSFER IN A CYLINDRICAL BODY
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x

z

y

L
T � f (r)T � 0 (end)

T � 0
ro

Figure 8.14 Circular cylinder with boundary conditions.



for µ > 0; for µ = 0, it is

Z(z) = c′
1z + c′

2 (8.9.8)

This solution may be of use. We note that Eq. 8.9.5 is close to being Bessel’s equation 2.10.1
with λ = 0. By substituting x = µr , Eq. 8.9.5 becomes

x2 R′′ + x R′ + x2 R = 0 (8.9.9)

which is Bessel’s equation with λ = 0. It possesses the general solution

R(x) = c3 J0(x) + c4Y0(x) (8.9.10)

where J0(x) and Y0(x) are Bessel functions of the first and second kind, respectively. We know
(see Fig. 2.5) that Y0(x) is singular at x = 0. (This corresponds to r = 0.) Hence, we require that
c4 = 0, and the solution to our problem is

T (r, z) = J0(µr)[Aeµz + Be−µz] (8.9.11)

The temperature on the surface at z = 0 is maintained at zero degrees. This gives B = −A from
the equation above. The temperature at r = r0 is also maintained at zero degrees; that is,

T (r0, z) = 0 = AJ0(µr0)[e
µz − e−µz] (8.9.12)

The Bessel function J0(µr0) has infinitely many roots none of which are zero. These roots per-
mit a solution of Eq. 8.9.12 analogous to the trigonometric situation. Since none of the roots is
zero, the µ = 0 eigenvalue is not of use. Let the nth root be designated µn . Four such roots are
shown in Fig. 2.4 and are given numerically in the Appendix.

Returning to Eq. 8.9.11, our solution is now

T (r, z) =
∞∑

n=1

Tn(r, z) =
∞∑

n=1

J0(µnr)An[eµn z − e−µn z] (8.9.13)

This solution must allow the final end condition to be satisfied. It is

T (r, L) = f (r) =
∞∑

n=1

An J0(µnr)[eµn L − e−µn L ] (8.9.14)

Once more we assume that the series converges. We must now use the property that

∫ b

0
x Jj (µn x)Jj (µm x) dx =




0 n 
= m
b2

2
J 2

j+1(µnb), n = m
(8.9.15)

where µn are the roots of the equation Jj (µr0) = 0. This permits the coefficients An to be
determined from

An = 2(eµn L − e−µn L)−1

r2
0 J 2

1 (µnr0)

∫ r0

0
r f (r)J0(µnr) dr (8.9.16)

letting j = 0. This completes the solution. For a specified f (r) for the temperature on the right
end, Eq. 8.9.13 gives the temperature at any interior point if the coefficients are evaluated using
Eq. 8.9.16. This process will be illusrated with an example.
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Determine the steady-state temperature distribution in a 2-unit-long, 4-unit-diameter circular cylinder with one
end maintained at 0◦C, and the other end at 100 r◦C, and the lateral surface insulated.

� Solution

Following the solution procedure outlined in the previous section, the solution is

T (r, z) = J0(µr)[Aeµz + Be−µz]

The temperature at the base where z = 0 is zero. Thus, B = −A and

T (r, z) = AJ0(µr)[eµz − e−µz]

On the lateral surface where r = 2, the heat transfer is zero, requiring that

∂T

∂r
(2, z) = 0 = AJ ′

0(2µ)[eµz − e−µz]

or

J ′
0(2µ) = 0

There are infinitely many values of µ that meet this condition, the first of which is µ = 0. Let the nth one be
µn , the eigenvalue. The solution corresponding to this eigenvalue is

Tn (r, z) = An J0(µnr)[eµn z − e−µn z]

for µn > 0; for µ1 = 0, the solution is, using Eq. 8.9.8,

T1(r, z) = A1z

The general solution is then found by superimposing all the individual solutions, resulting in

T (r, z) =
∞∑

n=1

Tn(r, z) = A1z +
∞∑

n=2

An J0(µnr)[eµn z − e−µn z]

The remaining boundary condition is that the end at z = 2 is maintained at 100 r ◦C; that is,

T (r, 2) = 100r = 2A1 +
∞∑

n=2

An J0(µnr)[e2µn − e−2µn ]

We must be careful, however, and not assume that the An in this series are given by Eq. 8.9.16; they are not,
since the roots µn are not to the equation J0(µr0) = 0, but to J ′

0(µr0) = 0. The property analogous to Eq.
8.9.15 takes the form

∫ r0

0
x Jj (µn x)Jj (µm x) dx =




0, n 
= m
µ2

nr2
0 − j2

2µ2
n

J 2
j (µnr0), n = m

EXAMPLE 8.9.1
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whenever µn are the roots of J ′
j (µr0) = 0. The coefficients An are then given by

An = 2(e2µn − e−2µn )−1

r2
0 J 2

0 (µnr0)

∫ r0

0
r f (r)J0(µnr) dr

where j = 0 and f (r) = 100r . For the first root, µ1 = 0, the coefficient is

A1 = 2

r2
0

∫ r0

0
r f (r) dr

Some of the coefficients are, using µ1 = 0, µ2 = 1.916, µ3 = 3.508,

A1 = 2

22

∫ 2

0
r(100r) dr = 400

3

A2 = 2(e3.832 − e−3.832)−1

22 × 0.4032

∫ 2

0
r(100r)J0(1.916r) dr

= 6.68
∫ 2

0
r2 J0(1.916r) dr = 0.951

∫ 3.832

0
x2 J0(x) dx

A3 = 2(e7.016 − e−7.016)−1

22 × 0.3002

∫ 2

0
r(100r)J0(3.508r) dr

= 0.501
∫ 2

0
r2 J0(3.508r) dr = 0.0117

∫ 7.016

0
x2 J0(x) dx

The integrals above could be easily evaluated by use of a computer integration scheme. Such a scheme will be
presented in Chapter 9. The solution is then

T (r, z) = 400

3
z + A2 J0(1.916r)[e1.916z − e−1.916z] + A3 J0(3.508r)[e3.508z − e−3.508z] + · · ·

EXAMPLE 8.9.1 (Continued)

Problems

1. A right circular cylinder is 1 m long and 2 m in diameter.
Its left end and lateral surface are maintained at a temper-
ature of 0◦C and its right end at 100◦C. Find an expression
for its temperature at any interior point. Calculate the first
three coefficients in the series expansion.

2. Determine the solution for the temperature as a function
of r and t in a circular cylinder of radius r0 with insulated
(or infinitely long) ends if the initial temperature distrib-
ution is a function f (r) of r only and the lateral surface is
maintained at 0◦C (see Eq. 8.3.14).

3. An aluminum circular cylinder 50 mm in diameter with
ends insulated is initially at 100◦C. Approximate the tem-
perature at the center of the cylinder after 2 s if the lateral
surface is kept at0◦C. For aluminum,k = 8.6 × 10−5 m2/s.

4. A circular cylinder 1 m in radius is completely insulated
and has an initial temperature distribution 100r ◦C. Find
an expression for the temperature as a function of r and t.
Write integral expressions for at least three coefficients in
the series expansion.



8.10.1 From Fourier Series to the Fourier Transform
The expansion of a function into a Fourier series was presented in Section 7.1. There, f (t) was
a sectionally continuous function on the interval −T < t < T , and the Fourier series of f (t)
was

f (t) = a0

2
+

∞∑
n=1

(
an cos

nπ t

T
+ bn sin

nπ t

T

)
(8.10.1)

where an and bn are computed by integral formulas. Theorem 7.1 then gave conditions for which
Eq. 8.10.1 converges to the periodic extension of f (t). This periodic extension has period 2T ,
and the Fourier coefficients {an} and {bn} give us information about the functions at different
frequency components.

The Fourier transform is a tool to address the situation where f (t) is defined on
−∞ < t < ∞ and is not periodic. To understand how the formula for the Fourier transform
arises, first we will derive equations that are equivalent to Eq. 8.10.1. The first equivalent equa-
tion comes from changing the sum so that it varies from −∞ to ∞, and also to simplify the pres-
ence of π . This can be done by defining T = π , An = πan and A−n = An for n ≥ 0; Bn = πbn

and B−n = −Bn for n ≥ 0. Since cos(−x) = cos(x) and sin(−x) = − sin(x) for any x ,
Eq. 8.10.1 is equivalent to

f (t) = 1

2π

∞∑
n=−∞

(An cos nt + Bn sin nt) (8.10.2)

For the next step, recall Euler’s formula that was introduced in Chapter 5:

eiθ = cos θ + i sin θ (8.10.3)

The following formulas for sine and cosine result:

sin θ = − i

2
(eiθ − e−iθ ) (8.10.4)

cos θ = 1

2
(eiθ + e−iθ ) (8.10.5)

If we let θ = nt and substitute into Eq. 8.10.2, we have

f (t) = 1

2π

∞∑
n=−∞

(
An

eint + e−int

2
− i Bn

eint − e−int

2

)
(8.10.6)

This can be rewritten as

f (t) = 1

2π

∞∑
n=−∞

(
An − i Bn

2
eint + An + i Bn

2
e−int

)
(8.10.7)

Next, we write Eq. 8.10.7 as two separate sums. For the second sum

1

2π

∞∑
n=−∞

(
An + i Bn

2
e−int

)
(8.10.8)
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if we substitute k = −n, we obtain

1

2π

∞∑
k=−∞

(
A−k + i B−k

2
eikt

)
(8.10.9)

which we can rewrite again by replacing k with n:

1

2π

∞∑
n=−∞

(
A−n + i B−n

2
eint

)
(8.10.10)

Combining Eq. 8.10.7 with 8.10.10 gives us the following equivalent formula for the Fourier
series:

f (t) = 1

2π

∞∑
n=−∞

(
An − i Bn

2
eint + A−n + i B−n

2
eint

)
(8.10.11)

which is the same as

f (t) = 1

2π

∞∑
n=−∞

(
An + A−n − i(Bn − B−n)

2
eint

)
(8.10.12)

Given our earlier definitions of An and Bn , Eq. 8.10.12 can be simplified to

f (t) = 1

2π

∞∑
n=−∞

(An − i Bn)e
int (8.10.13)

Finally, let Cn = An − i Bn . Then, {Cn} is a sequence of complex numbers, with C−n being
the complex conjugate of Cn , and we have the following alternate formulation of a Fourier
series:

f (t) = 1

2π

∞∑
n=−∞

Cneint (8.10.14)

Since |eint | = 1 for any t , we can think of Eq. 8.10.14 as a linear combination of points on the
unit circle in the complex plane. (Complex numbers are described in detail in Chapter 10.)

Now we turn to the situation where f (t) is defined on −∞ < t < ∞ and is not periodic. If
f (t) is not periodic, then to write f (t) as a linear combination of periodic functions, which is
the purpose of Fourier series, doesn’t make a lot of sense, unless all possible periods are repre-
sented. We can do this by replacing the discrete variable n in Eq. 8.10.14 with a continuous, real-
valued variable ω and changing sums to integrals.

Now, instead of a sequence of Fourier coefficients Cn that depend on n, there will be a con-
tinuum of values, noted by f̂ (ω), that depend on ω. We replace the Fourier series with

1

2π

∫ ∞

−∞
f̂ (ω)eiωt dω (8.10.15)

The function f̂ (ω) is called the Fourier transform of f (t). Analogous to Eq. 7.1.3, the Fourier
transform is defined by

f̂ (ω) =
∫ ∞

−∞
f (t)e−iωt dt (8.10.16)
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The Fourier transform is a complex-valued function of ω, and sometimes it is useful to ana-
lyze a real-valued function of ω that is associated with f̂ (ω). The magnitude spectrum of the
Fourier transform is the function | f̂ (ω)|, which is the magnitude of the complex number f̂ (ω),
without its “direction” in the complex plane.

Note that in Eq. 7.1.3 the formula for each Fourier coefficient includes a factor of 1/T , and
this factor does not appear in Eq. 7.1.4. On the other hand, 8.10.15, which is analogous to
Eq. 7.1.4, has a factor of 1/(2π), while Eq. 8.10.16, which computes something analogous to the
Fourier coefficients, does not have that factor. The placement of the 1/(2π) factor is somewhat
arbitrary in the definition of the Fourier transform, but 8.10.15 and Eq. 8.10.16 are the conven-
tional way the formulas are stated.
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Determine the Fourier transform of

f (t) =
{

e−2t t ≥ 0
0 t < 0

and create graphs of the transform and its magnitude spectrum.

� Solution

Substituting f (t) into Eq. 8.10.16 gives us

f̂ (ω) =
∫ ∞

0
e−2t e−iωt dt

=
∫ ∞

0
e−(2+iω)t dt = − 1

2 + iω
e−(2+iω)t

∣∣0
∞ = 1

2 + iω

This calculation can also be done in Maple in two ways. One is to simply use the int command:

>f:= t -> piecewise(t >=0, exp(-2*t), t<0, 0):

>int(f(t)*exp(-I*w*t), t=-infinity..infinity);

1

2+ w I

The other way is to use the fourier command in the inttrans package:

>with(inttrans):

>fourier(f(t), t, w);

1

2+ w I

Note that the fourier command can be temperamental, depending on what is being used for f(t).

EXAMPLE 8.10.1
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In order to graph the Fourier transform and the magnitude spectrum, we first need to decompose it into its
real and imaginary parts. We can do this as follows:

f̂ (ω) = 1

2 + iω

= 1

2 + iω
· 2 − iω

2 − iω
= 2 − iω

4 + ω2
= 2

4 + ω2
+ i

−ω

4 + ω2

With this decomposition, the magnitude spectrum is

| f̂ (ω)| =
√(

2

4 + ω2

)2

+
( −ω

4 + ω2

)2

=
√

1

4 + ω2

All of the calculations above can be done with Maple, and then we can create the graphs. Notice the use of
the assuming command to tell Maple that ω is real-valued:

>FT:=fourier(f(t), t, w);

FT := 1

2+ w I

>REFT:=Re(FT) assuming w::real; IMFT:=Im(FT) assuming w::real;

REFT := 2

4+ w2

IM FT := − w

4+ w2

>MS:=simplify(sqrt(REFT^2+IMFT^2));

M S :=
√

1

4+ w2

>plot(REFT, w=-5..5); #Real-valued component of FT

0.1

0.2

0.3

0.4

0.5

�4 �2 0 2 4
w

EXAMPLE 8.10.1 (Continued)



>plot(IMFT, w=-5..5); #Imaginary-valued component of FT

>plot(MS, w=-5..5); #Magnitude spectrum
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0.35

0.45
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w
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EXAMPLE 8.10.1 (Continued)

Much like Theorem 7.1, we have an important Fourier theorem that describes how to recover
f (t) from its Fourier transform f̂ (ω).

Theorem 8.1 (Fourier Integral Theorem): Assume that f (t) and f ′(t) are sectionally
continuous, and that f (t) is integrable, that is,∫ ∞

−∞
| f (t)| dt < ∞ (8.10.17)

Then

f (t) = 1

2π

∫ ∞

−∞
f̂ (ω)eiωt dω (8.10.18)



8.10.2 Properties of the Fourier Transform
Much like the Laplace transform in Chapter 3, there are properties of the Fourier transform that
are useful in the solution of differential equations (although this time we will be solving partial
differential equations, and not ordinary ones). In this section, we will first state these properties
and then prove some of them. Proofs not given are asked for in the problems. For the rest of the
chapter, we will at times use �( f (t)) to mean f̂ (ω).

Theorem 8.2: (Linearity Theorem): For any complex numbers a1 and a2, the Fourier
transform of a1 f1(t) + a2 f2(t) is a1 f̂1(ω) + a2 f̂2(ω).

Proof: This property arises naturally from the linearity property of the integral.

Theorem 8.3: (Shift-in-Time Theorem): For any real number a,
�( f (t − a)) = e−iωa �( f (t)).
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Problems

1. Expand Eq. 8.10.13 using Euler’s Formula, and then sim-
plify. There should be four terms in the summation. Two
of the terms are identical to terms in Eq. 8.10.2, while the
other two contain i. Yet, the other two terms are not zero.
Prove that the sum of the other two terms, from −∞ to
∞, is zero.

Create a grpah of the following functions, and then determine
the Fourier transform. For each transform, create three graphs:
one of the real-valued component, one of the imaginary-
valued component, and one of the magnitude spectrum.

2. f (t) =
{

e4t , t < 0
e−5t , t ≥ 0

3. f (t) =
{

4 − t2, |t | < 2
0, |t | ≥ 2

4. f (t) =
{

1, |t | < 9
0, |t | ≥ 9

5. f (t) =
{

1, 0 < t < 1
0, all other t

6. f (t) =
{−t2 + 3t − 1.5, 1 < t < 2

0, all other t

Use Maple to solve

7. Problem 2

8. Problem 3

9. Problem 4

10. Problem 5

11. Problem 6

12. A more general version of the Fourier Integral Theorem
states that if f (t) and f ′(t) are sectionally continuous
and f (t) is integrable, then

f (t) = 1

2π

∫ ∞

−∞

∫ ∞

−∞
f (v)e−iωveiωt dv dω

Use this theorem to derive the following alternate Fourier
transform/inverse Fourier transform pair, where λ1 and λ2 are
real numbers whose product is 1/2π :

f̂ (ω) = λ1

∫ ∞

−∞
f (t)e−iωt dt

f (t) = λ2

∫ ∞

−∞
f̂ (ω)eiωt dω

We offer no proof of this theorem. Equation 8.10.18 is often called the inverse Fourier trans-
form, because it describes how to calculate f (t) from f̂ (ω).



Proof:
�( f (t − a)) =

∫ ∞

−∞
f (t − a)e−iωt dt

=
∫ ∞

−∞
f (u)e−iω(u+a) du (using the substitution u = t − a)

=
∫ ∞

−∞
f (u)e−iωue−iωa du = e−iωa

∫ ∞

−∞
f (u)e−iωu du

= e−iωa
∫ ∞

−∞
f (t)e−iωt dt (replacing u with t)

= e−iωa �( f (t)) (8.10.19)

Theorem 8.4: (Shift-in-Frequency Theorem): For any real number (frequency) α,

�( f (t)eiαt) = f̂ (ω − α) (8.10.20)

Proof: See the problems.

Theorem 8.5: (Time-Reversal Theorem):

�( f (−t)) = f̂ (−ω) (8.10.21)

Proof: See the problems.

Theorem 8.6: (Scaling Theorem): For any non-zero real number a,

�( f (at)) = 1

|a| f̂
(ω

a

)
(8.10.22)

Proof: See the problems.

Theorem 8.7: (Symmetry Theorem):

�( f̂ (ω)) = 2π f (−t) (8.10.23)
Proof:

�( f̂ (ω)) =
∫ ∞

−∞
f̂ (ω)e−iωt dω

= 2π · 1

2π

∫ ∞

−∞
f̂ (ω)eiω(−t) dω = 2π · f (−t) (8.10.24)

518 � CHAPTER 8  / PARTIAL DIFFERENTIAL EQUATIONS

Problems

1. Prove Theorem 8.4 (Shift-in-Frequency Theorem).

2. Prove Theorem 8.5 (Time-Reversal Theorem).

3. Prove Theorem 8.6 (Scaling Theorem).

4. Prove that if f is an even function, then f̂ is real-valued.

5. Prove that if f is an odd function, then f̂ is imaginary-
valued.



8.10.3 Parseval’s Formula and Convolutions
There are many other theorems involving of the Fourier transform. This section features one that
deals with the energy content of a function, and it features another one that describes why con-
volutions (see Chapter 3) are important. In this section, the assumptions from the Fourier
Integral Theorem still hold.

As f (ω) is complex valued, an analysis of the magnitude spectrum makes use of complex
conjugates (see Chapter 10 if a review is needed). In particular,

| f̂ (ω)|2 = f̂ (ω) · f̂ (ω) (8.10.25)

where f̂ (ω) is the complex conjugate of

f̂ (ω) =
∫ ∞

−∞
f (t)e−iωt dt (8.10.26)

As the complex conjugate of a sum is the sum of complex conjugates, the same is true for inte-
grals; therefore,

f̂ (ω) =
∫ ∞

−∞
f (t)e−iωt dt (8.10.27)

Furthermore, we are working with real-valued functions f (t); therefore,

f̂ (ω) =
∫ ∞

−∞
f (t)e−iωt dt

=
∫ ∞

−∞
f (t)eiωt dt =

∫ ∞

−∞
f (t)e−i(−ω)t dt = f̂ (−ω) (8.10.28)

So, we have proved the following theorem.

Theorem 8.8: f̂ (ω) = f̂ (−ω) and | f̂ (ω)|2 = f̂ (ω) · f̂ (−ω).

The energy content of a function is defined by

∫ ∞

−∞
f (t)2 dt (8.10.29)

The functions that are analyzed with Fourier methods (and, as described in Chapter 11, wavelets
methods) are those whose energy content is finite. The following theorem relates the energy con-
tent to the Fourier transform:

Theorem 8.9: (Parseval’s Theorem):

∫ ∞

−∞
f (t)2 dt = 1

2π

∫ ∞

−∞
| f̂ (ω)|2 dω (8.10.30)
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Proof: ∫ ∞

−∞
f (t)2 dt =

∫ ∞

−∞
f (t) · f (t) dt

=
∫ ∞

−∞
f (t) · 1

2π

∫ ∞

−∞
f̂ (ω)eiωt dω dt

= 1

2π

∫ ∞

−∞
f̂ (ω)

∫ ∞

−∞
f (t) · eiωt dt dω

= 1

2π

∫ ∞

−∞
f̂ (ω) f̂ (−ω) dω = 1

2π

∫ ∞

−∞
| f̂ (ω)|2 dω (8.10.31)

So, if the energy content of a function is finite, so is the energy content of its Fourier transform.
Finally, we have the convolution theorem. Convolutions were introduced in Chapter 3, but

we are going to use a slightly different definition, where the interval of integration is the whole
real line, that corresponds with the Fourier transform:

( f *g)(t) =
∫ ∞

−∞
f (t − τ)g(τ) dτ (8.10.32)

The proof of the theorem makes use of a number of properties proved in the previous section.

Theorem 8.10 (Convolution Theorem):

�( f *g(t)) = �( f (t)) · �(g(t)). (8.10.33)

Proof:

(( f *g)(t)) =
∫ ∞

−∞

∫ ∞

−∞
f (t − τ)g(τ)e−iωt dτ dt

=
∫ ∞

−∞
g(τ)

∫ ∞

−∞
f (t − τ)e−iωt dt dτ

=
∫ ∞

−∞
g(τ)�( f (t − τ)) dτ

=
∫ ∞

−∞
g(τ) f̂ (ω)e−iωτ dτ = f̂ (ω) · ĝ(ω) (8.10.34)

So, convolution in the time domain becomes multiplication in the frequency domain. This is an
important property of the Fourier transform, as mathematical tools such as filters can be thought
of as convolutions in the time domain. In order to create filters, scientists and engineers will
often work in the frequency domain, as multiplication is simpler than convolution.
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The method to solve partial differential equations with the Fourier transform mirrors the method
described in Chapter 3 to solve ordinary differential equations with the Laplace transform. The
first step is to apply the transform to the whole equation. For the Laplace transform, this led to
an algebraic equation to solve. With the Fourier transform, the new problem will be an ordinary
differential equation.

The solutions of partial differential equations in this chapter are denoted by u(x, t), where
usually x measures some type of distance and t measures time. There is a natural extension of
Eq. 8.10.16 to functions of two variables. The Fourier transform of u(x, t) with respect of x is

û(ω, t) =
∫ ∞

−∞
u(x, t)e−iωx dx (8.11.1)

The inverse Fourier transform in this case is

u(x, t) = 1

2π

∫ ∞

−∞
û(ω, t)eiωx dω (8.11.2)

In order to apply the Fourier transform to a partial differential equation, it is necessary to
know how partial derivatives are transformed. The following three theorems show how this is
done. For the following theorems, assume f and ∂ f/∂x approach 0 as x approaches ∞ or −∞.

Theorem 8.11: The Fourier transform of
∂u

∂x
(x, t) is iωû(ω, t).

Proof: �

(
∂u

∂x
(x, t)

)
=

∫ ∞

−∞

∂u

∂x
(x, t)e−iωx dx . We apply integration by parts to this integral,

using u = e−iωx and v = ∂u

∂x
(x, t) . Then du = −iωe−iωx and v = u(x, t), so,

�

(
∂u

∂x
(x, t)

)
= e−iωx u(x, t)

∣∣∞
−∞ + iω

∫ ∞

−∞
u(x, t)e−iωx dx

= 0 + iωû(ω, t) (due to our assumption)

= iωû(ω, t) (8.11.3)

8.11 SOLUTION METHODS USING THE FOURIER TRANSFORM
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Problems

1. Prove that | f̂ | is an even function of ω.

2. Prove the frequency convolution theorem,

2π �( f (t) · g(t)) = f̂ (ω) ∗ ĝ(ω)

3. Explain why Theorem 8.8 is false if we allow f (t) to be
complex-valued.

Prove the frequency translation theorems:

4. �( f (t) cos (bt)) = f̂ (ω + b) + f̂ (ω − b)

2

5. �( f (t) sin (bt)) = i
f̂ (ω + b) − f̂ (ω − b)

2



Theorem 8.12: The Fourier transform of 
∂2u

∂x2
(x, t) is −ω2û(ω, t).

Proof: Apply Theorem 8.11 twice to get −ω2û(ω, t).

Theorem 8.13: The Fourier transform of
∂u

∂t
(x, t) is

∂

∂t
û(ω, t).

Proof:

�

(
∂u

∂t
(x, t)

)
=

∫ ∞

−∞

∂u

∂t
(x, t)e−iωx dx = ∂

∂t

∫ ∞

−∞
u(x, t)e−iωx dx = ∂

∂t
û(ω, t) (8.11.4)

Moving the derivative ∂/∂t in front of the integral is allowed when the variables of integration
and differentiation are different.

The following examples are demonstrations of how to solve partial differential equations
with the Fourier transform.
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Use the Fourier transform to solve the problem in Example 8.5.1, which is the wave equation

∂2u

∂t2
= a2 ∂2u

∂x2

with the boundary conditions,

u(x, 0) = 0 (initial displacement of 0)

∂u

∂t
(x, 0) = θ(x) (initial velocity of θ(x))

� Solution

We begin by applying the Fourier transform to the wave equation, using Theorems 8.12 and 8.13, and then
bringing all terms to the left side of the equation:

∂2û

∂t2
= a2 ∂2û

∂x2
,

∂2

∂t2
û = −a2ω2û,

∂2

∂t2
û + a2ω2û = 0

This is a homogeneous, second-order linear ordinary differential equation with constant coefficients, where t
is the independent variable, û is the dependent variable, and a and ω are parameters. A simple extension of the
methods of solutions described in Sections 1.6 and 8.6 suggests the following solution:

û(ω, t) = c1(ω) cos(aωt) + c2(ω) sin(aωt)

where c1(ω) and c2(ω) are functions of ω, constant with respect to x.

EXAMPLE 8.11.1



We can also apply the Fourier transform to the boundary conditions, giving us two initial conditions for the
ordinary differential equation:

û(ω, 0) = 0

∂

∂t
û(ω, 0) = θ̂ (ω)

(Note the meaning of 
∂

∂t
û(ω, 0) : First compute û(ω, t), then compute its derivative with respect to t, and fi-

nally substitute t = 0.)
Substituting the first initial condition gives us c1(ω) = 0. The second initial condition leads to

c2(ω) = 1

aω
θ̂(ω)

Therefore, we have

û(ω, t) = 1

aω
θ̂(ω) sin(aωt)

Finally, applying the inverse transform gives us

u(x, t) = 1

2π

∫ ∞

−∞

1

aω
θ̂(ω) sin(aωt)e−iωx dω

8.11 SOLUTION METHODS USING THE FOURIER TRANSFORM � 523

EXAMPLE 8.11.1 (Continued)

It is striking that this solution appears very different from the solution using the D’Alembert
method, namely,

u(x, t) = 1

2a

∫ x+at

x−at
θ(s) ds

However, it can be established that the two solutions are the same. In order to do so, first we need
two results:

Theorem 8.14: If R(x) is the anti-derivative of θ(x) satisfying the properties of Theorem 8.1,

then iω R̂(x) = θ̂ (x).

Proof: This follows immediately from Theorem 8.11 in the case where u(x, t) = R(x).

Theorem 8.15: �( f (x + b) − f (x − b)) = 2i sin(bω) f̂ (ω) .

Proof: We will use the Linearity Theorem, the Shift-in-Time Theorem, and Euler’s formula:

�( f (x + b) − f (x − b))= �( f (x + b))− �( f (x − b))

= eiωb f̂ (ω) − e−iωb f̂ (ω) = (eiωb − e−iωb) f̂ (ω)

= 2i sin(bω) f̂ (ω) (8.11.5)
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EXAMPLE 8.11.2

Show that the final result in Example 8.11.1 is equal to the final result using the D’Lambert method.

� Solution

Let b = at in Theorem 8.15:

u(x, t) = 1

2π

∫ ∞

−∞

1

aω
θ̂(ω) sin(aωt)eiωx dω

= i

a

1

2π

∫ ∞

−∞

θ̂ (ω)

iω
sin(aωt)eiωx dω

= i

a

1

2π

∫ ∞

−∞
R̂(ω) sin(aωt)eiωx dω

= 1

2a

1

2π

∫ ∞

−∞
2i sin(aωt)R̂(ω)eiωx dω

= 1

2a

1

2π

∫ ∞

−∞
�(R(x + at) − R(x − at))eiωx dω

= 1

2a
(R(x + at) − R(x − at))

Because R(x) is an anti-derivative of θ(x), we have

u(x, t) = 1

2a

∫ x+at

x−at
θ(s) ds

Use Maple to solve Example 8.11.1, using a = 2 and θ(x) = e−x for x > 0, and 0 for x ≤ 0.

Solution

We begin by setting up the partial differential equation and applying the Fourier transform to it:

>pdq:=diff(u(x,t), t$2)=4*diff(u(x,t), x$2):

>fourier(pdq, x, w);

∂2

∂t2
fourier(u(x,t),x,w)= −4 w2 fourier(u(x,t),x,w)

This is now an ordinary differential equation. We can simplify the way it looks by doing a substitution. For the
substitution, we will use uhat(t) instead of uhat(t,w), which will confuse dsolve.

EXAMPLE 8.11.3
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>odq:=subs(fourier(u(x,t),x,w)= uhat(t), %);

odq := d 2

dt2
uhat(t)= −4 w 2uhat(t)

Next, we solve the ordinary differential equation, with the initial conditions:

>theta:= x -> piecewise(x > 0, exp(-x), x<0, 0);

θ := x→ piecewise(0 < x,e(−x),x< 0,0)

>duhat:=int(theta(x)*exp(-I*w*x), x=-infinity..infinity);

duhat := 1

wI + 1

>uh:=dsolve({odq, uhat(0)=0, D(uhat) (0)=duhat}, uhat(t));

uh := uhat(t)= 1

2

sin(2 w t)

w(w I + 1)

>uhat2:= (w, t) -> op(2, uh);

uhat2 := (w,t)→ op(2,uh)

>uhat2(w, t);

1

2

sin(2 w t)

w(wI + 1)

This is the Fourier transform of u(x, t). Unfortunately, Maple will not compute the inverse transform, even if
we use the integral definition, and this is true for most θ(x). At best, we can enter the following:

>u:=Int(uhat2(w,t)*exp(I*w*x), w=-infinity..infinity)/(2*Pi);

u := 1

2

(
1

π

∫ ∞

−∞

1

2

sin(2 w t)e(wxI)

w(w I + 1)
dw

)

and use advanced methods to evaluate or approximate these integrals.

EXAMPLE 8.11.3 (Continued)

The method to solve partial differential equations with the Fourier transform is particularly
useful in the case where the boundary conditions are defined for t = 0, while x is allowed to
vary. In this case, it is possible to apply the Fourier transform to the boundary conditions.
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Problems

1. State and prove a modification of Theorem 8.12 for the
nth derivative, instead of the second.

2. Solve Eq. 8.7.2 (the one-dimensional heat equation)
using the Fourier transform method, with the initial con-
dition T (x, 0) = 1 (for 0 < x < 3) and 0 elsewhere. (We
are assuming the rod is of infinite length.)

3. Solve the wave equation (Example 8.11.1) using the
Fourier transform method, where u(x, 0) = Q(x) and
∂u

∂t
(x, 0) = θ(x) .

4. Solve the following boundary-value problem using the
Fourier transform method:

∂u

∂t
= t

∂4u

∂x4
, u(x, 0) = Q(x)

5. Solve Problem 2 with Maple.

6. Solve Problem 3 with Maple, choosing Q(x) and θ(x) to
satisfy the Fourier integral theorem.

7. Solve Problem 4 with Maple.

8. Prove that �( f (x + b) + f (x − b)) = 2 cos(bω) f̂ (ω).



In previous chapters we presented analytical solution techniques to both ordinary and partial dif-
ferential equations. Quite often, problems are encountered for which the describing differential
equations are extremely difficult, if not impossible, to solve analytically. Fortunately, since the
latter part of the 1950s, the digital computer has become an increasingly useful tool for solving
differential equations, whether they be ordinary or partial, linear or nonlinear, homogeneous or
nonhomogeneous, or first order or fourth order. It is, of course, not always a simple matter to
solve a differential equation, or a set of differential equations, using numerical methods. A nu-
merical technique can be very intricate and difficult to understand, requiring substantial com-
puter capability. Some techniques exist only in the literature or in advanced texts on the subject.
We will, however, present several of the simplest methods for solving both ordinary and partial
differential equations.

This chapter is intended to present some fundamental ideas in numerical methods and is not
meant to be exhaustive. Textbooks on the subject should be consulted for more complete treat-
ments. A sample computer program in Fortran will be presented; however, it is assumed that the
reader is capable of writing code, so the numerical methods outlined can be applied to the
solution of real problems.

The numerical solution to a problem is quite different from the analytical solution. The ana-
lytical solution provides the value of the dependent variable for any value of the independent
variable; that is, for the simple spring–mass system the analytical solution is

y(t) = A sin ωt + B cos ωt (9.1.1)

We can choose any value of t and determine the displacement of the mass. Equation 9.1.1 is a
solution of1

ÿ + ω2 y = 0 (9.1.2)

If Eq. 9.1.2 is solved numerically, the time interval of interest is divided into a predetermined
number of increments, not necessarily of equal length. Initial conditions are necessary to “start”
the solution at t = 0; then the solution is “generated” by solving numerically for the dependent
variable y at each incremental step. This is done by using one of a host of numerical methods, all of
which allow one to predict the value of the dependent variable at the (i + 1) increment knowing

9.1 INTRODUCTION

9 Numerical Methods

1In this chapter we shall often use the notation ẏ = dy/dt, ẏ = dy/dx , or y′ = dy/dx .



its value at the ith increment [and possibly the (i − 1) and (i − 2) increments, depending on the
method chosen.] The derivatives of the dependent variable may also be required in this process.
After the solution is completed, the results are presented either in graphical or tabular form.

For a sufficiently small step size, the numerical solution to Eq. 9.1.2 closely approximates the
analytical solution given by Eq. 9.1.1. However, difficulties are encountered which are fairly
common in numerical work. After one “debugs” a computer program, which may turn one’s hair
gray prematurely, a numerical solution may become “unstable”; that is, as the solution pro-
gresses from one step to the next, the numerical results may begin to oscillate in an uncontrolled
manner. This is referred to as a numerical instability. If the step size is changed, the stability
characteristic changes. The objective is, for a particular numerical method, to choose an appro-
priate step size such that the solution is reasonably accurate and such that no instability results.

The problem of truncation error, which will be discussed in Section 9.4 arises when a series
of computational steps is cut short prematurely with the hope that the terms omitted are negligi-
ble. Truncation error depends on the method used and is minimized by retaining additional terms
in the series of computational steps. Choosing a different numerical technique, with less trunca-
tion error, is often a feasible alternative.

Another difficulty that always exists in numerical work is that of round-off error. Numerical
computations are rounded off2 to a particular number of digits at each step in a numerical
process, whether it be a fixed-point system, in which numbers are expressed with a fixed number
of decimal places (e.g., 0.1734, 69.3712), or a floating-point system, in which numbers are ex-
pressed with a fixed number of significant digits (e.g., 3.22 × 104, 5.00 × 10−10). Round-off
error accumulates in computations and thus increases with an increasing number of steps.
Consequently, we are limited in the number of steps in solving a particular problem if we wish
to keep the round-off error from destroying the accuracy of the solution.

Usually, various choices in step size are used and the numerical results compared. The best
solution is then chosen. Of course, the larger the step size, the shorter the computer time re-
quired, which leads to savings in computer costs. Thus, one must choose a small-enough step
size to guarantee accurate results: not so small as to give excessive round-off error, and not so
small as to incur high computer costs.

Another restraint in the numerical solution of problems is the size of the computer. A com-
puter has only a particular number of “bytes” in which information can be stored; normally, a
character in a text requires one byte. In any numerical solution the total number of bytes neces-
sary to solve the problem must not exceed the “memory” of the computer in which information
is stored. In the past, this was a definite limitation; now, only in the solution of very complex
problems does one experience a lack of memory space. For example, today’s largest computer is
not able to solve for the velocity field around an airplane; approximations must be made fol-
lowed by model studies for final design specifications.

9.1.1 Maple Applications
Maple commands for this chapter include: lists, expand, collect, series, binomial,
along with trapezoid and simpson from the student package, and dsolve with the
numeric option. Appendix C may also be referenced.

Many of the methods in this chapter can be implemented in Excel by entering the formulas
described. There are no special functions in Excel for these methods. Exercises that are straight-
forward to complete in Excel are included in the problem sets.
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2The general rule for rounding off is best reviewed by giving examples. If we round off to three digits,
62.55 → 62.6, 62.45 → 62.4, 0.04724 → 0.0472, 0.047251 → 0.0473 , and 89.97 → 90.0.



A knowledge of finite-difference operators is helpful in understanding and deriving the vast va-
riety of equations necessary when using numerical methods. The most common difference oper-
ator is the forward difference operator �, defined by

� fi = fi+1 − fi (9.2.1)

where we use the abbreviation fi = f (xi ) (see Fig. 9.1). In this chapter all increments will be
equal so that for each i ,

xi+1 − xi = �x = h (9.2.2)

In addition to the forward difference operator, we define two operators, ∇ and δ. The backward
difference operator ∇ is defined by

∇ fi = fi − fi−1 (9.2.3)

and the central difference operator δ by

δ fi = fi+1/2 − fi−1/2 (9.2.4)

In the latter definition, fi+1/2 = f (xi + �x/2) and similarly, fi−1/2 = f (xi − �x/2). (These
two values of f are not generally found in the tabulation of f, nor does a computer calculate
values at half steps; they are of theoretical interest in our development of the various difference
formulas.)

The differences described above are referred to as the first differences. The second forward
difference is

�2 fi = �(� fi )

= �( fi+1 − fi )

= � fi+1 − � fi

= fi+2 − fi+1 − fi+1 + fi

= fi+2 − 2 fi+1 + fi (9.2.5)

9.2 FINITE-DIFFERENCE OPERATORS
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h

x

f

xi � 2

fi � 2

fi � 2

fi � 1

fi � 1

fi

xi � 2xi � 1 xi xi � 1

Figure 9.1 The function f (x).



The second backward difference is

∇2 fi = fi − 2 fi−1 + fi−2 (9.2.6)

which follows as in the derivation of Eq. 9.2.5. The second central difference is

δ2 fi = δ(δ fi )

= δ( fi+1/2 − fi−1/2) = δ fi+1/2 − δ fi−1/2 (9.2.7)

However, since fi+1/2 = f (xi + �x/2), we see that

δ fi+1/2 = f

(
xi + �x

2
+ �x

2

)
− f

(
xi + �x

2
− �x

2

)
= f (xi + �x) − f (xi ) = fi+1 − fi (9.2.8)

and similarly, δ fi−1/2 = fi − fi−1. We then have

δ2 fi = ( fi+1 − fi ) − ( fi − fi−1)

= fi+1 − 2 fi + fi−1 (9.2.9)

Continuing to the third differences, we find

�3 fi = fi+3 − 3 fi+2 + 3 fi+1 − fi (9.2.10)

∇3 fi = fi − 3 fi−1 + 3 fi−2 − fi−3 (9.2.11)

δ3 fi = fi+3/2 − 3 fi+1/2 + 3 fi−1/2 − fi−3/2 (9.2.12)

It should be noted that it is much easier to compute differences using forward or backward
differences rather than central differences. The usefulness of central differences will become
apparent as we continue in our study.

Another useful operator is the E operator, defined by

E fi = fi+1 (9.2.13)

Clearly, for each integer n > 0, the definition above implies that

En fi = fi+n (9.2.14)

It is convenient to define Eα fi for noninteger values of α. We set

Eα fi = fi+α = f (xi + α�x) (9.2.15)

which reduces to Eq. 9.2.14 for α = n. It also follows that

E−1 fi = fi−1, E1/2 fi = fi+1/2, E−1/2 fi = fi−1/2 (9.2.16)

The E operator can be related to the difference operators by observing that

� fi = fi+1 − fi = E fi − fi = (E − 1) fi (9.2.17)
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We see then that the operator � operating on fi is equal to (E − 1) operating on fi . We conclude
that

� = E − 1 (9.2.18)

Similarly, we can show that

∇ = 1 − E−1 (9.2.19)

δ = E1/2 − E−1/2 (9.2.20)

Rewritten, we have

E = � + 1 (9.2.21)

E−1 = 1 − ∇ (9.2.22)

We can verify, by using the definitions, that

∇E = E∇ = � = δE1/2 (9.2.23)

Another operator, the averaging operator µ, is defined by

µ = 1
2 (E1/2 + E−1/2) (9.2.24)

A variety of equations relating various operators are presented in Table 9.1. Note that after the
operators have been separated from the function they operate on, we can treat them as algebraic
quantities. We can manipulate them into various expressions to give any desired form. This will
be illustrated with examples and problems. A word of caution is also in order; namely, the oper-
ators on a function, such as ∇ fi . This order must be retained since ∇ fi �= fi∇ .
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Table 9.1 The Operators

First-order operators: � fi = fi+1 − fi

∇ fi = fi − fi−1

δ fi = fi+1/2 − fi−1/2

E fi = fi+1

µ fi = 1
2 ( fi+1/2 + fi−1/2)

Second-order operators: �2 fi = fi+2 − 2 fi+1 + fi

∇2 fi = fi − 2 fi−1 + fi−2

δ2 fi = fi+1 − 2 fi + fi−1

E2 fi = fi+2

Third-order operators: �3 fi = fi+3 − 3 fi+2 + 3 fi+1 − fi

∇3 fi = fi − 3 fi−1 + 3 fi−2 − fi−3

δ3 fi = fi+3/2 − 3 fi+1/2 + 3 fi−1/2 − fi−3/2

E3 fi = fi+3
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Derive the relationships � = δ2/2 + δ
√

1 + δ2/4,∇ = −δ2/2 + δ
√

1 + δ2/4, and µ =
√

1 + δ2/4.

� Solution

The definition of the central difference operator is

δ fi = fi+1/2 − fi−1/2 = (E1/2 − E−1/2) fi

Hence,

δ = E1/2 − E−1/2

Using E = 1 + �, we have

δ = √
1 + � − 1√

1 + �

Squaring both sides gives

δ2 = 1 + � + 1

1 + �
− 2

or

δ2 + 2 = (1 + �)2 + 1

1 + �

Put in standard quadratic form,

�2 − δ2� − δ2 = 0

The quadratic formula for the positive root gives

� = δ2

2
+ 1

2

√
δ4 + 4δ2 = δ2

2
+ δ

√
1 + δ2

4

Similarly, using E−1 = 1 − ∇ , we find that

δ = 1√
1 − ∇ − √

1 − ∇

After writing this in the standard quadratic form, the positive root is

∇ = −δ2

2
+ δ

√
1 + δ2

4

EXAMPLE 9.2.1



9.2.1 Maple Applications
We can create functions in Maple to compute forward differences. For example, � fi can be con-
structed in this way:

>forf[1]:= i -> f[i+1]-f[i];

forf1 := i → fi+1 − fi

Then, for example, � f4 can be calculated by

>forf[1] (4);

f5 − f4

Similarly, the second forward difference can be derived from � fi :

>forf[2]:= i -> forf[1](i+1)-forf[1](i);

Then, �2 f4 is

>forf[2](4);

f6 − 2f5 + f4
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Now, µ can be written as

µ = 1
2 (E1/2 + E−1/2)

or, squaring both sides,

4µ2 = E + 2 + E−1

Also, if we square the initial expression in this example for δ, we have

δ2 = E − 2 + E−1 = E + 2 + E−1 − 4 = 4µ2 − 4

Thus,

µ2 = 1 + δ2

4

or

µ =
√

1 + δ2

4

We could also write

� = δ2

2
+ δµ, ∇ = −δ2

2
+ δµ

EXAMPLE 9.2.1 (Continued)



To compute the differences in this example, we need to define two more forward differences:

>forf[3]:=i -> forf[2](i+1)-forf[2](i); forf[4]:=i ->

forf[3](i+1)-forf[3](i);

Then, we can define our sequence f0, f1, etc., as a list in Maple:

>f:=[0, -1, 0, 3];

With lists, Maple begins the index at 1, instead of 0, so we will restate the problem with
f1 = 0, f2 = −1, etc. To access an element of a list:

>f[2];

−1
Now, the various forf functions will work:

>forf[1](1); forf[1](2); forf[1](3);

−1
1
3

>forf[2](1); forf[2](2);

2
2

>forf[3](1);

0

The backward and central differences can be defined in a similar way.
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Problems

1. Derive expressions for �4 fi ,∇4 fi , and δ4 fi .

2. Show that ∇� fi = δ2 fi .

3. Show that all of the difference operators commute with
one another, e.g., �E = E� and δ∇ = ∇δ.

4. Verify that ∇E = � = δE1/2 .

5. Prove that E−1/2 = µ − δ/2 and that µδ fi =
1
2 ( fi+1 − fi−1). Also, find an expression for µδ3 fi .

6. Use the binomial theorem (a + x)n = an + nan−1x +
n(n − 1)an−2x2/2! + n(n − 1)(n − 2)an−3x3/3! + · · ·
to find a series expression for � in terms of δ.

7. Show that 2µδ = ∇ + �. Also express (E2 − E−2) in
terms of δ and µ.

8. Derive Eq. 9.2.12.

9. Use Maple to solve Problem 1.

Use Excel to compute forward, central, and backwards differ-
ences for these data sets:

10. f (x) = x5 − 4x3 + 2 with x0 = 1, x1 = 2, . . . , x10 = 11.

11. f (x) = 2x4 + 3x2 with x0 = 0, x1 = 0.3, . . . , x12 = 3.6.

12. f (x) = sin(x) with x0 = 0, x1 = 0.1, . . . , x14 = 1.4.

13. f (x) = ex with x0 = 1, x1 = 1.5, . . . , x8 = 5.



We shall now relate the various operators to the differential operator D = d/dx . In this process
the Taylor series is used. Recall that

f (x + h) = f (x) + h
d f

dx
+ h2

2!

d2 f

dx2
+ h3

3!

d3 f

dx3
+ · · · (9.3.1)

where the derivatives are evaluated at x and the step size �x = h. This is written, using the dif-
ference notation, as

fi+1 = fi + h f ′
i + h2

2!
f ′′
i + h3

3!
f ′′′
i + · · · (9.3.2)

where the primes denote differentiation with respect to the independent variable. The higher-
order derivatives are written as

D2 = d2

dx2
, D3 = d3

dx3
, · · · (9.3.3)

Then Eq. 9.3.2 can be written as

E fi =
[

1 + h D + h2 D2

2!
+ h3 D3

3!
+ · · ·

]
fi (9.3.4)

We recognize that the quantity in brackets is (see Table 2.1)

eh D = 1 + h D + h2 D2

2!
+ h3 D3

3!
+ · · · (9.3.5)

which leads to

E fi = eh D fi (9.3.6)

This relates the operator E to the operator D,

E = eh D (9.3.7)

Making the substitution

E = � + 1 (9.3.8)

we have

� = eh D − 1 = h D + h2 D2

2!
+ h3 D3

3!
+ · · · (9.3.9)

9.3 THE DIFFERENTIAL OPERATOR RELATED TO THE DIFFERENCE OPERATOR

9.3 THE DIFFERENTIAL OPERATOR RELATED TO THE DIFFERENCE OPERATOR � 535



The second forward difference is found by squaring the equation above, to obtain

�2 =
(

h D + h2 D2

2
+ h3 D3

6
+ · · ·

)2

= h2 D2 + h3 D3 + 7
12 h4 D4 + · · · (9.3.10)

To find D in terms of � we take the natural logarithm of both sides of Eq. 9.3.7 and obtain

D = 1

h
ln E = 1

h
ln(1 + �) (9.3.11)

In series form, we have

ln(1 + �) = � − �2

2
+ �3

3
− · · · (9.3.12)

We may now relate the differential operator to the forward difference operator; there results

D = 1

h

(
� − �2

2
+ �3

3
− · · ·

)
(9.3.13)

Squaring both sides yields

D2 = 1

h2

(
�2 − �3 + 11

12
�4 − 5

6
�5 − · · ·

)
(9.3.14)

The central and backward difference operators can be related to the differential operator by
using Eq. 9.3.7 to write

E1/2 = eh D/2, E−1/2 = e−h D/2, E−1 = e−h D (9.3.15)

The resulting expressions will be included in the Examples and Problems. They are summarized
in Table 9.2.

The results above are used to express the first derivative of the function f (x) at xi as

D fi = d fi

dx
= 1

h

(
� fi − �2

2
fi + �3

3
fi − · · ·

)
(9.3.16)

The second derivative is

D2 fi = d2 fi

dx2
= 1

h2

(
�2 fi − �3 fi + 11

12
�4 fi − · · ·

)
(9.3.17)

Higher-order derivatives can be generated similarly.
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Table 9.2 Relationship Between the Operators

� = E − 1 δ = E1/2 − E−1/2 ∇ = − δ2

2
+ δ

√
1 + δ2

4

∇ = 1 − E−1 2µδ = E − E−1 µ =
√

1 + δ2

4

2µ = E1/2 + E−1/2 � = δ2

2
+ δ

√
1 + δ2

4

D = 1

h

[
� − �2

2
+ �3

3
− · · ·

]
= 1

h

[
∇ + ∇2

2
+ ∇3

3
+ · · ·

]
= µ

h

[
δ − δ3

6
− δ5

6
− · · ·

]

D2 = 1

h2

[
�2 − �3 + 11

12
�4 − · · ·

]
= 1

h2

[
∇2 + ∇3 + 11

12
∇4 + · · ·

]

= 1

h2

[
δ2 − δ4

12
+ δ6

90
− · · ·

]

D3 = 1

h3

[
�3 − 3

2
�4 + 7

4
�5 − · · ·

]
= 1

h3

[
∇3 + 3

2
∇4 + 7

4
∇5 + · · ·

]

= µ

h3

[
δ3 − δ5

4
+ 7

120
δ7 − · · ·

]

D4 = 1

h4

[
�4 − 2�5 + 17

6
�6 − · · ·

]
= 1

h4

[
∇4 + 2∇5 + 17

6
∇6 + · · ·

]

= 1

h4

[
δ4 − δ6

6
+ 7

240
δ8 − · · ·

]

� = h D + h2

2
D2 + h3

6
D3 + · · · �2 = h2 D2 + h3 D3 + 7

12
h4 D4 + · · ·

�3 = h3 D3 + 3

2
h4 D4 + 5

4
h5 D5 + · · ·

∇ = h D − h2

2
D2 + h3

6
D3 + · · · ∇2 = h2 D2 − h3 D3 + 7

12
h4 D4 + · · ·

∇3 = h3 D3 − 3

2
h4 D4 + 5

4
h5 D5 + · · ·

µδ = h D + h3 D3

6
+ h5 D5

120
+ · · · δ2 = h2 D2 + h4 D4

12
+ h6 D6

360
+ · · ·

µδ3 = h3 D3 + h5 D5

4
+ h7 D7

40
+ · · ·
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EXAMPLE 9.3.1

Relate the differential operator D to the central difference operator δ by using Eq. 9.3.13 and the result of
Example 9.2.1.

� Solution

We use the relationship � = δ2/2 + δ
√

1 + δ2/4 (see Example 9.2.1). Expand (1 + δ2/4)1/2 in a series using
the binomial theorem3 to give

� = δ2

2
+ δ

(
1 + δ2

8
− δ4

128
+ · · ·

)

= δ + δ2

2
+ δ3

8
− δ5

128
+ · · ·

Substitute this into Eq. 9.3.13 to find

D = 1

h

[
δ + δ2

2
+ δ3

8
− δ5

128
+ · · · − 1

2

(
δ + δ2

2
+ δ3

8
− δ5

128
+ · · ·

)2

+ 1

3

(
δ + δ2

2
+ δ3

8
− δ5

128
+ · · ·

)3

+ · · ·
]

= 1

h

(
δ − δ3

24
+ 25δ5

128
− · · ·

)
This expression allows us to relate D fi to quantities such as fi+1/2, fi+1/2, fi+3/2, fi−5/2, and so on. It is more
useful to introduce the averaging operator µ so that quantities with integer subscripts result. From Example
9.2.1 we have µ =

√
1 + δ2/4. Expressing this as a series, we have

µ = 1 + δ2

8
− δ4

128
+ · · ·

Now, we can write D as

D = µ

h

(
δ − δ3

24
+ 25δ5

128
− · · ·

)
1

µ
= µ

h

δ − δ3

24
+ 25δ5

128
− · · ·

1 + δ2

8
− δ4

128
+ · · ·

Dividing one series by the other, we finally have

D = µ

h

(
δ − δ3

6
− δ5

6
− · · ·

)

Using this expression, D fi contains only integer subscripts; this permits use of this formula on a computer.

3The binomial theorem is

(a + b)n = an + nan−1b + n(n − 1)an−2b2/2! + · · ·
which terminates if and only if n is a nonnegative integer.
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EXAMPLE 9.3.2

Relate the central difference operator to the differential operator by starting with a Taylor series.

� Solution

An alternative form of the Taylor series is

f

(
x + h

2

)
= f (x) + h

2
f ′(x) +

(
h

2

)2 1

2!
f ′′(x) +

(
h

2

)3 1

3!
f ′′′(x) + · · ·

where the primes denote differentiation with respect to x. In difference notation, we have

fi+1/2 = fi + h

2
f ′
i + h2

8
f ′′
i + h3

48
f ′′′
i + · · ·

=
(

1 + h D

2
+ h2 D2

8
+ h3 D3

48
+ · · ·

)
fi

Similarly,

fi−1/2 = fi − h

2
f ′
i + h2

8
f ′′
i − h3

48
f ′′′
i + · · ·

=
(

1 − h D

2
+ h2 D2

8
− h3 D3

48
+ · · ·

)
fi

Subtracting gives

δ fi = fi+1/2 − fi−1/2 =
(

h D + h3 D3

24
+ h5 D5

1920
+ · · ·

)
fi

Finally,

δ = h D + h3 D3

24
+ h5 D5

1920
+ · · ·

This could also have been obtained by using Eqs. 9.2.20 and 9.3.7. We have

δ = E1/2 − E−1/2 = eh D/2 − e−h D/2

Expanding the exponentials as in Eq. 9.3.5 results in the series

δ =
(

1 + h D

2
+ h2 D2

8
+ h3 D3

48
+ · · ·

)
−

(
1 − h D

2
+ h2 D2

8
− h3 D3

48
+ · · ·

)

= h D + h3 D3

24
+ h5 D5

1920
+ · · ·



9.3.1 Maple Applications
Calculations to create formulas like Eq. 9.3.14 can be done in Maple in this way. Notice that all
of the series in these calculations are truncated:

>D_op:=(Delta-Delta^2/2+Delta^3/3-Delta^4/4)/h;

D-op :=
� − 1

2
�2 + 1

3
�3 − 1

4
�4

h

>expand(D_op^2);

�2

h2
− �3

h2
+ 11�4

12h2
− 5�5

6h2
+ 13�6

36h2
− �7

6h2
+ �8

16h2

Note that D is reserved in Maple, so we cannot assign an expression to it, so we have used D_op.
Using Maple to find the relationship requested in Example 9.3.1, after defining D_op as

before, we then define Delta and compute. The collect command will collect like powers
of δ:

>Delta:=delta+delta^2/2+delta^3/8-delta^5/128;

� := δ + 1

2
δ2 + 1

8
δ3 − 1

128
δ5

>D1:=collect(D_op, delta);

D1 := − δ20

1073741824h
+ δ18

16777216h
+ δ17

4194304h
− δ16

1048576h
− 73δ15

6291456h

− δ14

32768h
+ 13δ13

131072h
+ δ12

1024h
+ 47δ11

16384h
− δ10

32768h
− 47δ9

1536h
− 127δ8

1024h

− 69δ7

256h
− δ6

3h
− 25δ5

128h
− δ3

24h
+ δ

h

Proceed to introduce µ:

>mu:=1 + delta^2/8 - delta^4/128;

µ := 1+ 1

8
δ2 − 1

128
δ4

Now, in this example, the series expression for D1*h/mu is desired. It is derived using the
series command. We specify that we want the series to be expanded about δ = 0. The O(δ6)

is the “order-of-magnitude” notation, and it indicates that the rest of the terms have power δ6 or
higher:

>series(D1*h/mu, delta=0);

δ − 1

6
δ3 − 1

6
δ5 + O(δ6)
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We obviously cannot use all the terms in the infinite series when representing a derivative in
finite-difference form, as in Eqs. 9.3.16 and 9.3.17. The series is truncated and the sum of the
omitted terms is the truncation error. It is quite difficult to determine the sum of the omitted
terms; instead, we estimate the magnitude of the first term omitted in the series. Since each term
is smaller than the preceding term, we call the magnitude of the first truncated term the order of
magnitude of the error. Its primary function is to allow a comparison of formulas. If the magni-
tude of the first truncated term of one formula is smaller than that of another formula, we assume
the first formula to be more accurate.

If the first term truncated is �2 fi/2 in Eq. 9.3.16, the order of magnitude of the error is
of order h, written symbolically as e = O(h), since from Eq. 9.3.10 �2 is of order h2 and in
Eq. 9.3.16 we divide �2 fi/2 by h. Hence, we can express the first derivative of a function, with
e = O(h), as

D fi = 1

h
� fi

= 1

h
( fi+1 − fi ), e = O(h) (9.4.1) 

9.4 TRUNCATION ERROR

9.4 TRUNCATION ERROR � 541

Problems

1. Verify the following expressions by squaring the appro-
priate series.

�2 = h2 D2 + h3 D3 + 7
12 h4 D4 + · · ·

D2 = 1

h2

(
�2 − �3 + 11

12
�4 − 5

6
�5 + · · ·

)

2. Relate the backward difference operator ∇ to the differ-
ential operator D using h as the step size. Also find ∇2 in
terms of D, and D2 in terms of ∇ . Check Table 9.2 for the
correct expressions.

3. Find an expression for µδ3 in terms of D. Use the results
of Example 9.3.2.

4. Find the relationship for D2 in terms of δ. Check with
Table 9.2.

5. Start with Taylor’s series and show that E−1 = e−h D .

Using any results from the examples, verify each expression
given in Table 9.2.

6. D2 in terms of δ.

7. D3 in terms of δ and µ.

8. D3 in terms of �.

9. D4 in terms of ∇ .

10. D4 in terms of δ.

Use Maple to solve

11. Problem 1

12. Problem 2

13. Problem 3

14. Problem 4

15. Problem 6

16. Problem 7

17. Problem 8

18. Problem 9

19. Problem 10



If a smaller error is desired, an additional term is maintained and

D fi = 1

h
(� fi − �2 fi/2)

= 1

h

[
fi+1 − fi − 1

2
( fi+2 − 2 fi+1 + fi )

]

= 1

2h
(− fi+2 + 4 fi+1 − 3 fi ), e = O(h2) (9.4.2)

This, of course, requires additional information, the value of f (x) at xi+2.
The second derivative can be approximated, with e = O(h), by

D2 fi = 1

h2
�2 fi

= 1

h2
( fi+2 − 2 fi+1 + fi ), e = O(h) (9.4.3)
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Table 9.3 The Derivatives in Finite-Difference Form

Forward Backward Central

e = O(h)

D fi = 1

h
( fi+1 − fi )

1

h
( fi − fi−1)

D2 fi = 1

h2
( fi+2 − 2 fi+1 + fi )

1

h2
( fi − 2 fi−1 + fi−2)

D3 fi = 1

h3
( fi+3 − 3 fi+2

+ 3 fi+1 − fi )

1

h3
( fi − 3 fi−1 + 3 fi−2 − fi−3)

D4 fi = 1

h4
( fi+4 − 4 fi+3 + 6 fi+2

− 4 fi+1 + fi )

1

h4
( fi − 4 fi−1 + 6 fi−2

− 4 fi−3 + fi−4)

e = O(h2)

D fi = 1

2h
(− fi+2 + 4 fi+1 − 3 fi )

1

2h
(3 fi − 4 fi−1 + fi−2)

1

2h
( fi+1 − fi−1)

D2 fi = 1

h2
(− fi+3 + 4 fi+2

− 5 fi+1 + 2 fi )

1

h2
(2 fi − 5 fi−1 + 4 fi−2 − fi−3)

1

h2
( fi+1 − 2 fi + fi−1)

D3 fi = 1

2h3
(−3 fi+4 + 14 fi+3

− 24 fi+2 + 18 fi+1 − 5 fi )

1

2h3
(5 fi − 18 fi−1 + 24 fi−2

− 14 fi−3 + 3yi−4)

1

2h3
( fi+2 − 2 fi+1

+ 2 fi−1 − fi−2)

D4 fi = 1

h4
(−2 fi+5 + 11 fi+4

− 24 fi+3 + 26 fi+2

− 14 fi+1 + 3 fi )

1

h4
(3 fi − 14 fi−1 + 26 fi−2

− 24 fi−3 + 11 fi−4 − 2 fi−5)

1

h4
( fi+2 − 4 fi+1 + 6 fi

− 4 fi−1 + fi−2)



Note that the �3-term was omitted. It is of order h3; but it is divided by h2, hence e = O(h).
Maintaining an additional term in Eq. 9.3.17, the second derivative, with e = O(h2), is

D2 fi = 1

h2
(�2 fi − �3 fi )

= 1

h2
( fi+2 − 2 fi+1 + fi − fi+3 + 3 fi+2 − 3 fi+1 + fi )

= 1

h2
(− fi+3 + 4 fi+2 − 5 fi+1 + 2 fi ), e = O(h2) (9.4.4)

Results in tabular form are presented in Table 9.3.
The error analysis above is meaningful only when the phenomenon of interest occurs over a

time duration of order unity or over a length of order unity. If we are studying a phenomenon that
occurs over a long time T, the time increment �t could be quite large even for a reasonable num-
ber of steps. Or if the phenomenon occurs over a large length L, the length increment �x could be
quite large. For example, the deflection of a 300-m-high smokestack on a power plant could be
reasonably calculated with increments of 3 m. We would not then say that the error gets larger with
each term truncated, that is, O(h3) > O(h2). The same reasoning is applied to phenomena of very
short duration or lengths. Then h is extremely small and the truncation error would appear to be
much smaller than it actually is. The quantity that determines the error is actually the step size in-
volved when the time duration or the length scale is of order unity; hence, to determine the error
when large or small scales are encountered, we first “normalize” on the independent variable so
that the phenomenon occurs over a duration or length of order unity. That is, we consider the quan-
tity h/T or h/L to determine the order of the error. The expressions for error in Eqs. 9.4.1, 9.4.2,
and 9.4.3 are based on the assumption that the time duration or length scale is of order 1.

9.4 TRUNCATION ERROR � 543

EXAMPLE 9.4.1

Find an expression for the second derivative using central differences with e = O(h4).

� Solution

In terms of central differences D2 is found by squaring the expression given in Example 9.3.1 for D in terms
of δ. It is

D2 =
[

1

h

(
δ − δ3

24
+ 3δ5

640
− · · ·

)]2

= 1

h2

(
δ2 − δ4

12

)
, e = O(h4)

This expression can also be found in Table 9.2. Now, we have

D2 fi = 1

h2

(
δ2 fi − 1

12
δ4 fi

)

= 1

h2

[
fi+1 − 2 fi + fi−1 − 1

12
( fi+2 − 4 fi+1 + 6 fi − 4 fi−1 + fi−2)

]

= 1

12h2
(− fi+2 + 16 fi+1 − 30 fi + 16 fi−1 − fi−2), e = O(h4)

The relationship for δ4 fi is part of Problem 1 of Section 9.2.
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EXAMPLE 9.4.2

Write the differential equation

ÿ − C

M
ẏ + K

M
y = A sin ωt

in difference notation using forward differences with e = O(h2).

� Solution

The first derivative is given by Eq. 9.4.2 as

ẏt = 1

2h
(−yi+2 + 4yi+1 − 3yi )

The second derivative, found by maintaining the first two terms in Eq. (9.3.17), with e = O(h2), is given by
Eq. 9.4.4. The differential equation is then written in difference form as

1

h2
(−yi+3 + 4yi+2 − 5yi+1 + 2yi ) − C

2Mh
(−yi+2 + 4yi+1 − 3yi ) + K

M
yi = A sin ωti

By letting i = 0, y3 is seen to be related to y2, y1, y0, and t0, and is the first value of the dependent variable
y(t) that could be found by the difference equation. But we do not know the values of y2 and y1. (The value
of y0 is known from an initial condition.) Thus, a “starting technique” is necessary to find the values y1 and
y2. This is presented in Section 9.9. The difference equation is used to find an approximation to the solution of
the differential equation. The solution would be presented in tabular form.

Problems

Using forward differences, verify the expression in Table 9.3
for

1. D3 fi with e = O(h).

2. D4 fi with e = O(h).

3. D fi with e = O(h2).

4. D3 fi with e = O(h2).

Using backward differences, verify the expression in Table 9.3
for

5. D2 fi with e = O(h).

6. D3 fi with e = O(h).

7. D2 fi with e = O(h2).

8. D4 fi with e = O(h2).

Using central differences, verify the expression in Table 9.3 for

9. D fi with e = O(h2).

10. D2 fi with e = O(h2).

11. D3 fi with e = O(h2).

Derive an expression, using difference notation with e =
O(h3), for

12. D fi using forward differences.

13. D2 fi using forward differences.

14. D3 fi using backward differences.

Estimate a value for d/dx (erf x) at x = 1.6 using Table B2.
Check with the exact value obtained analytically. Use four
significant digits. Employ

15. Central differences with e = O(h2).

16. Forward differences with e = O(h2).

17. Forward differences with e = O(h2).

18. Backward differences with e = O(h2).



Estimate a value for d2/dx2 J1(x) at x = 2.0 using Table B3
with e = O(h2). Use

19. Forward differences.

20. Backward differences.

21. Central differences.

22. Estimate a value for d2/dx2 J0(x) at x = 0 using
Table B3. Use e = O(h2).

23. Estimate a value for d2/dx2 Y1(x) at x = 15.0 with
e = O(h2) using Table B3.

Use Maple to solve

24. Problem 1

25. Problem 2

26. Problem 3

27. Problem 4

28. Problem 5

29. Problem 6

30. Problem 7

31. Problem 8

32. Problem 9

33. Problem 10

34. Problem 11

35. Problem 12

36. Problem 13

37. Problem 14

Since the symbol for differentiation is D = d/dx , it is natural to use D−1 to represent the oper-
ation inverse to differentiation, namely, integration; that is,

D−1 f (x) =
∫

f (x) dx (9.5.1)

or, between the limits of xi and xi+1, this is∫ xi+1

xi

f (x) dx = D−1 f (x)

∣∣∣∣
xi+1

xi

= D−1( fi+1 − fi ) = E − 1

D
fi (9.5.2)

Relating this to the forward difference operator, we use Eqs. 9.2.21 and 9.3.13 to obtain∫ xi+1

xi

f (x) dx = �

1

h

(
� − �2

2
+ �3

3
− · · ·

) fi

= h

(
1 + �

2
− �2

12
+ �3

24
− · · ·

)
fi (9.5.3)

where we have simply divided the numerator by the denominator. If we neglect the �2-term and
the higher-order terms in the parentheses above, there results∫ xi+1

xi

f (x) dx = h

(
1 + �

2

)
fi

= h

2
( fi+1 + fi ), e = O(h3) (9.5.4)

9.5 NUMERICAL INTEGRATION
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This approximation is seen to be nothing more than the average of f (x) between xi+1 and xi

multiplied by the step size �x (see Fig. 9.2). The smaller the step size h, the closer the approxi-
mation to the integral. The error results from the neglected O(h2) term multiplied by h; it is
e = O(h3).

To obtain the integral from x = a to x = b, we simply add up all the areas to arrive at∫ b

a
f (x) dx ∼= h

2
[( f0 + f1) + ( f1 + f2) + ( f2 + f3) + · · ·

+ ( fN−2 + fN−1) + ( fN−1 + fN )]

= h

2
( f0 + 2 f1 + 2 f2 + · · · + 2 fN−1 + fN ) (9.5.5)

where N = (b − a)/h . This is the trapezoidal rule of integration. Each element in the interval
from a to b contains an error e = O(h3). Hence, assuming the interval to be of order unity, that
is, b − a = O(1), it follows that N = O(1/h). The order of magnitude of the total error in the
integration formula 9.5.5 is then N × O(h3), or O(h2).

We can also determine an approximation to the integral between xi and xi+2 as follows:∫ xi+2

xi

f (x) dx = D−1 f (x)

∣∣∣∣
xi+2

xi

= D−1( fi+2 − fi )

= E2 − 1

D
fi

= 2� + �2

(1/h)(� − �2/2 + �3/3 − · · ·) fi

= h

(
2 + 2� + �2

3
− �4

90
+ · · ·

)
fi (9.5.6)

We keep terms up through �2, so that we do not go outside the limits of integration4 xi to xi+2;
there results ∫ xi+2

xi

f (x) dx = h(2 + 2� + �2/3) fi

= h

3
( fi+2 + 4 fi+1 + fi ), e = O(h5) (9.5.7)
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Figure 9.2 The integral of f (x).

4�3 fi = fi+3 − 3 fi+2 + 3 fi+1 − fi ; but fi+3 = f (xi+3) and this value of f does not lie in the interval
[xi , xi+2].



The error in this formula is, surprisingly, of order O(h5) because of the absence of the �3-term.
This small error makes this a popular integration formula. The integral from x = a to x = b is
then ∫ b

a
f (x) dx ∼= h

3
[( f0 + 4 f1 + f2) + ( f2 + 4 f3 + f4) + · · ·

+ ( fN−4 + 4 fN−3 + fN−2) + ( fN−2 + 4 fN−1 + fN )]

= h

3
( f0 + 4 f1 + 2 f2 + 4 f3 + 2 f4 · · · + 2 fN−2 + 4 fN−1 + fN ) (9.5.8)

where N = (b − a)/h and N is an even integer. This is Simpson’s one-third rule. The integral
has been approximated by N/2 pairs of elements, each pair having e = O(h5). Since
N = O(1/h) it follows that the order of the error for the formula (9.5.8) is e = (N/2) ×
O(h5) = O(h4). Note that the factor 2 does not change the order of the error.

Similarly, we have∫ xi+3

xi

f (x) dx = 3h

8
( fi+3 + 3 fi+2 + 3 fi+1 + fi ), e = O(h5) (9.5.9)

The integration formula is then∫ b

a
f (x) dx = 3h

8
[( f0 + 3 f1 + 3 f2 + f3) + ( f3 + 3 f4 + 3 f5 + f6) + · · ·

+ ( fN−3 + 3 fN−2 + 3 fN−1 + fN )]

= 3h

8
( f0 + 3 f1 + 3 f2 + 2 f3 + 3 f4 + 3 f5 + 2 f6 + · · ·

+ 2 fN−3 + 3 fN−2 + 3 fN−1 + fN ) (9.5.10)

where N = (b − a)/h and N is divisible by 3. This is Simpson’s three-eights rule. The error is
found to be of order O(h4), essentially the same as Simpson’s one-third rule.

If we desired the integral in backward difference form, for example, 
∫ xi

xi−2
f (x) dx , we would

have chosen to express E and D in terms of backward differences; if 
∫ xi+2

xi−2
f (x) dx were desired,

central differences would be chosen. Examples of these will be included in the Problems and the
Examples.

It is possible to establish error bounds on the numerical integration process, which are more
exact than the order of magnitude. Let us first consider the trapezoidal rule of integration. The
error e involved is (see Eq. 9.5.5)

e = h

2
( f0 + 2 f1 + 2 f2 + · · · + fN ) −

∫ b

a
f (x) dx (9.5.11)

We will find the error for only the first interval, letting the step size h be a variable, as shown in
Fig. 9.3. Using the relationship above, the error in this single strip is

e(t) = t − a

2
[ f (a) + f (t)] −

∫ t

a
f (x) dx (9.5.12)

Differentiate this equation to obtain

e′(t) = 1

2
[ f (a) + f (t)] + t − a

2
f ′(t) − f (t) (9.5.13)
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where we have used the fundamental theorem of calculus to obtain

d

dt

∫ t

a
f (x) dx = f (t) (9.5.14)

Again, we differentiate and find

e′′(t) = t − a

2
f ′′(t) (9.5.15)

Thus, the maximum value of e′′ is obtained if we replace f ′′(t) with its maximum value in the
interval, and the minimum value results when f ′′(t) is replaced with its minimum value. This is
expressed by the inequalities

t − a

2
f ′′
min ≤ e′′(t) ≤ t − a

2
f ′′
max (9.5.16)

Now, let us integrate to find the bounds on the error e(t). Integrating once gives

(t − a)2

4
f ′′
min ≤ e′(t) ≤ (t − a)2

4
f ′′
max (9.5.17)

A second integration results in

(t − a)3

12
f ′′
min ≤ e(t) ≤ (t − a)3

12
f ′′
max (9.5.18)

In terms of the step size, the error for this first step is

h3

12
f ′′
min ≤ e ≤ h3

12
f ′′
max (9.5.19)

But there are N steps in the interval of integration from x = a to x = b. Assuming that each step
has the same bounds on its error, the total accumulated error is N times that of a single step,

h3

12
N f ′′

min ≤ e ≤ h3

12
N f ′′

max (9.5.20)
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Figure 9.3 Variable—with element used in the error analysis.



where f ′′
min and f ′′

max are the smallest and largest second derivatives, respectively, in the interval
of integration.

A similar analysis, using Simpson’s one-third rule, leads to an error bounded by

h5

180
N f (iv)

min ≤ e ≤ h5

180
N f (iv)

max (9.5.21)
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EXAMPLE 9.5.1

Find an approximate value for 
∫ 2

0 x1/3 dx using the trapezoidal rule of integration with eight increments.

� Solution

The formula for the trapezoidal rule of integration is given by Eq. 9.5.5. It is, using h = 2
8 = 1

4 ,∫ 2

0
x1/3 dx ∼= 1

8 ( f0 + 2 f1 + 2 f2 + · · · + 2 f7 + f8)

= 1
8 [0 + 2

(
1
4

)1/3 + 2
(

2
4

)1/3 + · · · + 2
(

7
4

)1/3 + 21/3]

= 1.85

This compares with the exact value of∫ 2

0
x1/3 dx = 3

4 x4/3
∣∣2

0 = 3
4 (2)4/3 = 1.8899

Derive the integration formula using central differences with the largest error.

� Solution

The integral of interest is 
∫ xi+1

xi−1
f (x) dx . In difference notation it is expressed as

∫ xi+1

xi−1

f (x) dx = D−1( fi+1 − fi−1) = (E − E−1)

D
fi

= (E1/2 + E−1/2)(E1/2 − E−1/2)

D
fi = δ2µ

D
fi

using the results of Example 9.2.1. With the appropriate expression from Table 9.2, we have

∫ xi+1

xi−1

f (x) dx = 2µδ

(µ/h)(δ − δ3/6 + δ5/30 − · · ·) fi

EXAMPLE 9.5.2



9.5.1 Maple and MATLAB Applications
The trapezoid rule and Simpson’s one-third rule are built into Maple and can be found in the
student package. The commands are written in this way:

>trapezoid(f(x), x=a..b, N);

>simpson(f(x), x=a..b, N);

MATLAB offers a variety of commands that perform the numerical integration of a proper,
definite integral. (In the help menu open Mathematics and choose “Function Functions” from the
resulting menu. The submenu “Numerical Integration” lists four integration functions.) We elect
“quad” as our model. The others are similar in structure.
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Dividing, we get, neglecting terms of O(h4) in the series expansion,∫ xi+1

xi−1

f (x) dx = 2h

(
1 + δ2

6

)
fi

= h

3
( fi+1 + 4 fi + fi−1), e = O(h5)

Note that it is not correct to retain the δ4-term in the above since it uses fi+2 and fi−2, quantities outside the
limits of integration. The integration formula is then∫ b

a
f (x) dx = h

3
[( f0 + 4 f1 + f2) + ( f2 + 4 f3 + f4) + · · ·

+ ( fN−4 + 4 fN−3 + fN−2) + ( fN−2 + 4 fN−1 + fN )]

= h

3
( f0 + 4 f1 + 2 f2 + 4 f3 + 2 f4 + · · · + 2 fN−2 + 4 fN−1 + fN )

This is identical to Simpson’s one-third rule.

EXAMPLE 9.5.2 (Continued)

EXAMPLE 9.5.3

Use the MATLAB function “quad” to compute the definite integral in Example 9.5.1.

� Solution

The integrand is the function x1/3:

»F=inline(‘x.^(1/3)’); Note the quotes and the period after x.

»Q=quad(F,0,2) The call to the quadrature function.

Q

1.899
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Problems

1. Express the value of the integral of f (x) from xi−2 to xi

using backward differences.

2. Approximate the value of the integral of f (x) = x2 from
x = 0 to x = 6 using six steps. Use (a) the trapezoidal
rule and (b) Simpson’s one-third rule. Compare with the
actual value found by integrating. Then, for part (a) show
that the error falls within the limits established by
Eq. 9.5.20.

3. Determine an approximate value for 
∫ 9

0 x2 sin(πx/6) dx
using (a) the trapezoidal rule, and (b) Simpson’s three-
eights rules. Use nine steps.

4. Determine a value for 
∫ 2

0 J0(x) dx applying (a) the
trapezoidal rule (b) Simpson’s one-third rule, using ten
steps.

5. Find an expression for the integral of f (x) from xi−2 to
xi+2 using central differences. Using this expression, 
determine a formula for the integral 

∫ b
a f (x) dx . What is

the order of magnitude of the error?

6. Integrate y(t) from t = 0 to t = 1.2 using Simpson’s
one-third rule.

t 0 0.2 0.4 0.6 0.8 1.0 1.2

y 9.6 9.1 7.4 6.8 7.6 8.8 12.2

7. Integrate y(t) of Problem 6 from t = 0 to t = 1.2 using
Simpson’s three-eights rule.

Write code in Maple to implement Simpson’s one-third
rule. Then find the value of each integral to five significant
digits.

8.
∫ 5

0 (x2 + 2) dx

9.
∫ 2

0 (x + sin x)ex dx

10.
∫ 4

0 xex cos x dx

11.
∫ 10

0 x2e−x sin x dx

12.
∫ 2

1 ex2
sin x dx

Use Maple to solve

13. Problem 2

14. Problem 3

15. Problem 4

16. Problem 6

17. Problem 7

Use Excel to solve

18. Problem 2

19. Problem 3

20. Problem 6

21. Problem 7

22. Problem 8

23. Problem 9

24. Problem 10

25. Problem 11

26. Problem 12

27. Entering the most generic version of the trapezoid
command in Maple yields the following output:

>trapezoid(f(x), x=a..b, N);

1

2

(b− a)

(
f(a)+ 2

(
N−1∑
i=1

f
(
a+ (b−a)i

N

))
+ f(b)

)
N

Prove that this is equivalent to Eq. 9.5.5.

28. Prove that Eq. 9.5.8 is equivalent to the output of this
Maple command:

>simpson(f(x), x=a..b, N);

Use “quad” and/or “quad1” in MATLAB for the approximate
calculation of the integrals in the following:

29. Problem 9

30. Problem 10

31. Problem 11

32. Problem 12

33. Problem 4. Use inline (‘besselj(0,x)’) to represent the
integrand.

34. Problem 3

35. Problem 6



We often desire information at points other than a multiple of �x , or at points other than at the
entries in a table of numbers. The value desired is fi+n , where n is not an integer but some frac-
tion such as 1

3 (see Fig. 9.4). But fi+n can be written in terms of En :

En fi = fi+n (9.6.1)

In terms of the forward difference operator �, we have

(1 + �)n fi = fi+n (9.6.2)

or, by using the binomial theorem,

(1 + �)n = 1 + n� + n(n − 1)

2
�2 + n(n − 1)(n − 2)

6
�3 + · · · (9.6.3)

Hence,

fi+n =
[

1 + n� + n(n − 1)

2
�2 + n(n − 1)(n − 2)

6
�3 + · · ·

]
fi (9.6.4)

Neglecting terms of order higher than �3, this becomes

fi+n =
[

fi + n( fi+1 − fi ) + n(n − 1)

2
( fi+2 − 2 fi+1 + fi )

+ n(n − 1)(n − 2)

6
( fi+3 − 3 fi+2 + 3 fi+1 − fi )

]
(9.6.5)

If we desired fi−n , where n is a fraction, we can use backward differences to obtain

fi−n =
[

fi − n( fi − fi−1) + n(n − 1)

2
( fi − 2 fi−1 + fi−2)

− n(n − 1)(n − 2)

6
( fi − 3 fi−1 + 3 fi−2 − fi−3)

]
(9.6.6)

This formula is used to interpolate for a value near the end of a set of numbers.

9.6 NUMERICAL INTERPOLATION
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Figure 9.4 Numerical interpolation.



9.6.1 Maple Applications
We can use our Maple work from Section 9.2, along with the expand/binomial command
to automate the process in Example 9.6.1. Recall that we defined forward differences in Maple
with these commands:

>forf[1]:= i -> f[i+1]-f[i];

>forf[2]:= i -> forf[1](i+1)-forf[1](i);

>forf[3]:=i -> forf[2](i+1)-forf[2](i);
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EXAMPLE 9.6.1

Find the value for the Bessel function J0(x) at x = 2.06 using numerical interpolation with (a) e = O(h2) and
(b) e = O(h3). Use forward differences and four significant places.

� Solution

(a) Using Eq. 9.6.4 with e = O(h2), we have

fi+n = (1 + n�) fi = fi + n( fi+1 − fi )

Table B3 for Bessel functions is given with h = 0.1. For our problem,

n = 0.06

0.1
= 0.6

The interpolated value is then, using the ith term corresponding to x = 2.0,

J0(2.06) = fi+0.6 = 0.2239 + 0.6(0.1666 − 0.2239) = 0.1895

This is a linear interpolation, the method used most often when interpolating between tabulated values.
(b) Now, let us determine a more accurate value for J0(2.06). Equation 9.6.4 with e = O(h3) is

fi+n = [1 + n� + 1
2 (n)(n − 1)�2] fi

= fi + n( fi+1 − fi ) + n(n − 1)

2
( fi+2 − 2 fi+1 + fi )

Again, using n = 0.6, we have

J0(2.06) = fi+0.6 = 0.2239 + 0.6(0.1666 − 0.2239)

+ 0.6(0.6 − 1)

2
(0.1104 − 2 × 0.1666 + 0.2239)

= 0.1894

Note that the linear interpolation was not valid for four significant places; the next-order interpolation scheme
was necessary to obtain the fourth significant place.



To compute binomial coefficients, we can use command such as

>b[1]:=expand(binomial(n, 1));

b1 := n

>b[2]:=expand(binomial(n, 2));

b2 := 1

2
n 2 − 1

2
n

So, one of the interpolations can then be written as

>f[i] + b[1]*forf[1](i) + b[2]*forf[2](i);

fi+ n(fi+1 − fi)+
(
1

2
n2 − 1

2
n

)
(fi+2 − 2 fi+1 + fi)

Then, part (b) of the example can be computed by

>f:=[0.22389, 0.16661, 0.11036, 0.05554]: n:=0.6:

>f[1] + b[1]*forf[1](1)+b[2]*forf[2](1);

0.1893984000
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Problems

We desire the value of J0(x) at x = 7.24 using the information
in Table A4. Approximate its value using

1. Forward differences with e = O(h2).

2. Forward differences with e = O(h3).

3. Backward differences with e = O(h3).

4. Backward differences with e = O(h4).

Determine the error in the approximation to J0(x), using the
expression following Table A4 to

5. Problem 1

6. Problem 2

7. Problem 3

8. Problem 4

Find an approximation of erf x with e = O(h3) at

9. x = 0.01

10. x = 2.01

11. x = 0.91

Find an approximation, to five significant digits, at x =
1.51 to

12. erf x

13. Y0(x)

14. J1(x)

15. Y1(x)

Use Maple to solve

16. Problem 1

17. Problem 2

18. Problem 3

19. Problem 4

20. Problem 9

21. Problem 10

22. Problem 11

23. Problem 12

24. Problem 13

25. Problem 14

26. Problem 15

27. Use Maple to create an interpolation formula that ne-
glects terms of order higher than �9. Use this formula to
approximate J0(x) at x = 7.24.



It is often necessary to find roots of equations, that is, the values of x for which f (x) = 0. This
is encountered whenever we solve the characteristic equation of ordinary differential equations
with constant coefficients. It may also be necessary to find roots of equations when using nu-
merical methods in solving differential equations. We will study one technique that is commonly
used in locating roots; it is Newton’s method, sometimes called the Newton–Raphson method.
We make a guess at the root, say x = x0. Using this value of x0 we calculate f (x0) and f ′(x0)

from the given equation,

f (x) = 0 (9.7.1)

Then, a Taylor series with e = O(h2) is used to predict an improved value for the root. Using
two terms of the series in Eq. 9.3.1, we have, approximately,

f (x0 + h) = f (x0) + h f ′(x0) (9.7.2)

We presume that f (x0) will not be zero, since we only guessed at the root. What we desire from
Eq. (9.7.2) is that f (x0 + h) = 0; then x1 = x0 + h will be our next guess for the root. Setting
f (x0 + h) = 0 and solving for h, we have

h = − f (x0)

f ′(x0)
(9.7.3)

The next guess is then

x1 = x0 − f (x0)

f ′(x0)
(9.7.4)

Adding another iteration gives a third guess as

x2 = x1 − f (x1)

f ′(x1)
(9.7.5)

or, in general,

xn+1 = xn − f (xn)

f ′(xn)
(9.7.6)

This process can be visualized by considering the function f (x) displayed in Fig. 9.5. Let us
search for the root x , shown. Assume that the first guess x0 is too small, so that f (x0) is nega-
tive as shown and f ′(x0) is positive. The first derivative f ′(x0) is equal to tan α. Then, from
Eq. 9.7.3,

tan α = − f (x0)

h
(9.7.7)

where h is the horizontal leg on the triangle shown. The next guess is then seen to be

x1 = x0 + h (9.7.8)

9.7 ROOTS OF EQUATIONS
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Repeating the preceding steps gives x2 as shown. A third iteration can be added to the figure with
x3 being very close to xr . It is obvious that this iteration process converges to the root xr .
However, there are certain functions f (x) for which the initial guess must be very close to a root
for convergence to that root. An example of this kind of function is shown in Fig. 9.6a. An ini-
tial guess outside the small increment �x will lead to one of the other two roots shown and not
to xr . The root xr would be quite difficult to find using Newton’s method.

Another type of function for which Newton’s method may give trouble is shown in Fig. 9.6b.
By making the guess x0, following Newton’s method, the first iteration would yield x1. The next
iteration could yield a value x2 close to the initial guess x0. The process would just repeat itself
indefinitely. To avoid an infinite loop of this nature, we should set a maximum number of itera-
tions for our calculations.

One last word of caution is in order. Note from Eq. 9.7.3 that if we guess a point on the curve
where f ′(x0) = 0, or approximately zero, then h is undefined or extremely large and the process
may not work. Either a new guess should be attempted, or we may use Taylor series with
e = O(h3), neglecting the first derivative term; in that case,

f (x0 + h) = f (x0) + h2

2
f ′′(x0) (9.7.9)
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Figure 9.6 Examples for which Newton’s method gives trouble.



Setting f (x0 + h) = 0, we have

h2 = −2 f (x0)

f ′′(x0)
(9.7.10)

This step is then substituted into the iteration process in place of the step in which f ′(x0) ∼= 0.
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EXAMPLE 9.7.1

Find at least one root of the equation x5 − 10x + 100 = 0. Carry out four iterations from an initial guess.

� Solution

The function f (x) and its first derivative are

f (x) = x5 − 10x + 100

f ′(x) = 5x4 − 10

Note that the first derivative is zero at x4 = 2. This gives a value x = ± 4
√

2. So, let’s keep away from these
points of zero slope. A positive value of x > 1 is no use since f (x) will always be positive, so let’s try
x0 = −2. At x0 = −2, we have

f (x0) = 88

f ′(x0) = 70

For the first iteration, Eq. 9.7.4 gives

x1 = −2.0 − 88

70
= −3.26

Using this value, we have

x2 = −3.26 − −235

555
= −2.84

The third iteration gives

x3 = −2.84 − −56.1

315
= −2.66

Finally, the fourth iteration results in

x4 = −2.66 − −6

240
= −2.64

If a more accurate value of the root is desired, a fifth iteration is necessary. Obviously, a computer would ap-
proximate this root with extreme accuracy with multiple iterations.



Note that the first derivative was required when applying Newton’s method. There are situa-
tions in which the first derivative is very difficult, if not impossible, to find explicitly. For those
situations we form an approximation to the first derivative using a numerical expression such as
that given by Eq. 9.4.2.

9.7.1 Maple and MATLAB Applications
Newton’s method can be implemented in Maple by defining the function:

>new:=y -> evalf(subs(x=y, x-f(x)/diff(f(x), x)));

To use this function, define f (x) in Maple, and use xn as the value of y. In Example 9.7.1, the
first two iterations are computed in this way:

>f:= x -> x^5-10*x+100;

f:= x→ x5 − 10x+ 100

>new(-2);

−3.257142857

>new(%);

−2.833767894

Note that due to the round-off error of the first iteration, the value of x2 computed by Maple dis-
agrees with the value computed above in the hundredth place.

Note: The Maple command fsolve finds the roots of an equation numerically.
We say that r is a “zero” of f (x) if f (r) = 0. If f is a polynomial, r is also called a “root.”

The command “roots” in MATLAB is used to obtain approximations to all the zeros (roots) of
f , real and complex. The argument of “roots” is a row vector containing the coefficients of f in
decreasing order. So, if

f (x) = a(n)xn + a(n − 1)xn−1 + · · · + a(0) (9.7.11)

then

p = [a(n) a(n − 1) . . . a(0)] (9.7.12)
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Use “roots” in MATLAB to find approximations to the five roots of

x5 − 10x + 100

� Solution

MATLAB is applied as follows:

«p=[1000-10 100]; This defines the polynomial.

EXAMPLE 9.7.2
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«roots(p)

ans

− 2.632

− 06794+ 2.4665i

− 06974− 2.4665i

− 1.9954+ 1.3502i

− 1.9954− 1.3502i

The only real root of the polynomial is approximately −2.632.
For functions that are not polynomials, we can use the command “fzero.” (Under the Mathematics menu

open “Function Functions” and use the submenu “Minimizing Functions and Finding Zeros.” The first argu-
ment of “fzero” is the function whose zeros are required and the second argument is either a scalar or a row
vector with two arguments. In the former case the scalar is the point near which MATLAB attempts to find a
zero. In the latter case, where the argument is, say, [a b], the root is found in the interval (a, b). An error
message is returned if f (a) and f (b) have the same sign.

EXAMPLE 9.7.2 (Continued)

EXAMPLE 9.7.3

Use “fzero” in MATLAB to find a root of x3 + ln(x).

� Solution

Let G(x) = x3 + ln(x). Note first that G(x) < 0 if x is positive and near zero. Second, note that G(x) > 0 if
x > 1. So, we can take as our interval (.1, 2) (we avoid a = 0 since G(0) is not defined):

»g=inline(‘x^(3)+ln(x)’);

»fzero(G,[.1 2])

ans

.7047

Problems

Find an approximation to the root of the equation
x3 − 5x2 + 6x − 1 = 0 in the neighborhood of each location.
Carry out the iteration to three significant figures.

1. x = 0

2. x = 1

3. x = 4

Find a root to three significant figures of each equation near
the point indicated.

4. x3 + 2x − 6 = 0, x = 2

5. x3 − 6x = 5, x = 3

6. x4 = 4x + 2, x = 2

7. x5 = 3x − 2, x = 1



Find a root to three significant figures of each equation.

8. x3 + 10x = 4

9. cos 2x = x

10. x + ln x = 10

Use Maple find a root to five significant figures to the
equation of

11. Problem 8

12. Problem 9

13. Problem 10

14. Computer Laboratory Activity: We can create an anima-
tion of figures using Maple to better understand Newton’s
method. Consider finding a root of f (x) = x3 − 2x − 7
with an initial guess x0 = 1.5. As suggested by Figure 9.5,
the first step to determine x1 is to find the equation of the
line tangent to f (x) at x = x0.
(a) Write Maple commands to define f (x) and to deter-

mine t (x), the tangent line described above. Then,
the following commands will plot both functions to-
gether, while storing the plot in an array called
frame. (Note the use of the colon rather than the
semicolon in the first command.)

>frame[1]:=plot([f(x), t(x)],
x=0..3.5, color=[red, blue]):
>frame[1];

(b) Determine where the line y = t (x) crosses the
x-axis. This value is x1.

(c) As in part (a), determine the line tangent to f (x)

at x = x1. Define this line as t (x) and then define
frame[2] in the same manner as part (a).

(d) After creating four frames, these frames can be
joined in a simple animation using the display
command in the plots package:

>with(plots):

>movie:=display(seq(frame[i],
i=1..4), insequence=true):

>movie;

Select the picture that is created (which should be the first
frame). Buttons similar to that on a DVD player should appear
at the top, including play, change direction, slower and faster.
You can now play your “movie.”

Implement Newton’s Method in Excel, and use the spread-
sheet to solve these problems:

15. Problem 4

16. Problem 5

17. Problem 6

18. Problem 7

19. Problem 8

20. Problem 9

21. Problem 10

One of the most important and useful applications of numerical analysis is in the solution of dif-
ferential equations, both ordinary and partial. There are two common problems encountered in
finding the numerical solution to a differential equation. The first is: When one finds a numeri-
cal solution, is the solution acceptable; that is, is it sufficiently close to the exact solution? If one
has an analytical solution, this can easily be checked; but for a problem for which an analytical
solution is not known, one must be careful in concluding that a particular numerical solution is
acceptable. When extending a solution from xi to xi+1, a truncation error is incurred, as dis-
cussed in Section 9.4, and as the solution is extended across the interval of interest, this error ac-
cumulates to give an accumulated truncation error. After, say, 100 steps, this error must be suffi-
ciently small so as to give acceptable results. Obviously, all the various methods give different
accumulated error. Usually, a method is chosen that requires a minimum number of steps, re-
quiring the shortest possible computer time, yet one that does not give excessive error.

The second problem often encountered in numerical solutions to differential equations is the
instability of numerical solutions. The actual solution to the problem of interest is stable (well-
behaved), but the errors incurred in the numerical solution are magnified in such a way that the
numerical solution is obviously incompatible with the actual solution. This often results in a
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wildly oscillating solution in which extremely large variations occur in the dependent variable
from one step to the next. When this happens, the numerical solution is unstable. By changing
the step size or by changing the numerical method, a stable numerical solution can usually be
found.

A numerical method that gives accurate results and is stable with the least amount of com-
puter time often requires that it be “started” with a somewhat less accurate method and then con-
tinued with a more accurate technique. There are, of course, a host of starting techniques and
methods that are used to continue a solution. We shall consider only a few methods; the first will
not require starting techniques and will be the most inaccurate. However, the various methods do
include the basic ideas of the numerical solution of differential equations, and hence are quite
important.

We shall initially focus our attention on solving first-order equations, since, every nth-order
equation is equivalent to a system of n first-order equations.

Many of the examples in which ordinary differential equations describe the phenomenon of
interest involve time as the independent variable. Thus, we shall use time t in place of the inde-
pendent variable x of the preceding sections. Naturally, the difference operators are used as
defined, with t substituted for x .

We study first-order equations which can be put in the form

ẏ = f (y, t) (9.8.1)

where ẏ = dy/dt . If yi and ẏi at ti are known, then Eq. 9.8.1 can be used to give yi+1 and ẏi+1

at ti+1. We shall assume that the necessary condition is given at a particular time t0.

9.8.1 Taylor’s Method
A simple technique for solving a first-order differential equation is to use a Taylor series, which
in difference notation is

yi+1 = yi + h ẏi + h2

2
ÿi + h3

6

...
yi + · · · (9.8.2)

where h is the step size (ti+1 − ti ). This may require several derivatives at ti depending on the
order of the terms truncated. These derivatives are found by differentiating the equation

ẏ = f (y, t) (9.8.3)

Since we consider the function f to depend on the two variables y and t , and y is a function of
t , we must be careful when differentiating with respect to t . For example, consider ẏ = 2y2t .
Then to find ÿ we must differentiate a product to give

ÿ = 4y ẏt + 2y2 (9.8.4)

and, differentiating again,

...
y = 4ẏ2t + 4y ÿt + 8y ẏ (9.8.5)

Higher-order derivatives follow in a like manner.
By knowing an initial condition, y0 at t = t0, the first derivative ẏ0 is calculated from the

given differential equation and ÿ0 and 
...
y0 from equations similar to Eqs. 9.8.4 and 9.8.5. The
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value y1 at t = t1 then follows by putting i = 0 in Eq. 9.8.2 which is truncated appropriately.
The derivatives, at t = t1, are then calculated from Eqs. 9.8.3, 9.8.4, and 9.8.5. This procedure
is continued to the maximum t that is of interest for as many steps as required.

This method can also be used to solve higher-order equations simply by expressing the
higher-order equation as a set of first-order equations and proceeding with a simultaneous solu-
tion of the set of equations.

9.8.2 Euler’s Method
Euler’s method results from approximating the derivative

dy

dt
= lim

�t→0

�y

�t
(9.8.6)

by the difference equation

�y ∼= ẏ �t (9.8.7)

or, in difference notation

yi+1 = yi + h ẏi , e = O(h2) (9.8.8)

This is immediately recognized as the first-order approximation of Taylor’s method; thus, we
would expect that more accurate results would occur by retaining higher-order terms in Taylor’s
method using the same step size. Euler’s method is, of course, simpler to use, since we do not
have to compute the higher derivatives at each point. It could also be used to solve higher-order
equations, as will be illustrated later.

9.8.3 Adams’ Method
Adams’ method is one of the multitude of more accurate methods. It illustrates another technique
for solving first-order differential equations.

The Taylor series allows us to write

yi+1 = yi +
(

h D + h2 D2

2
+ h3 D3

6
+ · · ·

)
yi

= yi +
(

1 + h D

2
+ h2 D2

6
+ · · ·

)
h Dyi (9.8.9)

Let us neglect terms of order h5 and greater so that e = O(h5). Then, writing D in terms of ∇
(see Table 9.2), we have

yi+1 = yi + h

[
1 + 1

2

(
∇ + ∇2

2
+ ∇3

3
+ · · ·

)
+ 1

6
(∇2 + ∇3 + · · ·) + 1

24
(∇3 + · · ·)

]
Dyi

= yi + h

(
1 + ∇

2
+ 5∇2

12
+ 3∇3

8

)
Dyi , e = O(h5) (9.8.10)

Using the notation, Dyi = ẏi , the equation above can be put in the form (using Table 9.1)

yi+1 = yi + h

24
(55ẏi − 59ẏi−1 + 37ẏi−2 − 9ẏi−3), e = O(h5) (9.8.11)
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Adams’ method uses the expression above to predict yi+1 in terms of previous information. This
method requires several starting values, which could be obtained by Taylor’s or Euler’s methods,
usually using smaller step sizes to maintain accuracy. Note that the first value obtained by
Eq. 9.8.11 is y4. Thus, we must use a different technique to find y1, y2, and y3. If we were to use
Adams’ method with h = 0.1 we could choose Taylor’s method with e = O(h3) and use
h = 0.02 to find the starting values so that the same accuracy as that of Adams’ method results.
We then apply Taylor’s method for 15 steps and use every fifth value for y1, y2, and y3 to be used
in Adams’ method. Equation 9.8.11 is then used to continue the solution. The method is quite
accurate, since e = O(h5).

Adams’ method can be used to solve a higher-order equation by writing the higher-order
equation as a set of first-order equations, or by differentiating Eq. 9.8.11 to give the higher-order
derivatives. One such derivative is

ẏi+1 = ẏi + h

24
(55ÿi − 59ÿi−1 + 37ÿi−2 − 9ÿi−3) (9.8.12)

Others follow in like manner.

9.8.4 Runge–Kutta Methods
In order to produce accurate results using Taylor’s method, derivatives of higher order must be
evaluated. This may be difficult, or the higher-order derivatives may be inaccurate. Adams’
method requires several starting values, which may be obtained by less accurate methods, re-
sulting in larger truncation error than desirable. Methods that require only the first-order deriva-
tive and give results with the same order of truncation error as Taylor’s method maintaining the
higher-order derivatives, are called the Runge–Kutta methods. Estimates of the first derivative
must be made at points within each interval ti ≤ t ≤ ti+1. The prescribed first-order equation is
used to provide the derivative at the interior points. The Runge–Kutta method with e = O(h3)

will be developed and methods with e = O(h4) and e = O(h5) will simply be presented with no
development.

Let us again consider the first-order equation ẏ = f (y, t). All Runge–Kutta methods utilize
the approximation

yi+1 = yi + hφi (9.8.13)

where φi is an approximation to the slope in the interval ti < t ≤ ti+1. Certainly, if we used
φi = fi , the approximation for yi+1 would be too large for the curve in Fig. 9.7; and, if we used
φi = fi+1, the approximation would be too small. Hence, the correct φi needed to give the exact
yi+1 lies in the interval fi ≤ φi ≤ fi+1. The trick is to find a technique that will give a good
approximation to the correct slope φi . Let us assume that

φi = aξi + bηi (9.8.14)

where

ξi = f (yi , ti ) (9.8.15)

ηi = f (yi + qhξi , ti + ph) (9.8.16)

The quantities a, b, p, and q are constants to be established later.
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A good approximation for ηi is found by expanding in a Taylor series, neglecting higher-
order terms:

ηi = f (yi , ti ) + ∂ f

∂y
(yi , ti )�y + ∂ f

∂t
(yi , ti )�t + O(h2)

= fi + qh fi
∂ f

∂y
(yi , ti ) + ph

∂ f

∂t
(yi , ti ) + O(h2) (9.8.17)

where we have used �y = qh fi and �t = ph, as required by Eq. 9.8.16. Equation 9.8.13 then
becomes, using ξi = fi ,

yi+1 = yi + hφi

= yi + h(aξi + bηi )

= yi + h(a fi + bfi ) + h2

[
bq fi

∂ f

∂y
(yi , ti ) + bp

∂ f

∂t
(yi , ti )

]
+ O(h3) (9.8.18)

where we have substituted for ξi and ηi from Eqs. 9.8.15 and 9.8.17, respectively. Expand yi in
a Taylor series, with e = O(h3), so that

yi+1 = yi + h ẏi + h2

2
ÿi

= yi + h f (yi , ti ) + h2

2
ḟ (yi , ti ) (9.8.19)

Now, using the chain rule,

ḟ = ∂ f

∂y

∂y

∂t
+ ∂ f

∂t

∂t

∂t
= ẏ

∂ f

∂y
+ ∂ f

∂t
= f

∂ f

∂y
+ ∂ f

∂t
(9.8.20)

Thus, we have

yi+1 = yi + h f (yi , ti ) + h2

2

[
fi

∂ f

∂y
(yi , ti ) + ∂ f

∂t
(yi , ti )

]
(9.8.21)
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Comparing this with Eq. 9.8.18, we find that (equating terms in like powers of h)

a + b = 1, bq = 1
2 bp = 1

2 (9.8.22)

These three equations contain four unknowns, hence one of them is arbitrary. It is customary to
choose b = 1

2 or b = 1. For b = 1
2 , we have a = 1

2 , q = 1, and p = 1. Then our approximation
for yi+1 from Eq. 9.8.18 becomes

yi+1 = yi + h(aξi + bηi )

= yi + h

2
[ f (yi , ti ) + f (yi + h fi , ti + h)], e = O(h3) (9.8.23)

For b = 1, we have a = 0, q = 1
2 , and p = 1

2 , there results

yi+1 = yi + hηi

= yi + h f

(
yi + h

2
fi , ti + h

2

)
, e = O(h3) (9.8.24)

Knowing yi , ti , and ẏi = fi we can now calculate yi+1 with the same accuracy obtained using
Taylor’s method that required us to know ÿi .

The Runge–Kutta method, with e = O(h4), can be developed in a similar manner. First, the
function φi is assumed to have the form

φi = aξi + bηi + cζi (9.8.25)

where

ξi = f (yi , ti )

ηi = f (yi + phξi , ti + ph)

ζi = f [yi + shηi + (r − s)hξi , ti + rh]

(9.8.26)

Equating coefficients of the Taylor series expansions results in two arbitrary coefficients. The
common choice is a = 1

6 , b = 2
3 , and c = 1

6 . We then have

yi+1 = yi + h

6
(ξi + 4ηi + ζi ), e = O(h4) (9.8.27)

with

ξi = f (yi , ti )

ηi = f

(
yi + h

2
ξi , ti + h

2

)
ζi = f (yi + 2hηi − hξi , ti + h)

(9.8.28)

The Runge–Kutta method with e = O(h5) is perhaps the most widely used method for solv-
ing ordinary differential equations. The most popular method results in

yi+1 = yi + h

6
(ξi + 2ηi + 2ζi + ωi ), e = O(h5) (9.8.29)
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where

ξi = f (yi , ti )

ηi = f

(
yi + h

2
ξi , ti + h

2

)

ζi = f

(
yi + h

2
ηi , ti + h

2

)
ωi = f (yi + hζi , ti + h)

(9.8.30)

Another method with e = O(h5) is

yi+1 = yi + h

6
[ξi + (2 −

√
2)ηi + (2 +

√
2)ζi + ωi ], e = O(h5) (9.8.31)

where

ξi = f (yi , ti )

ηi = f

(
yi + h

2
ξi , ti + h

2

)

ζi = f

[
yi + h√

2
(ξi − ηi ) − h

2
(ξi − 2ηi ), ti + h

2

]

ωi = f

[
yi − h√

2
(ηi − ζi ) + hζi , ti + h

]
(9.8.32)

In all the Runge–Kutta methods above no information is needed other than the initial condi-
tion. For example, yi is approximated by using y0, ξ0, η0, and so on. The quantities are found
from the given equation with no differentiation required. These reasons, combined with the ac-
curacy of the Runge–Kutta methods, make them extremely popular.

9.8.5 Direct Method
The final method that will be discussed is seldom used because of its inaccuracy, but it is easily
understood and follows directly from the expressions for the derivatives as presented in Section
9.4. It also serves to illustrate the method used to solve partial differential equations. Let us again
use as an example the first-order differential equation

ẏ = 2y2t (9.8.33)

Then, from Table 9.3, with e = O(h2), and using forward differences, we have

ẏi = dyi

dt
= Dyi = 1

2h
(−yi+2 + 4yi+1 − 3yi ) (9.8.34)

Substitute this directly into Eq. 9.8.33, to obtain

1

2h
(−yi+2 + 4yi+1 − 3yi ) = 2y2

i t (9.8.35)

This is rearranged to give

yi+2 = 4yi+1 − (3 + 4hyi ti )yi , e = O(h2) (9.8.36)

Using i = 0, we can determine y2 if we know y1 and y0. This requires a starting technique to
find y1. We could use Euler’s method, since that also has e = O(h2).
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This method can easily be used to solve higher-order equations. We simply substitute from
Table 9.3 for the higher-order derivatives and find an equation similar to Eq. 9.8.36 to advance
the solution.

Let us now work some examples using the techniques of this section.
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EXAMPLE 9.8.1

Use Euler’s method to solve ẏ + 2yt = 4 if y(0) = 0.2. Compare with Taylor’s method, e = O(h3). Use
h = 0.1. Carry the solution out for four time steps.

� Solution

In Euler’s method we must have the first derivative at each point; it is given by

ẏi = 4 − 2yi ti

The solution is approximated at each point by

yi+1 = yi + h ẏi

For the first four steps there results

t0 = 0 : y0 = 0.2

t1 = 0.1 : y1 = y0 + h ẏ0 = 0.2 + 0.1 × 4 = 0.6

t2 = 0.2 : y2 = y1 + h ẏ1 = 0.6 + 0.1 × 3.88 = 0.988

t3 = 0.3 : y3 = y2 + h ẏ2 = 0.988 + 0.1 × 3.60 = 1.35

t4 = 0.4 : y4 = y3 + h ẏ3 = 1.35 + 0.1 × 3.19 = 1.67

Using Taylor’s method with e = O(h3), we approximate yi+1 using

yi+1 = yi + h ẏi + h2

2
ÿi .

Thus we see that we need ÿ. It is found by differentiating the given equation, providing us with

ÿi = −2ẏi ti − 2yi

Progressing in time as in Euler’s method, there results

t0 = 0 : y0 = 0.2

t1 = 0.1 : y1 = y0 + h ẏ0 + h2

2
ÿ0 = 0.2 + 0.1 × 4 + 0.005 × (−0.4) = 0.598

t2 = 0.2 : y2 = y1 + h ẏ1 + h2

2
ÿ1 = 0.598 + 0.1 × 3.88 + 0.005 × (−1.97) = 0.976

t3 = 0.3 : y3 = y2 + h ẏ2 + h2

2
ÿ2 = 1.32

t4 = 0.4 : y4 = y3 + h ẏ3 + h2

2
ÿ3 = 1.62
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EXAMPLE 9.8.2

Use a Runge–Kutta method with e = O(h5) and solve ẏ + 2yt = 4 if y(0) = 0.2 using h = 0.1. Carry out
the solution for two time steps.

� Solution

We will choose Eq. 9.8.29 to illustrate the Runge–Kutta method. The first derivative is used at various points
interior to each interval. It is found from

ẏi = 4 − 2yi ti

To find y1 we must know y0, ξ0, η0, ζ0, and ω0. They are

y0 = 0.2

ξ0 = 4 − 2y0t0 = 4 − 2 × 0.2 × 0 = 4

η0 = 4 − 2

(
y0 + h

2
ξ0

)(
t0 + h

2

)
= 4 − 2

(
0.2 + 0.1

2
× 4

)(
0.1

2

)
= 3.96

ζ0 = 4 − 2

(
y0 + h

2
η0

)(
t0 + h

2

)
= 4 − 2

(
0.2 + 0.1

2
× 3.96

)(
0.1

2

)
= 3.96

ω0 = 4 − 2(y0 + hζ0)(t0 + h) = 4 − 2(0.2 + 0.1 × 3.96)(0.1) = 3.88

Thus,

y1 = y0 + h

6
(ξ0 + 2η0 + 2ζ0 + ω0)

= 0.2 + 0.1

6
(3.96 + 7.92 + 7.92 + 3.88) = 0.595

To find y2 we calculate

ξ1 = 4 − 2y1t1 = 4 − 2 × 0.595 × 0.1 = 3.88

η1 = 4 − 2

(
y1 + h

2
ξ1

)(
t1 + h

2

)
= 4 − 2

(
0.595 + 0.1

2
× 3.88

)(
0.1 + 0.1

2

)
= 3.76

ζ1 = 4 − 2

(
y1 + h

2
η1

)(
t1 + h

2

)
= 4 − 2

(
0.595 + 0.1

2
× 3.76

)(
0.1 + 0.1

2

)
= 3.77

ω1 = 4 − 2(y1 + hζ1)(t1 + h) = 4 − 2(0.595 + 0.1 × 3.77)(0.1 + 0.1) = 3.61

Finally,

y2 = y1 + h

6
(ξ1 + 2η1 + 2ζ1 + ω1)

= 0.595 + 0.1

6
(3.88 + 7.52 + 7.54 + 3.61) = 0.971

Additional values follow. Note that the procedure above required no starting values and no higher-order
derivatives, but still e = O(h5).



These results are, of course, less accurate than those obtained using Taylor’s method or the
Runge–Kutta method in Examples 9.8.1 and 9.8.2.

9.8.6 Maple Applications
As indicated in earlier chapters, Maple’s dsolve can be used to solve differential equations.
This command has a numeric option that implements various high-powered numerical meth-
ods. The default method that is used is known as a Fehlberg fourth–fifth-order Runge–Kutta
method, indicated in Maple as rkf45. Among the other methods that Maple can use is an im-
plicit Rosenbrock third–fourth-order Runge–Kutta method, a Gear single-step extrapolation
method, and a Taylor series method.

To solve the initial-value problem in the three examples, we begin by defining the problem in
Maple:

>ivp:={diff(y(t),t)+2*y(t)*t=4, y(0)=0.2};

iv p :=
{(

d

dt
y(t)

)
+ 2y(t)t= 4,y(0)= 0.2

}
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EXAMPLE 9.8.3

Use the direct method to solve the equation ẏ + 2yt = 4 if y(0) = 0.2 using h = 0.1. Use forward differ-
ences with e = O(h2). Carry out the solution for four time steps.

� Solution

Using the direct method we substitute for ẏ = Dyi from Table 9.3 with e = O(h2). We have

1

2h
(−yi+2 + 4yi+1 − 3yi ) + 2yi ti = 4

Rearranging, there results

yi+2 = 4yi+1 − (3 − 4hti )yi − 8h

The first value that we can find with the formula above is y2. Hence, we must find y1 by some other technique.
Use Euler’s method to find y1. It is

y1 = y0 + h ẏ0 = 0.2 + 0.1 × 4 = 0.6

We now can use the direct method to find

y2 = 4y1 − (3 − 4ht0)y0 − 8h

= 4 × 0.6 − (3 − 0) × 0.2 − 8 × 0.1 = 1.0

y3 = 4y2 − (3 − 4ht1)y1 − 8h

= 4 × 1.0 − (3 − 4 × 0.1 × 0.1) × 0.6 − 8 × 0.1 = 1.424

y4 = 4y3 − (3 − 4ht2)y2 − 8h

= 4 × 1.424 − (3 − 4 × 0.1 × 0.2) × 1.0 − 8 × 0.1 = 1.976



Next, we will use the dsolve command. It is necessary to create a variable, in this case dsol,
that will contain instructions on how to find the solution for different points:

>dsol:=dsolve(ivp, numeric, output=listprocedure, range=0..1,
initstep=0.1):

Here are the meanings of the various options: The numeric option indicates that a numeric
method must be used. Since a specific method is not listed, the rkf45method is used as default.
The output option will allow us to use the output, as described below. By specifying a range
between 0 and 1, Maple will efficiently calculate the solution on that interval. The closest we can
come to defining h in Maple is by the initstep option. However, the numerical methods built
into Maple are adaptive, meaning that the step size can change as we progress, depending on the
behavior of the differential equation. By using initstep=0.1, we tell Maple to start its cal-
culation with h = 0.1, but it is possible that h changes by the end of the calculation. Therefore,
it is not advised to use Maple to check our work, other than to see if our calculations are close.

Once dsol is defined, we can define a function dsoly in this way:

>dsoly := subs(dsol, y(t)):

Now we can generate solution values and even plot the solution:

>dsoly(0); dsoly(0.1); dsoly(0.2); dsoly(0.3); dsoly(0.4);
0.20000000000000

0.595353931029481310

0.971162234023409399

1.31331480260581279

1.61020226494848462
>plot(dsoly(t), t=0..1);

1.0

2.0

1.5

0.5

0 0.2 0.4 0.6 0.8 1.0 t
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Problems

1. Estimate y(0.2) if ẏ + 2yt = 4 and y(0) = 0.2 using
Euler’s method. Use h = 0.05 and compare with
Example 9.8.1.

2. Estimate y(0.2) if ẏ + 2yt = 4 and y(0) = 0.2 using
Taylor’s method, e = O(h3). Use h = 0.05 and compare
with Example 9.8.1.



Estimate y(2) if 2ẏ y = t2 and y(0) = 2 using h = 0.4.
Compare with the exact solution. Use the given method.

3. Euler’s method.

4. Taylor’s method, e = O(h3).

5. Adams’ method.

6. Runge–Kutta method, e = O(h3). Use Eq. 9.8.24.

Find a numerical solution between t = 0 and t = 1 to
ẏ + 4yt = t2 if y(0) = 2. Use h = 0.2 and the given method.

7. Euler’s method.

8. Taylor’s method, e = O(h3).

9. Runge–Kutta method, e = O(h3). Use Eq. 9.8.24.

10. The direct method, e = O(h2).

Find y1 and y2 if ẏ2 + 2y = 4 and y(0) = 0 using h = 0.2
and the given method.

11. Taylor’s method, e = O(h3).

12. Taylor’s method, e = O(h4).

13. Runge–Kutta method, e = O(h3). Use Eq. 9.8.23.

14. Runge–Kutta method, e = O(h4).

15. Runge–Kutta method, e = O(h5).

16. Derive an “Adams’ method” with order of magnitude of
error O(h4).

Solve the differential equation ẏ2 + 2y = 4 if y(0) = 0. Use a
computer and carry out the solution to five significant figures
until t = 5. Use the given method.

17. Euler’s method.

18. Taylor’s method, e = O(h3).

19. Taylor’s method, e = O(h4).

20. Runge–Kutta method, e = O(h3). Use Eq. 9.8.23.

21. Runge–Kutta method, e = O(h4).

22. Runge–Kutta method, e = O(h5).

Use the dsolve command in Maple to solve, and plot the
solution.

23. The initial-value problem from Problems 3–6.

24. The initial-value problem from Problems 7–10.

25. The initial-value problem from Problems 11–15.

26. The initial-value problem from Problems 17–22.

27. Create a Maple worksheet that implements Euler’s
method, and use it to solve these problems:
(a) Problem 3 (b) Problem 7 (c) Problem 17

28. Create a Maple worksheet that implements Adams’
method, and use it to solve Problem 5.

29. Create a Maple worksheet that implements the Runga–
Kutta method with e = O(h3), and use it to solve these
problems:
(a) Problem 6 (b) Problem 9
(c) Problem 13 (d) Problem 20

30. Create a Maple worksheet that implements the Runga–
Kutta method with e = O(h4), and use it to solve these
problems:
(a) Problem 14 (b) Problem 21

31. Create a Maple worksheet that implements the Runga–
Kutta method with e = O(h4), and use it to solve these
problems:
(a) Problem 15 (b) Problem 22

Taylor’s method can be used to solve higher-order differential equations without representing
them as a set of first-order differential equations. Consider the third-order equation

...
y + 4t ÿ + 5y = t2 (9.9.1)

with three required initial conditions imposed at t = 0, namely, y0, ẏ0, and ÿ0. Thus, at t = 0 all
the necessary information is known and y1 can be found from the Taylor series, with e = O(h)3,

y1 = y0 + h ẏ0 + h2

2
ÿ0 (9.9.2)

To find y2 the derivatives ẏ1 and ÿ1 would be needed. To find them we differentiate the Taylor
series to get

ẏ1 = ẏ0 + h ÿ0 + h2

2

...
y0

ÿ1 = ÿ0 + h
...
y0 + h2

2

(
d4 y

dt4

)
0

(9.9.3)
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The third derivative, 
...
y0, is then found from Eq. 9.9.1 and (d4 y/dt4)0 is found by differentiating

Eq. 9.9.1. We can then proceed to the next step and continue through the interval of interest.
Instead of using Taylor’s method directly, we could have written Eq. 9.9.1 as the following

set of first-order equations:

ẏi = ui

u̇i = vi

v̇i = −4tivi − 5yi + t2
i

(9.9.4)

The last of these equations results from substituting the first two into Eq. 9.9.1. The initial con-
ditions specified at t = 0 are y0, u0 = ẏo , and v0 = ÿ0. If Euler’s method is used we have, at the
first step,

v1 = v0 + v̇0h = v0 + (−4t0v0 − 5y0 + t2
0 )h

u1 = u0 + u̇oh = u0 + v0h

y1 = y0 + ẏ0h = y0 + u0h, e = O(h2)

(9.9.5)

With the values at t0 = 0 known we can perform these calculations. This procedure is continued
for all additional steps. Other methods for solving the first-order equations can also be used.

We also could have chosen the direct method by expressing Eq. 9.9.1 in finite-difference
notation using the information contained in Table 9.3. For example, the forward-differencing
relationships could be used to express Eq. 9.9.1 as

yi+3 − 3yi+2 + 3yi+1 − yi + 4ti h(yi+2 − 2yi+1 + yi ) + 5yi h
3 = t2

i h3, e = O(h) (9.9.6)

This may be rewritten as

yi+3 = (3 − 4ti h)yi+2 − (3 − 8ti h)yi+1 + (1 − 4ti h − 5h3)yi + t2
i h3 (9.9.7)

For i = 0, this becomes, using the initial condition y = y0 at t0 = 0,

y3 = 3y2 − 3y1 + (1 − 5h3)y0 (9.9.8)

To find y3 we need the starting values y1 and y2. They may be found by using Euler’s method.
Equation 9.9.7 is then used until all values of interest are determined.

A decision that must be made when solving problems numerically is how small the step size
should be. The phenomenon being studied usually has a time scale T, or a length L, associated
with it. The time scale T is the time necessary for a complete cycle of a periodic phenomenon, or
the time required for a transient phenomenon to disappear (see Fig. 9.8). The length L may be
the distance between telephone poles or the size of a capillary tube. What is necessary is that
h � T or h � L . If the numerical results using the various techniques or smaller step sizes dif-
fer considerably, this usually implies that h is not sufficiently small.
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T

h

h � T

t

y

L

h

h � L

Figure 9.8 Examples of how the step size h should be chosen.
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Solve the differential equation ÿ − 2t y = 5 with initial conditions y(0) = 2 and ẏ(0) = 0. Use Adams’
method with h = 0.2 using Taylor’s method with e = O(h3) to start the solution.

� Solution

Adams’ method predicts the dependent variables at a forward step to be

yi+1 = yi + h

24
(55ẏi − 59ẏi−1 + 37ẏi−2 − 9ẏi−3)

Differentiating this expression results in

ẏi+1 = ẏi + h

24
(55ÿi − 59ÿi−1 + 37ÿi−2 − 9ÿi−3)

These two expressions can be used with i ≥ 3; hence, we need a starting technique to give y1, y2, and y3. We
shall use Taylor’s method with e = O(h3) to start the solution. Taylor’s method uses

yi+1 = yi + h ẏi + h2

2
ÿi

ẏi+1 = ẏi + h ÿi + h2

2

...
yi

This requires the second and third derivatives; the second derivative is provided by the given differential equa-
tion,

ÿi = 5 + 2ti yi

The third derivative is found by differentiating the above and is
...
yi = 2yi + 2ti ẏi

Taylor’s method provides the starting values.

t1 = 0.2: y1 = y0 + h ẏo + h2

2
ÿ0 = 2.1

ẏ1 = ẏ0 + h ÿ0 + h2

2

...
y0 = 1.08

t2 = 0.4: y2 = y1 + h ẏ1 + h2

2
ÿ1 = 2.43

ẏ2 = ẏ1 + h ÿ1 + h2

2

...
y1 = 2.34

t3 = 0.6: y3 = y2 + h ẏ2 + h2

2
ÿ2 = 3.04

ẏ3 = ẏ2 + h ÿ2 + h2

2

...
y2 = 3.86

EXAMPLE 9.9.1
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Now Adams’ method can be used to predict additional values. Several are as follows:

t4 = 0.8: y4 = y3 + h

24
(55ẏ3 − 59ẏ2 + 37ẏ1 − 9ẏ0) = 3.99

ẏ4 = ẏ3 + h

24
(55ÿ3 − 59ÿ2 + 37ÿ1 − 9ÿ0) = 5.84

t5 = 1.0: y5 = y4 + h

24
(55ẏ4 − 59ẏ3 + 37ẏ2 − 9ẏ1) = 5.41

ẏ5 = ẏ4 + h

24
(55ÿ4 − 59ÿ3 + 37ÿ2 − 9ÿ1) = 8.51

Other values can be found similarly.

EXAMPLE 9.9.1 (Continued)

EXAMPLE 9.9.2

Solve the differential equation ÿ − 2t y = 5 with initial conditions y(0) = 2 and ẏ(0) = 0. Use the direct
method with e = O(h3), using forward differences and h = 0.2. Start the solution with the values from
Example 9.9.1.

� Solution

We write the differential equation in difference form using the relationships of Table 9.3. There results

1

h2
(−yi+3 + 4yi+2 − 5yi+1 + 2yi ) − 2ti yi = 5

This is rearranged as

yi+3 = 4yi+2 − 5yi+1 + (2 − 2ti h
2)yi − 5h2

Letting i = 0, the first value that we can find from the preceding equation is y3. Thus, we need to use a start-
ing method to find y1 and y2. From Example 9.9.1 we have y1 = 2.1 and y2 = 2.43. Now we can use the
equation of this example to find y3. It is, letting i = 0,

y3 = 4y2 − 5y1 + (2 − 2t0h2)y0 − 5h2 = 3.02

Two additional values are found as follows:

y4 = 4y3 − 5y2 + (2 − 2t1h2)y1 − 5h2 = 3.90

y5 = 4y4 − 5y3 + (2 − 2t2h2)y2 − 5h2 = 5.08

This method is, of course, less accurate than the method of Example 9.9.1. It is however, easier to use, and if
a smaller step size were chosen, more accurate numbers would result.

↗
0
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Write a computer program to solve the differential equation ÿ − 2t y = 5 using Adams’ method with h = 0.04
if ẏ(0) = 0 and y(0) = 2. Use Taylor’s method with e = O(h3) using h = 0.02 to start the solution.

� Solution

The language to be used is Fortran. The control statements (the first few statements necessary to put the
program on a particular computer) are usually unique to each computer and are omitted here. The computer
program and solution follow:

PROGRAM DIFFEQ(INPUT,OUTPUT)
DIMENSION Y(48),DY(48),D2Y(48)
PRINT 30

30      FORMAT (1H1, 31X,*.*,9X,*..*,/,* I*5X,*T*,13X,3(*Y(T)*, 6X))
Y(1) = 2.0
H = 0.02
DY(1) = 0.0
D2Y(1) = 5.0
T = 0.0

C       SOLVES D2Y - 2TY = 5 FOR Y HAVING THE INITIAL VALUE OF 2 AND
C       DY BEING INITIALLY EQUAL TO 0.
C       FIRST USE TAYLORS METHOD TO FIND THE STARTING VALUES.

DO 10 I=1,6
T = T + 0.02
Y(I+1) = Y(I) + H*DY(I) + (H*H/2.0)*D2Y(I)
DY(I+1) = DY(I)+H*D2Y(I) + (H*H/2.)*(2.*T*DY(I) + 2.*Y(I))
D2Y(I+1) = 5.0 + 2.0*T*Y(I+1)

10      CONTINUE
T = 0.0
DO 15 I = 1,4
Y(I) = Y(2*I-1)
DY(I) = DY(2*I-1)
D2Y(I) = D2Y(2*I-1)
PRINT 40,I,T,Y(I),DY(I),D2Y(I)
T = T + 0.04

15      CONTINUE
T = 0.16
H = 0.04

C       NOW USE ADAMS METHOD
DO 20 I=4,44
Y(I+1) = Y(I) + (H/24.)*(55.*DY(I) - 59.*DY(I-1) + 37.*DY(I-2)
1         -9.*DY(I-3))
DY(I+1) = DY(I) + (H/24.)*(55.*D2Y(I) - 59.*D2Y(I-1) +
1          37.*D2Y(I-2) - 9.*D2Y(I-3))
D2Y(I+1) = 5.0 + 2.0*T*Y(I+1)
II = I + 1
PRINT 40,II,T,Y(I+1),DY(I+1),D2Y(I+1)

40      FORMAT (13,4X,F5.2,,5X,3F10.4)
T = T + 0.04

20      CONTINUE
END

EXAMPLE 9.9.3
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i t y(t) ẏ(t) ÿ(t)

24 0.92 4.8320 7.4103 13.8908
25 0.96 5.1398 7.9852 14.8683
26 1.00 5.4713 8.6011 15.9427
27 1.04 5.8284 9.2620 17.1231
28 1.08 6.2129 9.9725 18.4200
29 1.12 6.6269 10.7373 19.8443
30 1.16 7.0727 11.5618 21.4087
31 1.20 7.5527 12.4520 23.1266
32 1.24 8.0698 13.4142 25.0131
33 1.28 8.6269 14.4555 27.0849
34 1.32 9.2274 15.5836 29.3603
35 1.36 9.8749 16.8072 31.8596
36 1.40 10.5733 18.1356 34.6054
37 1.44 11.3272 19.5792 37.6224
38 1.48 12.1413 21.1493 40.9384
39 1.52 13.0210 22.8586 44.5838
40 1.56 13.9720 24.7208 48.5927
41 1.60 15.0009 26.7513 53.0028
42 1.64 16.1146 28.9668 57.8557
43 1.68 17.3209 31.3861 63.1982
44 1.72 18.6284 34.0298 69.0816
45 1.76 20.0465 36.9205 75.5637

i t y(t) ẏ(t) ÿ(t)

1 0.00 2.0000 0.0000 5.0000
2 0.04 2.0040 0.2032 5.1603
3 0.08 2.0163 0.4129 5.3226
4 0.12 2.0371 0.6291 5.4889
5 0.16 2.0667 0.8520 5.6614
6 0.20 2.1054 1.0821 5.8422
7 0.24 2.1534 1.3196 6.0336
8 0.28 2.2110 1.5649 6.2382
9 0.32 2.2787 1.8188 6.4584

10 0.36 2.3567 2.0819 6.6968
11 0.40 2.4454 2.3548 6.9563
12 0.44 2.5452 2.6387 7.2398
13 0.48 2.6566 2.9344 7.5504
14 0.52 2.7801 3.2431 7.8913
15 0.56 2.9163 3.5661 8.2662
16 0.60 3.0656 3.9049 8.6787
17 0.64 3.2289 4.2610 9.1330
18 0.68 3.4067 4.6361 9.6332
19 0.72 3.6000 5.0323 10.1841
20 0.76 3.8096 5.4516 10.7906
21 0.80 4.0365 5.8964 11.4584
22 0.84 4.2817 6.3691 12.1933
23 0.88 4.5464 6.8728 13.0017

EXAMPLE 9.9.3 (Continued)

9.9.1 Maple Applications
The dsolve command with the numeric option will also handle higher-order equations.
Behind the scenes, Maple will convert a higher-order equation into a system of first-order
equations, by introducing new variables, in the same manner as Eq. 9.9.4 was derived.

The solution of the initial-value problem in Example 9.9.2, using the taylorseries
method, can be found with these commands:

>ivp:={diff(y(t), t$2)-2*y(t)*t=5, y(0)=2, D(y)(0)=0};

iv p :=
{(

d2

dt2
y(t)

)
− 2y(t)t= 5,y(0)= 2,D(y)(0)= 0

}

>dsol:= dsolve(ivp, numeric, output=listprocedure, range=0..1,
method=taylorseries):

>dsoly := subs(dsol,y(t)):



Then, as in the previous section, we can generate values of the solution:

>dsoly(0); dsoly(0.2); dsoly(0.4); dsoly(0.6); dsoly(0.8);

2.

2.1054162012704

2.4454148933020

3.0656766384726

4.0365831595705

Note that these values are similar to those calculated earlier.
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Problems

1. Compare the values for y4 and y5 from Adams’ method in
Example 9.9.1 with the values found by extending
Taylor’s method.

2. Write the differential equation of Example 9.9.2 in cen-
tral difference form with e = O(h2) and show that

yi+1 = 5h2 + 2(1 + ti h
2)yi − yi−1

Use this expression and find y2, y3, and y4. Compare with
the results of Example 9.9.2.

Estimate y(t) between t = 0 and t = 2 for ÿ + y = 0 if
y(0) = 0 and ẏ(0) = 4. Use five steps with the given
method.

3. Euler’s method.

4. Taylor’s method, e = O(h3).

5. Runge–Kutta method, e = O(h3).

6. The direct method, e = O(h2).

Use five steps and estimate y(t) between t = 0 and t = 1 for
ÿ + 2ẏ2 + 10y = 0 if y(0) = 0 and ẏ(0) = 1.0. Use the given
method.

7. Euler’s method.

8. Taylor’s method, e = O(h3).

9. Runge–Kutta method, e = O(h3).

Solve the differential equation ÿ + 0.2ẏ2 + 10y = 10 sin 2t if
y(0) = 0 and ẏ(0) = 0. With a computer, find a solution to
four significant digits from t = 0 to t = 8 using the given
method.

10. Euler’s method.

11. Taylor’s method, e = O(h3).

12. Adams’ method.

13. Runge–Kutta method, e = O(h3).

14. Runge–Kutta method, e = O(h4).

15. Runge–Kutta method, e = O(h5).

16. Determine the maximum height a 0.2-kg ball reaches if it
is thrown vertically upward at 50 m/s. Assume the drag
force to be given by 0.0012ẏ2. Does the equation
ÿ + 0.006ẏ2 + 9.81 = 0 describe the motion of the ball?
Solve the problem with one computer program using
Euler’s method, Taylor’s method with e = O(h3), and
Adams’ method. Vary the number of steps so that three
significant figures are assured. (To estimate the time re-
quired, eliminate the ẏ2 term and find tmax. Using this ap-
proximation an appropriate time step can be chosen.)
Can you find an exact solution to the given equation?

17. Work Problem 16, but in addition calculate the speed that
the ball has when it again reaches y = 0. Note that the dif-
ferential equation must change on the downward flight.

Use the dsolve command in Maple to solve, and plot the
solution to

18. The initial-value problem from Problems 3–6.

19. The initial-value problem from Problems 7–9.

20. The initial-value problem from Problems 10–15.

21. Create a Maple worksheet that implements Euler’s
method for second-order equations, and use it to solve
these problems:

(a) Problem 3 (b) Problem 5 (c) Problem 10



The initial-value problem for which all the necessary conditions are given at a particular point or
instant, was considered in the previous section. Now we shall consider problems for which the
conditions are given at two different positions. For example, in the hanging string problem, in-
formation for the second-order describing equation is known at x = 0 and x = L . It is a
boundary-value problem. Boundary-value problems are very common in physical applications;
thus, several techniques to solve them will be presented.

9.10.1 Iterative Method
Suppose that we are solving the second-order differential equation

ÿ = 3x ẏ + (x2 − 1)y = sin
πx

4
(9.10.1)

This requires that two conditions be given; let them be y = 0 at x = 0, and y = 0 at x = 6.
Because the conditions are given at two different values of the independent variable, it is a
boundary-value problem. Now, if we knew ẏ at x = 0 it would be an initial-value problem and
Taylor’s (or any other) method could be used. So, let’s assume a value for ẏ0 and proceed as
though it is an initial-value problem. Then, when x = 6 is reached, the boundary condition there
requires that y = 0. Of course, in general, this condition will not be satisfied and the procedure
must be repeated with another guess for ẏ0. An interpolation (or extrapolation) scheme could be
employed to zero in on the correct ẏ0. The procedure works for both linear and nonlinear
equations.

An interpolation scheme that can be employed when using a computer is derived by using a
Taylor series with e = O(h2). We consider the value of y at x = 6, let’s call it yN , to be the de-
pendent variable and ẏ0 to be the independent variable. Then, using ẏ(1)

0 and ẏ(2)
0 to be the first

two guesses leading to the values y(1)
N and y(2)

N , respectively, we have

y(3)
N = y(2)

N + y(2)
N − y(1)

N

ẏ(2)
0 − ẏ(1)

0

[
ẏ(3)

0 − ẏ(2)
0

]
(9.10.2)

We set y(3)
N equal to zero and calculate a new guess to be

ẏ(3)
0 = ẏ(2)

0 − ẏ(2)
0 − ẏ(1)

0

y(2)
N − y(1)

N

y(2)
N (9.10.3)

Using this value for ẏ(3)
0 , we calculate y(3)

N . If it is not sufficiently close to zero, we go through

another iteration and find a new value y(4)
N . Each additional value should be nearer zero and the

iterations are stopped when yN is sufficiently small.

9.10.2 Superposition
For a linear equation we can use the principle of superposition. Consider Eq. 9.10.1 with the
same boundary conditions. Completely ignore the given boundary conditions and choose any
arbitrary set of initial conditions, for example, y(1)(0) = 1 and ẏ(1)(0) = 0. This leads to a so-
lution y(1)(x). Now, change the initial conditions to y(2)(0) = 0 and ẏ(2)(0) = 1. The solution

9.10 BOUNDARY-VALUE PROBLEMS—ORDINARY
DIFFERENTIAL EQUATIONS
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y(2)(x) would follow. The solutions are now superposed, made possible because of the linear
equation, to give the desired solution as

y(t) = c1 y(1)(x) + c2 y(2)(x) (9.10.4)

The actual boundary conditions are then used to determine c1 and c2.
If a third-order equation is being solved, then three arbitrary, but different, sets of initial con-

ditions lead to three constants to be determined by the boundary conditions. The method for
solving the initial-value problems could be any of those described earlier.

A word of caution is necessary. We must be careful when we choose the two sets of initial
conditions. They must be chosen so that the two solutions generated are, in fact, independent.

9.10.3 Simultaneous Equations
Let’s write Eq. 9.10.1 in finite-difference form for each step in the given interval. The equations
are written for each value of i and then all the equations are solved simultaneously. There are a
sufficient number of equations to equal the number of unknowns yi . In finite-difference form,
using forward differences with e = O(h), Eq. 9.10.1 is

1

h2
(yi+2 − 2yi+1 + yi ) + 3xi

h
(yi+1 − yi ) + (

x2
i − 1

)
yi = sin

π

4
xi (9.10.5)

Now write the equation for each value of i, i = 0 to i = N . Using x0 = 0, x1 = h, x2 = 2h, and
so on, and choosing h = 1.0 so that N = 6, there results

y2 − 2y1 + y0 + 3x0(y1 − y0) + (
x2

0 − 1
)
y0 = sin

π

4
x0

y3 − 2y2 + y1 + 3x1(y2 − y1) + (
x2

1 − 1
)
y1 = sin

π

4
x1

y4 − 2y3 + y2 + 3x2(y3 − y2) + (
x2

2 − 1
)
y2 = sin

π

4
x2

y5 − 2y4 + y3 + 3x3(y4 − y3) + (
x2

3 − 1
)
y3 = sin

π

4
x3

y6 − 2y5 + y4 + 3x4(y5 − y4) + (
x2

4 − 1
)
y4 = sin

π

4
x4

(9.10.6)

Now, with y0 = y6 = 0 and x0 = 0, there results

−2y1 + y2 = 0

−2y1 + y2 + y3 = sin
π

4

−2y2 + 4y3 + y4 = sin
π

2

7y4 + y5 = sin
3π

4
4y4 + 10y5 = 0

(9.10.7)

There are five equations which can be solved to give the five unknowns y1, y2, y3, y4, and y5. If
the number of steps is increased to 100, there would be 99 equations to solve simultaneously. A
computer would then be used to solve the algebraic equations.
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Equations 9.10.7 are often written in matrix form as




−2 1 0 0 0
−2 1 1 0 0

0 −2 4 1 0
0 0 0 7 1
0 0 0 4 10







y1

y2

y3

y4

y5


 =




0
sin π/4
sin π/2
sin 3π/4

0


 (9.10.8)

or, using matrix notation, as

Ay = B (9.10.9)

The solution is written as

y = A−1b (9.10.10)

where A−1 is the inverse of A. The solution can be found using a variety of techniques (see, for
instance, Chapter 4).
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Solve the boundary-value problem defined by the differential equation ÿ − 10y = 0 with boundary conditions
y(0) = 0.4 and y(1.2) = 0. Choose six steps to illustrate the procedure using Taylor’s method with
e = O(h3).

� Solution

The superposition method will be used to illustrate the numerical solution of the linear equation. We can
choose any arbitrary initial conditions, so choose, for the first solution y(1)

0 = 1 and ẏ(1)
0 = 0. The solution then

proceeds as follows for the y(1) solution. Using h = 0.2 and 
...
y = 10ẏ, we have

y0 = 1.0, ÿ0 = 10y0 = 10

ẏ0 = 0.0,
...
y0 = 10ẏ0 = 0

y1 = y0 + h ẏ0 + h2

2
ÿ0 = 1.2

ẏ1 = ẏ0 + h ÿ0 + h2

2

...
y0 = 2.0

y2 = y1 + h ẏ1 + h2

2
ÿ1 = 1.84

ẏ2 = ẏ1 + h ÿ1 + h2

2

...
y1 = 4.8

y3 = 3.17, y4 = 5.69, y5 = 10.37, y6 = 18.96

ẏ3 = 9.44, ẏ4 = 17.7, ẏ5 = 32.6

EXAMPLE 9.10.1
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To find y(2) we choose a different set of initial values, say y(2)
0 = 0.0 and ẏ(2)

0 = −1. Then proceeding as
before we find y(2) to be given by

y0 = 0.0

ẏ0 = −1.0

y1 = y0 + h ẏ0 + h2

2
ÿ0 = −0.2

ẏ1 = ẏ0 + h ÿ0 + h2

2

...
y0 = −1.2

y2 = −0.48, y3 = −0.944, y4 = −1.767, y5 = −3.26, y6 = −5.98

ẏ2 = −1.84, ẏ3 = −3.17, ẏ4 = −5.69, ẏ5 = −10.36

Combine the two solutions with the usual superposition technique and obtain

y = Ay(1) + By(2)

The actual boundary conditions require that

0.4 = A(1.0) + B(0.0)

0 = A(18.96) + B(−8.04)

Thus,

A = 0.4 and B = 1.268

The solution is then

y = 0.4y(1) + 1.268y(2)

The solution with independent solutions y(1) and y(2) are tabulated below.

x 0 0.2 0.4 0.6 0.8 1.0 1.2

y(1) 1.0 1.2 1.84 3.17 5.69 10.37 18.96

y(2) 0.0 −0.20 −0.48 −0.944 −1.767 3.26 −5.98

y 0.4 0.291 0.127 0.071 0.035 0.014 0.0

EXAMPLE 9.10.1 (Continued)

Problems

For each of the problems in this set, use Maple to implement
the method requested.

Choose a different set of initial conditions for y(2) in
Example 9.10.1 and show that the combined solution remains
essentially unchanged.

1. Choose y(2)
0 = 1 and ẏ(2) = 1.

2. Choose y(2)
0 = 0 and ẏ(2) = 1.

3. Select your own initial conditions.

4. Solve the problem of Example 9.10.1 to five significant
figures using the superposition method with Taylor’s
method e = O(h3).



A bar connects two bodies of temperatures 150◦C and 0◦C, re-
spectively. Heat is lost by the surface of the bar to the 30◦C
surrounding air and is conducted from the hot to the colder
body. The describing equation is T ′′ − 0.01(T − 30) = 0.
Calculate the temperature in the 2-m-long bar. Use the super-
position method with five steps. Use the given method.

5. Euler’s method.

6. Taylor’s method, e = O(h3).

Assume a tight telephone wire and show that the equation de-
scribing y(x) is d2 y/dx2 − b = 0. Express b in terms of the
tension P in the wire, the mass per unit length m of the wire,
and gravity g. The boundary conditions are y = 0 at x = 0
and x = L . Solve the problem numerically with b =

10−4 m−1 and L = 20 m and solve for the maximum sag. Five
steps are sufficient to illustrate the procedures using Euler’s
method. Use the given method.

7. The iterative method.

8. The superposition method.

9. Assume a loose hanging wire; then d2 y/dx2 − b[1+
(dy/dx)2]1/2 = 0 describes the resulting curve, a cate-
nary. Can the superposition method be used? Using the
iterative method, determine the maximum sag if b =
10−3 m−1. The boundary conditions are y = 0 at x = 0
and y = 40 m at x = 100 m. Find an approximation to
the minimum number of steps necessary for accuracy of
three significant figures.

In numerical calculations the calculation of the dependent variable is dependent on all previous cal-
culations made of this quantity, its derivatives, and the step size. Truncation and round-off errors
are contained in each calculated value. If the change in the dependent variable is small for small
changes in the independent variable, then the solution is stable. There are times, however, when
small step changes in the independent variable lead to large changes in the dependent variable so
that a condition of instability exists. It is usually possible to detect such instability, since such re-
sults will usually violate physical reasoning. It is possible to predict numerical instabilities for lin-
ear equations. It is seldom done, though, since by changing the step size or the numerical method,
instabilities can usually be avoided. With the present capacity of high-speed computers, stability
problems, if ever encountered, can usually be eliminated by using smaller and smaller step sizes.

When solving partial differential equations with more than one independent variable, stabil-
ity may be influenced by controlling the relationship between the step sizes chosen. For example,
in solving a second-order equation with t and x the independent variables, in which a numerical
instability results, attempts would be made to eliminate the instability by changing the relation-
ship between �x and �t . If this is not successful, a different numerical technique may eliminate
the instability.

There are problems, though, for which direct attempts at a numerical solution lead to numer-
ical instability, even though various step sizes are attempted and various methods utilized. This
type of problem can often be solved by either using multiple precision5 or by employing a spe-
cially devised technique.

In Chapter 8 an analytical technique was presented for solving partial differential equations, the
separation-of-variables technique. When a solution to a partial differential equation is being
sought, one should always attempt to separate the variables even though the ordinary differen-
tial equations that result may not lead to an analytical solution directly. It is always advisable to
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9.11 NUMERICAL STABILITY
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5The precision of a computer is a measure of the number of digits that can be handled simultaneously by the
computer’s arithmetic register. Multiple-precision calculations involve manipulating numbers whose size ex-
ceeds the precision of the arithmetic register. The price paid for keeping more significant digits is a slowdown
in computation time and a loss of storage capacity.



solve a set of ordinary differential equations numerically instead of the original partial differen-
tial equation. There are occasions, however, when either the equation will not separate or the
boundary conditions will not admit a separated solution. For example, in the heat-conduction
problem the general solution, assuming the variables separate, for the long rod was

T (x, t) = e−kβ2t [A sin βx + B cos βx] (9.12.1)

We attempt to satisfy the end condition that T (0, t) = 100t , instead of T (0, t) = 0 as was used
in Chapter 8. This requires that

T (0, t) = 100t = Be−kβ2t (9.12.2)

The constant B cannot be chosen to satisfy this condition; hence, the solution 9.12.1 is not ac-
ceptable. Instead, we turn to a numerical solution of the original partial differential equation.

9.12.1 The Diffusion Equation
We can solve the diffusion problem numerically for a variety of boundary and initial conditions.
The diffusion equation for a rod of length L, assuming no heat losses from the lateral surfaces, is

∂T

∂t
= a

∂2T

∂x2
(9.12.3)

Let the conditions be generalized so that T (0, t) = f (t), T (L , t) = g(t), T (x, 0) = F(x). The
function T (x, t) is written in difference notation as Ti j and represents the temperature at x = xi

and t = tj . If we hold the time fixed (this is done by keeping j unchanged), the second derivative
with respect to x becomes, using a central difference method with e = O(h2) and referring to
Table 9.3,

∂2T

∂x2
(xi , tj ) = 1

h2
(Ti+1, j − 2Ti, j + Ti−1, j ) (9.12.4)

where h is the step size �x .
The time step �t is chosen as k. Then, using forward differences on the time derivative, with

e = O(k),

∂T

∂t
(xi , tj ) = 1

k
(Ti, j+1 − Ti, j ) (9.12.5)

The diffusion equation 9.12.3 is then written, in difference notation,

1

k
(Ti, j+1 − Ti, j ) = a

h2
(Ti+1, j − 2Ti, j + Ti−1, j ) (9.12.6)

or, by rearranging,

Ti, j+1 = ka

h2
(Ti+1, j − 2Ti, j + Ti−1, j ) + Ti, j (9.12.7)

The given boundary conditions, in difference notation, are

T0, j = f (tj ), TN , j = g(tj ), Ti,0 = F(xi ) (9.12.8)

where N is the total number of x steps.
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A stability analysis, or some experimenting on the computer, will show that a numerical
solution is unstable unless the time step and displacement step satisfy the criterion ak/h2 ≤ 1

2 .
The solution proceeds by determining the temperature at t0 = 0 at the various x locations;

that is, T0,0, T1,0, T2,0, T3,0, . . . , TN ,0 from the given F(xi ). Equation 9.12.7 then allows us to
calculate, at time t1 = k , the values T0,1, T1,1, T2,1, T3,1, . . . , TN ,1 . This process is continued to
t2 = 2k to give T0,2, T1,2, T2,2, T3,2, . . . , TN ,2 and repeated for all additional tj ’s of interest. By
choosing the number N of x steps sufficiently large, a satisfactory approximation to the actual
temperature distribution should result.

The boundary conditions and the initial condition are given by the conditions 9.12.8. If an in-
sulated boundary condition is imposed at x = 0, then ∂T/∂x(0, t) = 0. Using a forward differ-
ence this is expressed by

1

h
(T1, j − T0, j ) = 0 (9.12.9)

or

T1, j = T0, j (9.12.10)

For an insulated boundary at x = L , using a backward difference, we would have

TN , j = TN−1, j (9.12.11)

A 1-m-long, laterally insulated rod, originally at 60◦C, is subjected at one end to 500◦C. Estimate the temper-
ature in the rod as a function of time if the ends are held at 500◦C and 60◦C, respectively. The diffusivity is
2 × 10−6 m2/s. Use five displacement steps with a time step of 4 ks.

� Solution

The diffusion equation describes the heat-transfer phenomenon, hence the difference equation 9.12.7 is used
to estimate the temperature at successive times. At time t = 0 we have

T0,0 = 500, T1,0 = 60, T2,0 = 60, T3,0 = 60, T4,0 = 60, T5,0 = 60

The left end will be maintained at 500◦C and the right end at 60◦C. These boundary conditions are expressed
in difference form as T0, j = 500 and T5, j = 60. Using Eq. 9.12.7 we have, at t = 4 ks,

Ti,1 = ak

h2
(Ti+1,0 − 2Ti,0 + Ti−1,0) + Ti,0

Letting i assume the values 1, 2, 3, and 4 successively, we have with ak/h2 = 1
5 ,

T1,1 = 1
5 (T2,0 − 2T1,0 + T0,0) + T1,0 = 148

T2,1 = 1
5 (T3,0 − 2T2,0 + T1,0) + T2,0 = 60

T3,1 = T4,1 = T5,1 = 60

EXAMPLE 9.12.1



9.12.2 The Wave Equation
The same technique can be applied to solve the wave equation as was used in the solution of the
diffusion equation. We express the wave equation

∂2u

∂t2
= a2 ∂2u

∂x2
(9.12.12)

using central differences for both derivatives, as

1

k2
(ui, j+1 − 2ui, j + ui, j−1) = a2

h2
(ui+1, j − 2ui, j + ui−1, j ) (9.12.13)
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At t = 8 ks, there results

Ti,2 = 1
5 (Ti+1,1 − 2Ti,1 + Ti−1,1) + Ti,1

For the various values of i, we have

T1,2 = 1
5 (T2,1 − 2T1,1 + T0,1) + T1,1 = 201

T2,2 = 1
5 (T3,1 − 2T2,1 + T1,1) + T2,1 = 78

T3,2 = T4,2 = T5,2 = 60

At t = 12 ks, the temperature is

Ti,3 = 1
5 (Ti+1,2 − 2Ti,2 + Ti−1,2) + Ti,2

yielding

T1,3 = 236, T2,3 = 99, T3,3 = 64, T4,3 = T5,3 = 60

At t = 16 ks, there results

Ti,4 = 1
5 (Ti+1,3 − 2Ti,3 + Ti−1,3) + Ti,3,

giving

T1,4 = 261, T2,4 = 119, T3,4 = 70, T4,4 = 61, T5,4 = 60

At t = 20 ks, we find that

T1,5 = 281, T2,5 = 138, T3,5 = 78, T4,5 = 63, T5,5 = 60

Temperatures at future times follow. The temperatures will eventually approach a linear distribution as pre-
dicted by the steady-state solution.

EXAMPLE 9.12.1 (Continued)



This is rearranged as

ui, j+1 = a2k2

h2
(ui+1, j − 2ui, j + ui−1, j ) + 2ui, j − ui, j−1 (9.12.14)

The boundary and initial conditions are

u(0, t) = f (t), u(L , t) = g(t)

u(x, 0) = F(x),
∂u

∂t
(x, 0) = G(x)

(9.12.15)

which, if written in difference notation, are

u0, j = f (tj ), uN , j = g(tj )

ui,0 = F(xi ), ui,1 = ui,0 + kG(xi )
(9.12.16)

where N is the total number of x steps. The values ui,0 and ui,1 result from the initial conditions.
The remaining values ui,2, ui,3, ui,4, etc., result from Eq. 9.12.14. Hence we can find the numer-
ical solution for u(x, t). Instability is usually avoided in the numerical solution of the wave
equation if ak/h ≤ 1.
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A tight 6-m-long string is set in motion by releasing the string from rest, as shown in the figure. Find an appro-
priate solution for the deflection using increments of 1 m and time steps of 0.01 s. The wave speed is 100 m/s.

� Solution

The initial displacement is given by

u(x, 0) =
{

0.1x 0 < x < 3
0.1(6 − x) 3 < x < 6

In difference form we have

u0,0 = 0, u1,0 = 0.1, u2,0 = 0.2, u3,0 = 0.3, u4,0 = 0.2,

u5,0 = 0.1, u6,0 = 0

The initial velocity is zero since the string is released from rest. Using the appropriate condition listed in
Eq. 9.12.16 with G(x) = 0, we have at t = 0.01,

u0,1 = 0, u1,1 = 0.1, u2,1 = 0.2, u3,1 = 0.3, u4,1 = 0.2,

u5,1 = 0.1, u6,1 = 0

Now, we can use Eq. 9.12.14, which marches the solution forward in time and obtain, with a2k2/h2 = 1,

ui, j+1 = ui+1, j + ui−1, j − ui, j−1

3 m 3 m

0.3 m

x

EXAMPLE 9.12.2
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9.12.3 Laplace’s Equation
It is again convenient if Laplace’s equation

∂2T

∂x2
+ ∂2T

∂y2
= 0 (9.12.17)

is written in difference notation using central differences. It is then

1

h2
(Ti+1, j − 2Ti, j + Ti−1, j ) + 1

k2
(Ti, j+1 − 2Ti, j + Ti, j−1) = 0 (9.12.18)

This yields the following solution.
At t = 0.02:

u0,2 = 0

u1,2 = u2,1 + u0,1 − u1,0 = 0.2 + 0 − 0.1 = 0.1

u2,2 = u3,1 + u1,1 − u2,0 = 0.3 + 0.1 − 0.2 = 0.2

u3,2 = u4,1 + u2,1 − u3,0 = 0.2 + 0.2 − 0.3 = 0.1

u4,2 = u5,1 + u3,1 − u4,0 = 0.1 + 0.3 − 0.2 = 0.2

u5,2 = u6,1 + u4,1 − u5,0 = 0 + 0.2 − 0.1 = 0.1

u6,2 = 0

At t = 0.03:

u0,3 = 0, u1,3 = 0.1, u2,3 = 0.0, u3,3 = 0.1, u4,3 = 0.0,

u5,3 = 0.1, u6,3 = 0

At t = 0.04:

u0,4 = 0, u1,4 = −0.1, u2,4 = 0.0, u3,4 = −0.1, u4,4 = 0.0,

u5,4 = −0.1, u6,4 = 0

At t = 0.05:

u0,5 = 0, u1,5 = −0.1, u2,5 = −0.2, u3,5 = −0.1, u4,5 = −0.2,

u5,5 = −0.1, u6,5 = 0

At t = 0.06:

u0,6 = 0, u1,6 = −0.1, u2,6 = −0.2, u3,6 = −0.3, u4,6 = −0.2,

u5,6 = −0.1, u6,6 = 0

Two observations are made from the results above. First, the solution remains symmetric, as it should. Second,
the numerical results are significantly in error; it should be noted, however, that at t = 0.06 s we have com-
pleted one half a cycle. This is exactly as it should be, since the frequency is a/2L cycles/second (see Fig.
8.11), and thus it takes 2L/a = 0.12 s to complete one cycle. Substantially smaller length increments and time
steps are necessary to obtain a solution that approximates the actual solution. An acceptable solution would re-
sult for this problem if we used 100 length increments and a time step size chosen so that ak/h = 1.

EXAMPLE 9.12.2 (Continued)



Solving for Ti , j , and letting h = k (which is not necessary but convenient), we have

Ti, j = 1

4
[Ti, j+1 + Ti, j−1 + Ti+1, j + Ti−1, j ] (9.12.19)

Using central differences, we see that the temperature at a particular mesh point is the average of
the four neighboring temperatures. For example (see Fig. 9.9),

T8,5 = 1

4
[T8,6 + T8,4 + T9,5 + T7,5] (9.12.20)

The Laplace equation requires that the dependent variable (or its derivative) be specified at
all points surrounding a given region. A typical set of boundary conditions, for a rectangular
region is

T (0, y) = f (y), T (W, y) = g(y),

T (x, 0) = F(x), T (x, H) = G(x)
(9.12.21)

where W and H are the dimensions of the rectangle. In difference notation these conditions are

T0, j = f (yi ), TN , j = g(yi ),

Ti,0 = F(xi ), Ti,M = G(xi )
(9.12.22)

The temperature is known at all the boundary mesh points; and with a 12 × 8 mesh, shown in
Fig. 9.9, Eq. 9.12.19 gives 77 algebraic equations. These equations, which include the 77 un-
knowns Ti, j at each of the interior points, can then be solved simultaneously. Of course, a
computer would be used to solve the set of simultaneous equations; computer programs are
generally available to accomplish this.

It is also possible, and often necessary, to specify that no heat transfer occurs across a bound-
ary, so that the temperature gradient is zero. This would, of course, change the conditions
9.12.22.

It should be pointed out that there is a simple technique, especially useful before the advent
of the computer, that gives a quick approximation to the solution of Laplace’s equation. It is a

588 � CHAPTER 9  / NUMERICAL METHODS

x

y

(1, 0)

(2, 3)

(1, 2)

(1, 1)
(0, 1)

(3, 0)

(0, 3)

(5, 0)

(0, 5)

(7, 0)

(0, 7)

(9, 0)

i � N � 12

j � M � 8

(11, 0)

T8,6

T7,5 T8,5 T9,5

T8,4

Figure 9.9 Typical mesh for the solution of Laplace’s equation.
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relaxation method. In this method the temperatures at every interior mesh point are guessed.
Then Eq. 9.12.19 is used in a systematic manner by starting, say, at the (1, 1) element, averaging
for a new value and working across the first horizontal row, then going to the (1, 2) element and
working across the second horizontal row, always using the most recently available values. This
is continued until the values at every interior point of the complete mesh of elements are changed
from the guessed values. A second iteration is then accomplished by recalculating every temper-
ature again starting at the (1, 1) element. This iteration process is continued until the value at
each point converges or, at least, does not significantly change with successive iterations. This
can be done by hand for a fairly large number of mesh points and hence can provide a quick
approximation to the solution of Laplace’s equation.

A 50- × 60-mm flat plate, insulated on both flat surfaces, has its edges maintained at 0, 100, 200, and 300◦C,
in that order, going counterclockwise. Using the relaxation method, determine the steady-state temperature at
each grid point, using a 10- × 10-mm grid.

� Solution

The grid is set up as shown. Note that the corner temperatures are assumed to be the average of the neighbor-
ing two temperatures. The actual solution does not involve the corner temperatures. We start assuming a tem-
perature at each grid point; the more accurate our assumption, the fewer iterations required for convergence.
Let us assume the following:

250 200 200 200 200 200 150
300 290 270 240 200 150 100
300 280 250 220 180 130 100
300 200 150 100 100 100 100
300 50 50 50 50 50 100
150 0 0 0 0 0 50

300

300

300

300

150 0 0 0 0 0 50

200 200 200 200 200 150

100

100

100

100

x

y

250

EXAMPLE 9.12.4
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9.12.4 Maple and Excel Applications
The calculations in Example 9.12.1 can be completed using Maple or Excel. With regard to
Maple, we can think of Ti j as a two-dimensional, recursively defined list. In other words, Ti j is
a matrix, where certain entries depend on other entries. Because of this recursive definition, we
can generate values of the matrix using a loop.

First, we define some constants, using L to represent the length of the rod, and s for the im-
portant ak/h2:

>N:=5: L:=1: a:=2*10^(-6): k:=4000:

The first iteration comes by applying Eq. 9.12.19 to each of the interior grid points above. Starting at the lower
left interior grid point (50◦C) and continuing to the second row up (200◦C), using the corrected values in the
process, the following improved temperature distribution results:

250 200 200 200 200 200 150
300 259 232 207 180 152 100
300 267 230 196 161 130 100
300 217 163 135 117 110 100
300 138 84 58 52 63 100
150 0 0 0 0 0 50

We continue the iterations until there is no significant change in additional iterations.
Three more iterations are listed below:

250 200 200 200 200 200 150
300 246 216 194 168 147 100
300 252 212 180 127 121 100
300 220 170 138 118 104 100
300 150 93 70 62 68 100
150 0 0 0 0 0 50

250 200 200 200 200 200 150
300 240 209 186 168 148 100
300 244 202 165 140 122 100
300 219 167 136 108 99 100
300 153 98 77 66 68 100
150 0 0 0 0 0 50

250 200 200 200 200 200 150
300 237 204 183 168 148 100
300 240 194 162 140 122 100
300 216 164 128 108 99 100
300 154 100 76 63 66 100
150 0 0 0 0 0 50

Note that in the last three iterations, the maximum change in temperature from one iteration to the next is 34,
15, and 8◦C, respectively. Two more iterations will result in a steady-state temperature distribution, accurate
to within about 1◦C.

EXAMPLE 9.12.4 (Continued)
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>h:= L/N; s:=a*k/h^2;

h := 1

5

s:= 1

5

Next, we set the boundary and initial conditions:

>for j from 0 to 5 do

>T[0, j]:=500; T[N, j]:=60;

>od;

T0,0 := 500

T5,0 := 60

T0,1 := 500

T5,1 := 60

T0,2 := 500

T5,2 := 60

T0,3 := 500

T5,3 := 60

T0,4 := 500

T5,4 := 60

T0,5 := 500

T5,5 := 60

>for i from 1 to N-1 do T[i,0]:=60; od;

T1,0 := 60

T2,0 := 60

T3,0 := 60

T4,0 := 60

Then, Eq. 9.12.7, and the calculation of the values when j = 1, are represented by

>for i from 1 to N-1 do
T[i,1]:=s*(T[i+1, 0]-2*T[i, 0]+T[i-1, 0])+T[i,0]; od;

T1,1 := 148

T2,1 := 60

T3,1 := 60

T4,1 := 60
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In a similar fashion for j = 2:

>for i from 1 to N-1 do
T[i,2]:=s*(T[i+1, 1]-2*T[i, 1]+T[i-1, 1])+T[i,1]; od;

T1,2 := 1004

5

T2,2 := 388

5

T3,2 := 60

T4,2 := 60

This process can be continued for as large a value of j as desired. A double loop could be writ-
ten in Maple to complete the calculations.

A plot of the solution for fixed t can be created with commands like these:

>points:=[seq([i*h, T[i,3]], i=0..5)]:

>plot(points, x=0..1, title='solution when t=12 ks');

In Excel, we follow a similar procedure, although we need to be careful with what we mean
by i and j. Excel columns A, B, C, etc., will stand for i = 0, 1, 2, etc., so that as we go from left
to right in the spreadsheet, we are scanning from left to right on the rod. Excel rows 1, 2, 3, etc.,
will be used to represent j = 0, 1, 2, etc., so time increases as we move down the spreadsheet.

First, the boundary and initial values are placed in cells, using these formulas:

C

B1

B

60

A

500

A1

A2

1

2

3

A3

A4

4

5

D E F

E1

F1

F2

F3

F4

D1C1

500

100

200

300

400

0 0.2 0.4 0.6 0.8 1 x

solution when t � 12 ks



9.12 NUMERICAL SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS � 593

giving us these values:

Now, it is just a matter of getting the correct formula in cell B1:

=0.2*(C1-2*B1+A1)+B1

After this, copy and paste the formula in the remaining empty cells (or use Excel’s fill com-
mand), to get

Continuing to fill the lower rows with formulas, the steady-state behavior, in a linear distribu-
tion, can be seen:

C

323.5876

B

411.7451

A

500

500

500

82

83

84

500

500

411.7646

411.7826

411.7992

411.8145

323.6191

323.6482

323.675

323.6999

235.6191

235.6482

235.675

235.6999

147.7646

147.7826

147.7992
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85
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D E F
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147.7451235.5876

323.7228411.8287500
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We will demonstrate how to solve Example 9.12.4 in Excel. It is not difficult to implement a similar method of
solution with Maple. Because of the nature of Excel, it will be easier for us to update all of the cells simultaneously,
rather than using corrected values during the iteration. Consequently, our calculations will be different from those
in Example 9.12.4, but the steady-state distribution will be essentially the same.

We begin with our initial assumption of the distribution of temperature:

We will work down the spreadsheet as we iterate. For the first iteration (and, in fact, all of them), the boundary val-
ues will not change. That is, we will use the following formulas for those cells:

Then, for the rest of the cells, the formula will capture Eq. 9.12.19. Once we have this formula for one of the cells,
we fill the rest of the cells with the same formula. In B12, we can use this formula, which refers to values in our
initial guess:

=0.25*(B1+A2+C2+B3)

After filling the rest of the empty cells with that formula, we have these values:

Further iterations can be done by copying-and-pasting this 6 × 7 array of values. After 10 iterations, we have the
following distribution of temperatures:
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Problems

1. Solve for the steady-state temperature Ti,∞ of Example
9.12.1.

2. Predict the time necessary for the temperature of the rod
in Example 9.12.1 at x = 0.4 to reach 145◦C.

A laterally insulated fin 2.5 m long is initially at 60◦C. The
temperature of one end is suddenly increased to and main-
tained at 600◦C while the temperature of the other end is
maintained at 60◦C. The diffusivity is a = 10−5m2/s. Use five
x steps, time increments of 5 ks, and calculate the time neces-
sary for the center of the rod to reach a temperature of

3. 90◦C

4. 110◦C

5. 120◦C

6. 140◦C

7. 160◦C

If the end at x = 2 m of a laterally insulated steel rod is insu-
lated and the end at x = 0 is suddenly subjected to a tempera-
ture of 200◦C, predict the temperature at t = 80 s, using five
displacement steps and time increments of 20 ks. Use
a = 4 × 10−6m2/s. The initial temperature is

8. 0◦C

9. 50◦C

10. 100◦C

A 6-m-long wire, fixed at both ends, is given an initial dis-
placement of u1,0 = 0.1, u2,0 = 0.2, u3,0 = 0.3, u4,0 = 0.4,
u5,0 = 0.2 at the displacement steps. Predict the displacement
at five future time steps, using k = 0.025 s if the wave speed is
40 m/s and the initial velocity is given by

11. 0

12. 4 m/s

13. 8 m/s

Using five x increments in a 1-m-long tight string, find an ap-
proximate solution for the displacement if the initial displace-
ment is

u(x, 0) =




x/10, 0 < x < 0.4
0.04, 0.4 ≤ x ≤ 0.6
(1 − x)/10, 0.6 < x < 1.0

Assume a wave speed of 50 m/s and use a time step of 0.004
s. Present the solution at five additional time steps if the initial
velocity is

14. 0

15. 2.5 m/s

16. 10 m/s

A 4- × 5-m plate is divided into 1-m squares. One long side is
maintained at 100◦C and the other at 200◦C. The flat surfaces
are insulated. Predict the steady-state temperature distribution
in the plate using the relaxation method if the short sides are
maintained at

17. 300◦C and 0◦C

18. 400◦C and 100◦C

19. Solve Problem 17 with the 100◦C changed to a linear
distribution varying from 0 to 300◦C. The 0◦C corner is
adjacent to the 0◦C side.

Use Maple to solve the following problems. In addition, cre-
ate an animated solution, as described in the problems in
Section 9.7

20. Problem 3

21. Problem 4

22. Problem 5

23. Problem 6

24. Problem 7

25. Problem 8

26. Problem 9

27. Problem 10

28. Problem 11

29. Problem 12

30. Problem 13

31. Problem 14

32. Problem 15

33. Problem 16

34. Problem 17

35. Problem 18

36. Problem 19

Use Excel to solve the following problems.

37. Problem 3

38. Problem 4

39. Problem 5



40. Problem 6

41. Problem 7

42. Problem 8

43. Problem 9

44. Problem 10

45. Problem 11

46. Problem 12

47. Problem 13

48. Problem 14

49. Problem 15

50. Problem 16

51. Problem 17

52. Problem 18

53. Problem 19

54. Computer Laboratory Activity: In Example 9.12.1, 
ak

h2
= 1

5
, and as the iteration number j increased, the 

numerical calculations converged to a steady state. If the 

time step k increases, then 
ak

h2
will increase. Investigate, 

though trial and error, what happens as k increases, to
answer these questions: Does the method appear to
converge to the steady state faster or slower than when 
ak

h2
= 1

5
? (Note: Think carefully about this question, 

specifically the rate in which both t and j are changing.) 

What is the critical value of 
ak

h2
so that the numerical 

calculations no longer converge?

55. Computer Laboratory Activity: Built into Maple, as part
of the pdsolve command, is a numeric option that
uses finite difference methods to create a numerical solu-
tion to a partial differential equation. To use this option,
first the equation and the initial or boundary conditions
are defined, and then the command is used in a new way
to define a module in Maple. Example 9.12.1 would be
done in this way:

>PDE := diff(T(x,t),t)=2*10^(-6)
*diff(T(x,t),x$2);

PDE := ∂

∂t
T(x,t)= 1

500000

(
∂2

∂x2
T(x,t)

)

>IBC := {T(X,0)=60, T(0,t)=500,
T(1,t)=60};

IBC := {T(x,0)= 60,T(0,t)= 500,T(1,t)= 60}
>pds := pdsolve(PDE,IBC,numeric,
timestep=4000, spacestep=1/5):

>myplot:=pds:-plot(t=4000):

>plots[display] (myplot);

(a) Determine an appropriate value of the t parameter in
the myplot command to create a plot that demon-
strating a linear distribution at the steady state.

(b) Solve Problems 8, 9, and 10 using pdsolve with
the numeric option. In each case, create an anima-
tion of the solution.

(c) Solve Problem 15. (Note: Here is an example of the
syntax to enter a condition that has a derivative: 

∂

∂x
u(1, t) = 0 would be D[1](u)(1,t)=0.)

500

100

200

300

400

0 0.2 0.4 0.6 0.8 1 x
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In the course of developing tools for the solution of the variety of problems encountered in the
physical sciences, we have had many occasions to use results from the theory of functions of a
complex variable. The solution of a differential equation describing the motion of a spring–mass
system is an example that comes immediately to mind. Functions of a complex variable also
play an important role in fluid mechanics, heat transfer, and field theory, to mention just a few
areas.

In this chapter we present a survey of this important subject. We progress from the complex
numbers to complex variables to analytic functions to line integrals and finally to the famous
residue theorem of Cauchy. This survey is not meant to be a treatise; the reader should consult
any of the standard texts on the subject for a complete development.

10.1.1 Maple Applications
Maple commands for this chapter include: Re, Im, argument, conjugate, evalc,
unassign, taylor, laurent (in the numapprox package), convert/parfrac, and
collect, along with the commands from Appendix C. The symbol I is reserved for 

√−1.

There are many algebraic equations such as

z2 − 12z + 52 = 0 (10.2.1)

which have no solutions among the set of real numbers. We have two alternatives; either admit
that there are equations with no solutions, or enlarge the set of numbers so that every algebraic
equation has a solution. A great deal of experience has led us to accept the second choice. We
write i = √−1 so that i2 = −1 and attempt to find solutions of the form

z = x + iy (10.2.2)

where x and y are real. Equation 10.2.1 has solutions in this form:

z1 = 6 + 4i

z2 = 6 − 4i
(10.2.3)

10.2 COMPLEX NUMBERS

10.1 INTRODUCTION

10 Complex Variables



For each pair of real numbers x and y, z is a complex number. One of the outstanding mathe-
matical achievements is the theorem of Gauss, which asserts that every equation

anzn + an−1zn−1 + · · · + a0 = 0 (10.2.4)

has a solution in this enlarged set.1 The complex number z = x + iy has x as its real part and y
as its imaginary part (y is real). We write

Re z = x, Im z = y (10.2.5)

The notation z = x + iy suggests a geometric interpretation for z. The point (x, y) is the plot of
z = x + iy . Therefore, to every point in the xy plane there is associated a complex number and
to every complex number a point. The x axis is called the real axis and the y axis is the imagi-
nary axis, as displayed in Fig. 10.1.

In terms of polar coordinates (r, θ) the variables x and y are

x = r cos θ, y = r sin θ (10.2.6)

The complex variable z is then written as

z = r(cos θ + i sin θ) (10.2.7)

The quantity r is the absolute value of z and is denoted by |z|; hence,

r = |z| =
√

x2 + y2 (10.2.8)

The angle θ , measured in radians and positive in the counterclockwise sense, is the argument of
z, written arg z and given by

arg z = θ = tan−1 y

x
(10.2.9)

Obviously, there are an infinite number of θ ’s satisfying Eq. 10.2.9 at intervals of 2π radians. We
shall make the usual choice of limiting θ to the interval 0 ≤ θ < 2π for its principal value2
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y

x

(x, y)

y � Im z

x � Re z

r � �z�

�

Figure 10.1 The complex plane.

1From this point, it is elementary to prove that this equation actually has n solutions, counting possible
duplicates.
2Another commonly used interval is −π < θ ≤ π .



A complex number is pure imaginary if the real part is zero. It is real if the imaginary part is
zero. The conjugate of the complex number z is denoted by z̄; it is found by changing the sign
on the imaginary part of z, that is,

z̄ = x − iy (10.2.10)

The conjugate is useful in manipulations involving complex numbers. An interesting observa-
tion and often useful result is that the product of a complex number and its conjugate is real. This
follows from

zz̄ = (x + iy)(x − iy) = x2 − i2 y2 = x2 + y2 (10.2.11)

where we have used i2 = −1. Note then that

zz̄ = |z|2 (10.2.12)

The addition, subtraction, multiplication, or division of two complex numbers z1 = x1 + iy1

and z2 = x2 + iy2 is accomplished as follows:

z1 + z2 = (x1 + iy1) + (x2 + iy2)

= (x1 + x2) + i(y1 + y2)
(10.2.13)

z1 − z2 = (x1 − iy1) − (x2 + iy2)

= (x1 − x2) + i(y1 − y2)
(10.2.14)

z1z2 = (x1 + iy1)(x2 + iy2)

= (x1x2 − y1 y2) + i(x1 y2 + x2 y1)
(10.2.15)

z1

z2
= x1 + iy1

x2 + iy2
= x1 + iy1

x2 + iy2

x2 − iy2

x2 − iy2

= x1x2 + y1 y2

x2
2 + y2

2

+ i
x2 y1 − x1 y2

x2
2 + y2

2

(10.2.16)

Note that the conjugate of z2 was used to form a real number in the denominator of z1/z2. This
last computation can also be written

z1

z2
= z1 z̄2

z2 z̄2
= z1 z̄2

|z2|2
(10.2.17)

= x1x2 + y1 y2

|z2|2
+ i

x2 y1 − x1 y2

|z2|2
(10.2.18)

Figure 10.1 shows clearly that

|x | = |Re z| ≤ |z|
|y| = |Im z| ≤ |z| (10.2.19)

Addition and subtraction is illustrated graphically in Fig. 10.2. From the parallelogram
formed by the addition of the two complex numbers, we observe that

|z1 + z2| ≤ |z1| + |z2| (10.2.20)

This inequality will be quite useful in later considerations.
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We note the rather obvious fact that if two complex numbers are equal, the real parts and the
imaginary parts are equal, respectively. Hence, an equation written in terms of complex vari-
ables includes two real equations, one found by equating the real parts from each side of the
equation and the other found by equating the imaginary parts. Thus, for instance, the equation

a + ib = 0 (10.2.21)

implies that a = b = 0.
When Eqs. 10.2.6 are used to write z as in Eq. 10.2.7, we say that z is in polar form. This form

is particularly useful in computing z1z2, z1/z2, zn , and z1/n . Suppose that

z1 = r1(cos θ1 + i sin θ1), z2 = r2(cos θ2 + i sin θ2) (10.2.22)

so that

z1z2 = r1r2[(cos θ1 cos θ2 − sin θ1 sin θ2)

+ i(sin θ1 cos θ2 + sin θ2 cos θ1)]

= r1r2[cos(θ1 + θ2) + i sin(θ1 + θ2)] (10.2.23)

It then follows that

|z1z2| = r1r2 = |z1| |z2| (10.2.24)

and3

arg(z1z2) = arg z1 + arg z2 (10.2.25)

In other words, the absolute value of the product is the product of the absolute values of the fac-
tors while the argument of the product is the sum of the arguments of the factors. Note also that 

z1

z2
= r1

r2
[cos(θ1 − θ2) + i sin(θ1 − θ2)] (10.2.26)
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z1 � z2
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� z2
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Figure 10.2 Addition and subtraction of two complex numbers.

3Since arg z is multivalued, we read Eqs. 10.2.25 and 10.2.28 as stating that there exist arguments of z1 and z2

for which the equality holds (see Problems 31 and 32).



Hence, ∣∣∣∣ z1

z2

∣∣∣∣ = |z1|
|z2| (10.2.27)

and

arg

(
z1

z2

)
= arg z1 − arg z2 (10.2.28)

From repeated applications of Eq. 10.2.23 we derive the rule

z1z2 · · · zn = r1r2 · · · rn[cos(θ1 + θ2 + · · · + θn)

+ i sin(θ1 + θ2 + · · · + θn)] (10.2.29)

An important special case occurs when z1 = z2 = · · · = zn . Then

zn = rn(cos nθ + i sin nθ), n = 0, 1, 2, . . . (10.2.30)

The symbol z1/n expresses the statement that (z1/n)n = z; that is, z1/n is an nth root of z.
Equation 10.2.30 enables us to find the n nth roots of any complex number z. Let 

z = r(cos θ + i sin θ) (10.2.31)

For each nonnegative integer k, it is also true that

z = r[cos(θ + 2πk) + i sin(θ + 2πk)] (10.2.32)

So

z1/n = zk = r1/n

[
cos

(
θ + 2πk

n

)
+ i sin

(
θ + 2πk

n

)]
(10.2.33)

has the property that zn
k = z according to Eq. 10.2.30. It is obvious that z0, z1, . . . , zn−1 are dis-

tinct complex numbers, unless z = 0. Hence, for k = 0, 1, . . . , n − 1, Eq. 10.2.33 provides n
distinct nth roots of z.

To find n roots of z = 1, we define the special symbol

ωn = cos
2π

n
+ i sin

2π

n
(10.2.34)

Then ωn , ω2
n , . . . , ωn

n = 1 are the n distinct roots of 1. Note that

ωk
n = cos

2πk

n
+ i sin

2πk

n
(10.2.35)

As a problem in the problem set, the reader is asked to prove that if 1 ≤ k < j ≤ n , then
ωk

n �= ω
j
n .

Now Suppose that zn
0 = z, so that z0 is an nth root of z. Then the set

z0, ωnz0, . . . , ω
n−1
n z0 (10.2.36)
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is the set of nth roots of z since (
ωk

nz0
)n = ωkn

n zn
0 = 1 · z (10.2.37)

Several examples illustrate this point.
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EXAMPLE 10.2.1

Express the complex number 3 + 6i in polar form, and also divide it by 2 − 3i .

� Solution

To express 3 + 6i in polar form we must determine r and θ . We have

r =
√

x2 + y2 =
√

32 + 62 = 6.708

The angle θ is found, in degrees, to be

θ = tan−1 6
3 = 63.43◦

In polar form we have

3 + 6i = 6.708(cos 63.43◦ + i sin 63.43◦)

The desired division is

3 + 6i

2 − 3i
= 3 + 6i

2 − 3i

2 + 3i

2 + 3i
= 6 − 18 + i(12 + 9)

4 + 9
= 1

13
(−12 + 21i) = −0.9231 + 1.615i

What set of points in the complex plane (i.e., the xy plane) satisfies∣∣∣∣ z

z − 1

∣∣∣∣ = 2

� Solution

First, using Eq.10.2.27, we can write ∣∣∣∣ z

z − 1

∣∣∣∣ = |z|
|z − 1|

Then, recognizing that the magnitude squared of a complex number is the real part squared plus the imaginary
part squared, we have

|z|2
|z − 1|2 = x2 + y2

(x − 1)2 + y2

EXAMPLE 10.2.2
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where we have used z − 1 = x − 1 + iy . The desired equation is then

x2 + y2

(x − 1)2 + y2
= 4

or

x2 + y2 = 4(x − 1)2 + 4y2

This can be written as

(
x − 4

3

)2 + y2 = 4
9

which is the equation of a circle of radius 2
3 with center at 

(
4
3 , 0

)
.

EXAMPLE 10.2.2 (Continued)

EXAMPLE 10.2.3

Find the three cube roots of unity.

� Solution

These roots are ω3, ω2
3, 1, where

ω3 = cos
2π

3
+ i sin

2π

3
= −1

2
+ i

√
3

2

so

ω2
3 =

(
−1

2
+ i

√
3

2

)2

= −1

2
− i

√
3

2

This is, of course, equal to

ω2
3 = cos

4π

3
+ i sin

4π

3

We also have

ω3
3 = cos

2π · 3

3
+ i sin

2π · 3

3
= cos 2π + i sin 2π = 1
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EXAMPLE 10.2.4

Find the three roots of z = −1 using Eq. 10.2.36.

� Solution

Since (−1)3 = −1, −1 is a cube root of −1. Hence, −ω3, −ω2
3, and −1 are the three distinct cube roots of

−1; in the notation of Eq. 10.2.33, the roots are

z0 = −1, z1 = 1

2
− i

√
3

2
, z2 = 1

2
+ i

√
3

2

Note that

(−ω3)
3 = (−1)3ω3

3 = −1

EXAMPLE 10.2.5

Find the three cube roots of z = i using Eq. 10.2.36.

� Solution

We write i in polar form as

i = cos
π

2
+ i sin

π

2

Then

z0 = i1/3 = cos
π

6
+ i sin

π

6
=

√
3

2
+ i

1

2

Now the remaining two roots are z0ω3, z0ω
2
3, or

z1 =
(√

3

2
+ i

1

2

)(
−1

2
+ i

√
3

2

)
= −

√
3

2
+ i

1

2

z2 =
(√

3

2
+ i

1

2

)(
−1

2
− i

√
3

2

)
= −i
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Determine (a) (3 + 4i)2 using Eq. 10.2.30, and (b) (3 + 4i)1/3 using Eq. 10.2.33.

� Solution

The number is expressed in polar form, using r = √
32 + 42 = 5 and θ = tan−1 4

3 = 53.13◦ as

3 + 4i = 5(cos 53.13◦ + i sin 53.13◦)

(a) To determine (3 + 4i)2 we use Eq. 10.2.30 and find

(3 + 4i)2 = 52(cos 2 × 53.13◦ + i sin 2 × 53.13◦)
= 25(−0.280 + 0.960i)

= −7 + 24i

We could also simply form the product

(3 + 4i)2 = (3 + 4i)(3 + 4i)

= 9 − 16 + 12i + 12i = −7 + 24i

(b) There are three distinct cube roots that must be determined when evaluating (3 + 4i)1/3. They are found
by expressing (3 + 4i)1/3 as

(3 + 4i)1/3 = 51/3

(
cos

53.13 + 360k

3
+ i sin

53.13 + 360k

3

)

where the angles are expressed in degrees, rather than radians. The first root is then, using k = 0,

(3 + 4i)1/3 = 51/3(cos 17.71◦ + i sin 17.71◦)
= 1.710(0.9526 + 0.3042i)

= 1.629 + 0.5202i

The second root is, using k = 1,

(3 + 4i)1/3 = 51/3(cos 137.7◦ + i sin 137.7◦)
= 1.710(−0.7397 + 0.6729i)

= −1.265 + 1.151i

The third and final root is, using k = 2,

(3 + 4i)1/3 = 51/3(cos 257.7◦ + i sin 257.7◦)
= 1.710(−0.2129 − 0.9771i)

= −0.3641 − 1.671i

EXAMPLE 10.2.6



10.2.1 Maple Applications
In Maple, the symbol I is reserved for 

√−1. So, in Eqs. 10.2.3:

>z1:=6+4*I;  z2:=6–4*I;

z1 := 6+ 4I

z2 := 6− 4I

The real and imaginary parts of a complex numbers can be determined using Re and Im:

>Re(z1); Im(z2);

6

−4
The absolute value and argument of a complex number can be computed using Maple, via the

abs and argument commands. Using z1 of Eq.10.2.3:

>abs(z1); argument(z1);

2
√
13

arctan

(
2

3

)

The conjugate can also be determined in Maple for 2 + 3i :

>conjugate(2+3*I);

2− 3I

The usual symbols of +, −, etc., are used by Maple for complex binary operations.
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It is easy to verify that if we choose k ≥ 3, we would simply return to one of the three roots already computed.
The three distinct roots are illustrated in the following diagram.

y

x
120�

120�

120�

17.71�

EXAMPLE 10.2.6 (Continued)



Maple’s solve command is designed to find both real and complex roots. Here we see how
to find the three cube roots of unity:

>solve(z^3–1=0, z);

1,−1

2
+ 1

2
I
√
3,−1

2
− 1

2
I
√
3
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Problems

Determine the angle θ , in degrees and radians, which is neces-
sary to write each complex number in polar form.

1. 4 + 3i

2. −4 + 3i

3. 4 − 3i

4. −4 − 3i

For the complex number z = 3 − 4i , find each following
term.

5. z2

6. zz

7. z/z

8.

∣∣∣∣ z + 1

z − 1

∣∣∣∣
9. (z + 1)(z − i)

10.
∣∣z2

∣∣
11. (z − i)2/(z − 1)2

12. z4

13. z1/2

14. z1/3

15. z2/3

16.
z2

z1/2

Determine the roots of each term (express in the form a + ib).

17. 11/5

18. −161/4

19. i1/3

20. 91/2

Show that each equation represents a circle.

21. |z| = 4

22. |z − 2| = 2

23. |(z − 1)/(z + 1)| = 3

Find the equation of each curve represented by the following.

24. |(z − 1)/(z + 1)| = 4

25. |(z + i)/(z − i)| = 2

26. Identify the region represented by |z − 2| ≤ x .

27. Show that for each n and each complex number z �= 1,

1 + z + z2 + · · · + zn−1 = 1 − zn

1 − z

28. Use the result in Problem 27 to find

1 + ωn + ω2
n + · · · + ωn−1

n

where ωn is a nonreal nth root of unity.

29. Find the four solutions of z4 + 16 = 0.

30. Show geometrically why |z1 − z2| ≥ |z1| − |z2|.
31. Find arguments of z1 = −1 + i and z2 = 1 − i so that

arg z1z2 = arg z1 + arg z2 . Explain why this equation is
false if 0 ≤ arg z < 2π is a requirement on z1, z2, and
z1z2.

32. Find z1 and z2 so that 0 ≤ arg z1, arg z2 < 2π, and
0 ≤ arg(z1/z2) < 2π makes arg (z1/z2)= arg z1 −arg z2

false.

Use Maple to solve

33. Problem 5

34. Problem 6

35. Problem 7

36. Problem 8

37. Problem 9

38. Problem 10

39. Problem 11



40. Problem 12

41. Problem 13

42. Problem 14

43. Problem 15

44. Problem 16

45. Problem 17

46. Problem 18

47. Problem 19

48. Problem 20

Most functions of a real variable which are of interest to the natural scientist can be profitably
extended to a function of a complex variable by replacing the real variable x by z = x + iy . This
guarantees that when y = 0, the generalized variable reduces to the original real variable. As we
shall see, this simple device generates remarkable insight into our understanding of the classical
functions of mathematical physics. One especially attractive example is the interconnection be-
tween the inverse tangent and the logarithm, which is presented in Eq. 10.3.25 below.

A polynomial is an expression

Pn(z) = anzn + an−1zn−1 + · · · + a1z + a0 (10.3.1)

where the coefficients an, an−1, . . . , a1, a0 are complex and n is a nonnegative integer. These
are the simplest functions. Their behavior is well understood and easy to analyze. The next class
of functions comprises the rational functions, the quotients of polynomials:

Q(z) = anzn + an−1zn−1 + · · · + a1z + a0

bm zm + bm−1zm−1 + · · · + b1z + b0
(10.3.2)

The polynomial comprising the denominator of Q(z) is understood to be of degree ≥ 1 so that
Q(z) does not formally reduce to a polynomial.

From these two classes we move to power series, defined as

f (z) =
∞∑

n=0

anzn (10.3.3)

where the series is assumed convergent  for all z, |z| < R, R > 0. Various tests are known that
determine R. When

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1

R
(10.3.4)

exists,4 the series in Eq. 10.3.3 converges for all z in |z| < R, and diverges for all z, |z| > R. No
general statement, without further assumptions on either f (z) or the sequence a0, a1, a2, . . . ,

can be made for those z on the circle of convergence, |z| = R.

10.3 ELEMENTARY FUNCTIONS
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4This quotient in Eq. 10.3.4 is either 0 or ∞ for the series in (10.3.6) and (10.3.7). Nonetheless, these series do
converge for all z.



We define ez , sin z, and cos z by the following series, each of which converges for all z:

ez = 1 + z + z2

2!
+ z3

3!
+ · · · (10.3.5)

sin z = z − z3

3!
+ z5

5!
− · · · (10.3.6)

cos z = 1 − z2

2!
+ z4

4!
− · · · (10.3.7)

These definitions are chosen so that they reduce to the standard Taylor series for ex , sin x, and
cos x when y = 0. The following is an elementary consequence of these formulas:

sin z = eiz − e−i z

2i
, cos z = eiz + e−i z

2
(10.3.8)

Also, we note that, letting z = iθ ,

eiθ = 1 + iθ − θ2

2!
− i

θ3

3!
+ θ4

4!
+ iθ5

5!
+ · · ·

=
(

1 − θ2

2!
+ θ4

4!
− · · ·

)
+ i

(
θ − θ3

3!
+ θ4

5!
− · · ·

)

= cos θ + i sin θ (10.3.9)

This leads to a very useful expression for the complex veriable z. In polar form, z = r(cos θ +
i sin θ), so Eq. 10.3.9 allows us to write

z = reiθ (10.3.10)

This form is quite useful in obtaining powers and roots of z and in various other operations
involving complex numbers.

The hyperbolic sine and cosine are defined as

sinh z = ez − e−z

2
, cosh z = ez + e−z

2
(10.3.11)

With the use of Eqs. 10.3.8 we see that

sinh i z = i sin z, sin i z = i sinh z,

cosh i z = cos z, cos i z = cosh z
(10.3.12)

We can then separate the real and imaginary parts from sin z and cos z, with the use of trigono-
metric identities, as follows:

sin z = sin(x + iy)

= sin x cos iy + sin iy cos x

= sin x cos y + i sinh y cos x (10.3.13)

cos z = cos(x + iy)

= cos x cos iy − sin x sin iy

= cos x cosh y − i sin x sinh y (10.3.14)
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The natural logarithm of z, written ln z, should be defined so that

eln z = z (10.3.15)

Using Eq. 10.3.10, we see that

ln z = ln(reiθ )

= ln r + iθ (10.3.16)

is a reasonable candidate for this definition. An immediate consequence of this definition shows
that

eln z = eln r+iθ

= eln r eiθ

= r(cos θ + i sin θ) = z (10.3.17)

using Eq. 10.3.9. Hence, ln z, so defined, does satisfy Eq. 10.3.15. Since θ is multivalued, we
must restrict its value so that ln z becomes ln x when y = 0. The restrictions 0 ≤ θ < 2π or
−π < θ ≤ π are both used. The principal value5 of ln z results when 0 ≤ θ < 2π .

We are now in a position to define za for any complex number a. By definition

za = ea ln z (10.3.18)

We leave it to the reader to verify that definition 10.3.18 agrees with the definition of za when
the exponent is a real fraction or integer (see Problem 53).

Finally, in our discussion of elementary functions, we include the inverse trigonometric func-
tions and inverse hyperbolic functions. Let

w = sin−1 z (10.3.19)

Then, using Eq. 10.3.8,

z = sin w = eiw − e−iw

2i
(10.3.20)

Rearranging and multiplying by 2ieiw gives

e2iw − 2i zeiw − 1 = 0 (10.3.21)

This quadratic equation (let eiw = φ, so that φ2 − 2i zφ − 1 = 0) has solutions

eiw = i z + (1 − z2)1/2 (10.3.22)

The square root is to be understood in the same sense as Section 10.2. We solve for iw in 
Eq. 10.3.22 and obtain

w = sin−1 z = −i ln[i z + (1 − z2)1/2] (10.3.23)

This expression is double-valued because of the square root and is multi-valued because of the
logarithm. Two principal values result for each complex number z except for z = 1, in which
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5The principal value of ln z is discontinuous in regions containing the positive real axis because ln x is not
close to ln(x − iε) for small ε. This is true since Im [ln x] = 0 but Im [ln(x − iε)] is almost 2π . For this
reason, we often define ln z by selecting −π < arg ln z < π . Then ln z is continuous for all z, excluding
−∞ < z = x ≤ 0.



case the square-root quantity is zero. In a similar manner we can find expressions for the other
inverse functions. They are listed in the following:

sin−1 z = −i ln[i z + (1 − z2)1/2]

cos−1 z = −i ln[z + (z2 − 1)1/2]

tan−1 z = i

2
ln

1 − i z

1 + i z

sinh−1 z = ln[z + (1 + z2)1/2]

cosh−1 z = ln[z + (z2 − 1)1/2]

tanh−1 z = 1

2
ln

1 + z

1 − z

(10.3.24)

It is worthwhile to note that the exponential and logarithmic functions are sufficient to define za ,
sin z, cos z, tan z, csc z, sec z, sin−1 z, cos−1 z, tan−1 z, sinh z, cosh z, tanh z, sinh−1 z, cosh−1 z,
and tanh−1 z; these interconnections are impossible to discover without the notion of a complex
variable. Witness, for z = x , that the third equation in 10.3.24 is

tan−1 x = i

2
ln

1 − i x

1 + i x
(10.3.25)

a truly remarkable formula.
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EXAMPLE 10.3.1

Find the principal value of i i .

� Solution

We have

i i = ei ln i = ei[ln 1+(π/2)i] = ei[(π/2)i] = e−π/2

a result that delights the imagination, because of the appearance of e, π , and i in one simple equation.

Find the principal value of

(2 + i)1−i

� Solution

Using Eq. 10.3.18, we can write

(2 + i)1−i = e(1−i) ln(2+i)

EXAMPLE 10.3.2
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We find the principal value of (2 + i)1−i by using the principal value of ln(2 + i):

ln(2 + i) = ln
√

5 + 0.4636i

since tan−1 1/2 = 0.4636 rad. Then

(2 + i)1–i = e(1–i)(ln
√

5+0.4636i) = e1.2683−0.3411i

= e1.2683(cos 0.3411 − i sin 0.3411)

= 3.555(0.9424 − 0.3345i)

= 3.350 − 1.189i

EXAMPLE 10.3.2 (Continued)

EXAMPLE 10.3.3

Using z = 3 − 4i , find the value or principal value of (a) eiz , (b) e−i z , (c) sin z, and (d) ln z.

� Solution

(a) ei(3−4i) = e4+3i = e4e3i

= 54.60(cos 3 + i sin 3)

= 54.60(−0.990 + 0.1411i)

= −54.05 + 7.704i

(b) e−i(3−4i) = e−4−3i = e−4e−3i

= 0.01832[cos(−3) + i sin(−3)]

= 0.01832[−0.990 − 0.1411i]

= −0.01814 − 0.002585i

(c) sin(3 − 4i) = ei(3−4i) − e−i(3−4i)

2i

= −54.05 + 7.704i − (−0.01814 − 0.002585i)

2i
= 3.853 + 27.01i

(d) ln(3 − 4i) = ln r + iθ

= ln 5 + i tan−1 −4

3
= 1.609 + 5.356i

where the angle θ is expressed in radians.



10.3.1 Maple Applications
The functions described in this section are all built into Maple, and automatically determine
complex output. To access these functions in Maple, use sin, cos, sinh, cosh, exp, and
ln. For the inverse trigonometric and hyperbolic functions, use arcsin, arccos, arcsinh,
and arccosh. Maple uses the principal value of ln z.

At times, the evalc command (“evaluate complex number”) is necessary to force Maple to
find values. For instance, Example 10.3.1 would be calculated this way:

>I^I;
II

>evalc (I^I);
e(−

π
2 )

Example 10.3.2 can be reproduced in this way with Maple:

>(2+I)^(1–I);

(2+ I)(1−I)

>evalc(%);

e(1/2ln(5)+arctan(1/2)) cos

(
1

2
ln(5)− arctan

(
1

2

))

−e(1/2ln(5)+arctan(1/2)) sin

(
1

2
ln(5)− arctan

(
1

2

))
I

>evalf(%);

3.350259315− 1.189150220I
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EXAMPLE 10.3.4

What is the value of z so that sin z = 10?

� Solution

From Eq. 10.3.24, we write

z = sin−1 10 = −i ln[10i + (−99)1/2]

The two roots of −99 are 3
√

11i and −3
√

11i . Hence,

z1 = −i ln[(10 + 3
√

11)i], z2 = −i ln[(10 − 3
√

11)i]

But if α is real, ln αi = ln |α| + (π/2)i . Hence,

z1 = π

2
− i ln(10 + 3

√
11), z2 = π

2
− i ln(10 − 3

√
11)

or

z1 = π

2
− 2.993i, z2 = π

2
+ 2.993i
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Problems

1. Show that sin z = (eiz − e−i z)/2i and cos z =
(eiz + e−i z)/2 using Eqs. 10.3.5 through 10.3.7.

Express each complex number in exponential form (see
Eq. 10.3.10).

2. −2

3. 2i

4. −2i

5. 3 + 4i

6. 5 − 12i

7. −3 − 4i

8. −5 + 12i

9. 0.213 − 2.15i

10. Using z = (π/2) − i , show that Eq. 10.3.8 yields the
same result as Eq. 10.3.13 for sin z.

Find the value of ez for each value of z.

11.
π

2
i

12. 2i

13. −π

4
i

14. 4π i

15. 2 + π i

16. −1 − π

4
i

Find each quantity using Eq. 10.3.10.

17. 11/5

18. (1 − i)1/4

19. (−1)1/3

20. (2 + i)3

21. (3 + 4i)4

22.
√

2 − i

For the value z = π/2 − (π/4)i , find each term.

23. eiz

24. sin z

25. cos z

26. sinh z

27. cosh z

28. |sin z|
29. |tan z|

Find the principal value of the ln z for each value for z.

30. i

31. 3 + 4i

32. 4 − 3i

33. −5 + 12i

34. ei

35. −4

36. ei

Using the relationship that za = eln za = ea ln z , find the princi-
pal value of each power.

37. i i

38. (3 + 4i)(1−i)

39. (4 − 3i)(2+i)

40. (1 + i)(1+i)

41. (−1 − i)−i/2

Find the values or principal values of z for each equation.

42. sin z = 2

43. cos z = 4

44. ez = −3

45. sin z = −2i

46. cos z = −2

Show that each equation is true.

47. cos−1 z = −i ln[z + (z2 − 1)1/2]

48. sinh−1 z = ln[z + (1 + z2)1/2]

For z = 2 − i , evaluate each function.

49. sin−1

50. tan−1 z

51. cosh−1 z



52. Using the principal value of ln z, explain why ln 1 and
ln(1 − iε) are not close even when ε is very near zero.

53. In Eq. 10.3.18 set a = n, n a real integer. Show that
zn = en ln z is in agreement with zn = rn (cos nθ +
i sin nθ).

54. In Eq. 10.3.18 set a = p/q , p/q a real rational number.
Show that z p/q = e(p/q ln z) is the same set of complex
numbers as

z p/q = r p/q
[

cos
p

q
(θ + 2 πk) + sin

p

q
(θ + 2 πk)

]

Use Maple to solve

55. Problem 11

56. Problem 12

57. Problem 13

58. Problem 14

59. Problem 15

60. Problem 16

61. Problem 17

62. Problem 18

63. Problem 19

64. Problem 20

65. Problem 21

66. Problem 22

67. Problem 23

68. Problem 24

69. Problem 25

70. Problem 26

71. Problem 27

72. Problem 28

73. Problem 29

74. Problem 30

75. Problem 31

76. Problem 32

77. Problem 33

78. Problem 34

79. Problem 35

80. Problem 36

81. Problem 37

82. Problem 38

83. Problem 39

84. Problem 40

85. Problem 41

86. Problem 42

87. Problem 43

88. Problem 44

89. Problem 45

90. Problem 46

91. Problem 49

92. Problem 50

93. Problem 51

In Section 10.3 we motivated the definitions of the various “elementary” functions by requiring
f (z) to reduce to the standard function when y = 0. Although intuitively appealing, this con-
sideration is only part of the picture. In this section we round out our presentation by showing
that our newly defined functions satisfy the appropriate differential relationships:

dez

dz
= ez,

d cos z

dz
= − sin z

and so on.
The definition of the derivative of a function f (z) is

f ′(z) = lim
�z→0

f (z + �z) − f (z)

�z
(10.4.1)

It is important to note that in the limiting process as �z → 0 there are an infinite number of
paths that �z can take. Some of these are sketched in Fig. 10.3. For a derivative to exist we
demand that f ′(z) be unique as �z → 0, regardless of the path chosen. In real variables this
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restriction on the derivative was not necessary since only one path was used, along the x axis
only. Let us illustrate the importance of this demand with the function

f (z) = z̄ = x − iy (10.4.2)

The quotient in the definition of the derivative using �z = �x + i�y is

f (z + �z) − f (z)

�z
= [(x + �x) − i(y + �y)] − (x − iy)

�x + i�y

= �x − i�y

�x + i�y
(10.4.3)

First, let �y = 0 and then let �x → 0. Then, the quotient is +1. Next, let �x = 0 and then let
�y → 0. Now the quotient is −1. Obviously, we obtain a different value for each path. Actually,
there is a different value for the quotient for each value of the slope of the line along which �z
approaches zero (see Problem 2). Since the limit is not unique, we say that the derivative does
not exist. We shall now derive conditions which must hold if a function has a derivative.

Let us assume now that the derivative f ′(z) does exist. The real and imaginary parts of f (z)
are denoted by u(x, y) and v(x, y), respectively; that is,

f (z) = u(x, y) + iv(x, y) (10.4.4)

First, let �y = 0 so that �z → 0 parallel to the x axis. From Eq. 10.4.1 with �z = �x ,

f ′(z) = lim
�x→0

u(x + �x, y) + iv(x + �x, y) − u(x, y) − iv(x, y)

�x

= lim
�x→0

[
u(x + �x, y) − u(x, y)

�x
+ i

v(x + �x, y) − v(x, y)

�x

]

= ∂u

∂x
+ i

∂v

∂x
(10.4.5)
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z � �z

x

z

y Figure 10.3 Various paths for �z
to approach zero.



Next, let �x = 0 so that �z → 0 parallel to the y axis. Then, using �z = i�y ,

f ′(z) = lim
�y→0

u(x, y + �y) + iv(x, y + �y) − u(x, y) − iv(x, y)

i�y

= lim
�y→0

[
u(x, y + �y) − u(x, y)

i�y
+ v(x, y + �y) − v(x, y)

�y

]

= −i
∂u

∂y
+ ∂v

∂y
(10.4.6)

For the derivative to exist, it is necessary that these two expressions for f ′(z) be equal. Hence,

∂u

∂x
+ i

∂v

∂x
= −i

∂u

∂y
+ ∂v

∂y
(10.4.7)

Setting the real parts and the imaginary parts equal to each other, respectively, we find that

∂u

∂x
= ∂v

∂y
,

∂u

∂y
= −∂v

∂x
(10.4.8)

the famous Cauchy–Riemann equations. We have derived these equations by considering only
two possible paths along which �z → 0. It can be shown (we shall not do so in this text) that
no additional relationships are necessary to ensure the existence of the derivative. If the
Cauchy–Riemann equations are satisfied at a point z = z0, and the first partials of u and v are
continuous at z0, then the derivative f ′(z0) exists. If f ′(z) exists at z = z0 and at every point in
a neighborhood of z0, then the function f (z) is said to be analytic at z0.

Thus, the definition of analyticity puts some restrictions on the nature of the sets on which f (z)
is analytic.6 For instance, if f (z) is analytic for all z, z < 1 and at z = i as well, then f (z) is
analytic at least in a domain portrayed in Fig. 10.4. If f (z) is not analytic at z0, f (z) is singular
at z0. In most applications z0 is an isolated singular point, by which we mean that in some
neighborhood of z0, f (z) is analytic for z �= z0 and singular only at z0. The most common
singular points of an otherwise analytic function arise because of zeros in the denominator of a
quotient. For each of the following functions, f (z) has an isolated singular point at z0 = 0:

1

ez − 1
,

1

z(z + 1)
,

1

z sin z
, tan z (10.4.9)

10.4 ANALYTIC FUNCTIONS � 617

6We do not explore this point here. Suffice it to say that functions are analytic on open sets in the complex
plane.

x

y

A neighborhood of z � i

1

Figure 10.4 A set of analyticity for some f (z).



The rational function

Q(z) = anzn + an−1zn−1 + · · · + a1z + a0

bm zm + bm−1zm−1 + · · · + b1z + b0
(10.4.10)

has isolated singularities at each zero of the denominator polynomial. We use “singularity” and
mean “isolated singularity” unless we explicitly comment to the contrary.

Since the definition of f ′(z) is formally the same as the definition of f ′(z), we can mirror the
arguments in elementary calculus to prove that

(1)
d

dz
[ f (z) ± g(z)] = f ′(z) ± g′(z) (10.4.11)

(2)
d

dz
[k f (z)] = k f ′(z) (10.4.12)

(3)
d

dz
[ f (z)g(z)] = f ′(z)g(z) + g′(z) f (z) (10.4.13)

(4)
d

dz

[
f (z)

g(z)

]
= f ′(z)g(z) − f (z)g′(z)

g2(z)
(10.4.14)

(5)
d

dz
[ f (g(z))] = d f

dg

dg

dz
(10.4.15)

Also, we can show that

d

dz
(anzn + an−1zn−1 + · · · + a1z + a0)

= nanzn−1 + (n − 1)an−1zn−2 + · · · + 2a2z + a1 (10.4.16)

by using properties (1) and (2) and the easily verified facts

dz

dz
= 1,

da0

dz
= 0 (10.4.17)
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Determine if and where the functions zz̄ and z2 are analytic.

� Solution

The function zz̄ is written as

f (z) = zz̄ = (x + iy)(x − iy) = x2 + y2

and is a real function only; its imaginary part is zero. That is,

u = x2 + y2, v = 0

EXAMPLE 10.4.1
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The Cauchy–Riemann equations give

∂u

∂x
= ∂v

∂y
or 2x = 0

∂u

∂y
= −∂v

∂x
or 2y = 0

Hence, we see that x and y must each be zero for the Cauchy–Riemann equations to be satisfied. This is true at the
origin but not in the neighborhood (however small) of the origin. Thus, the function zz̄ is not analytic anywhere.

Now consider the function z2. It is

f (z) = z2 = (x + iy)(x + iy) = x2 − y2 + i2xy

The real and imaginary parts are

u = x2 − y2, v = 2xy

The Cauchy–Reimann equations give

∂u

∂x
= ∂v

∂y
or 2x = 2x

∂u

∂y
= −∂v

∂x
or − 2y = −2y

We see that these equations are satisfied at all points in the xy plane. Hence, the function z2 is analytic
everywhere.

EXAMPLE 10.4.1 (Continued)

Find the regions of analyticity of the functions listed below and compute their first derivatives.
(a) ez (b) ln z (c) sin z

� Solution

(a) Since ez = ex+iy = ex eiy , we have

ez = ex cos y + iex sin y

Therefore, u = ex cos y and v = ex sin y . The verification of the Cauchy–Riemann equations is simple, so we
learn that ez is analytic for all z. Also, from Eq. 10.4.7

dez

dz
= ∂u

∂x
+ i

∂v

∂x
= ex cos y + iex sin y = ez

EXAMPLE 10.4.2
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(b) Here we express ln z = ln r + iθ, r =
√

x2 + y2 , and θ = tan−1 y/x with −π < θ ≤ π . Hence,

u = ln
√

x2 + y2 = 1
2 ln(x2 + y2)

v = tan−1 y

x

so

∂u

∂x
= 1

2

2x

x2 + y2
= x

x2 + y2

∂v

∂y
= 1/x

1 + (y/x)2
= x

x2 + y2

Also,

∂u

∂y
= 1

2

2y

x2 + y2
= y

x2 + y2

∂v

∂x
= −y/x2

1 + (y/x)2
= − y

x2 + y2

The Cauchy–Riemann equations are satisfied as long as x2 + y2 �= 0 and θ is uniquely defined, say
−π < θ < π . Finally,

d

dz
ln z = ∂u

∂x
+ i

∂v

∂y

= x

x2 + y2
− i

y

x2 + y2
= 1

z

valid as long as z �= 0 and ln z is continuous. For −π < θ < π , ln z is continuous at every z except
z = x ≤ 0.
(c) Since

sin z = sin x cosh y + i sin y cos x

by Eq. 10.3.13, we have

u = sin x cosh y, v = cos x sinh y

so the Cauchy–Riemann equations are easily checked and are valid for all z. Moreover,

d

dz
sin z = ∂u

∂x
+ i

∂v

∂y

= cos x cosh y − i sin x sinh y = cos z

from Eq. 10.3.14.

EXAMPLE 10.4.2 (Continued)



10.4.1 Harmonic Functions
Consider, once again, the Cauchy–Riemann equations 10.4.8, from which we can deduce

∂2u

∂x2
= ∂2v

∂x∂y
,

∂2u

∂y2
= − ∂2v

∂x∂y
(10.4.18)
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EXAMPLE 10.4.3

Find d/dz tan−1 z .

� Solution

Since we know, by Eq. 10.3.24, that

tan−1 z = i

2
ln

1 − i z

1 + i z

we have

d

dz
tan−1 z = i

2

1 + i z

1 − i z

d

dz

(
1 − i z

1 + i z

)

by utilizing d/dz ln z = 1/z and the chain rule, property (5). Since

d

dz

1 − i z

1 + i z
= (−i)(1 + i z) − i(1 − i z)

(1 + i z)2

= − 2i

(1 + i z)2

we have

d

dz
tan−1 z = i

2

1 + i z

1 − i z

−zi

(1 + i z)2

= 1

(1 − i z)(1 + i z)
= 1

1 + z2

This result could be obtained somewhat more easily by assuming that

ln
1 − i z

1 + i z
= ln(1 − i z) − ln(1 + i z)

But this is not a true statement without some qualifications.7

7See Problem 16 to see one difficulty with the “rule” ln z1z2 = ln z1 + ln z2 .



and8

∂2v

∂y2
= ∂2u

∂x∂y
,

∂2v

∂x2
= − ∂2u

∂x∂y
(10.4.19)

From Eqs. 10.4.18 we see that

∂2u

∂x2
= ∂2u

∂y2
= 0 (10.4.20)

and from Eqs. 10.4.19,

∂2v

∂x2
= ∂2v

∂y2
= 0 (10.4.21)

The real and imaginary parts of an analytic function satisfy Laplace’s equation. Functions that
satisfy Laplace’s equation are called harmonic functions. Hence, u(x, y) and v(x, y) are har-
monic functions. Two functions that satisfy Laplace’s equation and the Cauchy–Riemann equa-
tions are known as conjugate harmonic functions. If one of the conjugate harmonic functions is
known, the other can be found by using the Cauchy–Riemann equations. This will be illustrated
by an example.

Finally, let us show that constant u lines are normal to constant v lines if u + iv is an analytic
function. From the chain rule of calculus

du = ∂u

∂x
dx + ∂u

∂y
dy (10.4.22)

Along a constant u line, du = 0. Hence,

dy

dx

∣∣∣∣
u=C

= −∂u/∂x

∂u/∂y
(10.4.23)

Along a constant v line, dv = 0, giving

dy

dx

∣∣∣∣
v=C

= −∂v/∂x

∂v/∂y
(10.4.24)

But, using the Cauchy–Riemann equations,

−∂u/∂x

∂u/∂y
= ∂v/∂y

∂v/∂x
(10.4.25)

The slope of the constant u line is the negative reciprocal of the slope of the constant v line.
Hence, the lines are orthogonal. This property is useful in sketching constant u and v lines, as in
fluid fields or electrical fields.
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8We have interchanged the order of differentiation since the second partial derivatives are assumed to be
continuous.



10.4.2 A Technical Note
The definition of analyticity requires that the derivative of f (z) exist in some neighborhood of
z0. It does not, apparently, place any restrictions on the behavior of this derivative. It is possible
to prove9 that f ′(z) is far from arbitrary; it is also analytic at z0. This same proof applies to f ′(z)
and leads to the conclusion that f ′′(z) is also analytic at z0. We have, therefore,
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EXAMPLE 10.4.4

The real function u(x, y) = Ax + By obviously satisfies Laplace’s equation. Find its conjugate harmonic
function, and write the function f (z).

� Solution

The conjugate harmonic function, denoted v(x, y), is related to u(x, y) by the Cauchy–Riemann equations.
Thus,

∂u

∂x
= ∂v

∂y
or

∂v

∂y
= A

The solution for v is

v = Ay + g(x)

where g(x) is an unknown function to be determined. The relationship above must satisfy the other
Cauchy–Riemann equation.

∂v

∂x
= −∂u

∂y
or

∂g

∂x
= −B

Hence,

g(x) = −Bx + C

where C is a constant of integration, to be determined by an imposed condition. Finally, the conjugate har-
monic function v(x, y) is

v(x, y) = Ay − Bx + C

for every choice of C. The function f (z) is then

f (z) = Ax + By + i(Ay − Bx + C)

= A(x + iy) − Bi(x + iy) + iC

= (A − iB)z + iC

= K1z + K2

where K1 and K2 are complex constants.

9See any text on the theory of complex variables.



Theorem 10.1: If f is analytic at z0, then so are f ′(z) and all the higher order derivatives.

This theorem is supported by all of the examples we have studied. The reader should note that
the analogous result for functions of a real variable is false (see Problem 17).

10.4.3 Maple Applications
Example 10.4.1 can be done with Maple, but we must keep in mind that in these problems, we
convert the problem using real variables x and y, and Maple does not know that typically
z = x + iy , so we have to make that a definition. To begin:

>z:= x + I*y;

z:= x+ yI

>z*conjugate(z);

(x+ yI)(x+ yI)

>f:=evalc(%);

f:= x2 + y2

>u:=evalc(Re(f)); v:=evalc(Im(f));

u := x2 + y2

v := 0

Now, if we wish, we can use the diff command to write the Cauchy–Riemann equations:

>CR1:=diff(u, x)=diff(v,y); CR2:=diff(u, y)=diff(v,x);

C R1 := 2x= 0

C R2 := 2y= 0

Similarly, the second part of Example 10.4.1 can be calculated in this way:

>f:=evalc(z*z);

f:= x2 + 2Ixy − y2

>u:=evalc(Re(f)); v:=evalc(Im(f));

u := x2 − y2

v := 2yx

>CR1:=diff(u, x)=diff(v,y); CR2:=diff(u, y)=diff(v,x);

C R1 := 2x= 2x

C R2 := −2y= 2y

Note: If we still have z assigned as x + I*y in Maple, then entering the function of Example
10.4.3 into Maple would yield:

>diff(arctan(z), z);

Error, Wrong number (or type) of parameters in function diff
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However, if we unassign z, Maple produces the following:

>unassign('z');

>diff(arctan(z), z);

1

1+ z2

Now, Maple doesn’t assume that z is a complex variable, so the calculation above is valid
whether z is real or complex. In fact, recall that for a real variable x, the derivative of tan−1 x is
1/(1 + x2).
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Problems

Compare the derivative of each function f (z) using Eq. 10.4.5
with that obtained using Eq. 10.4.6.

1. z2

2. z̄

3.
1

z + 2

4. (z − 1)2

5. ln(z − 1)

6. ez

7. z̄z

8. Express a complex fraction in polar coordinates as
f (z) = u(r, θ) + iv(r, θ) and show that the Cauchy–
Riemann equations can be expressed as

∂u

∂r
= 1

r

∂v

∂θ
,

∂v

∂r
= 1

r

∂u

∂θ

Hint: Sketch �z using polar coordinates; then, note that
for �θ = 0,�z = �r(cos θ + i sin θ), and for �z = 0,

�z = r�θ(−sin θ + i cos θ).

9. Derive Laplace’s equation for polar coordinates.

10. Find the conjugate harmonic function associated with
u(r, θ) = ln r . Sketch some constant u and v lines.

Show that each function is harmonic and find the conjugate
harmonic function. Also, write the analytic function f (z).

11. xy

12. x2 − y2

13. ey sin x

14. ln(x2 + y2)

15. If v is a harmonic conjugate of u, find a harmonic conju-
gate of v.

16. Suppose that ln z = ln r + iθ , 0 ≤ θ < 2π . Show that
ln(−i)(−i) �= ln(−i) + ln(−i). Hence, ln z1z2 = ln z1+
ln z2 may be false for the principal value of ln z. Note
that ln z1z2 = ln z1 + ln z2 + 2πni , for some integer n.

17. Let f (x) = x2 if x ≥ 0 and f (x) = −x2 if x < 0. Show
that f ′(x) exists and is continuous, but f ′′(x) does not
exist at x = 0.

Use Maple to compute each derivative, and compare with
your results from Problems 1–7.

18. Problem 1

19. Problem 2

20. Problem 3

21. Problem 4

22. Problem 5

23. Problem 6

24. Problem 7

25. Computer Laboratory Activity: Analytic functions map
the complex plane into the complex plane, so they are
difficult to visualize. However, there are graphs that can
be made to help in understanding analytic functions. The
idea is to create a region in the complex plane, and then
determine the image of that region under the analytic
function.
(a) Consider the function f (z) = z2. Write z = x + iy ,

and then determine z2 in terms of x and y. Write your
answer in the form a + bi .



(b) Use the result of part (a) to write a new function
F(x, y) = (a, b), where a and b depend on x and y.

(c) Consider the square in the plane with these four cor-
ners: (1, 2), (1, 5), (4, 5), (4, 2). Determine what F of
part (b) does to each of these points.

(d) Determine what F of part (b) does to each of the four
sides of the square. Then create a plot of the result. Is
the result a square?

(e) Follow the same steps for another square of your
choice and for a triangle of your choice.

10.5.1 Arcs and Contours
A smooth arc is the set of points (x, y) that satisfy

x = φ(t), y = ψ(t), a ≤ t ≤ b (10.5.1)

where φ′(t) and ψ ′(t) are continuous in [a, b] and do not vanish simultaneously. The circle,
x2 + y2 = 1, is represented parametrically by

x = cos t, y = sin t, 0 ≤ t ≤ 2π (10.5.2)

This is the most natural illustration of this method of representing a smooth arc in the xy plane.
The representation

x = t, y = t2, −∞ < t < ∞ (10.5.3)

defines the parabola y = x2. Note that a parametric representation provides an ordering to the
points on the arc. A smooth arc has length given by

L =
∫ b

a

√
[φ′(t)]2 + [ψ ′(t)]2 dt (10.5.4)

A contour is a continuous chain of smooth arcs. Figure 10.5 illustrates a variety of contours.
A simply closed contour, or a Jordan curve, is a contour which does not intersect itself except

that φ(a) = φ(b) and ψ(a) = ψ(b). A simply closed contour divides a plane into two parts, an
“inside” and an “outside,” and is traversed in the positive sense if the inside is to the left. The
square portrayed in Fig. 10.5a is being traversed in the positive sense, as indicated by the direc-
tion arrows on that simply closed contour.

Circles in the complex plane have particularly simple parametric representations, which ex-
ploit the polar and exponential forms of z. The circle |z| = a is given parametrically by

z = a cos θ + ia sin θ, 0 ≤ θ ≤ 2π (10.5.5)

or

z = aeiθ , 0 ≤ θ ≤ 2π (10.5.6)

Both formulas are to be understood in this sense: x = a cos θ , y = a sin θ , so that z = x +
iy = a cos θ + ia sin θ = aeiθ .

10.5 COMPLEX INTEGRATION

626 � CHAPTER 10  / COMPLEX VARIABLES



A circle of radius a, centered at z0, as shown in Fig. 10.6, is described by the equations

z − z0 = aeiθ = a cos θ + ia sin θ (10.5.7)

where θ is measured from an axis passing through the point z = z0 parallel to the x axis.

10.5.2 Line Integrals
Let z0 and z1 be two points in the complex plane and C a contour connecting them, as shown in
Fig. 10.7. We suppose that C is defined parametrically by

x = φ(t), y = ψ(t) (10.5.8)

so that

z0 = φ(a) + iψ(a), z1 = φ(b) + iψ(b) (10.5.9)
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(a) Simply closed contours

(b) Contours that are not closed

Figure 10.5 Examples of contours.
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Figure 10.6 The description of a circle.



The line integral

∫
C

f (z) dz =
∫ z1

z0

f (z) dz (10.5.10)

is defined by the real integrals∫
C

f (z) dz =
∫

C
(u + iv)(dx + i dy)

=
∫

C
(u dx − v dy) + i

∫
C
(v dx + u dy) (10.5.11)

where we have written f (z) = u + iv. The integral relation 10.5.11 leads to several “natural
conclusions”: First,

∫ z1

z0

f (z) dz = −
∫ z0

z1

f (z) dz (10.5.12)

where the path of integration for the integral on the right-hand side of Eq. 10.5.12 is the same as
that on the left but traversed in the opposite direction. Also,

∫ z

z0

k f (z) dz = k
∫ z

z0

f (z) dz (10.5.13)

If the contour C is a continuous chain of contours C1, C2, . . . , Ck , such as displayed in Fig. 10.8,
then

∫ z1

z0

f (z) dz =
∫

C1

f (z) dz +
∫

C2

f (z) dz + · · · +
∫

Ck

f (z) dz (10.5.14)

Equation 10.5.11 can also be used to prove a most essential inequality:

Theorem 10.2: Suppose that | f (z)| ≤ M along the contour C and the length of C is L; then

∣∣∣∣
∫

C
f (z) dz

∣∣∣∣ ≤ M L (10.5.15)
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y

x

C

z1

z0

Figure 10.7 The contour C joining z0 to z1.



A proof of this inequality can be found in a text on complex variables. Here we outline a heuris-
tic argument based on approximating the line integral by a sum. Consider the contour shown in
Fig. 10.9 and the chords joining points z0, z1, . . . , zn on C. Suppose that N is very large and the
points z1, z2, . . . , zn are quite close. Then

∫
C

f (z) dz ∼=
N∑

n=1

f (zn)�zn (10.5.16)

where �zn = zn − zn−1. From repeated use of |z1 + z2| ≤ |z1| + |z2| and Eq. 10.2.20, we have

∣∣∣∣
∫

C
f (z) dz

∣∣∣∣ ∼=
∣∣∣∣∣

N∑
n=1

f (zn)�zn

∣∣∣∣∣ ≤
N∑

n=1

| f (zn)| |�zn| (10.5.17)

Now | f (z)| ≤ M and C, so

∣∣∣∣
∫

C
f (z) dz

∣∣∣∣ ≤ M
N∑

n=1

|�zn| ≤ M L (10.5.18)

since

N∑
n=1

|�zn| ∼= L (10.5.19)

When the path of integration is a simply closed contour traversed positively, we write the line
integral as 

∮
f (z) dz; this signals an integration once around the contour in the positive sense.

10.5 COMPLEX INTEGRATION � 629

y

x

z3

z2

z1

C

z0

�z3

�z2

�z1

Figure 10.9 A polygonal approximation to C.
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Figure 10.8 A chain of contours.
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EXAMPLE 10.5.1

Find the value of 
∫ 1+i

0 z2 dz along the following contours. (a) The straight line from 0 to 1 + i . (b) The polyg-
onal line from 0 to 1 and from 1 to 1 + i . The contours are sketched in the figure.

� Solution

Along any contour the integral can be written as∫ i+i

0
z2 dz =

∫ 1+i

0
[(x2 − y2) + 2xyi](dx + i dy)

=
∫ 1+i

0
[(x2 − y2) dx − 2xy dy] + i

∫ 1+i

0
[2xy dx + (x2 − y2) dy]

(a) The contour C1 is the straight line from 0 to 1 + i and it has the parametric representation:

x = t, y = t, 0 ≤ t ≤ 1

with dt = dx = dy . We make these substitutions in the integral above to obtain

∫ 1+i

0
z2 dz =

∫ 1

0
[(t2 − t2) dt − 2t2 dt] + i

∫ 1

0
[2t2 dt + (t2 − t2) dt]

= − 2
3 + 2

3 i

(b) In this case, the contour is a polygonal line and this line requires two separate parameterizations. Using
z = x along C2 and z = 1 + iy along C3, we can write∫ 1+i

0
z2 dz =

∫ 1

0
x2 dx +

∫ 1

0
(1 + iy)2i dy

This simplification follows because the contour C2 has y = 0 and dy = 0. The contour C3 requires dx = 0.
Therefore, ∫ 1+i

0
z2 dz = 1

3
+

∫ 1

0
(1 − y2 + 2yi)i dy

= 1

3
−

∫ 1

0
2y dy + i

∫ 1

0
(1 − y2) dy

= 1

3
− 1 + 2

3
i = −2

3
+ 2

3
i

y

xC2

C3

C1

(1, 1)

0 0
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EXAMPLE 10.5.2

Evaluate 
∮

dz/z around the unit circle with center at the origin.

� Solution

The simplest representation for this circle is the exponential form

z = eiθ and dz = ieiθdθ

where we have noted that r = 1 for a unit circle with center at the origin. We then have∮
dz

z
=

∫ 2π

0

ieiθdθ

eiθ
=

∫ 2π

0
idθ = 2π i

This is an important integration technique and an important result which will be used quite often in the re-
mainder of this chapter.

EXAMPLE 10.5.3

Evaluate the integral 
∮

dz/zn around the unit circle with center at the origin. Assume that n is a positive inte-
ger greater than unity.

� Solution

As in Example 10.5.2, we use r = 1 and the exponential form for the parametric representation of the circle:

z = eiθ , dz = ieiθdθ

We then have, if n > 1, ∮
dz

zn
=

∫ 2π

0

ieiθ

eniθ
dθ

= i
∫ 2π

0
eiθ(1−n)dθ

= ieiθ(1−n)

i(1 − n)

∣∣∣∣
2π

0

= 1

1 − n
(1 − 1) = 0

Show that ∫
C

dz =
∫ z1

z0

dz = z1 − z0

EXAMPLE 10.5.4



10.5.3 Green’s Theorem
There is an important relationship that allows us to transform a line intergral into a double
integral for contours in the xy plane. It is often referred to as Green’s theorem:

Theorem 10.3: Suppose that C is a simply closed contour traversed in the positive direction and
bounding the region R. Suppose also that u and v are continuous with continuous first partial
derivatives in R. Then ∮

C
u dx − v dy = −

∫ ∫
R

(
∂v

∂x
+ ∂u

∂y

)
dx dy (10.5.20)

Proof: Consider the curve C surrounding the region R in Fig. 10.10. Let us investigate the first
part of the double integral in Green’s theorem. It can be written as

∫ ∫
R

∂v

∂x
dx dy =

∫ h2

h1

∫ x2(y)

x1(y)

∂v

∂x
dx dy

=
∫ h2

h1

[v(x2, y) − v(x1, y) dy

=
∫ h2

h1

v(x2, y) dy +
∫ h1

h2

v(x1, y) dy (10.5.21)

632 � CHAPTER 10  / COMPLEX VARIABLES

� Solution

Since f (z) = 1, then u = 1, v = 0 and we have, using Eq. 10.5.11,∫ z1

z0

dz =
∫ z1

z0

dx + i
∫ z1

z0

dy

Now suppose that C has the parametric representation

x = φ(t), y = ψ(t), a ≤ t ≤ b

Then dx = φ′ dt, dy = ψ ′ dt and∫ z1

z0

dz =
∫ b

a
φ′(t) dt + i

∫ b

a
ψ ′(t) dt

= [φ(b) − φ(a)] + i[ψ(b) − ψ(a)]

= [φ(b) + iψ(b)] − [φ(a) + iψ(a)]

= z1 − z0

Note that this result is independent of the contour.

EXAMPLE 10.5.4 (Continued)



The first integral on the right-hand side is the line integral of v(x, y) taken along the path ABC
from A to C and the second integral is the line integral of v(x, y) taken along the path ADC from
C to A. Note that the region R is on the left. Hence, we can write∫ ∫

R

∂v

∂x
dx dy =

∮
C

v(x, y) dy (10.5.22)

Similarly, we can show that ∫ ∫
R

∂u

∂y
dx dy = −

∮
C

u(x, y) dx (10.5.23)

and Green’s theorem is proved.
It should be noted that Green’s theorem may be applied to a multiply connected region

by appropriately cutting the region, as shown in Fig. 10.11. This makes a simply connected
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y

x

h1

h2
x � x2(y)

x � x1(y)

Curve C

Region R B

C

D

A

Area dx dy

Figure 10.10 Curve C surrounding region R in Green’s theorem.

y

x

C

R

Figure 10.11 Multiply connected region.



region10 from the original multiply connected region. The contribution to the line integrals from
the cuts is zero, since each cut is traversed twice, in opposite directions.
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EXAMPLE 10.5.5

Verify Green’s theorem by integrating the quantities u = x + y and v = 2y around the unit square shown.

� Solution

Let us integrate around the closed curve C formed by the four sides of the squares. We have∮
u dx − v dy =

∫
C1

u dx − v dy +
∫

C2

u dx − v dy

+
∫

C3

u dx − v dy +
∫

C4

u dx − v dy

=
∫ 1

0
x dx +

∫ 1

0
−2y dy +

∫ 0

1
(x + 1) dx +

∫ 0

1
−2y dy

where along C1, dy = 0 and y = 0; along C2, dx = 0; along C3, dy = 0 and y = 1; and along C4, dx = 0.
The equation above is integrated to give∮

u dx − v dy = 1
2 − 1 − (

1
2 + 1

) + 1 = −1

Now, using Green’s theorem, let us evaluate the double integral

−
∫∫ (

∂v

∂x
+ ∂u

∂y

)
dx dy

Using ∂v/∂x = 0 and ∂u/∂y = 1, there results

−
∫∫ (

∂v

∂x
+ ∂u

∂y

)
dx dy = −

∫∫
(1) dx dy = −area = −1

For the functions u(x, y) and v(x, y) of this example we have verified Green’s theorem.

y

C4 C2

(1, 1)

C1

C3

x

10A simply connected region is one in which any closed curve contained in the region can be shrunk to zero
without passing through points not in the region. A circular ring (like a washer) is not simply connected. A re-
gion that is not simply connected is multiply connected.



10.5.4 Maple Applications
Contour integration is not built into Maple, in part because it would be difficult to define a con-
tour in a command line. However, Maple can easily compute the definite integrals that arise in
Example 10.5.1:

>int(2*y, y=0..1); int(1-y^2, y=0..1);

1

2

3
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Problems

Find convenient parametric representation of each equation.

1.
x2

a2
− y2

b2
= 1

2.
x2

a2
+ y2

b2
= 1

3. y = 2x − 1

Integrate each function around the closed curve indicated and
compare with the double integral of Eq. 10.5.20.

4. u = y, v = x around the unit square as in
Example 10.5.5.

5. u = y, v = −x around the unit circle with center at the
origin.

6. u = x2 − y2, v = −2xy around the triangle with
vertices at (0, 0) (2, 0), (2, 2).

7. u = x + 2y, v = x2 around the triangle of Problem 6.

8. u = y2, v = −x2 around the unit circle with center at the
origin.

To show that line integrals are, in general, dependent on the
limits of integration, evaluate each line integral.

9.
∫ 2,2

0,0
(x − iy) dz along a straight line connecting the two 

points.∫ 2,2

0,0
(x − iy) dz along the x axis to the point (2, 0) and 

then vertically to (2, 2).

10.
∫ 0,2

0,0
(x2 + y2) dz along the y axis.

∫ 0,2

0,0
(x2 + y2) dz along the x axis to the point (2, 0), then

along a circular arc.

To verify that the line integral of an analytic function is inde-
pendent of the path, evaluate each line integral.

11.
∫ 2,2

0,0
z dz along a straight line connecting the two points.

∫ 2,2

0,0
z dz along the z axis to the point (2, 0) and then 

vertical.

12.
∫ 0,2

0,0
z2 dz along the x axis to the point (2, 0) and then 

along a circular arc.∫ 0,2

0,0
z2 dz along the y axis.

Which of the following sets are simply connected?

13. The xy plane.

14. All z except z negative.

15. |z| > 1.

16. 0 < |z| < 1.

17. Re z ≥ 0.

18. Re z ≥ 0 and Im z ≥ 0.

19. All z such that 0 < arg z < π/4.

20. All z such that 0 < arg z < π/4 and |z| > 1.

21. Im z > 0 and |z| > 1. (Compare with Problem 14.)



Now let us investigate the line integral 
∮

C f (z) dz, where f (z) is an analytic function within a
simply connected region R enclosed by the simply closed contour C. From Eq. 10.5.11, we have∮

C
f (z) dz =

∮
C

(u dx − v dy)+ i
∮

C
(v dx + u dy) (10.6.1)

which we have used as the definition of 
∮

f (z) dz. Green’s theorem allows us to transform
Eq. 10.6.1 into∮

C
f (z) dz = −

∫ ∫
R

(
∂v

∂x
+ ∂u

∂y

)
dx dy −i

∫ ∫
R

(
−∂u

∂x
+ ∂v

∂y

)
dx dy (10.6.2)

Using the Cauchy–Reimann equations 10.4.8, we arrive at Cauchy’s integral theorem,∮
C

f (z) dz = 0

We present it as a theorem:

Theorem 10.4: Let C be a simply closed contour enclosing a region R in which f (z) is
analytic. Then ∮

C
f (z) dz = 0 (10.6.3)

If we divide the closed curve C into two parts, as shown in Fig. 10.12, Cauchy’s integral theorem
can be written as ∮

C
f (z) dz =

∫ b

a
f

along C1

(z) dz +
∫ a

b
f

along C2

(z) dz

=
∫ b

a
f

along C1

(z) dz −
∫ a

b
f

along C2

(z) dz (10.6.4)

10.6 CAUCHY’S INTEGRAL THEOREM
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y

x

b

C � C1 � C2

C1

C2

a

Figure 10.12 Two paths from a to b enclosing a
simply connected region.



where we have reversed the order of the integration (i.e., the direction along the contour). Thus,
we have

∫ b

a
f

along C1

(z) dz =
∫ b

a
f

along C2

(z) dz (10.6.5)

showing that the value of a line integral between two points is independent of the path provided
that the f (z) is analytic throughout a region containing the paths. In Fig. 10.12, it is sufficient to
assume that f (z) is analytic in the first quadrant, for example. In Example 10.5.1 we found that∫ 1+i

0
z2 dz = − 2

3 + 2
3 i

regardless of whether the integration is taken along the line joining 0 to 1 + i or the polygonal line
joining 0 to 1 and then to 1 + i . Since z2 is analytic everywhere, this result is a consequence of
Eq. 10.6.5. Indeed, we can assert that this integral is independent of the path from (0, 0) to (1, 1).

10.6.1 Indefinite Integrals
The indefinite integral

F(z) =
∫ z

z0

f (w) dw (10.6.6)

defines F as a function of z as long as the contour joining z0 to z lies entirely within a domain
D which is simply connected and within which f (z) is analytic. As we might reasonably expect

F ′(z) = f (z), in D (10.6.7)

which means that F(z) itself is analytic in D. To see how this comes about, consider the differ-
ence quotient

�F

�z
= F(z + �z) − F(z)

�z

= 1

�z

(∫ z+�z

z0

f (w) dw −
∫ z

z0

f (w) dw

)

= 1

�z

∫ z+�z

z
f (z) dw (10.6.8)

Also, we can write

f (z) = 1

�z

∫ z+�z

z
f (z) dw (10.6.9)

which follows from Eq. 10.5.13 and Example 10.5.4. We subtract Eq. 10.6.9 from Eq. 10.6.8 to
obtain

�F(z)

�z
− f (z) = 1

�z

∫ z+�z

z
[ f (w) − f (z)] dw (10.6.10)
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Since the integral in Eq. 10.6.10 is independent of the path between z and z + �z we take this
path as linear. As �z → 0, f (w) → f (z) and hence, for any ε > 0, we can be assured that

| f (w) − f (z)| ≤ ε for |�z| small (10.6.11)

Thus,

∣∣∣∣�F(z)

�z
− f (z)

∣∣∣∣ = 1

|�z|
∣∣∣∣
∫ z+�z

z
[ f (w) − f (z)] dw

∣∣∣∣
≤ |�z|

|�z|ε = ε (10.6.12)

from Theorem 10.2. Clearly, ε → 0 as �z → 0. Hence,

lim
�z→0

�F(z)

�z
= F ′(z) (10.6.13)

by definition and F ′(z) = f (z) from Eq. 10.6.12.
The identity

∫ b

a
f (z) dz =

∫ b

z0

f (z) dz −
∫ a

z0

f (z) dz

= F(b) − F(a) (10.6.14)

is the familiar formula from elementary calculus. The importance of Eq. 10.6.14 is this: The con-
tour integral

∫ b
a f (z) dz may be evaluated by finding an antiderivative F(z) (a function satisfying

F ′ = f ) and computing [F(b) − F(a)] instead of parameterizing the arc joining a to b and
evaluating the resulting real integrals. Compare the next example with Example 10.5.1.
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Evaluate the integral

∫ 1+i

0
z2 dz

� Solution

Let

F(z) = z3

3

EXAMPLE 10.6.1



10.6.2 Equivalent Contours
Cauchy’s integral theorem enables us to replace an integral about an arbitrary simply closed
contour by an integral about a more conveniently shaped region, often a circle. Consider the
integral 

∮
C1

f (z) dz, where the contour C1 is portrayed in Fig. 10.13. We call C2 an equivalent
contour to C1 if ∮

C1

f (z) dz =
∮

C2

f (z) dz (10.6.15)

This raises the question: Under what circumstances are C1 and C2 equivalent contours?
Suppose that f (z) is analytic in the region bounded by C1 and C2 and on these contours, as

in Fig. 10.13. Then introduce the line segment C3 joining C1 to C2. Let C be the contour made
up of C1 (counterclockwise), C3 to C2, C2 (clockwise), and C3 from C2 to C1. By Cauchy’s
integral theorem, ∮

C
f (z) dz = 0 (10.6.16)
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Then, since F ′(z) = z2, we have

∫ 1+i

0
z2 dz = F(1 + i) − F(0)

= (1 + i)3

3
− 0 = −2

3
+ 2

3
i

as expected from Example 10.5.1. Note the more general result:∫ z

0
w2 dw = F(z) − F(0) = z3

3

for each z.

EXAMPLE 10.6.1 (Continued)

y

R

C2

C3 C1

x

Figure 10.13 Equivalent contours C1 and C2.



However, by construction of C

∮
C

f (z) dz =
∫

C1

f (z) dz +
∫

C3

f (z) dz −
∫

C2

f (z) dz −
∫

C3

f (z) dz (10.6.17)

So, using Eq. 10.6.16 in Eq. 10.6.17, we see that C2 is equivalent to C1 since the two integrals
on C3 cancel.
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EXAMPLE 10.6.2

Evaluate the integral 
∮

f (z) dz around the circle of radius 2 with center at the origin if f (z) = 1/(z − 1).

� Solution

The given function f (z) is not analytic at z = 1, a point in the interior domain defined by the contour C1.
However, f (z) is analytic between and on the two circles. Hence,∮

C1

dz

z − 1
=

∮
C2

dz

z − 1

The contour C2 is a unit circle centered at z = 1. For this circle we have

z − 1 = eiθ and dz = ieiθ dθ

where θ is now measured with respect to a radius emanating from z = 1. The integral becomes

∮
C1

dz

z − 1
=

∮
C2

dz

z − 1
=

∫ 2π

0

ieiθ dθ

eiθ
= 2π i

Observe that this integration is independent of the radius of the circle with center at z = 1; a circle of any
radius would serve our purpose. Often we choose a circle of radius ε , a very small radius. Also, note that
the integration around any curve enclosing the point z = 1, whether it is a circle or not, would give the
value 2π i .

y

C1
C2

x
12



We now apply the results of Section 10.6 to the integral∮
C

f (z)

z − z0
dz (10.7.1)

We suppose that C is a simply closed contour defining the domain D as its interior. The point z0

is in D and f (z) is assumed analytic throughout D and on C. Figure 10.14 displays this situation.
Since the integrand in Eq. 10.7.1 has a singular point at z0, Cauchy’s integral theorem is not
directly applicable. However, as we have seen in Section 10.6,∮

C

f (z)

z − z0
dz =

∮
circle

f (z)

z − z0
dz (10.7.2)
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Problems

Evaluate 
∮

f (z) dz for each function, where the path of inte-
gration is the unit circle with center at the origin.

1. ez

2. sin z

3. 1/z3

4.
1

z − 2

5. 1/z̄

6.
1

z2 − 5z + 6

Evaluate 
∮

f (z) dz by direct integration using each function,
when the path of integration is the circle with radius 4, center
at the origin.

7. 1/z

8.
1

z2 − 5z + 6

9.
1

z − 1

10.
1

z2 − 4

11. z2 + 1/z2

12.
z

z − 1

y

x

C

D�

z0

z � z0 � �ei� 

�ei� dz � �iei� d�

Figure 10.14 Small-circle equivalent to the curve C.



where the circle is as shown in Fig. 10.14. The parameterization of the small circle with radius ε
leads to

∮
circle

f (z)

z − z0
dz =

∫ 2π

0

f (z0 + εeiθ )

εeiθ
εeiθ i dθ

= i
∫ 2π

0
f (z0 + εeiθ ) dθ (10.7.3)

Hence, using this equation in Eq. 10.7.2, we find

∮
C

f (z)

z − z0
dz = i

∫ 2π

0
f (z0 + εeiθ ) dθ (10.7.4)

Now, as ε → 0, we have f (z0 + εeiθ ) → f (z0), which suggests that

i
∫ 2π

0
f (z0 + εeiθ ) dθ = i

∫ 2π

0
f (z0) dθ = i f (z0) 2π (10.7.5)

Hence, we conjecture that

∮
C

f (z)

z − z0
dz = 2π i f (z0) (10.7.6)

This is Cauchy’s integral formula, usually written as

f (z0) = 1

2π i

∮
C

f (z)

z − z0
dz (10.7.7)

We prove Eq. 10.7.5, and thereby Eq. 10.7.7, by examining

∣∣∣∣
∫ 2π

0
[ f (z0 + εeiθ ) − f (z0)] dθ

∣∣∣∣ ≤ M2π (10.7.8)

by Theorem 10.2. However,

M = max | f (z0 + εeiθ ) − f (z0)| (10.7.9)

around the small circle z − z0 = εeiθ . Since f (z) is analytic, it is continuous and so M → 0 as
ε → 0. Therefore, inequality 10.7.8 actually implies the equality

∫ 2π

0
[ f (z0 + εeiθ ) − f (z0)] dθ = 0 (10.7.10)

and Eq. 10.7.5 is proved.
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We can obtain an expression for the derivative of f (z) at z0 by using Cauchy’s integral
formula in the definition of a derivative as follows:

f ′(z0) = lim
�z0→0

f (z0 + �z0) − f (z0)

�z0

= lim
�z0→0

1

�z0

[
1

2π i

∮
C

f (z) dz

z − z0 − �z0
− 1

2π i

∮
C

f (z)

z − z0
dz

]

= lim
�z0→0

1

�z0

[
1

2π i

∮
C

f (z)

(
1

z − z0 − �z0
− 1

z − z0

)
dz

]

= lim
�z0→0

1

�z0

[
�z0

2π i

∮
C

f (z) dz

(z − z0 − �z0)(z − z0)

= 1

2π i

∮
C

f (z)

(z − z0)2
dz (10.7.11)

(This last equality needs to be proved in a manner similar to the proof of Cauchy’s integral
formula, 10.7.7.) In a like manner we can show that

f ′′(z0) = 2!

2π i

∮
C

f (z)

(z − z0)3
dz (10.7.12)

or, in general

f (n)(z0) = n!

2π i

∮
C

f (z)

(z − z0)n+1
dz (10.7.13)

We often refer to the family of formulas in Eq. 10.7.13 as Cauchy’s integral formulas.
Cauchy’s integral formula 10.7.7 allows us to determine the value of an analytic function at

any point z0 interior to a simply connected region by integrating around a curve C surrounding
the region. Only values of the function on the boundary are used. Thus, we note that if an ana-
lytic function is prescribed on the entire boundary of a simply connected region, the function and
all its derivatives can be determined at all interior points. We can write Eq. 10.7.7 in the
alternative form

f (z) = 1

2π i

∮
C

f (w)

w − z
dw (10.7.14)

where z is any interior point such as that shown in Fig. 10.15. The complex variable w is simply
a dummy variable of integration that disappears in the integration process. Cauchy’s integral for-
mula is often used in this form.
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y

x

R

C

w � z
z

w dw

Figure 10.15 Integration variables for Cauchy’s
integral theorem.
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Find the value of the integral 
∮

z2/(z2 − 1) dz around the unit circle with center at (a) z = 1, (b) z = −1, and
(c) z = 1

2 .

� Solution

Using Cauchy’s integral formula (Eq. 10.7.7), we must make sure that f (z) is analytic in the unit circle, and
that z0 lies within the circle.
(a) With the center of the unit circle at z = 1, we write∮

z2

z2 − 1
dz =

∮
z2/(z + 1)

z − 1
dz

where we recognize that

f (z) = z2

z + 1

This function in analytic at z = 1 and in the unit circle. Hence, at that point

f (1) = 1
2

and we have ∮
z2

z2 − 1
dz = 2π i( 1

2 ) = π i

(b) with the center of the unit circle at z = −1, we write∮
z2

z2 − 1
dz =

∮
z2/(z − 1)

z + 1
dz

where

f (z) = z2

z − 1
and f (−1) = − 1

2

There results ∮
z2

z2 − 1
dz = 2π i(− 1

2 ) = −π i

y

x

1

z � 1z � �1

EXAMPLE 10.7.1
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(c) Rather than integrating around the unit circle with center at z = 1
2 , we can integrate around any curve en-

closing the point z = 1 just so the curve does not enclose the other singular point at z = −1. Obviously, the
unit circle of part (a) is an acceptable alternative curve. Hence,∮

z2

z2 − 1
dz = π i

EXAMPLE 10.7.1 (Continued)

EXAMPLE 10.7.2

Evaluate the integrals ∮
z2 + 1

(z − 1)2
dz and

∮
cos z

z3
dz

around the circle |z| = 2.

� Solution

Using Eq. 10.7.11, we can write the first integral as∮
z2 + 1

(z − 1)2
dz = 2π i f ′(1)

where

f (z) = z2 + 1 and f ′(z) = 2z

Then

f ′(1) = 2

The value of the integral is then determined to be∮
z2 + 1

(z − 1)2
dz = 2π i(2) = 4π i

For the second integral of the example, we have∮
cos z

z3
dz = 2π i

2!
f ′′(0)

where

f (z) = cos z and f ′′(z) = − cos z

At the origin

f ′′(0) = −1

The integral is then ∮
cos z

z3
= 2π i

2!
(−1) = −π i
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Problems

Find the value of each integral around the circle |z| = 2 using
Cauchy’s integral formula.

1.
∮

sin z

z
dz

2.
∮

ez

z − 1
dz

3.
∮

z

z2 + 4z + 3
dz

4.
∮

z2 − 1

z3 − z2 + 9z − 9
dz

5.
∮

cos z

z − 1
dz

6.
∮

z2

z + i
dz

Evaluate the integral 
∮

(z − 1)/(z2 + 1) dz around each
curve.

7. |z − i | = 1

8. |z + i | = 1

9. |z| = 1/2

10. |z − 1| = 1

11. |z| = 2

12. The ellipse 2x2 + (y + 1)2 = 1

If the curve C is the circle |z| = 2, determine each integral.

13.
∮

C

sin z

z2
dz

14.
∮

C

z − 1

(z + 1)2
dz

15.
∮

C

z2

(z − 1)3
dz

16.
∮

C

cos z

(z − 1)2
dz

17.
∮

C

ez

(z − i)2
dz

18.
∮

sinh z

z4
dz

The representation of an analytic function by an infinite series is basic in the application of
complex variables. Let us show that if f (z) is analytic at the point z = a, then f (z) can be
represented by a series of powers of z − a. Expand the quantity (w − z)−1 as follows:

1

w − z
= 1

(w − a) − (z − a)
= 1

w − a


 1

1 − z − a

w − a




= 1

w − a

[
1 + z − a

w − a
+

(
z − a

w − a

)2

+ · · · +
(

z − a

w − a

)n−1

+ Rn(z, w)

]
(10.8.1)

where

Rn(z, w) = 1

1 − z − a

w − a

(
z − a

w − a

)n

(10.8.2)

10.8 TAYLOR SERIES



Equation 10.8.1 is the algebraic identity

1

1 − r
= 1 + r + r2 + · · · + rn−1 + rn

1 − r
(10.8.3)

We can now substitute the expansion of 1/(w − z) in Cauchy’s integral formula 10.7.14, to
obtain

f (z) = 1

2π i

∮
C

f (w)

w − a

[
1 + z − a

w − a
+ · · · +

(
z − a

w − a

)n−1

+ Rn(z, w)

]
dw

= 1

2π i

∮
C

f (w)

w − a
dw + z − a

2π i

∮
C

f (w)

(w − a)2
dw + · · ·

+ (z − a)n−1

2π i

∮
C

f (w)

(w − a)n
dw + (z − a)n

2π i

∮
C

f (w)

(w − z)(w − a)n
dw (10.8.4)

where we have simplified Rn(z, w) by noting that Eq. 10.8.2 is equivalently

Rn(z, w) = w − a

w − z

(
z − a

w − a

)n

= (z − a)n

(w − z)(w − a)n−1
(10.8.5)

Now, the Cauchy integral formulas 10.7.13 may be used in Eq. 10.8.4 to write

f (z) = f (a) + 1

1!
f ′(a)(z − a) + · · · + 1

(n − 1)!
f (n−1)(a)(z − a)n−1

+ (z − a)n

2π i

∮
C

f (w) dw

(w − z)(w − a)n
(10.8.6)

The integral in this equation is the remainder term and for appropriate z, w, and a, this term tends
to zero as n tends to infinity. Suppose that C is a circle centered at z = a and z is a point inside
the circle C (see Fig. 10.16). We assume that f (z) is analytic on C and in its interior, that
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y

x

R

C a
z � a

w � a

z

w

Figure 10.16 Circular region of
convergence for the
Taylor series.



|z − a| = r , and hence that r < R = |w − a|. Let M = max | f (z)| for z on C. Then by
Theorem 10.2, and the fact that |w − z| ≥ R − r (see Fig. 10.16),

∣∣∣∣ (z − a)n

2π i

∮
C

f (w) dw

(w − z)(w − a)n

∣∣∣∣ ≤ rn

2π

M

R − r

2π R

Rn
= M

R

R − r

( r

R

)n
(10.8.7)

Since r < R, (r/R)n → 0 as n → ∞. We have thus established the convergence of the famous
Taylor series

f (z) = f (a) + f ′(a)(z − a) + f ′′(a)
z − a

2!
+ · · · + f (n)(a)

(z − a)n

n!
+ · · · (10.8.8)

The convergence holds in the largest circle about z = a in which f (z) is analytic. If
|z − a| = R is this circle, then R is the radius of convergence and we are assured of the conver-
gence in the open set |z − a| < R . We mention in passing that the series 10.8.8 must diverge for
those z, |z − a| > R . The convergence or divergence on the circle |z − a| = R is a more diffi-
cult issue which we choose not to explore; suffice it to say that f (z) must have a singular point
somewhere on |z − a| = R by definition of R.

The discussion above applies equally well to a circular region about the origin, a = 0. The
resultant series expression

f (z) = f (0) + f ′(0)z + f ′′(0)
z2

2!
+ · · · (10.8.9)

is sometimes called a Maclaurin series, especially if z = x is real.
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Use the Taylor series representation of f (z) and find a series expansion about the origin for (a) f (z) = sin z ,
(b) f (z) = ez , and (c) f (z) = 1/(1 − z)m .

� Solution

(a) To use Eq. 10.8.9, we must evaluate the derivatives at z = 0. They are

f ′(0) = cos 0 = 1, f ′′(0) = − sin 0 = 0,

f ′′′(0) = − cos 0 = −1, etc.

The Taylor series is then, with f (z) = sin z ,

sin z = sin 0 + 1 · (z − 0) + 0 · (z − 0)2

2!
− 1 · (z − 0)3

3!
+ · · ·

= z − z3

3!
+ z5

5!
− · · ·

This series is valid for all z since no singular point exists in the xy plane. It is the series given in Section 10.3
to define sin z.

EXAMPLE 10.8.1
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(b) For the second function the derivatives are

f ′(0) = e0 = 1, f ′′(0) = e0 = 1, f ′′′(0) = e0 = 1, . . .

The Taylor series for f (z) = ez is then

ez = e0 + 1 · z + 1 · z2

2!
+ 1 · z3

3!
+ · · ·

= 1 + z + z2

2!
+ z3

3!
+ · · ·

This series is valid for all z. Note that this is precisely the series we used in Section 10.3 to define ez .
(c) We determine the derivatives to be

f ′(z) = m(1 − z)−m−1, f ′′(z) = m(m + 1)(1 − z)−m−2,

f ′′′(z) = m(m + 1)(m + 2)(1 − z)−m−3, . . .

Substitute into Taylor series to obtain

1

(1 − z)m
= 1

(1 − 0)m
+ m(1 − 0)−m−1z + m(m + 1)(1 − 0)−m−2 z2

2!
+ · · ·

= 1 + mz + m(m + 1)
z2

2!
+ m(m + 1)(m + 2)

z3

3!
+ · · ·

This series converges for |z| < 1 and does not converge for |z| ≥ 1 since a singular point exists at z = 1.
Using m = 1, the often used expression for 1/(1 − z) results,

1

1 − z
= 1 + z + z2 + z3 + · · ·

EXAMPLE 10.8.1 (Continued)

Find the Taylor series representation of ln(1 + z) by noting that

d

dz
ln(1 + z) = 1

1 + z

� Solution

First, let us write the Taylor series expansion of 1/(1 + z). It is, using the results of Example 10.8.1(c)

1

1 + z
= 1

1 − (−z)
= 1 − z + z2 − z3 + · · ·

EXAMPLE 10.8.2
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Now, we can perform the integration∫
d[ln(1 + z)] dz =

∫
1

1 + z
dz

using the series expansion of 1/(1 + z) to obtain

ln(1 + z) =
∫

1

1 + z
dz = z − z2

2
+ z3

3
− z4

4
+ · · · + C

The constant of integration C = 0, since when z = 0, ln(1) = 0. The power-series expansion is finally

ln(1 + z) = z − z2

2
+ z3

2
− · · ·

This series is valid for |z| < 1 since a singularity exists at z = −1.

EXAMPLE 10.8.2 (Continued)

EXAMPLE 10.8.3

Determine the Taylor series expansion of

f (z) = 1

(z2 − 3z + 2)

about the origin.

� Solution

First, represent the function f (z) as partial fractions; that is,

1

z2 − 3z + 2
= 1

(z − 2)(z − 1)
= 1

z − 2
− 1

z − 1

The series representations are then, using the results of Example 10.8.1(c),

1

z − 1
= − 1

1 − z
= −(1 + z + z2 + · · ·)

1

z − 2
= −1

2

(
1

1 − z/2

)
= −1

2

[
1 + z

2
+

( z

2

)2
+

( z

2

)3
+ · · ·

]

= −1

2

[
1 + z

2
+ z2

4
+ z3

8
+ · · ·

]

Finally, the difference of the two series is

1

z2 − 3z − 2
= 1

2
+ 3

4
z + 7

8
z2 + 15

16
z3 + · · ·

We could also have multiplied the two series together to obtain the same result.



10.8.1 Maple Applications
Maple’s taylor command can compute the Taylor series of a function. As we described earlier
with Maple’s diff command, the taylor command is valid with real or complex variables.
There are three arguments for the taylor command: the function, the point of expansion, and
the number of terms that is desired. The output must be interpreted with care. For example, to
get the first four terms of the Taylor series representation of sin z about the origin:

>taylor(sin(z), z=0, 4);

z− 1

6
z3 + O(z4)

10.8 TAYLOR SERIES � 651

EXAMPLE 10.8.4

Find the Taylor series expansion of

f (z) = 1

z2 − 9

by expanding about the point z = 1.

� Solution

We write the function f (z) in partial fractions as

1

z2 − 9
= 1

(z − 3)(z + 3)
= 1

2

(
1

z − 3

)
− 1

6

(
1

z + 3

)

= −1

6

[
1

2 − (z − 1)

]
− 1

6

[
1

4 + (z − 1)

]

= − 1

12


 1

1 − z − 1

2


 − 1

24


 1

1 −
(

− z − 1

4

)



Now, we can expand in a Taylor series as

1

z2 − 9
= − 1

12

[
1 + z − 1

2
+

(
z − 1

2

)2

+
(

z − 1

2

)3

+ · · ·
]

− 1

24

[
1 − z − 1

4
+

(
z − 1

4

)2

−
(

z − 1

4

)3

+ · · ·
]

= −1

8
− 1

32
(z − 1) − 3

128
(z − 1)2 − 5

512
(z − 1)3 + · · ·

The nearest singularity is at the point z = 3; hence, the radius of convergence is 2; that is |z − 1| < 2. This is
also obtained from the first ratio since |(z − 1)/2| < 1 or |z − 1| < 2. The second ratio is convergent if
|−(z − 1)/4| < 1 or |z − 1| < 4; thus, it is the first ratio that limits the radius of convergence.



Here, the first four terms are 0, z, 0, and −z3/6. The O(z4) indicates that the rest of the terms
have power z4 or higher. For ez and 1/(1 − z)m :

>taylor(exp(z), z=0, 4);

1+ z+ 1

2
z2 + 1

6
z3 + O(z4)

>taylor(1/(1-z)^m, z=0, 4):

>simplify(%);

1+ m z+
(
1

2
m 2 + 1

2
m

)
z2 +

(
1

6
m 3 + 1

2
m 2 + 1

3
m

)
z3 + O(z4)

Expanding around a complex number can also create Taylor series. For instance, expanding
ez about z = iπ yields

>taylor(exp(z), z=I*Pi, 4);

−1− (z− πI)− 1

2
(z− πI)2 − 1

6
(z− πI)3 + O((z− πI)4)
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Problems

Using the Taylor series, find the expansion about the origin for
each function. State the radius of convergence.

1. cos z

2.
1

1 + z

3. ln(1 + z)

4.
z − 1

z + 1

5. cosh z

6. sinh z

For the function 1/(z − 2), determine the Taylor series expan-
sion about each of the given points. Use the known series ex-
pansion for 1/(1 − z). State the radius of covergence for each.

7. z = 0

8. z = 1

9. z = i

10. z = −1

11. z = 3

12. z = −2i

Using known series expansions, find the Taylor series expan-
sion about the origin of each of the following.

13.
1

1 − z2

14.
z − 1

1 + z3

15.
z2 + 3

2 − z

16.
1

z2 − 3z − 4

17. e−z2

18. e2−z

19. sin πz

20. sin z2

21.
sin z

1 − z

22. ez cos z

23. tan z

24.
sin z

e−z



What is the Taylor series expansion about the origin for each
of the following?

25.
∫ z

0
e−w2

dw

26.
∫ z

0
sin w2 dw

27.
∫ z

0

sin w

w
dw

28.
∫ z

0
cos w2 dw

29. Find the Taylor series expansion about the origin of
f (z) = tan−1 z by recognizing that f ′(z) = 1/(1 + z2).

Determine the Taylor series expansion of each function about
the point z = a.

30. ez, a = 1

31.
1

1 − z
, a = 2

32. sin z, a = π

2

33. ln z, a = 1

34.
1

z2 − z − 2
, a = 0

35.
1

z2
, a = 1

Use Maple to solve

36. Problem 1

37. Problem 2

38. Problem 3

39. Problem 4

40. Problem 5

41. Problem 6

42. Problem 7

43. Problem 8

44. Problem 9

45. Problem 10

46. Problem 11

47. Problem 12

48. Problem 25

49. Problem 26

50. Problem 27

51. Problem 28

52. Problem 29

53. Problem 30

54. Problem 31

55. Problem 32

56. Problem 33

57. Problem 34

58. Problem 35

There are many applications in which we wish to expand a function f (z) in a series about a point
z = a, which is a singular point. Consider the annulus shown in Fig. 10.17a. The function f (z)
is analytic in the annular region; however, there may be singular points inside the smaller circle
or outside the larger circle. The possibility of a singular point inside the smaller circle bars us
from expanding in a Taylor series, since the function f (z) must be analytic at all interior points.
We can apply Cauchy’s integral formula to the multiply connected region by cutting the region
as shown in Fig. 10.17b, thereby forming a simply connected region bounded by the curve C ′.
Cauchy’s integral formula is then

f (z) = 1

2π i

∮
C ′

f (w)

w − z
dw

= 1

2π i

∮
C2

f (w)

w − z
dw − 1

2π i

∮
C1

f (w)

w − z
dw (10.9.1)

where C1 and C2 are both traversed in the counterclockwise direction. The negative sign results
because the direction of integration was reversed on C1. Now, let us express the quantity
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(w − z)−1 in the integrand of Eq. 10.9.1 in a form that results in positive powers of (z − a) in
the C2 integration and that results in negative powers in the C1 integration. If no singular points
exist inside C1, then the coefficients of the negative powers will all be zero and a Taylor series
will result. Doing this, we have

f (z) = 1

2π i

∮
C2

f (w)

w − a


 1

1 − z − a

w − a


 dw

+ 1

2π i

∮
C1

f (w)

z − a


 1

1 − w − a

z − a


 dw (10.9.2)

By using arguments analogous to those used to prove the convergence of the Taylor series, we
can show that Eq. 10.9.2 leads to

f (z) = a0 + a1(z − a) + a2(z − a)2 + · · ·
+ b1(z − a)−1 + b2(z − a)−2 + · · · (10.9.3)

where

an = 1

2π i

∮
C2

f (w)

(w − a)n+1
dw, bn = 1

2π i

∮
C1

f (w)(w − a)n−1 dw (10.9.4)

The series expression 10.9.3 is a Laurent series. The integral expression for the coefficients an

resembles the formulas for the derivatives of f (z); but this is only superficial, for f (z) may not
be defined at z = a and certainly f (z) may not be analytic there. Note, however, that if f (z) is
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Figure 10.17 Annular region inside of which a singular point exists.



analytic in the circle C1, the integrand in the integral for bn is everywhere analytic, requiring the
bn’s to all be zero, a direct application of Cauchy’s integral theorem. In this case the Laurent
series reduces to a Taylor series.

The integral expressions 10.9.4 for the coefficients in the Laurent series are not normally
used to find the coefficients. It is known that the series expansion is unique; hence, elementary
techniques are usually used to find the Laurent series. This will be illustrated with an example.
The region of convergence may be found, in most cases, by putting the desired f (z) in the form
1/(1 − z∗) so that |z∗| < 1 establishes the region of convergence.

Since |z∗| < 1, we have the geometric series:

1

1 − z∗ = 1 + z∗ + (z∗)2 + (z∗)3 + · · · (10.9.5)

which is a Laurent series expanded about z∗ = 0.

10.9 LAURENT SERIES � 655

What is the Laurent series expansion of

f (z) = 1

z2 − 3z + 2

valid in each of the shaded regions shown?

� Solution

(a) To obtain a Laurent series expansion in the shaded region of (a), we expand about the origin. We express
the ratio in partial fractions as

1

z2 − 3z + 2
= 1

(z − 2)(z − 1)
= 1

z − 2
− 1

z − 1

= −1

2

(
1

1 − z/2

)
− 1

z

(
1

1 − 1/z

)

The first fraction has a singularity at z/2 = 1 and can be expanded in a Taylor series that converges if
|z/2| < 1 or |z| < 2. The second fraction has a singularity at 1/z = 1 and can be expanded in a Laurent series

x

y

x

y

x

y

21 21 1 2

(a) (b) (c)

EXAMPLE 10.9.1
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that converges if |1/z| < 1 or |z| > 1. The two fractions are expressed in the appropriate series as

−1

2

(
1

1 − z/2

)
= −1

2

[
1 + z

2
+

( z

2

)2
+

( z

2

)3
+ · · ·

]

= −1

2
− z

4
− z2

8
− z3

16
− · · ·

−1

z

(
1

1 − 1/z

)
= −1

z

[
1 + 1

z
+

(
1

z

)2

+
(

1

z

)3

+ · · ·
]

= −1

z
− 1

z2
− 1

z3
− 1

z4
− · · ·

where the first series is valid for |z| < 2 and the second series for |z| > 1. Adding the two preceding expres-
sions yields the Laurent series

1

z2 − 3z + 2
= · · · − 1

z3
− 1

z2
− 1

z
− 1

2
− z

4
− z2

8
− z3

16
− · · ·

which is valid in the region 1 < |z| < 2.
(b) In the region exterior to the circle |z| = 2, we expand 1/(z − 1), as before,

1

z − 1
= 1

z

(
1

1 − 1/z

)
= 1

z
+ 1

z2
+ 1

z3
+ · · ·

which is valid if |1/z| < 1 or |z| > 1. Now, though, we write

1

z − 2
= 1

z

(
1

1 − 2/z

)
= 1

z

[
1 + 2

z
+

(
2

z

)2

+
(

2

z

)3

+ · · ·
]

= 1

z
+ 2

z2
+ 4

z3
+ 8

z4
+ · · ·

which is valid if |2/z| < 1 or |z| > 2. The two preceding series expansions are thus valid for |z| > 2, and we
have the Laurent series

1

z2 − 3z + 2
= 1

z2
+ 3

z3
+ 7

z4
+ 15

z5
+ · · ·

valid in the region |z| > 2.
(c) To obtain a series expansion in the region 0 < |z − 1| < 1, we expand about the point z = 1 and obtain

1

z2 − 3z + 2
= 1

z − 1

(
− 1

2 − z

)
= 1

z − 1

[ −1

1 − (z − 1)

]

= −1

z − 1
[1 + (z − 1) + (z − 1)2 + (z − 1)3 + · · ·]

= − 1

z − 1
− 1 − (z − 1) − (z − 1)2 + · · ·

This Laurent series is valid if 0 < |z − 1| < 1.

EXAMPLE 10.9.1 (Continued)



10.9.1 Maple Applications
Laurent series can be computed with Maple using the laurent command in the numapprox
package, but only in the case where we are obtaining a series expansion about a specific point.
For instance, part (c) of Example 10.9.1 can be calculated in this way:

>with(numapprox):

>laurent(1/(z^2-3*z+2), z=1);

−(z− 1)−1 − 1− (z− 1)− (z− 1)2 − (z− 1)3 − (z− 1)4 + O((z− 1)5)

This command will not determine the region of validity.
For Example 10.9.1(a), Maple would be best used to determine the partial fraction decompo-

sition (using the convert command), create the series for each part (using taylor to get the
correct geometric series—laurent applied to 1/(1 − 1/z) will not work—and then combine
the series (again using the convert command to first strip the big-O terms from the series):

>L1 :=laurent(1/(1-z/2); z=0);

L1 := 1 + 1

2
z + 1

4
z2 + 1

8
z3 + 1

16
z4 + 1

32
z5 + O(z6)

>taylor(1/(1-x), x=0);

1 + x + x2 + x3 + x4 + x5 + O(x6)

>L2 :=subs(x=1/z, %);

L2 := 1 + 1

z
+ 1

z2
+ 1

z3
+ 1

z4
+ 1

z5
+ O

(
1

z6

)

>PL1 :=convert(L1,polynom); PL2 :=convert(L2,polynom);

P L1 := 1 + 1

2
z + 1

4
z2 + 1

8
z3 + 1

16
z4 + 1

32
z5

P L2 := 1 + 1

z
+ 1

z2
+ 1

z3
+ 1

z4
+ 1

z5

>-1/2*PL1-1/z*PL2;

−1

2
− z

4
− z2

8
− z3

16
− z4

32
− z4

64
−

1 + 1

z
+ 1

z2
+ 1

z3
+ 1

z4 + 1

z5

z

To simplify this expression, we ask Maple to collect like terms:

>collect(-1/2*PL1-1/z*PL2, z);

−1

2
− z5

64
− z4

32
− z3

16
− z2

8
− z

4
− 1

z
− 1

z2
− 1

z3
− 1

z4
− 1

z5
− 1

z6

Example 10.9.1(b) can be done in the same way.
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In this section we shall present a technique that is especially useful when evaluating certain types
of real integrals. Suppose that a function f (z) is singular at the point z = a and is analytic at all
other points within some circle with center at z = a. Then f (z) can be expanded in the Laurent
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Problems

Expand each function in a Laurent series about the origin,
convergent in the region 0 < |z| < R . State the radius of
convergence R.

1.
1

z2
sin z

2.
1

z2 − 2z

3.
1

z(z2 + 3z + 2)

4.
ez−1

z

For each function, find all Taylor series and Laurent series ex-
pansions about the point z = a and state the region of conver-
gence for each.

5.
1

z
, a = 1

6. e1/z, a = 0

7.
1

1 − z
, a = 0

8.
1

1 − z
, a = 1

9.
1

1 − z
, a = 2

10.
1

z(z − 1)
, a = 0

11.
z

1 − z2
, a = 1

12.
1

z2 + 1
, a = i

13.
1

(z + 1)(z − 2)
, a = 0

14.
1

(z + 1)(z − 2)
, a = −1

15.
1

(z + 1)(z − 2)
, a = 2

Use Maple to solve

16. Problem 1

17. Problem 2

18. Problem 3

19. Problem 4

20. Problem 5

21. Problem 6

22. Problem 7

23. Problem 8

24. Problem 9

25. Problem 10

26. Problem 11

27. Problem 12

28. Problem 13

29. Problem 14

30. Problem 15

31. Determine the Laurent series expansion of

f (z) = 3

z2 − 6z + 8

which is valid in region given.

(a) 0 < |z − 4| < 1

(b) |z| > 5

(c) 2 < |z| < 4



series (see Eq. 10.9.3)

f (z) = · · · + bm

(z − a)m
+ · · · + b2

(z − a)2
+ b1

z − a

+ a0 + a1(z − a) + · · · (10.10.1)

Three cases arise. First, all the coefficients b1, b2, . . . are zero. Then f (z) is said to have a re-
movable singularity. The function (sin z)/z has a removable singularity at z = 0. Second, only
a finite number of the bn are nonzero. Then f (z) has a pole at z = a. If f (z) has a pole, then

f (z) = bm

(z − a)m
+ · · · + b1

z − a
+ a0 + a1(z − a) + · · · (10.10.2)

where bm �= 0. In this case we say that the pole at z = a is of order m. Third, if infinitely many
bn are not zero, then f (z) has an essential singularity at z = a. The function e1/z has the Laurent
expansion

e1/z = 1 + 1

z
+ 1

2! z2
+ · · · + 1

n! zn
+ · · · (10.10.3)

valid for all z, |z| > 0. The point z = 0 is an essential singularity of e1/z . It is interesting to
observe that rational fractions have poles or removable singularities as their only singularities.

From the expression 10.9.4 we see that

b1 = 1

2π i

∮
C1

f (w) dw (10.10.4)

Hence, the integral of a function f (z) about some connected curve surrounding one singular
point is given by ∮

C1

f (z) dz = 2π ib1 (10.10.5)

where b1 is the coefficient of the (z − a)−1 term in the Laurent series expansion at the point
z = a. The quantity b1 is called the residue of f (z) at z = a. Thus, to find the integral of a func-
tion about a singular point,11 we simply find the Laurent series expansion and use the relation-
ship 10.10.5. An actual integration is not necessary. If more than one singularity exists within the
closed curve C, we make it simply connected by cutting it as shown in Fig. 10.18. Then an ap-
plication of Cauchy’s integral theorem gives∮

C
f (z) dz +

∮
C1

f (z) dz +
∮

C2

f (z) dz +
∮

C3

f (z) dz = 0 (10.10.6)

since f (z) is analytic at all points in the region outside the small circles and inside C. If we re-
verse the direction of integration on the integrals around the circles, there results∮

C
f (z) dz =

∮
C1

f (z) dz +
∮

C2

f (z) dz +
∮

C3

f (z) dz (10.10.7)
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11Recall that we only consider isolated singularities.



In terms of the residues at the points, we have Cauchy’s residue theorem,∮
C

f (z) dz = 2π i[(b1)a1 + (b1)a2 + (b1)a3 ] (10.10.8)

where the b1’s are coefficients of the (z − a)−1 terms of the Laurent series expansions at each of
the points.

Another technique, often used to find the residue at a particular singular point, is to multiply
the Laurent series (10.10.2) by (z − a)m , to obtain

(z − a)m f (z) = bm + bm−1(z − a) + · · ·
+ b1(z − a)m−1 + a0(z − a)m + a1(z − a)m+1 + · · · (10.10.9)

Now, if the series above is differentiated (m − 1) times and we let z = a, the residue results; that is,

b1 = 1

(m − 1)!

{
dm−1

dzm−1
[(z − a)m f (z)]

}
z=a

(10.10.10)

Obviously, the order of the pole must be known before this method is useful. If m = 1, no dif-
ferentiation is required and the residue results from

lim
z→a

(z − a) f (z)

The residue theorem can be used to evaluate certain real integrals. Several examples will be
presented here. Consider the real integral

I =
∫ 2π

0
g(cos θ, sin θ) dθ (10.10.11)

where g(cos θ, sin θ) is a rational12 function of cos θ and sin θ with no singularities in the inter-
val 0 ≤ θ < 2π . Let us make the substitution

eiθ = z (10.10.12)
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y

x

a2 C2
a3

C3

C

a1 C1

Figure 10.18 Integration about a
curve that surrounds
singular points.

12Recall that a rational function can be expressed as the ratio of two polynomials.



resulting in

cos θ = 1

2
(eiθ + e−iθ ) = 1

2

(
z + 1

z

)

sin θ = 1

2i
(eiθ − e−iθ ) = 1

2i

(
z − 1

z

)

dθ = dz

ieiθ
= dz

i z

(10.10.13)

As θ ranges from, 0 to 2π , the complex variable z moves around the unit circle, as shown in
Fig. 10.19, in the counterclockwise sense. The real integral now takes the form

I =
∮

C

f (z)

i z
dz (10.10.14)

The residue theorem can be applied to the integral above once f (z) is given. All residues inside
the unit circle must be accounted for.

A second real integral that can be evaluted using the residue theorem is the integral

I =
∫ ∞

−∞
f (x) dx (10.10.15)

where f (x) is the rational function

f (x) = p(x)

q(x)
(10.10.16)

and q(x) has no real zeros and is of degree at least 2 greater than p(x). Consider the corre-
sponding integral

I1 =
∮

C
f (z) dz (10.10.17)

where C is the closed path shown in Fig. 10.20. If C1 is the semicircular part of curve C,
Eq. 10.10.17 can be written as

I1 =
∫

C1

f (z) dz +
∫ R

−R
f (x) dx = 2π i

N∑
n=1

(b1)n (10.10.18)

where Cauchy’s residue theorem has been used. In this equation, N represents the number of sin-
gularities in the upper half-plane contained within the semicircle. Let us now show that∫

C1

f (z) dz → 0 (10.10.19)
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ei� � z

2� � x

y

C

1

Figure 10.19 Paths of integration.



as R → ∞. Using Eq. 10.10.16 and the restriction that q(z) is of degree at least 2 greater than
p(z), we have

| f (z)| =
∣∣∣∣ p(z)

q(z)

∣∣∣∣ = |p(z)|
|q(z)| ∼ 1

R2
(10.10.20)

Then there results ∣∣∣∣
∫

C1

f (x) dz

∣∣∣∣ ≤ | fmax|π R ∼ 1

R
(10.10.21)

from Theorem 10.2. As the radius R of the semicircle approaches ∞, we see that∫
C1

f (z) dz → 0 (10.10.22)

Finally, ∫ ∞

−∞
f (x) dx = 2π i

N∑
n=1

(b1)n (10.10.23)

where the b1’s include the residues of f (z) at all singularities in the upper half-plane.
A third real integral that may be evaluated using the residue theorem is

I =
∫ ∞

−∞
f (x) sin mx dx or

∫ ∞

−∞
f (x) cos mx dx (10.10.24)

Consider the complex integral

I1 =
∮

C
f (z)eimzdz (10.10.25)

where m is positive and C is the curve of Fig. 10.20. If we limit ourselves to the upper half-plane
so that y ≥ 0,

|eimz| = |eimx ||e−my| = e−my ≤ 1 (10.10.26)

We then have

| f (z)eimz| = | f (z) ||eimz| ≤ | f (z) | (10.10.27)
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x

y

C1

�R R

Figure 10.20 Path of integration.



The remaining steps follow as in the previous example for 
∫ ∞
−∞ f (z) dz using Fig. 10.20. This

results in ∫ ∞

−∞
f (x)eimx dx = 2π i

N∑
n=1

(b1)n (10.10.28)

where the b1’s include the residues of [ f (z)eimz] at all singularities in the upper half-plane. Then
the value of the integrals in Eq. 10.10.24 are either the real or imaginary parts of Eq. 10.10.28.

It should be carefully noted that ∫ ∞

−∞
f (x) dx (10.10.29)

is an improper integral. Technically, this integral is defined as the following sum of limits, both
of which must exist:∫ ∞

−∞
f (x) dx = lim

R→∞

∫ R

0
f (x) dx + lim

S→∞

∫ 0

−S
f (x) dx (10.10.30)

When we use the residue theorem we are in fact computing

lim
R→∞

∫ R

−R
f (x) dx (10.10.31)

which may exist even though the limits 10.10.30 do not exist.13 We call the value of the limit in
10.10.31 the Cauchy principle value of ∫ ∞

−∞
f (x) dx

Of course, if the two limits in Eq. 10.10.30 exist, then the principal value exists and is the same
limit.
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Find the value of the following integrals, where C is the circle |z| = 2.

(a) 

∮
C

cos z

z3
dz (b) 

∮
C

dz

z2 + 1
(c) 

∮
C

z2 − 2

z(z − 1)(z + 4)
dz (d) 

∮
C

z

(z − 1)3(z + 3)
dz

� Solution

(a) We expand the function cos z as

cos z = 1 − z2

2!
+ z4

4!
− · · ·

EXAMPLE 10.10.1

13Note lim
R→∞

∫ R
−R x dx = 0 but neither lim

R→∞
∫ R

0 x dx nor lim
s→∞

∫ 0
−s x dx exist.
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The integrand is then

cos z

z3
= 1

z3
− 1

2z
+ z

4!
+ · · ·

The residue, the coefficient of the 1/z term, is

b1 = −1

2

Thus, the value of the integral is ∮
C

cos z

z
dz = 2π i

(
−1

2

)
= −π i

(b) The integrand is factored as

1

z2 + 1
= 1

(z + i)(z − i)

Two singularities exist inside the circle of interest. The residue at each singularity is found to be

(b1)z=i = (z − i)
1

(z + i)(z − i)

∣∣∣∣
z=i

= 1

2i

(b1)z=−i = (z + i)
1

(z + i)(z − i)

∣∣∣∣
z=−i

= − 1

2i

The value of the integral is ∮
C

dz

z2 + 1
= 2π i

(
1

2i
− 1

2i

)
= 0

Moreover, this is the value of the integral around every curve that encloses the two poles.
(c) There are two poles of order 1 in the region of interest, one at z = 0 and the other at z = 1. The residue at
each of these poles is

(b1)z=0 = z
z2 − 2

z(z − 1)(z + 4)

∣∣∣∣
z=0

= 1

2

(b1)z=1 = (z − 1)
z2 − 2

z(z − 1)(z + 4)

∣∣∣∣
z=1

= −1

5

The integral is ∮
C

z2 − 2

z(z − 1)(z + 4)
dz = 2π i

(
1

2
− 1

5

)
= 3π i

5

EXAMPLE 10.10.1 (Continued)
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(d) There is one pole in the circle |z| = 2, a pole of order 3. The residue at that pole is (see Eq. 10.10.10)

b1 = 1

2!

d2

dz2

[
(z − 1)3 z

(z − 1)3(z + 3)

]
z=1

= 1

2

−6

(z + 3)3

∣∣∣∣
z=1

= − 3

64

The value of the integral is then∮
C

z

(z − 1)3(z + 3)
dz = 2π i

(
− 3

64

)
= −0.2945i

EXAMPLE 10.10.1 (Continued)

EXAMPLE 10.10.2

Evaluate the real integral ∫ 2π

0

dθ

2 + cos θ

� Solution

Using Eqs. 10.10.13, the integral is transformed as follows:∫ 2π

0

dθ

2 + cos θ
=

∮
C

dz/ i z

2 + 1

2

(
z + 1

z

) = −2i
∮

dz

z2 + 4z + 1

where C is the unit circle. The roots of the denominator are found to be

z = −2 ±
√

3

Hence, there is a zero at z = −0.2679 and at z = −3.732. The first of these zeros is located in the unit circle,
so we must determine the residue at that zero; the second is outside the unit circle, so we ignore it. To find the
residue, write the integrand as partial fractions

1

z2 + 4z + 1
= 1

(z + 0.2679)(z + 3.732)
= 0.2887

z + 0.2679
+ −0.2887

z + 3.732

The residue at the singularity in the unit circle is then the coefficient of the (z + 0.2679)−1 term. It is 0.2887.
Thus, the value of the integral is, using the residue theorem,∫ 2π

0

dθ

2 + cos θ
= −2i(2π i × 0.2887) = 3.628
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EXAMPLE 10.10.3

Evaluate the real integral ∫ ∞

0

dx

(1 + x2)

Note that the lower limit is zero.

� Solution

We consider the complex function f (z) = 1/(1 + z2). Two poles exist at the points where

1 + z2 = 0

They are

z1 = i and z2 = −i

The first of these roots lies in the upper half-plane. The residue there is

(b1)z=i = (z − i)
1

(z − i)(z + i)

∣∣∣∣
z=i

= 1

2i

The value of the integral is then (refer to Eq. 10.10.23)∫ ∞

−∞

dx

1 + x2
= 2π i

(
1

2i

)
= π

Since the integrand is an even function,∫ ∞

0

dx

1 + x2
= 1

2

∫ ∞

−∞

dx

1 + x2

Hence, ∫ ∞

0

dx

1 + x2
= π

2

Determine the value of the real integrals∫ ∞

−∞

cos x

1 + x2
dx and

∫ ∞

−∞

sin x

1 + x2
dx

� Solution

To evaluate the given integrals refer to Eqs. 10.10.25 through 10.10.28. Here

I1 =
∮

C

eiz

1 + z2
dz

EXAMPLE 10.10.4



10.10.1 Maple Applications
The partial fraction decomposition of Example 10.10.2 can be performed by Maple, provided
that we use the real option of the convert/parfrac command:

>convert(1/(z^2+4*z+1), parfrac, z, real);

− 0.2886751345

z+ 3.732050808
+ 0.2886751345

z+ 0.2679491924

Note that Maple will compute the real integral of this problem, but it is not clear what method is
being used:

>int(1/(2+cos(theta)), theta=0..2*Pi);

2π
√
3

3

>evalf(%);

3.627598730
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and C is the semicircle in Fig. 10.20. The quantity (1 + z2) has zeros as z = ±i . One of these points is in the
upper half-plane. The residue at z = i is

(b1)z=i = (z − i)
eiz

1 + z2

∣∣∣∣
z=i

= e−1

2i
= −0.1839i

The value of the integral is then

∫ ∞

−∞

eix

1 + x2
dx = 2π i(−0.1839i) = 1.188

The integral can be rewritten as

∫ ∞

−∞

eix

1 + x2
dx =

∫ ∞

−∞

cos x

1 + x2
dx + i

∫ ∞

−∞

sin x

1 + x2
dx

Equating real and imaginary parts, we have

∫ ∞

−∞

cos x

1 + x2
dx = 1.188 and

∫ ∞

−∞

sin x

1 + x2
dx = 0

The result with sin x is not surprising since the integrand is an odd function, and hence

∫ ∞

0

sin x

1 + x2
dx = −

∫ 0

−∞

sin x

1 + x2
dx

EXAMPLE 10.10.4 (Continued)
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Problems

Find the residue of each function at each pole.

1.
1

z2 + 4

2.
z

z2 + 4

3.
1

z2
sin 2z

4.
ez

(z − 1)2

5.
cos z

z2 + 2z + 1

6.
z2 + 1

z2 + 3z + 2

Evaluate each integral around the circle |z| = 2.

7.
∮

ez

z4
dz

8.
∮

sin z

z3
dz

9.
∮

z2

1 − z
dz

10.
∮

z + 1

z + i
dz

11.
∮

z dz

z2 + 4z + 3

12.
dz

4z2 + 9

13.
∮

e1/z

z
dz

14.
∮

sin z

z3 − z2
dz

15.
∮

ez tan z dz

16.
∮

z2 + 1

z(z + 1)3
dz

17.
∮

sinh πz

z2 + 1
dz

18.
∮

cosh πz

z2 + z
dz

Determine the value of each real integral.

19.
∫ 2π

0

sin θ

1 + cos θ
dθ

20.
∫ 2π

0

dθ

(2 + cos θ)2

21.
∫ 2π

0

dθ

5 − 4 cos θ

22.
∫ 2π

0

dθ

2 + 2 sin θ

23.
∫ 2π

0

sin 2θ dθ

5 + 4 cos θ

24.
∫ 2π

0

cos 2θ dθ

5 − 4 cos θ

Evaluate each integral.

25.
∫ ∞

−∞

dx

1 + x4

26.
∫ ∞

0

x2 dx

(1 + x2)2

27.
∫ ∞

−∞

1 + x

1 + x3
dx

28.
∫ ∞

−∞

x2 dx

x4 + x2 + 1

29.
∫ ∞

0

x2 dx

1 + x6

30.
∫ ∞

−∞

dx

x4 + 5x2 + 2

31.
∫ ∞

−∞

cos 2x

1 + x
dx

32.
∫ ∞

−∞

cos x

(1 + x2)2
dx

33.
∫ ∞

−∞

x sin x

1 + x2
dx

34.
∫ ∞

0

cos x

1 + x4
dx

35.
∫ ∞

−∞

x sin x

x2 + 3x + 2
dx



36.
∫ ∞

0

cos 4x

(1 + x2)2
dx

37. Find the value of 
∫ ∞
−∞ dx/(x4 − 1) following the tech-

nique using the path of integration of Fig. 10.20, but in-
tegrate around the two poles on the x axis by considering
the path of integration shown.

38. Prove that the exact value of the first integral in Exam-
ple 10.10.4 is π(cosh(1) − sinh(1)).

Use Maple to evaluate:

39. Problem 19

x

y

R �1 1 R

i

40. Problem 20

41. Problem 21

42. Problem 22

43. Problem 23

44. Problem 24

45. Problem 25

46. Problem 26

47. Problem 27

48. Problem 28

49. Problem 29

50. Problem 30

51. Problem 31

52. Problem 32

53. Problem 33

54. Problem 34

55. Problem 35

56. Problem 36
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Wavelets are a relatively new addition to the mathematical toolbox for engineers. It was in the
late 1980s that wavelets began to catch the attention of scientists, after the discoveries of Ingrid
Daubechies. In the early 1990s, the Federal Bureau of Investigation began to use wavelets for
compressing fingerprint images, while researchers at Yale used wavelets to restore recordings
from the nineteenth century. Recently, wavelets have found use in medical imaging, text-to-
speech systems, geological research, artificial intelligence, and computer animation. Wavelet
analysis is quickly joining Fourier analysis as an important mathematical instrument.

The creation of the Daubechies wavelet families by Ingrid Daubechies in the late 1980s was
instrumental in igniting interest in wavelets among engineers, physicists, and other scientists.
Daubechies sought to create multiresolution analyses with the properties of compact support and
polynomial reproducibility. Her success in this endeavor soon led to recognition of the useful-
ness of such wavelet families.

In this chapter, we will describe what a multiresolution analysis is, using the Haar wavelets
as concrete example. We will then move on to the wavelets generated by the scaling function
D4(t), one of the simplest Daubechies wavelet families. The chapter will conclude with a dis-
cussion of filtering signals using wavelet filters, including two-dimensional filters.

Maple commands for this chapter include piecewise, implicitplot, display, and
Appendix C. The Excel worksheet functions SUM and SUMPRODUCT are used.

A function f (t) defined on the real line is said to have finite energy on the interval1 (t1, t2] if the
following inequality is satisfied: ∫ t2

t1

[ f (t)]2 dt < ∞ (11.2.1)

The collection of functions with finite energy is usually indicated by L2((t1, t2]), or simply L2,
if the interval is clear. This group of functions forms a vector space, meaning many of the ideas

11.2 WAVELETS AS FUNCTIONS

11.1 INTRODUCTION

11 Wavelets

1(t1, t2] means t1 < t ≤ t2 and (t1, t2) means t1 < t < t2.
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about vectors described in Chapters 4 through 6 also apply to L2. In particular, we have these
natural properties, assuming f, g, and h are functions in L2, and a and b are scalars:

1. f + g is in L2.
2. f + g = g + f , and f + (g + h) = ( f + g) + h (commutative and associate

properties).
3. There is a special function O(x), which is zero for all x, so that f + O = f.
4. − f is also in L2, and f + (− f ) = O .
5. a f is in L2.
6. (ab) f = a(bf ).
7. (a + b) f = a f + bf , and a( f + g) = a f + ag (distributive property).
8. 1 f = f .

An important property of a vector space is that it has a basis. A basis is a set of vectors in the vec-
tor space that are linearly independent and that span the vector space. This idea is equivalent to
the following theorem that we give without proof:

Theorem 11.1: Let V be a vector space with basis B = {b1, b2, . . . , bk}. Then there exist
unique scalars α1, α2, . . . , αk , so that

v = α1b1 + α2b2 + · · · + αkbk (11.2.2)

and we assume v is in V. In other words, there is one and only one way to write v as a linear com-
bination of the vectors in B. (Note: the set B can be infinite.)

The Fourier series expansion Eq. 7.1.4 is a particular example of Eq. 11.2.2. There, the inter-
val in question is (−T, T ], the vector space is made up of continuous functions on the interval,
basis elements are sine and cosine functions, namely cos nπ t/T and sin nπ t/T, and the unique
scalars are the Fourier coefficients.

Wavelets are functions, different from sines and cosines, which can also form a basis for a
vector space of functions. To build a basis of wavelet functions (which is often called a family
of wavelets), we begin with a father wavelet, usually indicated by φ(t). This function is also
called the scaling function. Then, the mother wavelet is defined, indicated by ψ(t). Daughter
wavelets are generated from the mother wavelet through the use of scalings and translations
of ψ(t):

ψn,k(t) = ψ(2nt − k) (11.2.3)

where n and k are integers.
The simplest wavelets to use are the members of the Haar wavelet family. We will first

consider the special case where the interval of definition is (0, 1]. (In the next section, we will
use (−∞,∞) as the interval of definition). The Haar father wavelet is defined to be the function
that is equal to 1 on (0, 1], and 0 outside that interval. This is often called the characteristic
function of (0, 1]. The mother wavelet is then defined by a dilation equation:

ψ(t) = φ(2t) − φ(2t − 1) (11.2.4)



and the daughter wavelets are defined by Eq. 11.2.3. Note that these definitions are based on the
fact that the father wavelet is 0 outside of (0, 1]. The father wavelet satisfies another dilation
equation:

φ(t) = φ(2t) + φ(2t − 1) (11.2.5)

Graphs of these functions can be created by Maple, using the piecewise command. First,
the father wavelet is shown in Fig. 11.1:

>phi:=t -> piecewise(0 < t and t<=1, 1);

>plot(phi(t), t=-0.5..1.5, axes=framed);

Notice that in Figure 11.1, Maple includes vertical lines to connect points at t = 0 and t = 1, but
those lines are not a part of the actual function. Maple will do the same when we plot the other
wavelets, as in Fig. 11.2:

>psi:= t -> phi(2*t) - phi(2*t - 1);

ψ := t → φ(2t)− φ(2t − 1)

>psi10:= t -> psi(2*t);

ψ10 := t→ ψ(2t)

>psi11:= t -> psi(2*t - 1);

ψ11 := t → ψ(2t − 1)

>plot(psi(t), t=-0.5..1.5, axes=framed);

>plot(psi10(t), t=-0.5..1.5, axes=framed);

>plot(psi11(t), t=-0.5..1.5, axes=framed);
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Divide the interval (0, 1] into four equal parts, and consider the vector space V2 made up of
functions defined on (0, 1] that are constant on those parts. That is, V2 is made up of functions
that can be written as:

f (t) =




c1, 0 < t ≤ 1
4

c2,
1
4 < t ≤ 1

2

c3,
1
2 < t ≤ 3

4

c4,
3
4 < t ≤ 1

(11.2.6)

This set of functions will satisfy the properties of vector spaces described earlier. A basis for this
vector space is the set of Haar wavelets {φ(t), ψ(t), ψ1,0(t), ψ1,1(t)}, which means that for any
function f (t) in V2, there exist unique scalars α1, α2, α3 and α4 so that

f (t) = α1φ(t) + α2ψ(t) + α3ψ1,0(t) + α4ψ1,1(t) (11.2.7)

These unique scalars are called wavelet coefficients.
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In the same manner, we can define other vector spaces that use Haar wavelets to form a basis.
Functions defined on (0, 1] which are constant on the subintervals (0, 1⁄2] and (1⁄2, 1] form the vec-
tor space V1, and the set {φ(t), ψ(t)} is a basis. In general, Vn will be the vector space created
by dividing (0, 1] into 2n equal subintervals and defining functions that are constant on those
subintervals. Because the interval (0, 1] is finite, any function in any Vn will have finite energy.
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EXAMPLE 11.2.1

Determine the wavelet coefficients for this function:

f (t) =




19, 0 < t ≤ 1
4

4, 1
4 < t ≤ 1

2

5, 1
2 < t ≤ 3

4

3, 3
4 < t ≤ 1

� Solution

Examine each of the four subintervals separately. On (0, 1⁄4], φ(t), ψ(t), and ψ1,0(t) equal 1, while the other
daughter wavelet is 0. That yields the equation 19 = α1 + α2 + α3. On (1⁄4, 1⁄2], φ(t) and ψ(t) are 1, while
ψ1,0(t) is −1, leading to the equation 4 = α1 + α2 − α3. From the other two intervals, we get
5 = α1 − α2 + α4 and 3 = α1 − α2 − α4.

We now have a system of four linear equations, which can be solved using the methods of Chapter 4. The
solution is

α1 = 31

4
, α2 = 15

4
, α3 = 15

2
, α4 = 1

Notice that α1 is the average of the four function values.

Describe V3 and its Haar wavelet basis. Prove that the wavelets in the basis are linearly independent.

� Solution

V3 is made up of functions that can be written as

f (t) =




u1, 0 < t ≤ 1
8

u2,
1
8 < t ≤ 1

4

u3,
1
4 < t ≤ 3

8

u4,
3
8 < t ≤ 1

2

u5,
1
2 < t ≤ 5

8

u6,
5
8 < t ≤ 3

4

u7,
3
4 < t ≤ 7

8

u8,
7
8 < t ≤ 1

EXAMPLE 11.2.2



11.2 WAVELETS AS FUNCTIONS � 675

The Haar wavelet basis begins with the basis for V2 and adds four daughter wavelets (using n = 2):
{φ(t), ψ(t), ψ1,0(t), ψ1,1(t), ψ2,0(t), ψ2,1(t), ψ2,2(t), ψ2,3(t)} . To prove that this is a linearly independent
set, assume that

α1φ(t) + α2ψ(t) + α3ψ1,0(t) + α4ψ1,1(t) + α5ψ2,0(t)

+ α6ψ2,1(t) + α7ψ2,2(t) + α8ψ2,3(t)

is the zero function. Examining the situation on each subinterval leads to a homogeneous system of eight lin-
ear equations in eight unknowns. The matrix for this system is



1 1 1 0 1 0 0 0
1 1 1 0 −1 0 0 0
1 1 −1 0 0 1 0 0
1 1 −1 0 0 −1 0 0
1 −1 0 1 0 0 1 0
1 −1 0 1 0 0 −1 0
1 −1 0 −1 0 0 0 1
1 −1 0 −1 0 0 0 −1




The determinant of this matrix is 128, so by Theorem 4.6, the matrix is nonsingular. Therefore the only solu-
tion to the homogeneous system is that all the scalars are zero.

EXAMPLE 11.2.2 (Continued)

One nice property of the vector spaces Vn is that each is a subspace of the next.
Symbolically,2

V0 ⊆ V1 ⊆ V2 ⊆ V3 ⊆ · · · (11.2.8)

The vector spaces form a nested sequence, and as we move along the sequence, the number of
Haar wavelets needed for the basis doubles from Vn to Vn+1. This is accomplished by adding
another generation of daughter wavelets. There is also a separation property that states that the
only function in the intersection of all the vector spaces Vn is the zero function.

Problems

Determine if the following functions have finite energy on the
indicated interval:

1. t2 − 4t + 5 interval: (2, 10]

2. 1/t interval: (0,∞)

3. e−t interval: (−∞,∞)

4. tan t interval: (0, π/2]

Use Maple to create graphs of the following Haar wavelets:

5. ψ4,0

6. ψ6,11

7. ψ7,30

8. ψ10,325

2V0 ⊆ V1 means that V0 is a subset of V1; that is, if f is in V0 it is also in V1.



9. Determine the wavelet coefficients for f (t) in V2:

f (t) =




−6, 0 < t ≤ 1
4

14, 1
4 < t ≤ 1

2

−3, 1
2 < t ≤ 3

4

7, 3
4 < t ≤ 1

10. Solve Problem 9 using Maple.

11. Solve Problem 9 using Excel. (Hint: Set up the appropri-
ate system of equations and solve using matrices as de-
scribed in Chapter 4.)

12. Starting with Example 11.2.2, use Maple to determine
formulas for the wavelet coefficients in terms of u1,

u2, . . . , u8.

13. Suppose the four wavelet coefficients for a function in V2

are known and then placed in a vector like

w =




α1

α2

α3

α4




Determine the matrix A so that Aw returns the values for
the original function.

14. Create a function in V4 and then use Maple to determine
its wavelet coefficients.

Along with property (11.2.8) and the separation property, the vector spaces Vn and the Haar
wavelets defined in the previous section satisfy several other properties that make up a
multiresolution analysis (MRA). In order to properly be an MRA, we must first extend our in-
terval of definition from (0, 1] to (−∞,∞), and we must also allow n to be negative, as it can
be in the definition Eq. 11.2.3 of the daughter wavelets.

In this new situation, if n is positive of zero, then we divide every interval (m, m + 1), m an
integer, into 2n subintervals, and Vn is made up of functions that are constant on those subinter-
vals. To qualify for Vn , the function must also have finite energy. If n is negative, then functions
in Vn will have finite energy and will be constant on intervals of the form (p2−n, (p + 1)2−n],
where p is an integer. For example, V−2 will consist of functions that are constant on (−4, 0],
(0, 4], (4, 8], etc. The separation property still holds, and property (11.2.8) is now modified to be

· · · ⊆ V−2 ⊆ V−1 ⊆ V0 ⊆ V1 ⊆ V2 ⊆ V3 ⊆ · · · (11.3.1)

We will refer to these vector spaces as the Haar vector spaces.
An important property of this sequence of vector spaces is the density property: given a func-

tion f (t) of finite energy and a small constant ε, there exists a function f̂ (t) in one of the vector
spaces so that ∫ ∞

−∞
[ f (t) − f̂ (t)]2 dt < ε (11.3.2)

In other words, we can approximate a function f (t) as well as we like by a function in one of the
vector spaces.

There is also a scaling property that is true for any MRA. If g(t) is in Vn for some n, then a
scaled version of it, namely g(2−nt), is in V0. This should be clear in our example: When n = 2,
g(t) would be constant-on-quarters, so g(t/4) would be constant on intervals of length 1.

The final property connects the vector spaces with the scaling function φ(t). This basis prop-
erty has four parts:

1. The set of functions {. . . , φ(t + 2), φ(t + 1), φ(t), φ(t − 1), φ(t − 2), . . .} is a basis
for V0. (We refer to this set as the integer translates of φ.)

11.3 MULTIRESOLUTION ANALYSIS
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2. Any two distinct members of this basis are orthogonal, meaning∫ ∞

−∞
φ(t − k)φ(t − l) dt = 0 (11.3.3)

for any integers k and l which are not equal.
3. The scaling function has energy equal one:∫ ∞

−∞
φ(t)2 dt = 1 (11.3.4)

4. The scaling function’s spectral value at frequency zero is also one:∫ ∞

−∞
φ(t) dt = 1 (11.3.5)

A nested sequence of vector spaces, along with a scaling function, that satisfy the separation,
density, scaling, and basis properties is called an MRA.
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EXAMPLE 11.3.1

Show that the Haar vector spaces, with the Haar father wavelet, satisfy the basis property.

� Solution

V0 is made up of functions defined to be constant on intervals (m, m + 1], where m is an integer, while
φ(t − k) = 1 on (k, k + 1] and 0 elsewhere. Assume3 f ∈ V0, where f (t) = ak on (k, k + 1], for all k. Then
we can write:

f (t) =
∞∑

k=−∞
akφ(t − k)

Since f has finite energy, only a finite number of the ak ’s are nonzero. So, any function in V0 can be writ-
ten as a linear combination of integer translates of φ. If f (t) is the zero function, then ak is 0 for all k, so the
set of integer translates is linearly independent. So, this set is a basis for V0.

Members of this basis are orthogonal because clearly φ(t − k) φ(t − l) = 0 for all t, so Eq. 11.3.3 follows.
Finally, the scaling function has energy and spectral value equaling one:∫ ∞

−∞
φ(t)2 dt =

∫ 1

0
12 dt = 1

3The symbol ∈ means that f is a member of V0.

When the interval of interest was (0, 1], {φ} was a basis for V0, {φ,ψ} for V1, and
{φ,ψ,ψ1,0, ψ1,1} for V2. The general idea to build a basis for Vn is to add daughter wavelets to
a basis of Vn−1. By extending the interval of interest from (0, 1] to (−∞,∞), the dimension of
the Haar vector spaces becomes infinite, so the Haar wavelet bases are also infinite, but they can
be constructed in a similar way.



Since we have an MRA, we know that

{. . . , φ(t + 2), φ(t + 1), φ(t), φ(t − 1), φ(t − 2), . . .} (11.3.6)

is a basis for V0. To get a basis for V1, we will add the mother wavelet and its integer translates:

{. . . , ψ(t + 2), ψ(t + 1), ψ(t), ψ(t − 1), ψ(t − 2), . . .} (11.3.7)

to the basis for V0. Curiously, these new additions can also be written as

{. . . , ψ0,−2, ψ0,−1, ψ0,0, ψ0,1, ψ0,2, . . .} (11.3.8)

To get a basis for V2, we also add in these daughter wavelets:

{. . . , ψ1,−2, ψ1,−1, ψ1,0, ψ1,1, ψ1,2, . . .} (11.3.9)

In general for n > 0, given a wavelet basis of Vn−1, we create a wavelet basis for Vn by includ-
ing these wavelets in the basis:

{. . . , ψn,−2, ψn,−1, ψn,0, ψn,1, ψn,2, . . .} (11.3.10)

To create bases for n < 0, the idea is different. We first note that it is clear that the set

{. . . , φn,−2, φn,−1, φn,0, φn,1, φn,2, . . .} (11.3.11)

is a basis for Vn . Another basis for Vn is4

{ . . . , φn−1,−2, φn−1,−1, φn−1,0, φn−1,1, φn−1,2, . . .}
∪ {. . . , ψn−1,−2, ψn−1,−1, ψn−1,0, ψn−1,1, ψn−1,2, . . .} (11.3.12)

since functions which are constant on a certain interval I can be replaced with functions that are
constant on intervals of twice that length, provided that scaled and translated versions of the
mother wavelet are included to account for what happens halfway across I. We can do this again
to get the following basis for Vn :

{. . . , φn−2,−2, φn−2,−1, φn−2,0, φn−2,1, φn−2,2, . . .}
∪ {. . . , ψn−2,−2, ψn−2,−1, ψn−2,0, ψn−2,1, ψn−2,2, . . .}
∪ {. . . , ψn−1,−2, ψn−1,−1, ψn−1,0, ψn−1,1, ψn−1,2, . . .} (11.3.13)

In fact, this argument is independent of whether n is positive or negative.
If we continue this process, the density property then suggests that the vector space of all

functions with finite energy has this basis:

{ψn,k | n, k integers} (11.3.14)

So any function with finite energy can be written as a linear combination of the mother wavelet and
its scalings and translations. This linear combination may be an infinite sum. To compute the
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both.



wavelet coefficients, we must generalize our methods from Section 11.2. If f (t) is the function with
finite energy, and w(t) is some wavelet, then the wavelet coefficient is computed in this way:

α =
∫ ∞
−∞ f (t)w(t) dt∫ ∞
−∞ [w(t)]2 dt

(11.3.15)

(This is analogous to finding the projection of one vector on another, as described in Section 6.2.)

11.3 MULTIRESOLUTION ANALYSIS � 679

EXAMPLE 11.3.2

Determine the wavelet coefficient for

f (t) =
{

sin π t, 0 < t ≤ 2
0, elsewhere

if w(t) = ψ2,3.

� Solution

If w(t) = ψ2,3, then w is zero outside of the interval (3⁄4, 1). On that interval, w(t) is 1 on the first half of the
interval, and −1 on the second half. So, the wavelet coefficient is

α =
∫ 7/8

3/4 sin π t dt − ∫ 1
7/8 sin π t dt∫ 1

3/4 12 dt

The denominator is clearly 1⁄4. For the numerator, we can use Maple to calculate:

>int(sin(Pi*t), t=3/4..7/8)-int(sin(Pi*t), t=7/8..1);

1

2

2cos
(

π
8

)
− √

2

π
+

−1+ cos
(

π
8

)
π

>evalf(%);

0.04477101251

Dividing the numerator by the denominator, the wavelet coefficient is

α = 0.179

Problems

Use Maple to create graphs of the following Haar wavelets:

1. ψ−3,7

2. ψ−12,11

3. ψ7,3000

4. ψ10,−2003

5. Create a function in V−3, and then use Maple to deter-
mine its wavelet coefficients.

6. Prove that the separation property holds for the Haar
vector spaces.



7. The quadratic B-spline scaling function is defined by

φ(t) =




1

2
t2, 0 < t ≤ 1

−t2 + 3t − 3

2
, 1 < t ≤ 2

1

2
(t − 3)2, 2 < t ≤ 3

0, elsewhere

Determine which of the second, third, and fourth basis
properties does this function satisfy.

8. Computer Laboratory Activity: The purpose of this ac-
tivity is to better understand the density property. Let

f (t) =
{

sin π t, 0 < t ≤ 2
0, elsewhere

Compute all the nonzero wavelet coefficients that corre-
spond to ψ3,k . Then, define a function made up of the lin-
ear combination of the ψ0,k’s, ψ1,k’s, ψ2,k’s and the ψ3,k’s,
and graph this function and f (t) together. The new func-
tion should be a good approximation to f (t). Repeat this
activity including the ψ4,k ’s.

11.4.1 Properties of Daubechies Wavelets
While the Haar wavelets are helpful to understand the basic ideas of an MRA, there are other
wavelet families that are more useful and interesting. Daubechies sought to create MRAs with
the following additional properties: compact support and polynomial reproducibility. In this
section, we will study the family generated by the scaling function of this family, which is often
labeled D4(t).

Wavelets with compact support equal 0 everywhere except on a closed and bounded set. The
Haar wavelets have compact support, with φ equaling 0 everywhere except (0, 1].

Polynomial reproducibility is the ability of certain wavelet families to be combined to form
polynomials defined on finite intervals. Recall that a polynomial is a function of the form

b0 + b1t + b2t2 + · · · + bntn (11.4.1)

The function

f (t) =
{

4, −1 < t < 3
0, elsewhere

(11.4.2)

is a polynomial with b0 = 4, and all other bi = 0, defined on the finite interval (−1, 3]. Using
the Haar vector spaces, f ∈ V0 and

f (t) = 4 φ(t + 1) + 4 φ(t) + 4 φ(t − 1) + 4 φ(t − 2) (11.4.3)

So, we can reproduce f (t) using φ and its integer translates. Daubechies’goal was to create MRAs
that could reproduce other polynomials (linear, quadratic, etc.).

The family generated by D4 can reproduce linear polynomials. In fact, we have these prop-
erties:

1. φ is zero outside (0, 3]. (This is the compact support condition.)
2. The various properties of an MRA are satisfied: separation, density, scaling, and basis.
3. Suppose f (t) = mt + b on a finite interval (k1, k2], with k1 and k2 integers, and f (t)

is 0 outside that interval. Then f (t) is in V0.

11.4 DAUBECHIES WAVELETS AND THE CASCADE ALGORITHM
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One consequence of an MRA is that φ satisfies a dilation equation. This means that there
exist refinement coefficients ck such that

φ(t) =
∞∑

k=−∞
ckφ(2t − k) (11.4.4)

(Contrast this equation with first equation of Example 11.3.1.) For the Haar wavelets, it is true
that

φ(t) = φ(2t) + φ(2t − 1) (11.4.5)

so c0 and c1 are both 1, while the rest of the refinement coefficients are zero.
The problem of deriving D4 can be recast as determining values of ck so that the properties

above hold. Once the refinement coefficients are known, the cascade algorithm can be used to
determine D4. This algorithm will be described in Section 11.4.3.
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Problems

1. Prove that the quadratic B-spline scaling function, 

φ(t) =




1
2 t2, 0 < t ≤ 1

−t2 + 3t − 3
2 , 1 < t ≤ 2

1
2 (t − 3)2, 2 < t ≤ 3

0, elsewhere

satisfies the dilation equation

φ(t) = 1/4 φ(2t) + 3/4 φ(2t − 1) + 3/4 φ(2t − 2)

+ 1/4 φ(2t − 3)

2. If φ is the quadratic B-spline scaling function, determine
all values where the derivative of φ does not exist.

3. Prove that in an MRA,
∞∑

k=−∞
c2

k = 2 (Parseval’s formula).

11.4.2 Dilation Equation for Daubechies Wavelets
It is known that the refinement coefficients satisfy the formula

ck = 2
∫ ∞

−∞
φ(t)φ(2t − k) dt (11.4.6)

(see the problems at the end of this section) and even though at this point D4 is unknown,
Eq. 11.4.6 can be used to make some deductions about D4. Since the compact support of D4

is (0, 3], it is definitely the case that D4(t)D4(2t − k) = 0 for all t , if k ≤ −3 or k ≥ 6.
Therefore ck must be zero unless −3 < k < 6.

However, we can do even better if we focus on the interval (−1, −1⁄2]. There, D4(t) = 0,
and D4(2t − k) = 0 for k > −2. So on that interval, the dilation equation (Eq. 11.4.4)
reduces to

0 = D4(t) = c−2 D4(2t + 2) (11.4.7)



The only way this is possible is if c−2 = 0. Similar arguments will show that c−1, c4, and c5 are
also zero, leaving us with ck = 0 unless k = 0, 1, 2, or 3.

The various conditions described earlier lead to a system of nonlinear equations in these four
refinement coefficients. The orthogonality of the integer translates of D4 yields the equations

c2
0 + c2

1 + c2
2 + c2

3 = 2 (Parseval’s formula) (11.4.8)

c0c2 + c1c3 = 0 (11.4.9)

while the spectral value property gives us

c0 + c1 + c2 + c3 = 2 (11.4.10)

Finally, polynomial reproducibility gives

−c0 + c1 − c2 + c3 = 0 (11.4.11)

−c1 + 2c2 − 3c3 = 0 (11.4.12)

(For the derivation of these equations, see the problems.)
We now have five equations in four unknowns. The solutions will be found with Maple. First,

we define all five equations in Maple, and then solve the last three in terms of c3:

>eq1:=c[0]^2+c[1]^2+c[2]^2+c[3]^2=2:

>eq2:=c[0]*c[2]+c[1]*c[3]=0:

>eq3:=c[0]+c[1]+c[2]+c[3]=2:

>eq4:=-c[0]+c[1]-c[2]+c[3]=0:

>eq5:=-c[1]+2*c[2]-3*c[3]=0:

>xx:=solve({eq3, eq4, eq5});

xx :=
{
c3 = c3, c2 = 1

2
+ c3, c0 = −c3 + 1

2
, c1 = 1− c3

}

Then, we substitute our expressions for c0, c1, and c2 into the first two equations, and simplify:

>simplify(subs(xx, {eql, eq2}));

{
4c23 − 2c3 + 3

2
= 2,−2c23 + 1

4
+ c3 = 0

}

We now have two quadratic equations for c3. Both equations have the same solution:
c3 = (1 ± √

3)/4. By convention, we use c3 = (1 − √
3)/4. So, the dilation equation for D4 is

D4(t) = 1 + √
3

4
D4(2t) + 3 + √

3

4
D4(2t − 1)

+ 3 − √
3

4
D4(2t − 2) + 1 − √

3

4
D4(2t − 3) (11.4.13)
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Problems

1. Derive Eq. 11.4.6 (Hint: Multiply both sides of the dila-
tion equation by φ(2t − m), for any integer, m, then inte-
grate from −∞ to ∞, and apply the basis property.)

2. Derive Eq. 11.4.9 (Hint: Substitute t − j for t in the dila-
tion equation, where j is a nonzero integer. Then multiply
this new equation by the original dilation equation, and
integrate.)

3. Derive Eq. 11.4.10 (Hint: Integrate the dilation equation.)

4. Derive Eq. 11.4.11 (Hint: The ability to reproduce con-
stant functions is equivalent to the “moment condition,”∫ ∞
−∞ ψ(t) dt = 0. Assume this integral is zero and use

Eq. 11.4.15 in the next section to derive the equation.)

5. Derive Eq. 11.4.12 (Hint: The ability to reproduce linear
functions with no constant term is equivalent to the “mo-
ment condition,” 

∫ ∞
−∞ tψ(t) dt = 0.)

6. Suppose we wish to create an MRA with these properties:
(a) φ is zero outside (0, 1].
(b) The various properties of an MRA are satisfied: sep-

aration, density, scaling, and basis.
(c) Suppose f (t) = b on a finite interval (k1, k2], with k1

and k2 integers, and f (t) is 0 outside that interval.
Then f (t) is in V0.

Derive equations like Eqs. 11.4.8 to 11.4.12 in this situa-
tion, and then solve the equations. Your solution should
be something familiar.

7. Computer Laboratory Activity: An alternate way to
solve the five equations, Eqs. 11.4.8 through 11.4.12, is
the following:
(a) Solve the homogeneous linear equations, Eqs. 11.4.11

and 11.4.12, to get c0 and c1 in terms of c2 and c3.
(b) Substitute those solutions into the other equations, to

get three equations involving c2 and c3.
(c) In the c2–c3 plane, plot the curves represented by

these three equations, and identify where the curves
intersect.

Follow these steps as a way to solve the equations.

Note: To plot the curves, the implicitplot command
is necessary. For example, if we wish to plot the curve for
x2 + y2 = 1, we would do the following:

>with(plots):

>implicitplot(x^2+y^2=1, x=-2..2,
y=-2..2, grid=[80,80]);

To combine the plots of the three curves, the display
command is necessary. This command is part of the
plots package. Use commands such as

>plot1:=implicitplot(x^2+y^2=1,
x=-2..2, y=-2..2, grid=[80, 80]):

in order to load a graph in memory. After defining graphs
plot1, plot2, and plot3, we can combine the plots
with:

>display({plot1, plot2, plot3});

8. Computer Laboratory Activity: In this activity, we deter-
mine the refinement coefficients for the scaling function
D6. Suppose we wish to create an MRA with these
properties:

(a) φ is zero outside (0, 5].
(b) The various properties of an MRA are satisfied:

separation, density, scaling, and basis.
(c) Suppose f (t) = at2 + bt + c on a finite interval (k1,

k2], with k1 and k2 integers, and f (t) is 0 outside that
interval. Then f (t) is in V0. Derive equations like
11.4.8 to 11.4.12 in this situation, and then solve the
equations. In addition, create a graphical solution to
the equations in the same manner as Problem 7. Hint:
You will need to assume that∫ ∞

−∞
t2ψ(t) dt = 0

11.4.3 Cascade Algorithm to Generate D4(t)
What does D4(t) look like? The cascade algorithm will lead to an answer. To start the algorithm,
let f0(t) be the function indicated in Fig. 11.3.

This function can be entered in Maple as follows:

>f[0]:= t -> piecewise(-1<=t and t<0,1+t,0<=t and t<1, 1-t, 0):



f0 := t→ piecewise(−1 ≤ t and t < 0, 1+ t,0 ≤ t and t < 1, 1− t)

>f[0](t); {
1+ t −1− t≤ 0 and t < 0

1− t −t ≤ 0 and t < 1

The next step is to define f1(t) in the following way:

f1(t) = 1 + √
3

4
f0(2t) + 3 + √

3

4
f0(2t − 1)

+ 3 − √
3

4
f0(2t − 2) + 1 − √

3

4
f0(2t − 3) (11.4.14)

What we have done is substitute f0 for D4 in the right-hand side of the dilation equation. This
can be done in Maple, and Fig. 11.4 is the result:

>c[c]:=(1+sqrt(3))/4: c[1]:=(3+sqrt(3))/4:
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Figure 11.3 The initial function used in the cascade
algorithm to generate D4(t).
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Figure 11.4. The function f1(t).
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Figure 11.5 The function f2(t).
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Figure 11.6 The function D4(t).

c[2]:=(3-sqrt(3))/4: c[3]:=(1-sqrt(3))/4:

>f[1]:= t -> c[0]*f[0](2*t)+c[1]*f[0](2*t-1)+c[2]*f[0](2*t-2)
+c[3]*f[0](2*t-3):

>plot(f[1](t), t=-1..4, axes=boxed);

We continue this process, creating f2(t) by using f1(t) in the right-hand side of Eq. 11.4.14.
Figure 11.5 shows f2(t).

Continuing this process is known as the cascade algorithm. If we continue this process a
number of times, the function will converge to a jagged looking curve: The D4 scaling function
of Fig. 11.6. It may come as a surprise that we can reproduce linear functions with D4 and its
integer translates, but it is true.

To create the mother wavelet, we use a special dilation equation. An example of this dilation
equation is Eq. 11.2.4, which describes how to create the Haar mother wavelet from the father.
In general, we define ψ(t) as

ψ(t) =
∞∑

k=−∞
(−1)k c1−kφ(2t − k) (11.4.15)



11.5.1 High- and Low-Pass Filtering
The preceding sections of this chapter have focused on using a family of wavelets as bases for a
nested sequence of vector spaces of functions that have finite energy. The density property of
MRAs then allowed us to approximate a function with a linear combination of wavelets. In this
section we use wavelets to attack a seemingly different problem: the filtering of signals.

A signal is an ordered sequence of data values, such as

s = [3, 9, 8, 8,−3,−4,−4, 1, 1, 1, 3, 4, 10, 12, 11, 13] (11.5.1)

Here, we write s0 = 3, s1 = 9, s2 = 8, and so on.
A filter operates on a signal s, creating a new signal. One example of a filter is the averaging

operator H, which creates a new signal half the number of entries of s by computing averages of
pairs of entries. For instance, applying H to Eq. 11.5.1 gives

H s = [6, 8,−3.5,−1.5, 1, 3.5, 11, 12] (11.5.2)

and we write (Hs)0 = 6, (Hs)1 = 8, and so on. In general, the averaging operator is defined as

(Hs)k = 1⁄2(s2k + s2k+1) (11.5.3)

11.5 WAVELETS FILTERS
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Problems

A computer algebra system is necessary for the following
problems.

1. Apply the cascade algorithm to the dilation equation for
the quadratic B-spline scaling function. Do you get the
quadratic B-spline scaling function?

2. Investigate what happens when you apply the cascade al-
gorithm to the dilation equation for the Haar wavelets.

3. Prove that f (x) = x3 + x satisfies this dilation equation5:

f (x) = 1

6
f (2x + 2) − 3/16 f (2x + 1)

+ 3/8 f (2x) − 3/16 f (2x − 1) + 1

6
f (2x − 2)

4. Explore what happens when you apply the cascade algo-
rithm to the dilation equation in Problem 3.

5. Apply the cascade algorithm to the dilation equation for
D4(t). After a few iterations, choose six values for t on

the interval (0, 3]. Test the dilation equation for those
values to see if the equation is satisfied, or, if not, how
close it is to being satisfied.

6. Start with a different function for f0 and apply the cas-
cade algorithm to the dilation equation for D4(t). What
happens?

7. Create a graph of the mother wavelet associated with
D4(t).

8. Let

f (t) =
{

4t − 6, 0 < t ≤ 7
0, elsewhere

Determine coefficients ak so that

f (t) =
∞∑

k=−∞
ak D4(t − k)

5Emily King of Texas A&M created Problem 3.



The differencing operator G is similar to H, except that it computes the difference, rather than
the sum, of two entries, although we still divide the result by 2. The operator G is defined by

(Gs)k = 1⁄2(s2k − s2k+1) (11.5.4)

Applying the differencing operator to Eq. 11.5.1 gives

Gs = [−3, 0, 0.5,−2.5, 0,−0.5, 1, 1] (11.5.5)

We can then concatenate (link together) the results to create a new signal ŝ, which has the same
length as s:

ŝ = [6, 8,−3.5,−1.5, 1, 3.5, 11, 12,−3, 0, 0.5,−2.5, 0,−0.5, 1, 1] (11.5.6)

The averaging operator H is usually referred to as a low-pass filter, while G is a high-pass
filter.6 One use of these filters is to compress data. If entries are of similar value, then Gs will
consist of values close, if not equal to, 0. Then, there are ways to code the results so that the final
product is of smaller length than the original signal.
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6It would seem that the high-pass filter should be labeled with H, but that just isn’t the case.

EXAMPLE 11.5.1

Apply the averaging and differencing operators to the following signal, and then code the signal in order to
compress it.

s = [4, 4, 4, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 9]

� Solution

Applying the filters yields

Hs = [4, 4, 4, 5, 5.5, 6, 7, 8]

Gs = [0, 0, 0, 0,−0.5, 0, 0,−1]

ŝ = [4, 4, 4, 5, 5.5, 6, 7, 8, 0, 0, 0, 0,−0.5, 0, 0,−1]

Now, the string of four zeroes in Gs can be replaced with a single number. If we know that all of our fil-
tered values are going be less than, say, 10 in absolute value, then we can use a code like 1004 to stand for
“four zeroes in a row,” since 1004 will not be a wavelet coefficient. Similarly, 1002 could stand for “two
zeroes in a row,” and we can code Gs by [1004, −0.5, 1002, −1]. (A better way of coding signals in order to
compress them is called entropy coding and is beyond the scope of this text.)
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Let a signal be given by

s = [17, 16, 14, 14, 3, 18, 21, 21]

Determine ŝ by applying filtering and the pyramid algorithm. Then, apply hard thresholding to ŝ using a
threshold of one-tenth of the largest entry (in absolute value) in the signal.

� Solution

Applying the filters the first time gives us

Hs = [16.5, 14, 10.5, 21]

Gs = [0.5, 0,−7.5, 0]

To follow the pyramid algorithm is to apply the filters to Hs. We will indicate applying H to Hs by H 2s:

H 2s = [15.25, 15.75]

GHs = [1.25,−5.25]

We conclude the pyramid algorithm by applying the filters to H 2s, yielding H 3s = [15.5] and
GH2s = [−0.25]. We then use the results of high-pass filtering, along with H 3s, to create ŝ:

ŝ = [15.5,−0.25, 1.25,−5.25, 0.5, 0,−7.5, 0]

Note that there is sufficient information in ŝ to create s. (See the problems.)
Our threshold is 1.55, so through hard thresholding, we will replace three of the values in ŝ with 0 and ob-

tain s*:

s∗ = [15.5, 0, 0,−5.25, 0, 0,−7.5, 0]

It is not possible to recreate s from s*, but we can recreate a signal close to s.
The pyramid algorithm can be implemented in Excel without much difficulty. Begin by entering the sig-

nal in the first row. Then, formulas like =0.5*A1+0.5*B1 can be used to do the low-pass filter, and simi-
lar formulas for the high-pass filter. At the conclusion of the process, the spreadsheet would look like the
following:

EXAMPLE 11.5.2

In practice, further filtering is done to the output of the low-pass filter, usually until there
is no output left to process. This is called the Mallat’s pyramid algorithm. In addition,
hard thresholding can be applied to create ŝ, where values near 0 are replaced with 0. Both
the pyramid algorithm and hard thresholding will lead to more zeroes, and hence greater
compression.
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Filtering can also be implemented in Maple without much trouble. A signal can be defined as a list in Maple:

>s:[17, 16, 14, 14, 3, 18, 21, 21];

s := [17,16,14,14,3,18,21,21]

However, the first entry in the list is entry #1, not entry #0.

>s[1];

17

>evalf((s[1]+s[2])/2);

16.50000000

We leave complete implementation of this as an exercise.
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EXAMPLE 11.5.2 (Continued)

Problems

For each of the following signals, determine ŝ after applying
filtering and the pyramid algorithm. Then, apply hard thresh-
olding to ŝ using a threshold of one-tenth of the largest entry
(in absolute value) in the signal.

1. s = [1, 2,−3,−4, 5, 6,−7,−9]

2. s = [255, 255, 255, 254, 254, 254, 80, 80, 80, 80, 80, 251,
254, 255, 255, 255]

3. s = [−3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8, 9, 7, 9, 3]

4. s = [7, 7, 7, 7, 25, 25, 25, 21, 3, 5, 3, 5, 4, 6, 4, 6]

Use Excel to solve:

5. Problem 1

6. Problem 2

7. Problem 3



8. Problem 4

Use Maple to solve:

9. Problem 1

10. Problem 2

11. Problem 3

12. Problem 4

13. Determine a method to reverse the pyramid algorithm.
That is, given ŝ, how do we determine s? Implement your
method in a Maple worksheet.

Demonstrate that it works on the ŝ from Example 11.5.2.

14. Solve Problem 9 using Excel.

11.5.2 How Filters Arise from Wavelets
There is an intimate connection between wavelets and filtering. Consider first the example of fil-
tering the short signal

s = [2, 10, 14, 18] (11.5.7)

Applying the averaging and differencing operators to s, we get

Hs = [6, 16], Gs = [−4,−2]

Using the pyramid algorithm, we filter Hs further to obtain

H 2s = [11], HGs = [−5]

Finally, we put the results together, yielding

ŝ = [11,−5,−4,−2] (11.5.8)

Now consider the problem of writing the following function f as a linear combination of the
Haar wavelets φ(t), ψ(t), ψ1,0(t), and ψ1,1(t):

f (t) =




2, 0 < t ≤ 1
4

10, 1
4 < t ≤ 1

2

14, 1
2 < t ≤ 3

4

18, 3
4 < t ≤ 1

(11.5.9)

A sequence of calculations gives

f (t) = 11φ(t) − 5ψ(t) − 4ψ1,0(t) − 2ψ1,1(t) (11.5.10)

That we have the same numbers arising from the filtering problem and the linear combination
problem is not a coincidence.

Let us turn to a generic short signal

s = [s0, s1, s2, s3] (11.5.11)
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Then

ŝ =
[

s0 + s1 + s2 + s3

4
,

s0 + s1 − s2 − s3

4
,

s0 − s1

2
,

s2 − s3

2

]
(11.5.12)

How do these same formulas arise from the linear combination problem? We define

f (t) =




s0, 0 < t ≤ 1
4

s1,
1
4 < t ≤ 1

2

s2,
1
2 < t ≤ 3

4

s3,
3
4 < t ≤ 1

(11.5.13)

and solve the problem of finding the wavelet coefficients from Eq. 11.2.7 by focusing on the four
subintervals. We get the equations

s0 = α1 + α2 + α3, s1 = α1 + α2 − α3

s2 = α1 − α2 + α4, s3 = α1 − α2 − α4
(11.5.14)

These equations can be combined using vectors:




s0

s1

s2

s3


 = α1




1
1
1
1


 + α2




1
1

−1
−1


 + α3




1
−1

0
0


 + α4




0
0
1

−1


 (11.5.15)

If we take the dot product of both sides of Eq. 11.5.15 with the vector associated with α1, we
get a simple equation: s0 + s1 + s2 + s3 = 4α1 . Taking the same action with the second vector
yields s0 + s1 − s2 − s3 = 4α2 . Similar work with the last two vectors gives us s0 − s1 = 2α3

and s2 − s3 = 2α4, and Eq. 11.5.12 is rediscovered.
So filtering a signal and determining wavelet coefficients are, at least for the Haar wavelets,

the same problem. The most interesting connection, however, is how the refinement coefficients
are related to both problems.

Here is one more take on the problem. Recall that the Haar scaling function satisfies

φ(t) = c0φ(2t) + c1φ(2t − 1) (11.5.16)

where c0 = c1 = 1, which we will ignore for a moment. We will also ignore 11.5.13 and,
assuming we have our short signal s = [s0, s1, s2, s3], define a function

g(t) = s0 φ(2t) + s1φ(2t − 1) + s2φ(2t − 2) + s3φ(2t − 3) (11.5.17)

We now consider the problem of writing g(t) as a linear combination of the mother and father
wavelets and their integer translates. In particular, we wish to determine constants β0, β1, β2,
and β3, such that

g(t) = β0 φ(t) + β1 ψ(t) + β2 φ(t − 1) + β3 ψ(t − 1) (11.5.18)
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We know from Eq. 11.3.6 that

β0 =
∫ ∞
−∞ g(t)φ(t) dt∫ ∞
−∞ [φ(t)]2 dt

(11.5.19)

The denominator of this fraction is 1. As to the numerator, using Eq. 11.5.16 and Eq. 11.5.17, the
integrand is

g(t)φ(t) = [s0 φ(2t) + s1φ(2t − 1) + s2φ(2t − 2) + s3φ(2t − 3)][c0φ(2t) + c1φ(2t − 1)]

(11.5.20)

If we multiply the two sums on the right of this equation, we obtain

s0 c0[φ(2t)]2 + s1 c1[φ(2t − 1)]2 (11.5.21)

plus many terms of the form sk clφ(2t − k)φ(2t − l), where k 
= l . The integral of each of these
extra terms is zero, as a consequence of the basis property of MRAs. Integrating Eq. 11.5.21
yields 1⁄2s0 c0 + 1⁄2s1 c1. Since c0 = c1 = 1, we have calculated the first entry in Hs. A similar
analysis for β2 will give us the second entry of Hs; and in the same vein, β1 = 1⁄2s0 c0 − 1⁄2s1 c1,
and Gs = [β1, β3].

So, the coefficients used for the averaging filter, both 1⁄2 , arise from dividing the Haar
refinement coefficients by 2, and the coefficients for the differencing filter are created in a simi-
lar manner, making use of the dilation equation, Eq. 11.2.4.

The discussion above demonstrates how a pair of filters can arise from a pair of dilation equa-
tions, although the specific example is not quite accurate. The low-pass filter coefficients that
arise from the dilation equation Eq. 11.4.4 are a sequence of numbers {hk} so that

hk = ck√
2

(11.5.22)

The denominator here is chosen so that
∞∑

k=−∞
h2

k = 1 (11.5.23)

This is another version of Parseval’s formula.
The high-pass filter coefficients are defined by

gk = (−1)kh1−k (11.5.24)

This formula is reminiscent of Eq. 11.4.15, the dilation equation for ψ .
Once these coefficients are defined, the low-pass filter H and the high-pass filter G are

defined by

(Hs)k =
∞∑

j=−∞
hj−2ksj (11.5.25)

(Gs)k =
∞∑

j=−∞
gj−2ksj (11.5.26)
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So, the filters related to the Harr wavelets are

(Hs)k = 1√
2

(s2k + s2k+1), (Gs)k = 1√
2

(s2k − s2k+1) (11.5.27)

These filters are practically the averaging and differencing filters, except for a factor of 
√

2.
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Problems

1. Determine the filters related to the D4 wavelets.

2. Replace Eq. 11.5.17 with

g(t) = s0 φ(4t) + s1φ(4t − 1)

+ s2 φ(4t − 2) + s3 φ(4t − 3)

and use Eq. 11.3.6 to rediscover Eq. 11.5.12.

3. Computer Laboratory Activity: Implement Eq. 11.5.25
and Eq. 11.5.26 in Maple for the Haar wavelets. Then use
your implementation to filter, with the pyramid algo-
rithm, the signal

s = [17, 14, 13, 9, 6, 2, 2, 6, 1, 7, 8, 8, 3, 4, 5, 4]

All of the topics in this chapter so far involve functions of one variable, including wavelet func-
tions, and signals of one dimension. The ideas discussed can be extended to functions of two
variables, and signals of two dimensions. The latter is important in the processing of images.
Digital images can be thought of as a two-dimensional signal, or array, of numbers, where the
numbers can represent grayscale levels, or color. In this section we describe the bivariate Haar
wavelet family and the associated filters. Moving from one to two dimensions, we find a number
of modifications of the ideas from earlier in this chapter.

1. The father wavelet, or scaling function, is now φ(x, y). The compact support condition
changes to the idea that there is a rectangle in the xy plane outside which φ(x, y) = 0.
We define the bivariate Haar scaling function to be 1 on the square (0, 1] × (0, 1] and
0 elsewhere.

2. Instead of one mother wavelet, there are three. To see why, recall that when we first
worked with the univariate Haar wavelets, V1 consisted of functions that were constant
on (0, 1⁄2] and (1⁄2 , 1], and 0 elsewhere. Also, V1 had dimension 2, because {φ,ψ} was
the basis. In effect, we were dividing (0, 1] into two equal subintervals. Now, by
analogy, we divide the square (0, 1] × (0, 1] into four “subsquares,” each with side
lengths 1⁄2 . To describe functions that are constant on each of the four squares requires
four pieces of information, and a basis would have four elements. Since there is only
one scaling function, there needs to be three mother wavelets.

3. The dilation equation Eq. 11.4.4 is modified to be

φ(x, y) =
∞∑

i=−∞

∞∑
j=−∞

ci, jφ(2x − i, 2y − j) (11.6.1)
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so that there are now an array of refinement coefficients. As before, compact support
implies that only a finite number of the ci, j ’s are nonzero.

4. The low-pass filter based on the Haar bivariate wavelet family is the array

H =
[

1/
2

1/
2

1/
2

1/
2

]
(11.6.2)

Note that the sum of the squares of the entries of H is equal to 1. This is another
version of Parseval’s formula. The filter will be applied to 2 × 2 blocks in a signal. In
general, if we want to apply the filter to the block

s =
[

a b
c d

]
(11.6.3)

then we will perform the following “product” (note that we use the italic H to indicate
this product) of Eq. 11.6.2 and Eq. 11.6.3:

Hs =
[

1

2
a + 1

2
b + 1

2
c + 1

2
d

]
(11.6.4)

This is not the usual multiplication of matrices. It is, however, built into Excel.
(See Example 11.6.1.)

5. Since there are three mother wavelets, there are three associated high-pass filters. They
are

Gv =
[

1/
2 −1/

2
1/

2 −1/
2

]
(the vertical filter) (11.6.5)

Gh =
[

1/
2

1/
2

−1/
2 −1/

2

]
(the horizontal filter) (11.6.6)

Gd =
[

1/
2 −1/

2

−1/
2

1/
2

]
(the diagonal filter) (11.6.7)

Applying these filters is done in the same way as applying H, yielding various
combinations of the four entries of a 2 × 2 block.

6. Filtering a two-dimensional signal involves breaking the signal into 2 × 2 blocks and
applying all four filters to each block. Then, it is a matter of putting the results in a new
matrix in a natural order. A pyramid algorithm can then be implemented to apply the
filters multiple times.
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Apply the low-pass Haar bivariate filter to

s =
[

17 −3
6 5

]
EXAMPLE 11.6.1
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� Solution

Hs is simply twice the average of the four values in the block, so Hs = [25/2]. To make this calculation in
Excel, first enter the array H and the signal s in a spreadsheet:

We will now use the SUM function as an array function. (See Chapter 4 for a discussion of array functions in
Excel.) We choose another cell and enter this formula

=SUM(A1:B2*A4:B5)

As with all array functions, the CTRL, SHIFT, and ENTER must be pressed simultaneously, and then this
Hadamard product is calculated. Excel has a separate function called SUMPRODUCT that will perform the
same calculation.

The Hadamard product is not built into Maple, but can be implemented with a double loop structure.

B

0.5

A

0.5

0.5

1

2

3

17

6

4

5

0.5

�3

5

EXAMPLE 11.6.1 (Continued)

Apply the pyramid algorithm with the Haar bivariate filters to the following signal, which is an image of the
letter “A” on a striped background:

s =




160 160 80 10 10 80 160 160
80 80 10 80 160 10 160 160
80 80 10 160 160 10 80 80

160 160 10 160 80 10 80 80
160 160 10 10 10 10 160 160
80 80 10 10 10 10 160 160
80 80 10 160 160 10 80 80

160 160 10 160 80 10 80 80




Here is the image that corresponds to s:

EXAMPLE 11.6.2
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� Solution

We divide s into 16 blocks of size 2 × 2, and we apply the four filters to each block. Applying the low-pass fil-
ter to each block, along with placing the result in the natural place, gives us

Hs =




240 90 130 320
240 170 130 160
240 20 20 320
240 170 130 160




Applying the three high-pass filters gives us

Gvs =




0 0 40 0
0 −150 110 0
0 0 0 0
0 −150 110 0


 Ghs =




80 0 −40 0
−80 0 40 0

80 0 0 0
−80 0 40 0


 , Gds =




0 70 −110 0
0 0 40 0
0 0 0 0
0 0 40 0




Not surprisingly, many of the high-pass coefficients are zero.
The pyramid algorithm now says that we do the same operations on Hs, giving us the four matrices

H 2s =
[

370 370
335 315

]
, Gv Hs =

[
110 −110
145 −165

]

Gh Hs =
[−40 80

−75 25

]
, Gd Hs =

[
40 −80
75 −135

]

We have one more iteration to go with the pyramid algorithm, applying the filters to H 2s:

H 3s = [695], Gv H 2s = [10], Gh H 2s = [45], Gd H 2s = [−10]

Putting the results all together, we have

ŝ =




695 10 110 −110 0 0 40 0
45 −10 145 −165 0 −150 110 0

−40 80 40 −80 0 0 0 0
−75 25 75 −135 0 −150 110 0

80 0 −40 0 0 70 −110 0
−80 0 40 0 0 0 40 0

80 0 0 0 0 0 0 0
−80 0 40 0 0 0 40 0




These calculations can be done with Maple or Excel. In Maple, begin by defining the 8 × 8 matrix s. Then,
loops such as these can be used to apply filters:

>Gd:=matrix(4,4, (i,j) -> 0):

EXAMPLE 11.6.2 (Continued)



Depending on the application, further processing can be done to ŝ. One possibility is to apply
hard thresholding to ŝ, to create a matrix, with many zeroes, that could then be compressed. In
this case, to recover a reasonable facsimile of the original signal, an inverse filtering process
could be used. (See the problems.) Another idea is that the matrix H 2s could be saved as reduced
representation of the original signal. This may be useful if the goal is to determine which letter
is featured in the image, since the reduced representation could be compared to a “dictionary” of
reduced representations of images of letters.

Over the past few years, researchers have developed bivariate versions of D4. The derivations
are complicated because there are now sixteen refinement coefficients to be determined, as op-
posed to four. In addition, the equations for the refinement coefficients have an infinite number
of solutions, dependent on two parameters. Figure 11.7 contains an example of a bivariate
Daubechies scaling function:
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>for i from 1 to 4 do for j from 1 to 4 do

>Gd[i,j]:=(s[2*i-1,2*j-1]-s[2*i-1,2*j]-s[2*i, 2*j-1]+s[2*i,2*j])/2;

>od:  od:

>evalm(Gd); 

0 70 −110 0
0 0 40 0
0 0 0 0
0 0 40 0




In Excel, using the method from Example 11.6.1, along with copying-and-pasting the SUM function, will
lead to the same results.

EXAMPLE 11.6.2 (Continued)

3

0

0.5

1

1.5

2
y 1

0 0.5 1 1.5
x

2 2.5 3

Figure 11.7 An example of a bivariate
Daubechies scaling function.
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Problems

For each of the following signals, determine ŝ after applying
filtering and the pyramid algorithm.

1. s =




17 18 19 20
16 17 18 19
15 16 15 15
14 15 12 8




2. s =




−3 −3 −5 −5
−2 −2 −6 −4

0 1 −2 −3
4 5 1 −1




3. Write code in Maple to implement the Hadamard product
of two matrices of equal size.

4. Determine a method to reverse the filtering by the Haar
bivariate filters. That is, given ŝ, how do we determine s?
Implement your method in a Maple worksheet.
Demonstrate that it works on the ŝ from Example 11.6.2.

5. Computer Laboratory Activity: Create 8 × 8 image
blocks for all 26 letters of the alphabet, using dark gray
(grayscale 10 to 40) on a nearly white background
(grayscale 220 to 250). Filter each image, saving H2s.
Then create six other 8 × 8 image blocks with some of
the letters of the alphabet in them, perhaps with a differ-
ent background, or perhaps with the letters altered a bit.
Filter each of these images, saving H2s. Attempt to
“read” the letters in your six images by comparing the
H2s matrices with the 26 you created initially. Describe
how successful your “character recognition program” is.
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Engineering Units International
Quantity (U.S. System) System (Sl)a Conversion Factor

Length inch millimeter 1 in. = 25.4 mm

foot meter l ft = 0.3048 m

mile kilometer 1 mi = 1.609 km

Area square inch square centimeter 1 in.2 = 6.452 cm2

square foot square meter 1 ft2 = 0.09290 m2

Volume cubic inch cubic centimeter 1 in.3 = 16.39 cm3

cubic foot cubic meter 1 ft3 = 0.02832 m3

gallon 1 gal = 0.004546 m3

Mass pound-mass kilogram 1 lbm = 0.4536 kg

slug 1 slug = 14.61 kg

Density pound/cubic foot kilogram/cubic meter 1 lbm/ft3 = 16.02 kg/m3

Force pound-force newton 1 lb = 4.448 N

Work or torque foot-pound newton-meter 1 ft-lb = 1.356 N · m

Pressure pound/square inch newton/square meter 1 psi = 6895 N/m2

pound/square foot 1 psf = 47.88 N/m2

Temperature degree Fahrenheit degree Celsius ◦F = 9
5

◦C + 32

degree Rankine degree Kelvin ◦R = 9
5 K

Energy British thermal unit joule 1 Btu = 1055 J

calorie 1 cal = 4.186 J

foot-pound 1 ft-lb = 1.356 J

Power horsepower watt 1 hp = 745.7 W

foot-pound/second 1 ft-lb/sec = 1.356 W

Velocity foot/second meter/second 1 fps = 0.3048 m/s

Acceleration foot/second squared meter/second squared 1 ft/sec2 = 0.3048 m/s2

Frequency cycle/second hertz 1 cps = 1.000 Hz

aThe reversed initials in this abbreviation come from the French form of the name: Système International.

Table A U.S. Engineering Units, SI Units, and Their Conversion Factors

APPENDIX A
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Answers to Selected Problems

Section 1.2

2. Nonlinear, first order

4. Linear, second order, nonhomogeneous

6. Linear, second order, homogeneous

8. (After division by u) linear, first order,
homogeneous

10. u(x) = cos x + ex + C

12. u(x) = x3/3 + Cx + D

14. u(x) = x5/120 − x4/12 + C1x3/6

+ C2x2/2 + C3x + C4

22. 250

Section 1.3.1

2. −(10x + C)−1

4. K e−cos x

6.
K x2 − 1

K x2 + 1

8. K e−x2/10

10. −x/ ln Cx

12. u(u + 4x)−3 = K x−6

14. x + 2u − 2 ln(3 + x + 2u) = 3x + C

16. u = sin x

sin 2
− 1

18. u = x + x(2 − x2)−1/2

Section 1.3.3

2. K x−2

4. u3 = K − x3/3

6. K e−x

10. (1 + x2)−1

12. u = 0

Section 1.3.4

4. Ce−2x + x − 1
2

6. Ce2x − ex

8. Cex − 1
2 (cos x − sin x)

12. e−x2/2
∫ x

0
e−t2/2 dt

14. 2e2x − 2

Section 1.4

2. 0.01[e2t − e−2×104t ]

4. 1.386 × 10−4 s

6. 0.03456 − 0.03056e−1.111×10−4t

9. 5.098 s; 5.116 s

11. −83.3x + 217◦C

13. 86.3 min

Section 1.5.1

2. A discontinuity which is not a jump discontinuity

4. A discontinuity which is not a jump discontinuity

6. Not a jump discontinuity

8. No

10. No

12. No

Section 1.5.3

2. K/x

4. K

10. Provided αδ − βγ �= 0

Section 1.6

2. Ae−3x + Be3x

4. Aeix + Be−i x

6. (Ax + B)e−2x

8. e−2x [Aeαx + Be−αx ] where α = 2
√

2

10. e2x [Aeαx + Be−αx ] where α = 2i

12. e−3x/2[Aeαx + Be−αx ] where α = i



14. Ae−3x + Be3x

16. A sin(x/2) + B cos(x/2)

18. e−2x (Aeαx + Be−αx ) where α = 2
√

2

20. e2x (A cos 2x + B sin 2x)

22. e−5x/2[Aeαx + Be−αx ] where α = √
13/2

24. A sinh(3x + B)

26. A cos(B + x/2)

28. Ae−2x sinh(2
√

2 x + B)

30. Ae2x cos(2x + B)

32. Ae−5x/2 cos(
√

13 x/2 + B)

34. −4e−3x + 6e−2x

36. (5e2x + 3e−2x )/4

38. 9.8 sinh(0.2027 + x/2)

40. 1
3 sin 3x

42. (5e2x + 3e−2x )/4

44. Aex + e−x/2(B cos αx + C sin αx) where
α = √

3/2

46. Ax + B + Cex + De−x

48. Ax2 + Bx + C + Dex

Section 1.7.1

2. 10 cos t

4. 1.54 s

6. 2(cos 5t − sin 5t)

Section 1.7.2

2. 25
2 (e−8t − e−2t )

7. 0.136 s

9. 0.478 m

12. (π/4) s; 70.7%

Section 1.7.3

1. (a) R < 14.14 �; (b) R > 3.54 �

3. 10e−105t (cos 105t + sin 105t)

Section 1.8

2. x − 1
2

4. xex/2

6. (x sin 3x)/6

8. x2/9 − 2
81 − x/6(cos 3x)

10. (C1 + C2x)e−2x + x2/4 − x/4 + 9
8

12. (C1 − x/4) sin 2x + C2 cos 2x

14. C1e−3x + C2e−2x

+ (3 sin 2x − 15 cos 2x)/52

16. cos 2x − 1
3 sin 2x + 2

3 sin x

18. (sin 2x − 2x cos 2x)/4

20. (e−4x − e4x + 8xe4x )/32

Section 1.9.2

2. 228 m8

4. 94 s

6. 80 s

8. 4
3 t sin 3t

10. (2 sin t + 37 sin 4t)/15

12. e−t − cos t + 3 sin t

14. 0.6 sin 100t − 60t cos 100t

16. 0.00533 hz, 2.1 m

Section 1.9.3

4. (−4 cos 3t + 3 sin 3t)/50

6. −0.0995(cos 2t + 10 sin 2t)

8. (2 cos t + 2 sin t + cos 2t + sin 2t)/4

10. Ae−5t + Be−2t + 0.1385 sin t − 0.1077 cos t

+ 0.0875 sin 2t + 0.0375 cos 2t

12. e−0.05t (A cos 1.41t + B sin 1.41t)

+ 0.0495(sin 2t − 10 cos 2t)

14. (1 + t)e−t − cos t

16. e−0.05t (4 sin 1.41t − 20 cos 1.41t)

+ 20 cos t + 2 sin t

18. −e−0.01t (25 cos 4t + 0.0625 sin 4t) + 25 cos 4t

20. 2.2 m; 1.62 rad/s

22. q(t) = 2.05 × 10−6e−2.618×105t − 14.05
× 10−6e−3.82×104t + 12 × 10−6

i(t) = −0.5367(e−2.618×105t − e−3.82×104t )

24. −0.591 amp

26. −2.48e−7.5×104t sin 3.23 × 104t
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Section 1.10

4. c1 sin x + c2 cos x + x sin x

+ (cos x) ln cos x

6. (c1x + c2)e2x + ex + xe2x
∫

e−x/x dx

8. c1x + c2/x + 2x2/3

10. c2x2 + c1 + x3/3 − x2/4 + (x2/2) ln x

12. (10t − 7)et/100

Section 1.11

2. c1x−6 + c2x−2

4. c1x−4 + c2x3

6. −1 + (3x−4 + 4x3)/7

8. Cxα where α = −a1/a0

Section 1.12.1

2. (c1x + c2)e−2x + x2e−2x/2

4. f (x) = x ; u(x) = c1x + c2x
∫

F(x)/x2 dx where 

F(x) = e
∫

xp(x) dx

Section 1.12.2

2.
n(n + 1)

1 − x2
+ 1

(1 − x2)2

4. 1 + 1

4x2
(1 − 4n2)

6. 2n + 1 − x2

Section 1.12.3

2. c1 cos(sin x) + c2 sin(sin x)

4. c1e−2/x + c2e−1/x

6. e−2x2
[c1 cos(3x2/2) + c2 sin(3x2/2)]

Section 2.2

2. 1 + x + x2/2! + · · · + xn/n! + · · ·
4. 1 − x2/2! + x4/4! + · · ·
6. ln (1 + x) = x − x2/2 + x3/3 + · · ·
8. 1

2 [1 − x/2 + x2/4 + x3/8 − · · ·]
10. −7/12 + 7x/144 − 91x2/172 + · · ·
12. 1 − x2 + x4/2! − x6/3! + · · ·

14. x + x3/3 + 2x5/15 + · · ·
16. −2[(x/2)2/2 + (x/2)4/4 + (x/2)6/6 + · · ·]
18. x − x2 + x3/3 − x5/30 + · · ·
20. 1

4 [x + x3/12 + x5/80 + · · ·]
22. x3

3 (1 − x2/5 + 2x4/105 − · · ·) + C

24. x2/2 − x4/6 + 2x6/45 − · · · + C

26. No singular points. R = ∞.

28. No singular points so R = ∞.

30. (−1, 0). R = 1

32. 1

34. 2

36. ∞
38. 1 − (x − 1) + (x − 1)2 − (x − 1)3 + · · ·
40. −1/3 − 2(x − 1)/9 − 7(x − 1)2/27

− 20(x − 1)3/81 − · · ·

Section 2.3

2. R = ∞. b0[1 − (kx)/1! + (kx)2/2!

− (kx)3/3! + · · ·]
4. R = ∞. 

b0[1 − x2/2 + x4/8 − x6/48 + x8/384 − · · ·]

10. x −
∞∑

k=1

x2k+1

4k(2k − 1)(2k + 1)

12. x + x2/12 + x5/20 + · · ·
14. f (x) = −1/(1 − x). 

S(x) = 1 − (x − 2) + (x − 2)2 − (x − 2)3 + · · ·
f (1.9) = 10/9 ∼= 1.111

16. R = 1. b0[1 − (x − 1)2/2

+ (x − 1)3/3 + · · ·] + b1[(x − 1)

− (x − 1)3/6 + (x − 1)4/6 + · · ·]
18. R = ∞. u(x) = 4 − 2x − x4/3 + x5/10

+ x8/168 − x9/720 + · · · u(2) ≈ −1.3206

20. u(1) ≈ 8.115; u(3) ≈ 7.302

Section 2.3.3

2. (c) 1
128 (35 − 1260x + 6930x4 − 12012x6

+ 6435x8)

8. AP2(x) + B[P2(x)Q0(x) − 3x/2] + x/4
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10. u(φ) = 1

2
(3 cos2 φ − 1)

(
A + B ln

1 + cos φ

1 − cos φ

)

+ 3

2
B cos φ

Section 2.3.5

6. H4(x) = 12(1 − 4x2 + 4x4/3)

Section 2.4

6. x2(1 − x/11 + x2/286 + · · ·),

x−5/2(1 + x/7 + x2/70 + · · ·)

10. A

[
1 − 2

∞∑
1

xk/(4k2 − 1)

]
+ B x−1/2(1 − x)

16. A(1 + x2/2 + x3/6 + · · ·)
+ B(1 + x2/2 + x3/12 + · · ·)

Section 2.5

2. 0.443

4. ∞
6. −9394

8. 3 × 10!

10. r = 1, h = 3, 3n�( 1
3 + n)/�( 1

3 )

12. �(1) = 1 = 0�(0), a contradiction

Section 2.9.1

8. u2(x) = xex ln x − x
∞∑
1

hk xk/k!

10. u2(x) = ex ln x −
∞∑
1

hk xk/k!

Section 2.9.2

6. 2
∞∑
0

(−1)k2k xk/(k + 2)k!

Section 2.10.1

2. J0(x) = 1 − x2/4 + x4/64 + x6/2304 + · · ·
J1(x) = x/2 − x3/16 + x5/384 − x7/18432

4. See the answer to Problem 2.

6. AJ1/4(x) + B J−1/4(x)

8. AJ1/2(x) + B J−1/2(x)

12. in In(x)

Section 2.10.6

2. 0.2612

4. −0.2481

6. 0.0572

8. −x J1(x) − 2J0(x) + C

10. −x J0(x) + ∫
J0(x) dx + C

18. I1/2(x) =
(

2

πx

)1/2

sinh x;

I−1/2(x) =
(

2

πx

)1/2

cosh x

Section 2.11

2. 1 − x2/2 + 5x3/6 + x4/24 + · · ·
6. 1 − x + x2/2! + x3/3! − x4/4! + · · ·

8. x − 7x3

18
+ 143x5

1800
+ · · · + A

∞∑
0

(−1)n x2n

2nn!

10. c1u1(x) + c2u2(x) + x3/3

− 2x4/3 + 7x5/10 + · · ·

Section 3.2

2. 1/s2 − 3/s

4. 2/(s2 + 1)

6. 0.8862s−3/2

8. 8/s3 − 3/s

10. 2/s3 − 4/s2 + 4/s

12. e−1/(s − 2)

14. [e−4s(1 − 4s2) + 1]/2s2

16. 3/(s − 3)2

18. (s + 2)/(s2 + 4s + 20)

20. 6/(s2 + 2s + 5)

22. (s − 7)/(s2 + 2s + 17)

24. (5s2 + 24s + 30)/(s + 2)3

26. πe−4s/(s2 + π2)

28. (1 − e−4s)/2s2 − e−4s/s

30. (1 − e−2s)/s2

32. (1 − e−πs)/(s2 + 1) + 2e−πs/(s2 + 4)
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34. (s − 3)/(s2 − 6s + 13) − (s + 3)/(s2 + 6s + 13)

36. 3(s − 1)/(s2 − 2s + 2) − 3(s + 1)/(s2 + 2s + 2)

38. (s − 1)/(s2 − 2s + 5) + (s + 1)/(s2 + 2s + 5)

40. 3t2/2 + 2t

42. t (1 − t/2)e−t

44. −t/2 − 1
4 + e2t/4

46. (et − e−2t )/3

48. u1(t)e1−t

50. 2e−t sin 2t

52. et sinh 2t

54. e−(t−2π)(4 cos 2t − 2 sin 2t)u2π (t)

56.
(

2t

3
sin 3t − 1

54
sin 3t + t

18
cos 3t

)
e−2t

Section 3.3

2. s�( f ) − f (0) − [ f (a+) − f (a−)]e−as

− [ f (b+) − f (b−)]e−bs

4. ω/(s2 + ω2)

6. a/(s2 − a2)

8. 1/(s − 2)

10. (1 − e−s)/s2

12. 1/(s − 1)2

14. (s2 − 1)/(s2 + 1)2

16. 2(s2 − 2s + 1)/(s − 1)(s2 − 2s + 2)2

18. (s2 + 4)/(s2 − 4)2

20. 4s/(s2 − 4)2

22. 4et/2 sinh t/2 or 2(et − 1)

24. t − 1
2 sin 2t

26. − 2
3 (t − 1

3 sinh 3t)

28. 2e−t − 1

Section 3.4

2. (s2 − 4)/(s2 + 4)2

4. 2(3s2 + 1)/(s2 − 1)3

6. 4s/(s2 − 1)2

8. 2(s + 1)/(s2 + 2s + 2)2

10. (s2 + 1)/(s2 − 1)2

12. ln (s2 − 4)/s2

14. ln [s/(s − 2)]

16. te−2t

18. (t/4) sinh 2t

20. (e−3t − e2t )/t

22. 2(cos 2t − cos t)/t

24. 2(e−t cos 2t − e−2t cos t)/t

Section 3.5

2. (1 − e−2s − 2se−2s)/(1 − e−2s)s2

4. (1 − 2s − e−4s − 2se−4s)/(1 − e−4s)s2

6. (1 − e−2s)/(1 − e−4s)s

8. (2s − 1 + e−s − se−s)/(1 − e−2s)s2

Section 3.6

2. −5 + 5
2 et − 2e−4t + 25

6 e−t

4. 1
4 e−3t + 3

4 et + tet

6.
7

8
+ t

2
+

(
8

3
+ t

3

)
et + 1

72
e4t

8. 1
164 sin 20t − 5

861 sin 21t

10.
( 2

5 t − 6
25

)
e−t − 6

25 cos 2t − 9
50 sin 2t

12. 40
27 (cos 2t − cos t) + 5

72 (sin 2t − 2t cos 2t)

+ 5
9 (sin t − t cos t)

Section 3.7

8. teat

10. − 1

2ω
sin ωt − (t/2) cos ωt

12. (−1 + cosh at)/a2

Section 3.8

2. 2 cosh 2t

4. 2
3 (cos t − 2 cos 2t)

6. 2 + et/2 − 1
2 (5 cos t − sin t)

8. e−2t (1 + 2t)

10. 2 − 6e−3t + 4e−2t

12.
( 3

2 + 3t
)

e−2t − 1
2 cos 2t

15. (a) (1 − cos 6t)/36; (c) 5(sin 6t − 6t cos 6t)/72

16. (a) 1
36 − 1

36 (cos 5.98t + 1
12 sin 5.98t)e−t/2 ;

(c) − 5
6 cos 6t + 5

6 (cos 5.98t + 1
12 sin 5.98t)e−t/2
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17. (b) 1
10 sin 2t − 3

40 cos 2t − ( 3
40 − t/4

)
e−6t ;

(f) 50te−6t

18. (c) − 1
4 cos 6t − 1

192 e−18t + 3
64 e−2t

19. (a) sin 10t ; (c) (t/4) sin 10t ; (e) 10 cos 10t

20. (e) 10
3 (3 cos 6t − 4 sin 6t)e−8t

21. (b) 1
25 (8 sin 20t − 6 cos 20t + 6e−10t

−100te−10t );

(d) 10te−10t − 10(t − 2π)e−10(t−2π)u2π (t)

22. (e) 10
3 (4e−20t − e−5t );

(f) − 5
19 e−t − 80

57 e−20t + 5
3 e−5t

23. (b) 1
25 (1 − cos 5t)u2π (t);

(e) 1
25 (1 − cos 5t)[1 + u4π (t)]; (f) sin 5t

24. (a) 1
10 sin 10t[u2π (t) − u4π (t)];

(b) 1
10 u2π (t) sin 10t ;

(e) 1
10 sin 10t[1 + u4π (t)];

(g) 5 cos 10t + 1
2 u2π (t) sin 10t ;

25. (b) 1
50 [1 − e−25(t−2π)]u2π (t); (f) 5

2 e−25t

26. (e) 1
50 [1 + u4π (t) − e−25t − e−25(t−4π)u4π (t)]

Section 4.2

4.
[

2 3 4 5
3 4 5 6

]

6.


 1 2 3

1 2 3
1 2 3




8. [ 1 1 1 ] , [ 1 1 1 0 ]

10.


 1 0 0

0 1 0
0 0 1





 1 0 0 0

0 1 0 −1
0 0 1 1




12. (a) ; (b) ; (d) ; (g) ; (i) ; ( j) ; (k)

Section 4.3

2.


 1 0 0

0 −1 0
0 0 1




4.
[

c b + d
0 −b

]

6. Upper triangular system with no solutions,
x2 = 0, x2 = 1

8. x1 = −x2 = k, x3 = −1, for all k

10. x = 3, y = −3

12. x = 43
23 , y = 8

23

14. No solutions

16.
[

1
−1

]

18.


 6

−3
−2




Section 4.4

2. (c); (d); (f); (g); (h); (i) if * = 0 or 1;
( j); (l)

Section 4.5

10. A − B =


 1 0 −1

1 −1 −2
2 1 3




12.


 12 8 4

4 −4 −8
24 12 −12




14.


 2 1 4

1 −1 2
0 −2 0




16. (A − AT )T = AT − A = −(A − AT )

18.


 0 −5 4

−5 0 −1
4 −1 4





 0 −3 2

3 0 3
−2 −3 0




Section 4.6

2.


 1 0 4

0 2 4
0 0 1




4. [a2 + b2 + c2]

6.
[

1 0
0 −1

]
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10.
[

1 n
0 1

]

12.
[

0 −6
0 0

]

18. x2
1 + x2

2 − x2
3 − x1x2 + 2x2x3

22.


 1 1 1

1 1 1
1 1 1





 1 0 0

0 0 0
0 0 0




=


 1 1 1

1 1 1
1 1 1





 0 0 0

1 0 0
0 0 0




30. (AT A)T = AT (AT )T = AT A

32. −4

34.


−3 4 −3

3 −4 3
−6 8 −6




36.


 1 3 6

0 1 −3
1 −1 1




38.


 3

1
1




40.


 1

−3
5




42. [ −3 11 3 ]

44.


 1 −2 0

−2 13 3
0 3 2





 10 6 1

6 5 0
1 0 1




46.


−3 6 1

−2 1 −1
0 0 1





−6 3 −2

−1 −4 −3
0 0 1




48. Not defined

50. Not defined

52.


 4

−1
−3




Section 4.7

2. A−1 is n × n and B is n × m . No,
unless C is n × n.

4. (A−1)T (AT ) = (AA−1) = I

6. Set B = −A

Section 4.8

2.




1
2 0 − 1

4

0 1
3 − 4

21

0 0 1
7




4.


 0 0 1

0 1 0
1 0 0




6. 1
2


 1 0 0

4 −2 0
4 −2 −2




14. 1
2


−1 3 1

3 −7 −1
1 −1 −1




16. 1
3




2 −1 2 −2
−1 2 −1 1

2 −1 −4 1
−2 1 1 2




18. Singular

20. Singular

22. 1
2


 0 2 −2

−1 −1 3
1 −1 1




24. 1
2


 1 1 −3

1 3 −5
−1 −3 7




Section 4.9.1

2. By induction, using Eq. 4.9.12.

4. The number of permutations of the integers 1
through n is n!

10. 6
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12. 0

14. 36

22. −2

24. 0

26. 50

28. −87

Section 4.9.2

2. −36

4. −36

6. −276

8. −276

10. 0

12. 2

14. 2

16. 1

Section 4.9.3

2. A+ =
[

3 −6
−1 2

]
, A is singular

4. A+ =
[

0 −2
0 1

]
, A is singular

6. A+ =


 0 2 −2

−1 −1 3
1 −1 1


 , A−1 = 1

2 A+

8. A+ =


 1 1 −3

1 3 −5
−1 −3 7


 , A is singular

10. x = 3, y = −3

12. x = 43
23 , y = 8

23

14. x = −2, y = −1/3, z = −1

Section 4.10

2. Linearly independent

4. The only real value is −1/2 < k < 0.

6. Not necessarily, for suppose x1 = x2.

8. −2[ −1 0 0 1 ] − [ 2 −1 1 1 ]

+ [ 0 −1 1 3 ] = [ 0 0 0 0 ]

10. [ 1 1 0 1 ] − 2[ 1 0 0 1 ]

+ [ 1 −1 0 1 ] = [ 0 0 0 0 ]

Section 4.11

8. x2 =




−1
0
1
0


 , x1 =




1
1
0
0


 , xg = α1x1 + α2x2

10. No free variables and therefore no basic solutions.
The general solution is xg = 0.

12. x1 =


 0

−1
1


 , xg = α1x1

14. x1 =


 0

−1
1


 , xg = α1x1

16. x1 =




1
−1

0
...

0




, x2 =




1
0

−1
...

0




,

. . . xn−1 =




1
0
0
...

−1




, xg =
n−1∑

1

αkxk

18. x1 =




u2

−u1

0
...

0




, x2 =




u3

0
−u1

...

0




,

. . . xn−1 =




un−1

0
0
...

−u1




, xg =
n−1∑

1

αkxk

20. x = 0
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Section 4.12

2. x = 1, y = z = 0

4. No solutions

6. x = −3, y = t = 0, z = 2

8. xg =




1
0
0
0


 + α1




−1
0
0

−1


 + α2




1
0
1
0


 + α3




−1
1
0
0




10. xg =




−2
0
2
0


 + α1




−3
0
2
1


 + α2




1
1
0
0




12. xg =


 1

0
0


 + α1


−1

2
3




Section 5.2

6. 0

8. 1

10. 0

12. 0

14. x2
1 + x2

2 + · · · + x2
n

16. 0

18. 2
√

xy

20. No. Let z = x.

22. Yes. 〈x, y + z〉 = 〈x, y〉 + 〈x, z〉
24. (uuT )(uuT ) = u(uT u)uT = ‖u‖2 uuT = uuT

26. 〈u, 
ai xi 〉 = 
ai 〈u, xi 〉 = 0

Section 5.3

2.


 1

1
1


 ,


 1

1
−2




4.


 1

0
0


 ,


 0

1
0


 ,


 0

0
1




6.


 1

0
0


 ,


 0

1
1


 ,


 0

1
−1




8.




√
1
2 0√
1
2 0

0 1




[√
2

√
2

0 1

]

10.




√
1
2

√
1
2 0

0 0 1√
1
2 −

√
1
2 0







√
2 0

√
2

0
√

2 0
0 0 1




12. Suppose 
ci qi = 0.

Then 0 = 〈
qj , 
ci qi

〉 = 
ci
〈
qj , qi

〉 = cj

16. Use the hint and the fact that AAT is k × k .

18. No. P1P2P1P2 = P1P1P2P2

20. u = 1/
√

n[1, 1, . . . , 1]

22. I

24.


 2 1 −1

0 1 1
0 0 2


 x =


 1

1
−2




Section 5.4

4.




n
∑

xi
∑

x2
i∑

xi
∑

x2
i

∑
x3

i∑
x2

i

∑
x3

i

∑
x4

i


 =




∑
yi∑

xi yi∑
x2

i yi




Section 5.5

2. λ2 − 4; λ = ±2

4. λ2 − 8λ − 9; λ = 9, λ = −1

6. λ2 − 4λ − 21; λ = 7, λ = −3

8. 1 − λ; λ = 1

10. (1 − λ)n; λ1 = λ2 · · · = λn = 1

12. (6 − λ)(λ − 8)(λ + 2); λ = 6, λ = 8, λ = −2

14. λ = 1
4 , λ = − 1

2 , λ = 1
6 , λ = 1

8 , λ = − 1
2

18. (1 − λ)3; λ = 1, 1, 1

20. (2 − λ)(4 − λ)(2 + λ); λ1 = −2, λ2 = 4, λ3 = 2

22. (1 − λ)(2 − λ)(−1 − λ)λ; λ1 = 0,

λ2 = −1, λ3 = 2, λ4 = 1

24. λ2 + aλ + b; λ1,2 = 1
2 (−a ± √

a2 − 4b

26. (cos θ − λ)2 − sin2 θ; λ1,2 = cos θ ± sin θ

28.
[

1
0

]
,

[
0
1

]
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30.
[

i
1

]
,

[−i
1

]
where i = √−1

32.
[

1
1

]
,

[−1
5

]

34.


 1

1
1


 ,


 1

−1
1


 ,


−2

1
0




36.


 1

0
1


 ,


−1

0
5


 ,


 0

1
0




38.




1
0
0
0


 ,




1
1
0
0


 ,




1
0
2
0


 ,




−1
−1

2
2




58.
[

0 1
−1 0

]

60.




0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0




62.


−λ 1 0

0 −λ 1
α β γ


 where

α = λ1λ2λ3, β = −λ1λ2 − λ1λ3 − λ2λ3,

γ = λ1 + λ2 + λ3

Section 5.6

2. 2; 0

Section 5.7

2. α1e2t
[

1
1

]
+ α2e−2t

[
1

−3

]

4. α1et
[−2

1

]
+ α2e4t

[
1
2

]

6. α1e2t


 1

1
0


 + α2et


 1

0
0


 + α3e3t


 1

1
1




12. −2e−t


 1

−1
1


 + et


 1

0
0


 + e−2t


 1

−2
1




14. −e−t


 1

−1
1


 + e−2t


 1

−2
1




16. i ′′
1 = C1 − C2

L1C1C2
i1 + 1

L1C2
i2,

i ′′
2 = 1

L2C2
i1 + 1

L2C2
i2

18. Ax = m2x

19. 120.7,−20.7;
[

0.816
0.577

] [
0.816

−0.577

]

22. −12,−2; (
√

5/5)

[−2
1

]
(
√

5/5)

[
1
2

]

26. y1(t) = 0.219 cos 1.73t + 1.78 cos 8.12t

y2(t) = 0.312(cos 1.73t − cos 8.12t)

Section 5.8

2.
et

2

[
t − 1

2

t + 1
2

]

4. −
[

1
1

]
− et

2

[
t − 1

2

t + 1
2

]

6.
[

1
0

]
+ et

[
2t − 1
2t + 1

]

8. et
[

1 − t
−t

]
+ e−t

[−1
0

]

16.
[ −1

− 2
3

]

18. − 1
2

[
sin t + cos t

cos t

]

20.
[

2 cos t − sin t
cos t + sin t

]
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Section 6.2

2. 23.17, 17.76◦; 10.62, 138.3◦

4. 11.18, 333.4◦; 11.18, 26.57◦

6. −10i + 14.14j + 10k; −0.5i + 0.707j + 0.5k

8. 6i + 3j − 8k

10. 3i + 3j − 4k

12. −4

14. 53.85

16. 0

18. 100i + 154j − 104k

20. 8

22. 107.3

28. 5.889

30. −3.25

32. −0.371i − 0.557j − 0.743k

34. −11.93

36. 26 N · m

38. −40i + 75j + 145k

40. 100 N · m, 0

Section 6.3

2. 2i + 4k

4. −30.7

6. 74.6

8. −210i + 600j

10. 0.00514 m/s; 0.0239 m/s2

12. −15.44◦C/s

Section 6.4

2. 2yi + 2xj

4. ex (sin 2yi + 2 cos 2yj)

6. r/r2

8. (−yi + xj)/(x2 + y2)

10. (2/
√

5)i + (1/
√

5)j

12. 0.970i − 0.243j

14. 0.174i + 0.696j − 0.696k

16. 3x + 4y = 25

18. y = 2

21. 5

22. −5/3

24. 0

26. 1

28. 0

30. � · v = 0. No. 1

32. 0

34. −j + 2k

36. −0.1353j

38. 7

40. k

42. 4

44. −5i + 10j − 38k

46. 10i + 4j + 6k

48. 14i − 9j + 8k

50. irrotational

52. irrotational, solenoidal

54. neither

56. neither

58. irrotational, solenoidal

68. (x3 + y3 + z3)/3 + C

70. ex sin y + C

72. x2z + y3/3 + C

Section 6.5

2. cos θ

4. sin φ sin θ

6. 0

8. cos φ

10. cos φ

16.

√
x2 + y2 + z2

x2 + y2
(−yi + xj)

22. (Ar + B/r) cos θ + C

Section 6.6

2. − 1
2

4. 32π

6. 256π

12. ρC(∂T/∂t) = k∇2T
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14. − 8
3

16. 2

18. 0

Section 7.1

4. an cos
nπ t

T
+ bn sin

nπ t

T

= 1

T

∫ T

−T
f (s)

[
cos

nπ

T
(s − t)

]
ds

6. f (t) = −1 is its own expansion.

Section 7.3.1

2. − xn

a
cos(ax) + nxn−1

a2
sin(ax) + · · ·

4.
xn

a
cosh(bx) − nxn−1

a2
sinh(bx)

+ n(n − 1)xn−2

b3
cosh bx + · · ·

6.
xn

a

(ax + b)α+1

(α + 1)
− nxn−1

a2

(ax + b)α+2

(α + 1)(α + 2)

+ n(n − 1)xn−2(ax + b)α+3

a3(α + 1)(α + 2)(α + 3)
− · · ·

Section 7.3.2

2.
π2

8
+ 4

∞∑
n=1

(−1)n

n2
cos(nt)

4. 2π −
∞∑

n=1

4(−1)n

n
sin

(n

2
t
)

6.
1

4
+

∞∑
n=1

[
1 − (−1)n

n2π2
cos(nπ t) − 1

nπ
sin(nπ t)

]

8.
10

3
+

∞∑
n=1

[−8[1 − 3(−1)n]

n2π2
cos

(n

2
π t

)

+ 16

n3π3
[1 − (−1)n] sin

(n

2
π t

)]

10.
4

π

∞∑
n=1

sin(2n − 1)t

2n − 1

12.
2

π
− 2

π

∞∑
n=2

n[(−1)n + 1]

n2 − 1
cos nt

Section 7.3.4

2. Odd: −8
∞∑

n=1

(−1)n

n
sin(nt)

Even: 2π + 8

π

∞∑
n=1

[(−1)n − 1] cos nt

n2

4. Odd: sin t Even:
2

π
+ 2

π

∞∑
n=1

cos(nt)

n2 − 1

6. Odd: − 4

π

∞∑
n=1

[
(−1)n

n
− 2

(−1)n − 1

n2π2

]
sin

nπ t

4

Section 7.3.5

2.
1

6
− 1

π2
cos(2π t) − 1

4π2
cos(4π t) − · · ·

+ 8

π3
sin(π t) + 8

27π3
sin(3π t)

+ 8

125π3
sin(5π t) + · · ·

Section 7.3.6

2.
π

2
+ 2

π

∞∑
n=1

(−1)n − 1

n2
cos nt

4.
1

2
+ 2

π

∞∑
n=1

sin(2n − 1)t

2n − 1

6. It is the odd extension of f (t) provided
f (0) = f (nπ) = 0.

Section 7.4

2. − 1
6 cos 2t

4. 1
21 cos 2t + 1

90 sin 4t

6. 1
58 cos 2t + 5

116 sin 2t
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Section 7.5.1

8. F(t) = 0 for −π < t < 0 and is t2/2 for
0 < t < π . Then, 

F(t) = π2/12 +
∞∑

n=1

(−1)n

n2
cos nt

+ −2

π(2n − 1)3
sin(2n − 1)t

10. −4π2

3
+ 8

∞∑
n=1

1

n2
cos

nt

2

Section 7.5.3

2. ecos t cos(sin t) = 1 +
∞∑

n=1

cos nt

n!

4. sin(cos t) cosh(sin t)

6.
1

a2 + 1

[
1

2
+

∞∑
1

a−n cos(nt)

]

Section 8.1

2. Parabolic, homogeneous, linear

4. Elliptic, non-homogeneous, linear

8. nonlinear, homogeneous

Section 8.3

2.
∂T

∂t
= k

∂2T

∂x2
+ φ/ρC

4.
∂T

∂t
= k

∂2T

∂x2
, 100x

8.
∂T

∂t
= k

1

r

∂

∂r

(
r
∂T

∂r

)

Section 8.5

2. 1
2 [cos(x − 100t) + cos(x + 100t)]

Section 8.6

2. (c1x + c2)(c3x + c4)

4. A = (c1 − c2)i, B = c1 + c2

6. (a) 0.1 sin
πx

2
cos

πat

2

8. 0.1, x = π/2, t = π/80, π/16, . . .

10. 0.2 sin
πx

4
cos 5π t

12. 0.334 at x = 2

14. 2k/π, 2k/π, 2k/3π

16.
∑

An sin nx sin 60 nt,

An = 2

3πn2

(
cos

nπ

4
− cos

3nπ

4

)

18. Yes. For n = 3.

Section 8.7

2.
∑

An sin
nπx

2
e−n2π2kt/4 + 50x

4. 200(1 + e−π2kt sin πx)

6.
∑

An sin
nπx

2
e−n2π2kt/4 + 50x, An = 200

nπ

8.
∑

An sin
nπx

2
e−n2π2kt/4,

An =
∫ 2

0
100(2x − x2) sin

nπx

2
dx

10. 78.1◦

12. 50◦

14. 52.5◦

16. 2812 s

18. ∞ 20.1964 s

22. 15.78 kW

24. 5024 W

26. 4700 W

32. 100 cos xe−kt

34. 100 sin
x

2
e−kt/4

36.
∑

An sin
2n − 1

2
xe−kt (2n−1)2/4

38. 41.2◦

40. 5.556(x − x2/2)

42. 11.11(x − x2/4) + 100

44.
∑

An sin
2n − 1

4
πxe−k(2n−1)2π2t/16 + g(x),

g(x) = 11.11(x − x2/4)

46.
100

eπ − e−π
sin πx(eπy − e−πy)
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48.
∑

An sin nπx(enπy − e−nπy)

50. 100 +
∑

An sin nπy(enπx − e−nπx )

Section 8.8

2. 50
∑

rn Pn(x)(2n + 1)

∫ 1

−1
x Pn(x) dx

Section 8.9

2.
∑

e−kµ2
n t An J0(µnr)

4.
∑

Ane−kµ2
n t J0(µnr), A1 = 200/3,

A2 = 1230
∫ 1

0
r2 J0(3.83r) dr

Section 9.2

6. δ + δ2

2
+ δ3

8
− δ5

128
+ · · ·

Section 9.4

12.
1

6h
[2 fi+3 − 9 fi+2 + 18 fi+1 − 11 fi ]

14.
1

4h3
[−7 fi−5 + 41 fi−4 − 98 fi−3

+ 118 fi−2 − 71 fi−1 + 17 fi ]

16. 0.0845

18. 0.0871

20. −0.405

22. −0.505

Section 9.5

2. (a) 73; (b) 72

4. (a) 1.4241 (b) 1.426

6. 10.04

Section 9.6

2. 0.29267

4. 0.29267

10. 0.995526

12. 0.96728

14. 0.55932

Section 9.7

2. 1.55

4. 1.46

6. 1.73

8. 0.394

10. 7.93

Section 9.8

2. 0.973

4. 2.57

6. 2.58

8. 2, 1.84, 1.44, 0.98, 0.66, 0.45

10. 2, 1.84, 1.36, 0.49, −1.3, −6.35

12. 0.38, 0.72

14. 0.38, 0.72

16. yi+1 = yi + h

12
(23ẏi − 16ẏi−1 + 5ẏi−2)

Section 9.9

2. 2.43, 3.04, 4.00

4. 0, 1.6, 2.94, 3.80, 4.04, 3.61

6. 0, 1.6, 2.94, 3.87, 4.26, 4.05

8. 0, 0.16, 0.23, 0.16, −0.015, −0.16

Section 9.12

2. 22 ks

4. 22 ks

6. 32 ks

8. 200, 125, 75, 25, 12.5, 12.5

10. 200, 162, 137, 112, 106, 106

12. 0, −0.1, 0, −0.2, −0.1, 0, 0

14. 0, −0.02, −0.04, −0.04, −0.02, 0

16. 0, −0.02, −0.04, −0.04, −0.02, 0

Section 10.2

2. 143.1◦, 2.498
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4. 216.9◦, 3.785

6. 25

8. 1.265

10. 25

12. −527 + 336i

14. −0.3641 + 1.671i , −1.265 − 1.151i ,

1.629 − 0.5202i

16. −2 + 11i , 2 − 11i

18.
√

2(1 + i),
√

2(−1 + i),
√

2(−1 − i),√
2(1 − i)

20. 3, −3

22. (x − 2)2 + y2 = 4

24. (x + 34/30)2 + y2 = 64/225

Section 10.3

2. 2eπ i

4. 2e3π i/2

6. 13e5.107i

8. 13e1.966i

12. −0.416 + 0.909i

14. 1

16. 0.26(1 − i)

18. 0.276 + 1.39i , −1.39 + 0.276i ,
−0.276 − 1.39i , 1.39 − 0.276i

20. 2 + 11i

22. −1.455 + 0.3431i

24. 1.324

26. 1.63 − 1.77i

28. 1.324

30. (π/2)i

32. 1.609 + 5.64i

34. 1 + (π/2)i

36. i

38. 9.807 − 7.958i

40. 0.2739 + 0.5837i

42. π/2 ± 1.317i

44. 1.099 + π i

46. π ± 1.317i

50. −1.964 − 0.1734i

Section 10.4

2. 1, −1

4. 2(x − 1) + 2yi

6. ex cos y + iex sin y

10. θ + C

12. x2 − y2 + 2xyi

Section 10.5

2. x = a cos t, y = b sin t 0 ≤ t ≤ 2π

4. −2

6. 16
3

8. 0

10. 8
3 i,− 16

3 + 8i

12. − 8
3 i

14. Yes

16. No

18. Yes

20. Yes

Section 10.6

2. 0

4. 0

6. 0

8. 0

10. 0

12. 2π i

Section 10.7

2. 2πei

4. (2π/5)i

6. −2π i

8. π(1 + i)

10. 0

12. π(1 + i)

14. 2π i

16. −5.287i

18. (π/3)i

Section 10.8

2. 1 − z + z2 − z3 + · · ·
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4. −1 + 2z − 2z2 + 2z3 − · · ·

6. z + z3

3!
+ z5

5!
+ · · ·

8. −z − (z − 1)2 − (z − 1)3 − · · · , R = 1

10. −1

9

[
4 + z + (z + 1)2

3
+ (z + 1)3

9
+ · · ·

]
,

R = 3

12. −1 − i

4

[
1 + 1 − i

4
(z + 2i) − i

8
(z + 2i)2

− 1 + i

32
(z + 2i)3 + · · ·

]
, R = 2

√
2

14. −1 + z + z3 − z4 − z6 + z7 + · · ·

16. −1

4
+ 3

16
z − 13

64
z2 + 51

256
z3 + · · ·

18. e2
(

1 − z + z2

2!
− z3

3!
+ · · ·

)

20. z2 − z6

3!
+ z10

5!
+ · · ·

22. 1 + z − z3

3
+ z4

12
+ · · ·

24. z + z2 + z3

3
− z4

6
+ · · ·

26.
z3

3
− z7

42
+ z11

1320
+ · · ·

28. z − z5

10
+ z9

216
+ · · ·

30. e

[
z + (z − 1)2

2!
+ (z − 1)3

3!
+ · · ·

]

32. 1 − 1

2

(
z − π

2

)2 + 1

24

(
z − π

2

)4 + · · ·

34. −1/2 + z/4 − 3z2/8 + · · ·

Section 10.9

2. − 1

2z
− 1

4
− z

8
− z2

16
− · · · , R = 2

4.
1

e

(
1

z
+ 1 + z

2
+ z2

6
+ · · ·

)
, R = ∞

6. 1 + 1

z
+ 1

2z2
+ 1

6z3
+ · · · , |z| > 0

8.
1

2

[
1 + z + 1

2
+ (z + 1)2

4
+ · · ·

]
,

0 ≤ |z + 1| < 2

10. −1

z
− 1 − z − z2 − · · · , 0 < |z| < 1

12. − i

2

[
1

z − i
+ i

2
− z − i

4
− (z − i)2

8
i + · · ·

]
,

0 < |z − i | < 2

1

(z − i)2
− 2i

(z − i)3
− 4

(z − i)4

+ 8

(z − i)5
+ · · · , 2 < |z − i |

14.
1

(z + 1)2
+ 3

(z + 1)3
+ 9

(z + 1)4
+ · · · ,

3 < |z + 1|

− 1

3(z + 1)
− 1

9
− z + 1

27

− (z + 1)2

81
− · · · , 0 < |z + 1| < 3

Section 10.10

2. 1
2 at −2i , 1

2 at 2i

4. e at 1

6. 2 at −1

8. 0

10. 2π(1 − i)

12. 0

14. −i

16. 0

18. 4π i

20. 2.43

22. 0

24. 4.45

26. π/4

28. 1.81

30. π/6

32. π/e

34. 0.773

36. 0.072
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Section 11.2

2.
∫ ∞

0
(1/t)2 dt does not converge,

so no finite energy.

4.
∫ π/2

0
tan2 t dt does not converge,

so no finite energy.

9. f (t) = 3φ(t) + ψ(t) − 10ψ1,0(t) − 5ψ1,1(t)

Section 11.3

5. One example is the function that equals 1 on the
interval (0, 8] and zero elsewhere.

7. The second basis property is satisfied, but the
third and fourth are not.
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