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PREFACE

We are used to thinking about our material world in static terms. Consider the glass
of water on your desk, the blue-colored sheets on your bed, the wooden door to your
bathroom—these are essentially unchanging and permanent objects, right? But come
back tomorrow and the level of water in that glass might be just a little bit lower.
Come back in two years and your blue sheets might be fading to grey. Come back in
one hundred years and your wooden door may have crumbled to dust.

As these examples illustrate, while it is tempting to think of our material world
in static terms, the truth is that tiny changes are constantly taking place. If we could
examine that glass of water at the atomic scale, we would see the water molecules
churning and vibrating at a fantastic rate, with billions of the most energetic molecules
escaping from the liquid and evaporating into the air of the room every second! At
the atomic scale, we would see that the blue-colored sheets on your bed are con-
stantly bombarded by high-energy photons (light), causing irreversible damage to the
blue dye molecules coating the cotton fibers. From the moment the tree was chopped
down to make your wooden door, it began its slow but inevitable decay back to the
atmospheric carbon dioxide and water from which it was made. When we purposely
process or manufacture materials, the changes we affect on them can be even more
stunning. Consider the miraculous conversion (in a kiln) of soft clay into a strong and
resilient ceramic pot or the conversion of common beach sand (via many, many steps)
to a high-purity single-crystal silicon wafer.

Some changes are fast while others are much slower. In cold and rainy Seattle,
it might take three weeks for a glass of water to evaporate, while in the desert of
Arizona, it might only take a day. If your blue sheets are exposed to intense direct
sunlight, they might photo bleach in a matter of months rather than years. If you
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xiv PREFACE

burned that wooden door, you could convert it back into carbon dioxide and water in
a few minutes instead of waiting 100 years for microbes to do the same work.

Understanding these changes is the domain of kinetics. At its core, kinetics deals
with rates; in other words, kinetics tells us how fast something takes place—for
example, how fast water can evaporate from a glass. In this textbook, you will uncover
the secrets to understanding the kinetic processes described above as well as many
others. This textbook is designed to provide you with an accessible and (hopefully)
interesting introduction to the main concepts and principles underlying kinetic pro-
cesses in materials systems. A key point here is that this textbook focuses on materials
kinetics. While there are a large number of books on chemical kinetics, there are
far fewer that focus on materials kinetics and fewer still that provide an accessible,
introductory-level treatment of this subject. This textbook aims to equip you with that
knowledge.

Following this mandate, the first part of this textbook, “Kinetic Principles,” is
devoted to a basic treatment of fundamental and universally important kinetic con-
cepts such as diffusion and reaction rate theory. Illustrated diagrams, examples, text
boxes, and homework questions are all designed to impart a unified, intuitive under-
standing of these basic kinetic concepts. Armed with these tools, the second part of
the textbook, “Applications of Materials Kinetics,” shows you how to apply them to
qualitatively and quantitatively model common kinetic processes relevant to materials
science and engineering. Since materials scientists and engineers are chiefly con-
cerned with the solid state, the text focuses on gas–solid, liquid–solid, and solid–solid
kinetic processes. A wide variety of exciting real-world examples are used to illustrate
the application of kinetic principles to materials systems, including silicon processing
and integrated circuit fabrication, gas transport through membranes, thin-film depo-
sition, sintering, oxidation, carbon-14 dating, nucleation and growth, steel degassing,
and kinetic aspects of energy conversion devices such as fuel cells and batteries.
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LEARNING OBJECTIVES

This textbook is not intended to be a comprehensive treatise on the kinetics of materi-
als. Instead, it is intended to be an accessible and (hopefully) interesting introduction
to the main concepts and principles that underpin kinetic processes in materials sys-
tems. The following list details some of the basic concepts and skills that you will
acquire by studying this textbook. For students taking a university course in materials
kinetics using this textbook, this list of learning objectives can perhaps be a helpful
place to begin exam preparations.

After studying this textbook, you should be able to:

1. Define kinetics and explain the difference between kinetics and thermo-
dynamics.

2. Give examples of both homogeneous and heterogeneous kinetic processes.

3. Convert quantities from one set of units to another quickly and accurately. For
example, you should be able to define flux and be able to correctly convert
between various units for flux [e.g., mol/(cm2 ⋅ s) vs. A/(cm2 ⋅ s) vs. L/(cm2 ⋅ s)
vs. g/(cm2 ⋅ s) vs. atoms/(cm2 ⋅ s)].

4. Define mobility and write the general phenomenological equation for trans-
port. Give examples of how this generalized equation can be applied to electri-
cal/thermal conduction, diffusion, and convection, respectively.

5. Explain (in terms an intelligent high-school student could understand) the
atomistic mechanisms of reactions. Define reaction order and give examples
of first- and second-order reactions. Develop the general activated rate
equation (Arrhenius relationship) that describes how reaction rate varies with
temperature.

xvii



xviii LEARNING OBJECTIVES

6. Apply kinetic reaction rate models to predict the progress of simple first- and
second-order reactions (gas–gas reactions, radioactive decay).

7. Apply kinetic reaction rate equations to predict how reaction rates change with
temperature, pressure, and concentration.

8. Compare and contrast gas, liquid, and solid-state diffusion processes. Predict
and model (quantitatively) diffusion processes in all three phases of matter.
Provide reasonable ballpark estimates for the approximate rates of diffusion in
all three phases of matter.

9. Explain (in terms an intelligent high-school student could understand) the
atomistic mechanisms of diffusion in gas and solid phases.

10. Discuss how diffusion in the gas phase depends on pressure and temperature.

11. Develop the general activated rate equation (Arrhenius relationship) that
describes how solid-state diffusivity varies with temperature.

12. Give examples of kinetic processes that are reaction rate limited and processes
that are diffusion limited. Write equations to quantitatively model simple cou-
pled reaction/diffusion systems such as the passive oxidation of silicon.

13. Explain the difference between equilibrium, steady-state, and time-dependent
(non-steady-state) processes. Provide concrete examples of each.

14. Explain the atomic mechanisms of solid-state nucleation and growth. Define
the critical nucleation size and the critical nucleation barrier and sketch
surface-mediated growth sites such as steps, kinks, and holes.

15. Discuss the kinetic and thermodynamic factors governing liquid–solid and
solid–solid phase transformations. Explain and predict nucleation, growth,
and time–temperature–transformation (TTT) processes in solid-state systems
both qualitatively (through diagrams) and quantitatively (through equations).

16. Describe various types of solidification processes and apply information from
phase diagrams to predict the type of microstructures that can arise from com-
mon isomorphous, eutectic, and peritectic solidification events.

17. Define surface energy and explain why surfaces have greater energy than the
bulk. Provide examples of kinetic processes that are driven by surface energy
considerations.

18. Describe (qualitatively) and mathematically model (quantitatively) morpho-
logical evolution processes in solid-state materials such as coarsening, grain
growth, and sintering.



PART I

KINETIC PRINCIPLES





CHAPTER 1

INTRODUCTION TO MATERIALS
KINETICS

You are about to embark on a journey into the world of materials kinetics. This chapter
will act as a road map for your travels, setting the stage for the rest of the book. In
broad terms, this chapter will acquaint you with an overview of kinetics, providing
answers to some basic questions: What is kinetics? Why is it important? How can
we classify the main types of kinetic processes? From this starting point, the subse-
quent chapters will lead you onward in your journey as you acquire a fundamental
understanding of materials kinetics principles.

1.1 WHAT IS KINETICS?

Kinetics deals with rates; in other words, kinetics tells us “how fast” reactions take
place, how rapidly phase transformations occur, or how quickly atoms move from
one location to another. Additionally, kinetics describes how these rates are impacted
by important system variables such as pressure, temperature, or concentration. Many
kinetic phenomena can be described by basic concepts that broadly fall into one of
two domains: reaction processes and transport processes. Reaction kinetics describes
the rates at which reactions occur, while transport kinetics describes the rates at which
matter, charge, or energy is physically transported from one place to another. In many
kinetic processes, both reaction and transport are important. For example, consider
the kinetic processes involved in the oxidation (rusting) of a metal, as illustrated in
Figure 1.1. As the figure illustrates, even this seemingly simple process involves a
surprisingly large number of more basic steps, and these steps can be quite different
depending on exactly how the oxide grows! Don’t worry about trying to understand

3



4 INTRODUCTION TO MATERIALS KINETICS

FIGURE 1.1 Oxidation of a metal (M) involves a number of steps and these steps may be
different depending on whether the oxide grows from (a) the oxide/metal interface or (b) the
air/oxide interface. For case (a), the steps might include (1) gas-phase transport of oxygen to
the metal surface, (2) absorption of the oxygen gas on the surface of the material, (3a) splitting
of the absorbed oxygen molecule into oxygen atoms and incorporation of these oxygen atoms
into the oxide, (4a) transport (via diffusion) of the oxygen atoms through the oxide to the
metal/oxide interface, and (5a) reaction of the oxygen atoms at the oxide/metal interface to
create additional oxide. For case (b), steps such as 1 and 2 might be the same, but others
might be different, such as: (3b) dissolution of metal atoms into the oxide at the metal/oxide
interface, (4b) transport (via diffusion) of metal atoms through the oxide to the oxide/air inter-
face, and (5b) splitting of the absorbed oxygen molecule into oxygen atoms and reaction with
metal atoms on the surface to create additional oxide. All of these steps can be understood and
modeled using the basic kinetic principles that are discussed in this textbook.

the kinetics of this oxidation process just yet. By the time you have finished this
textbook, however, you will be able to understand and model all of the kinetic mech-
anisms illustrated in Figure 1.1.

1.2 KINETICS VERSUS THERMODYNAMICS

Although this textbook might be your first exposure to kinetics, you have probably
already taken at least a course or two on thermodynamics. If you thought you could
forget all that thermodynamics knowledge now that you have moved on to kinetics,
think again! Kinetics and thermodynamics are closely coupled; understanding and
modeling the kinetics of a process first requires a good understanding of the ther-
modynamic forces that are driving it. Don’t worry if your thermodynamics skills
are a little bit rusty. The next chapter in this textbook is designed to provide you
with a brief review of the most important thermodynamic principles needed to tackle
kinetics.
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How can we understand the difference between thermodynamics and kinetics?
Here is a simple way to think about the two subjects: Thermodynamics predicts what
should happen, kinetics predicts how fast it will happen.

Figure 1.2 schematically illustrates the relationship between thermodynamics
and kinetics. Thermodynamics deals with energy states and driving forces—in
other words, thermodynamics can tell us the most energetically favorable state for
a system under a given set of conditions (i.e., at a given temperature, pressure, and
composition). For systems that are not in equilibrium (i.e., not in their lowest energy
state for a given set of conditions), thermodynamics can tell us how far away from
equilibrium they are and thus the magnitude of the driving forces that are acting on
them in an effort to bring them to equilibrium. We can therefore use thermodynamics
to predict how a system might want to change and also quantify the size of the
driving forces acting on the system to help bring about those changes. While this
thermodynamic information is extremely helpful in predicting what should happen
in a system, it is insufficient for predicting if it actually will happen or how fast it
will happen. In order to answer those questions, we need kinetics. Kinetics deals
with the speed of changes—in other words, kinetics tells us how fast a system can
change from one state to another state.

The relative thermodynamic stability of graphite versus diamond provides a clas-
sic illustration of the interplay between thermodynamics and kinetics. Graphite and
diamond are both polymorphs (same composition but different phases) of carbon. At
room temperature and pressure, thermodynamics tells us that diamond is less sta-
ble than graphite—in other words, there is an energetic driving force favoring the
transformation of diamond into graphite. So, are diamonds forever? Thermodynamics

FIGURE 1.2 Schematic illustration of the interplay between thermodynamics and kinet-
ics. Thermodynamics can be used to quantify departures from equilibrium and hence the
driving forces acting on a system to return it to equilibrium. Kinetics can be used to
determine the pathway and the speed at which a system returns to equilibrium. Many dif-
ferent scenarios are possible, from extremely fast equilibration to rates so slow that they are
essentially zero.
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suggests not! Fortunately for all who enjoy the sparkle of a diamond ring, however,
kinetics is here to save the day. Although there is a definite thermodynamic driving
force favoring the conversion of diamond into graphite, the kinetic barriers are so
high that the rate of this transformation is essentially zero at room temperature and
pressure. If you really wanted to get rid of a diamond ring, you would have to throw
it into an extremely hot furnace (I suppose Mt. Doom might also work) in order to
provide enough energy to allow kinetics to do its work. At such high temperatures,
however, the diamond would likely transform (burn) into CO2 rather than convert to
graphite—unless you heated it in an oxygen-free environment. I would not suggest
testing out this particular kinetic experiment, however!

1.3 HOMOGENEOUS VERSUS HETEROGENEOUS KINETICS

This textbook introduces you to the discipline of kinetics. More specifically, however,
this textbook is intended to introduce you to materials kinetics. Why do we make a
specific distinction regarding materials kinetics and what does this mean?

The field of kinetics largely evolved from chemistry and specifically from the study
of chemical reactions (most often in the gas phase). The detailed kinetics knowl-
edge acquired from the study of chemical reactions has grown and matured over the
years into the well-known discipline of chemical kinetics. Today there are a num-
ber of fantastic textbooks [1–4] that cover this topic and almost every chemistry and
chemical engineering department in the world teaches courses on this subject. Com-
pared to chemical kinetics, however, the field of materials kinetics is much less well
defined and much less well established. Trying to overview or even define the field of
materials kinetics is a daunting task. In addition, there are very few textbooks (espe-
cially introductory textbooks) on the subject, although courses on materials kinetics
are typically taught at almost every materials science and engineering department in
the world. Clearly, an understanding of materials kinetics is crucial for all materials
engineers and scientists, but just what is it?

There are two main aspects that distinguish materials kinetics: (1) the involvement
of at least one solid phase and (2) the (frequent) presence of heterogeneity.

The first point is easy to understand. As materials scientists and engineers, we
concern ourselves with the solid state. Thus, the kinetic phenomena that we encounter
typically also involve the solid state or incorporate at least one solid phase. This focus
on the solid state is a significant distinction from the chemical kinetics training that
most chemists and chemical engineers receive, which typically focuses on gas-phase
or liquid-phase reactions and processes.

The second point essentially arises directly from the first point. Because materials
kinetics focuses on the solid state, the systems we encounter almost always involve
heterogeneity. What is meant by heterogeneity? The simplest definition of a hetero-
geneous kinetic process is one in which more than one phase is involved. Thus, any
kinetic process involving both a solid and a liquid or a solid and a gas is necessarily
heterogeneous. The metal oxidation process discussed in Figure 1.1, for example, is
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a heterogeneous kinetic process that involves three phases: the solid metal phase, the
solid oxide phase, and the gas (air) phase.

In the solid state, heterogeneity is generally manifested by the presence of bound-
aries or interfaces between distinct regions or phases in a system. These boundaries
or interfaces often play an important, if not dominating, role in the kinetic behavior of
the system. In contrast to single-phase gas or liquid systems, heterogeneity is typically
present and important even for most single-phase solid-state systems as well. Con-
sider, for example, the coarsening and grain growth that occurs during the annealing
of a polycrystalline material. Understanding the properties of these grain boundaries
and how quickly they can propagate through the material during the annealing process
is the special domain of materials kinetics.

Essentially all of the quirks and imperfections that make solid-state systems
interesting—point defects, dislocations, grain boundaries, inclusions, voids,
surfaces—fall within the scope of materials kinetics. This focus on solid-state pro-
cesses and heterogeneity—what many would call microstructural development—is
what makes materials kinetics unique. In order to tackle this topic, we will need to
borrow a lot of concepts from chemical reaction kinetics, which we will cover in
Chapter 3 of this textbook, but we will also learn many other concepts that are not
usually covered in traditional chemical-based treatments of kinetics. In particular, we
will spend a lot of time on solid-state diffusion and transport (Chapter 4). Compared
to the gas and liquid phases, transport of matter in the solid phase tends to be slower
and more difficult; thus, atomic transport processes such as diffusion become much
more important in determining kinetic behavior in solid-state systems.

1.4 REACTION VERSUS DIFFUSION

As discussed above, one distinguishing feature of the solid state is that the transport
of matter (e.g., atoms or molecules) tends to be much slower and more difficult than
in the liquid or gas state. As a result, diffusion plays a central role in many solid-state
kinetic processes. As we will learn in Chapter 4, diffusion processes can be described
using a set of relatively straightforward mathematical equations known as Fick’s first
and second laws. These equations can be applied to determine how fast a diffusion
process occurs. A key quantity that appears in these equations is a parameter known
as the diffusion coefficient, or diffusivity, D. This parameter quantifies the relative ease
at which atoms or molecules can be transported via diffusion in a material. It changes
depending on both the nature of the atoms or molecules that are moving (diffusing) as
well as the nature of the material through which they are moving. Generally speaking,
the higher the value of D, the faster a species can diffuse through a material.

Table 1.1 provides typical values for atomic diffusivities in the solid, liquid, and
gas states. As you can see, solid-state diffusivities tend to be many orders of magni-
tude slower than liquid- or gas-phase diffusivities. Thus, solid-state diffusion often
tends to be a rate-limiting step in many solid-state kinetic processes.
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TABLE 1.1 Typical Atomic Diffusivities
for Solid, Liquid, and Gas States

State Diffusivity (cm2∕s)

Solid
(
<

1

2
Tm

)
10−10–10−30

Solid (near Tm) 10−6–10−10

Liquid 10−4–10−5

Gas 10−1

Note: Tm = melting temperature.

What Is a Rate-Limiting Step?

Kinetic processes often involve a number of individual steps that must be accom-
plished in series. Consider, for example, the metal oxidation process illustrated
in Figure 1.1, which involves at least five steps. The overall rate of such pro-
cesses is typically limited by the slowest step. This step is often described as the
“rate-limiting” step. The rate-limiting step can also be thought of as the process
“bottleneck.” In a process where one particular step is the bottleneck, speeding up
the other steps will not help the situation—we can only increase the overall rate if
we speed up the rate-limiting step.

In addition to (or instead of) series steps, certain kinetic processes can have
parallel pathways—for example, in the metal oxidation process illustrated in
Figure 1.1, the diffusion of oxygen atoms through the oxide layer from the
air/oxide interface to the oxide/metal interface (step 4a) can occur in parallel
with the diffusion of metal atoms through the oxide layer from the oxide/metal
interface to the air/oxide interface (step 4b). In such instances, the fastest step
controls the overall kinetic behavior of the system. Thus, for metal oxidation,
when oxygen diffusion through the oxide layer (4a) is faster than metal diffusion
through the oxide layer (4b), kinetic pathway (a) dominates overall, and the
oxide grows from the metal/oxide interface. In contrast, when metal diffusion
through the oxide layer is faster than oxygen diffusion through the oxide
layer, kinetic pathway (b) dominates overall, and the oxide grows from the
air/oxide interface. Some metal oxidation processes (such as the oxidation of Si)
proceed via pathway (a), while others (such as the oxidation of Ag) proceed via
pathway (b).

In addition to diffusivity D, another kinetic parameter that we will frequently
encounter is the reaction rate constant k. The reaction rate constant is used to quantify
the relative ease of a chemical reaction or, in some cases, a localized reconfiguration
or charge transfer process. As with diffusion processes, there are a number of math-
ematical expressions (rate laws) available to describe the speed of various reaction
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processes. Both homogeneous reactions as well as heterogeneous reactions can be
quantified using rate constants, and we will see some examples of both in Chapter 3.
Just as a higher value of D indicates a higher relative ease of diffusion, a higher value
of k indicates a higher relative ease of reaction.

Because of the heterogeneous nature of solid-state systems, when reactions occur
in these systems, they typically give rise to or proceed at interfaces (i.e., at surfaces or
phase boundaries). For example, the metal oxidation process illustrated in Figure 1.1
involves several steps occurring at the air/oxide and oxide/metal interfaces which can
be described using reaction kinetics (e.g., steps 2, 3a/b, 5a/b).

Because the overall rate of a kinetic process is determined by its rate-limiting
step, a common theme that is frequently observed in solid-state kinetic systems is the
competition between reaction and diffusion. Here, again, the metal oxidation process
illustrated in Figure 1.1 provides an instructive example. During the initial stages
of oxidation, when the oxide layer is very thin, it is quite common for the overall
oxidation rate to be rate limited by one of the reaction processes. However, as oxi-
dation proceeds and the oxide layer grows thicker, diffusion becomes rate limiting
because the diffusing atoms face an increasingly thicker oxide through which they
must diffuse.

1.5 CLASSIFYING KINETIC PROCESSES

Perhaps one of the most straightforward ways to classify kinetic processes is in terms
of the phases of matter that are involved. Using this approach, kinetic processes can
be grouped into six broad categories:

1. Gas–gas

2. Gas–liquid

3. Liquid–liquid

4. Gas–solid

5. Liquid–solid

6. Solid–solid

Figure 1.3 provides examples of each of these six categories. While there is
certainly overlap in the interest and treatment of these categories between fields, the
first three categories are a common focus of chemists and chemical engineers while
materials scientists and engineers focus predominantly on the last three categories.
In this textbook, you will have an opportunity to tackle examples from all six
categories, although we will focus most particularly on the last three: gas–solid,
liquid–solid, and solid–solid. Via the applications-oriented chapters in the second
half of this textbook (Chapters 5–7) you will have the opportunity to encounter
a broad range of interesting real-world examples of gas–solid, liquid–solid, and
solid–solid kinetic processes.
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FIGURE 1.3 Examples of kinetic processes classified by types of phases involved.
(a) Gas–gas: reaction equilibrium between hydrogen gas, iodine gas, and hydrogen iodide
gas. (b) Gas–liquid: evaporation of liquid water from a glass. (c) Liquid–Liquid: gradual sep-
aration of an oil–water mixture. (d) Gas–solid: chemical vapor deposition of a thin Si film.
(e) Liquid–solid: corrosion of Cu metal in seawater. (f) Solid–solid: precipitation of CuAl2
particles from a copper–aluminum alloy during a heat treatment process.

1.6 BRIEF WORD ABOUT UNITS

Unit conversions invariably present challenges for students and professors alike. Like
other technical disciplines, the field of kinetics presents many opportunities for unit
confusion—in fact, it has been this author’s experience over the years that unit issues
result in more lost points on exams than any other single issue! In particular, instances
where pressure or energy units appear in an expression are among the most common
sources for unit errors. This is because non-SI units (such as atm, torr, cal, and eV) are
commonly used for pressures and energies. Students are therefore highly encouraged
to carefully read through Appendix A for a review on units. A number of exercises
are also provided at the end of this chapter to provide unit conversion practice.
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1.7 CHAPTER SUMMARY

The purpose of this chapter was to set the stage for learning about kinetics and to give
a broad overview of the field of materials kinetics. The main points introduced in this
chapter include:

• Thermodynamics predicts whether a process should happen, while kinetics pre-
dicts how fast it will happen. In the simplest terms, kinetics deals with rates.
Additionally, kinetics describes how these rates are impacted by important sys-
tem variables such as pressure, temperature, or concentration.

• When thermodynamics predicts that a process is favorable, this does not nec-
essarily mean that it will happen. There are many thermodynamically favorable
processes that do not occur because the kinetic barriers are too high. A “yes”
from thermodynamics really means “maybe.”

• Many kinetic phenomena can be described by basic concepts that broadly fall
into one of two domains: reaction processes and transport processes. Reaction
kinetics describes the rates at which reactions occur while transport kinetics
describes the rates at which matter (e.g., atoms or molecules), or charge, or
energy is physically transported from one place to another.

• An overall kinetic process can often be broken down into a set of more detailed
individual kinetic steps, some of which must occur in series, while others can
take place in parallel. The overall rate for a process is determined by the inter-
action between all of these individual steps and is often governed by one step
that is much slower than the others—this is known as the rate-limiting step.

• A homogeneous kinetic process is one which occurs in a single phase, while
a heterogeneous kinetic process involves several (two or more) distinct
regions or phases. Almost all solid-state kinetic processes are heterogeneous
because almost all solid-state systems manifest heterogeneity. Therefore,
the field of materials kinetics mainly confronts heterogeneous kinetic
processes.

• Compared to the gas and liquid phase, transport of matter in the solid phase
tends to be much slower and more difficult—thus atomic transport processes
such as diffusion become much more important in determining kinetic behavior
in solid-state systems.

• Kinetic processes can be classified according to the phases of matter involved.
Using this scheme, there are six main classes of kinetic processes: gas–gas,
gas–liquid, liquid–liquid, gas–solid, liquid–solid, and solid–solid. The field of
materials kinetics is chiefly concerned with kinetic processes involving at least
one solid phase.



12 INTRODUCTION TO MATERIALS KINETICS

1.8 CHAPTER EXERCISES

Review Questions

Problem 1.1. Define kinetics. Contrast kinetics and thermodynamics.

Problem 1.2. The transformation of diamond to graphite is an example of a ther-
modynamically favorable but kinetically frustrated process. A kinetically frustrated
process is one that will not occur over a reasonable scientifically observable time
period. Come up with another example of a process that is thermodynamically favor-
able but kinetically frustrated.

Problem 1.3. (a) Give the definition of a homogeneous kinetic process. (b) Give an
example of a homogeneous kinetic process. Provide diagrams, text, and equations to
fully support your example in sufficient detail.

Problem 1.4. (a) Give the definition of a heterogeneous kinetic process. (b) Give an
example of a heterogeneous kinetic process. Provide diagrams, text, and equations to
fully support your example in sufficient detail.

Problem 1.5. Create a figure similar to Figure 1.3 but with different (i.e., new)
examples of each of the six main types of kinetic processes.

Problem 1.6. Give an example of a kinetic process involving at least two series steps.
Provide diagrams, text, and equations to fully support your example in sufficient
detail.

Problem 1.7. Give an example of a kinetic process involving at least two parallel
steps. Provide diagrams, text, and equations to fully support your example in suffi-
cient detail.

Calculation Questions

Problem 1.8. The SI value of the gas constant R is R = 8.314 J∕(mol ⋅ K). Convert
R to the following units and show all your work in each case:

(a) cal∕(mol ⋅ K)
(b) L ⋅ atm∕(mol ⋅ K)
(c) cm3 ⋅ atm∕(mol ⋅ K)

Problem 1.9. In Chapter 4, we will develop a formula based on the kinetic theory of
gases to predict the self-diffusivity of a single-species ideal gas as

Dgas =
√

1
6M

(RT)3∕2

𝜋d2PNA
(1.1)

A simplified version of this formula, using non-SI units, is often given as

Dgas = 1.61 × 10−3

√
1
M

(T)3∕2

d2P
(1.2)
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where T is in kelvin, P is in atm, d is in Å, and M is in grams per mole. Derive how
the prefactor of 1.61 × 10−3 is obtained. Clearly show all your work.

Problem 1.10.SIf the energy required to move a unit electron charge across a poten-
tial difference of one volt is defined as an electron-volt, denoted eV, calculate:

(a) An electron-volt in joules

(b) The energy in joules to move 1 mol of electrons across a potential of 1 V

(c) The same as in (b) but in units of kilocalories per mole

(d) Convert from the value of R in J/(mol ⋅ K) to the value of k in eV/K.

(e) If thermal energy is given as kT, calculate the thermal energy in electron-volts at
300 K and 1000 ∘C.



CHAPTER 2

A SHORT DETOUR INTO
THERMODYNAMICS

Thermodynamics is the study of energetics—in other words, the study of energy
contents and energy flows in and between systems. By applying thermodynamic
principles, we can (among other things), determine whether a system is at equilib-
rium, that is, in its lowest (most stable) energy state. Perhaps of greater relevance
to our study of kinetics, however, thermodynamics can tell us when a system is
not in equilibrium, and it allows us to calculate the size of energetic deviations
from equilibrium. Displacements from equilibrium induce energetic driving forces
that act on a system to try to return it to equilibrium. The sizes of these energetic
driving forces become key inputs into many kinetic equations, and thus we will
need appropriate thermodynamic tools to calculate these quantities. Although some
previous exposure to thermodynamics will be assumed, in this chapter we will
revisit a number of the most important thermodynamic principles and review how to
calculate some of the most important thermodynamic quantities that we will need as
we continue in our development of kinetics.

2.1 DYNAMIC EQUILIBRIUM

While equilibrium indicates a stable state, it is crucial to understand that equilibrium
does not necessarily imply a completely static and unchanging state. We will often
encounter the concept of dynamic equilibrium in our discussions of kinetics. In a
dynamic equilibrium, backward and forward kinetic processes of equal but opposite
rates occur. For example, a glass of water can be in dynamic equilibrium with 100%
relative humidity air above it. In such a situation, the overall level of water in the

14
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glass will not change, even after weeks or months of waiting. However, if we could
examine this system at the atomistic scale, we would see that water molecules are
constantly escaping the liquid phase for the gas phase, while an equal and opposite
number (stochastically averaged over time and space) of water molecules are moving
from the gas phase to the liquid phase. Thus, even in this equilibrium and seem-
ingly static system, kinetic processes (evaporation and condensation) are constantly
occurring.

From the discussion above, it is clear that equilibrium in most systems should be
thought of as a dynamic balancing act. We will return to this concept of balance
frequently in this textbook. Making even small changes to a system at equilibrium
can upset this balance. If we were to heat the glass of water in the example discussed
above, this would increase the rate of evaporation from the glass while decreasing the
rate of condensation, thereby pushing the system out of equilibrium. In most materials
systems, there are three main levers that we can use to push systems into or out of
equilibrium and hence induce change:

1. Changes in temperature

2. Changes in pressure

3. Changes in composition

In the sections that follow, we will review the main thermodynamic tools that we
can use to calculate the equilibrium conditions for a system and also to determine
the size of the thermodynamic deviations that occur when a system is subjected to
changes in temperature, pressure, and/or composition that force it away from equi-
librium.

2.2 ENTHALPY (H ), ENTROPY (S), AND GIBBS FREE ENERGY (G)

The three most important thermodynamic quantities that we will encounter again and
again throughout this textbook are enthalpy (H), entropy (S), and (Gibbs) free energy
(G). Usually, we will be concerned with quantifying changes in these thermodynamic
quantities (i.e., ΔH, ΔS, ΔG) during a process or reaction rather than the absolute
values of H, S, or G. It is important to remember that changes in thermodynamic func-
tions are always calculated as final state − initial state. Thus, ΔG = Gfinal − Ginitial.

While you have hopefully already been acquainted with enthalpy, entropy, and
Gibbs free energy before, here is a brief review of these three important thermody-
namic quantities:

Enthalpy H can be considered to be a measure of the heat value of a system. For a
reversible thermodynamic process at constant pressure, ΔH represents the heat
that is released (ifΔH is negative) or the heat that is absorbed (ifΔH is positive)
during the process. An exothermic process is one where ΔH is negative (heat
is released), while an endothermic process is one where ΔH is positive (heat is
absorbed).
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Entropy S is a measure of the disorder of a system or more precisely, a measure
of the number of potential microscopic configurations available to a system.
The absolute entropy (S) for any system at any temperature above absolute zero
must be positive. Furthermore, the total net change in entropy (ΔS) experienced
by the combination of a system and its surrounding during any thermodynamic
process must always be greater than or equal to zero. (This is the second law
of thermodynamics). However, a system itself can experience either a negative
or positive entropy change (ΔS) during a thermodynamic process. For a system
to experience a negative entropy change during a thermodynamic process, its
surroundings must experience at least an equal if not greater positive change
in entropy. When a system manifests a negative change in entropy, this can
be interpreted as the system moving toward a more ordered state (e.g., a gas
condensing to a liquid), while a positive change in entropy can be interpreted
as a move toward a more disordered state.

Gibbs free energy G represents the maximum amount of energy that is free or avail-
able in a system to do work or to affect change. The Gibbs free energy is perhaps
the most crucial of the three thermodynamic quantities we have discussed. It is
the key for determining the spontaneity or energetic favorability of a thermo-
dynamic process. If ΔG is zero, then this indicates that there is no free energy
available to affect change in a system. Worse yet, if ΔG is greater than zero,
then additional energy must be supplied to a system in order to make the process
happen. Therefore, the sign of ΔG indicates whether or not a thermodynamic
process is spontaneous (favorable):

• ΔG > 0: nonspontaneous (energetically unfavorable)

• ΔG = 0: equilibrium

• ΔG < 0: spontaneous (energetically favorable)

A spontaneous process is energetically favorable; it is a “downhill” process.
Although spontaneous processes are energetically favorable, spontaneity is no
guarantee that a process will occur, nor does it indicate how fast a process will
occur. Many spontaneous processes do not occur because they are impeded by
kinetic barriers. Thus, our calculation of ΔG only provides us the first step in
our quest to understand the rate of processes. Once we have determined ΔG
for a process, we will then need to apply kinetic laws to determine how quickly
(if at all) the process will happen!

2.2.1 Relationship between 𝚫G, 𝚫H, and 𝚫S

For a closed thermodynamic system at constant temperature and pressure, the follow-
ing equation can be used to relate changes experienced by the three thermodynamic
quantities discussed above during a thermodynamic process:

ΔG = ΔH − T ΔS (2.1)
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You will find this equation extremely useful to help you understand whether a pro-
cess is thermodynamically favorable or not and to gain insight into how a process’s
favorability is affected by temperature.

ΔG will necessarily be negative, and hence a process will be thermodynamically
favorable if ΔH is negative and ΔS is positive. Exothermic processes (i.e., ΔH < 0)
tend to be thermodynamically favorable, unless they are also associated with large
negative entropy changes (i.e., ΔS < 0), in which case the magnitudes of ΔH and
T ΔS must be compared to determine thermodynamic favorability.

For processes whereΔS is positive, increasing the temperature will tend to increase
the thermodynamic favorability. In other words, increasing temperature favors pro-
cesses where system disorder (entropy) is increased. Thus, both melting (going from
the ordered solid state to the less ordered liquid state) and evaporation (going from the
liquid state to the even less ordered gas state) are increasingly favored at higher tem-
peratures. This is a principle that we are intuitively familiar with from our personal
experiences; you can apply it to many other situations as well.

When ΔH is negative and ΔS is also negative, thermodynamic favorability again
depends on the temperature, but in this case, lower temperatures lead to greater favor-
ability. This is the situation for condensation or solidification reactions, which release
heat (and hence are exothermic) but lead to an increase in system order (and hence
have negative ΔS). As we already understand intuitively, condensation and solidifi-
cation are favored as we decrease the temperature!

If ΔH is positive and ΔS is negative, then ΔG will necessarily be positive,
and hence the process will be thermodynamically unfavorable regardless of the
temperature.

These concepts are summarized in Table 2.1.

TABLE 2.1 Relationship between ΔH,ΔS, and ΔG

ΔH ΔS ΔG

− + − Favorable
− − ? Less favorable with increasing T
+ − + Unfavorable
+ + ? More favorable with increasing T

Energy, Entropy, and Heat Death of Universe

Energy is conserved. This is the first law of thermodynamics. Consider the chain
of energy conversions involved in the movement of a car. The energy contained in
the car’s fuel is converted by the engine to thermal energy (heat) as well as kinetic
energy to propel the car forward. The kinetic energy moving the car forward is
itself subsequently converted into additional heat energy as the car’s body pushes
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through the air and the car’s tires overcome the frictional resistance of the road.
Finally, the car’s brakes dissipate any remaining kinetic energy to further heat
as the car comes to a stop. In terms of the energy of the universe—nothing has
changed in this process—there is just as much energy in the universe after the
car has been driven as before it was driven. What has changed, however, is the
availability of that energy. What was before highly concentrated energy stored
in the form of chemical bonds in the car’s fuel has now been spread out into an
essentially unrecoverable form as a slight increase in the thermal energy of the car,
the road, and the air.

If you track the flows and conversions of energy associated with essentially
any process, the tendency is that some, if not all, of the energy involved is eventu-
ally dissipated as heat. The more technical way of stating this is that ΔG < 0 for
any spontaneous process, while ΔG∕T = −ΔSuniverse. Thus the entropy of the uni-
verse always increases during any spontaneous process (essentially every change
that occurs). The early scientists who developed thermodynamics recognized the
profound implications of this conclusion when taken to its logical extreme: Even-
tually, all the energy of the universe must be dissipated into a dilute, uniform
thermal background, at which point nothing more can ever change. This concept
is known as the “heat death” of the universe.

2.3 MOLAR QUANTITIES

Typical notation distinguishes between intensive and extensive variables. Intensive
quantities such as temperature and pressure do not scale with the system size; exten-
sive quantities such as internal energy and entropy do scale with system size. For
example, if the size of a box of gas molecules is doubled and the number of molecules
in the box doubles, then the internal energy and entropy double while the temper-
ature and pressure are constant. Frequently, certain conventions are used to denote
intensive versus extensive properties, such as using lowercase for intensive variables
(e.g., p for pressure) and uppercase for extensive variables (e.g., S for entropy).
Unfortunately, such nomenclature is not standardized and is frequently inconsistent.
For example, temperature is almost always represented with an uppercase T ,
although it is an intensive quantity.

Many extensive properties can be normalized by the size of the system to give
specific properties, that is, properties per unit mass, or per mole, or per volume.
For example, consider the extensive Gibbs free-energy change (ΔGrxn) involved in
a chemical reaction, which can be normalized to an intensive quantity (ΔĜrxn) via

ΔĜrxn =
ΔGrxn

n
(2.2)

where n is the number of moles of substance involved in the reaction and ΔĜrxn is the
molar Gibbs free-energy change for the reaction (kJ∕mol). An occasional practice is
to denote specific properties with a particular convention, such as the “hat” (ˆ) symbol
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used above or by underlining them (ΔG). Again, however, such nomenclature is not
standardized and is frequently inconsistent within or between texts.

In this text, no attempt will be made to use nomenclature to distinguish between
extensive and intensive properties or between an extensive property and its mass
or mole-normalized specific counterpart. You should be aware, then, that quantities
appearing in certain equations may represent an extensive property or its specific
(e.g., per-mole) counterpart depending on the situation. For example, ΔG could have
units of kilojoules or kilojoules per mole depending on the context. In general, this
should not cause confusion, as the context and units involved will almost always be
spelled out explicitly.

Extensive thermodynamic quantities such as ΔH, ΔS, and ΔG are almost always
normalized per mole of substance involved to produce intensive, molar-based values
for these quantities. This is because it is often useful to quantify energy changes due
to a reaction on a per-mole basis. Thus, when you encounter these quantities in this
textbook, they almost always refer to the specific (per-mole) value.

Calculating Extensive versus Specific Thermodynamic Quantities

Remember, the Δ symbol denotes a change during a thermodynamic process (such
as a reaction), calculated as final state − initial state. Therefore, a negative energy
change means energy is released during a process; a negative volume change
means the volume decreases during a process. For example, the combustion of
H2 and O2 to produce water,

H2 +
1
2

O2 ⇌ H2O (2.3)

has ΔGrxn = −237 kJ∕mol H2 at room temperature and pressure. For every 1 mol
H2 gas consumed (or every 1

2
mol O2 gas consumed or 1 mol H2O produced), the

Gibbs free-energy change is −237 kJ. If 5 mol of O2 gas is reacted, the extensive
Gibbs free-energy change (ΔGrxn) would be

5 mol O2 ×
(

1 mol H2

1∕2 mol O2

)
×
(

−237 kJ
1 mol H2

)
= −2370 kJ (2.4)

Of course the specific (per-mole) Gibbs free energy of this reaction is still
ΔGrxn = −237 kJ∕mol H2. In both cases, a quick inspection of the units makes
it clear whether the ΔG involved is an extensive or specific (molar) quantity.

2.4 STANDARD STATE

Because most thermodynamic quantities depend on temperature and pressure, it is
convenient to reference everything to a standard set of conditions. There are two types
of standard conditions:
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The thermodynamic standard state describes the standard set of conditions under
which reference values of thermodynamic quantities are typically given.
Standard-state conditions specify that all reactant and product species are
present in their pure, most stable forms at unit activity. For gases, this implies
1 atm partial pressure. For liquids, this implies a pure liquid under 1 atm
hydrostatic pressure. For a solute, it implies an ideal solution at 1 M concen-
tration (1 mol∕L). For solids, it implies a pure solid under 1 atm pressure.
Standard-state conditions are designated by a degree symbol. For example,
ΔH∘ represents an enthalpy change under standard-state thermodynamic
conditions. Importantly, there is no “standard temperature” in the definition
of thermodynamic standard-state conditions. However, since most tables list
standard-state thermodynamic quantities at 25 ∘C (298.15 K), this temperature
is usually implied. At temperatures other than 25 ∘C, it is sometimes necessary
to apply temperature corrections to ΔH∘ and ΔS∘ values obtained at 25 ∘C,
although it is frequently approximated that these values change only slightly
with temperature, and hence this issue can be ignored. For temperatures far
from 25 ∘C, however, this approximation should not be made. Furthermore,
it should be noted that ΔG∘ changes much more strongly with temperature
(as shown in Equation 2.1) and therefore ΔG∘ values should always be adjusted
by temperature using at least the linear dependence predicted by Equation 2.1.

Standard temperature and pressure, or STP, is the standard condition most typi-
cally associated with gas law calculations. STP conditions are taken as room
temperature (298.15 K) and atmospheric pressure. (Standard-state pressure is
actually defined as 1 bar = 100 kPa. Atmospheric pressure is taken as 1 atm =
101.325 kPa. These slight differences are usually ignored.)

2.5 CALCULATING THERMODYNAMIC QUANTITIES

When a chemical reaction occurs, the corresponding changes in the system’s thermo-
dynamic functions can be calculated by computing the differences in the thermody-
namic values between the reactants and products. For a general reaction

aA + bB → mM + nN (2.5)

where A and B are reactants, M and N are products, and a, b, m, n represent the
number of moles of A, B, M, and N, respectively, ΔH∘

rxn may be calculated as

ΔH∘
rxn = [m ΔH∘

f,M + n ΔH∘
f,N] − [a ΔH∘

f,A + b ΔH∘
f,B] (2.6)

where the molar standard-state formation enthalpy ΔH∘
f,i tells how much enthalpy is

required to form 1 mol of chemical species i under standard-state conditions from the
reference species.

Thus, the molar enthalpy of reaction (ΔH∘
rxn) is computed from the difference

between the molar weighted reactant and product formation enthalpies. Note that
enthalpy changes (like all energy changes) are computed in the form of final state −
initial state, or in other words, products − reactants.
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An expression analogous to Equation 2.6 may be written for the molar
standard-state entropy of a reaction, ΔS∘rxn, using standard molar entropy values
S∘ for the species taking part in the reaction. See Example 2.6 for details. The
standard-state Gibbs free energy of reaction can likewise be calculated from the
Gibbs free energies of the constituent species, or alternatively, once ΔH∘

rxn and ΔS∘rxn
are obtained, ΔG∘

rxn can be obtained from the relationship ΔG = ΔH − TΔS.

Example 2.1

Question: Calculate ΔH∘
rxn, ΔS∘rxn, and ΔG∘

rxn (at T = 298 K) for the decompo-
sition of hydrogen iodide:

2HI(g) → H2(g) + I2(g) (2.7)

Solution: By consulting a thermodynamic database, we can obtain the ΔH∘
f and

S∘ values for HI, H2, and I2 at T = 298 K as follows:

Chemical Species ΔH∘
f,i (kJ∕mol) S∘i [J∕(mol ⋅ K)]

HI(g) 26.5 206.6
H2(g) — 130.7
I2(g) 62.43 260.7

Following Equation 2.6, the ΔH∘
rxn for HI decomposition is calculated as

ΔH∘
rxn = [ΔH∘

f,H2
+ ΔH∘

f,I2
] − [2ΔH∘

f,HI] (2.8)

= [0 + 62.43] − [2 ⋅ 26.5]

= 9.43 kJ∕mol

Similarly, ΔS∘rxn is calculated as

ΔS∘rxn = [S∘H2
+ S∘I2 ] − [2S∘HI] (2.9)

= [130.7 + 260.7] − [2 ⋅ 206.6]

= −21.8 J∕(mol ⋅ K)

Finally, ΔG∘
rxn may be calculated from the relationship ΔG = ΔH − TΔS as

ΔG∘
rxn = ΔH∘

rxn − TΔS∘rxn (2.10)

= 9.43 kJ∕mol − (298 K)[−21.8 J∕(mol ⋅ K)]
( 1 kJ

1000 J

)

= 15.93 kJ∕mol
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2.6 REACTION QUOTIENT Q AND EQUILIBRIUM CONSTANT K

Most thermodynamic quantities are given at the standard state. As previously dis-
cussed, the standard state assumes unit activity for all species participating in the
process.However,weoftenwant toknowtheΔG foraprocessundernon-standard-state
conditions. For example, in the hydrogen/iodine/hydrogen iodide system, maybe we
would like to calculate ΔG for specific amounts (partial pressures) of the three gases
involved in the reaction. In order to deal with non-standard-state conditions, it is nec-
essary to introduce the concept of chemical potential. Chemical potential measures
how the Gibbs free energy of a system changes as the chemistry of the system changes.
Each chemical species in a system is assigned a chemical potential. Formally

𝜇
𝛼

i =
(
𝜕G
𝜕ni

)
T ,P,nj≠i

(2.11)

where 𝜇
𝛼

i is the chemical potential of species i in phase 𝛼 and (𝜕G∕𝜕ni)T ,P,nj≠i
expresses how much the Gibbs free energy of the system changes for an infinitesimal
increase in the quantity of species i (while temperature, pressure, and the quantities
of all other species in the system are held constant). When we change the amounts
(concentrations) of chemical species in a system, we are changing the free energy
of the system. This change in free energy in turn changes the equilibrium point for
the system. Understanding chemical potential is therefore key to understanding how
changes in concentration can tip a system toward (or away from) equilibrium.

Chemical potential is related to concentration through activity a:

𝜇i = 𝜇
∘
i + RT ln ai (2.12)

where 𝜇
∘
i is the reference chemical potential of species i at standard-state conditions

and ai is the activity of species i. The activity of a species depends on its chemical
nature and is described in more detail in the dialog box below.

The activity of a species depends on its chemical nature. Here are a
few simple guidelines to help you calculate the activity for various
species depending on their state:

For an ideal gas, ai = pi∕p∘, where pi is the partial pressure of the gas and p∘ is
the standard-state pressure (1 atm). For example, the activity of oxygen in air at
1 atm is approximately 0.21. The activity of oxygen in air pressurized to 2 atm
would be 0.42. Since we accept p∘ = 1 atm, we are often lazy and write ai = pi,
recognizing that pi is a unitless gas partial pressure.

For a nonideal gas, ai = 𝛾i(pi∕p∘), where 𝛾i is an activity coefficient describing the
departure from ideality (0 < 𝛾i < 1).
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For a dilute (ideal) solution, ai = ci∕c∘, where ci is the molar concentration of
the species and c∘ is the standard-state concentration (1 M = 1 mol∕L). For
example, the activity of Na+ ions in 0.1 M NaCl is 0.10.

For nonideal solutions, ai = 𝛾i(ci∕c∘). Again, we use 𝛾i to describe departures from
ideality (0 < 𝛾i < 1).

For pure components, ai = 1. For example, the activity of gold in a chunk of pure
gold is 1. The activity of platinum in a platinum electrode is 1. The activity of
liquid water is usually taken as 1.

Combining Equations 2.11 and 2.12, it is possible to calculate changes in the Gibbs
free energy for a system of i chemical species by

dG =
∑

i

𝜇i dni =
∑

i

(𝜇∘i + RT ln ai) dni (2.13)

Consider an arbitrary chemical reaction placed on a molar basis for species A in
the form

1A + bB ⇌ mM + nN (2.14)

where A and B are reactants, M and N are products, and 1, b, m, and n represent the
number of moles of A, B, M, and N, respectively. On a molar basis for species A,
ΔG for this reaction may be calculated from the chemical potentials of the various
species participating in the reaction (assuming a single phase):

ΔG = (m𝜇
∘
M + n𝜇∘N) − (𝜇∘A + b𝜇∘B) + RT ln

am
Man

N

a1
Aab

B

(2.15)

Recognizing that the lumped standard-state chemical potential terms represent the
standard-state molar free-energy change for the reaction, ΔG∘, the equation can be
simplified to a final form:

ΔG = ΔG∘ + RT ln
am

Man
N

a1
Aab

B

(2.16)

ΔG = ΔG∘ + RT ln Q (2.17)

This equation, called the van’t Hoff isotherm, tells how the Gibbs free energy of a
system changes as a function of the activities (read concentrations or gas pressures)
of the reactant and product species.
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Example 2.2

Question: Calculate ΔGrxn for the hydrogen iodide decomposition reaction
under the following conditions:

1. PHI = 10.0 atm, PI2 = 1.5 atm, PH2
= 2.0 atm, T = 298 K

2. PHI = 1.0 atm, PI2 = 2.0 atm, PH2
= 1.0 atm, T = 400 K

Solution: From Example 2.1 we know ΔG∘
rxn = 15.93 kJ∕mol at T = 298 K.

Using Equation 2.16 to adjust for pressure and Equation 2.1 to adjust for
temperature, we can therefore determine ΔGrxn under any arbitrary set of
non-standard-state conditions.

For the conditions given in 1, only the pressure adjustment is needed, since
the temperature given (298 K) is the same as was used to calculate ΔG∘

rxn in
Example 2.1. Applying the conditions given in 1 to Equation 2.16 yields

ΔGrxn = ΔG∘
rxn + RT ln

aI2(g)aH2(g)

a2
HI(g)

(2.18)

= ΔG∘
rxn + RT ln

(PI2∕P∘I2 )(PH2
∕P∘H2

)

(PHI∕P∘HI)2

= 15,930 J∕mol + [8.314 J∕(mol ⋅ K) ⋅ 298 K]

× ln
(1.5∕1.0)(2.0∕1.0)

(10.0∕1.0)2

= 7240 J∕mol = 7.2 kJ∕mol

For the second set of conditions, the temperature given in 2 (400 K) is dif-
ferent from the temperature that was used to calculate ΔG∘

rxn in Example 2.1
(298 K). Thus, we must first determine ΔG∘

rxn at this new temperature. This
would best be done by consulting a thermodynamic database to get values for
ΔH∘

f and S∘ for HI(g), I2(g), and H2(g) at T = 400 K and then using those val-
ues to calculate ΔG∘

rxn at 400 K in a manner analogous to what was done in
Example 2.1 at 298 K. Alternatively, values for ΔH∘

f and S∘ at 400 K could be
estimated from the values at 298 K if we knew the heat capacities of HI(g),
I2(g), and H2(g). However, we can also make the assumption (reasonable for
modest changes in temperature) that these heat capacity effects are negligible.
In this case, we can approximate ΔG∘

rxn at 400 K with Equation 2.1using the
previously calculated values for ΔH∘

rxn and ΔS∘rxn at T = 298 K:

ΔG∘
rxn = ΔH∘

rxn − TΔS∘rxn (2.19)

ΔG∘
rxn|T=400K ≈ ΔH∘

rxn|T=298K − (400 K)ΔS∘rxn|T=298K

≈ 9430 J∕mol − [400 K ⋅ −21.8 J∕(mol ⋅ K)]

≈ 18150 J∕mol = 18.2 kJ∕mol
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Applying this estimated value for ΔG∘
rxn at 400 K together with the other

conditions given in 2 to Equation 2.16 then yields

ΔGrxn = ΔG∘
rxn + RT ln

aI2(g)aH2(g)

a2
HI(g)

(2.20)

= ΔG∘
rxn + RT ln

(PI2∕P∘I2 )(PH2
∕P∘H2

)

(PHI∕P∘HI)2

= 18150 J∕mol + [8.314 J∕(mol ⋅ K) ⋅ 400 K] ln
(2.0∕1.0)(1.0∕1.0)

(1.0∕1.0)2

= 20450 J∕mol = 20 kJ∕mol

Difference between 𝚫G and 𝚫G∘

It is crucial to recognize the distinction between ΔG and ΔG∘. At a given tem-
perature, a reaction can have only ONE value for the standard-state free-energy
change ΔG∘. This corresponds to the free-energy change for an idealized reaction
process that never really happens—the complete conversion of pure reactants at
unit activity into pure products at unit activity under standard-state conditions.
In contrast, a reaction can have an infinite number of values for ΔG, which
describes the free energy for an actual system containing any arbitrary mixture
of reactant and product species under any arbitrary temperature and pressure
conditions.

The term that appears in the natural logarithm of Equation 2.16, which is a ratio of
product and reactant activities raised to their appropriate stochiometric coefficients,
has a special name. It is known as the reaction quotient Q. As we discussed in the
section on dynamic equilibrium, it is important to think of all processes, includ-
ing chemical reactions, as dynamic processes that can occur in both the forward
and backward directions. Thus, you should think of a chemical reaction as being
like a balance between the reactant and product species—and the reaction quotient
is essentially a quantitative indicator of that balance. The reaction quotient indi-
cates whether the current balance of a reaction under any arbitrary set of condi-
tions has been skewed more toward the reactant or product side as compared to the
standard-state conditions. At the standard-state condition, all of the reactants and
product species are at unit activity, and thus the reaction quotient is 1. In this case,
ΔG = ΔG∘, which makes sense, since ΔG∘ is the free energy under standard-state
conditions.

Recall that for a system at equilibrium, ΔG = 0. This is the definition of thermody-
namic equilibrium. Applying this definition to Equation 2.16 enables us to determine
the precise ratio of reactant and product activities that lead to a perfect balance (equi-
librium) between the reactant and product states in a chemical system. This specific
value of the reaction quotient has a special name. It is known as the equilibrium
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TABLE 2.2 Relationship between Q, K, and Reaction Equilibria

Q vs. K Reaction Balance

Q < K Reaction will proceed in forward direction (reactants → products)
Q = K Reaction is at equilibrium, forward and backward rates equal
Q > K Reaction will proceed in backward direction (reactants ← products)

constant K: At equilibrium ΔG = 0; thus 0 = ΔG∘ + RT ln K, and therefore

K = e−ΔG∘∕(RT) (2.21)

When the reaction quotient Q differs from the equilibrium constant K, this indi-
cates a system that is not in equilibrium. For example, given a system that is initially at
equilibrium (Q = K,ΔG = 0), if we increase the product activities relative to the reac-
tant activities, the reaction quotient increases (Q > K). In this case, ΔG > 0. In other
words, increasing the product activities has decreased the favorability of the forward
reaction (or in the other sense, increased the favorability of the backward reaction).
In order for the system to return to equilibrium, some of those excess product species
must be converted back into reactant species. A mechanical analogy is helpful here:
You can think of the increase in the product activities (and hence Q) as an increase in
the chemical pressure on the right-hand side of the reaction equation, which forces
the reaction balance back to the left. On the other extreme, an increase in the reac-
tant species activities would decrease the reaction quotient (Q < K). In this case, the
forward-reaction direction becomes favored (ΔG < 0), and in order to restore equi-
librium, some of those excess reactant species must be converted into product species.
Using the mechanical analogy again, by increasing the reactant species activities, we
have increased the chemical pressure on the left-hand side of the reaction equation,
which forces the reaction to the right.

Thus, we can use the reaction quotient (Q) and the equilibrium constant (K) as
guides to help us understand reaction equilibria. For reactions that are not at equi-
librium, we can compare Q versus K to determine the direction a reaction should
proceed in order to restore its equilibrium. The key points of our discussion of Q and
K are summarized in Table 2.2.

Le Châtelier’s Principle

The analogy we developed in thinking about how chemical activities can act like
pressures to force a reaction to shift its equilibrium to the right or to the left is an
example of Le Châtelier’s principle:

If a chemical system at equilibrium experiences a change in concentration, tem-
perature, volume, or partial pressure, then the equilibrium shifts to counteract the
imposed change and a new equilibrium is established.
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This principle is quite general and quite versatile. It is worth keeping in mind
to help you predict shifts in the direction of thermodynamic processes when var-
ious disturbances such as changes in temperature, pressure, or concentration are
applied.

Example 2.3

Question: A reaction vessel is filled with the following gas partial pressures
at a temperature of 298 K: PHI = 20.0 atm, PI2 = 3.0 atm, and PH2

= 4.0 atm.
The gases are then allowed to react (via the hydrogen iodide decomposition
reaction) until equilibrium is established. Calculate the resulting equilibrium
partial pressures for all three gases.

Solution: From Equation 2.21 we can calculate the equilibrium constant K, for
the hydrogen iodide decomposition reaction at T = 298 K:

K = exp

(
−ΔG∘

RT

)
(2.22)

K|T=298 = exp

(
−

15930 J∕mol

8.314 J∕(mol ⋅ K) ⋅ 298 K

)
= 1.6 × 10−3

We can then calculate Q based on the initial gas partial pressures in the reaction
vessel prior to equilibration and compare this to K in order to determine the
direction of the reaction:

Q =
ainit
I2(g)

ainit
H2(g)

(ainit
HI(g))

2
=

(Pinit
I2

∕P∘I2 )(P
init
H2

∕P∘H2
)

(Pinit
HI ∕P∘HI)2

=
(3.0∕1.0)(4.0∕1.0)

(20.0∕1.0)2
= 3.0 × 10−2

(2.23)
In this example, Q > K, so the hydrogen iodide decomposition reaction will
actually proceed backward to the direction written in Equation 2.7! In other
words, the I2 and H2 gases will react to form additional HI in this scenario.
This result may not be obvious based on how much larger the initial HI gas
pressure is compared to the initial I2 and H2 gas pressures. This illustrates why it
is important to evaluate both Q and K to determine the direction of the reaction.
In the case of the hydrogen iodide decomposition reaction, ΔG∘ is large and
positive, and therefore the reverse reaction is strongly favored.

Now that we have determined the direction that the reaction will proceed
in moving toward equilibrium, we can use this fact coupled with the reaction
stoichiometry, the initial partial pressures of the gas species, and the definition
of K to determine the equilibrium partial pressure values. In order to do this,
we use an unknown variable, x, to express the amount of I2 gas that reacts in
order to reach equilibrium. Since equal amounts of I2 and H2 are consumed by
the reaction, x also expresses the amount of H2 gas that reacts in order to reach
equilibrium. During this process, the amount of HI gas that is formed is 2x.
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Therefore the equilibrium pressures of I2, H2, and HI can be given by

Peq
I2

= Pinit
I2

− x (2.24)

Peq
H2

= Pinit
H2

− x (2.25)

Peq
HI = Pinit

HI + 2x (2.26)

Applying these relationships to the definition of the equilibrium constant
(evaluated in terms of pressures) gives

K =
(Peq

I2
∕P∘I2 )(P

eq
H2
∕P∘H2

)
(

Peq
HI

P∘HI

)2
=

[(Pinit
I2

− x)∕P∘I2 ][(P
init
H2

− x)∕P∘H2
]

[(Pinit
HI + 2x)∕P∘HI]2

(2.27)

=
(Pinit

I2
− x)(Pinit

H2
− x)

(Pinit
HI + 2x)2

(P∘I2 = P∘H2
= P∘HI = 1) (2.28)

This can then be written in terms of a quadratic formula for x:

(4K − 1)x2 + (4KPinit
HI + Pinit

I2
+ Pinit

H2
)x + [K(Pinit

HI )
2 − Pinit

I2
Pinit
H2

] = 0 (2.29)

For the specific initial HI, I2, and H2 gas partial pressures given in this
example, this quadratic equation has two real roots for x:

x = 2.39 atm x = 4.79 atm

Only the first root is relevant, however, since the second value of x would lead to
a negative equilibrium partial pressure of I2 and H2, which is impossible. Thus,
taking the first root as the valid solution, we can finally provide the equilibrium
pressures for the three gases:

Peq
I2

= Pinit
I2

− x = 3.0 atm − 2.39 atm = 0.6 atm

Peq
H2

= Pinit
H2

− x = 4.0 atm − 2.39 atm = 1.6 atm

Peq
HI = Pinit

HI + 2x = 20.0 atm + 2 ⋅ 2.39 atm = 24.8 atm

2.7 TEMPERATURE DEPENDENCE OF K

In addition to being affected by reactant and product activities, the equilibrium bal-
ance of a chemical process can also be affected by temperature. This effect shows
up in the temperature dependence of K. This temperature effect can best be seen by
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combining Equations 2.1 and 2.21:

K = exp

(
−(ΔH∘ − TΔS∘)

RT

)

= exp

(
−ΔH∘

RT

)
exp

(
ΔS∘

R

)
(2.30)

As indicated by Equation 2.30, the sign of ΔH∘ determines the effect that tem-
perature has on the equilibrium constant for a reaction. For an exothermic reaction
(ΔH∘

< 0), decreasing the temperature will increase K. This will cause the equilib-
rium balance to shift to the right, in favor of the products. As with our previous
discussion on activity effects, this temperature effect is another excellent example
of Le Châtelier’s principle. Recall that heat is released in an exothermic process,
that is,

reactants ⇌ products + heat (2.31)

When an exothermic process is viewed in this way, it can be seen that a decrease
in temperature acts as a disturbing force which will cause the equilibrium to shift
to the right (in favor of the reactants) so as to produce heat and thereby minimize
the effect of the disturbance (the temperature decrease). In contrast, an increase in
temperature would cause the equilibrium to shift left: Heat would be consumed and K
would decrease. For an endothermic reaction, the exact opposite temperature behavior
would be observed.

If both ΔH∘ and K are known at one temperature T1, then the value of K can be
estimated at a new temperature T2 by setting up a ratio:

K1 = exp

(
−(ΔH∘ − T1 ΔS∘)

RT1

)

K2 = exp

(
−(ΔH∘ − T2 ΔS∘)

RT2

)
(2.32)

K1

K2
=

exp
(
−ΔH∘

RT1

)

exp
(
−ΔH∘

RT2

) = exp

[
−ΔH∘

R

(
1
T1

− 1
T2

)]

Please note that in developing this equation it is assumed that ΔH∘ and ΔS∘ do not
change with temperature (this is the same assumption we made in Example 2.2). As
long as there are no intermediate phase changes and the two temperatures T1 and T2
are not too far apart (within say a few hundred degrees), this is generally a reasonable
approximation.
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Example 2.4

Question: For the hydrogen iodide decomposition reaction, you have deter-
mined that K = 1.6 × 10−3 at T = 298 K while K = 8.0 × 10−3 at T = 516 K.
Based on this information, estimate ΔH∘ and ΔS∘ for this reaction under the
assumption that these quantities do not change with temperature.

Solution: Using Equation 2.32, we can first calculate ΔH∘:

K1

K2
= exp

[
−ΔH∘

R

(
1
T1

− 1
T2

)]

ΔH∘ = −R

(
T1T2

T2 − T1

)
ln

(
K1

K2

)

= −8.314 J∕(mol ⋅ K)
( 298 K ⋅ 516 K

516 K − 298 K

)
ln

(
1.6 × 10−3

8.0 × 10−3

)

= 9473 J∕mol = 9.5 kJ∕mol

We can then use either K1 (and T1) or K2 (and T2) to determine ΔS∘. We should
get the same answer either way (this is a good check to make sure you have done
things correctly!):

K1 = exp

(
−(ΔH∘ − T1ΔS∘)

RT1

)

ΔS∘ = ΔH∘
T1

+ R ln K1

ΔS∘ =
9473 J∕mol

298 K
+ [8.314 J∕(mol ⋅ K) ln(1.6 × 10−3)]

= −21.73 J∕(mol ⋅ K) = −22 J∕(mol ⋅ K)

K2 = exp

(
−(ΔH∘ − T2 ΔS∘)

RT2

)

ΔS∘ = ΔH∘
T2

+ R ln K2

=
9473 J∕mol

516 K
+ [8.314 J∕(mol ⋅ K) ln(8.0 × 10−3)]

= −21.78 J∕(mol ⋅ K) = −22 J∕(mol ⋅ K)

Reassuringly, these values for ΔH∘ andΔS∘ are very close to what we calculated
in Example 2.1 using the thermodynamic tables.
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2.8 THERMODYNAMICS OF PHASE TRANSFORMATIONS

A phase transformation is a special type of reaction that involves a change in the struc-
ture (i.e., atomic arrangement, electronic/magnetic configuration) of a system and
sometimes (but not always) a change in its composition as well. As a result of these
changes, the new phase will posses physical properties (e.g., density, compressibil-
ity, magnetic induction) that are distinct from the previous phase. Well-known phase
changes include solid-to-liquid (melting) and liquid-to-vapor (vaporization) and their
corresponding reverse processes (solidification and condensation). Solid–solid phase
transformations are also quite common; the ability to understand and regulate such
processes is often central to materials engineering.

Consider a simple phase change involving the melting of solid ice to liquid water:

H2O(s) ⇌ H2O(l) (2.33)

The thermodynamic favorability of this phase change is determined by ΔG for the
transformation process, which is itself dependent on the temperature, pressure, and
composition (purity) of the phases. As with any other thermodynamic process, ΔG
for a phase transformation can be determined from the G values for the final versus
initial states:

ΔG(s→l) = GH2O(l) − GH2O(s) (2.34)

where

GH2O(l) = HH2O(l) − TSH2O(l)

GH2O(s) = HH2O(s) − TSH2O(s)

As shown in the plot of G versus T in Figure 2.1, the Gibbs free energy for both
the solid and liquid phases can be represented as straight lines (assuming H and S are
independent of temperature) with slopes determined by SH2O(s) and SH2O(l), respec-
tively. Because liquid water has greater entropy than solid ice (the less rigidly bonded
liquid molecules have a greater number of accessible microstates), the liquid-phase
curve has a more negative slope. Thus, at higher temperatures the liquid phase is more
stable (lower free energy), while at lower temperatures the solid phase is more stable.
The two curves intersect at T = 0 ∘C. At this temperature, both the solid and liquid
phases can coexist in thermodynamic equilibrium.

When examining the kinetics of a phase transformation, a typical first step is to cal-
culate the thermodynamic driving force for the process. Consider again the water/ice
example above. At equilibrium (T = Teq = 0 ∘C), the thermodynamic driving force
for transformation is zero. However, if the temperature is displaced from this equilib-
rium temperature, the balance will be upset and a thermodynamic driving force for
phase transformation will ensue. How can we quantify this driving force?
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FIGURE 2.1 Free energy (G)–temperature (T) diagram illustrating the thermodynamics of
the H2O(s)→H2O(l) phase transformation. Assuming pure ice and pure water at atmospheric
pressure, equilibrium between the solid (ice) and liquid (water) phases is achieved at 0 ∘C (the
two curves cross at T = 0 ∘C). When T < 0 ∘C, the solid phase has a lower free energy and
hence there is a thermodynamic driving force for solidification. When T > 0 ∘C, the liquid
phase has a lower free energy and hence there is a thermodynamic driving force for melting.

Starting from Equation 2.34, we can express ΔG(s→l) in terms of ΔH(s→l) and
ΔS(s→l):

ΔG(s→l) = GH2O(l) − GH2O(s)

= (HH2O(l) − HH2O(s)) − T(SH2O(l) − SH2O(s))

= ΔH(s→l) − T ΔS(s→l) (2.35)

Recognize that when T = Teq,ΔG(s→l) = 0. We thus have

ΔG(s→l)|T=Teq
= 0 = ΔH(s→l) − Teq ΔS(s→l)

Thus
ΔH

∘
(s→l) = Teq ΔS(s→l) (2.36)

We can then express the thermodynamic driving force for phase change at any arbi-
trary temperature T in terms of ΔS(s→l) and ΔT (ΔT = Teq − T):

ΔG(s→l) = ΔH(s→l) − T ΔS(s→l)

= Teq ΔS(s→l) − T ΔS(s→l)

= ΔT ΔS(s→l) where ΔT = Teq − T (2.37)

An example of this type of calculation is provided in the exercise below.
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Example 2.5

Question: You are provided with the following thermodynamic data for the
solidification of iron (Fe(l) ⇌ Fe(s)):

Heat of solidification: ΔH(l→s) = −13.81 kJ∕mol

Entropy of solidification: ΔS(l→s) = −7.62 J∕(mol ⋅ K)
(a) What is the melting point (TM) of iron?

(b) If liquid iron is cooled 100 ∘C below its melting temperature, what is the
driving force (ΔG(l→s)) for solidification?

(c) If liquid iron is heated 50 ∘C above its melting temperature, what is the
driving force (ΔG(l→s)) for solidification?

(d) As liquid iron is cooled further and further below its melting point (i.e.,
increasing “undercooling”), does the thermodynamic driving force for
solidification increase, decrease, or remain constant?

Solution:

(a) We can use Equation 2.36 to calculate the melting point of iron based on
ΔH(l→s) and ΔS(l→s):

ΔG(l→s)|T=Teq
= 0 = ΔH(l→s) − Teq ΔS(l→s)

Thus

Teq = TM =
ΔH(s→l)

ΔS(s→l)

TM =
−13810 J∕mol

−7.62 J∕(mol ⋅ K)
= 1810 K

(b) We can use Equation 2.37 to determine the thermodynamic driving force for
solidification (ΔG(l→s)) for ΔT = 100 ∘C (100 ∘C undercooling):

ΔG(l→s) = ΔT ΔS(l→s) where ΔT = TM − T

= (100 K)[−7.62 J∕(mol ⋅ K)]

= −762 J∕mol (2.38)

The fact thatΔG(l→s) is negative here indicates that solidification is thermody-
namically favorable when iron is cooled below its melting temperature. This
makes sense!
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(c) The thermodynamic driving force for solidification when iron is heated 50 ∘C
above its melting point can be calculated in a similar fashion:

ΔG(l→s) = ΔT ΔS(l→s) where ΔT = TM − T

= (−50 K)[−7.62 J∕(mol ⋅ K)]

= 380 J∕mol

In this case, ΔG(l→s) is positive, which indicates that solidification is thermo-
dynamically unfavorable when iron is heated above its melting temperature.
Again, this makes sense!

(d) As can be seen in Equation 2.38, for increasingΔT (increasing undercooling),
ΔG(l→s) will become increasingly negative (since ΔS(l→s) is negative). Thus,
the thermodynamic driving force for solidification increases with increasing
undercooling.

Note that this example considers a solidification process l → s whereas
the text discussion on the ice/water example considered a melting process
s → l. Converting thermodynamic quantities for solidification to the corre-
sponding quantities for melting is easy. It only requires flipping the sign. In
other words:

ΔH(l→s) = −ΔH(s→l) (2.39)

ΔS(l→s) = −ΔS(s→l) (2.40)

ΔG(l→s) = −ΔG(s→l) (2.41)

Generally, solidification processes are exothermic while melting processes are
endothermic. (Quiz: Can you explain why this is so?)

2.9 IDEAL GAS LAW

Throughout this textbook, the application of the ideal gas law will come up again and
again in one form or another. While you have almost certainly encountered the ideal
gas law many times already, it is worth briefly reviewing it here. The ideal gas law is
most commonly expressed as

PV = nRT (2.42)

where P is the gas pressure, V is the gas volume, n is the number of moles of gas,
R is the gas constant, and T is the temperature. The ideal gas law is derived from
basic thermodynamic principles. Although detailed derivation of the ideal gas law
is outside the scope of this textbook, it is important that you are able to apply it to
calculate various properties of gases using a variety of different units.

In our study of kinetics, one of the most common uses of the ideal gas law will be to
convert information about the partial pressures of various gas species (e.g., in units of
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atmospheres) into information about the molar concentrations of those gases (e.g., in
units of mol∕m3). Gas concentrations can be calculated from gas partial pressures
using a relatively straightforward manipulation of the ideal gas law:

Cgas =
n
V

= P
RT

(2.43)

where Cgas represents the concentration (in units of mol∕volume) of the gas. While
this expression is indeed quite straightforward, students (and even professors) often
make mistakes when evaluating this expression using actual numbers. Units are a
source of nearly unending confusion here. Beware!

A good recommendation is to always use SI units when evaluating this expres-
sion. If different units are eventually needed, such a conversion can be done after
the gas concentration has been calculated using SI values. Using this approach, you
will always use the exact same set of units when evaluating Equation 2.43 and you
will always use the exact same value for the gas constant R. Thus, there will be
fewer opportunities for error or confusion. See Example 2.6 for an illustration of
this approach.

Example 2.6

Question: The air pressure at the top of Mount Everest is only about 33% of the
value at sea level. Assuming the composition of air at the top of Mount Everest
is the same as that at sea level, calculate the concentration (in units of mol∕cm3)
of oxygen in the air at the top of Mount Everest. Assume an air temperature of
−20 ∘C at the top of Mount Everest.

Solution: In order to calculate the concentration of oxygen in the air at the top
of Mount Everest, we first need to determine the partial pressure of oxygen in
air at the top of Mount Everest. The composition of air is 21% O2, 78% N2,
and 1% other species, mostly Ar. The problem statement tells us that we can
assume that this composition still holds true at the top of Mount Everest. On the
other hand, the total atmospheric pressure is much lower at the top of Mount
Everest than it is at sea level, and hence the partial pressure of oxygen gas will
be much lower at the top of Mount Everest as well. Since the problem statement
tells us that the air pressure at the top of Mount Everest is 33% of the sea-level
value, we can calculate the partial pressure of oxygen gas at the top of Mount
Everest as

PO2, Everest = 0.21 ⋅ PTotal, Everest

= 0.21 ⋅ (0.33 ⋅ PTotal, Sea Level)

= 0.21 ⋅ (0.33 ⋅ 1 atm) = 0.0693 atm

It is strongly recommended to always use SI units when working with the
ideal gas law. Indeed, it is generally a good policy to use SI units for all calcu-
lations and only convert solutions to other units at the very end if/when needed.
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In this case, we must therefore first convert the oxygen partial pressure to SI
units (Pa) before we apply the ideal gas law:

PO2, Everest = 0.0693 atm ⋅
101,325 Pa

1 atm
= 7021.8 Pa

Then, we can evaluate the ideal gas law using SI units:

CO2, Everest =
PO2, Everest

RT

= 7021.8 Pa
8.314 J∕(mol ⋅ K) ⋅ 253.15 K

= 3.37 mol∕m3

If SI units are used, the resulting concentration will also be in SI units:
mol∕m3. Since the problem statement asks for the answer in units of mol∕cm3,
a final unit conversion is required:

CO2, Everest = 3.37 mol∕m3 ⋅
1 m3

(100 cm)3
= 3.4 × 10−6 mol∕cm3

2.10 CALCULATING CONCENTRATIONS FOR LIQUIDS OR SOLIDS

Another frequent mistake among students is to try to apply the ideal gas law to cal-
culate the concentrations of species in condensed-matter phases (e.g., liquid or solid
phases). Do not make this mistake! The ideal gas law only applies to gases. To cal-
culate concentrations for liquid or solid species, information about the density (𝜌i) of
the liquid or solid phase is required. Both mass densities and molar densities (con-
centrations) as well as molar and atomic volumes may be of interest. The complexity
of calculating these quantities tends to increase with the complexity of the material
under consideration. In this section, we will consider three levels of increasing com-
plexity: pure materials, simple compounds or dilute solutions, and more complex
materials involving mixtures of multiple phases/compounds.

2.10.1 Calculating Densities/Concentrations in Pure Materials

Mass densities (g∕cm3) are readily available for most pure materials. For example, the
density of Si is 𝜌Si = 2.33 g∕cm3 while the density of SiO2 is 𝜌SiO2

= 2.65 g∕cm3.
Calculating the molar densities (molar concentrations) and molar volumes of pure
Si and pure SiO2 (or any other pure material) from their mass densities and their
molecular weights is quite straightforward:

ci =
𝜌i

Mi
(2.44)

Vm,i =
1
ci

=
Mi

𝜌i
(2.45)
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where ci, Vm,i, and Mi are respectively the molar concentration (typical units are
mol∕cm3), molar volume (typical units are cm3∕mol), and molecular weight (typ-
ical units are g∕mol) of a pure material i (e.g., pure Si or SiO2). Thus, the molar
concentration and volume of pure SiO2 can be calculated as

cSiO2
=

𝜌SiO2

MSiO2

=
2.65 g∕cm3

60.1 g∕mol
= 4.41 × 10−2 mol SiO2∕cm3

Vm,SiO2
= 1

cSiO2

= 22.7 cm3∕mol SiO2

Molar concentrations and molar volumes can be converted into number densi-
ties (ni) and atomic volumes ΩI by multiplying or dividing by Avogadro’s number,
respectively:

ni = ciNA (2.46)

Ωi =
Vm,i

NA
(2.47)

These quantities correspond to the number of atoms or molecules of species i per unit
volume (e.g., no./cm3), and the volume associated with a single atom or molecule of
a species i (e.g., cm3), respectively. Thus, the number density and atomic volume of
SiO2 are:

nSiO2
= cSiO2

NA = 4.41 × 10−2 mol SiO2∕cm3 ⋅ 6.022 × 1023 no.∕mol

= 2.66 × 1022 SiO2 atoms/cm3

ΩSiO2
=

Vm,SiO2

NA
=

22.7 cm3∕mol SiO2

6.022 × 1023 no.∕mol
= 3.77 × 10−23 cm3

2.10.2 Calculating Densities/Concentrations in Stoichiometric
Compounds or Dilute Solutions

When calculating the mass density, molar concentration, or molar volume of a spe-
cific individual species that is present in combination with other species (e.g., in a
compound or solution), further work is needed. If the material’s composition can be
expressed in terms of a single stoichiometric compound or formula unit, the approach
is still fairly straightforward—it just requires application of the compound stoichiom-
etry. Similarly, dilute solutions, where the solute species is present in very low con-
centrations relative to the host solvent, can be handled in a relatively straightforward
manner by assuming that the host material’s density is not affected by the presence
of the solute species.
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As an example of the first case (dealing with one species in a stoichiometric com-
pound), consider how to calculate the molar concentration of oxygen atoms in SiO2:

cO,SiO2
=

nO𝜌SiO2

MSiO2

=
2 ⋅ 2.65 g∕cm3

60.1 g∕mol
= 8.82 × 10−2 mol O∕cm3

Compared to our previous example, the only additional information required is the
number of moles of oxygen per formula unit of the compound, nO, which can be
obtained by examination of the compound’s stoichiometry.

Knowledge of the compound stoichiometry can similarly be applied to calculate
the mass density of oxygen atoms in SiO2 as

𝜌O,SiO2
=
(

2MO

2MO + MSi

)
𝜌SiO2

= WO,SiO2
𝜌SiO2

=
2 ⋅ 16.0 g∕mol

2 ⋅ 16.0 g∕mol + 28.1 g∕mol
⋅ 2.65 g∕cm3 = 1.41 g∕cm3

where WO,SiO2
is the oxygen mass fraction in SiO2 or, in other words, the fraction of

the total mass of SiO2 that is due to the oxygen. The factors of 2 appearing in this
expression again reflect the fact that there are two moles of oxygen atoms in every
mole of SiO2.

The molar concentration and mass density of Si in SiO2 can be calculated from
the compound stoichiometry in a similar manner:

cSi,SiO2
=

nSi𝜌SiO2

MSiO2

=
1 ⋅ 2.65 g∕cm3

60.1 g∕mol
= 4.41 × 10−2 mol Si∕cm3

𝜌Si,SiO2
=
(

MSi

2MO + MSi

)
𝜌SiO2

= WSi,SiO2
𝜌SiO2

=
1 ⋅ 28.1 g∕mol

2 ⋅ 16.0 g∕mol + 28.1 g∕mol
⋅ 2.65 g∕cm3 = 1.24 g∕cm3

Calculating concentration of a species that is present at low levels (say, <1%) as
a solute in a solid solution is also fairly straightforward. The typical approach is to
assume that the density of the host material (𝜌M) is not changed by the presence of
the solute species. In this case, the mass density (𝜌i,M) and molar concentration (ci,M)
of the solute species i in the host material, M, can be calculated as

𝜌i,M = Wi,M 𝜌M (2.48)

ci,M = Xi,M
𝜌M

MM
(2.49)
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where Wi,M is the mass fraction of species i in material M, Xi,M is the mole fraction
of species i in material M, and MM is the molecular weight of material M.

In order to illustrate this approach, consider the calculation of the molar concen-
tration (density) of arsenic (As) in a piece of Si that has been doped with 100 ppm
(parts per million) As atoms. Since 100 out of every 106 Si atoms have been replaced
by As in this material, the mole fraction of As in Si can be calculated as

XAs,Si =
ZAs,Si

ZAs,Si + ZSi,Si

= 100
100 + (106 − 100)

= 10−4

where ZAs,Si and ZSi,Si are the parts-per-million values (which are the same as the
relative molar amounts) of the As and Si atoms in the As-doped Si solid solution,
respectively. Assuming that the As substitution does not appreciably affect the density
of Si, the molar concentration of As in Si can then be estimated as

cAs,Si = XAs,Si
𝜌Si

MSi

= 10−4 ⋅
2.33 g∕cm3

28.1 g∕mol
= 8.29 × 10−6 mol As∕cm3

In problem 2.9, you will have the opportunity to continue this example by calcu-
lating the mass density of As in this As-doped Si solid solution.

2.10.3 Calculating Densities/Concentrations for Mixtures of Multiple
Phases/Compounds

In materials that are composed of two or more distinct compounds or phases,
expressions are sometimes required for the “average” density of the mixture, or the
“average” mass density or molar concentration of a particular species i in the mix-
ture. Such systems represent an additional level of complexity, and a more general
approach is required in order to calculate such “material-averaged” quantities. For
example, consider a material M that is made up of N distinct compounds or phases,
each of which has its own well-defined density and composition. In such a situation,
the overall average density of the material, 𝜌M, can be determined from the densities
(𝜌N) and weight fractions (WN) of the individual N phases from which the material is
composed:

1
𝜌M

=
∑

N

WN

𝜌N
(2.50)

Once the overall density of the material has been calculated, the average mass
density for any species i in the material (𝜌i,M) can be calculated from the knowledge
of the mass fraction of species i in each component N in the material (Wi,N)
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and the mass fraction of each component N in the overall composition of the
material (WN):

𝜌i,M = Wi,M 𝜌M =

(∑
N

Wi,NWN

)
𝜌M (2.51)

Similarly, the average molar concentration for any species i in the material (ci,M)
can be calculated from the knowledge of the stoichiometry of species i in each com-
ponent N in the material in combination with the densities (𝜌N) and weight fractions
(WN) of each component N:

ci,M =

(∑
N

WN

ni,N

MN

)
𝜌M (2.52)

where ni,N is the number of moles of species i per formula unit of compound N, which
can be obtained by examination of the compound’s stoichiometry.

In order to illustrate this approach, consider the calculation of the average density
of a two-phase composite mixture consisting of 70% SiO2 and 30% Si (by weight):

1
𝜌M

=
WSiO2

𝜌SiO2

+
WSi

𝜌Si

= 0.7
2.65 g∕cm3

+ 0.3
2.33 g∕cm3

= 0.3929 cm3∕g

𝜌M = 1
0.3929 cm3∕g

= 2.55 g∕cm3

The average mass density and molar concentration of oxygen atoms in this
two-phase composite may then be calculated as

𝜌O,M = (WO,SiO2
WSiO2

+ WO,SiWSi)𝜌M

=
(

2 ⋅ 16.0 g∕mol

2 ⋅ 16.0 g∕mol + 28.1 g∕mol
⋅ 0.7 + 0 ⋅ 0.3

)
2.55 g∕cm3

= 0.950 g∕cm3

cO,M = (WSiO2

nO,SiO2

MSiO2

+ WSi

nO,Si

MSi
)𝜌M

=
(

0.7 ⋅
2

60.1 g∕mol
+ 0.3 ⋅

0
28.1 g∕mol

)
2.54 g∕cm3

= 5.94 × 10−2 mol O∕cm3

A similar exercise can be applied to calculate the average mass density and molar
concentration of silicon atoms in this two-phase composite (see problem 2.10 at the
end of this chapter).
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2.10.4 Calculating Densities/Concentrations from Crystallographic
Information

For crystalline solid compounds, species densities and concentrations can also be
calculated from information on the crystal structure and unit cell size as well as the
lattice occupancy of the species in question. It is sometimes more convenient to cal-
culate species concentrations this way, particularly when structural information is
more readily available than mass density information. The basic idea is to calculate
density/concentration from the weight and volume of the crystallographic unit cell.
Example 2.7 illustrates this approach.

Example 2.7

Question: The crystal structure of lanthanum gallate (LaGaO3) can be approx-
imated as cubic, with lattice parameters a ≈ b ≈ c ≈ 3.9 Å (see Figure 2.2).
Based on this information, calculate (1) the density (g∕cm3) of LaGaO3,
(2) the molar volume (cm3∕mol) of LaGaO3, and (3) the concentration of
oxygen atoms (ions) in pure LaGaO3 (mol∕cm3).

Solution:

1. Assuming a perfect cubic unit cell, the unit cell volume of LaGaO3 can be
calculated from the lattice parameter as

Vcell = a3 = (3.9 Å)3 = 59.3 Å
3 = 5.93 × 10−29 m3

A single unit cell of LaGaO3 contains one La ion, one Ga ion, and three
oxygen ions. The total weight associated with a single LaGaO3 unit
cell can therefore be calculated from the molecular weights of La, Ga,
and O as

Wcell =
MLa + MGa + 3MO

NA

=
138.9 g∕mol + 69.7 g∕mol + 3 ⋅ 16.0 g∕mol

6.022 × 1023 no.∕mol
= 4.26 × 10−22 g

Then the density can be calculated from the cell volume and weight as

𝜌LaGaO3
=

Wcell

Vcell
=

4.26 × 10−22 g

5.93 × 10−29 m3
= 7.19 × 106 g∕m3 = 7.19 g∕cm3

2. To calculate the molar volume of LaGaO3, we need to first calculate the molar
density (concentration) of LaGaO3. This can be calculated from the mass
density of LaGaO3 and the molecular weight:

cLaGaO3
=

𝜌LaGaO3

MLaGaO3

=
𝜌LaGaO3

MLa + MGa + 3MO
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=
7.19 g∕cm3

138.9 g∕mol + 69.7 g∕mol + 3 ⋅ 16.0 g∕mol

= 2.80 × 10−2 mol∕cm3

Then, the molar volume is simply the inverse of the molar concentration:

VLaGaO3
= 1

cLaGaO3

= 1
2.80 × 10−2 mol∕cm3

= 35.7 cm3∕mol

3. There are three moles of oxygen atoms (ions) per molar formula unit of
LaGaO3, so the concentration of oxygen ions can be determined directly
from the concentration of LaGaO3 and the stoichiometry:

cO,LaGaO3
= 3cLaGaO3

= 3 ⋅ 2.80 × 10−2 mol∕cm3 = 8.40 × 10−2 mol∕cm3

FIGURE 2.2 LaGaO3 forms in the cubic perovskite crystal structure with La atoms at
the cube corners, O atoms at the cube faces, and Ga at the cube center.

2.10.5 Calculating Site Fractions

A final concentration-like unit that is sometimes needed is the site fraction, which is
essentially a unitless “occupancy” factor that can typically be obtained from crystal-
lographic information and defect models of a solid. A site fraction gives the fraction
of sites (e.g., crystalline lattice sites) of a particular type in a material which are occu-
pied by a particular species i. Thus, it is a ratio of the number of sites of a particular
type (j) that are occupied by a certain species i divided by the total number of sites of
that particular type in the material:

Xj
i =

Nj
i

Nj
total

(2.53)
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In the As-doped Si example discussed earlier, the site fraction of Si sites that are
occupied by As dopants (assuming perfect substitution) would be

XSi
As =

100
106

= 10−4

Example 2.8 explores a slightly more complex scenario.

Example 2.8

Question: LaGaO3 is often doped with Sr to create oxygen vacancies, giv-
ing it an extremely high oxygen-ion conductivity and making it attractive for
high-temperature fuel cell and gas sensor applications. In LaGaO3, La is in
the 3+ oxidation state, while Sr takes the 2+ oxidation state, so for every two
La3+ ions substituted by two Sr2+ ions, one oxygen ion vacancy is created to
maintain charge neutrality. Assume LaGaO3 is doped with 20 mol % Sr to give
La0.8Sr0.2GaO3−𝛿: (1) Determine the value of 𝛿 in the formula La0.8Sr0.2GaO3−𝛿 ,
(2) calculate the oxygen vacancy site fraction in this material, and (3) calculate
the concentration of oxygen vacancies (mol∕cm3) in this material, assuming it
has the same lattice constant and density as pure LaGaO3.

Solution:

1. For every two Sr ions substituted into LaGaO3, one oxygen vacancy
is created. Therefore for the Sr0.2 subsititution, V0.1 oxygen vacancies
will be created. This results in a formula of La0.8Sr0.2GaO3−0.1, or
La0.8Sr0.2GaO2.9VO,0.1, which more explicitly accounts for the vacant
oxygens (VO). Thus, the value of 𝛿 is 0.1.

2. For each molar formula unit of La0.8Sr0.2GaO2.9VO,0.1, there are 3 mol of
oxygen ion sites, of which 2.9 mol are occupied, and 0.1 mol are unoccupied.
Therefore, the oxygen vacancy site fraction in this material is

XO
V =

NO
V

NO
total

= 0.1
3

= 0.0333

In other words, 1 in 30, or about 3.33%, of the oxygen sites are vacant. It
is this large number of vacant oxygen ion sites which permits significant
oxygen ion motion (and hence oxygen ion conductivity) in this material.

3. Assuming that the Sr-doped LaGaO3 material has the same lattice constant
and density as pure LaGaO3, we can approximate the oxygen vacancy con-
centration in this material by multiplying the oxygen ion concentration pre-
viously determined for pure LaGaO3 in Example 2.2 by the oxygen vacancy
site fraction, XO

V:

cVO
= XO

V ⋅ cO,LaGaO3
= 0.0333 ⋅ 8.40 × 10−2 mol∕cm3

= 2.80 × 10−3 mol∕cm3
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2.11 CHAPTER SUMMARY

The purpose of this chapter was to briefly review the main principles underlying
chemical thermodynamics. Thermodynamics is important because we can use it to
tell us when a system is in equilibrium. For systems that are not in equilibrium, we
can use thermodynamics to calculate the size of the driving forces acting on a system
to return it to equilibrium. These driving forces will become a key input into later
kinetic equations. The main points introduced in this chapter include the following

• Equilibrium is dynamic. Equilibrium represents the most stable, lowest energy
state for a system. However, in most systems this equilibrium point represents
a dynamic balance between forward and backward processes that continue to
occur with equal rates. Even small changes can upset this balance. The most
common ways that we can shift the equilibrium point of a system are by chang-
ing temperature, pressure, or composition.

• The most common thermodynamic quantities that we will encounter in our
exploration of materials kinetics are enthalpy (H), entropy (S), and Gibbs free
energy (G). Usually we are concerned with quantifying the changes in these
thermodynamic functions (i.e., ΔH, ΔS, ΔG) during a process of reaction rather
than the absolute values. Changes in thermodynamic functions are always cal-
culated as final state − initial state.

• Gibbs free energy is perhaps the most important of the main thermodynamic
functions. The sign of the Gibbs free-energy change (ΔG) during a thermody-
namic process indicates whether or not the process is spontaneous and hence
the direction in which it can proceed. If ΔG > 0, the process is nonspontaneous
(or will occur in the reverse direction). If ΔG = 0, the process is at equilibrium.
If ΔG < 0, the process is spontaneous and will occur in the forward direction.
While ΔG determines the thermodynamically predicted direction of a process,
kinetic laws (discussed starting in the next chapter) are required to calculate
how quickly a process will occur.

• The quantitiesΔH,ΔS, andΔG are related by the following important equation:
ΔG = ΔH − TΔS. This equation can be used to determine one of the three quan-
tities when the other two are known. It is also particularly helpful for estimating
how ΔG for a process changes as a function of temperature.

• For a reaction under an arbitrary set of non-standard-state conditions, ΔG can
be determined from the standard-state value of ΔG∘ by taking into account the
activities of the reactant and product species via the reaction quotient Q:

ΔG = ΔG∘ + RT ln Q

where

Q =
am

Man
N

aa
Aab

B

• The equilibrium constant K is a unique value for Q that is obtained when (and
only when) a system is at equilibrium. At equlibrium,

ΔG = 0 = ΔG∘ + RT ln K
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where

K =
(aeq

M)m(aeq
N )n

(aeq
A )a(aeq

B )b

and aeq
M, aeq

N , aeq
A , and aeq

B are the activities of the product and reactant species at
equilibrium.

By comparing Q versus K, the direction of a reaction can be determined. If
Q < K, the reaction will proceed in the forward direction; if Q = K, the reaction
is at equilibrium; if Q > K, the reaction will proceed in the backward direction.

• Le Châtelier’s principle is a useful concept that can help you to predict
which way a thermodynamic process will shift when various disturbances,
such as changes in temperature, pressure, or concentration, are applied.
The principle states that if a chemical system at equilibrium experiences a
change in concentration, temperature, volume, or partial pressure, then the
equilibrium shifts to counteract the imposed change and a new equilibrium is
established.

• Because ΔG∘ is (approximately) linearly dependent on temperature as
expressed by the relationship ΔG = ΔH − T ΔS, the equilibrium constant K is
exponentially temperature dependent:

K = exp

(
−ΔG∘

RT

)

= exp

(
−(ΔH∘ − TΔS∘)

RT

)

= exp

(
−ΔH∘

RT

)
exp

(
ΔS∘

R

)

• The thermodynamic driving force for a phase change is determined by the
entropy change (ΔS) of the phase transformation and the magnitude of the
departure from the equilibrium temperature (ΔT) of the phase transfor-
mation. For example, the driving force for a solidification process can be
estimated as

ΔG(l→s) = ΔT ΔS(l→s) where ΔT = Teq − T

In this case, Teq = Tm (i.e., the melting temperature), which is the temperature at
which both phases involved in the transformation (solid and liquid) can coexist
in equilibrium.

• The ideal gas law PV = nRT is extremely useful in converting partial pressures
of gas species (e.g., in units of atmospheres) into concentrations (e.g., in units
of moles/vol, mass/vol, atoms/vol). While the ideal gas law is straightforward,
units can cause a significant challenge! A good recommendation is to always use
SI units when evaluating the ideal gas law. Thus, pressures must be evaluated
in units of Pa (Pascals), where 1 atm = 101300 Pa.
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• When calculating concentrations for liquid or solid species (which will be fre-
quently encountered in materials kinetics problems), the ideal gas law DOES
NOT APPLY! Instead, information about the density (or atomic structure and
packing) is needed. These calculations can become increasingly complicated
depending on the number of phases/components involved. The last section of
the chapter provides detailed examples of such calculations. Mastering these
concepts will be extremely useful as we move forward in our exploration of
materials kinetics, as most kinetic equations involve species concentration.

2.12 CHAPTER EXERCISES

Review Questions

Problem 2.1. If an isothermal reaction involving gases exhibits a large negative vol-
ume change, will the entropy change for the same reaction likely be negative or
positive? Why?

Problem 2.2. (a) If ΔH for a reaction is negative and ΔS is positive, can you say
anything about the spontaneity of the reaction? (b) What if ΔH is negative and ΔS is
negative? (c) What if ΔH is positive and ΔS is negative? (d) What if ΔH is positive
and ΔS is positive?

Problem 2.3. For the following reactions, indicate whether the reaction is thermo-
dynamically favorable, unfavorable, or in equilibrium as written:

(a) CH3OH(l) +
3
2
O2(g) → CO2(g) + 2H2O(l) (ΔGrxn = −702 kJ∕mol)

(b) H2O(l) → H2O(s) (at P = 1 atm, T = 273.15 K, pure components)

(c) H2O(s) → H2O(l) (at P = 1 atm, T = 253.15 K, pure components)

Problem 2.4. Reaction A has ΔGrxn = −100 kJ∕mol. Reaction B has ΔGrxn =
−200 kJ∕mol. Can you say anything about the relative speeds (reaction rates) for
these two reactions?

Calculation Questions

Problem 2.5. Iron is undergoing active gas corrosion at atmospheric pressure and
T = 1027 ∘C by the following reaction:

Fe(s) + 2HCl(g) ⇌ FeCl2(g) + H2(g)

If the equilibrium constant for this reaction is Keq = 0.384 at T = 1027 ∘C, determine
the equilibrium pressures for the three gases: PHCl, PFeCl2

, and PH2
at T = 1027 ∘C

(in units of atmospheres). Assume that the only H2 and FeCl2 present are due to
reaction.
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Problem 2.6. You are provided with the following thermodynamic data for the solid-
ification of silver (Ag(l) ⇌ Ag(s)):

Melting temperature: TM = 1235 K

Heat of solidification: ΔHrxn = −11.28 kJ∕mol

(a) At T = TM, what is the driving force (ΔGrxn) for solidification?

(b) What is the entropy of solidification (ΔSrxn) for this reaction?

(c) If liquid silver is cooled T = 100 ∘C below its melting temperature, what is the
driving force (ΔGrxn) for solidification?

Problem 2.7. A reaction vessel is initially filled with pure HI gas at 1 atm pressure at
T = 298 K. The gas is then allowed to react (via the hydrogen iodide decomposition
reaction), generating I2 and H2 gases until equilibrium is established. Calculate the
resulting equilibrium partial pressures for all three gases.

Problem 2.8. A reaction vessel contains an equilibrium mixture of I2, H2, and HI
gases with a total pressure of 10 atm at 298 K. Assume that the I2 and H2 gas pres-
sures are equal. The temperature in the reaction vessel is then increased to 500 K
and the gases are allowed to react until equilibrium is reestablished. Calculate the
resulting equilibrium pressures of all three gases. Assume K = 1.6 × 10−3 for this
reaction at T = 298 K and ΔH∘ = 9.43 kJ∕mol. As usual, assume that ΔH∘ and ΔS∘
do not change with temperature. No other information should be needed to solve this
problem.

Problem 2.9. In Section 2.10.2, we calculated the molar concentration of As in an
100-ppm As-doped Si solid solution. Building on that exercise, calculate the mass
density (g∕cm3) of As in this 100-ppm As-doped Si solid solution.

Problem 2.10.SCalculate the average mass density (g∕cm3) and molar concentration
(mol∕cm3) of silicon atoms in a two-phase composite consisting of 70% SiO2 and
30% Si (by weight).

Problem 2.11.SMetal hydrides are metal alloys that can store significant quantities
of hydrogen in their atomic lattice. For this reason, they are considered potentially
attractive for the on-board storage of hydrogen for hydrogen fuel cell vehicles. A
certain metal hydride alloy can store 2 wt% hydrogen and has a density (including
the hydrogen) of 12 g∕cm3. Treating hydrogen as an ideal gas, what pressure would
be needed to compress gaseous hydrogen to the same equivalent concentration that it
attains when absorbed in the metal hydride?



CHAPTER 3

CHEMICAL REACTION KINETICS

At the most basic level, a chemical reaction involves the breaking, forming,
and/or rearrangement of atomic bonds. Consider a simple chemical reaction:
the combustion of hydrogen and oxygen to make water. For this reaction to
occur, hydrogen–hydrogen and oxygen–oxygen bonds must be broken, while
hydrogen–oxygen bonds must be formed. These bond-breaking and bond-making
processes occur at the subatomic scale and involve the redistribution of bonding
electron clouds (or “orbitals”) between the atoms as they either pull apart or come
together. The process is probabilistic in nature, and this means that the bond-breaking/
forming process can occur in either direction. However, the direction that leads to a
lower free-energy state is heavily favored and hence occurs much more frequently.
For the hydrogen–oxygen reaction example above, under most temperature and
pressure conditions the final free energy of the product species (water) is much lower
than the combined free energy of the reactant species (hydrogen + oxygen), and thus
the reaction is biased heavily toward the formation of water.

Despite the strong biasing of reactions toward the energetically “downhill” direc-
tion, they cannot occur at infinite speed. Reaction rates are finite even if they are
energetically “downhill” because:

1. We depend on random thermal motions/vibrations to bring reactants together
so that the bond-breaking and bond-making processes can occur.

2. An energy barrier (called an activation energy) impedes the conversion of reac-
tants into products. As illustrated in Figure 3.1, in order for reactants to be
converted into products, they must first make it over this activation “hill.” The
probability that reactant species can make it over this barrier helps determine
the rate at which the reaction occurs.

48
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FIGURE 3.1 Schematic of the H2–O2 combustion reaction. (Arrows indicate relative
motions of the molecules participating in the reaction.) Starting with the reactant H2 and
O2 gases (1), hydrogen–hydrogen and oxygen–oxygen bonds must first be broken, requiring
energy input (2) before hydrogen–oxygen bonds are created, releasing energy and forming
H2O product (3,4). The activation energy (ΔGact) quantifies the minimum amount of input
energy required to begin breaking the reactant bonds. Because of this barrier, the rate at which
reactants are converted into products (the reaction rate) is limited.

These factors limit the rate at which reactions can occur and furthermore help
explain two fundamental principles of reactions kinetics: (1) that reaction rates tend to
be sensitive to the concentration of the reacting species and (2) that reaction rates tend
to be highly sensitive to temperature. As the concentration of the reactants increases,
the frequency with which they encounter one another increases proportionally. Like-
wise, as temperature increases, the random thermal motion and vibration of atoms
increase, thereby increasing both the frequency with which the reactants can interact
and the probability that the reactants can make it over the activation barrier to form
products. As we will see in this chapter, these factors generally lead to a direct rela-
tionship between reaction rate and reactant concentration and an exponential increase
in reaction rate with increasing temperature.

While increasing temperature tends to increase reaction rates, increasing reaction
complexity tends to decrease reaction rates. This third fundamental principle of reac-
tion kinetics can also be understood from an atomic-level perspective of reaction
processes. In general, as the number of reactant atoms or product atoms involved in a
reaction increases, the likelihood that they can all converge at the same time and place
in order to react decreases. This effect is usually captured in a term known as the order
of the reaction. The order of a reaction has a direct impact on how the reaction kinet-
ics are treated mathematically, with “zero-order reactions” being the simplest (both
mechanistically and mathematically), followed by first-order reactions, second-order
reactions, and so on.
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In the sections that follow, we will delve deeply into the atomistic world of reaction
kinetics and learn how to predict the rates of a number of fairly simple zero, first,
and second-order reaction processes. While this chapter will focus mostly on simple
gas-phase chemical reaction processes, the principles learned here will apply just
as well to the solid-state materials kinetic examples that we will confront later in the
textbook. This is because bond-breaking and bond-forming processes are remarkably
similar at the atomistic level whether they happen between molecules in the gas phase
or between atoms in a solid. Thus, most reaction processes can be described using
a common set of approaches. Toward the end of the chapter, in preparation for later
solid-state applications of reaction kinetic principles, we will examine how reaction
rates can be affected by a catalyst or a surface, and we will learn how to model several
gas–solid surface reaction processes relevant to materials science and engineering.

3.1 HOMOGENEOUS VERSUS HETEROGENEOUS CHEMICAL
REACTIONS

In the sections that follow, we will learn about both homogeneous and heterogeneous
chemical reactions. It is important to understand the difference between them.

A homogeneous chemical reaction is a reaction where the reactants and prod-
ucts are all in one phase and the reaction can proceed anywhere throughout
the volume of the considered phase/system. The hydrogen–oxygen combustion
reaction is an example of a homogeneous chemical reaction (assuming that the
water is produced in the gas phase). Many gas–gas and nuclear decay reactions
are homogeneous.

A heterogeneous chemical reaction is a reaction where more than one phase is
involved. Heterogeneous reactions can generally only proceed at the interface
between the involved phases. Solid–liquid and solid–gas reactions are neces-
sarily heterogeneous since at least two phases are involved in these processes.
The chemical vapor deposition of a Si thin film from silane gas (SiH4(g)), as
was illustrated in Figure 1.3d, is a good example of a heterogeneous reaction.
The reaction only proceeds at the surface of the solid where it is in contact with
the gas phase. Even gas–gas reactions can occur via a heterogeneous route. For
example, solid catalysts are employed to accelerate certain gas-phase reactions
by providing a heterogeneous surface reaction pathway that is faster than the
alternative homogeneous gas-phase reaction pathway would be. Interestingly,
many solid–solid reaction processes exhibit aspects of both homogeneous and
heterogeneous reaction kinetics. For example, recall the nucleation and growth
of second-phase precipitates that was illustrated in Figure 1.3f . In such a pro-
cess, the initial formation of the second-phase nuclei may proceed homoge-
neously throughout the entire volume of the solid. However, the subsequent
growth of these nuclei is a heterogeneous process that can only occur along
the surface of the precipitates. This solid–solid transformation process will be
discussed in great detail in Chapter 6.



3.2 HOMOGENEOUS CHEMICAL REACTIONS 51

3.2 HOMOGENEOUS CHEMICAL REACTIONS

3.2.1 Reaction Rate Equation and k

Chemical reaction rates are modeled using rate equations. The goal of a rate equation
is to describe the rate at which reactants are transformed into products during a reac-
tion. Reaction rates are generally quantified by how quickly the concentration of one
of the species involved in the reaction changes as a function of time (dc∕dt). Consider
an arbitrary chemical reaction in the form

aA + bB + cC + · · · ⇌ mM + nN + · · · (3.1)

where A, B, C,… are reactants, and M, N,… are products, and a, b, c, m, and n repre-
sent the number of moles of A, B, C, M, and N, respectively. The rate of this reaction
can be calculated (e.g., on the basis of species A) as

dcA

dt
= −kc𝛼Ac𝛽Bc𝜅C · · · (3.2)

where cA, cB, cC,… are the concentrations of the reactant species, k is the rate con-
stant (which is strongly temperature dependent), and 𝛼, 𝛽, 𝜅,… are the orders of the
reaction with respect to reactants A, B, C, . . . . In this expression and all subsequent
reaction rate expressions discussed in this chapter, it is assumed that the reaction
proceeds in the forward direction as written, so that reactants (A, B, C,… ) are con-
sumed and products (M, N,… ) are produced. The negative sign in front of the rate
expression reflects this situation.

3.2.2 Order of Reaction

It is extremely important to note that the reaction orders 𝛼, 𝛽, 𝜅,… are not the
same as the stoichiometric coefficients a, b, c. Reaction order cannot be simply
determined from inspection of the balanced chemical equation. It requires detailed
information about the kinetic mechanisms underlying the reaction and can generally
only be determined experimentally or through careful kinetic studies (see the
dialog box on reaction mechanism for details). The overall order of the reaction
is given by the sum of the reaction orders with respect to the various reactants.
In other words,

Overall reaction order = 𝛼 + 𝛽 + 𝜅 + · · · (3.3)

In general, first- and second-order reactions are most commonly seen, but reactions
of other orders are also important. Direct analytical solutions are easily acquired for
zero-order, first-order, and second-order reactions. Reactions of third-order or higher
generally require numerical methods for solution. In the sections that follow, we
will cover several examples of zero-order, first-order, and second-order homogeneous
chemical reactions.



52 CHEMICAL REACTION KINETICS

Reaction Order Depends on Reaction Mechanism

The concentration of ozone in Earth’s upper atmosphere is regulated by the fol-
lowing reaction:

2O3(g) ⇌ 3O2(g) (3.4)

The experimentally determined rate law for this reaction is

dcO3

dt
= −k

c2
O3

cO2

(3.5)

This rate law is an example of a mixed-order reaction. The reaction is second
order with respect to O3 and inverse first order (−1 order) with respect to O2. It is
clear that this rate law cannot be obtained from a simple inspection of the chemical
reaction! So from where does this seemingly strange rate law come?

Many chemical reactions, including the ozone–oxygen reaction above, do not
occur in a single step as written. Instead, they proceed by a number of smaller
intermediate reaction steps. These are known as the elementary reaction steps,
and it is these individual elementary reaction steps which determine the rate law
for the overall chemical reaction.

For the ozone–oxygen reaction, the overall reaction mechanism involves two
elementary reaction steps that occur in series:

1. O3(g) ⇌ O2(g) + O(g) (rapid, equilibrium described by K)

2. O(g) + O3(g) → 2O2(g) (slow, rate constant = k2)

The first step is very rapid and thus achieves an equilibrium condition where
the reactant and product concentrations can be described by an equilibrium
constant, K. Meanwhile the second step is slow with a reaction rate described by
a rate constant k2. Because the second step is much slower, this step determines
the overall reaction rate. The rate law for the second step (and thus for the overall
reaction) can be expressed as

dcO3

dt
= −k2cO3

cO (3.6)

Note that the species O does not appear in the overall chemical reaction—it is an
intermediate species. However, we can use the first (equilibrium) reaction step to
express the concentration of this intermediate species in terms of the oxygen and
ozone concentrations:

K =
cO2

cO

cO3

(3.7)

cO = K
cO3

cO2

(3.8)
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This result can then be inserted into Equation 3.6 to obtain the final rate law in
terms of ozone and oxygen:

dcO3

dt
= −k2cO3

(
K

cO3

cO2

)

= −k
c2
O3

cO2

(where k = k2K) (3.9)

This example is intended to reinforce the fact that the rate law for an overall
chemical reaction usually cannot be determined directly from the reaction stoi-
chiometry. Instead, the overall rate law for a reaction is determined by the sequence
of elementary steps, or in other words the detailed reaction mechanism, by which
the reactants are converted into products. The overall rate law for a reaction is
dominated by the rate law for the slowest step in the reaction.

3.2.3 Zero-Order Reactions

Zero-order reactions are not very common. However, they provide an excellent place
to begin because the mathematics are quite straightforward. In a zero-order reaction,
the reaction rate is independent of the concentration of the reactant(s). Mathemati-
cally, this means

dcA

dt
= −k(cA)0 = −k (3.10)

The reaction is called a zero-order reaction because the concentration of the reac-
tants can be included in the rate expression with zero-order exponents to explic-
itly convey that the rate does not depend on their concentration (as shown in the
equation above). In a zero-order reaction, increasing the concentration of the reac-
tant(s) will not speed up the rate of the reaction. The most common zero-order reac-
tions are endothermic high-temperature thermal decomposition reactions, where a
large amount of thermal energy is required to break a chemical species apart. In such
cases, as long as the temperature is not too high, the available thermal energy controls
the rate rather than the concentration of the reactants.

An example of a zero-order reaction is the reverse Haber process:

2NH3(g) → N2(g) + 3H2(g) (3.11)

where the rate at which ammonia decomposes to nitrogen and hydrogen is given by

dcNH3

dt
= −k(cNH3

)0 = −k (3.12)

Note that this example further illustrates how the reaction order (and hence
the rate equation) cannot be determined from a simple inspection of the reaction
stoichiometry!
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It is often desired to have an equation that directly expresses how the concentration
of a reacting species of interest varies as a function of time during a reaction process.
This can be done by integrating the rate expression (which is a differential equation) to
obtain an integrated rate law. For a zero-order reaction, this integration is extremely
straightforward. Assuming a zero-order reaction where reactant species A is being
consumed,

dcA

dt
= −k

∫
dcA = −k

∫
dt

cA − cA0
= −kt

cA = cA0
− kt (3.13)

where cA is the concentration of species A at time t and cA0
is the initial concentration

of species A at time t = 0. For a zero-order reaction, then, the reactant(s) concentra-
tion decreases linearly with time, as shown in Figure 3.2. As should be easily seen by
inspection of Equation 3.13, the rate constant k for a zero-order reaction has units of
concentration/time. As we will soon see, the rate constants for first- and second-order
reactions will have different units.

3.2.4 First-Order Reactions

Reactions displaying first-order reaction kinetics are extremely common. For-
tunately, the mathematics needed to describe first-order reactions are also quite
straightforward. In a first-order reaction, the reaction rate is directly proportional
to the concentration of one of the reactant concentrations. Thus, increasing the
concentration of this reactant will speed up the rate of the reaction proportionally.
This behavior reflects the fundamental kinetic principle that the speed of most

FIGURE 3.2 Variation in reactant concentration as a function of time for a zero-order reac-
tion that consumes species A. The concentration of species A decreases linearly with time from
an initial concentration cA0

. The slope is given by the rate constant k.
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reactions depends on the frequency with which the reactants encounter one another.
Mathematically,

dcA

dt
= −kc1

A = −kcA (3.14)

It is important to note that a first-order reaction depends on the concentration of only
one reactant. Other reactants can be present, but they will have zero order.

As we did with the zero-order rate law, this differential equation can be integrated
to obtain an equation that directly expresses how the concentration of the reactant
varies as a function of time during the reaction process. For a general first-order reac-
tion involving the consumption of a reacting species A, this integration yields,

dcA

dt
= −kcA

∫

dcA

cA
= −k

∫
dt

ln
cA

cA0

= −kt

cA = cA0
e−kt (3.15)

where cA is the concentration of species A at time t and cA0
is the initial concentration

of species A at time t = 0. For a first-order reaction, then, the reactant concentration
decreases exponentially with time, as shown in Figure 3.3. The rate constant k has
units of time−1.

Most nuclear decay processes obey first-order reaction kinetics. An example is
the radioactive decay of carbon-14 (an unstable radioactive isotope of carbon) to
nitrogen-14 (which is the stable isotope of nitrogen) via the emission of an electron
and an antineutrino (𝜈e):

14
6C → 14

7N + e− + 𝜈e (3.16)

FIGURE 3.3 Variation in reactant concentration as a function of time for a first-order reac-
tion that consumes species A. (a) The concentration of species A decreases exponentially with
time from an initial concentration cA0

. (b) A logarithmic plot of concentration versus time
yields a straight line with a slope that is given by the rate constant k.
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The carbon-14 decay rate can be expressed by a first-order rate law of the form

dc14C

dt
= −kc14C (3.17)

First-order reactions are frequently characterized in terms of their half-life. The
half-life, t1∕2, is the amount of time required for a reaction to consume one-half of
the initial reactant concentration. In other words, cA = 1

2
cA0

when t = t1∕2. Using this
definition, the half-life can easily be evaluated from Equation 3.15 as

cA = 1
2
cA0

= cA0
e−kt1∕2

ln 1
2
= −kt1∕2

t1∕2 = −
ln 1

2

k

t1∕2 = 0.693
k

(3.18)

Since k (for a first order reaction) has units of time−1, the half-life will have units of
time. Examples 3.1–3.2 provide practice dealing with the mathematics of first-order
reaction kinetics.

Example 3.1

Question: The half-life for the radioactive decay of carbon-14 is 5730 years.
Calculate the rate constant for this decay reaction.

Solution: Based on the derivation of the half-life expression given in
Equation 3.18, if we know t1∕2, we can solve for k:

t1∕2 = 0.693
k

k = 0.693
t1∕2

= 0.693
5730 yr

k = 1.21 × 10−4∕yr = 2.30 × 10−10∕min = 3.83 × 10−12∕s

Example 3.2

Question: Living organic matter maintains an equilibrium carbon-14 concen-
tration via constant exchange with the atmosphere. Once organic matter dies,
this atmospheric exchange ceases and the carbon-14 concentration begins to
decrease by the radioactive decay process. This can be used by archeologists
to date carbon-containing artifacts. The initial rate of decay for organic matter,
N0, is 15.3 decays/(g min). An ancient wooden door beam recovered from an
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archeological site in Mesa Verde in the desert southwest of Colorado is measured
to have a present decay rate N = 14.0 decays/(g min). How old is the door?

Solution: The chief challenge of this problem is to relate the decay rate to one of
the mathematical quantities that we have discussed in terms of reaction kinetics.
As illustrated by Equation 3.16, each time a decay occurs, this corresponds to
one atom of carbon-14 converting to an atom of nitrogen-14. Thus, the decay
rate N essentially quantifies the change in the carbon-14 concentration (atoms
per unit mass) per unit time. In other words,

N = −
dc14C

dt
(3.19)

Inserting this expression into the first-order rate law for the carbon-14 decay
reaction yields

dc14C

dt
= −N = −kc14C (3.20)

N = kc14C (3.21)

c14C = N
k
=

14.0 decays/(g min)

2.30 × 10−10∕min
= 6.09 × 10−10 atoms/g (3.22)

Similarly,

N0 = kc14C0
(3.23)

c14C0
=

N0

k
=

15.3 decays/(g min)

2.30 × 10−10∕min
= 6.65 × 10−10 atoms/g (3.24)

Now that both the initial and present concentrations of carbon-14 in the door
have been determined, these quantities can be inserted into the integrated expres-
sion of the rate law to determine the time since the tree used for the door beam
was cut down (hence triggering the start of the decay process):

c14C = c14C0
e−kt (3.25)

c14C

c14C0

= e−kt (3.26)

t = −
ln(c14C∕c14C0)

k
(3.27)

= −
ln
(

6.09×10−10 atoms/g
6.65×10−10 atoms/g

)
2.30 × 10−10∕min

(3.28)

= 3.82 × 108 min = 728 yr (3.29)
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Alternative Solution: A common strategy that can dramatically simplify solu-
tion for many types of problems is to see if you can set up a ratio of equations.
In this particular example, we can recognize that for a first-order reaction the
reaction rate is directly proportional to the reactant (carbon-14) concentration,
and thus we can set up a ratio of reaction rates that enables a much easier
approach to the solution:

dc14C

dt
= −N = −kc14C (3.30)

dc14C0

dt
= −N0 = −kc14C0

(3.31)

dc14C∕dt

dc14C0
∕dt

= N
N0

=
kc14C

kc14C0

=
c14C

c14C0

(3.32)

From the integrated form of the rate law, we also have

c14C = c14C0
e−kt (3.33)

c14C

c14C0

= e−kt (3.34)

Combining these two results yields

N
N0

=
c14C

c14C0

= e−kt (3.35)

from which the time can easily be evaluated in terms of the ratio of the initial
and present decay rates:

t = −
ln(N∕N0)

k
(3.36)

= −
ln
(

14.0 decays/(g min)
15.3 decays/(g min)

)
2.3 × 10−10∕min

(3.37)

= 3.86 × 108 min = 735 yr (3.38)

3.2.5 Second-Order Reactions

As we move from first-order to second-order reactions, complexity increases sig-
nificantly. To begin, there are several different types of second-order reactions. A
second-order reaction can either be second order with respect to a single reactant or
first order with respect to two distinct reactants (and therefore second order overall).
In order to illustrate these possibilities, consider the following general reaction:

aA + bB → mM (3.39)
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Assuming that the reaction is overall second order, there are three different potential
second-order rate expressions that could govern the kinetics:

dcA

dt
= −kc2

Ac0
B = −kc2

A (3.40)

dcA

dt
= −kc1

Ac1
B = −kcAcB (3.41)

dcA

dt
= −kc0

Ac2
B = −kc2

B (3.42)

Remember, you cannot simply determine which of the three second-order rate laws
applies from inspection of the reaction—this must be determined experimentally.

If the reaction is second order with respect to a single reactant, the mathematic
treatment remains fairly straightforward. Integration of the rate law (Equation 3.40
above) yields

dcA

dt
= −kc2

A (3.43)

∫

dcA

c2
A

= −k
∫

dt (3.44)

1
cA

= 1
cA0

+ kt (3.45)

where cA is the concentration of species A at time t and cA0
is the initial concentration

of species A at time t = 0.
Alternatively, if the reaction is second order with respect to B but it is still desired

to express the reaction rate in terms of A, then an expression is needed to relate the
concentrations of reactants A and B during reaction. This can be done by applying
the stoichiometry of the chemical reaction:

cB = cB0
+ b

a
(cA − cA0

) (3.46)

where a and b are the stoichiometric coefficients for reactants A and B appearing in
the chemical reaction formula (Equation 3.39) and cA0

and cB0
are the initial concen-

trations of A and B. This relationship can then be substituted into the rate law and
integrated:

dcA

dt
= −kc2

B = −k
[
cB0

+ b
a
(cA − cA0

)
]2

(3.47)

∫

dcA

[cB0
+ (b∕a)(cA − cA0

)]2
= −k

∫
dt (3.48)

cA = cA0
− a

b
cB0

+
a2cB0

ab + b2cB0
kt

(3.49)
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While messy, the resulting expression is nonetheless mathematically straightfor-
ward. By retaining cA as our integration variable in this exercise, we have implicitly
assumed that there is a stoichiometric excess of A relative to B (so that when the
reaction approaches completion there will be A leftover).

If the reaction is first order with respect to two reactants, the same substitution
process can be used to obtain an integrated expression:

dcA

dt
= −kcAcB = −kcA

[
cB0

+ b
a
(cA − cA0

)
]

(3.50)

∫

dcA

cA[cB0
+ (b∕a)(cA − cA0

)]
= −k

∫
dt (3.51)

cA =
cB0

− b
a
cA0

(cB0
∕cA0

) exp
[
−kt

(
b
a
cA0

− cB0

)]
− b∕a

(3.52)

A simpler but equivalent expression for this integrated rate law can be obtained by
retaining the time-dependent concentrations of both A and B in the equation:

cA

cB
=

cA0

cB0

exp
[
kt
(b

a
cA0

− cB0

)]
(3.53)

For second-order reactions, the precise shape of the reactant decay–time curve
depends on whether the reaction is second order with respect to a single reactant
or first order with respect to two reactants, as shown in Figure 3.4, and also on the
relative starting concentrations of A and B. Depending on the relative starting reactant
concentrations, a reaction that is second order with respect to a single species A can

FIGURE 3.4 Variation in reactant concentration as a function of time for a reaction that is
second order with respect to a single reactant A (dashed lines) or first order with respect to two
reactants A and B (solid lines). In both situations, curves are shown for cases where species
A and B are present in stoichiometric equal amounts (so that all the reactants are depleted,
overlapped light-gray curves) or for cases where reactant A is present in stoichiometric excess
(dark black curves) and so there will still be A left over when the reaction is complete (cAf

≠ 0).
In all cases, the concentration of species A decreases non linearly with time from an initial
concentration cA0

.
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proceed more quickly, less quickly, or at the same rate as a reaction that is first order
with respect to two species. Note that for cases where one of the reactants is present
in stoichiometric excess (A is assumed to be in excess here), there will still be A
left over when the reaction is complete. The final amount of A left over (cAf

) can be
determined from the initial amounts of the reactants and the reaction stoichiometry
using Equation 3.46 by setting cB = 0 and solving for cA. For all types of second
order reactions, the rate constant k has units of (concentration⋅time)−1.

A practice problem involving a reaction which is second order with respect to a
single reactant is provided in Example 3.3.

Example 3.3

Question: The decomposition of NO2 to NO and O2,

2NO2(g) → 2NO(g) + O2(g) (3.54)

has been experimentally determined to be second order with respect to the NO2
concentration. A reaction begins at time t = 0 with an unknown initial con-
centration of pure NO2(g). After 2 h, the rate of O2 gas production is mea-
sured as 1.0 ×10−10 mol/(cm3⋅s). If the reaction rate constant for this reaction
is k = 10 (mol/cm3 ⋅ s)−1, determine what the initial concentration of NO2(g)
must have been when the reaction began.

Solution: The problem informs us that this decomposition reaction has been
experimentally determined to be second order with respect to the NO2 concen-
tration. Thus, we can write the rate law for the reaction as

dcNO2

dt
= −k(cNO2

)2 (3.55)

and the integrated form of the rate law (assuming initially only NO2 reactant
and no products at time t = 0):

1
cNO2

= 1
cNO2O

+ kt (3.56)

We have been asked to determine the initial (unknown) starting concentration
of NO2 reactant (i.e., cNO2O

) given that the O2 gas production rate after 2 h of
reaction is dcO2

∕dt = 1.00 × 10−10 mol∕(cm3 ⋅ s). Based on the reaction stoi-
chiometry, this measured oxygen production rate after 2 h of reaction can be
converted to a corresponding NO2 consumption rate:

dcNO2

dt

|||||t=2 h

= −2
dcO2

dt

|||||t=2 h

where the factor of −2 reflects the fact that for every molecule of O2 gas that is
produced, two molecules of NO2 are consumed. From this instantaneous NO2
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consumption rate at t = 2 h we can calculate the instantaneous NO2 concentra-
tion at t = 2 h using Equation 3.55:

dcNO2

dt

|||||t=2 h

= −2
dcO2

dt

|||||t=2 h

= −k(cNO2
|t=2 h)2

cNO2
|t=2 h =

√(2
k

) dcNO2

dt

|||||t=2 h

=

√(
2

10 (mol/cm3 ⋅ s)−1

)
1.00 × 10−10 mol∕(cm3 ⋅ s)

= 4.47 × 10−6 mol∕cm3

Then, having obtained the NO2 concentration at the specific time t = 2 h, we
can use Equation 3.56 to calculate the initial NO2 concentration:

1
cNO2

|t=2 h
= 1

cNO20
|t=2 h

+ kt

cNO20
=

cNO2
|t=2 h

1 − cNO2
|t=2 hkt

=
4.47 × 10−6 mol∕cm3

1 − 4.47 × 10−6 mol∕cm3 ⋅ 10 (mol/cm3 ⋅ s)−1 ⋅ 7200 s

= 6.59 × 10−6 mol∕cm3

Pseudo-First-Order Reactions Under certain circumstances, second-order
reactions can sometimes be approximated as first-order reactions. For example,
consider a second-order reaction that depends on the concentrations of two different
reactants (each to the first order). If one of the reactant concentrations is much
larger than the other reactant concentration, then it will remain essentially constant
(only slightly depleted) during the reaction process while the concentration of the
other reactant is fully consumed. In this situation, the second-order rate law can be
rewritten as a pseudo-first-order rate law. As an example, consider a second-order
reaction that is first order with respect to two reactants A and B. The rate law for this
reaction is

dcA

dt
= −kcAcB

However, if cB ≫ cA, we can assume that cB ≈ constant and the rate law can be
rewritten as

dcA

dt
= −k′cA where k′ = kcB (3.57)

k′ is the pseudo-first-order rate constant for the reaction and has units of time−1

whereas k, the true rate constant for the reaction, has units of (concentration ⋅ time)−1.
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An example problem utilizing the pseudo-first-order reaction approximation is treated

in Example 3.4.

Example 3.4

Question: Under certain conditions, the chemical reaction

CO(g) + NO2(g) → CO2(g) + NO(g) (3.58)

is experimentally determined to be first order with respect to CO and first
order with respect to NO2 (second order overall). In order to simplify kinetic
measurements, the system is reduced to pseudo first order by operating with
a very large excess of CO(g) so that the kinetics are controlled only by the
NO2(g) concentration. When a CO(g) concentration of 5.0 × 10−5 mol∕cm3

is used [which is well in excess of the NO2(g) concentration], the apparent
half-life of this pseudo-first-order reaction is measured to be 2.0 h. Determine
both the apparent rate constant k′ (units in s−1) and the true rate constant k
[units in (mol/cm3 ⋅ s)−1] for this reaction. If the CO(g) concentration was
doubled, how would this affect the apparent rate constant k′? What about the
true rate constant k?

Solution: Because this reaction has been experimentally determined to be first
order with respect to CO and first order with respect to NO2 (second order over-
all), the rate law for the reaction can be written as

dcNO2

dt
= −kcNO2

cCO (3.59)

However, since the problem states that cCO ≫ cNO2
, we can assume that cNO2

≈
constant and so the rate law can be rewritten as

dcNO2

dt
= −kc′

NO2
where k′ = kcCO (3.60)

This pseudo-first-order rate law can be integrated in exactly the same manner as
a normal-first-order rate law, yielding an exponential function

cNO2
= cNO2O

e−k′t

with the apparent half-life given by

t′1∕2 = 0.693
k′

The apparent half-life of this pseudo-first-order reaction is stated to be t′
1∕2

=
2.0 h when the CO(g) concentration is 5.0 × 10−5 mol∕cm3. Thus, we can deter-
mine k′ as

k′ = 0.693
t′
1∕2

= 0.693
7200 s

= 9.6 × 10−5∕s

As expected, k′ has units of s−1.
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The true rate constant k can be determined from the pseudo-first-order rate
constant and the CO(g) concentration:

k = k′

cCO
=

9.6 × 10−5∕s

5.0 × 10−5 mol∕cm3
= 1.9 (mol/cm3 ⋅ s)−1

The final part of the question asks what would happen to the apparent rate
constant k′ and the true rate constant k if the CO(g) concentration was doubled.
Be careful! This can be tricky. As shown in Equation 3.59, the true rate constant
is independent of concentration. Thus, it would not change if the CO(g) concen-
tration was doubled. However, the apparent rate constant k′ is proportional to the
CO(g) concentration, as indicated in Equation 3.60. Thus, doubling the CO(g)
concentration would double k′. The apparent half-life for the pseudo-first-order
reaction would commensurately decrease by a factor of 2. This concentration
dependence is a common property of apparent (pseudo) first-order rate constants
and half-lives. True rate constants (k) do not depend on concentration. Herein
lies the reason that it is very important to distinguish between them.

3.2.6 Incomplete Reactions/Equilibrium Reactions

In all of the discussions so far, it has been implicitly assumed that the reactions go
to completion. What this means is that the reactions are assumed to continue in the
forward direction as written until one of the reactants is completely depleted. For
many reactions, this assumption is reasonable. However, there are many other reac-
tions that do not go to completion. Instead, the reaction only proceeds partway and
an equilibrium state is reached where considerable concentrations of both the reac-
tants and product species remain in coexistence. This connects back to the concept of
dynamic equilibrium that we discussed in Chapter 2, when the forward and backward
reaction rates reach a balancing point.

Zero-order reaction kinetics are not consistent with incomplete reactions as
they predict reactions that will continue to progress until the reactant is completely
depleted. However, for first- and second-order reactions, incomplete reactions can
be approximately dealt with using the same mathematical framework that we have
already developed for complete reactions by simply incorporating an offset value
to the equations to account for the fact that when the reaction reaches equilibrium,
a certain concentration of reactant species will still be present. For first- and
single-species second-order reactions, the resulting modified equations are

First order: cA − cAeq
= (cA0

− cAeq
)e−kt (3.61)

Second order:
1

cA − cAeq

= 1
cA0

− cAeq

+ kt (3.62)

where cAeq
is the final (equilibrium) concentration of A when the reaction reaches

its equilibrium state. In these equations, it is assumed that cA0
> cAeq

so that the
reaction proceeds in the forward direction and A is consumed until the equilibrium
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concentration of A is attained. If cA0
< cAeq

, the reaction would instead proceed in
the reverse direction and A would be produced until the equilibrium concentration
was attained.

The equilibrium concentration of the reactants (e.g., cAeq
) can be determined from

thermodynamic equilibrium calculations (recall Chapter 2). Example 3.5 demon-
strates this approach for an equilibrium reaction involving H2(g), I2(g), and HI(g).

Example 3.5

Question: As we learned in Chapter 2, the hydrogen iodide decomposition
reaction

2HI(g) ⇌ H2(g) + I2(g) (3.63)

does not go to completion at most temperatures. Under most conditions, the
HI(g) only partially decomposes. Consider a reaction vessel initially filled with
pure HI(g) at room temperature and 1 atm pressure. At time t = 0 the HI(g)
begins to decompose. Assuming that the reaction is second order with respect to
the HI(g) concentration and that the rate constant k = 1 × 104 (mol/cm3 ⋅ s)−1,
determine the time it takes for the HI, H2, and I2 gases to attain 90% of
their final (equilibrium) values. Recall that the equilibrium constant for the
hydrogen iodide decomposition reaction is K = 1.6 × 10−3 at room temperature
(T = 300 K).

Solution: In order to calculate the time it takes for the reaction to progress 90%
of the way to equilibrium, we first need to establish the equilibrium values of the
HI, H2, and I2 gases. We learned how to do this in Exercise 2.3 (Chapter 2) and
we can apply the same approach here, although in this case the calculation is
simplified by the fact that the initial partial pressures of the product species are
zero. The reaction begins with Pinit

HI = 1 atm and Pinit
I2

= Pinit
H2

= 0. After reac-
tion, we can represent the resulting equilibrium partial pressures of the three
gases as Peq

HI = 1 − 2x and Peq
I2

= Peq
H2

= x. Following the same approach used in
Exercise 2.3 (except in this case H2 and I2 are being produced while HI is being
consumed), we can calculate x from the equilibrium constant:

K =
(Peq

I2
∕P∘I2 )(P

eq
H2
∕P∘H2

)

(Peq
HI∕P

∘
HI)2

= x2

(1 − 2x)2
(P∘I2 = P∘H2

= P∘HI = 1)

The solution for x in this case is quite straightforward:

x =
√

K

1 + 2
√

K
= 0.037 atm
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Thus the equilibrium pressures for the three gases are

Peq
I2

= Pinit
I2

+ x = 0 atm + 0.037 atm = 0.037 atm

Peq
H2

= Pinit
H2

+ x = 0 atm + 0.037 atm = 0.037 atm

Peq
HI = Pinit

HI − 2x = 1 atm − 2 ⋅ 0.037 atm = 0.926 atm

The problem asks to determine the time it takes for the HI, H2, and I2 gases to
attain 90% of their final (equilibrium) values, in other words, when

PI2 |90% = 0.9 ⋅ Peq
I2

= 0.9 ⋅ 0.037 atm = 0.033 atm

PH2
|90% = 0.9 ⋅ Peq

H2
= 0.9 ⋅ 0.037 atm = 0.033 atm

PHI|90% = 0.1 ⋅ (Pinit
HI − Peq

HI) + Peq
HI = 0.933 atm

The modified (approximate) second-order rate law for this reaction taking into
account the fact that the reaction does not go to completion but instead reaches
an equilibrium is given by Equation 3.62. For the HI reaction, this becomes

1
cHI − cHIeq

= 1
cHI0

− cHIeq

+ kt (3.64)

Since this rate law involves gas concentrations instead of gas pressures, the rel-
evant HI partial pressures must be converted to concentrations (mol/cm3) using
the ideal gas law:

cHI|90% =
PHI|90%

RT

= 0.933 atm ⋅ 101,300 Pa/atm
8.314 J∕(mol ⋅ K) ⋅ 300 K

1 m3

(100 cm)3
= 3.79 × 10−5 mol∕cm3

cHI0
=

Pinit
HI

RT

= 1 atm ⋅ 101,300 Pa/atm
8.314 J∕(mol ⋅ K) ⋅ 300 K

1 m3

(100 cm)3
= 4.06 × 10−5 mol∕cm3

cHIeq
=

Peq
HI

RT

= 0.926 atm ⋅ 101,300 Pa/atm
8.314 J∕(mol ⋅ K) ⋅ 300 K

1 m3

(100 cm)3
= 3.76 × 10−5 mol∕cm3
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Finally, inserting these concentrations into Equation 3.64 and solving for
time yields

t|90% = 1
k

(
1

cHI|90% − cHIeq

− 1
cHI0

− cHIeq

)

= 1

1 × 104 (mol/cm3 ⋅ s)−1

(
1

3 × 10−7 mol∕cm3
− 1

3.0 × 10−6 mol∕cm3

)

= 300 s

Exact Treatment of Equilibrium Reaction Kinetics

The treatment of incomplete reaction kinetics via Equations 3.61 and 3.62 is a
rough approximation. A more exact treatment of incomplete/equilibrium reaction
kinetics requires simultaneous consideration of the rates for both the forward and
reverse reaction processes. For a simple first-order reaction of the form

A ⇌ B (3.65)

the speed of the forward reaction process can be described with a forward rate
constant kf while the speed of the reverse reaction process can be described with
a reverse rate constant kr. These rate constants are not necessarily equal. When
the reaction reaches equilibrium, however, the forward and reverse reaction rates
must be equal, and so

At equilibrium:
dcA

dt
= −kfcAeq

= −
dcB

dt
= −krcBeq

Therefore

cAeq
kf = cBeq

kr

cAeq

cBeq

=
kr

kf
(3.66)

As you may recall from Chapter 2, the equilibrium constant for a reaction, K,
is given by the ratio of the equilibrium product versus reactant activities (concen-
trations) raised to their corresponding stoichiometric coefficients (which are all
1 in this elementary reaction). This leads to an extremely important relationship
between the equilibrium constant and the ratio of the forward and reverse reaction
rates for an elementary reaction:

K ≡

cAeq

cBeq

=
kr

kf
(3.67)
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The solution of the integrated rate laws for even this very simple equilibrium reac-
tion between A and B is lengthy as it involves a system of differential equations.
However, integrated rate law expressions for the reactant (A) and product (B) con-
centrations as a function of time can eventually be obtained:

cA = cA0

1
kf + kr

(kr + kfe
−(kf+kr)t) + cB0

kr

kf + kr
(1 − e−(kf+kr)t) (3.68)

cB = cA0

kf

kf + kr
(1 − e−(kf+kr)t) + cB0

1
kf + kr

(kf + kre
−(kf+kr)t) (3.69)

where cA0
and cB0

are the initial concentrations of A and B, respectively.

3.2.7 Summary of Homogeneous Reaction Kinetics

Table 3.1 summarizes the main kinetic equations associated with zero-, first-, and
second-order reactions (assuming complete reaction).

3.3 TEMPERATURE DEPENDENCE OF REACTION KINETICS:
ACTIVATION THEORY

At the outset of this chapter, we noted three fundamental principles of reaction
kinetics:

1. Reaction rates depend (usually) on reactant concentration.

2. Reaction rates depend on reaction complexity.

3. Reaction rates depend exponentially on temperature.

TABLE 3.1 Summary of Zero-, First-, and Second-Order Reactions

Second Order

Zero Order First Order c2
A cAcB

Rate law
dcA

dt
= −k

dcA

dt
= −kcA

dcA

dt
= −kc2

A

dcA

dt
= −kcAcB

Integrated cA = cA0
− kt cA = cA0

e−kt 1
cA

= 1
cA0

+ kt
cA

cB

=
cA0

cB0

exp
[
kt
(b

a
cA0

−cB0

)]

Units for k
concentration

time
1

time
1

concentration ⋅ time
1

concentration ⋅ time

Half-life
cA0

2k
ln 2
k

1
kcA0

−
ln

(
2 − b

a

cA0

cB0

)

k
(

b

a
cA0

− cB0

)

Note: For second-order reaction involving both A and B, A is assumed to be in stoichiometric excess
relative to B, i.e., cA0

> (a∕b)cB0
, where a and b are the stoichiometric coefficients for reactants A and B

appearing in the balanced chemical reaction equation.
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The first two principles are captured directly by the reaction rate laws and the
concepts of reaction order that we have discussed in the foregoing sections. How-
ever, where does the temperature dependence of the reaction rate enter into these
equations?

The answer is that the temperature dependence is embedded inside of k, the rate
constant. As we will see in this section, the rate constant depends on temperature
because it captures the probability that reactants will have sufficient energy to undergo
reaction, and this probability generally increases exponentially with increasing tem-
perature.

In order to understand k and its temperature dependence, it is helpful to examine a
typical chemical reaction process at the atomistic scale, such as the hydrogen iodide
decomposition reaction shown in Figure 3.5. As this figure illustrates, in order for
the hydrogen iodide decomposition reaction to occur, two HI molecules must first
collide (Figure 3.5a). However, not all collisions lead to successful reaction. In order
to successfully react, molecules must collide at just the right angle and must possess
sufficient energy to overcome the energetic barrier to the reaction. This minimum
required energy is known as the activation energy ΔGact (or Eact if expressed in units
of eV). The activation energy reflects the fact that a certain amount of energy must
be supplied in order to begin to break the reactant bonds (in this case the H–I bonds),

FIGURE 3.5 (a) Schematic illustration of the hydrogen iodide decomposition reaction at
the atomic scale. The reaction rate depends on the frequency at which HI molecules collide
with one another and the probability that these molecules possess sufficient energy to react
when they do collide. Only molecules that have sufficient energy to overcome the activa-
tion barrier (ΔGact) can react. Because the energetic distribution of gas molecules follows a
Maxwell–Boltzmann distribution as shown in (b), only the highest energy gas molecules in the
exponential tail of the distribution possess sufficient energy to successfully react.
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thereby leading to an “activated state” where it then becomes energetically downhill
to form new product bonds (in this case H–H and I–I bonds) in their place (Figure 3.5).

In general, only a small fraction of reactant molecules will have this minimum
sufficient energy to react. In fact, because the energetic distribution of gas molecules
follows a Maxwell–Boltzmann distribution as shown in Figure 3.5b, only the high-
est energy gas molecules in the exponential tail of the distribution possess sufficient
energy (E > Eact) to successfully react.

Summarizing this atomic-level picture of the reaction process, we can understand
that the overall reaction rate should be given by frequency at which the reactants
collide multiplied by the probability that they have sufficient energy to react when
they do collide:

Reaction Collision probability that colliding molecules
= ×

rate frequency possess necessary energy to react

Because collision requires two HI molecules to come together, the collision fre-
quency scales with the square of the HI concentration:

Collision frequency = f ⋅ (cHI)2

where f is a collision frequency factor that depends (among other things) on steric
considerations, the temperature, and the masses and collision diameters of the reac-
tants. Typical collision frequency factors for gas-phase reactions may be on the order
of 109/s–1012/s.1

Because only the highest energy gas molecules in the exponential tail of the dis-
tribution possess sufficient energy to successfully react, the probability that colliding
molecules possess sufficient energy to react is given by an exponential function that
depends on the activation energy and the temperature:

Probability that colliding molecules
= e−ΔGact∕RT

possess necessary energy to react

Combining these terms leads to an overall expression for the reaction rate:

Reaction rate =
dcHI

dt
= −f ⋅ (cHI)2 ⋅ e−ΔGact∕RT

Thus

dcHI

dt
= −k(cHI)2 (where k = f e−ΔGact∕RT )

where we have made this expression equivalent to our previous expression for
second-order reaction kinetics by grouping the non-concentration-dependent terms
into the rate constant k. The rate constant can thus be identified as an exponentially

1For a second-order reaction, f will have units of 1/(s⋅mol).
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temperature-sensitive term that depends on the reaction activation energy and
a frequency factor. Oftentimes you will see the temperature dependence of k
expressed as

k = k0e−ΔGact∕RT (3.70)

where k0 essentially takes on the same meaning as f and incorporates the collision
rate, steric/geometric factors, and other small corrections into account (although it is
most often determined empirically).

Example 3.6

Question: A reaction has ΔGact = 50 kJ∕mol. What temperature would be
required to double k for this reaction compared to its value at T = 300 K?

Solution: As we have done for a number of problems, the easiest way to solve
this problem is to set up a ratio. At temperature T1, the rate constant is k1, while
at temperature T2, the rate constant is k2. From Equation 3.70 we can write

k1

k2
=

k0e−ΔGact∕RT1

k0e−ΔGact∕RT2

= exp

[
−
ΔGact

R

(
1
T1

− 1
T2

)]
(3.71)

Solving this expression for T2 and noting that if the rate constant has doubled at
T2, then k2 = 2k1 allows us to determine T2:

T2 =
(

1
T1

+ R
ΔGact

ln
k1

k2

)−1

=
(

1
T1

+ R
ΔGact

ln
k1

2k1

)−1

=
(

1
300 K

+
8.314 J∕(mol ⋅ K)

50,000 J∕mol
ln

1
2

)−1

= 310 K (3.72)

Thus, a 10 K increase in temperature is sufficient to double the rate constant for
this reaction! Many biological rate processes that occur near room/body temper-
atures have activation energies on the order of 50 kJ∕mol, and thus the guideline
that a 10 K increase in temperature can double the reaction rate is a useful rule
of thumb. Of course, for reactions with activation energies that are far from
50 kJ∕mol, this rule of thumb will not be accurate.
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3.4 HETEROGENEOUS CHEMICAL REACTIONS

As discussed in the first part of this chapter, most reactions involving the solid state
(and hence most reaction processes of interest in materials kinetics) are heteroge-
neous. In the following sections, we will introduce several examples of heterogeneous
reaction processes involving gas/solid interfaces. These examples serve as a bridge
connecting the homogeneous gas-phase reaction processes we learned about in the
previous sections of this chapter with issues that are important to materials scientists
and engineers. Later, in chapters 5 and 6 of this textbook, we will delve more deeply
into heterogeneous gas–solid, liquid–solid, and solid–solid kinetic processes.

3.4.1 Effect of Catalyst

As is apparent from Equation 3.70, decreasing the size of the activation barrier ΔGact
will increase k and therefore increase the reaction rate. The most common way that
this can be accomplished is by using a catalyst. A catalyst is a material which partic-
ipates in the reaction process and thereby facilitates a faster reaction rate but is itself
not consumed during the reaction. A catalyst increases the reaction rate by lower-
ing the activation barrier for the reaction. This effect is illustrated schematically in
Figure 3.6. Because ΔGact appears as an exponent in the equation for k, even small
decreases in the activation barrier can cause large effects. Using catalysts therefore
provides a way to dramatically increase reaction rates.

There are several ways in which a catalyst can decrease the activation barrier for
a reaction. In general, the basic idea is that the catalyst temporarily hosts (i.e., by
absorbing on its surface) one or more of the reactant species participating in the reac-
tion and, in so doing, provides a better, lower energy pathway for the reaction process
to occur. For example, the catalyst can lower the activation energy by immobilizing
reactant species in an optimal orientation to react. It can also help weaken (or even
completely cleave) reactant bonds, thereby lowering the amount of additional energy
that must be supplied to activate the reaction.

FIGURE 3.6 Schematic illustration of the effect of a catalyst. The use of a catalyst
can significantly lower the activation barrier for a reaction (ΔGcat

act < ΔGact). Because k
depends exponentially on ΔGact, a catalyst can therefore cause a dramatic increase in
reaction rate.
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FIGURE 3.7 Evolution of electron orbitals as a hydrogen molecule approaches a cluster of
platinum atoms. (a) Platinum and hydrogen molecule are not yet interacting. (b), (c) Atomic
orbitals begin overlapping and forming bonds. (d) Complete separation of hydrogen atoms
occurs almost simultaneously with reaching the lowest energy configuration. This figure was
calculated using a quantum mechanical simulation technique known as density functional the-
ory (DFT).

Reactions involving catalysts are heterogeneous because they proceed on the sur-
face of the catalyst. In order to understand the effect of the catalyst, it is therefore
important to understand the heterogeneous interaction between the reacting species
and the catalyst phase. As an example of this interaction, consider the catalytic reac-
tion depicted at the atomic scale in Figure 3.7, which shows the first step in the oxida-
tion of hydrogen taking place on a platinum catalyst surface. As shown in Figure 3.7a,
the hydrogen molecule consists of two hydrogen atoms strongly held together by
an electron bond. The three-dimensional (3D) surface drawn around the hydrogen
molecule in Figure 3.7a is a physical representation of the electron density in the
molecule. In effect, the electron density distribution defines the spatial “extent” and
“shape” of the molecule.

In Figure 3.7b, we watch as the hydrogen molecule begins to interact with
a platinum catalyst cluster. As the hydrogen molecule gets closer and closer
(Figures 3.7b–d) bonds between the hydrogen molecule and the platinum atoms are
formed. The new emerging bonds between platinum and hydrogen lead to weakening
of the hydrogen–hydrogen bond and ultimately to complete separation. Thus, the
platinum catalyst facilitates the separation of the hydrogen molecule into hydrogen
atoms, which thereby activates these atoms so that they can more easily react
with oxygen (or other oxidant species) in subsequent reaction steps with very little
additional activation energy required. By completely weakening the bonds between
the hydrogen molecule reactants, the platinum catalyst therefore dramatically lowers
the activation energy barrier for the hydrogen oxidation reaction.
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In the absence of the platinum cluster, this reaction would not occur as easily;

instead, significant energy input would be required to induce separation.

Example 3.7

Question: A reaction has ΔGact = 50 kJ∕mol. Upon employing a catalyst, the
activation energy is decreased toΔGcat

act = 20 kJ∕mol. Assuming all else is equal,
how much faster is the catalyzed reaction at T = 300 K compared to the original,
uncatalyzed reaction?

Solution: Once again, setting up a ratio enables an easy solution to this prob-
lem. Because reaction rates are directly proportional to the rate constant (this is
true for all reactions, be they zero order, first order, second order, etc.), we can
compare the reaction rates for the catalyzed and uncatalyzed reaction processes
by comparing their rate constants:

Catalyzed Rxn rate

Uncatalyzed Rxn rate

=
kcat

kuncat
=

k0e−ΔGcat
act∕RT

k0e−ΔGact∕RT

= exp
(
− 1

RT
(ΔGcat

act − ΔGact)
)

= exp

(
− 1

8.314 J∕(mol ⋅ K) ⋅ 300 K
(20,000 J∕mol − 50,000 J∕mol)

)

= 1.7 × 105

In other words, a 60% decrease in the activation energy has translated to a
more than 100,000× increase in the reaction rate! This is why catalysts are so
important—even small decreases in the activation energy for a reaction can lead
to huge increases in reaction rate.

There are several important caveats to the simple example we have worked
here. First, we have implicitly assumed that the reaction order does not change
for the catalyzed reaction process compared to the uncatalyzed reaction
process. However, because catalysts can provide completely new reaction
pathways, the reaction order (and hence the rate law) can sometimes change
significantly between the homogeneous uncatalyzed reaction and the hetero-
geneous catalyzed reaction process. In addition, compared to an uncatalyzed
homogeneous gas-phase reaction that can occur anywhere within the volume
of the gas phase, a heterogeneous solid surface catalyzed reaction can occur
only on the surface of the catalyst. This fact would be reflected in different
units for the rate constant for the homogeneous reaction process versus the
heterogeneous reaction process (khom vs. khet). Thus, the overall reaction rate
per unit volume for the catalyzed process depends very strongly on the amount
of catalyst surface area per unit volume. This is why catalysts are designed to
have extremely high active surface areas for maximum effectiveness.
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3.4.2 Gas–Solid Surface Reaction Processes

Gas–solid reactions are among the most common type of heterogeneous reaction
processes. The platinum surface catalyzed oxidation of hydrogen, discussed in the
previous example, is an excellent example of a heterogeneous gas–solid surface reac-
tion process. In Chapter 5, we will study a number of different gas–solid kinetic
processes in great detail. To prepare for those studies, in this section we will discuss
a few more simple gas–solid surface reaction processes.

Perhaps appropriately, we will continue this discussion through the context of
platinum catalysts, which have enormous commercial application in a variety of het-
erogeneous chemical reaction processes. Although Pt catalysts are extraordinarily
effective in accelerating many reactions, they are expensive and are also susceptible
to poisoning. For example, carbon monoxide (CO) permanently absorbs onto plat-
inum, clogging up reaction sites. The CO-passivated Pt surface is thus “poisoned,”
and other desired reaction processes can no longer occur. Because CO is often present
as a reactant or intermediate species in many of the reaction processes where Pt is used
as a catalyst, this CO poisoning process can cause significant problems.

Using concepts from reaction kinetics, it is possible to understand this poison-
ing process and gain some insight into how it can be mitigated. The key question to
address is how fast will a Pt surface be poisoned by CO and what are the main factors
that impact this poisoning process? As we have done when treating the kinetics of
other reaction processes in this chapter, a first step is to describe the CO poisoning
process using a chemical equation:

CO(g) + available Pt surface site ⇌ Pt − CO(ads) (3.73)

This poisoning process is schematically illustrated at the atomic scale in Figure 3.8.
The next step is to write a rate equation (based on experimental evidence) that

correctly captures the reaction order and hence the rate law for this reaction process.

FIGURE 3.8 Schematic illustration of CO poisoning a Pt catalyst surface. This is an example
of a heterogeneous gas–solid surface reaction process and can be described using reaction
kinetic principles very similar to those we developed for homogeneous gas-phase reactions.
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In this case, the rate law has been experimentally determined to be first order with
respect to CO and also first order with respect to the Pt surface sites available for
reaction (second order overall). Since we would like to know how fast the Pt surface
is poisoned, we write the rate law in terms of the CO surface coverage, Φ:

Surface coverage = Φ =
CO poisoned surface sites

total surface sites
(3.74)

The concentration of available (unpoisoned) surface sites is therefore given by

Available surface sites = 1 − Φ (3.75)

The rate law can then be written as

dΦ
dt

= kcCO(g)(1 − Φ) (3.76)

This gas–solid reaction is a self-limiting process that leads, at most, to a monolayer
of CO gas coverage on the catalyst. Once all of the available Pt surface sites have
reacted, no further CO will adsorb on the surface of the Pt. This is expressed by the
fact that when the CO surface coverage (Φ) goes to 1, the reaction rate (dΦ∕dt) goes
to zero.

Just as in previous cases, an integrated rate law can be obtained by integrating this
equation in order to determine the CO poisoning as a function of time. To simplify
this integration, we will assume that the CO concentration in the gas phase is signif-
icantly higher that the concentration of Pt surface sites that can be poisoned. Thus,
even when CO fully covers the Pt surface, the depletion of CO from the gas phase is
negligible. (Alternatively, we can assume that there is a constantly replenished flow
of gas above the surface of the Pt catalyst which would also effectively fix the CO
gas concentration at a constant value.) This simplification enables this second-order
reaction to be reduced to a pseudo-first-order reaction and makes integration easy:

dΦ
dt

= −kcCO(g)(1 − Φ)

∫

dΦ
1 − Φ

= −kcCO(g) ∫
dt

ln
1 − Φ
1 − Φ0

= −kcCO(g)t

Φ = 1 − (1 − Φ0)e−kcCO(g)t (3.77)

where Φ is the fraction of the Pt surface that is poisoned by CO at time t and Φ0 is
the initial CO surface coverage at time t = 0. For an initially clean (unpoisoned) Pt
surface,Φ0 would be 0. For this CO poisoning process, the surface coverage increases
with time, as shown in Figure 3.9, approaching a value of 1 (completely poisoned
surface) at long times.
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FIGURE 3.9 Change in surface coverage versus time for the irreversible adsorption (poi-
soning) of Pt by CO gas. Starting from an initial CO surface coverage (Φ0) at time t = 0, Φ
approaches a value of 1 (completely poisoned surface) at long times.

Example 3.8

Question: If the rate constant for the CO poisoning reaction on Pt is k = 1.0 ×
105 (mol/cm3 ⋅ s)−1 at T = 300 K, calculate how long it would take for an ini-
tially clean Pt surface to be 80% poisoned by CO at T = 300 K assuming it is
exposed to a flowing gas stream containing 100 ppm CO at 1 atm total pressure.

Solution: We must first calculate the concentration of CO in the flowing gas
stream using the ideal gas law and the fact that it contains 100 ppm (i.e.,
100∕106) CO:

cCO = 100
106

Ptot

RT
= 100

106

1 atm ⋅ 101,300 Pa/atm
8.314 J∕(mol ⋅ K) ⋅ 300 K

1 m3

(100 cm)3

= 4.06 × 10−9 mol∕cm3

We can then use Equation 3.77 to solve for the time t when Φ = 0.8 (80% CO
coverage) given Φ0 = 0 (initially clean surface):

t = − 1
kcCO

ln
1 − Φ
1 − Φ0

= − 1
kcCO

ln(1 − Φ) (Φ0 = 0)

= − 1

1.0 × 105 (mol/cm3 ⋅ s)−1 ⋅ 4.06 × 10−9 mol∕cm3
ln(1 − 0.80)

= 3964 s = 66 min

Thus, even for a relatively low level (100 ppm) of CO impurity in a flowing gas
stream, this Pt surface would be 80% poisoned within about 1 h! Its effectiveness
as a catalyst would then be greatly diminished as the adsorbed CO would block
other gases from accessing catalytic Pt surface sites.
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The analysis above detailing the kinetics of the CO-poisoning reaction implicitly
assumed an irreversible (i.e., complete) reaction. In other words, the gas adsorp-
tion process is assumed to continue until the Pt surface is completely covered (sat-
urated) with CO. This assumption is reasonable for the CO poisoning reaction on
Pt and for many other gas–solid surface reactions, especially at lower temperatures
where thermodynamics favors gas adsorption. (Quick quiz question: Can you pro-
vide a thermodynamic argument for why lower temperatures favors gas adsorption?)
However, at higher temperatures and for certain gas–solid reactions, complete cov-
erage may not occur. Instead, a balance between gas adsorption and gas desorption
can occur, resulting in an equilibrium surface coverage somewhere between Φ = 0
and Φ = 1.

As was discussed in the context of Equation 3.65, for reactions that do not go to
completion both the forward and backward reaction processes can be characterized
with their own distinct rate constants and the equilibrium condition can be identified
where the rates of the forward and backward reaction processes are equal. For the
CO adsorption process on Pt, rate laws for the forward and reverse reactions can be
written as

Forward reaction:
dΦ
dt

= kfcCO(g)(1 − Φ) (3.78)

Reverse reaction:
dΦ
dt

= krΦ (3.79)

Note that the reverse reaction process only depends on the CO surface coverage and
not the gas-phase CO concentration. Essentially, this expresses the fact that the prob-
ability of the desorption process only involves the concentration of CO atoms on the
surface of the solid—it does not depend on the concentration of CO in the gas phase
above the surface.

At equilibrium, the forward and reverse reaction rates must be equal, and so
we have

kfcCO(g)(1 − Φeq) = krΦeq

Φeq =
KcCO(g)

KcCO(g) + 1
(3.80)

where K =
kf

kr

Recall from our previous section on incomplete reaction processes that the ratio of the
rate constants for the forward and reverse reaction processes yields the equilibrium
constant K for the reaction. Thus, in the case of an incomplete reaction, this equi-
librium constant, in concert with the gas-phase CO concentration, would determine
the equilibrium surface coverage of CO. This equation is known as the Langmuir
isotherm and it is one of a number of physical models that is frequently encountered
when describing gas–solid adsorption processes.
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3.5 CHAPTER SUMMARY

The purpose of this chapter was to introduce the basic concepts and tools used to
understand and model the rate (or speed) of chemical reaction processes. The main
points introduced in this chapter include:

• At the most basic level, a chemical reaction involves the breaking, forming,
and/or rearrangement of chemical bonds. This process depends on random
thermal motions/vibrations to bring reactants together so that bond breaking/
forming can occur. It also requires overcoming an energy barrier (quantified
by an activation energy) which impedes the conversion of reactants into
products. Because of these factors, reaction rates tend to depend on (1) reactant
concentration, (2) reaction complexity, and (3) temperature.

• Reaction processes can occur homogeneously or heterogeneously. A homoge-
neous chemical reaction is a reaction where the reactants and products are all
in one phase and the reaction can proceed anywhere throughout the volume of
the considered system.

• A heterogeneous chemical reaction is a reaction where more than one phase is
involved. Heterogeneous reactions can generally only proceed at the interface
between the involved phases.

• Mathematical rate laws can be developed to describe the rate at which a reaction
process occurs. This rate is typically expressed in terms of the change in the
concentration of a particular species taking place in the reaction as a function of
time. Often, both differential (dci∕dt) and integrated [ci(t)] rate laws are useful
for answering questions about a chemical reaction process.

• The mathematical form of the reaction rate law for a specific chemical reaction
depends on the order of the reaction, which is itself dictated by the reaction
mechanism. Reaction order cannot be determined from a simple inspection of a
stoichiometric chemical reaction; it must be determined empirically from exper-
iment or from detailed knowledge about the underlying reaction mechanism.

• Analytical rate law expressions are available for zero-, first-, and second-order
reaction processes. First- and second-order reaction processes are the most com-
mon in everyday occurrence.

• The integrated rate law for a zero-order reaction is cA = cA0
− kt, where cA is

the concentration of reactant species A at time t and cA0
is the initial concentra-

tion of reactant species A at time t = 0. For a zero-order reaction, the reactant
concentration decreases linearly with time. The rate constant k for a zero-order
reaction has units of concentration/time.

• The integrated rate law for a first-order reaction is cA = cA0
e−kt, where cA is the

concentration of reactant species A at time t and cA0
is the initial concentration

of reactant species A at time t = 0. For a first-order reaction, the reactant con-
centration decreases exponentially with time. The rate constant k for a first-order
reaction has units of time−1.
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• A second-order reaction can be second order with respect to a single reactant
or first order with respect to two distinct reactants. If the reaction is second
order with respect to a single reactant (e.g., A), the integrated rate law is 1∕cA =
1∕cA0

+ kt, where cA is the concentration of reactant species A at time t and cA0
is the initial concentration of reactant species A at time t = 0. If the reaction is
first order with respect to two distinct reactants (e.g., A and B), the integrated
rate law is

cA

cB
=

cA0

cB0

exp
[
kt(b

a
cA0

− cB0
)
]

where cA and cB are the concentrations of reactant species A and B at time
t and cA0

and cB0
are the initial concentrations of reactant species A and B

at time t = 0. From the concentration decay profile, it is often difficult to tell
the difference between many first- and second-order reactions. However, for
second-order reactions, the rate constant k will have units of (concentration ⋅
time)−1.

• The relative speed of a reaction is sometimes characterized in terms of its
half-life, which quantifies the time required for a reaction to consume half of its
initial reactant concentration. This is particularly true for first-order reactions,
where the half-life is easy to obtain mathematically as t1∕2 = 0.693∕k.

• Under certain circumstances, second-order reactions can sometimes be approx-
imated as first-order reactions. This is particularly true for a second-order reac-
tion that is first order with respect to two distinct reactants if one of the reactants
is present in extreme excess. If one of the rate-controlling reactant concen-
trations is much larger than the other rate-controlling reactant concentration,
then it will remain essentially constant during the reaction process while the
other reactant is fully consumed. In this situation, the second-order rate law can
be rewritten as a pseudo-first-order rate law. For example, for the case where
cB ≫ cA,

dcA

dt
= −kcAcB = k′cA (where k′ = kcB)

where k′ is the pseudo-first-order rate constant, which has units of time−1.

• The rate laws developed in this chapter all assume that the reactions go to com-
pletion. While this a reasonable assumption for many reactions, there are many
others where the reaction proceeds only partway and an equilibrium state is
reached where considerable concentrations of both the reactant and product
species remain. The rate expressions in this chapter can be modified to approx-
imately account for this by incorporating a mathematical offset into the rate
equation: for example,

First order: cA − cAeq
= (cA0

− cAeq
)e−kt

Second order:
1

cA − cAeq

= 1
cA0

− cAeq

+ kt
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where cAeq
is the final (equilibrium) concentration of A when the reaction

reaches its equilibrium state. In these equations, it is assumed that cA0
> cAeq

so that the reaction proceeds in the forward direction and A is consumed
until the equilibrium concentration of A is attained. If cA0

< cAeq
, the reaction

would instead proceed in the reverse direction and A would be produced until
the equilibrium concentration was attained. The equilibrium concentration of
the reactants (e.g., cAeq

) can be determined from thermodynamic equilibrium
calculations (recall Chapter 2). It is important to note that this treatment of
incomplete reaction kinetics is only a crude approximation. A more accurate
treatment requires the solution of a simultaneous system of differential
equations involving both the forward and backward reaction rates.

• The temperature dependence of the reaction rate is embedded inside of the
reaction rate constant k. The rate constant depends on temperature because it
captures the probability that reactants will have sufficient energy to undergo
reaction. This probability increases exponentially with increasing temperature
as k = k0e−ΔGact∕RT , where ΔGact is the activation energy required to convert
reactants into products.

• Catalysts can decrease the activation energy for a reaction and hence dramati-
cally increase the reaction rate. A catalyst participates in a reaction process and
thereby facilitates a faster reaction but is itself not consumed during the reac-
tion. A catalyst can decrease the activation energy for a reaction, for example,
by providing a better, lower energy pathway for the reaction process to occur
or by helping to weaken (or even completely cleave) reactant bonds, thereby
lowering the amount of additional energy that must be supplied to activate the
reaction.

• Heterogeneous gas–solid surface adsorption reaction processes can frequently
be treated using the same reaction rate law approach used for homogeneous
chemical reactions. In such cases, surface sites are often a key reactant, and
their concentration is often represented in terms of a fractional occupancy or
availability [e.g., Φ or (1 − Φ)]. Using these principles, as an example, the rate
at which a Pt surface is poisoned by CO gas adsorption can be modeled as Φ =
1 − (1 − Φ0)e

−kcCO(g) t, where Φ is the fraction of the Pt surface that is poisoned
by CO at time t and Φ0 is the initial CO surface coverage at time t = 0. For
the case of incomplete or partial surface reactions, various kinetic expressions
for the equilibrium surface coverage, such as the Langmuir Isotherm, can be
derived.

3.6 CHAPTER EXERCISES

Review Questions

Problem 3.1. True (T) or False (F).

(a) Fe(𝛾) → Fe(𝛼) is a homogeneous reaction.

(b) dcA∕dt = −kcAcB is a first-order reaction rate law.
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(c) The “half-life” of a first-order reaction is the time it takes for the reaction to go
to half of its final value.

(d) For the reaction A + 2B → C, the rate equation must be: dcA∕dt = −kcAcB
2.

(e) Decreasing the activation energy of a reaction by half will increase the reaction
rate by a factor of 2.

Problem 3.2. Define the following:

(a) Catalyst

(b) Homogeneous chemical reaction

(c) Half-life

(d) Phase

Problem 3.3. Consider the integrated second-order rate law for a reaction which is
first order with respect to two distinct reactants (A and B). In the text, two different
expressions were given for this rate law: Equations 3.52 and 3.53.

(a) Prove that these two expressions are equivalent.

(b) Using Equation 3.52, determine the limits for this expression at t = 0 and for
t → ∞.

Problem 3.4. An exact treatment of equilibrium reaction kinetics for reactions that
do not go to completion was discussed in a dialog box in the text. Expressions 3.68
and 3.69 were provided as integrated rate laws for a simple equilibrium first-order
reaction between A and B where the forward rate constant is given by kf and the
backward rate constant is given by kr. Prove that as t → ∞, these expressions yield
the equilibrium concentrations of species A and B (cAeq

and cBeq
).

Calculation Questions

Problem 3.5. If the rate constant k for a first-order reaction doubles with a change
in temperature from T = 300 K to T = 320 K, what is ΔGact?

Problem 3.6. In 2010, a stunning collection of Ice Age fossils, including several
Wooly Mammoths, was found in an ancient high-altitude lake-bed near Snowmass,
Colorado. Many of the fossils were “radiocarbon dead,” meaning that they were so old
nearly all traces of carbon-14 had decayed away. However, radiocarbon dating was
successfully conducted on some of the “younger” mammoth fossils. If the half-life
of 14

6C is 5730 yr:

(a) Calculate the reaction rate constant (yr−1) for this radioactive decay.

(b) Calculate the age of the youngest mammoth fossils given that the 14
6C concen-

tration in these remains had decreased to 0.14 of the initial value at the time of
sampling in 2010.

(c) Calculate the minimum age of the “radiocarbon dead” fossils given that 14
6C con-

centration can be measured reliably down to 1% of the initial level.
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Problem 3.7. You have synthesized a new radioactive material which you
have named OHarium (OHa) in honor of the professor that wrote your favorite
undergraduate textbook on materials kinetics.

(a) You measure the rate of radioactive emission from 1 mol of OHa immediately
after synthesis to be 6000 disintegrations/s. Exactly five days later, the rate has
decreased to 5800 disintegrations/s. Based on this information, calculate the
first-order reaction rate constant (s−1) for the nuclear disintegration of OHa.

(b) What is the half-life of OHa (in years)?



CHAPTER 4

TRANSPORT KINETICS (DIFFUSION)

Kinetic processes almost always involve flows of energy or matter. For example,
solidification involves the transport of atoms (matter) from the liquid phase to the
solid–liquid interface, while the heat (energy) generated by solidification must be
transported away from this interface. The transport of energy or matter to/from loca-
tions undergoing change is therefore a crucial and often rate-limiting step in many
kinetic processes. This is especially true in the solid state, where transport rates are
typically much slower than in the liquid or gaseous states of matter.

While there are many different types of transport processes, the transport of matter
via diffusion will be the central focus of this chapter due to its particular impor-
tance in solid-state kinetic processes. Nevertheless, we will begin with a general
overview of transport theory and discuss a number of transport processes, including
electrical conduction, heat conduction, convection, and diffusion, as well as several
interesting coupled transport processes such as electromigration, thermal diffusion,
and thermal–electrical phenomena. We will then delve into the detailed phenomeno-
logical treatment of diffusion, where we will learn to apply mathematical equations
(Fick’s first and second laws) to describe both steady-state and transient diffusion pro-
cesses. While we will focus on the phenomenological treatment of mass diffusion, the
approaches that we develop can also be applied to describe heat and charge transport
with very little modification. The chapter homework exercises will provide several
opportunities to do so. After dealing with the phenomenological treatment of diffu-
sion, we will examine the atomistic mechanisms underlying diffusion, with special
emphasis on solid-state diffusion mechanisms. Finally, we will briefly discuss several
important high-diffusivity pathways in solids, such as dislocations and grain bound-
aries, where diffusion can sometimes proceed at a much faster pace than the typical

84
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“bulk” rate. These high-diffusivity paths can therefore play a very important role in
determining the overall mass transport behavior of microstructurally inhomogeneous
solids, a theme that we will revisit in Chapter 7.

4.1 FLUX

The rate at which mass, charge, or energy moves through a material is generally quan-
tified in terms of flux (denoted with the symbol J). Flux measures how much of a
given quantity flows through a material per unit area per unit time. Figure 4.1 illus-
trates the concept of flux: Imagine water flowing down this tube at a volumetric flow
rate of 10 L/s. If we divide this flow rate by the cross-sectional area of the tube (A),
we get the volumetric flux JA of water moving down the tube. In other words, JA
gives the per-unit-area flow rate of water through the tube. Be careful! Recognize
that flux and flow rate are not the same thing. A flux represents a flow rate that has
been “normalized” by a cross-sectional area.

The most common type of flux is a molar flux [typical units are mol/(cm2 ⋅ s)].
Molar fluxes are convenient when discussing the transport of atoms or molecules by
diffusion in the solid, liquid, or gas phase. In addition to molar flux, however, there
are a variety of other commonly encountered types of flux:

Mass flux is another way to measure the flux of a species moving through a material
in terms of mass rather than molar units. Mass flux and molar flux are related by

Jmass,i = Jmol,iMi (4.1)

where Jmass,i is the mass flux of species i [typical units are g∕(cm2 ⋅ s)], Jmol,i
is the molar flux of species i, and Mi is the molecular weight of species i (e.g.,
g∕mol).

FIGURE 4.1 Schematic of flux. Imagine water flowing down this tube at a volumetric flow
rate of 10 L/s. Dividing this flow rate by the cross-sectional area of the tube (A) gives the flux
JA of water moving down the tube. Fluxes of matter, especially for solid species, are more
commonly measured in molar rather than volumetric terms. In this example, then, the liters of
water could be converted to moles. Do you know how?
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Number flux quantifies flux in terms of the raw number of atoms or molecules
of the species that is moving. It is related to the molar flux by Avogadro’s
number:

JN,i = Jmol,iNA (4.2)

where JN,i is the number flux of species i [typical units are no./cm2 ⋅ s] and NA

is Avogadro’s number (6.022 × 1023∕mol).

Volume flux is yet another way to quantify the flux of a species, using the volume
rather than mass or moles of the species to describe the rate of transport. Volume
flux is related to mass, molar, or number flux by the species density, molar
volume, or atomic volume:

Jvol,i = Jmass,i
1
𝜌i

(4.3)

= Jmol,i
Mi

𝜌i
= Jmol,iVm,i (4.4)

= JN,i

Vm,i

NA
= Jmol,iΩi (4.5)

where Jvol,i is the volume flux of species i [typical units are cm3∕(cm2 ⋅ s) =
cm∕s], 𝜌i is the mass density of species i (e.g., g∕cm3), Vm,i is the molar volume
of species i (typical units are cm3∕mol), and Ωi is the atomic volume of species
i (Ωi = Vm,i∕NA). The units for volume flux reduce to the units associated
with velocity (e.g., cm∕s), and, indeed, volume flux is sometimes described
as a measure of species transport velocity. This is particularly common in gas
or liquid media transport, where the volume flux is also known as the “super-
ficial velocity.” Warning: Please note that special care must be given when
calculating densities/concentrations/volumes of species if they are present as
part of a compound or mixture with other species. Revisit Section 2.10 and
the accompanying Chapter 2 homework problems for further details about
this issue.

Charge flux is a special type of flux that measures the amount of charge that flows
through a material per unit area per unit time. Only the movement of charged
species—e.g., electrons, holes, or ions—can give rise to a charge flux. Neu-
tral atoms or molecules do not contribute. Typical units for charge flux are
C∕(cm2 ⋅ s) = A∕cm2. From these units, you may recognize that charge flux is
the same thing as current density. The quantity ziF is required to convert from
molar flux Ji to charge flux Jq, where zi is the charge number for the carrier
(e.g., zi is +1 for Na+, −2 for O2−, etc.) and F is Faraday’s constant:

Jq = ziFJi (4.6)

Heat flux JQ is a flux of thermal energy (heat). The typical units are J∕(cm2 ⋅ s).
Because 1 J∕s = 1 W, the units for heat flux are often given as W∕cm2.
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4.2 FLUXES AND FORCES

While there are many possible types of flux, a single common principle underpins
all transport phenomena. This is the idea that a driving force must be present to
cause the transport process to occur. If there is no driving force, there is no reason to
move! This applies equally well to the transport of matter as it does to the transport
of heat or charge. The governing equation for transport can be generalized (in one
dimension) as

Ji =
∑

k

MikFk (4.7)

where Ji represents a flux of species i, Fk represent the k different forces acting on
i, and the Mik’s are the coupling coefficients between force and flux. The coupling
coefficients quantify the relative ability of a species to respond to a given force with
movement as well as the effective strength of the driving force itself. The coupling
coefficients are therefore a property both of the species that is moving and the
material through which it is moving. This general equation is valid for any type of
transport (charge, heat, mass, etc.) and can be used to capture the coupled effect of
multiple driving forces acting simultaneously.

As an example of the application of Equation 4.7, consider the coupling between
electrical conduction and heat conduction, which is at the heart of the well-known
thermoelectric effect. In a system subjected to both a temperature gradient (dT∕dx)
and a voltage gradient (dV∕dx), the resulting fluxes of heat (JQ) and charge (Jq) are
given as1

JQ = −MQQ
1
T
𝜕T
𝜕x

− MQq
𝜕V
𝜕x

(4.8)

Jq = −MqQ
1
T
𝜕T
𝜕x

− Mqq
𝜕V
𝜕x

(4.9)

These equations express the fact that the charge flux and heat flux each depend on
both the temperature gradient and the voltage gradient. This coupling means that a tem-
perature gradient can induce current flow even in the absence of an applied voltage or a
potential gradient can be used to pump heat even in the absence of (or possibly against)
a temperature gradient! These two phenomena are known as the Seebeck effect and the
Peltiereffect, respectively.Theyenableanumberof fascinating thermoelectricdevices,
including Peltier coolers (which harness the Peltier effect for solid-state refrigeration)
and thermoelectric generators (which convert temperature gradients into electrical
power). In addition to thermoelectric effects, coupled force/flux effects underly other
fascinating transport phenomena that are sometimes important in materials kinetics,
including thermodiffusion (mass diffusion due to a temperature gradient), electromi-
gration (mass diffusion due to an electrical current), and stress-driven diffusion. These
coupled diffusion processes will be detailed in Section 4.4.5.

1Fourier’s law of heat conduction is generally written as JQ = −𝜅(𝜕T∕𝜕x). However, the thermal conduc-
tivity 𝜅 contains a 1∕T temperature dependence which is explicitly manifested when generalized mobilities
are used, as in Equations 4.8 and 4.9.
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4.3 COMMON TRANSPORT MODES (FORCE/FLUX PAIRS)

While the coupling of multiple fluxes and driving forces is important in certain situa-
tions, transport can frequently be described more simply in terms of sets of uncoupled
fluxes that are each driven by a single direct (conjugate) dominant driving force. This
results in a simplification of Equation 4.7 to a single term for each flux, where the
flux of a species i can be related directly (and exclusively) to its conjugate driving
force. This approximation is often valid because:

1. In many situations only one driving force is present or significant (e.g., when
considering heat transport in many systems, there is often only a temperature
gradient present, while pressure, voltage, and chemical potential gradients are
not present).

2. Even when several gradients are present, often only the conjugate force/flux
coupling coefficients are appreciable, while the cross-coefficients are too small
to be meaningful. In the coupled charge and heat transport example expressed
in Equations 4.8 and 4.9, this means that MQQ and Mqq are large but MQq and
MqQ are small, often so small as to not be meaningful. Of course, for ther-
moelectric applications, materials are purposely selected/designed so that they
have as large cross-coefficients as possible in order to magnify thermoelectric
coupling effects.

You are likely already familiar with many of the simple direct force/flux pair rela-
tionships that are used to describe mass, charge, and heat transport—they include
Fick’s first law (diffusion), Ohm’s law (electrical conduction), Fourier’s law (heat
conduction), and Poiseuille’s law (convection). These transport processes are sum-
marized in Table 4.1 using molar flux quantities. As this table demonstrates, Fick’s
first law of diffusion is really nothing more than a simplification of Equation 4.7 for

TABLE 4.1 Summary of Selected Transport Processes

Transport Process Driving Force Coupling Coefficient Equation

Diffusion Concentration
(dc

dx

)
Diffusivity (D) J = −D

dc
dx

Fick’s law

Electrical conduction Voltage
(dV

dx

)
Electrical Conductivity (𝜎) Je =

𝜎

|zi|F
dV
dx

Ohm’s Law

Heat conduction Temperature
(dT

dx

)
Thermal Conductivity (𝜅) JQ = −𝜅 dT

dx
Fourier’s Law

Convection Pressure

(
dp

dx

)
Viscosity (𝜇) Jconv = Gc

𝜇

dp

dx
Poiseuille’s law

Note: The transport equation for convection in this table is based on Poiseuille’s law, where G is a geometric
constant and c is the concentration of the transported species. Convection flux is often calculated simply
as J = 𝑣ci, where 𝑣 is the transport velocity.
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the case where the mass diffusion of a species i can be directly and exclusively related
to its chemical potential gradient; the direct coefficient relating the diffusion flux and
its driving force in this case is known as the diffusivity. Similarly, electrical conduc-
tivity 𝜎 is nothing more than the name of the coefficient that describes how charge
flux and electrical driving forces are related. For heat transport due to a temperature
gradient, the relevant coefficient is called thermal conductivity while for transport due
to a pressure gradient, the relevant coefficient is called viscosity.

Convection versus Diffusion

As both diffusion and convection involve the transport of mass, it is important to
understand the differences between them:

• Convection refers to the transport of a species by bulk motion of a fluid under
the action of a mechanical force, typically a pressure gradient.

• Diffusion refers to the transport of a species due to a gradient in chemical
potential (concentration).

Figure 4.2 illustrates the difference between the two transport modes. In the
solid state, mass is typically transported by diffusive mechanisms and convective
transport is usually unimportant. In the gas and liquid state, however, both diffu-
sion and convection can be important. Interestingly convection turns out to be far
more “effective” at transporting species compared to diffusion in the gas and liq-
uid states. Very small pressure gradients are typically sufficient to transport large
fluxes of liquid or gas species down pipes or through channels. The field of fluid
dynamics deals with the detailed understanding and treatment of convective trans-
port processes. Because it is generally far less important for solid-state kinetic
processes (except, for example, certain processes like molten metal casting), we
will not tackle convective transport and fluid dynamics in this textbook.

FIGURE 4.2 Convection versus diffusion. (a) Convective fluid transport in this system
moves material from the upper tank to the lower tank. (b) A concentration gradient between
white and gray particles results in net diffusive transport of gray particles to the left and
white particles to the right.
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4.4 PHENOMENOLOGICAL TREATMENT OF DIFFUSION

Under most circumstances, the transport of matter in materials can be treated using
two mathematical equations known as Fick’s first and second laws of diffusion. These
two laws are quite general and can be applied to many diffusion problems in solids,
liquids, and gases. Fick’s first law deals with steady-state diffusion, while Fick’s sec-
ond law deals with transient diffusion. Figure 4.3 shows the differences between the
two. This figure illustrates the solid-state diffusion of hydrogen through a Pd metal
membrane, a process that can be modeled using Fick’s first and second laws.

Palladium is an interesting metal because it permits the rapid transport of hydrogen
through its lattice structure via an atomic diffusion mechanism. Thus, a thin Pd mem-
brane can be used as a selective filter for the separation or purification of hydrogen
gas. This technology has potentially important implications for a number of industrial
chemical conversion applications.

Starting at time t = 0, the left side of the Pd membrane in Figure 4.3 is exposed
to a gas stream containing H2 mixed with undesired impurities. The right side of the
membrane is exposed to a vacuum. Because of the difference in hydrogen chemical
potential between the two sides of the membrane, there is a driving force for hydro-
gen to transport across the membrane. Because only hydrogen can diffuse through
the membrane, this effect can be used to purify the hydrogen gas, hence eliminating
the undesired impurities. Initially, before exposure, the concentration of hydrogen
everywhere inside the membrane is zero. However, once hydrogen gas is introduced
on the left-hand side of the membrane, some of this hydrogen will begin to diffuse

FIGURE 4.3 Diffusion of hydrogen across a Pd membrane illustrating both transient and
steady-state diffusion processes. Both the transient evolution of the hydrogen concentration
profile across the membrane during the initial stages of this process and the steady-state diffu-
sion of hydrogen through the membrane once the final linear concentration gradient has been
established can be mathematically modeled using Fick’s second and first laws, respectively.



4.4 PHENOMENOLOGICAL TREATMENT OF DIFFUSION 91

into the Pd. The hydrogen concentration on the left edge of the membrane rapidly
reaches a limit given by the solubility of the hydrogen in the Pd metal (c∘H). Then,
hydrogen atoms slowly begin to diffuse across the membrane. As more and more
hydrogen diffuses into the membrane from the left-hand side, the hydrogen con-
centration profile inside the membrane gradually evolves as a function of time until
finally a steady-state situation is reached where the hydrogen concentration varies lin-
early across the membrane. Once this steady-state concentration profile is reached,
the hydrogen concentration no longer varies as a function of time across the mem-
brane. At steady state, hydrogen continues to diffuse through the membrane from the
left-hand side to the right-hand side. However, the rate at which fresh hydrogen enters
the membrane on the left is exactly balanced by the rate at which hydrogen exits the
membrane on the right. This steady state is reached because the hydrogen concen-
tration on the left-hand side of the membrane is fixed at c = c∘H by the solubility of
hydrogen in Pd while the hydrogen concentration on the right-hand side is fixed at
c = 0 because the vacuum ensures that any hydrogen transporting all the way across
the membrane is immediately pulled away as hydrogen gas.

A mathematical model can be constructed to predict the transient evolution of the
hydrogen concentration profile across the membrane during the initial stages of this
process. A model can also be constructed to predict the steady-state diffusion of
hydrogen through the membrane once the final linear concentration gradient has been
established. The steady-state process is modeled using Fick’s first law of diffusion,
while the transient process is modeled using Fick’s second law of diffusion. In the
sections below, you will learn how to apply both of these laws to model this and other
diffusion problems. Because Fick’s first law is mathematically simpler, we will begin
there.

4.4.1 Steady-State Diffusion: Fick’s First Law

Fick’s first law of diffusion deals with the diffusional transport of matter under
steady-state conditions. Steady state means that the concentration profile of the
diffusing species does not vary as a function of time:

Steady state:
𝜕ci

𝜕t
= 0 (4.10)

In one dimension (1D), Fick’s first law is commonly given as2

Ji = −Di
𝜕ci

𝜕x
(4.11)

where Ji is the flux of species i, Di is the diffusivity of species i (which depends both
on the nature of species i and the medium through which it is diffusing), and 𝜕ci∕𝜕x
is the concentration gradient of species i.

Fick’s first law indicates that the flux of a diffusing species i is proportional to its
concentration gradient. Fick’s first law expresses the fundamental concept that matter

2The more precise version of Fick’s first law relates the flux of a species i to its chemical potential gradient
(e.g., 𝜕𝜇i∕𝜕x in 1D). Under many circumstances, however, this can be simplified to the more common
expression involving the concentration gradient.
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tends to flow “down” a concentration gradient from regions of higher concentration to
regions of lower concentration. Furthermore, Fick’s first law indicates that the rate of
diffusion (i.e., the size of the flux) depends on the magnitude of the diffusivity and the
steepness of the concentration gradient. Higher diffusivities and steeper concentration
gradients lead to larger fluxes.

Fick’s first law (as well as Fick’s second law) can be widely applied to model
many diffusion processes in gases, liquids, or solids. The equations do not change
between these phases—what changes is the diffusivity. Diffusivities tend to be high
in gases, lower in liquids, and very low in solids, thereby capturing the differences in
relative speed of diffusional transport between these three phases of matter. In solids,
diffusivities tend to be on the order of 10−8–10−20cm2∕s, which means that even
diffusion over relatively small distances (e.g., micrometers) can take hours, days, or
even longer. A detailed derivation of Fick’s first law based on an atomistic picture of
diffusion is provided in Section 4.5.3.

A simple example showing how Fick’s first law can be applied to model the
steady-state diffusion of hydrogen in Pd is provided below.

Example 4.1

Question: We wish to investigate the steady-state rate at which a thin Pd
permeation membrane can filter hydrogen. In this example, consider a Pd
membrane L = 10 μm thick operated at 200 ∘C. The diffusivity of H in Pd
at 200 ∘C is 10−5 cm2∕s. Assume that one side of the membrane is exposed
to a gas stream containing a hydrogen gas partial pressure of PI

H2
= 1 atm

while the other side of the membrane is exposed to vacuum (PII
H2

= 0 atm). At

200 ∘C and PH2
= 1 atm, the solubility of H in Pd is c∘H = 10−2 mol H/cm3.

(a) What is the steady-state flux of hydrogen (JH2
) across this membrane (in

units of mol H∕cm2s)? (b) How many standard liters of hydrogen gas per
minute (SLPM) could be produced with 1 m2 of membrane area under these
conditions? (c) If the membrane thickness is reduced by a factor of 2, will the
flux of hydrogen through the membrane increase or decrease and by how much?

Solution: (a) We can apply Fick’s first law to calculate the steady-state flux of
hydrogen atoms (H) through the Pd membrane based on the steady-state concen-
tration gradient in H that is established across the membrane and the diffusivity
of H in Pd. At steady state, the hydrogen concentration profile across the mem-
brane is linear, as shown in Figure 4.3, and thus the gradient is easily calculated
from the concentration difference between the two sides of the membrane and
the membrane thickness:

JH = −DH∕Pd|200 ∘C
𝜕cH

𝜕x
= −DH∕Pd|200 ∘C

0 − c∘H
L

(4.12)

= −10−5 cm2∕s ⋅
0 − 10−2 mol H/cm3

10 μm(1 cm∕10−4 μm)
= 10−4 mol H/cm2 s
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This calculated flux is in terms of H atoms since the diffusion process across the
Pd membrane involves individual H atoms (rather than H2 molecules). However,
we are asked to calculate the flux of H2 across the membrane. The H2 molecules
dissociate and dissolve into the Pd on the high-pressure side of the membrane as
H atoms; the reverse process occurs on the low-pressure side of the membrane:

High H2 pressure side: H2(g) → 2HPd

Low H2 pressure side: 2HPd → H2(g)

Thus, the H atom flux through the membrane and the resulting effective H2 flux
can be directly related as

JH2
= (1∕2)JH (4.13)

And so in this case we have

JH2
= 1

2
10−4 mol H/cm2s = 5 × 10−5 mol H/cm2s

(b) The total amount of hydrogen that can be filtered through 1 m2 of Pd
membrane per minute can be calculated from the flux as

ṅH2
= JH2

⋅ APd = 5 × 10−5 mol H/cm2s ⋅ 1 m2 ⋅
(100 cm)2

1 m2
⋅

60 s
1 min

= 30 mol H2∕min

We can then apply the ideal gas law to convert this into standard liters of hydro-
gen per minute (note that, by definition, a standard liter is calculated at T =
300 K and P = 1 atm even though the Pd membrane in this example is operated
at 200 ∘C):

V̇H2
=

ṅH2
RT

P
=

30 mol H2∕min ⋅ 8.134 J∕(mol ⋅ K) ⋅ 300 K

101300 Pa
= 0.74 SLPM

Thus it would take a little more than 2.7 min to fill a 2-L Coke bot-
tle with pure H2 filtered from 1 m2 of this Pd membrane under these
conditions.

(c) If the thickness of the membrane is decreased by half, the flux of hydro-
gen through the membrane will increase commensurately by a factor of 2. This
can be seen by the inverse dependence between flux and thickness shown in
Equation 4.12. One of the primary ways to increase the performance of perme-
ation membranes is, therefore, to make them thinner.



94 TRANSPORT KINETICS (DIFFUSION)

4.4.2 Transient Diffusion: Fick’s Second Law

Fick’s second law of diffusion deals with the diffusional transport of matter under
transient (time-dependent) conditions. Transient means that the concentration profile
of the diffusing species varies as a function of time:

Transient:
𝜕ci

𝜕t
≠ 0 (4.14)

In 1D, Fick’s second law is commonly given as3

𝜕ci

𝜕t
= Di

𝜕
2ci

𝜕x2
(4.15)

where 𝜕ci∕𝜕t is the time-dependent concentration profile of species i. We can use
Fick’s second law to “watch” how a non-steady-state diffusion profile evolves as a
function of time. Under the condition that D ≠ f (c), Fick’s second law indicates that
the rate of change of a concentration gradient is proportional to its curvature. Regions
of high curvature (i.e., “sharp” features) evolve quickly, while regions of low cur-
vature evolve more slowly. Furthermore, Fick’s second law indicates that a species
will accumulate in regions where its concentration profile manifests positive curva-
ture (concave up), while a species will dissipate from regions where its concentration
profile is negative (concave down). Thus, Fick’s second law predicts that abrupt con-
centration profile features tend to be smoothed out over time (see Figure 4.4).

FIGURE 4.4 Schematic illustration of the evolution of a complex diffusion profile as a func-
tion of time. Regions of sharp curvature are rapidly “smoothed out” while regions of lower
curvature change more slowly. The result is a gradual relaxation of the concentration profile
until a steady-state (in this case uniform) concentration profile is achieved. Note that concen-
tration decreases with time in regions of negative curvature and increases with time in regions
of positive curvature. We can mathematically model this transient process as a function of time
using Fick’s second law of diffusion.

3A more precise version of Fick’s second law includes the diffusivity inside the first spatial differential
as 𝜕ci∕𝜕t = 𝜕∕𝜕x[Di(𝜕ci∕𝜕x)]. However, under the (common) assumption that the diffusion coefficient is
independent of position, this expression reduces to Equation 4.15.
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Derivation of Fick’s Second Law

Fick’s second law is essentially an expression of the principle of mass conserva-
tion. It can be derived directly from the conservation of mass and Fick’s first law.
Consider the 1D diffusion of a species i from left to right down a tube as shown in
Figure 4.5. Mass conservation states that the rate at which species i accumulates
(or depletes) in an infinitesimal slice of this tube is given by rate at which i enters
into this slice from the left minus the rate at which i leaves this slice to the right.
In other words,

Rate of accumulation = rate of entry − rate of exit

(A Δx) ⋅
𝜕ci

𝜕t
= A ⋅ Ji,in − A ⋅ Ji,out (4.16)

where Ji,in and Ji,out are the fluxes of species i into and out of the tube slice and
A and Δx are respectively the cross-sectional area and thickness of the tube slice.
In the limit of an infinitesimal tube slice thickness (Δx → 0), this expression
reduces to

𝜕ci

𝜕t
= −

Ji,out − Ji,in

Δx
= −

𝜕Ji

𝜕x
(4.17)

applying Fick’s first law to this expression [Ji = −Di(𝜕ci∕𝜕x)] and assuming that
Di is independent of position lead to the familiar equation for Fick’s second law:

𝜕ci

𝜕t
= − 𝜕

𝜕x

(
−Di

𝜕ci

𝜕x

)
= Di

𝜕
2ci

𝜕x2
(4.18)

FIGURE 4.5 Derivation of Fick’s second law. The rate at which species i accumulates
within the control volume described in this figure is given by the difference between the
rates at which species i enter and depart from the control volume. Based on the control
volume geometry, the accumulation rate can be related to the flux of species i into and out
of the control volume.
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Equation 4.15 is a second-order partial differential equation. When treating
diffusion phenomena with Fick’s second law, the typical aim is to solve this equation
to yield solutions for the concentration profile of species i as a function of time
and space [ci(x, t)]. By plotting these solutions at a series of times, one can then
watch how a diffusion process progresses with time. Solution of Fick’s second
law requires the specification of a number of boundary and initial conditions. The
complexity of the solutions depends on these boundary and initial conditions.
For very complex transient diffusion problems, numerical solution methods based
on finite difference/finite element methods and/or Fourier transform methods are
commonly implemented. The subsections that follow provide a number of examples
of solutions to Fick’s second law starting with an extremely simple example and pro-
gressing to increasingly more complex situations. The homework exercises provide
further opportunities to apply Fick’s Second Law to several interesting “real world”
examples.

Boundary Conditions and Initial Conditions

The solution of Fick’s second law for any specific situation requires additional
input information on the initial configuration and geometry of the diffusion prob-
lem. This required input information takes the form of boundary conditions and
initial conditions. It is important to understand what these terms mean.

• Boundary conditions provide information about the behavior of the diffu-
sion system at the physical edges (i.e., “boundaries”) of the problem domain.
Boundary conditions typically come in two basic forms:

1. Specified concentration at a boundary: e.g., ci(x = 0, t) = c∘i
2. Specified flux at a boundary: e.g., Ji(x = 0, t) = J∘i
Boundary conditions specify behavior at a specific location (i.e., for 1D prob-
lems, at a specific value of x).

• Initial conditions provide information about the initial concentration distri-
bution within the system at some initial time. In order to predict the evolution
of a concentration profile within a system as a function of time, it is neces-
sary to know the starting profile at t = 0. This starting concentration profile
information is supplied as the initial condition. In the simplest case, if the
concentration of species i is initially zero everywhere in the problem domain,
the initial condition would be ci(x, t = 0) = 0. The initial concentration pro-
file can be as simple or as complex as desired (consider, for example, the
initial concentration profile shown in Figure 4.4), although obtaining solu-
tions to Fick’s second law for anything other than relatively simple initial
concentration profiles generally requires numerical methods.

Initial conditions specify behavior at a specific time (i.e., at a specific
value of t, usually t = 0).
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Transient Semi-Infinite Diffusion The simplest transient diffusions problems
are generally those that involve semi-infinite or infinite boundary conditions. Con-
sider, for example, the situation illustrated in Figure 4.6, which represents diffusion
of a substance from a surface into a semi-infinite medium.

In the real world, of course, no medium actually extends to infinity. However,
infinite or semi-infinite boundary conditions are fully appropriate for many finite sit-
uations in which the length scale of the diffusion is much smaller than the thickness of
the material. In such cases, the material appears infinitely thick relative to the scale of
the diffusion—or, in other words, the diffusion process never reaches the far bound-
aries of the material over the relevant time scale of interest. Since typical length scales
for solid-state diffusion processes are often on the micrometer scale, even diffusion
into relatively thin films can often be treated using semi-infinite or infinite bound-
ary condition approaches. Semi-infinite and infinite transient diffusion has therefore
been widely applied to understand many real-world kinetic processes—everything
from transport of chemicals in biological systems to the doping of semiconductor
films to make integrated circuits.

When solving Fick’s second law for any specific problem, the first step is always
to specify the boundary and initial conditions. For the semi-infinite diffusion pro-
cess illustrated in Figure 4.6 as an example, the concentration of species i is initially
constant everywhere inside the medium at a uniform value of c∘i . At time t = 0, the
surface is then exposed to a higher concentration of species i (c∗i ), which causes i to
begin to diffuse into the medium (since c∗i > c∘i ). It is assumed that the surface con-
centration of species i is held constant at this new higher value c∗i during the entire
transient diffusion process. Based on this discussion, we can mathematically specify
the boundary and initial conditions as follows:

• Boundary condition: ci(x = 0, t) = c∗i
• Initial condition: ci(x ≥ 0, t = 0) = c∘i

FIGURE 4.6 Schematic illustration of the transient semi-infinite diffusion of a species i from
the surface into the bulk of a medium. The concentration of species i at the surface of the
medium is assumed to be held fixed at c∗i while the initial concentration of species i within the
bulk of the medium is assumed to be c∘i . As time elapses, species i diffuses deeper and deeper
into the medium from the surface. Since the medium is semi-infinitely thick, this process can
proceed indefinitely and the concentration of species i never reaches c∗i anywhere inside the
medium except at the surface. This figure assumes that c∗i > c∘i ; however, the reverse situation
(which would involve out-diffusion of i from the bulk) could be similarly modeled.
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Thus, the transient diffusion problem in this case is fully specified by the following:

ci(x = 0, t) = c∗i

ci(x ≥ 0, t = 0) = c∘i
𝜕ci

𝜕t
= Di

𝜕
2ci

𝜕x2
x ≥ 0 (4.19)

The mathematics to obtain the analytical solution to Fick’s second law under these
conditions [5] are actually fairly involved. However, generalized analytical solutions
for this and many other diffusion problems have been obtained and compiled in exten-
sive reference books. In particular, Crank’s handy reference text, The Mathematics
of Diffusion [5], provides solutions to a wide range of transient diffusion problems.
For many diffusion problems, it is often sufficient to consult such a reference text in
order to obtain a generalized solution and then apply a particular problem’s specific
boundary and initial conditions to obtain a full solution.

For the semi-infinite transient diffusion problem specified by Equation 4.19, the
general solution is given by

ci(x, t) = A + B erfc

[
x

2
√

Dit

]
x ≥ 0 (4.20)

where A and B are constants and erfc is a mathematical function known as the com-
plementary error function. The complementary error function and its relative, the
error function (erf), are frequently encountered in the solutions to transient diffu-
sion problems. We will be using these two functions extensively, so it is important to
become intimately familiar with them. The dialog box below provides more informa-
tion about erf and erfc. Example problems 4.2 and 4.3 then provide practice working
with the error function and complementary error function in solutions to semi-infinite
and infinite transient diffusion problems.

Error Function (erf[𝝎]) and Complementary Error Function (erfc[𝝎])

The error function is closely related to the integral of the standard normal (i.e.,
Gaussian) distribution and is defined by the equation

erf[𝜔] = 2√
𝜋
∫

𝜔

0
e−s2

ds (4.21)

The error function owes its name to its application in statistics, where it is used
in the description and characterization of measurement errors. However, the
error function and its cousin, the complementary error function, are frequently
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encountered in a number of other fields, including transient diffusion. The
complementary error function is related to the error function as

erfc[𝜔] = 1 − erf[𝜔] (4.22)

Figure 4.7 provides a graph of the error function and the complementary error
function while Table 4.2 provides a look-up table of numerical values for the error
function—you will find these to be handy when working diffusion problems that
have error function solutions.

Table 4.3 summarizes several values of the error function and the comple-
mentary error function that are quite useful to remember when evaluating limits
associated with diffusion problems involving the error function.

FIGURE 4.7 Graph of error function erf[𝜔] and complimentary error function erfc[𝜔].

TABLE 4.2 Important Values of Error
Function and Complementary Error Function

erf[𝜔] Value erfc[𝜔] Value

erf[−∞] −1 erfc[−∞] 2

erf[0] 0 erfc[0] 1

erf[∞] 1 erfc[∞] 0
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TABLE 4.3 Look-up Table of Error Function Values

𝜔 erf[𝜔] 𝜔 erf[𝜔] 𝜔 erf[𝜔] 𝜔 erf[𝜔]

0.00 0.000000 0.40 0.428392 0.80 0.742101 1.40 0.952285
0.02 0.022565 0.42 0.447468 0.82 0.753811 1.44 0.958297
0.04 0.045111 0.44 0.466225 0.84 0.765143 1.48 0.963654
0.06 0.067622 0.46 0.484655 0.86 0.776100 1.52 0.968413
0.08 0.090078 0.48 0.502750 0.88 0.786687 1.56 0.972628
0.10 0.112463 0.50 0.520500 0.90 0.796908 1.60 0.976348
0.12 0.134758 0.52 0.537899 0.92 0.806768 1.70 0.983790
0.14 0.156947 0.54 0.554939 0.94 0.816271 1.80 0.989091
0.16 0.179012 0.56 0.571616 0.96 0.825424 1.90 0.992790
0.18 0.200936 0.58 0.587923 0.98 0.834232 2.00 0.995322
0.20 0.222703 0.60 0.603856 1.00 0.842701 2.10 0.997021
0.22 0.244296 0.62 0.619411 1.04 0.858650 2.20 0.998137
0.24 0.265700 0.64 0.634586 1.08 0.873326 2.30 0.998857
0.26 0.286900 0.66 0.649377 1.12 0.886788 2.40 0.999311
0.28 0.307880 0.68 0.663782 1.16 0.899096 2.50 0.999593
0.30 0.328627 0.70 0.677801 1.20 0.910314 2.60 0.999764
0.32 0.349126 0.72 0.691433 1.24 0.920505 2.70 0.999866
0.34 0.369365 0.74 0.704678 1.28 0.929734 2.80 0.999925
0.36 0.389330 0.76 0.717537 1.32 0.938065 2.90 0.999959
0.38 0.409009 0.78 0.730010 1.36 0.945561 3.00 0.999978

Note: To determine corresponding values for the complementary error function, recall
that erfc[𝜔] = 1 − erf[𝜔]

Exact solution to the transient diffusion problem illustrated in Figure 4.6 may
be obtained by applying the boundary and initial conditions to the general solution
provided in Equation 4.20. First, applying the initial condition [ci(x, t = 0) = c∘i )]
yields

ci(x, t = 0) = c∘i = A + B erfc[∞]

c∘i = A (4.23)

Next, applying the boundary condition [ci(x = 0, t) = c∗i ] yields

ci(x = 0, t) = c∗i = A + B erfc[0]

c∗i = A + B

B = c∗i − A = c∗i − c∘i (4.24)
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Thus, the final exact solution for this specific semi-infinite transient diffusion problem
is given by

ci(x, t) = c∘i + (c∗i − c∘i )erfc

[
x

2
√

Dt

]
(4.25)

For the special case where c∘i = 0 (i.e., initial concentration of i inside the medium
is zero), the exact solution further simplifies to

ci(x, t) = c∗i erfc

[
x

2
√

Dt

]
(4.26)

In analogy to the “reaction half-life” that was discussed in Chapter 3, we can spec-
ify a “diffusion half-depth” in transient diffusion problems (𝛿1∕2) which is the spatial
position at which the concentration of the diffusing species reaches half of its surface
value. As an example, the diffusion half-depth for the semi-infinite diffusion process
in Equation 4.26 can be obtained as

ci(𝛿1∕2, t) ∶=
1
2

c∗i = c∗i erfc

[
𝛿1∕2

2
√

Dt

]

erfc

[
𝛿1∕2

2
√

Dt

]
= 1

2

Since erf[𝜔] = 1 − erfc[𝜔], we have

erf

[
𝛿1∕2

2
√

Dt

]
= 1 − erfc

[
𝛿1∕2

2
√

Dt

]

= 1 − 1∕2

= 1∕2

Then, using Table 4.3 we can determine that if erf[𝜔] = 1∕2, 𝜔 must be ≈0.475,
and so

𝛿1∕2

2
√

Dt
≈ 0.475 𝛿1∕2 ≈

√
Dt (4.27)

This expression reveals a characteristic square-root dependence between the
spatial extent of a transient diffusion process and the time elapsed. This square-root
dependence is very commonly observed in transient diffusion processes. Thus
Equation 4.27 can be a helpful way to roughly approximate the extent of progress of
a transient diffusion process in a material as a function of time.
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Example 4.2

Question: Steel can be hardened and made more corrosion resistant by heat
treating in a nitrogen atmosphere to diffuse nitrogen into the surface layer of
the steel. This process can be roughly modeled using semi-infinite transient dif-
fusion. Assume that a plate of steel is heat treated in a nitrogen environment
at 500 ∘C, where the solubility of nitrogen in steel is c∗N ≈ 0.5 mol % and the
initial background concentration of nitrogen in the steel is zero (c∘N = 0).

(a) Provide a sketch for this problem with as much detail as possible about the
problem geometry, the boundary and initial conditions, and your expectation
for how the diffusion of nitrogen into the steel will proceed as a function of
time (i.e., sketch curves for the nitrogen concentration profile inside the steel
sheet for several times).

(b) Provide the boundary condition and initial condition for this problem.

(c) Provide the general solution cN(x, t) to this problem.

(d) Based on your boundary and initial conditions, provide the exact solution to
this semi-infinite transient diffusion problem.

(e) Assuming the diffusivity of nitrogen in steel is DN∕steel = 10−9 cm2∕s at the
heat treatment temperature, determine how long it will take for the nitrogen
concentration 10 μm deep into the steel to reach 70% of its value on the
surface (i.e., 70% of c∗N)?

(f) How long would it take the nitrogen concentration 20 μm deep into the steel
to reach 70% of its value on the surface?

Solution:

(a)

(b) Based on the information provided in the problem statement, we can stipulate
the boundary and initial conditions for this problem as follows:
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• Boundary condition: cN(x = 0, t) = c∗N
• Initial condition: cN(x ≥ 0, t = 0) = 0

(c) As the transient diffusion of nitrogen into steel can be modeled as a
1D semi-infinite diffusion problem, the general solution is given by
Equation 4.20:

cN(x, t) = A + B erfc

[
x

2
√

Dit

]
x ≥ 0 (4.28)

(d) First, applying the initial condition cN(x, t = 0) = 0 yields

cN(x, t = 0) = 0 = A + B erfc[∞]

0 = A

Next, applying the boundary condition cN(x = 0, t) = c∗N yields

cN(x = 0, t) = c∗N = 0 + B erfc[0]

c∗N = B

Thus, the final exact solution for this specific semi-infinite transient diffusion
problem is given by

cN(x, t) = c∗N erfc

[
x

2
√

Dt

]
(4.29)

(e) We wish to know the time t when the concentration of N reaches 70% of c∗N
at x = 10 μm. Applying this criterion to Equation 4.29 yields

cN(x = 10 μm, t) = 0.7c∗N = c∗N erfc

[
10−3 cm

2
√

Dt

]

0.7 = erfc

[
10−3 cm

2
√

Dt

]

0.7 = 1 − erf

[
10−3 cm

2
√

Dt

]

erf

[
10−3 cm

2
√

Dt

]
= 0.3
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Using Table 4.3 we can determine that if erf[𝜔] = 0.3, 𝜔 must be ≈0.28,
and so

10−3 cm

2
√

Dt
≈ 0.28

t ≈ 1
D

(
10−3 cm
2 ⋅ 0.28

)2

≈ 1
10−9 cm2∕s

(
10−3 cm
2 ⋅ 0.28

)2

≈ 3200 s ≈ 53 min

(f) In order to determine the time t when the concentration of N reaches 70% of
c∗N at x = 20 μm, we could repeat the calculations above using this new value
for x. Alternatively, we can note the square-root relationship between x and
t in the erfc argument to infer that if the diffusion distance increases by 2×,
the time required will increase by 4×:

x1

2
√

Dt1
=

x2

2
√

Dt2

Thus:

x1

x2
=
√

t1
t2

So, in this example, because we have increased the desired diffusion distance
by a factor of 2 from 10 to 20 μm, the time required increases by a factor of
4 from 53 to 212 min:

10 μm

20 μm
=
√

53 min
t2

t2 = 22 ⋅ 53 min = 212 min

Transient Interdiffusion in Two Semi-Infinite Bodies The transient dif-
fusion problem illustrated in Figure 4.8, which involves the interdiffusion of two
semi-infinite bodies in contact with one another, is closely related to the previous
semi-infinite transient diffusion problem. In fact, if you consider just one-half of the
problem domain (e.g., consider the evolution of the diffusion profiles for species
A for x > 0), diffusion proceeds exactly like the previous semi-infinite diffusion
problem. The only difference is that in this case the interfacial concentration of
species A is assumed to be pinned at half of its bulk (i.e., pure material A) value,



4.4 PHENOMENOLOGICAL TREATMENT OF DIFFUSION 105

FIGURE 4.8 Transient interdiffusion of two semi-infinite bodies. Material A on the left (x <

0), assumed to be initially composed purely of species A, is in contact with material B on the
right (x > 0), which is assumed to be initially composed purely of species B. At time t = 0,
species A and B begin to interdiffuse. If the initial bulk concentrations and diffusivities of A
and B are equal, their concentrations at the interface will be pinned at 1∕2 c∗. The materials
will slowly diffuse into one another, but the position of the interface between them will not
move.

which yields a slight change to the boundary condition compared to the previous
problem:

cA(x = 0, t) = 1
2

c∗A

cA(x ≥ 0, t = 0) = 0

𝜕cA

𝜕t
= DA

𝜕
2cA

𝜕x2
(4.30)

The general solution is therefore the same as before:

cA(x, t) = A + B erfc

[
x

2
√

DAt

]
(4.31)

And application of the initial and boundary conditions yields

cA(x, t = 0) = 0 = A + B erfc[∞]

0 = A (4.32)

cA(x = 0, t) = 1∕2c∗A = A + B erfc[0]

1∕2c∗A = A + B

B = 1∕2c∗A − A = 1∕2c∗A (4.33)
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Thus, the final exact solution for this specific semi-infinite transient diffusion prob-
lem is given by

cA(x, t) =
1
2

c∗A erfc

[
x

2
√

Dt

]
(4.34)

The analogous solution for the transient diffusion of species B is (by inspection)

cB(x, t) = c∗B − 1
2

c∗B erfc

[
x

2
√

Dt

]

= 1
2

c∗B + 1
2

c∗B erf

[
x

2
√

Dt

]
(4.35)

This treatment implicitly assumes that species A and B are fully soluble in one
another and the rate of diffusion of species A within material B is equal to the rate of
diffusion of species B within material A, so that the spatial location of the “interface”
between materials A and B remains fixed (although it clearly becomes less abrupt as
time goes on). If these assumptions cannot be made, this interfacial diffusion prob-
lem must be modified and the solution becomes more complex. In particular, if the
diffusion of A within B and that of B within A are not equal, the A/B interface itself
can effectively move with time! See Section 4.4.3 for more details.

Example 4.3

Question: Two semi-infinite slabs, one made of pure species A and one of pure
species B, are joined together and heated so that A and B begin to interdiffuse.
Assuming that the diffusion of A into B and that of B into A are equal and
independent of concentration, derive an expression for the thickness of the “in-
terdiffusion region” as a function of time. For the purposes of this question, the
thickness of the interdiffusion region is bounded by the locations where the con-
centrations of species A and B fall to 1/10 of their initial values as they diffuse
into the opposing slabs.

Solution: To answer this question, it is helpful to first establish a sketch of the
problem, as shown in Figure 4.9. Considering first the diffusion of A into B from
left to right, we wish to determine the right-side boundary of the “interdiffusion
region.” As detailed in the problem statement, this corresponds to the location
(x value) where the concentration of species A falls to 1/10 of its initial bulk
value. As shown on the schematic illustration, we will call this location x =
𝛿. Applying this criteria to the solution for the transient interdiffusion of two
semi-infinite bodies gives

cA(x = 𝛿, t) = 1
10

c∗A = 1
2

c∗A erfc

[
𝛿

2
√

Dt

]

1
5
= erfc

[
𝛿

2
√

Dt

]
(4.36)
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FIGURE 4.9 Transient semi-infinite interdiffusion of materials A and B. At time t = 0,
species A and B begin to interdiffuse. The initial bulk concentrations and diffusivities of
A and B are equal, so their concentrations at the interface will be pinned at 1∕2c∗. The
materials will slowly diffuse into one another. The “interdiffusion region” (thickness =
2𝛿) is bounded by the locations where the concentrations of species A and B fall to 1/10
of their initial values as they diffuse into the opposing slabs. The interdiffusion region
increases with time.

Consulting Table 4.3 we can determine that, if erfc[𝜔] = 1∕5 = 0.20, then
erf[𝜔] = 0.80, and so 𝜔 must be ≈0.92. Thus

𝛿

2
√

Dt
≈ 0.92 𝛿 ≈ 1.84

√
Dt (4.37)

Similarly, the left-side boundary of the interdiffusion region corresponds to
the location where the concentration of species B falls to 1/10 of its initial bulk
value. Owing to the symmetry of the problem, this occurs at the location x = −𝛿.
Thus, the total thickness of the interdiffusion region is 2𝛿, which increases with
time according to

Interdiffusion region thickness = 2𝛿 = 3.68
√

Dt (4.38)

Transient Infinite Diffusion of a Rectangular Source As illustrated in
Figure 4.10, the transient infinite diffusion of a rectangular concentration profile
of thickness 2l can be determined by superimposing (in this case, subtracting)
the solutions for two semi-infinite step functions located at x = −l and x = +l,
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FIGURE 4.10 (a) The transient infinite diffusion of a rectangular concentration profile of
thickness 2l can be obtained by subtracting the solutions for two semi-infinite step func-
tions located at x = −l and x = +l, respectively. (b) Illustration of the subtraction of the two
semi-infinite step functions as they evolve with time, yielding the correct evolution of the tran-
sient diffusion profile for the rectangular source.

respectively. Mathematically

ci,1(x, t) =
1
2

c∗i erfc

[
x − l

2
√

Dt

]

ci,2(x, t) =
1
2

c∗i erfc

[
x + l

2
√

Dt

]

ci,tot(x, t) = ci,1(x, t) − ci,2(x, t) =
1
2

c∗i

(
erfc

[
x − l

2
√

Dt

]
− erfc

[
x + l

2
√

Dt

])

= 1
2

c∗i

(
erf

[
x + l

2
√

Dt

]
− erf

[
x − l

2
√

Dt

])
(4.39)

Transient Infinite Diffusion of a Thin Layer In this example, we consider
the transient diffusion of an infinitely thin layer of a diffusing species i placed in
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FIGURE 4.11 Transient diffusion of a thin layer between two semi-infinite bodies.

between two semi-infinite media, as shown in Figure 4.11. This situation is often a
useful approximation for a number of real-world diffusion problems, and even more
importantly it provides the basis for the construction of solutions to a variety of more
complex diffusion situations through the use of linear superposition principles (to
be discussed subsequently). The boundary and initial conditions for this “thin-film”
solution are:

1. ci(x = −∞, t) = 0

2. ci(x = +∞, t) = 0

3. Initial “amount” of species i at x = 0, t = 0 is Ni (units of moles/area).

The solution to Fick’s second law under these conditions is given by

ci(x, t) =
Ni√
4𝜋Dt

e−x2∕(4Dt) (4.40)

As shown in Figure 4.11 the thin-film solution yields a Gaussian concentration
profile that gradually broadens as a function of time. The total amount of species
i (the integral of the spatial concentration profile) stays constant, so as the profile
broadens, the peak concentration decreases.

Transient Infinite Diffusion of an Arbitrary Concentration Profile The
thin-film solution developed in the last section can be used to build solutions to
the transient diffusion of arbitrarily more complex starting diffusion profiles using
the concept of linear superposition, as schematically illustrated in Figure 4.12. The
basic idea is that the initial concentration profile can be built up by the linear superpo-
sition of a series of thin-film “point sources.” The overall transient diffusion response
of the system can then be calculated from the integrated transient diffusion response
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FIGURE 4.12 Schematic concept of the linear superposition of a series of thin-film point
source solutions to model the transient diffusion of arbitrary concentration profiles.

of all of the point sources, each of which obeys the thin-film solution we previously
obtained. This is an example of a general mathematical class of solutions known as
Green’s functions.

Applying this approach to a system with an arbitrary initial (starting) concentration
profile given by c∘i (x) [i.e., c∘i (x) = ci(x, t = 0)], the solution to Fick’s second law is
given by

ci(x, t) =
1√

4𝜋Dt ∫

+∞

−∞
c∘i (x

′)e−(x−x′)2∕(4Dt)dx′ (4.41)

This solution is only valid under the following important conditions:

1. D ≠ f (c)
2. ci(x = −∞, t) = 0

3. ci(x = +∞, t) = 0

The last two conditions mean that the problem must be framed within an infinite sys-
tem. When this approach is applied to arbitrary (but finite) real concentration profiles
in a numerical setting, the infinite system condition is typically met by including arti-
ficial concentration profile “buffer zones” at the edges of the finite problem domain
that taper to zero concentration (e.g., see Figure 4.12). Since we are only interested
in the evolution of the concentration profile well inside of these buffer zones, the
response at the edges can be ignored.

Transient Finite (Symmetric) Planar Diffusion In this section, we progress
from transient infinite diffusion problems to transient finite diffusion problems. In
many cases, the approaches and solutions to finite problems are quite similar to those
just discussed in the context of infinite diffusion problems. Transient finite diffu-
sion problems can often be solved using the separation-of-variables technique, which
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leads to trigonometric-series solutions (in Cartesian coordinate systems). Under cer-
tain boundary conditions (e.g., symmetric boundary conditions) and when D ≠ f (c),
the spatial and time-dependent components of the solution can be separated:

ci(x, t) = f (x)f (t) (4.42)

As an example, consider the transient finite diffusion of material into or out of a thin
plate of thickness L, as shown in Figure 4.13. The initial concentration profile of
species i inside the plate is constant (given by c∘i ), while the concentration of species
i on both surfaces of the plate is held constant at c∗i starting at time t = 0. If c∗i >

c∘i , i will diffuse into the plate (Figure 4.13a, infusion); if c∗i < c∘i , i will diffuse out
of the plate (Figure 4.13b, effusion). Such situations are frequently encountered in
many real-world problems, including carbonization/nitridation (case hardening) of
materials (infusion) and degassing or outgassing processes (effusion). The initial and
boundary conditions for this problem are:

1. ci(0 < x < L, t = 0) = c∘i
2. ci(x = 0, t) = c∗i
3. ci(x = L, t) = c∗i

The solution to Fick’s second law under these conditions is given by

ci(x, t) = c∗i + (c∘i − c∗i )
4
𝜋

∞∑
j=0

{
1

2j + 1
sin

[
(2j + 1)𝜋 x

L

]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Spatially
dependent term

exp

(
−
(2j + 1)2𝜋2Dt

L2

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Time-
dependent term

}

(4.43)

FIGURE 4.13 Transient finite diffusion of species i into (a) or out of (b) a plate of thick-
ness L. Inside the plate, the initial concentration of species i is constant at c∘i . At time t = 0,
the surface concentration of species (on both sides of the plate) i is set to c∗i and this surface
concentration is maintained constant during the subsequent diffusion process. If c∗i > c∘i , i will
diffuse into the plate (a). This is termed “infusion.” If c∗i < c∘i , i will diffuse out of the plate
(b). This is termed “effusion.”
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Example 4.4

Question: NASA has asked us to model a transient out-gassing problem for a
thin plastic plate containing a volatile substance that will gradually effuse from
the plate over time when exposed to the vacuum of space. Obtain an approximate
expression for the time it takes for the concentration of this substance to decrease
to 1/10 of its initial value at the mid point of the plate upon exposure to the space
vacuum. Assume that at time t = 0 exposure to the space vacuum fixes c∗i = 0
on the two faces of the plate, while the initial concentration of the species inside
the plate starts at a uniform value of c∘i and the plate has a thickness of L.

Solution: This is a transient 1D finite (symmetric) planar diffusion problem.
The initial and boundary conditions for this problem are:

1. ci(0 < x < L, t = 0) = c∘i
2. ci(x = 0, t) = 0

3. ci(x = L, t) = 0

Compared to the general solution previously given in Equation 4.43, in this
problem c∗i = 0, and so Equation 4.43 simplifies to

ci(x, t) =
4c∘i
𝜋

∞∑
j=0

{
1

2j + 1
sin

[
(2j + 1)𝜋 x

L

]
exp

(
−
(2j + 1)2𝜋2Dt

L2

)}

(4.44)
This solution is composed of an infinite series of terms. However, because of
the exponential function, each term in the series rapidly becomes less and less
important, especially at longer times. This can be seen if we write out just the
first three terms in the series:

ci(x, t) =
4c∘i
𝜋

[(
sin

[
𝜋x
L

]
e−𝜋

2Dt∕L2
)
+
(1

3
sin

[3𝜋x
L

]
e−9𝜋2Dt∕L2

)

+
(1

5
sin

[5𝜋x
L

]
e−25𝜋2Dt∕L2

)
+ · · ·

]
(4.45)

For t ≥ L2∕(𝜋2D), approximating the solution using only the first term in
the series yields less than a 0.01% error! Thus, except during the initial stages
of a finite transient diffusion process, it is often sufficient to approximate such
series solutions using only the first term in the series. Such approximate solu-
tions are often called “long-time” solutions, because they are most valid when
the transient diffusion process has already been proceeding for a “long time.”a

Truncation of Equation 4.44 to a single term and evaluation of this solution at
the midpoint of the plate (x = L∕2) yields

ci

(
x = L

2
, t
)
=

4c∘i
𝜋

[(
sin

[
𝜋L
2L

]
e−𝜋

2Dt∕L2
)]

=
4c∘i
𝜋

[e−𝜋2Dt∕L2 ] (4.46)
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We wish to obtain an expression for the time t1∕10 when the concentration at
the midpoint of the plate falls to 1/10 of its initial value, or in other words, when
ci(x = L∕2, t) = 1

10
c∘i . Applying this criterion to Equation 4.46 and solving for

time yields

ci(x = L
2
, t = t1∕10) =

1
10

c∘i =
4c∘i
𝜋

[
e
−

𝜋
2Dt1∕10

L2

]

1
10

= 4
𝜋

[
e
−

𝜋
2Dt1∕10

L2

]

t1∕10 = − L2

𝜋2D
ln

𝜋

40

≈ 0.258
L2

D

Note that this time is “long” compared with our long-time approximation cri-
teria which stated that t should be ≥ 0.1[L2∕(𝜋2D)] ≈ 0.01(L2∕D) in order to
reasonably truncate the series solution to a single term. Thus, our decision to
approximate the series with a single term in this example was reasonable.

aThe appropriate time scale for “long time” depends on the relative size of the system vs. the mag-
nitude of the diffusion coefficient. Often, series truncation to a single term may be reasonable for
t ≥ 0.1[L2∕(𝜋2D)].

Alternative Boundary Conditions: What If Surface Concentration Is
Not Fixed?

So far, all of our analyses of Fick’s second law have been based on cases involving
constant-concentration boundary conditions [e.g., ci(x = 0, t) = c∗i ]. However, this
will not always be the case. For example, consider outgassing from a finite plate
of thickness L under a situation where the rate of removal of species i from the
surface of the plate is much slower than the rate of diffusion of species i to the sur-
face of the plate. In such a situation, it is often necessary to employ a flux-based
boundary condition at the surface of the plate instead of a fixed concentration
boundary condition to express the rate at which i is removed from the surface of
the plate. In the limit that diffusion of i within the plate is much much faster than
the flux of i out of the plate at the surface, the concentration profile will evolve
with time, as shown in Figure 4.14a. In this case, the concentration of species i
slowly and uniformly depletes from the plate. As the outgassing process proceeds,
the concentration of i remains uniform inside the plate because i can rapidly dif-
fuse (and hence distribute evenly throughout the plate) much more quickly than
it is removed from the surfaces. If the rate of diffusion inside the plate and the
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rate of removal of i from the surface of the plate are similar, a situation like that
illustrated in Figure 4.14b will occur instead. In this case, there is some curvature
to the concentration profile of species i inside the plate, but the surface concentra-
tion of i is also changing in time. Finally, if the rate of diffusion inside the plate
is much slower than the rate of removal of i from the surface, we are back to the
standard case where a fixed concentration boundary condition is appropriate and a
situation like that illustrated in Figure 4.14c occurs. Numerical methods are gen-
erally required to achieve solutions to Fick’s second law when time-dependent or
flux-based boundary conditions are invoked.

FIGURE 4.14 Transient finite diffusion from a plate when (a) diffusion of i within the
plate is much much faster than the flux of i out of the plate at the surface, (b) rate of diffusion
inside the plate and rate of removal of i from the surface of the plate are similar, and (c) rate
of diffusion inside the plate is much slower than rate of removal of i from the surface.

Transient Finite (Symmetric) Spherical Diffusion So far, we have only
examined 1D (Cartesian) examples of Fick’s second law. Solving Fick’s second law
in alternative coordinate systems (e.g., for radial, spherical, 2D, or 3D problems)
is not really any different. As an example, we examine here the case of transient
finite spherical diffusion, which is essentially analogous to the transient finite planar
diffusion problem that we just finished discussing.

Fick’s second law in spherical coordinates is given by

𝜕ci

𝜕t
=

Di

r2

𝜕

𝜕r

[
r2 𝜕ci

𝜕r

]
(4.47)

Consider the transient finite spherical diffusion problem illustrated in Figure 4.15,
which describes the diffusion of H2 into a spherical particle.

This process can be used, for example, to model how quickly hydrogen can be
stored inside a metal hydride powder. Metal hydrides are intriguing metal alloy mate-
rials (often based on magnesium or aluminum) that can store and release large quan-
tities of hydrogen gas. In fact, they can store much more hydrogen (volumetrically)
than a compressed gas cylinder or even liquid hydrogen! As such, they are interesting
for hydrogen storage applications. However, the speed at which they can store and
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release their hydrogen is crucial for commercial applications and thus must be under-
stood and optimized. For the finite transient spherical hydrogen diffusion process
illustrated in Figure 4.15, the boundary and initial conditions are:

1. cH2
(r < R, t = 0) = co

H2

2. JH2
(r = 0, t) = 0 (this is a “no-flux” boundary condition imposed by the sym-

metry of the problem)

3. cH2
(r = ±R, t) = c∗H2

The full solution to Fick’s second law under these conditions is similar to that of
the finite plate:

cH2
(r, t) = co

H2
+ (c∗H2

− co
H2
)

[
1 + 2R

𝜋r

∞∑
j=0

(
(−1)j

j
sin

[
j𝜋

r
R

]
e−j2𝜋2Dt∕R2

)]
(4.48)

For the example illustrated in Figure 4.15, co
H2

= 0; thus we have

cH2
(r, t) = c∗H2

[
1 + 2R

𝜋r

∞∑
j=0

(
(−1)j

j
sin

[
j𝜋

r
R

]
e−j2𝜋2Dt∕R2

)]
(4.49)

An approximate solution can be obtained that is valid for all but the earliest time scale
of this diffusion problem by truncating the solution to include only the first term in

FIGURE 4.15 Transient finite diffusion of H2 into a spherical particle. The initial concen-
tration of H2 in the particle is zero [cH2

(r, t = 0) = 0]. At time t = 0, the particle is exposed
to a sufficiently high hydrogen gas pressure to fix the H2 concentration on the exterior surface
of the particle at the solid-solubility limit, given by c∗H2

. As time evolves, hydrogen gradually
diffuses into the particle as shown.
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the series4:
cH2

(r, t) = c∗H2

[
1 − 2R

𝜋r
sin

[
𝜋

r
R

]
e−Dt(𝜋∕R)2

]
(4.50)

This solution consists of two pieces, a position-dependent piece, given by the preex-
ponential term, and a time-dependent piece, given by the exponential. The fact that
the position dependence and the time dependence can be separated from one another
embodies the concept of self-similarity. This concept came up previously in our dis-
cussion of transient finite diffusion in a thin plate (Equation 4.42). Self-similarity is a
common and important property of many transient diffusion problems. Self-similarity
means that the concentration at each point in space along the profile evolves with time
in precisely the same way. For the example discussed here, this means that everywhere
inside the sphere the concentration of hydrogen increases exponentially in time at a

rate given by e
−Dt

(
𝜋

2R

)2

. Because of this self-similarity property, it is often possible
to answer general questions about the progress of diffusion in such systems without
ever having to explicitly determine c(r). See example problem 4.5 for details.

Example 4.5

Question: For the spherical diffusion problem given in Figure 4.15, determine
the time required for the concentration of H2 in the center of the particle to reach
1
2
c∗H2

(i.e., the time when the particle is “half full” with H2 at its center).

Solution: To tackle this problem, we will begin by assuming that the time
required to fill the particles half full with H2 can be evaluated using a long-time
solution. Then, the change in concentration as a function of time at the center
of the particle can be obtained by finding the limit of this long-time solution
(Equation 4.50) as r → 0. Since the limit of sin[𝜋r∕R]∕r = 𝜋∕R as r → 0, we
can obtain

cH2
(r = 0, t) = c∗H2

[1 − 2e−Dt(𝜋∕R)2 ] (4.51)

The concentration of hydrogen at the center of the particle will reach 1
2
c∗H2

at
a time t1∕2 given by

cH2
(r = 0, t = t1∕2) =

1
2

c∗H2
= c∗H2

[1 − 2e−Dt1∕2(𝜋∕R)2 ]

1
4
= e−Dt1∕2(𝜋∕R)2

t1∕2 = − 1
D

(R
𝜋

)2
ln

1
4

(4.52)

4The concentration profile is extremely sharp at the start of the diffusion process, with the hydrogen con-
centration jumping from zero inside the particle to c∗H2

at the surface. Modeling the initial evolution of
this sharp concentration profile requires using the full Fourier series solution. However, as we have seen
previously, the sharpest parts of the concentration profile decay most rapidly, and so the profile quickly
evolves to a smooth decay that can be modeled using just the first term of the series.
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Note that the time required to fill the particle half full with hydrogen depends
on the square of the particle radius (R2). Thus, a particle that is twice as large
would require four times longer to fill. This R2 dependence provides a powerful
motivation to use nanoscale particles to improve the kinetics of hydrogen stor-
age/release in metal hydrides and also motivates the use of nanoscale particles
in applications such as Li ion batteries, where diffusion of Li ions into and out
of the electrode particles often controls the rate capacity of the battery.

Rewriting Equation 4.52 in terms of R yields

R = 𝜋

√
1

ln 4

√
Dt1∕2

≈ 2.67
√

Dt1∕2 (4.53)

This result is remarkably similar to that determined for the transient diffusion
process in Equation 4.27.

What If D Is a Function of Concentration?

All of the solutions presented in the previous sections made the assumption that
the diffusion coefficient is not a function of concentration, that is, D ≠ f (c).
This is a reasonable assumption for many cases, especially in the limit of
dilute concentrations. However, in situations where there are large variations
in concentration, this assumption may not be valid. Under such circumstances,
numerical methods are generally required to achieve solutions to Fick’s first and
second laws. Concentration-dependent diffusion can result in strange behavior.
For example, while we are used to thinking that a linear concentration gradient is
established during steady-state diffusion across a finite membrane, if D = f (c),
the steady-state concentration profile can have positive or negative curvature, as
shown in Figure 4.16. When D = f (c), superposition methods cannot be used,
since Fick’s second law in such cases is no longer a linear partial differential
equation.

FIGURE 4.16 Steady-state diffusion across a finite membrane when (a) diffusivity
increases with concentration, (b) diffusivity is independent of concentration, and
(c) diffusivity decreases with concentration. At steady state, Fick’s first law requires that the
flux is constant at all spatial positions. Thus, if D increases as ci increases, the concentration
gradient (dci∕dx) must decrease in order to keep the flux constant. Likewise, if D decreases
as ci increases, the concentration gradient must increase in order to keep the flux constant.
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4.4.3 Kirkendal Effect and Moving Interface Problems

Kirkendal Effect When we previously discussed the transient interdiffusion of
two semi-infinite bodies (material A and material B, respectively), we explicitly spec-
ified that the diffusion of A in B and that of B in A were identical and could therefore
be described by a single diffusion coefficient. In many solids, however, this is not
true. For example, the diffusivity of zinc in copper is much larger than the diffusivity
of copper in zinc. If a block of brass (a copper–zinc alloy) and a block of pure copper
are bonded together at high temperatures, the zinc atoms will diffuse out of the brass
and into the copper at a much faster rate than the copper atoms diffuse into the brass
block. The net result is that the effective interface between the brass and copper blocks
moves toward the brass, as illustrated schematically in Figure 4.17. This phenomenon
is known as the Kirkendal effect and it occurs in many solid-state systems.

For the interdiffusion of two species A and B with unequal diffusivities DA ≠ DB,
the speed at which the A/B interface moves (𝑣) can be calculated by

𝑣 = 1
cA + cB

(DA − DB)
dcA

dx
(4.54)

Fick’s first and second laws must be modified when describing a system that man-
ifests the Kirkendal effect. Fick’s first law becomes (written in terms of species A)

JA = −DA
dcA

dx
+ 𝑣cA (4.55)

FIGURE 4.17 Kirkendal effect illustrated for a brass/copper diffusion couple. Since the dif-
fusion of zinc into copper is much faster than the diffusion of copper into brass, a net flow of
mass occurs from the brass side to the copper side. As a result, the location of the interface
between the brass and the copper moves toward the brass side.
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while Fick’s second law becomes

dcA

dt
= d

dx

[(
cB

cA + cB
DA +

cA

cA + cB
DB

)
dcA

dx

]
(4.56)

Diffusion at Phase Boundaries: Eutectic Interfaces In all previous discus-
sion of diffusion, we have assumed that diffusing components are completely soluble
in one another. In fact, this is rarely true. When large concentration gradients are
present, it is common that species will be segregated into multiple phases. A typical
example is eutectic behavior, as illustrated by the phase diagram in Figure 4.18a. In
a eutectic system, species A and B have limited solubility in one another and two
phases can exist: an A-rich 𝛼 phase and a B-rich 𝛽 phase. Thus, when a diffusion
couple is created, an abrupt change in composition will occur at the interface that
marks the transition from the 𝛼 phase to the 𝛽 phase, as shown in Figure 4.18b.

As A and B diffuse across the eutectic interface into the 𝛽 and 𝛼 phases, respec-
tively, the interface will move (just as we discussed previously in the context of the
Kirkendal effect). This will occur even if the diffusivities of A and B in 𝛼 and 𝛽

are equal, because the local concentration gradients on the two sides of the inter-
face will likely be different. (Remember, the flux depends on the diffusivity and the
concentration gradient.)

As with the Kirkendal effect, an expression for the velocity of the interface can be
derived, which yields (written in terms of species B)

𝑣 =
√

𝜋

t

[√
DB,𝛽(c∘B − cB,𝛽) −

√
DB,𝛼(cB,𝛼)

(𝜋 − 2)(cB,𝛽 − cB,𝛼) + 2c∘B

]
(4.57)

FIGURE 4.18 (a) Eutectic phase diagram involving an A-rich 𝛼 phase and a B-rich 𝛽 phase.
At the indicated temperature (T∗), the maximum solubility of B in 𝛼 is given by cB,𝛼 while the
minimum solubility of B in 𝛽 is given by cB,𝛽 . (b) Concentration profile that results when A and
B are bonded together in a diffusion couple at temperature T∗. At the interface (x = L) there
is a phase change from the B-rich 𝛽 phase to the A-rich 𝛼 phase. The concentrations of A and
B therefore change abruptly at this interface. As in our previous discussions of the Kirkendal
effect, the location of this eutectic interface will move as a function time since the rate of
diffusion of B into 𝛼 and the rate of diffusion of A into 𝛽 will almost certainly be unequal.
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where c∘B is the concentration of species B in pure B and the concentration of species B
in pure A is zero. The terms cB,𝛽 and cB,𝛼 represent the maximum/minimum solubility
limits of species B in the 𝛽 and 𝛼 phases at the temperature at which the diffusion is
occurring (as illustrated in Figure 4.18).

4.4.4 Summary of Transient Diffusion Problems

Table 4.4 summarizes the solutions to the various types of transient diffusion prob-
lems that we have discussed in this chapter while the bullet points below summarize
the recommended step-by-step approach to solve typical transient diffusion problems:

1. Determine the geometry of the problem (e.g., 1D, 2D, 3D, radial, spherical)
and identify any symmetries.

2. Make a sketch of the physical problem and show the initial concentration profile
and your expectation for how the concentration profile will evolve as a function
of time

3. Specify the boundary condition(s), initial condition, and governing equation
(i.e., Fick’s second law in the appropriate 1D, 2D, 3D, radial, spherical, etc.,
form as needed for your problem).

4. Obtain the general solution to the problem (by looking it up in a reference text,
consulting your friend in the math department, or solving the partial differential
equation using your amazing mathematical skills).

5. Apply the boundary and initial conditions to the general solution obtained
above in order to obtain the exact solution.

6. Investigate limiting solutions (e.g., behavior at the boundaries or at short/long
times) to ensure that the solution is reasonable and behaves as expected.

4.4.5 Coupled Diffusion Processes

While this chapter has focused almost exclusively on diffusion, it is important to
remember that in any system that is out of equilibrium a variety of different transport
processes can be simultaneously occurring (e.g., simultaneous flows of mass, heat,
and charge). Furthermore, as we alluded to in Section 4.2, these different transport
processes can couple, or interact, with one another. The interaction between trans-
port processes can be collectively and comprehensively dealt with under the frame-
work of nonequilibrium thermodynamics (NET). This theory, originally developed
by Onsager [6, 7], deals with the thermodynamically enforced coupling between the
driving forces experienced by a nonequilibrium system and its resulting response as
it attempts to return toward equilibrium (assuming that the system is not too far from
equilibrium). NET theory can capture the effects of multiple simultaneous driving
forces acting on a nonequilibrium system and predict how these driving forces induce
flows (fluxes) of multiple chemical species and/or heat and/or charge in response.

Because of the interwoven coupling between forces and fluxes stipulated by NET,
the mathematical treatment of transport can quickly get complicated. For example,
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TABLE 4.4 Summary of the Various Transient Solutions Discussed in This Chapter
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in a system with temperature, voltage, and concentration gradients, a 3 × 3 matrix (or
larger) of coupled flux–force terms can easily be required. Fortunately, however, it
is often possible to simplify the dominant transport process in a given system to a
single-term force–flux relationship. Thus, as we have seen throughout most of this
chapter, mass transport in many solid-state kinetic processes can often be adequately
described by simple Fickian diffusion. While simple Fickian diffusion is often ade-
quate, it is useful to examine some important instances where more complex coupled
diffusion phenomena are encountered. Here are a few of the most common coupled
diffusion processes:

• Electrodiffusion

• Thermodiffusion

• Stress driven diffusion

Figure 4.19 summarizes these important coupled diffusion processes, each of
which is briefly treated below.

Electrodiffusion Electrodiffusion, or electromigration, occurs when an applied
electrical field provides an additional driving force for diffusion. There are two major
categories of electric-field-assisted diffusion:

1. In a material containing mobile charged ions (e.g., solid-state ion conductors or
electrolytes), an applied electric field will act as an additional (often dominat-
ing) driving force for the transport of these charged species. Therefore, when
both concentration and electric potential gradients are present, the diffusion
equation must be modified to account for both driving forces:

Ji = −Di

(
dci

dx
+

ciqi

RT
d𝜙
dx

)
(4.58)

where qi is the charge associated with the diffusing ion and d𝜙∕dx is the electric
potential gradient (electric field). Positively charged ions will be driven in the
direction of the field (down the electric potential gradient), while negatively
charged ions will be driven against the field. Thus, depending on its direction,
an electric field can either assist or counteract concentration-driven diffusion.
A sufficiently strong electric field acting in the opposite direction to diffusion
can even force ions to migrate up their concentration gradient.

2. In metals, an applied electric field can induce a large electronic current to flow
through the material, which can in turn induce movement of the metal atoms.
This effect is known as electromigration and is sometimes referred to as an
“electron wind.” Electromigration occurs because current-carrying electrons
scatter off of metal atoms or defects in the lattice as they move. This scattering
can distort the electron density of the metal atoms, thereby inducing temporary
local dipoles that can lead to migration under the force of the applied field. Elec-
tromigration can be treated essentially the same way that the electrodiffusion
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FIGURE 4.19 Overview comparison of various coupled diffusion processes.
(a) Electrodiffusion in an ion conductor. Application of an electric field creates an additional
driving force for the transport of charged ions in a material. Positive ions will be driven
down the electric potential gradient. (b) Electromigration in a metal. Current-carrying
electrons occasionally scatter off the metal atoms, creating temporary charge dipoles that
enable the electric field to exert a force on the charged nuclei of the atoms, causing them to
move. (c) Thermodiffusion. A temperature gradient can also induce atomic transport. In the
schematic, atoms are driven up the temperature gradient due to a negative heat of transport.
(d) Stress-driven diffusion. A stress gradient, here induced by bending of a bar, can also
induce atomic transport. In this case, interstitial atoms are driven away from the side of the
bar that is in compression and toward the side of the bar that is in tension.

of charged ions is treated, except qi is replaced with an effective charge term
(𝛽i) that reflects the average dipole strength manifested by the metal atoms:

Ji = −Di

(
dci

dx
+

ci𝛽i

RT
d𝜙
dx

)
(4.59)

where 𝛽i is typically small and thus the effect of electromigration is typically
negligible except under certain circumstances such as extremely high electric
fields or high electric currents. Electromigration can be important in integrated
circuits, where the extremely tiny current-carrying metal vias must sustain
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extremely high current densities. Local constrictions in the vias can lead to
localized areas of even higher current density, leading to mass loss from these
regions. This mass loss causes even greater electrical current constriction,
thereby further increasing the current density and thus the mass loss and
ultimately leading to a runaway effect that can cause complete failure of
the via.

Thermodiffusion Thermodiffusion reflects the fact that a temperature gradient
can act as a driving force for diffusion. Incorporating both concentration gradient
and temperature gradient driving forces into the 1D diffusion equation yields

Ji = −Di

(
dci

dx
+

ciQ
∗
i

RT2

dT
dx

)
(4.60)

where Q∗
i is known as the heat of transport. The heat of transport for a diffusing

species can be either negative or positive, and thus thermal effects can cause dif-
fusion up or down a temperature gradient. In steel, for example, interstitial carbon
atoms will diffuse up a temperature gradient (i.e., toward the “hot” side of a sample).
Multicomponent alloys, oxides, or other materials that are held for long periods of
time under large temperature gradients can experience thermal “unmixing,” whereby
components that possess positive and negative heats of transport will diffuse away
from one another, causing demixing or even phase separation. Such instabilities are
a particular issue for nuclear reactor cladding materials and nuclear fuel pellets.

Stress-Driven Diffusion Stress and diffusion can be coupled in a number of
ways. In a uniform stress field, the diffusivity of the diffusing species can become
directionally dependent. This is because the stress field can affect the amount work
required for the species to move in different directions (e.g., parallel vs. perpendicu-
lar to the stress field). Movements in directions that cause the greatest distortions to
the stress field will be penalized, while movements in directions that minimize the
distortion to the stress field will be favored.

When a gradient in the stress field is present, the driving force for diffusion is also
modified. In this case, both the concentration gradient and the stress gradient must be
included when modeling diffusion. Assuming a uniaxial hydrostatic stress gradient
(dP∕dx), the resulting modified 1D diffusion equation may be written as

Ji = −Di

(
dci

dx
+

ciΔΩi

RT
dP
dx

)
(4.61)

whereΔΩ is the molar dilatation associated with the defect (compared to the “perfect”
lattice). Depending on the direction of the stress gradient relative to the concentra-
tion gradient, the diffusion of a species can either be enhanced or impeded. As with
the other coupled transport effects, a sufficiently strong stress gradient acting in the
opposite direction to diffusion can even force ions to transport up their concentra-
tion gradient. Stress-driven diffusion effects are of critical importance for a number
of real-world devices, including Li ion batteries, where the large stresses that arise
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upon lithiation/delithiation of the electrode materials can significantly affect the Li
diffusion and hence the speed at which the battery can be charged/discharged.

4.5 ATOMISTIC TREATMENT OF DIFFUSION

4.5.1 Overview of Diffusion in Gases Versus Liquids Versus Solids

As we have seen, the macroscopic treatment of diffusion using Fick’s first and sec-
ond laws makes no distinction about whether the diffusion process occurs in a solid,
liquid, or gaseous medium. In general, these macroscopic laws apply fairly well to all
three phases. The differences between solid-, liquid-, and gas-phase diffusion mostly
show up in the magnitude of the diffusion coefficient Di. This parameter quantifies
the relative ease with which atoms or molecules can be transported via diffusion in
a material. Because diffusion occurs by a series of discrete random movements, for
example, as a species jumps from lattice site to lattice site in a solid, or veers from
one collision event to another collision event in a liquid or gas, both the speed (𝑣i) at
which a species moves and the average distance traveled during each movement (𝜆)
are embedded in the diffusion coefficient. In a gas or liquid, this dependence is often
expressed as

D ≈ 1
3
𝜆𝑣RMS (4.62)

where 𝜆 is the mean free path (average distance traveled) between collisions and 𝑣RMS
is the root-mean-squared speed of the diffusing species. The factor of 1

3
accounts for

the fact that only one-third of the average random 3D motion occurs along a given
orthogonal direction.

For a solid, the analogous expression is

D ≈ 1
6
a(aΓ) = 1

6
a2Γ (4.63)

where a is the atomic jump distance and Γ is the hopping rate. Here, aΓ can be thought
of as a “speed,” enabling a more direct comparison of the solid-phase diffusivity
expression to the expression for gas- and liquid-phase diffusivity.5

Typically, gas-phase diffusivities are the highest, while solid-phase diffusivities
are the lowest, leading to huge differences in the typical rates of diffusion in these
phases. In addition, the temperature dependence of the diffusivity in gases versus liq-
uids and solids tends to be different, with diffusion in gases showing only a weak
temperature dependence while diffusion in liquids and solids tends to show an expo-
nentially activated temperature dependence. Figure 4.20 compares the key features
of solid-, liquid-, and gas-phase diffusion. In the sections that follow, we will explore
in more detail the atomic underpinnings of diffusion in the gas and solid phases.

5The 1
6

term appearing in this expression compared to the 1
3

term appearing in the case of gases and liquids
reflects the additional constraint imposed by diffusion in a crystalline lattice, where only certain specific
“jump” directions are allowed.
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FIGURE 4.20 Overview comparison of gaseous, liquid, and solid-state diffusion.

4.5.2 Diffusion in Gases: Kinetic Theory of Gases

The atomic underpinnings of gas-phase diffusion are captured in the kinetic theory
of gases, which uses statistical concepts to describe the distribution of energies and
speeds of molecules in the gas phase, as well as their frequency of collision.

Calculating 𝒗RMS The kinetic theory of gases begins with the concept that the
temperature of a gas is a statistical measure of the kinetic energy, and hence average
speed, of the atoms or molecules making up the gas. From the ideal gas law and
consideration of the force (and hence pressure) exerted by molecules in a gas phase
as they randomly collide with the walls of their container, the following relationship
between kinetic energy and temperature may be obtained:

Kinetic energy: 1
2
m𝑣

2
RMS = 3

2
kT (4.64)

where k is the Boltzmann constant and m is the mass of the gas atom or molecule.
From this relationship, an expression for the root-mean-squared speed of the gas can
be obtained:

𝑣
2
RMS = 3 kT

m

= 3 RT
M

𝑣RMS =
√

3 RT
M

(4.65)

where we have converted from atomic units (k, m) to molar units (R, M). Here, M is
the molar mass (kg/mol) of the gas-phase atom or molecule, R is the gas constant,
and SI units are used.
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Equation 4.65 reveals that the root-mean-squared speed increases as the tempera-
ture increases and decreases as the molar mass of the gas-phase species increases.
Although it is beyond the scope of this textbook, the kinetic theory of gases can
also be used (through the application of statistical mechanics principles) to derive
the complete distribution of velocities for a gas-phase species:

f (𝑣) = 4𝜋𝑣2
( M

2𝜋RT

) 3
2
exp

[
− M𝑣

2

2 RT

]
(4.66)

where f (𝑣) is the probability density function for the speed. Figure 4.21 provides
an example of such a distribution (known as Maxwell–Boltzmann distribution) for
two temperatures (T1 < T2) and for two different molar masses (M1 < M2). As
temperature increases or molecular mass decreases, the distribution flattens and
spreads to higher overall speeds. Note that due to the characteristic shape of the
Maxwell–Boltzmann distribution (long tail at higher speeds) the root-mean-squared
speed is greater than both the average speed (𝑣AVG) and the most probable speed. In
fact, the average speed can be computed from f (𝑣), yielding

𝑣AVG =
√

8 RT
𝜋M

(4.67)

which is 92% of 𝑣RMS.

Calculating 𝝀 Assuming that atoms or molecules in a gas can be modeled as
spheres that interact only when they collide and that all collisions are perfectly elas-
tic, the kinetic theory of gases can also be used to predict the frequency at which
gas atoms will collide and hence the average distance (or mean free path, 𝜆) between
collisions.

Consider a gas molecule of diameter d moving through space at a velocity 𝑣 as
shown in Figure 4.22. As this molecule sweeps through space in a time period of Δt,

FIGURE 4.21 Distribution of speeds in a gas as predicted by the kinetic theory of gases
(Maxwell–Boltzmann distribution). As T increases or M decreases, the distribution flattens
and spreads to higher overall speeds.
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FIGURE 4.22 Derivation of the mean free path 𝜆 between collisions for a gas-phase
molecule. A molecule of diameter d traveling at a speed 𝑣 will collide with any molecules
that it encounters within its “interaction volume” of 𝑣 Δt A in a time Δt.

it will collide with any molecules that it encounters within its “interaction volume,”
which can be visualized as a cylinder of radius d and length 𝑣 Δt. The size of this
interaction volume is therefore given by

V = L × A = (𝑣 Δt)(𝜋d2) (4.68)

If the pressure of the gas is given by P, then, using the ideal gas law, the number
of atoms encountered by the molecule in its interaction volume can be calculated as

N = NA
PV
RT

= NA
P𝑣 Δt 𝜋d2

RT
(4.69)

where NA is used to convert from number of moles to number of atoms. The mean
free path 𝜆 can then be calculated from the ratio of the total distance traveled by the
molecule during the time interval Δt divided by the total number of atoms encoun-
tered during this time interval:

𝜆 = average distance traveled between collisions

= total distance traveled/atoms encountered

= 𝑣 Δt
NA[P𝑣 Δt𝜋d2∕(RT)]

= RT
PNA𝜋d2

(4.70)

It should be noted that this simplified derivation neglects the relative motions of
the other molecules (which in reality are not fixed in space during the time when
our test particle is sweeping out its interaction volume). A complete derivation that
takes the relative motion of the other molecules into account results in a modest

√
2

adjustment to the result:

𝜆 = RT√
2PNA𝜋d2

(4.71)
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Both equations show that the mean free path increases as temperature increases,
decreases as pressure increases, and decreases as the size of the molecule increases.

Calculating D Having obtained expressions for both 𝑣RMS and 𝜆, we can now
combine these results to obtain an expression for gas-phase diffusivity:

D ≈ 1
3
𝜆𝑣RMS

≈ 1
3

(
RT√

2PNA𝜋d2

)(√
3 RT

M

)

≈
√

1
6M

(RT)3∕2

PNA𝜋d2
(4.72)

While this equation is algebraically straightforward, the units often present stu-
dents with significant difficulties. Please keep in mind that SI units must be used when
evaluating this expression. Thus, M is in kg∕mol, d is in m, P is in Pa, T is in K, and
so on. Example problem 4.6 provides practice dealing with this expression.

Example 4.6

Question: Use Equation 4.72 to estimate the gas-phase diffusivity of pure O2
gas at T = 25 ∘C and 1 atm pressure. Assume that the diameter of the oxygen
molecule, dO2

, is 3 Å.

Solution: This is a very straightforward “plug-and-chug” problem. As such, it
should offer no significant difficulties. However, it is essential to use SI units to
avoid problems. Equation 4.72 is

D ≈
√

1
6M

(RT)
3
2

PNA𝜋d2

To evaluate this expression using SI units, we need to supply the molar mass of
O2 gas (in kg∕mol), the gas constant (in J∕(mol ⋅ K)), the temperature [in K],
the pressure (in Pa), and the diameter of the O2 molecule (in m):

D ≈

√
1

6 ⋅ 32 × 10−3 kg∕mol

(8.314 J∕(mol ⋅ K) ⋅ 298.15 K)
3
2

101,300 Pa ⋅ 6.022 × 1023∕mol ⋅ 𝜋(3 × 10−10 m)2

≈ 1.65 × 10−5 m2∕s = 0.165 cm2∕s

The initial answer is given in SI units (m2/s) but can be easily converted into
other units (e.g., cm2∕s) after the fact. The actual experimentally measured
value for the O2 gas self-diffusion coefficient at T = 25 ∘C and 1 atm pressure
is 0.178 cm2∕s. The very close agreement between theory and experiment is
remarkable!
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Binary Gas Diffusivity The above discussion of gas-phase diffusion implicitly
assumes that the gas is composed of a single species. Diffusion of a pure species
(e.g., diffusion of O2 gas molecules in pure O2 gas) is known as self-diffusivity. Very
frequently, however, we would like to calculate the diffusivity of a gas species in a
mixture—for example, the diffusivity of O2 in air (which is essentially a mixture of
N2 and O2). For mixtures of two gas-phase species, a binary gas-phase diffusivity can
be estimated in analogy to the pure-species diffusivity:

DAB = DBA ≈

√
1

12

(
MA + MB

MAMB

)
(RT)3∕2

PNA𝜋

[
1
2
(dA + dB)

]2
(4.73)

For binary (two-species ONLY) gas-phase diffusivities, the diffusivity of species
A in B must be equal to the diffusivity of species B in A. Note that this is not generally
true for solid-state diffusion or multicomponent (more than two species) gas-phase
diffusion, where more complicated expressions (e.g., the Stefan–Maxwell equation)
must be used to describe diffusion. However, such treatments are beyond the scope
of this textbook.

4.5.3 Diffusion in Solids: Atomistic Mechanisms of Solid-State
Diffusion

In this section, we develop an atomistic picture to understand solid-state diffusion
in more detail. At the most fundamental level, a solid-state diffusion coefficient D
is a measure of the intrinsic rate of the hopping process by which atoms/molecules
can move from one site to another in a solid medium. Even in the absence of any
driving force, hopping of atoms from site to site within the lattice still occurs at a
rate that is characterized by the diffusivity. Of course, without a driving force, the net
movement of atoms is zero, but they are still exchanging lattice sites with one another.
This is another example of a dynamic equilibrium; compare it to the dynamic reaction
equilibrium processes that we discussed in Chapter 3.

Broadly viewed, there are two main mechanisms of solid-state diffusion in
crystalline materials:

1. Vacancy diffusion

2. Interstitial diffusion

These two types of solid-state diffusion processes are illustrated schematically in
Figure 4.23.

The interstitial mechanism is generally favored for small atoms (e.g., impurity
cations such as Na in Si or C in Fe) that can fit into the interstitial sites in a crystal lat-
tice. Interstitial diffusion is generally faster than vacancy diffusion because bonding
of interstitials to the surrounding atoms is normally weaker and there are generally
many more available interstitial sites than vacancy sites to jump to. Larger atoms,
for example the oxygen anions in most oxide ceramics, must diffuse via a vacancy
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FIGURE 4.23 Two principal solid-state diffusion mechanisms: (a) vacancy diffusion;
(b) interstitial diffusion.

mechanism instead. Because both vacancy and interstitial diffusion require the pres-
ence of point defects (vacancy and interstitial defects, respectively) to occur, they
are highly sensitive to the degree of crystalline imperfection. High concentrations of
point defects, as well as high concentrations of extended defects such as dislocations,
grain boundaries, and surfaces, generally lead to higher rates of solid-state diffusion.

A number of other chemical and structural factors can also affect solid-state dif-
fusion. In general, the following factors often lead to higher solid-state diffusivities:

• Interstitial diffusion

• Lower density materials

• Smaller diffusing atoms

• Cations

• Lower melting point materials

• Open crystal structures

In contrast, the following factors often lead to lower solid-state diffusivities:

• Vacancy diffusion

• Higher density materials

• Larger diffusing atoms

• Anions

• Higher melting point materials

• Close-packed crystal structures

• Strong covalent bonding

Theory of Solid-State Diffusion Using the schematic in Figure 4.24b, we can
derive an atomistic model of diffusion in a crystalline solid. The atoms in this figure
are arranged in a series of parallel atomic planes. We would like to calculate the
net flux (net movement) of gray atoms from left to right across the imaginary plane
labeled A in Figure 4.24 (which lies between two real atomic planes in the material).
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FIGURE 4.24 (a) Macroscopic picture of diffusion. (b) Atomistic view of diffusion. The net
flux of gray atoms across an imaginary plane A in this crystalline lattice is given by the flux
of gray atoms hopping from plane 1 to plane 2 minus the flux of gray atoms hopping from
plane 2 to plane 1. Since there are more gray atoms on plane 1 than plane 2, there is a net flux
of gray atoms from plane 1 to plane 2. This net flux will be proportional to the concentration
difference of gray atoms between the two planes.

Examining atomic plane 1 in the figure, we assume that the flux of gray atoms hopping
in the forward direction (and therefore through plane A) is simply determined by the
number (concentration) of gray atoms available to hop times the hopping rate:

JA+ = 1
2
Γc1 Δx (4.74)

where JA+ is the forward flux through plane A, Γ is the hopping rate, c1 is the volume
concentration (mol/cm3) of gray atoms in plane 1,Δx is the atomic spacing required to
convert volume concentration to planar concentration (mol/cm2), and the 1

2
accounts

for the fact that on average only half of the jumps will be “forward” jumps. (On
average, half of the jumps will be to the left, half of the jumps will be to the right.)

Similarly, the flux of gray atoms hopping from plane 2 backward through plane A
will be given by

JA− = 1
2
Γc2 Δx (4.75)

where JA− is the backward flux through plane A and c2 is the volume concentration
(mol/cm3) of gray atoms in plane 2.

The net flux of gray atoms across plane A is therefore given by the difference
between the forward and backward fluxes through plane A:

Jnet =
1
2
Γ Δx(c1 − c2) (4.76)

We would like to make this expression look like the familiar Fick’s first law
expression for diffusion: J = −D(dc∕dx). We can express Equation 4.76 in terms of
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a concentration gradient as

Jnet = −1
2
Γ(Δx)2

c2 − c1

Δx

= −1
2
Γ(Δx)2Δc

Δx

= −1
2
Γ(Δx)2 dc

dx
(for small x) (4.77)

Comparison with the traditional diffusion equation J = −D(dc∕dx) allows us to
identify what we call the diffusivity as

D = 1
2
Γ(Δx)2 (4.78)

We therefore recognize that the diffusivity embodies information about the intrin-
sic hopping rate for atoms in the material (Γ) and information about the atomic length
scale (jump distance) associated with the material.

As mentioned previously, the hopping rate embodied by Γ is exponentially acti-
vated. Consider Figure 4.25b, which shows the free-energy curve encountered by an
atom as it hops from one lattice site to a neighboring lattice site via a vacancy-based
diffusion mechanism. Because the two lattice sites are essentially equivalent, in the
absence of a driving force a hopping atom will possess the same free energy in its ini-
tial and final positions. However, an activation barrier impedes the motion of the atom
as it hops between positions. We might associate this energy barrier with the displace-
ments that the atom causes as it squeezes through the crystal lattice between lattice
sites. (See Figure 4.25a, which shows a physical picture of the hopping process.)

FIGURE 4.25 Atomistic view of hopping process. (a) Physical picture of the hopping pro-
cess. As the anion (A−) hops from its original lattice site to an adjacent, vacant lattice site,
it must squeeze through a tight spot in the crystal lattice. (b) Free-energy picture of the hop-
ping process. The tight spot in the crystal lattice represents an energy barrier for the hopping
process.
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In a treatment analogous to the reaction rate theory developed in the previous
chapter, we can write the hopping rate as

Γ = Γ0e−ΔGact∕RT (4.79)

where ΔGact is the activation barrier for the hopping process and Γ0 is the jump
attempt frequency.

Based on this activated model for diffusion, we can then write a complete expres-
sion for the diffusivity as

D = 1
2
(Δx)2Γ0e−ΔGact∕RT (4.80)

or, lumping all the preexponential constants into a D0 term,

D = D0 e−ΔGact∕RT (4.81)

Example 4.7

Question: Silicon is an intriguing potential anode material for Li ion batteries
because it can store and release more than four Li atoms per Si atom. Quan-
tifying the diffusivity of Li in Si is an important aspect for determining the
charge/discharge kinetics of such a battery material. If the diffusivity of Li in
Si is 4.0 × 10−14 cm2∕s at 300 K and 2.0 × 10−11 cm2∕s at 400 K, determine
ΔGact and D0 for the diffusion of Li in Si.

Solution: As we have done for a number of problems, the easiest way to solve
this problem is to set up a ratio. We have been given two diffusivities, D1 and D2,
corresponding to two temperatures, T1 and T2. Applying these to Equation 4.81,
we can write

D1

D2
=

D0 e−ΔGact∕RT1

D0e−ΔGact∕RT2

D1

D2
= e−(ΔGact∕R)(1∕T1−1∕T2) (4.82)

Solving this expression for ΔGact yields

ΔGact = R
T1T2

T1 − T2
ln

[
D1

D2

]
(4.83)

Finally, inserting values into this expression gives

ΔG = 8.314 J∕(mol ⋅ K) 300 K ⋅ 400 K
300 K − 400 K

ln

[
4.0 × 10−14 cm2∕s

2.0 × 10−11 cm2∕s

]

= 62,000 J∕mol = 62 kJ∕mol
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To determine D0, we can again make use of Equation 4.81 and the value of
D at either of the two temperatures. They should both give approximately the
same result. We use T1 and D1:

D1 = D0e−ΔGact∕RT1

D0 = D1e+ΔGact∕RT1

= (4.0 × 10−14 cm2∕s) exp

(
62,000 J∕mol

8.314 J∕(mol ⋅ K) ⋅ 300 K

)

= 2.5 × 10−3 cm2∕s

4.5.4 Diffusion in Solids: High-Diffusivity Paths

So far, our discussion of solid-state diffusion has focused exclusively on diffusion
through the relatively “perfect” bulk volume of a solid. However, real solids are far
from perfect. They typically possess a variety of extended defects, including disloca-
tions, grain boundaries, pores, and surfaces, as shown schematically in Figure 4.26.

In general, the diffusivity scales with the relative degree of constraint facing atoms
in the close-packed 3D lattice. Thus, the following relationship is often a good rule
of thumb: Dlattice < Ddislocation < Dgrain boundary < Dsurface. On the surface of a solid,
the diffusivity can sometimes even approach that of a liquid! The activation energy

FIGURE 4.26 Schematic illustration of various extended defects in solids including (a) dis-
locations, (b) grain boundaries, (c) internal pores and (d) surfaces. Diffusion through these
defective regions often proceeds more rapidly than through the “perfect” bulk volume of the
solid, as the atomic disruption and relaxed constraint associated with defective regions lead to
faster diffusivities. Shaded regions are areas of enhanced diffusion.
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FIGURE 4.27 Schematic Arrhenius plot showing the typical relationships between diffu-
sion through the bulk lattice, along dislocations, grain boundaries, and surfaces. The activation
energy for diffusion tends to decrease with decreasing constraint. Thus, transport through
defective regions becomes even more important at lower temperatures. At the melting point,
the various diffusivities begin to (but do not entirely) converge with the liquid diffusivity.

for diffusion tends to decrease with decreasing constraint. Thus, transport through
defective regions becomes even more important at lower temperatures. This is shown
schematically in Figure 4.27.

While diffusion through extended defect regions can occur much more rapidly than
diffusion through the bulk solid volume, the overall impact of this effect depends on
the relative amount (density) of extended defects in the solid. A material with 100 nm
average grain size will have 2000× more grain boundary area per unit volume of solid
than a material with a grain size of 100 μm. Thus, the impact of grain boundary diffu-
sion should be expected to be at least 2000× greater in the nanometer-grained solid.
Nevertheless, it is important to keep in mind that the “enhanced region” associated
with extended defects typically extends only a few atomic layers from the defect core
itself, and thus even if diffusion through these regions is much faster, their overall
impact on diffusion through the solid will only be felt if these defects are present at
a significant density.

In order to illustrate this point, consider an idealized model of diffusion through a
solid with square-shaped grains as shown in Figure 4.28. The total amount of species
i passing through this slice per unit time is given by the sum of the fluxes passing
through the grain bulk (Jbulk) and grain boundary (Jbdry) regions multiplied by their
respective cross-sectional areas. Considering diffusion through a single “representa-
tive unit” of this geometry, which includes one grain plus half of the thickness of the
surrounding grain boundaries and applying Fick’s first law, we have

Ntot = AbulkJbulk + AbdryJbdry

= L2Dbulk
dc
dx

+ 4L
(

1
2
𝛿

)
Dbdry

dc
dx

(4.84)
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FIGURE 4.28 Diffusion occurring perpendicularly through a slice (of thickness dx) of an
idealized solid with square grains of size L separated by grain boundaries of thickness 𝛿. The
total amount of species i passing through this slice per unit time is given by the sum of the
fluxes passing through the grain bulk (Jbulk) and grain boundary (Jbdry) regions multiplied by
their respective cross-sectional areas.

The relative contribution of grain boundary versus bulk diffusion can be deter-
mined by taking a ratio of the two terms in Equation 4.84:

Nbulk

Nbdry
=

L2Dbulk(dc∕dx)

4L
(

1
2
𝛿

)
Dbdry(dc∕dx)

=
LDbulk

2𝛿Dbdry
(4.85)

Grain boundary diffusivities can often be three orders of magnitude (or more)
greater than bulk diffusivities, while grain boundary thicknesses are typically on the
order of 1–2 nm. Thus, when the grain size approaches a few micrometers, grain
boundary diffusion can often become dominant over bulk diffusion. The crossover
also depends on the temperature, as the bulk and grain boundary diffusivities have
different activation energies. Example 4.8 below extends our simple model to exam-
ine these issues in more detail. More complicated heterogeneous diffusion geome-
tries can also be modeled, often using resistor network-type models. Such models
can successfully capture the effects of heterogeneous diffusion through a variety of
microstructural inhomogeneities, including grain/grain boundary effects, dislocation
networks, internal pores, and second-phase inclusions.

There are several important instances where the generalities about high-diffusivity
extended defect paths do not hold true. One of the most important is in certain
solid-state ion conductors, where grain boundaries often lead to decreased ionic
diffusion rather than enhanced ionic diffusion. This occurs when the grain boundary
traps charge (either positive or negative charge) which can then repel (or trap)
diffusing ions, thereby slowing them down compared to their motion in the bulk
lattice. Eliminating these “resistive” grain boundaries is a grand challenge for
improving the performance of many solid-state electrolyte and ion conductor
applications.
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Example 4.8

Question: The goal of this problem is to use the simple grain bulk/grain
boundary diffusion model discussed above to estimate the temperature above
which bulk diffusion becomes more important than grain boundary diffusion.
(a) Assuming that the activation energy for grain boundary diffusion is exactly
half that of bulk diffusion and the D0 values for both diffusivities are equal,
derive a generalized expression for the “crossover” temperature T∗ at which
bulk diffusion becomes more important than grain boundary diffusion. (b)
Using this simple model, estimate T∗ for a polycrystalline material assuming
𝛿 = 2.0 nm, L = 4.0 μm, and ΔGact,bulk = 60 kJ∕mol. (c) If the grain size is
reduced, will T∗ increase or decrease?

Solution: (a) Inserting the equation for diffusivity (Equation 4.81) into the
equation comparing the relative contributions from bulk–grain boundary
diffusion (Equation 4.85) gives

Nbulk

Nbdry
=

LD0 e−ΔGact,bulk∕RT

2𝛿D0 e−ΔGact,bdry∕RT
= Le−ΔGact,bulk∕RT

2𝛿e−ΔGact,bulk∕2RT

= L
2𝛿

e−ΔGact,bulk∕2RT (4.86)

When T = T∗, Nbulk = Nbdry; thus

Nbulk

Nbdry
= 1 = L

2𝛿
e−ΔGact,bulk∕2RT∗

T∗ =
ΔGact,bulk

2R
1

ln [L∕2𝛿]
(4.87)

(b) Applying the values given in the problem statement to Equation (4.87)
and taking care to use consistent units yields

T∗ =
60,000 J∕mol

2 ⋅ 8.314 J∕(mol ⋅ K)
1

ln [4.0 × 10−6 m∕(2 ⋅ 2.0 × 10−9 m)]
= 520 K

(c) Intuitively, we can reason that if the grain size is reduced, the amount
of grain boundary diffusion increases, and thus grain boundary diffusion will
remain dominant up to a higher overall temperature before bulk diffusion over-
takes it. Thus, we would expect T∗ to increase. The same conclusion can be
drawn by examining Equation 4.87, which shows that as L decreases, the natural
log term decreases, and thus 1/ln increases as does T∗.
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4.6 CHAPTER SUMMARY

The purpose of this chapter was to introduce the basic concepts and tools used to
understand and model the rate (or speed) of diffusion processes. The main points
introduced in this chapter include the following:

• Diffusion is a process by which mass is transported down a gradient in chemical
potential (often simplified to a gradient in concentration) by random thermal
motion. It is distinguished from alternative mass transport processes such as
convection in that it does not require bulk motion or mechanical action to move
particles from one place to another.

• Flux (J) quantifies the rate at which mass, charge, or energy moves through a
material. Flux measures how much of a given quantity flows through a mate-
rial per unit area per unit time. While the most common units for flux are
mol∕(cm2 ⋅ s), flux can also be expressed in terms of atomic, mass, volumet-
ric, or coulometric units, among others. It is important to be able to convert
easily between the various potential flux units depending on the circumstances.

• A driving force is required in order for any type of transport process to occur.
The governing equation for transport can be generalized (in one dimension) as

Ji =
∑

k

MikFk (4.88)

where Ji represents a flux of species i, Fk represent the k different forces acting
on i, and the Mik’s are the coupling coefficients between force and flux. The
coupling coefficients quantify the relative ability of a species to respond to a
given force with movement as well as the effective strength of the driving force
itself. The coupling coefficients are therefore a property both of the species that
is moving and the material through which it is moving. This general equation
is valid for any type of transport (charge, heat, mass, etc.) and can be used to
capture the coupled effect of multiple driving forces acting simultaneously.

• While the coupling of multiple fluxes and driving forces is important in cer-
tain situations, transport can frequently be described more simply in terms of a
number of direct one-to-one force–flux relationships. These include Fick’s first
law (diffusion), Ohm’s law (electrical conduction), Fourier’s law (heat conduc-
tion), and Poiseuille’s law (convection), with the corresponding direct coupling
coefficients known as the diffusivity (D), conductivity (𝜎), thermal conductivity
(𝜅), and viscosity (𝜈), respectively.

• Fick’s first law of diffusion deals with the diffusional transport of matter under
steady-state conditions. Steady state means that the concentration profile of the
diffusing species does not vary as a function of time (𝜕ci∕𝜕t = 0). In 1D, Fick’s
first law is commonly given as Ji = −Di(𝜕ci∕𝜕x). Fick’s first law indicates that



140 TRANSPORT KINETICS (DIFFUSION)

the flux of a diffusing species i is proportional to its concentration gradient.
Fick’s first law expresses the fundamental concept that matter tends to flow
“down” a concentration gradient, from regions of higher concentration to
regions of lower concentration. Furthermore, Fick’s first law indicates that the
rate of diffusion (i.e., the size of the flux) depends on the magnitude of the
diffusivity and the steepness of the concentration gradient. Higher diffusivities
and steeper concentration gradients lead to larger fluxes.

• Fick’s second law of diffusion deals with the diffusional transport of matter
under transient (time-dependent) conditions. Transient means that the concen-
tration profile of the diffusing species varies as a function of time (𝜕ci∕𝜕t ≠ 0).
In 1D, Fick’s second law is commonly given as: 𝜕ci∕𝜕t = Di(𝜕2ci∕𝜕x2). We
can use Fick’s second law to “watch” how a non-steady-state diffusion profile
evolves as a function of time. Fick’s second law indicates that the rate of change
of a concentration gradient is proportional to its curvature. Regions of high cur-
vature (i.e., “sharp” features) evolve quickly, while regions of low curvature
evolve more slowly. Furthermore, Fick’s second law indicates that a species
will accumulate in regions where its concentration profile manifests positive
curvature (concave up), while a species will dissipate from regions where its
concentration profile curvature is negative (concave down). Thus, Fick’s sec-
ond law predicts that abrupt concentration profile features tend to be smoothed
out over time (see Figure 4.4).

• Fick’s second law is a second-order partial differential equation. Solving it in
order to predict transient diffusion processes can be fairly straightforward or
quite complex, depending on the specific situation. In this chapter, analytical
solutions were discussed for a number of cases, including 1D transient infinite
and semi-infinite diffusion, 1D transient finite planar diffusion, and transient
spherical finite diffusion as summarized in Table 4.4. In all cases, solution of
Fick’s second law requires the specification of a number of boundary conditions
and initial conditions.

• Boundary conditions provide information about the behavior of a system at the
physical edges (i.e., “boundaries”) of the problem domain. Thus, boundary con-
ditions specify behavior at a specific location (i.e., a specific value of x).

• Initial conditions provide information about the initial concentration distribu-
tion (i.e., the “starting” concentration profile) within the system at some initial
time. Thus, initial conditions specify behavior at a specific time (i.e., a specific
value of t, usually t = 0).

• A characteristic square-root dependence is frequently observed between the
spatial extent of a transient diffusion process and the time elapsed, for example,
𝛿 ≈

√
Dt, where 𝛿 is a measure of the spatial extent of the diffusion process.

This equation can be used as a helpful way to roughly estimate the extent of
progress of many different types of transient diffusions processes in materials
as a function of time.



4.6 CHAPTER SUMMARY 141

• Fick’s first and second laws can apply equally well to diffusion in solids,
liquids, or gases. The differences between these phases show up in the mag-
nitude of the diffusion coefficient D. The diffusion coefficient, or diffusivity,
quantifies the relative ease at which atoms or molecules can be transported
via diffusion in a material. Gas-phase diffusivities are typically on the order
of 0.1–1.0 cm2∕s, while liquid-phase diffusivities are typically on the order
of 10−4–10−5cm2∕s and solid-phase diffusivities range from 10−8 cm2∕s (for
high-diffusivity solids near their melting point) to 10−30 cm2∕s (for refractory
ceramics, glasses, or strong covalently bonded network solids far from their
melting point). Gas-phase diffusivities show a weak temperature dependence,
while solid-phase diffusitivites tend to be exponentially temperature activated.

• Electric field, temperature gradients, and/or stress gradients can act as additional
driving forces that can either accelerate or impede diffusion. Fick’s laws can
be rewritten to accommodate these additional driving forces, resulting in more
complex expressions for diffusion that are most often treated numerically.

• The kinetic theory of gases can be used to predict gas-phase diffusivities based
on the root-mean-squared speed and mean free path of the gas molecules as they
move and collide in the gas phase. This analysis results in the following expres-
sion, which relates the self-diffusivity of a gas-phase species to fundamental
characteristics such as its size and mass:

Di ≈
√

1
6Mi

(RT)
3
2

PNA𝜋d2
i

While this equation is algebraically straightforward, the units often present stu-
dents with significant difficulties. Please keep in mind that SI units must be used
when evaluating this expression. Thus, M is in kg∕mol, d is in m, P is in Pa, T
is in K, and so on.

• In crystalline solids, diffusion occurs by the hopping of atoms from lattice site to
lattice site. This hopping process can occur by the hopping of either atoms into
unoccupied (i.e., “vacant”) sites in the lattice or between unoccupied interstitial
spaces in the lattice. Interstitial diffusion is more common for small impurity
atoms that can fit into the interstitial spaces in the lattice while vacancy diffusion
is more common for larger atoms that can only occupy the regular lattice sites.

• Because solid-state diffusion is a hopping process that requires the moving
atoms to overcome an activation barrier as they squeeze through the crystal
between lattice sites, the hopping rate (and hence the diffusivity) is exponen-
tially temperature dependent:

D = D0e−ΔGact∕RT

• In general, solid-state diffusivities scale with the relative degree of constraint
facing atoms in the close-packed 3D lattice. Thus, typically

Dlattice < Ddislocation < Dgrain boundary < Dsurface
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Since the activation energy for diffusion also tends to decrease with decreas-
ing constraint, transport through defective regions becomes even more impor-
tant at lower temperatures. While diffusion at extended defects can be greatly
enhanced relative to diffusion through the bulk lattice, it is important to keep
in mind that the “enhanced region” associated with extended defects typically
extends only a few atomic layers from the defect core itself. Thus, the overall
impact of extended defects on diffusion will only be felt if these defects are
present at a significant density.

4.7 CHAPTER EXERCISES

Review Questions

Problem 4.1. Define the following:

(a) Diffusion

(b) Steady state

(c) Transient

(d) Self-similarity

(e) Boundary condition

(f) Initial condition

(g) Kirkendal effect

Problem 4.2. Equation 4.40 in the text provides the solution for the transient diffu-
sion of a “thin layer” of material between two semi-infinite bodies:

ci(x, t) =
Ni√
4𝜋Dt

e−x2∕(4Dt) (4.89)

This thin-film solution yields a Gaussian profile that gradually broadens as a func-
tion of time. Derive a mathematical expression quantifying how this Gaussian profile
“broadens” as a function of time. Use the peak width at half maximum (i.e., the dis-
tance between the two points where the concentration is one-half of its peak value at
any given time) as the definition of peak breadth.

Problem 4.3. Equation 4.43 provides the solution for transient finite (symmetric)
planar diffusion in a plate of thickness L starting from a uniform initial concentration
of c∘i when the concentrations at the edges of the plate are set to c∗i at time t = 0:

ci(x, t) = c∗i + (c∘i − c∗i )
4
𝜋

∞∑
j=0

(
1

2j + 1
sin

[
(2j + 1)𝜋 x

L

]
e−(2j+1)2𝜋2Dt∕L2

)

At “long times,” this solution can be reasonably approximated by using only the first
term in series without significant error. In order to determine a reasonable value for
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“long time” and to visualize the effect that this approximation has on the solution
compared to retaining additional terms in the series, use a software program of your
choice (e.g., Excel, Matlab, Mathematica) to make a set of plots for this solution using
j = 1, j = 3, and j = 10 terms in the series at each of the following three times:

(a) t = 0.01[L2∕(𝜋2D)]
(b) t = 0.1[L2∕(𝜋2D)]
(c) t = 1[L2∕(𝜋2D)]
Assume c∗i = 0. Comment on the results.

Problem 4.4. For the moving interface involving the eutectic system discussed in
Section 4.4.3, Equation 4.57 was provided to calculate the velocity of the interface.
For this system, derive the criteria under which the interface will move to the right
(i.e., the interface will move toward the 𝛼 phase).

Problem 4.5.
(a) Provide the general equation that relates gas-phase diffusivity to gas velocity and

mean free path.

(b) Define mean free path and give the equation relating mean free path to tempera-
ture, pressure, and molecule size.

(c) Define the root-mean-square gas velocity and give an equation that shows how it
depends on temperature and molecular weight.

(d) Sketch curves showing the distribution of velocities for gas molecules at two
temperatures, T1 and T2 (T2 > T1). Indicate 𝑣RMS on both curves.

(e) Combine the equations for mean free path and root-mean-squared velocity to
arrive at the general equation describing how gas-phase diffusivity depends on
temperature and pressure.

Problem 4.6. Based on your knowledge of the approximate order of magnitude for
gas-versus liquid-versus solid-state diffusivity, identify the most likely (only one)
value for diffusivity for each of the following situations:

(a) The self-diffusion coefficient of water molecules in water at room temperature is
about:
(1) 10−16 cm2∕s; (2) 10−8 cm2∕s; (3) 10−4 cm2∕s; (4) 0.1 cm2∕s; (5) 100 cm2∕s

(b) The diffusion coefficient of water molecules in air at 28 ∘C is about:
(1) 10−16 cm2∕s; (2) 10−8 cm2∕s; (3) 10−4 cm2∕s; (4) 0.1 cm2∕s; (5) 100 cm2∕s

(c) The diffusion coefficient of oxygen vacancies in solid ZrO2 at 300 K is about:
(1) 10−16 cm2∕s; (2) 10−8 cm2∕s; (3) 10−4 cm2∕s; (4) 0.1 cm2∕s; (5) 100 cm2∕s

(d) The diffusion coefficient of oxygen vacancies in solid ZrO2 at 1000 K is about:
(1) 10−16 cm2∕s; (2) 10−8 cm2∕s; (3) 10−4 cm2∕s; (4) 0.1 cm2∕s; (5) 100 cm2∕s

(e) The diffusion coefficient of Cu atoms in liquid copper at its melting point is about:
(1) 10−16 cm2∕s; (2) 10−8 cm2∕s; (3) 10−4 cm2∕s; (4) 0.1 cm2∕s; (5) 100 cm2∕s
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Calculation Questions

Problem 4.7. A fuel cell is provided with a molar flux of H2, JH2
= 10−5

mol H2∕cm2s. Convert this molar H2 flux into the following sets of units, given
T = 300 K, P = 1 atm. Assume H2 behaves as an ideal gas.

(a) Volumetric flux [cm3/(cm2⋅s)]

(b) Mass flux [g/(cm2⋅s)]

(c) Molecular flux [molecules/(cm2⋅s)]

(d) Current density (A/cm2) (Assume each hydrogen molecule is oxidized in a fuel
cell to produce two electrons.)

Problem 4.8. The aim of carburization is to increase the carbon concentration in
the surface layers of steel in order to achieve a harder wear-resistant surface. This is
usually done by holding the steel in a gas mixture containing CH4 and/or CO at a
temperature where austenite is present. A thick plate of 0.3 wt % C steel is carburized
at 930 ∘C. The carburizing gas used in the treatment holds the surface concentra-
tion at 1.0 wt % C. Assume the plate is so thick that the diffusing carbon does not
reach the opposite side of the plate over the course of the treatment. Given that the
diffusivity of carbon in iron at this temperature is D = 1.1 × 10−9 m2∕s, determine
how long it will take for the carbon concentration to reach 0.6 wt % C at a depth
of 0.3 mm?

Problem 4.9. Heat transfer obeys the same basic laws as diffusion. For example,
a spherical transient heat transfer process can be described with the following
equation:

𝜕T
𝜕t

= 𝛼

r2

𝜕

𝜕r

[
r2 𝜕T

𝜕r

]
(4.90)

where 𝛼 is the thermal diffusivity (units of cm2∕s). The military has asked you to
properly size the insulation thickness around a delicate sensor that must survive sub-
mersion in freezing water (Tf = 273 K) for a length of time given by tc. The sensor
is surrounded by spherical insulation of thickness 𝛿. The insulation has a thermal dif-
fusivity 𝛼. The initial temperature of the sensor unit is T0. The sensor (located at the
center of the sphere) will fail if its temperature drops below a critical temperature Tc.
Assume the sensor itself occupies negligible volume.

(a) Provide a sketch for this problem with as much detail as possible about the prob-
lem geometry, the boundary and initial conditions, and your expectation for how
the temperature profile inside the spherical apparatus will evolve in time.

(b) How is steady state mathematically defined for this process?

(c) Does this problem require steady-state or transient analysis?

(d) Is this a finite, semi-infinite, or infinite boundary value problem?

(e) Provide two boundary conditions and one initial condition for this problem.

(f) Based on analogy to spherical mass diffusion, provide the approximate solution
[T(r, t)] to this problem at long times.
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(g) Provide the approximate long-time solution for the temperature at the sensor
[T(r = 0, t)] as a function of t,𝛼, 𝛿c, T0, and Tf .

(h) Provided that the sensor temperature must not drop below Tc after a length of
time tc, solve this equation in terms of 𝛿c, the minimum thickness of insulation
required.

(i) Given tc = 2.0 h, Tc = 17 ∘C (290 K), T0 = 27 ∘C (300 K), Tf = 0 ∘C (273 K),
and 𝛼 = 0.10 cm2∕s, what is 𝛿c in cm?

Problem 4.10.SSteel often contains trace amounts of H2, which can lead to embrittle-
ment. To avoid embrittlement, steel is often degassed prior to use in order to remove
these trace H2 impurities. Degassing steel involves placing the steel in a vacuum,
where the H2 concentration in the vacuum can be considered to be zero at all times.
Degassing proceeds by three steps: (1) solid-state diffusion of H2 from the steel bulk
to the steel surface; (2) desorption of H2 from the surface of the steel; (3) gas-phase
diffusion of the H2 away from the steel surface.

(a) Based on what you know about the typical rates of the three steps involved in
the steel degasification process, which of these three steps is likely to be the
rate-determining step and why?

(b) Consider a steel plate that initially contains a uniform H2 concentration (c∘H2
) of

1015 molecules/cm3, as shown in Figure 4.29. Assuming that desorption of H2
from the surface of the steel is the rate-determining step in steel degasification,
draw a diagram (similar to Figure 4.29) illustrating the H2 concentration profile
across the steel plate at five times: t = 0 < t1 < t2 < t3 < t∞.

(c) Assuming that solid-state diffusion of H2 from the bulk to the surface of the steel
is the rate-determining step in steel degasification, draw a diagram (similar to
Figure 4.29) illustrating the H2 concentration profile across the steel plate at five
times: t = 0 < t1 < t2 < t3 < t∞.

FIGURE 4.29 Schematic diagram of the cross section of a steel plate of thickness 𝛿 with a
constant H2 concentration of c∘H2

.
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(d) Assuming that solid-state H2 diffusion is the rate-determining step, is this a finite,
semi-infinite, or infinite boundary value diffusion problem?

(e) Assuming that solid-state H2 diffusion is the rate-determining step, provide the
two boundary conditions and one initial condition for this transient diffusion
problem. Note that x = 0 corresponds to the center of the steel plate. Assume
the steel plate is 1 mm thick.

(f) By employing your boundary conditions and initial conditions to evaluate
this transient diffusion problem, you arrive at the following solution for the
time-dependent concentration of H2 at the center of the steel plate [c(x = 0, t)]:

c(0, t) = c∘H2
e−Dt(𝜋∕𝛿)2

where 𝛿 is the thickness of the steel plate and c∘H2
is the initial (t = 0)

concentration of H2 in the steel plate. The H2 embrittlement is avoided if the H2
concentration in the steel is reduced below 1013 molecules/cm3. If the diffusivity
of H2 in steel under degassing conditions is 10−6 cm2∕s, how long must the steel
be degassed to ensure the H2 concentration at the center of the plate falls below
1013 molecules/cm3? Assume the steel plate is 1 mm thick.

(g) How long must a 4-mm-thick steel plate be degassed to avoid H2 embrittlement?

Problem 4.11.SThe experimentally measured diffusion coefficients as a function of
temperature for hydrogen diffusion in SiO2 are given in Table 4.5.

TABLE 4.5 Hydrogen Diffusion in SiO2

T (K) D (cm2∕s) T (K) D (cm2∕s) T (K) D (cm2∕s)

373 8.10 × 10−10 873 1.50 × 10−6 1373 1.30 × 10−5

473 9.99 × 10−9 973 4.21 × 10−6 1473 1.68 × 10−5

573 3.22 × 10−8 1073 4.54 × 10−6 1573 3.32 × 10−5

673 2.58 × 10−7 1173 6.85 × 10−6 1673 2.56 × 10−5

773 3.20 × 10−7 1273 7.19 × 10−6 1773 2.85 × 10−5

(a) Attach a plot of log D versus 1∕T (K−1).
(b) From these data, calculate ΔGact (kJ/mol).

(c) From these data, calculate D0 (cm2∕s).

(d) Calculate the value of D (cm2∕s) at 27 ∘C.

Problem 4.12.
(a) Calculate the velocity (cm∕s) of nitrogen molecules (MN2

= 28 g/mol) at 1 atm
at 1000 ∘C.

(b) Calculate the number of nitrogen molecules per cubic centimeters at 1000 ∘C and
1 atm.

(c) Calculate the mean free path (μm) of nitrogen molecules at 1000 ∘C and 1 atm.

(d) Calculate the nitrogen diffusion coefficient at 1000 ∘C and 1 atm.
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Problem 4.13.SFor interstitial lithium ion diffusion in pure SiO2 (silica) glass, the
following important diffusion parameters are given: D0 = 0.24 cm2∕s and ΔGact =
34.2 kJ∕mol.

(a) Calculate the diffusion coefficient (cm2∕s) of lithium ion impurities in silica at
900 ∘C.

(b) Make a sketch of free energy versus distance for an interstitial lithium ion atom
making a jump from one interstitial site in silica glass to another interstitial site.

Problem 4.14.SUsing Equation 4.73, calculate the binary O2/N2 gas diffusivity at
T = 300 K and compare it to the pure O2 self-diffusivity. The molecular diameter of
N2 is ≈3.2 Å (slightly larger than O2).





PART II

APPLICATIONS OF MATERIALS
KINETICS





CHAPTER 5

GAS–SOLID KINETIC PROCESSES

The first half of this textbook introduced the basic tools needed to understand most
kinetic processes. Specifically, we learned how to calculate the main thermodynamic
driving forces behind kinetic transformations (Chapter 2), we learned how to cal-
culate the rates of reaction processes (Chapter 3), and we learned how to calculate
the rates of transport processes (Chapter 4). In the second half of this textbook, we
will use these tools to model and understand a number of real-world kinetic processes
involving gas–solid, solid–liquid, and solid–solid transformations. In this chapter, we
begin with gas–solid kinetic processes.

5.1 ADSORPTION/DESORPTION

Gas–solid kinetic processes are fundamentally heterogeneous as they involve both a
gas phase and a solid phase. As a gas–solid kinetic process proceeds, atoms must pass
from the gas phase to the solid phase or vice-versa. Thus, one question of fundamental
importance in the study of gas–solid kinetic processes is: How fast can atoms from
the gas phase impinge upon a solid surface, or conversely, how fast can atoms from
the solid surface evaporate into the gas phase? In other words, we wish to know,
in the absence of other limiting kinetic factors, what is the maximum rate at which
atoms can move from the gas to the solid phase or vice-versa.

The answer to this question has its roots in the kinetic theory of gases, which we
introduced in Chapter 4. The flux of atoms impinging on a solid surface per unit area
of surface per unit time, Js, is determined by the density (𝜌) of the gas and the average
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velocity (𝑣AVG) of the gas:

Js = 𝜌

𝑣AVG

4
(5.1)

The factor of 4 in the denominator of this expression accounts for the fact that only
a certain fraction of the average gas molecule’s movement occurs in the direction
perpendicular to the solid surface and thus contributes to the flux impinging upon the
surface.

Applying the ideal gas law and the expression for 𝑣AVG (Equation 4.67) yields

Js =
P

4RT

√
8RT
𝜋M

= P√
2𝜋MRT

(5.2)

Thus, the molar flux of gas impinging on the surface of a solid depends on the pressure
and temperature of the gas as well as the molecular weight (M) of the gas. As with
previous expressions involving the kinetic theory of gases, it is important to recall
that SI units should be used with this expression to avoid error.

Adsorption Rate In general, the actual rate at which atoms (or molecules) build up
on the surface of a solid will differ from the impingement rate given by expression 5.2
above because not all gas molecules impinging on the surface will stick (or react). For
certain relatively simple cases, this issue can be taken into account by incorporating
a sticking coefficient (𝛼) into Equation 5.2:

J′s = 𝛼Js =
𝛼P√

2𝜋MRT
(5.3)

The sticking coefficient is a number between 0 and 1. It quantifies the fraction
of impinging gas atoms that stick to the surface. If 𝛼 = 0, the surface is perfectly
reflective and no impinging gas atoms stick to the surface. If 𝛼 = 1, the surface is
perfectly adsorbing and all impinging gas atoms stick to the surface.

When applying Equation 5.3 to calculate gas adsorption on a solid surface, it is
important to recognize that this expression assumes that the surface does not show a
limiting adsorption behavior—in other words, the “sticking” probability is indepen-
dent of surface coverage. Note that this is fundamentally different from the Pt/CO
poisoning surface reaction example that we examined in Chapter 3 (Section 3.4.2).
With a constant-sticking-coefficient model, gas molecules can continue to “stick” to
the surface even after one or more monolayers of molecules have deposited. Thus, this
treatment is not appropriate for modeling all types of gas–solid interactions. It is most
appropriate for modeling the condensation/evaporation of gas molecules onto/from a
solid surface of the same substance (e.g., high-temperature evaporation or condensa-
tion of W atoms from a W filament in a lightbulb). It is also highly useful for modeling
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gas adsorption/desorption processes occurring in a vacuum, where the concentration
of atoms in the gas phase is very low, and hence the flux of those atoms to the surface
controls the rate of adsorption/desorption.

Desorption Rate The maximum rate of evaporation (desorption) from a surface
is also described by Equation 5.3. This may not seem very intuitive at first. However,
consider a surface that is in equilibrium with the gas above it. At equilibrium, the
number of atoms evaporating from the surface per unit time must be equal to the
number of atoms that strike the surface and stick to it per unit time, and both of these
rates are described by Equation 5.3. The pressure of the gas above the surface in this
case must be the equilibrium vapor pressure for the gas (Peq) at the temperature at
which the process is occurring (otherwise, the adsorption and desorption rates will
not be in equilibrium). Now, consider that the gas is completely removed—in other
words, replaced with a vacuum. Atoms will still be evaporating from the surface at
the rate given by Equation 5.3 even though new atoms will no longer be impinging
on the surface. Thus, the maximum rate of evaporation of a surface into a vacuum
must be given by

J′s =
𝛼Peq√
2𝜋MRT

(5.4)

where Peq is the equilibrium pressure (vapor pressure) of the evaporating species at
the surface temperature.

Impingement versus Diffusion

The impingement rate discussed here characterizes the maximum intrinsic rate at
which gas molecules immediately above a solid can strike the surface of a solid.
The impingement rate does not take concentration gradients into effect, and thus it
represents the maximum rate of transport for a gas-phase species to a surface when
diffusion is unimportant. When calculating the rate of transport of a gas-phase
species to a solid surface, the decision to use the impingement rate versus the
diffusion equation depends on the length scale of the transport relative to the mean
free path of the transporting gas molecules.

The impingement rate is associated with ballistic transport (i.e., direct line-
of-sight transport) where the atoms can transport directly to the solid surface with-
out undergoing multiple collisions in the gas phase and without a spatial variation
in concentration. Under vacuum pressures and for small distances (where the mean
free path is smaller than the distance of travel), direct line-of-sight impingement
can determine the transport rate and hence the impingement rate can be used to
quantify the flux of a species to a surface. However, at higher pressures, where
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molecules undergo many collisions along their journey and their concentration
varies spatially, transport is instead determined by diffusion and Fick’s laws should
be used to quantify the flux. Figure 5.1 schematically illustrates the differences
between these two transport modes.

FIGURE 5.1 Schematic illustration of the evaporation of Ag vapor from a source and its
transport (via the gas phase) to a substrate under two limiting conditions. (a) Ballistic trans-
port under high-vacuum conditions where the direct line-of-sight impingement of the Ag
atoms from the source to the substrate determines the transport rate. (b) Diffusive transport
in a 1 atm inert gas environment where Fick’s first law of diffusion determines the transport
rate.

Example 5.1

Question: Silver (Ag) is being evaporated from a large-area source for depo-
sition onto window glass as part of a low-e (low-emissivity) coating process
that greatly improves the energy efficiency of the window. The Ag source is
held at a temperature of 1300 ∘C, yielding an equilibrium Ag vapor pressure
of 10−3 atm. Assuming deposition from the Ag source to the window glass
(separated from one another by 10 cm), calculate the maximum expected rate
of deposition [mol/(cm2⋅s)] under the following two scenarios: (a) The Ag is
deposited in a vacuum deposition process, where the deposition rate is controlled
solely by the rate of evaporation from the Ag source. (b) The Ag is deposited
under atmospheric conditions in an inert argon gas environment. In this case,
because the chamber pressure is much greater than the Ag vapor pressure, the
deposition rate is controlled by the diffusion of the Ag vapor through the Ar gas.
In both scenarios, assume that any Ag atoms which reach the glass surface stick.
For part (b), assume the diffusivity of Ag(g) in Ar(g) is 0.10 cm2/s.
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Solution: (a) In this first case, both the rate of Ag evaporation from the source
and the rate of deposition onto the window glass are equal and given by the
impingement rate formulation, since the flux of Ag atoms is controlled by ballis-
tic line-of-sight transport. Assuming that both the source and the glass substrate
are large in area relative to their distance of separation, there should be no angu-
lar dependence on the transport. Applying Equation 5.4, the flux of Ag atoms
evaporating from the source is

J′s,Ag =
𝛼Peq

Ag√
2𝜋MAgRT

=
(1 ⋅ 10−3 atm)(101,300 Pa∕1 atm)√

2𝜋 ⋅ 0.1079 kg/mol ⋅ 8.314 J∕(mol ⋅ K) ⋅ 1573 K

= 1.08 mol/(m2 ⋅ s) = 1.08 × 10−4 mol∕(cm2 ⋅ s)

Thus, this also represents the deposition flux onto the window glass substrate.
(b) In this second case, the rate at which the Ag atoms arrive at the window

glass is controlled by their rate of diffusion through the gas separating the source
from the substrate. At the evaporation source, the partial pressure of Ag atoms
in the gas phase is given as 10−3 atm. At the glass substrate, the partial pressure
of Ag atoms in the gas phase is essentially zero, since all Ag atoms that arrive to
the substrate stick. Thus, the Ag atoms diffuse through the Ar gas environment
from the Ag source to the glass substrate down their concentration gradient.
We can use Fick’s first law to calculate the steady-state flux of Ag atoms to the
substrate:

Jdiff,Ag = −DAg∕Ar

dcAg

dx

= −DAg∕Ar

cAg,glass − cAg,source

Δx
(5.5)

We are told that DAg∕Ar = 0.10 cm2∕s. If this information had not been pro-
vided, we could have estimated DAg∕Ar using Equation 4.73 from Chapter 4.
We can use the ideal gas law to calculate cAg,source based on Peq

Ag at the source:

cAg,source =
nAg

V
=

Peq
Ag

RT

=
(10−3 atm)(101,300 Pa∕1 atm)

8.314 J∕(mol ⋅ K) ⋅ 1573 K

= 7.75 × 10−3 mol/m3 = 7.75 × 10−9 mol∕cm3
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Finally, inserting the values for DAg∕Ar, cAg,source, and cAg,glass = 0 into
Equation 5.5 yields

Jdiff,Ag = −0.10 cm2∕s ⋅
0 − 7.75 × 10−9 mol∕cm3

10 cm

= 7.75 × 10−11 mol∕(cm2 ⋅ s)

Thus, the flux of Ag onto the window glass substrate when deposited in 1 atm
Ar gas is more than six orders of magnitude lower than the flux in vacuum! This
huge difference in deposition rates is a key reason why deposition processes
such as evaporation, sputtering, and pulsed-laser deposition are carried out in
vacuum.

It is important to understand that the crossover between the rate-limiting
behavior described in scenario (a) versus that in (b) is determined by the mean
free path of Ag atoms in the chamber relative to the distance separating the Ag
source from the window substrate. If the mean free path of the Ag atoms is
much greater than the distance between the source and the substrate (e.g., as
may happen under vacuum deposition), then the Ag atoms can rapidly travel
without collision in a direct line-of-sight deposition process from the source to
the substrate. In this case, the deposition rate is controlled solely by the rate
at which Ag is evaporated from the source and the geometry of the problem.
On the other hand, if the mean free path of the Ag atoms is much smaller than
the distance between the source and the substrate (e.g., if the chamber is filled
with inert Ar gas), then the Ag atoms will undergo many collisions on their
way from the source to the substrate and so the deposition rate will be lim-
ited by the rate of diffusion of the Ag atoms through the gas phase. Under this
condition, deposition will be much slower. This type of crossover between two
different rate-controlling kinetic processes is a common phenomenon that we
will encounter throughout this chapter.

Surface Reactions at Atomic Scale

At the atomic scale, the surface of a solid is a diverse and fascinating place. As
schematically illustrated in Figure 5.2, solid surfaces are generally not perfectly
flat but contain a number of important features such as steps and ledges, kink sites,
surface vacancies (or “holes”), and surface adatoms. When atoms are deposited
onto or removed from the surface of a solid, the process will often proceed along
such features, because these features represent higher energy sites that possess
dangling bonds and thus are more susceptible to reaction. In fact, it is quite com-
mon for evaporation of a surface to proceed row by row along step edges, as the
step edge atoms evaporate more easily. Thus, the surface gradually “unzips” as
these step edges are etched away atom by atom. Another interesting phenomenon
is the “spiral” growth or etching of atomic layers at sites corresponding to the
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surface termination of screw dislocations (not shown in the figure), which repre-
sent another type of high-energy surface site.

FIGURE 5.2 Schematic illustration of a surface at the atomic scale. Atomic-scale fea-
tures of a surface include steps or ledges, kinks, adatoms, and vacancies. Surface reaction
processes such as adsorption and desorption often proceed along step edges or at kink sites,
as these locations represent higher energy sites on the surface with a larger number of dan-
gling bonds.

5.2 ACTIVE GAS CORROSION

In the previous section, we considered one of the most basic gas–solid kinetic pro-
cesses: the simple adsorption or desorption of atoms to/from a surface under the
assumption that the rate is limited by the impingement of atoms from the gas phase
to the surface. In this section, we consider a more complex situation in which a gas
species actively etches or corrodes a solid surface via a chemical reaction process,
thereby continuously removing material from the surface over time. Consider, for
example, the corrosion of a Ti metal surface with HCl acid vapor:

Ti(s) + 4HCl(g) ↔ TiCl4(g) + 2H2(g) (5.6)

As illustrated in Figure 5.3, this process involves three sequential steps:

1. Transport of HCl gas reactants to the Ti surface

2. Surface reaction between the HCl gas and Ti, creating TiCl4 and H2 gas

3. Transport of the TiCl4(g) and H2(g) products away from the surface

The slowest of the three steps will control the overall rate of the process. At low tem-
peratures, the surface reaction (step 2) may be the slowest. However, since reaction
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FIGURE 5.3 Schematic illustration of the active gas corrosion of a Ti metal surface with
HCl gas. This process involves three sequential steps: (1) transport of HCl gas reactants to
the Ti surface; (2) reaction between HCl and Ti on the surface, creating TiCl4 and H2 gas;
and (3) transport of the TiCl4 and H2 gas products away from the surface. As shown in the
accompanying graph, the rate-limiting step can change depending on the conditions.

rates generally increase exponentially with increasing temperature while gas-phase
diffusion only increases weakly with temperature, diffusion of reactants/products
to/from the surface may become rate limiting at high temperatures.

Surface Reaction Control We will first examine the behavior of this system
under the assumption that the surface reaction step (step 2) is the slowest step and
hence controls the overall corrosion rate. To start, we must write the rate law for this
surface reaction. We assume that the reaction is first order with respect to the HCl
reactant. Recalling Chapter 3, we can write the rate law for this first-order reaction as

dcHCl

dt
= −kcHCl (5.7)

In this case, the reaction takes place along a surface rather than homogeneously
throughout the volume of a gas. Thus, the homogeneous reaction rate law given
by Equation 5.7 should be transformed into a heterogeneous reaction rate law that
describes the rate of consumption of the HCl gas per unit area of surface [e.g.,
mol/(cm2⋅s)]. This transformation is accomplished by employing a heterogeneous
rate constant in Equation 5.7, k′, which has units of length/time (whereas k has units
of time−1):

JHCl = −k′c∘HCl (5.8)

where c∘HCl represents the concentration of HCl(g) that is supplied to the reaction. In
this heterogeneous rate expression, the rate of consumption of HCl is now expressed
per unit area of surface per unit time. Note that this area-specific consumption rate
essentially represents the flux of HCl reacting on the surface of the solid.

During an active gas corrosion process, one often wants to know how quickly the
solid surface is being etched away. Based on the rate at which the HCl(g) is con-
sumed, we can determine the rate at which the Ti(s) is consumed using the reaction
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stoichiometry. We know that for every 4 mol of HCl(g) consumed, 1 mol of Ti(s) is
consumed. Thus, the Ti is consumed at one-fourth the rate of the HCl:

JTi =
1
4

JHCl = −
k′c∘HCl

4
(5.9)

This can be further converted into an etching rate (i.e., the decrease in the thickness
of the Ti solid per unit time, dx∕dt) via some simple algebraic transformations using
the density and molecular weight of the Ti. Consider first that the number of moles
of Ti (nTi) in a Ti plate of thickness x and area A can be calculated as

nTi = VTi
𝜌Ti

MTi
= Ax

𝜌Ti

MTi
(5.10)

Using this relation and recognizing that JTi represents the moles of Ti consumed per
unit area (A) of surface per unit time, JTi can be converted into an etching rate (dx∕dt):

JTi =
1
A

dnTi

dt
= 1

A

d[Ax(𝜌Ti∕MTi)]
dt

=
𝜌Ti

MTi

dx
dt

dx
dt

=
MTi

𝜌Ti
JTi (5.11)

Finally, inserting the Ti reaction rate law (Equation 5.9 ) into this expression allows
for the etching rate to be calculated as a function of the heterogeneous reaction rate
constant and the HCl(g) concentration:

dx
dt

=
MTi

𝜌Ti
JTi

= −
MTi

𝜌Ti

k′c∘HCl

4
(5.12)

Typically, the HCl gas concentration will be specified as a partial pressure rather
than a molar concentration. Recalling the ideal gas law, the HCl concentration can be
converted to HCl pressure to obtain a final expression for the Ti etching rate as

dx
dt

= −
MTi

𝜌Ti

k′P∘HCl

4RT
(5.13)

This expression indicates that the Ti etching rate is constant; thus we would expect the
thickness of a Ti plate undergoing active gas corrosion to decrease linearly with time.
The expression also indicates that the etching rate will increase linearly with increas-
ing HCl(g) pressure. Since HCl is the etchant, this makes sense! The effect of temper-
ature is less obvious. While temperature appears directly in the denominator of this
expression, recall that the rate constant k′ is an exponentially temperature-activated
quantity. Thus, the exponential increase in k′ with increasing temperature dominates
over the T−1 term in this expression; the overall effect is that the etching rate will
increase rapidly with increasing temperature.
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Example 5.2

Question: (a) Calculate the etching rate of a Ti surface undergoing active
gas corrosion in HCl(g) assuming that the surface reaction is rate controlling.
(b) Under these conditions, how much time would be required to etch 1 mm
deep into a Ti plate? The following information is provided:

• k′0 = 1.2 × 102 cm/s

• ΔGact = 50 kJ∕mol

• PHCl = 0.01 atm

• MTi = 47.9 g/mol

• 𝜌Ti = 4.5 g/cm3

• T = 1500 K

Solution: (a) This is a fairly straightforward plug-and-chug exercise. First, we
apply Equation 3.70 to determine the value of the reaction rate constant (k′) at
1500 K:

k′ = k′0 exp

(
−
ΔGact

RT

)

= (1.2 m/s) exp

(
−

50,000 J∕mol

8.314 J∕(mol ⋅ K) ⋅ 1500 K

)

= 0.022 m/s

Then, applying this value together with the other provided quantities to
Equation 5.13 (paying careful attention to SI units!) gives

dx
dt

= −
MTi

𝜌Ti

k′P∘HCl

4RT

= −
0.0479 kg∕mol

4500 kg/m3
⋅

0.022 m/s ⋅ 0.01 atm 101,300 Pa
1 atm

4 ⋅ 8.314 J∕(mol ⋅ K) ⋅ 1500 K

= −4.8 × 10−9 m/s = −4.8 × 10−7 cm/s = −4.8 nm/s

Where the negative sign indicates that material is being removed (etched away).
This etching rate does not seem very fast. However, assuming a monolayer of
atoms is ≈ 0.2 nm thick, this etching rate corresponds to about 20 atomic layers
per second!

(b) Even with 20 atomic layers removed from the Ti surface every second, it
will take a long time to etch 1 mm of Ti:

Δt = Δx
dx∕dt

= 0.1 cm
4.8 × 10−7 cm/s

= 208,000 s ≈ 58 h
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Diffusion Control As was illustrated in Figure 5.3, depending on the conditions,
either surface reaction or gas diffusion could be rate limiting for the overall active gas
corrosion process. Having examined the scenario where the surface reaction was rate
limiting in the previous section, we now examine the scenario where gas diffusion is
rate limiting. While either diffusion of reactants to the surface or diffusion of products
away from the surface could be rate limiting, we will assume that the diffusion of
HCl(g) to the Ti surface is the rate-limiting step in this case. Because four times more
HCl is required for reaction than TiCl4 is produced, and because the other product,
H2, is much smaller (and hence faster diffusing) than HCl, this is likely a reasonable
assumption. A rate limitation based on diffusion of products away from the surface
could be treated in an analogous manner.

Under the situation where the rate of reactant species transport to the surface is
much slower than the surface reaction rate, the concentration of the reacting species
will be depleted to essentially zero at the surface (since the reacting species can be
consumed at the surface faster than they can arrive). However, somewhere far away
from the reacting surface, deep within the bulk gas phase, the reactant concentration
will be maintained (by flowing gas convection) at the original (supplied) value (c∘HCl).
Thus, a diffusion zone of thickness 𝛿 will form through which the reactant species
must diffuse to reach the surface. This is shown schematically in Figure 5.4. The
reactant concentration will vary from c∘HCl (in the bulk) to zero (at the surface) across
this diffusion zone. Assuming the reactants are continuously supplied into the bulk
gas phase, this diffusion zone will achieve a steady-state thickness with the reactant
concentration varying in an approximately linear fashion across it.

Under these circumstances, the rate (flux) at which HCl is transported to the Ti
surface by diffusion across the diffusion zone may be calculated using Fick’s first

FIGURE 5.4 Schematic illustration of the active gas corrosion of Ti by HCl(g) when con-
trolled by the diffusion of HCl(g) to the surface. Under diffusion control, the reaction rate is
limited by the rate at which the HCl(g) reactant can diffuse across the diffusion zone (of thick-
ness 𝛿) to the surface. At steady state, the concentration profile across the diffusion zone is
typically approximated as linear, enabling the diffusion flux to be calculated using a straight-
forward solution of Fick’s first law.
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law (Chapter 4) as

JHCl = −DHCl

0 − c∘HCl

𝛿

= DHCl

c∘HCl

𝛿

(5.14)

Because the surface reaction rate is much faster than the diffusion of HCl to the
surface, every HCl that arrives at the surface will immediately react, consuming Ti.
Thus, the consumption flux of Ti(s) can be directly related to the diffusion flux of
HCl by the reaction stoichiometry:

JTi = −1
4

JHCl = −DHCl

c∘HCl

4𝛿
(5.15)

As in the previous section, this flux-based rate expression can then be converted into
an expression that quantifies the etch rate (dx∕dt):

dx
dt

=
MTi

𝜌Ti
JTi = −

MTi

𝜌Ti
DHCl

c∘HCl

4𝛿
(5.16)

Converting the HCl concentration to a HCl pressure yields the final expression for
the Ti etching rate as

dx
dt

= −
MTi

𝜌Ti
DHCl

P∘HCl

4RT𝛿
(5.17)

This expression indicates that the Ti etching rate is constant; thus we would expect
the thickness of a Ti plate undergoing active gas corrosion to decrease linearly with
time. Because DHCl depends on both temperature and pressure [D = D0(T3∕2∕P)],
this partially offsets the direct T and P terms appearing in the expression. In the end,
the etching rate tends to increase very weakly (as approximately T1∕2) with increasing
temperature.

Example 5.3

Question: (a) Calculate the etching rate of a Ti surface undergoing active gas
corrosion in HCl(g) assuming that diffusion of HCl to the Ti surface is rate
controlling. (b) Under these conditions, how much time would be required to
etch 1 mm deep into a Ti plate? The following information is provided:

• DHCl(g)|1500 K = 0.2 cm2∕s

• 𝛿 = 1 mm

• PHCl = 0.01 atm

• MTi = 47.9 g/mol

• 𝜌Ti = 4.5 g/cm3

• T = 1500 K

Solution: (a) Inserting the provided quantities into Equation 5.13 (while once
again paying careful attention to SI units!) gives
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dx
dt

= −
MTi

𝜌Ti
DHCl

P∘HCl

4RT𝛿

= −
0.0479 kg∕mol

4500 kg/m3
⋅ 2 × 10−5 m2∕s

⋅
(0.01 atm)(101,300 Pa∕1 atm)

4 ⋅ 8.314 J∕(mol ⋅ K) ⋅ 1500 K ⋅ 10−3 m

= −4.3 × 10−9 m/s = −4.3 × 10−7 cm/s = −4.3 nm/s

Thus, the etching rate under the assumption that diffusion limits the kinetics is
almost the same as that calculated assuming the surface reaction is rate lim-
iting. As we will see in the next section, the similarity between the surface
reaction and diffusion rates in this situation means that both must be consid-
ered simultaneously to accurately determine the overall total etching rate under
these conditions.

(b) As before, we see that it will take more than 60 h to etch 1 mm of Ti.
Specifically,

Δt = Δx
dx∕dt

= 0.1 cm
4.3 × 10−7 cm/s

= 233,000 s ≈ 65 h

Mixed Control In the previous two sections we have examined the kinetics of
active gas corrosion from the standpoint of two limiting scenarios: (1) surface reaction
control and (2) diffusion control. Under many conditions, it is quite likely that one of
these two processes will limit the overall rate of corrosion, and hence one of these two
limiting models can be used to calculate the corrosion rate. Under certain conditions,
however, the surface reaction and diffusion rates may be comparable, in which case
both will influence the overall rate of corrosion. When two series processes both affect
the overall rate, they essentially act as two series resistances. Like electronic resistors,
these two kinetic resistances will add in series. However, it is important to keep in
mind one key point: the resistance of each process is effectively given by the inverse
of its rate; thus,

Rtot = Rrxn + Rdiff[(dx
dt

)
tot

]−1
=
[(dx

dt

)
rxn

]−1
+
[(dx

dt

)
diff

]−1

[(dx
dt

)
tot

]−1
= −

(
MTi

𝜌Ti

k′P∘HCl

4RT

)−1

−

(
MTi

𝜌Ti
DHCl

P
∘
HCl

4RT𝛿

)−1

(dx
dt

)
tot

= −
MTiP

∘
HCl

4RT𝜌Ti(𝛿∕DHCl + 1∕k′)
(5.18)
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FIGURE 5.5 Summary of the key kinetic concepts associated with active gas corrosion
under the surface reaction, diffusion, and mixed-control regimes. (a) Schematic illustration and
corrosion rate equation for active gas corrosion under surface reaction control. (b) Schematic
illustration and corrosion rate equation for active gas corrosion under reactant diffusion con-
trol. (c) Schematic illustration and corrosion rate equation for active gas corrosion under
mixed control. (d) Illustration of the crossover from surface-reaction-controlled behavior to
diffusion-controlled behavior with increasing temperature. The surface reaction rate constant
(k′) is exponentially temperature activated, and hence the surface reaction rate tends to increase
rapidly with temperature. On the other hand, the diffusion rate increases only weakly with
temperature. The slowest process determines the overall rate.

Examining the limits of this expression shows that when k′ ≫ DHCl∕𝛿 (i.e., diffusion
is slower and hence rate limiting), the equation reduces to the expression for diffusion
control. In contrast, when DHCl∕𝛿 ≫ k′ (i.e., the surface reaction is slower and hence
rate limiting), the equation reduces to the expression for surface reaction control.
The key concepts associated with active gas corrosion under the surface reaction,
diffusion, and mixed-control regimes are summarized in Figure 5.5.

Example 5.4

Question: As we learned from Examples 5.2 and 5.3, for the active gas corro-
sion of Ti by HCl at T = 1500 K the surface reaction rate and diffusion rate are
approximately equal. Considering both processes operating in series, calculate
the actual overall etching rate for Ti under this situation.
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Solution: Using Equation 5.18 and the etching rates calculated from the previ-
ous two examples, we have

[(dx
dt

)
tot

]−1
=
[(dx

dt

)
rxn

]−1
+
[(dx

dt

)
diff

]−1

[(dx
dt

)
tot

]−1
= − 1

4.8 nm/s
− 1

4.3 nm/s(dx
dt

)
tot

= −2.3 nm/s

Thus, the actual etching rate in this situation, taking into account both reaction
and diffusion, is about half the rate calculated assuming that only one process
controlled the kinetics!

When the reaction and diffusion rates are not so comparable, it is not neces-
sary to consider them both in this manner. For example, if the surface reaction
rate increases by 100× to 480 nm/s while the diffusion rate remains unchanged,
the overall etching rates considering both reaction and diffusion would become

[(dx
dt

)
tot

]−1
= − 1

480 nm/s
− 1

4.3 nm/s(dx
dt

)
tot

= −4.26 nm/s ≈
(dx

dt

)
diff

In this case, the diffusion rate is now 100× slower than the reaction rate, and
hence it largely determines the overall etching rate.

Example 5.5

Question: Calculate the “crossover” temperature between the surface-reaction-
controlled regime and the diffusion-controlled regime for the active gas cor-
rosion of Ti(s) by HCl(g). In other words, calculate the temperature at which
the rates of these two processes are equal. Use the same values provided in
Examples 5.2 and 5.3 and assume that DHCl is independent of temperature.

Solution: When T = T∗ (the crossover temperature), (dx∕dt)rxn = (dx∕dt)diff .
Thus,

MTi

𝜌Ti

k′P∘HCl

4RT∗ =
MTi

𝜌Ti
DHCl

P∘HCl

4RT∗
𝛿

MTi

𝜌Ti

k′0e−ΔGact∕RT∗
P∘HCl

4RT∗ =
MTi

𝜌Ti
DHCl

P∘HCl

4RT∗𝛿

T∗ =
ΔGact

R
1

ln

(
k′

0
𝛿

DHCl

)
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=
(

50,000 J∕mol

8.314 J∕(mol ⋅ K)

)[
ln

(
(120 cm/s)(0.1 cm)

0.2 cm2∕s

)]−1

= 1469 K

This result makes sense, since at 1500 K we saw that the surface reaction rate
was just a little higher than the diffusion rate. Since the surface reaction rate
increases exponentially with temperature while the diffusion rate is only weakly
temperature dependent, decreasing the temperature a little below 1500 K brings
the two rates into equality.

5.3 CHEMICAL VAPOR DEPOSITION

In this section, we go from considering the removal of material from a solid surface
to considering the deposition of material on a solid surface. One of the most popular
ways to controllably deposit material on a solid surface is to introduce one or more
gases that, when the pressure and temperature conditions are properly chosen, can
react on a surface to deposit a solid film of material. Depending on the temperature,
pressure, and growth requirements, there are many different gas chemistries available
that can yield the deposition of many different types of solid films. These various
gas–solid deposition reactions are collectively known as “chemical vapor deposition”
(CVD) processes. CVD processes are used in the fabrication of integrated circuits,
light-emitting diodes (LEDs), flat-panel displays, low-emissivity coatings for window
glass, solar cells, and many other high-tech devices.

Frost: Natural Chemical Vapor Deposition Process

You are probably already familiar with at least one naturally occurring CVD pro-
cess: the formation of frost (ice) on a cold humid morning in the winter. Frost
is formed when the temperature is sufficiently cold that water vapor from the
air can spontaneously nucleate and grow on solid surfaces as ice crystals. Frost
will form, in preference to a snowfall, when the relative humidity and temperature
conditions do not provide sufficient driving force to cause ice crystals to homo-
geneously form in the gas phase (snow); instead, only heterogeneous deposition
on solid surfaces can occur. Heterogeneous nucleation on a solid surface is gener-
ally easier than homogeneous nucleation in the gas phase because of the reduction
of surface energy afforded by heterogeneous nucleation on an existing surface.
Thus, there is typically a thermodynamic “window” where conditions will favor
the heterogeneous deposition of a film without the homogeneous nucleation of
solid particles in the gas phase. Just as with frost formation, most CVD processes
seek this magic thermodynamic window. We will learn more about homogeneous
and heterogeneous nucleation and growth processes in Chapter 6.
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Our kinetic treatment of CVD will be very similar to our treatment of active gas
corrosion (except, of course, material is being deposited rather than removed). There
will be one key difference, however. In our treatment of active gas corrosion, we
made the implicit assumption that the reaction process went to completion. In the Ti
corrosion example, as long as ANY HCl(g) was available to react, we assumed that
it would do so completely. As you may recall from Chapter 3, the assumption that
a reaction goes all the way to completion is valid in many cases. However, there are
many other reactions that do not go all the way to completion. This is particularly
true for many CVD reactions, whose thermodynamics are purposely tuned so that
the driving forces for reaction are relatively small (and thus homogeneous nucleation
is avoided).

Consider the CVD of Si from a trichlorosilane (SiHCl3) gas precursor at 1300 K
(Figure 5.6):

SiHCl3(g) + H2(g) ↔ Si(s) + 3HCl(g) ΔG
∘
rxn|T=1300 K = 8.46 kJ/mol

In this case, ΔG∘
rxn at 1300 K (a typical deposition temperature) is positive! Clearly,

then, this reaction will not go to completion in the forward direction. In order to
determine how far the reaction will proceed, we can calculate the equilibrium constant
(Keq) and use this information to determine the equilibrium pressures of the reactant
and product species (recall Chapter 2, Example 2.3):

Keq =

⎧⎪⎪⎨⎪⎪⎩

exp

(
−
ΔGrxn

RT

)
= exp

(
−

8460 J∕mol

8.314 J∕(mol ⋅ K) ⋅ 1300 K

)
= 0.457 (5.19)

(Peq
HCl)

3aSi

Peq
SiHCl3

Peq
H2

=
(Peq

HCl)
3

Peq
SiHCl3

Peq
H2

(5.20)

FIGURE 5.6 Schematic illustration of the chemical vapor deposition of a Si film from a
SiHCl3 gas precursor. This process involves three sequential steps: (1) transport of the SiHCl3

and H2 gas reactants to the surface; (2) reaction between SiHCl3 and H2 on the surface, creating
Si(s) and HCl gas; and (3) transport of the HCl gas product away from the surface. As shown
in the accompanying graph, the rate-limiting step can change depending on the conditions.
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For sake of illustration, consider a CVD reaction that starts with the following
partial pressures for the reactant gases (and initially no product gases):

• P∘SiHCl3
= 0.10 atm

• P∘H2
= 0.90 atm

The equilibrium pressures of the reactant and product gases will be

0.457 =
(Peq

HCl)
3

(
0.1 − 1

3
Peq

HCl

)(
0.9 − 1

3
Peq

HCl

) (5.21)

Therefore
Peq

HCl = 0.20 atm

Peq
SiHCl3

= 0.1 − 1
3
0.2 = 0.033 atm

Peq
H2

= 0.9 − 1
3

0.2 = 0.833 atm

Thus, with respect to the initial SiHCl3 partial pressure, the reaction will proceed only
about two-thirds of the way to completion; one-third of the SiHCl3 gas will remain
unreacted at equilibrium.

Based on this understanding of the incomplete nature of the CVD reaction, the
kinetic behavior of this system under surface reaction, diffusion, and mixed control
can now be developed. The results will be very similar to the active gas corrosion
example with only minor changes due to the incomplete nature of the reaction and
the different reaction stoichiometry of this example.

Surface Reaction Control We will first examine the behavior of this system
under the assumption that the surface reaction is the slowest step and hence controls
the overall deposition rate. To start, we must write the rate law for this surface reac-
tion. We assume that the reaction is first order with respect to the SiHCl3 reactant.
However, we must modify the rate law for this first-order reaction to take into account
the fact that the reaction does not go to completion. This yields

dcSiHCl3

dt
= −k(cSiHCl3

− ceq
SiHCl3

) (5.22)

where ceq
SiHCl3

represents the equilibrium concentration of SiHCl3(g). This rate law
correctly indicates that the net reaction rate will go to zero when the SiHCl3(g) con-
centration reaches its equilibrium value.

Transformation to a heterogeneous (surface) reaction where the rate is expressed
as a flux then yields

JSiHCl3
= −k′(c∘SiHCl3

− ceq
SiHCl3

) (5.23)

where c∘SiHCl3
represents the concentration of SiHCl3(g) that is supplied to the

reaction.
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Based on the rate at which the SiHCl3(g) is being consumed, we can determine the
rate at which Si(s) is being produced using the reaction stoichiometry. In this case,
for every mole of SiHCl3(g) consumed, 1 mol of Si(s) is produced. Thus,

JSi = −JSiHCl3
= k′(c∘SiHCl3

− ceq
SiHCl3

) (5.24)

As in the active gas corrosion example, the flux of Si can be transformed into a depo-
sition rate (i.e., the increase in the thickness of the Si film per unit time, dx∕dt) via
some simple algebraic transformations using the density and molecular weight of
the Si:

JSi =
1
A

dnSi

dt
= 1

A

Ax(𝜌Si∕MSi)
dt

=
𝜌Si

MSi

dx
dt

dx
dt

=
MSi

𝜌Si
JSi (5.25)

Finally, inserting the Si reaction rate law (Equation 5.24 ) into this expression allows
for the deposition rate to be calculated as a function of the heterogeneous reaction
rate constant and the SiHCl3(g) concentration:

dx
dt

=
MSi

𝜌Si
JSi =

MSi

𝜌Si
k′(c∘SiHCl3

− ceq
SiHCl3

) (5.26)

which can then be converted into a final expression involving gas partial pressures
using the ideal gas law:

dx
dt

=
MSi

RT𝜌Si
k′(P∘SiHCl3

− Peq
SiHCl3

) (5.27)

This expression indicates that the Si deposition rate is constant; thus we would
expect the thickness of a Si film grown by this CVD process to increase linearly with
time. The expression also indicates that the deposition rate will increase linearly
with increasing SiHCl3(g) pressure. Since SiHCl3 is the reactant, this makes sense!
The effect of temperature is less obvious. While temperature appears directly in the
denominator of this expression, recall that the rate constant k′ is an exponentially
temperature-activated quantity. In addition, Peq

SiHCl3
also depends on temperature

(Peq
SiHCl3

increases with increasing temperature due to the fact that ΔS for this reaction
is negative). The overall effect of these factors, however, is generally that deposition
rate will increase with increasing temperature until the temperature is increased to
the point where the reaction can no longer occur in the forward direction at all.

Example 5.6

Question: The deposition rate for the CVD of Si(s) from SiHCl3(g) is 10 nm/s
when the following reactant gas partial pressures are supplied to the CVD cham-
ber at T = 1300 K:

• P∘SiHCl3
= 0.10 atm

• P∘H2
= 0.90 atm
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The initial product gas concentrations are zero. Calculate the heterogeneous rate
constant for the surface reaction process at 1300 K assuming that the surface
reaction process is rate limiting, MSi = 28.1 g/mol, and 𝜌Si = 2.65 g/cm3.

Solution: From the text (Equation 5.21 ) we know that Peq
SiHCl3

= 0.033 atm for
the reactant partial pressures supplied to the chamber in this problem at T =
1300 K. Applying this value along with the other information provided in the
problem statement to Equation 5.27 and solving for k′ yields

dx
dt

=
MSi

RT𝜌Si
k′(P∘SiHCl3

− Peq
SiHCl3

)

k′ =
RT𝜌Si

MSi(P∘SiHCl3
− Peq

SiHCl3
)

(dx
dt

)

=
8.314 J∕(mol ⋅ K) ⋅ 1300 K ⋅ 2650 kg/m3

0.0281 kg∕mol ⋅ (0.10 atm − 0.0333 atm) ⋅ (101,300 Pa∕1 atm)
10

× 10−9 m/s

= 1.5 × 10−3 m/s = 0.15 cm/s

Diffusion Control In the diffusion control regime, either diffusion of SiHCl3 or
H2 to the surface or diffusion of HCl away from the surface could be rate limiting.
Here, we will assume that the diffusion of SiHCl3(g) to the surface is the rate-limiting
step. Because SiHCl3 is a far larger molecule (and hence slower diffusing) than the
other two gas species, this is likely a reasonable assumption. A rate limitation based
on the diffusion of one of the other species could be modeled in a nearly identical
manner.

In this case, because the reaction does not go to completion, the SiHCl3 concen-
tration at the surface cannot fall below ceq

SiHCl3
even when the transport of SiHCl3

to the surface is much slower than the surface reaction rate. Thus, as illustrated in
Figure 5.7, the reactant concentration will vary across the diffusion zone from c∘SiHCl3
(in the bulk) to ceq

SiHCl3
(at the surface).

As before and assuming again a linear concentration gradient across the diffusion
zone, the rate (flux) at which SiHCl3 is transported to the surface by diffusion may
be calculated using Fick’s first law as

JSiHCl3
= −DSiHCl3

ceq
SiHCl3

− c∘SiHCl3

𝛿

(5.28)

By applying the reaction stoichiometry, the corresponding Si flux is then

JSi = JSiHCl3
= −DSiHCl3

ceq
SiHCl3

− c∘SiHCl3

𝛿

= DSiHCl3

c∘SiHCl3
− ceq

SiHCl3

𝛿

(5.29)
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FIGURE 5.7 Schematic illustration of the CVD growth of a Si film when controlled by the
diffusion of SiHCl3(g) to the surface. Under diffusion control, the reaction rate is limited by
the rate at which the SiHCl3(g) reactant can diffuse across the diffusion zone (of thickness 𝛿)
to the surface. At steady state, the concentration profile across the diffusion zone is typically
approximated as linear, enabling the diffusion flux to be calculated using a straightforward
solution of Fick’s first law.

As in the previous section, this flux-based rate expression can then be converted into
an expression that quantifies the deposition rate (dt∕dx):

dx
dt

=
MSi

𝜌Si
JSi

=
MSi

𝜌Si
DSiHCl3

c∘SiHCl3
− ceq

SiHCl3

𝛿

(5.30)

Converting the SiHCl3 concentration to a SiHCl3 pressure yields the final expression
for the Si deposition rate as

dx
dt

=
MSi

RT𝜌Si
DSiHCl3

P∘SiHCl3
− Peq

SiHCl3

𝛿

(5.31)

This expression indicates that the Si deposition rate is constant; thus we would expect
the thickness of a Si film to increase linearly with time. Because DSiHCl3

depends on
both temperature and pressure [D = D0(T3∕2∕P)], this partially offsets the direct T
and P terms appearing in the expression. In addition, Peq

SiHCl3
also depends on tem-

perature and on the partial pressures of the other gases in the system. In general, the
deposition rate tends to increase very weakly (as approximately T1∕2) with increasing
temperature (until the temperature is increased to the point where the CVD reaction
can no longer occur in the forward direction at all).

Mixed Control In the mixed-control regime, the surface reaction and diffusion
rates are comparable, and thus both influence the overall rate of deposition. Analo-
gous to the active gas corrosion example, the growth rate under mixed control for this
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CVD process can be determined by adding these two kinetic resistances together in
series:

Rtot = Rrxn + Rdiff[(dx
dt

)
tot

]−1
=
[(dx

dt

)
rxn

]−1
+
[(dx

dt

)
diff

]−1

[(dx
dt

)
tot

]−1
=

(
MSi

𝜌Si

k′(P∘SiHCl3
− Peq

SiHCl3
)

RT

)−1

+
⎛⎜⎜⎝

MSi

𝜌Si
DSiHCl3

P
∘
SiHCl3

− Peq
SiHCl3

RT𝛿

⎞⎟⎟⎠

−1

(dx
dt

)
tot

=
MSi(P∘SiHCl3

− Peq
SiHCl3

)

RT𝜌Si(𝛿∕DSiHCl3
+ 1∕k′)

(5.32)

FIGURE 5.8 Summary of the key kinetic concepts associated with CVD under the sur-
face reaction, diffusion, and mixed-control regimes. (a) Schematic illustration and deposition
rate equation for CVD under surface reaction control. (b) Schematic illustration and depo-
sition rate equation for CVD under reactant diffusion control. (c) Schematic illustration and
deposition rate equation for CVD under mixed control. (d) Illustration of the crossover from
surface-reaction-controlled behavior to diffusion-controlled behavior with increasing temper-
ature. The surface reaction rate constant (k′) is exponentially temperature activated, and hence
the surface reaction rate tends to increase rapidly with temperature. On the other hand, the dif-
fusion rate increases only weakly with temperature. For CVD processes where the reactions
become less thermodynamically favorable with increasing temperature (common), the rate will
eventually fall at higher temperatures as the CVD process becomes unfavorable thermodynam-
ically. The slowest process determines the overall rate.
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Examining the limits of this expression shows that when k′ ≫ DSiHCl3
∕𝛿 (i.e., dif-

fusion is slower and hence rate limiting), the equation reduces to the expression for
diffusion control. In contrast, when DSiHCl3

∕𝛿 ≫ k′ (i.e., the surface reaction is slower
and hence rate limiting), the equation reduces to the expression for surface reaction
control. The key concepts associated with CVD under the surface reaction, diffusion,
and mixed-control regimes are summarized in Figure 5.8.

Halogen Light Bulbs: “Self-Healing” Gas Corrosion/Chemical Vapor
Deposition Equilibrium

The halogen light bulb provides a fascinating example of a kinetic system involv-
ing active gas corrosion and chemical vapor deposition processes. The reason
halogen light bulbs are much brighter than standard incandescent light bulbs is
because they operate at higher filament temperatures, which enables the tungsten
filament inside the bulb to emit light at much higher intensity. Standard light bulbs
cannot operate at such high filament temperatures because the tungsten filament
is susceptible to evaporation. As electrical current flows through the filament and
heats it to the operating temperature by resistive heating, narrow spots in the fila-
ment can lead to localized areas of higher resistive heating, which leads to further
loss of tungsten from these areas and hence greater constriction of the filament (as
illustrated in Figure 5.9a). This, in turn, leads to even higher localized resistive

FIGURE 5.9 (a) The operating principle of a standard incandescent light bulb. Current is
passed through the tungsten filament, generating resistive heating that leads to light emis-
sion. A positive-feedback cycle can occur when narrow spots in the filament incur higher
resistive heating, leading to further loss of tungsten from these areas and hence greater
constriction of the filament. This, in turn, leads to even higher localized resistive heating
and to further tungsten loss from these areas, eventually leading to catastrophic failure.
(b) The operating principle of a halogen light bulb. The interplay between W(s), HCl(g),
and WCl2(g) leads to a negative-feedback cycle where the increased resistive heating at
narrow spots in the filament induces CVD of W(s) from WCl2(g) in these regions, leading
to self-healing of the filament and enabling operation at higher temperatures than standard
incandescents.
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heating and to further tungsten loss from these areas, eventually causing catas-
trophic failure. This accelerating cycle of increased heating leading to increased
evaporation leading to failure is an example of a positive-feedback cycle.

The halogen light bulb solves this issue by exploiting the unique active gas
corrosion/CVD chemistry of the W(s)/HCl(g)/WCl2(g) “halogen” system. Halo-
gen light bulbs are filled with HCl(g), which at operating temperatures leads to the
following reaction equilibrium:

W(s) + HCl(g) ↔ WCl2(g) + H2(g) (5.33)

The kinetics of this system are such that moderate operating temperatures favor
the forward reaction direction, while high operating temperatures favor the reverse
reaction direction. Thus, as the bulb heats up, a small amount of tungsten is actively
corroded from the surface by the HCl(g), producing an overpressure of WCl2(g) in
the bulb. However, at higher temperatures, when localized “hot spots” develop due
to constrictions in the tungsten filament, the reverse reaction becomes favored in
these regions, and tungsten metal is deposited, leading to “self-healing” of the fil-
ament (as illustrated in Figure 5.9b). This self-healing phenomenon is an example
of negative feedback and enables the bulb to be operated at higher temperatures
than standard incandescents.

Science of Avalanches: Kinetics of Snowpack Evolution

Did you know that the kinetic principles of active gas corrosion and CVD
processes can be used to understand some of the factors leading to dangerous
avalanche conditions in mountain areas? From 1950 to 2012, avalanches have
killed nearly 1000 people in the United States. Intriguingly, Colorado has had
far and away the most avalanche deaths over this period (> 250). In comparison,
California has sustained only about 60 avalanche deaths during this same period.
This may come as a surprise, since the California Sierra Nevada mountains
typically receive more than twice as much snow as the Colorado Rocky Moun-
tains and California has 7× more people than Colorado! Can kinetic factors be
contributing to this startling discrepancy? The answer is “yes.”

Figure 5.10a illustrates one of the primary mechanisms responsible for most
avalanches: a weak layer of “rotten” snow deep in the snowpack. A trigger (such
as a skier, snowboarder, or hiker) can stress the snowpack, inducing fracture that
propagates along the weak layer. The weak layer acts as a glide surface (the rotten
snow can even act like ball bearings), enabling the overlying snowpack to slide
down the mountain in a catastrophic avalanche. The frequency of avalanches thus
correlates very strongly with the presence of weak layers in the snowpack.

Colorado is located in the interior of the United States, while California is on
the coast. The resulting differences in climate lead to several important differ-
ences in the mountain snowpack in these two regions. California tends to have a
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thick, wet snowpack with relatively warm and wet winter air temperatures. In con-
trast, Colorado tends to have a thinner snowpack, while the winter air temperature
tends to be colder and drier. As illustrated in Figure 5.10, this leads to significant
differences in the temperature and moisture (PH2O) gradients in the California
(Figure 5.10b) versus Colorado (Figure 5.10c) snowpacks. The larger tempera-
ture/moisture gradients in the Colorado snowpack induce significant active gas
corrosion of ice crystals from the bottom layers of the snowpack and their sub-
sequent redeposition (CVD) in the top layers of the snowpack according to the
following reaction equilibrium:

H2O(s) H2O(g)
↔

Lower T Higher T

Thus, in the Colorado snowpack, this process tends to eat away snow from the
bottom layers of the snowpack and redeposit it the upper layers of the snowpack
(Figure 5.10d). This process can lead to a weak, rotten bottom layer in the snow-
pack overlaid by a strong, dense, coherent top “slab” layer: the prefect conditions
for dangerous avalanches.

FIGURE 5.10 (a) One of the chief causes of avalanches, a weak buried layer in the snow-
pack can easily fracture and act as a glide plane enabling the overlying coherent snowpack
to slide down the mountain in a catastrophic avalanche. (b) California tends to have a thick,
wet snowpack with relatively warm and wet winter air temperatures. This leads to an “equi-
librated” snowpack with only small temperature/moisture gradients. (c) Colorado tends to
have a thinner snowpack, while the winter air temperature tends to be colder and drier. This
leads to an unstable snowpack with large temperature/moisture gradients. (d) The large
temperature/moisture gradients in the thin Colorado snowpack drive the formation of a
“rotten” layer at the base of the snowpack due to active gas corrosion while redeposition
of this moisture in the upper regions of the snowpack lead to a dense overlying “slab” of
coherent snow. This provides a perfect setup for killer avalanches.
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5.4 ATOMIC LAYER DEPOSITION

One issue with chemical vapor deposition is that it is often difficult to tune the growth
conditions to achieve an optimal deposition. Sometimes the deposition of thin, highly
conformal coatings over extremely intricate or high-aspect-ratio structures is desired.
(See Figure 5.11 for examples.) In such cases, the CVD conditions should be tuned to
operate in the surface-reaction-limited regime. By ensuring that the surface reaction
is much slower than the diffusion rate, this provides a better chance that all surfaces
(even those far from the bulk gas supply stream) will be evenly coated with material.
This variation on CVD is sometimes known as “chemical vapor infiltration.” Even
using this principle, however, perfectly conformal coatings are often impossible to
achieve. In order to overcome this issue, a new type of deposition scheme, known as
“atomic layer deposition” (ALD) was developed.

ALD is a cyclic, self-limiting gas–solid surface reaction process that allows films
to be grown one atomic layer at a time. A classical ALD reaction scheme for the
deposition of Al2O3 is shown in Figure 5.12. The deposition process consists of two
distinct reaction steps that are repeatedly cycled to build up the Al2O3 film layer
by layer:

Step 1∶ AlOH(s) + Al(CH3)3(g) → Al2O(CH3)2(s) + CH4(g)

Step 2∶ Al2O(CH3)2(s) + 2H2O(g) → Al2O2(OH)(s) + 2CH4(g) +
1
2
H2(g)

(Repeat)

An important point is that both of the reaction steps are self-limiting. In reaction
step 1, once all available AlOH(s) surface sites have reacted with the Al(CH3)3(g)
precursor, the reaction comes to a stop because the CH3 groups that now terminate
the surface are unreactive toward Al(CH3)3(g). Thus, only a single atomic layer of

FIGURE 5.11 Conformal deposition over high-aspect-ratio structures can be difficult to
achieve by CVD due to “keyhole” effects and other difficulties posed by the long diffusion
paths required to access the inner regions of such complex structures.
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FIGURE 5.12 Schematic illustration of the ALD reaction scheme for the deposition of
Al2O3. The deposition process involves two distinct reaction steps (step 1, step 2) followed
by purge steps (purge 1, purge 2) that are repeatedly cycled to build up the Al2O3 film layer by
layer.

Al2O(CH3)2(s) is formed. The reaction can be held for a sufficiently long period of
time to ensure that the entire surface of the sample is reacted without worrying that
parts of the surface will continue to react to form a second layer of material. The
chamber is then purged of any excess Al(CH3)3(g) and the second reaction step pro-
ceeds. In the second step, water vapor is introduced into the chamber and reacts with
the CH3(s) groups terminating the surface and replaces them with terminating OH
groups. Once all available CH3(s) surface sites have reacted with the water vapor
precursor, the reaction again comes to a stop because the OH(s) groups now termi-
nating the surface are unreactive toward H2O. However, because the surface has now
been “reactivated” with a fresh set of AlOH(s) surface sites, the excess water vapor
can be purged and reaction step 1 can now be repeated, enabling a fresh atomic layer
of Al2O(CH3)2(s) to be formed.

ALD can lead to beautiful, ultrathin, highly conformal coatings, even on extremely
high aspect ratio structures. Figure 5.13 provides a couple of amazing examples. One
shortcoming of the ALD technique is that it is extremely slow. In addition, the precur-
sor gas chemicals can be very expensive and there is significant precursor waste (due
to the repeated precursor fill/purge cycles). Thus, it is generally only used to deposit
relatively thin (<100-nm) films for high-value applications (e.g., integrated circuits).
Example 5.7 calculates the growth rate of a typical ALD coating process.

Example 5.7

Question: In the atomic layer deposition of alumina (Al2O3), the average depo-
sition rate is approximately 0.5 ML (ML = monolayer) per cycle. A single cycle
consists of two purge steps and two reaction steps. Even with careful attention to
valve, chamber, and gas flow design, typically at least a few seconds is required
to purge the chamber, introduce the precursor gas, and then ensure that all sur-
faces undergo complete reaction for each step. For the purposes of this question,
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assume that one complete cycle takes 10 s. Based on this assumption, determine
the time it takes to deposit a 1-μm-thick film of Al2O3 by ALD. Assume that
1 ML of Al2O3 is 4 Åthick.

Solution: The problem statement indicates that 10 s is required for one complete
ALD cycle, which results in the deposition of 0.5 ML of Al2O3. Thus, we can
approximate the growth rate as

dx
dt

= 0.5 ML
10 s

=
0.5 ML(4 Å∕1 ML)

10 s
= 0.2 Å∕s = 72 nm/h

The time required to deposit 1 μm of Al2O3 is

Δt = Δx
dx∕dt

= 1000 nm
72 nm/h

≈ 14 h

As this example illustrates, ALD is an extremely slow process and thus is gen-
erally only used when the deposition of highly conformal and extremely thin
films (<100 nm) is needed.

It is important to note that a single ALD cycle generally does not lead to the
deposition of a complete monolayer of material. For instance, in this example,
the problem statement indicated that each ALD cycle resulted in the deposition
of 0.5 ML of Al2O3. The sub-monolayer growth rate per cycle is due to steric
factors—the bulky ligands associated with the Al2O(CH3)2(s) surface groups
restrict access to surface sites, meaning that only a fraction of surface sites can
react during each cycle. This is common with most ALD processes.

FIGURE 5.13 Examples of thin-film coatings obtained via ALD. (a) Germanium anti-
mony telluride film deposited on a high-aspect-ratio trench. Reprinted with permission from
V. Pore, T. Hatanpää, M. Ritala, and M. Leskelä, “Atomic layer deposition of metal tel-
lurides and selenides using alkylsilyl compounds of tellurium and selenium,” Journal of the
American Chemical Society, vol. 131, no. 10, pp. 3478–3480, 2009. Copyright 2009 Amer-
ican Chemical Society. (b) A nanolaminate of alternating layers of aluminum oxide and
titanium oxide. Reprinted with permission from A. Säynätjoki, T. Alasaarela, A. Khanna,
L. Karvonen, P. Stenberg, M. Kuittinen, A. Tervonen, and S. Honkanen, “Angled sidewalls
in silicon slot waveguides: Conformal filling and mode properties,” Optical express, vol. 17,
no. 23, pp. 21 066–21 076, Nov. 2009. Copyright 2009 The Optical Society.
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FIGURE 5.14 Schematic illustration of (a) passive oxidation and (b) active oxidation.

5.5 PASSIVE OXIDATION

In this section, we consider another important gas–solid kinetic process: oxidation.
Many metals and semiconductors will spontaneously form a thin oxide coating
on their surface when exposed to oxygen (air). As illustrated schematically in
Figure 5.14, there are two main categories of oxidation: passive and active. Pas-
sive oxidation occurs when the oxide layer that forms on the surface provides a
protective coating that inhibits further oxide growth. Passive oxidation is therefore
a self-limiting process that gradually slows down (or even completely stops) as the
oxide grows thicker. Active oxidation occurs when the oxide layer that forms on
the surface does not protect against further oxidation. For example, the oxide may
spall or flake off the surface, thereby continually exposing fresh surface for further
oxidation. The formation of rust on iron is an example of an active oxidation process.
During active oxidation, the oxidation process is not self-limiting and therefore
oxidation can continue until the entire volume of a material is completely oxidized.
Whether a material forms a passive or active oxide layer depends, among other
factors, on the relative molar volume and mechanical properties of the oxide and the
underlying material. Oxides that do not have large molar volume changes relative to
their parent material and adhere strongly and uniformly to the underlying material
tend to form passive oxide coatings, while oxides that undergo a large molar volume
change relative to the parent material and/or adhere poorly to the underlying material
tend to facilitate active oxidation.

Both passive and active oxidation processes have significant commercial impli-
cations and much research has been invested in understanding the kinetics of these
processes. In this section, we will examine one of these processes as an example: the
passive oxidation of Si.

Si/SiO2 and the CMOS Revolution

It has been claimed that the passive oxidation of Si is one of the most commercially
significant oxidation processes in the world. Without a detailed understanding
of this process, none of the myriad electronic products we enjoy today would
have ever been possible. Interestingly, the reason that Si has become the most
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widely used semiconductor material on Earth is not because Si is the best semi-
conductor. In fact, germanium (Ge) or galium–arsenide (GaAs) are both known
to be “better” semiconductors in many respects. The reason Si is the semiconduc-
tor of choice is because it happens to form one of the “best” passivating oxides
(SiO2). The ability to precisely grow and control the thickness of the passivat-
ing oxide film that forms on Si enabled the development of the complimentary
metal–oxide–semiconductor (CMOS) transistor. CMOS transistors form the heart
of most integrated circuits. As the name implies, they are fabricated from a sand-
wichlike structure consisting of a metal, an oxide, and a semiconductor layer
(Figure 5.15). The thinner the oxide layer, the better the performance of the tran-
sistor. The ability to grow a thin (yet defect-free) passive oxide directly on top of
a Si wafer has enabled Si semiconductor technology to dominate over all other
semiconductor alternatives.

FIGURE 5.15 Schematic illustration of a silicon-based CMOS device. The oxide layer
is grown directly on top of the Si wafer substrate using a passive thermal oxidation process.

The oxidation of a Si surface can be described by the following reaction:

Si(s) + O2(g) → SiO2(s) (5.34)

As illustrated in Figure 5.16, this process involves four sequential steps:

1. Transport of O2 gas reactant to the (growing) SiO2 surface

2. Decomposition of the O2 on the SiO2 surface to O atoms

3. Diffusion of the O atoms through the (growing) SiO2 layer to the SiO2/Si
interface1

4. Reaction between the O atoms and the Si to form SiO2

The slowest of these four series steps will control the overall rate of oxidation. In
general, steps 3 and 4 tend to be the slowest. Because the speed of step 3 depends
on the thickness of the oxide, an interesting crossover behavior is observed as the

1Alternatively, one can imagine that Si atoms could diffuse through the SiO2 layer and react with O atoms
at the SiO2/air interface. However, Si diffusion through SiO2 turns out to be much slower than O diffusion
through SiO2. Because these two diffusion pathways occur in parallel, the faster one dominates.
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oxide grows thicker. During the initial stages of oxidation, when the oxide coating is
extremely thin, the interfacial reaction (step 4) dominates the kinetics. However, as
the oxide grows thicker, diffusion (step 3) becomes slower and slower and eventually
dominates the kinetics. As a result, the oxide growth rate continually decreases as the
oxide grows thicker.

Just as we did with active gas corrosion and chemical vapor deposition, the kinetics
of passive oxidation can be quantitatively modeled using the reaction and diffusion
principles we learned in Chapters 3 and 4 of this textbook. In developing our model,
we will follow in the footsteps of Bruce Deal and Andy Grove. Their “Deal–Grove”
model for the passive oxidation of Si paved the way for the precise growth of oxide
layers for CMOS transistors. After developing the Deal–Grove model, Andy Grove
went on to cofound Intel and served as its CEO from 1987 to 1998—proving just how
rewarding a firm understanding of kinetics can be!

Interfacial Reaction Control We will assume that the overall rate of Si oxida-
tion is controlled by either the reaction between oxygen and Si at the SiO2/Si interface
(step 4) or the diffusion of oxygen through the SiO2 film (step 3). In the interfacial
reaction control regime, the kinetics of silicon oxidation are determined by the reac-
tion between oxygen atoms and Si to form SiO2. This reaction can be modeled as first
order with respect to the oxygen concentration in the film at the SiO2/Si interface (this
concentration is designated in Figure 5.16 as c3):

Jrxn = −k′c3 (5.35)

Diffusion Control In the diffusion control regime, the kinetics of silicon oxidation
are controlled by the rate of oxygen diffusion through the SiO2 film to the SiO2/Si

FIGURE 5.16 Schematic illustration of the passive oxidation of Si. This process involves
four sequential steps: As shown in the accompanying graph, the oxidation rate becomes slower
and slower as the oxide grows thicker and thicker.
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interface. Using Fick’s first law and assuming a linear concentration gradient of oxy-
gen through the SiO2 layer, the rate of oxygen diffusion is given by

Jdiff = −DO,SiO2

c3 − c2

x
(5.36)

where x is the thickness of the SiO2 film and c2 is the oxygen concentration in the
oxide film at the SiO2/gas interface.2

Mixed Control The interfacial reaction and diffusion processes in the passive oxi-
dation of Si are tightly coupled. Thus, it is better not to consider them in isolation,
but instead to consider them together. Since these reactions occur in series, their rates
must be equal. In other words,

Jtot = Jdiff = −Jrxn (5.37)

where Jtot is the overall rate of the oxidation process and the negative sign appear-
ing in front of Jrxn reflects the fact that the delivery of oxygen to the interface by
diffusion is balanced by the consumption of oxygen at the interface by reaction. Insert-
ing Equations 5.35 and 5.36 into Equation 5.37 allows for concentration c3 to be
determined:

−Jrxn = Jdiff

k′c3 = −DO,SiO2

c3 − c2

x

c3 =
DO,SiO2

c2

k′x + DO,SiO2

=
c2

k′x∕DO,SiO2
+ 1

(5.38)

Since Jtot = −Jrxn = Jdiff , this result for c3 can then be reinserted into the expression
for either Jrxn or Jdiff to create an expression for the overall rate of oxidation as a
function of c2, DO,SiO2

, and k′:

Jtot = −Jrxn

= k′
c2

k′x∕DO,SiO2
+ 1

=
c2

x∕DO,SiO2
+ 1

k′

(5.39)

This expression should look vaguely familiar! In fact, it is quite similar to the
mixed-control equations we developed for active gas corrosion and for chemical
vapor deposition (Equations 5.18 and 5.32).

Equation 5.39 quantifies the oxidation rate in terms of the oxygen flux to the
SiO2/Si interface. Using the reaction stochiometry and the relative molar volumes

2Note that c2 is distinct from c1, which is the oxygen concentration in the gas phase at the SiO2/gas
interface. The terms c1 and c2 can be related to one another by the solubility of oxygen in the SiO2 film,
or alternatively by describing the kinetics of the incorporation reaction that leads to the dissolution of
oxygen into the SiO2 film. Because this reaction tends to be much faster than the other kinetics processes,
a detailed treatment of it is generally not needed.
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of Si and SiO2, it is possible to convert this flux into an oxide growth rate (dx∕dt).
This conversion is somewhat more complicated than the previous cases for active gas
corrosion and CVD since material is not simply being removed or deposited. Instead,
one material (Si) is being converted into another material (SiO2). For sake of simplic-
ity, however, the overall effects of this conversion can be incorporated into a simple
growth thickness constant G, in which case

dx
dt

= 1
G

Jtot =
1
G

c2

x∕DO,SiO2
+ 1∕k′

(5.40)

Passive Oxide Thickness as Function of Time An important point associated
with the passive oxide growth rate, as expressed by Equation 5.40, is that the growth
rate dx∕dt depends on the oxide thickness x. Thus, the oxide growth rate is constantly
changing as the oxide grows thicker! In order to understand exactly how the oxide
thickness increases with time, it is necessary to integrate Equation 5.40. Integrating
over the dummy variables x′ and t′ from x′ = 0 to x′ = x and from t′ = 0 to t′ = t
yields

∫

x

0

(
x′

DO,SiO2

+ 1
k′

)
dx =

c2

G ∫

t

0
dt′

x2

2DO,SiO2

+ x
k′

=
c2

G
t (5.41)

Solving for t yields the well-known “parabolic oxidation law” for passive oxidation
processes:

t = G
2c2DO,SiO2

x2 + G
c2k′

x (5.42)

As can be seen from Equation 5.42, the parabolic oxidation law is so named
because the time–thickness dependence follows a quadratic (parabolic) equation.
The first term in Equation 5.42 (the x2 term) dictates the growth limit under the
diffusion-controlled regime, while the second term in Equation 5.42 dictates the
growth limit under the reaction-controlled regime. Figure 5.17 plots Equation 5.42
with (a) thickness as the dependent axis and (b) time as the dependent axis. The
figure shows how the two limiting terms in this equation combine to determine the
overall growth rate. As can be seen by studying these plots, there is a crossover from
a reaction-limited linear growth rate when x (or t) is small to a diffusion-limited
square-root growth rate when x (or t) becomes large. The critical thickness (xcrit)
at which this crossover occurs can be determined by setting the two terms in
Equation 5.42 equal to one another:

G
2c2DO,SiO2

x2
crit =

G
c2k′

xcrit

x =
2DO,SiO2

k′
(5.43)



184 GAS–SOLID KINETIC PROCESSES

FIGURE 5.17 The parabolic oxidation law plotted in terms of (a) thickness as the dependent
axis and (b) time as the dependent axis. A crossover from a reaction-limited linear growth rate
to a diffusion-limited square-root growth rate occurs at a critical oxide thickness xcrit when the
two limiting rate processes are equal.

Thus:

• when x ≪ 2DO,SiO2
∕k′, interfacial reaction controls the oxidation rate. Growth

is linear (i.e., thickness increases linearly with time).

• when x ≫ 2DO,SiO2
∕k′, diffusion through the oxide controls the oxidation rate.

Growth is parabolic (i.e., thickness increases with the square root of time).

5.6 CHAPTER SUMMARY

This chapter examined gas–solid kinetic processes. We saw how to apply the basic
tools we learned in calculating thermodynamic driving forces (Chapter 2), reaction
rates (Chapter 3), and mass diffusion (Chapter 4) to understand and model a num-
ber of important gas–solid kinetic processes including adsorption/desorption, active
gas corrosion, chemical vapor deposition, and passive oxidation. The main points
introduced in this chapter include:

• Gas–solid kinetic processes are fundamentally heterogeneous as they involve
both a gas phase and a solid phase.

• The impingement rate, or impingement flux, J′s, quantifies the maximum rate at
which atoms can move from the gas phase to the solid phase or vice-versa in
the absence of other limiting kinetic factors. The impingement rate is given by

J′s =
𝛼P√

2𝜋MRT

where the sticking coefficient 𝛼 is a number between 0 and 1 that quantifies the
fraction of impinging gas atoms that stick to the surface.

• The impingement rate characterizes the maximum intrinsic rate at which gas
molecules immediately above a solid can strike the surface of a solid. The
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impingement rate does not take concentration gradients into effect, and thus
it represents the maximum rate of transport for a gas-phase species to a sur-
face when diffusion is unimportant. When calculating the rate of transport of a
gas-phase species to a solid surface, the decision to use the impingement rate
versus the diffusion equation depends on the length scale of the transport rel-
ative to the mean free path of the transporting gas molecules. Under vacuum
pressures and for small distances (where the mean free path is smaller than the
distance of travel), direct line-of-sight impingement can determine the transport
rate and hence the impingement rate can be used to quantify the flux of a species
to a surface. However, at higher pressures, where molecules undergo many col-
lisions along their journey and their concentration varies spatially, transport is
instead determined by diffusion and Fick’s laws should be used to quantify the
flux.

• When atoms are deposited onto or removed from the surface of a solid, this pro-
cess often preferentially occurs at higher energy sites on the surface of the solid,
such as at step edges or kink sites. Atoms at these sites have more dangling/
unsatisfied bonds and thus are more susceptible to reaction.

• Active gas corrosion is a gas–solid kinetic process involving etching (removal)
of a solid surface by a corrosive gas species. The rate of this corrosion process
depends on both the rate of transport of gases to/from the solid surface and the
rate of the corrosion reaction on the solid surface. Depending on the temperature
and pressure conditions, either the gas diffusion or the surface reaction process
can limit the overall corrosion rate. An overall corrosion rate can be derived
which takes into account both processes according to

[(dx
dt

)
tot

]−1
=
[(dx

dt

)
rxn

]−1
+
[(dx

dt

)
diff

]−1

In general, the diffusion rate term (dx∕dt)diff is proportional to Di∕𝛿 (where Di
is the diffusivity of the rate-controlling gas-phase species and 𝛿 is the diffu-
sion layer thickness), while the reaction rate term (dx∕dt)rxn is proportional to
k′ (the heterogeneous reaction rate constant for the surface corrosion reaction).
Thus, when k′ ≫ Di∕𝛿, the diffusion term controls the overall rate, while for
Di∕𝛿 ≫ k′, the reaction term controls the overall rate. Because reaction rates
tend to increase exponentially with temperature while gas-phase diffusion is
only weakly temperature dependent, higher temperatures tend to lead to diffu-
sion control (diffusion is slow relative to reaction), while lower temperatures
can lead to reaction control (reaction is slow relative to diffusion).

• Chemical vapor deposition (CVD) is a process involving the heterogeneous
reaction of one or more gas-phase species on a solid surface, resulting in the
deposition of a solid film of material. Depending on the temperature, pressure,
and growth requirements, there are many different gas chemistries available that
can yield the deposition of many different types of solid films. CVD processes
are used in the fabrication of many important devices, including integrated cir-
cuits, LEDs, flat-panel displays, low-emissivity coatings for window glass, and
solar cells.
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• Just as the rate of material removal during active gas corrosion can depend on
either gas transport to/from the surface or the reaction process on the surface, the
overall rate of material deposition during a CVD process also depends on the
rate of transport of gases to/from the solid surface as well as the rate of the depo-
sition reaction on the solid surface. Depending on the temperature and pressure
conditions, either the gas diffusion or the surface reaction process can limit the
overall deposition rate. An overall deposition rate can be derived that takes into
account both processes according to

[(dx
dt

)
tot

]−1
=
[(dx

dt

)
rxn

]−1
+
[(dx

dt

)
diff

]−1

In general, the diffusion rate term (dx∕dt)diff is proportional to Di∕𝛿 (where Di
is the diffusivity of the rate-controlling gas-phase species and 𝛿 is the diffusion
layer thickness), while the reaction rate term (dx∕dt)rxn is proportional to k′

(the heterogeneous reaction rate constant for the surface deposition reaction).
Thus, when k′ ≫ Di∕𝛿, the diffusion term controls the overall rate, while for
Di∕𝛿 ≫ k′, the reaction term controls the overall rate. Because reaction rates
tend to increase exponentially with temperature while gas-phase diffusion is
only weakly temperature dependent, higher temperatures tend to lead to diffu-
sion control (diffusion is slow relative to reaction), while lower temperatures
can lead to reaction control (reaction is slow relative to diffusion).

• Atomic layer deposition (ALD) is a cyclic, self-limiting gas–solid surface reac-
tion process that allows films to be grown one atomic layer at a time. The unique
precursor chemistries used in ALD ensure self-limiting reaction steps, so that
only one layer of chemical species can react with the surface per cycle. A series
of alternating reaction and purge cycles are used to grow up the film in a highly
controlled step-by-step manner. This control can result in extremely uniform
and highly conformal film coatings but also results in very slow deposition rates.
As a result, it is generally only used to deposit relatively thin (<100-nm) films
for high-value applications (such as integrated circuits or electronic devices).

• Oxidation is another example of a gas–solid kinetic process. In an oxidation
process, oxygen molecules from the gas phase oxidize (react with) the surface
of a solid (typically a metal). Oxidation processes can be either active or passive.

• Active oxidation occurs when the oxidation of a solid surface does not result in
a self-protective coating, and thus the oxidation can proceed indefinitely. For
example, in the active oxidation of iron (“rust”), the oxide layer that forms eas-
ily spalls or flakes of the surface of the iron, thereby continually exposing fresh
surface for further oxidation. Since active oxidation is not self-limiting, the oxi-
dation process can continue until the entire volume of the material is completely
oxidized.

• Passive oxidation occurs when the oxide layer that forms on the surface pro-
vides a protective coating that inhibits further oxide growth. Passive oxidation
is therefore a self-limiting process that gradually slows down (or eventually
completely stops) as the oxide grows thicker.
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• The growth expression for passive oxidation is remarkably similar to those
derived for active gas corrosion and for chemical vapor deposition. The oxide
growth rate depends on the rate of solid-state diffusion through the growing
oxide layer as well as the rate of the oxidation reaction at the interface. When
the oxide first begins to form, the growth rate is determined by the kinetics of
the oxidation reaction. However, as the oxide grows thicker, diffusion through
the oxide layer becomes rate limiting. The growth rate is often modeled using
a “parabolic oxidation law” of the form

t = Ax2 + Bx

where t is the time elapsed, x is the thickness of the oxide, and A and B are con-
stants that depend, among other things, on the solid-state diffusivity (D) and the
reaction rate constant (k′), respectively. The first term (Ax2) dictates the growth
limit under the diffusion-controlled regime, while the second term (Bx) dic-
tates the growth limit under the reaction-controlled regime. The crossover from
reaction-controlled to diffusion-controlled oxide growth occurs when Ax2 = Bx,
that is, when x = B∕A. When the oxide is thinner than B∕A, reaction determines
the oxide growth rate, and the thickness increases linearly with time. When the
oxide thickness exceeds B∕A, diffusion dominates the oxide growth rate, and
the thickness increases with the square root of time.

5.7 CHAPTER EXERCISES

Review Questions

Problem 5.1. Define/explain the following. Use schematic illustrations/diagrams as
appropriate.

(a) Sticking coefficient
(b) Impingement flux

(c) Kink site
(d) Diffusion layer thickness

(e) Atomic layer deposition

Problem 5.2. Consider the chemical vapor deposition of silicon nitride (Si3N4) by
the following reaction:

3SiH4(g) + 4NH3(g) ↔ Si3N4(s) + 12H2(g)

(a) On the same graph, make a schematic plot of the natural logarithm of the Si3N4
growth rate versus 1∕T (K−1) for each of the following three growth processes
and identify each on the plot:

1. A surface-reaction-controlled process

2. A gas diffusion-controlled process
3. The actual rate-limiting rate when both are occurring in series
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(b) Explain why each plot has the temperature dependence shown.

(c) Make a plot of the SiH4 gas pressure as a function of distance away from the
growing silicon nitride film surface for the following three cases:

1. Surface reaction control

2. Gas diffusion control

3. When both processes have about the same rate

Clearly identify each case and indicate important distances and pressures.
Assume that the gases are flowing over a flat substrate on which the deposition
is being made.

Problem 5.3. Niobium (Nb) is being oxidized to Nb2O5 in 1 atm air at 1300 ∘C.

(a) Write the equation for this reaction.

(b) If the diffusion coefficient of oxygen in Nb2O5 is 10−13 cm2/s and that of nio-
bium is 10−8 cm2/s, give the species, Nb or O, that controls the rate of oxidation.
Explain why this atom or ion controls the rate.

(c) If this oxidation process forms a passive oxide layer on the surface of the Nb,
make a plot of the oxide thickness of a function of time for two temperatures.
Indicate the higher of the two temperatures.

Problem 5.4. Starting from the parabolic oxidation rate law described by
Equation 5.42, determine an expression for the critical time tc at which the oxidation
behavior transitions from reaction to diffusion-limited growth.

Calculation Questions

Problem 5.5. A vacuum reactor is used to synthesize WO3 nanoparticles for use in
an electrochromic window device. To create the WO3 nanoparticles, a tungsten (W)
metal filament 1.0 mm in diameter and 10 cm long is heated to 2200 ∘C in a vacuum
with a trace pressure of oxygen gas. Assuming all of the W evaporating from the
surface of the filament is rapidly and completely oxidized to WO3, determine the
maximum rate of production of WO3 from this reactor (g/s). The equilibrium vapor
pressure of W at 2200 ∘C is approximately 10−10 atm.

Problem 5.6. A metallic calcium thin film has been freshly deposited by evaporation
in a vacuum chamber containing an oxygen partial pressure of 10−4 torr for use as a
bottom contact in an organic solar cell. Since metallic calcium oxidizes extremely
easily, it is critical that the subsequent layer in the solar cell is deposited before the
surface of the calcium is “contaminated” by a significant amount of adsorbed oxygen.
In order to estimate this time, calculate how long it takes for the surface of the calcium
film to be coated by a monolayer of oxygen assuming that the surface of the calcium
film is initially completely clean. Assume a sticking coefficient of unity for the oxy-
gen gas and a chamber temperature of 300 K. Calcium forms a face-centered-cubic
(FCC) structure with a lattice constant a = 5.6 Å.
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Problem 5.7. Titanium undergoes active gas corrosion in HCl according to the
reaction

Ti(s) + 4HCl(g) ↔ TiCl4(g) + 2H2(g)

The rate of etching of the Ti surface is found to be 2.88 μm/s. The following additional
information is provided:

• k0 = 1.2 × 102 cm/s

• PHCl = 0.10 atm

• MTi = 48 g/mol

• 𝜌Ti = 4.5 g/cm3

• T = 1327 ∘C
(a) Calculate the rate constant for the reaction.

(b) Calculate the activation energy ΔGact for the reaction.

(c) What is the time required to remove 5 mm of Ti?

(d) What is the corrosion rate after a time t = 20 h?

Problem 5.8. A silicon wafer is being oxidized in an atmosphere of pure oxygen at
1200 K. The thickness of the oxide, x (in μm), as a function of time t (in seconds) is
given by the parabolic oxidation law:

x2 + Bx = Ct

where B = 0.040 μm and C = 0.045 μm2∕s.

(a) On a separate sheet, make a computer-drawn plot of the oxide thickness x as a
function of time t for oxide thickness between 0 and 20 μm.

(b) What is the rate of change of the oxide thickness (μm/s) when the oxide is 10 μm
thick?

(c) When the oxide is 10 μm thick, is the oxidation reaction controlled by diffusion
through the oxide film or by the reaction at the Si/SiO2 interface? Justify your
answer with an equation.

(d) If air is used in the reaction chamber instead of pure oxygen, do you expect the
oxidation rate to change when x = 10 μm? If so, will it increase or decrease?
Fully explain your answer.

(e) If the temperature in the reaction chamber is decreased to 1000 K, do you expect
the oxidation rate to change when x = 10 μm? If so, will it increase or decrease?
Fully explain your answer.



CHAPTER 6

LIQUID–SOLID AND SOLID–SOLID
PHASE TRANSFORMATIONS

6.1 WHAT IS A PHASE TRANSFORMATION?

Liquid–solid and solid–solid phase transformations are also known as condensed-
matter phase transformations. Condensed-matter phase transformations, like other
kinetic processes, are driven by thermodynamics. When a region of matter can lower
its total free energy by changing its composition, structure, symmetry, density, or any
other phase-defining aspect, a phase transformation can occur.

In most condensed-matter phase transformations, pressure is typically not a chief
controlling variable (although it is important in certain circumstances). This is in
distinct contrast to the gas–solid processes discussed in the previous chapter, where
gas-phase partial pressures typically played a central role.

Condensed-matter phase transformations can be broadly divided into two main
categories: diffusional transformations and diffusionless (or “fluxless”) transforma-
tions. Figure 6.1 schematically illustrates the difference between diffusional and
diffusionless phase transformations. Diffusionless phase transformations do not
require the net transport of atoms across a phase boundary. For example, phase
transformations involving a change in spin or magnetic moment do not require the
movement (i.e., diffusion) of atoms. Thus, they are diffusionless transformations.
Likewise, certain changes in crystal structure or symmetry do not require diffusional
fluxes—they can be accomplished by the collective shearing movement of atoms.
Examples of such processes include the martensitic transformation in steel, or certain
cubic-to-tetragonal phase transformations.

190
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FIGURE 6.1 (a) Illustration of a diffusionless phase transformation involving a displacive
martensitic transformation. This process does not require the net transport of atoms across a
phase boundary. (b) Illustration of a diffusional phase transformation involving nucleation and
growth, which requires the transport of atoms across a phase boundary.

Our focus in this text will be on diffusional transformations. Diffusional transfor-
mations can be further subdivided into two main types: continuous and discontinuous.
Gibbs (of the Gibbs phase rule and the Gibbs free energy) articulated the difference
between continuous and discontinuous phase transformations as follows:

• Continuous phase transformations are initially small in degree but large in
extent. Spinodal decomposition is a classic example of a continuous phase
transformation. In a spinodal transformation, a single-phase material gradually
separates into two phases via gradual changes in local composition (small in
degree). However, the process occurs more or less homogeneously throughout
the entire material system (large in extent).

• Discontinuous phase transformations are large in degree but initially small in
extent. Nucleation and growth represents the classic example of a discontinu-
ous phase transformation. In a nucleation-and-growth process, the new phase
possesses distinctly and abruptly different properties from its parent (large in
degree) but its creation is a highly localized event (small in extent). The spatial
extent of the phase transformation is subsequently increased by growth of the
new phase.

Figure 6.2 schematically illustrates the differences between a continuous spinodal
phase transformation and a discontinuous nucleation and growth transformation.
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FIGURE 6.2 (a) A spinodal phase transformation is an example of a continuous phase trans-
formation. Phase transformation gradually occurs everywhere (small in degree, large in extent).
(b) The nucleation-and-growth process is an example of a discontinuous phase transformation).
Phase transformation abruptly occurs in a few places (large in degree, small in extent).

One final point about condensed-matter phase transformations is that, like most
other materials kinetic processes, they are heterogeneous and involve phase bound-
aries or interfaces. Thus, the properties of the interface (i.e., the interfacial energy,
curvature, etc.) play a crucial role in phase transformation kinetics. Interfaces also
play an important role in other kinetic processes that do not involve phase transfor-
mations. For example, grain growth or sintering of single-phase materials is driven
by interfacial energy considerations and involves net transport of atoms, just as in a
phase transformation (although no new phases are being created). Many of the con-
cepts developed in our treatment of phase transformation kinetics can thus be applied
to these single-phase microstructural evolution processes. These processes, which
include sintering, grain growth, and coarsening, will be covered in Chapter 7.

6.2 DRIVING FORCES FOR TRANSFORMATION:
TEMPERATURE AND COMPOSITION

In order for a phase transformation to occur, a driving force must be present. For most
of the condensed-matter phase transformations discussed in this chapter, the driving
force is supplied by a change in temperature or composition. Temperature and compo-
sition are two of the primary processing “knobs” that materials engineers have at their
disposal to manipulate the structure and property of materials for various applications.
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FIGURE 6.3 Example temperature and composition-induced phase transformations in the
Cu–Ag binary eutectic alloy system.

Phase diagrams map out the effect of temperature and composition changes on the
equilibrium phase behavior of a materials system. Thus, these diagrams are crucial
for understanding phase transformations. As an example, consider the binary eutectic
phase diagram of the Cu–Ag system shown in Figure 6.3. As the figure illustrates,
changes in the temperature or composition can induce a variety of different phase
transformations. For example, decreasing the temperature of the liquid Cu–Ag melt
from point A to point B will cause the melt to solidify into a mixture of solid 𝛼 and 𝛽

phases. Similarly, adding a sufficient amount of pure Cu to shift the composition of
the melt from point A to point C will cause the liquid melt to partially solidify into
the solid 𝛽 phase, even though the temperature is not decreased. As another example,
mixing equal amounts of pure solid Cu at 900 ∘C with pure solid Ag at 900 ∘C will
result in a liquid melt, although the temperature does not change! Solid–solid phase
transformations also occur on this phase diagram—for example, decreasing the tem-
perature of pure solid 𝛼 phase initially at point D on the phase diagram to point E will
result in the solid-state precipitation of a second phase 𝛽.

For the purposes of this chapter, it is assumed that students are familiar with binary
phase diagrams and basic calculations involving phase diagrams, including the lever
rule. For a review of phase diagrams, the reader is advised to consult Phase Equilib-
ria, Phase Diagrams and Phase Transformations: Their Thermodynamic Basis [8],
Thermodynamics of Materials [9], or Introduction to Phase Equilibria in Ceramic
Systems [10]. Phase diagrams will serve as our maps for predicting and understanding
phase transformations, so ensure that you can read these maps before proceeding!

6.2.1 Calculating 𝚫GV

The driving force (ΔG) for transformation due to a change in temperature can be
estimated using relatively simple thermodynamic relations. For example, consider the
transformation from the pure 𝛼 phase to the mixture of 𝛼 and 𝛽 phases by changing
the temperature from point D to E in Figure 6.3. This reaction can be schematically
written as

𝛼(s) → 𝛼(s) + 𝛽(s) ΔGV (6.1)
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where ΔGV quantifies the free energy change per unit volume of material. The volu-
metric free-energy changeΔGV can be related to the more common molar free-energy
change ΔG via knowledge of the molar volume (Vm) of the material:

ΔGV = ΔG
Vm

= ΔG
M∕𝜌

(6.2)

where the molar volume Vm (m3∕mol) is given by the molecular weight of the mate-
rial, M (kg/mol), divided by the density of the material, 𝜌 (kg∕m3).

As with all reaction free-energy changes, this ΔGV can be expressed in terms of
ΔHV and ΔSV as

ΔGV = ΔHV − TΔSV (6.3)

At the equilibrium temperature (indicated on Figure 6.3 as TE), we know that ΔGV
must be zero, and so we have

ΔGV |T=TE
= 0 = ΔHV − TEΔSV

(6.4)ΔSV =
ΔHV

TE

or, alternatively,
ΔHV = ΔSV TE (6.5)

Since ΔHV and ΔSV do not vary much with temperature, we can approximate the
free energy change for the transformation at any arbitrary temperature T ≠ TE as

ΔGV (T) = ΔHV − TΔSV

≈ ΔHV − T
ΔHV

TE

= ΔHV
TE − T

TE

= ΔHV
ΔT
TE

(6.6)

or, alternatively,

ΔGV (T) ≈ ΔSV TE − ΔSV T = ΔSV (TE − T) = ΔSV ΔT (6.7)

where ΔT = TE − T is known as the amount of supercooling below (or superheat-
ing above) the equilibrium transformation temperature. If ΔHV is negative (e.g., heat
is released, as occurs in solidification), then decreasing the temperature below the
equilibrium temperature will drive the transformation (i.e., ΔGV will be negative).
Similarly, melting (which absorbs heat) is favored by increasing the temperature
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FIGURE 6.4 Free-energy curves illustrating the driving force for transformation between
two phases (𝛼 and 𝛽) as a function of temperature. At T = TE, G

𝛼
= G

𝛽
and hence ΔGV =

0. As the temperature decreases below TE, the driving force for the transformation reaction
𝛼 → 𝛽 increases. Similarly, as the temperature increases above TE, the driving force for the
transformation reaction 𝛽 → 𝛼 increases.

above the equilibrium temperature. Equation 6.6 tell us that the size of the driving
force for transformation increases linearly with increasing ΔT . Thus, the larger the
deviation from the equilibrium temperature, the larger the driving force for transfor-
mation. (This should make sense!). See Figure 6.4 for further illustration.

Similar although somewhat more complex analyses can be applied to estimate
ΔGV when a large change in composition (at constant temperature) triggers a phase
transformation. In such cases, the analysis depends on the functional dependence of
the Gibbs free energy of mixing between the components involved in the system.
Such analyses are beyond the scope of the present text.

Because solids and liquids are fairly incompressible, the external gas pressure typ-
ically has very little influence on the thermodynamics or kinetics of condensed-matter
phase transformations. However, because condensed-matter phase transformations
can be accompanied by large volume changes (since reactant and product phases
may have different densities), the resulting internal stresses/strains can have signifi-
cant impacts on the thermodynamics and kinetics of the phase transformation. These
stress or strain energy effects are often incorporated as an additional term in ΔGV .
As an example, consider the nucleation of spherical particles of a new phase in a
parent matrix with isotropic elastic properties, where a volume change (and hence a
strain) occurs upon nucleation. In this case, the additional strain energy term ΔGstrain
is given as

ΔGstrain = 4G𝜖
2 (6.8)

where G is the shear modulus of the parent phase and 𝜖 is the dilational strain due to
transformation (which can be calculated from the specific volume difference between
the two phases). In this introductory textbook, we will not consider the effects of
stress/strain on phase transformations in more detail—however, for an example of a
materials system where such effects have important practical repercussions, read the
dialog box below on transformation-toughened zirconia.
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Example 6.1

Question: Calculate ΔGV for the condensation of water vapor to liquid water
(i.e., “rain formation”) at 298 K and atmospheric pressure assuming supersatu-
ration of the water vapor such that PH2O(g) = 0.1 atm. You are given the follow-
ing information about this reaction:

H2O(g) → H2O(l)

• ΔH∘ = −44.0 kJ∕mol

• ΔS∘ = −118.9 J∕(mol ⋅ K)

Solution: Based on ΔH∘ and ΔS∘, we can calculate ΔG∘ for this reaction as

ΔG∘ = ΔH∘ − TΔS∘

= −44,000 J∕mol − 298 K ⋅ −118.9 J∕(mol ⋅ K)

= −8568 J∕mol

Now, ΔG∘ gives the Gibbs free energy for this reaction at STP, in other words
at T = 298 K and PH2O(g) = 1 atm. However, we need to calculate ΔG for this
reaction at T = 298 K and PH2O(g) = 0.1 atm. In order to adjust for the differ-
ence in pressure, we must recall Equation 2.16 from Chapter 2:

ΔG = ΔG∘ + RT ln Q

= ΔG∘ + RT ln

[
aH2O(l)

aH2O(g)

]
= ΔG∘ + RT ln

[
1

PH2O(g)∕P∘

]

= −8568 J∕mol + 8.314 J∕(mol ⋅ K) ⋅ 298 K ⋅ ln

[
1

0.1 atm∕1 atm

]

= −2863 J∕mol

Now, to convert this molar free-energy change into a volumetric free-energy
change, we need to divide by the molar volume of liquid water:

ΔGV = ΔG
Vm

= ΔG
M
𝜌

=
−2863 J∕mol

(18.0 g/mol)∕(1 g/cm3)

= −159 J/cm3 = −159 × 10−6 J/m3
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Transformation-Induced Toughening: Exploiting a Pressure-Induced
Phase Transformation to Make Tough Ceramics

Stress and strain effects can have an important effect on solid–solid phase trans-
formations. Transformation toughening in ceramics is a classic example. In cer-
tain ceramic systems, such as partially stabilized zirconia, a pressure-induced
phase transformation is exploited to dramatically increase the toughness of the
ceramic—providing the ability to create amazingly resilient ceramic hammers,
nails, knives, and other unique objects.

The basic idea behind transformational toughening is illustrated in Figure 6.5
using zirconia as an example. During fabrication, the zirconia ceramic is partially
stabilized in its metastable (nonequilibrium) tetragonal phase by the addition of
a small amount of yttrium dopant (Figure 6.5a). During use, the stress concen-
tration associated with any crack tip that develops in the ceramic induces the
metastable tetragonal phase to locally transform to the equilibrium monoclinic
phase (Figure 6.5b). The volume expansion associated with this phase transforma-
tion puts the crack into compression, retarding its growth and thereby significantly
enhancing the fracture toughness (Figure 6.5c). Similar to the halogen light bulb
discussion in Chapter 5, this phenomenon is an example of negative feedback,
and it can be used to significantly increase the lifetime and reliability of critical
ceramic components.

FIGURE 6.5 Mechanism of transformation toughening in zirconia. (a) The zirconia
ceramic is synthesized in the metastable tetragonal phase (T) by the addition of a small
amount of yttrium dopant during fabrication. (b) During use, the stress concentration asso-
ciated with any crack tip that develops in the ceramic induces the metastable tetragonal
phase to locally transform to the equilibrium monoclinic phase (M). (c) The volume expan-
sion associated with this phase transformation puts the crack into compression, retarding
its growth and thereby significantly enhancing the fracture toughness.

6.3 SPINODAL DECOMPOSITION: A CONTINUOUS PHASE
TRANSFORMATION

The thermodynamic differences between spinodal decomposition (a continuous
phase transformation) and nucleation and growth (a discontinuous phase trans-
formation) are illustrated in Figure 6.6. At a given temperature, the volume free
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FIGURE 6.6 (a) Volume free energy (GV ) versus composition for a system exhibiting a large
positive heat of mixing. (b) Resulting phase diagram for this system, exhibiting a spinodal
region.

energy–composition curve for this system can be divided into two side regions
where the curvature is positive (concave up) separated by a middle region where the
curvature is negative (concave down). The region of negative curvature corresponds
to compositions where spinodal decomposition can occur, while the regions of
positive curvature correspond to compositions where the phase transformation will
instead proceed via nucleation and growth.

In order to understand the reason for this distinction, consider what happens dur-
ing phase transformation for a system with overall composition Xs, which is inside
the spinodal region, as compared to a system with overall composition Xn, which
is outside the spinodal region. As shown in the figure, for compositions inside the
spinodal region, gradual separation into two distinct compositions can freely occur
with an immediate and monotonic decrease in the overall Gibbs free energy of the
system. There is no barrier to overcome, and thus the reaction can take place over a
wide region starting with small and gradual changes in composition (small in degree,
large in extent). In comparison, for compositions outside the spinodal region, initiat-
ing decomposition requires an increase in the overall Gibbs free energy of the system.
Although the system will eventually separate into two distinct phases that sum to give
an overall smaller Gibbs free energy, the initial local composition changes are asso-
ciated with a temporary increase in the system free energy, and thus this represents
an energy barrier that must be overcome for decomposition to occur. Because of this
barrier, we must depend on random thermal fluctuations to create sporadic favor-
able instances of sufficiently large local compositional separation (large in degree,
small in extent), which can then stabilize and grow larger to accomplish the phase
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FIGURE 6.7 (a) Mechanical analogy for spinodal decomposition process. (b) Mechnical
analogy for nucleation-and-growth process [11].

transformation (i.e., nucleation and growth). This has important implications on the
kinetics (speed) of the transformation process.

The difference between spinodal decomposition and nucleation and growth can be
captured using a handy mechanical analogy, as illustrated in Figure 6.7.

6.4 SURFACES AND INTERFACES

An important truth of nature has significant implications on the kinetics of
condensed-matter phase transformations:

Surfaces and interfaces of materials have greater free energy than the bulk.

Surfaces/interfaces generally have higher energy than the bulk because atoms at
the surface/interface have missing or dangling bonds and/or possess altered structural
arrangement. The “extra” energy associated with a surface or interface compared to
the bulk is quantified by a surface energy term, 𝛾:

𝛾 =
(
𝜕G
𝜕A

)
T ,P

(6.9)

Thus, 𝛾 quantifies the amount of excess (compared to the bulk) free energy per unit
area of surface or interface.

Because surface and interfaces have higher energy than the bulk and because a
phase transformation necessarily creates new interfaces, these interfaces represent an



200 LIQUID–SOLID AND SOLID–SOLID PHASE TRANSFORMATIONS

important energetic “cost” that must be paid in order to create the new phase. A crucial
difference between continuous phase transformations (such as spinodal decomposi-
tion) and discontinuous phase transformations (such as nucleation and growth) is in
how this energy cost is paid:

• During spinodal decomposition, the energy cost associated with creating the
new phase interfaces is gradually and continuously paid as the phase transfor-
mation proceeds. As illustrated in Figure 6.2, the interfaces between the two
phases are initially quite diffuse and only sharpen gradually with time; thus the
additional energy required for interface formation must also only be gradually
paid for. This energy can be easily offset by the decrease in volume free energy
associated with the decomposition into two lower energy phases. Thus, the total
system free energy (volume free energy + interfacial free energy) can gradually
and continuously decrease as the two phases separate, and there is no “up-front”
energy barrier impeding the transformation process.

• During nucleation and growth, the energy cost associated with creating the
new phase interfaces must be paid up front immediately upon nucleation of the
new phase. As Figure 6.2 shows, the nucleation process creates immediate and
abrupt interfaces between the two phases, so the additional energy required for
interface formation must be paid at the onset of phase separation. This energy
can only be offset by the decrease in volume energy associated with the decom-
position into two lower energy phases if the nucleating particle is sufficiently
large. Thus, the total system free energy (volume free energy + interfacial free
energy) goes through an intermediate maximum, which represents an up-front
energy barrier impeding the transformation process.

6.4.1 Estimating Surface Energies

In order to understand the origin and principles of surface energies in greater detail,
let us consider a few illustrative examples.

First, recall a favorite childhood pastime: blowing soap bubbles. As illustrated in
Figure 6.8, work is done when a soap bubble is made bigger. The work required to
expand the soap bubble is directly related to the amount of new surface area created:

Work done to expand bubble = Energy stored in creating new bubble surface area

F dr = 2𝛾(dA)

≈ 2𝛾(8𝜋r dr)

𝛾 ≈ F
16𝜋r

(6.10)

The factor of 2 accounts for the fact that two surfaces are created (inside surface and
outside surface). The units for 𝛾 are force/distance, which converts to energy/area.

Now consider the formation of new surfaces in a solid material. Imagine that a
solid block of a crystalline material is cut in half as shown in Figure 6.9. This process
creates two sets of fresh surface but involves the breaking of atomic bonds as the two
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FIGURE 6.8 The work required to expand a soap bubble is directly related to the creation
of additional bubble surface area.

FIGURE 6.9 Cutting a block of solid material in half creates two fresh surfaces. The number
and energy of the bonds that are broken per unit area of surface can be used to estimate the
surface energy.

halves of the solid are separated from one another. The number of broken bonds per
unit area of surface created (nb) can be estimated as

nb ≈ C
3

N
A

(6.11)

where N∕A is the number of atoms per unit area of surface and C is the coordination
number for the atoms. The symbol C describes how many neighboring atoms each
atom is bonded, or coordinated to in the solid and depends on the atomic arrangement
and typically varies from as low as 4 to as high as 12. The factor of 1

3
accounts for

the fact that approximately one-third of the bonds between a fresh surface atom and
its neighbors are broken when the surface is created (bonds with “below-plane” and
“in-plane” neighbors are preserved; it is only “above-plane” bonds that are broken).

In order to calculate the surface energy, it is next necessary to calculate how much
energy is associated with each broken bond. The molar heat of sublimation (ΔHs)
gives the enthalpy required to sublimate 1 mol of a substance from the solid to the
gas phase; thus it provides a useful estimate of the amount of energy required to break
all of the bonds in 1 mol of a substance. Assuming again that each atom in a solid is
bonded to C nearest neighbors, the energy per bond (𝜖) can be estimated as

𝜖 =
ΔHs

0.5CNA
(6.12)

where Avogadro’s number (NA) converts ΔHs from energy/mole to energy/atom and
the factor of 0.5 in the denominator accounts for the fact that every bond is shared by
two atoms.
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Combining Equations 6.11 and 6.12, the surface energy can be estimated:

𝛾 = 1
2
nb𝜖 (6.13)

where the factor of 1
2

accounts for the fact that cleaving the solid creates two sets of
surface (just as two sets of surface were created in the soap bubble example). Evalu-
ating this expression gives

𝛾 = 1
2
nb𝜖

= 1
2

C
3

N
A

ΔHs
0.5CNA

= N
A

ΔHs

3NA
(6.14)

This expression indicates that a material with a higher molar heat of sublimation
(high ΔHs) will tend to have a higher surface energy. As this expression suggests,
surface energy in a solid is also surface orientation and surface termination depen-
dent. Thus, different crystallographic surface orientations will be more or less favored
depending on their surface energies. This factor often helps explain the preference for
certain geometric shapes evidenced in a wide variety of free crystals and materials
microstructures.

Example 6.2

Question: Silver has the FCC crystal structure with a unit cell parameter a0 =
4.09 Å. Each atom is coordinated to 12 neighbors. Given that the molar heat of
sublimation for Ag is 284 kJ/mol, estimate the surface energy (in J∕cm2) of the
Ag (100) surface.

Solution: Using Equation 6.14 as a point of departure, we must first determine
the atomic surface density, (N∕A). We can do this by using our knowledge of the
FCC structure and the lattice constant value given in the problem statement. The
packing of the (100) plane in the FCC structure is given in Figure 6.10. Based
on this diagram, we can determine that two atoms are packed into an area of a2

0.
Thus,

For FCC (100)∶ N
A

= 2

a2
0

(6.15)

Inserting this result along with the other values provided in the problem state-
ment into Equation 6.14 yields

𝛾Ag,(100) =
2

a2
0

ΔHs,Ag

3NA

= 2
(4.09 × 10−10 m)2

⋅
284,000 J∕mol

3 × 6.022 × 1023∕mol

= 1.88 J/m2 = 1.88 × 10−4 J/cm2 (6.16)
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For comparison, the experimentally measured value is ≈1.8 × 10−4 J/cm2.

FIGURE 6.10 Atomic arrangement of the (100) plane in the FCC structure.

6.4.2 Interfacial Energy Balances

The relative interfacial energies between different phases influence how they inter-
act with each other. As an example, consider the wetting behavior of a liquid water
droplet on the surface of a solid, as illustrated in Figure 6.11. The contact angle
between the water droplet and the solid surface (𝜃) is determined by the balance
between three different interfacial energy terms:

1. The interfacial energy of the liquid–solid interface, 𝛾ls

2. The interfacial energy of the liquid–vapor interface, 𝛾lv

3. The interfacial energy of the solid–vapor interface, 𝛾sv

FIGURE 6.11 Interfacial energy balances determine the wetting behavior of a liquid droplet
in contact with a solid surface. (a) The balance of the x-direction components of the inter-
facial energy forces determines the contact angle 𝜃. (b) If 𝛾ls ≪ 𝛾sv, 𝜃 → 0∘ and completely
hydrophilic (spreading) behavior occurs. (c) If 𝛾ls ≫ 𝛾sv, 𝜃 → 180∘ and completely hydropho-
bic behavior occurs.
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Equilibrium occurs when a contact angle (𝜃) is established that exactly balances
the x-direction components of the interfacial energy forces1:

𝛾ls = 𝛾sv + 𝛾lv cos(180 − 𝜃) = 𝛾sv − 𝛾lv cos(𝜃) (6.17)

Depending on the relative magnitude of 𝛾ls versus 𝛾sv, the water droplet can exhibit
wetting (hydrophilic) or nonwetting (hydrophobic) behavior:

• If 𝛾ls ≪ 𝛾sv, 𝜃 → 0∘ and completely hydrophilic (spreading) behavior occurs.
Systems exhibiting 𝜃 < 90∘ are considered wetting. Thus, if the liquid phase
“likes” the solid phase (i.e., has lower interfacial energy) more than the vapor
phase likes the solid phase, wetting will occur.

• If 𝛾ls ≫ 𝛾sv, 𝜃 → 180∘ and completely hydrophobic behavior occurs. Systems
exhibiting 𝜃 > 90∘ are considered nonwetting. Thus, if the vapor phase likes the
solid phase (i.e., has lower interfacial energy) more than the liquid phase likes
the solid phase, nonwetting behavior will occur.

The interfacial energy balance associated with grain boundaries explains why a
dihedral angle of 120∘ is frequently observed at grain triple points, as illustrated
in Figure 6.12a. Assuming an isotropic material where all grain boundaries possess
approximately the same interfacial energy, irrespective of orientation, the interfacial
energy force balance at grain triple points requires that the three grain boundaries
converge with equal 120∘ angles.

Figure 6.12b illustrates the force balances associated with the nucleation
of a new second phase (phase 𝛽) along the grain boundary of a parent

FIGURE 6.12 (a) Isotropic grain boundary energies result in a characteristic 120∘ angle of
convergence at grain boundary triple points. (b) Nucleation of a new phase often proceeds at
heterogeneous nucleation sites associated with surfaces or interfaces. The wetting angle of the
new phase nucleating along a grain boundary interface of the old phase is determined by the
relative surface energies of the interfaces.

1Although it appears from this figure that the z-direction component of the liquid–vapor interfacial
energy force is uncompensated, it is in fact offset by the force of gravity pulling on the droplet
(not shown).
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phase (phase 𝛼). In this case, the wetting angle between the two phases is
given by

𝛾
𝛼𝛼

= 2𝛾
𝛼𝛽

cos(𝜃) (6.18)

where 𝛾
𝛼𝛼

is the interfacial grain boundary energy of phase 𝛼 and 𝛾
𝛼𝛽

is the interfacial
energy of the phase 𝛼/phase 𝛽 contact. If the two phases prefer each other much more
than phase 𝛼 prefers itself (i.e., 2𝛾

𝛼𝛽
≪ 𝛾

𝛼𝛼
), then 𝜃 → 0∘ and nucleation of phase

𝛽 along the phase 𝛼 grain boundaries is favored. However, if phase 𝛼 prefers itself
much more than it prefers phase 𝛽 (i.e., 𝛾

𝛼𝛼
≪ 2𝛾

𝛼𝛽
), then 2𝜃 → 180∘ and nucleation

of phase 𝛽 along the phase 𝛼 grain boundaries is not favored.

6.4.3 Overview of Important Surface/Interface Energy Effects

The existence of surface and interface energies has wide implications in materials
kinetics. Here are some of the most important implications:

• Systems seek to minimize their total free energy G. Since surfaces and inter-
faces carry “excess” free energy, systems will seek to minimize the amount of
surface/interface area per unit volume.

• Smaller particles have higher surface/volume ratios. Thus, smaller particles tend
to be less stable, be more reactive, have lower melting point (relative to the bulk),
and so on.

• The desire to decrease interface/volume ratio provides the driving force for
many aspects of microstructural evolution, including coarsening or ripening
(Figure 6.13a), grain growth (Figure 6.13b), and sintering (Figure 6.13c). These
issues will be explored in Chapter 7.

• The energy cost to create surfaces/interfaces leads to a nucleation barrier in
condensed-matter phase transformations. Therefore, nucleation-based phase
transformations can only occur if the energy released by creating the new
volume of the second phase sufficiently offsets the energy expended in creating
the new interfacial area. This leads to a minimum viable nucleation size and
thus helps determine the speed at which nucleation can proceed. These issues
will be discussed in the next section!

6.5 NUCLEATION

As we discussed in Section 6.2, a thermodynamic driving force, quantified by ΔGV ,
must be present in order for a phase transformation to occur. In general, the magnitude
of this driving force increases linearly with the degree of deviation from equilibrium,
as expressed, for example, via

ΔGV = ΔHV
ΔT
TE

= ΔSV ΔT (6.19)

Thus, the larger the degree of supercooling below (or superheating above) the
equilibrium temperature, the larger the driving force for phase transformation.



206 LIQUID–SOLID AND SOLID–SOLID PHASE TRANSFORMATIONS

FIGURE 6.13 (a) The coalescence of many small second-phase precipitates into a few larger
precipitates is driven by the reduction in interfacial area/energy. (b) Grain growth is likewise
driven by the reduction in grain boundary area per unit volume. (c) Sintering is driven by the
reduction in surface energy as well as a reduction in surface curvature, since highly curved
surfaces possess higher energy (per unit area) than low-curvature surfaces. These phenomena,
which are crucial to understanding and predicting the kinetics of microstructure evolution, will
be examined in detail in Chapter 7.

While Equation 6.19 provides a way to estimate the driving force for a phase trans-
formation, it says nothing about the speed of the transformation process. For phase
transformations governed by nucleation and growth, the speed of transformation
depends, in part, on the rate at which viable nuclei of the new phase can form. This
is quantified by the nucleation rate Ṅ.

6.5.1 Homogeneous Nucleation

Consider the homogeneous nucleation of 𝛽 particles in an 𝛼 matrix as illustrated
in Figure 6.14. The nucleation process illustrated in Figure 6.14 is referred to as
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FIGURE 6.14 Homogeneous nucleation of 𝛽 nuclei in an 𝛼-phase matrix.

homogeneous nucleation because the nucleation is envisioned to proceed without
specific locational preference anywhere inside the volume of the 𝛼 phase. This is
in contrast to heterogeneous nucleation, to be discussed later, which preferentially
occurs at specific favored locations such as along surfaces, walls, or grain boundaries
of the parent phase.

At the atomic level, the formation of a 𝛽 nucleus requires local atomic rear-
rangement and replacement, as A and B atoms must move in order to establish a
composition consistent with the 𝛽 phase and the lattice must reorganize itself so that
the atomic positions are consistent with the pattern of the 𝛽 lattice. The probability
that a sufficient number of atoms will simultaneously align themselves into the 𝛽

phase to create a viable nucleus is very small, and since the rearrangement requires
diffusion, this probability is highly temperature dependent. Furthermore, creation
of a 𝛽 nucleus creates new interfacial area, which has an associated energy cost.
Therefore, nucleation-based phase transformations can only occur if the energy
released by creating the new volume of the second phase sufficiently offsets the
energy expended in creating the new interfacial area. This leads to a minimum viable
nucleation size.

Calculating Minimum Viable Nucleus Size (r∗) and Nucleation Activation
Energy (𝚫G∗) Since a spherical nucleus minimizes the amount of interfacial area
per unit volume, it represents the most likely nucleus shape.2 The total free-energy
change, ΔGtot, involved in forming a spherical nucleus of radius r is therefore

ΔGtot = ΔGvolume + ΔGinterface

= 4
3
𝜋r3ΔGV + 4𝜋r2

𝛾 (6.20)

where ΔGV is the free energy per unit volume released upon creating the new
second-phase particle (in order for a phase transformation to occur, this term must be
negative), and 𝛾 is the interfacial energy per unit area associated with the creation of
the new interfacial area associated with the particle. The 𝛾 term is always positive,
since energy is expended in making an interface. Figure 6.15 plots the three terms in
Equation 6.20 as a function of the nucleus radius r. As the figure indicates, there is
a critical nucleus size r∗ beyond which the total free energy of the system begins to

2Certain factors such as anisotropic strain energy contributions can lead to a preference for other shapes,
but this is beyond the scope of the present text.
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FIGURE 6.15 Volume, surface, and total free-energy changes associated with the homoge-
neous nucleation of a spherical particle of radius r.

decrease with further increases in the nucleus size. Thus, r∗ represents the minimum
viable nucleus size. If nuclei are formed with r < r∗, it is energetically unfavorable
for them to continue growing, and they will likely spontaneously decompose back
to the parent phase. However, if nuclei are formed with r > r∗, it is energetically
favorable for them to persist and continue to grow.

The critical nucleus size r∗ can be calculated by taking the derivative of
Equation 6.20 and setting it equal to zero:

r = r∗ when
𝜕ΔGtot

𝜕r
= 0 =

𝜕
4
3
𝜋r3

𝜕r
ΔGV + 𝜕4𝜋r2

𝜕r
𝛾

(6.21)
0 = 4𝜋(r∗)2 ΔGV + 8𝜋r∗𝛾

Therefore:
r∗ = − 2𝛾

ΔGV

Incorporating Equation 6.19 into Equation 6.21 explicitly captures how r∗ depends
on the degree of undercooling (or superheating):

r∗ = −
2𝛾TE

ΔHV ΔT
= − 2𝛾

ΔSV ΔT
(6.22)

Thus, r∗ decreases with increasing ΔT . This effect is shown in Figure 6.16.
As shown in Figure 6.15, there is an energy barrier of size ΔG∗ associated with the

critical nucleus size r∗;ΔG∗ represents the activation energy required to form a viable
nucleus. It can be determined by inserting the solution for r∗ back into Equation 6.20:

ΔG∗ = 4
3
𝜋(r∗)3ΔGV + 4𝜋(r∗)2𝛾

= 4
3
𝜋

(
− 2𝛾

ΔGV

)3
ΔGV + 4𝜋

(
− 2𝛾

ΔGV

)2
𝛾

= 16𝜋𝛾3

3(ΔGV )2
(6.23)
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FIGURE 6.16 r∗ and ΔG∗ decrease with increasing undercooling.

Incorporating Equation 6.19 into Equation 6.23 explicitly captures how ΔG∗

depends on the degree of undercooling (or superheating):

ΔG∗ =
16𝜋𝛾3(TE)2

3(ΔHV)2(ΔT)2
= 16𝜋𝛾3

3(ΔSV )2(ΔT)2
(6.24)

Thus, ΔG∗ decreases with increasing ΔT . This effect is shown in Figure 6.16.
As shown in the following example, both r∗ and ΔG∗ tend to be small numbers.

Example 6.3

Question: Calculate r∗ and ΔG∗ for the homogeneous nucleation of rain (liquid
water) from water vapor at 298 K and atmospheric pressure assuming supersat-
uration of the water vapor such that PH2O(g) = 0.1 atm. The surface energy of
liquid water in contact with humid (saturated) air at T = 298 K is 𝛾lv = 7.2 ×
10−6 J/cm2.

Solution: To answer this question, we must first calculate ΔGV for the con-
densation of liquid water under the conditions given. Fortunately, this was the
subject of Example 6.1, which yielded ΔGV = −159 J/cm3 at T = 298 K and
PH2O(g) = 0.1 atm. Armed with this result, we can then apply Equation 6.21 to
calculate r∗:

r∗ = − 2𝛾
ΔGV

= −2 ⋅ 7.2 × 10−6 J/cm2

−159 J/cm3

= 9.1 × 10−8 cm = 9.1 Å

The radius of a water molecule is about 1.5 Å. Thus this critical nucleus size
represents a cluster of about 210 water molecules packed together!
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Next, we apply Equation 6.23 to calculate ΔG∗:

ΔG∗ = 16𝜋𝛾3

3(ΔGV )2

= 16𝜋(7.2 × 10−6 J/cm2)3

3(−159 J/cm3)2

= 2.5 × 10−19 J

Typically ΔG∗ values will be on the order of 10−18–10−21 J. While these
seem like extremely small numbers, they represent the activation energy on a
per-nuclei basis. When translated into an activation energy per mole of nuclei
(by multiplying by NA), the resulting activation energies are approximately
1000–100,000 J/mol.

Calculating Concentration of Viable Nuclei (n∗) Now that we have deter-
mined the activation energy for nucleation, it is possible, using statistical thermody-
namics concepts, to calculate the concentration of viable nuclei (n∗) that will form at
a given temperature T . As with other activated processes, the probability that a viable
nucleus can form is exponentially temperature dependent:

n∗ = n0e−NAΔG∗∕(RT) (6.25)

In this equation, n0 is the molar site density (n0 = 1∕Vm, where Vm = M∕𝜌 is molar
volume). Avogadro’s number (NA) is needed to transform ΔG∗, which has units of
Joules, into a molar energy, with units of J/mol.3 The term n∗ will have the same
units as n0, that is, moles/vol. The variation of n∗ with temperature for a phase trans-
formation that occurs on cooling a system below TE is shown in Figure 6.17a. The
concentration of viable nuclei reaches a peak at an intermediate temperature some-
where well below TE. This is due to two competing phenomena. First, the activation
energy for nucleation, as expressed by ΔG∗, decreases with decreasing temperature
below TE (refer to Figure 6.16). This helps increase n∗ with decreasing tempera-
ture since the numerator in Equation 6.25 decreases. At the same time, however,
because nucleus formation is a temperature-activated process, as T decreases, this
decreases the denominator in Equation 6.25, which has an opposing effect. For a
nucleation-based phase transformation induced by heating above TE, the nucleation
activation energy decreases and the temperature-activated probability of nucleation
increases, resulting in a monotonically increasing nucleation concentration n∗ with
increasing temperature, as shown in Figure 6.17b.

3Alternatively, we could replace R in denominator of the exponential with k and keep the units on ΔG∗ in
joules.
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FIGURE 6.17 (a) For a phase transformation that occurs on cooling a system below TE,
the concentration of viable nuclei (n∗) reaches a peak at an intermediate temperature some-
where well below TE. Although decreasing the temperature increases the driving force for
transformation and thus decreases ΔG∗, nucleation is a temperature-activated process and thus
becomes less favored as the temperature decreases. (b) For a nucleation-based phase trans-
formation induced by heating above TE, the nucleation activation energy decreases and the
temperature-activated probability of nucleation increases, resulting in a monotonically increas-
ing nucleation concentration n∗ with increasing temperature.

Example 6.4

Question: Calculate n∗ for the homogeneous nucleation of rain (liquid water)
from water vapor at 298 K and atmospheric pressure assuming supersatura-
tion of the water vapor such that PH2O(g) = 0.1 atm. In order to estimate the
nucleation site density (n0) assume that the liquid water is nucleating in air at
atmospheric pressure, so assume a site density value consistent with the molar
concentration (mol/vol) of water in air at PH2O(g) = 0.1 atm.

Solution: To answer this question, we must first calculate n0. To estimate
the nucleation site density, we can calculate the molar concentration of water
molecules in air using the ideal gas law as

PV = nRT

c = n
V

= P
RT

=
0.1 atm ⋅ 101,300 Pa∕atm

8.314 J∕(mol ⋅ K) ⋅ 298 K

= 4.09 mol/m3
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Inserting this result and the value we calculated for ΔG∗ from Example 6.3 into
Equation 6.25 gives

n∗ = n0 exp

(
−

NAΔG∗

RT

)

= (4.09 mol/m3) exp

[
−
(

6.022 × 1023∕mol ⋅ 2.47 × 10−19 J

8.314 J∕(mol ⋅ K) ⋅ 298 K

)]

= 3.45 × 10−26 mol/m3

Multiplying by NA to calculate the number of viable nuclei per cubic meter
yields

n∗ = 3.45 × 10−26 mol/m3 ⋅ 6.022 × 1023∕mol = 2.08 × 10−2 nuclei/m3

Thus, on average there will be about one viable homogeneous raindrop nucleus
for every 50 m3 of atmosphere. This is a small number and indicates how dif-
ficult homogeneous nucleation can be! Because homogeneous nucleation is so
improbable, and because there are plenty of heterogeneous nucleation sites for
raindrop formation in the atmosphere (e.g., dust particles), raindrop formation
(and many other phase transformations) typically occurs by heterogeneous
nucleation rather than homogeneous nucleation. We will discuss heterogeneous
nucleation in the following section.

6.5.2 Heterogeneous Nucleation

So far, we have only considered the ideal case of homogeneous nucleation. However,
in reality, nucleation rarely occurs homogeneously. It is far more common for nucle-
ation to occur heterogeneously at specific sites, such as on surfaces, interfaces, or
grain boundaries. The reason for this effect is shown in Figure 6.18 for the heteroge-
neous nucleation of a solid phase from a molten liquid along a mold wall. If 𝛾s∕𝑤all is
lower than 𝛾sl, it can be shown that the overall surface energy of the nucleating solid is

FIGURE 6.18 Heterogeneous nucleation of a solid phase from a molten liquid at a mold
wall.
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lower if it forms heterogeneously in contact with the wall rather than homogeneously
in the melt. This is true even though the nucleus no longer has a spherical shape that
minimizes its surface-to-volume ratio.

Considering the geometry of the nucleating phase depicted in Figure 6.18, both
the volume free-energy and interfacial free-energy terms are modified compared to
the homogeneous nucleation case due to the change in shape and surface energy. If
𝜃 is the contact angle that the nucleating solid phase forms with the mold wall, then
the volume of this “spherical cap” can be described by

V(𝜃) = 4
3
𝜋r3f (𝜃) (6.26)

where f (𝜃) describes the volume of the spherical cap of radius r relative to that of a
full sphere of the same radius:

f (𝜃) = 2 − 3 cos 𝜃 + cos3
𝜃

4
(6.27)

If 𝜃 = 90∘ (a hemisphere), f (𝜃) = 0.5. Thus, the overall volume free-energy term
becomes

ΔGvolume =
4
3
𝜋r3ΔGV f (𝜃) (6.28)

The interfacial free-energy term must likewise be modified to account for the differ-
ent surface area and interfacial energy contributions associated with the nucleating
spherical cap-shaped particle:

ΔGinterface = Asl𝛾sl + As∕wall𝛾s∕wall − Awall∕l𝛾wall∕l

= 2𝜋r2(1 − cos 𝜃)𝛾sl + 𝜋r2(1 − cos2
𝜃)(𝛾s∕wall − 𝛾wall∕l) (6.29)

Note that the third term in this expression, which is associated with the wall/liquid
interfacial energy, is subtracted from the other two terms because this interface is
replaced by the solid/wall interface upon nucleation of the particle. From the inter-
facial energy force balance derived in Equation 6.17, we can relate the interfacial
energy terms to the contact angle 𝜃 via

𝛾wall∕l = 𝛾s∕wall + 𝛾sl cos 𝜃 (6.30)

And, so by substituting this into Equation 6.29, we have

ΔGinterface = 2𝜋r2(1 − cos 𝜃)𝛾sl + 𝜋r2(1 − cos2
𝜃)(−𝛾sl cos 𝜃)

= 2𝜋r2
𝛾sl − 3𝜋r2(cos 𝜃)𝛾sl + 𝜋r2(cos3

𝜃)𝛾sl

= 𝜋r2
𝛾sl(2 − 3 cos 𝜃 + cos3

𝜃)

= 𝜋r2
𝛾sl[4f (𝜃)] = 4𝜋r2

𝛾slf (𝜃) (6.31)
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The total free energy associated with the nucleating phase then becomes

ΔGtot = ΔGvolume + ΔGinterface

= 4
3
𝜋r3ΔGV f (𝜃) + 4𝜋r2

𝛾f (𝜃) (6.32)

Thus, compared to the case for homogeneous nucleation, we find that in het-
erogeneous nucleation both the volume and surface energy terms are simply
modified by the f (𝜃) factor, which essentially accounts for the geometry of the
cap versus the sphere. Since f (𝜃) decreases with decreasing 𝜃, the more that the
solid phase likes to wet the mold wall, the greater the benefit associated with
heterogeneous nucleation over homogeneous nucleation. This effect is shown in
Figure 6.19, which compares the total free energy as a function of nucleus size (r)
for homogeneous nucleation versus heterogeneous nucleation at several different
values of 𝜃.

As was done for homogeneous nucleation, the critical nucleus size r∗het
for hetero-

geneous nucleation can be calculated by taking the derivative of Equation 6.32 and
setting it equal to zero. This exercise gives

r = r∗het when
𝜕ΔGtot

𝜕r
= 0 =

𝜕
4
3
𝜋r3

𝜕r
ΔGV f (𝜃) + 𝜕4𝜋r2

𝜕r
𝛾f (𝜃)

0 = 4𝜋(r∗het)
2ΔGV f (𝜃) + 8𝜋r∗het𝛾f (𝜃) (6.33)

r∗het = − 2𝛾
ΔGV

FIGURE 6.19 Comparison of the total free energy as a function of nucleus size (r) for homo-
geneous nucleation versus heterogeneous nucleation at 𝜃 = 90∘ and 𝜃 = 60∘. Heterogeneous
nucleation significantly reduces the nucleation activation barrier, ΔG∗, with smaller 𝜃 (bet-
ter wetting) yielding a larger reduction. It is important to note that although heterogeneous
nucleation decreases ΔG∗, it does not alter the critical nucleus size r∗.
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Thus, the critical nucleus size for heterogeneous nucleation does not change com-
pared to the value for homogeneous nucleation. This can be seen in Figure 6.19.
On the other hand, as shown in Figure 6.19, the heterogeneous nucleation activation
barrier, ΔG∗

het, does change compared to the case for homogeneous nucleation. ΔG∗
het

can be determined by inserting the solution for r∗het back into Equation 6.32:

ΔG∗
het =

4
3
𝜋(r∗)3ΔGV f (𝜃) + 4𝜋(r∗)2𝛾f (𝜃)

= 4
3
𝜋

(
− 2𝛾

ΔGV

)3
ΔGV f (𝜃) + 4𝜋

(
− 2𝛾

ΔGV

)2
𝛾f (𝜃)

= 16𝜋𝛾3

3(ΔGV )2
f (𝜃) (6.34)

Finally, the concentration of viable nuclei (n∗) that can form at any given temperature
T is likewise modified due to the change in ΔG∗:

n∗het = n0e−NAΔG∗
het

∕(RT) (6.35)

where ΔG∗
het decreases strongly with decreasing 𝜃, and thus n∗het increases expo-

nentially with decreasing 𝜃. As we will see in the following example, compared to
ΔG∗ for homogeneous nucleation, ΔG∗

het for heterogeneous nucleation is reduced to
1∕2ΔG∗ for 𝜃 = 90∘ but is reduced to ≈1∕6ΔG∗ for 𝜃 = 60∘ and to ≈1∕75ΔG∗ for
𝜃 = 30∘. This can result in many orders of magnitude increase in the concentration
of viable heterogeneous nuclei versus homogeneous nuclei, as shown in Figure 6.20.

FIGURE 6.20 For a heterogeneous phase transformation that occurs on cooling a system
below TE, the concentration of viable heterogeneous nuclei (n∗

het) is much higher than the
concentration of viable homogeneous nuclei (n∗) at all temperatures, explaining why hetero-
geneous nucleation tends to dominate transformation processes upon cooling.
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Example 6.5

Question: If the contact angle for the nucleation of solid Au from molten Au
on a mold wall is 50∘, by what factor is ΔG∗

het reduced versus ΔG∗
hom?

Solution: Using Equation 6.34 and Equation 6.23, we can compute the ratio of
ΔG∗

het/ΔG∗
hom as

ΔG∗
het

ΔG∗
hom

=
16𝜋𝛾3

3(ΔGV )2
f (𝜃)

16𝜋𝛾3

3(ΔGV )2

= f (𝜃)

= 2 − 3 cos 𝜃 + cos3
𝜃

4

= 2 − 3 cos(50∘) + cos3(50∘)
4

= 0.084

Thus, ΔG∗
het is reduced by about a factor of 12 compared to ΔG∗

hom.

Cloud Seeding

Cloud seeding, an intriguing real-world example of heterogeneous nucleation,
has been examined for more than 100 years as a way to induce or increase
precipitation (rain or snow) from clouds. While there are a number of different
approaches, the most common technique is to inject silver iodide particles into
a cloud via either aircraft or surface-based ordinance. Silver iodide provides an
excellent lattice constant match to ice, thereby providing a seed surface with low
interfacial energy that facilitates heterogeneous nucleation under supercooled
conditions. The greatly increased heterogeneous nucleation rate inside the cloud
due to the AgI crystals therefore leads to enhanced precipitation. Although cloud
seeding is currently practiced worldwide by numerous public and private agen-
cies, its effectiveness is still somewhat controversial. Much of this controversy
stems from the fact that it is difficult to determine how much precipitation would
have fallen in a given storm if cloud seeding was not used. Current consensus
suggests that cloud seeding of winter storms in mountain terrain likely leads to
enhanced local snowfall, and the technique is currently used by a number of major
ski resorts. Warm-weather cloud seeding is less clearcut; most long-term studies
have been inconclusive. In warm-weather clouds, water vapor content tends to
be higher and the nucleation of liquid droplets, rather than ice crystals, is more
typical. Under these conditions, the benefit of silver-iodide-based heterogeneous
nucleation is likely minimized. Interestingly, recent research suggests that dry
ice or salt-based cloud seeding techniques may provide better efficacy in these
warm-cloud situations.
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Heterogeneous Nucleation at Grain Boundaries

In condensed-matter systems, heterogeneous nucleation can also occur at
microstructural features such as grain boundaries or dislocations. Consider
heterogeneous nucleation at a grain boundary as illustrated in Figure 6.21. The
lenticular (lenslike) shape of the nucleating 𝛽-phase particle is a consequence
of the minimization of total interfacial energy while satisfying the equilibrium
contact angle 𝜃 established by the interfacial energy force balance. The lenticular
particle can be viewed as the combination of two back-to-back symmetric
spherical caps of radius r. The volume of this particle is thus twice the volume of
a spherical cap of the same radius:

V(𝜃) = 4
3
𝜋r3[2f (𝜃)] (6.36)

and so the overall volume free-energy term becomes

ΔGvolume =
4
3
𝜋r3ΔGV [2f (𝜃)] (6.37)

The interfacial free-energy term becomes

ΔGinterface = 2A
𝛼𝛽
𝛾
𝛼𝛽

− A
𝛼𝛼
𝛾
𝛼𝛼

= 4𝜋r2(1 − cos 𝜃)𝛾
𝛼𝛽

− 𝜋r2(1 − cos2
𝜃)(𝛾

𝛼𝛼
) (6.38)

where A
𝛼𝛽

is the interfacial contact area for one side of the lenticular particle. From
the interfacial energy force balance for grain boundary nucleation as derived in
Equation 6.18, we can relate the interfacial energy terms to the contact angle 𝜃 via

𝛾
𝛼𝛼

= 2𝛾
𝛼𝛽

cos 𝜃 (6.39)

FIGURE 6.21 Heterogeneous nucleation of a lenticular 𝛽-phase particle at a grain
boundary in the parent 𝛼-phase matrix. The lenticular (lenslike) shape of the nucleating
𝛽-phase particle is a consequence of the minimization of total interfacial energy while sat-
isfying the equilibrium contact angle 𝜃 established by the interfacial energy force balance.
The lenticular particle can be viewed as the combination of two back-to-back symmetric
spherical caps of radius r.
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And so by substituting this into Equation 6.38, we have:

ΔGinterface = 4𝜋r2(1 − cos 𝜃)𝛾
𝛼𝛽

− 𝜋r2(1 − cos2
𝜃)(2𝛾

𝛼𝛽
cos 𝜃)

= 2𝜋r2
𝛾
𝛼𝛽
(2 − 3 cos 𝜃 + cos3

𝜃)

= 2𝜋r2
𝛾sl[4f (𝜃)] = 4𝜋r2

𝛾sl[2f (𝜃)] (6.40)

The total free energy associated with the nucleating phase then becomes

ΔGtot = ΔGvolume + ΔGinterface

= 4
3
𝜋r3ΔGV[2f (𝜃)] + 4𝜋r2

𝛾[2f (𝜃)] (6.41)

Thus, compared to the case for homogeneous nucleation, we find that for het-
erogeneous nucleation at a grain boundary, both the volume and surface energy
terms are modified by a factor of 2f (𝜃), which essentially accounts for the geom-
etry of the lenticular shape (which is like two spherical caps) versus a sphere.
Since f (𝜃) decreases with decreasing 𝜃, the more that the 𝛽 phase likes to wet
the grain boundary, the greater the benefit associated with heterogeneous grain
boundary nucleation (just as with heterogeneous nucleation on a surface). Since
the modification factor for grain boundary nucleation is 2f (𝜃) versus f (𝜃) for sur-
face nucleation, it is generally expected that heterogeneous grain boundary nucle-
ation is not quite as favorable as heterogeneous surface nucleation (although both
are more favorable than homogeneous nucleation). However, as there are often
many more grain boundary nucleation sites available in a material compared to
free-surface nucleation sites, the overall amount of grain boundary nucleation may
often be higher.

6.5.3 Nucleation Rate

So far, we have only determined the number of viable nuclei for homogeneous and
heterogeneous nucleation processes (n∗, n∗het) as a function of the temperature T .
What we would really like to determine is the rate of nucleation, Ṅ, that is, the
concentration of viable nuclei that are created per unit time during a transformation
process.

A nucleus that has obtained exactly the critical viable nucleus size r∗ is perched
in a tenuous position. Two things can happen with essentially equal probability:
(1) the nucleus can lose a few atoms, in which case it ceases to be viable and
“falls” back down the activation energy hill, or (2) the nucleus can gain a few
more atoms, at which point it begins to accelerate down the other side of the
activation energy hill, where it becomes highly energetically favorable to con-
tinue growing. Thus, the rate of nucleation is determined by the concentration of
viable nuclei and the rate at which they are “activated” through the addition of
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a few more atoms to ensure their continued existence (and growth). Expressed
mathematically,

Ṅ = 𝜈n∗ (6.42)

where 𝜈 is the frequency (1∕s) with which fresh molecules or atoms collide with the
nucleus. Since the units for n∗ are typically mol∕m3 (or mol∕cm3), the units for Ṅ
are mol∕(m3 ⋅ s) [or mol∕(cm3 ⋅ s)].

For the case of nucleation from the vapor phase, the impingement rate
(Equation 5.3 from Chapter 5) multiplied by the surface area of the nucleus governs
the frequency with which atoms collide with the nucleus. Thus, we have for Ṅ

Ṅ(from vapor) =
[

𝛼P
(2𝜋MRT)1∕2

A∗
m

]
[n0e−ΔG∗∕RT ] (6.43)

where A∗
m is the molar area (area/mol) of the critically sized nucleus.4

For the case of nucleation in a condensed-matter phase, diffusion controls the rate
at which fresh atoms can arrive at the surface of the nucleus. In this case, the nucle-
ation rate may be expressed as

Ṅ(condensed phase) = [𝜈0e(−ΔGm∕RT)][n0e−ΔG∗∕RT ] (6.44)

where 𝜈0 is the jump frequency (1/s) of atoms at the surface of the nucleus and ΔGm
describes the activation energy for the diffusion (J∕mol) of atoms to the surface of
the nucleus.

For a condensed-matter transformation that occurs on cooling below an equi-
librium temperature TE, the overall nucleation rate as a function of temperature
is shown in Figure 6.22. The overall nucleation rate is a result of two factors: the
concentration of critical nuclei n∗, which obtains a peak at intermediate temperatures
below TE, and the diffusion term 𝜈 = 𝜈0e(−ΔGm∕RT), which increases exponen-
tially with increasing temperature. As a result, the peak for Ṅ is skewed toward
higher temperatures than the peak for n∗. However, as T approaches TE, both n∗

and Ṅ fall to zero. Similarly, at very low temperature, both n∗ and Ṅ approach
zero. Thus, an intermediate undercooling temperature results in the greatest rate
of nucleation.

The peak in Ṅ at intermediate temperatures explains how glasses can be formed,
even from materials systems that do not tend to form into glasses (e.g., metallic
glasses). The key to forming glasses in such systems is to rapidly quench them from
the melt, so that they solidify without having time for crystalline nuclei to form. In this
way, the random amorphous structure of the liquid melt is “frozen” in place before
the material has time to nucleate and grow organized crystalline domains.

4For a spherical nucleus of critical size r∗, the volume and area of the critically sized nucleus are V∗ =
4∕3𝜋(r∗)3 and A∗ = 4𝜋(r∗)2, respectively. The molar content of one critically sized nucleus, M∗, is given
by M∗ = V∗∕Vm, where Vm is the molar volume (Vm = M∕𝜌). The molar area of a critically sized nucleus
is therefore A∗

m = A∗∕M∗ = 4𝜋(r∗)2∕[4∕3𝜋(r∗)3(𝜌∕M)] = (3M)∕(r∗𝜌).



220 LIQUID–SOLID AND SOLID–SOLID PHASE TRANSFORMATIONS

FIGURE 6.22 For a phase transformation that occurs on cooling a system below TE, the
overall nucleation rate Ṅ is a result of two factors: the concentration of critical nuclei n∗, which
obtains a peak at intermediate temperatures below TE, and the diffusion term 𝜈 = 𝜈0e(−ΔGm∕RT),
which increases exponentially with increasing temperature. As a result, the peak for Ṅ is
skewed toward higher temperatures than the peak for n∗. However, as T approaches TE, both
n∗ and Ṅ fall to zero. Similarly, at very low temperature, both n∗ and Ṅ approach zero. Thus,
there is an intermediate cooling temperature that results in the greatest rate of nucleation.

Example 6.6

Question: Have you ever heard the expression that it is “too cold to snow?”
This expression is based on the observation that precipitation drops off rather
abruptly when it is extremely cold (i.e., at temperatures well below the freezing
point). This seemingly counterintuitive observation is actually underpinned by
solid theory. Your professor gives you two possible reasons for the phenomenon:
(1) Very cold air holds less moisture than warmer air, and so there is less water
vapor available for precipitation. (2) The nucleation rate decreases at very low
temperatures, leading to fewer, smaller snowflakes. Which explanation is more
likely?

Solution: To address this question, we will consider the likelihood of second
explanation—the suppression of the nucleation rate. Specifically, we will first
try to determine the temperature at which Ṅ reaches a maximum (TṄmax

). At
temperatures below TṄmax

, Ṅ should begin to decrease. For the formation of
snow nuclei from the vapor phase, we start with Equation 6.43:

Ṅ(from vapor) =
[

𝛼P
(2𝜋MRT)1∕2

A∗
m

]
[n0e−ΔG∗∕RT]

Temperature appears both in the preexponential factor (as a T−1∕2 term) and
in the exponential. Because the T−1∕2 dependence in the preexponential factor is
extremely weak compared to the exponential temperature-dependent term, we
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will ignore it, simplifying our calculation significantly. We seek to determine
the temperature where Ṅ attains a maximum, in other words, where

d[e−ΔG∗∕RT ]
dT

= 0 (6.45)

Recall that ΔG∗ itself has a strong temperature dependence built into it as
described by the degree of undercooling (Equation 6.24):

ΔG∗ = 16𝜋𝛾3

3(ΔSV )2(ΔT)2
= 16𝜋𝛾3

3(ΔSV )2(TE − T)2
= C

(TE − T)2
(6.46)

where we’ve lumped all the temperature independent terms into the constant C.
Inserting Equation 6.46 into Equation 6.45 and taking the derivative with respect
to temperature, we have

de−C∕[RT(TE−T)2]

dT
= 0

e−C∕[RT(TE−T)2]
{

C
RT2(TE − T)2

− 2C
RT(TE − T)3

}
= 0

This expression has a real root when the portion inside in the curly brackets
equals zero:

C
RT2(TE − T)2

− 2C
RT(TE − T)3

= 0 T =
TE

3

Thus, if the nucleation explanation is correct, it would only be “too cold
to snow” when T decreases well below TE∕3. This would imply temperatures
below 91 K, or −182 ∘C! This is far colder than any recorded temperature on
Earth, indicating that the nucleation factor is not an adequate explanation for
snowfall suppression at frigid temperatures. The better explanation considers
the water vapor capacity of the atmosphere, which decreases exponentially
with decreasing temperature. Cold air holds exponentially less water vapor
than warm air, and so the precipitation potential decreases dramatically as tem-
peratures become more frigid. This is the main reason why warm snowstorms,
where the air temperature is just slightly below the freezing point, typically
produce the greatest snowfall rates.

6.6 GROWTH

Once a nucleus is successfully established, its continued growth is determined by
the rate at which additional atoms can be added. Sometimes, when the transfor-
mation produces (or consumes) a large amount of heat, the growth rate can also
depend on how quickly heat can be removed from (or conveyed to) the interface.
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For the time being, however, we will consider growth under the scenario where
the attachment of mass to the interface limits the rate. During the initial stages
of growth, the growth rate is typically linear with time. However, as growth
proceeds, the rate generally begins to slow. As with many diffusion-controlled
processes (recall Chapters 4 and 5), the growth rate often becomes parabolic (i.e.,
the new phase advances with the square root of time). During the latest stages of a
transformation, either the driving force for the transformation or the supply of the
reacting (parent) phase will be exhausted, at which time the growth rate will fall
to zero.

The linear growth rate Ġ typically observed during the initial stages of
attachment-limited growth depends on the size of the driving force for the trans-
formation process and the frequency at which atoms can successfully transfer
themselves from the reactant phase to the product phase. Expressed mathematically,

Ġ = −ΔGrxn𝜈𝜙 (6.47)

where Ġ is the growth rate (m/s), ΔGrxn is the molar Gibbs free energy for the
transformation reaction (J∕mol), 𝜈 is the frequency (1∕s) with which fresh atoms
are added to the growing phase, and 𝜙 (m ⋅ mol/J) can be considered as a combined
geometric and energy factor term that takes into account the size/shape of the
growing phase and the effectiveness of the transformation driving force for causing
growth. The negative sign is needed to ensure that the growth rate is a positive
value since a thermodynamically favorable transformation process will have a
negative ΔGrxn. You should already be familiar with the frequency factor 𝜈, as it
also appeared in the expression for the nucleation rate Ṅ. This makes sense, because
both the activation of a viable nucleus and its subsequent growth depends on the
same fundamental (mass-transport-controlled) rate at which atoms are added to
the nucleus. Expressing, as before, the driving force for the transformation process
(ΔGrxn) in terms of ΔHrxn and the degree of undercooling (or superheating) from
the equilibrium temperature TE, we can therefore write for a condensed phase
transformation process:

Ġ(condensed phase) = −
ΔHrxnΔT

TE
𝜙𝜈0e(−ΔGm∕RT) (6.48)

For a condensed-matter transformation that occurs on cooling below an equilib-
rium temperature TE, the overall growth rate as a function of temperature is shown
in Figure 6.23. The overall growth rate is a result of two factors: the driving force
for transformation, which increases linearly with decreasing temperature below TE,
and the mass transfer term 𝜈 = 𝜈0e(−ΔGm∕RT), which decreases exponentially with
decreasing temperature. As a result, the overall growth rate Ġ obtains a peak at inter-
mediate temperatures. As T approaches TE, although mass transfer is fast, the driving
force for transformation falls to zero (and thus so does Ġ). At very low temperatures,
although the driving force for transformation is large, mass transfer is slow and thus
Ġ again approaches zero. Thus, an intermediate undercooling temperature produces
the greatest growth rate.
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FIGURE 6.23 For a phase transformation that occurs on cooling a system below TE, the
overall growth rate Ġ is a result of two factors: the driving force for transformation, which
increases linearly with decreasing temperature below TE, and the mass transfer term 𝜈 =
𝜈0e(−ΔGm∕RT), which decreases exponentially with decreasing temperature. As a result, the over-
all growth rate Ġ obtains a peak at intermediate temperatures.

Example 6.7

Question: Calculate the mass-transport-limited growth rate for the solidification
of Fe(s) at T = 1200 K given the following information:

• ΔH∘
solidification = −15.2 kJ∕mol

• Tm = 1812 K

• ΔGm = −120 kJ∕mol

• 𝜈0 = 107∕s

• 𝜙 = 10−8 m ⋅ mol/J

Approximately how long would it take for a 20-cm-long ingot with a 3-cm ×
6-cm square cross section to solidify at 1200 K assuming nucleation only occurs
along the mold walls followed by linear mass-transport-limited growth inward
to the center?

Solution: To answer this question, we apply the information provided to
Equation 6.48, yielding

Ġ = −
ΔHrxnΔT

TE
𝜙𝜈0e(−ΔGm∕RT)

= −
−15200 J∕mol(1812 K − 1200 K)

1812 K
⋅ 10−8 m ⋅ mol/J
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(107∕s) exp

(
−

120,000 J∕mol

8.314 J∕(mol ⋅ K) ⋅ 1200 K

)

= 3.1 × 10−3 m/s = 3.1 mm/s

Growth will proceed inward from the mold walls toward the center. The
shortest dimension of the ingot cross section determines the time required.
The time required for the growth to proceed 1.5 cm (from the closest wall to
the center of the ingot) under the linear mass-transport-limited growth regime
is therefore

t = Δx

Ġ
= 15 mm

3.1 mm/s
= 4.8 s

Thus, we predict that the ingot will solidify in less than 5 s! This is extremely
rapid solidification. In all likelihood, the actual solidification rate under these
conditions might instead be controlled by the rate at which the heat of fusion can
be conducted away from the solidifying ingot. Thus a solidification growth rate
based on heat transport should be calculated and the slower of the two limiting
growth rates should be adopted to provide a best estimate of the solidification
time required. This is discussed in the dialog box below.

Estimating Heat-Transport-Limited Growth Rates

Sometimes, growth rates are controlled by the rate of heat transport rather than
the rate of mass transport. This is particularly true during melting or solidification
processes, which involve a large absorption or release of heat. Under such cir-
cumstances, accurate treatment of the growth rate requires coupling the heat pro-
duced/absorbed during growth to the transient heat conduction equation (similar to
the transient diffusion equation) within the confines of a moving interface bound-
ary condition. This treatment typically results in growth that proceeds with the
square root of time. This detailed treatment is beyond the scope of this textbook.
However, for the purposes of obtaining a rough estimate for heat-transport-limited
growth, here we will employ a simple approach that ignores the moving interface
issue and assumes a linear steady-state heat transport rate.

Consider a planar growth front as illustrated in Figure 6.24. The growth of a
thin slice of new phase of thickness dx in a time dt generates a heat flux Q (W∕m2)
given by

Q = ΔHrxn
𝜌

M
dx
dt

(6.49)

whereΔHrxn is the molar heat of the reaction, 𝜌 is the density of the material, and M
is the molecular weight. Under steady-state growth, this heat flux must be exactly
balanced by the heat transported away (or toward) the growth front by thermal
conduction. Ignoring the movement of the growth front and assuming steady-state
heat conduction due to a uniform temperature gradient across the critical
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FIGURE 6.24 Schematic illustration of heat-transport-limited growth. The rate of
growth of a slice of transformed phase of thickness dx is determined by the rate at which
the heat absorbed (or released) by this transformed volume can be conducted to (or away
from) the interface.

(usually shortest) dimension associated with the transforming volume, the heat
flux due to conduction can be estimated as

Q = −𝜅 dT
dx

≈ −𝜅ΔT
L

(6.50)

where 𝜅 is the thermal conductivity,a L is the critical dimension along which the
transformation is proceeding (e.g., for a solidification process proceeding from the
walls to the center, L would be the shortest distance from the wall to the center of
the transforming volume), and ΔT is the temperature drop along L from the center
to the edge of the solidifying volume.

Equating expressions 6.49 and 6.50 and solving for the growth rate (dx∕dt = Ġ)
yields

Ġ = dx
dt

= − 𝜅MΔT
ΔHrxn𝜌L

(6.51)

For the case of the solidification of Fe(s) discussed in Example 6.7, if 𝜅 =
25 W∕(m ⋅ K), we could estimate the heat-transport-limited solidification rate as

Ġ = −
25 W∕(m ⋅ K) ⋅ 55.85 × 10−3 kg∕mol(1812 K − 1200 K)

−15200 J∕mol ⋅ 7870 kg/m3 ⋅ 0.015 m

= 4.8 × 10−4 m/s = 0.48 mm/s

The heat-transport-limited solidification rate estimated by this approach is almost
one order of magnitude slower than the mass-transport-limited growth rate that
was calculated in Example 6.7. Thus, it is likely that heat transport will limit the
solidification of this ingot under these conditions.

aFor simplicity, here it is assumed that the thermal conductivity of the parent and transformed phase
are identical.



226 LIQUID–SOLID AND SOLID–SOLID PHASE TRANSFORMATIONS

6.7 NUCLEATION AND GROWTH COMBINED

During a phase transformation, nucleation and growth typically occur concurrently.
That is, as soon as a few viable nuclei begin to form, they will start growing, even
as additional new nuclei continue to be formed. To understand the overall rate of
transformation, it is therefore necessary to consider the rates of nucleation and growth
together. Figure 6.25 schematically compares the rate of nucleation and growth as a
function of temperature for a typical condensed-matter transformation that occurs
on cooling below an equilibrium temperature TE. This figure is a combination of
Figures 6.22 and 6.23. The overall transformation rate, given on the figure by Ḟ, is
a nonlinear product of the nucleation (Ṅ) and growth (Ġ) rates. Because both Ṅ and
Ġ obtain a peak at intermediate temperatures, so does Ḟ. However, the peaks for Ṅ
and Ġ typically do not occur at the same temperature (Ġ typically peaks at higher
temperatures than Ṅ). As will be discussed below, this has important implications
on the type of microstructure that develops depending on the degree of undercooling
during transformation.

6.7.1 Effect of Nucleation Rate versus Growth Rate on Microstructure

Figure 6.26 illustrates how the choice of the undercooling temperature can impact
the typical microstructure that is obtained during a phase transformation that occurs
on cooling a system below TE. Representative microstructures corresponding to four
different isothermal undercooling temperatures (T1,T2,T3, and T4, respectively) are
shown. At temperature T1, which represents a small degree of undercooling (just
slightly below TE), the nucleation rate is low, but the growth rate is high. Thus, only

FIGURE 6.25 For a phase transformation that occurs on cooling a system below TE, the
overall transformation rate Ḟ is a nonlinear product of the nucleation rate Ṅ and the growth
rate Ġ. Because both Ṅ and Ġ obtain a peak at intermediate temperatures, so does Ḟ.
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FIGURE 6.26 Influence of transformation temperature on microstructure. Carrying out a
liquid–solid phase transformation isothermally at a temperature just slightly below the equi-
librium transformation temperature (T1) tends to produce a coarse-grained microstructure since
the growth rate is high but the nucleation rate is low. Transforming at lower temperatures
(greater amount of undercooling) results in microstructural refinement (e.g., T2, T3). In cer-
tain systems a rapid quench to low temperature (T4) may produce an amorphous or glasslike
microstructure as the crystalline phase transition can be kinetically impeded.

a small number of nuclei are formed, but they have the opportunity to grow quickly.
As a result, a coarse (e.g., large-grained) microstructure is obtained. At temperature
T2, which represents a moderate degree of undercooling, both the nucleation rate and
the growth rate are high. Thus, the microstructural transformation occurs quickly
and a relatively equiaxed, moderately refined microstructure is typically obtained. At
temperature T3, which represents a large degree of undercooling, the nucleation rate
is still significant, but the growth rate is low. As a result, a very fine microstructure
is obtained. Finally, at temperature T4, which represents a rapid quench to very
low temperatures, both the nucleation rate and the growth rate are near zero. If the
original transforming phase was a liquid, an amorphous or glasslike microstructure
may therefore be obtained (for certain materials systems). If the original trans-
forming phase was a solid, the phase transformation may be kinetically prevented
by this rapid quenching to T4, and the original phase may therefore persist as a
metastable phase.

Geology of Ingenous Rocks: Natural Case Study in Nucleation and
Growth

The next time you go hiking in the mountains, take a closer look at the rocks
around you—especially if they are igneous in nature. Igneous rocks are formed
when molten magma from beneath Earth’s surface solidifies. Depending on the
rate of solidification, the resulting rock can take on a variety of different appear-
ances due to differences in the relative rates of nucleation and growth during
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solidification. For example, you may be familiar with granite, rhyolite, and obsid-
ian (see Figure 6.27). Chemically, these three rocks are all quite similar. However,
microstructurally they are quite different, and this is due to how quickly they
solidified from molten magma. Granite typically forms underground and solidifies
very slowly at relatively high temperatures. As a result, nucleation is slow while
the growth rate is fast, leading to a beautiful, highly textured, coarse-grained
microstructure. The individual grains are often visible to the naked eye and can be
centimeters in size. In contrast, rhyolite typically forms on Earth’s surface (e.g.,
in lava flows during a volcanic eruption) and thus cools much more quickly. The
lower temperatures and faster cooling rate during solidification lead to a much
finer (although still fully crystalline) microstructure. Obsidian—also known as
volcanic glass—is typically formed during violent volcanic eruptions. During
such eruptions, molten fragments are ejected high into the air where they solidify
rapidly before crystallization can occur. As a result, the amorphous structure
of the melt is frozen in place, leading to the characteristic glasslike properties
of obsidian.

FIGURE 6.27 Examples of (a) granite, (b) rhyolite, and (c) obsidian. All three are
igneous rocks of similar chemical composition. The marked microstructual differences
between the three are due to dramatic differences in the rate of solidification during their
formation. Granite typically forms underground and solidifies very slowly at relatively high
temperatures. As a result, nucleation is slow while the growth rate is fast, leading to a highly
textured, coarse-grained microstructure. Rhyolite typically forms on the Earth’s surface
(e.g., in lava flows during a volcanic eruption) and thus cools much more quickly. The lower
temperatures and faster cooling rate during solidification lead to a much finer microstruc-
ture. Obsidian is typically formed during violent volcanic eruptions where molten frag-
ments ejected high into the air solidify rapidly before crystallization can occur. As a result,
the amorphous structure of the melt is frozen in place, leading to the characteristic glasslike
properties of obsidian. Micrographs courtesy of the Oxford Earth Sciences Image Store
(http://www.earth.ox.ac.uk/ oesis/index.html)

http://www.earth.ox.ac.uk/oesis/index.html
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6.7.2 Overall Rate of Transformation: Johnson–Mehl and Avrami
Equations

The overall fraction of material transformed as a function of time [F(t)] can be derived
assuming nucleation and growth of spherical particles where both the nucleation rate
(Ṅ) and the growth rate (Ġ) are constant as a function of time. The derivation is
beyond the scope of the present text but results in a formula for F(t)with the following
form:

F(t) = 1 − e−(𝜋∕3)Ġ3Ṅt4 (6.52)

This equation, which relates the fraction transformed to the nucleation rate, the
growth rate, and the time elapsed since the start of the transformation (at constant
temperature), is known as the Johnson–Mehl equation. The fact that the exponential
term depends on Ġ3 can be understood on the basis that growth is assumed to
proceed spherically, and thus the volume transformed increases with the cube power
of the linear growth rate.

Figure 6.28 plots Equation 6.52 as a function of time for the phase transformation
process previously illustrated in Figure 6.26 at undercooling temperatures T1,T2,T3,
and T4. In all cases, the transformation is sigmoidal, meaning that the fraction trans-
formed first increases exponentially in time before slowing down and asymptoti-
cally approaching complete transformation. Sigmoidal behavior is observed in a wide
variety of natural systems, including the propagation of species into new ecological
niches, the rate of alcohol production by yeast in beer, and the spread of infectious dis-
eases through a population. The sigmoidal shape of F(t) can be understood as shown
in Figure 6.29. As the new phase nucleates and grows, at first it can grow rapidly

FIGURE 6.28 Fraction transformed F(t) during a phase transformation as a function of the
time elapsed at four different undercooling temperatures. The fraction transformed starts at
0 and increases sigmoidally with time until full transformation is obtained (F = 1). In this
example, the overall transformation process is fastest for T = T2, corresponding to the tem-
perature where the growth rate was maximized (refer to Figure 6.26). At both T = T1 and
T = T4, the transformation rate is slow, although for different reasons in each case. At T = T1,
transformation is slow because the driving force for transformation is small, while at T = T4,
transformation is slow because atomic mobility (i.e., diffusion) is slow.
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FIGURE 6.29 Schematic illustration of the progress of a phase transformation (𝛼 → 𝛽).
During the initial stages of transformation, the new phase can nucleate and grow rapidly with-
out restriction. However, as the transformation process continues, growing particles begin to
impinge on one another and less parent phase is available for continued nucleation, thus slow-
ing the rate of transformation.

without restriction. However, as the transformation process continues, growing parti-
cles begin to impinge on one another and less parent phase is available for continued
nucleation, thus slowing the rate of transformation.

In this example, the overall transformation process is fastest for T = T2, corre-
sponding to the temperature where the growth rate is maximized. At both T = T1
and T = T4, the transformation rate is slow, although for different reasons in each
case. At T = T1 transformation is slow because the driving force for transformation
is small, while at T = T4, transformation is slow because atomic mobility (i.e., diffu-
sion) is slow.

A simplified version of the Johnson–Mehl equation, known as the Avrami
equation, is often employed. The Avrami equation is typically expressed as

F(t) = 1 − e−ktn (6.53)

where n is known as the “Avrami exponent” and k is an empirical constant that
accounts for both the nucleation and growth rates associated with the phase trans-
formation. The larger the value of k and the higher the value of n, the faster the rate
of transformation. The value of n in the Avrami equation often contains dimensional
information about the transformation process. For 3D phase transformations, n typ-
ically varies between 4 and 3. For 2D transformations, such as may occur in a thin
film or sheet, n typically varies between 3 and 2. For 1D transformations, such as may
occur in a wire or rod, n typically varies between 2 and 1. Variations in n may also
reflect other nonidealities in the nucleation and growth process, such as highly non-
spherical growth or nucleation and growth rates that decrease as a function of time.

6.7.3 Time–Temperature–Transformation Diagrams

The kinetics of solid-state phase transformations are often summarized in
time–temperature–transformation (TTT) diagrams. Figure 6.30 illustrates the
construction of a TTT diagram using the transformation kinetics for the system in
Figures 6.26 and 6.28. The TTT diagram shows the time required to achieve certain
amounts of transformation as a function of the temperature of the transformation.
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FIGURE 6.30 Constructing a TTT diagram from F(t) curves at several different tempera-
tures, where the F(t) curves are constructed from the Ġ(T) and Ṅ(T) curves for the transfor-
mation process. The TTT diagram provides the time required to achieve certain amounts of
transformation as a function of the temperature of the transformation. TTT curves are also
known as “C curves,” because of their characteristic C-like shape. The C-like shape is due to
the fact that both nucleation and growth (and hence the overall transformation rate) peak at
intermediate temperatures.

The transformation contours obtained in TTT diagrams are also known as “C
curves,” because of their characteristic C-like shape. The C-like shape is due to the
fact that both nucleation and growth (and hence the overall transformation rate)
peak at intermediate temperatures. The TTT diagram illustrates how it is possible
to form metastable structures such as glassy phases by cooling a material rapidly
enough to slide in front of the “nose” of the C-curve contours, thereby avoiding the
transformation process and instead freezing in a nonequilibrium structure.

The homework provides an opportunity to develop a TTT diagram for a solidifi-
cation process. The process involves three principal steps:

1. Calculate Ṅ(T) and Ġ(T).
2. Calculate F(t) at 5–10 different temperatures (using values calculated for Ṅ and

Ġ at these 5–10 different temperatures).

3. Generate a TTT diagram with 3–4 ‘C curves’ corresponding to 3–4 different
values of F (e.g., F = 0.01, 0.1, 0.5, 0.99).
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Differences between Liquid–Solid and Solid–Solid Phase
Transformations

The kinetics of solid–solid phase transformations tend to be much more sluggish
than liquid–solid transformations. This is due to a number of factors:

• Solid–solid interfacial energies tend to be larger than liquid–solid interfacial
energies, which leads to an increase in ΔG∗.

• Solid–solid transformations tend to have smaller ΔGV than liquid–solid
phase transformations, which also leads to an increase in ΔG∗.

• The volume changes associated with solid–solid phase transformations pro-
duce a large strain energy term, which also increases ΔG∗.

• Solid-state diffusion is much slower than diffusion in liquids, reducing both
Ṅ and Ġ.

Because of these factors, solid–solid phase transformations rarely reach
equilibrium. The retention of metastable phases is nearly guaranteed. In fact, the
retention of metastable phases is purposely exploited in many material processes,
for example, in steelmaking, to create intricate composite microstructures with
exceptional properties. In the discussions of phase transformations that follow,
you should therefore keep in mind the fact that incomplete phase transformation
and metastable phase retention is the rule, not the exception. Complete conversion
to the equilibrium phase composition is rare in solid–solid phase transformations
(and even in many liquid–solid phase transformations).

6.8 SOLIDIFICATION

The nucleation rate, growth rate, and transformation rate equations that we devel-
oped in the preceding sections are sufficient to provide a general, semiquantitative
understanding of nucleation- and growth-based phase transformations. However, it
is important to understand that the kinetic models developed in this introductory text
are generally not sufficient to provide a microstructurally predictive description of
phase transformation for a specific materials system. It is also important to under-
stand that real phase transformation processes often do not reach completion or do
not attain complete “equilibrium.” In fact, extended defects such as grain bound-
aries or pores should not exist in a true equilibrium solid, so nearly all materials
exist in some sort of metastable condition. Many phase transformation processes
produce microstructures that depart wildly from our equilibrium expectation. The
limited atomic mobilities associated with solid-state diffusion can frequently cause
(and preserve) such nonequilibrium structures. In this section, we will focus more
deeply on solidification (a liquid–solid phase transformation) as a way to discuss
some of these issues. In particular, we will examine a few kinetic concepts/models
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FIGURE 6.31 Typical microstructure obtained during ingot casting: (1) chill zone, (2)
columnar zone, (3) equaixed grain zone. Adapted from Bower and Flemings 1967 [12].

that can help explain a number of interesting nonequlibrium phenomena encountered
in condensed-matter phase transformations such as coring and dendritic growth.

6.8.1 Casting Microstructures

We first consider the typical overall microstructure that is obtained when casting
(solidifying) a material from its melt in a mold (Figure 6.31). To induce solidifi-
cation, the walls of the casting mold are typically held at a temperature well below
the solidification temperature. The cold wall temperatures combined with a high het-
erogeneous nucleation rate at the mold surface typically results in a region of very
small crystal grains in the contact zone near the mold wall (referred to as the chill
zone). Solidification then proceeds inward parallel to the flow of heat out from the
melt. In this stage, solidification typically proceeds more slowly and is highly direc-
tional, with less heterogeneous nucleation. As a result, columnar zone regions are
formed with elongated or columnar grains extending toward the central region of the
ingot. If the growth of these columnar grains is sufficiently rapid, they may extend
all the way to the center of the ingot. However, the center of the ingot typically
begins to solidify in a relatively slow but uniform fashion prior to encroachment of
the columnar zones. In this case, a central zone of relatively isotropic, equiaxed grains
is obtained.

Factors such as slow, uniform cooling without mixing lead to a coarse-grained,
highly textured ingot. On the other hand, fast cooling and/or significant melt turbu-
lence during solidification tends to yield a fine-grained structure that is often more
desirable for good mechanical properties.

6.8.2 Plane Front Solidification (Scheil Equation)

We now consider the details of the solid–liquid growth front in more depth. As a
solidification process proceeds, the boundary between the solid and liquid phases
progressively advances through the volume of the material until the whole material
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is solidified. Consider, for example, the linear growth propagation mode that gives
rise to the columnar zones during the ingot solidification process described above.
Two main modes of solid–liquid growth front propagation are typically observed.
The solid–liquid boundary can exhibit either stable propagation, also known as plane
front solidification, or instabilities, thereby leading to cellular or dendritic growth.
We first consider the case of stable plane front solidification.

For simplicity, consider a binary (two-component) alloy composed of A and B
atoms that exhibits complete solid solubility. The alloy mixture is initially liquid and
possesses a uniform composition c0. We now consider the stable, planar, directional
solidification (from left to right) of an ingot of this alloy as shown schematically
in Figure 6.32a. As the alloy begins to solidify, a partitioning of A and B atoms
between the solid and liquid phases takes place. Partitioning occurs because, as shown
by the phase diagram for the alloy in Figure 6.32b, the initial solid that forms is
enriched in A atoms compared to the starting alloy composition, while the remain-
ing liquid will be somewhat depleted of A atoms. As solidification proceeds, this
partitioning continues, although the composition of both the solid and liquid slowly
becomes more and more depleted of A atoms as the remaining liquid composition
becomes more and more enriched in B atoms. The last part of the ingot to solid-
ify will be greatly enriched in B atoms compared to the initial composition. This
process results in a nonuniform compositional profile across the ingot at the end of
the solidification process, as shown in the figure. The severity of the compositional
nonuniformity depends on the degree of solute partitioning between the solid and the

FIGURE 6.32 Plane front solidification of an isomorphous binary alloy system. (a) As the
alloy begins to solidify (from left to right), partitioning of A and B atoms between the solid and
liquid phases takes place. This process results in a nonuniform compositional profile across
the ingot as solidification progresses from left to right. (b) The origin of the partitioning is
explained by the phase diagram for the alloy. At the beginning of the solidification process,
the solid that forms is greatly enriched in A atoms compared to the initial composition, while
the remaining liquid is somewhat depleted of A atoms as a consequence. As solidification pro-
ceeds, this partitioning continues, although the composition of both the solid and liquid slowly
becomes more and more depleted of A atoms as the remaining liquid composition becomes
more and more enriched in B atoms. The last part of the ingot to solidify will be greatly enriched
in B atoms compared to the initial composition.
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liquid as well as the rate of solidification relative to the rate of solid-state diffusion. If
solid-state diffusion is fast, then the composition gradient in the solid can be quickly
erased, leading to reequilibration and a more uniform composition profile. However,
in most cases, solid-state diffusion is slow compared to solidification, and thus these
nonuniform composition gradients tend to be frozen in. The Scheil equation provides
a way to model the nonuniform concentration profile that arises in such a plane front
solidification process:

c(x) = k′c0

[
1 − x

L

](k′−1)
(6.54)

In this equation, c0 is the starting (uniform) composition of the liquid alloy, L is the
length of the solidifying bar (ingot), and k′ is the effective solute partitioning ratio.
Under the limiting case where mixing in the liquid is rapid and solid-state diffusion
is slow relative to the rate of solidification, k′ can be approximated from the phase
diagram as the ratio of the compositions of the solidus-versus-liquidus lines at the
temperature where the solidification begins (i.e., Xstart∕Xalloy in Figure 6.32b).

Nonuniform composition occurs not only in a linear plane front solidification
process, but can occur in almost any nucleation-and-growth processes (solid/liquid
or solid/solid). In such cases, compositional partitioning between the growing nuclei
and the parent matrix phase leads to a characteristic “cored” microstructure, as
shown in Figure 6.33. Coring can have undesirable effects on materials properties,
and so it is often removed by heat treating the microstructure at a temperature just
below the transformation temperature to allow solid-state diffusion to homogenize
the composition.

6.8.3 Cellular or Dendritic Growth

While the phase front during a transformation process often grows in a stable manner,
there are a number of factors that can lead to unstable growth. Figure 6.34 illustrates
the difference between stable planar (or spherical) growth (a) versus unstable cellular
(b) or dendritic (c) growth. Growth front instabilities lead to both cellular and den-
dritic growth; the difference is in the degree of instability. Minor instability leads to

FIGURE 6.33 Schematic illustration of the characteristic “cored” microstructure that can
arise due to compositional partitioning effects during a nucleation-and-growth process.



236 LIQUID–SOLID AND SOLID–SOLID PHASE TRANSFORMATIONS

FIGURE 6.34 Schematic illustration of (a) stable planar (or spherical) growth, (b) unstable
cellular growth, and (c) dendritic growth.

the formation of primary protuberances, called cells, which advance perpendicular to
the interface. If the instability increases, these primary protuberances can themselves
spawn secondary protuberances perpendicular to the primary protuberances, and a
dendritic microstructure develops. Cellular and dendritic microstructures are most
commonly observed in vapor–solid or liquid–solid phase transformations, although
they can also be formed in solid–solid phase transformations. In fact, when pure
metallic Li is used in batteries, it tends to form needlelike dendrites that can short
circuit the battery. This problem has prevented the use of pure Li metal in Li batteries
despite its excellent energy density. Carbon-based Li intercalation anodes, where the
Li atoms are chemically (and safely) incorporated into a carbon superstructure, are
typically used instead.

Figure 6.35 illustrates one common cause for growth front instability during solidi-
fication. Because solidification is exothermic, heat must be continually removed from
the interface to allow the solidification to proceed. Any minor protuberances that form
along the growth front will project into the liquid, and under the common case where
the liquid is at least somewhat supercooled relative to the equilibrium transformation
temperature, heat will tend to be removed from these protuberances more quickly than
the surrounding areas (Figure 6.35a). As a result, the local temperature at the protu-
berance will tend to be slightly lower than along the planar growth front. As shown in
Figure 6.35b, depending on the temperature, this can lead to an increase or a decrease
in the local growth rate (Ġ) for the protuberance relative to the planar front. At temper-
atures above the maximum growth rate peak, a slight decrease in the local temperature
at the protuberance will lead to an increase in Ġ, and hence the protuberance will
continue to grow faster than the planar front. At temperatures below the maximum
growth rate peak, a slight decrease in the local temperature at the protuberance will
lead to a decrease in Ġ, and hence the growth of the protuberance will be suppressed.
In general, then, a low degree of undercooling during transformation tends to favor
cellular/dendritic instability, while a larger degree of undercooling tends to suppress
cellular/dendritic instability. Compositional gradients can produce similar instabil-
ity effects on growing interfaces. Certain actions, for example, actively mixing the
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FIGURE 6.35 Inhomogeneous heat removal from the growth front is a common source of
growth front instability. (a) Under supercooling conditions, heat will tend to be removed from
growth front protuberances more quickly than the surrounding areas. As a result, the local
temperature at the protuberance will tend to be slightly lower than along the planar growth
front. (b) Due to the variation of Ġ with the degree of undercooling, the protuberance will
therefore experience either an increase or a decrease in the local growth rate relative to the
planar front depending on the temperature. At temperatures above the maximum growth rate
peak, a slight decrease in the local temperature at the protuberance will lead to an increase in
Ġ, and hence the protuberance will continue to grow faster than the planar front. At tempera-
tures below the maximum growth rate peak, further slight decreases in the local temperature
at the protuberance will lead to decreases in Ġ, and hence the growth of the protuberance
will be suppressed. In general, then, a low degree of undercooling during transformation tends
to favor cellular/dendritic instability, while a larger degree of undercooling tends to suppress
cellular/dendritic instability.

liquid, can help suppress growth front instability by eliminating these thermal and/or
compositional gradients.

6.8.4 Eutectic Lamellae

During a eutectic transformation, as illustrated in the phase diagram in Figure 6.36a,
solidification produces two distinct solid phases:

L → 𝛼 + 𝛽 (6.55)

If the interfacial energy between the 𝛼 and 𝛽 phases is low compared to the
liquid–𝛼 and liquid–𝛽 interfacial energies, then the 𝛼 and 𝛽 phases will prefer to wet
each rather than the liquid. As shown in Figure 6.36b, this can lead to the coordinated
growth of long alternating lamellar or plateletlike formations of the 𝛼 and 𝛽 phases.
Such lamellar microstructures commonly occur for rapidly solidified eutectic phase
transformations where insufficient time is provided to approach a more equilibrium
microstructure.
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FIGURE 6.36 (a) Binary eutectic phase diagram. (b) During a eutectic solidification L →
𝛼 + 𝛽, if the interfacial energy between the 𝛼 and 𝛽 phases is low compared to the liquid–𝛼 and
liquid–𝛽 interfacial energies, then the 𝛼 and 𝛽 phases will prefer to wet each rather than the
liquid. Under rapid, directional solidification, this can lead to the coordinated growth of long
alternating lamellar or plateletlike formations of the 𝛼 and 𝛽 phases. Such lamellar microstruc-
tures are common features of eutectic phase transformations.

As with the growth of spherical nuclei, the growth of eutectic lamellae is governed
by the balance between the volume free energy released by the transformation and
the interfacial free energy consumed by the creation of the 𝛼–𝛽 lamellae. Considering
a cube of the eutectic lamellar structure with sides of dimension 𝜆 (where 𝜆 is the
lamellar spacing), this balance can be captured by the following simple equation:

ΔGtot = 𝜆
3ΔGV + 2𝜆2

𝛾
𝛼𝛽

(6.56)

The transformation is only favorable if ΔGtot < 0, which establishes a minimum
threshold for the lamellar spacing, 𝜆5:

𝜆
3ΔGV + 2𝜆2

𝛾
𝛼𝛽

< 0

𝜆 > −
2𝛾

𝛼𝛽

ΔGV
(6.57)

This expression indicates that a finer lamellar spacing is enabled by a smaller interfa-
cial energy between the 𝛼 and 𝛽 phases and/or a larger driving force for transforma-
tion. Since the driving force for transformation is directly proportional to the amount
of undercooling, greater undercooling therefore favors a finer lamellar spacing:

ΔGV = ΔHV
ΔT
TE

𝜆 > −
2TE𝛾𝛼𝛽

ΔHV ΔT
(6.58)

This spacing dependence is illustrated in Figure 6.37.

5Note the change in direction of the inequality that occurs in the second step of Equation 6.57 because we
divide through by a negative number (ΔGV must be negative for the phase transformation to occur).
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FIGURE 6.37 Minimum lamellar spacing versus temperature as predicted from
Equation 6.58 for a eutectic solidification reaction that occurs on cooling below TE.
Greater undercooling favors a finer lamellar spacing.

Example 6.8

Question: Consider the eutectic solidification of a liquid to 𝛼 + 𝛽 where the vol-
ume fraction of the 𝛽 phase is relatively low. In this case, rather than solidifying
in a lamellar structure, the 𝛽 phase may solidify as a series of rods embedded in
a matrix of the 𝛼 phase. Assuming that the 𝛽 rods are evenly spaced in a square
array in the 𝛼 matrix, calculate the critical 𝛽-phase volume fraction (𝜙

𝛽
) below

which the rodlike morphology is more energetically stable than the lamellar
morphology.

Solution: Figure 6.38 compares the lamellar-versus-rodlike eutectic microstruc-
tures. To determine the 𝛽 volume fraction where the rodlike microstructure is
more energetically stable than the lamellar microstructure, we need to compare
the change in free energy associated with forming each. Based on the geometry
of the two structures, we can write equations describing their respective total
free energies of transformation as

ΔGtot,lamellar = 𝜆
3ΔGV + 2𝜆2

𝛾
𝛼𝛽

(6.59)
ΔGtot,rod = 𝜆

3ΔGV + 2𝜋r𝜆𝛾
𝛼𝛽

FIGURE 6.38 Schematic illustration of the lamellar–rodlike eutectic microstructures
discussed in Example 6.38.
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The free energy of the lamellar structure does not depend on the volume
fraction of the 𝛽 phase, only on the lamellar spacing 𝜆. The free energy of the
rodlike structure depends both on the rod spacing 𝜆 and the volume fraction of
the 𝛽 phase. We can explicitly incorporate this volume fraction dependence by
expressing how 𝜙

𝛽
depends on 𝜆 and r:

𝜙
𝛽
= 𝜋r2

𝜆2

Thus

r =

√
𝜙
𝛽

𝜋

𝜆 (6.60)

Inserting Equation 6.60 into the expression for the total free energy of the rodlike
microstructure (Equation 6.59) yields

ΔGtot,rod = 𝜆
3ΔGV + 2𝜋

√
𝜙
𝛽

𝜋

𝜆
2
𝛾
𝛼𝛽

(6.61)

We can now construct an inequality involving the free energies of these two
microstructures and solve for the critical volume fraction below which the rod-
like microstructure has the lower free energy:

When 𝜙
𝛽
< 𝜙

crit
𝛽

∶ ΔGtot,rod < ΔGtot,lamellar

𝜆
3ΔGV + 2𝜋

√
𝜙
𝛽

𝜋

𝜆
2
𝛾
𝛼𝛽

< 𝜆
3ΔGV + 2𝜆2

𝛾
𝛼𝛽

√
𝜙
𝛽
𝜋 < 1 (6.62)

𝜙
𝛽
<

1
𝜋

𝜙
crit
𝛽

= 1
𝜋

Thus, when the 𝛽 volume fraction is below 1∕𝜋 (about 0.318), the rodlike
microstructure is energetically favored.

6.8.5 Peritectic Solidification

A peritectic solidification process is illustrated in Figure 6.39 and can be exemplified
by the following reaction:

L + 𝛽 → 𝛼 (6.63)

Because a peritectic transformation requires solid-state diffusion as 𝛽 reacts with
the liquid phase to convert to 𝛼, it tends to be more sluggish than a eutectic reac-
tion. As the 𝛼 phase builds up as a layer between the 𝛽 and liquid phases, solid-state
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FIGURE 6.39 (a) Peritectic phase diagram. (b) Schematic illustration of phase formation
during a peritectic solidification.

diffusion becomes increasingly rate limiting, and so it is typical for some nonequi-
librium 𝛽 phase to be retained after cooling below the peritectic temperature. Just as
with the growth of passive oxide coatings discussed in the last chapter (Section 5.5),
during a peritectic transformation the thickness of the 𝛼 phase will frequently increase
proportionally to

√
Dt.

6.9 MARTENSITIC TRANSFORMATIONS

Martensitic transformations are displacive rather than diffusional transformations.
In a martensitic transformation, the atoms transform from one crystal structure
to a new crystal structure via a highly coordinated shearinglike movement that
propagates through a domain. A classic example of the martensitic transformation is
the FCC to body-centered-tetragonal (BCT) conversion in Fe–Ni–C steels. Because
the atoms simply transform their crystallographic orientations but do not participate
in long-range diffusion, the original and transformed phases must have the same
chemical composition. The change in structure, orientation, and lattice volume
associated with a martensitic transformation can introduce macroscopic shape and
volume changes, as shown in Figure 6.40. When confined by a matrix of the parent
phase, a partial martensitic transformation can induce significant internal stresses
and strains, which can act to harden (but also potentially embrittle) the material.
Careful quenching and tempering protocols to control the nucleation, growth,
and partial decomposition of martensitic phases enable the creation of composite
microstructures with excellent mechanical properties. This approach has been used
for thousands of years by sword-smiths and is used to this day in the fabrication of
high-hardness steels.

Although the martensitic transformation does not involve long-range diffusion, it
does require nucleation. Large internal stresses and strains are usually induced when
a local region transforms martensitically. These additional terms must therefore be
included in calculating the free energy of transformation, ΔGV :

ΔGV ,tot = ΔGV + 𝜎s𝜖s + 𝜎nn𝜖nn (6.64)



242 LIQUID–SOLID AND SOLID–SOLID PHASE TRANSFORMATIONS

FIGURE 6.40 Macroscopic shape changes induced during a martensitic transformation.

Where 𝜎s𝜖s accounts for the energy due to the shear induced by the martensitic
transformation and 𝜎nn𝜖nn accounts for the energy due to the dilation (volume
change) associated with the martensitic transformation. Because both 𝜎s𝜖s and
𝜎nn𝜖nn are positive, significant undercooling is typically required to trigger marten-
site nucleation. Homogeneous nucleation of martensite is almost never observed.
Instead, martensite nucleates heterogeneously at sparse locations, such as at tilt
or grain boundaries. Rapid quenching or deep undercooling is thus often needed
to induce martenstite nucleation. Once a martensite domain has nucleated, how-
ever, propagation can occur quite rapidly. Because diffusion is not required, the
martensite domain grows by the propagation of the habit plane, often assisted by
the internal stresses arising from the transformation itself. Propagation speeds can
approach the speed of sound and can even be audible to the human ear. Unlike
diffusional-based nucleation and growth transformations, nucleation and growth
processes in matertensitic transformations are not significantly affected by low
temperatures. Upon quenching a material to induce a partial martensitic transfor-
mation, further reduction in temperature will usually induce further martensitic
nucleation and growth. Thus, greater transformation is accomplished by deeper
and more rapid quneching. This is in contrast to diffusion-based nucleation and
growth transformations, where rapid and deep undercooling can prevent phase
transformation.

6.10 CHAPTER SUMMARY

This chapter discussed the kinetics of liquid–solid and solid–solid phase transforma-
tions. The main points introduced in this chapter include:

• A phase transformation can occur when a region of matter can lower its total
free energy by changing its composition, structure, symmetry, density, or any
other phase-defining aspect.
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• Condensed-matter phase transformations can be broadly divided into two
main categories: diffusional transformations and diffusionless (or “fluxless”)
transformations.

• Diffusionless phase transformations do not require the net transport of atoms
across a phase boundary. For example, phase transformations involving a
change in spin or magnetic moment or certain changes in crystal structure
or symmetry do not require diffusional fluxes. Examples of such processes
include the martensitic transformation in steel or certain cubic-to-tetragonal
phase transformations.

• Diffusional transformations require the net transport/rearrangement of atoms.
Diffusional can be further subdivided into two main types: continuous and dis-
continuous.

• Spinodal decomposition is an example of a continuous phase transformation. In
a spinodal transformation, a single phase separates into two phases via gradual
changes in local composition. The spinodal decomposition process gradually
occurs everywhere (small in degree, large in extent).

• The nucleation-and-growth process is an example of a discontinuous phase
transformation. The new phase nucleates in highly localized regions with prop-
erties that are abruptly and distinctly different from the parent phase (large in
degree, small in extent).

• A driving force must be present for a phase transformation to occur. The most
common driving forces for condensed-matter phase transformation include tem-
perature and composition, although pressure-induced phase transformations are
also possible.

• Phase diagrams can be used to predict phase transformations as a function of
temperature or compositional changes.

• For an arbitrary phase transformation that occurs at an equilibrium temperature
TE, the Gibbs free-energy change per unit volume of the material, ΔGV , may
be calculated as

ΔGV = ΔHV
ΔT
TE

where ΔT = TE − T is known as the amount of supercooling below (or
superheating above) the equilibrium transformation temperature. Thus, the
size of the driving force depends linearly on the deviation from the equilibrium
temperature.

• Volumetric free energy is related to molar free energy by the molar volume of
the material:

ΔGV = ΔG
Vm

= ΔG
M∕𝜌

where the molar volume Vm (m3∕mol) is given by the molecular weight of the
material M (kg∕mol) divided by the density of the material 𝜌 (kg∕m3).

• Surfaces and interfaces generally have higher energy than the bulk of a material
because atoms at the surface/interface have missing or dangling bonds and/or
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possess altered structural arrangement. The “extra” energy associated with a
surface or interface compared to the bulk is quantified by a surface energy
term 𝛾:

𝛾 =
(
𝜕G
𝜕A

)
T ,P

Typical units for 𝛾 are J∕m2 or J∕cm2.

• Kinetic implications of surface/interface energy include the following: (1) Since
surfaces and interfaces carry “excess” free energy, systems will seek to mini-
mize the amount of surface/interface area per unit volume—this leads to phe-
nomena like coarsening, grain growth, and sintering (discussed in Chapter 7).
(2) Smaller particles have higher surface/volume ratios and thus tend to be
less stable, more reactive, have lower melting point (relative to the bulk), etc.
(3) The energy cost to create surfaces/interfaces leads to a nucleation barrier
in condensed-matter phase transformations. Therefore, nucleation-based phase
transformations can only occur if the energy released by creating the new vol-
ume of the second phase sufficiently offsets the energy expended in creating the
new interfacial area. This leads to a minimum viable nucleation size and thus
helps determine the rate at which nucleation can proceed.

• Homogeneous nucleation occurs without specific locational preference any-
where inside the volume of a material. Heterogeneous nucleation preferen-
tially occurs at specific favored locations such as along surfaces, walls, or grain
boundaries. The activation barrier for heterogeneous nucleation is usually lower
than the barrier for an otherwise equivalent homogeneous nucleation process
due to a reduction in the interface energy costs required to nucleate a new phase
heterogeneously.

• The energetic cost associated with creating the new interfacial area during
nucleation leads to a minimum viable nucleation size (r∗) and an activation
barrier for nucleation (ΔG∗). For homogeneous nucleation

r∗ = − 2𝛾
ΔGV

ΔG∗ = 16𝜋𝛾3

3(ΔGV)2

For heterogeneous nucleation

r∗het = − 2𝛾
ΔGV

ΔG∗
het =

16𝜋𝛾3

3(ΔGV)2
f (𝜃)

where f (𝜃) accounts for the decreased interfacial energy cost associated with the
geometry of the heterogeneous nucleation process compared to a homogeneous
nucleation process.

• Heterogeneous nucleation lowers ΔG∗ but does not affect r∗.

• The overall rate of nucleation (Ṅ) is determined by two factors: the con-
centration of viable nuclei n∗ and the rate of atomic diffusion to the nuclei.
For transformations that occur on cooling, n∗ obtains a peak at intermediate
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temperatures below TE while diffusion decreases exponentially with cooling.
As a result, an intermediate undercooling temperature results in the greatest
rate of nucleation.

• The peak in Ṅ at intermediate temperatures explains how glasses can be formed,
even from materials systems that do not tend to form into glasses (e.g., metallic
glasses). The key to forming glasses in such systems is to rapidly quench them
from the melt, so that they solidify without having time for crystalline nuclei to
form. In this way, the random amorphous structure of the liquid melt is “frozen”
in place before the material has time to nucleate and grow organized crystalline
domains.

• Like the nucleation rate (Ṅ), the growth rate (Ġ) for a new phase also depends
on two factors: the driving forces for the transformation and the rate of atomic
diffusion (or sometimes the rate of heat transfer for heat-transport-limited
growth). For transformations that occur on cooling, the driving force increases
linearly with undercooling below TE, while diffusion decreases exponentially
with undercooling. As a result, an intermediate undercooling temperature
results in the greatest rate of growth.

• The overall transformation rate for a nucleation and growth process, Ḟ, is a
nonlinear product of the nucleation (Ṅ) and growth (Ġ) rates. Because both
Ṅ and Ġ obtain a peak at intermediate temperatures, so does Ḟ. However, the
peaks for Ṅ and Ġ typically do not occur at the same temperature, and this has
important implications on the type of microstructure that develops depending
on the degree of undercooling during transformation.

• As an example of the microstructural repercussion of differing nucleation and
growth rates, carrying out a liquid–solid phase transformation isothermally at
a temperature just slightly below the equilibrium transformation temperature
tends to produce a coarse-grained microstructure since the growth rate is high
but the nucleation rate is low. Transforming at lower temperatures (greater
amount of undercooling) results in microstructural refinement. A rapid quench
to low temperature may produce an amorphous or glasslike microstructure as
the crystalline phase transition can be kinetically impeded.

• The Johnson–Mehl equation describes the overall fraction of material trans-
formed as a function of time [F(t)] assuming spherically growing nuclei and
constant nucleation and growth rates:

F(t) = 1 − e−(𝜋∕3)Ġ3Ṅt4

This equation relates the fraction transformed to the nucleation rate, the growth
rate, and the time elapsed since the start of the transformation (at constant
temperature) and predicts sigmoidal transformation behavior, meaning that the
fraction transformed first increases exponentially in time before slowing down
and asymptotically approaching complete transformation.

• The kinetics of solid-state phase transformations are often summarized in
time-temperature-transformation (TTT) diagrams. The TTT diagram shows
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the time required to achieve certain amounts of transformation as a function of
the temperature of the transformation. The transformation contours obtained
in TTT diagrams are also known as “C curves” because of their characteristic
C-like shape. The C-like shape is due to the fact that both nucleation and growth
(and hence the overall transformation rate) peak at intermediate temperatures.

• Real phase transformation processes rarely reach completion or attain complete
“equilibrium.” Many phase transformation processes produce microstructures
that depart wildly from our equilibrium expectation. The limited atomic mobil-
ities associated with solid-state diffusion can frequently cause (and preserve)
such nonequilibrium structures. Common examples include coring, dendritic
growth, and lamellar-type microstructures.

• During a plane front solidification process, partitioning of species between the
solid and liquid phases can take place, which results in a nonuniform composi-
tional profile at the end of the solidification process. The severity of the com-
positional nonuniformity depends on the degree of solute partitioning between
the solid and the liquid as well as the rate of solidification relative to the rate of
solid-state diffusion. If solid-state diffusion is fast, then the composition gradi-
ent in the solid can be quickly erased, leading to a more uniform composition
profile. However, in most cases, solid-state diffusion is slow compared to solid-
ification, and thus these nonuniform composition gradients tend to be frozen
in. The Scheil equation provides a way to model the nonuniform concentration
profile that arises in such a plane front solidification process:

c(x) = k′c0

[
1 − x

L

](k′−1)

where c0 is the starting (uniform) composition of the liquid alloy, L is the length
of the solidifying bar (ingot), and k′ is the effective solute partitioning ratio.

• Nonuniform composition occurs not only in a linear plane front solidifica-
tion process, but can occur in almost any nucleation and growth processes
(solid–liquid or solid–solid). In such cases, compositional partitioning between
the growing nuclei and the parent matrix phase leads to a characteristic “cored”
microstructure that is typically undesirable for most applications.

• Growth front instability during transformation can lead to cellular or dendritic
microstructures, depending on the severity of the instability. Minor instability
leads to the formation of primary protuberances, called cells, which advance
perpendicular to the interface. If the instability increases, these primary
protuberances can themselves spawn secondary protuberances perpendicular
to the primary protuberances, and a dendritic microstructure develops. Cellular
and dendritic microstructures are most commonly observed in vapor–solid
or liquid–solid phase transformations, although they can also be formed in
solid–solid phase transformations.

• Local variations in temperature (and hence growth rate) along the growth
front can locally accelerate (or suppress) growth, thereby destabilizing (or
stabilizing) the growth process. In general, a low degree of undercooling during
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transformation tends to favor cellular/dendritic instability, while a larger degree
of undercooling tends to suppress cellular/dendritic instability. Compositional
gradients can have similar instability effects on growing interfaces. Certain
actions, for example, actively mixing the liquid, can help suppress growth front
instability by eliminating these thermal and/or compositional gradients.

• During a eutectic solidification L → 𝛼 + 𝛽, if the interfacial energy between
the 𝛼 and 𝛽 phases is low compared to the liquid–𝛼 and liquid–𝛽 interfacial
energies, then the 𝛼 and 𝛽 phases will prefer to wet each rather than the liq-
uid. Under rapid, directional solidification, this can lead to the coordinated
growth of long alternating lamellar or plateletlike formations of the 𝛼 and 𝛽

phases. Such lamellar microstructures are common feature of eutectic phase
transformations

• Martensitic transformations are displacive rather than diffusional transforma-
tions. In a martensitic transformation, the atoms transform from one crystal
structure to a new crystal structure via a highly coordinated shearinglike move-
ment that propagates through a domain. A classic example of the martensitic
transformation is the FCC-to-BCT conversion in Fe–Ni–C steels.

• Although the martensitic transformation does not involve long-range diffusion,
it does require nucleation. Large internal stresses and strains are usually induced
when a local region transforms martensitically. Because of this issue, rapid
quenching or deep undercooling is often needed to induce martenstite nucle-
ation. Once a martensite domain has nucleated, however, propagation can occur
quite rapidly.

• Upon quenching a material to induce a partial martensitic transformation,
further reduction in temperature will usually induce further martensitic nucle-
ation and growth. Thus, greater transformation is accomplished by deeper and
more rapid quenching. This is in contrast to diffusion-based nucleation and
growth transformations, where rapid and deep undercooling can prevent phase
transformation.

6.11 CHAPTER EXERCISES

Review Questions

Problem 6.1. Define/explain the following. Use schematic illustrations/diagrams as
appropriate.

(a) Continuous phase transformation

(b) Discontinuous phase transformation

(c) Spinodal decomposition

(d) Critical nucleus size r∗

(e) Heterogeneous nucleation

(f) Coring
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(g) Eutectic lamellae

(h) Martensitic transformation

Problem 6.2. You are tasked to design a new mold material for iron casting that
ensures the best possible wetting of the mold surface with molten iron. To ensure
that iron wetting on the mold surface is energetically favorable, should the surface
energy between the mold and the molten iron be much greater or much smaller than
the surface energy between the mold and air? Fully explain your answer using dia-
grams/equations as appropriate.

Problem 6.3. Explain the difference between stable growth and dendritic growth.
Use diagrams in your explanation.

Calculation Questions

Problem 6.4. At 1800 K, the surface energy of alumina (Al2O3) is 8.5 × 10−5 J/cm2.
The surface energy for liquid nickel against its own vapor at 1800 K is
1.7 × 10−4 J/cm2. At the same temperature, the interfacial energy between liq-
uid nickel and alumina is 1.8 × 10−4 J/cm2. From these data, calculate the contact
angle of a droplet of liquid nickel on an alumina plate at 1800 K.

Problem 6.5. A small droplet of molten silver is cooled until it solidifies via a
homogeneous nucleation-and-growth process. Calculate the amount of undercooling
required to initiate the onset of solidification (i.e., the temperature at which at least
one viable homogeneous nuclei forms in the volume of the droplet). Given: Droplet
volume (Vdrop) = 0.10 cm3, Tm = 962 ∘C, 𝛾sl = 1.3 × 10−5 J/cm2, 𝜌Ag = 9.3 g/cm3,
MAg = 107.9 g/mol, and ΔH∘

solidification = −11.3 kJ∕mol.

Problem 6.6. Figure 6.41 is a TTT diagram for 1054 steel. The heavy line to the left
is for 1% transformed and the heavy line to the right is for 99% transformed. The
dashed line in the middle is for 50% transformed. Calculate and plot (using the com-
puter application of your choice) the rate of transformation for 300–750 ∘C at 50 ∘C
intervals by taking the times for 50% transformed and dividing 50% transformed by
the time. Plot the temperature on the vertical axis and the rate of transformation on
the horizontal axis.

Problem 6.7. Figure 6.42 gives a set of rate of transformation [F(t)] curves for the
crystallization of a glass. Using this information, calculate and plot (using a computer
program of your choice) a TTT (time–temperature–transformation) diagram for this
crystallization that includes curves for 10, 50, and 90% transformed with temperature
on the vertical axis versus log (time) on the horizontal axis.

Problem 6.8. Part of the aluminum–copper (Al–Cu) phase diagram is given in
Figure 6.43. Aluminum is strengthened by precipitating CuAl2 particles from the 𝜅

solid solution. Consider an alloy composition that contains 3 wt % Cu and that the
CuAl2 precipitates form by a nucleation-and-growth process.

(a) Estimate the equilibrium temperature for the precipitation of CuAl2 particles
from the 3 wt % Cu alloy.
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FIGURE 6.41 TTT diagram for 1054 steel.

FIGURE 6.42 Crystallization of a glass as a function of time for various transformation
temperatures.

(b) Sketch schematic time–temperature–transformation (TTT) curves for the trans-
formation of 𝜅 to CuAl2. Provide curves for both 10 and 90% extent of transfor-
mation and note the equilibrium temperature for the transformation.

(c) For a 3.0 wt% Cu solid solution at 300 ∘C, assume that the Gibbs free energy of
transformation for 𝜅 → CuAl2 is −5 kJ∕mol. Assuming that CuAl2 has a den-
sity of 4 g/cm3 and that the surface energy of the 𝜅/CuAl2 interface is 1.7 ×
10−5 J/cm2, calculate r∗ and ΔG∗ for this transformation.
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FIGURE 6.43 Partial Al–Cu phase diagram highlighting the 𝜅-CuAl2 precipitate composi-
tion.

(d) If the temperature is lowered from 300 to 200 ∘C, will r∗ increase or decrease?
Why?

(e) If the temperature is lowered from 300 to 200 ∘C, will ΔG∗ increase or decrease?
Why?

(f) If Ġ = 2 × 10−6 cm/s and Ṅ = 50∕(cm3 ⋅ s) at T = 300 ∘C, plot (using a com-
puter application of your choice) F(t) as a function of time for this transformation
at 300 ∘C.



CHAPTER 7

MICROSTRUCTURAL EVOLUTION

The previous chapter discussed the kinetics of condensed-matter phase transforma-
tions. We learned that a phase transformation occurs when it is energetically favorable
to change the structural and/or chemical arrangement of a body of matter. Phase trans-
formations are driven by the ability to decrease the overall volumetric free energy of
a system by creating a new phase. In this chapter, we turn our attention to the kinetics
of morphological or microstructural evolution. Here, we are concerned with changes
in the shape or microstructure of a material in the absence of a phase change. Such
changes are generally driven by the energetic benefit provided by decreasing the sur-
face or interfacial energy of the system. In other words, microstructural evolution is
powered by geometric driving forces while phase transformations are powered by
chemical driving forces. Examples of microstructrual evolution include changes in
surface morphology, coarsening, grain growth, and sintering.

7.1 CAPILLARY FORCES

The primary internal driving force for morphological or microstructural evolution is
the capillary force. Capillary forces arise when changes to the area or morphology
of a surface or interface will lower its total free energy. As an example, local dif-
ferences in surface curvature, especially at the micrometer scale and below, lead to
strong capillary forces that tend to favor the transport of matter from regions of high
covexity to regions of high concavity (see Figure 7.1). This process can lead to a
gradual smoothening or flattening of a surface over time.

In the solid state, the capillary force can be expressed as an increase or decrease
in chemical potential of a species in the vicinity of a curved interface relative to a

251
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FIGURE 7.1 Capillary forces arising due to differences in surface curvature lead to net trans-
port of matter from the convex to concave regions, resulting in smoothing of the surface over
time.

planar interface. The change in chemical potential is directly equal to the work done
in going from a flat interface to a curved interface. For an ideal solution,

Work = 𝛾dA = Δ𝜇 = RT ln ci − RT ln ci,0 (7.1)

where 𝛾 is the surface energy and dA is the change in area associated with going from
a flat interface to a curved interface; ci is the solubility of species i in the vicinity
of the curved interface while ci,0 is the equilibrium solubility of species i at a flat
interface.

Consider the increase in solubility that arises at a spherical interface relative to a
planar interface. For 1 mol of material transfered from a flat to a spherical interface,
the change in surface area, dA, is given by 8𝜋r dr = 8𝜋r(Vm∕4𝜋r2).1 Thus:

𝛾dA = RT ln
ci

ci,0

𝛾8𝜋r

(
Vm

4𝜋r2

)
= RT ln

ci

ci,0
(7.2)

ci = ci,0 exp

(
2𝛾Vm

RT
1
r

)

The more general expression for solubility in the vicinity of a curved (but nonspher-
ical) interface is

ci = ci,0 exp

[
𝛾Vm

RT

(
1
r1

+ 1
r2

)]
(7.3)

where r1 and r2 are the principal radii of curvature of the interface at the point of
interest.

Equations 7.2 and 7.3 indicate that highly convex surfaces (r = small, positive)
lead to enhanced solubility relative to a planar interface, which drives the dissolution
or removal of atoms from such areas. In contrast, highly concave surfaces (r
= small, negative) lead to suppressed solubility relative to a planar interface,

1Vm = 4𝜋r2dr where Vm is the molar volume.
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FIGURE 7.2 The equilibrium solubility over a positive curvature surface (a) is enhanced
compared to a planar surface (b). The equilibrium solubility over a negative curvature sur-
face (c) is suppressed (regions of dark shading indicate increased local solubility while regions
of lighter shading indicate decreased local solubility).

which drives the precipitation or addition of atoms to such areas (see Figure 7.2).
The enhanced solubility of small spherical particles or precipitates explains their
instability during annealing/coarsening processes but also highlights the utility of
such fine-particle-size materials in sintering or other powder-processing applications
where reaction/densification is desired.

Example 7.1

Question: (a) A precipitate phase has a density of 5.0 g/cm3 and a molecular
weight of 200 g/mol. Spherical particles of this precipitate are embedded in a
matrix. If decreasing the radius of the spherical precipitates from 50 to 25 nm
increases the precipitate atom solubility by 1% at 500∘C, what is the interfa-
cial energy associated with the precipitate phase? (b) If the spherical precipitate
radius is reduced by another factor of 2, what is the additional percent increase
in solubility?

Solution: (a) Setting up a ratio using Equation 7.2 and solving for 𝛾 yields:

c1

c2
=

exp
(

2𝛾Vm
RT

1
r1

)

exp
(

2𝛾Vm
RT

1
r2

)

𝛾 = RT
2Vm

(
r2r1

r2 − r1

)
ln

[
c1

c2

]

Inserting values from the problem statement (being careful to use SI units)
yields

𝛾 =
8.314 J∕(mol ⋅ K) ⋅ 773 K

2 ⋅ 4.0 × 10−5 m3∕mol

(
25 × 10−9 m ⋅ 50 × 10−9 m
25 × 10−9 m − 50 × 10−9 m

)
ln
[ 1

1.01

]

= 4.0 × 10−2 J/m2 = 4.0 × 10−6 J/cm2
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(b) Now that we have 𝛾 , we can again make use of the ratio approach to calculate
the additional percent increase in solubility with a further factor-of-2 reduction
in precipitate radius:

c1

c2
=

exp
(

2𝛾Vm
RT

1
r1

)

exp
(

2𝛾Vm
RT

1
r2

) = exp

[
2𝛾Vm

RT

(
1
r1

− 1
r2

)]

= exp

[
2 ⋅ 4.0 × 10−2 J/m2 ⋅ 4.0 × 10−5 m3∕mol

8.314 J∕(mol ⋅ K) ⋅ 773 K

×
( 1

25 × 10−9 m
− 1

12.5 × 10−9 m

)]

= 0.98

Thus, with a second 2× reduction in the precipitate radius, the solubility
increases by ≈ 2% (e.g., twice as much). With further reductions in radius,
the solubility effect becomes more and more pronounced. Thus, for particles
>100 nm in size, this curvature effect is typically negligible, while for particles
<10 nm in size the effect can become significant.

Melting Point Depression in Nanoparticles

In addition to enhancing solubility and driving morphological changes, the
increased chemical potential associated with curved interfaces also gives rise
to a number of other important effects. Among the most notable is a marked
depression in melting point often observed for nanoscale particles. This effect
can be understood from basic thermodynamic principles. As previously discussed
in Chapter 2, a material will melt at temperatures above Tm, where the Gibbs free
energy of the liquid phase (Gl) is lower than the Gibbs free energy of the solid
phase (Gs). The additional chemical potential associated with the curvature of a
small particle increases Gs, which pushes Tm to lower temperatures. This effect
is illustrated in Figure 7.3.

Mathematically, for a melting process s → l, Gl and Gs can be described by

Gs(r) = Hs − TSs +
2𝛾Vm

r
(7.4)

Gl = Hl − TSl (7.5)

where the term 2𝛾Vm∕r in the expression for Gs(r) accounts for the
chemical potential contribution of a curved particle. As Gl represents the
liquid-phase Gibbs free energy, it does not contain this solid-phase curvature
contribution.
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FIGURE 7.3 Thermodynamic explanation for the melting point depression observed in
nanoscale particles. Compared to Gs(∞) for the bulk solid, Gs(r) for a finite-sized particle is
slightly higher due to the excess chemical potential associated with the curved interface of
the particle. Gl is not affected. This results in a measurable decrease in Tm for small-radius
particles compared to the bulk solid.

The Gibbs free energy of melting for a particle of radius r, ΔGm(r), can be
calculated as

ΔGm(r) = Gl − Gs(r) = (Hl − TSl) −
(

Hs − TSs +
2𝛾Vm

r

)

= ΔHm − TΔSm −
2𝛾Vm

r
(7.6)

where ΔHm and ΔSm are the bulk enthalpy and entropy of melting, respectively.

For a bulk solid (r → ∞), the “bulk” melting point Tm(∞) can therefore be calcu-
lated as

ΔGm(∞) = ΔHm − TΔSm

0 = ΔHm − Tm(∞)ΔSm (7.7)

Tm(∞) =
ΔHm

ΔSm

For a particle of radius r, the melting point Tm(r) can likewise be calculated as

ΔGm(r) = ΔHm − TΔSm −
2𝛾Vm

r

0 = ΔHm − Tm(r)ΔSm −
2𝛾Vm

r
(7.8)

Tm(r) =
ΔHm − 2𝛾Vm∕r

ΔSm
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From Equation 7.7 , we have ΔSm = ΔHm∕Tm(∞) and thus we can write Tm(r) in

terms of Tm(∞) as

Tm(r) =
ΔHm − 2𝛾Vm∕r

ΔHm∕[Tm(∞)
]

(7.9)

Tm(r) = Tm(∞)
[

1 −
2𝛾Vm

rΔHm

]

Since melting is an endothermic process (ΔHm is positive), Equation 7.9 indicates
that the melting point will decrease as the particle radius r decreases. Since typical
values for 𝛾 are on the order of 10−1 J/m2, typical values for Vm are on the order
of 10−5 m3∕mol, and typical values for ΔHm are on the order of 10–100 kJ/mol,
the melting point depression effect typically only becomes appreciable when r is
on the order of nanometers.

7.2 SURFACE EVOLUTION

One important effect of capillary forces is that they tend to cause rough surfaces
or interfaces to smoothen over time. Consider the surface profile h(x) depicted in
Figure 7.1. Assuming isotropic surface properties, capillary forces will drive the
transport of atoms from areas of high convexity to areas of high concavity, result-
ing in the gradual smoothing of this surface over time. This smoothing process can
occur by a number of different mechanisms. The two most common are (1) solid-state
diffusion of atoms along the surface or (2) vapor-phase transport of atoms evaporated
from the surface. We will briefly consider both mechanisms.

7.2.1 Surface Evolution by Solid-State Diffusion

If the smoothing process occurs by solid-state diffusion of atoms along the surface,
it can be shown [13] that the height will change in time according to

𝜕h
𝜕t

= −BS 𝜕
4h
𝜕x4

(7.10)

where BS is a constant that depends on various material-specific parameters, including
the surface energy and the surface diffusivity. This partial differential equation illus-
trates that the height of the surface changes most rapidly in the regions of highest
surface curvature. A Fourier series solution to Equation 7.10 yields

h(x, t) = A(t) sin
2𝜋x
𝜆

(7.11)

where the roughness of the surface is broken down into a series of Fourier wave-
lengths (values of 𝜆) whose time-dependent magnitudes [A(t)] are given by

A(t) = A(0)e−BS(2𝜋∕𝜆)4t (7.12)
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Thus, the shortest wavelength surface roughness features decay most rapidly while
the longer wavelength roughness features decay more slowly. This feature-dependent
decay speed is analogous to other transient diffusion processes (recall, e.g., the dis-
cussion of transient diffusion in Chapter 4, where we saw that the sharpest features
in a concentration profile decay most rapidly).

7.2.2 Surface Evolution by Vapor-Phase Transport

Another common mechanism for surface evolution involves vapor-phase trans-
port. If a material is exposed to temperatures or atmospheres where significant
condensation/evaporation of atoms to/from the surface can occur, capillary forces
will favor evaporation from the areas of highest positive curvature and will favor
condensation to the areas of highest negative curvature. Therefore, just like surface
diffusion, this vapor-phase-mediated evaporation-and-condensation process can
result in surface smoothing over time. When the vapor-phase mechanism controls
the surface evolution, it can be shown [13] that the surface height will change in time
according to

𝜕h
𝜕t

= BV 𝜕
2h
𝜕x2

(7.13)

where BV is a constant that depends on various material-specific parameters including
the surface energy and the equilibrium vapor pressure above the surface (for a planar
reference surface). Just as with the surface diffusion mechanism, the most rapid height
changes occur in the regions of highest surface curvature, although for vapor-phase
transport, this sensitivity is based on the second derivative of the surface profile rather
than the fourth derivative.

Surface Faceting: Anisotropic Surface Energy Effects

Isotropic surfaces possess a surface energy 𝛾 that is independent of surface orien-
tation or inclination. Surface evolution for isotropic surfaces is therefore simply
governed by the drive to reduce overall surface area. However, many materials
show anisotropic surface properties, where 𝛾 varies with surface orientation or
inclination. In such cases, the overall surface energy can sometimes be decreased
by the introduction of surface facets. Surface faceting occurs when a planar or
smoothly varying curved crystal surface can instead be replaced by a series of
angled facets that correspond to overall lower energy orientations of the surface.
Although the total area of the faceted surface may be higher than that of an analo-
gous smooth surface, the total surface energy of the faceted surface can be lower
since it is composed entirely of favored, low-energy surface orientations. Surface
faceting can occur at both small and large length scales. For example, surface
faceting can drive submicrometer-scale rearrangement of crystal surfaces. It also
underlies the beautiful geometric surface terminations of many natural crystals
and gemstones. Figure 7.4 illustrates the microscale faceting of an inclined crystal
surface (a) and the macroscale geometric faceting of a natural single-crystal gem-
stone (b).
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FIGURE 7.4 Examples of anisotropic surface-faceting phenomena at the micro- and
macroscale; (a) microscale faceting of an inclined crystal surface; (b) macroscale geometric
faceting of a natural single-crystal gemstone.

7.3 COARSENING

As we have previously discussed, capillary forces lead to an increase in solubility in
the vicinity of highly curved surfaces. For two-phase systems consisting of a distribu-
tion of particles embedded in a matrix as illustrated in Figure 7.5, this effect can lead
to gradual dissolution of the smallest particles compensated by growth of the largest
particles. This phenomenon is known as coarsening. Coarsening has important impli-
cations (usually negative) for many materials applications. For example, coarsening
leads to degradation in high-surface-area catalysts and also leads to degradation in
structural materials where fine particles are used as a strengthening mechanism.

Figure 7.5 illustrates the basic steps involved in coarsening. Because atomic solu-
bility increases with decreasing particle radius, particles smaller than the mean par-
ticle tend size to lose atoms over time, acting as “sources.” The atoms lost from the
source particles diffuse through the matrix and are eventually captured by particles
larger than the mean particle size. These large particles act as “sinks,” because they
attract the atoms lost by the smaller particles and thereby grow over time. Based
on this picture, two main processes can limit the coarsening kinetics: (1) the rate at
which atoms diffuse from the small to large particles or (2) the rate at which atoms
are added or subtracted from the sink/source particles. We will briefly consider both
mechanisms.

7.3.1 Diffusion-Limited Coarsening

If the coarsening process is limited by the rate at which atoms diffuse through the
matrix from the source particles to the sink particles, it can be shown [13] that the
mean particle size of the distribution will increase with time according to

⟨R(t)⟩3 − ⟨R(0)⟩3 = KDt (7.14)
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FIGURE 7.5 Coarsening of a distribution of embedded particles in a matrix. Coarsening
involves several steps. Because atomic solubility increases with decreasing particle radius,
particles smaller than the mean particle size tend to lose atoms over time, acting as “sources.”
The atoms lost from the source particles diffuse through the matrix and are eventually captured
by particles larger than the mean particle size. These large particles act as “sinks,” because
they attract the atoms lost by the smaller particles and thereby grow over time. Two main
processes can limit the coarsening kinetics: (1) the rate at which atoms diffuse from the small
to large particles or (2) the rate at which atoms are added or subtracted from the sink/source
particles.

where ⟨R(t)⟩ is the mean particle size at time t, ⟨R(0)⟩ is the initial mean particle size
at time t = 0, and KD is a kinetic constant that depends on various material-specific
parameters, including the diffusivity, the surface energy, and the equilibrium solubil-
ity. This equation shows that diffusion-limited coarsening leads to an increase in the
mean particle size with the cube root of time (t1∕3). Measurements of mean particle
size in experimental systems where coarsening is limited by volume diffusion are
generally consistent with this prediction.

7.3.2 Source/Sink-Limited Coarsening

If the coarsening process is limited by the rate at which atoms can be removed from
(or attached to) source/sink particles, it can be shown [13] that the mean particle size
of the distribution will increase with time according to

⟨R(t)⟩2 − ⟨R(0)⟩2 = KSt (7.15)

where ⟨R(t)⟩ is the mean particle size at time t, ⟨R(0)⟩ is the initial mean particle size
at time t = 0, and KS is a kinetic constant that depends on various material-specific
parameters, including the rate constant for the interfacial attachment/detachment pro-
cess, the surface energy, and the equilibrium solubility. This equation shows that
source/sink-limited coarsening leads to an increase in the mean particle size with
the square root of time (t1∕2).
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Example 7.2

Question: The following mean particle size–time data were obtained for a dis-
tribution of particles embedded in a matrix during a coarsening experiment:

t (h) ⟨R⟩ (nm)

0 7
11 11.6
50 22
90 27
150 35
300 50
500 64

Determine the likely mechanism regulating coarsening in this system.

Solution: Figure 7.6 plots the provided data in two alternative fashions:
(a) ⟨R(t)⟩2 − ⟨R(0)⟩2 versus t and (b) ⟨R(t)⟩3 − ⟨R(0)⟩3 versus t. In both cases,
a linear fit to the data is also provided. A comparison of the two plots clearly
reveals that the ⟨R(t)⟩2 − ⟨R(0)⟩2 versus t coarsening law does a much better
job of describing the data. Based on this analysis, it is likely that this system is
regulated by source/sink-limited coarsening.

FIGURE 7.6 Plots of the experimental coarsening data provided in Example 7.2:
(a) ⟨R(t)⟩2 − ⟨R(0)⟩2 vs. t; (b) ⟨R(t)⟩3 − ⟨R(0)⟩3 vs. t. The ⟨R(t)⟩2 − ⟨R(0)⟩2 vs. t coars-
ening law does a much better job of fitting the data, indicating that this system is likely
regulated by source/sink-limited coarsening.
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7.4 GRAIN GROWTH

The drive to reduce interfacial area and curvature leads to an increase in the aver-
age grain size of polycrystalline materials when annealed at elevated temperatures.
As with coarsening, capillary forces cause larger grains to grow at the expense of
smaller grains, which shrink and eventually disappear. This process causes the total
number of grains to decrease over time and the average grain size to increase (see
Figure 7.7).

The kinetics of grain growth in two dimensions (2D grain growth) are well estab-
lished. One important conclusion derived from 2D grain growth models is the rule
of six. This rule holds that grains with more than six sides tend to grow while grains
with fewer than six sides tend to shrink. Grains with exactly six sides tend to be stable
and relatively static.

For 2D grain growth, kinetic models generally predict a parabolic growth law of
the form [13]

R2
rms(t) − R2

rms(0) =
C
𝜋

t (7.16)

where Rrms(t) is the equivalent root-mean-square radius of the average grain2 at time
t, Rrms(0) is the initial equivalent root-mean-square radius of the average grain at
time t = 0, and C is a kinetic constant that depends on various material-specific
parameters, including the grain boundary mobility and the grain boundary interfacial
energy.

FIGURE 7.7 Grain growth in a polycrystalline material. The drive to reduce interfacial area
and curvature causes larger grains to grow at the expense of the smaller grains, which shrink
and eventually disappear. This process causes the total number of grains to decrease over time
and the average grain size to increase. Grain growth is a virtually universal kinetic process that
occurs in many polycrystalline materials when heated to temperatures close to their melting
point (i.e., typically above 2

3
Tm to 3

4
Tm).

2Real grains are, of course, not circular in shape. Grain “size” is treated in this model by assigning an
effective radius to each grain that quantifies its effective area irrespective of its actual shape. In other
words, an arbitrarily shaped grain of area A would have an equivalent radius of

√
(A∕𝜋).
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Factors Affecting Grain Growth

The factor C in Equation 7.16 is a material-dependent kinetic constant that
depends on a number of parameters, including the grain boundary mobility and
the grain boundary interfacial energy. High grain boundary mobility and high
grain boundary energy yield more rapid grain growth. Grain boundary mobility
itself depends on a number of more fundamental parameters—in particular the
rate of solid-state diffusion in the material. This dependence makes sense because
grain boundary motion requires the transfer (diffusion) of atoms across grain
interfaces. Since solid-state diffusion is an exponentially temperature activated
process, grain boundary mobility also generally increases exponentially with
increasing temperature.

Grain growth is often an undesirable process, as small-grained materials tend
to possess better mechanical properties than large-grained materials. Materials are
therefore engineered to limit grain boundary mobility—usually by introducing
chemical and/or microstructural inhomogeneities. Examples include solute impu-
rity atoms, small-scale precipitates, and pores—all of which tend to impede grain
boundary movement and thereby reduce mobility.

Attempts to develop complete kinetic models of 3D grain growth have yielded
only limited success. Rules similar to the rule of six for 2D grain growth have been
suggested for 3D grain growth. The most common approaches classify grains accord-
ing to the number of edges or faces they possess. Grains with edges or faces larger
than a critical value tend to grow, while grains with edges or faces smaller than a
critical value tend to shrink. Unlike 2D growth, these critical edge/face values do not
appear to be universal constants but depend on the ensemble properties of the entire
collection of grains and can change as the grain structure evolves.

Example 7.3

Question: A polycrystalline material with an initial equivalent root-mean-square
grain radius of 1 μm is annealed at 700∘C for 5 h. After annealing, the equiv-
alent root-mean-square grain radius is determined to be 3 μm. The annealed
sample is then annealed a second time at 800∘C for 2 h. After this second
anneal, the equivalent root-mean-square grain radius has increased to 5 μm.
Assuming the kinetics of the grain growth process follow an Arrhenius
relationship, determine the activation energy for this process.

Solution: Starting with the parabolic grain growth law (Equation 7.16 ), we can
explicitly incorporate the Arrhenius-type temperature dependence of the growth
kinetics into the growth constant C, giving

R2
rms(t) − R2

rms(0) =
C0exp

(
−ΔGact

RT

)
𝜋

t
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where ΔGact is the activation energy for the grain growth process. The problem
statement provides two data points for annealing temperature, annealing time,
and grain size. By setting up a ratio based on these two sets of data, we can
eliminate C0:

R2
1,rms(t) − R2

1,rms(0)

R2
2,rms(t) − R2

2,rms(0)
=

[
C0exp

(
−ΔGact

RT1

)/
𝜋

]
t1[

C0exp
(
−ΔGact

RT2

)/
𝜋

]
t2

=
t1
t2

exp

[
−
ΔGact

R

(
1
T1

− 1
T2

)]

Solving this expression for the unknown quantity ΔGact yields

ΔGact = −R
T1T2

T2 − T1
ln

[(
t2
t1

)(
R2

1,rms(t) − R2
1,rms(0)

R2
2,rms

(t) − R2
2,rms

(0)

)]

= −8.314 J∕(mol ⋅ K) 973 K ⋅ 1073 K
1073 K − 973 K

ln

[
5 h
2 h

⋅
(3 μm)2 − (1 μm)2

(5 μm)2 − (3 μm)2

]

= −190000 J∕mol

Note that because this expression involves a ratio, any units can be used for
the Rrms and t values as long as the same units are used in the numerator and
denominator.

7.5 SINTERING

The drive to reduce interfacial area and curvature can cause the particles in a pow-
der compact to consolidate together at sufficiently elevated temperatures (but below
the melting point). This process is known as sintering. Because sintering enables the
solid-state consolidation of a material well below the melting point, it is an important
fabrication process for materials with high melting points such as ceramics, which
can be formed into complex shapes from a powder and then sintered to produce
near-net-shape final parts.

The initial stages of sintering are driven by the large reductions in particle sur-
face area and surface curvature that can be achieved by the formation and growth
of necks between particles, as illustrated in Figure 7.8. Neck formation and growth
requires the transport of mass to the neck region from other areas of the compact.
A number of different mass transport pathways are possible, as indicated in Figure
7.9. These pathways include bulk, grain boundary, and surface diffusion pathways,
as well as vapor-phase transport and viscous flow. The major mass transport sintering
mechanisms are summarized in Table 7.1.

Sintering can occur with or without densification. Sintering without densification,
as illustrated in Figure 7.8a, occurs by surface-based mass transport mechanisms that
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FIGURE 7.8 (a) Nondensifying sintering and (b) sintering accompanied by densification.

FIGURE 7.9 Sintering mechanisms.

TABLE 7.1 Summary of Common Sintering Mechanisms

Mechanism Densifying or Nondensifying

Bulk diffusion to neck region Densifying
Boundary diffusion to neck region Densifying
Surface diffusion to neck region Nondensifying
Vapor transport to neck region Nondensifying
Viscous flow Either

simply redistribute surface material and contribute to neck growth between particles
without a consequent reduction in porosity. In this case, the particle centers of mass
remain fixed. Densification during sintering, as illustrated in Figure 7.8b, requires
bulk transport of material from the interior volume of particles to the pore zones,
which causes a net shrinkage of the compact and a reduction in the porosity. In this
case, the particle centers of mass gradually move closer to together as shrinkage and
densification take place.

Major factors that determine sintering behavior include material properties such
as the relative rates of bulk, grain boundary, and surface diffusion as well as the
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material’s vapor pressure and surface energy. External factors such as the starting
particle size and sintering temperature are also crucial. Sintering rates generally
increase significantly with increasing temperature and increase with decreasing
particle size. Although small particle sizes can greatly enhance sintering, the
challenges associated with synthesizing and processing extremely fine powders
frequently render this approach uneconomic.

The relationship between starting particle size and sintering rate can be captured
by a number of sintering scaling laws. These laws are often known as the Herring
scaling laws. The Herring scaling laws enable estimation of the comparative sintering
rates for sintering systems that are identical in all respects except for their character-
istic particle/feature size. For a sintering system possessing a characteristic particle
or feature size of r, the sintering rate will scale as

Sintering rate ∝ 1
rn

(7.17)

where n is a scaling exponent that depends on the dominant sintering mechanism. If
sintering is controlled by surface or grain boundary diffusion, n = 4. If sintering is
controlled by bulk diffusion, n = 3. If sintering is controlled by vapor-phase transport,
n = 2. Finally, if sintering is controlled by viscous flow (generally only applicable to
amorphous materials near Tm), n = 1.

Example 7.4

Question: Changing the starting particle size from 2 μm to 500 nm results in
a 16-fold increase in the sintering rate. Based on this observation, what is the
likely dominant sintering mechanism in this system and why? What additional
observations could be conducted to further verify this conclusion?

Solution: The particle size is reduced by a factor of 4 and the sintering rate
increases by a factor of 16. This represents a 1/r2 dependence (n = 2), which
suggests that the sintering rate is controlled by vapor-phase transport. Sintering
controlled by vapor-phase transport is nondensifying, so examining the sintered
compact to verify lack of densification would help to further confirm this con-
clusion. In addition, examining the sintering furnace walls, the setter, or other
sacrificial parts used during sintering for evidence of film deposition due to
vapor-phase transport would also help confirm this conclusion.

7.6 CHAPTER SUMMARY

This chapter examined the kinetics of microstructural evolution. Microstructural
evolution processes include surface smoothing/faceting, coarsening, grain growth,
and sintering. Fundamentally, microstructural evolution is powered by the drive to
decrease surface energy. Unlike the phase transformation processes discussed in the
previous chapter, these processes can occur in a single-phase material and simply
involve changes in the microstructure/morphology of the material, rather than its
phase composition or chemistry. The main points introduced in this chapter include:
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• The capillary force is the primary internal driving force for most morphological
or microstructural evolution processes. Capillary forces arise when changes to
the area or morphology of a surface or interface will lower its free energy.

• Surface/interface curvature gives rise to capillary forces. The higher the cur-
vature, the greater the effect. In general, capillary forces act to reduce sur-
face curvature over time. This drives many kinetic processes, including surface
smoothing, coarsening, grain growth, and sintering.

• Surface curvature also leads to important thermodynamic effects such as
solubility enhancement and melting point depression in very small (typically
nanometer-scale) particles.

• Capillary forces drive the transport of matter from surfaces/interfaces of high
convexity to areas of high concavity. This leads to the gradual smoothing or
flattening of a surface or interface with time. This surface evolution process can
occur either by solid-state diffusion of matter across the surface of the material
itself or by a vapor-phase process where matter is evaporated/condensed from/to
the surface. As with other transient mass transport processes, the sharpest (or
shortest wavelength) surface features tend to be smoothed out first, followed by
the longer wavelength features.

• In a two-phase system consisting of a distribution of fine particles embedded
in a matrix, capillary forces can promote the gradual dissolution of the smallest
(most soluble) particles compensated by growth of the largest particles. This
phenomenon is known as coarsening and leads to a gradual decrease in the
number of particles and an increase in the average particle size over time.

• If the coarsening process is limited by the rate at which atoms diffuse through
the matrix from the source particles to the sink particles, the mean particle size
of the distribution will increase with time according to

⟨R(t)⟩3 − ⟨R(0)⟩3 = KDt (7.18)

Diffusion-limited coarsening therefore leads to an increase in the mean particle
size with the cube root of time (t1∕3).

• If the coarsening process is limited by the rate at which atoms can be removed
from (or attached to) source/sink particles, the mean particle size of the distri-
bution will increase with time according to

⟨R(t)⟩2 − ⟨R(0)⟩2 = KSt (7.19)

Source/sink-limited coarsening therefore leads to an increase in the mean par-
ticle size with the square root of time (t1∕2).

• Polycrystalline materials often experience grain growth when annealed at ele-
vated temperatures. As with coarsening, capillary forces cause larger grains to
grow at the expense of smaller grains, which shrink and eventually disappear.
This causes the total number of grains to decrease over time and the average
grain size to increase.
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• The rule of six, derived for 2D grain growth, holds that grains with more than
six sides tend to grow while grains with fewer than six sides tend to shrink.
There is no equivalent rule for 3D grain growth, although in general larger grains
possessing more faces/edges tend to grow while smaller grains possessing fewer
faces/edges tend to shrink.

• Two-dimensional grain growth often follows a parabolic growth law of the
form

R2
rms(t) − R2

rms(0) =
C
𝜋

t (7.20)

An analogous law is not available for 3D grain growth. As with 2D grain growth,
however, 3D grain growth usually proceeds sublinearly with time.

• In a process known as sintering, the drive to reduce interfacial area and curvature
can cause the particles in a powder compact to consolidate together at elevated
temperatures (but below the melting point).

• The initial stage of sintering involves the formation and growth of necks as parti-
cles grow together. This process requires the transport of mass to the neck region
from other areas of the compact. If mass is moved to the neck region via surface
or vapor-phase transport processes from other surface regions of the sample,
pore volume is simply redistributed and the sintering process occurs without
densification of the compact. If mass is moved to the neck region via bulk pro-
cesses from the interior of the particles, volumetric consolidation can occur and
the sintering process may be accompanied by densification (and shrinkage) of
the compact.

• Major factors that determine sintering behavior include material properties such
as the relative rates of bulk, grain boundary, and surface diffusion as well as
the material’s vapor pressure and surface energy. External factors such as the
starting particle size and sintering temperature are also crucial. Sintering rates
generally increase significantly with increasing temperature and also increase
with decreasing particle size.

• The relationship between starting particle size and sintering rate can be
captured by a number of sintering scaling laws. These laws are often known
as the Herring scaling laws. The Herring scaling laws enable estimation of
the comparative sintering rates for sintering systems that are identical in all
respects except for their characteristic particle/feature size. For a sintering sys-
tem possessing a characteristic particle or feature size r, the sintering rate will
scale as

Sintering rate ∝ 1
rn

(7.21)

where n is a scaling exponent that depends on the dominant sintering mecha-
nism. If sintering is controlled by surface or grain boundary diffusion, n = 4.
If sintering is controlled by bulk diffusion, n = 3. If sintering is controlled by
vapor-phase transport, n = 2. Finally, if sintering is controlled by viscous flow
(generally only applicable to amorphous materials near Tm), n = 1.
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• Because surface smoothing, coarsening, grain growth, and sintering all gener-
ally involve solid-state mass transport, they tend to be temperature-activated
processes that obey an exponential Arrhenius-type rate law. Thus, the kinetic
constants appearing in the equations for these processes (e.g., BS, BV , KD, KS, C)
can all typically be modeled with a temperature dependence of the type (using
KD as an example) KD = KD,0e−ΔGact∕RT .

7.7 CHAPTER EXERCISES

Review Questions

Problem 7.1. Define the following:

(a) Capillary force

(b) Convex

(c) Concave

(d) Curvature-induced melting point depression

(e) Coarsening

(f) Equivalent grain radius

(g) Sintering

(h) Rule of six

Problem 7.2. Changing the starting particle size from 1 μm to 500 nm results in a
16-fold increase in the sintering rate, although the density of the sintered compact
is not affected. Based on these observations, what is the likely dominant sintering
mechanism in this system and why?

Calculation Questions

Problem 7.3. Solid silver has a density of 9.3 g/cm3, a liquid–solid surface energy
of 1.8 × 10−4 J/cm2, and an enthalpy of melting of −11.3 kJ∕mol. Given that silver
has a bulk melting point of 962∘C, calculate the estimated melting point of a silver
nanoparticle with a radius of 7.0 nm.

FIGURE 7.10 Schematic illustration of the octahedral single crystal in problem 7.4.
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Problem 7.4. Consider the octahedral single crystal shown in Figure 7.10 composed
entirely of (111) surface terminations. Compared to a spherical single crystal of the
same total volume with an isotropic surface energy 𝛾 , what is the maximum allowed
surface energy of the (111) surface terminations if the octahedral crystal is to be
favored compared to the spherical crystal?

Problem 7.5. A polycrystalline material with an unknown initial grain size is sub-
jected to an annealing study. After 3 h of annealing at 600∘C, the grain size is mea-
sured to be 2 μm. The material is then annealed for an additional 4 h at 600∘C and
the grain size is measured to be 3 μm. Assuming grain growth in this material can
be modeled using the 2D grain growth law. Determine the initial grain size of the
material prior to annealing.
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APPENDIX A

UNITS

Issues relating to units inevitably crop up in any technical undertaking. For those of us
in the United States, the challenge is further heightened by our continued insistence
on imperial-based units such as inches, pounds, and degrees Fahrenheit. (Besides
the United States, only two other countries in the world have not adopted the metric
system: Liberia and Myanmar.) Units issues doomed the $328 million Mars Climate
Observer spacecraft in 1999, which crashed into the red planet thanks to a thruster
impulse instruction that was erroneously provided in imperial lbs ⋅ s units instead of
metric N ⋅ s units.

While a nice solution to units issues would be to use SI units for everything (see
Table A.1 for the list of base SI units and common derived SI units), such units are not
always convenient. In this textbook, a concerted effort has been made to use metric
rather than imperial units for mass and length, so at least we do not have to deal
with imperial-to-metric conversions. Nevertheless, we will always run into situations
where other unit conversions are required. The goal of this section is to review the
most common units and unit conversion we will likely be confronted with in the
treatment of materials kinetics.

Among the most common non-SI units to appear in many kinetics problems are the
calorie, the electron-volt, and the watt-hour—which are all units of energy—and the
atmosphere, torr, and bar—which are all units of pressure. Their relationships to the SI
units of energy (J) and pressure (Pa) are documented in Table A.2.

Most equations that we must evaluate involve a mixture of variables and funda-
mental constants (i.e., consider PV = nRT , where P, V , n, and T are variables and
R is a fundamental constant). When plugging numbers into such equations, the units
that are used for the variables should be consistent with the units used for the funda-
mental constants. The simplest way to ensure this consistency is to use SI units for
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TABLE A.1 Selection of Commonly Used SI Units

Quantity Unit Name Unit Symbol

SI Base Units

Length meter (or metre) m
Mass kilogram kg
Time second s
Electric current ampere A
Temperature kelvin K
Amount of substance mole mol
Luminous intensity candela cd

Common SI Derived Units

Force newton N = kg ⋅ m/s2

Pressure, stress pascal Pa = N∕m2

Energy joule J = N ⋅ m = C∕V = W∕s
Power watt W = J∕s = V∕A
Charge coulomb C = A ⋅ s
Voltage, electric potential volt V = J∕C = W∕A
Capacitance farad F = C∕V
Resistance ohm Ω = V∕A

TABLE A.2 Common Alternative (Non-SI) Units of Energy and Pressure

Quantity Unit Name Unit Symbol Relationship to SI Unit

calorie cal 1 cal = 4.184 J
Energy electron-volt eV 1 eV = 1.602 × 10−19 J

watt-hour Wh 1 Wh = 3600 J

atmospheres atm 1 atm = 101,325 Pa = 760 torr
Pressure torr(mmHg) torr 1 torr = 133.3 Pa

bar bar 1 bar = 105 Pa

Note: A human “calorie” (i.e., the calorie unit used on food package labels) is actually
1 kcal = 1000 cal.

all variables and apply the SI-based value for the fundamental constant. Table A.3
provides a helpful listing of the most common fundamental constants used in this
textbook.

The bullets below provide a few more comments and recommendations about best
practices for dealing with units.

• Equations involving pressure are a common source for units errors. Be careful!
The SI unit for pressure is the pascal (Pa), but pressure is almost always given
in atmospheres (atm). The safest policy is to always use SI units when dealing
with expressions involving pressure. Thus, anytime you see a pressure, make
sure to convert it to Pa (1 atm = 101,325 Pa).
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TABLE A.3 Fundamental Constants

Constant Name Constant Symbol Value

Avogadro’s number NA 6.022 × 1023∕mol
Gas constant R 8.314 J∕(mol ⋅ K)

82.05 atm ⋅ cm3∕(mol ⋅ K) (non-SI)
Boltzmann’s constant k = R∕NA 1.381 × 10−23 J/K

8.62 × 10−5 eV/K (non-SI)
Planck’s constant h 6.626 × 10−34 J ⋅ s

3.76 × 10−15 eV ⋅ s (non-SI)
Elementary charge e 1.602 × 10−19 C
Faraday’s constant F = e ⋅ NA 96,485 C/mol
Electron rest mass me 9.11 × 10−31 kg
Vacuum permittivity 𝜖0 8.85 × 10−12 F/m

Note: For R, k, and h, both the SI value of the constant and a commonly used non-SI value
of the constant are provided. The SI value of the constant is listed first in each case.

• Another common confusion involves activation energies, which are often given
in eV units rather than J∕mol units. Activation energies given in eV units are
typically denoted with the symbol Ea, while activation energies given in J∕mol
units are typically denoted with the symbol ΔGa. Different symbols are used
for these two activation energies because they do not have the same basis of
comparison! ΔGa represents a molar-normalized activation energy—it is given
on the basis of energy per mol. (You can perhaps think of ΔGa as the amount
of activation energy required to process an entire mole of material.) On the
other hand, Ea is not molar normalized. It represents a direct energy, not an
energy per mole. (You can perhaps think of Ea as a direct measure of the height
of the energy barrier, or the activation energy required per activation event.)
Thus, when these activation energies are deployed in Arrhenius-type activation
equations, they must be properly coupled with either the Boltzmann constant or
the gas constant: Ea (eV) goes with k (eV∕K), while ΔGa (J∕mol) goes with R
(J∕(mol ⋅ K)). Don’t mix and match!

Arrhenius activation expression equivalence: e−Ea∕(kT) = e−ΔGa∕(RT)

To convert an activation energy that is provided in eV units to an activation
energy that is provided in J/mol units, it is necessary to multiply by Faraday’s
constant, which accounts for both the eV-to-J conversion and the conversion to
a per-molar basis:

Ea ⋅ F = ΔGa

Thus, activation energy Ea = 1 eV is the same as ΔGa ≈ 96.5 kJ∕mol.
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ANSWERS TO SELECTED
CALCULATION QUESTIONS

Chapter 1

1.8 (a) 1.987 cal∕(mol ⋅ K), (b) 0.08205 L ⋅ atm/(mol ⋅ K), (c) 82.05 cm3 ⋅
atm∕(mol ⋅ K)

1.10 (a) 1.602 × 10−19 J, (b) 96,470 J, (c) 23.06 kcal/mol, (d) 8.618 × 10−5 eV/K,
(e) 2.59 × 10−2 eV and 1.097 × 10−1 eV

Chapter 2

2.5 PHCl = 0.446 atm, PFeCl2
= 0.277 atm, and PH2

= 0.277 atm

2.7 PHI = 0.926 atm, PI2 = 0.0372 atm, and PH2
= 0.0372 atm

2.9 6.23 × 10−4 g/cm3

2.10 1.59 g/cm3 and 5.67 × 10−2 mol∕cm3

Chapter 3

3.5 27.7 kJ∕mol

3.6 (a) 1.21 × 10−4∕yr, (b) 16,000 yr, (c) 38,000 yr

Chapter 4

4.7 (a) 2.46 × 10−1 cm3∕(cm2 ⋅ s), (b) 2.02 × 10−5 g∕(cm2 ⋅ s), (c) 6.02 ×
1018 molecules∕(cm2 ⋅ s), (d) 1.93 A/cm2

4.8 260 s = 4.3 min
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4.12 (a) 1.1 × 103 m/s, (b) 5.76 × 1018 molecules/cm3
, (c) 0.38 μm, (d) 1.4 ×

10−2 cm2∕s

4.14 DN2,O2
= DO2,N2

= 1.58 × 10−5 m2∕s vs. DO2
= 1.65 × 10−5 m2∕s

Chapter 5

5.5 4.8 × 10−9 g/s

5.7 (a) 2.4 cm/s, (b) 52 kJ∕mol, (c) 29 h, (d) Same

Chapter 6

6.4 120∘

6.5 660 ∘C

Chapter 7

7.3 450 ∘C
7.5 0.5 μm
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A

Absolute entropy (S), 16
Activation energy, 48, 69–71, 73

of nucleation, 207–210
for solid-state diffusion, 135–136
units of, 275

Activation theory, 68–71
Active gas corrosion, 157–166

diffusion control, 161–163
mixed control, 163–166
snowpack evolution, 174–175
surface reaction control, 158–160

Active oxidation, 179
Adsorption, 78, 151–157
ALD (atomic layer deposition),

176–178
Anisotropic surface properties, 257–258
Annealing process, 7
Atmospheric temperature, standard, 20
Atomic layer deposition (ALD),

176–178
Availability of energy, 18
Avalanches, 174–175
Avrami equation, 230

B

Balance, equilibrium as, 15
Ballistic transport, 153–154
Binary gas diffusivity, 130
Boundaries, see Grain boundaries;

Interfaces (boundaries)
Boundary conditions. See also Transient

diffusion
Fick’s second law, 96
when surface concentration is not

fixed, 113–114

C

Capillary forces (microstructural
evolution), 251–254

Carbon monoxide (CO) poisoning
reaction, 75–77

Catalysts:
defined, 72
effects on heterogeneous reactions,

72–74
Cellular growth (solidification),

235–237

281
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Ceramics, 197
Charge flux, 86
Chemical potential, 22–25
Chemical pressure, 26
Chemical reactions, 48–49
Chemical reaction kinetics, 6, 48–81

heterogeneous chemical reactions,
72–78

catalyst effects, 72–74
defined, 50
difference between homogeneous

reactions and, 50
gas–solid surface reaction

processes, 75–78
homogeneous chemical reactions,

51–68
defined, 50
difference between heterogeneous

reactions and, 50
first-order reactions, 54–58
incomplete reactions/equilibrium

reactions, 64–68
order of reaction, 51–53
reaction rate equation and k, 51
second-order reactions, 58–64
zero-order reactions, 53–54

homogeneous vs. heterogeneous
reactions, 50

order of reaction, 49, 51–53
temperature dependence of

(activation theory), 68–71
Chemical vapor deposition (CVD),

166–175
diffusion control, 170–171
halogen light bulbs, 173–174
mixed control, 171–173
snowpack evolution, 174–175
surface reaction control,

168–170
tuning growth conditions, 176

Chill zone, 233
Cloud seeding, 216
CMOS (complimentary

metal–oxide–semiconductor)
transistors, 180, 181

Coarsening:
in annealing, 7
defined, 258
microstructural evolution, 258–260

diffusion-limited, 258–259
source/sink-limited, 259–260

Columnar zone, 233
Complementary error function, 98–100
Complimentary

metal–oxide–semiconductor
(CMOS) transistors, 180, 181

Composition, as driving force for phase
transformations, 192–197

Concentrations:
calculating, 36–43

from crystallographic information,
41–42

gas concentrations, 35
for mixtures of multiple

phases/compounds, 39–40
in pure materials, 36–37
site fractions, 42–43
in stoichiometric compounds or

dilute solutions, 37–39
viable nuclei concentrations,

210–212
reaction rates and, 49
time-dependent, 54, 60

Concentration-dependent diffusion, 117
Condensation, 31
Condensed-matter phases, applying

ideal gas law to calculating
concentrations, 36

Condensed-matter phase
transformations, 190–192. See
also Phase transformations

Conservation of energy, 17–18
Constants, 275
Continuous phase transformations,

191–192
diffusional, 191
spinodal decomposition, 197–199

Convection:
diffusion vs., 89
force/flux pairs, 88
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Coordination number (atoms), 201
CO (carbon monoxide) poisoning

reaction, 75–77
Corrosion, see Active gas corrosion
Coupled transport processes:

diffusion, 120, 122–125
electrodiffusion, 122–124
stress-driven diffusion, 124–125
thermodiffusion, 124

driving forces for, 87
electrical conduction and heat

conduction, 87
Crystallographic information,

calculating
densities/concentrations from,
41–42

Cube root of time, coarsening and, 259
CVD, see Chemical vapor deposition

D

D, see Diffusivity
Deal, Bruce, 181
Deal–Grove model (passive oxidation),

181
Dendritic growth (solidification),

235–237
Densification, sintering with/without,

263–264
Densities:

calculating, 36
from crystallographic information,

41–42
for mixtures of multiple

phases/compounds, 39–40
in pure materials, 36–37
in stoichiometric compounds or

dilute solutions, 37–39
mass, 36
molar, 36

Deposition processes:
atomic layer deposition, 176–178
chemical vapor deposition, 166–175

diffusion control, 170–171
halogen light bulbs, 173–174
mixed control, 171–173

snowpack evolution, 174–175
surface reaction control, 168–170

silver onto window glass, 154–156
Desorption (evaporation), 151–157
Diamond, 5, 6
Differential rate law, 51, 52

first-order reactions, 55–58
pseudo-first-order reactions, 62–63
second-order reactions, 59
zero-order reactions, 53

Diffusion. See also Transport kinetics
concentration-dependent, 117
convection vs., 89
electrodiffusion (electromigration),

87, 122–124
impingement vs., 153–154
at phase boundaries, 119–120
reaction vs., 7–9
solid-state, 7, 130–138

diffusion in liquids vs. gases vs.,
125–126

high-diffusivity paths, 135–138
mechanisms of, 130–131
as rate-limiting step, 7, 8
surface evolution by, 256–257
theory of, 131–135

steady-state (Fick’s first law), 91–93
Kirkendal effect, 118–119
modeling, 90–91
moving interface problems,

118–120
stress-driven, 87, 124–125
thermodiffusion, 87, 123, 124
transient (Fick’s second law), 94–121

boundary conditions, 96
derivation, 95
finite (symmetric) planar diffusion,

110–114
finite (symmetric) spherical

diffusion, 114–115
infinite diffusion of an arbitrary

concentration profile,
109–110

infinite diffusion of a rectangular
source, 107–108
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Diffusion. See also Transport kinetics
(continued)

infinite diffusion of a thin layer,
108–109

initial conditions, 96
interdiffusion in two semi-infinite

bodies, 104–107
Kirkendal effect, 118–119
modeling, 90–91
moving interface problems,

118–120
semi-infinite diffusion, 97–104

Diffusional phase transformations,
190–191. See also Phase
transformations

Diffusion coefficient, 7. See also
Diffusivity (D)

Diffusion control:
active gas corrosion, 161–163
chemical vapor deposition, 170–171
passive oxidation, 181, 182

Diffusion half-depth, 101
Diffusionless phase transformations,

190–191. See also Phase
transformations

Diffusion-limited coarsening, 258–259
Diffusion zone, 161
Diffusivity (D), 7, 8, 89

binary gas, 130
in different states, 92, 125–126
directionally-dependent, 124
gas-phase, 129
high-diffusivity paths in solids,

135–138
self-, 130

Dilute (ideal) solutions:
calculating densities/concentrations

in, 37–39
calculating state-dependent activity

of, 23
Discontinuous phase transformations,

191–192
Disorder, see Entropy (S)
Driving forces:

coupled diffusion processes, 124–125

for diffusion, 124
of microstructural evolution, 251
for phase transformations, 31–32,

192–197, 205, 251
and solid-state diffusion, 130
in thermodynamics, 5, 14
transport processes, 87–89

Dynamic equilibrium, 14–15
incomplete reactions and, 64
solid-state diffusion, 130

E

Effective charge, 123
Effusion, 111
Electrical conduction:

force/flux pairs, 88
heat conduction coupled with, 87

Electrical conductivity, 89
Electrodiffusion (electromigration), 87,

122–124
"Electron wind," 122
Elementary reaction steps, 52
Endothermic processes, 15
Endothermic reactions, temperature

dependence of K, 29
Energetics, 14. See also

Thermodynamics
Energetic favorability of

thermodynamic processes, 16
Energy:

activation, 48, 69–71, 73
of nucleation, 207–210
for solid-state diffusion,

135–136
units of, 275

availability of, 18
conservation of, 17–18
free, see Gibbs free energy
units of, 274

Energy per mol, 275
Energy states, in thermodynamics, 5
Enthalpy (H), 15

changes in, 16–17
computing changes, 20
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Entropy (S), 15
absolute, 16
changes in, 16–18
total net change in, 16

Equilibrium:
changes affecting, 15
defined, 14
dynamic, 14–15

incomplete reactions and, 64
solid-state diffusion, 130

Le Châtelier’s principle, 26–27
in phase transformations, 232, 233
in thermodynamics, 5

Equilibrium constant (K), 25–28
and forward/reverse reaction rate

ratios, 67, 78
temperature dependence of, 28–30

Equilibrium reactions, homogeneous,
64, 67–68

Error function, 98–100
Etching, see Active gas corrosion
Eutectic interfaces, 119–120
Eutectic lamellae (solidification),

237–240
Evaporation (desorption), 151–157
Exothermic processes, 15
Exothermic reactions, temperature

dependence of K, 29
Extensive properties, 18–19

F

Fick’s first law, 91–93. See also
Steady-state diffusion

force/flux pair relations, 88
with large variations in concentration,

117
Fick’s second law, 94. See also

Transient diffusion
in alternative coordinate systems, 114
boundary conditions and initial

conditions, 96
derivation of, 95
with large variations in concentration,

117
treating diffusion phenomena with, 96

when surface concentration is not
fixed, 113–114

Final state –initial state calculation, 15,
19, 20

Finite (symmetric) transient diffusion
(Fick’s second law):

planar, 110–114
spherical, 114–115

First-order reactions, 49, 68
equilibrium reactions, 67–68
homogeneous, 54–58, 62–64
incomplete reactions and, 64–65
pseudo-first-order reactions, 62–64

Flux, 85–86
charge, 86
force/flux pairs, 88–89
forces driving, 87
heat, 86
mass, 85
molar, 85, 86
number, 86
volume, 86

Force/flux pairs, 88–89
Forward reaction rate:

CO adsorption process on Pt, 78
and equilibrium constant, 67

Fourier’s law, 88
Free energy, see Gibbs free energy (G)
Frost, 166

G

G, see Gibbs free energy
Gases:

kinetic theory of, 126–129,
151–152

thermodynamic standard state for, 20
transport kinetics (diffusion),

126–130
binary gas diffusivity, 130
diffusion in liquids vs. solids vs.

gases, 125–126
kinetic theory of gases, 126–129

Gas concentrations, calculating, 35
Gas–gas kinetic processes, 9, 10
Gas–liquid kinetic processes, 9, 10
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Gas–solid kinetic processes, 9, 10,
151–187

active gas corrosion, 157–166
diffusion control, 161–163
mixed control, 163–166
surface reaction control,

158–160
adsorption/desorption, 151–157
atomic layer deposition, 176–178
chemical vapor deposition, 166–175

diffusion control, 170–171
halogen light bulbs, 173–174
mixed control, 171–173
snowpack evolution, 174–175
surface reaction control,

168–170
heterogeneous reactions, 75–78
passive oxidation, 179–184

diffusion control, 181, 182
interfacial reaction control, 181
mixed control, 182–183
thickness as function of time,

183–184
Gibbs free energy (G), 15, 16

changes in, 16–18
and chemical potential, 22–25
molar, 18–19
in spinodal decomposition, 198
standard-state, 21

Grain boundaries:
in annealing, 7
diffusion at, 136–138
heterogeneous nucleation at,

217–218
Grain growth:

factors affecting, 262
microstructural evolution,

261–263
of single-phase materials, 192

Granite, 228
Graphite, 5, 6
Green’s functions, 110
Grove, Andy, 181
Growth (phase transformations),

221–225

and attachment of mass to interface,
222

heat-transport-limited, 224–225
nucleation and growth combined,

226–232
as discontinuous phase

transformation, 191–193
energy cost, 200
microstructure effects of nucleation

rate vs. growth rate,
226–228

overall rate of transformation, 226,
229–230

time–temperature–transformation
diagrams, 230–231

stable, 233–235
unstable, 235–237

Growth rate, 226–228

H

H, see Enthalpy
Half-life, 56–58
Halogen light bulbs, 173–174
Heat conduction:

electrical conduction coupled
with, 87

force/flux pairs, 88
thermal conductivity, 89

"Heat death" of the universe, 18
Heat flux, 18, 86
Heat of transport, 124
Heat value, see Enthalpy (H)
Herring scaling laws, 265
Heterogeneity (term), 6
Heterogeneous chemical reactions,

72–78
catalyst effects, 72–74
defined, 50
difference between homogeneous

reactions and, 50
gas–solid surface reaction processes,

75–78
Heterogeneous kinetics, 6–7
Heterogeneous nucleation, 166,

212–218
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cloud seeding, 216
at grain boundaries, 217–218

High-diffusivity paths (diffusion in
solids), 135–138

Homogeneous chemical reactions,
51–68

defined, 50
difference between heterogeneous

reactions and, 50
first-order reactions, 54–58
incomplete reactions/equilibrium

reactions, 64–68
order of reaction, 51–53
pseudo-first-order reactions,

62–64
reaction rate equation and k, 51
second-order reactions,

58–64
zero-order reactions, 53–54

Homogeneous kinetics, 6
Homogeneous nucleation, 166,

206–212
concentration of viable nuclei

calculation, 210–212
minimum viable nucleus size and

nucleation activation energy
calculation, 207–210

Hopping rate (atoms), 130–134

I

Ideal gas law, 34–36
calculating state-dependent activity,

22
example, 35–36

Ideal (dilute) solutions:
calculating densities/concentrations

in, 37–39
calculating state-dependent activity

of, 23
Igneous rocks, 227–228
Imperial-based units, 273
Impingement rate, 153–154
Incandescent light bulbs, 173
Incomplete reactions, homogeneous,

64–67

Infinite transient diffusion:
applications, 97
Fick’s second law:

of an arbitrary concentration
profile, 109–110

of a rectangular source, 107–108
of a thin layer, 108–109

Infusion, 111
Integrated rate law:

first-order reactions, 55–58
second-order reactions, 59–60
zero-order reactions, 54

Interdiffusion in two semi-infinite
bodies (Fick’s second law),
104–107

Interfaces (boundaries):
moving interface problems,

118–120
passive oxidation interfacial reaction

control, 181
phase transformations, 199–200

estimating surface energies,
200–203

interfacial energy balances,
203–205

reducing area/curvature of, 261, 263
in solids, 7

Intermediate species (in reactions),
52–53

J

Johnson–Mehl equation, 229–230

K

K, see Equilibrium constant
k, see Reaction rate constant
Kinetics, 3–4

classification of processes, 9–10
evolution of field, 6
materials, see Materials kinetics
thermodynamics vs., 4–6

Kinetic theory of gases, 126–129,
151–152

Kirkendal effect, 118–119
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L

Lamellae, eutectic, 237–240
Langmuir isotherm, 78
Le Châtelier’s principle, 26–27
Light bulbs, 173–174
Linear superposition concept, 109–110
Liquids:

calculating concentrations, 36–40
for mixtures of multiple

phases/compounds, 39–40
in pure materials, 36–37
in stoichiometric compounds or

dilute solutions, 37–39
diffusion in gases vs. solids vs.,

125–126
thermodynamic standard state for, 20

Liquid–liquid kinetic processes, 9, 10
Liquid–solid kinetic processes, 9, 10
Liquid–solid phase transformations,

232
Liquid–vapor phase changes, 31

M

Martensitic transformations, 241–242
Mass flux, 85
"Material-averaged" quantities,

calculating, 39–40
Materials kinetics, 3–11. See also

Kinetics; specific topics
classification of kinetic processes,

9–10
heterogeneous, 6–7
homogeneous, 6
reaction vs. diffusion, 7–9
thermodynamics vs., 4–6
units and unit conversions, 10

Maxwell-Boltzmann distribution, 127
Melting point:

in nanoparticles, 254–256
phase transformation, 31

Metal hydrides, 114–115
Metric system, 273–274
Microstructural evolution, 7, 251–268

capillary forces, 251–254

coarsening, 258–260
diffusion-limited, 258–259
source/sink-limited, 259–260

grain growth, 261–263
melting point depression in

nanoparticles, 254–256
sintering, 263–265
surface evolution, 256–258

by solid-state diffusion, 256–257
surface faceting, 257–258
by vapor-phase transport, 257

Microstructure(s):
effects of nucleation rate vs. growth

rate on, 226–228
when casting (solidifying), 233

Minimum viable nucleus size,
calculation of, 207–210

Mixed control:
active gas corrosion, 163–166
chemical vapor deposition, 171–173
passive oxidation, 182–183

Mixed-order reactions, 52
Mixtures of multiple

phases/compounds, calculating
densities/concentrations for, 39–40

Molar enthalpy of reaction, 20
Molar flux, 85, 86
Molar quantities, 18–19
Molar volume, 194
Morphological evolution, see

Microstructural evolution
Moving interface problems, 118–120

N

Nanoparticles, melting point depression
in, 254–256

Negative feedback, 174, 197
Nonequilibrium thermodynamics

(NET), 120. See also Coupled
transport processes

Nonideal gas law, calculating
state-dependent activity of, 22

Nonideal solutions, calculating
state-dependent activity of, 23

Nuclear decay processes, 55–58
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Nucleation:
heterogeneous, 166, 212–218

cloud seeding, 216
at grain boundaries, 217–218

homogeneous, 166, 206–212
concentration of viable nuclei

calculation, 210–212
minimum viable nucleus size and

nucleation activation energy
calculation, 207–210

martensitic transformations,
241–242

nucleation and growth combined,
226–232

as discontinuous phase
transformation, 191–193

energy cost, 200
microstructure effects of nucleation

rate vs. growth rate, 226–228
overall rate of transformation, 226,

229–230
time–temperature–transformation

diagrams, 230–231
nucleation rate, 218–221

Nucleation barrier, 205
Nucleation rate, 218–221, 226–228
Number flux, 86

O

Obsidian, 228
Ohm’s law, 88
Order of reaction (homogeneous

reactions), 51–53
first-order, 49, 54–58, 68

equilibrium reactions, 67–68
incomplete reactions and, 64–65
pseudo-first-order reactions, 62–64

mixed-order, 52
pseudo-first-order, 62–64
and reaction mechanism, 52–53
second-order, 49, 58–64, 68

first order with respect to two
reactants, 58, 60–61

incomplete reactions and, 64–65
pseudo-first-order reactions, 62–64

with respect to a single reactant,
58–62

third-order or higher, 51
zero-order, 49, 53–54, 64, 68

Overall rate law, 53
Oxidation, 3, 4

active, 179
as heterogeneous process, 6–7
parallel pathways in, 8
passive, 179–184

diffusion control, 181, 182
interfacial reaction control, 181
mixed control, 182–183
thickness as function of time,

183–184

P

Palladium (Pd), 90–93
Parabolic oxidation law, 183–184
Parallel pathways, 8
Partitioning (solidification), 234
Passive oxidation, 179–184

diffusion control, 181, 182
interfacial reaction control, 181
mixed control, 182–183
of silicon, and CMOS revolution,

179–180
thickness as function of time,

183–184
Pd (palladium), 90–93
Peltier effect, 87
Periodic table, 276–277
Peritectic solidification, 240–241
Phase boundaries, diffusion at, 119–120
Phase transformations, 190–247

continuous, 191–192
diffusional, 191
spinodal decomposition, 197–199

defined, 31
growth, 221–225

and attachment of mass to
interface, 222

heat-transport-limited, 224–225
stable, 233–235
unstable, 235–237
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Phase transformations, (continued)
martensitic transformations, 241–242
nucleation, 205–221

heterogeneous, 212–218
homogeneous, 206–212
nucleation rate, 218–221

nucleation and growth combined,
226–232

as discontinuous phase
transformation, 191–193

energy cost, 200
microstructure effects of nucleation

rate vs. growth rate, 226–228
overall rate of transformation,

229–230
time–temperature–transformation

diagrams, 230–231
overall rate of transformation,

229–230
overall transformation rate, 226
pressure-induced, 197
solidification, 232–241

casting microstructures, 233
cellular or dendritic growth,

235–237
eutectic lamellae, 237–240
periodic, 240–241
plane front, 233–235

surfaces and interfaces, 199–205
estimating surface energies,

200–203
interfacial energy balances,

203–205
temperature and composition as

driving forces for, 192–197
thermodynamics of, 31–34
types of, 190–192

Planar diffusion, finite (symmetric),
110–114

Plane front solidification, 233–235
Platinum (Pt) catalysts, 73, 75–77
Poiseuille’s law, 88
Positive-feedback cycle, 174
Pressure:

chemical, 26

in condensed-matter phase
transformations, 190

standard temperature and pressure
state, 20

units of, 274
viscosity, 89

Pressure-induced phase transformation,
197

Pseudo-first-order chemical reactions,
62–64

Pt (platinum) catalysts, 73, 75–77
Pure components, calculating

state-dependent activity of, 23
Pure materials, calculating

densities/concentrations in, 36–37

Q

Q (reaction quotient), 25–28
Quantities, thermodynamic, calculating,

20–21

R

Rate-limiting steps, 7, 8
Reaction, diffusion vs., 7–9. See also

specific types of reactions
Reaction mechanisms, 52
Reaction processes, 3. See also

Chemical reaction kinetics
Reaction quotient (Q), 25–28
Reaction rate, 48–49

catalyst’s effect on, 72–74
CO adsorption process on Pt, 78
and equilibrium constant, 67
forward, 67, 78
reaction rate constant, 8–9, 51, 68
reaction rate equation, 51
reverse, 67, 78

Reaction rate constant (k), 8–9
and reaction rate equation, 51
temperature dependence of, 69–71
units for, 68

Reaction rate equation, 51
Rectangular source, infinite diffusion of

a, 107–108
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Reverse Haber process, 53
Reverse reaction rate:

CO adsorption process on Pt, 78
and equilibrium constant, 67

Rhyolite, 228
Room temperature, standard, 20
Rule of six, 261

S

S, see Entropy
Scheil equation, 234–235
Second-order reactions, 49

first order with respect to two
reactants, 58, 60–61

homogeneous, 58–64, 68
incomplete reactions and, 64–65
pseudo-first-order reactions, 62–64
with respect to a single reactant,

58–62
Seebeck effect, 87
Self-diffusivity, 130
Self-limiting processes:

atomic layer deposition, 176
gas–solid reaction with Pt catalyst, 76
passive oxidation, 179

Self-similarity concept, 116
Semi-infinite transient diffusion:

Fick’s second law, 97–104
interdiffusion in two semi-infinite

bodies, 104–107
Sigmoidal transformation, 229–230
Sink-limited coarsening, 259–260
Sintering, 263–265

mechanisms of, 264
of single-phase materials, 192

Site fractions, calculating
concentrations from, 42–43

SI units, 273–274
Smoothing, 256

by solid-state diffusion, 256–257
by vapor-phase transport, 257

Snowpack evolution, 174–175
Solids. See also Solid state

calculating concentrations, 36–43

from crystallographic information,
41–42

for mixtures of multiple
phases/compounds, 39–40

in pure materials, 36–37
site fractions, 42–43
in stoichiometric compounds or

dilute solutions, 37–39
thermodynamic standard state for, 20
transport kinetics, 130–138

diffusion in liquids vs. gases vs.
solids, 125–126

high-diffusivity paths, 135–138
mechanisms of diffusion, 130–131
theory of solid-state diffusion,

131–135
Solidification, 31, 232–241

casting microstructures, 233
cellular or dendritic growth,

235–237
eutectic lamellae, 237–240
heat-transport-limited, 225
of igneous rocks, 227–228
peritectic, 240–241
plane front, 233–235
transport in, 84

Solid–liquid phase changes, 31. See
also Solidification

Solid–solid kinetic processes, 9, 10
Solid–solid phase transformations, 31,

232
Solid state. See also Solids

capillary force in, 251–252
chemical reactions involving, 72. See

also Heterogeneous chemical
reactions

manifestation of heterogeneity in, 7
in materials kinetics, 6
transport rates in, 84

Solid-state diffusion, 7, 130–138
diffusion in liquids vs. gases vs.

solids, 125–126
high-diffusivity paths, 135–138
mechanisms of, 130–131
as rate-limiting step, 7, 8
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Solid-state diffusion, (continued)
surface evolution by, 256–257
theory of, 131–135

Solutes, thermodynamic standard state
for, 20

Source-limited coarsening, 259–260
Specific properties, 18–19
Speed of change, 5
Spherical diffusion, finite (symmetric),

114–115
Spinodal decomposition, 197–200
Spinodal phase transformation,

191, 192
Spontaneity of thermodynamic

processes, 16
Square-root dependence, in transient

diffusion processes, 101
Square root of time (coarsening), 259
Stable growth (phase transformations),

233–235
Standard molar entropy values, 21
Standard states, 19–20, 25
Standard temperature and pressure

(STP), 20
Steady state (term), 91
Steady-state diffusion, 91–93

concentration-dependent, 117
Kirkendal effect, 118–119
modeling, 90–91
moving interface problems,

118–120
Stoichiometric compounds, calculating

densities/concentrations in, 37–39
STP (standard temperature and

pressure), 20
Stress-driven diffusion, 87, 124–125
Supercooling, 193, 205
Superheating, 193, 205
Superimposing solutions, 107–108
Surfaces:

phase transformations, 199–203, 205
estimating surface energies,

200–203
interfacial energy balances,

203–205

reactions at atomic scale, 156–157
Surface energies, estimating, 200–203
Surface evolution, 256–258

by solid-state diffusion, 256–257
surface faceting, 257–258
by vapor-phase transport, 257

Surface faceting, 257–258
Surface reaction control:

active gas corrosion, 158–160
chemical vapor deposition, 168–170

Symmetric diffusion, see Finite
transient diffusion

T

Temperature:
and chemical reaction rates, 49
and grain growth, 251
melting point, 31, 254–256
nanoparticle melting point, 254–256
and phase transformations:

and growth rate, 219–225
and microstructure change during

phase transformations,
226–227

temperature as driving force,
192–197

time–temperature–transformation
diagrams, 230–231

reaction rate and, 69–71
and solidification, 233
standard temperature and pressure

state, 20
Temperature dependence:

of chemical reactions:
activation theory, 68–71
reaction rates, 49

of equilibrium constant, 28–30
Thermal conductivity, 89
Thermodiffusion, 87, 123, 124
Thermodynamics, 14–46

calculating concentrations for liquids
or solids, 36–43

from crystallographic information,
41–42
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for mixtures of multiple
phases/compounds, 39–40

in pure materials, 36–37
site fractions, 42–43
in stoichiometric compounds or

dilute solutions, 37–39
calculating quantities, 20–21
changes during thermodynamic

process, 16–18
chemical potential, 22–25
defined, 14
dynamic equilibrium, 14–15
enthalpy, 15–17
entropy, 15–18
equilibrium constant, 25–28
first law of, 17
Gibbs free energy, 15–18
ideal gas law, 34–36
kinetics vs., 4–6
molar quantities, 18–19
of phase transformations, 31–34
reaction quotient, 25–28
second law of, 16
standard state, 19–20
temperature dependence of K, 28–30

Thermodynamic standard state, 20
Thin layer(s):

atomic layer deposition, 176–178
infinite diffusion of a, 108–109
infinite diffusion of arbitrary

concentration profile, 109–110
silver deposition onto window glass,

154–156
Third-order reactions, 51
3D grain growth, 262
Time dependence:

thickness in passive oxidation,
183–184

time-dependent concentrations, 54,
60

Time–temperature–transformation
(TTT) diagrams, 230–231

Transformational toughening, 197
Transient diffusion, 94–121

boundary conditions, 96

concentration-dependent, 117
derivation, 95
error function and complementary

error function, 98–100
finite (symmetric) diffusion:

planar, 110–114
spherical, 114–115

infinite diffusion:
of an arbitrary concentration

profile, 109–110
of a rectangular source, 107–108
of a thin layer, 108–109

initial conditions, 96
interdiffusion in two semi-infinite

bodies, 104–107
Kirkendal effect, 118–119
modeling, 90–91
moving interface problems, 118–120
semi-infinite diffusion, 97–104

Transport kinetics, 84–142. See also
Diffusion

atomistic treatment of, 125–138
diffusion in gases vs. liquids vs.

solids, 125–126
in gases, 126–130
in solids, 130–138

common transport modes (force/flux
pairs), 88–89

coupled diffusion processes, 120,
122–125

electrodiffusion, 122–124
stress-driven diffusion, 124–125
thermodiffusion, 124

flux, 85–86
charge, 86
forces driving, 87
heat, 86
mass, 85
molar, 85, 86
number, 86
volume, 86

in gases, 126–130
binary gas diffusivity, 130
diffusion in liquids vs. solids vs.,

125–126
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Transport kinetics, (continued)

kinetic theory of gases, 126–129
Kirkendal effect, 118–119
in liquids, diffusion in gases vs. solids

vs., 125–126
moving interface problems, 118–120
phenomenological treatment of,

90–125
coupled diffusion processes, 120,

122–125
moving interface problems,

118–120
steady-state diffusion (Fick’s first

law), 91–93
transient diffusion (Fick’s second

law), 94–121
in solids, 130–138

diffusion in liquids vs. gases vs.,
125–126

high-diffusivity paths, 135–138
mechanisms of diffusion, 130–131
theory of solid-state diffusion,

131–135
steady-state diffusion (Fick’s first

law), 91–93, 118–120
transient diffusion (Fick’s second

law), 94–121
boundary conditions, 96
derivation, 95
finite (symmetric) planar diffusion,

110–114
finite (symmetric) spherical

diffusion, 114–115
infinite diffusion of an arbitrary

concentration profile,
109–110

infinite diffusion of a rectangular
source, 107–108

infinite diffusion of a thin layer,
108–109

initial conditions, 96
interdiffusion in two semi-infinite

bodies, 104–107
moving interface problems,

118–120
semi-infinite diffusion, 97–104

Transport processes, 3, 84
ballistic transport, 153–154
driving forces for, 87
in nonequilibrium conditions, 120

TTT (time–temperature–
transformation) diagrams,
230–231

2D grain growth, 261

U

Units, 10, 273–275
for gas-phase diffusivity, 129
imperial-based vs. SI, 273

Unit conversions, 10
Universe, dissipating energy of, 18
Unstable growth (phase

transformations), 235–237

V

Van’t Hoff isotherm, 23
Vaporization, 31
Vapor-phase transport, surface evolution

by, 257
Viscosity, 89
Volume flux, 86

Z

Zero-order reactions, 49, 68
homogeneous, 53–54
incomplete reactions and, 64

Zirconia, 197
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