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Preface

This Festschrift is dedicated to Melvyn B. Nathanson by his colleagues, friends, and
students. This volume celebrates his many contributions to various areas of number
theory. Mel’s outstanding career as a mathematician and a public figure resulted in
many achievements both in science and in the public arena.

It is appropriate to quote here the tribute of the great I.M. Gelfand to Mel:

I remember Melvyn as a young man attending my seminar in Moscow. He partic-
ipated in my Rutgers seminar as well and taught us a lot of number theory. I enjoy
his love of mathematics and the way he thinks about it. I wish him all the best and
expect new wonderful results from him.

We thank Jean Bourgain, M.-C. Chang, Javier Cilleruelo, Shalom Eliahou,
Christian Elsholtz, Ron Graham, Ben Green, Yahya O. Hamidoune, Peter Hegarty,
Alex Iosevich, Sergei V. Konyagin, D. Labrousse, Cédric Lecouvey, Vsevolod
F. Lev, Máté Matolcsi, Steven J. Miller, Tom Morgan, Marina Nechayeva,
Lan Nguyen, Kevin O’Bryant, J.L. Ramı́rez Alfonsı́n, Burton Randol, Øystein
J. Rødseth, Svetlana Roudenko, Imre Z. Ruzsa, Ilda da Silva, Jonathan Sondow,
Daniel Scheinerman, Oriol Serra, Zhi-Wei Sun, Julia Wolf, and Michael E. Zieve
for their contributions to this volume.

David Chudnovsky
Gregory Chudnovsky

Editors
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Addictive Number Theory

Melvyn B. Nathanson

A True Story

In 1996, just after Springer-Verlag published my books Additive Number Theory:
The Classical Bases [34] and Additive Number Theory: Inverse Problems and the
Geometry of Sumsets [35], I went into my local Barnes and Noble superstore on
Route 22 in Springfield, New Jersey, and looked for them on the shelves. Suburban
bookstores do not usually stock technical mathematical books, and, of course, the
books were not there. As an experiment, I asked if they could be ordered. The person
at the information desk typed in the titles, and told me that his computer search
reported that the books did not exist. However, when I gave him the ISBN numbers,
he did find them in the Barnes and Noble database. The problem was that the book
titles had been cataloged incorrectly. The data entry person had written Addictive
Number Theory.1

I have always found it addictive to think about mathematics. Of course, as many
have observed, it is better for one’s career to think about fashionable things, or about
things that appeal to fashionable people. To me, fashionable is boring, and I prefer to
think about problems that interest almost no one. Of course, if what appeals to you
is what is already popular, then that is what you should study. We mathematicians
are free to investigate whatever we like.

In the preface to the first volume, The Classical Bases, I wrote

Additive number theory is a deep and beautiful part of mathematics, but for too long it has
been obscure and mysterious, the domain of a small number of specialists, who have often
been specialists only in their own small part of additive number theory. This is the first

1 I have told this story many times, and like every good story, it has acquired an independent
existence. I have heard others tell variations on the tale, always with the same additive–addictive
punch line.
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2 M.B. Nathanson

of several books on additive number theory. I hope that these books will demonstrate the
richness and coherence of the subject and that they will encourage renewed interest in the
field.

The results have far exceeded my expectations. The second volume, Inverse Prob-
lems, has developed into a major field of mathematics, sometimes called “additive
combinatorics,” and has, mirabile dictu, become fashionable. The central result in
this book is an extraordinary “inverse theorem” of Gregory Freiman about the struc-
ture of a finite set A of integers whose sumset ACA is small. I had been interested
in this result for a long time, and, when Freiman emigrated from the former Soviet
Union and was invited to the Institute for Advanced Study, I visited him and dis-
cussed it with him. He was astonished, and years later remarked, “No one mentioned
my theorem for decades until you asked me about it in Princeton.” A few years later,
after the publication of Inverse Theorems, the British mathematician Tim Gowers
used Freiman’s theorem in his work on effective bounds for Szemerédi’s theorem
on long arithmetic progressions in dense sets of integers. I met Gowers for the first
time also at the Institute for Advanced Study, and he told the following story, which
he recounted in a recent email:

I had got to the stage of understanding that Freiman’s theorem would be useful . . . but I
couldn’t understand Freiman’s proof, and Ruzsa’s was spread over more than one paper
and published in obscure journals so I couldn’t piece that together either. And then I found
myself browsing in the mathematics section of Blackwell’s in Oxford (even though I myself
am and was at Cambridge), and saw your book. The title was promising, and to my great
delight I saw that it contained a full account of Ruzsa’s proof. This was a great stroke of
luck: your book gave me exactly the help I needed at exactly the right time.

Gowers received a Fields Medal in large part for his work on Szemerédi’s theorem.
To veterans in combinatorial and additive number theory, who are used to at best

benign neglect and at worst scorn and ridicule, this is an astounding transformation.
Paul Erdős, one of the great figures in 20th century mathematics, was not highly
regarded by the mathematical mafiosi. Combinatorial and additive number theory
have only recently come into fashion, but even now, attention is paid to only a small
part of the subject, the part connected with harmonic analysis and ergodic theory.
This is because there have been and continue to be remarkable theorems arising
from the union of analysis and combinatorial number theory, and everyone focuses
on (that is, the herd stampedes toward) the successful. In the next few years I plan
to complete at least two more volumes on additive number theory, with an emphasis
on other strange and beautiful but still not well known results. It will be curious to
see if suddenly they, too, become hot topics.

Remarks on Some of My Articles

The editors of this volume have asked me to comment on some of my articles that I
particularly like. The first, of course, are juvenilia: Articles that I wrote while I was
a graduate student in mathematics at the University of Rochester from 1966 to 1971.
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(My mathematical life started rather late: I studied philosophy as an undergraduate
at the University of Pennsylvania, and then spent a year at Harvard as a graduate
student in biophysics before switching to math.) My Rochester advisor was Sanford
L. Segal [53, 54], an erudite and charming analytic number theorist and historian
of mathematics under the Nazis. Our work did not intersect, but many years later I
wrote a short article on functional equations [31] that Sandy generalized [52].

My Rochester articles were on a variety of topics, for example, an exponential
diophantine equation [24, 56], the greatest order of an element from the symmetric
group [26] (I subsequently learned that I did not invent this problem, and that Ed-
mund Landau [19] had used prime number theory to determine the asymptotics),
complementing sets of lattice points [23], the fundamental domain of a discrete
group [28], and a result, sometimes called the “fundamental theorem of additive
number theory,” about the structure of the iterated sumsets hA of a finite set of
integers [27]. Many years later, my student Sandie Han, Christoph Kirfel, and I
extended this to linear forms [12], and I later generalized a related result of Kho-
vanskii [15, 16] to linear forms in abelian semigroups [37]. The latter result used
some commutative algebra, specifically, the Hilbert polynomial in several variables
for finitely generated algebras. Ruzsa and I have published a purely combinatorial
proof [49]. My student Jaewoo Lee has studied a related problem [20].

In 1970 I spent the Lent and Easter terms as a visiting research student at the
University of Cambridge in DPPMS, the Department of Pure Mathematics and
Mathematical Statistics, in its former building at 16 Mill Lane. One of the reasons
I went to Cambridge was to talk to Cassels, who had written two beautiful arti-
cles [3, 4] on the Catalan conjecture (“8 and 9 are the only consecutive powers”).
Another forgotten bit of juvenilia is my proof that the analog of the Catalan conjec-
ture is true in any field of rational functions [29]. A friend at Cambridge was Béla
Bollobás, and it may have been Béla who first introduced me to Erdős.

My plan was to stay in Europe for the summer and attend the International
Congress of Mathematicians in Nice in September. At the end of the academic year
I travelled to Russia, and then to Hungary and Israel, where I wanted to find a uni-
versity where I could work on my own. I showed up unannounced at the Weizmann
Institute of Science in Rehovot, and told someone that I was looking for a place
to study. I was sent to a math professor there, Shlomo Sternberg, who asked what
I was interested in. I told him about additive number theory. “No one in Israel is
interested in that,” he said, “so you might as well stay here.” Weizmann gave me
an office and library access, and found a place for me to live. Browsing in the jour-
nals in the library, I learned about an idea of Milnor to define a “random” binary
sequence, and wrote my first articles, “Derivatives of binary sequences” [22] and
“Integrals of binary sequences” [25], which were published in the SIAM Journal of
Applied Mathematics.

The Weizmann Institute library had a copy of Halberstam and Roth’s book
Sequences, Vol. I [11], which I carefully studied. (I gave a lecture at Weizmann
in 2001, and looked for the book in the library. It was still on the shelf. No one had
signed it out since I did in 1970.) I became and am still fascinated by the Erdős-
Turán conjecture that the representation function of an asymptotic basis for the
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nonnegative integers of order two must be unbounded. In the process of trying to
construct a counterexample, I invented the concept of a minimal asymptotic basis,
which is a set A of nonnegative integers with the property that the sumset A C A
contains all sufficiently large integers, but, for every element a� 2 A, there are
infinitely many positive integers that cannot be represented as the sum of two ele-
ments from the set A n fa�g. I constructed explicit examples of minimal asymptotic
bases. This was my first original idea about additive bases. Later I learned that min-
imal bases had been previously defined by Stöhr [55], and that Härtter [13] had
proved their existence, but that I had constructed the first nontrivial examples. Many
years later I realized that the opposite of the Erdős-Turán conjecture holds for bases
for the additive group of all integers, and that every function f W Z ! N0 [ f1g
with only finitely many zeros is the representation function of an asymptotic basis
for Z [5,39,41–43]. This is essentially what distinguishes a group and a semigroup.

In September, 1971, I began my first job, as an instructor at Southern Ilinois
University in Carbondale. There were two other number theorists there, Lauwerens
Kuipers and Harald Niederreiter, who were completing their monograph Uniform
Distribution of Sequences [18]. SIU had a Ph.D. program in mathematics, an excel-
lent library, and an atmosphere that was, for me, conducive to research. I continued
to think about minimal bases. Driving home to Philadelphia from Carbondale for
Thanksgiving, I realized that the set B of nonnegative even integers has the property
that infinitely many positive integers (i.e. the odd numbers) cannot be represented
as the sum of two elements of B , but that, if b� is any nonnegative integer not in
B (i.e. any odd positive integer) then the set B [ fb�g is an asymptotic basis of
order 2. Thus, B can reasonably be called a maximal asymptotic nonbasis, which
is the natural dual of a minimal asymptotic basis. I was able to describe all max-
imal asymptotic nonbases consisting of unions of congruence classes, and also to
construct examples of other types of maximal asymptotic nonbases.

I combined my various results in the article “Minimal bases and maximal
nonbases in additive number theory,” which appeared in the Journal of Number The-
ory [30]. The article contained a list of unsolved problems. I had mailed a preprint
to Erdős in Budapest. In a short time I received a letter from him with a presump-
tive solution to one of the problems. I found his proof difficult, and worked hard to
understand it. Finally I understood the idea of the proof, but I also realized that the
proof was wrong, and that, modifying the argument, I could prove exactly the op-
posite of what Erdős had claimed was true. This did answer my question, but with a
“change of sign.” We published this in “Maximal asymptotic nonbases” [6], the first
of nearly 20 articles that Erdős and I wrote together. My two favorite articles with
Erdős are on oscillations of bases [7] and on representation functions of minimal
bases [8].

Although I was on the faculty of SIU from 1971 to 1981, I was actually on leave
for four of my first 7 years. I received an IREX fellowship for the academic year
1972–1973 to study with Gel’fand at Moscow State University in the USSR. One
result was the article “Classification problems in K-categories” [33]. In 1974–1975
I was appointed Assistant to André Weil at the Institute for Advanced Study. I ar-
rived in Princeton in the summer, when Weil was in Paris. When he returned in
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the fall, I asked him, “As your Assistant, what do I have to do for you?” He replied,
“Nothing, and conversely.” A few weeks later, however, he asked if I would take
notes of his lectures on the history of number theory, which became Weil’s book
Elliptic Functions according to Eisenstein and Kronecker [57]. I spent 1975–1976 at
Rockefeller University and Brooklyn College (CUNY), and 1977–1978 at Harvard
University. In addition to my appointment in mathematics at Harvard, I was also
a member of the nuclear nonproliferation working group of the Program for Sci-
ence and International Affairs (now the Belfer Center for Science and International
Affairs in the Kennedy School of Government), and we wrote a book, Nuclear Non-
proliferation: The Spent Fuel Problem [10]. About this time I also wrote another
nonmathematical book, Komar-Melamid: Two Soviet Dissident Artists [32].

From 1981–1986 I was Dean of the Graduate School of Rutgers-Newark and on
the doctoral mathematics faculty at Rutgers-New Brunswick. My Rutgers Ph. D.
student John C. M. Nash and I wrote “Cofinite subsets of asymptotic bases for the
positive integers” [21]. Since 1986 I have been Professor of Mathematics at Lehman
College (CUNY) and the CUNY Graduate Center. For the first 5 years (1986–1991)
I was also Provost at Lehman. During 10 years of administrative duty I was, to
Erdős’ satisfaction, still able to find the time to prove and conjecture, and published
many articles. With my CUNY Ph.D. student Xing-De Jia I wrote several articles,
including a new construction of thin minimal asymptotic bases [14].

For many years I was also an adjunct member of the faculty of Rockefeller Uni-
versity in the laboratory of Morris Schreiber. At Rockefeller in 1976, I organized
my first number theory conference. Erdős gave a lecture in which he discussed the
following problem about the number of sums and products of a finite set of positive
integers: Prove that for every " > 0 there exists a number K."/ such that, if A is
a set of k positive integers and k � K."/ then there are at least k2�" integers that
can be represented in the form aC a0 or aa0 with a; a0 2 A. At the time, there were
no results on this problem, but in 1983 Erdős and Szemerédi [9] proved that there
exists a ı > 0 such that the number of sums and products is at least k1Cı :
Eventually, I was able to obtain an explicit value for ı (Nathanson [36]), and the
sum-product problem has become another hot topic in number theory.

A more recent subject is work with my students Brooke Orosz and Manuel Silva,
together with Kevin O’Bryant and Imre Ruzsa, on the comparative theory of binary
linear forms evaluated at finite sets of integers [48]. There is much more to be done
in this area.

Finally, I would like to mention three other very new topics of research. In work
with Blair Sullivan on the Caccetta-Haggkvist conjecture in graph theory [44,50], a
new definition of the height of a subspace in a finite projective space was introduced.
This height function has been further studied by O’Bryant [51] and Batson [1].

In a different direction, I have studied multiplicative functional equations satis-
fied by formal power series that look like quantum integers (for example, [2,38,40]),
and, with Alex Kontorovich, their additive analogs [17].

At the Institute for Advanced Study in 1974–1975, I noticed some articles of
Jack Milnor and Joe Wolf about the growth of finitely generated groups, and thought
that this work that should be investigated as a kind of “nonabelian additive number
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theory.” Thirty six years later, I have finally started to think about this subject, now
called “geometric group theory” and “metric geometry,” and have obtained some
new results [45–47].

Acknowledgements I want to thank David and Gregory Chudnovsky for organizing and editing
this volume. Back in 1982, the Chudnovskys and I, together with Harvey Cohn, created the New
York Number Theory Seminar at the CUNY Graduate Center, and we have been running this
weekly seminar together for more than a quarter century. It has been a pleasure to know them and
work with them.

Most of all, I acknowledge the love and support of my wife Marjorie and children Becky and
Alex.
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Introduction

These Notes originate from some lectures given by the author in the Fall of 2007 at
IAS during the program on Arithmetic Combinatorics. Their purpose was twofold.
The first was to illustrate the interplay between Additive Number Theory and prob-
lems on exponential sums, by reviewing various recent contributions in this general
area and how they relate to several classical problems. The second was to present a
proof of the Gauss sum estimate

max
a2F�

p

ˇ
ˇ
ˇ
ˇ
ˇ

X

x2H
ep.ax/

ˇ
ˇ
ˇ
ˇ
ˇ
< C jH j1�ı

for subgroups H < F�
p , jH j > p" (" > 0 fixed and arbitrary), which is a typical

sample of those developments. My intent here was to make the argument as elemen-
tary and self-contained as possible (which it is, up to the Plunnecke–Ruzsa theory
of set addition).

Therefore, what follows is not written in a homogeneous style. The first three sec-
tions are indeed presented in great detail, while the remainder is rather a survey with
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only statements of the results. Note that this presentation is mostly geared toward the
author’s own research and is certainly far from complete, either from mathematical
or historical perspective (the interested reader may wish to consult books such as
[K-S] or [T-V] for background material). The reference list only serves this exposé
and a more complete bibliography may be found in [K-S] and [T-V].

0 Sum-Product Theorem in Fp

Theorem 1 ([B-K-T] and [B-G-K]).
Given " > 0, there is ı > 0 such that if A � Fp and 1 < jAj < p1�", then

jAC Aj C jA:Aj > cjAj1Cı :

There is the following quantitative statement.

Theorem 2 ([Ga] and [Ka-S]).

jAC Aj C jA:Aj > cmin
�

jAj 14
13 ; p

1
12 jAj 11

12

�

:

Denote

EC.A;B/ D jf.x1; x2; y1; y2/ 2 A2 �B2jx1 C y1 D x2 C y2gj
(additive energy)

E�.A;B/ D jf.x1; x2; y1; y2/ 2 A2 � B2jx1y1 D x2y2gj
(multiplicative energy).

The Sum-Product theorem follows then from:

Proposition 1.

E�.A;A/4 � jAC Aj9jAj2 C 1

p
jAC Aj8jAj5

using the inequality

jA:Aj � jAj4
E�.A/

:

1 Preliminaries from Additive Combinatorics

(Plünnecke–Ruzsa Theory).
We consider subsets of an additive group G;C.
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Lemma 1 (triangle inequality).

jA� Bj � jA� C j jB � C jjC j :

Theorem 1 ([P-R]). Let X;A1; : : : ; Ak � G satisfy

jX C Ai j � ˛i jX j .1 � i � k/:

Then there is X1 � X with

jX1 CA1 C � � � C Akj � ˛1˛2 � � �˛k jX1j:

Corollary 1.

jA1 C � � � C Akj � jA1 CX j � � � jAk CX jjX jk�1 :

Corollary 2 ([Ka-S]). There exists X 0 � X; jX 0j > 1
2
jX j with

jX 0 C A1 C � � � C Akj . jA1 CX j � � � jAk CX jjX jk�1 :

Proof. If Y � X; jY j � 1
2
jX j, then

jAi C Y j
jY j � 2 jAi CX jjX j D 2˛i : .	/

Use [P-R] iteratively.
Construct disjoint set Xs � X s.t.

jXs CA1 C � � � CAk j � 2k˛1 � � �˛kjXsj: .		/

Assume X1; : : : ; Xs obtained. Let Y D Xn.X1 [ : : : [ Xs/. If jY j < 1
2
jX j, set

X 0 D X1 [ : : : [ Xs. From (		)

jX 0 C A1 C � � � C Akj �
X

s0�s
jXs0 C A1 C � � � C Akj � 2k˛1 � � �˛k jX 0j:

If jY j � 1
2
jX j, then .	/. Apply [P-R] to Y ) XsC1 � Y such that

jXsC1 C A1 C � � � C Akj � .2˛1/ � � � .2˛k/jXsC1j:

ut
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Proof of Proposition.
E�.A/ D

X

a;b2A
jaA \ bAj:

Hence, there is b0 2 A and A1 � A, 1 � N � jAj with

jaA\ b0Aj 
 N if a 2 A1
and

jA1jN � E�.A/
jAj : .	/

Case 1.
A1 � A1
A1 � A1 D Fp:

Then, there is � D a1�a2

a3�a4
.ai 2 Ai / s.t.

ˇ
ˇ
ˇ
ˇ

�

.x1; x2; x3; x4/ 2 A41j� D
x1 D x2
x3 � x4

� ˇ
ˇ
ˇ
ˇ
� jA1j

4

p
:

Hence

j.a1 � a2/A1 C .a3 � a4/A1j D j�A1 CA1j � jA1j
2j�A1j2

EC.�A1; A1/
� p:

Estimate

j.a1 � a2/A1 C .a3 � a4/A1j � ja1A1 � a2A1 C a3A1 � a4A1j
ŒP�R�� jAj�3

4Y

iD1
jaiA˙ b0Aj:

From triangle inequality

jaiA˙ b0Aj � jaiAC .aiA\ b0A/j jb0AC .aiA \ b0A/jjaiA\ b0Aj
<
jAC Aj2

N
.since ai 2 A1/:

Hence,

p . jAj�3
� jAC Aj2

N

�4

. jAj�3jAC Aj8jAj8E�.A;A/�4
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since N satisfies .	/
E�.A/4 � 1

p
jAC Aj8 jAj5:

Case 2.
A1 � A1
A1 � A1 6D Fp:

Hence,
A1 �A1
A1 �A1 6�

A1 � A1
A1 � A1 C 1

and there is � D a1�a2

a3�a4
C 1.ai 2 A1/ s.t.

� 62 A1 � A1
A1 � A1 :

Therefore, for any subset A0 � A1
jA0j2 D jA0 C �A0j D j.a1 � a2/A0 C .a1 � a2 C a3 � a4/A0j

� j.a1 � a2/A0 C .a1 � a2/A1 C .a3 � a4/A1j:

Using the Corollary to [P-R], take A0 s.t. X 0 D .a1 � a2/A0 satisfies jX 0j D jA0j >
1
2
jA1j and

jX 0 C .a1 � a2/A1 C .a3 � a4/A1j . j.a1 � a2/A1 CX j j.a3 � a4/A1 CX jjX j
where X D .a1 � a2/A1.

Hence,

jA1j2 
 jA0j2 . jA1 C A1j:j.a3 � a4/A1 C .a1 � a2/A1jjA1j
and

jA1j3 . jAC Aj ja1A1 � a2A1 C a3A1 � a4A1j:
As before, since ai 2 A1

ja1A � a2AC a3A � a4Aj � jAj�3 jAC Aj
8

N 4
:

Therefore,

jAj�3jAC Aj9 & N 4jA1j3 � .N:jA1j/4
jAj �

.�/
Ex.A/

4

jAj5

and
E�.A/4 � jAC Aj9jAj2:

ut
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2 Some Tools from Graph Theory:
The Balog–Szemerédi–Gowers Theorem

Statement. Let G;C be an additive group. There is an absolute constant C such
that the following holds. Let A � G be a finite set andK 2 RC such that

EC.A;A/ >
1

K
jAj3:

Then there is a subset A0 � A such that

jA0j > K�C jAj
jA0 ˙ A0j < KC jA0j:

Remark. Underlying Balog–Szemerédi–Gowers is in fact a result from graph the-
ory, which will be implicit in the argument.

Also, Balog–Szemerédi–Gowers is not restricted to an Abelian setting and there
are variants for general groups, both in discrete and continuous settings, using sim-
ilar proofs (see the book [T-V]).

Sketch of the Proof.

Main idea. We construct a large subset A0 � A, such that whenever x; x0 2 A0,
then there are at least K�C jAj7 representations

x � x0 D x1 � x2 C x3 � x4 C x5 � x6 C x7 � x8 with xi 2 A:
Hence

jA0 � A0j � jAj8
K�C jAj7 :

The construction.

Let !.x/ D jf.x1; x2/ 2 A2jx D x1 � x2gj for x 2 G.
Hence,

X

x2G
!.x/ D jAj2

X

!.x/2 D EC.A/:

Define

D D
�

z 2 Gj!.z/ > 1

2K
jAj
�

(the ‘popular’ differences).
Then

1

K
jAj3 <

X

z2D
!.z/2 C

�
1

2K
jAj
�

jAj2
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and
X

z2D
!.z/2 >

1

2K
jAj3:

Define the following (directed) graph R � A � A

.x; y/ 2 R, x � y 2 D:

Hence,

jRj D
X

z2D
!.z/ >

1

2K
jAj2:

Denote Rx ; Ry the sections of R. Thus,

1

2K
jAj2 <

X

y2A
jRy j � jAj 12

0

@
X

y2A
jRy j2

1

A

1
2

and
X

y2A
jRy j2 > 1

4K2
jAj3: (1)

Define
Y D f.x; x0/ 2 A � Aj jRx \Rx0 j < � jAjg

where we take
� D 10�3K�2:

Then, X

y2A
j.Ry � Ry/ \ Y j D

X

.x;x0/2Y
jRx \ Rx0 j < � jAj3 (2)

and from (1), (2)

X

y2A
jRy j2 > 1

8K2
jAj3 C 1

8K2�

X

y2A
j.Ry � Ry/\ Y j:

Therefore, there is y
0
2 A with

jRy
0
j2 > 1

8K2
jAj2 C 10j.Ry

0
�Ry

0
/ \ Y j

) jRy
0
j > 1

3K
jAj:

The set A0 is defined by

A0 D
�

x 2 Ry
0
j j.fxg � Ry

0
/\ Y j < 1

3
jRy

0
j
�

:
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Since
1

3
jRy

0
nA0j jRy

0
j � j.Ry

0
� Ry

0
/\ Y j < 1

10
jRy

0
j2

we have

jA0j > 1

2
jRy

0
j > 1

6K
jAj:

Take any x1; x2 2 A0. Then,

jfx 2 Ry
0
j.x1; x/ 62 Y and .x2; x/ 62 Y gj >

�

1 � 2
3

�

jRy
0
j

and
jRx1

\ Rxj > � jAj; jRx2
\Rx j > � jAj

for at least 1
3
jRy

0
j elements x 2 Ry

0
.

Write

x1 � x2 D .x1 � x/ � .x2 � x/
D .x1 � y1/� .x � y1/ � .x2 � y2/C .x � y2/

where yi 2 Rxi
\Rx .i D 1; 2/:

Since x1 � y1; x � y1; x2 � y2; x � y2 2 D, each difference has at least 1
2K
jAj

representations in A� A. Hence, there are at least

1

3
jRy

0
j:.�:jAj/2:

�
1

2K
jAj
�4

& K�9jAj7

representations

x1 � x2 D z1 � z2 C z3 � z4 C z5 � z6 C z7 � z8

with zi 2 A, as claimed.
This proves the Balog–Szemerédi–Gowers theorem.

3 Exponential Sum Estimate

We will establish the following estimate on Gauss sums.

Theorem 1. Let H be a multiplicative subgroup of F�
p and jH j > p" for some

" > 0. Then,

max
.a;p/D1

ˇ
ˇ
ˇ
ˇ
ˇ

X

x2H
ep.ax/

ˇ
ˇ
ˇ
ˇ
ˇ
< C jH j1�ı where ı D ı."/ > 0:
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Denote
Of .k/ D

X

x2Fp

ep.kx/f .x/ .k 2 Fp/

the Fourier transform of f W Fp ! C.

Lemma 2 (harmonic analysis). Let � W Fp ! Œ0; 1� be a probability measure
.
P
�.x/ D 1/.

Denote for ı > 0
ƒı D fk 2 Fpj j O�.k/j > p�ıg:

Then,

jf.k1; k2/ 2 ƒı jk1 � k2 2 ƒ2ıgj > p�2ı jƒı j2:

Proof. Let j O�.k/j D ck O�.k/ with ck 2 C; jckj D 1. We have

jƒı j:p�ı <
X

k2ƒı

ck O�.k/ D
X

x2Fp

2

4
X

k2ƒı

ckep.kx/

3

5�.x/

and

jƒı j2p�2ı <
X

x2Fp

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

X

k2ƒı

ckep.kx/

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

2

�.x/ �
X

k1;k22ƒı

j O�.k1 � k2/j:

ut
Corollary 3.

EC.ƒı ; ƒı/ > p�4ı jƒı j4
jƒ2ı j :

Corollary 4. There is the following dichotomy. Let � > ı > 0.
Either

jƒ2ı j > p� jƒı j
or there is ƒ � ƒı such that

jƒj > p�C� jƒı j
jƒCƒj < pC� jƒj:

Proof. Corollary 1+ Balog–Szemerédi–Gowers. ut
Let H < F�

p ; jH j D p˛ for some ˛ > 0.
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Definition. A probability measure � on Fp is H -invariant provided

O�.k/ D O�.hk/ for all k 2 Fp ; h 2 H:

Example.

�.x/ D
(

1
jH j if x 2 H
0 if x 62 H: :

Main Proposition.

For all � < 1 and ı > 0, there is ı0 D ı0.˛; �; ı/ > 0 such that

ƒı0 6D f0g ) jƒı j > p�:
Here, ƒı D ƒı .�/, where � is an arbitrary H -invariant measure.

The argument gives ı0.˛; �; ı/ D ı

exp. 1
˛.1��/

/C
.

The limitation of the method: jH j D p˛ with ˛ 
 1
log logp (see [B1]).

Proof of Theorem using Proposition.

Take � D 1 � ˛
3
; ı D ˛

4
) ı0, according to the Proposition.

Apply the Proposition with � D 1
jH j1H .

Assume j O�.a/j > p�ı0

for some a 2 F�
p ) ƒı0 6D f0g.

Hence, jƒı j > p� )

p��2ı <
X

k2Fp

j O�.k/j2 D p
X

x2Fp

�.x/2 D p

jH j D p
1�˛

(contradiction).

Proof of the Main Proposition.

By H -invariance:ƒı D H:ƒı .
Hence,

ƒı 6D f0g ) jƒı j � p˛:
Thus, the statement certainly holds for � D ˛.

Assume now we established the statement for some � < 1. Thus

.	/ 8ı > 0; 9ı0 > 0 such that ƒı0 6D f0g ) jƒı j > p�

for arbitraryH -invariant �.
We will then derive the statement for �1 D �C cmin.�; 1 � �/.
Take ı > 0 (small enough))

.�/
ı0 < ı and 1

2
ı0 )
.�/
ı00.

Assume ƒı00 6D f0g ) jƒ 1
2
ı0 j > p� .
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Apply dichotomy from Corollary 2. Fix ı < � < � to be specified. There are 2
cases

jƒı0 j > p� jƒ 1
2
ı0 j ) jƒı j > p�C� and we are done

%
&

9ƒ � ƒ 1
2
ı0 \ F�

p with

(

jƒj > p�C� jƒ 1
2
ı0 j > p��C�

jƒCƒj < pC� jƒj
where C is the constant from Corollary 2.

Since jƒCƒj < pC� jƒj, the sum-product proposition implies

E�.ƒ/4 � jƒCƒj9jƒj2 C 1

p
jƒCƒj8jƒj5

hence,

E�.ƒ/� p3C�
�

jƒj 11
4 C p� 1

4 jƒj 13
4

�

: (		)

Denote ��.x/ D �.�x/ and

.� 	 ��/.x/ D
X

y2Fp

�.x � y/��.y/

the (additive) convolution of � and ��. Hence,

2� 	 ��.k/ D j O�.k/j2:

Define a new probability measure 	 on Fp by

	.x/ D 1

jƒj
X

y2ƒ
.� 	 ��/

�
x

y

�

:

Hence,

O	.k/ D 1

jƒj
X

y2ƒ
j O�.yk/j2:

Since ƒ � ƒ ı0

2

, it follows

O	.1/ D 1

jƒj
X

y2ƒ
j O�.y/j2 > p�ı0

) ƒı0.	/ 6D f0g
)
.�/
jƒı.	/j > p�:
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Denote
Qƒ D ƒı.	/; hence j Qƒj > p�:

Then,
X

k2 Qƒ
O	.k/ > p�ı j Qƒj

)
X

y2ƒ;k2 Qƒ
j O�.yk/j2 > p�ı jƒj:j Qƒj:

Denote
!.z/ D jf.y; k/ 2 ƒ � Qƒjyk D zgj:

Thus,
X

!.z/j O�.z/j2 > p�ı jƒj:j Qƒj

) !.ƒı / >
1

2
p�ı jƒj:j Qƒj:

Also
!.ƒı / D jf.y; k/ 2 ƒ � Qƒjyk 2 ƒıgj

� jƒı j 12E�.ƒ; Qƒ/ 1
2

� jƒı j 12E�. Qƒ/ 1
4E�.ƒ/

1
4

� jƒı j 12 j Qƒj 34E�.ƒ/
1
4 :

We use here the inequalities

E.A;B/ � E.A;A/ 1
2 :E.B;B/

1
2

and
E.A;A/ � jAj3:

Therefore,
p�ı jƒj j Qƒj 14 � jƒı j 12E�.ƒ/

1
4

and boundingE�.ƒ/ using .		/ gives

p�ı jƒj j Qƒj 14 � pC� jƒı j 12 .jƒj 11
16 C p� 1

16 jƒj 13
16 /:

Recalling that
jƒj > p��C�

j Qƒj > p�
it follows that either

jƒı j > p 9
8��8C� > p

10
9 �
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or
jƒı j > p 1

8 .1C7�/�8C� > p
1C9ı

10

(letting � 
 min.�; 1 � �/ be small enough).
This completes the proof. ut

4 Additive Relations in Multiplicative Groups

Obtaining nontrivial bounds on Gauss sums is essentially equivalent with estimates
on the number of additive relations.

For A � Fp and k 2 ZC, define

E.k/.A/ D jf.x1; : : : ; x2k/ 2 A2k jx1 C � � � C xk D xkC1 C � � � C x2kgj:

Thus,
E.2/.A/ D EC.A;A/:

Lemma 1. Assume A satisfies an exponential sum bound

max
a2F�

p

ˇ
ˇ
ˇ
ˇ
ˇ

X

x2A
ep.ax/

ˇ
ˇ
ˇ
ˇ
ˇ
< p�"jAj for some " > 0:

Then

E.k/.A/ D
�
1

p
C 0.p�2k"/

�

jAj2k:

In particular,

E.k/.A/ <
2

p
jAj2k for k >

1

2"
:

Proof. Use the circle method. Thus

E.k/.A/ D 1

p

p�1
X

aD0

ˇ
ˇ
ˇ
ˇ
ˇ

X

x2A
ep.ax/

ˇ
ˇ
ˇ
ˇ
ˇ

2k

and isolating the contribution of a D 0, we get
ˇ
ˇ
ˇ
ˇ
ˇ
E.k/.A/� jAj

2k

p

ˇ
ˇ
ˇ
ˇ
ˇ
< max
a2F�

p

ˇ
ˇ
ˇ
ˇ
ˇ

X

x2A
ep.ax/

ˇ
ˇ
ˇ
ˇ
ˇ

2k

< p�2k"jAj2k:

ut
Conversely, we have the following:

Lemma 2. Let H < F�
p and assume

E.2k/.H/ < p
� 1

2 �ı jH j4k
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for some k 2 ZC and ı > 0. Then,

max
a2F�

p

ˇ
ˇ
ˇ
ˇ
ˇ

X

x2H
ep.ax/

ˇ
ˇ
ˇ
ˇ
ˇ
� p� ı

4k2 jH j:

Proof. Write
ˇ
ˇ
ˇ
ˇ
ˇ

X

x2H
ep.ax/

ˇ
ˇ
ˇ
ˇ
ˇ

2k

D
X

x2Fp

!.z/ep.az/

with

!.z/ D jf.x1; : : : ; x2k/ 2 H 2k jx1 C � � � C xk � xkC1 � � � � � x2k D zgj:

Since H is a multiplicative group

!.z/ D !.xz/ if x 2 H; z 2 Fp :

Also X

z

!.z/2 D k!k22 D E2k.H/:

ut
Next

ˇ
ˇ
ˇ
ˇ
ˇ

X

x2H
ep.ax/

ˇ
ˇ
ˇ
ˇ
ˇ

4k2

D

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

1

jH j

2

6
4

X

z2Fp
x2H

!.z/ep.axz/

3

7
5

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

2k

� 1

jH j2k

0

@
X

z2Fp

!.z/

ˇ
ˇ
ˇ
ˇ
ˇ

X

x2H
ep.axz/

ˇ
ˇ
ˇ
ˇ
ˇ

1

A

2k

(Hölder)� 1

jH j2k
�X

!.z/
�2k�1

2

4
X

z

!.z/

ˇ
ˇ
ˇ
ˇ
ˇ

X

x2H
ep.axz/

ˇ
ˇ
ˇ
ˇ
ˇ

2k
3

5

D jH j4k.k�1/
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

X

z;z0

!.z/!.z0/ep.azz0/

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

(Hadamard)� jH j4k.k�1/k!k22
p
p < jH j4k2�ı

proving Lemma 2.
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Recall the classical bound

max
a2F�

p

ˇ
ˇ
ˇ
ˇ
ˇ

X

x2H
ep.ax/

ˇ
ˇ
ˇ
ˇ
ˇ
� ppjH j;

which is nontrivial for jH j > pp.
Prior to [B-G-K], completely explicit Gauss-sum estimates (with power-saving)

for smaller groups (up to jH j>p 1
4

C"/ had been obtained using variants of
Stepanov’s method (Garcia–Voloch, Shparlinski, Heath–Brown, Heath-Brown-
Konyagin, Konyagin). In particular, one has

Proposition 1. Let H < F�
p and jH j < p2=3. Then,

E.2/.H/� jH j 52

(see [K-S]). The proof is a variant of Stepanov’s method.

Corollary 1. If H < F�
p and jH j > p 1

3
C". Then

max
a2F�

p

ˇ
ˇ
ˇ
ˇ
ˇ

X

x2H
ep.ax/

ˇ
ˇ
ˇ
ˇ
ˇ
� p� 3

8 "jH j:

Proof. By Proposition 1

E.2/.H/� jH j4p� 3
2
. 1

3
C"/

and Lemma 2 applies with k D 1; ı D 3
2
". ut

Proposition 2 ([Kon]). Let H < F�
p , jH j < p 1

2 . Then for k 2 ZC

E.k/.H/� jH j2k�2C21�k

:

This allows us to replace the 1
3

-exponent by 1
4

.

Corollary 2 ([Kon]). Let H < F�
p and p

1
4 C" < jH j < p 1

2 . Then

max
a2F�

p

ˇ
ˇ
ˇ
ˇ
ˇ

X

x2H
ep.ax/

ˇ
ˇ
ˇ
ˇ
ˇ
< p�"1 jH j

with

"1 D max
k2ZC

1

4k2

�

2"�
�
1

2
C 2"

�

4�k
�

:

The [B-G-K] exponents are still explicit but rather poor.
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Combining Proposition 2 with the sum-product techniques, one gets for instance.

Proposition 3 ([B-G]). Let H < F�
p and jH j > p 1

4 . Then,

max
a2F�

p

ˇ
ˇ
ˇ
ˇ
ˇ

X

x2H
ep.ax/

ˇ
ˇ
ˇ
ˇ
ˇ
< jH j0;999984073Co.1/:

For even smaller groups, one has:

Proposition 4. Let H < F�
p and jH j > p˛. Then

max
a2F�

p

ˇ
ˇ
ˇ
ˇ
ˇ

X

x2H
ep.ax/

ˇ
ˇ
ˇ
ˇ
ˇ
� p�e�5k jH j

if k � 4 is a power of 2 satisfying

˛k >

�
k

2

�0;968

:

Present technology requires

log jH j
logp

>
C

.log logp/

for some constant C . See [B1].
On the other hand, there is the following conjecture due to Montgomery,

Vaughan, and Wooley (partly based on numerics).

Conjecture ([M-V-W]).

max
.a;p/D1

ˇ
ˇ
ˇ
ˇ
ˇ

X

x2H
ep.ax/

ˇ
ˇ
ˇ
ˇ
ˇ
< min

�

p
1
2 ; C.logp/

1
2 jH j 12

�

:

According to this conjecture, jH j
logp ! 1 would imply equidistribution of H

(mod p).

Problem. (related to Furstenberg’s conjecture �2;�3).
Let Gp be the group generated by 2 and 3 in F�

p , thus,

Gp D h2; 3i < F�
p :

Does Gp become equidistributed for p !1?
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Remark.
ordp.2/C ordp.3/

logp
!1 for p !1

(Corvaja–Zannier, based on the subspace theorem).
See also [B-L-M-V] for recent developments.

5 Multilinear Exponential Sums

The [B-G-K] argument provides in fact more general results for products of arbitrary
sets Aj � F�

p .

Theorem 1 ([B-G-K], [B-G]). Let k � 4 be a power of 2 and A1; : : : ; Ak � F�
p

satisfy

jA1j : : : jAkj > p. k
2
/0;968

:

Then ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

X

x12A1;:::;xk2Ak

ep.x1 : : : xk/

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

� p�e�5k jA1j � � � jAkj:

Recall the classical (Hadamard) inequality for k D 2
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

X

x2A;y2B
ep.xy/

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

� jAj 12 jBj 12p 1
2 :

This inequality is nontrivial provided jAj:jBj > p.
A multilinear analogue with sharp entropy requirement on the sources is given

by the following:

Theorem 2 ([B1]). Assume 0 < ı < ı0 < 1
4

and k � 3.
There is

ı0 >
�
ı

k
e�1=ı0

�Ck

such that if A1; : : : ; Ak � Fp satisfy

(i) jAi j > pı0 for i D 1; : : : ; k
(ii) jA1j � � � jAkj > p1Cı .

Then
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

X

x12A1;:::;xk2Ak

ep.x1 : : : xk/

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

< p�ı0 jA1j � � � jAkj:
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6 Extensions to ‘Almost Groups’

New estimates on exponential sums involving exponential functions may be
obtained as well.

Theorem 1. For all ı > 0, there is ı0 > 0 such that if � 2 ZC satisfies

.�; p/ D 1 and Op.�/ � t > pı

.Op.�/ D multiplicative order of � mod p)

then

max
.a;p/D1

ˇ
ˇ
ˇ
ˇ
ˇ

tX

sD1
ep.a�

s/

ˇ
ˇ
ˇ
ˇ
ˇ
< tp�ı0

Thus the sum may be incomplete. This result has many applications (see [K-S]),
in particular.

Number fields.
Minimum norm representatives in residue classes and the Euclidean division

algorithm in algebraic number fields (Egami’s problem).

Coding theory.
The Odlyzko–Stanley enumeration problem.

Hyperelliptic curves.
Supersingularity of mod p reduction (Kodama’s problem).
See [K-S] for details.

7 Sum-Product Theorem and Gauss Sums in Arbitrary
Finite Fields

The results for prime fields generalize as follows.

Theorem 1 ([B-K-T], explicit exponents in [K-S]). Assume S � Fq ; jS j > qı

(ı > 0 arbitrary) and
jS C S j C jS:S j < KjS j:

Then there is a subfield G of Fq and � 2 F�
q such that

jGj < KC jS j

and
jSn�Gj < KC

where C D C.ı/.
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Exponential sum bounds in Fq.

q D pm T r.x/ D x C xp C � � � C pm�1

 .x/ D ep.T r.x// additive character.

Theorem 2 ([B-C]). Let g 2 F�
q of order t and

t � t1 > q"
max

1��<m
�jm

gcd .p� � 1; t/ < q�"t

." > 0 arbitrary).
Then

max
a2F�

q

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

X

j�t1
 .agj /

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

< Cq�ı t1

where ı D ı."/ > 0.

8 The Case of General Polynomial (mod p)

We first recall Weil’s estimate.

Theorem 1 (Weil). Let f .x/ 2 FpŒX� of degree d . Then

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

X

1�x�p
ep.f .x//

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

� dpp:

Problem. Obtain non-trivial estimates for d � pp.

Sum-product technology enables one to obtain such results for special (sparse)
polynomials (as considered by Mordell, cf. [Mor]).

Theorem 2 ([B2]). Let

f .x/ D
rX

iD1
aix

ki 2 ZŒX� and .ai ; p/ D 1

such that

.ki ; p � 1/ < p1�ı .1 � i � r/
.ki � kj ; p � 1/ < p1�ı .1 � i 6D j < r/:
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Then
ˇ
ˇ
ˇ
ˇ

p
X

xD1
ep .f .x//

ˇ
ˇ
ˇ
ˇ
< Cp1�ı0

where ı0 D ı0.r; ı/ > 0 .ı > 0 arbitrary).

The following example shows that the second condition is necessary.

Example (Cochrane–Pinner). Let

f .x/ D x p�1
2 C1 � x:

Then
X

ep.f .x// D p � 1
2
C

X

. x
p
/D�1

ep.�2x/

D p � 1
2
C 0.pp/:

Theorem 3. Let �1; : : : ; �r 2 F�
p satisfy .ı > 0 arbitrary)

0.�i / > pı .1 � i � r/
0.�i�

�1
j / > pı .1 � i 6D j � r/:

Then, for t > pı

max
ai 2F�

p

ˇ
ˇ
ˇ
ˇ
ˇ

tX

sD1
ep

 
rX

iD1
ai�

s
i

!ˇ
ˇ
ˇ
ˇ
ˇ
< Cp�ı0

t

where ı0 D ı0.r; ı/.

Applications to cryptography and distributional properties of Diffie–Hellman
triples f�x; �y ; �xyg.
Power generators unC1 D uen.
Blum-Blum-Shub generator .e D 2/.

Theorems 2 and 3 rely on an extension of the sum-product theorem to Cartesian
products.

Theorem 4. Fix " > 0. There is ı0.ı/ ı!0�! 0 such that if

A � Fp � Fp .p� < jAj < p2�"/

and
jAC Aj C jA:Aj < pı jAj

then
p1�ı0

< jAj < p1Cı0
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and there is a line L � Fp � Fp of the form

L D fag � Fp ; L D Fp � fag;

L D f.x; ax/jx 2 Fpg
such that

jA\ Lj > p1�ı0

:

9 The Sum-Product in Zq D Z=qZ

Because of the presence of subrings when q is composite, additional restrictions on
A � Zq are needed.

The following gives a uniform statement in the modulus q.

Theorem 1 ([B3]). Given 0 < ı1 < 1, 0 < ı2 < 1, there are " D ".ı1; ı2/ > 0
and � D �.ı1; ı2/ > 0 such that the following holds.

Let A � Zq (q arbitrary and large enough) satisfy:

(i) jAj < q1�ı1

(ii) j
q1
.A/j > qı2

1 for all q1jq with q1 > q" where 
q1
W Zq ! Zq1

is the quotient
map.

Then

jAC Aj C jA:Aj > q� jAj:

Remark. Let q D pm1

1 p
m2

2 : : : be the prime factorization. Then

Zq ' Z
p

m1
1

�Z
p

m2
2

� : : :

We first establish the theorem for q D pm a prime power (with uniformity in p and
m) and then recombine the factors.

Gauss sums (mod q).

Theorem 2 ([B4]). For all " > 0, there is ı D ı."/ such that if H < Z�
q

(q arbitrary) satisfies
jH j > q":

Then

max
	2Z�

q

ˇ
ˇ
ˇ
ˇ
ˇ

X

x2H
eq.�x/

ˇ
ˇ
ˇ
ˇ
ˇ
< q�ı jH j:

Corresponding statement for incomplete sums is more restrictive.
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Example. q D p2.
Take g D 1C p. Then

gs  1C sp .mod q/:

Hence ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

X

1�s<p
5

eq.g
s/

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ


 p:

Theorem 3 ([B3]). Given " > 0, there is ı D ı."/ > 0 such that the following
holds.

Let q 2 ZC be large enough and g 2 Z�
q satisfy

ordq1
.g/ > q"1 whenever q1jq; q1 > qı :

Then for t > q"

max
	2Z�

q

ˇ
ˇ
ˇ
ˇ
ˇ

X

1�s�t
eq.�g

s/

ˇ
ˇ
ˇ
ˇ
ˇ
< t1�ı :

Special Case. q D pm (p fixed) and g fixed .m!1/.
Remark. ordpm.g/ 
 pm.

There is the following more precise result due to Korobov.

Theorem 4 ([Kor]). Given p and g 2 ZC; g � 2, there is a constant � D �.p; g/

such that form!1, t < q D pm

max
.	;p/D1

ˇ
ˇ
ˇ
ˇ
ˇ

tX

sD1
epm.�gs/

ˇ
ˇ
ˇ
ˇ
ˇ
� t: exp

�

�� .log t/3

.log q/2

�

:

This estimate is non-trivial for log t � .log q/
2
3 .

Sketch of the Proof.

Fix d and take m1 2 ZC with dm1 < m � .d C 1/m1.
Take s1 < pm1 such that gs1  1.modpm1/. Hence gs1 D 1C bpm1 .
Apply the binomial formula

gks1 D .1C bpm1/k 
X

j�d

�
k

j

�

bjpjm1 .modpm/:

This is a polynomial in k of degree d < m
m1

.
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Take m1 with pm1 < t
1
4 and N 
 t 1

4 . Write
X

1�x;y�N
epm.�gs1xy/ D

X

1�x;y�N
e .F.x; y//

where

F.x; y/ D
X

j�d

�
xy

j

�

bj
1

pm�jm1
:

Apply then Vinogradov exponential sum bound.
) nontrivial estimate provided d 2 D o.logN/, hence for

m2 D o �.log t/3
	

:

There is the following general multilinear bound for composite modulus.

Theorem 5 ([B3]). Given " > 0, there are ı > 0 and k 2 ZC such that if
A1; : : : ; Ak � Zq (q arbitrary) satisfy

jAi j > q" .1 � i � k/

and also

max
	2Zq1

jAi \ 
�1
q1
.�/
ˇ
ˇ
ˇ < q�"

1 jAi j whenever q1jq; q1 > qı :

Then ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

X

x12A1;:::;xk2Ak

eq.x1 : : : xk/

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

< q�ı jA1j � � � jAkj:

10 Exponential Sums in Finite Commutative Rings

Let R be a finite commutative ring with unit and assume

jRj D q with no small prime divisors:

Denote R� D invertible elements.

Theorem 1 ([B5]). Let H < R�; jH j > qı (ı arbitrary).
For all " > 0, there is "0 D "0."/! 0 such that one of the following alternatives

holds

(1) maxX 6DX0

ˇ
ˇ
P

x2H X .x/ˇˇ < jH j1�"

(X D additive character of R):
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(2) There is nontrivial ideal I in R with

jH \ .1C I /j > jH j1�"0

:

(3) There is a nontrivial subring R1 of R, such that 1 2 R1 and

jH \ R1j > jH j1�"0

:

Application to Heilbronn sums (dv. [Od]).

Theorem 2 ([B4]). For givenm 2 ZC; m � 2 and r � 1, there is ı D ı.m; r/ > 0
such that ˇ

ˇ
ˇ
ˇ
ˇ

p
X

xD1
epm

 
rX

sD1
asx

spm�1

!ˇ
ˇ
ˇ
ˇ
ˇ
< p1�ı

for p (prime) sufficiently large and .a1; : : : ; ar / 2 Zrpmnf0g.

Remark. Since .x C py/pm�1  xpm�1
.mod pm/, the sum is complete.

Earlier results.

Heath–Brown,(1995), ı.2; 1/ D 1
12

([H-B]).
Heath–Brown, Konyagin, (2000), ı.2; 1/ D 1

8
([H-K]).

Malykhin-Bourgain-Chang, (2005), ı.m; 1/ for generalm. (see [B-C3]).

11 Euclidean Algorithm in Algebraic Number Fields

Let K be a given algebraic number field and O its maximal order.
Let I be an integral ideal and ˛ 2 O=I . Define

NI .˛/ D min
x2˛ jN.x/j

(the minimal norm (taken in Q) of all elements of ˛.)
Define further

L.K; I / D max
˛2.O=I/�

NI .˛/:

One has always the inequality

L.K; I / � N.I/ D jO=I j:

K is an Euclidean field if
L.K; I / < N.I /

for all principal ideals I .
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Only a few examples are known. For instance (cf. [K-S]), the only Euclidean
quadratic fields Q.

p
d/ are obtained for

d 2 f�11;�7;�3;�2;�1; 2; 3; 5; 6; 7; 11; 13; 17; 19; 21; 29; 33; 37; 41; 57; 73g:

However, if K has an infinite group U.K/ of units or equivalently, if

r1 C r2 � 1 > 0
where ŒK W Q� D n D r1C2r2, with r1 (resp. r2) the number of real (resp. complex)
embeddings of K in C, then K is ‘almost Euclidean’ in the sense that

L.K; I / D o.N.I //

for almost all ideals I (Egami’s problem).
(results by Konyagin–Shparlinski, Bourgain–Chang, . . . ).
More precise statements obtained in [B-C2].

Prime ideal case.

Denote 
K.T / the number of prime ideals of norm �T . Then


K.T / D .1C o.1// T

logT
:

Theorem 1 ([B-C2]). For all " > 0, there is ı D ı.";K/ > 0 such that for T !1

jfP jP prime ideal with N.P/ � T;L.K;P/ > N.P/1�ıgj < T ":

General integral ideals.

DenoteM.T / the number of ideals I in O of norm N.I/ � T . Then

M.T / D .h.K/� C o.1//T
where

h.K/ D class number

� D �.K/ D 2r1.2
/r2R.K/jd .K/j� 1
2 w.K/�1

R.K/ D regulator

d.K/ D discriminant

w.K/ D jE.K/j:

Theorem 2 ([B-C2]). There is ı0 D ı0.ı/! 0 with ı ! 0 such that

L.K; I / < N.I /1�ı

for ideals I outside a sequence of asymptotic density at most ı0.
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Main idea.

Consider the quotient map ' W O ! O=I .
If

I D
Y

Pa.P/ (prime ideal factorization)

then
O=I D

Y

O=Pa.P/:
Let U D U.K/ be the group of units and consider

G D '.U / < .O=I/�:

The main issue is to establish equidistribution results of G in O=I .

12 Application to QUE

We refer the reader to [K-R] for background material.

The Quantum Cat Map.

Let A D
�
a b

c d

�

2 SL2.Z/ and consider the toral automorphism T 2 ! T 2W
x 7! Ax.

The classical evolution on C1.T 2/ is defined by

f ! f ı A:

We describe next the quantization of Hannay and Berry. Assume

ab  cd  0 .mod 2/:

Let N 2 ZC and consider the Hilbert space

HN D L2.ZN / ZN D Z=NZ

with inner product

h�; i D 1

N

X

x2ZN

�.x/  .x/:

We associate to f D P

n2Z2
Of .n/e2�inx in C1.T 2/ its ‘quantization’ OpN .f /

acting on HN and defined by

OpN .f / D
X

n2Z2

Of .n/TN .n/
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where

TN .n/�.x/ D ei�
n1n2

N e2�i
n2x

N �.x C n1/:
One may then assign to A a unitary operatorUN .A/ called ‘quantum propagator’

satisfying the ‘exact’ Egorov theorem

UN .A/
�OpN .f /UN .A/ D OpN .f ı A/:

We are concerned with the eigenfunctions of UN .A/.
In the context of cat maps, Schnirelman’s general theorem takes the following

form.
Let f 2 C1.T 2/ and let for eachN 2 ZC, f j g1�j�N be an orthonormal basis

of HN of eigenfunctions of UN .A/. Then there is a subset J.N / � f1; : : : ; N g such
that

#J.N /

N
! 1 for N !1

and

hOpN .f / j ;  j i !
Z

T2

f

when j 2 J.N /;N !1.
The result of Kurlberg and Rudnick [K-R] goes beyond this, showing that there

is N � ZC of asymptotic density 1, such that

max
j

ˇ
ˇ
ˇ
ˇ
hOpN .f / j ;  j i �

Z

T2

f

ˇ
ˇ
ˇ
ˇ

N!1;N2N������! 0:

More precisely they obtain the inequality

NX

jD1

ˇ
ˇ
ˇ
ˇ
< Op

N
.f / j ;  j i �

Z

T2

f

ˇ
ˇ
ˇ
ˇ

4

� N.logN/14

ord.A;N /2

where ord.A;N / denotes the order of A (mod N ).
Next they show that

ord.A;N /� N
1
2 exp

�

.logN/ı
�

(	)

for some ı > 0 and N restricted to N � ZC of asymptotic density 1.

Problem ([K-R]). What if ord.A;N / < N
1
2 ?

It turns out one may now deal with the case ord.A;N / > N " for any " > 0. The
following results are obtained in [B5].
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Proposition 1. [B6] For all " > 0, there is ı > 0 such that if N is prime and
ord.A;N / > N ", then

max
 
jhTN .n/ ; ij < N�ı

with  a normalized eigenfunction of UN .A/.

Theorem 2. [B6] (N prime).
For all " > 0, there is ı > 0 and a sequence S" of primes such that

#fN 2 S"jN < T g � T "

and for given f 2 C1.T 2/

max
 

ˇ
ˇ
ˇ
ˇ
hOpN .f / ; i �

Z

T2

f

ˇ
ˇ
ˇ
ˇ
< N�ı

for N a sufficiently large prime outside S".
Theorem 3. [B6] (N general).

There is a density 1 sequence N � ZC and ı > 0 such that for all observables
f 2 C1.T 2/

max
 

ˇ
ˇ
ˇ
ˇ
hOpN .f / ; i �

Z

T2

f

ˇ
ˇ
ˇ
ˇ
< CfN

�ı

for N 2 N .

Sketch of the Proof of Proposition 1.

N D p (prime).
K D real quadratic field containing eigenvalues of A (units).
O D maximal order of K .
P D prime of K lying above p.
Denote

Kp D O=P '
(

Fp if p splits

Fp2 if p is inert:

Diagonalize A overKp. Thus

A0 D
�

" 0

0 "�1
�

" 2 K�
p:

Problem reduces then to an estimate on the number of solutions of the following
system in Kp.

8

<̂

:̂

P4`
sD1.�1/s"js D 0

4P̀

sD1
.�1/s"�js D 0

with .j1; : : : ; j4`/ 2 f1; : : : ; tg4` and t D ordKp
."/.
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Use of exponential sum bounds with ` taken large enough. We distinguish 2
cases.

Split Case. Kp D Fp .
Bounds on

Pt
jD1 ep.a1"j C a2"�j /. Apply theorems 3 from Sect.Ṡ8.

Inert Case. Kp D Fp2 .
Bounds on

Pt
jD1 ep

�

T r.a1"
j /C T r.a2"�j /

	

.
Apply Theorem 2 from Sect. 7 and Theorem 3 from Sect. 8. (2 further cases must

be distinguished in view of the condition in Theorem 2, Sect. 7.)
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Can You Hear the Shape of a Beatty Sequence?

Ron Graham and Kevin O’Bryant

Summary Let K.x1; : : : ; xd / be a polynomial. If you are not given the real
numbers ˛1; ˛2; : : : ; ˛d , but are given the polynomial K and the sequence an D
K.bn˛1c; bn˛2c; : : : ; bn˛d c/, can you deduce the values of ˛i? No, it turns out, in
general. But with additional irrationality hypotheses and certain polynomials, it is
possible. We also consider the problem of deducing ˛i from the integer sequence
.bb� � � bbn˛1c˛2c � � �˛d�1c˛d c/1nD1.

Keywords Beatty sequence � Generalized polynomial

Mathematics Subject Classifications (2010). 37A15, 11B75

1 Introduction

If you are given a sequence of integers .an/1nD1 and told that the sequence was gen-
erated by the formula an D bn˛1cbn˛2c for some real numbers ˛1; ˛2, is it possible
to determine ˛1 and ˛2? In other words, what are the solutions .˛1; ˛2; ˇ1; ˇ2/ to
the infinite system of equations

bn˛1cbn˛2c D bnˇ1cbnˇ2c .n 2 N/‹

A generalized polynomial is defined to be any formula built up from the un-
knowns x1; x2; : : : , the real numbers, and the operations of addition, multiplication,
and the floor function. These have arisen recently in ergodic theory (e.g., [1, 3, 4]),
particularly in connection with rotations on nilmanifolds.
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The first problem we are concerned with is, given a sequence .an/1nD1 of integers
and a generalized polynomialG. Nx/, to describe the set of N̨ 2 Rd such that

8n � 1; G.n N̨ / D an:

A few examples will help to clarify the difficulty in dealing with generalized poly-
nomials. First, we note that to determine real numbers from an integer sequence,
we must use the tail of the sequence, i.e., limits must be involved in some form.
As a first example, consider the sequence an D n � 1 and the generalized poly-
nomial G. Nx/ D bx1c C bx2c. For any irrational ˛1 and ˛2 D 1 � ˛1, we have
G.n˛1; n˛2/ D an for all positive integers n. Another curious example is given
by G.x1; x2; n/ D bbnx1c x2c, which satisfies (among very many other sporadic
relations)

8n 2 Z; G.3=7; 2=9; n/ D G.1=3; 2=7; n/:
I. Håland Knutson [personal communication] notes that

G.n/ D bbp2nc2p2nc � bp2nc2 � 2n2 C 1 D
�

1; n D 0;
0; n 2 Z n f0g.

In this work, we restrict ourselves to generalized polynomials with a particular
structure.

Specifically, let K. Nx/ be a (classical) polynomial, and set an D K.bn Ňc/ (the
floor function applied to each component of the vector Ň) for some ‘sufficiently’
irrational Ň. We attempt to find all nontrivial solutions to the system of equations

8n � 1; K.bn˛c/ D an:

With varying success we treat linear polynomials x1 C � � � C xd , sums of powers
xr1 C � � � C xrd , and monomials x1 � � �xd , and other shapes.

The second problem we address is, given d and a sequence .an/1nD1 of integers,
to find all solutions to the infinite system of equations

bb� � � bbn˛1c˛2c � � �˛d�1c˛d c D an:

We were motivated by two problems1 given in “Concrete Mathematics” [2]:

Comment to Bonus Problem 3.49: Find a necessary and sufficient condition on the real
numbers 0 � ˛ < 1 and 0 � ˇ < 1 such that we can determine the unordered pair f˛; ˇg
from the infinite multiset of values

˚bn˛c C bnˇc j n > 0
.

1 It is plausible that their origins were in signal analysis. Consider a linear signal .˛t C �/t2R,
that is measured at discrete times (replace t 2 R with n 2 Z�0) and with finite precision (replace
˛nC � with b˛n C �c). Given finitely many such measurements, how accurately can you es-
timate ˛? It is not difficult to imagine a situation where several such signals are preprocessed
algebraically into a single signal, and yet one still wishes to discern the original signals.
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Research Problem 3.50: Find a necessary and sufficient condition on the nonnegative real
numbers ˛ and ˇ such that we can determine ˛ and ˇ from the infinite multiset of values
˚bbn˛cˇc
.

A partial solution to the first problem (with the additional assumption that 1; ˛; ˇ are
linearly independent over Q) has recently been published [6], and [2] itself credits
a sufficient condition for the second problem to unpublished notes of William A.
Veech. We provide partial answers to generalizations of both problems.

To state our theorems, it is convenient to first introduce some notation. For a vec-
tor of reals N� D h�1; : : : ; �d i, we define the fractional part f N�g D hf�1g; : : : ; f�d gi
(this paper contains no sets of vectors!) and floor b N�c D hb�1c; : : : ; b�dci. Also,
inequalities such as N� � 0 are to be understood componentwise, i.e., �1� 0; : : : ;
�d � 0. We say that N� is rational if there is a nonzero vector of integers Nc such that
the dot product Nc � N� is an integer, and otherwise say that N� is irrational. For a poly-
nomial K.x1; : : : ; xd /, the expression K. N�/ is defined to be K.�1; : : : ; �d /. Also,
P N� D �1 C � � � C �d .

Let N�; N	 2 Zd both sum to 0, and let  be a permutation of 1; 2 : : : ; d . Let
ˇi D ˛
.i/ C �i and ıi D �
.i/ C 	i . Then trivially

bn˛1 C �1c C � � � C bn˛d C �dc D bnˇ1 C ı1c C � � � C bnˇd C ıdc

for all n. Our first theorem states that this is the only type of solution that is possible
when N̨ is irrational. It is plausible and consistent with our experiments that the
phrase “ N̨ is irrational” could be weakened to “˛iC˛j is not an integer for any i; j ”.

Theorem 1. Let K.x1; : : : ; xd / D x1 C � � � C xd , and N̨ ; N�; Ň; Nı 2 Rd . If

8n � 1; K.bn N̨ C N�c/ D K.bn Ň C Nıc/;

then either N̨ is rational, or there are lattice points N�; N	 2 Zd and a permutation 
of 1; 2 : : : ; d with ˇi D ˛
.i/ C �i , ıi D �
.i/ C 	i , and

P N� DP N	 D 0.

Using the fact that for nonintegral ˛, the sequence .jbn˛cj/1nD1 contains arbitrar-
ily large primes, we can also handle products. Note that in this case we do not need
the irrationality of N̨ .
Theorem 2. Let K. Nx/ D x1x2 � � �xd , and N̨ ; Ň 2 Rd . If

8n � 1; K.bn N̨ c/ D K.bn Ňc/;

then either some ˛i is an integer or f˛1; : : : ; ˛d g D fˇ1; : : : ; ˇd g (as multi-sets).

The next theorem assumes algebraic independence of the ˛i , but this is used in
only a very weak manner. The hypothesis could be weakened to assuming that N̨ is
irrational and the ˛i do not satisfy any of a specific (depending on K) small finite
set of algebraic relations. In fact, we believe that the conclusion is true as long as
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none of ˛i are integers. Additionally, whether a particular form of S can be included
in the following theorem depends on an ad hoc solution of a system of equations
that arises. Certainly, the given list is not the extent of the method, but a general
statement remains elusive.

Theorem 3. LetK. Nx/ D S. Nx/CR. Nx/ be a polynomial, where S. Nx/ is a symmetric
polynomial of one the following types (d � 2; r � 2)

dY

iD1
xi ;

dX

iD1
xri ; or

dX

i;jD1
xixj ;

and deg.R/ < deg.S/. Assume that ˛i (1 � i � d ) are positive and do not satisfy
any algebraic relations of degree less than deg.S/, and ˇi (1 � i � d ) are positive
and do not satisfy any algebraic relations of degree less than deg.S/. If

8n � 1; K.bn N̨ c/ D K.bn Ňc/;
then f˛i W 1 � i � d g D fˇi W 1 � i � d g.

Rasmussen [6] proves the d D 2 and d D 3 cases of the following conjecture:

Conjecture 1. Suppose that N̨ ; Ň 2 Œ0; 1/d , and that both h˛1; ˛1˛2; : : : ; ˛1˛2 � � �˛d i
and hˇ1; ˇ1ˇ2; : : : ; ˇ1ˇ2 � � �ˇd i are irrational. If

b� � � bbn˛1c˛2c � � �˛d c D b� � � bbnˇ1cˇ2c � � �ˇdc

for all n � 1, then N̨ D Ň.
We give his proofs (with corrections) in Sect. 2.4. It is certainly desirable to extend
his work to d > 3, to weaken the irrationality condition, and to consider ˛i 2 R
instead of merely ˛i 2 Œ0; 1/. Using a different method, we make the following step
in this direction.

Theorem 4. Suppose that N̨ ; Ň 2 Œ1;1/ � Œ2;1/d�1 are irrational. If

8n � 1; b� � � bbn˛1c˛2c � � �˛d c D b� � � bbnˇ1cˇ2c � � �ˇd c;
then the sets of fractional parts are equal: ff˛1g; : : : ; f˛d gg D ffˇ1g; : : : ; fˇd gg.

2 Proofs

2.1 Proof of Theorem 1

Proof. Without loss of generality, we assume that N̨ ; N� are in Œ0; 1/d and that N̨ is
irrational. Let S.i/ D K.bn N̨ C N�c/, and set. Define�.i/ D S.iC 1/�S.i/. Thus,
�.i/2f0; 1; : : : ; kg. We say that S has an r-jump at i if S.iC1/� S.i/ D �.i/Dr .
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The frequency of r-jumps of S depends on the frequency that .fn˛1 C �1g,
: : : ; fn˛k C ˇkg/ is in a particular subcube of Œ0; 1/k . To wit, if there are exactly
r coordinates j such that

1 � ˛j � fi˛j C �j g < 1;

which is equivalent (ignoring the technical circumstance when 1 � ˛j � �j < 0) to

1 � ˛j � �j � fi˛j g < 1 � �j ;

then there is an r-jump at i . The volume of this region in Œ0; 1/d is the asymptotic
frequency of r-jumps of S , and is given by

Vr D
X

R�K
jRjDr

Y

i2R
.1 � ˛i /

Y

j2KnR
˛j where K D f1; 2; : : : ; kg:

Consider the polynomial

P.z/ D
kY

iD1
f.1 � ˛i /zC ˛i g D

kX

rD0
Vr z

r ;

which is determined by S . Hence, all the roots � ˛i

1�˛i
of P are determined by S ,

and therefore, so are all the values ˛i .
Let i0; i1; : : : be the sequence of i such that�.i/ D k, which is exactly the same

condition as ‘for all j , 1�˛j � �j � fi˛j g < 1� �j ’. By the irrationality of N̨ , the
closure of

f.fit˛1g; : : : ; fit˛kg/ W t D 0; 1; 2; : : : g
is the set

kY

jD1
Œ1 � ˛j � �j ; 1 � �j �:

Since we already know the ˛j , we find that the �j are also determined. ut

2.2 Proof of Theorem 2

Lemma 1. If ˛ 2 R is not an integer, then the sequence .jbn˛cj/1nD1 of nonnegative
integers contains arbitrarily large prime numbers.

Our proof works equally well to show that .jbn˛C�cj/1nD1 contains large primes
when ˛ is irrational, but for rational ˛ the conclusion would be false: the sequence
.bn15

2
C 3c/1nD1 contains only one prime.
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Proof. First, observe that the sequence contains all large positive integers, if 0 <
j˛j � 1, so we assume henceforth that j˛j > 1.

First, we further assume that ˛ is irrational and positive. We will show that
.bn˛ C �c/1nD1 contains arbitrarily large primes. We note the oft-used and elemen-
tary criterion [5] that k 2 .bn˛ C �c/1nD1 if and only if k � b˛ C �c and either
f.k� �/=˛g > 1� 1=˛ or .k� �/=˛ 2 Z. Thus it suffices for our purposes to show
that the sequence of fractional parts fp=˛g is uniformly distributed, where p goes
through the prime numbers. This was shown by Vinogradov [7, Chapter XI].

If ˛ is irrational and negative, then jbn˛cj D bnj˛j C 1c, and this is the case
considered in the previous paragraph.

For the remainder of the proof, we assume that ˛ D q=p, with p � 2 and
gcd.p; q/ D 1. In particular,

bn˛c D
�
nq

p

�

:

It suffices for our purpose to restrict to n  r .mod p/, that is, we replace n with
np C r :

�
.np C r/q

p

�

D nq C
�
rq

p

�

:

We have reduced the problem (by Dirichlet’s theorem on the infinitude of primes in
arithmetic progressions) to choosing r so that gcd .q; brq=pc/ D 1: Set r D q�1,
where q�1 is the integer in Œ2; p C 1� with qq�1  1 .mod p/; define u through
qq�1 D puC 1, and note that gcd.q; u/ D 1. We now have

�
rq

p

�

D
�
q�1q
p

�

D
�

uC 1

p

�

D u;

with the last equality being our usage of p � 2, i.e., the reason we need ˛ to be
nonintegral. Since gcd.q; u/ D 1, we have gcd .q; brq=pc/ D gcd .q; u/ D 1: ut
Proof (Proof of Theorem 2). We proceed by induction on d . The claim is immediate
for d D 1. Now assume that d � 2 and that Theorem 2 holds for d � 1.

Assume without loss of generality that ˛1 � ˛2 � � � �˛d . If bn˛1c D q is prime,
then it will show up in the factorization of

Qd
iD1bn˛i c D Pn as a prime factor

q � P
1=d
n (since bn˛1c � bn˛ic for all i ). Conversely, any prime factor q of Pn

which is greater than or equal to P 1=dn must come from bn˛1c. Thus, we know the
value of bn˛1c for infinitely many values of n, and so we can determine ˛1. Now,
by factoring out bn˛1c from each term K.bn N̨ c/, we have reduced the problem to
the case of d � 1 factors. This completes the induction step, and the theorem is
proved. ut
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2.3 Proof of Theorem 3

A d -dimensional cube is defined as Qa. Nx/ WD faCPd
jD1 �jxj W �j 2 f0; 1gg.

Lemma 2. Let d 2 N , and a; b 2 R; Nx; Ny 2 Rd . If Q D Qa. Nx/ D Qb. Ny/ and
jQj D 2d , then fjxj jW 1 � j � d g D fjyj jW 1 � j � d g.
Proof. Since jQj D 2d , we know that none of xj ; yj are 0, and that the xj are
distinct, as are the yj . Further, note that,

Q D Qa.x1; : : : ; xd / D QminQ .jx1j; : : : ; jxd j/ ;

so that we can assume without loss of generality that xj ; yj are positive, and that
a D b D minQ.

The generating function of Q factors as

f .z/ D
X

q2Q
zq D za

dY

jD1
.1C zxj / D za

dY

jD1
.1C zyj / ;

whence
dY

jD1
.1C zxj / D

dY

jD1
.1C zyj / (1)

for appropriate complex numbers z.
We will show by induction on d that such an equality implies that fxj W 1 � j �

d g D fyj W 1 � j � d g. This is trivially true for d D 1. Now assume that it is true
for d � 1 � 1.

Let X D maxfx1; : : : ; xd g; Y D maxfy1; : : : ; yd g. The left hand side of (1)
vanishes at z D exp.
i=X/, and so the right hand side must also vanish, i.e.,
1 C exp.
iyj =X/ D 0 for some j . It follows that yj =X D 2k C 1 for some
integer k, and therefore, that for some j , Y � yj � X . Interchanging the roles of
x and y yields that some for some j , X � xj � Y , and therefore X D Y . We
can cancel out the terms on the left and right hand sides of (1) corresponding to X
and Y (which are the same), and we get a product with d � 1 factors, completing
the inductive step. ut
Proof (Proof of Theorem 3). Define

�.n/ D K.b.nC 1/ N̨ c/�K.bn N̨ c/
nD�1 :
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The set f�.n/Wn 2 Ng has limit points (call the set of limit points�), which depend
only on S and which we can describe in the following manner:

� D
(

dX

iD1
Œ˛i �

@S

@xi
. N̨ /W Œ˛i � 2 fb˛ic; d˛ieg

)

:

We have assumed that N̨ is irrational to guarantee that all of these expressions arise
as limit points, and we assumed that ˛i are algebraically independent to guarantee
that all of these expressions correspond to distinct real numbers. We can apply the
previous lemma to learn

LS WD
�ˇ
ˇ
ˇ
ˇ

@S

@xi
. N̨ /
ˇ
ˇ
ˇ
ˇ

�

:

From here, we apply ad hoc arguments that depend on the special structure of S .
If S. Nx/ DQd

iD1 xi , then we have learned

L D
(

˛�1
j

dY

iD1
˛i W 1 � j � d

)

:

The product of all the elements of this set is just

 
dY

iD1
˛i

!d�1
:

As N̨ > 0, we can take the .d � 1/-th root, learning the value of
Q
˛i . Dividing

Q
˛i by each element of the set L yields the set

f˛j W 1 � j � d g:

If S. Nx/ DPd
iD1 xri , then we have learned

L D fr˛r�1
j W 1 � j � d g

Dividing each element ofL by r and then taking .r�1/-th roots (again using N̨ > 0)
yields the set

f˛j W 1 � j � d g:
If K. Nx/ DPd

i;jD1 xixj , then we have learned

L D
8

<

:
˛i C

dX

jD1
˛j W 1 � i � d

9

=

;
:
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The sum of all the elements of this set is just

.d C 1/
dX

jD1
˛j :

Dividing by d C 1 yields
P
˛j , and subtracting this from each element of L gives

the set
f˛i W 1 � i � d g:

ut

2.4 Rasmussen’s Approach to Conjecture 1

Our first proof of the d D 2 case is markedly different from the other proofs of this
article. First, we do not assume h˛1; ˛2i to be irrational, but h˛1; ˛1˛2i. Second, the
proof is by contradiction and therefore not constructive.

Suppose, by way of contradiction, that

s.n/ D bbn˛1c˛2c D bbnˇ1cˇ2c;

with N̨ 6D Ň, and h˛1; ˛1˛2i; hˇ1; ˇ1ˇ2i are irrational. Note

˛1˛2 D lim
n!1

s.n/

n
D ˇ1ˇ2:

Suppose without loss of generality that ˇ2 < ˛2 and ˛1 < ˇ1. Since h˛1; ˛1˛2i is
irrational, there exists an n such that fn˛1g > ˛2Cˇ2

2˛2
(note that ˛2Cˇ2

2˛2
< 1 by virtue

of the assumption that ˇ2 < ˛2) and ˇ2 < fn˛1˛2g < ˛2Cˇ2

2
. But then

s.n/ D bbn˛1c˛2c D bn˛1˛2 � fn˛1g˛2c D bn˛1˛2c � 1

whereas, since fnˇ1ˇ2g D fn˛1˛2g > ˇ2 > fnˇ1gˇ2,

s.n/ D bbnˇ1cˇ2c D bnˇ1ˇ2 � fnˇ1gˇ2c D bnˇ1ˇ2c D bn˛1˛2c:

The method of Rasmussen, which works2 for d D 2 and d D 3, might be more
amenable to generalization. Define for N̨ 2 Rd

Td;k WD lim
N!1

1

N

NX

nD1
.n˛1 � � �˛d � b� � � bbn˛1c˛2c � � �˛d c/k :

2 In the d D 3 case, Rasmussen miswrote the formula for T3;2, which erroneously led to a system
of equations (using T3;1 and T3;2) with a unique solution. The analogous system using T3;1 and T3;3,
however, does have a unique solution. We give this minor correction here.
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Using Weyl’s Criterion and straightforward integration (with which we trust
Mathematica 6.0), we find that if N̨ 2 Œ0; 1/d and h˛1; ˛1˛2; : : : ; ˛1˛2 � � �˛d i 2
Œ0; 1/d is irrational, then

T2;1 D 1C ˛2
2

;

T3;1 D 1C ˛3 C ˛2˛3
2

;

T3;3 D 1

2
T3;1 �

�

.1C ˛3 C ˛23/C .˛3 C ˛23/˛2 C .˛23/˛22
	

:

Since both Pd WD
Qd
iD1 ˛i and the Td;k are determined by the sequence

.b� � � bbn˛1c˛2c � � �˛d c/1nD1;

so are the ˛i : for d D 2

˛2 D 2T2;1 � 1; ˛1 D Pd=˛2
and for d D 3

s D sgn
�

4T 33;1 � 2T 23;1 C T3;1 � 2T3;3
	

;

˛2 D
�4T 33;1 � T3;1 C 4T3;3 C s .1 � 2T3;1/

q

�12T 43;1 C 4T 33;1 � 3T 23;1 C 8T3;3T3;1
2
�

4T 33;1 � 2T 23;1 C T3;1 � 2T3;3
	 ;

˛3 D 2T3;1 � 1
1C ˛2 ;

˛1 D P3

˛2˛3
:

We expect that this approach will work in principle for arbitrarily large d ,
but the practical difficulties in carrying this out are not trivial. Already, we are
loathe to check the formula for T3;3 and to solve the resulting equations by hand.
Mathematica’s Solve command only gives generic solutions, while its Reduce
command is too slow to handle d D 4.

The formulas given above for Td;k can be computed using Weyl’s criterion: If N̨
is irrational, then

1

N

NX

nD1
f .fn N̨ g/ D

Z

Œ0;1/d
f . Nx/d Nx:
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We calculate T3;1 as an example. By repeatedly using bqc D q�fqg and fqC rg D
ffqg C rg, we calculate

.n˛1˛2˛3 � bbbn˛1c˛2c˛3c/
D fn˛1g˛2˛3 C ffn˛1˛2g � fn˛1g˛2g˛3
C ffn˛1˛2˛3g � fn˛1g˛2˛3 � ffn˛1˛2g � fn˛1g˛2g˛3g
D x˛2˛3 C fy � x˛2g˛3 C fz� x˛2˛3 � fy � x˛2g˛3g

where hx; y; zi D hfn˛1g; fn˛1˛2g; fn˛1˛2˛3gi. By Weyl’s criterion, we get

T3;2 D lim
N!1

1

N

NX

nD1
.n˛1˛2˛3 � bbbn˛1c˛2c˛3c/

Z 1

0

Z 1

0

Z 1

0

x˛2˛3 C fy � x˛2g˛3 C fz� x˛2˛3 � fy � x˛2g˛3gdx dy dz:

Using N̨ 2 Œ0; 1/3, we can eliminate the fractional parts in the above integral and get

T3;2 D 1

3
C 1C ˛2

2
˛3 C 2C 3˛2 C 2˛22

6
˛23 :

It is clear that this method can yield a formula for Td;k for any d; k.

2.5 Proof of Theorem 4

Let Œx�0 be the floor of x, and Œx�1 be the ceiling. Let

T .W; N̨ In/ WD Œ: : : ŒŒn˛1�w1
�˛2�w2

: : : ˛d �wd
;

whereW D w1w2 : : :wk is a word in the alphabet f0; 1g, and N̨ D h˛1; ˛2; : : : ; ˛d i.
In addition to its usual meaning, let “<” denote the lexicographic ordering on
f0; 1gd . Let h.W / be the Hamming weight of the word W , i.e., the number of
1s in W .

Lemma 3. If ˛1; : : : ; ˛d are not integers, with ˛1 > 1 and ˛i > 2 (for 2 � i � d ),
then

W < V , T .W; N̨ I 1/ < T .V; N̨ I 1/:
Proof. We work by induction on d . For d D 1, the result obviously holds since
˛1 62 Z.
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Now assume that d � 2 and that the result holds for all .d � 1/-tuples . Assume
that W < V . If w1 D v1, then we may apply the induction hypothesis by observing
that

T .W; h˛1; : : : ; ˛d iI 1/ D T .w2 � � �wd ; hŒ˛1�w1
˛2; ˛3; : : : ; ˛d iI 1/

T .V; h˛1; : : : ; ˛d iI 1/ D T .v2 � � � vd ; hŒ˛1�w1
˛2; ˛3; : : : ; ˛d iI 1/

Thus, we may assume that w1 < v1, and so w1 � � �wd�1 < v1 � � � vd�1. Since
˛d > 2, we have Œm˛d �wd

< Œm0˛d �vd
whenever 0 < m < m0, and by induction,

we have

m D T .w1 � � �wd�1; h˛1; : : : ; ˛d�1iI 1/ < T .v1 � � � vd�1; h˛1; : : : ; ˛d�1iI 1/ D m0:

Now, we have T .W; N̨ I 1/ D Œm˛d �wd
< Œm0˛d �vd

D T .V; N̨ I 1/: �

Lemma 4. Suppose that N̨ ; Ň 2 Rd are irrational, and suppose that for any pair
W;V of words of length d

T .W; N̨ I 1/ < T .V; N̨ I 1/, T .W; ŇI 1/ < T .V; ŇI 1/;

and further suppose that if W and V have different Hamming weight, then
T .W; N̨ I 1/ 6D T .V; N̨ I 1/. If

8n � 1; T .0d ; N̨ In/ D T .0d ; ŇIn/;

then ff˛igW 1 � i � d g D ffˇigW 1 � i � d g.
Proof. Set �.n/ D T .0d ; N̨ InC 1/� T .0d ; N̨ In/, and note that

f�.n/ W n 2 Ng D fT .W; N̨ I 1/W len.W / D d g:

In fact, by the irrationality of N̨ , the density of n such that �.n/ D T .w1 � � �wd ;
N̨ I 1/ is

VW . N̨ / D
dY

iD1
wi D0

f˛ig
dY

iD1
wi D1

.1 � f˛i g/:

While for any particular W it is possible that VW . N̨ / 6D VW . Ň/, the condition on
the ordering of T .W; N̨ I 1/; T .W; ŇI 1/ guarantees the set equalities for 1 � i � d :

�

VW . N̨ /Wh.W / D i
�

D
�

VW . Ň/Wh.W / D i
�

:
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Thus, the polynomial

P.z/ D
dY

iD1

�

f˛ig C .1 � f˛ig/z
�

D
X

I�f1;:::;dg

Y

i2I
f˛ig

Y

i2f1;:::;dgnI
.1 � f˛ig/z

D
X

W
len.W /Dd

0

B
@VW . N̨ /

dY

iD1
wi D0

1

dY

iD1
wi D1

z

1

C
A

D
X

W
len.W /Dd

VW . N̨ / zh.W /

D
dX

iD0

0

B
B
@

X

W
len.W /Dd;h.W /Di

VW . N̨ /

1

C
C
A

zd

is determined by the sequence. Therefore, the set of its roots � f˛i g
1�f˛i g is also de-

termined by the sequence. Since x 7! �1�x
x

is a 1-1 map, this implies that the set
ff˛1g; : : : ; f˛d gg is determined from the sequence, concluding the proof. ut
Proof (Proof of Theorem 4). Combine Lemmas 3 and 4. ut

3 Open Questions Concerning Generalized Polynomials

The meta-issue is to find an efficient algorithm that will determine whether a gen-
eralized polynomial with algebraic coefficients is identically zero on the positive
integers. Humble first steps in this direction would be to completely answer the
problems implied in Concrete Mathematics [2]:

Problem 1. Find a necessary and sufficient condition on the real numbers ˛i ; ˇj 2
Œ0; 1/ such that for all positive integers n,

dX

iD1
bn˛ic D

X̀

jD1
bnˇj c:

We suspect that this equality happens only if d D ` and for some a; b; c; d , ˛a C
˛b D ˇcCˇd D 1, and that this, and trivial solutions, are the only way that equality
can occur.
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Problem 2. Find a necessary and sufficient condition on the real numbers ˛i ; ˇj2R
such that for all positive integers n,

b� � � bbn˛1c˛2c � � �˛d c D b� � � bbnˇ1cˇ2c � � �ˇ`c:

There are very many solutions in rationals, and we do not have a guess as to their
structure.

Both problems are obvious if all ˛; ˇ are taken to be integers, and both are an-
swered here if d D ` and the ˛; ˇ are taken to be sufficiently irrational. The most
difficult case to understand, for both questions, seems to be when the ˛;ˇ are all
rational, but not all integral.
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Variance of Signals and Their Finite Fourier
Transforms

D.V. Chudnovsky, G.V. Chudnovsky, and T. Morgan

Summary The study of properties of the finite Fourier matrix can be traced back
to I. Schur and his use of the Gauss reciprocity law to determine the spectral proper-
ties of the finite Fourier matrix. Unlike the continuous Fourier transform, there is no
widely accepted eigenvector basis. We present different approaches to eigenvector
construction for the finite Fourier matrix, and a new set of extremality principles
for the finite Fourier transform. One of the consequences of this construction is
a new discrete uncertainty principle, analogous to a classical Heisenberg–Weyl
formulation.

Keywords Eigenvectors � Fourier matrix � Fractional fourier transform

Mathematics Subject Classifications (2010). Primary 11C20, 65T50, 65F15

1 Eigenvalue and Eigenvectors of the Finite Fourier Matrix

The finite Fourier matrix F of size N :

F D FN D
�

e
2�

p

�1
N ij

�N�1

i;jD0

has eigenvalues only among four values:˙ 1,˙ i . ForN � 4, there are always four
orthogonal subspaces of eigenvectors for the finite Fourier transform. This means
that there are many possible choices of eigenvector basis for the Fourier matrix.

To show why the finite Fourier F matrix has eigenvalues ˙ 1, ˙ i , following
McClellan [18], notice that

F D F T F:F � D F �:F D I (1)
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Table 1 Eigenvalue
multiplicities-Fourier matrix
of dimension N

N D � D C1 � D �1 � D C i � D � i

4m mC 1 m m m� 1

4mC 1 mC 1 m m m

4mC 2 mC 1 mC 1 m m

4mC 3 mC 1 mC 1 mC 1 m

that is, F is symmetric and has an inverse, which is equal to the conjugate transpose
of F . Since F is unitary, all of its eigenvalues are of absolute value 1 and there
exists a set of N orthonormal eigenvectors for the matrix F .

Next, notice that
F 4 D I

This can be seen by considering the action of F 2 D F:F on a vector, which can
be seen to reverse all vector coordinates save the first. A second application of F 2 to
a vector returns the original order; that is, F 4 D I: If � is an eigenvalue of F , then
�4 is an eigenvalue of F 4, but the eigenvalues of F 4 are all one, hence � is a root of
the cyclotomic polynomial x4�1 D 0I that is˙ 1,˙ i. Moreover, the multiplicities
of the eigenvalues of the Fourier matrix can be computed for arbitrary N.

The table above is due to Schur [24] and is a direct consequence of the Gauss
quadratic reciprocity theorem, applied to the following trace of the Fourier matrix:

N�1X

jD0
e

2�
p

�1
N

j2

Knowledge of the value of this sum, and simple formulas for the traces of other
powers F k , together with the observation that the eigenvalues of the Fourier matrix
are ˙ 1, ˙ i permits the calculation of the multiplicities of the eigenvalues as a
function of the size of the Fourier matrix.

Since there are only four possible eigenvalues, there is enormous freedom possi-
ble in the selection of a basis of eigenvectors for the Fourier matrix. The dimension
of each of the eigenspaces is roughly N=4. Any basis in such a subspace can serve
as a basis of eigenvectors. This embarrassment of riches actually represents a prob-
lem, because there is no clear canonical choice to be made for the eigenvectors. This
problem is particularly acute for the fractional Fourier transform, which requires a
choice of an eigenvector basis before it can even be defined. On the positive side,
one can choose eigenvectors of the Fourier matrix to satisfy various computational
needs. For example, choosing a basis of eigenvectors which is sparse represents a
possible alternative to evaluation of the discrete Fourier transform by means of the
FFT techniques.

Such an alternative to FFT algorithms would be a sparse representation (or nu-
merically sparse) for the matrix F in a suitable basis. This is not effective for the
computation of the full discrete Fourier transform on a standard computer archi-
tecture, but is potentially interesting for computation with minors of the Fourier
matrix, see [9].
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1.1 McClellan Basis

The basis of eigenvectors described by McClellan [18] has the advantage of being
relatively simple to describe; however, the basis is not orthogonal. Yarlaggada [27]
provided a means of orthonormalizing these vectors.

This basis was described in the engineering signal processing literature and, as
pointed out by Auslander and Tolimieri in [3], the work was done without reference
to the work of Schur. For a modern description, see [17].

The basis is constructed by forming a basis of even and odd functions and then
making adjustments to the vectors to convert them into eigenvectors while preserv-
ing the basis property.

For this purpose, a vector v D .v0; : : : ; vn�1/ is said to be even if vi D vn�i and
odd if vi D �vn�i (here the indices are taken mod n).

It is a property of the Fourier matrix Fn that Fn2 is the vector index permutation
operator P.v/ D .v0; vn�1; : : : ; v1/; that is P.v/ leaves the first vector component
in place and reverses the order of the remaining components.

This property allows us to construct an eigenvector for any even vector v as
follows

Fn � v˙ v

for eigenvalues˙1, respectively.
Similarly, any odd vector, u, can be used to construct an eigenvector of the Fourier

matrix by taking p�1Fn � u˙ u

for eigenvalues� i respectively.
The McClellan basis is constructed as follows. Let

� D
ln

2

m

and construct the vectors of dimension n.

u1 D .1; 0; : : : ; 0/; u2 D .1; 0; : : : ; 1/

and

uj D

0

B
@: : : ; 1

"
j thposition

; : : : ; 1
"

n�2Cj th

; : : : 0

1

C
A for j D 3; : : : �

and

v1 D .0; 1; 0; : : : ;�1/; v2 D .0; 0; 1; 0; : : : ;�1/
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and

vj D

0

B
@: : : ; 1

"
jC1thposition

; : : : ; -1
"

nC1�j th

; : : : 0

1

C
A for j D 3; : : : n � �

Here is an example of the vectors uj , vj for n D 7:

0

B
B
B
B
B
B
B
B
B
@

1 0 0 0 0 0 0

0 1 0 0 0 0 1

0 0 1 0 0 1 0

0 0 0 1 1 0 0

0 1 0 0 0 0 �1
0 0 1 0 0 �1 0

0 0 0 1 �1 0 0

1

C
C
C
C
C
C
C
C
C
A

Notice that the vectors uj are even, and the vectors vj are odd. The McClellan
basis is then formed by evaluatingFn �uj˙uj for the vectors uj and

p�1Fn �vj˙vj
where the choice of addition/subtraction is made in accordance with the known
multiplicities of the eigenvalues˙1, ˙i .

1.2 Carlitz/Morton Basis

These eigenvectors are formed by setting vector coordinates from the character ba-
sis modn. These eigenvectors are difficult to construct, due to the dependency on
the factoring of n, on the solution to the discrete logarithm problem, and on the
computation of Gauss sums. While the basis was first presented by Morton [20], it
is derived from a relation between a set of vectors first described by Carlitz [7]. See
also a more recent paper [12] for important applications. The vectors are formed
using coordinate entries, which are the values of the mod n characters evaluated at
the coordinate number.

These vectors have the property that the action of the Fourier matrix on the vec-
tors yields the conjugate of the vectors times a constant expressed by a Gauss sum. A
suitable linear combination of a vector with its conjugate thus yields an eigenvector
for the Fourier matrix.

For ease of exposition, we describe Morton’s construction of the vectors for a
basis of n vectors, whenever n is a prime.

Let ˛ be a primitive root mod n and for any 0 < k � n � 1, let g(k) satisfy

g.k/ D r when ˛r D k;

and define the characters

�r .k/ D e 2�
p

�1rg.k/
n�1
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then form the vectors

ur D .�r .0/: : : �r.n�1// ; vr D
�

�.n�1�r mod n�1/.0/ : : : �.n�1�r mod n�1/.n�1/
	

the vectors ur and vr have the property that the action of the discrete Fourier trans-
form on the vectors ur and vr produces vectors which are functions of the original
vector and its conjugate. An eigenvector of the discrete Fourier transform can then
be constructed by applying suitable adjustment factors as follows.

Let us define

�r D
p

n�r .�1/
and the Gauss sum

�.�r / D
n�1X

kD0
�.p�1�r mod n�1/.k/e

2�
p

�1k
n :

It can then be shown that the vectors:

ur C �r

�.�r /
vr ; vr � �r

�.�r /
vr

are each eigenvectors of the discrete Fourier transform. Some intricate book keeping
allows the determination of the appropriate choice of either ur or vr for successive
eigenvalues. A natural modification is needed to make these eigenvectors real.

The construction above is a consequence not of special properties of the charac-
ters, but of a more basic commutativity relationships between combinations of some
permutation matrices and the matrix Fn. For example, for the permutation matrix P
induced by the modular scaling x  x�k for .k; n/ D 1, the matrix PCP�1 com-
mutes with Fn, providing essentially the same eigenvectors as above. More complex
objects built from a larger class of permutations provide sparse matrices commuting
with Fn that are tridiagonal, but with permuted rows and columns.

1.3 Dickinson–Steiglitz or Hofstatder Basis

Two separate groups arrived at a similar set of eigenvectors for the Fourier ma-
trix, Harper–Hofstadter [13, 15] (physics) and Dickinson–Steiglitz [10] (fractional
fourier transform). These eigenvectors are analogous to the basis functions for the
continuous Fourier transform. They are based on discrete analogs of the Hermite
functions for the Fourier transform. This basis is found using a periodic tridiagonal
matrix commuting with the Fourier matrix. The eigenvectors of this commuting
matrix are no longer (completely) degenerate, and are also eigenvectors of the
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Fourier matrix. The use of tridiagonal and other sparse matrices is one of the tools
used in the study of other related matrices and transforms, particularly the q-Fourier
transforms, see [9].

The importance of an eigenvector basis analogous to the Hermite functions is best
illustrated by its application to the discrete fractional Fourier transform. In order to
compute the discrete fractional transform, one has to compute the fractional power
F ˛ of the Fourier matrix F, where ˛ is an arbitrary real parameter.

The standard definition of a fractional power of a matrix A, is

U ��˛U�1

where U is the eigenvector matrix of A and � is a diagonal matrix formed from
the eigenvalues of A. If the eigenvalues of A are distinct, then this representation
is unique. If A has eigenvalues with multiplicity greater than one, then a ‘natural’
choice of eigenvectors must be determined.

In the case of the matrix F, there are only four distinct eigenvalues, f1,�1, i,� ig,
yielding a large multiplicity for matrices of any size.

Traditional choices for U in this case are based on finding a matrix H, often called
Harper’s matrix, which commutes with F and which has (mostly) distinct eigenval-
ues. Harper originally defined this matrix in [13]. A good reference for the modern
application of Harper’s matrix in the context of the discrete fractional Fourier trans-
form can be found in Ozatakas [22]:

H D 


.i2
/2

0

B
B
B
B
B
B
@

�2 1 0 0 1

1 2 cos.2�
N
/ � 4 1 � � � 0

0 1 2 cos.2�2
N
/ � 4 � � � 0

:::
:::

:::
: : :

:::

1 0 � � � � � � 2 cos. 2�.N�1/
N

/ � 4

1

C
C
C
C
C
C
A

In this form, the matrix has analogies to the equivalent eigenfunctions of the con-
tinuous Fourier transform, written in the Hermite basis. This matrix commutes with
the Fourier matrix, thus its eigenvectors are also eigenvectors of the Fourier matrix.
This matrix exists in the literature in many equivalent forms (in the sense that the
alternative forms commute with the Fourier matrix and have distinct eigenvalues).
Another early appearance of this matrix is in Hofstadter [15]. Hofstadter used a ma-
trix of this form in similar applications and showed that the matrix commutes with
the Fourier matrix. Dickinson and Steiglitz [10] rediscovered a matrix of this form
for application to the fractional Fourier transform. Before the paper of Dickinson
and Steiglitz, the bases used for the study of the fractional Fourier transform were
unsatisfactory, often creating numerical instabilities in the evaluation of the frac-
tional Fourier transform in applications. Ozaktas and Kutay [22] provide a useful
table of correspondences between the eigenvectors of H and the eigenfunctions of
the continuous Fourier transform. Notice that the matrix H can have repeated eigen-
vectors when N is a multiple of 4 and some means is required to uniquely establish
an eigenvector set in this case.
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2 Discrete Analogs

The Dickinson–Steiglitz basis is motivated by a desire for a discrete analog for the
Hermite function basis of the Fourier transform.

Properties desired for the discrete analog of the Gaussian are: they should tend to
the Gaussian in the limit as N goes to infinity; should have zero crossing properties
matching the Hermite functions, at least for lower order eigenstates; should have
some analog of the creation/annihilation operators; should posses some analog of
the differential equation.

Notice that it is not possible to have all of the above, for otherwise, the discrete
Fourier transform would be a completely integrable system, which it is not.

Even though it is impossible to maintain all properties for a discrete analog
of the Hermite functions, some can be met. The Dickinson–Steiglitz eigenvectors
are orthogonal, are the solutions to a q-difference equation analog of the har-
monic oscillator equation and have eigenvalues which are either ˙ 1 or ˙ i . The
Dickinson–Steiglitz eigenvectors arrive at discrete analogs for the Hermite functions
indirectly, by the solution of the eigen problem for the tridiagonal matrix H (defined
above) commuting with the Fourier matrix.

The eigenvectors found in this way form an orthogonal basis of eigenforms for
the discrete Fourier transform; are solutions of a difference analog of the differential
equations for the harmonic operator and the eigenvalues of these discrete analogs of
the Hermite functions are either˙ 1 or˙ i .

One would also like to use eigenvectors with an analytic definition, as compared
to numerical or complex algebraic methods required to produce the eigenvectors for
the Hofstadter matrix – cf. with the theta functions below.

We also investigated the possibility of an alternative definition of the discrete
fractional Fourier transform by means of an expansion in power series of the
q-matrix and proceeding to the limit q ! root of unity, see [9].

3 Theta Function Expressions for the Fourier Eigenvectors

We present the general expression for the eigenvector of the Fourier matrix of order
n with the eigenvalue ik in terms of the �-functions with an arbitrary period � . A
set of eigenvectors of the Fourier matrix built from derivatives of the �-functions
was presented by M.L. Mehta [19]. We use expression, arising from the general
Weil formalism for multidimensional �-function, see Mumford lectures on theta-
functions [21]; see also [17].

Because there are different notations used for the theta-functions, we chose nota-
tions accepted for Mathematica expressions, similar to those adopted by Whittaker
and Watson [26]. In these notations the most general (one-dimensional) theta func-
tion is:

�.x; �/ D
X

m2Z

e� i�m2C2� imx ;
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for =.�/ > 0. This expression coincides with the Jacobi’s theta function #3.x; q/, if
defined as follows:

#3.x; q/ D �.x; �/ for q D e� i� :

In Mathematica #3.x; q/ is called “EllipticTheta[3,
x,q]”.
For further use below, we also provide the expressions of three other Jacobi’s

theta function #k.x; q/, for k D 1; 2; 4 in terms of �.x; �/ as follows:

#1.x; �/ D �i � q 1
4 � e� ix � �

�

x C 1

2
C �

2
; �

�

;

#2.x; �/ D q
1
4 � e� ix � �

�

x C �

2
; �
�

;

#4.x; �/ D �

�

x C 1

2
; �

�

:

Following these notations (for a fixed n), the vector ˚.k; x; �/ D �˚j .k; x; �/
	n�1
jD0

is an eigenvector of the Fourier matrix Fn with the eigenvalue ik if its components
are defined as follows:

˚j .k; x; �/ D �

�

x C j

n
�; �

�

� e� i
�

j
n

�2
�C2� i j

n
x

C.�1/k � �
�

x � j
n
�; �

�

� e� i
�

j
n

�2
��2� i j

n
x

C 1p
n
�
�

.�i/k � �
�
x C j
n

;
�

n2

�

C .�i/3k � �
�
x � j
n

;
�

n2

��

for j D 0; : : : ; n � 1. Using Jacobi’s imaginary transformation identity:

�

�
x

�
;�1
�

�

D .�i�/1=2ei �x2

� � �.x; �/;

we can re-write the formulas in a more “symmetric form” (with respect to �):

˚j .k; x; �/ D �
�

x C j

n
�; �

�

� e� i
�

j
n

�2
�C2� i j

n
x

C.�1/k � �
�

x � j
n
�; �

�

� e� i
�

j
n

�2
��2� i j

n
x

C
p
np�i�
�
 

.�i/k � �
�
.x C j / � n

�
;
�n2
�

�

� e�i� .xCj /2

�

C.�i/3k�

�
.x � j / � n

�
;
�n2
�

�

� e�i� .x�j /2

�

!

for j D 0; : : : ; n � 1.
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Clearly, to have the �-functions with the same � (or q), we need to set

� D i � n:
Under this assumption, we have more natural expressions for the eigenvector com-
ponents:

˚j .k; x/ D �.xCi � j; i � n/ � e ��j 2

n
C2� i j

n
x C .�1/k� �.x�i �j; i � n/ � e ��j 2

n
�2� i j

n
x

C
�

.�i/k � �.i � .x C j /; i � n/ � e�� .xCj /2

n

C .�i/3k.�1/k � �.i � .x � j /; i � n/ � e�� .x�j /2

n

�

for j D 0; : : : ; n�1. Here, one can take x among the set of integers x D 0; : : : ; n�1
of the cardinality not larger thanm.ik/ – the multiplicity of the eigenvalue ik of Fn
(see Table 1 for the explicit expression). In cases k D 1; 2; 3, one has to exclude the
zero case of x D 0. Then vectors

.˚j .k; x//
n�1
jD0

are eigenvectors of Fn for these various sets of x.
The simplest case – for k D 0 (an eigenvalue of 1 for Fn) – arises at x D 0 when

we get a very simple eigenvector:

� D .�j /n�1
jD0;

�j D �.i � j; i � n/ � e ��j 2

n ; j D 0; : : : ; n � 1:
This eigenvector can be considered as the “elliptic analogue” of the Gaussian bound
state for the Fn. What is interesting is that using simple linear transformation of the
vector � , one can derive all eigenvectors .˚j .k; x//n�1

jD0. Specifically, if we want
to present only the real-value eigenvectors, we get for integers x D 0; : : : ; n � 1
the following expressions of the corresponding eigenvectors for all 4 eigenvalues
ik; k D 0; 1; 2; 3:

˚.x/ D .˚j .x//
n�1
jD0 W

˚j .x/ D �jCx C �j�x C 2 � cos

�
2
jx

n

�

� �j I k D 0I x � 0

˚j .x/ D �jCx � �j�x � 2 � sin

�
2
jx

n

�

� �j I k D 1I x > 0

˚j .x/ D �jCx C �j�x � 2 � cos

�
2
jx

n

�

� �j I k D 2I x > 0

˚j .x/ D �jCx � �j�x C 2 � sin

�
2
jx

n

�

� �j I k D 3I x > 0
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These expressions that show how to generate all eigenvectors from the bound
state � are very similar to the “creation operators” that generate higher Hermite
functions – the eigenfunctions of the continuous Fourier transform – from the
Gaussian (the bound state of the continuous Fourier transform). Unfortunately, the
basis ˚.x/ thus generated is not an orthogonal basis, and has to be orthogonalized
using the Gram–Schmidt recursive orthogonalization procedure.

It does not mean, though, that such a construction is completely “nonexplicit”.
In the orthogonalization procedure, one needs to evaluate the Hankel determinants
made of the self-correlations of the elements of the vector� – like this:

< �;� >mD
n�1X

iD0
�j � �jCm;

where �k is defined for k mod n due to the quasi-periodicity properties of �.x; �/.

Similarly, one needs the “shifted” self-correlations
Pn�1
iD0 �j � �jCm � e 2� ijx

n .
Interestingly enough, these self-correlation can be expressed in a slightly simpler

form using various forms of addition laws for �-functions. To describe the relations
between self-correlation coefficients, we will represent the vector � in a slightly
different form, as a vector � :

� D
�

�

�
j

n
;
i

n

��n�1

jD0
;

simply related to � :

� D pn ��:
The addition formulas that we need arise from a particular representation of the
elliptic curve using torsion subgroup of order n2 of all division points of order n.
We refer to [8] for the description. Here, we will present only one such formula,
using the conventional set of Jacobi #-functions (corresponding to division points
of order 2).

For example, we have the following expression for the � self-correlations, when-
ever n is even:

h�;� i2m D h�;� i �
�

#2
�
m
n
; i
n

	2 C #1
�
m
n
; i
n

	2
�

#2
�

0; i
n

	2
:

In fact, the correlations h�;� im and h�;�im can be expressed explicitly, but dif-
ferently for odd and even n. For even n, we get:

h�;�i0 D k�k2 D
r
n

2
� �
�

0;
in

2

�2

;
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while for an odd n:

h�;�i0 D k�k2 D
r
n

2
�
 

�

�

0;
in

2

�2

� 4 � �.0; 4in/ � #2.0; 4in/

!

:

Alternatively, one can differentiate expressions˚j .k; x/ in x, and then set x D 0
to get the basis of eigenvectors for Fn build from derivatives of the theta-function
values at torsion points, see [19]. Nevertheless, the theta-function expressions for
higher eigenvectors cannot qualify to be called explicit expressions. Moreover, the
orthogonalization of this basis is very complex compared to the above.

All various expressions of the eigenvectors in terms of the theta-functions pre-
sented here (particularly those in terms of the� or � vectors or similar derivatives)
are not transcendental expressions, despite their appearance. The normalized eigen-
vectors – for example, normalized by the norm k�k2, or h�;�i0 -have their
components as algebraic numbers. These algebraic numbers are elements of the al-
gebraic number field, generated by addition of torsion points of order n (for even n)
for an elliptic curve corresponding to the periods 1 and i , i.e., isogenous to the lem-
niscate elliptic curve y2 D x4 � 1.

4 Variational Principles for the Determination
of Eigenfunctions of the Discrete Fourier Transform

It would be desirable to have a natural definition of an eigenfunction basis for the
discrete Fourier transform, using a variational principle based on a quadratic positive
definite form. In this formulation, the eigenfunctions sought will be provided by
successive extremal values of the Rayliegh–Ritz ratio:

RM .v/ D v �M � v�

v � v�

with subsequent identification of the corresponding extremal vectors as the eigen-
vectors of the Fourier matrix. One can restrict the discussion below to the case of
v with real valued components, although everything below is completely extended
to arbitrary complex vectors v. We establish this limitation on v in anticipation of
establishing various uncertainty principle inequalities analogous to the uncertainty
principles for integrable functions defined on the real axis. The discussion follow-
ing can also be generalized to multivectors, which would establish analogies for
uncertainty principles for real valued functions in Rm.

If the vectors which are extrema of the Rayliegh–Ritz ratio corresponding to
the matrixM are to be eigenvectors of the discrete Fourier transform, then M must
commute with FN . We also want the expression for the ratioRM .v/ to be symmetric
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in the vector v and its discrete Fourier transform, Ov. Introducing a new matrix A,
these conditions can be stated as follows:

v � A � v� C Ov � A � Ov�

v � v� D v �M � v�

v � v� ;

Fn �M D M � Fn
Here we mean by Ov the discrete Fourier transform of v, Ov = Fn�v. This defines the
matrixM in terms of the matrix A, as follows:

M D AC Fn � A � Fn�:

If M is to commute with FN , then the following condition must hold for the
matrix A:

Fn
2 � A D A � Fn2

This symmetry condition for the matrixA D .ai;j/
n�1
i;jD0, is equivalent to the following

condition on the components of A:

an�i;j D ai;n�j

where we understand the indices mod n for i; j D 0; : : : ; n � 1. Diagonal matrices
satisfying this symmetry condition are of most interest since A, a general matrix
satisfying this symmetry condition, can be reduced by a unitary transformation to a
diagonal matrix. We will consider in this section only diagonal matricesA satisfying
this symmetry condition. If A is diagonal and symmetric in the sense above, we
may characterize the class of all matrices M derived from A in terms of circulant
matrices.

If we take a general circulant matrixC D .ci�j mod n/
n�1
i;jD0, then it is well-known

that C can be represented in the form

C D FN �W � FN �

where W D diag(w) is a diagonal matrix with the vector w being a discrete Fourier
transform of a vector c. Using this notation, the general form of the matrix M can
now be written as

W C C
where W has to satisfy the symmetry condition on the vector w, wn�i D wi . In
order to make the correspondence with the case of the continuous Fourier transform
more direct, we need to normalize the Rayleigh–Ritz ratio RM .v/. We also want to
write the expression in a more symmetric form, extending the vector v of length n
by periodicity mod n to arbitrary indices i by vi D vi mod n. Care is also needed in
establishing the upper and lower limits of summation for n odd and for n even. To
do so, define the “nonnegative” indices i in the following range:

i D 0; : : : ; nC; for nC D

n � 1
2

�
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and the “negative” indices i are defined in the range

i D �n�; : : : ;�1; for n� D
�
n � 1
2

�

Notice that for n odd, n� D nC D n�1
2

. We introduce the following weighted
norm, which can be thought of as a weighted variance for a vector v, with weights w:

Vw.v/ D 1

n

nCX

kD�n�

w.k/jvkj2 for v D .vi /n�1
iD0 :

Here because of the symmetry condition on w imposed above, w.�j / D w.j /. With
these definitions, and substituting M D W C C , the Rayleigh–Ritz ratio can now
be written, up to the factor 1

n
, as:

Vw.v/C Vw.Ov/
kvk2

The matrixMw corresponding to this weighted variance has the form

MwD 1

n
��mi;j

	nC

i;jD�n�

for mi;j D 1

n

0

@

nCX

kD�n�

w.k/ � cos
2
k.i�j /

n
Cıi;j � w.i/

1

A :

Notice that by setting weights w2.k/ D k2, the “weighted variance” Vw2
.v/ thus

corresponds to the standard definition for the variance of a discrete function vk:

V.v/ D 1

n

nCX

kD�n�

k2jvk j2

The most noteworthy appearance of variance in harmonic analysis occurs in
the Heisenberg Uncertainty Principle. We formulate the “sum version” of the
Heisenberg Uncertainty Principle as follows:

V.f /C V. Of / � kf k
2

2

; V .f / D

Z 1

�1
x2 � jf .x/j2dx:

This “sum version” of the Uncertainty Principle is in fact equivalent to the more
familiar “product version” of the Uncertainty Principle:

V.f / � V. Of / � kf k
4

16
2
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The standard reduction of the “sum version” to the “product version” is done by
applying the “sum version” to dilated functions, fc.x/ D f .c � x/. This way one
gets an inequality involving a quadratic polynomial in c2 resulting from the dilation.
For our purposes, the crucial consequences of the Uncertainty Principle are:

� The fact that it provides a canonical characterization of the Gaussian function, as
that function which achieves equality in either form of the Uncertainty Principle.
This characterization establishes the Gaussian (up to a normalization constant)
to be e��x2

.
� Equality in the sum version of the Uncertainty Principle and the successive ex-

tremal vectors of the corresponding Rayleigh–Ritz ratio characterize the Hermite
functions.

We will use these characterizations to define discrete analogues of the Gaussian and
Hermite functions.

5 Discrete Uncertainty Principle

The search for discrete analogs of the Hermite functions leads naturally to a desire
to find a reasonable discrete analog of the Heisenberg Uncertainty Principle. Notice
that this is a variation on the more widely discussed discrete uncertainty principles
involving the size of the support of a vector and its discrete Fourier transform. Our
new analog involves the introduction of weights/distances over and above the basic
structure of functions over modular integers. With these preliminaries, we are in a
position to state the discrete analog of the sum form of the Heisenberg Uncertainty
Principle.

This is the Discrete Uncertainty Principle:
For an arbitrary vector v of real numbers of length n and its discrete Fourier

transform, Ov, we have:

V.v/C V.Ov/ � �1 � kvk2;
where numerically

�1 D 1

2

� e� n�

2 � pn � .1C o.1// :

Here �1 is the lowest eigenvalue of the matrix Mw2
, defined above, for the case

of the quadratic weight. Moreover, as in the Heisenberg Uncertainty Principle, the
inequality is attained by an extremal function which is a reasonable discrete analog
of the Gaussian function.

Similarly, analogs of higher order Hermite functions arise from the higher order
eigenvectors of the matrix Mw2

for quadratic weights. The most interesting analog
is the second eigenvector v2 of Mw2

, which is an odd vector; v2�i D �v2i . v2 is
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an extremal function for the discrete analog of the Heisenberg Uncertainty Principle
for odd functions, with

V.v/C V.Ov/ � �2 � kvk2;
where again numerically

�2 D 3

2

� e� n�

2 �O �pn	 :

For odd vectors v only, satisfying v.�i/ D �v.i/ for i mod n, the inequality is
attained only for v as a multiple of v2.

There is no obvious discrete analogue of the product version of the Heisenberg
Uncertainty Principle in this formulation, because ı- functions are in our space of
eligible vectors. For these ı- function or for vectors with all components equal,
the variances V.v/ or V.Ov/ are zeros. This excludes any nontrivial lower bound
on the product V.v/ � V.Ov/. A product-like analogue of the Heisenberg Uncertainty
Principle can still be formulated for odd vectors v (which cannot have zero variance).
For these vectors, using the �2 expression above, the discrete analog of the product
form Heisenberg Uncertainty Principle is:

V .v/ � V .Ov/ �
�

9

16
2
� e� n�

2 �O �pn	
�

kvk4

This product version also can be reduced to the sum version, as in the continuous
case. The main difference is that, since one cannot “dilate” the discrete function by
an arbitrary constant c > 0, there is a need to consider the modified variational
principle with the variance of v and Ov represented with factors c and 1=c, creating
the matrix c �W C 1

c
�C for the quadratic weights w2.i/ D i2. The second eigenvalue

of this matrix is bound by the same �2, giving the product version of the discrete
uncertainty principle for the odd vectors v.

The product version of the standard Uncertainty Principle can be still formulated
in the discrete case, if one adds an " > 0 to the quadratic weight w.i/ D i2. With
" of the order of e�O.n/, one achieves a familiar “product form” of the Discrete
Uncertainty Principle.

6 Explicit Expressions for the Matrix Mw2
in the Discrete

Version of the Uncertainty Principle

In general, the “extremality matrices” Mw for weights w.i/ might look rather
complex, but for most interesting weight classes these expression can be greatly
simplified. The most interesting among them is the matrixMw2

in the Discrete Ver-
sion of the Uncertainty Principle, corresponding to the quadratic weight w2.i/ D i2
and the classical definition of the variance V.v/ of the vector v. The expressions of
elements of Mw2

are slightly different for even and odd n.
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This is how the matrixMw2
looks in the case of the even n:

1

n

0

B
B
B
B
B
B
B
B
B
B
B
B
@

1

12

�

n2 C 2
	 � 1

2
csc2

�


n

�

	 	 	 	 	 	 	 	 	 	 	 	
� 1
2

csc2
�


n

� 1

12

�

n2 C 2
	C 1 	 	 	 	 	 	 	 	 	 	 	 	

:
:
:

: : :
:
:
:

:
:
:

:
:
: 	 	 	

1

2
.�1/i csc2

�
i


n

�

	 	 	 i2 C 1

12

�

n2 C 2
	 	 	 	 1

2
.�1/i�j csc2

�
.i � j /


n

�

	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

1

C
C
C
C
C
C
C
C
C
C
C
C
A

This is the formal expression of the elements of Mw2
in the case of even n:

�

Mw2

	

i;j
D 1

n

8

ˆ̂
<

ˆ̂
:

min.i; n � i/2 C 1

12

�

n2 C 2	 i D j
1

2
.�1/i�j csc2

�
.i � j /


n

�

otherwise

The next example of the matrix 2 �n �Mw2
for the case of n D 14 uses the following

shorthand si D 1

sin2. i�
14
/
:

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

33 �s1 s2 �s3 s3 �s2 s1 �1 s1 �s2 s3 �s3 s2 �s1
�s1 35 �s1 s2 �s3 s3 �s2 s1 �1 s1 �s2 s3 �s3 s2
s2 �s1 41 �s1 s2 �s3 s3 �s2 s1 �1 s1 �s2 s3 �s3
�s3 s2 �s1 51 �s1 s2 �s3 s3 �s2 s1 �1 s1 �s2 s3
s3 �s3 s2 �s1 65 �s1 s2 �s3 s3 �s2 s1 �1 s1 �s2
�s2 s3 �s3 s2 �s1 83 �s1 s2 �s3 s3 �s2 s1 �1 s1
s1 �s2 s3 �s3 s2 �s1 105 �s1 s2 �s3 s3 �s2 s1 �1
�1 s1 �s2 s3 �s3 s2 �s1 131 �s1 s2 �s3 s3 �s2 s1
s1 �1 s1 �s2 s3 �s3 s2 �s1 105 �s1 s2 �s3 s3 �s2
�s2 s1 �1 s1 �s2 s3 �s3 s2 �s1 83 �s1 s2 �s3 s3
s3 �s2 s1 �1 s1 �s2 s3 �s3 s2 �s1 65 �s1 s2 �s3
�s3 s3 �s2 s1 �1 s1 �s2 s3 �s3 s2 �s1 51 �s1 s2
s2 �s3 s3 �s2 s1 �1 s1 �s2 s3 �s3 s2 �s1 41 �s1
�s1 s2 �s3 s3 �s2 s1 �1 s1 �s2 s3 �s3 s2 �s1 35

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A
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This is the matrix Mw2
for odd n:

1

n

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

12

��1C n2
	 � cos

�


n

�

2 sin2
�


n

� 	 	 	 	 	 	 	 	 	 	 	 	

� cos
�


n

�

2 sin2
�


n

� 1C 1

12

��1C n2
	 	 	 	 	 	 	 	 	 	 	 	 	

:
:
:

: : :
:
:
:

:
:
:

:
:
: 	 	 	

.�1/i cos

�
i


n

�

2 sin2
�
i


n

� 	 	 	 i2 C 1

12

��1C n2
	 	 	 	

.�1/i�j cos

�
.i � j /


n

�

2 sin2
�
.i � j /


n

� 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

This is the formal expression of the elements of Mw2
for odd n:

�

Mw2

	

i;j
D 1

n

8

ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
:

min.i; n� i/2 C 1

12

�

n2 � 1	 i D j

.�1/i�j cos

�
.i � j /


n

�

2 sin2
�
.i � j /


n

� otherwise

Even though the matrix Mw2
is clearly dense, for very large n most elements in

the matrix become very small compared to the main diagonal elements. Only the
near-diagonal (and corner) elements of the matrix stay large (of the order of n).

7 Theta Function Bounds for Minimal Eigenvalues
in the Discrete Uncertainty Principle

In any formulation of the eigenvalue problem using a variational principle (like
Rayleigh–Ritz), one can get good bounds on the minimal eigenvalue using a “trial”
function. Applying the Rayleigh–Ritz quotient to the trial function one gets an upper
bound on the lowest eigenvalue (and also the lower bound on the highest eigenvalue)
of the matrix problem, arising from the extremality condition.

In all cases of the eigenvalue �1 of the matrix Mw2
in the discrete version of

the uncertainty principle, we seek the bound state to be as close as possible to the
Gaussian e��x2

. We can take the discretized Gaussian with x D jp
n

naturally as
follows:

GausŒn� D
�

e�� 	 j 2

n

�d n�1
2 e

jD�b n�1
2 c

;
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and use it as a trial function. Of course, for this to work well, we need a vector
that is an eigenvector of the discrete Fourier matrix, that is “very close” to this trial
function. We actually have this vector, defined above in terms of the �-function,
as � . It turns out that the trial vector � is better than the vector GausŒn� since it
provides a slightly smaller value of the Rayleigh–Ritz quotient.

We present the analysis for the case of the variational problem defined by the dis-
crete Heisenberg uncertainty principle with the Rayleigh–Ritz quotient of V.v/CV.Ov/kvk2 .

In the analysis below, we take an error term as a parameter q for � D ni
2

:

q D e� �n
2 ; � D ni

2
:

To start with, the norm of the trial vector � has a closed form expression:

k�k2 D
r
n

2
� �
�

0;
in

2

�2

for n even

k�k2 D
r
n

2
�
 

�

�

0;
in

2

�2

� 4 � �.0; 4in/ � #2.0; 4in/

!

for n odd

Thus,

k�k2 D
r
n

2
� �1C 4q CO.q2/	 :

Now, one needs to bound the variance V.�/ of� from above. For this, one needs
to approximate the elements �j of � . Here:

�j D e� j 2�
n � �.ij; in/ D e� j 2�

n �
0

@1C
1X

kD�1;k¤0
e��k2n�2�kj

1

A :

In the sum above, the term with k D �sign.j / provides the largest contribution.
This gives the following tight estimate:

�j D e� j 2�
n �

�

1C e2�jj j��n CO.q2/
�

for jj j � n
2

. This implies:

�2j D e� 2j 2�
n �

�

1C 2e2�jj j��n C e4�jj j�2�n CO.q2/
�

for jj j � n
2

.

Set as before
m D n

2
:
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Then, using the expressions for �2j above, we estimate V.�/ by:

X

jj j� n
2

j 2 � e� 2j 2�
n �

�

1C e2�jj j��n CO.q2/
�2

:

The sum that we are going to approximate V.�/ with is:

Um D
X

0�j�m
j 2 � e� j 2�

m �
�

1C e2�jj j��2m�2 :

In these notations,

n � V.�/ D 2 � Um CO
�

n2C 1
2 � q2

�

:

To estimate Um, apply the Poisson summation formula to the following “con-
strained shifted Gaussian” GUm.x/:

GUm.x/ D e� �x2

m

�

1C e2�x�2m�	2 x2

for x 2 Œ0;m�. We set GUm.x/ D 0 for x … Œ0;m�.
The application of the Poisson summation formula follows the standard method

of the proof of the Jacobi’s imaginary transformation identity, using Mathematica’s
facility for manipulation with the Fourier transforms, series expansions, and sym-
bolic manipulation with various combinations of the error-function.

As a result, we get the following bound on the Um:

Um D n
3
2

8
p
2

C e� n�

2 n2

2

CO.n 5

2 q2/CO
�

n
3
2 q
�

:

Using the expression above of �V.�/ in terms of �Um, we get the bound on
V. O�/C V.�/ D 2 � V.�/:

V. O�/C V.�/ D 1

2

�
r
n

2
C q � 2n



CO

�

n
3
2 q2

�

CO
�

n
1
2 q
�

:

Combining this with the estimate of the norm k�k2 presented above, we get the
value of the Rayleigh–Ritz quotient at v D � :

V. O�/C V.�/
k�k2 �

1
2�
�
q
n
2
C q � 2n

�
CO

�

n
3
2 q2

�

CO
�

n
1
2 q
�

q
n
2
� .1C 4q CO.q2//

:
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This finally gives the upper bound on the smallest eigenvalue �1 of the matrix Mw2

in the case of the quadratic weight, that is exponentially (in n) close to its value:

�1 � 1

2

� e� �n

2 �O.pn/:

Here, the constant at the O.
p
n/ term computed above is

2
p
2



;

rather close to an asymptotic value of 1 at n!1.

8 Numerical Evaluation of the Minimal Eigenvalues
in the Discrete Uncertainty Principle

Numerically, as we see below, the actual asymptotics of the smallest eigenvalue �1
of the matrix Mw2

in the case of the quadratic weight is

�1 
 1

2

� e� �n

2

p
n

as n!1.
In fact, one gets the following lower bound for the discrete uncertainty principle:

V. OGaus/C V.Gaus/

kGausk2 � �1 � 1

2

� 0:00007::

for all n � 8.
The list of evaluated 1

2�
� �1 as a function of n is presented as the Table 2.

9 Extensions of the Heisenberg–Weyl Inequality
in the Continuous and Discrete Cases

The uncertainty principle for functions f .x/ in L2.R/ and the continuous Fourier
transform is often called the Heisenberg–Weyl inequality because the first proof of
it belongs to H. Weyl [25].

Since in recent decades, interest in the discrete Fourier transforms and their
applications rose steadily, demands for discrete analogues of the uncertainty prin-
ciple rose as well. There appeared various attempts to bring to the periodic or
discrete word extremality inequalities similar to Heisenber–Weyl. We refer to the
recent review of Prestin et al. [23] on the better analogues of the uncertainty
principle for the periodic functions, defined on the unit circle, represented by
infinite Fourier series. Similar results were obtained in papers Ishii–Furukawa [16],
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Table 2 Minimal eigenvalues as a function of N

n 1
2


� �1 e�

n
2 e�


n
2 	 p

n

3 1:82717 � 10�2 8:98329 � 10�3 1:55595 � 10�2

4 2:22527 � 10�3 1:86744 � 10�3 3:73489 � 10�3

5 9:6173 � 10�4 3:88203 � 10�4 8:68049 � 10�4

6 1:42612 � 10�4 8:06995 � 10�5 1:97673 � 10�4

7 4:57888 � 10�5 1:67758 � 10�5 4:43845 � 10�5

8 7:63603 � 10�6 3:48734 � 10�6 9:86369 � 10�6

9 2:16777 � 10�6 7:24947 � 10�7 2:17484 � 10�6

10 3:81625 � 10�7 1:50702 � 10�7 4:76561 � 10�7

11 1:01386 � 10�7 3:13278 � 10�8 1:03903 � 10�7

12 1:84782 � 10�8 6:51241 � 10�9 2:25597 � 10�8

13 4:69947 � 10�9 1:3538 � 10�9 4:88119 � 10�9

14 8:74983 � 10�10 2:81427 � 10�10 1:053 � 10�9

15 2:16012 � 10�10 5:85029 � 10�11 2:26581 � 10�10

16 4:08776 � 10�11 1:21616 � 10�11 4:86462 � 10�11

17 9:86688 � 10�12 2:52814 � 10�12 1:04238 � 10�11

18 1:88865 � 10�12 5:25549 � 10�13 2:22971 � 10�12

19 4:48225 � 10�13 1:09251 � 10�13 4:76213 � 10�13

20 8:66078 � 10�14 2:2711 � 10�14 1:01567 � 10�13

30 1:62883 � 10�20 3:42259 � 10�21 1:87463 � 10�20

40 2:8606 � 10�27 5:1579 � 10�28 3:26214 � 10�27

50 4:84578 � 10�34 7:77304 � 10�35 5:49637 � 10�34

60 8:02836 � 10�41 1:17141 � 10�41 9:07371 � 10�41

70 1:31012 � 10�47 1:76534 � 10�48 1:47699 � 10�47

80 2:1147 � 10�54 2:66039 � 10�55 2:37953 � 10�54

90 3:38513 � 10�61 4:00926 � 10�62 3:80352 � 10�61

100 5:38369 � 10�68 6:04202 � 10�69 6:04202 � 10�68

200 4:62423 � 10�136 3:6506 � 10�137 5:16273 � 10�136

300 3:4278 � 10�204 2:2057 � 10�205 3:82039 � 10�204

A. Grunbaum [1], Calvez–Vilbe [6]. They all require additional assumptions on the
periodic functions f .�/ periodic on Œ0; 2
�, like f .
/ D f .�
/ D 0, and, more-
over, the extremality inequalities are always sharp; the equality is never achieved.
Consequently, the extremal function – the analogue of the Gaussian – is never
defined.

This is one of the more recent attempts on the discrete version of the uncertainty
principle for the discrete case, due to A. Grunbaum [2]:

4
X
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N
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jaj j2
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�
2
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N

�

jak j2

� 1
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0

@

N�1X

jD0

�
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�
2
j

N

�
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�
2
.j C 1/

N
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.aj NajC1 C ajC1 Naj /
1

A
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0

@

N�1X

jD0

�
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2
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�
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�
2
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��

.aj NajC1 � ajC1 Naj /
1
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The discrete analogue of the uncertainty principle presented in this paper very
well matches the classical version, but, more importantly, it gives an ability to con-
duct large scale numerical experiments in the search for various similar extremality
inequalities that are hard to conduct in the continuous case. A very tempting target
here is the search for general inequalities of the Heisenberg–Weyl style for general
classes of weights, and particularly for higher order moments.

Attempts to generalize the uncertainty principle (or Heisenberg–Weyl inequality)
to moments higher than two are the subject of active study in the last 50 years, since
the fundamental paper of J.I. Hirschman (1957) [14]. For more recent results see
Folland, Sitaram [11]. The general form of such generalizations is:

Z 1

�1
jxj˛ jf .x/j2dx C

Z 1

�1
jxj˛j Of .x/j2dx � K˛ � kf k2

for a constant K˛ > 0. There is also a similar nontrivial inequality with log.x/
replacing jxj˛ belonging to Beckner [4, 5]. We will call this logarithmic case the
case of ˛ D 0. In that case, Beckner proved that K0 D  .1=4/ � ln
 , but he also
proved that the inequality is sharp – the equality is never achieved in the L2.R/
space of functions, and thus there is no natural extremal function in this case. The
precise value of the constant K˛ is unknown for any other ˛ ¤ 0; 2. All known
bounds onK˛ in these cases are known to be imprecise.

In the discrete case, one can take analogously the weight w to be w˛.i/ D ji j˛. It
turned out that in these cases there is a natural scaling of the lowest eigenvalue �1;˛
of the matrix Mw˛

in n:

�1;˛ 
 n˛�1
2 � k˛ :

Here �1;˛ represents naturally the low bound in the discrete analogue of uncer-
tainty principle with the weight jxj˛, and thus the constant k˛ is an analogue of
yet unknown continuous constant K˛. It turns out that for even integers ˛, the con-
vergence of �1;˛ to n

˛�1
2 � k˛ is geometric in n, giving a good indication that the

extremal function does exists. The arithmetic nature of the constant k˛ is a mystery
even in the simplest but most interesting nontrivial case of ˛ D 4.

For the quartic weight w4.i/ D i4, the constant k4 is numerically

k4 D 0:017689769692136367634471484772200089760776281782338073296581121608:::

Looking at limited degrees and heights, the standard technique of finding linear
relations did not show any expression for k4 as a multiplicative combination of
rational powers of classical numbers such as 2; 3; 5; 
; � .1=3/; � .1=4/; �; e� ; �.3/.
To get a firm handle on the important “continuous case” constant K4, one needs
to understand its discrete incarnation k4 and the corresponding extremal function
arising from the bound state of Mw4

.
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9.1 The Dickenson–Steiglitz Basis as Derived
from Variational Principles

The general form of a variational principle presented above, using a matrix M, de-
rived from symmetric weights w, is sufficient to subsume the Dickenson–Steiglitz
basis. The weights in this case arise from the simplest positive periodic sequence. If
one defines

wi D 4 � sin2

i

n
;

then the matrixMw resulting from this choice of weights is proportional to the stan-
dard Harper (Dickenson–Steiglitz) matrix.

It is satisfying that the general formulation of the variational principle is capable
of naturally describing an often favored eigenvector basis for the Fourier matrix. The
asymptotics of the lowest eigenvalue – the one which corresponds to the discrete
analog of the Gaussian/bound state of the discrete Fourier transform – gives a good
insight into the scaling of the eigenstates.

While in the case of polynomial weights, the scaling of the lowest eigenvalue
is geometric, in the case of the Harper matrix, the scaling is sublinear. Using the
notation for the weight w above, the smallest eigenvalue �w for the matrix Mw cor-
responding to the Harper (Dickenson–Steiglitz) matrix, scales linearly with n and
asymptotically very slowly approaches 2
 . For example, for n D 1; 000, numeri-
cally one obtains only

1

2
n � �w D 3:13912 : : :

This stands in the striking contrast with the scaling of �w for weights w.i/ that are
powers of i .

We would like to point out that a different form of the uncertainty principle in-
volving discrete Fourier eigenvectors, concentrated at subsets S of f0; : : : ; n � 1g,
also can be reduced to the weighted framework. In this case, the weights w.i/ arise
from characteristic functions of subsets S .
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Sparse Sets in Time and Frequency Related
to Diophantine Problems and Integrable Systems

D.V. Chudnovsky, G.V. Chudnovsky, and T. Morgan

Summary Reconstruction of signals and their Fourier transforms lead to the theory
of prolate functions, developed by Slepian and Pollack. We look at prior contribu-
tions by Szegö to these problems. We present a unified framework for solutions of
Szegö like problems for signals supported by an arbitrary union of intervals, us-
ing the techniques of Garnier isomonodromy equations. New classes of completely
integrable equations and Darboux–Backlund transformations that arise from this
framework are similar to the problems encountered in transcendental number the-
ory. A particular example for the Hilbert matrix is studied in detail.

Keywords Hilbert matrix � Hankel matrices � Padé approximations
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The Hilbert Matrix and Related Operators

In 1936, Szegö considered the Hilbert matrix as a particular example of a general
extremality problem, the simultaneous concentration of polynomials on intervals
and arcs in the complex plane [20].

In the modern era, the extremality study of simultaneously space and frequency
band limited signals was initiated by Slepian and Pollack in 1960’s [18,19] who dis-
covered a differential operator, which commuted with integral operators describing
such simultaneously space and frequency band limited signals.

The connection of their studies with the Szegö problem was mentioned in their
paper [7].

D.V. Chudnovsky, G.V. Chudnovsky, and T. Morgan

e-mail: david@imas.poly.edu; gregory@imas.poly.edu; tmorgan@acm.org

D. Chudnovsky and G. Chudnovsky (eds.), Additive Number Theory: Festschrift
In Honor of the Sixtieth Birthday of Melvyn B. Nathanson,
DOI 10.1007/978-0-387-68361-4 5, c� Springer Science+Business Media, LLC 2010

77

Polytechnic Institute of NYU, IMAS, 6 MetroTech Center, Brooklyn, NY 11201, USA

david@imas.poly.edu
gregory@imas.poly.edu
tmorgan@acm.org


78 D.V. Chudnovsky et al.

It is important to note that the first occurrence of commuting integral and
differential operators in the context of extremality studies seems to belong to
M. Rosenblum [14, 15]. Rosenblum represented the infinite Hilbert matrix as an
equivalent integral operator. For this, Rosenblum used an orthogonal basis consist-
ing of functions e�x=2 �Ln.x/ (whereLn.x/ is a Laguerre polynomial). Rosenblum
determined the spectrum of this operator using a commuting differential operator,
which was explicitly constructed in terms of the generalized hypergeometric equa-
tion. It seems that Rosenblum’s contribution is a seminal one, which precedes all
other similar “miracles” as Slepian put it in 1961 paper [19]. It is especially inter-
esting in practical applications because a problem which is well known to be ill
conditioned in its original formulation is converted to a much better conditioned
form, which is also numerically more efficient to solve. We discovered the papers
of Rosenblum after much study on the finite sections of the Hilbert matrix, and its
commuting differential operator which was completed in 2005. It should be noted
that the operator which was found by the study of the finite sections of the Hilbert
matrix, when extended to the full Hilbert matrix, differs entirely from the Rosen-
blum operator due to the difference in the choice of base. While Rosenblum uses a
basis suited to the Whittaker function (hypergeometric function 0F2), the basis used
in this study of the Hilbert matrix and its finite sections is the polynomial basis. The
choice of the polynomial basis results in the 2F1 hypergeometric function. The two
bases and the corresponding integral operators are related by an integral transform
with an exponential kernel. An alternative representation of matrices commuting
with the Hilbert matrix was later given by Sawyer and Grunbaum [1, 16].

The Hilbert matrix analysis leads to a more general case of minor of finite Fourier
transform matrix, arising from arbitrary set C of intervals. These are the objects
that naturally occur in the study of signal reconstruction. Investigation of spectral
properties of these finite matrices led to a class of number-theoretic subjects: Padé
approximations to classical transcendental functions (linear combinations of loga-
rithms and q-logarithms) and isomonodromy transformations. It provides a better
look at those ill-conditioned matrices and their deep analytical properties.

General Prolate Functions

In the most general (n-dimensional) case, the story of functions band-limited in
space and/or frequency looks as follows. For a bounded subset ˝ in n-dimensional
space, we are looking at the subspace R˝ of L2.Rn/ of functions f .x/ that can be
represented in the form:

f .x/ D
�
1

2


�n=2

�
Z

� � �
Z

˝

e�i.x:u/ � s.u/ du (1)

for a standard scalar product .x:u/ in Rn. Thus, R˝ is the space of functions
ff .x/g, whose frequency is band-limited to the set ˝ . Let P˝ be the projection
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from L2.R
n/ to R˝ – i.e. P˝ is the operator of band-limiting to ˝ . We also intro-

duce “space-limited” functions and the corresponding projections. If M is a subset
of Rn, we have a very simple operator of restriction of functions to M . This opera-
tor,DM maps functions f .x/ from L2.R

n/ to the following one:

DMf .x/ D f .x/ � �M .x/; (2)

where �M .x/ is the characteristic function of the set M . The combined projection
operator P˝DM is an isomorphism R˝ ! R˝ . There is a natural band-limited
basis of R˝ associated with this operator. This system of functions, f kg satisfies
the following properties (commonly referred to as double-orthogonality properties).

1. System f kg is complete in R˝ .
2. System f kg is orthogonal in L2.Rn/.
3. System f kg is orthogonal on L2.M/ in the following way:

Z

� � �
Z

M

 k.x/ �  l .x/dx D 0I k ¤ l: (3)

4. System f kg is the complete system of eigenfunctions of the “double projection”
operator P˝DM :

P˝DM k D �k �  k : (4)

The “double projection” operator P˝DM has actually a very natural integral repre-
sentation:

P˝DM .f .x// D
Z

� � �
Z

M

K˝.x � y/ � f .y/ dy; (5)

where the kernelK˝.x � y/ is defined in terms of the spectral support˝:

K˝.x � y/ D
�
1

2


�n=2

�
Z

� � �
Z

˝

e�i..x�y/:u/ du: (6)

Generally speaking, this integral equation is incredibly complex, as it ties together
space and frequency. Of course, this is just a “continuous” version of the symmetric
square

C � CH (7)

of the general n by m minor of the discrete Fourier matrix

C D
�

e2�
p�1xiyj =N

�iDn;jDm
iD1;jD1 (8)

However, in the incredibly “lucky accident”, as its discoverers put it, in the cases of
the ˝ and M being balls (or intervals in the case of n D 1) the problem turned out
to be reducible to a well studied classical one.
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In the series of remarkable papers started in 1961, D. Slepian, H. Landau, and
H. Pollak found and developed an extraordinary detailed theory of eigenfunction of
the projection operator P˝DM for intervals

˝ D Œ�W;W �I M D Œ�T; T �I n D 1: (9)

They called this theory a theory of prolate functions because it turned out that
the eigenfunctions  k are actually solutions (eigenfunctions) of a classical pro-
late spheroidal wave equation. Specifically, in the 1-dimensional case when ˝ D
Œ�W;W � and M D Œ�T; T �, if we put x D T z, and c D W � T , we get the follow-
ing representation of the P˝DM .f .x// integral operator:

P˝DM . .z// D
Z 1

�1
sin c.z � u/


.z � u/
�  .u/ du: (10)

This operator commutes with the prolate spheroidal linear differential operator:

Pz D d

dz

�

1 � z2
	 d

dz
� c2z2: (11)

This means that the eigenfunctions  k.z/ are actually eigenfunctions of the differ-
ential operator Pz, or, in other words, are solutions of the prolate spheroidal wave
equation:

.1 � z2/ �  00

k .z/ � 2z �  0

k.z/C
�

�k � c2z2
	 �  k.z/ D 0: (12)

This representation is quite significant for many reasons. One of them, rather im-
portant in practical applications, is that of inherit ill-conditioning of the integral
operator P˝DM that have almost all eigenvalues �k very close to degenerate;
almost all of them cluster at � D 0 and � D 1 (exponentially close to these points).
Eigenvalues �k are, on the other hand, very well separated. In the discrete case, the
well conditioning of the prolate operator commuting with the standard projection
operator allows for the numeric computation of the prolate eigenforms (sequences).

General Prolate Functions and Commuting Differential
Operators

Clearly having the second, better conditioned, linear problem that defines the same
eigenfunctions is very important both for theoretical and applied development of the
theory of general space and frequency limited functions. For this, one needs the sec-
ond (say, differential) operator commuting with the main integral one. For example,
the best quantative versions of the uncertainty principle in the case of an interval
in space and the interval in frequency were developed by Slepian, Landau, Pollak
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using prolate spheroidal wave operators. The theory was generalized by them vir-
tually unchanged to the case of n-dimensional balls, where the original sinc kernel
K˝.x � y/:

sin .c � .x � y//
x � y (13)

is replaced by the Bessel-like kernel

JN .cxy/
p
xy: (14)

There were various attempts in 1960s–1980s to extend this commuting “miracle” to
other cases. The new kernel found was the Airy kernel Ai.x C y/.

Work of J. Morrison in the 1960s [12] and Grunbaum showed that the cases
of commuting differential operators (or sparse matrices in the discrete cases) are
basically reduced to the known ones. Of course, these days we call the cases of
nontrivial commuting differential or integral operators completely integrable. These
studies started with Burnchall-Chaundy in 1920s, and are known and studied under
various names (Lax pairs, etc.). It is generally understood that such cases are very
rare and always somehow fall into one or another class of well-studied classes with
very rich internal structures.

Modern approach to operators with kernel similar to those mentioned above,
including Airy-kernel use methods of isospectral and isomonodromy deformation
equation applied to the Fredholm operators – see among others papers [2,9,21,22].

Szegö Problem and Concentrated Polynomials

In fact, all this business started with Szegö. One can trace the field of dually concen-
trated functions to a remarkable paper Szegö [20]. There Szegö asks the following
question. Let C1; C2 be Jordan curves in the complex plane, bounding regions
E1; E2. What is the maximum value of the following ratio:

Mn.C1; C2/ D

R

C1

jP.z/j2 d z

R

C2

jP.z/j2 d z
(15)

among all polynomials P.z/ of degree n?
ThenMn.C1; C2/ can be interpreted as the “energy ratio”, and P.z/ as a polyno-

mial having its energy most concentrated in C1 at the expense of its energy in C2.
Using normalized orthogonal polynomials q�.z/ on C2, the ratio becomes the max-
imum of the quadratic form:

Mn D max
nX

�;�D0
x� Nx�.l/�1

Z

C1

q�.z/q�.z/ jdzj (16)
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provided that the variables x� satisfy the condition
Pn
�D0 jx� j2 � 1) (or D 1). In

other words, Mn is the greatest characteristic value of the Hermitian form on the
right side. Here l denotes the length of C1.

Szegö made a very general prediction of the asymptotics of Mn.C1; C2/ as
n!1 in terms of the maximum of the Green’s function of C2 on the curve C1.

It has an easier interpretation in the case of simply-connectedC2, where we map
the exterior of C2 to the exterior of the unit circle and are looking at the greatest
distance, �, of the image of C1 under that mapping, to the unit circle. Then asymp-

totically
q

M
1=n
n is �.

A particular case that was treated in great detail is that of the interval C1 and a
circle C2. Specifically, let C1 is an interval .0; 1/, and C2 is the unit circle. One gets
then the quadratic form:

Z 1

0

.x0 C x1t C x2t2 C � � � C xntn/2dt D
nX

�;�D0

x�x�

�C � C 1 (17)

and Szegö obtains for the smallest characteristic value

�n Š 215=4
3=2n1=2 � .21=2 � 1/4nC4: (18)

There is another similar asymptotics in the same paper [20]. Let �n be the smallest
characteristic value of the quadratic form

1

2

Z 1

�1
.x0 C x1t C x2t2 C � � � C xntn/2dt D

n�X

�;�D0

x�x�

�C � C 1 ; (19)

where
P� indicates that the summation is extended only over even values of �C�.

Then

�n Š 29=4
3=2n1=2.21=2 � 1/2nC3: (20)

The matrix occurring in the first problem is known as Hilbert matrix. Since its largest
eigenvalue is very close to 
 , this matrix is notoriously ill-conditioned.

For example, for n D 100, the smallest eigenvalue of Hilbert matrix is

1:71 � 10�152 (21)

(as accurately predicted by Szegö formula).
The Hilbert matrix is a favorite subject of study, as it provides an excellent pro-

totype of numerical instability. While the inverse of Hilbert matrix is well-known
analytically, not much was known of analytic properties of its eigenfunction and
eigenvalues.
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Hilbert Matrix and a Commuting Differential Operator

The eigenvectors of the Hilbert matrix

HŒn� D
�

1

i C j C 1
�n

i;j;D0
(22)

can be described using a “very natural” 4-th order Fuchsian linear differential
operator:

Lf4g
n D x3 � .x � 1/2 �

d4

dx4
C 2 � x2 � .5x � 3/ � .x � 1/ � d3

dx3

Cx � .6 � .n2 C 2n/.x � 1/2 C 4x.6x � 7// � d2

dx2

C.�n.nC 2/C 4.�2C n.nC 2//x � 3.�4C n.nC 2//x2/ � d1

dx1

C.C � n.nC 2/x/ � d0

dx0

The relationship of this operatorLf4g
n with eigenvectors ofHŒn� is rather straight-

forward. The linear differential equation

Lf4g
n Q D 0 (23)

has a polynomial (in x) solution Q.x/ of degree n when and only when the vector
of coefficients of Q.x/ is the eigenvector of HŒn�:

HŒn� � v D � � v; (24)

where v D .vi /niD0 and Q.x/ D Pn
iD0 vi � xi . The relationship between the com-

muting eigenvalues – C (the accessory parameter of the Fuchsian l.d.e.) and � (the
matrix eigenvalue) reveals the monodromy of Lf4g

n and the role of Padé approxima-
tions. Namely, if Qn.x/ is a polynomial solution of Lf4g

n Q D 0, then there are two
solutions of this equation of the form:

f1 D Qn � log

�
x � 1
x

�

C Pn�1 (25)

f2 D Q1
n

xnC1 � log .x � 1/C P 1n�1
xn

(26)

with f1 providing a rational (Padé-type) approximation to the logarithm log .1�1=x/
at x ! 1, and f2 providing an approximation to the logarithm log .1 � x/ at
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x ! 0. Then the eigenfunction condition, determining the original � eigenvalue is
the connectivity formula:

Q1
n.x/ D � �Qn

�
1

x

�

xn: (27)

The Hilbert eigenvalue problem thus becomes an over-convergence Padé-like ap-
proximation problem: Find a polynomialQn.x/ of degree n such that the following
linear form has an order nC 2 of zero

log

�

1 � 1
x

�

�Qn.x/ � Pn�1.x/ � � �Qn

�
1

x

�

x�1 D O �x�n�2	 (28)

at x !1. (Here Pn�1.x/ is a simple function of Qn.x/). If in the right hand side
the order of approximation would have been a standard, O.x�n�1/, it would have
been an ordinary Padé approximation problem with nothing more complicated than
Legendre polynomials. The differential equation formulation achieves the following
goal: replaces an ill-conditioned problem with the equivalent well-conditioned, and
a dense matrix with a commuting sparse one, arising from Padé-like approximation
problem.

Szegö Problem and Arbitrary Unions of Intervals

The most interesting and full of application case of the Szegö problem is that of sets
C1; C2 which are the unions of intervals. In 1978 Slepian and Gilbert [7] tried to find
differential operators commuting with the concentration problem. They found that
there were just 2 such cases: of C1; C2 single intervals with C2 centrally positioned
inside C1 (i.e., Œ�a; a� inside Œ�1; 1� for a < 1), and of C1; C2 adjacent (i.e., Œ�1; 1�
and Œ1; a� for a > 1).

While it is true that there is no commuting differential operators in the multiple
interval cases both in Szegö problem, and in the general space/frequency bandlim-
iting problem, it does not mean that the problems are not completely integrable in
some sense. In fact, these problems are reduced to a classical isomonodromy defor-
mation problem, and to problems that were actively studied by the Chudnovskys in
1980 [3, 4].

The simplest way to enter this area is to start with a well-known definition of
Padé approximation to a function f .x/, analytic at x D 0. The rational function
Pn.x/=Qn.x/ is called a (diagonal) Padé approximation to f .x/ (of order n) if
Pn.x/=Qn.x/ expanded at x D 0matches first 2nC1 terms of the series expansion
of f .x/ at x D 0, or

Qn.x/ � f .x/ � Pn.x/ D O.x2nC1/: (29)

If the order is exactly x2nC1, the Padé approximation is called a normal (or perfect,
see K. Mahler’s definition [11] in general multifunction case).
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Szegö problem can be naturally formulated in terms of Padé approximation to
the most general logarithmic function

f .x/ D
mX

iD1
wi log .1 � aix/: (30)

Only when m D 2 this is an explicitly solvable problem (Legendre polynomials)
when Padé approximations are always normal.

It turns out the Szegö problem is equivalent to finding cases of non-normality for
a fixed set fai gmiD1 of singularities, made from the ends of intervals comprising C1
and C2. Namely, when

C1 D
d1[

i1D1
.bi1 ; ci1/I C2 D

d2[

i2D1
.di2 ; ei2/; (31)

we will associate weight w.:/ with the ends of these intervals:

w.bi1/ D 1;w.ci1/ D �1;w.di2/ D �;w.ei2/ D ��: (32)

If fai gmiD1 is set of these ends, and

f .x/ D
mX

iD1
w.ai / log .1 � aix/; (33)

then � is an eigenvalue in Mn.C1; C2/ problem if and only if the Padé approxima-
tion Pn.x/=Qn.x/ of order n to f .x/ is non-normal (and the polynomialQn.x/ is
then the most concentrated polynomial).

This characterization of Szegö problem immediately associates with the
Mn.C1; C2/ problem a Fuchsian linear differential equation of the second order. Its
fundamental system of solutions is simply

Qn.x/ and Qn.x/ � f .x/ � Pn.x/: (34)

This Fuchsian equation exists naturally over the moduli space of intervals (essen-
tially two copies of the hyperelliptic moduli space).

Garnier Isomonodromy Deformation Equations

The Fuchsian equations for the Szegö problem start with the set faigmiD1 of ends of
intervals. We can always assume, without loss of generality, that

a1 D 0; a2 D 1: (35)
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Thus, we have m regular (logarithmic) singularities. We also have m � 2 apparent
singularities fbkgm�2

kD1 – these are the singularities of the equation, but not of any
solutions.

The apparent singularities correspond to spurious zeros of Qn.x/ outside of
C1; C2. The Fuchsian equation has the following form:

d2

dx2
Y C

 
mX

iD1

1

x � ai �
m�2X

kD1

1

x � bk

!

d

dx
Y C p2m�4.x/

Q
.x � ai /Q.x � bk/ Y D 0

(36)

There arem� 2 free parameters fcj g in p2m�4.x/, known as accessory parameters.
They are usually defined as residues

cj D ResxDbj

p2m�4.x/
Q
.x � ai /Q.x � bk/ : (37)

The main point of this equation is that its monodromy group depends only on the
number m of logarithmic singularities (of f .x/), and thus the dependence in this
equation on actual position of singularities fai g defines isomonodromy deformation
equation. The particular system of isomonodromy deformation system for 2nd order
Fuchsian equations is called Garnier system, after Garnier papers of 1912–1919
[6, 13].

The Garnier system can be written in the Hamiltonian form describing the de-
pendencies of all parameters (apparent singularities and accessory parameters) on
actual singularities aj , [13]:

@bk

@aj
D @Kj

@ck
I (38)

@ck

@aj
D �@Kj

@bk
: (39)

The Hamiltonians Kj have the following explicit form (in our particular case of
logarithmic singularities):

T .x/ D
Y

.x � ai /I L.x/ D
Y

.x � bi / (40)

Kj D � L.aj /
T

0

.aj /

 
m�2X

lD1

T .bl/

L
0

.bl/.bl � aj /

 

c2l C cl
m�2X

iD1

ıij

bl � ai

!

C n.nC 1/
!

:

(41)

Here Ki are natural parameters of the Fuchsian equation:

Ki D ResxDai

p2m�4.x/
Q
.x � ai /Q.x � bk/ ; (42)

and j D 2; : : : ; m.
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In the case of m D 3, the Garnier system is the celebrated Painlevé VI equation.
Isomonodromy deformation systems like Garnier posses many special symmetry
properties in addition to havingm� 2 commuting Hamiltonians (Kj ). In particular,
they posses birational transformations, known as Darboux–Backlund or Schelsinger
transformations.

In our particular case, these are explicit nonlinear algebraic transformations that
relate the parameters ai ; bj ; ck for a given n to the similar parameters for n C 1
(or n�1). These are essentially nonlinear recurrences on such parameters (as a func-
tion of the degree n of the polynomialQn.x/). These recurrence relations allow for
a fine analysis of the eigenvalue and eigenfunction behavior and additional asymp-
totic terms. It also allows us to have a very interesting view on the global behavior
of the eigenvalues as a function of singularity positions faig.

There is another important consequence of the Fuchsian equation associated with
the solution Qn.z/ of the Mn.C1; C2/ problem. It shows that the zeros of Qn.z/ on
the complex plane are governed by Heune-Stiltjes theory of zeros of polynomial so-
lutions of Fuchsian equations as electrostatic particles arising from the minimization
of the energy functional

Y

i¤j
jzi � zj j �

Y

i;k

jzi � ak j2 �
Y

i;l

jzi � bl j�2: (43)

Here fzj gnjD1 are roots of Qn.z/ D 0. Their location shows the true concentration
patterns for different geometries of C1; C2.

Arbitrary union of intervals can be handled this way; including the intervals with
complex ends. There the sets C are defined as minimal capacity set in the complex
plane containing the end points. One can actually visualize these sets by looking at
the accumulation of zeros of Qn.z/ in the complex plane. Circles can be added to
sets C (like in the Hilbert matrix case).

Figure 1 shows the location of the zeros of the generating polynomial for eigen-
vectors 1,20,40,60,80 and 100 of the Hilbert matrix of dimension 100, when the
eigenvectors are arranged in decreasing order of their corresponding eigenvalue.
Notice how the zeros of the generating polynomial are located near the unit circle
in the complex plane and along the real unit interval. The lower number eigenvec-
tors have more zeros near the unit circle, the higher number eigenvectors have more
zeros in the unit interval. This pattern of appearance of the zeros of the generat-
ing polynomial provides a visualization of the underlying structure of differential
equations which govern the eigenvectors of the Hilbert matrix.

Explicit Expressions for the Non-Linear Darboux Transform

The Darboux-Schlesinger-Garnier-Backlund [13, 17] (or simply Darboux) general
transformations show the birational algebraic transformations (that are also canon-
ical with respect to the Hamiltonian structure) between solutions of Fuchsian
differential equations with the same monodromy group and same real singularities
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Hilbert matrix of dimension100.

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

Eigenvector No. 1 Eigenvector No. 60

Eigenvector No. 20 Eigenvector No. 80

Eigenvector No. 40 Eigenvector No. 100

Figure 1 Location of zeros of generating polynomials for selected eigenvectors
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when local exponents of the equation are simply transformed by exchanges or
addition/subtraction of integers. These relations were called by Riemann contigu-
ous relations (after Euler and Gauss formulae in hypergeometric case).

Derivation of these formulas is tedious but elementary and is reduced to solv-
ing linear equations. It requires only matching linear forms in solutions of Fuchsian
equations with rational function coefficients to correct orders of singularities. The
canonical Hamiltonian representation of Garnier system requires a canonical trans-
formation

si D ai

ai � 1 ; qi D
aiL.ai /

T 0.ai /
; pi D

m�2X

kD1

.1 � ai /T .bk/ck
bk.bk � 1/.bk � ai /L0.bk/

: (44)

We will present Darboux transformation in the most general form, where the local
exponents at all singularities, real and apparent, have the most general matrix form

0

@

x D 0 x D 1 x D1 x D ai x D bk
0 0 ˛ 0 0

�0 �1 ˛ C �1 �i 2

1

A (45)

Here ˛ D �1
2
.�0 C �1 C �1 C P

�i � 1/: Of course in our special case
�0 D �1 D �i D 0 and �1 D 2n C 1. We describe these Darboux transforms in
canonical variables p;q; s showing also the effect of transformations on exponents
of the Fuchsian equations:

�1• �0 W
Qi D qi

si
I pi D sipi I Si D 1

si
�1• �1 W

Qi D qi

g1 � 1 I pi D .g1 � 1/.pi � ˛ �
P
pj qj /ISi D si

si � 1
�1 ! ��1 W

Qi D qi I Pi D pi I
�1 ! ��1 W

Qi D qi I Pi D pi � �1

g1 � 1 I
�0 ! ��0 W

Qi D qi I Pi D pi � �0

.gs � 1/si I
�j ! ��j W

Qi D qi I Pj D pj � �j
qj
I Pi D pi .j ¤ i/

.�0; �1; �1; �1; : : : ; �m/! .��0 C 1;��1 C 1;��1;��1; : : : ;��m/ W

Qi D sipi .qipi � �i /
.˛ CPj qjpj /.˛ C �1 CPj qjpj /

I QiPi D �qipi (46)
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In the formulas above,

g1 D
X

i

qi ; gs D
X

i

qi

si
: (47)

In our particular case, we need a combination of transformations above giving us
the “addition of orders to Padé approximation”

.�0; �1; �1; �1; : : : ; �m/! .�0; �1; �1 C 2; �1; : : : ; �m/: (48)

Note the heavy nonlinearity of these Darboux transformations. Basically, only in
the “trivial” cases, reducible to hypergeometric functions, the recurrence relations
connecting the n and n C 1 cases are explicit. Otherwise, these complicated equa-
tions make the corresponding Padé approximations to have the heights of the these
approximants to grow with n as C n

2
. In particular, this makes the Padé approxi-

mation to a linear combination of logarithms useless for diophantine approximation
applications (unless it reduces to a single logarithm).

Darboux Transformation for m D 3 Case

These are the simplest formulas for m D 3 (Painleve VI) with one singularity
a3D t ; one apparent singularity � and an accessory parameter �. It shows the com-
plexity of the transformation from n to n� 1.

�0 D .3�3�2.tC1/�3Cn2.t�C�C2n/C.�3t�3�n2//.�46�2�4.tC1/5C
.�23��.t�C�C2n/2C.t�2C2n�Cn2/C

.�4.t2C4tC1/�6�2n2/4�2�.t.tC1/�3�4n2.tC1/��4n3/3C
n2.t�1//.�23��.t�C�C2n/2C.t�2C2nt�Cn2/�

.t2�4�2n2.t2C5tC1/�2�8n3.tC1/��3n4/2C2n2.t.tC1/�2C4nt�Cn2.tC1//Cn4.t�1/2/
n2.t�1//.�23��.t�C�C2n/2C.t�2C2n.tC1/�Cn2/�n.tnCnC2�t//

(49)

�0 D ..�1/.n��/2�..�1/�2�2.�1/n�Cn2/t/2

.�1/..�1/2�2C2.�1/n��.3C1/n2/.n��/2C
.n2�.�1/�2/2t2�2.�1/..�1/3�4�.4�1/n2�2C4n3��n4/t

(50)

The poles of � and � give the location of eigenvalues for 2-interval sets. See [5]
for the discussion of zeros and poles of accessory parameters and apparent singular-
ities as eigenvalue problems.
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Generalized Prolate Functions and Another Isomonodromy
Problem

Szegö problem in the case of arbitrary unions of intervals was reduced to the Padé
approximations and isomonodromy deformation (Garnier) equations. The same is
true for the generalized prolate functions whenever sets ˝ and M are unions of
intervals. The eigenvalue problem there also leads to the non-normal Padé-like
approximation problem; the Fuchsian differential equations, and Garnier isomon-
odromy deformation system of nonlinear differential equations. The main difference
here is that the auxiliary function we are approximating is

f .x/ D
X

wi � log
x � ai
x � 1

ai

(51)

where ai are points on the unit circle. The function f .x/ is approximated simulta-
neously at x D 0 and x D 1:

Q.x/ � f .x/ � P.x/ D O.x�1/I x !1 (52)

Q.x/ � f .x/ � P.x/C � �Q.x/ D O.xn/I x ! 0: (53)

Generalized Prolate Matrices

The most general solution of Szegö problem reduces to the analysis of the following
matrix (corresponding to arbitrary weights)

MN D
 

mX

˛D1

w˛a
iCjC1
˛

i C j C 1

!N

i;jD0
(54)

and solving for
MN Nv D 0: (55)

The case of two interval unions C1 and C2 can also be reduced to the (generalized)
eigenvalue problem

AC1
Nv D �AC2 Nv; (56)

where the AC matrix has the form

AC D
 
X

k

c
iCjC1
k

� biCjC1
k

i C j C 1

!N

i;jD0
(57)
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when C D SkŒbk ; ck�. The prolate kernel

sin.ax/

x
(58)

leads to the following class of matrices for the arbitrary union of intervals

PC;N D
 

mX

˛D1

a
i�j
˛ � aj�i

˛

i � j

!N

i;jD0
: (59)

Here we get the completely integrable case as well, involving only second order
Fuchsian linear differential equations with real singularities at x D a˛ and x D a�1

˛ :

The alternative formulation of the problem involves 2 – point Padé approxima-
tions to

X

˛

log
x � a˛
x � a�1

˛

(60)

at both x D 0 and x D1.

Eigenvalue Problems for Hankel Matrices and Fourth Order
Differential Equations

The function f .x/ is called a symbol of the Hankel matrix H D .hiCjC1/n�1
i;jD0 if

the expansion of f .x/ at x D 1 has the form:

f .x/ D
1X

mD0
hm � x�m�1:

As we saw in examples of the preceding sections, one can construct second
order differential equations that describes the generalized eigenvalue problem for
Hankel matrices, whose symbols satisfy (inhomogeneous) first order linear differ-
ential equations over C.x/. This does not work, however, for the standard Hankel
eigenvalue problem. The reason for this is that the multiplication

Q.x/ � f .x/

correctly describes the action of the Hankel matrix with the symbol f , on the vector
whose generating function is Q.x/, but the right hand side in the standard eigen-
value problem corresponds to the vector with the generating function of the form:

�
Q
�
1
x

	

x
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That is why one needs fourth order differential equation to describe eigenvectors
of the Hilbert matrix. In this section, we will show how this construction can be
generalized to a more general class of Hankel matrices.

Let f D f .x/ be a solution of the first order inhomogeneous linear differen-
tial equation, and k D k.x/ be the solution of the corresponding homogeneous
equation:

f 0 D a � f C b;
k0 D a � k

To express the eigenvalue problem for the Hankel matrix whose symbol cor-
responds to the expansion of f .x/ we need to consider both f .x/ and f . 1

x
/,

effectively expanding each at x D1 and x D 0, respectively. For this we introduce
the auxiliary objects:

f �.x/ D f
�
1

x

�

I k�.x/ D k
�
1

x

�

IQ�.x/ D Q
�
1

x

�

I P� .x/ D P
�
1

x

�

:

We need the direct sum of two second order linear differential equations, describing
the approximations to f .x/ and f . 1

x
/. The first equation has a familiar basis:

R .x/ D Q.x/ � f .x/ � P.x/; Q.x/ � k.x/

The second equation has as a basis a transformed set of functions, scaled by a new
function u D u.x/:

u.x/ � .Q�.x/ � f �.x/ � P�.x//; u.x/ � .Q�.x/ � k�.x//:

We use the same rational approximation P
Q

to f , but expanded in x and 1
x

, meaning
identical expansions at x D 1 and x D 0. We look at the fourth order linear
differential equation, which is the direct sum of these two equations. Its basis of
solutions is simply the union of these two sets of functions. We use two linear forms
in these solutions that would have a zero of a high order at x D 1 and at x D 0. To
get a linear form that would give us a Hankel eigenvalue problem:

f .x/ �Q.x/ � P.x/ � � � Q
�.x/
x

;

and its counterpart, with x replaced by 1
x

, we need to build it from the following
two linear forms that mix solutions from two linear differential equations:

f �Q � P � � � .k�Q�/ � u
u � .f � �Q� � P�/� �� � .kQ/
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For these linear forms to be equivalent under the transformation: x $ 1
x

, one
needs the following conditions to be satisfied:

u.x/ D k.x/
x
;

k.x/ � k�.x/ D k.x/ � k. 1
x
/ D const:

It is the last condition that put the restriction on the class of functions f .x/
among all possible solutions of first order inhomogeneous linear differential equa-
tions that lead to the explicit second commuting, auxiliary, Hankel eigenvector
problem. These conditions mean that k has the following form:

k.x/ D x! �
Y

˛2A

� x � ˛
˛ � x � 1

��˛ � er.x/;

where A � C such that 0 … A and for ˛ 2 A, 1
˛
… A, and r. 1

x
/ D �r.x/ for

r.x/ 2 C.x/.
The fourth order linear differential equations that arises from this choice of u.x/

and k.x/ can be represented as a Wronskian of five functions

˚

y.x/;Q.x/ � f .x/ � P.x/;Q.x/ � k.x/; u.x/
� .Q�.x/ � f �.x/ � P�.x//; u.x/ � .Q�.x/ � k�.x//




:

Here y.x/ is a function satisfying the fourth order differential equation, and P.x/
Q.x/

is
a rational function approximating f .x/ at x D 1 in the following sense:

f .x/ �Q.x/ � P.x/ � � � Q
�.x/
x

D O.x�N�2/:

Here Q.x/ is a polynomial of degree N . The order of approximation, N C 2 at
x D 1 is one greater than the value expected for a generic rational approxima-
tion. Attaining the extra order of (non-normal) approximation in this approximation
problem is the meaning of the eigenvalue problem in this context.

The resulting fourth order differential equation in y.x/:

4X

iD0
Ci .x/ � y.i/.x/ D 0

has rational function coefficients Ci .x/.
The fourth order differential equations above can be represented, after multiplica-

tion by x2N , as a differential equation with rational coefficients of bounded degree.
The number of apparent singularities introduced in this equation depends on the
degrees of rational functions a.x/ and b.x/.
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The simplest case is just

k.x/ D x!

corresponding to a classical hypergeometric function:

h!.x/ D
1X

mD0

xm

mC ! :

This gives us (using arbitrary inhomogeneous terms b.x/) arbitrary linear combina-
tions

f .x/ D
mX

˛D1
w˛h!.a˛ � x/:

For the corresponding Hankel matrices with the elements

mX

˛D1
w˛
a
iCjC1
˛ � 1
i C j C !

the eigenvector problem on the vector v posses a “commuting auxiliary” eigenvalue
formulation, represented by the fourth order linear differential equation on the gen-
erating functionQ.x/ of v. Whenm D 1, there are no apparent singularities, just as
in the case of the standard Hilbert matrix above. Form > 1, there arem�1 apparent
singularities and m accessory parameters. These accessory parameters themselves
satisfy nonlinear differential equations in apparent singularities. Such equations
represent a class of fourth order “Painleve-like” transcendents. Unlike the Garnier
equations which are associated with the isomonodromy of second order linear dif-
ferential equations, these transcendents arise from the isomonodromy deformations
of special classes of fourth order linear differential equations.

Notice that the original eigenvalue � had disappeared from the coefficients of the
(fourth order) differential equation. Its meaning lies only in the connection formulas,
that connect solutions defined by their expansions at x D 0 and x D 1.

Variational Principles and q: Difference Equations

We considered a generalization of discrete prolate functions, which are simulta-
neously concentrated on arbitrary unions of intervals in space and frequency. We
saw that the generalized discrete prolate functions arise from the following sets of
matrices

PC;N D
 

mX

˛D1

a
i�j
˛ � aj�i

˛

i � j

!N

i;jD0
:
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These matrices also arise naturally from the variational principle of concentrated
Fourier polynomials as follows:

Analogous to the polynomials in the Szegö case, we consider finite Fourier poly-
nomials of the form

F .z/ D
NX

jD0
xj e

2�ij z

The variational principle that is applicable to functions of this form is

R

C jF.z/j2dz
R 1

0 jF.z/j2dz

where C is the union of arcs in the complex plane. The classical discrete prolate
case arises when C is an arc on the unit circle defined by the bandwidth limitation.
The integral in the denominator in the equation above can be replaced by an integral
of the same form but over another union of intervals, yielding the most general
form of simultaneous concentration problem with solutions by generalized discrete
prolate functions. The corresponding extremality problem is solved by means of the
generalized eigenvalue problem for linear combinations of matrices the form PC;N .

The most general form of discrete prolate-like functions arise from the minors of
the q- generalizations of the Fourier matrix,

�

qi 	j
	

when q is a root of unity. These generalizations lead naturally to matrices of the
form of the symmetric square of the q-Fourier matrix.

A variational principle in this case exists, but requires the use of the q-calculus,
the so-called Jackson integral.

The indefinite Jackson integral [10] of the function f(x) is defined as

Z

f .x/dqx D .1 � q/ x
1X

kD0
qkf

�

qkx
�

Using this integral, we can write the following new variational principle for poly-
nomials

P.z/ D
nX

iD0
xi � zi

in the form:
R

C jP.z/j2dqz

kP.z/k2 :
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Here C can be an arbitrary union of arcs (intervals) in the complex plane. The
corresponding matrices are linear combinations of the following ones:

 

Q
i�j
˛ � 1

qi�j � 1

!n

i;jD0

whereQ˛ D qN˛ , forQ˛ being the ends of the intervals from the set C.
These objects also correspond to integrable systems, but this time described by

(second order) q-difference equations. The isomonodromy equations here are rela-
tively new systems known as “q-Garnier systems” [8].

More complex are q-generalizations of the Hilbert matrix, also arising from the
minors of the q-Fourier matrix, whose elements have the form

QiCjC1 � 1
qiCjC1 � 1 or

X

˛

w˛
Q
iCjC1
˛ � 1
qiCjC1 � 1 :

These also give rise to q-difference isomonodromy equations.
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Addition Theorems in Acyclic Semigroups
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Summary We give a necessary and sufficient condition on a given family A of
finite subsets of integers for the Cauchy–Davenport inequality

jA CBj � jA j C jBj � 1;

to hold for any family B of finite subsets of integers. We also describe the extremal
families for this inequality. We prove this result in the general context of acyclic
semigroups, which also contain the semigroup of sequences of elements in an
ordered group.
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Following this direction introduced by two of the authors, in this paper we consider

J. Cilleruelo
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some extensions of Cauchy–Davenport and Vosper theorems, see e.g. [5], to the
semigroup of subsets of integers, but we shall do the proof in the more general
context of acyclic semigroups.

We denote a semigroup .M; �/, where ‘�’ is a binary associative operation on the
set M with a neutral element, simply by M . The semigroupM is acyclic if

M1: y � x implies y D 1, for every x 2M .
M2: x � y implies x D y D 1, for every x; y 2M:

Our basic examples are the following ones. Let G be an ordered group and let
P D GC D fx W x � 1g. The set M of finite subsets of P with the product

a � b D f˛ˇ W ˛ 2 a; ˇ 2 bg

is an acyclic semigroup with neutral elementf1g, where 1 is the neutral element
of G. We call M the sumset semigroup of G.

For our second example, let P I denote the set of functions from a set I to P
with the induced product

.f � g/.y/ D f .y/ � g.y/

is an acyclic semigroup with neutral element the constant function 1. In particular, if
jI j D 1, then P I is isomorphic to P (as semigroups). For jI j � 2, P I is the semi-
group of sequences of elements in P indexed by I . In particular, if P D N , then
NI is the free abelian monoid generated by I , an important object in factorization
theory, see for instance [2].

Acyclic semigroups have the following important property.

Lemma 1. For any finite nonempty subset S of an acyclic semigroup M and for
every x ¤ 1, we have xS ¤ S .

Proof. Suppose that xS D S . Take a 2 S . Then xj a 2 S for all j by induction.
Since S is finite, we have xj a D xkCja for some j and k > 0. By axiom M2, we
have xk D 1 and then x D 1. ut

2 Cayley Graphs on Semigroups

LetM be a semigroup. Let S be a finite subset ofM . The Cayley graph Cay.M; S/
of S inM has the elements ofM as vertices, and there is an arc .x; y/ colored s 2 S
whenever y D xs. Note that the resulting graph is oriented and edge–colored, and
it may have parallel arcs. If 1 2 S , then it has a loop at every vertex.

If M is an acyclic semigroup and 1 2 S , then the only finite directed cycles in
the Cayley graph Cay.M; S/ are the loops. This fact motivates the terminology. In
what follows, we assume that M is an acyclic semigroup.

We shall write ı.S/ D minfjxS j W x 2M g, the minimum out-degree of a vertex
in Cay.M; S/. A subset S will be called regular if ı.S/ D jS j: We say that S is
biregular if in addition jSxj D jS j for every x 2 M .
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We are interested in obtaining lower bounds for the cardinality of the product of
two sets in M . To this end, we use the isoperimetric method, see e.g. [3, 4].

For a positive integer k and a finite set S �M with 1 2 S , denote by

�k.S/ D minfjXS j � jX j W jX j � kg

the k-th isoperimetric connectivity of S .
It follows from the definition that, for every pairX and S of finite sets inM with

jX j � k, we have
jXS j � jX j C �k.S/:

Note also that �i .S/ � �iC1.S/ for each i � 1. A subset F � M with jF j � k is
said to be a k–fragment of S if

jFS j � jS j D �k.S/:

A k–fragment of S with minimal cardinality will be called a k–atom of S .

Lemma 2. Let F and S be finite nonempty subsets of an acyclic semigroupM with
1 2 S . There is an element a 2 F such that j.F n a/S j � jFS j � 1.

In particular, every k–fragment of S in M contains a k–atom of S with cardi-
nality k.

Proof. Consider the subgraph of Cay.M; S/ induced on F . Since the graph has no
directed cycles, (except for the loops) there is an element a 2 F with indegree
ı�.a/ D 1 (just the loop). It follows that a 2 .FS/ n .F n a/S .

Now suppose that F is a k–fragment, so that jFS j D jF j C �k.S/. Let A be
the smallest k–fragment contained in F . Suppose that jAj > k. By the first part of
the Lemma, there is a 2 A such that j.A n a/S j � jAS j � 1 D jAj � 1 C �k.S/,
contradicting the minimality of jAj. Hence jAj D k and A is a k–atom. ut
Theorem 1 (Cauchy–Davenport for acyclic semigroups). Let S be a finite subset
of acyclic semigroup M with 1 2 S . For every nonempty finite subset X of M , we
have

jXS j � jX j C ı.S/� 1;
and the inequality is best possible. In particular, we have

jXS j � jX j C jS j � 1

for each finite subset X �M if and only if S is regular.

Proof. By Lemma 2, there is a 1–fragment with cardinality one, sayX D fag. Then,
by the definition, jXS j � jX j � �1.S/ D jaS j � 1 � ı.S/� 1.

By taking x 2 M such that jxS j D ı.S/ and X D fxg, we see that the equality
holds. ut
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Note that, without the assumption 1 2 S the best one can say in general is just
jXS j � 1 in contrast with the trivial bound jXS j � maxfjX j; jS jg in a group. The
following example illustrates this remark.

Example 1. Consider the sumset semigroup of the integers. For a subsetA D fa1 <
a2 < � � � < ang, we denote by d.A/ D max1�i<n.aiC1�ai / the length of the largest
gap in A.

Let A D fA1; � � � ; Akg be a collection of subsets of integers with gaps of length
at most k, namely maxi d.Ai / � k, and with min.Ai / D m, max.Ai / D M for
each i . Let P D f0; 1; � � � ; kgg. We have A CP D fm;mC 1;M C kg, and hence

jA C P j D 1:

However jA j can be arbitrarily large.
Note that if S D ff0g; P g, then ı.S/ D 2 and jA C S j D jA j C 1.

LetM be the sumset semigroup of the integers. One can characterize the sets for
which the classical Cauchy–Davenport inequality holds inM . Define a partial order
in M by

x � y ,
8

<

:

x D y; or
min.x/ < min.y/; or
min.x/ D min.y/ and max.x/ < max.y/:

Proposition 1. Let M be the sumset semigroup of the integers. Then S is regular if
and only if S is a chain.

Proof. For any z2M , we observe that .min.zx/;max.zx//D .min.z/ C min.x/;
max.z/Cmax.x//. If all the pairs .min.x/;max.x//; x 2 S , are all distinct, then the
pairs .min.zx/;max.zx//; x 2 S , are all distinct. Thus all the elements zx; x 2 S
are also distinct and jzS j D jS j.

On the other hand, if .min.x/;max.x// D .min.y/;max.y// for distinct ele-
ments x; y 2 S , we have that xz D yz D Œmin.x/;max.x/ C k� when z D Œ0; k�

and k � max.x/ �min.x/. Thus ı.S/ < jS j. ut
As a consequence of the above Proposition, the classical Cauchy–Davenport in-

equality holds for chains in the sumset semigroup of the integers.

Corollary 1. Let S be a chain in the sumset semigroup of the integers with 1 2 S .
Then, for each finite nonempty subset X �M ,

jXS j � jX j C jS j � 1:

The following example shows that there are antichains in the sumset semigroup
of the integers with jA C A j D jA j C 1, the minimum possible value given by
Theorem 1.
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Example 2. Let A0 be an arbitrary family of sets of integers in the interval Œm;M �.
Let A1 D fŒ2m �M;m� [ A [ ŒM; 2M �m�; A 2 A0g. Note that, for every pair
A;A0 2 A1, we have AC A0 D Œ4m� 2M; 4M � 2m�. By setting A D A1 [ f0g,
we have a family with jA CA j D jA j C 1:

We conjecture that Theorem 1 holds in the semigroup of finite sequences of ele-
ments from a torsion–free group:

Conjecture 1. Let G be a torsion–free group and I a finite set. Then for every
nonempty finite subsets S; T � GI with 1 2 S , we have

jST j � jT j C ı.S/� 1:

3 Vosper’s Theorem

We next analyze the case of equality in the Cauchy–Davenport theorem for acyclic
abelian semigroups.

A set P �M of the form P D af1; r; r2; : : : rk�1g is called an r– progression.

Lemma 3. Let S be a biregular finite nonempty subset of an acyclic semigroup M
with 1 2 S and let u 2M n f1g. If

jf1; ugS j D jS j C 1;
then uS is an u–progression.

Proof. Since ı.S/ D jS j, we have juS j D jS j, which implies

jS \ uS j D 2jS j � jf1; ugS j D jS j � 1:
It follows that the subgraph � .uS/ of � D Cay.M; f1; ug/ induced by uS contains
jS j � 1 arcs. Since S is biregular, we cannot have su D s0u for a pair of dis-
tinct elements s; s0 2 S , so that the indegree of every element in � .uS/ is at most
one. Since � .uS/ is acyclic, it is a path of length jS j. This implies that uS is an
u–progression. ut
Theorem 2 (Vosper Theorem for acyclic semigroups). Let M be an abelian
acyclic semigroup. Let S be a regular nonempty finite subset of M with 12S and
jS j � 2. Let X be a finite subset of M with jX j � 2. If

jXS j D jX j C jS j � 1;
then one of the following conditions holds:

(i) There are u; v 2 X such that uS� D vS�,
(ii) There is u 2 M such that uS is an r–progression for some r 2 M . Moreover,

if X is also regular, then there is u0 2 M such that u0X is an r–progression as
well.
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Proof. By the definition, we have �2.S/ � jS j�1. By Theorem 1, since S is regular,
we have �2.S/ D jS j � 1. By Lemma 2, there is a 2–atom of S with cardinality two
contained in X . Thus there are u; v 2 X with jfu; vgS j D jS j C 1. We consider two
cases.

Case 1. v … .uS/ and u … .vS/. In this case (i) holds.

Case 2. v 2 uS or u 2 vS . We may assume that v D us for some s 2 S . Then
jfu; usgS j D jf1; sg.uS/j D jS jC1. By Lemma 3, uS is an r–progression for some
r , say uS D af1; r; � � � ; rk�1g.

Now if X is also regular, then Xu is a regular set and j.Xu/S j D jX j C jS j � 1.
We can write .Xu/S D Xaf1; r; : : : ; rk�1g D Xaf1; rg � � � f1; rg. Since j.Xu/S j D
jX jCjS j�1, we have jXaf1; rgj D jaXf1; rgj D jX jC1 and we likewise conclude
that aX is an r–progression.

ut
In the sumset semigroup of the integers, both conclusions in the above Theorem

may hold as illustrated by the following example.

Example 3. Let

A D ff0g; f0; 3; 6; 9g; f0; 2; 3; 6; 9; 10g; f0; 1; 4; 7; 9; 11gg:

Since A is a chain, it is biregular. Now let

B D ff0; 1; 2; 3; 4; 5; 6g; f0; 1; 3; 4; 5; 6gg:

We have jA CBj D jA j C jBj � 1 and A is not a progression.
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Small Sumsets in Free Products of Z=2Z

Shalom Eliahou and Cédric Lecouvey

Summary Let G be a group. For positive integers r; s � jGj, let �G.r; s/ denote
the smallest possible size of a sumset (or product set) AB D fab j a 2 A; b 2 Bg
for any subsets A;B � G subject to jAj D r , jBj D s. The behavior of �G.r; s/
is unknown for the free product G of groups Gi , except if the factors Gi are all
isomorphic to Z, in which case �G.r; s/ D r C s � 1 by a theorem of Kemperman
for torsion-free groups (1956). In this paper, we settle the case of a free product G
whose factors Gi are all isomorphic to Z=2Z, and prove that �G.r; s/ D r C s � 2
or r C s � 1, depending on whether r and s are both even or not.

Keywords Additive combinatorics � Cauchy subsets � Reduced words

Mathematics Subject Classifications (2010). 11B13, 11P70, 20E06

1 Introduction

Let G be a group written multiplicatively. Given subsets A;B � G, we denote by

AB D fab j a 2 A; b 2 Bg
the product set of A;B . A classical question in additive number theory consists in
determining the smallest possible cardinality �G.r; s/ of a product AB of subsets
A;B � G subject to jAj D r; jBj D s for any given integers r; s � 1.
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The oldest result addressing this question is the Cauchy–Davenport theorem for
cyclic groups of prime order [2, 3]. More recently, the function �G.r; s/ has been
determined for all abelian groups [4]. Not much is known on�G.r; s/ for nonabelian
groups, besides for dihedral groups [7] and torsion-free groups [9] (See Sect. 2). The
latter of course include free groups, i.e., free products of copies of Z.

In this paper, we determine �G.r; s/ for the free product G of copies of Z=2Z.
This is achieved by an explicit construction of small product sets in Sect. 4, together
with a proof of optimality in Sect. 6, using theorems of Olson and of Hamidoune
recalled in Sect. 5. In the process, we also use the Kurosh subgroup theorem for free
products of groups, recalled in Sect. 3. Our main result reads as follows.

Theorem 1. Let G be the free product of any collection of two or more copies of
Z=2Z. Then, for all positive integers r; s � 1, we have

�G.r; s/ D
�
r C s � 2 if r  s  0 mod 2;
r C s � 1 otherwise:

To the best of our knowledge, the case of free groups and the above result are the
only instances of free products of groups for which the function �G.r; s/ is exactly
known so far.

We refer to [12] for background on additive number theory and to [6] for a survey
on the function �G.r; s/. We close this section with a few generalities on �G.r; s/,
valid for any group G and positive integers r; s � jGj, namely: �G.1; s/ D s,
�G.r; s/ D �G.s; r/, �G.r; s/ � max.r; s/, and finally �G.r; r/ D r if and only if
G contains a subgroup of order r .

2 The Function �G .r; s/

We start by recalling the behavior of �G.r; s/ in case G is abelian, or a dihedral
group, or a torsion-free group. In these cases, �G.r; s/ can be exactly modeled by a
numerical function �G.r; s/ involving the set of orders of finite subgroups of G. As
we shall see, this function is also hidden in Theorem 1.

Notation. Let G be a group. We denote by

� H .G/ the set of orders of finite subgroups of G,
� �G.r; s/ D minh2H .G/ .dr=he C ds=he � 1/ h.

For example, if G is torsion-free, then H .G/ D f1g and �G.r; s/ D rC s�1. If
G is finite abelian of order n, then H .G/ D fd 2 N j d divides ng. In particular,
if n D p is prime, then �G.r; s/ D minfr C s � 1; pg; this is precisely the formula
determining �Z=pZ.r; s/ in the Cauchy–Davenport theorem.

Theorem 2. LetG be an arbitrary abelian group, or a dihedral group, or a torsion-
free group. Then, for all positive integers r; s � jGj, we have

�G.r; s/ D �G.r; s/ :
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This equality is proved in [4] for abelian groups, in [7] for dihedral groups, and
in [9] for torsion-free groups.

In this paper, we shall show that�G.r; s/ can also be exactly modeled by �G.r; s/
when G is the free product of any collection of copies of Z=2Z. This is the true
content of Theorem 1. More precisely, we shall prove that for such a group G, we
have

�G.r; s/ D �G.r; s/ D
�

r C s � 2 if r  s  0 mod 2 ;
r C s � 1 otherwise.

The second equality follows from the Kurosh subgroup theorem for free products
and is settled in the next section. The proof of the first equality, in fact of Theorem 1,
is longer and achieved in Sects. 4 and 6.

It should be noted at this point that �G.r; s/ cannot always be exactly modeled
by �G.r; s/. The smallest counterexample occurs with the unique nonabelian group
of order 21 [5, p. 246].

3 Free products of groups

Let G D 	Gi be the free product of a collection of groupsGi . Recall that as a set,
the free product G consists of all reduced words w D g1 � � �gk of length k � 0,
where each letter gj belongs to some factor Gi and is distinct from 1, and where
consecutive letters gj , gjC1 belong to distinct factors. Note that a free product with
at least two factors Gi 6D f1g contains elements of infinite order, e.g., any reduced
word w D g1g2 of length 2. We refer to the book of Lyndon–Schupp for extensive
information on free products [11].

In order to understand �G.r; s/ for the free product G, we need the classical
Kurosh subgroup theorem [10].

Theorem 3 (Kurosh). Let G D	Gi be the free product of groupsGi . Let H � G
be a subgroup of G. Then H is a free product H D F	(	Hj /, where F is a
free group and each Hj is the intersection of H with a conjugate of some factor
Gi of G.

This theorem allows us to easily express �G.r; s/ in terms of the �Gi
.r; s/.

Proposition 1. Let G D 	i2IGi be the free product of a collection of groups
.Gi /i2I . Then, for all integers r; s � 1, we have

�G.r; s/ D min
i2I �Gi

.r; s/ :

Proof. By the Kurosh subgroup theorem, every finite subgroup of G must be a
conjugate of a finite subgroup of one of the factors Gi . Indeed, a free product
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H D F 	(	Hj / as in the theorem of Kurosh, with more than one nontrivial factor,
would be infinite. This implies the formula

H .G/ D
[

i2I
H .Gi / ; (1)

and the result follows from the definition of �G.r; s/. ut
As a direct application, assume that each Gi is isomorphic to the cyclic group

Z=nZ, for some fixed integer n. It follows that

�G.r; s/ D min
d jn

.dr=de C ds=de � 1/d D �Z=nZ.r; s/ (2)

for all integers r; s � 1. Specializing to the case n D 2, we get the following
expression.

Corollary 1. LetG be the free product of a nonempty collection of copies of Z=2Z.
Then for all r; s � 1, we have

�G.r; s/ D
�

r C s � 2 if r  s  0 mod 2 ;
r C s � 1 otherwise:

Proof. It follows from Proposition 1 and formula (2) that �G.r; s/ D �Z=2Z.r; s/ D
min fr C s � 1; .dr=2e C ds=2e � 1/2g. The only occurrence of a strict inequality

.dr=2e C ds=2e � 1/2 < r C s � 1

is when r; s are both even, in which case we get �G.r; s/ D r C s � 2. ut

4 Proof of �G .r; s/ � �G .r; s/

In this section, we focus on the groupG D	i Z=2Z, the free product of a collection
of at least two copies of Z=2Z. We shall prove the inequality

�G.r; s/ � �G.r; s/ (3)

of Theorem 1 (combined with Corollary 1), for all r; s � 1. This will be achieved
by an explicit construction of small product sets in G.

We start with a general upper bound on �F .r; s/ for any group F containing a
copy of Z.

Lemma 1. Let F be a group containing an element x of infinite order. Then for all
r; s � 1, we have

�F .r; s/ � r C s � 1 :
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Proof. Let A D f1; x; : : : ; xr�1g and B D f1; x; : : : ; xs�1g. Then the sets A;B
satisfy jAj D r , jBj D s and jABj D jf1; x; : : : ; xrCs�2gj D r C s � 1. This
implies the stated inequality. ut

We are now ready to prove inequality (3).

� Assume first that r 6 0 or s 6 0 mod 2. In that case, Corollary 1 yields
�G.r; s/ D r C s � 1. Since G contains elements of infinite order, we may apply
Lemma 1. This yields �G.r; s/ � r C s � 1 D �G.r; s/, as desired.

� Assume now r  s  0 mod 2. We must then prove that �G.r; s/ � r C s � 2,
and this will require somewhat subtler sets. Their construction will take place in
a subgroup G0 of G consisting of the free product of just two copies of Z=2Z.
We shall use the following presentation of G0 by generators and relations:

G0 D ha; b j a2 D b2 D 1i :

Since G0 is a subgroup of G, it follows that

�G.r; s/ � �G0
.r; s/ (4)

for all r; s � 1.
Given that �G0

.r; s/ D �G.r; s/ by Corollary 1, in order to prove inequality (3),
it suffices to prove that �G0

.r; s/ � �G0
.r; s/, for all r; s � 1.

As a set, the group G0 consists of all reduced words in a; b, i.e., in this case,
words alternating the letters a and b, such as ababa for instance. There is a length
function

l W G0 ! N

defined by l.w/ D t if w D x1 � � �xt is a reduced word with t letters xi 2 fa; bg.
This function induces an obvious metric on G0, namely d.w1;w2/ D l.w1w�1

2 / for
all w1;w2 2 G0.

For k � 1, there are exactly two reduced words of length k in G0, namely:

1. .ab/k=2 and .ba/k=2 if k is even,
2. a.ba/.k�1/=2 and b.ab/.k�1/=2 if k is odd.

For every m � 0, we shall denote by B.m/ the set of words in G0 of length at
most m. Note that B.m/ is the ball of radius m centered at 1 for the above metric
on G0.

The product set of two balls B.k1/, B.k2/ will be needed below. It is given by
the following obvious formula, valid for all k1; k2 � 0:

B.k1/B.k2/ D B.k1 C k2/ : (5)

Actually, the analogous formula holds in any free product of groups. Indeed, a re-
duced word of length at most k1Ck2 is the product of two reduced words of lengths
at most k1 and k2, respectively.
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Here are two more useful results concerning these balls. We denote by hai the
subgroup of G0 generated by a, i.e., hai D f1; ag.
Lemma 2. For all integers k � 0, we have

jB.k/j D 2k C 1 ;
jhaiB.k/j D 2k C 2 :

Moreover, B.k/ is contained in haiB.k/, and the set difference haiB.k/nB.k/
consists of the unique reduced word of length k C 1 starting with the letter a.

Proof. The empty word 1 is the only word of length t D 0. For 1 � t � k, there are
exactly two words of length t in G0, namely the one starting with a and that starting
with b. This proves that jB.k/j D 2k C 1.

For the second assertion, we have haiB.k/ D B.k/ [ aB.k/. Now, all words
in aB.k/ are already contained in B.k/, except the unique reduced word of length
k C 1 starting with a. This shows that jhaiB.k/j D jB.k/j C 1, and we are done.

ut
There are obvious analogous statements for B.k/hai and B.k/hbi, that we shall

implicitly use in the proof below.

Lemma 3. For all integers k � 0, we have the switching formulas

haiB.2k/ D B.2k/hai ;
haiB.2k C 1/ D B.2k C 1/hbi :

Proof. By Lemma 2, we know that for t � 0, the product set haiB.t/ consists
of B.t/ plus one more element, namely the unique reduced word of length t C 1
starting with a.

Assume first that t D 2k is even. Then the unique reduced word of length
2kC 1 starting with a necessarily ends with a as well. This establishes the equality
haiB.2k/ DB.2k/hai. If now t D 2kC1 is odd, then the unique reduced word of
length 2kC2 starting with a ends with b. Therefore haiB.2kC1/ DB.2kC1/hbi,
as claimed. ut

We are now ready to prove that if r; s are both even, then �G0
.r; s/ � rCs�2 D

�G0
.r; s/. For this, it is convenient to look separately at the cases r  s mod 4 and

r 6 s mod 4.

Case r  s mod 4. Set A D haiB.r=2 � 1/ and B D B.s=2 � 1/hai. Then by
Lemma 2, we have jAj D r , jBj D s as required. Now, computing the product set
of A;B , we get

AB D haiB.r=2C s=2� 2/hai by Formula .5/

D hai2B.r=2C s=2� 2/ since r=2C s=2 is even and by Lemma 3

D haiB.r=2C s=2� 2/ since hai is a subgroup:
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Case r 6 s mod 4. Here, set A D haiB.r=2� 1/ and B D B.s=2 � 1/hbi. Then
again jAj D r , jBj D s, and computing AB we get

AB D haiB.r=2C s=2� 2/hbi by Formula .5/

D hai2B.r=2C s=2� 2/ since r=2C s=2 is odd and by Lemma 3

D haiB.r=2C s=2� 2/:

In both cases, we get AB D haiB.r=2C s=2�2/, and it follows from Lemma 2
that jABj D r C s � 2. We conclude that �G.r; s/ � r C s � 2 D �G.r; s/ in the
present case, as desired.

5 Optimality

In order to prove that the upper bound obtained in the preceding section is optimal,
we need some general tools. We shall use theorems of Olson [13] and of Hamidoune
[8], recalled below. We also briefly indicate how Kemperman’s theorem on torsion-
free groups easily follows from each of them.

Theorem 4 (Olson). Let A;B be two finite subsets of a group G: There exists a
nonempty subset S of AB and a finite subgroupH of G such that

jABj � jS j � jAj C jBj � jH j

and either HS D S or SH D S .

This easily implies Kemperman’s theorem in [9].

Theorem 5 (Kemperman). Let G be a torsion-free group. Then for all r; s � 1,
we have

�G.r; s/ D r C s � 1 :
Proof. Lemma 1 gives �G.r; s/ � r C s � 1. In order to prove that this bound is
optimal, let A;B � G have cardinality r; s respectively. By the above theorem of
Olson, we have

jABj � jAj C jBj � jH j
for some finite subgroup H � G. But then H D f1g since G a torsion-free. Thus
jABj � r C s � 1, as desired. ut

We now turn to the promised theorem of Hamidoune.

Definition 1. A finite subset A in a groupG is said to be a Cauchy subset if, for all
finite subset B � G, one has

jABj � min fjAj C jBj � 1; jGjg :
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In order to test the property for A � G to be a Cauchy subset, it suffices to
consider product sets AH and HA where H is a finite subgroup of G. The first
instance of such a statement goes back to Mann for finite abelian groups [1], which
easily implies both the Cauchy–Davenport theorem and an extension due to Chowla.
Here we need the following version [8].

Theorem 6 (Hamidoune). Let G be an infinite group, and let A be a finite subset
of G containing 1. Then A is a Cauchy subset of G if and only if, for all finite
subgroupsH � G, one has

jAH j � jAj C jH j � 1 :

There is a corresponding version for finite groups in [8], but we won’t need it
here. It is obvious that the above theorem also implies Kemperman’s theorem.

6 Proof of �G .r; s/ � �G .r; s/

Here again, let G D 	i Z=2Z be the free product of copies of Z=2Z. We now
set out to prove the inequality �G.r; s/ � �G.r; s/ of Theorem 1. Recall from
Corollary 1 that �G.r; s/ D r C s � 2 or r C s � 1, according as r; s are both
even or not.

In order to prove this inequality, we shall use the theorems of Olson and of
Hamidoune recalled in the preceding section.

Our first claim is that �G.r; s/ � r C s � 2 for all r; s � 1. Indeed, let A;B � G
with jAj D r , jBj D s. Then, by Olson’s theorem, there is a subset ; 6D S � AB ,
and a finite subgroupH � G such that

jABj � jS j � jAj C jBj � jH j ; (6)

and SH D S or HS D S . Since, by the theorem of Kurosh and (1), the finite
subgroups of G have order 1 or 2 only, inequality (6) gives jABj � jAj C jBj � 2.
This already shows that �G.r; s/ � �G.r; s/ for all r; s even.

It remains to show that �G.r; s/ � r C s � 1 if r; s are not both even. To start
with, the finer statement SH D S orHS D S of Olson’s theorem allows us to treat
the case where r C s is odd. Indeed, assume for instance that jAj is odd and jBj is
even. If jH j D 1 in Olson’s theorem, then jABj � jAjC jBj�1 as required. If now
jH j D 2, then jS j is even since S is stabilized by H . But then, the inequality

jS j � jAj C jBj � 2
may be refined into

jS j � jAj C jBj � 1 ;
since jS j is even and jAj C jBj � 2 is odd here. This yields �G.r; s/ � r C s � 1 D
�G.r; s/ if r C s is odd.
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In order to settle the remaining case where r; s are both odd, we appeal to
Hamidoune’s theorem. Let A � G satisfy jAj D r odd. Then we claim that A
is a Cauchy subset of G, i.e., that jABj � jAj C jBj � 1 for all nonempty finite
subsets B � G. Note that this claim will imply �G.r; s/ � �G.r; s/ D rC s� 1 for
all s � 1, whether odd or not (but still with r odd). In particular, the case r C s odd
will follow from both Olson’s and Hamidoune’s theorems.

To prove the claim that A is a Cauchy subset if jAj is odd, Hamidoune’s test in
Section 5 says that it suffices to check that

jAH j � jAj C jH j � 1

for all finite subgroups H � G. If jH j D 1, we are done. If jH j D 2, then jAH j
must be even, and since jAH j � jAj and jAj is odd, it follows that jAH j � jAj C
1 D jAj C jH j � 1, as desired.

The proof of Theorem 1 is now complete.
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A Combinatorial Approach to Sums
of Two Squares and Related Problems
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Dedicated to Melvyn Nathanson. With many thanks for his beautiful expositions in
additive number theory, emphasizing elementary methods.

Summary In this paper, we study elementary approaches to classical theorems on
representations of primes of the form ax2 C by2, in particular the two squares
theorem. While most approaches make use of quadratic residues, we study a route
initiated by Liouville and simplified by Heath–Brown and Zagier.
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1 Introduction

In this paper we study elementary approaches to classical theorems on representa-
tions of primes of the form ax2 C by2, in particular the two squares theorem.

1.1 The Sums of Two Squares Theorem

Theorem 1. A positive integer n can be written as a sum of two integer squares,
if and only if the canonical prime factorization n D p

�1

1 � � �p�r
r (where the pi are

distinct primes) satisfies the condition: if pi  3 mod 4, then �i is even.

In order to prove this theorem, one proves the following theorem and several minor
lemmata.
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Theorem 2. A prime p  1 mod 4 can be written as p D x2 C y2.

Wells [38] includes Theorem 2 in a list of the ten most beautiful results in mathe-
matics.

In his “Apology”, Hardy [18] writes: “Another famous and beautiful theorem is
Fermat’s ‘two square’ theorem. . . All the primes of the first class” [i.e., 1 mod 4]. . .
“can be expressed as the sum of two integral squares. . . This is Fermat’s theorem,
which is ranked, very justly, as one of the finest of arithmetic. Unfortunately, there is
no proof within the comprehension of anybody but a fairly expert mathematician.”

In this paper, we discuss quite elementary proofs, and it would be interesting
to know if Hardy would also have written this about the types of proof (and its
simplifications), discussed in Sects. 1.2, 1.3, and 1.6.2.

The history of the theorems above is described in detail in Dickson [8] (volume 2,
chapter VI) and also in Edwards [10]. Already Diophant discussed representations
of integers as a sum of two squares, and, by slightly altering the text, Jacobi inter-
preted Diophant’s writing in such a way that Diophant possibly essentially knew and
was able to prove: if a square-free number n is a sum of two squares, then neither n
nor any factor of n is of the form 4k � 1, (see [8], page 236).

The first correct statement of the necessary and sufficient conditions for writing
an integer as a sum of two integer squares, without a proof, might have been by
Albert Girard. The theorem is also often attributed to Fermat, who wrote he had a
proof. His proof is not known to us, even though in this case it is believed he had
the right methods to prove the theorem indeed. Euler eventually gave the first proof
that has survived.

Since p D 2 D 12 C 12, and since all squares are of the from 0 or 1 mod 4 so
that no number n  3 mod 4 can be a sum of two squares, Theorem 2 implies

Corollary 1. A prime p can be written as p D x2 C y2 if and only if p D 2 or
p  1 mod 4.

Lemma 1. Ifm D x21 Cy21 and n D x22 Cy22 can be written as sums of two integer
squares, then their productmn can also be written in this form.

Proof of Lemma 1: This follows immediately from the identity mn D .x1x2 �
y1y2/

2C .x1y2Cx2y1/2, an identity which can be motivated by means of complex
numbers:

mn D ..x1 C y1i/.x1 � y1i//..x2 C y2i/.x2 � y2i//
D ..x1 C y1i/.x2 C y2i//..x1 � y1i/.x2 � y2i//
D .x1x2 � y1y2 C i.x1y2 C x2y1//..x1x2 � y1y2 � i.x1y2 C x2y1//
D .x1x2 � y1y2/2 C .x1y2 C x2y1/2:

ut
Lemma 2. If n is divisible by a prime p  3 mod 4, and n D x2 C y2, then
x  y  0 mod p.
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Proof of Lemma 2: By Fermat’s little theorem: Let p be prime and x an integer,
then

xp�1 mod p D
(

0 if x  0 mod p

1 if x 6 0 mod p:

If p  3 mod 4, then

�

x2 C y2	 �xp�3 � xp�5y2 C xp�7y4 � � � � C yp�3	 D xp�1 C yp�1:

Since x2 C y2  0 mod p, one also has xp�1 C yp�1  0 mod p. As p > 2, we
must have, by Fermat’s observation above, that x  y  0 mod p. ut

The above lemmata reduce the proof of Theorem 1 to a proof of Theorem 2.
There is a multitude of proofs of Theorem 2. Most of these use quite essentially

the fact that for a prime p  1 mod 4 there is a solution of x2  �1 mod p. This

follows for example from x D p�1
2
Š or x D g p�1

4 , where g is a generating element
of the group .Z=pZ/� or g is a nonresidue modulop. However, checking the details
in this calculation from first principles is already half of the proof.

The methods involved in these various proofs include, e.g., congruence com-
putations, Minkowski’s theorem, the pigeon hole principle, properties of Gaussian
integers, continued fractions, and so on. The book by Hardy and Wright [19] gives
several different proofs. For other proofs, see also [6, 33, 40].

A very different second type of proof goes back to Liouville. In a series of eigh-
teen papers, Liouville describes a quite general method, a special case of which
gives Theorem 2. Liouville’s work is described in the books by Bachmann [3],
Dickson [8], Uspensky and Heaslet [34], Venkov [36], and Nathanson [29].

This special case was considerably simplified by Heath–Brown [20]. Zagier [41]
reformulated Heath–Brown’s proof to write it in one sentence, however, leaving
elementary calculations to the reader.

This proof has generated a considerable literature explaining the proof for
teaching purposes [5,12,31,35,39] or extending it to related results: [4,13,14,16,21–
23, 32]. The collection of beautiful proofs “Proofs from the BOOK” by Aigner and
Ziegler [1] explains in its first edition Zagier’s version of the proof, but changed to
Heath–Brown’s version for the 2nd edition.

A key ingredient is an ingenious choice of a set which allows a partition into
orbits of length 1 or 2. In this way, a simple parity check guarantees the decom-
position into two squares. The reader who is familiar with Liouville’s method will
appreciate the simplifications made by Heath–Brown and Zagier. Still, the proof is
quite mysterious. We make an attempt to demystify the proof, i.e., explain how the
details can be motivated.

In addition to the study of this second type of proof, we apply the idea of orbits
of length 1 or 2 to a proof based on lattice points, which is more in the spirit of the
first type of proof. After reviewing the history of these, i.e., discuss contributions by
Lucas, Grace, and others we present in Sect. 1.6 a quite short version of the proof,
which admittedly also requires some routine checking, as is the case with the proofs
by Zagier and Heath–Brown.
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1.2 Zagier’s Proof

Here is the famous one-sentence-proof for primes p D 4k C 1, quoting from
Zagier [41].

“The involution on the finite set S D f.x; y; z/ 2 N3 W x2 C 4yz D pg
defined by

.x; y; z/ 7!
8

<

:

.x C 2z; z; y � x � z/ if x < y � z

.2y � x; y; x � y C z/ if y � z < x < 2y

.x � 2y; x � y C z; y/ if x > 2y

has exactly one fixed point, so jS j is odd and the involution defined by
.x; y; z/! .x; z; y/ also has a fixed point.” ut

Quite a few routine checks are necessary to verify all these implicit claims. For
the reader’s ease, we would like to add that the first map, ˛ (say), defines a partition
S D S1 [ S2 [ S3 with S1 D f.x; y; z/ 2 S W x < y � zg; S2 D f.x; y; z/ 2
S W y � z < x < 2yg; S3 D f.x; y; z/ 2 S W x > 2yg. There are no solutions
with y � z D x or x D 2y, since otherwise x2 C 4yz is not a prime. Solutions
with x < y � z are mapped to solutions with x > 2y, and vice versa. Solutions
with y � z < x < 2y are mapped to solutions with the very same property. That is
˛.S1/ D S3; ˛.S3/ D S1; ˛.S2/ D S2. Thus, fixed points of ˛ must lie in S2 and
therefore satisfy .x; y; z/ D .2y � x; y; x � y C z/, i.e., x D y. Since p is prime,
the only fixed point is .1; 1; .p � 1/=4/.

Writing out all details, which we do not do here, makes the proof actually quite
a bit longer.

1.3 Heath–Brown’s Proof

Heath-Brown reformulated Liouville’s work in 1971. His version [20] appeared in
1984 in a student magazine, issued by the undergraduate mathematical society at
Oxford University. Meanwhile a retyped version is available, see the bibliography.
Since Heath–Brown’s proof was slightly different, we describe his proof briefly.

Let us define

X1 D
0

@

0 1 0

1 0 0

0 0 �1

1

A ; X2 D
0

@

0 1 0

1 0 0

0 0 1

1

A ; X3 D
0

@

1 �1 1

0 1 0

0 2 �1

1

A :
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Define the sets

S D f.x; y; z/ 2 Z3 W p D 4xy C z2; x; y > 0g;
T D f.x; y; z/ 2 S W z > 0g; U D f.x; y; z/ 2 S W x C z > yg:

One can check that X21 D X22 D X23 D I . Moreover, X1 maps S to itself, X2
maps T to itself, and X3 maps U to itself. One also verifies that jT j D jX1T j
and jU j D jX1U j. Since S is the disjoint union of T and X1T , it follows that
jS j D jT j C jX1T j D 2jT j and similarly jS j D 2jU j. This implies jT j D jU j.
Since the map X3 acting on U has exactly one orbit of length 1 (for y D z D 1),
and since all other orbits have length two, we find that jU j must be odd. So, jT j is
also odd, and the action of X2 on T must have an orbit of length 1, i.e., there is a
fixed point with x D y, giving p D 4x2 C z2.

This is an impressive example that the right choice of a set, group action and orbit
counting can simplify existing proofs. Another example of this principle is McKay’s
proof [28] of a Theorem of Cauchy in group theory.

1.4 Grace’ Lattice Point Proof

In this section, we describe a proof based on lattice points, due to Grace [17]. It is
one of the proofs in Hardy and Wright’s book [19].

The proof starts with the fact that a2  �1 mod p has a solution. Take those
lattice points in Z �Z with ax  y mod p. Note that if .x; y/ and .x0; y0/ belongs
to the set, then also .x˙x0; y˙y0/ belong to it, so that the set of these points define
a discrete lattice. Let P1 D .x; y/ be one of the points with minimal distance to the
origin P0 D .0; 0/. Since �ay  x mod p, the point P2 D .�y; x/ also belongs to
the lattice. These points together with P3 D .x � y; x C y/ define the fundamental
domain. Observe that there are no further lattice points in this fundamental domain,
since otherwise the distance from .0; 0/ to .x; y/ was not minimal. Also observe
that in this situation the fundamental domain is not only a parallelogram, but even a
square.

In a very large circle about the origin, the proportion of points belonging to the
lattice is 1

p
so that the area of the fundamental domain is p. Hence the side lengths

of the square satisfy by Pythagoras’ theorem: x2 C y2 D p.
The lattices can also be understood as coming from the problem of regular solu-

tions of placing p non-taking queens on a p�p chessboard, with reduction modulo
p, i.e., a chessboard on a torus. This approach has been studied by Polya [30],
Kraitchik [24] and Larson [25]. These proofs also make use of counting the lengths
of orbits and are similar in spirit to those discussed below.
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1.5 Lucas’ Work on Regular Satins

In 1867, Édouard Lucas [26] had similar ideas on regular “Satin” squares which
were thought of in connection with patterns of fabrics. As Decaillot [7] writes, in
France at that time there was a group of mathematicians writing as accessible as
possible for a wide audience.

Without assuming that there is a solution of a2  �1 mod p, he considered
those integer lattices with slopes 2; 3; : : : ; p�1

2
. He paired off those lattices with

slopes si and sj where sisj  ˙1. For a given si there is a unique sj in this set.
He interpreted this in terms of the geometric pattern. Starting with an odd number
of lattices, one lattice remains. This remaining lattice is associated to itself, and has
a square unit.

In this paper, Lucas did not actually conclude the two squares theorem, namely
that a prime p  1 mod 4 is a sum of two squares, but rather the opposite.

The reason for this apparently comes from the historical background. The ques-
tion, for which moduli regular lattices exist, was asked by Édouard Gand, also in
1867, in connection with fabric patterns, and Gand’s question was answered by
Lucas.

However, there is some indirect evidence that Lucas later actually proved
Theorem 2 using this method. Dickson [8] (Volume 2, page 245) gives [27] (which
does not contain that proof) and Aubry [2] as references. Decaillot [7] mentions a
comment by Aubry in Fermat’s collected works [15] (note 27 of the 4th volume).
Here, Aubry writes that the two squares theorem is “perhaps the most beautiful of
all of Fermat’s theorems”, and Aubry refers to a graphical proof by Lucas.

Decaillot [7] constructed a proof that possibly was the one given by Lucas. It is
very similar to the proof by Grace discussed above.

1.6 A Short Proof

In this section we aim to modify the two approaches above to assemble a proof
which can be formulated in one sentence. However, as is the case with Zagier’s
proof, several additional words of explanations are appropriate, and several routine
calculations required. The author believes that memorizing this proof may be easier
than memorizing Zagier’s proof.

1.6.1 The Long Version

� Let p  1 mod 4 be a prime and let S D
n

2; 3; : : : ; p�1
2

o

. For z 2 S , let us

define the lattices

Lz D f.x mod p; zx mod p/ W 0 � x < pg
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as subsets of Zp �Zp (which can be thought of as a torus). To see that these are
lattices take any two points .x mod p; xz mod p/ and .y mod p; yz mod p/.
The sum .xCy mod p; .xCy/z mod p/ is again in Sz and the same follows for
integer multiples .�x mod p; �xz mod p/.
For p  1 mod 4, the number jS j D p�1

2
� 1 of lattices is odd. For a better

understanding, we draw these for p D 17 (Figs. 1–7).

Figure 1 Lattice L2

Figure 2 Lattice L3

Figure 3 Lattice L4

Figure 4 Lattice L5
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Figure 5 Lattice L6

Figure 6 Lattice L7

Figure 7 Lattice L8

In the pictures, we include the parallelograms which define fundamental domains
of the lattices. A fundamental domain is a parallelogram, spanned by a point
and two of its 4 closest neighbours in two linear independent directions. In this
sense, each point uniquely corresponds to a fundamental domain, so that there
are p fundamental domain, and for a given lattice all of these parallelograms are
congruent, understood modulo p.

� But the fundamental domains for different lattices are in general not congruent
to each other. In the above example with p D 17, the shape of the fundamental
domain is the same for L2 and L8, for L3 and L6, for L5 and L7. The lattice
L4 (which turns out to deliver the solution x2  �1 mod 17 and finally the
decomposition of 17 D 12C42) does not have a corresponding partner. Generally
this can be described by means of the following map: Let S D f2 � a � p�1

2
g.

Let f W S ! S with

a 7!
�

a�1 mod p if 2 � .a�1 mod p/ � p�1
2
;

�a�1 mod p otherwise.



A Combinatorial Approach to Sums of Two Squares and Related Problems 123

Figure 8 Lz with
z2 
 �1 mod p being a fixed
point, here p D 13; z D 5

Observe that for p D 17 one has that f .2/ D 8; f .8/ D 2; f .3/ D 6; f .6/ D
3; f .5/ D 7; f .7/ D 5; f .4/ D 4. Here the representatives of the residue classes
modulo p are assumed to be in the interval 0 � b < p. It can be easily checked
that f is an involution. We have to show that for all a 2 S : f .f .a// D a. If
the first alternative holds for the inner argument, then also at the second time so
that f .f .a// D f .a�1/ D .a�1/�1 D a and similarly f .f .a// D f .�a�1/ D
�.�a�1/�1 D a. Since jS j is odd, there must be an odd number (i.e., at least
one) of elements with a D f .a/. Since�1; 1 62 S , it follows that .aC1/.a�1/ 
0 mod p has no solution in S which implies that a  a�1 mod p has no solution.
But then there must be an element with a  �a�1 mod p. It is this element
which satisfies a2  �1 mod p, but we better leave it as a  �a�1 mod p. In
this form we see that the slopes a and �a�1 of the sides of the parallelogram are
orthogonal. The lattice is invariant under the map f which means it is invariant
under a rotation by 90o. This proves why for prime p  1 mod 4 there must be
a lattice amongst the lattices Lz, of which the fundamental domain is a square
(Fig. 8).

� Since the fundamental domains are defined by a point and its closest neighbours,
the fundamental domains do not contain any lattice point in their interior. Thus
the fundamental domains cover the p � p board without overlap. Since for each

of the p points there is exactly one fundamental domain, its area is p2

p
D p, so

that the length of a side is
p
p. An alternative argument here could be the one by

Grace [17].
� Finally, an application of Pythagoras’ theorem to the grid decomposition of the

base side of the square shows that p D .pp/2 D a2 C b2 holds.

It seems particularly pleasant that we did not explicitly need the solution of a2 
�1 mod p, but could rather directly conclude from a  �a�1 mod p that the par-
allelogram is a square.

1.6.2 A Short Version of the Proof

Having said all this, the reader can see that the following one sentence version of
the proof, written in the spirit of Zagier’s proof [41], contains essentially all the
necessary information and is perhaps easier to work with, or memorize, than other
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proofs of this theorem. The amount of hidden routine checking may be comparable
with that in Heath-Brown’s or Zagier’s version.

The involution on the finite set S D
n

2 � a � p�1
2

o

defined by

a 7!
�

a�1 mod p if 2 � .a�1 mod p/ � p�1
2
;

�a�1 mod p otherwise,

has at least one fixed point z, so the fundamental domain of the lattice defined
by

Lz D f.x; zx mod p/; 0 � x < pg
is a square with area p, so that the two squares theorem follows by an appli-
cation of Pythagoras’ theorem. ut

2 How Zagier’s Involution can be Motivated

We will give two explanations, how Zagier’s map can be motivated. One was found
by the present author, and was described in [12–14]. We will show that this approach
gives a method to search systematically for proofs of related theorems on quadratic
forms.

An alternative motivation can be found in lecture notes by E.W. Dijkstra.

2.1 First Motivaton

It is possible to construct the “complicated” involution by means of some fairly
easy assumptions, (see also [12]). These assumptions ensure that the final mapping
would be as simple as possible.

If we look for a mapping that

I) can be described by a matrix B D
0

@

a b c

d e f

g h i

1

A, with integer entries which are

independent of k, (linearity),
II) maps the solutions (in positive integers) of p D 4kC 1 D x2C 4yz onto such

solutions, (invariance),
III) has the easiest solution, namely .1; 1; k/ as its only fixed point, (simplicity),

then we are uniquely led to B D
0

@

�1 2 0

0 1 0

1 �1 1

1

A.
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This can be seen as follows: Property (III) gives

0

@

a b c

d e f

g h i

1

A

0

@

1

1

k

1

A
ŠD
0

@

1

1

k

1

A :

In particular, a C b C ck D 1. But since the coefficients are supposed to be inde-
pendent of k, we have that

aC b C ck D 1) c D 0; aC b D 1
d C e C f k D 1) f D 0; d C e D 1
g C hC ik D k ) i D 1; g C h D 0:

Property (II) gives

.x0/2C 4y0z0 D .axC byC cz/2C 4.dxC eyC f z/.gxC hyC iz/ ŠD x2C 4yz:

Hence, a comparison of the coefficients shows that

x2 a2 C 4dg D 1
xy 2ab C 4.dhC eg/ D 0
:::

:::

yz with c D f D 0; i D 1 W ei D 1) e D 1;) d D 0:

Now a2 C 4dg D 1 is simplified to a2 D 1. Suppose that a D 1. Then b D 0

and from 2abC 4.dhC eg/ D 0 we get g D 0 and finally h D 0. Then, the matrix
would be the identity matrix I . This is not what we want, since the map shall have
only one fixed point.

Thus, a D �1, and so b D 2; g D 1, and finally h D �1. So, we have found the
matrix B .

Surprisingly, we did not even need that our map shall be an involution but we can
readily check that B2 D I .

This only works for �x C 2y > 0 and x � y C z > 0. For the other cases one
apparently needs a different matrix. Let us see how we can manipulate B to yield
a corresponding row condition x � 2y > 0. We look for a matrix X which turns

the row conditions of B into .1;�2; 0/ and .1;�1; 1/. Let X D
0

@

�1 0 0
0 0 1

0 1 0

1

A. The

matrices A D BX and C D XB cover all cases. Let A D BX D
0

@

1 0 2

0 0 1

�1 1 �1

1

A and

C D XB D
0

@

1 �2 0
1 �1 1
0 1 0

1

A. We see that the row conditions perfectly fit to each other

and induce a partition of all solutions.
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Alternatively, one can find these matrices A and C by choosing small primes
.p D 13; 17; 29/ and observing that here the sets of solutions with �x C 2y < 0 or
x � y C z < 0 only have one or two elements. For p D 13, we find that .1; 3; 1/
must be mapped to .3; 1; 1/ and vice versa. For p D 17, we find that .1; 4; 1/ must
be mapped to .3; 1; 2/ and vice versa. For p D 29, there are two possibilities. One
excludes by the partially known mapping that .1; 7; 1/ is mapped to .5; 1; 1/ and
finds that .1; 7; 1/ is mapped to .3; 1; 5/, from which A and C uniquely follow.

Even though we did not know about the partition of S into three sets, we have
found the map ˛ W S ! S with

˛ D

8

ˆ̂
<

ˆ̂
:

˛1 decribed by matrix A, if � x C y � z > 0

˛2 described by matrix B, if �x C 2y > 0 and x � y C z > 0

˛3 decribed by matrix C, if x � 2y > 0 and x � y C z > 0:

This is precisely the mapping given by Zagier. Of course, ˛ as a whole is not a
linear map, so that property (I) is not strictly satisfied. We obtain in this way the
easiest involution, ˛, with the required property, namely that we know the set of
fixed points.

Let us remark that the intersection into three subsets was caused since we work
with positive x; y; z. In Heath–Brown’s version negative values are allowed, and so
he did not need this division into three cases.

Zagier’s second mapping, ˇ (say), with ˇ W S ! S and .x; y; z/ 7! .x; z; y/
corresponds to the matrix

Y D
0

@

1 0 0

0 0 1

0 1 0

1

A :

2.2 Making the Proof Constructive

In his paper, Zagier mentioned the proof only shows the existence of the solution.
Combining the two involutions ˛ and ˇ, we can give a constructive proof. Starting
with the only fixed point of ˛, and iterating ˇ; ˛: : : we must arrive at a period.

.1; 1; k/
ˇ! .1; k; 1/

˛! .3; 1; k� 2/ ˇ! � � � ˇ! .3; 1; k� 2/ ˛! .1; k; 1/
ˇ! .1; 1; k/:

Since the maps are bijective, there is no preperiod. So, we eventually come back
to .1; 1; k/ with ˇ. The number of elements in the period is even. By symmetry,
there must be another fixed point in the middle of the cycle. Since there is only one
fixed point of ˛, this iteration constructs a fixed point of ˇ, that is a solution of
p D x2 C 4y2.
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Applying this algorithm to a composite nonsquare integer n D 4k C 1 the very
same argument shows that any cycle containing .1; 1; k/ must also contain another
fixed point. Since n is no longer prime we may well come to another fixed point
of ˛ which corresponds to a factorization of n. To see that this can happen, let us
concentrate on products of two distinct primes n D p1p2 with p1  p2  3 mod 4.
Here ˇ does not have a fixed point, since n cannot be written as a sum of two
squares. Hence, in this case the iteration ˇ; ˛; ˇ : : : must eventually come to another
fixed point of ˛ which corresponds to x D y, i.e., a factorization of n.

This algorithm for finding the decomposition into 2 squares is very slow. For
some details, see Bagchi [4]. Shiu [32] describes how one can accelerate this algo-
rithm. It turns out to have an interpretation in the theory of continued fractions. A
fast algorithm is described by Wagon [37].

2.3 A Motivation Due to Dijkstra

A different, and very elegant derivation of Zagier’s map was also given by Dijkstra
[9]. His notes are written in the language of a computer scientist and are extraordi-
nary detailed. I will try keeping the flavor of his exposition, but will have to shorten
his account. After some general remarks on involutions Dijkstra concludes that to
write p as a sum of two integer squares it is enough to look at

.x; y/ W x2 C 4y2 D p: .	/
In order to establish the desired correspondence between solutions of this equation
and the fixed points of an involution, “we do something with which every computer
scientist is very familiar: replacing in a target relation” (	) “something by a fresh
variable”. Dijkstra refers to “Leibniz’ principle” (informally: substituting equals for
equals) to rewrite (	) as

.x; y; z/ W x2 C 4yz D p and y D z:

Let S D f.x; y; z/ W x; y; z 2 N W x2 C 4yz D pg. Exploiting the symmetry in y
and z, Dijkstra chooses a first involution inv0 by S ! S W .x; y; z/ 7! .x; z; y/. The
fixed points of inv0 satisfy y D z. Hence it is enough to show that inv0 has at least
one fixed point. In order to do this one intends to construct a second involution inv1
on S , which has exactly one fixed point.

Next, Dijkstra gathers some elementary facts:
x > 0; y > 0; z > 0; x ¤ ˙.y � z/, since p is odd and not a square.

Next, “can we think of operators on .x; y; z/ for which x2 C 4yz D p is an
invariant”, i.e., an operator which maps solutions of S onto such solutions?

Dijkstra then studies operators of the type

.x; y; z/ 7! .x C�x; y C�y; zC�z/:
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Here Dijkstra implicitly assumes that � is an operator, for which

�f.x/ D f .x C�x/ � f .x/
so that for example�.x2/ D .x C�x/2 � x2 D 2x�x C .�x/2.

Since�x D 0 would too easily lead back to inv0, he assumes�x ¤ 0. Since for
all elements of S , x is odd,�x is even, so that �x D 2b, say.

The invariance assumption� W S ! S , i.e., .x0/2 C 4y0z0 D p means that

�.x2 C 4yz/ D 0:
So,

�.x2 C 4yz/ D 0
�.x2/ D �4�.yz/

2x.�x/C .�x/2 D �4 ..y C�y/.zC�z/ � yz/

b.x C b/ D �y�z � z�y ��y�z:

In order to simplify this expression Dijkstra chooses�y D 0 and arrives at

b.x C b/ D �y�z:

He remarks that this choice does not restrict the generality, since one could arrive at
any “move” with �y ¤ 0;�z ¤ 0 by means of two single moves.

Now, the last equation suggests the following four possibilities:

1. b D �y; x C b D �z, giving .x; y; z/ 7! .x � 2y; y; zC x � y/
2. b D y; x C b D ��z, giving .x; y; z/ 7! .x C 2y; y; z � x � y/
3. b D �z; x C b D �y, giving .x; y; z/ 7! .�x � 2y; y; z � x � y/
4. b D ��z; x C b D y, giving .x; y; z/ 7! .2y � x; y; zC x � y/

In order to satisfy the invariance of x > 0; y > 0; z > 0, one sees that the third
case above with x0 D �x � 2y can be discarded from consideration.

So far, we have not yet used the fact inv1 is supposed to have exactly one fixed
point. Now, for a fixed point .x; y; z/ D .x0; y0; z0/. Here x D x0 and y > 0 mean
that the only remaining case is the 4th case above. Here x D 2y � x shows that a
fixed point can only occur if x D y so that p D x2C 4yz D x.xC 4z/ implies that

z D p�1
4

, giving the unique fixed point
�

1; 1; p�1
4

�

.

Dijkstra then completes the construction of the involution inv1 for those solutions
for which y > zC x or x > 2y, respectively.

2.4 Comparison

Comparing both constructions in Sects. 2.1 and 2.3, it can be observed that the prin-
ciple to keep the construction as simple as possible, but also as general as necessary
is quite successful. While in my motivation in Sect. 2.1, the choice of the fixed point
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.1; 1; k/ quickly led to the entries c D f D 0; i D 1 of the matrix B , and then the
invariance of the quadratic form delivered the additional entries. Dijkstra’s choice
of �y D 0, in the language of Sect. 2.1 quickly led to d D f D 0; e D 1, and then
the invariance of the form and consideration of the fixed point completed the entries
of B .

Let us finally ask: is there any application (other than the two squares theorem
itself) of the fact discovered by this combinatorial proof that the number of solutions
.x; y; z/ of a given type (say for p D x2 C 4yz with x < y � z) equals the number
of solutions of another type (say here x > 2y)? If so, that could be of interest also
for the generalizations considered below.

3 Generalization of the Method

One can ask for similar involutions ˛ for related question on p D sx2 C tyz, where
s and t are fixed constants. For example, it is well known that for a prime p the
following holds

p  1; 3 mod 8, p D x2 C 2y2 in positive integers:

It would be nice to have an easy proof of this theorem by the idea of the Heath-
Brown—Zagier proof.

Such generalizations were found by the current author in 1996, see [13], and also
by Jackson [21–23] and Generalov [16].

Here we shall derive the following results:

Theorem 3. Let p denote a prime.

(a) For p D 8k C 3 there is a solution of p D x2 C 2y2 in positive integers.
(b) For p D 8k C 7 there is a solution of p D x2 � 2y2 in positive integers.
(c) For p D 8k C 5 there is a representation as p D x2 C y2. (A new proof!)

Theorem 4. Let p denote a prime.

(a) For p D 12k C 7 there is a solution of p D 3x2 C 4y2 in positive integers.
(b) For p D 12k C 11 there is a solution of p D 3x2 � 4y2 in positive integers.

Generalizing the approach of Sect. 2.1 one can prove that the matrix

B D

0

B
@

�1 2m
n

0

0 1 0

4 sm
tn
�4 sm2

tn2 1

1

C
A maps solutions of p D sx2 C tyz to such solutions and

has the fixed point .m; n; k0/. Here m; n; s; and t are fixed nonnegative integers. So

k0 D p � sm2
tn

. We note that again B2 D I . Unfortunately, in the general case the

boundaries induced by the rows, namely�xC2m
n
> 0 and 4 sm

tn
x�4 sm2

tn2 yCz > 0,
do not induce such a balanced three-partition of the set of solutions.
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However, it is possible to construct mappings for p D x2C 2y2 and p D 3x2C
4y2 consisting of even more matrices. As before, these matrices are generated by B
and X .

Note, even though the occurring matrices will be more complicated, the idea
of the proof is still the same. The justification of the properties of the map ˛ can
-in principle- be left to an automatic system since it requires elementary calcula-
tions only.

As before, we try, if A D BX can be useful. As above we use X D
0

@

�1 0 0
0 0 1

0 1 0

1

A :

At this point, we do not worry about the boundaries or a partition of the set of all
solutions.

Geometrically, we can expect that j detAj D 1, since we should not map bijec-
tively a large region to a small one and vice versa.

Consider the eigenvalues of

A D BX D

0

B
B
B
@

�1 2
m

n
0

0 1 0

4
sm

tn
�4sm

2

tn2
1

1

C
C
C
A

0

@

�1 0 0

0 0 1

0 1 0

1

A

D

0

B
B
B
@

1 0 2
m

n
0 0 1

�4sm
tn

1 �4sm
2

tn2

1

C
C
C
A
D
0

@

1 0 a

0 0 1

�c 1 �d

1

A , say.

Noting that ac D 2d we find

0 D .1 � �/.0 � �/.�d � �/ � .1 � �/� .�c/.0 � �/a
D .�C 1/.�2 C .d � 2/�C 1/:

We find that �1 D �1 and �2;3 D �d�2
2
˙
r
�
d�2
2

�2 � 1.

For integers d � 5 or d � �1, the values of �2;3 are real but irrational
numbers. So the order of A is infinite, and there is little hope of finding a suit-
able map consisting of finitely many parts. So d D 0; 1; 2; 3; 4 and in these cases
j�1j D j�2j D j�3j D 1. This justifies our expectation that detA D 1.

Recall that d D 4sm2

tn2
. Since we want to represent primes with p D sx2Ctyz D

sm2 C tnz we may assume that gcd.sm; tn/ D 1. We shall systematically consider
all cases.
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3.1 d D 0

For d D 0 we have sm D 0, so that p D tnz. This case is of no interest.

3.2 d D 1

Here d D 4sm2

tn2
D 1, and .s; t/ D .s; n/ D .t;m/ D .m; n/ D 1. Hence there are

two possibilities:

� s D m D n D 1; t D 4. This is precisely the case of Heath–Brown’s and
Zagier’s proof.

� s D m D t D 1; n D 2.
In p D x2Cyz the solution with p D x2Cy2 D y2Cx2 is counted twice. In

order to make the original argument work we need to break the symmetry. This
can be done by assuming y and z to be even.

The involution ˛ is generated by

B D
0

@

�1 1 0

0 1 0

2 �1 1

1

A ;

A D BX , and C D A�1.
This gives the following variant of the proof of the two squares theorem:
The involution on the finite set S D f.x; y; z/ 2 N�2N�2N W x2Cyz D pg

defined by

.x; y; z/ 7!
8

<

:

.x C z; z;�2x C y � z/ if 2x C z < y

.�x C y; y; 2x � y C z/ if x < y < 2x C z

.x � y; 2x � y C z; y/ if y < x

has exactly one fixed point, so jS j is odd and the involution defined by
.x; y; z/! .x; z; y/ also has a fixed point.

3.3 d D 2

3.3.1 The Case p D x2 C 2yz

Here, we consider the case dD4sm
2

tn2
D 2. By the coprime condition .sm2; tn2/D 1,

we necessarily have that s D m D n D 1; t D 2.
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Empirically one observes that the number of fixed points varies with the residue
classes modulo 8:

(a) primes p  3 mod 8 induce 1 fixed point.
(b) primes p  7 mod 8 induce 2 fixed points.
(c) primes p  5 mod 8 induce 2 fixed points.
(d) primes p  1 mod 8 induce 3 fixed points.

Case (a) was also proved by Jackson [21] and Generalov [16]. They also observed
(d), but did not prove it by elementary methods. We shall prove (a), (b), and (c)
which corresponds to our Theorem 3 (a,b,c). Unfortunately, we do not see either a
convenient way to prove (d) without appealing to the theory of quadratic forms.

Let S D f.x; y; z/ 2 N3 W x2 C 2yz D pg. The one sentence proof is as before
with the following map ˛ W S ! S .

˛ D

8

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂

<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂

:̂

A D BX D

0

B
B
@

1 0 2

0 0 1

�2 1 �2

1

C
C
A

if � 2x C y � 2z > 0

E D �XA2 D

0

B
B
@

�3 2 �2
�2 2 �1
2 �1 2

1

C
C
A

8

ˆ̂
<

ˆ̂
:

if �3x C 2y � 2z > 0

and 2x � y C 2z > 0

(then �2x C 2y � z>0 is implied.)

D D �A2 D

0

B
B
@

3 �2 2

2 �1 2

�2 2 �1

1

C
C
A

8

ˆ̂
<

ˆ̂
:

if 3x � 2y C 2z > 0

and �2x C 2y � z > 0

(then 2x � y C 2z > 0 is implied.)

B D XA3 D

0

B
B
@

�1 2 0

0 1 0

2 �2 1

1

C
C
A

if �x C 2y > 0 and 2x � 2y C z > 0

C D A�1 D A3 D XB D

0

B
B
@

1 �2 0
2 �2 1
0 1 0

1

C
C
A

if x � 2y > 0,

(2x � 2y C z > 0 follows trivially.)

Note that this map makes use of all matrices of the form .�1/jC1Aj ; .jD1; 2; 3/,
and .�1/jC1XAj ; .j D 2; j D 3/. Note that also A4 D I . The matrix XA is of no
use, since this contains an impossible row condition �x � 2z > 0.
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The map above is equivalent to that given by Jackson and Generalov, here in
Jackson’s notation [21]:

.x; y; z/ 7!

8

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

.x � 2y; zC 2x � 2y; y/ if y <
x

2

.2y � x; y; 2x � 2y C z/ if
x

2
< y < x C z

2

.3x � 2y C 2z; 2x � y C 2z;�2x C 2y � z/ if x C z

2
< y <

3

2
x C z

.�3x C 2y � 2z;�2x C 2y � z; 2x � y C 2z/ if
3

2
x C z < y < 2x C 2z

.x C 2z; z;�2x C y � 2z/ if 2x C 2z < y:

Let us call the subsets of S that correspond to the matrices A;B;C;D;E by
A ;B;C ;D ;E . For a complete proof, we have to show that

1. ˛ W S ! S , i.e., ˛ maps .x; y; z/ with p D x2 C 2yz to .x0; y0; z0/ with p D
x02 C 2y0z0,

2. ˛2 D id ,
3. the boundaries (x � 2y D 0; 2x � 2y C z D 0 etc.) are never attained,
4. the sets A ;B;C ;D ;E induce a partition of the set of all solutions,
5. there is only one fixed point.

3.3.2 Proof of Theorem 3

1. Since all parts of the mapping ˛ are generated by �I;X and B it suffices to
prove the first property for �I;X and B . It is obvious for �I and X . For B we
have:

.x0/2 C 2y0z0 D .�x C 2y/2 C 2.y/.2x � 2y C z/ D x2 C 2yz D p:

2. Note that A maps the region A to the region C . Because of C D A�1 the
region C is mapped to the region A . The first assertion follows from x0 � 2y0 D
.x C 2z/ � 2z > 0 and 2x0 � 2y0 C z0 D 2.x C 2z/ � 2z C .�2x C y �
2z/ D y > 0. For the second assertion, we need that �2x0 C y0 � 2z0 > 0 with
x0 D x � 2y; y D 2x � 2y C z; z0 D y and so �2x0 C y0 � 2z0 D z > 0. Note
that B2 D D2 D E2 D I . So the matrix B maps the set B onto B. The same
holds for D W D ! D and E W E ! E .

3. Suppose the boundaries are attained. This will lead to a contradiction.

a. For the boundaries in the first row, namely x � 2y D 0;�x C 2y D 0; 3x �
2y C 2z D 0;�3x C 2y � 2z D 0, it would follow that x is even. This
contradicts p D x2 C 2yz, since p is odd.

b. �2x C y � 2z D 0: p D x2 C 2yz D x2 C 2.2x C 2z/z D .x C 2z/2. This
contradicts the primality of p.
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c. 2x � 2y C z D 0: p D x2 C 2yz D x2 C 2y.2y � 2x/ D .x � 2y/2;
contradicting the primality of p.

d. 2x � y C 2z D 0: See (b).
e. �2x C 2y � z D 0: See (c).

4. It follows easily from the boundaries in Jackson’s notation (given above) that ˛
induces a partition of S .

5. We now look for the fixed points of ˛. Here we distinguish between the various
cases depending on the residue class modulo 8. We see that A and C cannot have
fixed points, since the set A is mapped onto C and the other way around.
Suppose that .x; y; z/ is a fixed point of B , then

B

0

@

x

y

z

1

A D
0

@

�x C 2y
y

2x � 2y C z

1

A
ŠD
0

@

x

y

z

1

A :

Hence x D y. Because of p D x2 C 2yz this is only possible for x D y D 1.
Hence B has precisely one fixed point.

For the matrixD, we find that

D

0

@

x

y

z

1

A D
0

@

3x � 2y C 2z
2x � y C 2z
�2x C 2y � z

1

A
ŠD
0

@

x

y

z

1

A :

Hence y D xCz, and therefore,p D x2C2yz D x2C2.xCz/z D .xCz/2Cz2.
Similarly,

E

0

@

x

y

z

1

A D
0

@

�3x C 2y � 2z
�2x C 2y � z
2x � y C 2z

1

A
ŠD
0

@

x

y

z

1

A :

Hence y D 2x C z, which implies that p D x2 C 2yz D x2 C 2.2x C z/z D
.x C 2z/2 � 2z2.

If p  3 mod 8, there is no fixed point coming from D and E. To see this,
recall that squares modulo 8 only take the values 0; 1; 4. So, the only fixed point
is in B, and so jS j is odd. As before, the involution ˇ must have an odd number
of fixed points. Hence there is at least one fixed point with y D z, leading to the
solution of p D 8k C 3 D x2 C 2y2.

The same consideration of the values of squares modulo 8 shows:
If p  7 mod 8, we have again the trivial fixed point of B . There cannot be a

fixed point fromD. Since there cannot be a representation p D x2C2y2, we see
that there must be a fixed point coming from E. So, p  7 mod 8 can be written
as p D x2 � 2y2. This proves theorem 3b).

If p  5 mod 8, there cannot be a fixed point of E. Since p D x2 C 2y2 is
impossible, there must be a fixed point of D, hence p has a representation of the
form x2 C y2. This gives a new proof for one half of the two squares theorem,
here Theorem 3(c).



A Combinatorial Approach to Sums of Two Squares and Related Problems 135

If p  1 mod 8, we have a fixed point of B and (by the two squares theorem)
of D. In order to prove the existence of the representation p D x2 C 2y2, it is
enough to prove that there is (precisely) one fixed point of E. We do not see how
to prove this with the methods of this paper. For this reason we did not state a
theorem for the case p  1 mod 8.

3.4 d D 3

3.4.1 The Case p D 3x2 C 4y2

Here we deal with the case d D 4sm2

tn2
D 3. We have again two sub-cases.

� s D 3; m D n D 1; t D 4.
� s D 3; m D t D 1; n D 2, with even y and z.

As above in the case d D 1, both of these sub-cases are equivalent. We will thus
concentrate on the first case.

The form p D 3x2 C 4yz represents only primes p  3 mod 4, hence we
consider p D 12k C 7 and p D 12k C 11. We will proceed as in the case d D 2.

The general form of our matrix B is now

B D
0

@

�1 2 0

0 1 0

3 �3 1

1

A ; A D BX D
0

@

1 0 2

0 0 1

�3 1 �3

1

A :

In view of A6 D I , we consider the 9 matrices

.�1/jC1Aj ; .j D 1; : : : ; 5/ and .�1/jC1XAj ; .j D 2; : : : ; 5/:

(As before, the matrix XA is of no use, in view of the row condition �x � 2z > 0.)

�A2 D
0

@

5 �2 4

3 �1 3

�6 3 �4

1

A ; A3 D
0

@

7 �4 4

6 �3 4

�6 4 �3

1

A ;�A4 D
0

@

5 �4 2

6 �4 3

�3 3 �1

1

A ;

A5 D A�1 D XB D
0

@

1 �2 0

3 �3 1

0 1 0

1

A ; D D �XA2 D
0

@

�5 2 �4
�6 3 �4
3 �1 3

1

A ;

E D XA3 D
0

@

�7 4 �4
�6 4 �3
6 �3 4

1

A ; F D �XA4 D
0

@

�5 4 �2
�3 3 �1
6 �4 3

1

A ; B D XA5:
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The corresponding boundaries are induced by the matrices themselves: for

example, the matrix

0

@

�5 4 �2
�3 3 �1
6 �4 3

1

A corresponds to �5xC 4y � 2z>0, �3xC 3y �

z>0, 6x � 4y C 3z > 0.
Hence the map ˛ is:

.x; y; z/ !

8

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂

<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂

:̂

.x � 2y; 3x � 3y C z; y/ if y <
x

2
.�x C 2y; y; 3x � 3y C z/ if

x

2
< y < x C z

3

.5x � 4y C 2z; 6x � 4y C 3z;�3x C 3y � z/ if x C z

3
< y <

5

4
x C z

2

.�5x C 4y � 2z;�3x C 3y � z; 6x � 4y C 3z/ if
5

4
x C z

2
< y <

3

2
x C 3

4
z

.7x � 4y C 4z; 6x � 3y C 4z;�6x C 4y � 3z/ if
3

2
x C 3

4
z < y <

7

4
x C z

.�7x C 4y � 4z;�6x C 4y � 3z; 6x � 3y C 4z/ if
7

4
x C z < y < 2x C 4

3
z

.5x � 2y C 4z; 3x � y C 3z;�6x C 3y � 4z/ if 2x C 4

3
z < y <

5

2
x C 2z

.�5x C 2y � 4z;�6x C 3y � 4z; 3x � y C 3z/ if
5

2
x C 2z < y < 3x C 3z

.x C 2z; z;�3x C y � 3z/ if 3x C 3z < y:

In order to prove theorem 4, we shall show: For primes p  7 mod 12, there is
one fixed point of ˛. For primes p  11 mod 12, there are two fixed points of ˛.

3.4.2 Proof of Theorem 4

Suppose that the boundaries are attained. This will lead to a contradiction. Note that
for odd primes p D 3x2 C 4yz the value of x is odd. This excludes the boundaries
�xC 2y D 0, 5x � 2yC 4z D 0, 5x � 4yC 2z D 0, and 7x � 4yC 4z D 0. Since
p D 3x2C 4yz is prime (p > 3), we can deduce that y and z are not divisible by 3.
This excludes the boundaries 3x�3yC z D 0, 3x�yC3z D 0, 6x�4yC3z D 0,
and 6x � 3y C 4z D 0.

Now let us look at the fixed points: The mappingsA;�A2;�A4; A5 cannot have
any fixed points, (since A maps the region A onto the region A5 etc.). The matrices
B;A3;D;E; F are involutions. So we have to check their fixed points.

� As before, B has precisely one fixed point: .1; 1; k0 D p�3
4
/.

� ForA3 the fixed point conditionA3

0

@

x

y

z

1

A
ŠD
0

@

x

y

z

1

A simplifies to: 3x�2yC2zD 0.

This is a contradiction since x is odd.
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� Similarly, for D, we need to look at 3x � y C 2z D 0. Consider the equation
p D 3x2 C 4yz D 3x2 C 12xzC 8z2 D 3.xC 2z/2 � 4z2 modulo 3. With z2 
0; 1 mod 3 and for p  7 mod 12, we find that 1 D 2z2 mod 3, a contradiction.

� ForE , the fixed point condition is 2x�yC z D 0. We look at p D 3x2C4yz D
3x2 C 8xz C 4z2 D 4.x C z/2 � x2 D .3x C 2z/.x C 2z/, contradicting the
primality of p.

� Finally, for F we have to look at 3x � 2yC z D 0, and plug this into our ternary
form p D 3x2 C 4yz D 3x2 � 12xy C 8y2 D 3.x � 2y/2 � 4y2. Again, we
consider this modulo 3: For p D 12k C 7 and with 2y2 D 1 mod 3 we see that
there cannot be a fixed point.

We find that for p D 12k C 7 there is only the trivial fixed point of B , namely
.1; 1; .p � 3/=4/. By the standard argument p can be written as p D 3x2 C 4y2.

Since p D 12k C 11 cannot be written as p D 3x2 C 4y2, there must be a
fixed point of D or F . Any such fixed point induces a representation of the type
p D 3x2 � 4y2, (see the analysis of these cases above).

This proves theorem 4.

3.5 d D 4

d D 4sm2

tn2
D 4: Here necessarily s D t D m D n D 1, and therefore

B D
0

@

�1 2 0

0 1 0

4 �4 1

1

A :

This matrix generates an infinite partition. Since in the case s D t D 1, we do not
expect anything new, we do not pursue this case further.

4 On Infinite but Incomplete Mappings

One can also consider corresponding mappings induced byB andX for other values
of d . We cannot expect that the number of required matrices is finite.

Consider p D 3x2 C 2yz D 24k C 5. Generate the matrices with

B D
0

@

�1 2 0

0 1 0

6 �6 1

1

A :
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Take
A D BX and C D A�1 D XB:
A D BX;�A2; A3;�A4; A5 etc.

C D XB;�C 2; C 3;�C 4; etc.

B;�BC;BC 2;�BC 3; BC 4 etc.

�XA2; XA3;�XA4 etc.

(Note: �X and XA are again omitted.) The matrix A does not have a finite or-
der. This can easily be seen by looking at the eigenvalues of A, namely �1;�2
�p3;�2Cp3.

Taking infinitely many of these matrices, we see: The “region” of each matrix
becomes smaller and smaller.

For the powers of �A the row conditions come arbitrarily close to:

�

3Cp3
�

x � y C
�

2Cp3
�

z > 0

and
�
�

3Cp3
�

x C y �
�

2Cp3
�

z > 0:

There are similar row conditions for the other series of matrices. The series

C D XB;�C 2; C 3;�C 4; etc.

corresponds to
B;�BC;BC 2;�BC 3; BC 4 etc.

in that respect that the row conditions of the first and third row are the same and the
condition of the first row is reversed. Similarly, the two series

A D BX;�A2; A3;�A4; A5 etc.

and
�XA2; XA3;�XA4 etc.

have associated boundaries. This latter series tends to a row condition of
�

3Cp3
�

x �
�

2Cp3
�

y C z > 0

and
�
�

3Cp3
�

x C
�

2Cp3
�

y � z > 0:

Unfortunately, the two boundaries

�

3Cp3
�

x � y C
�

2Cp3
�

z > 0



A Combinatorial Approach to Sums of Two Squares and Related Problems 139

and �

3Cp3
�

x �
�

2Cp3
�

y C z > 0

do not correspond. Hence there is a gap in between the regions of these series.
One would need further matrices to close this gap in order to proceed.
Looking at the conditions ax � by C cz > 0 and ax � cyC bz > 0, we see how

incidental the above described finite mappings are.
In the case studied by Zagier, we have a D b D c. So there are no problems at

all. In the case p D x2 C 2yz, we had 2x � y C 2z. Here a D c so we still do not
clearly see, what the condition in the general case is.

In the case p D 3x2 C 4yz, we had 6x � 3y C 4z and 6x � 4y C 3z. Here, we
see the importance of the matrices A3 D BXBXBX andXA3 D XBXBXBX with
both rows, 6;�3; 4 and �6; 4;�3. These matrices are the “turning point”, reversing
the y and z coordinate. We have a complete cycle: .�3; 1;�3/ ) .3;�1; 3/ )
.�6; 3;�4/ ) .6;�3; 4/ ) .�6; 4;�3/ ) .6;�4; 3/ ) .�3; 3;�1/ )
.3;�3; 1/. These matrices can be discovered by a sub-matrix (omit the first row

and column) of the form

�
a �b
�b a

�

.

In the incomplete mapping above, there are no such “turning points”.
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A Note on Elkin’s Improvement of Behrend’s
Construction

Ben Green and Julia Wolf

To Mel Nathanson

Summary We provide a short proof of a recent result of Elkin in which large
subsets of f1; : : : ; N g free of three-term progressions are constructed.

Keywords Arithmetic progressions � Roth’s theorem
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1 Introduction

Write r3.N / for the cardinality of the largest subset of f1; : : : ; N g not containing
three distinct elements in arithmetic progression. A famous construction of Behrend
[1] shows, when analysed carefully, that

r3.N /� 1

log1=4N
� N

22
p
2
p

log2N
:

In a recent preprint [2], Elkin was able to improve this 62-year old bound to

r3.N /� log1=4N � N

22
p
2
p

log2N
:

B. Green
Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA, England
e-mail: b.j.green@dpmms.cam.ac.uk

J. Wolf
Mathematical Sciences Research Institute, 17 Gauss Way, Berkeley, CA 94720, USA
e-mail: julia.wolf@cantab.net

The first author holds a Leverhulme Prize and is grateful to the Leverhulme Trust for their support.
This paper was written while the authors were attending the special semester in ergodic theory and
additive combinatorics at MSRI.

D. Chudnovsky and G. Chudnovsky (eds.), Additive Number Theory: Festschrift
In Honor of the Sixtieth Birthday of Melvyn B. Nathanson,
DOI 10.1007/978-0-387-68361-4 9, c� Springer Science+Business Media, LLC 2010

141

b.j.green@dpmms.cam.ac.uk
julia.wolf@cantab.net


142 B. Green and J. Wolf

Our aim in this note is to provide a short proof of Elkin’s result. It should be noted
that the only advantage of our approach is brevity: it is based on ideas morally close
to those of Elkin, and moreover, his argument is more constructive than ours.

Throughout the paper, 0 < c < 1 < C denote absolute constants which may
vary from line to line. We write Td D Rd=Zd for the d -dimensional torus.

2 The Proof

Let d be an integer to be determined later, and let ı 2 .0; 1=10/ be a small parameter
(we will have d 
 CplogN and ı 
 exp .�CplogN )). Given �; ˛ 2 Td , write
‰�;˛ W f1; : : : ; N g ! Td for the map n 7! �nC ˛.mod 1/.

Lemma 2.1. Suppose that n is an integer. Then ‰�;˛.n/ is uniformly distributed on
Td as �; ˛ vary uniformly and independently over Td . Moreover, if n and n0 are
distinct positive integers, then the pair .‰�;˛.n/;‰�;˛.n0// is uniformly distributed
on Td � Td as �; ˛ vary uniformly and independently over Td .

Proof. Only the second statement requires an argument to be given. Perhaps the
easiest proof is via Fourier analysis, noting that

Z

e2� i.k	.�nC˛/Ck0	.�n0C˛// d� d˛ D 0

unless kCk0 D knCk0n0 D 0. Provided that k and k0 are not both zero, this cannot
happen for distinct positive integers n; n0. Since the exponentials e2� i.kxCk0x0/ are
dense in L2.Td � Td /, the result follows. ut

Let us identify Td with Œ0; 1/d in the obvious way. For each r 6 1
2

p
d , write

S.r/ for the region

fx 2 Œ0; 1=2�d W r � ı 6 kxk2 6 rg:

Lemma 2.2. There is some choice of r for which vol.S.r// > cı2�d .

Proof. First note that if .x1; : : : ; xd / is chosen at random from Œ0; 1=2�d then, with
probability at least c, we have jkxk2 �

p

d=12j 6 C . This is a consequence of
standard tail estimates for sums of independent identically distributed random vari-
ables, of which kxk22 D

Pd
iD1 x2i is an example. The statement of the lemma then

immediately follows from the pigeonhole principle. ut



A Note on Elkin’s Improvement of Behrend’s Construction 143

Write S WD S.r/ for the choice of r whose existence is guaranteed by the pre-
ceding lemma; thus vol.S/ > cı2�d . Write QS for the same set S but considered
now as a subset of Œ0; 1=2�d � Rd . Since there is no “wraparound”, the three-term
progressions in S and QS coincide and henceforth we abuse notation, regarding S as
a subset of Rd and dropping the tildes. (To use the additive combinatorics jargon,
S and QS are Freiman isomorphic.) Suppose that .x; y/ is a pair for which x � y; x
and x C y lie in S . By the parallelogram law

2kxk22 C 2kyk22 D kx C yk22 C kx � yk22
and straightforward algebra we have

kyk2 6
p

r2 � .r � ı/2 6
p
2ır:

It follows from the formula for the volume of a sphere in Rd that the volume
of the set B � Td � Td in which each such pair .x; y/ must lie is at most
vol.S/C d .ı=

p
d/d=2.

The next lemma is an easy observation based on Lemma 2.1.

Lemma 2.3. Suppose that N is even. Define A�;˛ WD fn 2 ŒN � W ‰�;˛.n/ 2 Sg.
Then

E�;˛ jA�;˛j D N vol.S/

whilst the expected number of nontrivial three-term arithmetic progressions in
A�;˛ is

E�;˛T .A�;˛/ D 1

4
N.N � 5/vol.B/:

Proof. The first statement is an immediate consequence of the first part of Lemma
2.1. Now each nontrivial three-term progression is of the form .n � d; n; n C d/
with d ¤ 0. SinceN is even there areN.N �5/=4 choices for n and d , and each of
the consequent progressions lies inside A�;˛ with probability vol.B/ by the second
part of Lemma 2.1. ut

To finish the argument, we just have to choose parameters so that

1

3
vol.S/ > 1

4
.N � 5/vol.B/: (2.1)

Then, we shall have

E

�
2

3
jA�;˛j � T .A�;˛/

�

> 1

3
Nvol.S/:

In particular, there is a specific choice of A WD A�;˛ for which both T .A/ 6 2jAj=3
and jAj > 1

2
Nvol.S/. Deleting up to two thirds of the elements of A, we are left

with a set of size at least 1
6
N vol.S/ that is free of three-term arithmetic progressions.
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To do this, it suffices to have C d .ı=
p
d/d=2 6 c=N , which can certainly be

achieved by taking ı WD cpdN�2=d . For this choice of parameters we have, by the
earlier lower bound on vol.S/, that

jAj > 1

6
N vol.S/ > c

p
d2�dN 1�2=d :

Choosing d WD dp2 log2N e we recover Elkin’s bound. ut

3 A Question of Graham

The authors did not set out to try and find a simpler proof of Elkin’s result. Rather,
our concern was with a question of Ron Graham (personal communication to the
first-named author, see also [3, 4]). Defining W.2I 3; k/ to be the smallest N such
that any red-V-blue colouring of ŒN � contains either a three-term red progression
or a k-term blue progression, Graham asked whether W.2I 3I k/ < kA for some
absolute constant A or, even more ambitiously, whether W.2I 3; k/ 6 Ck2. Our
initial feeling was that the answer was surely no, and that a counterexample might
be found by modifying the Behrend example in such a way that its complement does
not contain long progressions. Reinterpreting the Behrend construction in the way
that we have done here, it seems reasonably clear that it is not possible to provide a
negative answer to Graham’s question in this way.

Acknowledgement The authors are grateful to Tom Sanders for helpful conversations.
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Distinct Matroid Base Weights and Additive
Theory

Y.O. Hamidoune and I.P. da Silva

Summary LetM be a matroid on a setE and let w W E �!G be a weight function,
where G is a cyclic group. Assuming that w.E/ satisfies the Pollard’s Condition
(i.e., Every non-zero element of w.E/ � w.E/ generates G), we obtain a formula
for the number of distinct base weights. If jGj is a prime, our result coincides with
a result of Schrijver and Seymour.

We also describe Equality cases in this formula. In the prime case, our result
generalizes Vosper’s Theorem.

Keywords Additive inequalities � Vosper’s theorem �Weighted matroid

Mathematics Subject Classifications (2010). 11P70, 05B35

1 Introduction

Let G be a finite cyclic group and let A;B be nonempty subsets of G: The starting
point of Minkowski set sum estimation is the inequality jAC Bj � min.jGj; jAj C
jBj�1/;where jGj is a prime, proved by Cauchy [2] and rediscovered by Davenport
[4]. The first generalization of this result, due to Chowla [3], states that in a cyclic
group G, jA C Bj � min.jGj; jAj C jBj � 1/; if there is a b 2 B such that every
non-zero element of B � b generates G: In order to generalize his extension of the
Cauchy–Davenport Theorem [11] to composite moduli, Pollard introduced in [12]
the following more sophisticated Chowla type condition: Every non-zero element
of B � B generates G:
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Equality cases of the Cauchy–Davenport were determined by Vosper in [16, 17].
Vosper’s Theorem was generalized by Kemperman [9]. We need only a light form
of Kemperman’s result stated in the beginning of Kemperman’s paper.

We need the following combination of Chowla and Kemperman results:

Theorem A (Chowla [3], Kemperman [9]). Let A;B be non-empty subsets of a
cyclic group G such that for some b 2 B; every non-zero element of B � b gener-
ates G. Then

(i) jAC Bj � minfjGj; jAj C jBj � 1g:
(ii) If jACBj D jAjC jBj�1 and min.jAj; jB/j � 2; then ACB is an arithmetic

progression.

(i) Is Chowla’s Theorem [3]. Kemperman proved (ii) in [9]. A shortly proved
generalization of this result to non-abelian groups is obtained in [8].

Zero-sum problems form another developing area in Additive Combinatorics
having several applications. The Erdős–Ginzburg–Ziv Theorem [6] was the start-
ing point of this area. This result states that a sequence of elements of an abelian
groupG with length � 2jGj � 1 contains a zero-sum subsequence of lengthD jGj.

The reader may find some details on these two areas of Additive Combinatorics
in the text books: Nathanson [10], Geroldinger–Halter–Koch [7] and Tao–Vu [15].
More specific questions may be found in Caro’s survey paper [1].

The notion of a matroid was introduced by Whitney in 1935 as a generalization
of a matrix. Two pioneer works connecting matroids and Additive Combinatorics
are due to Schrijver–Seymour [13] and Dias da Silva–Nathanson [5]. Recently, in
[14], orientability of matroids is naturally related with an open problem on Bernoulli
matrices.

Stating the first result requires some vocabulary:
Let E be a finite set. The set of the subsets of E will be denoted by 2E :
A matroid overE is an ordered pair .E;B/where B � 2E satisfies the following

axioms:

(B1) B 6D ;.
(B2) For all B;B 0 2 B; if B � B 0 then B D B 0.
(B3) For all B;B 0 2 B and x 2 BnB 0; there is a y 2 B 0nB such that .Bnfxg/[

fyg 2B.

A set belonging to B is called a base of the matroidM:
The rank of a subset A � E is by definition

rM .A/ WD maxfjB \ Aj W B is a base of M g:

We write r.M/ D r.E/: The reference toM could be omitted. A hyperplane of the
matroidM is a maximal subset of E with rankD r.M/� 1.
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The uniform matroid of rank r on a set E is by definition Ur.E/ D .E;
�
E
r

	

/;

where
�
E
r

	

is the set of all r-subsets of E: Let M be a matroid on E and let N be a
matroid on F: We define the direct sum:

M ˚N D .E � f0g [ F � f1g; fB � f0g [ C � f1gW
B is a base of M and C is a base of N g/:

Let w W E �! G be a weight function, where G is an abelian group. The weight of
a subset X is by definition

Xw WD
X

x2X
w.x/:

The set of distinct base weights of a matroidM is

M w WD fBw W B is a basis of M g:
Suppose now jGj D p is a prime number. Schrijver and Seymour proved that

jM wj � min.p;
P

g2G r.w�1.g// � r.M/C 1/:
Let A and B be subsets of G: Define w W A � f0g [ B � f1g; by the relation

w.x; y/ D x: Then,
.U1.A/˚ U1.B//w D AC B:

Applying their result to this matroid, Schrijver and Seymour obtained the Cauchy–
Davenport Theorem.

Let x1; : : : ; x2p�1 2 G: Consider the uniform matroid M D Up.E/; of rank p
over the setE D f1; : : : ; 2p�1g;with weight function w.i/ D xi : In order to prove
the Erdős–Ginzburg–Ziv Theorem [6], one may clearly assume that no element is
repeated p times. In particular for every g 2 G; r.w�1.g// D jw�1.g/j: Applying
their result to this matroid, Schrijver and Seymour obtained

jM wj � min

0

@jGj;
X

g2G
r.w�1.g//� r.M/C 1

1

A

D min

0

@p;
X

g2G
jw�1.g/j � p C 1

1

A D p:

In particular, 0 2M w as stated by the Erdős-Ginzburg-Ziv Theorem [6].
In the present work, we prove the following result:

Theorem 1. Let G be a cyclic group, M be a matroid on a finite set E with
r.M/�1 and let w W E �! G be a weight function. Assume moreover that every
nonzero element of w.E/ � w.E/ generates G: Then

jM wj � min

0

@jGj;
X

g2G
r.w�1.g//� r.M/C 1

1

A ; (1)
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where M w denotes the set of distinct base weights. Moreover, if Equality holds in
(1), then one of the following conditions holds:

(i) r.M/ D 1 or M w is an arithmetic progression.
(ii) There is a hyperplaneH ofM such thatM w D gC .M=H/w; for some g 2 G:

IfG has a prime order, then the condition on w.E/�w.E/ holds trivially. In this
case, (1) reduces to the result of Schrijver–Seymour.

2 Terminology and Preliminaries

Let M be a matroid on a finite set E. One may see easily from the definitions that
all bases of a matroid have the same cardinality. A circuit of M is a minimal set
not contained in a base. A loop is an element x such that fxg is a circuit. By the
definition bases contain no loop. The closure of a subset A � E is by definition

cl.A/ D fx 2 A W r.A[ x/ D r.A/g:

Note that an element x 2 cl.A/ if and only if x 2 A; or there is circuit C such
x 2 C and Cnfxg � A.

Given a matroidM on a set E and a subset A � E: Put

B=A WD fBnA W B is a base of M with jB \Aj D r.A/g:

One may see easily that M=A D .EnA;B=A/ is a matroid on EnA: We say that
this matroid is obtained from M contracting A: Notice that

rM=A.X/ D rM .X [A/ � rM .A/:

Recall the following easy lemma:

Lemma B. Let M be a matroid on a finite set E and let U; V be disjoint subsets of
E . Then

� M=U and M=cl.U / have the same bases. In particular, .M=U /w D
.M=cl.U //w:

� .M=U /=V DM=.U [ V /:
For more details on matroids, the reader may refer to one of the text books: Welsh

[18] or White [19].
For u 2 E; we put

Gu WD fg 2 G W u 2 cl.w�1.g//g:
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We use also the following lemma:

Lemma C (Schrijver and Seymour in [13]). Let M be a matroid on a finite set E
and let w W E �! G be a weight function. Then for every nonloop element u 2 E;

.M=u/w CGu �M w:

Proof. Take a baseB ofM=u and an element g 2Gu. If g D w.u/, then by definition
of contraction, B [ fug is a base of M and Bw C w.u/ 2 M w. If g ¤ w.u/; there
is a circuit C containing u such that ; 6D Cnfug � w�1.g/. For some v 2 Cnfug,
the subset B [ fvg must be a base of M otherwise Cnfvg � cl.B/, implying that
u 2 cl.B/; in contradiction with the assumption that B is a base ofM=u. Therefore,
.B [ fvg/w D Bw C g 2M w. ut

3 Proof of the Main Result

We shall now prove our result:

Proof of Theorem 1: First, we prove (1) by induction on the rank of M . The result
holds trivially if r.M/ D 1: Since r.M/ � 1; M contains a non-loop element. Take
an arbitrary non-loop element y:

jM wj � j.M=y/w CGy j
� j.M=y/wj C jGy j � 1
�
X

g2G
r.w�1.g// � r.M/C 1: (2)

The first inequality follows from Lemma C, the second follows by Theorem A
and the third is a direct consequence of the definitions ofM=y and Gy . This proves
the first part of the theorem.

Suppose now that Equality holds in (1) and that Condition (i) is not satisfied.
In particular, r.M/ � 2: Also jM wj � 2; otherwise M w is a progression, a contra-
diction.

We claim that there exits a non-loop element u 2 E such that j.M=u/wj � 2.
Assume on the contrary that for every non-loop element u2E, we have
j.M=u/wj D 1. Then every pair of bases B1; B2 of M with Bw

1 6D Bw
2 satisfies

B1 \ B2 D ; otherwise for every z 2 B1 \ B2, j.M=z/wj � 2. Now, for every
z 2 B1; there is z0 2 B2 such thatC D .B1nfzg/[fz0g is a base of M. For such a base
C , B1 \C ¤ ;; B2 \C ¤ ;; and we must have Bw

1 D C w D Bw
2 ; a contradiction.

Applying the chain of inequalities proving (2) with y D u. We have

jM wj D j.M=u/w CGuj D j.M=u/wj C jGuj � 1: (3)
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Note that w.Enfug/ � w.E/. Thus w.Enfug/ verifies the Pollard condition.
If jGuj � 2 Theorem A implies that M w is a progression and thus M satisfies
Condition (i) of the theorem, contradicting our assumption on M . We must have
jGuj D 1:

Thus, Gu D fw.u/g andM w D w.u/C .M=u/w:
Since the translate of a progression is a progression, .M=u/w is not a progression.

By Lemma B, .M=u/ andM=cl.u/ have the same bases and thus the result holds if
r.M/ D 2: If r.M/ > 2; then by the Induction hypothesis there is a hyperplaneH
ofM=u such that .M=u/w D .M=u=H/w D .M=.cl.fug[H//w; and (ii) holds. ut
Corollary 2 (Vosper’s Theorem [16,17]). Let p be a prime and letA;B be subsets
of Zp such that jAj; jBj � 2:

If jAC Bj D jAj C jBj � 1 < p then one of the following holds:

(i) where c D Zpn.AC B/
(ii) A and B are arithmetic progressions with the same difference.

Proof. Consider the matroid N D .U1.A/ ˚ U1.B// and its weight function w
defined in the Introduction.H D A� f0g andH 0 D B � f1g are the hyperplanes of
N and we have N w D AC B .

If jN wj D jAjCjBj�1, then Theorem 1 says thatN must satisfy one of its condi-
tions (i) or (ii). Since by hypothesis jAj; jBj � 2 we have jN wj > max.jAj; jBj/ �
j.N=H/wj; j.N=H 0/wj and we conclude that N w must be an arithmetic progression
with difference d . Without loss of generality, we may take d D 1:
Case 1. jA C Bj D p � 1. Put fcg D Zpn.A C B/. We have c � A � .ZpnB/.

Since these sets have the same cardinality, we have c � A D .ZpnB/.
Case 2. jAC Bj < p � 1.

We have jAC B C f0; 1gj D jAC Bj C 1 D jAj C jBj < p:
We must have jACf0; 1gj D jAj C 1, since otherwise by the Cauchy-Davenport

Theorem,

jAC Bj C 1 D jAC B C f0; 1gj
D jAC f0; 1g C Bj
� .jAj C 2/C jBj � 1 D jAj C jBj C 1;

a contradiction. It follows that A is an arithmetic progression with difference 1.
Similarly B is an arithmetic progression with difference 1. ut
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The Postage Stamp Problem and Essential
Subsets in Integer Bases
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Dedicated to Melvyn B. Nathanson on the occasion of his 60th birthday

Summary Plagne recently determined the asymptotic behavior of the function
E.h/, which counts the maximum possible number of essential elements in an
additive basis for N of order h. Here, we extend his investigations by studying
asymptotic behavior of the function E.h; k/, which counts the maximum possible
number of essential subsets of size k, in a basis of order h. For a fixed k and with
h going to infinity, we show that E.h; k/ D ‚k

�

Œhk= logh�1=.kC1/	. The determi-
nation of a more precise asymptotic formula is shown to depend on the solution of
the well-known ‘postage stamp problem’ in finite cyclic groups. On the other hand,
with h fixed and k going to infinity, we show that E.h; k/ 
 .h� 1/ logk

log logk .

Keywords Additive basis � Essential subset
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1 Essential Subsets of Integer Bases

Let S be a countable abelian semigroup, written additively, h be a positive integer
and A � S . The h-fold sumset hA consists of all s 2 S , which can be expressed as
a sum of exactly h not necessarily distinct elements of A. If S is infinite, we write
hA 
 S if all but finitely many elements of S lie in hA. In that case, A is said to be a
basis of order h1 if hA 
 S but .h� 1/A 6
 S . If S is finite, then a basis A of order
h must satisfy hA D S and .h � 1/A ¤ S . The two semigroups of interest in this
paper (and in most of the additive number theory literature) are S D N , the set of
positive integers, and S D Zn, the set of residue classes modulo a positive integer n.

1In the literature, the term asymptotic basis is common.
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Now, suppose A is a basis of some order for N , a so-called integer basis. A finite
subset E of A is said to be an essential subset of A if AnE is no longer a basis
of any order, and the set E is minimal with this property. In the case when E is a
singleton set, E D fag say, we say that a is an essential element of A.

A fundamental result of Erdős and Graham [EG] states that every integer basis
possesses only finitely many essential elements. Grekos [G] refined this observation
by showing that the number of essential elements in a basis of order h is bounded
by a function of h only. LetE.h/ denote the maximum possible number of essential
elements in a basis of order h. Two recent papers have left us with a very good
understanding of this function. In 2007, Deschamps and Farhi [DF] proved that

E.h/ � c
s

h

logh
; (1.1)

with c D 30

q
log1564
1564

� 2:05, and gave an example to show that this is the best
possible universal constant. That left the question of asymptotic behavior and, in
2008, Plagne [P] completed the picture by showing that

E.h/ 
 2
s

h

logh
: (1.2)

Most of his paper was in fact devoted to verifying that the asymptotic behavior of
E.h/ is regular.

Deschamps and Farhi appear to be the first people to study essential subsets in
an integer basis of arbitrary size. They generalized the Erdős–Graham result by
showing that any basis possesses only finitely many essential subsets. However, the
number of these cannot be bounded purely in terms of the order of the basis, as the
following example from their paper shows. Let s � 1 and p1; : : : ; ps denote the first
s prime numbers. Put P WD Qs

iD1 pi and take

A DP �N [ f1; 2; : : : ;P � 1g (1.3)

Clearly, A is a basis of order 2, but it possesses s different essential subsets, namely
the sets

Ei D fx 2 f1; : : : ;P � 1g W .x; pi / D 1g; i D 1; : : : ; s: (1.4)

Note, however, that as s increases in this example, so do the sizes of the essential
subsets Ei (and drastically so!). Deschamps and Farhi suggested that the right gen-
eralization of (1.1) would be an upper bound for the number of essential subsets of
a given size in a basis of a given order. In other words, the function E.h; k/, which
denotes the maximum possible number of essential subsets of size k in an integer
basis of order h, should be well-defined. In [He], the present author proved that this
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is the case, but made no attempt to obtain precise estimates. Motivated by Plagne’s
subsequent work, we will in this paper prove the following two results:

Theorem 1.1. For each fixed h > 0, as k !1 we have

E.h; k/ 
 .h � 1/ log k

log log k
: (1.5)

Theorem 1.2. Let the function f .h; k/ be given by

f .h; k/ WD k C 1
k2
� kC1
p
k �
 

hk

logh

! 1
kC1

: (1.6)

Then, for each fixed k, as h!1 we have

(i)
E.h; k/ & f .h; k/: (1.7)

(ii) There is a number R.k/ 2 .1=e; 1/, to be defined below, such that

E.h; k/ .
�

1

R.k/

� k
kC1

f .h; k/: (1.8)

The problem of estimating the function E.h; k/ is intimately connected with
the well-known Postage Stamp Problem (PSP), this being the popular name for the
general problem of finding bases which are, in some sense, the most economical
possible. In Sect. 2 we present an overview of this problem and, in particular, define
the numbersR.k/ appearing in (1.8) above. Note that the exact values of these num-
bers are not known for any k > 1. Theorems 1.1 and 1.2 are proven in Sects. 3 and 4
respectively. All our proofs build on the ideas in previous papers on this subject and
are supplemented by ingredients of a mostly technical nature. That of Theorem 1.2
is modeled closely on Plagne’s [P]. The main technical problem he faced was to
show that the function E.h; 1/ behaved regularly, and in his case this was basically
due to the unsatisfactory state of current knowledge concerning the distribution of
primes in short intervals. When k > 1 that state of affairs continues to create diffi-
culties, but they will turn out to be less serious than those arising from the gaps in
our current understanding of the PSP. These gaps mean that, not only can we not
compute exactly the numbers R.k/, but we will be unable to prove rigorously what
we strongly believe to be true, namely:

Conjecture 1.3 With notation as in Theorem 1.2, we have in fact that

E.h; k/ 

�

1

R.k/

� k
kC1

f .h; k/: (1.9)

We will summarise these outstanding issues in Sect. 5.
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2 The Postage Stamp Problem

For an up-to-date and much more thorough exposition of the material in this section,
including an explanation of the name ‘PSP’, see [HJ2]. A more concise, but older,
exposition can be found in [AB].

Let positive integers h; k be given. The postage stamp number n.h; k/ is the
largest integer n such that there exists a k-element set A of positive integers satis-
fying hA0 � f0; 1; : : : ; ng, where A0 D A [ f0g. The problem of determining the
numbers n.h; k/ is usually traced back to a 1937 paper of Rohrbach [R]. Histori-
cally, two special cases have attracted most attention: either h is fixed and k ! 1
or vice versa. The two cases seem to be about equally difficult and the current state
of knowledge is about the same in both. For our applications to essential subsets of
bases, it turns out however that we can make do with much less information in the
case when h is fixed. The following estimate, already proven by Rohrbach and valid
for any h and k, will suffice:

�
k

h

�h

� n.h; k/ �
�
hC k
h

�

: (2.1)

The upper bound in (2.1) is obtained by a simple counting argument, and the lower
bound is developed constructively. Regarding the former, observe that for h fixed
and k going to infinity,

�
hC k
h

�

D kh

hŠ
CO.kh�1/: (2.2)

Now let us turn instead to the case when k is fixed and h ! 1. Stöhr [S] proved
the following analogue of Rohrbach’s estimates:

��
h

k

�

C 1
�k

� n.h; k/ �
�
hC k
k

�

: (2.3)

Let2

s.h; k/ WD 1

k

�
n.h; k/

hk

��1=k
: (2.4)

For each fixed k, the limit

s.k/ WD lim
h!1

s.h; k/ (2.5)

2 We have not seen the numbers defined in equations (2.4), (2.5), (2.10), (2.11), (2.17) and (2.18)
introduced explicitly in the existing literature on the PSP.
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is known to exist [K] and it follows easily from (2.3) that, for each k,

1

e
< s.k/ � 1: (2.6)

Only three values are known:

s.1/ D 1; s.2/ D 1; s.3/ D 3
p

3=4: (2.7)

The first of these is trivial, the second due to Stöhr and the third to Hofmeister [Ho].
For general k the best-known lower bound on s.k/ tends to 1=e as k !1, but for
upper bounds it follows from work of Mrose [M] that

lim sup
k!1

s.k/ � 1
4
p
2
: (2.8)

In more recent times, the PSP has received more attention in the setting of finite
cyclic groups, partly because it can then be formulated in terms of diameters of
so-called Cayley graphs, which has applications in the theory of communication
networks. We let N.h; k/ denote the largest integer N such that there exists a
k-element subset A of ZNnf0g satisfying hA0 D ZN , where A0 D A [ f0g. It is
trivial that

N.h; k/ � n.h; k/ � 1: (2.9)

Bounds similar to (2.1) and (2.3) can be easily obtained, so that if we define

S.h; k/ WD 1

k

�
N.h; k/

hk

��1=k
; (2.10)

S.k/ WD lim inf
h!1

S.h; k/; S.k/ WD lim sup
h!1

S.h; k/; (2.11)

then it can be shown that

1=e < S.k/ � S.k/ � 1: (2.12)

When the limit exists in (2.11), we denote it S.k/. Existence of the limit does not
seem to be known in general. Intuitively, the reason why the numbers N.h; k/ are
more awkward to handle than the n.h; k/ is as follows: If A is a set of integers such
that hA � f0; 1; : : : ; ng, then naturally hA � f0; 1; : : : ; mg for any m < n also. But
the corresponding statement for Zn and Zm need not be true.

For k D 2, it is known that the limit exists and that

S.2/ D p2=3: (2.13)
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The first rigorous proof of this result seems to be in [HJ1]. No other values of
S.k/; S.k/ are known. Once again, no general lower bound is known which doesn’t
tend to 1=e as k ! 1. The current record for general upper bounds seems to be
due to Su [Su] :

lim sup
k!1

S.k/ � 5

r

175

55 � 74 : (2.14)

There is a natural ‘dual’ to the numbersN.h; k/. This time, letN; k be given positive
integers, with N > k. We define h.N; k/3 to be the smallest positive integer h
such that there exists a basis for ZN of order h containing k C 1 elements. For
applications to Cayley graphs and also, as we shall see, to essential subsets of bases,
the numbers h.N; k/ are a more natural choice to work with than the N.h; k/. The
duality between the two is expressed by the easy relations

t � N.h.t; k/; k/; and h � h.N.h; k/; k/; for any t; h; k 2 N: (2.15)

A dual to (2.3) proven by Wang and Coppersmith [WC] is the double inequality

k
p
kŠ N � k C 1

2
� h.N; k/ � k � . k

p
N � 1/: (2.16)

The natural counterparts to the numbers S.h; k/; S.k/; S.k/ are thus

R.h; k/ WD h.N; k/

k � k
p
N
; (2.17)

R.k/ WD lim inf
h!1

R.h; k/; R.k/ WD lim sup
h!1

R.h; k/: (2.18)

The numbersR.k/ are those appearing in Theorem 1.2. From (2.16), we have

1=e < R.k/ � R.k/ � 1: (2.19)

Again it is natural to conjecture that the limits always exist and then that R.k/ D
S.k/. All we can immediately deduce from (2.15), however, is that

R.k/ � S.k/ and R.k/ � S.k/: (2.20)

Apart from what can then be deduced from (2.13), (2.14), and (2.20), very little
seems to be known, though it was shown in [WC] that R.2/ D S.2/ D p

2=3. In
particular, existence of the limitsR.k/ does not seem to be known for a single value
of k > 1. The subtle difficulty in handling the numbers N.h; k/ referred to above
is thus fully reflected in the h.N; k/. Tables of values computed in [HJ1] show that
h.N; k/ is not even a nondecreasing function of N .

3 The notation d.N; k/ is common in the literature, since these numbers can be interpreted as
diameters of Cayley graphs.
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3 Proof of Theorem 1.1

Let A be a basis for N of order h with s essential subsets of size k, say E1; : : : ; Es .
We think of h as being fixed and k; s large. Let E WD [iEi , E0 WD E [f0g and, for
each i ,

di WD GCD fa � a0 W a; a0 2 AnEig: (3.1)

Then each di > 1 and these numbers are relatively prime ([DF], Lemma 12). So if
the di are in increasing order, then di � pi , the i :th prime. Let d WD Qi di . Thus,

d �
sY

iD1
pi &

�
s log s

˛

�s

; (3.2)

for some absolute constant ˛ > 0. This latter estimate for the product of the first s
primes is well-known : see, for example, [Rob].

Next, let ˛1; : : : ; ˛s be numbers such that a  ˛i .mod di / for all a 2 AnEi .
Without loss of generality, each ˛i D 0 (otherwise, choose a negative integer ˛ such
that ˛  ˛i .mod di / for each i , and replaceA by the shifted set A�˛). Now since
A is a basis for N of order h, the numbers in E0 must, when considered modulo d ,
form a basis for Zd of order at most h� 1. Thus,

d � N.h� 1; ks/: (3.3)

From (3.2), (3.3), (2.9), (2.1), and (2.2), it is easily verified that

s . .h� 1/ log k

log log k
; (3.4)

which proves that the right-hand side of (1.5) is asymptotically an upper bound for
E.h; k/.

For the lower bound, we turn the above argument on its head. Let h be given
and k a very large integer. We wish to construct a subset A of N , which is a basis
of order h and has about .h � 1/ logk

log logk essential subsets of size k. Our example is
modeled on that in [DF], and presented in Sect. 1. To begin with, let s be the largest
integer such that

.hs/ �
 

sY

iD1
pi

! 1
h�1

� k: (3.5)

From (3.2) we have

s 
 .h � 1/ �
�

log k

log log k

�

: (3.6)

Put P WD Qs
iD1 pi . By the left-hand inequality in (2.1), there exists a set

F � f1; : : : ;P � 1g with

jF j � .h � 1/ �P 1
h�1 � k (3.7)



160 P. Hegarty

and such that, considered modulo P , F0 is a basis for ZP of order h� 1. For each
i D 1; : : : ; s, let Fi WD fx 2 F W .x; pi / D 1g. Thus, jFi j � k for each i also. We
wish to augment the set F to a set E, still contained inside f1; : : : ;P � 1g, such
that two conditions are satisfied:

(i) E0 is still a basis of order h � 1 for ZP , i.e., it is not a basis of strictly smaller
order,

(ii) jEi j D k, for i D 1; : : : ; s.
Note that, for sufficiently large k, (i) will follow from (ii) by the choice of s. Let

G WD f1; : : : ;P � 1gnF and, for each i ,

Gi WD fx 2 G W pi jx and .x; pj / D 1 for all j ¤ ig: (3.8)

Note that the sets Gi are pairwise disjoint and that, from (3.7) and Mertens theorem,

jGi j D ‚
�

P

log s

�

; for i D 1; : : : ; s: (3.9)

Put fi WD jFi j. First of all, add in at most s � 2 multiples of ps�1ps from G to F
so that at this point

Ps
iD1 fi is a multiple of s � 1: (3.10)

Now we want to throw in gi elements of Gi so that, for each i ,

fi C
X

j¤i
gj D k: (3.11)

The unique solution to the linear system (3.11) is

gi D k C .s � 1/fi �Ps
iD1 fi

s � 1 (3.12)

and, by (3.5), (3.7), (3.9), and (3.10), the right-hand side of (3.12) is a positive inte-
ger less than jGi j for each i , as desired. The set E now consists of F together with
all the numbers we have thrown in during the above process and, by construction, it
satisfies (ii). Finally, then, let A � N be given by

A D .P �N/[ E: (3.13)

Since E is a basis of order h � 1 for ZP , it follows that A is an integer basis
of order h. By construction, it has s essential subsets of size k, namely the sets
E1; : : : ; Es . From (3.6), we thus have what we want, and so the proof of Theorem
1.1 is complete.
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4 Proof of Theorem 1.2

First we consider the upper bound (1.8). As in the previous section, let A be a basis
for N of order h with s essential subsets of size k, say E1; : : : ; Es. This time we
think of k as being fixed and h very large. Let

Ei D fai;j W j D 1; : : : ; kg; i D 1; : : : ; s: (4.1)

Let the numbers di be as in (3.1), d WD Qi di and A� WD An .[iEi /. As before, we
can argue that, without loss of generality, a  0 .mod d/ for all a 2 A�. Now, with
the numbers h.�; �/ defined as in Sect. 2, we claim that

h �
sX

iD1
h.di ; k/: (4.2)

To see this, first note that, by definition of the numbers h.di ; k/, there exist integers
xi such that, for each i , no representation

xi 
kX

jD1
�i;jai;j .mod di / (4.3)

exists satisfying
�i;j 2 N0;

X

j

�i;j < h.di ; k/: (4.4)

Now let x be any positive integer satisfying x 2 hA and x  xi .mod di / for
i D 1; : : : ; s. Since x 2 hA there exists a representation

x D
sX

iD1

kX

jD1
�i;jai;j C

X

a2A0

a; (4.5)

where A0 is some multisubset of A�, each �i;j � 0 and

h D jA0j C
X

i;j

�i;j : (4.6)

But reducing (4.5) modulo di gives a congruence of the form (4.3) for each i . Thus
(4.2) follows from (4.4) and (4.6).

Now let h!1. Then

h �
sX

iD1
h.di ; k/ & k �R.k/ �

sX

iD1
k
p

di (4.7)
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and

sX

iD1
k
p

di �
sX

iD1
k
p
pi &

sX

iD1
k
p

i log i

&
Z s

1

.x logx/1=k dx & k

kC1
�

skC1 log s
�1=k

; (4.8)

where the integral has been easily estimated using partial integration. Summarizing,
we have shown that

.skC1 log s/1=k .
�
k C 1
k2

1

R.k/

�

h: (4.9)

Choosing the set A so that s D E.h; k/, this is easily checked to yield (1.8).
So to the lower bound (1.7). Once again, we wish to turn the above argument on

its head. In [P], the author considered the case k D 1. To show that the function
E.h; 1/ behaved regularly, he needed to know that every sufficiently large positive
integer could be expressed as

P
.p � 1/, the sum being over a particular type of

set of prime numbers. In the present context, one should think of p � 1 as being
the number h.p; 1/. To generalize the argument directly and prove Conjecture 1.3,
it would suffice that, for each k > 1, every sufficiently large integer could be ex-
pressed as

P
h.p; k/, the sum being over a similar set of primes with the additional

property that the numbers R.p; k/ approach R.k/ as p ! 1. Of course, if we
also knew that the limits R.k/ existed, then we wouldn’t need to worry about the
latter bit. We do not see how to carry out this procedure, given the current state of
knowledge about extremal bases in finite cyclic groups, though we strongly believe
it can be done, perhaps with some small modifications. Instead, we prove the weaker
inequality (1.7) by constructing, for all large primes, a large number of bases for Zp
all of which are fairly close to extremal (Theorem 4.4). These bases are sufficiently
plentiful to allow us to deal easily with further technical issues concerning the dis-
tribution of primes in short intervals (Theorem 4.3). Now to the details. We begin
with a pair of lemmas.

The first is a result of Alon and Frieman also used in [P]. Recall the following
notations : IfX is a finite subset of N then†.X/ denotes the collection of all subset
sums from X . If q 2 N then we denote X.q/ WD fx 2 X W qjxg. We also set

SX WD
X

x2X
x (4.10)

and

BX WD
s
X

x2X
x2: (4.11)
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Then there is the following result :

Lemma 4.1 [AF] For each � > 0, there exists n0 2 N such that if n � n0 and
X � f1; : : : ; ng satisfies jX j > n2=3C� and jXnX.q/j � n2=3 for each q � 2, then

�
1

2
SX � 1

2
BX

�

; : : : ;

�
1

2
SX C 1

2
BX

��

� †.X/: (4.12)

Our second lemma will be a rather general result about the representability of
sufficiently large integers as a certain type of subset sum in a sufficiently dense
multisubset of N . Here we need to make precise some terminology.

By a multisubset A of N , we mean a collection of positive integers where repe-
titions are allowed. We assume that each integer occurs only finitely many times in
a multisubset. If a1 � a2 � are the elements of A written in some nondecreasing
order, then we denote this by A D .ai /. We shall say that A is weakly increasing if
the following holds : for each � > 0 there exists ı > 0 such that, for all n�� 0,

ab.1C�/nc
an

> 1C ı: (4.13)

If A is a multisubset of N we denote by A# the subset of N consisting of all those
numbers which appear at least once in A. Now recall that if X � N , the lower
asymptotic density of X , denoted d.X/, is defined as

d.X/ D lim inf
n!1

jX \ Œ1; n�j
n

: (4.14)

Our lemma is the following :

Lemma 4.2 Let A D .ai / be a weakly increasing multisubset of N such that
d.A#/ D 1. Let � > 0. Then for all h �� 0, there exists some representation of
h as a sum

h D
nX

iD1
ai C

X

j2J

aj ; (4.15)

where J � A# \ Œan; .1C �/an�. Here n depends on h, but n!1 as h!1.

Proof. Fix � > 0. For each n > 0 set

A#
n WD A# \ Œan; ab.1C�/nc�: (4.16)

Now define the sequence .un/1nD1 by

un WD
nX

iD1
ai C 1

2

X

j2A#
n

aj : (4.17)
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The sequence un is evidently increasing and, if n0 WD b.1C �/nc, then

unC1 � un � anC1 C 1

2
.an0C1 C an0C2/ : (4.18)

Since d.A#/ D 1, it follows that

unC1 � un � .1CO.�//an: (4.19)

Now let h be a very large integer (how large h needs to be will become clear in what
follows). Let n be the largest integer such that un < h. Put h0 D h � un. By (4.19),
we have that, in the notation of (4.10),

ˇ
ˇ
ˇ
ˇ
h0 � 1

2
SA#

n

ˇ
ˇ
ˇ
ˇ
D O.an/: (4.20)

Since A is weakly increasing, when h and thus n are sufficiently large, there exists
ı > 0 such that

ab.1C�/nc
an

> 1C ı: (4.21)

Furthermore, since d.A#/ D 1 then for any ı0 > 0 and h >> 0, the set A#
n will

contain at least the fraction 1 � ı0 of all numbers in the interval Œan; ab.1C�/nc�.
What all of this means is that A#

n will satisfy the hypotheses of Lemma 4.1 and

moreover that, in the notation of (4.11), BA#
n
D �.a

3=2
n /. Hence, by Lemma 4.1

and (4.20) it follows that, provided h is sufficiently large, there is a subset J � A#
n

such that h0 DP

aj 2J aj . From the definition of h0, this implies (4.15) and so the
proof of the lemma is complete. ut

Let P D .pi / denote the sequence of primes, as usual. We now have:

Theorem 4.3. Let k be a positive integer and � > 0. Then for all integers h�k;� 0,
there exists a representation

h D
nX

iD1
b k
p
pc C

X

j2J

b k
p
pj c; (4.22)

where J � fnC 1; : : : ; b.1C �/ncg.
Proof. Fix k and �. LetA denote the multisubset of N consisting of the integer parts
of the k:th roots of all the primes. To prove the theorem, we just need to verify that
A satisfies the hypotheses of Lemma 4.2. Clearly, A is weakly increasing. It is also
the case that d.A#/ D 1, in other words, that almost every positive integer is the
integer part of the k:th root of some prime. While it is generally believed that, in
fact, A# D N , for any k � 2, what is known for certain is that NnA# is finite for
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any k � 3, and that d.A#/ D 1 for k D 2. These facts are easy consequences of the
following two well-known theorems respectively (in each case, the exponents given
are the smallest that have been arrived at to date, to the best of our knowledge):

RESULT 1 [H-B]: As n!1 one has


.nC t/ � 
.n/ 
 t

logn
; (4.23)

whenever n7=12 � t � n.

RESULT 2 [J]: For each � > 0, there is a prime in the interval .n; nC n1=20C�/ for
almost all positive integers n.

Thus, our set A does indeed satisfy the hypotheses of Lemma 4.2, and thus the
proof of Theorem 4.3 is complete. ut

The above will take care of the technicalities arising from the distribution of the
primes. We now turn to the construction of reasonably efficient bases in finite cyclic
groups.

Theorem 4.4. Let k � 2 be an integer. There exists an absolute constant c > 0,
independent of k, such that, for all primes p �k 0, and all s such that 0 � s <

cb k
p
pc, there exists a setA of k nonzero elements of Zp such thatA[f0g is a basis

for Zp of order k � b k
p
pc C s.

Remark 4.5. This is overkill for our purposes. It would suffice for us to know that
there exist .kC 1/-element bases for Zp of order k � b k

p
pc C s for each s 2 f0; 1g.

But we think the result as stated may be of independent interest – see Sect. 5.

Proof. Fix k � 2 and let p be a prime. Let x WD b k
p
pc and � WD k

p
p � x.

Thus � 2 .0; 1/. Our goal is to construct, for some constant c > 0 and all each
s 2 f0; 1; : : : ; bcxcg, a subset A � Z�

p of size k such that A0 WD A [ f0g is a basis
for Zp of order kx C s. By the binomial theorem,

xk D p �
kX

jD1

�
k

j

�

�j xk�j : (4.24)

In particular, it is clear that, for p � 0 we will have

p � .k C 1/xk�1 < x < p: (4.25)

First consider A WD f1; x; x2; : : : ; xk�1g. Then A0 is a basis of order .kx � k/C u,
where u is the smallest integer such that

.x�2/�1C.x�1/�xC.x�1/�x2C� � �C.x�1/�xk�2C.xCu/�xk�1 � p�1: (4.26)
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The left-hand side of (4.26) is just xk C .u C 1/xk�1 � 2. Hence, if p � 0,
(4.25) implies that 0 � u � k. Thus, A0 is a basis of order kx � j for some
j 2 f0; 1; : : : ; kg. Now let t be any integer and consider

At WD f1; x; x2; : : : ; xk�2; xk�2.x � t/g: (4.27)

If t is small compared to x then At;0 will be a basis of order .kx � k/ C .ut � t/,
where ut is the smallest integer such that

.x � 2/ � 1C .x � 1/ � x C .x � 1/ � x2 C � � � C .x � 1/ � xk�3

C .x � t � 1/ � xk�2 C .x C ut / � xk�2.x � t/ � p � 1: (4.28)

Let vt WD ut � t . We have already seen above that 0 � v0 � k. The theorem will
be proved if we can show that there are values of t for which vt takes on each of
the values k; k C 1; : : : ; k C bcxc, for some absolute constant c > 0. After some
tedious computation where we make use of (4.24), the inequality (4.28) reduces to

xk�2 Œ.ut C 1/.x � t/ � tx� � 1C
kX

jD1

�
k

j

�

�j xk�j : (4.29)

Note that the right-hand side is independent of t . Denote it simply by † and note
from (4.24) that xk C † D p C 1. Then from (4.29) we easily deduce that vt D
df .t/e, where the real-valued function f of one variable is given by

f .�/ D †C �xk�1

xk�2.x � �/ � .� C 1/: (4.30)

One easily computes that

f 0.�/ D p C 1
xk�2.x � �/2 � 1; (4.31)

hence that

f 0.�/ D 1C op.1/
.1 � �=x/2 � 1: (4.32)

Thus f is increasing in the range 0 � � < x, f 0.�/ D ‚.1/ when � D ‚.x/ and
f 0.�/ � 1C op.1/ when �=x � 1� 1=p2. It follows easily that, as t increases, the
integer-valued quantity vt takes on a sequence of ‚.x/ consecutive values, starting
at v0. This suffices to prove Theorem 4.4. ut

Now we are ready to prove inequality (1.7). Let k � 2 be a fixed integer. Let h be
a positive integer and write h D kh1 C s where 0 � s < k. Let � > 0. If h��;k 0

then, by Theorem 4.3 there exists a representation
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h1 D
nX

iD1
b k
p
pic C

X

j2J

b k
p
pj c; (4.33)

where J � fnC 1; : : : ; b.1C �/ncg. For each prime pi > pk in this sum we wish
to choose a k-element subset Ai of f1; 2; : : : ; pi � 1g such that, if we identify Ai
with a subset of Zp and let ri denote the order of Ai [ f0g as a basis for Zp, then

ri D k � k
p
pi CO.1/; (4.34)

and
X

ri D h: (4.35)

From (4.33) and Theorem 4.4 (see Remark 4.5 in fact), it is clear that such a choice
is possible, for sufficiently large h. Set I WD f1; : : : ; ng[J , P WD Qi2I pi and,
for each i , Pi WDP=pi . For each i 2 I nf1; : : : ; kg set

Ai WD fai;j W j D 1; : : : ; kg; (4.36)

and

Ei WD fai;jPi W j D 1; : : : ; kg: (4.37)

Now consider the subset A � N given by

A DP �N [
0

@
[

i2I nf1;;kg
Ei

1

A : (4.38)

By construction, the set A is a basis for N of order h and contains jI j � k essential
subsets of size k, namely each of the sets Ei . The proofs of these assertions are
similar to those of the corresponding assertions in [P] (see page 9 of that paper), so
we do not include them. For the purpose of obtaining the right-hand side of (1.7) as
a lower bound for the asymptotic behavior of E.h; k/, it now suffices to show that

jI j � k � .1 �O.�//
�
k C 1
k2
� kC1
p
k

� 

hk

logh

! 1
kC1

: (4.39)

First, it is obvious that

jI j � k D .1CO.�//n: (4.40)

Second, it follows from (4.33) and (4.34) that

h � .1CO.�// � k �
b.1C�/nc
X

iD1
k
p
pi : (4.41)
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Hence if we can show that

nX

iD1
k
p
pi 
 k

k C 1
�

nkC1 logn
�1=k

; (4.42)

then this and (4.40)–(4.41) are easily seen to imply (4.39). But (4.42) has already
been established in (4.8), and so our proof of Theorem 1.2 is complete.

5 Discussion

We have seen that an entirely satisfactory estimate for the function E.h; k/ cannot
be obtained without significant progress on the PSP in the case when k is fixed
and h ! 1. Specifically, one needs to know the numbers R.k/ given by (2.18).
Even then, a subtle technicality arises in attempting to rigorously prove Conjecture
1.3, as was alluded to in Sect. 4. It is possible, though highly unlikely, that not all
sufficiently large integers can be expressed as sums

P
h.p; k/ over certain sets of

primes, as in Theorem 4.3. For example, it could happen that h.p; k/ was a multiple
of k for every p. Note that the upper bound in (2.16) has this property, and it was
just this fact that necessitated the long detour via Theorem 4.4 when trying to prove
(1.7). Theorem 4.4 may be independently interesting in the sense that one can ask
a very general question as to what are the possible orders of an arbitrary .k C 1/-
element basis for Zn. A special case would be to ask for the best-possible c in the
statement of that theorem. Does c ! 1 as p does? For the proof of Conjecture
1.3, one would instead like to know what is the largest possible C D C.p; k/ such
that there exists a .k C 1/-element basis for Zp of order h.p; k/ C s, for every
0 � s � C.p; k/. Can we take C.p; k/ D � � k

p
p
	

?

Acknowledgment I thank Alain Plagne for very helpful discussions and Melvyn Nathanson for
some literature tips on the PSP. This work was completed while I was visiting City University of
New York, and I thank them for their hospitality. My research is partly supported by a grant from
the Swedish Research Council (Vetenskapsrådet).
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A Universal Stein-Tomas Restriction Estimate
for Measures in Three Dimensions

Alex Iosevich and Svetlana Roudenko

Summary We study restriction estimates in R3 for surfaces given as graphs of low
regularity functions. We obtain a “universal” mixed-norm estimate for the extension
operator f ! cf� in R3. We also prove that this estimate holds for any Frostman
measure supported on a compact set of Hausdorff dimension greater than two. The
approach is geometric and is influenced by a connection with the Falconer distance
problem.

Keywords Restriction estimates �Measures

Mathematics Subject Classifications (2010). 42B

1 Introduction

The classical Stein-Tomas restriction theorem says that if� is the Lebesgue measure
on Sd�1, the unit sphere in Rd , or, more generally, on a smooth convex surface with
everywhere nonvanishing curvature in Rd , then

kcf�k
L

2.dC1/
d�1 .Rd /

. kf kL2.Sd�1/; (1)

where here, and throughout,X .Y means that there existsC >0 such thatX �CY .
It is shown in [6] (see also [5]) that if the Gaussian curvature is allowed to van-

ish, (1) does not hold. Nevertheless, there is hope of obtaining (1) for all reasonable
surfaces by modifying the surface carried measure in some universal way. For ex-
ample, if �0 is the Lebesgue measure on a convex compact smooth surface � , of
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finite type, in the sense that the order of contact with every tangent line is finite, and

d�.x/ D jS j 1
dC1 .x/d�0.x/, then one can check using standard techniques that the

estimate (1) holds. The situation becomes much more complicated in the general
context. See, for example, [2] and [8] for some very nice results in this direction
where smooth radial hyper-surfaces are considered. See also [7] for some related
work in the two-dimensional context.

In [1], the authors took a different point of view. Instead of imposing a fixed
measure on the family of surfaces, they considered mixed norm restriction theorems
corresponding to convex curves under rotations. The approach was heavily tied to
the average decay estimates of the Fourier transform of the Lebesgue measure on
convex curves, due to Podkorytov [9], which made the convexity assumption dif-
ficult to by-pass. In this paper, we take a geometric point of view which allows
us to consider a much more general collection of surfaces. Our main result is the
following.

Theorem 1. Let � be a Frostman measure on a compact E � R3 of Hausdorff
dimension greater or equal to two. Suppose that for any ı > 0 and " sufficiently
small with respect to ı,

� � �f.u; v/ W ı � ju� vj � ı.1C "/g � C.ı/": (2)

Given � 2 SO.3/, the special orthogonal group in 3d over R, define the measure
d�� via its action on a function g W R3 ! R by the formula

Z

g.x/ d�� .x/ D
Z

g.�x/ d�.x/:

Then,

 
Z ˇ
ˇ
ˇ
ˇ

Z

SO.3/
j2f�� .x/j

2
dH.�/

ˇ
ˇ
ˇ
ˇ

2

dx

!1
4

.
"
Z

SO.3/

�Z

jf .x/j2d�� .x/

�2

dH.�/

# 1
4

;

(3)

where dH.�/ is the Haar measure on SO.3/.

Remark 1. If � is the Lebesgue measure on the sphere centered at the origin,
rotations become superfluous, and we recover the classical Stein-Tomas restriction
theorem:

jjcf�jjL4.R3/ . jjf jjL2.S2/:

The main point of this paper is in the following two statements:

Corollary 1. Let � is the Frostman measure on any compact subset of R3 of Haus-
dorff dimension greater than two. Then, the conclusion of Theorem 1 holds.
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Corollary 2. Let � be the Lebesgue measure on a compact surface in R3 given as
a graph of a Lipschitz function. Then, the conclusion of Theorem 1 holds.

While the conclusion of Theorem 1 holds for Lipschitz functions, as in
Corollary 2, the condition (2), and consequently, the conclusion of Theorem 1,
also holds for many measures supported on sets that are far from Lipschitz or even
rectifiable in any sense. For example, consider a sequence of positive integers fqig
such that q1 D 2 and qiC1>qii . Let Eq denote the q�d=s , 0<s <d , neighborhood

of q�1.Zd \ Œ0; q�d /. Let Es D \1
iD1Eqi

. By standard geometric measure theory
(see e.g. [3], Chap. 8), the Hausdorff dimension of Es is s. Let s D d � 1. One can
check by a direct calculation that (2) holds. See for example [4].

The example in the previous paragraph arises in the Falconer distance problem
which asks whether the Lebesgue measure of the set of distances�.E/ D fjx�yj W
x; y 2 Eg is positive provided that the Hausdorff dimension of E is greater than
d=2. Falconer [4] proved that the conclusion holds if the Hausdorff dimension of E
is greater than .d C 1/=2 and they key estimate he used was

� � �f.x; y/ W 1 � jx � yj � 1C "g � C"

provided that the Hausdorff dimension of E is greater than .d C 1/=2, where �
is a Frostman measure on E. This estimate and its refinements under additional
regularity hypotheses will play a key role in the proof of Theorem 1, Corollary 1,
and Corollary 2 below.

2 Reduction to the Key Geometric Estimate

We write this section in Rd , for the sake of completeness, though we only use it in
the three dimensional case in the sequel. Let

T .f; g/.x/ D
Z

SO.d/
f�� 	fg�� .x/ dHd .�/;

whereHd is the Haar (probability) measure on SO.d/ and Qf .x/ D Nf .�x/.
On one hand,

jjT .f; g/jjL1.Rd / �
Z

SO.d/
jjf jjL1.�� /

� jjgjjL1.�� /
dHd .�/

�
�Z

SO.d/
jjf jj2L1.�� /

dHd .�/

� 1
2

�
�Z

SO.d/
jjgjj2L1.�� /

dHd .�/

�1
2

� jjf jjL2.SO.d//.L1.�� //
� jjgjjL2.SO.d/.L1.�� //

;

since convolution of two L1 functions is in L1 by Fubini.
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On the other hand,

jjT .f; g/jjL1.Rd / � jjf jjL1.SO.d//.L1.�� //
� jjgjjL1.SO.d//.L1.�� //

� sup
x2Rd

ˇ
ˇ
ˇ
ˇ

Z

SO.d/
�� 	 Q�� .x/ dHd .�/

ˇ
ˇ
ˇ
ˇ
:

It follows by interpolation and setting f D g that if

sup
x2Rd

ˇ
ˇ
ˇ
ˇ

Z

SO.d/
�� 	 Q�� .x/ dHd .�/

ˇ
ˇ
ˇ
ˇ

. 1; (4)

then

 
Z

Rd

�Z

SO.d/
jbf�� .x/j

2
dHd .�/

�2

dx

! 1
4

. jjf jjL4.SO.d//.L2.�� //
: (5)

This reduces matters to the study of (4) and this is what the remainder of the paper
is about.

3 Proof of Theorem 1 and Corollary 1

From now on, we assume that d D 3. A useful fact is that SO.3/ is characterized
as the set of all “direct” rotations in R3. For simplicity, we write dH.�/ instead of
dH3.�/. Observe that �� 	 Q�� .x/ D � 	 Q�.�x/. Thus, by the Fourier inversion
formula
Z

SO.3/

�� 	 Q�� .x/ dH.�/ D
Z

R3

Z

SO.3/

e2� i�x		 jb�.�/j2 dH.�/ d� (6)

D c
Z

b.jxj�/ jb�.�/j2 d� (7)

D lim
"!0

"�1���f.u; v/ W jxj�ju � vj�jxj.1C "/g; (8)

where  is the Lebesgue surface measure on S2. In the second to last line above, we
have used the following observation.

Lemma 1. With the notation above,

Z

e�2� i�x		dH.�/ D cb.jxj�/;

where  is the Lebesgue measure on the unit sphere.
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The proof is by rotation invariance. Any two rotationally invariant measures on

S2 D SO.3/=SO.2/ (9)

are constant multiples of each other.1 It follows that for any ! 2 S2,

Z

SO.3/
f .�!/dH.�/ D c

Z

S2

f .e/d.e/;

where  , once again, is the Lebesgue measure on S2 and c does not depend on f .
By rotation invariance, we may assume that x D jxj.0; 0; 1/ and the lemma follows
by choosing f to be the exponential function.

With Lemma 1 in tow, the problem reduces to showing that

� � �f.u; v/ W jxj � ju � vj � jxj.1C "/g . "; (10)

which is exactly the assumption (2), and this completes the proof of Theorem 1.
To prove Corollary 1, recall that we may assume that jxj & 1. By the method of

stationary phase (see e.g., [10]), we get

jb.�/j . j�j�1;

and hence, the expression (7) is

.
Z

j�j�1jb�.�/j2 d� D c
Z Z

jx � yj�2d�.x/d�.y/;

which certainly converges if � is a Frostman measure on a set of Hausdorff dimen-
sion greater than two. This approach fails to work for two dimensional sets and
this is where the geometric assumption (measures supported on graphs of Lipschitz
functions) will play a key role. We now turn to the proof of Corollary 2.

4 Geometric Estimates: Proof of Corollary 2

In this section, we establish (10), or the assumption (1), for measures supported on
graphs of Lipschitz functions. We may assume that � is the Lebesgue measure on
a graph of a Lipschitz function G. We may make an a priori assumption that G 2
C 1 and that jrG.x1; x2/j is uniformly bounded from above, due to the Lipschitz
hypothesis.

1 Observe that (9) holds for any dimension d � 2, i.e., Sd�1 D SO.d/=SO.d � 1/, and hence,
Lemma 1 can be generalized to d � 2. For the purpose of this note, this generalization is not
necessary.
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Figure 1 The set Sx in the equation (11)

Let S denote the Lipschitz surface under consideration and define (Fig. 1)

Sx D fy 2 S W ı � jx � yj � ı.1C "/g � R3: (11)

We shall carry out the remainder of the calculations with ıD 1 for the sake of clarity.
We need to prove that

Z Z

f.x;y/2S�S W1�jx�yj�1C"g
d�.x/d�.y/ D

Z

S

�.Sx/d�.x/ � C";

which amounts to showing that

Z Z

M"

q

1C jrG.x1; x2/j2
q

1C jrG.y1; y2/j2dx0dy0 � C";

where B is the unit ball, x0 D .x1; x2/, y0 D .y1; y2/ and

M" D f.x; y/ 2 B�B W 1 � jx1�y1jCjx2�y2jCjG.x1; x2/�G.y1; y2/j � 1C"g:

By the Lipschitz hypothesis, this amounts to showing that

jf.x0; y0/ 2 B � B W 1
� jx1 � y1j C jx2 � y2j C jG.x1; x2/�G.y1; y2/j � 1C "gj � C"; (12)
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where j � j denotes the two dimensional Lebesgue measure. Since G is Lipschitz,

jx1 � y1j C jx2 � y2j C jG.x1; x2/ �G.y1; y2/j
� C.jx1 � y1j C jx2 � y2j C jx0 � y0j/
� C 0.jx1 � y1j C jx2 � y2j/:

It follows that for each fixed y 2 B , the set

fx 2 B W 1 � jx1 � y1j C jx2 � y2j C jG.x1; x2/�G.y1; y2/j � 1C "g (13)

can be covered by a finite number of finitely overlapping rectangles with dimensions
C1 by C2", where C1 and C2 are uniform constants. More precisely, for a fixed
y 2 B , let �.x1; x2/ D jx1�y1jCjx2�y2jCjG.x1; x2/�G.y1; y2/j, a bi-Lipschitz
function onB . Note that jx1�y1jCjx2�y2j � �.x1; x2/ � C.jx1�y1jCjx2�y2j/
for some C >1. Without loss of generality, by choosing local coordinates we may
assume that �.0; 1/ D 1 and also that in some neighborhood U of .0; 1/, say U D
fx 2 B W jx�.0; 1/j < 1=2g, we have

@�

@x2
� c > 0. Hence, estimating the measure

of the set in (13) amounts to estimating

Z Z

1��.x1;x2/�1C"
dx1 dx2: (14)

Changing variables in (14) to y1 D �.x1; x2/ and y2 D x1=x2 (observe that for
x 2 U the variable y2 is well-defined), we obtain

Z

jy2�1j� 1
2

Z 1C"

1

x22
x � r�.x/ dy1 dy2; (15)

where x 2 U , and the integrand is the Jacobian of this substitution. Therefore, if we
show that

jx � r�.x/j � c > 0 for x 2 U; (16)

then the expression in (15) will be bounded by c". To do that we parameterize
level curves of � (for given r , �.x1; x2/ D r , x 2 B) by .t; �r .t/ /. Observe that
�r.0/
 1 and �1.0/ D 1.

Differentiating �.t; �r.t// D r , we get

� 0
r.t/ D �

@x1
�

@x2
�
; (17)

and thus, using the assumption on @x2
�, we also have the bound

j� 0
r.t/j �

ˇ
ˇ
ˇ
ˇ

@x1
�

@x2
�

ˇ
ˇ
ˇ
ˇ
� c: (18)
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Now, for x 2 U using the parametrization, we obtain

x � r�.x/ D t @x1
�.t; �r.t//C �r.t/@x2

�.t; �r.t//

D @x2
�.t; �r.t//Œ�t� 0

r .t/C �r.t/� � c > 0;

since by assumption j@x2
�.x/jU j � c > 0 and the expression in the square brackets

for t close to 0 is bounded below by .1 � ct/ > 0 by virtue of the bound (18) and
�r.0/ 
 1, thus, finishing the argument.
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Summary Let h be a positive integer, and A a set of nonnegative integers. A is
called an exact asymptotic basis of order h if every sufficiently large positive integer
can be written as a sum of h not necessarily distinct elements from A. The smallest
such h is called the exact order of A, denoted by g.A/. A subset A � F of an
asymptotic basis of order hmay not be an asymptotic basis of any order. WhenA�F
is again an asymptotic basis, the exact order g.A�F /may increase. Nathanson [48]
studied how much larger the exact order g.A�F / when finitely many elements are
removed from an asymptotic basis of order h. Nathanson defines, for any given
positive integers h and k,

Gk.h/ D max
A

g.A/�h
max

F 2Ik.A/
g.A � F /;

where Ik.A/ D fjF j jF j D k and g.A�F / <1g. Many results have been proved
since Nathanson’s question was first asked in 1984. This function Gk.h/ is also
closely related to interconnection network designs in network theory. This paper is
a brief survey on this and few other related problems. G. Grekos [11] has a recent
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1 Exact Asymptotic Bases

Let N be the set of all nonnegative integers. Let h be a positive integer, and A � N
a set of nonnegative integers. Let hA denote the set of all sums of h not necessarily
distinct elements from A. For notations and concepts without definitions here, the
reader is referred to the books by [50–52]. Another wonderful reference is the book
sequences by Halberstam and Roth [14]. G. Grekos [10] has a recent survey on a
related problem.

Definition 1. A set A � N of nonnegative integers is called an exact asymptotic
basis of order h if N � hA is a finite set. In order words, A is called an exact
asymptotic basis of order h if every sufficiently large positive integer can be written
as a sum of h not necessarily distinct elements fromA. The smallest such h is called
the exact order of A and is denoted by g.A/.

Let h be any positive integer. ThenA D f1g[fnh j n 2 Ng is an exact asymptotic
basis of order h. Let B be the set of all odd positive integers. Then B is not an
exact asymptotic basis of any order h because the sum of h odd integers has the
same parity as h. However, B with any additional even integer becomes an exact
asymptotic basis of order 2.

As an example, we show that A D
1[

kD0

�

22k; 22kC1i is an exact asymptotic

basis of order 3, where we use .a; b� to denote the set of integers x with a < x � b.
First, for a large k, n D 22kC1 cannot be written as a sum of two elements fromA.
Otherwise, say n D aCb, then a; b � 22.k�1/C1. Hence aCb � 22k�1C22k�1 �
22k < n, a contradiction. We then show that every large integer n not in A can be
written as a sum of two elements from A. First assume n D 22kC1C 1. If k is even,
2k C 1 2 A and 2kC1 2 A. Hence n D .2k C 1/ C 2kC1 2 2A. If k is odd, then
n D 2k C .2kC1 C 1/ 2 2A. Now assume 22kC1 C 2 � n � 22kC2 for some k.
Then, we can rewrite n D .22kC s/C .22kC t/ with 1 � s < 22k and 1 � t � 22k .
Hence, 22k C s; 22k C t 2 .22k; 22kC1� � A, which implies that n 2 2A. Now
pick a large positive integer n and write n D m C 5. If m … A, then, as shown
earlier, m is a sum of two elements in A. Hence, n is a sum of three elements in A.
If m D 22k C 1, then n D 6C 22k�1 C 22k�1 2 3A. Ifm 2 Œ22k C 2; 22kC1� � A,
then n D 5C .22k�1 C s/C .22k�1 C t/ 2 3A. Therefore, we proved that A is an
exact asymptotic basis of order 3.

2 Subsets of Exact Asymptotic Bases

A subset of an exact asymptotic basis of order h may not be again an exact asymp-
totic basis of any order. For instance, A D f0g [ f1; 3; 5; : : :g is an exact asymptotic
basis of order 2. However,A�f0g, the set of all odd positive integers is not an exact
asymptotic basis of any order. When a subset of an exact asymptotic basis of order h
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is an exact asymptotic basis, its exact order can be larger. Nathanson defined the fol-
lowing function to study how large the exact order of subsets of an exact asymptotic
basis of order h when finite.

Let A be an asymptotic basis of order h. Given a positive integer k, let

Ik.A/ D fF � A j jF j D k; and A � F is an exact asymptotic basisg:

Define

Gk.h/ D max
A

g.A/�h
max

F 2Ik.A/
g.A � F /;

where the first maximum is taken over all exact asymptotic bases of order at most h.
Nathanson [48] proved in 1984 the following theorem.

Theorem 1 (Nathanson [48], 1984). For h > k,

Gk.h/ �
��

h

k C 1
�

C 1
�kC1

� 1 �
�

h

k C 1
�kC1

:

In 1988, Jia [21] improved Nathanson’s lower bound to:

Gk.h/ � 4

3

�
h

k C 1
�kC1

CO.hk/ as h!1:

Later this has been further improved [24] to

Gk.h/ � .k C 1/
�
k C 1
k C 2

�k �
h

k C 1
�kC1

CO.hk/ as h!1:

Let A be a set of nonnegative integers. The lower density of A is defined by

d.A/ D lim inf
m!1

A.m/

m
;

where A.m/ D jfa 2 A j 0 < a � mgj. The following version of Kneser’s Theorem
[37] is useful in establishing upper bounds for Gk.h/.

Theorem 2 (Kneser [37], 1953). Let C D A1 C � � � C An. Then either

d.C / � d.A1/C � � � C d.An/

or C is equal to, with at most finitely many exceptions, a residue class modulo g for
some positive integer g.

By using Kneser’s Theorem for the upper bounds, Nash [45] proved in 1985 that

Gk.2/ D 2k C 2 for all k � 1:
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In the general case, as k !1 for any given h � 1, we proved [24] that

Gk.h/C 1 � 2
�

k

h� 1
�h�1

C .4h� 5/
�

k

h � 1
�h�2

CO.kh�3/;

Gk.h/C 1 � 2

.h � 1/Šk
h�1 C h� 1

.h � 2/Šk
h�2 CO.kh�3/:

When h D 2, this is Nash’s formula for Gk.2/. Farhi [7] studied the exact order
g.A�F / in terms of some parameters of the set F other than simply the cardinality
of F . Define

d D diam.F /

gcdfx � y j x; y 2 Ag :

Farhi [7] proved in 2008 that

g.A � F / � h.hC 3/
2

C dh.h� 1/.hC 4/
6

for any exact asymptotic basis A of order h. In particular, if F is an arithmetic
progression, then

g.A � F / � h.hC 3/
2

C .jF j � 1/h.h � 1/.hC 4/
6

:

These lower bounds are better in many cases.
For more references on the Postage stamp problem, see also [53, 54].

3 Exact Order of Asymptotic Bases

A set A of nonnegative integers is called an asymptotic basis of order h if every
sufficiently large integer can be written as a sum of at most h not necessarily distinct
elements from A. If we use notation

h0A D
h[

sD1
sA;

then A is an asymptotic basis of order h if and only if h0A contains all sufficient
large integers.

The set of all positive odd integers is an asymptotic basis of order 2, while it
is not an exact asymptotic basis of any order. The following theorem of Erdős and
Graham provides a necessary and sufficient condition for an asymptotic basis to be
an exact asymptotic basis.
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Theorem 3 (Erdős and Graham [5], 1980). Assume thatA is an asymptotic basis.
Then A is an exact asymptotic basis if and only if

gcdfa � a0 W a; a0 2 Ag D 1:

A more general theorem is Nash and Nathanson [47] in 1985.

Theorem 4 (Nash and Nathanson [47], 1985). If A is an asymptotic basis con-
taining at most a finite number of negative terms such that

gcdfa � a0 W a; a0 2 Ag D d;

then there exists an positive integer q such that every term of an infinite arithmetic
progression with difference d can be written as a sum of exactly q elements in A.

Let A D
1[

kD0

�

22k; 22kC1
i

. Since every large integer n not in A can be written

as a sum of two elements fromA, A is an asymptotic basis of order two. Note thatA
is an exact asymptotic basis of order 3. A natural question is how much bigger the
exact order is when an asymptotic basis of order h is also an exact asymptotic basis.

Theorem 5 (Nathanson [48], 1984). Let h � 2 be an integer. Then

G1.h/ D max
A
fg.A/ j A is an asymptotic basis of order hg (1)

Proof. Denote the right hand side of (1) by t.h/. We only need to prove
G1.h/ D t.h/.

Assume that A is an exact asymptotic basis with g.A/ D h and g.A � fxg/ D
G1.h/ D g. Define A1 D fa � x j a 2 A and a ¤ xg. Let n be any large positive
integer. Then

nC hx D a1 C a2 C � � � C ah; where ai 2 A:

Then

n D .a1 � x/C .a2 � x/C � � � C .ah � x/:

After deleting the “0” terms in the above summation, we see that n is a sum of
at most h elements from A1, i.e. , A1 is an asymptotic basis of order h. Since
g.A � fxg/ D g, we see that

nC gx D
g
X

iD1
ai ; where ai 2 A� fxg:
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Hence

n D
g
X

iD1
.ai � x/; where ai � x 2 A1:

Thus, A1 is an exact asymptotic basis with g.A1/ � g. In fact, easy to see that
g.A1/ D g. Therefore, t.h/ � g D G1.h/.

On the other hand, assume thatA is an asymptotic basis of order h so that g.A/ D
t.h/. Since t.h/ > h, 0 … A. Define A0 D A [ f0g. Then A0 is an exact asymptotic
basis of order h, i.e. , g.A0/ D h. Since g.A0 � f0g/ D g.A/ D t.h/, we have that
g D G1.h/ � t.h/. Therefore,G1.h/ D t.h/. ut

Noting that A D S1
kD0

�

22k; 22kC1� is an asymptotic basis of order 2 and its
exact order is 3 as an exact asymptotic basis, we see that G1.2/ � 3. The following
are the known exact values for the function:

G1.2/ D 3 (Erdős and Graham [5], 1980),

G1.3/ D 7 (Nash [45], 1985),

G1.4/ D 10 (Li [40], 1989, uncomfirmed),

G1.5/ D 15 (Li [40], 1989, uncomfirmed),

G2.3/ D 13 (Nash [45], 1985),

Gk.2/ D 2k C 2 (Nash [45], 1985),

The following is a list of known estimates for G1.h/ by various authors:

1

4
h2 C o.h2/ � G1.h/ � 5

4
h2 C o.h2/ (Erdős and Graham [5], 1980),

1

3
h2 CO.h/ � G1.h/ � h2 C h (Grekos [9], 1982),

G1.h/ � 1

2
h2 C h (Nash [46], 1993).

4 Postage Stamp Problem

Support an envelope has space for only up to h stamps, and A D fa1 D 1;

a2; : : : ; akg is the set of stamp face values. The postage stamp problem consists
of computing the smallest postage value n.h;A/C 1 that cannot be stamped by us-
ing the given stamps. In other words, n.h;A/ is the largest integer such that every
positive integer �n.h;A/ can be represented as a linear combination

kX

iD1
xiai
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with xi � 0 and
kX

iD1
xi � h:

Define, for any given positive integers h and k,

n.h; k/ D max
jAjDk

n.h;A/:

For convenience, a set A � f1; 2; : : : ; ng is called an h-basis for n if f1; 2; : : : ; ng �
h0A. n.h;A/ is called the h-range of A, and n.h; k/ is called the .h; k/-range. One
central problem is to calculate the .h; k/-range n.h; k/.

The postage stamp problem has been around for a long time. However, it seems
that the problem appeared only as recreational and entertaining mathematics (e.g.,
Sprague [62, Problem 18] and Legard [39]) until 1937 when Rohrbach [58] first
formalized and analyzed the problem mathematically. Since then, there have been
extensive research on the problem (see Guy [13], Hofmeister [16], Hofmeister et al.
[17], Klotz [35], etc.). A similar and related problem is the Frobenius Coin Prob-
lem which asks the largest amount of postage that is impossible to pay by using a
given set of stamps (sufficient supply). It turns out that this is an incredibly diffi-
cult problem to solve. We even do not know the answer with only three kinds of
stamps! Computation of Frobenius problem is NP-complete (see an interesting ar-
ticle of Cipra [3] in the Science magazine). See a survey up to 1980 by Alter and
Barnett [1], and [31] for recent developments on the postage stamp problem. See
Selmer [60,61] for a comprehensive introduction to the problem [32,33,43,56,57].

Stohr [63, 64] proved in 1955 that

n.h; 2/ D
�
h2 C 6hC 1

4

�

; h � 2: (2)

Hofmeister [15] proved in 1968 that, for all integers h � 23,

n.h; 3/ D 4

81
h3 C 2

3
h2 C ˛hC ˇ; (3)

where ˛ and ˇ are determined constants depending only on h .mod 9/.
The following theorem (see [23]) provides lower bounds for Gk.h/ by using the

lower bounds for n.h; k/.

Theorem 6. Let h � 3 and k � 1 be integers. Then

(i) Gk.h/ � n.h � 1; k C 1/;
(ii) Gk.h/ � 2n.h � 1; k/C h.

For convenience, let us define, for any given positive integer h,

h D lim sup
k!1

n.h; k/

kh
:
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Mrose [44] proved in 1979 that 2 � 2
7
� 0:2857. As for the upper bound, it is easy

to see that  � 1=2. This trivial bound has been improved several times:

2 � 0:4992 (1937, Rohrbach [58])

2 � 0:4903 (1960, Moser [41])

2 � 0:4867 (1960, Riddell [55])

2 � 0:4847 (1969, Moser, Pounder and Riddell [42])

2 � 0:4802 (1969, Klotz [35, 36])

2 � 0:4789 (2006, Güntürk and Nathanson [12])

2 � 0:4778 (2007, Horváth [18])

2 � 0:4697 (2009, Yu [67])

For h D 3, Mrose [44] proved in 1979 that

n.h; 3/ � 32

27

�
k

3

�3

CO.k2/:

This was improved by Windecker (unpublished) to

n.3; k/ � 4

3

�
k

3

�3

CO.k2/ as k !1: (4)

Therefore, it follows from the lower bounds and .ii/ in Theorem 6 that

Gk.3/ � 4

7
k2 CO.k/ as k !1;

and

Gk.4/ � 8

81
k3 CO.k2/ as k !1:

Using the following recursive inequality for n.h; k/

n.h1 C h2; k1 C k2/ � n.h1; k1/n.h1; k2/; (5)

One can prove that, for any fixed h � 3, as k !1,

n.h; k/ � ch
�
4

3

�bk=3c �
k

h

�h

;

where ch are absolute constants depending only on h mod 3. It then follows from
Theorem 6 .ii/ that

Gk.h/ � 2ch�1
�

k

h � 1
�h�1

:
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5 Extremal Bases for Finite Cyclic Groups

Let A be a set of k distinct integers. A is called an h-basis for Zm if every element
in Zm can be written as a sum of at most h not necessarily distinct elements of A. In
other words, A is an h-basis for Zm if and only if h0A D Zm. Let m.h;A/ denote
the largest positive integerm so that A is an h-basis for Zm. Given positive integers
h and k, we define

m.h; k/ D max
AjAjDk

m.h;A/

It is easy to see that nm.h; k/ � .h; k/ C 1 for all h � 1 and h � 1. Similar to the
Theorem of Erdős and Graham, one can prove that a set A D fa1; a2; : : : ; akg is an
h-basis for Zm for some integer h if and only if

gcdfm; a1; a2; : : : ; akg D 1:

It is clear that an h-basis for n is always an h-basis for ZnC1. However, an h-basis
for Zm may not be an h-basis form � 1.

Extremal bases for finite cyclic groups are closely related to interconnection net-
work designs. Extremal bases and related problems have been one of central focuses
in the study of combinatorial networks, which emerges as a broad area of research.
For more information, see, for instance, Graham and Sloane [8], Erdős and Hsu [6],
Du and Hsu [4], Hsu and Jia [19, 20], and Jia [28, 29], etc.

Hsu and Jia [19] proved in 1994 that

m.h; 2/ D
�
h.hC 4/

3

�

C 1 for all h � 2: (6)

For k D 3, it seems harder to handle bases for Zn when compared with bases
for Œ1; n�. The analog of Hofmeister’s formula (3) for n.h; 3/ in the postage stamp
problem, an exact formula for m.h; 3/, is yet to be found. Hsu and Jia [19] showed
in 1994 that

m.h; 3/ � 1

16
h3 CO.h2/ � 0:0625h3 CO.h2/ as h!1:

It is easy to verify the following recursive addition inequality similar to (5)

m.h1 C h2; k1 C k2/ � m.h1; k1/m.h1; k2/: (7)

Using this addition inequality, we can provide lower bounds form.h; k/ by improv-
ing lower bounds for m.h; k/ with small ks.

Jia [21, 24, 25] showed in 1990 that, for fixed k � 4 as h!1,

m.h; k/ � ˛k
�
256

125

�bk=4c �
h

k

�k

CO.hk�1/;
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where ˛k D 1; 1; 4=3 and 27=16 according as k  0; 1; 2 or 3 .mod 4/. Chen and
Gu [2] proved in 1992 that, for fixed k and h!1,

m.h; k/ � ˇk
�
2;048

625

�bk=4c �
h

k

�k

CO
�

hk�1� ;

where ˇk D 1; 1; 4=3, or 135=64, according as k D 0; 1; 2, or 3 mod 4. In 1993, Su
[65] constructed a new five-element h-basis which provides a new lower bound for
m.h; 5/, and hence a better lower bound in the general case:

m.h; k/ � �k
�
55 � 74
175

�bk=5c �
h

k

�k

CO.hk�1/

� �k.5:2844/bk=5c
�
h

k

�k

CO.hk�1/; (8)

where

�k D

8

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

1 if k  0; 1 .mod 5/

4=3 if k  2 .mod 5/

4;752

2;197
� 2:163 if k  3 .mod 5/

165;888

50;625
D 3:2768 if k  4 .mod 5/

This implies the following lower bound for Gk.h/, which is best known at the time
this article was written:

Gk.h/ � �kC1
�
55 � 74
175

�b.kC1/=5c �
h

k C 1
�kC1

CO.hk/ as h!1:

6 Remarks and Open Problems

1. Kirfel [34] proved in 1990 that the following limit

�k D lim
h!1

n.h; k/

hk

exits for every k � 1. It is known that

�1 D 1; �2 D 1

4
; and �3 D 4

81
:
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It seems much harder to deal with n.h; k/ with given h � 1 as k approaches
infinity. Current best known bounds for n.2; k/ are proved by Mrose [44] and
Yu [67]:

0:2857 <
n.2; k/

k2
< 0:4697:

2. It is natural to ask if any of the following limits exists:

lim
h!1

Gk.h/

hkC1 and lim
k!1

Gk.h/

kh�1 :

The only known nontrivial case is Nash’s formula for Gk.2/ D 2kC 2. We even
do not know the answer when k D 1.

3. Similarly we may ask if the following limits exist:

	k D lim
h!1

m.h; k/

hk
:

The only known exact values are 	1 D 1 and 	2 D 1=3. One annoying fact is that
we do not even have any nontrivial lower bound1 or upper bound form.2; k/.

4. A set A of nonnegative integers is called an restricted exact asymptotic basis
of order h if every large positive integer can be written as a sum of h distinct
elements from A. Similar questions can be asked for restricted exact asymp-
totic bases. We known little about restricted exact asymptotic bases. Not much is
known for the restricted version for both n.h; k/ andm.h; k/, especiallym.h; k/.

5. Let A be a finite set of integers. If A is a basis for Zm, then the average order of
A for Zm is defined by

�.A;Zm/ D 1

m

m�1X

tD0
h.t/;

where h.t/ is the length of t by A, which is defined as the minimum number of
elements (another problem if distinct elements required) ofAwith sum t . Similar
functions can be defined:

m.�; k/ D maxfm j 9A with jAj D k and �.A;Zm/ � �g;
n.�; k/ D maxfn j 9A with jAj D k and �.A; Œ1; n�/ � �g:

See [29–31] for some preliminary results in these cases.
6. Graham and Sloane [8] studied a set of four extremal functions related to additive

bases. Those extremal functions can be generalized [20]. These functions are
related to Gk.h/. There are still many open problems related these functions.

1 The author does not know any lower bound form.2; k/ other thanm.2; k/ � 2
7
k2CO.k/, which

is obtained by n.2; k/C 1 � m.2; k/.
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7. Extremal bases for finite cyclic groups are considered as good underlying topol-
ogy for interconnection networks (see [6, 20]). This area has been studied exten-
sively in recent years, see [31] for a more complete survey.

8. Wong and Coppersmith [66] discovered a geometric representation of bases for
finite cyclic groups, which helps establish upper bounds for m.k; h/. With the
help of Kneser’s theorem, one might be able to utilize Wong-Coppersmith’s
representation to obtain upper bounds for Gk.h/. For more information on the
geometric representation of bases, see Jia and Hsu [31].

9. Bases for finite groups have also been studied extensively in the past. Among
many interesting problems in this area, Rohrbach’s problem on bases for finite
groups attracts a lot of attention. If A is a basis of order h for a finite group �
with j� j D m, then

jAj � m1=h � 1:
Rohrbach [58, 59] asked in 1937 the following question: Is it true that, for every
positive integer h, there exists a constant c D c.h/ > 0 such that every finite
group � with j� j D m contains a basis A of order h for � such that

jAj � cm1=h ‹

This problem is related to short products of elements from a finite group [27].
The question is still largely open. See [22, 26, 31, 38] for recent developments.

Acknowledgements I like to thank Professor Mel Nathanson from whom I leaned combinatorial
additive number theory, a wonderful and entertaining field of mathematics.
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Summary Let G be an infinite abelian group with j2Gj D jGj. We show that if
G is not the direct sum of a group of exponent 3 and the group of order 2, then G
possesses a perfect additive basis; that is, there is a subset S � G such that every
element of G is uniquely representable as a sum of two elements of S . Moreover, if
G is the direct sum of a group of exponent 3 and the group of order 2, then it does
not have a perfect additive basis; however, in this case, there exists a basis S � G
such that every element of G has at most two representations (distinct under per-
muting the summands) as a sum of two elements of S . This solves completely the
Erdős–Turán problem for infinite groups.

It is also shown that if G is an abelian group of exponent 2, then there is a subset
S � G such that every element of G has a representation as a sum of two ele-
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1 The Background

A subset of an abelian semigroup is called an additive basis of order 2, or basis for
short, if every element of the semigroup is representable as a sum of two elements
of the subset. We say that a basis is perfect if every element is represented uniquely,
up to the order of summands. The representation function of a basis associates with
each element the number of its (ordered) representations as a sum of two elements
from the basis. If the semigroup can be embedded into an involution-free group,
then for a basis to be perfect, it is necessary and sufficient that its representation
function is bounded by 2.

A famous open conjecture of Erdős and Turán [ET41] is that every basis of the
semigroup N0 of non-negative integers has unbounded representation function; that
is, if S � N0 is a set such that each non-negative integer is representable as a sum
of two elements of S , then there are integers with arbitrarily many representations.

Most investigations related to the Erdős–Turán conjecture study representation
functions of bases of N0 (see [NS07] for a survey) or consider the analogous prob-
lem for infinite abelian semigroups other than N0, and also for infinite families of
abelian semigroups (see [HH04]). In the present paper, we are concerned with the
latter line of research.

There are several noticeable cases where bases with bounded representation func-
tions are known to exist. As an example, Nathanson [N03] proved that the group of
integers possesses a perfect basis. Ruzsa [R90] showed that if p is a prime with
.2=p/ D �1, then the group Fp � Fp possesses a basis such that every group ele-
ment has at most 18 representations as a sum of two elements of this basis. (Here and
below for a prime p, we denote by Fp the finite field with p elements. To simplify
the notation, we occasionally identify a field with its additive group.) As a corollary,
Ruzsa derived a result [R90, Theorem 1] which easily implies that every finite cyclic
group has a basis whose representation function is bounded by an absolute constant,
independent of the order of the group. The approach of [R90] was further developed
by Haddad and Helou [HH04] to show that for any finite field F of odd character-
istic, the group F � F has a basis whose representation function does not exceed
18. In the case where F is a finite field of characteristic 2, a basis in F � F with a
bounded representation function was constructed in [GDT91, Lemma 1], though the
property we are interested in has never been identified explicitly to our knowledge.

2 The Results

For a subset C of an abelian group and an integer n � 1, we write

nC WD fncW c 2 C g:
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Our main result is Theorem 1.

Theorem 1. Let G be an infinite abelian group with j2Gj D jGj.
(i) If G is not the direct sum of a group of exponent 3 and the group of order 2,

then G has a perfect basis.
(ii) If G is the direct sum of a group of exponent 3 and the group of order 2, then G

does not have a perfect basis, but has a basis such that every element of G has
at most two representations (distinct under permuting the summands) as a sum
of two elements of the basis.

Clearly, if G is an infinite abelian group with j2Gj < jGj, then for any basis S
of G (and indeed, for any subset S � G with jS j D jGj) there is an element of
G having as many as jGj representations of the form 2s with s 2 S . In particular,
this applies to infinite abelian groups of exponent 2. Similarly, for no infinite family
of groups of exponent 2 can one find bases with uniformly bounded representation
functions, even if the groups of the family are finite. We show that, nevertheless,
efficient bases in such groups do exist if we exclude the zero element from consid-
eration.

Theorem 2. Each abelian group of exponent 2 possesses a basis such that every
nonzero element of the group has at most 36 representations as a sum of two ele-
ments of this basis.

Combined with the result of Haddad and Helou and the corollary of Ruzsa’s
result, mentioned in Sect. 1, Theorems 1 and 2 readily yield Corollary 1.

Corollary 1. Let G be an abelian group. If G is infinite with j2Gj D jGj, cyclic,
or has prime exponent, then it possesses a basis with the representation function
bounded by an absolute constant (independent of the group), except for the value of
the function on the zero element in the case where G is of exponent 2.

We notice that excluding the zero element for groups of exponent 2 is equivalent
to disregarding representations with equal summands. To our present knowledge, a
universal constant K may exist with the property that each abelian group possesses
a basis such that every element of the group has at mostK representations as a sum
of two distinct elements of this basis.

3 The Proofs

In this section, we use the word “basis” both in the above-defined and linear-
algebraic meaning, adding the attribute linear in the latter case to avoid confusion.

Our argument depends on the axiom of choice, which we assume for the rest of
the paper.
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To handle infinite groups of exponents 2 and 3, we need the following lemma.

Lemma 1. If G is an infinite abelian group of prime exponent p, then there exists
an algebraically closed field F of characteristic p such that G Š F � F .

The proof uses several facts, well known from algebra and set theory; namely,

(i) Every vector space has a linear basis;
(ii) An infinite set can be partitioned into two disjoint subsets of equal cardinality;

(iii) An infinite vector space over a finite field has the same cardinality as any of its
linear bases;

(iv) The field of rational functions over a finite field in the variables, indexed by the
elements of an infinite set, has the same cardinality as this set;

(v) The algebraic closure of an infinite field has the same cardinality as the field
itself.

We notice that (i) follows easily from Zorn’s lemma, while (ii)–(v) are not difficult
to derive from the basic set theory result saying that for any infinite cardinal m, a
union of at most m sets, each of cardinality at most m, has cardinality at most m.

Proof of Lemma 1. Considering G as a vector space over the field Fp , find a linear
basis B ofG and fix a partitionB D B1[B2, where B1 and B2 are disjoint subsets
of equal cardinality. For i 2 f1; 2g denote by Gi the group of functions from Bi to
Fp with a finite support; thus, G1 Š G2, and since G is isomorphic to the group
of functions from B to Fp with a finite support, we have G Š G1 � G2. Let F
be the algebraic closure of the field of rational functions over Fp in the variables,
indexed by the elements of G1. By (iv) and (v), the cardinality of F is equal to
the cardinality of G1. From (iii), we conclude now that every linear basis of F has
the same cardinality as B1, which, we recall, is a linear basis of G1. Any bijection
from B1 to a linear basis of F determines a group isomorphism between G1 and
the additive group of F . As a result, we have G1 Š F , and hence also G2 Š F ,
implying the assertion. ut

For an abelian groupG, an integer n � 1, and subsets A;B;C � G, we write

Gn WD fg 2 GWng D 0g;
A˙ B WD fa˙ bW a 2 A; b 2 Bg;

and

AC B � C WD faC b � cW a 2 A; b 2 B; c 2 C g:

FromG=Gn Š nG we conclude that if jGj is infinite, then maxfjGnj; jnGjg D jGj.
Yet another result used in the proof of Theorem 1 is Lemma 2.

Lemma 2. Let G be an abelian group such that 2G is infinite. If A;B � G satisfy

maxfjAj; jBjg < minfj2Gj; j3Gjg;

then there exists an element s 2 G with 2s … A and 3s … B .
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Proof. Suppose for a contradiction that for every s 2 G, we have either 2s 2 A or
3s 2 B . Without loss of generality we assume B � 3G, and we find then a subset
U � G with jU j D jBj and B D f3uW u 2 U g.

Fix w 2 G with 3w … B . For any g 2 G3, we have 3.wCg/ D 3w … B , whence
2.wC g/ 2 A and therefore, 2g 2 �2wC A. Now if s 2 G satisfies 3s 2 B , then
s D uCg with some u 2 U and g 2 G3, implying 2s D 2uC2g 2 2u�2wCA �
�2wC2U CA. It follows that for every s 2 G we have either 2s 2 �2wC2U CA
or 2s 2 A; this, however, is impossible as j � 2wC 2U CAj � jU jjAj < j2Gj and
jAj < j2Gj by the assumptions. ut

Eventually, we are ready to prove Theorem 1.

Proof of Theorem 1. We split the proof into three parts.

1. First, suppose that G is of exponent 3. By Lemma 1, we can assumeG D F �F ,
where F is an algebraically closed field of characteristic 3. Set

S WD f.x; x2/Wx 2 Fg:
For each pair .u; v/ 2 G, the number of representations of .u; v/ as a sum of two
elements of S is the number of solutions of the equation

x2 C .u � x/2 D vI x 2 F ;

which is either 1 or 2. The assertion follows.
We remark that this argument above actually goes through for any odd prime

exponent; however, only the case of exponent 3 is not covered by the proof below.
2. Now suppose that G D F ˚ f0; hg, where F is of exponent 3 and h has order 2.

As shown above,F has a perfect basis S , and it is immediate that S[.hCS/ is a
basis of G such that every element ofG has at most two representations (distinct
under permuting the summands) as a sum of two elements of this basis.

Assuming, on the other hand, that G possesses a perfect basis, we write this
basis as T D T0[.hCT1/with T0; T1 � F . Shifting T appropriately, we assume
furthermore that 0 2 T0. To obtain a contradiction, we observe that the unique
representation of h as a sum of two elements of T has the form h D t0C .hC t1/
with t0 2 T0 and t1 2 T1; hence, 2.t1 C h/ D t0 C 0 gives two representations
of t0 as a sum of two elements of T .

3. Turning to the general case, we denote by � the initial ordinal of the cardinal jGj
and consider a well-ordering G D fg�W $ < �g. Notice, that � is a limit ordinal,
and hence the successor of any ordinal, smaller than �, is also smaller than �.

We set S0 WD ¿ and construct a chain of subsets S�, for each ordinal $ � �,
so that

– S� � S� whenever $ < � � �;
– if $ is a finite ordinal, then S� is finite, and if $ � � is infinite, then jS�j � j$j;
– g� 2 S� C S� whenever $ < � � �;
– for any ordinal $ � � and element g 2 G there is at most one representation of
g as a sum of two elements of S�.
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The proof is then completed by observing that S� is a perfect basis of G; hence, it
suffices to show that the subsets S� can be constructed.

We use transfinite recursion, assuming that � � � and that S� has already been
found for each ordinal $ < �, and constructing S� . If � is a limit ordinal, then
we put S� WD [�<�S�. If � is a successor ordinal and g��1 2 S��1 C S��1, then
we put S� WD S��1. In the remaining case, where � is a successor ordinal and
g��1 … S��1CS��1, we put S� WD S��1[fs; tg, where s; t 2 G with sC t D g��1
are chosen to satisfy the following conditions:

(a) if j3Gj < jGj, then s; t … S��1 C 3G;
(b) s; t … S��1 C S��1 � S��1;
(c) 2s; 2t … S��1 C S��1;
(d) s � t … S��1 � S��1;
(e) 2s � t; 2t � s … S��1.

Condition (a) is of technical nature and its exact purpose will be clarified in the
following paragraph, while the last four conditions ensure that the unique represen-
tation property of S��1 is inherited by S� . Thus, to complete the proof it suffices to
show that s and t WD g��1 � s satisfying (a)–(e) can be found.

To this end we first observe that if S��1 is infinite, then condition (e) excludes at
most jS��1j � j� � 1j < j�j D jGj options for 3s, and similarly (a)–(d) together
exclude fewer, than jGj options for 2s. Clearly, this conclusion remains valid if
S��1 is finite. Therefore, in view of Lemma 2, we can assume that j3Gj < jGj.
Consequently, securing (a) at each step of the construction, we have ensured that all
elements of S��1 fall into distinct cosets of 3G, and in particular, each of g��1 C
S��1 and 2g��1 � 2S��1 contains at most one element from 3G. Since (e) can be
re-written as

3s … .g��1 C S��1/ [ .2g��1 � S��1/;

if j3Gj � 3, then there exists g 2 G such that every s 2 g C G3 satisfies (e). As
remarked above, (a)–(d) reduce to forbidding fewer than jGj values for 2s; that is,
forbidding fewer than jGj cosets of G2 for s. Since jg C G3j D jGj in view of
j3Gj < jGj, and every G2-coset intersects g C G3 by at most one element, there
exists s 2 g CG3 with an admissible value of 2s, proving the assertion.

Suppose, therefore, that j3Gj < 3. If j3Gj D 1, thenG is of exponent 3, the case
which has been addressed above. If j3Gj D 2, then the identity g D �2g C 3g
shows that G D G3C3G, and the sum is direct as if g 2 G3\3G, then 2g D 0 (as
g 2 3G and j3Gj D 2) and 3g D 0 (as g 2 G3), implying g D 0. Consequently,G
is the direct sum of a group of exponent 3 and the group of order 2. This completes
the proof. ut

Finally, we prove Theorem 2. As indicated in the introduction, the construction
employed in the proof is adopted from [GDT91], where it is used (in the finite-
dimensional case) to find small codes with covering radius 2.
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Proof of Theorem 2. In view of Lemma 1, it suffices to show that if the field F
of characteristic 2 is either finite or algebraically closed, then the group F � F has
a basis with the representation function bounded by 18. Clearly, we can assume
jF j > 2.

We fix d1; d2; d3 2 F� with d1 C d2 C d3 D 0, write

Si WD f.x; di=x/Wx 2 F�gI i 2 f1; 2; 3g;

and put S D S1 [ S2 [ S3. For .u; v/ 2 F � F let r.u; v/ denote the number of
representations of .u; v/ as a sum of two elements of S , and for i; j 2 f1; 2; 3g
denote by rij .u; v/ the number of representations of .u; v/ as a sum of an element
of Si and an element of Sj . Since the sets S1; S2, and S3 are pairwise disjoint, we
have

r.u; v/ D
3X

i;jD1
rij .u; v/

and furthermore,

rij .u; v/ D
ˇ
ˇfx 2 Fnf0; ugWdi=x C dj =.x C u/ D vgˇˇI i; j 2 f1; 2; 3g:

The equation di=x C dj =.x C u/ D v can be re-written as

vx2 C .uvC di C dj /x C diu D 0 (1)

and since it has a nonzero coefficient unless .u; v/ ¤ .0; 0/, we have rij .u; v/ � 2,
except if u D v D 0. It follows that r.u; v/ � 18 and to achieve our goal it suffices
to show that for any .u; v/ ¤ .0; 0/ there are i; j 2 f1; 2; 3g with rij .u; v/ > 0. We
consider three cases.

If u D 0 and v ¤ 0, then r12.u; v/ is the number of solutions of d1=xCd2=x D v,
which is 1.

If u ¤ 0 and v D 0, then r12.u; v/ is the number of solutions of d1=x D d2=

.xCu/; this leads to a nondegenerate linear equation, the solution of which is distinct
from both 0 and u.

Finally, suppose that u ¤ 0 and v ¤ 0. In this case for i D j equation (1) takes
the form

vx2 C uvx C diu D 0; (2)

and for ri i.u; v/ to be nonzero it is necessary and sufficient that (2) has a solution
(which automatically is then distinct from 0 and u). If F is algebraically closed, then
we are done; suppose, therefore, that F is finite. Since (2) can be re-written as

.x=u/2 C .x=u/ D di=.uv/;
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it has a solution if and only if di=.uv/ belongs to the image of the linear transforma-
tion x 7! x C x2 of the field F considered as a vector space over F2. The kernel of
this transformation is a subspace of dimension 1; hence its image is a subspace of F
of co-dimension 1. (This image actually is the set of all the elements of F with zero
trace, but we do not use this fact.) Consequently,

d1=.uv/C d2=.uv/C d3=.uv/ D 0

implies that at least one of d1=.uv/; d2=.uv/, and d3=.uv/ is an element of the
image. ut
Priority remark. As we learned when this paper was about to be published, there is
some intersection between our results and the results of [HH08]. Namely, in [HH08,
Theorem 5.1] perfect bases in infinite vector spaces over a field of characteristic,
distinct from 2, are constructed, using essentially the same approach as in part 1 of
the proof of Theorem 1.
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A Tiling Problem and the Frobenius Number

D. Labrousse and J.L. Ramı́rez Alfonsı́n

Summary In this paper, we investigate tilings of tori and rectangles with rectan-
gular tiles. We present necessary and sufficient conditions for the existence of an
integer C such that any torus, having dimensions greater than C , is tiled with two
given rectangles (C depending on the dimensions of the tiles). We also give suf-
ficient conditions to tile a sufficiently large n-dimensional rectangle with a set of
(n-dimensional) rectangular tiles. We do this by combining the periodicity of some
particular tilings and results concerning the so-called Frobenius number.
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1 Introduction

Let a and b be positive integers. Let R.a; b/ be the 2-dimensional rectangle of
sides a and b and let T .a; b/ be the 2-dimensional torus. We think of T .a; b/ as
a rectangle where their parallel sides are identified in the usual way. We will say
that a torus T (or a rectangle R) can be tiled with tiles (i.e., smaller 2-dimensional
rectangles)R1; : : : ; Rk if T (orR) can be filled entirely with copies ofRi , 1� i � k
where rotations are not allowed.
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Question 1. Does there exist a function CT DCT .x; y; u; v/ (resp. CRDCR.x; y;
u; v/) such that for all integers a; b � CT (resp. a; b � CR) the torus T .a; b/ (resp.
rectangleR.a; b/) can be tiled with copies of the rectanglesR.x; y/ andR.u; v/ for
given positive integers x; y; u and v?

The special case of Question 1 for R.a; b/ when x D 4; y D 6; u D 5 and
vD 7 was posed in the 1991 William Lowell Putnam Examination (Problem B-3).
In this case, Klosinski et al. [9] gave a lower bound for CR. Their method was
based on knowledge of the Frobenius number. The Frobenius number, denoted by
g.s1; : : : ; sn/, of a set of relatively prime positive integers s1; : : : ; sn, is defined as
the largest integer that is not representable as a nonnegative integer combination of
s1; : : : ; sn. It is well known [15] that

g.s1; s2/ D s1s2 � s1 � s2: (1)

It turns out that the computation of a similar (simple) formula when n � 3 is
much more difficult. In fact, finding g.s1; : : : ; sn/, for general n, is a hard problem
from the computational point of view (we refer the reader to [13] for a detailed dis-
cussion on the Frobenius number). Let us notice that equality (1) can be interpreted
in terms of 1-dimensional tilings as follows:

all sufficiently large interval can be tiled by two given intervals whose lengths are relatively
primes.

Klosinski et al. [9] used (1), with particular values for s1 and s2, to show that
R.a; b/ can be tiled with R.4; 6/ and R.5; 7/ if a; b � 2214. We improve the latter
by showing (see Remark 1) that if a; b � 198 thenR.a; b/ can be tiled with R.4; 6/
and R.5; 7/. This lower bound is not optimal, Narayan and Schwenk [10] showed
that it is enough to have a1; a2 � 33 by presenting tilings with more complicated
patterns (allowing rotations of both tiles) which is not the case here. We also mention
that Barnes [1, Theorem 2.1] used algebraic arguments to show the existence of CR
if some complex set points conditions are verified but explicit value for CR was not
given.

In the same spirit of the subjects treated in the volume Unusual Applications of
Number Theory [11], we explore the connection between tilings and the Frobenius
number. We show how plane periodic tilings can be pertubed with tilings, obtained
via the Frobenius number, leading to a positive answer to Question 1. We hope these
new methods will motivate further investigations.

The paper is organized as follows. In the next section, we shall give necessary
and sufficient conditions on integers x; y; u; v for the existence ofCT .x; y; u; v/ (see
Theorem 3). In Sect. 3, we give various results in relation with a generalization of
CR for n-dimensional rectangles (see Theorem 5). In particular, the knowledge of
an upper bound for g.s1; : : : ; sn/ is used to show that an n-dimensional rectangle
R.a1; : : : ; an/ can be tiled with a given set of tiles if aj > r2n for all 1 � j � n
where r is the largest length among all the tiles (see Corollary 1). We finally give
some results concerning the tilings of n-dimensional cubes.
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2 Tiling Tori

It is known [5,8] thatR.a; b/ can be tiled withR.x; y/ if and only if either x divides
one side of R and y divides the other or xy divides one side of R and the other side
can be expressed as a nonnegative integer combination of x and y. This shows that
a rectangle R.a; b/ can be tiled with R.1; n/ if and only n divide either a or b. It is
clear that this condition is also sufficient for tiling T .a; b/ (since a tiling of R.a; b/
is also a tiling of T .a; b/) but it is not necessary, see for instance Fig. 1.

Proposition 1. Let n be a prime integer. Then, T .a; b/ can be tiled with R.1; n/ if
and only if n divides either a or b.

Proof. If n divides either a or b then there is a trivial tiling of T .a; b/. If T .a; b/ is
tiled with R.1; n/ then n must divides ab and since it is prime then n must divides
either a or b. ut

In 1995, Fricke [6] gave the following characterization for tiling a rectangle with
two squares.

Theorem 1. Let a; b; x, and y be positive integers with gcd.x; y/ D 1 [6]. Then,
R.a; b/ can be tiled with R.x; x/ and R.y; y/ if and only if either a and b are both
multiple of x or a and b are both multiple of y or one of the numbers a; b is a
multiple of xy and the other can be expressed as a nonnegative integer combination
of x and y.

The conditions of Theorem 1 are again sufficient for tiling T .a; b/ but they are
not necessary, that is, there are tilings of T .a; b/ with R.x; x/ and R.y; y/ not
verifying the above conditions (and thus not tiling R.a; b/), see for instance Fig. 2.

Figure 1 A tiling of T .15; 10/ with R.1; 6/ and R.6; 1/
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Figure 2 A tiling of
T .13; 13/ with R.2; 2/ and
R.3; 3/

Remila [14] studied tilings of T .a; b/ with two bars (that is, when the rectan-
gles are of the form R.1; y/ and R.u; 1/) where rotations are not allowed. In [14,
Sect. 8] the problem of investigating tilings of tori with two general rectangles (not
necessarily bars) was posed. By using the algebraic approach (via polynomials and
ideals) first introduced by Barnes [1,2], Clivio found [4, Theorem 6.2] the existence
of a value C such that for any n-dimensional torus T , having dimensions at least
C , there exist necessary and sufficient conditions for T to be tiled with two given
n-dimensional rectangles. In particular, for the 2-dimensional case, Clivio’s result
reads as follows.

Theorem 2. [4, Theorem 6.2] For arbitrary rectangles R.x; y/ and R.u; v/ there
exists integer C such that for every T .a; b/ with a; b � C , T .a; b/ can be tiled with

R.x; y/ and R.u; v/ if and only if gcd
�

uv
gcd.u;a/ gcd.v;b/ ;

xy
gcd.x;a/ gcd.y;b/

�

D 1:
Theorem 2 gives a characterization of sufficiently large tori to be tiled with two

given rectangles. An estimation of value C was not given in [4] (even for n D 2).
Clivio remarked that if the volumes of the two given rectanglesR.x; y/ and R.u; v/
(and, in general, the two given n-dimensional rectangles) are relatively primes, that
is, if gcd.xy; uv/ D 1, then the condition of Theorem 2 always holds.

Proposition 2. [4, Proposition 6.1, Step 2] Let u; v; x; y and s be positive integers
with gcd.xy; uv/ D gcd.s; xy/ D gcd.s; uv/ D 1 and such that T .s; s/ is tiled with
R.xy; xy/ and R.uv; uv/. Then, T .a; b/ can be tiled with R.x; y/ and R.u; v/ if
a; b � s.xy/.uv/.
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This yield to the following lower bound (by taking s D xy C uv)

CT � .xy C uv/xyuv: (2)

We might improve the latter by using a complete different technique.

Theorem 3. Let u; v; x, and y be positive integers such that gcd.xy; uv/ D 1. Then,
T .a; b/ can be tiled with R.x; y/ and R.u; v/ if

a; b � minfn1.uvC xy/C 1; n2.uvC xy/C 1g

where n1 D maxfux; vyg and n2 D maxfvx; uyg.
We notice that the above lower bound improves the one given in (2) by a factor of

maxfux; vyg. For instance, if we take R.3; 5/ and R.4; 2/ then n1 D 12, n2 D 20

and Theorem 3 gives CT � 12.15C 8/C 1 D 277 while (2) gives CT � .15C 8/
.15/.8/ D 2760. The latter lower bound can be improved since, by Proposition 2,
CT � 120s where gcd.s; 15/ D gcd.s; 8/ D 1 and such that T .s; s/ is tiled with
R.15; 15/ and R.8; 8/. It is clear that such integer s must be at least 11 and thus
obtaining CT � 1320 (which still worst than our lower bound).

Theorem 3 implies the following characterization.

Theorem 4. Let u; v; x, and y be positive integers. Then, there exists CT .x; y; u; v/
such that any T .a; b/ with a; b � CT can be tiled with R.x; y/ and R.u; v/ if and
only if gcd.xy; uv/ D 1.

Proof. The sufficiency follows from Theorem 3. For the necessity, suppose, by con-
tradiction, that gcd.xy; uv/ D d > 1. Since T .a; b/ can be tiled with R.x; y/ and
R.u; v/, then ab D l1.xy/ C l2.uv/ for some nonnegative integers l1; l2 and any
a; b � CT . Since gcd.xy; uv/ D d , then d divides ab for any a; b � CT . In partic-
ular, d divides pq for any pair of primes p; q > CT , which is a contradiction. ut

In order to prove Theorem 3, we may consider a special Euclidean plane
tiling T � formed with two rectangles R.x; y/ and R.u; v/ with sides parallel
to the real axes, as shown in Fig. 3 (we always suppose that the sides u and x are
horizontal and the sides y and v are vertical).

Let u and v be positive integers. A plane tiling T is said to be horizontally pe-
riodic with horizontal period, denoted by hT , equals to u (resp. vertically periodic
with vertical period, denoted by vT , equals to v) if T C .u; 0/ (resp. T C .0; v/)
is a congruent transform mapping T into itself. A tiling T is periodic, if it is both
horizontally and vertically periodic.

Lemma 1. Let T � be the plane tiling given in Fig. 3 with R.x; y/ and R.u; v/.
Then, T � is periodic with hT � D vT � D uvC xy.
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y

x

v
u

R(x,y)

(u,−y)

(x,v)+(u,−y)

(x,v)

2(x,v)

4(x,v)

2(x,v)+(u,−y)

4(x,v)+(u,−y)

−(x,v)+(u,−y)

R(u,v)
(0,0)

2(x,v)+2(u,−y)

(x,v)+2(u,−y)

4(x,v)+2(u,−y)

2(u,−y)

Figure 3 Tiling T � of the plane

Proof. Without loss of generality, we assume that the lower leftmost corner of one
copy ofR.x; y/ is placed at .0; 0/. It is clear that the coordinate of the lower leftmost
corner of any other copy of R.x; y/ is given by p.x; v/C q.u;�y/ with p; q 2 Z.
And thus, the translation T �C.pxCqu; pv�qy/ is a congruent transform mapping
T � into itself. In particular, by taking p D y and q D v (resp. by taking p D u and
q D �x) we have that T �C .vuCyx; 0/ (resp. T �C .0; xyC uv/) is a congruent
transform mapping T � into itself. Therefore, T � is periodic with hT � D vT � D
uvC xy. ut
Proposition 3. Let p; q � 1 be integers. Then, T .phT � ; qvT �/ can be tiled with
R.x; y/ and R.u; v/.

Proof. Without loss of generality, we assume that the lower leftmost corner of one
copy of R.x; y/ is placed at .0; 0/. Let B be the rectangle formed by lines x1 D 0,
x2 D phT � , y1 D 0 and y2 D qvT � . By definition of horizontally period, if a
rectangle R is split by a line x1 into two parts, r1 (the part lying inside B) and
r2 (the part lying outside B) then the corresponding translated rectangle is also
split by line x2 into two parts r 0

1 (the part lying outside B) and r 0
2 (the part lying

inside B) where r1 is congruent to r 0
1 and r2 is congruent to r 0

2 (similarly for the
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(0,0)

r2 r1 r’1r’2

y1

y2

x1 x2

Figure 4 Rectangle B formed with R.3; 5/ and R.4; 2/

split rectangles by lines y1 and y2), this is illustrated in Fig. 4 when p D q D 1 and
x D 3; y D 5; u D 4; v D 2. Thus, the tiling induced by the copies inside B where
their opposites sides are identified gives the desired tiling of T .phT � ; qvT �/. ut

Proposition 4. Let x; y; u, and v be positive integers. Then, T .phT �Csux; qvT �C
tvy/ can be tiled with R.x; y/ and R.u; v/ for all integers p; q � 1 and s; t � 0.

Proof. Let E1 (resp. E2) be the row formed by sticking together u (resp. x) copies
of R.x; y/ (resp. R.u; v/) and let F1 (resp. F2) be the column formed by sticking
together v (resp. y) copies of R.x; y/ (resp. R.u; v/), see Fig. 5.

Given the constructed rectangle B as in Proposition 3 (that induces a tiling of
T .phT � ; qvT �/), we shall construct a rectangle B 0 that will induce a tiling of
T .phT � C sux; qvT � C tvy/. We will do this as follows (each step of the construc-
tion is illustrated with the case when p D q D s D t D 1, x D 3; y D 5; u D 4;

v D 2).
Let E (resp. F ) be the set of rectangles R of T � such that either R shares its

left-hand side border (resp. its bottom border) with the right-hand side border (resp.
the top border) of B or R is cut by the right-hand side border (resp. the top border)
of B . Let NB be the union of the rectangles inside B together with sets E and F . We
place NB in the plane such that the leftmost bottom corner of one copy of R.x; y/ is
placed at .0; 0/. Figure 6 illustrates the construction of NB .
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y

x

v

u

E1

E2

F2F1

Figure 5 Blocks of rows and columns

Figure 6 Rectangle NB
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y2

y1

x1
x2

Figure 7 Extended tiling

Now, for each rectangle R of E, we stick s copies of E1 if R D R.x; y/ (or s
copies of E2 if R D R.u; v/) to the right-hand side of R. And, analogously, for
each rectangle R of F , we stick t copies of F1 if R D R.x; y/ (or t copies of F2 if
R D R.u; v/) aboveR, we do this in Fig. 7.

Let B 0 be the rectangle formed by lines x1 D 0; y1 D 0; x3 D phT � C sux
and y3 D qvT � C tvy (notice that if s D t D 0 then x3 D x2 and y3 D y2).
The rectangle formed by lines x2; x3; y2 and y3 (lying inside B 0 in its rightmost top
corner) is of size .sux/ � .tvy/ and it can be tiled by placing tv, rows each formed
by sticking together su copies of E1, this is done in Fig. 8.

We have the following two observations concerning B 0.

(a) By definition of horizontal (resp. vertical) periodicity of T �, the intersection of
x1 and y3 (resp. of y1 and x3) is a leftmost bottom corner of a copy of R.x; y/.

(b) If a rectangle is split by line x1 into two parts r1 (part lying inside B 0) and r2
(part lying outside B 0) then the corresponding translated rectangle is split by
line x3 into two parts, r 0

1 (part lying outside B 0) and r 0
2 (part lying inside B 0)

where r1 is congruent to r 0
1 and r2 is congruent to r 0

2 (similarly for the split
rectangles by lines y1 and y3).

Therefore, by the above observations, the desired tiling of T .phT �Csux; qvT �C
tvy/ is obtained by identifying opposite sides of B 0. ut
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y3

y2

y1

x1 x2 x3

Figure 8 Rectangle B 0 inducing a tiling of T �.33; 35/ with R.3; 5/ and R.4; 2/

Proposition 5. Let x; y; u, and v be positive integers such that gcd.xy; uv/ D 1.
Then, gcd.xy C uv; vx/ D gcd.xy C uv; uy/ D 1.

Proof. We first show that if gcd.xy; uv/ D 1, then gcd.u; x/ D gcd.u; y/ D
gcd.v; x/ D gcd.v; y/ D 1. Indeed, if gcd.x; u/ D d > 1, then there exists an
integer k > 1 with kjd . So, k divides both x and u and thus kj gcd.xy; uv/ imply-
ing that gcd.xy; uv/ > 1 which is a contradiction (similar for the other cases).

We shall now show that gcd.xy C uv; vx/ D 1 (the case gcd.uvC xy; uy/ D 1

can be done similarly). Let us suppose that gcd.uvC xy; vx/ D k > 1 and thus k
divides both uvC xy and vx. Let p > 1 be a prime such that p divides k. Then p
also divides both uvC xy and vx, and since p is prime then we have that p divides
either v or x.

Case 1. If p divides v, then pjuv and since pj.uv C xy/, then either pjx (but
since pjv then pj gcd.x; v/ implying that gcd.x; v/ > 1 which is a contradiction)
or pjy (but since pjv then pj gcd.y; v/ implying that gcd.y; v/ > 1 which is a
contradiction).
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Case 2. If p divides x, then pjxy and since pj.uv C xy/, then either pju (but
since pjx then pj gcd.x; u/ implying that gcd.x; u/ > 1 which is a contradiction)
or pjv (but since pjx then pj gcd.x; v/ implying that gcd.x; v/ > 1 which is a
contradiction). ut

We may now prove Theorem 3.

Proof of Theorem 3. Let C D maxfg.hT � ; ux/ChT �C1; g.vT � ; vy/CvT � C 1g
(notice that the Frobenius numbers are well defined by Proposition 5). Let us sup-
pose that C D g.hT � ; ux/ C hT � C 1 (similarly, in the case C D g.vT � ; uy/ C
vT � C 1). Then, by definition of the Frobenius number, there exist integers p; s � 0
such that N D phT � C sux for any integer N � g.hT � ; ux/ C 1. Thus there
exist integers p � 1 and s � 0 such that N D phT � C sux for any integer
N � g.hT � ; vx/ChT �C1. So, since p � 1 then, by Proposition 4, T .a; b/ can be
tiled with R.x; y/ andR.u; v/ if a; b � maxfg.hT � ; ux/ChT �C 1; g.vT � ; vy/C
vT �C1g or equivalently, by (1), if a; b � maxfvx.uvCxy/C1; uy.uvCxy/C1g.

We finally observe that in the construction of T � we assume that the sides v and
y are vertical and the sides u and x are horizontal but we could construct a similar
tiling with the sides u and y vertical and the sides v and x horizontal. In this case,
by applying the same arguments as above, we obtain that T .a; b/ can be tiled with
R.x; y/ and R.v; u/ if a; b � maxfux.uv C xy/ C 1; vy.uv C xy/ C 1g, and the
result follows. ut

3 Tiling Rectangles

Let a1; : : : ; an be positive integers. We denote by R D R.a1 : : : ; an/ the
n-dimensional rectangle of sides ai , that is, R D f.x1; : : : ; xn/ 2 Rnj0 � xi � ai ;
i D 1; : : : ; ng. A n-dimensional rectangle R is said to be tiled with tiles
(n-dimensional rectangles) R1; : : : ; Rk if R can be filled entirely with copies
of Ri , 1 � i � k (rotations are not allowed).

Our main result in this section is given by Theorem 5 (below) stating that a
sufficiently large n-dimensional rectangle can be tiled with a set of nC k � 1 tiles
if any k-subset of the set of 1-coordinates (set of the first lengths) of the tiles are
relatively primes and the set of j -coordinates (set of the j th lengths) of the tiles are
pairwise relatively prime for each j D 2; : : : ; n. We shall use again the Frobenius
number and for, we need the following result.

Proposition 6. Let a1; : : : ; an be positive integers such that gcd.ai ; aj / D 1, for
all 1 � i ¤ j � n. Then,

gcd

�
ai1 � � �ai`
ai`

; : : : ;
ai1 � � �ai`
ai1

�

D 1

for any fi1 < � � � < i`g � f1; : : : ; ng.
We leave the reader to prove this proposition by induction on `.
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Theorem 5. Let k � 2 and n � 1 be integers. Let Ri .xi1; : : : ; x
i
n/, i D 1; : : : ; nC

k � 1 be rectangles formed with integers xij � 2 such that

(a) gcd.xi11 ; : : : ; x
ik
1 / D 1 for any fi1; : : : ; ikg � f1; : : : ; nC k � 1g and

(b) gcd.xi1j ; x
i2
j / D 1 for any fi1; i2g � f1; : : : ; nC k � 1g and any j D 2; : : : ; n.

Let g1 D maxfg.x1i1 ; : : : ; x1ik /jfi1; : : : ; ikg � f1; : : : ; nC k � 1gg and

g` D max

(

g

 

x
i1
`
� � �xi`Ck�2

`

x
i`Ck�2

`

; : : : ;
x
i1
`
� � �xi`Ck�2

`

x
i1
`

!

j fi1; : : : ; i`Ck�2g

� f1; : : : ; nC k � 1g
)

for each ` D 2; : : : ; n. Then,

R.a1; : : : ; an/ can be tiled with tiles R1; : : : ; RnCk�1 if aj > max
1�`�n

fg`g for all j .

Notice that when k D 2, the number of tiles is n C 1 which is the minimum
required since, by Theorem 1, two square tiles do not suffice to tile all sufficiently
large rectangles. Also, notice that if k D 2 condition (a) becomes condition (b)
with j D 1 and when k > 2 the number of tiles is increased but condition (a) is
less restrictive that condition (b), we justify this below (see second paragraph after
Corollary 1). We finally remark that the Frobenius numbers gi used in Theorem 5
are well defined by Proposition 6.

In order to understand how the Frobenius number is used, we show how the
constructive proof proceeds in the special case when n D 2 and k D 2 (the complete
proof, given below, will be done by induction on n). Let us consider a rectangle
R.a1; a2/ and tiles Ri .xi1; x

i
2/ with i D 1; : : : ; 3. Since gcd.xi1; x

j
1 / D 1 then if

a1 > g1, we have a1 D uxi1 C vxj1 for all 1 � i ¤ j � 3. So, we can form
a rectangle Rij D R.a1; x

i
2x
j
2 / by sticking together u copies of Ri and v copies

of Rj along the first coordinate, and then by replacing each Ri (resp. Rj ) by a
column of xj2 (resp. of xi2) copies of Ri (resp. Rj ). Now, since gcd.xi2; x

j
2 / D 1

for all 1 � i ¤ j � 3 then, by Proposition 6, gcd.x12x
2
2 ; x

1
2x
3
2 ; x

2
2x
3
2/ D 1. So, if

a2 > g.x12x
2
2 ; x

1
2x
3
2 ; x

2
2x
3
2/, we have a2 D ux12x

2
2 C vx12x

3
2 C wx22x

3
2 . Therefore,

R.a1; a2/ can be tiled withR1; R2; R3 by sticking together u copies ofR12, v copies
of R13 and w copies of R23 along the second coordinate.

Remark 1. R.a; b/ can be tiled with R.4; 6/ and R.5; 7/ if a; b > 197.

Proof. We apply the above argument with R1.6; 4/; R2.5; 7/ and R3.7; 5/ ob-
taining that g1 D maxfg.6; 5/; g.6; 7/; g.5; 7/g D maxf19; 29; 23g D 29 and
g2 D maxfg.28; 20; 35/g D 197. ut
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We denote by .RI q/ the rectangle obtained from R.x1; : : : ; xn/ by sticking
together q copies of R along the nth-axis, that is, .RI q/ D R.x1; : : : ; xn�1; qxn/.
We also denote by NR the .n�1/-dimensional rectangle obtained fromR.x1; : : : ; xn/

by setting xn D 0, that is, NR D NR.x1; : : : ; xn�1/.

Proof of Theorem 5. We shall use induction on the dimension n with a fixed
k � 2. For n D 1, we have that gcd.xi11 ; : : : ; x

ik
1 / D 1 for any fi1; : : : ; ikg �

f1; : : : ; nC k � 1g. Since a1 > g1 then, by definition of the Frobenius number, any

integer a1 > g.x
i1
1 ; : : : ; x

ik
1 / is of the form a1 D

kP

jD1
ujx

ij
1 where uj is a nonneg-

ative integer. Thus, the 1-dimensional rectangle R.a1/ (that is, the interval Œ0; a1�)
can be tiled by sticking together tiles .Ri1 I u1/; : : : ; .Rik I uk/ (that is, by sticking
together intervals Œ0; u1x

i1
1 �; : : : ; Œ0; ukx

ik
1 �).

Let us suppose that it is true for n � 1 � 1 and we prove it for n. Let xij
be a positive integer for each j D 1; : : : ; n and each i D 1; : : : ; n C k � 1
with gcd.xi11 ; : : : ; x

ik
1 / D 1 for any fi1; : : : ; ikg � f1; : : : ; nC k � 1g and

gcd.xi1j ; x
i2
j / D 1 for any fi1; i2g � f1; : : : ; nC k � 1g and any j D 2; : : : ; n.

Let Ri D Ri .x
i
1; : : : ; x

i
n/, i D 1; : : : ; n C k � 1 and aj > maxfg1; g2; : : : ; gng.

By induction, R.a1; : : : ; an�1/ can be tiled with tiles NRi1 ; : : : ; NRinCk�2
for any

fi1 < � � � < inCk�2g � f1; : : : ; nC k � 1g since aj > maxfg1; g2; : : : ; gn�1g for
any 1 � j � n � 1.

We claim that R.a1; : : : ; an�1; xi1n � � �xinCk�2
n / can be tiled with tiles Ri1 ; : : : ;

RinCk�2
for any fi1 < � � � < inCk�2g � f1; : : : ; nC k � 1g. Indeed, if we consider

the rectangleR.a1; : : : ; an�1/ embedded in Rn with xn D 0 then, by replacing each
tile NRij (used in the tiling of R.a1; : : : ; an�1/) by

 

Rij I
x
i1
n � � �xinn
x
ij
n

!

we obtain a tiling of R.a1; : : : ; an�1; xi1n � � �xinCk�2
n / with tiles Ri1 ; : : : ; RinCk�2

.
Now, since an > gn then

an D wnCk�1

 

x1n � � �xnCk�1
n

xnCk�1
n

!

C � � � C w1

 

x1n � � �xnCk�1
n

x1n

!

where each wi is a nonnegative integer. By the above claim, rectangle

R0
j D

 

a1; : : : ; an�1;
x1n � � �xnCk�1

n

x
j
n

!

can be tiled with tiles fR1; : : : ; RnCk�1g=Rj for each j D 1; : : : ; nC k � 1. Thus,
R.a1; : : : ; an�1; an/ can be tiled with R1; : : : ; RnCk�1 by sticking together tiles
.R0

1Iw1/; : : : ; .R0
nCk�1IwnCk�1/ along the nth-axis. ut
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Example 1. Let R1 D .22; 3; 3/; R2 D .14; 5; 5/; R3 D .21; 2; 2/; R4 D .15; 7; 7/

and R5 D .55; 11; 11/. In this case, we have k D n D 3.

g1 D maxfg.22; 14; 21/; g.22; 14; 15/; g.22; 14; 55/; g.22; 21; 15/; g.22; 21; 55/;
g.22; 15; 55/; g.14; 21; 15/; g.14; 21; 55/; g.14; 15; 55/; g.21; 15; 55/g

D maxf139; 91; 173; 181; 243; 97; 288; 151; 179g D 288:

With ` D 2 we obtain

g2 D maxfg.3 � 5; 3 �2; 5 � 2/; g.3 � 5; 3 �7; 5 �7/; g.3 �5; 3 � 11; 5 �11/;
g.3 � 2; 3 �7; 2 �7/; g.3 � 2; 3 � 11; 2 �11/; g.3 � 7; 3 �11; 7 �11/;
g.5 � 2; 5 �7; 2 �7/; g.5 � 2; 5 � 11; 2 �11/; g.5 � 7; 5 �11; 7 �11/;
g.2 � 7; 2 �11; 7 �11/g

D maxfg.15; 6; 10/; g.15; 21; 35/; g.15; 33; 55/; g.6; 21; 14/; g.6; 33; 22/;
g.21; 33; 77/; g.10; 35; 14/; g.10; 55; 22/; g.35; 55; 77/; g.14; 22; 77/g

D maxf29; 139; 227; 43; 71; 331; 81; 133; 603; 195g D 603:

And with ` D 3
g3 D maxfg.3 � 5 � 2; 3 �5 � 7; 3 �2 � 7; 5 �2 �7/; g.3 � 5 � 2; 3 �5 � 11; 3 �2 �11; 5 �2 � 11/;

g.3 � 5 � 7; 3 �5 �11; 3 �7 � 11; 5 �7 �11/;
g.5 � 2 � 7; 5 �2 �11; 5 �7 � 11; 2 �7 �11/g

D maxfg.30; 105; 42; 70/; g.30; 165; 66; 110/; g.105; 165; 231; 385/;
g.70; 110; 385; 154/g

D maxf383; 619; 2579; 1591g D 2579:

Therefore, Theorem 5 implies that R.a1; a2; a3/ can be tiled with tiles R1; : : : ; R5
if a1; a2; a3 > maxfg1; g2; g3g D f288; 603; 2579g D 2579.

Corollary 1. Let k � 2 and n � 1 be integers and let Ri .xi1; : : : ; x
i
n/, i D 1; : : : ;

nC k � 1 be rectangles formed with integers xij � 2 verifying conditions (a) and
(b) of Theorem 5. Then,

R.a1; : : : ; an/ can be tiled with tiles R1; : : : ; RnCk�1 if aj > r2n for all j

where r is the largest length among all the tiles Ri .

Proof. The following upper bound for the Frobenius number, due to Wilf [13,
Theorem 3.1.9], states that

g.b1; : : : ; bn/ � b2n (3)

where b1 < � � � < bn are relatively prime integers. In our case, this gives

g` � .z``/2
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where z` D maxfx1
`
; : : : ; xnCk�1

`
g for each ` D 1; : : : ; n. Therefore, by Theorem 5,

we have that R.a1; : : : ; an/ can be tiled with tiles R1; : : : ; RnCk�1 if

ai > r
2n � max

1�`�n
fz2`` g � max

1�`�n
fg`g; (4)

where r is the largest length among tiles R1; : : : ; RnCk�1. ut
Notice that the lower bound given in the above corollary depends on the lower

bound given by (3) and thus it is not necessary optimal. For instance, in the above
example, Corollary 1 would give a1; a2; a3 > 556 while a1; a2; a3 > 2579 is suffi-
cient as shown in the example.

In [3, Theorem 3], it was announced (without proof) Theorem 5 for the case
when k D 2, that is, when each set consisting of the j th lengths of the tiles, are
pairwise relatively prime. The latter is sometimes restrictive, for instance, the above
example cannot be considered under these conditions. Indeed, any permutation of
the coordinates (lengths) of tiles in this case will give a pair of j th-coordinates not
relatively primes for some 1 � j � 3.

Katona and Szász [7] also investigated conditions for tiling n-dimensional
rectangles by applying a generalization of the well-known Marriage theorem.
They showed [7, Theorems 2 and 3] that R.a1; : : : ; an/ can be tiled with tiles
R1; : : : ; Rm if

aj > 3
km2mk

r2
knC2 for all j

where r is the largest length among all the tiles and k � 1 is the cardinality of
special sets constructed from the lengths of the tiles. In particular, when k D 1 (the
smallest cardinality possible) the above inequality gives

aj > 3
m2m

a2
nC2: (5)

It is clear that this lower bound is exponentially worst than the one given by
Corollary 1.

3.1 Cube Tiles

Theorem 6. [3, Theorem 4] All sufficiently large n-dimensional rectangleR can be
tiled by any given set of nC 1 cubes with pairwise relatively prime edge lengths.

We notice that this theorem is a particular case of Theorem 5 by taking k D 2 and
xij D ai for each i D 1; : : : ; nC 1 and all 1 � j � n where 1 < a1 < a2 < � � � <
anC1 are pairwise relatively prime integers, n � 1. Moreover, Theorem 5 implies
that R.a; : : : ; a

„ ƒ‚ …

n

/ can be tiled with R.a1; : : : ; a1
„ ƒ‚ …

n

/; : : : ; R.anC1; : : : ; anC1
„ ƒ‚ …

n

/ if

a > g.A1; : : : ; AnC1/ (6)
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where Ai D P=ai with P D QnC1
jD1 aj . It turns out that the above lower bound

can be stated explicitly by using the following formula, due to Tripathi [16], when
1 < a1 < a2 < � � � < anC1 are pairwise relatively prime integers,

g.A1; : : : ; AnC1/ D nP �
nC1X

iD1
Ai : (7)

The above lower bound is not optimal in general. For instance, by combining (6)
and (7), we obtain that R.a; a/ can be tiled with R.2; 2/; R.3; 3/ and R.p; p/ if
a � 7p�6 where p is an odd integer with 3 6 j p. The following result improves the
latter.

Theorem 7. Let p > 4 be an odd integer with 3 6 j p. Then,R.a; a/ can be tiled with
R.2; 2/; R.3; 3/ and R.p; p/ if a � 3p C 2.

We refer the reader to [12] where a collection of some unpublished work, due to
D.A. Klarner, in relation with Theorem 7 can be found.

Proposition 7. Let L; a; b; c and r be positive integers with bjr and such that r D
x1a C x2c for some integers x1; x2 � 0 and Lc D y1a C y2b for some integers
y1; y2 � 0. Then,R.rCac; rCac/ andR.LcCkab;LcCkab/ can be tiled with
R.a; a/; R.b; b/ and R.c; c/ for any integer k � 1.

Proof. Suppose that bjr . By Theorem 1, we have that

� R.r; r/ can be tiled with R.b; b/
� R.ac; ac/ can be tiled with R.a; a/,
� R.ac; r/ can be tiled with R.a; a/ and R.c; c/,
� R.Lc;Lc/ can be tiled with R.c; c/,
� R.Lc; kab/ can be tiled with R.a; a/ and R.b; b/ and
� R.kab; kab/ can be tiled with R.a; a/ (or with R.b; b/).

The results follow by sticking together copies of the tilings of the above rectan-
gles as shown in Fig. 9. ut

ac

rac

ac

r

ac r

r

Lc Lc

Lc

kab

kabLc

kab

kab

Figure 9 Compositions of tilings
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Proof of Theorem 7. By Theorem 1, R.f; f / can be tiled with R.2; 2/ and R.3; 3/
if f  0 mod 2 or f  0 mod 3. So, we only need to show that R.f; f / can be
tiled with R.2; 2/; R.3; 3/ and R.p; p/ if f � 3p C 2 when f is odd and f  1

or 2 mod 3. Since 3 6 j p then p  i mod 3 with i D 1 or 2.
Let s D p�iC3t � pC1 for any integer t � 1. Since s > g.2; p/ D p�2, then

there exist nonnegative integers u and v such that s D 2uC pv. So, by Proposition
7 (with a D 2; b D 3; r D s and c D p), we have that R.s C 2p; s C 2p/ D
R.3.p C t/ � i; 3.p C t/ � i/ can be tiled with R.2; 2/; R.3; 3/ and R.p; p/ for
any integer t � 1. Or equivalently, R.f; f / can be tiled with R.2; 2/; R.3; 3/ and
R.p; p/ for any integer f � 3p C 1 with f  �i mod 3.

Also, since p D 3tC i with i D 1 or 2 for some integer t � 1 then for p > 3 we
have that p D .t � 1/3C 2.2/ and so, by Proposition 7 (with a D 2; b D 3; r D s;
c D p and L D 1), we have that, R.p C 6k; p C 6k/ D R.3.t C 2k/C i; 3.t C
2k/ C i/ can be tiled with R.2; 2/; R.3; 3/ and R.p; p/ for any integer k � 1. Or
equivalently, R.f; f / can be tiled with R.2; 2/; R.3; 3/ and R.p; p/ for any odd
integer f � p C 6 with f  i mod 3. ut
Corollary 2. R.a; a/ can be tiled with (a)R.2; 2/; R.3; 3/, andR.5; 5/ if and only
if a 6D 1; 7 and with (b) R.2; 2/; R.3; 3/, and R.7; 7/ if and only if a 6D 1; 5; 11.

Proof. (a) It is clear that R.1; 1/ and R.7; 7/ cannot be tiled with R.2; 2/; R.3; 3/,
and R.5; 5/. By Theorem 7, we have that R.a; a/ can be tiled with
R.2; 2/; R.3; 3/, and R.5; 5/ if a � 3p C 2 D 17 and, by Theorem 1, R.a; a/
can be tiled with R.2; 2/ and R.3; 3/ if a  0 mod 2 or a  0 mod 3. These
leave us with the cases when a D 5; 11 and 13. The case a D 5 is trivial.
R.11; 11/ can be tiled with R.2; 2/; R.3; 3/, and R.5; 5/ since, by Theorem 7,
the result is true for any odd integer a � pC 6 D 11 and a  2 mod 3. Finally,
R.13; 13/ can be tiled as it is illustrated in Fig. 10.

(b) It is clear that R.1; 1/, R.5; 5/, and R.11; 11/ cannot be tiled with R.2; 2/;
R.3; 3/, and R.7; 7/. By Theorem 7, we have that R.a; a/ can be tiled with
R.2; 2/; R.3; 3/, and R.7; 7/ if a � 3p C 2 D 23 and, by Theorem 1, R.a; a/
can be tiled with R.2; 2/ and R.3; 3/ if a  0 mod 2 or a  0 mod 3. These
leave us with the cases when a D 7; 13; 17 and 19. The case a D 7 is trivial.

Figure 10 TilingR.13; 13/
with R.2; 2/; R.3; 3/, and
R.5; 5/
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Figure 11 TilingR.17; 17/
with R.2; 2/; R.3; 3/, and
R.7; 7/
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R.13; 13/ andR.19; 19/ both can be tiled since, by Theorem 7, the result is true
for any odd integer a � p C 6 D 13 with a  1 mod 3. Finally, R.17; 17/ can
be tiled as it is illustrated in Fig. 11. ut
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Sumsets and the Convex Hull

Máté Matolcsi and Imre Z. Ruzsa

Summary We extend Freiman’s inequality on the cardinality of the sumset of a
d -dimensional set. We consider different sets related by an inclusion of their convex
hull, and one of them added possibly several times.

Mathematics Subject Classifications (2000). 11B50, 11B75, 11P70

Keywords Multidimensional sumsets

1 Introduction

The aim of this paper is to give a lower estimate for the cardinality of certain sum-
sets in Rd .

We say that a set in Rd is proper d -dimensional if it is not contained in any affine
hyperplane.

Our starting point is the following classical theorem of Freiman.

Theorem 1.1 (Freiman [1], Lemma 1.14). Let A � Rd be a finite set, jAj D m.
Assume that A is proper d -dimensional. Then,

jAC Aj � m.d C 1/� d.d C 1/
2

:
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We will show that to get this inequality it is sufficient to use the vertices (extremal
points) of A.

Definition 1.2. We say that a point a 2 A is a vertex of a set A � Rd if it is not in
the convex hull of A=fag. The set of vertices will be denoted by vertA.

The convex hull of a set A will be denoted by convA.

Theorem 1.3. Let A � Rd be a finite set, jAj D m. Assume that A is proper
d -dimensional, and let A0 D vertA, We have

jAC A0j � m.d C 1/� d.d C 1/
2

:

This can be extended to different summands as follows.

Theorem 1.4. Let A;B � Rd be finite sets, jAj D m. Assume that B is proper
d -dimensional and A � convB . We have

jAC Bj � m.d C 1/� d.d C 1/
2

:

Finally, we extend it to several summands as follows. We use kB D BC� � �CB
to denote repeated addition. As far as we know, even the case of A D B seems to
be new here.

Theorem 1.5. Let A;B � Rd be finite sets, jAj D m. Assume that B is proper
d -dimensional and A � convB . Let k be a positive integer. We have

jAC kBj � m
 

d C k
k

!

� k
 

d C k
k C 1

!

D
�

m � kd

k C 1
� 

d C k
k

!

: (1.1)

The case d D 1 of the above theorems is quite obvious. In [2], we gave a less
obvious result which compares a complete sum and its subsums, which sounds as
follows.

Theorem 1.6. Let A1; : : : ; Ak be finite, nonempty sets of integers. Let A0
i be the set

consisting of the smallest and the largest elements of Ai (so that 1 � jA0
i j � 2). Put

S D A1 C � � � C Ak ;
Si D A1 C � � � C Ai�1 CAiC1 C � � � C Ak;
S 0
i D A1 C � � � C Ai�1 CA0

i C AiC1 C � � � CAk ;

S 0 D
k[

iD1
S 0
i :

We have

jS j � ˇˇS 0ˇˇ � 1

k � 1
kX

iD1
jSi j � 1

k � 1 : (1.2)
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Problem 1.7. Generalize Theorem 1.6 to multidimensional sets. A proper general-
ization should give the correct order of magnitude, hence the analog of (1.2) could
be of the form

jS j � ˇˇS 0ˇˇ �
 

kd�1

.k � 1/d � "
!

kX

iD1
jSi j

if all sets are sufficiently large.

Problem 1.8. Let A;B1; : : : ; Bk � Rd such that the Bi are proper d -dimensional
and

A � convB1 � convB2 � � � � � convBk :

Does the estimate given in (1.1) also hold for AC B1 C � � � C Bk?

This is easy for d D 1.

2 A Simplicial Decomposition

We will need a result about simplicial decomposition.
By a simplex in Rd , we mean a proper d -dimensional compact set, which is the

convex hull of d C 1 points.

Definition 2.1. Let S1; S2 � Rd be simplices, Bi D vertSi . We say that they are
in regular position, if

S1 \ S2 D conv.B1 \ B2/;
that is, they meet in a common k-dimensional face for some k � d . (This does not
exclude the extremal cases when they are disjoint or they coincide.) We say that a
collection of simplices is in regular position if any two of them are.

Lemma 2.2. Let B � Rd be a proper d dimensional finite set, S D convB . There
is a sequence S1; S2; : : : ; Sn of distinct simplices in regular position with the fol-
lowing properties.

(a) S DSSi .
(b) Bi D vertSi D Si \ B .
(c) Each Si , 2 � i � n meets at least one of S1, . . . , Si�1 in a .d � 1/ dimen-

sional face.

We mentioned this lemma to several geometers and all answered “of course” and
offered a proof immediately, but none could name a reference with this formulation,
so we include a proof for completeness. This proof was communicated to us by prof.
Károly Böröczki.

Proof. We use induction on jBj. The case jBj D 2 is clear. Let jBj D k, and assume
we know it for smaller sets (in any possible dimension).
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Let b be a vertex of B and apply it for the set B 0 D B=fbg. This set may be d or
d � 1 dimensional.

First case: B 0 is d dimensional. With the natural notation let

S 0 D
n0

[

iD1
S 0
i

be the prescribed decomposition of S 0 D convB 0. We start the decomposition of S
with these, and add some more as follows.

We say that a point x of S 0 is visible from b, if x is the only point of the segment
joining x and b in S 0. Some of the simplices S 0

i have (one or more) d�1 dimensional
faces that are completely visible from b. Now if F is such a face, then we add the
simplex

conv.F [ fbg/
to our list.

Second case: B 0 is d � 1 dimensional. Again we start with the decomposition
of S 0, just in this case the sets S 0

i will be d � 1 dimensional simplices. Now the
decomposition of S will simply consist of

Si D conv.S 0
i [ fbg/; n D n0:

ut
The construction above immediately gave property (c). We note that it is not

really an extra requirement, every decomposition has it after a suitable rearrange-
ment. This just means that the graph obtained by using our simplices as vertices and
connecting two of them if they share a d � 1 dimensional face is connected. Now
take two simplices, say Si and Sj . Take an inner point in each and connect them by
a segment. For a generic choice of these points, this segment will not meet any of
the�d �2 dimensional faces of any Sk . Now as we walk along this segment and go
from one simplex into another, this gives a path in our graph between the vertices
corresponding to Si and Sj .

3 The Case of a Simplex

Here we prove Theorem 1.5 for the case jBj D d C 1.

Lemma 3.1. Let A;B � Rd be finite sets, jAj D m, jBj D d C 1. Assume that
B is proper d -dimensional and A � convB . Let k be a positive integer. Write
jA\ Bj D m1. We have

jAC kBj D .m �m1/
 

d C k
k

!

C
 

d C k C 1
k C 1

!

�
 

d �m1 C k C 1
k C 1

!

: (3.3)
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In particular, if jA\ Bj � 1, then

jAC kBj D m
 

d C k
k

!

: (3.4)

We have always

jAC kBj � m
 

d C k
k

!

� k
 

d C k
k C 1

!

D
�

m � kd

k C 1
� 

d C k
k

!

: (3.5)

Proof. Put A1 D A \ B , A2 D A=B . Write B D fb0; : : : ; bd g, arranged in such a
way that

A1 D A\ B D fb0; : : : ; bm1�1g:
The elements of kB are the points of the form

s D
dX

iD0
xibi ; xi 2 Z ; xi � 0;

X

xi D k;

and this representation is unique. Clearly

jkBj D
 

d C k
k

!

:

Each element of A has a unique representation of the form

a D
kX

iD0
˛idi ; ˛i 2 R ; ˛i � 0;

X

˛i D 1;

a D
dX

iD0
˛ibi ; ˛i 2 R ; ˛i � 0;

X

˛i D 1;

and if a 2 A1, then some ˛i D 1 and the others are equal to 0, while if a 2 A2, then
at least two ˛i ’s are positive.

Assume now that a C s D a0 C s0 with certain a; a0 2 A, s; s0 2 kB . By
substituting the above representations, we obtain

X

.˛i C xi /bi D
X

.˛0
i C x0

i /bi ;
X

.˛i C xi / D
X

.˛0
i C x0

i / D k C 1;

hence ˛i C xi D ˛0
i C x0

i for all i . By looking at the integral and fractional parts,
we see that this is possible only if ˛i D ˛0

i , or one of them is 1 and the other is 0. If
the second possibility never happens, then a D a0. If it happens, say ˛i D 1; ˛0

i D 0
for some i , then ˛j D 0 for all j ¤ i and then each a0

j must also be 0 or 1, that is,
a; a0 2 A1.
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The previous discussion shows that .A1 C kB/ \ .A2 C kB/ D ; and the sets
aC kB , a 2 A2 are disjoint, hence

jAC kBj D jA1 C kBj C jA2 C kBj
and

jA2 C kBj D jA2j jkBj D .m �m1/
 

d C k
k

!

: (3.6)

Now we calculate jA1 C kBj. The elements of this set are of the form

dX

iD0
xibi ; xi 2 Z ; xi � 0;

X

xi D k C 1;

with the additional requirement that there is at least one subscript i , i � m1�1with
xi � 1. Without this requirement the number would be the same as

j.k C 1/Bj D
 

d C k C 1
k C 1

!

:

The vectors .x0; : : : ; xd / that violate this requirement are those that use only the
last d �m1 coordinates, hence their number is

 

d �m1 C k C 1
k C 1

!

:

We obtain that

jA1 C kBj D
 

d C k C 1
k C 1

!

�
 

d �m1 C k C 1
k C 1

!

:

Adding this formula to (3.6) we get (3.3).
If m1 D 0 or 1, this formula reduces to the one given in (3.4).
To show inequality (3.5), observe that this formula is a decreasing function ofm1,

hence the minimal value is atm1 D dC1, which after an elementary transformation
corresponds to the right side of (3.5). Naturally this is attained only if m � d C 1,
and for small values ofm the right side of (3.5) may even be negative. ut

4 The General Case

Proof (Proof of Theorem 1.5). We apply Lemma 2.2 to our set B . This decomposi-
tion induces a decomposition of A as follows. We put

A1 D A\ S1; A2 D A \ .S2=S1/; : : : ; An D A\
�

Sn

.S1 [ S2 [ � � � [ Sn�1/

�

:

Clearly the setsAi are disjoint and their union isA. Recall the notationBi D vertSi .
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We claim that the sets Ai C kBi are also disjoint.
Indeed, suppose that aC s D a0 C s0 with a 2 Ai , a0 2 Aj , s 2 kBi , s0 2 kBj ,

i < j . We have
aC s
k C 1 2 Si ;

a0 C s0

k C 1 2 Sj ;
and these points are equal, so they are in

Si \ Sj D conv.Bi \ Bj /:

This means that in the unique convex representation of .a0Cs0/=.kC1/ by points of
Bj only elements of Bi \ Bj are used. However, we can obtain this representation
via using the representation of a0 and the components of s0, hence we must have
a0 2 conv.Bi \ Bk/ � Si , a contradiction.

This disjointness yields

jAC kBj �
X

jAi C kBi j :

We estimate the summands using Lemma 3.1.
If i > 1, then jAi \ Bi j � 1. Indeed, there is a j < i such that Sj has a common

d � 1 dimensional face with Si , and then the d vertices of this face are excluded
from Ai by definition. So in this case, (3.4) gives

jAi C kBi j D jAi j
 

d C k
k

!

:

For i D 1, we can only use the weaker estimate (3.5):

jA1 C kB1j � jA1j
 

d C k
k

!

� k
 

d C k
k C 1

!

:

Summing these equations we obtain (1.1). ut
Acknowledgement The authors profited much from discussions with Katalin Gyarmati and
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Explicit Constructions of Infinite Families
of MSTD Sets

Steven J. Miller and Daniel Scheinerman

Summary Given a finite set of integers A, we may consider its sumset AC A and
its difference set A � A. As addition is commutative and subtraction is not, it was
initially believed that as r ! 1, almost all of the 2r subsets of f1; : : : ; rg would
have jA�Aj > jACAj; if jACAj > jA�Aj, we say A is an MSTD (more sums
than differences) set. While Martin and O’Bryant [MO06] disproved this conjecture
by showing that a small but positive percentage of such sets are MSTD, previous ex-
plicit constructions only found families of size f .r/2r=2 for some polynomial f .r/.

Below we present a new construction that yields a family of MSTD sets in
f1; : : : ; rg of sizeC2r=r4 for a fixed, non-zero constantC ; thus our family is signifi-
cantly denser than previous constructions. Our method has been generalized further
with Brooke Orosz to handle certain ternary combinations; the details below are
adapted from our paper [MOS09].

We conclude with an appendix on a special case of a result of Hegarty and Miller
[HM07], which supports the intuition behind the false conjecture. Specifically, if
p.r/ is a monotonically decreasing function tending to 0, and for each r every ele-
ment in f1; : : : ; rg is in a subset A with probability p.r/, then as r !1 almost no
subsets (with respect to this probability) are MSTD.
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1 Introduction

Given a finite set of integers A, we define its sumset A C A and difference set
A� A by

AC A D fai C aj W ai ; aj 2 Ag
A� A D fai � aj W ai ; aj 2 Ag; (1)

and let jX j denote the cardinality of X . If jA C Aj > jA � Aj, then, following
Nathanson, we call A an MSTD (more sums than differences) set. As addition is
commutative while subtraction is not, we expect that for a ‘generic’ set A we have
jA�Aj > jACAj, as a typical pair .x; y/ contributes one sum and two differences;
thus we expect MSTD sets to be rare.

Martin and O’Bryant [MO06] proved that, in some sense, this intuition is wrong.
They considered the uniform model1 for choosing a subset A of f1; : : : ; ng, and
showed that there is a positive probability that a random subset A is an MSTD set
(though, not surprisingly, the probability is quite small). However, the answer is very
different for other ways of choosing subsets randomly, and if we decrease slightly
the probability that an element is chosen, then our intuition is correct. Specifically,
consider the binomial model with parameter p.n/, with limn!1 p.n/ D 0 and
n�1 D o.p.n// (so p.n/ doesn’t tend to zero so rapidly that the sets are too sparse).2

Hegarty and Miller [HM07] recently proved that, in the limit as n! 0, the percent-
age of subsets of f1; : : : ; ng that are MSTD sets tends to zero in this model. See
Appendix 2 for full statements and a self-contained proof when p.n/ D o.n�1=2/.

Though MSTD sets are rare, they do exist (and, in the uniform model, are some-
what abundant by the work of Martin and O’Bryant). Examples go back to the
1960s. Conway is said to have discovered f0; 2; 3; 4; 7; 11; 12; 14g, while Marica
[Ma69] gave f0; 1; 2; 4; 7; 8; 12; 14; 15g in 1969 and Freiman and Pigarev [FP73]
found f0; 1; 2; 4; 5, 9; 12; 13, 14; 16; 17, 21; 24; 25; 26; 28; 29g in 1973. Recent work
includes infinite families constructed by Hegarty [He07] and Nathanson [Na07], as
well as existence proofs by Ruzsa [Ru76, Ru84, Ru92].

Most of the previous constructions3 of infinite families of MSTD sets start with
a symmetric set, which is then ‘perturbed’ slightly through the careful addition of
a few elements that increase the number of sums more than the number of differ-
ences; see [He,Na07] for a description of some previous constructions and methods.

1 This means each of the 2n subsets of f1; : : : ; ng are equally likely to be chosen, or, equivalently,
that the probability any k 2 f1; : : : ; ng is in A is just 1=2.
2 This model means that the probability k 2 f1; : : : ; ng is in A is p.n/.
3 An alternate method constructs an infinite family from a given MSTD set A by considering At D
fPt

iD1 aim
i�1 W ai 2 Ag. Form sufficiently large, these will be MSTD sets; this is called the base

expansion method. Note, however, that these will be very sparse. See [He07] for more details.
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In many cases, these symmetric sets are arithmetic progressions; such sets are natu-
ral starting points because ifA is an arithmetic progression, then jACAj D jA�Aj.4

In this work, we present a new method which takes an MSTD set satisfying cer-
tain conditions and constructs an infinite family of MSTD sets. While these families
are not dense enough to prove that a positive percentage of subsets of f1; : : : ; rg are
MSTD sets, we are able to elementarily show that the percentage is at leastC=r4 for
some constant C . Thus, our families are far denser than those in [He, Na07]; trivial
counting5 shows all of their infinite families give at most f .r/2r=2 of the subsets of
f1; : : : ; rg (for some polynomial f .r/) are MSTD sets, implying a percentage of at
most f .r/=2r=2.

We first introduce some notation:

� We let Œa; b� denote all integers from a to b; thus Œa; b� D fn 2 Z W a � n � bg.
� We say a set of integersA have the property Pn (or is a Pn-set) if both its sumset

and its difference set contain all but the first and last n possible elements (and of
course, it may or may not contain some of these fringe elements).6 Explicitly, let
a D minA and b D maxA. Then, A is a Pn-set if

Œ2aC n; 2b � n� � ACA (2)

and

Œ�.b � a/C n; .b � a/� n� � A� A: (3)

We can now state our construction and main result.

Theorem 1. Let A D L[R be a Pn, MSTD set where L � Œ1; n�, R � ŒnC1; 2n�,
and 1; 2n 2 A;7 see Remark 2 for an example of such anA. Fix a k � n and letm be
arbitrary. LetM be any subset of ŒnCkC1; nCkCm� with the property that it does

4 As jA C Aj and jA � Aj are not changed by mapping each x 2 A to ˛x C ˇ for any fixed ˛
and ˇ, we may assume our arithmetic progression is just f0; : : : ; ng, and thus the cardinality of
each set is 2nC 1.
5 For example, consider the following construction of MSTD sets from [Na07]: let m; d; k 2 N
withm � 4, 1 � d � m� 1, d ¤ m=2, k � 3 if d < m=2 else k � 4. Set B D Œ0; m� 1�nfdg,
L D fm� d; 2m� d; : : : ; km� dg, a� D .k C 1/m� 2d and A D B [L[ .a� �B/[ fmg.
Then A is an MSTD set. The width of such a set is of the order km. Thus, if we look at all triples
.m; d; k/ with km � r satisfying the above conditions, these generate on the order of at most
P

k�r

P

m�r=k

P

d�m 1 � r2, and there are of the order 2r possible subsets of f0; : : : ; rg; thus
this construction generates a negligible number of MSTD sets. Though we write f .r/=2r=2 to
bound the percentage from other methods, a more careful analysis shows it is significantly less;
we prefer this easier bound as it is already significantly less than our method. See for example
Theorem 2 of [He07] for a denser example.
6 It is not hard to show that for fixed 0 < ˛ � 1 a random set drawn from Œ1; n� in the uniform
model is a Pb˛nc-set with probability approaching 1 as n ! 1.
7 Requiring 1; 2n 2 A is quite mild; we do this so that we know the first and last elements of A.
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not have a run of more than k missing elements (i.e., for all ` 2 ŒnCkC1; nCmC1�
there is a j 2 Œ`; `C k � 1� such that j 2 M ). Assume further that nC kC 1 62 M
and set A.M I k/ D L [ O1 [M [ O2 [ R0, where O1 D ŒnC 1; nC k�, O2 D
ŒnC kCmC 1; nC 2kCm� (thus theOi ’s are just sets of k consecutive integers),
and R0 D RC 2k Cm. Then

(1) A.M I k/ is an MSTD set, and thus we obtain an infinite family of distinct MSTD
sets as M varies;

(2) There is a constant C > 0 such that as r ! 1 the percentage of subsets of
f1; : : : ; rg that are in this family (and thus are MSTD sets) is at least C=r4.

Remark 1. We quickly highlight the main idea of the construction, referring to
Sect. 2 for details. The idea is to take an MSTD set A and augment it to a new
set A0 such that the number of sums added (jA0CA0j � jACAj) equals the number
of differences added (jA0 �A0j � jA�Aj). This is accomplished by having the two
blocks O1; O2 of consecutive elements and then making sure that we always take
at least one out of every k elements between O1 and O2. Counting arguments then
show that every possible new difference and new sum is included.

Remark 2. In order to show that our theorem is not trivial, we must of course exhibit
at least one Pn, MSTD set A satisfying all our requirements (else our family is
empty!). We may take the set8 A D f1; 2; 3; 5; 8; 9; 13; 15; 16g; it is an MSTD set as

AC A D f2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14; 15; 16; 17; 18; 19; 20; 21;
22; 23; 24; 25; 26; 28; 29; 30; 31; 32g

A �A D f�15;�14;�13;�12;�11;�10;�8;�7;�6;�5;�4;�3;�2;�1;
0; 1; 2; 3; 4; 5; 6; 7; 8; 10; 11; 12; 13; 14; 15g (4)

(so jA C Aj D 30 > 29 D jA � Aj). A is also a Pn-set, as (2) is satisfied since
Œ10; 24� � AC A and (3) is satisfied since Œ�7; 7� � A �A.

For the uniform model, a subset of Œ1; 2n� is a Pn-set with high probability as
n ! 1, and thus examples of this nature are plentiful. For example, of the 1;748
MSTD sets with minimum 1 and maximum 24;1008 are Pn-sets.

Unlike other estimates on the percentage of MSTD sets, our arguments are not
probabilistic, and rely on explicitly constructing large families of MSTD sets. Our
arguments share some similarities with the methods in [He07] (see for example,
Case I of Theorem 8) and [MO06]. There the fringe elements of the set were also
chosen first. A random set was then added in the middle, and the authors argued that
with high probability the resulting set is an MSTD set. We can almost add a random
set in the middle; the reason we do not obtain a positive percentage is that we have

8 This A is trivially modified from [Ma69] by adding 1 to each element, as we start our sets with 1
while other authors start with 0. We chose this set as our example as it has several additional nice
properties that were needed in earlier versions of our construction which required us to assume
slightly more about A.



Explicit Constructions of Infinite Families of MSTD Sets 233

the restriction that there can be no consecutive block of size k of numbers in the
middle that are not chosen to be in A.M I k/. This is easily satisfied by requiring us
to choose at least one number in consecutive blocks of size k=2, and this is what
leads to the loss of a positive percentage (though we do obtain sets that are known
to be MSTD sets, and not just highly likely to be MSTD sets).

The paper is organized as follows. We describe our construction in Sect. 2, and
prove our claimed lower bounds for the percentage of sets that are MSTD sets in
Sect. 3. We end with some concluding remarks and suggestions for future research
in Sect. 4.

On a personal note, the first named author would like to thank Mel for introduc-
ing him to much of additive number theory, ranging from his accessible books to
numerous conversations over the years. This paper (as well as the paper by Hegarty
and Miller [HM07]) is an outgrowth of a talk Mel gave at Brown in 2007 on MSTD
sets as well as conversations at CANT 2007, and it is a pleasure to thank him for an
introduction to such a fascinating subject.

2 Construction of Infinite Families of MSTD Sets

Let A � Œ1; 2n�. We can write this set as A D L [ R where L � Œ1; n� and
R � ŒnC 1; 2n�. We have

AC A D ŒLC L� [ ŒLCR� [ ŒR CR� (5)

where LC L � Œ2; 2n�, LCR � ŒnC 2; 3n�, and RCR � Œ2nC 2; 4n�, and

A �A D ŒL �R� [ ŒL � L� [ ŒR � R�[ ŒR � L� (6)

whereL�R � Œ�1;�2nC1�, L�L � Œ�.n�1/; n�1�, R�R � Œ�.n�1/; n�1�
and R �L � Œ1; 2n � 1�.

A typical subset A of f1; : : : ; 2ng (chosen from the uniform model, see
Footnote 1) will be a Pn-set (see Footnote 6). It is thus the interaction of the
“fringe” elements that largely determines whether a given set is an MSTD set.
Our construction begins with a set A that is both an MSTD set and a Pn-set. We
construct a family of Pn, MSTD sets by inserting elements into the middle in such
a way that the new set is a Pn-set, and the number of added sums is equal to the
number of added differences. Thus, the new set is also an MSTD set.

In creating MSTD sets, it is very useful to know that we have a Pn-set. The
reason is that we have all but the “fringe” possible sums and differences, and are
thus reduced to studying the extreme sums and differences. The following lemma
shows that if A is a Pn, MSTD set and a certain extension of A is a Pn-set, then this
extension is also an MSTD set. The difficult step in our construction is determining
a large class of extensions which lead to Pn-sets; we will do this in Lemma 2.
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Lemma 1. Let A D L [ R be a Pn-set where L � Œ1; n� and R � Œn C 1; 2n�.
Form A0 D L [M [ R0 where M � ŒnC 1; nCm� and R0 D R C m. If A0 is a
Pn-set, then jA0 C A0j � jA C Aj D jA0 � A0j � jA � Aj D 2m (i.e., the number
of added sums is equal to the number of added differences). In particular, if A is an
MSTD set, then so is A0.

Proof. We first count the number of added sums. In the interval Œ2; n C 1�, both
AC A and A0 C A0 are identical, as any sum can come only from terms in LC L.
Similarly, we can pair the sums of ACA in the region Œ3nC1; 4n� with the sums of
A0CA0 in the region Œ3nC 2mC 1; 4nC 2m�, as these can come only fromRCR
and .R Cm/C .R Cm/, respectively. Since we have accounted for the n smallest
and largest terms in both AC A and A0 C A0, and as both are Pn-sets, the number
of added sums is just .3nC 2mC 1/� .3nC 1/ D 2m.

Similarly, differences in the interval Œ1 � 2n;�n� that come from L � R can be
paired with the corresponding terms fromL�.RCm/, and differences in the interval
Œn; 2n � 1� from R � L can be paired with differences coming from .R Cm/ � L.
Thus the size of the middle grows from the interval Œ�n C 1; n � 1� to the interval
Œ�n �mC 1; nCm � 1�. Thus we have added .2nC 2mC 3/� .2nC 3/ D 2m
sums. Thus, jA0 C A0j � jACAj D jA0 � A0j � jA� Aj D 2m as desired. ut

The above lemma is not surprising, as in it we assumeA0 is aPn-set; the difficulty
in our construction is showing that our new set A.M I k/ is also a Pn-set for suitably
chosen M . This requirement forces us to introduce the sets Oi (which are blocks
of k consecutive integers), as well as requiring M to have at least one of every k
consecutive integers.

We are now ready to prove the first part of Theorem 1 by constructing an infinite
family of distinct Pn, MSTD sets. We take a Pn, MSTD set and insert a set in such
a way that it remains a Pn-set; thus by Lemma 1, we see that this new set is an
MSTD set.

Lemma 2. Let A D L [ R be a Pn-set where L � Œ1; n�, R � Œn C 1; 2n�, and
1; 2n 2 A. Fix a k � n and let m be arbitrary. Choose any M � Œn C k C 1;
nC k C m� with the property that M does not have a run of more than k missing
elements, and form A.M I k/ D L[O1[M [O2[R0 whereO1 D ŒnC1; nCk�,
O2 D ŒnCkCmC1; nC2kCm�, andR0 D RC2kCm. ThenA.M I k/ is a Pn-set.

Proof. For notational convenience, denoteA.M I k/ byA0. Note A0CA0 � Œ2; 4nC
4k C 2m�. We begin by showing that there are no missing sums from n C 2 to
3nC 4k C 2m; proving an analogous statement for A0 � A0 shows A0 is a Pn-set.
By symmetry9, we only have to show that there are no missing sums in ŒnC2; 2nC
2k Cm�. We consider various ranges in turn.

We observe that ŒnC 2; nC kC 1� � A0CA0 because we have 1 2 L and these
sums result from 1CO1. Additionally,O1 CO1 D Œ2nC 2; 2nC 2k� � A0 C A0.
Since n � k we have nC k C 1 � 2nC 1, these two regions are contiguous and
overlap and thus ŒnC 2; 2nC 2k� � A0 C A0.

9 Apply the arguments below to the set 2nC 2k Cm� A0, noting that 1; 2nC 2k Cm 2 A0.
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Now consider O1 CM . Since M does not have a run of more than k missing
elements, the worst case scenario for us for elements in the sumset is that the small-
est element ofM is nC2k and that the largest element is nCmC1 (and, of course,
we still have at least one out of every k consecutive integers is in M ). If this is the
case, then we still haveO1CM � Œ.nC 1/C .nC 2k/; .nC k/C .nCmC 1/� D
Œ2nC 2k C 1; 2nC k CmC 1�. We had already shown that A0 C A0 has all sums
up to 2nC 2k; this extends the sumset to all sums up to 2nC k CmC 1.

All that remains is to show we have all sums in Œ2nC kCmC 2; 2nC 2kCm�.
This follows immediately fromO1CO2 D Œ2nCkCmC2; 2nC3kCm� � A0CA0.
This extends our sumset to include all sums up to 2nC3kCm, which is well past our
halfway mark of 2nC 2kCm; the remaining sums follow from a similar argument.
Thus, we have shown that A0 C A0 � ŒnC 2; 3nC 4k C 2mC 1�.

We now do a similar calculation for the difference set, which is contained in
Œ�.2nC2kCm/C1; .2nC2kCm/�1�. As we have already analyzed the sumset,
all that remains to proveA is a Pn-set is to show thatA0�A0 � Œ�n�2k�mC1; nC
2k Cm� 1�. As all difference sets are symmetric about and contain 0, it suffices to
show the positive elements are present, i.e., that A0 �A0 � Œ1; nC 2k Cm � 1�.

We easily see Œ1; k � 1� � A0 � A0 as Œ0; k � 1� � O1 � O1. Now consider
M � O1. Again the worst case scenario for us is that the least element of M is
n C 2k and the greatest is nC m C 1. With this in mind, we see that M � O1 �
Œ.n C 2k/ � .n C k/; .n C m C 1/ � .n C 1/� D Œk;m�. Now O2 � O1 � Œ.n C
k CmC 1/� .nC k/; .nC 2k Cm/ � .nC 1/� D ŒmC 1; 2k Cm � 1�, and we
therefore have all differences up to 2k Cm � 1.

Since 2n 2 A we have 2n C 2k C m 2 A0. Consider .2nC 2k C m/ � O1 D
Œn C k C m; n C 2k C m � 1�. Since k � n we see that n C k C m � 2k C m;
this implies that we have all differences up to nC 2k Cm � 1 (this is because we
already have all differences up to 2k C m � 1, and n C k C m is either less than
2k Cm � 1, or at most one larger). ut
Proof of Theorem 1(1). The proof of the first part of Theorem 1 follows immediately.
By Lemma 2, our new sets A.M I k/ are Pn-sets, and by Lemma 1, they are also
MSTD. All that remains is to show that the sets are distinct; this is done by requiring
nC k C 1 is not in our set (for a fixed k, these sets have elements nC 1; : : : ; nC k
but not nC k C 1; thus different k yield distinct sets).

3 Lower Bounds for the Percentage of MSTDs

To finish the proof of Theorem 1, for a fixed n, we need to count how many sets fM
of the form O1 [M [ O2 (see Theorem 1 for a description of these sets) of width
r D 2kCm can be inserted into a Pn, MSTD set A of width 2n. As O1 andO2 are
just intervals of k consecutive ones, the flexibility in choosing them comes solely
from the freedom to choose their length k (so long as k � n). There is far more
freedom to chooseM .
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There are two issues we must address. First, we must determine how many ways
there are to fill the elements ofM such that there are no runs of k missing elements.
Second, we must show that the sets generated by this method are distinct. We saw
in the proof of Theorem 1(1) that the latter is easily handled by giving A.M I k/
(through our choice ofM ) slightly more structure. Assume that the element nCkC1
is not in M (and thus not in A). Then for a fixed width r D 2k Cm, each value of
k gives rise to necessarily distinct sets, since the set contains ŒnC 1; nC k� but not
nCkC1. In our arguments below, we assume our initialPn, MSTD setA is fixed; we
could easily increase the number of generated MSTD sets by varying A over certain
MSTD sets of size 2n. We choose not to do this as n is fixed, and thus varying over
such A will only change the percentages by a constant independent of k and m.

Fix n and let r tend to infinity. We count how many fM ’s there are of width r
such that in M , there is at least one element chosen in any consecutive block of k
integers. One way to ensure this is to divide M into consecutive, non-overlapping
blocks of size k=2, and choose at least one element in each block. There are 2k=2

subsets of a block of size k=2, and all but one have at least one element. Thus, there
are 2k=2 � 1 D 2k=2.1 � 2�k=2/ valid choices for each block of size k=2. As the
width of M is r � 2k, there are d r�2k

k=2
e � r

k=2
� 3 blocks (the last block may have

length less than k=2, in which case any configuration will suffice to ensure there is
not a consecutive string of k omitted elements in M because there will be at least
one element chosen in the previous block). We see that the number of valid M ’s of

width r � 2k is at least 2r�2k �1 � 2�k=2	 r
k=2

�3
. As O1 and O2 are two sets of k

consecutive 1’s, there is only one way to choose either.
We therefore see that, for a fixed k, of the 2r D 2mC2k possible subsets of r

consecutive integers, we have at least 2r�2k �1 � 2�k=2	 r
k=2

�3
are permissible to

insert into A. To ensure that all of the sets are distinct, we require nC k C 1 62 M ;
the effect of this is to eliminate one degree of freedom in choosing an element in
the first block of M , and this will only change the proportionality constants in the
percentage calculation (and not the r or k dependencies). Thus, if we vary k from
n to r=4 (we could go a little higher, but once k is as large as a constant times r
the number of generated sets of width r is negligible), we have at least some fixed
constant times

2r
r=4
X

kDn

1

22k

�

1 � 2�k=2
� r

k=2
�3

MSTD sets; equivalently, the percentage of sets O1 [ M [ O2 with Oi of width
k 2 fn; : : : ; r=4g andM of width r � 2k that we may add is at least this divided by
2r , or some universal constant times

r=4
X

kDn

1

22k

�

1 � 1

2k=2

� r
k=2

(7)

(as k � n and n is fixed, we may remove the �3 in the exponent by changing the
universal constant).



Explicit Constructions of Infinite Families of MSTD Sets 237

We now determine the asymptotic behavior of this sum. More generally, we can
consider sums of the form

S.a; b; cI r/ D
r=4
X

kDn

1

2ak

�

1 � 1

2bk

�r=ck

: (8)

For our purposes, we take a D 2 and b D c D 1=2; we consider this more gen-
eral sum so that any improvements in our method can readily be translated into
improvements in counting MSTD sets. While we know (from the work of Martin
and O’Bryant [MO06]) that a positive percentage of such subsets are MSTD sets,
our analysis of this sum yields slightly weaker results. The approach in [MO06] is
probabilistic, obtained by fixing the fringes of our subsets to ensure certain sums and
differences are in (or not in) the sum- and difference sets. While our approach also
fixes the fringes, we have far more possible fringe choices than in [MO06] (though
we do not exploit this). While we cannot prove a positive percentage of subsets are
MSTD sets, our arguments are far more elementary.

The proof of Theorem 1(2) is clearly reduced to proving the following lemma,
and then setting a D 2 and b D c D 1=2.

Lemma 3. Let

S.a; b; cI r/ D
r=4
X

kDn

1

2ak

�

1 � 1

2bk

�r=ck

: (9)

Then for any " > 0, we have

1

ra=b
� S.a; b; cI r/� .log r/2aC�

ra=b
: (10)

Proof. We constantly use .1 � 1=x/x is an increasing function in x. We first prove
the lower bound. For k � .log2 r/=b and r large, we have

�

1 � 1

2bk

�r=ck

D
�

1 � 1

2bk

�2bk r

ck2bk

�
�

1 � 1
r

�r 	 b
c log2 r

� 1

2
(11)

(in fact, for r large the last bound is almost exactly 1). Thus, we trivially have

S.a; b; cI r/ �
r=4
X

kD.log2 r/=b

1

2ak
� 1
2
� 1

ra=b
: (12)
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For the upper bound, we divide the k-sum into two ranges: (1) bn � bk �
log2 r � log2.log r/ı ; (2) log2 r � log2.log r/ı � bk � br=4. In the first range, we
have

�

1 � 1

2bk

�r=ck

�
 

1 � .log r/ı

r

!r=ck

� exp

 

�b.log r/ı

c log2 r

!

� exp

�

�b log 2

c
� .log r/ı�1

�

: (13)

If ı > 2, then this factor is dominated by r� b log 2
c

	 .log r/ı�2 � r�A for any A for
r sufficiently large. Thus there is negligible contribution from k in range (1) if we
take ı D 2C �=a for any � > 0.

For k in the second range, we trivially bound the factors
�

1 � 1=2bk	r=ck by 1.
We are left with

X

k� log2 r

b
� log2.log r/ı

b

1

2ak
� 1 � .log r/aı

ra=b

1X

`D0

1

2a`
� .log r/aı

ra=b
: (14)

Combining the bounds for the two ranges with ı D 2C �=a completes the proof.
ut

Remark 3. The upper and lower bounds in Lemma 3 are quite close, differing by a
few powers of log r . The true value will be at least .log r=r/a=b ; we sketch the proof
in Appendix 1.

Remark 4. We could attempt to increase our lower bound for the percentage of sub-
sets that are MSTD sets by summing r from R0 to R (as we have fixed r above, we
are only counting MSTD sets of width 2n C r where 1 and 2n C r are in the set.
Unfortunately, at best we can change the universal constant; our bound will still be
of the order 1=R4. To see this, note the number of such MSTD sets is at least a con-
stant times

PR
rDR0

2r=r4 (to get the percentage, we divide this by 2R). If r � R=2,
then there are exponentially few sets. If r � R=2, then r�4 2 Œ1=R4; 16=R4�. Thus,
the percentage of such subsets is still only at least of order 1=R4.

4 Concluding Remarks and Future Research

We observed earlier (Footnote 6) that for a constant 0 < ˛ � 1, a set randomly
chosen from Œ1; 2n� is a Pb˛nc-set with probability approaching 1 as n ! 1.
MSTD sets are of course not random, but it seems logical to suppose that this pattern
continues.
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Conjecture 1. Fix a constant 0 < ˛ � 1=2. Then as n! 1, the probability that a
randomly chosen MSTD set in Œ1; 2n� containing 1 and 2n is a Pb˛nc-set goes to 1.

In our construction and that of [MO06], a collection of MSTD sets is formed by
fixing the fringe elements and letting the middle vary. The intuition behind both is
that the fringe elements matter most and the middle elements least. Motivated by
this, it is interesting to look at all MSTD sets in Œ1; n� and ask with what frequency
a given element is in these sets. That is, what is

�.kIn/ D #fA W k 2 A and A is an MSTD setg
#fA W A is an MSTD setg (15)

as n!1? We can get a sense of what these probabilities might be from Figure 1.
Note that as the graph suggests, � is symmetric about .nC 1/=2, that is,

�.k; n/ D �.n C 1 � k; n/. This follows from the fact that the cardinalities of
the sumset and difference set are unaffected by sending x ! ˛x C ˇ for any ˛; ˇ.
Thus, for each MSTD set A we get a distinct MSTD set nC 1�A showing that our
function � is symmetric. These sets are distinct since if A D nC 1 � A, then A is
sum-difference balanced.10

From [MO06] we know that a positive percentage of sets are MSTD sets. By the
central limit theorem, we then get that the average size of an MSTD set chosen from

20 40 60 80 100
k

0.45

0.50

0.55

0.60

Estimated g (k,n)

Figure 1 Estimation of �.k; 100/ as k varies from 1 to 100 from a random sample of 4458
MSTD sets. The sample was obtained by choosing sets from the uniform model (i.e., for each
A  f1; : : : ; ng the probability k 2 A is 1/2)

10 The following proof is standard (see, for instance, [Na07]). If A D nC 1� A then

jAC Aj D jAC .nC 1� A/j D jnC 1C .A� A/j D jA�Aj: (16)
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Œ1; n� is about n=2. This tells us that on average �.k; n/ is about 1=2. The graph
above suggests that the frequency goes to 1=2 in the center. This leads us to the
following conjecture:

Conjecture 2. Fix a constant 0 < ˛ < 1=2. Then limn!1 �.k; n/ D 1=2 for
b˛nc � k � n � b˛nc.
Remark 5. More generally, we could ask which non-decreasing functionsf .n/ have
f .n/ ! 1, n � f .n/ ! 1 and limn!1 �.k; n/ D 1=2 for all k such that
bf .n/c � k � n � bf .n/c.

Appendix 1: Size of S.a; b; cI r/

We sketch the proof that the sum

S.a; b; cI r/ D
r=4
X

kDn

1

2ak

�

1 � 1

2bk

�r=ck

(17)

is at least .log r=r/a=b . We determine the maximum value of the summands

f .a; b; cI k; r/ D 1

2ak

�

1 � 1

2bk

�r=ck

: (18)

Clearly f .a; b; cI k; r/ is very small if k is small due to the second factor; similarly
it is small if k is large because of the first factor. Thus, the maximum value of
f .a; b; cI k; r/ will arise not from an endpoint but from a critical point.

It is convenient to change variables to simplify the differentiation. Let u D 2k

(so k D log u= log2). Then,

g.a; b; cI u; r/ D f .a; b; cI k; r/ D u�a
�

1 � 1

ub

�ub 	 m log 2

cub log u
: (19)

Thus,

g.a; b; cI u; r/ � u�a exp

�

� r log 2

cub log u

�

: (20)

Maximizing this is the same as minimizing h.a; b; cI u; r/ D 1=g.a; b; cI u; r/.
After some algebra, we find

h0.a; b; cI u; r/ D h.a; b; cI u; r/
cu log2 u

�

acub log2 u � r log 2 � .b log uC 1/
�

: (21)
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Setting the derivative equal to zero yields

acub log2 u D r log 2 � .b log uC 1/ : (22)

As we know u must be large, looking at just the main term from the right hand side
yields

acub log u � rb log 2; (23)

or

ub log u � Cr; C D b log 2

ac
: (24)

To first order, we see the solution is

umax D
 

.C r/
log.Cr/
b

! 1
b

� C 0
�

r

log r

� 1
b

: (25)

Straightforward algebra shows that the maximum value of our summands is
approximately

.C 0e1=b/�a
�

log r

r

�a=b

:

Appendix 2: When Almost ALL Sets are not MSTD Sets

Peter Hegarty and Steven J. Miller

In [Na06], Nathanson remarked: Even though there exist sets A that have more
sums than differences, such sets should be rare, and it must be true with the right
way of counting that the vast majority of sets satisfies jA � Aj > jA C Aj. While
we now know (thanks to the work of Martin and O’Bryant [MO06]) that a positive
percentage of all subsets of f1; : : : ; N g are MSTD sets, the answer is markedly
different when we consider instead a binomial model with parameter decreasing to
zero as N ! 1. In [HM07], it is shown that Nathanson’s intuition is correct for
such a model.

Theorem 2. Let p W N! .0; 1/ be any function such that

N�1 D o.p.N // and p.N/ D o.1/: (26)

For each N 2 N, let A be a random subset of f1; : : : ; N g chosen according to a
binomial distribution with parameter p.N/. Then, as N !1, the probability that
A is difference dominated tends to one.
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More precisely, let S ;D denote respectively the random variables jAC Aj and
jA� Aj. Then the following three situations arise:

(i) p.N/ D o.N�1=2/: Then,

S 
 .N � p.N//2
2

and D 
 2S 
 .N � p.N//2: (27)

(ii) p.N/ D c � N�1=2 for some c 2 .0;1/: Define the function g W .0;1/ !
.0; 2/ by

g.x/ WD 2

�
e�x � .1 � x/

x

�

: (28)

Then,

S 
 g
�
c2

2

�

N and D 
 g.c2/N: (29)

(iii) N�1=2 D o.p.N //: Let S c WD .2N C 1/�S , Dc WD .2N C 1/�D . Then

S c 
 2 �Dc 
 4

p.N /2
: (30)

Parts (i) and (ii) of the theorem can be proven by elementary means; a standard
second moment analysis (Chebyshev’s inequality applied to a sum of indicator ran-
dom variables) suffices to prove strong concentration of the variables S and D ,
while in part (ii) an additional inclusion-exclusion type argument is used to ob-
tain the correct form of the function g. Our proof of part (iii) requires different
and more sophisticated concentration machinery recently developed by Kim and
Vu [KV00, Vu00, Vu02]. For the benefit of the reader not familiar with probabilis-
tic techniques, we present below an entirely self-contained proof of a more explicit
form of the simplest case of our theorem, namely part (i). See [HM07] for proofs of
the other cases, as well as generalizations to comparing arbitrary binary forms.11

We prove the following special case of Theorem 2.

Theorem 3. Let p.N/ WD cN�ı for some c > 0, ı 2 .1=2; 1/. SetC WD max.1; c/,
f .ı/ WD minf 1

2
; 3ı�1

2
g and let g.ı/ be any function such that 0 < g.ı/ < f .ı/ for

all ı 2 .1=2; 1/. Set P1.N / WD 4
c
N�.1�ı/ and P2.N / WD N�.f .ı/�g.ı//. For any

subset chosen with respect to the binomial model with parameter p D p.N/, with
probability at least 1�P1.N /�P2.N / the ratio of the cardinality of its difference

11 Let u1; u2; v1; v2 be fixed integers, and define two binary forms f .x; y/ D u1x C v1y and
g.x; y/ D u2xCv2y. By f .A/we mean ff .a1; a2/ W ai 2 Ag (and similarly for g.A/). Theorem 2
can be generalized to analyze how often jf .A/j > jg.A/j when A is drawn from f1; : : : ; N g from
a binomial model with parameter p.N /.
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set to the cardinality of its sumset is 2COC .N�g.ı//. Thus the probability a subset
chosen with respect to the binomial model is not difference dominated is at most
P1.N /C P2.N /, which tends to zero rapidly with N for ı 2 .1=2; 1/.

We first establish some notation, and then prove a sequence of lemmas from
which Theorem 3 immediately follows. Our goal is to provide explicit bounds which
decay like N to a power.

Let IN D f1; : : : ; N g and let XnIN denote the binary indicator variable for n
being in a subset (it is thus 1 with probability cN�ı and 0 otherwise), and let X be
the random variable denoting the cardinality of a subset (thus X DP

nXnIN ). For
two pairs of ordered elements .m; n/ and .m0; n0/ in IN � IN (m < n, m0 < n0), let
Ym;n;m0;n0 D 1 if n �m D n0 �m0, and 0 otherwise.

Lemma 4. With probability at least 1� P1.N /,

X 2
�
1

2
cN 1�ı ;

3

2
cN 1�ı

�

: (31)

Let O denote the number of ordered pairs .m; n/ (with m < n) in a subset of
IN chosen with respect to the binomial model. Then with probability at least12

1 � P1.N / we have

1
2
cN 1�ı �1

2
cN 1�ı � 1	

2
� O �

3
2
cN 1�ı �3

2
cN 1�ı � 1	

2
: (32)

Proof. We have EŒX� DPn EŒXnIN � D cN 1�ı . As the XnIN are independent,

2X D
X

n

2XnIN
D N

�

cN�ı � c2N�2ı
�

: (33)

Thus,

X �
p
c �N 1�ı

2 : (34)

By Chebyshev’s inequality,

Prob.jX � cN 1�ı j � kX / � 1 � 1

k2
: (35)

For X 2 �
1
2
cN 1�ı ; 3

2
cN 1�ı �, we choose k so that

kX D 1

2
cN 1�ı � kpcN 1�ı

2 : (36)

12 By using the Central Limit Theorem instead of Chebyshev’s inequality we could obtain a better
estimate on the probability of X lying in the desired interval.
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Thus k � 1
2

p
cN .1�ı/=2, and the probability that X lies in the stated interval is at

least 1 � .cN 1�ı=4/�1. The second claim follows from the fact that there are
�
r
2

	

ways to choose two distinct objects from r objects. ut
Proof of Theorem 3. By Lemma 4, (32) holds with probability at least 1 � P1.N /.
The main contribution to the cardinalities of the sumset and the difference set is
from ordered pairs .m; n/ with m < n. With probability at least 1 � P1.N /, there
are on the order N 2�2ı such pairs, which are much larger than the order N 1�ı
pairs with m D n. The proof is completed by showing that almost all of the or-
dered pairs yield distinct sums (and differences). Explicitly, we shall show that for
a subset chosen from IN with respect to the binomial model, if O is the number of
ordered pairs (which is of size N 2�2ı with high probability), then with high proba-
bility the cardinality of its difference set is 2O COC .N 3�4ı / while the cardinality
of its sumset is OCOC .N 3�4ı /. This argument crucially uses ı > 1=2 (if ıD 1=2,
then the error term is the same size as the main term, and a more delicate argu-
ment is needed). We shall show that almost all of the ordered pairs generate distinct
differences; the argument for the sums follows similarly.

Each ordered pair .m; n/ yields two differences:m� n and n �m. The problem
is that two different ordered pairs could generate the same differences. To calculate
the size of the difference set, we need to control how often two different pairs give
the same differences. Consider two distinct ordered pairs .m; n/ and .m0; n0/ with
m < n and m0 < n0 (as the N 1�ı � N 2�2ı ‘diagonal’ pairs .n; n/ yield the
same difference, namely 0, it suffices to study the case of ordered pairs with distinct
elements). Without loss of generality, we may assumem � m0. If n�m D n0 �m0,
then these two pairs contribute the same differences. There are two possibilities: (1)
all four indices are distinct; (2) n D m0.

We calculate the expected number of pairs of non-diagonal ordered pairs with
the same difference by using our binary indicator random variables Ym;n;m0;n0 . Set

Y D
X

1�m�m0�N

X

m0<n0�N

X

m<n�N

n0
�m0

Dn�m

Ym;n;m0;n0 : (37)

If the four indices are distinct, then EŒYm;n;m0;n0 � D c4N�4ı ; if n D m0, then
EŒYm;n;m0;n0 � D c3N�3ı .

The number of tuples .m; n;m0; n0/ of distinct integers satisfying our conditions
is bounded by N 3 (once m, n and m0 are chosen there is at most one choice for
n0 2 fmC 1; : : : ; N g with n0 �m0 D n �m)13. If instead n D m0 then there are at
most N 2 tuples satisfying our conditions (once m and n are chosen, m0 and n0 are
uniquely determined, though they may not satisfy our conditions). Therefore,

EŒY � � N 3 � c4N�4ı CN 2 � c2N�3ı � 2C 4N 3�4ı (38)

as ı 2 .1=2; 1/.

13 Although we do not need the actual value, simple algebra yields the number of tuples is
N3=6CO.N 2/.
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As N 3�4ı is much smaller than N 2�2ı for ı > 1=2, most of the differences
are distinct. To complete the proof, we need some control on the variance of Y . In
Lemma 5, we show that

Y � 7C 4N r.ı/; (39)

where

2r.ı/ D maxf3� 4ı; 5 � 7ıg: (40)

While we cannot use the Central Limit Theorem (the Ym;n;m0;n0 are not indepen-
dent), we may use Chebyshev’s inequality to bound the probability that Y is close
to its mean (recall the mean is at most 2C 4N 3�4ı ). We have

Prob.jY � EŒY �j � kY / � 1 � 1

k2
: (41)

Simple algebra shows that if we take k D N 2�2ı�r.ı/�g.ı/, then with probability at
least 1 � N�.f .ı/�g.ı// we have Y � 9C 4N 2�2ı�g.ı/, which is a positive power
of N less than N 2�2ı . Thus an at most negligible amount of the differences are
repeated.

The argument for two ordered pairs yielding the same sum proceeds similarly: if
�C � D �0 C �0, then � � �0 D �0 � �.

For our ratio to be 2COC .N�g.ı//, two events must happen. As the probability
the first does not occur is at most P1.N / and the probability the second does not
occur is at most P2.N /, the probability that the two desired events happen is at least
1 � P1.N /� P2.N /.

Except for the claimed estimate on Y , the above completes the proof of
Theorem 3. We now prove our bound for Y .

Lemma 5. Let the notation be as in Theorem 3 and (A.10). We have

Y � 7C 4N r.ı/: (42)

Proof. If U and V are two random variables, then

Var.U C V / D Var.U /C Var.V /C 2CoVar.U; V /: (43)

By the Cauchy-Schwartz inequality, CoVar.U; V / � pVar.U /Var.V /. Thus

Var.U C V / � 3Var.U /C 3Var.V /: (44)

We may therefore write

X

Ym;n;m0;n0 D
X

Um;n;m0;n0 C
X

Vm;n;n0 D U C V; (45)
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where in the U -sum all four indices are distinct (with 1 � m < m0 � N , m < n �
N ,m0 < n0 � N and n�m D n0�m0) and in the V -sum all three indices are distinct
(with 1 � m < n < n0 � N and n�m D n0�n). As Var.Y / � 3Var.U /C3Var.V /,
we are reduced to bounding the variances of U and V .

We first bound Var.U /. Standard algebra yields

Var.U / D Var
�X

Um;n;m0 ;n0

�

D
X

Var.Um;n;m0 ;n0/C 2
X

.m;n;m0 ;n0/¤.em;en;em0 ;en0/

CoVar.Um;n;m0 ;n0 ; Uem;en;em0;en0/:

(46)

As Var.Um;n;m0;n0/ D c4N�4ı � c8N�8ı and there are at most N 3 ordered tuples
.m; n;m0; n0/ of distinct integers with n�m D m0 � n0, the Var.Um;n;m0;n0/ term is
bounded by c4N 3�4ı .

For the covariance piece, if all eight indices (m; n;m0; n0;em;en;em0;en0) are dis-
tinct, then Um;n;m0;n0 and Uem;en;em0;en0 are independent and thus the covariance is zero.
There are four cases; in each case, there are always at most N 3 choices for the tu-
ple .m; n;m0; n0/, but often there will be significantly fewer choices for the tuple
.em;en;em0;en0/. We only provide complete details for the first and third cases, as the
other cases follow similarly.

� Seven distinct indices: There are at most N 2 choices for .em;en;em0;en0/. The co-
variance of each such term is bounded by c7N�7ı . To see this, note

CoVar.Um;n;m0;n0 ; Uem;en;em0;en0/

D EŒUm;n;m0;n0Uem;en;em0;en0 � � EŒUm;n;m0;n0 �EŒUem;en;em0;en0 �: (47)

The product of the expected values is c8N�8ı , while the expected value of
the product is c7N�7ı . Thus the covariances of these terms contribute at most
c7N 5�7ı .

� Six distinct indices: The covariances of these terms contribute at most c6N 4�6ı .
� Five distinct indices: The covariances of these terms contribute at most c5N 3�5ı

(once three of the em;en;em0;en0 have been determined, the fourth is uniquely deter-
mined; thus there are at most N 3 choices for the first tuple and at most 1 choice
for the second).

� Four distinct indices: The covariances of these terms contribute at most c4N 3�4ı .

The N -dependence from the case of seven distinct indices is greater than the
N -dependence of the other cases (except for the case of four distinct indices
if ı >2=3). We also only increase the contributions if we replace c with C D
max.c; 1/. We therefore find

Var.U / � C 4N 3�4ı C 2
�

C 7N 5�7ı C C 6N 4�6ı C C 5N 3�5ı C C 4N 3�4ı
�

D 3C 4N 3�4ı C 6C 7N 5�7ı : (48)
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Similarly we have,

Var.V / D Var
�X

Vm;n;n0

�

D
X

Var.Vm;n;n0/C 2
X

.m;n;n0/¤.em;en;en0/

CoVar.Vm;n;n0 ; Vem;en;en0/: (49)

The Var.Vm;n;n0/ piece is bounded by N 2 � c3N�3ı (as there are at most N 2 tu-
ples with n0 � n D n � m). The covariance terms vanish if the six indices are
distinct. A similar argument as before yields bounds of c5N 3�5ı for five distinct in-
dices, c4N 2�4ı for four distinct indices, and c3N 2�3ı for three distinct indices. The
largest N -dependence is from the c3N 2�3ı term (as ı > 1=2). Arguing as before
and replacing c with C yields

Var.V / � C 3N 2�3ı C 2 � 3C 3N 2�3ı � 7C 3N 2�3ı : (50)

As ı < 1, 2 � 3ı < 3 � 4ı. Therefore,

Var.Y / � 3 �
�

3C 4N 3�4ı C 6C 7N 5�7ı
�

C 3 � 7C 3N 2�3ı

� 30C 4N 3�4ı C 18C 7N 5�7ı � 49C 8N 2r.ı/; (51)

which yields

Y � 7C 4N r.ı/: (52)

ut
Remark 6. An extreme choice of g would be to choose g.ı/ D ", for some small
positive constant ". Since f .ı/ � 1=4 for all ı 2 .1=2; 1/, we then obtain a bound
of 2C OC .N�"/ for the ratio of the cardinality of the difference set to the sumset
with probability 1 �OC .N� minf1�ı; 1

4
�"g/.
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An Inverse Problem in Number Theory
and Geometric Group Theory

Melvyn B. Nathanson�

Summary This paper describes a new link between combinatorial number theory
and geometry. The main result states that A is a finite set of relatively prime positive
integers if and only if A D .K �K/\N, whereK is a compact set of real numbers
such that for every x 2 R there exists y 2 K with x  y .mod 1/. In one direction,
given a finite set A of relatively prime positive integers, the proof constructs an
appropriate compact set K such that A D .K � K/ \ N. In the other direction, a
strong form of a fundamental result in geometric group theory is applied to prove
that .K � K/ \ N is a finite set of relatively prime positive integers if K satisfies
the appropriate geometrical conditions. Some related results and open problems are
also discussed.

Keywords Relatively prime integers � Combinatorial number theory � Additive
number theory � Geometric group theory
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1 From Compact Sets to Integers

The object of this note is to describe a new connection between number theory and
geometry. Let R, Z, and N denote the real numbers, integers, and positive integers,
respectively. For every x 2 R, let Œx� 2 Z and .x/ 2 Œ0; 1/ denote the integer part
and fractional part of x. Let Zn denote the additive group of n-dimensional lattice
points in the Euclidean space Rn.
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We recall the following definitions. The set A of integers is relatively prime,
denoted gcd.A/ D 1, if A is nonempty and the elements of A have no common
factor greater than 1. Equivalently, A is relatively prime if A generates the additive
group Z. The setA of n-dimensional lattice points is relatively prime if the elements
of A generate the additive group Zn.

Let H be a subgroup of a multiplicative group G, and let x and y be elements
of G. We say that x and y are congruent modulo H , denoted x  y .mod H/, if
xy�1 2 H . If the group G is additive, then x  y .mod H/ if x � y 2 H . For
example, let G D R and H D Z. The real numbers x and y are congruent modulo
Z, that is, x  y .mod Z/ or, in more traditional notation, x  y .mod 1/, if and
only if they have the same fractional part.

In a multiplicative groupG, the difference set of a subset K of G is

KK�1 D fxy�1 W x; y 2 Kg:
In an additive abelian group G, the difference set of a subset K of G is

K �K D fx � y W x; y 2 Kg:
Note that a difference set is symmetric: z 2 KK�1 if and only if z�1 2 KK�1
(respectively, z 2 K �K if and only if �z 2 K �K).

We are interested in sets of integers contained in difference sets of sets of real
numbers. Our main theorem gives a geometric condition for a finite set of positive
integers to be relatively prime. The geometry uses the concept of an N -set, which
is a compact subset K of Rn such that for every x 2 Rn there exists y 2 K with
x  y .mod Zn/.

Theorem 1. Let A be a finite set of positive integers. The set A is relatively prime
if and only if there exists an N -set K in R such that A D .K �K/\ N.

In Sect. 2, we solve the inverse problem: Given a finite set of relatively prime
integers, we construct an N -set K in R such that A D .K �K/\ N. In Sect. 3 we
apply the “fundamental observation of geometric group theory” to relatively prime
sets of integers. An explanation of the “fundamental observation of geometric group
theory” appears in Appendix A.

Ideas from geometric group theory have been used recently to obtain new results
in number theory (e.g., Nathanson [4–6]), and should continue to be useful. The
book of de la Harpe, Topics in Geometric Group Theory [1], is an excellent survey of
this subject. Theorem 5 was discovered and proved independently by Efremovič [2],
Švarc [7], and Milnor [3].

2 The Inverse Problem

In this section we prove that every finite set of relatively prime positive integers
can be realized as the difference set of an N -set. The construction depends on the
following simple observation.
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Lemma 1. Let K be a set of real numbers, and let a 2 Z n f0g. Then a 2 K �K
if and only if there is a two-element subset fx; yg of K such that .x/ D .y/ and
a D Œx� � Œy�.
Proof. For any nonzero integer a, we have a 2 K � K if and only if there exist
x; y 2 K such that x ¤ y and

a D x � y D Œx� � Œy�C .x/ � .y/:

Because Œx� � Œy� 2 Z and �1 < .x/ � .y/ < 1, it follows that .x/ � .y/ D 0 and
a D Œx� � Œy�. The set fx; yg satisfies the conditions of the Lemma.

Here are three examples. We associate the set A1 D f2; 5g with the N -set

K.A1/ D Œ0; 1=3�[ Œ2C 1=3; 2C 2=3�[ Œ4C 2=3; 5�:

There are only three two-element subsets fx; yg of K.A1/ such that x and y have
the same fractional part: f1=3; 2C 1=3g, f2C 2=3; 4C 2=3g, and f0; 5g, and

A1 D .K.A1/ �K.A1// \ N:

The set A2 D f6; 10; 15g arises from the N -set

K.A2/ D Œ0; 1=3�[ Œ9C 2=3; 10�[ Œ15C 1=3; 15C 2=3�:

The complete list of the two-element subsets fx; yg of K.A2/ such that x and y
have the same fractional part is: f1=3; 15C 1=3g, f15C 2=3; 9C 2=3g, and f0; 10g.

For the set A3 D f18; 28; 63g, the N -set

K.A3/ D
9[

iD0
Œ�18i C i=13;�18i C .i C 1/=13�[ Œ�99C 10=13;�99C 11=13�

[ Œ�36C 11=13;�36C 12=13�[ Œ27C 12=13; 28�

satisfies
A3 D .K.A3/ �K.A3// \ N:

There are exactly 13 two-element subsets fx; yg of K.A3/ such that x and y have
the same fractional part.

In the following Lemma we construct an important example of an N -set on the
real line, and its associated difference set of integers.

Lemma 2. For the positive integer w, let

�0 < �1 < � � � < �w�1 < �w
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be a strictly increasing sequence of real numbers such that

�w D �0 C 1

and let b0; b1; : : : ; bw�1 be a sequence of integers such that

bk�1 ¤ bk for k D 1; : : : ;w � 1

and
1C bw�1 ¤ b0:

The set

K 0 D
w�1[

kD0
Œbk C �k; bk C �kC1�

is an N -set, and

.K 0 �K 0/ \N D fjbk � bk�1j W k D 1; : : : ;w� 1g [ fj1C bw�1 � b0jg

is a finite set of relatively prime positive integers.

Proof. The set K 0 is compact because it is a finite union of closed intervals, and an
N -set because

w�1[

kD0
Œ�k ; �kC1� D Œ�0; �w� D Œ�0; �0 C 1�:

Let A be the finite set of positive integers contained in the difference set K 0 � K 0.
As

ffbk�1 C �k ; bk C �kg W k D 1; : : : ;w � 1g [ ffb0 C �0; bw�1 C �wgg

is the set of all two-element subsets fx; yg of K 0 with .x/ D .y/, it follows that

A D .K 0 �K 0/\ N D fjbk � bk�1j W k D 1; : : : ;w � 1g [ fj1C bw�1 � b0jg:

Choose "k 2 f1;�1g such that

jbk � bk�1j D "k.bk � bk�1/

for k D 1; : : : ;w � 1, and "w 2 f1;�1g such that

j1C bw�1 � b0j D "w.1C bw�1 � b0/:
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As

1 D "wj1C bw�1 � b0j �
w�1X

kD1
"kjbk � bk�1j

it follows that A is a finite set of relatively prime positive integers.

Theorem 2. If A is a finite set of relatively prime positive integers then there is an
N -set K such that A D .K �K/\N.

Proof. As the elements ofA are relatively prime, we can write 1 as an integral linear
combination of elements ofA. Thus, there exist pairwise distinct integers a1; : : : ; ah
in A, positive integers w1; : : : ;wh, and "1; : : : ; "h 2 f1;�1g such that

hX

iD1
"iwiai D 1: (1)

Let w0 D 0 and w D Ph
iD1 wi : For j D 1; 2; : : : ;w, we define integers Qaj as

follows: If

w1 C � � � C wi�1 C 1 � j � w1 C � � � C wi�1 C wi

then
Qaj D �"iai :

It follows that

1C
wX

jD1
Qaj D 1C

hX

iD1
wi .�"iai / D 0:

For k D 0; 1; : : : ;w, we consider the integers

bk D
kX

jD1
Qaj (2)

and real numbers

�k D k

w
:

Then b0 D 0,

0 D �0 < �1 < � � � < �w D 1
and, for k D 1; : : : ;w,

bk � bk�1 D Qak ¤ 0:
It follows from (1) and (2) that

1C bw�1 D 1C
w�1X

jD1
Qaj D 1C

wX

jD1
Qaj � Qaw

D �Qaw D "hah ¤ 0 D b0:
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Construct the N -set

K 0 D
w�1[

kD0
Œbk C �k ; bk C �kC1�:

By Lemma 2,

.K 0 �K 0/ \N D fjbk � bk�1j W k D 1; : : : ;w� 1g [ fj1C bw�1 � b0jg
D fj Qakj W k D 1; : : : ;w � 1g [ fj � Qawjg
D fai W i D 1; : : : ; hg:

Let card.A/ D `: If ` D h then A D fa1; : : : ; ahg and we set K D K 0.
Suppose that ` > h and A n fa1; : : : ; ahg D fahC1; : : : ; a`g ¤ ;. Because

0 <
1

w.` � hC 1/ <
2

w.` � hC 1/ < � � � <
` � h

w.` � hC 1/ <
1

w

and �

0;
1

w

�

D Œb0 C �0; b0 C �1� � K 0

it follows that

K D K 0 [
�

ahCi C i

w.` � hC 1/ W i D 1; 2; : : : ; ` � h
�

is an N -set such that A D .K �K/\N. This completes the proof.

Let A be a finite set of relatively prime positive integers. We define the weight of
a representation of 1 in the form (1) by:

hX

iD1
wi C card.A/� h:

We define the additive weight of A, denoted Add.A/ as the smallest weight of a
representation of 1 in the form (1) with integers ai 2 A. Note that Add.A/ �
card.A/ for all A, and Add.A/ D card.A/ if and only if there exist distinct integers
a1; : : : ; ah 2 A and "1; : : : ; "h 2 f1;�1g such that

Ph
iD1 "iai D 1.

We define the weight of an N -set K as the number of connected components
of K , and the geometric weight of A, denoted Geo.A/ as the smallest weight of an
N -set K such that A D .K �K/\N.

The following result follows immediately from the proof of Theorem 2.

Corollary 1. Let A be a finite set of relatively prime positive integers. Then

Geo.A/ � Add.A/:
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There exist sets A such that Geo.A/ < Add.A/: For example, if A D
f1; 2; 3; : : : ; ng thenK D Œ0; n� is an N -set of weight 1 such that .K�K/\N D A,
and so Geo.A/ D 1 < n D Add.A/.

3 Relatively Prime Sets of Lattice Points

In this section we obtain the converse of Theorem 2.

Theorem 3. IfK is an N -set in R thenA D .K�K/\N is a finite set of relatively
prime positive integers.

We prove this result in n dimensions.

Theorem 4. If K is an N -set in Rn then A D .K � K/ \ Zn is a finite set of
relatively prime lattice points.

Note the necessity of the compactness condition. For n � 1, the noncompact set
K D Œ0; 1/n has the property that for all x 2 Rn there exists y 2 K with x  y

.mod Zn/, but .K �K/\ Zn D f0g.
Proof. The proof uses a theorem called “the fundamental observation of geometric
group theory.” We discuss this result in Appendix.

The additive group Zn acts isometrically and properly discontinuously on Rn by
translation: .g; x/ 7! g C x for g 2 Zn and x 2 Rn. The quotient space Zn n Rn is
the n-dimensional torus, which is compact, and so the group action Zn Õ Rn is co-
compact. Let 
 W Rn ! Zn nRn be the quotient map. Then 
.x/ D hxi is the orbit
of x for all x 2 Rn. IfK is an N -set in Rn thenK is compact, and for every x 2 Rn

there exists y 2 K such that x  y .mod Zn/. This means that 
.y/ D hxi, and
so 
.K/ D Zn n Rn. Applying Theorem 5 to the set K , we conclude that the set

A D fa 2 Zn W K \ .aCK/ ¤ ;g

is a finite set of generators for Zn. Moreover, a 2 A if and only if a 2 Zn and there
exists x 2 K such that x 2 aCK , that is, x D aCy for some y 2 K . Equivalently,
a 2 A if and only if a D x � y 2 .K �K/\ Zn. This proves Theorem 4.

The symmetry of the difference set immediately implies Theorem 3.
We can state the following general inverse problem in geometric group theory: If

A is a finite set of generators for a group G such that A is symmetric and contains
the identity of G, does there exist a geometric action of G on a metric space X
such that A D .K �K/ \ G for some compact set K with 
.K/ D GnX? In this
article we proved that the answer is “yes” for G D Z, but the answer is not known
for other groups. In particular, it is not known for lattice points. Equivalently, does
every finite symmetric set A of relatively prime n-dimensional lattice points with
0 2 A come from an N -set K in Rn, in the sense that A D .K �K/\ Zn? This is
not known even in dimension 2.
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Appendix: The Fundamental Observation of Geometric
Group Theory

The proof of Theorem 4 is an application of what is often called the “fundamental
observation of geometric group theory” [1, Chap. IV, pp. 87–88]. We shall describe
this result, which is not well known to number theorists.

We begin by introducing the class of boundedly compact geodesic metric spaces.
The Heine-Borel theorem states that, in Euclidean space Rn with the usual metric,
a closed and bounded set is compact. We shall call a metric space .X; d/ boundedly
compact if every closed and bounded subset of X is compact. Equivalently, X is
boundedly compact if every closed ball

B�.x0; r/ D fx 2 X W d.x0; x/ � rg
is compact for all x0 2 X and r � 0. Boundedly, compact metric spaces are also
called proper metric spaces.

A metric space .X; d/ is geodesic if, for all points x0; x1 2 X with x0 ¤ x1,
there is an isometry � from an interval Œa; b� � R into X such that �.a/ D x0
and �.b/ D x1. Thus, if t; t 0 2 Œa; b� then d.�.t/; �.t 0// D jt � t 0j. In partic-
ular, d.x0; x1/ D d.�.a/; �.b// D b � a. For example, let x0; x1 2 Rn with
jx1 � x0j D T . Define � W Œ0; T �! Rn by:

�.t/ D x0 C t

T
.x1 � x0/:

Then �.0/ D x0, �.T / D x1, and

j�.t/ � �.t 0/j D
ˇ
ˇ
ˇ
ˇ

�

x0 C t

T
.x1 � x0/

�

�
�

x0 C t 0

T
.x1 � x0/

�ˇ
ˇ
ˇ
ˇ

D
ˇ
ˇ
ˇ
ˇ

�
t � t 0
T

�

.x1 � x0/
ˇ
ˇ
ˇ
ˇ
D jt � t 0j:

Thus, Rn is a boundedly compact geodesic metric space.
Let G be a group that acts on a topological space X . We denote the group action

byG Õ X . For every g 2 G we define the function ˛g W X ! X by ˛g.x/ D g �x.
If the function ˛g W X ! X is continuous for all g 2 G then ˛g�1 D ˛�1

g

implies that ˛g is a homeomorphism for all g 2 G. We say that the group G acts
isometrically on a metric space .X; d/ if the function x 7! gx is an isometry for
every g 2 G.

The action of a group G on a topological space X is called properly discontinu-
ous if, for every compact subset K of X , there are only finitely many a 2 G such
that K \ aK ¤ ;: Let A D fa 2 G W K \ aK ¤ ;g. Then A ¤ ; because e 2 A.
As

K \ a�1K D a�1.K \ aK/
it follows that A�1 D A.
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For every element x0 2 X , the orbit of x0 is the set

hx0i D fgx0 W g 2 Gg D Gx0:

The orbits of elements of X partition the set X . Let GnX denote the set of orbits
of the group action, and define the function 
 W X ! GnX by 
.x/ D hxi. We
call G nX the quotient space of X byG, and we call 
 the quotient map of X onto
GnX . Note that every orbit hxi is a subset of the set X and a point in the quotient
space GnX .

We define the quotient topology on GnX as follows: A set V in GnX is open
if and only if 
�1.V / is open in X . This is the largest topology on the quotient
space GnX such that the quotient map 
 is continuous. We call the group action
G Õ X co-compact if the quotient space GnX is compact. An isometric, properly
discontinuous, co-compact action of a group G on a boundedly compact geodesic
metric space is called a geometric action.

We now state the “fundamental observation of geometric group theory.”

Theorem 5. Let .X; d/ be a boundedly compact geodesic metric space and let G
be a group that acts isometrically on X . Suppose that the group action G Õ X is
properly discontinuous and co-compact. Let 
 W X ! GnX be the quotient map,
and let K be a compact subset of X such that 
.K/ D GnX . Then

A D fa 2 G W K \ aK ¤ ;g

is a finite set of generators for G.

For example, the additive group Zn of n-dimensional lattice points acts on
Euclidean space Rn by translation: ˛g.x/ D g C x for g 2 Zn and x 2 Zn.
The group Zn acts isometrically on Rn because

j˛g.x/ � ˛g.y/j D j.g C x/ � .g C y/j D jx � yj:

Let K be a compact subset of Rn. Then K is bounded and there is a number
r > 0 such that jxj < r for all x 2 K . If g 2 Zn and K \ .g CK/ ¤ ; then there
exists x 2 K such that g C x 2 K . Therefore,

jgj � r < jgj � jxj � jg C xj < r

and jgj < 2r . There exist only finitely many lattice points in Zn of length less than
2r , and so the action on Zn on Rn is properly discontinuous.

We shall prove that this group action Zn Õ Rn is co-compact. Let 
 W Rn !
Zn n Rn be the quotient map. The quotient space Tn D Zn n Rn is called the
n-dimensional torus. Let fWigi2I be an open cover of Tn, and define Vi D 
�1.Wi /
for all i 2 I . Then fVigi2I is an open cover of Rn. The unit cube

K D Œ0; 1�n D fx D .x1; : : : ; xn/ 2 Rn W 0 � xi � 1 for all i D 1; : : : ; ng
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is a compact subset of Rn, and 
.K/ D Tn. As fVigi2I is an open cover of K , it
follows that there is a finite subset J of I such that K �Sj2J Vj , and so

Tn D 
.K/ �
[

j2J

.Vj / D

[

j2J
Wj :

Therefore, Tn is compact and the group action Zn Õ Rn is co-compact.
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is called the h-fold sumset of A. If 0 2 A, then

A � 2A � � � � � hA � .hC 1/A � � � �

For example,

f0; 1; 4; 5g C f0; 2; 8; 10g D Œ0; 15�
and

f3; 5; 7; 11g C f3; 5; 7; 11; 13; 17; 19g
D f6; 8; 10; 12; 14; 16; 18; 20; 22; 24; 26; 28; 30g:

The set A is called a basis of order h for the set B if every element of B can
be represented as the sum of exactly h not necessarily distinct elements of A, or,
equivalently, if B � hA. The set A is an asymptotic basis of order h for B if the
sumset hA contains all but finitely many elements ofB , that is, if card.BnhA/ <1.
The set A is a basis (respectively, asymptotic basis) of finite order for B if A is a
basis (respectively, asymptotic basis) of order h for B for some positive integer h.
The set A of non-negative integers is a basis of finite order for the non-negative
integers only if 0; 1 2 A.

Many classical results and conjectures in additive number theory state that some
“interesting” or “natural” set of non-negative integers is a basis or asymptotic basis
of finite order. For example, the Goldbach conjecture asserts that the set of odd
prime numbers is a basis of order 2 for the even integers greater than 4. Lagrange’s
theorem states the set of squares is a basis of order 4 for the non-negative integers
N0. Wieferich proved that the set of non-negative cubes is a basis of order 9 for
N0, and Linnik proved that the set of non-negative cubes is an asymptotic basis of
order 7 for N0. More generally, for any integer k � 2; Waring’s problem, proved
by Hilbert in 1909, states that the set of non-negative k-th powers is a basis of finite
order for N0. Vinogradov proved that the set of odd prime numbers is an asymptotic
basis of order 3 for the odd positive integers. Nathanson [11] contains complete
proofs of all of these results.

Notation: Let N, N0, and Z denote the sets of positive integers, non-negative
integers, and integers, respectively. For real numbers x and y, we define the intervals
of integers Œx; y� D fn 2 Z W x � n � yg, .x; y� D fn 2 Z W x < n � yg, and
Œx; y/ D fn 2 Z W x � n < yg. For any sets A and A0 of integers and any integer c,
we define the difference set

A� A0 D fa � a0 W a 2 A and a0 2 A0g
and the dilation by c of the set A

c 	 A D fca W a 2 Ag:
Thus, 2 	 N is the set of positive even integers, and 2 	 N� f0; 1g D N:

Denote the cardinality of the set X by jX j.
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Let f be a complex-valued function on the domain ˝ and let g be a positive
function on the domain ˝ . Usually, ˝ is the set of positive integers or the set of all
real numbers x � x0. We write f�g or fDO.g/ if there is a number c > 0 such
that jf .x/j � cg.x/ for all x 2 ˝ . We write f�g if there is a number c > 0 such
that jf .x/j � cg.x/ for all x 2 ˝ . We write f D o.g/ if limx!1 f .x/=g.x/D0.

2 A Lower Bound for Bases of Finite Order

For any set A of integers, the counting function of A, denoted A.x/, counts the
number of positive integers in A not exceeding x, that is,

A.x/ D
X

a2A
1�a�x

1 D jA \ Œ1; x�j :

Theorem 1. Let h � 2 and let A D fakg1kD1 be a set of non-negative integers with
ak < akC1 for all k � 1. If A is an asymptotic basis of order h then

A.x/� x1=h (3)

for all sufficiently large real numbers x and

ak � kh (4)

for all positive integers k. If A is a basis of order h, then inequality (3) holds for all
real numbers x � 1.

Proof. If A is an asymptotic basis of order h, then there exists an integer n0 such
that every integer m � n0 can be represented as the sum of h elements of A. Let
x � x0 and let n be the integer part of x. Then A.x/ D A.n/. There are n� n0 C 1
integersm such that

n0 � m � n:
As the elements of A are non-negative integers, it follows that if

m D a0
1 C � � � C a0

h with a0
k
2 A for k D 1; : : : ; h

then

0 � a0
k � m � n for k D 1; : : : ; h.

The set A contains exactly A.n/ positive integers not exceeding n, and A might
also contain 0, hence A contains at most A.n/ C 1 non-negative integers not
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exceeding n. As the number of ways to choose h elements with repetitions from
a set of cardinality A.n/C 1 is

�
A.n/Ch
h

	

, it follows that

nC 1 � n0 �
 

A.n/C h
h

!

<
.A.n/C h/h

hŠ

and so

A.x/ D A.n/ > .hŠ.nC 1 � n0//1=h � h� n1=h � x1=h

for all sufficiently large x. We have A.ak/ D k if a1 � 1 and A.ak/ D k � 1 if
a1 D 0, hence

k � A.ak/� a
1=h

k

or, equivalently,

ak � kh

for all sufficiently large integers k, hence for all positive integers k.
If A is a basis of order h then 1 2 A and so A.n/=n > 0 for all n � 1. Therefore,

A.x/� x1=h for all x � 1: This completes the proof. ut
Let A be a set of non-negative integers. By Theorem 1, if A is an asymptotic

basis of order h then A.x/� x1=h: If A is an asymptotic basis of order h such that

A.x/� x1=h

then A is called a thin asymptotic basis of order h. If hA D N0 and A.x/ � x1=h

then A is called a thin basis of order h. In the next section we construct examples of
thin bases.

3 Raikov-Stöhr Bases

In 1937 Raikov and Stöhr independently published the first examples of thin bases
for the natural numbers. Their construction is based on the fact that every non-
negative integer can be written uniquely as the sum of pairwise distinct powers of 2.
The sets constructed in the following theorem will be called Raikov-Stöhr bases.

Theorem 2 (Raikov-Stöhr). Let h � 2: For i D 0; 1; : : : ; h � 1; let WiDfi; hCi;
2hCi; : : :g denote the set of all non-negative integers that are congruent to i modulo
h; and let F.Wi / be the set of all finite subsets of Wi : Let

Ai D
8

<

:

X

f 2F
2f W F 2 F.Wi /

9

=

;
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and
A D A0 [A1 [ � � � [ Ah�1:

Then A is a thin basis of order h.

Proof. Note that for all i D 0; 1; : : : ; h � 1 we have 0 2 Ai since ; 2 F.Wi / and
P

f 2; 2f D 0: This implies that

A0 C A1 C � � � C Ah�1 � h
 
h�1[

iD0
Ai

!

D hA

Moreover,Ai \ Aj D f0g if 0 � i < j � h� 1:
First we show that A is a basis of order h. Every positive integer n is uniquely

the sum of distinct powers of two, so we can write

n D
1X

jD0
"j 2

j ;

where the sequence f"j g1jD0 satisfies "j 2 f0; 1g for all j 2 N0 and "j D 0 for all
sufficiently large j . Because

1X

jD0
j
i .mod h/

"j 2
j 2 Ai ;

it follows that

n D
1X

jD0
"j 2

j

D
h�1X

iD0

0

B
B
@

1X

jD0
j
i .mod h/

"j 2
j

1

C
C
A

2 A0 C A1 C � � � C Ah�1
� hA

and so A is a basis of order h.
We shall compute the counting functions of the sets Ai and A. Let x � 2h�1. For

every i 2 f0; 1; : : : ; h � 1g, there is a unique positive integer r such that

2.r�1/hCi � x < 2rhCi :

If ai 2 Ai and ai � x then there is a set

F � fi; hC i; : : : ; .r � 1/hC ig
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such that

ai D
X

f 2F
2f :

The number of such sets F is exactly 2r . Because 0 2 Ai ; we have

Ai .x/ � 2r � 1 < 2r � 21�i=hx1=h

and so

A.x/ D A0.x/C A1.x/C � � � C Ah�1.x/

<

 
h�1X

iD0
21�i=h

!

x1=h

D
�

1

1 � 2�1=h

�

x1=h:

Thus, A is a thin basis of order h. This completes the proof. ut
For h D 2; the Raikov-Stöhr construction produces the thin basis A D A0 [ A1

of order 2, where

A0 D f0; 1; 4; 5; 16; 17; 20; 21; 64; 65; 68; 69; 80; 81; 84; 85; 256; : : :g

is the set of all finite sums of even powers of 2, and

A1 D f0; 2; 8; 10; 32; 34; 40; 42; 128; 130; 136; 138; 160; 162; 168; 170; 512; : : :g

is the set of all finite sums of odd powers of 2.

4 Construction of Thin g-adic Bases of Order h

Lemma 1. Let g � 2: Let W be a nonempty set of non-negative integers such that

W.x/ D �x CO.1/

for some � � 0 and all x � 1. Let F.W / be the set of all finite subsets of W . Let
A.W / be the set consisting of all integers of the form

a D
X

w2F
ewg

w; (5)
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where F 2 F.W / and ew 2 f0; 1; : : : ; g � 1g for all w 2 F . Then

x� � A.W /.x/� x�

for all sufficiently large x.

Proof. The nonempty set W is finite if and only if � D 0, and in this case A.W / is
also nonempty and finite, or, equivalently, 1� A.W /.x/� 1.

Suppose that � > 0 and the setW is infinite. LetW D fwig1iD1, where 0 � w1 <
w2 < w3 < � � � . Let ı D 0 if w1 � 1 and ı D 1 if w1 D 0. For x � gw1 , we choose
the positive integer k so that

gwk � x < gwkC1 :

Then

wk � logx

logg
< wkC1

and

k D W
�

logx

logg

�

C ı D � logx

logg
CO.1/;

whereW.x/ is the counting function of the set W .
If a 2 A.W / and a � x; then every power of g that appears with a nonzero

coefficient in the g-adic representation (5) of a does not exceed gwk , and so a can
be written in the form:

a D
kX

iD1
ewi
gwi ; where ewi

2 f0; 1; : : : ; g � 1g.

There are exactly gk integers of this form, and so

A.W /.x/ � gk D g � log x
log g

CO.1/ � x� :

Similarly, if a is one of the gk�1 � 1 positive integers that can be represented in the
form:

a D
k�1X

iD0
ewi
gwi

then

a �
k�1X

iD0
.g � 1/gwi �

wk�1X

jD0
.g � 1/gj < gwk�1C1 � gwk � x



266 M.B. Nathanson

and so

A.W /.x/ � gk�1 � 1� x� :

This completes the proof. ut
Theorem 3 (Jia-Nathanson). Let g � 2 and h � 2: Let W0;W1; : : : ;Wh�1 be
nonempty sets of non-negative integers such that

N0 D W0 [W1 [ � � � [Wh�1

and
Wi .x/ D �ix CO.1/;

where 0 � �i � 1 for i D 0; 1; : : : ; h � 1. Let

� D max.�0; �1; : : : ; �h�1/:

Let A.W0/; A.W1/; : : : ; A.Wh�1/ be the sets of non-negative integers constructed
in Lemma 1. The set

A D A.W0/ [A.W1/ [ � � � [A.Wh�1/

is a basis of order h, and

A.x/ D O
�

x�
�

:

In particular, if

Wi .x/ D x

h
CO.1/

for i D 0; 1; : : : ; h � 1 then A D A.W0/ [ A.W1/ [ � � � [ A.Wh�1/ is a thin basis

of order h.

Note that it is not necessary to assume that the sets W0;W1; : : : ;Wh�1 are pair-
wise disjoint.

Proof. Every non-negative integer n has a g-adic representation of the form

n D
tX

wD0
ewg

w;

where t � 0 and ew 2 f0; 1; : : : ; g � 1g for w D 0; 1; : : : ; t: We define the sets

F0 D fw 2 f0; 1; : : : ; tg W w 2 W0g
F1 D fw 2 f0; 1; : : : ; tg W w 2 W1 nW0g
F2 D fw 2 f0; 1; : : : ; tg W w 2 W2 n .W0 [W1/g

:::

Fh�1 D fw 2 f0; 1; : : : ; tg W w 2 Wh�1 n .W0 [ � � � [Wh�2/g:
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Then Fi 2 F.Wi / for all i D 0; 1; : : : ; h � 1. Since 0 2 A.Wi / for i D 0; 1; : : : ;

h� 1, we have

n D
tX

wD0
ewg

w D
h�1X

iD0

X

w2Fi

ewg
w 2 A.W0/C � � � C A.Wh�1/ 2 hA:

Thus, A is a basis of order h.
By Lemma 1,

A.Wi /.x/ D O
�

x�i

�

D O
�

x�
�

for all i D 0; 1; : : : ; h � 1; and so

A.W /.x/ �
h�1X

iD0
A.Wi /.x/ D O

�

x�
�

:

If �i D 1=h for all i then � D 1=h and A is a thin basis. This completes the proof.
ut

Consider the case whenWi D fw 2 N0 W w  i .mod h/g for i D 0; 1; : : : ; h�1.
We shall compute an upper bound for the counting functions Ai .x/ and A.x/: For
each i and x � gi , choose the positive integer r such that

g.r�1/hCi � x < grhCi :

Then
Ai .x/ � gr � 1 < gr � g1�.i=h/x1=h

and so

A.x/ D
h�1X

iD0
Ai .x/ <

h�1X

iD0
g1�.i=h/x1=h D g � 1

1 � g�1=h x
1=h:

Applying the mean value theorem to the function f .x/ D x1=h; we obtain A.x/ <
ghx1=h: In particular, if g D 2; we obtain A.x/ < 1

1�2�1=h x
1=h < 2hx1=h: This

special case is the Raikov-Stöhr construction. For h D 2 the Raikov-Stöhr basis
A D fakg1kD1 with ak < akC1 for k � 1 satisfies

A.x/p
x
< 2Cp2 D 3:4142 : : : :

Letting x D ak; we obtain

ak

k2
>
3 � 2p2

2
D 0:0857 : : : :

If A is a basis of order h then the order of magnitude of the counting function
A.x/ must be at least x1=h; and there exist thin bases, such as the Raikov-Stöhr
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bases and the Jia-Nathanson bases, with exactly this order of magnitude. Two natural
constants associated with thin bases of order h are

˛h D inf
A�N0

hADN0

lim inf
x!1

A.x/

x1=h

and

ˇh D inf
A�N0

hADN0

lim sup
x!1

A.x/

x1=h

Stöhr [16] proved the following lower bound for ˇh.

Theorem 4 (Stöhr).

ˇh �
h
p
hŠ

� .1C 1=h/;

where � .x/ is the Gamma function.

In particular, lim supx!1A.x/=
p
x � p8=
 for every basis A of order 2.

Open Problem 1 Compute the numbers ˛h and ˇh for all h � 2:
This is an old unsolved problem in additive number theory. Even the numbers ˛2

and ˇ2 are unknown.

5 Asymptotically Polynomial Bases

Let h � 2, and let A D fakg1kD1 be a set of non-negative integers with a1 D 0 and
ak < akC1 for all k � 1. If A is a basis of order h, then there is a real number �2
such that ak � �2kh for all k (Theorem 1). The basis A is called thin if there is also
a number �1 > 0 such that ak � �1kh for all k. Thus, if A is a thin basis of order
h, then there exist positive real numbers �1 and �2 such that

�1 � ak

kh
� �2

for all k. In Theorems 2 and 3 we constructed examples of thin bases of order h for
all h � 2.

The sequence A D fakg1kD0 is called asymptotically polynomial of degree d if
there is a real number � > 0 such that ak 
 �kd as k !1: If A is a basis of order
h and if A is also asymptotically polynomial of degree d , then d � h. We shall
describe a beautiful construction of Cassels of a family of additive bases of order
h that are asymptotically polynomial of degree h. The key to the construction is
the following result, which allows us to embed a sequence of non-negative integers
with regular growth into a sequence of non-negative integers with asymptotically
polynomial growth.
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Theorem 5. Let h � 2 and letA D fakg1kD1 be a sequence of non-negative integers
such that

lim inf
k!1

akC1 � ak
a
.h�1/=h
k

D ˛ > 0:

For every real number � with 0 < � < ˛, there exists a sequence C D fckg1kD0
of non-negative integers such that C is a supersequence of A and

ck D
�
�k

h

�h

CO
�

kh�1� :

Proof. Let B D fbkg1kD1 be a strictly increasing sequence of non-negative integers
such that

bk D
�
�k

h

�h

CO.kh�2/:

Because h � 2 and bk D .�k=h/h
�

1CO �k�2		, we have

bkC1 � bk
b
.h�1/=h
k

D
�
�
h

	h �
.k C 1/h � kh CO.kh�2/

	

�
�k
h

�h�1
.1CO .k�2//.h�1/=h

D �
�

hkh�1 CO �kh�2		

hkh�1 .1CO .k�2//.h�1/=h

D �
�

1CO �k�1		

.1CO .k�2//.h�1/=h

D �.1C o.1//

and so

lim
k!1

bkC1 � bk
b
.h�1/=h
k

D �:

Suppose there exist infinitely many k such that, for some integerm D m.k/,

bk < am < amC1 � bkC1:

The inequality

bkC1 � bk
b
.h�1/=h
k

>
amC1 � am
b
.h�1/=h
k

>
amC1 � am
a
.h�1/=h
m

implies that

� D lim
k!1

bkC1 � bk
b
.h�1/=h
k

� lim inf
m!1

amC1 � am
a
.h�1/=h
m

� ˛ > �
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which is impossible. Therefore, there exists an integerK such that, for every integer
k � K; the interval .bk; bkC1� contains at most one element of A.

Choose the integer L such that

aL � bK < aLC1:

We define the sequence C D fckg1kD0 as follows: Let ck D ak for k D
1; 2; : : : ; L: For i � 1; we choose cLCi 2 .bKCi�1; bKCi � as follows: If the inter-
val .bKCi�1; bKCi � contains the element a` from the sequence A then cLCi D a`.
Otherwise, let cLCi D bKCi . As the interval .bKCi�1; bKCi � contains at most one
element of A for all i � 1, and since every element ak of A with k > L is con-
tained in some interval of the form .bKCi�1; bKCi � with i � 1, it follows that A is
a subsequence of C . Moreover, for every k � LC 1;

bk�LCK�1 < ck � bk�LCK :

As

bk�LCK D
��

h

�h

.k �LCK/h CO.kh�2/ D
�
�k

h

�h

CO
�

kh�1
�

and, similarly, bk�LCK�1 D .�k=h/h CO
�

kh�1	, it follows that

ck D
�
�k

h

�h

CO
�

kh�1� :

This completes the proof. ut

6 Bases of Order 2

In this section we describe Cassels’ construction in the case h D 2. We need the
following convergence result.

Lemma 2. Let 0 < ˛ < 1. If fqkg1kD1 is a sequence of positive integers such that

lim
k!1

qk�1
qk
D ˛

then

lim
k!1

q1 C q2 C � � � C qk
qk

D 1

1� ˛ :
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Proof. For every non-negative integer j we have

lim
k!1

qk�j
qk
D lim
k!1

j�1
Y

iD0

qk�i�1
qk�i

D ˛j : (6)

Let ˇ be a real number such that ˛ < ˇ < 1: For every " > 0 there exists a number
K D K.ˇ; "/ such that

qk�1
qk

< ˇ for all k � K (7)

and

ˇK <
.1 � ˇ/"

4
: (8)

If k � K and k �K D r then

qk > ˇ
�1qk�1 > ˇ�2qk�2 > � � � > ˇ�rqk�r D ˇK�kqK D cˇ�k ;

where c D ˇKqK > 0, and so

lim
k!1

qk D1: (9)

If 0 � j � k �K C 1, then inequality (7) implies

qk�j
qk
D
j�1
Y

iD0

qk�i�1
qk�i

< ˇj :

For k � 2K we obtain

ˇ
ˇ
ˇ
ˇ

q1 C q2 C � � � C qk
qk

� 1

1 � ˛
ˇ
ˇ
ˇ
ˇ
D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

k�1X

jD0

qk�j
qk
�

1X

jD0
˛j

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

�
K�1X

jD0

ˇ
ˇ
ˇ
ˇ

qk�j
qk
� ˛j

ˇ
ˇ
ˇ
ˇ
C
k�KC1X

jDK

qk�j
qk
C

k�1X

jDk�KC2

qk�j
qk
C

1X

jDK
˛j

<

K�1X

jD0

ˇ
ˇ
ˇ
ˇ

qk�j
qk
� ˛j

ˇ
ˇ
ˇ
ˇ
C
k�KC1X

jDK
ˇj C

K�2X

jD1

qj

qk
C

1X

jDK
ˇj

<

K�1X

jD0

ˇ
ˇ
ˇ
ˇ

qk�j
qk
� ˛j

ˇ
ˇ
ˇ
ˇ
C
K�2X

jD1

qj

qk
C 2ˇK

1 � ˇ
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It follows from (6), (9), and (8) that for j D 0; 1; : : : ; K � 1 and all sufficiently
large k

ˇ
ˇ
ˇ
ˇ

qk�j
qk
� ˛j

ˇ
ˇ
ˇ
ˇ
<

"

4K

and
qj

qk
<

"

4K

and so
ˇ
ˇ
ˇ
ˇ

q1 C q2 C � � � C qk
qk

� 1

1 � ˛
ˇ
ˇ
ˇ
ˇ
< ":

This completes the proof. ut
Theorem 6. Let fqig1iD1 and fmig1iD1 be sequences of positive integers such that

q1 D 1 (10)

and, for all i � 2;
.qi�1; qi / D .qi�1; qiC1/ D 1 (11)

mi�1 � qi C qiC1 � 2 (12)

and

miC1qiC1 � miqi Cmi�1qi�1: (13)

Define the sequences fQkg1kD1 of non-negative integers and fAkg1kD1 of finite arith-
metic progressions of non-negative integers by:

Qk D
k�1X

iD1
miqi

and

Ak D Qk C qk 	 Œ0;mk�:
Let

A D
1[

kD1
Ak D fang1nD0

where a0 D 0 < a1 < a2 < � � � . ThenA is a basis of order 2, and, for every positive
integerK , the set

S1
kDK Ak is an asymptotic basis of order 2.

Let A.x/ be the counting function of the set A, and let Mk D
Pk�1
iD1 mi for

k � 1. If Mk � n �MkC1; then

an D Qk C .n �Mk/qk: (14)
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If Qk � x � QkC1; then

A.x/ D Mk C
�
x �Qk

qk

�

: (15)

Proof. As QkC1 �Qk D mkqk ; it follows that

fQk;QkC1g � Ak � ŒQk;QkC1�

and
Ak D QkC1 � qk 	 Œ0;mk�:

Also, Q1 D 0, Q2 D m1q1 D m1, and A1 D Œ0;m1�; hence

Œ2Q1; 2Q2� D Œ0; 2m1� D 2A1:

We shall prove that

Œ2Qk; 2QkC1� � Ak�1 C .Ak [AkC1/ � 2 .Ak�1 [Ak [ AkC1/ (16)

for all k � 2:
Let n 2 Œ2Qk; 2QkC1�: There are two cases. In the first case we have

2Qk � n � Qk CQkC1 � .qk � 1/qk�1: (17)

Because .qk ; qk�1/ D 1, there is a unique integer r such that

n  2Qk � rqk�1 .mod qk/

and, by (12),
0 � r � qk � 1 � mk�1: (18)

ThenQk � rqk�1 2 Ak�1: There is a unique integer s such that

sqk D n � 2Qk C rqk�1:

It follows from (17) and (18) that

0 � n � 2Qk C rqk�1 � QkC1 �Qk D mkqk ;

and so
0 � s � mk:

Therefore,Qk C sqk 2 Ak and

n D .Qk � rqk�1/C .Qk C sqk/ 2 Ak�1 C Ak :
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In the second case we have

Qk CQkC1 � .qk � 1/qk�1 C 1 � n � 2QkC1: (19)

The set R D Œqk � 1; qk C qkC1 � 2� is a complete set of representatives of the
congruence classes modulo qkC1. Because .qk�1; qkC1/ D 1, it follows that there
is a unique integer r 2 R such that

n  Qk CQkC1 � rqk�1 .mod qkC1/:

Inequality (12) implies that

0 � qk � 1 � r � qk C qkC1 � 2 � mk�1 (20)

and so Qk � rqk�1 2 Ak�1. There is a unique integer t such that

tqkC1 D n �Qk �QkC1 C rqk�1;

Inequalities (19), (20), and (13) imply that

tqkC1 � .r � qk C 1/qk�1 C 1 � 1

and

tqkC1 � QkC1 �Qk C rqk�1 � mkqk Cmk�1qk�1 � mkC1qkC1;

and so

1 � t � mkC1:

Therefore,QkC1 C tqkC1 2 AkC1 and

n D .Qk � rqk�1/C .QkC1 C tqkC1/ 2 Ak�1 CAkC1:

This proves (16). It follows that
S1
kD1Ak is a basis of order 2. Moreover, for every

positive integerK ,

Œ2QKC1;1/ � 2
 1[

kDK
Ak

!

and so
S1
kDK Ak is an asymptotic basis of order 2.

Let A D fang1nD0; where a0 D 0 < a1 < a2 < � � � , and let A.x/ be the counting
function of the set A. Formulas (14) and (15) are immediate consequences of the
construction of the set A. This completes the proof. ut
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Theorem 7. Let 0 < ˛ < 1 and let fqig1iD1 be a sequence of positive integers with
q1 D 1 such that, for all i � 2;

.qi�1; qi / D .qi�1; qiC1/ D 1 (21)

qiC1.qiC2 C qiC3/ � qi .qiC1 C qiC2/C qi�1.qi C qiC1/ (22)

and

lim
i!1

qi�1
qi
D ˛: (23)

Define the sequences fQkg1kD1 of non-negative integers and fAkg1kD1 of finite arith-
metic progressions of non-negative integers by:

Qk D
k�1X

iD1
qi .qiC1 C qiC2/

and
Ak D Qk C qk 	 Œ0; qkC1 C qkC2�:

Let

A D
1[

kD1
Ak D fang1nD0;

where a0 D 0 < a1 < a2 < � � � . Then A is a basis of order 2 such that

lim inf
k!1

anC1 � an
n

� ˛2.1 � ˛/
1C ˛ > 0:

Note that the sequence fqig1iD1 of Fibonacci numbers defined by q1 D q2 D 1

and qiC2 D qiC1 C qi for i � 1 satisfies the conditions of Theorem 7 with ˛ D
.
p
5 � 1/=2.

Proof. For every integer i � 1 we define the positive integer mi D qiC1 C qiC2.
Inequality (22) implies that the sequence fmig1iD1 satisfies the hypotheses of
Theorem 6, and so A is a basis of order 2. For k � 1 we define:

Mk D
k�1X

iD1
mi D

k�1X

iD1
.qiC1 C qiC2/:

Then fMkg1kD1 is a strictly increasing sequence of positive integers. For every pos-
itive integer n there is a unique integer k such that

Mk � n < MkC1:
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By (14) we have

an D Qk C .n �Mk/qk

and so

anC1 � an D qk ;
hence

anC1 � an
n

D qk

n
>

qk

MkC1
:

Condition (23) implies that limk!1 qk D1. As

MkC1
qk

D
kX

iD1

qiC1 C qiC2
qk

D
kC1X

iD2

qi

qk
C
kC2X

iD3

qi

qk

D 2
kX

iD1

qi

qk
C 2qkC1

qk
C qkC2

qk
� 2q1

qk
� q2
qk
;

it follows from Lemma 2 that

lim
k!1

MkC1
qk

D 2

1 � ˛ C
2

˛
C 1

˛2
D 1C ˛
˛2.1 � ˛/ :

Therefore,

lim inf
k!1

anC1 � an
n

� lim
k!1

qk

MkC1
D ˛2.1 � ˛/

1C ˛ > 0:

This completes the proof. ut
Theorem 8 (Cassels). There exist a basis C D fcng1nD0 of order 2 and a real
number � > 0 such that cn D �n2 CO.n/:
Proof. By Theorem 7, there exists a basis A D fang1nD0 of order 2 such that
lim infn!1.anC1 � an/=n > 0. Applying Theorem 1 with h D 2, we see that
an � n2 and so lim infn!1.anC1 � an/=a1=2n > 0. Applying Theorem 5 with
h D 2, we obtain a sequence C D fcng1nD0 of non-negative integers and a positive
real number � such that C is a supersequence of A and cn D �n2 C O .n/ : This
completes the proof. ut
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7 Bases of Order h � 3

We start with Cassels’ construction of a finite set C of integers such that the ele-
ments of C are widely spaced and C is a basis of order h for a long interval of
integers. The construction uses a perturbation of the g-adic representation.

Lemma 3. Let h � 3: Let v and L be positive integers with L � h: Define

g D 2hC1v:

Let C D C.v; L/ denote the finite set consisting of the following integers:

gh C egh�1 C 2vgh�2 C e for 0 � e < g,
.i C 1/gh C egh�1 C egi for 0 � i � h� 3 and 0 � e < g,
.h � 1/gh C .4vq C r/gh�1 C .4vq C r/gh�2 for 0 � q < 2h�1 and 0 � r < 2v,
hgh C `gh�1 for 0 � ` < Lg.

Then

(i) The h-fold sumset hC contains every integer n in the interval

��
h2 C 3h� 2

2

�

gh;

�
h.hC 1/

2
C L

�

gh
�

:

(ii) If c 2 C then
gh � c < .hC L/gh:

If c � hgh, then c  0 .mod gh�1/.
(iii) If c; c0 2 C and c ¤ c0, then

jc � c0j � vgh�2 � g:

(iv) If c 2 C and y is any integer such that

y  �vgh�2 .mod 4vgh�2/

then
jc � yj � vgh�2 � g:

Proof. (i) Every non-negative integer n has a unique g-adic representation in the
form:

n D eh�1gh�1 C eh�2gh�2 C � � � C e1g C e0; (24)

where eh�1 � 0 and

0 � ej < g for j D 0; 1; : : : ; h � 2:
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If n satisfies the inequality

�
h2 C 3h� 2

2

�

gh � n <
�
h.hC 1/

2
C L

�

gh

then eh�1 satisfies the inequality

�
h2 C 3h� 2

2

�

g � eh�1 <
�
h.hC 1/

2
C L

�

g: (25)

The digit eh�2 satisfies the inequality 0 � eh�2 < g D 4v2h�1: There are two
cases, which depend on the remainder of eh�2 when divided by 4v.

In the first case, we have

eh�2 D 4vq C r with 0 � q < 2h�1 and 0 � r < 2v:

Rearranging the g-adic representation (24), we obtain

n D
�

.h� 1/gh C .4vq C r/gh�1 C .4vq C r/gh�2�

C
h�3X

iD0

�

.i C 1/gh C eigh�1 C eigi
�

C
�

hgh C `gh�1� ; (26)

where

` D eh�1 �
h�2X

iD0
ei � h.hC 1/g

2
:

Inequality (25) implies that

` �
�
h2 C 3h� 2

2

�

g � .h� 1/.g � 1/� h.hC 1/g
2

D h� 1 > 0

and

` <

�
h.hC 1/

2
CL

�

g � h.hC 1/g
2

D Lg

and so hghC`gh�1 2 C . Thus, (26) is a representation of n as the sum of h elements
of C , that is, n 2 hC .

In the second case, we have

eh�2 D 4vq C r C 2v with 0 � q < 2h�1 and 0 � r < 2v:
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From the g-adic representation (24), we obtain

n D
�

.h� 1/gh C .4vq C r/gh�1 C .4vq C r/gh�2�

C
h�3X

iD1

�

.i C 1/gh C eigh�1 C eigi
�

C
�

gh C e0gh�1 C 2vgh�2 C e0
�

C
�

hgh C `gh�1� ; (27)

where

` D eh�1 � .eh�2 � 2v/�
h�3X

iD0
ei �

�
h.hC 1/

2

�

g:

As in the first case, inequality (25) implies that 0 < h � 1 � ` < Lg and so
hgh C `gh�1 2 C . Thus, (27) is a representation of n as the sum of h elements of
C , that is, n 2 hC . This proves (i).

To prove (ii), we observe that the smallest element of C is gh and the largest is
hgh C .Lg � 1/gh�1 < .hC L/gh. If c 2 C and c � hgh then c D hgh C `gh�1
for some non-negative integer ` < Lg, hence c  0 .mod gh�1/.

To prove (iii), we assert that every integer c 2 C satisfies an inequality of the
form:

4svgh�2 � c < .4sC 2/vgh�2 C g (28)

for some non-negative integer s. There are four cases to check.
If c D ghCegh�1C2vgh�2Ce with 0 � e < g then we choose s D 2h�1.gCe/.

Because

4svgh�2 D gh C egh�1

and

.4s C 2/vgh�2 C g D gh C egh�1 C 2vgh�2 C g
it follows that c satisfies (28).

If c D .i C 1/gh C egh�1 C egi with 0 � e < g and 0 � i � h � 3 then c
satisfies (28) with s D 2h�1..i C 1/g C e/.

If c D .h � 1/gh C .4vq C r/gh�1 C .4vq C r/gh�2 with 0 � q < 2h�1 and
0 � r < 2v then c satisfies (28) with s D 2h�1..h� 1/gC 4vq C r/C q.

If c D hghC`gh�1 with 0 � ` < Lg then c satisfies (28) with s D 2h�1.hgC`/.
This proves (28). It follows that the distance between elements of C that satisfy

inequality (28) for different values of s is at least 2vgh�2�g. If c and c0 are distinct
elements of C that satisfy inequality (28) for the same value of s, and if c0 < c, then
we must have

0 < c � c0 < 2vgh�2 C g:
This can happen only if c D gh C egh�1 C 2vgh�2 C e and c0 D gh C egh�1 C e
with 0 � e < g, and so c � c0 D 2vgh�2. This proves (iii).
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Finally, to prove (iv), we observe that if y  �vgh�2 .mod 4vgh�2/ then y D
4s0vgh�2 � vgh�2 for some integer s0, and the distance between y and any integer
satisfying an inequality of the form (28) is at least vgh�2 � g. This completes the
proof of the Lemma. ut
Lemma 4. For h � 3, let vi D 2i and gi D 2hC1vi D 2iChC1 for i D 0; 1; 2; : : : :
Then

pj D
j
X

iD0
vig

h�2
i < ghj :

Proof. We compute pj explicitly as follows:

pj D
j
X

iD0
vig

h�2
i D

j
X

iD0
2i
�

2iChC1
�h�2 D 2.h�2/.hC1/

j
X

iD0
2.h�1/i

D 2.h�2/.hC1/
 

2.h�1/.jC1/ � 1
2h�1 � 1

!

D 2h
2Chj�j�3 � 2h2�h�2

2h�1 � 1
< 2h.jChC1/ D ghj

because, for h � 3,

2h
2Chj�j�3 C 2h2ChjCh < 2h2ChjChC1 < 2h2ChjC2h�1

< 2h
2ChjC2h�1 C 2h2�h�2: ut

Theorem 9. Let h � 3. There exists a strictly increasing sequenceA D fakg1kD1 of
non-negative integers such that A is a basis of order h and

lim inf
k!1

akC1 � ak
a
.h�1/=h
k

� 1

23h�1 :

Proof. Let

A.�1/ D
h

0; 2h
2C2hi :

We define
L D 22h � h � 1

and, for i D 0; 1; 2; : : :,
vi D 2i
gi D 2hC1vi D 2iChC1

and

pj D
j
X

iD0
vig

h�2
i :
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For j D 0; 1; 2; : : :, let

A.j / D pj C C.vj ; L/;
where C.vj ; L/ is the finite set of positive integers constructed in Lemma 3. We
begin by proving that

A D
1[

jD�1
A.j /

is a basis of order h.
First, we observe that

I.�1/ D
h

0; h2h
2C2hi D hA.�1/ � hA

and, by Lemma 3,

I.j / D
�

hpj C
�
h2 C 3h� 2/

2

�

ghj ; hpj C
�
h.hC 1/

2
CL

�

ghj

�

� hA.j /

for j D 0; 1; 2; : : :. As h2 C 3h� 2 � 2hC1 for h � 3, it follows that

hp0 C
�
h2 C 3h � 2/

2

�

gh0 D h2.hC1/.h�2/ C
�
h2 C 3h� 2

2

�

2h.hC1/

� h2h2�h�2 C 2h2C2h

� h2h2C2h

and so the intervals I.�1/ and I.0/ overlap. Similarly, for j � 0 the intervals I.j /
and I.j C 1/ overlap if

hpjC1 C
�
h2 C 3h� 2

2

�

ghjC1 � hpj C
�
h.hC 1/

2
C L

�

ghj : (29)

Because vjC1 D 2vj and gjC1 D 2gj , we have

pjC1 � pj D vjC1gh�2
jC1 D 2hCj�1gh�2

j D ghj

2hCjC3 :

Rearranging inequality (29) and dividing by ghj , we see that it suffices to prove that

h

2hCjC3 C
�
h2 C 3h� 2

2

�

2h � .h� 2/.hC 1/
2

C 22h:
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This follows immediately from the inequalities h2 C 3h� 2 � 2hC1 and

h

2hCjC3 � 2 �
.h� 2/.hC 1/

2

for j � 0 and h � 3. Thus, the set A is a basis of order h.
Next, we show that the elements ofA are widely spaced. Let a; a0 2Awith a0¤ a

and a 2 A.j / and a0 2 A.j 0/ for j; j 0 � 0. We shall prove that

ja � a0j � vjg
h�2
j � gj :

Suppose not. If j D j 0 then there exist c; c0 2 C.vj ; L/ with c ¤ c0 such that
a D pj C c and a0 D pj C c0. By Lemma 3 (iii) we have ja � a0j D jc � c0j �
vjgh�2

j � gj : Thus, if ja � a0j < vjgh�2
j � gj then j ¤ j 0.

The sequences fpj g1jD0 and fgj g1jD0 are strictly increasing sequences of positive

integers. If j < j 0, then vjgh�3
j < vj 0gh�3

j 0 and so

vjg
h�2
j � gj D .vjgh�3

j � 1/gj < .vj 0gh�3
j 0 � 1/gj 0 D vj 0gh�2

j 0 � gj 0 :

Thus, if j < j 0 and ja � a0j < vjgh�2
j � gj then also ja � a0j < vj 0gh�2

j 0 � gj 0 .
Therefore, without loss of generality, we can assume that j 0 < j .

By Lemma 3 (ii) we have a � pjCghj and a0 < pj 0C.hCL/gh
j 0 : The inequality

ja � a0j < vjgh�2
j � gj implies that

a0 > a � vjg
h�2
j C gj > pj C ghj � vjg

h�2
j

D pj�1 C ghj D pj�1 C 2hghj�1 > pj�1 C hghj�1:

Combining the upper bound in Lemma 3 (ii) with Lemma 4, we get

a0 < pj 0 C .hC L/ghj 0 < .hC 1C L/ghj 0 D 22hghj 0 D 2hghj 0C1 D ghj 0C2:

As ghj <a
0<gh

j 0C2, we see that j 0 <j <j 0C 2 and so j D j 0C 1 and a0Dpj�1C
c0 for some c0 2 C.vj�1; L/ with c0 � hghj�1. By Lemma 3 (ii), we have c0  0

.mod gh�1
j�1/ and so

a0 D pj�1 C c0  pj�1 D pj � vjg
h�2
j .mod gh�1

j�1/:

Since

gh�1
j�1 D 2hCjgh�2

j�1 D 4vj 2
h�2gh�2

j�1 D 4vjg
h�2
j

it follows that

y D a0 � pj  �vjg
h�2
j .mod 4vjg

h�2
j /:
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There exists c 2 C.vj ; L/ such that a D pj C c. Lemma 3 (iv) implies that

ja � a0j D jc � .a0 � pj /j D jc � yj � vjg
h�2
j � gj

which is a contradiction. This proves that if a; a0 2 A n A.�1/ with a ¤ a0 and
a 2 A.j /, then ja � a0j � vjgh�2

j � gj :
From Lemmas 3 (ii) and 4 we also have

a D pj C c < ghj C .hC L/ghj D 22hghj D .4gj /h

and so a.h�1/=h < .4gj /h�1 and

ja � a0j
a.h�1/=h >

vjgh�2
j � gj

.4gj /h�1 D vj
4h�1gj

� 1

4h�1gh�2
j

D 1

23h�1 �
1

4h�1gh�2
j

:

Writing A as a strictly increasing sequence A D fakg1kD1 of non-negative integers,
we obtain

lim inf
k!1

akC1 � ak
a
.h�1/=h
k

� lim inf
a;a02AnA.�1/

a¤a0

ja � a0j
a.h�1/=h

� lim inf
j!1

 

1

23h�1 �
1

4h�1gh�2
j

!

D 1

23h�1 :

This completes the proof. ut
Theorem 10 (Cassels). For every integer h � 3 there exist a basis C D fcng1nD0
of order h and real number � > 0 such that cn D �nh CO

�

nh�1	.

Proof. This follows immediately from Theorems 9 and 5. ut
Open Problem 2 Let h � 2. Does there exist a basis C D fcng1nD0 of order h such
that cn D �nh C o.nh�1/ for some � > 0?

Open Problem 3 Let h � 2. Does there exist a basis C D fcng1nD0 of order h such
that cn D �nh CO.nh�2/ for some � > 0?

Open Problem 4 Let h � 2. Compute or estimate

supf� > 0 W there exists a basis C D fcng1nD0 of order h such that cn 
 �nhg:
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8 Notes

Raikov [13] and Stöhr [15] independently constructed the first examples of thin
bases of order h. Another early, almost forgotten construction of thin bases is due
to Chartrovsky [3]. The g-adic generalization of the Raikov-Stöhr construction
appears in work of Jia and Nathanson [8, 9] on minimal asymptotic bases. The cur-
rently “thinest” bases of finite order appear in recent articles by Hofmeister [7] and
Blomer [1]. An old but still valuable survey of combinatorial problems in additive
number theory is Stöhr [16].

The classical bases in additive number theory are the squares, cubes, and, for
every integer k � 4, the kth powers of non-negative integers, and also the sets
of polygonal numbers and of prime numbers. Using probability arguments, one
can prove that all of the classical bases contain thin subsets that are bases of
order h for sufficiently large h (Choi-Erdős-Nathanson [4], Erdős-Nathanson [5],
Nathanson [10], Wirsing[18], and Vu [17]).

The construction in this paper of polynomially asymptotic thin bases of order h
appeared in the classic article of Cassels [2] in 1957. There is a recent quantitative
improvement by Schmitt [14], and also related work on Cassels bases by Grekos,
Haddad, Helou, and Pihko [6] and Nathanson [12].
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Asymptotics of Weighted Lattice Point Counts
Inside Dilating Polygons

Marina Nechayeva and Burton Randol

Summary We study the family of normalized discrete measures induced on the
unit circle by radially projecting onto the circle the integral lattice points contained
in dilations of a fixed polygon satisfying certain algebraic properties. We examine
the asymptotic effect of such measures on a function f on S1 by weighting the
lattice points and their projections by a homogeneous extension of f toR2. We then
derive an almost everywhere result for almost all rotations of the polygon.

Keywords Lattice point asymptotics � Polygons

Mathematics Subject Classifications (2010). Primary 11P21, 11K60

1 Introduction

A generalization of the classical lattice point problem, which has found recent appli-
cations in string theory [1], as well as being of considerable intrinsic mathematical
interest in its own right, occurs when the lattice points in a dilating domain �D
in Rn are weighted with a homogeneous function which is not necessarily constant.
The homogeneity requirement on a weighting function is quite natural, since such
functions are exceptionally well adapted to the discussion of dilations, and in our
discussions of aspects of this subject, we will require that the weighting function
be of homogeneous weight ˛ � 0. Such a weighted lattice point count is obviously
equal to the total measure on Sn�1 produced by the weighted radial projections onto
Sn�1 of lattice points contained in �D. The case ˛ D 0 leads to the consideration of
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the integral of a function f on Sn�1 with respect to the discrete measure on Sn�1
given by radial projections of the lattice points in �D, which clearly corresponds to
the sum of the lattice points in �D, weighted by the 0-homogeneous extension of f
to Rn.

It can be shown (cf. [4]), that this quantity will, under suitable restrictions on D,
and after division by �n, tend to

1

n

Z

Sn�1

f .�/m.�/ d� ;

where d� is Lebesgue measure on Sn�1, andm.�/ is defined by the requirement that
the boundary @D of D is given in polar coordinates by r D .m.�//1=n. Put another
way, suitably normalized discrete measures produced by radial projection onto Sn�1
of atomic measures at the lattice points in �D, converge weakly to the measure
1
n
m.�/ d� on Sn�1. This fact can serve as the basis for a discrete approximation to

the effect of the measure m.�/d� on a test function f .�/, the efficiency of which,
over a suitable suite of test functions, depends on the rapidity of convergence of this
discrete process to the above integral. It is of course clear that the rate at which the
process converges will depend on the functionm, or equivalently, on the geometric
nature of the boundary of D as well as on the class of test functions.

In this paper, we will employ a general method of analysis, developed in [4–7]
(cf. also [1], where the case in which @D has positive curvature is discussed using
somewhat different techniques), to study this question in the case in which the region
being dilated is a polygon. In greater detail, we will discuss the relevant asymptotics
when D is a polygon satisfying a natural algebraic condition. As we mention at an
appropriate point in the paper, the algebraic hypothesis could be replaced by a Dio-
phantine condition which subsumes it, but we carry out the analysis in the algebraic
case, because of its exceptional importance and because it generically illustrates the
techniques.

In higher dimensions, the general approach we employ applies to polyhedra, but
the combinatorics become extremely formidable, and we defer their investigation
for now. For treatments of some aspects of the constant-weight higher-dimensional
polyhedral case, see, for example, [8, 11, 12].

2 The Algebraic Case

We will now take up the case of an algebraic polygon, and will initially assume that
the weighting function has a high degree of homogeneity, since it will be convenient
for it to have a certain degree of smoothness at the origin. We will then use a standard
Stieltjes argument to generalize our result to an arbitrary weight, in particular, to
weight zero.

We will also require that the polygon contains the origin, and that the normals to
its sides be poorly approximable in the sense of Diophantine approximation. That is,
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roughly speaking, the lines they determine cannot come too close to integral lattice
points, when the approach is measured as a function of distance from the origin. In
other terms, this condition is intended to ensure, in a sense to be made precise later,
that the slope of a normal to a side cannot be approximated very well by rationals.

This is the case, for example, for polygons for which the normals to the sides have
algebraic slopes; a fact that is a direct consequence of Roth’s Theorem [9], which
asserts that if � is real algebraic, then for any " > 0, the number of solutions of

ˇ
ˇ
ˇ
ˇ
� � p

q

ˇ
ˇ
ˇ
ˇ
� q�.2C"/

is finite. We will refer to such polygons as algebraic.

Remark: In the following discussion, the critical hypothesis will be that the normals
to the sides of the polygon are poorly approximable, as in Roth’s theorem. There are,
of course, many numbers besides algebraic ones which satisfy such a condition, but
as previously mentioned, we have chosen to illustrate the argument in the algebraic
case, because of its exceptional interest and generic character.

Now let f .�/ be a smooth function on S1, and let F be the weight-˛ homo-
geneous extension of f to R2, given in polar coordinates by F.r; �/ D r˛f .�/.
Assume for now that ˛ is large enough to ensure that F is sufficiently smooth at the
origin to justify subsequent arguments. We will study the asymptotic behavior of
the F -weighted lattice point count over dilates �D of the polygonD.

Let �� denote the indicator function of the dilated polygon and let F�DF���
(we will write F in place of F1.) The F -weighted lattice-point count, N.�/, inside
the dilated polygon is given by

N.�/ D
X

N2Z2

F�.N / D
Z

R2

F� CR.�/ D �2C˛
Z

D

F CR.�/; (1)

Our goal is to estimate the magnitude of R.�) as � ! 1. The form of (1)
suggests the use of the Poisson Summation Formula, however F� is not a smooth
function. To overcome this problem, we will use convolution to create a parame-
terized family of C1 functions that are suitably close to F� and whose sum over
lattice points will approximate N.�/.

We begin with ı, a non-negative C1 radial function supported on the unit disc
and such that

R

R2 ı=1, and define a family of functions F� 	 ı" , where

ı".X/ D 1

"2
ı

�
X

"

�

:

Summing F� 	 ı" over lattice points, we get a modified lattice-point count

N".�/ D
X

N2Z2

F� 	 ı".N /:
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Now, since F�	ı" isC1, the Poisson summation formula can be applied to estimate
the convergent sum above as

N".�/ D
X

N2Z2

bF �.N /bı".N / D
Z

F� CR".�/; (2)

where the principal term
R

F� D �2C˛ R
D
F comes from the lattice point at the

origin and, since bF �.N / D �˛C2bF .�N/ and bı".N / D bı."N /, the sum of the
remaining terms may be expressed as

R".�/ D �2C˛ X

N2Z2n.0;0/
bF .�N/bı."N /: (3)

We will later show exactly how N".�/ serves as an estimate for N.�/. At the
moment, comparison of (1) and (2) suggests that R".�/ will be useful in the study
of R(�).

To obtain an estimate for R".T /, we need to address the asymptotics of bF .
Using the divergence theorem and a lemma in [5, pp. 260–261], we get

bF .Y / D
Z

D

e2�i.X;Y /F.X/dX D 1

2
i jY j
Z

@D

e2�i.X;Y /.n.X/;G.X// dSX ;

where @D is the boundary of the polygon D, n.X/ is the exterior normal to @D at
X , and G.X/ is a vector field on R2, such that

divŒ.2
i jY j/�1e2�i.X;Y /G.X/� D e2�i.X;Y /F.X/ :

Now, since n.X/, restricted to any side S of the polygon is a constant, and since
the lemma from [5] ensures that derivatives of the components of G.X/ can, up to a
level depending on the smoothness ofF , be bounded on the boundary ofD indepen-
dently of Y, we conclude that bF .Y / can be expressed as a finite linear combination
of terms like

H.Y / D 1

jY j
Z

S

g.X/ e2�i.X;Y /dSX ;

where the derivatives of g.X/ are uniformly controlled in Y .
From this and (3), it follows that

R".�/� �2C˛ X

N2Z2n.0;0/
H.�N/bı."N /: (4)

We will now proceed to obtain an estimate of H(Y) that will be useful when " is
small.
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Let  denote the acute positive angle formed by Y and the line through the
normal to the side S . Since translation and rescaling of a side contribute a constant
multiple to the line integral above, and since inner product is rotation invariant,
we get:

H.Y / D 1

jY j
Z 1

�1
h.x/ ei jY jx sin dx (5)

where h corresponds to g in the obvious way, and straightforward integration by
parts leads to an estimate

H.Y /� 1

jY j2 ; (6)

uniformly in Y .
This estimate will not quite be enough to cover the whole range of summation

in (4), since our approach to estimating (4) will require replacing part of the infinite
sum with a corresponding convergent integral, and 1/ is not an L1 function in
a neighborhood of  D 0. If, however, we are interested in an estimate in the
complement of a band or strip centered around the y-axis, we can effect a kind
of trade-off, accepting a worse estimate for jY j in exchange for a better estimate
for  . In more detail, if jY j lies in the complement of such a strip, then at worst,
on the boundary of the strip,  is of the order of 1=jY j, and becomes larger as we
move away from the boundary. Thus, for example, if, for small � > 0, in (6) we
replace one of the jY j factors by jY j1�� , and the  factor by  1�� , we find that in
the complement of the strip,

H.Y /� 1

jY j2�� 1�� : (7)

It is, of course, possible to use other tradeoffs between jY j and  in order to
prove an estimate for H.Y / in the complement of a band of the described type. For
example, in a subsequent section, we will use the estimate

H.Y /� log1C� jY j
.jY j2 /.log1C�.1= //

: (8)

In the following, we will combine (6) and (7) with (4) to derive an estimate for
R".�/.

As we have mentioned, the form of (4) suggests the possibility of deriving an
estimate for R".�/ by replacing part of the sum with a corresponding convergent
integral, and it is with that in mind that we have produced an L1 estimate forH.Y /.

However, the desired substitution must take place in a region that can be covered
by suitable neighborhoods of lattice points, so that the value of H.Y / at any lattice
point in the region is uniformly comparable with the value ofH.Y / integrated over
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the neighborhood of that point. This presents a problem, since H.Y / explodes as
Y gets close to the normal to a side of the polygon, and there can be lattice points
lying very close to these “bad” directions.

With this in view, we will partition the plane into a “good” region G, within
which H.Y / is such that the summation can be replaced with an integral, and a
“bad” region B , where another method of summation will have to be employed.

A partition corresponding to a side S over which the Fourier transform is com-
puted is defined as follows. Take B to be a closed strip of width 2 C p2 whose
middle line runs through the origin and is perpendicular to the side S of the poly-
gon, and let G be the complement of B . Using our previous notation, we have:

G D
(

Y W jY j sin � 1C
p
2

2

)

and B D R2nG [ f.0; 0/g: (9)

The purpose of the following lemma is to ascertain that G is indeed a “good”
region in the above sense, where suitable neighborhoods for lattice points in G are
closed unit squares centered at those points and with sides parallel to the coordinate
axes.

Lemma 1. Let H.Y / be as above. Let N 2 Z2 \G. Let Q be a closed unit square
centered at N with sides parallel to the coordinate axes.

Claim:

H.N/�
Z

Q

1

jY j2�� 1�� :

By (7), this will allow us to replace the sum over G by an integral.

Proof. It is easily checked that the quotient of any two values of

1

jY j2�� 1��

within a Q of the described type is bounded independently of N 2 G, which estab-
lishes the lemma. ut

Thus, we have established that G is a “good” region. We can therefore estimate
RG" .�/, the contribution to R".�/ which comes from lattice points located in G, as
proposed above.

We start with subdividing G into a bounded and an unbounded part, namely
G1 D fY 2 G W jY j < 1

"
g and G2 D G nG1 and defining, for i D 1; 2

Si D �2
X

N2Gi

H.�N/bı".N /:
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We will estimate each Si separately, using estimate (7) and replacing sums with
appropriate integrals. First, since bı".N / is bounded, we get:

S1 � �2
X

N2G1

H.�N/� �2
X

N2G1

1

.�jN j/2��
1

 1��

� ��
Z 2�

0

Z 1="

1

1

r2��
1

 1�� r dr d � ��r� �
1="
1 �

��

"

��

:

Now, the contribution of the bı".N / factor, immaterial in case of S1, becomes essen-
tial for the convergence of S2. Since ı".N / is C1, bı".N / deteriorates very rapidly
as N !1, but we only need to use bı".N /� 1

"jN j to obtain:

S2 � �2
X

N"G2

1

.�jN j/2��
1

 1��
1

"jN j

� ��

"

Z 2�

0

Z 1

1="

1

r3��
1

 1�� r dr d � ��

"
r��1�11=" �

��

"

��

:

Thus, we now have the following result:

RG" .�/� �2C˛ X

N2G
H.�N/bı".N /� �˛.S1 C S2/� �˛

��

"

��

: (10)

Our next task will be to estimate RB" .�/, the contribution to R".�/ which comes
from lattice points located in the strip B .

Now, since jN j sin , the distance from the lattice pointN to the vector normal to
the face, can be arbitrarily small within B , and hence F.N/ can get uncontrollably
large, we will need a method different from the one just employed.

At this point, the so far unused requirement that the normal to a side of the poly-
gon, or equivalently the slope � of the side, be poorly approximable (for example,
algebraic), is called upon. In the case of an algebraic polygon, Roth’s Theorem ap-
plies and from it we derive that, given any ı > 0, there is a constant c, which
depends only on ı, such that for any integer q,

hq�i > c

q1Cı ;

where hq�i stands for the distance from q� to the nearest integer.
This poor approximability of � will play a crucial part in the estimate we are

after, since for any lattice pointN D .p; q/ we have jN j sin � jqjj��p=qj, and
so jN j2 sin � jqjhq�i, which produces, (using the previously derived estimate
H.Y /� 1

jY j2 sin 
),

H.�N/� 1

�2jN j2 sin 
� 1

�2jqjhq�i :
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This, combined with the fact that for all integers q, there exists a constant c such
that jfp 2 Z W .p; q/ 2 Bgj < c , and the earlier estimate bı".N / � 1

1C"jN j �
1

1C"jqj ; yields

RB" .�/� �2C˛ X

N2B
H.�N/bı".N /� �˛

1X

qD1

1

qhq�i
1

1C "q :

As before, we will divide the sum above into two parts, to be estimated separately,
namely

S1 D
mX

qD1

1

qhq�i
1

1C "q �
mX

qD1

1

qhq�i (11)

and

S2 D
1X

qDmC1

1

qhq�i
1

1C "q �
1

"
lim
M!1

MX

qDmC1

1

q2hq�i ; (12)

wherem is the largest integer smaller then 1
"

.

Lemma 2. Let sk D
Pk
qD1 1

hqi . Suppose hq�i > c
q1Cı , for some c, ı > 0 .

Claim sk � k1C2ı .
Proof. This is an immediate consequence of the penultimate line in the proof of
Lemma 3.3 of [3], (p. 123). ut

By Roth’s theorem, the hypothesis of the lemma above holds for any ı > 0. And
so, we conclude that for any � > 0; sk � k1C� .

Now, applying partial summation and the above result to (11) we arrive at

S1�
 

mX

kD1

sk

k.k C 1/

!

C sm

mC 1�
mX

kD1

k�

k
Cm��

Z 1
"

1

x�

x
dxC

�
1

"

��

�
�
1

"

��

:

We now proceed to estimate (12). Using the same tools as above, we first obtain

SM2 D
MX

qDmC1

1

q2hq�i D
0

@

MX

qDmC1

2k C 1
k2.k C 1/2 sk

1

AC sM

.M C 1/2

�
MX

kDmC1

k�

k2
C M �

M
�
Z M

1
"

x�

x2
dx C M �

M

Then, taking the limit as M approaches1 we get

S2 � 1

"

Z 1
1
"

x�

x2
dx �

�
1

"

��

:
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Putting it all together, we get an estimate for the contribution to the R".�/ coming
from lattice points in the “bad” region B .

RB" .�/� �˛.S1 C S2/� �˛
�
1

"

��

: (13)

And finally, combining (10) with (13), we derive

R".�/� �˛
��

"

��

:

and from (2) obtain for any � > 0

N".�/ D �2C˛
Z

D

F CO
�

�˛
��

"

���

: (14)

We are now ready to derive an estimate for N.�/ , the F -weighted lattice point
count within �D.

Observe that for large enough �, there exists a constant c, independent of � and ",
such that .�Cc"/D contains �DCB" and .��c"/DCB" is contained in �D, where
B" is a disc of radius ". (In fact, for any c > 1=jzj, where z is a point on @D closest
to the origin, the above condition is satisfied.)

In the case where F is a constant function, we then have, for all N"R2,
F��c" 	 ı".N / � F�.N / � F�Cc" 	 ı".N /, and summing over lattice points, we
obtain

N".� � c"/ � N.�/ � N".�C c"/:

The above inequality does not necessarily hold for non-constant F . But we
can modify it to fit the general case as follows. Note that any Y in �D we have
F�Cc" 	 ı".Y /D F�Cc".Z/ for some Z 2 B".Y / and so jF�.Y /�F�Cc" 	 ı".Y /j is
bounded above by the oscillation of F over B".Y /. The latter is in turn bounded by
a product of 2" with the maximum absolute value of the derivative of F on B".Y /,
and since the derivative of F has weight ˛ � 1, we obtain

jF�.Y / � F�Cc" 	 ı".Y /j � "�˛�1:

Thus, for everyN " �D, we get

F��c" 	 ı".N /CO
�

"�˛�1	 � F�.N / � F�Cc" 	 ı".N /CO
�

"�˛�1	 ;

where the adjusting constants do not depend on N . Now, summing over lattice
points, we arrive at

N".��c"/CO
�

"�˛�1	X��.N / � N.�/ � N".�Cc"/CO
�

"�˛�1	X��.N /;
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and using the estimate
P
��.N /� �2, we end up with

N".� � c"/CO
�

"�˛C1	 � N.�/ � N" .�C c"/CO
�

"�˛C1	 :

Combining the last inequality with (1) and (14) and subtracting the principal term
�2C˛ R

D
F , we obtain the following estimate:

R.�/� .�C c"/2C˛ � �2C˛ C �˛
��

"

�� C "�˛C1:

Now, using the binomial expansion, we derive

R.�/� �˛
�

�"C
��

"

���

; (15)

and setting " D ��1 we finally produce the estimate

R.�/� �˛C2�

for any � > 0, which amounts to the same thing as

R.�/� �˛C� ;

for any � > 0. (We have not insisted on choosing " in (15) to precisely balance the
two terms, since to do so would not change the final result).

We now conclude that the F -weighted lattice-point count inside an algebraic
polygonD dilated by � is given by

N.�/ D
X

N2Z2

F�.N / D
Z

F� CR.�/ D �2C˛
Z

D

F CO.�˛C� /; (16)

This estimate, obtained under the assumption that ˛ is sufficiently large, can
be used to obtain an estimate for an arbitrary weight ˇ, in particular, for ˇ D 0.
In more detail, as noted in [1] and elsewhere, there is a standard Stieltjes integral
technique for obtaining estimates for the asymptotic growth of a measure, weighted
in various ways, from a single such estimate. In the case at hand, the ˛-weighted
lattice point count can be regarded as the integral from 0 to � of an atomic measure
d�, concentrated on the values of � for which the dilation of @D by � contains
lattice-points, with each lattice-point weighted by the corresponding value of the
weight-˛ density F . The weight-ˇ lattice point count is then given by

Z �

0

tˇ�˛ d�.t/ D �2Cˇ
Z

D

F.x/ dx C
Z �

0

dO.tˇC� /

D �2Cˇ
Z

D

F.x/ dx CO.�ˇC� /:
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In particular, in the case where the weighting function is of weight zero, we have
the F -weighted lattice point count within �D given by

ND.�/ D �2
Z

D

F C O.�� / (17)

As we mentioned before, this case is of particular significance since the above
equation can be modified to serve as a numerical integration scheme.

In fact, given a measure on S1 with the positive density m.�/ with respect to
Lebesgue measure, and for which the equation r D .m.�//1=2 defines the boundary
of a polygon D, and a smooth function f on S1 with a weight zero homogeneous
extension F , we have, as a consequence of equation (8) of [4]

Z

S1

f .�/m.�/d� D 2
Z

D

F.x/dx: (18)

This, combined with [17] above, yields
Z

S1

f .�/m.�/d� D .2=�2/ND.�/C O.���2/: (19)

The first term on the right side of the last equation provides the principal term in
the estimate for the integral on the left. The number of points used in the estimate
corresponding to the parameter � is NDO.�2/, (a rough estimate for the number of
lattice points within �D). Therefore, the error of the method is of the order

O
�

���2	 D O.N�1C� /;

where � is an arbitrarily small positive constant.
We observe that this method of numerical integration requires the polygon whose

boundary is given by r D .m.�//1=2 to have normals with poorly approximable
slopes, as is the case with an algebraic polygon considered above. If, for example,
a polygon has a side, and thus a normal, with a rational slope, the error of the esti-
mate would be significantly worse, since the error term in the integral lattice point
count inside the dilated polygon would grow linearly with the dilation parameter.
However, such “bad” polygons are rare exceptions. In the following section, we
will show that for almost all rotations of a polygon, the slopes of the normal to the
sides are in fact poorly approximable in the sense needed to carry out the derivation
of the estimate.

3 An Almost Everywhere Result

In this section, we will derive an a.e. estimate for the error of a weighted lattice point
count for a polygon, specifically that for almost all rotations � of the polygon,

R.�; �/� �˛ log3C� .�/:
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It is plausible that this can be improved to �˛ log1C�.�/, by analogy with
Khinchine’s result [2] for the constant density case, a possibility which we plan
to investigate.

Since the arguments are so similar to those of the last section, our description of
them will be terser and more merely indicative than was the case with our previous
exposition.

As in the algebraic case, we consider separately the contributions to the error
term coming from the “good” and the “bad” region, defined as before, relative to
the angle � by which the polygon is rotated. That is, the bad regions will consist
as before of bands surrounding the normals to the sides of the rotated polygon, and
the good regions will be complementary to these. The estimate for the good region
contribution does not depend on � and is obtained in much the same way as the
corresponding estimate in the case of an algebraic polygon, using the “give-and-
take” observation in the form given by (8), and, as in the treatment of the algebraic
case, replacing the sum with a corresponding integral. The calculations are very
similar to those involved in the estimate for the corresponding sum in the algebraic
case, and yield

RG.�; �/� �˛ log2C� .�="/:

Now, to get an a.e. (in terms of �) estimate for the bad region’s contribution,
we invoke a well-known metrical theorem of Khinchine, the relevant part of which
states that

If
P

1
qf.q/

< 1 for some monotonic function f(x), then for almost all values of

� the inequality hq�i < 1
qf.q/

has only finitely many solutions, or equivalently for

almost all values of �, there exist a constant c s.t. hq�i > c�

qf.q/
.

In particular, f .x/ D log1C� .x/ satisfies the hypothesis above. Hence, setting
� D tan.�/, and noting that it is sufficient to consider a single normal, we have that
for almost all rotations of the polygon,

hq�i > c

q log1C� .q/
:

As in the last section, it now follows immediately from the penultimate line in
the proof of Lemma 3.3 of [3], (p. 123), that sk D

Pk
qD1

1
hqi � k log2C� k.

Now, as before, the bad region’s contribution to the error term in the modified
lattice point count is

RB" .�/� �˛
X

N2B
H.N/bı".N /� �˛.S1 C S2/ (20)

where

S1 D
mX

qD1

1

qhq�i
1

1C "q �
mX

qD1

1

qhq�i
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and

S2 D
1X

qDmC1

1

qhq�i
1

1C "q �
1

"
lim
M!1

MX

qDmC1

1

q2hq�i :

Applying partial summation and then replacing the sum with a corresponding
integral as before, we obtain

S1�
 

mX

kD1

sk

k.k C 1/

!

C sm

mC 1�
Z 1

"

1

log2C� x
x

dxClog2C�
�
1

"

�

� log3C�
�
1

"

�

and

S2 � 1

"

1X

qDmC1

2k C 1
k2.k C 1/2 sk C

1

"
lim
M!1

sM

.M C 1/2

� 1

"

Z 1
1
"

log2C� x
x2

dx C 1

"
lim
M!1

log2C� M
M

:

Integrating by parts, we get

1

"

Z 1
1
"

log2C� x
x2

dx � log2C�
�
1

"

�

:

Combined with (20) this leads to the following estimate, which holds for almost
all angles of rotation of the polygon:

RB" .�/� �˛ log3C�
�
1

"

�

:

Putting this together with the good region contribution, setting " D 1=� as before,
we get

R".�; �/� �˛ log3C� �

for almost all rotations � of the polygon. We use this a.e. estimate of the error in
the modified lattice point count to get an a.e. estimate of the error for the true lattice
point count

R.�; �/� �˛ log3C� .�/:

The steps of the argument leading from R".�/ to R.�/ are essentially the same as
those in the previous section and we will omit them here.
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4 Concluding Remarks

We have described a general method for describing the accuracy with which a class
of measures on S1 can be approximated by a naturally associated family of discrete
measures.

In the classical constant-density lattice point problem, if at least one of the
normals to a side of a polygon has rational slope, there are an infinite number
of �i !1 from which an infinitesimal displacement results in a modification of
the lattice-point count of order �, so in this circumstance the error estimate is of
true order �. Since the simple estimate of Gauss shows that the error term is al-
ways� �, polygons can be worst possible cases for lattice-point error asymptotics,
though paradoxically, this situation is not generic for polygons, as was noticed by
Khintchine [2] in the constant density case.

In the case in which the polygon is algebraic, the constant density case has pre-
viously been discussed in [8] and in [10].

Our approach can be synopsized by noting that in the presence of adequate infor-
mation about the Fourier transform, the lattice points on the Fourier transform side
of the Poisson summation formula are split into two groups: those in finite-width
bands surrounding the “bad” normal vectors of D, and all the rest. The contribu-
tion from the lattice points exterior to the bands can be estimated by comparison
with an integral, while the series arising from the contributions from lattice points
within bands is estimated by using Diophantine properties of the slopes of the cor-
responding normals. Since the relevant estimates for the Fourier transform ofD are
singular at these directions, the poor approximability of the slopes, which in the al-
gebraic case is a consequence of Roth’s Theorem, is crucial (cf. e.g., [7], p. 858 for
a similar argument).

Our developing experience with variable density lattice point asymptotics sug-
gests a kind of meta-conclusion, that in general, the derivable asymptotics associated
with such problems coincide, after suitable weighting, with the corresponding re-
sults for the classical constant-density case, and that the key is that the relevant
Fourier transform asymptotics are effectively identical.
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Support Bases of Solutions of a Functional
Equation Arising From Multiplication
of Quantum Integers and the Twin Primes
Conjecture
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Summary Let P be the support base of a solution � , with the field of coefficients
of characteristic zero, of the functional equations arising from the multiplication
of quantum integers discussed in [A. Borisov, M. Nathanson, Y. Wang, Quantum
integers and cyclotomy, J. Number Theory (to appear); M. Nathanson, A functional
equation arising from multiplication of quantum integers, J. Number Theory, 103(2),
214–233 (2003)]. It is known from the work of Nathanson as well as our work that
there is a close relationship between P and the constructibility of � from quantum
integers. In this paper, we prove that if the Twin Primes conjecture holds, then �
is constructible from quantum integers if P contains infinitely many pairs of twin
primes. This shows, in particular, that if the Twin Primes conjecture holds, then �
is constructible from quantum integers whenever P has finite complement.

Keywords Polynomial functional equations � Q-series � Quantum integers
� Quantum algebra
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1 Introduction

Motivated by the study of the q-analogues of zeta and multiple zeta functions,
Nathanson studies quantum integers and the functional equations arising from quan-
tum addition and multiplication. Nathanson shows in [2] that there is a strong
relationship between the support base P of a normalized sequence � of polyno-
mials satisfying the functional equations arising from multiplication of quantum
integers and the constructibility of such sequence by quantum integers. In particular,
he shows that under some condition involving the degree of the non-zero polynomi-
als in � , � is constructible in a unique way by quantum integers if P contains 2 and
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some odd prime. It is known from [1, 2, 4] that if the field of coefficients of � is Q,
then � is constructible from quantum integers if the support base P contains at least
two primes. In [4,9], we also show that if the field of coefficients of � is of charac-
teristic zero, then � is constructible from quantum integers if P contains all primes.
Furthermore, it can be seen from [6, 11] that the larger the cardinality of P is, the
more likely that � is constructible from quantum integers. On the other hand, we
show in [5,7] that ifP has finite cardinality, then there always exists at least one such
sequence � of polynomials, with support base P , which is not constructible from
quantum integers. Therefore, if P is a set of primes such that all sequences � with
support base P is constructible from quantum integers, then P must have infinite
cardinality. In this paper, we also explore the relationship between the support base
P of � and the constructibility of � from quantum integers for all the sequences �
with fields of coefficients of characteristic zero. In particular, we seek to weaken the
condition that P has to contain all primes for � to be constructible from quantum
integers. One way to accomplish this is to make use of the well-known Twin Primes
conjecture which we will recall below.

Twin Primes Conjecture. There are infinitely many pairs of primes of the form p

and p C 2.

Before studying the consequence of this conjecture on the support base P of a
solution � of the functional equation arising from the multiplication of quantum
integers discussed in [1, 2] and below, let us give some basic background and some
results from [1, 4, 5], which are relevant to this paper, concerning quantum integers
and the functional equation arising from the multiplication of these integers.

Definition 1. A quantum integer is a polynomial in q of the form

Œn�q WD qn�1 C : : :C q C 1 D qn � 1
q � 1 (1)

where n is any natural number.

From [1], the multiplication operation for quantum integers is defined by the
following rule:

Œm�q ? Œn�q WD Œmn�q D Œm�q � Œn�qm D Œn�q � Œm�qn (2)

where ? denotes the multiplication operation for quantum integers, and : denotes the
usual multiplication of polynomials. Equation (1.2) is just the q-series expansion of
the sumsets

f0; 1; : : : ; mn � 1g D f0; 1; : : : ; m � 1g C f0;m; : : : ; .n � 1/mg
D f0; 1; : : : ; n � 1g C f0;m; : : : ; .m � 1/ng
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Motivated by (1.2), let � Dffn.q/jnD 1; : : : ;1g be a sequence of polynomials
in q, with coefficients contained in some field, satisfying the following functional
equations:

fm.q/fn.q
m/

.1/D fn.q/fm.q
n/

.2/D fmn.q/ (3)

for all m; n 2 N . We refer to the first equality in the above functional equation
as Functional Equation .1/ and the second equality as Functional Equation .2/.
A sequence of polynomials which satisfies Functional Equation .2/ automatically
satisfies Functional Equation .1/ but not vice versa (see [4] for an example). Func-
tional Equation (1) induces an interesting equivalent relation which we explore in
detail in [12].

The support of � , denoted by suppf� g, is the set of integers n in N where
fn.q/ ¤ 0. If P is a set of rational primes and AP consists of 1 and all natural
numbers such that all their prime factors come from P , then AP is a multiplicative
semigroup which is called a prime multiplicative semigroup associated to P .

Theorem 1 ([1]). Let � D ffn.q/g be a sequence of polynomials satisfying Func-
tional Equation .2/. Then suppf� g is of the form AP for some set of primes P , and
� is completely determined by the collection of polynomials:

ffp.q/jp 2 P g:

Definition 2. Let P be the collection of primes associated to the support AP , in
the sense of Theorem 1, of a sequence of polynomials � satisfying Functional
Equation (2). Then P is called the support base of � .

In the reverse direction, if P is a set of primes in N then there is at least one
sequence � satisfying Functional Equation .2/ with suppf� g D AP . One such
sequence can be defined as the set of polynomials:

fm.q/ D
�
Œm�q if m 2 AP ;
0 otherwise.

Note that the coefficients of fm.q/ are properly contained in Q.
We say that a sequence � is non-zero if suppf� g ¤ ;. If � satisfies Functional

Equation .2/, then � is non-zero if and only if f1.q/ D 1 (see [1]).
The degree of each polynomial fn.q/ 2 � is denoted by deg.fn.q//. From [1],

it is known that there exists a rational number t� such that:

deg.fn.q// D t� .n � 1/
for all n in suppf� g. This number t� is not necessarily an integer (see [4] for an
example of such a sequence). We show in [2] and [4] that t� can only be non-integral
when the set of primes P associated to the support of � has the form P D fpg for
some prime p.
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Theorem 2 ([1]). LetP be a set of primes. Let � 0 D ff 0
p.q/jp 2 P g be a collection

of polynomials such that:

f 0
p1
.q/ � f 0

p2
.qp1/ D f 0

p2
.q/ � f 0

p1
.qp2/

for all pi 2 P (i.e, satisfying Functional Equation .1/). Then there exists a unique
sequence � D ffn.q/jn 2 Ng of polynomials satisfying Functional Equation .2/
such that fp.q/ D f 0

p.q/ for all primes p 2 P .

Theorem 3 ([4]). Let � D ffn.q/jn 2 Ng be a non-zero sequence of polynomials
satisfying Functional Equation .2/ with support AP for some set of primes P . Then
there exists a unique completely multiplicative arithmetic function  .n/, a unique
non-negative rational number t , and a unique sequence ˙ D fgn.q/g satisfying
Functional Equation .2/ with

Suppf g D Suppf˙g D Suppf� g D AP
such that

fn.q/ D  .n/qt.n�1/gn.q/

where gn.q/ is a monic polynomial with gn.0/ ¤ 0 for all n 2 AP .

As a result, in the rest of this paper, unless otherwise stated, all sequences of poly-
nomials which we consider are normalized so that each polynomial is monic and
having non-zero constant terms. Such sequences are called normalized sequences.

For a sequence � of polynomials satisfying Functional Equation .2/, the small-
est field K which contains all the coefficients of all the polynomials in � is called
The Field of Coefficients of � . We are only concerned with sequences of polyno-
mials whose fields of coefficients K are of characteristic zero. The case of positive
characteristic fields of coefficients will be reserved for our future papers. Unless
stated otherwise, we always view � as a sequence of polynomials with coefficients
in a fixed separable closure K of K which is embedded in C via a fixed embed-
ding $ W K ,! C. Thus every element f .q/ of � can be viewed as a polynomial
in CŒq�. We frequently view polynomials f .q/’s in � as elements of the ring CŒq�
throughout this paper. Thus whenever that is necessary, it is implicitly assumed.

In [3,8,10], we classify all normalized sequences when their fields of coefficients
are of characteristic zero.

Theorem 4 ([4]). Let � D ffn.q/jn 2 Ng be a sequence of polynomials satisfying
Functional Equation .2/ and whose field of coefficients is of characteristic zero.

(1) Field of coefficients is Q: Suppose that deg.fp.q// D t� .p � 1/ with t� � 1
for at least two distinct primes p and r , which means that the set P associated
to the support AP of � contains p and r and the elements fp.q/ and fr .q/
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of � are non-constant polynomials. Then there exist ordered pairs of integers
fui ; ti gi with i D 1; : : : ; s such that t� DPiD1;:::;s ui ti and

fn.q/ D
sY

iD1

�

Œn�qui

	ti

for all n in N .
(2) Field of coefficients strictly contains Q: There is no sequence of polynomials

� , with field of coefficients strictly containing Q, satisfying Functional Equa-
tion .2/ and the condition deg.fp.q// D t� .p � 1/ with integral t� � 1 for all
primes p. The latter condition means that the set P associated to the support
AP of � contains all prime numbers and the correspondent elements fp.q/ of
� are non-constant polynomials.

The decomposition of fn.q/ into a product of quantum integers as above is
unique in the sense that if faj ; bj g is another set of integers such that t� DP

jD1;:::;h aj bj and

fn.q/ D
hY

jD1

�

Œn�qaj

	bj

for all n 2 suppf� g, then for each ui , there exists at least one aj such that ui D aj .
Moreover, if I � f1; : : : ; sg and J � f1; : : : ; hg are two collections of indexes such
that ui D aj exactly for all i in I and j in J and nowhere else, then

X

i2I
ti D

X

j2J
bj ;

and the above relation between any such set of integers faj ; bj gj and the set fui ; ti gi
is an equivalent relation. However, if the condition deg.fp.q// D t� .p�1/ with in-
tegral t� � 1 for all primes p is not imposed on � , then there exist sequences� ’s of
polynomials with fields of coefficients strictly greater than Q satisfying Functional
Equation .2/.

Definition 3. Let � D ffn.q/jn2Ng be a sequence of polynomials satisfying
Functional Equation .2/. Then � is said to be constructible from quantum inte-
gers if there exist ordered pairs of integers f.ui ; ti / j ui � 1I i D 1; : : : ; sg such that
t� DPiD1;:::;s ui ti and

fn.q/ D
sY

iD1

�

Œn�qui

	ti

for all n in suppf� g.
Remark 1. By part (2) of Theorem 4, if � is constructible from quantum integers,
then it is so in a unique way. Also, if � is constructible from quantum integers, then
it is necessary that � is a normalized sequence.
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2 Main Results

Assuming the Twin Primes conjecture, we prove some consequences of this
conjecture on the support base P of a sequence � of polynomials satisfying
Functional Equation .2/.

Let � be a sequence of polynomials satisfying Functional Equation .2/ and P
be its support base. From Theorem 9 of [1], if P contains 2 and some odd prime p,
then � is constructible from quantum integers if t� D 1. However, when t� > 1,
there is no similar result (see [6]). Our first goal is to show that the Twin Primes
conjecture gives an interesting analogue of this result for the case where t� > 1.

From part (2) of Theorem 4, we know that there is no sequence � of polynomials
satisfying Functional Equation (2) with support base P consisting of all primes and
field of coefficients of characteristic zero strictly containing Q. Therefore, every
sequence � of polynomials satisfying Functional Equation (2) with support base P
consisting of all primes must be constructible from quantum integers by part (1) of
Theorem 4. In the hypothesis of Theorem 4, the complement of the support base of
� , the collection of prime numbers not included in P , is empty. Our second goal is
to show that Theorem 4 can be strengthened by showing that this complement can
be enlarged as a consequence of the Twin Primes conjecture.

Our main results in this paper can be summarized as follows:

Theorem 5. Let � be a sequence of polynomials satisfying Functional Equa-
tion .2/ and let P be its support base. Assuming the Twin Primes conjecture,
then there exist ordered pairs of integers fui ; ti gi with i D 1; : : : ; s such that
t� DPiD1;:::;s ui ti and

fn.q/ D
sY

iD1

�

Œn�qui

	ti

for all n in suppf� g if P contains infinitely many pairs of twin primes.

Corollary 1. Assuming the Twin Primes conjecture, then every sequence � of poly-
nomials satisfying Functional Equation .2/ is constructible from quantum integers
if its support base P has finite complement.

Remark 2. We will generalize Corollary 1 in our future paper [3], a project which
is currently in progress.

3 Proof of Main Results

Proof. (proof of Theorem 5)
Suppose the Twin Primes conjecture holds. Then there are infinitely many pairs

of twin primes. Let
� WD ffn.q/jn 2 Ng
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be a non-zero sequence of polynomials satisfying Functional Equation .2/ and let P
be its support base containing infinitely many pairs of twin primes (not necessarily
all twin primes). Suppose that � cannot be constructible from quantum integers.
Then the field of coefficients of � strictly contains Q by part (1) of Theorem 4.
Since P is contained in the support of � by definition, � contains a subsequence
of the form ffp.q/jp 2 P g.

By Theorem 1.4, to prove that such a sequence � does not exist, it is sufficient
for us to prove that the subsequence

ffp.q/jp 2 P g

of � does not exist.
Let u be any positive integer and p be any prime number. The polynomial de-

noted by Pu;p.q/ or Pup.q/ is the irreducible cyclotomic polynomial in QŒq� whose
roots are all primitive up-roots of unity. Pu;p.q/ is sometimes denoted by Pup.q/

or Pv.q/ where v D up. For a primitive n-root of unity ˛ in C, which can be writ-
ten in the form ˛ D e.2�iw/=n for some primitive residue class w modulo n, we
always identify ˛, via the Chinese Remainder Theorem, with the tuples .ui /i where
Q

i .pi /
mi is the prime factorization of n and ui 2 .Z=pmi

i Z/� for each i such that

ui  w .mod pmi

i /:

From [4], it is known that if � is a non-trivial sequence of polynomials satisfying
Functional Equation .2/ with support base P containing at least two primes and p
is a prime in suppf� g, then all roots of fp.q/ are roots of unity of orders divisible
by p.

Let p and r be any distinct primes in the support of � . Define fup ;p.q/ to be the
factor of fp.q/ such that its roots consist of all the roots of fp.q/ with multiplicities
which are primitive pup-roots of unity. Then,

fp.q/ D
Y

up;j>up;j C1

fup;j ;p.q/

in the ring CŒq�. Similarly,

fr .q/ D
Y

ur;i>ur;iC1

fur;i ;r.q/:

We call j (respectively, i ) j -level (respectively, i -level) of fp.q/ (respectively,
fr .q/) if fup;j

.q/ (respectively, fur;i
.q/) is a non-trivial factor of fp.q/ (respec-

tively, fr .q/). We refer to up;j (resp. ur;i ) the value of the level j (respectively, i )
of fp.q/ (respectively, fr .q/). Define V WD fvp;r;kjvp;r;k > vp;r;kC1g WD fup;j gj [
fur;igi . We refer to k as the k-bi-level with respect to p and r of fp.q/ and fr .q/
and vp;r;k as its value. Note that level i of fp.q/ or fr .q/ is not necessarily equal to
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the bi-level i of fp.q/ and fr.q/. Using V and these product decompositions, we
write Functional Equation .1/ with respect to fp.q/ and fr .q/ as:

fvp;r;1;p.q/
svp;1fvp;r;1;r .q

p/svr;1
.1/ ! fvp;r;1;r .q/

svr;1fvp;r;1;p.q
r /
svp;1

: : : : : : : : :

fvp;r;k ;p.q/
svp;k fvp;r;k ;r.q

p/
svr;k

.k/ ! fvp;r;k ;r.q/
svr;k fvp;r;k ;p.q

r /
svp;k

: : : : : : : : :

fp.q/fr .q
p/ D fr .q/fp.q

r/

where:

� sp;k D 1 if fvp;r;k ;p.q/ non-trivially divides fp.q/ (i.e., fvp;r;k ;p.q/ D fui ;p.q/

for some ui ) and 0 otherwise.
� sr;k D 1 if fvp;r;k ;r.q/ non-trivially divides fr .q/ (i.e., fvp;r;k ;r .q/ D fui ;r .q/

for some ui ) and 0 otherwise.
� Q

k fvp;r;k ;p.q/
svp;k fvp;r;k

.qp/
svr;k D fp.q/fr .qp/.

� Q

j fvp;r;k ;r.q/
svr;k fvp;r;k

.qr /
svp;j D fr .q/fp.qr /.

� The symbol
.j / ! indicates the functional equation .1/ at the bi-level j. Note that

the polynomial expressions on the left hand side and the right hand side of !
at each bi-level are not necessarily equal.

Note that for every bi-level k where vp;r;k appears in the equation above, either
sp;k D 1 or sr;k D 1.

The above version of Functional Equation .1/ is called the Expanded Functional
Equation .1/ with respect to p and r , denoted by EFE.1/. The EFE.1/ above is said
to be in reduced form if at each bi-level k where pr does not divide vp;r;k, the line

fvp;r;k ;p.q/
svp;k fvp;r;k ;r .q

p/
svr;k

.k/ ! fvp;r;k ;r .q/
svr;k fvp;r;k ;p.q

r /
svp;k

in EFE .1/ is replaced by

(i) fvp;r;k ;r .q
p/
svr;k

.k/ ! fvp;r;k ;r .q/
svr;k

fvp;r;k ;p.q
r /

svp;k

fvp;r;k ;p.q/
svp;k

if .r; vp;r;k/ D 1:

(ii) fvp;r;k ;p.q/
svp;k

fvp;r;k ;r .q
p/

svr;k

fvp;r;k ;r .q/
svr;k

.k/ ! fvp;r;k ;p.q
r/
svp;k if .p; vp;r;k/ D 1, or

(iii)
fvp;r;k ;p.q

r /
svp;k

fvp;r;k ;p.q/
svp;k

.k/ ! fvp;r;k ;r .q
p/

svr;k

fvp;r;k ;r .q/
svr;k

if .pr; vp;r;k/ D 1.

(iv) The line fp.q/fr .qp/ D fr .q/fp.q
r / is replaced by Qp;r.q/ D Qp;r.q/

whereQp;r.q/ is the product of all expressions of the left-hand column (or the
right-hand column) after (i), (ii), (iii) have taken place, i.e.,

Qp;r.q/ D fp.q/fr .q
p/

Q

i fvp;r;i ;r .q/
sr;i .1�ıp;i /fvp;r;i ;p.q/

sp;i .1�ır;i /

D fr .q/fp.q
r /

Q

i fvp;r;i ;r .q/
sr;i .1�ıp;i /fvp;r;i ;p.q/

sp;i .1�ır;i /
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where

ıp;i D
(

1 if p divides vp;r;i ;

0 otherwise;

and

ır;i D
(

1 if r divides vp;r;i ;

0 otherwise:

Remark 3. (1) An EFE.1/ with respect to p and r can be transformed into its
reduced form by dividing both polynomials fp.q/fr .qp/ and fr.q/fp.qr/ by

Y

i

fvp;r;i ;r .q/
sr;i .1�ıp;i /fvp;r;i ;p.q/

sp;i .1�ır;i /I

(2) The product of all the rational expressions in the left-hand column and the prod-
uct of those in the right-hand column of the reduced form of the EFE.1/ are
equal, and thus can be denoted by the same polynomial Qp;r.q/; (3) For each
line .i/, the product of all expressions on both sides of ! remains equal after
(i), (ii) or (iii) have taken place. It is shown in [2] that all the rational expres-
sions above are actually polynomials when they occur, and that for each of these
rational expressions, its roots are primitive roots of unity of the same order.

Definition 4. (1) Let Pu;p.q/ and Pu;r .q/ be the cyclotomic polynomials with co-
efficients in Q of orders up and ur respectively. Let Fu;p.q/ and Fu;r.q/ be two
polynomials dividing Pu;p.q/ and Pu;r.q/ respectively. If Fu;p.q/ and Fu;r .q/

satisfy the condition that for each primitive residue class w modulo u, all the
roots of Pu;p.q/ represented by the collection of tuples f.�p; .wpj

/j /j�p D
1; : : : ; p � 1g if p does not divide u (respectively by the collection f.wp C
t.pl /; .wpj

/j;pj ¤p/jt D 0; : : : ; p � 1g if plku for some positive integer l � 1)
are roots Fu;p.q/ if and only if all the roots of Pu;r .q/ represented by the col-
lection f�r ; .wpj

/j j�r D 1; : : : ; r � 1g if r does not divide u (respectively, by
the collection fwr C s.rh/; .wpj

/j;pj ¤r js D 0; : : : ; r � 1g if rhku for some
positive integer h � 1) are roots Fu;r .q/, then we will say that Fu;p.q/ and
Fu;r .q/ are compatible. For example, Pu;p.q/ and Pu;r.q/ are compatible for
any positive integer u, primes p and r , a fact which is proven in [4] for the case
where pr does not divide u as well as when either p or r divides u.

(2) Two polynomials fu;p.q/ and fu;r .q/ are said to be super-compatible if

fu;p.q/ D Q

i .F
.i/
u;p.q//

ni and fu;r .q/ D Q

i .F
.i/

u;r .q//
ni where F .i/u;p.q/ and

F
.i/

u;r .q/ are polynomials which are compatible for all i . In particular, Pu;p.q/
n

and Pu;r .q/
n are super-compatible for any non-negative integer n. Thus, com-

patibility is a special case of super-compatibility.

Remark 4. To understand the rationality of this definition, the readers can consult
[4]. The polynomials F .i/u;�.q/’s in the definition of super-compatible might not be
unique for any i , where � denotes either p or r .
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Let p and r be two primes in P and let fp.q/ and fr .q/ be the elements of �
corresponding to p and r . As above, we can write

fp.q/ D
Y

i

fup;i ;p.q/

and

fr.q/ D
Y

j

fur;j ;r .q/;

where fup;i ;p.q/ (respectively, fur;j ;r .q/) is the factor of fp.q/ (respectively,
fr .q/) whose roots are all roots of fp.q/ (respectively, fr.q/) which are primitive
up;ip (respectively, ur;j r) roots of unity for some integer up;i (respectively, ur;j ).

Let Vp;r WD fvp;r;l jvp;r;l > vp;r;lC1g WD fup;igi [ fur;j gj and let

fvp;r;1;p.q/
svp;1fvp;r;1;r .q

p/svr;1
.1/ ! fvp;r;1;r .q/

svr;1fvp;r;1;p.q
r /
svp;1

: : : : : : : : :

fvp;r;k ;p.q/
svp;k fvp;r;k ;r.q

p/
svr;k

.k/ ! fvp;r;k ;r .q/
svr;k fvp;r;k ;p.q

r /
svp;k

: : : : : : : : :

fp.q/fr .q
p/ D fr.q/fp.q

r/

be EFE.1/ with respect to p and r .

Proposition 1. Define

V WD
[

p;r2P
Vp;r :

Let U be the collection of all prime factors of every element of V . Then

jU j <1:

Proof. From part (1) of Key Proposition 10 of [4], vp;r;1 is independent of p and r .
Moreover, for any pair of primes p and r ,

vp;r;1 � vp;r;l

for all bi-levels l � 1. Therefore,

s � vp;r;1

for all primes in U . Thus the result follows (see part (1) of Key Proposition 3 of [4]
for more details). ut
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As a result of Proposition 1, there exists a natural number N such that if s > N

is a prime, then s is greater than every prime in U and thus is not in U . Since P
contains infinitely many pairs of twin primes, there exist infinitely many pairs of
twin primes in P which are greater than N and thus are not in U .

Now let p > N and r > N be two primes in P . Then p and s are not in U . We
have the following result.

Proposition 2. The coefficients of fp.q/ and fr .q/ are not properly contained in
Q. In particular, there exist levels i and j such that the coefficients of fup;i ;p.q/

and fur;j ;r.q/ are not properly contained in Q.

Proof. Since p and r are greater than N , p and r are greater than all primes in U .
Then this proposition follows from the proof of Key Proposition 3 of [4]. ut

Let lp and lr be the minimal indexes such that the coefficients of fup;lp ;p
.q/ and

fur;lr ;r
.q/ are not properly contained in Q.

Proposition 3. There exists a bi-level kp;r such that vp;r;kp;r
D up;lp D ur;lr ,

where vp;r;kp;r
is the value of the kp;r bi-level of EFE.1/ with respect to p and r .

Proof. Since p > N , p is greater than every prime in U . Therefore, the result
follows from part (2) of Key Proposition 3 of [4]. ut
From Proposition 3, we have

fvp;r;kp;r ;p
.q/ D fup;lp ;p

.q/

and
fvp;r;kp;r ;r

.q/ D fur;lr ;r
.q/:

Hence, fvp;r;kp;r ;p
.q/ ¤ 1 and fvp;r;kp;r ;r

.q/ ¤ 1. Therefore,

sp;kp;r
D sr;kp;r

D 1:

Proposition 4. Let r 0 be another prime in P such that r 0 > N . Then

vp;r;kp;r
D vp;r 0;kp;r0

where vp;r 0;kp;r0
is the analogue vp;r;kp;r

with r replaced by r 0.

Proof. See part (3) of Key Proposition 3 of [4]. ut
Therefore, there exists a natural number L such that L D vp;s;kp;s

, for any prime
s > N in P .

Proposition 5. Let p > N and s > N be primes in P . Then

L > 1:
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Proof. Since p > N , p is strictly greater than any prime in U . Then the same
argument as in Key Proposition 5 of [4] implies the result. ut

Let us recall from [4] the following definition:

Definition 5. Let � be a sequence of polynomials satisfying Functional Equation
(1) with support base P containing at least two primes. Suppose that the field of
coefficients of � is a field of characteristic zero which strictly contains Q. Let p
and r be two primes in P and let fp.q/ and fr .q/ be the corresponding elements
of � . Let kp;r be the smallest bi-level of EFE.1/ with respect to p and r such that
the coefficients fvp;r;kp;r ;p

.q/ and fvp;r;kp;r ;r
.q/ are not properly contained in Q.

Let � denote either p or r . Suppose that � does not divide vp;r;kp;r
. Then a prime

p0 is call an essential prime of � if the following conditions are satisfied:

1. p0 divides vp;r;kp;r
.

2. The collection of tuples of integers representing the roots of fvp;r;kp;r ;�.q/ is a
sub-collection of a collection of tuples of integers of the form

Y

pi j�vp;r;kp;r Ii�1
A
p

ni
i

�A
p

n0
0

where:

� �vp;r;kp;r
D Qi�0 p

ni

i is the prime factorization of �vp;r;kp;r
.

� A
p

n0
0

is a proper subset of .Z=pn0

0 /
�.

� For each pi ¤ p0 in the factorization of , A
p

ni
i

is equal to ..Z=pni

i /
�/mi for

some natural numbermi .

As in [4], we may assume without loss of generality that L is square-free and all
prime divisors of L are essential primes since all other cases are either irrelevant to
or automatically satisfy what needs to be shown.

Let p be as above (i.e., >N ) and let s > N be a prime in P . Then s is also not
in U . Hence p and s do not divide L. As a result, it can be verified that line .kp;s/
of the reduced form of EFE.1/ with respect to p and s has the form

fvp;s;kp;s ;p
.qs/

fvp;s;kp;s ;p
.q/

.kp;s/ ! fvp;s;kp;s ;s
.qp/

fvp;s;kp;s ;s
.q/

since sp;kp;s
D sr;kp;s

D 1. Moreover, it can also be verified that line .kp;s/ of the
.kp;s/-super-reduced form of EFE.1/ with respect to p and s has the form

fvp;s;ckp;s
;s.q/

ss;ckp;s
ıp;ckp;s

fvp;s;kp;s ;p
.qs/

fvp;s;kp;s ;p
.q/

.kp;s/D fvp;s;dkp;s
;p.q/

sp;dkp;s
ıs;dkp;s

fvp;s;kp;s ;s
.qp/

fvp;s;kp;s ;s
.q/
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where:

� ss;ckp;s
D 1 if there exists a bi-level ckp;s

such that

vp;s;ckp;s
D vp;r;kp;s

p

and ss;ckp;s
D 0 otherwise. Hence ıp;ckp;s

D 1 if ss;ckp;s
D 1.

� ss;dkp;s
D 1 if there exists a bi-level dkp;s

such that

vp;s;dkp;s
D vp;r;kp;s

s

and ss;dkp;s
D 0 otherwise. Hence ıs;dkp;s

D 1 if ss;dkp;s
D 1.

By Key Proposition 10 of [4], the rational expressions

fvp;s;kp;s ;p
.qs/

fvp;s;kp;s ;p
.q/

and
fvp;s;kp;s ;s

.qp/

fvp;s;kp;s ;s
.q/

are polynomials. Since the coefficients of fvp;s;kp;s ;p
.q/ and fvp;s;kp;s ;s

.q/ are not
properly contained in Q by definition of kp;s, this implies that s and p are congruent
to 1 moduloL by part (ii) of Key Proposition 10 of [4] and by the assumption thatL
is square-free and all the prime divisors of L are essential primes. In other words,
L divides p � 1 and s � 1. Since P contains infinitely many pairs of twin primes, it
contains infinitely many pairs of twin primes which are greater that N . As a result,
we may assume that s D p C 2. This means that L must divide s � p D 2.

As a result of Proposition 5,

L D vp;s;kp;s
D 2:

By Key Proposition 2 of [4], we may assume that kp;s D 1. Hence fvp;s;kp;s ;p
.q/ D

f2;p.q/ and fvp;s;kp;s ;s
.q/ D f2;r .q/ are super-compatible by Key Proposition 10

of [4]. Therefore, there exists a subset A2 of ..Z=2Z/�/T , for some positive integer
T , such that roots of f2;p.q/ and f2;r .q/ are represented by the collection of tuples

[

˛2A2

f˛g � .Z=pZ/�

and
[

˛2A2

f˛g � .Z=rZ/�

respectively.



316 L. Nguyen

Since .Z=2Z/� D f1g,
A2 D ..Z=2Z/�/T 0

for some integer T 0 � T . It can be verified that the monic polynomial whose roots
are primitive 2p-roots of unity and the monic polynomial whose roots are primitive
2r-roots of unity represented by the collection of tuples

[

˛2.Z=2Z/�

f˛g � .Z=pZ/�

and [

˛2.Z=2Z/�

f˛g � .Z=rZ/�

respectively are the cyclotomic polynomial, with coefficients in Q of order 2p,
P2p.q/ and the cyclotomic polynomial, with coefficients in Q of order 2r , P2r .q/.
As a result,

f2;p.q/ D P2p.q/T 0

and

f2;r .q/ D P2r .q/T 0

:

Therefore, the coefficients of f2;p.q/ and f2;r .q/ are properly contained in Q. Since
the coefficients of the polynomialsfvp;s;kp;s ;p

.q/ and fvp;s;kp;s ;s
.q/ are not properly

contained in Q by definition of kp;r , this is a contradiction. Therefore, the field of
coefficients of � must be Q, and thus � is constructible from quantum integers by
Theorem 4. ut
Proof. (proof of Corollary 1)

Suppose that the Twin Primes conjecture holds. Let � be a sequence of polyno-
mials satisfying Functional Equation .2/ and let P be its support base. Suppose that
P has finite complement, i.e., P contains all but a finite number of primes. Then
P must contain infinitely many pairs of twin primes. Therefore, � is constructible
from quantum integers by Theorem 5. ut
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Exponential Sums and Distinct Points on Arcs

Øystein J. Rødseth

Dedicated in honour of Mel Nathanson’s 60 th birthday

Summary Suppose that some harmonic analysis arguments have been invoked to
show that the indicator function of a set of residue classes modulo some integer has a
large Fourier coefficient. To get information about the structure of the set of residue
classes, we then need a certain type of complementary result. A solution to this
problem was given by Gregory Freiman in 1961, when he proved a lemma which
relates the value of an exponential sum with the distribution of summands in semi-
circles of the unit circle in the complex plane. Since then, Freiman’s Lemma has
been extended by several authors. Rather than residue classes, one has considered
the situation for finitely many arbitrary points on the unit circle. So far, Lev is the
only author who has taken into consideration that the summands may be bounded
away from each other, as is the case with distinct residue classes. In this paper, we
extend Lev’s result by lifting a recent result of ours to the case of the points being
bounded away from each other.

Keywords Arcs � Distribution � Exponential sums � Unit circle
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1 Introduction

In additive combinatorics, and in additive combinatorial number theory, in parti-
cular, situations of the following type are rather common. LetA be a set ofN residue
classes modulo an integerm. Suppose that some harmonic analysis arguments have
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been invoked to show that the indicator function of A has a large Fourier coeffi-
cient; that is

max
0¤x2Z=mZ

jb1A.x/j � ˛N

for some ˛ 2 .0; 1�. Following Green [1], or see Tao and Vu [13], we might say
thatA has “Fourier bias”. Using this information, one wishes to conclude that A has
“combinatorial bias”; perhaps integer representatives of the residue classes in some
affine image of A concentrate on some interval. For this, we then need tight upper
bounds for the absolute values of the exponential sumsb1A.x/. Now, the basic idea
is that the absolute value of an exponential sum is small if the terms are, in some
sense, uniformly distributed. The case m prime was applied by Freiman [2,3] in the
proof of his “2.4-theorem”. A proof of this theorem is presented in both Freiman’s
classical monograph [4] and in Mel Nathanson’s beautiful book [9].

Freiman [2,3], Postnikova [10], Moran and Pollington [8], Lev [5,6], and Rødseth
[11, 12] considered the situation in which one has finitely many arbitrary points on
the unit circle in the complex plane, rather than a subset of Z=mZ. In possible
applications, the points on the unit circle will sometimes be bounded away from
each other, like, for instance, if we are looking at a subset of Z=mZ. If we add the
condition that the points should be bounded away from each other, we could hope
for sharper results. Indeed, by adding this assumption, Lev sharpened Freiman’s
Lemma to (2) below. Lev’s result [5, Theorem 2] seems, however, to be the only
result in the literature addressing this issue. In this paper, we prove a result which
extends both Lev’s result about points being bounded away from each other, and our
main result in [11, 12], where we did not take this property into consideration.

First, we shall, however, present a version of Freiman’s Lemma. We include two
different proofs in the hope of giving the reader an impression of two recent tech-
niques used in the search and study of results related to Freiman’s Lemma.

2 Three Theorems

In the following, n, N , �, and k are non-negative or positive integers. We write U
for the unit circle in the complex plane; that is,

U WD fz 2 C W jzj D 1g:

An empty sum is taken as zero.
We now state Freiman’s Lemma [2, 3].

Theorem 1 (Freiman’s Lemma). Suppose that the complex numbers z1; : : : ; zN 2
U have the property that any open semi-circle of U contains at most n of them.
Then,

jz1 C � � � C zN j � 2n �N: (1)
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The complex numbers z1; : : : ; zN are not necessarily all distinct. The assumptions
of the lemma imply that N � 2n, and the result is sharp in the range n�N � 2n.
That is, for every n and N satisfying these inequalities, there exist sequences
z1; : : : ; zN with zj 2 U , such that the hypotheses are satisfied and jz1 C � � � C zN j
meets the bound 2n � N . In this sense, Freiman’s Lemma is best possible. The
result has, however, been extended by Moran and Pollington [8], Lev [5, 6], and by
Rødseth [11, 12].

The next theorem is Lev’s sharpening of Freiman’s Lemma at the expense of
requiring the points to be bounded away from each other. Lev [5, Theorem 2] proved
the following theorem.

Theorem 2 (Lev). Let ı 2 .0; 
� satisfy nı � 
 . Suppose that the complex numbers
z1; : : : ; zN 2 U have the following two properties:

(a) Any open semi-circle of U contains at most n of them.
(ii) Any open arc of U of length ı contains at most one of them.

Then

jz1 C � � � C zN j � sin..2n�N/ı=2/
sin.ı=2/

: (2)

So, by introducing the condition (ii), Lev reduced Freiman’s bound 2n�N in (1)
to the bound in (2), a refinement that, according to Lev, was crucial in [7]. The result
is sharp for n�N � 2n. By letting ı ! 0C in Lev’s result, we recover Freiman’s
Lemma.

In this paper, we shall prove the following theorem.

Theorem 3. Let ı; ' 2 .0; 
� satisfy nı � '. Suppose that the complex numbers
z1; : : : ; zN 2 U have the following two properties:

(i) Any open arc of U of length ' contains at most n of them.
(ii) Any open arc of U of length ı contains at most one of them.

Let N D �nC r , 1 � r � n, and assume that .� C 1/' � 2
 . Then we have

jz1C� � �CzN j � sin.rı=2/

sin.ı=2/
� sin..� C 1/'=2/

sin.'=2/
Csin..n � r/ı=2/

sin.ı=2/
� sin.�'=2/

sin.'=2/
: (3)

Notice that �DdN=ne � 1. Also notice that we do need some condition like
.�C1/' � 2
 , to be certain that there is room enough on U to placeN points such
that they satisfy the other conditions set in the theorem. This condition can also be
written as N � b2
='cn.

The restriction nı � ' is no problem. For if nı � ', then (i) follows from (ii) and
can be omitted. Now, jz1C� � �C zN j attains its maximum on anyN -term geometric
progression with ratio exp.iı/; hence,

jz1 C � � � C zN j �
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

N�1X

jD0
exp.ijı/

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

D sin.Nı=2/

sin.ı=2/
: (4)
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The upper bound (3) is attained on the union of two finite 2-dimensional geomet-
ric progressions on U , one consisting of geometric progressions with ratio exp.iı/
and r terms each, centered around the points

exp..�� C 2j /i'=2/; j D 0; 1; : : : ; �;

and the other consisting of geometric progressions with ratio exp.iı/ and n�r terms
each, centered around the points

exp..�� C 1C 2j /i'=2/; j D 0; 1; : : : ; � � 1:

This shows that Theorem 3 is sharp for N � b2
='cn.
Clearly, the bound (3) in Theorem 3 can be replaced by the weaker, but smooth

and nice, bound

jz1 C � � � C zN j � sin.nı=2/

sin.ı=2/
� sin.'N=.2n//

sin.'=2/
I

cf. Lev [6].

3 Two Proofs of Freiman’s Lemma

For real numbers ˛ < ˇ, the set of z 2 U satisfying ˛ < arg z � ˇ for some value
of arg z, is an open-closed arc. In Freiman’s Lemma, one often assumes that any
open-closed (or closed-open) semi-circle of U contains at most n of the points zj ,
instead of taking open semi-circles; cf. [4,9]. It is, however, easy to see that the two
variants of the hypotheses are equivalent; cf. Sect. 4.2.

Freiman’s proof of Theorem 1 was simplified by Postnikova [10], and it is this
proof we find in the books [4] and [9]. Here, we shall present two other proofs in
an attempt to give the reader a pleasant introduction to two techniques recently em-
ployed in the quest for extensions of Freiman’s Lemma. The two proofs are rather
different. One proof can be characterized as topological–combinatorial or as a per-
turbation method, and is due to Lev (extracted from the proof of [5, Theorem 2]).
The other proof uses properties of a certain Fourier coefficient, and is independently
due to Lev and the present author.

3.1 First Proof

Assume that Freiman’s Lemma is false. We consider the smallest N for which there
exists an N -term sequence which satisfies the hypotheses, but violates (1). Then
N >1. By considering open semi-circles, the set of N -term sequences satisfying
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the hypotheses forms a closed subset of the compact topological space UN , and is
itself compact. By the continuity of the function z1; : : : ; zN 7! jS j, where S WD
z1 C � � � C zN , we thus have that jS j attains a maximum value on some N -term
sequence Z WD z1; : : : ; zN , which satisfies the hypotheses. Then jS j > 2n � N .
A rotation of Z shows that we may assume that S is real and nonnegative.

Suppose that there is a z ¤ 1 inZ. By symmetry, we may assume that Arg z < 0,
using the interval Œ�
; 
/ for the principal argument. Replacing z by z exp.i"/ for
a small " > 0, we get an increase in jS j. Thus the replacement results in violation
of the hypotheses in Freiman’s Lemma. The only possibility is that the replacement
produces an open semi-circle with more than n points from Z; hence �z also be-
longs to Z.

We now remove˙z fromZ. This gives us a sequenceZ0 satisfying the hypothe-
ses, and with parametersN 0DN � 2 and n0Dn� 1. Denoting the sum of the terms
of Z0 by S 0, we have by the minimality of N ,

S D S 0 � 2n0 �N 0 D 2n �N;

a contradiction. Thus, all terms of Z are equal to 1, and N DS >2n � N . But a
semi-circle containing 1 contains N terms from Z; hence n � N , and again we
have a contradiction.

3.2 Second Proof

Assume that z1; : : : ; zN satisfy the hypotheses. We shall prove (1), and can without
loss of generality assume that S is real and nonnegative. Let K.�/ denote the num-
ber of values j 2 Œ1; N � such that ��
 � arg zj < � for some value of arg zj . Then
we have

K.�/CK.� C 
/ D N; (5)

so that N � n � K.�/ � n.
Moreover,

Z �

��
K.�/ sin � d� D

NX

jD1

Z arg zj C�

arg zj

sin � d� D 2S;

and we obtain

2S D
�Z 0

��
C
Z �

0

�

K.�/ sin � d�

� .N � n/
Z 0

��
sin � d� C n

Z �

0

sin � d�

D 4n � 2N:
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4 Proof of Theorem 3

We now turn to the proof of Theorem 3. In an attempt to make the proof more
readable, we split the proof into several parts.

4.1 Notation

Set

! D exp.i'=2/ and � D exp.iı=2/:

We often denote a sequence z1; : : : ; zN 2 UN byZ, and we write S D z1C� � �CzN .
If the sequence Z 2 UN satisfies the assumptions of Theorem 3 for a certain value
of n, we say that Z is an .N; n/-admissible sequence. We use the interval Œ�
; 
/
for the principal argument Arg z of a nonzero complex number z.

4.2 Arcs

An arc .u; v/, where u; v 2 U , consists of the points we pass in moving counter-
clockwise from u to v. Almost all arcs in this paper have lengths at most 2
 . In spite
of the similarity of notation, an arc cannot be confused with a real interval.

Consider the two statements:

(i) Any open arc of U of length ' contains at most n of the points zj .
(i0) Any open-closed arc of U of length ' contains at most n of the points zj .

Clearly, (i0) implies (i). On the other hand, if (i0) fails, then (i) fails. For if an open-
closed arc .u; u exp.i'/�, u 2 U , of U contains n C 1 of the points zj , then, for a
sufficiently small real " > 0, the open arc .u exp.i"/; u exp.i' C i"// contains the
same n C 1 points. Thus (i) and (i0) are equivalent. (And the reason is, of course,
that we only consider finitely many points zj .)

4.3 Assumptions

The two bounds (3) and (4) coincide for nı D '. For the proof of Theorem 3, we
may therefore assume that nı < '. Moreover, we observe that the right-hand side
of (3) is continuous as a function of ' on the real interval .nı; 2
=.� C 1/�. Hence
it suffices to prove the assertion of Theorem 3 in the case ' < 2
=.� C 1/.

We shall prove Theorem 3 by contradiction. We therefore assume the theorem
false. Choose the smallest nonnegative integer N for which there exists an n such
that (3) fails for some .N; n/-admissible sequence. Then N > 1.
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4.4 Geometric Progressions

A geometric progression� in U with ratio �2 is called a ı-progression. If we write
this progression as

u�r�1�2j ; j D 0; : : : ; r � 1; (6)

for some u 2 U , then� is a progression of length r , centered around u. The point u
may, or may not, belong to the progression. The point u�r�1 is the first and u��.r�1/
is the end point (element, term) of the progression. If we multiply each term of �
by v 2 U , we get a new ı-progression denoted �v. If all terms of � belong to Z,
we say that � is in Z. The ı-progression (6) is maximal in Z, if the progression is
in Z, but neither u�rC1 nor u��r�1 belongs to Z.

Notice that if� is a ı-progression inZ of length r , then r � n. The reason is the
inequality nı < ', and that an open arc of U of length ' contains at most n points
from Z.

4.5 Compactness/Continuity

The arcs in both (i) and (ii) are open. Therefore, by a standard compactness conti-
nuity argument, jS j attains a maximum on the set of .N; n/-admissible sequences.
Let the maximum be attained at the .N; n/-admissible sequence Z WD z1; : : : ; zN .
A rotation of Z shows that we may assume that the matching S D z1 C � � � C zN is
real and nonnegative.

4.6 Dispersion

Recall that N > 1 and N D �nC r , 1 � r � n. Suppose that Z is a ı-progression.
The length of this ı-progression is N .

If � D 0, then

jz1 C � � � C zN j � sin.rı=2/

sin.ı=2/
;

and (3) holds, contrary to hypothesis. Thus N � n C 1, and there is a closed arc
of U of length nı containing n C 1 of the points zj . But we have nı < ', so this
contradicts condition (i) of Theorem 3. Therefore,Z is not a ı-progression.

4.7 Perturbation

We have just seen that Z is not a ı-progression. This implies that there exists at
least one point z 2 Z, z ¤ 1, such that Arg z > 0 and z��2 62 Z, or Arg z < 0 and
z�2 62 Z. Choose such a z, as close to �1 as possible. By symmetry, we can assume
that Arg z < 0. We split this case into the two cases determined by (7) and (8).
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4.7.1 Case I

First, we assume that there is an integer � in the interval 1 � � � � satisfying

��'
2
� Arg z < � .� � 1/'

2
: (7)

The length of the shortest arc .z; z0/ for z ¤ z0 2 Z is at least ı. Since z�2 62 Z,
the arc .z; z0/ has length greater than ı. We start the perturbation procedure by per-
forming a small counter-clockwise rotation of z along the unit circle; that is, we
replace z by z exp.i"/ for a small " > 0. If " is sufficiently small, then the length of
the open arc .z exp.i"/; z0/ is still at least ı, and the rotation of z does not disturb the
truth of (ii). Since Arg z < 0, there will, however, be an increase in jS j. Thus, the
rotation violates (i0). Therefore, we have z!2 2 Z, and the open-closed arc .z; z!2�
contains exactly n terms from Z. If z!2�2 2 Z, then the arc .z�2; z!2�2� contains
nC 1 points of Z. Therefore, z!2�2 62 Z.

Next, we perform a small rotation of both the points z and z!2 simultaneously
and counter-clockwise along the unit circle. We have

Arg
�

zC z!2
	 D Arg zC '

2
;

and if � � 2, the rotation makes jS j increase. Hence z!4 2 Z. We also see that
z!4�2 62 Z, and that the arc .z!2; z!4� contains exactly n terms from Z.

Using the right inequality in (7), we find for 1 � j � �, that

Arg

 
j�1
X

`D0
z!2`

!

D Arg zC .j � 1/'
2

< � .� � j /'
2

� 0:

This shows that we may continue the perturbation process until we eventually obtain

z!2j 2 Z and z!2j�2 62 Z for j D 0; 1; : : : ; �:

In addition, for j D 1; 2; : : : ; �, each arc .z!2.j�1/; z!2j � contains exactly n points
from Z.

By the left inequality in (7), we have

Arg.z!2/ � �Arg z:

Using the definition of z, it follows that if we start at the point z!2�2, which is
in U but not in Z, and move counter-clockwise on U , then the first point in Z we
meet, is the end point of a maximal ı-progression in Z with z as its first element.
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The open-closed arc .z; z!2� contains �n points from Z, and in addition we
have r 0 � 1 points in the maximal ı-progression in Z with z as first point. Thus, we
have

�nC r 0 D N D �nC r; 1 � r 0; r � n;
so that � D � and r 0 D r . This completes the first case (7).

4.7.2 Case II

Second, if z does not satisfy (7) for � D �, then

�
 � Arg z < ��'
2
; (8)

and we can do one more step in the perturbation process. By the inequality .� C 1/
' < 2
 , we have that the arc .z; z!2.�C1/� contains exactly .�C1/n points fromZ.
In addition, we have the point z itself. Thus we have found .�C1/nC1 points inZ.
Since Z contains at most .� C 1/n points, we have a contradiction. Thus, there are
no points in Z satisfying (8).

4.8 Primary Points

For the z 2 Z defined at the beginning of Sect. 4.7, we now know that for j D
1; 2; : : : ; �, each open-closed arc .z!2.j�1/; z!2j � contains exactly n points fromZ.
In addition, there is the maximal ı-progression� of length r with z as first element.
This accounts for all elements in Z.

Thus we have
z!2j 2 Z; j D 0; 1; : : : ; �:

Suppose that z��2 2 �. The open-closed arc .z; z!2� contains exactly n points
from Z. If z!2��2 62 Z, then the closed-open arc Œz��2; z!2��2/ contains n C 1
points from Z, contrary to hypotheses. Thus z!2��2 2 Z. Continuing in the same
manner, we get (with a slight abuse of notation)�!2 � Z. Repeating the argument,
we ultimately obtain,

�!2j � Z for j D 0; 1; : : : ; �:

Notice that for j � 1, the ı-progression�!2j is not necessarily maximal.
We set

Z1 D
�[

jD0
�!2j :



328 Ø.J. Rødseth

Then N1 WD Z1 D �r C r . We write S1 for the sum of all elements in Z1, and we
want to find an upper bound for jS1j. (We may have N1 D N , so we cannot use
(3).) We can, however, easily determine the exact value of jS1j,

jS1j D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

r�1X

`D0
��2`

�X

jD0
z!2j

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

D sin.rı=2/

sin.ı=2/
� sin..� C 1/'=2/

sin.'=2/
: (9)

If � D 0 or r D n, thenZ D Z1, and by (9), (3) holds, contrary to hypothesis. Thus
we have � � 1 and 1 � r < n.

4.9 Secondary Points

We set
Z2 D Z nZ1;

and put N2 D Z2. Then N2 D .� � 1/.n � r/ C .n � r/: We have that Z2 is
.N2; n � r/-admissible, and since N2 < N , we can use (3). Writing S2 for the sum
of the terms in Z2, we obtain

jS2j � sin..n � r/ı=2/
sin.ı=2/

� sin.�'=2/

sin.'=2/
: (10)

We have
S � jS1j C jS2j;

and (9) and (10) show that (3) holds; again we have reached a contradiction. This
concludes the proof of Theorem 3.

5 Closing Remarks

We can also state Theorem 3 in a slightly different way.

Theorem 4. Let ı; ' 2 .0; 
� satisfy nı � '. Assume that the complex numbers
z1; : : : ; zN 2 U have the two properties (i) and (ii) stated in Theorem 3. Then we
have

jz1 C � � � C zN j � sin..N � .k � 1/n/ı=2/
sin.ı=2/

� sin.k'=2/

sin.'=2/

Csin..kn �N/ı=2/
sin.ı=2/

� sin..k � 1/'=2/
sin.'=2/

; (11)

for any positive integer k � 2
='.
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Denote the right-hand side of (11) by Lk . We easily see that

LkC1 � Lk D 2 sin..kn �N/ı=2/
sin.ı=2/

� sin.k'=2/

sin.'=2/

�

cos
nı

2
� cos

'

2

�

;

so that

L1 � : : : � LdN=ne � LdN=neC1 � : : : � Lb2�='c:

Thus Lk attains its minimum at k D dN=ne (and also at k D N=n C 1 if n
dividesN ). Therefore, Theorems 3 and 4 are essentially one and the same.

Now, by letting ı ! 0C, we recover the main result of [11, 12].
The following direct extension of Theorem 2 is an immediate consequence of

Theorem 4.

Corollary 1. Let k � 2 be an integer, and let ı 2 .0; 
� satisfy nı � 2
=k. Sup-
pose that the complex numbers z1; : : : ; zN 2 U have the following two properties:

(b) Any open arc of U of length 2
=k contains at most n of them.
(ii) Any open arc of U of length ı contains at most one of them.

Then

jz1 C � � � C zN j � sin..kn �N/ı=2/
sin.ı=2/

:

If k is even, then Corollary 1 is an easy consequence of Theorem 2. This does
not seem to be the case for k odd. Corollary 1 is sharp for .k � 1/n � N � kn. By
letting ı ! 0C, we recover the result of Moran and Pollington [8].

For applications, one would perhaps, although not always necessary, turn the
upper bound for jz1C � � � C zN j into a lower bound for the number of terms zj in at
least one open arc of U of length '.

In closing, let us consider such a lower bound for the residue class situation
mentioned in the introduction. Then we have an N -set A of residue classes modulo
an integerm > 1. Set ı D 2
=m, and put ' D 2
=k for some integer k � 2.

Let
b1A.1/ D

X

a2A
exp.2
ia=m/:

By Corollary 1, there exist integers u; v satisfying u� v< uCm=k such that the im-
age of the interval Œu; v� under the canonical homomorphism Z! Z=mZ contains
n0 elements of A, where

n0 �
&

1

k

 

N C Arcsin.jb1A.1/j sin.
=m//


=m

!'

I

cf. [5, Corollary 2], [11, Sect. 6].
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New Vacca-Type Rational Series for Euler’s
Constant � and Its “Alternating” Analog ln 4

�

Jonathan Sondow

Summary We recall a pair of logarithmic series that reveals ln.4=
/ to be an
“alternating” analog of Euler’s constant � . Using the binary expansion of an in-
teger, we derive linear, quadratic, and cubic analogs for ln.4=
/ of Vacca’s rational
series for � . Using a generalization of Vacca’s series to integer bases b � 2, due in
part to Ramanujan, we extend Addison’s cubic, rational, base 2 series for � to faster
base b series. Open problems on further extensions of the results are discussed, and
a history of the formulas is given.

Keywords Alternating Euler constant � Acceleration of series � Binary expansion
� Euler’s constant � Generalized Euler constant � Rational series � Vacca’s series

Mathematics Subject Classifications (2010). 11Y60, 65B10

1 Introduction

If we denote

�C WD � and �� WD ln
4



;

where � is Euler’s constant, then the formulas

�˙ D
1X

nD1
.˙1/n�1

�
1

n
� ln

nC 1
n

�

(1)

show that ln.4=
/ is an “alternating Euler constant” [18].
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The following rational, linear series (i.e., the nth term is a rational number with
denominator a linear function of n) is known as Vacca’s series for Euler’s con-
stant [22]:

� D
1X

nD1
.�1/n blog2 nc

n
: (2)

Here b:c is the floor function and logb n WD ln n= ln b is the logarithm of n to the
base b > 1.

We give an analogous series for ln.4=
/ and prove the two formulas simultane-
ously.

Theorem 1. For i D 0; 1 and n D 1; 2; 3; : : : , denote by Ni .n/ the number of i ’s
in the binary expansion of n, and set Ni .0/ WD 0. Then � D �C and ln.4=
/ D ��
are given by the linear, rational series

�˙ D
1X

nD1
.�1/n N1 .bn=2c/˙N0 .bn=2c/

n
; (3)

where the one for �C is Vacca’s series for Euler’s constant.

The two series begin

� D 1

2
� 1
3
C 2

4
� 2
5
C 2

6
� 2
7
C 3

8
� 3
9
C 3

10
� 3

11
C 3

12
� 3

13
C 3

14
� 3

15
C � � � ;

ln
4



D 1

2
� 1
3
C 2

6
� 2
7
� 1
8
C 1

9
C 1

10
� 1

11
C 1

12
� 1

13
C 3

14
� 3

15
� 2

16
C 2

17
C � � � :

(4)

If in each of them we group the terms in pairs, we obtain simpler formulas
than (3).

Corollary 1. We have the following quadratic, rational series for � D �C and
ln.4=
/ D ��:

�˙ D
1X

nD1

N1.n/˙N0.n/
2n.2nC 1/ : (5)

In 1967 Addison [1] (see also Behrmann and van Lint [4, 23]) used an integral
representation of the Riemann zeta function to obtain a cubic, rational series for � .
In our notation, Addison’s series for Euler’s constant can be written in either of the
equivalent forms

� D 1

2
C

1X

nD1

N1.n/CN0.n/
2n.2nC 1/.2nC 2/ D

1

2
C

X

even n>0

blog2 nc
n.nC 1/.nC 2/ :

We derive a similar series for the alternating Euler constant, by modifying a
formula in [2].
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Proposition 1. We have the cubic, rational series

ln
4



D 1

4
�

X

even n>0

N0.n/ �N1.n/
n.nC 1/.nC 2/ :

Next we generalize Addison’s base 2 series to faster base b series for � .

Theorem 2. For b D 2; 3; 4; : : : , let Pb.x/ 2 ZŒx� be the polynomial

Pb.x/ WD .x C 1/.x C 2/ � � � .x C b � 1/
b�1X

kD1

k.b � k/
x C k

of degree b � 2. Then Euler’s constant is given by the base b, rational series

� D 1

2
C
X

n>0

bjn

blogb ncPb.n/
n.nC 1/ � � � .nC b/ : (6)

Moreover, the series converges faster as b increases. In fact, for fixed b, the nth
term is

blogb bncPb.bn/
bn.bnC 1/ � � � .bnC b/ 


1 � b�2

ln b

ln n

6n3
as n!1 : (7)

Example 1. Since P2.x/ D 1, the base 2 series is Addison’s. The base 3 series is
the faster

� D 1

2
C
X

n>0

3jn

blog3 nc.4nC 6/
n.nC 1/.nC 2/.nC 3/ :

For instance, the 4th partial sums of the base 2 and base 3 series are equal to
0:5684 : : : and 0:5702 : : : , which approximate � D 0:5772 : : : correctly to one
and two decimal places, respectively.

To prove Proposition 1 and Theorem 2, we generalize an averaging technique
which Krämer [11, Sect. 5.2.2] used in proving Addison’s formula by accelerating
Vacca’s series. To derive the base b series of Theorem 2, we accelerate the general-
ized Vacca series

� D
1X

nD1
n
blogb nc

n
; (8)

where

n D n;b WD
�
b � 1 if b j n;
�1 otherwise.

(For other methods of accelerating (8), leading to base b, rational series for � dif-
ferent from (6), see [21].)
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The generalized Vacca series (8) appeared in 1968 as a problem in the Monthly
[6, 9] proposed by Carlitz, with solution by Harborth. In 2000, Berndt and
Bowman [5] derived (8) from an integral for Euler’s constant due to Ramanujan
[14, pp. 274–275].

In 1897, Nielsen [12] discovered a series closely related to (5) for �C. “Vacca’s
series” (2) was obtained independently by Franklin [7] in 1883, Jacobsthal [10] in
1906, Vacca [22] in 1909, Sandham [3, 16] in 1949, and Gerst [8] in 1969. Gerst
also rediscovered Nielsen’s series, and used it to give a new proof of Addison’s
formula. Papers on Vacca-type series for � by these and other authors, including
Glaisher (1910), Hardy (1912), Kluyver (1924), Brun (1938), S. Selberg (1940,
1967), Gosper (1972), Koecher (1989), and Bauer (1990), are discussed in [5] and
[11, Sects. 5.2.2 and 10.1].

The genesis of Theorem 1 was as follows. Rivoal found a nonrational ana-
log for ln.4=
/ of Vacca’s series for � (see [15, Théorème 2]). We then tried
to find a rational analog. Using relations (1) for ��, (9), and (10), we computed
the first few terms of the series (4) for ln.4=
/. A search for their numerators
1;�1; 2;�2;�1; 1; 1;�1; : : : in The On-Line Encyclopedia of Integer Sequences
[17] uncovered the related Sequence A037861. It suggested the formulas (3), and
we proved them in the 2005 preprint [19] (an early version of the present paper).
The proof given here is the same, except that to prove Lemma 1 we use a geometric
interpretation of the series (1).

Recently, inspired by [19], Allouche, Shallit, and the author generalized
Corollary 1 and Addison’s formula to rational, base 2 series for certain classes
of constants [2, Theorems 1 and 2]. (The proofs in [2] are quite different from those
below. Results from [2] are used only in the proof of Proposition 1 and in the final
section.)

In Sect. 2 we prove our main results. Open problems on extensions of them are
discussed in Sect. 3.

2 Proofs

We first establish three lemmas.

Lemma 1. For n > 0, the area An of the curvilinear triangular region bounded by
the hyperbola y D 1=x and the lines y D 1=n and x D nC 1, is equal to

An D 1

n
� ln

nC 1
n

: (9)

The areas satisfy the relation

An D 1

2n.2nC 1/ CA2n C A2nC1 (10)
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and the inequalities
1

2n.nC 1/ < An <
1

n.nC 1/ : (11)

Proof. Calculation of an integral yields (9), and (10) follows by substitution. Since
the region is contained in the rectangle bounded by the lines y D 1=n, y D
1=.nC 1/, x D n, and x D n C 1, and contains a triangle formed by bisecting
the rectangle with a diagonal, (11) holds. ut

As an application, substitute (9) into the series (1), then replace A1; A2; : : : with
suitable bounds from (11). Summing the resulting series, we deduce the estimates
1=2 < � < 1 and 1=2 < ln.
=

p
2/ < 1.

Lemma 2. For n � 0, set

�˙.n/ WD N1.n/˙N0.n/:

Then the following relation holds when n > 0:

�˙ .bn=2c/C .˙1/n�1 D �˙.n/:

Proof. This is easily verified by considering the cases n even and n odd. ut
Lemma 3. For k > 0, denote the kth partial sum of the series (1) for �˙ by

S˙
k WD

kX

nD1
.˙1/n�1An:

Then

S˙
2k�1 D

2k�1�1X

nD1

�˙.n/
2n.2nC 1/ CR

˙
k ; (12)

where the remainder term is

R˙
k WD

2k�1X

nD2k�1

�˙.n/An; (13)

Proof. We induct on k. For k D 1, we have S1̇ D A1 D R1̇ , as required (since the
sum in (12) is empty). Now write

S˙
2kC1�1 D S˙

2k�1 C
2kC1�1X

nD2k

.˙1/n�1An;



336 J. Sondow

and invoke the inductive hypotheses (12) and (13), substituting (10) into (13). Using
the identity

2k�1X

nD2k�1

�˙.n/ .A2n C A2nC1/ D
2kC1�1X

nD2k

�˙ .bn=2c/An

and Lemma 2, the inductive step follows. ut
We now prove the results stated in Sect. 1.

Proof (Theorem 1 and Corollary 1). It is easy to see that the formulas (3) and (5)
are equivalent. Indeed, for even n D 2� we have bn=2c D b.nC 1/=2c D �, and it
follows that the even-odd pairs of terms in (3) correspond to the terms of (5). Thus,
to prove the formulas, it suffices to show that

�˙ D
1X

nD1

�˙.n/
2n.2nC 1/ : (14)

Since by its definition S˙
k
! �˙ as k ! 1, we can deduce (14) using (12) if

R˙
k
! 0 as k !1. But by (13), (11), and telescoping, we see that

ˇ
ˇR˙
k

ˇ
ˇ �

2k�1X

nD2k�1

ˇ
ˇ�˙.n/

ˇ
ˇAn <

2k�1X

nD2k�1

k

�
1

n
� 1

nC 1
�

D k

2k
! 0:

Finally, since

N1 .bn=2c/CN0 .bn=2c/ D blog2 nc for n � 1;

the series (3) for �C is indeed Vacca’s series (2) for � . ut
Proof (Proposition 1). The series ln 2 D 1 � 1=2C 1=3� � � � can be written in the
two equivalent forms

1 � ln 2 D
1X

nD1

�
1

2n
� 1

2nC 1
�

D 1

2
C

1X

nD1

�

� 1

2nC 1 C
1

2nC 2
�

:

Averaging them gives the accelerated series

3

4
� ln 2 D

1X

nD1

1

2n.2nC 1/.2nC 2/ : (15)
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Now consider the formula [2, Example 2]

1

2
� ln




2
D

1X

nD1

N1.n/ �N0.n/
2n.2nC 1/.2nC 2/ :

Substituting N1.n/DN1.2n/ and N0.n/DN0.2n/ � 1 enables us to use the for-
mula (15), and to replace 2n with even n. The result is the desired series for
ln 2 � ln.
=2/ D ln.4=
/. ut
Proof (Theorem 2). The idea is to apply the acceleration method in the preceding
proof to the base b series (8) for � .

If we group the terms of (8) in b-tuples with positive first member, we obtain

� D
X

n>0

bjn

blogb nc
�
b � 1
n
� 1

nC 1 �
1

nC 2 � � � � �
1

nC b � 1
�

:

If instead we group the terms in b-tuples with positive last member, we deduce that

� D 1C
X

n>0

bjn

blogb nc
�

� 1

nC 1 �
1

nC 2 � � � � �
1

nC b � 1 C
b � 1
nC b

�

;

where the first 1 is the sum of the series
P1
rD1.b � 1/=br D 1. Averaging the two

series for � gives

� D 1

2
C 1

2

X

n>0

bjn

blogb nc
�
b � 1
n
� 2

nC 1 �
2

nC 2 � � � � �
2

nC b � 1 C
b � 1
nC b

�

:

The expression in parentheses is equal to

b�1X

kD1

�
1

n
� 2

nC k C
1

nC b
�

D 1

n.nC b/
b�1X

kD1

�

2k � b C 2k.b � k/
nC k

�

:

Since
Pb�1
kD1.2k � b/ D 0, we obtain the formula

� D 1

2
C
X

n>0

bjn

b�1X

kD1

blogb nck.b � k/
n.nC k/.nC b/ ;

which is a rewriting of the desired series for � .
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Finally, we show that the series converges faster as b increases. Fixing b, we use
the formula

Pb�1
kD1 k.b � k/ D b.b2 � 1/=6 to verify the asymptotic relation (7).

In it, the factor .1 � b�2/= ln b is a decreasing function of b > 1, and the proof of
Theorem 2 is complete. ut

3 Open Problems

We conclude by mentioning some possible extensions of our results to values of the
following function.

Definition 1. The generalized-Euler-constant function �.z/ [20] (see [13] for the
function f1.z/ WD z � �.z/) is defined for complex numbers z with jzj � 1 by the
convergent series

�.z/ WD
1X

nD1
zn�1

�
1

n
� ln

nC 1
n

�

:

Problem 1. Generalize Theorem 1 and Corollary 1 to base 2, rational series for
values of �.z/ at rational numbers z 2 Œ�1; 1�.

In this direction, we have the following result.

Theorem 3. If jzj � 1, then the value �.z/ of the generalized-Euler-constant func-
tion is also given by the series

�.z/ D
1X

nD1

blog2 nc
X

kD0

zbn=2kc�1

2n.2nC 1/ ; (16)

which has rational terms when z is a rational number.

Proof. In [2, Theorem 3] (which is easily extended to series with complex terms),
take rn WD zn�1 for n > 0. ut
Example 2. Taking z D 0 gives the series

�.0/ D 1 � ln 2 D
1X

nD1

1

2n.2nC 1/ :

With z D ˙1, we recover the formulas (5) for �.˙1/ D �˙ (see [2, Example 3]).

In order to solve Problem 1, it would suffice to find a closed expression for the
nth term of the series (16) (that is, for the sum on k), in terms of z and functions like
N0.n/, N1.n/. For this, one might be able to use [2, Theorem 1].
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Problem 2. Extend Theorem 2 to base b � 2, rational series for the alternating
Euler constant ln.4=
/ and for other values of �.z/ at rational points.

In this connection, see the series in [2, Theorem 2]. Also, see [2, Sect. 4.2] for a
base b generalization of the base 2 relation (10) among the areas An.

Postscript

Shortly after Sect. 1, 2, 3 were written, a preprint appeared which generalizes some
of our results and which solves in part some of the problems raised here and in [2] –
see Pilehrood, K.H., Pilehrood, T.H.: Vacca-type series for values of the generalized-
Euler-constant function and its derivative (preprint, 2008); available at http://arxiv.
org/abs/0808.0410v1.

Acknowledgements I am grateful to Stefan Krämer and Wadim Zudilin for valuable comments,
and to Tanguy Rivoal for sending me a draft of [15].

References

1. Addison, A.W.: A series representation for Euler’s constant. Am. Math. Mon. 74, 823–824
(1967)

2. Allouche, J.-P., Shallit, J., Sondow, J.: Summation of series defined by counting blocks of
digits, J. Number Theory 123, 133–143 (2007)

3. Barrow, D.F.: Solution to Problem 4353, Am. Math. Mon. 58, 117 (1951)
4. Behrmann, A.: Problem 5460, Am. Math. Mon. 74, 206 (1967)
5. Berndt, B.C., Bowman, D.C.: Ramanujan’s short unpublished manuscript on integrals and se-

ries related to Euler’s constant. In: Thera, M. (ed.) Constructive, Experimental and Nonlinear
Analysis, pp. 19–27. American Mathematical Society, Providence (2000)

6. Carlitz, L.: Advanced Problem 5601, Am. Math. Mon. 75, 685 (1968)
7. Franklin, F.: On an expression for Euler’s constant, J. Hopkins Circ. II, 143 (1883)
8. Gerst, L.: Some series for Euler’s constant, Am. Math. Mon. 76, 273–275 (1969)
9. Harborth, H.: Solution to Problem 5601, Am. Math. Mon. 76, 568 (1969)

10. Jacobsthal, E.: Ueber die Eulersche Konstante, Math.-Naturwiss. Blätter 9, 153–154 (1906)
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Mixed Sums of Primes and Other Terms

Zhi-Wei Sun

In honor of Prof. M.B. Nathanson on the occasion of his 60th birthday

Summary In this paper, we study mixed sums of primes and linear recurrences.
We show that ifm  2 .mod 4/ andmC 1 is a prime, then .m2

n�1� 1/=.m� 1/ 6D
mn C pa for any n D 3; 4; : : : and prime power pa. We also prove that if a > 1

is an integer, u0 D 0, u1 D 1, and uiC1 D aui C ui�1 for i D 1; 2; 3; : : :, then all
the sums um C aun .m; n D 1; 2; 3; : : :/ are distinct. One of our conjectures states
that any integer n > 4 can be written as the sum of an odd prime and two positive
Fibonacci numbers.

Keywords Fibonacci number � Linear recurrence � Mixed sum � Prime � Represen-
tation

Mathematics Subject Classifications (2000). Primary 11P32, Secondary 11A41,
11B37, 11B39, 11B75, 11Y99

1 Introduction

Let us first recall the famous Goldbach conjecture in additive number theory.

Conjecture 1.1 (Goldbach’s Conjecture). Any even integer n > 4 can be written as
the sum of two primes.

The number of primes not exceeding n > 2 is approximately n= logn by the
prime number theorem. Hardy and Littlewood conjectured that the number of ways
to write an even integer n > 4 as the sum of two primes is given asymptotically by
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cn

log2 n

Y

pjn

�

1C 1

p � 2
�

;

where c D 2
Q

p.1 � .p � 1/�2/ D 1:3203 � � � is a constant and p runs over odd
primes. (Cf. [7, pp. 159-164].)

Goldbach’s conjecture remains open, and the best result in this direction is Chen’s
theorem (cf. [1]): each large even integer can be written as the sum of a prime and a
product of at most two primes.

Those integers Tx Dx.x C 1/=2 with x 2N D f0; 1; 2 : : :g are called triangular
numbers. There are less than

p
2n positive triangular numbers below an integer

n > 2, so triangular numbers are more sparse than prime numbers. In 2008, the
author made the following conjecture.

Conjecture 1.2 (Sun [18]).

(i) Each natural number n 6D 216 can be written in the form p C Tx with x 2 Z,
where p is zero or a prime.

(ii) Any odd integer greater than 3 can be written in the form pC x.x C 1/, where
p is a prime and x is a positive integer.

Douglas McNeil (University of London) (cf. [12]) has verified parts (i) and (ii) up
to 1010 and 1012, respectively. The author [22] would like to offer 1,000 US dollars
for the first positive solutions to both (i) and (ii), and $200 for the first explicit
counterexample to (i) or (ii).

Powers of two are even much more sparse than triangular numbers. In a letter to
Goldbach, Euler posed the problem whether any odd integer n > 1 can be expressed
in the formpC2a, wherep is a prime and a 2 N . This question was reformulated by
Polignac in 1849. By introducing covers of the integers by residue classes, Erdős [4]
showed that there exists an infinite arithmetic progression of positive odd integers
no term of which is of the form p C 2a. (See also Nathanson [14, pp. 204–208].)
On the basis of the work of Cohen and Selfridge [2], the author [17] proved that if

x  47867742232066880047611079 .modM/

with

M D 2 � 3 � 5 � 7 � 11 � 13 � 17 � 19 � 31 � 37
� 41 � 61 � 73 � 97 � 109 � 151 � 241 � 257 � 331
D 66483084961588510124010691590;

then x is not of the form˙pa ˙ qb where p; q are primes and a; b 2 N .
In 1971, Crocker [3] proved that there are infinitely many positive odd integers

not of the form pC2aC2b where p is a prime and a; b 2 ZC D f1; 2; 3; : : :g. Here
are the first few such numbers greater than 5 recently found by Charles Greathouse
(USA):

6495105; 848629545; 1117175145; 2544265305; 3147056235; 3366991695:

Note that 1117175145 even cannot be written in the form p C 2a C 2b with p a
prime and a; b 2 N .
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Erdős (cf. [5]) asked whether there is a positive integer k such that any odd
number greater than 3 can be written the sum of an odd prime and at most k positive
powers of two. Gallagher [6] proved that for any " > 0 there is a positive integer
k D k."/ such that those positive odd integers not representable as the sum of a
prime and k powers of two form a subset of f1; 3; 5; : : :g with lower asymptotic
density at least 1�". In 1951, Linnik [10] showed that there exists a positive integer
k such that each large even number can be written as the sum of two primes and
k positive powers of two; Heath-Brown and Puchta [8] proved that we can take
k D 13. (See also Pintz and Ruzsa [15].) We conjecture that any odd integer n > 8
can be expressed as the sum of an odd prime and three positive powers of two.

In March 2005, Georges Zeller-Meier [25] asked whether 22
n�1 � 2n � 1 is

composite for every n D 3; 4; : : :. Clearly, an affirmative answer follows from part
(i) of our following theorem in the case m D 2.

Theorem 1.3. (i) Let m  2 .mod 4/ be an integer with mC 1 a prime. Then, for
each n D 3; 4; : : :, we have

m2
n�1 � 1
m � 1 6D mn C pa;

where p is any prime and a is any nonnegative integer.
(i) Let m and n be integers greater than one. Then,

m2
n � 1

m � 1 6D p Cm
a Cmb;

where p is any prime, a; b 2 N and a 6D b.

Remark 1.4. In the case mD 2, part (ii) of Theorem 1.3 was observed by
A. Schinzel and Crocker independently in 1960s, and this plays an important
role in Crocker’s result about p C 2a C 2b . In 2001, the author and Le [23] proved
that for n D 4; 5; : : : we cannot write 22

n�1 � 1 in the form p˛ C 2a C 2b , where
p is a prime, a; b; ˛ 2 N and a 6D b.

For any integer m > 1, the sequence fmngn>0 is a first-order linear recurrence
with earlier terms dividing all later terms. To seek for good representations of inte-
gers, we’d better turn resort to second-order linear recurrences whose general term
usually does not divide all later terms.

The famous Fibonacci sequence fFngn>0 is defined as follows:

F0 D 0; F1 D 1; and FnC1 D Fn C Fn�1 for n D 1; 2; 3; : : : :

Here are few initial Fibonacci numbers:

F0 D 0 < F1 D F2 D 1 < F3 D 2 < F4 D 3 < F5 D 5 < F6
D 8 < F7 D 13 < F8 D 21 < � � � :
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It is well known that

Fn D 1p
5

��
1Cp5
2

�n

�
�
1 �p5
2

�n�

for all n 2 N:

Clearly Fn < 2n�1 for n D 2; 3; : : :, and

Fn 
 'np
5

.n! C1/;

where

' D 1Cp5
2

D 1:618 � � � :

Note that 2 j Fn if and only if 3 j n.
It is not known whether the positive integers not of the form p C Fn with p

a prime and n2N form a subset of ZC with positive lower asymptotic density.
However, Wu and Sun [24] were able to construct a residue class containing no
integers of the form paCF3n=2with p a prime and a; n2N . Note that un D F3n=2
is just half of an even Fibonacci number; also u0 D 0, u1 D 1, and unC1 D 4un C
un�1 for n D 1; 2; 3; : : :.

On December 23, 2008 the author [19] formulated the following conjecture.

Conjecture 1.5 (Conjecture on Sums of Primes and Fibonacci Numbers). Any in-
teger n > 4 can be written as the sum of an odd prime and two positive Fibonacci
numbers. We can require further that one of the two Fibonacci numbers is odd.

Remark 1.6. For a large integer n, there are about logn= log' Fibonacci num-
bers below n but there are about n= logn primes below n. So, Fibonacci numbers
are much more sparse than prime numbers and hence the above conjecture looks
more difficult than the Goldbach conjecture. McNeil (cf. [12, 13]) has verified
Conjecture 1.5 up to 1014. The author (cf. [22]) would like to offer 5,000 US dollars
for the first positive solution published in a well-known mathematical journal and
$250 for the first explicit counterexample which can be rechecked by the author via
computer. Note that Conjecture 1.5 implies that for any odd prime p we can find an
odd prime q < p such that p � q can be written as the sum of two odd Fibonacci
numbers. Perhaps it is safe to modify Conjecture 1.5 by substituting “two or three”
for the word “two”.

Recall that the Pell sequence fPngn>0 is defined as follows.

P0 D 0; P1 D 1; and PnC1 D 2Pn C Pn�1 for n D 1; 2; 3; : : : :

It is well known that

Pn D 1

2
p
2

�

.1Cp2/n � .1 �p2/n
�

for all n 2 N:
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Clearly Pn > 2n for n D 6; 7; : : :, and

Pn 
 .1Cp2/n
2
p
2

.n! C1/:

On January 10, 2009, the author [20] posed the following conjecture which is an
analogue of Conjecture 1.5.

Conjecture 1.7 (Conjecture on Sums of Primes and Pell Numbers). Any integer
n> 5 can be written as the sum of an odd prime, a Pell number and twice a Pell
number. We can require further that the two Pell numbers are positive.

Remark 1.8. McNeil (cf. [22]) has verified Conjecture 1.7 up to 5� 1013 and found
no counterexample. The author (cf. [22]) would like to offer 1,000 US dollars for
the first positive solution published in a well-known mathematical journal.

Soon after he learned Conjecture 1.7 from the author, Qing-Hu Hou (Nankai
University) observed (without proof) that all the sums Ps C 2Pt .s; t D 1; 2; 3; : : :/
are distinct. Clearly Hou’s observation follows from our following theorem.

Theorem 1.9. Let a > 1 be an integer, and set

u0 D 0; u1 D 1; and uiC1 D aui C ui�1 for i D 1; 2; 3; : : : :
Then no integer x can be written as umC aun (withm 2 N and n 2 ZC) in at least
two ways, except in the case a D 2 and x D u0 C au2 D u2 C au1 D 4.

Remark 1.10. Note that if n 2 ZC then unC1 C au0 D aun C un�1.

Corollary 1.11. Let k; l;m; n 2 ZC. Then Pk C 2Pl D Pm C 2Pn if and only if
k D m and l D n.

Remark 1.12. In view of Corollary 1.11, we can assign an ordered pair hm; ni 2
ZC�ZC the code PmC2Pn. Recall that a sequence a1<a2<a3< � � � of positive
integers is called a Sidon sequence if all the sums of pairs, ai C aj , are all distinct.
An unsolved problem of Erdős (cf. [7, p. 403]) asks for a polynomial P.x/ 2 ZŒx�
such that all the sums P.m/C P.n/ .0 6 m < n/ are distinct.

Motivated by Conjecture 1.5 and its variants, Qing-Hu Hou and Jiang Zeng
(University of Lyon-I) formulated the following conjecture during their visit to the
author in January 2009.

Conjecture 1.13 (Hou and Zeng [9]). Any integer n > 4 can be written as the sum
of an odd prime, a positive Fibonacci number and a Catalan number.

Remark 1.14. Catalan numbers are integers of the form

Cn D 1

nC 1

 

2n

n

!

D
 

2n

n

!

�
 

2n

nC 1

!

.n 2 N/;
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which play important roles in combinatorics (see, e.g., Stanley [16, Chapter 6]).
They are also determined by C0 D 1 and the recurrence

CnC1 D
nX

kD0
CkCn�k .n D 0; 1; 2; : : :/:

By Stirling’s formula, Cn 
 4n=.n
p
n
/ as n ! C1. McNeil [13] has verified

Conjecture 1.13 up to 3� 1013 and found no counterexample. Hou and Zeng would
like to offer 1,000 US dollars for the first positive solution published in a well-known
mathematical journal and $200 for the first explicit counterexample which can be
rechecked by them via computer. Note that 3627586 cannot be written in the form
p C 2FS C Ct with p a prime and s; t 2 N .

The Lucas sequence fLngn>0 is defined as follows.

L0 D 2; L1 D 1; and LnC1 D Ln C Ln�1 .n D 1; 2; 3; : : :/:

It is known that

Ln D 2FnC1 � Fn D
�
1Cp5
2

�n

C
�
1 �p5
2

�n

for every n D 0; 1; 2; 3; : : :.
On January 16, 2009 the author made the following conjecture which is similar

to Conjecture 1.13.

Conjecture 1.15. Each integer n > 4 can be written as the sum of an odd prime, a
Lucas number and a Catalan number.

Remark 1.16. McNeil [13] has verified Conjecture 1.15 up to 1013 and found no
counterexample. Note that 1389082 cannot be written in the form p C 2Ls C Ct
with p a prime and s; t 2 N .

We are going to prove Theorems 1.3 and 1.9 in Sect. 2. Section 3 is devoted to
our discussion of Conjecture 1.5 and its variants.

2 Proofs of Theorems 1.3 and 1.9

Proof of Theorem 1.3. For n D 2; 3; : : : we clearly have

.m � 1/
n�1Y

kD0

�

m2
k C 1

�

D
�

m2
0 � 1

� �

m2
0 C 1

� �

m2
1 C 1

�

� � �
�

m2
n�1 C 1

�

D
�

m2
1 � 1

� �

m2
1 C 1

�

� � �
�

m2
n�1 C 1

�

D � � � D
�

m2
n�1 � 1

��

m2
n�1 C 1

�

D m2n � 1:
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(i) Fix an integer n > 3. Write nC 1 D 2kq with k 2 N , q 2 ZC and 2 − q. Since

2n D .1C 1/n > 1C nC n.n � 1/
2

> nC 1;

we must have 0 6 k 6 n � 1. Thus m2
k C 1 divides both .m2

n � 1/=.m � 1/
and mnC1 C 1 D .m2k

/q C 1. Set

dn D m2
n�1 � 1
m � 1 �mn:

Then

mdn D m2
n �m
m � 1 �m

nC1 D m2
n � 1

m � 1 � .m
nC1 C 1/

and hencem2
k C 1 divides dn.

Suppose that dn is a prime power. By the above, we can write dnDpa, where
a 2 N and p is a prime divisor of m2

k C 1. As m is even, p is an odd prime.
Since

mp�1  1 .mod p/ and m2
kC1  .�1/2 D 1 .mod p/;

we have

mgcd.p�1;2kC1/  1 .mod p/:

But

m2
k  �1 6 1 .mod p/;

so p  1 .mod 2kC1/. Note that

pa D m2
n�1 � 1
m � 1 �mn D

2n�2X

kD0
mk �mn  1CmCm2 .modm3/:

If k > 0, then p  1 .mod 22/ and hence

pa  1 6 1Cm .mod 22/;

which contradicts the congruencepa  1Cm .modm2/. So k D 0, p j m20C1
and hence p D m C 1. (Recall that m C 1 is a prime.) It follows that pa is
congruent to 1 ormC 1 modulo 8. Since 1CmCm2 6 1;mC 1 .mod 8/, we
get a contradiction. This proves part (i).

(ii) Let a> b> 0 be integers with maCmb <.m2n � 1/=.m�1/. Clearly
2n>a>b. Write a� bD 2kq with k 2N , q 2ZC and 2 −q. Then 06 k <n
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and hence d D m2
k C 1 divides both .m2

n � 1/=.m � 1/ and ma�b C 1 D
.m2

k
/q C 1. Thus

m2
n � 1

m � 1 �m
a �mb

is a multiple of d . Observe that

m2
n � 1

m � 1 D
m2

n�2 � 1
m � 1

�

m2
n�2 C 1

��

m2
n�1 C 1

�

>
�

m2
n�2 C 1

��

m2
n�1 C 1

�

> .mb C 1/.ma�b C 1/ > maCmbCd:

So d is a proper divisor of D D .m2n � 1/=.m� 1/�ma �mb. This shows
that D cannot be a prime. We are done. ut

Proof of Theorem 1.9. Observe that

u0 D 0 < u1 D 1 < u2 D a < u3 < u4 < � � � :

By induction,

u2i  u0 D 0 .mod a/ and u2iC1  u1 D 1 .mod a/ for i D 0; 1; 2; : : : :

We will make use of these simple properties.
Let k;m 2 N and l; n 2 ZC with k 6 m. Below we discuss the equation

uk C aul D um C aun.

Case 1. k D m.
In this case,

uk C aul D um C aun) ul D un) l D n:

Case 2. k D l < m.
If k D l < m � 1 then

uk C aul < um�2 C aum�1 D um < um C aun:

When k D l D m � 1, as um 6 um�1 .mod a/ we have

uk C aul D .aC 1/um�1 6D um C aun:

Case 3. l < k < m.
In this case,

uk C aul 6 uk C auk�1 < auk C uk�1 D ukC1 6 um < um C aun:
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Case 4. k < l < m.
In this case,

uk C aul 6 aul C ul�1 D ulC1 6 um < um C aun:

Case 5. k < m 6 l .
Suppose that uk C aul D um C aun. Then

ul >
uk C aul � um

a
D un > ul � um

a
> a � 1

a
ul > .a � 1/ul�1 > ul�1:

It follows that

k D 0; m D l D 2; and un D ul�1 D u1 D 1:

Thus au2 D u2 C au1, i.e., a2 D aC a and hence a D 2.
Combining the above we have completed the proof. ut

Remark 2.1. By modifying the proof of Theorem 1.9, we can determine all the so-
lutions of the equation Fk C Fe D Fm C Fn with k; l;m; n 2 N .

3 Discussion of Conjecture 1.5 and Its Variants

Concerning Conjecture 1.5, we mention that there are very few natural numbers not
representable as the sum of a prime p  5 .mod 6/ and two Fibonacci numbers.
Bjorn Poonen (MIT) informed me that by a heuristic argument there should be in-
finitely many positive integers not in the form p C Fs C Ft if we require that the
prime p lies in a fixed residue class with modulus greater than one. McNeil [11,13]
made a computer search to find natural numbers not representable as the sum of a
prime p  5 .mod 6/ an odd Fibonacci number and a positive Fibonacci number; he
found that there are totally 729 such numbers in the interval Œ0; 1014�, 277 of which
(such as 857530546) even cannot be written as the sum of a prime p D 5 (mod 6)
and two Fibonacci numbers.

In 2008, the author (cf. [19, 20]) also made the following conjecture which is
similar to Conjecture 1.5.

Conjecture 3.1. (i) Any integer n > 4 can be written as the sum of an odd prime,
a positive Fibonacci number and the square of a positive Fibonacci number. We
can require further that one of the two Fibonacci numbers is odd.

(ii) Each integer n> 4 can be written as the sum of an odd prime, a positive
Fibonacci number and the cube of a positive Fibonacci number. We can require
further that one of the two Fibonacci numbers is odd.
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Remark 3.2. Note that 900068 cannot be written as the sum of a prime, a Fibonacci
number and the fourth power of a Fibonacci number. Also,

F 3n 

'3n

.
p
5/3
D .4:236 � � � /n

5
p
5

.n! C1/:

Let k 2 f1; 2; 3g. For n 2 ZC let rk.n/ denote the number of ways to write n
as the sum of an odd prime, a positive Fibonacci number and the kth power of a
positive Fibonacci number with one of the two Fibonacci numbers odd. That is,

rk.n/ D jfhp; s; ti W p C Fs C F kt D n;
p is an odd prime; s; t � 2; and 2 − Fs or 2 − Ft gj:

The author has investigated values of the quotient

sk.n/ D rk.n/

logn

via computer, and guessed that

ck D lim inf
n!C1 sk.n/ > 0:

Numerical data suggest that 2 < c1 < 3. In fact, the author computed all values of
s1.n/ with 1050 6 n 6 1050 C 4 � 104, and here are the two smallest values:

s1.10
50 C 39030/ D 2:22359 � � � and s1.10

50 C 5864/ D 2:29037 � � � :

Here is another variant of Conjecture 1.5 made by the author (cf. [19, 21]).

Conjecture 3.3. (i) Any integer n > 4 can be written as the sum of an odd
prime, an odd Lucas number and a positive Lucas number. For k D 2; 3, we
can write any integer n > 4 in the form pCLsCLkt , where p is an odd prime,
s; t > 0, and Ls or Lt is odd.

(ii) Each integer n> 4 can be written as the sum of an odd prime, a positive
Fibonacci number and twice a positive Fibonacci number (or half of a posi-
tive Fibonacci number). We can also represent any integer n> 4 as the sum of
an odd prime, twice a positive Fibonacci number, and the square of a positive
Fibonacci number.

(iii) Any integer n > 4 can be written in the form pCFsCLt with p an odd prime,
s > 0, and Fs or Lt odd.

Remark 3.4. The author verified Conjectures 3.1 and 3.3 for n 6 3� 107. Qing-Hu
Hou found that 17540144 cannot be written as the sum of a prime, a Lucas number
and the fourth power of a Lucas number. McNeil (cf. [12]) has verified the first
assertions in parts (i) and (ii) of Conjectures 3.1 and 3.3 up to 1012. He (cf. [13]) has
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also verified part (iii) of Conjecture 3.3 up to 1013, and found that 36930553345551
cannot be written as the sum of a prime, a Fibonacci number and an even Lucas
number.

What about the representations n D p C Ps C kPt with k 2 f1; 3; 4g related to
Conjecture 1.7? Note that 2176 cannot be written as the sum of a prime and two Pell
numbers. McNeil [13] found that 393185153350 cannot be written as the sum of a
prime, a Pell number and three times a Pell number, and the smallest integer greater
than 7 not representable as the sum of a prime, a Pell number and four times a Pell
number is

872377759846� 8:7 � 1011:
The companion Pell sequence fQngn>0 is defined by

Q0 D Q1 D 2 andQnC1 D 2Qn CQn�1 .n D 1; 2; 3; : : :/:

McNeil [13] found that the smallest integer greater than 5 not representable as the
sum of a prime, a Pell number and a companion Pell number is 169421772576.

McNeil’s counterexamples seem to suggest that Conjecture 1.7 might also have
large counterexamples. However, in the author’s opinion, the large counterexamples
to the representations n D p C Ps C 3Pt and n D p C Ps C 4Pt hint that they are
very close to the “truth” (Conjecture 1.7). Corollary 1.11 is also a good evidence to
support Conjecture 1.7. To expel suspicion, the author has investigated the behaviour
of the representation function

r.n/ D jfhp; s; ti W p C Ps C 2Pt D n with p a prime and s; t > 0gj:

For n 2 Œ1050; 1050 C 10081�most values of s.n/ D r.n/= logn lies in the interval
.1; 2/, the smallest value of s.n/ with n in the range is

s.1050 C 10045/D 76

log.1050 C 10045/ � 0:66:

The author also computed the values of s.n/ with n 2 Œ10200; 10200 C 100�, the
smallest value and the largest value are

s.10200 C 33/ D 443

log.10200 C 33/ � 0:96

and

s.10200 C 18/ D 824

log.10200 C 18/ � 1:79;

respectively. It seems that

c D lim inf
n!C1 s.n/ 2 .0:6; 1:2/:
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I (R. L. Graham and J. Nešetřil, eds.), Algorithms and Combinatorics 13, Springer, Berlin,
1997, pp. 47–67

6. P. X. Gallagher, Primes and powers of 2, Invent. Math. 29 (1975), 125–142
7. R. K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, New York, 2004
8. D. R. Heath-Brown and J.-C. Puchta, Integers represented as a sum of primes and powers of

two, Asian J. Math. 6 (2002), 535–565
9. Q. H. Hou and J. Zeng, Sequences A154404 in On-Line Encyclopedia of Integer Sequences,

http://www.research.att.com/�njas/sequences/A154404
10. Yu. V. Linnik, Prime numbers and powers of two, Trudy Mat. Inst. Steklov. 38 (1951), 152–169
11. D. McNeil, Sun’s strong conjecture (a message to Number Theory Mailing List in Dec. 2008),

http://listserv.nodak.edu/cgi-bin/wa.exe?A2=ind0812n&L=nmbrthryn&T=0n&P=3020
12. D. McNeil, Various and sundry (a message to Number Theory Mailing List in Jan. 2009),

http://listserv.nodak.edu/cgi-bin/wa.exe?A2=ind0901n&L=nmbrthryn&T=0n&P=840
13. D. McNeil, Personal communications in January 2009
14. M. B. Nathanson, Additive Number Theory: The Classical Bases, Grad. Texts in Math.,

Vol. 164, Springer, New York, 1996
15. J. Pintz and I. Z. Ruzsa, On Linnik’s appproximation to Goldbach’s problem, I, Acta Arith. 109

(2003), 169–194
16. R. P. Stanley, Enumerative Combinatorics, Vol. 2, Cambridge University Press, Cambridge,

1999
17. Z. W. Sun, On integers not of the form ˙pa ˙ qb , Proc. Amer. Math. Soc. 128 (2000),

997–1002
18. Z. W. Sun, On sums of primes and triangular numbers, Journal of Combinatorics and Number

Theory 1 (2009), 65–76
19. Z. W. Sun, Three messages to the Number Theory Mailing List,

http://listserv.nodak.edu/cgi-bin/wa.exe?A2=ind0812n&L=nmbrthryn&T=0n&P=2140
http://listserv.nodak.edu/cgi-bin/wa.exe?A2=ind0812n&L=nmbrthryn&T=0n&P=2704
http://listserv.nodak.edu/cgi-bin/wa.exe?A2=ind0812n&L=nmbrthryn&T=0n&P=3124

20. Z. W. Sun, Sequences A154257, A154258, A154263, A154536 in On-Line Encyclopedia of
Integer Sequences,
http://www.research.att.com/�njas/sequences/A154257
http://www.research.att.com/�njas/sequences/A154258
http://www.research.att.com/�njas/sequences/A154263
http://www.research.att.com/�njas/sequences/A154536

http://www.research.att.com/~njas/sequences/A154404
http://listserv.nodak.edu/cgi-bin/wa.exe?A2=ind0812&L=nmbrthry&T=0&P=3020
http://listserv.nodak.edu/cgi-bin/wa.exe?A2=ind0901&L=nmbrthry&T=0&P=840
http://listserv.nodak.edu/cgi-bin/wa.exe?A2=ind0812&L=nmbrthry&T=0&P=2140
http://listserv.nodak.edu/cgi-bin/wa.exe?A2=ind0812&L=nmbrthry&T=0&P=2704
http://listserv.nodak.edu/cgi-bin/wa.exe?A2=ind0812&L=nmbrthry&T=0&P=3124
http://www.research.att.com/~njas/sequences/A154257
http://www.research.att.com/~njas/sequences/A154258
http://www.research.att.com/~njas/sequences/A154263
http://www.research.att.com/~njas/sequences/A154536


Mixed Sums of Primes and Other Terms 353

21. Z. W. Sun, Sequences A154285, A154417, A154290, A154421 in On-Line Encyclopedia of
Integer Sequences,
http://www.research.att.com/�njas/sequences/A154285
http://www.research.att.com/�njas/sequences/A154290
http://www.research.att.com/�njas/sequences/A154417

22. Z. W. Sun, Offer prizes for solutions to my main conjectures involving primes (a message to
the Number Theory Mailing List in January 2009), http://listserv.nodak.edu/cgi-bin/wa.exe?
A2=ind0901n&L=nmbrthryn&T=0n&P=1395

23. Z. W. Sun and M. H. Le, Integers not of the form c.2a C 2b/ C p˛ , Acta Arith. 99 (2001),
183–190

24. K. J. Wu and Z. W. Sun, Covers of the integers with odd moduli and their applications to the
forms xm � 2n and x2 � F3n=2, Math. Comp., 78 (2009), 1853–1866

25. G. Zeller-Meier, Not prime for each n > 3 (a message to Number The-
ory Mailing List in March 2005), http://listserv.nodak.edu/cgi-bin/wa.exe?
A2=ind0503n&L=nmbrthryn&T=0n&P=2173

http://www.research.att.com/~njas/sequences/A154285
http://www.research.att.com/~njas/sequences/A154290
http://www.research.att.com/~njas/sequences/A154417
http://listserv.nodak.edu/cgi-bin/wa.exe?A2=ind0901&L=nmbrthry&T=0&P=1395
http://listserv.nodak.edu/cgi-bin/wa.exe?A2=ind0901&L=nmbrthry&T=0&P=1395
http://listserv.nodak.edu/cgi-bin/wa.exe?A2=ind0503&L=nmbrthry&T=0&P=2173
http://listserv.nodak.edu/cgi-bin/wa.exe?A2=ind0503&L=nmbrthry&T=0&P=2173




Classes of Permutation Polynomials Based
on Cyclotomy and an Additive Analogue

Michael E. Zieve

Dedicated to Mel Nathanson on the occasion of his sixtieth birthday

Summary I present a construction of permutation polynomials based on cyclo-
tomy, an additive analogue of this construction, and a generalization of this additive
analogue which appears to have no multiplicative analogue. These constructions
generalize recent results of José Marcos.

Keywords Cyclotomy � Permutation polynomial

Mathematics Subject Classifications (2010). 11T06, 11T22

1 Introduction

Writing Fq for the field with q elements, we consider permutation polynomials over
Fq , namely polynomials f 2 Fq Œx� for which the map ˛ 7! f .˛/ induces a permu-
tation of Fq . These polynomials first arose in the work of Betti [6], Mathieu [28],
and Hermite [19], as a tool for representing and studying permutations.

Since every mapping Fq ! Fq is induced by a polynomial, the study of permuta-
tion polynomials focuses on polynomials with unusual properties beyond inducing
a permutation. In particular, permutation polynomials of ‘nice’ shapes have been a
topic of interest since the work of Hermite, in which he noted that there are many
permutation polynomials of the form

f .x/ WD axi
�

x.q�1/=2 C 1
�

� bxj
�

x.q�1/=2 � 1
�
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with q odd, i; j > 0, and a; b 2F�
q . The reason for this is that f .˛/D 2a˛i if ˛ 2Fq

is a square, and f .˛/D 2b˛j otherwise; thus, for instance, f is a permutation poly-
nomial if 2a and 2b are squares and gcd.ij; q � 1/ D 1.

More generally, any polynomial of the form f .x/ WD xrh.x.q�1/=d / induces a
mapping on Fq modulo d th powers, so testing whether f permutes Fq reduces to
testing whether the induced mapping on cosets is bijective (assuming that f is in-
jective on each coset, or equivalently that gcd.r; .q�1/=d/ D 1). The vast majority
of known examples of ‘nice’ permutation polynomials have this ‘cyclotomic’ form
for some d < q � 1; see for instance [1–5, 7, 9–25, 29–34, 36–43]. Moreover, there
is a much longer list of papers proving the nonexistence of permutation polynomials
of certain shapes, and nearly all such papers again address these polynomials f .x/
having cyclotomic behavior.

In the recent paper [26], Marcos gives five constructions of permutation poly-
nomials. His first two constructions are new classes of permutation polynomials
having the above cyclotomic form. His third construction is a kind of additive
analogue of the first, resulting in polynomials of the form L.x/ C h.T .x// where
T .x/ WD xq=p C xq=p2 C � � � C x is the trace polynomial from Fq to its prime field

Fp , and L.x/ D P
aix

pi
is any additive polynomial. The idea of the analogy is

that T .x/ induces a homomorphism Fq ! Fp , just as x.q�1/=d induces a homo-
morphism from F�

q to its subgroup of d th roots of unity. The fourth construction in
[26] is a variant of the third for polynomials of the formL.x/Ch.T .x//.L.x/Cc/,
and the fifth construction replaces T .x/ with other symmetric functions in xq=p ,
xq=p

2

, . . . , x.
In this paper, I present rather more general versions of the first four constructions

from [26], together with simplified proofs. I can say nothing new about the fifth con-
struction from [26], although that construction is quite interesting and I encourage
the interested reader to look into it.

2 Permutation Polynomials from Cyclotomy

In this section, we prove the following result, where for d � 1, we write hd .x/ WD
xd�1 C xd�2 C � � � C x C 1.

Theorem 1. Fix a divisor d >2 of q � 1, integers u � 1 and k � 0, an element
b 2 Fq , and a polynomial g 2 Fq Œx� divisible by hd . Then

f .x/ WD xu
�

bxk.q�1/=d C g.x.q�1/=d /
�

permutes Fq if and only if the following four conditions hold:

1. gcd.u; .q � 1/=d/ D 1
2. gcd.d; uC k.q � 1/=d/ D 1
3. b ¤ 0
4. 1C g.1/=b is a d th power in F�

q
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The proof uses the following simple lemma.

Lemma 1. Fix a divisor d of q � 1, an integer u > 0, and a polynomial h2FqŒx�.
Then f .x/ WD xuh.x.q�1/=d / permutes Fq if and only if the following two condi-
tions hold:

1. gcd.u; .q � 1/=d/ D 1
2. bf .x/ WD xuh.x/.q�1/=d permutes the set �d of d th roots of unity in F�

q .

I discovered this lemma in 1997 when writing [35], and used it in seminars and
private correspondence, but I did not publish it until recently [42, Lemma 2.1]. For
other applications of this lemma, see [27, 42, 43].

Proof of Theorem 1. In light of the lemma, we just need to determine when bf .x/
permutes �d , where

bf .x/ WD xu.bxk C g.x//.q�1/=d :

For � 2 �dnf1g we have g.�/ D 0, so bf .�/ D b.q�1/=d �uCk.q�1/=d . Thus, bf
is injective on �dnf1g if and only if b ¤ 0 and gcd.d; u C k.q � 1/=d/ D 1.
When these conditions hold, bf .�dnf1g/ D �dnfb.q�1/=d g, so bf permutes �d if
and only if bf .1/ D b.q�1/=d . Since bf .1/ D .b C g.1//.q�1/=d , the latter condition
is equivalent to .1C g.1/=b/.q�1/=d D 1, as desired. ut

The case g D hd of Theorem 1 is [26, Theorem 3] ([25, Theorem 2]), and the
case that g D h5 � x3 � x4 and d D u D k � 2 D 5 is [26, Proposition 5] ([25,
Proposition 4]).

Remark 1. The key feature of the polynomials in Theorem 1 as a particular case of
Lemma 1 is that the induced mapping bf on �dnf1g is a monomial, and we know
when monomials permute �d . For certain values of d , we know other permutations
of �d : for instance, if q D q20 and d D q0 � 1 then �d D F�

q0
, so we can obtain

permutation polynomials over Fq by applying Lemma 1 to polynomials f .x/ for

which the induced map bf on F�
q0

is any prescribed permutation polynomial. This
construction already yields interesting permutation polynomials of Fq coming from
degree-3 permutation polynomials of Fq0

; see [35] for details and related results.

3 Permutation Polynomials from Additive Cyclotomy

Lemma 1 addresses maps Fq ! Fq which respect the partition of F�
q into cosets

modulo a certain subgroup. In this section, we give an analogous result in terms of
cosets of the additive group of Fq modulo a subgroup. Let p be the characteristic

of Fq . An additive polynomial over Fq is a polynomial of the form
Pk
iD0 aixp

i

with ai 2 Fq . The key property of additive polynomials A.x/ is that they induce
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homomorphisms on the additive group of Fq , since A.˛ C ˇ/ D A.˛/ C A.ˇ/ for
˛; ˇ 2 Fq . The additive analogue of Lemma 1 is as follows, where we write imB
and kerB for the image and kernel of the mapping BWFq ! Fq .

Proposition 1. Pick additive A;B 2Fq Œx� and an arbitrary g 2Fq Œx�. Then

f .x/ WD A.x/ C g.B.x// permutes Fq if and only if A.kerB/ C bf .imB/ D Fq ,

where bf .x/ WD g.x/ C A.bB.x// and bB 2 Fq Œx� is any polynomial for which

B.bB.x// is the identity on imB . In other words, f permutes Fq if and only if bf
induces a bijection imB ! Fq=A.kerB/, where Fq=A.kerB/ is the quotient of the
additive group of Fq by the subgroup A.kerB/.

Proof. For ˇ 2 kerB , we have f .x C ˇ/ D A.x/ C A.ˇ/ C g.B.x// D f .x/ C
A.ˇ/. Thus, for ˛ 2 Fq we have f .˛ C kerB/ D f .˛/ C A.kerB/. Since Fq D
kerBCbB.imB/, it follows that f .Fq/ D f .bB.imB//CA.kerB/. Since f .bB.�// D
A.bB.�//C g.B.bB.�/// D A.bB.�//C g.�/ for � 2 imB , the result follows. ut
Corollary 1. If f permutes Fq , then A is injective on kerB and bf is injective
on imB .

Proof. If A.kerB/C bf .imB/ D Fq , then

q � #A.kerB/ � #bf .imB/ � #.kerB/ � #.imB/ D q;

where the last equality holds because B defines a homomorphism on the additive
group of Fq . The result follows. ut
Corollary 2. Suppose A.B.˛// D B.A.˛// for all ˛ 2 Fq . Then f permutes Fq if
and only if A permutes kerB and A.x/C B.g.x// permutes imB .

Proof. Since A and B commute, and A.0/ D 0, it follows that A.kerB/ � kerB .
Thus, by the previous corollary, if f permutes Fq thenA permutes kerB . Henceforth
assume that A permutes kerB . By the proposition, f permutes Fq if and only if

kerB C bf .imB/ D Fq ; since the left side is the preimage under B of B.bf .imB//,

this condition may be restated as B.bf .imB// D imB . For � 2 imB , we have
B.bf .�// D B.g.�//CB.A.bB.�/// D B.g.�//CA.B.bB.�/// D B.g.�//CA.�/,
so B.bf .x// permutes imB if and only if B.g.x//C A.x/ permutes imB . ut

One way to get explicit examples satisfying the conditions of this result is as
follows: if B D xq=p C xq=p2 C � � � C xp C x and A 2 Fp Œx�, then A.B.x// D
B.A.x//, so f permutes Fq if and only if A permutes kerB and A.x/ C B.g.x//
permutes imB D Fp. In case g is a constant (in Fq) times a polynomial over Fp ,
this becomes (a slight generalization of) [26, Theorem 1] ([25, Theorem 6]). The
following case of [26, Corollary 8] ([25, Corollary 8]) exhibits this.
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Example 1. In case q D p2 and B D xp C x and A D x, the previous corollary
says f .x/ WD xCg.xpCx/ permutes Fp2 if and only if xCg.x/pCg.x/ permutes
Fp , which trivially holds when g D �h.x/ with h 2 Fp Œx� and �p�1 D �1. For
instance, taking h.x/ D x2, it follows that x C �.xp C x/2 permutes Fp2 . By
using other choices of h, we can make many permutation polynomials over Fp2

whose degree is a small multiple of p. This is of interest because heuristics suggest
that ‘at random’ there would be no permutation polynomials over Fq of degree less
than q=.2 logq/. The bulk of the known low-degree permutation polynomials are
exceptional, in the sense that they permute Fqk for infinitely many k; a great deal is
known about these exceptional polynomials, for instance see [18]. It is known that
any permutation polynomial of degree at most q1=4 is exceptional. However, the
examples described above have degree on the order of q1=2 and are generally not
exceptional.

Our final result generalizes the above example in a different direction than
Proposition 1.

Theorem 2. Pick any g 2 Fq Œx�, any additive A 2 FpŒx�, and any h 2 Fp Œx�. For

B WD xq=pCxq=p2C� � �CxpCx, the polynomial f .x/ WD g.B.x//Ch.B.x//A.x/
permutes Fq if and only if A permutes kerB and B.g.x//C h.x/A.x/ permutes Fp
and h has no roots in Fp .

Proof. For ˇ 2 kerB we have f .x C ˇ/ D f .x/ C h.B.x//A.ˇ/. Thus, if f
permutes Fq thenA is injective on kerB and h has no roots in Fp . Since A.B.x// D
B.A.x// and A.0/ D 0, also A.kerB/ � kerB , so if f permutes Fq then
A permutes kerB . Henceforth assume A permutes kerB and h has no roots in
Fp . Since imB D Fp and h.Fp/ � Fpnf0g, we have h.B.˛// 2 Fpnf0g
for ˛ 2 Fq . Thus, for ˛ 2 Fq we have f .˛ C kerB/ D f .˛/ C kerB , so
f permutes Fq if and only if B.f .Fq// D imB . Now for ˛ 2 Fq we have
B.f .˛// D B.g.B.˛///CB.h.B.˛//A.˛//, and since h.B.˛// 2 Fp this becomes
B.f .˛// D B.g.B.˛///Ch.B.˛//B.A.˛// D B.g.B.˛//Ch.B.˛//A.B.˛//, so
B.f .Fq// is the image of imB under B.g.x//C h.x/A.x/. The result follows. ut

In case gD �h C ı with �; ı 2 Fq , the above result becomes a generalization
of [26, Theorem 10] ([25, Theorem 10]). In view of the analogy between Lemma 1
and Proposition 1, it is natural to seek a ‘multiplicative’ analogue of Theorem 2.
However, I have been unable to find such a result: the obstacle is that the polynomial
f in Theorem 2 is the sum of products of polynomials, which apparently should
correspond to a product of powers of polynomials, but the latter is already included
in Lemma 1.

Acknowledgements I thank José Marcos for sending me preliminary versions of his paper [26],
and for encouraging me to develop consequences of his ideas while his paper was still under review.
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