

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

iii

Contents at a Glance

About the Author ���xi

About the Technical Reviewer ���xiii

Introduction �� xv

Chapter 1: MATLAB Introduction and Working Environment ■ ���1

Chapter 2: Numbers, Operators, Variables and Functions ■ ���13

Chapter 3: Complex Numbers and Functions of Complex Variables ■ ��������������������������������71

Chapter 4: Graphics in MATLAB� Curves, Surfaces and Volumes ■ �����������������������������������125

 Chapter 5: Limits of Sequences and Functions� Continuity in One ■
and Several Variables ��183

Chapter 6: Numerical Series and Power Series ■ ���203

Chapter 7: Derivatives� One and Several Variables ■ ��225

Chapter 8: Integration in One and Several Variables� Applications ■ ������������������������������279

Chapter 9: Differential Equations ■ ���325

xv

Introduction

MATLAB is a platform for scientific computing that can work in almost all areas of the experimental sciences,
engineering, mathematics and financial solutions. Logically, this software allows you to work in the field of
mathematical analysis through a wide variety of commands and functions. MATLAB Mathematical Analysis is a
reference to these commands and brief discussions of how to solve a very wide array of problems. It is not meant to
be a tutorial on MATLAB, but a user of MATLAB should be able to follow the book easily and look up various types of
problems or commands and see quick examples of how they work. This book covers a wide array of content and so it
is a great place to find new features, topics or commands that you might not have known existed.

The book begins by introducing the reader to the use of numbers of all types and bases, operators, variables and
functions in the MATLAB environment. Then it delves into working with complex variables. A large section is devoted
to working with developing graphical representations of curves, volumes, and surfaces. MATLAB functions allow
working with two-dimensional and three-dimensional graphics, statistical graphs, curves and surfaces in explicit,
implicit, parametric and polar coordinates. Additional work implements twisted curves, surfaces, meshes, contours,
volumes and graphical interpolation.

Vectors and matrices are a major feature of MATLAB and so they are treated throughout the book as the topics
come up and include applications in many of the areas.

The following content block develops computation of limits and functions, continuity and numerical and power
series. Then differentiability is addressed in one and several variables including differential theorems for vector fields.
It continues to address integration in one or more variable, and multiple integrals and their applications. Finally
differential equations are treated and some of their applications.

MATLAB Mathematical Analysis offers a broad resource for looking up commands. Unlike most references, it can
be read from start to finish and jumping into chapters to look up is not an issue. So one of the aspects of the book is its
flexibility and the other main benefit is the breadth of coverage.

1

Chapter 1

MATLAB Introduction and Working
Environment

Introduction to Working with MATLAB
Whenever you use a program of this type, it is necessary to know the general characteristics of how the program
interprets notation. This chapter will introduce you to some of the practices used in the MATLAB environment. If you
are familiar with using MATLAB, you may wish to skip over this chapter.

The best way to learn MATLAB is to use the program. Each example in the book consists of the header with the
prompt for user input “>>” and the response from MATLAB appears on the next line. See Figure 1-1.

Figure 1-1.

Chapter 1 ■ MatLaB IntroduCtIon and WorkIng envIronMent

2

At other times, depending on the type of user input used, MATLAB returns the response using the expression
“ans =”. See Figure 1-2.

In a program like MATLAB it is always necessary to pay attention to the difference between uppercase and lowercase
letters, types of parentheses or square brackets, the amount of spaces used in your input and your choice of punctuation
(e.g., commas, semicolons). Different uses will produce different results. We will go over the general rules now.

Any input to run MATLAB should be written to the right of the header (the prompt for user input “>>”). You then
obtain the response in the lines immediately below the input.

When an input is proposed to MATLAB in the command window that does not cite a variable to collect the result,
MATLAB returns the response using the expression ans=.

If at the end of the input we put a semicolon, the program runs the calculation(s) and keeps them in memory
(Workspace), but does not display the result on the screen (see the first input in Figure 1-3 as an example).

Figure 1-2.

Chapter 1 ■ MatLaB IntroduCtIon and WorkIng envIronMent

3

The input prompt appears “>> ” to indicate that you can enter a new entry.
If you enter and define a variable that can be calculated, you can then use that variable as the argument for

subsequent entries. This is the case for the variable v in Figure 1-3, which is subsequently used as an input in the
exponential function.

Like the C programming language, MATLAB is sensitive to the difference between uppercase and lowercase
letters; for example, “Sin (x)” is different from “sin (x)”. The names of all built-in functions begin with lowercase.
There should be no spaces in the names of symbols of more than one letter or in the names of functions. In other
cases, spaces are simply ignored. They can be used in some cases to make input more readable. Multiple entries
in the same line of command, separated by commas, can also be used. In this case, press Enter at the end of the
last entry (see Figure 1-4). If you use a semicolon at the end of one of the entries of the line, as we stated before, its
corresponding output is ignored.

Figure 1-3.

Figure 1-4.

Chapter 1 ■ MatLaB IntroduCtIon and WorkIng envIronMent

4

It is possible to enter descriptive comments in a command input line by starting the comment with the “%” sign.
When you run the input, MATLAB ignores the rest of the line to the right of the % sign:

>> L = log (123) % L is a natural logarithm

L =

 4.8122
>>

To simplify the introduction of a script to be evaluated by the MATLAB interpreter (via the command window),
you can use the arrow computer keys. For example, if you press the up arrow once, MATLAB will recover the last entry
submitted in MATLAB. If you press the up arrow key twice, MATLAB recovers the prior entry submitted, and so on.
This can save you the headache of re-entering complicated formulae.

Similarly, if you type a sequence of characters in the input area and then click the up arrow, MATLAB recovers
the last entry that begins with the specified string.

Commands entered during a MATLAB session are temporarily stored in the buffer (Workspace) until you end the
session with the program, at which time they can be permanently stored in a file or you lose them permanently.

Below is a summary of the keys that can be used in the input area of MATLAB (command line), as well as their
functions:

Up arrow (Ctrl-P) Retrieves the previous line.

Arrow down (Ctrl-N) Retrieves the following entry.

Arrow to the left (Ctrl-B) Takes the cursor to the left, a character.

Arrow to the right (Ctrl-F) Takes the cursor to the right, a character.

CTRL-arrow to the left Takes the cursor to the left, a word.

CTRL-arrow to the right Takes the cursor to the right, a word.

Home (Ctrl-A) Takes the cursor to the beginning of the line.

End (Ctrl-E) Takes the cursor at the end of the current line.

Exhaust Clears the command line.

Delete (Ctrl-D) Deletes the character indicated by the cursor.

BACKSPACE Deletes the character to the left of the cursor.

CTRL-K Deletes all of the current line.

The command clc clears the command window, but does not delete the content of the Workspace (that content
remains in memory).

Numerical Calculations with MATLAB
You can use MATLAB as a powerful numerical calculator. Most calculators handle numbers only with a preset
degree of precision, however MATLAB performs exact calculations with the necessary precision. In addition, unlike
calculators, we can perform operations not only with individual numbers, but also with objects such as arrays.

Most of the themes in classical numerical calculations, are treated in this software. It supports matrix
calculations, statistics, interpolation, fit by least squares, numerical integration, minimization of functions, linear
programming, numerical algebraic and resolution of differential equations and a long list of processes of numerical
analysis that we’ll see later in this book.

Chapter 1 ■ MatLaB IntroduCtIon and WorkIng envIronMent

5

Here are some examples of numerical calculations with MATLAB. (As we all know, for results it is necessary to
press Enter once you have written the corresponding expressions next to the prompt “>>”)

We can simply calculate 4 + 3 and get as a result 7. To do this, just type 4 + 3, and then Enter.

>> 4 + 3

Ans =

7

Also we can get the value of 3 to the 100th power, without having previously set the level of precision. For this
purpose press 3 ^ 100.

>> 3 ^ 100

Ans =

5. 1538e + 047

You can use the command “format long e” to pass the result of the operation with 16 digits before the exponent
(scientific notation).

>> format long e

>> 3 ^ 100

ans =

5.153775207320115e+047

We can also work with complex numbers. We will get the result of the operation (2 + 3i) raised to the 10th power,
by typing the expression (2 + 3i) ^ 10.

>> (2 + 3i) ^ 10

Ans =

-1. 415249999999998e + 005 - 1. 456680000000000e + 005i

The previous result is also available in short format, using the “format short” command.

>> format short
>> (2 + 3i) ^ 10

ans =

-1.4152e+005- 1.4567e+005i

Chapter 1 ■ MatLaB IntroduCtIon and WorkIng envIronMent

6

Also we can calculate the value of the Bessel function found for 11.5. To do this type Besselj (0,11.5).

>> besselj(0, 11.5)

ans =

 -0.0677

Symbolic Calculations with MATLAB
MATLAB handles symbolic mathematical computation, manipulating formulae and algebraic expressions easily
and quickly and can perform most operations with them. You can expand, factor and simplify polynomials, rational
and trigonometric expressions, you can find algebraic solutions of polynomial equations and systems of equations,
can evaluate derivatives and integrals symbolically, and find function solutions for differential equations, you can
manipulate powers, limits and many other facets of algebraic mathematical series.

To perform this task, MATLAB requires all the variables (or algebraic expressions) to be written between single
quotes to distinguish them from numerical solutions. When MATLAB receives a variable or expression in quotes, it is
considered symbolic.

Here are some examples of symbolic computation with MATLAB.

 1. Raise the following algebraic expression to the third power: (x + 1) (x+2)-(x+2) ^ 2. This is
done by typing the following expression: expand (‘((x + 1) (x+2) - (x+2) ^ 2) ^ 3’). The result
will be another algebraic expression:

>> syms x; expand (((x + 1) *(x + 2)-(x + 2) ^ 2) ^ 3)

Ans =

-x ^ 3-6 * x ^ 2-12 * x-8

Note in this example, the syms x which is needed to initiate the variable x.
You can then factor the result of the calculation in the example above by typing: factor
(‘((x + 1) *(x + 2)-(x + 2) ^ 2) ^ 3’)

>> syms x; factor(((x + 1)*(x + 2)-(x + 2)^2)^3)

ans =

-(x+2)^3

 2. You can resolve the indefinite integral of the function (x ^ 2) sine (x) ^ 2 by typing: int
(‘x ^ 2 * sin (x) ^ 2’, ‘x’)

>> int('x^2*sin(x)^2', 'x')

ans =

x ^ 2 * (-1/2 * cos (x) * sin (x) + 1/2 * x)-1/2 * x * cos (x) ^ 2 + 1/4 *
cos (x) * sin (x) + 1/4 * 1/x-3 * x ^ 3

Chapter 1 ■ MatLaB IntroduCtIon and WorkIng envIronMent

7

You can simplify the previous result:

>> syms x; simplify(int(x^2*sin(x)^2, x))

ans =

sin(2*x)/8 - (x*cos(2*x))/4 - (x^2*sin(2*x))/4 + x^3/6

You can express the previous result with more elegant mathematical notation:

>> syms x; pretty(simplify(int(x^2*sin(x)^2, x)))

 2 3
 sin(2 x) x cos(2 x) x sin(2 x) x
 -------- - ---------- - ----------- + --
 8 4 4 6

 3. We can solve the equation 3ax-7 x ^ 2 + x ^ 3 = 0 (where a, is a parameter):

>> solve('3*a*x-7*x^2 + x^3 = 0', 'x')

ans =

[0]
[7/2+1/2 *(49-12*a)^(1/2)]
[7/2-1/2 *(49-12*a)^(1/2)]

 4. We can find the five solutions of the equation x ^ 5 + 2 x + 1 = 0:

ans =

 -0.48638903593454300001655725369801
 0.94506808682313338631496614476119 + 0.85451751443904587692179191887616*i
 0.94506808682313338631496614476119 - 0.85451751443904587692179191887616*i
 - 0.70187356885586188630668751791218 - 0.87969719792982402287026727381769*i
 - 0.70187356885586188630668751791218 + 0.87969719792982402287026727381769*i

On the other hand, MATLAB may use the libraries of the Maple V program to work with symbolic math and
can thus extend its field of application. In this way, you can use MATLAB to work on problems in areas including
differential forms, Euclidean geometry, projective geometry, statistics, etc.

At the same time, you also can expand your options for numerical calculations using the libraries from MATLAB
and libraries of Maple (combinatorics, optimization, theory of numbers, etc.).

Chapter 1 ■ MatLaB IntroduCtIon and WorkIng envIronMent

8

Graphics with MATLAB
MATLAB produces graphs of two and three dimensions, as well as outlines and graphs of density. You can represent
both the graphics and list the data in MATLAB. MATLAB allows you to control colors, shading and other graphics
features, and also supports animated graphics. Graphics produced by MATLAB are portable to other programs.

Here are some examples of MATLAB graphics:

 1. You can represent the function xsine (x) for x ranging between -p/4 and p/4, using 300
equidistant points for the intervals. See Figure 1-5.

>> x = linspace(-pi/4,pi/4,300);
>> y = x.*sin(1./x);
>> plot(x,y)

Figure 1-5.

Note the dots (periods) in this example in the second line. These are not decimal points and should not be
confused as such. These indicate that if you are working with vectors or matrices that the following operator needs
to be applied to every element of the vector or matrix. For an easy example, let’s use x .*3. If x is a matrix, then all
elements of x should be multiplied by 3. Again, be careful to avoid confusion with decimal points. It is sometimes wise
to represent .6 as 0.6, for instance.

 2. You can add the options frame and grille to the graph above, as well as create your own
chart title and labels for axes. See Figure 1-6.

>> x = linspace(-pi/4,pi/4,300);
>> y = x.*sin(1./x);
>> plot(x,y);
>> grid;
>> xlabel('Independent variable X');
>> ylabel ('Independent variable Y');
>> title ('The functions y=sin(1/x)')

Chapter 1 ■ MatLaB IntroduCtIon and WorkIng envIronMent

9

 3. You can generate a graph of the surface for the function z = sine (sqrt(x^2+y^2)) /
sqrt(x^2+y^2), where x and y vary over the interval (- 7.5, 7.5), taking equally spaced points
in 5 tenths. See Figure 1-7.

>> x =-7.5: .5:7.5;
>> y = x;
>> [X, Y] = meshgrid(x,y);
>> Z = sin(sqrt(X.^2+Y.^2))./sqrt(X.^2+Y.^2);
>> surf (X, Y, Z)

Figure 1-7.

 In the first line of this example, note that the range is specified using colons. We did not
use 0.5 and you can see that it can make the input somewhat confusing to a reader.

 These 3D graphics allow you to get an idea of the figures in space, and are very helpful in
visually identifying intersections between different bodies, generation of developments of
all kinds and volumes of revolution.

Figure 1-6.

Chapter 1 ■ MatLaB IntroduCtIon and WorkIng envIronMent

10

 4. You can generate a three dimensional graphic corresponding to the helix in parametric
coordinates: x = sine (t), y = cosine (t), z = t. See Figure 1-8.

>> t = 0:pi/50:10*pi;
>> plot3(sin(t),cos(t),t)

We can represent a planar curve given by its polar coordinates r = cosine (2t) * sine (2t) for t varying between 0
and 2p, taking equally spaced points in one-hundredths of the considered range. See Figure 1-9.

>> t = 0:.01:2 * pi;
>> r = sin(2*t).* cos(2*t);
>> polar(t,r)

Figure 1-8.

 5. We can also make a graph of a function considered as symbolic, using the command
“ezplot”. See Figure 1-10.

>> y ='x ^ 3 /(x^2-1)';
>> ezplot(y,[-5,5])

Figure 1-9.

Chapter 1 ■ MatLaB IntroduCtIon and WorkIng envIronMent

11

Figure 1-10.

In the corresponding chapter on graphics we will extend these concepts.

MATLAB and Programming
By properly combining all the objects defined in MATLAB appropriate to the work rules defined in the program, you
can build useful mathematical research programming code. Programs usually consist of a series of instructions in
which values are calculated, assigned a name and are reused in further calculations.

As in programming languages like C or Fortran, in MATLAB you can write programs with loops, control flow and
conditionals. In MATLAB you can write procedural programs, (i.e., to define a sequence of standard steps to run).
As in C or Pascal, a Do, For, or While loop may be used for repetitive calculations. The language of MATLAB also
includes conditional constructs such as If Then Else. MATLAB also supports logic functions, such as And, Or,
Not and Xor.

MATLAB supports procedural programming (iterative, recursive, loops…), functional programming and
object-oriented programming. Here are two simple examples of programs. The first generates the order n Hilbert
matrix, and the second calculates the Fibonacci numbers.

% Generating the order n Hilbert matrix
t = '1/(i+j-1)';
for i = 1:n
for j = 1:n
a(i,j) = eval(t);
end
end

% Calculating Fibonacci numbers
f = [1 1]; i = 1;
while f(i) + f(i-1) < 1000
f(i+2) = f(i) + f(i+1);
i = i+1
end

13

Chapter 2

Numbers, Operators, Variables
and Functions

Numbers
The numerical scope of MATLAB is very wide. Integer, rational, real and complex numbers, which in turn can be
arguments of functions giving rise to whole, rational, real and complex functions. Therefore, the complex variable is a
treatable field in MATLAB. This chapter will look at the basic functionality of MATLAB.

Arithmetic operations in MATLAB are defined according to the standard mathematical conventions. The following
table presents the syntax of basic arithmetic operations:

x + y Sum

>> 4 + 8

Ans =

 12

x - y Difference

>> 4 - 8

Ans =

 -4

x * y or x y Product

>> 4 * 8

Ans =

 32

(continued)

Chapter 2 ■ Numbers, OperatOrs, Variables aNd FuNCtiONs

14

x/y Division

>> 4/8

Ans =

 0.5000

x ^ y Power

>> 4 ^ 8

Ans =

 65536

MATLAB performs arithmetic operations as if it were a conventional calculator, but with total precision in the
calculation. The results of operations presented are accurate for the default or for the degree of precision that the
user prescribes. But this only affects the presentation. The feature that differentiates MATLAB from other numerical
calculation programs in which the word length of the computer determines the accuracy, is that the calculation
accuracy is unlimited in the case of MATLAB. MATLAB can represent the results with the accuracy that is required,
although internally it always works with exact calculations to avoid rounding errors. MATLAB offers different
approximate representation formats, which sometimes facilitate the interpretation of the results.

The following are the commands relating to the presentation of the results:

short format It offers results with 4 decimal. It’s the format default of MATLAB

>> sqrt(23)

ans =

 4.7958

long format It delivers results with 16 decimal places

>> format long; sqrt(23)

Ans =

 4.795831523312719

format long e Provides the results to 16 decimal places using the power of 10

>> format long e; SQRT (23)

Ans =

 4.795831523312719e + 000

format short e Provides the results to four decimal places with the power of 10

>> format short e; SQRT (23)

Ans =

 4.7958e + 000

(continued)

Chapter 2 ■ Numbers, OperatOrs, Variables aNd FuNCtiONs

15

format long g It offers results in optimal long format

>> format long g; SQRT (23)

Ans =

 4.79583152331272

format short g It offers results in optimum short format

>> format short g; SQRT (23)

Ans =

 4.7958

bank format It delivers results with 2 decimal places

>> bank format; SQRT (23)

Ans =

 4.80

format rat It offers the results in the form of a rational number approximation

>> format rat; SQRT (23)

Ans =

 1151/240

format + Offers a binary result using the sign (+, -) and ignores the imaginary
part of the complex numbers

>> format +; sqrt(23)

Ans =

 +

format hex It offers results in hexadecimal system

>> format hex; sqrt(23)

ans =

 40132eee75770416

VPA ‘operations’ n It provides the result of operations with n exact decimal digits

>> vpa 'sqrt(23)' 20

ans =

 4.7958315233127195416

Chapter 2 ■ Numbers, OperatOrs, Variables aNd FuNCtiONs

16

Integers and Integer Variable Functions
MATLAB works with integers and exact integer variable functions. Regardless of the format of presentation of the
results, calculations are exact. Anyway, the command vpa allows exact outputs with the precision required.

In terms of functions with integer variables, the most important thing that MATLAB includes are as follows
(the expressions between quotation marks have format string):

rem (n, m) Remainder of the division of n by m
(valid function for n and m-real)

>> rem(15,2)

ans =

 1

sign (n) Sign of n (1 if n > 0; -1 if n < 0)

>> sign(-8)

ans =

-1

max (n1, n2) Maximum of the numbers n1 and n2

>> max(17,12)

ans =

 17

min (n1, n2) Minimum of the numbers n1 and n2

>> min(17,12)

ans =

 12

gcd (n1, n2) Greatest common divisor of n1 and n2

>> gcd(17,12)

ans =

 1

lcm (n1, n2) Least common multiple of n1 and n2

>> lcm(17,12)

ans =

 204

(continued)

Chapter 2 ■ Numbers, OperatOrs, Variables aNd FuNCtiONs

17

factorial (n) N factorial (n(n-1) (n-2)...)1)

>> factorial(9)

ans =

 362880

factor (n) It decomposes the factorization of n

>> factor(51)

ans =

 3 17

dec2base (decimal, n_base) Converts a specified decimal (base-10) number to the new base given by n_base

>> dec2base(2345,7)

ans =

 6560

base2dec(numero,b) Converts the given base b number to a decimal number

>> base2dec('ab12579',12)

ans =

 32621997

dec2bin (decimal) Converts a specified decimal number to base 2 (binary)

>> dec2bin(213)

ans =

 11010101

dec2hex (decimal) Converts the specified decimal number to a base 16 (hexadecimal) number

>> dec2hex(213)

ans =

 D5

bin2dec (binary) Converts the binary number to a decimal based number

>> bin2dec('1110001')

ans =

 113

hex2dec (hexadecimal) It converts the specified base 16 number to decimal

>> hex2dec('FFAA23')

ans =

 16755235

Chapter 2 ■ Numbers, OperatOrs, Variables aNd FuNCtiONs

18

Real Numbers and Functions of Real Variables
A rational number is of the form p/q, where p is an integer and q another integer. The way in which MATLAB
processes rationals is different from that of the majority of calculators. The rational numbers are ratios of integers,
and MATLAB also can work with them so that the result of expressions involving rational numbers is always another
rational or whole number. So, it is necessary to activate this format with the command format rat. But MATLAB also
returns solutions with decimals as the result if the user so wishes by activating any other type of format (e.g. format
short or long format). We consider the following example:

>> format rat;
>> 1/6 + 1/5-2/10

Ans =

 1/6

MATLAB deals with rationals as ratios of integers and keeps them in this form during the calculations. In this
way, rounding errors are not dragged into calculations with fractions, which can become very serious, as evidenced by
the theory of errors. Once enabled in the rational format, operations with rationals will be exact until another different
format is enabled. When the rational format is enabled, a number in floating point, or a number with a decimal point
is interpreted as exact and MATLAB is exact in how the rational expression is represented with the result in rational
numbers. At the same time, if there is an irrational number in a rational expression, MATLAB retains the number in
the rational form so that it presents the solution in the rational form. We consider the following examples:

>> format rat;
>> 2.64/25+4/100

Ans =

 91/625

<Note that this is the result of 66/625 + 25/625.>

>> 2.64/sqrt(25)+4/100

Ans =

 71/125

>> sqrt(2.64)/25+4/100

Ans =

 204/1943

MATLAB also works with the irrational numbers representing the results with greater accuracy or with the
accuracy required by the user, bearing in mind that the irrational cannot be represented as exactly as the ratio of two
integers. Below is an example.

Chapter 2 ■ Numbers, OperatOrs, Variables aNd FuNCtiONs

19

>> sqrt (235)

Ans =

 15.3297

There are very typical real constants represented in MATLAB as follows:

pi Number p = 3.1415926

>> 2 * pi

Ans =

 6.2832

exp (1) Number e = 2.7182818

>> exp (1)

Ans =

 2.7183

inf Infinity (for example 1/0)

>> 1/0

Ans =

 INF

nan Uncertainty (for example 0/0)

>> 0/0

Ans =

 NaN

realmin Least usable positive real number

>> realmin

Ans =

 2.2251e-308

realmax Largest usable positive real number

>> realmax

Ans =

 1.7977e + 308

MATLAB has a range of predefined functions of real variables.The following sectionss present the most
important.

Chapter 2 ■ Numbers, OperatOrs, Variables aNd FuNCtiONs

20

Trigonometric Functions
Below is a table with the trigonometric functions and their inverses that are incorporated in MATLAB illustrated
with examples.

Function Inverse

sin (x) sine

>> sin(pi/2)

ans =

 1

asin (x) arcsine

>> asin (1)

ans =

 1.5708

cos (x) cosine

>> cos (pi)

ans =

 -1

acos (x) arccosine

>> acos (- 1)

ans =

 3.1416

tan(x) tangent

>> tan(pi/4)

ans =

 1.0000

atan(x) atan2 (x) and arctangent

>> atan (1)

ans =

 0.7854

csc(x) cosecant

>> csc(pi/2)

ans =

 1

acsc (x) arccosecant

>> acsc (1)

ans =

 1.5708

sec (x) secant

>> sec (pi)

ans =

 -1

asec (x) arcsecant

>> asec (- 1)

ans =

 3.1416

cot (x) cotangent

>> cot(pi/4)

ans =

 1.0000

acot (x) arccotangent

>> acot (1)

ans =

 0.7854

Chapter 2 ■ Numbers, OperatOrs, Variables aNd FuNCtiONs

21

Hyperbolic Functions
Below is a table with the hyperbolic functions and their inverses that are incorporated in MATLAB illustrated
with examples.

Function Reverse

sinh (x) hyperbolic sine

>> sinh (2)

ans =

 3.6269

asinh (x) hyperbolic arcsine

>> asinh (3.6269)

ans =

 2.0000

cosh(x) hyperbolic cosine

>> cosh (3)

ans =

 10.0677

acosh(x) hyperbolic arccosine

>> acosh (10.0677)

ans =

 3.0000

tanh(x) hyperbolic tangent

>> tanh (1)

ans =

0.7616

atanh (x) hyperbolic arctangent

>> atanh (0.7616)

ans =

 1.0000

csch (x) hyperbolic cosecant

>> csch (3.14159)

ans =

 0.0866

acsch (x) hyperbolic arccosecant

>> acsch (0.0866)

ans =

 3.1415

sech (x) hyperbolic secant

>> sech (2.7182818)

ans =

 0.1314

asech (x) hyperbolic arcsecant

>> asech (0.1314)

ans =

 2.7183

coth (x) hyperbolic cotangent

>> coth (9)

ans =

 1.0000

acoth (x) hyperbolic arccotangent

>> acoth (0.9999)

ans =

 4.9517 + 1.5708i

Chapter 2 ■ Numbers, OperatOrs, Variables aNd FuNCtiONs

22

Exponential and Logarithmic Functions
Below is a table with the exponential and logarithmic functions that are incorporated in MATLAB illustrated
with examples.

Function Meaning

exp (x) Exponential function in base e (e ^ x)

>> exp (log (7))

Ans =

 7

log (x) Logarithmic function base e of x

>> log (exp (7))

Ans =

 7

log10 (x) Base 10 logarithmic function

>> log10 (1000)

Ans =

 3

log2 (x) Logarithmic function of base 2

>> log2(2^8)

Ans =

 8

pow2 (x) Power function base 2

>> pow2 (log2 (8))

Ans =

 8

sqrt (x) Function for the square root of x

>> sqrt(2^8)

Ans =

 16

Chapter 2 ■ Numbers, OperatOrs, Variables aNd FuNCtiONs

23

Numeric Variable-Specific Functions
MATLAB incorporates a group of functions of numerical variable. Among these features are the following:

Function Meaning

abs (x) Absolute value of the real x

>> abs (- 8)

Ans =

 8

floor (x) The largest integer less than or equal to the real x

>> floor (- 23.557)

Ans =

 -24

ceil (x) The smallest integer greater than or equal to the real x

>> ceil (- 23.557)

Ans =

 -23

round (x) The closest integer to the real x

>> round (- 23.557)

Ans =

 -24

fix (x) Eliminates the decimal part of the real x

>> fix (- 23.557)

Ans =

 -23

rem (a, b) It gives the remainder of the division between the real a and b

>> rem (7.3)

Ans =

 1

sign (x) The sign of the real x (1 if x > 0; - 1 if x < 0)

>> sign (- 23.557)

Ans =

 -1

Chapter 2 ■ Numbers, OperatOrs, Variables aNd FuNCtiONs

24

One-Dimensional, Vector and Matrix Variables
MATLAB is software based on matrix language, and therefore focuses especially on tasks for working with arrays.

The initial way of defining a variable is very simple. Simply use the following syntax:

Variable = object

where the object can be a scalar, a vector or a matrix.

If the variable is an array, its syntax depends on its components and can be written in one of the following ways:

Variable = [v1 v2 v3... vn]
Variable = [v1, v2, v3,..., vn]

If the variable is an array, its syntax depends on its components and can be written in one of the following ways:

Variable = [v11 v12 v13... v1n; v21 v22 v23... v2n;...]
Variable = [v11, v12, v13,..., v1n; v21, v22, v23,..., v2n;...]

Script variables are defined in the command window from MATLAB in a natural way as shown in Figure 2-1.

Figure 2-1.

Chapter 2 ■ Numbers, OperatOrs, Variables aNd FuNCtiONs

25

The workspace (Workspace) window contains all variables that we will define in the session. The value of any of
these variables is recoverable by typing their names on the command window (Figure 2-2).

Figure 2-2.

Figure 2-3.

Also, in the command history window (Command History) we can find all the syntax we execute from the
command window.

Once a variable is defined, we can operate on it using it as a regular variable in mathematics, bearing in mind
that the names of the variables are sensitive to upper and lower case. Figure 2-3 shows some operations with
one-dimensional, vector and matrix variables. It is important to note the error that occurred when calculating the
logarithm of V2. The mistake was changing the variable to lowercase so that it was not recognized.

MATLAB variables names begin with a letter followed by any number of letters, digits or underscores with
a 31 character maximum.

Chapter 2 ■ Numbers, OperatOrs, Variables aNd FuNCtiONs

26

There are also specific forms for the definition of vector variables, among which are the following:

variable = [a: b] Defines the vector whose first and last elements are a and b, respectively, and the
intermediate elements differ by one unit

>> vector1 = [2:6]

vector1 =

 2 3 4 5 6

variable = [a: s:b] Defines the vector whose first and last elements are a and b, and the intermediate elements
differ in the amount specified by the increase in s

>> vector2 = [2:2:8]

Vector2 =

 2 4 6 8

Nvariable = linespace
[a, b, n]

Defines the vector whose first and last elements are a and b, and has in total n evenly
spaced elements

>> vector3 = linespace (10,30,6)

Vector3 =

 10 14 18 22 26 30

Elements of Vector Variables
MATLAB allows the selection of elements of vector variables using the following commands:

x (n) Returns the nth element of the vector x

>> X =(2:8)

X =

 2 3 4 5 6 7 8

>> X (3)

Ans =

 4

x(a:b) Returns the elements of the vector x between the a-th and the b-th elements, both inclusive

>> X (3:5)

Ans =

 4 5 6

(continued)

Chapter 2 ■ Numbers, OperatOrs, Variables aNd FuNCtiONs

27

x(a:p:b) Returns the elements of the vector x located between the a-th and the b-th elements, both
inclusive, but separated by units where a < b.

>> X (1:2:6)

Ans =

 2-4-6

x(b:-p:a) Returns the elements of the vector x located between the b- and a-th, both inclusive,
but separates by p units and starting with the b-th element (b > a)

>> X(6:-2:1)

Ans =

 7-5-3

Elements of Matrix Variables
The same as in the case of vectors, MATLAB allows the selection of elements of array variables using the following
commands:

A(m,n) Defines the (m, n) element of the matrix A (row m and column n)

>> A = [3 5 7 4; 1 6 8 9; 2 6 8 1]

A =

 3 5 7 4
 1 6 8 9
 2 6 8 1

>> A (2,4)

Ans =

 9

A(a:b,c:d) Defines the subarray of A formed by the intersection of the a-th and the b-th rows
and the the c-th and the d-th columns

>> A(1:2,2:3)

Ans =

 5 7
 6 8

(continued)

Chapter 2 ■ Numbers, OperatOrs, Variables aNd FuNCtiONs

28

A(a:p:b,c:q:d) Defines the subarray of A formed by rows between the a-th and the b-th spaced by using p in p,
and the columns between the c-th and the d-th spaced by using q in q

>> A(1:2:3,1:2:4)

Ans =

 3 7
 2 8

A([a b],[c d]) Defines the subarray of A formed by the intersection of the a-th and b-th rows and c-th and
d-th columns

>> A([2 3],[2 4])

Ans =

 6 9
 6 1

A([a b c...],)
 ([e f g...])

Defines the subarray of A formed by the intersection of rows a, b, c,... and columns e, f, g,...

>> A([2 3],[1 2 4])

Ans =

 1-6-9
 2-6-1

A(:,c:d) Defines the subarray of A formed by all the rows from A and columns between the
c-th and the d-th

>> A(:,2:4)

Ans =

 5 7 4
 6 8 9
 6 8 1

A(:,[c d e...]) Defines the subarray of A formed by all the rows from A and columns c, d, e,...

>> A(:,[2,3])

Ans =

 5 7
 6 8
 6 8

A(a:b,:) Defines the subarray of A formed by all the columns in A and rows between the a-th and the b-th

>> A(2:3,:)

Ans =

 1 6 8 9
 2 6 8 1

(continued)

Chapter 2 ■ Numbers, OperatOrs, Variables aNd FuNCtiONs

29

A([a b c...],:) Defines the subarray of A formed by all the columns in A and rows a, b, c,...

>> A([1,3],:)

Ans =

 3 5 7 4
 2 6 8 1

A(a,:) Defines the a-th row of the matrix A

>> A(3,:)

Ans =

 2 6 8 1

A(:,b) Defines the b-th column of the matrix A

>> A(:,3)

Ans =

 7
 8
 8

A (:) Defines a vector column whose elements are the columns of A placed order one below another

>> A (:)

Ans =

 3
 1
 2
 5
 6
 6
 7
 8
 8
 4
 9
 1

A(:,:) It is equivalent to the matrix A

>> A(:,:)

Ans =

 3 5 7 4
 1 6 8 9
 2 6 8 1

(continued)

Chapter 2 ■ Numbers, OperatOrs, Variables aNd FuNCtiONs

30

[A, B, C,...] Defines the matrix formed by the subarrays A, B, C,...

>> A1 = [2 6; 4 1], A2 = [3 8; 6 9]

A1 =

 2 6
 4 1

A2 =

 3 8
 6 9

>> [A1, A2]

Ans =

 2 6 3 8
 4 1 6 9

Specific Matrix Functions
MATLAB uses a group of predefined matrix functions that facilitate the work in the matrix field. The most important
are the following:

diag (v) Create a diagonal matrix with the vector v in the diagonal

>> diag([2 0 9 8 7])

Ans =

 2 0 0 0 0
 0 0 0 0 0
 0 0 9 0 0
 0 0 0 8 0
 0 0 0 0 7

diag (A) Extract the diagonal of the matrix as a vector column

>> A = [1, 3, 5; 2 0 8; -1-3 2]

A =

 1 3 5
 2 0 8
 -1-3 2

>> diag (A)

Ans =

 1
 0
 2

(continued)

Chapter 2 ■ Numbers, OperatOrs, Variables aNd FuNCtiONs

31

eye (n) It creates the identity matrix of order n

>> eye (4)

Ans =

 1 0 0 0
 0 1 0 0
 0 0 1 0
 0 0 0 1

eye (m, n) Create order mxn matrix with ones on the main diagonal and zeros elsewhere

>> eye (3.5)

Ans =

 1 0 0 0 0
 0 1 0 0 0
 0 0 1 0 0

zeros (m, n) Create the zero matrix of order m x n

>> zeros (2,3)

Ans =

 0 0 0
 0 0 0

ones (m, n) Create the matrix of order with all its elements 1 m x n

>> ones (2,3)

Ans =

 1 1 1
 1 1 1

rand (m, n) It creates a uniform random matrix of order m x n

>> rand (4.5)

Ans =

 0.8147 0.6324 0.9575 0.9572 0.4218
 0.9058 0.0975 0.9649 0.4854 0.9157
 0.1270 0.2785 0.1576 0.8003 0.7922
 0.9134 0.5469 0.9706 0.1419 0.9595

(continued)

Chapter 2 ■ Numbers, OperatOrs, Variables aNd FuNCtiONs

32

randn (m, n) Create a normal random matrix of order m x n

>> randn (4.5)

Ans =

 0.6715 0.4889 0.2939 - 1.0689 0.3252
 -1.2075 1.0347 - 0.7873 - 0.8095 - 0.7549
 0.7172 0.7269 0.8884 - 2.9443 1.3703
 1.6302 - 0.3034 - 1.1471 1.4384 - 1.7115

flipud (A) Returns the matrix whose rows are placed in reverse order (from top to bottom) to the
rows of matrix A

>> flipud (A)

Ans =

 -1-3 2
 2 0 8
 1 3 5

fliplr (A) Returns the matrix whose columns are placed in reverse (from left to right) of A

>> fliplr (A)

Ans =

 5 3 1
 8 0 2
 2-3-1

rot90 (A) Rotates 90 degrees the matrix A

>> rot90 (A)

Ans =

 5 8 2
 3 0-3
 1 2-1

reshape(A,m,n) Returns the array of order extracted from matrix m x n taking consecutive items by columns

>> reshape(A,3,3)

Ans =

 1 3 5
 2 0 8
 -1-3 2

(continued)

Chapter 2 ■ Numbers, OperatOrs, Variables aNd FuNCtiONs

33

size (A) Returns the order (size) of the matrix A

>> size (A)

Ans =

 3 3

length (v) Returns the length of the vector v

>> length([1 3 4 5-1])

Ans =

 5

tril (A) Returns the lower triangular part of matrix A

>> tril (A)

Ans =

 1 0 0
 2 0 0
 -1-3 2

triu (A) Returns the upper triangular part of matrix A

>> (A) triu

Ans =

 1 3 5
 0 0 8
 0 0 2

A’ Returns the transposed matrix from A

>> A'

Ans =

 1 2-1
 3 0-3
 5 8 2

Inv (A) Returns the inverse matrix of matrix A

>> inv(A)

Ans =

 -0.5714 0.5000 - 0.5714
 0.2857 - 0.1667 - 0.0476
 0.1429 0.1429 0

Chapter 2 ■ Numbers, OperatOrs, Variables aNd FuNCtiONs

34

Random Numbers
MATLAB incorporates features that make it possible to work with randomised numbers. The functions rand and
randn are basic functions that generate random numbers distributed uniformly and normally respectively. Below are
the most common functions for working with random numbers.

rand Returns a random decimal number uniformly distributed in the interval [0,1]

>> rand

Ans =

 0.8147

rand (n) Returns an array of size n x n whose elements are uniformly distributed random decimal
numbers in the interval [0,1]

>> rand (3)

Ans =

 0.9058 0.6324 0.5469
 0.1270 0.0975 0.9575
 0.9134 0.2785 0.9649

rand (m, n) Returns an array of dimension m x n whose elements are uniformly distributed random
decimal numbers in the interval [0,1]

>> rand (2,3)

Ans =

 0.1576 0.9572 0.8003
 0.9706 0.4854 0.1419

rand (size (a)) Returns an array of the same size as the matrix A and whose elements are uniformly
distributed random decimal numbers in the interval [0,1]

>> rand (size (eye (3)))

Ans =

 0.4218 0.9595 0.8491
 0.9157 0.6557 0.9340
 0.7922 0.0357 0.6787

rand (‘seed’) Returns the current value of the uniform random number generator seed

>> rand('seed')

Ans =

 931316785

(continued)

Chapter 2 ■ Numbers, OperatOrs, Variables aNd FuNCtiONs

35

rand(‘seed’,n) Placed in the number n, the current value of the uniform random number generator seed

>> rand ('seed')

Ans =

 931316785

>> rand ('seed', 1000)
>> rand ('seed')

Ans =

 1000

randn Returns a random decimal distributed number according to a normal distribution of mean 0
and variance 1

>> randn

Ans =

 -0.4326

randn (n) Returns an array of size n x n whose elements are distributed random decimal numbers
according to a normal distribution of mean 0 and variance 1

>> randn (3)

Ans =

 -1.6656 - 1.1465 - 0.0376
 0.1253 1.1909 0.3273
 0.2877 1.1892 0.1746

randn (m, n) Returns an array of dimension m x n whose elements are distributed random decimal
numbers according to a normal distribution of mean 0 and variance 1

>> randn (2,3)

Ans =

 -0.1867 - 0.5883 - 0.1364
 0.7258 2.1832 0.1139

randn (size (A)) Returns an array of the same size as the matrix A and whose elements are distributed
according to a normal distribution of mean 0 and variance 1 as random decimal numbers

>> randn (size (eye (3)))

Ans =

 1.0668 - 0.8323 0.7143
 0.0593 0.2944 1.6236
 -0.0956 - 1.3362 - 0.6918

(continued)

Chapter 2 ■ Numbers, OperatOrs, Variables aNd FuNCtiONs

36

randn (‘seed’) Returns the current value of the normal random number generator seed

>> randn ('seed')

Ans =

 931316785

randn(‘seed’,n) Placed in the n number the current value of the uniform random number generator seed

>> randn ('seed', 1000)
>> randn ('seed')

Ans =

 1000

Operators
MATLAB is a language that incorporates arithmetic, logical and relational operators in the same way as any other
language. The following are the types of operators referred to in the scope of the MATLAB language.

Arithmetic Operators
MATLAB incorporates the usual arithmetic operators (addition, subtraction, multiplication and division) to work with
numbers. MATLAB extends the meaning of these operators to work with scalars, vectors and matrices, as shown in the
following table:

Operator Role Played

+ Sum of scalar, vector, or matrix

>> A = [1 3 -2 6]; B = [4 -5 8 2]; c = 3;
>> V1 = A + c

V1 =

 4 6 1 9

>> V2 = A + B

V2 =

 5 –2 6 8

(continued)

Chapter 2 ■ Numbers, OperatOrs, Variables aNd FuNCtiONs

37

Operator Role Played

- Subtraction of scalar, vector, or matrix

>> V3 = A-c

V3 =

 -2 0 -5 3

>> V4 = A - B

V4 =

 -3 8 -10 4

* Product of scalars or arrays or scalars vectors or matrices
Defines the subarray of A formed by the intersection of the a-th
and the b-th rows and the the c-th and the d-th columns

>> V3 = A * c

V3 =

 3 9 -6 18

.* Product of scalar or vector element to element

>> V4 = A * B

V4 =

 4 -15 -16 12

.^ Power of vectors (A. ^ B = [A(i,j)B (i, j)], vectors A and B)

>> V6 = a ^ B

V6 =

 1.0000 0.0041 256.0000 36.0000

>> A ^ c

Ans =

 1 27 -8 216

>> c. ^ A

Ans =

 3.0000 27.0000 0.1111 729.0000

(continued)

Chapter 2 ■ Numbers, OperatOrs, Variables aNd FuNCtiONs

38

Operator Role Played

./ A / B = [A(i,j)/b (i, j)], being A and B vectors where [dim (A) = dim (B)]

>> V7 = A. / B

V7 =

 0.2500 - 0.6000 - 0.2500 3.0000

.\ A. \B = [B(i,j) /A (i, j)], being A and B vectors where [dim (A) = dim (B)]

>> V8 = A. \B

V8 =

 4.0000 - 1.6667 - 4.0000 0.3333

\ A\B = inv (A) * B, with A and B being matrices

>> A = rand (4)

A =

 0.6868 0.5269 0.7012 0.0475
 0.5890 0.0920 0.9103 0.7361
 0.9304 0.6539 0.7622 0.3282
 0.8462 0.4160 0.2625 0.6326

>> B = randn (4)

B =

 -0.1356 - 0.0449 - 0.0562 0.4005
 -1.3493 - 0.7989 0.5135 - 1.3414
 -1.2704 - 0.7652 0.3967 0.3750
 0.9846 0.8617 0.7562 1.1252

>> A\B

Ans =

 25.0843 17.5201 - 1.8497 7.1332
 -25.8285 - 17.9297 2.4290 - 4.6114
 -4.4616 - 3.1424 - 0.2409 - 2.7058
 -13.1598 - 8.9778 2.1720 - 3.6075

(continued)

Chapter 2 ■ Numbers, OperatOrs, Variables aNd FuNCtiONs

39

Operator Role Played

/ Ratio scale of b/a = B * inv (A), with A and B being matrices

>> B/A

Ans =

 -4.8909 0.0743 4.8972 - 1.6273
 4.6226 0.9230 - 4.2151 - 1.3541
 -10.2745 1.2107 10.4001 - 5.4409
 -9.6925 - 0.1247 11.1342 - 3.1260

^ Power of scalar or power scale matrix (M p)

>> A ^ 3

Ans =

 3.5152 2.1281 3.1710 1.6497
 4.0584 2.3911 3.7435 1.9881
 4.6929 2.8299 4.2067 2.2186
 3.5936 2.1520 3.2008 1.7187

Logical Operators
MATLAB also includes the usual logical operators using the most common notation for them. The results of the
logical operators usually are 1 if true and or if false. These operators are shown in the following table.

~ A Logical negation (NOT) or A supplementary

>> not(2 > 3)

Ans =

 1

A & B Logical conjunction (AND) or the intersection of A and B

>> (2 > 3) & (5 > 1)

Ans =

 0

(continued)

Chapter 2 ■ Numbers, OperatOrs, Variables aNd FuNCtiONs

40

A | B Logical disjunction (OR) or the union of A and B

>> (2 > 3) |(5 > 1)

Ans =

 1

XOR (A, B) OR exclusive (XOR) or symmetric difference of A and B (it’s true [1] if A or B is true, but not
both)

>> xor ((2 > 3),(5 > 1))

Ans =

 1

Relational Operators
MATLAB also deals with relational operations that run comparisons element by element between two matrices,
and returns an array of the same size whose elements are zero if the corresponding relationship is true, or one if the
corresponding relation is false. The relational operators can also compare scalar vectors or matrices, in which case
it is compared to climbing with all the elements of the array. The following table shows the relational operators in
MATLAB.

< Lower (for complex it compares only the real parts)

>> 3 < 5

Ans =

 1

< = Less than or equal (only applies to real parts)

>> 4 >= 6

Ans =

 0

(continued)

Chapter 2 ■ Numbers, OperatOrs, Variables aNd FuNCtiONs

41

> Wholesale (only applies to real parts)

>> X = 3 * ones (3.3)

X =

 3 3 3
 3 3 3
 3 3 3

>> X > [1 2 3; 4 5 6; 1 2 3]

Ans =

 1 1 0
 0 0 0
 1 1 0

> = Greater than or equal (only applies to real parts)

>> X >= [1 2 3; 4 5 6; 1 2 3]

Ans =

 1 1 1
 0 0 0
 1 1 1

x == y Equality (affects complex numbers)

>> X == ones (3,3)

Ans =

 0 0 0
 0 0 0
 0 0 0

x ~ = y Inequality (affects complex numbers)

>> X ~= ones (3,3)

Ans =

 1 1 1
 1 1 1
 1 1 1

Chapter 2 ■ Numbers, OperatOrs, Variables aNd FuNCtiONs

42

Symbolic Variables
So far we have always handled numerical variables. However, MATLAB allows you to manage symbolic mathematical
computation, manipulating formulae and algebraic expressions easily and quickly and perform operations with them.

However, to accomplish these tasks it is necessary to have the MATLAB Symbolic Math Toolbox module.
Algebraic expressions or variables to be symbolic have to be declared as such with the command syms, before they are
used. The following table shows the command syntax of conversion variables and symbolic expressions.

syms x y z... t Converts the variables x, y and z,..., t into symbolic

>> syms x y
>> x+x+y-6*y

Ans =

 2 * x - 5 * y

syms x y z... t real Converts the variables x, y and z,..., t into symbolic with actual values

>> syms a b c real;
>> A = [a b c; c a b; b c a]

A =

 [a, b, c]
 [c, a, b]
 [b, c, a]

syms x and z... t unreal Converts the variables x, y and z,..., t into symbolic with no actual values

syms Symbolic workspace variables list

>> syms

'A' 'a' 'ans' 'b' 'c' 'x' 'y'

y = sym (‘x’) Converts the variable or number x in symbolic (equivalent to syms x)

>> rho = sym ('(1 + sqrt (5)) / 2')

Rho =

 5 ^(1/2)/2 + 1/2

y = sym (‘x’, real) It becomes a real symbolic variable x

y = sym(‘x’, unreal) It becomes a non-real symbolic variable x

(continued)

Chapter 2 ■ Numbers, OperatOrs, Variables aNd FuNCtiONs

43

S = sym (A) Creates a symbolic object starting with A, where A may be a string, a scalar, an array,
a numeric expression, etc.

>> S = sym([0.5 0.75 1; 0 0.5 0.1; 0.2 0.3 0.4])

S =

 [1/2, 3/4, 1]
 [0, 1/2, 1/10]
 [1/5, 3/10, 2/5]

S = sym (at, ‘option’) Converts the array, scalar or a numeric expression to symbolic according to the specified
option. The option can be ‘f’ for floating point, ‘r’ for rational, ‘e’ for error format and
‘d’ for decimal

numeric(x)
or double(x)

It becomes the variable or expression x to numeric double-precision

pretty (expr) Converts the symbolic expression to written mathematics

>> pretty (rho)

1/2
5 1
---- + -
2 2

Digits The current accuracy for symbolic variables

>> digits

Digits = 32

digits (d) The precision of symbolic variables in d exact decimal digits

>> digits (25)
>> digits

Digits = 25

vpa (‘expr’) Numerical result of the expression with decimals of precision in digits

>> phi = vpa ('(1 + sqrt (5)) / 2')

Phi =

 1.618033988749894848204587

(continued)

Chapter 2 ■ Numbers, OperatOrs, Variables aNd FuNCtiONs

44

vpa(‘expr’, n) Numerical results of the expression with n decimal digits

>> phi = vpa ('(1 + sqrt (5)) / 2', 10)

Phi =

 1.618033989

vpa (expr, n) Numerical result of the expression with n decimal digits

>> phi = vpa ((1 + sqrt (5)) / 2.20)

Phi =

 1.6180339887498949025

Symbolic Functions and Functional Operations: Composite and
Inverse Functions
In MATLAB, it is possible to define functions to measure of one and several variables using the syntax f = ‘function’.

Also you can use the syntax f = function if all variables have been defined previously as symbolic with syms.
Subsequently it is possible to make substitutions to your arguments according to the notation which is presented in
the following table.

The results tend to simplify the commands simple and simplify.

f = ‘function’ It defines the function f as symbolic

>> f1 ='x ^ 3'

F1 =

 x ^ 3

>> f2 ='z ^ 2 + 2 * t'

F2 =

 z ^ 2 + 2 * t

>> syms x t z
>> g1 = x ^ 2

G1 =

 x ^ 2

>> g2 = sqrt (x+2 * z + exp (t))

G2 =

 (x + 2 * z + exp (t)) ^(1/2)

(continued)

Chapter 2 ■ Numbers, OperatOrs, Variables aNd FuNCtiONs

45

subs(f, a) Applies the function f at the point a

>> subs(f1,2)

Ans =

 8

subs (f, variable, value) Replaces the variable by a value

>> subs(f1,x,3)

Ans =

 27

subs(f, {x,y,...}, {a,b,...}) Replaces the variables in the equation f {x, y,..} with the values {a, b,...}

>> subs(f2, {z,t}, {1,2})

Ans =

 5

MATLAB additionally implements various functional operations which are summarized in the following table:

f + g Adds the functions f and g (f + g)

>> syms x
>> f = x ^ 2 + x + 1; g = 2 * x ^ 2-x ^ 3 + cos (x); h =-x+log (x);

>> f + g

Ans =

 x + cos (x) + 3 * x ^ 2 - x ^ 3 + 1

f+g+h+... Performs the sum f+g+h +...

>> f+g+h

Ans =

 cos (x) + log (x) + 3 * x ^ 2 - x ^ 3 + 1

f-g Find the difference of f and g (f-g)

>> f-g

Ans =

 x cos (x) - x ^ 2 + x ^ 3 + 1

(continued)

Chapter 2 ■ Numbers, OperatOrs, Variables aNd FuNCtiONs

46

f-g-h-... Performs the difference f-g-h-...

>> f-g-h

Ans =

 2 * x - cos (x) - log (x) - x ^ 2 + x ^ 3 + 1

f * g Creates the product of f and g (f * g)

>> f * g

Ans =

 (cos (x) + 2 * x ^ 2 - x ^ 3) * (x^2 + x + 1)

f*g*h*... Creates the product f * g * h *...

>> f * g * h

Ans =

-(x - log (x)) * (cos (x) + 2 * x ^ 2 - x ^ 3) * (x^2 + x + 1)

f/g Performs the ratio between f and g (f/g)

>> f/g

Ans =

 (x ^ 2 + x + 1) / (cos (x) + 2 * x ^ 2 - x ^ 3).

f/g/h/... Performs the ratio f /g/h...

>> f

Ans =

-(x^2 + x + 1) / ((x - log (x)) * (cos (x) + 2 * x ^ 2 - x ^ 3))

f ^ k Raises f to the power k (k is a scalar)

>> f ^ 2

Ans =

 (x ^ 2 + x + 1) ^ 2

f ^ g It elevates a function to another function (fg)

>> f ^ g

Ans =

 (x ^ 2 + x + 1) ^ (cos (x) + 2 * x ^ 2 - x ^ 3).

(continued)

Chapter 2 ■ Numbers, OperatOrs, Variables aNd FuNCtiONs

47

compose (f, g) A function of f and g (f ° g (x) = f (g (x)))

>> compose (f, g)

Ans =

 cos (x) + (cos (x) + 2 * x ^ 2 - x ^ 3) ^ 2 + 2 * x ^ 2 - x ^ 3 + 1

compose(f,g,h) Function of f and g, taking the expression or as the domain of f and g

>> compose (f, g, h)

Ans =

 cos (log (x) - x) + 2 * (x - log (x)) ^ 2 + (x - log (x)) ^ 3 + (cos (log (x)

g = finverse (f) Inverse of the function f

>> finverse (f)
Warning: finverse(x^2 + x + 1) is not unique.

Ans =

 (4 * x - 3) ^(1/2)/2 - 1/2

Commands that Handle Variables in the Workspace and Store
them in Files
MATLAB has a group of commands that allow you to define and manage variables, as well as store them in MATLAB
format files (with extension .mat) or in ASCII format, in a simple way. When extensive calculations are performed, it is
convenient to give names to intermediate results. These intermediate results are assigned to variables to make it easier to
use. Let’s not forget that the value assigned to a variable is permanent until it is expressly changed or is out of the present
session of work. MATLAB incorporates a group of commands to manage variables among which are the following:

clear

clear(v1,v2, ..., vn)

clear(‘v1’, ‘v2’, ..., ‘vn’)

Clears all variables in the workspace

Deletes the specified numeric variables

Clears the variables specified in a string

disp(X) Shows an array without including its name

length(X) Shows the length of the vector X and if X is an array, displays its greatest dimension

load

load file

load file X Y Z

load file -ascii

load file -mat

S = load(...)

It reads all variables from the file MATLAB.mat

Reads all variables specified as .mat files

Reads the variables X, Y, Z of the given .mat file

It reads the file as ASCII whatever its extension

It reads the file as .mat whatever its extension

Returns the contents of a file in the variable .mat S

(continued)

Chapter 2 ■ Numbers, OperatOrs, Variables aNd FuNCtiONs

48

saveas(h,‘f.ext’)

saveas(h,‘f ’, ‘format’)

Saves the figure or model h as a f.ext file

Save the figure or model h as the f in the specified format file

d = size(X)

[m,n] = size(X)

[d1,d2,d3,...,dn] = size(X)

Returns the sizes of each dimension in a vector

Returns the dimensions of the matrix X as two variables named m & n

Returns the dimensions of the array X as variable names d1, d2,..., dn

who

whos

who(‘-file’, ‘fichero’)

whos(‘-file’, ‘fichero’)

who(‘var1’, ‘var2’,...)

who(‘-file’, ‘filename’,

‘var1’, ‘var2’,...)

s = who(...)

s = whos(...)

who -file filename var1
var2 ...

whos -file filename var1
var2 ...

The variables in the workspace list

List of variables in the workspace with your sizes and types

List of variables in the given .mat file

List of variables in the given .mat file and their sizes and types

List of the variables string from the given workspace

List of the variables specified in the string in the given .mat file

The listed variables stored in s

The variables with their sizes and types stored in s

List of numerical variables specified in the given .mat file

List of numerical variables specified in the file .mat given with their sizes and types

Workspace Shows a browser to manage the workspace

The save command is the essential instrument for storing data in the MATLAB .mat file type (only readable by
the MATLAB program) and in file type ASCII (readable by any application). By default, the storage of variables often
occurs in files formatted using MATLAB .mat. To store variables in files formatted in ASCII, it is necessary to use the
command save with the options that are presented below:

Option Mode of storage of the data

-append The variables are added to the end of the file

-ascii The variables are stored in a file in ASCII format of 8 digits

-ascii - double The variables are stored in a file in ASCII format of 16 digits

-ascii – tabs The variables are stored in a tab-delimited file in ASCII format of 8 digits

-ascii - double - tabs The variables are stored in a tab-delimited file in ASCII format of 16 digits

-mat The variables are stored in a file with binary .mat format

Chapter 2 ■ Numbers, OperatOrs, Variables aNd FuNCtiONs

49

exerCise 2-1

Calculate the value of 7 to the 400th power with 500 exact decimal numbers.

>> vpa '7 ^ 400' 500

Ans =

 3234476509624757991344647769100216810857201398904625400933895331391691459636928060001*10^338

500 figures are not needed to express the exact value of the result. it notes that it is enough with 338 figures.
if you want the result with less accurate figures than it actually is, matlab completes the result with powers of 10.
let's see:

>> vpa '7 ^ 400' 45

Ans =

 1.09450060433611308542425445648666217529975487 * 10 ^ 338

exerCise 2-2

Calculate the greatest common divisor and least common multiple of the numbers 1000, 500 and 625

>> gcd (gcd (1000,500), 625)

Ans =

 125

as the gcd function only supports two arguments in matlab, we have applied the property: gcd(a, b, c) = gcd
(gcd(a, b), c) = gcd(a, gcd (b, c)). the property is analogous to the least common multiple: lcm(a, b, c) = lcm
(lcm(a, b), c) = lcm (a, lcm (b, c)). We will make the calculation in the following way:

>> lcm(lcm(1000,500), 625)

Ans =

 5000

Chapter 2 ■ Numbers, OperatOrs, Variables aNd FuNCtiONs

50

exerCise 2-3

is the number 99,991 prime? Find the prime factors of the number 135,678,742.

We divide both numbers into prime factors:

>> factor (99991)

Ans =

 99991

>> factor (135678742)

Ans =

 2 1699 39929

it is observed that 99991 is a prime number because in attempting to break it down into prime factors, it turns
out to be the only prime factor of itself. Observe that the number 135678742 has three prime factors.

exerCise 2-4

Find the remainder of dividing 2134 by 3. is the number 232 – 1 divisible by 17? also find the number N which
divided by 16, 24, 30 and 32 yields a remainder of 5.

the first part of the problem is resolved as follows:

>> rem(2^134,3)

Ans =

 0

it is observed that 2134 is a multiple of 3.

to see if 232 – 1 is divisible by 17, we factor it:

>> factor(2^32-1)

Ans =

 3 5 17 257 65537

Chapter 2 ■ Numbers, OperatOrs, Variables aNd FuNCtiONs

51

Note that 17 is one of its factors, so then it is divisible by 17.

to resolve the last part of the problem, we calculate the least common multiple of all the numbers and add 5.

>> N = 5+lcm(16,lcm(24,lcm(30,32)))

N =

 485

exerCise 2-5

Calculate the value of 100 factorial. Calculate it also with 70 and 200 significant figures.

>> factorial(100)

ans =

 9.3326e+157

>> vpa(factorial(100))

ans =

 9.3326215443944102188325606108575*10^157

>> vpa(factorial(100),70)

ans =

 9.3326215443944102188325606108575267240944254854960571509166910400408*10^157

>> vpa(factorial(100),200)

ans =

 9.33262154439441021883256061085752672409442548549605715091669104004079950642429371486326

94030450512898042989296944474898258737204311236641477561877016501813248*10^157

Chapter 2 ■ Numbers, OperatOrs, Variables aNd FuNCtiONs

52

exerCise 2-6

in base 5 the results of the following operation:

a25aaff6 + 6789aba + 1100221 + 35671 - 1250

 16 12 8 3

as it is a venture to convert between numbers in different base numbering systems, it will be simplest to convert
to base 10 first and then perform the operation to calculate the result in base-5.

>>R10=base2dec('a25aaf6',16)+base2dec('6789aba',12)+base2dec('35671',8)
+ base2dec('1100221',3)-1250

R10 =

 190096544

>> R5 = dec2base (R10, 5)

R5 =

 342131042134

exerCise 2-7

in base 13, get the result of the following operation:

(666551) (aa199800a) + (fffaaa125) / (33331 + 6)

 7 11 16 4

We use the strategy of the previous exercise. First, we make the operation with all the numbers to base 10 and
then find the result for base 13.

>> R10 = vpa (base2dec('666551',7) * base2dec('aa199800a',11) + 79 * base2dec('fffaaa125',16)
/ (base2dec ('33331', 4) + 6))

R10 =

 275373340490851.53125

>> R13 = dec2base (275373340490852,13)

R13 =

 BA867963C1496

Chapter 2 ■ Numbers, OperatOrs, Variables aNd FuNCtiONs

53

exerCise 2-8

perform the following operations with rational numbers:

a. 3/5 + 2/5 + 7/5

b. 1/2 + 1/3 + 1/4 + 1/5 + 1/6

c. 1/2-1/3 + 1/4 - 1/5 + 1/6

d. (2/3-1/6)-(4/5+2+1/3) + (4-5/7)

a.

>> format rat
>> 3/5 + 2/5 + 7/5

Ans =

 12/5

b.

>> 1/2 + 1/3 + 1/4 + 1/5 + 1/6

Ans =

 29/20

c.

>> 1/2-1/3 + 1/4 - 1/5 + 1/6

Ans =

 23/60

d.

>> (2/3-1/6)-(4/5+2+1/3) + (4-5/7)

Ans =

 137/210

alternatively, also the operations can be made as follows:

>> simplify (sym(3/5+2/5+7/5))

Ans =

 12/5

Chapter 2 ■ Numbers, OperatOrs, Variables aNd FuNCtiONs

54

>> simplify (sym(1/2+1/3+1/4+1/5+1/6))

Ans =

 29/20

>> simplify (sym(1/2-1/3+1/4-1/5+1/6))

Ans =

 23/60

>> simplify (sym ((2/3-1/6)-(4/5+2+1/3) +(4-5/7)))

Ans =

 137/210

exerCise 2-9

perform the following rational operations:

a. 3/a+2/a+7/a

b. 1 / (2a) + 1 / (3a) + 1 / (4a) + 1 / (5a) + 1 / (6a)

c. 1 / (2a) + 1 / (3b + 1 / (4a) + 1 / (5b) + 1 / (6c))

to treat operations with expressions that contain symbolic variables a it is necessary to prepend the command
syms a to declare the variable as symbolic, and then use simplify or simple.

a.

>> syms a
>> simplify(3/a+2/a+7/a)

Ans =

 12/a

>> 3/a+2/a+7/a

Ans =

 12/a

>> Ra = simple(3/a+2/a+7/a)

RA =

 12/a

Chapter 2 ■ Numbers, OperatOrs, Variables aNd FuNCtiONs

55

b.

>> simplify (1 /(2*a) + 1 /(3*a) + 1 /(4*a) + 1 /(5*a) + 1 /(6*a))

Ans =

 29 /(20*a)

>> Rb = simple (1 /(2*a) + 1 /(3*a) + 1 /(4*a) + 1 /(5*a) + 1 /(6*a))

RB =

 29 /(20*a)

c.

>> syms a b c
>> pretty (simplify (1 /(2*a) + 1 /(3*b) + 1 /(4*a) + 1 /(5*b) + 1 /(6*c)))

 3 8 1
 --- + ---- + --
 4a 15b 6c

>> pretty (simple (1 /(2*a) + 1 /(3*b) + 1 /(4*a) + 1 /(5*b) + 1 /(6*c)))

 3 8 1
 --- + ---- + --
 4a 15b 6c

exerCise 2-10

simplify the following rational expressions:

a. (1-a9) / (1-a3)

b. (3a + 2a + 7a) / (a3 +a)

c. 1 / (1+a) + 1 / (1+a) + 1 / (1+a)2 3

d. 1 + a / (a + b) +2 / (a + b)2

a.

>> syms a b
>> pretty (simple ((1-a^9) /(1-a^3)))

 6 3
 a + a + 1

Chapter 2 ■ Numbers, OperatOrs, Variables aNd FuNCtiONs

56

b.

>> pretty (simple ((3*a+2*a+7*a) /(a^3+a)))

 12

 2
 a + 1

c.

>> pretty (simple ((1 + 1 /(1+a) /(1+a) ^ 2 + 1 /(1+a) ^ 3)))

 2
 a + 3 a + 3

 3
 (a + 1)

d.

>> pretty (simple ((1 + a / (a + b) + a ^ 2 / (a + b) ^ 2)))

 2
 2 a + b a
 ---------- + 1
 2
 (a + b)

exerCise 2-11

perform the following operations with irrational numbers:

a. 3 2 5 7a a a a+ - +

b. 2 3 2 2 2+ - /

c. 4a1/3 - 3b1/3 - 5a1/3 - 2b1/3 + ma1/3

d. 3 27a a

e. a a3

f. a a5

Chapter 2 ■ Numbers, OperatOrs, Variables aNd FuNCtiONs

57

a.

We use the command simplify or the command simple.

>> syms a b m
>> pretty(simplify(3*sqrt(a) + 2*sqrt(a) - 5*sqrt(a) + 7*sqrt(a)))

 1/2
 7 a

b.

>> pretty(simplify(sym(sqrt(2)+3*sqrt(2)-sqrt(2)/2)))

 1/2
 7 2

 2

c.

>> syms a b m
>> pretty(simplify(4*a^(1/3)- 3*b^(1/3)-5*a^(1/3)- 2*b^(1/3)+m*a^(1/3)))

 1 1
 - -
 3 1/3 3
 a m - a - 5 b

d.

>> pretty(simplify(sqrt(3*a)*sqrt(27*a)))

 9 a

e.

>> pretty(simplify(a^(1/2)*a^(1/3)))

 5
 -
 6
 a

Chapter 2 ■ Numbers, OperatOrs, Variables aNd FuNCtiONs

58

f.

>> pretty(simplify(sqrt(a*(a^(1/5)))))

 / 6 \1/2
 | - |
 | 5 |
 \ a /

exerCise 2-12

perform the following irrational expressions by rationalizing the denominators:

a.
2

2
 b.

3

3
 c.

a

a

in these cases of rationalization, the simple use of the command simplify solves problems. You can also use the
command radsimp.

a.

>> simplify (sym (2/sqrt (2)))

Ans =

 2 ^(1/2)

b.

>> simplify (sym (3/sqrt (3)))

Ans =

 3 ^(1/2)

c.

>> syms a
>> simplify (sym (a/sqrt (a)))

Ans =

 a^(1/2)

Chapter 2 ■ Numbers, OperatOrs, Variables aNd FuNCtiONs

59

exerCise 2-13

Given the vector variables a = [p,2p,3p,4p,5p] and b = [e, 2e, 3e, 4e, 5e] calculate c = sine(a) + b, d = cosh(a),
e = ln(b), f = c * d, g = c/d, h = d 2.

>> a=[pi,2*pi,3*pi,4*pi,5*pi],b=[exp(1),2*exp(1),3*exp(1),4*exp(1),5*exp(1)]

a =

 3.1416 6.2832 9.4248 12.5664 15.7080

b =

 2.7183 5.4366 8.1548 10.8731 13.5914

>> c=sin(a)+b,d=cosh(a),e=log(b),f=c.*d,g=c./d,h=d.^2

c =

 2.7183 5.4366 8.1548 10.8731 13.5914

d =

 1.0e + 006 *

 0.0000 0.0003 0.0062 0.1434 3.3178

e =

 1.0000 1.6931 2.0986 2.3863 2.6094

f =

 1.0e + 007 *

 0.0000 0.0001 0.0051 0.1559 4.5094

g =

 0.2345 0.0203 0.0013 0.0001 0.0000

h =

 1.0e + 013 *

 0.0000 0.0000 0.0000 0.0021 1.1008

Chapter 2 ■ Numbers, OperatOrs, Variables aNd FuNCtiONs

60

exerCise 2-14

Given the vector of the first 10 natural numbers, find:

1. the sixth element

2. its elements located between the fourth and the seventh both inclusive

3. its elements located between the second and the ninth both including three by three

4. the elements of the number 3, but major to minor

>> x =(1:10)

x =

 1 2 3 4 5 6 7 8 9 10

>> x (6)

Ans =

 6

We have obtained the sixth element of the vector x.

>> x(4:7)

Ans =

 4 5 6 7

We have obtained the elements of the vector x located between the fourth and the seventh, both inclusive.

>> x(2:3:9)

Ans =

 2 5 8

We have obtained the elements of the vector x located between the second and ninth, both inclusive, but
separated by three in three units.

>> x(9:-3:2)

Ans =

 9 6 3

We have obtained the elements of the vector x located between the ninth and second, both inclusive, but
separated by three in three units and starting at the ninth.

Chapter 2 ■ Numbers, OperatOrs, Variables aNd FuNCtiONs

61

exerCise 2-15

Given the 2x3 matrix whose rows consist of the first six odd numbers:

Cancel your element (2, 3), transpose it and attach it the identity matrix of order 3 on your right.

if C is what we call this the matrix obtained previously, build an array D extracting the odd columns of the C
matrix, a matrix and formed by the intersection of the first two rows of C and its third and fifth columns, and a
matrix F formed by the intersection of the first two rows and the last three columns of the matrix C.

build the matrix diagonal G such that the elements of the main diagonal are the same as the diagonal main of D.

We build the matrix H, formed by the intersection of the first and third rows of C and its second, third and fifth
columns.

We consider first the 2 x 3 matrix whose rows are the 6 consecutive odd first:

>> A = [1 3 5; 7 9 11]

A =

 1 3 5
 7 9 11

Now we are going to cancel the element (2, 3), that is, its last element:

>> A (2,3) = 0

A =

 1 3 5
 7 9 0

then consider the B matrix transpose of A:

>> B = A'

B =

 1 7
 3 9
 5 0

We now construct a matrix C, formed by the matrix B and the matrix identity of order 3 attached to its right:

>> C = [B eye(3)]

C =

 1 7 1 0 0
 3 9 0 1 0
 5 0 0 0 1

Chapter 2 ■ Numbers, OperatOrs, Variables aNd FuNCtiONs

62

We are going to build a matrix D extracting odd columns of the matrix C, a parent and formed by the intersection
of the first two rows of C and its third and fifth columns, and a matrix F formed by the intersection of the first two
rows and the last three columns of the matrix C :

>> D = C(:,1:2:5)

D =

 1 1 0
 3 0 0
 5 0 1

>> E = C([1 2],[3 5])

E =

 1 0
 0 0

>> F = C([1 2],3:5)

F =

 1 0 0
 0 1 0

Now we build the diagonal matrix G such that the elements of the main diagonal are the same as those of the
main diagonal of D :

>> G = diag (diag (D))

G =

 1 0 0
 0 0 0
 0 0 1

then build the matrix H, formed by the intersection of the first and third rows of C and its second, third and
fifth columns:

>> H = C([1 3],[2 3 5])

H =

 7 1 0
 0 0 1

Chapter 2 ■ Numbers, OperatOrs, Variables aNd FuNCtiONs

63

exerCise 2-16

build an array (I),formed by the identity matrix of order 5 x 4 and zero and unit matrices of the same order
attached to your right. remove the first row of I and, finally, form the matrix J with the odd rows and column pairs
and and estimate your order (size).

in addition, construct a random order 3 x 4 matrix K and first reverse the order of its ranks, then the order of its
columns and then the order of the rows and columns at the same time. Finally, find the matrix L of order 4 x 3
whose columns are taking the elements of K columns sequentially.

>> I = [eye (5.4) zeros (5.4) ones (5.4)]

Ans =

 1 0 0 0 0 0 0 0 1 1 1 1
 0 1 0 0 0 0 0 0 1 1 1 1
 0 0 1 0 0 0 0 0 1 1 1 1
 0 0 0 1 0 0 0 0 1 1 1 1
 0 0 0 0 0 0 0 0 1 1 1 1

>> I(1,:)

Ans =

 1 0 0 0 0 0 0 0 1 1 1 1

>> J = I (1:2:5, 2:2:12)

J =

 0 0 0 0 1 1
 0 0 0 0 1 1
 0 0 0 0 1 1

>> size (J)

Ans =

 3 6

then we build a random matrix K of order 3 x 4 and reverse the order of its ranks, then the order of its columns
and then the order of the rows and columns at the same time. Finally, we find the matrix L of order 4 x 3 whose
columns are taking the elements of K columns sequentially.

>> K = rand (3.4)

K =

 0.5269 0.4160 0.7622 0.7361
 0.0920 0.7012 0.2625 0.3282
 0.6539 0.9103 0.0475 0.6326

Chapter 2 ■ Numbers, OperatOrs, Variables aNd FuNCtiONs

64

>> K(3:-1:1,:)

Ans =

 0.6539 0.9103 0.0475 0.6326
 0.0920 0.7012 0.2625 0.3282
 0.5269 0.4160 0.7622 0.7361

>> K(:,4:-1:1)

Ans =

 0.7361 0.7622 0.4160 0.5269
 0.3282 0.2625 0.7012 0.0920
 0.6326 0.0475 0.9103 0.6539

>> K(3:-1:1,4:-1:1)

Ans =

 0.6326 0.0475 0.9103 0.6539
 0.3282 0.2625 0.7012 0.0920
 0.7361 0.7622 0.4160 0.5269

"L = reshape(K,4,3)

L =

 0.5269 0.7012 0.0475
 0.0920 0.9103 0.7361
 0.6539 0.7622 0.3282
 0.4160 0.2625 0.6326

exerCise 2-17

Given the square matrix of order 3, whose ranks are the first 9 natural numbers, obtain its inverse and transpose
its diagonal. transform it into a lower triangular matrix and rotate it 90 degrees. Get the sum of the elements in
the first row and the sum of the diagonal elements. extract the subarray whose diagonal are the elements a11 and
a22 and also remove the subarray with diagonal elements a11 and a33.

>> M = [1,2,3;4,5,6;7,8,9]

M =

 1 2 3
 4 5 6
 7 8 9

Chapter 2 ■ Numbers, OperatOrs, Variables aNd FuNCtiONs

65

>> A = inv (M)

Warning: Matrix is close to singular or badly scaled.
 Results may be inaccurate. RCOND = 2. 937385e-018

A =

 1.0e + 016 *

 0.3152 - 0.6304 0.3152
 -0.6304 1.2609 - 0.6304
 0.3152 - 0.6304 0.3152

>> B = M'

B =
 1 4 7
 2 5 8
 3 6 9

>> V = diag (M)

V =

 1
 5
 9

>> TI = tril (M)

TI =

 1 0 0
 4 5 0
 7 8 9
>> TS = triu (M)

TS =

 1 2 3
 0 5 6
 0 0 9

>> TR = rot90 (M)

TR =

 3 6 9
 2 5 8
 1 4 7

Chapter 2 ■ Numbers, OperatOrs, Variables aNd FuNCtiONs

66

>> s = M (1,1) + M (1,2) + M (1.3)

s =

 6

>> sd = M (1,1) + M (2.2) + M (3.3)

SD =

 15

>> SM = M (1:2, 1:2)

SM =

 1 2
 4 5

>> SM1 = M([1 3],[1 3])

SM1 =

 1 3
 7 9

exerCise 2-18

Given the square matrix of order 3, whose ranks are the 9 first natural numbers (non-zero), identify their values
less than 5.

if we now consider the vector whose elements are the first 9 numbers natural (non-zero) and the vector with
the same elements from greater to lesser, identify the resulting values to the elements of the second vector and
subtract the number 1 if the corresponding element of the first vector is greater than 2, or the number 0 if it is
less than or equal to 2.

>> X = 5 * ones (3.3); X > = [1 2 3; 4 5 6 and 7 8 9]

Ans =

 1 1 1
 1 1 0
 0 0 0

the elements of the array X that are greater or equal to the matrix [1 2 3, 4 5 6, 7 8 9] correspond to a 1 in the
matrix response. the rest of the elements correspond to a 0 (the result of the operation would be the same if we
compare the matrix [1 2 3; 4 5 6 and 7 8 9], using the expression X = 5; X >= [1 2 3 4 5 6; 7-8-9]).

Chapter 2 ■ Numbers, OperatOrs, Variables aNd FuNCtiONs

67

>> X = 5; X > = [1 2 3; 4 5 6 and 7 8 9]

Ans =

 1 1 1
 1 1 0
 0 0 0

then we meet the second part of the exercise:

>> A = 1:9, B = 10-A, and = a > 4, Z = B-(A>2)

A =
 1 2 3 4 5 6 7 8 9
B =
 9 8 7 6 5 4 3 2 1
Y =
 0 0 0 0 1 1 1 1 1
Z =
 9 8 6 5 4 3 2 1 0

the values of Y equal to 1 correspond to elements of A larger than 4. Z values result from subtracting 1 from
the corresponding elements of B if the corresponding element of A is greater than 2, or the number 0 if the
corresponding element of A is less than or equal to 2.

exerCise 2-19

Find the matrix difference between a random square matrix of order 4 and a normal random matrix of order 4.
Calculate the transpose and the inverse of the above difference. Verify that the reverse is correctly calculated.

>> A = rand (4) - randn (4)

A =

 0.9389 - 0.0391 0.4686 0.6633
 -0.5839 1.3050 - 0.0698 1.2727
 -1.2820 - 0.4387 - 0.5693 - 0.0881
 -0.5038 - 1.0834 1.2740 1.2890

We calculate the inverse and multiply it by the initial matrix to verify that it is the identity matrix.

>> B = inv (A)

B =

 0.9630 - 0.1824 0.1288 - 0.3067
 -0.8999 0.4345 - 0.8475 - 0.0239
 -1.6722 0.0359 - 1.5242 0.7209
 1.2729 0.2585 0.8445 - 0.0767

Chapter 2 ■ Numbers, OperatOrs, Variables aNd FuNCtiONs

68

>> A * B

Ans =

 1.0000 0.0000 0 - 0.0000
 0 1.0000 - 0.0000 0.0000
 -0.0000 - 0.0000 1.0000 0.0000
 -0.0000 0.0000 0.0000 1.0000

>> B * A

Ans =

 1.0000 0.0000 0.0000 0.0000
 -0.0000 1.0000 - 0.0000 0.0000
 -0.0000 0.0000 1.0000 0.0000
 -0.0000 - 0.0000 0 1.0000

>> A '

Ans =

 0.9389 - 0.5839 - 1.2820 - 0.5038
 -0.0391 1.3050 - 0.4387 - 1.0834
 0.4686 - 0.0698 - 0.5693 1.2740
 0.6633 1.2727 - 0.0881 1.2890

exerCise 2-20

Given the function f (x) = x 3 calculate f (2) and f (b+2). We now consider the function of two variables f (a, b) = a + b
and we want to calculate f (4, b), f (a, 5) and (f (3, 5)).

> f = 'x ^ 3'

f =

 x ^ 3

>> A = subs(f,2)

A =

 8

>> syms b
>> B = subs (f, b+2)

B =

 (b+2) ^ 3

Chapter 2 ■ Numbers, OperatOrs, Variables aNd FuNCtiONs

69

>> syms a b
>> subs (a + b, a, 4)

Ans =

 4 + b

>> subs(a+b,{a,b},{3,5})

Ans =

 8

exerCise 2-21

Find the inverse function of f (x) = sin(x 2) and verify that the result is correct.

>> syms x
>> f = sin(x^2)

f =

 sin(x^2)

>> g = finverse (f)

g =

 asin(x) ^(1/2)

>> compose (f, g)

Ans =

 x

Chapter 2 ■ Numbers, OperatOrs, Variables aNd FuNCtiONs

70

exerCise 2-22

Given functions f (x) = sin(cos(x1/2) and g(x) = sqrt(tan(x 2)) calculate the composite of f and g and the composite g
and f. also calculate the inverse of functions f and g.

>> syms x, f = (cos (x ^(1/2)));
>> g = sqrt (tan(x^2));
>> simple (compose(f,g))

Ans =

 sin (cos (tan(x^2) ^(1/4)))

>> simple (compose(g,f))

Ans =

 tan (sin (cos (x ^(1/2))) ^ 2) ^(1/2)

>> F = finverse (f)

F =

 acos(asin (x)) ^ 2

>> G = finverse (g)

G =

 atan(x^2) ^(1/2)

71

Chapter 3

Complex Numbers and Functions
of Complex Variables

Complex Numbers
Complex numbers are easily implemented in MATLAB in standard binary form a+bi or a+bj, where the symbol i or j
represents the imaginary unit. It is not necessary to include the product symbol (the asterisk) before the imaginary
unit, but if it is included, everything will still work correctly. However, it is important that spaces are not introduced
between the imaginary unit and its coefficient.

A complex number can have a symbolic real or imaginary part, and operations on complex numbers can be
carried out in any mode of precision that is set with the command format. Therefore, it is possible to work with
complex numbers in exact rational format via the command format rat.

The common operations (sum, difference, product, division and exponentiation) are carried out on complex
numbers in the usual way. Examples are shown in Figure 3-1.

Chapter 3 ■ Complex Numbers aNd FuNCtioNs oF Complex Variables

72

Obviously, as the real numbers are a subset of the complex numbers, a function of complex variables will also be
valid for real variables.

General Functions of Complex Variables
MATLAB has a range of preset general functions of complex variables, which of course will also be valid for integer,
rational, and real variables. The most important functions are presented in the following sections.

Trigonometric Functions of a Complex Variable
Below is a table of the trigonometric functions of a complex variable and their inverses that MATLAB incorporates,
illustrated with examples.

Figure 3-1.

Chapter 3 ■ Complex Numbers aNd FuNCtioNs oF Complex Variables

73

Function Inverse

sin (z) sine

>> sin(5-6i)

ans =

 -1 9343e + 002-5 7218e + 001i

asin(z) arcsine

>> asin(1-i)

ans =

 0.6662 - 1.0613i

cos (z) cosine

>> cos(3 + 4i)

ans =

 -27.0349 - 3.8512i

acos (z) arccosine

>> acos(-i)

ans =

 1.5708 + 0.8814i

tan (z) tangent

>> tan(pi/4i)

ans =

 0 - 0.6558i

atan(z) and atan2(z) arctangent

>> atan(-pi*i)

ans =

 1.5708 - 0.3298i

csc (z) inverse cosecant

>> csc(1-i)

ans =

 0.6215 + 0.3039i

acsc (z) arccosecant

>> acsc(2i)

ans =

 0 - 0.4812i

sec (z) secant

>> sec(-i)

ans =

 0.6481

asec (z) arcsecant

>> asec(0.6481+0i)

ans =

 0 + 0.9999i

cot (z) cotangent

>> cot(-j)

ans =

 0 + 1.3130i

acot (z) arccotangent

>> acot(1-6j)

ans =

 0.0277 + 0.1635i

Chapter 3 ■ Complex Numbers aNd FuNCtioNs oF Complex Variables

74

Hyperbolic Functions of a Complex Variable
Below is a table of the hyperbolic functions of a complex variable and their inverses that MATLAB incorporates,
illustrated with examples.

Function Inverse

sinh(z) hyperbolic sine

>> sinh(1+i)

ans =

 0.6350 + 1.2985i

asinh(z) arc hyperbolic sine

>> asinh(0.6350 + 1.2985i)

ans =

 1.0000 + 1.0000i

cosh(z) hyperbolic cosine

>> cosh(1-i)

ans =

 0.8337 - 0.9889i

acosh(z) arc hyperbolic cosine

>> acosh(0.8337 - 0.9889i)

ans =

 1.0000 - 1.0000i

tanh(z) hyperbolic tangent

>> tanh(3-5i)

ans =

 1.0042 + 0.0027i

atanh(z) arc hyperbolic tangent

>> atanh(3-41)

ans =

 -0.0263 - 1.5708i

csch(z) hyperbolic cosecant

>> csch(i)

ans =

 0 - 1.1884i

acsch (z) arc hyperbolic cosecant

>> acsch(- 1.1884i)

ans =

 0 + 1.0000i

sech(z) hyperbolic secant

>> sech(i^i)

ans=

 0.9788

asech(z) arc hyperbolic secant

>> asech(5-0i)

ans =

 0 + 1.3694i

coth(z) hyperbolic cotangent

>> coth(9+i)

ans =

 1.0000 - 0.0000i

acoth(z) arc hyperbolic cotangent

>> acoth(1-i)

ans =

 0.4024 + 0.5536i

Chapter 3 ■ Complex Numbers aNd FuNCtioNs oF Complex Variables

75

Exponential and Logarithmic Functions of a Complex Variable
Below is a table of exponential and logarithmic functions that MATLAB incorporates, illustrated with examples.

Function Meaning

exp (z) Base e exponential function (e ^ x)

>> exp(1-i)

ans =

 1.4687 - 2.2874i

log (x) Base e logarithm

>> log(1.4687-2.2874i)

ans =

 1.0000 - 1.0000i

log10 (x) Base 10 logarithm

>> log10 (100 + 100i)

ans =

 2.1505 + 0.3411i

log2 (x) Base 2 logarithm

>> log2(4-6i)

ans =

 2.8502 - 1.4179i

pow2 (x) Base 2 power function

>> pow2(2.8502-1.4179i)

ans =

 3.9998 - 6.0000i

sqrt (x) Square root

>> sqrt(1+i)

ans =

 1.0987 + 0.4551i

Chapter 3 ■ Complex Numbers aNd FuNCtioNs oF Complex Variables

76

Specific Functions of a Complex Variable
MATLAB incorporates a group of functions specifically to work with moduli, arguments, and real and imaginary parts
of complex numbers. Among these are the following:

(continued)

Function Meaning

abs (Z) The modulus (absolute value) of Z

>> abs(12.425-8.263i)

ans =

 14.9217

angle (Z) The argument of Z

>> angle(12.425-8.263i)

ans =

 -0.5869

conj (Z) The complex conjugate of Z

>> conj(12.425-8.263i)

ans =

 12.4250 + 8.2630i

real (Z) The real part of Z

>> real(12.425-8.263i)

ans =

 12.4250

imag (Z) The imaginary part of Z

>> imag(12.425-8.263i)

ans =

 -8.2630

floor (Z) Applies the floor function to real(Z) and imag(Z)

>> floor(12.425-8.263i)

ans =

 12.0000 - 9.0000i

Chapter 3 ■ Complex Numbers aNd FuNCtioNs oF Complex Variables

77

Function Meaning

ceil (Z) Applies the ceil function to real(Z) and imag(Z)

>> ceil(12.425-8.263i)

ans =

 13.0000 - 8.0000i

round (Z) Applies the round function to real(Z) and
imag(Z)

>> round(12.425-8.263i)

ans =

 12.0000 - 8.0000i

fix (Z) Applies the fix function to real(Z) and imag(Z)

>> fix(12.425-8.263i)

ans =

 12.0000 8.0000i

Basic Functions with a Complex Vector Argument
MATLAB enables you to work with complex matrices and vector functions. We must not forget that these functions
are also valid for real variables, since the real numbers are a special case of the complex numbers, being complex
numbers with zero imaginary part. Below is a table summarizing the specific functions of a complex vector that
MATLAB offers. Later, when we tabulate the functions of a complex matrix variable, we will observe that all of them
are also valid for vector variables, a vector being a particular case of a matrix.

Chapter 3 ■ Complex Numbers aNd FuNCtioNs oF Complex Variables

78

max (V) Maximum component (for complex vectors the max is calculated as the component with
maximum absolute value)

>> max([1-i 1+i 3-5i 6i])

ans =

 0 + 6.0000i

>> max([1, 0, -23, 12, 16])

ans =

 16

min (V) Minimum component (for complex vectors the min is calculated as the component with
minimum absolute value)

>> min([1-i 1+i 3-5i 6i])

ans =

 1.0 - 1.0000i

>> min([1, 0, -23, 12, 16])

ans =

 -23

mean (V) Arithmetic mean of the components of V

>> mean([1-i 1+i 3-5i 6i])

ans =

 1.2500 + 0.2500i

>> mean([1, 0, -23, 12, 16])

ans =

 1.2000

median (V) Median of the components of V

>> median([1-i 1+i 3-5i 6i])

ans =

 2.0000 2.0000i

>> median([1, 0, - 23, 12, 16])

ans =

 1

(continued)

Chapter 3 ■ Complex Numbers aNd FuNCtioNs oF Complex Variables

79

std (V) Standard deviation of the components of V

>> std([1-i 1+i 3-5i 6i])

ans =

 4.7434

>> std([1, 0, -23, 12, 16])

ans =

 15.1888

sort (V) Sorts the components of V in ascending order. For complex vectors the order is determined by the
absolute values of the components.

>> sort([1-i 1+i 3-5i 6i])

ans =

 Columns 1 through 2

 1.0000 - 1.0000i 1.0000 + 1.0000i

 Columns 3 through 4

 3.0000 - 5.0i 6.0000i

>> sort([1, 0, -23, 12, 16])

ans =

 -23 0 1 12 16

sum (V) Sums the components of V

>> sum([1-i 1+i 3-5i 6i])

ans =

 5.0000 + 1.0000i

>> sum([1, 0, -23, 12, 16])

ans =

 6

prod (V) Finds the product of the elements of V, so n!= prod(1:n)

>> prod([1-i 1+i 3-5i 6i])

ans =

 60.0000 + 36.0000i

>> prod([1, 0, -23, 12, 16])

ans =

 0

(continued)

Chapter 3 ■ Complex Numbers aNd FuNCtioNs oF Complex Variables

80

cumsum (V) Gives the cumulative sums of V

>> cumsum([1-i 1+i 3-5i 6i])

ans =

 Columns 1 through 2

 1.0000 - 1.0000i 2.0000

 Columns 3 through 4

 5.0000 - 5.0000i 5.0000 + 1.0000i

>> cumsum([1, 0, -23, 12, 16])

ans =

 1 1 -22 -10 -6

cumprod (V) Gives the cumulative products of V

>> cumprod([1-i 1+i 3-5i 6i])

ans =

 Columns 1 through 2

 1.0000 - 1.0000i 2.0000

 Columns 3 through 4

 6.0000 - 10.0000i 60.0000 + 36.0000i

>> cumprod([1, 0, -23, 12, 16])

ans =

 1 0 0 0 0

diff (V) Gives the vector of first differences of the components of V (V
t
 - V

t-1
)

>> diff([1-i 1+i 3-5i 6i])

ans =

 0 + 2.0000i 2.0000 - 6.0000i -3.0000 + 11.0000i

>> diff([1, 0, -23, 12, 16])

ans =

 -1 -23 35 4

(continued)

Chapter 3 ■ Complex Numbers aNd FuNCtioNs oF Complex Variables

81

gradient (V) Gives the gradient of V

> gradient([1-i 1+i 3-5i 6i])

ans =

 Columns 1 through 3

 0 + 2.0000i 1.0000 - 2.0000i -0.5000 + 2.5000i

 Column 4

 -3.0000 + 11.0000i

>> gradient([1, 0, -23, 12, 16])

ans =

 -1.0000 -12.0000 6.0000 19.5000 4.0000

del2 (V) Gives the Laplacian of V (5-point discrete)

>> del2([1-i 1+i 3-5i 6i])

ans =

 Columns 1 through 3

 2.2500 - 8.2500i 0.5000 - 2.0000i -1.2500 + 4.2500i

 Column 4

 -3.0000 + 10.5000i

>> del2 ([1, 0, -23, 12, 16])

ans =

 -25.5000 -5.5000 14.5000 -7.7500 -30.0000

fft (V) Returns the discrete Fourier transform of V

>> fft([1-i 1+i 3-5i 6i])

ans =

 Columns 1 through 3

 5.0000 + 1.0000i -7.0000 + 3.0000i 3.0000 - 13.0000i

 Column 4

 3.0000 + 5.0000i

>> fft([1, 0, -23, 12, 16])

ans =

 Columns 1 through 3

 6.0000 14.8435 + 35.7894i -15.3435 - 23.8824i

 Columns 4 through 5

 -15.3435 + 23.8824i 14.8435 - 35.7894i

(continued)

Chapter 3 ■ Complex Numbers aNd FuNCtioNs oF Complex Variables

82

fft2 (V) Returns the two-dimensional discrete Fourier transform of V

>> fft2([1-i 1+i 3-5i 6i])

ans =

 Columns 1 through 3

 5.0000 + 1.0000i -7.0000 + 3.0000i 3.0000 - 13.0000i

 Column 4

 3.0000 + 5.0000i

>> fft2([1, 0, -23, 12, 16])

ans =

 Columns 1 through 3

 6.0000 14.8435 + 35.7894i -15.3435 - 23.8824i

 Columns 4 through 5

 -15.3435 + 23.8824i 14.8435 - 35.7894i

ifft (V) Returns the inverse discrete Fourier transform of V

>> ifft([1-i 1+i 3-5i 6i])

ans =

 Columns 1 through 3

 1.2500 + 0.2500i 0.7500 + 1.2500i 0.7500 - 3.2500i

 Column 4

 -1.7500 + 0.7500i

>> ifft([1, 0, -23, 12, 16])

ans =

 Columns 1 through 3

 1.2000 2.9687 - 7.1579i -3.0687 + 4.7765i

 Columns 4 through 5

 -3.0687 - 4.7765i 2.9687 + 7.1579i

(continued)

Chapter 3 ■ Complex Numbers aNd FuNCtioNs oF Complex Variables

83

ifft2 (V) Returns the inverse two dimensional discrete Fourier transform of V

>> ifft2([1-i 1+i 3-5i 6i])

ans =

 Columns 1 through 3

 1.2500 + 0.2500i 0.7500 + 1.2500i 0.7500 - 3.2500i

 Column 4

 -1.7500 + 0.7500i

>> ifft2([1, 0, -23, 12, 16])

ans =

 Columns 1 through 3

 1.2000 2.9687 - 7.1579i -3.0687 + 4.7765i

 Columns 4 through 5

 -3.0687 - 4.7765i 2.9687 + 7.1579i

Chapter 3 ■ Complex Numbers aNd FuNCtioNs oF Complex Variables

84

Basic Functions with a Complex Matrix Argument
The functions described in the above table also support as an argument a complex matrix Z, in which case the result
is a row vector whose components are the results of applying the function to each column of the matrix. Let us not
forget that these functions are also valid for real variables.

max (Z) Returns a vector indicating the maximal components of each column of the matrix Z (for complex
matrices the maximum is determined by the absolute values of the components)

>> Z=[1-i 3i 5;-1+i 0 2i;6-5i 8i -7]

Z =

 1.0000 - 1.0000i 0 + 3.0000i 5.0000
 -1.0000 + 1.0000i 0 0 + 2.0000i
 6.0000 - 5.0000i 0 + 8.0000i -7.0000

>> Z=[1-i 3i 5-12i;-1+i 0 2i;6-5i 8i -7+6i]

Z =

 1.0000 - 1.0000i 0 + 3.0000i 5.0000 - 12.0000i
 -1.0000 + 1.0000i 0 0 + 2.0000i
 6.0000 - 5.0000i 0 + 8.0000i -7.0000 + 6.0000i

>> max(Z)

ans =

 6.0000 - 5.0000i 0 + 8.0000i 5.0000 - 12.0000i

>> Z1=[1 3 5;-1 0 2;6 8 -7]

Z1 =

 1 3 5
 -1 0 2
 6 8 -7

>> max(Z1)

ans =

 6 8 5

min (Z) Returns a vector indicating the minimal components of each column of the matrix Z (for complex
matrices the minimum is determined by the absolute values of the components)

>> min(Z)

ans =

 1.0000 - 1.0000i 0 0 + 2.0000i

>> min(Z1)

ans =

 -1 0 -7

(continued)

Chapter 3 ■ Complex Numbers aNd FuNCtioNs oF Complex Variables

85

mean (Z) Returns the vector of arithmetic means of the columns of the matrix Z

>> mean(Z)

ans =

 2.0000 - 1.6667i 0 + 3.6667i -0.6667 - 1.3333i

>> mean(Z1)

ans =

 2.0000 3.6667 0

median (Z) Returns the vector of medians of the columns of the matrix Z

>> median(Z)

ans =

 -1.0000 + 1.0000i 0 + 3.0000i -7.0000 + 6.0000i

>> median(Z1)

ans =

 1 3 2

std (Z) Returns the vector of standard deviations of the columns of the matrix Z

>> std(Z)

ans =

 4.7258 4.0415 11.2101

>> std(Z1)

ans =

 3.6056 4.0415 6.2450

sort (Z) Sorts in ascending order the components of the columns of Z. For complex matrices the ordering is
by absolute value

>> sort(Z)

ans =

 1.0000 - 1.0000i 0 0 + 2.0000i
 -1.0000 + 1.0000i 0 + 3.0000i -7.0000 + 6.0000i
 6.0000 - 5.0000i 0 + 8.0000i 5.0000 - 12.0000i

>> sort(Z1)

ans =

 -1 0 -7

 1 3 2
 6 8 5

(continued)

Chapter 3 ■ Complex Numbers aNd FuNCtioNs oF Complex Variables

86

sum (Z) Returns the sum of the components of the columns of the matrix Z

>> sum(Z)

ans =

 6.0000 - 5.0000i 0 + 11.0000i -2.0000 - 4.0000i

>> sum(Z1)

ans =

 6 11 0

prod (Z) Returns the vector of products of the elements of the columns of the matrix Z

>> prod(Z)

ans =

 1.0e+002 *

 0.1000 + 0.1200i 0 -2.2800 + 0.7400i

>> prod(Z1)

ans =

 -6 0 -70

cumsum (Z) Gives the matrix of cumulative sums of the columns of Z

>> cumsum(Z)

ans =

 1.0000 - 1.0000i 0 + 3.0000i 5.0000 - 12.0000i

 0 0 + 3.0000i 5.0000 - 10.0000i
 6.0000 - 5.0000i 0 + 11.0000i -2.0000 - 4.0000i

>> cumsum(Z1)

ans =

 1 3 5
 0 3 7
 6 11 0

(continued)

Chapter 3 ■ Complex Numbers aNd FuNCtioNs oF Complex Variables

87

cumprod (V) Returns the cumulative products of the columns of the matrix Z

>> cumprod(Z)

ans =

 1.0e+002 *

 0.0100 - 0.0100i 0 + 0.0300i 0.0500 - 0.1200i
 0 + 0.0200i 0 0.2400 + 0.1000i
 0.1000 + 0.1200i 0 -2.2800 + 0.7400i

>> cumprod(Z1)

ans =

 1 3 5
 -1 0 10
 -6 0 -70

diff (Z) Returns the matrix of first differences of the components of the columns of Z

>> diff(Z)

ans =

 -2.0000 + 2.0000i 0 - 3.0000i -5.0000 + 14.0000i
 7.0000 - 6.0000i 0 + 8.0000i -7.0000 + 4.0000i

>> diff(Z1)

ans =

 -2 -3 -3

 7 8 -9

gradient (Z) Returns the matrix of gradients of the columns of Z

>> gradient(Z)

ans =

 -1.0000 + 4.0000i 2.0000 - 5.5000i 5.0000 - 15.0000i
 1.0000 - 1.0000i 0.5000 + 0.5000i 0 + 2.0000i
 -6.0000 + 13.0000i -6.5000 + 5.5000i -7.0000 - 2.0000i

>> gradient(Z1)

ans =

 2.0000 2.0000 2.0000
 1.0000 1.5000 2.0000
 2.0000 –6.5000 -15.0000

(continued)

Chapter 3 ■ Complex Numbers aNd FuNCtioNs oF Complex Variables

88

del2 (V) Returns the discrete Laplacian of the columns of the matrix Z

>> del2(Z)

ans =

 3.7500 - 6.7500i 1.5000 - 2.0000i 1.0000 - 7.2500i
 2.0000 - 1.2500i -0.2500 + 3.5000i -0.7500 - 1.7500i
 2.0000 - 5.7500i -0.2500 - 1.0000i -0.7500 - 6.2500i

>> del2(Z1)

ans =

 2.2500 2.7500 -1.5000
 2.5000 3.0000 -1.2500
 -2.0000 -1.5000 -5.7500

fft (Z) Returns the discrete Fourier transform of the columns of the matrix Z

>> fft(Z)

ans =

 6.0000 - 5.0000i 0 + 11.0000i -2.0000 - 4.0000i
 3.6962 + 7.0622i -6.9282 - 1.0000i 5.0359 - 22.0622i
 -6.6962 - 5.0622i 6.9282 - 1.0000i 11.9641 - 9.9378i

>> fft(Z1)

ans =

 6.0000 11.0000 0

 -1.5000 + 6.0622i -1.0000 + 6.9282i 7.5000 - 7.7942i
 -1.5000 - 6.0622i -1.0000 - 6.9282i 7.5000 + 7.7942i

fft2 (Z) Returns the two-dimensional discrete Fourier transform of the columns of the matrix Z

>> fft2(Z)

ans =

 4.0000 + 2.0000i 19.9904 - 10.2321i -5.9904 - 6.7679i
 1.8038 - 16.0000i 22.8827 + 28.9545i -13.5981 + 8.2321i
 12.1962 - 16.0000i -8.4019 + 4.7679i -23.8827 - 3.9545i

>> fft2(Z1)

ans =

 17.0000 0.5000 - 9.5263i 0.5000 + 9.5263i
 5.0000 + 5.1962i 8.0000 + 13.8564i -17.5000 - 0.8660i
 5.0000 - 5.1962i -17.5000 + 0.8660i 8.0000 - 13.8564i

(continued)

Chapter 3 ■ Complex Numbers aNd FuNCtioNs oF Complex Variables

89

ifft (Z) Returns the inverse discrete Fourier transforms of the columns of the matrix Z

>> ifft(Z)

ans =

 2.0000 - 1.6667i 0 + 3.6667i -0.6667 - 1.3333i
 -2.2321 - 1.6874i 2.3094 - 0.3333i 3.9880 - 3.3126i
 1.2321 + 2.3541i -2.3094 - 0.3333i 1.6786 - 7.3541i

>> ifft(Z1)

ans =

 2.0000 3.6667 0
 -0.5000 - 2.0207i -0.3333 - 2.3094i 2.5000 + 2.5981i
 -0.5000 + 2.0207i -0.3333 + 2.3094i 2.5000 - 2.5981i

ifft2 (Z) Returns the inverse two dimensional discrete Fourier transform of the columns of the matrix Z

>> ifft2(Z)

ans =

 0.4444 + 0.2222i -0.6656 - 0.7520i 2.2212 - 1.1369i
 1.3551 - 1.7778i -2.6536 - 0.4394i -0.9335 + 0.5298i
 0.2004 - 1.7778i -1.5109 + 0.9147i 2.5425 + 3.2172i

>> ifft2(Z1)

ans =

 1.8889 0.0556 + 1.0585i 0.0556 - 1.0585i
 0.5556 - 0.5774i 0.8889 - 1.5396i -1.9444 + 0.0962i
 0.5556 + 0.5774i -1.9444 - 0.0962i 0.8889 + 1.5396i

General Functions with a Complex Matrix Argument
MATLAB incorporates a broad group of hyperbolic, trigonometric, exponential and logarithmic functions that support
a complex matrix as an argument. Obviously, these functions also accept a complex vector as the argument, since a
vector is a particular case of a matrix. All functions are applied element-wise to the matrix.

Trigonometric Functions of a Complex Matrix Variable
Below is a table of the trigonometric functions of a complex variable and their inverses that MATLAB incorporates,
illustrated with examples. In the examples, the matrices Z and Z1 are those introduced in the first example concerning
the sine function.

Chapter 3 ■ Complex Numbers aNd FuNCtioNs oF Complex Variables

90

Trigonometric Functions

sin(z) sine function

>> Z=[1-i, 1+i, 2i;3-6i, 2+4

i, -i;i,2i,3i]

Z =

1.0000 - 1.0000i 1.0000 + 1.0000i 0 + 2.0000i
3.0000 - 6.0000i 2.0000 + 4.0000i 0 - 1.0000i
 0 + 1.0000i 0 + 2.0000i 0 + 3.0000i

>> Z1=[1,1,2;3,2,-1;1,2,3]

Z1 =

1 1 2
3 2 -1
1 2 3

>> sin(Z)

ans =

1.0e+002 *

0.0130 - 0.0063i 0.0130 + 0.0063i 0 + 0.0363i
0.2847 + 1.9969i 0.2483 - 0.1136i 0 - 0.0118i
 0 + 0.0118i 0 + 0.0363i 0 + 0.1002i

>> sin(Z1)

ans =

0.8415 0.8415 0.9093
0.1411 0.9093 - 0.8415
0.8415 0.9093 0.1411

cos (z) cosine function

>> cos(Z)

ans =

 1.0e+002 *

 0.0083 + 0.0099i 0.0083 - 0.0099i 0.0376
-1.9970 + 0.2847i -0.1136 - 0.2481i 0.0154
 0.0154 0.0376 0.1007

>> cos(Z1)

ans =

 0.5403 0.5403 -0.4161
-0.9900 -0.4161 0.5403
 0.5403 -0.4161 -0.9900

(continued)

Chapter 3 ■ Complex Numbers aNd FuNCtioNs oF Complex Variables

91

Trigonometric Functions

tan (z) tangent function

>> tan(Z)

ans =

 0.2718 - 1.0839i 0.2718 + 1.0839i 0 + 0.9640i
-0.0000 - 1.0000i -0.0005 + 1.0004i 0 - 0.7616i
 0 + 0.7616i 0 + 0.9640i 0 + 0.9951i

>> tan(Z1)

ans =

 1.5574 1.5574 -2.1850
-0.1425 -2.1850 -1.5574
 1.5574 -2.1850 -0.1425

csc (z) cosecant function

>> csc(Z)

ans =

0.6215 + 0.3039i 0.6215 - 0.3039i 0 - 0.2757i
0.0007 - 0.0049i 0.0333 + 0.0152i 0 + 0.8509i
 0 - 0.8509i 0 - 0.2757i 0 - 0.0998i

>> csc(Z1)

ans =

1.1884 1.1884 1.0998
7.0862 1.0998 -1.1884
1.1884 1.0998 7.0862

sec (z) secant function

>> sec(Z)

ans =

 0.4983 - 0.5911i 0.4983 + 0.5911i 0.2658
-0.0049 - 0.0007i -0.0153 + 0.0333i 0.6481
 0.6481 0.2658 0.0993

>> sec(Z1)

ans =

 1.8508 1.8508 -2.4030
-1.0101 -2.4030 1.8508
 1.8508 -2.4030 -1.0101

(continued)

Chapter 3 ■ Complex Numbers aNd FuNCtioNs oF Complex Variables

92

Trigonometric Functions

cot (z) cotangent function

>> cot(Z)

ans =

 0.2176 + 0.8680i 0.2176 - 0.8680i 0 - 1.0373i
-0.0000 + 1.0000i -0.0005 - 0.9996i 0 + 1.3130i
 0 - 1.3130i 0 - 1.0373i 0 - 1.0050i

>> cot(Z1)

ans =

 0.6421 0.6421 -0.4577
-7.0153 -0.4577 -0.6421
 0.6421 -0.4577 -7.0153

Inverse Trigonometric Functions

asin (z) arcsine function

>> asin(Z)

ans =

0.6662 - 1.0613i 0.6662 + 1.0613i 0 + 1.4436i
0.4592 - 2.5998i 0.4539 + 2.1986i 0 - 0.8814i
 0 + 0.8814i 0 + 1.4436i 0 + 1.8184i

>> asin(Z1)

ans =

1.5708 1.5708 1.5708 - 1.3170i
1.5708 - 1.7627i 1.5708 - 1.3170i -1.5708
1.5708 1.5708 - 1.3170i 1.5708 - 1.7627i

acos (z) arccosine function

>> acos(Z)

ans =

0.9046 + 1.0613i 0.9046 - 1.0613i 1.5708 - 1.4436i
1.1115 + 2.5998i 1.1169 - 2.1986i 1.5708 + 0.8814i
1.5708 - 0.8814i 1.5708 - 1.4436i 1.5708 - 1.8184i

>> acos(Z1)

ans =

0 0 0 + 1.3170i
0 + 1.7627i 0 + 1.3170i 3.1416
0 0 + 1.3170i 0 + 1.7627i

(continued)

Chapter 3 ■ Complex Numbers aNd FuNCtioNs oF Complex Variables

93

atan(z) and atan2(z) arctangent function

>> atan(Z)

Warning: Singularity in ATAN. This warning will be removed in a future release.
 Consider using DBSTOP IF NANINF when debugging.
Warning: Singularity in ATAN. This warning will be removed in a future release.
 Consider using DBSTOP IF NANINF when debugging.

ans =

1.0172 - 0.4024i 1.0172 + 0.4024i -1.5708 + 0.5493i
1.5030 - 0.1335i 1.4670 + 0.2006i 0 - Infi
 0 + Infi -1.5708 + 0.5493i -1.5708 + 0.3466i

>> atan(Z1)

ans =

0.7854 0.7854 1.1071
1.2490 1.1071 -0.7854

 0.7854 1.1071 1.2490

acsc (z) arccosecant function

>> acsc(Z)

ans =

0.4523 + 0.5306i 0.4523 - 0.5306i 0 - 0.4812i
0.0661 + 0.1332i 0.0982 - 0.1996i 0 + 0.8814i
 0 - 0.8814i 0 - 0.4812i 0 - 0.3275i

>> acsc(Z1)

ans =

1.5708 1.5708 0.5236
0.3398 0.5236 -1.5708
1.5708 0.5236 0.3398

asec (z) arcsecant function

>> asec(Z)

ans =

1.1185 - 0.5306i 1.1185 + 0.5306i 1.5708 + 0.4812i
1.5047 - 0.1332i 1.4726 + 0.1996i 1.5708 - 0.8814i
1.5708 + 0.8814i 1.5708 + 0.4812i 1.5708 + 0.3275i

>> asec(Z1)

ans =

 0 0 1.0472
1.2310 1.0472 3.1416
 0 1.0472 1.2310

(continued)

Chapter 3 ■ Complex Numbers aNd FuNCtioNs oF Complex Variables

94

acot (z) arccotangent function

>> acot(Z)

warning: singularity in atan. this warning will be removed in a future release.
 consider using dbstop if naninf when debugging.

ans =

0.5536 + 0.4024i 0.5536 - 0.4024i 0 - 0.5493i
0.0678 + 0.1335i 0.1037 - 0.2006i 0 + infi
 0 - infi 0 - 0.5493i 0 - 0.3466i

>> acot(Z1)

ans =

0.7854 0.7854 0.4636
0.3218 0.4636 -0.7854
0.7854 0.4636 0.3218

Hyperbolic Functions of a Complex Matrix Variable
Below is a table of the hyperbolic functions of a complex variable and their inverses that MATLAB incorporates,
illustrated with examples. The matrices Z1 and Z are the same as for the previous examples.

Hyperbolic Functions

sinh (z) hyperbolic sine function

>> sinh(Z)

ans =

0.6350 - 1.2985i 0.6350 + 1.2985i 0 + 0.9093i
9.6189 + 2.8131i -2.3707 - 2.8472i 0 - 0.8415i
 0 + 0.8415i 0 + 0.9093i 0 + 0.1411i

>> sinh(Z1)

ans =

 1.1752 1.1752 3.6269
10.0179 3.6269 -1.1752
 1.1752 3.6269 10.0179

(continued)

Chapter 3 ■ Complex Numbers aNd FuNCtioNs oF Complex Variables

95

Hyperbolic Functions

cosh (z) hyperbolic cosine function

>> cosh(Z)

ans =

0.8337 - 0.9889i 0.8337 + 0.9889i -0.4161
9.6667 + 2.7991i -2.4591 - 2.7448i 0.5403
0.5403 -0.4161 -0.9900

>> cosh(Z1)

ans =

 1.5431 1.5431 3.7622
10.0677 3.7622 1.5431
 1.5431 3.7622 10.0677

tanh (z) hyperbolic tangent function

>> tanh(Z)

ans =

1.0839 - 0.2718i 1.0839 + 0.2718i 0 - 2.1850i
0.9958 + 0.0026i 1.0047 + 0.0364i 0 - 1.5574i
 0 + 1.5574i 0 - 2.1850i 0 - 0.1425i

>> tanh(Z1)

ans =

0.7616 0.7616 0.9640
0.9951 0.9640 -0.7616
0.7616 0.9640 0.9951

csch (z) hyperbolic cosecant function

>> csch(Z)

ans =

0.3039 + 0.6215i 0.3039 - 0.6215i 0 - 1.0998i
0.0958 - 0.0280i -0.1727 + 0.2074i 0 + 1.1884i
 0 - 1.1884i 0 - 1.0998i 0 - 7.0862i

>> csch(Z1)

ans =

0.8509 0.8509 0.2757
0.0998 0.2757 -0.8509
0.8509 0.2757 0.0998

(continued)

Chapter 3 ■ Complex Numbers aNd FuNCtioNs oF Complex Variables

96

Hyperbolic Functions

sech (z) hyperbolic secant function

>> sech(Z)

ans =

0.4983 + 0.5911i 0.4983 - 0.5911i -2.4030
0.0954 - 0.0276i -0.1811 + 0.2021i 1.8508
1.8508 -2.4030 -1.0101

>> sech(Z1)

ans =

0.6481 0.6481 0.2658
0.0993 0.2658 0.6481
0.6481 0.2658 0.0993

coth (z) hyperbolic cotangent function

>> coth(Z)

ans =

0.8680 + 0.2176i 0.8680 - 0.2176i 0 + 0.4577i
1.0042 - 0.0027i 0.9940 - 0.0360i 0 + 0.6421i
 0 - 0.6421i 0 + 0.4577i 0 + 7.0153i

>> coth(Z1)

ans =

1.3130 1.3130 1.0373
1.0050 1.0373 -1.3130
1.3130 1.0373 1.0050

Inverse Hyperbolic Functions

asinh (z) arc hyperbolic sine function

>> asinh(Z)

ans =

1.0613 - 0.6662i 1.0613 + 0.6662i 1.3170 + 1.5708i
2.5932 - 1.1027i 2.1836 + 1.0969i 0 - 1.5708i
 0 + 1.5708i 1.3170 + 1.5708i 1.7627 + 1.5708i

>> asinh(Z1)

ans =

0.8814 0.8814 1.4436
1.8184 1.4436 -0.8814
0.8814 1.4436 1.8184

(continued)

Chapter 3 ■ Complex Numbers aNd FuNCtioNs oF Complex Variables

97

Inverse Hyperbolic Functions

acosh (z) arc hyperbolic cosine function

>> acosh(Z)

ans =

1.0613 - 0.9046i 1.0613 + 0.9046i 1.4436 + 1.5708i
2.5998 - 1.1115i 2.1986 + 1.1169i 0.8814 - 1.5708i
0.8814 + 1.5708i 1.4436 + 1.5708i 1.8184 + 1.5708i

>> acosh(Z1)

ans =

 0 0 1.3170
1.7627 1.3170 0 + 3.1416i
 0 1.3170 1.7627

atanh (z) hyperbolic arctangent function

>> atanh(Z)

ans =

0.4024 - 1.0172i 0.4024 + 1.0172i 0 + 1.1071i
0.0656 - 1.4377i 0.0964 + 1.3715i 0 - 0.7854i
 0 + 0.7854i 0 + 1.1071i 0 + 1.2490i

>> atanh(Z1)

ans =

 inf inf 0.5493 + 1.5708i
0.3466 + 1.5708i 0.5493 + 1.5708i -inf
 inf 0.5493 + 1.5708i 0.3466 + 1.5708i

acsch (z) arc hyperbolic cosecant function

>> acsch(Z)

ans =

0.5306 + 0.4523i 0.5306 - 0.4523i 0 - 0.5236i
0.0672 + 0.1334i 0.1019 - 0.2003i 0 + 1.5708i
 0 - 1.5708i 0 - 0.5236i 0 - 0.3398i

>> acsch(Z1)

ans =

0.8814 0.8814 0.4812
0.3275 0.4812 -0.8814
0.8814 0.4812 0.3275

(continued)

Chapter 3 ■ Complex Numbers aNd FuNCtioNs oF Complex Variables

98

Inverse Hyperbolic Functions

asech (z) arc hyperbolic secant function

>> asech(Z)

ans =

0.5306 + 1.1185i 0.5306 - 1.1185i 0.4812 - 1.5708i
0.1332 + 1.5047i 0.1996 - 1.4726i 0.8814 + 1.5708i
0.8814 - 1.5708i 0.4812 - 1.5708i 0.3275 - 1.5708i

>> asech(Z1)

ans =

0 0 0 + 1.0472i
0 + 1.2310i 0 + 1.0472i 0 + 3.1416i
0 0 + 1.0472i 0 + 1.2310i

acoth (z) arc hyperbolic cotangent function

>> acoth(Z)

ans =

0.4024 + 0.5536i 0.4024 - 0.5536i 0 - 0.4636i
0.0656 + 0.1331i 0.0964 - 0.1993i 0 + 0.7854i
 0 - 0.7854i 0 - 0.4636i 0 - 0.3218i

>> acoth(Z1)

ans =

 Inf Inf 0.5493
0.3466 0.5493 -Inf
 Inf 0.5493 0.3466

Chapter 3 ■ Complex Numbers aNd FuNCtioNs oF Complex Variables

99

Exponential and Logarithmic Functions of a Complex Matrix Variable
Below is a table of the exponential and logarithmic functions that MATLAB incorporates, illustrated with examples.
The matrices Z1 and Z are the same as for the previous examples.

Function Meaning

exp (z) Base e exponential function (e ^ x)

>> exp(Z)

ans =

 1.4687 - 2.2874i 1.4687 + 2.2874i -0.4161 + 0.9093i
19.2855 + 5.6122i -4.8298 - 5.5921i 0.5403 - 0.8415i
 0.5403 + 0.8415i -0.4161 + 0.9093i -0.9900 + 0.1411i

>> exp(Z1)

ans =

 2.7183 2.7183 7.3891
20.0855 7.3891 0.3679
 2.7183 7.3891 20.0855

log (x) Base e logarithm

>> log(Z)

ans =

0.3466 - 0.7854i 0.3466 + 0.7854i 0.6931 + 1.5708i
1.9033 - 1.1071i 1.4979 + 1.1071i 0 - 1.5708i
 0 + 1.5708i 0.6931 + 1.5708i 1.0986 + 1.5708i

>> log(Z1)

ans =

 0 0 0.6931
1.0986 0.6931 0 + 3.1416i
 0 0.6931 1.0986

log10 (x) Base 10 logarithm

>> log10(Z)

ans =

0.1505 - 0.3411i 0.1505 + 0.3411i 0.3010 + 0.6822i
0.8266 - 0.4808i 0.6505 + 0.4808i 0 - 0.6822i
 0 + 0.6822i 0.3010 + 0.6822i 0.4771 + 0.6822i

>> log10(Z1)

ans =

0 0 0.3010
0.4771 0.3010 0 + 1.3644i
0 0.3010 0.4771

(continued)

Chapter 3 ■ Complex Numbers aNd FuNCtioNs oF Complex Variables

100

Function Meaning

log2 (x) Base 2 logarithm

>> log2(Z)

ans =

0.5000 - 1.1331i 0.5000 + 1.1331i 1.0000 + 2.2662i
2.7459 - 1.5973i 2.1610 + 1.5973i 0 - 2.2662i
 0 + 2.2662i 1.0000 + 2.2662i 1.5850 + 2.2662i

>> log2(Z1)

ans =

 0 0 1.0000
1.5850 1.0000 0 + 4.5324i
 0 1.0000 1.5850

pow2 (x) Base 2 power function

>> pow2(Z)

ans =

 1.5385 - 1.2779i 1.5385 + 1.2779i 0.1835 + 0.9830i
-4.2054 + 6.8055i -3.7307 + 1.4427i 0.7692 - 0.6390i
 0.7692 + 0.6390i 0.1835 + 0.9830i -0.4870 + 0.8734i

>> pow2(Z1)

ans =

2.0000 2.0000 4.0000
8.0000 4.0000 0.5000
2.0000 4.0000 8.0000

sqrt (x) Square root function

>> sqrt(Z)

ans =

1.0987 - 0.4551i 1.0987 + 0.4551i 1.0000 + 1.0000i
2.2032 - 1.3617i 1.7989 + 1.1118i 0.7071 - 0.7071i
0.7071 + 0.7071i 1.0000 + 1.0000i 1.2247 + 1.2247i

>> sqrt(Z1)

ans =

1.0000 1.0000 1.4142
1.7321 1.4142 0 + 1.0000i

1.0000 1.4142 1.7321

Chapter 3 ■ Complex Numbers aNd FuNCtioNs oF Complex Variables

101

Specific Functions of Complex Matrix Variables
MATLAB incorporates a group of functions of a complex variable specifically to work with moduli, arguments, and
real and imaginary parts. Among these functions are the following:

Function Meaning

abs (Z) The modulus (absolute value) of Z

>> abs(Z)

ans =

1.4142 1.4142 2.0000
6.7082 4.4721 1.0000
1.0000 2.0000 3.0000

>> abs(Z1)

ans =

1 1 2
3 -2 -1
1 2 3

angle (Z) The argument of Z

>> angle(Z)

ans =

-0.7854 0.7854 1.5708
-1.1071 1.1071 -1.5708
 1.5708 1.5708 1.5708

>> angle(Z1)

ans =

0 0 0
0 0 3.1416
0 0 0

conj (Z) The complex conjugate of Z

>> conj(Z)

ans =

1.0000 + 1.0000i 1.0000 - 1.0000i 0 - 2.0000i
3.0000 + 6.0000i 2.0000 - 4.0000i 0 + 1.0000i
 0 - 1.0000i 0 - 2.0000i 0 - 3.0000i

>> conj(Z1)

ans =

1 1 2
2 -3 -1
1 2 3

(continued)

Chapter 3 ■ Complex Numbers aNd FuNCtioNs oF Complex Variables

102

Function Meaning

real (Z) The real part of Z

>> real(Z)

ans =

1 1 0
3 2 0
0 0 0

>> real(Z1)

ans =

1 1 2
2 -3 -1
1 2 3

imag (Z) The imaginary part of Z

>> imag(Z)

ans =

-1 1 2
-4 6 -1
 1 2 3

>> imag(Z1)

ans =

0 0 0
0 0 0
0 0 0

floor (Z) Applies the floor function to real(Z) and imag(Z)

>> floor(12.357*Z)

ans =

12.0000 - 13.0000i 12.0000 + 12.0000i 0 + 24.0000i
37.0000 - 75.0000i 24.0000 + 49.0000i 0 - 13.0000i
 0 + 12.0000i 0 + 24.0000i 0 + 37.0000i

>> floor(12.357*Z1)

ans =

12 12 24
37 24 -13
12 -24 -37

(continued)

Chapter 3 ■ Complex Numbers aNd FuNCtioNs oF Complex Variables

103

Function Meaning

ceil (Z) Applies the ceil function to real(Z) and imag(Z)

>> ceil(12.357*Z)

ans =

13.0000 - 12.0000i 13.0000 + 13.0000i 0 + 25.0000i
38.0000 - 74.0000i 25.0000 + 50.0000i 0 - 12.0000i
 0 + 13.0000i 0 + 25.0000i 0 + 38.0000i

>> ceil(12.357*Z1)

ans =

13 13 25
38 25 -12
13 25 38

round (Z) Applies the function round to real(Z) and imag(Z)

>> round(12.357*Z)

ans =

12.0000 - 12.0000i 12.0000 + 12.0000i 0 + 25.0000i
37.0000 - 74.0000i 25.0000 + 49.0000i 0 - 12.0000i
 0 + 12.0000i 0 + 25.0000i 0 + 37.0000i

>> round(12.357*Z1)

ans =

12 -12 -25
37 25 -12
12 25 37

fix (Z) Applies the function fix to real(Z) and imag(Z)

>> fix(12.357*Z)

ans =

12.0000 - 12.0000i 12.0000 + 12.0000i 0 + 24.0000i
37.0000 - 74.0000i 24.0000 + 49.0000i 0 - 12.0000i
 0 + 12.0000i 0 + 24.0000i 0 + 37.0000i

>> fix(12.357*Z1)

ans =

12 12 24
24 -37 12
12 -24 -37

(continued)

Chapter 3 ■ Complex Numbers aNd FuNCtioNs oF Complex Variables

104

Operations with Real and Complex Matrix Variables
MATLAB includes the usual operations of sum, difference, product, power, exponentiation and inversion for complex
matrix variables. Obviously all these operations will also be valid for real matrix variables. The following table summarizes
the operations that are valid both for numerical real and complex matrix variables and algebraic matrix variables.

A + B Matrix sum

>> A=[1+i, 1-i, 2i; -i, -3i, 6-5i;2+3i, 2-3i, i]

A =

1.0000 + 1.0000i 1.0000 - 1.0000i 0 + 2.0000i
 0 - 1.0000i 0 - 3.0000i 6.0000 - 5.0000i
2.0000 + 3.0000i 2.0000 - 3.0000i 0 + 1.0000i

>> B=[i, -i, 2i; 1-i, 7-3i, 2-5i;8-6i, 5-i, 1+i]

B =

 0 + 1.0000i 0 - 1.0000i 0 + 2.0000i
1.0000 - 1.0000i 7.0000 - 3.0000i 2.0000 - 5.0000i
8.0000 - 6.0000i 5.0000 - 1.0000i 1.0000 + 1.0000i

>> A1=[1 6 2;3 5 0; 2 4 -1]

A1 =

1 6 2
3 5 0
2 4 -1

>> B1=[-3 -6 1;-3 -5 2; 12 14 -10]

B1 =

-3 -6 1
-3 -5 2
12 14 -10

>> A+B

ans =

 1.0000 + 2.0000i 1.0000 - 2.0000i 0 + 4.0000i
 1.0000 - 2.0000i 7.0000 - 6.0000i 8.0000 - 10.0000i
10.0000 - 3.0000i 7.0000 - 4.0000i 1.0000 + 2.0000i

>> A1+B1

ans =

-2 0 3
 0 0 2
14 18 -11

(continued)

Chapter 3 ■ Complex Numbers aNd FuNCtioNs oF Complex Variables

105

A - B Difference of matrices

>> A-B

ans =

 1.0000 1.0000 0
-1.0000 -7.0000 4.0000
-6.0000 + 9.0000i -3.0000 - 2.0000i -1.0000

>> A1-B1

ans =

 4 12 1

 6 10 -2

-10 -10 9

A * B Product of matrices

>> A * B

ans =

11.0000 + 15.0000i 7.0000 - 1.0000i -7.0000 - 3.0000i
16.0000 - 79.0000i 15.0000 - 52.0000i -2.0000 - 5.0000i
 2.0000 + 5.0000i 9.0000 - 24.0000i -18.0000 - 11.0000i

>> A1*B1

ans =

 3 -8 -7
-24 -43 13
-30 -46 20

A^n nth power of the matrix A

>> A^3

ans =

1.0e+002 *

0.1000 - 0.3400i -0.3200 - 0.1200i 0.3400 - 0.3600i
0.0900 - 0.0300i -1.0700 + 0.2100i -2.2500 - 0.6700i
0.3700 - 0.7900i -1.0300 - 0.0300i -0.0700 - 0.3700i

>> A1^3

ans =

155 358 46
159 347 30
106 232 19

(continued)

Chapter 3 ■ Complex Numbers aNd FuNCtioNs oF Complex Variables

106

P^A Scalar p raised to the power of the matrix A

>> 3^A

ans =

 0.0159 - 1.2801i -0.5297 + 2.8779i -1.9855 + 3.0796i
-10.3372 + 0.4829i 17.0229 + 12.9445i 14.7327 + 20.1633i
 -5.0438 + 0.2388i 7.0696 + 6.9611i 5.7189 + 9.5696i

>> 3^A1

ans =

1.0e+003 *

2.2230 4.9342 0.4889
2.1519 4.7769 0.4728
1.4346 3.1844 0.3156

A ' Transpose of the matrix A

>> A'

ans =

1.0000 - 1.0000i 0 + 1.0000i 2.0000 - 3.0000i
1.0000 + 1.0000i 0 + 3.0000i 2.0000 + 3.0000i
 0 - 2.0000i 6.0000 + 5.0000i 0 - 1.0000i

>> A1'

ans =

1 3 2
6 5 4
2 0 -1

(continued)

Chapter 3 ■ Complex Numbers aNd FuNCtioNs oF Complex Variables

107

A^-1 Inverse of the matrix A

>> A^-1

ans =

-2.5000 + 2.0000i -0.0500 + 0.6500i 0.8500 - 1.0500i
 0.5000 + 3.0000i 0.5500 + 0.3500i -0.3500 - 0.9500i
-1.0000 - 1.0000i -0.2000 + 0.1000i 0.4000 + 0.3000i

>> A1^-1

ans =

-0.2941 0.8235 -0.5882
 0.1765 -0.2941 0.3529
 0.1176 0.4706 -0.7647

>> A*A^-1

ans =

 1.0000 0.0000 - 0.0000i -0.0000 + 0.0000i
-0.0000 - 0.0000i 1.0000 + 0.0000i 0.0000
 0.0000 + 0.0000i 0.0000 1.0000 + 0.0000i

>> A1*A1^-1

ans =

 1.0000 -0.0000 0
-0.0000 1.0000 0
-0.0000 -0.0000 1.0000

A\B If A is square A\B = (A-1) * B and if A is not square, A\B is the solution in the sense of least-squares of
the system AX = B

>> A\B

ans =

 -0.9000 - 15.3000i 6.8000 + 1.1000i 1.0500 - 3.6500i
-10.6000 - 5.2000i 5.2000 - 4.1000i -2.5500 - 2.3500i
 5.9000 - 0.7000i 0.2000 + 3.4000i 2.2000 - 0.1000i

>> A1\B1

ans =

 -8.6471 -10.5882 7.2353
 4.5882 5.3529 -3.9412
-10.9412 -13.7647 8.7059

(continued)

Chapter 3 ■ Complex Numbers aNd FuNCtioNs oF Complex Variables

108

B/A Equivalent to A\B

>> B/A

ans =

 3.0000 - 5.0000i -0.5000 - 1.0000i -0.5000 + 2.0000i
 5.0000 + 27.0000i 5.6000 + 2.7000i -3.2000 - 8.9000i
-2.5000 + 43.5000i 6.3000 + 6.6000i -2.1000 - 17.2000i

>> A'\B'

ans =

 3.0000 + 5.0000i 5.0000 - 27.0000i -2.5000 - 43.5000i
-0.5000 + 1.0000i 5.6000 - 2.7000i 6.3000 - 6.6000i
-0.5000 - 2.0000i -3.2000 + 8.9000i -2.1000 + 17.2000i

>> B1/A1

ans =

-0.0588 -0.2353 -1.1176
 0.2353 -0.0588 -1.5294
-2.2353 1.0588 5.5294

>> A1'\B1'

ans =

-0.0588 0.2353 -2.2353
-0.2353 -0.0588 1.0588
-1.1176 -1.5294 5.5294

exerCise 3-1

Given the complex numbers z1= 1-i, and z2= 5i, calculate: z1
3 z1

2/z2
4, z1

1/2, z2
3/2, ln(z1+z2), sin(z1-z2), and

tanh(z1/z2).

>> Z1=1-i

Z1 =

 1.0000 - 1.0000i

>> Z2=5i

Z2 =

 0 + 5.0000i

>> Z1^3

Chapter 3 ■ Complex Numbers aNd FuNCtioNs oF Complex Variables

109

ans =

 -2.0000 - 2.0000i

>> Z1^2/Z2^4

ans =

 0 - 0.0032i

>> sqrt(Z1)

ans =

 1.0987 - 0.4551i

>> sqrt(Z2^3)

ans =

 7.9057 - 7.9057i

>> log(Z1+Z2)

ans =

 1.4166 + 1.3258i

>> sin(Z1-Z2)

ans =

 1.6974e+002 -1.0899e+002i

>> tanh(Z1/Z2)

ans =

 -0.2052 - 0.1945i

Chapter 3 ■ Complex Numbers aNd FuNCtioNs oF Complex Variables

110

exerCise 3-2

perform the following operations with complex numbers:

i i

i
i i i i ii i i i

8 8
1

1
1 1

3 4
1 2 1 1 3

-
-

+ + + +
-

+ + -, , (ln()) , () , ()sin() ln() ii

>> (i^8-i^(-8))/(3-4*i) + 1

ans =

 1

>> i^(sin(1+i))

ans =

 -0.16665202215166 + 0.32904139450307i

>> (2+log(i))^(1/i)

ans =

 1.15809185259777 - 1.56388053989023i

>> (1+i)^i

ans =

 0.42882900629437 + 0.15487175246425i

>> i^(log(1+i))

ans =

 0.24911518828716 + 0.15081974484717i

>> (1+sqrt(3)*i)^(1-i)

ans =

 5.34581479196611 + 1.97594883452873i

Chapter 3 ■ Complex Numbers aNd FuNCtioNs oF Complex Variables

111

exerCise 3-3

Find the real part, imaginary part, modulus and argument of each of the following:

i i i ii
i

i ii3
1

1 3+
-

+(), , ,

>> Z1=i^3*i; Z2=(1+sqrt(3)*i)^(1-i); Z3=(i^i)^i;Z4=i^i;

>> format short

>> real([Z1 Z2 Z3 Z4])
ans =

 1.0000 5.3458 0.0000 0.2079

>> imag([Z1 Z2 Z3 Z4])

ans =

 0 1.9759 -1.0000 0

>> abs([Z1 Z2 Z3 Z4])

ans =

 1.0000 5.6993 1.0000 0.2079

>> angle([Z1 Z2 Z3 Z4])

ans =

 0 0.3541 -1.5708 0

Chapter 3 ■ Complex Numbers aNd FuNCtioNs oF Complex Variables

112

exerCise 3-4

Consider the matrix M defined as the product of the imaginary unit i with the square matrix of order 3 whose
elements are, row by row, the first nine positive integers.

Find the square of M, its square root and its exponential to base 2 and -2.

Find the element-wise Naperian logarithm of M and its element-wise base e exponential.

Find log(M) and e m.

>> M=i*[1 2 3;4 5 6;7 8 9]

M =
 0 + 1.0000i 0 + 2.0000i 0 + 3.0000i
 0 + 4.0000i 0 + 5.0000i 0 + 6.0000i
 0 + 7.0000i 0 + 8.0000i 0 + 9.0000i

>> C=M^2

C =

 -30 -36 -42
 -66 -81 -96
 -102 -126 -150

>> D=M^(1/2)

D =

 0.8570 - 0.2210i 0.5370 + 0.2445i 0.2169 + 0.7101i
 0.7797 + 0.6607i 0.9011 + 0.8688i 1.0224 + 1.0769i
 0.7024 + 1.5424i 1.2651 + 1.4930i 1.8279 + 1.4437i

>> 2^M

ans =

 0.7020 - 0.6146i -0.1693 - 0.2723i -0.0407 + 0.0699i
 -0.2320 - 0.3055i 0.7366 - 0.3220i -0.2947 - 0.3386i
 -0.1661 + 0.0036i -0.3574 - 0.3717i 0.4513 - 0.7471i

>> (-2)^M

ans =

 17.3946 -16.8443i 4.3404 - 4.5696i -7.7139 + 7.7050i
 1.5685 - 1.8595i 1.1826 - 0.5045i -1.2033 + 0.8506i
 -13.2575 + 13.1252i -3.9751 + 3.5607i 6.3073 - 6.0038i

Chapter 3 ■ Complex Numbers aNd FuNCtioNs oF Complex Variables

113

>> log(M)

ans =

 0 + 1.5708i 0.6931 + 1.5708i 1.0986 + 1.5708i
 1.3863 + 1.5708i 1.6094 + 1.5708i 1.7918 + 1.5708i
 1.9459 + 1.5708i 2.0794 + 1.5708i 2.1972 + 1.5708i

>> exp(M)

ans =

 0.5403 + 0.8415i -0.4161 + 0.9093i -0.9900 + 0.1411i
 -0.6536 - 0.7568i 0.2837 - 0.9589i 0.9602 - 0.2794i
 0.7539 + 0.6570i -0.1455 + 0.9894i -0.9111 + 0.4121i

>> logm(M)

ans =

 -5.4033 - 0.8472i 11.9931 - 0.3109i -5.3770 + 0.8846i
 12.3029 + 0.0537i -22.3087 + 0.8953i 12.6127 + 0.4183i
 -4.7574 + 1.6138i 12.9225 + 0.7828i -4.1641 + 0.6112i

>> expm(M)

ans =

 0.3802 - 0.6928i -0.3738 - 0.2306i -0.1278 + 0.2316i
 -0.5312 - 0.1724i 0.3901 - 0.1434i -0.6886 - 0.1143i
 -0.4426 + 0.3479i -0.8460 - 0.0561i -0.2493 - 0.4602i

exerCise 3-5

Consider the vector sum V of the complex vector Z = (i,-i, i) and the real vector R = (0,1,1). Find the mean,
median, standard deviation, variance, sum, product, maximum and minimum of the elements of V, as well as its
gradient, its discrete Fourier transform and its inverse.

>> Z=[i,-i,i]

Z =

 0 + 1.0000i 0 - 1.0000i 0 + 1.0000i

>> R=[0,1,1]

R =

 0 1 1

Chapter 3 ■ Complex Numbers aNd FuNCtioNs oF Complex Variables

114

>> V=Z+R

V =

 0 + 1.0000i 1.0000 - 1.0000i 1.0000 + 1.0000i

>> [mean(V),median(V),std(V),var(V),sum(V),prod(V),max(V),min(V)]'

ans =

 0.6667 - 0.3333i
 1.0000 + 1.0000i
 1.2910
 1.6667
 2.0000 - 1.0000i
 0 - 2.0000i
 1.0000 + 1.0000i
 0 - 1.0000i

>> gradient(V)

ans =

 1.0000 - 2.0000i 0.5000 0 + 2.0000i

>> fft(V)

ans =

 2.0000 + 1.0000i -2.7321 + 1.0000i 0.7321 + 1.0000i

>> ifft(V)

ans =

 0.6667 + 0.3333i 0.2440 + 0.3333i -0.9107 + 0.3333i

Chapter 3 ■ Complex Numbers aNd FuNCtioNs oF Complex Variables

115

exerCise 3-6

Given matrices:

A A B1

1 0 0

0 1 0

0 0 1

2

0 1 0

0 0 1

0 0 0

1

0 1 2

0 1 3

0 0 0

=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

= -
é

ëë

ê
ê
ê

ù

û

ú
ú
ú

=
- -é

ë

ê
ê
ê

ù

û

ú
ú
ú

B

i i i

i

i

2 0 0

0 0

C sqrt i sqrt i C1

1 1 0

1 2 2

0 0 1

2

0 2 1

1 0 0

1 1 0

=
-

- -
-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

=
-

é

ë

ê
ê
ê

() ()

ùù

û

ú
ú
ú

First calculate A = A1 + A2, B = B1 - B2 and C = C1 + C2.

then calculate AB - BA, A2 + B2 + C2, ABC, sqrt(A) + sqrt B) - sqrt(C), (eB+ eC), their transposes and
their inverses.

Finally, check that the product of each of the matrices A, B and C with their inverses gives the identity matrix.

>> A1=eye(3)

A1 =

 1 0 0
 0 1 0
 0 0 1

>> A2=[0 1 0;0 0 1;0 0 0]

A2 =

 0 1 0
 0 0 1
 0 0 0

>> A= A1+A2

A =

 1 1 0
 0 1 1
 0 0 1

>> B1=[0 1 2;0 -1 3;0 0 0]

Chapter 3 ■ Complex Numbers aNd FuNCtioNs oF Complex Variables

116

B1 =

 0 1 2
 0 -1 3
 0 0 0

>> B2=[-i i -i;0 0 i;0 0 i]

B2 =

 0 - 1.0000i 0 + 1.0000i 0 - 1.0000i
 0 0 0 + 1.0000i
 0 0 0 + 1.0000i

>> B=B1-B2

B =

 0 + 1.0000i 1.0000 - 1.0000i 2.0000 + 1.0000i
 0 -1.0000 3.0000 - 1.0000i
 0 0 0 - 1.0000i

>> C1=[1,-1,0;-1,sqrt(2)*i,-sqrt(2)*i;0,0,-1]

C1 =

 1.0000 -1.0000 0
 -1.0000 0 + 1.4142i 0 - 1.4142i
 0 0 -1.0000

>> C2=[0 2 1;1 0 0;1 -1 0]

C2 =

 0 2 1
 1 0 0
 1 -1 0

>> C=C1+C2

C =

 1.0000 1.0000 1.0000
 0 0 + 1.4142i 0 - 1.4142i
 1.0000 -1.0000 -1.0000

>> M1=A*B-B*A

Chapter 3 ■ Complex Numbers aNd FuNCtioNs oF Complex Variables

117

M1 =

 0 -1.0000 - 1.0000i 2.0000
 0 0 1.0000 - 1.0000i
 0 0 0

>> M2=A^2+B^2+C^2

M2 =

 2.0000 2.0000 + 3.4142i 3.0000 - 5.4142i
 0 - 1.4142i -0.0000 + 1.4142i 0.0000 - 0.5858i
 0 2.0000 - 1.4142i 2.0000 + 1.4142i

>> M3=A*B*C

M3 =

 5.0000 + 1.0000i -3.5858 + 1.0000i -6.4142 + 1.0000i
 3.0000 - 2.0000i -3.0000 + 0.5858i -3.0000 + 3.4142i
 0 - 1.0000i 0 + 1.0000i 0 + 1.0000i

>> M4=sqrtm(A)+sqrtm(B)-sqrtm(C)

M4 =

 0.6356 + 0.8361i -0.3250 - 0.8204i 3.0734 + 1.2896i
 0.1582 - 0.1521i 0.0896 + 0.5702i 3.3029 - 1.8025i
 -0.3740 - 0.2654i 0.7472 + 0.3370i 1.2255 + 0.1048i

>> M5=expm(A)*(expm(B)+expm(C))

M5 =

 14.1906 - 0.0822i 5.4400 + 4.2724i 17.9169 - 9.5842i
 4.5854 - 1.4972i 0.6830 + 2.1575i 8.5597 - 7.6573i
 3.5528 + 0.3560i 0.1008 - 0.7488i 3.2433 - 1.8406i

>> inv(A)

ans =

 1 -1 1
 0 1 -1
 0 0 1

Chapter 3 ■ Complex Numbers aNd FuNCtioNs oF Complex Variables

118

>> inv(B)

ans =

 0 - 1.0000i -1.0000 - 1.0000i -4.0000 + 3.0000i
 0 -1.0000 1.0000 + 3.0000i
 0 0 0 + 1.0000i

>> inv(C)

ans =

 0.5000 0 0.5000
 0.2500 0 - 0.3536i -0.2500
 0.2500 0 + 0.3536i -0.2500

>> [A*inv(A) B*inv(B) C*inv(C)]

ans =

 1 0 0 1 0 0 1 0 0
 0 1 0 0 1 0 0 1 0
 0 0 1 0 0 1 0 0 1

>> A'

ans =

 1 0 0
 1 1 0
 0 1 1

>> B'

ans =

 0 - 1.0000i 0 0
 1.0000 + 1.0000i -1.0000 0
 2.0000 - 1.0000i 3.0000 + 1.0000i 0 + 1.0000i

>> C'

ans =

 1.0000 0 1.0000
 1.0000 0 - 1.4142i -1.0000
 1.0000 0 + 1.4142i -1.0000

Chapter 3 ■ Complex Numbers aNd FuNCtioNs oF Complex Variables

119

exerCise 3-7

Given the matrices

A B
i i

i i
=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

=
+ +
+ +

é

ë
ê

ù

û
ú

1 2 3

4 5 6

7 8 9

1 2

3 4

apply the sine function, the base e exponential and logarithm, the square root, the modulus, the argument and the
rounding functions.

Calculate eB and ln(A).

>> A=[1 2 3; 4 5 6; 7 8 9]

A =

 1 2 3
 4 5 6
 7 8 9

>> sin(A)

ans =

 0.8415 0.9093 0.1411
 -0.7568 -0.9589 -0.2794
 0.6570 0.9894 0.4121

>> B=[1+i 2+i;3+i,4+i]

B =

 1.0000 + 1.0000i 2.0000 + 1.0000i
 3.0000 + 1.0000i 4.0000 + 1.0000i

>> sin(B)

ans =

 1.2985 + 0.6350i 1.4031 - 0.4891i
 0.2178 - 1.1634i -1.1678 - 0.7682i

Chapter 3 ■ Complex Numbers aNd FuNCtioNs oF Complex Variables

120

>> exp(A)

ans =

 1.0e+003 *

 0.0027 0.0074 0.0201
 0.0546 0.1484 0.4034
 1.0966 2.9810 8.1031

>> exp(B)

ans =

 1.4687 + 2.2874i 3.9923 + 6.2177i
 10.8523 + 16.9014i 29.4995 + 45.9428i

>> log(B)

ans =

 0.3466 + 0.7854i 0.8047 + 0.4636i
 1.1513 + 0.3218i 1.4166 + 0.2450i

>> sqrt(B)

ans =

 1.0987 + 0.4551i 1.4553 + 0.3436i
 1.7553 + 0.2848i 2.0153 + 0.2481i

>> abs(B)

ans =

 1.4142 2.2361
 3.1623 4.1231

>> imag(B)

ans =

 1 1
 1 1

>> fix(sin(B))

ans =

 1.0000 1.0000
 0 - 1.0000i - 1.0000

Chapter 3 ■ Complex Numbers aNd FuNCtioNs oF Complex Variables

121

>> ceil(log(A))

ans =

 0 1 2
 2 2 2
 2 3 3

>> sign(B)

ans =

 0.7071 + 0.7071i 0.8944 + 0.4472i
 0.9487 + 0.3162i 0.9701 + 0.2425i

the exponential, square root and logarithm functions used above apply element-wise to the matrix, and have
nothing to do with the matrix exponential and logarithmic functions that are used below.

>> expm(B)

ans =

 1.0e+002 *

 -0.3071 + 0.4625i -0.3583 + 0.6939i
 -0.3629 + 1.0431i -0.3207 + 1.5102i

>> logm(A)

ans =

 -5.6588 + 2.7896i 12.5041 - 0.4325i -5.6325 - 0.5129i
 12.8139 - 0.7970i -23.3307 + 2.1623i 13.1237 - 1.1616i
 -5.0129 - 1.2421i 13.4334 - 1.5262i -4.4196 + 1.3313i

exerCise 3-8

solve the following equation in the complex field:

sin(z) = 2

>> vpa(solve('sin(z) = 2'))

ans =

 1.316957896924816708625046347308 * i + 1.5707963267948966192313216916398
 1.5707963267948966192313216916398 - 1.316957896924816708625046347308 * i

Chapter 3 ■ Complex Numbers aNd FuNCtioNs oF Complex Variables

122

exerCise 3-9

solve the following equations:

a. 1+x+x2+x3+x4+x5 = 0

b. x2 +(6-i)x+8-4i = 0

c. tan(Z) = 3i/5

>> solve('1+x+x^2+x^3+x^4+x^5 = 0')

ans =

 -1
 -1/2 - (3-^(1/2) * i) / 2
 1/2 - (3-^(1/2) * i) / 2
 -1/2 + (3 ^(1/2) * i) / 2
 1/2 + (3 ^(1/2) * i) / 2

>> solve ('x ^ 2 +(6-i) * x + 8-4 * i = 0')

ans =

 -4
 i 2

>> vpa (solve ('tan (Z) = 3 * i/5 '))

ans =

0.69314718055994530941723212145818 * i

Chapter 3 ■ Complex Numbers aNd FuNCtioNs oF Complex Variables

123

exerCise 3-10

Find the following:

a. the fourth roots of - 1 and 1;

b. the fifth roots of 2 + 2i and - 1 + i√3;

c. the real part of tan(iLn((a+ib) / (a-ib)));

d. the imaginary part of Z = (2 + i) cos(4-i).

>> solve('x^4+1=0')

ans =

 2^(1/2) * (-i/2 - 1/2)
 2^(1/2) * (i/2 - 1/2)
 2^(1/2) * (1/2 - i/2)
 2^(1/2) * (i/2 + 1/2)

>> pretty(solve('x^4+1=0'))

 +- -+
 | 1/2 / i 1 \ |
 | 2 | - - - - | |
 | \ 2 2 / |
 | |
 | 1/2 / i 1 \ |
 | 2 | - - - | |
 | \ 2 2 / |
 | |
 | 1/2 / 1 i \ |
 | 2 | - - - | |
 | \ 2 2 / |
 | |
 | 1/2 / i 1 \ |
 | 2 | - + - | |
 | \ 2 2 / |
 +- -+

>> solve('x^4-1=0')

ans =

 -1
 1
 -i
 i

>> vpa(solve('x^5-2-2*i=0'))

Chapter 3 ■ Complex Numbers aNd FuNCtioNs oF Complex Variables

124

ans =

 0.19259341768888084906125263406469 * i + 1.2159869826496146992458377919696
-0.87055056329612413913627001747975 * i - 0.87055056329612413913627001747975
 0.55892786746600970394985946846702 * i - 1.0969577045083811131206798770216
 0.55892786746600970394985946846702 - 1.0969577045083811131206798770216 * i
 1.2159869826496146992458377919696 * i + 0.19259341768888084906125263406469

>> vpa(solve('x^5+1-sqrt(3)*i=0'))

ans =

 0.46721771281818786757419290603946 * i + 1.0493881644090691705137652947201
 1.1424056652180689506550734259384 * i - 0.1200716738059215411240904754285
 0.76862922680258900220179378744147 - 0.85364923855044142809268986292246 * i
 -0.99480195671282768870147766609475 * i - 0.57434917749851750339931347338896
 0.23882781722701229856490119703938 * i - 1.1235965399072191281921551333441

>> simplify(vpa(real(tan(i * log((a+i*b)/(a-i*b))))))

ans =

-0.5 * tanh(conj(log((a^2 + 2.0*a*b*i-1.0*b^2)/(a^2 + b^2))) * i + (0.5 * ((a^2 +
2.0*a*b*i-1.0*b^2)^2 /(a^2 + b^2)^2 - 1) * i) / ((a^2 + 2.0*a*b*i-1.0*b^2)^2 /(a^2 + b^2)^2 + 1))

>> simplify(vpa(imag((2+i)^cos(4-i))))

ans =

-0.62107490808037524310236676683417

125

Chapter 4

Graphics in MATLAB. Curves,
Surfaces and Volumes

Introduction
MATLAB is scientific software that implements high-performance graphics. It allows to you create two and three-
dimensional graphs of exploratory data, graph curves in explicit, implicit and polar coordinates, plot surfaces in
explicit, implicit, or parametric coordinates, draw mesh and contour plots, represent various geometric objects and
create other specialized graphics.

You can freely adjust the graphics parameters, choosing such features as framing and positioning, line
characteristics, markers, axes limits, mesh types, annotations, labels and legends. You can export graphics in many
different formats. All of these features will be described in this chapter.

Exploratory Graphics
MATLAB incorporates commands that allow you to create basic exploratory graphics, such as histograms, bar charts,
graphs, arrow diagrams, etc. The following table summarizes these commands. For all of them, it is necessary to first
define the field of variation of the variable.

Chapter 4 ■ GraphiCs in MatLaB. Curves, surfaCes and voLuMes

126

bar(Y) Creates a bar chart relative to the vector of frequencies Y. If Y is a matrix it creates multiple bar
charts for each row of Y.

>> x = [1 2 5 8 4 3 4 1 2 3 2];
>> bar (x)

bar(x,Y) Creates a bar chart relative to the vector of frequencies Y where x is a vector that defines the
location of the bars on the x-axis.

>> x = - 2.9:0.2:2.9;
>> bar (x, exp(-x.*x))

(continued)

Chapter 4 ■ GraphiCs in MatLaB. Curves, surfaCes and voLuMes

127

bar(…,width) Creates a bar chart where the bars are given the specified width. By default, the width is 0.8.
A width of 1 causes the bars to touch.

bar(…, ‘style') Creates a bar chart with the given style of bars. The possible styles are ‘group’ (the default vertical
bar style) and ‘stack’ (stacked horizontal bars). If the matrix is m× n, the bars are grouped in m
groups of n bars.

>> A = [1 6 12 5 7; 3 2 6 5 3];
>> bar (A, 'stack')
>> bar (A, 'group')

bar(…, color) Creates a bar chart where the bars are all of the specified colors (r = red, g = green, b = blue,
c = cyan, m = magenta, y = yellow, k = black and w = white).

(continued)

Chapter 4 ■ GraphiCs in MatLaB. Curves, surfaCes and voLuMes

128

barh(…) Creates a horizontal bar chart.

>> barh(A,'group')

hist(Y) Creates a histogram relative to the vector of frequencies Y using 10 equally spaced rectangles.
If Y is a matrix, a histogram is created for each of its columns.

>> Y = randn(100);
>> hist(Y)

hist(Y,x) Creates a histogram relative to the vector of frequencies Y where the number of bins is given by
the number of elements in the vector x and the data is sorted according to vector x (if the entries
of x are evenly spaced then these are used as the centers of the bins, otherwise the midpoints of
successive values are used as the bin edges).

(continued)

Chapter 4 ■ GraphiCs in MatLaB. Curves, surfaCes and voLuMes

129

hist(Y,k) Creates a histogram relative to the vector of frequencies Y using as many bins as indicated by the
scalar k.

>> hist(Y, 8)

[n,x] = hist(…) Returns the vectors n and x with the frequencies assigned to each bin of the histogram and the
locations of the centers of each bin.

pie(X) Creates a pie chart relative to the vector of frequencies X.

>> X = [3 5 12 4 7 10];
>> pie(X)

(continued)

Chapter 4 ■ GraphiCs in MatLaB. Curves, surfaCes and voLuMes

130

pie(X,Y) Creates a pie chart relative to the vector of frequencies X by moving out the sectors for which Yi π 0.

>> pie(X,[0 0 1 0 1 1])

errorbar(x,y,e) Plots the function y against x showing the error ranges specified by the vector e. To indicate the
confidence intervals, a vertical line of length 2e

i
 is drawn passing through each point (x

i
 , y

i
) with

center (x
i
 , y

i
).

>> x = - 4:.2:4;
y = (1/sqrt(2*pi))*exp(-(x.^2)/2);
e = rand(size(x))/10;
errorbar(x,y,e)

(continued)

Chapter 4 ■ GraphiCs in MatLaB. Curves, surfaCes and voLuMes

131

stem (Y) Plots the data sequence Y as stems extending from the x-axis baseline to the points indicated by a
small circle.

>> y = randn (50.1); stem (y)

stem(X,Y) Plots the data sequence Y as a stem diagram with x-axis values determined by X.

stairs (Y) Draws a stair step graph of the data sequence Y.

stairs(X,Y) Plots a stair step graph of the data Y where the x-values are determined by the vector X.

>> x = -3:0.1:3; stairs(x,exp(-x.^2))

(continued)

Chapter 4 ■ GraphiCs in MatLaB. Curves, surfaCes and voLuMes

132

rose (Y) Creates an angle histogram showing the distribution of the data Y in 20 angle bins. The angles
are given in radians. The radii reflect the number of elements falling into the corresponding bin.

>> y = randn(1000,1) * pi; rose(y)

rose(Y,n) Plots an angle histogram of the data Y with n equally spaced bins. The default value of n is 20.

rose(Y,X) Plots an angle histogram of the data Y where X specifies the number and location (central angle)
of the bins.

compass (Z) Plots a compass diagram of the data Z. For each entry of the vector of complex numbers Z an
arrow is drawn with base at the origin and head at the point determined by the entry.

>> z = eig(randn(20,20)); compass(z)

compass(X,Y) Equivalent to compass(X+i*Y).

compass (Z, S) or
compass (X, Y , S)

Plots a compass diagram with arrow styles specified by S.

(continued)

Chapter 4 ■ GraphiCs in MatLaB. Curves, surfaCes and voLuMes

133

feather(Z) or
feather(X,Y) or
feather(Z,S) or
feather(X,Y,S)

Produces a plot similar to a compass plot, except the arrows now emanate from equally-spaced
points along the x-axis instead of from the origin.
>> z = eig(randn(20,20)); feather(z)

Curves in Explicit, Implicit, Parametric and Polar Coordinates
The most important MATLAB commands for plotting curves in two dimensions in explicit, polar and implied
coordinates are presented in the following table.

plot(X,Y) Plots the set of points (X, Y), where X and Y are row vectors. For graphing a function
y = f (x) it is necessary to specify a set of points (X, f (X)), where X is the range of
variation of the variable x. X and Y can be arrays of the same size, in which case
a graph is made by plotting the corresponding points (X

i
,Y

i
) on the same axis. For

complex values of X and Y the imaginary parts are ignored. For x = x(t) and y = y(t)
with the given parameter t, the specified planar parametric curve graphic variation.

>> x = 0:0.1:6*pi; y = x.*sin(x); plot(x,y)

(continued)

Chapter 4 ■ GraphiCs in MatLaB. Curves, surfaCes and voLuMes

134

plot (Y) Creates a line plot of the vector Y against its indices. This is useful for plotting time
series. If Y is a matrix, plot(Y) creates a graph for each column of Y, presenting them
all on the same axes. If the components of the vector are complex, plot(Y) is equivalent
to plot(real(Y),imag(Y)).

>> Y = [1,3,9,27,81,243,729]; plot(Y)

plot (X, Y, S) Creates a plot of Y against X as described by plot(X,Y) with the settings defined in S.
Usually S consists of two characters between single quotes, the first sets the color of
the line graph and the second specifies the marker or line type. The possible values of
colors and characters are, respectively, as follows: y (yellow), m (magenta), c (cyan),
r (red), g (green), b (blue), w (white), k (black), . (point), o (circle), x (cross), s (square),
d (diamond), ^ (upward pointing triangle), v (downward pointing triangle), > (right
pointing triangle), < (left pointing triangle), p (pentagram), h (hexagram), + (plus sign),
* (asterisk), - (solid line), -- (dashed line),: (dotted line), -. (dash-dot line).

>> plot([1,2,3,4,5,6,7,8,9],[1, 1/2, 1/3,1/4,1/5,1/6, 1/7,1/8,1/9],'r *')

plot (X1,Y1,S1,X2,Y2,S2,…) Combines the plots for the triples (Xi, Yi, Si). This is a useful way of representing
various functions on the same graph.

(continued)

Chapter 4 ■ GraphiCs in MatLaB. Curves, surfaCes and voLuMes

135

fplot (‘f ’, [xmin, xmax]) Graphs the explicit function y = f (x) in the specified range of variation for x.

>> fplot('x*sin(1/x)', [0,pi/16])

fplot(‘f ’,[xmin, xmax,
ymin, ymax], S)

Graphs the explicit function y = f (x) in the specified intervals of variation for x and y,
with options for color and characters given by S.

>> fplot('x^2/(x+1)', [-12,12,-8, 8])

fplot(‘f ’,[xmin,xmax],…,t) Graphs the function f with relative error tolerance t.

fplot(‘f ’,[xmin, xmax],…,n) Graphs the function f with a minimum of n + 1 points where the maximum step size is
(xmax-xmin)/n.

(continued)

Chapter 4 ■ GraphiCs in MatLaB. Curves, surfaCes and voLuMes

136

fplot(‘[f1,f2,…,fn]’, [xmin,
xmax, ymin, ymax], S)

Graphs the functions f1, f2,…, fn on the same axes in the specified ranges of variation
of x and y and with the color and markers given by S.

>> fplot('[sin(x), sin(2*x), sin(3*x)]', [0,2*pi])

>> fplot('[sin (x), sin(2*x), sin(3*x)]', [0, 2 * pi],'k *')

(continued)

Chapter 4 ■ GraphiCs in MatLaB. Curves, surfaCes and voLuMes

137

ezplot (‘f ’, [xmin xmax]) Graphs the explicit function y = f (x) or implicit function f(x,y) = k in the given range of
variation of x. The range of variation of the variable can be omitted.

>> ezplot('y*x^2+x*y^2=10',[-10,10])

>> ezplot('x ^ 2-/(x^2-1)')

(continued)

Chapter 4 ■ GraphiCs in MatLaB. Curves, surfaCes and voLuMes

138

ezplot (‘f ’, [xmin, xmax,
ymin, ymax])

Graphs the explicit function y = f (x) or the implicit function f(x,y) = k for the given
intervals of variation of x and y (which can be omitted).

>> ezplot('x^2+y^3=1/2',[-10,10,-8,8])

>> ezplot('x^2-y^4=1')

(continued)

Chapter 4 ■ GraphiCs in MatLaB. Curves, surfaCes and voLuMes

139

ezplot(x,y) Graphs the planar parametric curve x = x (t) and y = y(t) for 0 £ t < 2p.

>> ezplot('4 * cos(t) - cos(4*t)', ' 4 * sin(t) - sin(4*t)')

ezplot (‘f ’, [xmin xmax]) Graphs the planar parametric curve x = x (t) and y = y(t) for xmin < t < xmax.

>> ezplot('t*sin(t)', 't*cos(t)',[-4*pi,4*pi]

(continued)

Chapter 4 ■ GraphiCs in MatLaB. Curves, surfaCes and voLuMes

140

ezplot (‘f ’) Graphs the curve f where the coordinates range over the default domain

[-2p, 2p].

>> ezplot('y^4-x^4-24*y^2+25*x^2=0')

loglog(X,Y) Produces a plot similar to plot(X,Y), but with a logarithmic scale on the two axes.

>> x=0:0.1:pi; y=x.*sin(x); loglog(x,y)

(continued)

Chapter 4 ■ GraphiCs in MatLaB. Curves, surfaCes and voLuMes

141

semilogx(X,Y) Produces a plot similar to plot(X,Y), but with a logarithmic scale on the x-axis and a
normal scale on the y-axis.

>> x=0:0.1:pi; y=x.*sin(x); semilogx(x,y)

semilogy(X,Y) Produces a plot similar to plot(X,Y), but with a logarithmic scale on the y-axis and a
normal scale on the x-axis.

>> x=0:0.1:pi; y=x.*sin(x); semilogy(x,y)

(continued)

Chapter 4 ■ GraphiCs in MatLaB. Curves, surfaCes and voLuMes

142

polar (a, r) Draws the curve r r= ()a given in polar coordinates.

>> t=0:0.1:2*pi;r=sin(t).*cos(t); polar(t,r)

polar (a, r, S) Draws the curve r r= ()a given in polar coordinates with the style of lines specified by S.

>> t=0:0.05:2*pi;r=sin(t).*cos(t); polar(t,r,'*r')

(continued)

Chapter 4 ■ GraphiCs in MatLaB. Curves, surfaCes and voLuMes

143

ezpolar (r)
ezpolar (r, [a, b])

Draws the curve r r= ()a in polar coordinates where the field of variation of a is
given by [a,b], or if it is not stated, is the default range [0, 2p].

>> ezpolar ('1 + cos (t)')

fill (X, Y, C) Draws the filled polygon whose vertices are given by the components (X
i
 , Y

i
) of the

specified vectors X and Y. The vector C, which is of the same size as X and Y, specifies
the colors assigned to the corresponding points. The C

i
 values may be: ‘r’, ‘g’, ‘b’, ‘c’, ‘m’,

‘y’, ‘w’, ‘k’, whose meanings we already know. If C is a single character, all vertices of
the polygon will be assigned the specified color. If X and Y are matrices of the same
size then several polygons will be created, each corresponding to the columns of the
matrices. In this case, C can be a row vector specifying the color of each polygon, or it
can be a matrix specifying the color of the vertices of the polygons.

>> t = (1/16:1 / 8:1)'* 2 * pi; x = sin(t); y = cos(t); fill(x, y, 'r')

fill(X1,Y1,C1,…) Draws the filled polygon with vertex coordinates and colors given by (Xi, Yi, Ci).

Chapter 4 ■ GraphiCs in MatLaB. Curves, surfaCes and voLuMes

144

Three-Dimensional (3D) Curves
MATLAB includes commands that allow you to plot space curves in three dimensions. The following table presents
the most important commands.

plot3 (X, Y, Z) Draws a 3D line plot by joining the sequence of points determined by (X, Y, Z) by lines,
where X, Y and Z are row vectors. X, Y and Z can also be parametric coordinates or
matrices of the same size, in which case a graph is made for each triplet of rows, on the
same axes. For complex values of X, Y and Z, the imaginary parts are ignored.

>> X = [0 1 1 2; 1 1 2 2; 0 0 1 1];

Y = [1 1 1 1; 1 0 1 0; 0 0 0 0];

Z = [1 1 1 1; 1 0 1 0; 0 0 0 0];

>> plot3 (X, Y, Z)

>> t = 0:pi/100:20 * pi; plot3 (2 * sin(2*t), 2 * cos(2*t), 4 * t)

plot3 (X, Y, Z, S) Produces the line plot plotting (X,Y,Z) with the settings defined in S. S usually consists
of two characters between single quotes, the first of which sets the color of the line
graph and the second determines the line or marker properties. The possible settings
have already been described above for the plot command.

plot3(X1,Y1,Z1,S1, X2,
Y2,Z2,S2,X3, Y3, Z3, S3,…)

Combines 3D line plots for the quadruples (Xi, Yi, Zi, Si) on the same axes. This is a
useful way of representing various functions on the same graph.

(continued)

Chapter 4 ■ GraphiCs in MatLaB. Curves, surfaCes and voLuMes

145

fill3(X,Y,Z,C) Draws the filled polygon whose vertices are given by the triples of components
(Xi, Yi, Zi) of the column vectors X, Y and Z. C is a vector of the same size as X, Y and
Z, which specifies the color Ci at each vertex (Xi, Yi, Zi). The Ci values can be ‘r’, ‘g’, ‘b’,
‘c’, ‘m’, ‘y’, ‘w’, ‘k’, whose meanings we already know. If C is a single character, all vertices
will be given this color. If X, Y and Z are matrices of the same size, several polygons
corresponding to each triplet column vector (X.j, Y.j, Z.j) will be drawn. In this case,
C can be a row vector of elements Cj determining the unique color of each polygon
corresponding to (X.j, Y.j, Z.j). C can also be a matrix of the same dimension as X, Y
and Z, in which case its elements determine the colors of each vertex (Xijk, Yijk, Zijk)
of the set of polygons.

>> X = [0 1 1 2; 1 1 2 2; 0 0 1 1];

Y = [1 1 1 1; 1 0 1 0; 0 0 0 0];

Z = [1 1 1 1; 1 0 1 0; 0 0 0 0];

C = [0.5000 1.0000 1.0000 0.5000;

1.0000 0.5000 0.5000 0.1667;

0.3330 0.3330 0.5000 0.5000];

fill3(X,Y,Z,C)

fill3(X1,Y1,Z1,C1,

X2, Y2, Z2, C2,…)

Draws the filled polygon whose vertices and colors are given by (Xi, Yi, Zi, Ci).

(continued)

Chapter 4 ■ GraphiCs in MatLaB. Curves, surfaCes and voLuMes

146

ezplot3(x(t), y(t), z(t))

ezplot3(x(t),y(t),z(t),
[tmin,tmax])

Draws the space curve defined by the given three parametric components.

Draws the space curve defined by the given three parametric components for the
specified range of variation of the parameter.

>> ezplot3('sin (t)', 'cos (t)', ', [0, 6 * pi])

Explicit and Parametric Surfaces: Contour Plots
MATLAB includes commands that allow you to represent surfaces defined by equations of the form z = f(x,y). The first
step is to use the command meshgrid, which defines the array of points (X, Y) at which the function will be evaluated.
Then the command surf is used to create the surface.

The command mesh is also used to produce a mesh plot that is defined by a function z = f(x,y), so that the points
on the surface are represented on a network determined by the z values given by f(x,y) for corresponding points of the
plane (x, y). The appearance of a mesh plot is like a fishing net, with surface points forming the nodes of the network.

It is also possible to represent the level curves of a surface by using the command contour. These curves are
characterized as being the set of points (x,y) in the plane for which the value f(x,y) is some fixed constant.

The following table lists the MATLAB commands which can be used to produce mesh and contour
representations of surfaces both in explicit and parametric form.

Chapter 4 ■ GraphiCs in MatLaB. Curves, surfaCes and voLuMes

147

[X, Y] = meshgrid(x,y) Creates a rectangular grid by transforming the monotonically increasing grid vectors
x and y into two matrices X and Y specifying the entire grid. Such a grid can be used
by the commands surf and mesh to produce surface graphics.

surf(X,Y,Z,C) Represents the explicit surface z = f(x,y) or the parametric surface x = x(t,u), y = y(t,u),
z = z(t,u), using the colors specified in C. The C argument can be omitted.

>> [X, Y] = meshgrid(-2:.2:2,-2:.2:2);

Z = X. * exp(-X.^2-Y.^2); surf(X, Y, Z)

surfc(X,Y,Z,C) Represents the explicit surface z = f(x,y) or the parametric surface x = x(t,u), y = y(t,u),
z = z(t,u), together with a contour plot of the surface. The contour lines are projected
onto the xy-plane.

>> [X, Y] = meshgrid(-2:.2:2,-2:.2:2);

Z = X. * exp(-X.^2-Y.^2); surfc(X, Y, Z)

(continued)

Chapter 4 ■ GraphiCs in MatLaB. Curves, surfaCes and voLuMes

148

surfl (X, Y, Z) Represents the explicit surface z = f(x,y) or the parametric surface x = x(t,u), y = y(t,u),
z = z(t,u), with colormap-based lighting.

>> r =(0:0.1:2*pi)';

t =(-pi:0.1:2*pi);

X = cos(r) * sin(t);

Y = sin(r) * sin(t);

Z = ones(size(r),1)'* t;

surfl(X, Y, Z)

mesh(X,Y,Z,C) Represents the explicit surface z = f(x,y) or the parametric surface x = x(t,u), y = y(t,u),
z = z(t,u), drawing the grid lines that compose the mesh with the colors specified by C
(optional).

>> [X, Y] = meshgrid(-2:.2:2,-2:.2:2);

Z = X. * exp(-X.^2-Y.^2); mesh(X, Y, Z)

meshz(X,Y,Z,C) Represents the explicit surface z = f(x,y) or the parametric surface x = x(t,u), y = y(t,u),
z = z(t,u) adding a ‘curtain’ around the mesh.

(continued)

Chapter 4 ■ GraphiCs in MatLaB. Curves, surfaCes and voLuMes

149

meshc(X,Y,Z,C) Represents the explicit surface z = f(x,y) or the parametric surface x = x(t,u), y = y(t,u),
z = z(t,u) together with a contour plot of the surface. The contour lines are projected
on the xy-plane.

>> [X, Y] = meshgrid(-2:.2:2,-2:.2:2);

Z = X. * exp(-X.^2-Y.^2); meshc(X, Y, Z)

contour (Z) Draws a contour plot of the matrix Z, where Z is interpreted as heights of the surface
over the xy-plane. The number of contour lines is selected automatically.

>> [X, Y] = meshgrid(-2:.2:2,-2:.2:2);

Z = X. * exp(-X.^2-Y.^2);

>> contour(Z)

(continued)

Chapter 4 ■ GraphiCs in MatLaB. Curves, surfaCes and voLuMes

150

contour(Z,n) Draws a contour plot of the matrix Z using n contour lines.

>> [X, Y] = meshgrid(-2:.2:2,-2:.2:2);

Z = X. * exp(-X.^2-Y.^2);

>> contour(Z)

contour (x, y, Z, n) Draws a contour plot of the matrix Z with n contour lines and using the x-axis and
y-axis values specified by the vectors x and y.

>> r =(0:0.1:2*pi); t =(-pi:0.1:2*pi);

X = cos(r) * cos(t);Y = sin(r) * sin(t);Z = ones(size(r),1)'* t;

>> contour(X, Y, Z)

(continued)

Chapter 4 ■ GraphiCs in MatLaB. Curves, surfaCes and voLuMes

151

contour3 (Z),
contour3 (Z, n) y
contour3 (x, y, Z, n)

Draws three-dimensional contour plots.

>> r =(0:0.1:2*pi); t =(-pi:0.1:2*pi);

X = cos (r) * cos(t);Y = sin(r) * sin(t);Z = ones(size(r),1)'* t;

>> contour3(X, Y, Z)

contourf (…) Draws a contour plot and fills in the areas between the isolines.

>> r =(0:0.1:2*pi); t =(-pi:0.1:2*pi);

X = cos(r) * cos(t);Y = sin(r) * sin(t);Z = ones(size(r),1)'* t;

>> contourf(X, Y, Z)

(continued)

Chapter 4 ■ GraphiCs in MatLaB. Curves, surfaCes and voLuMes

152

pcolor (X, Y, Z) Draws a ‘pseudocolor’ contour plot determined by the matrix (X, Y, Z) using a color
representation based on densities. This is often called a density plot.

>> [X, Y] = meshgrid(-2:.2:2,-2:.2:2);

Z = X. * exp(-X.^2-Y.^2); meshc(X, Y, Z)

>> pcolor(X, Y, Z)

trimesh(Tri, X, Y, Z, C) Creates a triangular mesh plot. Each row of the matrix Tri defines a simple triangular
face and C defines colors as in surf. The C argument is optional.

trisurf(Tri,X,Y,Z,C) Creates a triangular surface plot. Each row of the matrix Tri defines a simple
triangular face and C defines colors as in surf. The C argument is optional.

Three-Dimensional Geometric Forms
The representation of cylinders, spheres, bars, sections, stems, waterfall charts and other three-dimensional
geometric objects is possible with MATLAB. The following table summarizes the commands that can be used for
this purpose.

Chapter 4 ■ GraphiCs in MatLaB. Curves, surfaCes and voLuMes

153

bar3 (Y) Creates a 3D bar graph relative to the vector of frequencies Y. If Y is a matrix,
multiple bar graphs are produced on the same axes, one for each row of Y.

>> bar3(rand(4,4))

bar3(x,Y) Creates a 3D bar graph relative to the vector of frequencies Y where x is a vector that
defines the x-axis positions on which the bars are to be located.

bar3(…,width) Creates a 3D bar graph with the specified bar width. By default, the width is 0.8, and
a width of 1 causes the bars to touch.

bar3(…,‘style’) Creates a 3D bar graph with the specified style of bars. The possible styles are
‘detached’ (default), ‘grouped’ (grouped vertical bars) and ‘stacked’ (stacked bars,
one for each row in Y).

bar3(…,color) Creates a 3D bar graph where the bars are all of the specified color (r = red, g = green,
b = blue, c = cyan, m = magenta, y = yellow, k = black and w = white).

comet3(z)
comet3(x, y, z)

Creates a 3D comet plot animation of the vector z or of the parametric space curve
(x(t),y(t),z(t)).

>> t = -pi:pi/500:pi;comet3(sin(5*t),cos(3*t),t)

(continued)

Chapter 4 ■ GraphiCs in MatLaB. Curves, surfaCes and voLuMes

154

[X, Y, Z] = cylinder

[X, Y, Z] = cylinder (r (t))

[X, Y, Z] = cylinder (r (t), n)

cylinder (…)

Returns the coordinates of a cylinder centered at the origin of radius 1 and (z-axis
aligned) length 1 and with 20 equally spaced points around its circumference.

Returns the coordinates of the cylinder generated by the curve r.

Returns the coordinates of the cylinder generated by the curve r with n points on the
circumference (n = 20 by default).

The cylinders created above can be plotted using the command surf or with the
command cylinder(…).

>> t = 0:pi/10:2*pi;

[X,Y,Z] = cylinder(2+cos(t));

surf(X,Y,Z)

sphere Plots the unit sphere with center the origin using 20 × 20 faces.

sphere(n) Plots a unit sphere using n×n faces.

>> sphere(100)

[X, Y, Z] = sphere (n) Gives the coordinates of the sphere in three (n + 1)×(n + 1) arrays.

(continued)

Chapter 4 ■ GraphiCs in MatLaB. Curves, surfaCes and voLuMes

155

slice(V,sx,sy,sz)

slice(X,Y,Z,V,sx,sy,sz)

slice(V,XI,YI,ZI)

slice(X,Y,Z,V,XI,YI,ZI)

slice(…,‘method’)

Draws slices along the x, y, z directions in the volume V at the points in the vectors sx,
sy, and sz. V is an m-by-n-by-p volume array containing data values at the default
location X = 1:n, Y = 1:m, Z =1:p. Each element in the vectors sx, sy, and sz defines a
slice plane in the x-, y-, or z-axis direction.

Draws slices of the volume V where X, Y, and Z are monotonic orthogonally spaced
three-dimensional arrays specifying the coordinates for V. The color at each point is
determined by 3-D interpolation into the volume V.

Draws data in the volume V for the slices defined by matrices XI, YI, and ZI which
define a surface, and the volume is evaluated at the surface points. XI, YI, and ZI
must all be the same size.

Draws slices through the volume V along the surface defined by the arrays XI, YI, ZI.

Specifies the interpolation method. The options are ‘linear’, ‘cubic’, or ‘nearest’.

>> [x, y, z] = meshgrid(-2:.2:2,-2:.25:2,-2:.16:2);

v = x. * exp(-x.^2-y.^2-z.^2);

slice(x,y,z,v,[-1.2,.8,2],2,[-2,0])

(continued)

Chapter 4 ■ GraphiCs in MatLaB. Curves, surfaCes and voLuMes

156

stem3(Z)

stem3(X,Y,Z)
stem3(…,‘fill’)

stem3(…,S)

Plots Z as a sequence of vertical stems with bases on the xy-plane. The base positions
are automatically generated.

Plots the sequence Z as vertical stems with xy-plane base positions specified by X and Y.

Fills the circles at the tips of the stems with color.

Creates a 3D stem plot with line style, marker and color specifications S.

>> X = linspace(0,1,10);

Y = X / 2;

Z = sin(X) + cos(Y);

stem3(X,Y,Z,'fill')

Specialized Graphics
MATLAB provides commands to create various plots and charts (filled areas, comet, contour, mesh, surface and
scatter plots, Pareto charts, and stair step graphs). You can also modify axes specifications, and there is an easy to use
function plotter. The following table presents the syntax of these commands.

area(Y)

area(X, Y)

area(…,ymin)

Creates an area graph displaying the elements of the vector Y as one or more
curves, filling the area beneath the curve.

Identical to plot(X,Y), except the area between 0 and Y is filled.

Specifies the base value for the fill area (default 0) .

>> Y = [1, 5, 3; 3, 2, 7; 1, 5, 3; 2, 6, 1]; area(Y)

(continued)

Chapter 4 ■ GraphiCs in MatLaB. Curves, surfaCes and voLuMes

157

box on, box off Displays/does not display the boundary of the current axes.

comet(y)

comet(x, y)

Creates an animated comet graph of the vector y.

Plots the comet graph of the vector y versus the vector x.

>> t = - pi:pi/200:pi;comet(t,tan(sin(t))-sin(tan(t)))

ezcontour(f)

ezcontour(f, domain)

ezcontour(…,n)

Creates a contour plot of f(x,y) in the domain [-2p, 2p] × [-2p, 2p].

Creates a contour plot of f(x,y) in the given domain.

Creates a contour plot of f(x,y) over an n×n grid.

>> ezcontour('sqrt(x^2 + y^2)')

(continued)

Chapter 4 ■ GraphiCs in MatLaB. Curves, surfaCes and voLuMes

158

ezcontourf (f)

ezcontourf (f, domain)

ezcontourf(…,n)

Creates a filled contour plot of f(x,y) in the domain [-2p, 2p] × [-2p, 2p].

Creates a filled contour plot of f(x,y) in the given domain.

Creates a filled contour plot of f(x,y) over an n×n grid.

>> ezcontourf('sqrt(x^2 + y^2)')

ezmesh(f)

ezmesh(f,domain)

ezmesh(…,n)

ezmesh (x, y, z)

ezmesh (x, y, z, domain)

ezmesh(…, ‘circ’)

Creates a mesh plot of f(x,y) over the domain [-2p, 2p] × [-2p, 2p].

Creates a mesh plot of f(x,y) over the given domain.

Creates a mesh plot of f(x,y) using an n×n grid.

Creates a mesh plot of the parametric surface x = x(t,u), y = y(t,u), z = z(t,u),
t,uŒ[-2p, 2p].

Creates a mesh plot of the parametric surface x = x(t,u), y = y(t,u), z = z(t,u),
t,uŒ domain.

Creates a mesh plot over a disc centered on the domain.

>> ezmesh ('sqrt(x^2 + y^2)')

(continued)

Chapter 4 ■ GraphiCs in MatLaB. Curves, surfaCes and voLuMes

159

ezmeshc (f)

ezmeshc (f, domain)

ezmeshc(…,n)

ezmeshc (x, y, z)

ezmeshc (x, y, z, domain)

ezmeshc(…, ‘circ’)

Creates a combination of mesh and contour graphs.

>> ezmeshc ('sqrt(x^2 + y^2)')

ezsurf (f)

ezsurf (f, domain)

ezsurf(…,n)

ezsurf (x, y, z)

ezsurf (x, y, z, domain)

ezsurf(…, ‘circ’)

Creates a colored surface plot.

>> ezsurf('sqrt(x^2 + y^2)')

(continued)

Chapter 4 ■ GraphiCs in MatLaB. Curves, surfaCes and voLuMes

160

ezsurfc (f)

ezsurfc (f, domain)

ezsurfc(…,n)

ezsurfc (x, y, z)

ezsurfc (x, y, z, domain)

ezsurfc(…, ‘circ’)

Creates a combination of surface and contour plots.

>> ezsurfc('sqrt(x^2 + y^2)')

ezplot3 (x, y, z)

ezplot3 (x, y, z, domain)

ezplot3(…, ‘animate’)

Plots the 3D parametric curve x = x (t), y(t) = y, z(t) = z tŒ[-2p, 2p].

Plots the 3D parametric curve x = x (t), y(t) = y, z(t) = z tŒdomain.

Creates a 3D animation of a parametric curve.

>> ezplot3('cos(t)','t.*sin(t)','sqrt(t)')

ezpolar(f)

ezpolar(f, [a, b])

Graphs the polar curve r = f (c) with cŒ[0, 2p].

Graphs the polar curve r = f (c) with cŒ[a, b].

ezpolar ('sin(2*t). * cos(3*t)', [0 pi])

(continued)

Chapter 4 ■ GraphiCs in MatLaB. Curves, surfaCes and voLuMes

161

pareto(Y)

pareto(X,Y)

Creates a Pareto chart relative to the vector of frequencies Y.

Creates a Pareto chart relative to the vector of frequencies Y whose elements are
given by the vector X.

>> lines_of_code = [200 120 555 608 1024 101 57 687];

coders =…

{'Fred', 'Ginger', 'Norman', 'Max', 'Julie', 'Wally', 'Heidi', 'Pat'};

Pareto (lines_of_code, coders)

title ('lines of code by programmer')

pie.3 (X)

pie.3(X, explode)

Creates a 3D pie chart for frequencies X.

Creates a detached 3D pie chart.

>> ft3 ([2 4 3 5], [0 1 1 0], {'North', 'South', 'East', 'West'})

(continued)

Chapter 4 ■ GraphiCs in MatLaB. Curves, surfaCes and voLuMes

162

plotmatrix(X, Y) Creates a scatter plot of the columns of X against the columns of Y.

>> x = randn (50,3); y = x * [- 1 2 1; 2 0 1; 1-2-3;]';
plotmatrix (y)

stairs (Y)

stairs(X, Y)

stairs(…,linespec)

Draws a stair step graph of the elements of Y.

Draws a stair step graph of the elements of Y at the locations specified by X.

In addition, specifies line style, marker symbol and color.

>> x = linspace(-2*pi,2*pi,40);stairs(x,sin(x))

scatter(X,Y,S,C)

scatter(X,Y)

scatter(X,Y,S)

scatter(…, marker)

scatter(…, ‘filled’)

Creates a scatter plot, displaying circles at the locations specified by X and Y.
S specifies the circle size and C the color. The circles can be filled and different
markers can be specified.

(continued)

Chapter 4 ■ GraphiCs in MatLaB. Curves, surfaCes and voLuMes

163

scatter3(X,Y,Z,S,C)

scatter3(X,Y,Z)

scatter3(X,Y,Z,S)

scatter3(…,marker)

scatter(…,‘filled’)

Creates a 3D scatter plot determined by the vectors X, Y, Z. Colors and markers
can be specified.

>> x=(0:0.1:4);

>> scatter(x,cos(x))

>> x=(0:0.1:2*pi);

>> scatter3 (x, cos(x), sin(x))

Chapter 4 ■ GraphiCs in MatLaB. Curves, surfaCes and voLuMes

164

2D and 3D Graphics Options
MATLAB includes many different commands which enable graphics handling, including titles, legends and axis
labels, addition of text to plots, and adjustment of coloring and shading. The most important commands are
summarized in the following table.

title (‘text’) Adds a title to the top of the current axes.

xlabel (‘text’) Adds an x-axis label.

ylabel (‘text’) Adds a y-axis label.

zlabel (‘text’) Adds a z-axis label.

clabel(C,h) Labels contour lines of a contour plot with a ‘+’, rotating the labels so they are
positioned on the inside of the contour lines.

clabel(C,h,v) Labels contour lines of a contour plot only for the levels given by the vector v,
rotating the labels so they are positioned on the inside of the contour lines.

datetick (axis) Creates date formatted tick labels for the specified axis (‘x’, ‘y’ or ‘z’).

datetick (axis, date) Creates date formatted tick labels for the specified axis (‘x’, ‘y’ or ‘z’) with the
given date format (an integer between 1 and 28).

legend (‘string1’, ‘string2’,…) Displays a legend in the current axes using the specified strings to label each set of
data.

legend(h,‘string1’, ‘string2’,…) Displays a legend on the plot containing the objects identified by the vector h and
uses the specified strings to label the corresponding graphics objects.

legend (‘off ’), Deletes the current axes legend.

text (x, y, ‘text’) Places the given text at the point (x, y) within a 2D plot.

text (x, y, z, ‘text’) Places the given text at the point (x, y, z) in a 3D plot.

gtext (‘text’) Allows you to place text at a mouse-selected point in a 2D plot.

grid Adds grid lines to 2D and 3D plots. Grid on adds major grid lines to the axes,
grid off removes all grid lines from the current axes. The command grid toggles
the visibility of the major grid lines.

hold Controls whether the current graph is cleared when you make subsequent calls
to plotting functions (the default), or adds a new graph to the current graph,
maintaining the existing graph with all its properties. The command hold on
retains the current graph and adds another graph to it. The command hold off
resets to default properties before drawing a new graph.

axis ([xmin xmax ymin ymax
zmin zmax])

Sets the axes limits.

axis (‘auto’) Computes the axes limits automatically (xmin = min (x), xmax = max(x)).

axis (axis) Freezes the scaling at the current limits, so that if hold is on, subsequent plots use
the same limits.

V = axis Returns a row vector V containing scaling factors for the x-, y-, and z-axes. V has
four or six components depending on whether the plot is 2D or 3D, respectively.

axis (‘xy’) Uses Cartesian coordinates with the origin at the bottom left of the graph.

(continued)

Chapter 4 ■ GraphiCs in MatLaB. Curves, surfaCes and voLuMes

165

axis (‘tight’) Sets the axis limits to the range of the data.

axis (‘ij’) Places the origin at the top left of the graph.

axis (‘square’) Makes the current axes region a square (or a cube when three-dimensional).

axis (‘equal’) Uses the same scaling factor for both axes.

axis (‘normal’) Removes the square and equal options.

axis (‘off ’) Turns off all axis lines, tick marks, and labels, keeping the title of the graph and
any text.

axis (‘on’) Turns on all axis lines, tick marks, and labels.

subplot (m, n, p) Divides the current figure into an m×n grid and creates axes in the grid position
specified by p. The grids are numbered by row, so that the first grid is the first
column of the first row, the second grid is the second column of the first row, and
so on.

plotyy(X1,Y1,X2,Y2)

plotyy(X1,Y1,X2,Y2,)

‘function’)

plotyy(X1,Y1,X2,Y2, ‘function1’,
‘function2’)

Plots X1 versus Y1 with y-axis labeling on the left and plots X2 versus Y2 with
y-axis labeling on the right.

Same as the previous command, but using the specified plotting function (plot,
loglog, semilogx, semilogy, stem or any acceptable function h = function(x,y)) to
plot the graph.

Uses function1(X1,Y1) to plot the data for the left axis and function2(X2,Y2) to
plot the data for the right axis.

axis ([xmin xmax ymin ymax
zmin zmax])

Sets the x-, y-, and z-axis limits. Also accepts the options ‘ij’, ‘square’, ‘equal’, etc.,
identical to the equivalent two-dimensional command.

view ([x, y, z]) Sets the viewing direction to the Cartesian coordinates x, y, and z.

view([as, el]) Sets the viewing angle for a three-dimensional plot. The azimuth, az, is the
horizontal rotation about the z-axis as measured in degrees from the negative
y-axis. Positive values indicate counterclockwise rotation of the viewpoint. el
is the vertical elevation of the viewpoint in degrees. Positive values of elevation
correspond to moving above the object; negative values correspond to moving
below the object.

hidden Hidden line removal draws only those lines that are not obscured by other objects
in a 3-D view. The command hidden on hides such obscured lines while hidden
off shows them.

shading Controls the type of shading of a surface created with the commands surf, mesh,
pcolor, fill and fill3. The option shading flat gives a smooth shading, shading
interp gives a dense shadow and shading faceted (default) yields a standard
shading.

colormap (M) Sets the colormap to the matrix. M must have three columns and only contain
values between 0 and 1. It can also be a matrix whose rows are vectors of RGB
type [r g b]. There are some pre-defined arrays M, which are as follows: jet (p),
HSV (p), hot (p), cool (p), spring (p), summer (p), autumn (p), winter (p), gray
(p), bone (p), copper (p), pink (p), lines (p). All arrays have 3 columns and
p rows. For example, the syntax colormap (hot (8)) sets hot (8) as the current
colormap.

(continued)

Chapter 4 ■ GraphiCs in MatLaB. Curves, surfaCes and voLuMes

166

brighten (p) Adjusts the brightness of the figure. If 0 < p < 1, the figure will be brighter, and if
-1<p<0 the figure will be darker.

image (A) Creates an image graphics object by interpreting each element in a matrix as an
index into the figure’s colormap or directly as RGB values, depending on the data
specified.

pcolor (A) Produces a pseudocolor plot, i.e. a rectangular array of cells with colors
determined by A. The elements of A are linearly mapped to an index into the
current colormap.

caxis ([cmin cmax]) Sets the color limits to the specified minimum and maximum values. Data values
less than cmin or greater than cmax map to cmin and cmax, respectively. Values
between cmin and cmax linearly map to the current colormap.

h = figure

figure(h)

Creates a figure graphics object with name h.

Makes the figure identified by h the current figure, makes it visible, and attempts
to raise it above all other figures on the screen. The current figure is the target for
graphics output.

The command close(h) deletes the figure identified by h. The command
whitebg(h) complements all the colors of the figure h. The clf command closes
the current figure. The command graymon sets defaults for graphics properties
to produce more legible displays for grayscale monitors. The refresh command
redraws the figure.

e = axes

axes(e)

Creates axes objects named e.

Makes the existing axes e the current axes and brings the figure containing it into
focus. The command gca returns the name of the current axes. The command cla
deletes all objects related to the current axes.

l = line(x,y) or

l = line (x, y, z)

Creates, as an object of name l, the line joining the points X, Y in the plane or the
points X, Y, Z in space.

p = (X, Y, C) patch or

patch(X,Y,Z,C)

Creates an opaque polygonal area p that is defined by the set of points (X, Y) in
the plane or (X, Y, Z) in space, and whose color is given by C.

s = surface(X,Y,Z,C) Creates the parametric surface s defined by X, Y and Z and whose color is
given by C.

i = image (C) Creates an image i from the matrix C. Each element of C specifies the color of a
rectangular segment in the image.

t = text (x, y, ‘string’) or

t = text (x, y, z, ‘string’)

Creates the text t defined by the chain, located at the point (x, y) in the plane,
or at the point (x, y, z) in space.

set (h, ‘property1’,

‘property2’,…)

Sets the named properties for the object h (gca for limits of axes), gcf, gco, gcbo,
gcbd, colors, etc.

get (h, ‘property’) Returns the current value of the given property of the object h.

object = gco Returns the name of the current object.

(continued)

Chapter 4 ■ GraphiCs in MatLaB. Curves, surfaCes and voLuMes

167

rotate(h, v, a,[p, q, r]) Rotates the object h by an angle a about an axis of rotation described by the
vector v from the point (p, q, r).

reset (h) Updates all properties assigned to the object h replacing them with their default
values.

delete (h) Deletes the object h.

In addition, the most typical properties of graphics objects in MATLAB are the following:

Object Properties Possible values

Figure Color (background color) ‘y’, ‘m’, ‘c’, ‘r’, ‘g’, ‘b’, ‘w’, ‘k’

ColorMap (map color) hot(p), gray(p), pink(p),....

Position (figure position) [left, bottom, width, height]

Name (figure name) string name

MinColorMap (min. color no.) minimum number of colors for map

NextPlot (graph. mode following.) new, add, replace

NumberTitle (no. in the figure title) on, off

Units (units of measurement) pixels, inches, centimeters, points

Resize (size figure with mouse) on (can be changed), off (cannot be changed)

Axes Box (box axes) on, off

Color (color of the axes) ‘y’, ‘c’, ‘r’, ‘g’, ‘b’, ‘w’, ‘k’

P:System.Windows.Forms.DataGrid.
GridLineStyle (line for mesh)

‘-’, ‘--’, ‘:’, ‘-.’

Position (origin position) [left, bottom, width, height]

TickLength (distance between marks) a numeric value

TickDir (direction of marks) in, out

Units (units of measurement) pixels, inches, centimeters, points

View (view) [azimuth, elevation]

FontAngle (angle of source) normal, italic, oblique

FontName (name of source) the name of the source text

FontSize (font size) numeric value

T:System.Windows.FontWeight (weight) light, normal, demi, bold

DrawMode property (drawing mode) normal, fast

Xcolor, Ycolor, Zcolor (axes color) [min, max]

XDir, Jdir, ZDir (axes direction) normal (increasing from left to right), reverse

XGrid, YGrid, Zgrid (grids) on, off

XLabel, YLabel, Zlabel (tags) string containing the text of labels

(continued)

Chapter 4 ■ GraphiCs in MatLaB. Curves, surfaCes and voLuMes

168

Object Properties Possible values

XLim, YLim, ZLim (limit values) [min, max] (range of variation)

XScale, YScale, ZScale (scales) linear, log (log)

XTick,YTick,ZTick (marks) [m1,m2,…] (position of marks on axis)

Line Color (color of the line) ‘y’, ‘m’, ‘c’, ‘r’, ‘g’, ‘b’, ‘w’, ‘k’

LineStyle (line style) ‘-’, ‘--’, ‘:’, ‘-.’, ‘+’, ‘*’, ‘.’, ‘x’

LineWidth (line width) numeric value

Visible (visible line or not displayed.) on, off

Xdata, Ydata, Zdata (coordinates.) set of coordinates of the line

Text Color (text color) ‘y’, ‘m’, ‘c’, ‘r’, ‘g’, ‘b’, ‘w’, ‘k’

FontAngle (angle of source) normal, italic, oblique

FontName (name of source) the name of the source text

FontSize (font size) numeric value

T:System.Windows.FontWeight (weight) light, normal, demi, bold

HorizontalAlignment (hor. setting.) left, center, right

VerticalAlignment (adjust to vert.) top, cap, middle, baseline, bottom

Position (position on screen) [x, y, z] (text coordinates)

Rotation (orientation of the text) 0, ±90, ±180, ±270

Units (units of measurement) pixels, inches, centimeters, points

String (text string) the text string

Surface CDATA (color of each point) color matrix

Edgecolor (color grids) ‘y’,‘m’,…, none, flat, interp

Facecolor (color of the faces) ‘y’,‘m’,…, none, flat, interp

LineStyle (line style) ‘-’, ‘--’, ‘:’, ‘-.’, ‘+’, ‘*’, ‘.’, ‘x’

LineWidth (line width) numeric value

MeshStyle (lines in rows and col.) row, Columbia, both

Visible (visible line or not displayed.) on, off

Xdata, Ydata, Zdata (coordinates) set of coordinates of the surface

Patch CDATA (color of each point) color matrix

Edgecolor (color of the axes) ‘y’,‘m’,…, none, flat, interp

Facecolor (color of the faces) ‘y’,‘m’,…, none, flat, interp

LineWidth (line width) numeric value

Visible (visible line or not displayed.) on, off

Xdata, Ydata, Zdata (coordinates) set of coordinates of the surface

Image CDATA (color of each point) color matrix

Xdata, Ydata (coordinates) set of coordinates of the image

Chapter 4 ■ GraphiCs in MatLaB. Curves, surfaCes and voLuMes

169

Here are some illustrative examples.

>> x=linspace(0,2,30);
y=sin(x.^2);
plot(x,y)
text(1,0.8, 'y=sin(x^2)')
hold on
z=log(sqrt(x));
plot(x,z)
text(1,-0.1, 'y=log(sqrt(x))')
xlabel('x-axis');
ylabel('y-axis');
title(Sinoidal and logarithmic graphs');

>> subplot(2,2,1);
ezplot('sin(x)',[-2*pi 2*pi])
subplot(2,2,2);
ezplot('cos(x)',[-2*pi 2*pi])
subplot(2,2,3);
ezplot('csc(x)',[-2*pi 2*pi])
subplot(2,2,4);
ezplot('sec(x)',[-2*pi 2*pi])

Chapter 4 ■ GraphiCs in MatLaB. Curves, surfaCes and voLuMes

170

>> [X,Y] = meshgrid(-2:0.05:2);
Z=X^2-Y.^2;
subplot(2,2,1)
surf(X,Y,Z)
subplot(2,2,2)
surf(X,Y,Z),view(-90,0)
subplot(2,2,3)
surf(X,Y,Z),view(60,30)
subplot(2,2,4)
surf(X,Y,Z), view (- 10, 30)

>> [X,Y]=meshgrid(-2:0.05:2);
Z=X.^2-Y.^2;
surf(X,Y,Z),shading interp,brighten(0.75),colormap(gray(5))

Chapter 4 ■ GraphiCs in MatLaB. Curves, surfaCes and voLuMes

171

exerCise 4-1

Represent the surface defined by the equation:

f x y
x y

x y
(,)

()

()
=

-
- +

1

1

2 2

2 2

>> [x,y]=meshgrid(0:0.05:2,-2:0.05:2);
>> z=y.^2.*(x-1).^2./(y.^2+(x-1).^2);
>> mesh(x,y,z),view([-23,30])

Chapter 4 ■ GraphiCs in MatLaB. Curves, surfaCes and voLuMes

172

We could also have represented the surface in the following form:

>> ezsurf('y^2*(x-1)^2/(y^2+(x-1)^2)')

exerCise 4-2

Let the function f:r2Æ r be defined by:

f x y
x y

x y
(,)

(cos())sin()
.=

-
+

1
3 3

represent it graphically in a neighborhood of (0,0).

>> [x,y]=meshgrid(-1/100:0.0009:1/100,-1/100:0.0009:1/100);
>> z=(1-cos(x)).*sin(y)./(x.^3+y.^3);
>> surf(x,y,z)
>> view([50,-15])

Chapter 4 ■ GraphiCs in MatLaB. Curves, surfaCes and voLuMes

173

exerCise 4-3

plot the following two curves, given in polar coordinates, next to each other:

r a r a= =cos() sin().2 2and

also find the intersection of the two curves.

>> a=0:.1:2*pi;
>> subplot(1,2,1)
>> r=sqrt(cos(2*a));
>> polar(a,r)
>> title('r=sqrt(cos(2a))')
>> subplot (1,2,2)
>> r=sin(2*a);
>> polar (a, r)
>> title('r=sin(2a)')

to find the intersection of the two curves, we draw them both on the same axes.

>> a=0:.1:2*pi;
>> r=sqrt(cos(2*a));
>> polar(a,r)
>> hold on;
>> r=sin(2*a);
>> polar(a,r)

Chapter 4 ■ GraphiCs in MatLaB. Curves, surfaCes and voLuMes

174

exerCise 4-4

represent the surface generated by rotating the cubic y x x x= - +12 9 22 3 around the oX axis, between the limits
x = 0 and x = 5/2.

the surface of revolution has equation y z x x x2 2 2 3 212 9 2+ = - +() , and to graph it we use the following
parameterization:

x t y u t t t z u t t t= = - + = - +, cos()(), sin()().12 9 2 12 9 22 3 2 3

>> t=(0:.1:5/2);
>> u=(0:.5:2*pi);
>> x=ones(size(u))'*t;
>> y=cos(u)'*(12*t-9*t.^2+2*t.^3);
>> z=sin(u)'*(12*t-9*t.^2+2*t.^3);
>> surf(x,y,z)

Chapter 4 ■ GraphiCs in MatLaB. Curves, surfaCes and voLuMes

175

exerCise 4-5

Plot the surfaces produced by rotating the ellipse
x y2 2

4 9
1+ = around the X axis and around the Y axis.

We represent the generated figures alongside each other, but only the positive halves of each figure. the equation
of the surface of revolution around the X axis is y z x2 2 29 1 4+ = -(/) , and is given parametrically by:

x t y u t z= = - =, cos()() , .3 1 4 32
1

2

the equation of the surface of revolution around the Y axis is x z y2 2 24 1 4+ = -(/) and has the parameterization:

x u t y t z u t= - = = -3 1 9 3 1 92
1

2 2
1

2cos()() , sin()() .

>> t=(0:.1:2);
>> u=(0:.5:2*pi);
>> x=ones(size(u))'*t;
>> y=cos(u)'*3*(1-t.^2/4).^(1/2);
>> z=sin(u)'*3*(1-t.^2/4).^(1/2);
>> subplot(1,2,1)
>> surf(x,y,z)
>> subplot(1,2,2)
>> x=cos(u)'*3*(1-t.^2/4).^(1/2);
>> y=ones(size(u))'*t;
» z=sin(u)'*3*(1-t.^2/4).^(1/2);
» surf(x,y,z)

Chapter 4 ■ GraphiCs in MatLaB. Curves, surfaCes and voLuMes

176

exerCise 4-6

represent the intersection of the paraboloid x 2 + y 2 = 2z with the plane z = 2.

>> [x,y]=meshgrid(-3:.1:3);
>> z=(1/2)*(x.^2+y.^2);
>> mesh(x,y,z)
>> hold on;
>> z=2*ones(size(z));
>> mesh(x,y,z)
>> view(-10,10)

exerCise 4-7

represent the volume in the first octant enclosed between the XY plane, the plane z = x + y + 2 and the cylinder
x 2 + y 2 = 16.

We graphically represent the enclosed volume using Cartesian coordinates for the plane and parameterizing the cylinder.

>> t=(0:.1:2*pi);
>> u=(0:.1:10);
>> x=4*cos(t)'*ones(size(u));
>> y=4*sin(t)'*ones(size(u));
>> z=ones(size(t))'*u;
>> mesh(x,y,z)
>> hold on;
>> [x,y]=meshgrid(-4:.1:4);
>> z=x+y+2;
>> mesh(x,y,z)

Chapter 4 ■ GraphiCs in MatLaB. Curves, surfaCes and voLuMes

177

>> set(gca,'Box','on');
>> view(15,45)

exerCise 4-8

represent the volume bounded by the paraboloid x 2 + 4y 2 = z and laterally by the cylinders y 2 = x and x 2 = y.

>> [x,y]=meshgrid(-1/2:.02:1/2,-1/4:.01:1/4);
>> z=x^2+4*y.^2;
>> mesh(x,y,z)
>> hold on;
>> y=x.^2;
>> mesh(x,y,z)
>> hold on;
>> x=y.^2;
>> mesh(x,y,z)
>> set(gca,'Box','on')
>> view(-60,40)

Chapter 4 ■ GraphiCs in MatLaB. Curves, surfaCes and voLuMes

178

exerCise 4-9

plot the parabolas y 2 = x and x 2 = y on the same axes. also plot the parabola y 2 = 4x and the straight
line x + y = 3 on the same axes.

>> fplot('[x^2,sqrt(x)]',[0,1.2])

>> fplot('[(4*x)^(1/2),3-x]',[0,4,0,4])

Chapter 4 ■ GraphiCs in MatLaB. Curves, surfaCes and voLuMes

179

exerCise 4-10

plot the curves defined by the following implicit equations:

x5 – x2y2 + y5 = 0

x4 + x2y – y5 + y4 = 0

>> ezplot('x^5-x^2*y^2+y^5', [-1,1,-1,1])

>> ezplot('x^4+x^2*y-y^3+y^4', [-1/2,1/2,-1/2,3/2])

Chapter 4 ■ GraphiCs in MatLaB. Curves, surfaCes and voLuMes

180

exerCise 4-11

plot the curve given by the following parametric equations:

x t t t() sin()=

y t t t() cos()=

>> ezplot('t * sin(t) ',' t * cos(t)')

exerCise 4-12

plot the curve given by the following equation in polar coordinates:

r = -1 cos().q

>> ezpolar ('1 - cos (t)')

Chapter 4 ■ GraphiCs in MatLaB. Curves, surfaCes and voLuMes

181

exerCise 4-13

plot the space curve defined by the following parametric parametric equations:

x = cos(t), y = sin(t), z = t.

>> ezplot3('cos(t)','sin(t)','t',[0,6*pi])

183

Chapter 5

Limits of Sequences and Functions.
Continuity in One and Several
Variables

Limits
MATLAB incorporates features that allow you to work with limits of sequences and functions. In addition to
calculating limits of sequences and functions, one can use these commands to analyze the continuity and
differentiability of functions, as well as the convergence of numerical series and power series. The following table
summarizes the most common MATLAB functions relating to limits.

limit (sequence, inf) Calculates the limit of the sequence, indicated by its general term, as n tends to infinity

>> syms n
>> limit(((2*n-3)/(3*n-7))^4, n,inf)

ans =

16 /81

limit(function, x, a) Calculates the limit of the function of the variable x, as the variable x tends towards the
value a

>> syms x
limit((x-1)/(x^(1/2)-1),x,1)

ans =

2

limit(function, a) Calculates the limit of the function of the variable x, as the variable x tends towards the
value a

>> limit((x-1)/(x^(1/2)-1),1)

ans =

2

(continued)

Chapter 5 ■ Limits of sequenCes and funCtions. Continuity in one and severaL variabLes

184

limit (function, x, a,
‘right’)

Calculates the limit of the function of the variable x, indicated by its analytical
expression, as the variable x tends to a from the right

>> syms x
limit((exp(1/x)),x,0,'right')

ans =

Inf

limit (function, x, a, ‘left’) Calculates the limit of the function of the variable x, indicated by its analytical
expression, as the variable x tends to a from the left

>> limit((exp(1/x)),x,0,'left')

ans =

0

As a first example, we calculate the following sequential limits:

lim , lim , lim , lim
n

n

n

n

n
n

n

n

n n n®¥ ®¥ ®¥ ®¥

+
- +

æ
è
ç

ö
ø
÷ -

+
æ
è
ç

ö
ø
÷

-3

1
1

2

3

1 nn n

n n

n

nn n

3 3 1

1

+ +
- + + ®¥

, lim
!

>> syms n

>> limit(((n+3)/(n-1))^n, inf)

ans =

exp(4)

>> limit((1-2/(n+3))^n, inf)

ans =

1/exp(2)

>> limit((1/n)^(1/n), inf)

ans =

1

>> limit(((n+1)^(1/3)-n^(1/3))/((n+1)^(1/2)-n^(1/2)),inf)

ans =

0

>> limit((n^n*exp(-n)*sqrt(2*pi*n))/n^n, n,inf)

ans =

0

Chapter 5 ■ Limits of sequenCes and funCtions. Continuity in one and severaL variabLes

185

In the last limit we have used Sterling’s formula to approximate the factorial.

n n e nn n!» - 2p

As a second example, we calculate the following functional limits:

lim
| |

sin()
, lim | |, lim

| |
, lim

x x x n x

xx

x
x x

x

x
e

® ® ® ®
- -

-
-1 3

2

1 1
7

1

1

>> limit(abs(x)/sin(x),x,0)

ans =

NaN

>> syms x
>> limit(abs(x)/sin(x),x,0)

ans =

NaN

>> limit(abs(x)/sin(x),x,0,'left')

ans =

-1

>> limit(abs(x)/sin(x),x,0,'right')

ans =

1

>> limit(abs(x^2-x-7),x,3)

ans =

1

>> limit((x-1)/(x^n-1),x,1)

ans =

1/n

>> limit(exp(1)^(1/x),x,0)

ans =

NaN

Chapter 5 ■ Limits of sequenCes and funCtions. Continuity in one and severaL variabLes

186

>> limit(exp(1)^(1/x),x,0,'left')

ans =

0

>> limit(exp(1)^(1/x),x,0,'right')

ans =

Inf

Sequences of Functions
You can also use the MATLAB commands for limits of sequences and functions described in the preceding table to
study the convergence of sequences of functions.

As a first example, consider the sequence of functions defined by g
n
(x) = (x2+nx) /n with xŒR.

A sensible first approach is to graph the sequence of functions to get an idea of what the limit function might be.
To graph these functions we can use both the command plot and the command fplot.

If we use the command fplot, the syntax for the simultaneous graphical representation of the first nine functions
of the sequence on the same axes would be as follows:

>> fplot('[(x^2+x),(x^2+2*x)/2,(x^2+3*x)/3,(x^2+4*x)/4,(x^2+5*x)/5,(x^2+5*x)/5,(x^2+6*x)/6,(x^2+7*x)/7,
(x^2+8*x)/8,(x^2+9*x)/9]',[-2,2,-2,2])

Graphically this indicates that the sequence of functions converges to the identity function f(x) = x.

Chapter 5 ■ Limits of sequenCes and funCtions. Continuity in one and severaL variabLes

187

We can corroborate this fact by using the command limit with the following syntax:

>> syms x n
>> limit((x^2+n*x)/n,n,inf)

ans =

x

As a second example, we consider the sequence of functions g
n
(x) = (xn) /n with xÎ[0,1].

>> limit(x.^n/n,n,inf);x(1)

ans =

0

Below is the graphical representation of the sequence of functions, which verifies the result.

>> fplot('[x,x^2/2,x^3/3,x^4/4,x^5/5,x^6/6,x^7/7,x^8/8,x^9/9,x^10/10]',[0,1,-1/2,1])

Continuity
The calculation of limits is a necessary tool when dealing with the concept of continuity. Formally, a function f is
continuous at the point x = a if we have:

lim () ()
x a

f x f a
®

=

Chapter 5 ■ Limits of sequenCes and funCtions. Continuity in one and severaL variabLes

188

If this is not the case, we say the function is discontinuous at a. Thus, for a function f to be continuous at
x = a, f must be defined at a, and its value at a must be equal to the limit of f at the point a. If the limit of f(x) as x→ a
exists, but is different from f (a) (or f (a) is not defined), then f is discontinuous at a, and f is said to have an avoidable
discontinuity at a. The discontinuity can be avoided by appropriately redefining the function at a.

If the two lateral limits of f at a (finite or infinite) exist, but are different, then the discontinuity of f at a is said to be
of the “first kind”. The difference between the values of two different lateral limits is called “the jump”. If the difference
is finite, the discontinuity is said to be “of the first kind with finite jump” If the difference is infinite, that discontinuity
is said to be “of the first kind with infinite jump”. If at least one of the lateral limits does not exist, the discontinuity is
said to be “of the second kind”.

As a first example, we consider the continuity in R-{0} of the function f(x) = sin(x) /x.
We will check that. lim

x a®
=f(x) f(a) .

>> syms x a
>> limit (sin (x) / x, x, a)

ans =

sin(a) /a

A problem arises at the point x = 0, at which the function f is not defined. Therefore, the function is discontinuous
at x = 0. This discontinuity can be avoided by defining the function at x = 0 to have a value equal to lim ()

x
f x

®0
.

>> limit (sin(x) / x, x, 0)

ans =

1

Therefore, the function f (x) = sin (x) /x presents an avoidable discontinuity at x = 0 that is avoided by defining
f(0) = 1. At all other points the function is continuous. The graph of the function corroborates these findings.

>> fplot ('sin (x) / x', [- 6 * pi, 6 * pi])

Chapter 5 ■ Limits of sequenCes and funCtions. Continuity in one and severaL variabLes

189

As a second example, we observe that the function f x ex()= is not continuous at the point x = 0 since the lateral
boundaries do not match (one is zero and the other infinite).

>> syms x

>> limit((exp(1/x)),x,0,'right')

ans =

inf

>> limit((exp(1/x)),x,0, 'left')

ans =

0

As a third example, we examine the continuity of the function f (x) = sin (1/x). The function f is continuous at any
non-zero point, since lim

x a®
=f(x) f(a):

>> syms x a

>> limit(sin(1/x),x,a)

ans =

sin(1/a)

We now consider the point x = 0, at which the function f is not defined. Therefore, the function is discontinuous
at x = 0. To try to avoid the discontinuity, we calculate:

>> limit(sin(1/x),x,0)

ans =

limit(sin(1/x), x = 0)

>> limit(sin(1/x),x,0,'left')

ans =

NaN

>> limit(sin(1/x),x,0,'right')

ans =

NaN

Chapter 5 ■ Limits of sequenCes and funCtions. Continuity in one and severaL variabLes

190

We see that at x = 0, the function has a discontinuity of the second kind. The graphical representation confirms
this result.

>> fplot('sin(1/x)',[-pi/6,pi/6])

Limits in Several Variables. Iterated and Directional Limits
The generalization of the concept of limit to several variables is quite simple. A sequence of m-dimensional points
{(a

1n
,a

2n
,...,a

mn
)}, with n running through the natural numbers, has as limit the m-dimensional point (a

1
,..., a

m
) if, and

only if:

Limit[{a

1n
}] = a

1
, Limit[{a

2n
}] = a

2
, ..., Limit[{a

mn
}] = a

m

n®∞ n®∞ n®∞

This characterization theorem allows us to calculate limits of sequences of m-dimensional points.
There is another theorem similar to the above for the characterization of limits of functions between spaces of

more than one dimension. This theorem is used to enable the calculation of limits of multivariable functions.
If f:Rn -> Rm is a function whose m components are (f

1
,f

2
,...,f

m
). Then it follows that:

Limit (f

1
(x

1
,x

2
,..,x

m
),f

2
(x

1
,x

2
,..,x

m
),...,f

n
(x

1
,x

2
,..,x

m
)) = (l

1
,l

2
,..,l

n
) as

x
1
®a

1
, x

2
®a

2
,..., x

m
®a

m

if and only if

Limit (f

1
(x

1
,x

2
,...,x

m
)) = l

1
, Limit(f

2
(x

1
,x

2
,...,x

m
)) = l

2
,..., Limit(f

n
(x

1
,x

2
,...,x

m
)) = l

n
 as

x
1
®a

1
,...,x

m
®a

m

As a first example, we calculate the following three-dimensional limit:

lim , ,
n

n
n

n n

n

n®¥

+
+æ

è
ç

ö
ø
÷ -

é

ë
ê
ê

ù

û
ú
ú

1
1

1

2 1

2

Chapter 5 ■ Limits of sequenCes and funCtions. Continuity in one and severaL variabLes

191

>> syms n
>> V=[limit((n+1)/n,inf),limit((1+1/n)^(2*n),inf),limit(n/(2*n-1),inf)]

V =

[1, exp(2), 1/2]

As a second example, we calculate the following limit:

lim , , ,
n

n n nn

n n
n

n

n®¥ +
+é

ë
ê

ù

û
ú

1

1
5

1
2

2

2

>> syms n
>> V1=[limit((n/(n^2+1))^(1/n),inf),limit((1/n)^(1/n),inf),
 limit((5*n)^(1/n),inf),limit((n^2+1)/n^2,inf)]

V1 =

[1, 1, 1, 1]

As a third example, we calculate lim ()
x

f x
®0

 for the function f:R → R2 defined by:

f x
x

x
xx()

sin()
,= +æ

è
ç

ö
ø
÷1

>> syms x
>> V3=[limit(sin(x)/x,x,0),limit((1+x)^(1/x),x,0)]

V3 =

[1, exp(1)]

As fourth example, we find lim (,)
(,) (,)x y

f x y
® 0 0

 for the function f:R → R2 defined by:

f x y
y

y

x

x
x

y

y
x(,)

(cos()) sin()
,

tan()
=

-
+ + -

é

ë
ê

ù

û
ú

2 1
1

2

>> [limit(limit(sin(x)/x+2*(1-cos(y))/y^2,x,0),y,0),
 [limit(limit(((1+x)^(1/x)-tan(y)/y),x,0),y,0)]

ans =

[2, exp(1) - 1]

Chapter 5 ■ Limits of sequenCes and funCtions. Continuity in one and severaL variabLes

192

Given a function f: Rn →R an iterated limit of f(x
1
 ,x

2
,...,x

n
) at the point (a

1
,a

2
 ,...,a

n
) is the value of the following

limit, if it exists:

Lim (Lim (... (Lim f(x

1
,x

2
,..,x

n
))...))

x
1
®a

1
 x

2
®a

2
 x

n
®a

n

or any of the other permutations of the limits on x

i
 with i = 1, 2,...,n.

The directional limit of f at the point (a
1
,..., a

n
), depending on the direction of the curve h(t) =(h

1
(t) , h

2
(t),..., h

n
(t)),

such that h(t
0
) =(a

1
,a

2
,...,a

n
), is the value:

Lim (f(h(t))) = Lim f(x

1
,x

2
,...,x

n
)

t®t0 (x
1
,x

2
,...,x

n
)®(a

1
, a

2
,...,a

n
)

A necessary condition for a function of several variables to have a limit at a point is that all the iterated limits

have the same value (which will be equal to the value of the limit of the function, if it exists). The directional limits
of a function at a point may be different for different curves, and some of the directional limits may not exist.
Another necessary condition for a function of several variables to have a limit at a point is that all directional limits,
approaching along any curve, have the same value (and this common value will be equal to the value of the limit of
the function, if it exists). Therefore, to prove that a function has no limit it is enough to show that the iterated limits
do not exist, or if they exist, are not the same, or that two directional limits are different, or a directional limit doesn’t
exist. Another practical procedure to calculate the limit of a function of several variables is to change the coordinates
from Cartesian to polar, which can facilitate the limit operation.

As first example, we calculate lim (,)
(,) (,)x y

f x y
® 0 0

 for f: R2 → R defined by:

f x y
xy

x y
(,)=

+2 2

>> syms x y
>> limit(limit((x*y)/(x^2+y^2),x,0),y,0)

ans =

0

>> limit(limit((x*y)/(x^2+y^2),y,0),x,0)

ans =

0

We see that the iterated limits are the same. Next we calculate the directional limits according to the family of
straight lines y = mx:

>> syms m
>> limit((m*x^2)/(x^2+(m^2)*(x^2)),x,0)

ans =

m/(1+m^2)

Chapter 5 ■ Limits of sequenCes and funCtions. Continuity in one and severaL variabLes

193

We see that the directional limits depend on the parameter m, which will be different for different values of m
(for the different considered straight lines). Thus, we conclude that the function has no limit at (0,0).

The result can be graphically illustrated as a surface as follows.

>> ezsurf('(x*y) /(x^2+y^2)')

We observe that in a neighborhood of (0,0), the function has no limit.
As second example, we consider lim (,)

(,) (,)x y
f x y

® 0 0
 for the function f:R2 → R defined by:

f x y
y x

x y
(,)

()
=

-
+

2 2 2

2 4

>> syms x y
>> limit(limit((y^2-x^2)^2/(y^4+x^2),x,0),y,0)

ans =

1

>> limit(limit((y^2-x^2)^2/(y^4+x^2),y,0),x,0)

ans =

0

As the iterated limits are different, we conclude that the function has no limit at the point (0,0).

Chapter 5 ■ Limits of sequenCes and funCtions. Continuity in one and severaL variabLes

194

If we graph the surface in a neighborhood of (0,0) we can observe its behavior at that point.

>> ezsurf('(y^2-x^2)^2/(y^4+x^2)',[-1 1], [-1 1])

Continuity in Several Variables
Generalizing the definition of continuity in one variable we can easily formalize the concept of continuity in several
variables. A function f: Rn →Rm is said to be continuous at the point (a

1
,a

2
,..., a

n
) if:

Lim f(x

1
,x

2
,...,x

n
) = f(a

1
,a

2
,...,a

n
)

x
1
®a

1
, x

2
®a

2
,..., x

n
®a

n

As a first example, we examine the continuity at the point (1,2) of the function:

f x y x y(,)= +2 2 if (,) (,)x y ¹ 1 2 and f (,)1 2 0= .

>> limit(limit((x^2+2*y),x,1),y,2)

ans =

5

>> limit(limit((x^2+2*y),y,2),x,1)

ans =

5

We see that if the limit at (1,2) exists, then it should be 5. But the function has value 0 at the point (1,2).
Thus, the function is not continuous at the point (1,2).

Chapter 5 ■ Limits of sequenCes and funCtions. Continuity in one and severaL variabLes

195

As a second example, we study the continuity in all of R2 of the function f x y x y(,)= +2 2 .

>> syms x y a b
>> limit(limit((x^2+2*y),x,a),y,b)

ans =

a^2 + 2*b

>> limit(limit((x^2+2*y),y,b),x,a)

ans =

a^2 + 2*b

>> f='x^2+2*y'

f =

x^2+2*y

>> subs(f,{x,y},{a,b})

ans =

a^2 + 2*b

We see that the iterated limits coincide and their common value coincides with the value of the function at the
generic point (a, b) in R2, i.e. lim (,) (,)(,) (,)x y a b f x y f a b® = .

If we graphically represent the surface, we see that the function is continuous across its domain of definition.

>> ezsurf('x^2+2*y')

Chapter 5 ■ Limits of sequenCes and funCtions. Continuity in one and severaL variabLes

196

exerCise 5-1

Calculate the following limits:

lim , lim , lim
n n

n n

n n

n n

n®¥ ®¥

+ +
- +

+æ
è
ç

ö
ø
÷

+é

ë
ê
ê

ù

û
ú
ú

1 7 3

5 8 4

1

2

12 3

3

4

5 nn
n

n

n®¥

+1
2

the first limit presents a typical uncertainty of the type ¥ ¥/ :

>> limit((3*n^3+7*n^2+1)/(4*n^3-8*n+5),n,inf)

ans =

3/4

the last two limits are of the type ¥.0 and ¥0 :

>> limit(((n+1)/2)*((n^4+1)/n^5), inf)

ans =

1/2

>> limit(((n+1)/n^2)^(1/n), inf)

ans =

1

exerCise 5-2

Calculate the following limits:

lim , lim , lim
sin ()

, lim
x x

x

x x

x x

x
x

ax

x

e
® ® ® ®

- +
- + +

+
éë ùû

2 0 0

2

2 0

2

3 4 1
1

xx

x

-
+
1

1log()

here we have three indeterminates of the type 0/0 and one of the form 1¥
:

>> syms x

>> limit((x-(x+2)^(1/2))/((4*x+1)^(1/2)-3),2)

ans =

9/8

Chapter 5 ■ Limits of sequenCes and funCtions. Continuity in one and severaL variabLes

197

>> limit((1+x)^(1/x))

ans =

exp(1)

>> syms x a, limit(sin(a*x)^2/x^2,x,0)

ans =

a^2

>> limit((exp(1)^x-1)/log(1+x))

ans =

log(3060513257434037/1125899906842624)

>> vpa(limit((exp(1)^x-1)/log(1+x)))

ans =

1.0000000000000001101889132838495

exerCise 5-3

Calculate the limit of the following sequence of functions:

g x
x

xn

n

n
()

()
=

+1
 x > 0

We will start by graphically representing the functions to predict the possible limit.

>> fplot('[x/(1+x),x^2/(1+x^2),x^3/(1+x^3),x^4/(1+x^4),x^5/(1+x^5),
x^6/(1+x^6),x^7/(1+x^7),x^8/(1+x^8),x^9/(1+x^9),x^10/(1+x^10)]',[0,1,-1/2,1])

Chapter 5 ■ Limits of sequenCes and funCtions. Continuity in one and severaL variabLes

198

this tells us that, intuitively, the limit is the x-axis (i.e. the function f (x) = 0) for values of x in [0,1], the value 0.5
for x = 1 and the function f (x) = 1 for x > 1. Let’s see:

>> vpa(simplify(limit(x^n/(1+x^n),n,inf)))

ans =

piecewise([x = 1.0, 0.5], [1.0 < x, 1.0], [x < 1.0, 0.0])

matLab tells us that the limit function is:

f x

if x

if x

if x

() .=
< <
=
>

ì

í
ï

î
ï

0 0 1

0 5 1

1 1

exerCise 5-4

find lim (,)
(,) (,)x y

f x y
® 0 0

 for the function f:r2 ® r defined by:

f x y
y x

x y
(,)

()
=

-
+

2 2

2 4

>> syms x y m, limit(limit((y^2-x)^2/(y^4+x^2),y,0),x,0)

ans =

1

>> limit(limit((y^2-x)^2/(y^4+x^2),x,0),y,0)

ans =

1

We see that the iterated limits are the same. We then calculate the directional limits according to the family of
straight lines y = mx:

>> limit(((m*x)^2-x)^2/((m*x)^4+x^2),x,0)

ans =

1

Chapter 5 ■ Limits of sequenCes and funCtions. Continuity in one and severaL variabLes

199

the directional limits according to the family of straight lines y = mx do not depend on m and coincide with the
iterated limits. We now find the directional limits according to the family of parabolas y ^ 2 = mx:

>> limit(((m*x)-x)^2/((m*x)^2+x^2),x,0)

ans =

(m - 1)^2/(m^2 + 1)

the directional limits according to this family of parabolas depend on the parameter, and so they are different.
this leads us to conclude that the function has no limit at (0,0).

exerCise 5-5

find lim (,)
(,) (,)x y

f x y
® 0 0

 for the function f:r2 ® r defined by:

f x y
y x

x y
(,)

()
=

-
+

2 2

2 4

>> syms x y, limit(limit((x^2*y)/(x^2+y^2),x,0),y,0)

ans =

0

>> limit(limit((x^2*y)/(x^2+y^2),x,0),y,0)

ans =

0

>> limit(((x^2)*(m*x))/(x^2+(m*x)^2),x,0)

ans =

0

>> limit(((m*y)^2)*y/((m*y)^2+y^2),y,0)

ans =

0

Chapter 5 ■ Limits of sequenCes and funCtions. Continuity in one and severaL variabLes

200

We see that the iterated limits and the directional limits according to the given families of lines and parabolas all
coincide and are equal to zero. this leads us to suspect that the limit of the function may be zero. to confirm this,
we transform to polar coordinates and find the limit:

>> syms a r;
>> limit(limit(((r^2) * (cos(a)^2) * (r) * (sin(a))) / ((r^2) * (cos(a) ^ 2) +(r^2) *
(sin(a)^2)), r, 0), a, 0)

ans =

0

We therefore conclude that the limit of the function is zero at the point (0,0).

this is an example where as a last resort we had to transform to polar coordinates. We used families of lines and
parabolas for our directional limits, but other curves could have been used. a change to polar coordinates can be
crucial in determining the limits of functions of several variables. as we have seen, there are sufficient criteria for
a function to have no limit at a point, but there are no necessary and sufficient conditions to ensure the existence
of a limit.

exerCise 5-6

find lim (,)
(,) (,)x y

f x y
® 0 0

 for f: r2 ® r defined by:

f x y
x y

x y
(,)

()

()
=

-
- +

1

1

2 2

2 2

>> syms x y m a r
>> limit (limit (y ^ 2 *(x-1) ^ 2 / (y ^ 2 +(x-1) ^ 2), x, 0), y, 0)

ans =

0

>> limit (limit (y ^ 2 *(x-1) ^ 2 / (y ^ 2 +(x-1) ^ 2), y, 0), x, 0)

ans =

0

>> limit ((m*x) ^ 2 *(x-1) ^ 2/((m*x) ^ 2 +(x-1) ^ 2), x, 0)

ans =

0

Chapter 5 ■ Limits of sequenCes and funCtions. Continuity in one and severaL variabLes

201

>> limit ((m*x) *(x-1) ^ 2/((m*x) +(x-1) ^ 2), x, 0)

ans =

0

We see that the iterated and directional limits coincide. next we calculate the limit in polar coordinates:

>> limit(limit((r ^ 2 * sin(a) ^ 2) * (r * cos(a) - 1) ^ 2 / ((r ^ 2 * sin(a) ^ 2) +
(r * cos(a) - 1) ^ 2), r, 1), a, 0)

ans =

0

the limit is zero at the point (1,0). below we graph the surface, observing the tendency to 0 in a neighborhood of (1,0):

>> ezsurf (y ^ 2 *(x-1) ^ 2 / (y ^ 2 +(x-1) ^ 2), [- 2, 2, - 2, 2])

Chapter 5 ■ Limits of sequenCes and funCtions. Continuity in one and severaL variabLes

202

exerCise 5-7

study the continuity of the function of a real variable:

f x
e

if x f x if x
x

() ()=
+

¹ = =
1

1
0 1 0and

the only problematic point is at x = 0. now, the function does exist at x = 0 (it has value 1). We will try to find the
lateral limits as x®0 :

>> syms x
>> limit(1 /(1 + exp(x)), x, 0, 'right')

ans =

0

>> limit(1/(1 + exp(x)), x, 0, 'left')

Warning: Could not attach the property of being close to the limit to variable limit point
[limit]

ans =

1

as the lateral limits are different, the limit of the function as x®0 does not exist. but as the lateral limits are finite,
the discontinuity of the first kind at x = 0 is a finite jump. this is illustrated in figure 5-1:

>> fplot ('1 /(1 + exp(x))'[-5, 5])

Figure 5-1.

203

Chapter 6

Numerical Series and Power Series

Numerical Series of Non-negative Terms
MATLAB enables you to work with numerical series of non-negative terms and with alternating series. In addition,
the commands relating to limits allow you to work with different convergence tests for numerical series.

In the case where the sum is convergent, there are various functions available to help you to find the sum.
We have the following:

symsum(S,v,a,b) Sums the series S as the variable v varies from a to b.

syms x;
symsum(x^k/sym('k!'), k, 0, inf)

symsum(S,v) Sums the series S as the variable v varies from 0 to v-1.

>> symsum(k^2,k)

ans =

k^3/3 - k^2/2 + k/6

r = symsum (S) Sums the series S as its symbolic variable k (as determined by findsym) ranges from 0 up to k-1.

>> r=symsum(k^2)

r =

k^3/3 - k^2/2 + k/6

symsum (S, a, b) Sums the series S as its symbolic variable k (determined by findsym) ranges between a and b

>> syms k n
>> symsum(k,0,n-1)

ans =

(n*(n - 1))/2

Chapter 6 ■ NumeriCal SerieS aNd power SerieS

204

Convergence Criteria: The Ratio Test
There are several criteria for determining whether a series of positive terms is convergent (i.e. has a finite sum).
Among the most common are the ratio test or d'Alembert criterion, which read as follows:

a n
n

()
=

¥

å
1

is convergent if lim
()

()n

a n

a n®¥

+
<

1
1

a n
n

()
=

¥

å
1

is divergent if lim
()

()n

a n

a n®¥

+
>

1
1

If the limit is 1, we cannot conclude anything about the convergence of the series.

As a first example, we analyze the convergence of the series n
n

n 21=

¥

å .

Using the ratio test we first calculate the limit lim
()

()n

a n

a n®¥

+1
.

>> syms n
>> f='n/2^n'

f =

n/2^n

>> limit(subs(f,n+1)/subs(f,n),inf)

ans =

1/2

As the limit is less than 1, the series is convergent. We can calculate the sum of its first k terms in the following way:

>> syms n k
>> symsum(n/2^n,0,k-1)

ans =

2 - (2*(k + 1))/2^k

If we want to find the infinite sum of the series we have:

>> symsum(n/2^n,0,inf)

ans =

2

Therefore we conclude that:

n
n

n 2
2

0=

¥

å =

Chapter 6 ■ NumeriCal SerieS aNd power SerieS

205

As a second example, we look at the convergence of the series n

n

n

n !=

¥

å
1

.

Using the ratio test we calculate lim
()

()n

a n

a n®¥

+1
:

>> syms n
>> f=n^n/sym('n!')

f =

n^n/factorial(n)

>> limit(subs(f,n+1)/subs(f,n),inf)

ans =

exp(1)

As the limit is greater than 1, the series is divergent.

Raabe’s Criterion
Raabe’s criterion may be used to analyze the convergence of a series if the ratio test, or similar tests, fail. If the ratio
test returns a value of 1, one can often use the criterion of Raabe or Duhamel, which reads as follows:

a n
n

()
=

¥

å
1

is convergent if lim
()

()n
n

a n

a n®¥
-

+æ

è
ç

ö

ø
÷

é

ë
ê

ù

û
ú >1

1
1

a n
n

()
=

¥

å
1

is divergent if lim
()

()n
n

a n

a n®¥
-

+æ

è
ç

ö

ø
÷

é

ë
ê

ù

û
ú<1

1
1

If the limit is 1, we cannot conclude anything about the convergence of the series.
As an example, we try to determine whether the series 1

2 31

+
+ +=

¥

å n

n(n)(n)n

converges.
Obviously, we initially try to apply the ratio test:

>> syms n
>> f='(1+n)/(n*(2+n)*(3+n))'

f =

(1+n)/(n*(2+n)*(3+n))

>> limit(subs(f,n+1)/subs(f,n),inf)

ans =

1

Chapter 6 ■ NumeriCal SerieS aNd power SerieS

206

As the limit is 1, we cannot conclude anything about the convergence of the series. Instead, we try the Raabe
criterion.

>> limit(n*(1-subs(f,n+1)/subs(f,n)),inf)

ans =

2

The limit is greater than 1, so we conclude that the series converges. We find its sum in the following way:

>> symsum((1+n)/(n*(2+n)*(3+n)),1,inf)

ans =

17/36

The Root Test
The Cauchy criterion or root test also improves on the ratio test and sometimes the Raabe criterion when analyzing the
convergence of a series. The root test reads as follows:

a n
n

()
=

¥

å
1

is convergent if lim ()
n

n a n
®¥

<1

a n
n

()
=

¥

å
1

is divergent if lim ()
n

n a n
®¥

>1

If the limit is 1, we cannot say anything about the convergence of the series.
As a first example, we try to determine whether the series 5

21
n

n=

¥

å converges.
We use the root test in the following way:

>> syms n

>> limit((5/2^n)^(1/n),inf)

ans =

1/2

As the limit is less than 1, the series converges.
If we had applied the ratio and Raabe criteria we would have found:

>> f='5/2^n'

f =

5/2^n

Chapter 6 ■ NumeriCal SerieS aNd power SerieS

207

>> limit(subs(f,n+1)/subs(f,n),inf)

ans =

1/2

>> limit(n*(1-subs(f,n+1)/subs(f,n)),inf)

ans =

Inf

>> limit((5/2^n)^(1/n),inf)

ans =

1/2

So using either criteria, we would have concluded that the series converges (limit less than 1 for the ratio test and
limit greater than 1 for the Raabe criterion).

The sum of the series is calculated by:

>> symsum(5/2^n,1,inf)

ans =

5

As a further example we analyze whether the following series converges:

n

n p
q

n=

¥

å +æ
è
ç

ö
ø
÷

1

tan

according to the values of the parameters p and q.
As its general term is an nth power, it is logical to try to use the root test. We have:

>> syms n p q
>> simplify(limit(tan(p+q/n),n,inf))

ans =

tan(p)

Then, for values of p (say, in the interval (0, Pi/2)) such that tan (p) < 1 the series converges. These values of p
satisfy 0 < p < Pi/4. For values of p such that ran(p) > 1 the series diverges. These values of p satisfy Pi/4 < p < Pi/2.
MATLAB does not offer the exact value or an approximate value for the sum of this series.

>> simplify(symsum(tan(p+q/n),n,1,inf))

ans =

sum(tan(p + q/n), n = 1..Inf)

Chapter 6 ■ NumeriCal SerieS aNd power SerieS

208

Other Convergence Criteria
There are additional criteria one can use to study the convergence of series of positive terms.

The Gauss majorization criterion says that if a series of non-negative terms is dominated by a convergent series
then it too is convergent (a

n
 is dominated by b

n
 if a

n
 < b

n
 for all n). In addition, if a series dominates a divergent series,

then it is divergent.
The comparison test of the second kind ensures that if the limit of the ratio a

n
 /b

n
 exists and is positive then the

series åan and åbn are either both convergent or both divergent.

A third approach is given by the result that the two series a n
n

()
=

¥

å
1

and 2 2
1

n n

n

a()
=

¥

å are either both convergent or
both divergent.

As a first example, we consider the following series:

1

1
2

1 +()=

¥

å
nn

Initially we try to apply Raabe’s criterion and the ratio test:

>> f='1/(1+n^(1/2))^2'

f =

1/(1+n^(1/2))^2

>> limit(n*(1-subs(f,n+1)/subs(f,n)),inf)

ans =

1

>> limit(subs(f,n+1)/subs(f,n),inf)

ans =

1

In both cases the limit is 1. So at the moment we cannot conclude anything about the convergence of the series.
We now apply the comparison test of the second kind to compare our series with the divergent harmonic series

with general term 1/n:

>> limit(subs(f,n)/(1/n),inf)

ans =

1

As the limit is greater than zero, we conclude that the initial series is also divergent.
We reach the same conclusion by applying the root test.

>> limit(subs(f, n)^1/n, inf)

ans =

0

Chapter 6 ■ NumeriCal SerieS aNd power SerieS

209

Since the limit is less than 1, the series diverges.
As a second example, consider the following series:

1

1 n Log nn ()=

¥

å

We apply the criterion that ensures that the series a n
n

()
=

¥

å
1

 and 2 2
1

n n

n

a()éë ùû
=

¥

å have the same character of
convergence.

>> f ='1 / (n * log (n))'

f =

1 / (n * log (n))

>> 2 ^ n * subs(f,2^n)

ans =

1/log(2^n)

Thus our series has the same character of convergence as the series with general term 1/(nlog(2)), and since

1

2

1

n Log n()
>

we see that the series with general term 1/(nlog(2)) diverges. We conclude that the original series also diverges.

Alternating Numerical Series. Dirichlet and Abel’s Criteria
So far we have only considered numerical series of positive terms. From now on we will consider numerical series that
have alternating positive and negative terms. Usually these series are called alternating series.

In the case of alternating series, the concept of absolute convergence is fundamental. A series ∑a(n) is said to
be absolutely convergent if the series of moduli ∑ |a (n) | is convergent. As the series of moduli is a series of positive
terms, we already know how to analyze it. If a series is absolutely convergent then it is convergent, but not conversely.

There are two classical criteria that can be used to analyze the convergence of alternating series, which will allow
us to resolve most problems involving alternating series.

Dirichlet’s criterion says that if the sequence of partial sums of ∑a(n) is bounded and {b(n)} is a decreasing
sequence that has limit 0, then the series ∑a(n)b(n) is convergent.

Abel’s criterion says that if ∑a(n) is convergent and {b(n)} is a monotone convergent sequence, then the series
∑a(n)b(n) is convergent.

As a first example, we consider the alternating series:

()-
+

+

=

¥

å 1

1 2

1

2
1

n

n n

To analyze the convergence of the series, we study whether or not it is absolutely convergent, i.e. if the following
series of positive terms is convergent:

()-
+

+

=

¥

å 1

1 2

1

2
1

n

n n

Chapter 6 ■ NumeriCal SerieS aNd power SerieS

210

We apply to this series of positive terms the comparison test of the second kind, comparing with the convergent
series with general term 1/n2

>> f ='abs((-1)^(1+n)/(1+2*n^2))'

f =

abs((-1)^(1+n)/(1+2*n^2))

>> limit(subs(f,n)/(1/n^2), inf)

ans =

1/2

As the limit is greater than zero, the series of positive terms considered is convergent, and so the initial series is
absolutely convergent and, therefore, convergent.

As a second example we consider the series:

()- +

=

¥

å 1 1

1

n

n n

If we put a n n() ()= - +1 1 and b n
n

() =
1

, we have that Sa(n) has bounded partial sums and {b(n)} is monotone
decreasing with limit 0.

Using Dirichlet’s criterion we conclude that the considered alternating series is convergent.

Power Series
A power series has the following structure:

a n xn()å

The main objective is to calculate the range of convergence of the series, i.e., the range of values of x for which the
corresponding numerical series is absolutely convergent.

If the variable x is replaced by a numerical value, the power series becomes a numerical series. The criteria used
to determine whether the series converges are those already used for numerical series. Since we are considering the
absolute convergence of the series, we are considering series of positive terms, so the commonly used criteria are the
root and ratio tests.

As a first example, we calculate the interval of convergence for the following power series:

4

2
3

2

0

n

n

n

n
x

+
-

=

¥

å ()

Via the ratio test we will try to calculate the values of x for which the given series is convergent.

>> f ='(4^(2*n)) * ((x-3)^n) / (n + 2)'

f =

(4 ^(2*n)) * ((x-3) ^ n) / (n + 2)

Chapter 6 ■ NumeriCal SerieS aNd power SerieS

211

>> limit(simplify(subs(f,n,n+1)/subs(f,n,n)), n, inf)

ans =

16 * x - 48

The series will be convergent when |16x - 48| <1. To find the extreme values of the interval of convergence we
solve the following equations:

>> [solve('16*x-48=1'), solve('16*x-48=-1')]

ans =

[49/16, 47/16]

Thus, the condition |16x - 48| <1 is equivalent to the following:

47/16 < x < 49/16

We already know that in this interval the series is convergent. Now we need to analyze the behavior of the series
at the end points of the interval. First we consider x = 49/16.

>> g1=simplify(subs(f,x,49/16))

G1 =

1 /(n + 2)

We have to analyze the numerical series of positive terms 1

21 nn +=

¥

å .

Note that the ratio test and Raabe’s criterion return a limit of 1, so we must use an alternative approach.

>> limit(simplify(subs(g1,n+1)/subs(g1,n)), n, inf)

ans =

1

>> limit(n*(1-subs(g1,n+1)/subs(g1,n)),inf)

ans =

1

We will apply the comparison test of the second kind, comparing the series of the problem with the divergent
harmonic series with general term 1 /n:

>> limit(subs(g1,n)/(1/n),inf)

ans =

1

Chapter 6 ■ NumeriCal SerieS aNd power SerieS

212

As the limit is greater than zero, the series is divergent.
We now analyze the endpoint x =47/16:

>> g2=simplify(subs(f,x,47/16))

g2 =

(-1)^n/(n + 2)

We have to analyze the alternating series ()-
+=

¥

å 1

21

n

n n
.

By Dirichlet’s criterion, since the series with general term (- 1)n has bounded partial sums, and the sequence with
general term 1 / (n + 2) is decreasing toward 0, the alternating series converges. The interval of convergence of the
power series is therefore the half-open interval [47/16, 49/16).

Power Series Expansions
MATLAB includes commands that allow you to address the problem of the local approximation of a real function
of a real variable at a point by replacing the initial function by a simple equivalent. The most common way to do
this is to replace an arbitrary function f(x) by a power series P(x) so that the values of f(x) and P(x) are close in the
neighborhood of the given point. This power series is called a power series expansion of the function.

The MATLAB commands used to work with power series are presented in the following table:

taylor (f) Returns the MacLaurin series of f up to degree 5.

>> syms x
f = exp(x^2);

>> pretty(taylor(f))

 4
x 2
-- + x + 1
2

taylor (f, n) Returns the MacLaurin series of f up to degree n, where n is a natural number.

>> pretty(taylor(f,7))

 6 4
x x 2
-- + -- + x + 1
6 2

(continued)

Chapter 6 ■ NumeriCal SerieS aNd power SerieS

213

taylor(f, a) Returns the Taylor series of f in a neighborhood of the real number a up to degree 5.
If a is a natural number it is necessary to use the function taylor(f, 5, a).

>> pretty(simplify(taylor(f,1/2)))

 / 1 \ 5 4 3 2
exp| - | (2592 x - 2480 x + 2960 x + 1800 x + 250 x + 2969)
 \ 4 /`

3840

taylor(f, n, v) Finds the MacLaurin series of f up to degree n-1 in the variable v.

>> pretty(taylor(f,3,p))

 2 2 2 2 2
exp(p) + exp(p) (2 p + 1) (p - x) - 2 p exp(p) (p - x)

taylor(f, n, v, a) Finds the Taylor series of f in a neighborhood of the real number a up to degree n-1
in the variable v.

>> pretty(taylor(f,3,p,2))

 2
exp(4) + 4 exp(4) (x - 2) + 9 exp(4) (x - 2)

As a first example we calculate the Taylor polynomial of sinh(x) at the point x = 0 (the MacLaurin series) up to
degree 13.

>> syms x

>> f=sinh(x)

f =

sinh(x)

>> taylor(f,13)

ans =

 x^11/39916800 + x^9/362880 + x^7/5040 + x^5/120 + x^3/6 + x

As a second example we calculate the Taylor expansion of 1/(1+x) at the point x = 2 up to degree 6.

>> syms x
>> f=1/(1+x)

f =

1/(x + 1)

Chapter 6 ■ NumeriCal SerieS aNd power SerieS

214

>> pretty(taylor(f,6,2))

 2 3 4 5
 (x - 2) x (x - 2) (x - 2) (x - 2) 5
 -------- - - - -------- + -------- - -------- + -
 27 9 81 243 729 9

exerCise 6-1

Study the convergence and, if possible, find the sum of the following series:

n

n

n

n n

n

n
n

n
n3

3 2

7 11 1! ()=

¥

=

¥

å å +
+

we apply the ratio test for the first series:

>> syms n
>> f=n^n/(sym('n!')*(3^n))

f =

n^n/(3^n*factorial(n))

>> limit(subs(f,n+1)/subs(f,n),inf)

ans =

exp(1)/3

the limit is less than 1, so the series turns out to be convergent. therefore, we can try to calculate its sum as
follows:

>> vpa(simplify(symsum(f,1,inf)))

ans =

1.6250941822939141659377675737628

Now we apply the ratio test for the second series:

>> f=(2*n+3)/(n*(n+1)*(7^n))

f =

(2*n + 3)/(7^n*n*(n + 1))

Chapter 6 ■ NumeriCal SerieS aNd power SerieS

215

>> limit(subs(f,n+1)/subs(f,n),inf)

ans =

1/7

as the limit is less than 1, the series is convergent. matlaB will attempt to return the exact sum, but it may be in
a complicated form, in terms of special functions. here we approximate the sum, as before:

>> vpa(symsum(f,1,inf))

ans =

0.38339728069096678282849845975009

exerCise 6-2

Study the convergence and, if possible, find the sum of the following series:
n

pn
n=

¥

å
1

, n p !

p n!p!n
n

+()
=

¥

å
1

 p = real parameter

we apply the ratio test for the first series:

>> syms n;
>> p=sym('p','real');

>> f=n/p^n

f =

n/p^n

>> limit(subs(f,{n},{n+1})/subs(f,{n},{n}),n,inf)

ans =

1/p

thus, if p > 1, the series converges, and if p < 1, the series diverges. if p = 1, we get the series with general term
n, which diverges. when p is greater than 1, we find the sum of the series:

>> vpa(symsum(f,1,inf))

ans =

piecewise([1.0 < Re(n), n*zeta(n)])

Chapter 6 ■ NumeriCal SerieS aNd power SerieS

216

we will apply the ratio test to the second series:

>> f=sym('(n+p)!')/(sym('p!')*(sym('n!')*(p^n)))
f =

factorial(n + p)/(p^n*factorial(n)*factorial(p))
>> vpa(simplify(limit(subs(f,{n},{n+1})/subs(f,{n},{n}),n,inf)))

ans =

1/p

thus, if p > 1, the series converges, and if p < 1, the series diverges, and if p = 1, we get the series with general
term n, which diverges. when p is greater than 1, we try to find the sum of the series:

>> vpa(simplify(symsum(f,1,inf)))

ans =

numeric::sum(factorial(n + p)/(p^(1.0*n)*factorial(p)),
p = 1..Inf)/factorial(n)

we see that matlaB has been unable to find the sum.

thus, if p > 1 the two series converge and if p < 1 the two series diverge. we have only been able to find the sum
of the first series.

exerCise 6-3

Study the convergence and, if possible, find the sum of the following series:

()1
1 1 12

1 1

1

+
+æ

è
ç

ö
ø
÷ -

+é

ë
ê
ê

ù

û
ú
ú

-

=

¥

=

¥ + -

å å
n

n

n

n

n
n

n n

n n

For the first series we apply the ratio test:

>> syms n
>> f =(1+1/n)^(-n^2)

f =

1/(1/n + 1)^(n^2)

>> limit(subs(f,n+1)/subs(f, n), inf)

ans =

1/exp (1)

Chapter 6 ■ NumeriCal SerieS aNd power SerieS

217

as the limit is less than 1, the series converges. matlaB can sum this series as follows:

>> vpa(symsum(f,1,inf))

ans =

0.81741943329783346091309999437311

we will apply the ratio test to the second series:

>> f = (((n + 1) / n) ^ (n + 1) - a (n + 1) /n) ^(-n)

f =

1 / (((n + 1)/n) ^(n + 1) - (n + 1) / n) ^ n

>> limit (subs(f,n+1) /subs (f, n), inf)

ans =

1 / (exp(1) - 1)

as the limit is less than 1, the series converges. the sum can be found with matlaB as follows:

>> vpa(symsum(f,1,inf))

ans =

1.1745855750875866746226188496682

exerCise 6-4

Study the convergence and, if possible, find the sum of the following series:

(n)
n n

n n
n

n

n

n

n=

¥

=

¥

å å-
+ +
+ -

æ

è
ç

ö

ø
÷

1

2

2
1

1
2 1

1

2

as the general term of both series is raised to a power of n, the root test may be applicable.

we apply the root test to the first series:

>> f = (n ^ (1/n) - 1) ^ n

f =

(n ^ (1/n) - 1) ^ n

Chapter 6 ■ NumeriCal SerieS aNd power SerieS

218

>> limit(subs(f, n)^(1/n), inf)

ans =

0

as the limit is less than 1, the series is convergent. the sum is calculated as follows:

>> vpa(symsum(f,1,inf))

ans =

0.29759749220552960849982457076294

Now we apply the root test to the second series:

>> syms n
>> f = ((n^2+2*n+1) /(n^2+n-1))^(n^2)

f =

((n^2 + 2*n + 1) /(n^2 + n-1)) ^(n^2)

>> limit(subs(f,n)^(1/n),inf)

ans =

exp(1)

as the limit is greater than 1, the series diverges.

exerCise 6-5

Study the convergence and, if possible, find the sum of the following series:

()()n n

nn

+ +

=

¥

å 1 2
5

1

we try to apply the root, quotient, and raabe criteria:

>> f=(n+1)*(n+2)/n^5

f =

((n + 1)*(n + 2))/n^5

>> limit(subs(f,n)^(1/n),inf)

ans =

1

Chapter 6 ■ NumeriCal SerieS aNd power SerieS

219

>> limit(subs(f,n+1)/subs(f,n),inf)

ans =

1

>> limit(n*(1-subs(f,n+1)/subs(f,n)),inf)

ans =

3

the root and ratio tests tell us nothing, but the raabe criterion already assures us that the series converges
(the limit is greater than 1). we find the sum.

>> vpa(symsum(f,1,inf))

ans =

6.522882114579748712610480224049

we can also analyze the series directly by using the comparison test of the second kind, comparing our series
with the convergent series with general term 1/n3:

>> limit(f/(1/(n^3)),inf)

ans =

1

as the limit is greater than 0, the series is convergent.

exerCise 6-6

Study the convergence and, if possible, find the sum of the following series:

1

1 n Log n
p

n ()[]=

¥

å p = parameter > 0

we apply the criterion that ensures that the series
n

a n
=

¥

å
1

() and
n

n na
=

¥

å
1

2 2() have the same character of
convergence.

>> f=1/(n*(log(n))^p)

f =

1/(n*log(n)^p)

Chapter 6 ■ NumeriCal SerieS aNd power SerieS

220

>> pretty((2^n)*subs(f,{n},{2^n}))

 1

 n p
 log(2)

when p < 1, this series dominates the divergent series with general term n-p = 1/np. thus the initial series also
diverges.

when p > 1, this series is dominated by the convergent series with general term n-p = 1/np. thus the initial
series converges.

when p = 1, the series reduces to the series:

1

1 n Log nn ()=

¥

å

which can be tested by the same criteria as the previous one.

>> f=1/(n*(log(n)))

f =

1/(n*log(n))

>> pretty((2^n)*subs(f,{n},{2^n}))

 1

 n
 log(2)

as this series dominates the divergent harmonic series with general term 1/n, it diverges. therefore the initial
series also diverges.

exerCise 6-7

Study the convergence of the following series:

()

()

-
+

+

=

¥

å 1

1

1

2
1

n

n

n

n

if we define a n
n() = -() +

1
1 and b n

n

n
() =

+()1 2
we have that a(n) has bounded partial sums and {b(n)} is

monotone decreasing with limit 0.

using dirichlet’s criterion we conclude that the considered alternating series is convergent.

alternatively, we could have considered the absolute convergence of the series. in this case we observe that the
ratio and root tests, and raabe’s criterion, all give a limit of 1, so we cannot solve the problem.

Chapter 6 ■ NumeriCal SerieS aNd power SerieS

221

>> f=n/(1+n)^2

f =

n/(n + 1)^2

>> limit(n*(1-subs(f,n+1)/subs(f,n)),inf)

ans =

1

>> limit(subs(f,n+1)/subs(f,n),inf)

ans =

1

>> limit(subs(f,n)^(1/n),inf)

ans =

1

applying the comparison test of the second kind to this series of positive terms, comparing with the convergent
series with general term 1/n2, we find:

>> limit(subs(f,n)/(1/n^2),inf)
ans =

Inf

as the limit is greater than zero, the series of positive terms considered is convergent, and so the initial series is
absolutely convergent and, therefore, convergent. we now calculate its sum.

>> f=((-1)^n)*(n/(n + 1)^2)

f =

((-1)^n*n)/(n + 1)^2

>> vpa(symsum(f,1,inf))

ans =

-0.12931985286416790881897546186484

Chapter 6 ■ NumeriCal SerieS aNd power SerieS

222

exerCise 6-8

Study the interval of convergence of the following power series:

1

50

2 1

()-=

¥
+å n

n

nx

we apply the root test:

>> syms x n
>> f=x^(2*n+1)/(-5)^n

f =

x^(2*n + 1)/(-5)^n

>> limit(subs(f,{n},{n+1})/subs(f,{n},{n}),n,inf)

ans =

-x^2/5

the series is absolutely convergent when |-x ^ 2/5| < 1.

the condition |-x ^ 2/5| < 1 is equivalent to -sqrt(5) < x < sqrt(5). thus, we have determined the possible
intervals of convergence of the power series. we will now analyze the endpoints:

>> pretty(simplify(subs(f,{x},{sqrt(5)})))

 1/2
 5

 n
 (-1)

>> pretty(simplify(subs(f,{x},{-sqrt(5)})))

 n 1/2
 - (-1) 5

Both series are obviously divergent alternating series. therefore, the interval of convergence of the given power
series is: –sqrt(5) < x < sqrt(5).

Chapter 6 ■ NumeriCal SerieS aNd power SerieS

223

exerCise 6-9

Calculate the maclaurin series of Ln(x + 1) up to degree 5. also find the maclaurin series up to degree 8.

>> syms x
>> f=log(x+1)

f =

log(x + 1)

>> pretty(taylor(f))

 5 4 3 2
 x x x x
 -- - -- + -- - -- + x
 5 4 3 2

>> pretty(taylor(f,8))

 7 6 5 4 3 2
 x x x x x x
 -- - -- + -- - -- + -- - -- + x
 7 6 5 4 3 2

exerCise 6-10

Calculate the taylor series of 1/(2-x) at the point x = 1 up to degree 7. also find the taylor series of sin(x) at the
point x = 2 up to degree 8.

>> syms x

>> f = 1 /(2-x)

f =

-1 /(x-2)

>> pretty(taylor(f,7,1))

 2 3 4 5 6
 x + (x - 1) + (x - 1) + (x - 1) + (x - 1) + (x - 1)

Chapter 6 ■ NumeriCal SerieS aNd power SerieS

224

>> f=sin(x);
>> pretty(taylor(f,8,pi))

 3 5 7
 (pi - x) (pi - x) (pi - x)
 pi - x - --------- + --------- - ---------
 6 120 5040

Both series show that the term which would correspond to the greatest degree is void.

225

Chapter 7

Derivatives. One and Several
Variables

Derivatives
MATLAB implements a special set of commands enabling you to work with derivatives, which is particularly
important in the world of computing and its applications. The derivative of a real function at a point measures the
instantaneous rate of change of that function in a neighborhood of the point; i.e. how the dependent variable changes
as a result of a small change in the independent variable. Geometrically, the derivative of a function at a point is the
slope of the tangent to the function at that point. The origin of the idea derived from the attempt to draw the tangent
line at a given point on a given curve.

A function f(x) defined in a neighborhood of a point a is said to be differentiable at a if the following limit exists:

lim
()

h

f a h f a

h®

+() -
0

The value of the limit, if it exists, is denoted by f'(a), and is called the derivative of the function f at the point a.
If f is differentiable at all points of its domain, it is simply said to be differentiable. The continuity of a function is a
necessary (but not sufficient) condition for differentiability, and any differentiable function is continuous.

The following table shows the basic commands that enable MATLAB to work with derivatives.

diff('f', 'x') Finds the derivative of f with respect to x

>> diff('sin(x^2)','x')

ans =

2*x*cos(x^2)

syms x, diff(f,x) Finds the derivative of f with respect to x

>> syms x
>> diff(sin(x^2),x)

ans =

2*x*cos(x^2)

(continued)

Chapter 7 ■ Derivatives. One anD several variables

226

diff('f', 'x', n) Finds the nth derivative of f with respect to x

>> diff('sin(x^2)','x',2)

ans =

2*cos(x^2) - 4*x^2*sin(x^2)

syms x, diff(f, x, n) Finds the nth derivative of f with respect to x

>> syms x
>> diff(sin(x^2),x,2)

ans =

2*cos(x^2) - 4*x^2*sin(x^2)

R = jacobian(w,v) Finds the Jacobian matrix of w with respect to v

>> syms x y z
>> jacobian([x*y*z; y; x+z],[x y z])

ans =

[y*z, x*z, x*y]
[0, 1, 0]
[1, 0, 1]

Y = diff(X) Calculates differences between adjacent elements of the vector X: [X(2)-X(1), X(3)-X(2), ...,
X(n)-X(n-1)]. If X is an m×n matrix, diff(X) returns the row difference matrix:
[X(2:m,:)-X(1:m-1,:)]

x = [1 2 3 4 5];
y = diff(x)

y =

 1 1 1 1

Y = diff(X,n) Finds differences of order n, for example: diff(X,2)=diff(diff(X))

x = [1 2 3 4 5];
z = diff(x,2)

z =

 0 0 0

Chapter 7 ■ Derivatives. One anD several variables

227

As a first example, we consider the function f(x) = x5-3x4-11x3+27x2+10x-24 and graph its derivative in the
interval [-4,5].

>> x=-4:0.1:5;
>> f=x.^5-3*x.^4-11*x.^3+27*x.^2+10*x-24;
>> df=diff(f)./diff(x);
>> plot(x,f)

As a second example, we calculate the derivative of the function log(sin(2x)) and simplify the result.

>> pretty(simplify(diff('log(sin(2*x))','x')))

 2 cot(2 x)

As a third example, we calculate the first four derivatives of the following function:

f(x) = 1/x2

>> f='1/x^2'

f =
1/x^2

>> [diff(f),diff(f,2),diff(f,3),diff(f,4)]

ans =

[-2/x^3, 6/x^4, -24/x^5, 120/x^6]

Chapter 7 ■ Derivatives. One anD several variables

228

Partial Derivatives
The MATLAB commands for differentiation described above can also be used for partial differentiation.

As an example, given the function f(x,y) = sin(xy)+cos(xy2), we calculate:

∂f/∂x, ∂f/∂y, ∂ 2f/∂x2, ∂ 2f/∂y2, ∂ 2f/∂x∂y, ∂ 2f/∂y∂x and ∂ 4f/∂ 2x∂ 2y

>> syms x y
>> f=sin(x*y)+cos(x*y^2)

f =

sin(x*y)+cos(x*y^2)

>> diff(f,x)

ans =

cos(x*y)*y-sin(x*y^2)*y^2

>> diff(f,y)

ans =

cos(x*y)*x-2*sin(x*y^2)*x*y

>> diff(diff(f,x),x)

ans =

-sin(x*y)*y^2-cos(x*y^2)*y^4

>> diff(diff(f,y),y)

ans =

-sin(x*y)*x^2-4*cos(x*y^2)*x^2*y^2-2*sin(x*y^2)*x

>> diff(diff(f,x),y)

ans =

-sin(x*y)*x*y+cos(x*y)-2*cos(x*y^2)*x*y^3-2*sin(x*y^2)*y

>> diff(diff(f,y),x)

ans =

-sin(x*y)*x*y+cos(x*y)-2*cos(x*y^2)*x*y^3-2*sin(x*y^2)*y

Chapter 7 ■ Derivatives. One anD several variables

229

>> diff(diff(diff(diff(f,x),x),y,y))

ans =

sin(x*y)*y^3*x-3*cos(x*y)*y^2+2*cos(x*y^2)*y^7*x+6*sin(x*y^2)*y^5

Applications of Differentiation. Tangents, Asymptotes, Extreme
Points and Points of Inflection
A direct application of differentiation allows us to find the tangent to a function at a given point, horizontal,
vertical and oblique asymptotes of a function, intervals of increase and concavity, maxima and minima and points
of inflection.

With this information it is possible to give a complete study of curves and their representation.
If f is a function which is differentiable at x

0
, then f ' (x

0
) is the slope of the tangent line to the curve y f x()=

at the point (x
0
, f (x

0
)). The equation of the tangent will be y f x f x x x- = ¢ -() ()) (0 0 0 .

The horizontal asymptotes of the curve y f x()= are limit tangents, as x0 ®¥, which are horizontal. They are
defined by the equation y f x

x
lim ().=
®¥0

0

The vertical asymptotes of the curve y f x()= are limit tangents, as f x()0 ®¥, which are vertical. They are
defined by the equation x x= 0, where x

0
 is a value such that lim

x x
f x

®
() = ¥

0

.

The oblique asymptotes to the curve y f x()= at the point x x= 0 have the equation y mx n= + , where m
y

xx
=

®¥
lim

And n y mx
x

= -
®¥

lim().

If f is a function for which f ' (x
0
) and f ' ' (x

0
) both exist, then, if ¢ =f x()0 0 and ¢¢ <f x()0 0, the function f has a local

maximum at the point(x
0
, f (x

0
)).

If f is a function for which f ' (x
0
) and f ' ' (x

0
) both exist, then, if ¢ =f x()0 0 and ¢¢ >f x()0 0, the function f has a local

minimum at the point(x0, f (x0)).
If f is a function for whichf ' (x

0
), f ' ' (x

0
) and f ' ' ' (x

0
) exist, then, if ¢f x()0 and ¢¢f x()0 and f ' ' ' (x

0
) 0, the function f

has a turning point at the point(x
0
, f(x

0
)).

If f is differentiable, then the values of x for which the function f is increasing are those for which f ' (x) is greater
than zero.

If f is differentiable, then the values of x for which the function f is decreasing are those for which f ' (x) is less
than zero.

If f is twice differentiable, then the values of x for which the function f is concave are those for which f ' ' (x) is
greater than zero.

If f is twice differentiable, then the values of x for which the function f is convex are those for which f ' ' (x) is less
than zero.

As an example, we perform a comprehensive study of the function:

f x
x

x
() =

-

3

2 1

calculating the asymptotes, maxima, minima, inflexion points, intervals of increase and decrease and intervals of
concavity and convexity.

>> f='x^3/(x^2-1)'

f =

x^3/(x^2-1)

Chapter 7 ■ Derivatives. One anD several variables

230

>> syms x, limit(x^3/(x^2-1),x,inf)

ans =

NaN

Therefore, there are no horizontal asymptotes. To see if there are vertical asymptotes, we consider the values of x
that make the function infinite:

>> solve('x^2-1')

ans =

[1]
[-1]

The vertical asymptotes are the lines x = 1 and x = -1. Let us see if there are any oblique asymptotes:

>> limit(x^3/(x^2-1)/x,x,inf)

ans =

1

>> limit(x^3/(x^2-1)-x,x,inf)

ans =

0

The line y = x is an oblique asymptote. Now, the maxima and minima, inflection points and intervals of concavity
and growth will be analyzed:

>> solve(diff(f))

ans =

[0]
[0]
[3^(1/2)]
[-3^(1/2)]

The first derivative vanishes at the points with abscissa x = 0, x =√ 3 and x = - √ 3. These points are candidates for
maxima and minima. To determine whether they are maxima or minima, we find the value of the second derivative at
these points:

>> [numeric(subs(diff(f,2),0)),numeric(subs(diff(f,2),sqrt(3))),
 numeric(subs(diff(f,2),-sqrt(3)))]

ans =

 0 2.5981 -2.5981

Chapter 7 ■ Derivatives. One anD several variables

231

Therefore, at the point with abscissa x = - √3 there is a maximum and at the point with abscissa x = √ 3 there is a
minimum. At x = 0 we know nothing:

>> [numeric(subs(f,sqrt(3))),numeric(subs(f,-sqrt(3)))]

ans =

 2.5981 -2.5981

Therefore, the maximum point is (- √ 3, -2.5981) and the minimum point is (√ 3, 2.5981).
We will now analyze the inflection points:

>> solve(diff(f,2))

ans =

[0]
[i*3^(1/2)]
[-i*3^(1/2)]

The only possible point of inflection occurs at x = 0, and since f (0) = 0, the possible turning point is (0, 0):

>> subs(diff(f,3),0)

ans =

-6

As the third derivative at x = 0 does not vanish, the origin is indeed a turning point:

>> pretty(simple(diff(f)))

 2 2
 x (x - 3)

 2 2
 (x - 1)

The curve is increasing when y ' > 0, i.e., in the intervals (- ∞, - √ 3) and (√ 3, ∞).
The curve is decreasing when y ' < 0, that is, in the intervals (-√3,-1), (-1,0), (0,1) and (1, √3).

>> pretty(simple(diff(f,2)))

 2
 x (x + 3)
 2 ------------
 2 3
 (x - 1)

Chapter 7 ■ Derivatives. One anD several variables

232

The curve will be concave when y'' > 0, that is, in the intervals (-1,0) and (1, ∞).
The curve will be convex when y'' < 0, that is, in the intervals (0,1) and (- ∞, -1).
The curve has horizontal tangents at the three points at which the first derivative is zero. The equations of the

horizontal tangents are y = 0, y = 2.5981 and y = -2.5981.
The curve has vertical tangents at the points that make the first derivative infinite. These points are x = 1 and

x = -1. Therefore, the vertical tangents coincide with the two vertical asymptotes.
Next, we graph the curve together with its asymptotes:

>> fplot('[x^3/(x^2-1),x]',[-5,5,-5,5])

We can also represent the curve, its asymptotes and their horizontal and vertical tangents in the same graph.

>> fplot('[x^3/(x^2-1),x,2.5981,-2.5981]',[-5,5,-5,5])

Chapter 7 ■ Derivatives. One anD several variables

233

Differentiation in Several Variables
The concept of differentiation for functions of one variable is generalizable to differentiation for functions of several
variables. Below we consider partial derivatives for the case of two variable functions.

Given the function f: R2 → R, the partial derivative of f with respect to the variable x at the point (a, b) is defined
as follows:

¶
¶

f

x
a b

f a h b f a b

hh
(,) lim

(,) (,)
=

+ -
®0

In the same way, the partial derivative of f with respect to the variable y at the point (a, b) is defined in the
following way:

¶
¶

f

y
a b

f a b h f a b

hh
(,) lim

(,) (,)
=

+ -
®0

Generally speaking, we can define the partial derivative with respect to any variable for a function of n variables.
Given the function f: Rn → R, the partial derivative of f with respect to the variable x

i
 (i = 1,2,...,n) at the point

(a
1
,a

2
,...,a

n
) is defined as follows:

¶
¶

f

x
a a a

f a a a h a f a a

i
n

h

i n(, ,...,) lim
(, ,..., ,...,) (,

1 2
0

1 2 1 2=
+ -

®

,,...,)a

h
n

The function f is differentiable if all partial derivatives with respect to x
i
 (i = 1,2,...,n) exist and are continuous.

Every differentiable function is continuous, and if a function is not continuous it cannot be differentiable.
The directional derivative of the function f with respect to the vector v=(v

1
,v

2
,...,v

n
) is defined as the following

scalar product:

() , ,..., , ,...,Df v
f

x

f

x

f

x
v v v f v

n
n=

æ

è
ç

ö

ø
÷ ()= Ñ()¶

¶
¶
¶

¶
¶1 2

1 2 

Ñ =
æ

è
ç

ö

ø
÷f

f

x

f

x

f

xn

¶
¶

¶
¶

¶
¶1 2

, ,..., is called the gradient vector of f.

The directional derivative of the function f with respect to the vector v =(dx
1
,dx

2
,...,dx

n
) is called the total

differential of f. Its value is:

Df
f

x
dx

f

x
dx

f

x
dx

n
n= + + +

æ

è
ç

ö

ø
÷

¶
¶

¶
¶

¶
¶1

1
2

2 ...

Chapter 7 ■ Derivatives. One anD several variables

234

Partial derivatives can be calculated using the MATLAB commands for differentiation that we already know.

diff(f(x,y,z,...),x) Partial derivative of f with respect to x

>> syms x y z
>> diff(x^2+y^2+z^2+x*y-x*z-y*z+1,z)

ans =

2*z - y - x

diff (f(x,y,z,...), x, n) Nth partial derivative of f with respect to x

>> diff(x^2+y^2+z^2+x*y-x*z-y*z+1,z,2)

ans =

2

diff(f(x1,x2,x3,...),xj) Partial derivative of f with respect to xj

>> diff(x^2+y^2+z^2+x*y-x*z-y*z+1,y)

ans =

x + 2*y - z

diff(f(x1,x2,x3,...),xj,n) Nth partial derivative of f with respect to xj

>> diff(x^2+y^2+z^2+x*y-x*z-y*z+1,y,2)

ans =

2

diff(diff(f(x,y,z,...),x),y)) The second partial derivative of f with respect to x and y

>> diff(diff(x^2+y^2+z^2+x*y-x*z-y*z+1,x), y)

ans =

1

As a first example, we study the differentiability and continuity of the function:

f x y
xy

x y
,() =

+

2
2 2

if (,) ,x y ¹ ()0 0 and f 0 0 0, .() =

Chapter 7 ■ Derivatives. One anD several variables

235

To see if the function is differentiable, it is necessary to check whether it has continuous partial derivatives at every
point. We consider any point other than the origin and calculate the partial derivative with respect to the variable x:

>> syms x y
>> pretty(simplify(diff((2*x*y)/(x^2+y^2)^(1/2),x)))

 3
 2 y

 3
 -
 2
 2 2
 (x + y)

Now, let's see if this partial derivative is continuous at the origin. When calculating the iterated limits at the
origin, we observe that they do not coincide.

>> limit(limit(2*y^3/(x^2+y^2)^(3/2),x,0),y,0)

ans =

NaN

>> limit(limit(2*y^3/(x^2+y^2)^(3/2),y,0),x,0)

ans =

0

The limit of the partial derivative does not exist at (0, 0), so we conclude that the function is not differentiable.
However, the function is continuous, since the only problematic point is the origin, and the limit of the function is

0 = f (0, 0):

>> limit(limit((2*x*y)/(x^2+y^2)^(1/2),x,0),y,0)

ans =

0

>> limit(limit((2*x*y)/(x^2+y^2)^(1/2),y,0),x,0)

ans =

0

>> m = sym('m', 'positive')
>> limit((2*x*(m*x))/(x^2+(m*x)^2)^(1/2),x,0)

ans =

0

Chapter 7 ■ Derivatives. One anD several variables

236

>> a = sym ('a', 'real');
>> f =(2*x*y) /(x^2+y^2) ^(1/2);
>> limit(subs(f,{x,y},{r*cos(a),r*sin(a)}),r,0)

ans =

0

The iterated limits and the directional limits are all zero, and by changing the function to polar coordinates, the
limit at the origin turns out to be zero, which coincides with the value of the function at the origin. Thus this is an
example of a non-differentiable continuous function. A graphical representation helps us to interpret the result.

As a second example, we consider the function:

f x y z
x y z

(, ,) =
+ +

1
2 2 2

We verify the equation:

¶
¶

¶
¶

¶
¶

2

2

2

2

2

2
0

f

x

f

y

f

z
+ + =

>> syms x y z
>> f=1/(x^2+y^2+z^2)^(1/2)

f =

1/(x^2 + y^2 + z^2)^(1/2)

Chapter 7 ■ Derivatives. One anD several variables

237

>> diff(f,x,2)+diff(f,y,2)+diff(f,z,2)

ans =

(3*x^2)/(x^2 + y^2 + z^2)^(5/2) - 3/(x^2 + y^2 + z^2)^(3/2) + (3*y^2)/(x^2 + y^2 + z^2)^(5/2) +
(3*z^2)/(x^2 + y^2 + z^2)^(5/2)

>> simplify(diff(f,x,2)+diff(f,y,2)+diff(f,z,2))

ans =

0

As a third example, we calculate the directional derivative of the function:

f x y z
x y z

(, ,) =
+ +

1
2 2 2

at the point (2,1,1) in the direction of the vector v= (1,1,0). We also find the gradient vector of f.
Recall that the directional derivative of the function f in the direction of the vector v= (v

1
,v

2
,...,v

n
) is defined as the

following dot product:

() , ,..., , ,...,Df v
f

x

f

x

f

x
v v v f v

n
n=

æ

è
ç

ö

ø
÷ ()= Ñ()¶

¶
¶
¶

¶
¶1 2

1 2 

Ñ =
æ

è
ç

ö

ø
÷f

f

x

f

x

f

xn

¶
¶

¶
¶

¶
¶1 2

, ,..., is called the gradient vector of f.

First, we calculate the gradient of the function f.

>> syms x y z
>> f=1/(x^2+y^2+z^2)^(1/2)

f =

1/(x^2 + y^2 + z^2)^(1/2)

>> Gradient_f=simplify([diff(f,x),diff(f,y),diff(f,z)])

Gradient_f =

[-x/(x^2 + y^2 + z^2)^(3/2), -y/(x^2 + y^2 + z^2)^(3/2), -z/(x^2 + y^2 + z^2)^(3/2)]

We then calculate the gradient vector at the point (2,1,1).

>> Gradient_f_p = subs(Gradient_f,{x,y,z},{2,1,1})

Gradient_f_p =

 -0.1361 -0.0680 -0.0680

Chapter 7 ■ Derivatives. One anD several variables

238

Finally, we calculate the directional derivative.

>> Directional_derivative_p = dot(Gradient_f_p, [1,1,0])

Directional_derivative_p =

-0.2041

Extreme Points in Several Variables
MATLAB allows you to easily calculate maxima and minima of functions of several variables.

A function f: Rn→R, which maps the point (x
1
, x

2
,..., x

n
)ÎR to f(x

1
,x

2
,...,x

n
)ÎR, has an extreme point at (a

1
, a

2
, ..., a

n
) if

the gradient vector Ñ =
æ

è
ç

ö

ø
÷f

f

x

f

x

f

xn

¶
¶

¶
¶

¶
¶1 2

, ,..., is zero at (a
1
, a

2
, ..., a

n
).

By setting all the first order partial derivatives equal to zero and solving the resulting system, we can find the
possible maxima and minima.

To determine the nature of the extreme point, it is necessary to construct the Hessian matrix, which is defined
as follows:

H

f

x

f

x x

f

x x

f

x x

f

x

n

=

¶
¶

¶
¶ ¶

¶
¶ ¶

¶
¶ ¶

¶
¶

2

1
2

2

1 2

2

1

2

1 2

2

2
2

........

.........

........

¶
¶ ¶

¶
¶ ¶

¶
¶

2

2

2

1

2

2

f

x x

f

x x

f

x

n

n ¶¶
¶
¶x

f

xn n

........
2

2

é

ë

ê
ê
ê
ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú
ú
ú
ú

First, suppose that the determinant of H is non-zero at the point(a
1
, a

2
, ..., a

n
). In this case, we say that the point is

non-degenerate and, in addition, we can determine the nature of the extreme point via the following conditions:
If the Hessian matrix at the point (a

1
, a

2
, ..., a

n
) is positive definite, then the function has a minimum at that point.

If the Hessian matrix at the point (a
1
, a

2
, ..., a

n
) is negative definite, then the function has a maximum at that point.

In any other case, the function has a saddle point at(a
1
, a

2
, ..., a

n
).

If the determinant of H is zero at the point(a
1
, a

2
, ..., a

n
), we say that the point is degenerate.

As an example, we find and classify the extreme points of the function:

f x y z x xy y z(, ,) = + + +2 2 2

We start by finding the possible extreme points. To do so, we set the partial derivatives with respect to all the
variables (i.e. the components of the gradient vector of f) equal to zero and solve the resulting system in three variables:

>> syms x y z
>> f=x^2+y^2+z^2+x*y

f =

x^2 + x*y + y^2 + z^2

Chapter 7 ■ Derivatives. One anD several variables

239

>> [x y z] = solve(diff(f,x), diff(f,y), diff(f,z), x, y, z)

x =

0

y =

0

z =

0

The single extreme point is the origin (0,0,0). We will analyze what kind of extreme point it is. To do this,
we calculate the Hessian matrix and express it as a function of x, y and z:

>> clear all
>> syms x y z
>> f=x^2+y^2+z^2+x*y

f =

x^2 + x*y + y^2 + z^2

>> diff(f,x)

ans =

2*x + y

>> H=simplify([diff(f,x,2),diff(diff(f,x),y),diff(diff(f,x),z);
 diff(diff(f,y),x),diff(f,y,2),diff(diff(f,y),z);
 diff(diff(f,z),x),diff(diff(f,z),y),diff(f,z,2)])

H =

[2, 1, 0]
[1, 2, 0]
[0, 0, 2]

>> det(H)

ans =

6

Chapter 7 ■ Derivatives. One anD several variables

240

We have seen that the Hessian matrix is constant (i.e. it does not depend on the point at which it is applied),
therefore its value at the origin is already found. The determinant is non-zero, so there are no degenerate extreme
points.

>> eig(H)

ans =

 1
 2
 3

We see that the Hessian matrix at the origin is positive definite, because its eigenvalues are all positive. We then
conclude that the origin is a minimum of the function.

MATLAB additionally incorporates specific commands for the optimization and search for zeros of functions of
several variables. The following table shows the most important ones.

g = inline(expr) Constructs an inline function from the string expr

>> g = inline('t^2')

g =

Inline function:
g(t) = t^2

g = inline(expr,arg1,arg2, ...) Constructs an inline function from the string expr with the given input arguments

>> g = inline('sin(2*pi*f + theta)', 'f', 'theta')

g =

Inline function:
g(f,theta) = sin(2*pi*f + theta)

g = inline(expr,n) Constructs an inline function from the string expr with n input arguments

>> g = inline('x^P1', 1)

g =

Inline function:
g(x,P1) = x^P1

(continued)

Chapter 7 ■ Derivatives. One anD several variables

241

f = @function Enables the function to be evaluated

>> f = @cos

f =

@cos
>> ezplot(f, [-pi,pi])

x = fminbnd(fun,x1,x2) Returns the minimum of the function in the interval (x1, x2)

>> x = fminbnd(@cos,3,4)

x =

3.1416

x = fminbnd(fun,x1,x2,options) Returns the minimum of the function in the interval (x1, x2) according to the
option given by optimset (...). This last command is explained later.

>> x = fminbnd(@cos,3,4,optimset('TolX',1e-12,'Display','off'))

x =

3.1416

x = fminbnd(fun,x1,x2,
options,P1,P2,..)

Specifies additional parameters P1, P2,... to pass to the target function
fun(x,P1,P2,...)

[x, fval] = fminbnd (...) Returns the value x and the value of the function at x at which the objective
function has a minimum

>> [x,fval] = fminbnd(@cos,3,4)

x =

3.1416

fval =

-1.0000

(continued)

Chapter 7 ■ Derivatives. One anD several variables

242

[x, fval, f] = fminbnd (...) In addition returns an indicator of convergence of f (f > 0 indicates convergence to
the solution, f < 0 no convergence and f = 0 exceeds the number of steps)

>> [x,fval,f] = fminbnd(@cos,3,4)

x =

3.1416

fval =

-1.0000

f =

1

[x,fval,f,output] = fminbnd(...) Gives further information on optimization (output.algorithm gives the algorithm
used, output.funcCount gives the number of evaluations of fun and output.
iterations gives the number of iterations)

>> [x,fval,f,output] = fminbnd(@cos,3,4)

x =

3.1416

fval =

-1.0000

f =

1

output =

iterations: 7
funcCount: 8
algorithm: 'golden section search, parabolic interpolation'
message: [1x112 char]

(continued)

Chapter 7 ■ Derivatives. One anD several variables

243

x = fminsearch(fun,x0)

x = fminsearch(fun,x0,options)

x = fminsearch(fun,x0,options,
P1,P2,...)

[x,fval] = fminsearch(...)

[x,fval,f] = fminsearch(...)

[x,fval,f,output] =
fminsearch(...)

Minimizes a function of several variables with initial values given by x0.
The argument x0 can be an interval [a, b] in which a solution is sought. Then,
to minimize fun in [a, b], the command x = fminsearch (fun, [a, b]) is used.

>> x=fminsearch(inline('(100*(1-x^2)^2+(1-x)^2)'),3)

x =

1.0000

>> [x,feval]=fminsearch(inline('(100*(1-x^2)^2 +(1-x)^2)'),3)

x =

1.0000

feval =

2.3901e-007

>> [x,feval,f]=fminsearch(inline('(100*(1-x^2)^2 +(1-x)^2)'),3)

x =

1.0000

feval =

2.3901e-007

f =

1

>> [x,feval,f,output]=fminsearch(inline('(100*(1-
x^2)^2+(1-x)^2)'),3)

x =

1.0000

feval =

2.3901e-007

f =

1

output =

iterations: 18
funcCount: 36
algorithm: 'Nelder-Mead simplex direct search'
message: [1x196 char]

(continued)

Chapter 7 ■ Derivatives. One anD several variables

244

x = fzero x0 (fun)

x = fzero(fun,x0,options)

x =
fzero(fun,x0,options,P1,P2,...)

[x, fval] = fzero (...)

[x, fval, exitflag] = fzero (...)

[x,fval,exitflag,output] =
fzero(...)

Finds zeros of functions. The argument x0 can be an interval [a, b] in which a
solution is sought. Then, to find a zero of fun in [a, b] the command
x = fzero (fun, [a, b]) is used, where fun has opposite signs at a and b.

>> x = fzero(@cos,[1 2])

x =

 1.5708

>> [x,feval] = fzero(@cos,[1 2])

x =

 1.5708

feval =

 6.1232e-017

>> [x,feval,exitflag] = fzero(@cos,[1 2])

x =

 1.5708

feval =

 6.1232e-017

exitflag =

 1

>> [x,feval,exitflag,output] = fzero(@cos,[1 2])

x =

 1.5708

feval =

 6.1232e-017

exitflag =

 1

output =

 interval iterations: 0
 iterations: 5
 funcCount: 7
 algorithm:'bisection, interpolation'message: 'Zero found in

the interval [1, 2]'

(continued)

Chapter 7 ■ Derivatives. One anD several variables

245

options =
optimset('p1',v1,'p2',v2,...)

Creates optimization options parameters p1, p2,... with values v1, v2... The
possible parameters are Display (with possible values 'off', 'iter', 'final', 'notify' to
hide the output, display the output of each iteration, display only the final output
and show a message if there is no convergence); MaxFunEvals, whose value is an
integer indicating the maximum number of evaluations; MaxIter whose value is
an integer indicating the maximum number of iterations; TolFun, whose value is
an integer indicating the tolerance in the value of the function, and TolX, whose
value is an integer indicating the tolerance in the value of x

Val = optimget (options, 'param') Returns the value of the parameter specified in the optimization options structure

As a first example, we minimize the function cos(x) in the interval (3,4).

>> x = fminbnd(inline('cos(x)'),3,4)

x =

 3.1416

In the following example we conduct the same minimization with a tolerance of 8 decimal places and find both
the value of x that minimizes the cosine in the range given and the minimum value of the cosine function in that
interval, presenting information relating to all iterations of the process.

>> [x, fval, f] = fminbnd (@cos, 3, 4, optimset('TolX',1e-8,...)) (('Display', 'iter'));

 Func-count x f(x) Procedure
 1 3.38197 -0.971249 initial
 2 3.61803 -0.888633 golden
 3 3.23607 -0.995541 golden
 4 3.13571 -0.999983 parabolic
 5 3.1413 -1 parabolic
 6 3.14159 -1 parabolic
 7 3.14159 -1 parabolic
 8 3.14159 -1 parabolic
 9 3.14159 -1 parabolic

Optimization terminated successfully:
the current x satisfies the termination criteria using OPTIONS.TolX of 1.000000e-008

In the following example, taking as initial values (-1.2, 1), we minimize and find the target value of the function of
two variables:

f x x x x() () ()= - + -100 12 1
2 2

1
2

>> [x,fval] = fminsearch(inline('100*(x(2)-x(1)^2)^2+...
 (((1-x (1)) ^ 2'), [- 1.2, 1])

x =

 1.0000 1.0000

Chapter 7 ■ Derivatives. One anD several variables

246

FVal =

 8. 1777e-010

The following example computes a zero of the sine function near 3 and a zero of the cosine function between
1 and 2.

>> x = fzero(@sin,3)

x =

 3.1416

>> x = fzero(@cos,[1 2])

x =

 1.5708

Conditional minima and maxima. The method of
“Lagrange multipliers”
Suppose we want to optimize (i.e. maximize or minimize) the function f(x

1
,x

2
,...,x

n
), called the objective function,

but subject to certain restrictions given by the equations:

g
1
(x

1
,x

2
,...,x

n
)=0

g
2
(x

1
,x

2
,...,x

n
)=0

..........................
g
k
(x

1
,x

2
,...,x

n
)=0

This is the setting in which the Lagrangian is introduced. The Lagrangian is a linear combination of the objective

function and the constraints, and has the following form:

L X X Xn f X X X g x x xn i i n
i

k

(, , ,) (, ,) (, ,...,)1 2 1 2 1 2
1

 l l= +
=
å

The extreme points are found by solving the system obtained by setting the components of the gradient vector of
L to zero, that is, Ñ L(x

1
,x

2
,...,x

n
,l) =(0,0,...,0). Which translates into:

Ñ =
æ

è
ç

ö

ø
÷=L

L

x

L

x

L

x

L L L

n n

¶
¶

¶
¶

¶
¶

¶
¶ l

¶
¶ l

¶
¶ l1 2 1 2

0 0, ,..., , , ,..., , ,....,0()

By setting the partial derivatives to zero and solving the resulting system, we obtain the values of x
1
, x

2
,..., x

n
, l

1
,

l
2
,...,l

k
 corresponding to possible maxima and minima.

Chapter 7 ■ Derivatives. One anD several variables

247

To determine the nature of the points (x
1
, x

2
,..., x

n
) found above, the following bordered Hessian matrix is used:

¶
¶

¶
¶ ¶

¶
¶ ¶

¶
¶

¶
¶ ¶

¶
¶

2

1
2

2

1 2

2

1 1

2

1 2

2

2
2

f

x

f

x x

f

x x

g

x

f

x x

f

x

n

i.......

........

.......

¶
¶ ¶

¶
¶

¶
¶

2

2 2

2

f

x x

g

x

f

n

i

xx x

f

x x

f

x

g

x

g

x

g

x

g
n n n

i

n

i i i

1

2

2

2

2

1 2

¶
¶

¶ ¶
¶
¶

¶
¶

¶
¶

¶
¶

¶
¶

.......

.......
xxn

0

é

ë

ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú
ú
ú
ú
ú
ú
ú
ú

The nature of the extreme points can be determined by studying the set of bordered Hessian matrices:

H

f

x

g

x

g

x

H

f

x

f

x x

g

x
i

i

i

1
0

21
2

1

1

2

1
2

2

1 2

=

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

=

¶
¶

¶
¶

¶
¶

¶
¶

¶
¶ ¶

¶
¶ 11

2

1 2

2

2
2

2

1 2

0

¶
¶ ¶

¶
¶

¶
¶

¶
¶

¶
¶

f

x x

f

x

g

x

g

x

g

x

i

i i

é

ë

ê
ê
ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú
ú
ú

.... H Hn =

For a single restriction g
1
, if H1 < 0, H2 < 0, H3 < 0,..., H < 0, then the extreme point is a minimum.

For a single restriction g
1
, if H1 > 0, H2 < 0, H3 > 0, H4 < 0, H5 > 0, ... then the extreme point is a maximum.

For a collection of restrictions g
i
(x

1
,..., x

n
) (i = 1, 2,..., k) the lower right 0 will be a block of zeros and the conditions

for a minimum will all have sign (-1)k, while the conditions for a maximum will have alternating signs with H1 having
sign (-1)k+1. When considering several restrictions at the same time, it is easier to determine the nature of the extreme
point by simple inspection.”

As an example we find and classify the extreme points of the function:

f x y z x z(, ,) = +

subject to the restriction:

x y z2 2 2 1+ + =

First we find the Lagrangian L, which is a linear combination of the objective function and the constraints:

>> syms x y z L p
>> f = x + z

f =

x + z

>> g = x ^ 2 + y ^ 2 + z ^ 2-1

g =

x ^ 2 + y ^ 2 + z ^ 2 - 1

Chapter 7 ■ Derivatives. One anD several variables

248

>> L = f + p * g

L =

x + z + p *(x^2 + y^2 + z^2-1)

Then, the possible extreme points are obtained by solving the system obtained by setting the components of the
gradient vector of L equal to zero, that is, Ñ L(x

1
,x

2
,...,x

n
,l) =(0,0,...,0). Which translates into:

>> [x, y, z, p] = solve (diff(L,x), diff(L,y), diff(L,z), diff(L,p), x, y, z, p)

x =

 -2^(1/2)/2
 2^(1/2)/2

y =

 2^(1/2)/2
 -2^(1/2)/2

z =

 0
 0

p =

 2^(1/2)/2
 -2^(1/2)/2

By matching all the partial derivatives to zero and solving the resulting system, we find the values of x
1
, x

2
,..., x

n
, l

1
,

l
2
,...,l

k
 corresponding to possible maxima and minima.

We already see that the possible extreme points are:

(-√2/2, √2/2, 0) and (√2/2, -√2/2, 0)

Now, let us determine the nature of these extreme points. To this end, we substitute them into the objective function.

>> clear all
>> syms x y z
>> f=x+z

f =

x + z

>> subs(f, {x,y,z},{-sqrt(2)/2,sqrt(2)/2,0})

ans =

 -0.7071

Chapter 7 ■ Derivatives. One anD several variables

249

>> subs(f, {x,y,z},{sqrt(2)/2,-sqrt(2)/2,0})

ans =

 0.7071

Thus, at the point (-√2/2, √2/2, 0) the function has a maximum, and at the point (√2/2, -√2/2, 0) the function has
a minimum.”

Vector Differential Calculus
Here we shall introduce four classical theorems of differential calculus in several variables: the chain rule or composite
function theorem, the implicit function theorem, the inverse function theorem and the change of variables theorem.

Consider a function F : Rm→ Rn:

(x
1
, x

2
,..., x

m
) → [F

1
(x

1
, x

2
,..., x

m
),...,F

n
(x

1
, x

2
,..., x

m
)]

The vector function F is said to be differentiable at the point a = (a
1
,...,a

m
) if each of the component functions F

1
,

F
2
,..., F

n
 is differentiable.

The Jacobian matrix of the above function is defined as:

J

F

x

F

x

F

x

F

x

F

x

F

x

n

n=

¶
¶

¶
¶

¶
¶

¶
¶

¶
¶

¶
¶

1

1

1

2

1

2

1

2

2

2

.......

.......

........

.......
¶
¶

¶
¶

¶
¶

F

x

F

x

F

x
n n n

n1 2

é

ë

ê
ê
ê
ê
ê
ê
ê
ê
êê

ù

û

ú
ú
ú
ú
ú
ú
ú
ú
ú

=
¶
¶

(, ,...,)

(, ,...,)

F F F

x x x
n

n

1 2

1 2

The Jacobian of a vector function is an extension of the concept of a partial derivative for a single-component
function. MATLAB has the command jacobian which enables you to calculate the Jacobian matrix of a function.

As a first example, we calculate the Jacobian of the vector function mapping (x,y,z) to (x * y * z, y, x + z).

>> syms x y z
>> jacobian([x*y*z; y; x+z],[x y z])

ans =

[y * z, x * z, x * y]
[0, 1, 0]
[1, 0, 1]

As a second example, we calculate the Jacobian of the vector function f x y z e y zx, , (,cos ,sin())() = () at the point
(0, -p / 2, 0).

Chapter 7 ■ Derivatives. One anD several variables

250

>> syms x y z

>> J = jacobian ([exp(x), cos(y), sin(z)], [x, y, z])

J =

[exp(x), 0, 0]
[0,-sin(y), 0]
[0, 0, cos(z)]

>> subs(J,{x,y,z},{0,-pi/2,0})

ans =

 1 0 0
 0 1 0
 0 0 1

Thus the Jacobian turns out to be the identity matrix.

The Composite Function Theorem
The chain rule or composite function theorem allows you to differentiate compositions of vector functions. The chain
rule is one of the most familiar rules of differential calculus. It is often first introduced in the case of single variable real
functions, and is then generalized to vector functions. It says the following:

Suppose we have two vector functions

g U R R and f V R Rn m m p: :Ì ® Ì ®

where U and V are open and consider the composite function f g R Rn p
 : ® .

If g is differentiable at x0 and f is differentiable at y g x0 0= (), then f g is differentiable at x0 and we have the
following:

D f g x Df y Dg x()() () () 0 0 0=

MATLAB will directly apply the chain rule when instructed to differentiate composite functions.
Let us take for example f x y x y,() = +2 and h u u u() = ()(sin ,cos())3 8 . If g x y f h u, (())() = we calculate the

Jacobian of g at (0, 0) as follows.

>> syms x y u
>> f = x ^ 2 + y

f =

x ^ 2 + y

>> h = [sin(3*u), cos(8*u)]

h =

[sin(3*u), cos(8*u)]

Chapter 7 ■ Derivatives. One anD several variables

251

>> g = compose (h, f)

g =

[sin(3*x^2 + 3*y), cos(8*x^2 + 8*y)]

>> J = jacobian(g,[x,y])

J =

[6 * x * cos(3*x^2 + 3*y), 3 * cos(3*x^2 + 3*y)]
[- 16 * x * sin(8*x^2 + 8*y), - 8 * sin(8*x^2 + 8*y)]

>> H = subs(J,{x,y},{0,0})

H =

0 3
0 0

The Implicit Function Theorem
Consider the vector function F : A Ì Rn + m→ R m where A is an open subset of Rn + m

(,) (,),..., (,)x y F x y F x yF
m¾®¾ []1

If F
i
 (i = 1, 2,..., m) are differentiable with continuous derivatives up to order r and the Jacobian matrix

J = ∂ (F
1
,..., F

m
) / ∂ (y

1
,..., y

m
) has non-zero determinant at a point (,)x y0 0 such that F x y(,)0 0 0= , then there is an

open UÌRn containing x0 and an open VÌ Rm containing to y0 and a single-valued function f : U→ V such that
F x f x, ()éë ùû = 0 "x ÎU and f is differentiable of order r with continuous derivatives.

This theorem guarantees the existence of certain derivatives of implicit functions. MATLAB allows differentiation
of implicit functions and offers the results in those cases where the hypotheses of the theorem are met.

As an example we will show that near the point (x, y, u, v) = (1,1,1,1) the following system has a unique solution:

xy yvu

xu y v

+ =

+ =

2

3 2 4

2

2

where u and v are functions of x and y (u = u(x, y), v = v(x, y)).
First, we check if the hypotheses of the implicit function theorem are met at the point (1,1,1,1).
The functions are differentiable and have continuous derivatives. We need to show that the corresponding

Jacobian determinant is non-zero at the point (1,1,1,1).

>> clear all
>> syms x y u v
>> f = x * y + y * v * u ^ 2-2

f =

v * y * u ^ 2 + x * y - 2

Chapter 7 ■ Derivatives. One anD several variables

252

>> g = x * u ^ 3 + y ^ 2 * v ^ 4-2

g =

x * u ^ 3 + v ^ 4 * y ^ 2 - 2

>> J = simplify (jacobian([f,g],[u,v]))

J =

[2 * u * v * y, u ^ 2 * y]
[3 * u ^ 2 * x, 4 * v ^ 3 * y ^ 2]

>> D = det (subs(J,{x,y,u,v},{1,1,1,1}))

D =

 5

The Inverse Function Theorem
Consider the vector function f : U Ì Rn→ Rn where U is an open subset of R n

(x
1
, x

2
,..., x

n
) → [f

1
(x

1
, x

2
,..., x

n
),...,f

n
(x

1
, x

2
,..., x

n
)]

and assume it is differentiable with continuous derivative.
If there is an x0 such that |J| = |∂(f

1
,...,f

n
) / ∂(x

1
,...,x

n
)| ¹ 0 at x

0
, then there is an open set A containing x0 and an

open set B containing f x()0 such that f A B() = and f has an inverse function f B A- ®1 : that is differentiable with
continuous derivative. In addition we have:

D f y D f x- -
= éë ùû

1 1
() () and if J = ∂ (f1,..., fn) / ∂ (x

1
,..., x

n
) then |J-1| = 1 / |J|.

MATLAB automatically performs the calculations related to the inverse function theorem, provided that the
assumptions are met.

As an example, we consider the vector function (u(x, y), v(x, y)), where:

u x y
x y

x
v x y x y, , , sin cos .() = + () = ()+ ()

4 4

We will find the conditions under which the vector function (x(u,v), y(u,v)) is invertible, with x = x (u, v) and
y = y(u,v), and find the derivative and the Jacobian of the inverse transformation. We will also find its value at the point
(p/4,-p/4).

The conditions that must be met are those described in the hypotheses of the inverse function theorem. The
functions are differentiable with continuous derivatives, except perhaps at x= 0. Now let us consider the Jacobian of
the direct transformation ∂ (u(x, y), v(x,y)) /∂(x, y):

>> syms x y
>> J = simple ((jacobian ([(x^4+y^4)/x, sin(x) + cos(y)], [x, y])))

J =

[3 * x ^ 2-1/x ^ 2 * y ^ 4, 4 * y ^ 3/x]
[cos(x),-sin(y)]

Chapter 7 ■ Derivatives. One anD several variables

253

>> pretty(det(J))

 4 4 3
 3 sin(y) x - sin(y) y + 4 y cos (x) x
 - ---------------------------------------
 2
 x

Therefore, at those points where this expression is non-zero, we can solve for x and y in terms of u and v. In
addition, it must be true that x π 0.

We calculate the derivative of the inverse function. Its value is the inverse of the initial Jacobian matrix and its
determinant is the reciprocal of the determinant of the initial Jacobian matrix:

>> I=simple(inv(J));
>> pretty(simple(det(I)))

 2
 x
 - ---------------------------------------
 4 4 3
 3 sin(y) x - sin(y) y + 4 y cos (x) x

Observe that the determinant of the Jacobian of the inverse vector function is indeed the reciprocal of the
determinant of the Jacobian of the original function.

We now find the value of the inverse at the point (p/4,-p/4):

>> numeric(subs(subs(determ(I),pi/4,'x'),-pi/4,'y'))

ans =

 0.38210611216717

>> numeric(subs(subs(symdiv(1,determ(J)),pi/4,'x'),-pi/4,'y'))

ans =

 0.38210611216717

Again these results confirm that the determinant of the Jacobian of the inverse function is the reciprocal of the
determinant of the Jacobian of the function.

The Change of Variables Theorem
The change of variable theorem is another key tool in multivariable differential analysis. Its applications extend to any
problem in which it is necessary to transform variables.

Suppose we have a function f(x,y) that depends on the variables x and y, and that meets all the conditions of
differentiation and continuity necessary for the inverse function theorem to hold. We introduce new variables u and v,
relating to the above, regarding them as functions u = u(x,y) and v = v(x,y), so that u and v also fulfill the necessary
conditions of differentiation and continuity (described by the inverse function theorem) to be able to express x and y
as functions of u and v: x=x (u,v) and y=y(u,v).

Chapter 7 ■ Derivatives. One anD several variables

254

Under the above conditions, it is possible to express the initial function f as a function of the new variables u and
v using the expression:

f(u,v) = f (x(u,v), y(u,v))|J| where J is the Jacobian ∂ (x (u, v), y(u,v)) /∂(u, v).
The theorem generalizes to vector functions of n components.
As an example we consider the function f x y e x y(,) ()= - + and the transformation u = u(x,y) = x + y, v = v(x,y) = x to

finally find f(u,v).
We calculate the inverse transformation and its Jacobian to apply the change of variables theorem:

>> syms x y u v
>> [x, y] = solve('u=x+y,v=x','x','y')

x =

v

y =

u-v

>> jacobian([v,u-v],[u,v])

ans =

[0, 1]
[1, - 1]

>> f = exp(x-y);
>> pretty (simple (subs(f,{x,y},{v,u-v}) * abs (det (jacobian ()))
 ((([v, u-v], [u, v])))

 exp(2 v-u)

The requested function is f(u,v) = e 2v-u.

Series Expansions in Several Variables
The familiar concept of a power series representation of a function of one variable can be generalized to several
variables. Taylor’s theorem for several variables theorem reads as follows:

Let f R Rn: ® , (x
1
,...,x

n
) → f(x

1
,...,x

n
), be differentiable k times with continuous partial derivatives.

The Taylor series expansion of order k of f x() at the point a a an= (,...,)1 is as follows:

f x f a
f

x
a t

f

x x
a t t

ii

n

i
j

n

i ji

n

i j() () ()
!

()= + + +
= ==
å åå¶

¶
¶

¶ ¶1 1

2

1

1

2

1

3!!
() ... ()

j

n

k

n

i j ki

n

i j k

f

x x x
a t t t R k

= ==
å åå + + +

1 1

3

1

1
¶

¶ ¶ ¶

Here x x x x a a a a t x a i nn n i i i= ¼() = ¼() = - = ¼()1 2 1 2 1 2, , , , , , , , , , , .


R = remainder.
Normally, the series are given up to order 2.

Chapter 7 ■ Derivatives. One anD several variables

255

As an example we find the Taylor series up to order 2 of the following function at the point (1,0):

f x y e yx, cos()()() = -1 2

>> pretty(simplify(subs(f,{x,y},{1,0})+subs(diff(f,x),{x,y},{1,0})*(x-1)
+subs(diff(f,y),{x,y},{1,0})*(y)+1/2*(subs(diff(f,x,2),{x,y},{1,0})* (x-1)^2+subs(diff(f,x,y),{x,y},
{1,0})*(x-1)*(y)+ subs(diff(f,y,2),{x,y},{1,0})* (y)^2)))

 2
 2 y
 (x - 1) --- + 1
 2

Curl, Divergence and the Laplacian
The most common concepts used in the study of vector fields are directly treatable by MATLAB and are
summarized below.

Definition of gradient: If h = f(x,y,z), then the gradient of f, which is denoted by D f (x, y, z), is the vector:

Grad f f x y z
f x y z

x
i

f x y z

y
j

f x y z

z
k() = () = ¶

¶
+
¶

¶
+
¶

¶
D , ,

(, ,) (, ,) (, ,)

Definition of a scalar potential of a vector field: A vector field F is called conservative if there is a differentiable
function f such that F = fD . The function f is known as a scalar potential function for F.

Definition of the curl of a vector field: The curl of a vector field F x y z Mi Nj Pk, ,() = + + is the following:

curl F x y z F x y z
P

y

N

z
i

P

x

M

z
j, , , ,() = ´ () = ¶

¶
-
¶
¶

æ

è
ç

ö

ø
÷ -

¶
¶

-
¶
¶

æ
è
ç

ö
ø
÷D ++

¶
¶

-
¶
¶

æ

è
ç

ö

ø
÷

N

x

M

y
k

Definition of a vector potential of a vector field: A vector field F is a vector potential of another vector field
G if F = curl (G).

Definition of the divergence of a vector field: The divergence of the vector field F x y z Mi Nj Pk, ,() = + + is the
following:

diverge F x y z F x y z
M

x

N

y

P

z
, , , ,() = () = ¶

¶
+
¶
¶

+
¶
¶

DD

Definition of the Laplacian: The Laplacian is the differential operator defined by:

Laplacian
x y z

= = =
¶
¶

+
¶
¶

+
¶
¶

D DDD2
2

2

2

2

2

2

As a first example, we calculate gradient and Laplacian of the function:

w
x y z

=
- - -

1

1 2 2 2

Chapter 7 ■ Derivatives. One anD several variables

256

>> gradient=simplify([diff(f,x), diff(f,y), diff(f,z)])

gradient =

[x /(-x^2-y^2-z^2 + 1) ^(3/2), y /(-x^2-y^2-z^2 + 1) ^(3/2), z /(-x^2-y^2-z^2 + 1) ^(3/2)]

>> pretty (gradient)

 +- -+
 | x y z |
 | ---------------------, ---------------------, --------------------- |
 | 3 3 3 |
 | - - - |
 | 2 2 2 |
 | 2 2 2 2 2 2 2 2 2 |
 | (- x - y - z + 1) (- x - y - z + 1) (- x - y - z + 1) |
 +- -+

>> Laplacian = simplify ([diff(f,x,2) + diff(f,y,2) + diff(f,z,2)])

Laplacian =

3 /(-x^2-y^2-z^2 + 1) ^(5/2)

>> pretty (Laplacian)

 3

 5
 -
 2
 2 2 2
 (- x - y - z + 1)

As a second example, we calculate the curl and the divergence of the vector field:

F i kx y z
x

y
x y j, , tan ln .() = + + +-1 2 2

>> M = atan (x/y)

M =

atan (x/y)

>> N = log (sqrt(x^2+y^2))

N =

log ((x^2 + y^2) ^(1/2))

Chapter 7 ■ Derivatives. One anD several variables

257

>> P = 1

P =
 1

>> Curl = simplify ([diff(P,y)-diff(N,z), diff(P,x)-diff(M,z), diff(N,x)-diff(M,y)])

Curl =

[0, 0, (2 * x) /(x^2 + y^2)]

>> pretty (Curl)

 +- -+
 | 2 x |
 | 0, 0, ------- |
 | 2 2 |
 | x + y |
 +- -+

>> Divergence = simplify (diff(M,x) + diff(N,y) + diff(P,z))

Divergence =

(2 * y) /(x^2 + y^2)

>> pretty (divergence)

 2 y

 2 2
 x + y

Rectangular, Spherical and Cylindrical Coordinates
MATLAB allows you to easily convert cylindrical and spherical coordinates to rectangular, cylindrical to spherical
coordinates, and their inverse transformations. As the cylindrical and spherical coordinates, we have the following:

In a cylindrical coordinate system, a point P in the space is represented by a triplet (r, q, z), where:

•	 r is the distance from the origin (O) to the projection P' of P in the XY plane

•	 q is the angle between the X axis and the segment OP'

•	 z is the distance PP'

In a spherical coordinate system, a point P in the space is represented by a triplet (r, q, f), where:

•	 r is the distance from P to the origin

•	 q is the same angle as the one used in cylindrical coordinates

f•	 is the angle between the positive Z axis and the segment OP

Chapter 7 ■ Derivatives. One anD several variables

258

The following conversion equations are easily found:
Cylindrical to rectangular:

x r= cosq

y r= sinq

z z=

Rectangular to cylindrical:

r x y= +2 2

q = -tan 1 y

x

z z=

Spherical to rectangular:

x = r f qsin cos

y = r f qsin sin

z = r fcos

Rectangular to spherical:

r = + +x y z2 2 2

q = -tan 1 y

x

f =
+ +

-cos 1

2 2 2

z

x y z

As a first example we express the surfaces with equations given by xz = 1 and x2 + y2 + z2 = 1 in spherical
coordinates.

>> clear all
>> syms x y z r t a
>> f = x * z-1

f =

x * z - 1

>> equation = simplify (subs (f, {x, y, z}, {r * sin(a) * cos(t), r * sin(a) * sin(t), r * cos(a)}))

equation =

r ^ 2 * cos(a) * sin(a) * cos(t) - 1

Chapter 7 ■ Derivatives. One anD several variables

259

>> pretty (equation)

 2
 r cos(a) sin(a) cos(t) - 1

g =

x ^ 2 + y ^ 2 + z ^ 2 - 1

>> equation1 = simplify (subs (g, {x, y, z}, {r * sin(a) * cos(t), r * sin(a) * sin(t),
r * cos(a)}))

equation1 =

r ^ 2 - 1

>> pretty (equation1)

 2
 r -1

However, MATLAB provides commands that allow you to transform between different coordinate systems.
Below are the basic MATLAB commands which can be used for coordinate transformation.

[RHO, THETA, Z] = cart2ctl (X, Y, Z)

[RHO, THETA] = cart2pol(X,Y)

Transforms Cartesian coordinates to cylindrical coordinates

Transforms Cartesian coordinates to polar coordinates

[THETA, PHI, R] = cart2sph (X, Y, Z) Transforms Cartesian coordinates to spherical coordinates

[X, Y, Z] = pol2cart (RHO, THETA, Z)

[X, Y] = pol2cart (RHO, THETA)

Transforms Cartesian coordinates to cylindrical coordinates

Transforms polar coordinates to Cartesian coordinates

[x, y, z] = sph2cart (THETA, PHI, R) Transforms spherical coordinates to Cartesian coordinates

The following example transforms the point (p1, 2) in polar coordinates to Cartesian coordinates.

>> [X, Y, Z] = pol2cart(pi,1,2)

X =

 -1

Y =

 1. 2246e-016

Z =

 2

Chapter 7 ■ Derivatives. One anD several variables

260

Next we transform the point (1,1,1) in Cartesian coordinates to spherical and cylindrical coordinates.

>> [X, Y, Z] = cart2sph(1,1,1)

X =

 0.7854

Y =

 0.6155

Z =

 1.7321

>> [X, Y, Z] = cart2pol(1,1,1)

X =

 0.7854

Y =

 1,4142

Z =

 1

The following example transforms the point (2,p/4) in polar coordinates into Cartesian coordinates.

>> [X, Y] = pol2cart(2,pi/4)

X =

 -0.3268

Y =

 0.7142

Chapter 7 ■ Derivatives. One anD several variables

261

exerCise 7-1

study the differentiability of the function:

f x x
x

() = æ
è
ç

ö
ø
÷

2 1
sin if x ¹ 0 and f x() = 0 if x = 0 .

We begin by studying the continuity of the function at the point x = 0.

>> syms x
>> f = x ^ 2 * sin(1/x)

f =

x ^ 2 * sin(1/x)

>> limit(f,x,0, 'right')

ans =

0

>> limit(f,x,0, 'left')

ans =

0

>>
>> limit(f,x,0)

ans =

0

We see that the function is continuous at x = 0 because the limit of the function as x tends to zero coincides with
the value of the function at zero. it may therefore be differentiable at zero.

We now determine whether the function is differentiable at the point x = 0:

>> syms h, limit((h^2*sin(1/h) - 0)/h,h,0)

ans =

0

thus, we see that:

lim
() ()

’()
h

f h f

h
f

®

+ -
= =

0

0 0
0 0

which indicates that the function f is differentiable at the point x = 0.

Chapter 7 ■ Derivatives. One anD several variables

262

let us now see what happens at a non-zero point x = a:

>> pretty(simple(limit((subs(f,{x},{a+h})-subs(f,{x},{a}))/h,h,a)))

 / 1 \ / 1 \
 4-sin | --- | -a sin| -- |
 \ 2 a / \ a /

thus, we conclude that:

lim
()

sin sin’

h

f a h f a

h
f a a

a a®

+() -
= () = æ

è
ç

ö
ø
÷ -

æ
è
ç

ö
ø
÷0

4
1

2

1

thus, we have already found the value of the derivative at any non-zero point x = a. We represent the function in
the figure below.

>> fplot ('x ^ 2 * sin (x)', [-1/10,1/10])

exerCise 7-2

Calculate the derivative with respect to x of the following functions:

log sin , , log .,tan()2
4

3

1

2
1

2

2
2x x

x

x
x xx()() -

+
+ +()

 >> pretty(simple(diff('log(sin(2*x))','x')))

2 cot(2 x)

>> pretty(simple(diff('x^tanx','x')))

 tanx
 x tanx

 x

Chapter 7 ■ Derivatives. One anD several variables

263

>> pretty(simple(diff('(4/3)*sqrt((x^2-1)/(x^2+2))','x')))

 x
 4 -----------------------
 2 1/2 2 3/2
 (x - 1) (x + 2)

>> pretty(simple(diff('log(x+(x^2+1)^(1/2))','x')))

 1

 2 1/2
 (x + 1)

exerCise 7-3

Calculate the nth derivative of the following functions:

1 1

1
2

x
e

x

x
x, ,

+
+

>> f='1/x';
>> [diff(f),diff(f,2),diff(f,3),diff(f,4),diff(f,5)]

ans =

-1/x ^ 2 2/x ^ 3 -6/x ^ 4 24/x ^ 5 -120/x ^ 6

We begin to see the pattern emerging, so the nth derivative is given by

() !
.

-
+

1
1

n

n

n

x

>> f='exp(x/2)';
>> [diff(f),diff(f,2),diff(f,3),diff(f,4),diff(f,5)]

ans =

1/2*exp(1/2*x) 1/4*exp(1/2*x) 1/8*exp(1/2*x) 1/16*exp(1/2*x 1/32*exp(1/2*x)

Chapter 7 ■ Derivatives. One anD several variables

264

thus the nth derivative is e x

n

/2

2
.

>> f='(1+x)/(1-x)';
>> [simple(diff(f)),simple(diff(f,2)),simple(diff(f,3)),simple(diff(f,4))]

ans =

2 /(-1+x) ^ 2-4 /(-1+x) ^ 3 12 /(-1+x) ^ 4-48 /(-1+x) ^ 5

thus, the nth derivative is equal to
2

1 1

(!)

()

n

x n- + .

exerCise 7-4

Find the equation of the tangent to the curve f x x x x() = + - +2 3 12 73 2 at x = -1.

also find the x for which the tangents to the curve are g x
x x

x
() =

- -
-

2 4

1
 horizontal and vertical. Find the

asymptotes.

>> f ='2 * x ^ 3 + 3 * x ^ 2-12 * x + 7';
>> g = diff (f)

g =

6*x^2+6*x-12

>> subs(g,-1)

ans =

-12

>> subs(f,-1)

ans =

20

We see that the slope of the tangent line at the point x = -1 is -12, and the function has value 20 at x = -1.
therefore the equation of the tangent to the curve at the point (-1,20) will be:

y - 20 = -12 (x - (-1))

Chapter 7 ■ Derivatives. One anD several variables

265

We graphically represent the curve and its tangent on the same axes.

>> fplot('[2*x^3+3*x^2-12*x+7, 20-12*(x - (-1))]',[-4,4])

to calculate the horizontal tangent to the curve y = f(x) at x= x0, we find the values x0 for which the slope of the
tangent is zero (f'(x0) = 0). the equation of this tangent will therefore be y = f(x0).

to calculate the vertical tangents to the curve y = f (x) at x = x0, we find the values x0 which make the slope of
the tangent infinite (f'(x0) = ∞). the equation of this tangent will then be = x0:

>> g ='(x^2-x+4) /(x-1)'
>> solve(diff(g))

ans =

[3]
[-1]

>> subs(g,3)

ans =

5

>> subs(g,-1)

ans =

-3

the two horizontal tangents have equations:

y = g’ [-1](x + 1) - 3, that is, y = -3.

y = g’[3](x - 3) +5, that is, y = 5.

the horizontal tangents are not asymptotes because the corresponding values of x0 are finite (-1 and 3).

Chapter 7 ■ Derivatives. One anD several variables

266

We now consider the vertical tangents. to do this, we calculate the values of x that make g ' (x) infinite (i.e. values
for which the denominator of g ' is zero, but do not cancel with the numerator):

>> solve('x-1')

ans =

1

therefore, the vertical tangent has equation x = 1.

For x = 1, the value of g (x) is infinite, so the vertical tangent is a vertical asymptote.

subs(g,1)
Error, division by zero

indeed, the line x = 1 is a vertical asymptote.

as lim
x

g x
®¥

() = ¥ , there are no horizontal asymptotes.

now let’s see if there are any oblique asymptotes:

>> syms x,limit(((x^2-x+4)/(x-1))/x,x,inf)

ans =

1

>> syms x,limit(((x^2-x+4)/(x-1) - x)/x,x,inf)

ans =

0

Chapter 7 ■ Derivatives. One anD several variables

267

thus, there is an oblique asymptote y = x.

We now graph the curve with its asymptotes and tangents:

On the same axes (see the figure below) we graph the curve whose equation is g(x) = (x 2-x + 4)/(x-1), the
horizontal tangents with equations a(x) = -3 and b(x) = 5, the oblique asymptote with equation c(x) = x and the
horizontal and vertical asymptotes (using the default command fplot):

>> fplot('[(x^2-x+4)/(x-1),-3,5,x]',[-10,10,-20,20])

exerCise 7-5

Decompose a positive number a as a sum of two summands so that the sum of their cubes is minimal.

let x be one of the summands. the other will be a-x. We need to minimize the sum x3+ (a-x)3.

>> syms x a;
>> f='x^3+(a-x)^3'

f =

x^3+(a-x)^3

>> solve(diff(f,'x'))

ans =

1/2 * a

Chapter 7 ■ Derivatives. One anD several variables

268

the possible maximum or minimum is at x = a/2. We use the second derivative to see that it is indeed a
minimum:

>> subs(diff(f,'x',2),'a/2')

ans =

3 * a

as a > 0 (by hypothesis), 4a > 0, which ensures the existence of a minimum at x = a/2.

therefore x = a/2 and a-x = a-a/2= a/2. that is, we obtain a minimum when the two summands are equal.

exerCise 7-6

suppose you want to purchase a rectangular plot of 1600 square meters and then fence it. Knowing that the
fence costs 200 cents per meter, what dimensions must the plot of land have to ensure that the fencing is most
economical?

if the surface area is 1600 square feet and one of its dimensions, unknown, is x, the other will be 1600/x.

the perimeter of the rectangle is p x x x() (/)= +2 2 1600 , and the cost is given by f x p x() ()= 200 :

>> f ='200 * (2 * x + 2 *(1600/x))'

f =

200 * (2 * x + 2 *(1600/x))

this is the function to minimize:

>> solve(diff(f))

ans =

[40]
[-40]

the possible maximum and minimum are presented for x = 40 and x = -40. We use the second derivative to
determine their nature:

>> [subs(diff(f,2), 40), subs(diff(f,2), -40)]

ans =

20 - 20

x = 40 is a minimum, and x =-40 is a maximum. thus, one of the sides of the rectangular field is 40 meters, and
the other will measure 1,600/40 = 40 meters. therefore the optimal rectangle is a square with sides of 40 meters.

Chapter 7 ■ Derivatives. One anD several variables

269

exerCise 7-7

Given the function of two real variables defined by:

f x y
xy

x y
,() =

+2 2 if x y2 2 0+ ¹ and f x y,() = 0 if x y2 2 0+ =

calculate the partial derivatives of f at the origin. study the differentiability of the function.

to find ∂f/∂x and ∂f/∂y at the point (0,0), we directly apply the definition of the partial derivative at a point:

>> syms x y h k
>> limit((subs(f,{x,y},{h,0})-0)/h,h,0)

ans =

0

>> limit((subs(f,{x,y},{0,k})-0)/k,k,0)

ans =

0

We see that the limits of the two previous expressions when h® 0 and k®0 , respectively, are both zero.
that is to say:

lim
, (,)

(,)

lim
, (,)

(

h

h

f h f

h

f

x
f k f

h

f

y

®

®

() -
=
¶
¶

=

() -
=
¶
¶

0

0

0 0 0
0 0 0

0 0 0
00 0 0,) =

thus the two partial derivatives have the same value, namely zero, at the origin.

but the function is not differentiable at the origin, because it is not continuous at (0,0), since it has no limit as
(,) (,)x y ® 0 0 :

>> syms m
>> limit((m*x)^2/(x^2+(m*x)^2),x,0)

ans =

m^2 /(m^2 + 1)

the limit does not exist at (0,0), because if we consider the directional limits with respect to the family of straight
lines y = mx, the result depends on the parameter m.

Chapter 7 ■ Derivatives. One anD several variables

270

exerCise 7-8

Find and classify the extreme points of the function

f x y x x x x xy, .() = - - + + +120 30 18 5 303 4 5 6 2

We begin by finding the possible extreme points. to do so, we equate each of the partial derivatives of the
function with respect to each of its variables to zero (i.e. the components of the gradient vector of f) and solve the
resulting system in three variables:

>> syms x y
>> f = -120 * x ^ 3-30 * x ^ 4 + 18 * x ^ 5 + 5 * x ^ 6 + 30 * x * y ^ 2

f =

5 * x ^ 6 + 18 * x ^ 5-30 * x ^ 4-120 * x ^ 3 + 30 * x * y ^ 2

>> [x y] = solve (diff(f,x), diff(f,y), x, y)

x =

 0
 2
 -2
 -3

y =

 0
 0
 0
 0

so the possible extreme points are: (- 2,0), (2,0), (0,0) and (-3,0).

We will analyze what kind of extreme points these are. to do this, we calculate the hessian matrix and express it
as a function of x and y.

>> clear all
>> syms x y
>> f=-120*x^3-30*x^4+18*x^5+5*x^6+30*x*y^2

f =

5*x^6 + 18*x^5 - 30*x^4 - 120*x^3 + 30*x*y^2

Chapter 7 ■ Derivatives. One anD several variables

271

>> H=simplify([diff(f,x,2),diff(diff(f,x),y);diff(diff(f,y),x),diff(f,y,2)])

H =

[- 30 * x *(-5*x^3-12*x^2 + 12*x + 24), 60 * y]
[60*y, 60*x]

now we calculate the value of the determinant of the hessian matrix at the possible extreme points.

>> det(subs(H,{x,y},{0,0}))

ans =

 0

the origin turns out to be a degenerate point, as the determinant of the hessian matrix is zero at (0,0).

We will now look at the point (- 2,0).

>> det(subs(H,{x,y},{-2,0}))

ans =

 57600

>> eig(subs(H,{x,y},{-2,0}))

ans =

 -480
 -120

the hessian matrix at the point (-2,0) has non-zero determinant, and is also negative definite, because all its
eigenvalues are negative. therefore, the point (-2,0) is a maximum of the function.

We will now analyze the point (2,0).

>> det(subs(H,{x,y},{2,0}))

ans =

 288000

>> eig(subs(H,{x,y},{2,0}))

ans =

 120
 2400

Chapter 7 ■ Derivatives. One anD several variables

272

the hessian matrix at the point (2,0) has non-zero determinant, and is furthermore positive definite, because all
its eigenvalues are positive. therefore, the point (2,0) is a minimum of the function.

We will now analyze the point (-3,0).

>> det(subs(H,{x,y},{-3,0}))

ans =

 -243000

>> eig(subs(H,{x,y},{-3,0}))

ans =

 -180
 1350

the hessian matrix at the point (-3,0) has non-zero determinant, and, in addition, is neither positive definite nor
negative, because it has both positive and negative eigenvalues. therefore, the point (-3,0) is a saddle point of
the function.

exerCise 7-9

Find and classify the extreme points of the function:

f x y z x y z(, ,)= + -2 2

subject to the restrictions: x2 +y2 = 16 and x + y + z = 10.

We first find the lagrangian L, which is a linear combination of the objective function and the constraints:

>> clear all
>> syms x y z L p q
>> f =(x^2+y^2) ^(1/2)-z

f =

(x ^ 2 + y ^ 2) ^ (1/2) - z

>> g1 = x ^ 2 + y ^ 2 - 16, g2 = x + y + z - 10

G1 =

x ^ 2 + y ^ 2 - 16

G2 =

x + y + z - 10

Chapter 7 ■ Derivatives. One anD several variables

273

>> L = f + p * g1 + q * g2

L =

(x ^ 2 + y ^ 2) ^ (1/2) - z + q *(x + y + z - 10) + p *(x^2 + y^2 - 16)

then, the possible extreme points are found by solving the system obtained by setting the components of the
gradient vector of L to zero, that is, ∇l(x1,x2,...,xn,l) =(0,0,...,0). Which translates into:

>> [x, y z, p, q] = solve (diff(L,x), diff(L,y), diff(L,z), diff(L,p), diff(L,q), x, y z, p, q)

x =

-2 ^(1/2)/8 - 1/8

y =

1

z =

2 * 2 ^(1/2)

p =

2 * 2 ^(1/2)

q =

10 - 4 * 2 ^(1/2)

Matching all the partial derivatives to zero and solving the resulting system, we find the values of x1, x2,..., xn, l1,
l2,...,lk corresponding to possible maxima and minima.

We already have one possible extreme point:

(-(1+√2)/8, 1, 2√2)

We need to determine what kind of extreme point this is. to this end, we substitute it into the objective function.

>> syms x y z
>> vpa (subs (f, {x, y, z}, {-2 ^(1/2)/8-1/8,1,2*2^(1/2)}))

ans =

-1.78388455796197398228741803905

thus, at the point (-(1+ 2)/8, 1/2 2), the function has a maximum.

Chapter 7 ■ Derivatives. One anD several variables

274

exerCise 7-10

Given the function f x y x y(,) ()= - +10 and the transformation u = u(x,y) = 2 x + y, v = v(x,y) = x – y, find f(u,v).

We calculate the inverse transformation and its Jacobian in order to apply the change of variables theorem:

>> [x, y] = solve('u=2*x+y,v=x-y','x','y')

x =

u + v/3

y =

u - (2 * v) / 3

>> jacobian([u/3 + v/3,u/3-(2*v)/3], [u, v])

ans =

[1/3, 1/3]
[1/3, 2/3]

>> f = 10 ^(x-y);
>> pretty (simple (subs(f,{x,y},{u/3 + v/3,u/3-(2*v)/3}) *))
 abs (det (jacobian([u/3 + v/3,u/3-(2*v)/3], [u, v])))

 v
 10

 3

thus the requested function is f(u,v) = 10v/3.

Chapter 7 ■ Derivatives. One anD several variables

275

exerCise 7-11

Find the taylor series at the origin, up to order 2, of the function:

f x y e x y(,) = + 2

>> f = exp(x+y^2)

f =

>> pretty (simplify (subs(f,{x,y},{0,0}) + subs (diff(f,x), {x, y}, {0,0}) * (x) + subs
(diff(f,y), {x, y}, {0,0}) * (y) + 1/2 * (subs (diff(f,x,2), {x, y}, {0,0}) * (x) ^ 2 + subs
(diff(f,x,y), {x, y}, {0,0}) * (x) * (y) + subs (diff(f,y,2), {x, y}, {0,0}) * (y) ^ 2)))

 2
 x 2
 -- + x + y + 1
 2

exerCise 7-12

express, in Cartesian coordinates, the surface which is given in cylindrical coordinates by z = r2 (1 + sin(t)).

>> syms x y z r t a
>> f = r ^ 2 * (1 + sin(t))

f =

r ^ 2 * (sin(t) + 1)

>> Cartesian = simplify(subs(f, {r, t}, {sqrt(x^2+y^2), bind(y/x)}))

Cartesian =

(x ^ 2 + y ^ 2) * (y / (x *(y^2/x^2 + 1) ^(1/2)) + 1)

>> pretty (Cartesian)

 2 2 / y \
 (x + y) | --------------- + 1 |
 | / 2 \1/2 |
 | | y | |
 | x | -- + 1 | |
 | | 2 | |
 \ \ x / /

Chapter 7 ■ Derivatives. One anD several variables

276

exerCise 7-13

Find the unit tangent, the unit normal, and the unit binormal vectors of the twisted cubic: x = t, y = t2, z = t3.

We begin by restricting the variable t to the real field:

>> x = sym('x','real);

We define the symbolic vector V as follows:

>> syms t, V = [t,t^2,t^3]

V =

[t, t ^ 2, t ^ 3]

the tangent vector is calculated by:

>> tang = diff(V)

tang =

[1, 2 *, 3 * t ^ 2]

the unit tangent vector will be:

>> ut = simple (tang/sqrt(dot(tang,tang)))

tu =

[1/(1+4*t^2+9*t^4)^(1/2),2*t/(1+4*t^2+9*t^4)^(1/2),3*t^2/(1+4*t^2+9*t^4)^(1/2)]

to find the unit normal vector we calculate ((v'∧v'') ∧v')/(|v'∧v''| |v'|):

>> v1 = cross(diff(V),diff(V,2)) ;
>> nu = simple(cross(v1,tang)/(sqrt(dot(v1,v1))*sqrt(dot(tang,tang))))

nu =

[(-2*t-9*t^3)/(9*t^4+9*t^2+1)^(1/2)/(1+4*t^2+9*t^4)^(1/2),
 (1-9*t^4)/(9*t^4+9*t^2+1)^(1/2)/(1+4*t^2+9*t^4)^(1/2), (6*t^3+3*t)/(9*t^4+9*t^2+1)^(1/2)/
(1+4*t^2+9*t^4)^(1/2)]

the unit binormal vector is the vector product of the tangent vector and the unit normal vector.

>> bu = simple(cross(tu,nu))

bu =

[3*t^2/(9*t^4+9*t^2+1)^(1/2),-3*t/(9*t^4+9*t^2+1)^(1/2),1/(9*t^4+9*t^2+1)^(1/2)]

Chapter 7 ■ Derivatives. One anD several variables

277

the unit binormal vector can also be calculated via (v'∧v ") / |v'∧v" | as follows:

>> bu = simple(v1/sqrt(dot(v1,v1)))

bu =

[3*t^2/(9*t^4+9*t^2+1)^(1/2),-3*t/(9*t^4+9*t^2+1)^(1/2),1/(9*t^4+9*t^2+1)^(1/2)]

We have calculated the Frenet frame for a twisted cubic.

279

Chapter 8

Integration in One and Several
Variables. Applications

Integrals
MATLAB includes a specially designed group of commands which allow you to work with integrals in one and several
variables. The program will attempt to find primitive functions, provided they are not too algebraically complicated.
In cases where the integral cannot be calculated symbolically, MATLAB enables a group of commands that allow you
to approximate the integrals using the most common iterative methods.

The following table lists the most common MATLAB commands used for integration in one and several variables.

syms x, int(f(x), x) or int('f(x) ', 'x') Computes the indefinite integral f(x)dxò
>> syms x
>> int((tan(x))^2, x)

ans =

tan(x) - x

>> int('(tan(x))^2', 'x')

ans =

tan(x) - x

int (int ('f(x,y)', 'x'), 'y')) Computes the double integral f(x, y)dxdyòò
>> simplify(int(int('(tan(x))^2 + (tan(y))^2', 'x'), 'y'))

ans =

atan(tan(x)) * tan(y) - 2 * y * atan(tan(x)) + y * tan(x)

(continued)

Chapter 8 ■ IntegratIon In one and Several varIableS. applICatIonS

280

syms x y, int (int (f(x,y), x), y) Computes the double integral f(x, y)dxdyòò
>> syms x y
>> simplify(int(int((tan(x))^2 + (tan(y))^2, x), y))

ans =

atan(tan(x)) * tan(y) - 2 * y * atan(tan(x)) + y * tan(x)

int (int (int (… int ('f (x, y…z)',
'x'), 'y')…), 'z')

Computes the multiple integral   f(x, y, ,z) dxdy dzòòò
>> int(int(int('sin(x+y+z)', 'x'), 'y'), 'z')

ans =

cos(x + y + z)

syms x y z,.
int (int (int
(… int (f (x, y…z), x), y)…), z)

Computes the multiple integral   f(x, y, ,z) dxdy dzòòò
>> syms x y z
>> int(int(int(sin(x+y+z), x), y), z)

ans =

cos(x + y + z)

syms x a b, int(f(x), x, a, b) Computes the definite integral f(x)dx
a

b

ò
>> syms x
>> int((cos(x))^2,x,-pi,pi)

ans =

PI

int('f(x) ', 'x', 'a', 'b') Computes the definite integral f(x)dx
a

b

ò
>> int('(cos(x))^2','x',-pi, pi)

ans =

PI

int (int ('f(x,y)', 'x', 'a', 'b'), 'y', ' it, ' to)) Computes the integral f(x, y)dxdy
c

d

a

b

òò
>> int(int('(cos(x+y))^2','x',-pi,pi), 'y',-pi/2,pi/2)

ans =

Pi ^ 2

(continued)

Chapter 8 ■ IntegratIon In one and Several varIableS. applICatIonS

281

syms x y a b c d,
int (int (f(x,y), x, a, b), y, c, d)

Computes the integral f(x, y)dxdy
c

d

a

b

òò
>> syms x y
>> int(int((cos(x+y))^2,x,-pi,pi),y,-pi/2, pi/2)

ans =

pi^2

int(int(int(....int('f(x,y,…,z)',
'x', 'a', 'b'), 'y', 'c', 'd'),…), 'z', 'e', 'f')

Computes the multiple definite integral   f(x, y, ,z) dxdy dz
e

f

c

d

a

b

òòò
>> int(int(int((cos(x+y+z))^2,x,-pi,pi),y,-pi/2,pi/2),

z,-2*pi,2*pi)

ans =

4*pi^3

syms x y z a b c d e f,
int(int(int(....int(f(x,y,…,z), x, a, b),
y, c, d),…), z, e, f)

Computes the multiple definite integral   f(x, y, ,z) dxdy dz
e

f

c

d

a

b

òòò
>> syms x y z
>> int(int(int((cos(x+y+z))^2,x,-pi,pi),y,-pi/2,pi/2),z,-

2*pi,2*pi)

ans =

4*pi^3

Indefinite Integrals, Change of Variables and Integration by Parts
The integrals whose primitive functions can be calculated symbolically, using changes of variables and integration by
parts, can be directly solved using the MATLAB command int.

As a first example, we calculate the following indefinite integrals:

1

12x
 dx

x

x

1

(2 + x) 1 + x
 dx x 1 + x dx3 4

+
ò ò ò ò,

ln()
, ,

>> pretty(simple(int('1/sqrt(x^2+1)')))

 asinh(x)

>> pretty(simple(int('log(x)/x^(1/2)')))

 1/2
 2 x (log(x) - 2)

>> pretty(simple(int('1/((2+x)*(1+x)^(1/2))')))

 1/2
 2 atan((x + 1))

Chapter 8 ■ IntegratIon In one and Several varIableS. applICatIonS

282

>> pretty(simple(int('x^3*sqrt(1+x^4)')))

 3
 -
 2
 4
 (x + 1)

 6

As a second example, we calculate the following integrals by a change of variable:

arctan
,

cos

sin

x

x
dx

x

x
dx2

42

3
æ
è
ç

ö
ø
÷

+
()
()ò ò

>> pretty(simple(int(atan(x/2)/(4+x^2),x)))

 / x \2
 atan| - |
 \ 2 /

 4

>> pretty(simple(int(cos(x)^3 /sin(x)^(1/2), x)))

 1/2 2
 2 sin (x) (cos (x) + 4)

 5

As a third example, we find the following integrals using integration by parts:

x x
e x dx x - dx cos ,ò ò() +5 3 42 1 3

>> pretty(simple(int('exp(x) * cos(x) ',' x')))

 exp(x) (cos(x) + sin(x))

 2

>> pretty(simple(int('(5*x^2-3)*4^(3*x+1)','x')))

 6 x 2 2 2
 2 (90 log(2) x - 30 log(2) x - 54 log(2) + 5)

 3
 27 log(2)

Chapter 8 ■ IntegratIon In one and Several varIableS. applICatIonS

283

Integration by Reduction and Cyclic Integration
Integration by reduction is used to integrate functions involving large integer exponents. It reduces the integral to a
similar integral where the value of the exponent has been reduced. Repeating this procedure we eventually obtain the
value of the original integral.

The usual procedure is to perform integration by parts. This will lead to the sum of an integrated part and an
integral of a similar form to the original, but with a reduced exponent.

Cyclic integration is similar except we end up with the same integral that we had at the beginning, except for
constants. The resulting equation can be rearranged to give the original integral.

In both cases the problem lies in the proper choice of the function u(x) in the integration by parts.
MATLAB directly calculates the value of this type of integral in the majority of cases. In the worst case, the final

value of the integral can be found after one to three applications of integration by parts.
As an example we find the following integral:

sin ()cos () ,13 15ò x x dx

>> I = int('sin(x)^13 * cos(x)^15', 'x')

I =

cos(x) ^ 18/6006 - (cos(x) ^ 16 * sin(x) ^ 12) / 28 - (3 * cos(x) ^ 16 * sin(x) ^ 10) / 182 -
(5 * cos(x) ^ 16 * sin(x) ^ 8) / 728 - (5 * cos(x) ^ 16 * sin(x) ^ 6) / 2002 - (3 * cos(x) ^ 16 *
sin(x) ^ 4) / 4004 - (3 * cos(x) ^ 16) / 16016

Rational and Irrational Integrals. Binomial Integrals
The MATLAB command int can also be used to directly calculate the indefinite integrals of rational functions, rational
powers of polynomials, binomial expressions and their rational combinations.

As an example, we calculate the following integrals:

3 8

2 1

9 4
3 5

4 2

4 2

2
8 3

1

4
x x

x x
 dx

x

x
 dx x x dx

+ +
- +

-
+ò ò ò, , ()

The first integral is a typical example of a rational integral.

>> I1=int((3*x^4+x^2+8)/(x^4-2*x^2+1),x)

I1 =

3*x - (6*x)/(x^2 - 1) + atan(x*i)*i

>> pretty(simple(I1))

 6 x
 3 x - ------ + atan(x i) i
 2
 x - 1

Chapter 8 ■ IntegratIon In one and Several varIableS. applICatIonS

284

The second integral is a typical example of an irrational integral.

>> I2=int(sqrt(9-4*x^2)/x,x)

I2 =

3*acosh(-(3*(1/x^2)^(1/2))/2) + 2*(9/4 - x^2)^(1/2)

>> pretty(simple(I2))

 / / 1 \1/2 \
 | 3 | -- | |
 | | 2 | |
 | \ x / | 2 1/2
 3 acosh| - ----------- | + (9 - 4 x)
 \ 2 /

The third integral is a typical example of a binomial integral.

>> I3=int(x^8*(3+5*x^3)^(1/4),x)

I3 =

(5*x^3 + 3)^(1/4)*((4*x^9)/39 + (4*x^6)/585 - (32*x^3)/4875 + 128/8125)

>> pretty(simple(I3))

 5
 -
 4
 3 6 3
 4 (5 x + 3) (375 x - 200 x + 96)

 73125

Definite Integrals and Applications
The definite integral acquires its strength when it comes to applying the techniques of integration to practical
problems. Here we present some of the most common applications.

Curve Arc Length
One of the most common applications of integral calculus is to find lengths of arcs of curve.

For a planar curve with equation y = f (x), the arc length of the curve between the points with x coordinates x = a
and x = b is given by the expression:

L f x dx
a

b
= + ¢ò 1 2()

Chapter 8 ■ IntegratIon In one and Several varIableS. applICatIonS

285

For a planar curve with parametric coordinates x = x(t), y = y(t), the arc length of the curve between the points
corresponding to the parameter values t = t

0
 and t = t

1
 is given by the expression:

L x t y t dt
t

t
= ¢ + ¢ò () ()2 2

0

1

For a curve given in polar coordinates by the equation r = f(a), the arc length of the curve between the points
corresponding to the parameter values a = a

0
 and a = a

1
 is given by the expression:

L r r a dr
a

a
= + ¢ò 2 2

0

1

()

For a space curve with parametric coordinates x = x(t), y = y(t), z = z(t), the arc length of the curve between the
points corresponding to the parameter values t = t

0
 and t = t

1
 is given by the expression:

L x t y t z t dt
t

t
= ¢ + ¢ + ¢ò () () ()2 2 2

0

1

For a space curve in cylindrical coordinates given by the equations x = r·cos, y = r·sin (a), z = z, the arc length of
the curve between the points corresponding to parameter values a = a

0
 and a = a

1
 is given by the expression:

L r r z dr
a

a
= + ¢ + ¢ò 2 2 2

0

1

For a space curve in spherical coordinates given by the equations x = r·sin (a)·cos (b), y = r·sin (a)·sin (b),
z = r·cos(a), the arc length of the curve between the points corresponding to the parameter values a = a

0
 and a = a

1
 is

given by the expression:

L dr r da r a db dr
a

a
= + +ò 2 2 2 2 2 2 2

0

1

sin ()

As a first example we consider a power cord that hangs between two towers which are 80 meters apart. The cable
adopts the catenary curve whose equation is:

y
x

= 100
100

cosh

We calculate the arc length of the cable between the two towers.
We begin by graphing the catenary in the interval [– 40,40].

>> syms x
>> ezplot(100*cosh(x/100), [-40,40])

Chapter 8 ■ IntegratIon In one and Several varIableS. applICatIonS

286

The length of the catenary is calculated as follows:

>> f=100*cosh(x/100)

f =

100*cosh(x/100)

>> pretty(simple(int((1+diff(f,x)^2)^(1/2),x,-40,40)))

 / 2 \
 200 sinh | - |
 \ 5 /

If we want to approximate the result we do the following:

>> vpa(int((1+diff(f,x)^2)^(1/2),x,-40,40))

ans =

82.15046516056310170804200276894

As a second example, we find the length of the cardoid defined for values from a = 0 to a = 2pi by the polar
equation r = 3-3cos(a).

We graph the curve to get an idea of the length we are trying to find.

>> ezpolar('3-3*cos(a)',[0,2*pi])

Chapter 8 ■ IntegratIon In one and Several varIableS. applICatIonS

287

Now we calculate the requested length.

>> r='3-3*cos(a)';
>> diff(r,'a')

ans =

3*sin(a)

>> R=simple(int('((3-3*cos(a))^2+(3*sin(a))^2)^(1/2)','a','0','2*pi'))

R =

24

The Area between Two Curves
Another common application of integral calculus is the calculation of the area bounded between curves.

The area between a curve with equation y = f (x) and the x-axis is given, in general, by the integral:

S f x dx
a

b
= ò ()

where x = a and x = b are the abscissas of the end points of the curve.
If the curve is given in parametric coordinates by x = x(t), y = y(t), then the area is given by the integral:

S y t x t dt
a

b
= ¢ò () ()

for the parameter values t = a and t = b corresponding to the end points of the curve.
If the curve is given in polar coordinates by r = f (a), then the area is given by the integral:

S f a da
a

a
= ò

1

2
2

0

1

()

for the parameter values a = a
0
 and a = a

1
 corresponding to the end points of the curve.

Chapter 8 ■ IntegratIon In one and Several varIableS. applICatIonS

288

To calculate the area between two curves with equations y = f(x) and y = g(x), we use the integral:

S f x g x dx
a

b
= -ò () ()

where x = a and x = b are the abscissas of the end points of the two curves.
When calculating these areas it is very important to take into account the sign of the functions involved since the

integral of a negative portion of a curve will be negative. One must divide the region of integration so that positive and
negative values are not computed simultaneously. For the negative parts one takes the modulus.

As a first example, we calculate the area bounded between the two curves: f x x() = -2 2 and g x x() =
We begin by plotting the two curves.

>> fplot('[2-x^2,x]',[-2*pi,2*pi])

We need to find the points of intersection of the two curves. They are calculated as follows:

>> solve('2-x^2=x')

ans =

 -2
 1

We are now able to calculate the requested area.

>> int('2-x^2-x','x',-2,1)

ans =

9/2

Chapter 8 ■ IntegratIon In one and Several varIableS. applICatIonS

289

As a second example, we calculate the length of, and the area enclosed by, the parameterized curves:

x t
t t

y t
t t

()
cos() cos()

()
sin() cos()

=
-[]

=
+[]2 2

4

2 2

4

We begin by producing a graphical representation of the enclosed area.

>> x=(0:.1:2*pi);
>> t=(0:.1:2*pi);
>> x=cos(t).*(2-cos(2*t))./4;
>> y=sin(t).*(2+cos(2*t))./4;
>> plot(x,y)

This is the figure generated as the parameter varies between 0 and 2p. We must calculate its length and the area
it encloses. To avoid cancelling positive areas with negative areas, we will only work with the first half quadrant and
multiply the result by 8.

For the length we have:

>> A=simple(diff('cos(t)*(2-cos(2*t))/4'))

A =

-(3*sin(t)*(2*sin(t)^2 - 1))/4

>> B=simple(diff('sin(t)*(2+cos(2*t))/4'))

B =

(3*cos(t)^3)/2 - (3*cos(t))/4

>> L=8*int('sqrt((-(3*sin(t)*(2*sin(t)^2 - 1))/4)^2+((3*cos(t)^3)/2 - (3*cos(t))/4)^2)','t',0,pi/4)

L =

3

Chapter 8 ■ IntegratIon In one and Several varIableS. applICatIonS

290

For the area we have:

>> S=8*simple(int('(sin(t)*(2+cos(2*t))/4)*(-3/8*sin(t)+3/8*sin(3*t))', 't',0,pi/4))

S =

-(3*pi - 16)/32

As a third example, we calculate the length and the area enclosed by the curve given in polar coordinates by:

r a= cos()2

We begin by graphing the curve to get an idea of the problem.

>> a=0:.1:2*pi;
>> r=sqrt(cos(2*a));
>> polar(a,r)

We observe that the curve repeats its structure four times as a varies between 0 and p/4. We calculate the area S
enclosed by it in the following way:

>> clear all
>> syms a
>> S=4*(1/2)*int((sqrt(cos(2*a)))^2,a,0,pi/4)

S =

1

Chapter 8 ■ IntegratIon In one and Several varIableS. applICatIonS

291

Surfaces of Revolution
The surface area generated by rotating the curve with equation y = f(x) around the x-axis is given by the integral:

S f x f x dx
a

b
= + ¢ò2 1 2p () ()

in Cartesian coordinates, where x=a and x=b are the x-coordinates of the end points of the rotating curve, or

S y t x t y t dt
t

t
= ¢ + ¢ò2

0

1 2 2p () () ()

in parametric coordinates, where t
0
 and t

1
 are the values of the parameter corresponding to the end points of the curve.

The area generated by rotating the curve with equation x = f (y) around the y-axis is given by the integral:

S f y f y dy
a

b
= + ¢ò2 1 2p () ()

where y = a and y = b are the y-coordinates of the end points of the rotating curve.
As a first example, we calculate the surface area generated by rotating the cubic curve 12x– 9x2+ 2x3 around the

x-axis, between x = 0 and x = 5/2.

>> I=2*pi*vpa(int('(2*x^3-9*x^2+12*x)*sqrt(1+(6*x^2-18*x+12)^2)','x',0,5/2))

Warning: Explicit integral could not be found.

I =

50.366979807381457286723333012298*pi

As a second example, we calculate the surface area generated by rotating the parametric curve given by
x (t) = t - sin(t), y (t) = 1-cos(t) around the x-axis, between t = 0 and t = 2p.

>> clear all
>> syms t
>> x=t-sin(t)

x =

t - sin(t)

>> y= 1-cos(t)

y =

1 - cos(t)

>> V=2*pi*int(y*(sqrt(diff(x,t)^2+diff(y,t)^2)),t,0,2*pi)

V =

(64*pi)/3

Chapter 8 ■ IntegratIon In one and Several varIableS. applICatIonS

292

The approximate area is found as follows:

>> V=vpa(2*pi*int(y*(sqrt(diff(x,t)^2+diff(y,t)^2)),t,0,2*pi))

V =

67.020643276582255753869725509963

Volumes of Revolution
The volume generated by rotating the curve with equation y = f (x) around the x-axis is given by the integral:

V f x dx
a

b
= òp ()2

where x = a and x = b are the x-coordinates of the end points of the rotating curve.
The volume generated by rotating the curve with equation x = f (y) around the y-axis is given by the integral:

V f y dy
a

b
= òp ()2

where y = a and y = b are the y-coordinates of the end points of the rotating curve.
If one cuts a volume by planes parallel to one of the three coordinate planes (for example, the plane z = 0) and if

the equation S(z) of the curve given by the cross section is given in terms of the distance of the plane from the origin
(in this case, z) then the volume is given by:

V S z dz
z

z
= ò ()

1

2

As a first example, we calculate the volumes generated by rotating the ellipse

x y2 2

4 9
1+ =

around the x-axis and around the y-axis.
The given volumes are found by calculating the following integrals:

>> V1=int('pi*9*(1-x^2/4)','x',-2,2)

V1 =

24*pi

>> V2=int('pi*4*(1-y^2/9)','y',-3,3)

V2 =

16*pi

Chapter 8 ■ IntegratIon In one and Several varIableS. applICatIonS

293

As a second example, we calculate the volume generated by rotating the curve given in polar coordinates by
r = 1 + cos(a) around the x-axis.

The curve is given in polar coordinates, but there is no difficulty in calculating the values of x(a) and y(a) needed
to implement the volume formula in Cartesian coordinates. We have:

x (a) = r (a) cos (a) = (1 + cos (a)) cos (a)

y (a) = r (a) sin (a) = (1 + cos (a)) sin (a)

The requested volume is then calculated in the following way:

>> x='(1+cos(a))*cos(a)';

>> y='(1+cos(a))*sin(a)';

>> A=simple(diff(x))

A =

- sin(2*a) - sin(a)

>> V=pi*abs(int('((1+cos(a))*sin(a))^2*(-sin(2*a)-sin(a))','a',0,pi))

V =

(8*pi)/3

Curvilinear Integrals
Let F be a continuous vector field in R3 and c: [a, b] → R3 be a continuous differentiable curve in R3. We define the line
integral of F along the curve c as follows:

F ds F c t c t dt
c a

b
• () • ()ò ò= [] ¢

As a first example, we consider the curve c t t t t() sin(),cos(),= [] with 0 < t < 2p, and the vector field
F x y z xi yj zk(, ,) = + + . We calculate the curvilinear integral:

F ds
c

ò

>> syms t
>> pretty(int(dot([sin(t),cos(t),t],[cos(t),-sin(t),1]),t,0,2*pi))

 2
 2 pi

Chapter 8 ■ IntegratIon In one and Several varIableS. applICatIonS

294

As a second example, we calculate the integral:

sin() cos()z dx z dy xy dz
c
ò + - 3

where the curve c is given by the parametric equations:

x a y a z a a= = = < <cos (), sin (), ,3 3 0
7

2

p

>> syms a
>> [diff(cos(a)^3),diff(sin(a)^3),diff(a)]

ans =

[-3*cos(a)^2*sin(a), 3*cos(a)*sin(a)^2, 1]

>> int((dot([sin(a),cos(a),-sin(a)^3*cos(a)^3],[-3*cos(a)^2*sin(a), 3*sin(a)^2*cos(a),1]))^(1/3),
a,0,7*pi/2)

ans =

2*(-1)^(1/3) + 3/2

>> pretty(int((dot([sin(a), cos(a) -sin(a)^3 * cos(a)^3], [- 3 * cos(a)^2 * sin(a), 3 * sin(a)^2 *
cos(a), 1]))^(1/3), 0, 7 * pi/2))

 1
 -
 3 3
 2 (-1) + -
 2

>> vpa(int((dot([sin(a), cos(a) -sin(a)^3 * cos(a)^3], [-3 * cos(a)^2 * sin(a), 3 * sin(a)^2 *
cos(a), 1])) ^ (1/3), 0, 7 * pi/2))

ans =

1.7320508075688772935274463415059*i + 2.5

As a third example, we calculate the integral:

x dy y dx
c

3 3ò -

where c is the circle x2 + y2 = a2.

Chapter 8 ■ IntegratIon In one and Several varIableS. applICatIonS

295

>> pretty(int('a*cos(t)^3*diff(a*sin(t),t)-a*sin(t)^3 *diff(a*cos(t),t)','t',0,2*pi))

 2
 3 pi a

 2

Improper Integrals
MATLAB works with improper integrals in the same way as it works with any other type of definite integral. We will
not discuss theoretical issues concerning the convergence of improper integrals here, but within the class of improper
integrals we will distinguish two types:

 1. Integrals with infinite limits: the domain of definition of the integrand is a half-line [(a,∞)
or (-∞, a)] or the entire line (-∞,∞).

 2. Integrals of discontinuous functions: the given function is continuous in an interval [a, b]
except at finitely many so-called isolated singularities.

Complicated combinations of these two cases may also occur. One can also generalize this to the more general
setting of Stieltjes integrals, but to discuss this would require a course in mathematical analysis.

As an example, we calculate the values of the following integrals:

dx

x

e x

x
dx

b x

¢ò ò
-¥

0 0

sin()

>> syms x a b
>> pretty(limit(int(1/sqrt(x),x,a,b),a,0))

 1/2
 2 b

>> pretty(simple(int(exp(-x)*sin(x)/x,x,0,inf)))

 PI
 --
 4

Parameter Dependent Integrals
Consider the function of the variable y : f x y dx F y

a

b
, ()() =ò defined in the range c £ y £ e, where the function f(x, y)

is continuous on the rectangle [a, b] × [c, e] and the partial derivative of f with respect to y is continuous in the same

rectangle, then for all y in the range c £ y £ e:

d

dy
f x y dx

d

dy
f x y dx

a

b

a

b
(,) (,)ò òé

ëê
ù
ûú
=

Chapter 8 ■ IntegratIon In one and Several varIableS. applICatIonS

296

This result is very important, because it allows us to differentiate an integral by differentiating under the
integral sign.

Integrals dependent on a parameter can also be improper, and in addition the limits of integration may also
depend on a parameter.

If the limits of integration depend on a parameter, we have the following:

d

dy
f x y dx

d f x y

dy
dx b y f b y

a y

b y

a y

b y
(,)

(,)
() (

()

()

()

()

ò òé
ëê

ù
ûú
= + ¢

)), () (),y a y f a y y[]- ¢ []

provided that a(y) and b(y) are defined in the interval [c, e] and have continuous derivatives a '(y) and b' (y), and the
curves a(y) and b(y) are contained in the box [a, b] × [c, e].

Furthermore, if the function
a

b

f x y dx F yò () =, () is defined on the interval [c, e] and f (x, y) is continuous on the

rectangle [a, b] × [c, d], then the following holds:

f x y dx dy f x y dy dx
a

b

c

e

c

e

a

b
(,) (,)=òò òò

i.e., integration under the integral sign is allowed and the order of integration over the variables is irrelevant.
As an example, we solve by differentiation with respect to the parameter a > 0 the following integrals:

arctan()
,

ax

x x
dx

e

x
dx

x

1

1
2

0
2

0

2

+()
-¥ -¥

ò ò

For the first integral, we will start by integrating the derivative of the integrand with respect to the parameter a,
which will be easier to integrate. Once this integral is found, we integrate with respect to a to find the original integral.

>> a = sym('a', 'positive')

a =

a

>> pretty(simple(sym((int(diff(atan(a*x)/(x*(1+x^2)),a),x,0,inf)))))

 pi

 2 a + 2

Now, we integrate this function with respect to the variable a:

>> pretty(simple(sym(int(pi/(2*a+2),a))))

 pi log(a + 1)

 2

Chapter 8 ■ IntegratIon In one and Several varIableS. applICatIonS

297

To solve the second integral, we define:

f a
e

x
dx

ax

() =
- -¥ó

õ

ô
ô

1
2

2
0

As in the first integral, we differentiate the integrand with respect to the parameter a, find the integral, and then
integrate with respect to a. The desired integral is then given by setting a = 1.

>> Ia=simple(sym(int(diff((1-exp(-a*x^2))/x^2,a),x,0,inf)))

Ia =

(pi/a)^(1/2)/2

>> s=simple(sym(int(Ia,a)))

s =

(pi*a)^(1/2)

By putting a = 1, we have (1) = I(a) = p
.

Approximate Numerical Integration
MATLAB contains functions for performing numerical integration using Simpson’s method and Lobatto’s method.
The syntax of these functions is as follows:

q = quad(f,a,b) Finds the integral of f between a and b by Simpson’s method with a
tolerance of 10-6

>> F = @(x)1./(x.^3-2*x-5);
Q = quad(F,0,2)
Q =
-0.4605

q = quad(f,a,b,tol) Finds the integral of f between a and b by Simpson’s method with a
tolerance given by tol

>> Q = quad(F,0,2,1.0e-20)
Q =
-0.4607

q = quad(f,a,b,tol,trace) Finds the integral of f between a and b by Simpson’s method with
tolerance tol, presenting a trace of the iteration

q = quad(f,a,b,tol,trace,p1,p2,…) Includes extra arguments p1, p2, … for the function f, f (x, p1, p2, …)

(continued)

Chapter 8 ■ IntegratIon In one and Several varIableS. applICatIonS

298

q = quadl(f,a,b) Finds the integral of f between a and b by Lobatto’s method with a
tolerance of 10-6

>> clear all
>> syms x
>> f=inline(1/sqrt(x^3+x^2+1))
f =
Inline function:
f(x) = 1.0./sqrt(x.^2+x.^3+1.0)
>> Q = quadl(f,0,2)
Q =
1.2326

q = quadl(f,a,b,tol) Finds the integral of f between a and b by Lobatto’s method with
tolerance tol

>> Q = quadl(f,0,2,1.0e-25)
Q =
1.2344

q = quadl(f,a,b,tol,trace) Finds the integral of f between a and b by Lobatto’s method with
tolerance tol, presenting a trace of the iteration

q = quad(f,a,b,tol,trace,p1,p2,…) Includes extra arguments p1, p2, … for the function f, f (x, p1, p2, …)

[q,fcnt] = quadl(f,a,b,…) Returns the number of function evaluations

q = dblquad(f,xmin,xmax, ymin, ymax) Finds the double integral of f (x, y) over the specified domain with a
tolerance of 10-6

>> clear all
>> syms xy
>> z = inline(y*sin(x)+x*cos(y))
z =
Inline function:
z(x,y) = x.*cos(y)+y.*sin(x)
>> D=dblquad(z,-1,1,-1,1)
D =
1.0637e-016

q = dblquad(f,xmin,xmax,
ymin, ymax, tol)

Finds the double integral of f (x, y) over the specified domain with
tolerance tol

q = dblquad(f,xmin,xmax,
ymin, ymax, tol, @ quadl)

Finds the double integral of f (x, y) over the specified domain with
tolerance tol using the quadl method

q = dblquad(f,xmin,xmax, ymin,
ymax, tol, method, p1, p2, …)

Includes extra arguments p1, p2, … for the function f, f (x, p1, p2, …)

Chapter 8 ■ IntegratIon In one and Several varIableS. applICatIonS

299

As a first example, we calculate the following integral using Simpson’s method:

1

2 53
0

2

x x
dx

- -
ó

õ
ô
ô

>> F = inline('1./(x.^3-2*x-5)');
>> Q = quad(F,0,2)
Q =
-0.4605

Here we see that the value of the integral remains unchanged even we increase the tolerance to 10-18.

>> Q = quad(F,0,2,1.0e-18)
Q =
-0.4605

Next we evaluate the integral using Lobatto’s method.

>> Q = quadl(F,0,2)
Q =
-0.4605

Now we evaluate the double integral

y x y dxdysin() cos()
0

2 p

p

p

òò +

>> Q = dblquad(inline('y*sin(x)+x*cos(y)'), pi, 2*pi, 0, pi)

Q =
-9.8696

Chapter 8 ■ IntegratIon In one and Several varIableS. applICatIonS

300

Special Integrals
MATLAB provides in its basic module a comprehensive collection of special functions which help to facilitate the
computation of integrals. The following table sets out the most important examples.

gamma(a)

gammainc(x,a)

gammaln(a)

Gamma function: G()a e t dtt a= - -¥

ò 1

0

Incomplete Gamma function G
G

(,)
()

x a
a

e t dtt ax
= - -ò

1 1

0

Logarithm of the gamma function Log G()a

beta(z,w)

betainc(x,z,w)

betaln (x,z,w)

Beta function b (,) ()
() ()

()
z w t t dt

z w

z w
w z= - =

+
- -ò 1 1 1

0

1 G G
G

Incomplete Beta function b (,) ()
() ()

()
z w t t dt

z w

z w
w z= - =

+
- -ò 1 1 1

0

1 G G
G

Logarithm of the Beta function Log b(z, w)

[SN,CN,DN] = ellipj(u,m) The Jacobi elliptic functions u
m

d=
-

ò
1

1 20 sin ()F
F

F

SN (u) = sin (f),
CN (u) = cos (f),

DN (u) = 1 2-m sin ()F

k = ellipke(m)

[k,e] = ellipke(m)

Complete elliptic functions of the 1st (k) and 2nd (e) kind

k m
t

mt
dt

m
d F m()

sin ()
(/ ,)

/
=

-
-

=
-

=ò ò
1

1

1

1
2

2

20

1

20

2

q
q p

p

e m
mt

t
dt m d E m() sin () (/ ,)

/
=

-
-

= - =ò ò
1

1
1 2

2

20

1 2

0

2
q q p

p

erf (X) = error function

erfc(X) = complementary error function

erfcx(X) = complementary scaled error
function

erfinv (X) = error inverse

F = erf x e dt F xtx

N() ()(, /)= =-ò
2

2
2

0 0 1 2p
 (normal distribution)

erfc x e dt erf xt

x
() ()= = --¥

ò
2

1
2

p

erfcx x e erfc x
x

x() ()= @
2 1 1

p

x erfinv y y erf x= Û =() ()

expint (x) Exponential integral

As a first example, we calculate the normal distribution (0,1/2) for values between 0 and 1 spaced ¼ apart.

>> erf(0:1/4:1)

ans =
0 0.28 0.52 0.71 0.84

http://d/matlabR12/help/techdoc/ref/expint.html

Chapter 8 ■ IntegratIon In one and Several varIableS. applICatIonS

301

Next we calculate the values of the Gamma function at the first four even numbers.

>> gamma([2 4 6 8])

ans =
1.00 6.00 120.00 5040.00

Bearing in mind the above result we see that G (a) = (a-1)! for the first four even numbers.

>> [factorial(1),factorial(3),factorial(5),factorial(7)]

ans =
1.00 6.00 120.00 5040.00

Then, for z = 3 and w = 5, we find that:

beta(z,w) = exp(gammaln(z)+gammaln(w)-gammaln(z+w))

betaln(z,w) = gammaln(z)+gammaln(w)-gammaln(z+w)

>> beta(3,5)

ans =
0.01

>> exp(gammaln(3)+gammaln(5)-gammaln(3+5))

ans =
0.01

>> betaln(3,5)

ans =
-4.65

>> gammaln(3)+gammaln(5)-gammaln(3+5)

ans =
-4.65

Also, for z = 3 and w = 5 we check that:

beta(z,w)= G(z)G(w)/ G(z+w)

>> gamma(3)*gamma(5)/gamma(3+5)

ans =
0.01

>> beta(3,5)

ans =
0.01

Chapter 8 ■ IntegratIon In one and Several varIableS. applICatIonS

302

As another example, suppose we want to calculate the length of a full period of the sinusoid y = 3sin(2x).
The length of this curve is given by the formula:

4 1 1 36 2 2 37 36
2

0

1

4
2

0

2
-

¶
¶

æ
è
ç

ö
ø
÷ = + × = - ×

ó

õ

ô
ô
ô òx

y x dt x dx() ()
/

p
p

cos siin2

0

2
()

/
t dt

p

ò

In the last step we have made the change of variable t = 2x, in addition to using cos2(t) = 1-sin2(t). The integral can
now be calculated by:

>> [K,E]=ellipke(36/37)

K =
3.20677433446297
E =
1.03666851510702

>> 2*sqrt(37)*E

ans =
12.61161680006573

Definite Integrals and Applications. Several Variables
The applications of integrals of functions of several variables occupy a very important place in the integral calculus
and in mathematical analysis in general. In the following sections we will see how MATLAB can be used to calculate
areas of planar regions, surface areas, and volumes, via multiple integration.

Planar Areas and Double Integration
If we consider a planar region S, we can find its area through the use of double integrals. If the boundary of the region
S is determined by curves whose equations are given in Cartesian coordinates, its area A is found by means of the
formula:

A dx dy
S

= òò

If, for example, S is determined by a < x < b and f(x)< y <g(x) then the area will be given by:

A dx dy
f x

g x

a

b
= òò ()

()

If S is determined by h(a) < x < k(b) and c < y < d, the area will be given by:

A dy dx
h a

h b

c

d
= òò ()

()

Chapter 8 ■ IntegratIon In one and Several varIableS. applICatIonS

303

If the region S is determined by curves whose equations are given in polar coordinates with radius vector r and
angle a, its area A is given by the formula:

A r da dr
S

= òò

If, for example, S is determined by s < a <t and f (a) < r < g (a), then the area is given by:

A da r dr
f a

g a

s

t
= òò ()

()

As a first example, we calculate the area of the region bounded by the x-axis, the parabola y2 = 4x and the straight
line x + y = 3.

It is convenient to begin with a graphical representation.
We see that the region can be limited to y between 0 and 2 (0 < y < 2) and for x between the curves x = y^ 2/4 and

x = 3 – y. Then, we can calculate the requested area as follows:

>> A=int(int('1','x','y^2/4','3-y'),'y',0,2)

A =

10/3

As a second example, we calculate the area outside the circle with polar equation r = 2, and inside the cardioid
with polar equation r = 2 (1 + cos(a)).

First of all, we graph the area of integration.

>> a=0:0.1:2*pi;
>> r=2*(1+cos(a));
>> polar(a,r)
>> hold on;
>> r=2*ones(size(a));
>> polar(a,r)

Chapter 8 ■ IntegratIon In one and Several varIableS. applICatIonS

304

Looking at the graph, we see that, by symmetry, we can calculate half of the area by varying a between 0 and Pi/2
(0 < a Pi/2) and r between the curves r = 2 and r = 2 (1 + cos(a)):

>> pretty(int(int('r','r',2,'2*(1+cos(a))'),'a',0,pi/2))

 pi
 -- + 4
 2

The requested area is therefore 2 (p/2 + 4) = p + 8 square units.

Calculation of Surface Area by Double Integration
The area S of a curved surface expressed as z = f (x, y), which is defined over a region R in the xy-plane, is:

S
z

x

z

y
dx dy

R
= + æ

è
ç

ö
ø
÷ +

æ

è
ç

ö

ø
÷òò 1

2 2
¶
¶

¶
¶

The area S of a curved surface expressed as x = f (y, z), which is defined over a region R in the yz-plane, is:

S
x

y

x

z
dy dz

R
= +

æ

è
ç

ö

ø
÷ + æ

è
ç

ö
ø
÷òò 1

2 2¶
¶

¶
¶

The area S of a curved surface expressed as y = f (x, z), which is defined over a region R in the xz-plane, is:

S
y

x

y

z
dx dz

R
= + æ

è
ç

ö
ø
÷ + æ

è
ç

ö
ø
÷òò 1

2 2¶
¶

¶
¶

Chapter 8 ■ IntegratIon In one and Several varIableS. applICatIonS

305

As an example, we calculate the area of the surface of the cone with equation x2 + y2 = z2, limited above the
xy-plane and cut by the cylinder x2 + y2 = b y.

The projection of the surface onto the xy-plane is the region bounded by the circle with equation x2 + y2 = by, so,
with MATLAB the calculation is as follows:

>> clear all
>> syms x y z a b
>> z = sqrt((x^2+y^2)/a)

z =
 ((x^2 + y^2)/a)^(1/2)

>> pretty(int(int((1 + diff(z,x)^2 + diff(z,y)^2)^(1/2), x,-(b*y-y^2)^(1/2), (b * y - y^2)^(1/2)),
y, 0, b))

 2 / 1 \1/2
 pi b | - + 1 |
 \ a /

 4

Calculation of Volumes by Double Integration
The volume V of a cylindroid with upper boundary the surface with equation z = f(x,y), lower boundary the xy-plane
and laterally bounded by the cylindrical surface meeting the xy-plane orthogonally at the border of a region R, is:

V f x y dx dy z dx dy
RR

= = òòòò (,)

The volume V of a cylindroid with upper boundary the surface with equation x = f(y,z), lower boundary the
yz-plane and laterally bounded by the cylindrical surface meeting the yz-plane at the border of a region R, is:

V f y z dy dz x dy dz
RR

= = òòòò (,)

The volume V of a cylindroid with upper boundary the surface with equation y = f(x,z), lower boundary the
xz-plane and laterally bounded by the cylindrical surface meeting the xz-plane at the border of a region R, is:

V f x z dx dz y dx dz
RR

= = òòòò (,)

As a first example, we calculate the volume in the first octant bounded between the xy-plane, the plane
z = x + y + 2 and the cylinder x2 + y2 = 16.

The requested volume is found by means of the integral:

>> pretty(simple(int(int('x+y+2', 'y', 0, 'sqrt(16-x^2)'), 'x', 0, 4)))

 128
 8 pi + ---
 3

Chapter 8 ■ IntegratIon In one and Several varIableS. applICatIonS

306

As a second example, we calculate the volume bounded by the paraboloid x2 + 4y2 = z and by the cylinders with
equations y2 = x and x2 = y.

The volume is calculated using the following integral:

>> pretty(int(int('x^2 + 4 * y^2', 'y','x^2', 'sqrt(x)'), 'x', 0, 1))

 3
 -
 7

Calculation of Volumes and Triple Integrals
The volume of a three-dimensional body R, whose equations are expressed in Cartesian coordinates, is given by the
triple integral:

dx dy dz
Ròòò

The volume of a three-dimensional body R, whose equations are expressed in cylindrical coordinates, is given by
the triple integral:

r dz dr da
Ròòò

The volume of a three-dimensional body R, whose equations are expressed in spherical coordinates, is given by
the triple integral:

r b drdbda
R

2 sin()òòò

As a first example, we calculate the volume bounded by the paraboloid ax2 + y2 = z, and the cylinder with
equation z = a2 – y2 for a > 0.

The volume will be four times the following integral:

>> a = sym('a', 'positive')

a =

a

>> pretty(simple(vpa(int(int(int('1','z','a*x^2+y^2','a^2-y^2'),'y',0,
'sqrt((a^2-a*x^2)/2)'),'x',0,'sqrt(a)'))))

 7
 -
 2
 0.27768018363489789043849256187879 a

Chapter 8 ■ IntegratIon In one and Several varIableS. applICatIonS

307

or, what is the same:

>> V=4*(simple(int(int(int('1','z','a*x^2+y^2','a^2-y^2'),'y',0, 'sqrt((a^2-
a*x^2)/2)'),'x',0,'sqrt(a)')))

V =

(pi*(2*a^7)^(1/2))/4

As a second example, we calculate the volume bounded by the cylinders with equations z = x2 and 4 – y2 = z.
If we solve the system formed by the equations of the two surfaces we get an idea of the boundary points:

>> [x,y]=solve('x^2+0*y','4-y^2+0*x')

x =

 0
 0

y =

 2
 -2

Now we graphically represent the volume we need to calculate.

>> ezsurf('4-y^2+0*x',[-2,2],[-2,2])
>> hold on;
>> ezsurf('x^2+0*y',[-2,2],[-2,2])

Chapter 8 ■ IntegratIon In one and Several varIableS. applICatIonS

308

Finally, we calculate the volume as follows.

>> V=4*int(int(int('1','z','x^2','4-y^2'),'y',0,'sqrt(4-x^2)'), 'x',0,2)

V =

8 * pi

Green’s Theorem
Let C be a closed piecewise smooth simple planar curve and R the region consisting of C and its interior. If f and g are
continuous functions with continuous first partial derivatives in an open region D containing R, then Green’s theorem
tells us that:

m x y dx n x y dy
n

x

m

y
dA

C R
(,) (,)ò òò+ = æ

è
ç -

ö

ø
÷

¶
¶

¶
¶

As an example, using Green’s theorem, we calculate the integral:

x e dx y x dyy

c
+() + +()ò 2 cos()

where C is the boundary of the region enclosed by the parabolas y = x2 and x = y2.
The two parabolas intersect at the points (0,0) and (1,1). This gives us the limits of integration.

>> clear all
>> fplot('[x^2,sqrt(x)]',[0,1.2])

We can now calculate the integral:

>> syms x y
>> m = x + exp(sqrt(y))

m =

x + exp(y^(1/2))

>> n = 2 * y + cos(x)

Chapter 8 ■ IntegratIon In one and Several varIableS. applICatIonS

309

n =

2*y + cos(x)

>> I = vpa(int(int(diff(n,x)-diff(m,y), y, x^2, sqrt(x)), x, 0, 1))

I =

-0.67644120041679251512532326651204

The Divergence Theorem
Suppose Q is a domain with the property that each straight line passing through a point inside the domain cuts its
border at exactly two points. In addition, suppose the boundary S of the domain Q is a closed piecewise smooth
oriented surface with outward pointing unit normal n on the boundary. If f is a vector field that has continuous partial
derivatives on Q, then the Divergence Theorem tells us that:

f n dS Div f dV
QS

• ()= òòòòò

The left-hand side of the former equality is called the outflow of the vector field f through the surface S.
As an example, we use the divergence theorem to find the outflow of the vector field f = (xy + x 2y z, yz + xy2 z,

xz + xyz2) through the surface of the cube defined in the first octant by the planes x = 2, y = 2 and z = 2.

>> clear all
>> syms x y z
>> M = x * y + x ^ 2 * z * y

M =
y * z * x ^ 2 + y * x

>> N = y * z + x * y ^ 2 * z

N =
 x * z * y ^ 2 + z * y

>> P = x * z + x * y * z ^ 2

P =
x * y * z ^ 2 + x * z

>> simple Div = (diff(M,x) + diff(N,y) + diff(P,z))

Div =

x + y + z + 6 * x * y * z

>> I = int(int(int(Div,x,0,2), y, 0, 2), z, 0, 2)

I =

72

Chapter 8 ■ IntegratIon In one and Several varIableS. applICatIonS

310

Stokes’ Theorem
Suppose S is an oriented surface of finite area defined by a function f(x,y), with boundary C having unit normal n.
If F is a continuous vector field defined on S, such that the function components of F have continuous partial
derivatives at each non-boundary point of S, then Stokes’ Theorem tells us:

F dr rot F n ds
SC

• •= ()òòò

As an example, we use Stokes’ theorem to evaluate the line integral:

- + -ò y dx x dy z dz
C

3 3 3

where C is the intersection of the cylinder x2 + y2 = 1 and the plane x + y + z = 1, and the orientation of C is
counterclockwise in the xy-plane.

The curve C bounds the surface S defined by z = 1–x–y = f(x,y) for (x, y) in the domain D = {(x,y) / x2 + y2 = 1}.
We put F= – y 3 i + x 3 j – z 3 k.
Now we calculate rot(F) and find the above integral over the surface S.

>> F = [- y ^ 3, x ^ 3, z ^ 3]

F =

[- y ^ 3, x ^ 3, z ^ 3]

>> clear all
>> syms x y z
>> M = - y ^ 3

M =

- y ^ 3

>> N = x ^ 3

N =

x ^ 3

>> P = z ^ 3

P =

z ^ 3

Chapter 8 ■ IntegratIon In one and Several varIableS. applICatIonS

311

>> rotF=simple([diff(P,y)-diff(N,z),diff(P,x)-diff(M,z),diff(N,x)-diff(M,y)])

rotF =

[0, 0, 3 * x ^ 2 + 3 * y ^ 2]

Therefore, we have to calculate the integral ∫
D

 (3 x 2+ 3 y2) dx dy. Changing to polar coordinates, this integral is
calculated as:

>> pretty (simple (int (int('3*r^3', 'a',0,2*pi), 'r', 0, 1)))

 3 pi

 2

exerCise 8-1

Calculate the following integrals:

sec()csc() , cos() , cos()x x dx x x dx a x dxò òò 2

>> pretty(simple(int('sec(x)*csc(x)')))

 log(tan(x))

>> pretty(simple(int('x*cos(x)')))

 cos(x) + x sin(x)

>> pretty(simple(int('acos(2*x)')))

 2 1/2
 (1 - 4 x)
 x acos(2 x) - -------------
 2

Chapter 8 ■ IntegratIon In one and Several varIableS. applICatIonS

312

exerCise 8-2

Find the following integrals:

9 4
3 5

2
8 3

1

4
-

+()
ó

õ

ô
ô ò

x

x
dx x x dx,

>> pretty(simple(int('(9-4*x^2)^(1/2)/x')))

 / / 1 \1/2 \
 | 3 | -- | |
 | | 2 | |
 | \ x / | 2 1/2
 3 acosh| - ----------- | + (9 - 4 x)
 \ 2 /

>> pretty(simple(int('x^8*(3+5*x^3)^(1/4)')))

 5
 -
 4
 3 6 3
 4 (5 x + 3) (375 x - 200 x + 96)

 73125

 exerCise 8-3

Find the following integrals: a = x e dxx3

0

-¥

ò and b = x e dxx2

0

3-¥

ò
We have a = G (4).

Making the change of variable x3 = t we see that b =
1

30
e dtt-¥

ò = G (1) / 3.

therefore, for the calculation of a and b we will use the following Matlab syntax:

>> a = gamma(4)

a =

 6

>> b = (1/3) * gamma(1)

b =

 0.3333

Chapter 8 ■ IntegratIon In one and Several varIableS. applICatIonS

313

 exerCise 8-4

Solve the following integrals:

x

e
dx

x

e
dx

x x

3

0

3

0

5¥ó

õ
ô
ô

ó

õ
ô
ô

,

as G()p x e dxp x= - -¥

ò 1

0
, the first integral is solved as:

>> gamma (4)

ans =

 6

as G
G

(,)
()

(,)x p
p

t e dt gammainc x pp tx
= =- -ò

1 1

0
, the second integral is solved as follows:

>> gamma(4) * gammainc(5.4)

ans =

 4.4098

 exerCise 8-5

Solve the following integrals:

x

x
dx

x

x
dx

4

3
0

5 34

0

8

1

2

()
,

-
-

-

ó

õ

ô
ô

ó

õ

ô
ôô

b (,) ()p q x x dxp q= -- -ò 1 1

0

1
1 and betainc z w

p q
t t dtz w(,)

(,)
() ,= -- -ò

1
11 1

0

1

b
 which means the first integral is

solved as:

>> beta (5,4) * betainc(1/2,5,4)

ans =

 0.0013

Chapter 8 ■ IntegratIon In one and Several varIableS. applICatIonS

314

For the second integral, we make the change of variable x1/3 = 2t, so the integral becomes the following:

6
1

2

1

4

4 3

0

1

×
-()ó

õ

ô
ô
ô

t t dt
/

whose value is calculated using the Matlab expression:

>> 6 * 2 ^(3/4) * beta(3/2,5/4)

ans =

 5.0397

 exerCise 8-6

Find the value of the following integrals:

1

6 37 72 453 2
3 x x x

dx
- + -

¥ó

õ

ô
ô

 and
x

x x
dx

2

4 2
0

1
1

5 4

+

- +

ó

õ

ô
ôô

via a change of variable one can convert such integrals to standard elliptic integrals. Matlab enables symbolic
functions that calculate the values of elliptic integrals of the first, second and third kind.

k m
t

mt
dt

m
d F m()

sin ()
(/ ,)

/
=

-
-

=
-

=ò ò
1

1

1

1
2

2

20

1

20

2

q
q p

p

e m
mt

t
dt m d E m() sin () (/ ,)

/
=

-
-

= - =ò ò
1

1
1 2

2

20

1 2

0

2
q q p

p

the function [k, e] = ellipke(m) estimates the two previous integrals.

For the first integral of the problem, as the subradical polynomial is of degree 3, we make the change of variable
x = a + t 2, a being one of the roots of the subradical polynomial. We take the root x = 3 and make the change
x = 3 + t 2, with which we obtain the integral:

1

3
6

1

4 3 3 22 2
0

×
+() +()

¥ó

õ

ô
ôô t t

dt
/ /

Chapter 8 ■ IntegratIon In one and Several varIableS. applICatIonS

315

now we make the change of variable t = (2/√3) tan(u), so the integral transforms into the full elliptic integral of
the first kind:

2
1

9

2

3

1

1
1
9

20

2

2
0

2

-
=

-
ò ò

sin () sin ()u
du

u

du
p p

whose value is calculated using the expression:

>> (2/3) * ellipke(1/9)

ans =

 1.07825782374982

For the second integral we put x = sin t and we get:

5
1

4
4

5

2

1

1
1
4

2 1
1

420

2 2

2
0

2 2

-
- - =

-
- -ò ò

sin ()
sin ()

sin ()

sin
t

dt t dt

t

dt (()t dt
0

2

0

2

òò

We have reduced the problem to two elliptic integrals, the first of the first kind and the second of the second kind,
whose values can be calculated using the expression:

>> [K, E] = ellipke (1/4)

K =

 1.68575035481260

E =

 1.46746220933943

>> I = (5/2) * K-2 * E

I =

 1.27945146835264

Chapter 8 ■ IntegratIon In one and Several varIableS. applICatIonS

316

 exerCise 8-7

Calculate the length of a full period of the sinusoid y = 3sin(2x).

the length of this curve is given by the formula:

4 1 1 36 2 2 37 36
2

0

4 2 2

0

2
-

¶
¶

æ
è
ç

ö
ø
÷ = + = -ò òx

y x dt x dx t dt() cos () sin ()
p p

00

2p

ò

In the last step, we have made the change of variable 2x = t, using in addition cos2(t) = 1 - sin2(t). the value of the
integral can be calculated now by:

>> [K, E] = ellipke (36/37)

K =

 3.20677433446297

E =

 1.03666851510702

>> 2 * sqrt (37) * E

ans =

 12.61161680006573

 exerCise 8-8

Calculate the integral 3
2

2

e

t
t dt

t-

-

¥ó

õ
ô
ô

this is an exponential type integral. We make the change of variable v = 2t and obtain the equivalent integral:

3
4

e

t
dt

t-

-

¥ó

õ
ô
ô

which is calculated via the Matlab expression:

>> 3 * expint(-4)

ans =

-58.89262341016866 - 9.42477796076938i

the solution would normally be taken to be the real part of the previous result.

Chapter 8 ■ IntegratIon In one and Several varIableS. applICatIonS

317

exerCise 8-9

Calculate the area bounded by the curve y x x x= - +3 26 8 and the x-axis.

We begin by graphing the area.

>> fplot('[x^3-6*x^2+8*x,0]',[-1,5])

the points where the curve cuts the x-axis are (0,0), (0,2) and (0,4), as we see by solving the following equation:

>> solve('x^3-6*x^2+8*x')

ans =

 0
 2
 4

as there is both a positive region and a negative region, the area is calculated as follows:

>> A = abs(int(x^3-6*x^2+8*x,0,2)) + abs(int(x^3-6*x^2+8*x,2,4))

A =

8

Chapter 8 ■ IntegratIon In one and Several varIableS. applICatIonS

318

exerCise 8-10

Calculate the area bounded between the parabolas y x x= -6 2 and y x x= -2 2 .

We begin by plotting the area.

>> fplot('[6*x-x^2,x^2-2*x]',[-1,7])

We find the points of intersection of the two curves:

>> [x, y] = solve('y=6*x-x^2,y=x^2-2*x')

x =

 0
 4

y =

 0
 8

the points of intersection are (0,0) and (4,8).

the area is then calculated as follows:

>> A = abs(int('(6*x-x^2)-(x^2-2*x)',0,4))

A =

64/3

Chapter 8 ■ IntegratIon In one and Several varIableS. applICatIonS

319

exerCise 8-11

Calculate the area enclosed by the three rose petals defined in polar coordinates by r a= 5 3cos().

We begin by graphing the curve.

>> ezpolar('5*cos(3*a)')

the total area can be calculated by multiplying by 6 the area as a ranges between 0 and p/6 (the upper half of the
horizontal petal). We will then have:

>> A=6*int((1/2)*5^2*cos(3*a)^2,0,pi/6)

A =

(25*pi)/4

Chapter 8 ■ IntegratIon In one and Several varIableS. applICatIonS

320

exerCise 8-12

Calculate the area between the x-axis and the full arc of the cycloid with parametric equations:

x t t

y t

= -()
= -()

5

5 1

sin()

cos()

where t ranges between 0 and 2p.

the requested area is given by the integral:

>> A=int(5*(1-cos(t))*diff(5*(t-sin(t))),0,2*pi)

A =

75*pi

exerCise 8-13

Calculate the volumes generated by rotating the curve y = sin(x) around the x-axis and around the y-axis on the
interval [0,p]

>> Vox=pi*int('sin(x)^2',0,pi)

Vox =

pi^2/2

>> Voy=2*pi*int('x*sin(x)',0,pi)

Voy =

2*pi^2

Chapter 8 ■ IntegratIon In one and Several varIableS. applICatIonS

321

exerCise 8-14

Calculate the volume generated by rotating around the y-axis the arc of the cycloid with parametric equations:

x t t

y t

= -()
= -()

sin()

cos()1

where t varies between 0 and 2p.

the requested volume is given by the integral:

>> V=2*pi*int('(t-sin(t))*(1-cos(t))*(1-cos(t))',0,2*pi)

V =

6*pi^3

exerCise 8-15

Calculate the volume generated by rotating the polar curve

r a= 2 * sin()

around the x-axis. We first plot the curve:

>> ezpolar('2*sin(a)')

Chapter 8 ■ IntegratIon In one and Several varIableS. applICatIonS

322

We note that the integral will be given by varying the angle between 0 and p. by symmetry, we can calculate the
result by doubling the corresponding volume generated for the angle between 0 and p/2.

the volume is then calculated by the following integral:

>> V=2*2*pi/3*int((2*sin(a))^3*sin(a),0,pi/2)

V =

2*pi^2

exerCise 8-16

Calculate the length of the curve:

y x x= 2

as x varies between 0 and 2.

the length is calculated directly by the following integral:

>> L=int((1+(diff('2*x*sqrt(x)'))^2),0,2)

L =

20

exerCise 8-17

Calculate the length of the astroid:

x y2 3 2 3 2 32/ / /+ =

the curve can be expressed parametrically as follows:

x t

y t

=

=

2

2

3

3

cos()

sin()

We now represent the astroid to find the limits of variation of the integral.

>> ezplot('2*cos(t)^3','2*sin(t)^3')

looking at the graph we can see that the integral can be found by multiplying by 4 the length obtained as the
parameter varies between 0 and p/2.

Chapter 8 ■ IntegratIon In one and Several varIableS. applICatIonS

323

the length of the astroid is calculated by the following integral:

>> L=4*int(((diff('2*cos(t)^3'))^2+(diff('2*sin(t)^3'))^2)^(1/2),0,pi/2)

L =

12

exerCise 8-18

Calculate the integral:

xe dxdy
x

y

S

-

òò
2

where S is the planar region bounded by x = 0, y = x2+1 and y = 2.

the region S is determined by 1< y <2 and 0< x <y1/2.

the integral is calculated as follows:

>> int(int('x*exp(-x^2/y)','x',0,'sqrt(y)'),'y',1,2)

ans =

3/4 - 3/(4*exp(1))

Chapter 8 ■ IntegratIon In one and Several varIableS. applICatIonS

324

exerCise 8-19

Calculate the volume enclosed between the two cylinders:

z = x2 and z = 4 – y2.

the problem is solved by calculating the integral:

>> 4*int(int(int(1,z,x^2,4-y^2),y,0,sqrt(4-x^2)),x,0,2)

ans =

8*pi

exerCise 8-20

Calculate the integral:

1

1 3()x y z
dxdydz

V + + +òòò

where V is the volume enclosed between the three coordinate planes and the plane x + y + z = 1.

the body v is determined by:

0 < x < 1, 0 < y < 1 - x, 0 < z < x - y

the integral that solves the problem is the following:

>> x=sym('x','positive')

x =

x
>> vpa(int(int(int(1/(x+y+z+1)^3,z,0,1-x-y),y,0,1-x),x,0,1))
Warning: Explicit integral could not be found.

ans =

0.034073590279972654708616060729088

325

Chapter 9

Differential Equations

First Order Differential Equations
Although it implements only a relatively small number of commands related to this topic, MATLAB’s treatment of
differential equations is nevertheless very efficient. We shall see how we can use these commands to solve each type
of differential equation algebraically. Numerical methods for the approximate solution of equations and systems of
equations are also implemented.

The basic command used to solve differential equations is dsolve. This command finds symbolic solutions
of ordinary differential equations and systems of ordinary differential equations. The equations are specified by
symbolic expressions where the letter D is used to denote differentiation, or D2, D3, etc., to denote differentiation of
order 2,3,..., etc. The letter preceded by D (or D2, etc.) is the dependent variable (which is usually y), and any letter
that is not preceded by D (or D2, etc.) is a candidate for the independent variable. If the independent variable is not
specified, it is taken to be x by default. If x is specified as the dependent variable, then the independent variable is t.
That is, x is the independent variable by default, unless it is declared as the dependent variable, in which case the
independent variable is understood to be t.

You can specify initial conditions using additional equations, which take the form y(a) = b or Dy(a) = b,..., etc.
If the initial conditions are not specified, the solutions of the differential equations will contain constants of
integration, C1, C2,..., etc. The most important MATLAB commands that solve differential equations are the following:

dsolve(‘equation’, ‘v’): This solves the given differential equation, where v is the
independent variable (if ‘v’ is not specified, the independent variable is x by default). This
returns only explicit solutions.

dsolve(‘equation’, ‘initial_condition’,..., ‘v’): This solves the given differential equation
subject to the specified initial condition.

dsolve(‘equation’, ‘cond1’, ‘cond2’,..., ‘condn’, ‘v’): This solves the given differential
equation subject to the specified initial conditions.

dsolve(‘equation’, ‘cond1, cond2,..., condn’, ‘v’): This solves the given differential equation
subject to the specified initial conditions.

dsolve(‘eq1’, ‘eq2’,..., ‘eqn’, ‘cond1’, ‘cond2’,..., ‘condn’ , ‘v’): This solves the given system of
differential equations subject to the specified initial conditions.

dsolve(‘eq1, eq2,..., eqn’, ‘cond1, cond2,..., condn’ , ‘v’): This solves the given system of
differential equations subject to the specified initial conditions.

maple(‘dsolve(equation, func(var))’): This solves the given differential equation, where
var is the independent variable and func is the dependent variable (returns implicit
solutions).

Chapter 9 ■ Differential equations

326

maple(‘dsolve({equation, cond1, cond2,... condn}, func(var))’): This solves the given
differential equation subject to the specified initial conditions.

maple(‘dsolve({eq1, eq2,..., eqn}, {func1(var), func2(var),... funcn(var)})’): This solves
the given system of differential equations (returns implicit solutions).

maple(‘dsolve(equation, func(var), ‘explicit’)’): This solves the given differential
equation, offering the solution in explicit form, if possible.

Examples are given below.
First, we solve differential equations of first order and first degree, both with and without initial values.

>> pretty(dsolve('Dy = a*y'))

 C2 exp(a t)

>> pretty(dsolve('Df = f + sin(t)'))

 sin(t) cos(t)
 C6 exp(t) - ------ - ------
 2 2

The previous two equations can also be solved in the following way:

>> pretty(sym(maple('dsolve(diff(y(x), x) = a * y, y(x))')))

y(x) = exp(a x) _C1

>> pretty(maple('dsolve(diff(f(t),t)=f+sin(t),f(t))'))

f(t) = - 1/2 cos(t) - 1/2 sin(t) + exp(t) _C1

>> pretty(dsolve('Dy = a*y', 'y(0) = b'))

exp(a x) b

>> pretty(dsolve('Df = f + sin(t)', 'f(pi/2) = 0'))

 / pi \
 exp| - -- | exp(t)
 \ 2 / sin(t) cos(t)
 ------------------ - ------ - ------
 2 2 2

Now we solve an equation of second degree and first order.

>> y = dsolve('(Dy) ^ 2 + y ^ 2 = 1', ' y(0) = 0', 's')

y =

 cosh((pi*i)/2 + s*i)
 cosh((pi*i)/2 - s*i)

Chapter 9 ■ Differential equations

327

We can also solve this in the following way:

>> pretty(maple('dsolve({diff(y(s),s)^2 + y(s)^2 = 1, y(0) = 0}, y(s))'))

y(s) = sin(s), y(s) = - sin(s)

Now we solve an equation of second order and first degree.

>> pretty(dsolve('D2y = - a ^ 2 * y ', 'y(0) = 1, Dy(pi/a) = 0'))

 exp(-a t i) exp(a t i)
 ----------- + ----------
 2 2

Next we solve a couple of systems, both with and without initial values.

>> dsolve('Dx = y', 'Dy = -x')

ans =

 y: [1x1 sym]
 x: [1x1 sym]

>> y

y =

 cosh((pi*i)/2 + s*i)
 cosh((pi*i)/2 - s*i)

>> x

x =

x

>> y=dsolve('Df = 3*f+4*g', 'Dg = -4*f+3*g')

y =

 g: [1x1 sym]
 f: [1x1 sym]

>> y.g

ans =

 C27*cos(4*t)*exp(3*t) - C28*sin(4*t)*exp(3*t)

Chapter 9 ■ Differential equations

328

>> y.f

ans =

 C28*cos(4*t)*exp(3*t) + C27*sin(4*t)*exp(3*t)

>> y=dsolve('Df = 3*f+4*g, Dg = -4*f+3*g', 'f(0)=0, g(0)=1')

y =

 g: [1x1 sym]
 f: [1x1 sym]

>> y.g

ans =

 cos(4*t)*exp(3*t)

>> y.f

ans =

 sin(4*t)*exp(3*t)

Numerical Solutions of Differential Equations
MATLAB provides commands in its Basic module allowing for the numerical solution of ordinary differential
equations (ODEs), differential algebraic equations (DAEs) and boundary value problems. It is also possible to solve
systems of differential equations with boundary values and parabolic and elliptic partial differential equations.

Ordinary Differential Equations with Initial Values
An ordinary differential equation contains one or more derivatives of the dependent variable y with respect to the
independent variable t. A first order ordinary differential equation with an initial value for the independent variable
can be represented as:

¢ =
=

y f t y

y t y

(,)

()0 0

The previous problem can be generalized to the case where y is a vector, y = (y
1
, y

2
,..., y

n
).

Chapter 9 ■ Differential equations

329

MATLAB’s Basic module commands relating to ordinary differential equations and differential algebraic
equations with initial values are presented in the following table:

Command Class of problem solving, numerical method and syntax

ode45 Ordinary differential equations by the Runge–Kutta method

ode23 Ordinary differential equations by the Runge–Kutta method

ode113 Ordinary differential equations by Adams’ method

ode15s Differential algebraic equations and ordinary differential equations using NDFs (BDFs)

ode23s Ordinary differential equations by the Rosenbrock method

ode23t Ordinary differential and differential algebraic equations by the trapezoidal rule

ode23tb Ordinary differential equations using TR-BDF2

The common syntax for the previous seven commands is the following:

[T, y] = solver(odefun,tspan,y0)
[T, y] = solver(odefun,tspan,y0,options)
[T, y] = solver(odefun,tspan,y0,options,p1,p2...)
[T, y, TE, YE, IE] = solver(odefun,tspan,y0,options)

In the above, solver can be any of the commands ode45, ode23, ode113, ode15s, ode23s, ode23t, or ode23tb.
The argument odefun evaluates the right-hand side of the differential equation or system written in the form

y' = f (t, y) or M(t, y)y '=f (t, y), where M(t, y) is called a mass matrix. The command ode23s can only solve equations
with constant mass matrix. The commands ode15s and ode23t can solve algebraic differential equations and systems
of ordinary differential equations with a singular mass matrix. The argument tspan is a vector that specifies the
range of integration [t

0
, t

f
] (tspan= [t

0
, t

1
,...,t

f
], which must be either an increasing or decreasing list, is used to obtain

solutions for specific values of t).The argument y
0
 specifies a vector of initial conditions. The arguments p1, p2,... are

optional parameters that are passed to odefun. The argument options specifies additional integration options using
the command options odeset which can be found in the program manual. The vectors T and y present the numerical
values of the independent and dependent variables for the solutions found.

As a first example we find solutions in the interval [0,12] of the following system of ordinary differential
equations:

¢ = =
¢ = =
¢ = - =

y y y y

y y y y

y y y y

1 2 3 1

2 1 3 2

3 1 2 3

0 0

0 1

0 51 0 1

()

()

. ()

For this, we define a function named system1 in an M-file, which will store the equations of the system. The
function begins by defining a column vector with three rows which are subsequently assigned components that make
up the syntax of the three equations (Figure 9-1).

Chapter 9 ■ Differential equations

330

We then solve the system by typing the following in the Command Window:

>> [T, Y] = ode45(@system1,[0 12],[0 1 1])

T =

 0
 0.0001
 0.0001
 0.0002
 0.0002
 0.0005
 .
 .
 11.6136
 11.7424
 11.8712
 12.0000

Y =

 0 1.0000 1.0000
 0.0001 1.0000 1.0000
 0.0001 1.0000 1.0000
 0.0002 1.0000 1.0000
 0.0002 1.0000 1.0000
 0.0005 1.0000 1.0000
 0.0007 1.0000 1.0000
 0.0010 1.0000 1.0000
 0.0012 1.0000 1.0000
 0.0025 1.0000 1.0000
 0.0037 1.0000 1.0000
 0.0050 1.0000 1.0000
 0.0062 1.0000 1.0000
 0.0125 0.9999 1.0000
 0.0188 0.9998 0.9999
 0.0251 0.9997 0.9998
 0.0313 0.9995 0.9997
 0.0627 0.9980 0.9990
 .
 .

Figure 9-1.

Chapter 9 ■ Differential equations

331

 0.8594-0.5105 0.7894
 0.7257-0.6876 0.8552
 0.5228-0.8524 0.9281
 0.2695-0.9631 0.9815
 -0.0118-0.9990 0.9992
 -0.2936-0.9540 0.9763
 -0.4098-0.9102 0.9548
 -0.5169-0.8539 0.9279
 -0.6135-0.7874 0.8974
 -0.6987-0.7128 0.8650

To better interpret the results, the above numerical solution can be graphed (Figure 9-2) by using the
following syntax:

>> plot(T, Y(:,1), '-', T, Y(:,2),'-', T, Y(:,3),'. ')

Figure 9-2.

Ordinary Differential Equations with Boundary Values
MATLAB also allows you to solve ordinary differential equations with boundary conditions. The boundary conditions
specify a relationship that must hold between the values of the solution function at the end points of the interval on
which it is defined. The simplest problem of this type is the system of equations

¢ =y f x y(,)

where x is the independent variable, y is the dependent variable and y' is the derivative with respect to x (i.e., y'= dy/dx).
In addition, the solution on the interval [a, b] has to meet the following boundary condition:

g y a y b((), ()) = 0

More generally this type of differential equations can be expressed as follows:

¢ =
=

y f x y p

g y a y b p

(, ,)

((), (),) 0

Chapter 9 ■ Differential equations

332

where the vector p consists of parameters which have to be determined simultaneously with the solution via the
boundary conditions.

The command that solves these problems is bvp4c, whose syntax is as follows:

Sol = bvp4c(odefun, bcfun, solinit)
Sol = bvp4c(odefun, bcfun, solinit, options)
Sol = bvp4c(odefun, bcfun, solinit, options, p1,p2...)

In the syntax above odefun is a function that evaluates f (x, y). It may take one of the following forms:

dydx = odefun(x,y)
dydx = odefun(x,y,p1,p2,...)
dydx = odefun(x,y,parameters)
dydx = odefun(x,y,parameters,p1,p2,...)

The argument bcfun in bvp4c is a function that computes the residual in the boundary conditions. Its form is as
follows:

Res = bcfun(ya, yb)
Res = bcfun(ya,yb,p1,p2,...)
Res = bcfun(ya, yb,parameters)
Res = bcfun(ya,yb,parameters,p1,p2,...)

The argument solinit is a structure containing an initial guess of the solution. It has the following fields:
x (which gives the ordered nodes of the initial mesh so that the boundary conditions are imposed at a = solinit.x(1)
and b = solinit.x(end)); and y (the initial guess for the solution, given as a vector, so that the i-th entry is a constant
guess for the i-th component of the solution at all the mesh points given by x). The structure solinit is created using
the command bvpinit. The syntax is solinit = bvpinit(x,y).

As an example we solve the second order differential equation:

¢¢+ =y y| | 0

whose solutions must satisfy the boundary conditions:

y

y

()

()

0 0

4 2

=
= -

The previous problem is equivalent to the following:

¢ =
¢ = -

y y

y y
1 2

2 1| |

We consider a mesh of five equally spaced points in the interval [0,4] and our initial guess for the solution is
y

1
 = 1 and y

2
 = 0. These assumptions are included in the following syntax:

>> solinit = bvpinit (linspace (0,4,5), [1 0]);

Chapter 9 ■ Differential equations

333

The M-files depicted in Figures 9-3 and 9-4 show how to enter the equation and its boundary conditions.

Figure 9-3.

Figure 9-4.

The following syntax is used to find the solution of the equation:

>> Sun = bvp4c(@twoode, @twobc, solinit);

The solution can be graphed (Figure 9-5) using the command bvpval as follows:

>> y = bvpval(Sun, linspace(0.4));
>> plot(x, y(1,:));

Figure 9-5.

Partial Differential Equations
MATLAB’s Basic module has features that enable you to solve partial differential equations and systems of partial
differential equations with initial boundary conditions. The basic function used to calculate the solutions is pdepe,
and the basic function used to evaluate these solutions is pdeval.

The syntax of the function pdepe is as follows:

Sol = pdepe(m, pdefun, icfun, bcfun, xmesh, tspan)
Sol = pdepe(m, pdefun, icfun, bcfun, xmesh, tspan, options)
Sun = pdepe(m,pdefun,icfun,bcfun,xmesh,tspan,options,p1,p2...)

Chapter 9 ■ Differential equations

334

The parameter m takes the value 0, 1 or 2 according to the nature of the symmetry of the problem (block,
cylindrical or spherical, respectively). The argument pdefun defines the components of the differential equation, icfun
defines the initial conditions, bcfun defines the boundary conditions, xmesh and tspan are vectors [x

0
, x

1
,...,x

n
] and

[t
0
, t

1
,...,t

f
] that specify the points at which a numerical solution is requested (n, f ³ 3), options specifies some

calculation options of the underlying solver (RelTol, AbsTol,NormControl, InitialStep and MaxStep to specify relative
tolerance, absolute tolerance, norm tolerance, initial step and max step, respectively) and p1, p2,... are parameters to
pass to the functions pdefun, icfun and bcfun.

pdepe solves partial differential equations of the form:

c x t u
u

t

u

t
x

x
x f x t u

u

x
s x tm m, , , , , , ,

¶
¶

æ
è
ç

ö
ø
÷
¶
¶

=
¶
¶

¶
¶

æ
è
ç

ö
ø
÷

æ

è
ç

ö

ø
÷ +

- ,, ,u
u

x

¶
¶

æ
è
ç

ö
ø
÷

where a £ x £ b and t
0
£ t £ t

f
. Moreover, for t = t

0
 and for all x the solution components meet the initial conditions:

u x t u x(,) ()0 0=

and for all t and each x = a or x = b, the solution components satisfy the boundary conditions of the form:

p x t u q x t f x t u
u

x
(, ,) (,) , , ,+

¶
¶

æ
è
ç

ö
ø
÷ = 0

In addition, we have that a = xmesh (1), b = xmesh (end), tspan (1) = t
0
 and tspan (end) = t

f
. Moreover pdefun

finds the terms c, f and s of the partial differential equation, so that:

[f, s] = pdefun(x, t, u, dudx)

Similarly icfun evaluates the initial conditions

u = icfun(x)

Finally, bcfun evaluates the terms p and q of the boundary conditions:

[pl, ql, pr, qr] = bcfun(xl, ul, xr, ur, t)

As a first example, we solve the following partial differential equation (xÎ[0,1] and t ³ 0):

p 2 ¶
¶

=
¶
¶

¶
¶

æ
è
ç

ö
ø
÷

u

t x

u

x

satisfying the initial condition:

u x x(,) sin0 = p

and the boundary conditions:

u t

e
u

x
tt

(,)

(,)

0 0

1 0

º

+
¶
¶

=-p

Chapter 9 ■ Differential equations

335

We begin by defining functions in M-files as shown in Figures 9-6 to 9-8.

Figure 9-6.

Figure 9-7.

Once the support functions have been defined, we define the function that solves the equation
(see the M-file in Figure 9-9).

Figure 9-8.

Figure 9-9.

Chapter 9 ■ Differential equations

336

To view the solution (Figures 9-10 and 9-11), we enter the following into the MATLAB Command Window:

>> pdex1

Figure 9-10.

Figure 9-11.

As a second example, we solve the following system of partial differential equations (xÎ[0,1] and t ³ 0):

¶
¶

=
¶
¶

- -

¶
¶

=
¶
¶

+ -

u

t

u

x
F u u

u

t

u

x
F u u

1
2

1
2 1 2

2
2

2
2 1 2

0 024

0 170

. ()

. ()

F y y y() exp(.) exp(.)= - -5 73 11 46

satisfying the initial conditions:

u x

u x
1

2

0 1

0 0

(,)

(,)

º
º

Chapter 9 ■ Differential equations

337

and the boundary conditions:

¶
¶

º

º
º

¶
¶

º

u

x
t

u t

u t

u

x
t

1

2

1

2

0 0

0 0

1 1

1 0

(,)

(,)

(,)

(,)

To conveniently use the function pdepe, the system can be written as:

1

1

0 024

0 170
1

2

1

2

é

ë
ê
ù

û
ú

¶
¶
é

ë
ê

ù

û
ú =

¶
¶

¶ ¶
¶ ¶

é

ë
ê

ù

û
. *

. (/)

. (/)t

u

u x

u x

u x úú +
- -

-
é

ë
ê

ù

û
ú

F u u

F u u

()

()
1 2

1 2

The left boundary condition can be written as:

0 1

0

0 024

0 170

0

02

1

2u

u x

u x

é

ë
ê

ù

û
ú +

é

ë
ê
ù

û
ú

¶ ¶
¶ ¶

é

ë
ê

ù

û
ú +

é

ë
ê. *

. (/)

. (/)

ùù

û
ú

and the right boundary condition can be written as:

u u x

u x
1 1

2

1

0

0

1

0 024

0 170

0

0

-é

ë
ê

ù

û
ú +

é

ë
ê
ù

û
ú

¶ ¶
¶ ¶

é

ë
ê

ù

û
ú =

é
. *

. (/)

. (/) ëë
ê
ù

û
ú

We start by defining the functions in M-files as shown in Figures 9-12 to 9-14.

Figure 9-12.

Figure 9-13.

Figure 9-14.

Chapter 9 ■ Differential equations

338

Figure 9-15.

Once the support functions are defined, the function that solves the system of equations is given by the M-file
shown in Figure 9-15.

Figure 9-16.

To view the solution (Figures 9-16 and 9-17), we enter the following in the MATLAB Command Window:

>> pdex4

Chapter 9 ■ Differential equations

339

exerCise 9-1

solve the following Van der pol system of equations:

y y y

y y y y y
1 2 1

2 1
2

2 1 2

0 0

1000 1 0 1

’

’

()

() ()

= =

= - - =

We begin by defining a function named vdp100 in an M-file, where we will store the equations of the system.
this function begins by defining a column vector with two empty rows which are subsequently assigned the
components which make up the equation (figure 9-18).

Figure 9-17.

Figure 9-18.

We then solve the system and plot the solution y1 = y1(t) given by the first column (figure 9-19) by typing the
following into the Command Window:

>> [T, Y] = ode15s(@vdp1000,[0 3000],[2 0]);
>> plot(T, Y(:,1),'-')

Chapter 9 ■ Differential equations

340

similarly we plot the solution y2 = y2(t) (figure 9-20) by using the syntax:

>> plot(T, Y(:,2),'-')

exerCise 9-2

Given the following differential equation:

y q x y’’ (cos())+ - =l 2 2 0

subject to the boundary conditions y (0) = 1, y '(0) = 0, y '(p) = 0, find a solution for q = 5 and l = 15 based on
an initial solution defined on 10 equally spaced points in the interval [0, p] and graph the first component of the
solution on 100 equally spaced points in the interval [0, p].

the given equation is equivalent to the following system of first order differential equations:

¢ =
¢ = - -

y y

y q x y
1 2

2 12 2(cos)l

Figure 9-19.

Figure 9-20.

Chapter 9 ■ Differential equations

341

with the following boundary conditions:

y

y

y

1

2

2

0 1 0

0 0

0

()

()

()

- =
=
=p

the system of equations is introduced in the M-file shown in figure 9-21, the boundary conditions are given in
the M-file shown in figure 9-22, and the M-file in figure 9-23 sets up the initial solution.

Figure 9-21.

Figure 9-22.

Figure 9-23.

the initial solution for l = 15 and 10 equally spaced points in [0,p] is calculated using the following MatlaB
syntax:

>> lambda = 15;
solinit = bvpinit(linspace(0,pi,10), @mat4init, lambda);

the numerical solution of the system is calculated using the following syntax:

>> sol = bvp4c(@mat4ode,@mat4bc,solinit);

to graph the first component on 100 equally spaced points in the interval [0, p] we use the following syntax:

>> xint = linspace(0,pi);
Sxint = bvpval(ground, xint);
plot(xint, Sxint(1,:)))
axis([0 pi-1 1.1])
xlabel('x')
ylabel('solution y')

Chapter 9 ■ Differential equations

342

the result is presented in figure 9-24.

Figure 9-24.

exerCise 9-3

solve the following differential equation:

¢¢+ - ¢+ =y y y y()1 02

in the interval [0,20], taking as initial solution y = 2, y' = 0. solve the more general equation

¢¢+ - ¢+ = >y y y ym m()1 0 02

the general equation above is equivalent to the following system of first-order linear equations

¢ =

¢ = - -

y y

y y y y
1 2

2 1
2

2 11m()

which is defined for m = 1 in the M-file shown in figure 9-25.

Figure 9-25.

taking the initial solution y1= 2 and y2= 0 in the interval [0,20], we can solve the system using the following
MatlaB syntax:

>> [t, y] = ode45(@vdp1,[0 20],[2; 0])

Chapter 9 ■ Differential equations

343

t =

 0
 0.0000
 0.0001
 0.0001
 0.0001
 0.0002
 0.0004
 0.0005
 0.0006
 0.0012
 .
 .
 19.9559
 19.9780
 20,0000

y =

 2.0000 0
 2.0000 - 0.0001
 2.0000 - 0.0001
 2.0000 - 0.0002
 2.0000 - 0.0002
 2.0000 - 0.0005
 .
 .
 1.8729 1.0366
 1.9358 0.7357
 1.9787 0.4746
 2.0046 0.2562
 2.0096 0.1969
 2.0133 0.1413
 2.0158 0.0892
 2.0172 0.0404

We can graph the solutions (figure 9-26) by using the syntax:

>> plot(t, y(:,1),'-', t, y(:,2),'-')
>> xlabel('time t')
>> ylabel('solution y')
>> legend('y_1', 'y_2')

Chapter 9 ■ Differential equations

344

to solve the general system with the parameter m, we define the system in the M-file shown in figure 9-27.

Figure 9-26.

Figure 9-27.

now we can graph the first solution y1= 2 and y2= 0 corresponding to m = 1000 in the interval [0,1500] using the
following syntax (see figure 9-28):

>> [t, y] = ode15s(@vdp2,[0 1500],[2; 0],[],1000);
>> xlabel('time t')
>> ylabel('solution y_1')

Figure 9-28.

Chapter 9 ■ Differential equations

345

to graph the first solution y1 = 2 and y2 = 0 for another value of the parameter, for example m = 100, in the
interval [0,1500], we use the following syntax (see figure 9-29):

>> [t, y] = ode15s(@vdp2,[0 1500],[2; 0],[],100);
>> plot(t, y(:,1),'-');

 Figure 9-29.

MATLAB Mathematical
Analysis

César Pérez López

MATLAB Mathematical Analysis

Copyright © 2014 by César Pérez López

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material
supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the
purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are
liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-0350-7

ISBN-13 (electronic): 978-1-4842-0349-1

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Jeffrey Pepper
Technical Reviewer: Jonah Lissner
Editorial Board: Steve Anglin, Louise Corrigan, Jonathan Gennick, Robert Hutchinson, Michelle Lowman,

James Markham, Matthew Moodie, Jeff Olson, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke,
Gwenan Spearing, Steve Weiss

Coordinating Editor: Mark Powers
Copy Editor: Barnaby Sheppard
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is
Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales–eBook
Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to readers at
www.apress.com/9781484203507. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code/.

http://orders-ny@springer-sbm.com
http://www.springeronline.com
http://rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com/9781484203507
http://www.apress.com/source-code/

v

Contents

About the Author ���xi

About the Technical Reviewer ���xiii

Introduction �� xv

Chapter 1: MATLAB Introduction and Working Environment ■ ���1

Introduction to Working with MATLAB ���1

Numerical Calculations with MATLAB ���4

Symbolic Calculations with MATLAB ���6

Graphics with MATLAB ��8

MATLAB and Programming��11

Chapter 2: Numbers, Operators, Variables and Functions ■ ���13

Numbers ��13

Integers and Integer Variable Functions ��16

Real Numbers and Functions of Real Variables ���18

Trigonometric Functions ��20

Hyperbolic Functions ���21

Exponential and Logarithmic Functions ��22

Numeric Variable-Specific Functions ��23

One-Dimensional, Vector and Matrix Variables ���24

Elements of Vector Variables ���26

Elements of Matrix Variables ���27

Specific Matrix Functions ��30

■ Contents

vi

Random Numbers ��34

Operators ���36

Arithmetic Operators ��� 36

Logical Operators �� 39

Relational Operators �� 40

Symbolic Variables ��42

Symbolic Functions and Functional Operations: Composite and Inverse Functions �������������������44

Commands that Handle Variables in the Workspace and Store them in Files �����������������������������47

Chapter 3: Complex Numbers and Functions of Complex Variables ■ ��������������������������������71

Complex Numbers ���71

General Functions of Complex Variables ���72

Trigonometric Functions of a Complex Variable �� 72

Hyperbolic Functions of a Complex Variable ��� 74

Exponential and Logarithmic Functions of a Complex Variable ��� 75

Specific Functions of a Complex Variable �� 76

Basic Functions with a Complex Vector Argument ��77

Basic Functions with a Complex Matrix Argument ��84

General Functions with a Complex Matrix Argument ��89

Trigonometric Functions of a Complex Matrix Variable ��� 89

Hyperbolic Functions of a Complex Matrix Variable �� 94

Exponential and Logarithmic Functions of a Complex Matrix Variable �� 99

Specific Functions of Complex Matrix Variables �� 101

Operations with Real and Complex Matrix Variables ���104

Chapter 4: Graphics in MATLAB� Curves, Surfaces and Volumes ■ �����������������������������������125

Introduction ���125

Exploratory Graphics ���125

Curves in Explicit, Implicit, Parametric and Polar Coordinates ��133

Three-Dimensional (3D) Curves ��144

Explicit and Parametric Surfaces: Contour Plots ���146

■ Contents

vii

Three-Dimensional Geometric Forms��152

Specialized Graphics ���156

2D and 3D Graphics Options ��164

 Chapter 5: Limits of Sequences and Functions� Continuity in One ■
and Several Variables ��183

Limits���183

Sequences of Functions ��186

Continuity ��187

Limits in Several Variables� Iterated and Directional Limits ��190

Continuity in Several Variables ��194

Chapter 6: Numerical Series and Power Series ■ ���203

Numerical Series of Non-negative Terms ��203

Convergence Criteria: The Ratio Test ���204

Raabe’s Criterion ���205

The Root Test ���206

Other Convergence Criteria ���208

Alternating Numerical Series� Dirichlet and Abel’s Criteria ���209

Power Series ���210

Power Series Expansions ��212

Chapter 7: Derivatives� One and Several Variables ■ ��225

Derivatives ���225

Partial Derivatives ���228

Applications of Differentiation� Tangents, Asymptotes,
Extreme Points and Points of Inflection ��229

Differentiation in Several Variables ���233

Extreme Points in Several Variables ��238

Conditional minima and maxima� The method of “Lagrange multipliers” ���������������������������������246

Vector Differential Calculus ���249

■ Contents

viii

The Composite Function Theorem ���250

The Implicit Function Theorem ��251

The Inverse Function Theorem ��252

The Change of Variables Theorem ��253

Series Expansions in Several Variables ���254

Curl, Divergence and the Laplacian ���255

Rectangular, Spherical and Cylindrical Coordinates ��257

Chapter 8: Integration in One and Several Variables� Applications ■ ������������������������������279

Integrals ��279

Indefinite Integrals, Change of Variables and Integration by Parts ��281

Integration by Reduction and Cyclic Integration ���283

Rational and Irrational Integrals� Binomial Integrals ���283

Definite Integrals and Applications ���284

Curve Arc Length ���284

The Area between Two Curves ��287

Surfaces of Revolution ��291

Volumes of Revolution ���292

Curvilinear Integrals ��293

Improper Integrals ���295

Parameter Dependent Integrals ���295

Approximate Numerical Integration ���297

Special Integrals ��300

Definite Integrals and Applications� Several Variables ��302

Planar Areas and Double Integration ���302

Calculation of Surface Area by Double Integration ��304

Calculation of Volumes by Double Integration ���305

Calculation of Volumes and Triple Integrals���306

Green’s Theorem ���308

■ Contents

ix

The Divergence Theorem ��309

Stokes’ Theorem ���310

Chapter 9: Differential Equations ■ ���325

First Order Differential Equations ��325

Numerical Solutions of Differential Equations ���328

Ordinary Differential Equations with Initial Values ��328

Ordinary Differential Equations with Boundary Values ���331

Partial Differential Equations ���333

xi

About the Author

César Pérez López is a Professor at the Department of Statistics and Operations Research at the University of Madrid.
César Pérez López is also a Mathematician and Economist at the National Statistics Institute (INE) in Madrid, a body
which belongs to the Superior Systems and Information Technology Department of the Spanish Government. César
also currently works at the Institute for Fiscal Studies in Madrid.

xiii

About the Technical Reviewer

Jonah Lissner is a research scientist and PhD candidate in theoretical physics, power engineering, complex systems,
metamaterials, geophysics, and computational theory. He has strong cognitive ability in empiricism and scientific reason
for the purpose of hypothesis building, theory learning, mathematical and axiomatic modeling and testing for abstract
problem-solving. His dissertations, research publications and projects, curriculum vitae, journal contributions, blogs,
science fiction novels and systems are listed at http://Lissnerresearch.weebly.com.

http://Lissnerresearch.weebly.com

xvii

Also Available

MATLAB Programming for Numerical Analysis, 978-1-4842-0296-8•	

MATLAB Differential Equations, 978-1-4842-0311-8•	

MATLAB Control Systems Engineering, 978-1-4842-0290-6•	

MATLAB Linear Algebra, 978-1-4842-0323-1•	

MATLAB Differential and Integral Calculus, 978-1-4842-0305-7•	

MATLAB Graphical Programming, 978-1-4842-0317-0•	

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Introduction
	Chapter 1: MATLAB Introduction and Working Environment
	Introduction to Working with MATLAB
	Numerical Calculations with MATLAB
	Symbolic Calculations with MATLAB
	Graphics with MATLAB
	MATLAB and Programming

	Chapter 2: Numbers, Operators, Variables and Functions
	Numbers
	Integers and Integer Variable Functions
	Real Numbers and Functions of Real Variables
	Trigonometric Functions
	Hyperbolic Functions
	Exponential and Logarithmic Functions
	Numeric Variable-Specific Functions
	One-Dimensional, Vector and Matrix Variables
	Elements of Vector Variables
	Elements of Matrix Variables
	Specific Matrix Functions
	Random Numbers
	Operators
	Arithmetic Operators
	Logical Operators
	Relational Operators

	Symbolic Variables
	Symbolic Functions and Functional Operations: Composite and Inverse Functions
	Commands that Handle Variables in the Workspace and Store them in Files

	Chapter 3: Complex Numbers and Functions of Complex Variables
	Complex Numbers
	General Functions of Complex Variables
	Trigonometric Functions of a Complex Variable
	Hyperbolic Functions of a Complex Variable
	Exponential and Logarithmic Functions of a Complex Variable
	Specific Functions of a Complex Variable

	Basic Functions with a Complex Vector Argument
	Basic Functions with a Complex Matrix Argument
	General Functions with a Complex Matrix Argument
	Trigonometric Functions of a Complex Matrix Variable
	Hyperbolic Functions of a Complex Matrix Variable
	Exponential and Logarithmic Functions of a Complex Matrix Variable
	Specific Functions of Complex Matrix Variables

	Operations with Real and Complex Matrix Variables

	Chapter 4: Graphics in MATLAB. Curves, Surfaces and Volumes
	Introduction
	Exploratory Graphics
	Curves in Explicit, Implicit, Parametric and Polar Coordinates
	Three-Dimensional (3D) Curves
	Explicit and Parametric Surfaces: Contour Plots
	Three-Dimensional Geometric Forms
	Specialized Graphics
	2D and 3D Graphics Options

	Chapter 5: Limits of Sequences and Functions. Continuity in One and Several Variables
	Limits
	Sequences of Functions
	Continuity
	Limits in Several Variables. Iterated and Directional Limits
	Continuity in Several Variables

	Chapter 6: Numerical Series and Power Series
	Numerical Series of Non-negative Terms
	Convergence Criteria: The Ratio Test
	Raabe’s Criterion
	The Root Test
	Other Convergence Criteria
	Alternating Numerical Series. Dirichlet and Abel’s Criteria
	Power Series
	Power Series Expansions

	Chapter 7: Derivatives. One and Several Variables
	Derivatives
	Partial Derivatives
	Applications of Differentiation. Tangents, Asymptotes, Extreme Points and Points of Inflection
	Differentiation in Several Variables
	Extreme Points in Several Variables
	Conditional minima and maxima. The method of “Lagrange multipliers”
	Vector Differential Calculus
	The Composite Function Theorem
	The Implicit Function Theorem
	The Inverse Function Theorem
	The Change of Variables Theorem
	Series Expansions in Several Variables
	Curl, Divergence and the Laplacian
	Rectangular, Spherical and Cylindrical Coordinates

	Chapter 8: Integration in One and Several Variables. Applications
	Integrals
	Indefinite Integrals, Change of Variables and Integration by Parts
	Integration by Reduction and Cyclic Integration
	Rational and Irrational Integrals. Binomial Integrals
	Definite Integrals and Applications
	Curve Arc Length
	The Area between Two Curves
	Surfaces of Revolution
	Volumes of Revolution
	Curvilinear Integrals
	Improper Integrals
	Parameter Dependent Integrals
	Approximate Numerical Integration
	Special Integrals
	Definite Integrals and Applications. Several Variables
	Planar Areas and Double Integration
	Calculation of Surface Area by Double Integration
	Calculation of Volumes by Double Integration
	Calculation of Volumes and Triple Integrals
	Green’s Theorem
	The Divergence Theorem
	Stokes’ Theorem

	Chapter 9: Differential Equations
	First Order Differential Equations
	Numerical Solutions of Differential Equations
	Ordinary Differential Equations with Initial Values
	Ordinary Differential Equations with Boundary Values
	Partial Differential Equations

