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Preliminaries

1 Preliminaries
1.1 Introduction to Abstract Algebra

It’s always interesting to hear the reaction after telling people that you are fairly far along in your 
undergraduate mathematical career, and you’re taking an algebra course. Reactions range from shock – 
“Is there really that much to study in algebra?” – to general approval – “Well algebra was the one thing 
that I was good at in math and the last thing I understood.”

What is probably missing from these individuals’ understanding is the word “abstract.” The further that 
one goes into mathematics, the more abstract that things get. The focus becomes on the qualities or 
characteristics that unify and transcend any specific example or instance. To get an example of the spirit 
of this sort of thing, we will look at the concept of the addition of numbers.

When you first learn how to count, you most likely used positive whole numbers. Addition was done 
by physically counting objects. At some point, you expanded your set of numbers. Zero was added 
to this set, as were fractions. Eventually you found out about negative numbers. But these are not the 
only numbers out there. A number such as 

√
2  or π  cannot be written as a fraction. We include these 

numbers under the title of real numbers. While being able to use these numbers is an improvement, 
there are other mathematical concepts, such as  √

−1   that are not described by using real numbers 
alone. So we expand our concept of number yet again to include what are known as complex numbers.

Through this process, our concept of number has been stretched and expanded. What was once something 
that matched up with the fingers on our hand becomes something that while still useful is not as easy 
to visualize and represent. During our journey from counting numbers to fractions to real numbers 
and beyond, we have abstracted the idea of number. In the same way we will abstract our conception 
of algebra until it becomes something much more foreign to us than  3x+ 1 = 5, solve for x . Just as 
broadening our understanding of number allows us more flexibility in applications (just think of all of 
the places that a decimal number showed up today in your life), abstract algebra becomes a very useful 
tool for a wide variety of applications. A few of these follow.

1.1.1 Roots of Polynomials

One goal of algebra, present at the beginning of the subject, is to solve equations for an unknown quantity. 
This unknown is typically represented by a variable  x . Linear equations, characterized by the highest 
power of x  being the first power, are very straightforward to solve. An example would be ax+ b = c ,  
where  a, b, c  are constant values with  a  not equal to zero. The method of solution is to first subtract 
b   from both sides, giving ax = b− c  and then divide both sides by  a , leaving us with the solution 

x =
b− c

a
.
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Not all algebraic equations are linear. We can have higher powers of our variable. In a quadratic equation 
the highest power of x  with a nonzero coefficient is two. The goal is to solve ax2 + bx+ c = 0  for x . 
The solution here is a little harder to come by, and involves a process known as “completing the square.” 
The idea is that because there is a x2, we will need to take a square root. But because of the presence of 
the x  in our equation, we need to rewrite our equation with one side as a perfect square. Here are the 
steps to solving a quadratic equation:

1. Divide both sides by a . This is possible because by definition of a quadratic equation,  
a �= 0 . This gives us x2 +

(
b
a

)
x+

(
c
a

)
= 0

2. Subtract  ca  from both sides of the equation and x2 +
(
b
a

)
x = −

(
c
a

)

3. Add
 

(
b
2a

)2 to both sides of the equation. This gives us

x2 +

(
b

a

)
x+

(
b

2a

)2

=

(
b

2a

)2

−
( c

a

)

This is the step of the process that goees by the title ”completing the square.” The reason why 
has to do with the form of the left hand side of the equation. If we were asked to expand 
(y + z)2  we would have  (y + z)2 = (y + z)(y + z) = y2 + yz + zy + z2 = y2 + 2yz + z2 .  
So any algebraic expression that is in the form  y2 + 2yz + z2  is actually a perfect square.

4. With this in mind, we factor

(
x+

b

2a

)2

=

(
b

2a

)2

−
( c
a

)

5. We also simplify the right hand side of our equation by obtaining a common denominator 
for the two fractions:

(
x+

b

2a

)2

=
b2 − 4ac

4a2

6. Take the square root of both sides:

x+
b

2a
= ±

√
b2 − 4ac

4a2

7. Since 
√

y
z =

√
y√
z  we can simplify the right hand side of the equation:

x+
b

2a
= ±

√
b2 − 4ac

2a
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8. All that remains is to solve for x :

x = − b

2a
±

√
b2 − 4ac

2a

and simplify:

x =
−b±

√
b2 − 4ac

2a

And we have the quadratic formula.

It is probably helpful to recap what we have done. Using only basic algebra of balancing both sides of 
our equation and taking the square root of both sides of the equation, we can determine the value of 
x   as long as we know three numbers: the values of the constants  a, b,   and  c . The equivalent of the 
quadratic formula has been known at least since 700 AD. This is not too surprising as there are many 
real world applications where the solution of the quadratic formula is important.

When it comes to deriving formulas for algebraic equations, the quadratic is where many people stop. 
But there are other types of equations that are out there to be solved. If we look at a cubic equation of 
the form  ax3 + bx2 + cx+ d = 0 , we may ask if the same treatment of the quadratic would produce 
a solution for  x . After a little bit of thought we would find that our previous method of completing 
the square will no longer work. After all, there is now a cubic term in our equation. The solution for 
the cubic equation had to wait another 800 years or so, but in 1545, amidst a web of intrigue, Cardano 
published the solution of the cubic equation. The cubic formula is much more complicated than that of 
the quadratic formula, however it works in the same way as the quadratic. Both formulas only require 
us to know the coefficients of our equation. We plug these numbers into a formula that combines basic 
arithmetic and roots of certain degrees – called radicals, and the formula gives us the value of x .

What about equations where x4 is the highest power? In the process of finding a method to solve a cubic 
equation, a similar method was found for quartic equations of the form ax4 + bx3 + cx2 + dx+ e = 0.  
The solution to this was also published in 1545.

The question that arises from this is, “Is it possible to use similar methods to solve a quintic equation 
of the form ax5 + bx4 + cx3 + dx2 + ex+ f = 0? “ This is equivalent to asking, “Is there an equation 
involving only the coefficients of the quintic equation that produces the value of x ? The complete 
answer to this question had to wait until 1822, when Galois – also no stranger to intrigue – showed that 
although we can use basic algebra to solve some quintics, in general quintic equation cannot be solved 
using algebra radicals.
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Proving a negative is generally hard, but Galois was able to show that there is no solution of a general 
quintic using algbraic techniques by employing abstract algebra. An entire subfield of mathematics, 
called Galois theory, is named after him.

Of course one might expect that abstract algebra can be used to answer questions of an algebraic nature. 
What is not so obvious is that it can be used to tell us things about other areas of mathematics.

1.1.2 Straight Edge and Compass Constructions

Plane geometry was developed in antiquity by the Greeks. One feature of this geometry is the desire to 
construct idealized geometric figures by use of two tools, the compass and straightedge with no markings. 
A compass can be used to draw arcs and circles. An unmarked straightedge can be used to draw lines, 
but without the ability to measure the length of those lines. With these tools and a few rules in place, 
the goal was to perform certain geometric constructions.

It is relatively easy to begin with an arbitrary angle and bisect it, or split it into two angles of equal 
measure. The question that arose from this was, “Is it possible to trisect an arbitrary angle?” In other 
words, if we are given the angle θ, then is it possible to construct the angle θ/3? While this is possible 
for certain values of θ, it was unknown if this could be done for an arbitrary angle. We note that the 
absence of a solution does not mean its nonexistence, only that it has not been discovered yet. In 1837 
Wantzel demonstrated that it is in fact impossible to trisect a given angle. What is surprising about this 
is that the proof of a geometric fact involves the use of abstract algebra.

1.1.3 Other Applications and a Brief Note

Other areas of mathematics heavily depend upon abstract algebra, which is why most graduate programs 
require students to take several high-level algebra courses. But abstract algebra is found in a multitude 
of disciplines. Theoretical physicists employ the language of group theory in their models of how the 
universe works. Symmetries in chemistry can be represented abstractly using the language of abstract 
algebra. Even the topic of codes employs abstract algebra.

Of course it takes a little bit of study to get to any of these exciting applications. The goal of this book is 
to bring you to a place where you understand why certain geometric constructions are impossible. Most 
of what follows in the remainder of this chapter will be a quick review of things that you’ve probably seen 
throughout your mathematical career. This material can sometimes seem a little dull, but just because 
something is uninteresting does not mean that it is unimportant.

There is a systematic building that goes on in abstract algebra. Other definitions and topics build upon 
the very basic concepts (that manage to trip some people up) and proof strategies of this chapter. We 
must be certain to have a firm foundation to do any subsequent building. So let’s get started!
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1.1.4 Exercises

1. Solve the quadratic 3x2 − 8x+ 10  by completing the square and working through the steps 
of the derivation of the quadratic formula (don’t just plug the coefficients into the quadratic 
formula).

2. Research the cubic equation and use it to solve 2x3 + 5x− 7 = 0

3. Find other real world applications of abstract algebra.
4. Write a brief summary of the life and mathematical contributions of Cardano.
5. Write a brief summary of the life and mathematical contributions of Galois.

1.2 Logic and Proof

“I know what you’re thinking about,” said Tweedledum; “but it isn’t so, nohow.” “Contrariwise,” continued 
Tweedledee, “if it was so, it might be; and if it were so, it would be; but as it isn’t, it ain’t. That’s logic.” 

Through the Looking Glass by Lewis Carroll

At its most fundamental level, mathematics involves statements about certain objects. These objects can 
be numbers, polygons, or things that are so abstract that they cannot be listed out, drawn, or visualized. 
From a handful of statements concerning these objects, we attempt to form other statements. The process 
by which we do this is to use deductive logic. Deductive logic proceeds in an orderly way through 
statements. A string of these statements forms an argument or proof. Valid proofs (the ones that we are 
interested in) have a conclusion that follows logically from all of the prior statements or hypotheses.

Unlike other fields of knowledge, a mathematician can prove definitively that he or she is absolutely 
correct. Provided that the hypotheses are true and the argument form is valid, the conclusion must be 
true. This form of thought has been with us since ancient Greece, and the fundamental principles of 
logic laid down by Aristotle are still with us today. The statements concerning numbers, proportions, 
and the sorts of things we will encounter in this book were never dreamed of in antiquity, but the logic 
and arguments structures that hold it all together have been part of our cultural history for centuries.

It is assumed that you have seen some sort of logic before. This may have been in a proofs or logic course, 
or you may have learned it by example of seeing it done in a math class. In this section we will look at 
the main proof strategies that will be used throughout the course.

1.2.1 Direct Proof

The first proof strategy that we will examine is called a direct proof. In this type of proof our goal is to 
show that the statement “If P  then Q” is true. Here P and Q are themselves statements, meaning that 
they are sentences that can be classified as either true or false. The method of direct proof to prove “If 
P then Q” involves the steps: 
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1. Begin by assuming that the statement P is true. 
2. Use other information that we know from mathematics to establish that the statement Q is 

also true. 

Example: Use a direct proof to show that for any odd integer n , n2  is also odd.

Before proceeding with a proof we will formalize our problem. Implicit in this is that we know what 
an integer is, and what an odd number is. Integers are positive and negative whole numbers. An odd 
number is of the form  2k + 1 where  k is an integer. What the above problem is asking us to do is to 
prove: if n  is odd, then n2  is odd.

We begin by supposing that n  is an odd integer. Thus it has the form n = 2k + 1 where k  is an integer. 
Now our goal is to show that n2  is also odd. We do this directly by squaring n  and seeing where the 
algebra leads us:

n2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1

We now use some known properties about integers: the product of any two integers is an integer, and 
the sum of any two integers is an integer. This shows us that  n2 = 2(2k2 + 2k) + 1   is in the form 
2M + 1  where M is an integer, and thus n2  is an odd number.

☐
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1.2.2 Indirect Proof

Proving a mathematical statement with a direct proof is not the only method of proof. We may also use 
one of two indirect methods of proof: proof of the contrapositive or proof by contradiction. We will 
begin by looking at the contrapositive. 

Definition:

The logical statement “If P then Q” is logically equivalent to its contrapositive: “If not Q then not P”. 

☐
Example: The contrapositive of the statement “If it is raining, then I will take my umbrella to school” is 
“if I did not take my umbrella to school, then it is not raining.” 

☐
To prove the statement “If P then Q” by use of the indirect method of proof that uses the contrapositive, 
we use the following process: 

1. From the statement “If P then Q” form the contrapositive “If not Q then not P.” 
2. Assume that “not Q” is true and from this use a method of direct proof to demonstrate that 

“not P” is true. 

What follows is an example of a contrapositive proof. Note that this involves first forming the 
contrapositive.

Example: Prove by use of a contrapositive that the following is true: For any integer  n , if  n2   is odd 
then n  is odd.

We form the contrapositive of the above statement and obtain ”for any integer n , if n  is not odd, then 
n2  is not odd.” We can smooth this out by rephrasing the “not odd” as “even.” So in order to prove the 
original statement, we must show that if n  is an even number then n2  is an even number.

Suppose that  n   is an even integer. By definition, it is of the form  2k  where  k   is an integer. We use 
basic algebra and see that

n2 = (2k)2 = 4k2 = 2(2k2)

Thus n2 = 2(2k2)  and is an even number (again since the product of any two integers is also an integer). 
This not only shows that for any integer  n  “if n   is even, then n2   is even,” it also shows that for any 
integer n  “if n2  is odd then n  is odd.”

☐
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WARNING: The statement “If P then Q” is not logically equivalent to the converse “If Q then P.” 

☐
We now consider proof by contradiction. This is another indirect method of proof, but has a different 
structure than a contrapositive proof.

For proof by contradiction of the statement “If P then Q”

1. Begin by assuming that both P and not Q are true statements. 
2. Use other known facts to show that this implies a contradiction. 

Most statements that can be proved with a contrapositive proof can also be proved by contradiction.

Example: Prove the following by contradiction: “For any integer n , if n2  is odd then n  is odd.”

We begin by supposing that n2  is an odd integer and n  is not odd. In other words, n  is even. If n  is 
an even integer, then it is of the form n = 2k . We square n  and see:

n2 = (2k)2 = 2(2k2),

which is an even number. We have reached a contradiction, as we simultaneously have that n2  is odd 
and n2  is even. Our original supposition was incorrect, and thus we have proved the statement “if n2  is 
odd, thenn  is odd.”

☐
Note: We may combine this statement with the statement from the example that we opened the section 
with:

•	 “If n  is odd, then n2  is odd.”
•	 “If n2  is odd, then n  is odd.”

Basic logic tells us that these two statements are equivalent to saying “n  is odd if and only if n2  is odd.”
This fact comes into play when we are asked to prove the statement “P if and only if Q.” This really means 
that we need to prove two statements: “If P then Q” AND “If Q then P.” 

☐
For a more sophisticated example of a proof by contradiction, we look at a classical example that can be 
found in geometry textbook par excellence, Euclid’s Elements.

Theorem 1. The set of prime numbers is infinite.
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The proper development of this proof would require a definition of a prime number. In addition to this 
we need the fact that every number is a prime number or a product of several primes. We note that a 
natural number is prime if it has exactly two divisors. The set of prime numbers thus includes 2, 3, 5, 7, 
and 11. There is nothing about these facts as stated that imply that the set of prime numbers is infinite 
or finite. As we look at our set of natural numbers, there are chunks of consecutive numbers that are 
all composite.

Proof. Assume by way of contradiction that there are a finite number of primes.

Let S = {p1, p2, … , pn} denote the set of all prime numbers. Construct M = p1p2 … pn +1, i.e. the product 
of every prime with one added to it.

Since M > pi  for all of the primes in S, M ∉ S  and M  is not prime. Thus M  has a prime divisor p,  
where p is one of the primes in our set S. However, if p divides M and p divides p1p2 · · · pn , then p divides 
their difference M − p1p2 · · · pn = 1 . This is a contradiction (because no number divides 1 other than 
1) and so our original assumption was false. 
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1.2.3 Mathematical Induction

Mathematical induction is a proof technique that is helpful to prove statements regarding nearly all of the 
natural numbers N . Every induction proof has two steps: first show that a statement is true for n = 1 , 
this is sometimes called the anchor step; second, show that if the statement is true for a general k , then 
it must be true for k + 1  as well.

The process could be thought of as knocking over dominos. We think of the dominos all arranged in a 
line. To knock them all over, we can push over the first domino, which will fall and hit the second. This 
second will fall and knock down the third, and so on. Pushing over the first domino is like the anchor 
step of our induction. Showing that if our statement is true for k  then it is also true for k + 1  is akin 
to the k th domino in our line knocking over the  (k + 1)th.

More formally we have the definition: Definition: For each n ∈ N,  let P (n)  be a statement about n . The  
principle of mathematical induction states that if both:

1. P (1) is true. 
2. For every k ∈n ∈ N,, if P (k)  is true,then P (k + 1)  is true. 

Then P (n)  is true for all n ∈n ∈ N,. 

☐
As always, it’s best to see how this process works by doing some examples.

Example: Show that the sum of the first n  natural numbers 1 + 2 + · · ·+ n = 1
2n(n+ 1).

It is clear that induction should be used (not just because this is the section of the book about induction). 
We know this proof should use mathematical induction because we are asked to prove something 
involving the first n  natural numbers.

For n = 1 : We need to show that the above formula is valid for n = 1 .

1
21(1 + 1) = 1 . So the anchor has been established.

For k ⇒ k + 1 :

Assume by induction that 1 + 2 + · · ·+ k = 1
2k(k + 1).  Since we want to prove a statement concerning 

1 + 2 + · · ·+ k + (k + 1)  it would be most helpful to add k + 1  to both sides of our equation.
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1 + 2 + · · · + k + (k + 1) = 1
2
k(k + 1) + (k + 1)

= 1
2
k(k + 1) + 1

2
2(k + 1)

= 1
2
[k(k + 1) + 2(k + 1)]

= 1
2
[k2 + k + 2k + 2]

= 1
2
[k2 + 3k + 2]

= 1
2
(k + 1)(k + 2)

Thus the formula holds for  k + 1   and by induction, we have proved the statement for all natural  
numbers n . 

Example: Show that 
∑n

j=1 2
j = 2n+1 − 2.

By induction:

For n = 1 :

∑1
j=1 2

j = 21 = 2 = 4− 2 = 21+1 − 2 . So the anchor has been established.

For k ⇒ k + 1 :

Assume that 
∑k

j=1 2
j = 2k+1 − 2.  Now add 2k+1  to both sides of the equation. The right side becomes

2k+1 − 2 + 2k+1 = 2 · 2k+1 − 2 = 2k+2 − 2.

Thus the formula holds for k + 1 . By induction, this proves the statement for all n . 

Example: Form a conjecture regarding a formula for the sum of the first n  odd numbers, and prove 
that your formula is true.

This problem requires an extra bit of work, as we are not given an explicit formula. To figure out what 
the formula should be, we need to play a bit. Since we›re trying to form and prove a statement regarding 
the sum of odd numbers, let›s start by doing a few addition problems.

•	 The sum of the first odd number is 1.
•	 The sum of the first two odd numbers is 1 + 3 = 4 .
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•	 The sum of the first three odd numbers is 1 + 3 + 5 = 9 .
•	 The sum of the first four odd numbers is 1 + 3 + 5 + 7 = 16 .

We could keep doing this, but there is probably enough evidence now to form a guess as to the sum 
of the first n  odd numbers. We see that all of these sums are perfect squares. Our conjecture is: “The 
sum of the first n  odd numbers is n2 .” We could also write this as “1 + 3 + 5 + · · · + (2n− 1) = n2.′′

Now it’s time to prove this conjecture. Since we are dealing with a statement about the natural numbers, 
we will use mathematical induction. Our work above in formulating the conjecture also serves as an 
anchor for the induction. We actually have more than we typically do, as we have demonstrated that 
the statement holds not only for n = 1 , but also for n = 2, 3,  and 4. Of course we are trying to prove 
a statement about all of the natural numbers, so we have an infinite number of these left to try. That is 
why we need to do the next part of our inductive proof.

Now we suppose that the sum of the first k  odd numbers is k2 . The sum of the first k + 1  odd numbers 
is 1 + 3 + · · ·+ (2k − 1) + (2k + 1) = k2 + (2k + 1)  by use of our inductive hypothesis. We then use 
basic factoring and see that k2 + 2k + 1 = (k + 1)2. By induction we have shown that for any n ≥ 1  the 
sum of the first n  odd numbers is n2 . 

☐
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Note: Notice that there is nothing special about starting at n = 1 . Induction could be anchored for a 
higher initial value k0  of n , then we could proceed as normal. The end result would be a true statement 
for all n ≥ k0  

☐
Example: Show that for all natural numbers n ≥ 4, 2n < n!

We begin by noting that the above inequality is not true for  n = 1, 2, 3.  We must start the proof by 
anchoring at n = 4 :

For n = 4 :

24 = 16 < 24 = 4!

For k ⇒ k + 1 :

We assume that  2k < k! . Multiply both sides of the inequality by 2 and obtain  2 · 2k < 2 · k! . Now 
2 · 2k = 2k+1. Furthermore, since k is a natural number, 2 ≤ (k +1) and so 2 · k! ≤ (k +1) · k!. Thus:

2k+1 = 2 · 2k < 2 · k! ≤ (k + 1) · k! = (k + 1)!

We have shown that  2k+1 < (k + 1)! . Since the statement holds for  k + 1 , by induction it is true for 
all n ≥ 4.  

☐
1.2.4 Exercises

1. Assume that the only prime numbers that you knew were  {2, 3, 5, 7} . Work through 
Euclid’s proof of the infinitude of primes by assuming this set is the set of all of the prime 
numbers. What contradiction do you arrive at? 

2. Prove that the integer n  is divisible by 5 if and only ifn2  is divisible by 5. 

3. Without the help of a calculator or computer, prove that the number

1234512345123453 − 123451234512345

is divisible by 6. [HINT: There is nothing special about the number 123451234512345. The 
problem could have asked to demonstrate that n3 − n  for any integer n .] 

4. Prove that for all natural numbers n : 1 + 2 + 3 + · · · + (n− 1) + n = n(n+1)
2
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5. Produce a formula in terms of n  for the sum of the first n  even numbers. Use 
mathematical induction to prove your formula is correct. [Hint: To arrive at your formula, 
you may want to use the previous exercise] 

6. Prove that for all natural numbers n : 1 + 4 + 9 + · · · + (n− 1)2 + n2 = n(n+1)(2n+1)
6

 

7. Produce a formula in terms of n  for the sum 1 + 7 + 19 + · · ·+ (3n2 − 3n+ 1)  and prove 
that your formula is correct by use of mathematical induction. 

8. Prove by mathematical induction that for all natural numbers n :

(x1 + x2 + · · · xn) ≤ (xn1 + xn2 + · · · xnn)1/n

where xi  are all real numbers.

1.3 Set Theory

If you were stranded on a desert island with a friend and wanted to pass the time you might think of 
trying to play chess. But since there probably isn’t a chess set on the island, you would have to improvise. 
It would be easy enough to draw a board in the sand. Rocks could be used for bishops, a coconut for 
the kings, and so on. It wouldn’t matter that what you were using didn’t match a traditional chess set. 
What would be important is that you and your friend would have an understanding of how each item 
represented a particular piece on a chessboard. A rock would only move diagonally, like a bishop on a 
traditional chessboard. The definition of what it is to be a bishop would be of the utmost importance. 
If you recorded your moves and were eventually rescued, another chess aficionado safe at home in his 
study could follow the movements of rocks and coconuts in the sand by knowing the sequence of moves 
that you made.

What does chess have to do with abstract algebra? In the above story each object has a well-defined role 
in the game of chess. It is not important that a rook looks like a castle, only that what we use as a rook 
moves on our board in the sand the same way that a rook moves on a traditional chessboard. The concept 
of well-defined ideas is very important throughout all of mathematics. In any field of mathematics, it is 
imperative that we are all working with the same set of concepts and definitions. This is another one of 
the features that sets mathematics apart from other fields of knowledge. Ideas can be expressed without 
any ambiguity whatsoever.

In addition to the use of logic, mathematics is built upon the language of set theory. A good grasp of 
this area of math is important for the study of any other areas.

1.3.1 Sets

In mathematics a set is a well-defined collection of objects, which are known as elements. These elements 
can be anything – numbers, letters, or even other sets. What is crucial is that we can unambigously 
determine what elements are in the set, and what elements are not in the set.
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While a course such as Calculus involves sets of real numbers, in abstract algebra our sets are in some 
ways more basic. Most of what we consider initially will be sets with a finite number of elements.

In crafting proofs and arguments, it is helpful to have some notation to serve as shorthand. You have already 
seen this throughout your mathematical career. Rather than writing “x  is greater than 5,” the greater than 
symbol can be used to write “x > 5.” In a similar way we have the following notation regarding sets.

Notation:

x ∈ A “x is an element of the set A”
x /∈ A “x is not an element of the set A”

A ⊆ B “A is a subset of B” every element in A is an element of B.
A ⊂ B “A is a proper subset of B” If x ∈ A then x ∈ B, and there is at least

one element x ∈ B for which x /∈ A.
A = B “A is equal to B” A and B contain the same elements.

☐
Note: To show that two sets, A and B, are equal to each other, we must show A ⊆ B  and B ⊆ A . 

☐
Example: Let A = {x ∈ Z | x2 − 3x+ 2 = 0}  and let B = {1, 2} . Prove that A = B .
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We begin by showing that  B ⊆ A . We note that  (1)2 − 3(1) + 2 = 0   and  (2)2 − 3(2) + 2 = 0 , so 
{1, 2} ⊆ A . To show that A ⊆ B , we suppose by way of contradiction that A �⊆ B . That is, there is 
an element y ∈ A  and  y /∈ B . If  y ∈ A , by definition  y2 − 3y + 2 = 0 ⇒ (y − 2)(y − 1) = 0 , and 
so  y = 1  or  y = 2 . In either of these cases  y ∈ B , and so we have a contradiction.

We have that A ⊆ B  and that B ⊆ A . This double inclusion demonstrates that A = B .

☐
The following are abbreviations for sets that will be used throughout the book. They are more or less 
standard across mathematics:

Notation:

N := {1, 2, 3, · · · } The Natural Numbers
Z := {· · · ,−3,−2,−1, 0, 1, 2, 3, · · · } The Integers
Q := {p/q : p, q ∈ Z and q �= 0} The Rational Numbers
R The Real Numbers
C := {a + bi|a, b ∈ R, i =

√
−1} The Complex Numbers

☐
1.3.2 Set Operations

The study of arithmetic involves the basic operations of addition, subtraction, multiplication, and division. 
For each of these operations, we begin with two numbers, apply the operation, and this gives us a number 
as a result. In a similar way we can begin with two sets, apply a set operation, and this gives us another 
set. Set theory lies at a deeper level than arithmetic, and it is even possible to define our arithmetic in 
terms of set theory operations.

We begin with a universal set. Just as the universe is the totality of the physical world, the universal set 
for a particular problem is the set of all elements that we can choose from to form other sets. There is 
not one universal set. The universal set that we use depends upon the context of our problem. 

Example: Let A be the set of numbers such that x2 = 16. 

Here the set A  is very much dependent upon universal set that we use. If the universal set is the set 
of positive whole numbers, thenA = {4} . If the universal set is the set of positive and negative whole 
numbers, then A = {−4, 4}.  

☐
We will now look at set operations, and the process of forming new sets from other ones.
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Definition: For a given universal set X and two sets A ⊆ X , B ⊆ X

•	 The union of sets A and B is A ∪B := {x : x ∈ A or x ∈ B}
•	 The intersection of sets A and B is A ∩B := {x : x ∈ A and x ∈ B}
•	 The complement of B relative to A  is A\B := {x : x ∈ A and x /∈ B}
•	 The complement of A is AC := X\A = {x : x ∈ X and x /∈ A}

Note: The word or has a couple of different uses in the English language. In the exclusive sense, it can 
imply a choice between two options. In the inclusive sense, it means that you can choose between either 
of the options or both. For example of both of these senses of the wordor, suppose you are at dinner. If a 
waiter asks you if you want a chicken or beef, the implication is that you can order one of these items. On 
the other hand if you are asked if you want butter or sour cream on your baked potato, the assumption 
is that you can have either of these items or both. Obviously it will not do to carry over this ambiguity in 
our mathematical language. In mathematics, unless specifically told otherwise, the word or is used in the 
inclusive sense. Thus if x ∈ A ∪B , then x  can be an element A, an element of B, or of both A and B.

☐
Example:  Let A = {1, 2, 3, 4, 5}, B = {1, 3, 5, 7}  with universal set X = {1, 2, 3, 4, 5, 6, 7, 8}

•	 A ∪B = {1, 2, 3, 4, 5, 7}
•	 A ∩B = {1, 3, 5}
•	 A\B = {2, 4}
•	 B\A = {7}
•	 AC = {6, 7, 8}
•	 BC = {2, 4, 6, 8}
•	 A ∪X = X

•	 A ∩X = A

•	 XC = { } .

☐
The very last item in the above list, a set with no elements, has a variety of properties that are revealed 
by a little bit of thought.

There are many properties of the empty set revealed by a little bit of thought. For any set A and universal 
set X:

•	 { }C = X

•	 { } ∪A = A

•	 { } ∩A = { }
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As the following theorem will show, it is appropriate to talk about the empty set and not an empty set. 

Theorem 2. The empty set is unique. 

As this is our first uniqueness proof, we should draw attention to the proof strategy we will use. Any 
time that we want to show something is unique or one of a kind, it is typically a good idea to use a proof 
by contradiction. That is, we will assume that something is not unique (there are at least two of them) 
and then arrive at a contradiction.

Proof. Assume by way of contradiction that there are two empty sets E,F  where E �= F . We look at 
the set E ∪ F . Since E  is empty, E ∪ F = F . However, since F  is emptyE ∪ F = E . Thus we have 
E = E ∪ F = F . This is a contradiction so our original assumption was false. 

☐
Definition: The empty set is the set with no elements in it. It is denoted ∅  

☐
One last property of the empty set, that takes slightly more thought is that for any set A, ∅ ⊆ A . Why 
is this true? Well one and only one of the following are true:

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

http://s.bookboon.com/EOT


An Introduction to Abstract Algebra

25 

Preliminaries

1. For all sets A, ∅ ⊆ A

2. There is a set A such that ∅ �⊆ A .

If #2 is true, then since ∅ �⊆ A  there is an element x  such that x ∈ ∅  and x /∈ A . By definition of the 
empty set, there can be no element x ∈ ∅ . Thus #2 is false, and #1 must be true.

The is an example of a statement that is vacuously true. It is similar to the situation of a man who tries 
to impress his date by telling her, “All the Ferraris in my garage are red.” The only way that this statement 
is false is if he has a Ferrari in his garage that is not red. The statement is true if he does indeed have a 
red Ferrari in his garage. It is also true if does not have a Ferrari in his garage at all.

Another topic in set theory that is worth mentioning are De Morgan’s Laws. De Morgan’s Laws are two 
statements pertaining to how the union, intersection, and relative complement interact with one another. 
They show up in a number of places. We are interested in them here mainly so that we can practice using 
set notation to prove statements.

Theorem 3 (DeMorgan’s Laws). For any sets A,B,C : 

1. A\(B ∪C) = (A\B) ∩ (A\C)

2. A\(B ∩C) = (A\B) ∪ (A\C)  

Proof. We will prove #1. To prove that the two sets are equal we must show that  A\(B ∪C)   and 
(A\B) ∩ (A\C)  are subsets of one another.

Let x ∈ A\(B ∪ C) ⇒ x ∈ A and x /∈ B ∪ C.
⇒ x ∈ A and (x /∈ B and x /∈ C).
⇒ (x ∈ A and x /∈ B) and (x ∈ A and x /∈ C).
⇒ (x ∈ A\B) and (x ∈ A\C).
⇒ x ∈ (A\B) ∩ (A\C).

Thus A\(B ∪C) ⊆ (A\B) ∩ (A\C) . Now we will show the other inclusion.

If  x ∈ (A\B) ∩ (A\C)  then  x ∈ A\B and x ∈ A\C . Thus  x ∈ A, x /∈ B   and  x ∈ A, x /∈ C . In 
other words, x ∈ A  and x /∈ B ∪C . Therefore x ∈ A\(B ∪C)  and (A\B) ∩ (A\C) ⊆ A\(B ∪ C) .

Since we have shown both inclusions, we have proved that the sets are equal. ☐

The last topic in set theory that will be used in what follows is the Cartesian product.
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Definition: Let S and T be sets. The Cartesian product of S and T, denoted S × T is the set of all ordered 
pairs  (s, t) where s ∈ S  and  t ∈ T .

☐
The Cartesian product is used in the Cartesian or rectangular coordinate system when we plot points 
(x, y)  in the plane R × R.  We will be more interested in using the Cartesian product for some careful 
definitions as well as constructing some specific examples later on.

Example: Let S = {a, b, c}  and T = {2, 3} . List all elements of the Cartesian product S × T.

We must form all possible pairs  (s, t) where the first element is from the set S and the second element 
is from the set T. There are 3 choices for the first element and 2 for the second. So there are 2× 3 = 6

elements in S × T.

S × T = {(a, 2), (a, 3), (b, 2), (b, 3), (c, 2), (c, 3)} .

☐
Note: The if S  is a finite set with m  elements and

 
T is a finite set with n  elements, then S × T is a finite 

set with m · n  elements. If either S or
 
T is an infinite set, then S × T is also infinite. 

1.3.3 Exercises

1. Prove that A\B = A  if and only if A ∩B = ∅

2. Prove that for any sets A,B,C : A\(B ∩C) = (A\B) ∪ (A\C)  [HINT: This is one of De 
Morgan’s Laws]

3. The symmetric difference of the sets A  and B  is defined as

A∆B = (A\B) ∪ (B\A).

Prove that A∆B = (A ∪B)\(A ∩B)

4. Prove that  (S ∪ T )× (V ∪W ) = (S × V ) ∪ (S ×W ) ∪ (T × V ) ∪ (T ×W )

1.4 Mappings and Equivalence Relations

This section is linked by the common theme of examining particular subsets of the Cartesian product 
S × T. Any subset of S × T is a relation.

Definition: A  relation  R   between the sets S  and T  is any subset of the Cartesian product S  × T. If 
(s, t) ∈ R  we say that “s is related to t” and write s R t. 

☐
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We are primarily interested in two types of relations:

•	 Mappings, which are a generalization of the functions encountered in Calculus.
•	 Equivalence relations, which are a sort of generalization of equality.

Both of these topics are properly defined in terms of the Cartesian product.

1.4.1 Mappings

One can’t go too far into any part of mathematics without bumping into a mapping. Sometimes these 
mappings go by different, more specialized names. For instance, Calculus is really the study of mappings 
known as continuous real-valued functions. The functions can be polynomial, trigonometric, logarithmic, 
and even more complicated than these.

There are a number of ways to intuitively grasp the concept of a real-valued function. One that is helpful 
is to think of a function as a machine. For every allowable real number that is entered into a real-valued 
function, there is exactly one real number as an output. We make the qualification that the input must 
be allowable since there are some real-valued functions for which certain inputs result in an undefined 
output. For an example of this, try plugging x = 0 into 1/x and state the number that you end up with.
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Now there is nothing that would require us to use subsets of the real numbers as inputs and outputs 
of our function machine. While some sort of set of numbers is a how functions got their start, there 
is no reason that we need to restrict ourselves to just using numbers. Mappings generalize our idea of 
a real-valued function, allowing for any sets for input and output. We could even have an input set of, 
say quadrilaterals, and an output set of numbers. The key is that each allowable input for our mapping 
may only have one output.

We will carefully define a mapping in this section, as well as look at different specialized features of these 
mappings. Our study of abstract algebra will require us to examine even more specialized mappings, but 
we must first understand the basic concepts.

Definition: A mapping f from the set S to the set T, denoted by f : S → T, is a subset M of the Cartesian 
product S × T where for every s ∈ S there is exactly one t ∈ T such that (s, t) ∈ M.

If (s, t) ∈ M we write  t = f (s).

☐
Note: This definition allows us to have a well-defined notion of a mapping, but it deemphasizes the 
intuitive description of mapping as a rule/transformation/machine that assigns a t to each s. Contained 
in this definition is the fact that every s ∈ S is paired with one (and only one) t ∈ T. 

☐
Example: The function f : Z+ → Z+ defined by f (x) = x2 consists of the points

M = {…, (–2, 4), (–1, 1), (0, 0), (1, 1), (2, 4), (3, 9), …}.

☐
Definition: Given a mapping f : S → T:

•	 The set S is the domain of the mapping.
•	 The set T is the codomain of the mapping.
•	 The set R(f      ) : = {t ∈ T| f(s) = t for some s ∈ S} is the range of the mapping. By 

definition R(f      ) ⊆ T.

☐
Definition: Given a mapping f : S → T  where for every x1, x2, ∈ S  if x1 ≠ x2, then f(x1) ≠ f(x2),  
we say that f is one-to-one or injective. 

☐
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Note: We may form the contrapositive of the above statement and see that a mapping is one-to-one 
when f(x1) = f(x2) implies that x1 = x2. 

☐
Definition: Given a mapping f : S → T  where for every y ∈ T  there exists a x ∈ S  such that   
 f(x) = y, we say that f is onto orsurjective. 

☐
Note: An alternate definition of a surjective mapping  f : S → T is a mapping for which S = R(f) the 
range of f. 

☐
Definition: A mapping is bijective if it is both injective and surjective. 

☐
Example:

1. The mapping  f :→R, Z, N.f :→ R, Z, N. defined by  f(x) = x2  is neither injective nor surjective.

f(x) = f(−x), but for all nonzero x , −x �= x , so the mapping is not one-to-one.

The set a = {x : x < 0} ⊂ R, Z, N. is part of the image of  f , so it is not onto.

2. The mapping  f : A → B  defined by  f(x) = 1√
x+1  where A = {x ∈: x > −1}R, Z, N.A = {x ∈: x > −1} and 

B = {y ∈: x > 0}
 
R, Z, N.B = {y ∈: x > 0}  is injective.

Suppose  f(x1) = f(x2)

⇒ 1√
x1 + 1

=
1√

x2 + 1
⇒

√
x1 + 1 =

√
x2 + 1 ⇒ x1 + 1 = x2 + 1 ⇒ x1 = x2.

Therefore  f  is injective.

3. The mapping  f(x) =
2x− 1

x+ 1
 is a bijection from R, Z, N.\{−1}  to R, Z, N.\{2}

First observe that  f  is injective. If
2a− 1

a+ 1
=

2b− 1

b+ 1
⇒ 2ab− b+ 2a− 1 = 2ab− a+ 2b− 1 ⇒ a = b.

We now check to see that  f  is surjective.

To find the range of the mapping  f , solve  y = f(x) for x in terms of y.

y 2x – 1 = ⇒ y(x + 1) = 2x – 1 ⇒ 1+ y = 2x – xy ⇒ 1+ y = x(2 – y)x + 1

⇒ 1 + y  = x2 – y

which makes sense if y ≠ 2.

Therefore f is bijective. 
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Dfienition:

Let  f : S → T be a mapping with domain S and range R(     f     ) ⊆ T.

If E is a subset of S, then the direct image of E under f is the subset of T given by:

f (E) : = {    f (x) : x 7  E}.

If H is a subset of T then the inverse image of H under  f  is the subset of S :

f−1(H) := {x ∈ S : f(x) ∈ H}

☐
When dealing with mappings it is important to remember which set is the domain and which is the 
codomain. Don’t get confused about where the mapping is coming from and going to.
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Example:

Let  f :→Z+ be defined by  f(x) = x2

•	 If A = {−3,−2,−1, 0, 1, 2, 3}  then  f(A) = {0, 1, 4, 9} .
•	 If A = {−3,−2,−1, 0, 1, 2, 3}  then  f−1(A) = {−1, 0, 1} . Due to the sets that we are 

using, there is no way to take square roots or have complex numbers.
•	 If B = {−3,−2,−1}  then  f(B) = {1, 4, 9}
•	 If B = {−3,−2,−1}  then  f−1(B) = ∅ . Again, because we cannot take square roots of 

negative numbers with the sets that we are working with.

☐
We need to be careful with our notation here. Despite the presence of a symbol that looks like an inverse, 
it is not saying that there is an inverse mapping.

Example:

Let  f :→Z+ be the mapping defined by  f(x) = x2  with B = {−3,−2,−1} .

•	 f(f−1(B)) = f(∅) = ∅ . So  f(f−1(B)) �= B.

•	 f−1(f(B)) = f−1({1, 4, 9}) = {−3,−2,−1, 1, 2, 3} . So  f−1(f(B)) �= B.

☐
Definition: If  f : S → T  is a mapping and if S1 ⊂ S , we can define a mapping  f1 : S1 → T  by

f1(x) := f(x) for x ∈ S1.

The mapping  f1  is called the restriction of  f  to S1 . We have essentially thrown out part of the domain 
of the original mapping. 

Example: Recall that above the mapping  f : R → R, f(x) = x2   was not one-to-one. Restrict 
the domain  S1   to the positive real numbers  {x ∈ R : x ≥ 0}. The mapping  f1 : S1 → R, Z, N.  is now 
a one-to-one mapping. If  f1(x1) = f1(x2) , thenx21 = x22   and since  x1  and  x2  are both nonnegative 
(remember, we have restricted the domain), this implies that x1 = x2 .

☐
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1.4.2 Equivalence Relations

Many times in mathematics we want to talk about objects being the same. But this notion of “sameness” 
needs some clarification. It is clear that there are ways to say that 

√
36, 12/2,  and  3! are all different 

ways to represent the same value of 6. What is not so clear is that there is a way to consider the numbers 
−4, 6, 21,   and 101 as being the same. What we need is a definition to talk about this idea precisely. 
When we say that 12/2 = 6  we are really making a statement about the symbol= and what relationship 
it establishes between the values on the right and left of the equals sign.

We will formalize this idea of sameness by looking at another particular type of relation. This will be a 
relation between a set S  and itself with some extra conditions.

Definition: An equivalence relation, denoted  �  on a set S   is a relation from S   to itself that satisfies 
these three properties for all x, y, z ∈ S : 

1. Reflexive: x � x  

2. Symmetric: If x � y , then y � x  

3. Transitive: If x � y and y � z  then x � z  

☐
Example: The clearest example, but one which our familiarity obscures the importance of the definition 
is equality =. We say that x = y  if the numerical value of x  is the same as y.

It is clear that x = x . Furthermore if x = y  then  y = x . Transitivity also follows since if x = y  and 
y = z  then x = z .

☐
Example: Let T be the set of all triangles. For any two triangles x, y ∈ T  we say that x is similar to  y  if 
the three angle measures of x  are equal to the angle measures of  y .

 x is similar to x as the angle measures of a triangle are equal to itself.

If x is similar to y then the three angle measures of x are equal to the angle measures of y. This means 
that the three angle measures of y are equal to the three angle measures of x, and so y is similar to x.

If x  is similar to y  and y  is similar to  z , then the three angle measures of  x   are equal to those of y,  
which are equal to those of  z . Therefore the angle measures of  x  are equal to the angle measures of 
z  and so x  is similar to z .
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Thus similarity is an equivalence relation. The sameness that we are identifying here only pertains to 
angle measures, not side lengths. 

☐
Example: From linear algebra, matrix A is row equivalent to matrix B if B is obtained from A by a finite 
number of elementary row operations. We will show that row equivalence is an equivalence relation.

Row equivalence is reflexive. A  is row equivalent to itself as we can start with A, perform no row 
operations, and end with A.

Row equivalence is symmetric. If A is row equivalent to B then we obtain B from A by a finite number 
of elementary row operations. Each of these row operations can be reversed by an elementary row 
operation. Thus we can obtain A from B by a finite number of elementary row operations, and A is row 
equivalent to B.

Finally, row equivalence is transitive. If A is row equivalent to B and B is row equivalent to C then B can 
be obtained from A by a finite number of elementary row operations and C can be obtained from B by 
a finite number of elementary row operations. Thus C can be obtained from A by a finite number of 
elementary row operations and A is row equivalent to C.

☐
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Example: Suppose we say that for any real numbers x, y  that x � y  if  |x− y| ≤ 3. Is this an equivalence 
relation?

It is true that x � x . Since  |x− x| = 0 < 3 , we know that this relation is reflexive. It is also true that 
this relation is symmetric. If x � y  then  |x− y| ≤ 3. It follows that  |y − x| ≤ 3 and so  y � x .

However this relation is not an equivalence relation as it is not transitive. This can be seen by the following 
counterexample. Since  |2− (−1)| ≤ 3  we see that  2 �−1 . Since  | − 1− (−3)| ≤ 3   it follows that 
−1 �−3 . However it is not true that 2 �−3  as  |2− (−3)| = 5 > 3. 

☐
The next example of an equivalence relation is one which we will come back to over and over again in 
our study of abstract algebra.

Example: Let x, y ∈ Z . We say that x � y  if there exists an integer k  such that x = y + 5k .

We see that x � x  since x = x+ 5 · 0 .

If x � y  then x = y + 5k  for some integer k . By basic algebra we have  y = x+ 5(−k) . Since −k  is 
an integer this shows that  y � x .

If x � y  and  y � z  then there exist integers k,m  such that x = y + 5k  and z = y + 5m . We again use 
some basic algebra to see that x = (z − 5m) + 5k = z + 5(k −m). Since k −m ∈ Z  we see that x � z.  

☐
This last example explains why we can consider  −4, 6  and 101 to be the same. All of these numbers 
are equivalent by the above equivalence relation. Specifically, each of these numbers has a remainder 
of 1 when divided by 5. This equivalence relation is a special case of one so important that it is given a 
special name.

Definition: For integers x,y,n, we say x  is equivalent to y  modulo n  if there exists an integer k  such 
that x = y + nk. We denote this equivalence relation x ▷ y

 
by x = y mod n. 

☐
Equivalence relations are defined on a particular set and partition this set into several subsets. These 
subsets are mutually disjoint. If we examine one of these subsets, every element contained therein is 
equivalent to every other element in the subset. This is the idea of an equivalence class.

Definition: Given a set S and element x ∈ S with equivalence relation ▷, the equivalence class of x is the 
subset of S that contains all elements of S that are equivalent to x. 

☐
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Example: Consider the equivalence relation on Z  denoted by x = y mod 5. This equivalence relation 
partitions the elements of Z  into five equivalence classes:

•	 {· · · ,−10,−5, 0, 5, 10, · · · }  Each of these elements x  are of the form x = 0 + 5 · k .
•	 {· · · ,−9,−4, 1, 6, 11 · · · }  Each of these elements x  are of the form x = 1 + 5 · k .
•	 {· · · ,−8,−3, 2, 7, 12, · · · }  Each of these elements x  are of the form x = 2 + 5 · k .
•	 {· · · ,−7,−2, 3, 8, 13, · · · }  Each of these elements x  are of the form x = 3 + 5 · k .
•	 {· · · ,−6,−1, 4, 9, 14, · · · }  Each of these elements x  are of the form x = 4 + 5 · k .

Every integer is in one and only one of these subsets. It is relatively easy to see from this example that 
there will be n  equivalence classes from the modulo n  equivalence relation, and these correspond to 
the remainders possible (0, 1, · · · , n− 1) from division by n . 

☐
1.4.3 Exercises

1. Give an example of the following types of mappings  f : Z → Z : 
a) Injective but not surjective. 
b) Surjective but not injective. 
c) Neither surjective nor injective. 
d) Bijective. 

2. Let  f : S → T  be a mapping and A,B  subsets of S. Prove or give a counterexample:
a) f(A ∪B) = f(A) ∪ f(B)

b) f(A ∩B) = f(A) ∩ f(B)

c) B ⊆ f−1(f(B))

d) f(A)\f(B) = f(A\B)

3. Let X be a finite set with n  elements.
a) How many elements are in X ×X ?
b) How many relations are there from X to X?
c) How many mappings are there from X to X?
d) How many equivalence relations are there from X to X?
e) How many equivalence relations from X to X are also mappings?

4. Let ⊆ denote subset inclusion, i.e. A ⊆ B if A is a subset of B. Show that this relation is 
reflexive and transitive, but not symmetric and hence not an equivalence relation.

5. Prove that  {(x, y) ∈ Z×Z | x = y + nk, k ∈ Z} is an equivalence relation. (i.e. prove 
that x ▷ y by x = y mod n is an equivalence relation.)

6. On the set R, Z, N. define the relation x ▷ y if |x| = |y|. Is this relation an equivalence relation?
7. For the integers x,y, we say that x = y mod 6 if there is an integer k such thatx = y+6k. What 

are the equivalence classes for this equivalence relation?

Download free eBooks at bookboon.com



An Introduction to Abstract Algebra

36 

Group Theory

2 Group Theory
2.1 Binary Operations

Of all of the abstract structures that we will study, the first of these is a group. Historically groups were 
among the first algebraic objects to be formally studied and are used in the definition of subsequent 
structures. Before presenting the definition of groups, the topic of binary operations must be explored. 
Suppose you saw the following things written on a wall:

red, circle . . . square

red, square . . . blue

square, red . . . blue

What is going on here? It’s hard to tell exactly. We can see that for pair of elements from the set 
{circle,blue, square, red} a third is mentioned. It’s unclear what connection the third element has with 
the first two, but it appears that some rule dictates what happens. What does this situation have to do 
with abstract algebra? It’s actually one that you have encountered before. A more familiar example of 
the above phenomenon is: 
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8, 7 · · · 15

2, 3 · · · 5

12, 2 · · · 14

It’s easy to see whats going on in this situation. Here we take two elements of the set N and return another 
element of the set N. We can see that the third number is the sum of the first two. So we understand the 
rule that is operating here. But the overall structure of what is happening is identical to the first example. 
In each case we assign an element of a set to every pair of elements from that same set. If we think 
formally in terms of chapter 1, we can see that there is a mapping and Cartesian product at work here. 

Definition: A binary operation µ  on a set S is a mapping from the Cartesian product S × S  into S.  
For each (s, t) ∈ S × S  we will denote the element µ(s, t) ∈ S  by s · t  

☐
Note: In order for µ  to be a binary operation on the set S  the following must happen:

1. For every pair (s, t) ∈ S × S  exactly one element is assigned. 
2. The element assigned to the pair is also in S. 

Notation: Typically the s · t  notation is used when writing out binary operations. Although it is techically 
correct to write a binary operation as a mapping, this notation can get in the way of intuition. Typically 
the notion that a binary operation is a mapping is suppressed by using a symbol such as ·  and thinking 
of the binary operation as a type of multiplication. Despite the fact that ·  typically denotes standard 
multiplication of numbers, we can allow this to represent any binary operation. 

☐
Example:

The following are examples of binary operations on particular sets:

•	 Addition + is a binary operation on each of the sets: 
 
R, Z, N. We typically don’t write 

+(1, 5) = 6  to indicate 1 + 5 = 6 . Had we defined ·(s, t) = s+ t  it would be appropriate 
to write 2 · 5 = 7 , because our symbol ·  now represents addition.

•	 Addition + is a binary operation on the set C  of complex numbers. This addition is defined 
by (a+ bi) + (c+ di) = (a+ c) + (b+ d)i

.

•	 Standard multiplication ·  is a different binary operation on each of the sets 
 
R, Z, N.

•	 a · b = ab− 2b  is a binary operation on Z+.
•	 Let A,B  be n× n  matrices with real entries. A · B = (detA− detB)A  is a binary 

operation.

☐
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We see from these examples that a set is not limited to one binary operation. One set can support a 
multitude of binary operations. The actual rule that determines a binary operation is really up to us, as 
long as it satisfies the definition. We must be on the lookout for situations such as the following.

Example: Let D denote the set of odd integers. Is ordinary addition a binary operation on D? 

Even though for every pair of integers ordinary addition produces one integer, this is not a binary 
operation on the set D. The reason why is that the sum of any two odd numbers is even, which is not 
an element of the set D. What we have here is a mapping, but it is a mapping from D ×D → DC , not 
D ×D → D .

☐
Denition: A binary operation ·  is associative on S if for every a, b, c ∈ S  we have  
a · (b · c) = (a · b) · c .

☐
Denition: A binary operation ·  is commutative on S  if for every a, b ∈ S  we have a · b = b · a . 

☐
The definitions of commutative and associative binary operations are independent of one another. A 
binary operation can possess one, both, or neither of these properties.

•	 Addition on is Z+ both commutative and associative.
•	 Multiplication on is Z+ both commutative and associative. 
•	 Subtraction is neither associative nor commutative on Z+ . We see 

(2− 3)− 4 = −5 �= 3 = 2− (3− 4) , so it is not associative. The commutative property 
fails as well due to 2− 3 �= 3− 2 .

•	 Let Mn(R)  denote n× n  matrices with real entries. Matrix addition is commutative and 
associative, matrix multiplication is associative but not commutative. 

•	 Given real numbers x, y ∈ R, Z, N. , define a binary operation x · y = (x+ y)2.  Since 

(x+ y)2 = x2 + 2xy + y2 = y2 + 2yx+ x2 = (y + x)2 = y · x

this binary operation is commutative. However, this binary operation is not associative, as can 
be seen by comparing (1 · 2) · 2 = 9 · 2 = 121  with 1 · (2 · 2) = 1 · 16 = 289

☐
2.1.1 Exercises

1. Is the mapping defined by a · b = a/b  a binary operation on the set R, Z, N.? Explain.
2. Is the mapping defined by a · b = a± b  a binary operation on the set Q? Explain.
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3. Is the mapping defined by a · b = a+ b  a binary operation on the set {1, 2, 3, 4, 5, 6, 7, 8}?  
Explain. 

4. Define the binary operation x · y = xy − 3  on the set Q . Is ·  associative? Is it 
commutative? 

5. If a · b = b · a  for a, b ∈ S , is it true that ·  is commutative on the set S? Explain.
6. Let ·  be an associative and commutative binary operation on the set S. Let 

A = {s ∈ S | a · a = a} . Prove that H is closed under · .

2.2 Introduction to Groups

The group structure is important because it describes much of the mathematics that we have encountered 
as well as more advanced topics. Topics as diverse as addition of integers, multiplication of nonzero 
rational numbers, matrix multiplication of 3× 3  matrices with real entries and nonzero determinant, 
and much more can all have the features of the mathematical object known as a group. 

2.2.1 Basic Definitions

Definition: A group {G, ·}  is a nonempty set G closed under a binary operation ·  such that the 
following axioms are satisfied:
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1. Associativity of · : for all a, b, c ∈ G , 

(a · b) · c = a · (b · c).

2. Identity element: There is an element e ∈ G  such that for all g ∈ G

e · g = g · e = g.

3. Inverse: For each g ∈ G  there exists an inverse g−1 ∈ G  such that 

g · g−1 = g−1 · g = e.

☐
There are a few things to mention about this definition. The first is that the set we are working with 
must be nonempty. So there has to be at least one element in our group. The next item of note is that 
while a group must have a binary operation that is associative, there is no mention about commutativity. 
This is why some of the formulas in the definitions appear redundant. If we do not have a commutative 
binary operation, we do need to be concerned about the order of the elements. That is why the definition 
of a group includes both e · g  and g · e . Of course, there are groups with commutative structures. To 
distinguish this feature we have an additional bit of terminology.

Definition: A group is abelian if its binary operation is commutative. A group is nonabelian if its binary 
operation is not commutative. 

☐
Definition: A finite group is a group with a finite number of elements. The order of a group G is the 
number of elements in the group, and is denoted by |G| . 

☐
Notation: There are a few remarks to make about the notation used in a group. The definition above 
employs a notation that suggests multiplication. Hence the inverse is written as we would typically think to 
write the multiplicative inverse of a real number. When the context is clear we will sometimes suppress the 
notation for the binary operation, writing xy  rather than x · y . We will also employ exponent notation, 
i.e., x2 = x · x , when this is convenient. There are times when it is more natural to use additive notation 
for our group operation. In this case the inverse of the element a  is denoted by −a . 

☐

Download free eBooks at bookboon.com



An Introduction to Abstract Algebra

41 

Group Theory

2.2.2 Examples of Groups

To see how far ranging the definition of a group is, we will look at an extensive series of examples 
of groups. Some of what follows constitute counterexamples. These are examples of sets with binary 
operation that fail to meet some part of the definition of a group.

Example:

1. x ∈ Z  under addition is an abelian group. Addition is associative, 0 is an identity, and for every 
x ∈ Z  we have −x  as an inverse. Since x ∈ Z  satisfies these axioms, it forms a group under 
addition. Moreover, the addition is commutative so the group is abelian.

2. The set of positive integers Z+  under addition is not a group. Although the associative 
property holds, we do not have an identity. There is also no inverse element for any element 
in the group.

3. x ∈ Z  under multiplication is not a group. Although we have associativity of multiplication 
and 1 is the identity, any integers other than ±1  do not have inverses. While it is true that 
1

2
· 2 = 1 , the number 12 is not an integer, and cannot be used as an inverse element of 2.

4. n× n  matrices with real entries and nonzero determinant under matrix multiplication is a 
nonabelian group. Matrix multiplication is associative. The identity matrix In , a matrix with 
entry of 1 along the diagonal and zeros elsewhere, has the property that A · In = In ·A  for 
all n× n  matrices A . Since any matrix A  in this set has nonzero determinant, there is an 
inverse matrix A−1 . Matrix multiplication is not commutative, so this group is nonabelian.

5. Q
 
under multiplication is not a group. Although multiplication is associative on this set 

and 1 is the identity, the element 0 does not have an inverse. There is no rational number r  
such that 0 · r = 1 .

6. Q∗, – the set of nonzero rational numbers – under multiplication is an abelian group. The 
problem with the last example has been resolved and every element of Q∗,  which we may 
express as pq , has inverse qp .

7. The set {e} , with binary operation e · e = e  is an abelian group. Associativity follows by 
checking (e · e) · e = e · e = e · (e · e).  Since e · e = e  this one element is its own identity 
and inverse.

8. The set {e, g} , with binary operation:

•	 e · e = e

•	 e · g = g

•	 g · e = g

•	 g · g = e

Download free eBooks at bookboon.com



An Introduction to Abstract Algebra

42 

Group Theory

is an abelian group. Associativity is a bit tedious to verify. But if we check, we will find that 
associativity holds for all eight cases that are possible. The element e  is an identity. Each 
element is its own inverse. Since the binary operation is commutative, this is an abelian group.

9. The complex n th roots of unity is is the set of all complex numbers z  such that 
zn = 1 + 0i . This set forms an abelian group under multiplication of complex numbers. 
Multiplication of complex numbers is associative and commutative. The number 1 + 0i  
is a complex n th root of unity as (1 + 0i)n = 1 + 0i  and this serves as the identity since 
(1 + 0i) · (a+ bi) = (a+ bi)  for any complex number. Furthermore, every n th root of 
unity has a multiplicative inverse. Suppose z = a+ bi  and zn = 1 . Let z̄ = a−bi

a2+b2
 and we 

have 

z · z̄ = (a+ bi)
a− bi

a2 + b2
=

(a+ bi)(a − bi)

a2 + b2
=

a2 + abi− abi− i2b

a2 + b2
=

a2 + b2

a2 + b2
= 1 + 0i.

While this shows that z̄  is the inverse of z , we still need to show that z̄  is itself an n th root 
of unity: 

z̄n = (1 + 0i) · z̄n = zn · z̄n = (z · z̄)n = (1 + 0i)n = 1 + 0i.

10. The set Zn  of equivalence classes modulo n , which we denote {[0], [1], [2], · · · , [n− 1]}  
forms a group under the addition [x] + [y] = [(x+ y) mod n] . Associativity of addition 
is inherited from associativity of addition in Z+. The equivalence class associated to 
[0] is the identity. For any equivalence class [x], consider [n− [x] mod n] . Since 
[x] + [n− [x] mod n] = [n mod n] = [0],  every element in n  has an inverse.

11. To see how the last example works for a specific value of n , we will look at Z+
3 .

We will denote equivalence classes 

•	 [0] = {· · · ,−6,−3, 0, 3, 6, · · · }
•	 [1] = {· · · ,−5,−2, 1, 4, 7, · · · }
•	 [2] = {· · · ,−4,−1, 2, 5, 8, · · · }

The binary operation is defined as:

•	 [0] + [0] = [0]

•	 [1] + [0] = [0] + [1] = [1]

•	 [2] + [0] = [0] + [2] = [2]

•	 [1] + [1] = [2]

•	 [1] + [2] = [2] + [1] = [0]

•	 [2] + [2] = [1]
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It has been noted that associativity has been inherited from Z+. Since a+ (b+ c) = (a+ b) + c  
in Z+, when we work modulo n , this is also true. [0] is the identity element. For inverses [0] 
is its own inverse and [1] and [2] are inverses of each other. Although the type of addition 
seen in this example may seem unnatural, we use it every day when we look at a clock. Just 
as 5 + 10 = 3 mod 12 , five hours after 10 o’clock is 3 o’clock. This type of example will be a 
major one that we will continually return to throughout the book.

☐
We see from the above examples that the group structure is very much dependent on both the set we 
are using as well as the binary operation on the set. It should be clear from the variety displayed here, 
that we are really just scratching the surface of the number of situations that can be described in terms 
of a group.

2.2.3 Basic Theorems Regarding Groups

Now that we’ve studied several examples of groups, we’ll look at what we can prove concerning this 
definition. 

Theorem 4. The identity element G of a group is unique. 
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Proof. As before for a uniqueness proof, we will begin by assuming that the identity is not unique. Suppose 
by way of contradiction that e, f  are both identity elements of G and that e �= f . 

However, e = f · e  since f  is an identity and f · e = f  since e  is an identity. Combining these equalities 
we see e = f · e = f . Our supposition is false and the identity element of a group is unique. 

☐
Note:

The hypothesis that we are working with a group is actually a little more than we need. Nothing in 
the above proof required any part of the definition of a group. All that was assumed is that we had an 
identity element. The above proof could be used for any set S  and binary operation ·  for which there 
is an identity element e . 

Identities are not the only things in groups that are unique. 

Theorem 5. For the group G, the inverse of an element g ∈ G  is unique. 

Proof. Suppose by way of contradiction that g′ �= g′′  are both inverses of g .

g′′ = e · g′′ = (g′ · g) · g′′ = g′ · (g · g′′) = g′ · e = g′

This shows that g′′ = g′ , therefore inverses are unique. 

☐
The previous theorem shows that for a group G and a, b, x ∈ G , the equation ax = b  has a unique 
solution for x . Since a  has a unique inverse, a−1  we may write x = a−1ax = a−1b . 

Theorem 6. If a, b  are elements of a group G then (a · b)−1 = b−1 · a−1 . 

Proof. We prove this by using the definition of inverse. For a group G and a, b ∈ G , we consider 

(a · b) · (b−1a−1) = a · ((b · b−1) · a−1) = a · (e · a−1) = a · a−1 = e

A similar series of steps shows that (b−1 · a−1) · (a · b) = e . Therefore b−1 · a−1 = (a · b)−1 .

☐
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WARNING: We need to be careful about how we prove statements regarding groups. Much of the algebra 
that we are accustomed to may not be valid, because it relies on the assumption of the commutative 
property. For instance, it’s not always true anymore that (xy)2 = x2y2 . This is because in a nonabelian 
group (x · y) · (x · y) = x · (y · x) · y , but there is no justification that we have to switch the order of 
the y · x  to x · y . We need to exercise caution in how we use cancellation on two sides of an equation. 
If we “multiply” by an element on the left side of an equation, we must multiply the same element on 
the right side of the equation.

☐
For illustration of how to prove statements regarding groups, here are a couple of basic proofs.

Theorem 7. G is an abelian group if and only if (xy)2 = x2y2  for all elements x, y ∈ G.  

This is an “if and only if proof,” so there are really two statements to prove. 

Proof. Suppose that G is an abelian group. We consider 

(x · y)2 = (x · y) · (x · y) = x · (y · x) · y = x · (x · y) · y = (x · x) · (y · y) = x2 · y2

We are justified in making the statement x · y = y · x  due to the hypothesis that G is abelian. Thus we 
have shown “If G is abelian, then (x · y)2 = x2 · y2.” It remains to show the other half of the statement. 

Now suppose that for all x, y ∈ G  we have (xy)2 = x2y2 . Expanding this expression we see 
x · y · x · y = x · x · y · y . If we multiply on the left by x−1  and on the right by y−1  we have:

x−1 · x · y · x · y · y−1 = x−1 · x · x · y · y · y−1

which simplifies to y · x = x · y . Since this statement is true for all x, y ∈ G  we have shown that G is 
an abelian group. This shows “If (xy)2 = x2y2  for all x, y ∈ G  then G is abelian.” 

Combined with the other part of the proof we have shown G is abelian if and only if (xy)2 = x2y2  for 
all elements x, y ∈ G.  

☐
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2.2.4 Group Tables

The last basic consideration regarding groups is their presentation. Rather than the cumbersome lists that 
we have used to show all possible binary operations, we can organize these lists into a table. These tables 
have the advantage of being compact, easy to read, and connect to the familiar notion of a multiplication 
table. To read the table, the first element of our binary operation comes from the leftmost column of the 
table. The second element of the binary operation comes from the top row. Where the row and column 
intersect is the product of the binary operation of these two elements. Group tables are better suited for 
work with finite groups of low order. Below we will see a few of these.

Example:

Above we saw an abelian group with two elements. This corresponded to the set {e, g} , with binary 
operation:

•	 e · e = e

•	 e · g = g

•	 g · e = g

•	 g · g = e

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

Get Help Now

Go to www.helpmyassignment.co.uk for more info

Need help with your
dissertation?
Get in-depth feedback & advice from experts in your 
topic area. Find out what you can do to improve
the quality of your dissertation!

http://www.helpmyassignment.co.uk


An Introduction to Abstract Algebra

47 

Group Theory

· e g

e e g
g g e

To show that g · g = e  we note that the g  column and the g  row intersect at the element e .

☐
Example:

A larger group table, for a group with four elements is:

· e a b c

e e a b c
a a b c e
b b c e a
c c e a b .

The 16 entries of the table define the binary operation.

There are a few features of note in a group table of a finite group of order n . 

•	 Group tables will contain each of the n  elements of G in each row and each column. This 
forms a sort of Sudoku puzzle in which no element can occur twice in the same row or 
same column.

•	 The same group can be expressed in terms of different tables, however the set of binary 
operations in the two tables will be the same.

•	 Abelian groups can be arranged in a way that is symmetric along the main diagonal running 
from the upper left to the lower right of the table.

2.2.5 Exercises

1. Construct a group table for a group with three elements {e, a, b} . 
2. Construct a group table for a group with four elements {e, a, b, c} . Leaving the elements in 

this order on both the top row and left column, is there only one way to form a group table 
with four elements? 

3. Prove that G is an abelian group if and only if (a · b)−1 = a−1b−1

4. Given any set A the power set of A, denoted P (A) , is the set of all subsets of A. Prove that 
P (A)  with binary operation the symmetric difference is a group.

5. Prove that for any element a  in the group G , (a−1)−1 = a .
6. Prove that for the group G and every a1, a2, · · · , an ∈ G , 

(a1 · a2 · · · · · an)−1 = a−1
n · · · · a−1

2 · a−1
1 )
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7. Prove that for a group G and elements c, d, y ∈ G , the equation yc = d  has a unique 
solution for y . 

8. Let G  be a group where for every x ∈ G , x · x = e . Prove that G is abelian.
9. Let X = R ∪ {−∞}. We define a binary operation on X  denoted + as follows: if x  and 

y  are both elements in R, Z, N., then x+ y  is the usual sum of x+ y  (an element of R). If at 
least one of x  or y  is −∞ , then x+ y = −∞ . Show that X  with binary operation + is 
commutative and associative, but not a group.

10. Prove that for the finite group G with identity e  and order 2k  for k ∈ N, there is an 
element g �= e  such that g · g = e

11. An element of the group G is idempotent if g · g = g . Prove that every group has one and 
only one idempotent element.

2.3 Cyclic Groups

We have already seen that the complex n th roots of unity Cn  form a group under complex multiplication. 
If we plot all of these points in the complex plane, we see that they are all located on a unit circle. 
Adjacent points are separated by an angle of 2π/n . A primitive n th root of unity is complex number 
ξ = cos

(
2π
n

)
+ i sin

(
2π
n

)
. For this complex number n  is the smallest positive integer such that 

ξn = 1 + 0i . What this means is that ξ, ξ2, ξ3, · · · , ξn−1, ξn  are all distinct n th roots of unity. 
Successive powers of ξ  produce the entire group Cn . 

For another instance of this same phenomena, consider the equivalence classes of the integers modulo 
n , written as Z+

n , under addition modulo n . The equivalence class 1 can be added to itself over and 

over: 1, 1 + 1 = 2, 1 + 1 + 1 = 3, · · · ,
n︷ ︸︸ ︷

1 + 1 + · · · 1 = 0 . In this way we obtain every element of Z+
n .

These groups can be classified by the fact that we can use one element repeatedly with the binary operation 
to produce the entire group. We need some notation to deal with this idea.

Notation:

For a group G and a ∈ G  we define the notation 〈a〉 := {an|n ∈}

☐
Definition: An element a  of the group G is a generator of G if G = 〈a〉 . G is cyclic if there is  
some element a  in G that generates G. 

☐
Example: Z+

4  is cyclic. We note that 3 + 3 = 2 , 3 + 3 + 3 = 1 , and 3 + 3 + 3 + 3 = 0 . So 3 generates 
Z+

4 . The element 1 also generates Z+
4 . 

☐
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Denition:

Let a  be an element of the group G. The order of a  is the number of elements in the set 〈a〉 .

☐
Example:

The group Z+
8 is also cyclic. 

•	 〈0〉 = {0}
. 

•	 〈1〉 = {1, 2, 3, 4, 5, 6, 7, 0}
. 

•	 〈2〉 = {2, 4, 6, 0}
. This is obtained by adding 2 to itself repeatedly. Since our addition is 

modulo 8, 6 + 2 = 0 . The element 2 has order 4. 
•	 〈3〉 = {3, 6, 1, 4, 7, 2, 5, 0} = 〈1〉 .
•	 〈4〉 = {4, 0} . The element 4 has order 2.
•	 〈5〉 = {5, 2, 7, 4, 1, 6, 3, 0} = 〈1〉 . 

•	 〈6〉 = {6, 4, 2, 0} = 〈2〉
 

•	 〈7〉 = {7, 6, 5, 4, 3, 2, 1, 0} = 〈1〉 . 

We see that the elements 1,3,5, and 7 are all generators of the group Z+
8  as they all have order 8.

☐
Example: The integers Z+ under standard addition forms a cyclic group. The generators are 1 and –1. 

☐
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Theorem 8. If G is a cyclic group, then it is abelian. 

Proof. Suppose G is cyclic. We know that it has a generator a . Thus every element g ∈ G  can be written 
as ak = g  for some k ∈ N. Let x, y ∈ G . There are integers m,n  such that x = am  and y = an .

x · y = am · an = am+n = an+m = an · am = y · x.

Since x · y = y · x , the cyclic group G is abelian.  ☐

Example: The converse of the last theorem is not true. Consider the group given by the group table:

e a b c

e e a b c
a a e c b
b b c e a
c c b a e

This group is abelian, however it is not cyclic as there is no element that generates the entire group. This 
can be seen by noting that a2 = b2 = c2 = e . This group is known as the Klein 4-group or Vierergruppe 
in German. This is why this group is commonly denoted by V.

☐
Theorem 9. If a  is a generator of a finite cyclic group G of order n  then the other generators of G are the 
elements of the form ar  where r  is relatively prime to n . 

Proof. Let G be a cyclic group with generator a  and order n . Suppose that r  is relatively prime to n . 
We see that 〈ar〉 = e, ar, a2r, · · · , a(m−1)r  where amr = e  and m  is the smallest such positive integer. 
Thus the order of the group n  is divides mr . Since n  and r  are relatively prime, n  divides m . Thus 
there are at least n  distinct elements in the list e, ar, a2r, · · · , a(m−1)r . But there can only be n  at most 
as each ajr ∈ G . Therefore 〈ar〉 = G .

☐
Example: Consider G = Z12  G is generated by 1, 5, 7, 11 . 〈2〉 = {0, 2, 4, 6, 8, 10}  

〈3〉 = {0, 3, 6, 9} = 〈9〉  
〈4〉 = {0, 4, 8} = 〈8〉  
〈6〉 = {0, 6}

☐
Example: Consider G = Z24. G is generated by 1, 5, 7, 11, 13, 17, 19, 23 . 

☐
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2.3.1 Exercises

1. What are the generators of the group Z+
60? 

2. What is the order of the element 32 in the group Z+
56? 

3. Find the number of generators of the group Z+
pq  where p  and q  are prime numbers.

2.4 Dihedral Groups

One powerful feature of the language of group theory is that it can be used to express symmetries. 
This makes our abstract study of groups very important for many subjects in the physical world. We 
will look at symmetries of regular polygons and see where this leads us. To be precise, a symmetry of a 
polygon is a self-congruence of the polygon. Even more precisely a congruence is a distance preserving 
one-to-one map of the polygon with itself. We can compose two symmetries and the result is another 
symmetry. The reason for this is that the composition of two one-to-one mapping is again a one-to-one 
mapping. Thus we can consider this composition of mappings as a binary operation that combines two 
symmetries into one.

Theorem 10. The set of symmetries of a regular polygon, with binary operation defined as the composition 
of symmetries is a group. 

Proof. All that we need to do is check that this set and binary operation meet the definition of a group. 
The composition of any mappings is associative, and so the composition of symmetries is also associative. 
The identity mapping of a polygon serves as the identity symmetry. Finally, if a mapping is one-to-one, 
then an inverse exists. Thus any symmetry has an inverse. 

☐
Denition:

The Dihedral group Dn  of order 2n  is the group of symmetries of a regular n -gon. 

☐
Now that we know this is a group structure, we can investigate this more fully. Again the formalism of defining 
a symmetry as above gets in the way of our intuition. Recall that a regular polygon has n  sides of equal 
length and n  angles of equal measure. We will suppose this polygon is fixed in space. There are two types of 
things that we can do to the polygon and still preserve congruence. Rotational symmetries rotate the polygon 
counterclockwise about its center by 2π/n  radians. Reflection symmetries operate by flipping the polygon 
across an axis or line of symmetry. Counting the identity as a rotation of 0 radians, there are n  rotational 
symmetries. There are also n  reflection symmetries. This means that the order of the group Dn  is 2n .
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Note: The notation for a dihedral group varies from textbook to textbook. Since the group has 2n  
elements – n  rotational symmetries and n  reflection symmetries ï¿½ some books use D2n  to indicate 
our Dn . Technically D1  and D2  can be defined using an alternate definition. However, this notation is 
rarely used and we will see that it will be unnecessary to consider these two groups. 

☐
Example:

We will look at D3 , the symmetries of an equilateral triangle. We can rotate by 0 radians, rotate by 2π/3  
radians, or rotate by 4π/3  radians and the result is a triangle with the same orientation. If we rotate by 
6π/3 = 2π  radians, this is equivalent to no rotation at all. We note that rotation by 2π/3  twice is the 
same as rotation by 4π/3.  To summarize all of this information, we let r1  denote the rotation by 2π/3 ,  
r2  rotation by 4π/3  and e  the identity of no rotation. 

This gives us: 

· e r r2

e e r1 r2
r1 r1 r2 e
r2 r2 e r1
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Now we look at the reflection symmetries. We will denote these by u, d, v , corresponding to “up,” “down,” 
and “vertical” for the three possible directions of axes of symmetry. We see very quickly that these 
reflection symmetries behave differently than the rotational symmetries. For starters, the composition 
of a reflection with itself is the identity u2 = v2 = d2 = e . If we compose two different reflections we 
see that this is equivalent to a rotation. For instance u · v = r1 and v · u = r2.

· e r1 r2 v u d

e e r1 r2 v u d
r1 r1 r2 e u d v
r2 r2 e r1 d v u
v v d u e r2 r1
u u v d r1 e r2
d d u v r2 r1 e

To summarize, D3  is a group of order 6 and is a nonabelian group.

☐
Notice that the dihedral group can be nonabelian. Although there are some elements that commute, 
such as r1  and r2 , there are pairs such as u, v  that do not. Dihedral groups are important because they 
are one of the more straightforward examples of nonabelian groups. They provide an example that is 
easy to think about and even manipulate by hand. 

2.4.1 Alternate Definition

We may also define a dihedral group in terms of two generators. In the above example of D3  we could 
have denoted r1 = r  and r2 = r2.  Furthermore, we could have chosen any of the reflections, such as v  
and observed that v, vr, vr2  are all different reflection symmetries. Keeping in mind that v2 = r3 = e  
we have the following table:

· e r r2 v vr vr2

e e r r2 v vr vr2

r r r2 e
r2 r2 e r
v v vr vr2 e r r2

vr vr vr2 v
vr2 vr2 v vr

There are some gaps in the table, caused by problems such as what element rv  is equal to. By examining 
the symmetries we see that rv = vr2 . This additional piece of information is enough to fill in the rest 
of the table:
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· e r r2 v vr vr2

e e r r2 v vr vr2

r r r2 e vr2 v vr
r2 r2 e r vr vr2 v
v v vr vr2 e r r2

vr vr vr2 v r2 e r
vr2 vr2 v vr r r2 e

This points the way to an alternate definition of the dihedral group:

Definition: The dihedral group Dn = {virj | i, j ∈, rn = v2 = e, rv = vrn−1}
 
Z+Dn = {virj | i, j ∈, rn = v2 = e, rv = vrn−1}  

☐
2.4.2 Exercises

1. For a square let’s consider D4 . There are four rotational symmetries: e, r1, r2, r3  where 
rn  denoting rotation clockwise by 

π

2
n  radians, h  a reflection across a horizontal line v  

a reflection across a vertical line, u  an upward diagonal axis of reflection, d  a downward 
diagonal axis of reflection. Complete the following group table:

∗ e r1 r2 r3 h v u d

e e r1 r2 r3 h v u d
r1 r1 r2 r3 e
r2 r2 r3 e r1
r3 r3 e r1 r2
h
v
u
d

2. Prove that Dn  is nonabelian for n ≥ 3 .

3. Prove that Dn  is noncyclic for n ≥ 3 .

2.5 Groups of Permutations

In addition to cyclic and dihedral groups, there are a number of other ways that a group can arise.  
The next that we will consider involves the concept of permutations of a finite set.

Definition: A permutation of a set A is a mapping φ : A → A  that is both one to one and onto. 

☐
Since we are going to define a group based upon these permutations, we need to have a binary operation 
to use with them. Similar to composing two symmetries together to obtain another symmetry, we can 
compose two permutations together and obtain another permutation. The main importance of the 
following theorem is that it establishes that ◦  is a binary operation on the set of permutations of the set A.
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Theorem 11. Given two permutations, σ, τ  the operation σ ◦ τ  formed by composition of mappings is 
also a permutation. 

Proof. Suppose στ(a1) = στ(a2) . Since σ  is one-to-one, τ(a1) = τ(a2). Since τ  is one-to-one, a1 = a2 .  
Therefore στ  is one-to-one.

Choose a ∈ A . Since σ  is onto, there exists a′ ∈ A  with a = σ(a′) . Since τ  is onto, there exists a′′ ∈ A  
with a′ = τ(a′′). Therefore a = σ(a′) = σ(τ(a′′))  and στ  is onto.

We have shown that if σ, τ  are permuations, then σ ◦ τ  is also a permutation. 

☐
Example:

Suppose A = {1, 2, 3, 4} . We will denote the permutation that maps as follows: 

σ(1) = 3, σ(2) = 1, σ(3) = 4, σ(4) = 2
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by the notation: σ =

(
1 2 3 4
3 1 4 2

)
. The key to reading this notation is that the image of each of 

the elements in the top row is located directly below. The 3 is below 1 because σ(1) = 3 . Since there 

are 4 elements in the set A  there are 4! = 24  permutations. One permutation that is different than σ  

is given by 

τ =

(
1 2 3 4
2 1 4 3

)

We may now compose these permutations just as we compose two mappings. For instance 
σ ◦ τ(2) = σ(τ(2)) = σ(1) = 3 . This means that the permutation of στ  will have 3 directly below 2.  
The entire permutation is

στ =

(
1 2 3 4
1 3 2 4

)

☐
Theorem 12. Let A be nonempty and SA  the collection of all permutations of A. Then SA  is a group 
under permutation multiplication. 

Proof. All that we need to do is check to see that the definition of a group is satisfied:

•	 The composition of mapping is associative, thus our binary operation is associative.
•	 The permutation ι(a) = a  for all a ∈ A  is the identity, since for any permuation σ : 

σ ◦ ι = ι ◦ σ
•	 Since a permutation is a one-to-one and onto mapping, it has an inverse mapping that 

is also one-to-one and onto. This is simply a permutation that reverses the order of the 
mapping σ . Thus we have an inverse σ−1.

☐
Definition: The permutations of a finite set with n  elements is the symmetric group Sn  and has n!  
elements. 

☐
It is important to note how quickly the size of Sn  increases as n  increases. For instance the order of 
S5  is 120, and the order of S10  is 3, 628, 800 . The factorial goes a long way. Due to the order of Sn  for 
relatively small values of n , we will look at some symmetric groups of the lowest orders.

2.5.1 Examples of Sn

Example: For n = 1  there is one permutation from the set A = {1}  to A. This is the identity permutation, 
and so S1  consists of {ι} . It is clear that ι ◦ ι = ι . 

☐
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Example: For n = 2  there are two permutations from the set A = {1, 2}  to A. One permutation is 
the identity permutation i and the other permutation, which we will call σ  maps as follows: σ(1) = 2  
and σ(2) = 1.  In other notation σ =

(
1 2
2 1

)
. We may form a group multiplication table with these 

two permutations i and σ . 

◦ ι σ

ι ι σ
σ σ ι

The only composition that needs some explaining is σ ◦ σ = ι . It helps to think that since σ  switches 
1 and 2, applying σ  a second time will switch 1 and 2 back to their original positions. 

☐
Example: For n = 3  we now have 3! = 6 permutations. We list the permutations of S3  below:

ι =

(
1 2 3
1 2 3

)
, σ1 =

(
1 2 3
2 3 1

)
, σ2 =

(
1 2 3
3 1 2

)

ρ1 =

(
1 2 3
1 3 2

)
, ρ2 =

(
1 2 3
3 2 1

)
, ρ3 =

(
1 2 3
2 1 3

)

There are 62 = 36  possible pairings of these six permutations. Fortunately we do not have to calculate 
all of these. The ι ◦ µ = µ ◦ ι = µ  for any permutaton µ . Furthermore, since each of the permutations 
labeled with ρ  switch two elements of the set A , ρ21 = ρ22 = ρ23 = ιi. The other compositions will take 
some work to figure out.

For ρ1 ◦ σ1 : 

•	 (ρ1 ◦ σ1)(1) = ρ1(σ1(1)) = ρ1(2) = 3

•	 (ρ1 ◦ σ1)(2) = ρ1(σ1(2)) = ρ1(3) = 2

•	 (ρ1 ◦ σ1)(3) = ρ1(σ1(3)) = ρ1(1) = 1

We can see that ρ1 ◦ σ1 = ρ2

· ι σ1 σ2 ρ1 ρ2 ρ3
ι ι σ1 σ2 ρ1 ρ2 ρ3
σ1 σ1 σ2 ι ρ3 ρ1 ρ2
σ2 σ2 ι σ1 ρ2 ρ3 ρ1
ρ1 ρ1 ρ2 ρ3 ι σ2 σ1
ρ2 ρ2 ρ3 ρ1 σ1 ι σ2
ρ3 ρ3 ρ1 ρ2 σ2 σ1 ι

There are a few features of note about the symmetric group S3 . We see that this group is not cyclic as 
there is no generator. This is nonabelian as well. This is clear by seeing that ρ1 ◦ σ1 �= σ1 ◦ ρ1.

☐
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The symmetric group S3  gives us an indication of the nature of Sn  for most values of n . Sn  is neither 
cyclic nor abelian for n ≥ 3 . 

Even though the entire symmetric group is important, rather than looking at all permutations, we will 
only consider some of them. This partial set of permutations can be used to form a group. 

Example: Give the multiplication table for the group generated by 

ρ =

(
1 2 3 4 5
2 4 5 1 3

)
.

By composing ρ  with itself repeatedly, we see that 6 = n  is the first positive integer such that ρn = ι . 

◦ ι ρ ρ2 ρ3 ρ4 ρ5

ι ι ρ ρ2 ρ3 ρ4 ρ5

ρ ρ ρ2 ρ3 ρ4 ρ5 ι
ρ2 ρ2 ρ3 ρ4 ρ5 ι ρ
ρ3 ρ3 ρ4 ρ5 ι ρ ρ2

ρ4 ρ4 ρ5 ι ρ ρ2 ρ3

ρ5 ρ5 ι ρ ρ2 ρ3 ρ4

☐
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2.5.2  Exercises

1. Let σ =

(
1 2 3 4 5 6
2 5 1 4 6 3

)
 and τ =

(
1 2 3 4 5 6
3 1 2 6 4 5

)
 in S6 . 

a) Calculate σ ◦ τ
b) Calculate τ ◦ σ
c) Calculate σ200

d) What is the order of τ ? 

2. Is there an element of order 6 in S4? Explain.
3. Is there an element of order 6 in S5? Explain.

2.6 Alternating Groups

The symmetric group on a set of n  elements has an underlying set containing all n!  permutations of 
the set. We saw that we can form groups with only some of the permutations. We will now see that there 
is a particular group that can be formed by choosing exactly half of the permutations of Sn . We will 
need to introduce some new definitions to make it clear which half of the permutations we will be using.

Definition: Let a, b  be elements of a finite set A  and σ ∈ Sn . We say that a ≺ b  if and only if there 
exists an n ∈ Z+ such that σn(a) = b  for some n ∈ Z+. 

☐
Theorem 13. The relation defined above is an equivalence relation. 

Proof. We begin with σ ∈ Sn  and the relation ≺  as defined above. We must check that ≺  possesses 
the three conditions of an equivalence relation. Let a, b, c ∈ A

•	 The relation ≺  is reflexive. We see that a ≺ a  since a = σ0(a) = ι(a)

•	 The relation ≺  is symmetric. If a ≺ b  then b = σn(a) ⇒ a = σ−n(b)  so b ≺ a .
•	 The relation ≺  is transitive. Suppose a ≺ b  and b ≺ c . Then b = σm(a)  and c = σn(b) . 

Therefore c = σm+n(a)  and a ≺ c .

☐
Definition: The orbits of σ ∈ Sn  are the equivalence classes under the equivalence relation ≺  defined 
above. 

☐
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Example: 

What are the orbits of the permutation σ =

(
1 2 3 4 5 6 7
4 3 1 6 7 2 5

)

? 

We start with any element and apply σ  repeatedly. Since σ(1) = 4  this tells us that 1 and 4 are in the 
same orbit. We continue this process and see σ(4) = 6, σ(6) = 2, σ(2) = 3, σ(3) = 1 . Since we have 
arrived back where we started, we are done. The set {1, 4, 6, 2, 3}  is an orbit. Now choose an element, 
such as 5, that is not in this orbit. We see that σ(5) = 7  and σ(7) = 5 , so {5, 7}  is another orbit. There 
are no other elements to check, so we are done. 

☐
Definition:

We call a permutation σ ∈ Sn  a cycle if it there is at most one orbit with more than one element of 
 

A, meaning every element not in this orbit is fixed. The number of elements in this orbit is called the 
length of the cycle. 

☐
Example:

•	 The permutation from the previous example σ =

(
1 2 3 4 5 6 7
4 3 1 6 7 2 5

)
 is not a cycle. 

There are two orbits with more than one element. 

•	 The permutation τ =

(
1 2 3 4 5 6 7
1 3 5 4 7 6 2

)
 is a cycle. The permutation has the orbit 

{2, 3, 5, 7}  and all other elements are fixed. 
•	 The identity permutation ι  is a cycle. Every element is fixed by this permutation, so every 

orbit has one element. 

☐
The notation for permutations that we have been using is called the tableau notation. Although 
this notation has its merits, it complicates some matter. We will introduce a different notation for a 
permutation. The advantage of this notation is its compactness and how it connects to our notion of cycles.

Notation: 

Let a1, a2, · · · , an  be the elements of the set A  that are permuted by a cycle and let b1, b2, · · · , bk  be 
elements that are fixed. We express the permutation 

σ =

(
a1 a2 · · · an b1 b2 · · · bk
a2 a3 · · · a1 b1 b2 · · · bk

)
= (a1, a2, a3, · · · , an)

This indicates that σ(a1) = a2, σ(a2) = a3  and so on. Any elements of A  that do not appear in this 
cycle notation are assumed to be fixed by the permutation.

☐
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Theorem 14. Every permutation σ  of a finite set is formed from disjoint cycles. 

Proof. Let σ  be a permutation of a finite set A . Partition A  into the orbits of σ  and denote these 
A1, A2, · · · , Ak . Now let τi  be the cycle that fixes every a /∈ Ai  and τi(a) = σ(a)  if a ∈ Ai . The Ai  
are disjoint, the cycles τi  are also disjoint. Since τ1τ2 · · · τk(a) = σ(a)  for every a ∈ A , σ = τ1τ2 · · · τk . 

Example: Write the permutation as a product of cycles: 
(

1 2 3 4 5 6 7 8
4 3 2 5 1 6 8 7

)
.

First we determine the orbits of the permutation. They are {1, 4, 5}, {2, 3}, 6, {7, 8} . This permutation 
is composed of the cycles (1, 4, 5), (2, 3),  and (7, 8) . The element 6 is fixed. So we may write the 
permutation as (1, 4, 5)(2, 3)(7, 8) . These cycles are disjoint, and so they can be rearranged to give the 
same permutation: (1, 4, 5)(2, 3)(7, 8) = (7, 8)(2, 3)(1, 4, 5) . 

☐
Corollary 15. If σ1, σ2, · · · , σk  are disjoint cyclic permutations, each with respective orders of ni , then 
the order of σ1σ2 · · · σk  is lcm(n1, n2, · · · , nk)  

Proof.  
Let ni  be the order of σi  for all i  such that 1 ≤ i ≤ k . Let r  denote the order of σ1σ2 · · · σk  and 
l = lcm(n1, n2, · · · , nk) . Since the cycles are disjoint, they commute and so 

(σ1σ2 · · · σk)l = σl
1σ

l
2 · · · σl

k = e.
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Thus r  divides l . Since r  is the order of σ1σ2 · · · σk  we know (σ1σ2 · · · σk)r = e . This implies σr
i = e  

for all 1 ≤ i ≤ k . Thus r  divides ni  for each i  and r  divides lcm(n1, n2, · · · , nk) .

☐
Definition:

A cycle of length two is a transposition. 

☐
Corollary 16. Let σ ∈ Sn  for n ≥ 2 . This permutation σ  is a product of transpositions. 

Proof.
Every permutation can be written in terms of disjoint cycles, so we only need to show that every cycle 
can be written as a product of transpositions. We see that (a1, a2, a3) = (a1, a3)(a1, a2)  and in general 
for cycle of length k :

(a1, a2, · · · , ak−1, ak) = (a1, ak)(a1, ak−1) · · · (a1, a3)(a1, a2).

☐
Example: Consider the effect of the cycle (1, 5, 4, 3)  on the finite set {1, 2, 3, 4, 5} . We can rewrite this 
cycle as a product of transpositions: (1, 5, 4, 3) = (1, 3)(1, 4)(1, 5) :

1 2 3 4 5
(1,5)→ 5 2 3 4 1

(1,4)→

5 2 3 1 4
(1,3)→ 5 2 1 3 4

☐
Definition:
A permutation of a finite set is even if it can be expressed as an even number of transpositions. A 
permutation is odd if it can be expressed as an odd number of transpositions. 

☐
There is nothing that we have said that excludes the possibility that a permutation could be written as 
both an even and an odd number of transpositions. We will see that there is no way for a permutation 
to be both even and odd.

Theorem 17.
If a permutation σ  is expressed in terms of m  transpositions and in another way as k  transpositions with 
k < m , then m  and k  are both even or both odd.
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Proof.
We begin by stating that the identity ι  can only be even. Begin with the identity, if we apply a transposition 
τ  to ι  then we must also apply τ−1 . It follows that i is even. 

Let σ  be a permutation which is expressed in terms of m  transpositions τi  and k  transpositions µi . We 
have τ1τ2 · · · τm = µ1µ2 · · ·µk . Thus τ1τ2 · · · τmµk · · · µ2µ1 = ι i. This means that τ1τ2 · · · τmµk · · · µ2µ1 
is even. Thus m+ k  is an even number, so either both m,k  are even, or m,k  both odd.

☐
This definition and subsequent theorem give us a way to classify any permutation as either even or 
odd. The number of transposition used to express a permutation may vary. For an easy example of this, 
consider the identity permutation 

i ι = (1, 2)(1, 2) = (1, 2)(3, 4)(1, 2)(3, 4).

There is a different number of transpositions for each of these, but in all cases there is an even number 
of them. 

We can compose permutations as we have been doing. It is worthwhile to consider what happens when 
both τ  and σ  are even permutations. The result of composing these is τσ . Due to the fact that the sum 
of two even numbers is even, we see that τσ  is an even permutation. This means that we can consider 
the composition of two permutations a binary operation on the set of even permutations. This with the 
next theorem explains why we care about classifying permutations as even or odd.

Theorem 18.
If n ≥ 2  then the set of all even permutations of {1, 2, 3, · · · , n}  with binary operation composition of 
permutations forms a group. 

Proof.
We must check that the conditions of a group are satisfied:

•	 We have already seen that the composition of any permutation is associative. It follows that 
for any even permutations σ, τ, µ  we have 

σ ◦ (τ ◦ µ) = (σ ◦ τ) ◦ µ.

•	 The identity permutation ι  is even, since (1, 2)(2, 1) = ι  is the identity.
•	 If σ  is even then it can be written as an even number of transpositions σ = τ1τ2 · · · τ2k . We 

may express σ−1 = τ2k · · · τ2τ1, so σ−1 is also even.

☐
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Although it would seem obvious that exactly half of the permutations of Sn  are even and half are odd, it 
is worthwhile to carefully prove this statement. Sometimes statements that seem to be intuitively obvious 
turn out to not be the case. In this case it is true that permutations are split exactly in half between even 
and odd permutations.

Theorem 19.
For n ≥ 2  There are n!/2 even permutations in Sn .

Proof.
Let En  denote the set of even permutations of Sn , thereby making EC

n  the set of odd permutations. 
Since n ≥ 2  we know that at least one transposition τ  exists. Define a mapping f : En → EC

n  where 
f(σ) = τσ.  As we can see from this definition, this maps an even permutation to an odd permutation 
by composing an additional transposition to a permutation. We now show that the number of elements 
in En  and EC

n  are equal by showing that f  is a one-to-one function.

Suppose that f(σ1) = f(σ2). Thus τσ1 = τσ2 . We apply the inverse of τ  (which is τ  itself) on the left 
of both sides of the equation and see that ττσ1 = ττσ2 ⇒ σ1 = σ2. Therefore the mapping f  is one-
to-one and the number of elements in En  is the same as the number of elements in EC

n . This is exactly 
half of the total number of permutations of a set of n  elements, and so there are n!/2 even permutations.

☐
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Definition:
The alternating group on n  elements An  is the set of all even permutations of the set {1, 2, · · · , n} . 
The order of An  is n!/2 

☐
It turns out that alternating groups provide us with a very important class of groups to study. These 
groups are connected to the symmetric groups that we have studied. What is perhaps more useful is that 
a certain property of An  for n ≥ 5  is crucial to proving that certain polynomial equations of degree five 
or greater do not have a solution expressed in terms of radicals and basic arithmetic. 

2.6.1 Exercises

1. For each of the following, write the orbits, write cycle notation for each permutation, and 
determine if σ  an even or odd permutation: 

a) 
(

1 2 3 4 5 6
4 3 2 5 1 6

)

b) 
(

1 2 3 4 5 6
4 5 1 2 6 3

)

c) 
(

1 2 3 4 5 6
2 1 4 5 6 3

)
◦
(

1 2 3 4 5 6
5 6 2 4 3 1

)

2. Is there an element of order 6 in A5? 
3. Compute the product of cycles (1, 4, 5, 6)(4, 3, 2, 1)  

4. Express the permutation σ =

(
1 2 3 4 5 6
2 5 1 4 6 3

)
 

a) As a product of disjoint permutations 
b) As a product of transpositions. 

5. Show that every even permutation of three or more elements can be written as the product 
of cycles of length 3. 

6. Let H  be a subgroup of Sn  for n ≥ 2 . Show that H  is a subgroup of An  or exactly half of 
the elements of H are even, half are odd. 

2.7 Subgroups

We have examined several different kinds of groups. Each of these were defined by a different property. 
Indeed, there is a world a difference between the description of the cyclic group Z+

12 and the alternating 
group A4. Beyond considerations of the definition of the group and the total number of elements of the 
group, there are some other features that we can explore. One of these is the internal structure of the group. 

As we have seen with the alternating group An  in relation to the symmetric group Sn , sometimes a subset 
of elements of a group is a group in its own right. We wish to name this feature and study aspects of it. 
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Definition:
Let ·  be a binary operation on S and T a subset of S. If for all a, b ∈ T , a · b ∈ T  we say that T is closed 
under ·  

☐
Example:
The following are a series of example and counterexamples of closure under a specified binary operation. 

•	 The subset Z+ of R, Z, N. is closed under the binary operation of standard addition.
•	 The subset R, Z, N.∗  – the nonzero real numbers – is not closed under standard addition because 

3,−3 ∈ R∗, but 3 + (−3) = 0 /∈ R∗.

•	 Even integers are closed under standard addition and multiplication. This is really just a 
more formal way of sayings “even plus even is even” and “even times even is even.” 

•	 The odd integers are closed under standard multiplication. This is a more formal way of 
saying “odd times odd is odd.” 

•	 The odd integers are not closed under standard addition. To show this we have 3 + 5 = 8 .  
In more generality, we can add (2k + 1), (2n + 1)  where n, k ∈ . We see that 
(2k + 1) + (2n+ 1) = 2(n + k + 1) , an even number.

•	 We have seen that the even permutations are closed under the binary operation of 
composition of permutations.

☐
Definition:

If a subset H of a group is closed under the binary operation of G and if H is a group, then H is a subgroup 
of G, and is denoted H ≤ G . 

☐
There are two subgroups that every group possesses. Since a set is a subset of itself, the group G is 
a subgroup of itself. The other subgroup that every group has is the subgroup consisting of only the 
identity element. Other subgroups can be varied, and more interesting than these two. This gives us the 
following definitions:

Definition:

The trivial subgroup of the group G is the identity element alone. 

☐
Definition:

A proper subgroup of the group G is any subgroup other than the group G itself.

☐
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Example:
We will examine a series of examples and counterexamples of subgroups. 

1. Z+ under standard addition is a subgroup of R, Z, N. under standard addition. 
2. Q∗ ⊂ R and Q∗  under standard addition is a group, however this is not a subgroup of R, Z, N.

with binary operation addition. The reason why is that the operations do not match. 
3. We let Cn  denote the group of complex n th roots of unity. Each of these groups is a 

subgroup of the group C ∗  under multiplication of complex numbers.
4. An  is a subgroup of Sn  for n ≥ 1 .
5. The group Z+

4  has the trivial subgroup {0} , improper subgroup Z+
4 , and subgroup {0, 2} .

6. The Klein four group V  has the trivial subgroup {e} , improper subgroup V, and three 
other subgroups {e, a}, {e, b}, {e, c} .

☐
Theorem 20. A subset H of a group G is a subgroup if and only if 

1.  H is closed under the binary operation of G
2. The identity element e  of G  is also in H
3. For all a ∈ H  a−1 ∈ H  also.
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Proof.
If H is a subgroup of G then it is a group under the binary operation ·  of G. Thus H is closed. H must 
contain the identity element. If a ∈ H  then a−1 ∈ H  since H is a group.

Now suppose that the list of conditions hold. This shows that H is a group as it inherits the associative 
structure from G. It follows that H is a subgroup of G.

�
The advantage to knowing this theorem is that it makes it easier to show that a subset of a group is a 
subgroup. If any one of the conditions in the list does not hold, then we automatically know that H is 
not a subgroup.

Example:

Show that the set of odd integers H does not form a subgroup of Z+ under addition.

This follows very quickly from the fact that the identity element 0 ∈  Z+ in not odd, and so 0 /∈ H . We 
could also argue that this is not a subgroup because H is not closed under the binary operation.

�
Example: Now consider Z+

8  under addition modulo 8. If H is a subgroup of Z+
8  that contains 2 but not 

1 then what else do we know about this subgroup? 

By the theorem it is immediate that 0 (the identity) and 6 (the inverse of 2) are also elements in H. By 
the closure property 2 + 2 = 4 ∈ H . Thus H = {0, 2, 4, 6} . 

☐
The subgroup in the previous example is known as a cyclic subgroup. This is because it was generated 
by a single element 2, just like our cyclic groups were. 

Definition: Let G be a group and let a ∈ G  then the subgroup {an|n ∈ Z}  is called the cyclic subgroup 
of H generated by a  and is denoted 〈a〉 . 

☐
2.7.1 Some Number Theory

At this point we note some results from the area of mathematics known as number theory. These facts 
are interesting for their own sake, and will be needed in some of the proofs that follow. 

Definition: Let r  and s  be two positive integers. The greatest common divisor of r  and s , denoted 
d = gcd(r, s)  is the greatest integer that divides both r  and s . 

☐
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Definition: Two positive integers are relatively prime if their gcd is 1 

☐
Definition: The least common multiple of r  and s , denoted lcm(r, s) , is the least positive integer that 
is divisible by both r  and s . 

☐
Note: Let d = gcd(r, s)  then d · lcm(r, s) = rs  

☐
We will now formalize the process of long division. We will show that we may divide any integer by a 
positive integer and obtain a unique quotient q  and remainder r .

Theorem 21 [Division Algorithm] Let n, p ∈ Z+ with p > 0. Then there exist unique p, r ∈ Z+ such 
that n = pq + r  and 0 ≤ r < p . 

Proof. Let S = {x ∈ Z+ | x = n − pm, m ∈ Z}.. We let r  be the smallest number in 
the set S . There is some q ∈ Z+ such that r = n− pq  and r < p . If r ≥ p  the r − p > 0  and 
r − p = n− pq − p = n− p(q + 1) ∈ S , contradicting that r  is the smallest positive integer in the 
set S . Uniqueness of r  is automatic, and uniqueness of q  follows from if r = n− pq  and r = n− pq′  
then q = q′ . 

☐
Example: Use the division algorithm for 25÷ 7

25 = 3 · 7 + 4

☐
We see that this is just an alternate way of expressing a long division problem. Besides being used for 
division, the division algorithm has other uses. One that is very helpful it that it can be used repeatedly 
to find the greatest common divisor of two positive integers.

Example:

Find gcd(24, 138)  by using the division algorithm. 24 and 138:

138 = 24 · 5 + 18

24 = 18 · 1 + 6
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18 = 6 · 3 + 0

The last nonzero remainder is the greatest common divisor of the numbers we started the process with. 

☐
2.7.2 Subgroup Theorems

Now that our brief excursion to number theory is over, we can use these ideas to prove statements 
regarding subgroups. 

Theorem 22. Every subgroup of a cyclic group is cyclic. 

Proof. Let a  be a generator of the cyclic group G, and suppose that H  is a subgroup of G. If H = {e}
 

then we are done, as the subgroup {e}  is a cyclic group. 

If H �= {e}  then there is some element b ∈ H  such that b �= e . Since a  is a generator of G, and b ∈ G , 
there exists some n ∈+ such that an = b . So an ∈ H . Since this is true for some positive integer, there 
is a least positive integer for which this statement is true. Let k  be the least positive integer k  such that 
ak ∈ H . The goal is to show that ak  is a generator of H.
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Let c ∈ H . Since H is a subgroup of cyclic group G, c = am  for some m . By the division algorithm 
there exist q  and r  with 0 ≤ r < k  such that m = kq + r :

am = akq+r = (ak)qar ⇒ ar = am(ak)−q = c(ak)−q.

Since c, ak ∈ H , This shows that ar ∈ H . Since ar  is in H, 0 ≤ r < k , and since k  is the least positive 
integer such that ak ∈ H , it follows that r  is not positive and r = 0. Therefore m = kq  and am = (ak)q  
thus ak  generates H, making H cyclic.

☐
Theorem 23. A nonempty subset H  of the group G is a subgroup of G if and only if for all a, b ∈ H ,  
a−1b ∈ H . 

Proof. Begin by supposing that H is a subgroup of G. For a, b ∈ H , it follows that a−1 ∈ H  and 
a−1b ∈ H  by the closure of H.

Now suppose that H is a nonempty subset where for all a, b ∈ H , a−1b ∈ H . From this e = a−1a ∈ H .  
Since the identity element {e} ∈ H  we also know that a−1 = a−1e ∈ H . Also, for every a, b ∈ H  the 
element 

(
a−1

)−1
b = ab ∈ H  so H is closed. 

☐
Theorem 24. If H and K are both subgroups of the group G then H ∩K  is also a subgroup of G.

Proof.
The set H ∩K  is closed because if a, b ∈ H ∩K  then a, b ∈ H  and a, b ∈ K . Since H and K are both 
closed, ab ∈ H  and ab ∈ K . Thus ab ∈ H ∩K .

The identity element {e} ∈ H  and {e} ∈ K , so {e} ∈ H ∩K .

If a ∈ H ∩K  then a ∈ H  and a ∈ K . Since H  and K  are subgroups, a−1 ∈ H  and a−1 ∈ K . By 
the above we know that H ∩K  is a subgroup of G.

☐
2.7.3 Exercises

1. Let H consists of the elements of the group G such that x · x = e . Show that H is a 
subgroup of G 

2. List all subgroups of D3 . 
3. List all subgroups of D4 . 
4. List all subgroups of Z+

36 
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5. List all subgroups of Z+
60 

6. List all subgroups of A4.

2.8 Homomorphisms and Isomorphisms

We are interested in studying the different types of structures that binary operations can provide on sets 
with the same number of elements:

· a b c

a a b c
b b c a
c c a b

+ 0 1 2

0 0 1 2
1 1 2 0
2 2 0 1

Note that the tables are the same if we replace as follows: a ↔ 0 b ↔ 1 c ↔ 2 . In other words, there 
is a one-to-one, onto mapping between {a, b, c}  and {0, 1, 2} . There is actually one more feature that 
this mapping possesses. This will be the first topic that we will address in this section.

2.8.1 Homomorphisms

The extra feature that we need for our mapping is that it satisfies the homomorphism property. This is 
needed in order for the binary operations of both groups to match.

Definition: A map φ  of a group G with binary operation ·  into a group G′  with binary operation #  
is a homomorphism if φ(a · b) = φ(a)#φ(b)  holds for all a, b ∈ G . 

☐
Show that the following φ(σ) =

{
0 if σis an even permutation
1 if σis an odd permutation

 is a homomorphism φ : Sn →2

We check that this is a homomorphism by looking at the four cases that are possible: 

•	 If σ  and τ  are even, then στ  is even:

0 = φ(στ) = φ(σ) + φ(τ) = 0 + 0.

•	 If σ  is odd and τ  is even, then στ  is odd:

1 = φ(στ) = φ(σ) + φ(τ) = 1 + 0.

•	 If σ  is even and τ  is odd, then στ  is odd:

1 = φ(στ) = φ(σ) + φ(τ) = 0 + 1.

•	 If σ  and τ  are odd, then στ  is even:

0 = φ(στ) = φ(σ) + φ(τ) = 1 + 1.

☐
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Since a homomorphism is a particular kind of mapping, not every mapping from one group to another 
is a homomorphism. There is at least one homomorphism mapping one group to another, but it is not 
very complicated (or interesting).

Definition: The trivial homomorphism φ : G → G  is φ(g) = e′  for all g ∈ G . 

☐
Example:

The mapping φ : Z → 7Z  given by φ(x) = 7x  is a homomorphism of Z+ onto the set of multiplies  
of 7.

Let x, y ∈ Z+. We see that φ(x+ y) = 7(x+ y) = 7x+ 7y = φ(x) + φ(y)  and so φ  is a  
homomorphism.

☐
Example:

The mapping φ : Z4 → Z4  given by φ(1) = 3 is a homomorpism. We see that this implies:

•	 φ(2) = φ(1 + 1) = φ(1) + φ(1) = 3 + 3 = 2

•	 φ(3) = φ(2 + 1) = φ(2) + φ(1) = 2 + 3 = 1

•	 φ(0) = φ(2 + 2) = φ(2) + φ(2) = 2 + 2 = 0

☐
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Theorem 25. Given group G  with binary operation ·  and G′  with binary operation # , if φ : G → G′  
is a group homomorphism and e ∈ G  is the identity, then φ(e)  is the identity of G′ . 

Proof.
Since φ  is a homomorphism we know that φ(x · y) = φ(x)#φ(y)  for all x, y ∈ G . Since e  is the 
identity of G we have:

φ(x)#φ(e) = φ(x · e) = φ(x) = φ(e · x) = φ(e)#φ(x)

and so by definition φ(e)  is the identitity of G′ .

☐
Theorem 26. Given the group homomorphism φ : G → G , for any g ∈ G, [φ(g)]−1 = φ(g−1) . 

Proof. For g ∈ G  consider the element φ(g) . Since φ  is a homomorphism: 

φ(g−1)#φ(g) = φ(g−1g) = φ(gg−1) = φ(g)#φ(g−1).

Furthermore, since φ(gg−1) = φ(e) = e  we have φ(g−1)#φ(g) = φ(g)#φ(g−1) = e  and so 
[φ(g)]−1 = φ(g−1).

☐
We have seen that homomorphisms are mappings that take the identity of G to the identity of G. Also, 
a homomorphism maps inverses of G to inverses in G. The subgroup structures of G and G are also 
mapped to each other by homomorphisms. 

Definition: Let φ  be a mapping of a set X  into a set Y , and let A ⊆ X  and B ⊆ Y . 

•	 The direct image of A  is the set φ(A) = {φ(a)|a ∈ A} . 
•	 The inverse image of B  is the set φ−1(B) = {x ∈ X|φ(x) ∈ B} .

☐
Theorem 27. Let φ  be a homomorphism of a group G into a group G′ . If H  is a subgroup of G , then 
φ[H] is a subgroup of G′ .

Proof. Let H  be a subgroup of the group G and φ  a homomorphism from G to G. We begin by showing 
that the set φ(H)  is closed in G. If y1, y2 ∈ φ(H) , then there exist h1, h2 ∈ H  such that y1 = φ(h1)  
and y2 = φ(h2) . Thus y1y2 = φ(h1)φ(h2) = φ(h1h2) ∈ φ(H) .

Since e ∈ H , φ(e) = e ∈ φ(H) . So φ(H)  has the identity element.
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For y ∈ φ(H)  there exists h ∈ H  such that y = φ(h) . Since H  is a subgroup, h−1 ∈ H . We have 
φ(h−1) = [φ(h)]−1 = y−1 ∈ φ(H) . Therefore φ(H)  is a subgroup of G.

☐
Example:

We consider the homomorphism φ : Z12 → Z12  defined by φ(1) = 3, and look at the images of all 
of the subgroups of Z+

12.

•	 φ(〈0〉) = 〈0〉
•	 φ(〈1〉) = φ({0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}) = {0, 3, 6, 9} = 〈3〉
•	 φ(〈2〉) = φ({0, 2, 4, 6, 8, 10}) = {0, 6} = 〈6〉
•	 φ(〈3〉) = φ({0, 3, 6, 9}) = {0, 3, 6, 9} = 〈3〉
•	 φ(〈4〉) = φ({0, 4, 8}) = {0} = 〈0〉
•	 φ(〈6〉) = φ({0, 6}) = {0, 6} = 〈6〉

We note that the subgroup inclusions are respected by the homomorphism. For instance, just as 〈4〉  is 
a subgroup of 〈2〉 , φ(〈4〉)  is a subgroup of φ(〈2〉) .

☐
Theorem 28. Let φ  be a homomorphism of a group G into a group G′ . If K is a subgroup of G′ , then 
φ−1[K]  is a subgroup of G. 

Definition: Let φ : G → G′  be a homomorphism of groups. Then the subgroup 

φ−1({e}) = {x ∈ G|φ(x) = e′}

is the kernel of φ , denoted kerφ . 

☐
Note: Since e  is a subgroup of any group, this is a particular instance showing that the inverse image 
of a subgroup is a subgroup. 

☐
Theorem 29. A group homomorphism φ : G → G′  is a one-to-one map if and only if kerφ = {e} . 

Proof. Suppose that kerφ = {e} . If φ(g1) = φ(g2) then it follows that 

φ(g1)[φ(g2)]
−1 = e ⇒ φ(g1g

−1
2 ) = e.

Download free eBooks at bookboon.com



An Introduction to Abstract Algebra

76 

Group Theory

This implies that g1g−1
2 ∈ kerφ . As kerφ  has only one element, g1g−1

2 = e  and so g1 = g2 . The 
mapping φ  is one-to-one.

Now suppose that φ  is one-to-one. We know that homomorphisms map the identity element of G to 
the identity element of G. In other words, φ(e) = e′ . Since φ  is one-to-one, this is the only element of 
G mapped into e′  by φ . Therefore kerφ = e . 

☐
2.8.2 Isomorphisms

We return to our original question. How do we show that the underlying structures of two groups are 
the same? It’s clear that both of the groups being considered must have the same number of elements. 
So there must be a one-to-one onto mapping between the groups. The additional property that such a 
mapping must possess is that it be a homomorphism. This will ensure that the binary operations of the 
two groups match.

Definition: Let G with binary operation ·  and G with binary operation # . An isomorphism of G with 
G  is a one-to-one onto homomorphism φ : G → G.  For all x, y ∈ G : 

φ(x · y) = φ(x)#φ(y)

If such a mapping exists, we say G is isomorphic to G and write G ∼= G .
☐
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Example:

Let Z+
5  denote equivalence classes modulo 5 with binary operation addition and C5  the complex fifth 

roots of unity with binary operation of complex multiplication. Set any primitive fifth root of unity equal 
to ξ  and define φ : C5 →5  by φ(ξ) = 1.

The mapping φ  is one-to-one. Suppose φ(x) = φ(y) = n ∈ 5. Thus x = ξ5k+n  and y = ξ5m+n . Thus 
x = ξ5k+n = ξn = ξ5m+n = y  Thus φ  is one-to-one. 

φ  is onto since for 0 ≤ n ≤ 4 , φ(ξn) = n .

By the following we have an isomorphism:

φ(x·y) = φ(ξ5k+i·ξ5m+j) = φ(ξi+j) = i+j mod 5 = i mod 5+j mod 5 = φ(ξi)+φ(ξj)φ(ξ5k+i)+φ(ξ5m+j) = φ(x)+φ(y)

φ(x·y) = φ(ξ5k+i·ξ5m+j) = φ(ξi+j) = i+j mod 5 = i mod 5+j mod 5 = φ(ξi)+φ(ξj)φ(ξ5k+i)+φ(ξ5m+j) = φ(x)+φ(y)

☐
To demonstrate that two groups do not have isomorphic structures, we must examine structural properties 
of the groups in question. If we can demonstrate that any of these properties are different, then we can 
state definitively that the groups are not isomorphic.

Example:

1. The groups Z+
2  and V  are not isomorphic, because they are not of the same order.

2. The groups Z+
4  and V  are not isomorphic. Even though they are both of order four, one is 

cyclic and the other is not. 
3. The groups Z+

6  and D3  are not isomorphic. Even though they are both of order six, one is 
abelian and the other is not.

4. (C, ·), (R, ·) are not isomorphic. x · x = c  always has a solution for x  in C  but 
x · x = −1  does not have a solution in R, Z, N.. 

☐
The following theorem explains why we were so interested in studying Sn  and groups of permutations.

Theorem 30 (Cayley’s Theorem) Every finite group of order n  is isomorphic to a group of permutations 
of a set with n  elements.

2.8.3 Cyclic Group Structure

It turns out that up to isomorphism cyclic groups have a relatively straightforward description. 
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Theorem 31. Let G be a cyclic group with generator a . If the order of G is infinite, then G is isomorphic 
to Z+ with binary operation of addition. If G has finite order n  then G is isomorphic to Z+

n  with binary 
operation of addition modulo n . 

Proof. We split this proof into two cases, which will correspond to the infinite cyclic groups and finite 
cyclic groups. We first consider the possibility that for all integers k > 0  we have ak �= e . Suppose that 
am = aj  and that j > m . Then aja−m = aj−m = e , which is a contradiction. Thus every element of G 
can be uniquely expressed as ak  for k ∈+

 
Z+k ∈+ . Define the map φ : G → Z+ by φ(ak) = k . This mapping 

is well-defined, one-to-one, and onto. 

φ(ajam) = φ(aj+m) = j +m = φ(aj) + φ(am)

Therefore φ  is an isomorphism between this cyclic group and the integers Z+.

Now we suppose that there exists a positive integer k  such that ak = e . Let n  be the smallest such 
positive integer. If u ∈  and u = nq + r  for 0 ≤ r < n , then au = anq+r = (an)qar = ar . By a similar 
argument as the previous case, the elements e = a0, a, a2, · · · , an−1  are all distinct and comprise all of  
G the map φ : G →n  given by φ(aj) = j  is well defined, one to one, and onto. We see that 

φ(ajam) = φ(aj+m) = (j +m) mod n = j mod n+m mod n = φ(aj) + φ(am)

therefore φ  is an isomorphism between Z+
n  and the cyclic group G.

☐
2.8.4 Exercises

1. Let φ : G → G′  be a homomorphism of G onto G′ . Prove that if G is abelian, then G′  is 
abelian.

2. Show that group isomorphism is an equivalence relation on groups.
3. Consider the se Z+ under standard addition. Is the mapping φ : Z → Z  defined by 

φ(n) = −n  an isomorphism? 
4. Let G  be the set of matrices of the form 

[
a −b
b a

]
 with a, b ∈ . 

a) Prove that G is closed under matrix addition and matrix multiplication. 
b) Prove that G with matrix addition is isomorphic to C  with addition of complex 

numbers.
c) Prove that G with matrix multiplication is isomorphic to C

 
with multiplication of 

complex numbers. 
5. An automorphism is an isomorphism of a group with itself. 

a) How many automorphisms does Z+
10 have? 

b) How many autormorphisms does Z+
7  have? 

c) How many automorphisms does Z+
p  for p  prime have? 
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6. Let φ : Z12 → Z4  be defined by φ(x) = x mod 4 . Prove that this is a homomorphism. 
7. Let φ : Z → Z13  be defined by φ(1) = 7. Determine kerφ  and φ(57) . 
8. Let φ : Z → Z  be a homomorphism 

a) Determine the homomorphisms φ  that are onto. 
b) Determine the total number of homomorphisms φ . 

9. Let φ : G → G′  be a group homomorphism. Prove that if the order of G is prime, then φ  
is trivial or one-to-one.

2.9 Cosets and Normal Subgroups

In our examination of subgroups we saw some examples that seemed to suggest if H is a subgroup of 
G then the order of n divides the order of k. We pause for the reminder that in mathematics several 
examples are not enough to prove a theorem, but a single counterexample is enough to disprove a 
statement. In this case we are okay, as the order of a subgroup does in fact divide the order of the group 
that it is contained in. In this section we will prove that this is true. 

2.9.1 Cosets

Definition:

Let H  be a subgroup of a group G. Define the relation ≺  by x ≺ y  if and only if x−1y ∈ H .

☐
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Theorem 32. The relation defined above is an equivalence relation.

Proof. We check that the three conditions of an equivalence relation are met:

•	 Reflexive: Since H  is a subgroup, g−1g = e ∈ H  for all g ∈ G . Thus g ≺ g  for all g ∈ G

•	 Symmetric: Suppose that x ≺ y . Thus x−1y ∈ H . Since H  is a subgroup (x−1y)−1 = y−1x ∈ H 
(x−1y)−1 = y−1x ∈ H . This means that y ≺ x . 

•	 Transitive: Suppose that x ≺ y  and y ≺ z . So we have x−1y ∈ H  and y−1z ∈ H . By 
closure of H  we know (x−1y)(y−1z) = x−1z ∈ H . So x ≺ z .

☐
The equivalence classes of this equivalence relation are the following types of sets. 

Definition: Let H  be a subgroup of a group G. The subset gH = {gh | h ∈ H}  of G is the left coset 
of H  containing g , while Hg = {hg | h ∈ H}  is the right coset of H  containing g . 

☐

Example: 4Z = {· · · ,−12,−8,−4, 0, 4, 8, 12, · · · }  is a subgroup of Z+. The cosets are: 

•	 4Z = {· · · ,−12,−8,−4, 0, 4, 8, 12, · · · }
•	 1 + 4Z = {· · · ,−11,−7,−3, 1, 5, 9, 13, · · · }, , which is obtained by adding 1 to each of 

the elements of 4Z+.
•	 2 + 4 = {· · · ,−10,−6,−2, 2, 6, 10, 14, · · · }  which is obtained by adding 2 to each of the 

elements of 4Z+.
•	 3 + 4 = {· · · ,−9,−5,−1, 3, 7, 11, 15, · · · }  which is obtained by adding 3 to each of the 

elements of 4Z+.

☐
Example:

〈4〉 = {0, 4, 8}  is a subgroup of Z+
12. 

{1, 5, 9}  is the coset containing 1, {2, 6, 10}  is the coset containing 2, {3, 7, 11}  is the coset containing 
3, and {0, 4, 8}  is the coset containing 0. 

☐
Example:

〈3〉 = {0, 3, 6, 9}  is a different subgroup of Z+
12. 
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{1, 4, 7, 10}  is the coset containing 1, {2, 5, 8, 11}  is the coset containing 2, and {0, 3, 6, 9} is the 
coset containing 0. 

☐
Note:

For any group G and subgroup H, the coset of H containing the identity is also a subgroup of G.  
However, no other cosets are subgroups. (none of the other cosets contain the identity). Cosets are 
subsets of the group G.

☐
Definition:

Let H be a subgroup of the group G. The number of distinct left (right) cosets of H is called the index 
of H in G and is denoted (G : H) . 

☐
We have seen that cosets partition our group into several disjoint sets. It turns out that these disjoint 
sets all have the same number of elements. After carefully proving this result, which does not appear 
that interesting on the surface, we will see that this equal partitioning implies a significant result about 
the order subgroups of a group. 

Theorem 33. Let H be a subgroup of G and g  any element of G. The coset gH  has the same number of 
elements as H. 

Proof. Define a map φ : H → gH  by φ(h) = gh  for all h ∈ H . We will see that φ  is one-to-one: 

φ(h1) = φ(h2) ⇒ gh1 = gh2 ⇒ h1 = h2

Since φ  is one-to-one, we see that the sets H and gH  have the same number of elements. For H an 
infinite set this implies that gH  is also infinite.

☐
Although we have been working with left cosets, there is no reason why all of the above discussion 
couldn’t have focused on right cosets. It is also true that H and Hg  have the same number of elements. 

Theorem 34 (Lagrange’s Theorem). Let H be a subgroup of a finite group G. Then the order of H is a 
divisor of the order of G. 
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Proof. Let n  be the order of G and H have order m. Every coset of H also has m  elements. Let r  be the 
number of distinct left cosets of H. By considering the group G as G = H ∪ g1H ∪ g2H ∪ · · · ∪ gr−1H ,  
we have the equation n = rm . Therefore m  is a divisor of n . 

☐
WARNING: The converse of Lagrange’s theorem is not true. Just because k divides the order of a group 
n  does not mean that group has a subgroup of order k. A specific class of counterexamples will be seen 
when we study direct products. 

☐
Corollary 35. Every group with order a prime number is a cyclic group. 

Let G be of prime order p . Since G has prime order there are at least two elements. Let a ∈ G  be an 
element different from the identity. Then 〈a〉  has at least two elements {e, a} . By Lagrange’s Theorem, 
the order n  of 〈a〉  must divide the order of G. In other words, n  must divide p . As n > 1 , it is 
immediate that n = p . Therefore G = 〈a〉 . 

☐

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

MASTER IN  MANAGEMENT

mim.admissions@ie.edu Follow us on IE MIM Experiencewww.ie.edu/master-management

#10 WORLDWIDE
MASTER IN MANAGEMENT 

FINANCIAL TIMES

55 Nationalities
in class

5 Specializations
Personalize your program 

Length: 1O MONTHS
Av. Experience: 1 YEAR
Language: ENGLISH / SPANISH
Format: FULL-TIME
Intakes: SEPT / FEB

• STUDY IN THE CENTER OF MADRID AND TAKE ADVANTAGE OF THE UNIQUE OPPORTUNITIES
  THAT THE CAPITAL OF SPAIN OFFERS
• PROPEL YOUR EDUCATION BY EARNING A DOUBLE DEGREE THAT BEST SUITS YOUR
  PROFESSIONAL GOALS
• STUDY A SEMESTER ABROAD AND BECOME A GLOBAL CITIZEN WITH THE BEYOND BORDERS
  EXPERIENCE

93%
OF MIM STUDENTS ARE

WORKING IN THEIR SECTOR 3 MONTHS
FOLLOWING GRADUATION

http://s.bookboon.com/MIMEnglish


An Introduction to Abstract Algebra

83 

Group Theory

This corollary is quite powerful as it tells us that up to isomorphism, there is only one group of order  
Z+p . Since this group is cyclic, it is isomorphic to Z+

p  and is abelian. We will soon see that this is quite 
an accomplishment to be able to make such a definitive statement. In general it is quite difficult to tell 
how many groups exist of a particular order. 

2.9.2 Normal Subgroups

When we defined the cosets of H containing g  we made a distinction between the left and the right 
cosets. There was a good reason for this. Due to the fact that some groups are nonabelian, in general 
gH �= Hg . It will become apparent that it is worthwhile to distinguish between subgroups H of a group 
G  for which gH = Hg  for all g ∈ G , and those for which this property is not true. Worthwhile enough, 
in fact, for a definition.

Definition: A subgroup H of G is a normal subgroup if gH = Hg  for all g ∈ G . 

☐
Theorem 36. If G is abelian and H is a subgroup of G then H is normal. 

Proof. 
The proof is immediate from the fact that we have an abelian group. If H = {h1, h2, ·}  we see that 

gH = {gh1, gh2, · · · } = {h1g, h2g, · · · } = Hg.

☐
Although left and right cosets match for abelian groups, for nonabelian groups this is not the case. Left 
and right cosets in nonabelian groups may or may not coincide with one another.

Example:

We consider the dihedral group D3  and consider the cosets of two of this groupï¿½s subgroups.

· e r1 r2 v u d

e e r1 r2 v u d
r1 r1 r2 e u d v
r2 r2 e r1 d v u
v v d u e r2 r1
u u v d r1 e r2
d d u v r2 r1 e
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Let H = {e, r1, r2} . Despite D3  being nonabelian, this subgroup is normal. For any g ∈ H , the coset 
gH = Hg . If g /∈ H , gH = {u, v, d} = Hg . Therefore H is a normal subgroup of G. We stress that 
the group is nonabelian, and so element by element it is not generally true that gh = hg . What is true 
is that the left and right cosets have the same elements.

Now let K = {e, u} . For an element such as r1  we have r1K = {r1, d}  whereas Kr1 = {r1, v} . 
Therefore K is not a normal subgroup of G.

☐
Theorem 37. If a subgroup H has index of 2 in the group G then H is a normal subgroup. 

Proof.
We suppose that (G : H) = 2 . Thus there are two cosets of H : H  and every other element of G, which 
we will denote by HC . If g ∈ H  we have gH = H = Hg . If g ∈ HC  we have gH = HC = Hg . By 
this we see that H must be a normal subgroup. 

☐
The above theorem shows that nonabelian subgroups can be normal. For this we only need to consider 
A5 in S5 . These are both nonabelian groups, but An  is of index two in Sn  for all n ≥ 2 .

Theorem 38. The following are equivalent, and so may be used as definitions of a normal subgroup. For 
subgroup H in G

1. gH = Hg  for all g ∈ G .
2. g−1Hg = H  for all g ∈ G .
3. For any g ∈ G  and h ∈ H

 
g−1hg ∈ H .

4. For any g ∈ G  and every h ∈ H  there exists a k ∈ H  such that g−1hg = k .

Proof. The proof is left as an exercise.

☐
2.9.3 Exercises

1. Find the cosets of 〈4〉  in 28 
2. Find the cosets of {e, u}  in D4 .
3. Let p  and q  be prime numbers. Prove that every proper subgroup of pq  is cyclic.
4. Let H = {e, (1, 2), (3, 4), (1, 2)(3, 4)} . Determine if H is a normal subgroup in S4 .
5. Let H and K be normal subgroups of G and define the set 

HK = {hk | h ∈ H and k ∈ K} . Prove that HK is a normal subgroup of G.
6. If φ : G → G′  is a group homomorphism, prove that kerφ  is a normal subgroup of G.
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7. Let H  be a the subgroup of S4  generated by the cycle (1, 2, 3, 4) . Determine if H is a 
normal subgroup of S4 .

8. Prove Theorem 38.
9. For group homomorphism φ : G → G′  show that if H is a normal subgroup of G then 

φ(H)  is a normal subgroup of φ(G) . 
10. For group homomorphism φ : G → G′  show that if K is a normal subgroup of φ(G)  then 

φ−1(K) is a normal subgroup of G. 

2.10 Quotient Groups

We will now see some of the motivation for singling out the concept of a normal subgroup. In a certain 
sense, we can think of dividing a group by a normal subgroup (or factoring out a normal subgroup). To this 
end we will define a binary operation between cosets of H. In fact we will define (xH) · (yH) = (xy)H .  
This binary operation makes sense due to H being a normal subgroup: Hy = yH . This allows us to 
start with xHyH  and rewrite it as xyHH. One issue with this definition is that a single coset can be 
represented in different ways. For example, if H = {0, 2, 4, 6}  in Z+

8,  then this coset may be represented 
as H = 2 +H = 4 +H = 6 +H . The binary operation that we have defined on cosets must be able to 
account for these different representations of the same coset.
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Theorem 39.

Let H  be a normal subgroup of the group G. The binary operation between cosets defined by 
(xH) · (yH) = (xy)H  is well defined. 

Proof.
We begin by noting that for any x, x′ ∈ G , xH = x′H  if and only if there is a h ∈ H  such that 
x′ = xh . We consider the binary operation on the cosets xH  and yH , and compare this to the binary 
operation different representations x′H  and y′H  of the same cosets, i.e. xH = x′H  and yH = y′H .

x′H · y′H = xh1H · yh2H = xh1yh2H

Since H  is a normal subgroup there exists an h3 ∈ H  such that h1y = yh3 .

xh1yh2 = xyh3h2H = xyh4H = xyH = xH · yH

Therefore the binary operation is well defined. 

☐
Theorem 40.
For the group G, the set of left cosets of H  is a group under the binary operation (xH) · (yH) = (xy)H .

Proof. 
We check that the axioms of a group are satisfied:

•	 Associativity is inherited from the group G and for all x, y, z ∈ G  we have  
(xH)((yH)(zH)) = ((xH)(yH))(zH).

•	 The identity element is the coset containing e , namely H itself. For any x ∈ H  we have 
H · xH = eH · xH = xH = xH · eH . 

•	 By the multiplication structure xHyH = xyH  it is clear that the inverse of aH  is the coset 
a−1H .

☐
Definition: The group in the previous theorem is called the quotient group of G by H and is written G/H. 
This is also called the factor group of G by H. 

☐
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WARNING:

In order to construct a quotient group, we must use a normal subgroup. If we attempt to use any other 
subgroup, then while left and right cosets can be formed, the binary operation xH · yH = xyH  will 
no longer be well defined.

☐
One of the easiest ways to see the quotient group of a finite group of low order is to arrange the group 
G in terms of the cosets of H. By treating each coset as a block in the group table, we can see the form 
of the quotient group G/H.

Example:

We will examine the quotient group Z12/H  with the normal subgroup H = 〈4〉 . We will begin by 
rearranging the group table of Z12  by the cosets of H:

+ 0 4 8 1 5 9 2 6 10 3 7 11

0 0 4 8 1 5 9 2 6 10 3 7 11
4 4 8 0 5 9 1 6 10 2 7 11 3
8 8 0 4 9 1 5 10 2 6 11 3 7

1 1 5 9 10 2 6 11 3 7 4 8 0
5 5 9 1 6 10 2 7 11 3 8 0 4
9 9 1 5 2 6 10 3 7 11 0 4 8

2 2 6 10 3 7 11 4 8 0 5 9 1
6 6 10 2 7 11 3 8 0 4 9 1 5
10 10 2 6 11 3 7 0 4 8 1 5 9

3 3 7 11 4 8 0 5 9 1 6 10 2
7 7 11 3 8 0 4 9 1 5 10 2 6
11 11 3 7 0 4 8 1 5 9 2 6 10

We see that there are four cosets: H, 1 +H, 2 +H,  and 3 +H . Further inspection of the group 
table, particularly the fact that (1 +H)  is a generator with (1 +H) + (1 +H) = 2 +H  and 
(1 +H) + (1 +H) + (1 +H) = 3 +H  reveals that the quotient group Z12/H  is isomorphic to Z+

4 .

☐
Example:

Another normal subgroup of Z+
12 is K = 〈2〉 . The cosets are 

{0, 2, 4, 6, 8, 10} and {1, 3, 5, 7, 9, 11}.

We rearrange the group table into these cosets. The quotient group Z+
12/K  is isomorphic to Z+

2 . 
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· 0 2 4 6 8 10 1 3 5 7 9 11

0 0 2 4 6 8 10 1 3 5 7 9 11
2 2 4 6 8 10 0 3 5 7 9 11 1
4 4 6 8 10 0 2 5 7 9 11 1 3
6 6 8 10 0 2 4 7 9 11 1 3 5
8 8 10 0 2 4 6 9 11 1 3 5 7
10 10 0 2 4 6 8 11 1 3 5 7 9

1 1 3 5 7 9 11 2 4 6 8 10 0
3 3 5 7 9 11 1 4 6 8 10 0 2
5 5 7 9 11 1 3 6 8 10 0 2 4
7 7 9 11 1 3 5 8 10 0 2 4 6
9 9 11 1 3 5 7 10 0 2 4 6 8
11 11 1 3 5 7 9 0 2 4 6 8 10

☐
Example:

We consider the dihedral group D3  of symmetries of an equilateral triangle and have seen that the 
subgroup of rotations H = {e, r1, r2}  is a normal subgroup. The other coset is uH = {u, v, d} , 
which has alternative representations of vH  and dH , and we see that the quotient group D3/H  has 
the following structure, isomorphic to Z+

2 :
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· H uH

H H uH
uH uH H

☐
Example:

Consider the group Z+ with normal subgroup H = 3Z = {· · · ,−6,−3, 0, 3, 6, · · · }. These are two 
infinite groups. We see that the quotient group Z+/H  is finite. The cosets of H  are H, 1 +H, 2 +H . 
By the mapping φ : Z3 → Z/H  defined by φ(x) = x+H  we see that Z+/H ∼=3 . 

In general for any positive integer n Z/(nZ) ∼= Zn.

☐
2.10.1 Theorems Regarding Quotient Groups

The following theorems were illustrated by the examples above.

Theorem 41. Let H  be a normal subgroup of G. If G is finite then the order of the quotient group G/H is 
the order of G divided by the order of H : |G/H| = |G|/|H| .

Proof.
We have seen that the normal subgroup H  partitions G into |G|/|H|  equivalence classes. This is the 
total number of distinct cosets of H. 

☐
Theorem 42.

If H  is a normal subgroup of G then the mapping φ : G → G/H  defined by φ(g) = gH  is an onto 
homomorphism.

Proof.
It is clear that φ  is an onto mapping as G/H consists of the left cosets of H. We now show that φ  is a 
homomorphism. Let x, y ∈ G  and consider φ(xy) = (xy)H = xH · yH = φ(x) · φ(y) . Therefore φ  
is a homomorphism.

☐
Theorem 43.

If G is cyclic and H is any subgroup, then G/H is a cyclic group.
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Proof.
Let a  be the generator of the cyclic group G, i.e. 〈a〉 = G . We claim that aH  is a generator of G/H .  
We have seen that the mapping φ : G → H  defined by φ(g) = gH  is an onto homomorphism. By 
examining φ(ak) = akH  we see that every element of G/H  has the form akH  for some k ∈ Z+. By 
the binary operation we know akH = (aH)k , so aH  generates G/H . 

☐
Theorem 44. Let H be a normal subgroup of G. The quotient group G/H  is abelian if and only if H  
contains every element of the form xyx−1y−1  for x, y ∈ G . 

2.10.2 Simple Groups

Just as the prime numbers are building blocks of the positive integers, in that every 

Definition:

A nontrivial group is simple if its only proper normal subgroup is {e} . 

☐
Theorem 45. The alternating group An  is simple for all n ≥ 5 . 

Proof. We present a sketch of the proof here, with individual steps left as exercises.

1. First show that every cycle of length 3 is an element of An  for n ≥ 3 .
2. Next show that these cycles of length 3 generate An  for n ≥ 3

3. Show that every cycle of length 3 is generated by the particular cycles (a, b, i)  for fixed a, b  
with 1 ≤ a, b, i ≤ n  for n ≥ 3.

4. For n ≥ 3  show that if H  is a normal subgroup of An  that contains a cycle of length 3 
then H = An .

5. Let H be a nontrivial normal subgroup of An  for n ≥ 5.  Consider all of the possible forms 
of the elements in H and show why H must contain a cycle of length 3.

☐
2.10.3 Exercises

1. Let H = {0, 3, 6, 9, 12} . Determine the quotient group Z+
15/H  and write the group table.

2. Prove that if H and N are normal subgroups of a group N with N ⊆ H  then H/N  is a 
normal subgroup of G/N  and the following isomorphism holds:

(G/N)/(H/N) ∼= G/H

3. Prove that every cycle of length 3 is an element of An  for n ≥ 3 .
4. Prove that cycles of length 3 generate An  for n ≥ 3

5. Prove that every cycle of length 3 is generated by the particular cycles (a, b, i)  for fixed a, b  
with 1 ≤ a, b, i ≤ n  for n ≥ 3.
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6. For n ≥ 3  show that if H  is a normal subgroup of An  that contains a cycle of length 3 
then H = An .

7. Use the preceeding three problems to show why An  is simple for n ≥ 5 .

2.11 Direct Products

Back when you first studied arithmetic, you saw how multiplication is used to form large numbers from 
factors that could be quite small. The numbers 2 and 3 are not that large, but the product 2 · 2 · 3 · 3 = 36  
is greater, and 210 = 1024  is greater still. In this section we will look at a process that allows us to build 
larger groups by “multiplying” smaller ones together. This process relies upon the Cartesian product.

Theorem 46. Let G1 and G2 be groups. Define a binary operation on G1 ×G2 by 
(a1, a2) · (b1, b2) = (a1b1, a2b2) . The set G1 ×G2 is a group under this binary operation. 

Proof. We begin by noting that the binary operation is defined in terms of each group that forms the 
product. Thus the ai  do not interact with the bi . As a result the group G1 ×G2 will inherit its group 
structure from its components. As always we must check that the group axioms hold.

•	 The binary operation is associative because for every (a1, a2), (b1, b2), (c1, c2) ∈ G1 ×G2  

((a1, a2) · (b1, b2)) · (c1, c2) = (a1b1, a2b2) · (c1, c2) = ((a1b1)c1, (a2b2)c2)
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Now by the associativity of the groups G1 and G2 we are allowed to say 

((a1b1)c1, (a2b2)c2) = (a1(b1c1), a2(b2c2))

and it is clear that this element is equal to (a1, a2) · ((b1, b2) · (c1, c2)) .

•	 Since G1 is a group is has an identity element e . The group G2 also has an identity, 
which we will denote E to distinguish it from e . For any (a1, a2) ∈ G1 ×G2  we have 
(a1, a2) · (e,E) = (a1 · e, a2 · E) = (a1, a2) = (e · a1, E · a2) = (e,E) · (a1, a2) . Thus 
(e,E)  is the identity of G1 ×G2.

•	 For the element (a1, a2) ∈ G1 ×G2  we know that a1 ∈ G1  and 
a2 ∈ G2 . These groups elements have inverses a−1

1  and a−1
2  and so 

(a1, a2) · (a−1
1 , a−1

2 ) = (a1a
−1
1 , a2a

−1
2 ) = (e,E) = (a−1

1 a1, a
−1
2 a2).

☐
Definition: The group defined in the previous theorem is the direct product of G1 and G2 . 

☐
The direct product of G1 and G2 inherits much of its structure from G1 and G2. By a basic counting 
argument we can see that the order of G1 ×G2 is the product of the orders of G1 and G2. If both of the 
groups are abelian, then the direct product is abelian. We might ask, if G1 and G2 are both cyclic, then 
is the direct product G1 ×G2 also cyclic? 

Example: Consider the group Z2 × Z3. We will look at the element (1, 1) ∈ Z2 × Z3.  In the discussion 
that follows it is key to remember where each of these elements 1 are coming from. One of them is an 
element of Z+

2  and the other is an element of Z+
3 . We will add this element (1, 1)  to itself. 

(1, 1)

(1, 1) + (1, 1) = (1 + 1, 1 + 1) = (0, 2)  (since the 1 + 1  in the first coordinate occurs in the group Z+
2).

(1, 1) + (1, 1) + (1, 1) = (1, 1) + (0, 2) = (1, 0)  (since the 1 + 2  in the second coordinate occurs in 
the group Z+

3

(1, 1) + (1, 1) + (1, 1) + (1, 1) = (0, 2) + (0, 2) = (0, 1)

(1, 1) + (1, 1) + (1, 1) + (1, 1) + (1, 1) = (0, 1) + (1, 1) = (1, 2)

(1, 1) + (1, 1) + (1, 1) + (1, 1) + (1, 1) + (1, 1) = (1, 2) + (1, 1) = (0, 0)
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This shows us a few things. The order of the element (1, 1)  is 6. We also know that the order of the group 
Z2 × Z3. is 6. Thus Z2 × Z3. is a cyclic group of order 6 with generator (1, 1) . For any natural number, 
up to isomorphism there is only one cyclic group of order n . By these considerations Z2 × Z3

∼= Z6.  
For an explicit isomorphism, we could map the generator we found of Z2 × Z3. to a generator of Z6. 

☐
In this particular case we see that the cyclic structure of Z+

2  and Z+
3  transferred to the direct product 

Z2 × Z3., so it can happen. The question is if this is always the case. Another example will help to 
answer this. 

Example:

Consider the direct product G = Z2 × Z2.  The elements of G = {(0, 0), (1, 1), (1, 0), (0, 1)}  and its 
group table is: 

· (0, 0) (1, 1) (1, 0) (0, 1)

(0, 0) (0, 0) (1, 1) (1, 0) (0, 1)
(1, 1) (1, 1) (0, 0) (0, 1) (1, 0)
(1, 0) (1, 0) (0, 1) (0, 0) (1, 1)
(0, 1) (0, 1) (1, 0) (1, 1) (0, 0)

It is clear from the table (and we could have determined this without the table) that for all elements 
(x, y) ∈ G , (x, y) + (x, y) = (0, 0) . The order of any element in the group is at most two, but the 
order of G  is four. This shows us that G is not a cyclic group, and so we have answered our question 
that Zn × Zm  is not necessarily a cyclic group.

It is worthwhile to note that we have previously seen the group G = Z2 × Z2. This is a group of order 
four in which all elements other than the identity have order two. The other group of order four 
that we have encountered is the Klein four group. The mapping φ : Z2 ×Z2 → V  given by 
φ((0, 0)) = e, φ((1, 1)) = a, φ((1, 0)) = b, φ((0, 1)) = c  is one-to-one and onto. A check of all of the 
possibilities shows that this mapping is an isomorphism, so Z2 × Z2

∼= V .  

These two examples gave us different results. In both cases we started with the direct product of two 
cyclic groups. In one case the direct product was cyclic, but in the other case the direct product was 
not cyclic. This demonstrates that the direct product is a useful way to construct new groups from old 
ones. But we would be right to ask how do we know before forming the direct product if we are going to 
end up with a cyclic group. Are there are any conditions to look for that cause Zn × Zm  to be cyclic? 
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We could form several direct products and see if we noticed a pattern. The group Z3 × Z5  is cyclic, 
but Z3 × Z9  is not. The group Z6 × Z7  is cyclic, but Z6 × Z14  is not. If we formed enough direct 
products, we would realize the following. 

Theorem 47. The group Zn × Zm  is isomorphic to Z+
mn  (and thus cyclic) if and only if m,n  are relatively 

prime. 

Proof. Recall for this proof that two positive integers are relatively prime if their greatest common divisor 
is 1. We begin by considering (1, 1) ∈ Zm×Zn. We add this element to itself repeatedly and observe 
that if we add it to itself n, 2n, 3n  or any multiple of n  times, then the result is an element of the form 
(x, 0) . In a similar fashion, if we add the element (1, 1)  to itself m, 2m, 3m  or any multiple of m  times, 
then the result is an element of the form (0, y) . 

Any common multiple k  of both m  and n  will result in 
k︷ ︸︸ ︷

(1, 1) + (1, 1) + · · · (1, 1) = (0, 0) . The 
smallest such k  is the least common multiple of m,n , denoted lcm(m,n). 

Suppose that m,n  are relatively prime. Then gcd(m,n) = 1  and by the equation 

mn = lcm(m,n)gcd(m,n)
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we see that lcm(m,n) = mn . This shows that the element (1, 1)  has order mn  in a group with order 
mn . So (1, 1)  is a generator of Zm × Zn  and this is a cyclic group. As there is only one cyclic group 
of order mn , Zm × Zn  is isomorphic to Z+

mn . 

For the converse statement, suppose that m,n  are not relatively prime. Thus gcd(m,n) = d > 1  
and by the equation mn = lcm(m,n)gcd(m,n)  we see that mn/d = lcm(m,n) . Any element 
(r, s) ∈ Zm × Zn  has order at most mn/d , which is less than mn . There is no generator of 
Zn × Zm  so it is not cyclic, and Zm × Zn �∼= Zmn .

☐
Example:

By theorem 47 we see that there are a number of ways to express isomorphic groups:

Z6 × Z10
∼= Z6 × Z5 × Z2

∼= Z30 × Z2
∼= Z2 × Z2 × Z5 × Z3

☐
2.11.1 Direct Product of Several Groups

We can extend the construction of a direct product to more than two groups. There is a little bit of 
notation that needs to be introduced, but the overall process is the same as the direct product of two 
groups. We form a Cartesian product, and then we define a binary operation on the product.

Definition: The Cartesian product of sets S1, S2, · · · , Sn  is the set of all ordered pairs (a1, a2, · · · , an)  
where ai ∈ Si  for i = 1, 2, · · · , n  and is denoted S1 × S2 × · · · × Sn =

∏n
i=1 Si . 

☐
This definition is a generalization of our Cartesian product for two sets. We are now allowed to use 
several sets to form a product. This allows to form more than the ordered pair (a1, a2). We now have 
the ability to form an ordered n -tuple (a1, a2, · · · , an) . The word “ordered” is key, as changing this 
will result in a different point of S1 × S2 × · · · × Sn . The generalized Cartesian product is now used 
to form a direct product of several groups.

Theorem 48. Let G1, G2, · · · , Gn  be groups. For (a1, a2, · · · , an), (b1, b2, · · · , bn) ∈
∏n

i=1Gi . Define 

(a1, a2, · · · , an) · (b1, b2, · · · , bn) = (a1b1, a2b2, · · · , anbn).

Then 
∏

Gi  is a group. 
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Proof. This result makes sense, but we will be somewhat careful in proving this because the proof uses 
a strategy that we have not seen for awhile. Since we are proving a statement regarding the natural 
numbers, we will use mathematical induction for the proof. 

We have already proved that G1 ×G2 forms a group under the defined binary operation. Thus our 
induction proof is anchored. Suppose that G1 ×G2 × · · · ×Gk  is a group G. It is straightforward to 
see that G1 ×G2 × · · · ×Gk ×Gk+1 = G×Gk+1. Since this is a Cartesian product of two groups, it 
too is a direct product and a group. 

☐
Theorem 49. Let (a1, a2, · · · , an) ∈

∏
Gi . If ai  is of finite order si  in each Gi , then the order of the 

element (a1, a2, · · · , an)  is equal to the least common multiple of all the si . 

Proof. We induct on the number of groups Gi  in the direct product. We have already seen that 
this theorem is true for G1 ×G2. By induction we suppose that the order of (a1, a2, · · · , ak)  is 
lcm(s1, s2, · · · , sk) in G1 ×G2 × · · · ×Gk . Now we consider the order of (a1, a2, · · · , ak, ak+1)  in 
G1 ×G2 × · · · ×Gk ×Gk+1. Let s = lcm(s1, s2, · · · , sk)  and denote G1 ×G2 × · · ·Gk = G . Since 
G1 ×G2 × · · · ×Gk ×Gk+1

∼= G×Gk+1, (a1, a2, · · · , ak)  has order s  in G  and ak+1 has order 
sk+1 , the element (a1, a2, · · · , ak, ak+1)  has order lcm(s, sk+1) = lcm(s1, s2, · · · , sk, sk+1) .

☐
Example:

Find the order of (2, 6, 5) ∈ Z12 × Z30 × Z20

First we find the order of each element in its respective group. 2 is of order six in Z+
12 6 is of order five 

in Z+
30 and 5 is of order four in Z+

20. The order of (2, 6, 5)  is the lcm(6, 5, 4) = 60 . 

☐
2.11.2 Finitely Generated Abelian Groups

We now move on to see what else there is to do with the direct product construction. We will be able 
to use this to classify a certain kind of abelian group.

Definition: A group is finitely generated if the group can be presented in terms of a finite list of generators 
and relations. 

☐
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Most of the groups that we have run into are finitely generated. Cyclic groups are generated by a single 
element of a group. Dihedral groups can be expressed in terms of two generators, which are related by 
three relations. Groups such as Q  or R, Z, N. under addition is not finitely generated. If we turn our focus to 
finitely generated abelian groups, all of these types of groups can be described in terms of direct products. 

Theorem 50. Fundamental Theorem of Finitely Generated Abelian Groups Every finitely generated abelian 
group is isomorphic to a finite direct product of cyclic groups. 

The proof of this theorem is beyond the level of this book. Since we have a classification of cyclic groups, 
a relatively straightforward corollary gives us a more explicit description of finitely generated abelian 
groups.

Corollary 51. Every finitely generated abelian group is a direct product of a finite number of Z+ and a 
finite number of finite cyclic groups of the form Z+si

pi  where pi  is prime number and si  is a positive integer. 

Proof. Let G be a finitely generated abelian group. We have seen that every cyclic group is isomorphic to 
Z+ or to Z+

n . The Fundamental Theorem of Finitely Generated Abelian Groups tells us that 

G ∼= Zn1 × Zn2 × Znk
× Z × Z × · · · × Z.
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We use the prime factorization of each n = ps11 ps22 · · · psjj . Since Zmn
∼= Zm × Zn  when  

gcd(m,n) = 1 , we can express 
1 2

Zn
∼= Zp

s1
1
× Zp

s2
2
· · ·Z

p
sj
j

. We rewrite each of the Z+
ni  in this way.

☐
Note:

The prime numbers pi  for the cyclic groups Z+
p
si
i

 may be repeated. The direct product above is unique 
up to rearrangement of the groups Z+

p
si
i

 and Z+. The usefulness of corollary 51 is that is can be used to 
determine all abelian groups of a particular order. The theorem takes a question regarding groups and 
turns it into a question involving the prime factorization of a number. 

☐
Example: How many abelian groups are there of order 8?

We factor 8 = 23 . We now partion this factorization in every way possible. By the fundamental theorem 
of finitely generated abelian groups, the following are the finite groups of order 8:

Z8 Z4 × Z2 Z2 × Z2 × Z2

☐
Example: How many abelian groups are there of order 180? 

We see that 180 = 22325 . Each of the squared primes may be expressed in two different ways, so there 
are a total of four abelian groups of order 180. 

Z4 × Z9 × Z5

Z2 × Z2 × Z9 × Z5

Z4 × Z3 × Z3 × Z5

Z2 × Z2 × Z3 × Z3 × Z5

☐
2.11.3 Exercises

1. Prove that the direct product of G1 and G2 is abelian if and only if G1 and G2 are both 
abelian groups.

2. Prove that for groups G1 and G2 the following isomorphism holds: G1 ×G2
∼= G2 ×G1 .

3. A positive integer m  is said to be “square free” if m  is not divisible by the square of any 
prime. Prove that every abelian group of order m  is cyclic. 
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4. If n = pk11 pk22  where p1, p2  are distinct prime numbers, how many abelian groups of order 
n  exist? 

5. List the elements of Z3 × Z6  . Is this a cyclic group? 
6. Find the order of (3, 4, 5, 6)  in Z12 × Z20 × Z30 × Z24. 
7. Explain whether the groups Z20 × Z6 and Z12 × Z10  are isomorphic. 
8. List all abelian groups of order 540. 
9. The torsion subgroup of the group G is the set of all elements of G of finite order. Prove that 

this is indeed a subgroup.
10. Find the order of the quotient group Z12 × Z20/ 〈(1, 1)〉.
11. What is the order of the element (3, 3) + 〈(1, 1)〉  in the quotient group Z4×Z4/ 〈(1, 1)〉.

2.12 Catalog of Finite Groups

Throughout this chapter we have encountered several different groups. Before moving on to other topics 
in abstract algebra, it would be worthwhile to collect ourselves and summarize what we have learned 
about finite groups of low order. We will examine up to isomorphism nearly all groups of order less than 
20. In general it is a difficult to tell how many groups there are of a given order, and only partial result 
are known for some values of n . For what follows recall that:

•	 Sn  is the symmetric group on n  elements of order n! , 
•	 An  is the alternating group of order n!/2, 
•	 Dn  is the dihedral group of order 2n , and 
•	 Z+

n  is the cyclic group of order n . 

1. For n = 1  there is only the trivial group {e} . This is considered a cyclic group as well as A2

2. For n = 2  there is only the cyclic group Z2
∼= S2

∼= D1.

3. For n = 3  there is only the cyclic group Z+
3
∼= A3 .

4. For n = 4  there are two groups, both of which are abelian: 
a) The cyclic group Z+

4

b) The Klein four-group V ∼= Z2 × Z2
∼= D2.

5. For n = 5  there is only the cyclic group Z+
5 .

6. For n = 6  there are two groups. 
a) Z+

6  is cyclic and thus abelian
b) S3

∼= D3  is nonabelian.

For any even number n  greater than or equal to 6 we will have both Z+
n  and Dn/2  as 

nonisomorphic groups. 

7. For n = 7  there is only the cyclic group Z+
7 .

8. For n = 8  there are five nonisomorphic groups 
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a) Abelian groups of order 8:
i. i. Z8 is a cyclic group

ii. Z2 × Z4

iii. Z2 × Z2 × Z2

ii. 
i. Z8 is a cyclic group

ii. Z2 × Z4

iii. Z2 × Z2 × Z2iii. 

i. Z8 is a cyclic group

ii. Z2 × Z4

iii. Z2 × Z2 × Z2

b) Nonabelian groups of order 8:
i. D4

iv. Q  is the group of quaternions. This group has generators (−1), i, j, k  where 
(−1) commutes with every element of the group, and the elements are related 
by (−1)2 = e , i2 = j2 = k2 = ijk = −1 . This is nonabelian because ij = k , 
whereas ji = (−1)k .

9. For n = 9  there are two abelian groups:
a) The cyclic group Z+

9

b) The direct product Z3 × Z3

10. For n = 10  there are two groups. 
a) Z+

10 is cyclic and thus abelian
b) D5 is nonabelian.

11. For n = 11  there is only the cyclic group Z+
11.
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12. For n = 12  there are five nonisomorphic groups 
a) Abelian groups of order 12:

i. Z+
12 is a cyclic group

ii. Z2 × Z6
∼= Z2 × Z2 × Z3

b) Nonabelian groups of order 12:
i. D6 This has an element of order 6, which distinguishes it from the other 

nonabelian groups of order 12.
i. A4

ii. The dicyclic group of order 12 is {a, b, c | a3 = b2 = c2 = abc}

13. For n = 13  there is only the cyclic group Z+
13.

14. For n = 14  there are two groups. 
a) Z+

14 is cyclic and thus abelian
b) D7 is nonabelian.

15. For n = 15  there is only the cyclic group Z+
15.

16. For n = 16  there are 14 nonisomorphic groups.
a) Abelian groups of order 16:

i. Z+
16 is a cyclic group

ii. Z2 × Z8

iii. Z2 × Z2 × Z4

iv. Z4 × Z4

v. Z2 × Z2 × Z2 × Z2

b) Nonabelian groups of order 16:
i. D8 
ii. Z+

2 ×Q

iii. Z+
2 ×D4

iv. And six other groups with descriptions beyond the scope of this book.

17. For 2 ×Q  there is only the cyclic group Z+
17.

18. For n = 18  there are five nonisomorphic groups. 
a) Abelian groups of order 18:

i. Z+
18 is a cyclic group

ii. Z3 × Z6

b) Nonabelian groups of order 18:
i. D9

ii. S3×3Z+S3×3

iii. Generalized dihedral group of order 18

19. For n = 19  there is only the cyclic group Z+
19.
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2.12.1 Exercises

1. Up to isomorphism, how many groups are there of order p where p is a prime? 
2. Up to isomorphism, how many groups are there of order pq where p and q are distinct primes? 
3. Up to isomorphism, how many groups are there of order pq2  where p and q are distinct 

primes? 
4. Up to isomorphism, how many groups are there of order pmqn  where p and q are distinct 

primes? 
5. Though both are nonabelian groups of order 8, prove that D4 is not isomorphic to Q.
6. Prove that A4 is not isomorphic to the dicyclic group of order 12.
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3 Field Theory
3.1 Introduction to Fields

We will now move on from our study of groups and expand our horizons to another algebraic structure. 
The rational numbers Q  are equipped with two operations of addition and multiplication. We have 
already seen that the entire set of rational numbers with addition supports an abelian group structure, 
in which addition is defined as 

a

b
+

c

d
=

ad+ bc

bd

where a, b, c, d  are all integers with b, d  nonzero. Of course we know from our study of arithmetic 
that addition is not the only thing we can do with fractions. There is also a way to multiply fractions in 
which we define 

a

b
· c
d
=

ac

bd
.

The nonzero rational numbers with this multiplication supports a second abelian group structure. 
Further consideration reveals that we also need to think about how our two operations of addition and 
multiplication interact with each other. In this case we have the distributive property r(s+ t) = rs+ rt .
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This phenomenon is observed when dealing with the set of real numbers as well. The set R, Z, N. with addition 
is an abelian group. The set of nonzero real numbers R, Z, N.∗  under multiplication forms an abelian group. 
The multiplication distributes across the addition for the real numbers.

What we have observed in both of these situations is a new algebraic structure. This structure builds 
upon our definition of group in a way that is helpful for further applications. In doing this we are able to 
abstract more areas of mathematics, now that we are allowing ourselves a set with two binary operations.

Definition:

A field is a set F with two binary operations +, ·

1. F  with + is an abelian group, with identity that we write 0.
2. F ∗ , the nonzero elements of F, with ·  is an abelian group, with identity that we write 1. 
3. For all r, s, t ∈ F  we have the distributive property r · (s+ t)

☐
Notation: Even though we use + and ·  above, just as when we studied groups the “addition” and 
“multiplication” performed may not be our standard operations. The additive inverse of a ∈ F  will be 
written by −a . The multiplicative inverse of a ∈ F ∗  will be written as a−1 = 1

a . When the multiplication 
is clear from the context, we may not explicitly write a · b , but instead ab . We use these symbols and 
conventions for convenience and connection to fields close to our intuition, such as Q  and R, Z, N. 

☐
We have already seen two important examples of fields. We will see two more that may be slightly more 
unfamiliar.

Example:

The set of complex numbers C  forms a field under the operations of 
(a+ bi) + (c+ di) = (a+ b) + (c+ d)i  and (a+ bi) · (c+ di) = (ac− bd) + (ad+ bc)i

Addition is commutative and we see that 0 + 0i  is the additive identity with −a− bi  the additive 
inverse of a+ bi . 

Multiplication is commutative and we see that 1 + 0i  is the multiplicative identity. For all nonzero 
complex numbers a+ bi  we have multiplicative inverse a−bi

a2+b2

The demonstration that the distributive property holds is an exercise.

☐

Download free eBooks at bookboon.com



An Introduction to Abstract Algebra

105 

Field Theory

Example:

Z+
p  is a field when p  is a prime number. The set of equivalence classes modulo p  forms an abelian 

group Z+
p  under addition. The nonzero elements of Z+

p  form an abelian group under multiplication. 
The integers 1, 2, 3, · · · , p− 1 are all relatively prime to p . Thus for any 1 ≤ x ≤ p  there exist integers 
k, n ∈ Z+ such that kx+ np = 1 . Working modulo p  we see that (k mod p)(x mod p) = 1 . Thus 
(k mod p)  is the multiplicative inverse of x .

Since the integers possess the distributive property, this is inherited by Z+
p . 

☐
We will eventually see that there is a way to construct a field with order of pk  where p  is any prime 
and k  is any positive integer. 

Example:

The following addition and multiplication tables display a field of order 22 = 4 . 

+ 0 1 α 1 + α

0 0 1 α 1 + α
1 1 0 1 + α α
α α 1 + α 0 1

1 + α 1 + α α 1 0  

· 0 1 α 1 + α

0 0 0 0 0
1 0 1 α 1 + α
α 0 α 1 + α 1

1 + α 0 1 + α 1 α

☐
Definition:

A field homomorphism is a mapping φ : F → E  where for all x, y ∈ F  

φ(x+ y) = φ(x) + φ(y) and φ(x · y) = φ(x) · φ(y).

A field isomorphism is a field homomorphism that is also one-to-one and onto. 

☐
3.1.1 Theorems Regarding Fields

One aspect of studying algebra in an axiomatic way is that many results that are “obvious” need to be 
proved from the given statements. We will see a few examples of these kinds of theorems here. For instance 
for any field the product of the additive identity with any field element gives us the additive identity. 
This gives us the familiar formula 0 · a = 0 . Rather than saying that this statement is true because it is 
true, we will say it is true because we can prove it is true from the axioms for a field.

Theorem 52. For the field F  and any element a ∈ F , 0 · a = a · 0 = 0 .
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Proof. We begin with 0 · a+ 0 · a  and use the distributive property:

0 · a+ 0 · a = (0 + 0) · a = 0 · a

Thus 0 · a+ 0 · a− 0 · a = 0 · a− 0 · a  and 0 · a = 0 . By the commutative property 0 · a = a · 0 .

☐
Theorem 53. For the field F  and any element a ∈ F , (−1)a = −a .

Proof. We begin with a+ (−1) · a  and use the distributive property:

a+ (−1)a = (1 +−1) · a = 0 · a

and by the previous theorem 0 · a = 0 . Since a+ (−1)a = 0 we have (−1)a = −a .

☐
Theorem 54. For the field F  and any elements a, b ∈ F , (−a)(−b) = ab .

Proof. By the previous theorem we have (−a)(−b) = (−1)a(−1)b . We use the commutative property 
of multiplication and see (−1)a(−1)b = (−1)(−1)ab = ab . 

☐
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Theorem 55. Every field homomorphism is one-to-one or trivial. 

Proof. Let φ : F → E  be a field homomorphism. If kerφ = 0  then φ  is one-to-one. Suppose that φ  
is not one-to-one. So there is an nonzero element x ∈ kerφ . 

0 = 0 · φ(x−1) = φ(x)φ(x−1) = φ(1)

For any y ∈ F  we have φ(y) = φ(y · 1) = φ(y) · φ(1) = φ(y) · 0 = 0 Since F = kerφ , the mapping 
φ  is trivial.

☐
Corollary 56. Any onto field homomorphism is a field isomorphism.

Proof. If we know that a field homomorphism φ  is onto, then it is not trivial. By the previous theorem 
φ  is one-to-one. Therefore φ  is an isomorphism. 

☐
3.1.2 Exercises

1. Prove that the distributive property holds for complex numbers C .
2. For the field F  and any elementa a, b ∈ F , prove that if a · b = 0 then a = 0  or b = 0 . 
3. Show that (a+ b)p = ap + bp  for p  a prime and a, b ∈ Zp.

4. Prove that the fields R, Z, N. and C  are not isomorphic.

3.2 Polynomials

Polynomials are found throughout basic mathematics. Finding the zeros of polynomials was one of the 
driving forces that led to the development of abstract algebra. We can intuitively think of a polynomial as an 
expression of the form c0 + c1x+ c2x

2 + · · ·+ cnx
n , where x  is an indeterminate. This indeterminate 

is to be thought of as an algebraic quantity, not a variable that takes on a value. This is a subtle but 
important distinction from the algebra that we may have encountered in a high school mathematics 
course. Rather than finding the solution to the equation x2 + 3x+ 1 = 0  we will be finding the zeros 
of the polynomial f(x) = x2 + 3x+ 1 . We will find that the zeros of a polynomial are intimately linked 
to the field over which we are working. As a straightforward example of this, what are the zeros of the 
polynomial x2 − 5 ? If only allow ourselves the possibility of rational zeros, then there are none. If we 
instead work over the field of real numbers, then ±

√
5  are zeros of the polynomial. For mathematical 

precision we need to more carefully define a polynomial than what we have done above. 

Definition:

A polynomial f(x) with coefficients in the field F is an infinite formal sum 
∑∞

i=0 cix
i = c0 + c1x+ c2x

2 + · · · cnxn + · · ·  where ci ∈ F  and all but a finite number of ci = 0 . 

☐
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Definition: The field elements ci  are called the coefficients of the polynomial f(x).

The element x  is called an indeterminant of the polynomial f(x).

The largest value of i  for which ci �= 0  is called the degree of the polynomial f(x). We write this as degf .

☐
Notation: 

The set of all polynomials over the field F with indeterminant x  is denoted by F [x] . This set has some 
additional structure, which we will explore in more depth in the final unit of the book. 

☐
Note:

A polynomial of the form f(x) = c0  is a constant polynomial. Since c0  is an element of the field F  we 
can consider F ⊆ F [x] . Constant polynomials are all considered to have degree of zero.

☐
We define polynomial addition and multiplication to match that from our other exposures to algebra. 
Addition is relatively straightforward to define formally. If f(x) =

∑∞
i=0 cix

i  and g(x) =
∑∞

i=0 dix
i  

then (f + g)(x) =
∑∞

i=0(ci + di)x
i . Multiplication is slightly more complicated to define, as we must 

account for all of the possible ways to obtain coefficients of a given power of x . (fg)(x) =
∑∞

i=0 eix
i  

where ei =
∑i

j=0 ajbi−j . Here we are formally saying that the term x3 is obtained in any of the 
following ways: 

1. 1 · x3
 

2. x · x2
 

3. x2 · x
 

4. x3 · 1
 

Things can get interesting when we work with fields other than Q  or R, Z, N.. 

Example:

Calculate the product (x+ 1)(x2 + x+ 1)  over the field Z+
2 . 

The main thing to remember is that in the field Z+
2  the only coefficients are 0 and 1. Thus 

(x+ 1)(x2 + x+ 1) = x · (x2 + x+ 1) + 1 · (x2 + x+ 1) = x3 + x2 + x+ x2 + x+ 1 = x3 + 1

☐
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Theorem 57. For nonzero polynomials f, g  over a field F  

1. deg(f + g) ≤ max{degf,degg}
2. deg(fg) = degf + degg

Proof. Left as an exercise.

☐
We can divide polynomials using a process that is similar the long division we use for integers. One 
reason for doing this is to determine the factors of a polynomial f(x). In other words we want to find 
polynomials such that f(x) = p(x)q(x) .

Theorem 58 (Division Algorithm). Let f, g  be polynomials over the field F  with g �= 0 . Then there exist 
unique polynomials q, r ∈ F [x] such that f = qg + r  and r(x) = 0  or deg r < deg g .

Proof. Consider the set of polynomials over F  of the form f − tg  for some t ∈ F [x] , i.e. 
R = {f(x)− t(x)g(x) | t(x) ∈ F [x]} . There are two cases to consider: 0 ∈ R  and 0 /∈ R . 

If 0 ∈ R  then there is a t(x)  such that 0 = f(x)− t(x)g(x) ⇒ f(x) = t(x)g(x) . We set q(x) = t(x)  
and r(x) = 0 .
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If 0 /∈ R , then we choose a polynomial in R of minimal degree and call this polynomial r(x) , we call 
t(x) = q(x)  and have: f(x) = g(x)q(x) + r(x). If m = degr ≥ degg = n  then there is an element 
a ∈ F  such that 

r(x)− cxm−ng(x) = (f(x)− g(x)q(x)) − cxm−ng(x) = f(x)− g(x)(q(x) − cxm−n) ∈ R

has degree less than or equal to m− 1. This contradicts the fact that r(x)  is of minimal degree in R.  
Therefore degr < degg .

We now demonstrate the uniqueness of the polynomials q, r . Suppose by way of contradiction that 
these polynomials are not unique. There are polynomials q, q, r, r  such that qg + r = f = qg + r . We 
rearrange this equation and see (q − q)g = r − r . If q − q �= 0  then by looking at the degrees of both 
sides of the equation we see 

deg(q − q) + degg = max{r, r}.

Thus we have degg ≤ r  or degg ≤ r . But neither of these statements is true. Therefore the polynomials 
q, r  are unique. 

☐
Again, we stress that our results are very much dependent upon the field that we’re working over. 

Example:

Perform the calculation x3 + 2x2 + x+ 1÷ (x+ 2)  over Z+
3 .

We simply do some long division with our polynomials:

x2 + 1

(x+ 2) |x3 + 2x2 + x+ 1
− (x3 + 2x)

x+ 1
−x+ 2

1

The quotient is x2 + 1  with a remainder of −1 = 2

☐
Theorem 59. Let f  be a polynomial in F [x]  and a ∈ F , then there is a unique polynomial q(x) ∈ F [x]  
such that f(x) = (x− a)q(x) + f(a)
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Proof. We use the division algorithm with g(x) = x− a . This gives us f(x) = (x− a)q(x) + r(x)  
where degr < deg(x− a). So r(x)  is a constant in F. Evaluation of f(x) at a  shows that this constant 
is f(a) . 

☐
Definition:

An element a ∈ F  is a zero of the polynomial f(x) ∈ F [x] if f(a) = 0 .

☐
Corollary 60. If a ∈ F  is a zero of the polynomial f(x) ∈ F [x] then x− a  is a factor of f(x). 

Proof. We use the previous theorem and see that if f(a) = 0  then f(x) = (x− a)q(x) + 0.

☐
Of course the converse of this theorem is also true. If x− a  is a factor of f(x) then a  is a zero of f(x). 

Theorem 61. A polynomial f(x) ∈ F [x] of degree n  has at most n  zeros in F.

Proof. The proof is by induction on the degree of the polynomial f . If f  has degree of zero then the 
nonzero constant c ∈ F  has no zeros. Now suppose by induction that a polynomial of degree k  has 
at most k  zeros. Now let f(x) ∈ F [x] be a polynomial of degree k + 1 . There are two possibilities: 

•	 The polynomial f(x) has no zeros in F, in which case we are done. 
•	 The polynomial f(x) has a zero in F, in which case x− a  is a factor. We have 

f(x) = (x− a)g(x)  with g(x)  of degree k . By induction g(x)  has at most k  zeros in F. 
Therefore f(x) has at most k + 1  zeros in F. 

☐
There are at most n  zeros in the field F for a polynomial of degree n  over F. This is an upper bound, 
but is not always achieved for a given field. One field that is special in this regard is the field of complex 
numbers. For any polynomial f ∈ [x]  of degree n , f  has exactly n  zeros in C . This fact is really just 
a statement of the Fundamental Theorem of Algebra. A final theorem in this section is also a corollary 
of our factor theorem. We (somewhat surprisingly) apply a theorem about factoring to obtain a result 
concerning the multiplicative structure of a finite field. 

Theorem 62. For a finite field F  the group F ∗  under multiplication is a cyclic group. 
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Proof. By the Fundamental Theorem of Finitely Generated Abelian Groups, 
 F ∗ ∼= Zn1

p1
×

)
Zn2

p2
× · · · × Znk

pk
 where the pi  are prime numbers. Let d = lcm(p1

n1 , p2
n2 , · · · , pknk). 

For any element ai ∈ni
p1  we have adi = 1 . Therefore every element a ∈ F ∗  is a zero of f(x) = xd − 1 . 

There are at most d  zeros in the field F , and there are p1n1p2
n2 · · · pknk) elements in F . Therefore 

d = p1
n1p2

n2 · · · pknk)  and the primes are relatively prime. Therefore F ∗ ∼=d .

☐
3.2.1 Exercises

1. Prove that for nonzero polynomial f, g  that 
a) deg(f + g) ≤ max{degf,degg}
b) deg(fg) = degf + degg

2. Find the sum and product of x3 + 3x2 + 2x+ 4  and 4x3 + 3x2 + x+ 4  over Z+
5 . 

3. Including 0 list the polynomials of degree 3 or less in Z+
3[x] .

4. Find all the zeros of x6 + 3x4 + x2 + 2x  over Z+
7  and factor the polynomial.

5. Divide x4 − 2x3 + 3x+ 5  by x+ 1  over Z+
7 .
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3.3 Irreduciblity

From our early days in a high school algebra class, we should remember that some polynomials simply 
do not factor. For instance, the polynomial x2 + 9  does not have any zeros in the field R, Z, N., and there is 
no way to write x2 + 9 = (x− a)(x− b)  where a, b ∈ R, Z, N.. We formalize this concept for polynomials 
over any field. 

3.3.1 Basic Irreducibility Facts

Definition: Let f(x) ∈ F [x] be a nonconstant polynomial. We say that f(x) is irreducible over F if there 
are no polynomials g(x), q(x) ∈ F [x]  such that f(x) = g(x)q(x)  with degree of g, q  less than that of f .

If f  is not irreducible over F we say that it is reducible over F.

☐
Irreduciblity is very much dependent upon the field that we are working over. The polynomial x2 − 3  
is irreducible over Q , however it is reducible x2 − 3 = (x−

√
3)(x+

√
3) over R, Z, N..

☐
If f(x) has a zero in the field F  then f  is reducible. The converse of this statement is not true, however. 
Consider the polynomial x4 + 2x2 + 1 = (x2 + 1)2 . This is clearly reducible, however there are no zeros 
in R, Z, N.. When we consider polynomials of degree 2 or 3, then reducibility implies that there is a zero in 
the field F.

Example:
Is f(x) = x3 + 2x2 + x+ 1  irreducible over Z+

3? 

Since the degree of the polynomial is 3, if f  is reducible, then it will factor into a polynomial of degree 
1 and degree 2, or into three polynomials each of degree 1. In any case, if f  is reducible of degree 3 
then there will be a factor of the form (x− a)  with a ∈ F .

We check to see if this is the case by seeing if any of the field elements are zero: f(0) = 1, f(1) = 2, f(2) = 2 .  
Since there is a ∈ F  such that f(a) = 0 , the polynomial f  is irreducible. 

☐
Definition:

A monic polynomial of degree n  is a polynomial where xn  has coefficient of 1. 

☐
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Example:

Find the monic irreducible polynomials over Z3  of degree 1 or 2.

Over the field Z+
3  we see that there are a total of 3 monic polynomials of degree 1: x, x− 1, x− 2  are 

all irreducible.

Now for degree 2 polynomials, there are a total of nine monic polynomials of degree 2 over  
Z+

3 . It is clear that the constant term must be nonzero, for the three polynomials of the 
form x2 + ax  are clearly reducible: x2 + ax = x(x+ a) . Other reducible polynomials are 
x2 + 2 = (x+ 1)(x + 2), (x+ 1)(x + 1) = x2 + 2x+ 1, (x+ 2)(x+ 2) = x2 + x+ 1. So there are 
three irreducible polynomials of degree 3: x2 + 1, x2 + 2x+ 2, x2 + x+ 2 . We can verify these are 
irreducible by seeing that none of them have zeros. 

☐
Theorem 63 (Eisenstein Irreducibility). Let f(x) = c0 + c1x+ c2x

2 + · · ·+ cnx
n  be a polynomial over 

the field of rational numbers Q  with coefficients in the integers Z+. If there exists a prime number p  such that: 

1. p  does not divide cn , 
2. p  divides ci  for 0 ≤ i ≤ n− 1 , 
3. and p2  does not divide c0 , 

then f  is irreducible over Q .

Proof. Suppose by way of contradiction that f  is a polynomial that satisfies the criteria and is reducible. 
We write f = gh  with g(x) = a0 + a1x+ · · · + anx

s  and h(x) = b0 + b1x+ · · ·+ bnx
t  and look 

at the coefficients ci  of f . Since c0 = a0b0 we know that p  divides a0  or b0  but not both since p2  
doesnï¿½t divide a0b0. We suppose that p  divides a0 .

Now consider c1 = a0b1 + a1b0 . Since p  divides c1, a0,  but not b0  we know that p  divides a1 . We 
continue this process and see that p  divides ai  for all 1 ≤ i ≤ s . Thus p  divides cn , which is a 
contradiction. Therefore f  is irreducible over Q .

☐
Example:

Show that for a prime p  the polynomial Φp(x) = xp−1 + · · ·+ x2 + x+ 1 is irreducible over Q .
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We note that Φp(x)(x− 1) = xp − 1 . If we replace x  by x+ 1  we see that Φp(x+ 1)x = (x+ 1)p − 1.  We 
write Φp(x+ 1) = 1

x(x
p + pxp−1 + p(p−1)

2 xp−2 + · · ·+ px = xp−1 + pxp−2 + p(p−2)
2 xp−3 + · · ·+ p . 

By the Eisenstein Irreducibility Criterion Φp(x+ 1)  is irreducible over Q . This implies that Φp(x) is 
irreducible over Q . The polynomials Φp(x) are called cyclotomic (“circle splitting”) polynomials due to 
their connection to the complex p th roots of unity.

☐
3.3.2 Greatest Common Divisors

Definition: A greatest common divisor of two polynomials f, g  of positive degree over a field F is any 
polynomial of maximum degree that divides both f  and g . 

☐
We say “a” and not “the” greatest common divisor because if d  divides f  and g  and c  is a nonzero 
element of the field F , then cd  is also a greatest common divisor. For instance, over R, Z, N. the polynomials 
f(x) = x2 − x− 6 = (x− 3)(x+ 2)  and g(x) = x2 − 6x+ 9 = (x− 3)2  have a greatest common 
divisor of (x− 3). However, they also have a greatest common divisor of 3− x . Other than this minor 
modification in our thinking, a greatest common divisor of polynomials over a field F works in much the 
same way that the greatest common divisor of two integers did. We see this especially in the next theorem.
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Theorem 64. If f, g ∈ F [x] have positive degree and d  is a greatest common divisor of f  and g , then 
there exist polynomials s, t ∈ F [x]  such that d = sf + tg.

Proof. Consider the set A of all polynomials of the form sf + tg  over the field F. Let d′ = s′f + t′g  
be of minimal degree. The polynomial d′  divides every polynomial of the form sf + tg . If it did not 
divide h  then h = d′q + r  with degr < degd′ . However 

r = h− d′q = (sf + tg)− (s′f + t′g)q = (s− s′q)f + (t− qt)g,

meaning that r ∈ A , a contradiction that d′ ∈ A  is of minimal degree. 

This shows that d′  divides every element of A. Since f = 1 · f + 0 · g  and g = 0 · f + 1 · g  we know 
that d′  divides f  and g , and thereby d′  divides d . We also see that because d  divides f  and g  and 
d′ = s′f + t′g , d  divides d′ . Therefore d′ = cd  where c ∈ F ∗ . We obtain the desired equation by 
multiplying both sides of d′ = s′f + t′g  by the inverse of c . 

☐
Definition:

For polynomials f, g, q ∈ F [x]  we say that f ≡ g mod q  if and only if q  is a factor of f − g .

☐
Theorem 65. The previous definition is an equivalence relation.

Proof. For f, g, q ∈ F [x]  we check the three conditions of an equivalence relation: 

•	 f ≡ f  since q  divides f − f = 0.
•	 If f ≡ g  then q  divides f − g , then it follows that q  divides g − f . Thus g ≡ f

•	 If f ≡ g  and g ≡ h  then q  divides f − g  and q  divides g − h . Thus q  divides 
(f − g) + (g − h) = f − h . Therefore f ≡ h .

☐
Notation:

We let F [x]/(q)  indicate the equivalence classes of F [x]  under f ≡ mod q . Let f  denote the 
equivalence class of f . 

☐
Theorem 66. Let f, g ∈ F [x]/(q)  as defined above, and binary operations f + g = f + g , fg = fg , 
the structure F [x]/(q)  is a field if and only if q  is irreducible over F.
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Proof. If q  is reducible then q = hk  where h, k ∈ F [x] are of degree less than q . Thus k �= 0 . However, 

k = h−1hk = h−10 = 0

so we have a contradiction.

Now suppose that q  is irreducible over F. We need to check that the field axioms hold. The associativity 
and commutativity of the addition is inherited from the associativity and commutativity of addition 
in F . The class q = 0 is the identity element. For any f ∈ F [x]/(q)  we consider q − f . Since 
f + q − f = q = 0 ⇒ q − f = −f.  Thus F [x]/(q)  forms an abelian group under addition.

The associativity and commutativity of the multiplication is inherited from the associativity and 
commutativity of addition in F [x] . The element 1 is the multiplicative identity. Since q  is irreducible, 
if f  is not a multiple of q  then the set of greatest common divisors of f  and q  contains 1. Thus by 
theorem 64 there exist u, v ∈ F [x]  such that 1 = uf + qv . This shows that 

1 = uf + qv = uf + 0 = uv

Thus any nonzero element f ∈ F [x]/(q)  has a multiplicative inverse. 

It is a routine check and left as an exercise to see that the distributive property holds. Therefore F [x]/(q)  
is a field. 

☐
3.3.3 Exercises

1. Show that f(x) = x2 + 2x+ 2  is irreducible over Z+
3

2. Is the polynomial 5x8 − 6x7 + 24x3 + 18x2 + 30x+ 60 irreducible over Q? 
3. Prove that the distributive property holds in F [x]/(q)  where f + g = f + g , fg = fg

4. Find all monic irreducible polynomials of degree 2 in Z+
5[x] .

5. Find the number of monic irreducible polynomials of degree 2 in Z+
p[x] , where p is a 

prime.
6. Prove that a polynomial f , irreducible over the field F, has a zero in F if and only if 

degf = 1 .
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3.4 Vector Spaces

In this section we borrow quite heavily from the realm of linear algebra. But rather than being interested 
in things such as matrices we are going to look at the abstract definition of a vector space. Of course 
vectors in R, Z, N.2  or R, Z, N.3  can be considered as arrows in each of these spaces. But the properties possessed 
by these arrows can be generalized to what is known as a vector space. Although the results in this 
section pertain to all vector spaces, we will see that there is one particular example in field theory that 
we are interested in. 

3.4.1 Basic Facts About Vector Spaces

Definition:
A vector space over a field F is an abelian group V with binary operation +, with an operation known 
as scalar multiplication which assigns to each c ∈ F  and α ∈ V  an element cα ∈ V  so that:

1. r(sα) = (rs)α  for r, s ∈ F  and α ∈ V .
2. (r + s)α = rα+ sα  for for r, s ∈ F  and α ∈ V .
3. r(α+ β) = rα+ rβ  for r ∈ F  and α, β ∈ V .
4. 1α = α  for all α ∈ V .

☐
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Definition:

Let V be a vector space over the field F. A finite set S = {α1, α2, · · · , αn}  is linearly dependent over 
F if there is a nontrivial solution c1, c2, · · · , cn  not all zero such that c1α1 + c2α2 + · · ·+ cnαn = 0 .  
If the only solution to this equation is c1 = c2 = · · · = cn = 0  then the set S  is linearly independent 
over F.

☐
Example:

The following illustrate linear independence:

•	 Real Euclidean space R, Z, N. 3  is a vector space over R, Z, N.. The vectors [0, 1, 1], [1, 0, 1], [1, 1, 1]  
are linearly indepedent over R, Z, N. since the only real numbers ci ∈  

R, Z, N. that satisfy 
c1[0, 1, 1] + c2[1, 0, 1] + c3[1, 1, 1] = [0, 0, 0]  are c1 = c2 = c3 = 0.

•	 Real Euclidean space R, Z, N.2  is a vector space over R, Z, N.. The vectors [−1, 1], [0, 2], [4, 3]  are not 
linearly independent over R, Z, N. because −8[1,−1] − 7[0, 2] + 2[4, 3] = [0, 0]  

☐
Definition:

The set S = {α1, α2, · · · , αn}  is a spanning set of V  over F if every α ∈ V  is a linear combination of 
the elements of S , i.e. there exist c1, c2, · · · cn ∈ F  such that 

α = c1α1 + c2α2 + · · ·+ cnαn.

☐
Example:

The following illustrate the concept of spanning:

•	 Real Euclidean space R, Z, N.2  is a vector space over R, Z, N.. The vectors [−1, 1], [0, 2], [4, 3]  span  
R, Z, N.2  over R, Z, N. because for any [a, b] ∈ R2  we can write [a, b] = a[1,−1] + a+b

2 [0, 2] + 0[4, 3]

•	 The set of 2× 2  matrices with real entries is a vector space over R, Z, N., which we will denote 

M2()(R, Z, N.). The set of matrices S =

{[
1 0
0 0

]
,

[
0 2
0 0

]
,

[
1 2
0 0

]
,

[
0 0
0 1

]}
 does not 

span M2()(R, Z, N.) as there is no way to express the matrix 
[
0 0
1 0

]
 as a linear combintation of 

the elements in the set S. 
☐

A spanning set tells us what vectors we can express in our vector space and linear independence tells 
us that we are efficiently using the vectors that we have. We can put the idea of linear independence 
together with a spanning set to form a special sort of spanning set.
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Definition:

V  is a finite dimensional vector space over F if there is a finite spanning set for V  over F.

☐
Definition:

Let V  be a vector space over F. The set B is a basis for V over F if: 

1. The set B is linearly independent over F, and 
2.  B spans V  over F. 

☐
Theorem 67. Let B be a basis for the vector space V over F . Every element of V can be written uniquely 
as a linear combination of the elements in B. 

Proof. We order the basis elements of B as α1, α2, · · ·αk  and suppose by way of contradiction that the 
vector α  can be expressed as two different linear combinations of the basis elements: 

c1α1 + c2α2 + · · · + ckαk = α = b1α1 + b2α2 + · · ·+ bkαk

Where there is at least one i  such that ci �= bi . We rewrite the above equation: 

(b1 − c1)α1 + (b2 − c2)α2 + · · ·+ (bk − ck)αk = 0

Since the basis B is linearly independent, this means that bi − ci = 0 for all i, 1 ≤ i ≤ k  and bi = ci  
for all i, 1 ≤ i ≤ k .

☐
Although every element can be expressed uniquely in terms of a basis B, a basis itself is not unique. For 
any vector space there can be several different sets of linearly independent spanning sets. What is unique 
when dealing with different bases is the number of elements in a basis.

Theorem 68. Let V be a finite dimensional vector space over the field F. Every basis for V over F is a finite 
set. The number of vectors in any basis of V over F is the same. 

Proof. Let A = {α1, α2, · · · , αm}  and B = {β1, β2, · · · , βn}  be two bases for V over F. Since α1 ∈ V ,  
we may express this as a linear combination of the basis vectors B: α1 = c1β1 + c2β2 + · · ·+ cnβn

We may write β1 = c−1
1 [α1 − c2β2 − · · · − cnβn]. Thus the set C1 = {α1, β2, · · · , βn}  is a spanning 

set for V over F. This set C1  is also linearly independent. Suppose that 0 = d1α1 + d2β2 + · · ·+ dnβn}

☐
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Definition:

The number of vectors in a basis of the vector space V over F is called the dimension of V over F and 
is denoted [V : F ] 

☐
3.4.2 Exercises

1. Let S denote the set of 3× 3  symmetric matrices. 
a) Prove that S is a vector space over R, Z, N.. 
b) Find a basis for S. 
c) State the dimension of S. 

2. Give a basis for Q (
√
6)  over Q .

3. Give a basis for Q ( 4
√
6)  over Q .

4. Give a basis for C  over R, Z, N..
5. Give a basis for Q ( 3

√
7)  over R, Z, N..

6. Give a basis for R, Z, N.(i)  over R, Z, N..
7. Give a basis for Q (π)  over Q .
8. Give a basis for R, Z, N.(π)  over  R, Z, N..
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9. Let F  be a field and let Fn  denote the set of ordered n -tuples of elements of F. (So 
F 2 = {(a1, a2) | a1, a2 ∈ F.} ). Define addition 

(a1, a2, · · · , an) + (b1, b2, · · · , bn) = (a1 + b1, a2 + b2, · · · , an + bn)

and define scalar multiplication for c ∈ F : 

c(a1, a2, · · · , an) = (ca1, ca2, · · · , can).

Prove that Fn  is a vector space over F. 
10. Let V be any finite dimensional vector space over the field F of dimension n . Prove that 

there is a field isomorphism between V and Fn  from the previous problem.

3.5 Extension Fields

In group theory we started with a group G and then determined the subgroup structure of our group. So 
we were curious about the internal workings of an algebraic object. In field theory the overall philosophy 
is reversed. We start with a field and then see what other fields we can build upon this one. The focus 
is upon what we can externally add to a given field, and still have a field. 

Definition:

If E is an extension field of the field F if F is a subfield of E. That is, F ⊆ E  and E is itself a field.

☐
Theorem 69. Let E be an extension field of the field F, then E  is a vector space over F.

Proof. Let α ∈ E . By definition of being a field, E is an abelian group. For any c ∈ F  and α ∈ E , 
cα ∈ E  by the multiplication binary operation in E. The other conditions of the scalar multiplication 
of E follow from the fact that of E is a field.

☐
Definition: If the extension field E of F is a finite dimensional vector space over F, then E is a finite 
extension of F. The degree of E over F is the dimension of E over F, which we denote by [E : F ]. 

☐
It is no mistake that our term “degree” is doing double duty. Not only is degree applicable in the sense 
above, but we also saw how this term is used to refer to the highest nonzero term of a polynomial. We 
will see that there is a connection between these uses of the word degree. We need not stop with one 
field extension. It is entirely possible to form a sequence of extension fields F1 ⊆ F2 ⊆ · · ·Fn . We will 
see an important result dealing with the relative degrees of a sequence of finite field extensions.
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Definition:

A sequence of extension fields F1 ⊆ F2 ⊆ · · ·Fn  is called a tower of fields with F1  the base field.

☐
One way of forming such a tower of extension fields is to begin with extension field E over F, and then 
keep adjoining one element at a time of E to F.

Definition:

Let E be an extension field over F and α ∈ E . The field F (α) , which is the smallest subfield of E with 
both the elements of F and α  is a simple extension of F.

☐
Example:
The field Q (

√
2)  contains elements of the form {a + b

√
2 | a, b ∈ Q}.  We see that for any 

a+ b
√
2 �= 0 + 0

√
2  we have multiplicative inverse 

a − b
√

2

a2 − 2b2
∈ Q(

√
2).

☐
Example:

Determine the degree of Q(
√

5) = {a + b
√

5 | a, b ∈ Q}  over the field Q .

We claim that {1,
√
5}  is a basis of Q (

√
5) . It is clear that {1}  is not a basis, as 

√
5 /∈ Q . The set 

{1,
√
5}  spans Q (

√
5) . Since the basis has dimension two, we say that the degree of Q (

√
5)  over Q  

is two and write [Q(
√

5) : Q] = 2

☐
Theorem 70. Let D be a finite extension field of E and let E  be a finite extension field of F. Then D  is a 
finite extension of F  and the degrees are related by [D : F ] = [D : E][E : F ] .

Proof. We begin by considering a basis for E over F given by: {α1, α2, · · · , αm}  and basis {β1, β2, · · · , βn}  
for D over E. The goal will be to show that the set with mn  elements 

A = {αiβj | 1 ≤ i ≤ m, 1 ≤ j ≤ n}

is a basis of D over F. To this end we must show that A  spans D  over F and is linearly independent.

Given an element d ∈ D  we can write d = d1β1 + d2β2 + · · ·+ dnβn , with di ∈ E . We can in turn 
express each of the di  as linear combinations di = ci1α1 + ci2α2 + · · ·+ cimαm  with cij ∈ F . By 
substitution we see that d =

∑n,m
i=1,j=1 cijαjβi , with cij ∈ F . Thus the set A  spans D  over F.
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Now suppose that there are cij ∈ F  such that 
∑n,m

i=1,j=1 cijαjβi = 0. Considering this as a linear 
combination of the βi , since {βi}  forms a basis it is linearly independent. So the coefficients of each βi ,  
∑m

j=1 cijαj = 0 . By the fact that the α)j  form a basis these too are linearly independent. So cij = 0 ,  
showing that A  is linearly independent.

We have demonstrated that A is a basis. Because there are mn  elements in A we have the expression 
between the degrees of these extensions: [D : F ] = [D : E][E : F ] .

☐
We wrap up this section with a very important application of field extensions. We see that the polynomial 
f(x) = x2 + 4  has no real zeros, but if we allow ourselves to work in the set of complex numbers there 
are zeros. In a similar way, the polynomial x2 + x + 1 ∈ Z2[x]  is irreducible over Z+

2  and has no zeros. 
However, there is an extension field E over Z+

2  where there is a zero of x2 + x+ 1. Kronecker’s theorem 
has a constructive proof in that we don’t just show the existence of such an extension field, we also see 
how to construct such a field. 

Theorem 71 (Kronecker’s Theorem). For the field F  and nonconstant polynomial f(x) ∈ F [x] 
there exists an extension field E  of F  and α ∈ E  such that f(α) = 0 .
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Proof. If the polynomial has a zero in F then we are done as F is an extension field of itself. Otherwise 
we suppose that f  has no zero in F. Let p  be an irreducible factor of f . We set E = F [x]/(p(x)) . 
By theorem 66 this is a field. We claim this is an extension field of F that satisfies the conditions of the 
theorem.

Let φ : F → F [x]/(p(x))  be defined by φ(a) = a . If φ(a) = φ(b)  then a = b  and (a− b) = g(x)p(x) .  
Since the degree of p(x)  is greater than zero, g(x) = 0 and a− b = 0 , thus a = b . By the definition 
of our addition and multiplication in F [x]/(p(x)) , φ  is a homomorphism of fields that maps F into 
E . Thus E  is an extension field of F.

Now consider α = x ∈ E.  We see that 

p(α) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0 = anxn + an−1xn−1 + · · ·+ a1x+ a0 = p(x) = 0,

☐
3.5.1 Exercises

1. Let E  be a finite extension of F  and suppose that [E : F ] is prime. Prove that E  is a 
simple extension of F.

2. Form two towers of fields with base Q  and extension field Q (
√
7, 3

√
2)  at the top. 

3. Given that E  is an extension field of the field F, prove that [E : F ] = 1 if and only if 
E = F .

4. Given that E  is an extension field of the field F, prove that if [E : F ] is prime then there is 
no field K  such that F ⊆ K ⊆ E .

5. Given that α ∈ E  has degree n  over F, prove that n  divides [E : F ].

3.6 Algebraic Extensions

We start by considering the field extension Q⊆ R, Z, N.. Since Q  is a subfield of R, Z, N. this is a field extension. 
There are different sorts of elements in R, Z, N. as we consider them over Q . For instance, the element  √

2 /∈ Q , but yet we can express 
√
2  as the zero of a polynomial f(x) ∈ Q[x].  One such polynomial 

is f(x) = x2 − 2. On the other hand, there is no polynomial with coefficients in Q  with the number 
π  as a zero. We wish to sort out these ideas, and to connect them with what we have learned about 
polynomials and vector spaces. 

Definition: Let E be an extension field of the field F. 

•	 If α ∈ E  is the zero of some polynomial over F we say that α  is algebraic over F. 
•	 If every element α ∈ E  is algebraic over F then we say that E  is an algebraic extension  

of F . 
•	 If α ∈ E  is not algebraic over F we say that it is transcendental over F. 

☐
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Example: The discussion above shows that 
√
k ∈ C  for any k ∈ Z+ is algebraic over Q . The proof is 

beyond the scope of this book, but π ∈ C  is transcendental over Q . 

☐
Example: For any field F and field extension E  all of the elements of F itself are algebraic over F. We 
see this because if a ∈ F  then a  is a zero of f(x) = (x− a) ∈ F [x] .

☐
Definition: Let E  be an extension field of F and let α ∈ E  be algebraic over F. Form the set 

M = {f ∈ F [x] | f(α) = 0}.

Choose an element g  of M  of minimal degree. The polynomial g(x)  is a minimal polynomial of α  over F  

☐
There are two properties of minimal polynomials that connect them to previous topics, and will be 
important as we continue.

Theorem 72. If g  is a minimal polynomial for α  over F  then g  is irreducible over F. 

Proof. Suppose by way of contradiction that g  is reducible. There exist h, k ∈ F [x] with degree less 
than g  such that g(x) = h(x)k(x) . Since g(α) = 0  we have h(α)k(α) = 0 and so either h(α) = 0  
or k(α) = 0 . In either case we have a contradiction to the fact that g  is of minimal degree with α  as 
a zero. Thus g  is irreducible. 

☐
Theorem 73. If g  is a minimal polynomial for α  over F and h(α) = 0  then then g  divides h . 

Proof. Suppose that h(α) = 0 . We use the division algorithm and see that h(x) = g(x)q(x) + r(x) . 
We then see that 

0 = h(α) = g(α)q(α) + r(α) = 0 + r(α) = r(α)

If the degree of r  is less than the degree of g  then this contradicts the fact that g  is of minimal degree 
with α  as a zero. Thus r(x) = 0  and h(x) = g(x)q(x) . 

☐
It is a very easy consequence of these preceeding theorems that if g, f  are both minimal polynomials 
of α  over F then f = cg  where c ∈ F .
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Example:

What is a minimal polynomial for 
√
3  over Q? 

Here we see 
√
3  is a zero of x2 − 3 ∈ Q[x]. This polynomial is of minimal degree because for if there 

was a polynomial of degree 1 with 
√
3  as a zero, it would imply that 

√
3 ∈ Q . 

☐
Example:

What is a minimal polynomial for α =
√
3 +

√
5  over Q? 

We begin by noting that there is no polynomial of degree 1 over Q  such that f(α) = 0 . By squaring 
α  we see: α2 = 3 + 2

√
3
√
5 + 5 ⇒ α2 − 8 = 2

√
3
√
5 . We now square both sides of this equation 

and obtain (α2 − 8)2 = 4 · 3 · 5 ⇒ α4 − 16α2 + 64 = 60 . Therefore α  is a zero of the polynomial 
f(x) = x4 − 16x2 + 4 .

f  has no rational zeros as the only candidates, the factors of constant term 4, do not work. Thus f  is 
irreducible and minimal. 

☐
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Example:

What is a minimal polynomial for α =
√
3 +

√
5  over Q (

√
5)? 

Here the situation is different than the preceeding example. We are allowed to use 
√
5  for the coefficients 

of our minimal polynomial. Again we see that α2 = 3 + 2
√
3
√
5 + 5 ⇒ 0 = α2 − 2

√
3
√
5− 8 , however 

we also see that 
√
5α =

√
5(
√
3 +

√
5 =

√
3
√
5 + 5  and thus 

√
3
√
5 =

√
5α− 5 . Substituting this 

into our expression we have: 

0 = α2 − 2(
√
5α− 5)− 8 = α2 − 2

√
5α+ 2 ∈ (

√
5)[x].

Therefore a minimal polynomial for 
√
3 +

√
5 over Q (

√
5)  is f(x) = x2 − 2

√
5x+ 2 .

☐
Definition:

Let E  be an extension field of F  and α ∈ E  algebraic over F. The simple extension F (α)  is said to be 
a finite extension of degree n  where n  is the degree of a minimal polynomial of α  over F. 

☐
Theorem 74. Let F  be a field and E  an extension field of F. If α ∈ E  is algebraic over F  of degree n  
then F (α)  is a vector space over F  with basis {1, α, α2, · · · , αn−1}  

Proof. We know that F (α)  is a field containing the elements {1, α, α2, · · · , αn−1}  as well as every 
linear combination of these elements: c0 + c1α+ c2α

2 + · · ·+ cn−1α
n−1 where ci ∈ F . It is 

clear that this set of linear combinations is spanned by {1, α, α2, · · · , αn−1} . If we suppose that 
c0 + c1α+ c2α

2 + · · ·+ cn−1α
n−1 = 0,  with at least one ci �= 0  then we have a polynomial of degree 

n− 1 of which α  is a zero. This contradicts the fact that α  is of degree n . Thus ci = 0  for 1 ≤ i ≤ n− 1  
and the set {1, α, α2, · · · , αn−1}  is linearly independent over F.

☐
Example: 
We have seen that 

√
3 +

√
5 is algebraic of degree 4 over Q . The set 

{1,
√
3 +

√
5, (

√
3 +

√
5)2, (

√
3 +

√
5)3}  forms a basis for Q (

√
3 +

√
5)  over Q . 

Example:

Let ζ  be a p th root of unity. Recall that these are the complex numbers which are 
zeros of the polynomial f(x) = xp − 1 . We have see that f(x) = (x− 1)Φp(x)  where 
Φp(x) = xp−1 + xp−2 + · · ·+ x2 + x+ 1  and that Φp(x) is irreducible over Q . It follows that Φp(x) is 
a minimal polynomial for ζ . By theorem 74  Q (ζ)  has degree p− 1 over Q  and {1, ζ, ζ2, ζ3, · · · , ζp−2}  
is a basis for Q (ζ)  over Q .

☐
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3.6.1 Theorems Regarding Algebraic Extensions

Algebraic extensions are important because they allow us to classify other extensions.

Theorem 75. Any finite extension is also an algebraic extension. 

Proof. Let E  be a finite extension of F  with degree of n . Choose any element α ∈ E  and we know 
that {1, α, α2, · · · , αn−1, αn}  is linearly dependent. So there exist ci ∈ F  that are not all equal to 
zero such that c0 + c1α+ c2α

2 + · · ·+ cnα
n = 0 . The element α ∈ E  is a zero of a polynomial 

c0 + c1x+ c2x
2 + · · ·+ cnx

n ∈ F [x] . Therefore α  is algebraic over F.

☐
By this theorem we know that if α  is algebraic over a field F, then the field F (α)  is algebraic. This result 
can be extended to a tower of fields.

Theorem 76. Let F0 ⊆ F1 ⊆ F2 ⊆ · · · ⊆ Fn  be a tower of fields. If Fi = Fi−1(αi)  for 1 ≤ i ≤ n  and 
elements αi  algebraic over Fi−1 , then Fn  is algebraic over F0 . 

Proof. Since each extension is finite, by theorem 70 Fk  is a finite extension over F0 . By theorem 75 Fk  
is also an algebraic extension over F0 . 

☐
Theorem 77. If E  is an algebraic extension of F  and D  is an algebraic extension of E  then D  is an 
algebraic extension of F. 

Proof. Begin with an element α ∈ D  with minimal polynomial with coefficients d0, d1, · · · , dn . We have 
tower of fields F ⊆ F (d0) ⊆ F (d0, d1) ⊆ · · · ⊆ F (d0, d1, · · · , dn) . The element α  is algebraic over the 
field F (d0, d1, · · · , dn) . We add one more level to the tower: F (d0, d1, · · · , dn, α)  and by theorem 76 
see that α  is algebraic over F.

☐
3.6.2 Finite Fields

We have already seen that for any prime number p , Z+
p  with addition and multiplication modulo p  

forms a field. Kronecker’s theorem and theorem 74 allow us to construct finite fields of order pk  where 
p  is a prime.

1. Begin with Z+
p

2. Use any irreducible polynomial f ∈ Zp[x] of degree k .
3. Form the extension field E = Zp[x]/(f).

4. Let α  be the element x ∈ Zp[x]/(f).
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5. The pk  elements of E  are ck−1α
k−1 + ck−2α

k−2 + · · ·+ c1α+ c0  with ci ∈ Zp.

6. The multiplicative structure of E  is governed by the polynomial f . We may express αk  in 
terms of the basis {1, α, α2, · · · , αk−1} .

Example:

Construct a field with 8 elements.

Since 8 = 23  we need to start with an irreducible polynomial of degree 3 in Z+
2[x] . One such 

polynomial is f(x) = x3 + x+ 1 . In E = Z2[x]/(x3 +x+1)  we let α = x . There are elements 
0, 1, α, α2, α+ 1, α2 + 1, α2 + α,α2 + α+ 1 . By the polynomial f(x) = x3 + x+ 1  we have 
α3 + α+ 1 = 0 , or α3 = α+ 1 . 

Once we have this relationship, and remember that 1 + 1 = 0  in Z+
2 , calculations are straightforward:

(α2 + α+ 1) · (α+ 1) = α3 + α2 + α+ α2 + α+ 1 = α3 + 1 = α+ 1 + 1 = α

☐
3.6.3 Exercises

1. Construct a field with nine elements, showing the addition and multiplication tables.
2. Find the degree of the extension Q (

√
7)  over Q . 
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3. Find the degree of the extension Q (
√√

2 +
√
5)  over Q . 

4. Find the degree of the extension Q (
√
2,
√
3,
√
6)  over Q . 

5. Find the degree of the extension Q ( 3
√
7)  over Q . 

6. Find the degree of the extension Q (
√
3,
√
15)  over Q (

√
5) . 

7. Prove that for p, q  prime and p �= q  that Q (
√
p+

√
q) = (

√
p,
√
q)(

√
p+

√
q) = (

√
p,
√
q) .

8. Find a minimal polynomial for 
√

2 + 3
√
5  over Q .

3.7 Geometric Constructions

“To bisect a given rectilinear angle. Let the angle BAC be the given rectilinear angle. It is required to bisect 
it.” – Euclid

At long last we come to the stated goal of the introduction, the topic of the possibility of certain geometric 
constructions. This highlights an unexpected connection between abstract algebra and geometry, and 
answers questions that the Greeks asked when they first developed the careful study of geometry. It is 
clear that any angle can be bisected by using a straightedge and compass. In other words, given any 
angle in the plane, we can use a straightedge and compass to construct an angle with measure exactly 
half of our original angle. In The Elements Euclid demonstrates how to do this early in his textbook. 
Proposition 9 of book I shows how to bisect any angle. 

What is not clear is that any angle can be trisected by using a straightedge and compass. Given any angle, 
can we use our tools to construct an angle with measure exactly one third of our original angle? Of course, 
this is true for certain angles. An angle of 180o  can be trisected because it is possible to construct an 
equilateral triangle, with angle measures of 60o . But given any angle θ  can we construct the angle θ/3
? The answer is that this is not possible to do. The reason why is due to applications of our field theory. 
Before any abstract algebra shows up, we will take a further detour into geometry.

3.7.1 Constructible Numbers

What is really happening when we use a straightedge and compass for a geometric construction? We are 
using our geometric tools in such a way to produce a line segment of a given length, circle of a particular 
radius, or angle of a given measure. In each of these cases we arrive at a number, which motivates our 
next defintion. 

Definition: The number θ  is a constructible number if a line segment of length |θ|  can be constructed 
in a finite number of steps with a compass and straightedge. 

☐
Definition: The point (x, y)  in the plane is a constructible point if it can be constructed in a finite number 
of steps with a compass and straightedge. 

☐
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We now translate our axioms from geometry into the language of constructible numbers. 

1. The points (0, 0)  and (1, 0)  are constructible. 
2. Two constructible points determine a constructible line segment or line. 
3. Any circle with center point constructible and radius a constructible number is 

constructible. 
4. Two constructible lines intersect at a constructible point.
5. A constructible line and constructible circle intersect at constructible point(s).
6. Two constructible circles intersect at constructible point(s). 

Theorem 78. The integers are constructible numbers. 

Proof. We start with our line segment with endpoints (0, 0), (1, 0) . This has unit length and can be 
extended indefintely using our straightedge. Our compass can transfer the length 1 a total of k  times, 
where k  is a positive integer. Thus the set Z+ is constructible. 

☐
Theorem 79. If θ  and η  are constructible real numbers, then θ + η, θ − η,  and θ · η  are also constructible. 
If θ  and η  are constructible real numbers, and η �= 0  then θ/η  is also constructible.

Proof. Suppose that θ  and η  are constructible. It is clear that θ + η  is constructible, since given the 
lengths |θ|  and |η|  a line segments of lengths |θ|+ |η|  and ||θ| − |η||  are constructible. Furthermore 
since | − η| = |η|  if η  is constructible then so is −η , thus θ − η  is constructible.

We construct |θη|  as follows:

1. Start with line segment of length |θ|  with endpoints 0 and P
2. Form a ray by extending �OP  indefinitely in direction of P.
3. Construct a line segment of length 1 with one endpoint 0 and the other Q not on the ray 

�OP

4. Form a ray by extending OQ  indefinitely in direction of Q 
5. Construct η  on �OQ  with endpoints 0 and R. 
6. Construct line segment PQ

7. Construct a line parallel to PQ  through the point R. Label its intersection with �OP  by S.

We now have similar triangles ∆OQP  and ∆ORS . Since corresponding sides are in proportion we have:

OQ

OP
=

OR

OS
⇒ 1

|θ| =
|η|
OS

⇒ OS = |θη|

and so θη  is constructible.
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Now we suppose that η �= 0 . To construct 
∣∣
∣∣
1

η

∣∣
∣∣ We follow a similar construction as above:

1. Start with line segment of length 1 with endpoints 0 and P
2. Construct a line segment of length 1 with one endpoint 0 and the other Q not on the line 

OP

3. Form a ray by extending OQ  indefinitely in direction of Q 
4. Construct η  on �OQ  with endpoints 0 and R. 
5. Construct line segment RP

6. Construct a line parallel to RP  through the point Q. Label its intersection with �OP  by S.

We now have similar triangles ∆OQS  and ∆ORP . Since corresponding sides are in proportion we have:

OS

OQ
=

OP

OR
⇒ OS

1
=

1

|η| ⇒ OS =
1

|η|

and so 1/η  is constructible.

It then follows that the product θ
1

η
=

θ

η
 is constructible.

☐
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Let us take inventory of our set of constructible numbers T . This set is not just the set of integers, 
since we can form quotients 

θ

η
, rational numbers are also constructible. Since we have the commutative 

operations of sum, product, and their inverses, the set of constructible numbers forms a field. It is clear 
that the field of rationals is a subfield of T . Is it also true that Q= T ? A little bit of thought tells us 
that this is not the case.

Theorem 80. For all positive integers n , the number 
√
n  is constructible.

Proof. The proof is by induction on n . We begin by noting that 
√
1 = 1  is constructible. 

Now construct an isosceles triangle with side lengths of 1. This is possible because we can draw a line 
perpendicular to a given line, and then use the compass to mark a length of 1 on both perpendicular 
lines. The hypotenuse of this triangle has length 

√
12 + 12 =

√
2 .

By our induction hypothesis 
√
k  is constructible. Now construct a right triangle with legs of length 1 

and 
√
k . The hypotenuse has length 

√
k + 1 .

☐
This shows that the set of constructible numbers contains more than just the rational numbers. The 
question becomes, how much more? We go back to our list of axioms for constructible points and 
figures in the plane. It is clear that any points (x, y)  in the plane where x, y  are rational numbers are 
constructible. Given two pairs of points with rational coordinates, the intersection of the lines formed by 
each pair is constructible. However, this intersection point (if it exists) will result in another point with 
rational coordinates. In other words, we do not get any new constructible points from the intersection 
of two constructible lines of this type.

If two circles intersect, then they do so at a single point or at two points. In either of these cases we can 
obtain the same intersection points by the intersection of a circle with a line. Thus the only remaining 
item of consideration is the intersection of a constructible line that passes through a pair of points with 
rational coordinates with a constructible circle. This circle will have rational radius and a center with 
rational coordinates. We will determine at the intersection points of a circle (x− h)2 + (y − k)2 = r2  
with the line y = mx+ b  where m, b, h, k, r ∈ . These intersection points are constructible. We see 
that constructible points are found by solving the equation 

(x− h)2 + (mx+ b− k)2 = r2 ⇒

(x2 +m2x2)− 2xh+ 2m(b− k)x+ (b− k)2 + h2 − r2 = 0.

This is a quadratic, and so the solutions include x =
√
a  for a ∈ Q . 
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Of course we could continue this process and use 
√
q  for q ∈ Q  as the coordinates. Since all that we 

do in solving a quadratic is to use field operations and a square root, this suggests the following theorem.

Theorem 81. If θ > 0 then 
√
θ  is constructible. 

Proof. The line y = θ
4 − 1  is constructible, as is the circle with center (0, 0)  and radius θ4 + 1. This 

circle has equation x2 + y2 =
(
θ
4 + 1

)2
. The intersection points of this circle with the line are also 

constructible. These points satisfy the equation of the line and of the circle: x2 +
(
θ
4 − 1

)2
=

(
θ
4 + 1

)2
 

x2 +
θ2

16
− θ

2
+ 1 =

θ2

16
+

θ

2
+ 1 ⇒ x2 = θ.

Thus x =
√
θ  and so 

√
θ  is constructible. 

☐
The above discussion shows that constructible numbers are produced by starting with a rational number 
and then applying a finite number of square roots and field operations. Combining theorem 81 and 
theorem 79 we have the following theorem:

Theorem 82. The field of constructible numbers consists of all real numbers obtained from Q  by applying 
a finite number of square roots of positive numbers and field operations. 

Theorem 83. If θ  is a constructible number, then [Q(θ) : Q] = 2k  for some nonnegative integer k. 

Proof. Let θ  be a constructible number. By theorem 82 there are a1, a2, · · · , an ∈ R, Z, N. such that  
Q (a1, a2, · · · , aj)  is a degree 2 extension of Q (a1, a2, · · · , aj−1), and that θ ∈ (a1, a2, · · · , an)Qθ ∈ (a1, a2, · · · , an) . 
Thus we have 

2n = [Q(a1, a2, · · · , an) : Q] = [Q(a1, a2, · · · , an) : Q(θ)][Q(θ) : Q],

and therefore [Q(θ) : Q] = 2k  for some k ≥ 0 .

☐
Theorem 83 is quite powerful as it determines the possibility of a construction without actually performing 
the construction. We now more or less effortlessly can state that it is impossible to trisect a given angle. 
First we note the following:

Theorem 84. The angle θ  is constructible if and only if | cos θ|  is constructible. 

Proof. Suppose θ  is constructible. Construct a right triangle with hypotenuse of length 1 with angle θ .  
By basic trigonometry the side adjacent to θ  has length | cos θ|
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Now suppose that | cos θ|  is constructible. Construct a right triangle with hypotenuse of length 1 and 
one leg of length | cos θ| . By trigonometry the angle adjacent to the side of length | cos θ|  is θ . 

☐
An angle of 60o  can be constructed as this is the measure of each of the angles in an equilateral triangle. 
We will show that it is impossible to trisect this angle. Since it is impossible to trisect an angle of  
measure 60o  it is impossible, in general, to trisect a given angle.

Theorem 85. The angle 60o  cannot be trisected by a compass and straightedge. 

Proof. By theorem 84 we will show that cos 20o  is not constructible. We use some trigonometric identities, 
including cos(α+ β), cos 2α, sin 2α, 1 = sin2 α+ cos2 α :

cos 3θ = cos(θ + 2θ)
= cos θ cos 2θ − sin θ sin 2θ
= cos θ(2 cos2 θ − 1)− 2 sin θ cos θ sin θ
= cos θ(2 cos2 θ − 1)− 2 cos θ(1− cos2 θ)
= 4 cos3 θ − 3 cos θ
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Thus if θ = 20o  then cos 60o = 4(cos 20o)3 − 3(cos 20o) and we have 

4(cos 20o)3 − 3(cos 20o)− 1

2
= 0.

This polynomial is irreducible over Q  and so the degree of the minimal polynomial of cos 20o  over 
Q  is 3. In order for cos 20o  to be constructible we would need 3 = [Q(cos 20o) : Q] = 2k  for some 
k ≥ 0 . This is impossible, so cos 20o  and thus an angle of 20o  is not constructible. 

☐
3.7.2 Exercises

1. Prove that it is not possible with straightedge and compass to construct a square with the 
same area as a given circle.

2. Prove that it is not possible with straightedge and compass to construct a cube with volume 
double that of a given cube. 

3. Show using abstract algebra that it is possible to trisect a 900 angle.
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4 Ring Theory
4.1 Introduction to Rings

Now that we have spent some time studying fields, we will take a brief excursion to a more general 
setting. Like a field, this new algebraic structure again has two operations, which we will call addition 
and multiplication. The example that it will be helpful to think about as we continue is that of the integers 
Z+. There are two binary operations associated with the integers, that of addition and multiplication. 
The set of integers under addition is an abelian group. As we have seen, this set is not a group under 
multiplication. Nearly all of the elements in Z+ do not have a multiplicative inverse. There is no integer 
z  such that 2z = 1 . The multiplication is associative, and interacts with addition by means of the 
distributive property. The multiplicative structure of our structure that mimics the integers is much more 
relaxed than that of a field. Indeed, the multiplication need not even be commutative. This structure is 
known as a ring.

Definition:

A ring is a set R with two binary operations, which we will call addition +, and multiplication ·  subject 
to the following conditions:

1. R with the addition operation is an abelian group.
2. Multiplication in R is associative.
3. Multiplication and addition interact with each other according to the distributive properties. 

For all a, b, c ∈ R :
a) a · (b+ c) = a · b+ a · c
b) (a+ b) · c = a · c+ b · c

☐
It is important with a definition such as the one above to notice what is not stated. The multiplication 
operation does not need to be commutative. There is also no mention of multiplicative inverses or a 
multiplicative identity. We can add to our definition of ring to include these features.

Definition:

A commutative ring is a ring for which the multiplication operation is commutative. 

☐
Definition:

A ring with unity is a ring for which there is a multiplicative identity.

☐
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Example:

We have already mentioned the set of integers Z+ as an example of a ring. Given the further definitions 
above, to be precise Z+ is a commutative ring with unity. 

☐
Example:

The set of rational numbers Q  is a commutative ring with unity under the operations of fraction addition 
and fraction multiplication:

a

b
+

c

d
=

ad+ bc

bd

a

b
· c
d
=

ac

bd
.

It is a very tedious exercise to check that this is a ring:

•	 We have already seen that under fraction addition, the rational numbers form an abelian 
group. 

•	 We now check for associativity of multiplication: 

•	 The multiplication is commutative: 
a

b
· c

d
=

ac

bd
=

ca

db
=

c

d
· a

b

(a
b
· c
d

)
· e
f
=

(ac)e

(bd)f
=

a(ce)

b(df)
=

a

b
·
(
c

d
· e
f

)
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•	 Due to the commutativity of multiplication, we only need to check one distributive 
properties a

b
·
(
c

d
+ · e

f

)
=

a

b
·
(
cf + de

df

)
=

a(cf + de)

b(df)
=

a(cf) + a(de)

b(df)

Unity here is the rational number 1/1, since 
a

b
· 1
1
=

a

b
.

☐
Example:

We have already seen that Z+
6  is a group under addition modulo 6. If we also include multiplication 

modulo 6, this set with these two operations is a ring. 

· 0 1 2 3 4 5

0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
4 0 4 2 0 4 2
5 0 5 4 3 2 1

There is nothing special about the number 6 above. The set Z+
n  under modulo addition and multiplication 

is a ring for any positive integer n . 

☐
In the above example, we can see from the multiplication table that we do not have a group table. Some 
elements, such as 3, do not have a multiplicative inverse. Other elements, such as 5, do have a multiplicative 
inverse. We signify these types of elements with the following definition.

Definition:

Elements of a ring with a multiplicative inverse are called units. 

☐
WARNING:

Despite the similarity in form and meaning, be sure to note the distinction between unity and a unit. 
Unity (if it exists) in a ring is the unique element that is a multiplicative identity. A unit is an element 
that has a multiplicative inverse. Unity is a unit, but a unit may not be unity. 

☐
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Example:

Let [
√
−7]  denote the set {a+ b

√
−7 | a, b ∈} . This set is a commutative ring with unity 

under addition (a+ b
√
−7) + (c+ d

√
−7) = (a+ c) + (b+ d)

√
−7 and multiplication 

(a+ b
√
−7) · (c+ d

√
−7) = (ac− 7bd) + (ad+ bc)

√
−7 . (This addition and multiplication could be 

derived by basic algebra, taking note that (
√
−7)2 = −7.

Unity in this ring is simply 1 + 0
√
−7

To determine the units of this ring we ask, for which elements (a+ b
√
−7)  is there an element 

(c+ d
√
−7)  such that (a+ b

√
−7) · (c+ d

√
−7) = 1 + 0

√
−7? 

We perform the multiplication and see that we want (ac− 7bd) + (ad+ bc)
√
−7 = 1 + 0

√
−7 . This 

results in the equations:

ac− 7bd = 1 ad+ bc = 0

Since a, b  are known constants, we solve for c  and d  and see that abc − 7b2d = b
−abc − a2d = 0

We add the equations, solve for d  and see that d =
−b

a2 + 7b2  and c =

☐
Example:

For any ring R  the set of all polynomials with coefficients in R , which we denote R[x] , is a ring under 
polynomial addition and multiplication. Some of the structure of R  is inherited in R[x] . For instance, 
if R  is a commutative ring then R[x]  is a commutative ring. If R  has unity then R[x]  also does.

☐
Example:

Let M2()(Z+) denote 2 by 2 matrices with integers as entries. This is a ring under matrix addition and 
matrix multiplication. More specifically this is a noncommutative ring with unity: 

[
1 2
2 −1

] [
3 0
1 −2

]
=

[
5 −4
5 −2

]
�=

[
3 6
−3 4

] [
3 0
1 −2

] [
1 2
2 −1

]

The unity in this ring is the identity matrix I2 =
[
1 0
0 1

]
.  
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There are many units in this ring. For example, 
[
−1 0
0 −1

]2
= I2 , so this matrix is its own inverse. 

To determine all units of this ring we ask, for what matrices A =

[
a b
c d

]
 is there a matrix B  such 

that AB = I2 ? 

Let B ==

[
e f
g h

]

From the matrix equation 
[
a b
c d

] [
e f
g h

]
=]

[
1 0
0 1

]
 we obtain the following system of linear 

equations:

ae+ cg = 1 af + bh = 0 ce+ gd = 0 cf + dh = 1

The solution of this system shows that the matrix B =
1

ad− bc

[
d −c
−b a

]
. The entries of this matrix 

are integers if and only if ad− bc = 1 . This means that the units of the ring are matrices for which the 
condition ad− bc = 1  holds. 

☐
Notation:

The set of units of a ring R  is denoted by R∗ .

☐
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Theorem 86. Given a ring with unity R , the units of this ring R∗  form a group under the multiplication 
operation. 

Proof. Since R  has unity and this is a unit, this means that R∗  is nonempty. We begin by showing the 
set of units is closed under multiplication. Given any x, y ∈ R∗  we know that there exists a multiplicative 
inverse x−1, y−1 . These are also units, and are elements of R∗ . Since (xy)(y−1x−1) = 1 , this shows 
that (xy)−1  exists and is a unit. Therefore xy ∈ R∗ . 

We now check the group axioms. Multiplication in a ring is associative. So R∗  inherits this property 
from R . Unity is an element of R∗ , so R∗  has an identity element. If x ∈ R∗  then x  is a unit. So there 
is a multiplicative inverse x−1 . Since x · x−1 = 1 , it follows that x−1  is also a unit. Thus x−1 ∈ R∗ , 
and if x ∈ R∗  then x−1 ∈ R∗ . 

☐
4.1.1 Further Structure

Analogs of topics that we saw in our study of groups exist in the setting of rings. For example, just as we 
formed the direct product of groups, it is possible to form a direct product of rings. Homomorphisms and 
isomorphisms of rings can also be constructed. Not only do these maps respect the addition operation, 
they also respect the multiplication operation.

Definition:

The mapping φ : R → S  is a ring homomorphism if φ(x+ y) = φ(x) + φ(y)  and φ(xy) = φ(x)φ(y) 
for all x, y ∈ R . 

A ring homomorphism is a ring isomorphism if it is one-to-one and onto. 

☐
Definition: Given the rings R1, R2  with addition +1, +2  and multiplication ·1, ·2  
respectively, the direct product of rings is the Cartesian product R1 × R2  with addition 
(a1, a2) + (b1, b2) = (a1 +1 b1, a2 +2 b2) and multiplication (a1, a2) · (b1, b2) = (a1 ·1 b1, a2 ·2 b2)

☐
4.1.2 Exercises

1. Let R be a commutative ring with unity. What are the units of the ring R[x] ? 
2. What are the units of the ring Z+

12? 
3. What are the units of the ring Z+× Z+? 
4. For F a field is F [x]  a field? Explain.
5. A Boolean ring is a ring R such that x2 = x  for all x ∈ R . Prove that a Boolean ring is a 

commutative ring.
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6. Given a set S form the set of subsets of S, known as the power set P (S). For every 
A,B ∈ P (S) we define 

A+B = A∆B A ·B = A ∩B

where A∆B  denotes the symmetric difference of A  and B. Prove that P (S) with these 
operations forms a commutative ring. 

7. A ring element is nilpotent if an = 0 for some n ∈+. Prove that if a, b ∈ R  where R  is a 
commutative ring and a, b  are nilpotent then a+ b  is nilpotent. 

4.2 Integral Domains

At times in abstract algebra, we are at a disadvantage because we know too much. The algebra from 
our younger days where there were a lot more numbers and a lot less proofs ï¿½ is true, but the setting 
of this algebra was the set of real numbers. If we rely too much upon this algebra, then we assume too 
much. There are many algebraic features of the real numbers that are actually quite special. We have 
already seen many of these properties in our study of fields. One such property involves something that 
is sometimes called the zero product property. We have been taught in algebra that if xy = 0  then x = 0  
or y = 0 . There is actually a specialized setting that makes this true.

Consider the ring Z+
10. Under addition modulo 10 and multiplication modulo 10 this is a commutative 

ring with unity, but not a field. When we examine the multiplicative structure of the ring Z+
10 we notice 

something that has a bearing on the above discussion. The elements 2 and 5 are nonzero, however  
2 · 5 = 0 . This is not the only instance of this in Z+

10.  The products of nonzero elements 
4 · 5 = 6 · 5 = 8 · 5 = 0. 

Definition:

Let r, s ∈ R  be two nonzero elements. If rs = 0 then we call r  and s  zero divisors.

☐
Theorem 87. The zero divisors of n  are all nonzero elements that are not relatively prime to n .

Proof. Let r ∈n  with r �= 0. We suppose that r  and n  are not relatively prime to each other, that is 
gcd(n, r) = d �= 1 . We see that nd r =

r
dn = 0 . Thus r  is a zero divisor.

Now suppose that r ∈n  with r �= 0 and that gcd(r, n) = 1 . If rs = 0 in n then in Z+ we have rs = nk  
for k ∈ . Since r  and n are relatively prime, n divides s  and s = 0  in n. Thus r  is not a zero divisor.

☐
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Corollary 88. The ring Z+
p  with p  a prime has no zero divisors. 

Proof. For p  a prime number all of the elements 1, 2, 3, · · · , p− 1 are relatively prime to p . 

☐
Definition:

Any commutative ring with unity, 1 �= 0, with no zero divisors is called an integral domain.

☐
Example:

The following are examples of integral domains: 

•	 By corollary ? the ring Z+
p  is an integral domain.

•	 The ring of integers Z+ is an integral domain. For r, s ∈ Z+, if rs = 0 then r = 0 or s = 0 . 

☐
Theorem 89. Every field is an integral domain.
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Proof. Let F  be a field and let a, b ∈ F  with a �= 0  and ab = 0. Since a−1  exists we multiply:

a−1ab = a−10 ⇒ b = 0.

Therefore F  has no zero divisors. Since F  is a field it is a commutative ring with unity, and so F  is 
an integral domain.

☐
Of course not every integral domain is a field. The ring of integers Z+ is one such example. For another 
example of a class of integral domains we have the following theorem.

Theorem 90. If R  is an integral domain then the polynomial ring R[x]  is also an integral domain.

Proof. Let f(x) = a0 + a1x+ a2x
2 + · · ·+ amxm  and g(x) = b0 + b1x+ b2x

2 + · · · + bnx
n  

be polynomials over R  with f �= 0. Suppose that fg = 0 . We consider the coefficients of f  
and g . Thus ambn = 0 . Since am �= 0  and since R  is an integral domain, bn = 0. Similarly if 
0 = ambn−1 + am−1bn ⇒ 0 = ambn−1 and so since R  is an integral domain bn−1 = 0 . We continue 
in this fashion and see that g = 0 . Therefore R[x]  is an integral domain.

☐
Example:

The direct product of two integral domains is not an integral domain. Let R  and S  be integral domains 
and 1 ∈ R  and 1 ∈ S  unity. In the direct product R× S  we have nonzero elements (1, 0)  and (0, 1) ,  
whereas (1, 0) · (0, 1) = (0, 0) .

☐
We see that in the ring Z+

n  for any element r ∈ Zn  we have nr = 0 . We might ask if this sort of 
property exists for other rings.

Definition: Let R  be a ring. The characteristic of a ring is the least positive integer n  such that nr = 0  
for all r ∈ R . If no such integer exists, then the characteristic of the ring R  is 0. 

☐
Example:

•	 The rings R, C, Q, Z  are all of characteristic 0. 
•	 The ring Z+

n  has characteristic n
☐
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4.2.1 Exercises

1. Find the characteristic of the ring Z5 × Z4..
2. Find the characteristic of the ring Z+×Z+.
3. Let R be an integral domain. Prove that the characteristic of R is either 0 or a prime number p.
4. Describe the zero divisors of M2()(Z+) (2 × 2 matrices with integer entries). 
5. Prove that every finite integral domain is a field.

4.3 Ideals

For further study of rings we recall the twists and turns from our study of groups. We have already seen 
that there are many analogs between groups and rings. Just as there are subgroups of a group, a subset of 
a group G that is a group under the same binary operation, we could study subrings of a ring. A subring 
is a subset of a ring that is a ring itself under the same binary operations. Despite the existence of subring 
structures, this is not a very important subject in the study of rings. A topic that we can get some mileage 
out of shares a connection with normal subgroups. The importance of these types of subgroups is that 
we can form quotient groups. There is an analog of these structures in the setting of rings. 

4.3.1 Basic Properties of Ideals

Definition: Let R be a ring and I be a subgroup under the operation of addition. If for all a, b ∈ R  and 
n ∈ I , an ∈ I  and nb ∈ I  we say that I is an ideal of R. 

☐
Example:

For any ring R, clearly the ring itself is an ideal. Another ideal that every ring R possess is the group 
{0} of the additive identity alone.

☐
Theorem 91. If A is an ideal that contains a unit the A = R . 

Proof. By definition A ⊆ R . Let u ∈ A  be a unit. There exists a multiplicative inverse u−1 ∈ R . For 
any r ∈ R , the element r = r(u−1u) = (ru−1)u ∈ A . Thus R ⊆ A  and R = A . 

☐
Definition: Let A be an ideal of R. If A �= R  and A �= {0}  then A is proper. 

☐
Definition: For a ∈ R  the ideal (a) = {x | x = ra, r ∈ R}  is called a principal ideal. 

☐
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Example:

In the ring of integers Z+, the principal ideal (2) = {· · · ,−6,−4,−2, 0, 2, 4, 6 · · · } , the ideal 
(3) = · · · ,−6,−3, 0, 3, 6, · · · } . Every ideal in this ring is a principal ideal.

☐
Definition: 

If every proper ideal of the integral domain R  is principal then R  is called a principal ideal domain.

☐
Example: Let F be a field. The integral domain F [x]  is a principal ideal domain. 

4.3.2 Prime and Maximal Ideals

Definition: An ideal P is prime if for every ab ∈ P , a ∈ P  or b ∈ P . 

☐
Definition: The ideal M in the ring R is maximal if M �= R  and for every ideal M ⊆ N , N = M  or 
N = R .

☐
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Theorem 92. If M is a maximal ideal then it is also a prime ideal. 

Proof. Suppose ab ∈ M  and a /∈ M . The ideal (a) +M  must be equal to R itself, due to M being 
maximal. So 1 = ra+m  for some r ∈ R  and m ∈ M . Multiply each side of this equation by b  and 
we have b = rab+mb ∈ M . Therefore M is prime. 

☐
Theorem 93. If φ : R → S  is a homomorphism of rings and B  is an ideal of S  then A = φ−1B  is an 
ideal of R. If B  is prime, then so is A. If φ  is onto and B  is maximal then A is maximal.

Proof. The proof is left as an exercise.

☐
4.3.3 Quotient Rings

Let I be an ideal of the ring R. The ideal I is a normal subgroup of R under addition. We define an 
equivalence relation on R by a ≡ bmodI  if and only if a− b ∈ I . The equivalence class of r ∈ R  is 
r + I = {x ∈ R | x− r ∈ I} .

Definition:

Let R be a ring and I an ideal of R. The ring of equivalence classes under the above equivalence relation 
is called a quotient ring and is denoted R/I . Addition is defined as (r + I) + (s + I) = (r + s) + I  
and multiplication as (r + I) · (s+ I) = (rs) + I.

☐
Theorem 94. The quotient ring R/P  is an integral domain if and only if P is a prime ideal in R .

Proof. If R/I  is an integral domain then the ideal (0)  is prime in R/I . The mapping φ : R → R/I  is 
an onto homomorphism of rings. So by theorem 93 φ−1(0) = I  is a prime ideal.

Suppose P is a prime ideal. If (a+ P )(b+ P ) = 0 + P  in R/P  then ab ∈ P . Thus a ∈ P  or b ∈ P .  
Thus a+ P = 0 + P  or b+ P = 0 + P , and R/P  is an integral domain. 

☐
Theorem 95. The quotient ring R/M  is a field if and only if M is a maximal ideal in R.

Proof. If R/M  is a field then (0)  is maximal in R/M . The mapping φ : R → R/M  is an onto 
homomorphism of rings. So by theorem 93 φ−1(0) = I  is a maximal ideal.
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If M is maximal then a+M = 0  in R/M  if and only if a ∈ M . If a /∈ M  then M + (a) = R . 
Thus 1 = ab+ c  where b ∈ R, c ∈ M . Thus (b+M)(a+M) = ab+M = (1− c) +M = 1 +M ,  
which is the identity of R/M . Therefore the multiplicative inverse of every nonzero a+M  is given 
by b+M  and R/M  is a field.

4.3.4 Exercises

1. Find all ideals of the ring Z+
18 and determine each of the quotient rings Z+

18/I.

2. Show that the only ideals in a field F are F and (0) .
3. Find the prime and maximal ideals of the ring Z+

24

4. Find the prime and maximal ideals of the ring Z+
3×3Z+

3×3

5. Prove that every prime ideal in a finite commutative ring with unity is also maximal.
6. Given that ϕ : R → S is a homomorphism of rings 

a) Prove that if B is an ideal of S then A = ϕ–1 B is an ideal of R. 
b) Prove that if B is prime, then so is A. 
c) Prove that if ϕ is onto and B is maximal then is maximal.
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