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Preface

This monograph, “A New Concept for Tuning Design Weights in Survey Sampling:

Jackknifing in Theory and Practice,” introduces a fresh survey methodology that can

be used to estimate population parameters and that, with the help of a computer, yet

requiring minimal effort, leads to the construction of confidence intervals. The most

important motivation for using the newly tuned estimation survey methodology is that

it simplifies the estimation of the variance of those estimators used for estimating pop-

ulation parameters such as the mean, the total, the finite population variance, and the

correlation coefficient, under various sampling schemes. The main ideas derive from

the standard survey sampling methods of jackknifing, calibration, and imputation, but

lead to an important modification of these existing methods. This new methodology

should prove helpful to all government organizations, private organizations, and aca-

demic institutions that engage in survey sampling. The proposed new concept of tun-

ing design weights leads to a computer friendly estimation survey methodology. Thus,

it encourages development of a new statistical analysis software package in a language

such as R, SAS, FORTRAN, or C++. Recall that the sampling design and estimation

process has twomain aspects: a selection process that includes the rules and operations

by which some members of the population are included in the sample, and an estima-

tion process for computing the sample statistics, which are sample estimates of pop-

ulation values. A good sample design and estimation methodology requires the

balance of several important criteria: goal orientation, measurability, practicality,

economy, time, simplicity, and reliability.

One need not take our word concerning the virtues of the new concept of tuning

design weights which leads to the newly tuned estimation survey methodology devel-

oped here. One can easily test/apply these methods by executing the R codes that are

provided. The authors are confident that one will find the performance of the devel-

oped theory amazing. In the 1940s (Cochran, 1940, ratio estimator), survey method-

ologists began looking to the future for a reliable, trustworthy, and easily applicable

estimation methodology. It appears that for students currently doing a Ph.D. in survey

sampling, the future is here.

In Chapter 1, we discuss the problem of estimation in survey sampling. The Sta-
tistical Jumbo Pumpkin Model (SJPM) is developed, which can produce very light to

very heavy pumpkins, and is naturally correlated with their known circumferences.

R code, used for generating the SJPM, is provided. A population of pumpkins is gen-

erated using the SJPM and is displayed. A sample of pumpkins is taken from the gen-

erated population and is also displayed. The idea of jackknifing a sample statistic is

discussed. Examples of jackknifing a sample mean and a sample proportion are pro-

vided. The effect of double jackknifing on a sample mean is discussed. The concept of



jackknifing a sum of doubly subscripted variables is also introduced. At the end of the

chapter, a few unsolved exercises, which include jackknifing of sample geometric

mean, sample harmonic mean, and sample median, are provided for practice and fur-

ther investigation.

In Chapter 2, we introduce the new concept of tuning design weights, which, in

turn, leads to a computer friendly tuning methodology. The proposed methodology

results in an estimator that is equivalent to the linear regression estimator of the pop-

ulation mean or total. The newly tuned estimation methodology is able to efficiently

and effectively estimate the variance of the estimator of the population mean.

The estimation of variance of the estimator is a key feature of the proposed newly

tuned estimation methodology. In Chapter 2, we restrict ourselves to the use of a

simple random sampling (SRS) scheme. We show that under an SRS scheme,

the linear regression estimator is a result of tuning the jackknife sample mean esti-

mator with the chi-squared type distance function. Tuning of the sample jackknife

estimator under a dual-to-empirical log-likelihood (dell) function leads to a newly

tuned dell-estimator of the population mean. The coverage by the newly tuned

Professor W.G. Cochran (1909–1980)
http://isi.cbs.nl/Nlet/images/N87_CochranWG.jpg
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estimators, under the chi-square distance and the dell function, is investigated for the

SJPM. The R codes for studying the reliability of the tuned estimators under the chi-

squared distance function and the dell function are also provided. Numerical illus-

trations for both methods are also presented. At the end of the chapter, a few

unsolved exercises are given for practice and further investigation. The tuning of

a nonresponse in sampling theory is addressed in one of the unsolved exercises.

The tuning of a sensitive variable, in the context of estimating the population mean

of a sensitive variable, is also introduced through an unsolved exercise. In addition,

tuned estimators of geometric mean and harmonic mean are also suggested for fur-

ther investigation.

In Chapter 3, the problem of estimating a population mean with the help of the

newly tuned model assisted estimation methodology is developed by assuming that

the auxiliary information is available at the unit level in the population. The newly

tuned model assisted estimator does an excellent job for small samples in the case

of both the chi-squared type distance function, and the dual-to-empirical log-

likelihood (dell) function, insofar as the weight of pumpkins is concerned. The

R codes for studying the reliability of the tuned model assisted estimators for the case

of the chi-squared and the dell functions are also provided. At the end of the chapter, a

few unsolved model assisted exercises are given for practice and further investigation.

A new model assisted tuning of a nonresponse along with the concept of imputation is

addressed in one of the exercises.

In Chapter 4, we present the problem of estimating the finite population variance

with the help of the newly tuned estimation methodology. The newly tuned model

assisted estimator of finite population variance is studied under both the chi-squared

and the dual-to-empirical log-likelihood (dell) functions. The R code for studying

the reliability of estimating the finite population variance of the weight of pumpkins,

using circumference as an auxiliary variable, is provided. Here, it is suggested

that only a slice of a pumpkin be removed from the sample instead of a complete

pumpkin. Such a proposed method of jackknifing has been called partial jackknifing.

An alternative tuned estimator of the finite population variance and the finite popu-

lation variance estimator are also introduced and studied. At the end of the chapter, a

few interesting, unsolved exercises for estimating the finite population variance

are given for practice and further investigation. The exercises include new model

assisted tuned estimators of finite population variance, as well as a few new tuning

constraints that make use of jackknifed sample geometric mean and jackknifed sample

harmonic mean.

In Chapter 5, the problem of tuning the estimator of the correlation coefficient

using empirical log-likelihood style techniques is considered. In practice, it is dif-

ficult to estimate the variance of the estimator of the correlation coefficient. How-

ever, the proposed newly tuned method leads to a very successful estimator of

variance of the estimator of the correlation coefficient when auxiliary information

is available. A numerical illustration is also provided to estimate the correlation

between the weight and circumference of pumpkins. The R code, used in the

simulation study of reliability of the estimators, is also provided. At the end of

the chapter, several exercises involving estimation of the correlation coefficient
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are provided for practice and further investigation. In addition, exercises leading

toward tuned estimators of the ratio of two population means, two population

variances, and the population regression coefficient are included for further

investigation.

Until this point, we have considered only the simple random sampling (SRS)

scheme at the selection stage of the sample. In Chapter 6, the problem of estimating

a population total using the concept of a multi-character survey is addressed. The

newly tuned multi-character survey estimators that we introduce are studied for the

probability proportional to size and with replacement (PPSWR) sampling scheme.

Simulation results with the relevant R code are reported. The code is also utilized

to compute numerical illustrations. At the end of the chapter, a few unsolved exercises

for further investigation are provided.

In Chapter 7, we consider the tuning of the estimator of population total using

probability proportional to size and without replacement (PPSWOR) sampling

scheme. A new linear regression type estimator under PPSWOR sampling scheme

is proposed. The proposed tuned estimator is free of second order inclusion proba-

bilities and provides a simple and safe solution to the important problem of estimat-

ing variance. The tuned regression type estimator and an estimator obtained by

optimizing a displacement function are tested through simulation studies. The

R code used in the simulation study of the reliability of the estimators is also pro-

vided. The tuned estimators are also supported by two numerical illustrations that

consider the problem of estimating the weights of pumpkins using their known aver-

age circumference as a tuning variable and their known top size as an auxiliary var-

iable at the selection stage. At the end of the chapter, a few exercises concerning the

estimation of population parameters under the PPSWOR sampling scheme are pro-

vided for further investigation.

In Chapter 8, we consider the problem of tuning the estimators of populationmean in

stratified random sampling design, using both the chi-squared type, and the dual-to-

empirical log-likelihood (dell) type distance functions, when the population mean of

the auxiliary variable at the stratum level is available or known. The tuned estimators

are supported with a simulation that considers the problem of estimating the average

weights of pumpkins. Here, the pumpkins are divided into three different strata, con-

sisting of Sumbo,Mumbo, and Jumbo pumpkins, based on their known circumferences.

The adjusted tuned estimator of variance of the proposed estimator is found to be very

effective in the case of small samples. The R code used in the simulation study for the

case of chi-squared distance and dual to log-likelihood functions is also provided.

Numerical illustrations for determining the average weight of the Sumbo, Mumbo,
and Jumbo pumpkins using proportional allocation and newly tuned stratified sampling

estimation methodology, along with R code, are presented. In the exercises, we consider

the situation inwhich the pooledmean of the auxiliary variable across all strata is known,

but themeans at stratum level are unknown.An idea for extending thework tomultistage

stratified random sampling is introduced in an exercise at the end of the chapter.

In Chapter 9, we introduce the idea of using multiauxiliary information for

semituning the estimators of population mean and finite population variance under

simple random sampling. The use of multiauxiliary information for fully tuning
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estimators is addressed in the exercises. A new set of three tuning constraints is also

introduced. These constraints make use of jackknifed sample arithmetic mean,

jackknifed sample geometric mean, and jackknifed sample harmonic mean of three

different auxiliary variables.

In Chapter 10, a very short review of the relevant literature is given. The concept of

calibration and jackknifing is discussed in layman language.

Author and selected subject indexes have been also included at the end.

Further studies

Tuning of estimators of any parameter, such as median, mode, distribution function,

for any sampling design, such as small area estimation, post-stratification, adaptive

clustering, panel-surveys, systematic sampling, dual or multiple frame surveys, and

longitudinal surveys etc., can also be investigated, if needed.
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1Problem of estimation

1.1 Introduction

In this chapter, we discuss the problem of estimation, the benefits of sampling,

differences between study and auxiliary variables, and basic scientific statistical terms

and notation. We discuss the creation of a statistical jumbo pumpkin model (SJPM)

and jackknifing of sample mean and proportion. We also introduce the ideas of double

jackknifing and jackknifing of a double suffix variable. Frequently asked question are

answered. At the end, we suggest jackknifed estimators of several parameters, such as

skewness, kurtosis, geometric mean, harmonic mean, and median; these are provided

in the form of unsolved exercises.

1.2 Estimation problem and notation

In this section, we discuss the real-life problem of estimation and the need for survey

sampling. A farmer may be interested in estimating the total yield of a crop, say pump-

kins from his field. A social scientist may be interested in estimating the total number

of drug users in a country. A mahout may be interested in knowing the average diet of

an elephant. A student may be interested in estimating a school’s average GPA per

semester. An employer may be interested in estimating his employees’ total income.

A minister may be interested in knowing the total unemployment rate in a country.

There is no end to estimation problems in everyday life.

In statistical language the term population is applied to any finite or infinite col-

lection of individuals or units. It has displaced the older term universe and is essen-

tially synonymous with aggregate. The study population, or target population, refers

to the collection of units about which one wants to make some inference or extract

some information. The sample population is the population of units from which

samples are drawn. Ideally, the two should coincide, but this is not always possible

or convenient. One may be interested in the average weight of a certain variety of

farm-grown pumpkin; the collection of all such pumpkins is the target population.

However, samples can only be taken from those farms to which an organization or

individual conducting a survey potentially has access; the collection of these pump-

kins constitutes the sample population. Although both of these populations are finite,

they are very large and, for purposes of computation and simplicity of mathematical

expressions, are typically treated as infinite. We will denote the population under

discussion by Ω, and its size by N.
A sample is a selected subset of the population that will be used for making infer-

ence. The organization or listing of the units used to actually draw the sample is

referred to as the frame. One would like this subset to be representative of the target

A New Concept for Tuning Design Weights in Survey Sampling. http://dx.doi.org/10.1016/B978-0-08-100594-1.00001-2
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population, and methods for increasing the likelihood of this happening are an impor-

tant part of the theory of survey sampling. We will denote a sample by s and its size by
n. For example, a collection of a few pumpkins that are ready to eat may form a ran-

dom and representative sample from the target population of interest. A census is a

special case sample. If the entire population is taken as a sample, then the sampling

survey is called a census survey. Table 1.1 shows some of the major differences

between a sample survey and a census.
The variable of interest, or the variable about which we want to draw some infer-

ence, is called a study variable. The value of the ith unit is generally denoted by yi. For
example, the weight of a ripe pumpkin may be a study variable. A variable that has a

direct or indirect relationship to the study variable is called an auxiliary variable. The

value of an auxiliary variable for the ith unit is generally denoted by xi or zi, etc. The
weight of a pumpkin may depend on its circumference, its top size, the fertilizer used,

and irrigation, and so on. These could be regarded as auxiliary variables. The main

differences between a study variable and an auxiliary variable are listed in Table 1.2.

Any numerical quantity or value obtained from all units in a population is called a

parameter. A parameter is an unknown and a fixed quantity. It is generally denoted by

θ. Any function of population values is also considered to be a parameter. Mathemat-

ically, suppose that a populationΩ consists of N units and that the value of the ith unit
is yi. Then any function of all yi values is a parameter, that is,

Parameter¼ θ¼ f y1, y2,…, yNð Þ (1.1)

Table 1.1 Difference between a sample and a census

Factor Sample Census

Cost Less More

Efforts Less More

Time required Less More

Accuracy of measurements More Less

Table 1.2 Difference between a study and auxiliary variable

Factor Study variable Auxiliary variable

Cost More Less

Effort More Less

Availability Current surveys or

experiments

Current or past survey, books,

or journals, etc.

Interest to an investigator More Less

Error in measurements More Less

Sources of error More Fewer

Notation Y X,Z, etc.
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For example, if yi denotes the weight of the ith pumpkin, then the average weight of

all the pumpkins produced on a farm is a parameter, the population mean Y
� �

, and is

given by

Population mean¼ Y¼ 1

N
y1 + y2 +⋯ + yNð Þ (1.2)

In short, a parameter is a fixed and unknown value that applies to an entire population.

We wish to estimate this parameter as precisely as possible by taking a sample from

the population of interest.

Any numerical quantity or value that is obtained from a sample is called a statistic.
A statistic is known from a given sample and varies from sample to sample. Suppose

that a sample s consists of n units and that the value of the ith unit in the sample is

denoted by yi. Any function of sample values, yi, may be considered as an estimator

of a population parameter, that is,

Estimator¼ θ̂¼ f y1, y2,…, ynð Þ (1.3)

In general, θ̂ in a formula form as a function of yi values in a sample is considered as an

estimator of a parameter θ. The numerical value of θ̂ obtained from that formula for-

ming the estimator is called a statistic or an estimate of the parameter θ.
For example, if yi denotes the measured weight of the ith pumpkin in a sample,

then the natural estimator of the population mean, θ¼ Y, is the sample mean,

θ̂¼ yn, given by

Sample mean¼ yn ¼
1

n
y1 + y2 +⋯ + ynð Þ (1.4)

A sample can be selected from a population in many ways. We will assume that the

reader is familiar with various sample selection schemes, such as those found in

Brewer and Hanif (1983), Cochran (1977), Thompson (1997), Lohr (2010), and

Singh (2003).

Assume it is possible to define two statistics θ̂1 and θ̂2 (functions of sample values

only), between which the parameter θ is expected to fall with a probability of 1�αð Þ,
that is,

P θ̂1 < θ< θ̂2
� �¼ 1�αð Þ (1.5)

Then, the interval θ̂1, θ̂2
� �

is called a 1�αð Þ100% confidence interval estimate of θ.
In other words, if we imagine such intervals being constructed from every possible

sample, then the proportion of these intervals that actually contain θ is 1�αð Þ.
Let yi, i¼ 1,2,…,N denote the value of the ith unit in a population Ω. The popu-

lation mean is defined as

Problem of estimation 3



Y¼ 1

N
y1 + y2 +⋯ + yNð Þ¼ 1

N

XN
i¼1

yi (1.6)

and the population total is given by

Y¼ y1 + y2 +⋯ + yNð Þ¼
XN
i¼1

yi ¼NY (1.7)

The rth order central population moment is defined as

μr ¼
1

2N N�1ð Þ
XN
i 6¼j¼1

yi� yj
� �r ¼ 1

N�1

XN
i¼1

yi�Y
� �r

(1.8)

where r¼ 2,3,… is an integer.

If r¼ 2, then μ2 represents the second-order population moment,

μ2 ¼ S2y ¼
1

2N N�1ð Þ
XN
i 6¼j¼1

yi� yj
� �2 ¼ 1

N�1

XN
i¼1

yi�Y
� �2

(1.9)

which is referred to as the population mean squared error.

Note that the population variance is defined as

σ2y ¼
1

N

XN
i¼1

yi�Y
� �2 ¼ N�1ð Þ

N
S2y � S2y (1.10)

for large values of N.
Let yi, i¼ 1,2,…,n denote the value of the ith unit selected in the sample s.
The sample mean is given by

yn ¼
1

n

Xn
i¼1

yi ¼ 1

n

X
i2s

yi (1.11)

The sample variance sy
2 is defined as

s2y ¼
1

n�1

Xn
i¼1

yi� yð Þ2 ¼ 1

2n n�1ð Þ
Xn
i 6¼j¼1

yi� yj
� �2

(1.12)

or equivalently,

s2y ¼
1

n�1

X
i2s

yi� ynð Þ2 ¼ 1

2n n�1ð Þ
X
i 6¼j2s

yi� yj
� �2

(1.13)
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where i 6¼ j2 s means that both the ith and jth units are included in the sample s. Note

that both y1� y2ð Þ2 and y2� y1ð Þ2 appear in the summation.

1.3 Modeling of jumbo pumpkins

On a pumpkin farm, the size of pumpkins may vary from very small to very large when

considering their weights and circumferences. Similar to pumpkins on a farm, we pro-

pose here a statistical model that is able to produce very small to very large values of

an output variable, say Y, for a given value of an input variable, say X. We named such

a model the SJPM. We take the output value from such a model as weight (lbs) of a

pumpkin and input value as circumference (inches) of a pumpkin.

To develop the SJPM, we begin with an assumed deterministic relationship

between the weight (lbs), sayM(X), and circumference (inches), say X, of a pumpkin,

modeled as

M Xð Þ¼ 5:5e0:047X�0:0001X2

(1.14)

whereM(X) is the weight of a pumpkin in the range of 20.59–1124.11 lbs, and X is the

circumference of a pumpkin in the range of 30–190 in. (Figure 1.1).

A graphical representation of the Deterministic Jumbo Pumpkin Model (DJPM) is

given in Figure 1.2.

The proposed SJPM is an extension of the DJPM as

yi ¼M xið Þexp eið Þ (1.15)

Figure 1.1 Jackknifing a Jumbo Pumpkin.
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where ei �N 0, 2ð Þ, that is, ei is normally distributed with a mean of 0 and a standard

deviation of 2.

A simulated population of N¼ 10,000 pumpkins from the SJPM is shown in

Figure 1.3.

The population mean weight of the population generated earlier is

Y¼ 3038:765 lbs with a standard deviation of σy ¼ 20740:06 lbs, and the population

Circumference vs weight
1200.00

1000.00

800.00

600.00

400.00

200.00

0.00
0 50 100 150 200

Figure 1.2 Deterministic Jumbo Pumpkin Model.

A population of  10,000 pumpkins

50 100 150
Circumference (In.)

W
ei

gh
t(

lb
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200,000

400,000

600,000

800,000

1,000,000

1,200,000

Figure 1.3 A population generated by SJPM.
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mean circumference is X¼ 109:9673 in: with a standard deviation of

σx ¼ 46:17808 in:
A graphical representation of a sample s of n¼ 30 pumpkins selected with a simple

random and without replacement sampling (SRSWOR) scheme from the preceding

population is shown in Figure 1.4.

As computed from this particular sample s of n¼ 30 pumpkins, we have sample

mean weight yn ¼ 1559:569lbs with a sample standard deviation of

sy ¼ 5056:591lbs, and a sample mean circumference xn ¼ 131:8182 in: with a sample

standard deviation of sx ¼ 41:9988 in:

1.3.1 R code

The following R code, PUMPKIN1.R, implements the proposed SJPM.

# R CODE USED FOR SJPM MODEL
# PROGRAM PUMPKIN1.R

set.seed(123456)

N<-10000

x<-runif(N, min¼30, max¼190)

m<-5.5*(exp(0.047*x - 0.0001*x*x))

z<-rnorm(N, 0, 2)

Circumference (in.)

W
ei

gh
t (

lb
s)

50 100 150

A sample of  30 pumpkins

0

5000

10,000

15,000

20,000

25,000

Figure 1.4 Sample representation from SJPM.
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y<-m*exp(z)

mean(x)->XB; mean(y)->YB

sqrt(var(x))->Sx; sqrt(var(y))->Sy

cbind(XB,YB, Sx, Sy)

plot(x,y,main¼"A population of 10000 pumpkins",

xlab¼"Circumference (Inches)",ylab¼"Weight (lbs)")

#––––––––––––––––––––––––––––––––––––––––––

n<-30

us<-sample(N,n)

xs<-x[us]; ys<-y[us]

mean(xs)->xm; mean(ys)->ym

sqrt(var(xs))->sx; sqrt(var(ys))->sy

cbind(xm,ym, sx, sy)

plot(xs,ys,main¼"A sample of 30 pumpkins",

xlab¼"Circumference (Inches)",ylab¼"Weight (lbs)")

1.4 The concept of jackknifing

The Quenouille (1956) method of bias reduction, popularly known as the jackknife

procedure, has been successfully applied for estimating the variance of estimators.

Tukey (1958) was the first to use the jackknife technique to estimate the variance of

an estimator. Among others, Arnab and Singh (2006) have used it to estimate the

variance of the ratio estimator in the presence of nonresponse. Farrell and Singh

(2010) discussed the importance of jackknifing in survey sampling. Here we review

the concept of jackknifing in a way that should be understandable to the interested

layperson.

Suppose θ̂1, θ̂2,…, θ̂n are independently distributed random variables with

E θ̂i
� �¼ θ for all i2 s (1.16)

Suppose θ̂ is an estimator of a parameter θ, which is based on a sample of size n
defined as

θ̂¼ 1

n

Xn
i¼1

θ̂i (1.17)

Then the estimator of the variance of the estimator θ̂ takes the form

v̂ θ̂
� �¼ 1

n n�1ð Þ
Xn
i¼1

θ̂i� θ̂
� �

2 (1.18)

For a given sample s of size n, let θ̂ jð Þ denote the value of the estimator based on the

sample of size n�1ð Þ that excludes the jth unit, that is,
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θ̂ jð Þ ¼ 1

n�1

Xn
i 6¼jð Þ¼1

θ̂i (1.19)

Finally, let the jackknifed estimator of θ be given by

θ̂Jack ¼ 1

n

Xn
j¼1

θ̂ jð Þ (1.20)

Then the standard jackknife estimator of variance of the estimator θ̂ is given by

v̂Jack θ̂
� �¼ n�1

n

Xn
j¼1

θ̂ jð Þ � θ̂Jack
� �2

(1.21)

Sometimes it is more convenient to use another form of the jackknife estimator of the

variance of θ̂, given by

v̂Jack θ̂
� �¼ n�1

n

Xn
j¼1

θ̂ jð Þ � θ̂
� �2

(1.22)

For example, assume

θ̂¼ yn ¼
1

n

Xn
i¼1

yi (1.23)

is an estimator of the population mean Y under simple random and with replacement

sampling (SRSWR) scheme.

Then, we have

θ̂ jð Þ¼ yn jð Þ¼ 1

n�1

Xn
i 6¼jð Þ¼1

yi (1.24)

denote the estimator of the population mean Y obtained by dropping the jth unit from
the sample.

Clearly, we can write

θ̂ jð Þ¼ yn jð Þ¼ 1

n�1

Xn
i 6¼jð Þ¼1

yi ¼ 1

n�1

Xn
i¼1

yi� yj

" #
¼ 1

n�1
nyn� yj
� �

¼ 1

n�1
nyn� yj� yn

� �� yn
� �¼ 1

n�1
n�1ð Þyn� yj� yn

� �� �
¼ yn�

1

n�1
yj� yn
� �

(1.25)
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Also from Equation (1.20) we have

θ̂Jack ¼ 1

n

Xn
j¼1

yn jð Þ¼ 1

n

Xn
j¼1

1

n�1

Xn
i 6¼jð Þ¼1

yi

2
4

3
5

¼ 1

n n�1ð Þ
Xn
j¼1

Xn
i 6¼jð Þ¼1

yi ¼ n n�1ð Þ
n n�1ð Þyn ¼ yn ¼ θ̂

(1.26)

Therefore the jackknife estimator of variance of θ̂¼ yn is given by

v̂Jack ynð Þsrswr ¼
n�1ð Þ
n

Xn
j¼1

yn jð Þ� ynð Þ2

¼ n�1ð Þ
n

Xn
j¼1

yn�
1

n�1ð Þ yj� yn
� �� �

� yn

� 	2

¼ s2y
n

(1.27)

where

s2y ¼
1

n�1ð Þ
Xn
i¼1

yi� ynð Þ2 (1.28)

It is easy to verify that the expected value of v̂Jack ynð Þsrswr is

E v̂Jack ynð Þsrswr
� �¼E

s2y
n

" #
¼ σ2y

n
(1.29)

So under the SRSWR scheme, v̂Jack ynð Þsrswr is an unbiased estimator of variance of the

sample mean given by

V ynð Þsrswr ¼
σ2y
n

(1.30)

where

σ2y ¼
1

N

XN
i¼1

yi�Y
� �2

(1.31)

is called the finite population variance.
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The jackknife technique provides a good estimate of variance under SRSWR

scheme, but for other sampling schemes we need to adjust it to obtain a truly unbiased

estimator of variance. For example, under the SRSWOR scheme, the variance of the

sample mean yn is given by

V ynð Þsrswor ¼
1� fð Þ
n

S2y (1.32)

where f ¼ n=N is called the finite population correction factor and

S2y ¼
1

N�1

XN
i¼1

yi�Y
� �2

(1.33)

is called the population mean squared error.

Thus, for the SRSWOR scheme, an unbiased jackknife estimator of the variance of

the sample mean, V ynð Þsrswor, is given by

v̂Jack ynð Þsrswor ¼
1� fð Þ n�1ð Þ

n

Xn
j¼1

yn jð Þ� ynð Þ2 (1.34)

Observe the difference between jackknifing a sample mean for the SRSWR scheme

versus the SRSWOR scheme. The estimator of variance needs to be adjusted by a fac-

tor of 1� fð Þ for the SRSWOR scheme to obtain an unbiased estimator of variance.

Note that it is not always possible to adjust the jackknife estimator of variance to make

it unbiased for other sampling schemes available in the literature. A simple example is

the case of a two-phase sampling scheme described by Sitter (1997). In the next sec-

tion, we will investigate jackknifing the sample mean in detail.

1.5 Jackknifing the sample mean

Consider a sample s of n units is taken with the SRSWR scheme from a population.

The values of the study variable yi, i¼ 1,2,…,n, are noted, such that E yið Þ¼ Y,

V yið Þ¼ σ2y and Cov yi, yj
� �¼ 0 for i 6¼ j.

Let

yn ¼
1

n

Xn
i¼1

yi (1.35)

denote the sample mean.

Obviously, the jackknife estimator of the population mean is given by

yJack ¼
1

n

Xn
j¼1

yn jð Þ (1.36)
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where

yn jð Þ¼ nyn� yj
n�1

(1.37)

Taking the expected value of yn jð Þ in Equation (1.37) we find

E yn jð Þf g¼E
nyn� yj
n�1

� 	
¼ nY�Y

n�1

� 	
¼ Y (1.38)

The variance of the jth jackknife estimator, yn jð Þ, is given by

V yn jð Þf g¼V
nyn� yj
n�1

� 	

¼ 1

n�1ð Þ2 n2V ynð Þ+V yj
� ��2nCov yn, yj

� �� �

¼ 1

n�1ð Þ2 n2
σ2y
n
+ σ2y �2n

σ2y
n

" #

¼ σ2y
n�1ð Þ

(1.39)

The covariance between the two jackknife estimators yn jð Þ and yn kð Þ is given by

Cov yn jð Þ,yn kð Þf g¼Cov
nyn� yj
n�1ð Þ ,

nyn� yk
n�1ð Þ

� 	

¼ n2

n�1ð Þ2Cov yn, ynð Þ� n

n�1ð Þ2Cov yn, ykð Þ

� n

n�1ð Þ2Cov yn, yj
� �

+
1

n�1ð Þ2Cov yj, yk
� �

¼ n2

n�1ð Þ2
σ2y
n

 !
� n

n�1ð Þ2
σ2y
n

 !

� n

n�1ð Þ2
σ2y
n

 !
+

1

n�1ð Þ2 0ð Þ

¼ n

n�1ð Þ2�
1

n�1ð Þ2�
1

n�1ð Þ2
" #

σ2y

¼ n�2

n�1ð Þ2
" #

σ2y

(1.40)
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The variance of the jackknife estimator yJack is

V yJackð Þ¼V
1

n

Xn
j¼1

yn jð Þ
" #

¼ 1

n2

Xn
j¼1

V yn jð Þf g+
Xn

j 6¼kð Þ¼1

Cov yn jð Þ,yn kð Þf g
2
4

3
5

¼ 1

n2

Xn
j¼1

σ2y
n�1ð Þ +

Xn
j6¼k¼1

n�2ð Þ
n�1ð Þ2 σ

2
y

" #

¼ 1

n2

Xn
j¼1

1

n�1ð Þ +
Xn
j6¼k¼1

n�2ð Þ
n�1ð Þ2

" #
σ2y

¼ 1

n2
n

n�1ð Þ +
n n�1ð Þ n�2ð Þ

n�1ð Þ2
" #

σ2y ¼
σ2y
n

(1.41)

Thus, the jackknife estimator yJack remains unbiased with variance

V yJackð Þ¼ σ2y
n

(1.42)

Alternatively, the average jackknife estimator is given by

yJack ¼
1

n

Xn
j¼1

yn jð Þ¼ 1

n

Xn
j¼1

nyn� yj
n�1

� 	
¼ yn (1.43)

It is clear that

V yJackð Þ¼V ynð Þ¼ σ2y
n

(1.44)

For the SRSWR scheme, the jackknife estimator of the variance of the sample mean yn
is given by

v̂ yJackð Þ¼ n�1ð Þ
n

Xn
j¼1

yn jð Þ� yJackf g2 (1.45)

Problem of estimation 13



1.6 Doubly jackknifed sample mean

Note that

yJack ¼
1

n

Xn
j¼1

yn jð Þ

¼ 1

n

Xn
j¼1

nyn� yj
n�1

� �

¼ 1

n

n2yn�nyn
n�1

� �
¼ yn

(1.46)

Also note that

v̂ yJackð Þ¼ n�1ð Þ
n

Xn
j¼1

yn jð Þ� yJackf g2

¼ n�1ð Þ
n

Xn
j¼1

nyn� yj
n�1

� yn

� �2

¼ n�1ð Þ
n

Xn
j¼1

nyn� yj
� �� n�1ð Þyn

n�1

� �2

¼ n�1ð Þ
n

Xn
j¼1

yj� yn
n�1

� �2

¼ 1

n n�1ð Þ
Xn
j¼1

yj� yn
� �2

¼ s2y
n

(1.47)

Let

y
jð Þ

Jack ¼
nyJack� yn jð Þ

n�1
¼

X
j2s

yn jð Þ� yn jð Þ

n�1
(1.48)

Then we define the doubly jackknifed estimator of the population mean as

yJack ¼
1

n

X
j2s

y
jð Þ

Jack (1.49)
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Now yJack in Equation (1.49) can be written as

yJack ¼
1

n

X
j2s

y
jð Þ

Jack

¼ 1

n

X
j2s

X
j2s

yn jð Þ� yn jð Þ

n�1

2
664

3
775

¼ 1

n

n
X
j2s

yn jð Þ�
X
j2s

yn jð Þ

n�1

2
664

3
775

¼ 1

n

X
j2s

yn jð Þ

¼ yn

(1.50)

We also define an estimator of the variance of the doubly jackknifed estimator as

^̂v yJack
� �¼ n�1ð Þ3

n

X
j2s

y
jð Þ

Jack� yJack

n o2

(1.51)

Now Equation (1.51) can be written as

^̂v yJack
� �¼ n�1ð Þ3

n

X
j2s

y
jð Þ

Jack� yJack

n o2

¼ n�1ð Þ3
n

X
j2s

X
j2s

yn jð Þ� yn jð Þ

n�1
� yn

8>><
>>:

9>>=
>>;

2

¼ n�1ð Þ3
n

X
j2s

X
j2s

nyn� yj
n�1


 �
� nyn� yj

n�1


 �

n�1
�yn

8>>><
>>>:

9>>>=
>>>;

2

¼ n�1ð Þ3
n

X
j2s

n2yn�2nyn + yj

n�1ð Þ2 � yn

( )2

¼ s2y
n

(1.52)

It shows if we rejackknife (or doubly jackknife) the sample mean, then there is no gain

or loss so long as the estimation of variance is concerned.
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1.7 Jackknifing a sample proportion

Consider a population Ω consisting of N units. Out of them NA are the total number of

units belonging to a group, sayA, of the population. ObviouslyP¼NA=N will be the pro-

portion of units belonging to the group A in the entire population. Assume we selected a

sample s of n units by the SRSWR scheme from the populationΩ. Let yi be an indicator
variable in the sample such that yi ¼ 1 if the ith unit in the sample belongs to groupA, and
yi ¼ 0 otherwise. Then an unbiased estimator of thepopulationproportion,P, is defined as

p̂¼ 1

n

Xn
i¼1

yi (1.53)

The jth jackknifed sample proportion is given by

p̂ jð Þ¼ np̂� yj
n�1

, j¼ 1,2,…,n (1.54)

Obviously, an unbiased and jackknifed estimator of the population proportion, P, is
given by

p̂Jack ¼
1

n

Xn
j¼1

p̂ jð Þ (1.55)

The jackknife estimator of the variance of the estimator of sample proportion is given by

v̂Jack p̂ð Þ¼ n�1ð Þ
n

Xn
j¼1

p̂ jð Þ� p̂f g2 (1.56)

Note that in this case y2i ¼ 1 if ith unit belongs to the group A, and y2i ¼ 0 otherwise.

The estimator (1.56) can be written as

v̂Jack p̂ð Þ¼ n�1ð Þ
n

Xn
j¼1

p̂ jð Þ� p̂f g2

¼ n�1ð Þ
n

Xn
j¼1

np̂� yj
n�1

� p̂

� 	2
¼ n�1ð Þ

n

Xn
j¼1

np̂� yj� n�1ð Þp̂
n�1

� 	2

¼ n�1ð Þ
n

Xn
j¼1

np̂� yj�np̂+ p̂

n�1

� 	2
¼ n�1ð Þ

n

Xn
j¼1

�yj + p̂

n�1

� 	2

¼ 1

n n�1ð Þ
Xn
j¼1

�yj + p̂
� �2 ¼ 1

n n�1ð Þ
Xn
j¼1

y2j + p̂
2�2p̂yj

h i

¼ 1

n n�1ð Þ
Xn
j¼1

y2j + np̂
2�2p̂

Xn
i¼1

yj

" #

¼ 1

n n�1ð Þ np̂ + np̂2�2np̂2
� �¼ 1

n�1ð Þ p̂� p̂2
� �

¼ p̂ 1� p̂ð Þ
n�1

(1.57)
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Obviously,

E v̂Jack p̂ð Þð Þ¼P 1�Pð Þ
n

(1.58)

Thus, the jackknife estimator of variance, v̂Jack p̂ð Þ, is an unbiased estimator of the var-

iance of the sample proportion for the SRSWR scheme. A recent contribution in esti-

mating population proportions by a method of calibration can be had from Martinez,

Arcos, Martinez, and Singh (2015).

1.8 Jackknifing of a double suffix variable sum

Let Vij, i 6¼ j¼ 1,2,…,n; be a random variable, and let

V¼
X
i6¼j

X
2s

Vij (1.59)

Note that

X
i 6¼j

X
2s

V�Vij

n n�1ð Þ�1

� 	
¼ 1

n n�1ð Þ�1
n n�1ð ÞV�V½ � ¼V (1.60)

These results will remain useful in this monograph.

1.9 Frequently asked questions

Q1: Why did the authors choose this particular artificial Statistical Jumbo Pumpkin

Model (SJPM)?

A1: It is the authors’ choice!

Q2: Why did the authors not use real data?

A2: Real data has a lot of issues!

Q3: Is this SJPM unique?

A3: No, it was chosen by the authors. One can change the parameters, such as the population

size and standard deviation, to any other suitable values.

Q4: Why R?

A4: R is free; anybody can use it.

Q5: Can people ask the authors questions?

A5: Sure!
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1.10 Exercises

Exercise 1.1 Discuss the concept of jackknifing a sample. How can it be used to esti-

mate the variance of the sample mean?

Exercise 1.2 Run the program PUMPKIN1.R to generate a sample of 50 pumpkins

from the artificial SJPM. Plot weight versus circumference of the pumpkins, and com-

ment on the shape of the graph.

Exercise 1.3 Imagine a situation where you can apply an SRSWOR scheme to esti-

mate the population mean of a study variable. Create such a population using a linear

or nonlinear model with (or without) the use of an auxiliary variable. From the pop-

ulation you generated, select a sample of 30 units using an SRSWOR scheme, and

apply the concept of jackknifing to estimate the variance of the sample mean of

the study variable. Construct the 95% confidence interval estimate of the population

mean, and interpret your findings.

Exercise 1.4 (a) Let

μ̂3 ¼
1

n�1ð Þ
Xn
i¼1

yi� ynð Þ3 (1.61)

be an estimator of the third moment about the population mean Y defined as

μ3 ¼
1

N

XN
i¼1

yi�Y
� �3

(1.62)

Consider

μ̂3 Jackð Þ ¼ c
Xn
j¼1

yn jð Þ� ynð Þ3 (1.63)

where yn jð Þ¼ nyn� yj
n�1

has its usual meaning. Determine c such that μ̂3 Jackð Þ can be

used as an estimator of the third moment μ3.
(b) Generate a sample of 50 pumpkins using the program PUMPKIN1.R from the

artificial SJPM. Calculate the value of

μ̂3 ¼
1

n�1ð Þ
Xn
i¼1

yi� ynð Þ3 (1.64)

and

μ̂3 Jackð Þ ¼ c
Xn
j¼1

yn jð Þ� ynð Þ3 (1.65)

for the value of c you determined in (a). Comment on your findings.
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Exercise 1.5 (a) Let

μ̂r ¼
1

n�1ð Þ
Xn
i¼1

yi� ynð Þr (1.66)

where r� 2, be an estimator of the rth central moment about the population mean Y
defined as

μr ¼
1

N

XN
i¼1

yi�Y
� �r

(1.67)

Let

β̂1 ¼
μ̂3

μ̂3=22

(1.68)

be an estimator of the population coefficient of skewness defined as

β1 ¼
μ3

μ3=22

(1.69)

Let

β̂1 Jackð Þ ¼ c
Xn
j¼1

yn jð Þ� ynð Þ3
Xn
j¼1

yn jð Þ� ynð Þ
2

" #� 3=2ð Þ
(1.70)

Determine the constant c such that β̂1 Jackð Þ can be considered as a jackknife estimator

of β1.
(b) Generate a sample of 50 pumpkins using the program PUMPKIN1.R from the

artificial SJPM. Calculate the value of β̂1 and β̂1 Jackð Þ for the value of c you determined

in (a). Determine a numerical value of c such that β̂1 Jackð Þ ¼ β̂1, and comment on your

findings.

Exercise 1.6 (a) Let

μ̂r ¼
1

n�1ð Þ
Xn
i¼1

yi� ynð Þr (1.71)

where r� 2, be an estimator of the rth central moment about the population mean Y
defined as

μr ¼
1

N

XN
i¼1

yi�Y
� �r

(1.72)
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Let

ĉy ¼
ffiffiffiffiffi
μ̂2

p
=yn (1.73)

be an estimator of the population coefficient of variation defined as

cy ¼ ffiffiffiffiffi
μ2

p
=Y (1.74)

Let

ĉy Jackð Þ ¼ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
j¼1

yn jð Þ� ynð Þ2
vuut ,Xn

j¼1

yn jð Þ (1.75)

Determine the constant k such that ĉy(Jack) can be considered as a jackknife

estimator of cy.
(b) Take a sample of 40 pumpkins using the program PUMPKIN1.R from the arti-

ficial SJPM. Calculate the value of ĉy and ĉy(Jack) for the value of k you determined in

(a). Compute a value of k such that ĉy ¼ ĉy Jackð Þ.

Exercise 1.7 (a) Let

μ̂r ¼
1

n�1ð Þ
Xn
i¼1

yi� ynð Þr (1.76)

where r� 2, be an estimator of the rth central moment about the population mean Y
defined as

μr ¼
1

N

XN
i¼1

yi�Y
� �r

(1.77)

Let

β̂2 ¼ μ̂4=μ̂
2
2 (1.78)

be an estimator of the population coefficient of kurtosis defined as

β2 ¼ μ4=μ
2
2 (1.79)

Let

β̂2 Jackð Þ ¼ c
Xn
j¼1

yn jð Þ� ynð Þ4
Xn
j¼1

yn jð Þ� ynð Þ
2

" #�2

(1.80)
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Determine the constant c such that β̂2 Jackð Þ can be considered as a jackknife estimator

of β2.
(b) Take a sample of 20 pumpkins using the program PUMPKIN1.R from the

SJPM. Calculate β̂2 and β̂2 Jackð Þ for the value of c found in (a). Determine c such that

β̂2 Jackð Þ ¼ β̂2.

(c) Extend the preceding suggested method of jackknifing to estimate the value of

kurtosis to the concept of two-phase sampling. Compare your method with the esti-

mator of kurtosis suggested by Gamrot (2012).

Exercise 1.8 (a) For a sample s of n observations taken by the SRSWR scheme, con-

sider the average uncorrected total sum of squares (TSS) given by

TSS¼ 1

n

Xn
i¼1

y2i (1.81)

After dropping the jth unit from the sample, the jackknifed average of the uncorrected

TSS is defined as

TSS jð Þ¼ n TSSð Þ� y2j
n�1

, for j¼ 1,2,…,n (1.82)

Expand the following squared term in terms of the central moments about the sample

mean:

n�1ð Þ
Xn
j¼1

TSS jð Þ�1

n

Xn
j¼1

TSS jð Þ
" #2

(1.83)

Compare your findings with

μ̂4 +
n�1ð Þ
n

μ̂42 + 4y
2
nμ̂2 + 4ynμ̂3�

2 n�1ð Þ
n

μ̂32 (1.84)

where

μ̂r ¼
1

n�1ð Þ
Xn
i¼1

yi� ynð Þr (1.85)

with r being any nonnegative integer, and the sample mean being yn ¼ n�1
Xn
i¼1

yi.

(b) Generate a sample of 30 pumpkins, using the program PUMPKIN1.R from the

artificial SJPM. Calculate the numerical values of

n�1ð Þ
Xn
j¼1

TSS jð Þ�1

n

Xn
j¼1

TSS jð Þ
" #2

(1.86)
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and

μ̂4 +
n�1ð Þ
n

μ̂42 + 4y
2
nμ̂2 + 4ynμ̂3�

2 n�1ð Þ
n

μ̂32 (1.87)

Are they equal? Justify your answer.

Exercise 1.9 Let

μ̂r ¼
1

n�1ð Þ
Xn
i¼1

yi� ynð Þr (1.88)

where r� 2 is an integer, be an estimator of the rth central moment about the popu-

lation mean Y, given by

μr ¼
1

N

XN
i¼1

yi�Y
� �r

(1.89)

Consider

μ̂r Jackð Þ ¼ c
Xn
j¼1

yn jð Þ� ynð Þr (1.90)

where yn jð Þ¼ nyn� yj
n�1

has its usual meaning. Determine c such that μ̂r Jackð Þ can be used

as a jackknife estimator of the rth central moment μr.
Hint: Finucan, Galbraith, and Stone (1974).

Exercise 1.10 Consider a farmer growing organic pumpkins and chemically treated

pumpkins. A buyer took a random sample of n organic pumpkin and another random

sample ofm treated pumpkins, both using SRSWR schemes. Let yn and ym be the sam-

ple mean weights of the first and second samples, respectively.

Let

ypooled ¼
nyn +mym
n +m

(1.91)

be the pooled estimator of the pooled population mean weight, Y, of both types of

pumpkins on the farm.

Let

ypooled j, kð Þ¼ n�1ð Þyn jð Þ+ m�1ð Þym kð Þ
n+m�2

(1.92)

be a pooled jackknifed estimator of the population mean after dropping the jth organic
pumpkin and the kth treated pumpkin from the pooled sample of m + nð Þ pumpkins, for

j¼ 1,2,…,n and k¼ 1,2,…,m. If possible, develop a jackknife estimator of variance
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of the pooled estimator of the pooled population mean. If not, discuss the limitations of

jackknifing in Equation (1.92). Support your findings by simulation.

Exercise 1.11 Geometric mean

Consider a pumpkin farmer who is facing a huge infestation of insects on his farm. The

growth of the number of insects seems to be following an exponential distribution. Let

y1,y2,…,yn be the number of insects observed by the farmer on his n random visits to

his farm. An estimator of the geometric mean of the number of insects on the farm is

given by

Ĝ¼
Yn
i¼1

yi

 !1=n

(1.93)

Let

Ĝ jð Þ¼
Yn

i 6¼jð Þ¼1

yi

0
@

1
A

1= n�1ð Þ

, j¼ 1,2,…,n (1.94)

denote the jackknife estimator of the population geometric mean G after the jth unit is
dropped from the sample. Then the average jackknife geometric mean estimator is

given by

ĜJack ¼ 1

n

Xn
j¼1

Ĝ jð Þ (1.95)

Assume an estimator of the variance of the jackknifed sample geometricmean is given by

v̂ ĜJack

� �¼Xn
j¼1

cj Ĝ jð Þ� ĜJack

� �2
(1.96)

Determine, if possible, the values of weights cj such that v̂ ĜJack

� �
can be considered as

an estimator of the variance of the geometric mean estimator. Support your views with

a simulation study.

Exercise 1.12 Harmonic mean

A pumpkin farmer has a pumpkin pie factory and several vehicles that deliver his

product to several destinations within the United States. Let y1,y2,…,yn be the deliv-
ery times (in minutes) required by a random sample of nworkers using those vehicles.
An estimator of the harmonic mean delivery time is given by

Ĥ¼ n
Xn
i¼1

y�1
i

 !�1

(1.97)
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Let

Ĥ jð Þ¼ n�1ð Þ
Xn

i 6¼jð Þ2s
y�1
i

0
@

1
A

�1

, j¼ 1,2,…,n (1.98)

denote the jackknife estimator of the population harmonic meanHwhere the jth unit is
dropped from the sample. Then the average jackknife estimator of the harmonic mean

is given by

ĤJack ¼ 1

n

Xn
j¼1

Ĥ jð Þ (1.99)

Assume an estimator of the variance of the averaged jackknifed sample harmonic

mean is given by

v̂ ĤJack

� �¼Xn
j¼1

cj Ĥ jð Þ� ĤJack

� �2
(1.100)

Determine, if possible, the values of weights cj such that v̂ ĤJack

� �
can be considered as

an estimator of the variance of the harmonic mean estimator. Support your findings by

a simulation study.

Exercise 1.13 (a) Suppose that a pumpkin farmer is interested in selling his pumpkins

by weight. Let y1,y2,…,yn be the prices in dollars for the n pumpkins, each pumpkin

randomly selected by a buyer. Let y 1ð Þ � y 2ð Þ �⋯� y nð Þ denote the n prices in ascend-
ing order. An estimator of the median price of pumpkins is given by

M̂y ¼
Value of y at the

n+ 1

2
th position if n is odd

Average of y values at
n

2
th and

n

2
+ 1


 �
th positions if n is even

8><
>:

(1.101)

Let

M̂y jð Þ¼

Value of y at the
n

2
th position if n�1ð Þ is odd

Average of y values at
n�1

2
th

and
n + 1

2


 �
th positions if n�1ð Þ is even

8>>>>><
>>>>>:

, j¼ 1,2,…,n

(1.102)
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denote the jackknife estimator of the population medianMy after dropping the jth unit
from the sample. Then, the average jackknife estimator of the median is given by

M̂y Jackð Þ ¼
1

n

Xn
j¼1

M̂y jð Þ (1.103)

Assume an estimator of the variance of the jackknifed sample median is given by

v̂ M̂y Jackð Þ
� �¼Xn

j¼1

cj M̂y jð Þ� M̂y Jackð Þ
� �2

(1.104)

Determine, if possible, the values of weights cj such that v̂ M̂y Jackð Þ
� �

can be considered

as an estimator of the variance of the sample median. Support your findings with a

simulation study.

(b) Extend the results to estimate the first and third quartiles. Suggest a jackknifed

estimator of Bowley’s coefficient of skewness. Compare your estimator with the esti-

mator by Singh, Solanki, and Singh (2015) through a simulation study.

Exercise 1.14 Consider a farmer who is growing organic pumpkins and chemically

treated pumpkins. Let Y1 be the population mean weight (lbs) of all N1 organic pump-

kins and Y2 be the population mean weight (lbs) of all N2 treated pumpkins. Then the

pooled population mean weight of both types of pumpkins is given by

Y¼N1Y1 +N2Y2

N1 +N2

(1.105)

Let σ2y1 ¼N�1
1

XN1

i¼1

y1i�Y1

� �2
and σ2y2 ¼N�1

2

XN2

i¼1

y2i�Y2

� �2
be the population variances

of the organic and treated pumpkins, respectively. The pooled population variance of

the weight of both types of pumpkins is given by

σ2y ¼
1

N1 +N2

N1 σ2y1 + Y1�Y
� �2n o

+N2 σ2y2 + Y2�Y
� �2n oh i

(1.106)

The farmer selected two independent samples of sizes n1 and n2 of the organic and

treated pumpkins with the SRSWR scheme. Let y1 be the sample mean weight

(lbs) of the n1 organic pumpkins and y2 be the sample mean weight (lbs) of the n2
treated pumpkins. Then the pooled sample mean weight of both types of pumpkins

is given by

y¼ n1y1 + n2y2
n1 + n2

(1.107)
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Let s2y1 ¼ n1�1ð Þ�1
Xn1
i¼1

y1i� y1ð Þ2 and s2y2 ¼ n2�1ð Þ�1
Xn2
i¼1

y2i� y2ð Þ2 be the sample

variances of weight of the organic and treated pumpkins, respectively. Using this sam-

ple information, suggest a jackknifed estimator of the pooled population variance.

Support your estimator through a simulation study or otherwise.

Exercise 1.15 Expand the following formula:

n�1ð Þ
2n

X
i 6¼j

X
2s

yn ið Þ� yn jð Þ½ �2 (1.108)

where yn ið Þ and yn jð Þ are, respectively, the jackknifed sample means after removing

the ith unit and jth unit.
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2Tuning of jackknife estimator

2.1 Introduction

In this chapter, we introduce a new methodology for tuning the jackknife technique in

survey sampling that helps to estimate the population mean/total and that also esti-

mates the variance of the resultant estimator. This new methodology is supported with

a model used to estimate the average weight of pumpkins with the help of known cir-

cumference as an auxiliary variable. The possibility of tuning in cases of nonresponse,

sensitive variable, geometric mean, and harmonic mean are also discussed at the end

of the chapter, in the form of exercises.

2.2 Notation

Let yi and xi, i¼ 1,2,…,N be the values of the study variable and auxiliary variable,

respectively, of the ith unit in the populationΩ. Here we consider the problem of esti-

mating the population mean

�Y¼N�1
XN
i¼1

yi (2.1)

by assuming that the population mean

�X¼N�1
XN
i¼1

xi (2.2)

of the auxiliary variable is known.

Let (yi,xi), i¼ 1,2,…,n be the values of the study variable and auxiliary variable of
the ith unit in the sample s drawn using a simple random sampling (SRS) scheme.

Let

�yn ¼ n�1
X
i2s

yi (2.3)

and

�xn ¼ n�1
X
i2s

xi (2.4)

be the sample means for the study variable and the auxiliary variable, respectively.
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2.3 Tuning with a chi-square type distance function

The newly tuned jackknife estimator of the population mean �Y is defined as

�yTuned csð Þ ¼
X
j2s

n�1ð Þ2 �wn jð Þ� n�2ð Þ
n o

�yn jð Þ
h i

(2.5)

where

�yn jð Þ¼ n�yn� yj
n�1

(2.6)

is the jackknifed sample mean of the study variable and is obtained by removing the jth
unit from the sample s, and

�wn jð Þ¼ 1�wj

n�1
(2.7)

is the tuned jackknifed weight of the calibrated weights wj such that

X
j2s

wj ¼ 1 (2.8)

and

X
j2s

wjxj ¼ �X (2.9)

Note that the calibration constraint (2.9) is due to Deville and Särndal (1992), and the

constraint (2.8) is due to Owen (2001). Now, a set of newly tuned jackknife weights

�wn jð Þ should satisfy the following two tuning constraints:

X
j2s

�wn jð Þ¼ 1 (2.10)

and

X
j2s

�wn jð Þ�xn jð Þ¼
�X�n 2�nð Þ�xn

n�1ð Þ2 (2.11)

where

�xn jð Þ¼ n�xn� xj
n�1

(2.12)

is the sample mean of the auxiliary variable obtained by removing the jth unit from the

sample s.
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Note the following results:

wj ¼ n�wn� n�1ð Þ�wn jð Þ (2.13)

xj ¼ n�xn� n�1ð Þ�xn jð Þ (2.14)

and

�wn ¼ 1

n

X
j2s

wj ¼ 1

n
(2.15)

We consider tuning the calibrated weights �wn jð Þ by minimizing the following

modified chi-square type distance function defined as

2�1n
� �X

j2s
q�1
j 1� n�1ð Þ �wn jð Þ�n�1
� �2

(2.16)

where qj are arbitrarily chosen weights, subject to the tuning constraints (2.10) and

(2.11). Note that this is similar to the chi-square type distance function due to

Deville and Särndal (1992), which, in particular, takes the form

2�1n
� �X

j2s
q�1
j wj�n�1
� �2

(2.17)

Obviously the Lagrange function is given by

L1 ¼ 2�1n
� �X

j2s
q�1
j 1� n�1ð Þ�wn jð Þ�n�1
� �2

�λ0
X
j2s

�wn jð Þ�1

( )
� λ1

X
j2s

�wn jð Þ�xn jð Þ� n�1ð Þ�2 �X�n 2�nð Þ�xnð Þ
( )

(2.18)

where λ0 and λ1 are the Lagrange multiplier constants.

On setting

@L1
@ �wn jð Þ¼ 0 (2.19)

we have

�wn jð Þ¼ 1

n
1 +

1

n�1ð Þ2 qjλ0 + λ1qj�xn jð Þ� �( )
(2.20)
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Using Equation (2.20) in Equations (2.10) and (2.11), a set of normal equations to find

the optimum values of λ0 and λ1 is given by

X
j2s

qj,
X
j2s

qj�xn jð ÞX
j2s

qj�xn jð Þ,
X
j2s

qj �xn jð Þf g2

2
664

3
775 λ0

λ1

" #
¼

0

n�1ð Þ2 n �X�n 2�nð Þ�xnð Þ
n�1ð Þ2 �

X
j2s

�xn jð Þ
( )2

64
3
75

(2.21)

From this we determine that the newly tuned jackknife weights �wn jð Þ are given by

�wn jð Þ¼ 1

n
1 +Δj

n �X�n 2�nð Þ�xnð Þ
n�1ð Þ2 �

X
j2s

�xn jð Þ
( )" #

(2.22)

where

Δj ¼ qj

�xn jð Þ
X
j2s

qj

 !
�
X
j2s

qj�xn jð Þ

X
j2s

qj

 ! X
j2s

qj �xn jð Þð Þ2
( )

�
X
j2s

qj�xn jð Þ
( )2

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

(2.23)

Thus utilizing the chi-square (cs) type distance function (2.16), the newly tuned jack-

knife estimator (2.5) of the population mean becomes

�yTuned csð Þ¼
n�1ð Þ2
n

X
j2s

�yn jð Þ+β̂Tuned csð Þ
n �X�n 2�nð Þ�xnð Þ

n�1ð Þ2 �
X
j2s

�xn jð Þ
( )" #

� n�2ð Þ
X
j2s

�yn jð Þ

(2.24)

or, equivalently

�yTuned csð Þ ¼ �yn + β̂Tuned csð Þ �X� �xnð Þ (2.25)

where

β̂Tuned csð Þ ¼

X
j2s

qj

 ! X
j2s

qj�xn jð Þ�yn jð Þ
 !

�
X
j2s

qj�yn jð Þ
 ! X

j2s
qj�xn jð Þ

 !

X
j2s

qj

 ! X
j2s

qj �xn jð Þð Þ2
 !

�
X
j2s

qj�xn jð Þ
 !2

2
666664

3
777775

(2.26)
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It can be easily seen that the estimator �yTuned csð Þ for the case qj ¼ 1 becomes

�yTuned csð Þ ¼ �yn + β̂ols �X� �xnð Þ (2.27)

where

β̂ols ¼
n
Xn
i¼1

xiyi�
Xn
i¼1

xi

 ! Xn
i¼1

yi

 !

n
Xn
i¼1

x2i �
Xn
i¼1

xi

 !2
(2.28)

which is exactly the same linear regression estimator of population mean due to

Hansen, Hurwitz, and Madow (1953), which was later rediscovered by Singh

(2003). Therefore, it may be said that the proposed newly tuned estimation method-

ology is as efficient as the linear regression estimator for the choice of qj ¼ 1 and

hence is always more efficient than the sample mean estimator. The major motivation

and benefit of the proposed newly tuned estimation methodology is that it is computer

friendly for estimating the variance of the resultant estimator through the doubly

jackknifed method.

2.3.1 Problem of undercoverage

Let us recall that the main problem in survey sampling is estimation of the variance of

an estimator of a population parameter. Assuming the reader’s familiarity with stan-

dard survey sampling notation, let us now focus on the well-known linear regression

estimator of the population mean �Y, defined as

�ylr ¼ �yn + β̂ �X� �xnð Þ (2.29)

where β̂¼ sxy
s2x

is the estimator of the regression coefficient. Then for simple random

and with replacement (SRSWR) sampling, the variance of the linear regression esti-

mator may be approximated as

V �ylrð Þ¼ 1

n
σ2y 1�ρ2xy

� �
(2.30)

where σ2y ¼
1

N

XN
i¼1

yi� �Yð Þ2 and ρxy ¼
σxy
σxσy

is the population correlation coefficient,

with σxy ¼ 1

N

XN
i¼1

yi� �Yð Þ xi� �Xð Þ being the population covariance between the two

variables.
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One way to estimate the variance in Equation (2.30) is to replace the parameters

with their sample estimates to get an estimator of V �ylrð Þ as

v̂ �ylrð Þ¼ 1

n
s2y 1� r2xy

� �
(2.31)

where rxy ¼ sxy
sxsy

is an estimator of the population correlation coefficient ρxy. One can

use the estimator of variance in Equation (2.31) to construct a 1�αð Þ100% confidence

interval estimate as

�ylr� tα=2 df¼ n�1ð Þ� � ffiffiffiffiffiffiffiffiffiffiffi
v̂ �ylrð Þ

p
(2.32)

We used degree of freedom (df ) equal to n�1, that is df¼ n�1, to investigate the

effect of the estimator of variance on the constructed confidence interval estimates by

assuming that only one parameter, the population mean, is being estimated.

As is well known to the majority of survey statisticians, the interval estimate in

Equation (2.32) provides very low coverage. We now provide an example of why

the usual confidence interval based on the linear regression estimator gives very

low coverage. Singh (2003) has also shown this in the following example. Assume

a population consisting of five N¼ 5ð Þ units A, B, C, D, and E, where two variables

Y and X have been measured for each one of the units in the population.

Units A B C D E

yi 9 11 13 16 21

xi 14 18 19 20 24

By selecting all possible samples of n¼ 3 units by using the simple random and with-

out replacement (SRSWOR) scheme, Singh (2003) has shown that the ratio of approx-

imate variance to the exact mean squared error of the linear regression estimator is

given by

Ratio¼ V �ylrð Þ
Exact:MSE �ylrð Þ¼

0:230

0:596
¼ 0:386 (2.33)

Inotherwords, theapproximatevarianceV �ylrð Þof the linear regressionestimatorcouldbe

nearly as low as one-third of the exact mean squared error of the linear regression

estimator.

We hope that the preceding discussion has made clear the seriousness of the prob-

lem of low coverage by a confidence interval estimator obtained using an estimator of

the approximate variance of the linear regression estimator. The proposed tuned

method of jackknifing is one of the ways to overcome this difficulty. In addition,

for complex sampling designs, the computation and estimation of the variance of

an estimator of a parameter becomes almost impossible whereas the jackknife tech-

nique sometimes could be helpful.
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2.3.2 Estimation of variance and coverage

We investigate here an estimator of the variance of the estimator �yTuned csð Þ, defined by

v̂Tuned csð Þ ¼ n n�1ð Þ3
X
j2s

�wn jð Þð Þ2 �y
Tuned csð Þ
jð Þ � �yTuned csð Þ

n o2

(2.34)

where each newly tuned doubly jackknifed estimator of the population mean is

given by

�y
Tuned csð Þ
jð Þ ¼

n�yTuned csð Þ �n n�1ð Þ2 �wn jð Þ� n�2ð Þ
� �

�yn jð Þ
n�1

(2.35)

for j¼ 1,2,…,n, with

�yTuned csð Þ ¼
X
j2s

n�1ð Þ2 �wn jð Þ� n�2ð Þ
� �

�yn jð Þ
h i

(2.36)

It can be easily seen that the estimator of variance v̂Tuned csð Þ can be written as

v̂Tuned csð Þ ¼
n�1ð Þ
n

Xn
j¼1

�yn jð Þ� �ynð Þ2
"

+ 2 �X� �xnð Þ n

n�1ð Þ2
Xn
j¼1

Δj �yn jð Þ� �ynð Þ2�
Xn
j¼1

Tj �yn jð Þ� �ynð Þ
 !

+ �X� �xnð Þ2
Xn
j¼1

T2
j �

4n

n�1ð Þ2
Xn
j¼1

ΔjTj �yn jð Þ� �ynð Þ + n2

n�1ð Þ4
Xn
j¼1

Δ2
j �yn jð Þ� �ynð Þ2

 !

+
2n �X� �xnð Þ3

n�1ð Þ2
Xn
j¼1

ΔjT
2
j �

n

n�1ð Þ2
Xn
j¼1

Δ2
j Tj �yn jð Þ� �ynð Þ

 !
+
n2 �X� �xnð Þ4

n�1ð Þ4
Xn
j¼1

Δ2
j T

2
j

#

(2.37)

where

Tj ¼
Xn
j¼1

Δj�yn jð Þ�nΔj�yn jð Þ (2.38)

and Δj is given in Equation (2.23).

Clearly, as the sample size n increases, the sample mean �xn ! �X. Therefore, the
proposed jackknife estimator of variance, v̂Tuned csð Þ, converges to the usual jackknife

estimator of variance of sample mean �yn of the study variable given by
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v̂jack �ynð Þ¼ n�1ð Þ
n

Xn
j¼1

�yn jð Þ� �ynð Þ2 (2.39)

Thus, the proposed jackknife estimator of variance v̂Tuned csð Þ seems reasonable so long

as analytical thinking is concerned, although there is always a hope that someone can

create a better estimator than it.

In the simulation study, we have taken qj ¼ 1. The coverage by the 1�αð Þ100%
confidence interval estimates, obtained by this newly tuned jackknife estimator of

population mean, is obtained by counting how many times the true population mean
�Y falls in the interval estimate given by

�yTuned csð Þ � tα=2 df¼ n�1ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v̂Tuned csð Þ

q
(2.40)

We studied 90%, 95%, and 99% coverage by the newly tuned jackknife estimator of

the population mean in Equation (2.40) and compared these to the usual estimator of

variance of the linear regression estimator in Equation (2.32). These were computed

by selecting 100,000 random samples from the Statistical Jumbo Pumpkin Model

(SJPM). The results obtained for different sample sizes are as shown in Table 2.1.

Table 2.1 shows that for the population considered, when the sample size is small

and the estimator v̂ �ylrð Þ is used, the coverage by the usual linear regression estimator is

less than expected. On the other hand, if the estimator v̂Tuned csð Þ is used, we note that
coverage is much closer to the nominal coverage. In particular, for 9 pumpkins the

90% intervals cover the mean 89.44% of the time, for 13 pumpkins the 95% intervals

have 95.79% actual coverage, and for 23 pumpkins the 99% intervals have 99.06%

coverage. Thus, intervals desired from the newly tuned jackknife estimator of the pop-

ulation mean of the weight of the pumpkins shows quite good coverage if the sample

size is small, which suggests good reliability of the newly tuned methodology in real

practice.

2.3.3 R code

The following R code, PUMPKIN21.R, was used to study the coverage by the newly

tuned jackknife estimator based on a chi-square type distance function.

#PROGRAM PUMPKIN21.R

set.seed(2013)

N<-10000

x<-runif(N, min¼30, max¼190)

m<-5.5*(exp(0.047*x-0.0001*x*x))

z<-rnorm(N,0,2)

y<-m*exp(z); mean(x)->XB; mean(y)->YB;

nreps<-100000

ESTP¼rep(0,nreps)

EREG¼rep(0,nreps)
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Table 2.1 Performance of the newly tuned Jackknife estimators

CI using v̂Tuned csð Þ (proposed estimator) CI using v̂ �ylrð Þ (linear regression)

Sample size (n) 90% coverage 95% coverage 99% coverage 90% coverage 95% coverage 99% coverage

5 0.7408 0.7871 0.8646 0.3710 0.4195 0.5248

7 0.8346 0.8671 0.9160 0.4144 0.4586 0.5418

9 0.8944 0.9163 0.9467 0.4493 0.4904 0.5656

11 0.9266 0.9425 0.9626 0.4729 0.5149 0.5865

13 0.9466 0.9579 0.9726 0.4949 0.5361 0.6061

15 0.9594 0.9684 0.9797 0.5123 0.5505 0.6185

17 0.9669 0.9738 0.9830 0.5281 0.5660 0.6322

19 0.9740 0.9793 0.9861 0.5399 0.5774 0.6393

21 0.9791 0.9836 0.9893 0.5510 0.5913 0.6544

23 0.9820 0.9859 0.9906 0.5617 0.6024 0.6657

25 0.9849 0.9883 0.9923 0.5671 0.6096 0.6731

27 0.9870 0.9900 0.9932 0.5722 0.6162 0.6804

29 0.9878 0.9907 0.9938 0.5828 0.6259 0.6940

31 0.9896 0.9920 0.9947 0.5857 0.6312 0.7009

33 0.9912 0.9932 0.9956 0.5889 0.6337 0.7040

35 0.9923 0.9939 0.9961 0.5933 0.6399 0.7121

37 0.9925 0.9941 0.9962 0.5968 0.6432 0.7154

39 0.9936 0.9950 0.9968 0.6002 0.6470 0.7193

41 0.9943 0.9957 0.9972 0.6051 0.6516 0.7245
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ci1.max¼ci1.min¼ci2.max¼ci2.min¼ci3.max¼ci3.min¼vESTP¼ESTP

ci4.max¼ci4.min¼ci5.max¼ci5.min¼ci6.max¼ci6.min¼vREG¼EREG

for ( n in seq(5,41,2))

{

for (r in 1: nreps)

{

us<-sample(N,n)

xs<-x[us]; ys<-y[us]

xmj<-(sum(xs)-xs)/(n-1); ymj<-(sum(ys)-ys)/(n-1)

delt<-n*sum(xmj 2̂)-(sum(xmj)) 2̂

dif<-(n*XB-n*n*(2-n)*mean(xs))/((n-1) 2̂)-sum(xmj)

deltaj<-(xmj*n-sum(xmj))/delt

wbnj<-(1+deltaj*dif )/n

ESTI<-(((n-1) 2̂)*wbnj-(n-2))*ymj

ESTP[r]<-sum(ESTI)

EST_J<-(n*ESTP[r]-n*(((n-1) 2̂)*wbnj-(n-2))*ymj)/(n-1);

vESTP[r]<-n*((n-1) 3̂)*sum((wbnj 2̂)*((EST_J-ESTP[r]) 2̂))

ci1.max[r]<-ESTP[r]+qt(0.95,n-1)*sqrt(vESTP[r])

ci1.min[r]<-ESTP[r]-qt(0.95,n-1)*sqrt(vESTP[r])

ci2.max[r]<-ESTP[r]+qt(0.975,n-1)*sqrt(vESTP[r])

ci2.min[r]<-ESTP[r]-qt(0.975,n-1)*sqrt(vESTP[r])

ci3.max[r]<-ESTP[r]+qt(0.995,n-1)*sqrt(vESTP[r])

ci3.min[r]<-ESTP[r]-qt(0.995,n-1)*sqrt(vESTP[r])

cov<-(sum(xs*ys)-sum(xs)*sum(ys)/n)/(n-1)

vx<-var(xs)

vy<-var(ys)

beta<-cov/vx

EREG[r]<-mean(ys) + beta*(XB-mean(xs))

corr<-cov/(vx*vy) 0̂.5

vREG[r]<-vy*(1-corr**2)/n

ci4.max[r]<-EREG[r]+qt(0.95,n-1)*sqrt(vREG[r])

ci4.min[r]<-EREG[r]-qt(0.95,n-1)*sqrt(vREG[r])

ci5.max[r]<-EREG[r]+qt(0.975,n-1)*sqrt(vREG[r])

ci5.min[r]<-EREG[r]-qt(0.975,n-1)*sqrt(vREG[r])

ci6.max[r]<-EREG[r]+qt(0.995,n-1)*sqrt(vREG[r])

ci6.min[r]<-EREG[r]-qt(0.995,n-1)*sqrt(vREG[r])

}

round(sum(ci1.min<YB & ci1.max>YB)/nreps, 4)->cov1

round(sum(ci2.min<YB & ci2.max>YB)/nreps, 4)->cov2

round(sum(ci3.min<YB & ci3.max>YB)/nreps, 4)->cov3

round(sum(ci4.min<YB & ci4.max>YB)/nreps, 4)->cov4

round(sum(ci5.min<YB & ci5.max>YB)/nreps, 4)->cov5

round(sum(ci6.min<YB & ci6.max>YB)/nreps, 4)->cov6

cat (n, cov1, cov2, cov3, cov4, cov5, cov6, ‘\n’)

}
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In the preceding R code, the variables cov4, cov5, and cov6 give the actual cov-

erage of the nominal 90%, 95%, and 99% confidence interval when using the tradi-

tional linear regression estimator, assuming SRSWR sampling. By reexecuting the

preceding R code, one may obtain results very similar to those given in Table 2.1.

2.3.4 Remark on tuning with a chi-square distance

We also consider tuning the jackknife weights �wn jð Þ so that the chi-square type dis-

tance function, defined as

2�1n
� �X

j2s
q�1
j 1� n�1ð Þ �wn jð Þ�n�1
� �2

(2.41)

is minimal subject only to the tuning constraint Equation (2.11), where qj are some

given weights.

Obviously, the Lagrange function can be taken as

L0 ¼
X
j2s

1� n�1ð Þ�wn jð Þ�n�1ð Þ2
2qj=n
� � �δ0

X
j2s

�wn jð Þ�xn jð Þ�
�X�n 2�nð Þ�xnð Þ

n�1ð Þ2
( )

(2.42)

where δ0 is the Lagrange multiplier constant.

On setting:

@L0
@ �wn jð Þ¼ 0 (2.43)

we have

�wn jð Þ¼ 1

n
1 +

δ0

n�1ð Þ2 qj�xn jð Þ
( )

(2.44)

The newly tuned jackknife weights �wn jð Þ become

�wn jð Þ¼ 1

n
1 +

qj�xn jð ÞX
j2s

qj �xn jð Þf g2
n �X�n 2�nð Þ�xnð Þ

n�1ð Þ2 �
X
j2s

�xn jð Þ
( )2

664
3
775 (2.45)

Under the chi-square (cs) type distance function and after eliminating the constraint

(2.10), the newly tuned estimator (2.5) of the population mean becomes a modified

generalized regression (greg) type estimator, namely,
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�yTuned cs*ð Þ ¼
n�1ð Þ2
n

X
j2s

�yn jð Þ+ β̂
�
Tuned

n �X�n 2�nð Þ�xnð Þ
n�1ð Þ2 �

X
j2s

�xn jð Þ
( )" #

� n�2ð Þ
X
j2s

�yn jð Þ

(2.46)

or equivalently,

�yTuned cs*ð Þ ¼ �yn + β̂
�
Tuned

�X� �xnð Þ (2.47)

where

β̂
�
Tuned ¼

X
j2s

qj�xn jð Þ�yn jð Þ
X
j2s

qj �xn jð Þð Þ2 (2.48)

If qj ¼ xj� �xn
� �

=�xn jð Þ, then the estimator �yTuned cs*ð Þ in Equation (2.47) becomes

exactly the linear regression estimator defined as

�yTuned cs*ð Þ ¼ �ylr ¼ �yn +
sxy
s2x

	 

�x� �xnð Þ (2.49)

where n�1ð Þsxy ¼
X
j2s

xj� �xn
� �

yj� �yn
� �

. We remind the reader that the first bridge

between the traditional linear regression and traditional greg estimators was built

by Singh (2003).

If qj ¼ 1=�xn jð Þ, then the estimator �yTuned cs*ð Þ in Equation (2.47) becomes exactly the

ratio estimator, defined as

�yTuned cs*ð Þ ¼ �yratio ¼ �yn
�X

�xn

	 

(2.50)

If qj ¼ 1, then the estimator (2.47) becomes the modified generalized regression esti-

mator, defined as

�yTuned cs*ð Þ ¼ �ym gregð Þ ¼ �yn +β̂m gregð Þ �X� �xnð Þ (2.51)

where

β̂m gregð Þ ¼
�yn 1 +

n�1ð Þsxy
n 1 + n n�2ð Þf g �xn�ynð Þ

� �

�xn 1 +
n�1ð Þs2x

n 1 + n n�2ð Þf g �x2n
� �

( ) (2.52)

38 A New Concept for Tuning Design Weights in Survey Sampling



The modified estimator in Equation (2.52) is a kind of Beale (1962) estimator of the

regression coefficient. It seems that it is difficult to find a choice of qj that reduces the
estimator �yTuned cs*ð Þ in Equation (2.47) either to the exact product estimator or to the exact

traditional generalized regression (greg) estimator due to Deville and Särndal (1992).

To examine the behavior of the modified greg estimator qj ¼ 1
� �

, we make the

following change in the R code, PUMPKIN21.R.

deltaj<-xmj/sum(xmj 2̂)

The three coverages, 90%, 95%, and 99%, were studied for the same sample sizes

and the same number of iterations as in Section 2.3.2. The changes observed in the

results are reported in Table 2.2.

The coverage by the newly tuned estimation methodology remains significantly

lower than the nominal coverage when the tuned weights �wn jð Þ are computed

with formula (2.45) instead of with Equation (2.22). Note that the modified greg

estimator is far from the traditional greg estimator. Therefore the estimator

�yTuned csð Þ is recommended so long as one is concerned about estimating the weight

of a pumpkin using small samples. For large samples, the modified greg may perform

just as well because better coverage is expected for the regression type estimator

�yTuned csð Þ. Here “better coverage” means coverage close to the nominal or anticipated

coverage.

Table 2.2 Performance of the newly tuned jackknife estimator

Sample size (n) 90% coverage 95% coverage 99% coverage

5 0.4346 0.4834 0.5894

7 0.4580 0.4980 0.5839

9 0.4824 0.5202 0.5959

11 0.5030 0.5408 0.6120

13 0.5198 0.5580 0.6268

15 0.5342 0.5706 0.6392

17 0.5471 0.5836 0.6504

19 0.5572 0.5939 0.6580

21 0.5676 0.6063 0.6704

23 0.5790 0.6169 0.6812

25 0.5840 0.6230 0.6881

27 0.5892 0.6297 0.6947

29 0.5984 0.6397 0.7068

31 0.6016 0.6450 0.7139

33 0.6042 0.6479 0.7169

35 0.6087 0.6533 0.7250

37 0.6114 0.6564 0.7277

39 0.6147 0.6599 0.7321

41 0.6196 0.6648 0.7378
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2.3.5 Numerical illustration

In the following example, we explain the computational steps involved in the con-

struction of a confidence interval estimate with the tuned estimator.

Example 2.1 As an illustration of the previous estimator, we consider a particular

sample of n¼ 7 pumpkins drawn from the SJPM. The values of circumference (x) in
inches and weight (y) in pounds are as follows:

x (in.) 122.0 67.0 106.5 98.0 115.2 132.0 101.1

y (lbs) 6400 800 3084 1042 4500 6700 2397

Use the regression type tuned estimator to construct a 95% confidence interval esti-

mate of the average weight by assuming the population mean circumference,
�X¼ 105:40in:, is known.

Solution. One can easily compute the following table:

�xn jð Þ �yn jð Þ Δj �wn jð Þ �y
jð Þ

Tuned csð Þ v( j)

103.300 3082.16 –0.0366242 0.1434385 3491.560 0.7454596

112.466 4015.50 0.0890472 0.1414437 3649.638 462.5863682

105.883 3634.83 –0.0012077 0.1428763 3471.777 13.5906190

107.300 3975.16 0.01821420 0.1425680 3466.251 19.9488114

104.433 3398.83 –0.0210866 0.1431919 3466.257 20.1163339

101.633 3032.16 –0.059473 0.1438012 3454.925 37.6219900

106.783 3754.33 0.0111309 0.1426805 3482.646 4.5396352

where

v jð Þ¼ �wn jð Þf g2 y
Tuned csð Þ
jð Þ � �yTuned csð Þ

n o2

and

v̂ �yTuned csð Þ
� �

¼ n n�1ð Þ3
X
j2s

v jð Þ¼ 848037:6

From the table values, we compute the tuned estimate of the average weight to be:

�yTuned csð Þ ¼ 3497:579 and SE �yTuned csð Þ
� �

¼ 919:4746. So, the 95% confidence interval

estimate of the average pumpkin weight is 1247.706–5747.452 lbs. Here we used

t0:975 6ð Þ¼ 2:447. The confidence in the use of proposed estimator would increase with

a large sample. Here ε¼ �xn= �Xð Þ�1j j ¼ 0:0054215 is close to zero, and we need it

close to zero to get reliable results. This is a basic assumptionmade in survey sampling

when applying ratio or regression type estimators.
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2.3.6 R code used for illustration

We used the following R code, PUMPKIN21EX.R, to generate the preceding

illustration.

#PROGRAM PUMPKIN21EX.R

n<-7

XB<-105.4

xs<-c(122,67,106.5,98,115.2,132,101.1)

ys<-c(6400,800,3084,1042,4500,6700,2367)

xmj<-(sum(xs) - xs)/(n-1)ymj<-(sum(ys) - ys)/(n-1)

delt<- n*sum(xmj 2̂) - (sum(xmj)) 2̂

dif<- (n*XB-n*n*(2-n)*mean(xs))/((n-1) 2̂) - sum(xmj)

deltaj<-(xmj*n - sum(xmj) )/delt

wbnj<-(1+deltaj*dif )/n

ESTI<- (((n-1) 2̂)*wbnj - (n-2))*ymj

ESTP<- sum(ESTI)

EST_J<- (n*ESTP - n*(((n-1) 2̂)*wbnj-(n-2))*ymj)/(n-1)

nuj<-(wbnj 2̂)*((EST_J - ESTP) 2̂)

vESTP<-n*(n-1) 3̂*sum(nuj)

L<-ESTP-qt(0.975,n-1)*sqrt(vESTP)

U<-ESTP+qt(0.975,n-1)*sqrt(vESTP)

cbind(xmj,ymj,xmj 2̂,deltaj,wbnj,EST_J,nuj)

cat("Tuned estimate:", ESTP, "SE: ",vESTP 0̂.5 ,’\n’)

cat("Confidence Interval:"," ", L,"; ", U,’\n’)

2.3.7 Problem of negative weights

It should be noted that with this method, individual weights may be negative, which

may lead to a large number of rejections of samples or to a negative estimate of

the average weight of pumpkins. To overcome this problem, we consider tuning

the estimator with a dual-to-empirical log-likelihood (dell) distance function.

2.4 Tuning with dell function

Let wj
* be positive calibrated weights constructed so that the following two constraints

are satisfied:

X
j2s

w�
j ¼ 1 (2.53)

and

X
j2s

w�
jΦj ¼ 0 (2.54)
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where

Φj ¼ xj� �X
� �

(2.55)

are called a pivot.
Note that constraints (2.53) and (2.54) are similar to those listed in Owen (2001).

Let �w�
n jð Þ be the jackknife tuned weight such that

�w�
n jð Þ¼ 1�w�

j

n�1ð Þ (2.56)

Note that

0< �w�
n jð Þ< 1

n�1ð Þ (2.57)

As before, now we define the newly tuned jackknife estimator of the population

mean �Y by

�yTuned dellð Þ ¼
X
j2s

n�1ð Þ2 �w�
n jð Þ� n�2ð Þ

h i
�yn jð Þ (2.58)

Here, for simplicity, we consider the optimization of a dell function defined by

X
j2s

ln 1�w�
j

� �
n

(2.59)

or equivalently, optimization of the log-likelihood function defined by

X
j2s

ln �w�
n jð Þ� �
n

(2.60)

such that the following two conditions are satisfied:

X
j2s

�w�
n jð Þ¼ 1 (2.61)

and

X
j2s

�w�
n jð ÞΨ j ¼ 0 (2.62)
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where

Ψ j ¼ �xn jð Þ�
�X�n 2�nð Þ�xn

n�1ð Þ2
( )

(2.63)

The Lagrange function is given by

L2 ¼
X
j2s

ln �w�
n jð Þ� �
n

� λ�0
X
j2s

�w�
n jð Þ�1

( )
� λ�1

X
j2s

�w�
n jð ÞΨ j

( )
(2.64)

where λ0* and λ1* are Lagrange multiplier constants.

On setting:

@L2
@ �w�

n jð Þ¼ 0 (2.65)

we have

�w�
n jð Þ¼ 1

n 1 + λ�1Ψ j

� � (2.66)

Constraints (2.61) and (2.62) yield λ0* ¼ 1, and λ1* is a solution to the nonlinear equation

X
j2s

Ψ j

1 + λ�1Ψ j
¼ 0 (2.67)

Note that to have �w�
n jð Þ> 0, we require λ�1 > 1= max Ψ j

� �

 

 if max Ψ j

� �
> 0 and

λ�1 < 1= min Ψ j

� �

 

 if max Ψ j

� �
< 0.

Thus under the dell distance function, the newly tuned jackknife estimator (2.58)

of the population mean becomes

�yTuned dellð Þ ¼
X
j2s

n�1ð Þ2 �w�
n jð Þ� n�2ð Þ

h i
�yn jð Þ

¼ 1

n

X
j2s

n�1ð Þ2
1 + λ�1Ψ j

�n n�2ð Þ
" #

�yn jð Þ
(2.68)

2.4.1 Estimation of variance and coverage

We suggest the following estimator of the variance of the preceding estimator

�yTuned dellð Þ:

v̂Tuned dellð Þ ¼ n n�1ð Þ3
X
j2s

�w�
n jð Þ� �2

�y
Tuned dellð Þ
jð Þ � �yTuned dellð Þ

n o2

(2.69)
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Note that for each sample the newly tuned dell doubly jackknifed estimator of the

population mean is given by

�y
Tuned dellð Þ
jð Þ ¼

n�yTuned dellð Þ �n n�1ð Þ2 �w�
n jð Þ� n�2ð Þ

� �
�yn jð Þ

n�1
(2.70)

for j¼ 1,2,…,n, where

�yTuned dellð Þ ¼
X
j2s

n�1ð Þ2 �w�
n jð Þ� n�2ð Þ

� �
�yn jð Þ

h i
(2.71)

The coverage by the 1�αð Þ100% confidence interval estimates, obtained by this

newly tuned jackknife empirical log-likelihood estimator of population mean, is

obtained by counting how many times the true population mean �Y falls into the inter-

val estimate given by

�yTuned dellð Þ � tα=2 df¼ n�1ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v̂Tuned dellð Þ

q
(2.72)

A very crude approximate value of λ1* is given by

λ�1 �

X
j2s

Ψ jX
j2s

Ψ 2
j

¼ �xn� �Xð Þ
n�1ð Þ
n

s2x +
1

n�1ð Þ2 �xn� �Xð Þ2
(2.73)

The approximate value of λ1* in Equation (2.73) is obtained under the assumption that

�1� λ�1Ψ j � 1 (2.74)

Solving the nonlinear equation (2.67) for λ1* by means of an iterative method may be

computer time intensive, but use of the approximation for λ1* given in Equation (2.73)
will speed things up considerably. However, because λ1* is a crude approximation, it

may be preferable to find a fast subroutine for solving Equation (2.67).

We compared intervals with nominal 90%, 95%, and 99% coverage that were con-

structed using the newly tuned jackknife estimator of the population mean by selecting

100,000 random samples from the SJPM. The results obtained for different sample

sizes are shown in Table 2.3. The results show that the coverage by the newly tuned

jackknife empirical log-likelihood estimator of the population mean converges very

quickly to the nominal coverage for moderate sample sizes.

The nominal 90%, 95%, and 99% coverages are estimated, shown as 89.39%,

95.79%, and 99.06%, respectively, for samples of sizes 9, 13, and 23 pumpkins. Thus,

the newly tuned dell estimator of the population mean weight of the pumpkins gives

intervals with coverage as good as that provided by intervals produced using the
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proposed regression type estimator under a chi-square distance measure. For larger

samples, the approximated crude value of λ1* converges to zero, indicating that the

newly tuned dell estimator of the mean should be close to the sample mean estimator

in the case of a large sample. The coverages based on the empirically tuned estimator

are nearly the same as those based on the linear regression estimator �yTuned csð Þ given in
Equation (2.25), but differ from those based on the generalized regression type (greg)

estimator of the population mean given by �yTuned cs*ð Þ in Equation (2.47).

2.4.2 R code

The following R code, PUMPKIN22.R, was used to study the coverage based on the

newly tuned dell function.

# PROGRAM: PUMPKIN22.R

set.seed(2013)

N<-10000

x<-runif(N, min¼30, max¼190)

m<-5.5*(exp(0.047*x - 0.0001*x*x))

z<-rnorm(N, 0, 2)

y<-m*exp(z)

mean(x)->XB; mean(y)->YB

nreps<-100000

Table 2.3 Performance of the newly tuned dell

Sample size (n) 90% coverage 95% coverage 99% coverage

5 0.7300 0.7787 0.8588

7 0.8329 0.8657 0.9151

9 0.8939 0.9159 0.9466

11 0.9264 0.9424 0.9625

13 0.9466 0.9579 0.9726

15 0.9594 0.9684 0.9796

17 0.9669 0.9738 0.9829

19 0.9740 0.9793 0.9861

21 0.9791 0.9836 0.9893

23 0.9820 0.9859 0.9906

25 0.9849 0.9883 0.9923

27 0.9870 0.9900 0.9932

29 0.9878 0.9907 0.9938

31 0.9896 0.9920 0.9947

33 0.9912 0.9932 0.9956

35 0.9923 0.9939 0.9961

37 0.9925 0.9941 0.9962

39 0.9936 0.9950 0.9968
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ESTP¼rep(0,nreps)

ci1.max¼ci1.min¼ci2.max¼ci2.min¼ci3.max¼ci3.min¼vESTP¼ESTP

for (n in seq(5,41,2))

{

for (r in 1:nreps)

{

us<-sample(N,n)

xs<-x[us]; ys<-y[us]

xmj<-(sum(xs) - xs)/(n-1); ymj<-(sum(ys) - ys)/(n-1)

shj<- xmj - (XB-n*(2-n)*mean(xs))/((n-1) 2̂)

aphj<-sum(shj)/sum(shj 2̂)

wbnj<-(1/n)*(1/(1+aphj*shj))

ESTI<- n*(((n-1) 2̂)*wbnj - (n-2))*ymj

ESTP[r]<- mean(ESTI)

EST_J<-(n*ESTP[r] - ESTI)/(n-1)

vj<-(wbnj 2̂)*((EST_J - ESTP[r]) 2̂)

vESTP[r]<-n*(n-1) 3̂*sum(vj)

ci1.max[r]<- ESTP[r]+qt(0.95,n-1)*sqrt(vESTP[r])

ci1.min[r]<- ESTP[r]-qt(0.95,n-1)*sqrt(vESTP[r])

ci2.max[r]<- ESTP[r]+qt(0.975,n-1)*sqrt(vESTP[r])

ci2.min[r]<- ESTP[r]-qt(0.975,n-1)*sqrt(vESTP[r])

ci3.max[r]<- ESTP[r]+qt(0.995,n-1)*sqrt(vESTP[r])

ci3.min[r]<- ESTP[r]-qt(0.995,n-1)*sqrt(vESTP[r])

}

round(sum(ci1.min<YB & ci1.max>YB)/nreps,4)->cov1

round(sum(ci2.min<YB & ci2.max>YB)/nreps,4)->cov2

round(sum(ci3.min<YB & ci3.max>YB)/nreps,4)->cov3

cat(n, cov1,cov2,cov3,’\n’)

}

2.4.3 Numerical illustration

In the following example, we explain the computational steps involved in the con-

struction of a confidence interval estimate with the dell estimator.

Example 2.2 Consider the following sample of n¼ 7 pumpkins, where x and

y represent the circumference (in.) and weight (lbs) of pumpkins:

x 122.0 67.0 106.5 98.0 115.2 132.0 101.1

y 6400 800 3084 1042 4500 6700 2397

Construct the 95% confidence interval estimate of the average weight by assuming the

population mean circumference �X¼ 105:40in: is known.
Solution. One can easily compute the following table:
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�xn jð Þ �yn jð Þ Ψ j �w�
n jð Þ �y

Tuned dellð Þ
jð Þ v( j)

103.3000 3082.167 –2.65555556 0.1434374 3491.785 0.7071573

112.4667 4015.500 6.51111111 0.1414542 3647.949 452.016458

105.8833 3634.833 –0.07222222 0.1428729 3472.384 13.0285075

107.3000 3975.167 1.34444444 0.1425652 3466.807 19.3324075

104.4333 3398.833 –1.52222222 0.1431892 3466.721 19.6103742

101.6333 3032.167 –4.32222222 0.1438039 3454.655 38.2248218

106.7833 3754.333 0.82777778 0.1426772 3483.235 4.2289600

where

v jð Þ¼ n n�1ð Þ3 �w�
n jð Þ� �2

�y
Tuned dellð Þ
jð Þ � �yTuned dellð Þ

n o2

The tuned estimate of the average weight is �yTuned dellð Þ ¼ 3497:648 and

SE �yTuned dellð Þ
� �

¼ 909:5542. Thus the 95% confidence interval estimate of the average

weight of each pumpkin is 1272.049–5723.247 lbs.

2.4.4 R code used for illustration

We used the following R code, PUMPKIN22EX.R, to solve the preceding numerical

illustration.

# ILLUSTRATION CODE

# PUMPKIN22EX.R
n<-7

XB<-105.4

xs<-c(122,67,106.5,98,115.2,132,101.1)

ys<-c(6400,800,3084,1042,4500,6700,2367)

xmj<-(sum(xs) - xs)/(n-1)

ymj<-(sum(ys) - ys)/(n-1)

shj<- xmj - (XB-n*(2-n)*mean(xs))/((n-1) 2̂)

wbnj<-(1/n)*(1/(1+(sum(shj)/sum(shj 2̂))*shj))

ESTI<- n*(((n-1) 2̂)*wbnj - (n-2))*ymj

ESTP<- mean(ESTI)

EST_J<-(n*ESTP - ESTI)/(n-1)

vj<-(wbnj 2̂)*((EST_J - ESTP) 2̂)

vESTP<-n*(n-1) 3̂*sum(vj)

L<-ESTP-qt(0.975,n-1)*sqrt(vESTP)

U<-ESTP+qt(0.975,n-1)*sqrt(vESTP)

cbind(xmj,ymj,shj,wbnj,EST_J,vj)

cat("Tuned estimate:", ESTP, "SE: ",vESTP 0̂.5 ,’\n’)

cat("Confidence Interval:"," ", L,"; ", U,’\n’)
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2.5 An important remark

Note that several other versions of the doubly jackknifed estimator of variance could

also be considered, namely,

v̂no�weight

Tuned csð Þ ¼ n�1ð Þ3
n

X
j2s

�y
Tuned csð Þ
jð Þ � �yTuned csð Þ

� �2
(2.75)

or

v̂no�weight

Tuned csð Þ ¼ n�1ð Þ3
n

X
j2s

�y
Tuned csð Þ
jð Þ �1

n

Xn
j¼1

�y
Tuned csð Þ
jð Þ

 !2

(2.76)

Several such versions could be compared before application to real data, if necessary.

In the next section we provide a few possible extensions or further studies, although

these are marked as exercises. In the same way, similar extensions may be developed

and investigated in the future.

2.6 Exercises

Exercise 2.1 Consider a newly tuned jackknifed estimator of the population mean �Y
defined by

�yTuned csð Þ ¼
X
j2s

n�1ð Þ2 �wn jð Þ� n�2ð Þ
n o

�yn jð Þ
h i

(2.77)

where

�yn jð Þ¼ n�yn� yj
n�1

(2.78)

is the sample mean of the study variable obtained by removing the jth unit from the

sample s, and �wn jð Þ is the jackknife tuned weight constructed such that the following
three constraints are satisfied:

X
j2s

�wn jð Þ¼ 1 (2.79)

X
j2s

�wn jð Þ�xn jð Þ¼
�X�n 2�nð Þ�xn

n�1ð Þ2 (2.80)
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and

X
j2s

�wn jð Þσ̂2x jð Þ¼ σ2x �n 2�nð Þσ̂2x
n�1ð Þ2 (2.81)

where

�wn jð Þ¼ 1�wj

n�1
(2.82)

for arbitrary weights wj with
X
j2s

wj ¼ 1,

σ̂2x jð Þ¼ nσ̂2x � xj� �xn
� �2
n�1

(2.83)

and

σ̂2x ¼ n�1
X
i2s

xi� �xnð Þ2 (2.84)

Note that σ̂2x is the maximum likelihood estimator of the known finite population

variance σ2x ¼N�1
X
i2Ω

xi� �Xð Þ2 of the auxiliary variable, and σ̂2x jð Þ is a partial jth

jackknifed estimator of the variance obtained by dropping the jth squared deviation

about the sample mean from the total sum of squares from the sample s of the auxiliary
variable divided by n�1ð Þ. Subject to the preceding three tuning constraints in Equa-
tions (2.79), (2.80), and (2.81), optimize each of the following distance functions:

D1 ¼ 2�1n
� �X

j2s
q�1
j 1� n�1ð Þ�wn jð Þ�n�1
� �2

(2.85)

D2 ¼
X
j2s

�wn jð Þ ln �wn jð Þð Þ½ �, 0< �wn jð Þ< 1= n�1ð Þ (2.86)

D3 ¼ 1

2

X
j2s

q�1
j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n�1ð Þ�wn jð Þ

p
�

ffiffiffiffiffiffiffi
n�1

p� �2
, 0< �wn jð Þ< 1= n�1ð Þ (2.87)

D4 ¼
X
j2s

�n�1 ln �wn jð Þð Þ� �
, 0< �wn jð Þ< 1= n�1ð Þ (2.88)

D5 ¼
X
j2s

1� n�1ð Þ�wn jð Þ�n�1ð Þ2
2 1� n�1ð Þ�wn jð Þð Þ , 0< �wn jð Þ< 1= n�1ð Þ (2.89)
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D6 ¼ 1

n

X
j2s

tanh�1 �wn jð Þf g2�1

�wn jð Þf g2 + 1

 !
(2.90)

D7 ¼ 1

2

X
j2s

1� n�1ð Þ�wn jð Þ�n�1ð Þ2
qjn�1

+
1

2

X
j2s

φj �wn jð Þf g2
qjn�1 n�1ð Þ�2

(2.91)

and

D8 ¼
X
j2s

q�1
j �wn jð Þ ln �wn jð Þð Þ� �wn jð Þ + n�1
� �

(2.92)

where qj are the weights chosen to form different types of estimators, φj is a penalty as

in Farrell and Singh (2002a), and tanh�1ðÞ is the hyperbolic tangent function as in

Singh (2012). Also optimize each of the preceding distance functions subject to:

(a) only two tuning constraints, (2.79) and (2.80); and (b) only one tuning constraint

(2.80). Write code in any scientific language, e.g. FORTRAN, C++, R, or SAS, to

study these distance functions. Discuss the nature of tuned weights in each situation.

Construct 90%, 95%, and 99% confidence interval estimates in each situation by

estimating the variance using the method discussed in the chapter. Alternatively,

construct your own confidence interval estimates that you can claim to be better based

on some scientific criterion.

Exercise 2.2 Let the population variance σ2x ¼N�1
X
i2Ω

xi� �Xð Þ2 of the auxiliary

variable be known. Replace the constraint

X
j2s

�wn jð Þσ̂2x jð Þ¼ σ2x �n 2�nð Þσ̂2x
n�1ð Þ2 (2.93)

in Exercise 2.1 with a newly tuned constraint:

X
j2s

�wn jð Þ �xn jð Þ� �xnð Þ2 ¼ n�1ð Þs2x �S2x
n�1ð Þ3 (2.94)

where s2x ¼
n

n�1
σ̂2x and S2x ¼

N

N�1
σ2x . Report any changes observed in the resulting

estimator. Now again consider its replacement with a newly tuned constraint:

X
j2s

�wn jð Þs2x jð Þ¼ nS2x � n�1ð Þ n�1ð Þ�n n�2ð Þf gs2x
n�1ð Þ2 n�2ð Þ (2.95)
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where

s2x jð Þ¼ n�1ð Þ2s2x �n xj� �xn
� �2

n�1ð Þ n�2ð Þ

or equivalently

s2x jð Þ¼ n�1ð Þs2x � xj� �xn
� �2� n�1ð Þ �xn jð Þ� �xnð Þ2

n�2ð Þ

and again report any changes observed in the resulting estimator.

Exercise 2.3 Assume that the value of the finite population correlation coefficient ρxy
between the study variable y and the auxiliary variable x is known. In Exercise 2.1,

consider an additional newly tuned constraint given by

X
j2s

�wn jð Þ r jð Þ¼ 1

n�1ð Þ
Xn
j¼1

r jð Þ�ρxy

" #
(2.96)

Note that the constraint (2.96) has been designed by eliminating the additive effect of

partial jackknifing on the estimator of the correlation coefficient with the tuned

weights �wn jð Þ from a calibration constraint:

X
j2s

wjr jð Þ¼ ρxy (2.97)

The value of the partial jackknifed correlation coefficient r( j) is given as

r jð Þ¼ r

n�1ð Þ
n�2ð Þ�

n xj� �xn
� �

yj� �yn
� �

n�1ð Þ n�2ð Þsxy

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n�1ð Þ
n�2ð Þ�

n xj� �xn
� �2

n�1ð Þ n�2ð Þs2x

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n�1ð Þ
n�2ð Þ�

n yj� �yn
� �2

n�1ð Þ n�2ð Þs2y

s (2.98)

with

n�1ð Þsxy ¼
X
i2s

xi� �xnð Þ yi� �ynð Þ, n�1ð Þs2x ¼
X
i2s

xi� �xnð Þ2,

n�1ð Þs2y ¼
X
i2s

yi� �ynð Þ2, n�xn ¼
X
i2s

xi, n�yn ¼
X
i2s

yi and r¼ sxy= sxsy
� �

Report any changes observed in the resultant estimators.
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Exercise 2.4 In Exercise 2.1, find the distribution of the dual-to-log-likelihood func-

tion�2
X
j2s

ln 1�wj

� �
or equivalently�2

X
j2s

ln �wn jð Þð Þwhen optimizing the dual-to-

log-likelihood distance function:

D¼
X
j2s

n�1 ln �wn jð Þð Þ� �
, 0< �wn jð Þ< 1= n�1ð Þ (2.99)

Exercise 2.5 Tuning of a nonresponse Consider a sample sn of n units selec-

ted using an SRS scheme where the value of the study variable yi and an

auxiliary variable xi are measured i¼ 1,2,…,n. Suppose that the responses yi,
i¼ 1,2,…,r, on the study variable are available for a subset sr 	 sn of the sample

while the remaining n� rð Þ responses on the study variable are missing

completely at random. The problem is to estimate the population mean �Y of

the study variable. Let �yr ¼ r�1
X
i2sr

yi be the sample mean of the study variable

corresponding to the set of responding units, let �xr ¼ r�1
X
i2sr

xi be the sample mean

of the auxiliary variable corresponding to the set of responding units, and let

�xn ¼ n�1
X
i2sn

xi be the sample mean of the auxiliary variable for the entire sample

selected in the survey.

(a) Consider the newly tuned jackknife estimator of the population mean �Y in the occurrence of

nonresponse defined by

�yNRTuned csð Þ ¼
X
j2sr

r�1ð Þ2 �wr jð Þ� r�2ð Þ
n o

�yr jð Þ
h i

(2.100)

where

�yr jð Þ¼ r�yr�yj
r�1

and �wr jð Þ¼ 1�wj

r�1

are the usual jackknife estimators of the population mean and weight obtained by removing

the jth unit from the responding sample sr for any set of weights wj with unit total. Here we

consider �wr jð Þ as the jth tuned weight constructed such that the following two constraints

are satisfied:

X
j2sr

�wr jð Þ¼ 1 (2.101)

and

X
j2sr

�wr jð Þ�xr jð Þ¼ �xn� r 2� rð Þ�xr
r�1ð Þ2 (2.102)
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Consider tuning theweights �wr jð Þ so that thechi-square typedistance function, defined as

2�1r
� �X

j2sr
q�1
j 1� r�1ð Þ�wr jð Þ� r�1
� �2

(2.103)

is minimum, subject to the tuning constraints (2.101) and (2.102), where qj is some choice

of weights. Show that the newly tuned estimator of the population mean in the presence of

nonresponse becomes

�yNRTuned csð Þ ¼ �yr + β̂NRTuned �xn� �xrð Þ (2.104)

where

β̂NRTuned ¼

X
j2sr

qj

 ! X
j2sr

qj�xr jð Þ�yr jð Þ
 !

�
X
j2sr

qj�yr jð Þ
 ! X

j2sr
qj�xr jð Þ

 !

X
j2sr

qj

 ! X
j2sr

qj �xr jð Þð Þ2
 !

�
X
j2sr

qj�xr jð Þ
 !2

Show that for qj ¼ 1 the estimator �yNRTuned csð Þ becomes

�yNRTuned csð Þ ¼ �yr + β̂ols �xr� �xnð Þ (2.105)

where

β̂ols ¼
r
Xr
i¼1

xiyi�
Xr
i¼1

xi

 ! Xr
i¼1

yi

 !

r
Xr
i¼1

x2i �
Xr
i¼1

xi

 !2

Consider an estimator of the variance of the estimator �yNRTuned csð Þ defined by

v̂NRTuned csð Þ ¼ r r�1ð Þ3
X
j2sr

�wr jð Þf g2 �y
NRTuned csð Þ
jð Þ � �yNRTuned csð Þ

n o2

(2.106)

where each newly tuned jackknifed estimator of the population mean is given by

�y
NRTuned csð Þ
jð Þ ¼

r�yNRTuned csð Þ � r r�1ð Þ2 �wr jð Þ� r�2ð Þ
� �

�yr jð Þ
r�1

(2.107)

for j¼ 1,2,…,r.
Generate a population of reasonable size, and create an environment through a simula-

tions process where nonresponse could happen. For various values of response rate and

sample size, study the coverage by the 1�αð Þ100% confidence interval estimates obtained

from this newly tuned estimator of the population mean by counting howmany times out of

10,000 attempts, the true population mean �Y falls within the interval estimates given by
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�yNRTuned csð Þ � tα=2 df¼ ?ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v̂NRTuned csð Þ

q
(2.108)

Suggest and justify your choice of degree of freedom (df ).

(b) Consider a newly tuned dell estimator of the population mean �Y defined by

�yNRTuned dellð Þ ¼
X
j2sr

r�1ð Þ2 �w�
r jð Þ� r�2ð Þ

h i
�yr jð Þ (2.109)

where 0< �w�
r jð Þ< 1= r�1ð Þ are positive tuned weights constructed such that the following

two constraints are satisfied:

X
j2sr

�w�
r jð Þ¼ 1 (2.110)

and

X
j2sr

�w�
r jð Þψ j ¼ 0 (2.111)

where

ψ j ¼ �xr jð Þ� �xn� r 2� rð Þ�xrð Þ
r�1ð Þ2 (2.112)

Here, for simplicity, consider the optimization of a dual-to-log-likelihood distance func-

tion given by

X
j2sr

ln 1�w�
j

� �
r

(2.113)

or equivalently, optimization of a new log-likelihood function

X
j2sr

ln �w�
r jð Þ� �
r

(2.114)

subject to the two tuning constraints (2.110) and (2.111).

Show that under the dual-to-log-likelihood distance function, the newly tuned estimator

(2.109) of the population mean becomes

�yNRTuned dellð Þ ¼
r�1ð Þ2
r

X
j2sr

�yr jð Þ
1 + λ�1ψ j

� r�2ð Þ
X
j2sr

�yr jð Þ (2.115)

where λ1* is a solution to the nonlinear equation

X
j2sr

ψ j

1 + λ�1ψ j

¼ 0 (2.116)
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Consider an estimator of the variance of the estimator �yNRTuned dellð Þ defined by

v̂NRTuned dellð Þ ¼ r r�1ð Þ3
X
j2sr

�w�
r jð Þ� �2

�y
NRTuned dellð Þ
jð Þ � �yNRTuned dellð Þ

n o2

(2.117)

Assume each newly tuned dell estimator of the population mean is given by

�y
NRTuned dellð Þ
jð Þ ¼

r�yNRTuned dellð Þ � r r�1ð Þ2 �w�
r jð Þ� r�2ð Þ

n o
�yr jð Þ

r�1
(2.118)

for j¼ 1,2,…,r.

Generate such a population of reasonable size and create an environment through a

simulations process where nonresponse could happen. Study the coverage of the

1�αð Þ100% confidence interval estimates given by this newly tuned dell estimator

of the population mean by counting how many times out of 10,000 attempts, the true

population mean �Y falls within the interval estimates

�yNRTuned dellð Þ � tα=2 df¼ ?ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v̂NRTuned dellð Þ

q
(2.119)

Suggest and justify your choice of degree of freedom (df ).

Exercise 2.6 Tuning of a sensitive variable Consider the problem of estimating

the population mean of a sensitive variable and the problem of estimating the variance

of this estimator. Suppose that we select a sample s of n respondents by the SRS

scheme from a population consisting of N units. Let yi be the true response, for exam-

ple income, of the ith respondent in the sample. The ith respondent selected in the

sample is requested to draw two numbers S1 and S2 from two independent randomi-

zation devises, say R1 and R2, respectively, and report the scrambled response Zi com-

puted by

Zi ¼ S1yi + S2�B

A
, i¼ 1,2,…,r (2.120)

where ER S1ð Þ¼A and ER S2ð Þ¼B, and A and B are known. Also let VR S1ð Þ¼ σ2A and

VR S2ð Þ¼ σ2B be known. Let r be the number of respondents in sr, the subsample who

responded to the sensitive question using the preceding randomization device, and

n� rð Þ the number of units in s n�rð Þ, the subsample who refused to respond, and let

sn ¼ sr [ s n�rð Þ. Let xi be an auxiliary variable correlated with the study variable yi, and as-
sume thevaluesof the auxiliaryvariable xi, i¼ 1,2,…,n for all thenunits in snare available.

(a) Consider a newly tuned jackknife estimator of the population mean �Y given by

�ySTuned csð Þ ¼
X
j2sr

r�1ð Þ2 �wr jð Þ� r�2ð Þ
n o

�Zr jð Þ
h i

(2.121)
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where

�Zr jð Þ¼ r �Zr�Zj
r�1

and �wr jð Þ¼ 1�wj

r�1
(2.122)

are, the usual, the jackknife estimator of the population mean and jackknife weight obtained

by removing the jth unit from the responding sample sr for any set ofweightswjwithunit total.

Let �wr jð Þbe the jth tunedweight, chosen such that the following twoconstraints are satisfied:
X
j2sr

�wr jð Þ¼ 1 (2.123)

and

X
j2sr

�wr jð Þ�xr jð Þ¼ �xn� r 2� rð Þ�xr
r�1ð Þ2 (2.124)

Consider tuning the weights �wr jð Þ such that the chi-square type distance function,

defined as

2�1r
� �X

j2sr
q�1
j 1� r�1ð Þ�wr jð Þ� r-1
� �

2
(2.125)

is minimum, subject to the tuning constraints (2.123) and (2.124), and where qj is some

choice of weights. Show that under the chi-square (cs) type distance function, the newly

tuned estimator of the population mean of the sensitive variable becomes

�ySTuned csð Þ ¼ �Zr + β̂STuned �xn� �xrð Þ (2.126)

where

β̂STuned ¼

X
j2sr

qj

 ! X
j2sr

qj�xr jð Þ �Zr jð Þ
 !

�
X
j2sr

qj �Zr jð Þ
 ! X

j2sr
qj�xr jð Þ

 !

X
j2sr

qj

 ! X
j2sr

qj �xr jð Þð Þ2
 !

�
X
j2sr

qj�xr jð Þ
 !2

2
666664

3
777775

is an estimator of the regression coefficient.

Consider an estimator of the variance of the estimator �ySTuned csð Þ defined by

v̂ �ySTuned csð Þ
� �

¼ r r�1ð Þ3
X
j2sr

�wr jð Þf g2 �y
STuned csð Þ
jð Þ � �ySTuned csð Þ

n o2

(2.127)

Note that each newly tuned jackknifed estimator of the population mean �Y is given by

�y
STuned csð Þ
jð Þ ¼

r�ySTumed csð Þ � r r�1ð Þ2 �wr jð Þ� r�2ð Þ
n o

�Zr jð Þ
r�1

(2.128)

for j¼ 1,2,…,r.
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Following Singh, Joarder, and King (1996) generate a population where a study variable

could be sensitive in nature and also generate scrambling variables following them. Then for

different sample sizes, study the coverage of the 1�αð Þ100% confidence interval estimates

given by this newly tuned estimator of the populationmean by counting howmany times, out

of 10,000 attempts, the true population mean �Y falls within the interval estimates given by:

�ySTuned csð Þ � tα=2 df¼ ?ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v̂ �ySTuned csð Þ
� �r

(2.129)

Suggest and justify your choice of degree of freedom (df ).

(b) Consider a newly tuned estimator of the population mean �Y given by

�ySTuned dellð Þ ¼
X
j2sr

r�1ð Þ2 �w�
r jð Þ� r�2ð Þ

h i
�Zr jð Þ (2.130)

where 0< �w�
r jð Þ< 1= r�1ð Þ are the positive tuned weights constructed such that the

following two constraints are satisfied:

X
j2sr

�w�
r jð Þ¼ 1 (2.131)

and

X
j2sr

�w�
r jð Þψ j ¼ 0 (2.132)

where

ψ j ¼ �xr jð Þ� �xn� r 2� rð Þ�xrð Þ
r�1ð Þ2 (2.133)

Here, for simplicity, consider the optimization of a dual-to-log-likelihood function

given by

X
j2sr

ln 1�w�
j

� �
r

(2.134)

or equivalently, consider the optimization of a new log-likelihood function

X
j2sr

ln �w�
r jð Þ� �
r

(2.135)

subject to the preceding two tuning constraints.

Show that under the dual-to-log-likelihood function, the newly tuned dell estimator

(2.130) of the population mean becomes

�ySTuned dellð Þ ¼
r�1ð Þ2
r

X
j2sr

�Zr jð Þ
1 + λ�1ψ j

� r�2ð Þ
X
j2sr

�Zr jð Þ (2.136)
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where λ1* is a solution to the nonlinear equation:

X
j2sr

ψ j

1 + λ�1ψ j

¼ 0 (2.137)

Consider an estimator of the variance of the estimator �ySTuned dellð Þ given by

v̂STuned dellð Þ ¼ r r�1ð Þ3
X
j2sr

�w�
r jð Þ� �2

�y
STuned dellð Þ
jð Þ � �ySTuned dellð Þ

n o2

(2.138)

Assume that each newly tuned jackknifed empirical log-likelihood estimator of the pop-

ulation mean is given by

�y
STuned dellð Þ
jð Þ ¼

r�ySTuned dellð Þ � r r�1ð Þ2 �w�
r jð Þ� r�2ð Þ

n o
�Zr jð Þ

r�1
(2.139)

for j¼ 1,2,…,r. Study the coverage by the 1�αð Þ100% confidence interval estimates con-

structed using this newly tuned empirical log-likelihood estimator of the population mean,

by counting howmany times out of 10,000 attempts the true population mean �Y falls within

the interval estimates given by

�ySTuned dellð Þ � tα=2 df¼ ?ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v̂ �ySTuned dellð Þ
� �r

(2.140)

Suggest and justify your choice of degree of freedom (df ).

Hint: Tracy and Singh (1999).

Exercise 2.7 Estimating geometric mean Consider the problem of estimation of

population geometric mean defined as

Gy ¼
YN
i¼1

yi

 !1=N

(2.141)

Consider a tuned estimator of the population geometric mean Gy given by

ĜTuned csð Þ ¼
X
j2s

n�1ð Þ2 �wn jð Þ� n�2ð Þ
n o

Ĝy jð Þ
h i

(2.142)

where

Ĝy jð Þ¼
Yn
i 6¼j¼1

yi

 !1= n�1ð Þ
, j¼ 1,2,…,n (2.143)

is the jth jackknifed estimator of the geometric mean of the study variable obtained by

removing the jth unit from the usual estimator of the geometric mean given by
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Ĝy ¼
Yn
i¼1

yi

 !1=n

(2.144)

The tuning weights �wn jð Þ in the estimator ĜTuned(cs) are obtained by minimizing the

tuned chi-square type distance function

D¼ n

2

X
j2s

q�1
j 1� n�1ð Þ�wn jð Þ�n�1
� �2

(2.145)

subject to the following two tuning constraints:

X
j2s

�wn jð Þ¼ 1 (2.146)

and

X
j2s

�wn jð Þ Ĝx jð Þ� � 1�nð Þ ¼ 1

n�1ð Þ
X
j2s

Ĝx jð Þ� � 1�nð Þ � �X Ĝx

� ��n

" #
(2.147)

where �X¼N�1
XN
i¼1

xi denotes the known population arithmetic mean of the auxiliary

variable, and

Ĝx jð Þ¼
Yn
i 6¼j¼1

xi

 !1= n�1ð Þ
, j¼ 1,2,…,n (2.148)

is the jth jackknifed estimator of the geometric mean of the auxiliary variable obtained

by dropping jth unit from the usual estimator of the geometric mean of the auxiliary

variable given by

Ĝx ¼
Yn
i¼1

xi

 !1=n

(2.149)

Suggest a doubly tuned jackknife estimator of variance of the tuned estimator of the

population geometric mean, Gy. Generate a population of 10,000 pumpkins from the

SJPM. Investigate the nominal 90%, 95%, and 99% coverages by simulating 5000

interval estimates for different sample sizes in the range of 10–100. Comment on your

findings.
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Exercise 2.8 Estimating harmonic mean Consider the problem of estimating pop-

ulation harmonic mean defined as

Hy ¼ NXN
i¼1

1

yi

(2.150)

Consider a tuned estimator of the population harmonic mean Hy given by

ĤTuned csð Þ ¼
X
j2s

n�1ð Þ2 �wn jð Þ� n�2ð Þ
n o

Ĥy jð Þ
h i

(2.151)

where

Ĥy jð Þ¼ n�1ð ÞXn
i6¼j¼1

1

yi

, j¼ 1,2,…,n (2.152)

is the jth jackknifed estimator of the harmonic mean of the study variable obtained by

dropping the jth unit from the usual estimator of the harmonic mean given by

Ĥy ¼ nXn
i¼1

1

yi

(2.153)

The tuning weights �wn jð Þ in the estimator ĤTuned(cs) are obtained by minimizing the

tuned chi-square type distance function

D¼ n

2

X
j2s

q�1
j 1� n�1ð Þ�wn jð Þ�n�1
� �2

(2.154)

subject to the following two tuning constraints:

X
j2s

�wn jð Þ¼ 1 (2.155)

and

X
j2s

�wn jð ÞĤx jð Þ
nĤx jð Þ� n�1ð ÞĤx

¼ 1

n�1ð Þ
X
j2s

Ĥx jð Þ
nĤx jð Þ� n�1ð ÞĤx

�
�X

Ĥx

" #
(2.156)
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where �X¼N�1
XN
i¼1

xi denotes the known population arithmetic mean of the auxiliary

variable, and

Ĥx jð Þ¼ n�1Xn
i6¼j¼1

1

xi

, j¼ 1,2,…,n (2.157)

is the jth jackknifed estimator of the harmonic mean of the auxiliary variable obtained

by dropping the jth unit from the usual estimator of the harmonic mean of the auxiliary

variable given by

Ĥx ¼ nXn
i¼1

1

xi

(2.158)

Suggest a doubly tuned jackknife estimator of variance of the tuned estimator of the

population harmonic mean, Hy. Generate a population of 10,000 pumpkins from the

SJPM. Investigate the nominal 90%, 95%, and 99% coverages by simulating 5000

interval estimates for different sample sizes in the range of 10–100. Comment on your

findings.

Exercise 2.9 Consider a tuned estimator of the population mean �Y as

�yTuned csð Þ ¼
X
j2s

n�1ð Þ2 �wn jð Þ� n�2ð Þ
n o

�yn jð Þ
h i

(2.159)

where

�yn jð Þ¼ n�yn� yj
n�1

(2.160)

is the sample mean of the study variable obtained by removing the jth unit from the

sample s, and �wn jð Þ is the jackknife tuned weight constructed such that the following
two constraints are satisfied:

X
j2s

�wn jð Þ¼ 1 (2.161)

and

X
j2s

�wn jð Þ Ĝx jð Þ� � 1�nð Þ ¼ 1

n�1ð Þ
X
j2s

Ĝx jð Þ� � 1�nð Þ � �X Ĝx

� ��n

" #
(2.162)
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where �X¼N�1
XN
i¼1

xi denotes the known population arithmetic mean of the auxiliary

variable, and

Ĝx jð Þ¼
Yn
i 6¼j¼1

xi

 !1= n�1ð Þ
, j¼ 1,2,…,n (2.163)

is the jth jackknifed estimator of the geometric mean of the auxiliary variable obtained

by dropping jth unit from the usual estimator of the geometric mean of the auxiliary

variable given by

Ĝx ¼
Yn
i¼1

xi

 !1=n

(2.164)

Subject to the preceding two tuned constraints in Equations (2.161) and (2.162), opti-

mize the following distance function:

D1 ¼ 2�1n
� �X

j2s
q�1
j 1� n�1ð Þ�wn jð Þ�n�1
� �2

(2.165)

Suggest a doubly tuned jackknife estimator of variance of the tuned estimator of the

population mean, �Y. Generate a population of 10,000 pumpkins from the SJPM. Inves-

tigate the nominal 90%, 95%, and 99% coverages by simulating 5000 interval esti-

mates for different sample sizes in the range of 10–100. Comment on your findings.

Exercise 2.10 From the SJPM code listed in PUMPKIN1.R, we generated a random

sample of seven pumpkins and noted their weights (y) and circumferences (x) as
follows:

Weight (lbs) 4430 4060 2000 4100 5080 3790 2108

Circumference (in.) 112 101 98 110 120 104 94

(a) Construct the 95% confidence interval estimate of the average weight of the pumpkins by

using the tuned estimator with chi-square type distance function.

(b) Construct the 95% confidence interval estimate of the average weight of the pumpkins by

using the dell estimator constructed with a dual-to-log-likelihood (dell) distance function

(given: �X¼ 105:4in:).
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3Model assisted tuning

of estimators

3.1 Introduction

In this chapter, we discuss the tuning of a jackknife estimator of population mean and

the estimation of its variance through a model assisted technique. Model assisted tun-

ing of nonresponse has been discussed in one of the exercises at the end.

3.2 Model assisted tuning with a chi-square
distance function

The newly tuned jackknife estimator of the population mean �Y is defined as

�yMATuned csð Þ ¼
X
j2s

n�1ð Þ2 �wn jð Þ� n�2ð Þ
n o

�yn jð Þ
h i

(3.1)

where

�yn jð Þ¼ n�yn� yj
n�1

(3.2)

is the sample mean of the study variable obtained by removing the jth unit from the

sample s, and

�wn jð Þ¼ 1�wj

n�1
(3.3)

is the tuned jackknife weight of the calibrated weights wj such that

X
j2s

wj ¼ 1 (3.4)

X
j2s

wjxj ¼ �X (3.5)

and X
j2s

wjŷj ¼ Ŷ (3.6)
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where Ŷ¼N�1
X
i2Ω

ŷi for ŷi ¼ f xi, β̂
� �

is the predicted value of the study variable based

on any linear or nonlinear model.

Now a set of newly tuned jackknifed weights �wn jð Þ should satisfy the following

three tuning constraints:X
j2s

�wn jð Þ¼ 1 (3.7)

X
j2s

�wn jð Þ�xn jð Þ¼
�X�n 2�nð Þ�xn

n�1ð Þ2 (3.8)

and

X
j2s

�wn jð Þŷn jð Þ¼ Ŷ�n 2�nð Þŷn
n�1ð Þ2 (3.9)

where

�xn jð Þ¼ n�xn� xj
n�1

and ŷn jð Þ¼ nŷn� ŷj
n�1

are the jth jackknifed sample means of the auxiliary variable and the predicted values

obtained by removing the jth unit from the sample s, and where �xn ¼ n�1
X
i2s

xi and

ŷn ¼ n�1
X
i2s

ŷi.

We consider the chi-square type distance function defined as

2�1n
� �X

j2s
q�1
j wj�n�1
� �2 ¼ 2�1n

� �X
j2s

q�1
j 1� n�1ð Þ�wn jð Þ�n�1
� �2

(3.10)

to be optimized subject to tuning constraints (3.7), (3.8), and (3.9), where qj is an arbi-
trary choice of weights.

The Lagrange function is given by

L1 ¼ 2�1n
� �X

j2s
q�1
j 1� n�1ð Þ�wn jð Þ�n�1
� �2� λ0

X
j2s

�wn jð Þ�1

( )

�λ1
X
j2s

�wn jð Þ�xn jð Þ� n�1ð Þ�2 �X�n 2�nð Þ�xnð Þ
( )

�λ2
X
j2s

�wn jð Þŷn jð Þ� n�1ð Þ�2 Ŷ�n 2�nð Þŷn
� �( )

(3.11)
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where λ0, λ1, and λ2 are Lagrange multiplier constants.

On setting

@L1
@ �wn jð Þ¼ 0 (3.12)

we have

�wn jð Þ¼ 1

n
1 +

1

n�1ð Þ2 qjλ0 + λ1qj�xn jð Þ + λ2qjŷn jð Þ� �" #
(3.13)

Using Equation (3.13) in Equations (3.7), (3.8), and (3.9), a set of normal equations for

the optimum values of λ0, λ1, and λ2 is given by

A, B, C

B, D, E

C, E, F

2
664

3
775

λ0

λ1

λ2

2
664

3
775¼

0

G

H

2
664

3
775 (3.14)

where

A¼
X
j2s

qj, B¼
X
j2s

qj�xn jð Þ, C¼
X
j2s

qjŷn jð Þ, D¼
X
j2s

qj �xn jð Þf g2,

E¼
X
j2s

qj �xn jð Þŷn jð Þ� �
, G¼ n�1ð Þ2 n �X�n 2�nð Þ�xnð Þ

n�1ð Þ2 �
X
j2s

�xn jð Þ
( )

,

F¼
X
j2s

qj ŷn jð Þ� �2
, and H¼ n�1ð Þ2

n Ŷ�n 2�nð Þŷn
� �

n�1ð Þ2 �
X
j2s

ŷn jð Þ
8<
:

9=
;.

The newly tuned jackknifed weights �wn jð Þ are given by

�wn jð Þ¼ 1

n
1 +

1

n�1ð Þ2 K̂1jG + K̂2jH
� �" #

(3.15)

with

K̂1j ¼ qj
Δ

CE�BFð Þ+ AF�C2
� �

�xn jð Þ+ BC�AEð Þŷn jð Þ� 	
and

K̂2j ¼ qj
Δ

BE�CDð Þ + BC�AEð Þ�xn jð Þ+ AD�B2
� �

ŷn jð Þ� 	
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where

Δ¼ADF�AE2�B2F�C2D + 2BCE

Thus under the chi-square (cs) type distance function, the newly tuned jackknife esti-

mator (3.1) of the population mean becomes

�yMATuned csð Þ ¼
n�1ð Þ2
n

X
j2s

�yn jð Þ+ β̂1
n �X�n 2�nð Þ�xnð Þ

n�1ð Þ2 �
X
j2s

�xn jð Þ
( )"

+ β̂2
n Ŷ�n 2�nð Þŷn
� �

n�1ð Þ2 �
X
j2s

ŷn jð Þ
8<
:

9=
;
3
5� n�2ð Þ

X
j2s

�yn jð Þ

(3.16)
where

β̂1 ¼
1

Δ
CE�BFð Þ

X
j2s

qj�yn jð Þ + AF�C2
� �X

j2s
qj�xn jð Þ�yn jð Þ

"

+ BC�AEð Þ
X
j2s

qjŷn jð Þ�yn jð Þ
#

(3.17)

and

β̂2 ¼
1

Δ
BE�CDð Þ

X
j2s

qj�yn jð Þ+ BC�AEð Þ
X
j2s

qj�xn jð Þ�yn jð Þ
"

+ AD�B2
� �X

j2s
qjŷn jð Þ�yn jð Þ

#
(3.18)

are the partial regression coefficients in the newly tuned linear regression type esti-

mator �yMATuned csð Þ of the population mean.

3.2.1 Estimation of variance and coverage

An estimator of variance of the estimator �yMATuned csð Þ is

v̂MATuned csð Þ ¼ n n�1ð Þ3
X
j2s

�w2
n jð Þ� �

�y
MATuned csð Þ
jð Þ � �yMATuned csð Þ

n o2

(3.19)

where each newly tuned doubly jackknifed estimator of the population mean is given by

�y
MATuned csð Þ
jð Þ ¼

n�yMATuned csð Þ �n n�1ð Þ2 �wn jð Þ� n�2ð Þ
n o

�yn jð Þ
n�1

(3.20)

for j¼ 1,2,…,n.
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The coverage by the 1�αð Þ100% confidence interval estimates obtained by

this newly tuned jackknife estimator of population mean is obtained by counting

how many times the true population mean �Y falls within the interval estimates

given by

�yMATuned csð Þ � tα=2 df¼ n�1ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v̂MATuned csð Þ

q
(3.21)

Again, we used degree of freedom df¼ n�1 for our convenience. We studied 90%,

95%, and 99% coverage by the newly tuned jackknife estimator of the population

mean by selecting 10,000 random samples from a finite population of N¼ 70,000

pumpkins generated by the Statistical Jumbo Pumpkin Model (SJPM). The results

obtained for different sample sizes are shown in Table 3.1.

Table 3.1 shows that the coverage by the model assisted newly tuned doubly

jackknifed estimator of population mean performs well in the case of small sample

sizes in the range of 5–9. The nominal 90% coverage is approximated as 89.53%

for a sample of 7 pumpkins, the nominal 95% coverage is approximated as 95.23%

for a sample of 9 pumpkins, and the nominal 99% coverage is approximated as

96.51% for a sample of 9 pumpkins. The last column in Table 3.1 indicates the pro-

portion of negative estimates obtained during the entire simulation process for differ-

ent sample sizes.

To predict the weights of the pumpkins, we fit the nonlinear model to each

sample as

yi ¼ aebxi + cx
2
i eεi (3.22)

where εi �N 0, 1ð Þ. Therefore, model assisted tuning of the estimators works

well for small sample sizes, as far as estimation of the weights of pumpkins is con-

cerned, assuming the circumferences of the pumpkins are known. The newly tuned

jackknife estimator of the population mean weight estimates works well even

though the relation between the weight of pumpkins and their circumferences is

not linear.

Table 3.1 Performance of the newly tuned jackknife estimator

Sample size (n)

90%

coverage

95%

coverage

99%

coverage

Negative

estimates

5 0.8192 0.8447 0.8821 0.0720

6 0.8570 0.8779 0.9112 0.0537

7 0.8953 0.9113 0.9329 0.0438

8 0.9230 0.9362 0.9524 0.0332

9 0.9434 0.9523 0.9651 0.0255
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3.2.2 R code

The following R code, PUMPKIN31.R, was used to study the coverage by the newly

tuned jackknife estimator based on a chi-square type distance function.

PROGRAM PUMPKIN31.R

set.seed(2013)

N<-70000

x<-runif(N, min¼30, max¼190)

m<-5.5*(exp(0.047*x - 0.0001*x*x))

z<-rnorm(N, 0, 2)

y<-m*exp(z)

mean(x)->XB; mean(y)->YB; nreps<-10000

ESTP¼rep(0,nreps)

ci1.max¼ci1.min¼ci2.max¼ci2.min¼ci3.max¼ci3.min¼vESTP¼ESTP

for (n in 5:9)

{

for (r in 1:nreps)

{

us<-sample(N,n)

xs<-x[us]; ys<-y[us]

model<-lm(log(ys)�xs+I(xs 2̂))

exp(model$fitted)->yss

exp(predict(model,newdata¼data.frame(xs¼x)))->ysp

yssj<-(n*mean(yss) - yss)/(n-1)

xmj<-(sum(xs) - xs)/(n-1); ymj<-(sum(ys) - ys)/(n-1)

a<-n; b<-sum(xmj); c<- sum(yssj); d<- sum(xmj 2̂)

e<- sum(xmj*yssj); f<- sum(yssj 2̂)

g<- (XB-n*(2-n)*mean(xs)) - mean(xmj)*((n-1) 2̂)

h<- (mean(ysp)-n*(2-n)*mean(yss))-mean(yssj)*((n-1) 2̂)

delta<-a*d*f - a*e*e - b*b*f - c*c*d + 2*b*c*e

landa1<-((c*e - b*f )+(a*f-c*c)*xmj+(b*c-a*e)*yssj)/delta

landa2<-((b*e - c*d)+(b*c-a*e)*xmj+(a*d-b*b)*yssj)/delta

wbnj<-(1/n) + (landa1*g + landa2*h)/((n-1) 2̂)

ESTI<- n*(((n-1) 2̂)*wbnj - (n-2))*ymj

ESTP[r]<- (mean(ESTI))

EST_J<-(n*ESTP[r] - ESTI)/(n-1)

vESTP[r]<-n*(n-1) 3̂*sum((wbnj 2̂)*((EST_J- ESTP[r]) 2̂))

ci1.max[r]<- ESTP[r]+qt(0.95,n-1)*sqrt(vESTP[r])

ci1.min[r]<- ESTP[r]-qt(0.95,n-1)*sqrt(vESTP[r])

ci2.max[r]<- ESTP[r]+qt(0.975,n-1)*sqrt(vESTP[r])

ci2.min[r]<- ESTP[r]-qt(0.975,n-1)*sqrt(vESTP[r])

ci3.max[r]<- ESTP[r]+qt(0.995,n-1)*sqrt(vESTP[r])

ci3.min[r]<- ESTP[r]-qt(0.995,n-1)*sqrt(vESTP[r])

}

sum(ESTP <0,na.rm¼T) + sum(ESTP¼¼"NaN")->out
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for (r in 1:nreps)

if (ESTP[r]!¼"NaN") { if (ESTP[r] < 0) {

ci1.max[r]<-NaN;ci1.min[r]<-NaN

ci2.max[r]<-NaN;ci2.min[r]<-NaN

ci3.max[r]<-NaN;ci3.min[r]<-NaN

}}

round(sum(ci1.min<YB & ci1.max>YB,na.rm¼T)/nreps,4)->cov1

round(sum(ci2.min<YB & ci2.max>YB,na.rm¼T)/nreps,4)->cov2

round(sum(ci3.min<YB & ci3.max>YB,na.rm¼T)/nreps,4)->cov3

cat(n, round(out/nreps,4), cov1,cov2,cov3,'\n')

}

}

3.3 Model assisted tuning with a dual-to-empirical
log-likelihood (dell) function

Let w�
j be positive calibrated weights such that the following three constraints are

satisfied:

X
j2s

w�
j ¼ 1 (3.23)

X
j2s

w�
jΦ1j ¼ 0 (3.24)

and

X
j2s

w�
jΦ2j ¼ 0 (3.25)

where

Φ1j ¼ xj� �X
� �

(3.26)

and

Φ2j ¼ ŷj� Ŷ
� �

(3.27)

Let �w�
n jð Þ be the tuned jackknife weights such that:

�w�
n jð Þ¼ 1�w�

j

n�1ð Þ (3.28)
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Note that

0< �w�
n jð Þ< 1

n�1ð Þ (3.29)

Now we consider a newly tuned jackknife estimator of the population mean �Y
defined as

�yMATuned dellð Þ ¼
X
j2s

n�1ð Þ2 �w�
n jð Þ� n�2ð Þ

h i
�yn jð Þ (3.30)

Here, for simplicity, we consider the optimization of the following dell function:

X
j2s

ln 1�w�
j

� �
n

(3.31)

or equivalently, optimization of a new log-likelihood function

X
j2s

ln �w�
n jð Þ� �
n

(3.32)

such that the following three conditions are satisfied:

X
j2s

�w�
n jð Þ¼ 1 (3.33)

X
j2s

�w�
n jð ÞΨ 1j ¼ 0 (3.34)

and

X
j2s

�w�
n jð ÞΨ 2j ¼ 0 (3.35)

where

Ψ 1j ¼ �xn jð Þ�
�X�n 2�nð Þ�xnð Þ

n�1ð Þ2 (3.36)

and

Ψ 2j ¼ ŷn jð Þ�
Ŷ�n 2�nð Þŷn
� �

n�1ð Þ2 (3.37)
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The Lagrange function is given by

L2 ¼
X
j2s

ln �w�
n jð Þ� �
n

� λ�0
X
j2s

�w�
n jð Þ�1

( )
(3.38)

�λ�1
X
j2s

�w�
n jð ÞΨ 1j

( )
� λ�2

X
j2s

�w�
n jð ÞΨ 2j

( )

where λ�0, λ
�
1and λ�2 are Lagrange multiplier constants.

On setting

@L2
@ �w�

n jð Þ¼ 0 (3.39)

we have

n�w�
n jð Þ¼ 1

1 + λ�1Ψ 1j + λ
�
2Ψ 2j

(3.40)

Constraints (3.33), (3.34) and (3.35) yield λ�0 ¼ 1, and λ�1 and λ�2 are solutions to the

following two nonlinear equations:

X
j2s

Ψ 1j

1 + λ�1Ψ 1j + λ
�
2Ψ 2j

¼ 0 (3.41)

and

X
j2s

Ψ 2j

1 + λ�1Ψ 1j + λ
�
2Ψ 2j

¼ 0 (3.42)

Under the dell distance function, the newly tuned jackknife estimator (3.30) of the

population mean becomes

�yMATuned dellð Þ ¼
n�1ð Þ2
n

X
j2s

�yn jð Þ

1 +
X2
k¼1

λ�kΨ kj

� n�2ð Þ
X
j2s

�yn jð Þ (3.43)

3.3.1 Estimation of variance and coverage

An estimator of the variance of the estimator �yMATuned dellð Þ is

v̂MATuned dellð Þ ¼ n n�1ð Þ3
X
j2s

�w*
n jð Þ� �2

�y
MATuned dellð Þ
jð Þ � �yMATuned dellð Þ

n o2

(3.44)
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Note that the newly tuned empirical log-likelihood doubly jackknifed estimator of

population mean is given by

�y
MATuned dellð Þ
jð Þ ¼

n�yMATuned dellð Þ �n n�1ð Þ2 �w�
n jð Þ� n�2ð Þ

� �
�yn jð Þ

n�1
(3.45)

for j¼ 1,2,…,n.
The coverage by the 1�αð Þ100% confidence interval estimates, provided by this

jackknifed dell estimator of population mean, is obtained by counting howmany times

the true population mean �Y falls within the interval estimates given by

�yMATuned dellð Þ � tα=2 df¼ n�1ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v̂MATuned dellð Þ

q
(3.46)

Again, note the use of degree of freedom df¼ n�1. We studied coverage of

the nominal 90%, 95%, and 99% intervals using 10,000 random samples selected from

the SJPM. The results obtained for different sample sizes are shown in Table 3.2.

In particular, we see from Table 3.2 that using the dell estimator to construct nom-

inal 90%, 95%, and 99% confidence intervals we obtained, respectively, 89.19% cov-

erage with a sample of 8 pumpkins, 94.39% coverage with a sample of 9, and 99.02%

coverage with a sample of 12. Thus, the newly tuned jackknifed dell estimator of pop-

ulation mean seems to work well for small sample sizes.

We used the following approximate values of λ1* and λ2* in computing the weights:

λ�1 ¼
D�C� �B�E�

A�C� �B∗2 (3.47)

and

Table 3.2 Performance of the newly tuned model assisted dell
estimator

Sample size (n) 90% coverage 95% coverage 99% coverage

5 0.6464 0.7182 0.8338

6 0.7605 0.8081 0.8929

7 0.8474 0.8808 0.9342

8 0.8919 0.9181 0.9570

9 0.9298 0.9439 0.9717

10 0.9475 0.9590 0.9770

11 0.9675 0.9744 0.9852

12 0.9762 0.9820 0.9902

13 0.9863 0.9897 0.9948

14 0.8877 0.9901 0.9955

15 0.9911 0.9934 0.9957
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λ�2 ¼
A�E� �B�D�

A�C� �B∗2 (3.48)

where

A*¼
X
j2s

Ψ 2
1j, C*¼

X
j2s

Ψ 2
2j, B*¼

X
j2s

Ψ 1jΨ 2j, D*¼
X
j2s

Ψ 1j, E*¼
X
j2s

Ψ 2j; and no

doubt a better approximation may be used.

3.3.2 R code

To study the coverage of intervals obtained using the newly tuned jackknife

estimator based on the dell distance function, the following R code, PUMPKIN32.R,

was used.

PROGRAM PUMPKIN32.R

set.seed(2013)

N<-70000

x<-runif(N, min¼30, max¼190)

m<-5.5*(exp(0.047*x - 0.0001*x*x))

z<-rnorm(N, 0, 2)

y<-m*exp(z)

mean(x)->XB; mean(y)->YB

nreps<-10000

ESTP¼rep(0,nreps)

ci1.max¼ci1.min¼ci2.max¼ci2.min¼ci3.max¼ci3.min¼ ESTP

vESTP¼ESTP

for (n in 5:15)

{

for (r in 1:nreps)

{

us<-sample(N,n)

xs<-x[us]; ys<-y[us]

model<-lm(log(ys)�xs+I(xs 2̂))

exp(model$fitted)->yss

exp(predict(model,newdata¼data.frame(xs¼x)))->ysp

yssj<-(n*mean(yss) - yss)/(n-1)

xmj<-(sum(xs) - xs)/(n-1); ymj<-(sum(ys) - ys)/(n-1)

shi1<-xmj-(XB-n*(2-n)*mean(xs))/((n-1) 2̂)

shi2<-yssj-(mean(ysp)-n*(2-n)*mean(yss))/((n-1) 2̂)

a<-sum(shi1 2̂); b<-sum(shi1*shi2); c<- sum(shi2 2̂)

d<- sum(shi1); e<- sum(shi2)

l1<-(d*c-b*e)/(a*c-b*b);l2<-(a*e-b*d)/(a*c-b*b)

wbnj<-(1/n)*(1/(1 + l1*shi1 + l2*shi2))

ESTI<- n*(((n-1) 2̂)*wbnj - (n-2))*ymj
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ESTP[r]<- mean(ESTI)

EST_J<-(n*ESTP[r] - ESTI)/(n-1)

vESTP[r]<-n*(n-1) 3̂*sum((wbnj 2̂)*((EST_J -ESTP[r]) 2̂))

ci1.max[r]<- ESTP[r]+qt(0.95,n-1)*sqrt(vESTP[r])

ci1.min[r]<- ESTP[r]-qt(0.95,n-1)*sqrt(vESTP[r])

ci2.max[r]<- ESTP[r]+qt(0.975,n-1)*sqrt(vESTP[r])

ci2.min[r]<- ESTP[r]-qt(0.975,n-1)*sqrt(vESTP[r])

ci3.max[r]<- ESTP[r]+qt(0.995,n-1)*sqrt(vESTP[r])

ci3.min[r]<- ESTP[r]-qt(0.995,n-1)*sqrt(vESTP[r])

}

round(sum(ci1.min<YB & ci1.max>YB,na.rm¼T)/nreps,4)->cov1

round(sum(ci2.min<YB & ci2.max>YB,na.rm¼T)/nreps,4)->cov2

round(sum(ci3.min<YB & ci3.max>YB,na.rm¼T)/nreps,4)->cov3

cat(n, cov1,cov2,cov3,'\n')

}

A researcher could also refer to Wu and Sitter (2001), Farrell and Singh (2002b,

2005), and Montanari and Ranalli (2005) for model calibration in survey sampling,

although their approach is different than the one discussed in this chapter.

3.4 Exercises

Exercise 3.1 Consider a newly tuned jackknife estimator of the population mean �Y:

�yMATuned csð Þ ¼
X
j2s

n�1ð Þ2 �wn jð Þ� n�2ð Þ
n o

�yn jð Þ
h i

(3.49)

where

�yn jð Þ¼ n�yn� yj
n�1

(3.50)

is the sample mean of the study variable obtained by removing the jth unit from the

sample s, and �wn jð Þ is the jackknife tuned weight such that the following three con-

straints are satisfied:

X
j2s

�wn jð Þ¼ 1 (3.51)

X
j2s

�wn jð Þ�xn jð Þ¼
�X�n 2�nð Þ�xn

n�1ð Þ2 (3.52)

and
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X
j2s

�wn jð Þŷn jð Þ¼ Ŷ�n 2�nð Þŷn
n�1ð Þ2 (3.53)

where

�wn jð Þ¼ 1�wj

n�1
(3.54)

for arbitrary weights wj such that
X
j2s

wj ¼ 1. Assume that the predicted values

ŷi ¼ f xi, β̂
� �

for i2Ω are known, Ŷ¼ 1

N

X
i2Ω

ŷi, ŷn ¼
1

n

X
i2s

ŷi and ŷn jð Þ¼ nŷn� ŷj
n�1

have

their usual meanings. Subject to these three constraints, optimize each of the following

distance functions:

D1 ¼ 2�1n
� �X

j2s
q�1
j 1� n�1ð Þ�wn jð Þ�n�1
� �2

(3.55)

D2 ¼
X
j2s

�wn jð Þ ln �wn jð Þð Þ½ �, 0< �wn jð Þ< 1= n�1ð Þ (3.56)

D3 ¼
X
j2s

q�1
j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n�1ð Þ�wn jð Þ

p
�

ffiffiffiffiffiffiffi
n�1

p� �2
, 0< �wn jð Þ< 1= n�1ð Þ (3.57)

D4 ¼
X
j2s

�n�1 ln �wn jð Þð Þ� 	
, 0< �wn jð Þ< 1= n�1ð Þ (3.58)

D5 ¼
X
j2s

1� n�1ð Þ�wn jð Þ�n�1ð Þ2
2qj 1� n�1ð Þ�wn jð Þð Þ , 0< �wn jð Þ< 1= n�1ð Þ (3.59)

D6 ¼ 1

n

X
j2s

tanh�1 �wn jð Þf g2�1

�wn jð Þf g2 + 1

 !
(3.60)

D7 ¼ 1

2

X
j2s

1� n�1ð Þ�wn jð Þ�n�1ð Þ2
qjn�1

+
1

2

X
j2s

φj �wn jð Þf g2
qjn�1 n�1ð Þ�2

(3.61)

and

D8 ¼
X
j2s

q�1
j �wn jð Þ ln �wn jð Þð Þ� �wn jð Þ+ n�1
� 	

(3.62)

where qj are suitably chosen weights that form different types of estimators, φj is a

penalty, and tanh�1ðÞ is the hyperbolic tangent function. Also, optimize each one

of the preceding eight distance functions subject to only one of the tuning constraints
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(3.52) and (3.53).Write code inany scientific language, likeR,FORTRAN,orC, to study

the resulting estimators of population mean. Discuss the nature of tuned weights in each

situation. In each case, investigate the nominal 90%, 95%, and 99% confidence interval

estimates by estimating the variance using the method discussed in the chapter.

Exercise 3.2 Consider a newly tuned additional constraint for Exercise 3.1:

X
j2s

�wn jð Þs2x jð Þ¼ nS2x � n�1ð Þ n�1ð Þ�n n�2ð Þf gs2x
n�1ð Þ2 n�2ð Þ (3.63)

where

s2x jð Þ¼ n�1ð Þs2x �n n�1ð Þ�1 xj� �xn
� �2

n�2
(3.64)

and S2x ¼ N�1ð Þ�1
X
i2Ω

xi� �Xð Þ2 is known. Report any changes observed in the

resultant estimator.

Exercise 3.3 Assume the predicted values ŷi ¼ f xi, β̂
� �

for i2Ω are known. Consider

a newly tuned additional constraint for Exercise 3.1

X
j2s

�wn jð Þs2ŷ jð Þ¼ nS2ŷ � n�1ð Þ n�1ð Þ�n n�2ð Þf gs2ŷ
n�1ð Þ2 n�2ð Þ (3.65)

where

s2ŷ jð Þ¼
n�1ð Þs2ŷ �n n�1ð Þ�1 ŷj� ŷn

� �2
n�2

(3.66)

S2ŷ ¼N N�1ð Þ�1σ2ŷ and σ2ŷ ¼N�1
X
i2Ω

ŷi� Ŷ
� �2

. Report any changes observed in the

resultant estimator.

Exercise 3.4 Assume that the value of the finite population correlation coe-

fficient ρxy between the study variable y and the auxiliary variable x is known. Let

us consider

n�1ð Þsxy ¼
X
i2s

xi� �xnð Þ yi� �ynð Þ, n�1ð Þs2x ¼
X
i2s

xi� �xnð Þ2,

n�1ð Þs2y ¼
X
i2s

yi� �ynð Þ2, n�xn ¼
X
i2s

xi, n�yn ¼
X
i2s

yi, and r¼ sxy= sxsy
� �

.

Consider a newly tuned additional constraint for Exercise 3.1:X
j2s

�wn jð Þr jð Þ¼ ρxy (3.67)
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where the value of the partially jackknifed correlation coefficient r( j) after dropping
some influence of the jth pair of the study and auxiliary variable values is given by

r jð Þ ¼
r

n�1ð Þ
n�2ð Þ�

n xj� �xn
� �

yj� �yn
� �

n�1ð Þ n�2ð Þsxy

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n�1ð Þ
n�2ð Þ�

n xj� �xn
� �2

n�1ð Þ n�2ð Þs2x

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n�1ð Þ
n�2ð Þ�

n yj� �yn
� �2

n�1ð Þ n�2ð Þs2y

s (3.68)

Report any changes observed in the resultant estimators.

Exercise 3.5 Assume that the heteroscedasticity of the function v xið Þ> 0 is known in

the linear model:

yi ¼ βxi + ei (3.69)

such that E eijxið Þ¼ 0, E e2i jxi
� �¼ σ2v xið Þ, and E eiejjxixj

� �¼ 0.

Consider the following additional tuning constraints:

X
j2s

�wn jð Þσ̂2x jð Þ¼ σ2x �n 2�nð Þσ̂2x
n�1ð Þ2 (3.70)

and

X
j2s

�wn jð Þv�s xð Þ jð Þ¼
v�Ω xð Þ �n 2�nð Þv�s xð Þ

n�1ð Þ2 (3.71)

where

v�Ω xð Þ ¼
1

N

X
i2Ω

v xið Þ, v�s xð Þ ¼
1

n

X
i2s

v xið Þ, v�s xð Þ jð Þ¼
nv�s xð Þ � v xj

� �
n�1

,

σ̂2x jð Þ¼ nσ̂2x � xj� �xn
� �2
n�1ð Þ , σ̂2x ¼ n�1

X
i2s

xi� �xnð Þ2, and σ2x ¼N�1
X
i2Ω

xi� �Xð Þ2 have their
usual meanings. Repeat Exercise 3.1, incorporating the preceding constraints, and dis-

cuss your findings.

Hint: Stearns and Singh (2008).

Exercise 3.6 In Exercise 3.1, find the distribution of �2
X
j2s

ln 1�wj

� �
, or equiva-

lently �2
X
j2s

ln �wn jð Þð Þ, while optimizing the dell distance function:

D¼
X
j2s

n�1 ln �wn jð Þð Þ� 	
, 0< �wn jð Þ< 1= n�1ð Þ (3.72)
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Exercise 3.7 Model assisted tuning of nonresponse Consider a sample sn on n units,
selected using simple random sampling scheme, where the value of the study variable

yi and an auxiliary variable xi are measured i¼ 1,2,…,n. Assume that the responses

sr � sn on the study variable yi, i¼ 1,2,…,r for the r units are available, and the

remaining n� rð Þ responses on the study variable are missing at random. Estimate

the population mean �Y of the study variable. Let �yr ¼ r�1
X
i2sr

yi be the sample mean

of the study variable corresponding to the set of responding units, let �xr ¼ r�1
X
i2sr

xi

be the sample mean of the auxiliary variable corresponding to the set of responding

units, and let �xn ¼ n�1
X
i2sn

xi be the sample mean of the auxiliary variable for the entire

sample selected in the survey.

(a) Consider a newly tuned jackknife estimator of the population mean �Y, defined as

�yNRMATuned csð Þ ¼
X
j2sr

r�1ð Þ2 �wr jð Þ� r�2ð Þ
n o

�yr jð Þ
h i

(3.73)

where

�yr jð Þ¼ r�yr�yj
r�1

and �wr jð Þ¼ 1�wj

n�1

have their usual meanings. The newly tuned jackknife weights �wr jð Þ should satisfy the

following three tuning constraints:

X
j2sr

�wr jð Þ¼ 1 (3.74)

X
j2sr

�wr jð Þ�xr jð Þ¼ �xn� r 2� rð Þ�xr
r�1ð Þ2 (3.75)

and

X
j2sr

�wr jð Þŷr jð Þ¼ ŷn� r 2� rð Þŷr
r�1ð Þ2 (3.76)

where

�xr jð Þ¼ r�xr�xj
r�1

and ŷr jð Þ¼ rŷr� ŷj
r�1

are the jth jackknife sample mean of the auxiliary variable and mean of predicted values

obtained by removing the jth unit from the sample sr such that �xr ¼ r�1
X
i2sr

xi and

ŷr ¼ r�1
X
i2sr

ŷi for ŷi ¼ f xi, β̂
� �

are the predicted values of the study variable based on
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any linear or nonlinear model. Consider the tuning of the weights �wr jð Þ such that the chi-

square type distance function defined as

2�1r
� �X

j2sr
q�1
j 1� r�1ð Þ�wr jð Þ� r�1
� �2

(3.77)

is optimum subject to tuning constraints (3.74), (3.75), and (3.76), and qj is a choice of

weights. Show that under the chi-square (cs) type distance function, the newly tuned jack-

knife estimator (3.72) of the population mean becomes

�yNRMATuned csð Þ ¼
r�1ð Þ2
r

X
j2sr

�yr jð Þ + β̂1
r �xn� r 2� rð Þ�xrð Þ

r�1ð Þ2 �
X
j2sr

�xr jð Þ
( )"

+ β̂2
n ŷn� r 2� rð Þŷr
� �

r�1ð Þ2 �
X
j2sr

ŷr jð Þ
( )#

� r�2ð Þ
X
j2sr

ŷr jð Þ
(3.78)

where

β̂1 ¼
1

Δ
CE�BFð Þ

X
j2sr

qj�yr jð Þ + AF�C2
� �X

j2sr
qj�xr jð Þ�yr jð Þ

"

+ BC�AEð Þ
X
j2sr

qjŷr jð Þ�yr jð Þ
# (3.79)

and

β̂2 ¼
1

Δ
BE�CDð Þ

X
j2sr

qj�yr jð Þ+ BC�AEð Þ
X
j2sr

qj�xr jð Þ�yr jð Þ
"

+ AD�B2
� �X

j2sr
qjŷr jð Þ�yr jð Þ

# (3.80)

where

A¼
X
j2sr

qj, B¼
X
j2sr

qj�xr jð Þ, C¼
X
j2sr

qjŷr jð Þ, D¼
X
j2sr

qj �xr jð Þf g2, E¼
X
j2sr

qj �xr jð Þŷr jð Þ� �
,

G¼ r�1ð Þ2 r �xn� r 2� rð Þ�xrð Þ
r�1ð Þ2 �

X
j2sr

�xr jð Þ
( )

, F¼
X
j2sr

qj ŷr jð Þ� �2
, and

H¼ r�1ð Þ2 r ŷn� r 2� rð Þŷr
� �

r�1ð Þ2 �
X
j2sr

ŷr jð Þ
( )

.

Consider an estimator of variance of the estimator �yNRMATuned csð Þ as

v̂NRMATuned csð Þ ¼ r r�1ð Þ3
X
j2sr

�wr jð Þf g2 �y
NRMATuned csð Þ
jð Þ � �yNRMATuned csð Þ

n o2

(3.81)

Note that each newly tuned doubly jackknifed estimator of the population mean is

given by
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�y
NRMATuned csð Þ
jð Þ ¼

r�yNRMATuned csð Þ � r r�1ð Þ2 �wr jð Þ� r�2ð Þ
n o

�yr jð Þ
r�1

(3.82)

for j¼ 1,2,…,r. Simulate a population of 10,000 units. For various sample sizes and

response rates, examine the coverage by the 1�αð Þ100% confidence interval estimates

provided by this newly tuned jackknife estimator of the population mean by counting

how many times, say out of 100,000 attempts, the true population mean �Y falls within

the interval estimates given by

�yNRMATuned csð Þ � tα=2 df¼ ?ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v̂NRMATuned csð Þ

q
(3.83)

where df¼ ? stands for the degree of freedom to be determined.

(b) Consider a newly tuned jackknife dell estimator of the population mean �Y, defined as

�yNRMATuned dellð Þ ¼
X
j2sr

r�1ð Þ2 �w�
r jð Þ� r�2ð Þ

h i
�yr jð Þ (3.84)

where �w�
r jð Þ are the tuned positive weights such that the following three constraints are

satisfied:

X
j2sr

�w�
r jð Þ¼ 1 (3.85)

X
j2sr

�w�
r jð ÞΨ 1j ¼ 0 (3.86)

and

X
j2sr

�w�
r jð ÞΨ 2j ¼ 0 (3.87)

where

Ψ 1j ¼ �xr jð Þ� �xn� r 2� rð Þ�xrð Þ
r�1ð Þ2 (3.88)

and

Ψ 2j ¼ ŷr jð Þ� ŷn� r 2� rð Þŷr
� �

r�1ð Þ2 (3.89)

Now consider the optimization of a dell function:

n�1
X
j2sr

ln 1�w�
j

� �
(3.90)
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or equivalently, optimization of the log-likelihood function

n�1
X
j2sr

ln �w�
n jð Þ� �

(3.91)

such that conditions (3.85), (3.86), and (3.87) are satisfied. Show that under the dell dis-

tance function, the newly tuned jackknife estimator (3.84) of the population mean becomes

�yNRMATuned dellð Þ ¼
r�1ð Þ2
r

X
j2sr

�yr jð Þ

1 +
X2
k¼1

λ�kΨ kj

� r�2ð Þ
X
j2sr

�yr jð Þ (3.92)

where λ�1 and λ�2 is a solution to the single parametric equation

X
j2sr

Ψ 1j +Ψ 2j

1 + λ�1Ψ 1j + λ
�
2Ψ 2j

¼ 0 (3.93)

Consider an estimator of variance of the estimator �yNRMATuned dellð Þ as

v̂NRMATuned dellð Þ ¼ r r�1ð Þ3
X
j2sr

�w*
r jð Þ� �2

�y
NRMATuned dellð Þ
jð Þ � �yNRMATuned dellð Þ

n o2

(3.94)

where each newly tuned doubly jackknifed estimator of the population mean is given by

�y
NRMATuned dellð Þ
jð Þ ¼

r�yNRMATuned dellð Þ � r r�1ð Þ2 �w�
r jð Þ� r�2ð Þ

n o
�yr jð Þ

r�1
(3.95)

for j�1,2,…,r. Simulate a population of 10,000 units where nonresponse is expected. For

various sample sizes and response rates, study the 1�αð Þ100% confidence interval esti-

mates given by this newly tuned empirical log-likelihood estimator of population mean

by counting howmany times out of 10,000 attempts, the true population mean �Y falls within

the interval estimates given by

�yNRMATuned dellð Þ � tα=2 df¼ ?ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v̂NRMATuned dellð Þ

q
(3.96)

where df¼ ? stands for the degree of freedom to be determined. Comment on your findings

in each situation.

Exercise 3.8 Consider a newly tuned jackknife estimator of the population mean �Y:

�yMATuned csð Þ ¼
X
j2s

n�1ð Þ2 �wn jð Þ� n�2ð Þ
n o

�yn jð Þ
h i

(3.97)

where

�yn jð Þ¼ n�yn� yj
n�1

(3.98)
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is the sample mean of the study variable obtained by removing the jth unit from the

sample s, and �wn jð Þ is the jackknife tuned weight. Assume that the predicted values

ŷi ¼ g xi, β̂
� �

for i2Ω are known from any linear or nonlinear model. Let Ŷ¼ 1

N

X
i2Ω

ŷi

be the known population mean of the predicted values. Let Ĝŷ ¼
Yn
i¼1

ŷi

 !1=n

be the

geometric mean of the predicted values in the sample s. Let

Ĝŷ jð Þ¼
Yn
i 6¼j¼1

ŷi

 !1= n�1ð Þ
, j¼ 1,2,…,n, be the jth jackknifed sample geometric mean

of the predicted values. Also let Ĝx ¼
Yn
i¼1

xi

 !1=n

be the sample geometric mean of

the sampled auxiliary variable x values. Let Ĝx jð Þ¼
Yn
i 6¼j¼1

xi

 !1= n�1ð Þ
, j¼ 1,2,…,n,

be the jth jackknifed sample geometric mean of the auxiliary variable. To

determine the tuned weights �wn jð Þ, optimize the following distance functions:

D¼ 2�1n
� �X

j2s
q�1
j 1� n�1ð Þ �wn jð Þ�n�1
� �2

(3.99)

such that the following three constraints are satisfied:

X
j2s

�wn jð Þ¼ 1 (3.100)

X
j2s

�wn jð Þ Ĝx jð Þ� 	 1�nð Þ ¼ 1

n�1ð Þ
X
j2s

Ĝx jð Þ� 	 1�nð Þ � �X Ĝx

� ��n

" #
(3.101)

and

X
j2s

�wn jð Þ Ĝŷ jð Þ� 	 1�nð Þ ¼ 1

n�1ð Þ
X
j2s

Ĝŷ jð Þ� 	 1�nð Þ � Ŷ Ĝŷ

� ��n

" #
(3.102)

Construct an estimator of variance of the estimator of population mean �Y using double

jackknifing technique discussed in the text. Write R code to simulate a population of

your choice of 5000 units. For various sample sizes, study the nominal 90%, 95%, and

99% coverage by the 1�αð Þ100% confidence interval estimates over 10,000

attempts. Comment on your findings.
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Exercise 3.9 Consider a newly tuned jackknife estimator of the population mean �Y as

�yMATuned csð Þ ¼
X
j2s

n�1ð Þ2 �wn jð Þ� n�2ð Þ
n o

�yn jð Þ
h i

(3.103)

where

�yn jð Þ¼ n�yn� yj
n�1

(3.104)

is the sample mean of the study variable obtained by removing the jth unit from the

sample s, and �wn jð Þ is the jackknife tuned weight. Assume that the predicted values

ŷi ¼ h xi, β̂
� �

for i2Ω are known. Let Ŷ¼ 1

N

X
i2Ω

ŷi be the known population mean of

the predicted values. Let Ĥŷ ¼ n
Xn
i¼1

ŷ�1
i

 !�1

be the harmonic mean of the predicted

values in the sample s. Let Ĥŷ jð Þ¼ n�1ð Þ
Xn
i6¼j¼1

ŷ�1
i

 !�1

, j¼ 1,2,…,n, be the jth

jackknifed sample harmonic mean of the predicted values. Also let

Ĥx ¼ n
Xn
i¼1

x�1
i

 !�1

be the sample harmonic mean of the auxiliary variable. Let

Ĥx jð Þ¼ n�1ð Þ
Xn
i6¼j¼1

x�1
i

 !�1

, j¼ 1,2,…,n, be the jth jackknifed sample harmonic

mean of the auxiliary variable. Find the tuned weights �wn jð Þ, by optimizing the fol-

lowing distance function:

D¼ 2�1n
� �X

j2s
q�1
j 1� n�1ð Þ�wn jð Þ�n�1
� �2

(3.105)

such that the following three constraints are satisfied:X
j2s

�wn jð Þ¼ 1 (3.106)

X
j2s

�wn jð ÞĤx jð Þ
nĤx jð Þ� n�1ð ÞĤx

¼ 1

n�1ð Þ
X
j2s

Ĥx jð Þ
nĤx jð Þ� n�1ð ÞĤx

� �X Ĥx

� ��1

" #

(3.107)

and

X
j2s

�wn jð ÞĤŷ jð Þ
nĤŷ jð Þ� n�1ð ÞĤŷ

¼ 1

n�1ð Þ
X
j2s

Ĥŷ jð Þ
nĤŷ jð Þ� n�1ð ÞĤŷ

� Ŷ Ĥŷ

� ��1

" #

(3.108)
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Construct an estimator of variance of the estimator of population mean using double

jackknifing technique. Write R code to simulate a population of your choice. For var-

ious sample sizes, study the nominal 90%, 95%, and 99% coverages by 1�αð Þ100%
confidence interval estimates over 10,000 attempts. Comment on your findings.

Exercise 3.10 In Exercise 3.8, replace the constraint (3.102) with

X
j2s

�wn jð Þŷn jð Þ¼ n�1ð Þ�2 Ŷ�n 2�nð Þŷn
h i

(3.109)

and report any changes in the results.

Exercise 3.11 In Exercise 3.9, replace the constraint (3.107) with

X
j2s

�wn jð Þ�xn jð Þ¼ n�1ð Þ-2 �X�n 2�nð Þ�xn½ � (3.110)

and report any changes in the results.
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4Tuned estimators of finite

population variance

4.1 Introduction

In this chapter, we discuss tuning a jackknife estimator of finite population variance

and then estimate the variance of this estimator. We discuss tuning of the weights

under a chi-square (cs) distance function and also when using the dual to the empirical

log-likelihood estimation method. At the end of the chapter, a few more unsolved

exercises are given.

4.2 Tuned estimator of finite population variance

The newly tuned jackknife estimator of the finite population variance

S2y ¼ 2N N�1ð Þf g�1
XX
i6¼j2Ω

yi� yj
� �2

(4.1)

is defined as

σ̂2T csð Þ ¼
XX
i 6¼j2s

n n�1ð Þ�1ð Þ2 �w i, jð Þ� n n�1ð Þ�2ð Þ
h i

s2y y ið Þ, y jð Þ
� �

(4.2)

where

s2y y ið Þ, y jð Þ
� �¼ 2n n�1ð Þs2y � yi� yj

� �2
2n n�1ð Þ�2

(4.3)

is the sample variance of the study variable obtained by removing the square of the

difference between the ith and jth units from the sum.

Note that

XX
i 6¼j2s

s2y y ið Þ, y jð Þ
� �¼ n n�1ð Þs2y (4.4)

and

s2y ¼ 2n n�1ð Þf g�1
XX
i 6¼j2s

yi� yj
� �2

(4.5)
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We illustrate this with the following example. Consider a sample consisting of n¼ 5

units with values y1 ¼ 15, y2 ¼ 17, y3 ¼ 12, y4 ¼ 25, and y5 ¼ 56 Now, consider the

symmetric matrix given in Table 4.1.

Obviously,

s2y ¼
1

2n n�1ð Þ
Xn
i 6¼

Xn
j¼1

yi� yj
� �2 ¼ 12,940

2�5�4
¼ 323:50

and

s2y 2;4ð Þ¼ 12,876

2�5�4�2
¼ 338:84

Clearly sy
2 (2,4) is not a sample variance of y1 ¼ 15, y3 ¼ 12, and y5 ¼ 56. Therefore

sy
2 (2,4) is a partial jackknifed estimator of variance. It is easy to verify that the equality

(4.4) olds (Singh & Grewal, 2012). Partial jackknifing is kind of like taking one slice

out of a pumpkin at a time, instead of removing the whole pumpkin from the sample.

Let wij be a set of calibrated weights constructed so that the chi-square distance

function defined by

1

2

XX
i 6¼j2s

wij�1= n n�1ð Þð Þ� �2
qij= n n�1ð Þð Þ (4.6)

is optimum subject to the two constraints:

XX
i6¼j2s

wij ¼ 1 (4.7)

and

1

2

XX
i 6¼j2s

wij xi� xj
� �2 ¼ S2x (4.8)

Table 4.1 Squared differences

(yi�yj)2

y1 y2 y3 y4 y5

y1 – 4 9 100 1681

y2 4 – 25 64 1521

y3 9 25 – 169 1936

y4 100 64 169 – 961

y5 1681 1521 1936 961 –
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where

S2x ¼ 2N N�1ð Þf g�1
XX
i6¼j2Ω

xi� xj
� �2

(4.9)

is the known population variance of the auxiliary variable.

Now let �w i, jð Þ be the set of two-dimensional jackknife tuned weight

determined by

wij ¼ n n�1ð Þ�w� n n�1ð Þ�1ð Þ�w i, jð Þ (4.10)

where

�w¼ 1

n n�1ð Þ
XX
i 6¼j2s

wij ¼ 1

n n�1ð Þ (4.11)

Thus, we have

�w i, jð Þ¼ 1�wij

n n�1ð Þ�1
(4.12)

which satisfies the following two tuning constraints:

XX
i 6¼j2s

�w i, jð Þ¼ 1 (4.13)

and

XX
i 6¼j2s

�w i, jð Þs2x x ið Þ, x jð Þ
� �¼ S2x �n n�1ð Þ 2�n n�1ð Þð Þs2x

n n�1ð Þ�1ð Þ2 (4.14)

where

s2x x ið Þ, x jð Þ
� �¼ n n�1ð Þs2x �0:5 xi� xj

� �2
n n�1ð Þ�1

(4.15)

and

s2x ¼ 2n n�1ð Þf g�1
XX
i 6¼j2s

xi� xj
� �2

(4.16)

Tuned estimators of finite population variance 87



4.3 Tuning with a chi-square distance

Note that the chi-square distance function defined as

1

2

XX
i 6¼j2s

wij�1= n n�1ð Þð Þ� �2
qij= n n�1ð Þð Þ (4.17)

is equivalent to the chi-square function of the tuned weights �w i, jð Þ expressed as

1

2

XX
i 6¼j2s

1� n n�1ð Þ�1ð Þ�w i, jð Þ�1= n n�1ð Þð Þf g2
qij= n n�1ð Þð Þ (4.18)

We choose the newly tuned weights �w i, jð Þ such that the chi-square distance in

Equation 4.18 is optimal subject to the tuning constraints (4.13) and (4.14), where

the qij are weights used to form various estimators.

Obviously, the Lagrange function in terms of tuned weights is given by

L1 ¼ 1

2

XX
i 6¼j2s

1� n n�1ð Þ�1ð Þ�w i, jð Þ�1= n n�1ð Þð Þf g2
qij= n n�1ð Þð Þ

�λ0
XX
i6¼j2s

�w i, jð Þ�1

( )
� λ1

XX
i 6¼j2s

�w i, jð Þs2x x ið Þ, x jð Þ
� �(

�S2x �n n�1ð Þ 2�n n�1ð Þð Þs2x
n n�1ð Þ�1ð Þ2

)
(4.19)

where λ0 and λ1 are the Lagrange multiplier constants.

On setting

@L1
@ �w i, jð Þ¼ 0 (4.20)

we have

�w i, jð Þ¼ 1

n n�1ð Þ 1 +
1

n n�1ð Þ�1ð Þ2 qijλ0 + λ1qijs
2
x x ið Þ, x jð Þ
� �� �" #

(4.21)

On using Equation (4.21) in Equations (4.13) and (4.14), a set of normal equations

used to find the optimum values of λ0 and λ1 is given by
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XX
i 6¼j2s

qij,
XX
i 6¼j2s

qijs
2
x x ið Þ, x jð Þ
� �

XX
i 6¼j2s

qijs
2
x x ið Þ, x jð Þ
� �

,
XX
i 6¼j2s

qij s2x x ið Þ, x jð Þ
� �� �2

2
664

3
775 λ0

λ1

� �

¼
0

n n�1ð Þ�1ð Þ2 n n�1ð Þ S2x �n n�1ð Þ 2�n n�1ð Þð Þs2x
� �

n n�1ð Þ�1ð Þ2
(2

4

�
XX
i 6¼j2s

s2x x ið Þ, x jð Þ
� �)#

Note that

n n�1ð Þ�1ð Þ2 n n�1ð Þ S2x �n n�1ð Þ 2�n n�1ð Þð Þs2x
� �

n n�1ð Þ�1ð Þ2 �
XX
i 6¼j2s

s2x x ið Þ, x jð Þ
� �( )

¼ n n�1ð Þ S2x � s2x
� �

Thus, the set of jackknife tuned weights �w i, jð Þ is given by

�w i, jð Þ¼ 1

n n�1ð Þ +
Δij

n n�1ð Þ�1ð Þ2 S2x � s2x
� �

(4.22)

where

Δij ¼

XX
i 6¼j2s

qij

 !
qijs

2
x x ið Þ, x jð Þ
� ��qij

XX
i6¼j2s

qijs
2
x x ið Þ, x jð Þ
� �

XX
i6¼j2s

qij

 ! XX
i 6¼j2s

qij s4x x ið Þ, x jð Þ
� �� � !

�
XX
i6¼j2s

qijs
2
x x ið Þ, x jð Þ
� �( )2

(4.23)

Under the chi-square (cs) type distance function, the adjusted newly tuned jackknife

estimator (4.2) of the finite population variance becomes

σ̂2T csð Þ ¼
XX
i6¼j2s

h
n n�1ð Þ�1ð Þ2 �w i, jð Þ� n n�1ð Þ�2ð Þ

i
s2y y ið Þ, y jð Þ
� �

¼
XX
i6¼j2s

n n�1ð Þ�1ð Þ2
n n�1ð Þ +Δij S

2
x � s2x

� �� n n�1ð Þ�2ð Þ
" #

s2y y ið Þ, y jð Þ
� �

¼ s2y + β̂T S2x � s2x
� �

(4.24)

Tuned estimators of finite population variance 89



where

β̂T ¼
XX
i 6¼j2s

Δijs
2
y y ið Þ, y jð Þ
� �

¼

XX
i 6¼j2s

qijs
2
x x ið Þ, x jð Þ
� �

s2y y ið Þ, y jð Þ
� ��

XX
i 6¼j2s

qijs
2
x x ið Þ, x jð Þ
� �XX

i 6¼j2s
qijs

2
y y ið Þ, y jð Þ
� �

XX
i6¼j2s

qij

XX
i 6¼j2s

qijs
4
x x ið Þ, x jð Þ
� ��

XX
i 6¼j2s

qijs
2
x x ið Þ, x jð Þ
� �( )2

XX
i6¼j2s

qij

(4.25)

denotes an estimator of the regression coefficient.

If qij ¼ 1 for all i, j2 s then the estimator σ̂2T csð Þ in Equation (4.24) becomes

σ̂2T csð Þ ¼ s2y + β̂
�
T S2x � s2x
� �

(4.26)

where

β̂
�
T ¼

μ̂�22�Ks2xs
2
y

μ̂�40�Ks4x
(4.27)

with

μ̂�ab ¼
1

2n n�1ð Þ
XX
i6¼j2s

xi� xj
� �a

yi� yj
� �b

(4.28)

where a and b are nonnegative integers, and

K¼ 2 n n�1ð Þ�1ð Þ2 + n n�1ð Þ 2�n n�1ð Þð Þ
h i

(4.29)

Note that Das and Tripathi (1978), Srivastava and Jhajj (1980), and Isaki (1983) have

also studied estimators similar to the newly tuned estimator in Equation (4.26).

4.3.1 Estimation of variance of the estimator of variance
and coverage

An estimator of the variance of the estimator σ̂2T csð Þ is

v̂ σ̂2T csð Þ
� 	

¼ n n�1ð Þ n n�1ð Þ�1f g3
XX
i 6¼j2s

�w i, jð Þf g2 σ̂2T csð Þ ið Þ, jð Þð Þ � σ̂2T csð Þ
n o2

(4.30)
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Note that each newly tuned doubly jackknifed estimator of the population variance is

given by

σ̂2T csð Þ ið Þ, jð Þð Þ ¼
n n�1ð Þ σ̂2T csð Þ �f n n�1ð Þ�1ð Þ2 �w i, jð Þ� n n�1ð Þ�2f ggs2y y ið Þ, y jð Þ

� 	h i
n n�1ð Þ�1

(4.31)

for i 6¼ j¼ 1,2,…,n.
The coverage by the 1�αð Þ100% confidence interval estimates obtained from this

newly tuned jackknife estimator of population variance is obtained by counting how

many times the true population variance Sy
2 falls in the interval estimate given by

σ̂2T csð Þ �Fc2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v̂ σ̂2T csð Þ
� 	r

, σ̂2T csð Þ +Fc1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v̂ σ̂2T csð Þ
� 	r� �

(4.32)

Note that the two critical values are given by Fc1 ¼Fα=2 n�1, n�1ð Þ and

Fc2 ¼F 1�α=2ð Þ n�1, n�1ð Þ. Also note that: Fc2 ¼ 1=Fc1 .

We generated a population of N¼ 70,000 pumpkins with finite population vari-

ances S2y ¼ 596,582,015 and S2x ¼ 2137:659. We studied coverage of the nominally

90%, 95%, and 99% confidence intervals formed using the newly tuned jackknifed

estimator of the finite population variance Sy
2 assuming the population variance Sx

2

of an auxiliary variable is known by selecting 10,000 random samples from the Sta-

tistical Jumbo Pumpkin Model (SJPM). The results obtained for various sample sizes

are shown in Table 4.2.

Table 4.2 Performance of the newly tuned jackknife estimator

Sample size (n) 90% coverage 95% coverage 99% coverage

10 0.7186 0.7483 0.8107

12 0.8061 0.8296 0.8700

14 0.8499 0.8676 0.9009

16 0.8993 0.9111 0.9335

18 0.9335 0.9424 0.9570

20 0.9525 0.9597 0.9699

22 0.9618 0.9667 0.9752

24 0.9719 0.9746 0.9796

26 0.9833 0.9861 0.9895

28 0.9844 0.9861 0.9894

30 0.9903 0.9914 0.9939

32 0.9941 0.9947 0.9962

34 0.9935 0.9948 0.9957

36 0.9938 0.9948 0.9959

38 0.9954 0.9959 0.9967

40 0.9963 0.9967 0.9977
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Table 4.2 shows that the coverage by the newly tuned jackknife interval estimators

of the population variance is better than that of the interval estimators of the popula-

tion mean in the previous chapters. In particular, we note that coverage of the 90%

interval is approximated by 89.93% for samples of 16 pumpkins, coverage of 95%

intervals is approximated by 94.24% for samples of 18 pumpkins, and coverage of

the 99% intervals is approximated by 98.94% for samples of 28 pumpkins. Thus,

the newly tuned jackknife estimator of the population variance of the weight of the

pumpkins performs well in the case of small to moderate sample sizes. The reason

for the underestimation in the smaller samples lies in the fact that the relation between

the weights and circumferences is not linear.

4.3.2 R code

The following R code, PUMPKIN41.R, was used to study the coverage by the newly

tuned estimator based on a chi-square type distance function.

#PROGRAM PUMPKIN41.R

set.seed(2013)

N<-70000

x<-runif(N, min¼30, max¼190)

m<-5.5*(exp(0.047*x - 0.0001*x*x))

z<-rnorm(N, 0,2)

y<-m*exp(z)

var(x)->SIGXP; var(y)->SIGYP

nreps<-10000

ESTPP¼rep(0,nreps)

ci1.max¼ci1.min¼ci2.max¼ci2.min¼ci3.max¼ci3.min¼ESTPP

vESTP¼ESTPP

for (n in seq(10,40,2) )

{

for (r in 1:nreps)

{

us<–sample(N,n)

xs<–x[us]; ys<-y[us]

sx2<–matrix(ncol¼n,nrow¼n);sy2¼sx2

div<–n*(n-1)

for (i in 1:n) {

for (j in 1:n) {

if (i!¼j) {

sx2[i,j]<-(div*var(xs)-0.5*((xs[i]-xs[j])^2) )/(div-1)

sy2[i,j]<-(div*var(ys)-0.5*((ys[i]-ys[j])^2) )/(div-1)

} } }

delta<-div*sum(sx2 ^2,na.rm¼T)-(sum(sx2,na.rm¼T))^2

deltaij<-(div*sx2-sum(sx2,na.rm¼T))/delta

wbnij<-(1/div)+(deltaij/(div-1)^2)*(SIGXP-var(xs))

ESTij<- div*((div-1)^2*wbnij-div+2)*sy2
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ESTP<- sum(ESTij,na.rm¼T)

EST_IJ<-(ESTP - ESTij)/(div-1)

ESTPP[r]<-ESTP/(div-1)

vj<-(wbnij^2)*((EST_IJ - ESTPP[r])^2)

vESTP[r]<-div*((div-1)^3)*sum(vj,na.rm¼T)

ci1.max[r]<- ESTPP[r]+qf(0.95,n-1,n-1)*sqrt(vESTP[r])

ci1.min[r]<- ESTPP[r]-qf(0.05,n-1,n-1)*sqrt(vESTP[r])

ci2.max[r]<- ESTPP[r]+qf(0.975,n-1,n-1)*sqrt(vESTP[r])

ci2.min[r]<- ESTPP[r]-qf(0.025,n-1,n-1)*sqrt(vESTP[r])

ci3.max[r]<- ESTPP[r]+qf(0.995,n-1,n-1)*sqrt(vESTP[r])

ci3.min[r]<- ESTPP[r]-qf(0.005,n-1,n-1)*sqrt(vESTP[r])

}

round(sum(ci1.min<SIGYP & ci1.max>SIGYP)/nreps,4)->cov1

round(sum(ci2.min<SIGYP & ci2.max>SIGYP)/nreps,4)->cov2

round(sum(ci3.min<SIGYP & ci3.max>SIGYP)/nreps,4)->cov3

cat(n, cov1,cov2,cov3,0\n0)
}

4.3.3 Remark on tuning with a chi-square distance

Let us consider tuning the weights �w i, jð Þ in such a way that the chi-square type dis-

tance function defined as in Equation (4.18) that is

1

2

XX
i 6¼j2s

1� n n�1ð Þ�1ð Þ�w i, jð Þ�1= n n�1ð Þð Þf g2
qij= n n�1ð Þð Þ (4.33)

is minimum subject only to the single tuning constraint (4.14) where qij are some given

choice of weights.

The Lagrange function can now be taken as

L0 ¼ 1

2

XX
i 6¼j2s

1� n n�1ð Þ�1ð Þ�w i, jð Þ�1= n n�1ð Þð Þf g2
qij= n n�1ð Þð Þ

+ δ0
XX
i 6¼j2s

�w i, jð Þs2x x ið Þ, x jð Þ
� ��S2x �n n�1ð Þ 2�n n�1ð Þð Þs2x

n n�1ð Þ�1ð Þ2
( )

(4.34)

where δ0 is the Lagrange multiplier constant.

On setting

@L0
@ �w i, jð Þ¼ 0 (4.35)
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we have

�w i, jð Þ¼ 1

n n�1ð Þ +
δ0qijs2x x ið Þ, x jð Þ

� �
n n�1ð Þ n n�1ð Þ�1ð Þ (4.36)

Constraint (4.14) yields the value of δ0 as

δ0 ¼
n n�1ð Þ S2x � s2x

� �
n n�1ð Þ�1ð Þ

XX
i6¼j2s

qijs
4
x x ið Þ, x jð Þ
� � (4.37)

Thus, the newly tuned jackknifed weights become

�w i, jð Þ¼ 1

n n�1ð Þ +
Δ�
ij

n n�1ð Þ�1ð Þ2 S2x � s2x
� �

(4.38)

where

Δ�
ij ¼

qijs
2
x x ið Þ, x jð Þ
� �XX

i 6¼j2s
qijs

4
x x ið Þ, x jð Þ
� � (4.39)

So the generalized regression (greg) type estimator of the finite population variance in

Equation 4.2 becomes

σ̂2T cs
∗ð Þ ¼

XX
i6¼j2s

n n�1ð Þ�1ð Þ2 �w i, jð Þ� n n�1ð Þ�2ð Þ
h i

s2y y ið Þ, y jð Þ
� �

¼
XX
i6¼j2s

n n�1ð Þ�1ð Þ2
n n�1ð Þ +Δ�

ij S
2
x � s2x

� �� n n�1ð Þ�2ð Þ
" #

s2y y ið Þ, y jð Þ
� �

¼ s2y + β̂
�
T S2x � s2x
� �

(4.40)

where

β̂
�
T ¼

XX
i 6¼j2s

Δ�
ijs

2
y y ið Þ, y jð Þ
� �¼

XX
i6¼j2s

qijs
2
x x ið Þ, x jð Þ
� �

s2y y ið Þ, y jð Þ
� �

XX
i 6¼j2s

qijs
4
x x ið Þ, x jð Þ
� � (4.41)

denotes another estimator of the regression coefficient.
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Note that if qij ¼ 1=s2x x ið Þ, x jð Þ
� �

, then the estimator (4.40) becomes a ratio type esti-

mator, namely

σ̂2T cs
∗ð Þ ¼ s2y

S2x
s2x

(4.42)

Similarly, if

qij ¼ 1�

XX
i 6¼j2s

s2x x ið Þ, x jð Þ
� �

n n�1ð Þs2x x ið Þ, x jð Þ
� � (4.43)

then the modified greg type estimator becomes the linear regression type estimator,

namely

σ̂2T cs
∗ð Þ ¼ s2y + β̂T S2x � s2x

� �
(4.44)

where β̂T is the same as in Equation (4.25) for qij ¼ 1. However, it is difficult to find a

choice of the weights qij that makes the proposed newly tuned estimators equivalent to

product estimator or the traditional greg type estimators.

4.3.4 Numerical illustration

In the following example, we explain the steps involved in the computation of an esti-

mator with the proposed method.

Example 4.1 Consider the following sample of n¼ 7 pumpkins, where x and y are
the circumference (in.) and weight (lbs) of the pumpkins.

x 122 67.0 106.5 98.0 115.2 132 101.1

y 6400 800 3084 1042 4500 6700 2397

Construct a 99% confidence interval estimate of the variance of the weight of pump-

kins by assuming the population variance of circumference, S2x ¼ 440 is known.

Solution. One can easily compute

s2y ¼
1

n�1ð Þ
Xn
i¼1

yi� �yð Þ2 ¼ 5724311:29

and

s2x ¼
1

n�1ð Þ
Xn
i¼1

xi� �xð Þ2 ¼ 437:65
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The values of various steps involved are given here.

Drop (i, j) sx
2 (i, j) sy

2 (i, j) w(i, j) σ̂2T(cs)((i),( j))

1 2 411.4 5481489.6 0.023804 5794457.3

1 3 445.4 5729832.8 0.023811 5726249.0

1 4 441.3 5513829.1 0.023810 5739530.7

1 5 447.8 5819904.2 0.023811 5719271.3

1 6 447.1 5862831.1 0.023811 5719351.1

1 7 443.0 5668513.9 0.023811 5732391.7

2 1 411.4 5481489.6 0.023804 5794457.3

2 3 429.3 5800310.9 0.023808 5755204.6

2 4 436.6 5863214.4 0.023809 5739684.7

2 5 420.0 5696977.4 0.023806 5774956.9

2 6 396.8 5439416.4 0.023802 5821423.7

2 7 434.1 5832826.1 0.023809 5745159.1

3 1 445.4 5729832.8 0.023811 5726249.0

3 2 429.3 5800310.9 0.023808 5755204.6

3 4 447.4 5813077.9 0.023811 5720069.9

3 5 447.4 5839476.7 0.023811 5719421.6

3 6 440.4 5704471.9 0.023810 5736357.8

3 7 448.0 5858172.9 0.023812 5717806.8

4 1 441.3 5513829.1 0.023810 5739530.7

4 2 436.6 5863214.4 0.023809 5739684.7

4 3 447.4 5813077.9 0.023811 5720069.9

4 5 444.7 5718102.2 0.023811 5727846.1

4 6 434.2 5473526.6 0.023809 5753356.0

4 7 448.2 5841538.1 0.023812 5717809.0

5 1 447.8 5819904.2 0.023811 5719271.3

5 2 420.0 5696977.4 0.023806 5774956.9

5 3 447.4 5839476.7 0.023811 5719421.6

5 4 444.7 5718102.2 0.023811 5727846.1

5 6 444.9 5804904.2 0.023811 5725208.1

5 7 445.9 5809994.4 0.023811 5723118.4

6 1 447.1 5862831.1 0.023811 5719351.1

6 2 396.8 5439416.4 0.023802 5821423.7

6 3 440.4 5704471.9 0.023810 5736357.8

6 4 434.2 5473526.6 0.023809 5753356.0

6 5 444.9 5804904.2 0.023811 5725208.1

6 7 436.7 5638126.1 0.023809 5744956.2

7 1 443.0 5668513.9 0.023811 5732391.7

7 2 434.1 5832826.1 0.023809 5745159.1

7 3 448.0 5858172.9 0.023812 5717806.8

7 4 448.2 5841538.1 0.023812 5717809.0

7 5 445.9 5809994.4 0.023811 5723118.4

7 6 436.7 5638126.1 0.023809 5744956.2
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where

σ̂2T csð Þ ið Þ, jð Þð Þ ¼
n n�1ð Þ

h
σ̂2T csð Þ � n n�1ð Þ�1ð Þ2 �w i, jð Þ� n n�1ð Þ�2f g

o
s2y y ið Þ, y jð Þ
� 	n i

n n�1ð Þ�1

From the preceding table, we obtain

σ̂2T csð Þ ¼ 5,880,665

and

SE σ̂2T csð Þ
� 	

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v̂ σ̂2T csð Þ
� 	r

¼ 37,416,072

Hence the 99% confidence interval estimate for the true variance of the weights of the

pumpkins is given by 234,678,113–458,859,689. An F-value of 11.073 was used.

4.3.5 R code used for illustration

We used the following R code, PUMPKIN41EX.R, to solve the preceding

illustration.

# PROGRAM PUMPKIN41EX.R

n<–7; SIGXP<-440

xs<–c(122,67,106.5,98,115.2,132,101.1)

ys<–c(6400,800,3084,1042,4500,6700,2397)

sx2<–matrix(ncol¼n,nrow¼n)

sy2¼sx2

div<–n*(n-1)

for (i in 1:n) {

for (j in 1:n) {

if (i!¼j) {

sx2[i,j]<–(div*var(xs) - 0.5*((xs[i]-xs[j]) 2̂) )/(div-1)

sy2[i,j]<–(div*var(ys) - 0.5*((ys[i]-ys[j]) 2̂) )/(div-1)

} } }

delta<-div*sum(sx2 2̂,na.rm¼T)-(sum(sx2,na.rm¼T)) 2̂

deltaij<–(div*sx2-sum(sx2,na.rm¼T))/delta

wbnij<–(1/div)+(deltaij/(div-1) 2̂)*(SIGXP-var(xs))

ESTij<- div*((div-1) 2̂*wbnij-div+2)*sy2

ESTP<- sum(ESTij,na.rm¼T)

EST_IJ<–(ESTP - ESTij)/(div-1)

ESTPP<-ESTP/(div-1)

vj<–(wbnij 2̂)*((EST_IJ - ESTPP) 2̂)

vESTP<-div*((div-1)^3)*sum(vj,na.rm¼T)
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L<-ESTP-qf(.025,n-1,n-1)*sqrt(vESTP)

U<-ESTP+qf(.975,n-1,n-1)*sqrt(vESTP)

cat("Tuned estimate:", ESTPP, "SE: ",vESTP .̂5 ,0\n0)
cat("Confidence Interval:"," ", L,"; ", U,0\n0)
for (i in 1:n) {

for (j in 1:n) {

if (i!¼j) {

cat(cbind(i,j,round(sx2[i,j],1), round(sy2[i,j],1),

round(wbnij[i,j],6), round(EST_IJ[i,j],1),0\n0))
} } }

4.3.6 F-distribution

Note that for a given α level of significance, we have F-distribution as shown in

Figure 4.1, where c1 and c2 denote critical values.

4.4 Tuning of estimator of finite population variance with
a dual-to-empirical log-likelihood (dell) function

Next, we consider the following newly tuned dell jackknifed estimator of the finite

population variance Sy
2 as

σ̂2T dellð Þ ¼
XX
i 6¼j2s

n n�1ð Þ�1ð Þ2 �w* i, jð Þ�ðn n�1ð Þ�2Þ
h i

s2y y ið Þ, y jð Þ
� �

(4.45)

where

0< �w* i, jð Þ¼ 1�w�ij
n n�1ð Þ�1

<
1

n n�1ð Þ�1
(4.46)

are the positive tuned weights constructed so that the following two constraints are

satisfied:

XX
i6¼j2s

�w* i, jð Þ¼ 1 (4.47)

a /2

(1–a)

Fc2 
= 1 Fc1

a /2

Fc1

Figure 4.1 F-distribution.
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and

XX
i 6¼j2s

�w* i, jð ÞΨ ij ¼ 0 (4.48)

where

Ψ ij ¼ s2x x ið Þ, x jð Þ
� ��S2x �n n�1ð Þ 2�n n�1ð Þð Þs2x

n n�1ð Þ�1ð Þ2 (4.49)

is a pivot.
Note that the weights wij* are similar to the weights wij in Section 4.2. Also note that

for 0<w�ij < 1, we have

XX
i 6¼j2s

w�ij ¼ 1 (4.50)

and

XX
i 6¼j2s

w�ijΦij ¼ 0 (4.51)

where

Φij ¼ xi� xj
� �2�S2x (4.52)

is a pivot.
Here we suggest tuning the jackknife weights �w* i, jð Þ in such a way that the

dual-to-log-likelihood distance function, defined as

1

n n�1ð Þ
XX
i 6¼j2s

log �w* i, jð Þð Þ (4.53)

is optimum subject to the tuning constraints (4.47) and (4.48).

Obviously the Lagrange function is given by

L2 ¼
1

n n�1ð Þ
XX
i 6¼j2s

log �w* i, jð Þð Þ� λ�0
XX
i 6¼j2s

�w* i, jð Þ�1

8<
:

9=
;� λ�1

XX
i 6¼j2s

�w* i, jð ÞΨ ij

8<
:

9=
;
(4.54)
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where λ0* and λ1* are the Lagrange multipliers.

On setting

@L2
@ �w* i, jð Þ¼ 0 (4.55)

we have

�w* i, jð Þ¼ 1= n n�1ð Þð Þ
1 + λ�1Ψ ij

(4.56)

Constraints (4.47) and (4.48) yield λ�0 ¼ 1, and λ1* is a solution to the nonlinear

equation:

XX
i6¼j2s

Ψ ij

1 + λ�1Ψ ij

¼ 0 (4.57)

Note that to have �wn i, jð Þ> 0, we used λ�1 > 1= max Ψ ij

� ��� �� if max Ψ ij

� �
> 0 and

λ�1 < 1= min Ψ ij

� ��� �� if max Ψ ij

� �
< 0. Thus, using the dell distance function,

the newly tuned jackknife estimator (4.45) of the finite population variance

becomes

σ̂2T dellð Þ ¼
XX
i 6¼j2s

h
n n�1ð Þ�1ð Þ2 �w* i, jð Þ� n n�1ð Þ�2ð Þ

i
s2y y ið Þ, y jð Þ
� �

¼
XX
i 6¼j2s

n n�1ð Þ�1ð Þ2= n n�1ð Þð Þ
1 + λ�1Ψ ij

� n n�1ð Þ�2ð Þ
� �

s2y y ið Þ, y jð Þ
� �

(4.58)

4.4.1 Estimation of variance and coverage

An estimator of the variance of the dell-based estimator of the finite population var-

iance σ̂2T dellð Þ is

v̂ σ̂2T dellð Þ
� 	

¼ n n�1ð Þ n n�1ð Þ�1ð Þ3
XX
i 6¼j2s

�w� i, jð Þf g2 σ̂2T dellð Þ ið Þ, jð Þð Þ � σ̂2T dellð Þ
n o2

(4.59)

Note that each newly tuned jackknifed dell estimator of the population variance is

given by
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σ̂2
T dellð Þ ið Þ, jð Þð Þ ¼

n n�1ð Þ
h
σ̂2
T dellð Þ � n n�1ð Þ�1ð Þ2 �w* i, jð Þ� n n�1ð Þ�2f g

n o
s2y y ið Þ, y jð Þ
� 	i

n n�1ð Þ�1

(4.60)

for i 6¼ j¼ 1,2,…,n.
The coverage by the 1�αð Þ100% confidence interval estimates, obtained from this

newly tuned jackknife dell estimator of finite population variance is estimated by cou-

nting the number of times the true finite population variance Sy
2 falls within the inter-

val estimates given by

σ̂2T dellð Þ �Fc2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v̂ σ̂2T dellð Þ
� 	r

, σ̂2T dellð Þ +Fc1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v̂ σ̂2T dellð Þ
� 	r� �

(4.61)

Note that the two critical values are given by Fc1 ¼Fα=2 n�1, n�1ð Þ and

Fc2 ¼F 1�α=2ð Þ n�1, n�1ð Þ. Also note that: Fc2 ¼ 1=Fc1

In the simulation study, we approximated the value of λ1* by

λ�1 �

XX
i6¼j2s

Ψ ijXX
i6¼j2s

Ψ 2
ij

¼ n n�1ð Þ s2x �S2x
� �

n n�1ð Þ�1ð Þ2
XX
i 6¼j2s

Ψ 2
ij

(4.62)

by assuming that

λ�1Ψ ij

�� ��< 1 (4.63)

However, a better solution to the nonlinear equation may be used, if available. Note

that we have not expanded the denominator
XX
i 6¼j2s

Ψ 2
ij because it becomes a lengthy

expression. The condition (4.63) will hold because in Equation (4.62) the numerator

converges to zero as the sample size increases.

In the simulation study, we generated a population of N¼ 70,000 pumpkins with

finite population variances S2y ¼ 269309177:2 and S2x ¼ 1876:67. We studied cover-

age of nominal 90%, 95%, and 99% intervals based on the newly tuned jackknifed

estimator of population variance by selecting 10,000 random samples from the

SJPM. The results obtained for various sample sizes are shown in Table 4.3.

Table 4.3 shows that the coverage by the newly tuned dell estimator of the popu-

lation variance provides low coverage for moderate sample sizes as compared to the

estimator based on chi-square type distance function. In particular, the nominal 90%

coverage is shown as 90.95% for a sample of 50 pumpkins, the nominal 95% coverage
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shown as 95.34% for a sample of 60 pumpkins, and the nominal 99% coverage is

shown as 99.14% for a sample of 80 pumpkins. Thus, the newly tuned dell estimator

of the population variance of the weight of the pumpkins provides nominal coverage

for 90%, 95%, and 99% for large sample sizes as compared to the estimator based on

the chi-square distance function so long as estimation of variance of weight of pump-

kins is concerned.

4.4.2 R code

We used the following R code, PUMPKIN42.R, to study the coverage of the newly

tuned estimator of the finite population variance based on the dell distance function.

# PROGRAM PUMPKIN42.R

set.seed(2013)

N<-70000

x<-runif(N, min¼30, max¼190)

m<-5.5*(exp(0.047*x - 0.0001*x*x))

z<-rnorm(N, 0, 2)

y<-m*exp(z)

Table 4.3 Performance of the newly tuned jackknifed
dual-to-empirical log-likelihood (dell) estimator

Sample size (n) 90% coverage 95% coverage 99% coverage

10 0.3798 0.4143 0.4861

15 0.4849 0.5163 0.5823

20 0.5759 0.6074 0.6620

25 0.6643 0.6913 0.7362

30 0.7398 0.7622 0.8009

35 0.7895 0.8083 0.8450

40 0.8349 0.8504 0.8805

45 0.8747 0.8889 0.9110

50 0.9095 0.9202 0.9380

55 0.9282 0.9368 0.9519

60 0.9463 0.9534 0.9649

65 0.9586 0.9657 0.9747

70 0.9678 0.9709 0.9791

75 0.9758 0.9795 0.9846

80 0.9862 0.9879 0.9914

85 0.9864 0.9882 0.9917

90 0.9920 0.9938 0.9953

95 0.9951 0.9958 0.9968

100 0.9972 0.9978 0.9988
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var(x)->SIGXP; var(y)->SIGYP

nreps<-10000

ESTPP¼rep(0,nreps)

ci1.max¼ci1.min¼ci2.max¼ci2.min¼ci3.max¼ci3.min¼ ESTPP

vESTP¼ESTPP

for (n in seq(10,50,2) )

{

for (r in 1:nreps)

{

us<-sample(N,n)

xs<-x[us]; ys<-y[us]

sx2<-matrix(ncol¼n,nrow¼n)

EST_IJ¼ESTij¼wbnij¼sy2¼sx2

div<-n*(n-1)

for (i in 1:n) {

for (j in 1:n) {

if (i!¼j) {

sx2[i,j]<–(div*var(xs)-0.5*((xs[i]-xs[j]) 2̂) )/(div-1)

sy2[i,j]<–(div*var(ys)-0.5*((ys[i]-ys[j]) 2̂) )/(div-1)

}

}

}

shij<-sx2 - (SIGXP - div*(2-div)*var(xs))/(div-1)

l1<-sum(shij,na.rm¼T)/sum(shij 2̂,na.rm¼T)

wbnij<–(1/div)*(1/(l1*shij))

ESTij<- div*((div-1) 2̂*wbnij-div+2)*sy2

ESTP<- sum(ESTij,na.rm¼T)

EST_IJ<–(ESTP - ESTij)/(div-1)

ESTPP[r]<-ESTP/(div-1)

vj<–(wbnij 2̂)*((EST_IJ - ESTPP[r]) 2̂)

vESTP[r]<-div*((div-1)^3)*sum(vj,na.rm¼T)

ci1.max[r]<- ESTPP[r]+qf(0.95,n-1,n-1)*sqrt(vESTP[r])

ci1.min[r]<- ESTPP[r]-qf(0.05,n-1,n-1)*sqrt(vESTP[r])

ci2.max[r]<- ESTPP[r]+qf(0.975,n-1,n-1)*sqrt(vESTP[r])

ci2.min[r]<- ESTPP[r]-qf(0.025,n-1,n-1)*sqrt(vESTP[r])

ci3.max[r]<- ESTPP[r]+qf(0.995,n-1,n-1)*sqrt(vESTP[r])

ci3.min[r]<- ESTPP[r]-qf(0.005,n-1,n-1)*sqrt(vESTP[r])

}

round(sum(ci1.min<SIGYP & ci1.max>SIGYP)/nreps,4)->cov1

round(sum(ci2.min<SIGYP & ci2.max>SIGYP)/nreps,4)->cov2

round(sum(ci3.min<SIGYP & ci3.max>SIGYP)/nreps,4)->cov3

cat(n, cov1,cov2,cov3,0\n0)
}
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4.4.3 Numerical illustration

The following example explains the steps involved in the computation of the use of

dell estimator of variance.

Example 4.2 Consider the following sample of n¼ 7 pumpkins where x is the

circumference (in.) and y is the weight (lbs).

x 122 67.0 106.5 98.0 115.2 132 101.1

y 6400 800 3084 1042 4500 6700 2397

Construct a 99% confidence interval estimate of the variance of the weight of the

pumpkins by assuming that the population variance of circumference S2x ¼ 440

is known.

Solution. One can easily compute

s2y ¼
1

n�1ð Þ
Xn
i¼1

yi� �yð Þ2 ¼ 5724311:29

and

s2x ¼
1

n�1ð Þ
Xn
i¼1

xi� �xð Þ2 ¼ 437:65

The values of various steps involved are given here.

Drop (i, j) sx
2(i, j) sy

2(i, j) �w(i, j) σ̂2T(dell) ((i), ( j))

1 2 411.4 5481489.6 0.023774 6195778.5

1 3 445.4 5729832.8 0.02382 5749687.3

1 4 441.3 5513829.1 0.023815 5811789.9

1 5 447.8 5819904.2 0.023823 5713571.5

1 6 447.1 5862831.1 0.023822 5720518.7

1 7 443.0 5668513.9 0.023817 5784144.2

2 1 411.4 5481489.6 0.023774 6195778.5

2 3 429.3 5800310.9 0.023798 5965359.7

2 4 436.6 5863214.4 0.023808 5864755.7

2 5 420.0 5696977.4 0.023786 6089827.4

2 6 396.8 5439416.4 0.023754 6379944.3

2 7 434.1 5832826.1 0.023805 5899035

3 1 445.4 5729832.8 0.02382 5749687.3

3 2 429.3 5800310.9 0.023798 5965359.7

3 4 447.4 5813077.9 0.023823 5718223.2

3 5 447.4 5839476.7 0.023823 5717547.3

3 6 440.4 5704471.9 0.023813 5817607.5

3 7 448.0 5858172.9 0.023824 5708869.4
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4 1 441.3 5513829.1 0.023815 5811789.9

4 2 436.6 5863214.4 0.023808 5864755.7

4 3 447.4 5813077.9 0.023823 5718223.2

4 5 444.7 5718102.2 0.023819 5759273.1

4 6 434.2 5473526.6 0.023805 5903792.6

4 7 448.2 5841538.1 0.023824 5706412

5 1 447.8 5819904.2 0.023823 5713571.5

5 2 420.0 5696977.4 0.023786 6089827.4

5 3 447.4 5839476.7 0.023823 5717547.3

5 4 444.7 5718102.2 0.023819 5759273.1

5 6 444.9 5804904.2 0.023819 5753460.1

5 7 445.9 5809994.4 0.023821 5739392.7

6 1 447.1 5862831.1 0.023822 5720518.7

6 2 396.8 5439416.4 0.023754 6379944.3

6 3 440.4 5704471.9 0.023813 5817607.5

6 4 434.2 5473526.6 0.023805 5903792.6

6 5 444.9 5804904.2 0.023819 5753460.1

6 7 436.7 5638126.1 0.023808 5868703.3

7 1 443.0 5668513.9 0.023817 5784144.2

7 2 434.1 5832826.1 0.023805 5899035

7 3 448.0 5858172.9 0.023824 5708869.4

7 4 448.2 5841538.1 0.023824 5706412

7 5 445.9 5809994.4 0.023821 5739392.7

7 6 436.7 5638126.1 0.023808 5868703.3

where

σ̂2T dellð Þ ið Þ, jð Þð Þ ¼
n n�1ð Þ σ̂2

T dellð Þ � n n�1ð Þ�1ð Þ2 �w* i, jð Þ� n n�1ð Þ�2f g� �
s2y y ið Þ, y jð Þ
� 	h i

n n�1ð Þ�1

The value of λ1* is approximated as

λ�1 �

XX
i6¼j2s

Ψ ijXX
i6¼j2s

Ψ 2
ij

��8:06�10�8 (4.64)

although a better approximation may be used if available. In this particular example,

note that due to a very small value of λ1* there is essentially not much impact on the

values of the weights �w* i, jð Þ.
We present this example to make the reader aware that such a result is possible.

From the preceding table, we obviously have

σ̂2T dellð Þ ¼ 5,993,546
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and

SE σ̂2T dellð Þ
� 	

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v̂ σ̂2T dellð Þ
� 	r

¼ 59,042,919

The 99% confidence interval estimate for the true variance of the weights of the pump-

kins is given by 235,590,131–589,350,803. Note that the estimator may perform better

with an increase in the sample size. Therefore, in the case of small samples, the use of

chi-square distance is suggested.

4.4.4 R code used for illustration

We used the following R code, PUMPKIN42EX.R, to solve the preceding illustration.

#PROGRAM PUMPKIN42EX.R

n<-7; SIGXP<-440

xs<-c(122,67,106.5,98,115.2,132,101.1)

ys<-c(6400,800,3084,1042,4500,6700,2397)

sx2<-matrix(ncol¼n,nrow¼n)

sy2¼sx2

div<-n*(n-1)

for (i in 1:n) {

for (j in 1:n) {

if (i!¼j) {

sx2[i,j]<–(div*var(xs)-0.5*((xs[i]-xs[j]) 2̂) )/(div-1)

sy2[i,j]<–(div*var(ys -0.5*((ys[i]-ys[j]) 2̂) )/(div-1)

} } }

shij<-sx2 - (SIGXP - div*(2-div)*var(xs))/(div-1)

l1<-sum(shij,na.rm¼T)/sum(shij 2̂,na.rm¼T)

wbnij<–(1/div)*(1/(l1*shij))

ESTij<- div*((div-1) 2̂*wbnij-div+2)*sy2

ESTP<- sum(ESTij,na.rm¼T)

EST_IJ<–(ESTP - ESTij)/(div-1)

ESTPP<-ESTP/(div-1)

vj<–(wbnij 2̂)*((EST_IJ - ESTPP) 2̂)

vESTP<-div*((div-1)^3)*sum(vj,na.rm¼T)

L<-ESTP-qf(.025,n-1,n-1)*sqrt(vESTP)

U<-ESTP+qf(.975,n-1,n-1)*sqrt(vESTP)

cat("Tuned estimate:", ESTPP, "SE: ",vESTP .̂5 ,0\n0)
cat("Confidence Interval:"," ", L,"; ", U,0\n0)
for (i in 1:n) {

for (j in 1:n) {

if (i!¼j) {

cat(cbind(i,j,round(sx2[i,j],1),round(sy2[i,j],1),

round(wbnij[i,j],6),round(EST_IJ[i,j],1),0\n0))
}

} }
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4.5 Alternative tuning with a chi-square distance

Let us define

σ2y ¼
N�1

N
S2y , σ2x ¼

N�1

N
S2x , σ̂2y ¼

n�1

n
s2y , and σ̂2x ¼

n�1

n
s2x

Now we consider an alternative tuned estimator of the finite population variance σy
2:

σ̂2T a1ð Þ ¼
X
j2s

n�1ð Þ2 �wv jð Þ� n�2ð Þ
h i

σ̂2y jð Þ (4.65)

where

σ̂2y jð Þ¼ nσ̂2y � yj� �yn
� �2
n�1ð Þ for j2 s (4.66)

and �wv jð Þ for j2 s is a set of tuned jackknifed weights such that the following two

tuning constraints are satisfied:

X
j2s

�wv jð Þ¼ 1 (4.67)

and

X
j2s

�wv jð Þσ̂2x jð Þ¼ σ2x �n 2�nð Þσ̂2x
n�1ð Þ2 (4.68)

where σ̂2x jð Þ¼ nσ̂2x � xj� �xn
� �2h i

= n�1ð Þ for j2 s and any not explicitly defined sym-

bol has its usual meaning. The suffix v in �wv jð Þ indicates that these weights are for

variance estimation. Note that here σ̂2x jð Þ and σ̂2y jð Þ are not exactly the same as the

jackknife estimators of variance that were defined in the previous section. We con-

sider optimizing the chi-square distance:

1

2

X
j2s

1� n�1ð Þ �wv jð Þ�n�1ð Þ2
qjn�1

(4.69)

where qj is a given set of weights, subject to both tuning constraints (4.67) and (4.68).
The resultant tuned weights are given by

�wv jð Þ¼ 1

n
+

Δj

n�1ð Þ2 σ2x � σ̂2x
� �

(4.70)
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where

Δj ¼
qjσ̂

2
x jð Þ

X
j2s

qj

 !
�qj

X
j2s

qjσ̂
2
x jð Þ

 !

X
j2s

qj

 ! X
j2s

qjσ̂
4
x jð Þ

 !
�

X
j2s

qjσ̂
2
x jð Þ

 !2
(4.71)

Then the alternative newly tuned estimator of the finite population variance σy
2

becomes

σ̂2T a1ð Þ ¼
X
j2s

n�1ð Þ2 �wv jð Þ� n�2ð Þ
h i

σ̂2y jð Þ

¼ σ̂2y + β̂v σ2x � σ̂2x
� � (4.72)

where

β̂v ¼

X
j2s

qj

 ! X
j2s

qjσ̂
2
x jð Þσ̂2y jð Þ

 !
�

X
j2s

qjσ̂
2
y jð Þ

 ! X
j2s

qjσ̂
2
x jð Þ

 !

X
j2s

qj

 ! X
j2s

qjσ̂
4
x jð Þ

 !
�

X
j2s

qjσ̂
2
x jð Þ

 !2
(4.73)

4.5.1 Estimation of variance and coverage

An estimator of variance of the estimator of finite population variance σ̂2T a1ð Þ is

v̂ σ̂2T a1ð Þ
� 	

¼ n n�1ð Þ3
X
j2s

�wv jð Þf g2 σ̂2T a1 jð Þð Þ � σ̂2T a1ð Þ
n o2

(4.74)

Note that each alternative newly tuned doubly jackknifed estimator of population var-

iance is given by

σ̂2T a1 jð Þð Þ ¼
nσ̂2T a1ð Þ �n n�1ð Þ2 �wv jð Þ� n�2ð Þ

� 	
σ̂2y jð Þ

n�1
(4.75)

for j¼ 1,2,…,n.
The coverage by the 1�αð Þ100% confidence interval estimates obtained by the

newly tuned jackknifed estimator of the finite population variance is obtained by cou-

nting the number of times the true finite population variance Sy
2 falls within the interval

estimate given by
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σ̂2T a1ð Þ �Fc2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v̂ σ̂2T a1ð Þ
� 	r

, σ̂2T a1ð Þ +Fc1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v̂ σ̂2T a1ð Þ
� 	r� �

(4.76)

where Fc1 ¼Fα=2 n�1,n�1ð Þ, Fc2 ¼F 1�α=2ð Þ n�1,n�1ð Þ, and Fc2 ¼ 1=Fc1 .

We generated a population of 70,000 pumpkins with true variance of weight

σ2y ¼ 808,648,830 and variance of circumference σ2x ¼ 1882:56. Note that these

parameters would change slightly if we were to run the program again because these

values depend on the automatically generated seed values that are set up with the time

clock of the computer. We studied the coverage of nominal 90%, 95%, and 99% con-

fidence intervals using the newly tuned jackknife estimator of population variance by

selecting 10,000 random samples from the SJPM. The results obtained for various

sample sizes are shown in Table 4.4.

As examples, we note that the attained coverage of the 90% interval for 120 pump-

kins was 92.13%, that of the 95% interval for 160 pumpkins was 95.19%, and that of

the 99% interval for 380 pumpkins was 99.03%.

Table 4.4 Alternatively tuned jackknife estimator of variance

Sample size (n) 90% coverage 95% coverage 99% coverage

100 0.8854 0.8907 0.9032

120 0.9213 0.9265 0.9333

140 0.9385 0.9423 0.9480

160 0.9490 0.9519 0.9567

180 0.9612 0.9626 0.9652

200 0.9685 0.9702 0.9719

220 0.9723 0.9732 0.9756

240 0.9763 0.9774 0.9791

260 0.9801 0.9809 0.9830

280 0.9826 0.9835 0.9849

300 0.9859 0.9865 0.9869

320 0.9867 0.9868 0.9875

340 0.9876 0.9881 0.9888

360 0.9881 0.9887 0.9893

380 0.9890 0.9895 0.9903

400 0.9896 0.9897 0.9902

420 0.9915 0.9915 0.9924

440 0.9921 0.9925 0.9928

460 0.9918 0.9918 0.9921

480 0.9935 0.9938 0.9944

500 0.9922 0.9923 0.9927

520 0.9935 0.9934 0.9937

540 0.9935 0.9936 0.9936

560 0.9954 0.9956 0.9959

580 0.9934 0.9937 0.9937

Continued
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4.5.2 R code

The following R code, PUMPKIN43.R, was used to study the coverage of the con-

fidence intervals constructed using the alternative newly tuned estimator of variance

based on the chi-square distance function.

# PROGRAM PUMPKIN43.R

set.seed(2013)

N<-70000

x<-runif(N, min¼30, max¼190)

m<-5.5*(exp(0.047*x - 0.0001*x*x))

z<-rnorm(N, 0, 2)

y<-m*exp(z)

var(x)->SIGXP; var(y)->SIGYP

nreps<-10000

ESTPP¼rep(0,nreps)

ci1.max¼ci1.min¼ci2.max¼ci2.min¼ci3.max¼ci3.min¼ESTPP

vESTP¼ESTPP

for (n in seq(100,700,20) )

{

for (r in 1:nreps)

{

us<-sample(N,n)

xs<-x[us]; ys<-y[us]

sigxs<-var(xs)*(n-1)/n;sigys<-var(ys)*(n-1)/n

sigx2<-rep(0,n)

deltai¼ESTi¼wbni¼sigy2¼sigx2

sigx2<-(n*sigxs - (xs-mean(xs)) 2̂)/(n-1)

sigy2<-(n*sigys - (ys-mean(ys)) 2̂)/(n-1)

delta<-n*sum(sigx2 2̂)-(sum(sigx2)) 2̂

deltai<-(n*sigx2-sum(sigx2))/delta

wbni<-(1/n)+deltai/((n-1) 2̂)*(SIGXP-sigxs)

ESTi<- n*((n-1) 2̂*wbni-n+2)*sigy2

Table 4.4 Continued

Sample size (n) 90% coverage 95% coverage 99% coverage

600 0.9949 0.9950 0.9953

620 0.9953 0.9955 0.9957

640 0.9956 0.9957 0.9960

660 0.9959 0.9959 0.9961

680 0.9954 0.9956 0.9956

700 0.9962 0.9963 0.9969
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ESTP<- sum(ESTi)

EST_I<–(ESTP - ESTi)/(n-1)

ESTP[r]<-ESTP/n

vj<–(wbni 2̂)*((EST_I - ESTP[r]) 2̂)

vESTP[r]<-n*((n-1) 3̂)*sum(vj)

ci1.max[r]<- ESTP[r]+qf(0.95,n-1,n-1)*sqrt(vESTP[r])

ci1.min[r]<- ESTP[r]-qf(0.05,n-1,n-1)*sqrt(vESTP[r])

ci2.max[r]<- ESTP[r]+qf(0.975,n-1,n-1)*sqrt(vESTP[r])

ci2.min[r]<- ESTP[r]-qf(0.025,n-1,n-1)*sqrt(vESTP[r])

ci3.max[r]<- ESTP[r]+qf(0.995,n-1,n-1)*sqrt(vESTP[r])

ci3.min[r]<- ESTP[r]-qf(0.005,n-1,n-1)*sqrt(vESTP[r])

}

round(sum(ci1.min<SIGYP & ci1.max>SIGYP)/nreps,4)->cov1

round(sum(ci2.min<SIGYP & ci2.max>SIGYP)/nreps,4)->cov2

round(sum(ci3.min<SIGYP & ci3.max>SIGYP)/nreps,4)->cov3

cat(n, cov1,cov2,cov3,0\n0)
}

4.5.3 Numerical illustration

The following example is used to explain the computational work involved in the esti-

mation of variance by this method.

Example 4.3 Consider the following sample of n¼ 7 pumpkins where x is the cir-
cumference (in.) and y is the weight (lbs) of the pumpkins.

x 122 67.0 106.5 98.0 115.2 132 101.1

y 6400 800 3084 1042 4500 6700 2397

Construct a 99% confidence interval estimate of the variance of the pumpkin

weights by assuming the population variance of circumference S2x ¼ 440

is known.

Solution. One can easily compute

σ̂2x( j) σ̂2y( j) �wv( j) σ̂2T(a1( j))

394.8299 4,380,450 0.1435449 5,191,414

184.5203 4,454,317 0.1362038 6,550,355

437.6025 5,686,481 0.1450379 4,579,435

427.0584 4,667,231 0.1446698 4,914,812

423.4546 5,577,179 0.1445441 4,723,343

324.7346 4,081,493 0.1410981 5,669,306

433.6939 5,498,717 0.1449015 4,659,435
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where

σ̂2T a1 jð Þð Þ ¼
nσ̂2T a1ð Þ �n n�1ð Þ2 �wv jð Þ� n�2ð Þ

� 	
σ̂2y jð Þ

n�1

Thus,

σ̂2T a1ð Þ ¼
1

n

X
j2s

σ̂2T a1 jð Þð Þ ¼ 5,184,014

and

SE σ̂2T a1ð Þ
� 	

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v̂ σ̂2T a1ð Þ
� 	r

¼ 9,424,228

Thus, the required 99% (F-value¼11.07) confidence interval estimate of the popula-

tion variance is 4,332,917–109,538,854.

4.5.4 R code used for illustration

We used the following R code, PUMPKIN43EX.R, to solve the preceding illustration.

#PROGRAM PUMPKIN43EX.R

n<-7; SIGXP<-440

xs<-c(122,67,106.5,98,115.2,132,101.1)

ys<-c(6400,800,3084,1042,4500,6700,2397)

sigxs<-var(xs) * (n-1)/n;sigys<-var(ys) * (n-1)/n

sigx2<-rep(0,n)

sigy2¼sigx2

sigx2<–(n*sigxs - (xs-mean(xs))^2)/(n-1)

sigy2<–(n*sigys - (ys-mean(ys))^2)/(n-1)

delta<-n*sum(sigx2^2)-(sum(sigx2))^2

deltai<–(n*sigx2-sum(sigx2))/delta

wbni<–(1/n)+deltai/((n-1) 2̂)*(SIGXP-sigxs)

ESTi<- n*((n-1) 2̂*wbni-n+2)*sigy2

ESTP<- sum(ESTi)

EST_I<–(ESTP - ESTi)/(n-1)

ESTP<-ESTP/n

vj<–(wbni^2)*((EST_I - ESTP)^2)

vESTP<-n*((n-1)^3)*sum(vj)

L<-ESTP-qf(.005,n-1,n-1)*sqrt(vESTP)

U<-ESTP+qf(.995,n-1,n-1)*sqrt(vESTP)

cbind(sigx2,sigy2,wbni,EST_I)

cat("Tuned estimate:", ESTP, "SE: ",vESTP .̂5 ,0\n0)
cat("Confidence Interval:"," ", L,"; ", U,0\n0)
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4.6 Alternative tuning with a dell function

We again consider an alternative tuned estimator of the finite population variance σy
2

defined by

σ̂2T a2ð Þ ¼
X
j2s

n�1ð Þ2 �w�v jð Þ� n�2ð Þ
h i

σ̂2y jð Þ (4.77)

We consider optimizing the dell function defined by

1

n

X
j2s

ln �w�v jð Þ� �
, where 0< �w�v jð Þ¼ 1�w�

j

n�1
<

1

n�1ð Þ (4.78)

for certain weights 0<w�j < 1 with unit total subject to the tuning constraints

given by

X
j2s

�w�v jð Þ¼ 1 (4.79)

and

X
j2s

�w�v jð ÞΨ�
j ¼ 0 (4.80)

where

Ψ�
j ¼ σ̂2x jð Þ�σ2x �n 2�nð Þσ̂2x

n�1ð Þ2 (4.81)

The resulting tuned empirical log-likelihood weights are given by

�w�v jð Þ¼ 1=n

1 + λ1Ψ
�
j

(4.82)

The alternative newly tuned dell estimator of the finite population variance is

σ̂2T a2ð Þ ¼
X
j2s

n�1ð Þ2 �w�v jð Þ� n�2ð Þ
h i

σ̂2y jð Þ

¼
X
j2s

n�1ð Þ2

n 1 + λ1Ψ
�
j

n o� n�2ð Þ
8<
:

9=
;σ̂2y jð Þ

(4.83)
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where the value of λ1 is obtained by solving the nonlinear equation

X
j2s

Ψ�
j

1 + λ1Ψ
�
j

¼ 0 (4.84)

In the simulation study, we approximated the value of λ1 as

λ1 �

X
i2s

Ψ�
jX

i2s
Ψ�2

j

(4.85)

By assuming that λ1Ψ
�
j

��� ���< 1, a binomial expansion of 1 + λ1Ψ
�
j

� 	�1

in Equa-

tion (4.84) leads to the approximation in Equation (4.85). It is easy to see thatX
j2s

Ψ�
j approaches zero as the sample size increases. Note that a better approximation

to λ1 may also be used if available.

4.6.1 Estimation of variance and coverage

An estimator of variance of the estimator of the finite population variance σ̂2T a2ð Þ is

v̂ σ̂2T a2ð Þ
� 	

¼ n n�1ð Þ3
X
j2s

�w�v jð Þ� �2
σ̂2T a2 jð Þð Þ � σ̂2T a2ð Þ
n o2

(4.86)

Note that each alternative newly tuned doubly jackknifed estimator of population var-

iance is given by

σ̂2T a2 jð Þð Þ ¼
nσ̂2T a2ð Þ �n n�1ð Þ2 �w�v jð Þ� n�2ð Þ

� 	
σ̂2y jð Þ

n�1
(4.87)

for j¼ 1,2,…,n.
The coverage by the 1�αð Þ100% confidence interval estimates obtained by the

alternatively tuned jackknife empirical log-likelihood estimator of the finite popula-

tion variance is obtained by counting the number of times the true finite population

variance Sy
2 falls in the interval estimate given by

σ̂2T a2ð Þ �Fc2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v̂ σ̂2T a2ð Þ
� 	r

, σ̂2T a2ð Þ +Fc1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v̂ σ̂2T a2ð Þ
� 	r� �

(4.88)

where Fc1 ¼Fα=2 n�1, n�1ð Þ, Fc2 ¼F 1�α=2ð Þ n�1, n�1ð Þ, and Fc2 ¼ 1=Fc1 .
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We studied coverage by the nominal 90%, 95%, and 99% confidence intervals

based on the alternatively tuned jackknife estimator of the population variance by

selecting 10,000 random samples from the SJPM. The results obtained for various

sample sizes are shown in Table 4.5.

Table 4.5 shows that the coverage by the newly tuned jackknifed empirical log-

likelihood estimator of finite population variance is quite good for large sample

sizes. Coverage by the nominal 90%, 95%, and 99% intervals are, respectively,

92.13% for 120 pumpkins, 95.19% for 160 pumpkins, and 99.03% for 380 pump-

kins. Large samples may be necessary to achieve the required level of confidence.

The advantage here is that the weights are always positive, although in this simula-

tion, alternative methods estimate nominal coverages equally effectively for equal

sample size.

Table 4.5 Performance of the alternatively tuned dell jackknife
estimator of variance

Sample size (n) 90% coverage 95% coverage 99% coverage

100 0.8854 0.8906 0.9031

120 0.9213 0.9265 0.9333

140 0.9385 0.9423 0.9480

160 0.9490 0.9519 0.9566

180 0.9612 0.9626 0.9652

200 0.9685 0.9702 0.9719

220 0.9723 0.9732 0.9756

240 0.9763 0.9774 0.9791

260 0.9801 0.9809 0.9830

280 0.9826 0.9835 0.9849

300 0.9859 0.9865 0.9869

320 0.9867 0.9868 0.9875

340 0.9876 0.9881 0.9888

360 0.9881 0.9887 0.9893

380 0.9890 0.9895 0.9903

400 0.9896 0.9897 0.9902

420 0.9915 0.9915 0.9924

440 0.9921 0.9925 0.9928

460 0.9918 0.9918 0.9921

480 0.9935 0.9938 0.9944

500 0.9922 0.9923 0.9927

520 0.9935 0.9934 0.9937

540 0.9935 0.9936 0.9936

560 0.9954 0.9956 0.9959

580 0.9934 0.9937 0.9937
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4.6.2 R code

The following R code, PUMPKIN44.R, was used to study the coverage of intervals

with the alternative tuned estimator of variance.

# PROGRAM PUMPKIN44.R

set.seed(2013)

N<-70000

x<-runif(N, min¼30, max¼190)

m<-5.5*(exp(0.047*x - 0.0001*x*x))

z<-rnorm(N, 0, 2)

y<-m*exp(z)

var(x)->SIGXP; var(y)->SIGYP

nreps<-10000

ESTPP¼rep(0,nreps)

ci1.max¼ci1.min¼ci2.max¼ci2.min¼ci3.max¼ci3.min¼vESTPP

vESTP¼ESTPP

for (n in seq(100,600,20) )

{

for (r in 1:nreps)

{

us<-sample(N,n)

xs<-x[us]; ys<-y[us]

sigxs<-var(xs)*(n-1)/n;sigys<-var(ys)*(n-1)/n

sigx2<-rep(0,n)

shi¼ESTi¼wbni¼sigy2¼sigx2

sigx2<–(n*sigxs - (xs-mean(xs))^2)/(n-1)

sigy2<–(n*sigys - (ys-mean(ys))^2)/(n-1)

shi<- sigx2 - (SIGXP-n*(2-n)*sigxs)/((n-1)^2)

wbni<-1/(n*(1 + sum(shi)/sum(shi^2)*shi))

ESTi<- n*((n-1)^2*wbni-n+2)*sigy2

ESTP<- sum(ESTi)

EST_I<–(ESTP - ESTi)/(n-1)

ESTP[r]<-ESTP/n

vj<–(wbni^2)*((EST_I - ESTP[r])^2)

vESTP[r]<-n*((n-1) 3̂)*sum(vj)

ci1.max[r]<- ESTP[r]+qf(0.95,n-1,n-1)*sqrt(vESTP[r])

ci1.min[r]<- ESTP[r]-qf(0.05,n-1,n-1)*sqrt(vESTP[r])

ci2.max[r]<- ESTP[r]+qf(0.975,n-1,n-1)*sqrt(vESTP[r])

ci2.min[r]<- ESTP[r]-qf(0.025,n-1,n-1)*sqrt(vESTP[r])

ci3.max[r]<- ESTP[r]+qf(0.995,n-1,n-1)*sqrt(vESTP[r])

ci3.min[r]<- ESTP[r]-qf(0.005,n-1,n-1)*sqrt(vESTP[r])

}

round(sum(ci1.min<SIGYP & ci1.max>SIGYP)/nreps,4)->cov1

round(sum(ci2.min<SIGYP & ci2.max>SIGYP)/nreps,4)->cov2

round(sum(ci3.min<SIGYP & ci3.max>SIGYP)/nreps,4)->cov3

cat(n, cov1,cov2,cov3,0\n0)
}
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4.6.3 Numerical illustration

We explain the steps involved in computation of estimator of variance using the dell

method with the following example.

Example 4.4 Consider a sample of n¼ 7 pumpkins where x is the circumference (in.)

and y is the weight (lbs) of the pumpkins.

x 122 67.0 106.5 98.0 115.2 132 101.1

y 6400 800 3084 1042 4500 6700 2397

Construct a 99% confidence interval estimate of the population variance of the pump-

kin weights by assuming that the population variance of circumference S2x ¼ 440

is known.

Solution. One can easily compute

σ̂2x( j) σ̂2y( j) �w�v ( j) σ̂2T(a2( j))

394.8299 4,380,450 0.1434844 5,195,155

184.5203 4,454,317 0.1364451 6,497,820

437.6025 5,686,481 0.1450059 4,579,697

427.0584 4,667,231 0.1446279 4,915,665

423.4546 5,577,179 0.1444991 4,726,496

324.7300 4,081,493 0.14110000 5668642.4

433.6900 5,498,717 0.14490000 4660356.4

where

σ̂2T a2 jð Þð Þ ¼
nσ̂2T a2ð Þ �n n�1ð Þ2 �w�

v jð Þ� n�2ð Þ
� 	

σ̂2y jð Þ
n�1

From the tabulated values, we obtain

σ̂2T a2ð Þ ¼
1

n

X
j2s

σ̂2T a2 jð Þð Þ ¼ 5,177,690

and

SE σ̂2T a2ð Þ
� 	

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v̂ σ̂2T a2ð Þ
� 	r

¼ 9,207,481

Thus, the required 99% (F-value¼11.07) confidence interval estimate of the finite

population variance is 4,346,168–107,132,480.
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4.6.4 R code used for illustration

The following R code, PUMPKIN44EX.R, was used to solve the preceding

illustration.

#PROGRAM PUMPKIN44EX.F95

n<-7; SIGXP<-440

xs<-c(122,67,106.5,98,115.2,132,101.1)

ys<-c(6400,800,3084,1042,4500,6700,2397)

sigxs<-var(xs)*(n-1)/n;sigys<-var(ys)*(n-1)/n

sigx2<-rep(0,n)

sigy2¼sigx2

sigx2<–(n*sigxs-(xs-mean(xs))^2)/(n-1)

sigy2<–(n*sigys-(ys-mean(ys))^2)/(n-1)

shi<-sigx2 - (SIGXP-n*(2-n)*sigxs)/((n-1)^2)

wbni<-1/(n*(1 + sum(shi)/sum(shi^2)*shi))

ESTi<- n*((n-1)^2*wbni-n+2)*sigy2

ESTP<- sum(ESTi)

EST_I<–(ESTP - ESTi)/(n-1)

ESTP<-ESTP/n

vj<–(wbni^2)*((EST_I - ESTP)^2)

vESTP<-n*((n-1) 3̂)*sum(vj)

L<-ESTP-qf(.005,n-1,n-1)*sqrt(vESTP)

U<-ESTP+qf(.995,n-1,n-1)*sqrt(vESTP)

cbind(sigx2,sigy2,wbni,EST_I)

cat("Tuned estimate:", ESTP, "SE: ",vESTP .̂5 ,0\n0)
cat("Confidence Interval:"," ", L,"; ", U,0\n0)

4.7 Exercises

Exercise 4.1 Consider an estimator of the finite population variance

S2y ¼ 2N N�1ð Þf g�1
XX
i 6¼j2Ω

yi� yj
� �2

given by

σ̂2Tuned ¼
XX
i6¼j2s

h
n n�1ð Þ�1ð Þ2 �w i, jð Þ� n n�1ð Þ�2ð Þ

i
s2y y ið Þ, y jð Þ
� �

(4.89)

where

s2y y ið Þ, y jð Þ
� �¼ n n�1ð Þs2y �0:5 yi� yj

� �2
n n�1ð Þ�1

(4.90)
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and where

s2y ¼ 2n n�1ð Þf g�1
XX
i 6¼j2s

yi� yj
� �2

(4.91)

is the sample variance of the study variable obtained by removing the ith and jth units
from the sample s. The tuned weights �w i, jð Þ, are constructed so that the following two
constraints are satisfied:

XX
i 6¼j2s

�w i, jð Þ¼ 1 (4.92)

and

XX
i 6¼j2s

�w i, jð Þs2x x ið Þ, x jð Þ
� �¼ S2x �n n�1ð Þ 2�n n�1ð Þð Þs2x

n n�1ð Þ�1ð Þ2 (4.93)

where

�w i, jð Þ¼ 1�wij

n n�1ð Þ�1
for 0<wij < 1 (4.94)

s2x x ið Þ, x jð Þ
� �¼ n n�1ð Þs2x �0:5 xi� xj

� �2
n n�1ð Þ�1

(4.95)

S2x ¼ 2N N�1ð Þf g�1
XX
i6¼j2Ω

xi� xj
� �2

(4.96)

and

s2x ¼ 2n n�1ð Þf g�1
XX
i 6¼j2s

xi� xj
� �2

(4.97)

Now optimize each of the following distance functions:

D11 ¼ 1

2

XX
i 6¼j2s

1� n n�1ð Þ�1ð Þ�w i, jð Þ�1= n n�1ð Þð Þf g2
qij= n n�1ð Þð Þ (4.98)

D22 ¼ 1

2

XX
i 6¼j2s

ffiffiffiffiffiffiffiffiffiffiffiffi
�w i, jð Þ

p
�1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n n�1ð Þ

p� 	2
, �w i, jð Þ> 0 (4.99)
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and

D33 ¼
XX
i 6¼j2s

1� n n�1ð Þ�1ð Þ�w i, jð Þ�1= n n�1ð Þð Þf g2
2qij= n n�1ð Þð Þ

+
XX
i 6¼j2s

φij �w i, jð Þf g2n n�1ð Þ
2qij n n�1ð Þ�1f g�2

(4.100)

where qij are suitably chosen weights that form various estimators, and φij is a penalty,

subject to either both tuning constraints (4.92) and (4.93) or only tuning constraint (4.93).

Write code in any scientific language, such as FORTRAN, C++, or R, to study these

distance functions. Discuss the nature of the tuned weights in each situation. Construct

the 90%, 95%, and 99% confidence interval estimates of pumpkinweights by estimating

variance using the method of double jackknifing discussed earlier in the chapter.

Exercise 4.2 Consider an estimator of the finite population variance

S2y ¼ 2N N�1ð Þf g�1
XX
i 6¼j2Ω

yi� yj
� �2

as

σ̂2Tuned ¼
XX
i6¼j2s

n n�1ð Þ�1ð Þ2 �w i, jð Þ� n n�1ð Þ�2ð Þ
i
s2y y ið Þ, y jð Þ
� �h

(4.101)

where sy
2 (y(i ),y( j )) is as defined in Exercise 4.1, and �w i, jð Þ are the jackknifed tuned

weights such that the following two constraints are satisfied:

XX
i6¼j2s

�w i, jð Þ¼ 1 (4.102)

and

XX
i6¼j2s

�w i, jð Þ s2x x ið Þ, x jð Þ
� ��S2x �n n�1ð Þ 2�n n�1ð Þð Þs2x

n n�1ð Þ�1ð Þ2
( )

¼ 0 (4.103)

where

s2x x ið Þ, x jð Þ
� �¼ n n�1ð Þs2x �0:5 xi� xj

� �2
n n�1ð Þ�1

(4.104)

S2x ¼ 2N N�1ð Þf g�1
XX
i 6¼j2Ω

xi� xj
� �2

(4.105)
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and

s2x ¼ 2n n�1ð Þf g�1
XX
i 6¼j2s

xi� xj
� �2

(4.106)

Optimize each of the following distance functions:

D44 ¼ 1

n n�1ð Þ
XX
i6¼j2s

�w i, jð Þ ln �w i, jð Þð Þ½ �, 0< �w i, jð Þ< 1= n n�1ð Þ�1ð Þ

(4.107)

D55 ¼ 1

n n�1ð Þ
XX
i6¼j2s

ln �w i, jð Þð Þ, 0< �w i, jð Þ< 1= n n�1ð Þ�1ð Þ (4.108)

and

D66 ¼ 1

n n�1ð Þ
XX
i 6¼j2s

tanh�1 �w i, jð Þf g2�1

�w i, jð Þf g2 + 1

 !
(4.109)

where tanh�1ðÞ is the hyperbolic tangent function, subject to the two tuning con-

straints (4.102) and (4.103). Write code in any scientific language, such as

FORTRAN, C++, or R, to study these distance functions. Discuss the nature of the

tuned weights in each situation. Construct the 90%, 95%, and 99% confidence interval

estimates by estimating variance using the method of double jackknifing discussed

earlier in the chapter. Comment on the distribution of �2D55.

Exercise 4.3 Consider an estimator of the finite population variance

S2y ¼ 2N N�1ð Þf g�1
XX
i6¼j2Ω

yi� yj
� �2

defined by

σ̂2Tuned ¼
XX
i6¼j2s

n n�1ð Þ�1ð Þ2 �w i, jð Þ� n n�1ð Þ�2ð Þ
i
s2y y ið Þ, y jð Þ
� �h

(4.110)

where

s2y y ið Þ, y jð Þ
� �¼ n n�1ð Þs2y �0:5 yi� yj

� �2
n n�1ð Þ�1

(4.111)

and where

s2y ¼ 2n n�1ð Þf g�1
XX
i 6¼j2s

yi� yj
� �2

(4.112)
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is the sample variance of the study variable obtained by removing the ith and jth units
from the sample s. Let wij be any calibrated or design weights such that the following

two constraints are satisfied:

XX
i6¼j2s

wij ¼ 1 (4.113)

and

Em

XX
i 6¼j2s

wij yi� yj
� �2 ¼Em S2y

� 	
(4.114)

where Em denotes the expected value over the linear heteroscedastic model

yi ¼ βxi + ei (4.115)

such that

Em eijxið Þ¼ 0, Em e2i jxi
� �¼ σ2v xið Þ, v xið Þ> 0, and Em eieijxixj

� �¼ 0

Let

�w i, jð Þ¼ 1�wij

n n�1ð Þ�1
(4.116)

be the jackknifed weights so that

XX
i6¼j2s

�w i, jð Þ¼ 1 (4.117)

Note that the new model assisted tuning constraint (4.114) is equivalent to two new

tuning constraints given by

XX
i6¼j2s

�w i, jð Þs2x x ið Þ, x jð Þ
� �¼ S2x �n n�1ð Þ 2�n n�1ð Þf gs2x

n n�1ð Þ�1ð Þ2 (4.118)

and

XX
i6¼j2s

�w i, jð Þvs xð Þ x ið Þ, x jð Þ
� �¼ vΩ xð Þ �n n�1ð Þ 2�n n�1ð Þf gvs xð Þ

n n�1ð Þ�1ð Þ2 (4.119)
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where

s2x x ið Þ, x jð Þ
� �¼ n n�1ð Þs2x �0:5 xi� xj

� �2
n n�1ð Þ�1

(4.120)

and

vs xð Þ x ið Þ, x jð Þ
� �¼ n n�1ð Þvs xð Þ �0:5 v xið Þ+ v xj

� �� �
n n�1ð Þ�1

(4.121)

with

s2x ¼ 2n n�1ð Þf g�1
XX
i 6¼j2s

xi� xj
� �2

(4.122)

S2x ¼ 2N N�1ð Þf g�1
XX
i6¼j2Ω

xi� xj
� �2

(4.123)

vs xð Þ ¼ 2n n�1ð Þf g�1
XX
i 6¼j2s

v xið Þ+ v xj
� �� �

(4.124)

and

vΩ xð Þ ¼ 2N N�1ð Þf g�1
XX
i 6¼j2Ω

v xið Þ + v xj
� �� �

(4.125)

Optimize each of the following distance functions:

D11 ¼ 1

2

XX
i 6¼j2s

1� n n�1ð Þ�1ð Þ�w i, jð Þ�1= n n�1ð Þð Þf g2
qij= n n�1ð Þð Þ (4.126)

D22 ¼ 1

2

XX
i 6¼j2s

ffiffiffiffiffiffiffiffiffiffiffiffi
�w i, jð Þ

p
�1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n n�1ð Þ

p� 	2
, �w i, jð Þ> 0 (4.127)

and

D33 ¼
XX
i6¼j2s

1� n n�1ð Þ�1ð Þ�w i, jð Þ�1= n n�1ð Þð Þf g2
2qij= n n�1ð Þð Þ

+
XX
i 6¼j2s

Φij �w i, jð Þf g2n n�1ð Þ
2qij n n�1ð Þ�1f g�2

(4.128)

where qij are suitably chosen weights that form various estimators, andΦij is a penalty,

subject to tuning constraints (4.117)–(4.119). Write code in any scientific language,
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such as FORTRAN, C++, or R, to study these distance functions. Discuss the nature of

the tuned weights in each situation. Construct the 90%, 95%, and 99% confidence

interval estimates of the weight of pumpkins. Estimate the variance using the method

of double jackknifing discussed earlier in the chapter. Discuss the special cases with

v xið Þ¼ xgi , where g is any real value.

Exercise 4.4 Consider an estimator of the finite population variance

S2y ¼ 2N N�1ð Þf g�1
XX
i 6¼j2Ω

yi� yj
� �2

defined by

σ̂2Tuned ¼
XX
i6¼j2s

n n�1ð Þ�1ð Þ2 �w i, jð Þ�ðn n�1ð Þ�2Þ
�
s2y y ið Þ, y jð Þ
� ��

(4.129)

where

s2y y ið Þ, y jð Þ
� �¼ n n�1ð Þs2y �0:5 yi� yj

� �2
n n�1ð Þ�1

(4.130)

and where

s2y ¼ 2n n�1ð Þf g�1
XX
i 6¼j2s

yi� yj
� �2

(4.131)

is the sample variance of the study variable obtained by removing the ith and jth units
from the sample s. Let wij be any calibrated or design weights such that the following

two constraints are satisfied:

XX
i6¼j2s

wij ¼ 1 (4.132)

and

Em

XX
i 6¼j2s

wij yi� yj
� �2 ¼Em S2y

� 	
(4.133)

where Em denotes the expected value over the linear heteroscedastic model

yi ¼ βxi + ei (4.134)

such that

Em eijxið Þ¼ 0, Em e2i jxi
� �¼ σ2v xið Þ, v xið Þ> 0, and Em eieijxixj

� �¼ 0
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Let

�w i, jð Þ¼ 1�wij

n n�1ð Þ�1
, 0< �w i, jð Þ< 1= n n�1ð Þ�1ð Þ (4.135)

be the jackknifed weights, so that

XX
i 6¼j2s

�w i, jð Þ¼ 1 (4.136)

Note that the new model assisted tuning constraint (4.133) is equivalent to two new

tuning constraints given by

XX
i 6¼j2s

�w i, jð Þ s2x x ið Þ, x jð Þ
� ��S2x �n n�1ð Þ 2�n n�1ð Þf gs2x

n n�1ð Þ�1ð Þ2
" #

¼ 0 (4.137)

and

XX
i 6¼j2s

�w i, jð Þ vs xð Þðx ið Þ, x jð ÞÞ�
vΩ xð Þ �n n�1ð Þ n n�1ð Þ�1f gvs xð Þ

n n�1ð Þ�1ð Þ2
( )

¼ 0

(4.138)

where

s2x x ið Þ, x jð Þ
� �¼ n n�1ð Þs2x �0:5 xi� xj

� �2
n n�1ð Þ�1

(4.139)

and

vs xð Þ x ið Þ, x jð Þ
� �¼ n n�1ð Þvs xð Þ �0:5 v xið Þ+ v xj

� �� �
n n�1ð Þ�1

(4.140)

with

s2x ¼ 2n n�1ð Þf g�1
XX
i 6¼j2s

xi� xj
� �2

(4.141)

S2x ¼ 2N N�1ð Þf g�1
XX
i6¼j2Ω

xi� xj
� �2

(4.142)

vs xð Þ ¼ 2n n�1ð Þf g�1
XX
i 6¼j2s

v xið Þ+ v xj
� �� �

(4.143)
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and

vΩ xð Þ ¼ 2N N�1ð Þf g�1
XX
i 6¼j2Ω

v xið Þ+ v xj
� �� �

(4.144)

Optimize each of the following distance functions:

D44 ¼ 1

n n�1ð Þ
XX
i 6¼j2s

�w i, jð Þ ln �w i, jð Þð Þ½ �, �w i, jð Þ> 0 (4.145)

D55 ¼ 1

n n�1ð Þ
XX
i 6¼j2s

ln �w i, jð Þð Þ, �w i, jð Þ> 0 (4.146)

and

D66 ¼ 1

n n�1ð Þ
XX
i 6¼j2s

tanh�1 �w i, jð Þf g2�1

�w i, jð Þf g2 + 1

 !
(4.147)

where tanh�1ðÞ is the hyperbolic tangent function, subject to three tuning constraints
(4.136)–(4.138). Write code in any scientific language, such as FORTRAN, C++, or

R, to study these distance functions. Discuss the nature of the tuned weights in each

situation. Construct the 90%, 95%, and 99% confidence interval estimates by estimat-

ing variance using the method of double jackknifing discussed in the chapter. Discuss

the distribution of�2D55 and comment on it. Discuss the special cases with v xið Þ¼ x
g
i ,

where g is any real value.

Exercise 4.5 Consider an estimator of the finite population variance

S2y ¼ 2N N�1ð Þf g�1
XX
i 6¼j2Ω

yi� yj
� �2

, defined by

σ̂2Tuned ¼
XX
i6¼j2s

n n�1ð Þ�1ð Þ2 �w i, jð Þ� n n�1ð Þ�2ð Þ
i
s2y y ið Þ, y jð Þ
� �h

(4.148)

where

s2y y ið Þ, y jð Þ
� �¼ n n�1ð Þs2y �0:5 yi� yj

� �2
n n�1ð Þ�1

(4.149)

Let �w i, jð Þ be a set of jackknife tuned weights such that the following two tuning con-
straints are satisfied:

XX
i6¼j2s

�w i, jð Þ¼ 1 (4.150)
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and

XX
i 6¼j2s

�w i, jð Þ s2ŷ ŷ ið Þ, ŷ jð Þ
� 	

�S2ŷ �n n�1ð Þ 2�n n�1ð Þf g
n n�1ð Þ�1f g2

( )
¼ 0 (4.151)

where

ŷi ¼ h xi, β̂
� �

(4.152)

denotes the predicted value of the study variable yi based on any linear or nonlinear

model using the known information on the auxiliary variable xi for i2Ω,

S2ŷ ¼
1

2N N�1ð Þ
XX
i 6¼j2Ω

ŷi� ŷj

� 	2
(4.153)

s2ŷ ¼ 2n n�1ð Þf g�1
XX
i 6¼j2s

ŷi� ŷj

� 	2
(4.154)

and

s2ŷ ŷ ið Þ, ŷ jð Þ
� 	

¼
n n�1ð Þs2ŷ �0:5 ŷi� ŷj

� 	2
n n�1ð Þ�1

(4.155)

Optimize each of the following distance functions:

D44 ¼ 1

n n�1ð Þ
XX
i6¼j2s

�w i, jð Þ ln �w i, jð Þð Þ½ �, �w i, jð Þ> 0 (4.156)

D55 ¼ 1

n n�1ð Þ
XX
i6¼j2s

ln �w i, jð Þð Þ, �w i, jð Þ> 0 (4.157)

and

D66 ¼ 1

n n�1ð Þ
XX
i 6¼j2s

tanh�1 �w i, jð Þf g2�1

�w i, jð Þf g2 + 1

 !
(4.158)

where tanh�1ðÞ is the hyperbolic tangent function, subject to tuning constraints

(4.150) and (4.151). Write code in any scientific language, such as FORTRAN,

SAS, or R, to study these distance functions. Discuss the nature of the tuned weights

in each situation. Construct the 90%, 95%, and 99% confidence interval estimates by

estimating variance using the method of double jackknifing discussed in the chapter.

Discuss the distribution of �2D55 and comment on it.
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Exercise 4.6 Consider an estimator of the finite population variance

S2y ¼ 2N N�1ð Þf g�1
XX
i 6¼j2Ω

yi� yj
� �2

, defined by

σ̂2Tuned ¼
XX
i6¼j2s

n n�1ð Þ�1ð Þ2 �w i, jð Þ�ðn n�1ð Þ�2Þ
i
s2y y ið Þ, y jð Þ
� �h

(4.159)

where

s2y y ið Þ, y jð Þ
� �¼ n n�1ð Þs2y �0:5 yi� yj

� �2
n n�1ð Þ�1

(4.160)

and �w i, jð Þ are the jackknife tuned weights such that the following two tuning con-

straints are satisfied:

XX
i6¼j2s

�w i, jð Þ¼ 1 (4.161)

and

XX
i6¼j2s

�w i, jð Þs2ŷ ŷ ið Þ, ŷ jð Þ
� 	

¼ S2ŷ �n n�1ð Þ 2�n n�1ð Þð Þs2ŷ
n n�1ð Þ�1ð Þ2 (4.162)

where

ŷi ¼ h xi, β̂
� �

(4.163)

denotes the predicted value of the study variable yi based on any linear or nonlinear

model using the known information on the auxiliary variable xi for i2Ω,

S2ŷ ¼
1

2N N�1ð Þ
XX
i 6¼j2Ω

ŷi� ŷj

� 	2
(4.164)

s2ŷ ¼ 2n n�1ð Þf g�1
XX
i 6¼j2s

ŷi� ŷj

� 	2
(4.165)

and

s2ŷ ŷ ið Þ, ŷ jð Þ
� 	

¼
n n�1ð Þs2ŷ �0:5 ŷi� ŷj

� 	2
n n�1ð Þ�1

(4.166)
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Optimize each of the following distance functions:

D11 ¼ 1

2

XX
i 6¼j2s

1� n n�1ð Þ�1ð Þ�w i, jð Þ�1= n n�1ð Þð Þf g2
qij= n n�1ð Þð Þ (4.167)

D22 ¼ 1

2

XX
i 6¼j2s

ffiffiffiffiffiffiffiffiffiffiffiffi
�w i, jð Þ

p
�1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n n�1ð Þ

p� 	2
, �w i, jð Þ> 0 (4.168)

and

D33 ¼
XX
i6¼j2s

1� n n�1ð Þ�1ð Þ�w i, jð Þ�1= n n�1ð Þð Þf g2
2qij= n n�1ð Þð Þ

+
XX
i 6¼j2s

Φij �w i, jð Þf g2n n�1ð Þ
2qij n n�1ð Þ�1f g�2

(4.169)

where qij are suitably chosen weights that form various estimators and Φij is a pen-

alty, subject to the two tuning constraints (4.161) and (4.162). Write code in any

scientific language, such as FORTRAN, C++, SAS, or R, to study these distance

functions. Discuss the nature of tuned weights in each situation. Construct the

90%, 95%, and 99% confidence interval estimates of the weight of pumpkins by esti-

mating variance using the method of double jackknifing discussed earlier in the

chapter.

Exercise 4.7 Consider an alternative tuned estimator of the finite population variance

σ2y ¼N�1
X
j2Ω

yi�Y
� �2

, defined by

σ̂2T a1ð Þ ¼
X
j2s

n�1ð Þ2 �wv jð Þ� n�2ð Þ
h i

σ̂2y jð Þ (4.170)

where

σ̂2y jð Þ¼ nσ̂2y � yj� �yn
� �2
n�1ð Þ for j2 s (4.171)

and �wv jð Þ for j2 s is a set of jackknifed tuned weights such that the following three

tuning constraints are satisfied:

X
j2s

�wv jð Þ¼ 1 (4.172)

X
j2s

�wv jð Þ�xn jð Þ¼X�n 2�nð Þ�xn
n�1ð Þ2 (4.173)
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and

X
j2s

�wv jð Þσ̂2x jð Þ¼ σ2x �n 2�nð Þσ̂2x
n�1ð Þ2 (4.174)

where any other symbols have their usual meanings. Optimize each of the following

distance functions:

D1 ¼ 2�1n
� �X

j2s
q�1
j 1� n�1ð Þ�wv jð Þ�n�1
� �2

(4.175)

D2 ¼
X
j2s

�wv jð Þ ln �wv jð Þð Þ½ �, 0< �wv jð Þ< 1= n�1ð Þ (4.176)

D3 ¼ 2
X
j2s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n�1ð Þ�wv jð Þ

p
�

ffiffiffiffiffiffiffi
n�1

p� 	2
, 0< �wn jð Þ< 1= n�1ð Þ (4.177)

D4 ¼
X
j2s

�n�1 ln �wv jð Þð Þ� 

, 0< �wn jð Þ< 1= n�1ð Þ (4.178)

D5 ¼
X
j2s

1� n�1ð Þ�wv jð Þ�n�1ð Þ2
2 1� n�1ð Þ�wv jð Þð Þ , 0< �wn jð Þ< 1= n�1ð Þ (4.179)

D6 ¼ 1

n

X
j2s

tanh�1 �wv jð Þf g2�1

�wv jð Þf g2 + 1

 !
(4.180)

and

D7 ¼ 1

2

X
j2s

�
1� n�1ð Þ�wv jð Þ�n�1

	2
qjn�1

+
1

2

X
j2s

φj �wv jð Þf g2
qjn�1 n�1ð Þ�2

(4.181)

where qj are suitably chosen weights that form various estimators, φj is a penalty, and

tanh�1ð Þ is the hyperbolic tangent function, subject to tuning constraints (4.172)–
(4.174).Write code in any scientific language, such as FORTRAN, C++, or R, to study

these distance functions. Discuss the nature of the tuned weights in each situation.

Construct the 90%, 95%, and 99% confidence interval estimates by estimating vari-

ance using the method of double jackknifing discussed in the chapter. Simulate and

discuss the distributions of �2D4 and other distance functions.

Exercise 4.8 Consider an alternative tuned estimator of the finite population variance

σ2y ¼N�1
XN
i¼1

yi� �Yð Þ2, defined by
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σ̂2T a1ð Þ ¼
X
j2s

n�1ð Þ2 �wv jð Þ� n�2ð Þ
h i

σ̂2y jð Þ (4.182)

where

�wv jð Þ¼ 1�wj

n�1
(4.183)

for j2 s is a set of alternative tuned weights. Obtain the weights �wv jð Þ such that the

chi-square distance:

D1 ¼ 2�1n
� �X

j2s
q�1
j 1� n�1ð Þwv jð Þ�n�1
� �2

(4.184)

where qj is a set of suitably chosen weights, is optimum subject to the three constraints

X
j2s

�wv jð Þ¼ 1 (4.185)

X
j2s

�wv jð Þ�xn jð Þ¼X�n 2�nð Þ�xn
n�1ð Þ2 (4.186)

and

Em

X
j2s

wj yj� �y
� �2 ¼Em σ2y

� 	
(4.187)

where Em denotes the expected value under the model:

yi ¼ βxi + ei (4.188)

such that Em eijxið Þ¼ 0, Em e2i jxi
� �¼ σ2v xið Þ, v xið Þ> 0, and Em eieijxixj

� �¼ 0.

Note that the model assisted constraint Em

X
j2s

wj yj� �y
� �2 ¼Em σ2y

� 	
is equivalent

to the following two tuning constraints:

X
j2s

�wv jð Þσ̂2x jð Þ¼ σ2x �n 2�nð Þσ̂2x
n�1ð Þ2 (4.189)

and

X
j2s

�wv jð Þv�s xð Þ jð Þ¼
v�Ω xð Þ �n 2�nð Þv�s xð Þ

n�1ð Þ2 (4.190)
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where

v�Ω xð Þ ¼
1

N

X
i2Ω

v xið Þ (4.191)

v�s xð Þ ¼
1

n

X
i2s

v xið Þ (4.192)

and

v�s xð Þ jð Þ¼
nv�s xð Þ � v xj

� �
n�1

(4.193)

for any function v xið Þ> 0.Write code in any scientific programming language, such as

SAS, FORTRAN, C, or R, to study the chi-square distance function. Discuss the

nature of the tuned weights. Construct the 90%, 95%, and 99% confidence interval

estimates by estimating the variance using the method of double jackknifing discussed

earlier in the chapter. Also study distance functions of your own choice.

Exercise 4.9 Consider taking a first-phase sample s1 ofm units using a simple random

sampling (SRS) scheme from a population Ω consisting of N units. Only collect

information on the auxiliary variable xi, for i¼ 1,2,…,m, in the sample s1. Let

s�2x ¼ m�1ð Þ�1
Xm
i¼1

xi� �xmð Þ2 with �xm ¼m�1
Xm
i¼1

xi be an estimator of the finite popu-

lation variance of the auxiliary variable in the first-phase sample. Assume a sample s2
of n units is taken using an SRS scheme from the given first-phase sample s1. Assume

that both the study variable yi and the auxiliary variable xi are measured for

i¼ 1,2,…,n, constituting the second-phase sample s2. Consider an alternative tuned

estimator of the finite population variance given by

σ̂2TP csð Þ ¼
X
i 6¼j

X
2s2

n n�1ð Þ�1ð Þ2 �w i, jð Þ� n n�1ð Þ�2ð Þ
h i

s2y y ið Þ, y jð Þ
� �

(4.194)

where

s2y y ið Þ, y jð Þ
� �¼ n n�1ð Þs2y �0:5 yi� yj

� �2
n n�1ð Þ�1

(4.195)

and

s2y ¼ 2n n�1ð Þf g�1
X
i 6¼j

X
2s2

yi� yj
� �2

(4.196)
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have their usual meanings. Tuned jackknifed weights �w i, jð Þ are obtained by minimiz-

ing the distance function

D¼ 1

2

X
i6¼j

X
2s2

1� n n�1ð Þ�1ð Þ�w i, jð Þ�1= n n�1ð Þð Þf g2
qij= n n�1ð Þð Þ (4.197)

subject to the following two tuning constraints:

X
i 6¼j

X
2s2

�w i, jð Þ¼ 1 (4.198)

and

X
i 6¼j

X
2s2

�w i, jð Þs2x x ið Þ, x jð Þ
� �¼ s�2x �n n�1ð Þ 2�n n�1ð Þð Þs2x

n n�1ð Þ�1ð Þ2 (4.199)

where

s2x x ið Þ, x jð Þ
� �¼ n n�1ð Þs2x �0:5 xi� xj

� �2
n n�1ð Þ�1

(4.200)

and

s2x ¼ 2n n�1ð Þf g�1
X
i6¼j

X
2s2

xi� xj
� �2

(4.201)

Write code in any scientific programming language, such as C, R, or SAS, to inves-

tigate the nominal 90%, 95%, and 99% confidence interval estimates using double

jackknifing method for different sizes of the first-phase and second-phase samples.

Exercise 4.10 Consider an estimator of the finite population variance

S2y ¼ 2N N�1ð Þf g�1
XX
i6¼j2Ω

yi� yj
� �2

given by

σ̂2Tuned ¼
XX
i6¼j2s

n n�1ð Þ�1ð Þ2 �w i, jð Þ� n n�1ð Þ�2ð Þ
i
s2y y ið Þ, y jð Þ
� �h

(4.202)

where

s2y y ið Þ, y jð Þ
� �¼ n n�1ð Þs2y �0:5 yi� yj

� �2
n n�1ð Þ�1

(4.203)
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s2y ¼ 2n n�1ð Þf g�1
XX
i 6¼j2s

yi� yj
� �2

(4.204)

is the sample variance of the study variable obtained by removing the ith and jth units
from the sample s, and �w i, jð Þ is the tuned weight, constructed so that the following two
constraints are satisfied:

XX
i6¼j2s

�w i, jð Þ¼ 1 (4.205)

and

XX
i 6¼j2s

�w i, jð Þ Ĝ
1�n
x ið Þ� Ĝ

1�n
x jð Þ

h i2
¼

XX
i6¼j2s

Ĝ
1�n
x ið Þ� Ĝ

1�n
x jð Þ

h i2
�2 S2x Ĝx

� ��2n
� 	

n n�1ð Þ�1

(4.206)

where

S2x ¼ 2N N�1ð Þf g�1
XX
i 6¼j2Ω

xi� xj
� �2

(4.207)

Above Ĝx(i ) and Ĝx( j ) are the jackknifed sample geometric means after remov-

ing the ith and jth units, respectively, from the sample geometric mean, which is

given by

Ĝx ¼
Yn
i¼1

xi

 !1=n

(4.208)

Now optimize the following distance function

D11 ¼ 1

2

XX
i 6¼j2s

1� n n�1ð Þ�1ð Þ�w i, jð Þ�1= n n�1ð Þð Þf g2
qij= n n�1ð Þð Þ (4.209)

subject to the preceding two tuning constraints.

Generate a population from your own simulating model, such as the SJPM. Write

R code to study the behavior of nominally 90%, 95%, and 99% confidence interval

estimates based on the resultant confidence interval estimators for various sample

sizes. Discuss your findings.
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Exercise 4.11 Repeat Exercise 4.10, replacing the second constraint by

XX
i 6¼j2s

�w i, jð Þ Ĥx ið Þ� Ĥx jð Þ� �2
Ĥx + n Ĥx ið Þ� Ĥx

� �� 
2
Ĥx + n Ĥx jð Þ� Ĥx

� �� 
2
¼
XX
i6¼j2s

n n�1ð Þ�1ð Þ�1 Ĥx ið Þ� Ĥx jð Þ� �2
Ĥx + n Ĥx ið Þ� Ĥx

� �� 
2
Ĥx + n Ĥx jð Þ� Ĥx

� �� 
2�2 n n�1ð Þ�1ð Þ�1S2x

n�1ð Þ2Ĥ4

x

(4.210)

where Ĥx(i) and Ĥx( j) are the jackknifed sample harmonic means after dropping the

ith and jth units, respectively, from the sample harmonic mean.

Exercise 4.12 Repeat Exercise 4.10, replacing the second constraint by the

following:

XX
i6¼j2s

�w i, jð Þ �xn ið Þ� �xn jð Þ½ �2 ¼ 1

n n�1ð Þ�1ð Þ
XX
i 6¼j2s

�xn ið Þ� �xn jð Þð Þ2� 2S2x

n�1ð Þ2

2
4

3
5

(4.211)

where �xn ið Þ¼ n�xn� xi
n�1

and �xn jð Þ¼ n�xn� xj
n�1

are the jackknifed sample means after

dropping the ith and jth units, respectively, from the sample mean �xn.

Exercise 4.13 Consider an alternative tuned estimator of the finite population vari-

ance σ2y ¼N�1
XN
i¼1

yi�Y
� �

2, defined by

σ̂2T a1ð Þ ¼
X
j2s

n�1ð Þ2 �wv jð Þ� n�2ð Þ
h i

σ̂2y jð Þ (4.212)

Obtain weights �wv jð Þ such that the chi-squared distance:

D1 ¼ 2�1n
� �X

j2s
q�1
j 1� n�1ð Þ�wv jð Þ�n�1
� �2

(4.213)

where qj is a set of suitably chosen weights, is optimum subject to the two constraints:X
j2s

�wv jð Þ¼ 1 (4.214)

and

X
j2s

�wv jð Þ Ĝx jð Þ� 
 1�nð Þ ¼ 1

n�1ð Þ
X
j2s

Ĝx jð Þ� � 1�nð Þ � �X Ĝx

� ��n

" #
(4.215)
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where X¼N�1
XN
i¼1

xi denotes the known population arithmetic mean of the auxiliary

variable and Ĝx( j) is the jth jackknifed sample geometric mean Ĝx of the auxiliary

variable.

Exercise 4.14 Consider an alternative tuned estimator of the finite population vari-

ance σ2y ¼N�1
XN
i¼1

yi�Y
� �

2, defined by

σ̂2T a1ð Þ ¼
X
j2s

n�1ð Þ2 �wv jð Þ� n�2ð Þ
h i

σ̂2y jð Þ (4.216)

Obtain weights �wv jð Þ such that the chi-squared distance

D1 ¼ 2�1n
� �X

j2s
q�1
j 1� n�1ð Þ�wv jð Þ�n�1
� �2

(4.217)

where qj is a set of suitably chosen weights, is optimum subject to the two constraints:

X
j2s

�wv jð Þ¼ 1 (4.218)

and

X
j2s

�wv jð ÞĤx jð Þ
nĤx jð Þ� n�1ð ÞĤx

¼ 1

n�1ð Þ
X
j2s

Ĥx jð Þ
nĤx jð Þ� n�1ð ÞĤx

� X

Ĥx

" #
(4.219)

where X¼N�1
XN
i¼1

xi denotes the known population arithmetic mean of the auxiliary

variable, and

Ĥx jð Þ¼ n�1ð Þ
Xn
i 6¼j¼1

x�1
i

 !�1

, j¼ 1,2,…,n (4.220)

is the jth jackknifed estimator of the sample harmonic mean estimator

Ĥx ¼ n
Xn
i¼1

x�1
i

 !�1

Write code in any scientific language, such as SAS, FORTRAN, C, or R, to generate a

population from the SJPM. Discuss the nature of the tuned weights. Suggest an
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estimator of variance and a confidence interval estimator. Investigate the nominal

90%, 95%, and 99% coverage by the confidence interval estimates by the method

of double jackknifing discussed earlier in the chapter. In addition, study distance func-

tions of your own choice, and make comments.

Exercise 4.15 Assume a sample s of n units is taken using SRSWOR scheme from a

populationΩ of N units. Consider a new estimator of the finite population variance as

σ̂2new ¼
XX
i 6¼j2s

w�
ij �yn ið Þ� �yn jð Þ½ �2 (4.221)

where �yn ið Þ and �yn jð Þ are the jackknifed sample means obtained after removing ith and
jth units from the sample mean �yn. The weights wij

* are obtained by optimizing the chi-

squared type distance function

D¼ n

n�1ð Þ
XX
i 6¼j2s

w�
ij�0:5n�1 n�1ð Þ

� 	2
qij

(4.222)

subject to the two constraints given by

XX
i 6¼j2s

w�
ij ¼

1

2
n�1ð Þ2 (4.223)

and

XX
i 6¼j2s

w�
ij xn ið Þ� xn jð Þ½ �2 ¼ S2x (4.224)

where �xn ið Þ and �xn jð Þ are the jackknifed sample means obtained after removing ith and
jth units from the sample mean �xn, and

S2x ¼
1

2N N�1ð Þ
XX
i 6¼j2Ω

xi� xj
� �2

(4.225)

is the known population mean squared error of the auxiliary variable.

Write code in any scientific language, such as SAS, FORTRAN, C, or R, to gen-

erate a suitable population of your choice and to study the nature of the calibrated

weights wij
*. Suggest a confidence interval estimator. Study the nominal 90%, 95%,

and 99% coverage by the confidence interval estimates for various sample sizes. In

addition, suggest changes and study other distance functions of your own choice

and make comments.
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5Tuned estimators of correlation

coefficient

5.1 Introduction

In this chapter, we consider the problem of estimating the population correlation coef-

ficient. New estimators for the Pearson’s correlation coefficient are suggested and are

investigated through empirical studies. At the end of the chapter, ideas for estimating

the regression coefficient, the ratio of two population means, and estimators of finite

population variance are suggested in the form of unsolved exercises.

5.2 Correlation coefficient

The problem of estimation of the finite population correlation coefficient

ρxy ¼
Sxy
SxSy

(5.1)

is well known in the survey sampling literature. The symbols Sx
2, Sy

2, and Sxy have
their usual meaning. For the reader’s convenience, these are defined again as

N�1ð ÞS2x ¼
X
i2Ω

xi� �Xð Þ2, N�1ð ÞS2y ¼
X
i2Ω

yi� �Yð Þ2, and N�1ð ÞSxy ¼X
i2Ω

xi� �Xð Þ yi� �Yð Þ, with �X¼N�1
X
i2Ω

xi and �Y¼N�1
X
i2Ω

yi.

For a bivariate normal population, an estimator of the finite population correlation

coefficient ρxy, due to Pearson (1896), has been defined as:

r¼ sxy
sxsy

(5.2)

where n�1ð Þsxy ¼
X
i2s

xi� �xnð Þ yi� �ynð Þ, n�1ð Þs2x ¼
X
i2s

xi� �xnð Þ2, n�1ð Þs2y ¼X
i2s

yi� �ynð Þ2, n�xn ¼
X
i2s

xi, and n�yn ¼
X
i2s

yi.

Wakimoto (1971) and Gupta, Singh, and Kashani (1993) studied the behavior of

the estimator r under different sampling schemes. Srivastava and Jhajj (1986) have

proposed a class of estimators of the population correlation coefficient as

rclass ¼ rH u, vð Þ (5.3)
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where u¼ �x= �X, v¼ s2x=S
2
x for N

�X¼
X
i2Ω

xi and N�1ð ÞS2x ¼
X
i2Ω

xi� �Xð Þ2, the function
H(.,.) is parametric with H 1, 1ð Þ¼ 1 and satisfies certain regularity conditions.

Singh, Mangat, and Gupta (1996) have reviewed literature on the problem of esti-

mation of the correlation coefficient and have shown that the class of estimators due to

Srivastava and Jhajj (1986) can take an inadmissible value, that is, outside the range

�1:0, + 1:0½ �, when applied to a sample also reported by Singh (2003). Singh, Sedory,

and Kim (2014) introduced a new empirical likelihood estimator of the correlation

coefficient.

It is interesting to note that the tuned dual-to-empirical log-likelihood (dell) esti-

mate of the correlation coefficient provides only admissible values, like the Singh,

Sedory, and Kim (2014) estimate, and makes use of auxiliary information at the

estimation stage.

5.3 Tuned estimator of correlation coefficient

The newly tuned estimator of the finite population correlation coefficient ρxy is

defined as

rTuned ¼
X
j2s

�wn jð Þr jð Þ (5.4)

where

r jð Þ¼ sxy jð Þffiffiffiffiffiffiffiffiffiffi
s2x jð Þp ffiffiffiffiffiffiffiffiffiffi

s2y jð Þ
q (5.5)

with

sxy jð Þ¼ n�1ð Þsxy
n�2ð Þ � n

n�1ð Þ n�2ð Þ xj� �xn
� �

yj� �yn
� �

(5.6)

s2x jð Þ¼ n�1ð Þs2x
n�2ð Þ � n

n�1ð Þ n�2ð Þ xj� �xn
� �2

(5.7)

and

s2y jð Þ¼ n�1ð Þs2y
n�2ð Þ � n

n�1ð Þ n�2ð Þ yj� �yn
� �2

(5.8)
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The tuned weights �wn jð Þ are obtained such that the dell function:

1

n

X
j2s

ln �wn jð Þð Þ with 0< �wn jð Þ¼ 1�wj

n�1
<

1

n�1
(5.9)

for some unit length weights wj > 0, is optimized subject to the three constraints:

X
j2s

�wn jð Þ¼ 1 (5.10)

X
j2s

�wn jð Þ �xn jð Þ�
�X�n 2�nð Þ�xnð Þ

n�1ð Þ2
( )

¼ 0 (5.11)

and

X
j2s

�wn jð Þ η jð Þ�nη�1

n�1

� �
¼ 0 (5.12)

where

η jð Þ¼ nη�ηj
n�1

(5.13)

η¼ 1

n

X
j2s

ηj (5.14)

and

ηj ¼
n�1ð Þ
n�2ð Þ�

n xj� �xn
� �

yj� �yn
� �

n�1ð Þ n�2ð Þsxyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n�1ð Þ
n�2ð Þ�

n xj� �xn
� �2

n�1ð Þ n�2ð Þs2x

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n�1ð Þ
n�2ð Þ�

n yj� �yn
� �2

n�1ð Þ n�2ð Þs2y

s (5.15)

Note that

r jð Þ¼ rηj for all j2 s (5.16)

The Lagrange function is given by

L¼ 1

n

X
j2s

ln �wn jð Þð Þ� λ0
X
j2s

�wn jð Þ�1

( )
�λ1

X
j2s

�wn jð ÞΨ 1j

( )
� λ2

X
j2s

�wn jð ÞΨ 2j

( )

(5.17)
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where λ0, λ1, and λ2 are Lagrange multipliers,

Ψ 1j ¼ �xn jð Þ�
�X�n 2�nð Þ�xn

n�1ð Þ2 (5.18)

and

Ψ 2j ¼ η jð Þ�nη�1

n�1

� �
(5.19)

On setting

@L

@ �wn jð Þ¼ 0 (5.20)

the set of tuned positive weights is given by

�wn jð Þ¼ 1

n

1

1 + λ1Ψ 1j + λ2Ψ 2j

	 

(5.21)

Constraints (5.10), (5.11) and (5.12) yield λ0¼1, and λ1 and λ2 are given by a solution
to two nonlinear equations:

X
j2s

Ψ 1j

1 + λ1Ψ 1j + λ2Ψ 2j
¼ 0 (5.22)

and

X
j2s

Ψ 2j

1 + λ1Ψ 1j + λ2Ψ 2j
¼ 0 (5.23)

Thus, the newly tuned estimator of the finite population correlation coefficient ρxy in
Equation (5.4) becomes

rTuned ¼ 1

n

X
j2s

r jð Þ
1 + λ1Ψ 1j + λ2Ψ 2j

¼ r (5.24)

The most important feature of the newly tuned estimator rTuned is the same as that of

the usual sample correlation coefficient, that is, it always lies between�1 and +1. This

fact is due to the new calibration constraint in Equation (5.12).

5.3.1 Estimation of variance of the estimator of correlation
coefficient and coverage

Based on some simulation trials, we consider a tuned estimator of the variance of the

estimator of the finite population correlation coefficient rTuned, defined as
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v̂ rTunedð Þ¼ n2
C1

C2

� �2X
j2s

�wn jð Þð Þ2 rTuned jð Þ � rTuned
� �2

(5.25)

where C1 ¼ n�1ð Þ= n�2ð Þ and C2 ¼ n= n�1ð Þ n�2ð Þð Þ. Note that each newly tuned

doubly jackknifed estimator of the finite population correlation coefficient ρxy is givenby

rTuned jð Þ ¼
n
X
j2s

r jð Þ�wn jð Þ�nr jð Þ�wn jð Þ

n�1
for j¼ 1,2,…,n (5.26)

The coverage of the 1�αð Þ100% confidence interval estimates obtained by the newly

tuned estimator of the finite population correlation coefficient is obtained by counting

the number of times the true value of ρxy falls in the interval estimate given by

rTuned � tα=2 df¼ n�2ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v̂ rTunedð Þ

p
(5.27)

Note that in the simulation study we approximated the values of λ1 and λ2, under some

assumptions, as

λ1 �

X
j2s

Ψ 1j

 ! X
j2s

Ψ 2
2j

 !
�

X
j2s

Ψ 2j

 ! X
j2s

Ψ 1jΨ 2j

 !

X
j2s

Ψ 2
1j

 ! X
j2s

Ψ 2
2j

 !
�

X
j2s

Ψ 1jΨ 2j

 !2
(5.28)

and

λ2 �

X
j2s

Ψ 2j

 ! X
j2s

Ψ 2
1j

 !
�

X
j2s

Ψ 1j

 ! X
j2s

Ψ 1jΨ 2j

 !

X
j2s

Ψ 2
1j

 ! X
j2s

Ψ 2
2j

 !
�

X
j2s

Ψ 1jΨ 2j

 !2
(5.29)

It may be worth noting that due to these approximations the numerical values of r and
rTuned may differ, but theoretically r and rTuned are equal. A better approximation to the

nonlinear equation could be used, if available.

We have

X
j2s

rTuned jð Þ � rTuned
� �2 ¼X

j2s

nr�nr jð Þ�wn jð Þ
n�1

� r

	 
2
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¼
X
j2s

nr�nr jð Þ�wn jð Þ�nr + r

n�1

	 
2

¼ 1

n�1ð Þ2
X
j2s

r�nr jð Þ�wn jð Þ½ �2

¼ 1

n�1ð Þ2
X
j2s

r�n rηj
� �

�wn jð Þ
 �2
¼ 1

n�1ð Þ2
X
j2s

r� rηj
1 + λ1Ψ 1j + λ2Ψ 2j

	 
2

¼ r2

n�1ð Þ2
X
j2s

1�ηj
� �

+ λ1Ψ 1j + λ2Ψ 2j

1 + λ1Ψ 1j + λ2Ψ 2j

" #2

¼ r2

n�1ð Þ2
X
j2s

1�ηj
� �2

+ λ1Ψ 1j + λ2Ψ 2j

� �2
+ 2 1�ηj
� �

λ1Ψ 1j + λ2Ψ 2j

� �
1 + λ1Ψ 1j; + λ2Ψ 2j

� �2
" #

¼ r2

n�1ð Þ2
X
j2s

1�ηj
� �2

+ λ1Ψ 1j + λ2Ψ 2j

� �2
+ 2 1�ηj
� �

λ1Ψ 1j + λ2Ψ 2j

� �
1 + λ1Ψ 1j; + λ2Ψ 2j

� �2
" #

(5.30)

Assuming λ1Ψ 1j + λ2Ψ 2j

�� ��< 1, applying binomial expansion, then under certain reg-

ularity conditions, we have

X
j2s

rTuned jð Þ � rTuned
� �2 ¼ r2

n�1ð Þ2
X
j2s

1�ηj
� �2

+ f Ψ 1j, Ψ 2j, ηj
� �

(5.31)

where f(Ψ 1j,Ψ 2j,ηj) is some function of orderO n�2
� �

conversing to zero as the sample

size increases.

Again, assuming
C2

C1

� �
xj� �xn
� �2

s2x

�����
�����< 1 and

C2

C1

� �
yj� �yn
� �2

s2y

�����
�����< 1, we have

ηj ¼
n�1ð Þ
n�2ð Þ�

n xj� �xn
� �

yj� �yn
� �

n�1ð Þ n�2ð Þsxyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n�1ð Þ
n�2ð Þ�

n xj� �xn
� �2

n�1ð Þ n�2ð Þs2x

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n�1ð Þ
n�2ð Þ�

n yj� �yn
� �2

n�1ð Þ n�2ð Þs2y

vuut

¼ 1� C2

C1

� �
xj� �xn
� �

yj� �yn
� �

sxy

	 

1� C2

C1

� �
xj� �xn
� �2

s2x

" #�1
2

1� C2

C1

� �
yj� �yn
� �2

s2y

" #�1
2

� 1� C2

C1

� �
xj� �xn
� �

yj� �yn
� �

sxy
+
1

2

C2

C1

� �
xj� �xn
� �2

s2x
+
1

2

C2

C1

� �
yj�yn
� �2

s2y
+…

(5.32)
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Thus, we have

1�ηj
� �2 � C2

C1

� �2 xj� �xn
� �

yj� �yn
� �

sxy
�1

2

xj� �xn
� �2

s2x
�1

2

yj� yn
� �2

s2y
+…

" #2

and

Xn
j¼1

1�ηj
� �2 � n�1ð Þ C2

C1

� �2 μ̂22
s2xy

+
μ̂40
4s4x

+
μ̂04
4s4y

� μ̂31
s2xsxy

� μ̂13
sxys2y

+
μ̂22
2s2xs

2
y

" #
(5.33)

where μ̂ab ¼ 1
n�1ð Þ

Xn
i¼1

xi� �xnð Þa yi� �ynð Þb, a,b¼ 1,2,3,4, have their usual meanings.

The approximation in Equation (5.33) allows us to estimate the variance of the esti-

mator of the correlation estimator with the proposed newly tuned methodology and

also justifies the multiplier in front of the developed estimator of variance in

Equation (5.25).

We generated two random variables, y�i �N 0, 1ð Þ and x�i �N 0, 1ð Þ, for

i¼ 1,2,…,N (with N¼70,000) from two independent standard normal variables.

For each of the values 0.1, 0.3, 0.5, 0.7, and 0.9, we generated a population of xi,
yi pairs having those values as correlation coefficient (ρxy) by means of the formula:

xi ¼ �X + σxx
�
i (5.34)

and

yi ¼ �Y + σy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ρ2xy

� �r
y�i + ρxyσyx

�
i (5.35)

with �X¼ 30:0, �Y¼ 45:5; σx ¼ 20:1; and σy ¼ 23:5. Note the use of very small average

values of both variables; here we are considering a different kind of Statistical Jumbo

PumpkinModel (SJPM).As said earlier, the choice of a particular SJPMdepends on the

problembeing considered by an investigator.Herewe are interested in various amounts

of correlation between theweight yi (lbs) and circumference xi (in.) on a particular farm
where pumpkin weights and circumferences are not too scattered. Then we select

10,000 random samples, in the range 5–100, from each one of these populations as

shown in Table 5.1, and found the proportion of times the true value of the correlation

coefficient falls in the preceding interval estimate. In Table 5.1, ρxy indicates the cor-
relation coefficient we were trying to simulate, and Rhoxy indicates the actual corre-

lation coefficient from our population of 70,000 paired values. This latter value is the

one used to estimate coverage. For ρxy ¼ 0:1 (Rhoxy¼0.1019759) the estimated cov-

erages by nominally 90%, 95%, and 99% intervals were 89.24%, 94.32%, and 98.63%

for samples of sizes 65, 95, and 95, respectively. Now for ρxy ¼ 0:3 (or true

Rhoxy¼0.2981710) the estimated coverages 90%, 95%, and 99% were 89.21%,
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Table 5.1 Performance of the newly tuned jackknife estimator of the
correlation coefficient

ρxy Rhoxy n Cov1 Cov2 Cov3

0.1 0.1019759 5 0.6312 0.6840 0.7549

0.1 0.1019759 10 0.8182 0.8731 0.9323

0.1 0.1019759 15 0.8454 0.9012 0.9542

0.1 0.1019759 20 0.8646 0.9186 0.9645

0.1 0.1019759 25 0.8681 0.9187 0.9684

0.1 0.1019759 30 0.8784 0.9253 0.9732

0.1 0.1019759 35 0.8792 0.9306 0.9760

0.1 0.1019759 40 0.8838 0.9346 0.9826

0.1 0.1019759 45 0.8874 0.9379 0.9786

0.1 0.1019759 50 0.8881 0.9403 0.9835

0.1 0.1019759 55 0.8867 0.9376 0.9832

0.1 0.1019759 60 0.8880 0.9371 0.9813

0.1 0.1019759 65 0.8924 0.9396 0.9829

0.1 0.1019759 70 0.8895 0.9386 0.9817

0.1 0.1019759 75 0.8904 0.9412 0.9830

0.1 0.1019759 80 0.8905 0.9398 0.9834

0.1 0.1019759 85 0.8964 0.9430 0.9850

0.1 0.1019759 90 0.8891 0.9377 0.9840

0.1 0.1019759 95 0.8908 0.9432 0.9863

0.1 0.1019759 100 0.8920 0.9420 0.9854

0.3 0.2981710 5 0.6392 0.6804 0.7404

0.3 0.2981710 10 0.8342 0.8814 0.9367

0.3 0.2981710 15 0.8564 0.9072 0.9574

0.3 0.2981710 20 0.8686 0.9155 0.9691

0.3 0.2981710 25 0.8733 0.9214 0.9711

0.3 0.2981710 30 0.8773 0.9271 0.9732

0.3 0.2981710 35 0.8834 0.9311 0.9767

0.3 0.2981710 40 0.8853 0.9347 0.9796

0.3 0.2981710 45 0.8841 0.9348 0.9801

0.3 0.2981710 50 0.8910 0.9389 0.9826

0.3 0.2981710 55 0.8847 0.9383 0.9807

0.3 0.2981710 60 0.8854 0.9353 0.9819

0.3 0.2981710 65 0.8886 0.9368 0.9801

0.3 0.2981710 70 0.8919 0.9397 0.9844

0.3 0.2981710 75 0.8910 0.9430 0.9856

0.3 0.2981710 80 0.8903 0.9411 0.9835

0.3 0.2981710 85 0.8921 0.9414 0.9842

0.3 0.2981710 90 0.8898 0.9393 0.9851

0.3 0.2981710 95 0.8973 0.9432 0.9841

0.3 0.2981710 100 0.8905 0.9401 0.9849

0.5 0.495181 5 0.6741 0.7084 0.7559

0.5 0.495181 10 0.8717 0.9131 0.9559

0.5 0.495181 15 0.8803 0.9235 0.9687

0.5 0.495181 20 0.8769 0.9211 0.9702

Continued
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Table 5.1 Continued

ρxy Rhoxy n Cov1 Cov2 Cov3

0.5 0.495181 25 0.8790 0.9245 0.9702

0.5 0.495181 30 0.8810 0.9271 0.9736

0.5 0.495181 35 0.8824 0.9305 0.9753

0.5 0.495181 40 0.8840 0.9297 0.9765

0.5 0.495181 45 0.8815 0.9295 0.9775

0.5 0.495181 50 0.8950 0.9371 0.9806

0.5 0.495181 55 0.8833 0.9347 0.9778

0.5 0.495181 60 0.8829 0.9348 0.9785

0.5 0.495181 65 0.8870 0.9377 0.9820

0.5 0.495181 70 0.8946 0.9389 0.9800

0.5 0.495181 75 0.8905 0.9372 0.9803

0.5 0.495181 80 0.8963 0.9433 0.9826

0.5 0.495181 85 0.8964 0.9446 0.9822

0.5 0.495181 90 0.8916 0.9410 0.9824

0.5 0.495181 95 0.8914 0.9417 0.9833

0.5 0.495181 100 0.8932 0.9415 0.9815

0.7 0.7008931 5 0.7389 0.7590 0.7869

0.7 0.7008931 10 0.9046 0.9348 0.9673

0.7 0.7008931 15 0.9066 0.9424 0.9784

0.7 0.7008931 20 0.9025 0.9408 0.9773

0.7 0.7008931 25 0.8909 0.9341 0.9754

0.7 0.7008931 30 0.8873 0.9332 0.9763

0.7 0.7008931 35 0.8909 0.9351 0.9771

0.7 0.7008931 40 0.8930 0.9384 0.9805

0.7 0.7008931 45 0.8924 0.9400 0.9796

0.7 0.7008931 50 0.8873 0.9362 0.9800

0.7 0.7008931 55 0.8931 0.9366 0.9793

0.7 0.7008931 60 0.8963 0.9376 0.9767

0.7 0.7008931 65 0.8947 0.9400 0.9808

0.7 0.7008931 70 0.8959 0.9423 0.9833

0.7 0.7008931 75 0.8965 0.9419 0.9828

0.7 0.7008931 80 0.8987 0.9446 0.9815

0.7 0.7008931 85 0.8913 0.9412 0.9806

0.7 0.7008931 90 0.8980 0.9416 0.9826

0.7 0.7008931 95 0.8973 0.9437 0.9849

0.7 0.7008931 100 0.8953 0.9423 0.9814

0.9 0.8997493 5 0.7231 0.7296 0.7364

0.9 0.8997493 10 0.9215 0.9345 0.9461

0.9 0.8997493 15 0.9574 0.9727 0.9845

0.9 0.8997493 20 0.9566 0.9742 0.9888

0.9 0.8997493 25 0.9525 0.9754 0.9904

0.9 0.8997493 30 0.9477 0.9690 0.9892

0.9 0.8997493 35 0.9457 0.9703 0.9901

0.9 0.8997493 40 0.9453 0.9721 0.9905

0.9 0.8997493 45 0.9439 0.9696 0.9903

Continued
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94.32%, and 98.56% for samples of sizes 85, 95, and 75, respectively. For ρxy ¼ 0:9 (or

true Rhoxy¼0.8997493) the estimated 90%, 95%, and 99% coverages were 92.15%,

95.88%, and 99.01% for samples of sizes 10, 90, and 35, respectively.

Therefore, for a moderate sample size, the suggested confidence interval estimator

based on the proposed tuned jackknife technique gives approximately the nominal

coverage.

5.3.2 R code

The following R code, PUMPKIN51.R, was used to study the 90%, 95%, and 99%

coverage by newly the tuned estimator of the finite population correlation coefficient

based on dell distance function.

#PROGRAM PUMPKIN51.R

set.seed(2013)

N<-70000

for (rho in seq(.1,.9,0.2)) {

xe<-rnorm(N,0,1); ye<-rnorm(N,0,1)

x<-30 + 20.1*xe

y<-45.5 + 23.5*sqrt((1-rho 2̂))*ye + rho*23.5*xe

XPMEAN<-mean(x);rhoxy<-cor(x,y)

nreps<-10000

ESTP¼rep(0,nreps)

ci1.max¼ci1.min¼ci2.max¼ci2.min¼ci3.max¼ci3.min¼ ESTP

vESTP¼ESTP

for (n in seq(5,100,5))

{

for (r in 1:nreps)

Table 5.1 Continued

ρxy Rhoxy n Cov1 Cov2 Cov3

0.9 0.8997493 50 0.9432 0.9684 0.9893

0.9 0.8997493 55 0.9395 0.9659 0.9886

0.9 0.8997493 60 0.9365 0.9674 0.9917

0.9 0.8997493 65 0.9344 0.9648 0.9903

0.9 0.8997493 70 0.9309 0.9643 0.9903

0.9 0.8997493 75 0.9303 0.9614 0.9878

0.9 0.8997493 80 0.9316 0.9630 0.9888

0.9 0.8997493 85 0.9253 0.9603 0.9883

0.9 0.8997493 90 0.9224 0.9588 0.9895

0.9 0.8997493 95 0.9258 0.9618 0.9891

0.9 0.8997493 100 0.9275 0.9631 0.9898
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{

us<-sample(N,n)

xs<-x[us]; ys<-y[us]

RXY<-cor(xs,ys)

SERXY<-(1-RXY 2̂)/sqrt(n)

c1<-(n-1)/(n-2);c2<-n/((n-1)*(n-2))

sxy<-RXY*sqrt(var(xs)*var(ys))

etan<- c1-(c2/sxy)*(xs - mean(xs))*(ys - mean(ys))

etad1<-c1-(c2/var(xs))*(xs-mean(xs))*(xs - mean(xs))

etad2<-c1-(c2/var(ys))*(ys-mean(ys))*(ys - mean(ys))

etaj<-etan/(sqrt(etad1 * etad2))

rr<-RXY*etaj

xmj<-(sum(xs)-xs)/(n-1)

AETA<-sum(etaj)/n

eta_j<-(sum(etaj) - etaj)/(n-1)

shi1<- xmj - (XPMEAN-n*(2-n)*mean(xs))/((n-1) 2̂)

shi2<- eta_j - (sum(etaj)-1)/(n-1)

del<-sum(shi1 2̂)*sum(shi2 2̂) - (sum(shi1*shi2)) 2̂

al1<-sum(shi1)*sum(shi2 2̂) - sum(shi2)*sum(shi1*shi2)

al2<-sum(shi2)*sum(shi1 2̂) - sum(shi1)*sum(shi1*shi2)

al1<-al1/del;al12<-al2/del

wbni<-1/(n*(1 + al1*shi1 + al2*shi2))

ESTi<- n*rr*wbni

ESTP[r]<- sum(ESTi)

EST_I<- (ESTP[r] - ESTi)/(n-1)

ESTP[r]<-ESTP[r]/n

vj<- (wbni) 2̂*(EST_I - ESTP[r]) 2̂

vESTP[r]<-n 2̂*(c1/c2) 2̂*sum(vj)

ci1.max[r]<- RXY -qt(.05,n-2)*sqrt(vESTP[r])

ci1.min[r]<- RXY +qt(.05,n-2)*sqrt(vESTP[r])

ci2.max[r]<- RXY -qt(.025,n-2)*sqrt(vESTP[r])

ci2.min[r]<- RXY +qt(.025,n-2)*sqrt(vESTP[r])

ci3.max[r]<- RXY -qt(.005,n-2)*sqrt(vESTP[r])

ci3.min[r]<- RXY +qt(.005,n-2)*sqrt(vESTP[r])

}

sum(abs(ESTP) >1)->out

for (r in 1:nreps) if (abs(ESTP[r])>1) {

ci1.max[r]<-NaN;ci1.min[r]<-NaN

ci2.max[r]<-NaN;ci2.min[r]<-NaN

ci3.max[r]<-NaN;ci3.min[r]<-NaN}

round(sum(ci1.min<rhoxy & ci1.max>rhoxy,na.rm¼T)/nreps,4)->cov1

round(sum(ci2.min<rhoxy & ci2.max>rhoxy,na.rm¼T)/nreps,4)->cov2

round(sum(ci3.min<rhoxy & ci3.max>rhoxy,na.rm¼T)/nreps,4)->cov3

cat(rho,rhoxy,n, cov1,cov2,cov3,’\n’)

}

}

Tuned estimators of correlation coefficient 149



5.3.3 Numerical illustration

We explain the main steps in constructing the confidence interval estimate using the

proposed method with the following example.

Example 5.1 Consider a sample of n¼ 10 pumpkins with x and y as circumference

(in.) and weight (lbs) as follows:

x 405 177 196 279 303 345 415 269 253 286

y 7801 710 296 3946 5072 1950 5392 983 4163 2180

Construct the 70% confidence interval estimate of the finite population correlation

coefficient between the weight and circumference of pumpkins by assuming that

the population mean circumference of 295 in. is known.

Solution. One can easily compute the jackknife tuned estimates of the correlation

coefficient and the jackknife weights as follows.

w̄n( j) rTuned( j )

0.09507095 0.7786556

0.09823759 0.7703889

0.09765982 0.7720279

0.10063455 0.7624706

0.10081483 0.7617713

0.10418488 0.7512382

0.09884569 0.7670773

0.10070172 0.7623289

0.10237428 0.7573421

0.10027052 0.7635347

Thus, the tuned estimator of the correlation coefficient is computed as

rTuned ¼ 0:7646836 and SE rTunedð Þ¼ 0:1879029

Hence using jt0:15 df¼ 8ð Þj¼ 1:1081, the required 70% confidence interval estimate of

the correlation coefficient is computed as 0.5564598�0.9729073.

5.3.4 R code used for illustration

The following R code, PUMPKIN51.EX.R, was used to derive the results in the pre-
ceding illustration.

#PROGRAM PUMPKIN51EX.R

n<-10; XPMEAN<-295

xs<-c(405,177,196,279,303,345,415,269,253,286)

ys<-c(7801,710,296,3946,5072,1950,5392,983,4163,2180)
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RXY<-cor(xs,ys)

SERXY<-(1-RXY 2̂)/sqrt(n)

c1<-(n-1)/(n-2);c2<-n/((n-1)*(n-2))

sxy<-RXY*sqrt(var(xs)*var(ys))

etan<- c1-(c2/sxy) *(xs - mean(xs))*(ys - mean(ys))

etad1<-c1-(c2/var(xs)) *(xs - mean(xs))*(xs - mean(xs))

etad2<-c1-(c2/var(ys)) *(ys - mean(ys))*(ys - mean(ys))

etaj<-etan/(sqrt(etad1 * etad2))

r<-RXY*etaj

xmj<-(sum(xs)-xs)/(n-1)

AETA<-sum(etaj)/n

eta_j<-(sum(etaj) - etaj)/(n-1)

shi1<- xmj - (XPMEAN-n*(2-n)*mean(xs))/((n-1) 2̂)

shi2<- eta_j - (sum(etaj)-1)/(n-1)

del<-sum(shi1 2̂)*sum(shi2 2̂) - (sum(shi1*shi2)) 2̂

al1<-sum(shi1)*sum(shi2 2̂) - sum(shi2)*sum(shi1*shi2)

al2<-sum(shi2)*sum(shi1 2̂) - sum(shi1)*sum(shi1*shi2)

al1<-al1/del;al12<-al2/del

wbni<-1/(n*(1 + al1*shi1 + al2*shi2))

ESTi<- n*r*wbni

ESTP<- sum(ESTi)

EST_I<-(ESTP - ESTi)/(n-1)

ESTP<-ESTP/n

vj<- (wbni 2̂)*(EST_I - ESTP) 2̂

vESTP<-n 2̂*(c1/c2) 2̂*sum(vj)

L<-ESTP+qt(.15,n-2)*sqrt(vESTP)

U<-ESTP-qt(.15,n-2)*sqrt(vESTP)

cbind(wbni,EST_I)

cat("Tuned estimate:", ESTP, "SE: ",vESTP .̂5,’\n’)

cat("Confidence Interval:"," ", L,"; ", U,’\n’)

5.4 Exercises

Exercise 5.1 Consider a tuned estimator of the finite population correlation coeffi-

cient ρxy as

rTuned 1ð Þ ¼
X
j2s

�wn jð Þr jð Þ (5.36)

where r( j) denotes the previously defined estimator of the correlation coefficient, and

�wn jð Þ¼ 1�wj

n�1
for j2 s (5.37)
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is a set of tuned jackknife weights for the unit length weights wj, such that the follow-

ing five constraints are satisfied:

X
j2s

�wn jð Þ¼ 1 (5.38)

X
j2s

�wn jð Þ η jð Þ�nη�1

n�1

� �
¼ 0 (5.39)

X
j2s

�wn jð Þ �xn jð Þ�
�X�n 2�nð Þ�xnð Þ

n�1ð Þ2
( )

¼ 0 (5.40)

X
j2s

�wn jð Þ σ̂2x jð Þ�σ2x �n 2�nð Þσ̂2x
n�1ð Þ2

( )
¼ 0 (5.41)

and

X
j2s

�wn jð Þ v�s xð Þ jð Þ�
v�Ω xð Þ �n 2�nð Þv�s xð Þ

n�1ð Þ2
( )

¼ 0 (5.42)

where

η¼ 1

n

Xn
j¼1

ηj, η jð Þ¼ nη�ηj
n�1

ηj ¼
n�1ð Þ
n�2ð Þ�

n xj� �xn
� �

yj� �yn
� �

n�1ð Þ n�2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n�1ð Þ
n�2ð Þ�

n xj� �xn
� �2

n�1ð Þ n�2ð Þ

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n�1ð Þ
n�2ð Þ�

n yj� �yn
� �2

n�1ð Þ n�2ð Þ

s

v�Ω xð Þ ¼
1

N

X
i2Ω

v xið Þ, v�s xð Þ ¼
1

n

X
i2s

v xið Þ, v�s xð Þ jð Þ¼
nv�s xð Þ � v xj

� �
n�1

,

σ2x ¼N�1
X
i2Ω

xi� �Xð Þ2, �X¼N�1
X
i2Ω

xi, σ̂2x ¼ n�1
X
i2Ω

xi� �xnð Þ2,

�xn ¼ n�1
X
i2s

xi, and σ̂2x jð Þ¼ nσ̂2x � xj� �xn
� �2
n�1

Note that we assume that under the known heteroscedastic nature of the linear model,

yi ¼ βxi + ei (5.43)
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the assumptions E eijxið Þ¼ 0, E e2i jxi
� �¼ σ2v xið Þ and E eiejjxixj

� �¼ 0 with v xið Þ> 0 are

satisfied.

Optimize each of the following two distance functions:

D1 ¼ 1

n

X
j2s

ln �wn jð Þð Þ, with 0<wj < 1 (5.44)

and

D2 ¼ 1

n

X
j2s

tanh�1 �wn jð Þf g2�1

�wn jð Þf g2 + 1

 !
with �1<wj < +1 (5.45)

where tanh�1ðÞ is the hyperbolic tangent function, subject to the five tuning con-

straints (5.38)–(5.42). Write code in any scientific language, like R, FORTRAN, or

C, to study these distance functions. Discuss the nature of tuned weights in each sit-

uation. Construct the 90%, 95%, and 99% confidence interval estimates in each sit-

uation by estimating the variance using the method of double jackknifing discussed in

the chapter. Investigate the nominal coverage through simulation. Also, simulate and

discuss the distribution of�2D1 andD2. Show, if possible, under which conditions the

value of the estimator rTuned(1) lies between �1 and +1.

Exercise 5.2 Consider a tuned estimator of the finite population correlation coeffi-

cient ρxy defined by

rTuned 2ð Þ ¼
XX
i6¼j2s

�w i, jð Þr i, jð Þ (5.46)

where r(i, j) denotes the value of the correlation coefficient after dropping partially

two pairs of values (xi,yi) and (xj,yj), and �w i, jð Þ for i, j2 s is a set of jackknife tuned
weights such that the following four constraints are satisfied:

XX
i 6¼j2s

�w i, jð Þ¼ 1 (5.47)

XX
i 6¼j2s

�w i, jð Þ η i, jð Þ�n n�1ð Þη�1

n n�1ð Þ�1

� �
¼ 0 (5.48)

XX
i 6¼j2s

�w i, jð Þ s2x x ið Þ, x jð Þ
� ��S2x �n n�1ð Þ 2�n n�1ð Þð Þs2x

n n�1ð Þ�1ð Þ2
( )

¼ 0 (5.49)

XX
i 6¼j2s

�w i, jð Þ vs xð Þ x ið Þ, x jð Þ
� �� vΩ xð Þ �n n�1ð Þ 2�n n�1ð Þf gvs xð Þ

n n�1ð Þ�1ð Þ2
( )

¼ 0

(5.50)
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where

s2x x ið Þ, x jð Þ
� �¼ n n�1ð Þs2x �0:5 xi� xj

� �2
n n�1ð Þ�1

(5.51)

S2x ¼ 2N N�1ð Þf g�1
X
i 6¼

X
j2Ω

xi� xj
� �2

(5.52)

s2x ¼ 2n n�1ð Þf g�1
X
i 6¼

X
j2s

xi� xj
� �2

(5.53)

and

η i, jð Þ¼ n n�1ð Þη�ηij
n n�1ð Þ�1

with η¼ 1

n n�1ð Þ
X
i 6¼

X
j2s

ηij (5.54)

�w i, jð Þ¼ 1�wij

n n�1ð Þ�1
with

X
i6¼

X
j2s

wij ¼ 1 (5.55)

ηij ¼
1� xi� xj
� �

yi� yj
� �

2n n�1ð Þsxyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� xi� xj

� �2
2n n�1ð Þs2x

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� yi� yj

� �2
2n n�1ð Þs2y

s (5.56)

vs xð Þ x ið Þ, x jð Þ
� �¼ n n�1ð Þvs xð Þ �0:5 v xið Þ+ v xj

� �� �
n n�1ð Þ�1

(5.57)

vs xð Þ ¼ 2n n�1ð Þf g�1
X
i 6¼

X
j2s

v xið Þ+ v xj
� �� �

(5.58)

and

vΩ xð Þ ¼ 2N N�1ð Þf g�1
X
i 6¼

X
j2Ω

v xið Þ+ v xj
� �� �

(5.59)

Assume that for the linear heteroscedastic model,

yi ¼ βxi + ei (5.60)

the following assumptions are satisfied: E eijxið Þ¼ 0, E e2i jxi
� �¼ σ2v xið Þ, v xið Þ> 0, and

E eieijxixj
� �¼ 0.
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Optimize each of the following distance functions:

D11 ¼ 1

n n�1ð Þ
XX
i6¼j2s

ln �w i, jð Þð Þ, 0< �w i, jð Þ< 1 (5.61)

and

D22 ¼ 1

n n�1ð Þ
XX
i6¼j2s

tanh�1 �w i, jð Þf g2�1

�w i, jð Þf g2 + 1

 !
, �1< �w i, jð Þ< +1 (5.62)

where tanh�1ðÞ is the hyperbolic tangent function, subject to the four tuning con-

straints (5.47)–(5.50). Write code in any scientific programming language to study

these distance functions. Discuss the nature of tuned weights in each situation. Con-

struct the 90%, 95%, and 99% confidence interval estimates in each situation by esti-

mating the variance using the method discussed in this chapter by considering doubly

jackknifed estimates of the correlation coefficient. Compare the resulting coverages

with the respective nominal coverages for different sample sizes. Simulate and discuss

the distribution of�2D11 andD22. Show, if possible, under which conditions the value

of the estimator rTuned(2) lies between �1 and +1.

Exercise 5.3 Consider a tuned ratio estimator of the finite population mean �Y as

�yRat 1ð Þ ¼
X
j2s

�wn jð Þ�yR jð Þ (5.63)

where

�yR jð Þ¼ �yn jð Þ
�X

�xn jð Þ (5.64)

denotes the jth ratio estimator of the population mean after dropping the jth value, and

�wn jð Þ¼ 1�wj

n�1
for j2 s (5.65)

is a set of tuned jackknife weights for the unit length weights wj

X
j2s

wj ¼ 1

 !
, such

that the following five constraints are satisfied:

X
j2s

�wn jð Þ¼ 1 (5.66)

X
j2s

�wn jð Þ κ jð Þ�nκ�1

n�1

� �
¼ 0 (5.67)
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X
j2s

�wn jð Þ �xn jð Þ�
�X�n 2�nð Þ�xnð Þ

n�1ð Þ2
( )

¼ 0 (5.68)

X
j2s

�wn jð Þ σ̂2x jð Þ�σ2x �n 2�nð Þσ̂2x
n�1ð Þ2

( )
¼ 0 (5.69)

X
j2s

�wn jð Þ v�s xð Þ jð Þ�
v�Ω xð Þ �n 2�nð Þv�s xð Þ

n�1ð Þ2
( )

¼ 0 (5.70)

where

v�Ω xð Þ ¼
1

N

X
i2Ω

v xið Þ, v�s xð Þ ¼
1

n

X
i2s

v xið Þ, v�s xð Þ jð Þ¼
nv�s xð Þ � v xj

� �
n�1

,

σ2x ¼N�1
X
i2Ω

xi� �Xð Þ2, �X¼N�1
X
i2Ω

xi, σ̂2x ¼ n�1
X
i2Ω

xi� �xnð Þ2,

�xn ¼ n�1
X
i2s

xi, σ̂2x jð Þ¼ nσ̂2x � xj� �xn
� �2
n�1

, κ¼ 1

n

X
j2s

κj, κ jð Þ¼ nκ� κj
n�1

and

κj ¼ 1� yj
n�yn

� �.
1� xj

n�xn

� �

Note that we assume that due to the heteroscedastic nature of the linear model,

yi ¼ βxi + ei (5.71)

the assumptions E eijxið Þ¼ 0, E e2i jxi
� �¼ σ2v xið Þ, and E eiejjxixj

� �¼ 0 with v xið Þ> 0

are satisfied.

Subject to the preceding five tuning constraints, optimize each one of the following

distance functions:

D1 ¼ 2�1n
� �X

j2s
q�1
j 1� n�1ð Þ �wn jð Þ�n�1
� �2

, �1< �wn jð Þ< +1 (5.72)

D2 ¼
X
j2s

�wn jð Þ ln �wn jð Þð Þ½ �, 0< �wn jð Þ< 1= n�1ð Þ (5.73)

D3 ¼ 2
X
j2s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n�1ð Þ�wn jð Þ

p
�

ffiffiffiffiffiffiffi
n�1

p� �2
, 0< �wn jð Þ< 1= n�1ð Þ (5.74)
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D4 ¼
X
j2s

n�1 ln �wn jð Þð Þ
 �
, 0< �wn jð Þ< 1= n�1ð Þ (5.75)

D5 ¼
X
j2s

1� n�1ð Þ�wn jð Þ�n�1ð Þ2
2 1� n�1ð Þ�wn jð Þð Þ , 0< �wn jð Þ< 1= n�1ð Þ (5.76)

D6 ¼ 1

2

X
j2s

tanh�1 �wn jð Þf g2�1

�wn jð Þf g2 + 1

 !
, �1< �wn jð Þ< +1 (5.77)

and

D7 ¼ 1

2

X
j2s

1� n�1ð Þ�wn jð Þ�n�1ð Þ2
qjn�1

+
1

2

X
j2s

φj �wn jð Þf g2
qjn�1 n�1ð Þ�2

, �1< �wn jð Þ< +1

(5.78)

where qj are suitably chosen weights that form different types of estimators, φj is a

penalty as in Farrell and Singh (2002a), and tanh�1ðÞ is the hyperbolic tangent func-
tion as in Singh (2012). Write code in any scientific programming language to study

these distance functions. Discuss the nature of tuned weights in each situation. Con-

struct the 90%, 95%, and 99% confidence interval estimates in each situation by esti-

mating the variance with the method discussed in the chapter, by considering all

possible doubly jackknifed estimators. Simulate and discuss the distribution of

�2D4 and D6.

Exercise 5.4 Consider a tuned estimator of the finite population regression coeffi-

cient β as

β̂Tuned 1ð Þ ¼
X
j2s

�wn jð Þβ̂ jð Þ (5.79)

where β̂ jð Þ denotes the estimator of the regression coefficient after dropping the jth
pair of values (xj,yj) and

�wn jð Þ¼ 1�wj

n�1
for j2 s (5.80)

is a set of tuned jackknife weights for the unit length weights wj

X
j2s

wj ¼ 1

 !
, such

that the following five constraints are satisfied:

X
j2s

�wn jð Þ¼ 1 (5.81)
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X
j2s

�wn jð Þ ζ jð Þ�nζ�1

n�1

� �
¼ 0 (5.82)

X
j2s

�wn jð Þ �xn jð Þ�
�X�n 2�nð Þ�xnð Þ

n�1ð Þ2
( )

¼ 0 (5.83)

X
j2s

�wn jð Þ σ̂2x jð Þ�σ2x �n 2�nð Þσ̂2x
n�1ð Þ2

( )
¼ 0 (5.84)

X
j2s

�wn jð Þ v�s xð Þ jð Þ�
v�Ω xð Þ �n 2�nð Þv�s xð Þ

n�1ð Þ2
( )

¼ 0 (5.85)

where

v�Ω xð Þ ¼
1

N

X
i2Ω

v xið Þ, v�s xð Þ ¼
1

n

X
i2s

v xið Þ,

v�s xð Þ jð Þ¼
nv�s xð Þ � v xj

� �
n�1

, σ2x ¼N�1
X
i2Ω

xi� �Xð Þ2, �X¼N�1
X
i2Ω

xi,

σ̂2x ¼ n�1
X
i2Ω

xi� �xnð Þ2, �xn ¼ n�1
X
i2s

xi, σ̂2x jð Þ¼ nσ̂2x � xj� �xn
� �2
n�1

,

ζ¼ 1

n

X
j2s

ζj, ζj ¼
nζ� ζj
n�1

and ζj ¼
n�1ð Þ
n�2ð Þ�

n xj� �xn
� �

yj� �yn
� �

n�1ð Þ n�2ð Þ
n�1ð Þ
n�2ð Þ�

n xj� �xn
� �2

n�1ð Þ n�2ð Þ

Note that here we assume that we have the known heteroscedastic linear model:

yi ¼ βxi + ei (5.86)

where E eijxið Þ¼ 0, E e2i jxi
� �¼ σ2v xið Þ, and E eiejjxixj

� �¼ 0 with v xið Þ> 0 are

satisfied.

Subject to the preceding five tuning constraints, optimize each of the following dis-

tance functions:

D1 ¼ 2�1n
� �X

j2s
q�1
j 1� n�1ð Þ �wn jð Þ�n�1
� �2

, �1< �wn jð Þ< +1 (5.87)

D2 ¼
X
j2s

�wn jð Þ ln �wn jð Þð Þ½ �, 0< �wn jð Þ< 1= n�1ð Þ (5.88)
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D3 ¼ 2
X
j2s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n�1ð Þ �wn jð Þ

p
�

ffiffiffiffiffiffiffi
n�1

p� �2
, 0< �wn jð Þ< 1= n�1ð Þ (5.89)

D4 ¼
X
j2s

n�1 ln �wn jð Þð Þ
 �
, 0< �wn jð Þ< 1= n�1ð Þ (5.90)

D5 ¼
X
j2s

1� n�1ð Þ�wn jð Þ�n�1ð Þ2
2 1� n�1ð Þ�wn jð Þð Þ , 0< �wn jð Þ< 1= n�1ð Þ (5.91)

D6 ¼ 1

n

X
j2s

tanh�1 �wn jð Þf g2�1

�wn jð Þf g2 + 1

 !
, �1< �wn jð Þ< +1 (5.92)

and

D7 ¼ 1

2

X
j2s

1� n�1ð Þ�wn jð Þ�n�1ð Þ2
qjn�1

+
1

2

X
j2s

φj �wn jð Þf g2
qjn�1 n�1ð Þ�2

, �1< �wn jð Þ<+1

(5.93)

where qj are suitably chosen weights used to form different types of estimators, φj is a

penalty as in Farrell and Singh (2002a), and tanh�1ðÞ is the hyperbolic tangent func-
tion as in Singh (2012).Write code in any scientific programming language, such as R,

to study these distance functions. Discuss the nature of tuned weights in each situation.

Construct the 90%, 95%, and 99% confidence interval estimates in each situation by

estimating the variance using the method earlier discussed in the chapter, considering

all possible doubly jackknifed estimators. Simulate and discuss the distribution of

�2D4 and D6.

Exercise 5.5 Consider a tuned estimator of the finite population regression coeffi-

cient β as

β̂Tuned 2ð Þ ¼
XX
i 6¼j2s

�w i, jð Þβ̂ i, jð Þ (5.94)

where β̂ i, jð Þ denotes the value of the regression coefficient estimates after dropping

two pairs of values (xi,yi) and (xj,yj). The weights �w i, jð Þ for i, j2 s is a set of jackknife
tuned weights such that the following four constraints are satisfied:

XX
i 6¼j2s

�w i, jð Þ¼ 1 (5.95)

XX
i 6¼j2s

�w i, jð Þ η
∗
i, jð Þ�n n�1ð Þη∗ �1

n n�1ð Þ�1

� �
¼ 0 (5.96)
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XX
i6¼j2s

�w i, jð Þ s2x x ið Þ, x jð Þ
� ��S2x �n n�1ð Þ 2�n n�1ð Þð Þs2x

n n�1ð Þ�1ð Þ2
( )

¼ 0 (5.97)

XX
i6¼j2s

�w i, jð Þ vs xð Þ x ið Þ, x jð Þ
� �� vΩ xð Þ �n n�1ð Þ 2�n n�1ð Þf gvs xð Þ

n n�1ð Þ�1ð Þ2
( )

¼ 0

(5.98)
where

η
∗ ¼ 1

n n�1ð Þ
XX
i6¼j2s

η�ij, η
∗
i, jð Þ¼ n n�1ð Þη∗ �η�ij

n n�1ð Þ�1
,

η�ij ¼ 1� xi� xj
� �

yi� yj
� �

2n n�1ð Þsxy

� �.
1� xi� xj

� �2
2n n�1ð Þs2x

( )
,

�w i, jð Þ¼ 1�wij

n n�1ð Þ�1
with

XX
i 6¼j2s

wij ¼ 1,

vs xð Þ x ið Þ, x jð Þ
� �¼ n n�1ð Þvs xð Þ �0:5 v xið Þ+ v xj

� �� �
n n�1ð Þ�1

,

vs xð Þ ¼

XX
i6¼j2s

v xið Þ+ v xj
� �� �

2n n�1ð Þ , and vΩ xð Þ ¼

XX
i 6¼j2Ω

v xið Þ+ v xj
� �� �

2N N�1ð Þ
Assume that for the linear heteroscedastic model

yi ¼ βxi + ei (5.99)

the following assumptions are satisfied: E eijxið Þ¼ 0, E e2i jxi
� �¼ σ2v xið Þ, v xið Þ> 0, and

E eieijxixj
� �¼ 0

Subject to the preceding four tuning constraints, optimize each of the following

distance functions:

D11 ¼ 1

2

XX
i 6¼j2s

1� n n�1ð Þ�1ð Þ�w i, jð Þ�1=n n�1ð Þf Þg2
qij= n n�1ð Þð Þ (5.100)

D22 ¼ 1

2

XX
i6¼j2s

ffiffiffiffiffiffiffiffiffiffiffiffi
�w i, jð Þ

p
�1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n n�1ð Þ

p� �2
, �w i, jð Þ> 0 (5.101)

and

D33 ¼
XX
i 6¼j2s

f1� n n�1ð Þ�1Þ�w i, jð Þ�1= n n�1ð Þð Þð g2
2qij= n n�1ð Þð Þ

+
XX
i 6¼j2s

φij �w i, jð Þf g2n n�1ð Þ
2qij n n�1ð Þ�1f g�2

(5.102)
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where qij are the suitably chosen weights that form different types of estimators, and

φij is a penalty,

D44 ¼ 1

n n�1ð Þ
XX
i6¼j2s

�w i, jð Þ ln �w i, jð Þð Þ½ �, 0< �w i, jð Þ< 1= n n�1ð Þ�1ð Þ

(5.103)

D55 ¼ 1

n n�1ð Þ
XX
i6¼j2s

ln �w i, jð Þð Þ, 0< �w i, jð Þ< 1= n n�1ð Þ�1ð Þ (5.104)

and

D66 ¼ 1

n n�1ð Þ
XX
i 6¼j2s

tanh�1 �w i, jð Þf g2�1

�w i, jð Þf g2 + 1

 !
(5.105)

where tanh�1ðÞ is the hyperbolic tangent function.

Write code in any scientific computer language to study these distance functions.

Discuss the nature of tuned weights in each situation. Construct the 90%, 95%, and

99% confidence interval estimates in each situation by estimating the variance using

the method discussed in this chapter, considering all possible doubly jackknifed esti-

mates of the regression coefficient. Simulate the distribution of �2D55 and D66.

Exercise 5.6 Consider a tuned estimator of the finite population variance Sy
2 as

σ̂2Tuned 2ð Þ ¼
XX
i 6¼j2s

�w i, jð Þ s2y yi, yj
� � S2x

s2x xi, xj
� �

" #
(5.106)

where sy
2(yi,yj) and sx

2(xi,xj) denote the values of the estimators of the finite population

variance of the study and auxiliary variables, respectively, after dropping two pairs of

values (yi,yj) and (xi,xj), and �w i, jð Þ for i, j2 s is a set of jackknifed tuned weights such
that the following four constraints are satisfied:

XX
i 6¼j2s

�w i, jð Þ¼ 1 (5.107)

XX
i 6¼j2s

�w i, jð Þ δ i, jð Þ�n n�1ð Þδ�1

n n�1ð Þ�1

� �
¼ 0 (5.108)

XX
i 6¼j2s

�w i, jð Þ s2x x ið Þ, x jð Þ
� ��S2x �n n�1ð Þ 2�n n�1ð Þð Þs2x

n n�1ð Þ�1ð Þ2
( )

¼ 0 (5.109)
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XX
i6¼j2s

�w i, jð Þ vs xð Þ x ið Þ, x jð Þ
� �� vΩ xð Þ �n n�1ð Þ 2�n n�1ð Þf gvs xð Þ

n n�1ð Þ�1ð Þ2
( )

¼ 0

(5.110)

where

δ¼ 1

n n�1ð Þ
XX
i 6¼j2s

δij, δ i, jð Þ¼ n n�1ð Þδ�δij
n n�1ð Þ�1

,

δij ¼ 1� yi� yj
� �2
2n n�1ð Þs2y

( ),
1� xi� xj

� �2
2n n�1ð Þs2x

( )
,

�w i, jð Þ¼ 1�wij

n n�1ð Þ�1
with

XX
i6¼j2s

wij ¼ 1,

vs xð Þ x ið Þ, x jð Þ
� �¼ n n�1ð Þvs xð Þ �0:5 v xið Þ+ v xj

� �� �
n n�1ð Þ�1

,

vs xð Þ ¼ 2n n�1ð Þf g�1
X
i 6¼

X
j2s

v xið Þ+ v xj
� �� �

and

vΩ xð Þ ¼ 2N N�1ð Þf g�1
XX
i 6¼j2s

v xið Þ+ v xj
� �� �

Assume that for the linear heteroscedastic model,

yi ¼ βxi + ei (5.111)

the following assumptions are satisfied: Em eijxið Þ¼ 0, Em e2i jxi
� �¼ σ2v xið Þ, v xið Þ> 0,

and Em eieijxixj
� �¼ 0.

Subject to the preceding four tuning constraints, optimize each of the following

distance functions:

D11 ¼ 1

2

XX
i 6¼j2s

1� n n�1ð Þ�1ð Þ�w i, jð Þ�1=n n�1ð Þf Þg2
qij= n n�1ð Þð Þ (5.112)

D22 ¼ 1

2

XX
i6¼j2s

ffiffiffiffiffiffiffiffiffiffiffiffi
�w i, jð Þ

p
�1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n n�1ð Þ

p� �2
, �w i, jð Þ> 0 (5.113)

and

D33 ¼
X
i6¼

X
j2s

f1� n n�1ð Þ�1�w i, jð Þ�1= n n�1ð Þð Þð g2
2qij= n n�1ð Þð Þ

+
X
i 6¼

X
j2s

φij �w i, jð Þf g2n n�1ð Þ
2qij n n�1ð Þ�1f g�2

(5.114)

where qij are the suitably chosen weights that form different types of estimators, and

φij is a penalty,
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D44 ¼ 1

n n�1ð Þ
XX
i6¼j2s

�w i, jð Þ ln �w i, jð Þð Þ½ �, 0< �w i, jð Þ< 1= n n�1ð Þ�1ð Þ

(5.115)

D55 ¼ 1

n n�1ð Þ
XX
i6¼j2s

ln �w i, jð Þð Þ, 0< �w i, jð Þ< 1= n n�1ð Þ�1ð Þ (5.116)

and

D66 ¼ 1

n n�1ð Þ
XX
i 6¼j2s

tanh�1 �w i, jð Þf g2�1

�w i, jð Þf g2 + 1

 !
(5.117)

where tanh�1ðÞ is the hyperbolic tangent function. Write code in any scientific lan-

guage, such as R, to study the resultant estimators from these distance functions. Dis-

cuss the nature of the tuned weights in each situation. Construct the 90%, 95%, and

99% confidence interval estimates in each situation by estimating the variance with

the method discussed in the chapter, considering all possible doubly jackknifed esti-

mates of the regression coefficient. Simulate and discuss the distributions of �2D55

and D66.

Exercise 5.7 A student of medicine studies the statement made by a team of doctors

about the negative relationship between age (years) and duration of sleep (minutes),

and from a simple random and with replacement sample six patients obtained the fol-

lowing data:

Age (x) 78 74 87 72 72 66

Duration of sleep (y) 345 381 270 345 364 480

Apply the newly tuned method of estimating to estimate the correlation coefficient ρxy
between age and duration of sleep. Also apply it to construct the 75% confidence inter-

val for the correlation coefficient by assuming that the average age in the population is

76 years. Comment on your findings.
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6Tuning of multicharacter

survey estimators

6.1 Introduction

In this chapter, we discuss the tuning of multicharacter survey estimators when the

sample is selected using a probability proportional to size and with replacement

(PPSWR) sampling, where the selection probabilities have low positive correlation

with the study variables. The role of two auxiliary variables, one at the selection stage

and another at the estimation stage, is discussed. Unsolved exercises are also provided

at the end of the chapter.

6.2 Transformation on selection probabilities

Consider a population Ω consisting of N units. Let zi, i¼ 1,2,…,N be the value of the

ith unit of an auxiliary variable associated with a study variable. Consider a sample s
of n units that is selected using a PPSWR scheme.

In short, let

pi ¼ zi
Z
, i¼ 1,2,…,N (6.1)

where Z¼
X
i2Ω

zi is known, be the probability of selecting the ith unit in the sample.

Note then that

X
i2Ω

pi ¼ 1 (6.2)

Let ρyz be the known value of the correlation coefficient between the study variable(s)
and the auxiliary variable zi. Let us make clear that in a multicharacter survey, there

are several study variables and one auxiliary variable, which is used at the selection

stage of the sample. For those study variables that have high correlation with the

auxiliary variable, one can use the well-known Hansen and Hurwitz (1943) estimator

of population total for PPSWR sampling. For those study variables that have low

correlation with the auxiliary variable used at the selection stage, Bansal and Singh

(1985) suggested the following transformation on the selection probabilities pi as

p�i ¼ 1 +
1

N

� � 1�ρyzð Þ
1 + pið Þ ρyzð Þ �1 (6.3)
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Note that if the value of the correlation coefficient ρyz ¼ 0 then p�i ¼ 1=N, which leads

to the claim due to Rao (1966), and if ρyz ¼ 1 then p�i ¼ pi, which leads to the claim of

Hansen and Hurwitz (1943). Thus, the transformation p�i in Equation (6.3) is a kind of
compromise between the Rao (1966) and Hansen and Hurwitz (1943) methods.

6.3 Tuning with a chi-square distance function

The newly tuned jackknife estimator of the population total Y in multicharacter sur-

veys is defined as

ŶMTuned csð Þ ¼
X
j2s

n�1ð Þ2 �wn jð Þ� n�2ð Þ
n o

ŶM jð Þ
h i

(6.4)

where

ŶM jð Þ¼

Xn
i¼1

yi
p�i

� yj
p�j

n�1
(6.5)

is the estimator of the population total obtained by removing the jth unit from the sam-

ple s, and �wn jð Þ is the jth jackknife tuned weight constructed so that the following two
constraints are satisfied:X

j2s
�wn jð Þ¼ 1 (6.6)

X
j2s

�wn jð ÞX̂M jð Þ¼ X�n 2�nð ÞX̂M

� �
n�1ð Þ2 (6.7)

where

X̂M jð Þ¼ nX̂M� xj=p
�
j

n�1
(6.8)

and

X̂M ¼ 1

n

X
i2s

xi
p�i

(6.9)

is an estimator of the population total X of the second auxiliary variable, which we use

at the estimation stage. We suggest tuning the weights �wn jð Þ so that the modified

chi-square type distance function, defined as

2�1n
� �X

j2s
q�1
j 1� n�1ð Þ�wn jð Þ�n�1
� �2

(6.10)
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is optimum subject to the tuning constraints (6.6) and (6.7), where qj is a choice of

weights.

The Lagrange function becomes

L1 ¼ 2�1n
� �X

j2s
q�1
j 1� n�1ð Þ�wn jð Þ�n�1
� �2� λ0

X
j2s

�wn jð Þ�1

( )

�λ1
X
j2s

�wn jð ÞX̂M jð Þ� X�n 2�nð ÞX̂M

� �
n�1ð Þ2

( ) (6.11)

where λ0 and λ1 are Lagrange multipliers constants.

Note that

n n�1ð Þ2 X�n 2�nð ÞX̂M

n�1ð Þ2 �1

n

X
j2s

X̂M jð Þ
( )

¼ n X� X̂M

� �
(6.12)

On setting

@L1
@ �wn jð Þ¼ 0

we have

�wn jð Þ¼ 1

n
1 + λ0

qj

n�1ð Þ2 + λ1
qj

n�1ð Þ2 X̂M jð Þ
" #

(6.13)

On using Equation (6.13) in Equations (6.6) and (6.7), one is led to the following set of

normal equations that give the optimum values of λ0 and λ1:

X
j2s

qj,
X
j2s

qjX̂M jð Þ

X
j2s

qjX̂M jð Þ,
X
j2s

qj X̂M jð Þ� �2
2
6664

3
7775 λ0

λ1

" #
¼ 0

n X� X̂M

� �
" #

(6.14)

The tuned jackknife weights �wn jð Þ are then given by

�wn jð Þ¼ 1

n
+

Δj

n�1ð Þ2 X� X̂M

� �
(6.15)
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where

Δj ¼

X
j2s

qj

 !
qjX̂M jð Þ�qj

X
j2s

qjX̂M jð Þ
 !

X
j2s

qj

 ! X
j2s

qj X̂M jð Þ� �2( )
�

X
j2s

qjX̂M jð Þ
( )2

: (6.16)

Thus, under the chi-square (cs) type distance function, the newly tuned estimator (6.4)

of the population total Y for multicharacter surveys becomes

ŶMTuned csð Þ ¼ ŶM + β̂MTuned X� X̂M

� �
(6.17)

where

β̂MTuned ¼

X
j2s

qj

 ! X
j2s

qjX̂M jð ÞŶM jð Þ
 !

�
X
j2s

qjX̂M jð Þ
 ! X

j2s
qjŶM jð Þ

 !

X
j2s

qj

 ! X
j2s

qj X̂M jð Þ� �2 !
�

X
j2s

qjX̂M jð Þ
 !2

is the tuned estimator of the regression coefficient.

6.3.1 Estimation of variance and coverage

An adjusted estimator, to estimate the variance of the multicharacter survey estimator,

ŶMTuned csð Þ, is

v̂ ŶMTuned csð Þ
� �¼ n n�1ð Þ3

X
j2s

�wn jð Þð Þ2p�j ŶMTuned csð Þ jð Þ � ŶMTuned csð Þ
� �2

(6.18)

Note that in Equation (6.18), instead of using p�i one might investigate the possibility

of using

�p
�

jð Þ¼ n�p
∗ �p�j
n�1

(6.19)

where

�p
� ¼ 1

n

Xn
j¼1

p�j
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This has been left as an exercise.

Note that each newly tuned multicharacter doubly jackknifed estimator of the pop-

ulation total Y is given by

ŶMTuned csð Þ jð Þ ¼
nŶMTuned csð Þ �n n�1ð Þ2 �wn jð Þ� n�2ð Þ

n o
ŶM jð Þ

n�1
(6.20)

for j¼ 1,2,…,n.
The coverage by the 1�αð Þ100% confidence interval estimates obtained using this

newly tuned multicharacter jackknife estimator of the population total, and an esti-

mate of its variance, is obtained by counting the number of times the true population

total Y falls within the interval estimate given by

ŶMTuned csð Þ+tα=2 df¼ n�1ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v̂ ŶMTuned csð Þ
� �q

(6.21)

Note the use of degree of freedom df¼ n�1 by assuming that only one parameter,

that is, population total, is being estimated. We studied coverage by the nominally

90%, 95%, and 99% intervals based on the estimator. We investigated the situation

with two auxiliary variables X, Z that are independent, but are each correlated with

the study variable Y. We generated three random variables y�i �N 0, 1ð Þ,
x�i �N 0, 1ð Þ, and z�i �N 0, 1ð Þ for i¼ 1,2,…,N from three independent standard nor-

mal variables using the IMSL subroutine RNNOR. For four different values of the

correlation coefficient ρxy and nine different values of the correlation coefficient

ρyz, we generated populations with three variables Y, X, and Z taking values yi, xi,
and zi for the ith unit in the population as

yi ¼ Y + σyy
�
i (6.22)

xi ¼X + σx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ρ2xy

	 
r
x�i + ρxyσxy

�
i (6.23)

and

zi ¼ Z + σz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ρ2yz

	 
r
z�i + ρyzσzy

�
i (6.24)

In this study, we fixed X ¼ 2325, Y ¼ 2454, Z ¼ 322, σx ¼ 232, σy ¼ 245, and σz ¼ 52.

Note that we used the variable X at the estimation stage and assumed it has correlations

0.3, 0.5, 0.7, and 0.9 with the study variable Y to see the effect of low as well as high

values of the correlation coefficient. In the same way, we used the variable Z at the

selection stage of sampling, and this variable is expected to have low correlation with

the study variable, Y (e.g., 0.0, 0.1); however, we considered ten values of ρyz simply to

investigate its effect on the study. The choice of the values of these correlation
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coefficients has two aims. The first is to save space, and the second is to study the

effect of high and low values of the correlation coefficients.

We formed populations of size N¼ 2000 units for each one of the 40 combinations

of ρxy and ρyz, and for each sample size of 4, 6, 8, 10, 12, and 14, we selected 10,000

samples of that size and formed the three confidence intervals. All samples are

selected by using the Lahiri (1951) method of selecting a sample using PPSWR

sampling. Coverage was estimated by the proportion of times the 10,000 intervals

contained the population total. Results are shown in Table 6.1.

Table 6.1 Performance of the newly tuned multicharacter estimator

ρxy RHOXY ρyz RHOYZ n 90% 95% 99%

0.3 0.2978796 0.0 0.0051677 4 0.8220 0.8669 0.9297

0.3 0.2978796 0.0 0.0051677 6 0.8958 0.9171 0.9496

0.3 0.2978796 0.0 0.0051677 8 0.9295 0.9435 0.9615

0.3 0.2978796 0.0 0.0051677 10 0.9528 0.9623 0.9746

0.3 0.2978796 0.0 0.0051677 12 0.9608 0.9689 0.9774

0.3 0.2978796 0.0 0.0051677 14 0.9658 0.9719 0.9808

0.3 0.2898565 0.1 0.0912027 4 0.8347 0.8769 0.9316

0.3 0.2898565 0.1 0.0912027 6 0.8982 0.9194 0.9487

0.3 0.2898565 0.1 0.0912027 8 0.9294 0.9423 0.9609

0.3 0.2898565 0.1 0.0912027 10 0.9513 0.9601 0.9733

0.3 0.2898565 0.1 0.0912027 12 0.9660 0.9725 0.9809

0.3 0.2898565 0.1 0.0912027 14 0.9720 0.9772 0.9837

0.3 0.2893902 0.2 0.1542838 4 0.8282 0.8692 0.9268

0.3 0.2893902 0.2 0.1542838 6 0.9039 0.9238 0.9536

0.3 0.2893902 0.2 0.1542838 8 0.9337 0.9483 0.9656

0.3 0.2893902 0.2 0.1542838 10 0.9508 0.9606 0.9747

0.3 0.2893902 0.2 0.1542838 12 0.9641 0.9709 0.9792

0.3 0.2893902 0.2 0.1542838 14 0.9698 0.9759 0.9836

0.3 0.2814688 0.3 0.3024993 4 0.8255 0.8705 0.9296

0.3 0.2814688 0.3 0.3024993 6 0.9000 0.9212 0.9497

0.3 0.2814688 0.3 0.3024993 8 0.9328 0.9462 0.9628

0.3 0.2814688 0.3 0.3024993 10 0.9502 0.9582 0.9707

0.3 0.2814688 0.3 0.3024993 12 0.9601 0.9656 0.9756

0.3 0.2814688 0.3 0.3024993 14 0.9701 0.9742 0.9812

0.3 0.2800336 0.4 0.4206022 4 0.8406 0.8816 0.9332

0.3 0.2800336 0.4 0.4206022 6 0.9032 0.9207 0.9514

0.3 0.2800336 0.4 0.4206022 8 0.9327 0.9453 0.9627

0.3 0.2800336 0.4 0.4206022 10 0.9514 0.9620 0.9723

0.3 0.2800336 0.4 0.4206022 12 0.9653 0.9716 0.9786

0.3 0.2800336 0.4 0.4206022 14 0.9740 0.9794 0.9852

0.3 0.2511401 0.5 0.5078852 4 0.8409 0.8833 0.9366

0.3 0.2511401 0.5 0.5078852 6 0.9059 0.9258 0.9529

0.3 0.2511401 0.5 0.5078852 8 0.9380 0.9511 0.9661

0.3 0.2511401 0.5 0.5078852 10 0.9565 0.9657 0.9761

Continued
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Table 6.1 Continued

ρxy RHOXY ρyz RHOYZ n 90% 95% 99%

0.3 0.2511401 0.5 0.5078852 12 0.9691 0.9743 0.9822

0.3 0.2511401 0.5 0.5078852 14 0.9774 0.9823 0.9878

0.3 0.3262503 0.6 0.5984581 4 0.8641 0.8993 0.9447

0.3 0.3262503 0.6 0.5984581 6 0.9155 0.9329 0.9575

0.3 0.3262503 0.6 0.5984581 8 0.9416 0.9529 0.9688

0.3 0.3262503 0.6 0.5984581 10 0.9577 0.9662 0.9756

0.3 0.3262503 0.6 0.5984581 12 0.9684 0.9745 0.9819

0.3 0.3262503 0.6 0.5984581 14 0.9736 0.9788 0.9850

0.3 0.3237574 0.7 0.6893118 4 0.8701 0.9031 0.9488

0.3 0.3237574 0.7 0.6893118 6 0.9234 0.9393 0.9607

0.3 0.3237574 0.7 0.6893118 8 0.9504 0.9612 0.9742

0.3 0.3237574 0.7 0.6893118 10 0.9657 0.9720 0.9797

0.3 0.3237574 0.7 0.6893118 12 0.9718 0.9767 0.9832

0.3 0.3237574 0.7 0.6893118 14 0.9772 0.9816 0.9879

0.3 0.3234880 0.8 0.8049675 4 0.8863 0.9155 0.9554

0.3 0.3234880 0.8 0.8049675 6 0.9268 0.9428 0.9637

0.3 0.3234880 0.8 0.8049675 8 0.9536 0.9640 0.9768

0.3 0.3234880 0.8 0.8049675 10 0.9623 0.9693 0.9796

0.3 0.3234880 0.8 0.8049675 12 0.9736 0.9801 0.9865

0.3 0.3234880 0.8 0.8049675 14 0.9772 0.9816 0.9867

0.3 0.3039484 0.9 0.8964122 4 0.9016 0.9261 0.9605

0.3 0.3039484 0.9 0.8964122 6 0.9445 0.9557 0.9715

0.3 0.3039484 0.9 0.8964122 8 0.9604 0.9665 0.9775

0.3 0.3039484 0.9 0.8964122 10 0.9714 0.9759 0.9831

0.3 0.3039484 0.9 0.8964122 12 0.9792 0.9830 0.9879

0.3 0.3039484 0.9 0.8964122 14 0.9843 0.9875 0.9918

0.5 0.4833906 0.0 0.0026272 4 0.8391 0.8817 0.9339

0.5 0.4833906 0.0 0.0026272 6 0.9045 0.9254 0.9540

0.5 0.4833906 0.0 0.0026272 8 0.9354 0.9478 0.9656

0.5 0.4833906 0.0 0.0026272 10 0.9515 0.9592 0.9709

0.5 0.4833906 0.0 0.0026272 12 0.9638 0.9713 0.9782

0.5 0.4833906 0.0 0.0026272 14 0.9734 0.9788 0.9857

0.5 0.5064535 0.1 0.0992117 4 0.8475 0.8890 0.9408

0.5 0.5064535 0.1 0.0992117 6 0.9093 0.9271 0.9514

0.5 0.5064535 0.1 0.0992117 8 0.9361 0.9478 0.9633

0.5 0.5064535 0.1 0.0992117 10 0.9537 0.9621 0.9735

0.5 0.5064535 0.1 0.0992117 12 0.9662 0.9741 0.9813

0.5 0.5064535 0.1 0.0992117 14 0.9724 0.9767 0.9834

0.5 0.5167572 0.2 0.1951615 4 0.8454 0.8869 0.9391

0.5 0.5167572 0.2 0.1951615 6 0.9069 0.9263 0.9529

0.5 0.5167572 0.2 0.1951615 8 0.9381 0.9509 0.9682

0.5 0.5167572 0.2 0.1951615 10 0.9597 0.9682 0.9793

0.5 0.5167572 0.2 0.1951615 12 0.9650 0.9721 0.9802

0.5 0.5167572 0.2 0.1951615 14 0.9730 0.9769 0.9833

0.5 0.5171975 0.3 0.3007205 4 0.8524 0.8899 0.9395
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Table 6.1 Continued

ρxy RHOXY ρyz RHOYZ n 90% 95% 99%

0.5 0.5171975 0.3 0.3007205 6 0.9097 0.9284 0.9529

0.5 0.5171975 0.3 0.3007205 8 0.9383 0.9513 0.9685

0.5 0.5171975 0.3 0.3007205 10 0.9574 0.9670 0.9773

0.5 0.5171975 0.3 0.3007205 12 0.9704 0.9753 0.9821

0.5 0.5171975 0.3 0.3007205 14 0.9733 0.9778 0.9847

0.5 0.5010488 0.4 0.4293076 4 0.8489 0.8863 0.9376

0.5 0.5010488 0.4 0.4293076 6 0.9124 0.9319 0.9580

0.5 0.5010488 0.4 0.4293076 8 0.9436 0.9544 0.9694

0.5 0.5010488 0.4 0.4293076 10 0.9565 0.9655 0.9760

0.5 0.5010488 0.4 0.4293076 12 0.9678 0.9737 0.9820

0.5 0.5010488 0.4 0.4293076 14 0.9748 0.9803 0.9858

0.5 0.5044690 0.5 0.5025602 4 0.8611 0.8997 0.9428

0.5 0.5044690 0.5 0.5025602 6 0.9211 0.9385 0.9600

0.5 0.5044690 0.5 0.5025602 8 0.9428 0.9538 0.9692

0.5 0.5044690 0.5 0.5025602 10 0.9599 0.9681 0.9777

0.5 0.5044690 0.5 0.5025602 12 0.9701 0.9759 0.9828

0.5 0.5044690 0.5 0.5025602 14 0.9769 0.9814 0.9860

0.5 0.4796009 0.6 0.6105799 4 0.8714 0.9035 0.9474

0.5 0.4796009 0.6 0.6105799 6 0.9217 0.9382 0.9607

0.5 0.4796009 0.6 0.6105799 8 0.9504 0.9597 0.9732

0.5 0.4796009 0.6 0.6105799 10 0.9654 0.9714 0.9800

0.5 0.4796009 0.6 0.6105799 12 0.9718 0.9768 0.9823

0.5 0.4796009 0.6 0.6105799 14 0.9782 0.9820 0.9870

0.5 0.4774821 0.7 0.6929410 4 0.8706 0.9064 0.9494

0.5 0.4774821 0.7 0.6929410 6 0.9271 0.9436 0.9652

0.5 0.4774821 0.7 0.6929410 8 0.9533 0.9629 0.9742

0.5 0.4774821 0.7 0.6929410 10 0.9648 0.9720 0.9806

0.5 0.4774821 0.7 0.6929410 12 0.9715 0.9774 0.9841

0.5 0.4774821 0.7 0.6929410 14 0.9778 0.9823 0.9865

0.5 0.4933499 0.8 0.8119242 4 0.8846 0.9178 0.9556

0.5 0.4933499 0.8 0.8119242 6 0.9276 0.9438 0.9647

0.5 0.4933499 0.8 0.8119242 8 0.9594 0.9676 0.9778

0.5 0.4933499 0.8 0.8119242 10 0.9706 0.9752 0.9817

0.5 0.4933499 0.8 0.8119242 12 0.9767 0.9811 0.9866

0.5 0.4933499 0.8 0.8119242 14 0.9822 0.9856 0.9893

0.5 0.5033757 0.9 0.9006591 4 0.9092 0.9332 0.9634

0.5 0.5033757 0.9 0.9006591 6 0.9452 0.9588 0.9728

0.5 0.5033757 0.9 0.9006591 8 0.9616 0.9698 0.9792

0.5 0.5033757 0.9 0.9006591 10 0.9694 0.9749 0.9824

0.5 0.5033757 0.9 0.9006591 12 0.9802 0.9841 0.9891

0.5 0.5033757 0.9 0.9006591 14 0.9834 0.9868 0.9899

0.7 0.7068314 0.0 �0.0153304 4 0.8739 0.9088 0.9517

0.7 0.7068314 0.0 �0.0153304 6 0.9224 0.9401 0.9612

0.7 0.7068314 0.0 �0.0153304 8 0.9469 0.9589 0.9733

0.7 0.7068314 0.0 �0.0153304 10 0.9591 0.9674 0.9774
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Table 6.1 Continued

ρxy RHOXY ρyz RHOYZ n 90% 95% 99%

0.7 0.7068314 0.0 �0.0153304 12 0.9744 0.9787 0.9847

0.7 0.7068314 0.0 �0.0153304 14 0.9748 0.9800 0.9863

0.7 0.7037323 0.1 0.0930306 4 0.8697 0.9028 0.9446

0.7 0.7037323 0.1 0.0930306 6 0.9242 0.9412 0.9625

0.7 0.7037323 0.1 0.0930306 8 0.9538 0.9644 0.9746

0.7 0.7037323 0.1 0.0930306 10 0.9619 0.9701 0.9786

0.7 0.7037323 0.1 0.0930306 12 0.9710 0.9772 0.9839

0.7 0.7037323 0.1 0.0930306 14 0.9765 0.9806 0.9869

0.7 0.7091130 0.2 0.2079550 4 0.8678 0.9006 0.9464

0.7 0.7091130 0.2 0.2079550 6 0.9233 0.9385 0.9630

0.7 0.7091130 0.2 0.2079550 8 0.9481 0.9589 0.9732

0.7 0.7091130 0.2 0.2079550 10 0.9619 0.9685 0.9783

0.7 0.7091130 0.2 0.2079550 12 0.9712 0.9761 0.9861

0.7 0.7091130 0.2 0.2079550 14 0.9773 0.9817 0.9868

0.7 0.7228749 0.3 0.2823218 4 0.8776 0.9091 0.9504

0.7 0.7228749 0.3 0.2823218 6 0.9302 0.9460 0.9667

0.7 0.7228749 0.3 0.2823218 8 0.9541 0.9638 0.9754

0.7 0.7228749 0.3 0.2823218 10 0.9644 0.9714 0.9807

0.7 0.7228749 0.3 0.2823218 12 0.9729 0.9785 0.9840

0.7 0.7228749 0.3 0.2823218 14 0.9790 0.9829 0.9873

0.7 0.7043535 0.4 0.4168755 4 0.8753 0.9077 0.9494

0.7 0.7043535 0.4 0.4168755 6 0.9243 0.9402 0.9615

0.7 0.7043535 0.4 0.4168755 8 0.9481 0.9587 0.9717

0.7 0.7043535 0.4 0.4168755 10 0.9649 0.9717 0.9801

0.7 0.7043535 0.4 0.4168755 12 0.9713 0.9769 0.9831

0.7 0.7043535 0.4 0.4168755 14 0.9751 0.9792 0.9843

0.7 0.6969780 0.5 0.5394821 4 0.8877 0.9168 0.9553

0.7 0.6969780 0.5 0.5394821 6 0.9327 0.9460 0.9645

0.7 0.6969780 0.5 0.5394821 8 0.9489 0.9598 0.9733

0.7 0.6969780 0.5 0.5394821 10 0.9623 0.9701 0.9785

0.7 0.6969780 0.5 0.5394821 12 0.9709 0.9766 0.9836

0.7 0.6969780 0.5 0.5394821 14 0.9789 0.9827 0.9875

0.7 0.7091886 0.6 0.5960213 4 0.8856 0.9132 0.9525

0.7 0.7091886 0.6 0.5960213 6 0.9360 0.9495 0.9683

0.7 0.7091886 0.6 0.5960213 8 0.9549 0.9653 0.9774

0.7 0.7091886 0.6 0.5960213 10 0.9701 0.9748 0.9835

0.7 0.7091886 0.6 0.5960213 12 0.9744 0.9796 0.9850

0.7 0.7091886 0.6 0.5960213 14 0.9768 0.9810 0.9867

0.7 0.7066548 0.7 0.7085645 4 0.8921 0.9205 0.9572

0.7 0.7066548 0.7 0.7085645 6 0.9361 0.9513 0.9692

0.7 0.7066548 0.7 0.7085645 8 0.9581 0.9658 0.9770

0.7 0.7066548 0.7 0.7085645 10 0.9712 0.9767 0.9839

0.7 0.7066548 0.7 0.7085645 12 0.9770 0.9822 0.9875

0.7 0.7066548 0.7 0.7085645 14 0.9819 0.9847 0.9893

0.7 0.6880201 0.8 0.8009049 4 0.9008 0.9262 0.9612
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Table 6.1 Continued

ρxy RHOXY ρyz RHOYZ n 90% 95% 99%

0.7 0.6880201 0.8 0.8009049 6 0.9399 0.9524 0.9701

0.7 0.6880201 0.8 0.8009049 8 0.9573 0.9648 0.9767

0.7 0.6880201 0.8 0.8009049 10 0.9686 0.9743 0.9827

0.7 0.6880201 0.8 0.8009049 12 0.9750 0.9804 0.9860

0.7 0.6880201 0.8 0.8009049 14 0.9806 0.9832 0.9871

0.7 0.6878207 0.9 0.8979229 4 0.9060 0.9275 0.9622

0.7 0.6878207 0.9 0.8979229 6 0.9506 0.9612 0.9774

0.7 0.6878207 0.9 0.8979229 8 0.9674 0.9746 0.9823

0.7 0.6878207 0.9 0.8979229 10 0.9743 0.9787 0.9843

0.7 0.6878207 0.9 0.8979229 12 0.9804 0.9829 0.9881

0.7 0.6878207 0.9 0.8979229 14 0.9826 0.9861 0.9900

0.9 0.8976998 0.0 0.0042819 4 0.9196 0.9386 0.9672

0.9 0.8976998 0.0 0.0042819 6 0.9494 0.9611 0.9756

0.9 0.8976998 0.0 0.0042819 8 0.9668 0.9737 0.9820

0.9 0.8976998 0.0 0.0042819 10 0.9784 0.9825 0.9883

0.9 0.8976998 0.0 0.0042819 12 0.9843 0.9868 0.9908

0.9 0.8976998 0.0 0.0042819 14 0.9866 0.9887 0.9921

0.9 0.8999227 0.1 0.1200173 4 0.9163 0.9381 0.9679

0.9 0.8999227 0.1 0.1200173 6 0.9535 0.9633 0.9759

0.9 0.8999227 0.1 0.1200173 8 0.9663 0.9731 0.9818

0.9 0.8999227 0.1 0.1200173 10 0.9790 0.9831 0.9885

0.9 0.8999227 0.1 0.1200173 12 0.9824 0.9865 0.9905

0.9 0.8999227 0.1 0.1200173 14 0.9854 0.9889 0.9915

0.9 0.8966213 0.2 0.1928654 4 0.9247 0.9445 0.9711

0.9 0.8966213 0.2 0.1928654 6 0.9550 0.9643 0.9777

0.9 0.8966213 0.2 0.1928654 8 0.9695 0.9745 0.9835

0.9 0.8966213 0.2 0.1928654 10 0.9757 0.9816 0.9878

0.9 0.8966213 0.2 0.1928654 12 0.9801 0.9834 0.9891

0.9 0.8966213 0.2 0.1928654 14 0.9867 0.9886 0.9917

0.9 0.8977677 0.3 0.2522655 4 0.9213 0.9422 0.9681

0.9 0.8977677 0.3 0.2522655 6 0.9545 0.9638 0.9775

0.9 0.8977677 0.3 0.2522655 8 0.9694 0.9742 0.9820

0.9 0.8977677 0.3 0.2522655 10 0.9773 0.9820 0.9881

0.9 0.8977677 0.3 0.2522655 12 0.9818 0.9856 0.9902

0.9 0.8977677 0.3 0.2522655 14 0.9889 0.9908 0.9934

0.9 0.9045316 0.4 0.3869980 4 0.9206 0.9424 0.9674

0.9 0.9045316 0.4 0.3869980 6 0.9555 0.9652 0.9781

0.9 0.9045316 0.4 0.3869980 8 0.9689 0.9751 0.9837

0.9 0.9045316 0.4 0.3869980 10 0.9795 0.9832 0.9884

0.9 0.9045316 0.4 0.3869980 12 0.9825 0.9856 0.9907

0.9 0.9045316 0.4 0.3869980 14 0.9852 0.9886 0.9918

0.9 0.8984540 0.5 0.4761073 4 0.9178 0.9390 0.9684

0.9 0.8984540 0.5 0.4761073 6 0.9570 0.9662 0.9790

0.9 0.8984540 0.5 0.4761073 8 0.9684 0.9742 0.9823

0.9 0.8984540 0.5 0.4761073 10 0.9779 0.9814 0.9869
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When there is no correlation between the study variable and the auxiliary variable

used at the selection stage, the coverage attained by the 90%, 95%, and 99% intervals

are found to be 89.58%, 94.35%, and 98.08% for samples of sizes 6, 8, and 14, respec-

tively, when the auxiliary variable used at the estimation stage has correlation of 0.3.

When the value of this correlation coefficient ρxy increased to 0.9, while keeping ρyz at
zero, the attained coverage becomes 94.94%, 96.11%, and 98.83%, respectively, for

samples of sizes 6, 6, and 10. It seems that if there exists zero correlation between the

study and the selection variable and there exists another auxiliary variable having high

correlation with the study variable, the resultant estimator could perform well for

moderate sample sizes.

One can read other results from Table 6.1 in the same way, but let us discuss one

more interesting case. Note that if the value of the correlation coefficient between the

study variable and the variable used at selection stage is 0.9, and there is another

auxiliary variable used at estimation stage that has a correlation coefficient of 0.9 with

the study variable, then the attained coverages are 93.29%, 95.02%, and 98.91% for

Table 6.1 Continued

ρxy RHOXY ρyz RHOYZ n 90% 95% 99%

0.9 0.8984540 0.5 0.4761073 12 0.9829 0.9861 0.9905

0.9 0.8984540 0.5 0.4761073 14 0.9859 0.9883 0.9914

0.9 0.9003546 0.6 0.5882043 4 0.9209 0.9406 0.9699

0.9 0.9003546 0.6 0.5882043 6 0.9573 0.9668 0.9773

0.9 0.9003546 0.6 0.5882043 8 0.9709 0.9774 0.9858

0.9 0.9003546 0.6 0.5882043 10 0.9779 0.9826 0.9876

0.9 0.9003546 0.6 0.5882043 12 0.9852 0.9880 0.9912

0.9 0.9003546 0.6 0.5882043 14 0.9887 0.9905 0.9937

0.9 0.9000659 0.7 0.7050580 4 0.9286 0.9466 0.9701

0.9 0.9000659 0.7 0.7050580 6 0.9571 0.9670 0.9798

0.9 0.9000659 0.7 0.7050580 8 0.9701 0.9778 0.9846

0.9 0.9000659 0.7 0.7050580 10 0.9775 0.9823 0.9882

0.9 0.9000659 0.7 0.7050580 12 0.9806 0.9850 0.9899

0.9 0.9000659 0.7 0.7050580 14 0.9858 0.9883 0.9914

0.9 0.8927355 0.8 0.8029351 4 0.9280 0.9490 0.9716

0.9 0.8927355 0.8 0.8029351 6 0.9538 0.9636 0.9776

0.9 0.8927355 0.8 0.8029351 8 0.9708 0.9754 0.9847

0.9 0.8927355 0.8 0.8029351 10 0.9784 0.9829 0.9884

0.9 0.8927355 0.8 0.8029351 12 0.9826 0.9858 0.9909

0.9 0.8927355 0.8 0.8029351 14 0.9894 0.9919 0.9942

0.9 0.9005865 0.9 0.8948975 4 0.9329 0.9502 0.9737

0.9 0.9005865 0.9 0.8948975 6 0.9598 0.9672 0.9800

0.9 0.9005865 0.9 0.8948975 8 0.9782 0.9827 0.9882

0.9 0.9005865 0.9 0.8948975 10 0.9787 0.9838 0.9891

0.9 0.9005865 0.9 0.8948975 12 0.9851 0.9880 0.9918

0.9 0.9005865 0.9 0.8948975 14 0.9889 0.9913 0.9938
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the 90%, 95%, and 99% intervals, respectively, for samples of sizes 4, 4, and 10. We

see that when both auxiliary variables are highly correlated with the study variable, the

proposed method is very close to the regression type estimator under a PPSWR

scheme. Thus, the simulation shows that the Hansen and Hurwitz (1943) PPSWR

method works well for the construction of a linear regression type estimator. We

observed that as the value of the correlation coefficient increases, the value of the

effective sample size required to achieve the nominal coverage of interest decreases.

Thus, we recommend the use of this newly tuned estimator for multicharacter sur-

veys where the variables have very low correlation with the selection variable, and

where a moderate sample size is enough. Thus, the newly tuned multicharacter esti-

mator of population total resolves to a certain extent the major problem of estimation

of its variance in multicharacter surveys, which is the most cost effective and time-

saving scheme in real situations. Again note that in this study we used two variables,

one at the selection stage and another at the estimation stage.

6.3.2 R code

The R code, PUMPKIN61.R, that was used to study the coverage by the newly tuned

multicharacter estimator based on a chi-square type distance function is listed here.

#PROGRAM PUMPKIN61.R

library(sampling)

library(SDaA)

set.seed(2013)

for (rhoxy in seq(.3,.9,.2))

{

for (rhoyz in seq(.0,.9,.1))

{

NP<-2000

xe<-rnorm(NP,0,1);ye<-rnorm(NP,0,1);ze<-rnorm(NP,0,1)

y<-2454 + 245*ye

x<-2325 + 232*sqrt((1-rhoxy^2))*xe + rhoxy*232*ye

z<-322 + 52*sqrt((1-rhoyz^2))*ze + rhoyz*52*ye

XPMEAN<-mean(x);ZPMEAN<-mean(z)

RHOXY<-cor(x,y);RHOYZ<-cor(y,z)

TY<-sum(y)

pi<-z/(NP*ZPMEAN)

nreps<-10000

ESTP¼rep(0,nreps)

ci1.max¼ci1.min¼ci2.max¼ci2.min¼ci3.max¼ci3.min¼ESTP

vESTP¼ESTP

for (n in seq(4,15,2) )

{

pik<-n*pi

for (r in 1:nreps)
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{

us<- lahiri.design(pik, n, as.factor(1:NP))

xs<-x[us]; ys<-y[us]; zs<-z[us]

ps<-((1+ 1/NP)^(1-RHOYZ))*((1+pi[us])^(RHOYZ))-1

ESTX1<-mean(xs/ps);ESTY1<-mean(ys/ps)

xmult<-(n*ESTX1 - xs/ps)/(n-1)

ymult<-(n*ESTY1 - ys/ps)/(n-1)

delt<-n*sum(xmult^2) - sum(xmult)^2

d<-(n*xmult - sum(xmult))/delt

wbni<-1/n + d*(NP*XPMEAN-ESTX1)/((n-1)^2)

ESTi<-n*((n-1)^2*wbni-n+2)*ymult

ESTP[r]<- sum(ESTi)

EST_I<-(ESTP[r] - ESTi)/(n-1)

ESTP[r]<-ESTP[r]/n

vj<-(wbni^2)*ps*((EST_I - ESTP[r])^2)

vESTP[r]<-n*((n-1)^3)*sum(vj)

ci1.max[r]<- ESTP[r]-qt(.05,n-1)*sqrt(vESTP[r])

ci1.min[r]<- ESTP[r]+qt(.05,n-1)*sqrt(vESTP[r])

ci2.max[r]<- ESTP[r]-qt(.025,n-1)*sqrt(vESTP[r])

ci2.min[r]<- ESTP[r]+qt(.025,n-1)*sqrt(vESTP[r])

ci3.max[r]<- ESTP[r]-qt(.005,n-1)*sqrt(vESTP[r])

ci3.min[r]<- ESTP[r]+qt(.005,n-1)*sqrt(vESTP[r])

} # nreps

round(sum(ci1.min<TY & ci1.max>TY)/nreps,4)->cov1

round(sum(ci2.min<TY & ci2.max>TY)/nreps,4)->cov2

round(sum(ci3.min<TY & ci3.max>TY)/nreps,4)->cov3

cat(rhoxy,RHOXY,rhoyz, RHOYZ, n, cov1,cov2,cov3,’\n’)

}# n

}# rhoyz

} # rhoxy

6.3.3 Numerical illustration

We explain the method of tuning the estimator of the population total in multicharacter

surveys with the following example.

Example 6.1 In a specially designed field, it is easy to take a picture of each one of

the pumpkins and record their top size. After taking photographs of the tops of all 200

pumpkins in the field, we selected a PPSWR sample of n¼ 7 pumpkins. The circum-

ference (in.), say X, weight (lbs), say Y, and top size (in.), say Z, of the seven selected
pumpkins were recorded as follows:

xi 130.9 67.0 106.5 98.0 115.2 137.1 101.1

yi 800 800 3084 1042 4500 2500 2397

zi 105 30 57 32 99 117 85
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Apply the multicharacter survey approach with the Bansal and Singh (1985) transfor-

mation to estimate the total weight of the pumpkins in the field and construct 90%

confidence interval estimates using circumference at the estimation stage and top size

at the selection stage. (Given: The population total of X is 21,080, total of Z is 14,600,

and ρyz ¼ 0:4).

Solution. We can compute the following table:

pj pj* X̂M( j) ŶM( j) wn( j) ŶMTunedcs(j)

0.0071917 0.0058761 21234.39 465818.4 0.143919 390588.1

0.0020547 0.0038208 22024.61 453613.1 0.138279 500631.3

0.0039041 0.0045615 21055.89 375826.8 0.145194 389490.2

0.0021917 0.0038757 20732.93 443700.7 0.147499 328556.3

0.0067808 0.0057119 21585.78 357205.4 0.141411 451167.5

0.008013 0.0062043 21264.28 421352.4 0.143706 403758.6

0.0058219 0.0053286 21785.02 413537.5 0.139989 469900.7

Then a tuned estimate of the total weight of the pumpkins is given by

ŶMTuned csð Þ ¼ 1

n

X
j2s

ŶMTuned csð Þ jð Þ ¼ 419156:1

The standard error of the tuned estimate of the population total is given by

SE ŶMTuned csð Þ
� �¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v̂ ŶMTuned csð Þ
� �q

¼ 51840:569

Hence, the 90% confidence interval estimate of the total weight of the pumpkins in the

field is 318420.6–519891.7 lbs.

6.3.4 R code used for illustration

We used the following R code, PUMPKIN61EX.R, to solve the preceding example.

#PROGRAM PUMPKIN61EX.R

n<-7

xs<-c(130.9,67,106.5,98,115.2,137.1,101.1)

ys<-c(800,800,3084,1042,4500,2500,2397)

zs<-c(105,30,57,32,99,117,85)

XPMEAN<-105.4;ZPMEAN<-73; RHOYZP<-0.4

NP<-200

pi<-zs/(NP*ZPMEAN)

ps<-((1+ 1/NP)^(1-RHOYZP))*((1+pi)^(RHOYZP))-1

ESTX1<-mean(xs/ps);ESTY1<-mean(ys/ps)

xmult<-(n*ESTX1 - xs/ps)/(n-1)
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ymult<-(n*ESTY1 - ys/ps)/(n-1)

delt<-n*sum(xmult^2) - sum(xmult)^2

d<-(n*xmult - sum(xmult))/delt

wbni<-1/n + d*(NP*XPMEAN-ESTX1)/((n-1)^2)

ESTi<- n*((n-1)^2*wbni-n+2)*ymult

ESTP<- sum(ESTi)

EST_I<-(ESTP - ESTi)/(n-1)

ESTP<-ESTP/n

vj<-(wbni^2)*ps*((EST_I - ESTP)^2)

vESTP<-n*((n-1)^3)*sum(vj)

L<-ESTP+qt(.05,n-1)*sqrt(vESTP)

U<-ESTP+qt(.95,n-1)*sqrt(vESTP)

cbind(pi,ps,xmult,ymult,wbni,EST_I)

cat("Tuned estimate:", ESTP, "SE: ",vESTP .̂5,’\n’)

cat("Confidence Interval:"," ", L,"; ", U,’\n’)

6.4 Tuning of the multicharacter estimator of
population total with dual-to-empirical
log-likelihood function

The newly tuned multicharacter jackknife dual-to-empirical log-likelihood (dell)

estimator of the population total Y is defined as

ŶMTuned dellð Þ ¼
X
j2s

n�1ð Þ2 �w�
n jð Þ� n�2ð Þ

h i
ŶM jð Þ (6.25)

where �w�
n jð Þ are the positive jackknife tuned weights, chosen such that the following

two constraints are satisfied:

X
j2s

�w�
n jð Þ¼ 1 (6.26)

and

X
j2s

�w�
n jð ÞΨ j ¼ 0 (6.27)

where

Ψ j ¼ X̂M jð Þ� X�n 2�nð ÞX̂M

� �
n�1ð Þ2 (6.28)
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Here we suggest the tuning of the jackknife weights �w�
n jð Þ such that the dell distance

function defined as

X
j2s

ln 1�w�
j

	 

n

(6.29)

where w�
j being weights on unit length, or equivalently, the log-likelihood function as

X
j2s

ln �w�
n jð Þ� �
n

(6.30)

is optimum subject to the tuning constraints (6.26) and (6.27).

The Lagrange function is given by

L2 ¼
X
j2s

ln �w�
n jð Þ� �
n

� λ�0
X
j2s

�w�
n jð Þ�1

 !
� λ�1

X
j2s

�w�
n jð ÞΨ j

( )
(6.31)

where λ�0 and λ�1 are Lagrange multiplier constants.

On setting:

@L2
@ �w�

n jð Þ¼ 0

we have

�w�
n jð Þ¼ 1

n 1 + λ�1Ψ j

� � (6.32)

Constraints (6.26) and (6.27) yield λ�0 ¼ 1, and λ�1 is a solution to the nonlinear equation

X
j2s

Ψ j

1 + λ�1Ψ j
¼ 0 (6.33)

In the following simulation study, by assuming λ�1Ψ j

�� ��< 1, we approximated the value

of λ�1 as

λ�1 �

X
j2s

Ψ jX
j2s

Ψ 2
j

(6.34)

Note that a better solution to the nonlinear equation (6.33) could be used if available.
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Thus, under the dell distance function, the newly tuned multicharacter dell-

estimator (6.25) of the population total becomes

ŶMTuned dellð Þ ¼
X
j2s

n�1ð Þ2 �w�
n jð Þ� n�2ð Þ

n o
ŶM jð Þ

¼ n�1ð Þ2
n

X
j2s

ŶM jð Þ
1 + λ�1Ψ j

� n�2ð Þ
X
j2s

ŶM jð Þ
(6.35)

6.4.1 Estimation of variance of multicharacter estimator

An adjusted estimator of the variance of the multicharacter survey estimator

ŶMTuned dellð Þ is

v̂ ŶMTuned dellð Þ
� �¼ n n�1ð Þ3

X
j2s

�w�
n jð Þp�j

	 
2
Ŷ
MTuned dellð Þ
jð Þ � ŶMTuned dellð Þ

n o2

(6.36)

Note that the newly tuned doubly jackknifed dell estimator of the population total is

given by

Ŷ
MTuned dellð Þ
jð Þ ¼

nŶMTuned dellð Þ �n n�1ð Þ2 �w�
n jð Þ� n�2ð Þ

	 

ŶM jð Þ

n�1
(6.37)

for j¼ 1,2,…,n, with

ŶMTuned dellð Þ ¼
X
j2s

n�1ð Þ2 �w�
n jð Þ� n�2ð Þ

h i
ŶM jð Þ (6.38)

Again note that in Equation (6.36), instead of using p�j the possibility of using

�p* jð Þ¼ n�p*�p�j
n�1

(6.39)

where

�p*¼ 1

n

Xn
j¼1

p�j

could also be investigated. This has been left an exercise!

The coverage by the 1�αð Þ100% confidence interval estimates obtained from this

newly tuned doubly jackknifed multicharacter dell estimator of the population total is
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obtained by counting the number of times the true population total Y falls within the

interval estimate given by

ŶMTuned dellð Þ+tα=2 df¼ n�1ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v̂ ŶMTuned dellð Þ
� �q

(6.40)

We studied coverage by the 90%, 95%, and 99% confidence interval estimates based

on our estimator where the value of the correlation coefficient between the study var-

iable and the auxiliary variable used at the selection stage ranged from 0 to 1. We gen-

erated three random variables y�i �N 0, 1ð Þ, x�i �N 0, 1ð Þ and z�i �N 0, 1ð Þ for

i¼ 1,2,…,N from three independent standard normal distribution. For four different

values of the correlation coefficient ρxy, 0.3, 0.5, 0.6, and 0.9, and ten different values
of the correlation coefficient ρyz, 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9 we

generated the possible populations with three variables Y, X, and Z taking values yi, xi,
and zi for the ith unit as

yi ¼ Y + σyy
�
i (6.41)

xi ¼X + σx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ρ2xy

	 
r
x�i + ρxyσxx

�
i (6.42)

and

zi ¼ Z + σz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ρ2yz

	 
r
z�i + ρyzσzy

�
i (6.43)

Here we fixed X ¼ 2325, Y ¼ 2454, Z ¼ 322, σx ¼ 232; σy ¼ 245, and σz ¼ 52. Note

that the variable X is to be used at the estimation stage, and it is constructed to have

correlations 0.3, 0.5, 0.7, and 0.9 with the study variable Y because we want to see the

effect of low as well as high values of the correlation coefficient. In the same way the

variable Z is to be used at the selection stage of sampling, and although this variable is

expected to have low correlation with the study variable (e.g., 0.0, 0.1), we considered

ten values of ρyz to investigate how it affects the results. For each of the 40 combina-

tions of ρxy and ρyz, we constructed a population of N¼ 2000 units. We used Lahiri

(1951) method for selecting a sample from the given population. For each of the sam-

ple of sizes n¼ 4,6,8,10,12,14, we took 10,000 samples and constructed three con-

fidence intervals for each. Attained coverage was estimated by the proportion of times

the true total fell within the interval. The results obtained for various sample sizes are

as shown in Table 6.2.

Table 6.2 demonstrates the effect of various values of the correlation coefficient

between the study and the auxiliary variable on the coverage of confidence intervals

constructed frommoderate-sized samples. Among the interesting findings is that if the

correlation coefficient between the study variable and the auxiliary variable used at

the estimation stage is 0.9 while the study variable and the auxiliary variable used

at the selection stage are uncorrelated, then the estimated coverages attained by the
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Table 6.2 Performance of the dell tuned multicharacter estimator

ρxy RHOXY ρyz RHOYZ n 90% 95% 99%

0.3 0.2978796 0.0 0.0051677 4 0.6786 0.7530 0.8616

0.3 0.2978796 0.0 0.0051677 6 0.8863 0.9108 0.9477

0.3 0.2978796 0.0 0.0051677 8 0.9288 0.9431 0.9613

0.3 0.2978796 0.0 0.0051677 10 0.9529 0.9624 0.9746

0.3 0.2978796 0.0 0.0051677 12 0.9609 0.9689 0.9774

0.3 0.2978796 0.0 0.0051677 14 0.9658 0.9719 0.9808

0.3 0.2898565 0.1 0.0912027 4 0.7038 0.7728 0.8707

0.3 0.2898565 0.1 0.0912027 6 0.8918 0.9148 0.9465

0.3 0.2898565 0.1 0.0912027 8 0.9293 0.9426 0.9608

0.3 0.2898565 0.1 0.0912027 10 0.9513 0.9602 0.9733

0.3 0.2898565 0.1 0.0912027 12 0.9661 0.9725 0.9809

0.3 0.2898565 0.1 0.0912027 14 0.9720 0.9772 0.9838

0.3 0.2893902 0.2 0.1542838 4 0.6909 0.7623 0.8646

0.3 0.2893902 0.2 0.1542838 6 0.8951 0.9178 0.9508

0.3 0.2893902 0.2 0.1542838 8 0.9335 0.9482 0.9655

0.3 0.2893902 0.2 0.1542838 10 0.9505 0.9607 0.9747

0.3 0.2893902 0.2 0.1542838 12 0.9641 0.9709 0.9792

0.3 0.2893902 0.2 0.1542838 14 0.9698 0.9758 0.9836

0.3 0.2814688 0.3 0.3024993 4 0.6852 0.7614 0.8635

0.3 0.2814688 0.3 0.3024993 6 0.8915 0.9159 0.9474

0.3 0.2814688 0.3 0.3024993 8 0.9332 0.9460 0.9628

0.3 0.2814688 0.3 0.3024993 10 0.9502 0.9581 0.9707

0.3 0.2814688 0.3 0.3024993 12 0.9601 0.9656 0.9756

0.3 0.2814688 0.3 0.3024993 14 0.9701 0.9742 0.9812

0.3 0.2800336 0.4 0.4206022 4 0.6989 0.7688 0.8638

0.3 0.2800336 0.4 0.4206022 6 0.8953 0.9146 0.9487

0.3 0.2800336 0.4 0.4206022 8 0.9326 0.9454 0.9627

0.3 0.2800336 0.4 0.4206022 10 0.9514 0.9620 0.9723

0.3 0.2800336 0.4 0.4206022 12 0.9653 0.9717 0.9786

0.3 0.2800336 0.4 0.4206022 14 0.9740 0.9794 0.9852

0.3 0.2511401 0.5 0.5078852 4 0.7014 0.7713 0.8674

0.3 0.2511401 0.5 0.5078852 6 0.9000 0.9215 0.9514

0.3 0.2511401 0.5 0.5078852 8 0.9374 0.9509 0.9662

0.3 0.2511401 0.5 0.5078852 10 0.9565 0.9658 0.9761

0.3 0.2511401 0.5 0.5078852 12 0.9691 0.9743 0.9822

0.3 0.2511401 0.5 0.5078852 14 0.9774 0.9823 0.9877

0.3 0.3262503 0.6 0.5984581 4 0.7215 0.7862 0.8803

0.3 0.3262503 0.6 0.5984581 6 0.9085 0.9292 0.9564

0.3 0.3262503 0.6 0.5984581 8 0.9413 0.9529 0.9687

0.3 0.3262503 0.6 0.5984581 10 0.9576 0.9662 0.9756

0.3 0.3262503 0.6 0.5984581 12 0.9684 0.9745 0.9819

0.3 0.3262503 0.6 0.5984581 14 0.9736 0.9787 0.9850

0.3 0.3237574 0.7 0.6893118 4 0.7367 0.7979 0.8825

0.3 0.3237574 0.7 0.6893118 6 0.9158 0.9344 0.9582

0.3 0.3237574 0.7 0.6893118 8 0.9503 0.9611 0.9741

Continued
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Table 6.2 Continued

ρxy RHOXY ρyz RHOYZ n 90% 95% 99%

0.3 0.3237574 0.7 0.6893118 10 0.9657 0.9720 0.9797

0.3 0.3237574 0.7 0.6893118 12 0.9718 0.9767 0.9832

0.3 0.3237574 0.7 0.6893118 14 0.9772 0.9816 0.9879

0.3 0.3234880 0.8 0.8049675 4 0.7395 0.7965 0.8821

0.3 0.3234880 0.8 0.8049675 6 0.9173 0.9361 0.9611

0.3 0.3234880 0.8 0.8049675 8 0.9531 0.9638 0.9769

0.3 0.3234880 0.8 0.8049675 10 0.9623 0.9693 0.9796

0.3 0.3234880 0.8 0.8049675 12 0.9736 0.9801 0.9865

0.3 0.3234880 0.8 0.8049675 14 0.9772 0.9816 0.9867

0.3 0.3039484 0.9 0.8964122 4 0.7634 0.8140 0.8910

0.3 0.3039484 0.9 0.8964122 6 0.9365 0.9508 0.9686

0.3 0.3039484 0.9 0.8964122 8 0.9602 0.9666 0.9774

0.3 0.3039484 0.9 0.8964122 10 0.9714 0.9759 0.9831

0.3 0.3039484 0.9 0.8964122 12 0.9792 0.9830 0.9879

0.3 0.3039484 0.9 0.8964122 14 0.9843 0.9874 0.9918

0.5 0.4833906 0.0 0.0026272 4 0.7085 0.7769 0.8692

0.5 0.4833906 0.0 0.0026272 6 0.8977 0.9210 0.9528

0.5 0.4833906 0.0 0.0026272 8 0.9355 0.9477 0.9656

0.5 0.4833906 0.0 0.0026272 10 0.9516 0.9592 0.9708

0.5 0.4833906 0.0 0.0026272 12 0.9638 0.9713 0.9779

0.5 0.4833906 0.0 0.0026272 14 0.9734 0.9788 0.9857

0.5 0.5064535 0.1 0.0992117 4 0.7046 0.7775 0.8738

0.5 0.5064535 0.1 0.0992117 6 0.9004 0.9207 0.9484

0.5 0.5064535 0.1 0.0992117 8 0.9357 0.9471 0.9630

0.5 0.5064535 0.1 0.0992117 10 0.9537 0.9621 0.9735

0.5 0.5064535 0.1 0.0992117 12 0.9662 0.9740 0.9813

0.5 0.5064535 0.1 0.0992117 14 0.9724 0.9767 0.9834

0.5 0.5167572 0.2 0.1951615 4 0.7023 0.7730 0.8731

0.5 0.5167572 0.2 0.1951615 6 0.8974 0.9199 0.9502

0.5 0.5167572 0.2 0.1951615 8 0.9381 0.9509 0.9682

0.5 0.5167572 0.2 0.1951615 10 0.9598 0.9681 0.9794

0.5 0.5167572 0.2 0.1951615 12 0.9650 0.9721 0.9802

0.5 0.5167572 0.2 0.1951615 14 0.9730 0.9769 0.9833

0.5 0.5171975 0.3 0.3007205 4 0.7183 0.7843 0.8759

0.5 0.5171975 0.3 0.3007205 6 0.9016 0.9230 0.9505

0.5 0.5171975 0.3 0.3007205 8 0.9380 0.9512 0.9685

0.5 0.5171975 0.3 0.3007205 10 0.9575 0.9670 0.9772

0.5 0.5171975 0.3 0.3007205 12 0.9705 0.9753 0.9821

0.5 0.5171975 0.3 0.3007205 14 0.9733 0.9779 0.9847

0.5 0.5010488 0.4 0.4293076 4 0.7099 0.7770 0.8719

0.5 0.5010488 0.4 0.4293076 6 0.9034 0.9267 0.9558

0.5 0.5010488 0.4 0.4293076 8 0.9435 0.9543 0.9694

0.5 0.5010488 0.4 0.4293076 10 0.9564 0.9655 0.9760

0.5 0.5010488 0.4 0.4293076 12 0.9677 0.9737 0.9820

0.5 0.5010488 0.4 0.4293076 14 0.9747 0.9803 0.9858

Continued
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Table 6.2 Continued

ρxy RHOXY ρyz RHOYZ n 90% 95% 99%

0.5 0.5044690 0.5 0.5025602 4 0.7282 0.7970 0.8809

0.5 0.5044690 0.5 0.5025602 6 0.9142 0.9346 0.9585

0.5 0.5044690 0.5 0.5025602 8 0.9429 0.9537 0.9691

0.5 0.5044690 0.5 0.5025602 10 0.9599 0.9682 0.9778

0.5 0.5044690 0.5 0.5025602 12 0.9702 0.9759 0.9828

0.5 0.5044690 0.5 0.5025602 14 0.9769 0.9814 0.9860

0.5 0.4796009 0.6 0.6105799 4 0.7371 0.7968 0.8832

0.5 0.4796009 0.6 0.6105799 6 0.9132 0.9324 0.9582

0.5 0.4796009 0.6 0.6105799 8 0.9495 0.9595 0.9729

0.5 0.4796009 0.6 0.6105799 10 0.9654 0.9714 0.9800

0.5 0.4796009 0.6 0.6105799 12 0.9718 0.9768 0.9823

0.5 0.4796009 0.6 0.6105799 14 0.9782 0.9820 0.9870

0.5 0.4774821 0.7 0.6929410 4 0.7285 0.7923 0.8822

0.5 0.4774821 0.7 0.6929410 6 0.9199 0.9391 0.9634

0.5 0.4774821 0.7 0.6929410 8 0.9532 0.9629 0.9742

0.5 0.4774821 0.7 0.6929410 10 0.9649 0.9720 0.9806

0.5 0.4774821 0.7 0.6929410 12 0.9714 0.9773 0.9840

0.5 0.4774821 0.7 0.6929410 14 0.9778 0.9823 0.9865

0.5 0.4933499 0.8 0.8119242 4 0.7424 0.8052 0.8870

0.5 0.4933499 0.8 0.8119242 6 0.9174 0.9370 0.9611

0.5 0.4933499 0.8 0.8119242 8 0.9591 0.9674 0.9778

0.5 0.4933499 0.8 0.8119242 10 0.9706 0.9751 0.9817

0.5 0.4933499 0.8 0.8119242 12 0.9767 0.9811 0.9866

0.5 0.4933499 0.8 0.8119242 14 0.9821 0.9856 0.9893

0.5 0.5033757 0.9 0.9006591 4 0.7755 0.8261 0.8969

0.5 0.5033757 0.9 0.9006591 6 0.9364 0.9525 0.9696

0.5 0.5033757 0.9 0.9006591 8 0.9613 0.9697 0.9792

0.5 0.5033757 0.9 0.9006591 10 0.9694 0.9749 0.9824

0.5 0.5033757 0.9 0.9006591 12 0.9802 0.9841 0.9891

0.5 0.5033757 0.9 0.9006591 14 0.9834 0.9868 0.9899

0.7 0.7068314 0.0 �0.0153304 4 0.7309 0.7968 0.8847

0.7 0.7068314 0.0 �0.0153304 6 0.9143 0.9347 0.9584

0.7 0.7068314 0.0 �0.0153304 8 0.9468 0.9590 0.9733

0.7 0.7068314 0.0 �0.0153304 10 0.9591 0.9673 0.9775

0.7 0.7068314 0.0 �0.0153304 12 0.9744 0.9787 0.9847

0.7 0.7068314 0.0 �0.0153304 14 0.9748 0.9801 0.9863

0.7 0.7037323 0.1 0.0930306 4 0.7322 0.7949 0.8786

0.7 0.7037323 0.1 0.0930306 6 0.9163 0.9358 0.9605

0.7 0.7037323 0.1 0.0930306 8 0.9537 0.9644 0.9746

0.7 0.7037323 0.1 0.0930306 10 0.9618 0.9699 0.9786

0.7 0.7037323 0.1 0.0930306 12 0.9710 0.9772 0.9839

0.7 0.7037323 0.1 0.0930306 14 0.9765 0.9806 0.9869

0.7 0.7091130 0.2 0.2079550 4 0.7358 0.7975 0.8846

0.7 0.7091130 0.2 0.2079550 6 0.9163 0.9339 0.9611

0.7 0.7091130 0.2 0.2079550 8 0.9481 0.9590 0.9732
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Table 6.2 Continued

ρxy RHOXY ρyz RHOYZ n 90% 95% 99%

0.7 0.7091130 0.2 0.2079550 10 0.9619 0.9685 0.9783

0.7 0.7091130 0.2 0.2079550 12 0.9712 0.9761 0.9861

0.7 0.7091130 0.2 0.2079550 14 0.9773 0.9817 0.9868

0.7 0.7228749 0.3 0.2823218 4 0.7385 0.8007 0.8844

0.7 0.7228749 0.3 0.2823218 6 0.9217 0.9405 0.9648

0.7 0.7228749 0.3 0.2823218 8 0.9538 0.9637 0.9753

0.7 0.7228749 0.3 0.2823218 10 0.9643 0.9714 0.9807

0.7 0.7228749 0.3 0.2823218 12 0.9729 0.9786 0.9840

0.7 0.7228749 0.3 0.2823218 14 0.9790 0.9829 0.9873

0.7 0.7043535 0.4 0.4168755 4 0.7377 0.7976 0.8799

0.7 0.7043535 0.4 0.4168755 6 0.9149 0.9335 0.9586

0.7 0.7043535 0.4 0.4168755 8 0.9477 0.9586 0.9717

0.7 0.7043535 0.4 0.4168755 10 0.9649 0.9716 0.9801

0.7 0.7043535 0.4 0.4168755 12 0.9712 0.9769 0.9831

0.7 0.7043535 0.4 0.4168755 14 0.9751 0.9792 0.9843

0.7 0.6969780 0.5 0.5394821 4 0.7482 0.8093 0.8884

0.7 0.6969780 0.5 0.5394821 6 0.9256 0.9419 0.9630

0.7 0.6969780 0.5 0.5394821 8 0.9487 0.9598 0.9732

0.7 0.6969780 0.5 0.5394821 10 0.9623 0.9701 0.9785

0.7 0.6969780 0.5 0.5394821 12 0.9709 0.9766 0.9836

0.7 0.6969780 0.5 0.5394821 14 0.9789 0.9827 0.9875

0.7 0.7091886 0.6 0.5960213 4 0.7486 0.8056 0.8891

0.7 0.7091886 0.6 0.5960213 6 0.9284 0.9442 0.9652

0.7 0.7091886 0.6 0.5960213 8 0.9545 0.9652 0.9774

0.7 0.7091886 0.6 0.5960213 10 0.9701 0.9748 0.9835

0.7 0.7091886 0.6 0.5960213 12 0.9744 0.9797 0.9850

0.7 0.7091886 0.6 0.5960213 14 0.9768 0.9809 0.9867

0.7 0.7066548 0.7 0.7085645 4 0.7619 0.8170 0.8939

0.7 0.7066548 0.7 0.7085645 6 0.9282 0.9466 0.9675

0.7 0.7066548 0.7 0.7085645 8 0.9579 0.9657 0.9770

0.7 0.7066548 0.7 0.7085645 10 0.9712 0.9767 0.9839

0.7 0.7066548 0.7 0.7085645 12 0.9770 0.9822 0.9875

0.7 0.7066548 0.7 0.7085645 14 0.9819 0.9847 0.9893

0.7 0.6880201 0.8 0.8009049 4 0.7574 0.8127 0.8881

0.7 0.6880201 0.8 0.8009049 6 0.9312 0.9466 0.9668

0.7 0.6880201 0.8 0.8009049 8 0.9568 0.9645 0.9766

0.7 0.6880201 0.8 0.8009049 10 0.9686 0.9742 0.9827

0.7 0.6880201 0.8 0.8009049 12 0.9751 0.9804 0.9860

0.7 0.6880201 0.8 0.8009049 14 0.9806 0.9832 0.9871

0.7 0.6878207 0.9 0.8979229 4 0.7663 0.8151 0.8908

0.7 0.6878207 0.9 0.8979229 6 0.9412 0.9541 0.9737

0.7 0.6878207 0.9 0.8979229 8 0.9672 0.9743 0.9822

0.7 0.6878207 0.9 0.8979229 10 0.9743 0.9787 0.9843

0.7 0.6878207 0.9 0.8979229 12 0.9804 0.9829 0.9881

0.7 0.6878207 0.9 0.8979229 14 0.9826 0.9861 0.9900

Continued
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Table 6.2 Continued

ρxy RHOXY ρyz RHOYZ n 90% 95% 99%

0.9 0.8976998 0.0 0.0042819 4 0.7890 0.8333 0.9049

0.9 0.8976998 0.0 0.0042819 6 0.9429 0.9560 0.9727

0.9 0.8976998 0.0 0.0042819 8 0.9667 0.9736 0.9819

0.9 0.8976998 0.0 0.0042819 10 0.9783 0.9825 0.9883

0.9 0.8976998 0.0 0.0042819 12 0.9843 0.9868 0.9908

0.9 0.8976998 0.0 0.0042819 14 0.9866 0.9887 0.9921

0.9 0.8999227 0.1 0.1200173 4 0.7854 0.8336 0.9056

0.9 0.8999227 0.1 0.1200173 6 0.9463 0.9580 0.9737

0.9 0.8999227 0.1 0.1200173 8 0.9663 0.9731 0.9818

0.9 0.8999227 0.1 0.1200173 10 0.9790 0.9830 0.9885

0.9 0.8999227 0.1 0.1200173 12 0.9824 0.9865 0.9905

0.9 0.8999227 0.1 0.1200173 14 0.9854 0.9889 0.9915

0.9 0.8966213 0.2 0.1928654 4 0.7990 0.8463 0.9106

0.9 0.8966213 0.2 0.1928654 6 0.9476 0.9587 0.9748

0.9 0.8966213 0.2 0.1928654 8 0.9694 0.9744 0.9835

0.9 0.8966213 0.2 0.1928654 10 0.9757 0.9815 0.9878

0.9 0.8966213 0.2 0.1928654 12 0.9801 0.9834 0.9891

0.9 0.8966213 0.2 0.1928654 14 0.9867 0.9886 0.9917

0.9 0.8977677 0.3 0.2522655 4 0.7944 0.8413 0.9070

0.9 0.8977677 0.3 0.2522655 6 0.9460 0.9579 0.9751

0.9 0.8977677 0.3 0.2522655 8 0.9694 0.9742 0.9820

0.9 0.8977677 0.3 0.2522655 10 0.9773 0.9820 0.9881

0.9 0.8977677 0.3 0.2522655 12 0.9818 0.9856 0.9902

0.9 0.8977677 0.3 0.2522655 14 0.9889 0.9908 0.9934

0.9 0.9045316 0.4 0.3869980 4 0.7914 0.8413 0.9048

0.9 0.9045316 0.4 0.3869980 6 0.9490 0.9608 0.9763

0.9 0.9045316 0.4 0.3869980 8 0.9686 0.9750 0.9836

0.9 0.9045316 0.4 0.3869980 10 0.9795 0.9832 0.9884

0.9 0.9045316 0.4 0.3869980 12 0.9825 0.9856 0.9907

0.9 0.9045316 0.4 0.3869980 14 0.9852 0.9886 0.9917

0.9 0.8984540 0.5 0.4761073 4 0.7837 0.8289 0.9008

0.9 0.8984540 0.5 0.4761073 6 0.9490 0.9607 0.9767

0.9 0.8984540 0.5 0.4761073 8 0.9677 0.9738 0.9822

0.9 0.8984540 0.5 0.4761073 10 0.9779 0.9813 0.9869

0.9 0.8984540 0.5 0.4761073 12 0.9829 0.9861 0.9905

0.9 0.8984540 0.5 0.4761073 14 0.9859 0.9883 0.9914

0.9 0.9003546 0.6 0.5882043 4 0.7966 0.8404 0.9070

0.9 0.9003546 0.6 0.5882043 6 0.9509 0.9623 0.9751

0.9 0.9003546 0.6 0.5882043 8 0.9706 0.9772 0.9856

0.9 0.9003546 0.6 0.5882043 10 0.9780 0.9826 0.9876

0.9 0.9003546 0.6 0.5882043 12 0.9852 0.9880 0.9912

0.9 0.9003546 0.6 0.5882043 14 0.9887 0.9905 0.9937

0.9 0.9000659 0.7 0.7050580 4 0.7871 0.8336 0.9003

0.9 0.9000659 0.7 0.7050580 6 0.9473 0.9606 0.9763

0.9 0.9000659 0.7 0.7050580 8 0.9696 0.9778 0.9846

Continued
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90%, 95%, and 99% intervals were 94.29%, 95.60%, and 99.08% for samples of sizes

6, 6, and 12, respectively.

If the value of the correlation coefficient between the study variable and each of the

auxiliary variables is 0.9, then the attained coverage of the 90%, 95%, and 99% inter-

vals are estimated to be 80.14%, 96.03%, and 98.91% for samples of sizes 4, 6, and 10,

respectively. If the study variable and the auxiliary variable used at the selection stage

are uncorrelated while the study variable and auxiliary variable used at the estimation

stage have correlation coefficient 0.3, then the coverages for the 90%, 95%, and 99%

intervals are estimated as 88.63%, 94.31%, and 98.06% for samples of sizes 6, 8, and

14 units, respectively.

Therefore, in the case of multicharacter surveys, the newly tuned estimators based

on the dell function seem to perform well when sample size is small and correlation

between the study and auxiliary variables is low. Thus, the newly tuned multicharacter

dell estimator resolves, to a certain extent, the problem of estimation of variance in

case of multicharacter surveys, which is the most cost effective and time-saving

scheme in real situations.

6.4.2 R code

We used the following R code, PUMPKIN62.R, to study the coverage by the newly

tuned dell estimator.

#PROGRAM PUMPKIN62.R

library(sampling)

library(SDaA)

set.seed(2013)

Table 6.2 Continued

ρxy RHOXY ρyz RHOYZ n 90% 95% 99%

0.9 0.9000659 0.7 0.7050580 10 0.9775 0.9823 0.9882

0.9 0.9000659 0.7 0.7050580 12 0.9806 0.9850 0.9899

0.9 0.9000659 0.7 0.7050580 14 0.9858 0.9883 0.9914

0.9 0.8927355 0.8 0.8029351 4 0.7966 0.8425 0.9068

0.9 0.8927355 0.8 0.8029351 6 0.9444 0.9577 0.9753

0.9 0.8927355 0.8 0.8029351 8 0.9708 0.9754 0.9847

0.9 0.8927355 0.8 0.8029351 10 0.9785 0.9829 0.9884

0.9 0.8927355 0.8 0.8029351 12 0.9826 0.9858 0.9909

0.9 0.8927355 0.8 0.8029351 14 0.9894 0.9919 0.9942

0.9 0.9005865 0.9 0.8948975 4 0.8014 0.8456 0.9077

0.9 0.9005865 0.9 0.8948975 6 0.9500 0.9603 0.9758

0.9 0.9005865 0.9 0.8948975 8 0.9780 0.9824 0.9880

0.9 0.9005865 0.9 0.8948975 10 0.9787 0.9838 0.9891

0.9 0.9005865 0.9 0.8948975 12 0.9851 0.9881 0.9918

0.9 0.9005865 0.9 0.8948975 14 0.9889 0.9913 0.9938
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for (rhoxy in seq(.3,.9,.2))

{

for (rhoyz in seq(.0,.9,.1))

{

NP<-2000

xe<-rnorm(NP,0,1);ye<-rnorm (NP,0,1);ze<-rnorm(NP,0,1)

y<-2454 + 245*ye

x<-2325 + 232*sqrt((1-rhoxy^2))*xe + rhoxy*232*ye

z<-322 + 52*sqrt((1-rhoyz^2))*ze + rhoyz*52*ye

XPMEAN<-mean(x);ZPMEAN<-mean(z)

RHOXY<-cor(x,y);RHOYZ<-cor(y,z)

TY<-sum(y)

pi<-z/(NP*ZPMEAN)

nreps<-10000

ESTP¼rep(0,nreps)

ci1.max¼ci1.min¼ci2.max¼ci2.min¼ci3.max¼ci3.min¼ESTP

vESTP¼ESTP

for (n in seq(4,15,2) )

{

pik<-n*pi

for (r in 1:nreps)

{

us<- lahiri.design(pik, n, as.factor(1:NP))

xs<-x[us]; ys<-y[us]; zs<-z[us]

ps<-((1+ 1/NP)^(1-RHOYZ))*((1+pi[us])^(RHOYZ))-1

ESTX1<-mean(xs/ps);ESTY1<-mean(ys/ps)

xmult<-(n*ESTX1 - xs/ps)/(n-1)

ymult<-(n*ESTY1 - ys/ps)/(n-1)

shi<-xmult - (NP*XPMEAN -n*(2-n)*ESTX1)/((n-1)^2)

wbni<-(1/(1+ (sum(shi)/sum(shi^2))*shi))/n

ESTi<- n*((n-1)^2*wbni-n+2)*ymult

ESTP[r]<- sum(ESTi)

EST_I<-(ESTP[r] - ESTi)/(n-1)

ESTP[r]<-ESTP[r]/n

vj<-(wbni^2)*ps*((EST_I - ESTP[r])^2)

vESTP[r]<-n*((n-1)^3)*sum(vj)

ci1.max[r]<- ESTP[r]-qt(.05,n-1)*sqrt(vESTP[r])

ci1.min[r]<- ESTP[r]+qt(.05,n-1)*sqrt(vESTP[r])

ci2.max[r]<- ESTP[r]-qt(.025,n-1)*sqrt(vESTP[r])

ci2.min[r]<- ESTP[r]+qt(.025,n-1)*sqrt(vESTP[r])

ci3.max[r]<- ESTP[r]-qt(.005,n-1)*sqrt(vESTP[r])

ci3.min[r]<- ESTP[r]+qt(.005,n-1)*sqrt(vESTP[r])

}# nreps

round(sum(ci1.min<TY & ci1.max>TY)/nreps,4)->cov1

round(sum(ci2.min<TY & ci2.max>TY)/nreps,4)->cov2
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round(sum(ci3.min<TY & ci3.max>TY)/nreps,4)->cov3

cat(rhoxy,RHOXY,rhoyz, RHOYZ, n, cov1,cov2,cov3,’\n’)

}# n

}# rhoyz

}# rhoxy

6.4.3 Numerical illustration

The following example gives a numerical illustration of the use of steps in computing

the estimator of total, standard error, and confidence interval estimate by using the

proposed tuned estimator of population total for multicharacter surveys.

Example 6.2 Use data from Section 6.3.3 and apply the empirically tuned

multicharacter survey method to estimate the total weight and construct a 90% confi-

dence interval estimate.

Solution. We compute the following results:

pj p�j X̂M jð Þ ŶM( j) w�
n( j) ŶMTuned(dell)( j )

0.0071917 0.0058761 21234.39 465818.4 0.1438664 391891.5

0.0020547 0.0038208 22024.61 453613.1 0.1383667 499220.6

0.0039041 0.0045615 21055.89 375826.8 0.1451698 390130.2

0.0021917 0.0038757 20732.93 443700.7 0.1475890 327142.9

0.0067808 0.0057119 21585.78 357205.4 0.1413678 452081.9

0.0080136 0.0062043 21264.28 421352.4 0.1436504 405008.3

0.005821918 0.0053286 21785.02 413537.5 0.1399893 470160.5

Then a dell tuned estimate of the total weight of pumpkins is given by

ŶMTuned dellð Þ ¼ 1

n

X
j2s

ŶMTuned dellð Þ jð Þ ¼ 419376:6

The standard error of the tuned estimate of the population total is given by

SE ŶMTuned dellð Þ
� �¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v̂ ŶMTuned dellð Þ
� �q

¼ 51827:29

Hence, the 90% confidence interval estimate of the total weight of the pumpkins in the

field is 318666.8–520086.3 lbs.

6.4.4 R code used for illustration

We used the following R code, PUMPKIN62EX.R, in the example.

#PROGRAM PUMPKIN62EX.R

n<-7

xs<-c(130.9,67,106.5,98,115.2,137.1,101.1)

ys<-c(800,800,3084,1042,4500,2500,2397)

zs<-c(105,30,57,32,99,117,85)
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XPMEAN<-105.4;ZPMEAN<-73; RHOXY<-0.4

NP<-200

pi<-zs/(NP*ZPMEAN)

ps<-((1+ 1/NP)^(1-RHOXY))*((1+pi)^(RHOXY))-1

ESTX1<-mean(xs/ps);ESTY1<-mean(ys/ps)

xmult<-(n*ESTX1 - xs/ps)/(n-1)

ymult<-(n*ESTY1 - ys/ps)/(n-1)

shi<-xmult - (NP*XPMEAN -n*(2-n)*ESTX1)/((n-1)^2)

delt<-n*sum(xmult^2) - sum(xmult)^2

d<-(n*xmult - sum(xmult))/delt

wbni<-(1/(1+ (sum(shi)/sum(shi^2))*shi))/n

ESTi<- n*((n-1)^2*wbni-n+2)*ymult

ESTP<- sum(ESTi)

EST_I<-(ESTP - ESTi)/(n-1)

ESTP<-ESTP/n

vj<-(wbni^2)*ps*((EST_I - ESTP)^2)

vESTP<-n*((n-1)^3)*sum(vj)

L<-ESTP+qt(.05,n-1)*sqrt(vESTP)

U<-ESTP+qt(.95,n-1)*sqrt(vESTP)

cbind(pi,ps,xmult,ymult,wbni,EST_I)

cat("Tuned estimate:",ESTP,"SE:",vESTP .̂5,’\n’)

cat("Confidence Interval:"," ", L,"; ", U,’\n’)

6.5 Exercises

Exercise 6.1 Consider a newly tuned estimator of the population total Y in multi-

character surveys as

ŶMTuned ¼
X
j2s

n�1ð Þ2 �wn jð Þ� n�2ð Þ
n o

ŶM jð Þ
h i

(6.44)

where

ŶM jð Þ¼

Xn
i¼1

yi
p�ik

� yj
p�jk

n�1
(6.45)

for k¼ 0,1,2,3,4, is the estimator of the population total Y obtained by removing the

jth unit from the sample s. The transformations pik* are given by

p�i0 ¼
1

N
Rao, 1966ð Þ

p�i1 ¼ 1 +
1

N

� � 1�ρyzð Þ
1 + pið Þρyz �1 Bansal & Singh, 1985ð Þ
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p�i2 ¼
1�ρyz
� �

N
+ ρyzpi Amahia, Chaubey, & Rao, 1989ð Þ

p�i3 ¼ N 1�ρyz
� �

+
ρyz
pi

� 
�1

Amahia, Chaubey, & Rao, 1989ð Þ

and

p�i4 ¼
1

N

� � 1�ρyzð Þ
pið Þρyz Mangat & Singh, 1992�93ð Þ

where

pi ¼ zi
Z
, i¼ 1,2,…,N (6.46)

where Z¼
XN
i¼1

zi is the known population total for the auxiliary variable used at the

selection stage.

Consider the problem of tuning the jackknife weights �wn jð Þ such that the following
distance functions:

D1 ¼ 2�1n
� �X

j2s
q�1
j 1� n�1ð Þ�wn jð Þ�n�1
� �2

(6.47)

D2 ¼
X
j2s

ln �wn jð Þð Þ
n

, �wn jð Þ> 0 (6.48)

and

D3 ¼ 1

n

X
j2s

tanh�1 �wn jð Þf g2�1

�wn jð Þf g2 + 1

 !
(6.49)

are optimized, where qj are suitably chosen weights that form different types of esti-

mators, tanh�1ðÞ is the hyperbolic tangent function, and the jackknife tuned weights

�wn jð Þ are chosen such that the following two constraints are satisfied:

X
j2s

�wn jð Þ¼ 1 (6.50)

and

X
j2s

�wn jð ÞX̂M jð Þ¼ X�n 2�nð ÞX̂M

� �
n�1ð Þ2 (6.51)
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where

X̂M jð Þ¼ nX̂M� xj=p
�
jk

n�1
(6.52)

and

X̂M ¼ 1

n

X
i2s

xi=p
�
ik

� �
(6.53)

is the estimator of the known population total X of the auxiliary variable used at the

estimation stage. Write code in any scientific programming language to study these

distance functions for different choices of pjk* . Discuss the nature of the tuned weights
in each situation. Construct the 90%, 95%, and 99% confidence interval estimates in

each situation by estimating the variance using the method discussed in this chapter.

Simulate the distribution of �2D2. Discuss the result in each situation, and conclude

which transformation pjk* is more sensible for the situation you are dealing with. Extend

the results to the case of random nonresponse by following Singh, Rueda, and

Sanchez-Borrego (2010).

Exercise 6.2 Consider a newly tuned estimator of the population total Y in multi-

character surveys as

ŶMTuned ¼
X
j2s

n�1ð Þ2 �wn jð Þ� n�2ð Þ
n o

ŶM jð Þ
h i

(6.54)

with

ŶM jð Þ¼ nŶP� yj=p
�
j

n�1
(6.55)

where an estimator of the population total Y is

ŶP ¼ 1

n

Xn
i¼1

yi
p�i

(6.56)

for

p�i ¼ p+
i

� �ρyz 1 + ρyzð Þ=2
p�i
� ��ρyz 1�ρyzð Þ=2 1

N

� � 1�ρyzð Þ 1 + ρyzð Þ
(6.57)

and ρyz is the population correlation coefficient between the study variable y and the

auxiliary variable z used at the sample selection stage with p+
i ¼ zi=Z and

p�i ¼ Z�nzið Þ= N�nð ÞZf g with known population total Z¼
XN
i¼1

zi. Discuss the cases
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for ρyz ¼ 1; ρyz ¼ 0, and ρyz ¼�1. Consider the problem of tuning the jackknife

weights �wn jð Þ such that the following distance functions

D1 ¼ 2�1n
� �X

j2s
q�1
j 1� n�1ð Þ�wn jð Þ�n�1
� �2

(6.58)

D2 ¼
X
j2s

ln �wn jð Þð Þ
n

, �wn jð Þ> 0 (6.59)

and

D3 ¼ 1

n

X
j2s

tanh�1 �wn jð Þf g2�1

�wn jð Þf g2 + 1

 !
(6.60)

are optimized, where qj are suitably chosen weights that form different types of esti-

mators, tanh�1ðÞ is the hyperbolic tangent function, and the jackknife tuned weights

�wn jð Þ are chosen such that the following two tuning constraints are satisfied:

X
j2s

�wn jð Þ¼ 1 (6.61)

and

X
j2s

�wn jð ÞX̂M jð Þ¼ X�n 2�nð ÞX̂M

� �
n�1ð Þ2 (6.62)

where

X̂M jð Þ¼ nX̂M� xj=p
�
j

n�1
(6.63)

and

X̂M ¼ 1

n

X
i2s

xi
p�i

(6.64)

is the estimator of the known population total X of the auxiliary variable used at the

estimation stage.

Write codes in any scientific programming language, such as R, to study these dis-

tance functions. Discuss the nature of the tuned weights in each situation. Construct

the 90%, 95%, and 99% confidence interval estimates in each situation by estimating

the variance using the method discussed in this chapter. Simulate the distribution of

�2D2 and D3.

Hint: Singh and Horn (1998).
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Exercise 6.3 Tuning of sensitive variables in multicharacter surveys

Let the value yi of a sensitive variable Y, defined on a finite survey population of N
identifiable and labeled persons, be assumed to be unavailable through a direct

response survey. Suppose that one wants to estimate the population total Y by choos-

ing a sample s from the population with a probability p(s) according to design p.
Instead of direct response, suppose a randomized response ri is available in an inde-

pendent manner from the respective persons i, done in such a way that their expecta-

tions, variance, and covariance (ER, VR, CR), respectively, satisfy ER rið Þ¼ yi,

VR rið Þ¼ αiy
2
i + βiyi + θi ¼V2

i (say), CR ri, rj
� �¼ 0, for i 6¼ j where αi > 0, βi, and θi

are known for every unit in the population. Consider a newly tuned estimator of

the population total Y in multicharacter surveys as

ŶMTuned ¼
X
j2s

n�1ð Þ2 �wn jð Þ� n�2ð Þ
n o

ŶM jð Þ
h i

(6.65)

where

ŶM jð Þ¼ nŷmc� rj=p
�
jk

n�1
(6.66)

with

ŷmc ¼
1

n

Xn
i¼1

ri
p�ik

(6.67)

for k¼ 0,1,2,3,4, is the estimator of the population total Y obtained by removing the

jth scrambled response unit from the sample s, and

p�i0 ¼
1

N
Rao, 1966ð Þ

p�i1 ¼ 1 +
1

N

� � 1�ρyzð Þ
1 + pið Þρyz �1 Bansal & Singh, 1985ð Þ

p�i2 ¼
1�ρyz
� �

N
+ ρyzpi Amahia, Chaubey, & Rao, 1989ð Þ

p�i3 ¼ N 1�ρyz
� �

+
ρyz
pi

� 
�1

Amahia, Chaubey, & Rao, 1989ð Þ

p�i4 ¼
1

N

� � 1�ρyzð Þ
pið Þρyz Mangat & Singh, 1992�93ð Þ
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where

pi ¼ zi
Z
, i¼ 1,2,…,N (6.68)

and Z¼
XN
i¼1

zi is the known total of the auxiliary variable used at the selection stage.

Consider the problem of tuning the jackknife weights �wn jð Þ such that the following

distance functions:

D1 ¼ 2�1n
� �X

j2s
q�1
j 1� n�1ð Þ�wn jð Þ�n�1
� �2

(6.69)

D2 ¼
X
j2s

ln �wn jð Þð Þ
n

, �wn jð Þ> 0 (6.70)

and

D3 ¼ 1

n

X
j2s

tanh�1 �wn jð Þf g2�1

�wn jð Þf g2 + 1

 !
(6.71)

are optimized, where qj are suitably chosen weights that form different types

of estimators, tanh�1ðÞ is the hyperbolic tangent function, and the tuned jack-

knife weights �wn jð Þ are chosen such that the following two tuning constraints are

satisfied:

X
j2s

�wn jð Þ¼ 1 (6.72)

and

X
j2s

�wn jð ÞX̂M jð Þ¼ X�n 2�nð ÞX̂M

� �
n�1ð Þ2 (6.73)

where

X̂M jð Þ¼ nX̂M� xj=p
�
jk

n�1
(6.74)

and

X̂M ¼ 1

n

X
i2s

xi
p�ik

(6.75)
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is the estimator of the known population total X of the auxiliary variable used at the

estimation stage. Write code in any scientific programming language to study these

distance functions for different choices of pjk* . Discuss the nature of the tuned weights
in each situation. Construct the 90%, 95%, and 99% confidence interval estimates in

each situation by estimating the variance using the method discussed in this chapter.

Simulate the distribution of �2D2 and D3. Discuss the results in each situation, and

conclude which transformation pjk* is more suitable for the situation you are dealing

with. Hint: Bansal, Singh, and Singh (1994).

Exercise 6.4 Consider the optimization of a new compromised chi-squared type dis-

tance function defined as

D¼ ρyz
X
i2s

p�i �pi
� �2

hipi

" #
+ 1�ρyz
� � X

i2s

p�i � 1=Nð Þ� �2
li 1=Nð Þ

" #
(6.76)

subject to the condition:X
i2s

p�i ¼ ρyz
X
i2s

pi + 1�ρyz
� �

n=Nð Þ (6.77)

where hi and li are some choice of weights with respect to the required transformed

variable pi*. Note that if ρyz ! 0, then the transformed probability pi* in Equa-

tion (6.77) becomes 1/N, and if ρyz ! 1 then pi* becomes pi ¼ zi=Z. Then consider

an estimator of the population total Y as

Ŷnew ¼ 1

n

X
i2s

yi
p�i

(6.78)

Investigate the estimator Ŷnew, from the points of view of bias and variance through a

simulation study, and compare your findings with the kth estimator, for

k¼ 0, 1,2, 3, 4, given by

Ŷk ¼ 1

n

X
i2s

yi
p�ik

(6.79)

where

p�i0 ¼
1

N
(6.80)

p�i1 ¼ 1 +
1

N

� � 1�ρyzð Þ
1 + pið Þρyz �1 (6.81)

p�i2 ¼
1�ρyz
� �

N
+ ρyz pi (6.82)
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p�i3 ¼ N 1�ρyz
� �

+
ρyz
pi

� 
�1

(6.83)

p�i4 ¼
1

N

� � 1�ρyzð Þ
pið Þρyz (6.84)

In addition, suggest a calibrated estimator of the population total in the presence of

another auxiliary variable, X, to be used at the estimation stage to improve the

suggested new estimator Ŷnew.

Exercise 6.5 In a specially designed field, it is easy to take a picture of each one of the

pumpkins and record their top size. After taking photographs of the tops of all the 200

pumpkins in the field, we selected a PPSWR sample of n¼ 7 pumpkins. The weight

(lbs), say Y, circumference (in.), say X, and top size (in.), say Z, of the seven selected

pumpkins were recorded as follows:

xi 130 67 108 98 116 137 101

yi 800 800 3084 1042 4500 2500 2397

zi 105 30 57 32 99 117 85

Apply the multicharacter survey approach with the following five transformations:

p�i0 ¼
1

N
(6.85)

p�i1 ¼ 1 +
1

N

� � 1�ρyzð Þ
1 + pið Þρyz �1 (6.86)

p�i2 ¼
1�ρyz
� �

N
+ ρyzpi (6.87)

p�i3 ¼ N 1�ρyz
� �

+
ρyz
pi

� 
�1

(6.88)

p�i4 ¼
1

N

� � 1�ρyzð Þ
pið Þρyz (6.89)

to estimate the total weight of the pumpkins in the field and construct 90% confidence

interval estimates using circumference at the estimation stage and top size at the selec-

tion stage using two tuning methods discussed in this chapter. Discuss your findings.

(Given: The population total of X is 21,080, total of Z is 14,600, and ρyz ¼ 0:3).
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7Tuning of the Horvitz–Thompson

estimator

7.1 Introduction

In this chapter, we consider the problem of estimation of population total by tuning the

design weights in the Horvitz and Thompson (1952) estimator. The tuning of

the design weights using both the chi-square type distance function and a new

displacement function are investigated using simulation study. At the end of the

chapter, a few unsolved exercises are also included for future investigation.

7.2 Jackknifed weights in the Horvitz–Thompson
estimator

Let dj ¼ π�1
j , with πj being the first-order inclusion probability, denote the jth design

weight. Then, the well-known Horvitz and Thompson (1952) estimator of the popu-

lation total Y is defined as

ŶHT ¼
X
j2s

djyj (7.1)

Let w�
j be any calibrated (or arbitrary) weights, following Singh (2003), such thatX
j2s

w�
j ¼
X
j2s

dj or �w�
n ¼ �d (7.2)

where

�w�
n ¼

1

n

X
j2s

w�
j and �d¼ 1

n

X
j2s

dj

Obviously, the weight w�
j can be written as

w�
j ¼ n�w�

n� n�1ð Þ �w�
n jð Þ (7.3)

or

w�
j ¼ n�d� n�1ð Þ�w�

n jð Þ (7.4)
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where

�w�
n jð Þ¼ 1

n�1

X
i 6¼j2s

w�
i (7.5)

is the jackknifed average weight after removing the jth weight.

Therefore, using Equations (7.2) and (7.4), we have

X
j2s

w�
j ¼ n�d or

X
j2s

n�d� n�1ð Þ �w�
n jð Þ� �¼ n�d

or

X
j2s

�w�
n jð Þ¼

X
j2s

dj (7.6)

In the same way one can see

X
j2s

�w�
n jð Þ¼

X
j2s

�d jð Þ¼
X
j2s

w�
j ¼
X
j2s

dj (7.7)

where

�d jð Þ¼ n�d�dj
� �

= n�1ð Þ (7.8)

7.3 Tuning with a chi-square distance function
while using jackknifed sample means

The newly tuned estimator of the population total Y is defined as

ŶHTuned csð Þ ¼
X
j2s

n�1ð Þ2 �w�
n jð Þ�n n�2ð Þ�d

h i
�yn jð Þ (7.9)

where

�yn jð Þ¼ n�yn� yj
n�1

(7.10)

with

�yn ¼
1

n

X
i2s

yi (7.11)
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and �w�
n jð Þ are the jackknife weights such thatX
j2s

�w�
n jð Þ¼

X
j2s

�d jð Þ (7.12)

and

X
j2s

�w�
n jð Þ�xn jð Þ¼X� 2�nð Þn2 �d�xn

n�1ð Þ2 (7.13)

where X¼
X
i2Ω

xi denotes the known population total of the auxiliary variable, and

�xn jð Þ¼ n�xn� xj
n�1

(7.14)

with

�xn ¼ 1

n

X
i2s

xi (7.15)

Note that constraint (7.13) ensures that the calibrated weight w�
j satisfies the calibra-

tion constraint:

X
j2s

w�
j xj ¼X (7.16)

with

xj ¼ n�xn� n�1ð Þ�xn jð Þ (7.17)

The chi-square distance between the calibrated weights w�
j and the design weights dj is

given by

D¼ 1

2

X
j2s

w�
j �dj

� �2
djqj

¼ n�1ð Þ2
2

X
j2s

�d jð Þ� �w�
n jð Þ� �2

djqj
(7.18)

The Lagrange function is then given by

L¼ n�1ð Þ2
2

X
j2s

�d jð Þ� �w�
n jð Þ� �2

djqj
� λ0

X
j2s

�w�
n jð Þ�

X
j2s

�d jð Þ
" #

� λ1
X
j2s

�w�
n jð Þ�xn jð Þ�X� 2�nð Þn2�xn �d

n�1ð Þ2
" # (7.19)

Tuning of the Horvitz–Thompson estimator 201



On setting

@L

@ �w�
n jð Þ¼ 0 (7.20)

we have

�w�
n jð Þ¼ �d jð Þ+ 1

n�1ð Þ2 λ0djqj + λ1djqj�xn jð Þ� �
(7.21)

Note that

X
j2s

�d jð Þ�xn jð Þ¼ 1

n�1ð Þ2
X
j2s

n�d�dj
� �

n�xn� xj
� �

¼ 1

n�1ð Þ2
�d�xnn

2 n�2ð Þ+ X̂HT

� � (7.22)

and

n�1ð Þ2 X� 2�nð Þn2 �d�xn
n�1ð Þ2 �

�d�xnn
2 n�2ð Þ+ X̂HT

n�1ð Þ2
" #

¼ X� X̂HT

� �
(7.23)

where

X̂HT ¼
X
i2s

dixi (7.24)

The values of λ0 and λ1 are obtained by solving the normal equations given byX
j2s

djqj,
X
j2s

djqj�xn jð Þ

X
j2s

djqj�xn jð Þ,
X
j2s

djqj �xn jð Þf g2

2
6664

3
7775

λ0

λ1

2
6664

3
7775¼

0

X� X̂HT

� �

2
6664

3
7775 (7.25)

Thus, the optimal jackknifed tuning weights are given by

�w�
n jð Þ¼ �d jð Þ+ Δj

n�1ð Þ2 X� X̂HT

� �
(7.26)

where

Δj ¼
djqj�xn jð Þ� � X

j2s
djqj

 !
� djqj
� � X

j2s
djqj�xn jð Þ

 !

X
j2s

djqj

 ! X
j2s

djqj �xn jð Þf g2
 !

�
X
j2s

djqj�xn jð Þ
( )2

(7.27)
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Using these weights, the newly tuned estimator of the population total Y becomes

ŶHTuned csð Þ ¼
X
j2s

n�1ð Þ2 �w�
n jð Þ�n n�2ð Þ�d

h i
�yn jð Þ

¼ ŶHT + β̂1 X� X̂HT

� � (7.28)

where

β̂1 ¼

X
j2s

djqj

 ! X
j2s

djqj�xn jð Þ�yn jð Þ
 !

�
X
j2s

djqj�yn jð Þ
 ! X

j2s
djqj�xn jð Þ

 !

X
j2s

djqj

 ! X
j2s

djqj �xn jð Þf g2
 !

�
X
j2s

djqj�xn jð Þ
( )2

(7.29)

which is a new estimator of the regression coefficient.

7.3.1 Estimation of variance and coverage

An adjusted estimator of variance of the tuned Horvitz and Thompson (1952) estima-

tor ŶHTuned csð Þ is

v̂ ŶHTuned csð Þ
� �¼X

j2s
fj �w

�
n jð Þ=�d jð Þ� 	2

ŶHTuned csð Þ jð Þ � ŶHTuned csð Þ
� 	

2 (7.30)

Note that each newly tuned Horvitz and Thompson (1952) doubly jackknifed estima-

tor of the population total Y is given by

ŶHTuned cs jð Þð Þ ¼
nŶHTuned csð Þ � n�1ð Þ2 �w�

n jð Þ�n n�2ð Þ�d
n o

�yn jð Þ
n�1

(7.31)

for j¼ 1,2,…,n, and

fj ¼ 1� N�1ð Þ=Nð Þ πj� n�1ð Þ= N�1ð Þ� �
=pj (7.32)

The coverage by the 1�αð Þ100% confidence interval estimates using this newly

tuned regression type Horvitz and Thompson (1952) estimator of the population total

is obtained by observing the proportion of times the true population total Y falls within

the interval estimate given by

ŶHTuned csð Þ � tα=2 df¼ n�1ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v̂ ŶHTuned csð Þ
� �q

(7.33)
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We studied the nominal 90%, 95%, and 99% intervals by selecting 10,000 random

samples from a population consisting of three related variables Y, X, and Z, which take
values yi, xi, and zi for the ith unit in the population as follows:

yi ¼ �Y + σyy
�
i (7.34)

xi ¼ �X + x�i σx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ρ2xy

q
+ ρxyσxy

�
i (7.35)

and

zi ¼ �Z + z�i σz
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ρ2yz

q
+ ρyzσzy

�
i (7.36)

where x�i �N 0, 1ð Þ, y�i �N 0, 1ð Þ, and z�i �N 0, 1ð Þ are three standard normal variables

with mean zero and standard deviation one. As an example, the variable Y represents

the unknown weight of pumpkins, the variable Z represents the known top size of

pumpkins, and the variable X represents the known circumference of pumpkins.

For this illustration, we made the following choice of parameters: ρxy ¼ 0:80,

ρyz ¼ 0:70, �X¼ 2320, �Y¼ 2450; �Z¼ 322, σx ¼ 50, σy ¼ 50, σz ¼ 52, and N¼ 2000.

Thus, our problem is to estimate the population total Y¼N �Y of the study variable

Y, using known population totals X¼N �X and Z¼N �Z of the two auxiliary variables

X and Z, respectively. We used the Z variable at the selection stage by taking

di ¼ π�1
i , where

πi ¼ N�n

N�1

� �
pi +

n�1

N�1

� �
(7.37)

with pi ¼ zi=Z, Z¼N �Z and n¼3–31.
The variable X is used at the tuning stage of the estimator of the population total of

the Y variable. For each sample of size n (from 3 to 31), we generated 10,000 samples

to study the coverages. The results obtained for various sample sizes are shown in

Table 7.1.

Table 7.1 shows that the coverages by the intervals formed from the newly tuned

estimator of the population total under the probability proportional to size and without

replacement (PPSWOR) sampling scheme perform much better than in earlier cases.

We used the PPSWOR scheme proposed independently by Midzuno (1951) and Sen

(1952). The Midzuno–Sen sampling scheme is easy to implement in practice; it

requires the selection of the first units in a sample s of size n using the PPSWR scheme

and the selection of the remaining n�1ð Þ units using the SRSWOR scheme. Any other

PPSWOR sampling scheme available in the literature could be investigated in this

context. It is very interesting to note that the attained coverage of the nominal 90%

confidence interval is estimated to be 89.62% for a sample size of 23 units, for the

95% interval attained coverage is 95.03% when the sample size is 23, and for the

99% interval attained coverage is 98.96% when the sample size is 21. Our overall

observation regarding the proposed tuned estimator is that it shows nominal coverages

for moderate sample sizes.
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7.3.2 R code

The following R code, PUMPKIN71.R, was used to study the coverage by the newly
tuned Horvitz and Thompson (1952) estimator.

#PROGRAM PUMPKIN71.R

library("sampling")

set.seed(2013)

rhoxy<-0.8;rhoyz<-0.7;NP<-2000;

xe<-rnorm(NP,0,1);ye<-rnorm(NP,0,1);ze<-rnorm(NP,0,1);

y<-2450 + 50*ye

x<-2320 + 50*sqrt(1-rhoxy 2̂)*xe + rhoxy*50*ye

z<-322 + 52*sqrt(1-rhoyz 2̂)*ze + rhoyz*52*ye

XPMEAN<-mean(x);ZPMEAN<-mean(z); TY<-sum(y)

cor(x,y);cor(z,y);sqrt(var(x));sqrt(var(y));sqrt(var(z))

nreps<-10000

ESTP¼rep(0,nreps)

ci1.max¼ci1.min¼ci2.max¼ci2.min¼ci3.max¼ci3.min¼ESTP

vESTP¼ESTP

for (n in seq(3,50,2) )

{

inclusionprobabilities(z,n)->pik

for (r in 1:nreps)

{

ese<-UPmidzuno(pik)

(1:length(pik))[ese¼¼1]->us

Table 7.1 Performance of the newly tuned Horvitz and Thompson
type estimator of population total

Sample size (n) 90% coverage 95% coverage 99% coverage

3 0.3041 0.4108 0.7022

5 0.3282 0.4175 0.6304

7 0.4452 0.5367 0.733

9 0.551 0.6483 0.8204

11 0.619 0.7206 0.8769

13 0.6923 0.7846 0.9132

15 0.7435 0.8358 0.9443

17 0.8008 0.8805 0.9684

19 0.8349 0.9083 0.9797

21 0.8796 0.9393 0.9896

23 0.8962 0.9503 0.9935

25 0.9239 0.9672 0.9965

27 0.9465 0.9808 0.9989

29 0.9618 0.9875 0.9988

31 0.9707 0.9909 0.9998
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#us<-sample(NP,n)

xs<-x[us]; ys<-y[us]; zs<-z[us]

xmj<-(sum(xs)-xs)/(n-1)

ymj<-(sum(ys)-ys)/(n-1)

p<-zs/(NP*ZPMEAN)

pi<-(NP-n)*p/(NP-1) + (n-1)/(NP-1); di<-1/pi

Fi<-1-((NP-1)/NP)*(pi-(n-1)/(NP-1))/p

YHT<-sum(di*ys); XHT<-sum(di*xs);

DB<-mean(di)

dj<-(sum(di)-di)/(n-1)

delta<-sum(di)*sum(di*xmj 2̂) - sum(di*xmj) 2̂

del<-(sum(di)*di*xmj - di*sum(di*xmj))/delta

wbni<-dj + del*(NP*XPMEAN-XHT)/((n-1) 2̂)

ESTi<- ((n-1) 2̂*wbni-n*DB*(n-2))*ymj

ESTP[r]<-sum(ESTi)

EST_I<-(n*ESTP[r] - ESTi)/(n-1)

vj<-(di*Fi/wbni) 2̂*(EST_I-ESTP[r]) 2̂

vESTP[r]<-sum(vj)

ci1.min[r]<- ESTP[r]+qt(.05,n-1)*sqrt(vESTP[r])

ci1.max[r]<- ESTP[r]+qt(.95,n-1)*sqrt(vESTP[r])

ci2.max[r]<- ESTP[r]+qt(.975,n-1)*sqrt(vESTP[r])

ci2.min[r]<- ESTP[r]+qt(.025,n-1)*sqrt(vESTP[r])

ci3.min[r]<- ESTP[r]+qt(.005,n-1)*sqrt(vESTP[r])

ci3.max[r]<- ESTP[r]+qt(.995,n-1)*sqrt(vESTP[r])

}# nreps

round(sum(ci1.min<TY & ci1.max>TY)/nreps,4)->cov1

round(sum(ci2.min<TY & ci2.max>TY)/nreps,4)->cov2

round(sum(ci3.min<TY & ci3.max>TY)/nreps,4)->cov3

cat(n, cov1,cov2,cov3,’\n’)

}# n

7.3.3 Numerical illustration

The following numerical illustration is used to explain all steps involved in the use of

the newly tuned Horvitz and Thompson (1952) estimator.

Example 7.1 In a specially designed field, it is easy to take a picture of each one of

the N¼ 200 pumpkins and record their top sizes. After taking the photographs,

Midzuno–Sen sampling was applied to select a sample of n¼ 7 pumpkins. The weight

(lbs), say Y, circumference (in.), say X, and top size (in.), say Z, of the seven selected

pumpkins are recorded as follows:

xi 130.9 67.0 106.5 98.0 115.2 137.1 101.1

yi 800 800 3084 1042 4500 2500 2397

zi 105 30 56 30 97 117 87
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Assume it is known that the population average circumference is �X¼ 105:40in: and

the population average top size is �Z¼ 61in:. Apply the tuned Horvitz and Thompson

(1952) estimator to estimate the total weight Y of the pumpkins and construct the 95%

confidence interval estimate.

Solution. One can easily compute the following:

xn( j) yn( j) w�
n( j) ŶHTuned(cs ( j))

104.1500 2387.167 27.85886 478049.4

114.8000 2387.167 28.01937 475750.4

108.2167 2006.500 27.69873 481722.0

109.6333 2346.833 27.52766 482897.9

106.7667 1770.500 27.99467 479433.2

103.1167 2103.833 27.89032 478951.0

109.1167 2121.000 28.09405 476276.3

where

ŶHTuned cs jð Þð Þ ¼
nŶHTuned csð Þ � n�1ð Þ2 �w�

n jð Þ�n n�2ð Þ�d
n o

�yn jð Þ
n�1

We can then compute

ŶHTuned csð Þ jð Þ ¼ 1

n

X
j2s

ŶHTuned csð Þ jð Þ ¼ 419135:0

and

SE ŶHTuned csð Þ
� �¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v̂ ŶHTuned csð Þ
� �q

¼ 5548:925

Thus, the 95% confidence interval estimate of the total weight of all pumpkins in the

field is 405557.3–432712.8 lbs.

7.3.4 R code used for illustration

We used the following R code, PUMPKIN71EX.R, to solve the preceding numerical

illustration.

#PROGRAM PUMPKIN71EX.R

n<-7

xs<-c(130.9,67,106.5,98,115.2,137.1,101.1)

ys<-c(800,800,3084,1042,4500,2500,2397)

zs<-c(105,30,56,30,97,117,87)

XPMEAN<-105.4;ZPMEAN<-61; RHOYZP<-0.4

NP<-200
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xmj<-(sum(xs)-xs)/(n-1)

ymj<-(sum(ys)-ys)/(n-1)

p<-zs/(NP*ZPMEAN)

pi<-(NP-n)*p/(NP-1) + (n-1)/(NP-1); di<-1/pi

Fi<-1-((NP-1)/NP)*(pi-(n-1)/(NP-1))/p

YHT<-sum(di*ys); XHT<-sum(di*xs)

DB<-mean(di)

dj<-(sum(di)-di)/(n-1)

delta<-sum(di)*sum(di*xmj 2̂) - sum(di*xmj) 2̂

del<-(sum(di)*di*xmj - di*sum(di*xmj))/delta

wbni<-dj + del*(NP*XPMEAN-XHT)/((n-1) 2̂)

ESTi<- ((n-1) 2̂*wbni-n*DB*(n-2))*ymj

ESTP<- sum(ESTi)

EST_I<-(n*ESTP - ESTi)/(n-1)

vj<-((Fi*wbni/dj) 2̂)*((EST_I - ESTP) 2̂)

vESTP<-sum(vj)

L<-ESTP+qt(.025,n-1)*sqrt(vESTP)

U<-ESTP+qt(.975,n-1)*sqrt(vESTP)

cbind(xmj,ymj,wbni,EST_I)

cat("Tuned estimate:", ESTP, "SE: ",vESTP .̂5 ,’\n’)

cat("Confidence Interval:"," ", L,"; ", U,’\n’)

7.4 Tuning of the Horvitz–Thompson estimator
with a displacement function

The newly tuned Horvitz and Thompson (1952) jackknife estimator of the population

total Y is defined as

ŶHTuned newð Þ ¼
X
j2s

n�1ð Þ2 �w∘
n jð Þ�n n�2ð Þ�d

h i
�yn jð Þ (7.38)

where �w∘
n jð Þ are the tuned weights constructed so that the following two constraints

are satisfied:X
j2s

�w∘
n jð Þ¼

X
j2s

�d jð Þ (7.39)

and X
j2s

�w∘
n jð ÞΨ j ¼ 0 (7.40)

where

Ψ j ¼ �xn jð Þ�X� 2�nð Þn2 �d �xn

n�d n�1ð Þ2 (7.41)
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We consider tuning the weights �w∘
n jð Þ such that an alternative to weighted displace-

ment function due to Singh (2012), defined as

X
j2s

�d jð Þ tanh�1
�w∘
n jð Þ� 	2�1

�w∘
n jð Þ� 	2

+ 1

" #
(7.42)

is optimum, subject to tuning constraints (7.39) and (7.40).

The Lagrange function becomes

L2 ¼
X
j2s

�d jð Þ tanh�1
�w∘
n jð Þ� 	2�1

�w∘
n jð Þ� 	2

+ 1

" #
� λ�0

X
j2s

�w∘
n jð Þ�

X
j2s

�d jð Þ
( )

�λ�1
X
j2s

�w∘
n jð ÞΨ j

( ) (7.43)

where λ0*, and λ1* are the Lagrange multiplier constants.

On setting

@L2
@ �w∘

n jð Þ¼ 0 (7.44)

we have

�w∘
n jð Þ¼

�d jð Þ
1 + λ�1Ψ j

(7.45)

Constraints (7.39) and (7.40) yield λ0*¼1, and λ1* is a solution to the single parametric

equation

X
j2s

�d jð ÞΨ j

1 + λ�1Ψ j
¼ 0 (7.46)

Thus, under the alternative to displacement function, the newly tuned Horvitz and

Thompson (1952) jackknife estimator (7.38) of the population total becomes

ŶHTuned newð Þ ¼
X
j2s

n�1ð Þ2 �d jð Þ
1 + λ�1Ψ j

�n n�2ð Þ�d
" #

�yn jð Þ (7.47)

7.4.1 Estimation of variance of the Horvitz–Thompson type
estimator

An adjusted estimator to estimate the variance of the newly tuned Horvitz and

Thompson (1952) estimator ŶHTuned(new) is

v̂ ŶHTuned newð Þ
� �¼X

j2s

fj �w
∘
n jð Þ

�d jð Þ
� �2

ŶHTuned newð Þ jð Þ � ŶHTuned newð Þ
� �2

(7.48)
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Note that each newly tuned Horvitz and Thompson (1952) jackknifed estimator of the

population total is given by

ŶHTuned newð Þ jð Þ ¼
nŶHTuned newð Þ � n�1ð Þ2 �w∘

n jð Þ�n n�2ð Þ�d
n o

�yn jð Þ
n�1

(7.49)

for j¼ 1,2,…,n. In the simulation, we approximated the value of λ1* by

λ�1 �

X
j2s

�d jð ÞΨ jX
j2s

�d jð ÞΨ 2
j

(7.50)

A better solution to the nonlinear equation (7.46) could be used, if available. The cov-

erage by the 1�αð Þ100% confidence interval estimates constructed using the newly

tuned Horvitz and Thompson (1952) estimator of the population total is estimated by

observing the proportion of times the true population total Y falls within the interval

estimate given by

ŶHTuned newð Þ � tα=2 df¼ n�1ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v̂ ŶHTuned newð Þ
� �q

(7.51)

We studied coverage by the nominal 90%, 95%, and 99% intervals by selecting 10,000

random samples from a population consisting of three related variables Y, X, and Z
taking values yi, xi, and zi for the ith unit in the population as

yi ¼ �Y + σyy
�
i (7.52)

xi ¼ �X + x�i σx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ρ2xy

q
+ ρxyσxy

�
i (7.53)

and

zi ¼ �Z + z�i σz
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ρ2yz

q
+ ρyzσzy

�
i (7.54)

where x�i �N 0, 1ð Þ, y�i �N 0, 1ð Þ, and z�i �N 0, 1ð Þ are three standard normal variables

with mean 0 and standard deviation 1.

The value yi of the variable Y can be imagined as the weight of the ith pumpkin, the

value zi of the variable Z can be imagined as the top size of the ith pumpkin measured

using remote sensing images, and value xi of the variable X can be imagined as the
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circumference of the ith pumpkin in the population. Again, for this illustration, we

made the following choice of parameters: ρxy ¼ 0:80, ρyz ¼ 0:70, �X¼ 2320,
�Y¼ 2450; �Z¼ 322, σx ¼ 50, σy ¼ 50, σz ¼ 52, and N¼ 2000. Thus, our problem is

to estimate the population total Y¼N �Y of the study variable Y, using known popula-

tion totals X¼N �X and Z¼N �Z of the two auxiliary variables X and Z, respectively. We

used the variable Z at the selection stage such that di ¼ π�1
i , where

πi ¼ N�n

N�1

� �
pi +

n�1

N�1

� �
(7.55)

with pi ¼ zi= N �Zð Þ and n¼3–31. This is an example of the Midzuno–Sen sampling

scheme. The variable X is used at the tuning stage of the estimator of the population

total of the study variable, Y. For each sample of size n, with n varying from 3 to 31, we

generated 10,000 samples and determined the attained coverage by the interval esti-

mators. The results obtained for the various sample sizes are shown in Table 7.2.

Table 7.2 shows the coverages of intervals constructed using the newly tuned esti-

mator of the population total under the PPSWOR scheme. We used the Midzuno–Sen
sampling scheme, but any sampling scheme available in the literature could be inves-

tigated in this way. Our overall observation about the proposed tuned estimator is that

it shows good results for small sample sizes. In particular, the nominal 90% coverage

is estimated as 89.84% for a sample of size 23, the nominal 95% coverage is estimated

as 95.18% for a sample of size 23, and the nominal 99% coverage is estimated as

99.02% for a sample of size 21.

Table 7.2 Performance of the newly tuned Horvitz–Thompson
interval estimator of the population total

Sample size (n) 90% coverage 95% coverage 99% coverage

3 0.4966 0.6170 0.8579

5 0.4442 0.5451 0.7606

7 0.4823 0.5822 0.7826

9 0.5730 0.6697 0.8427

11 0.6330 0.7350 0.8891

13 0.7005 0.7923 0.9194

15 0.7517 0.8421 0.9477

17 0.8045 0.8852 0.9711

19 0.8393 0.9118 0.9804

21 0.8834 0.9415 0.9902

23 0.8984 0.9518 0.9939

25 0.9257 0.9679 0.9967

27 0.9477 0.9814 0.9989

29 0.9626 0.9879 0.9989

31 0.9708 0.9916 0.9998
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7.4.2 R code

The following R code, PUMPKIN72.R, was used to study the coverage by newly the

tuned Horvitz and Thompson (1952) interval estimator based on optimizing the dis-

placement function.

#PROGRAM PUMPKIN72.R

library("sampling")

set.seed(2013)

rhoxy<-0.8;rhoyz<-0.7;NP<-2000;

xe<-rnorm(NP,0,1);ye<-rnorm(NP,0,1);ze<-rnorm(NP,0,1);

y<-2450 + 50*ye

x<-2320 + 50*sqrt(1-rhoxy 2̂)*xe + rhoxy*50*ye

z<-322 + 52*sqrt(1-rhoyz 2̂)*ze + rhoyz*52*ye

XPMEAN<-mean(x);ZPMEAN<-mean(z); TY<-sum(y)

cor(x,y);cor(z,y);sqrt(var(x));sqrt(var(y));sqrt(var(z))

nreps<-10000

ESTP¼rep(0,nreps)

ci1.max¼ci1.min¼ci2.max¼ci2.min¼ci3.max¼ci3.min¼ESTP

vESTP¼ESTP

for (n in seq(3,31,2) )

{

inclusionprobabilities(z,n)->pik

for (r in 1:nreps)

{

ese<-UPmidzuno(pik)

(1:length(pik))[ese¼¼1]->us

#us<-sample(NP,n)

xs<-x[us]; ys<-y[us]; zs<-z[us]

xmj<-(sum(xs)-xs)/(n-1)

ymj<-(sum(ys)-ys)/(n-1)

p<-zs/(NP*ZPMEAN)

pi<-(NP-n)*p/(NP-1) + (n-1)/(NP-1); di<-1/pi

Fi<-1-((NP-1)/NP)*(pi-(n-1)/(NP-1))/p

YHT<-sum(di*ys); XHT<-sum(di*xs)

DB<-mean(di); dj<-(sum(di)-di)/(n-1)

shi<-(NP*XPMEAN-(2-n)*(n 2̂)*DB*mean(xs))/(n*DB*((n-1) 2̂))

shi<-xmj-shi

wbni<-dj/(1+(sum(dj*shi)/sum(dj*shi 2̂))*shi)

ESTi<- ((n-1) 2̂*wbni-n*DB*(n-2))*ymj

ESTP[r]<- sum(ESTi)

EST_I<-(n*ESTP[r] - ESTi)/(n-1)

vj<-(di*Fi/wbni) 2̂*(EST_I-ESTP[r]) 2̂

vESTP[r]<-sum(vj)

ci1.max[r]<- ESTP[r]-qt(.05,n-1)*sqrt(vESTP[r])

ci1.min[r]<- ESTP[r]+qt(.05,n-1)*sqrt(vESTP[r])
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ci2.max[r]<- ESTP[r]-qt(.025,n-1)*sqrt(vESTP[r])

ci2.min[r]<- ESTP[r]+qt(.025,n-1)*sqrt(vESTP[r])

ci3.max[r]<- ESTP[r]-qt(.005,n-1)*sqrt(vESTP[r])

ci3.min[r]<- ESTP[r]+qt(.005,n-1)*sqrt(vESTP[r])

}# nreps

round(sum(ci1.min<TY & ci1.max>TY)/nreps,4)->cov1

round(sum(ci2.min<TY & ci2.max>TY)/nreps,4)->cov2

round(sum(ci3.min<TY & ci3.max>TY)/nreps,4)->cov3

cat(n, cov1,cov2,cov3,’\n’)

}# n

7.4.3 Numerical illustration

In the following example, we explain the various steps involved in tuning the Horvitz

and Thompson (1952) type estimator using the displacement function.

Example 7.2 Using the data in Example 7.1, apply the newly tuned Horvitz and

Thompson (1952) estimator ŶHTuned(new) to estimate the total weight Y of the pump-

kins in the field and construct the 95% confidence interval estimate.

Solution. One can easily compute the following:

xn( j) yn( j) w∘
n( j) ŶHTuned(new)( j)

104.1500 2387.167 27.84847 477663.6

114.8000 2387.167 27.99474 475568.6

108.2167 2006.500 27.71860 480948.2

109.6333 2346.833 27.53564 482250.9

106.7667 1770.500 28.00524 478786.3

103.1167 2103.833 27.86208 478772.8

109.1167 2121.000 28.11904 475423.7

where

ŶHTuned newð Þ jð Þ ¼
nŶHTuned newð Þ � n�1ð Þ2 �w∘

n jð Þ�n n�2ð Þ�d
n o

�yn jð Þ
n�1

From these we compute

ŶHTuned newð Þ ¼ 1

n

X
j2s

ŶHTuned newð Þ jð Þ ¼ 418676:8

and

SE ŶHTuned newð Þ
� �¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v̂ ŶHTuned newð Þ
� �q

¼ 5572:19

Thus, the 95% confidence interval estimate of the total weight of all pumpkins in the

field is 405042.1–432311.4 lbs.
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7.4.4 R code used for illustration

We used the following R code, PUMPKIN72EX.R, to solve the preceding

illustration.

#PROGRAM PUMPKIN72EX.R

n<-7

xs<-c(130.9,67,106.5,98,115.2,137.1,101.1)

ys<-c(800,800,3084,1042,4500,2500,2397)

zs<-c(105,30,56,30,97,117,87)

XPMEAN<-105.4;ZPMEAN<-61; RHOYZP<-0.4

NP<-200

xmj<-(sum(xs)-xs)/(n-1)

ymj<-(sum(ys)-ys)/(n-1)

p<-zs/(NP*ZPMEAN)

pi<-(NP-n)*p/(NP-1) + (n-1)/(NP-1); di<-1/pi

Fi<-1-((NP-1)/NP)*(pi-(n-1)/(NP-1))/p

YHT<-sum(di*ys); XHT<-sum(di*xs)

DB<-mean(di)

dj<-(sum(di)-di)/(n-1)

shi<-xmj-(NP*XPMEAN-(2-n)*(n 2̂)*DB* mean(xs)) /(n*DB*((n-1) 2̂))

wbni<-dj/(1+(sum(dj*shi)/sum(dj*shi 2̂))*shi)

ESTi<- ((n-1) 2̂*wbni-n*DB*(n-2))*ymj

ESTP<- sum(ESTi)

EST_I<-(n*ESTP - ESTi)/(n-1)

vj<-(di*Fi/wbni) 2̂*(EST_I-ESTP) 2̂

vESTP<-sum(vj)

L<-ESTP+qt(.025,n-1)*sqrt(vESTP)

U<-ESTP+qt(.975,n-1)*sqrt(vESTP)

cbind(xmj,ymj,wbni,EST_I)

cat("Tuned estimate:", ESTP, "SE: ",vESTP .̂5 ,’\n’)

cat("Confidence Interval:"," ", L,"; ", U,’\n’)

7.5 Exercises

Exercise 7.1 Consider the problem of estimating the population total Y with an esti-

mator defined by

ŶHTuned 1ð Þ ¼
1

n�1ð Þ
X
j2s

�w�
n jð Þ �d jð Þ½ ��1

ŶHT jð Þ (7.56)

where

ŶHT jð Þ¼ ŶHT�djyj (7.57)
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denotes the jth jackknifed Horvitz and Thompson (1952) estimator of the population

total and �w�
n jð Þ are the tuned weights constructed so that the following two constraints

are satisfied:

X
j2s

�w�
n jð Þ¼

X
j2s

�d jð Þ (7.58)

and

n�1ð Þ�1
X
j2s

�w�
n jð Þ �d jð Þ½ ��1

X̂HT jð Þ¼X (7.59)

where X̂HT jð Þ¼ X̂HT�djxj has its usual meaning.

By optimizing the distance function

1

2

X
j2s

�w�
n jð Þ� �d jð Þ� 	2
qj �d jð Þ (7.60)

Show that the tuned estimator of the population total is given by

ŶHTuned 1ð Þ ¼ ŶHT + b̂ X + X̂HT

� �
(7.61)

where b̂ is given by

b¼

X
j2s

qj �d jð Þ
 !X

j2s
qj �d jð Þ½ ��1

X̂HT jð ÞŶHT jð Þ�
X
j2s

qjŶHT jð Þ
 ! X

j2s
qjX̂HT jð Þ

 !

X
j2s

qj �d jð Þ
 ! X

j2s
qj �d jð Þð Þ�1

X̂HT jð Þ� �2 !
�

X
j2s

qjX̂HT jð Þ
 !2

(7.62)

Develop a doubly jackknifed estimator of variance to estimate the variance of the

tuned estimator of population total given in Equation (7.56). Write R code to study

the coverage by the 90%, 95%, and 99% confidence intervals of this estimator

suggested to you using the Midzuno–Sen sampling scheme.

Exercise 7.2 Consider the problem of estimating the population total Y with an esti-

mator defined by

ŶHTuned 2ð Þ ¼ 1

n�1ð Þ
X
j2s

�w�
n jð Þ �d jð Þ½ ��1

ŶHT jð Þ (7.63)

where

ŶHT jð Þ¼ ŶHT�djyj (7.64)
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denotes the jth jackknifed Horvitz and Thompson (1952) estimator of the population

total and �w�
n jð Þ are the tuned weights constructed so that the following two constraints

are satisfied:X
j2s

�w�
n jð Þ¼

X
j2s

�d jð Þ (7.65)

and

n�1ð Þ�1
X
j2s

�w�
n jð Þ �d jð Þ½ ��1

X̂HT jð Þ¼X (7.66)

where X̂HT jð Þ¼ X̂HT�djxj has its usual meaning. Optimize each one of the following

distance/displacement functions:

D1 ¼ 1

2

X
j2s

�w�
n jð Þ� �d jð Þ� 	2
qj �d jð Þ (7.67)

D2 ¼
X
j2s

�w�
n jð Þ� �d jð Þ� �2
2�w�

n jð Þ , �w�
n jð Þ> 0 (7.68)

D3 ¼
X
j2s

�d jð Þ tanh�1
�w�
n jð Þ� 	2�1

�w�
n jð Þ� 	2

+ 1

 !
(7.69)

and

D4 ¼ 1

2

X
j2s

�w�
n jð Þ� �d jð Þ� �2
qj �d jð Þ +

1

2

X
j2s

Φj �w�
n jð Þ� 	2

qj �d jð Þ (7.70)

where qj are suitably chosen weights that form different types of estimators, Φj is a

penalty, and tanh�1ðÞ is the hyperbolic tangent function, subject to the two tuning

constraints (7.65) and (7.66). Write code in any scientific programming language

to study these distance functions. Discuss the nature of the tuned weights. Construct

the 90%, 95%, and 99% confidence interval estimates in each situation by estimating

the variance using the method discussed here.

Exercise 7.3 Consider the problem of estimating the population total Y with an esti-

mator defined by

ŶHTuned csð Þ ¼
X
j2s

n�1ð Þ2 �w�
n jð Þ�n n�2ð Þ�d

h i
�yn jð Þ (7.71)

where

�yn jð Þ¼ n�yn� yj
n�1

(7.72)
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with �yn ¼
1

n

X
j2s

yj, and �w�
n jð Þ are the jackknife weights constructed so that

X
j2s

�w�
n jð Þ¼

X
j2s

�d jð Þ (7.73)

and

X
j2s

�w�
n jð Þ�xn jð Þ¼X� 2�nð Þn2 �d�xn

n�1ð Þ2 (7.74)

Optimize the penalized chi-square distance between the jackknifed calibrated weights

�w�
n jð Þ and the jackknifed design weights �d jð Þ as given by

D¼ n�1ð Þ2
2

X
j2s

�d jð Þ� �w�
n jð Þ� �2

djqj
+
X
j2s

n�d� n�1ð Þ�w�
n jð Þ� 	2

Φj

djqj
(7.75)

where qj are suitably chosen weights that form different types of estimators andΦj is a

penalty, subject to the two tuning constraints (7.73) and (7.74). Write code in any sci-

entific programming language to study these distance functions. Examine 90%, 95%,

and 99% confidence interval estimates in each situation by estimating the variance

using the method discussed here.

Exercise 7.4 Consider the problem of estimating the population total Y with an esti-

mator defined by

ŶHTuned csð Þ ¼
X
j2s

n�1ð Þ2 �w�
n jð Þ�n n�2ð Þ�d

h i
�yn jð Þ (7.76)

where

�yn jð Þ¼ n�yn� yj
n�1

(7.77)

with �yn ¼
1

n

X
j2s

yj, and �w�
n jð Þ are the jackknife weights so that

X
j2s

�w�
n jð Þ¼

X
j2s

�d jð Þ (7.78)

and

X
j2s

�w�
n jð Þ Ĝx jð Þ� 	 1�nð Þ ¼ 1

n�1ð Þ n�d
X
j2s

Ĝx jð Þ� 	 1�nð Þ �X Ĝx

� ��n

" #
(7.79)
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where Ĝx jð Þ¼
Yn
i6¼j¼1

xi

 !1= n�1ð Þ
is the jth jackknifed sample geometric mean

Ĝx ¼
Yn
i¼1

xi

 !1=n

, X¼
XN
i¼1

xi is the known population total of the auxiliary variable,

and �d jð Þ¼ n�d�dj
� �

= n�1ð Þ are the jackknifed design weights. Subject to the preced-
ing two constraints, optimize the weights �w�

n jð Þ in the following distance function

D¼ n�1ð Þ2
2

X
j2s

�d jð Þ� �w�
n jð Þ� �2

djqj
(7.80)

Develop a doubly jackknifed estimator of variance for the tuned estimator of popula-

tion total given in Equation (7.76). Write R code to study the coverage by 90%, 95%,

and 99% confidence intervals of the estimator suggested to you using the Midzuno–
Sen sampling scheme.

Exercise 7.5 In Exercise 7.4, replace constraint (7.79) with

X
j2s

�w�
n jð ÞĤx jð Þ

nĤx jð Þ� n�1ð ÞĤx

¼ 1

n�1ð Þ
X
j2s

n�d Ĥx jð Þ
nĤx jð Þ� n�1ð ÞĤx

� X

Ĥx

" #
(7.81)

where Ĥx jð Þ¼ n�1ð Þ
Xn
i 6¼j¼1

x�1
i

 !�1

is the jth jackknifed sample harmonic mean,

Ĥx ¼ n
Xn
i¼1

x�1
i

 !�1

and X¼
XN
i¼1

xi is the known population total of the auxiliary

variable.
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8Tuning in stratified sampling

8.1 Introduction

In this chapter, we extend the new methodology of tuning the jackknife technique in

survey sampling to the case of stratified random sampling. This will provide new esti-

mators of the population mean and will provide estimates of variance of these estima-

tors. The new methodology is illustrated with a model used to estimate the weight of

pumpkins with the help of known circumferences. Finally, an extension of the work to

the case of multistage sampling is suggested in the exercises.

8.2 Stratification

Stratification means the population of N units is first divided into homogeneous and

mutually exclusive groups called strata. Then an independent random sample of the

required size is selected from each stratum. In short, the hth stratum in stratified sam-

pling design consists of Nh units, where h¼ 1,2,…,L so that

XL
h¼1

Nh ¼N (8.1)

Let yhi be the value of the study variable for the ith unit in the hth stratum,

i¼ 1,2,…,Nh, so the hth stratum population mean is given by

�Yh ¼N�1
h

XNh

i¼1

yhi, for h¼ 1,2,…,L (8.2)

Obviously, using the concept of weighted average, the true mean of the whole pop-

ulation can be written as

�Y¼N1
�Y1 +N2

�Y2 +⋯ +NL
�YL

N1 +N2 +⋯+NL

¼N1
�Y1 +N2

�Y2 +⋯+NL
�YL

N

¼ N1

N

� �
�Y1 +

N2

N

� �
�Y2 +⋯+

NL

N

� �
�YL

¼Ω1
�Y1 +Ω2

�Y2 +⋯ +ΩL
�YL

¼
XL
h¼1

Ωh
�Yh

(8.3)
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where

Ωh ¼Nh

N
(8.4)

is the known proportion of population units falling within the hth stratum. Consider

drawing a sample sh of size nh using a simple random sampling (SRS) scheme from the

hth stratum consisting of Nh units, such that

XL
h¼1

nh ¼ n (8.5)

is the required sample size.

Assume the value of the ith unit of the study variable selected from the hth stratum

is denoted by yhi and i¼ 1,2,…,nh. An unbiased estimator of population mean �Y is

given by

�yst ¼
XL
h¼1

Ωh�yh (8.6)

where

�yh ¼ n�1
h

Xnh
i¼1

yhi (8.7)

denotes the hth stratum sample mean.

Also assume the value of the auxiliary variable for the ith unit selected from the hth
stratum is denoted by xhi, where i¼ 1,2,…,nh. An unbiased estimator of the popula-

tion mean

�X¼
XL
h¼1

Ωh
�Xh (8.8)

is given by

�xst ¼
XL
h¼1

Ωh�xh (8.9)

where

�xh ¼ n�1
h

Xnh
i¼1

xhi (8.10)
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denotes the hth stratum sample mean, and

�Xh ¼N�1
h

XNh

i¼1

xhi (8.11)

denotes the known hth stratum population mean of the auxiliary variable.

For more information about stratified random sampling, one could refer to Neyman

(1934).

8.3 Tuning with a chi-square distance function using
stratum-level known population means of an
auxiliary variable

The newly tuned estimator of the population mean �Y for stratified random sampling is

defined as

�yStTuned csð Þ ¼
XL
h¼1

Ωh

X
j2sh

nh�1ð Þ2 �wh jð Þ� nh�2ð Þ
h i

�yh jð Þ (8.12)

where �wh jð Þ is the tuned stratum weight such that in each stratum the following two

constraints are satisfied:

X
j2sh

�wh jð Þ¼ 1 (8.13)

and

X
j2sh

�wh jð Þ�xh jð Þ¼
�Xh�nh 2�nhð Þ�xh

nh�1ð Þ2 (8.14)

where

�yh jð Þ¼ nh�yh� yhj
nh�1

(8.15)

is the hth stratum sample mean of the study variable obtained by removing the jth unit
from the sample sh,

�xh jð Þ¼ nh�xh� xhj
nh�1

(8.16)
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is the hth stratum sample mean of the auxiliary variable obtained by removing the jth
unit from the sample sh, and

�wh jð Þ¼ 1�whj

nh�1
(8.17)

is the tuned jackknife weight of the calibrated weights whj constructed so that in each

stratumX
j2sh

whj ¼ 1 (8.18)

and X
j2sh

whjxhj ¼ �Xh (8.19)

We suggest the tuning of the weights whj such that in the hth stratum, the chi-square

type distance function, defined as

2�1nh
� �X

j2sh
q�1
hj whj�n�1

h

� �2 ¼ 2�1nh
� �X

j2sh
q�1
hj 1� nn�1ð Þ�wh jð Þ�n�1

h

� �2
(8.20)

is optimal, subject to the tuning constraints (8.13) and (8.14), and qhj is a choice of

weights in the hth stratum.

The hth stratum Lagrange function is then given by

Lh1 ¼ 2�1nh
� �X

j2sh
q�1
hj 1� nh�1ð Þ�wh jð Þ�n�1

h

� �2� λh0
X
j2sh

�wh jð Þ�1

( )

�λh1
X
j2sh

�wh jð Þ�xh jð Þ�
�Xh�nh 2�nhð Þ�xh

nh�1ð Þ2
( )

(8.21)

where λh0 and λh1 are Lagrange multiplier constants.

On setting:

@Lh1
@ �wh jð Þ¼ 0 (8.22)

we have

�wh jð Þ¼ 1

nh
1 +

1

nh�1ð Þ2 qhjλh0 + λh1qhj�xh jð Þ� �( )
(8.23)
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Using Equation (8.23) in Equations (8.13) and (8.14), a set of normal equations to find

the optimal values of λh0 and λh1 is found to be

X
j2sh

qhj,
X
j2sh

qhj�xh jð Þ

X
j2sh

qhj�xh jð Þ,
X
j2sh

qhj �xh jð Þf g2

2
6664

3
7775

λh0

λh1

" #

¼
0

nh�1ð Þ2 nh �Xh�nh 2�nhð Þ�xhð Þ
nh�1ð Þ2 �

X
j2sh

�xh jð Þ
( )

2
664

3
775 (8.24)

Note that

nh�1ð Þ2 nh �Xh�nh 2�nhð Þ�xhð Þ
nh�1ð Þ2 �

X
j2sh

�xh jð Þ
( )

¼ nh�1ð Þ2 nh �Xh�nh 2�nhð Þ�xhð Þ� nh�1ð Þ2nh�xh
nh�1ð Þ2

( )

¼ nh �Xh�nh 2�nhð Þ�xhð Þ� nh�1ð Þ2�xh
h i

¼ nh �Xh�2nh�xh + n
2
h�xh� n2h + 1�2nh

� �
�xh

� 	
¼ nh �Xh�2nh�xh + n

2
h�xh�n2h�xh� �xh + 2nh�xh

� 	
¼ nh �Xh� �xh½ �

(8.25)

Thus, we have

X
j2sh

qhj,
X
j2sh

qhj�xh jð Þ

X
j2sh

qhj�xh jð Þ,
X
j2sh

qhj �xh jð Þf g2

2
6664

3
7775

λh0

λh1

" #
¼

0

nh �Xh� �xhð Þ

" #
(8.26)

The jackknifed tuned weight �wh jð Þ then becomes:

�wh jð Þ¼ 1

nh
1 +

Δhj

nh�1ð Þ2
�Xh� �xhf g

" #
(8.27)
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with

Δhj ¼ qhj

�xh jð Þ
X
j2sh

qhj

 !
�
X
j2sh

qhj�xh jð Þ

X
j2sh

qhj

 ! X
j2sh

qhj �xh jð Þð Þ2
( )

�
X
j2sh

qhj�xh jð Þ
( )2

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

(8.28)

Thus, under the chi-square (cs) type distance function, the newly tuned jackknife esti-

mator (8.12) of the population mean �Y, for the stratified random sampling becomes

�yStTuned csð Þ ¼
XL
h¼1

Ωh

nh

X
j2sh

�yh jð Þ+ β̂h nh �Xh�
X
j2sh

�xh jð Þ
( )" #

¼
XL
h¼1

Ωh �yh + β̂h �Xh� �xhf g� 	 (8.29)

where

β̂h ¼

X
j2sh

qhj

 ! X
j2sh

qhj�xh jð Þ�yh jð Þ
 !

�
X
j2sh

qhj�yh jð Þ
 ! X

j2sh
qhj�xh jð Þ

 !

X
j2sh

qhj

 ! X
j2sh

qhj �xh jð Þð Þ2
 !

�
X
j2sh

qhj�xh jð Þ
 !2

2
666664

3
777775
(8.30)

8.3.1 Estimation of variance and coverage

We suggest the following adjusted estimator of the variance of the estimator

�yStTuned csð Þ:

v̂StTuned csð Þ ¼
XL
h¼1

Ω2
hnh nh�1ð Þ3

X
j2sh

�wh jð Þf g2 �y
hð Þ
StTuned csð Þ jð Þ � �y

hð Þ
StTuned csð Þ

n o2

(8.31)

Note that each newly tuned estimator of the hth stratum population mean is

�y
hð Þ
StTuned csð Þ jð Þ ¼

nh�ylh�nhf nh�1ð Þ2 �wh jð Þ�ðnh�2Þg�yh jð Þ
nh�1

" #
(8.32)
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where

�ylh ¼
X
j2sh

nh�1ð Þ2 �wh jð Þ� nh�2ð Þ
h i

�yh jð Þ (8.33)

for h¼ 1,2,…,L; j¼ 1,2,…,nh.
Remember that the strata are mutually exclusive, and samples are drawn indepen-

dently from each stratum, thus, an estimator of variance may be developed by taking

the sum, over all strata, of the estimators of variance in each stratum. Attained cov-

erage by the 1�αð Þ100% confidence interval estimates obtained from this newly

tuned estimator of the population mean is estimated by observing the proportion of

times the true population mean �Y falls within the interval estimates given by

�yStTuned csð Þ � tα=2 df¼ n�Lð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v̂StTuned csð Þ

q
(8.34)

We use degree of freedom df¼ n�L because one population mean is being estimated

in each stratum. Here we considered the problem of estimating the average weight of

three types of pumpkins, namely Sumbo Pumpkins of small size,Mumbo Pumpkins of
medium size, and Jumbo Pumpkins of large size, the size of the pumpkins being based

on their circumferences. We generated six variables, two variables in each stratum,

with different means, different standard deviations, and different correlations between

weight and circumference as follows:

xhi ¼ �Xh + σhxx
�
hi (8.35)

and

yhi ¼ �Yh + σhyy
�
hi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ρ2hxy

q
+ σhyρhxyx

�
hi (8.36)

where x�hi �N 0,1ð Þ and y�hi �N 0,1ð Þ for h¼ 1,2,3.
We studied the attained coverages by the nominally 90%, 95%, and 99% confi-

dence intervals, based on the newly tuned estimator of the population mean, by

selecting 10,000 random samples from each of the populations consisting of the three

types of pumpkins. We set the values of the correlation coefficients as ρ1xy ¼ 0:6,

ρ2xy ¼ 0:7, and ρ3xy ¼ 0:4. The known average values of the circumference (inches)

in the three strata were taken to be �X1 ¼ 20, �X2 ¼ 300, and �X3 ¼ 1400, respectively.

We assumed the average weights (lbs) of the pumpkins in the three strata were
�Y1 ¼ 25, �Y2 ¼ 400, and �Y3 ¼ 8000. We also set σ1x ¼ 12, σ2x ¼ 280, σ3x ¼ 329,

σ1y ¼ 15, σ2y ¼ 200, and σ3y ¼ 6000. For various small sample sizes n1, n2, and n3
are taken from the three independent strata consisting of N1 ¼ 800 Sumbo,
N2 ¼ 2000Mumbo, and N3 ¼ 6000 Jumbo pumpkins, we found the attained coverages

shown in Table 8.1.
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Table 8.1 Attained coverage of the newly tuned jackknife estimator

n1 n2 n3

Expected coverage

n1 n2 n3

Expected coverage

90% 95% 99% 90% 95% 99%

2 2 2 0.9190 0.9416 0.9707 4 2 2 0.9035 0.9244 0.9553

3 0.9700 0.9810 0.9931 3 0.9655 0.9759 0.9880

4 0.9850 0.9910 0.9964 4 0.9837 0.9902 0.9972

5 0.9922 0.9965 0.9992 5 0.9925 0.9959 0.9988

3 2 0.9004 0.9236 0.9575 3 2 0.8839 0.9102 0.9408

3 0.9609 0.9739 0.9890 3 0.9582 0.9718 0.9870

4 0.9812 0.9898 0.9966 4 0.9831 0.9889 0.9952

5 0.9907 0.9952 0.9979 5 0.9905 0.9939 0.9979

4 2 0.8885 0.9105 0.9444 4 2 0.8845 0.9056 0.9376

3 0.9574 0.9712 0.9875 3 0.9569 0.9698 0.9850

4 0.9829 0.9897 0.9962 4 0.9816 0.9891 0.9948

5 0.9921 0.9951 0.9982 5 0.9881 0.9924 0.9966

5 2 0.8888 0.9128 0.9487 5 2 0.8888 0.9123 0.9431

3 0.9590 0.9724 0.9863 3 0.9579 0.9714 0.9844

4 0.9808 0.9875 0.9952 4 0.9803 0.9874 0.9952

5 0.9914 0.9943 0.9978 5 0.9889 0.9937 0.9977

3 2 2 0.9062 0.9295 0.9580 5 2 2 0.8986 0.9203 0.9507

3 0.9660 0.9773 0.9904 3 0.9619 0.9747 0.9887

4 0.9848 0.9913 0.9963 4 0.9822 0.9884 0.9958

5 0.9921 0.9958 0.9988 5 0.9899 0.9939 0.9983

3 2 0.8844 0.9133 0.9482 3 2 0.8800 0.9069 0.9404

3 0.9582 0.9711 0.9858 3 0.9569 0.9709 0.9852

4 0.9844 0.9907 0.9965 4 0.9817 0.9886 0.9944

5 0.9910 0.9950 0.9986 5 0.9903 0.9938 0.9981
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4 2 0.8903 0.9140 0.9445 4 2 0.8773 0.9004 0.9347

3 0.9596 0.9723 0.9858 3 0.9565 0.9693 0.9841

4 0.9808 0.9875 0.9946 4 0.9821 0.9893 0.9959

5 0.9902 0.9942 0.9977 5 0.9902 0.9937 0.9977

5 2 0.8809 0.9055 0.9441 5 2 0.8791 0.9033 0.9364

3 0.9546 0.9671 0.9827 3 0.9517 0.9650 0.9826

4 0.9818 0.9891 0.9951 4 0.9774 0.9844 0.9936

5 0.9907 0.9947 0.9977 5 0.9889 0.9942 0.9980
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Table 8.1 shows that the attained coverage by the newly tuned stratified interval

estimator of the population mean remains quite appreciable for small sample sizes.

In particular, note that the attained coverage by the 90% interval is estimated to be

90.04% for a sample of two Sumbo, three Mumbo, and two Jumbo pumpkins, the

attained coverage by the 95% interval is estimated to be 94.16% for a sample of

two Sumbo, two Mumbo, and two Jumbo pumpkins, and attained coverage for the

99% interval is estimated to be 98.98% for a sample of two Sumbo, three Mumbo,
and four Jumbo pumpkins. Thus, the newly tuned estimator of the population mean

weight of the pumpkins shows quite good coverage in the case of small sample sizes.

8.3.2 R code

The following R code, PUMPKIN81.R, was used to study the coverage by the newly

tuned stratified estimator based on the chi-square type distance function.

#PROGRAM PUMPKIN81.R

set.seed(2013)

rnorm(800,0,1)->x1s

rnorm(2000,0,1)->x2s

rnorm(6000,0,1)->x3s

x1<-20 +12*x1s; x2<-300+280*x2s; x3<-1400+329*x3s

y1<-25 + 15* rnorm(800,0,1)*sqrt(1-0.6 2̂) + 15*0.6*x1s

y2<-400 + 200* rnorm(2000,0,1)*sqrt(1-0.7 2̂) + 200*0.7*x2s

y3<-8000+6000* rnorm(6000,0,1)*sqrt(1-0.4 2̂) + 6000*0.4*x3s

Nh<-c(800,2000,6000);N<-sum(Nh)

Wh<-Nh/N

xmean<- c(mean(x1),mean(x2),mean(x3))

xmh<-rep(0,3);deltah¼sest¼esh¼varh¼ymh¼xmh

ymean<-mean(c(y1,y2,y3))

nreps<-10000

ESTP¼rep(0,nreps)

ci1.max¼ci1.min¼ci2.max¼ci2.min¼ci3.max¼ci3.min¼vESTP¼ESTP

for (i1 in 2:5)

{for (i2 in 2:5)

{for (i3 in 2:5)

{nh<-c(i1,i2,i3);n<-sum(nh)

x<-matrix(ncol¼2,nrow¼n)

y<-matrix(ncol¼2,nrow¼n)

rep((1:3),nh)->x[,2]

y[,2]¼x[,2]

for (r in 1:nreps) {

s1<-sample(800,i1)

s2<-sample(2000,i2)

s3<-sample(6000,i3)

x[,1]<-c(x1[s1],x2[s2],x3[s3])
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y[,1]<-c(y1[s1],y2[s2],y3[s3])

for(h in 1:3)

{

xmj<-rep(0,nh[h])

ymj¼di¼dif¼wi¼xmj

x[(x[,2]¼¼h),1]->xsh; y[(y[,2]¼¼h),1]->ysh

xmj<-(sum(xsh)-xsh)/(nh[h]-1)

ymj<-(sum(ysh)-ysh)/(nh[h]-1)

delta<-nh[h]*sum(xmj 2̂) - sum(xmj) 2̂

di<-(nh[h]*xmj-sum(xmj))/delta

dif <- nh[h]*(xmean[h]-mean(xsh))/((nh[h]-1) 2̂)

wi <- (1+di*dif )/nh[h]

est_i ¼ nh[h]*(((nh[h]-1) 2̂)*wi-(nh[h]-2))*ymj

sest ¼ sum(est_i)

sest_j ¼ (sest-est_i)/(nh[h]-1)

esh[h] ¼ sest/nh[h]

vj<-(wi) 2̂*(sest_j-esh[h]) 2̂

varh[h] ¼ sum((Wh[h] 2̂)*(nh[h]*(nh[h]-1) 3̂)*vj)

}

ESTP[r] <- sum(Wh*esh)

vESTP[r] <- sum(varh)

ci1.max[r]<- ESTP[r]+qt(.95,n-3)*sqrt(vESTP[r])

ci1.min[r]<- ESTP[r]+qt(.05,n-3)*sqrt(vESTP[r])

ci2.max[r]<- ESTP[r]+qt(.975,n-3)*sqrt(vESTP[r])

ci2.min[r]<- ESTP[r]+qt(.025,n-3)*sqrt(vESTP[r])

ci3.max[r]<- ESTP[r]+qt(.995,n-3)*sqrt(vESTP[r])

ci3.min[r]<- ESTP[r]+qt(.005,n-3)*sqrt(vESTP[r])

}# nreps

round(sum(ci1.min<ymean & ci1.max>ymean)/nreps,4)->cov1

round(sum(ci2.min<ymean & ci2.max>ymean)/nreps,4)->cov2

round(sum(ci3.min<ymean & ci3.max>ymean)/nreps,4)->cov3

cat(i1,i2,i3,cov1,cov2,cov3,’\n’)

}#i1

}#i2

}#i

8.3.3 Numerical illustration

The following example explains the computational steps required to implement the

proposed estimator in a stratified random sampling scheme.

Example 8.1 Suppose that there are 800 Sumbo, 2000 Mumbo, and 6000 Jumbo
pumpkins in a field. The farmer applied the proportional allocation method to select a

sample of 3 Sumbo, 7 Mumbo, and 20 Jumbo pumpkins to estimate the weight of the

pumpkins in the entire field using the newly tuned stratified random sampling estima-

tor. The farmer knows that �X1 ¼ 20, �X2 ¼ 282, and �X3 ¼ 1403 are the true average
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circumferences of the three types of pumpkins. The farmer collected the following

sample information on circumference (x) in inches and weight (y) in pounds:

Sumbo pumpkins

x1i y1i

19.88 33.96

15.00 17.62

25.95 25.74

Mumbo pumpkins

x2i y2i

433.58 471.16

366.66 458.00

240.93 295.52

142.63 302.31

101.75 291.96

188.78 367.71

502.58 493.79

Jumbo pumpkins

x3i y3i

1245.83 5961.43

1389.43 5024.06

1549.95 5257.64

1218.13 6261.65

1396.49 5177.95

1605.36 2863.82

1197.08 5034.54

1603.43 3364.57

1506.00 1247.42

1428.66 2683.35

1329.38 6264.21

1236.34 5061.31

1604.52 4123.96

1348.69 4007.46

1340.51 8835.86

1480.90 7225.51

1500.06 8798.72

1109.26 9087.72

1599.05 1056.17

1374.50 2404.53
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The farmer nowwishes to construct 90%, 95%, and 99% confidence interval estimates

of the average weight of the pumpkins.

Solution. Using the tuned estimator for stratified random sampling the 90%, 95%,

and 99% confidence interval estimates of the average weight of the pumpkins

in the field are (2468.29, 4530.96), (2257.24, 4742.01), and (1821.97, 5177.27),

respectively.

8.3.4 R code used for illustration

We used the following R code, PUMPKIN81EX.R, in the preceding illustration.

PROGRAM PUMPKIN81EX.R

nh<-c(3,7,20);n<-sum(nh)

x<-matrix(ncol¼2,nrow¼n)

y<-matrix(ncol¼2,nrow¼n)

rep((1:3),c(3,7,20))->x[,2]

y[,2]¼x[,2]

x[,1]<-c(

19.88, 15.00, 25.95,

433.58,366.66,240.93,142.63,101.75,

188.78,502.58,

1245.83,1389.43,1549.95,1218.13,1396.49,

1605.36,1197.08,1603.43,1506.00,1428.66,1329.38,

1236.34,1604.52,1348.69,1340.51,1480.90,1500.06,

1109.26,1599.05,1374.5)

y[,1]<-c(133.96, 117.62, 125.74,

471.16,458.00,295.52,302.31,291.96,

367.71,493.79,

5961.43,5024.06,5257.64,6261.65,

5177.95,2863.82,5034.54,3364.57,1247.42,

2683.35,6264.21,5061.31,4123.96,4007.46,

8835.86,7225.51,8798.72,9087.72,1056.17,

2404.53)

Nh<-c(800,2000,6000);N<-sum(Nh)

Wh<-Nh/N

#xmean<- as.vector(tapply(x[,1],x[,2],mean))

xmean<-c(20,282,1403)

xmh<-rep(0,3);deltah¼sest¼esh¼varh¼ymh¼xmh

for(h in 1:3)

{

xmj<-rep(0,nh[h])

ymj¼di¼dif¼wi¼xmj

x[(x[,2]¼¼h),1]->xsh; y[(y[,2]¼¼h),1]->ysh

xmj<-(sum(xsh)-xsh)/(nh[h]-1)

ymj<-(sum(ysh)-ysh)/(nh[h]-1)
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delta<-nh[h]*sum(xmj 2̂) - sum(xmj) 2̂

di<-(nh[h]*xmj-sum(xmj))/delta

dif <- nh[h]*(xmean[h]-mean(xsh))/((nh[h]-1) 2̂)

wi <- (1+di*dif )/nh[h]

est_i ¼ nh[h]*((nh[h]-1) 2̂*wi-(nh[h]-2))*ymj

sest ¼ sum(est_i)

sest_j ¼ (sest-est_i)/(nh[h]-1)

esh[h] ¼ sest/nh[h]

vj<-(wi) 2̂*(sest_j-esh[h]) 2̂

varh[h] ¼ sum(Wh[h] 2̂*(nh[h]*(nh[h]-1) 3̂)*vj)

}

es <- sum(Wh*esh)

var <- sum(varh)

cat("Tuned estimate:", es, "SE: ",var .̂5 ,’\n’)

#cat("Confidence Interval:"," ", L,"; ", U,’\n’)

cat("90%:",es+qt(.05,n-3)*sqrt(var),

es+qt(.95,n-3)*sqrt(var),’\n’)

cat("95%:",es+qt(.025,n-3)*sqrt(var),

es+qt(.975,n-3)*sqrt(var),’\n’)

cat("99%:",es+qt(.005,n-3)*sqrt(var),

es+qt(.995,n-3)*sqrt(var),’\n’)

8.4 Tuning with dual-to-empirical log-likelihood function
using stratum-level known population means of an
auxiliary variable

The newly tuned jackknife estimator of the population mean �Y is defined by

�yStTuned dellð Þ ¼
XL
h¼1

Ωh

X
j2sh

nh�1ð Þ2 �w�
h jð Þ� nh�2ð Þ

h i
�yh jð Þ (8.37)

where �w�
h jð Þ are the stratum level tuned positive weights such that in each stratum the

following two constraints are satisfied:

X
j2sh

�w�
h jð Þ¼ 1 (8.38)

and

X
j2sh

�w�
h jð Þ �xh jð Þ�

�Xh�nh 2�nhð Þ�xh
nh�1ð Þ2

( )
¼ 0 (8.39)
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where:

w�
hj ¼ 1� nh�1ð Þ�w�

h jð Þ (8.40)

are some arbitrary weights of unit length in each stratum.

Here, we suggest tuning the weights �w�
h jð Þ so that the weighted dual-to-empirical

log-likelihood (dell) distance function in each stratum, defined as

X
j2sh

log 1�w�
hj

� �
nh

¼
X
j2sh

log �w�
h jð Þ� �

nh
(8.41)

is optimal, subject to the tuning constraints (8.38) and (8.39).

The Lagrange function becomes

Lh2 ¼
X
j2sh

log �w�
h jð Þ� �

nh
� λ�h0

X
j2sh

�w�
h jð Þ�1

( )
� λ�h1

X
j2sh

�w�
h jð ÞΨ hj

( )
(8.42)

where λh0* and λh1* are Lagrange multiplier constants, and

Ψ hj ¼ �xh jð Þ�
�Xh�nh 2�nhð Þ�xh

nh�1ð Þ2
 !( )

(8.43)

On setting

@Lh2
@ �w�

h jð Þ¼ 0 (8.44)

we have

�w�
h jð Þ¼ 1

nh 1 + λ�h1Ψ hj

� � (8.45)

Constraints (8.38) and (8.39) yield λh0* ¼1, and λh1* is a solution to the parametric

equation

X
j2sh

Ψ hj

1 + λ�h1Ψ hj

� �¼ 0 (8.46)

Thus, under the dell distance function, the newly tuned jackknife estimator (8.37) of

the population mean in stratified random sampling becomes

�yStTuned dellð Þ ¼
XL
h¼1

Ωh

X
j2sh

nh�1ð Þ2
nh 1 + λ�h1Ψ hj

� �� nh�2ð Þ
" #

�yh jð Þ (8.47)
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8.4.1 Estimation of variance and coverage

An adjusted estimator of the variance of the estimator �yStTuned dellð Þ is given by

v̂StTuned dellð Þ ¼
XL
h¼1

Ω2
hnh nh�1ð Þ3

X
j2sh

�w�
h jð Þ� �2

�y
hð Þ
StTuned dellð Þ jð Þ � �y

hð Þ
StTuned dellð Þ

n o2

(8.48)

Note that each newly tuned estimator of the hth stratum population mean is

�y
hð Þ
StTuned dellð Þ jð Þ ¼

nh�ylh�nh nh�1ð Þ2 �w�
h jð Þ� nh�2ð Þ

n o
�yh jð Þ

nh�1

2
4

3
5 (8.49)

and

�ylh ¼
X
j2sh

nh�1ð Þ2 �w�
h jð Þ� nh�2ð Þ

h i
�yh jð Þ (8.50)

for h¼ 1,2,…,L; j¼ 1,2,…,nh.
Attained coverage by the 1�αð Þ100% confidence interval estimates obtained from

this newly tuned dell estimator of the population mean is estimated by observing

the proportion of times the true population mean �Y falls within the interval estimates

given by

�yStTuned dellð Þ � tα=2 df¼ n�Lð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v̂StTuned dellð Þ

q
(8.51)

In the simulation study, under certain mild assumptions, we approximate

λ�h1 �

X
j2sh

Ψ hjX
j2sh

Ψ 2
hj

(8.52)

Here we consider the problem of estimating the average weight (lbs) of three types

of pumpkins, namely the Sumbo Pumpkins,Mumbo Pumpkins, and Jumbo Pumpkins,
with sizes based on their circumferences (in.). In the simulation study, we considered

three different strata based on the circumferences of the pumpkins. We generated

six variables, two variables in each stratum, with different means, different

standard deviations, and different correlations between weight and circumference

as follows:

xhi ¼ �Xh + σhxx
�
hi (8.53)
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and

yhi ¼ �Yh + σhyy
�
hi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ρ2hxy

q
+ σhyρhxyx

�
hi (8.54)

here x�hi �N 0, 1ð Þ and y�hi �N 0, 1ð Þ for h¼ 1,2,3.

Again, recall that the strata are mutually exclusive and samples are drawn indepen-

dently, so again we estimated the variance in each stratum and then took the sum over

all strata. We studied the attained coverage of the nominally 90%, 95%, and 99% con-

fidence intervals, constructed using the newly tuned estimator of the population mean

by selecting 10,000 random samples from the each of the three types of pumpkins. We

set the values of correlation coefficients as ρ1xy ¼ 0:6, ρ2xy ¼ 0:7, and ρ3xy ¼ 0:4. The

known average values of the circumferences (in.) in the three strata were taken to be
�X1 ¼ 20, �X2 ¼ 300, and �X3 ¼ 1400, respectively. We assumed the average weights

(lbs) of the pumpkins in the three strata were �Y1 ¼ 25, �Y2 ¼ 400, and �Y3 ¼ 8000,

respectively. We also set σ1x ¼ 12, σ2x ¼ 280, σ3x ¼ 329, σ1y ¼ 15, σ2y ¼ 200, and

σ3y ¼ 6000. We selected n1 Sumbo, n2Mumbo, and n3 Jumbo pumpkins from the three

independent strata consisting of N1 ¼ 800 Sumbo, N2 ¼ 2000 Mumbo, and N3 ¼ 6000

Jumbo pumpkins. The results obtained for various sample sizes are shown in

Table 8.2.

Table 8.2 shows that the coverage of intervals based on the newly tuned dell esti-

mator of the population mean in stratified random sampling remains as good as the

estimator based on the chi-square distance function. In particular, we note that attained

coverage of the nominally 90% confidence interval is estimated to be 89.14% for a

sample of two Sumbo, two Mumbo, and three Jumbo pumpkins, attained coverage

of the 95% intervals is estimated to be 92.01% for a sample two Sumbo, twoMumbo,
and three Jumbo pumpkins, and attained coverage of the 99% interval is estimated to

be 99.09% for a sample five Sumbo, five Mumbo, and four Jumbo pumpkins. Thus,

intervals based on the newly tuned dell estimator of the population mean weight in

stratified random sampling show lower coverage than those based on estimators

developed from the chi-square type distance function, in case of small sample sizes,

but shows almost equal coverage for reasonably large sample sizes.

8.4.2 R code

To study the true coverage of the newly tuned estimator based on the dell distance

function, we used the following R code, PUMPKIN82.R.

PROGRAM PUMPKIN82.R

set.seed(2013)

rnorm(800,0,1)->x1s

rnorm(2000,0,1)->x2s

rnorm(6000,0,1)->x3s

x1<-20 +12*x1s; x2<-300+280*x2s; x3<-1400+329*x3s

y1<-25 + 15* rnorm(800,0,1)*sqrt(1-0.6 2̂) + 15*0.6*x1s
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Table 8.2 Performance of confidence intervals based on the newly tuned dual-to-empirical log-likelihood
(dell) estimator with stratified random sampling

n1 n2 n3

Expected coverage

n1 n2 n3

Expected coverage

90% 95% 99% 90% 95% 99%

2 2 2 0.5632 0.6365 0.7741 4 2 2 0.5394 0.5972 0.7044

3 0.8914 0.9201 0.9598 3 0.8807 0.9071 0.9433

4 0.9747 0.9840 0.9937 4 0.9719 0.9825 0.9937

5 0.9894 0.9949 0.9986 5 0.9892 0.9941 0.9984

3 2 0.5554 0.6225 0.7415 3 2 0.5307 0.5905 0.6944

3 0.8776 0.9058 0.9460 3 0.8753 0.9026 0.9386

4 0.9732 0.9841 0.9947 4 0.9745 0.9821 0.9917

5 0.9888 0.9940 0.9974 5 0.9893 0.9933 0.9975

4 2 0.5637 0.6276 0.7489 4 2 0.5519 0.6094 0.7062

3 0.8738 0.9042 0.9442 3 0.8841 0.9085 0.9415

4 0.9758 0.9848 0.9945 4 0.9762 0.9852 0.9929

5 0.9907 0.9945 0.9980 5 0.9874 0.9917 0.9966

5 2 0.5710 0.6377 0.7484 5 2 0.5712 0.6268 0.7245

3 0.8842 0.9132 0.9490 3 0.8768 0.9062 0.9392

4 0.9740 0.9829 0.9934 4 0.9718 0.9822 0.9922

5 0.9910 0.9940 0.9974 5 0.9885 0.9932 0.9976

3 2 2 0.5559 0.6191 0.7318 5 2 2 0.5310 0.5851 0.6787

3 0.8839 0.9099 0.9486 3 0.8743 0.9031 0.9397

4 0.9750 0.9856 0.9936 4 0.9729 0.9818 0.9932

5 0.9890 0.9933 0.9975 5 0.9872 0.9923 0.9976

3 2 0.5461 0.6082 0.7135 3 2 0.5243 0.5818 0.6731

3 0.8799 0.9060 0.9452 3 0.8757 0.9022 0.9377

4 0.9779 0.9862 0.9949 4 0.9743 0.9827 0.9916

5 0.9892 0.9938 0.9980 5 0.9888 0.9928 0.9974
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4 2 0.5576 0.6148 0.7288 4 2 0.5382 0.5978 0.6996

3 0.8819 0.9097 0.9446 3 0.8784 0.9011 0.9359

4 0.9731 0.9827 0.9920 4 0.9751 0.9840 0.9929

5 0.9895 0.9935 0.9976 5 0.9890 0.9926 0.9976

5 2 0.5669 0.6268 0.7342 5 2 0.5606 0.6202 0.7163

3 0.8774 0.9047 0.9403 3 0.8714 0.8995 0.9377

4 0.9760 0.9837 0.9924 4 0.9703 0.9798 0.9909

5 0.9902 0.9946 0.9975 5 0.9886 0.9939 0.9978
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y2<-400 + 200* rnorm(2000,0,1)*sqrt(1-0.7 2̂) + 200*0.7*x2s

y3<-8000+6000* rnorm(6000,0,1)*sqrt(1-0.4 2̂) + 6000*0.4*x3s

Nh<-c(800,2000,6000);N<-sum(Nh)

Wh<-Nh/N

xmean<- c(mean(x1),mean(x2),mean(x3))

xmh<-rep(0,3);deltah¼sest¼esh¼varh¼ymh¼xmh

ymean<-mean(c(y1,y2,y3))

nreps<-10000

ESTP¼rep(0,nreps)

ci1.max¼ci1.min¼ci2.max¼ci2.min¼ci3.max¼ci3.min¼vESTP¼ESTP

for (i1 in 2:5)

{for (i2 in 2:5)

{for (i3 in 2:5)

{nh<-c(i1,i2,i3);n<-sum(nh)

x<-matrix(ncol¼2,nrow¼n)

y<-matrix(ncol¼2,nrow¼n)

rep((1:3),nh)->x[,2]

y[,2]¼x[,2]

for (r in 1:nreps) {

s1<-sample(800,i1)

s2<-sample(2000,i2)

s3<-sample(6000,i3)

x[,1]<-c(x1[s1],x2[s2],x3[s3])

y[,1]<-c(y1[s1],y2[s2],y3[s3])

for(h in 1:3)

{

xmj<-rep(0,nh[h])

ymj¼di¼dif¼wi¼xmj

x[(x[,2]¼¼h),1]->xsh; y[(y[,2]¼¼h),1]->ysh

xmj<-(sum(xsh)-xsh)/(nh[h]-1)

ymj<-(sum(ysh)-ysh)/(nh[h]-1)

phi<- xmj - (xmean[h] - nh[h]*(2-nh[h])*mean(xsh))/

((nh[h]-1) 2̂)

al<-sum(phi)/sum(phi 2̂)

wi<-(1/(1+al*phi))/nh[h]

est_i ¼ nh[h]*(((nh[h]-1) 2̂)*wi-(nh[h]-2))*ymj

sest ¼ sum(est_i)

sest_j ¼ (sest-est_i)/(nh[h]-1)

esh[h] ¼ sest/nh[h]

vj<-(wi) 2̂*(sest_j-esh[h]) 2̂

varh[h] ¼ sum((Wh[h] 2̂)*(nh[h]*(nh[h]-1) 3̂)*vj)

}

ESTP[r] <- sum(Wh*esh)

vESTP[r] <- sum(varh)

ci1.max[r]<- ESTP[r]+qt(.95,n-3)*sqrt(vESTP[r])
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ci1.min[r]<- ESTP[r]+qt(.05,n-3)*sqrt(vESTP[r])

ci2.max[r]<- ESTP[r]+qt(.975,n-3)*sqrt(vESTP[r])

ci2.min[r]<- ESTP[r]+qt(.025,n-3)*sqrt(vESTP[r])

ci3.max[r]<- ESTP[r]+qt(.995,n-3)*sqrt(vESTP[r])

ci3.min[r]<- ESTP[r]+qt(.005,n-3)*sqrt(vESTP[r])

}# nreps

round(sum(ci1.min<ymean & ci1.max>ymean)/nreps,4)->cov1

round(sum(ci2.min<ymean & ci2.max>ymean)/nreps,4)->cov2

round(sum(ci3.min<ymean & ci3.max>ymean)/nreps,4)->cov3

cat(i1,i2,i3,cov1,cov2,cov3,’\n’)

}#i1

}#i2

}#i3

8.4.3 Numerical illustration

We explain the use of the dell estimator in stratified random sampling with the fol-

lowing example.

Example 8.2 Suppose there are 800 Sumbo, 2000Mumbo, and 6000 Jumbo pump-

kins in a field. The farmer applied the proportional allocation method to select a sam-

ple of 3 Sumbo, 7 Mumbo, and 20 Jumbo pumpkins to estimate average weigh of the

pumpkins in the whole field using the dell estimator tuned for stratified random sam-

pling. The farmer collected the following information on circumference (x) in inches
and weight (y) in lbs.

Sumbo pumpkins

x1i y1i

19.88 33.96

15.00 17.62

25.95 25.74

Mumbo pumpkins

x2i y2i

433.58 471.16

366.66 458.00

240.93 295.52

142.63 302.31

101.75 291.96

188.78 367.71

502.58 493.79
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Jumbo pumpkins

x3i y3i

1245.83 5961.43

1389.43 5024.06

1549.95 5257.64

1218.13 6261.65

1396.49 5177.95

1605.36 2863.82

1197.08 5034.54

1603.43 3364.57

1506.00 1247.42

1428.66 2683.35

1329.38 6264.21

1236.34 5061.31

1604.52 4123.96

1348.69 4007.46

1340.51 8835.86

1480.90 7225.51

1500.06 8798.72

1109.26 9087.72

1599.05 1056.17

1374.50 2404.53

The farmer knows that �X1 ¼ 20, �X2 ¼ 282, and �X3 ¼ 1403 are the average circumfer-

ences of the three types of pumpkins, and he wishes to construct 90%, 95%, and 99%

confidence interval estimates.

Solution. Using the tuned estimator in stratified random sampling the 90%, 95%,

and 99% confidence interval estimates of the average weight of pumpkins in the field

are (2468.29, 4530.96), (2257.25, 4742.01), and (1821.98, 5177.27), respectively. It

appears that the tuned dell estimator in stratified random sampling works as well as the

chi-square distance estimator for this particular situation.

8.4.4 R code used for illustration

We used the following R code, PUMPKIN82EX.R, in the preceding illustration.

PROGRAM PUMPKIN82EX.R

nh<-c(3,7,20);n<-sum(nh)

x<-matrix(ncol¼2,nrow¼n)

y<-matrix(ncol¼2,nrow¼n)

rep((1:3),c(3,7,20))->x[,2]

y[,2]¼x[,2]

x[,1]<-c(

19.88, 15.00, 25.95,
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433.58,366.66,240.93,142.63,101.75,

188.78,502.58,

1245.83,1389.43,1549.95,1218.13,1396.49,

1605.36,1197.08,1603.43,1506.00,1428.66,1329.38,

1236.34,1604.52,1348.69,1340.51,1480.90,1500.06,

1109.26,1599.05,1374.5)

y[,1]<-c(133.96, 117.62, 125.74,

471.16,458.00,295.52,302.31,291.96,

367.71,493.79,

5961.43,5024.06,5257.64,6261.65,

5177.95,2863.82,5034.54,3364.57,1247.42,

2683.35,6264.21,5061.31,4123.96,4007.46,

8835.86,7225.51,8798.72,9087.72,1056.17,

2404.53)

Nh<-c(800,2000,6000);N<-sum(Nh)

Wh<-Nh/N

#xmean<- as.vector(tapply(x[,1],x[,2],mean))

xmean<-c(20,282,1403)

xmh<-rep(0,3);deltah¼sest¼esh¼varh¼ymh¼xmh

for(h in 1:3)

{

xmj<-rep(0,nh[h])

ymj¼di¼dif¼wi¼xmj

x[(x[,2]¼¼h),1]->xsh; y[(y[,2]¼¼h),1]->ysh

xmj<-(sum(xsh)-xsh)/(nh[h]-1)

ymj<-(sum(ysh)-ysh)/(nh[h]-1)

phi<- xmj - (xmean[h] - nh[h]*(2-nh[h])*mean(xsh))/((nh[h]-1) 2̂)

al<-sum(phi)/sum(phi 2̂)

wi<-(1/(1+al*phi))/nh[h]

est_i ¼ nh[h]*(((nh[h]-1) 2̂)*wi-(nh[h]-2))*ymj

sest ¼ sum(est_i)

sest_j ¼ (sest-est_i)/(nh[h]-1)

esh[h] ¼ sest/nh[h]

vj<-(wi) 2̂*(sest_j-esh[h]) 2̂

varh[h] ¼ sum(Wh[h] 2̂*nh[h]*(nh[h]-1)^ 3*vj)

}

es <- sum(Wh*esh); var <- sum(varh)

cat("Tuned estimate:", es, "SE: ",var .̂5 ,’\n’)

cat("90%:",es+qt(.05,n-3)*sqrt(var),

es+qt(.95,n-3)*sqrt(var),’\n’)

cat("95%:",es+qt(.025,n-3)*sqrt(var),

es+qt(.975,n-3)*sqrt(var),’\n’)

cat("99%:",es+qt(.005,n-3)*sqrt(var),

es+qt(.995,n-3)*sqrt(var),’\n’)
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8.5 Exercises

Exercise 8.1 Consider the newly tuned estimator of the population mean �Y in strat-

ified random sampling, defined by

�yStTuned csð Þ ¼
XL
h¼1

Ωh

X
j2sh

nh�1ð Þ2 �w�
nh

jð Þ� nh�2ð Þ
h i

�yh jð Þ (8.55)

where

�yh jð Þ¼ nh�yh� yhj
nh�1

(8.56)

is the hth stratum sample mean of the study variable obtained by removing the jth unit
from the stratum sample sh, and Ωh ¼Nh=N are the hth stratum weights. The tuned

weights �w�
nh

jð Þ are computed independently in the h strata such that the chi-squared

type distance function, defined as

Dh ¼ nh
2

X
j2sh

q�1
hj 1� nh�1ð Þ�w�

nh
jð Þ�n�1

h

h i2
(8.57)

is optimized, subject to the following two tuning constraints:

X
j2sh

�w�
nh

jð Þ¼ 1 (8.58)

and

X
j2sh

�w�
nh

jð Þ�xh jð Þ¼
�Xh�nh 2�nhð Þ�xh

nh�1ð Þ2 (8.59)

where

�xh jð Þ¼ nh�xh� xhj
nh�1

(8.60)

is the jth jackknifed estimator obtained from the hth stratum sample mean

�xh ¼ n�1
h

X
i2sh

xhi by removing the jth unit. The stratum population means of the auxil-

iary variable �Xh are assumed to be known. Find the optimal tuning weights �w�
nh

jð Þ for
the estimator �yStTuned csð Þ. Suggest doubly jackknifed estimators of variance and con-

fidence interval. Create a hypothetical pumpkin farm where the pumpkins can be

divided into three mutually exclusive strata, say Sumbo, Mumbo, and Jumbo
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pumpkins, based on their known circumferences. Select a sample of size n using the

method of proportional allocation. Study the nominally 90%, 95%, and 99% cover-

ages by the confidence interval estimators you suggested. Discuss the difficulties

you encountered, if any.

Exercise 8.2 In Exercises 8.1, consider an additional constraint given by

X
j2sh

�w�
nh

jð Þ σ̂2hx jð Þ¼ σ2hx�nh 2�nhð Þσ̂2hx
nh�1ð Þ2 (8.61)

where

σ̂2hx jð Þ¼ nhσ̂
2
hx� xhj� �xh

� �2
nh�1

(8.62)

and

σ̂2hx ¼ n�1
n

X
i2sh

xhi� �xhð Þ2 (8.63)

Note that σ̂2hx is the maximum likelihood estimator of the known finite population var-

iance σ2hx ¼N�1
h

XNh

i¼1
xhi � �Xhð Þ2 of the auxiliary variable in the hth stratum. Also,

σ̂2hx jð Þ is a partial jth jackknifed estimator of variance obtained by dropping the jth
squared deviation about the hth stratum sample mean from the total sum of squares

from the sample sh of the auxiliary variable divided by nh�1ð Þ. Discuss and report

the changes observed in the results.

Exercise 8.3 In Exercise 8.1, replace the second constraint with the following

constraint:

X
j2sh

�w�
nh

jð Þ Ĝhx jð Þ� 	 1�nhð Þ ¼ 1

nh�1ð Þ
X
j2sh

Ĝhx jð Þ� � 1�nhð Þ � �Xh Ĝhx

� ��nh

" #
(8.64)

where �Xh ¼N�1
h

XNh

i¼1
xhi denotes the known population arithmetic mean of the aux-

iliary variable in the hth stratum, and

Ĝhx jð Þ¼
Ynh
i 6¼j¼1

xhi

 !1= nh�1ð Þ
, j¼ 1,2,…,nh (8.65)

is the jth jackknifed estimator of the geometric mean of the auxiliary variable obtained

by dropping the jth unit from the usual estimator of the geometric mean of the aux-

iliary variable in the hth stratum which is given by
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Ĝhx ¼
Ynh
i¼1

xi

 !1=nh

, h¼ 1,2,…,L (8.66)

Exercise 8.4 In Exercise 8.1, replace the second constraint with the following

constraint:

X
j2sh

�w�
nh

jð ÞĤhx jð Þ
nhĤhx jð Þ� nh�1ð ÞĤhx

¼ 1

nh�1ð Þ
X
j2sh

Ĥhx jð Þ
nhĤhx jð Þ� nh�1ð ÞĤhx

�
�Xh

Ĥhx

" #

(8.67)

where �Xh ¼N�1
h

XNh

i¼1
xhi denotes the known population arithmetic mean of the aux-

iliary variable in the hth stratum, and

Ĥhx jð Þ¼ nh�1ð Þ
Xnh
i 6¼j¼1

x�1
hi

 !�1

, j¼ 1,2,…,nh (8.68)

is the jth jackknifed estimator of the harmonic mean of the auxiliary variable obtained

by dropping jth unit from the usual estimator of the harmonic mean of the auxiliary

variable in the hth stratum, which is given by

Ĥhx ¼ nh
Xnh
i¼1

x�1
hi

 !�1

(8.69)

Exercise 8.5 Consider the newly tuned estimator of the population mean �Y for strat-

ified random sampling defined by

�yStTuned dellð Þ ¼
XL
h¼1

Ωh

X
j2sn

nh�1ð Þ2 �w�
nh

jð Þ� nh�2ð Þ
h i

�yh jð Þ (8.70)

where

�yh jð Þ¼ nh�yh� yhj
nh�1

(8.71)

is the hth stratum sample mean of the study variable obtained by removing the jth unit
from the sample sh, and Ωh ¼Nh=N is the hth stratum weight. The tuned weights

�w�
nh

jð Þ are computed independently in the h strata such that the dell distance function

defined as
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Dh ¼ 1

nh

X
j2sh

ln �w�
nh

jð Þ
� �

(8.72)

is optimized, subject to the following two tuning constraints:

X
j2sh

�w�
nh

jð Þ¼ 1 (8.73)

and

X
j2sh

�w�
nh

jð ÞΨ hj ¼ 0 (8.74)

where

Ψ hj ¼ �xh jð Þ�
�Xh�nh 2�nhð Þ�xh

nh�1ð Þ2 (8.75)

with

�xh jð Þ¼ nh�xh� xhj
nh�1

(8.76)

being the jth jackknifed estimator obtained from the hth stratum sample mean

�xh ¼ n�1
h

X
i2shxhi by removing the jth unit. Assume that the stratum population means

of the auxiliary variable �Xh are known. For the optimal tuning weights �w�
nh

jð Þ, find the
estimator �yStTuned dellð Þ. Suggest doubly jackknifed estimators of variance and a confi-

dence interval estimator. Create a hypothetical pumpkin farmwhere the pumpkins can

be divided into three mutually exclusive strata, say Sumbo, Mumbo, and Jumbo,
pumpkins, based on their known circumferences. Select a sample of size n using

the method of proportional allocation in each stratum. Study the coverages by the

nominally 90%, 95%, and 99% confidence interval estimators you suggested. Discuss

the difficulties you encountered, if any.

Exercise 8.6 In Exercise 8.5 consider an additional constraint given by

X
j2sh

�w�
nh

jð Þ σ̂2hx jð Þ�σ2hx�nh 2�nhð Þσ̂2hx
nh�1ð Þ2

" #
¼ 0 (8.77)

where

σ̂2hx jð Þ¼ nhσ̂
2
hx� xhj� �xh

� �2
nh�1

(8.78)
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and

σ̂2hx ¼ n�1
h

X
i2sh

xhi� �xhð Þ2: (8.79)

Note that σ̂2hx is the maximum likelihood estimator of the known finite population var-

iance σ2hx ¼N�1
h

XNh

i¼1
xhi � �Xhð Þ2 of the auxiliary variable in the hth stratum. Also,

σ̂2hx jð Þ is a partial jth jackknifed estimator of the variance obtained by dropping the

jth squared deviation about the hth stratum sample mean from the total sum of squares

from the sample sh of the auxiliary variable divided by nh�1ð Þ. Discuss and report the
changes observed in the results.

Exercise 8.7 Consider a newly tuned estimator of the population mean �Y for com-

bined stratified random sampling defined as

�y
cð Þ
StTuned csð Þ ¼

XL
h¼1

Ωh

X
j2sn

nh�1ð Þ2 �w�
nh

jð Þ� nh�2ð Þ
n o

�yh jð Þ (8.80)

where

�yh jð Þ¼ nh�yh� yhj
nh�1

(8.81)

is the hth stratum sample mean of the study variable obtained by removing the jth unit
from the sample sh, and Ωh ¼Nh=N are the hth stratum weights. The tuned weights

�w�
nh

jð Þ are computed using pooled information across all strata such that a new

weighted chi-squared type distance function defined by

Dc ¼
XL
h¼1

Ωh
nh
2

X
j2sh

q�1
hj 1� nh�1ð Þ�w�

nh
jð Þ�n�1

h

n o2

" #
(8.82)

is optimized, subject to the following two tuning constraints:

XL
h¼1

Ωh nh�1ð Þ
X
j2sh

�w�
nh

jð Þ¼
XL
h¼1

nhΩh�1

 !
(8.83)

and

XL
h¼1

Ωh nh�1ð Þ2
X
j2sh

�w�
nh

jð Þ�xh jð Þ¼ �X�
XL
h¼1

Ωhnh 2�nhð Þ�xh (8.84)
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where

�xh jð Þ¼ nh�xh� xhj
nh�1

(8.85)

is the jth jackknifed estimator obtained from the hth stratum sample mean

�xh ¼ n�1
h

X
i2shxhi by removing the jth unit. Assume that the combined population

mean �X¼
XL

h¼1
Ωh

�Xh of the auxiliary variable is known, while at the stratum level

population means, �Xh, are assumed to be unknown. Note that for any arbitrary weights

w�
hj of unit sum, the constraints (8.83) and (8.84) are equivalent to the following two

constraints:

XL
h¼1

Ωh

X
j2sh

w�
hj ¼ 1 (8.86)

and

XL
h¼1

Ωh

X
j2sh

w�
hjxhj ¼ �X (8.87)

For the optimal tuning weights �w�
nh

jð Þ, find the estimator �y
cð Þ
StTuned csð Þ. Suggest doubly

jackknifed estimators of variance and a confidence interval estimator. Create a hypo-

thetical pumpkin farm where the pumpkins can be divided into three mutually exclu-

sive strata, say Sumbo,Mumbo, and Jumbo pumpkins. Select a sample of size n using
the method of proportional allocation. Study the nominally 90%, 95%, and 99% cov-

erages by the confidence interval estimators you suggested. Discuss the difficulties

you encountered, if any.

Exercise 8.8 Consider a semituned estimator of the population mean �Y in stratified

random sampling defined as

�y�St dellð Þ ¼
XL
h¼1

Ωh

X
j2sh

whj�yh jð Þ (8.88)

where

�yh jð Þ¼ nh�yh� yhj
nh�1

(8.89)

is the hth stratum sample mean of the study variable obtained by removing the jth unit
from the sample sh, and whj is the semituned stratum weight such that across all strata

the following two constraints are satisfied:
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XL
h¼1

Ωh

X
j2sh

whj ¼ 1 (8.90)

and

XL
h¼1

Ωh

X
j2sh

whj�xh jð Þ� �X

" #
¼ 0 (8.91)

where

�xh jð Þ¼ nh�xh� xhj
nh�1

(8.92)

is the hth stratum sample mean of the auxiliary variable obtained by removing the jth
unit from the sample sh. It is named semituned because only sample means are

jackknifed and weights are not jackknifed. Find a set of semituned weights whj such

that across all the strata the log-likelihood distance function defined by

XL
h¼1

Ωh

X
j2sh

ln whj

� �
(8.93)

is optimized, subject to the tuning constraints (8.90) and (8.91). For the semituning

weights whj find the estimator �y�St dellð Þ. Suggest doubly jackknifed estimators of vari-

ance and a confidence interval estimator. Create a hypothetical pumpkin farm where

the pumpkins can be divided into three mutually exclusive strata, say Sumbo,Mumbo,
and Jumbo pumpkins. Select a sample of size n using the method of proportional allo-

cation. Study the coverage of the nominally 90%, 95%, and 99% confidence interval

estimators you suggested. Discuss the difficulties you encountered, if any.

Exercise 8.9 Consider a semituned estimator of the population mean �Y in stratified

random sampling defined as

�y�StTuned csð Þ ¼
XL
h¼1

Ωh

X
j2sh

whj�yh jð Þ (8.94)

where

�yh jð Þ¼ nh�yh� yhj
nh�1

(8.95)

is the hth stratum sample mean of the study variable obtained by removing the jth unit
from the sample sh, and whj are tuned weights such that across all strata the following

two constraints are satisfied
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XL
h¼1

Ωh

X
j2sh

whj ¼ 1 (8.96)

and

XL
h¼1

Ωh

X
j2sh

whj�xh jð Þ¼ �X (8.97)

where

�xh jð Þ¼ nh�xh� xhj
nh�1

(8.98)

is the hth stratum sample mean of the auxiliary variable obtained by removing the jth
unit from the sample sh. The name semituned comes that only sample means are

jackknifed and weights are not jackknifed.

Consider tuning the weights whj such that across all strata the chi-square type dis-

tance function, defined by

XL
h¼1

2�1nh
� �X

j2sh
q�1
hj whj�n�1

h

� �2
(8.99)

is optimized, subject to the tuning constraints (8.96) and (8.97), where qhj is a choice of
weights in the hth stratum. For the alternative tuning weights whj, find the estimator

�y�StTuned csð Þ. Suggest doubly jackknifed estimators of variance and confidence interval.

Create a hypothetical pumpkin farm where the pumpkins can be divided into three

mutually exclusive strata, say Sumbo,Mumbo, and Jumbo pumpkins. Select a sample

of size n using the method of proportional allocation in each stratum. Study coverage

by the nominally 90%, 95%, and 99% confidence interval estimators you suggested.

Discuss the difficulties you encountered, if any. (Hint: See Chapter 9 to adjust

semituning weights.)

Exercise 8.10 Consider a newly tuned estimator of the population mean �Y for the

combined stratified random sampling defined by

�y
gð Þ
StTuned csð Þ ¼

XL
h¼1

Ωh

X
j2sn

nh�1ð Þ2 �wnh jð Þ� nh�2ð Þ
n o

�yh jð Þ (8.100)

where

�yh jð Þ¼ nh�yh� yhj
nh�1

(8.101)
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is the hth stratum sample mean of the study variable obtained by removing the jth unit
from the sample sh, and Ωh ¼Nh=N is the hth stratum weight. The tuned weights

�w�
nh

jð Þ are computed using pooled information across all strata such that a new

weighted chi-squared type distance function defined as

Dc ¼
XL
h¼1

Ωh
nh
2

X
j2sh

q�1
hj 1� nh�1ð Þ�wnh jð Þ�n�1

h

� �2" #
(8.102)

is optimized subject to the following two tuning constraints:

XL
h¼1

Ωh nh�1ð Þ
X
j2sh

�wnh jð Þ¼
XL
h¼1

nhΩh�1

 !
(8.103)

and

XL
h¼1

Ωh Ĝxh

� �nh
nh�1ð Þ

X
j2sh

�wnh jð Þ Ĝxh jð Þ� �1�nh

¼
XL
h¼1

Ωh Ĝxh

� �nhX
j2sh

Ĝxh jð Þ� �1�nh � �X (8.104)

where

Ĝxh jð Þ¼
Ynh
i6¼j¼1

xhi

 ! 1
nh�1

(8.105)

is the jth jackknifed geometric mean obtained from the hth stratum geometric mean

Ĝxh ¼
Ynh
i¼1

xhi

 ! 1
nh

after removing the jth unit. The combined population mean

�X¼
XL

h¼1
Ωh

�Xh of the auxiliary variable is assumed to be known. For the optimal

tuning weights �wnh jð Þ, find the estimator �y
gð Þ
StTuned csð Þ. Suggest doubly jackknifed esti-

mator of variance and confidence interval. Create a hypothetical pumpkin farm where

the pumpkins can be divided into three mutually exclusive strata, say Sumbo,Mumbo,
and Jumbo pumpkins. Select a sample of size n using the method of proportional allo-

cation from each stratum. Study coverage by the nominally 90%, 95%, and 99% con-

fidence interval estimators you suggested. Discuss the difficulties you encountered,

if any.

Exercise 8.11 Consider the problem of estimating the geometric mean in stratified

sampling defined as
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Gy ¼
YL
h¼1

YNh

i¼1

yhi

 !" #1
N

(8.106)

where Nh is the total number of units in the hth stratum and N¼
XL

h¼1
Nh. Without

loss of generality, a naive estimator of the geometric mean Gy is given by

Ĝy ¼
YL
h¼1

Ynh
i¼1

yhi

 !" #1
n

(8.107)

where nh is the number of units selected from the hth stratum using a simple random

with replacement sampling scheme such that the total sample size n¼
XL

h¼1
nh. Then

the jackknifed estimator of the geometric mean after dropping the jth unit from the hth
stratum is given by

Ĝy hj
� �¼ YL

h¼1

Ynh
i 6¼jð Þ¼1

yhi

0
@

1
A

2
4

3
5

1
n�1

(8.108)

A jackknifed estimator of the geometric mean is given by

ĜJack ¼ 1

n

XL
h¼1

Xnh
j¼1

Ĝy hj
� �

(8.109)

Assume an estimator of the variance of the average jackknife estimator ĜJack is

given by

v̂ ĜJack

� �¼XL
h¼1

Xnh
j¼1

chj Ĝy hj
� �� ĜJack

� �2
(8.110)

Determine, if possible, the values of weights chj such that v̂ ĜJack

� �
can be considered

as an estimator of the variance of the sample geometric mean in stratified sampling.

Support your findings with simulation study.Hint: The weights chj can be a function of
Nh/N, which may help to improve the estimator of variance.

Exercise 8.12 Consider the problem of estimating the harmonic mean in stratified

sampling, defined as:

Hy ¼N
XL
h¼1

XNh

i¼1

y�1
hi

 !�1

(8.111)
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where Nh is the total number of units in the hth stratum and N¼
XL

h¼1
Nh. Without

loss of generality, a naive estimator of the harmonic mean Hy is given by

Ĥy ¼ n
XL
h¼1

Xnh
i¼1

y�1
hi

 !�1

(8.112)

where nh is the number of units selected from the hth stratum using the simple random

with replacement sampling scheme such that the total sample size n¼
XL

h¼1
nh. The

jackknifed estimator of the harmonic mean after dropping the jth unit from the hth
stratum is given by

Ĥy hj
� �¼ n�1ð Þ

XL
h¼1

Xnh
i 6¼jð Þ¼1

y�1
hi

0
@

1
A

�1

(8.113)

An average jackknifed estimator of the harmonic mean is given by

ĤJack ¼ 1

n

XL
h¼1

Xnh
j¼1

Ĥy hj
� �

(8.114)

Assume an estimator of the variance of the average jackknife estimator ĤJack is

given by

v̂ ĤJack

� �¼XL
h¼1

Xnh
j¼1

chj Ĥy hj
� �� ĤJack

� �2
(8.115)

Determine, if possible, the values of weights chj such that v̂ ĤJack

� �
can be considered

as an estimator of the variance of the sample harmonic mean in stratified sampling.

Support your findings with a simulation study.Hint: The weights chj can be a function
of Nh/N, which may help to improve the estimator of variance.

Exercise 8.13 Suppose that a sample of size nh is selected from the hth stratum using

the SRSWOR scheme for h¼ 1,2,…,L. Let rh be the responses observed in the hth
stratum. Assume the data are missing completely at random. Then consider the newly

tuned estimator of the population mean �Y in stratified nonresponse random sampling

defined as

�ynrStTuned csð Þ ¼
XL
h¼1

Ωh

Xrh
j¼1

rh�1ð Þ2 �wh jð Þ� rh�2ð Þ
n o

�yh jð Þ (8.116)
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where

�yh jð Þ¼ rh�yh� yhj
rh�1

(8.117)

is the hth stratum sample mean �yh ¼ r�1
h

Prh
i¼1yhi of the study variable obtained by

removing the jth unit from the mean of the responding units, and Ωh ¼Nh=N are

the hth stratum weights. The tuned weights �wh jð Þ are computed independently in

the h strata such that the chi-squared type distance function defined as

Dh ¼ rh
2

Xrh
j¼1

q�1
hj 1� rh�1ð Þ�wh jð Þ� r�1

h

� 	2
(8.118)

is optimized, subject to the following two tuning constraints:

Xrh
j¼1

�wh jð Þ¼ 1 (8.119)

and

Xrh
j¼1

�wh jð Þ�xh jð Þ¼ �x�h� rh 2� rhð Þ�xh
rh�1ð Þ2 (8.120)

where

�xh jð Þ¼ rh�xh� xhj
rh�1

(8.121)

is the jth jackknifed estimator obtained from the hth stratum sample mean

�xh ¼ r�1
h

Xrh

i¼1
xhi by removing the jth unit. The hth stratum sample mean of the aux-

iliary variable based on all sampled units in stratum h, �x�h ¼ n�1
h

Xnh

i¼1
xhi, is assumed to

be known. For the optimum tuning weights �wh jð Þ, find the estimator �ynrStTuned csð Þ. Sug-
gest doubly jackknifed estimators of variance and a confidence interval estimator.

Create a hypothetical pumpkin farm where the pumpkins can be divided into three

mutually exclusive strata, say Sumbo, Mumbo, and Jumbo pumpkins, based on their

known circumferences. Select a sample of size n using the method of proportional

allocation to each stratum. Create an environment where the farmer may find some

pumpkins lost or stolen from the sample due to some unavoidable circumstances.

For various levels of nonresponse, study the nominally 90%, 95%, and 99% coverages

by the confidence interval estimators you suggested. Use R or SAS. Discuss the dif-

ficulties you encountered, if any.
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Exercise 8.14 Multistage stratified random sampling

Suppose that a population of N units is first subdivided into L mutually exclusive

homogeneous subgroups called strata. Let the number of first-stage units (fsu) in

the hth stratum h¼ 1,2,…,Lð Þ be Nh, and let the total number of first stage units in

all the strata taken together be
XL

h¼1
Nh ¼N. Let the number of second-stage units

(ssu) in the ith fsu i¼ 1,2,…,Nhð Þ in the hth stratum be denoted byMhi, the total num-

ber of ssu in the hth stratum and in all strata taken together being, respectively,XNh

i¼1
Mhi and

XL

h¼1

XNh

i¼1
Mhi. Let Yhij be the value of the study variable of the

jth ssu in the ith fsu. We define the following totals: Total of the values of the study

variable in the ith fsu:

Yhi ¼
XMhi

j¼1

Yhij (8.122)

Mean for the ith fsu:

�Yhi ¼ Yhi=Mhi (8.123)

Total for the hth stratum:

Yh ¼
XNh

i¼1

XMhi

j¼1

Yhij ¼
XNh

i¼1

Yhi ¼
XNh

i¼1

Mhi
�Yhi (8.124)

Mean per fsu:

�Yh ¼ Yh=Nh ¼
XNh

i¼1

Mhi
�Yhi=Nh (8.125)

Mean per ssu:

�Yh ¼ Yh


 XNh

i¼1

Mhi

 !
¼
XNh

i¼1

Mhi
�Yhi


 XNh

i¼1

Mhi

 !
(8.126)

Total of the values of the study variable:

Y¼
XL
h¼1

Yh ¼
XL
h¼1

XNh

i¼1

Yhi ¼
XL
h¼1

XNh

i¼1

XMhi

j¼1

Yhij (8.127)

Mean per fsu:

�Y¼ Y=N (8.128)
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Mean per ssu:

�Yh ¼ Y


 XL
h¼1

XNh

i¼1

Mhi

 !
(8.129)

From the hth stratum, out of Nh fsu’s, nh fsu are selected using an SRSWOR scheme.

Out of theMhi ssu’s in the ith selected fsu i¼ 1,2,…,nhð Þ, mhi ssu’s are selected using

an SRSWOR scheme. The total number of sampled ssu’s in the hth stratum isXnh

i¼1
Mhi and in all strata taken together is

XL

h¼1

Xnh

i¼1
mhi ¼ n, the total sample size.

Let yhij h¼ 1,2,…,L; i¼ 1,2,…,nh; j¼ 1,2,…,mhið Þ denote the value of the study

variable in the jth selected ssu in the ith selected fsu in the hth stratum. From all com-

bined strata, an unbiased estimator of the population total Y is given by

Ŷunbiased ¼
XL
h¼1

Nh

nh

Xnh
i¼1

Mhi

mhi

Xmhi

j¼1

yhij (8.130)

Consider the newly semituned estimator of the population total Y in multistage strat-

ified random sampling, defined as

ŶTuned msð Þ ¼
XL
h¼1

Nh

nh

Xnh
i¼1

Mhi

Xmhi

j¼1

whij�yhi jð Þ (8.131)

where

�yhi jð Þ¼mhi�yhi� yhij
mhi�1

(8.132)

Determine the semituned weights whij such that the chi-square type distance function,

D1 ¼ 1

2

XL
h¼1

Nh

nh

Xnh
i¼1

Mhi

Xmhi

j¼1

whij�m�1
hi

� �2
qhijm�1

hi

(8.133)

is optimal, subject to the two tuning constraints

XL
h¼1

Nh

nh

Xnh
i¼1

Mhi

Xmhi

j¼1

whij ¼N (8.134)

and
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XL
h¼1

Nh

nh

Xnh
i¼1

Mhi mhi�1ð Þ
Xmhi

j¼1

whij�xhi jð Þ¼
XL
h¼1

Nh

nh

Xnh
i¼1

Mhi�xhi�X

 !
(8.135)

where X is the known population total of the auxiliary variable, and whereXmhi

j¼1
whij ¼ 1, and other symbols have their usual meanings for two-stage sampling.

Suggest a doubly jackknifed estimator of variance similar to the one suggested in the

chapter, and write a program to study coverage by the 90%, 95%, and 99% confidence

intervals. Discuss the difficulties you observed. Also, consider the log-likelihood dis-

tance function and study the properties of the resultant estimator. Report your findings

in each case.
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9Tuning using multiauxiliary

information

9.1 Introduction

In this chapter, we introduce a new semituned estimator of population mean and

estimate its variance in the presence of multiauxiliary information. The new semituning

methodology is illustrated by a model used to estimate the weight of pumpkins with the

help of three known auxiliary variables viz., their circumferences, amount of fertilizer,

and amount of farmyard manure (FYM) used. At the end of the chapter, exercises

include fully tuned estimators in the presence of multiauxiliary information.

9.2 Notation

Let yi and x1i, x2i,…, xki, i¼ 1,2,…,N be the values of the ith unit of the study variable
and of the k auxiliary variables, respectively, in the population Ω. Here we consider

the problem of estimating the population mean of the study variable

�Y¼N�1
XN
i¼1

yi (9.1)

by assuming that the population means of the auxiliary variables

�Xt ¼N�1
XN
i¼1

xti, t¼ 1,2,…,k (9.2)

are known.

Let yi and x1i, x2i,…, xki, i¼ 1,2,…,n be the values of the ith unit of the study

variable and k auxiliary variables in the sample s drawn using a simple random sam-

pling scheme.

Let

�y¼ n�1
Xn
i¼1

yi (9.3)

and
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�xt ¼ n�1
Xn
i¼1

xti, t¼ 1,2,…,k (9.4)

be the sample means for the study and auxiliary variables, respectively.

9.3 Tuning with a chi-square distance function

We consider here a new semituned estimator of the population mean �Y, defined as

�yMTuned csð Þ ¼
X
j2s

1�nð Þwj + 1
� �

�y jð Þ (9.5)

where

�y jð Þ¼ n�y� yj
n�1

(9.6)

is the sample mean of the study variable obtained by removing the jth unit from the

sample s, and wj is the semituned weight such that the following k + 1ð Þ constraints are
satisfied:

X
j2s

wj ¼ 1 (9.7)

and

X
j2s

wj�xt jð Þ¼ n�xt� �Xtð Þ
n�1

(9.8)

where

�xt jð Þ¼ n�xt� xtj
n�1

, t¼ 1,2,…,k (9.9)

is the sample mean of the auxiliary variable obtained by removing the jth unit from the

sample s. The calibration constraint (9.8) is due to Deville and Särndal (1992), and

constraint (9.7) is due to Owen (2001). Note that here we are not using jackknifed

weights, so we will refer to this as a semituned method.

First, we suggest semituning the weights wj so that the chi-square type distance

function, defined as

2�1n
� �X

j2s
q�1
j wj�n�1
� �2

(9.10)
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is minimized, subject to tuning constraints (9.7) and (9.8), where qj is some choice of

weights.

The Lagrange function is given by

L1 ¼ 2�1n
� �X

j2s
q�1
j wj�n�1
� �2� λ0

X
j2s

wj�1

( )

�
Xk
t¼1

λt
X
j2s

wj�xt jð Þ� n�1ð Þ�1 n�xt� �Xtð Þ
( ) (9.11)

where λ0 and λt are Lagrange multiplier constants.

On setting

@L1
@wj

¼ 0 (9.12)

we have

wj ¼ 1

n
1 + qjλ0 + qj

Xk
t¼1

λt�xt jð Þ
( )

(9.13)

Using Equation (9.13) in Equations (9.7) and (9.8), a set of normal equations, to find

the optimum values of λ0 and λt is given by

A k + 1ð Þ� k + 1ð Þλ k + 1ð Þ�1 ¼C k + 1ð Þ�1 (9.14)

where

A k + 1ð Þ� k + 1ð Þ

X
j2s

qj,
X
j2s

qj�x1 jð Þ, …,
X
j2s

qj�xk jð Þ
X
j2s

qj�x1 jð Þ,
X
j2s

qj �x1 jð Þf g2, …,
X
j2s

qj�x1 jð Þ�xk jð Þ
X
j2s

qj�xk jð Þ�x1 jð Þ,
X
j2s

qj�xk jð Þ�x2 jð Þ, …,
X
j2s

qj �xk jð Þf g2

2
66666664

3
77777775

λ k + 1ð Þ�1 ¼
λ0
λ1
⋮
λk

2
664

3
775

k + 1ð Þ�1

and C¼

0
n

n�1

� �
n�x1� �X1ð Þ�

X
j2s

�x1 jð Þ
⋮

n

n�1

� �
n�xk� �Xkð Þ�

X
j2s

�xk jð Þ

2
666664

3
777775
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The semituned weights wj are given by

wj ¼ 1

n
1 +
Xk
t¼1

Ψ tj
n

n�1

� �
n�xt� �Xtð Þ�

X
j2s

�xt jð Þ
( )" #

(9.15)

with

Ψ tj ¼ qjA
�1
k + 1ð Þ� k + 1ð ÞH k + 1ð Þ�j

where

H t
j� k + 1ð Þ ¼ 1,�x1 jð Þ,�x2 jð Þ,…,�xk jð Þ½ �j� k + 1ð Þ

Thus, under the chi-square (cs) distance function, the newly semituned estimator (9.5)

of the population mean becomes

�yMTuned csð Þ ¼
1

n

X
j2s

�y jð Þ+ β̂MTunedC

" #
(9.16)

where

β̂MTuned ¼A�1
k + 1ð Þ� k + 1ð ÞH k + 1ð Þ�1 qj�y jð Þ� �

1�nð Þ ¼ β̂0, β̂1,…, β̂k
� �t

Note that for the choice of weights qj ¼ 1, it can be easily seen that the estimator

�yMTuned csð Þ becomes a multiple linear regression type estimator of the form

�yMTuned csð Þ ¼ �y+
Xk
t¼1

β̂t �Xt� �xtð Þ (9.17)

9.3.1 Estimation of variance and coverage

We suggest an adjusted weighted estimator of the variance of the estimator �yMTuned csð Þ,
defined by

v̂MTuned csð Þ ¼ n n�1ð Þ3
X
j2s

w2
j �y

MTuned csð Þ
jð Þ � �yMTuned csð Þ

n o2

(9.18)

Such adjustment may vary from survey to survey or according to the researchers’

interest based on the type of data at hand. Note that each newly semituned doubly

jackknifed estimator of the population mean is given by
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�y
Tuned csð Þ
jð Þ ¼ n�yTuned csð Þ �n n�1ð Þwj + 1

� 	
�y jð Þ

n�1
(9.19)

for j¼ 1,2,…,n.

The attained coverage by the nominally 1�αð Þ100% confidence interval estimates

constructed using this newly semituned estimator of the population mean is estimated

by observing the proportion of times the true population mean �Y falls within the inter-

val estimates given by

�yMTuned csð Þ � tα=2 df¼ n� k�1ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v̂MTuned csð Þ

q
(9.20)

Here we generated a special type of population having one study variable Y, three aux-
iliary variables X1, X2, and X3 where the ith population unit takes value for study var-
iable yi, and x1i, x2i, and x3i for the three auxiliary variables. The value yi for the study
variable Y and the value x1i of the first auxiliary variable X1 are given by

yi ¼ �Y + σyy
�
i (9.21)

and

x1i ¼ �X1 + σx1x
�
1i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ρ2yx1

q
+ ρyx1σx1y

�
i (9.22)

where yi* and x1i* are independent standard normal variables each with mean zero and

variance one, and with ρyx1 ¼ 0:8. Similarly, we also generated two variables, x2i and

x3i, whose correlations with the study variable were 0.3 and 0.6, respectively. The

standard deviations of the three auxiliary variables were σx1 ¼ 10, σx2 ¼ 2, and

σx3 ¼ 2, and that of the study variable was σy ¼ 5.

We studied coverage of the 90%, 95%, and 99% confidence intervals, formed as in

Equation (9.20), by selecting 10,000 random samples from the population with one

study variable and three auxiliary variables. The results obtained through the simula-

tion are presented in Table 9.1.

Table 9.1 shows that the coverage by the newly semituned multiauxiliary estimator

of the population mean performs very well for moderate sample sizes. We note in par-

ticular that the attained coverage is within 1% of the nominal coverage for sample

sizes 14–40 for the 90% intervals, and within 1% of the nominal coverage for sample

sizes 11–40 for 95% and 99% intervals.

9.3.2 R code

The following R code, PUMPKIN101.R, was used to study the coverage by the newly

semituned multiauxiliary information estimator based on the chi-square type distance

function.
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PROGRAM NAME: PUMPKIN101.R

set.seed(2013)

N<-10000

x1s<-rnorm(N, 0, 1)

x2s<-rnorm(N, 0, 1)

x3s<-rnorm(N, 0, 1)

y1s<-rnorm(N, 0, 1)

y<-1700 + 5*y1s

x1<-500 + 10*x1s*sqrt(1-0.8 ^2) + 0.8*10*y1s

x2<-50 + 2*x2s*sqrt(1-0.3 ^2) + 0.3*2*y1s

x3<-300 + 2*x3s*sqrt(1-0.6 ^2) + 0.6*2*y1s

XMEAN1 ¼ mean(x1)

XMEAN2 ¼ mean(x2)

Table 9.1 The newly semitunedmultiauxiliary information estimator

Sample size (n) 90% coverage 95% coverage 99% coverage

11 0.9123 0.9591 0.9933

12 0.9146 0.9602 0.9937

13 0.9131 0.9584 0.9935

14 0.9059 0.9535 0.9924

15 0.9059 0.9577 0.9929

16 0.9074 0.9525 0.9909

17 0.9078 0.9555 0.9914

18 0.9074 0.9532 0.9904

19 0.9038 0.9541 0.9906

20 0.9026 0.9525 0.9921

21 0.9038 0.9521 0.9899

22 0.9038 0.9512 0.9915

23 0.8996 0.9502 0.9900

24 0.8989 0.9510 0.9880

25 0.9009 0.9487 0.9906

26 0.9072 0.9512 0.9899

27 0.9021 0.9520 0.9907

28 0.9069 0.9536 0.9914

29 0.9031 0.9518 0.9911

30 0.9034 0.9522 0.9908

31 0.9035 0.9549 0.9916

32 0.8984 0.9477 0.9886

33 0.8997 0.9511 0.9912

34 0.9001 0.9508 0.9899

35 0.9000 0.9485 0.9898

36 0.9017 0.9510 0.9894

37 0.9029 0.9499 0.9904

38 0.8975 0.9496 0.9897

39 0.8984 0.9473 0.9903

40 0.9023 0.9504 0.9895
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XMEAN3 ¼ mean(x3)

YM<-mean(y)

nreps<-10000

ESTP¼rep(0,nreps)

ci1.max¼ci1.min¼ci2.max¼ci2.min¼ci3.max¼ci3.min¼vESTP¼ESTP

for (n in seq(11,40,1))

{

for (r in 1:nreps)

{

us<-sample(N,n)

XS1<-x1[us];XS2<-x2[us];XS3<-x3[us];YS<-y[us]

X1M<-mean(XS1);X2M<-mean(XS2);X3M<-mean(XS3)

YMJ ¼ (sum(YS)-YS)/(n-1)

X1MJ ¼ (sum(XS1)-XS1)/(n-1)

X2MJ ¼ (sum(XS2)-XS2)/(n-1)

X3MJ ¼ (sum(XS3)-XS3)/(n-1)

A<-matrix(ncol¼4,nrow¼4)

A[1,1] ¼ n

A[1,2] ¼ A[2,1] ¼ sum(X1MJ)

A[1,3] ¼ A[3,1] ¼ sum(X2MJ)

A[1,4] ¼ A[4,1] ¼ sum(X3MJ)

A[2,2] ¼ sum(X1MJ ^2)/(n ^2)

A[2,3] ¼ A[3,2] ¼ sum(X1MJ*X2MJ)

A[2,4] ¼ A[4,2] ¼ sum(X1MJ*X3MJ)

A[3,3] ¼ sum(X2MJ ^2)/(n ^2)

A[3,4] ¼ A[4,3] ¼ sum(X2MJ*X3MJ)

A[4,4] ¼ sum(X3MJ ^2)/(n ^2)

B<-rep(0,4)

B[2] ¼ n*(n*X1M-XMEAN1)/(n-1)-sum(X1MJ)

B[3] ¼ n*(n*X2M-XMEAN2)/(n-1)-sum(X2MJ)

B[4] ¼ n*(n*X3M-XMEAN3)/(n-1)-sum(X3MJ)

solve(A,B)->AL

WI ¼ (1/n)*(1+AL[1]+AL[2]*X1MJ+AL[3]*X2MJ+AL[4]*X3MJ)

EST_I ¼ n * ((1-n)*WI +1) * YMJ

ESTP[r] ¼ sum(EST_I)

ESTP_J ¼ (ESTP[r]-EST_I)/(n-1)

ESTP[r] ¼ ESTP[r]/n

vj<-(WI ^2)*(ESTP_J-ESTP[r]) ^2

vESTP[r] ¼ n*(n-1) ^3*sum(vj)

ci1.max[r]<- ESTP[r]+qt(0.95,n-4)*sqrt(vESTP[r])

ci1.min[r]<- ESTP[r]-qt(0.95,n-4)*sqrt(vESTP[r])

ci2.max[r]<- ESTP[r]+qt(0.975,n-4)*sqrt(vESTP[r])

ci2.min[r]<- ESTP[r]-qt(0.975,n-4)*sqrt(vESTP[r])

ci3.max[r]<- ESTP[r]+qt(0.995,n-4)*sqrt(vESTP[r])

ci3.min[r]<- ESTP[r]-qt(0.995,n-4)*sqrt(vESTP[r])

}
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round(sum(ci1.min<YM & ci1.max>YM)/nreps,4)->cov1

round(sum(ci2.min<YM & ci2.max>YM)/nreps,4)->cov2

round(sum(ci3.min<YM & ci3.max>YM)/nreps,4)->cov3

cat(n, cov1,cov2,cov3,'\n')
}

9.3.3 Numerical illustration

In the following example, we explain the intermediate steps involved in the compu-

tation of the proposed semituned estimator in the presence of three auxiliary variables.

Example 9.1 Suppose that we took a sample of n¼ 29 pumpkins from the preced-

ing population and measured y (the weights in lbs), x1 (the circumference in inches),

x2 (the amount of special fertilizer used in lbs/plot), and x3 (the amount of FYM used

in lbs/plot).

Weight, yi Circumference, x1i Fertilizer, x2i FYM, x3i

1695 496 53 297

1695 490 47 300

1702 509 43 299

1699 509 50 301

1699 500 49 299

1695 486 49 296

1698 501 49 298

1700 502 50 300

1690 479 48 296

1698 497 51 299

1703 512 50 300

1700 501 50 299

1691 481 49 298

1691 492 48 295

1694 493 49 301

1695 490 53 296

1698 492 51 298

1702 492 51 300

1703 511 49 302

1692 498 45 297

1693 485 48 299

1703 506 50 302

1696 493 51 298

1698 495 49 301

1704 510 50 300

1698 507 49 300

1702 501 49 302

1692 470 46 296

1695 485 48 299
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Construct the 90% confidence interval estimate of the average weight �Yð Þ by assuming

that the population means of the three auxiliary variables, �X1 ¼ 500, �X2 ¼ 50, and
�X3 ¼ 300, are known.

Solution. An R program can be easily written to calculate the semituned weights

and jackknife estimates of the average pumpkin weights:

The overall tuned estimate of the average weight is �yMTuned csð Þ ¼ 1697:276lbs with

a standard error of SEð�yMTuned csð ÞÞ ¼ 0:7088123lbs. Thus, the 90% confidence interval

estimate of the average weight of the pumpkins on this farm is between 1696.065 and

1698.487 lbs.

wj �y
MTuned csð Þ
jð Þ

0.03448270 1697.270

0.03448280 1697.275

0.03448285 1697.286

0.03448273 1697.277

0.03448276 1697.278

0.03448277 1697.273

0.03448276 1697.277

0.03448274 1697.278

0.03448279 1697.268

0.03448273 1697.275

0.03448273 1697.282

0.03448274 1697.278

0.03448277 1697.268

0.03448278 1697.269

0.03448276 1697.272

0.03448270 1697.270

0.03448273 1697.275

0.03448273 1697.280

0.03448275 1697.283

0.03448283 1697.272

0.03448278 1697.272

0.03448273 1697.283

0.03448273 1697.273

0.03448276 1697.277

0.03448273 1697.283

0.03448275 1697.276

0.03448275 1697.282

0.03448283 1697.273

0.03448278 1697.274
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9.3.4 R code used for illustration

The following R code, PUMPKIN101EX.R, was used in the preceding numerical

illustration.

PROGRAM PUMPKIN101EX.R

n<-29

YS<-c(1695,1695,1702,1699,1699,1695,1698,1700,1690,1698,

1703,1700,1691,1691,1694,1695,1698,1702,1703,1692,

1693,1703,1696,1698,1704,1698,1702,1692,1695)

XS1<-c(496,490,509,509,500,486,501,502,479,497,512,501,

481,492,493,490,492,492,511,498,485,506,493,495,

510,507,501,470,485)

XS2<-c(53,47,43,50,49,49,49,50,48,51,50,50,49,48,49,53,

51,51,49,45,48,50,51,49,50,49,49,46,48)

XS3<-c(297,300,299,301,299,296,298,300,296,299,300,299,

298,295,301,296,298,300,302,297,299,302,298,301,

300,300,302,296,299)

XMEAN1 ¼ 500;XMEAN2 ¼ 50;XMEAN3 ¼ 300

XMEAN1¼mean(x1)

XMEAN2¼mean(x2)

XMEAN3¼mean(x3)

YM<-mean(YS)

X1M<-mean(XS1);X2M<-mean(XS2);X3M<-mean(XS3)

YMJ ¼ (sum(YS)-YS)/(n-1)

X1MJ ¼ (sum(XS1)-XS1)/(n-1)

X2MJ ¼ (sum(XS2)-XS2)/(n-1)

X3MJ ¼ (sum(XS3)-XS3)/(n-1)

A<-matrix(ncol¼4,nrow¼4)

A[1,1] ¼ n

A[1,2] ¼ A[2,1] ¼ sum(X1MJ)

A[1,3] ¼ A[3,1] ¼ sum(X2MJ)

A[1,4] ¼ A[4,1] ¼ sum(X3MJ)

A[2,2] ¼ sum(X1MJ ^2)/(n ^2)

A[2,3] ¼ A[3,2] ¼ sum(X1MJ*X2MJ)

A[2,4] ¼ A[4,2] ¼ sum(X1MJ*X3MJ)

A[3,3] ¼ sum(X2MJ ^2)/(n ^2)

A[3,4] ¼ A[4,3] ¼ sum(X2MJ*X3MJ)

A[4,4] ¼ sum(X3MJ ^2)/(n ^2)

B<-rep(0,4)

B[2] ¼ n*(n*X1M-XMEAN1)/(n-1)-sum(X1MJ)

B[3] ¼ n*(n*X2M-XMEAN2)/(n-1)-sum(X2MJ)

B[4] ¼ n*(n*X3M-XMEAN3)/(n-1)-sum(X3MJ)

solve(A,B)->AL

WI ¼ (1/n)*(1+AL[1]+AL[2]*X1MJ+AL[3]*X2MJ+ AL[4]*X3MJ)

EST_I ¼ n *( (1-n)* WI + 1) * YMJ
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ESTP ¼ sum(EST_I)

ESTP_J ¼ (ESTP-EST_I)/(n-1)

ESTP ¼ ESTP/n

vj<-(WI ^2)*(ESTP_J-ESTP) ^2

vESTP ¼ n*(n-1) ^3*sum(vj)

L<-ESTP+qt(.05,n-4)*sqrt(vESTP)

U<-ESTP+qt(.95,n-4)*sqrt(vESTP)

cbind(WI,sum(WI),ESTP_J)

cat("Tuned estimate:", ESTP, "SE: ",vESTP ^.5,'\n')
cat("Confidence Interval:"," ", L,"; ", U,'\n')

9.4 Tuning with empirical log-likelihood function

We define a semituned empirical log-likelihood (ell) estimator of the population

mean �Y as

�yMTuned ellð Þ ¼
X
j2s

w�
i �y jð Þ (9.23)

wherewj
* are the positive semituned weights such that the following k + 1ð Þ constraints

are satisfied:

X
j2s

w�
j ¼ 1 (9.24)

and

X
j2s

w�
j �xt jð Þ� n�xt� �Xtð Þ

n�1

� �
¼ 0, t¼ 1,2,…,k (9.25)

Here we suggest semituning the weights wj
* such that the log-likelihood distance

function defined by

X
j2s

log w�
j

� �
n

(9.26)

is optimized, subject to the tuning constraints (9.24) and (9.25).

The Lagrange function is then given by

L2 ¼
X
j2s

log w�
j

� �
n

� λ�0
X
j2s

w�
j �1

( )

�
Xk
t¼1

λ�t
X
j2s

w�
j �xt jð Þ� n�xt� �Xt

n�1


 �� �( ) (9.27)
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where λ0* and λt* are Lagrange multiplier constants.

On setting

@L2
@w�

j

¼ 0 (9.28)

we have

w�
j ¼

1

n 1 +
Xk
t¼1

λ�t �xt jð Þ� n�xt� �Xtð Þ
n�1

� �" # (9.29)

Constraints (9.24) and (9.25) yield λ0*¼1, and λt* is a solution to the single parametric

equation

X
j2s

Xk
t¼1

�xt jð Þ� n�xt� �Xtð Þ
n�1

� �

1 +
Xk
t¼1

λ�t �xt jð Þ� n�xt� �Xtð Þ
n�1

� �¼ 0 (9.30)

Thus, under the ell distance function, the newly semituned estimator (9.23) of the pop-

ulation mean becomes

�yMTuned ellð Þ ¼
1

n

X
j2s

�y jð Þ

1 +
Xk
t¼1

λ�t �xt jð Þ� n�xt� �Xtð Þ
n�1


 �( ) (9.31)

9.4.1 Estimation of variance and coverage

As before, we suggest here an adjusted estimator of the variance of the estimator

�yMTuned ellð Þ:

v̂MTuned ellð Þ ¼ n n�1ð Þ3
X
j2s

w�
j

� �2
�yMTuned ellð Þ

jð Þ � �yMTuned ellð Þ
� �2

(9.32)

Note that each newly semituned ell doubly jackknifed estimator of the population

mean is given by

�y
Tuned ellð Þ
jð Þ ¼ n�yTuned ellð Þ �nw�

j �yn jð Þ
n�1

(9.33)

for j¼ 1,2,…,n.
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Attained coverage by the nominally 1�αð Þ100% confidence interval estimates

constructed using this newly semituned ell estimator of the population mean is esti-

mated by observing the proportion of times the true population mean �Y falls within the

interval estimates given by

�yMTuned ellð Þ+tα=2 df¼ n� k�1ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v̂MTuned ellð Þ

q
(9.34)

Here we generated a special type of population having one study variable Y and three

auxiliary variables Xt, t¼ 1,2,3. The values for the ith units yi and three auxiliary vari-
ables xti, t¼ 1,2,3 of the four variable are simulated as follows:

yi ¼ �Y + σyy
�
i (9.35)

and

xti ¼ �Xt + σxtx
�
ti

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ρ2yxt

q
+ ρyxtσxt y

�
i (9.36)

where yi*, and xti*, t¼ 1,2,3 are independent standard normal variables with means zero

and variances one. We set ρyx1 ¼ 0:8, ρyx2 ¼ 0:3, and ρyx3 ¼ 0:6. The values of the stan-

dard deviations of study variable, and the three auxiliary variables are set at σy ¼ 5,

σx1 ¼ 10, σx2 ¼ 2, and σx3 ¼ 2:
We studied coverage of the 90%, 95%, and 99% confidence intervals based on the

newly semituned estimator of the population mean by selecting 10,000 random sam-

ples from the population above. The values of λ1*, λ2*, and λ3* are approximated, under

certain assumptions, by solving the following system of linear equations:

X
j2s

Φ2
1j,

X
j2s

Φ1jΦ2j,
X
j2s

Φ1jΦ3j

X
j2s

Φ1jΦ2j,
X
j2s

Φ2
2j,

X
j2s

Φ2jΦ3j

X
j2s

Φ1jΦ3j,
X
j2s

Φ2jΦ3j,
X
j2s

Φ2
3j

2
66666664

3
77777775

λ�1
λ�2
λ�3

2
64

3
75�

X
j2s

Φ1j

X
j2s

Φ2j

X
j2s

Φ3j

2
66666664

3
77777775

(9.37)

where

Φtj ¼ �xt jð Þ� n�xt� �Xtð Þ
n�1

� �
(9.38)

for t¼ 1,2,3 are three pivots.

The use of values of λ1*, λ2*, and λ3* from Equation (9.37) increases the speed of the

program compared to using an iterative method for finding a nonlinear solution to this

nonlinear system of equations in Equation (9.30). The results obtained through the

simulation are presented in Table 9.2.
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Table 9.2 shows that the attained coverages by the newly semituned ell estimator of

the population mean remain close to the coverage attained by the chi-square distance

function. In particular, the nominal 90% coverage is estimated as 90.31% for a sample

of 12 pumpkins, the nominal 95% coverage is estimated as 95.30% for a sample of

16 pumpkins, and the nominal 99% coverage is estimated as 98.91% for a sample

of 28 pumpkins.

Thus, for estimating average pumpkin weights using known multiauxiliary informa-

tion, the newly semituned ell estimator �yMTuned ellð Þ could perform better because it does

not take negative values and does not show over coverage for moderate sample sizes.

9.4.2 R code

We used the following R code, PUMPKIN102.R, to study the coverage of intervals

constructed using the newly semituned ell estimator.

PROGRAM NAME: PUMPKIN102.R
set.seed(2013)

N<-10000

x1s<-rnorm(N, 0, 1)

x2s<-rnorm(N, 0, 1)

x3s<-rnorm(N, 0, 1)

y1s<-rnorm(N, 0, 1)

y<-1700 + 5*y1s

x1<-500 + 10*x1s*sqrt(1-0.8 ^2) + 0.8*10*y1s

x2<-50 + 2*x2s*sqrt(1-0.7 ^2) + 0.7*2*y1s

x3<-300 + 2*x3s*sqrt(1-0.6 ^2) + 0.6*2*y1s

XMEAN1 ¼ mean(x1)

Table 9.2 Newly semituned empirical likelihood estimator

Sample size (n) 90% coverage 95% coverage 99% coverage

8 0.8212 0.8558 0.9084

10 0.8814 0.9063 0.9432

12 0.9031 0.9258 0.9555

14 0.9215 0.9415 0.9643

16 0.9364 0.9530 0.9747

18 0.9479 0.9630 0.9779

20 0.9518 0.9652 0.9818

22 0.9618 0.9740 0.9856

24 0.9660 0.9751 0.9862

26 0.9728 0.9799 0.9887

28 0.9729 0.9793 0.9891

30 0.9766 0.9840 0.9918

32 0.9783 0.9856 0.9919

34 0.9810 0.9872 0.9933

36 0.9839 0.9891 0.9949
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XMEAN2 ¼ mean(x2)

XMEAN3 ¼ mean(x3)

YM<-mean(y)

nreps<-10000

ESTP¼rep(0,nreps)

ci1.max¼ci1.min¼ci2.max¼ci2.min¼ci3.max¼ci3.min¼vESTP¼ESTP

for (n in seq(8,36,2))

{

for (r in 1:nreps)

{

us<-sample(N,n)

XS1<-x1[us];XS2<-x2[us];XS3<-x3[us];YS<-y[us]

X1M<-mean(XS1);X2M<-mean(XS2);X3M<-mean(XS3)

YMJ ¼ (sum(YS)-YS)/(n-1)

X1MJ ¼ (sum(XS1)-XS1)/(n-1)

X2MJ ¼ (sum(XS2)-XS2)/(n-1)

X3MJ ¼ (sum(XS3)-XS3)/(n-1)

PHI1 ¼ X1MJ-(n*X1M-XMEAN1)/(n-1)

PHI2 ¼ X2MJ-(n*X2M-XMEAN2)/(n-1)

PHI3 ¼ X3MJ-(n*X3M-XMEAN3)/(n-1)

A<-matrix(ncol¼3,nrow¼3)

A[1,1] ¼ sum(PHI1 ^2)

A[1,2] ¼ A[2,1] ¼ sum(PHI1*PHI2)

A[1,3] ¼ A[3,1] ¼ sum(PHI1*PHI3)

A[2,2] ¼ sum(PHI2 ^2)

A[2,3] ¼ A[3,2] ¼ sum(PHI2*PHI3)

A[3,3] ¼ sum(PHI3 ^2)

B<-rep(0,3)

B[1] ¼ sum(PHI1)

B[2] ¼ sum(PHI2)

B[3] ¼ sum(PHI3)

solve(A/n,B)->AL

WI ¼ (1/n)*(1/(1+AL[1]*PHI1+AL[2]*PHI2+AL[3]*PHI3))

EST_I ¼ n * WI * YMJ

ESTP[r] ¼ sum(EST_I)

ESTP_J ¼ (ESTP[r]-EST_I)/(n-1)

ESTP[r] ¼ ESTP[r]/n

vj<-(WI ^2)*(ESTP_J-ESTP[r]) ^2

vESTP[r] ¼ n*(n-1) ^3*sum(vj)

ci1.max[r]<- ESTP[r]+qt(0.95,n-4)*sqrt(vESTP[r])

ci1.min[r]<- ESTP[r]-qt(0.95,n-4)*sqrt(vESTP[r])

ci2.max[r]<- ESTP[r]+qt(0.975,n-4)*sqrt(vESTP[r])

ci2.min[r]<- ESTP[r]-qt(0.975,n-4)*sqrt(vESTP[r])

ci3.max[r]<- ESTP[r]+qt(0.995,n-4)*sqrt(vESTP[r])

ci3.min[r]<- ESTP[r]-qt(0.995,n-4)*sqrt(vESTP[r])

}
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round(sum(ci1.min<YM & ci1.max>YM)/nreps,4)->cov1

round(sum(ci2.min<YM & ci2.max>YM)/nreps,4)->cov2

round(sum(ci3.min<YM & ci3.max>YM)/nreps,4)->cov3

cat(n, cov1,cov2,cov3,'\n')
}

9.4.3 Numerical illustration

The following example illustrates the main steps taken in the computation of the semi-

tuned ell estimator using three auxiliary variables.

Example 9.2 Suppose that we took a sample of n¼ 29 pumpkins from the preceding

population and measured y (the weights in lbs), x1 (the circumference in inches), x2 (the
amount of special fertilizer used in lbs/plot), and x3 (the amount of FYM used in lbs/plot).

Weight, yi Circumference, x1i Fertilizer, x2i FYM, x3i

1704 503 51 300

1708 522 54 303

1690 485 44 301

1704 501 48 302

1697 507 49 300

1700 504 47 301

1697 505 50 299

1703 509 49 303

1701 505 49 299

1707 508 51 301

1693 494 48 298

1703 502 53 299

1699 504 50 299

1698 502 48 301

1699 495 52 300

1692 497 50 299

1697 489 50 300

1698 485 50 297

1696 490 49 299

1690 482 49 296

1700 500 47 300

1703 509 53 301

1706 513 51 303

1704 509 53 302

1706 504 53 301

1700 494 50 298

1699 499 49 300

1701 499 51 300

1700 500 53 300
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Construct the 90% confidence interval estimate of the average weight �Yð Þ by

assuming that the population means of the three auxiliary variables, �X1 ¼ 500,
�X2 ¼ 50, and �X3 ¼ 300, are known.

Solution. One can compose a program to calculate the tuning weights and the jack-

knife estimates of the average weights as

wj
* �y

MTuned ellð Þ
jð Þ

0.03384245 1701.097

0.03013577 1707.627

0.03805451 1693.663

0.03410544 1700.634

0.03202130 1704.295

0.03257111 1703.331

0.03262418 1703.234

0.03226295 1703.877

0.03232396 1703.767

0.03260040 1703.287

0.03517541 1698.737

0.03452480 1699.895

0.03292254 1702.711

0.03348761 1701.715

0.03697995 1695.567

0.03517437 1698.737

0.03854410 1692.811

0.03902799 1691.960

0.03735532 1694.902

0.03946780 1691.174

0.03349629 1701.702

0.03291326 1702.732

0.03170869 1704.856

0.03320083 1702.227

0.03448996 1699.960

0.03589429 1697.480

0.03447456 1699.978

0.03516481 1698.766

0.03552910 1698.123

The overall tuned estimate of the average weight of a pumpkin on such type of a farm is

�yMTuned ellð Þ ¼ 1699:96lbs with a standard deviation of SEð�yMTuned ellð ÞÞ¼ 630:7616lbs.

Thus, the 90% confidence interval estimate of the average weight of the pumpkins

on this farm is 622.5305–2777.3900 lbs.

Tuning using multiauxiliary information 273



9.4.4 R code used for illustration

We used the following R code, PUMPKIN102EX.R, to solve the preceding numer-

ical illustration.

PROGRAM PUMPKIN102EX.R

n<-29

YS<-c(1704,1708,1690,1704,1697,1700,1697,1703,1701,1707,

1693,1703,1699,1698,1699,1692,1697,1698,1696,1690,1700,

1703,1706,1704,1706,1700,1699,1701,1700)

XS1<-c(503,522,485,501,507,504,505,509,505,508,494,502,

504,502,495,497,489,485,490,482,500,509,513,509,504,494,499,499,500)

XS2<-c(51,54,44,48,49,47,50,49,49,51,48,53,50,48,52,50,

50,50,49,49,47,53,51,53,53,50,49,51,53)

XS3<-c(300,303,301,302,300,301,299,303,299,301,298,299,

299,301,300,299,300,297,299,296,300,301,303,302,301,298,300,300,300)

XMEAN1 ¼ 500;XMEAN2 ¼ 50;XMEAN3 ¼ 300

YM<-mean(YS)

X1M<-mean(XS1);X2M<-mean(XS2);X3M<-mean(XS3)

YMJ ¼ (sum(YS)-YS)/(n-1)

X1MJ ¼ (sum(XS1)-XS1)/(n-1)

X2MJ ¼ (sum(XS2)-XS2)/(n-1)

X3MJ ¼ (sum(XS3)-XS3)/(n-1)

PHI1 ¼ X1MJ-(n*X1M-XMEAN1)/(n-1)

PHI2 ¼ X2MJ-(n*X2M-XMEAN2)/(n-1)

PHI3 ¼ X3MJ-(n*X3M-XMEAN3)/(n-1)

A<-matrix(ncol¼3,nrow¼3)

A[1,1] ¼ sum(PHI1 ^2)

A[1,2] ¼ A[2,1] ¼ sum(PHI1*PHI2)

A[1,3] ¼ A[3,1] ¼ sum(PHI1*PHI3)

A[2,2] ¼ sum(PHI2 ^2)

A[2,3] ¼ A[3,2] ¼ sum(PHI2*PHI3)

A[3,3] ¼ sum(PHI3 ^2)

B<-rep(0,3)

B[1] ¼ sum(PHI1);B[2] ¼ sum(PHI2);B[3] ¼ sum(PHI3)

solve(A,B)->AL

WI ¼ (1/n)*(1/(1+AL[1]*PHI1+AL[2]*PHI2+AL[3]*PHI3))

EST_I ¼ n * WI * YMJ

ESTP ¼ sum(EST_I)

ESTP_J ¼ (ESTP-EST_I)/(n-1)

ESTP ¼ ESTP/n

vj<-(WI ^2)*(ESTP_J-ESTP) ^2

vESTP ¼ n*(n-1) ^3*sum(vj)

L<-ESTP+qt(.05,n-4)*sqrt(vESTP)

U<-ESTP+qt(.95,n-4)*sqrt(vESTP)

cbind(WI,ESTP_J)

cat("Tuned estimate:", ESTP, "SE: ",vESTP ^.5,'\n')
cat("Confidence Interval:"," ", L,"; ", U,'\n')
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9.5 Exercises

Exercise 9.1 Consider the problem of estimating the population mean squared error

(or, say finite population variance) given by

S2y ¼ 2N N�1ð Þf g�1
X
i6¼j

X
2Ω

yi� yj
� �2

(9.39)

(a) Consider a semituned jackknife estimator of Sy
2 defined by

σ̂2T csð Þ ¼
X
i6¼j

X
2s

1�n n�1ð Þð Þwij + 1
� �

s2y y ið Þ, y jð Þ
� �

(9.40)

where

s2y y ið Þ, y jð Þ
� �¼ 2n n�1ð Þs2y � yi�yj

� �2
2n n�1ð Þ�2

(9.41)

where

s2y ¼ 2n n�1ð Þf g�1
X
i 6¼j

X
2s

yi�yj
� �2

(9.42)

The weight wij is the semituned weight such that the following k + 1ð Þ constraints are
satisfied:

X
i6¼j

X
2s

wij ¼ 1 (9.43)

and

X
i6¼j

X
2s

wijs
2
xt

xt ið Þ, xt jð Þ
� �¼ n n�1ð Þs2xt �S2xt

n n�1ð Þ�1
(9.44)

with

s2xt xt ið Þ, xt jð Þ
� �¼ 2n n�1ð Þs2xt � xti�xtj

� �2
2n n�1ð Þ�2

(9.45)

S2xt ¼ 2N N�1ð Þf g�1
X
i6¼j

X
2Ω

xti�xtj
� �2

(9.46)

and

s2xt ¼ 2n n�1ð Þf g�1
X
i6¼j

X
2s

xti�xtj
� �2

(9.47)
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for t¼ 1,2,…,k. Consider semituning of the weights wij such that the chi-square type dis-

tance function, defined as

1

2

X
i6¼j

X
2s

wij�1= n n�1ð Þð Þ� �2
qij= n n�1ð Þð Þ (9.48)

is minimized, subject to the k + 1ð Þ constraints. Suggest a doubly jackknifed estimator of

variance of the resulting newly semituned estimator.Write R or SAS code to study the prop-

erties of the resultant estimators.

(b) Consider a semituned ell estimator of Sy
2 defined by

σ̂2T ellð Þ ¼
X
i6¼j

X
2s

w�
ijs

2
y y ið Þ, y jð Þ
� �

(9.49)

Consider semituning the weights wij
* such that the weighted log-likelihood distance,

function defined as

1

n n�1ð Þ
X
i6¼j

X
2s

log w�
ij

� �
(9.50)

is optimized, subject to the k + 1ð Þ constraints. Suggest a doubly jackknifed estimator of

variance of the resulting newly semituned estimators. Write code in any programming lan-

guage to study the properties of the resultant estimators.

Exercise 9.2 Estimating geometric mean

Consider the problem of estimating the population geometric mean defined by

Gy ¼
YN
i¼1

yi

 !1=N

(9.51)

Now consider a tuned jackknifed estimator of the population geometric mean Gy

given by

ĜTuned csð Þ ¼
X
j2s

n�1ð Þ2 �wn jð Þ� n�2ð Þ
n o

Ĝy jð Þ
h i

(9.52)

where

Ĝy jð Þ¼
Yn
i6¼j¼1

yi

 !1= n�1ð Þ
, j¼ 1,2,…,n (9.53)

is the jth jackknifed estimator of the geometric mean of the study variable obtained by

dropping the jth unit from the usual estimator of the geometric mean given by

Ĝy ¼
Yn
i¼1

yi

 !1=n

(9.54)
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The tuning weights �wn jð Þ in the estimator ĜTuned(cs) are obtained by optimizing the

tuned chi-square type distance function

D¼ n

2

X
j2s

q�1
j 1� n�1ð Þ�wn jð Þ�n�1
� �2

(9.55)

subject to the following three tuning constraints:

X
j2s

�wn jð Þ¼ 1 (9.56)

X
j2s

�wn jð Þ Ĝx jð Þ� � 1�nð Þ ¼ 1

n�1ð Þ
X
j2s

Ĝx jð Þ� � 1�nð Þ � �X Ĝx

� ��n

" #
(9.57)

X
j2s

�wn jð Þ Ĝz jð Þ� � 1�nð Þ ¼ 1

n�1ð Þ
X
j2s

Ĝz jð Þ� � 1�nð Þ � �Z Ĝz

� ��n

" #
(9.58)

where �X¼N�1
XN
i¼1

xi and �Z¼N�1
XN
i¼1

zi denote the known population arithmetic

means of the two auxiliary variables. The usual estimators of the geometric means

of the auxiliary variables are given by Ĝx ¼
Yn
i¼1

xi

 !1=n

and Ĝz ¼
Yn
i¼1

zi

 !1=n

. Let

Ĝx jð Þ¼
Yn
i 6¼j¼1

xi

 !1= n�1ð Þ
and Ĝz jð Þ¼

Yn
i 6¼j¼1

zi

 !1= n�1ð Þ
be the jth jackknifed estima-

tors of the geometric means of the auxiliary variables X and Z, respectively, obtained
by dropping the jth unit from the sample s. Suggest a doubly tuned jackknife estimator

of variance of the tuned estimator of the population geometric mean Gy, and investi-

gate coverage by the nominal 90%, 95%, and 99% confidence intervals by generating

a population of at least 10,000 pumpkins from the Statistical Jumbo Pumpkin Model

(SJPM) for sample sizes in the range of 10–100. Comment on your findings.

Exercise 9.3 Consider the problem of estimating the population mean �Y with a tuned

estimator defined by

(
yTuned csð Þ ¼

X
j2s

n�1ð Þ2 �wn jð Þ� n�2ð Þ
n o

�yn jð Þ
h i

(9.59)

where

�yn jð Þ¼ n�yn� yj
n�1

(9.60)

is the jth jackknifed sample mean �yn. Obtain the tuning weights �wn jð Þ by minimizing

the tuned chi-squared distance function given by
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D¼ n

2

X
j2s

qj 1� n�1ð Þ�wn jð Þ�n�1
� �2

(9.61)

subject to the following three constraints:

X
i2s

�wn jð Þ¼ 1 (9.62)

X
i2s

�wn jð Þ�xn jð Þ¼
�X�n 2�nð Þ�xn

n�1ð Þ2 (9.63)

X
i2s

�wn jð Þ�zn jð Þ¼
�Z�n 2�nð Þ�zn

n�1ð Þ2 (9.64)

where �X and �Z are the known population means of the two auxiliary variables. Also

�xn jð Þ¼ n�xn� xj
� �

= n�1ð Þ and �zn jð Þ¼ n�zn� zj
� �

= n�1ð Þ are the jackknifed sample

means �xn and �zn, respectively. Suggest a doubly tuned jackknife estimator of variance

of the tuned estimator of the population mean �Y and investigate the attained cover-

age by the nominal 90%, 95%, and 99% confidence intervals by generating a popu-

lation of at least 10,000 pumpkins from the SJPM for sample sizes in the range of

10–100. Comment on your findings. Extend the results to more than two auxiliary

variables.

Exercise 9.4 Develop semituned and fully tuned methods of variance estimation

using multiauxiliary information, by taking different kinds of distance functions.

Exercise 9.5 Develop a model-assisted tuned estimator of the population mean using

multiauxiliary information for different kinds of distance functions.

Exercise 9.6 Estimating harmonic mean

Consider the problem of estimating the population harmonic mean defined as

Hy ¼N
XN
i¼1

y�1
i

 !�1

(9.65)

Consider a tuned jackknifed estimator of the population harmonic mean Hy given by

ĤTuned csð Þ ¼
X
j2s

n�1ð Þ2 �wn jð Þ� n�2ð Þ
n o

Ĥy jð Þ
h i

(9.66)

where

Ĥy jð Þ¼ n�1ð Þ
Xn
i 6¼j¼1

y�1
i

 !�1

, j¼ 1,2,…,n (9.67)
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is the jth jackknifed estimator of the harmonic mean of the study variable obtained by

dropping the jth unit from the usual estimator of the harmonic mean given by

Ĥy ¼ n
Xn
i¼1

y�1
i

 !�1

(9.68)

The tuning weights, �wn jð Þ, in the estimator ĤTuned(cs) are obtained by minimizing the

tuned chi-square type distance function

D¼ n

2

X
j2s

q�1
j 1� n�1ð Þ�wn jð Þ�n�1
� �2

(9.69)

subject to the following three tuning constraints:

X
j2s

�wn jð Þ¼ 1 (9.70)

X
j2s

�wn jð ÞĤx jð Þ
nĤx jð Þ� n�1ð ÞĤx

¼ 1

n�1ð Þ
X
j2s

Ĥx jð Þ
nĤx jð Þ� n�1ð ÞĤx

�
�X

Ĥx

" #
(9.71)

X
j2s

�wn jð ÞĤz jð Þ
nĤz jð Þ� n�1ð ÞĤz

¼ 1

n�1ð Þ
X
j2s

Ĥz jð Þ
nĤz jð Þ� n�1ð ÞĤz

�
�Z

Ĥz

" #
(9.72)

where �X¼N�1
XN
i¼1

xi and �Z¼N�1
XN
i¼1

zi denote the known population arithmetic

means of the auxiliary variables.

Let

Ĥx jð Þ¼ n�1ð Þ
Xn
i 6¼j¼1

x�1
i

 !�1

, j¼ 1,2,…,n (9.73)

and

Ĥz jð Þ¼ n�1ð Þ
Xn
i 6¼j¼1

z�1
i

 !�1

, j¼ 1,2,…,n (9.74)

be the jth jackknifed estimators of the harmonic mean of the auxiliary variables

obtained by dropping the jth unit from the sample s and then forming the usual esti-

mators of the harmonic means, namely

Ĥx ¼ n
Xn
i¼1

x�1
i

 !�1

and Ĥz ¼ n
Xn
i¼1

z�1
i

 !�1

(9.75)
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Suggest a doubly tuned jackknife estimator of variance of the tuned estimator of the

population harmonic meanHy. Investigate the coverage of the nominal 90%, 95%, and

99% confidence intervals by generating a population of at least 10,000 pumpkins from

the new SJPM for sample sizes in the range of 10–100. Comment on your findings.

Exercise 9.7 Consider the problem of estimating the population mean �Y with a tuned

estimator defined as

�yTuned csð Þ ¼
X
j2s

n�1ð Þ2 �wn jð Þ� n�2ð Þ
n o

�yn jð Þ
h i

(9.76)

where

�yn jð Þ¼ n�yn� yj
� �

= n�1ð Þ (9.77)

is the jth jackknifed sample mean �yn. Obtain the tuning weights �wn jð Þ by minimizing

the tuned chi-squared distance given by

D¼ n

2

X
j2s

qj 1� n�1ð Þ�wn jð Þ�n�1
� �2

(9.78)

subject to the following three constraints:

X
i2s

�wn jð Þ¼ 1 (9.79)

X
j2s

�wn jð Þ Ĝx jð Þ� � 1�nð Þ ¼ 1

n�1ð Þ
X
j2s

Ĝx jð Þ� � 1�nð Þ � �X Ĝx

� ��n

" #
(9.80)

and

X
j2s

�wn jð ÞĤz jð Þ
nĤz jð Þ� n�1ð ÞĤz

¼ 1

n�1ð Þ
X
j2s

Ĥz jð Þ
nĤz jð Þ� n�1ð ÞĤz

�
�Z

Ĥz

" #
(9.81)

where �X and �Z are the known population means of the two auxiliary variables. Let

Ĥz jð Þ¼ n�1ð Þ
Xn
i 6¼j¼1

z�1
i

 !�1

be the jth jackknifed estimator of the harmonic mean

of the auxiliary variable obtained by dropping the jth unit from the sample s and then
forming the usual estimator of the harmonic mean of the auxiliary variable, given by

Ĥz ¼ n
Xn
i¼1

z�1
i

 !�1

. Let Ĝx jð Þ¼
Yn
i 6¼j¼1

xi

 !1= n�1ð Þ
be the jth jackknifed estimator of

the geometric mean of the auxiliary variable, X, obtained by dropping jth unit from the

sample geometric mean Ĝx ¼
Yn
i¼1

xi

 !1=n

. Suggest a doubly tuned jackknife estimator
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of variance of the tuned estimator of the population mean �Y and investigate coverage

of the nominally 90%, 95%, and 99% confidence intervals by generating a population

of at least 10,000 pumpkins from a modified SJPM with two auxiliary variables, and

for various sample sizes in the range of 10–100. Comment on your findings. Extend

the results to more than two auxiliary variables.

Exercise 9.8 Consider the problem of estimating the population mean �Y with a tuned

estimator defined as

�yTuned csð Þ ¼
X
j2s

n�1ð Þ2 �wn jð Þ� n�2ð Þ
n o

�yn jð Þ
h i

(9.82)

where

�yn jð Þ¼ n�yn� yj
� �

= n�1ð Þ (9.83)

is the jth jackknifed sample mean �yn of the study variable. Obtain the tuning weights

�wn jð Þ by minimizing the tuned chi-squared distance function given by

D¼ n

2

X
j2s

qj 1� n�1ð Þ�wn jð Þ�n�1
� �2

(9.84)

subject to the following four constraints:

X
i2s

�wn jð Þ¼ 1 (9.85)

X
i2s

�wn jð Þ�x1n jð Þ¼
�X1�n 2�nð Þ�x1n

n�1ð Þ2 (9.86)

X
j2s

�wn jð Þ Ĝx2 jð Þ� � 1�nð Þ ¼ 1

n�1ð Þ
X
j2s

Ĝx2 jð Þ� � 1�nð Þ � �X2 Ĝx2

� ��n

" #
(9.87)

and

X
j2s

�wn jð ÞĤx3 jð Þ
nĤx3 jð Þ� n�1ð ÞĤx3

¼ 1

n�1ð Þ
X
j2s

Ĥx3 jð Þ
nĤx3 jð Þ� n�1ð ÞĤx3

�
�X3

Ĥx3

" #
(9.88)

where �X1, �X2, and �X3 are the known population arithmetic means of the three auxiliary

variables, �x1n jð Þ¼ n�x1n� x1j
� �

= n�1ð Þ is the jth jackknifed sample mean of the first

auxiliary variable, Ĝx2 jð Þ¼
Yn
i 6¼j¼1

x2i

 !1= n�1ð Þ
is the jth jackknifed sample geometric

mean for the second auxiliary variable, and Ĥx3 jð Þ¼ n�1ð Þ
Xn
i6¼j¼1

x�1
3i

 !�1

is the jth
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jackknifed sample harmonic mean of the third auxiliary variable. Let �x1n ¼ n�1
Xn
i¼1

x1i,

Ĝx2 ¼
Yn
i¼1

x2i

 !1=n

, and Ĥx3 ¼ n
Xn
i¼1

x�1
3i

 !�1

be the sample arithmetic mean, sample

geometric mean, and sample harmonic mean of the first, second, and third auxiliary

variables, respectively. Suggest a doubly tuned jackknife estimator of variance of the

tuned estimator of the population mean �Y and investigate the coverage by the nomi-

nally 90%, 95%, and 99% confidence intervals on this mean by generating a popula-

tion of at least 10,000 pumpkins from a modified SJPM with three auxiliary variables,

for sample sizes in the range of 10–100. Comment on your findings. Extend the results

to more than three auxiliary variables.
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10A brief review of related work

10.1 Introduction

In this chapter, we review, in brief, work done on the topics of calibration and

jackknifing in the field of survey sampling. This review is not exhaustive, but it will

allow the reader to better grasp the ideas of calibration and jackknifing.

10.2 Calibration

In this section, we will discuss a few important publications in the area of calibration

as a follow-up to the article by Särndal (2007). Särndal (2007) defines calibration in

three parts. For finite populations, the calibration approach consists of three objec-

tives: (1) computation of weights subject to some constraints on the sample values

and parameters of auxiliary variables; (2) use of these weights to find a linearly

weighted estimator of total or other parameters; and (3) creation of a nearly unbiased

estimator in the absence of nonresponse and other nonsampling errors. Ardilly (2006)

defines calibration as a method of reweighing the design weights in the presence of

several qualitative or quantitative auxiliary variables. Kott (2006) defines calibration

weights as those that result in nearly a design-consistent estimator of a population

parameter.

Different researchers have different opinions. Let us consider the dictionary mean-

ing of the word calibration: the adjustment of something for improvement. One cal-

ibrates a machine, calibrates a thermometer, calibrates a balance, and calibrates a

stopwatch. Say that I have a stopwatch that is not correctly (or precisely) measuring

time. How do I calibrate the stopwatch? I take it to the watchmaker, then he or she will

adjust (or calibrate) its cog to improve the stopwatch’s precision. The watchmaker will

compare it to another watch that is known to be accurate. The word calibrationmeans

“improvement” or “tuning.”

In the same way, a survey statistician has design weights di ¼ π�1
i , which are, in

particular, reciprocals of the inclusion probabilities πi, i2Ω and are known for the

entire population and in particular are known for a given sample s. No doubt the design

weights di ¼ π�1
i in the Horvitz and Thompson (1952) estimator:

ŶHT ¼
X
i2s

diyi (10.1)
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are able to estimate the population total Y¼
X

i2Ωyi. Is it possible to replace the

design weights di in the Horvitz and Thompson (1952) estimator with new weights,

say wi, that improve the estimator’s precision? If so, then this new estimator is called a

calibrated estimator of the population total and is given by

ŶCal ¼
X
i2s

wiyi (10.2)

where the weights, wi, i2 s, are called calibrated weights. Note that the calibrated

weights are required only for units selected in the sample s and are not required for

every unit in the population Ω. In the same way, a calibrated cog is required only

for a stopwatch that does not show the correct time; calibrated cogs are not required

for all stopwatches in the entire shop, or in the whole world.

We define calibration weights as design weights (or any other mechanism or cog of

an estimator) that have been calibrated based on some standard (set of constraints)

involving known parameters of auxiliary variables, in order to the precision and/or

consistency of estimates of parameters of the study variable. Note that calibrated

weights are computed at the estimation stage and not at the selection stage.

Deville and Särndal (1992) considered five distance functions between the cali-

brated weights wi and the design weights di as shown in Table 10.1.

Among these five distance functions defined by Deville and Särndal (1992), the

first one, DS1, became popular because it leads to a generalized regression (greg) esti-

mator. The main difficulty with the calibrated weights in greg is that these weights do

not satisfy the desired nonnegativity constraint. The other distance functions, DS2,

DS3, DS4, and DS5, can guarantee the nonnegativity of the resultant calibration

weights. Farrell and Singh (2002a) have suggested a penalized chi-square distance

function and have shown that the Searls (1964) estimator is a special case of their

Table 10.1 Deville and Särndal (1992) distances

Number Distance function

1
DS1 ¼ 1

2

X
i2s

wi�dið Þ2
diqi

2
DS2 ¼ 1

2

X
i2s

1

qi
wi log

wi

di

� �
�wi + di

� �
3

DS3 ¼ 2
X
i2s

ffiffiffiffiffi
wi

p � ffiffiffiffi
di

p� �2
qi

4
DS4 ¼

X
i2s

1

qi
�di log

wi

di

� �
+wi�di

� �
5

DS5 ¼ 1

2

X
i2s

wi�dið Þ2
wiqi
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proposal. Singh (2003) has shown that the Hartley and Ross (1954) estimator is also a

special case of penalized distance function.

For one auxiliary variable, Deville and Särndal (1992) considered minimizing the

distance function DS1 subject to the calibration constraintX
i2s

wixi ¼X (10.3)

The appropriate Lagrange function L is given by

L¼
X
i2s

wi�dið Þ2 diqið Þ�1�2λ
X
i2s

wixi�X

 !
(10.4)

On differentiating Equation (10.4) with respect to wi, and equating to zero, we have

wi ¼ di + λ diqixi (10.5)

On substituting Equation (10.5) into Equation (10.3) and solving for λ, we have

λ¼
X
i2s

diqix
2
i

 !�1

X�
X
i2s

dixi

 !
(10.6)

On substituting Equation (10.6) into Equation (10.5), we have

wi ¼ di + diqixi

.X
i2s

diqix
2
i

 !
X�

X
i2s

dixi

 !
(10.7)

Substitution of the value of wi from Equation (10.7) in Equation (10.2) leads to the

general regression estimator (greg) of total given by

Ŷgreg ¼
X
i2s

diyi + β̂ds X�
X
i2s

dixi

 !
(10.8)

where

β̂ds ¼

X
i2s

diqixiyiX
i2s

diqix
2
i

(10.9)

If qi ¼ 1=xi, then the optimal weight wi becomes

wi ¼ diX
.X

i2s
dixi (10.10)
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and the resultant estimator reduces to the ratio estimator of population total, that is,

ŷR ¼
X
i2s

diyi X
.X

i2s
dixi

 !
(10.11)

Singh, Horn, and Yu (1998) reported that there is no choice of qi such that the resultant
estimator (10.8) reduces to the product estimator of population total due to Murthy

(1964).

Singh (2003, 2006) suggested an additional constraint:

X
i2s

wi ¼
X
i2s

di (10.12)

He showed that the calibrated weights are then given by

wi ¼ di +

diqixi
X
i2s

diqi

 !
�diqi

X
i2s

diqixi

 !

X
i2s

diqi

 ! X
i2s

diqix2i

 !
�

X
i2s

diqixi

 !2

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

X� X̂HT

� �
(10.13)

On substituting Equation (10.13) into Equation (10.2), the resultant calibrated estima-

tor of the population total Y becomes an exact linear regression type estimator and is

given by

Ŷs ¼ ŶHT + β̂ols X� X̂HT

� �
(10.14)

where

β̂ols ¼

X
i2s

diqixiyi

 ! X
i2s

diqi

 !
�

X
i2s

diqiyi

 ! X
i2s

diqixi

 !

X
i2s

diqi

 ! X
i2s

diqix
2
i

 !
�

X
i2s

diqixi

 !2
(10.15)

Following Stearns and Singh (2008), for a fixed sample design, the regression coef-

ficient estimator β̂ols in Sen (1953) and in Yates and Grundy (1953) can be written in

the form

β̂ols ¼

X
i 6¼j2s

qiqj d
2
i xiyi�dixidjxj

� �
X
i 6¼j2s

qiqj d
2
i x

2
i �dixidjxj

� � ¼

1

2

X
i6¼j2s

qiqj diyi�djyj
� �

dixi�djxj
� �

1

2

X
i 6¼j2s

qiqj dixi�djxj
� �2 (10.16)
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Stearns and Singh (2008) suggested computing the weights qi and qj in pairs such that

qiqj ¼ πij�πiπj
πij

� �
(10.17)

where πij ¼P i&j2 sð Þ denotes the second-order inclusion probabilities. They

suggested that although the choice of weight qi may not be unique, for a fixed sample

size design, the estimator of the regression coefficient will be unique and is given by

β̂ols ¼
côv ŶHT, X̂HT

� �
v̂ X̂HT

� � (10.18)

where ŶHT and X̂HT stand for the Horvitz and Thompson (1952) estimators of the total

for the study variable and for the auxiliary variable, respectively. The β̂ols in Equa-

tion (10.18) is the estimator of the regression coefficient for probability proportional

to size and without replacement sampling. The use of multiauxiliary information in the

same setup can be found in Singh and Arnab (2011).

Berger, Tirari, and Tille (2003) also proposed a design-based simple alternative to

the Montanari (1987) generalized regression estimator (greg) by implementing stan-

dard weighted least squares in their estimator. Wu and Sitter (2001) suggested another

constraintX
i2s

wi ¼N (10.19)

which also leads to a regression type consistent estimator of the population total for

unequal probability sampling, and leads to an exact linear regression estimator for

simple random sampling. The Wu and Sitter (2001) estimator is popular due to its

model calibration. At almost the same time, Farrell and Singh (2002b) introduced

the idea of model calibration. Montanari and Ranalli (2005) considered nonparametric

model calibration to include auxiliary information at the estimation stage of a popu-

lation parameter. Kim and Park (2010) suggested using the constraint (10.12) if the

population size is unknown and using the constraint (10.19) if the population size

is known. Singh and Sedory (2013, 2015) suggested a two-step calibration approach

with a general constraint given by

X
i2s

wi ¼
X
i2s

kidi (10.20)

where ki, i2 s are constants to be determined at the second step while validating the

resultant estimator to achieve minimum variance. In particular, there exist two choices

of ki, i2 s such that calibration constraints (10.12) and (10.19) are special cases of

Equation (10.20).

Rao (1994) and Singh (2001) considered the problem of estimating a general

parameter of interest in survey sampling, which was later investigated by Singh
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(2006) and Stearns and Singh (2008) in more depth. Rueda, Martı́nez, Martı́nez, and

Arcos (2007) also considered the problem of estimating a distribution function with

calibration techniques. Brewer (1999) introduced cosmetic calibration for unequal

probability sampling designs. Martı́nez, Rueda, Arcos, and Martı́nez (2010) intro-

duced optimum calibration points for estimating the distribution function that ulti-

mately lead to an optimally calibrated estimator of the distribution function.

Hidiroglou and Särndal (1995, 1998) and Dupont (1995) considered a calibration

technique in the two-phase sampling design. Calibrated weights are obtained for the

second-phase sample by assuming that the first-phase sample information is known.

Singh and Puertas (2003) considered the problem of estimating total, mean, and dis-

tribution function using two-phase sampling. Lundstr€om and Särndal (1999) and

Särndal and Lundstr€om (2005) considered calibration as a standard method for the

treatment of nonresponse in survey sampling. Rueda, Martı́nez, Arcos, and Muṅoz

(2009) considered the problem of estimating a population mean using a calibration

technique for successive sampling. Särndal, Swensson, andWretman (1992) have also

derived calibration weights for two-stage sampling. Tracy, Singh, and Arnab (2003)

considered the problem of calibration estimation in stratified random sampling. Kim,

Sungur, and Heo (2007) also considered the problem of estimating a population mean

in stratified sampling through a calibration technique. Tikkiwal, Rai, and Ghiya

(2013) investigated several estimators obtained through a calibration technique for

small domains. Arcos, Contreras, and Rueda (2014) introduced a novel calibration

for social surveys. Dykes, Singh, Sedory, and Louis (2015) used a calibration tech-

nique to improve the Hansen and Hurwitz (1946) estimator in mail survey design

in the presence of random nonresponse. This shows that calibration weights have been

obtained by several researchers for various sampling schemes where the estimation of

population total or a distribution function is concerned.

Owen (2001) suggested the use of a logarithm function; his resultant estimates are

referred to as empirical log-likelihood estimators. Later, his idea of calibrating design

weights in survey sampling was extensively investigated by several researchers,

including Singh, Sedory, and Kim (2014), Singh and Kim (2011), Chen and Sitter

(1999), Rueda, Muñoz, Berger, Arcos, and Martı́nez (2007), and Wu (2005), so no

further detail is provided here.

Singh, Horn, and Yu (1998) introduced a method of higher-order calibration that

could be used to obtain calibrated estimators of higher-order moments of the study

variable, such as variance, by proposing calibration constraints on higher-order

moments of the auxiliary variables. Later, the idea of higher-order calibration to esti-

mate the variance of the linear regression estimator was widely accepted in the liter-

ature and was investigated by several researchers, such as Singh and Horn (1999),

Singh, Horn, Chowdhury, and Yu (1999), and Singh (2001, 2004). The higher-order

calibration approach has been applied to model calibration by several researchers,

among them are Farrell and Singh (2002a, 2002b, 2005), Sitter and Wu (2002),

Wu (2003), and Arnab and Singh (2003, 2005).

Also note that Singh and Sedory (2012) have derived calibrated maximum likeli-

hood weights, as opposed to calibration weights, and Singh (2013) has suggested a

dual problem of calibration of design weights. Both ideas could be further explored,

but the discussion of that work is beyond the scope of this chapter.
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10.3 Jackknifing

The statistical method of jackknifing is analogous to cutting an apple, a mango, or a

pumpkin. Assume a person has an apple to eat. He can eat it without cutting it. He can

make four slices and eat it. He can make eight slices and eat it. Ultimately the person

eats the entire apple, and there is no benefit or loss caused by cutting it into four or

eight pieces. Assume a person has 100 coins in a box. He takes one coin out of the box

and counts the remaining 99 coins. He puts all 100 coins back into the box, removes

another coin, and again finds that 99 coins remain. He can count several times, but will

always find that there are 100 coins. It seems that when you jackknife anything, there

is no gain or loss.

This is not the case when you jackknife a sample. Quenouille (1956) introduced the

idea of jackknifing to reduce bias in the ratio estimator due to Cochran (1940).

Upadhyaya, Singh, and Singh (2004) used it to construct nearly unbiased estimators

when the auxiliary variable is negatively correlated with the study variable. Tukey

(1958) was the first to use the jackknife technique to estimate variance of an estimator.

The idea of variance estimation using the jackknife technique has gained popularity,

due to its simplicity, and it has been widely used by survey statisticians for many types

of survey designs. Wolter (1985) is a famous researcher who promoted the technique

of jackknifing in estimating the variance of an estimator. Rao and Sitter (1995) used

jackknifing while estimating the variance of the ratio estimator in two-phase sam-

pling. Roy and Safiquzzaman (2003) applied the jackknife technique to a general class

of estimators and estimated the variance of this general class of estimators for two-

phase sampling. Arnab and Singh (2006) have proposed a new jackknife method

for estimating variance from imputed data using the ratio method of estimation.

Ramasubramanian, Rai, and Singh (2007) also applied the technique of jackknifing

to estimate variance in two-phase sampling. Farrell and Singh (2010) considered

the problem of jackknifing the calibrated estimator of a population mean in the

two-phase sampling setup and estimated the variance of the chain ratio and chain

regression type estimators. Berger and Skinner (2005) considered the problem of

jackknifing for an unequal probability sampling scheme and examined the similarities

between the jackknife and linearization methods. Their investigation was deeper than

the estimator suggested by Campbell (1980). Singh, Kim, and Grewal (2008)

suggested the problem of jackknifing scrambled responses when the data are collected

on sensitive issues, making use of a randomization device. Jing, Yuan, and Zhou

(2009) jackknifed empirical likelihood in the presence of nonlinear constraints.

Singh and Arnab (2010) proposed the idea of adjusting bias in the estimator of var-

iance of the ratio estimator in two-phase sampling, by combining calibration and

jackknifing.

Though a short review of the literature on the topics of calibration and jackknifing

has been made, an uninterrupted flow of publications on these topics seems to promise

rapid progress in the foreseeable future. The work cited in this chapter is sufficient to

put a researcher on a tack to do more work on the new concept of tuning design

weights.
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