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Preface

Functional analysis tightly interweaves concepts from analysis, topology, geometry,
and algebra. This book explores the fabric of functional analysis by providing a care-
ful presentation of the fundamental results that are essential for the contemporary
mathematician. Organised into four thematic sections of (i) topology, (ii) measure
theory and integration, (iii) Banach spaces, and (iv) operator theory, the treatment is
entirely self-contained with the exception of a brief introductory section in Chapter 1
that draws attention to, but does not develop, the foundations upon which functional
analysis rests (e.g., the axiom of choice and the completeness of the real number
system).

The reader is assumed to have knowledge of basic real and complex analysis
at the level of the classic monographs of Rudin [49] and Brown and Churchill [8]
and to possess an understanding of algebra and linear algebra at the level of, say,
Herstein’s well-known book [33]. However, as it is virtually impossible to study the
fundamental results of functional analysis without a working facility with topology
and measure theory, these two subjects form the book’s starting point. Both topics
are introduced on the assumption that the reader has no prior knowledge of them.
The reader who is familiar with these subjects can select a later entry point to
the book, knowing that he or she may refer back to the topological and measure-
theoretic results as needed.

The topology treated herein is essentially of the point-set variety, the first
chapter of which covers the generic features in topology (subspaces, products,
continuity, quotients) while examining some specific and important examples in
detail (such as the Cantor set and the Cantor ternary function). The second half of the
study of topology concentrates on those structures and results that are required by
functional analysis: compactness and local compactness, Urysohn’s Lemma, second
countability, and the Stone-Cech compactification, for example. A novel feature of
Chapter 2 is the inclusion of a purely set-theoretic proof of the Tietze extension
theorem.

The primary examples of Banach spaces are drawn from vector spaces of
integrable functions, and among the most important of such spaces are the ones
in which the underlying measure space is a topological space. Therefore, the second
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viii Preface

thematic section of the book is devoted to the basics of measure theory, with
particular emphasis on regular Borel measures and Lebesgue measure. Because
spaces of complex measures also form a Banach space of interest, these are
examined as well. The Lebesgue integral is also developed and the essential
inequalities of analysis (Jensen, Holder, Minkowski) are established.

The third part of the book is devoted to Banach and Hilbert spaces, duality, and
convexity. Equipped with topology and measure theory, the important examples in
functional analysis are studied, with L7 spaces and spaces of continuous complex-
valued functions on a compact Hausdorff space being among these. The Riesz
representation theorem for the dual of C(X), where X is compact Hausdorff, is
proved only in the case where the topology on X is metrisable. As it turns out,
this is the only case that is required for subsequent results in the book, including
Choquet’s integral representations for elements of compact convex sets.

The final part of the book concerns operator theory, beginning with a study
of bounded linear operators acting on Banach spaces and the spectral features
of operators. Because spectral theory is complex-analytic in nature, it seems
appropriate at this stage of the book to introduce and study spectral theory in the
context of Banach algebras. Although the treatment is relatively brief, the main
results about abelian Banach algebras are established, and a few applications to
classical analysis are made. The final two chapters deal with operators acting on
Hilbert spaces and self-adjoint algebras of such operators. The first of these two
chapters provides the basic theory of Hilbert space operators and includes the
spectral theory of compact normal operators, as well as a detailed analysis of
the Banach space of trace-class operators. Matrices of operators and some of the
most widely used operator inequalities are developed. The study of von Neumann
algebras and C*-algebras in the final chapter is approached as a natural continuation
of basic Hilbert space operator theory and brings the book to a close by touching
upon some of its topological and measure-theoretic beginnings.

What is not in this book? I did not touch upon any of the multivariable aspects
of functional analysis, which explains the absence of product measures, Fubini’s
theorem, and tensor products. And while the core topics of functional analysis
do come very close to those of harmonic analysis, I felt that the treatment of
Haar measure and the Fourier transform, for example, would be better suited to
books devoted to harmonic analysis. Some of the material that one would need
for applications of functional analysis to partial differential equations or physics,
such as unbounded operators and distributions, is also omitted. Although complex
analysis has a major role in the theory of Banach algebras and non-self-adjoint
operator algebras, my approach here has been to view the study of functional
analysis as a continuation of real analysis, which accounts somewhat for the
inclusion of measure theory and self-adjoint algebras of Hilbert space operators
at the cost of excluding Banach spaces of analytic functions and, for example,
holomorphic functional calculus.

This book can be read for self-study or be used as a text for a course on one of
the thematic sections or for a sequence of courses. It may also be used as a reference
work, keeping in mind the omission of certain significant topics as mentioned above.
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Chapter 1
Topological Spaces

At its most intuitive level, topology is the study of geometric objects and their
continuous deformations. Such objects might be concrete and easy to visualise, such
as a disc or an annulus in the plane R2 ora sphere or torus in R3, while other such
geometric objects might be a great deal more abstract in nature, as is the case with
higher-dimensional spheres and tori, groups of unitary matrices, and the unit balls of
the dual spaces of normed vector spaces. Fortunately, the concepts and methods of
topology apply at a very general level, thereby providing us with rather deep insight
into the nature of a variety of interesting mathematical structures.

This chapter is devoted to the introduction and study of generic features and
constructions of spaces in topology. The study of topological spaces that have
certain special properties is taken up in the second chapter. A topological space
is defined by set-theoretic axioms; for this reason, we begin with a very brief word
on set theory.

1.1 Sets and Partial Orderings

It is difficult to think of a branch of mathematics that does not depend crucially
on the formalism and language of set theory. Elementary uses of set theory are so
common as to be unnoticed: set union and intersection, subsets, Cartesian products,
relations and functions, and so forth. However, certain subtle aspects of set theory
(the Axiom of Choice, for example) lead to powerful tools (such as Zorn’s Lemma)
that are fundamental features of many areas of modern mathematics.

If one is not precise about what is meant by the term “set”, then it is possible to
introduce undesired paradoxes. In a non-rigorous discussion, it is common to refer to
a set as a collection of objects in which elements of the collection are determined or

© Springer International Publishing Switzerland 2016 3
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4 1 Topological Spaces

described in some definitive manner. The set H of all hydrogen atoms, for example,
contains each and every hydrogen atom and no other elements; that is, x € H if and
only if x is a hydrogen atom.

A paradox put forward by the philosopher Bertrand Russell shows that a more
rigorous definition of set is required. Specifically, consider the “set”

R = {x|xis asetand x & x}.

By definition, R € R if and only if R € R, and therein lies the paradox.

To avoid contradictory assertions such as Russell’s paradox, various axioms
for set theory have been developed to formally describe what sets are and what
operations on sets may be carried out. The most widely used (and accepted) of these
axiomatic systems are the Zermelo-Fraenkel Axioms. The ZF Axioms assert, for
example, the existence of the empty set and the existence of an infinite set. These
axioms also define precisely the concept of subset and they confirm that the familiar
operations of set union and set intersection as valid operations in set theory.

If X and Y are sets, then the Cartesian product of X and Y is denoted by X x Y,
and consists of all ordered pairs (x,y) in which x € X and y € Y. More generally, if
Xi,...,X, are sets, then X| x --- X X, is the set of all n-tuples (xi,...,x,) such each
xj € Xjforeachj=1,...,n.

If Y is a subset of a set X, then the notation Y° or X \ Y will be used to denote the
complement of Y in X: namely, the set of all x € X for whichx € Y.

Recall the following basic fact regarding unions and intersections.

Proposition 1.1. If {Y,}yea and {Zg}geq are families of subsets of a set X, then

(Uya)ﬂ Uzs|= U Yunz. and

acA Ben (@.B)eAXR

(ﬂYa)U Nz|= () YaUZ.

a€A pen (a.B)EAXSR2

With respect to Cartesian products, union and intersection satisfy

(UYO,)X Uz |= U YexZ. and

a€A BeR (a,B)EAXS2

(ﬂYa>x Nzs|= () Yax2s

a€A Be (a,B)eAXS2



1.1  Sets and Partial Orderings 5

With respect to complements, DeMogan’s Laws hold:

(Uxa) = ()X and (ﬂxa) =[x

a€A a€EA a€A a€EA

A more extensive review of the ZF Axioms will not be undertaken here because
it is unnecessary for the subjects addressed in this book. However, it is worth
noting that quite recent research in functional analysis has drawn substantially upon
sophisticated techniques and results in abstract set theory, showing that set theory
has a role in analysis which reaches far beyond the foundational role that we are
focusing upon here.

In addition to the ZF Axioms, it is essential in functional analysis to use one
additional axiom: the Axiom of Choice. In informal language, the Axiom of Choice
asserts that if X is a set of pairwise disjoint nonempty sets, then there exists a set C
that contains exactly one element from each set in X. (Note, here, that X is a set of
sets.) Conceptually, C is constructed by “choosing” one element from each set in X.
The Zermelo-Fraenkel Axioms together with the Axiom of Choice are referred to
as the ZFC Axioms.

The existence of the set N = {1,2,3,...} of natural numbers results from an
axiomatic system developed by G. Peano. The “...” in {1,2,3,...} is not, of course,
rigorously defined; making formal sense of this unspecified portion of N is exactly
what the Peano axioms were created to do. Without pursuing these axioms in more
detail, let us accept as given that the Peano axioms establish N as a set in accordance
with the ZF axioms. (See, for example, [21, Chapter 1] for a detailed treatment of
these facts.)

In contrast to the subtle nature of the axioms that define a set, the definitions
of relations and functions are simple. A relation R from a set X to a set ¥ is a
subset of X x Y, whereas a function is a relation F' from X to Y such that, for any
x e X, if y;,y, € Y satisfy (x,y;) € F and (x,y,) € F, then necessarily y; = y,. Itis
cumbersome to express functions as subsets of Cartesian products, and we normally
write y = f(x) if (x,y) € F (and so the symbol f depends on the set F).

Recall that if X and Y are sets, then a function f : X — Y is injective if
f(x1) =f(x2) holds only for x; = x,, and is surjective if for every y € Y there is
at least one x € X such that y = f(x). A function that is both injective and surjective
is said to be bijective.

Definition 1.2. Two sets, X and Y, are in bijective correspondence if there exists a
bijectionf : X — Y.

The following theorem is a useful criterion for bijective correspondence.

Theorem 1.3 (Schroeder-Bernstein). [f, for sets X and Y, there exist injective
functions g: X — Y and h:Y — X, then X and Y are in bijective correspondence.

In comparing sets X to the set N of natural numbers, the Schroeder-Bernstein
Theorem has the following simpler form.
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Theorem 1.4. The following conditions are equivalent for an infinite set X:

1. there exists an injection g : X — N;
2. there exists a surjection h: N — X;
3. there exists a bijectionf : X — N.

Recall the concept of countability, which is an essential idea in topology and
analysis.

Definition 1.5. A set X is countable if X is in bijective correspondence with some
subset of N.

Theorem 1.4 allows one to deduce, for example, that subsets of countable sets
are countable and that the union of a countable collection of countable sets is a
countable set.

The formal notion of partial order allows for a qualitative comparison of certain
elements in a set, and it also leads to the important concept of a maximal element.

Definition 1.6. A partial order on a set G is a relation denoted by < that has the
following properties:

1. (reflexivity) foralla € G, @ <X «;
2. (antisymmetry) for all o, 8 € &, ¢ < B and B < « implies that § = «;
3. (transitivity) for all o, 8,y € 6, @ < b and B <y implies that o < y.

If, in addition, a partial order < satisfies property (iv) below, then < is called a linear
order.

(iv) (comparability) for all a, 8 € G, either ¢ < B or § < «.

A partial order < on a set G can be used to assert that 8 is in some sense larger
than «, if it happens to be true that « < . This manner of thinking leads to a natural
notion of largest element.

Definition 1.7. In a partially ordered set G, an element o € G is said to be a
maximal element if for y € G the relation o < y implies that y = . If € C G,
then an element o € & is an upper bound for € if B < « for every f € €.

Because a partially ordered set need not be linearly ordered, if a partially ordered
set G has a maximal element, then this maximal element may or may not be unique.
The existence of a maximal element is established by Zorn’s Lemma.

Theorem 1.8 (Zorn’s Lemma). If S is a nonempty partially ordered set such that
every linearly ordered subset € C & (where the linear order on € is inherited from
the partial order on G) has an upper bound in G, then & has a maximal element.

A detailed discussion of the facts reviewed above can be found in [21, 41, 49].
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1.2 Completeness of the Real Number System

In the foundations of arithmetic, one begins with the Peano axioms that define the
set N of natural numbers and then proceeds to construct the set of Z of integers
by considering formal differences n — m of natural numbers n,m € N. The set Z of
integers is more than just a set—it is an arithmetic system as well. Specifically, in the
language of modern algebra, Z is a commutative unital ring and, therefore, it has a
field of fractions, which is the countable set QQ of rational numbers. Constructing the
real numbers system R from the rational field Q is a fairly elaborate process due to
R. Dedekind; see [49] for the details of the construction. The end result, namely the
uncountable set R of real numbers, is once again a field, but it is no ordinary field, as
R is distinguished by its completeness as both a metric space and an ordered space.

By “metric” is meant the usual distance between real numbers; that is, if x,y € R,
then the distance between x and y is the absolute value |x —y| of x—y. By “order” is
meant the usual order on the real numbers whereby, if x,y € R, then exactly one of
the following three statements holds true: (i) x <y, (ii) y < x, or (iii) y = x.

Definition 1.9. If S is a nonempty set of real numbers, then

1. Sis bounded above if there exists a real number z such that s < z for every s € S,
and
2. Sis bounded below if there exists a real number y such that y < s for every s € S.

A real number z that satisfies condition (1) in Definition 1.9 is called an upper
bound for S, while the real number y that satisfies condition (2) is called a lower
bound for §.

Definition 1.10. A real number z is the supremum (or least upper bound) of a
nonempty set S of real numbers if

1. zis an upper bound for S, and
2. z < g for every upper bound g of S.

The definition of infimum (or greatest lower bound) of S is similarly defined.
The completeness of R as an ordered space (which is to say that suprema exist)
is one of the most important and extraordinary features of the real number system.

Theorem 1.11 (Least Upper Bound Principle). If S C R is a nonempty subset
that is bounded above, then S has a supremum in R.

To discuss the completeness of R as a metric space, recall the formal definition
of sequence.

Definition 1.12. An infinite sequence in a set X is a function f : N — X.

Definition 1.12 makes no claims about whether the function f : N — X is injective
or surjective, as neither need hold. It is typical to denote the element f(n) € X by x,,
for each n € N, and to write the infinite sequence f as {x, },en-
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Throughout this book, we shall drop the adjective “infinite” and refer to infinite
sequences as sequences.

Definition 1.13. A sequence {x,},en is:

. bounded above if there is a real number z such that x,, < z for every n € N;

. bounded below if there is a real number y such that y < x, for every n € N;

. bounded if it is bounded above and below;

. convergent if there is a real number x with the property that for each ¢ > 0 there
exists N € N such that |x —x,| < ¢ for all n > N; and

5. a Cauchy sequence for each ¢ > 0 there exists N € N such that |x,, —x,| < & for

all m,n > N.

AW N =

The following theorem establishes the completeness of R as a metric space.
Theorem 1.14. Every Cauchy sequence of real numbers is convergent.

Theorems 1.11 and 1.14, the proofs of which can be found in [49], underly all of
real and functional analysis.

Definition 1.15. A set X has the cardinality of the continuum if X is in bijective
correspondence with R.

The cardinal number ¢ shall henceforth denote the cardinality of the continuum.

1.3 Topological Spaces

Although the notion of a “topology” is abstract, the definition itself is motivated by
our experience with the real numbers system. For example, an intersection of a finite
number of open intervals results in the empty set or another open interval; and while
the union of a family of open intervals need not be an open interval, it is clear that
such a set retains features exhibited by open intervals. Such basic observations lead
to the following definition.

Definition 1.16. A topology on aset X is a collection .7 of subsets of X such that:

1. 7 contains both the empty set @ and the set X itself;
2. 7 is closed under arbitrary unions:

UUaeﬁ,

a€A

for every family {U, },ea of sets U, € 7
3. 7 is closed under finite intersections:

ﬁUkeﬂ,
k=1
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for every finite collections {Uy};_, of sets Uy € .

The pair (X,.7), but more often just X itself, is called a topological space.
Elements U € .7 are called open sets.

Example 1.17 (Examples of Topologies). The following collections of sets form a
topology on a nonempty set X:

1. the indiscrete topology Tingiser = {90, X},

2. the discrete topology Jgiser = {U | U C X}, which is the power set 2 (X) of X;

3. the co-finite topology Teo—fin = {0} U{F°|F C X, F is finite}, which consists of
the empty set and the complements of all finite subsets of X; and

4. the co-countable topology Jeo—cnwl = {0} U{F°|F C X, F is countable}, consist-
ing of the empty set and the complements of all countable subsets of X.

Proof. The indiscrete and discrete topologies trivially satisfy the axioms for a
topology on X.

To verify that Jeo—cnw is indeed a topology on X, note that @ € To—cam1 bY
construction and that X = @ € J,o—cnm1 because the empty set Joo—cnepl i countable.
If we now suppose that {U, }, is a family of sets Uy € T¢o—cnw1> then for each o there
is a countable subset F, € X such that U, = F;,. Therefore,

UUO‘ = UF; = (ﬂFa) € <gco—cntblv
o o o

because ﬂFa is a subset of each of the sets F, and is, therefore, countable.

o
This shows that Zo—cnp1 is closed under arbitrary unions. Finally, if Uy,...,U, €
Feo—entols and if Fy, ..., F, C X are countable subsets for which each U; = FJ‘ , then

c

n n n
m Uj = ﬂF; = UF] € L%O—cntbl
j=1 j=1 J=1

because a finite union of countable sets is countable. Hence, Z.o—_cnwi 1s closed under
finite unions.
The proof that F,—gy is a topology on X is similar and simpler. O

Definition 1.18. If a set X is endowed with two topologies, say 7 and .7, and if
T C 7', then we say that . is coarser than 7', and that .F' is finer than 7 .

Using the terminology above, the indiscrete topology is the coarsest topology
that a set X admits, whereas the discrete topology is the finest topology on X.

To arrive at further examples of topological spaces, it is useful to have tools that
offer simple ways to prescribe what is meant by an open set. Two such tools are to
be found in the notions of basis and subbasis for a topology.
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Definition 1.19. A collection £ of subsets of a set X is called a basis of subsets of
X if:

1. for every x € X, there is a B € & with x € B; and
2. for all By,B,; € %, and every x € B; N B,, there is a B3 € % such that x € B3 C
BiNB,.

The relevance of the definition of basis is revealed by the following proposition.

Proposition 1.20. If 2 is a basis of subsets of X and if T is the collection of all
subsets U C X with the property that for each x € U there isa B € 8 withx€ BC U,
then 7 is a topology on X.

Proof. 1t is clear that both the empty set ¥ and X satisfy the requirements for
membership in 7.

Suppose that {Uy}yea is a family of sets U, € 7 and let U = U U,. Choose

o
any x € U; thus, x € U,, for some o € A. Because U, € .7, there is a B € 4 such that
x€BC U,. As U, C U, we conclude that U € .7 and, therefore, that .7 is closed
under arbitrary unions.

To show that .7 is closed under finite intersections, it is enough to show, for
all Uy,U, € 7, that Uy N U, € 7, and to then proceed inductively. If Uy, U, €
satisfy Uy N U, = @, then U; N U, € .7 trivially. Therefore, suppose that there exists
an x € U; N U,. Because 4 is a basis, there are By, B, € 4 such that x € B, C Uy,
for k = 1,2, and there is a B3 € % such that x € B; C B; N B,. Hence, x € B3 C
B N B, C Uy N U,, which proves that U; N U, € 7. Proceeding by induction, we
conclude that .7 is closed under finite intersections. O

Proposition 1.20 illustrates that to specify a topology on a set X, it is sufficient to
specify a basis £ of subsets of X for the topology.

Definition 1.21. If £ is a basis of subsets of X, and if .7 is the collection of all
subsets U C X for which each x € U is contained in at least one B € % satisfying
B C U, then  is called the topology generated by A.

To this point we have demonstrated that a basis of subsets determine a topology.
Conversely, every topology .7 on X admits a basis % of subsets of X such that .7
is the topology generated by %.

Proposition 1.22. If 7 is a topology on X, and if B is the collection of subsets with
the property that, for every U € & and each x € U, there is a B € # withx € BC U,
then A is a basis of subsets and .7 is the topology generated by 2.

Proof. Exercise 1.103. O
In light of Propositions 1.20 and 1.22, the following definition is made.

Definition 1.23. If .7 is a topology on X, then a basis for the topology 7 is a
collection % of subsets of X such that (i) 4 is a basis of subsets of X (in the sense
of Definition 1.19) and (ii) 7 is the topology generated by A (in the sense of
Definition 1.22). The elements of a basis % for a topology .7 on X are called basic
open sets.
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Proposition 1.24. If .7 is a topology on X, and if A is a basis for the topology 7,
then the following statements are equivalent for a subset U C X:

1. UeZJ;
2. there is a family {By}q of subsets B, € 9 such that U = UB“'

o

Proof. Exercise 1.104. O

Proposition 1.20 and our knowledge of the real number system lead us to endow
the set R of real numbers with a topology.

Definition 1.25. Assume that a,b € R witha < b.

1. The subset of R denoted by (a,b), and defined by (a,b) = {x € R|a < x < b}, is
called an open interval.

2. The subset of R denoted by [a, b], and defined by [a,b] = {x e R|a < x < b}, is
called a closed interval.

3. The subsets of R denoted by [a, ) and (a, b], and defined by [a,b) = {x e R|a <
x < b} and (a,b] = {x € R|a < x < b}, are called half-open intervals.

The term “open” in the definition above is the traditional terminology of calculus
and real analysis and does not, a priori, refer to an open set in the sense of topology.
However, in an appropriate topology on R, these open intervals will in fact be open
sets.

Proposition 1.26. Let % be the set of all finite open intervals with rational end

points. That is, assume that

#=1{p.9 CR|p,qeQ, p<gq}.

Then A is a basis of subsets of R.
Proof. Exercise 1.105. O

Definition 1.27. The topology on the real number system R generated by the basis

Z={p.9|p.qeQ, p<gq}

of subsets of R is called the standard topology of R.

In elementary real analysis, open sets in R are defined in a different fashion. The
next proposition reconciles these two definitions, showing that the standard topology
on R yields open sets that are familiar from calculus and real analysis.

Proposition 1.28. If R is endowed with the standard topology, then the following
statements are equivalent for a subset U C R:

1. U is a open set;
2. for every x € U there is a € > 0 such that
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(x—e,x+e)CU.

Proof. Suppose that assertion (1) holds. Suppose that U C R is an open set, and let
2 denote by A the basis of Proposition 1.26 for the standard topology 7 on R.
Choose x € U. As & is a basis for .7, there exists B € & such that x € B C U.
By definition, there are p,q € Q such that B = (p,q). If ¢ = min{g —x, x—p}, then
(x—e,x+¢€) C (p,q). Hence,

(x—e.x+e)S(p.g) S U.

Conversely, suppose that statement (2) holds, and that U C R satisfies hypothesis
(2). Thus, if x € U, then there is a ¢ > 0 such that (x —¢&, x+ ¢) € U. Between any
two real numbers there is a rational number, and so let p,, g, € Q be such that x—¢ <
px <xand x < g, <x+e¢. Then (py,qy) € B and x € (py,q,) C (x—e,x+¢) C U.
Continuing this procedure for each x € U leads to:

UvclJpwg) < U.

xeU

The inclusions above show that U is a union of the family {(p,,q.)}.cv of basic
open sets; hence, U is an open set in the standard topology of R. a

Corollary 1.29. Open intervals are open sets in the standard topology of R.

The order completeness of the real number system allows for a description of
open sets in R in terms of pairwise disjoint open intervals.

Proposition 1.30 (Cantor’s Lemma). If U C R is open in the standard topology
of R, then there is a countable family {J, },en such that:

1. J, is an open interval, for all n;
2. J,(\In =19, ifm #n; and

3. UJ,, =U.

Proof. For each x € U there exists ¢ > 0 such that (x—¢&, x+ &) C U, by Proposi-
tion 1.28. Therefore, if x € U, then

a, = inf{u € R|(u,x) C U} and b, = sup{z € R|(x,z) C U}
are well defined. It may be that a, = —oo or b, = +00, or both. If b, is finite, then

by & U, likewise, if a, is finite, then a, & U. Hence, each x € U determines an open
interval (ay, b,) € U, which shall be denoted by J(x). Observe that

U=|JJ)

x€U
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and that J(x) = J(y), for all y € J(x). Indeed, if x;,x; € U, then either J(x;) = J(x)
or J(x1) NJ(x) = @. Thus, U is the union of a family of pairwise disjoint open
intervals. In each open interval there is a rational number, and so each of these
intervals J(x) can be labeled by a rational number. Because there are countably many
rational numbers, there are also countably many distinct intervals of the type J(x).
O

While the use of a basis to specify a topology on X is convenient, it is often even
more convenient to define a topology by way of a much smaller collection of sets.

Definition 1.31. A collection . of subsets of X is a subbasis of subsets of X if

Us=x

Ses

The concept of subbasis is important in topology because of the next result.

Proposition 1.32. [f.¥ is a subbasis of subsets of X, then

#B=1{(\SIneN.5.....S, €7

J=1

is a basis of subsets of X.

Proof. Exercise 1.108. O

1.4 Maetric Topologies

Metrics provide a measure of the distance between any two points in a set; as a
consequence, metrics can be used to specify a topology on the set.

Definition 1.33. A metric on a set X is a function d : X x X — [0, o0) such that, for
all x,y,z € X,

1. d(x,x) =0,

2. d(x,y) =0onlyify=ux,
3. d(x,y) = d(y,x), and

4. d(x,z) <d(x,y)+d(y,z) .

The pair (X,d) is called a metric space.

The inequality d(x,z) < d(x,y) + d(y,z) in Definition 1.33 is called the triangle
inequality.

Less formally, one can refer to X itself as a metric space, rather than the pair
(X,d), if it is understood that d is the underlying metric on X.
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The Euclidean metric on R? is derived from the Pythagorean theorem, and it
admits a formulation in higher dimensions as well.

Definition 1.34. The Euclidean metric on R" is the function d; : R” x R" — [0, c0)
defined by

dxy)= | Y (5—y)?> VxyeR" (1.1)
j=1

Proposition 1.35. The Euclidean metric on R" is a metric in the sense of Defini-
tion 1.33.

Proof. The function d, in (1.1) plainly satisfies the first three conditions of
Definition 1.33. All that remains is to prove the triangle inequality. To this end,
an intermediate inequality is required.

Suppose that u,v € R" and u # 0. Let f,,, denote the quadratic polynomial

n n n 2
Fur @ =Y (g +w)? =2y 1 +2y wwi+ Y wh.
j=1 j=1 Jj=1 Jj=1

Thus, f,,(t) > 0 for all + € R and f, ,(f) = O if and only if #,u; = —w; for every
j = 1,...,n. Therefore, because u # 0, there is at most one #), € R that satisfies
Juv(to) = 0. On the other hand, the quadratic formula yields

23wyt QY ) = () (X))
fo= 2Zu2 ,

and so the discriminant (2 ; uw)* =43 i ujz) (2 wf) is a nonpositive real number.
Hence,

O uw)* = Q_u)(O_wh.
j=1 j=1 j=1

implying that
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If x,y,z € R", then

d(x,2? =Y (i—2)" ) (bi—y]+Di—z])’

i=1 i=1

=) =y +2) =y i—z) + Y i—z)
i=1

i=1 i=1

IA

D=y +2 | D =y Y i—w) + ) (i—z)
i=1 i=1 i=1 i=1

2
= Z(Xi—)’i)z + Z(yi_zi)z
i=1 i=1
= (da(x,y) + 2 (7.2))>.
Hence, the d, is indeed a metric in the sense of Definition 1.33. ad

Corollary 1.36. The formula d(x,y) = |x—y|, for x,y € R, defines a metric on R.

Proof. The function d is simply the Euclidean metric d, on R” in the case where
n=1. O

Definition 1.37. The inequality

n n n
E Vs 2 2

uvj| < E u; E v ] (1.2)
j=1 j=1 j=1

for real numbers u,...,u,,vy,...,v, is called the Cauchy-Schwarz inequality.
The Euclidean metric is not the only metric of interest.

Proposition 1.38. The following functions d, and doo are metrics on R":

d(x,y) =Y 5=yl (1.3)
j=1
doo (x,Y) = max |xj = |- (1.4)
Proof. Exercise 1.111. O

The reason for labelling these metrics as d;, d», and ds, will be apparent in
subsequent chapters, particularly in connection with Banach space theory.
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Proposition 1.39. Ifd is a metric on a set X and if
By ={B,(x)|xeX,reR,r>0}, (1.5)

where B,(x) = {y € X|d(x,y) < r}, then A is a basis.
Proof. We are to verify that %, has the following properties:

1. for each x € X there is a B € %, such that x € B;
2. for every By,B, € %, and each x € B; N By, there is a set B; € %, such that
X € B3 C By NB;.

The first item is obvious, as x € B,(x) for every x € X and every r > 0. Assume now
that By, B, € %, and x € B N B,. There are x; € X and r; € R such that B; = B, (x;).
Thus, d(x,x;) < r; for each j, and so 0 < s; = r; —d(x,x;). Let r = min{s;, s»}. Then
X € B.(x) € By, (x1) N By, (x2). O

Definition 1.40. The topology .7, on X induced by the basis %, of Proposition 1.39
is called a metric topology.

Thus, a metric space (X,d) is a topological space (X, 7).
The proof of Proposition 1.28 is easily adapted to the case of metric spaces to
yield that following characterisation of open sets.

Proposition 1.41. In a metric space (X,d), a subset U C X is an open set if and
only if for each x € U there is an &€ > 0 such that B,(x) C U.

Corollary 1.42. The metric topology on R induced by the metric d(x,y) = |[x—y)|,
for x,y € R, coincides with the standard topology on R.

Proof. Propositions 1.28 and 1.41 indicate that the metric topology and the standard
topology have exactly the same open sets. O

It is important to note that different metrics on a set X can induce the same
topology.

Example 1.43. The metrics di and d, on R" induce the same topology; that is,
Tay = Ty-

Proof. First notice that if «y,...,«®, € R are nonnegative, then by a binomial
expansion we see that

(@1 +-+a,)? > af+...al

Taking square roots yields

1/2
n n
2
DITES DI I
Jj=1 Jj=1

which implies that d»(x,y) < d;(x,y) for all x,y € R".
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On the other hand, the Cauchy-Schwarz inequality (1.2) yields

1/ 1/2 1/2

2
2= e = || | =) e
j=1 j=1 j=1 j=1 j=1

Hence, d| (x,y) < /nd>(x,y), for all x,y € R".

Let B‘f’ () denote a basic open set in fdj. To show that .7, = 7, itis enough, by
Proposition 1.24, to show that BY (x) € 7, and B%(x) € 7, forallx € X and r > 0.
To this end, if y € B* (x), then d>(x,y) < d;(x,y) < r implies that y € B (x); thus,
B% (x) € B%(x) € J,. Similarly, if y € B%(x), then d,(x,y) < /nda(x,y) < /nr
implies that y € Bil/ﬁr (x); that is, B (x) C B‘f}ﬁr(x) € Ty. O

One can also alter a given metric d on a space X, without changing the topology,
in such a way that the distances between points measured by the new metric are no
greater than 1.

Proposition 1.44. If (X,d) is a metric space, then the function dj, : X x X — R,
defined by
dp(x,y) = min{d(x,y), 1}, (1.6)

is a metric X. Furthermore, the metric topologies Iy and T on X coincide.
Proof. Exercise 1.113. O

The standard topology on R was first introduced here by specifying a certain
basis for the topology, and it was noted subsequently that the topology is actually
induced by a metric on R. This represents one example of a metrisable space.

Definition 1.45. A topological space (X,.7) is metrisable if there exists a metric d
on X such that .7 = .7, where .7 is the metric topology induced by the metric d.

There are several instances throughout this book where we will need to determine
whether a certain topological space is a metrisable space.

1.5 Subspaces and Product Spaces

Definition 1.46. The subspace topology Jy on a subset Y C X in a topological
space (X, .7) is the collection

Ty ={UNY|Ue T}

of subsets of Y.
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It is straightforward to verify that 7y satisfies the axioms for a topology. Hence,
(Y, %) is indeed a topological space. A subset W C Y is said to be open in Y if
W € Jy. It need not be true that an open set of Y is an open set of X. For example,
with respect to the standard topology of R, the set W = {x e R|0 <x < 1/2} is open
inY ={xeR|0<x< 1}, butnotin R.

Proposition 1.47. IfY is an open set in a topological space (X, ), then W C Y is
open in Y if and only if W is open in X.

Proof. If W € Jy, thenthereisa U € . suchthat W=YNU. AsY €  also and
7 is closed under the intersection of two of its elements, W € .7. Conversely, if
W e 7, then W = WNY implies that W € 9. |

Proposition 1.48. If & is a basis for a topology 7 on X and if Y C X, then the
collection By defined by By = {Y N B|B € B} is a basis for the subspace topology
FyonY.

Proof. Exercise 1.115. O

The space R” is a metric space via the Euclidean metric. However, R” is also the
Cartesian product of n copies of R. Given that R itself is a topological space, one
expects that there is a way in which these identical copies of R induce a topology
on R”". This is indeed the case, and the resulting topology is called the product
topology. Throughout this book we will make use of Cartesian products of both
finite and infinite numbers of spaces, and so we consider the most general case here.

Let A be a set, and suppose that, for each o € A, (X,, 7,) is a topological space.
The Cartesian product of the family {X, }4e 4 is defined by

l_[Xot = {(xa)otEA |xa eXa},

€A

where (xy)qea denotes the function A — UX“’ whose value at o is x,. More

a€A
informally, we consider (x,)yea to be a tuple of elements, one from each X,. If

Y, C X, for every a € A, then [], Y, is considered as a subset of [[, X, in the
natural way.

Proposition 1.49. Assume that {(Xy, Z4)}aca is a family of topological spaces and
define the following subcollections of subsets of | |, Xq:

B = {[1,Us|Uy € Ty, YV € A}
B> ={[1,Uua|lUs € Ty, Vo€ A, and
U, = X, for all but at most a finite number of o}.

Then A5 and 9 are bases of subsets of [, Xe-
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The proof of Proposition 1.49 is a direct application of the definition. If A is a
finite set, then B = 2 however, this is no longer the case when A is an infinite
set.

Definition 1.50. If {(Xy, 7,)}aex is a family of topological spaces, then

1. the box topology on [ ], X, is the topology 7 U induced by the basis %", and
2. the product topology on [ [, X, is the topology .7 induced by the basis %>

Because 2% C ", the box topology is finer than the product topology; but if
A is a finite set, then these two topologies coincide.
The following technical result is another consequence of the definitions.

Proposition 1.51. Suppose that {(Xy, T3)}aca is a family of topological spaces,
and, for each o € A, that B, is a basis for Ty, Yy is a subspace of Xy, and Ty o is
the subspace topology of Y.

1. If B° = {I1,Ba|Ba € PBe}, then A9 is a basis for the box topology of [1,Xo
Moreover, the box topology of the product space ||, Yy coincides with the
subspace topology of [ |, Yo inherited from the box topology of | [, Xa-

2. f B* ={[],B«|Ba € By and By = X, for all but finitely many o}, then B> is
a basis for the product topology of | |, X« Moreover, the product topology of the
product space ||, Yy coincides with the subspace topology of [, Y« inherited
from the product topology of [, Xa-

Another way to induce a topology on a Cartesian product of topological spaces
is to take advantage of special features that the family might have, as in the case of
products of metric spaces.

Proposition 1.52. If {(X.dy)}aca is a family of metric spaces, and if d, , denotes
the metric on X, as given by equation (1.6) of Proposition 1.44, then the formula

d((xot)ou (,Va)ot) = sup (da,b(xotvya)) (1.7)

defines a metric on [ ], X,.
Proof. Exercise 1.114. O

Definition 1.53. The metric d of Proposition 1.52 is called the uniform metric on
[ 1, X. and the resulting topology 7, is called the uniform metric topology.

Proposition 1.54. If {(X,dy)}uca is a family of metric spaces, then the uniform
metric topology on [, X is finer than the product topology on [ [, X,.

Proof. Let U =[], Uy, C ], X« be a basic open set in the product topology. Thus,
there is a finite set F = {«,...,a,} C A such that U, = X, for all @ € F. Choose
X = (x4)q € U. Foreach j = 1,...,n there is a & > 0 such that B, (xy;) € Uy,. Let
&, be the minimum of these ¢; and consider the basic open set B, (x) in the uniform
metric topology of [ [, X. If y € B, (x), then y, € X, = U, for o ¢ F; and, for each
j=1,...,n, daj,b(xa,.,y%.) < & < g, which implies that y,; € U,,. Hence, B, x)cU.



20 1 Topological Spaces

That is,

U=|JB,(x)e T

x€U

Hence, the uniform metric topology 7} is finer than the product topology *. O

Definition 1.55. If {(X,, Z,)}«ea is a family of topological spaces such that each
X, =X and 9, = 7 for some topological space (X, .7), then the Cartesian product
of the family {(X,, 7 )}ac is denoted by X4 and the .75 and .7 denote the box
and product topologies on X, respectively. For A = {1,...,n} C N, the notation X"
is used for X4.

Of special interest are the product spaces R” and RY.

Proposition 1.56. The metric topology on R" induced by the Euclidean metric
coincides with the product topology of R".

Proof. Let 7, and 7 denote the metric and product topologies on R”, and let
basic open sets of .7, be denoted by B, (x).

Suppose that U € R” is an open set in the product topology of R”, and let x =
(x1,...,x,) € U. Thus, there is a basic open set B, € .7 * such that x € B, C R". Such

a basic open set B, has the form B, = n(p)?,q]’f) for some p7,q; € Q,j=1.....n.

j=1
Now if o = min {|x; — p;|, |x; — ¢;|}, then for every y = (y1,...,y1) € B, (x) we
I<j<n :
have that
1/2
n
2 = mi Y s —
bi=vil = ( 2obs=wil | <= min{hy—pil by =g}
j=1 -

foreachi=1,...,n. Hence, y; € (p},q}) for every i, implying that y € B. Thus,

U=|JB.(x) e T,

x€U

Conversely, if U is an open set in the metric topology of R” and if x =
(x1,...,x,) € U, then there exists &, > 0 such that B, (x) € U (Proposition 1.41). For
eachj=1,...,n, choose pj,q; € Q such that p; € (x;— % x;) and g7 € (x;,x;+ f/_XZ)

Thus, if y = (y1,...,y) € ]_[j(p;‘,qj), then

1/2 1/2

n n 2
&x
wen = (Tm-vP) < |2(%) ] ==
Jj=1 =
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Hence,
v=Jl[lw )| =B e T
x€U Jj x€U
Thus, the product topology and metric topology of R” coincide. O

Proposition 1.56 asserts that the product topology on R” is metrisable. Because
different metrics on a given space can yield the same topologies, it can be difficult to
tell from topological properties alone whether the topology on a given topological
space (X,.7) is induced by some metric. Nevertheless, we have the following
information about RY in its product topology.

Proposition 1.57. The topological space (RN, 7>) is metrisable.

Proof. By Propositions 1.28 and 1.44, the standard topology on R is induced by
the metric d(x,y) = min(|x—y|, 1). Basic open sets in this metric topology will be
denoted by BY(x).

Define p : RN x RN — R by

n— JVn 1 1
P ((X)ns Vn)n) = sup (min (|xn—y|’ Z)) = sup (;d(xm)’n)) )

n

and note that p is a metric on R, Basic open sets in this metric topology will be
denoted by BY (x).

Let U =[], U, be an open set in the product topology of RN, Thus, there is a
finite subset F = {ny,...,m} C Nsuch thatn; <--- <ngand U, =R foralln &F.
Select x = (x,), € U and let &; > 0 be such that B’;(xnj) C Uy, forj=1,...,k. Now
let &, be the minimum of %, where j = 1,...,k, and note that if y € BQX (x), then
y € U. Hence, U is a union of sets of the form BfX (x), for x € U, which implies that
U is open in the metric topology .7, of RY.

Conversely, suppose that B (x), where x = (x,),, is a basic open set in the metric
topology ﬂp of RY. Choose k € N such that % < é, and foreachn = 1, ...,k define
U, = B‘f/z(xn), which is an open set in the standard topology of R. Let U, = R for
every n > k. Consider U, = [ [, U,, which is a basic open set in the product topology
of RN and which contains x. If y = (y,), € Uy, then d(x,,, ) < 5 if 1 <n <k, and
d(x,,y,) <1 for all n > k. Thus, p(x,y) = sup, %d(xn,yn) < 5, which implies that
U, C Bf(x). Hence,

Bi(x) = J Us

x€U

implies that B/ (x) is open in the product topology .7 of RY. |
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1.6 Closures, Interiors, and Limit Points

Definition 1.58. A subset F C X in a topological space (X,.7) is a closed set if
there is an open set U € .7 such that F = U°.

Because the complements of closed sets are open sets, ¥ and X are both open
and closed. Furthermore, arbitrary intersections of closed sets are closed, and finite
unions of closed sets are closed.

Example 1.59. In the standard topology of R, closed intervals are closed sets.

Proof. If a,b € R, with a < b, then [a, b] is the complement of the union of the open
sets U(x, a) and U(b,y), proving that [a, b] is a closed set. O

x<a b<y

The next class of closed sets is used extensively in the study of topological
spaces.

Example 1.60. [n the Euclidean metric space (R"'H ,dy), where n > 1, the n-sphere
$'={xeR"™M |dy(x.0) =1} = {xe R ¥ =1
j=1

is closed.

Proof. The set

U=B;(0)U U By (x,0)—1(x)
x€RM L dy (x,0)>1

is open in R"*!, and $" is its complement. O

Proposition 1.61. IfY is a subspace of a topological space X, then F C Y is closed
in Y if and only if there is a closed set C C X in X such that F =Y N C.

Proof. If FCYisclosedin Y, then F°NY isopenin Y, and thus F°'NY = YN U for
some open set U in X. Let C = U¢, which is closed in X, and note that F =Y N C.
Conversely, if there is a closed set C C X in X such that F = YN C, then U = C¢
isopenin X,and so YNU isopenin Y. Thus, FFNY =YN(YNU) = YNU, which
is open in Y; hence, F is closed in Y. O

Definition 1.62. Assume that Y C X is a subset of a topological space X.
1. The closure of Y is the subset Y of X defined by

Y= N C.

covy and c is closed
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2. The interior of Y is the subset intY of X defined by

inty = U U.

vcy and U is open

3. If Y = X, then Y is said to be dense in X.
The closure operation has the following properties.

Proposition 1.63 (Closures of Unions and Intersections). Assume that Y and Z
are subsets of X, and that {Yy}gen is a collection of subsets of X. The following
statements hold:

3. U?‘)‘ C U «, and equality need not be attained;

o

4. m ﬂl_/ and equality need not be attained;
o

5. 1f Y CZ then Z\Y C Z\ Y, and equality need not be attained.

Proof. For (1), the definition of closure yields A C A for every subset A of X. Thus,
YCZCZ implies that Z is a closed set containing Y. Hence, YCZ, by definition.
To prove (2), note that Y UZ C Y UZ, which is closed. Hence, YUZ C Y UZ,
by definition of closure. Conversely, ¥ € (Y U Z) implies, by (1), that YCYUZ
Likewise, ZC YUZ,andso YUZ C YUZ.
The proofs of the remaining assertions are left to the reader (Exercise 1.116). 0O

If one has a nested inclusion Z C Y C X, then it is possible to consider the closure
of Z relative to the topology of X or to the subspace topology of Y. The following
proposition indicates the relationship between these closures.

Proposition 1.64. Assume that Z C Y C X, and denote the closure in Y of a subset
A C Y by A” and the closure in X of a subset B C X by BX. Then Z¥ =Y N ZX.

Proof. By Proposition 1.61, ¥ NZ¥ is closed in Y; as this set also contains Z, it must
contain the closure Z¥ of Z in Y. Furthermore, Z* has the form ¥ N C, for some
closed set C in X, again by Proposition 1.61. Therefore, ZX C C, as C is closed in X
and contains Z. Thus, YNZX C YN C = ZY and, hence, Z¥ = Y N ZX. |

The main proposition relating closures and interiors is as follows.
Proposition 1.65. IfY C X is a subset of a topological space X, then

1. Y =int (Y°) and
2. (intY) = Y-

Proof. Exercise 1.117. O

To obtain a clearer understanding of what is added to a set ¥ when passing from
Y to its closure Y, the notion of (topological) limit point is introduced.
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Definition 1.66. A neighbourhood of a point x in a topological space X is an open
subset U of X such that U contains x.

Proposition 1.67. The following statements are equivalent for a subset Y of a
topological space X:

l. xeY;
2. UNY # @ for every neighbourhood U of x.

Proof. Assume that x € Y, and that U is a neighbourhood of x. If it were true that
UNY = @, then U would be a subset of Y and, thus, would be contained in the
interior of Y¢. However, int(Y¢) = Y (Proposition 1.65); therefore, x € U C Y,
which is in contradiction to x € Y.

Conversely, assume that x € X, and that U N'Y # @ for every neighbourhood U of
x. Also assume, contrary to what we aim to prove, that x ¢ Y. Thus, x € Y =int( Y©),
which implies that int(Y°) is a neighbourhood of x. Therefore, by hypothesis,
int(Y°) N'Y # @. This is, however, a contradiction of the fact that int(Y*)NY C
Y¢NY = @. Hence, it must be that x € Y. a

The passage from Y to Y is a matter of adding the limit points of .

Definition 1.68. An element x € X is a limit point of a subset Y C X if, for every
neighbourhood U of x, there is an element y € ¥ such that y € U and y # x. The set
of limit points of Y is denoted by L(Y).

Proposition 1.69. Y = Y UL(Y).

Proof. If x € L(Y), then UNY # @ for every neighbourhood U of x. Thus, L(Y) C Y,
and therefore YUL(Y) C Y.

Conversely, suppose that x € Y and x ¢ Y. By virtue of x € Y, UNY # @ for
every neighbourhood U of x. Because x ¢ Y, for each neighbourhood U there must
be some y € Y with y € U. Hence, y € L(Y), which proves that Y C Y U L(Y). O

The topological boundary is another important closed set associated with an
arbitrary set.

Definition 1.70. The boundary of a subset Y C X in a topological space X is the set
dY defined by

Y=Y N Y".

Proposition 1.71. IfY C X, then:

1. Y =Y \intY;

2. Y=intYUdy;

3. intYy =Y\aY;

4. Y is closed if and only if 0Y C Y; and
5. Yisopenifand onlyif YNJY = @.

Proof. Exercise 1.123. O
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1.7 Continuous Functions

The interesting functions between topological spaces are the continuous ones. (We
shall use the terms “function” and “map” interchangeably.) To define what is meant
by a continuous function, we first recall some notation.

If X and Y are sets, if U € X and V C Y are subsets, and if f : X — Y is a function,
then f(U) and f~'(V) denote the subsets of ¥ and X, respectively, defined by

fWU) =) |xe U}
V) = fxeX|f e V3.

Observe that f (f~'(V)) € Vand U C ! (f(V)).

Definition 1.72. If X and Y are topological spaces, then a function f : X — Y is
continuous if f~' (V) is an open set in X for every open subset V of Y.

The definition of continuity is global, but it is convenient to be able to discuss
continuity as a local property.

Definition 1.73. A function f : X — Y between topological spaces X and Y is
continuous at a point x € X if, for every neighbourhood V C Y of f(x), there is a
neighbourhood U C X of x such that f(U) C V.

Global continuity is the same as local continuity at each point of the space.

Proposition 1.74. The following statements are equivalent for a functionf : X —Y
between topological spaces X and Y :

1. f is continuous;
2. f is continuous at every point x € X.

Proof. Suppose that f is continuous, that x € X, and that V C Y is any neighbourhood
of f(x). The continuity of f implies that U = f~!(V’) is an open neighbourhood of x.
Further, f(U) = f (f~'(V)) € V, and so f is continuous at x.

Conversely, suppose that f is continuous at each x € X. Choose any open set
V C Y, and consider U = f~' (V). For each x € U, the set V is a neighbourhood
of x. Because f is continuous at each x, there is a neighbourhood U, of x such that
f(U,) C V. Thus, U, Cf (V) = U, and so

v=JclJu. cu.

xeU xeU

Hence, U is the union of a family of open sets and is, therefore, open. This proves
that f is a continuous function. O

In the context of metric spaces, the continuity of a function is given by the
following familiar criterion:
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Proposition 1.75. If X and Y are metric spaces, with metrics dx and dy, respec-
tively, then a function f : X — Y is continuous if and only if for each xy € X and for
every € > 0 there is a § > 0 such that

dy (f(x0),f(x)) < & forall x € X that satisfy dx(x,xp) < 6.

Proof. Exercise 1.125. O

For each fixed y € X in a metric space (X,d), one can ask whether the function
dy : X — R defined by d, (x) = d(x,y), for x € X, is continuous. In other words, is the
metric d continuous in each of its variables? This is indeed true, but a more general
result, Proposition 1.77 below, will be necessary for our study of operator theory.

Definition 1.76. If S is a nonempty subset of a metric space (X,d) and if x € X,
then the distance from x to S is the real number denoted by dist(x,S) and defined by

dist(x, $) = inf{d(x,s)| s € S}. (1.8)

Proposition 1.77. If S is a nonempty subset of a metric space (X,d), then the
function ds : X — R defined by ds(x) = dist(x, S) is continuous.

Proof. By definition, if x € X, then dist(x,S) < d(x,s) for every s € S. Thus, by the
triangle inequality, ds(x) < d(x,s) <d(x,y) +d(y,s) for all s € S and y € X. That is,
by varying s through S,

dist(r. 5) —d(x.y) < infd(y.S) = dist(y.5).
SE

Hence, ds(x) —ds(y) < d(x,y). By interchanging the roles of x and y we obtain
ds(y)—ds(x) <d(x,y), and so |ds(x) —ds(y)| < d(x,y) for all x,y € X. An application
of Proposition 1.75 now yields the continuity of ds. O

Another useful criterion for continuity is given by the following proposition,
which involves closed sets and closures of sets.

Proposition 1.78. The following statements are equivalent for a map f : X — Y of
topological spaces X and Y :

1 f lﬁ continuous,
2. f(A) Cf(A) for every subset A C X; and
3. f7Y(C) is closed in X for every closed set C in Y.

Proof. (1) = (2). Assume that f is continuous and that A € X. If x € A and if V is
a neighbourhood of f(x), then f~!(V) is a neighbourhood of x, and so ANf~(V)
is nonempty. Now, if z € ANf~!1(V), then f(z) € VNf(A), which is to say that the
neighbourhood V of f(x) has nonempty intersection with f(A). Hence, f(x) e f(A).

(2) = (3). Suppose that f(A) C f(A) for every subset A C X. Select a closed set
CCYandletA=f""(C). Thus, f(A) C C and, therefore, f(A)  C. By hypothesis,
f(A) Cf(A) and so f(A) € C. Hence, A C f~! (f(Z)) Cf71(C) = A C A implies that
A =A. Thatis, f~1(C) is closed.
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(3) = (1). If V C Y is open, then f~!(V¢) is closed, by hypothesis. Because
£V =fF1(V)°, we deduce that f~! (V) is open, and so f is continuous. O

Continuous maps possess the following basic properties, each of which is readily
verified.

Proposition 1.79. The following functions are continuous:

1. every constant map, which is to say that if X and Y are topological spaces, and if
vo €Y, then the function f : X — Y given by f (x) = yy, for all x € X, is continuous;
the composition of continuous functions;

N

restrictions of continuous functions to subspaces; and
4. the inclusion map ty 1 Y — X, ty(x) = x for all x € Y, for every subspace Y C X.

1.8 The Cantor Ternary Set and Ternary Function

The “middle third” of the interval [0, 1] is the open interval (1/3,2/3). If one
removes the middle third from [0, 1], then the closed set

% =[0,1/3]U[2/3. 1]

remains. Note that ) is a union of two closed subintervals, each of length 1/3.

The middle thirds of 4; are the open intervals (1/9,2/9), which is the middle
third of [0, 1/3], and (7/9,8/9), which is the middle third of [2/3, 1]. If these middle
thirds are removed from %], then one is left with

% =[0,1/9] U [2/9.1/3] U [2/3.7/9] U [8/9.1].

which is a union of four subintervals, each of length 1/(32).

Proceed by induction. Once %,_; has been constructed as a union of 2"~! closed
subintervals Fy, remove the middle third from each F} to obtain %, a union of 2"
closed subintervals, each of length 1/(3").

Definition 1.80. The Cantor ternary set is the subset € C [0, 1] defined by

=) %-

n€N

Proposition 1.81. The Cantor set € is a nonempty closed set with no interior.

Proof. Each %, is closed, and therefore so is 4". Moreover, % contains the endpoints
of each subinterval in each %,; thus, % is nonempty.

Suppose that U is an open subset of €. Then U contains an open interval J, and
J is a subset of each %),. For fixed n, J must lie in one of the closed subintervals
that form %, and such intervals have length (1/3)". Thus, the length of J is at most
(1/3)". But this length of J holds for all n, which implies that J is length zero; that
is, J = 0. Hence, U = 0. O
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Another way to characterise % is by considering the ternary expansion of each
¢ € ]0,1]. Recall that every real number admits a decimal representation. A very
similar argument show that every ¢ € [0, 1] can be expressed in ternary form as

oo
Ck
=E —, h €{0,1,2} VkeN. 1.9
¢ 2 % where ¢, € { } (1.9)

The representation in (1.9) is not unique, because the real number 1/3, for
example, can be expressed in two ways: (i) ¢; = 1 and ¢; = O for all k > 2; and
(i1) ¢; = 0 and ¢4 = 2 for all k > 2. This is the only kind of ambiguity that can arise,
and this ambiguity does not have any bearing on the description of ¢’ that follows.

It is also convenient to adopt base-3 notation for ¢ € [0, 1]:

o0

Ck

Z = (0.C1€2€3~-.)3 means é‘ = Z §_
k=1

In this notation, for example,

(0.10000--+)s (0.02222---)5

W=

1
3

2 = (0.02000--); 2 = (0.01222:-)3

ol

3= (0.21000---); & = (0.22000--);

ol

and so forth.

Proposition 1.82. { € € if and only if { = (0.cicc3+++)3, where ¢ € {0,2} for
every k e N.

Proof. The left and right end points of any one of the closed intervals that make up

%, will have ternary form

(0.g18283--4—11000---)3 and  (0.g/g283 "+ &n—12000---)3

respectively, where g; € {0,2} forall 1 <j < (n—1). Thus,

C = (0.C1C2C3 )3

is in this closed interval if and only if g = ¢; forall 1 <j < (n—1). O

Proposition 1.83. ¢ and R have the same cardinality.

Proof. On the one hand, the map that sends a binary sequence b = (b1b;...) to the
o0

real number Z 3—kk is an injection of the set 4 of all binary sequences into the
k=1



1.8 The Cantor Ternary Set and Ternary Function 29

Cantor set €. On the other hand, the cardinality of 4 is that of the power set 2 (N)
of N, which in turn has the cardinality ¢ of the continuum R. Hence, there is an
injection of R into the Cantor set %, and so % and R are in bijective correspondence
by the Schroeder-Bernstein Theorem (Theorem 1.3). O

Another application of Proposition 1.82 leads to a very interesting continuous
function @ on [0, 1] that has quite remarkable features. Let ¢p : € — [0, 1] be the
function that sends the ternary form of ¢ € 4" to a number in binary form: namely,

oo

¢ ((O.crcr+)3) =Y

k=1

Ck/z
TR (1.10)

Definition 1.84. The function @ : [0, 1] — [0, 1] defined by

®(x) = sup{¢(y) |y € Cand y < x},

for x € [0,1], and where ¢ : € — [0, 1] is the function defined by equation (1.10), is
called the Cantor ternary function.

Definition 1.85. If / C R is an interval, then a function f : J — R is monotone
increasing if f(x1) <f(x2), for all x;,x, € J such that x; < x,. If f(x1) < f(xz), for
all x,x, € J such that x; < x,, then f is strictly monotone increasing.

Proposition 1.86. The Cantor ternary function @ is a monotone increasing contin-
uous function and @ maps the Cantor set ¢ onto [0, 1].

Proof. The map ¢ : € — [0,1] is clearly surjective and monotone increasing;
therefore, the same is true of @ : [0, 1] — [0, 1].

To verify that @ is continuous, select yg € [0, 1] and let ¢ > 0. If yy &€ €, then
vo & 6, for some n € N. Thus, y, is contained in one of the open intervals that have
been removed from %),—1; denote such an interval by (a, b). The endpoints a and b
are the left and right endpoints of a closed subinterval of %, and so @(x) = ¢ (a) for
all x € (a,b). This shows that @ is constant on (a, b), implying that @ is continuous
at the point yy € (a,b).

However, if yy € €, then choose m € N such that (1/2)" < e. Let § = (1/3)™.
Suppose that x € [0, 1] is such that |x —yy| < §. Without loss of generality, we may
suppose that x < yp; thus,

o0

,

Yo—X = Z 3—;, for some wy € {0,1,2}.
k=m+1

That is, in any ternary expansion of x, the first m ternary digits of x coincide with
those of yg. Let ay,...,a, € {0,2} be such that yg = (0.cq,--- -+ + )3 and consider
720 = (0.1, ,00---)3 € €. Therefore,

20 <x<yo = P(z0) < P(x) < P(y9).
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The inequality
ar ar m
P(y0) = P(20) = (0.7 0+ )= (0. SH00-), < (1/2)" =
implies |@(yo) — @(x)| < &, proving the continuity of @ at yj. O

The proof of Proposition 1.86 shows that the Cantor ternary function is constant
on open intervals in the complement of €. We shall have need of this fact later, and
so this feature is recorded below for future reference.

Corollary 1.87. IfJ is any open interval in [0, 1]\, then @ is constant on J.

1.9 Weak Topologies and Continuous Maps of Product
Spaces

Traditionally one begins with topological spaces and considers continuous maps
between them. In many instances, especially in functional analysis, it is beneficial
to reverse this process to allow functions to determine the topology.

Proposition 1.88. I/ {(Yy, 7,)}aca is afamily of topological spaces, X is a set, and
8o : X = Yy is a function, for each o« € A, then

1. there is a coarsest topology on X in which each function g, : X — Yy is
continuous, and

2. for every topological space Z, amap f : Z — X is continuous if and only if g4 of :
Z — Y, is continuous for all .

Proof. For each B € A let /3 = {g;l(Uﬂ) |Ug € I3} and let & = U&’ﬁ. The

B
collection . is plainly a subbasis, and thus induces a topology on X which

we denote by k. Observe that each g, : (X, Z4) — (Yo, Z) is continuous.
Furthermore, if 7 is any other topology on X in which every g, is continuous, then
7' must contain every set of the form g ! (U, ), where U, € 7. Hence, Zx € 7.

Next, fix a topological space Z and assume that f : Z — X is a function. If
f is continuous, then so is every g, of : Z — Y, because the composition of
continuous maps is continuous. Conversely, if it is assumed now that g, of : Z — Y,
is continuous for all «, then for every o and every open set U, C Y, the set
! (g_l(Uo,)) is open in Z. Thus, f~'(S) is open in Z for every S in the subbasis
., and so f~!(B) is open in Z for every B in the basis % for Z, generated by .7.
By Exercise 1.126, this implies that f is continuous. O

A result related to Proposition 1.88 is as follows.

Proposition 1.89. If{(Yy, 7,)}eca is afamily of topological spaces, Y is a set, and
8o : Xo — Y is a function, for each @ € A, then
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1. there is a finest topology on Y in which each function g, : X, — Y is continuous,
and

2. for every topological space Z, amap f : Y — Z is continuous if and only if fo g, :
Xy — Z is continuous for all o.

Proof. Exercise 1.128. O

Definition 1.90. Each of the topologies introduced in Propositions 1.88 and 1.89 is
called the weak topology induced by the family of functions {gy }ye -

Turning now to product spaces, we begin with a definition.

Definition 1.91. Assume that {(X,, Z,)}ec4 is a family of topological spaces. For
each B € A, the map pg : [[,c 4 Xo — Xp defined by

Pp ((xot)a) = X8

is called a projection map.

Observe that pg maps each x € [[,., X, onto the “B-th coordinate” of x.
Furthermore, if Ug is an open set in Xg, then pEI(Uﬂ) = ]_[aAa, where A, = X,
for all @ # B, and Ag = Ug. Hence, the maps pg are continuous with respect to both
the product and the box topology of [[,c 4 Xo-

Proposition 1.92. In the product topology of [|,c s Xo, amap f: Z — [],cp Xa is
continuous if and only if py of : Z — X, is continuous for every o € A.

Proof. If f : Z — [],e4 X« is continuous, then so is p, o f because the composition
of continuous maps is continuous.

Conversely, suppose that p, of : Z — X,, is continuous for every o € A. Fix
B € A and suppose that Ug € Xp is open. Let Wg = pﬂ'(Uﬂ) which is open in
[yeq Xas thus, (pgof)~ (Uﬂ) =f" (W,g) is open in Z. Now if B is a basic open set
in[[,esXe then there are 1, ..., B, € A and open sets Ug, € X,gj, forj=1,.

such that B = ﬂ Wp,, where Wy, =Py, 1(U,gj) Hence, f~'(B) = ﬂf (Wg,) is open
j=1 j=1

in Z. By Exercise 1.126, this implies that f is continuous. O
One implication in Proposition 1.92 fails for the box topology.

Example 1.93. If RY has the box topology, and if p, : RN — R denotes the
projection onto the n-th coordinate, then there exists a function f : R — RY such
that p,of : R — R is continuous for all n € N, yet f itself is not continuous.

Proof. Letf : R — RY be defined by f(x) = (x,x,x,...). Thus, Pue f (x) = x, which
is plalnly continuous. However, if V C RY is the open set [], (= — ,n) € 75, then

TV)y={xeR|xe( nl,rll) Vn € N} = {0}, which is not open. Thus, f is not
continuous. O
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1.10 Quotient Spaces

Suppose that ~ is an equivalence relation on a set X. For each x € X, the equivalence
class of x is denoted by x; thus,

x={yeX|y~ux}.

If X/ ~ denotes the set {X|x € X} of equivalence classes of X, and if (X,.7) is
a topological space, then it is possible to endow X/ ~ with the structure of a
topological space.

Proposition 1.94. [f ~ is an equivalence relation on a topological space (X, ),
and if ¢ : X — X/ ~ is the canonical quotient map q(x) = X, then

%uo = {V - (X/ N) |q_1(v) € <?}
is a topology on X/ ~ and the function q : X — X/ ~ is continuous.
The proof of Proposition 1.94 is a matter of verifying the definitions.

Definition 1.95. The topology Zgu in Proposition 1.94 is called the quotient
topology on X/ ~.

Two common quotient structures in algebra arise from subspaces of vector spaces
and normal subgroups of groups. First, if L C V is a linear subspace of a vector space
V, then the relation v ~ w if and only if v —w € L is an equivalence relation on V
and the space of equivalence classes, which is denoted by V/L, has the structure
of a vector space under the operations «v = (@v) and v +w = (v 4+ w). Thus, if it
assumed that R has the standard topology, and if L is a subspace of R”, then the
vector space R"/L is, as a topological space, a quotient space.

A second familiar quotient structure occurs in group theory. If H is a normal
subgroup of a group G with binary operation *, then the relation a ~ b if and only
if b~! xa € H is an equivalence relation on G and the space of equivalence classes,
which is denoted by G/H, has the structure of a group under the binary operation
given by @b = a * b. Of particular interest is the additive abelian group (R, +) and
its (normal) subgroup (Z, +), which results in the quotient group R/Z.

Example 1.96. The functionf : R/Z — R?, defined by f () = (cos2rt,sin2mwt), for
t € R, is continuous.

Proof Let F : R — R? be the function F(f) = (cos2xt,sin2xt). If p; and p, denote
the projections onto the first and second coordinates, respectively, then p;o F is a
trigonometric function R — R, and is therefore continuous. By Proposition 1.92,
the continuity of each p; o F implies the continuity of F. Hence, F~'(V) is open in
R for every open subset V C R?.

Observe that F(t) = f(f) for every t € R; hence, if V is open in R?, then

g (V) = ¢ Qi@ e V) = | F() e Vy = FI(V),
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which, by definition of the quotient topology, implies that f~!(V) is open in R/Z.
Hence, f is a continuous map. O

A general method for analysing the continuity of functions defined on quotient
spaces is given by the next result.

Proposition 1.97. If X and Y are topological spaces, and if ~ is an equivalence
relation on the space X, then the following statements are equivalent for a function
g X/ ~)—>Y:

1. g is continuous, considered as a map (X/ ~) — Y;
2. gogq is continuous, considered as a map X — Y.

Proof. By definition of quotient topology, the canonical projection g : X — X/ ~ is
continuous. Hence, if g is continuous, then so is gog.

Conversely, assume that g o g is continuous. Select an open set V in Y; thus,
U = (gog)~'(V) is open in X. Because

U=(goq) ' (V)=q ' ({xlgd) e V) =g (g7 (V).

the set g~ (V) is open in X/ ~, by definition of the quotient topology. O

1.11 Topological Equivalence

Definition 1.98. Assume that X and Y are topological spaces.

1. A bijective function f : X — Y in which both f and f ! are continuous is called a
homeomorphism.

2. The topological spaces X and Y are said to be homeomorphic if there exists a
homeomorphismf: X — Y (or g: Y — X).

The notation X ~ Y is used to denote that X and Y are homeomorphic spaces.

In some sense, the goal of topology is to identify topological spaces up to
homeomorphism. This objective, however, is hugely unrealistic, and therefore
topologists have introduced other invariants of topological spaces that are less
stringent than that of topological equivalence. Even a basic question such as “Are
the topological spaces R" and R™ homeomorphic if n # m?” requires sophisticated
tools to resolve. (The answer to the question is no.)

Example 1.99. Ifa,b € R are such that a < b, then (a,b) >~ R.

Proof. First note that g : (=7%,%) — R, where g()) = tan(f), is a continuous
bijection with continuous inverse g~'(s) = tan~'(s). Hence, (=%.%) =~ R. Now
consider the straight line L in R? that passes through the points (a,b) € R? and
(=%.%) € R?, and let F: R — R be the equation of this line—that is, F is

the function whose graph is L. The function F is a homeomorphism; therefore,
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the restriction f of F to the interval (a,b) is a homeomorphism of (a,b) and
(=%.%). Hence, (a,b) >~ (=%, %) and, by transitivity of topological equivalence
(Exercise 1.130), we deduce that (a,b) >~ R. O

Recall from Example 1.60 that the 1-sphere is the unit circle in R?, which
we assume to have the subspace topology. The following example shows that the
quotient space R/Z is topologically equivalent to S'.

Example 1.100. R/Z ~ S'.

Proof. Example 1.96 already shows that the map f : R/Z — S' defined by f (i) =
(cos2mt,sin2mt), for t € R, is continuous. As f is plainly bijective, all that remains
is to show that ™! is continuous. As in Example 1.96, let F : R — R? denote the
function F(¢) = (cos2nt,sin2xt).

Now, if U € R/Z is open, then (f_l)_1 ) =fU) = F(q_l(U)); thus, the aim
is to prove that F(W) is open in R?, where W C R is the open set W = ¢~ (V).
Select tp € W and let € > 0 be such that V = (tp —¢&,f0 +¢) € W and ¢ < 1/2. By
Exercise 1.112, dy(F(t), F(ty)) = 2|sin(w(t —ty))|. Therefore, if t € V, then w|t —
to| < we < 7 /2, and the fact that the sine function is strictly monotone increasing on
(0,1/2), leads to d»(F (), F(ty)) < sin(re). Hence, F maps V into the basic open set
Bgin(re) (F(t0)). Conversely, if (s,7) € Bsingre) (F(f0)), then e < /2 implies that the
Euclidean distance between (s, r) and F(ty) is less than sin(7/2) = 1. Hence, there is
semicircular arc in S! that contains both (s, 7) and F(f), and so there is a r € R with
[t—1] < % and F(t) = (s,r). Therefore, 2sinme > (2|sin(w (1 —1y))| = 2sin(x |t —
to|) implies, by the monotonicity of the sine function on the interval [0, /2], that
m|t—to| < e, and so t € V. This proves that F maps V onto S' N Bginre) (F(10))-
Carrying this procedure out for every #, € W shows that F(W) is open in S', which
completes the proof of the continuity of f~'. O

Problems

1.101. Let X be the set of rational numbers g for which 0 < g < 1 and A be the set
of irrational numbers A such that 0 < A < 1. For each A € A, let X, be the set of all
sequences of elements in X with limit A. Prove the following assertions.

1. Each X is an infinite set.
2. X; NX) is a finite set, for every pair of distinct irrationals 1,1’ € A.

1.102. Let .7 be the collection of all subsets U < N with the property that a natural
number 7 belongs to U only if every divisor k € N of n belongs to U.

1. Prove that 7 is a topology on N.
2. Determine whether .7 coincides with the discrete topology on N.
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1.103. Prove that if .7 is a topology on X, and if 2 is the collection of subsets with
the property that, for every U € .7 and each x € U, thereisa B € # withx € BC U,
then 4 is a basis of subsets and .7 is the topology generated by %.

1.104. Prove that if .7 is a topology on X and if 4 is a basis for the topology .7,
then the following statements are equivalent for a subset U C X:

1. Ue T,
2. there is a family {B,}, of subsets B, € Z such that U = UBQ.

1.105. Prove that & = {(p,q) CR|p,q € Q, p < g} is a basis of subsets of R.

1.106. Consider Z, the set of integers. Fix a prime number p. For every natural
k € N and integer a € Z, let

Bio={a+bp*|beZ}.

Show that the collection 8 = {By.4}  4enxz 1S @ basis for a topology on Z.

1.107. Let
B ={la,b)|a,beR, a<b}.

1. Prove that & is a basis.

2. The topology on R induced by this basis is called the lower-limit topology. Prove
that the lower-limit topology on R is strictly finer than the standard topology
on R.

1.108. Prove that if . is a subbasis of subsets of X, then
n
#B=1(\IneN.S,.....5, .7
j=1

is a basis of subsets of X.

1.109. Let (X,d) be a metric space. Prove that a subset U C X is an open set if and
only if, for each x € U, there is an & > 0 such that B,(x) C U.

n n n
1.110. Show that if Z ujv;| = Z sz Z vj2 , for real numbers uy,...,u,
Jj=1 Jj=1 Jj=1
and vy,...,v,, then there is a A € R such that v; = Au; forevery j = 1,...,n.
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1.111. Consider the functions R” x R" — R defined by
di(x,y) = > I =yl
doo(x,y) = max;<j<u |5 —yjl,
for x,y € R".

1. Prove that d; and d are metrics on R”.
2. Prove that d| and d, determine the same topology on R”

1.112. Ift,7p € R, and if u, = (cos2nt,sin2xt) and u,, = (cos2xty,sin2xty), then
show that d5 (u;,us,) = 2|sin(7w(t —t9))| in the Euclidean metric space (R?,d,).

1.113. Assume that (X,d) is a metric space.

1. Prove that the formula d(x,y) = min{d(x,y), 1}, for x,y € X, defines a metric
on X.
2. Prove that the metric topologies .7; and .7 on X coincide.

1.114. If {(X.dy)}aen is a family of metric spaces, and if d, , denotes the metric
on X, as given by equation (1.6) of Proposition 1.44, then prove that the formula

d((*a)as Va)a) = sup (dop(XesYa))

defines a metric on [ [, Xo.

1.115. Prove that if £ is a basis for a topology .7 on X and if ¥ C X, then the
collection Ay defined by By = {Y N B|B € %} is a basis for the subspace topology
JyonY.

1.116. Assume that {Y, }4e4 is a collection of subsets of a set X.

1. Prove that the following statements hold:
a. UI_/a C U Yy
o o
b. ﬂ Y, C ml_/a;

c.ifYCZ thenZ\YCZ\Y.

2. For each of the statements above, find an example to show that equality in the
inclusion is not achieved.

1.117. If Y € X is a subset of a topological space X, then prove that Y = int(Y°)
and (intY)“ = Ye.

1.118. Let A C X and B C Y, and prove the following assertions for the product
topology on X X Y:

1. AxB=AXB;

2. int(A x B) = int(A) x int(B).
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1.119. Suppose that X is a topological space and that U C X. Prove that the
following statements are equivalent:

1. Uis an open set in X
2. forevery subset Y C X, UNY =UNY.

1.120. Assume that R has the standard topology and consider the following subsets:

1 1 1
A:{—+—|m,neN} and B={0}U{—|n€N}.
m n n

1. Prove that B = L(A), the set of limit points of A.
2. Determine L(B).

1.121. Let Y C R? be the set
Y = {(x.sin(1/x)) e R*|0 <x < 1}.

Determine the closure of Y in the standard topology of R?.

1.122. If Y C X, then prove that intY = Y\ L(Y*), where L(Y®) is the set of limit
points of Y°.

1.123. Prove the following statements for a subset Y of a topological space X.

Y =Y \intY.
.Y =intYU?Y.
.intY =Y\aY.
. Yisclosed ifand onlyif 0Y C Y.

5. Yisopenifandonlyif YNOY = @.

B W=

1.124. Determine the closure and boundary of B,(x) = {y € X|d(x,y) < r} in a
metric space (X,d).

1.125. Assume that X and Y are metric spaces and denote their metrics by dx and
dy, respectively. Prove that a function f : X — Y is continuous at a point xy € X if
and only if for every € > 0 there is a § > 0 such that

dy (f(x0),f(x)) < € forall x € X that satisfy dx(x,xp) < 8.

1.126. Let X and Y be topological spaces and let %y be a basis for the topology on
Y. Prove that a map f : X — Y is continuous if and only if f~!(B) is open in X for
every B € HBy.

1.127. Assume that A and B are closed subsets of a topological space X and that
AUB =X. Prove thatif g: A — Y and & : B — Y are continuous maps for which
g(x) = h(x) for every x € AN B, then the map f : X — Y in which f(x) = g(x) for
x € A and f(x) = h(x) for x € B is continuous.
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1.128. Assume that {X,},e4 is a family of topological spaces and that Y is a set.
Suppose that g, : X, — Y is a function, for each o € A. Prove that

1. there is a finest topology on Y in which each function g, : X, — Y is continuous,
and

2. for every topological space Z, amap f : Y — Z is continuous if and only if fo g, :
X, — Z is continuous for all «.

1.129. Prove that a quotient space X/ ~ is compact, if X is compact.
1.130. Provethatif X~ Yand Y ~Z, then X ~ Z.

1.131. Consider R” as a metric space with respect to the Euclidean metric, and
suppose that x,y € R" and that r, s € R are positive. Prove that B,(x) >~ B,(y).

1.132. Suppose that 1 < k < n and that L is a k-dimensional vector space of R”".
Prove that R"/L ~ R" 7,

1.133. Assume that {0,1}" has the product topology and consider the Cantor
ternary set .

1. Prove that the topological spaces {0, 1} and € are homeomorphic.

2. Prove that if €N has the product topology, then € and €™ are homeomorphic.

3. Assuming that [0,1]Y has the product topology, prove that there exists a
continuous surjection f : € — [0, 1]V,



Chapter 2
Topological Spaces with Special Properties

Generic features of topological spaces and their continuous maps were considered
in the previous chapter. This chapter investigates certain qualitative features of
topological spaces: compactness (how small is a space?), normality (how separated
can disjoint closed sets in a space be?), second countability (what is the smallest
cardinality of the basis for the topology?), and connectedness (how disperse or
disjoint is a space?). This chapter will also introduce the notion of a net, which
is a natural extension of the concept of a sequence, and show how properties of nets
capture some of the topological features of prime interest in abstract analysis.

2.1 Compact Spaces

Definition 2.1. Suppose that {U,}4c4 is a family of open subsets of a topological
space X and that ¥ € X is a subset.

1. The family {Uy }4e 4 is an open cover of Y if U U,2Y.

o
2. If {Uy}aea is an open cover of Y and if §£2 C A, then the family {U,},ecp is a
subcover of {Uy }gen if {Uy }owegp is also cover of Y.

Definition 2.2. A subset K of a topological space X is a compact set if every open
cover of K admits a finite subcover.

Thus, K C X is a compact subset if, for every family {U, }4e 1 of open sets U, C X
n

for which U U, 2 K, there is a finite set F = {1, ...,a,} € A such that U Uy 2K.
a j=1
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The compactness of a space K indicates that K is, in some sense, rather small.
For example, the space R, which may be viewed as a line of infinite length, is not
compact because the open cover {B.(¢)},cq of R, for some fixed & > 0, does not
admit a finite subcover.

Example 2.3. Every closed interval [a,b] is a compact subset of R.

Proof. Suppose that {U,}sc4 is an open cover of [a, b] in R, and let

K = { x € (a,b]| there is a finite subset F C A such that [a,x] C U Uy .
a€F

Choose ag € A such that a € U,,. Hence, there is a g9 > 0 such that [a,a+&y) € Uy,,
and therefore x € K for every x € (a,a+ &g). Because K is nonempty and is bounded
above by b € R, the supremum of K, ¢ = sup K, exists.

Select a; € A such that ¢ € U,,. Because Uy, is open, there is a &; > 0 such that
(c—e1,c] C Uy,. And because c is the least upper bound for K, there exists z € K
such that z € (¢ —&1,¢). Because z € K, there is a finite subset F C A for which
[a,z] < U U,. Therefore,

a€F

=l e (1) Use = U

a€EF BeF’

where F/ = F U {a;}, implying that ¢ € K.
Now if it were true that ¢ # b, then we would have (c¢,c + ¢) C Uy, for some
e > 0. By selecting any w € (¢, c + &) we would obtain [c,w] C Uy,, and so [a,w] =
[a,c]U[c,w] C U Upg, implying that w € K. But w € K would be in contradiction
BeF’
to ¢ = sup K. Hence, it must be that b € K, which proves that [a, b] is compact. O
A convenient characterisation of compactness is given by Proposition 2.5 below.

Definition 2.4. A family {E,}qca of subsets E, C X has the finite intersection
property if m E, # 0 for every finite subset F C A.

a€F

Proposition 2.5. The following statements are equivalent for a topological
space X:

1. X is compact;
2. ﬂ Fy # @, for every family {Fy}oeca of closed sets F, C X with the finite

a€A
intersection property.

Proof. Exercise 2.81. O

In a metric space (X,d), if x;,x; € X, and if 0 < ¢ < %d(xl,xg), then B.(x;) N
B:(x;) = 0. Thus, the neighbourhoods B, (x;) and B.(x;) of x; and x;, respectively,
separate the points x; and x,. Topological spaces with this separation property are
called T,-spaces or Hausdorff spaces.
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Definition 2.6. A topological space X is a Hausdorf{f space if, for every pair of
distinct points x,y € X, there are neighbourhoods U and V of x and y, respectively,
suchthat UNV = @.

The definition of “topology” is so general that the axioms on their own are
insufficient to settle the question of whether point sets (that is, sets of the form
{x}, for x € X) are closed. By adding the Hausdorff separation axiom, this fact about
closedness can be deduced.

Proposition 2.7. If'Y is a finite set in a Hausdorff space X, then Y is closed.
Proof. Exercise 2.83. O

The Hausdorff property also has a role in determining which subsets of a space
are compact.

Proposition 2.8. Assume that K C X.

1. If X is compact and K is closed, then K is compact.
2. If X is Hausdorff and K is compact, then K is closed.

Proof. Suppose that X is compact and K is closed, and suppose that {F,}4e is
a family of closed sets F,, C K with the finite intersection property. Because K is
closed, the family {F,},c4 is also closed in X (Proposition 1.61); and because X is
compact, ﬂ F, # 9, by Proposition 2.5. Hence, K is compact.

a€A
Next, suppose that X is Hausdorff and K is compact. Let U = K¢ and choose x €

U. Because X is Hausdorff, for every y € K there are disjoint neighbourhoods U, and
Vy of x and y, respectively. By the compactness of K, the open cover {V,},ex admits
a finite subcover {Vj, }_,. The corresponding sets Uy,,..., U,, are neighbourhoods

n n
of x, and so W, = ﬂ Uy, is a neighbourhood of x disjoint from U Vy, and, hence,
j=1 j=1
disjoint from K. Thus, K¢ = U W, is open, which implies that K is closed. O
x€EK®
Compactness is a topological property that is preserved under continuous maps
of spaces.

Proposition 2.9. Suppose that f : X — Y is a continuous maps of topological
spaces.

1. If X is compact, then f(X) is a compact subset of Y.
2. If X is compact, Y is Hausdorff, and if f is a bijection, then f~" is continuous.

Proof. Assuming that X is compact, let {V,}4es be an open cover of f(X).
Thus, {f~'(V,)}aea is an open cover of X and therefore admits a finite subcover
{f~'(Vy)Yaer for some finite subset F € A. The inclusion
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fX) gf(Uf“(%)) < [Jo.

a€F o€F

implies that {(V},)}4er is a finite subcover of f(X), and so f(X) is compact.

If, in addition to X being compact, Y is Hausdorff and f is bijective, then consider
the function g = f —l.y - X.If K C X is closed, then K is compact; and, by what we
just proved, g'(K) = f(K) is compact in Y. Because Y is Hausdorff, f(K) is closed.
Hence, g~ (K) is closed in Y for every closed set K in X, which proves that g = !
is continuous. O

The second assertion of Proposition 2.9 says that if f : X — Y is a continuous
bijection of a compact space X to a Hausdorff space Y, then f is a homeomorphism,
which simplifies considerably the proof in Example 1.100 that the quotient space
R/Z and the unit circle S' are homeomorphic.

Example 2.10. R/Z ~ S'.

Proof. Example 1.96 already shows that the map f : R/Z — S' defined by f(f) =
(cos2mt,sin2mt), for t € R, is continuous. As f is plainly bijective, and because
S is Hausdorff (as a subspace of the metric space R?), all that remains is to
show that R/Z is compact. To this end, let {V,}4ea be an open cover of R/Z.
Thus, {g~'(V,4)}aea is an open cover of R and, in particular, of the closed interval
[0,1]. By the compactness of [0, 1], there exists a finite subset F C A such that
{q7 (Vo) }aer is a cover of [0, 1]. The inclusion R/Z = g ([0,1]) € U, ep (V) shows
that R/Z is compact. Hence, by Proposition 2.9, f is a homeomorphism. O

Another application of Proposition 2.9 is Proposition 2.12 below, which is similar
in essence to the familiar theorem from group theory that the range of a group
homomorphism ¢ : G — H is isomorphic to the quotient group G/ ker¢.

Definition 2.11. A topological space Y is a quotient of a topological space X if
there exists an equivalence relation on X such that ¥ and the quotient space X/ ~
are homeomorphic.

Proposition 2.12. If X and Y are compact Hausdorff spaces, and if f : X — Y is a
continuous surjection, then Y is a quotient of X.

Proof. Define a relation ~ on X by x| ~ x, if f(x;) =f(xy). It is plain to see that ~
is an equivalence relation. Define a map g : (X/ ~) — Y by g(x) = f(x). Note that
g is well defined and that f = gog, where ¢ : X — X/ ~ is the canonical quotient
map. Hence, by Proposition 1.97, the continuity of f and g imply the continuity of g.
The continuous map g is plainly a bijection. Therefore, in light of the fact that X/ ~
is compact (Exercise 1.129) and Y is Hausdorff, Proposition 2.9 implies that g is a
homeomorphism. O

The following proposition, which asserts that a continuous real-valued function
on a compact space achieves both its maximum and minimum values, is one of the
single-most important results concerning continuous functions on compact sets.
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Proposition 2.13. If f : X — R is a continuous map of a compact space X, then
there are xo,x, € X such that f (xg) <f(x) <f(x1) forall x € X.

Proof. Let ¢ > 0 be given, and consider the open cover {B.(f(x))}.ex of f(X). By
Proposition 2.9, f(X) is a compact subset of R; thus, there are x,...,x, € X such
that {B,(f (xj))}J’.l=l covers f(X). Hence, f(X) is contained within the union of a finite
number of finite open intervals, which implies that f(X) is bounded both below and
above. Therefore, by the completeness property of the real numbers, ¢ = inff(X)
and d = supf(X) exist.

Suppose that ¢ € f(X); then (c,c + &) Nf(X) # @ for every & > 0. Therefore,
{(y,00)}yer(x) is an open cover of f(X), and this cover admits a finite subcover
{(yj,oo)}.;’=l for some y,...,y, € f(X). Let y = min{yy,...,y,}. However, y €
f(X) C (y,00) and y € (y,00) is a contradiction. Hence, it must be that ¢ € f(X),
and so ¢ = f(xp), for some xy € X. A similar argument yields d = f(x;), for some
x € X. O

The closed interval [0, 1] is compact, and one might imagine that the same would
be true of the closed unit square, [0, 1] x [0, 1], and, in higher dimensions, of the
closed unit n-cube [0, 1]". Such is indeed the case as a consequence of the following
theorem of Tychonoff, which is a powerfully general result.

Theorem 2.14 (Tychonoff). If {X,}yeca is a family of compact spaces, then the
product space ||, 4 X« is compact in the product topology.

Proof. LetX =[], Xu, and suppose that 4 = {G, },¢r is a family of subsets of X
with the finite intersection property. By Exercise 2.82, to prove that X is compact it
is sufficient to prove that ﬂ Ey #0.
yer
In what follows, & shall denote an arbitrary family of subsets of X. Consider

6 ={& < XX)|E 29 and & has the finite intersection property} .

Impose a partial order on ¢ by inclusion: & < & if & C &”.
Suppose that £ € & is an arbitrary totally ordered subset, and define % = U &.
seg
Select n € N, and any Ey,...,E, € % . Because £ is totally ordered, there exists
& € £ such that E; € & for j = 1,...,n. The finite intersection property of the

family & yields ﬂEj # @, which proves that % has the finite intersection property.
j=1
Moreover, % plainly contains &. Hence, % € & and & < % for every & € £; that
is, % is an upper bound in & for the totally ordered subset £. Therefore, by Zorn’s
Lemma (Theorem 1.8), . contains a maximal element, which we denote by .Z .
Two observations concerning .Z are:

(i) if Y C X satisfies YN M # @ for every M € .# ,then Y € ./ ; and

(i) if My,...,M, € .4, then ﬂMj e.
j=1
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The first observation above is verified by noting that the hypothesis implies that
{Y}U.# is in G, and that .# < {Y}U .# , which can occur only if #Z = {Y}U.#.
Therefore, Y € .# . The second observation is a consequence of the first: let Y be the

n
setY = ﬂ M;, and make use of the fact that ./ has the finite intersection property.
J=1

For each o € A, consider the family &, = {p,(M)}ye.» of subsets of X,,, where
each p, : X — X, is the projection map. Fix «, and select finitely many sets in
n

&y, say pa (M), ...,pa(M,). Because ﬂM] € ./ by observation (ii), it is also true
j=1

that ﬂ Do (M;) # @. Thus, the family &, has the finite intersection property in the

=1
compact space X, and so, by Exercise 2.82, ﬂ Pa(M) # @.
Me.n
Suppose now that x = (x4 )ye, Where each x, € ﬂ paM). If ¢ € A and V, is

Me
a neighbourhood of x4 in Xy, then U, = p;l (V) is a basic open set in X containing
x. Moreover, because x, € p, (M) for every M € ., we deduce that V, N p, (M) #
@ for every M € .# . That is, for each M € ./ there is a y¥ € X such that y¥ €
P, (Vo) N M. Hence, U, "M # @ for every M € .4 . By observation (i), we deduce
that U, € /.
Lastly, suppose that B € X is a basic open set containing x. Thus, there are

o1,...,0, € A such that B = ﬂ p;ll (V) = ﬂ Uy, where V,, is a neighbourhood
j=1 j=1
of Xo in Xy, Because each Uy, € M , observation (i) yields B € .#. Hence, x € B
and BN M # @ for every M € ./ implying that x € ﬂ M. Now because .# 2 9,
Me.#
it is also true that ﬂ G # @, thereby proving that X is compact. O

GeY

Another use of compactness in analysis arises from the notion of convergence.

Definition 2.15. A sequence {x,},eny of elements x, in a topological space X
is convergent if there exists an element x € X with the property that for every
neighbourhood U of x there is a positive integer ky € N such that x,, € U for every
n > ky. Such an element x is called a limit of the sequence.

In Hausdorff spaces, limits of convergent sequences are unique.

Proposition 2.16. If x and X' are limits of a convergent sequence {x,},en in a
Hausdorff space X, then X' = x.

Proof. Exercise 2.88. O

In metric spaces, compactness has numerous advantageous features, such as the
uniform continuity of continuous functions (Proposition 2.18 below). A key lemma
for the analysis of compact sets in metric spaces is the following result, the proof of
which is outlined in Exercise 2.85.
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Lemma 2.17. If {Uy}uen is an open cover of a compact metric space (X,d),
then there exists a § > 0 such that for each nonempty subset S C X for which
sup{d(si,s2) |s1,52 € S} < 8 there is a oy € A such that S C Uy,.

Proof. Exercise 2.85. O

Proposition 2.18 (Uniform Continuity). Suppose that f : X — Y is a continuous
function, where (X, dx) and (Y, dy) are metric spaces. If X is compact, then for every
& > 0 there exists a § > 0 such that dy (f (x1),f (x2)) < & for all x1,x, € X that satisfy
dx(xl,XQ) < 4.

Proof. Let ¢ > 0 and consider the open covering {f~!(B.(y))}yer of X. By
Lemma 2.17, there is a 8’ > 0 for which any nonempty subset § C X that
satisfies sup{d(s|,s;) |s1.5, € S} < &' also satisfies S C f~! (B(y)) for at least one
y € Y. Therefore, if § = §’/2 and if x;,x, € X are such that dx(x;,x;) < §, then
taking S = Bs(x;) leads to Bs(x;) C f~!(B.(y)) for some y € Y, implying that
dy (f(x1).f (x2)) <e. 0

Another major feature of compactness in metric spaces is the following charac-
terisation of compactness in terms of convergent subsequences.

Theorem 2.19. The following statements are equivalent for a metric space
(X,d):

1. X is compact;
2. if {xu}nen is a sequence in X, then there is a subsequence {x,; }jen of {x,}nen that
is convergent to some x € X.

Proof. Suppose first that X is compact. If {x, },en is a finite set, then some elements
in the sequence are repeated infinitely often. The constant subsequence extracted
from an element x € {x,},en that is repeated infinitely often is trivially convergent
to x. Therefore, suppose that ¥ = {x,},en is an infinite set of elements of X.
Consider the set L(Y) of limit points of Y, and recall that x € L(Y) if and only if
(U\ {x}) NY # @ for every neighbourhood U of x. Hence, if x € L(Y), then for each
J € N there is an element x,,, € (By/;(x) \ {x}) N Y, and so the subsequence {x,, };en of
{xn}nen converges to x.

The only issue left to resolve is whether it is indeed true that L(Y) # @. This is
settled by using the compactness and Hausdorff properties of X. If L(Y) contained
an element x, then (U \ {x}) N'Y # @ for every neighbourhood U of x. Furthermore,
more is true: namely, U N Y is infinite for every neighbourhood U of x. To prove
this assertion, suppose that U is a neighbourhood of x and that U NY is finite. Thus,
(U\{x})NY is also a finite set, and therefore, by Proposition 2.7, (U \ {x}) NY is
a closed set. The complement W of (U \ {x}) NY is open and, hence, so is V =
U N W. Because V is a neighbourhood of x € L(Y), (V\ {x}) NY is nonempty. But
(V\{x}) NY 5 @ is in contradiction to (V\ {x}) N Y = W N W = @. Therefore, it
must be that U N Y is infinite.
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To complete the verification that L(Y) # @, suppose, on the contrary, that the set
L(Y) = 0. Thus, the equality of ¥ and ¥ U L(Y) implies that Y is a closed set in
a compact space X; therefore, Y is also compact. The fact that x,, & L(Y), for each
n € N, implies that there is a neighbourhood U, of x, such that U, NY is a finite
set (by the previous paragraph). From the open cover {U,},en of the compact space

m

Y, extract a finite subcover {Unj };”:1. Thus, Y C U U,,. However, Y N Uy, if finite
j=1

for each j, and so Y itself must be a finite set, which is a contradiction. Therefore, it

must be that L(Y) # @.

Conversely, suppose that every sequence in X admits a convergent subsequence.
Let {U,}uca be an arbitrary open cover of X. We claim that the conclusion of
Lemma 2.17 holds: namely, that there exists a § > 0 such that, for each nonempty
subset S C X for which sup{d(sy,s2)|s1,52 € S} < &, there is a ag € A such that
S C Uy,. If this were not true, then for each n € N there would exist a subset
S, € X such that d(x,y) < % forallx,y € S, and S,, Z U,, for every a € A. Selecting
an element x, from each set S, yields a sequence {x,},en and, by hypothesis, a
convergent subsequence {x, }jen. If x is the limit of the convergent subsequence
{Xn; }jen, then x € Uy, for some oy € A and there exists a & > 0 such that B (x) C Uy,.
Furthermore, there exists a Ni € N such that x,; € Be/>(x) for all n; > N;. By the
assumption on the sets S, there also exists N, > N; such that S,,J. C B, /2(xn_,.) if
nj > N,. This would then imply that S,,J. C Uy, for any n; that satisfies n; > N,
which is in contradiction to the assumption.

As shown in the previous paragraph, the covering {U,}4es of X yields a 6 > 0
such that for each nonempty subset S C X for which sup{d(s,s>)|s1,52 € S} <§
there is a ag € A such that S € U,,. Let ¢ = §/3 and consider the open cover of X
given by {B,(x)},ex. If {B.(x)},ex were not to admit a finite subcover of X, then for
any x| € X there would exist an element x, € X such that x, & B,(x;); likewise, there
would exist x3 € X such that x3 & B.(x;) U B.(x;). Indeed, continuing by induction,
if x,...,x, € X are chosen so that d(x;, x;) > ¢ whenever j # i, then there would also
exist X,+1 € X such that x,41 & U B:(x;). However, this would yield a sequence
{xn }nen for which d(x;, x;) > ¢ for all i,j € N with j # i, thereby making it impossible
for {x,},en to admit a convergent subsequence. Hence, it must be that {B,(x)}.ex
admits a finite subcover {B;(z;)};_, of X for some elements zi,...,z, € X. Because,
for fixed j, d(x,zj) < %8 < § for all x € B.(z), there exists a; € A with B,(z) €
U,,;- Hence, the covering {Uy J4e of X yields a finite subcovering {Uy, }J'.’=1, which
implies that X is compact. O

Compactness is a global feature of a topological space. A variant of compactness,
defined below, is a local feature.

Definition 2.20. A topological space X is locally compact if for each x € X there is
a neighbourhood U of x and a compact subset K € X such thatx € U C K.

By definition, every compact space is locally compact. The following example is
a very familiar non-compact space that exhibits the local compactness property.
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Example 2.21. R” is locally compact.

Proof. Choose any x = (x,...,X,) € R” For each j let (aj, b;) C R be an open

interval that contains x;, and let U = H(aj,b) and K = H[a], . By definition

Jj=1 J=1
of product topology, U is open; and by Tychonoff’s Theorem, K is compact. As
x € U C K, this shows that R” is locally compact. O

If one imagines the real line R as being anchored on the left by —oco and on
the right by +o0, then joining these two ends yields a circle, thereby embedding
the noncompact space R into the compact space S'. This conceptual idea is made
rigorous in the following manner.

Theorem 2.22 (One-Point Compactification). If X is a non-compact locally
compact Hausdorf{f space, then there is a compact Hausdorff space X such that

I. XCXand X \Xisa sin~gleton set, and
2. X is open and dense in X.

Proof. Let oo denote an element that is not in X and let X = X U {oo}. Define the
following collection & of subsets of X:

B = {U§X|UisopeninX}U{X\K|KiscompactinX}.

To prove that £ is a basis, note that, if x € X, then x € U for some open subset U
of X. Also, co € X\ {x}. Hence, for every x € X there is a B € # such that x € B.
Suppose now that By,B; € £ and that x € B; N B,. If B; and B, are open sets in
X, then let B = B; N B, € % to obtain x € B C By N B;. Next, if B; is open in X
and if B, = X \ K for some compact K C X, then necessarily x # co and we may
let B= B; N (X\K) to obtain a B € & with x € B C B; N B,. Lastly, assume that
B = )~(\Kj for some compact K; C X, j = 1,2. Let K = K U K>, which is compact
in X, so that )}\K = B N B,, yielding an element B € % with x € B C B; N B;.

Let .7 be the topology on X with basis . Choose any neighbourhood V of oo,
and let B € % be a basic open set with co € B C V. Thus, B = )~(\K for some
compact set K. Because K # X, there is an x € X such that x ¢ K. Hence, VN X 2
BNX # @, which implies that co € X (the closure of X in ()~( ,7)). Hence, X is open,
because X € 4, and dense in X.

The proof that X is Hausdorff is left as an exercise (Exercise 2.93). To show
compactness, let {V,}qc 4 be an open cover of X. Thus, there is a 8 € A for which
oo € Vg. Choose any B € % for which co € B C Vg; thus, B = )~(\K for some
compact subset K € X. As {X N V,},ea is an open cover of K, there are «y,....o,

n

such that K C U(X N V). Hence {Vg} UtV }” | is a finite subcover of X. O
Jj=1

Definition 2.23. The compact Hausdorff space X in Proposition 2.22 is called the
one-point compactification of X.
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2.2 Topological Properties Described by Nets

Formally, a sequence in a set X is a function f : N — X. One can of course replace
N by some other set A. However, N is not simply a set, it also comes with a linear
order <. Therefore, to extend the notion of sequence to more general contexts, it is
useful to consider certain partially ordered sets (A, <).

Definition 2.24. If < is a partial order on a partially ordered set A, then A is a
directed set if for each pair of o, 8 € A thereisay € A suchthata <y and 8 < y.

Definition 2.25. A netin a set X is a function ¢ : A — X for some partially ordered
directed set (A, <).

As with sequences, it is notationally economical to express a net ¢ : A — X by
its values x, = ¢(a), @ € A. Thus, anet in X is a family {x, }oes of elements x, € X
for some directed set (A, <).

Definition 2.26. If X is a topological space, then a net {x,}yec in X is convergent
to x € X if for every open neighbourhood U C X of x there is a oy € A such that
Xy € U forall @ € A satisfying op < «.

The notation x = limy x, will be used to signify that a net {xz}qes in X is
convergent to x € X.

The following proposition shows the relationship between topological closure
and the convergence of nets.

Proposition 2.27. If Y is a nonempty subset of a topological space X, then the
following statements are equivalent for an element x € A:

1. xeY;
2. there exists a net {yq }qen in Y such that x = limg y,.

Proof. The proof of (2) implies (1) is immediate from the definition of convergent
net (Exercise 2.95).

Therefore, suppose that x € Y. Let A be the set of all open subsets U C X for
which x € U, and let U < V denote V C U, for U,V € A. Note that < is a partial
order on A. Furthermore, if U,V e Aandif W=UNV,then We Aand U < W
and V < W. Hence, A is a directed set.

For each U € A, choose yy € UNY (such an element y; € Y exists because
x € Y), and define the map ¢ : A — Y by ¢(U) = yy. The net {yy}yea has the
property that for every open neighbourhood V of x there exists an element V,, € A
(namely, Vy = V) such that yy € U for all W € A for which V) < W. That is, the net
{yulvea in Y converges to x. |

The use of nets allows for the following rephrasing of the property of continuity
for functions on topological spaces.

Proposition 2.28. If X and Y are topological spaces, then the following statements
are equivalent for a functionf : X — Y:
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1. f is continuous;
2. forevery convergent net {xy}qe in X with limit x € X, {f (xy) }aca is a convergent
net in Y with limit f (x).

Proof. Exercise 2.96. O

In analysis, the language of nets gives a very convenient method for certain
proofs. Possibly the most important of these methods is provided by Proposi-
tion 2.31 below, which characterises compactness in terms of convergent subnets.

Definition 2.29. A cofinal subset of a directed set (A, <) is a subset A C A with
the property that for each A € A there exists § € A such that A < 6.

Note that if A is a cofinal subset of a directed set (A, <), and if §;,8, € A, then
in considering §; and §, as elements of A there necessarily exists A € A with §; < A
and §, < A. Because A is cofinal, there in turn exists § € A with A < §. Hence, §; <§
and 8, < §, which shows that (A, <) is itself a directed set.

Definition 2.30. Assume that ¢ : A — X, for some directed set (A, <). A subnet of
the net ¢ : A — X is a function ¥ : £2 — X of the form % = g oy, where ¢ : 2 — A
is a function on a directed set (£2, <) such that

1. ¥ (£2) is a cofinal subset of A, and
2. Y(w) < Y (ws), for all wy,ws € 2 with wXw,.

For the purposes of simplified notation, if {x,}4c4 denotes a net, then {x,},ec0
shall denote a subset of {xy}yeA-

Proposition 2.31. The following statements are equivalent for a topological
space X:

1. X is compact;
2. every net in X admits a convergent subnet.

Proof. We shall make use of the criterion of Proposition 2.5: namely, that X is
compact if and only if (1),c 4 Fo # @ for every family {F,}oea of closed sets with
the finite intersection property.

To begin, suppose that X is compact and let {x,}4c4 be an arbitrary net in X.
Formally, there is a function ¢ : A — X on a directed set (A, <) such that p(a) = x,
forevery @ € A. Foreach o € A, let S, = {xg € X|a < B}. Because A is a directed
set, Sy, NSy, 7 @ for all @y, 2 € A. Hence, the collection {S, | € A} has the finite
intersection property and so, by the compactness of X, there exists x € X such that
x €S, forevery a € A.

Let & = {U C X|U is an open set, and x € U} and, for each U € &, define Ay =
{a € A|x, € U}. Each of the sets Ay is cofinal in A. To verify this assertion, choose
U e 0 and a € A. Because x € S, the open set U has nonempty intersection with
S«. Thus, there is some xg € S, N U. Because the element 8 satisfies @ < # and is,
by definition, an element of Ay, the subset Ay is therefore cofinal.
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Consider the subset §2 of A x & that consists of all («, U) for which & € Ay, and
define a partial order < on §2 by

(a,N=(B,V),if a xBand V C U.

If (@,U),(B,V) € £2, then let y € A be an element for which « <y and 8 < y.
Let W = UNYV. Because Ay is confinal in A, there is a § € Ay such that y <§.
Hence, the ordered pair (8§, W) is an element of £2 and satisfies («, U)=<(§, W) and
(B,V)X(8,W), which proves that (£2, X) is a directed set.

The function ¥ : 2 — A defined by ¥ («, U) = « plainly gives rise to a subnet
{X@.0)} @ v)en of {Xa}aea. To show that this subnet converges to x, select any open
set U C X that contains x. Pick oy € A. Because Ay is cofinal, there isa o € Ay
such that oy < «. Therefore, (o, U) € 2. If (B, V) € 2 satisfies («, U)S(,B V), then
xp,v) € V C U. Hence, the subnet {X(y 1)} (a,v)e2 Of {Xa}aea is convergent.

Conversely, suppose that every net in X admits a convergent subnet. Suppose
that {F,}yea is a family of closed sets that has the finite intersection property. Let
F ={F C A|F is finite} and define < on .# by F < G if G C F. Because {F, }4ca
has the finite intersection property, (%, <) is a directed set. For each F € .#, the set
(\yer Fo is nonempty; thus, select xp in this intersection. Now define ¢ : F# — X
by ¢(F) = xr; that is, consider the net {xr}re . By hypothesis, {xr}re s admits a
convergent subset net {x, },eq, With limit x € X, where without loss of notational
generality we may assume that £2 is a cofinal subset of 7.

Fix € A. We shall prove that x € Fg, which will imply that (), Fo is
nonempty. To this end, let U be any open neighbourhood U of x. Thus, there is
a Gy € £2 such that xg € U for all G € £2 for which Gy < G. Now because {8} € .Z#,
there is an F € .% with {f} < F and Gy < F. As 2 is cofinal in .#, we may in
fact assume that F € 2. Hence, F C {f} implies that x € F. Furthermore, Gy < F
implies that xr € U. Hence, U N Fg is nonempty. Because U is an arbitrary open
neighbourhood of x, we deduce that x € I_7,3 = Fp. O

Observe that the statement of Proposition 2.31 is almost superficially trivial,
while all of the underlying topology embodied by the statement is buried within
the proof. This is what makes the use of nets so compelling in analysis.

The Hausdorff property may also be characterised by a property of nets; however,
the proof of Proposition 2.32 below is not nearly as subtle as the proof of
Proposition 2.31.

Proposition 2.32. The following statements are equivalent for a topological
space X:

1. X is Hausdorff;
2. every convergent net {xq }qe 4 in X has a unique limit point.

Proof. Exercise 2.97. O
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2.3 Normal Spaces

Definition 2.33. A topological space X is normal if

1. {x} is a closed set for every x € X, and
2. for every pairs of disjoint closed sets C,F C X there exist disjoint open sets
UVCXwithCZUandFCV.

The notion of normality is a separation property, not unlike the separation
property that defines a Hausdorff space.

Proposition 2.34. Every compact Hausdorff space is normal.

Proof. Suppose that X is a compact Hausdorff space. By the Hausdorff property,
{x} is closed for every x € X (Proposition 2.7). Therefore, assume that C,F C X are
closed sets such that C N F = @. Because C and F are closed and X is compact, both
C and F are compact.

Select x € F. For each y € C there are neighbourhoods V, of x and U, of y such
that U, NV, = @. The family {U,},ec is an open cover of C and therefore admlts a

finite subcover {Uy,}7_; for some yi....,y, € C. Let V —ﬂV and U, —UU}

Jj=1 J=1
thus, V, is a neighbourhood of x, U, 2 C, and U, NV, = @.

Carrying out the procedure above for every x € F leads to an open cover
{Vi}rer of F. By the compactness of F, there is a finite subcover {V,,}/_, for some

Xy, ym€F. LetV = UV and U = ﬂUx,WhlchareopensetsforwhlchCCU

i=1
FCV,andUNV =4. Hence X is normal. O

Another class of normal spaces is that of metric spaces.
Proposition 2.35. Every metric space is normal.

Proof. Suppose that X is a metric space. By the Hausdorff property of metric spaces,
{x} is closed for every x € X.

Next, suppose that C, F € X are closed sets such that CNF = @. Select x € C.
Then x is contained in the open set F¢, and so there is a &, > 0 such that B, (x)N
F = . Similarly, for each y € F there is a &, > 0 such that B, (y) N C = @. Let

U=|JB.p® and V=|JB, 0.

xeC yEF

Thus, U and V are open sets such that C C U and F C V. If, for some x € C and
y € F, B, /2(x) N Be, /2(y) were nonempty, then via z € B /2(x) N B, /2(y) we would
obtain

d(x,y) < d(x,z) +d(z,y) < &:/24¢,/2 < max{s,,¢,},
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implying that y € B, (x), or x € B (y), both of which are in contradiction of the fact
that B, (y) N C = B, (x) N F = 0. Hence, B, />(x) N B, /2(y) = @ for all x € C and
y € F, and therefore UNV = @. O

An alternate characterisation of normality is given by the following proposition.

Proposition 2.36. The following statements are equivalent for a topological
space X:

1. X is normal;
2. X has the properties that

a. {x} is a closed set, for all x € X, and
b. for every closed set F and open set U for which F € U, there is an open set V
withFCVCVCU.

Proof. Exercise 2.98. O
The following theorem captures the most important feature of normal spaces.

Theorem 2.37 (Tietze Extension Theorem). If A is a closed subset of a normal
topological space X, and if f : A — [0, 1] is a continuous function, then there exists
a continuous function F : X — [0, 1] such that F(x) = f(x) for every x € A.

The function F above is called an extension of f.

Proof. Select p € Q and set A, = f~! ((—o0,p]) and B, = f~! ([p,o0)), which are
closed subsets of A and hence of X (since A is closed); let U, = B;, which is an open
subset of X. Observe that, if p,q € Q satisfy p < g, then A, C A, and U, € U,; and,
if p<g,thenA, C U,.

Let < be the partial order on Q x Q in which (p,q) < (¢’,¢'),ifp <p’'and ¢ < ¢/,
andlet Z = {(p,q) e QxQ|0<p<g =<1}

The set &2 is countable, and so there is an enumeration {(p,,q,)}nen Of its
elements. With the first of these elements, (p1,4;), the inclusion A, € U,, and the
normality of X imply that there is an open set V| C X such thatA, C V; C vV, C Uy,
(Proposition 2.36). Consider now the next element of &, namely (p»,q2). The
partial order < on Q x Q is not a total order; therefore, we must consider the
following subcases.

(i) (p1,91) = (p2,92): The inclusions A, € A,, € U,, and V,c U, € Uy, imply,
by Proposition 2.36, the existence of an open set V, C X such that

(Ap2 UV]) cV, g‘_/z - qu.

In particular, ViCV,.

(i) (p2,92) = (p1,q1): Wehave thatA,, CA,, C U,,, because p, < p; <qi, and we
know already that A,, € V. Thus, A,, € U, NV,. Again, by Proposition 2.36,
there is an open set V, C X for which
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Ay, SV C VLS (U, NVY).

In particular, ‘_/2 c V.

(iii) Neither (p1,q1) =< (p2,¢2) nor (p2,q2) = (p1,q1): In this case, py < g2, and
Broposition 2.36 implies that there is an open set V, C X such thatA,, €V, C
Vo CU,,.

Therefore, from Wha_t has been argued thus far, we hzﬂze that: (a) A,, € Vi C ‘_/k C

Uy fork=1,2;(b) Vi C Va,if (p1,q1) < (p2,92); (¢) V2 S V1, if (p2,92) < (p1.q1).
Based on the arguments above, proceed by induction. Suppose that open sets

Vi € X have been constructed for k = 1,...,n— 1 with the properties

@) Ap, SVi SV, S U, fork=1,....n—1,and

(b) V; C Vi, if (pj,qj) = (P qk)-

Define

I =1{il1 <j<n—1and (p;.q) = (Pn.qn)} and
<%/n = {kll Skin_l and (men) f (pkak)}~

By Proposition 2.36, there exists an open set V,, € X such that

Al Uvileveevac|u,n| U U,
€I ket

Relabel the sets V), as V,,, where p = p, and g = g,. Thus, by the principle of
mathematical induc_tion, there exists a family {V,,,}(, )P of open sets V,,, € X for
whichA, CV,, CV,, C U, forall (p,q) € Z,and V,,;, C V. if (p.q) < (', q).

Let X, = ﬂ‘_/pq for each p € QQ, and observe that X, = @ for every p < 0, and

q>p
that X, = X for every p > 1. For each (p,q) € &, choose t € Q such that p <t < ¢;
in so doing, we have the inclusions:

Note also that A, C m\_/pq = X, for every p € QN [0,1). Thus,
a>q

Ay =X,NA= (ﬂ\_/pq) NA C (ﬂquA> = A,
qa=r q>p

Therefore, {X,},cq is a family of closed sets such that X, C intX,, for all ¢ > p, and
X,NA=A,, forall p.
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The extension F: X — [0, 1] of f : A — [0, 1] is defined as follows: for each x € X,
let

F(x) :inf{pe(@|x€Xp}.

Because X, = @ for every p <0, and X,, = X for every p > 1, for each x € X the set
{p €Q|xe X,,} is nonempty and is bounded below by 0 and above by 1; hence, F
is a well-defined function.

To show that F'is indeed an extension of f, recall that X, NA = A,. Thus, if x € A,
then

Fx) = inf{pe@|x€Xp} = inf{p€Q|x€AP} = f(x),

by the continuity of f.
All that remains, therefore, is to verify that F' is continuous. Observe that F has
the following two properties:

1. if x € X, then F(x) < p, and
2. if x ¢ intX, for some g € Q, then g < F(x)

The first of these properties above follows from the definition of F. For the second
property, suppose that x ¢ intX, and F(x) < ¢. Because F is defined as an infimum,
there must be a rational p < ¢ for which x € X,,. But p < ¢ implies that X, C intX,,
in contradiction to the hypothesis. Therefore, it must be true that g < F(x).

Fix x € X, and let W be a neighbourhood in R of F(x). Select p,q € Q such that
p < g and F(x) € (p,q) € W. Define U = intX, N X}. Because p < F(x), x & Xp;
and because F(x) < ¢, x € intX,. Thus, x € U, and so U is a neighbourhood of x.
Lastly, if z € U, then F(z) < g, because z € intX,, and p < F(z), because z ¢ X,,.
Hence, F(U) € W, which proves that F' is continuous at x € X. Since the choice of
x is arbitrary, we conclude that F is continuous at every x € X. O

Corollary 2.38. If A is a closed subset of a normal topological space X, and if
f:A— Cis a bounded continuous function, then there exists a continuous function
F : X — C such that F(x) = f(x) for every x € A and sup |F(x)| = sup|f(a)|.

X€X a€A

Proof. Let @ = sup|f(a)| so that the range of fi = éf is in the closed unit disc of
a€A
C. The range of the real and imaginary parts Nf; and Jf; of fi, which themselves

are continuous functions on A, lie in the closed interval [—1,1]. Therefore, the
ranges of g = %(mfl +1) and h = %(Sfl + 1) are contained in the closed interval
[0,1]. By the Tietze Extension Theorem, each of the continuous functions g and &
admits continuous extensions G : X — [0, 1] and H : X — [0, 1], respectively, and so
F =a((2G—1)+i(2H — 1)) is a continuous extension of f with the property that

sup|F(x)| = supf(a)|. O
x€X a€A
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Corollary 2.39 (Urysohn’s Lemma). If A and B are disjoint closed subsets of a
normal space X, then there exists a continuous function f : X — [0,1] such that

f(A) ={0} and f(B) = {1}.

Proof. Leth:AUB — [0, 1] be defined by h(x) =0, if x € A, and h(x) = 1, if x € B.
Because AN B = @, there is no ambiguity in the definition of . Moreover, as A~ ! (F)
is closed in A U B for every closed F C [0, 1], the map 4 is continuous. By the Tietze
Extension Theorem, & admits a continuous extension f : X — [0, 1].

The next result, Proposition 2.41 below, establishes is a widely used technical
tool in analysis.

Definition 2.40. If X is a topological space, then the support of a continuous
function f : X — C is the set suppf C X defined by

suppf = {x € X|f(x) # 0}.

Note that the range f(X) of f satisfies

f(suppf) € f(X) C f (suppf) U{0}.

Therefore, if f has compact support, then f (suppf) is compact, and so the range
f(X) of f is also compact.

Proposition 2.41 (Partitions of Unity). If {UJ}J”: | is an open cover of a normal
space X, then there exist continuous functions hy,...,h, : X — R such that

1. 0<hi(x) <1, foreveryx € X, and eachj=1,...,n,
2. supph; C U}, forj=1,...,n, and

3. Zhj(x) =1, for every x € X.

J=1

n
Proof. Let F| = U U; |, which is a closed subset of U;. Because X is normal,
j=2
there is an open set V| such that F; C V| C V, C U,. Note that F, C V; implies
that {V} U {U,-}}’=2 is an open cover of X. By induction, if open sets Vi,...V;_;
have been constructed such that {V, }]E;ll U{Uj}j— is an open cover of X such that

Cc
n

k—1 ¢
V,C U, forall £ =1,...,k—1, then the closed set Fj = <U V,) N U U;
(=1 j=k+1
will lie in some open set V; such that Vi, C U (by the normality of X), and therefore,
{Vi }’lle U{U;}/_s4 is an open cover of X. Hence, after n steps, there exists an open
cover {V;}i_ of X with the property that ‘_/j C Uj, for each j.
Applying the argument of the previous paragraph to the open cover {V;}i_ of X
produces an open cover {W}-}J’f:l of X such that Wj C V;, for each j. Use Urysohn’s
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Lemma to select, for each j, a continuous function g; : X — [0, 1] with gj(Wj) = {1}
and gj(Vj") = {0}. Hence, the support of g; is contained in V; C U;. Because {Vi/'j}j’?:l

covers X, Zgj(x) > 1 for every x € X. Thus, for each j, the continuous function
j=1

hj : X — R defined by

0 —1
hj(x) = (Zgz(x),) 8i(®)
=1

satisfies supp/s; € U; and 0 < h;(x) < 1, for all x € X. Moreover, if x € X, then
D =1 O
j=1

Definition 2.42. The family {#y,...,h,} in Proposition 2.41 is called a partition of
unity of X subordinate to the open cover {U;}i_,

Locally compact Hausdorff spaces need not be compact; however, it is still
possible to establish a Tietze Extension Theorem in this setting, which has important
consequences in analysis (such as Theorem 5.43).

Theorem 2.43 (Tietze Extension Theorem, II). If X is a locally compact Haus-
dorff space, if K C X is compact, and if K C U for some open set U C X, then every
continuous function f : K — C extends to a continuous bounded function F : X — C
such that

1. suppF is a compact subset of U,
2. F(x) =0 forall x e U, and
3. max|F(x)| = max |[f(y)].

x€X yEK

Proof. By Exercise 2.91, there exists an open subset W C X such that K C W C
U and W is compact. Let X be the one-point compactification of X. Because X
is compact and Hausdorff, X is normal. Note that X \ K a basic open set in the
topology of X, and so K is a closed subset of X. Hence, K is compact subset of X.
By Corollary 2.38, f : K — C admits a continuous extension f X — C such that

max |f(x)| = max [F(»)|. In addition, because X \ W is closed in X and is disjoint from
xeX

K, Urysohn’s Lemma yields a function & : X — [0, 1] such that A(K) = {1} and A(X \
W) = {0}. Hence, the continuous and bounded function F : X — C given by F =
(h-f)x satisfies F(x) = f(x) for all x € K, F(x) = 0 for all x ¢ W, and sup |F(x)| =

r;lez}g( |f()|. Furthermore, because supp F € W and W is compact, we dg(eiﬁce that F
has compact support and, therefore, the supremum sup |F(x)| is achieved at some
point xo € X. < O

The following consequence of Theorem 2.43 will be used extensively in subse-
quent chapters.
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Corollary 2.44 (Urysohn’s Lemma, II). If K and U are nonempty subsets of a
locally compact Hausdorff space X, and if K is compact, if U is open, and if K C U,
then there exists a continuous functionf : X — [0, 1] such that f(K) = {1} and supp f
is a compact subset of U.

Proof. Letfy: K — R be given by fy(x) = 1, for all x € K, and apply Theorem 2.43
to produce the desired extension f : X — R with all the stated properties. That the
range of f lies in the interval [0, 1] is a consequence of the proof of Theorem 2.43
and the Tietze Extension Theorem. O

2.4 Properties of Metric Spaces

Topological spaces that are very large topologically can behave poorly. A case
in point is a product space with the box topology. One measure of topological
smallness is compactness. Another smallness quality involves countability features
of a space.

Definition 2.45. A topological space (X, .7) is:

1. separable, if there is a countable subset ¥ C X such that Y is dense in X (that is,
Y =X);
2. second countable, if there is a countable basis % for the topology 7 of X.

Proposition 2.46. Every second countable space is separable.

Proof. Suppose that & = {B,},en is a countable basis for the topology 7 of a
topological space (X,.7). For each n select x,, € B, and let Y = {x,},, which is
a countable subset of X. Suppose now that x € X and U is a neighbourhood of x.
Because & is a basis, there is a basic open set B, for which x € B, C U. Now since
X, € B,, we have that x, € UN Y, implying that U N'Y # @. Hence, ¥ = X. O

The converse to Proposition 2.46 is not true in general, but it is true in an
important special case.

Proposition 2.47. Every separable metric space is second countable.
Proof. Exercise 2.99. O

There are separable spaces that fail to be second countable (see Proposition 2.79,
for example). The following important theorem determines precisely when a
compact Hausdorff space is metrisable.

Theorem 2.48 (Compact Metrisable Spaces). The following statements are
equivalent for a compact Hausdorff space X:

1. X is metrisable;
2. X is second countable.
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Proof. Suppose that X is metrisable. Let d be a metric on X that induces the topology
of X. For each n € N, the family {B;/,(x)}ex is an open covering of X; thus, there
is a finite subcovering {B ,(x, j)}j”‘=1 of X. Let # = U{B1 /n(Xn )}, which is a

n€eN
countable collection. We claim that 4 is a basis for the topology on X. To this end,

let U € X be open and consider x € U. Because X is a metric space, there is an
n € N such that By /,(x) € U. Likewise, there is an x’ € {x3,1,. .., X3, (3n), } for which
X € By 3,(x). Now since Bj/3,(x') C By/,(x), there is a set Be % withx e BC U.
Hence, % is a basis for X, which implies that X is second countable.

Conversely, suppose that X is second countable, and let Z = {B,},en be a
countable basis for the topology of X. Let

& = {(m,n) e NxN|B,, C B,}.

By Proposition 2.34, every compact Hausdorff space is normal. Hence, by
Urysohn’s Lemma, for each (m,n) € .#, there is a continuous map f(,.» : X — [0,1]
for which fin ) (Byn) = {1} and fi..) (BS) = {0}.

Select x € X and a neighbourhood U of x. Thus, there is a basic open set B, € #
with x € B,, C U. Because {x} is a closed set and X is normal, Proposition 2.36 asserts
that there exists an open set V withx e V C V CB,.Since Visa neighbourhood of x,
there is some B,, € % with x € B,, € V. Hence, B,, C V C B,; therefore, (m,n) € .#,
f(m.n) () =1, andf(m,n)(UC) ={0}.

The previous paragraph shows that there is a countable family {g,}, of con-
tinuous functions g, : X — [0,1] with the property that, for each x € X and
neighbourhood U of x, there is some n € N such that g,(x) = 1 and g,(U¢) = {0}.

The product topology on [0, 1] coincides with the subspace topology that
is induced by (RY,.7*) (Proposition 1.51). The space (RY,.7%) is metrisable
(Proposition 1.57), and therefore so is the subspace [0, 1]". Define f : X — [0, 1]" by

() = (8.(x)), -

Each coordinate function g, is continuous, and so, because [0, 1]Y has the product
topology, the function f is continuous (Proposition 1.92). The function f is also
injective, for if x,y € X are distinct, then they are separated by disjoint open sets U
and V, and so there is a function g, which maps x to 1 and y to 0, which implies that
J&) #f).

The map f is a continuous bijection from X to f(X) < [0,1]", and the subspace
f(X) is a subspace of a metric space, and is therefore Hausdorff. Thus, Proposi-
tion 2.9 asserts that f is a homeomorphism, which proves that the topology on X is
metrisable. O

The Cantor ternary function @ is a continuous map of the Cantor ternary set ¢
onto the closed unit interval [0, 1]. There is a very interesting property that is shared
by all compact metric spaces.
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Proposition 2.49. If X is a compact metric space, then there exists a continuous
function f : € — X, where € is the Cantor ternary set, such that f is surjective.

Proof. By Exercise 1.133, the compact Hausdorff spaces € and € (in the product
topology) are homeomorphic. Because the map ¢ N - [0,1]Y defined by
@ ((x,)) = (®(x,)), is continuous and surjective, the compact metric space [0, 1]"
is a continuous image h(%) of ¥ via some continuous function 4. The proof of
Theorem 2.48 shows that X is homeomorphic to a closed subset of [0, 1]N. Therefore,
without loss of generality, assume that X is a closed subset of [0,1]Y and let
L = h~'(X), which is a closed subset of €. If it can be shown that L = g(%) for
some continuous g, then f = ho g would be a continuous surjection of € onto X.

In the product topology, {0, 1} and {0,5}" are obviously homeomorphic. By
Exercise 1.133, the former is homeomorphic to the Cantor ternary set %, while the
latter is homeomorphic to the set 45,3 defined by

oo

Gy)3 = {Z%’k‘|ake{0,5}§ c[0.1].

k=1

Hence, ¢ and %53 are homeomorphic, which implies that L is homeomorphic to
some closed subset K C €5/3.

The set 65,3 may be viewed as the “Cantor two-thirds set”, which has the
property that it does not contain the midpoint between any two of its elements. Let
dk : 623 — R be the continuous function dg (x) = sup |x—y|. Because K is compact,

yEK
the supremum is achieved at some point y, € K. Ey the “no midpoint” geometry of
>3, for each x € 6,3 the point y, € K is uniquely determined by x, and so the map
g : ¢2/3 — K defined by g(x) = y, is a continuous surjection. Hence, L and X are

continuous images of %'. |

Inspired by the metric completeness of the real numbers, one can consider the
metric completeness of more general metric spaces.

Definition 2.50. Assume that (X,d) is a metric space.

1. A sequence {x;}ren of elements x; € X is convergent to x € X if for every ¢ > 0
there exists N, € N such that d(x,x,) < ¢ for all n > N,.

2. A sequence {x;}ren Of elements x; € X is a Cauchy sequence if for every ¢ > 0
there exists N, € N such that d(x,, x,,) < ¢ for all m,n > N,.

The convergence of a sequence {x;}ren to x is denoted by x = klim X
—>00

Definition 2.51. A metric space (X,d) is complete if for every Cauchy sequence
{xi }ren of elements x; € X there exists x € X such that x = klim X
—00

Because metric spaces are Hausdorff, if a Cauchy sequence in (X,d) is conver-
gent, then the limit of this sequence is unique.

Example 2.52. R" is a complete metric space in the Euclidean metric d,.
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Proof. Denote the canonical basis vectors of R” by ey, ..., e,, and suppose that {wy };
is a Cauchy sequence of elements in R”, where

n
wy = Zal(k)ej’ VkeN.

J=1

Fix j. The inequality |oc;k) —oej(m)| < dy(wy, wy,) implies that the sequence {ocj(k) b is
a Cauchy sequence in R. Theorem 1.14 asserts that R is a complete metric space in
the absolute-value metric; hence, there is an «; € R such that o; = kl_l)n;o aj(k). This is
n
true for each j, and so let w = Zajej. Since
j=1

dry(w,wy) =

the sequence {wy}; converges to w. Hence, (R",d;) is a complete metric space. O

Although not every metric space need be complete, the following theorem shows
that every metric space is a dense subset of some complete metric space.

Theorem 2.53. For every metric space (X,d), there is a metric space (X.d) and a
continuous injective function f : X — X such that:

1. (X.d) is a complete metric space;

2. Ei(f(x),f(y)) =d(x,y), for all x,y € X; and
3. £(X) is a dense subset of X.

o0
Proof. LetZ = l_[X , the Cartesian product of countably many copies of X, which

n=1

we think of as the space of all sequences x = (x,),en in X. Let C C Z be the set of all
Cauchy sequences and define a relation ~ on C by (x,), ~ (y,) if lim, d(x,,y,) = 0.
It is straightforward to verify that ~ is an equivalence relation, and so consider the
space X = C/ ~ of equivalence classes, whose elements we denote by § for each
5= (s,), € C. Let ¢ : C — X denote the quotient map g(s) = §.

If s,t € C, then the sequence {d(s,,%,)}, is a Cauchy sequence in R (Exer-
cise 2.101). The limit lim, d(s,,?,) exists, because R is a complete metric space,
Further, suppose that 5,5',t,t' € C satisfy § = ¢ and t = ¢'. Then, for a fixed n € N,

d(sn.tn) < d(sp.5,) 4+ d(s,.1,) + d(1,.1,),
and

d(s), 1) < d(s),sn) +d(sp, 1) +d(t,,1,).
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Hence, lim, d(s,. t,) = lim, d(s),,t,), and so the formula
d(s,) = lim d(s,.1,)
n—>o00

yields a well-defined function d : X x X — R. It is simple to verify that d is in fact a
metric on X.

Consider the function ¢ : X — C that sends each x € X to the constant (and
Cauchy) sequence ((x) = (x,x,x,...), and define f : X — X by f = got. Observe
that, for all x,y € X, d(f(x).f(y)) = d(x, y); thus, f is a continuous and injective map
(Exercise 2.102). If s € C belongs to the equivalence class of ¢(x), for an element
x € X, then x = lim,, 5,, in X.

Choose any é € X and ¢ > 0. If s = (s,), € C is a representative of the class §,
then, by virtue of the fact that s is a Cauchy sequence, there is an N € N such that
d(sy,sm) < & for all n,m > N. Let x = sy and consider f(x). Because El(f(x),s') =
limy,>n d(sn,sm) < &, we deduce that B, (§) Nf(X) # @. Hence, f(X) = X

To show that (X,d) is a complete metric space, let {5} be a Cauchy sequence
in X, and suppose that & > 0. Thus, there is an Ny € N for which d (s, $¢) < ¢/3 for
all k,£ > Ny. The set f(X) is dense in X, and so, for each k € N, there exists xr€X
such that d(f (x¢), $¢) < 1. Thus,

d(f(xe).f () < d(f(xe).5e) + d(Ge.5e) + d(Ge.f (xe))
< 1/k+e/3+1/L.

If N > Nj is such that % < % and % < § for all k,£ > N, then d(f(x).f(x0)) < &,
for all k, £ > N, which proves that {f (x;) } is a Cauchy sequence in X. Furthermore,
the equation d(f (x).f(x¢)) = d(xz,x¢) shows the sequence r = {x}« is a Cauchy
sequence in X also. Thus, ¢ € C and we may consider { € X. The inequalities

(k50 < A5 < %

demonstrate that the Cauchy sequence {é; }; converges in X to . |
Definition 2.54. Let X be a topological space.

1. A subset G C X is a Gg-set if there is a countable family {U }en of open sets
U, C X such that

G=(\U.

2. A subset F C X is an F,-set if there is a countable family {F} }ien of closed sets
Fi € X such that
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F=U&

The Baire Category Theorem below is a remarkable result illustrating the nature
of complete metric spaces, as well as being widely relevant in applications of
topology to analysis.

Theorem 2.55 (Baire Category Theorem). If {U;}ien is a sequence of open sets
in a complete metric space (X,d), and if each Uy, is dense in X, then the Gg-set

N

keN

is also dense in X.

Proof. Choose xo € X and let ¢ > 0. We aim to prove that B.(Xy) N G # @, where

G=()U

keN
By hypothesis, U; is open and dense in V. Thus, there is a §; € (0,1) and an

element x| € B,(xo) N U such that Bs, (x;) € B.(xo) N U,. Likewise, U, is open and
dense in X, and so there is a 8, € (0, %) and an element x, € Bs, (x;) N U, such that
Bs,(x2) € Bs, (x1) N Us.

It is clear that this process may be continued by induction to obtain sequences
{xn}nen in X and {8, },en in R such that

1 R
5,, € (0, F) and B(S” (x,,) - B(Sn—l ()Cn_l) n Un .

By construction,
BSk (xk) c BSn (xn) - BS,, (xn) - Bs ()C()) s Vk>n.
Fix n € N and let k, m > n. By the inclusions above,

Xk, X € Bs, (x,) Bs, () -
Therefore, d(vi, v,;) < 2,,#_2, which shows that {x, },en is a Cauchy sequence. Since
X is a complete metric space, there is a limit x € X to this sequence. Choose any
n € N. If k > n, then

x; € Bs, (x,) € (Bs,_, (1) N U,) C U,

n—1

Hence, x € Bs, (x,) € U, and x € B, (x,) € B:(x0), and so x € GN B, (xp). |

Definition 2.56. A subset ' C X is nowhere dense in a topological space X if the
interior of the closure F of F is the empty set.
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Corollary 2.57. In a complete metric space,

1. the intersection of a countable family of dense Gs-sets is a dense Gs-set, and
2. the union of a countable family of nowhere dense F, sets is a nowhere dense F,
set.

Proof. Exercise 2.104. O

2.5 Connected Spaces

Definition 2.58. A separation of a topological space X is a pair (U, V) of open
nonempty subsets U,V € X such that UNV =@ and UUV = X. If X admits a
separation, then X is said to be a disconnected space; and if no separation of X
exists, then X is called a connected space.

The standard geometric model for the continuum R is that of an unbroken
continuous line. The following example provides the topological justification for
this model.

Example 2.59. Every closed interval [a, b] of real numbers is connected.

Proof. Assume [a,b] is not connected. Thus, there is a separation (U, V) of [a,b].
Without loss of generality, assume that a € U and define L = {x € R|[a,x] C U}.
Some observations concerning L are: (i) a € L, (ii) b € L (because U° = V is a
nonempty subset of [a,b]), (iii) x < b for all x € L, and (iv) if x € L and y € [a,x],
theny € L.

As L is a nonempty set bounded above by b, the supremum of L exists, which
we denote by c. Thus, for every ¢ > 0 there is a z € L such that ¢ — ¢ < z, which
shows that W N L # @ for every neighbourhood W of ¢. That is, ¢ € L. From L € U
we obtain L € U. Further, U and U¢ = V are open, and so U is also closed, whence
U = U. Therefore, c € U.

We now show that a < ¢ < b. First of all, because U is open, there is some ¢ > 0
for which [a,a + ¢) C U, which implies that a + ¢ < c. Likewise, if it were true that
¢ = b, then U would contain [a,b—¢] for all 0 < & < (b—a), and so U would contain
[a,b), thereby forcing the nonempty open set V to be V = {b} (which is not open in
[a,b]). Thus, ¢ < b.

Now because U is open and ¢ € U, there exists € > 0 such that (c—e,c+¢) C U.
As ¢ = sup L, there is an element x € L such that x € (¢ —&,¢] € U. Select z €
(c,c+¢€) CU. Thus, [a,x] C U and (x,z] C (c—¢&,c+¢&) C U imply that [a,z] =
[a,x]U (x,z] € U. But ¢ < z < sup L = c is a contradiction. Hence, it must be that
[a,b] is connected. |

To construct additional examples of connected spaces, the following result is
useful.
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Proposition 2.60. If {X,}yca is a family of connected subspaces of a topological
space X, such that ﬂXa # (0, then UX“ is connected.
o o

Proof. Without loss of generality assume that X = UX“’ and suppose that U and

o
V are open subsets of X such that UNV =@ and UUV = X. Let U, = UN X,
and V, = VN X, so that U, and V, are open in X,, and satisfy U, NV, = @ and
U, UV, =X,. Selectx € ﬂXa. Thus, x is an element of exactly one of U or V, say

o
U. Because x € X,, for every o € A, we deduce that x € U, for all . Hence U, # @
implies V, = @ because X, is connected. Thus, U = X and V = @, which implies
that X does not admit a separation. O

Example 2.61. R is connected.

Proof. R = U[—k, k] and ﬂ[—k,k] = [-1, 1] # @. Therefore, Example 2.59 and

keN keN
Proposition 2.60 imply that R is connected. O

Concerning mappings of connected spaces, we have:

Theorem 2.62 (Intermediate Value Theorem). If X is a connected topological
space and if f : X — R is a continuous function, then for any x1,x, € X and real
number r between f(x1) and f (x,) there is an x € X with f(x) = r.

Proof. Without loss of generality we may assume f(x;) < f(x;). Choose r €
[f (x1).f (x2)]. If, contrary to what we aim to prove, r & f(X), then f(X) C (—o0,r) U
(r,00). The open sets U = f~!(—oc0,r) and V = f~!(r,00) satisfy UNV = 0,
UUV =X,x; € U, and x, € V. Thus, (U, V) is a separation of X, in contradiction
to the connectivity of X. O

In a similar vein:

Proposition 2.63. Iff : X — Y is a continuous function and if X is connected, then
f(X) is a connected subspace of Y.

Proof. Exercise 2.107. O

The connectivity of the closed interval [0, 1] gives a useful way to determine
whether a space is connected.

Proposition 2.64 (A Connectivity Criterion). If X a topological space X has the
property that for every pair xo,x| € X there is a continuous function f : [0,1] — X
such that f(0) = xo and f(1) = xy, then X is a connected space.

Proof. Assume, contrary to what we aim to prove, that X is disconnected. Thus,
there is a separation (U, V) of X. Select xo € U and x; € V, and let f : [0,1] — X be
a continuous function such that £(0) = xo and f(1) = x;. Hence, (f~'(U).f~'(V))
is a separation of [0, 1], in contradiction to the connectivity of [0, 1]. Hence, it must
be that X is connected. O
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Proposition 2.64 does not characterise connected spaces in that there exist
connected topological spaces X for which the hypothesis of Proposition 2.64 is not
satisfied. Therefore, spaces that satisfy this connectivity criterion are called path
connected.

Definition 2.65. A topological space X is path connected if X satisfies the hypoth-
esis of Proposition 2.64.

Example 2.66. Ifn > 2, then R"\ {0} is a path-connected subspace of R".

Proof. Let xp,x; € R". If, considered as vectors, xo and x; are linearly independent,
then no nontrivial linear combination of xy and x; yields the zero vector. Hence,
the map f : [0,1] — R” defined by f(zr) = (1 —f)xo + tx; is continuous, satisfies
f(0) = xo and f(1) = x;, and has range contained in R” \ {0}. On the other hand,
if xp and x| are linearly dependent—that is, x; = Axy for some A € R—then there
is a nonzero z € R” such that z is linearly independent of xy and, thus, of x;. So,
by what has already been proved, there are continuous g,% : [0,1] — R"\ {0} such
that g(0) = xo, g(1) = z, h(0) = z, and A(1) = x;. Now let f : [0,1] — R"\ {0} be
given by f(¢) = g(21), if t € [0,1/2], and by f(¢) = h(2t—1), if t € [1/2,1]. Then f
is continuous (Exercise 1.127) and satisfies f(0) = xo and f(1) = x;. |

At the other end of the connectivity spectrum lies the notion of a totally
disconnected space.

Definition 2.67. A topological space X is fotally disconnected if for every pair of
distinct x,y € X there exist subsets U,V C X such that

l.xeUandyeV,
2. U and V are both open and closed in X, and
3.U0NnV=20.

To better understand the definition above, first note that a space A is disconnected
if A can be written as A = U UV, for some nonempty open disjoint subsets U, V C A;
in this case, U and V are necessarily both closed and open. Therefore, if X is totally
disconnected, and if x and y are distinct elements of X, then there is no connected
subset A of X that contains both x and y.

Example 2.68. The Cantor set is totally disconnected.

Proof. The Cantor ternary function @ is monotone increasing and is a continuous
surjection of the Cantor set € onto [0, 1] (Proposition 1.86). Suppose that x,y € €
are such that x < y. Recall that the open set [0, 1]\ €’ is a countable union of pairwise
disjoint open intervals. Of these intervals, select one, say (a, b), for which x < a and
b <y.Now select r,s € (a,b) such that r < s, and consider the open subsets U and
V of € given by U = @' ([0,r)) and V = @' ((s,1]). Because @ is monotone
increasing, we deduce that x € U, y € V, and U NV = @; and because @ is constant
on every open interval in [0, 1]\ ¢ (Corollary 1.87), we observe that @' ([0,r)) =
@1 ([0,7]) and @' ((5.1]) = @' ([s,1]). Hence, U and V are also closed sets, by
the continuity of @. O
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2.6 Stone-Cech Compactification

Earlier, in Proposition 2.22, we noted that every non-compact, locally compact
Hausdorff space X can be embedded into a compact Hausdorff space X by adding
a single point (the so-called point at infinity). The goal of the present section is
to show that another embedding of X into a compact Hausdorff space is possible,
and this embedding has the advantage that every bounded continuous real-valued
function on X extends to a continuous function on the larger space.

The first issue to address is setting the precise meaning of “compactification” of
a topological space.

Definition 2.69. A compactification of a topological space X is a pair (K,tx k)
consisting of

1. a compact space K, and
2. a continuous function tx g : X — K such that

a. ty g is a homeomorphism of X and tx x(X), and
b. txx(X) is dense in K.

By identifying X with its image tx x(X) in K, one can view K as being a compact
space that contains X as a dense subspace.

The definition of compactification does not ask, for example, that X (or tx x (X))
be open in K. However, if X is locally compact and K is Hausdorff, then such will
be the case.

Proposition 2.70. If a locally compact space X is dense in a Hausdorff space Y,
then X is an open subset of Y.

Proof. As in Proposition 1.64, the closure in X of a subset A C X will be denoted
by AX, and the closure in Y of a subset B C Y will be denoted by B.

Select xp € X. Because X is locally compact, there are an open set U in X and a
compact subset K of X such that xo € U C K. Therefore, U¥isa compact subset of
K and, hence, is compact in X. If one takes an open cover {V,}4e4 in Y of the set
UX, then {X NV, }ye4 is an open cover of UX in X. Hence, by compactness, finitely
many X NV, cover U¥, and so finitely many V,, cover U*, which proves that UX is
a compact subset of Y. Because Y is Hausdorff, compact subsets of ¥ are closed in
Y (Proposition 2.8); therefore, U is a closed subset of Y. The set UX contains U
and is a closed subset of Y; thus, UX 2 U” . On the other hand, UX C U?Y, by virtue
of X C Y. Hence, UX = U".

The set U has the form U = X NV, for some open set V in Y. Therefore, UY =
XN VY =V (because X is dense in Y). Moreover, UY = UX C X implies that V¥ C
X. Therefore, V C X and, hence, U = XNV = V. This proves that, for every xy € X,
there is an open set V in Y such that xo € V C X. In other words, X is an open subset
of Y. |
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The following theorem asserts the existence of a compactification K of a locally
compact Hausdorff space X in which every bounded continuous function X — C
extends to a continuous function K — C.

Theorem 2.71 (Stone-Cech Compactification: Existence). If X is a locally
compact Hausdorff space, then there exists a compactification (BX,tx) of X such
that

1. BX is Hausdorff, and
2. for every bounded continuous function f : X — C there exists a unique continuous
f:BX — C such that f o 1x(x) = f(x), forall x € X.

Proof. The first part of the proof is devoted to the construction of the compact
Hausdorff space S(X). To this end, let C,(X) denote the set of all continuous

functions f : X — C such that sup|f(x)| < co. For each such f € C,(X), let
xX€X

I/l = sup|f(x)| and consider the compact Hausdorff subspace Ky of C given by
X€EX
Ky ={¢ € C||¢| < |If]l}. Endow the product space

z= [] &

FeCr(X)

with the product topology. By Tychonoff’s Theorem, Z is a compact Hausdorff
space.
Define tx z : X — Z by

wz0) =[] f0.

FeCr(X)

for x € X. Each component map f : X — K; is continuous, and so the map tx 7 is also
continuous (Proposition 1.92). Furthermore, the local compactness of X implies (by
Exercise 2.92) that there exists an element f € C,(X) such that f(x) # f(y), for any
two distinct x,y € X. Hence, the function tx 7 is necessarily injective.

To prove that tyz is a homeomorphism between X and its range tx z(X) in
Z, it is sufficient to prove that ty ; maps open sets in X to open sets in tx z(X).
Therefore, suppose that U € X is an open set, select zp € tx z(X), and let xp € U
be the unique element for which zy = ty z(xo). Consider the function g¢ : {xo} — C
given by go(xo) = 1. The point set {x(} is compact and is contained in the open set
U. Hence, by the Tietze Extension Theorem (Theorem 2.43), there is a bounded
continuous function g : X — C such that g(xy) = 1 and g(U¢) = {0}. The canonical
projection p, : Z — K, C C is continuous (Proposition 1.92); therefore, the set
V =p; ' (C\{0}) is open in Z. Let W = V N z(X), which is open in tx z(X)
and contains z, (because p,(zo) 7# 0). If z € W, then there is a unique x € X with
z = txz(x). Thus, as 0 # p,(x) = g(x), we deduce that x ¢ U¢; hence, x € U.
Therefore, z = tx z(x) € txz(U). In other words, for each zy € tx z(U) there is an
open set W in tx z(X) such that zo € W C 1x z(U). Thus, tx z(U) is open in tx z(X),
which completes the proof that X and ty z(X) are homeomorphic.
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Denote the closure tx z(X) of tx z(X) in Z by BX, and let tx denote tx 7. Observe
that 8X is a compact Hausdorff space and contains tx(X) as a dense subspace. Thus,
(BX,tx) is a compactification of X.

Suppose now that f : X — C is a bounded continuous function, and define f :
B(X) - Cbyf= Pripx)- Note that, if x € X, then f o tx(x) = f(x). To show the

uniqueness of the extension f , suppose thatf andf are two extensions of f. If z €
Z, then there is a net {tx(xy)}o convergent to z. Thus, foix(z) = limyf(x,) and
Foix(z) = limgf(xy). Because convergent nets have unique limits in the Hausdorff
space C, we deduce that f = f. O

For the moment, the following definition of the Stone-Cech compactification of
a locally compact space will suffice.

Definition 2.72. The Stone-Cech compactification of a locally compact Hausdorff
space X is the compactification (BX, ty) constructed in the proof of Theorem 2.71.

It is natural to wonder about the conclusion of Theorem 2.71 in the case where
the locally compact Hausdorff space X is compact.

Proposition 2.73. If X is a compact Hausdorff space, then BX ~ X.

Proof. By construction, SX is the closure of tx(X) in the compact product space Z.
Furthermore, tx(X) and X are homeomorphic with respect to the subspace topology
of tx(X). Because tx(X) is a compact subspace of a Hausdorff space, the set tx(X)
is closed in Z (Proposition 2.9). Hence, BX = ix(X) = ix(X) >~ X. O

The following proposition captures a very elegant feature of the Stone-Cech
compactification.

Proposition 2.74. IfX and Y are locally compact Hausdorff spaces, and if h : X —
Y is a continuous function, then there is a continuous function H : X — BY such
that the following commutative diagram holds:

X ",y

o | |v

BX — BY.
H

Thatis, Hoixy = tyoh.

Proof. For a fixed g € Cp(Y), the function goh : X — C is bounded and continuous.
Therefore, by Theorem 2.71, there is a continuous function g : X — C such that
g (ix(x)) = g (h(x)), for all x € X. Let Zy be the compact product space constructed in
the proof of Theorem 2.71 and which contains 8Y as a subspace. Define a function
H:BX — Zy by

H(®) = (8(®))gecy(v)» forallw € BX.
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By definition of H, it is clear that H oty = ty o h. To show that H is continuous,
observe that p, o H = g, where p, denotes the canonical projection Zy — C of Zy
onto its g-th coordinate. Because g is continuous, Proposition 1.92 implies that H is
continuous.

To this point, we know only that H maps SX into Zy. However,

HBX) = H (x(0)) € H(ix (X)) =ty oh(X) S 1y oh(¥) = BY

shows that the range of H is indeed within Y. (Note that the first of the inclusions
above is a consequence of the continuity of H.) O

A variant of Proposition 2.74 is the following result, with essentially the same
proof.

Proposition 2.75. Assume that (K,ixx) is a Hausdorff compactification of a
locally compact Hausdorff space X with the property that for every bounded
continuous function f : X — C there exists a unique continuousf : K — C such
that f o txx =f. If L is an arbitrary compact Hausdorff space and if h : X — L is
a continuous function, then there exists a continuous function H : K — L such that
Ho lxxk = h.

Proof. Because BL is a subspace of the product space Z; = H K,, each g €
8€Cp(L)

Cp(L) yields a function goh : X — C that is bounded and continuous and which, by

hypothesis, extends to a function g : K — C. Following the proof of Proposition 2.74

verbatim leads to a continuous map Hy : K — BL C Z;. Proposition 2.73 shows that

BL =, (L), where t, : L — Z; is a homeomorphism of L and ¢, (L). Set H = (' o H

to get the map H : K — L with the desired properties. O

One final note, before continuing further, is that the method of proof employed
in Theorem 2.71 and the tangential results above (Propositions 2.74 and 2.75) also
yield the following noteworthy fact.

Proposition 2.76. If X is a locally compact Hausdorff space, then there exists a set
A such that X is homeomorphic to a subspace of the compact Hausdorff hypercube
([0, 114, 7).

Proof. Exercise 2.112 O

It is preferable to define the Stone-Cech compactification by a property rather
than by a construction. To do so, it is necessary to understand what other compacti-
fications of X possess properties (1) and (2) of Theorem 2.71 and to understand how
these relate to SX.

Theorem 2.77 (Stone-Cech Compactification: Uniqueness). Assume that X is a
locally compact Hausdorff space and that (K,ix k) is a compactification of X in
which K is Hausdorff and for every bounded continuous function f : X — C there
exists a unique continuous f : K — C such that f ot k() =f(x), forall x € X. Then
there exists a homeomorphism o : X — K such that o oty = ty g. That is,
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x idy

| [

BX —— K.

o

Proof. If Q is a set, then idy shall denote the (identity) function Q — Q in which
idp(g) = g, for every g € Q.

We apply Proposition 2.75 twice, as both compactifications K and BX satisfy
the hypothesis of Proposition 2.75. In the first instance, Proposition 2.75 yields
a continuous map Ix : K — BX such that Iy o tx x = tx. In the second instance,
Proposition 2.75 yields a continuous map Iy g : X — K such that Ix g o tx = tx k.
Hence,

Iyxolyoixx =Ixgoix =txx and Ixyolygoix =Ixoixx = Lx.

Therefore, because tx x(X) is dense in K and tx(X) is dense in BX, the functional
equations above lead to

IX,KOIX = ld[( and IXOIX,K = ldﬂx

Hence, Ix k is a bijection with continuous inverse Ix. Therefore, with o = Ix x we
have a homeomorphism « : X — K such that ® oty = 1x k. O

In light of Theorem 2.77 and Proposition 2.70, the Stone-Cech compactification
of a locally compact Hausdorff space X is any compact Hausdorff space K that
contains X as a dense open subspace and has the property that every bounded
continuous function f : X — C extends to a unique continuous f : K — C.

The final general property of the Stone-Cech compactification to be remarked
upon here is given by the following proposition, which asserts that $X is the largest
of all possible compactifications of a given locally compact Hausdorff space X.

Proposition 2.78. If X is a locally compact Hausdorff space and if K is a compact
Hausdorff space that contains X as a dense subspace, then K is a quotient of BX.

Proof. Exercise 2.113. O

The complete determination of BX using existing knowledge about X is very
difficult, if not impossible. Indeed, even if X is well understood and has good
topological properties, X can be tremendously different, as the following result
indicates.

Proposition 2.79. If X is an infinite discrete space, then BX is nonmetrisable and
totally disconnected.

Proof. Because X is an infinite set with the discrete topology, X is a locally compact
Hausdorff space; moreover, without loss of generality, we may assume that X is a
dense open subspace of SX.

Assume, contrary to what we aim to prove, that SX is metrisable. Let {x,},en
be any sequence in X consisting of infinitely many distinct elements. As X is



Problems 71

metrisable, Theorem 2.19 asserts that the sequence {x,},eny admits a convergent
subsequence {x,, }jen consisting of distinct points and with limit z € SX. Because
X is discrete, the sets A = {x,,, |k € N} and B = {x,,,,, |k € N} are closed, and
so the function fy : AUB — [0,1] in which fy(x) = 0, if x € A, and fy(x) = 1,
if x € B, has a continuous extension f : X — [0, 1] by Theorem 2.43. Further, f
has a continuous extension f# : BX — R. However, ff(z) = limf (*ny) = 0 and
FP(z) = limgf (Xny4,) = 1, which because of z = lim; x,, is a contradiction of the
continuity of f#. Therefore, it cannot be true that {x,},cy admits a convergent
subsequence, which by Theorem 2.19 implies that $X is not metrisable.

Select any nonempty proper subset Y of X. Because X has the discrete topology,
both Y and X\ Y are open in X. Therefore, the function f : X — [0, 1] defined by
f(x)=1ifxe Y and f(x) = 0 if x €Y is continuous. If Y ﬂmﬁ is nonempty,
where Kﬂ denotes the closure in BX of a subset A C X, then there exist z € X
and nets {y, }qea and {xs}sca in Y and X \ Y, respectively, such that z = lim, y, =
lims xs. Therefore, the continuous extension f# of f to BX has the property that
fP(z) =1limy f(yo) = 1 and f#(z) = lim; f(xs) = 0, which is a contradiction. Hence:
disjoint subsets of X have disjoint closures in §X.

Select any two distinct 71,7, € fX. Because X is Hausdorff, there are open sets
U,,U, € BX with each x; € U; and U; N U, = @. Because X is open in X, both
X NU; and X N U, are open sets, and thus their closures X N U,% and XN U,P are
open in BX, by Exercise 2.116. Therefore, all that remains is to show that each
zi € XNUP. To this end, assume that z € BX and U is any open set in BX that
contains z. Because X is dense in X, for every open set W containing z there is an
element xy € X such that xyy € U N W. Hence, {xy}w is a net in X N U converging
toz, and soz € XN UP. O

Corollary 2.80. BN is separable, but not second countable.

Proof. The countable set N is dense in SN, and so SN is separable. If BN were
second countable, then the compact Hausdorff space BN would be metrisable
(Theorem 2.48), in contradiction to Proposition 2.79. a

Observe that SN also furnishes us with an example that shows Theorem 2.19
need not hold beyond metric spaces. Specifically, using the proof of Proposi-
tion 2.79, no sequence in N admits a convergent subsequence in SN.

Problems

2.81. Prove that the following statements are equivalent for a topological
space X:

1. X is compact;
2. m Fy # @ for every family {F,},es of closed sets F, € X with the finite

wed
intersection property.
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2.82. Prove that the following statements are equivalent for a topological
space X:
1. X is compact;

2. ﬂ E, # 0 for every family {E,}yec4 of sets E, C X with the finite intersection

a€A
property.

2.83. Prove that if F is a finite set in a Hausdorff space X, then F is a closed set.

2.84. Prove that if ¥ C X in a Hausdorff space X, and thatif xe Yand U C X is a
neighbourhood of x, then U NY is an infinite set.

2.85. Suppose that (X, d) is a compact metric space and that U,,..., U, are open
n

subsets of X such that U Ui=X.
Jj=1

1 n
1. Prove that the function f : X — R defined by f(x) = — E dist, (x,U;) is
n
j=1

continuous and satisfies f(x) > 0 for every x € X.

2. Prove that if § = inf{f(x) |x € X}, then § > 0.

3. Prove that if S C X is a nonempty set for which sup{d(s;,s2) | s1,s2 € S} < §, then
SCUjforsomeje{l,...,n}.

2.86. In the Euclidean metric space (R",d,), prove that a subset K C R" is compact
if and only if K is closed and supd,(x,0) < co.

x€K

2.87. Prove that the n-spheres S" are compact.

2.88. Prove that if x and x’ are limits of a convergent sequence {x,},en in a
Hausdorff space X, then X’ = x.

2.89. Recall from Proposition 1.57 that the topological space (RY,.7 %) is metris-
able with respect to the metric

p((xn)m ) = sup (min (M, l)) )

n n

Show that § = {x € RY| p(x,0) = 1} is closed by not compact.
2.90. Determine whether (RN, .77) is a locally compact space.

2.91. Prove that in a locally compact Hausdorff space X that if K € U, where K is
compact and U is open, then there exists an open subset W C X suchthat K C W C U
and W is compact.

2.92. Assume that x and y are distinct points in a locally compact Hausdorff space
X. Prove that there exists a bounded continuous function f : X — C such that

J@) #fO).
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2.93. Prove that the topology .7 on X in Proposition 2.22 is Hausdorff.

2.94. Prove that R and the circle S' are homeomorphic, where R is the one-point
compactification of R.

2.95. Assume that Y is a nonempty subset of a topological space X. Suppose that
{Va}aea is anet in Y with limit x € X. Prove that x € Y.

2.96. If X and Y are topological spaces, then prove that the following statements
are equivalent for a functionf : X — Y:

1. f is continuous;
2. for every convergent net {xy }oc 4 in X with limit x € X, {f(xy)}vc4 is a convergent
net in Y with limit f(x).

2.97. Prove that the following statements are equivalent for a topological
space X:

1. X is Hausdorff;
2. every convergent net {x, }yc4 in X has a unique limit point.

2.98. Prove that a topological space X is normal if and only if (i) {x} is a closed set,
for all x € X, and (ii) for every closed set F and open set U for which F C U there is
anopenset Vwith FCVCVCU.

2.99. Prove that every separable metric space is second countable.
2.100. Prove that the metric spaces (R”",d;) and R",d,) are complete.

2.101. Prove that if (X,d) is a metric space and if {x;}; and {y;}; are two Cauchy
sequences in X, then {d(xg, yx) }x is a Cauchy sequence in R.

2.102. Suppose that (X;,d;) and (X»,d,) are metric spaces and that f : X; — X, is
an isometry, which is to say that d, (f (x),f(y)) = di(x,y) for all x,y € X;. Prove that
f is continuous and injective.

2.103. Prove that in a separable metric space, every open covering of an open set
admits a countable subcovering.

2.104. Prove that in a complete metric space the intersection of a countable family
of dense Gs-sets is a dense Gs-set and that the union of a countable family of
nowhere dense F, sets is a nowhere dense F, set.

2.105. Prove or find a counterexample to the following assertion: if X is a compact
metric space, then X is a complete metric space.

2.106. Prove that if Y is a connected subspace of a topological space X, then Y is
connected.

2.107. Prove thatif f : X — Y is a continuous function and if X is connected, then
f(X) is a connected subspace of Y.

2.108. Prove that the n-spheres §" are path connected.
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2.109. Prove that every connected open set U in R” is path connected.
2.110. Prove that every countable metric space is totally disconnected.

2.111. Show that the bounded continuous function f(x) = sin(1/x) on the locally
compact space X = (0, 1) does not extend to a continuous function f on the compact
set X =[0,1].

2.112. Prove that if X is a locally compact Hausdorff space, then there exists a set
A such that X is homeomorphic to a subspace of the compact Hausdorff hypercube
([0, 1]4,.7).

2.113. Prove that if X is a locally compact Hausdorff space and if K is a compact
Hausdorff space that contains X as a dense subspace, then K is a quotient of X.

2.114. Show that the one-point compactification of N is not homeomorphic to the
Stone-Cech compactification SN of N.

2.115. Assume that X is a non-compact, locally compact space X. Prove that the
Stone-Cech compactification X of X is not metrisable.

2.116. A topological space is extremely disconnected if the closure of every open
set is open. Show that if X is an infinite discrete space, then BX is extremely
disconnected.
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Chapter 3
Measure Theory

If topology derives its inspiration from the qualitative features of geometry, then the
subject of the present chapter, measure theory, may be thought to have its origins
in the quantitative concepts of length, area, and volume. However, a careful theory
of area, for example, turns out to be much more delicate than one might expect
initially, as any given set may possess an irregular feature, such as having a jagged
boundary or being dispersed across many subsets. Even in the setting of the real
line, if one has a set E of real numbers, then in what sense can the length of the set
E be defined and computed? Furthermore, to what extent can we expect the length
(or area, volume) of a union A U B of disjoint sets A and B to be the sum of the
individual lengths (or areas, volumes) of A and B?

This present chapter is devoted to measure theory, which, among other things,
entails a rigorous treatment of length, area, and volume. However, as with the subject
of topology, the context and results of measure theory reach well beyond these basic
geometric quantities.

3.1 Measurable Spaces and Functions

Definition 3.1. If X is a set, then a 0-algebra on X is a collection X' of subsets of
X with the following properties:

1. Xe X,
2. E‘ e Y forevery E € X'; and
3. for every countable family {E} }yen of sets Ej € X,

UEkEE.

keN
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The pair (X, X') is called a measurable space, and the elements E of X are called
measurable sets.

The smallest and largest o-algebras on a set X are, respectively, ¥ = {@, X} and
Y = P(X), the power set Z(X) of X. The following definition, while abstract in
essence, allows for the determination of more interesting, intermediate examples of
o-algebras.

Definition 3.2. If . is any collection of subsets of X, then the intersection of all
o-algebras on X that contain . is called the o-algebra generated by .7 .

It is elementary to verify that the o-algebra generated by a collection of .% of
subsets of X is a o-algebra in the sense of Definition 3.1.

Definition 3.3. If (X, .7) is a topological space, then the o-algebra generated by .7°
is called the o-algebra of Borel sets of X.

Let us now consider functions of interest for measure theory.

Definition 3.4. If (X,X) is a measurable space, then a function f : X — R is
measurable if f~1(U) € X, for every open set U C R.

Proposition 3.5. If (X, X) is a measurable space, then the following statements are
equivalent for a function f : X — R:

1. f (o, 00)) € X foralla € R;
2. 7Y ([a,00)) € X forall o« € R;
3. ' ((—o0,)) € X forall « € R;
4. f'((~o0,a]) € X foralla € R.

Proof. To begin, observe that (2) follows from (1), because

1 (a,00) =f" (m(a—%,oo)) = ﬂf_] ((a—%,oo)) e Xx.

keN keN

Statement (3) follows easily from (2), since
T (=o0.@) = (J.00)) € X
Next, we see that (3) implies (4), because
—1 _ 1 _ l _ —1(,_ l
' (—o0,a]) = (kON( oo,a+k)) _kONf (( oo,a—i—k)) €x.

Statement (4) implies (1), because
[ (@,00) =71 ((—00,0]) € T,
which completes the proof. O

An additional equivalent condition for the measurability of a function is set aside,
for future reference, as the following result.
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Proposition 3.6 (Criterion for Measurability). If (X, Y) is a measurable space,
then a function f : X — R is measurable if and only if f~' ((a,00)) € X, for all
aeR

Proof. By definition of measurable function, f~!((a,00)) € X for all & € R
because each («,00) is open in R.

Conversely, assume that f~' ((«,00)) € X, for all & € R. Let U € R be an open
set. By Cantor’s Lemma (Proposition 1.30), there is a family of pairwise disjoint
open intervals {J; };en such that U = UJk. Because f~'(U) = Uf_l(Jk) and X

k k
is closed under countable unions, it is enough to prove that f~!(J) € X for every
open interval J. For open intervals of the form (¢, 00) and (—o0, ), this is handled
by Proposition 3.5. If one has an open interval of the form J = («, 8), then £~ (J)
is given by £~ (J) =f 71 ((—o0, a])¢ Nf~1([B, 00))¢, which by Proposition 3.5 is the
intersection of two sets in X. O

Proposition 3.7. If (X, X) is a measurable space, if f,g : X — R are measurable
functions, and if A € R, then f + g, Af, |f|, and fg are measurable functions. If, in
addition, g(x) # 0 for every x € X, then f/ g is measurable function.

Proof. The equivalent criteria for measurability of Proposition 3.5 will be used in
each case. We begin with a proof that f + g is measurable.

Fix o € R and consider the set S, = {x € X|f(x) + g(x) > «}. Because f and g
are measurable, for each g € QQ we have

{xeX|f(x) >q}eX and {xeX|g>a—gkx)}eX.

Hence, as X is closed under intersections and countable unions,

Jxex|f@>gnixeX|g>a—gx)}) € X. (3.1)
q€Q

Let G denote the set in (3.1); we shall prove that S, = G. If y € S, then f(y) >
o —g(y). In fact, by the density of Q in R, there is a rational number g, € Q such

that f(y) > gy, > a —g(y). Thus,
yEXEX|f(x) > g }N{xeX]|gy >a—gX)},

which shows that S, € G. Conversely, if y € G, then there is a rational g, € QQ such
that y € {x € X|f(x) > ¢y} N{x € X|qy, > a —g(x)}. Thus, f(y) > gy > 0 —g(y)
implies that f(y) + g(y) > «, whence y € S, and, consequently, G C S,. This proves
that f + g is measurable.

The proof that Af is measurable is clear, and we move to the proof that |f] is
measurable. Note that if « € R, then |[f|™! (o, 00)) = X if @ < 0, and

17 (2. 00)) = (2. 00)) Uf ! (00, —a)), if o > 0.

In either case, |f]™! ((o, 00)) € X, which proves that |f| is measurable.
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To prove that the product fg is measurable, first assume that 2 : X — R is a
measurable function and consider 2. If o € R, then {x € X | h(x)?> > a} =X if o <0,
otherwise {x € X |h(x)* > a} = |h|™" ((/&r.00)). In either case, the sets belong to
Y. This proves that the square of a measurable function is measurable. To conclude
that fg is measurable, express fg as

1
fg=Z((f+g)2—(f—g)2)- (3.2)

As the sums, squares, and scalar multiples of measurable functions are measurable,
equation (3.2) demonstrates that fg is measurable.

If g(x) # 0 for every x € X, then 1/g is measurable (Exercise 3.79), which implies
that the function f/g = f - (1/g) is measurable. |

Using the algebraic features exhibited in Proposition 3.7, one deduces that the
following functions are measurable as well.

Corollary 3.8. Suppose thatf,g : X — R are measurable functions.

1. If max(f,g) is the function whose value at each x € X is the maximum of f (x) and
g(x), and if min(f, g) is the function whose value at each x € X is the minimum of
f(x) and g(x), then max(f,g) and min(f, g) are measurable.

2. ft is the function max(f,0) and f~ is the function —min(f,0), then f* and f~
are measurable.

Proof. By Proposition 3.7, the sum, difference, and absolute value of measurable
functions are measurable. Therefore, the formulae

max(f,g) = 1/2(f +g+1f —gl),

min(f,g) = 1/2(f +g—1If —2l),
[t =1/2(f1 +f). and
= =172(f1-5

imply the asserted conclusions. O

The purpose of the following result is to use sequences of measurable functions
to determine new measurable functions.

Proposition 3.9. Suppose that f; : X — R is a measurable function for each k € N. If

S = {x € X| sup,fi(x) exists},

LS = {x € X| limsup, fi (x) exists},
I = {x € X| inf, f; (x) exists},

LI = {x € X| liminf} f; (x) exists}, and
L = {x € X| limy fi (x) exists},
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then each of the sets S, LS, 1, LI, and L is measurable. Moreover,

sup, fi is a measurable function on S,
limsup,fi is a measurable function on LS,
infy fi is a measurable function on I,

liminf f; is a measurable function on LI, and
limfy, is a measurable function on L.

LRk~

Proof. The set f{! ((—00,q)) is measurable for every k € N and g € Q; therefore,

so is
U N (—o0.9)) =5.

q€Q keN

Consider now the function sup, f; defined on the (measurable) set S with values in
R. For every o € R,

{xeS| 51]1(pfk(x) > o} =|_JireS|fi(x) > a} € T(S).
keN

Hence, sup, fi is measurable as a function § — R.
The proofs that / is a measurable set and that inf; f; is a measurable function
I — R are handled in a similar fashion. For example, in this case, / is given by

1=J (" (g0

q€Q keN

For each k € N consider the measurable function g; : S — N defined by
gr(x) = Sugﬁl(x), x€S.
nz

For every x € LS, lim sup, f; is precisely infy gx. Moreover, by the discussion of the
previous paragraph, inf g; is a measurable function on the (measurable) set

L (Msi' (g.00)) = LS.

q€Q keN

Hence, as a function LS — R, lim sup, f; is measurable.

The proofs that LI is a measurable set and that liminfy f; is a measurable function
LI — R are similarly handled.

Consider the measurable set E = LSN LI and let & : E — R be the function

h(x) = lim supfi(x) —lim irI:f i (x).
k

Note that / is measurable and that

L = {x € X| lim supfi(x) = lim nklffk(x)} =h"'({0Y),
k
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which is a measurable set because
h_l({O}) =E\ (h_l (—o0,0)U h_l(O, oo)) .
Finally, for every o € R,

{xelL| lilgnfk(x) > o} =LN{xelL|limsupfi(x) >a} € X(L).
k

Therefore, lim, f; is measurable as a function from L to R. m|

Definition 3.10. If X is a set, then the characteristic function of a subset E C X is
the function yg : X — R defined by

ye(x)=1,ifxe€E, and yg(x) =0, if x € E.

From the definition above, the following proposition is immediate:

Proposition 3.11. If (X, X) is a measurable space and if E C X, then the charac-
teristic function yg : X — R is a measurable function if and only if E € X.

Characteristic functions can be used to restrict or extend the domain of functions
(Exercise 3.82).

Definition 3.12. If (X,X) is a measurable space, then a simple function is a
measurable function ¢ : X — R such that ¢ assumes at most a finite number of
values in R.

Suppose that ¢ is a simple function on a measurable space (X, Y). If p(X) =
{ay,...,a,} CR, then let Ex = ¢~ !'({or}) (which is a measurable set, as ¢ is a
measurable function) so that

Y= Zak XEx
k=1

represents ¢ as a linear combination of the characteristic functions yg, .

Definition 3.13. A sequence {f;}ien of real-valued functions f; on a set X is a
monotone increasing sequence if fi(x) < fi+1(x) for every k € N and every x € X.

The analysis of measurable functions depends, to a very large extent, on the
following approximation theorem.

Theorem 3.14 (Approximation of Nonnegative Measurable Functions). For
every nonnegative measurable function f on a measurable space (X, X)), there is
a monotone increasing sequence {@i}ren of nonnegative simple functions ¢, on X
such that

klggo @r(x) = f(x),

for every x € X.
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Proof. Let k, : [0,n] — Z be the function whose value at  is the unique j € Z for
which r € [%,j';—nl), and define w, : R — Q by w, () = «,(t)/2", if t € [0,n], and by
w,(t) = 0if t € (n,00). The functions w, satisfy w,(t) <t for every ¢ € [0, 00) and
Wy (1) < wyy1(¢) for all n € N and ¢ € [0,00). Now let ¢, = w, of. Thus, {¢,}, is a
monotone increasing sequence of nonnegative functions, each with finite range. For
each x € X there is some n € N for which f(x) € [0,n).Thus, for every k > n,

FO) — i) < %

which proves that lim ¢,(x) = f(x). All that remains is to verify that ¢, is
n—>oo

measurable. To this end, select n € N and let

1
E,=f""([n,00)) and E,j =f" (|:J7, %)) , for1 <j<2"n.

These are measurable sets and

XE; + NXE,.

Hence, ¢, is a simple function. O

By decomposing a real-valued function f into a difference its positive and
negative parts, namely f = f™ —f~, where

_r+f _fI=f
T2 o2

we obtain the following approximation result for arbitrary measurable functions.

rt and  f~ (3.3)

Corollary 3.15. If (X, X) is a measurable space and if f : X — R is a measurable
function, then there is a sequence {Y }ren of simple functions Yy : X — R such that

klim Yi(x) =f(x), VxeX.

3.2 Measure Spaces

Before continuing further, the values —oo and +oo will be added to the arithmetic
system of R. Formally, the extended real number system are the elements of the set
denoted by [—00, +00] and defined by {—oo} UR U {+o00}. (Here, —oo and +o0
are meant to denote the “ends” of the real axis.) The arithmetic of [—o0, +00] is
prescribed by the following laws:

1. r-sand r 4+ s are the usual product and sum in R, for all r,s € R;
2. 0-(—00) =0-(+00) =0;
3. r-(—o0) = —o0 and r- (+00) = 400, for all r € R with r > 0 and for r = 4o0;
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4. r-(—00) = 400 and r- (+00) = —o0, for all r € R with r < 0 and for r = —o0;
5. r+(—00) = —o0 and r + (+00) = +o00, for all r € R.

The sum of —oo and +o00 is not defined in the extended real number system,
which is a small fact that will be of note in our study of signed measures in
Section 3.7.

Henceforth, [0, o] denotes the subset of the extended real numbers given by

[0,00] = [0, 00) U {+00}.
The terminology below concerning families of sets will be used extensively,

beginning with the definition of measure in Definition 3.17.

Definition 3.16. A family {X, },e. of subsets of a given set X is a family of pairwise
disjoint sets if X, N Xp = @ for all o, B € A such that o # B.

Definition 3.17. A measure on a measurable space (X, X) is a function p : ¥ —
[0, 4+00] such that u () = 0 and

p (U Ek) = D), (34)

keN keN

for every sequence {Ey }ren of pairwise disjoint sets E; € X'. Furthermore,

1. if w(X) < oo, then u is said to be a finite measure, and
2. if u(X) =1, then w is said to be a probability measure.

The (X, X, ) is called a measure space.

Measures are not easy to construct or determine in general, but there are some
very simple examples nevertheless.

Example 3.18. Consider the measurable space (X, X) in which X is an uncount-
able infinite set and X' is the o-algebra of all subsets E C X that have the property
that E or E° is countable (see Exercise 3.71). If u : ¥ — [0, +00] is defined by

W(E) =0 if E is countable, and W(E) = 1 if E is countable,

then W is a measure on (X, X).

Example 3.19 (Dirac Measures). If X is a o-algebra of subsets of X in which
{x} € X for every x € X, then for each x € X the function §, : X — [0, 1] given by

8, (E)=1ifxeE, and §,(E) =0 ifx¢E,

is a probability measure on (X, X'). The measures §, are called Dirac measures or
point mass measures.
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Example 3.20 (Counting Measure). Consider the measurable space (N, Z(N)),
where & (N) is the power set of N. If i : X — [0, 4+00] is the function defined by

W(E) = the cardinality of E ,
then w is a measure on (N, #(N)) and is called counting measure.
We turn now to some general properties of measures and measure spaces.

Proposition 3.21 (Monotonicity of Measure). Let (X, X, ) denote a measure
space. Suppose that E,F € X are such that E C F. Then w(E) < u(F). Furthermore,

if W(F) < oo, then u(F\E) = u(F) — u(E).

Proof. Because E C F, we may express F as F = EU (E° N F), which is a union
of disjoint sets E and E° N F, each of which belongs to X'. Hence, u(F) = w(E) +
W(ENF) = p(E). 0

Proposition 3.22 (Continuity of Measure). Let (X, X, t) denote a measure space.
Suppose that {A; }ren and {Ey}ren are sequences of sets E € X.

1. If Ay C Ay, forallk € N, then
n (UAk) = lim pu(Ap). (3.5)
keN
2. IfEx D Ep4y, forallk e N, and if n(Ey) < oo, then

I (ﬂ Ek) = lim pu(Ep). (3.6)

keN

Proof. (1) Equation (3.5) plainly holds if ©(Ay) = oo for at least one k; hence,
assume that p(A;) < oo for all k € N. The sequence {A;}ien is nested and
ascending, and so it is simple to produce from it a sequence of pairwise disjoint
sets G € X' by taking set differences: that is, define G; to be A; and let

Gy =Ak\Ak_1, Vk>2.
Observe that w(A;) < oo implies that (Gy) = w(Ax) — u(Ax—1), by Proposi-
k
tion 3.21. Furthermore, the sets Gy are pairwise disjoint. Because Ay = U G,,
n=1

we have

A= G

keN keN
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Thus, by the countable additivity of u on disjoint unions,

(U= n(ys)
> Gy

keN

= p(A) + lim Y [p(A) — 1(A)]
k=2

pAD + [ lim pAn)] = wian),

which establishes formula (3.5).

The sequence {Ey}ien is nested and descending, and so it is simple to produce
from it a sequence of pairwise disjoint sets F; € X' by taking set differences: that
is, let

szEk\Ek—H» VkeN.

Observe that Ey = Ej4 U Fy and that Ey4+; N Fy = @. Thus, by the countable
additivity of u on disjoint unions,

W(ER) = W(E41) + u(Fr), VkeN.

(02 7).

== (0e) ()

the countable additivity of u on disjoint unions yields

K(ED) = p ﬂEk +M<U Fk)

Because

and

keN keN
=u mEk + Z /L(Fk)
keN keN
= u ]QEk + ngngo;[M(Ek)—M(EkH)]
€ =

= U ﬂEk + w(Er) — lim p(Enrr),
keN

which establishes formula (3.6). O
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As an application of the continuity of measure, the following result shows that
if a measurable function f on a finite measure space is unbounded, then the set on
which the values of f are very large has arbitrarily small measure.

Proposition 3.23. If (X,X, ) is a finite measure space and if f : X — R is
measurable, then for each ¢ > O there is an n € N such that

pxeX|f(0)]>n}) <e.

Proof. Let E,, = {x € X||f(x)| > n}, for each n € N. Note that u(E;) < u(X) < oo
and E,+| 2 E, for every n. Hence, by Proposition 3.22, if £ = ﬂ E,, then u(E) =

neN
lim w(E,). Now because, in this particular case, £ = @ and thus u(E) = 0, we
n—>oo

deduce that for each & > 0 there is an n € N such that u(E,) < e. |

One might not have a sequence of pairwise disjoint sets at hand. Nevertheless, it
is possible to obtain an estimate on the measure of their union.

Proposition 3.24 (Countable Subadditivity of Measure). Let (X, X, ) denote a
measure space. Suppose that {Ey }ren is any sequence of sets E;, € X. Then,

p (U Ek) <) nE. 37

keN keN

Proof. For each k € N, let

k—1

Fi = Ei\ UE]

J=1

Note that the sequence {F} }ren consists of pairwise disjoint elements of X' and that
each Fy C Ey. Thus, p(Fy) < u(Ey), by Proposition 3.21. Also,

UEk=UFk.

keN keN
Thus,
" (U E) i (U F) > 0 = Y ki,
keN keN keN keN
which proves inequality (3.7). O

There is a rather significant difference between those measure spaces (X, X, )
in which p(X) is finite and those for which p(X) = co. A hybrid between these two
alternatives occurs with the notion of a o-finite space.
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Definition 3.25. A measure space (X,X,u) is o-finite if there is a sequence
{X,1}nen of measurable sets X,, € X such that u(X,,) < oo for every nand X = U X,.

neN

3.3 Outer Measures

Having examined to this point some properties of measures, we turn now to the issue
of constructing measures. This will be done by first defining an outer measure.

Definition 3.26. If X is a set, then a function u* : 22(X) — [0, 0] on the power set
P (X) of X is an outer measure on X if

1. u*(@) =0,
2. w*(S1) < u*(S,),if S; € 85, and

3. u* U S ) < Z *(Sy) for every sequence {S; }ren of subsets S; C X.
keN keN

An outer measure is generally not a measure. And note that the domain of an
outer measure is the power set &?(X), rather than some particular o-algebra of
subsets of X.

Definition 3.27. A sequential cover of X is a collection & of subsets of X with
the properties that @ € & and for every S C X there is a countable subcollection
{Ii }xen C O such that

s c Ulk.

keN

Sequential covers lead to outer measures as follows.

Proposition 3.28. Assume that O is a sequential cover of a set X. If A : € — [0, 00)
is any function for which A(@) = 0, then the function u* : Z(X) — [0, o] defined by

oo
pr(S) =infy Y 20| Ul € 0 and S < | JIi (3:8)
k=1 keN

is an outer measure on X.

Proof. Clearly u* (@) = 0.If S C T, then any {I; }yen C O that covers the set T also
covers the set S, and so u*(S) < u*(T). Thus, all that remains is to verify that u* is
countable subadditive.

To this end, suppose that {S; }ren is a sequence of subsets S; € X. Since we aim
to show that

Ty (Usk) <Y uSH,

keN keN
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only the case where the sum ), £*(Sx) converges need be considered. For this case,
suppose that & > 0. For each k € N there is a countable family {/};}jen € € such that
Sk - Ujlkj and

> M) < 1S+ 57
J

Thus, {/i;}jen forms a countable subcollection of sets from & that cover US; and
satisfies

e (Us) = Zxam = Do) = Twrs o
keN K X keN

As g > 0 is chosen arbitrarily, ;* is indeed countably subadditive. O

The value of an outer measure is two-fold: (i) it is frequently easier to define
an outer measure on the power set of X than it is to define a measure on some o-
algebra of subsets of X (indeed, determining nontrivial o-algebras on X is in itself a
nontrivial task), and (ii) if one has an outer measure at hand, then there is a o-algebra
X of subsets of X for which the restriction of ©* to X' is a measure on (X, X'). This
latter fact is the content of the following theorem.

Theorem 3.29 (Carathéodory). If u* is an outer measure on a set X, then

1. the collection MM+ (X) of all subsets E C X for which
w5 (S =pu*ENS) + u*(ENS), VSCX,

is a o-algebra, and
2. the function p : M, (X) — [0, 00] defined by w(E) = u*(E), E € M+ (X), is a
measure on the measurable space (X, M+ (X)).

The criterion (1) in Theorem 3.29 for membership in 901, (X) is called the
Carathéodory criterion. The proof of Theorem 3.29 requires the following lemma.

Lemma 3.30. IfEy,....E, € M, «(X), then

(JEcem,-(x).

k=1

Moreover, if Ey, ..., E, € M, (X) are pairwise disjoint, then
n n
w* (Sﬂ[UEkD =Y u*SNE) VSCX. (3.9)
k=1 k=1

Proof. 1t is sufficient to consider the case n = 2, as the remaining cases follow by
induction on .
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We shall prove that Ey U E, € 9, (X), for all E1,E; € M« (X) Let S € X be
arbitrary and note that S N (E; U E;) can be written as

SN(EIUEy) =(SNEDUSNEy) =(SNE)U([SNEJ]NE).
Likewise,
SN(EVUEy)  =SN(E{NES) = (SNE))NES.
Thus,
w*(S) < p* (SN(E1UEL)) + p* (SN (E1 UE))

p* (SNEYU(SNESINE)) + u* ([SNE]NES)

IA

p*SNE) + p* ([SNENE)) + w* ([SNE{INES)

w*(SNE) + p*(SNEY)

= u*($),

where the final two equalities are because of E, € 9, (X) and E; € M+ (X),
respectively. Hence,

wr(S) = pu* (SN(EIUEy)) + u* (SN (E\UEy)), VSCX.

This proves that £y U E; € 901,,+ (X).
Next, let E1, E, € X be disjoint elements of 97,,«(X). If S C X, then

[Sﬂ (E] UEZ)] mEz = SmEz and

[SN(EIUE)]NES = SNE;. (3.10)
Thus, by using (3.10) together with the fact that E, € 91, (X), we obtain
wSNE) + pu*(SNEy) = p* (SN (EUE)) ,
which completes the proof. O

We are now equipped to prove Theorem 3.29.

Proof. To prove (1), namely that 91,,« (X) is a o-algebra, recall that a subset E C X
is an element of 9M1,« (X) if and only if E¢ € 9, (X). Hence, M+ (X) is closed
under complements. Further, the empty set @ clearly belongs to 91,,«(X). Thus, all
that remains is to prove that 97,,« (X) is closed under countable unions.

Lemma 3.30 states that 901, (X) is closed under finite unions. To get the same
result for finite intersections, note that
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E\,E; € M+ (X) = E{,E5 € M= (X)
— ESUES € M+ (X)
— (ESUES" € M= (X)

= (ES)° N (ES)° = E; NEy € My« (X).

That is, E; N E, € M« (X). By induction, E; N --- N E, € M+ (X), for all
Ei,....E, € M= (X).

Now let {A;}ren be a sequence for which Ay € M ,«(X) forall k e N. Let Ey = @
and

k—1
Ec=A\| 4. VkeN.

J=1

As 9+ (X) is closed under finite unions and intersections, Ejy € 9, +(X) for all
k € N. Furthermore, by Exercise 3.76, {E} }ren is a sequence of pairwise disjoint

sets for which
| Ee=J A
keN keN

Let

n
E=UEk and F,,:UEk, VneN.
keN k=1

Because F, C E, we have that E° C F;. The sets F, are elements of 2)t,,« (X); thus,
for any subset S C X,

w*(S) = u*(SNF,) + pu*(SNFy)
w(SNF,) + u*(SNE°).

v

Equation (3.9) of Lemma 3.30 yields
WHSNF) =Y p*(SNE).
k=1
Thus, this equation and the inequality pw*(S) > u*(SNF,) + w* (SN E°) imply that

W) = Y pu*(SNE) + u*(SNEY), VYneN.
k=1

Therefore, by making use of the fact that ©* is countably subadditive,
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pHS) Z Y Ht(SNEY) + pH(SNEY)
k=1

v

nw*(SNE)+ pu*(SNE°)

v

L (S).

Hence, u*(S) = u*(SNE) + pu* (SN E), which proves that E € 9,,« (X).

To prove (2), namely that u* restricted to 9,+ (X) is a measure, note first that
1 (@) = 0 and that the range of i is obviously all of [0, co].

Suppose now that {E }ren is a sequence in 9, (X) of pairwise disjoint sets and
let E = J, Ex. We aim to prove that u(E) = ), it(Ey). Outer measure is countably
subadditive; thus,

oo o0
W(E) = pu*(E) <Y p(E) =Y ().
k=1 k=1
Let S C X be arbitrary. By Lemma 3.30,
u* (Sﬂ |:UE/{|) = Z uw*(SNE,) forevery neN.
k=1 k=1

In particular, for § = X, this yields, for every n € N,

p (UEk) = (UEk) =D W (E) =) uE).
k=1 k=1 k=1 k=1

Thus,
o0 o0 n n
Z'U“(Ek) > (U Ek) >u (U Ek) = ZM(Ek),
k=1 k=1 k=1 k=1
o0 [e )
forevery n € N, and so (U Ek) = ZM(Ek). |
k=1 k=1

One useful consequence is the following simple result.

Proposition 3.31. Suppose that E,F € (X). If E C F and if u*(F) < oo, then
W*(F\E) = u*(F) — pn*(E).

Proof. Write F as F = (F\E) U E, which is a disjoint union of elements of 9(X).
Both w*(F) and w*(F\E) are finite. Thus, u*(F) = u*(F\E) + u*(E), by (3.9)
[with S = X]. O
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The next definition and proposition indicate that sets that have zero outer measure
are measurable.

Definition 3.32. If ©* is an outer measure on X, then a subset S C R is w*-null if
w*(S) =0.

Proposition 3.33. If u* is an outer measure on X and if E C X is w*-null, then
E € M+ (X).

Proof. LetEC Xbeapu*null set. f SC X, then ENSC Eandso 0 < u*(ENS) <
u*(E) = 0. Hence, by the subadditivity of outer measure,

R (S) = wH(ENS) + w*(E°NS) =0+ p*(E°NS) < u*(S).
That is, u*(S) = u*(ENS) + u*(E°NS) for every S C X. |

What other subsets £ C X will belong to the o-algebra 91,,« (X)? The answer to
this question depends, of course, on the character of the outer measure p*. A useful
answer in the setting of metric spaces is given by Proposition 3.35 below, for which
following definition will be required.

Definition 3.34. If (X,d) is a metric space and if A and B are nonempty subsets
of X, then the distance between A and B is the quantity denoted by dist(A, B) and
defined by

dist (A, B) = inf{d(a,b)|a € A, b € B}.

If, in a metric space (X, d), the distance between subsets A and B is positive, then
A and B are disjoint and u* (AU B) < u*(A) + u*(B). If equality is achieved in all
such cases, then the induced o-algebra 9t,.« (X) will contain the Borel sets of X.

Proposition 3.35. If an outer measure w* on a metric space (X,d) has the
properties that u*(X) < oo and that

KL (AUB) = pu*(A) + n*(B),

for all subsets A,B C X for which dist(A, B) > 0, then every Borel set of X belongs
to the o-algebra M+ (X) induced by p*.

Proof. By the Carathéodory criterion of Theorem 3.29, our objective is to show that,
for every open subset U C X, the equation

wH(S) = p*(SNU)+p*(SNU)

holds for all S C X.

To this end, select a nonempty subset S of X. If SN U = @, then the equation
w*(S) = p*(SNU)+ p* (SN U holds trivially. Thus, assume that SN U # @, and
for each n € N let

1
S, = lxe UnS|dist({x}, U > -\ .
n
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Observe that S, € S, foralln e Nand that UNS = U S,. By the hypothesis on
neN

w*, the distance inequalities dist (S,,, S N U°) > dist(S,, U°) > % > 0 imply that
K5(S) = pu* (SNUYUS,) = " (SNUS) + 1™ (S,).

Because ©*(X) < oo and because the sets S, form an ascending sequence, the
limit lim w*(S,) exists and is bounded above by p* (SN U). If it were known that
n—>oo

1_i>m w*(S,) = u* (SN U), then the inequality above would lead to
n—>oo

wH(S) = p*(SNU) +pu*(SNU),

which, when coupled with the inequality p*(S) < u*(SNU°) + u* (SN U) arising
from the subadditivity of u*, would imply p*(S) = u*(SNU) + u*(S N U°).
Therefore, all that remains is to prove that nlggo w5 (S, = pu*(SNU).

For every n € N, let A, = S,+1 \ S,. If m,n € N satisfy |m —n| > 2, then the
distance between A, and A, is positive, and so u* (A, UA,) = u*(A,) + w*(4,).
Therefore, by induction,

ZM*(Azk) =p* (UAZk) < U (S2+1) = (SNU) < 0.
k=1

k=1

o0 (o)
Hence, the series Z/,L*(Azk) converges. Likewise, ZM*(AZkH) converges, and
k=1 k=1

o
so the series Z * (Ay) converges. Therefore, by the countable subadditivity of u*,
k=1

W) < SNU) < @ S)+ Y w (A,

k=n+1
and so
o0
W SNU) = (S)l < Y w* A
k=n+1
o0
The convergence of Zu* (Ap) yields lim |u*(SNU)—u*(S,)| = 0. |
n—>oo

k=1
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3.4 Lebesgue Measure

The original motivation for the development of measure theory was to put the notion
of length, area, volume, and so forth on rigorous mathematical footing, with the
understanding that the sets to be measured may not be intervals, rectangles, or boxes.
The measures that captures length, area, and volume are called Lebesgue measures.

Proposition 3.36. The collection

ﬁn = n(ai,b,‘) |a,~,b,~ € R, a; < b,‘

i=1
is a sequential cover of R".

Proof. Let § C R". For each x € § there is a neighbourhood U, of x of the form
U, =[1i=,(ai,b;). Let V = U U,, which is an open set. By Proposition 1.26, the

X€ES
set A of all finite open intervals with rational end points is a basis for the topology

of R. Thus,

n
By =3[90 |pi-ai € Q. pi< qi

i=1

is a basis for the topology of R". By Proposition 1.24, every open set is a union of
basic open sets. Thus, since %, is countable, there is a countable family {/; };en €

P, C O, such that V = Ulk, whence S C Ulk. |
keN keN

Definition 3.37. Lebesgue outer measure on R" is the function m* on Z2(R")
defined by

m*(S) = inf{ Z AL [{Ik}ken € O and S C UIk ,

k=1 keN

where 0, is the sequential cover of R” given by Proposition 3.36 and the function A
is defined by

A (H(aivbi)) =[J@wi-a).
i=1

i=1

Observe that if E C R” is an open box in R” (that is, E € &), then A(E) is the
volume of E and m*(E) = A(E).

The first proposition shows that, in the case n = 1, m* is a length function for all
finite intervals, open or otherwise.
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Proposition 3.38. Ifa,b € R are such that a < b, then
m* ([a,b]) = m* ((a,b]) = m* ([a,b)) = m* ((a,b)) =b—a.

Proof. Because m™ is an outer measure, m*(S;) < m*(S,) if S; C S,. Therefore,
m* ((a,b)) =m*((a,b]) =m™*([a,b]) and m* ((a.b)) < m* ([a,b)) <m*([a,b]).
Since by definition, m* ((a,b) ) = b—a, it is enough to prove that m*([a,b]) = b—a.
To this end, observe that, for every € > 0, [a,b] C (a —¢&,b + ¢€). Because this open
interval covers [a, b], we have that m*([a,b]) < A((a—e,b+¢€)) =b—a+2e. As
this is true for every & > 0, one concludes that m*([a,b]) <b—a =m* ((a,b)). O

Similarly, one has:
Proposition 3.39. IfE € 0, then m*(E) = m*(E).
Proof. Exercise 3.88.

The notion of w*-null set, for an outer measure u* on a set X, was introduced
earlier. To simplify the terminology here, we shall say a subset S C R is a null set if
its Lebesgue outer measure m*(S) is 0. Thus, from Proposition 3.33, every null set
S C R” is necessarily Lebesgue measurable.

Example 3.40 (Some Null Sets). The following subsets of R" are null sets:

1. every finite or countably infinite set;
2. every countable union of null sets;
3. every subset of a null set;

4. the Cantor ternary set in R.

Proof. The details of these examples are left as an exercise (Exercise 3.89), but the
case of the Cantor set is described here.

The Cantor ternary set % is given by ¢ = [,y n» Where each G, is a union of
2" pairwise disjoint closed intervals F,, ; of length (1/3)". Thus,

on on

2 n
m*(€) < m*(G) =m* || Fuj | <Y _m*(F.y) = (5) :
j=1 j=1

As the inequality above holds for all n € N, m* (%) = 0. O

Proposition 3.41. [f c is the cardinality of the continuum, then the cardinality of
M (R) is 2¢ (the cardinality of the power set of R).

Proof. The Cantor ternary set ¢ has the cardinality if the continuum (Proposi-
tion 1.83) and every subset of ¢ is Lebesgue measurable. Hence, the cardinality
of M(R) is the cardinality of the power set of R. |

In addition to null sets, every open set is a Lebesgue measurable set.

Proposition 3.42. Every open set in R" is Lebesgue measurable.
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Proof. If W = (a,b) and U = (p,q) are open intervals, and if a < p < b < ¢, then
WNU is the interval I = (p, b) with length A(/) = (b—p) and W N U€ is an interval
J = (a,p) with length A(J) = (p —a). Thus,

b—a=m"(W)=m*() + m*(J) = m*(WNU) +m*(WNU°).

The equation above holds in cases where the inequalities a < p < b < ¢ are not
satisfied, because either one of WN U or W N U€ is empty, or WN U and W N U¢
are nonempty disjoint open intervals whose lengths sum to b —a.

A similar feature holds in R". If W = H(aj, bj)and U = l_[(pj, g;) are elements
j=1 j=1
of 0),, then either one of WN U or WN U is empty, or WN U and W N U are

nonempty disjoint elements of &, whose volumes sum to H(bf —aj). Hence,
j=1
m* (W) =m*(WNU)+m*(WNU)
forall W,U € O,,.
To prove that every open set in R” is Lebesgue measurable, assume that V C

R”" is an open set. Because R” has a countable basis for its topology, every open
set is a countable union of open sets. Therefore, we may assume without loss of

generality that V is a basic open set: V = H(aj, b)), for some a;,b; € Q. Let S CR"
j=1
be arbitrary and assume that ¢ > 0. Select a covering {U;};r C O, of S such that
ZA(Uk) < m*(S) + &. Because
k

snv c | Jwinvyand snve c | Jwenve).
k k

we have that

m*(SOV)+m*(SNVE) < 3, (m* (U N V) +m* (U N V°))

= ka*(Uk)

IA

m*(S) +e.

As ¢ > 0 is arbitrary, we deduce that m*(S) = m* (SNV) + m* (SN V), which
proves that the open set V is Lebesgue measurable. O
Corollary 3.43. Every Borel subset of R" is Lebesgue measurable.

If E and F are Lebesgue-measurable sets, then it is necessarily true that
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m(EUF)+m(ENF) =m(E)+m(F).

Proposition 3.44 below extends this property to outer measure of arbitrary sets, but
at the expense of weakening the equality above to an inequality.

Proposition 3.44. For any subsets A,B C R",

m*(AUB)+m*(ANB) < m*(A) +m*(B).

Proof. Let ¢ > 0 be given, and let {[;}; and {J;}; be coverings of A and B,
respectively, by open boxes [; and J; such that

Do) <m*(A)+e and Y L) <m*(B) +e.
k i

LetU:UIk andV:UJ,-. Thus, AC U and BCV,and AUB C UUYV and

k i
ANBC UNV.Because U and V are open sets, they are Lebesgue measurable and,
hence,

m*(AUB) + m*(ANB) < m*(UUV)+m*(UNV)=mUUV)+mUNV)
=m(U)+m(V) <Y ml)+ Y m(J;) < m*(A)+m*(B) +2e.
k i

Because ¢ > 0 is arbitrary, we have m*(AUB) +m*(ANB) <m*(A) +m*(B). O

The notion of o-finite measure space was introduced in Definition 3.25 as a
hybrid of finite measure space and infinite measure space. Lebesgue measure on
R" is a concrete example of a o-finite space.

Proposition 3.45. The measure space (R", M(R"),m) is o-finite.

n
Proof. If K; = H[—j, Jj] for each j € N, then K; is measurable of finite measure
1
m(K;) = (2j)", and R" = | ) K;. O
jeN
Every Borel subset of R” is Lebesgue measurable, and Borel sets are determined
by open subsets. Therefore, it seems natural to expect that the measures of arbitrary
Lebesgue-measurable sets can be approximated by the measures of open and/or
closed sets—this is the notion of regularity. The idea of translation invariance of
measure is related to the fact, for example, that if one moved an n-cube C in R” to
some other position in space, the volume of C would not change.
A tool in analysing the regularity and translation invariance of Lebesgue measure
is the following proposition.

Proposition 3.46. The following statements are equivalent for a subset E C R”.
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1. E is a Lebesgue-measurable set.
2. For every & > 0 there is an open set U C R" such that E C U and m*(U\E) < .
3. For every ¢ > 0 there is a closed set F C R" such that F C E and m*(E\F) < &.

Proof. The logic of proof is slightly unusual in that following implications will be
established: (1)=(2) and (1)=(3), then followed by (3)=-(1) and (2)=(1).
To prove that (1) implies (2), suppose that E C R" is Lebesgue measurable and let
& > 0 be given. The cases where m* (E) is finite or infinite will be treated separately.
In the first case, assume that m*(E) < oo. By definition, there is countable
covering {I; }reny C O, of E such that

> AL) < m*(E) +¢.

k=1
Let U = U I, which is an open (and, hence, Lebesgue measurable) set containing

k
E. Note that

o0
m*(E) < m*(U) < > A(I) < m*(E) + .
k=1
Because m*(U) < oo and E C U is a containment of Lebesgue-measurable sets,
Proposition 3.31 states that

m*(U\E) = m*(U) — m*(E) < Y _ A(l) —m*(E) < &.
k=1

which proves (2) in the case where m*(E) < co.
Assume now that m* (E) = co. Define E;, = E( | ([, k]"), for each k € N. Hence,

m*(E) < (2k)" and E = |_J E..
keN
Because m* (E;) < o0, the first case implies there are open sets U, C R”" such that

E; C Uy and m*(Up\Ey) < 2,{% Let U = U Uy, which is open and contains E.
k

Thus,
U\E € | JU\E
keN
and
m*(U\E) < m™* UNE: | < m* (U \E) < = — < g,
(U\E) < <kL€JN k\k)_; (k\k)_zkg;zk

which proves (2) in the case where m*(E) = oo.
For the proof of (1) implies (3), suppose that E C R" is Lebesgue measurable
and let ¢ > 0 be given. As E is Lebesgue measurable, so is E°. Apply (1)=(2) to
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E* to conclude that there is an open set U such that E C U and m* (U\E°) < ¢. Let
F = U°, which is a closed set contained in E. Thus,

m*(E\F) =m*(ENF)=m*(ENU) = m*(U\E°) < ¢,
thereby proving that (1) implies (3).
To prove that (3) implies (1), assume hypothesis (3) and let ¢ > 0 be given. By
hypothesis, there is a closed set F such that F C E and m*(E\F) < €. Let S C R" be
any set. Note that (SNE)NF =SNFand (SNE)NF° < ENF¢; hence,

m*(SNE) = m* (SNE)NF) + m* ((SNE) NF)

IA

m*(SNF) + m*(ENF°)
(3.11)
= m*(SNF) + m*(E\F)

IA

m*(SNF) + ¢.
The inclusion F' C E implies that

m*(SNE®) < m*(SNF°). (3.12)
Therefore, (3.11) and (3.12) combine to produce

m*(S) < m*(SNE) + m*(SNE°)

IA

e + m*(SNF) + m*(SNF°) (3.13)
= ¢+ m*(S).

(The final equality arises from the fact that F—being closed—is Lebesgue mea-
surable.) As ¢ is arbitrary, the inequalities (3.13) imply that m*(S) = m*(SNE) +
m* (SN E). That is, E is Lebesgue measurable.

Lastly, the proof of (2) implies (1) is similar to the proof of the (3)=-(1) and is,
therefore, omitted. m|

Proposition 3.47 (Regularity of Lebesgue Measure). Lebesgue measure m on R"
has the following properties:

1. m(K) < oo for every compact subset K C R";
2. w(E) =inf{u(U)|U C R" is open and E C U} for every measurable set E;
3. w(E) = sup{u(K) | K is compact and K C E}, for every measurable set E.

Proof. Assume that K C R” is compact. For each x € K there is an open box W, € 0,
of volume 1 such that x € W,. From the open cover {W,},ex of the compact set K
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extract a finite subcover {W,; }le and deduce that

m(K) < Zm(wx,) ={ < o0.

j=1

Next, assume that E € R" is a Lebesgue-measurable set and that ¢ > 0. By
Proposition 3.46, there is an open set U C R such that E C U and m(U\E) < e.
Thus,

m(U) = m(E) + m(U\E) < m(E) + ¢.

Hence, w(E) = inf{u(U)|U C R" is open and E C U}.

Now assume that E is a Lebesgue-measurable set such that the closure E of E
is compact. Let & > 0 be given. By the previous paragraph there is an open set U
containing E \ E such that .m(U) < m(E\E) +¢. Let K = EN U, which is a closed
subset of the compact set E; hence, K is compact. Furthermore, if x € K, then x € E
and x §!E N E°, which is to say that x € E. Thus, K C E. Because

m(E) —m(K) = m(E) — (m(t_?) —m(U)) =m(U) < m(E) —m(E) +¢,
we deduce that m(E) < m(K) + ¢ and u(E) = sup{u(K) | K is compact and K C E}.

For each k € N, the set B, = H[—k, k] is compact. If Ex = E N By, then {E} }ien 1S
1
an ascending sequence of sets such that E = U Ey. Thus, by continuity of measure,
keN
m(E) = klim m(Ey). Choose any positive r € R such that » < m(E). Thus, there is a
—00
k € N such that r < m(E;) < m(E). Because E; is compact, the previous paragraph
shows that there is a compact subset K of E; such that r < m(K). Now since E; C E,
K is also a subset of E. As the choice of r < m(E) is arbitrary, this shows that
W(E) = sup{u(K) | K is compact and K C E}. |

If x e R" and S € R”, then x + S denotes the subset of R” defined by
x+S={x+ylyeS}
Proposition 3.48 (Translation Invariance of Lebesgue Measure). If E C R” is
Lebesgue measurable and if x € R, then x + E is Lebesgue measurable and

m(x+E) =m(E). (3.14)

Proof. If I € 0, is the open box I = l_[(aj,bj), then x + I and 7 have the same

j=1
volume. Thus, for any subset S € R"” and x € R", the outer measures of S and x + S
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coincide. Therefore, we aim to prove that x 4 E is a Lebesgue-measurable set if E is
a Lebesgue-measurable set. To this end, we shall employ Proposition 3.46.

Let ¢ > 0. Because E is measurable, Proposition 3.46 states that there is an open
set U C R” such that £ C U and m*(U\E) < ¢. Thus, there is a countable covering
of U\E by open boxes I; such that

DA <e.

keN

For each k, x + I is an open box of volume A (x + I;) = A(I)). Furthermore, because
U is a countable union of basic opens (all of which are open boxes), the set x4 U is
open, the inclusion x + E C r 4 U is clear, and

@+ U)\(x+E) ={x+ylye U\E} =x+ (U\E) € | J(x+1).
keN

Thus,
m* (@ + D\ @+E) < ) A+1) =Y Al <e.

keN keN

Hence, x + E satisfies the hypothesis of Proposition 3.46, thereby completing the
proof that x 4- E is Lebesgue measurable. O

It is natural to wonder whether every subset of R is Lebesgue measurable. That
is not the case, as the following theorem shows. Because the proof of the theorem
below requires the Axiom of Choice, the result is existential rather than constructive.

Theorem 3.49 (Vitali). There is a subset ¥ of R such that V is not Lebesgue
measurable.

Proof. Consider the relation ~ on R defined by x ~ y if and only if y—x € Q. It
is not difficult to verify that ~ is an equivalence relation, and so the equivalence
classes x of x € R form a partition of R. Note that x = x + Q, for each x € R.
Foreachx e (—1,1),letA, =xN(—1,1). Of course, if x1,x; € (—1, 1), then either
Ay, =A,, or A, NA,, = 0. By the Axiom of Choice, there is a set #” such that, for
every x € (—1,1), 7 NA, is a singleton set.
The set Q N (—2,2) is countable; hence, we may write

QN (=2.2) = {qx| k € N}.

For each k € N, consider g; + 7. Suppose that x € (gx + %) N (g + V), for some
k,m € N. Then there are ¢, c,, € ¥ such that g; + ¢y = g, + ci; that is, cx — ¢, =
gm — qr € Q, which implies that ¢, € A.,. As ¥ NA,, is a singleton set, it must be
that ¢, = ¢, and g = g,,- Hence, {g; + 7 }ien is a countable family of pairwise
disjoint sets, each of which is obviously contained in the open interval (-3, 3).

Let x € (—1,1) and consider A,. By construction of ¥/, there is precisely one
element y € (—1, 1) that is common to both A, and ¥'. Thus, x and y are equivalent,
which is to say that x—y € Q. Because x,y € (—1,1), x—y € (—2,2); hence, x—y =
qx, for some k € N. Therefore, x € g, + 7.



3.4 Lebesgue Measure 103

The arguments above establish that
(-1 c [ J@+7) c (=3.3). (3.15)
keN

If ¥ were Lebesgue measurable, then each g, + 7 would be Lebesgue measur-
able, by Proposition 3.48, and m(q; + ¥) would equal m(¥"). Therefore, if ¥ were
Lebesgue measurable, then

m (U(Qk + "//)) = Zm(Qk +7) = Zm(y/)

keN keN keN

would hold. Furthermore, computation of Lebesgue measure in (3.15) would yield

2<) m(¥) <6. (3.16)

k=1

But there is no real number m(¥") for which (3.16) can hold. Therefore, it cannot be
that 7" is a Lebesgue-measurable set. |

Corollary 3.50. Outer measure m* on R is not countably additive. That is, there is
a sequence {S}ren of pairwise disjoint subsets Sy C R such that

m* (U Sk) <Y m*(Su).

keN keN

Proof. Let Sy = q; + 7, as in the proof of Theorem 3.49. Because m™* is countably

subadditive and because (—1,1) C U(qk +7),
keN

2 <m* (U Sk) :
keN
Therefore, because m* (g, + V) = m*(¥'), we have that. m*(Sy) = m*(S), for all
k € N, and the inequality above shows that m*(S;) # 0. Thus,
keN

On the other hand,

Usic (=33 = m*(USk)§6.

keN keN

Hence,
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m* (Usk) <D m* (S,

keN keN
as claimed. O

Vitali’s Theorem produces a nonmeasurable subset of (—1, 1); the argument can
be modified to produce a nonmeasurable subset of any measurable set of positive
measure.

Theorem 3.51. If E € M(R) and if m(E) > 0, then there is a subset ¥ C E such
that ¥V & M(R).

Proof. Let Ay = EN[—k,k] for each k € N. The sequence {A;};en is an ascending
sequence in M(R) with union E. Hence, by continuity of measure,

0 <m(E)= klim m(Ag),
—>00

and so m(Ag,) > 0 for some ko € N. Now apply the argument of Theorem 3.49
using E N [—ko, ko] in place of (—1,1) to determine a nonmeasurable subset 7" of
EN [—k(), k()] O

The Borel sets and null sets determine the structure of Lebesgue-measurable sets.
Proposition 3.52. The following statements are equivalent for a subset E C R:

1. E is a Lebesgue-measurable set;
2. there exist B,Ey C R such that:

a. B is a Borel set,
b. Ey is a null set,
c. EENB =0, and
d. E=BUE,.

Proof. Exercise 3.91. O

Proposition 3.52 shows how Borel sets can be used to characterise Lebesgue-
measurable sets. Much less obvious is the following theorem, which indicates that
these two o -algebras are in fact distinct.

Theorem 3.53 (Suslin). There exist Lebesgue-measurable subsets of R that are
not Borel sets. In fact, there are Lebesgue-measurable subsets of the Cantor ternary
set that are not Borel sets.

Proof. Let @ denote an extension of the Cantor ternary function (see Proposi-
tion 1.86) @ : [0,1] — [0,1] to a function R — [0, 1] by setting @ = 0 on (—00,0),
® =@ on|0,1],and ® =1 on (1,00). Let f : R — R be given by

fx)=P(x)+x, VxeR.

Observe that f is continuous and monotone increasing.
Define a collection X of subsets of R as follows:
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X ={SSRIf(S) € B(R)}.

We now show that X' is a o-algebra of subsets of R. Because R = f(R), R € X.
Moreover, if A € X, then f(A) Nf(A) =@ and R = f(R) = f(A) Uf(A°) imply that
f(AS) =f(A), whence A° € X'. That is, X' is closed under complementation. Now
suppose that {A; }reny C X'; then

f (UAk) =Jr@o € B®).

keN keN

Hence, ¥ is a o-algebra.

If p,q € Q and p < g, then the continuity of f and the fact that f is monotone
increasing leads to f ((p,q)) = (f(p).f(q)). Therefore, (p,q) € X for all p,q € Q.
Because X is a o-algebra and X' contains the base for the topology on R, X
necessarily contains the Borel sets of R. Hence,

f(B)e B[R), VBeBMR). (3.17)

In particular, if € is the Cantor ternary set, then f(%) is a Borel set. We now show
that f (%) has positive measure.

To this end note that [0, 1]\% is a union of countably many pairwise disjoint
intervals (ay, by), where ai, by € € for all k € N. Proposition 1.86 shows that @ is
constant on each such open interval. Therefore,

2=m([0.2]) = m(£([0.1))
= m(f(ZU([0,1\%)))
= m(f(€)) + m(f([0,1]\¢))

= m(f(%)) + Y_m((ax+ P(a). by + D(by))

keN

= m(f(€) + ) _(bx—a)

keN

= m(F(©)) + m((0,1NE)

m(f(€)) + 1.

Thus, m (f(¢)) = 1 > 0 and so, by Theorem 3.51, (%) contains a subset ¥ that is
not Lebesgue measurable. Let Q = f~!(¥). Because f is an injective function, the
preimage Q of ¥ under f must be contained in %. Thus, Q is a null set and, hence,
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is a Lebesgue-measurable set. However, Q is not a Borel set. (If Q were a Borel set,
then inclusion 3.17 would imply that f(Q) = ¥ would be a Borel set—but it is not.)
Hence, Q € M(R) and Q0 & B(R). O

Similar results hold in higher dimensions.

Theorem 3.54. Not every subset of R" is Lebesgue measurable, and there exist
Lebesgue-measurable subsets of R" that are not Borel measurable.

Proof. Exercise 3.92. O

3.5 Atomic and Non-Atomic Measures

There are a variety of ways to distinguish between qualitative properties of
measures, and in this section we consider atomic measures and their polar opposites,
non-atomic measures.

Definition 3.55. Assume that (X, X, 1) is a measure space.

1. A measurable subset E C X is an atom for p if w(E) > 0 and one of w(ENF) or
W(ENF)is 0, forevery F e X.

2. The measure p on (X, X)) is atomic if every measurable set of positive measure
contains an atom for p.

3. The measure u is non-atomic if p has no atoms.

Thus, counting measure on N is atomic, whereas Lebesgue measure on R is non-
atomic (Exercises 3.93 and 3.94). Every measure can be decomposed uniquely as
a sum of two such measures, as shown by Proposition 3.57 below. The proof will
make use of the following concept of singularity.

Definition 3.56. If v and fi are measures on (X, X), then w is singular with respect
to i for each E € X there exists a set F' € X' with the properties that

1. FCE,
2. w(E) = u(F), and
3. a(F)=0.

The notation u.% i indicates that u is singular with respect to fi, and if both u.% i
and fi. occur, then u and fi are said to be mutually singular.

Proposition 3.57. Every measure u on a measurable space (X, X) has the form
U = a + na, for some mutually singular atomic measure [L, and non-atomic
measure [y, on (X,X). Moreover, if i, and [i,, are atomic and non-atomic
measures on (X, X) such that |4 = [i, + fAna, then Ly = Wy and finy = Hna-

Proof. Let 2 be the family of all countable unions of sets that are atoms for u. For
each E € X, define

pa(E) = sup{u(END)|D € 7}
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Mna(E) = sup{i(ENN) | pna(N) = 0}.

Observe that p, and p,, are measures on (X, ) and satisfy p = p, + fpa- If
Ha(N) = 0, then (NN D) =0 for all D € Z; hence, uy(D) =0 for all D € 2,
and SO [y Wna- By definition of piy,, tna(D) = tna(DNN) and @, (N) = 0 imply
that ,(D NN) = 0; hence, (p,-Y Uy.

To show that pu, is atomic, suppose E € X such that w,(E) # 0. Because
Wa(E) = 0 when w(E) = 0, we deduce that u(E) # 0. Furthermore, by the definition
of Ua, a(E) # 0 implies there is some D € 2 such that w(E N D) # 0. By the
definition of &, we can write D = UD”’ where each D, is an atom for u, and

neN

so w(END,) # 0 for some n € N. Since EN D, is an atom for u such that
wa(END,) # 0, and because i,(E) = 0 when w(E) = 0, we see that EN D, is
an atom for p,. Thus, u, is an atomic measure.

To show that jt,, is non-atomic, suppose that @, (E) # 0. Therefore, w(ENN) #
0 for some N € X with p,(N) = 0. The set ENN is not an atom for u, because
wa(ENN) # 0if ENN were an atom. Since (ENN) # 0 and because ENN is not
an atom for u, there exists F € X such that W (ENNNF) #0and u((ENN)\F) # 0.
Hence, pn,(ENF) # 0 and pn,(E \ F) # 0, implying that (s, is non-atomic.

The proof of the uniqueness of the decomposition is left as Exercise 3.95. O

3.6 Measures on Locally Compact Hausdorff Spaces

If one considers the Borel sets of a topological space X, then it is natural to expect
that certain topological features of X play a role in the measure theory of X. But for
this to occur, the particular measure under consideration needs to be aware of the
topology. One class of measures that is sensitive to topology is the class of regular
measures.

Definition 3.58. Let (X,.7) be a topological space and consider a measurable
space (X, X') in which X' contains the o -algebra 8 (X) of Borel sets of X. A measure
uon (X, X) is said to be a regular measure if

1. u(K) < oo for every compact subset K C X,
2. w(E) = inf{u(U)|U is open and E C U}, for every E € X, and
3. w(U) = sup{u(K)| K is compact and K C U}, for every open set U.

Observe that Proposition 3.47 asserts that Lebesgue measure is regular.
The third property above for the measure of an open set extends to arbitrary
measurable sets of finite measure.

Proposition 3.59. Assume that u is a regular measure on (X,X), where X is a
topological space and where X contains the Borel sets of X. If E € X' satisfies
W(E) < 00, then
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W(E) = sup{(K) | K is compact and K C E}.

Proof. Assume that E € X' has finite measure and let ¢ > 0. Because u(E) =
inf{(U) | U is open and E C U}, there is an open set U € X such that E € U and
w(U) < u(E)+¢/2. Hence, u(U) < oo and u(U\ E) < g/2. Because U is open and
has finite measure, the same type of argument shows that there is a compact set A
with A € U and uw(U) < u(A) +¢/2. Lastly, since u(U \ E) < ¢/2, there is an open
set W with U\ E C W and (W) < /2. The set W¢ is closed and is contained in
U°UE. Thus, K = AN WF¢is a closed subset of a compact set and is, hence, compact.
Further,

K=ANW' CAN(UUE)=ANU)UMANE)=ANE CE

and
p(E) < p(U)
< u(A) +¢/2
= WANW) + (AN W) +¢/2

<¢e/24+uK)+¢/2.
Hence, K C E and u(E) < u(K) + ¢ implies that @ (E) is the least upperbound of all
real numbers (K) in which K is a compact subset of E. O

Proposition 3.59 admits a formulation for o-finite spaces, which will be of use in
our analysis of LP-spaces.

Proposition 3.60. If (X, X, 1) is a o-finite measure space in which X is a topolog-
ical space, X contains the Borel sets of X, and | is regular, then

W(E) = sup{u(K) | K is compact and K C E}

forevery E€ X.
Proof. Exercise 3.96. O

Continuous functions are, from the point of view of analysis, fairly well under-
stood. In comparison, measurable functions appear to be harder to grasp because
of the existential nature of measurability. Therefore, in this light, the following
two theorems are striking, for they show that, under the appropriate conditions,
measurable functions within ¢ of being continuous.

Theorem 3.61. Assume that | is a regular finite measure on (X, X'), where X is a
compact Hausdorff space and where X contains the Borel sets of X. If f : X — Risa
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bounded measurable function, then for every € > 0 there exist a continuous function
g:X — Rand a compact set K such that gx = fix and j1(K) <e.

Proof. To begin with, assume f is a simple function with range {«y,...,®,},
where a1, ...,a, € [0,1] are distinct real numbers. Let E; = f~!({e;}), which is a
measurable set; note that E; N E; = @ if i # j. Let & > 0 be given. By Proposition 3.59,
for each j there is a compact subset K; C E; with w(K;) + £ > u(E;). Thus,

n
W(Ej\ K;) < £ for every j. Because E; N E; = @ fori # j, if K = UKj, then
=1

&) =pn | JE\K | =D nE\K) <«
j=1

j=1

The restriction fix of f to the compact set K is plainly continuous. Since X is normal,
the Tietze Extension Theorem asserts that fix has a continuous extension g : X —
[0, 1].

Assume now that f is an arbitrary measurable function with 0 < f(x) <1 for
every x € X. By Proposition 3.14 there is a monotone increasing sequence {@, },en
of nonnegative simple functions ¢, on X such that nlgglo @n(x) = f(x) for every x €

X. In fact, because f(X) C [0, 1], the convergence of {¢,}, to f is uniform on X
(Exercise 3.83). By the previous paragraph, for each n € N there is a compact set K,,

N
such that u(K$) < ¢/2" and ¢, g, is continuous. Observe that ¢; (x) + Z((p,, (x)—
n=2
00 N
@n1(x)) = oy (x), and 50 @1 + Y (¢u— @u—1) =f. Because @1 + Y _(¢n— 1) is

n=2 n=2

o0 o0
continuous on K = ﬂ K, and because ¢ + Z((p,, — @n—1) converges uniformly to

n=1 n=2
f, the measurable function f is continuous on K. By the Tietze Extension Theorem,

fix has a continuous extension g : X — [0, 1]. Because

(K <> (K < e,

n=1

this completes the proof of the theorem in the case where f(X) C [0, 1].

For the case of general f, select @ € R such that af (X) C [—1, 1], and decompose
af as (af)T — (af)”, where (af) ™ and (af)™ are measurable functions with ranges
contained in [0, 1]. Thus, the case of general f follows readily from the case of f
with f(X) € [0, 1]. |

Theorem 3.62 (Lusin). Assume that [ is a regular measure on (X, X), where X
is a locally compact Hausdorff space and where X' contains the Borel sets of X. If
f:X — R is a measurable function with the property that figc = 0 for some E € X
with finite measure, then for every & > 0 there exists a continuous and bounded
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function g : X — R such that
p({x € X|f(x) # g(0)}) <e.

Proof. By hypothesis, fige = 0; thus, E, = {x € X||f(x)| > n} is a subset of E for
every n € N. Because u(E) < oo, Proposition 3.23 implies that u(E,) < /6 for
some n € N. Hence, if F = ENE{, which is a set of finite measure, then fjp is
bounded.

By Proposition 3.59, there is a compact subset ¥ C F such that u(F\Y) < /6.
Consider the bounded measurable function fjy. By Theorem 3.61, there is a compact
subset K C Y and a continuous function gy : ¥ — R such that go|x = fix and u(¥'\
K) < /6. Thus,

E\K=E,U(F\Y)U(Y\K)
yields w(E\K) < ¢/2.
The regularity of @ again implies the existence of an open set U C X for which
ECUand u(U) < u(E)+¢/2. Hence, w(U) is finite and u(U \ E) < £/2. Because
K is compact and K C U, Theorem 2.43 asserts that go admits a continuous and

bounded extension g : X — R such that g(x) = 0 for all x & U. Therefore, 0 =
glue = fiue and, hence,

px e X|f(x) # g} = n(x € E[f(x) # g(0)}) + n({x € E°|f(x) # g(0)})
<eg/24+¢e/2=c¢,

which completes the proof. O

3.7 Signed and Complex Measures

Extending the notions of length, area, volume, and other arbitrary measures to
real- and complex-valued quantities results in the concepts of signed measure and
complex measure.

Definition 3.63. A function w : ¥ — [—00, +00] on a measurable space (X, X) is
called a signed measure if w(@) = 0 and

w (UEk) = Za)(Ek),
k=1 k=1

for every sequence {E; }ren of pairwise disjoint sets Ey € X.
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The definition of signed measure entails some subtleties. First of all, arithmetic
in the extended real number system [—oo, +00] does not admit sums of the form
(—00) 4 (+00) or (+00) 4 (—00), which implies that for each E € X' at most one
of w(E) or w(E) can have an infinite value (because w(X) = w(E) + w(E)). In
particular, this means that if there exists a measurable set E with w(E) = 400, then
necessarily w(X) = +o0; and if there exists a measurable set E with w(E) = —oo,
then w(X) = —oo necessarily. Therefore, w(X) can achieve at most one of the values
—oo or +o00. If i does not achieve either of these infinite values, then w is said to
be a finite signed measure. The triple (X, X', w) is called a signed measure space.

Definition 3.64. If (X, ¥, w) is a signed measure space, and if P,N € ¥, then

1. P is said to be positive with respect to w if w(ENP) > 0 for every E € X', and
2. N is said to be negative with respect to w if w(ENN) <0 for every FE € X.

Interestingly, a signed measure partitions a signed measure space into a positive
part and a negative part, as shown by the Hahn Decomposition Theorem below.

Theorem 3.65 (Hahn Decomposition of Signed Measures). If (X,X,w) is a
signed measure space, then there exist P,N € X such that

1. P is positive with respect to w and N is negative with respect to w,
2. PON =0, and
3. X=PUN.

Proof. We may assume without loss of generality that —oo is not one of the values
assumed by w. Let o« = inf{w(E) | E € X' is a negative set}. (Because @ is a negative
set, the infimum is defined.) Let {E} }ren be a sequence of measurable sets for which
k=1
o = lim; w(Ey). For each k let Ny = E \ UEk so that {Ny }ren is a sequence of
j=1
o0
pairwise disjoint negative sets such that o = infy w(Ny). Thus, with N = UNk’ we
k=1

o0
have for every j € N that w(N) = Za)(Nk) < w(N;). Hence, o(N) =a and Nis a
k=1
negative set. Because —oo is not in the range of w, it must be that w(N) € R. Hence,
« is the minimum measure of all negative subsets of X.

Let P = N¢. Assume, contrary to what we aim to prove, that P is not a positive
set. Thus, there exists a measurable subset E C P such that w(E) < 0. The set E is
not negative because, if it were, then N U E would also be a negative set of measure
w(NUE) = a+w(E) < a, which contradicts the fact that « is the minimum measure
of all negative subsets of X. Hence, E must possess a measurable subset F of positive
measure. Let n; € N denote the smallest positive integer for which there exists a
measurable subset F; C E of measure w(F;) > 1/n;. Since E\ Fy and F are disjoint
and have union E, w(E) = w(E\ F1) + w(Fy). Thatis, o(E\ F1) = o(E) —w(F)) <
w(E)—n,~! < w(E). For the very same reasons given earlier, the set E\ F| cannot be
negative; thus, £\ F contains a measurable subset of positive measure. Let n, € N
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denote the smallest positive integer for which there exists a measurable subset F, C
(E\ F) of measure w(F,) > 1/n,. Repeating this argument inductively produces a
subset {n; }reny € N and a sequence {Fy }ren of pairwise disjoint measurable subsets

o
F C E such that the set F = UFk satisfies
k=1
o0 o0 1
F) = F) > —>0.
o(F) ;ax ED D

k=1

Therefore, the subset G = E \ F of E satisfies (G) < w(G) + o(F) = w(E) < 0.
Since —oo is not in the range of w, w(G) is a negative real number, and so

0< ;nik < ;w(Fk) = w(F) = o(E) — o(G) < |o(G)| < 00

implies that limy ! = limg w(Fy) = 0. Therefore, if Q is a measurable subset of
G, then

QCG=ENF'=EN (ﬁFk) = ﬁ(E\Fk)

k=1 k=1

implies that Q C E'\ F}, for every k € N. If it were true that w(Q) > 0, then for some
j € N we would have w(Q) > nj%, which is to say that Q is a subset of E'\ F; of

1 1
= s

measure w(Q) > in contradiction to the property of n; being the smallest

positive integer for which E\ F; has a subset A of measure w(A) > nl] Hence, w(Q) <
0 and the fact that Q is an arbitrary measurable subset of G implies that G is a
negative set. But G € P implies that GN N = @ and so the negative subset GUN
satisfies w(G UN) < «, which is in contradiction to the fact that « is the minimum
measure of all negative subsets of X. Therefore, it must be that P is a positive set.

O

The sets P and N that arise in Theorem 3.65 are said to be a Hahn decom-
position of the signed measure space (X, X,w). While this decomposition need
not be unique, Exercise 3.99 shows that if (P;,N;) and (P,,N,) are two Hahn
decompositions of a signed measure space (X, X, w), then

w(ENP))=w(ENP;) and w(ENN)) =w(ENN,)
for all E € X'. Therefore, the functions wy,w_ : ¥ — [0, +o¢] defined by
w+(E)y=w(ENP) and w_(E)=—-w(ENN) (3.18)
are measures on (X, X') and are independent of the choice of Hahn decomposition

(P,N) of (X, X, w). Note, also, that at least one of w4 and w_ is a finite measure.
These observations give rise to the next theorem.
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Theorem 3.66 (Jordan Decomposition Theorem). For every signed measure
on a measurable space (X, X)), there exist measures w4+ and w— on (X, X) such
that

1. at least one of w4+ and w— is a finite measure, and

2. w(E) = w4+(E)—w—(E), for every E € X.

Furthermore, if y,8 are measures on (X, X), where at least one of which is finite,
and if o(E) = y(E)—68(E) for every E € X, then w4+ (E) < y(E) and w—(E) < §(E),
forallE € X.

Proof. Exercise 3.100. O

Turning now to complex measures, the definition below departs from the
definitions of measure and signed measure in that it is assumed from the outset
that the measure is finite.

Definition 3.67. A function v : ¥ — C on a measurable space (X, Y) is called a
complex measure if v(¥) = 0 and

v (UEk) =Y v(E,
k=1

k=1

for every sequence {E; }ren of pairwise disjoint sets Ey € X.

By decomposing a complex measure v into its real and imaginary parts Rv and
v, two finite signed measures are obtained, each of which is a difference of finite
measures. Hence, there are finite measures p; on (X, Y), forj=1,...,4, such that

v = (@1 — p2) + iz — pa).

By considering the function E +— |v(E)|, something close to a measure is
obtained—but the triangle inequality makes this function countably subadditive
rather than additive on sequences of pairwise disjoint sets. Therefore, to obtain a
measure from a complex measure requires slightly more effort.

Definition 3.68. In a measurable space (X, X'), a measurable partition of a mea-
surable set E C X is a family £ of countably many subsets A € X such that A C E
forall A € g, |Jse, A =E,and AN B = @ whenever A, B € P are distinct.

Proposition 3.69. If v is a complex measure on a measurable space (X, X)) and if
[v|: X — [0,00] is defined by

[v[(A) = sup Z [V(E)|| &4 is a measurable partition of A ¢ ,
Ec Py

then |v| is a finite measure on (X, X).
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Proof. Because Yy = {A,B}, where A = B = {J, is measurable partition of the
empty set @, we have that v(@) = v(@) + v(@) in C and so u () = 0.

To prove that |v| is countably additive, let {E}}ren be a sequence of pairwise
disjoint measurable sets and let E = | J,oyEx. For each k, consider an arbitrary
measurable partition {Fj;}jen of Ey; thus, Z [v(Fi)| < |v|(Ex). Because {Fy;}ijen

J
is an arbitrary measurable partition of E,

DN wF| < vIE).

k=1 j=1
For each k, |v|(Ey) is the supremum of Zj |V (Fy;)| over all measurable partitions

{Fij}jen of Ey, and therefore the inequality above yields Z [V[(Ex) < |V|(E).
k=1
Conversely, select an arbitrary measurable partition {A;}sen of E. Because the
sets {Ey }ren are pairwise disjoint, {A; N E }ren is a partition of Ay for every £ € N,
and {A; N E}}en is a partition of Ej for every k € N. Thus,

Z|V(Ae)| ZZv(AmEkn—ZDv(Amw Dv(Em

k=1{=1

o0
and so |V|(E) < Z |v(Ey)|. Hence, |v| is countably additive.
k=1
As indicated previously, there are finite measures 1; on X,2), forj=1,...,4,

such that v = (| — ) +i(u3 — ita). Thus, for any measurable set E € X, [v(E)| <
4

Z W;(E). Therefore, if Py is a partition of X, then
Jj=1

4
Yo @El< Y > e = Z > w(E) = Zu,oo < 0.

Ee Py EeZyx j=1 j=1 EePx

4

Hence, |v|(X) < Z 1;(X), which proves that |v| is a finite measure. |
Jj=1

Definition 3.70. In Proposition 3.69 above, the measure |v| on (X, X') induced by

the complex measure v is called the fotal variation of v.
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Problems

3.71. Show that the collection X' of all subsets E of an infinite set X for which E or
the complement E° of E is countable is a o-algebra.

3.72. Prove that if A is a family of o-algebras on a subset X, then m Yisao-

TeA
algebra.

3.73. Assume that X' is a o-algebra of subsets of X. Show that, for each E € X, the
collection X' (E) of subsets of X defined by
Y(E)={ENA|lAe X}

is a o-algebra on E.

3.74. Let X be a o-algebra of subsets of a nonempty set X, and let E; € X' for
k € N. Define

limsupEy = ﬂkzl (UnZkE”) ’
lim infEk = Ukzl (ﬂnZkEn) :
Prove the following statements.

1. lim sup E; and lim inf £ belong to X
2. fE, CE, CE;C..., thenlimsupE, = UEk = liminfE;
k

3.75. Let E; denote the closed interval E; = [0, 1 + (le)"]‘ Determine the sets
limsup E; and liminfEy. (Suggestion: consider the cases k even and k odd sepa-
rately.)

3.76. Let X be a nonempty set X and let {A;}ren be a sequence of subsets of X.
Define Ey = @ and, for n,m € N,

En=JA. F.=A\E. .
k=1

Prove the following statements.

1. {E,}, is a monotone increasing sequence of sets (that is, E,, C E,, 1 for all n).
2. {F,} is a sequence of pairwise disjoint sets.

3. UE = UF = UAn.
n n n

3.77. Prove that if a o-algebra ¥ on an infinite set X has infinitely many elements,
then X' is uncountable.
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3.78. Prove that if (X,.7) is a topological space, and if X5 is the o-algebra
generated by .7, then, with respect to the measurable space (X,X ), every
continuous function f : X — R is a measurable function.

3.79. Suppose that (X, X') is a measurable space and that /2 : X — R is a measurable
function for which i(x) # 0, for all x € X. Prove that the function 1/A is measurable.

3.80. Prove thatif (X, X') is a measurable space and if E C X, then the characteristic
function yg : X — R is a measurable function if and only if E € X

3.81. Let U be a nonempty subset of BN (see Section 2.6), and consider the
characteristic function yy. Prove that yy is continuous if and only if both U and
U are open in SN.

3.82. Assume that (X, X') is a measurable space and that £ € X.

1. If f : E — R is a measurable function relative to the measurable space (E, X' (E)),
then prove that the extension f : X — R of f defined by f=f XE 1s a measurable
function with respect to the measurable space (X, X').

2. Conversely, if f : X — R is a measurable function with respect to the measurable
space (X, ), and if f = ﬁ . (the restriction of f to E), then prove that f : E — R
is a measurable function with respect to the measurable space (E, X' (E)).

3.83. If f: X — [0, 1] is a measurable function, then prove that there is a monotone-
increasing sequence of nonnegative simple functions ¢, : X — [0,1] such that
lim ¢,(x) = f(x) uniformly—that is, for every ¢ > O there is an N, € N such that
n—>oo

If (x) — @u(x)| < & forall n > N, and all x € X.

3.84. Let X be an infinite set and let X' be the o-algebra in Exercise 3.71. Define a
function u : ¥ — [0,00] by w(E) = 0if E € X' is countable and u(E) = 1if Ee ¥
is uncountable. Show that u is a measure on (X, X').

3.85. Consider the measurable space (N, (N)), where Z(N) is the power set of
N. Prove that the function p : X — [0, 00] defined by

W(E) = the cardinality of E

defines a measure on (N, Z(N)).

3.86. A function p : X' — [0,00) on a measurable space (X, X') is finitely additive
if, for all finite sub-collections {E;};_, of pairwise disjoint measurable sets Ej,

2 (UEk) = ZM(Ek)-
k=1 k=1
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Prove that if a finitely additive function p also satisfies lilgn/JL(Ak) = 0, for every

o
descending sequence A} 2 A, D A3 D --- of sets A; € X in which ﬂAk = @, then

k=1
M is in fact a measure on (X, X).

3.87. Assume that y is a measure on a measurable space (X, X'). Prove that
H(EUF)+w(ENF) = u(E) + p(F),

forall E,F e X.
3.88. Prove that if E € 0, then m*(E) = m*(E), where

Oy ={] [(@.b)ai.bi € R, a; < by}

i=1
3.89. Prove that each of the following subsets of R” is a null set.

1. Every finite or countably infinite set.
2. Every countable union of null sets.
3. Every subset of a null set.

3.90. Prove that if £ C R” is Lebesgue measurable such that m(E) > 0, then E
contains a nonmeasurable subset.

3.91. Prove that the following statements are equivalent for a subset £ C R:

1. Eis a Lebesgue-measurable set;
2. there exist B, Ey C R such that:

. Bis a Borel set,
. Ey is anull set,
. EyNB =0, and
. E=BUE,.

o o

3.92. Prove that there exist subsets S of R” that are not Lebesgue measurable, and
that there exist Lebesgue-measurable subsets E of R” that are not Borel measurable.

3.93. Determine the atoms for counting measure on N.
3.94. Prove that Lebesgue measure on R” is non-atomic.

3.95. Suppose that it = (s + fhna = fla + flna are two decompositions of a measure
p on (X, ) as the sum of an atomic measure and a non-atomic measure, where

Mo thnas na” as o flnas and fina 7 fla.

1. Show that pt,% fly Lo tna

2. Show that jiy, (E) — o (E) > 0 and p,(E) — fi,(E) > 0 dorevery E € X
3. Show that i, = (, and fing = [hna-
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3.96. Prove that if (X, X, u) is a o-finite measure space in which X is a topological
space, X' contains the Borel sets of X, and p is regular, then

W(E) = sup{u(K)| K is compact and K C E}

forevery E € X.

3.97. Let X denote the Borel sets of X = [0, 1] and define a function p : X' — [0, o0]
by w(E) =m(E),if 0 ¢ E, and u(E) = o0, if 0 € E.

1. Prove that p is a measure on (X, X).
2. Prove that (X, X, i) is not a o-finite measure space.

3.98. Show that, in a signed measure space (X, ¥, w), the union and intersection of
finitely many positive sets are positive sets, and that the union and intersection of
finitely many negative sets are negative sets.

3.99. Suppose that (Py,N;) and (P,,N,) are Hahn decompositions of a signed
measure space (X, X, w). Prove that, for every E € X,

a)(EﬂPl) =a)(EﬁPlﬂP2) =a)(EﬂP2)

3.100. Assume that (X, ¥, w) is a signed measure space with Hahn decomposition
(P,N). Show that the functions w4 and w_ defined by

wtr(E)=w(ENP) and w_(E)=—-w(ENN),

for E € X' are measures on (X, X') with the following properties:

1. at least one of w4 and w_ is a finite measure;

2. w(E) = wy(E)—w_(E), forevery E € X,

3. if y, § are measures on (X, X'), where at least one of which is finite, and if w(E) =
y(E) —8(E) for every E € X, then w4 (E) < y(E) and w—_(E) < §(E), for all
EecX.



Chapter 4
Integration

This chapter is devoted to the main results concerning the Lebesgue integral. There
are many reasons for considering a more robust theory of integration than that
afforded by the classical theories of Cauchy and Riemann, and one of the most
compelling of these reasons arises from the inclination to view the integral as a
continuous linear transformation from a vector space of functions into the real or
complex numbers. Continuity of integration, in this regard, may be considered to be
the property that the integral of a convergent sequence of functions f, is the limit of
the integrals of f,. Limiting properties such as these are possible with the Lebesgue
integral, but not with the Riemann integral in general, and this is one reason why
the Lebesgue integral plays a central role in functional analysis.

The classical approach to the integration of continuous real-valued functions
on a closed interval [a,b] C R is based on a partitioning of the domain, [a,b],
into n-subintervals, and to then use Riemann sums to approximate the integral.
Lebesgue’s approach to the integration of continuous real-valued functions is to
partition the range of a function rather than its domain. This simple idea extends
beyond continuous functions to measurable functions, and leads to a remarkably
powerful theory of integration.

4.1 Integration of Nonnegative Functions
Definition 4.1. Suppose that (X, X', i) is a measure space, and that ¢ : X — R is a

simple function with range {a;,...,a,} € [0,00). Let E; = ¢~ ' ({o}), for each k.

1. The canonical form of ¢ is the representation of ¢ given by

n
¢ =Y o xp. 4.1)
k=1
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2. The Lebesgue integral, or simply the integral, of ¢ is the quantity in the extended

nonnegative real number system [0, o] denoted by [ ¢ du and defined by
X

/ pdu ="y oy u(Ey). 4.2)
X k=1

Although oo is one value that the Lebesgue integral of ¢ could take , if u(X) is
finite, then so is / @ du, for every nonnegative simple function ¢.

X
The first proposition about integration states that the definition of the integral of
¢ does not depend on whether or not ¢ is expressed in canonical form.

Proposition 4.2. If (X, X, u) is a measure space and if ¢ : X — R is a nonnegative
simple function of the form

m
@Y= ZﬁkXFk )
k=1

where Fy,...,F,, are pairwise disjoint measurable sets for which F{U---UF,, = X,
then

[ odn=>"piniro.
X k=1

Proof. 1f (4.1) denotes the canonical form of ¢,

n m
Yoewxm =) Bixn-
k=1 k=1

For all pairs (k,j) € {1,...,n} x {1,...,m}, consider Ay; = E; N F;. The sequence
{A;;}xj consists of pairwise disjoint measurable sets whose union is X. If x € Ay;, then
@(x) = o = B;. Thus, the sets {&,...,a,} and {B1,.... B} coincide. Moreover,

/ﬁDdM:ZOlkM(Ek) ZakZ W(E N F))
X k=1 k=1 j=I
= > Y Ay

k=1 j=1

= > BinlAy)

j=1k=1

= > BiuF).

J=1

which completes the proof. O
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Corollary 4.3. Suppose that (X, X, 1) is a measure space, and that ¢,y : X — R
are nonnegative simple functions.

1. If Y (x) < @(x), for all x € X, then

/vfdu < /wdu-
X X

2. If a, B € R are nonnegative, then a@ + B is a nonnegative simple function and

/X(a<p+ﬂW)d/L=a/X¢du+ﬂ/deu.

Proof. Exercise 4.62. O

Theorem 3.14 states that nonnegative measurable functions can be realised as
the limit (pointwise) of a monotone increasing sequence of simple functions. Thus,
simple functions lead the way to the definition of integral for nonnegative functions.

Definition 4.4. If (X, X, ) is a measure space and f : X — R is a nonnegative
measurable function, then the Lebesgue integral, or integral, of f is the quantity in

[0, 0o] denoted by / fdu and defined by
X

/fdu:sup{/god,uhpis simple, and 0 < ¢(x) <f(x), forallxe X, .
X X

At times one prefers to integrate a function over a measurable subset of X rather
than over the whole space.

Definition 4.5. Let (X, X, ) be a measure space and f : X — R be a nonnegative
measurable function. If E € X', then the Lebesgue integral of f over E is the quantity

in [0, o0] denoted by /fd,u and defined by /fdu = /)(Efdu, where yg is the
b e
characteristic function of E.

By defining the integral of a nonnegative measurable function as in Defini-
tion 4.4, one has the following continuity property.

Theorem 4.6 (Monotone Convergence Theorem). If {fi}ieny is a monotone
increasing sequence of nonnegative measurable functions on a measure space
(X, X, i) such that limy fi (x) exists for all x € X, then

lim /fkduz/(limfk)du.
k—o0 Jyx x k=00

Proof. Let f : X — R denote the limiting function: f(x) = limgfi(x), x € X. By
Theorem 3.9, f is measurable. Because fi(x) < fy+1(x) < f(x), for all x € X,
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Exercise 4.63 shows that
/fde = /ﬁcﬂdﬂ < /fdu, VkeN.
X X X

Thus,

lim /fkd,u < /(limfk)du.
k—o00 Jx x k—>o00

Conversely, let ¢ : X — R be a simple function such that 0 < ¢(x) < f(x), for
every x € X. Assume that the canonical form of ¢ is

¢ = Zak XE -
k=1
Fix any y € (0,1) and consider the set

Fr={x € X|fi(x) > ypx)}.

Because F; = (fi — y9) ' ([0,00)), Fy is a measurable set. By definition of Fy,

ye(x) = fix) = f(x) VxeF;.

Hence, again by Exercise 4.63,

/ XEYORdi < / XESedp = / Sfedp. 4.3)
X X X

Moreover, because the sequence of functions f; is monotone increasing, the sets Fj
are monotone increasing. In fact,

JFe=x. (4.4)

keN

To prove (4.4), select x € X. Because y < 1, we have that yp(x) < ¢(x) < f(x).
Furthermore, limy f;(x) = f(x) and {f;}ren iS @ monotone-increasing sequence of
functions; thus, there is a ko € N such that y¢(x) < fi, (x) <f(x), which implies that
x € Fy,. Hence, UFk =X.

keN
The continuity of w (Proposition 3.22) and equation (4.4) yield u(X) =

lim w(Fy), and so w(E;) = lim w(E; N Fy), for each j = 1,...,n. Furthermore,
k—>00 k—00
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n n

ojp(E) =y ) o lim pu(E;NF) =y lim Y " oju(E;NFy)
; ; k—00 k—>00

)//wdu =y
X j= j=1

=y lim /kagoduf lim /)(pkfkduf lim /fkdu.
k—o00 X k—o00 X k=00 X

(The final two inequalities above are on account of (4.3).) Therefore,

/(pd,u: lim y/(pdu < lim /fkd,u.
X y—>1- X k=00 Jx

j=

Hence,

sup%/wdumis simple, and 0 < p(x) < f(x), forallxeX} < klirgo Sfedu.
X —00Jx

That is,
/ lim fydp < lim /fkd,u,
x k—>00 k—o00 Jx
thereby completing the proof of the Monotone Convergence Theorem. O

The Monotone Convergence Theorem does not apply to monotone decreasing
sequences, as demonstrated by the example below.

Example 4.7. There is a monotone-decreasing sequence {gi}ren of Lebesgue-
measurable nonnegative functions g, : R — R such that limy g;(x) exists for all
x eR, but

lim | gidm # [(lim gr)dm.
k=00 Jp R k—00

Proof. Let gk = Xo00). For each x € R, g1(x) > g2(x)--- > 0 and lim; gx(x) = 0.
Thus,

/(lim gk)dm=/0dm=0.
R k—00 R

On the other hand, / grdm = oo for every k € N. ad
R

Example 4.7 indicates that the Monotone Convergence Theorem does not extend
to convergent sequences that are not monotone increasing. Nevertheless, there is a
useful partial result, known as Fatou’s Lemma.

Theorem 4.8 (Fatou’s Lemma). Suppose that (X, X, t) is a measure space and
that f,, : X — R is a measurable nonnegative function for each n € N. If liminf,, f,, (x)
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exists, for all x € X, then
/(lim inf f,)dp <lim inf [ﬁldu. 4.5)
X n—>o00 n—>oo X

Proof. For each k € N, let gi(x) = inf{f,,(x) |m > k}, for every x € X. By Theo-
rem 3.9, g; and liminf,_, . f, are measurable. Moreover, {g;}ren iS @ monotone-
increasing sequence of nonnegative functions such that

lim g;(x) =1lim inf f,(x), VxeX.
k—>00 n—>00

Therefore, by the Monotone Convergence Theorem,

lim f gedp = / (lim inf f,)du.
k—o00 X X n—o00

On the other hand, gx(x) < fi(x), for all x € X, and {g; },eny monotone increasing
implies that

/gkdu < /fmdu Vm >k,
X X

and so
lim | gidp < lim inf fﬁldu.
k=00 Jx n—>00 [y
This completes the proof of inequality (4.5). O

Corollary 4.9. If {fi}ren is a sequence of nonnegative measurable functions on a
measure space (X, X, ) such that limy fi.(x) exists, for all x € X, then

/(limfk)duflim inf /fkd,u.
x k—>00 k—o00 Jx

Basic algebraic properties of the integral can now be investigated,

Theorem 4.10. Suppose that (X, X, 1) is a measure space and that f and g are
nonnegative measurable functions X — R. If «, B € [0, 00), then

/X(aerﬁg)dM:a/dequﬁ/ngu.

Proof. By Proposition 3.14, there are monotone increasing sequences {¢ }ren and
{¥i}ren of nonnegative simple functions such that, for every x € X,

Jm ¢e() =f() and  lim ¥ (x) = g(x).
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By the Monotone Convergence Theorem,

/fdu: lim /(pkdu and /gd,u: lim /wkdu. (4.6)
X k—>o00 Jx X k—oo Jy

Let 9 = agpi + By, for every k € N. Then {¥}ren is a monotone-increasing
sequence of simple functions such that

/mw=fmw+/ww
X X X

Jim J(0) = (of + Bg)(x), VxeX.

and

The Monotone Convergence Theorem yields

‘ﬁw+%wwﬂm/mw,
X k—>00 X

which is simplified to

/}((af+ﬁg)du=afxfdu+ﬂ/xgdu,

by the equations in (4.6). O

By induction, Theorem 4.10 extends to finite linear combinations of nonnegative
functions via nonnegative coefficients.

Corollary 4.11. Suppose that (X, X, 1) is a measure space and that fi,....f, are
nonnegative measurable functions X — R. If oy, ...,a, € [0,00), then

/}; gl:aﬂj- du:j:il:/xajfjd,u.

Another very useful fact is the next result.

Proposition 4.12. Suppose that (X, X, 1) is a measure space and that f is a
nonnegative measurable function X — R. If E\,...,E, € X are pairwise disjoint,

then
Fdu = /me
/151 U--UE, ; E;
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Proof. Let E=E,U---UE, and note that ygf = Z xEf - Hence, by Corollary 4.11,

j=1
/XEfdu=Z/XEjdu.Thatis,/ fdM=Z/fdu. O
X . X E . E;

j=1 j=1 ‘J

Corollary 4.13. Suppose that (X,X,u) is a measure space and that [ is a
nonnegative measurable function X — R. If E € X is such that i(E) = 0, then

/fdu:O and /fdu:/ fdu.
E b'¢ X\E

Proof. Because w(E) =0, p(ENF) =0 for every F € X. Hence, if ¢ is a simple

|U-UE,

function in canonical form ¢ = Zak XE,» then
k=1

/Qﬂdﬂ = au(ENE) =0.
E k=1

Thus, by the definition of integral of f as the supremum of a set of integrals of simple
functions, one concludes immediately that

/Efduzo.

This fact, together with Theorem 4.12, shows that

/X fdp = /X Lt /E fdp = /X .

which completes the proof. O

4.2 Integrable Functions

Definition 4.14. If X is a set, and if f : X — R is a function, then the Jordan
decomposition of f is the equation

f=r—r. (4.7
where

= Fi+s and [~ = Fi=r _f. (4.8)

+
f 2 2
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Observe that f and f~ are nonnegative functions such that
FHT=0and fH £ =1,

Moreover, if (X, X') is a measurable space, and if f : X — R is a measurable function,
then f* and f~ are measurable functions.

Using the Jordan decomposition, the integral of any measurable function can now
be defined.

Definition 4.15. If (X, X, 1) is a measure space, and if f : X — R is a measurable
function, then the Lebesgue integral, or simply the integral, of f is the quantity in

the extended real number system [—00, o0] denoted by [ fdu and defined by
X

fxfdu - /Xﬁdu - [Xf—du,

where f = f* —f is the Jordan decomposition of f.

Our interest is with the class of functions for which / frdu — [ f duisa
X X
(finite) real number.

Definition 4.16. If (X, X, 1) is a measure space, and if f : X — R is a measurable
function, then f is an integrable function if

/f+du<oo and /f_du<oo.
X X

Proposition 4.17. Assume that (X, X, 1) is a measure space and f,g : X — R are
integrable functions. For all a, f € R, the function af + Bg is integrable, and

/X(af+/3g)du=a/xfdu +,3/ngu.

Proof. Let hy,h; : X — R be nonnegative, integrable functions, and let 7 = h; — h,.
It may be that 4™ # h, and A~ # hy; nevertheless, it is true that

fmmz/ﬁmﬂ—/mmL (4.9)
X X X

To prove this, express 4 in its Jordan decomposition: h = AT — h™. Because h™ —
h™ = h; — hy, we have that h™ 4+ hy, = h™ + hy. By additivity of the integral for
nonnegative functions (Theorem 4.10),

/WW+/@W=/WW+/MW.
X X X X



128 4 Integration

As all four integrals above are finite, by the hypothesis that h, h;, and h, are

integrable,
/h+dp,—/h*du =/h1du—/h2du,
X X X X

which proves equation (4.9).
The argument above applies to f + g via

fHe=0"+gH) - +¢).

(This need not be the Jordan decomposition (f + g)* — (f + g)~.) Lastly, now that
we know that

/X(f+g)du=fxfdu+/xgdu,

the case of af + B¢ is handled by expressing each scalar in its Jordan decomposition:
a=aT—a and f=B8T-8". O

By Proposition 4.17, the set of all integrable functions has the structure of a
vector space.

Corollary 4.18. If (X, X, i) is a measure space, then the set £ (X, X, 1) of all
integrable functions f : X — R is a vector space over the field R, and the map

f | fdwis a linear transformation of £} (X, X, j1) onto R.
X
The next result gives a characterisation of integrability in terms of the absolute-
value function.

Proposition 4.19. Assume that (X, X, 1) is a measure space and f : X — R is a
measurable function. Then f is integrable if and only if |f| is integrable. Moreover,
if f is integrable, then the following triangle inequality holds:

'/deu < /leldu-

Proof. Assume that f is integrable. Thus, fxf+d,u and fxf_dﬂ are finite. Because
|f| =f* +f~, Theorem 4.17 shows that

[ nidi= [ rvan= [ s [ <o,

That is, |f] is integrable.
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Conversely, assume that |f| is integrable. The equation |f| = f* +f~ yields
T (@) < |fl(x) and £~ (x) < |f](x), for all x € X. Thus,

/XerdpL < /X[ﬂdu < oo and /Xf_du < /X[fldu < 00.

Hence, f is integrable.
To prove the triangle inequality, assume that f is integrable. The triangle
inequality in real numbers « and B is |« + 8] < || + |B|. Applying this to integrals

leads to
[ranl=| [+ an= [ran) < |[rrau + | [r-au| < [ ira
X X X X X X
which completes the proof. O

Proposition 4.19 above demonstrates the integrability condition is similar to that
of absolute convergence in the theory of series. Indeed, if one considers the measure
space (N, #(N), u), where p is the counting measure, then a function f : N — R
has Lebesgue integral

[ £an=>"rw.
N k=1

and so f is integrable if and only if

D )] < co.

k=1

Theorem 4.20 (Dominated Convergence Theorem). Suppose that (X, X, ) is a

measure space, and that {fi }ren is a sequence of measurable functions fi : X — R

such that klim Ji(x) exists, for all x € X. If there is a nonnegative integrable function
—00

g : X — R such that |fy(x)| < g(x), for every ke Nand x € X, and if f : X - R
is the measurable function defined by f(x) = klim fi(x), for every x € X, then f is
—>00

integrable, and

lim /fkduszdu and lim[[fk—f|du=0.
k=00 Jx X k—o00 Jx

Proof. Because f(x) = limy f;(x), for all x € X, f is measurable and |f(x)| < g(x) for
every x € X. Thus,

/U‘Idu < fgdu< o0,
X X
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which implies that f is integrable. For each k € N, let iy = 2g — |fy —f|. Note that the
triangle inequality in real numbers gives |f; —f|(x) < 2g(x), and so the functions 7
are nonnegative. Moreover, limy |fy —f|(x) = 0; thus, limy & = 2g. Fatou’s Lemma
yields

/ngu = /(]im inf hy)dp
X X k—>00

IA

lim inf /hkdu
k—>o00 Jx

/ngu + lim inf (—/ [fk—fldu)
X k—00 X

/ngu—hm sup/b‘k—ﬂd,u,

Therefore,

0 < lim sup/[fk—f|du < 0. (4.10)

k—00JX

If a sequence {o}r of positive numbers does not converge to 0, then it must
necessarily be that limsup, ; > 0. Thus, inequality (4.10) implies that

0< lim/[fk—f|du < 0.
k—o00 Jx

Foreachk e N,

‘/kadu—/xfdu

Hence, as k — oo we obtain
im [ fidu = [ fa.
k—o00 X X

thereby completing the proof. O

< /Xvk—ﬂdu.

Some of the convergence results in integration can be reformulated for conver-
gence on complements of sets of measure zero.

Definition 4.21. If f,g : X — R are measurable functions on a measure space
(X, X, ), then f = g almost everywhere if

px e X]f(x) #g(0)}) =0
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That is, f and g are equal almost everywhere if the set on which they are not
equal is a set of measure zero. This is of significance in integration because of
Corollary 4.13, which states that if (X, X, ) is a measure space and if f is a
nonnegative measurable function X — R, then, for any £ € X such that u(E) = 0,

/;fd,uzo and /deu:/X\EfdpL.

By passing to differences of positive functions, the line above extends to any real-
valued integrable function.
The point is this: sets of measure zero have no role in the value of the integral.

That is, /fdu = /gdu, if f = g almost everywhere.
X X

Definition 4.22. If (X, ¥, ;1) is a measure space and if f; : X — R is measurable
function, for all k € N, then the sequence {f; }ren converges almost everywhere if

U ({x € X| lim f;(x) does not exist}) =0.
k—00

The following result, which is a partial converse to the Monotone Convergence
Theorem, demonstrates one way in which almost everywhere convergence can arise.

Proposition 4.23. Suppose that (X, X, 1) is a measure space, and that {f; }ren is
a monotone increasing sequence of nonnegative integrable functions f; : X — R.

If klim fedu exists, then there is a measurable set D C X such that u(D) = 0,
—>00 X

klim Jfe(x) exists for all x € X\D, and
—> 00

lim /ﬁd,u:/ (lim fi)dp.
k=00 Jx X\D k—>00

Proof. Because {f; }ren is @ monotone-increasing sequence,

/fkdﬂ < /fk+1dﬂ,
X X

for every k € N. The hypothesis implies the existence of a real number W > 0 such
that / Sfedu < W for every k.

LefD = {x € X| limy fi(x) does not exist}. Then D = X\L, where L is the set of
points x € X for which lim f; (x) exists. By Theorem 3.9, L € X' and, hence, D € X.
Let & > 0 be arbitrary and define, for each k € N, D, = {x € X |fi(x) > W/¢e}. Because
the sequence {f; }; is monotone increasing, so is the sequence {D;};. If x € D, then
there is a ko € N such that f;, (x) > W/e, and so x € Dy,. Hence,

D C UDk. 4.11)
keN
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Therefore, the continuity of the measure p (Proposition 3.22) applied to the
inclusion (4.11) yields

uwD) < p (UDk) = lim u(Dy).

keN
But, foreach k € N,

e €
(D) =/mdu = W/XDkfkdﬂ = W/fkd/vb <e
b e X X
Thus, u(D) = 0.
Letf : X — R be given by f(x) = 0 for x € D and f(x) = lim_, o0 f3 (x) for x & D.

The sequence {yx\pfk ke is monotone increasing and f = limy xx\pfi. Thus, f is
measurable and, by the Monotone Convergence Theorem,

tim [ gafidic = [ fau.
k—00 X X

For every nonnegative measurable function g, / gdp =0, because (D) = 0. Thus,
D

k—o00

lim [ fidu = lim ( ﬁ(dﬂ+[fkdu) = lim fedu
k=00 Jx X\D D k—00 X\D

~ Jim / ofidi = / Fdu = / (lim fo)dp.
k=00 Jx X X\D k—00

which completes the proof. O

It is somewhat clumsy to make explicit reference to the set D of measure zero in
the integral

/ (lim fi)du.
X

\D k—00

especially as null sets do not contribute to the value of the integral. Therefore, a
notational convention is adopted: if {f; };en converges almost everywhere, then

/ (lim fi)du
x k—>00

is understood to represent the quantity

[ qiim fyan.
X\D

k—00

where D C X is the set (of measure zero) of points for which {f} (x) }ren has no limit.
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With this notational convention, the Monotone Convergence Theorem and the
Dominated Convergence Theorem have versions for almost-everywhere conver-
gence. For example, the Dominated Convergence Theorem is formulated as follows.

Theorem 4.24. Suppose that (X, X, L) is a measure space, and that {f; }ren is a
sequence of integrable functions such that klim fi(x) exists almost everywhere. If
—>00

there is a nonnegative integrable function g : X — R such that, for every k € N and
x€eX,

()| < g(x),

then

lim /fkduz/(limfk)du.
k—o0 Jy x k—o0

Proof. Exercise 4.70. O

4.3 Complex-Valued Functions and Measures

The goal of this section is to outline how integration of real-valued functions extends
to integration of complex-valued functions by using the real and imaginary parts of a
complex-valued function. The main item of note is that the Dominated Convergence
Theorem extends to complex-valued functions.

The role of signed and complex measures in integration theory is less prominent
than the role played ordinary measures. However, our study of Banach space duality
will require integration to be extended so as to encompass both complex-valued
functions and complex measures. Therefore, this section concludes with a brief
description of how such an extension is formulated and achieved.

Definition 4.25. If (X, Y') is a measurable space, then a function f : X — C is said
to be complex measurable if f~' (U) € X, for all open subsets U C C.

If f : X — C, then let f and |f] denote the functions defined by f(x) = f(x) and
If](x) = |f (x)], for all x € X. As with complex numbers, a function f can be expressed
in its real and imaginary parts:

f=NRf+i3f, where Rf= %(f+f) and 3f = 21i(f—f).

Note that %if and Jf are real-valued functions on X.

Proposition 4.26. If (X, Y) is a measurable space, then a function f : X — C is
complex measurable if and only if Rf and Sf are measurable functions X — R.
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Proof. Exercise 4.71. O

Definition 4.27. If (X, X, 1) is a measure space, then f : X — C is integrable if Rf
and Jf are integrable functions X — R, and the integral of f is defined by

/deu=/xﬂtfdu+ijxsfdu.

Note that if and Jf are integrable only if Rf and Jf are measurable. In such
cases, f is automatically complex measurable (by Proposition 4.26), and this is why
complex measurability is not mentioned in the definition of integrability.

Proposition 4.28. If (X, X, 1) is a measure space, then f : X — C is integrable if
and only if |f| is integrable, in which case

'[deu < [ an.

Proof. Write f in terms of its real and imaginary parts: f = Rf + iJf. If f is
integrable, then each of Nf and Jf is integrable (by definition). Hence, |Rf| and
|3f| are integrable. Because |f| < |Nf| 4 |3f]|, one concludes that |f] is integrable.
Conversely, assume that |f]| is integrable. Since |9f| < |f| and |Jf| < |f|, both |Nf]
and |Jf| are integrable. Thus, f is integrable.

To show the triangle inequality, assume that f is integrable. For any complex
number ¢, a complex number o satisfies || < |¢| if and only if e Rew < || for all
6 € [0,2x]. Note that e/R f = R(e?f) < |ef|. Thus,

oI5 ( / fdu) = [ nan < [ €= [ yian.
/deu' < fxww. .

Finally, the Dominated Convergence Theorem extends to complex-valued func-
tions.

for all 6 € [0,27]. Hence,

Theorem 4.29 (Dominated Convergence Theorem: Complex Case). Suppose

that (X, X, 1) is a measure space, and that {f}ren is a sequence of measurable

functions fi : X — C such that klim Ji(x) exists, for all x € X. If there is a nonnegative
—00

integrable function g : X — R such that |f;(x)| < g(x), for every k € N and x € X,
and if f : X — C is the measurable function defined by f(x) = klim Jfe(x), for every
—>00

x € X, then f is integrable, and

lim /fkduz/fd,u and lim/[fk—f|du=0.
k=00 Jx X k—o00 Jx
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If o is a signed measure on a measurable space (X, Y), then expressing w in
its Jordan Decomposition (see Theorem 3.66) as a difference of two measures, w-
and w_, allows one to define the integral of a measurable function f : X — C with
respect to the signed measure w by

/X fdo = /X fdos /X fdo-.

as each of [, fdwy and [, fdw_ is well defined.

Definition 4.30. If @ is a signed measure on (X, ') with Jordan decomposition
w = w4+ —w_, then a measurable function f : X — C is integrable if

[([f|dw+ and /};[ﬂda)_

are finite.

In defining |w| by |@| = w4+ + w—, we obtain a measure |w| on (X, X') and for
each integrable function f, we have a triangle inequality:

/dew‘ - /dew+—/xfdw— < /dewwfxmdw_ - /de|w|.

One can approach integration with respect to a complex measure v in a similar
way, by first considering the signed measures %v and Jv induced by the real and
imaginary parts of v. In so doing, two finite signed measures are obtained, each
of which is a difference of finite measures. Hence, there are finite measures u; on
(X,X), forj=1,...,4, such that

v = (@1 — p2) + iz — pa).

The integral of a measurable function f : X — C with respect to the complex measure
v is defined by

/dev = /de(ul—uz)ﬂfxfd(us—m)-

Definition 4.31. If v is a complex measure on (X, X), expressed as v = (u; —
W2) + i(p3 — pg), where p; — iy and p3 — g are Jordan decompositions of the
real and imaginary parts of v, respectively, then a measurable function f : X — C is
integrable if

[ 1du; <0
X

foreachj=1,...,4.
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A version of the triangle inequality is noted in Exercise 4.72.
We will not have any significant need of such integrals in this book, except for

in the discussion of duality, where the use of the integral / fdv with respect to a
X

complex measure v is convenient.

4.4 Continuity

A starting point for our discussion of continuity is the following important observa-
tion:

Proposition 4.32. [f (X, X, i) is a measurable space and g : X — R is a nonnega-
tive measurable function, then the function v, : X' — R defined by

Ve(E) = /gd//,, Ee X,
E

is a measure on (X, X).
Proof. Exercise 4.73. O

Proposition 4.32 shows that there are an abundance of measures one can
introduce on a measurable space, and that finite measures v, are achieved from
using nonnegative integrable functions g, even if p itself is not finite. In this case, as
shown by the next result, the pair of measures u and v, exhibit a continuity feature
(see Proposition 4.37 as well).

Proposition 4.33. If f : X — C is an integrable function on a measure space

(X, X, ), then for every ¢ > O there exists a § > 0 such that [ Ifldun < € for all
E

measurable sets E € X with u(E) < 6.

Proof. Foreachn e N, let E, = {x € X||f(x)| < n} and define g, : X — R by

gn = |flxe, +nxec.

Thus, {g.}nen is a monotone increasing sequence of nonnegative measurable
functions with lim, g,(x) = |f(x)| for every x € X. Therefore, by the Monotone
Convergence Theorem, { fx gndi}nen is @ monotone increasing sequence in R with
limit [, |f|du. Hence, if & > 0, then there is a K € N such that

&

/WW</&W+
X X 3

/lﬂdﬂ < ([ ngM+/ ngM) +
X Ex ES

Thus,

’

W ™
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which implies that

€ €
/U‘Idu < / gxdp +/ grdp | + - < Ku(E) + Kp(E) + .
E ENEk ENES 3 3

Therefore, if § = ¢/(3K) and u(E) < 8, then / Ifldu < e. O
E

For integrable function f on a measure space (X, X, 1), the induced measure vy
on (X, X) is finite and has the continuity property exhibited in Proposition 4.33
above. This property of a pair of such measures can be characterised in the abstract
in the following way.

Proposition 4.34. The following statements are equivalent for measures L and v,
where v is finite, on a measurable space (X, X):

1. forevery e > 0 there exists a § > 0 such that v(E) < ¢ for each E € X that satisfies
R(E) <§;
2. v(E) =0 for each E € X that satisfies u(E) = 0.

Proof. The proof of (1) = (2) is left as an exercise. To prove the converse, we
shall prove the contrapositive: if there exists a ¢ > 0 such that for each § > 0 there
exists a set E5 € X with u(Es) < 6 and v(Es) > ¢, then there is also a set E € X
for which p(E) = 0 and v(E) > 0. To this end, assume such a ¢ > 0 exists and for
each k € Nlet E; € X satisfy u(E;) <27% and v(E;) > . Foreveryn € N, let A, =
UEk so that {A,},en is a descending sequence of measurable sets. Observe that

k>n

o0 o0

1A <Y pE) <Y 2% =27""" <27 and v(A,) = v(E,) > &. In particular,
k=n k=n

(A1) < oo and, by hypothesis, v(A;) < co. Therefore, if E = ﬂAn, then

neN

W(E) = lim uA,) < lim 27" =0 and v(E)= lim v(4,) > e,
n—o0 n—oo n—>oQ0

by continuity of measure (Proposition 3.22). O

The second of the equivalent conditions in Proposition 4.34 is called absolute
continuity, the relevance of which will be explained by the Radon-Nikodym
Theorem.

Definition 4.35. If (X, Y) is a measurable space and if p and v are measures on
(X,X), then v is absolutely continuous with respect to u if v(E) = 0 for every
E € ¥ for which u(E) = 0.

Theorem 4.36 (Radon-Nikodym). Suppose that i1 and v are finite measures on a
measurable space (X, X). If v is absolutely continuous with respect to |, then there
is a nonnegative measurable function g : X — R such that
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U(E):[gdp,, VEecX.
E

Proof. Let ¢4 be the set of all measurable functions f : X — [0,00) for which
fdu < v(E) for every E € X. The set ¢ is nonempty (because 0 € ¢) and

E
max(f1,f>) € ¢ for all fi,f> € 4. Because v(X) < oo, the supremum o« of the
set { [ fdu|f € 4} exists. In particular, for each n € N there exists f, € ¢ such
that [, fudp > o — % Define a sequence {g,}nen by g, = max(fi,....f,) and

note that {g,},en is monotone increasing and lim / gndp = o. Therefore, by
n—>oo
Proposition 4.23, there exists a measurable function g : X — [0,00] such that

g(x) =1lim, g, (x) for almost every x € X and / gdu =a.

Because / gdu = sup/ gndi < v(E) forevery E € X, the function v : ¥ — R
E n JE
defined by

B (E) = V(E)—[Egdu

is a finite measure. We aim to show that v is identically zero. Therefore, assume that
D is not the zero measure. Thus, v(X) > 0. Fix ¢ > 0 such that v(X) > eu(X) and
let w = U —eu. Because w is a difference of finite measures, o is a signed measure.
Furthermore, w(X) > 0.

The Hahn Decomposition (Theorem 3.65) asserts that there exist P, N € X' such
that P is positive with respect to w, N is negative with respect to w, PNN = 0,
and X = PUN. Thus, for E € ¥, 0 < w(E N P) implies that eu(ENP) < v(ENP).
Hence,

v(E)

ﬁ(E)~|—/gduzef)(EﬂP)+/gd,u
E E

v

af)(EﬂP)+/gd/L=/(g+8)(p)du.
E E

The inequality above shows that (g + ¢ xp) € 4. However,
f(g+8x;>)du > /gdu
X X

contradicts the fact that / gdp = a. Therefore, it must be that ¥(E) = 0 for every
X
EcX. O
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4.5 Fundamental Theorem of Calculus

As in calculus, Lebesgue integrals display certain continuity and differential
properties that facilitate calculations. The first of these properties is the following
familiar continuity feature.

Proposition 4.37. Iff : [a,b] — C is integrable with respect to Lebesgue measure,
then the function F : [a,b] — C defined by

Fx) = /[ fan.

for x € [a, b], is continuous on |[a, D).
Proof. Choose x( € [a,b] and let ¢ > 0. By Proposition 4.33, there exists a § > 0
such that | |f|dm < ¢ if E C [a,b] is a measurable set with m(E) < 6. If x € [a, b]

/ fdm
[x0.x]

The same inequality holds if x < x( by replacing [x¢,x] with [x,x]. Hence, for each
€ > 0, there exists § > 0 such that |F(x) — F(xg)| < € whenever x € [a, b] satisfies
|x—xo| < 8. O

E
satisfies |[x —xo| < & and if xy < x, then

|F(x) — F(xo)| = < If|dm < e.

[x0.x]

fdm— / fdm‘ =
[a.xo0]

a.x]

Continuity of the integrand at a point leads to differentiability of the integral at
that same point.

Proposition 4.38. Iff : [a,b] — R is integrable with respect to Lebesgue measure,
and if f is continuous at xy € (a,b), then the function F : [a,b] — R defined by

F(x) = fdm,

la.x]

for x € [a,b), is differentiable at xy and
dF
—(x0) = f(x0) .
dx

Proof. Let ¢ > 0. The continuity of f at x; implies the existence of a § > 0 with the
properties that (xo—8,x9 + &) C (a,b), and that |[f (x) —f (xo)| < &, for all |x—xo| < 6.
If § > h > 0 (the case where 4 is negative is similar), then
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|F(xo +h) — F(xo) — hf (xo)| =

/ fdm — hf(xo)
[xo.x0 4]

| ran-| f(xO)dm‘
[xo.x0+h] [x0.x0+h]

/ I (o) dm
[x0,x0+H]

< ¢h.

IA

(For the final inequality: |x —xo| < & < § implies that |f(x) —f(x¢)| < &.) Dividing
the inequalities above by £ yields shows that each ¢ > 0 there is a § > 0 such that
F(xo +h) — F(xo)

b <8 = | )| < e

dF
That is, F is differentiable at xy and d—(x()) = f(xp). |
X

The results above allow for the calculation of integrals in the style of Cauchy, via
antiderivatives.

Theorem 4.39 (Fundamental Theorem of Calculus). If F : [a,b] — R is differ-
entiable on (a,b), and if dF /dx is integrable and continuous on (a,b), then

dF

/ —dm=F(§)—F(a), 4.12)
fag] dX

for every £ € [a,b].

Proof. Let G : [a,b] — R be the function

G(S)z/[ d—de,

af] 4X

for £ € [a,b]. Note that G(a) = 0 and that % = ‘;—f at every point of (a,b) (by the
hypothesis that %F is continuous on (a,b) and by Proposition 4.38). Let H = G—F
and fix £ € (a,b]. By the Mean Value Theorem in differential calculus, there is a
point xq € (a,b) such that

H(E) — H(@) _ dH

F—a I (x0) -

However, 4 = 4G _ 4F jmplies that 42 is identically zero on (a,b). Thus,
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0=H(§) —H(a) = G(§) - F(§) — (G(a) — F(a))
= GE) - F(@) + F(a)

dF
= —F() + F(a) +[ —dm.
[ag) dX
That is, equation (4.12) holds. O

Corollary 4.40. If F : [a,b] — R is differentiable on (a,b) and if dF/dx is
continuous on (a,b), then

/ 9 = Fb)— Fla). (4.13)
[ab] A%

Moreover, if f : [a,b] — R is continuous, then

b
/ fdm=/ fx)dx, 4.14)
[a,b) a

where the integral on the right is the Cauchy—Riemann integral.

Proof. Equation (4.13) follows from Theorem 4.39.
Assume now that f is continuous. Define F by

Fx) = fdm, x¢€la,b].
[a.x]
Then F is differentiable on (a,b) and dF /dx = f (by Proposition 4.38). Hence,
dF
F(x):/ —dm= fdx=F()—F(a).
[

a.x) dx la,b]

Equation (4.13) for the Lebesgue integral is precisely what the Fundamental
Theorem of Calculus yields for the Cauchy—Riemann integral, namely that

b
/ Z—I;dx:F(b) — F(a).

This completes the proof. O

We note below that the Fundamental Theorem of Calculus does not admit an
“almost everywhere” version.
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Example 4.41. The Cantor ternary function @ is differentiable at almost every
point of [0,1], and % = 0 almost everywhere, yet

/[ ‘;—(pdm £ &(1) — (0).

0,1] ax

Proof. The function @ is constant on any open interval (o, ) C [0, 1]\%. Hence,
the derivative of @ is zero on («, ). As the Cantor set € is a set of measure zero, @
is differentiable at almost every point of [0, 1]. Therefore, the integral of % is zero,
whereas @(1) —®(0) = 1 -0 = 1, and so the Fundamental Theorem of Calculus
does not hold. O

4.6 Series

Proposition 4.42. On a measure space (X,X,u), assume that {u,},en is a
o0

sequence of nonnegative integrable functions such that Zun(x) converges for

n=1

o0
all x € X. Ifz u, is integrable, then

n=1

/(Zu) d,uzZ[undu. (4.15)
X n=1 X

n=1

(o] k
Proof. Let g =» uy,. If fi = »_, for each k € N, then fi(x) < g(x) for all x € X.
n=1 n=1

Because g is integrable, the Dominated Convergence Theorem states that

[ Gtim v = fim [ s,
which is precisely equation (4.15). O
A partial converse to Proposition 4.42 is:
Proposition 4.43. If (X, X, ) is a measure spocice and if {uy}nen Is a sgoquence
of nonnegative integrable functions such that Zun is integrable, then Zun(x)

n=1 n=1
converges for almost all x € X and

(Ee) o5 e
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Proof. Apply the Monotone Convergence Theorem and Proposition 4.23 to the
partial sums of the series. O

The following example demonstrates how Propositions 4.42 and 4.43 can be
invoked for calculations.

Example 4.44. [flogx denotes the natural logarithm function, and if f:[0,1] > R
is defined by

FO=0: =15 f=""8" vie @,
then f is continuous, and
1 00 1
/0 fx)dx=1 —;m_

Proof. Note that f is continuous on (0, 1) and that

lim f(x) =0 and lim f(x) =1.
x—0t x—=>1

Thus, f is continuous on [0, 1] and therefore

/Olf(x)dxzj[(),]]fdm.

Let fi = x; 1yt Jf, for all k € N. The sequence {fi}ren of nonnegative measurable
functions is monotone increasing and limyfy = f. By the Monotone Convergence
Theorem,

. . B xlogx
fdm = lim fedm = lim —_—
[0.1] k—>00 [0.1] k—o00 % X— 1

dx.

Change variables: let ® = 1 —x to obtain

=% x1 =t 71—
/ : ngdx=/ (—w)log(l—a))dw.
1 x—1 1 w

The function log(1 — w) has a power series expansion that converges (uniformly,

although we need only pointwise) on [%, 1— %]. Thus,
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l—w - o 0"

l_iwn_l 1 1
= n—1 n

nl

_Z (n—Dn’

n=2

By Proposition 4.42, this final series can be integrated term by term, which yields

[e.]

[1— - log(1 —w)dw (1—%) _Z(n_ll)n/:]_kwndw
k n=2 k

2 (1= = (@)"
(17)_2 1)

n=2
Thus,
2 (1= ="
dm = li —-—— k
[0,1]f " k—l>rgo< k ; n2(n—1)
> 1
= 1— —_,

;nz(n—l)

as claimed. |

4.7 Integral Inequalities

If x and y are elements in a real or complex vector space V, then the line segment
L, in V that joins x with y has parametric form

Loy = {Ax+(1=2)y|A € [0.1]}.

This is, of course, only one of infinitely many ways to parameterise the line segment
L., but it is perhaps the simplest one. In particular, if J is an interval of real
numbers, then L, , € J for all x,y € J.

Definition 4.45. If / C R is an interval, then a function ¥ : J/ — R is:
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1. a convex function if, for all x,y € J and A € (0, 1),

P(Ax+ (1=2)y) = A0 (x) + 1= ():
2. a concave function if, for all x,y € J and A € (0,1),

AP + (1= () = F(Ax+ (1-2)y).

Note that a function ¥ is convex if and only if —@ is concave. The general shape
of the graph of a convex function on an interval J/ € R is “concave up”’, whereas
the shape of concave functions is “concave down”. This is made precise by the
following proposition.

Proposition 4.46. If J C R is an open interval, and ¥ : J — R has a continuous
nonnegative second derivative at every point of J, then ¥ is a convex function.

Proof. Assume that d?®/df* is nonnegative on J. Then, d¥/dt is monotone
increasing on J. To prove that ¢ is convex, choose any x,y € J and A € (0,1). Let
¢ = Ax+ (1 —A)y. By the Fundamental Theorem of Calculus, and by the fact that

dv/dt is monotone increasing,
(d U
o0 -vw= [ (G)a= (G1)e—».

Y (dvy v
v0r -0 = [(G)a= (Ga)o-o.

Because { —x = (1—A4)(y—x) and y— ¢ = A(y—x), the second terms in each of the
two inequalities above can be expressed in terms of (y —x), leading to

Likewise,

v

v
00 = 9+ (G161 =00 -

v
00 = 90) - (G11) 20— 0.

Hence,

v
@ = 400 + () A0 -20 -

s
(1-296) = 1=0p0) — (G100 A1-20-.
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Adding these two inequalities leads to
FAx+(1—=1)y) < A% (x) + (1-1)3(y).
This proves that ¥ is a convex function. O

Proposition 4.46 allows one to readily produce examples of convex functions.
Among the most important convex functions are the ones below.

Corollary 4.47. The following functions ¥ are convex:

1. ¥(t) = e* on R, for any a € R;

2. 9(t) =1 on (0,00), where p € R is such that p > 1;

3. 9(t) = —logt on (0, 00).

Proposition 4.48. If v : J — R is a convex function, and if x,y,z € J satisfy x <y <
z, then

b)) =9 _ 9 =9(G)
y—x T z—-y

(4.16)

Proof. There is a unique A € (0, 1) such that y = Ax+ (1 — A)z. Thus,

y—Ax
1-A
Because ¥ is a convex function, ¥ (y) < A (x) + (1 — A1) (z), and so

A (2) =P ) = 9() - D).

A
= and Z—y—m(y—x).

That is,

90— 90 = 3 (9 ~D0)).
Hence,
U(y) — 9 (x) Ad(x) + (1-2)0(z) — F(x)

y—x y—x
_ 1=)(PQ - 9W)

y—x
e CAC A )

< T

_ 9@ -20)

270 =)

_ 9@ =20)

=y

This completes the proof. O
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If one views each side of inequality (4.16) as a difference quotient, then
inequality (4.16) says that the derivative of ¥ (if it exists) is an increasing function.

The defining condition for a convex function is an inequality. Therefore, it is not
surprising that convex functions lead to a variety of inequalities, and one of the most
fundamental and generic of such inequalities is the following inequality of Jensen.

Theorem 4.49 (Jensen’s Inequality). Suppose that (X, X, L) is a measure space
such that u(X) = 1. If f : X — [d',b'] C (a,D) is a measurable function, then, for
every convex function ¥ : (a,b) — R,

z‘}(/xfdu) < /Xz?ofdu.

Proof. Note that [ fd € (a,b) because
a<d <fx)<b <b, VxeX,

implies that

az/adu < /fdu < /bdu:b.
b'¢ b'¢ X

Leté’z[fdu and let
X
= P -9
= sup ————.
@y §-2

Hence,

0@ = 3@ +Bz-0. Vze(al).

Because ¥ is a convex function, Proposition 4.48 implies that

p= 020 vyewn.
Thus,
D) = B—5) + 5. VyeEb).
Conclusion:
D) = 9() + BU—0). Vie(ab).

In particular,

O (f(x) -9 - pf(x) + B =0, VxeX. (4.17)
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On passing to integrals, and noting that 4 (X) =1 and ¢ = / fdu, inequality (4.17)
b¢

yields
[[oeran=o( [ran)-pe+ g = o.
X X
That is,
o([ran) = [9eran.
be X
which completes the proof. O

Some very basic yet far reaching inequalities may be derived from Jensen’s
inequality. Among the most elementary of these are the arithmetic-geometric mean
inequality and Young’s inequality.

Proposition 4.50. Suppose that ay,...,a, are positive real numbers.

1. Arithmetic-Geometric Mean Inequality:
1
(@) = e+ ).

2. Young’s Inequality: If py,...,p, are positive and le 4+ pi” =1, then

1 1
[V SRERT ™ S _apl + oo + _ail)”.
1 Pn
Proof. For the proof of the Arithmetic-Geometric Mean Inequality, let X =
{1,2,...,n}, ¥ = P(X), and u be
1
W(E) = ~|E|], VECX,
n

where |E| denotes the cardinality of E. Thus, u(X) = 1.
Let B1....,B, € R be such that ef* = o, for each k. If f : X — R is defined by
f(k) = By, for k € X, then

/x Fd= Y O = 3" b
k=1

k=1

The function 9 (¢) = €' is convex on R and

A 1
/ﬁofduz_zef(k):_zeﬂk_
X = o
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Jensen’s inequality states that

ﬁ(/}(fdu) < /};ﬁofdu.

¢ ¢
(10t -+ 0ty) /" = ePr/mt=tuin < ;;em _ Z;“"'

Hence,

This completes the proof.
The proof of Young’s inequality is left to the reader as Exercise 4.87. O

Proposition 4.50 is a rather straightforward application of Jensen’s inequality.
A somewhat more sophisticated application of Jensen’s inequality leads to the
fundamental inequalities of Holder and Minkowksi (Theorems 4.53 and 4.54).

Definition 4.51. If (X, ¥, 1) is a measure space and if p > 1, then a measurable
function f : X — C is said to be p-integrable if f? is integrable.

Definition 4.52. Two positive real numbers p, g € R are said to be conjugate if

—+-=1
P q

If p and g are conjugate real numbers, then g to p is uniquely determined by p, and
p > 1 and g > 1. The notion of “conjugate positive numbers” is nothing more than
the association of a pair of convex coefficients, namely 117 and é, with the positive
real numbers p and q.

Theorem 4.53 (Holder’s Inequality). Suppose that p and q are conjugate real
numbers. If (X, X, ) is a measure space and if f,g : X — C are such that f is p-
integrable and g is g-integrable, then fg : X — C is integrable and

[ elan = ( [ ledu)w ( [ |g|qczu)l/q (4.18)

Proof. Because fP and g7 are integrable, so are |[f|” and |g|?. Let F,G : X — R be
the functions defined by

lg()]

Fo)=———"1 _ and Gr)=—2"1
w'” (Jylglrdu)"

Thus,
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By Young’s Inequality (Proposition 4.50), for each x € X,

Fx)G(x) < lF(x)” + lG(x)".
p q

Hence,
1 1 1 1
FGdu<- | FPdu+- | Gldu=-+-=1.
X pJx qJx P 4
That is,
| el
X <
1 /g —
(el )™ (filgledp) ™
which completes the proof. O

Theorem 4.54 (Minkowski’s Inequality). Suppose that p > 1. If (X, X, ) is a
measure space and if f, g : X — C are p-integrable, then f + g is p-integrable and

1/p 1/p 1/p
( / lf+g|”du) < ( / lfl”du) + ( / Igl”dlt) (4.19)
X X X

Proof. The theorem is true for p = 1 because the sum of integrable functions is
integrable and because inequality (4.19) is simply a consequence of the triangle
inequality in real and complex numbers.

Assume, therefore, that p > 1 and consider the function ¥ : R™ — R™ defined
by ¥ (¢) = . Because ¥ is convex,

(31 + 51e01) = 390D + 300D, Vrex.
Hence,
1\’ 1 1
(3) @+ by = Sur + 5ler.

Because the sum of integrable functions is integrable, the inequality above shows
that (|f| + |g|)? is integrable. But, by the triangle inequality, |[f + g|” < (|f] + |g])?;
hence, f + g is p-integrable.

Let g € R™ be conjugate to p. Thus, p = (p— 1)g and

(A1 + 18D = (U1 + Ly
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Hence, (|f| + |g|)*~' is g-integrable. Therefore, one can apply Holder’s Inequality
to obtain

Jan+isran = ( w’du)w (f (V|+|g|)(”_“qdu)]/q
[1ston+iartan = (f1aran)” ([ apean)

Because |17 + |gI” = If1(f] + 18"~ +g|(If] + |g)"~", summing the two inequal-
ities above yields a new inequality whose left-hand side is

and

/ (f]+ gl du
X

and whose right-hand side is

(fur+ |g|)<"—”qdu)l/q [( [ lfl”du)l/p (/ |g|ﬂdu)l/p} .

Divide the new inequality through by ([, (|f]+ g])?~ du)l/q and use that p =
(p — 1)q to obtain

(/ <m+|g|)1’du)l_l/q =(/ lfl”du)l/p ([ Igl”du)w.

Because 1 = 1—5 and |f + g|” < (|f] + |g|)?, the inequality above implies
inequality (4.19). O

Definition 4.55. Assume that p € R satisfies p > 1. A sequence {o4}ren in C is
p-summable if

Z|ozk|” < 0.

keN

The Holder and Minkowski inequalities also have formulations for sequences of
complex numbers.

Theorem 4.56. Suppose that {a;}ren and {Bi}ren are sequences in C. Assume
that p > 1.

1. (Holder) If p and q are conjugate real numbers, and if {0y }ren is p-summable
and {Bi}ren is g-summable, then {oy B }ien is summable and
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Y laupil < (Zw)w (kaw)w.

keN keN keN

2. (Minkowski) If {ox}ken and {Bi}xen are p-summable, then {o; + By }ren is p-
summable and

(Z|0€k+ﬂk|”)l/p < (Dam)l/p - (Zwkv’)up.

keN keN keEN

Proof. Apply Theorems 4.53 and 4.54 to the case where the measure space
(X, X, ) is given by X =N, ¥ = Z(N), and p is counting measure. O

Note that the Holder and Minkowski inequalities are nontrivial even in the cases
where the sequences {o; }ren and { By }ren have only finitely many nonzero elements.

Appendix: The Issue of How to Integrate

Some concepts in mathematics develop rapidly, while other ideas take many decades
to mature and settle. The theory of integration is of the latter type.

In elementary calculus, integration is usually carried out in the style of Cauchy,
mostly for the purpose of making explicit calculations. However, the more theoreti-
cal aspects of analysis require a theory of integration in which certain properties of
integrals—especially properties of limits—are known to hold. For such purposes,
the integration theories of Cauchy and, as well, Riemann, do not do quite all that we
require of them. These difficulties, while recognised by many outstanding mathe-
maticians of the late nineteenth-century, were not so easily overcome. Nevertheless,
after many new and innovative results had been obtained by several mathematicians,
a satisfactory theory of integration eventually emerged in the early twentieth-century
in a series of works by Henri Lebesgue.

Riemann’s Approach

Assume that a, b € R satisfy a < b and that f : [a,b] — R is a bounded function. That
is, there is a positive real number M for which |[f(x)| <M, forall x € [a,b]. If n € N,
then an n-partition of [a, b] is a collection of n finite intervals of the form ({1, {i],
where k =1,...,n and

a=¢ <l <..<t =hb. 4.20)
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Let ¢ = ($0,¢1,...,¢,) and denote the partition (4.20) of [a,b] by P . As f is
bounded, the real numbers m; and M}, defined below, exist for all 1 <k <n:

m = inf{f(x) |x € (-1, 8]} and  Mp = sup{f(x)|x € (Gx—1, 8k}
Thus, every n-partition &7 of [a, b] induces a lower Riemann sum s¢, namely
S = ka(ik—é'k—l),
k=1
and an upper Riemann sum S¢, which in this case is
n
S = ZMk(gk_é‘kfl)-
k=1

The lower and upper Riemann integrals of f are defined, respectively, as follows:

b
/ f(x)dx = sup {s; | & is an n-partition of [a,b], n € N}
Ja_

b
/ f(x)dx = inf{S; | 2 is an n-partition of[a, b], n € N}

Definition 4.57. A bounded function f : [a,b] — R is Riemann integrable if

b b
/f(x)dx = [f(x)dx. 4.21)

In this case, the Riemann integral of f is the value of (4.21) and is denoted by

/a.bf(x)dx.

It is not difficult to see that any function f : [a,b] — R that assumes only one
value—that is, any constant function f—is Riemann integrable. However, as soon
as we consider functions that assume two values, things go wrong.

Proposition 4.58. There is a bounded function f on [0, 1] that assumes only two
values yet fails to be Riemann integrable.

Proof. Consider the function f : [0, 1] — R given by f = xgnio,1- That is, f(g) =1
for every rational ¢ € [0, 1] and f(r) = O for every irrational r € [0, 1]. As f assumes
only two values, f is bounded. Take any n-partition & of [0,1]. In each interval
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(Cx—1, Cx] there are both rationals and irrationals, and so m; = 0 and M; = 1 on each
(81, 8k]. Hence,

b b
/f(x)dx =0 and /f(x)dx = 1.

Therefore, f is not Riemann integrable. O

What is the problem with the function f in Proposition 4.58 ? Well, for one thing,
no matter has small the interval ({1, ;] may be, the oscillation of f on ({1, ]
(namely, between O and 1) is large relative to the length of ({i—1,{x]. Bounded
functions with uncontrollable oscillations generally fail to be Riemann integrable.
On the other hand, the oscillations of continuous functions diminish as the size of
an interval ({1, {x] decreases, and so continuous functions are Riemann integrable.
(This last explanation is not, of course, a proof.)

The next result points toward the more serious issue of limits.

Proposition 4.59. There exists a sequence of Riemann-integrable functions f; :
[0,1] — R such that

1. 0 <fi(x) <fit1(x) <1, forall x € [0,1] and all k € N,
2. the Riemann integrals of fi. converge to O, that is,

1
lim | fi(x)dx = 0, and
k—o00 Jq

3. the function f (x) = limy fi(x), x € [0, 1] is not Riemann integrable.

Proof. Enumerate QN [0, 1] as {gy}nen. For each k € Q, let fy = y,.... 4. Because fi
is continuous and equal to zero except at the k points gy, ..., gk, it is simple to verify
that f; is Riemann integrable and

1
/ fikx)dx = 0, VkeN.
0
It is also clear that f; (x) < fi+1(x), for all x and all k, and that the limiting function f

is the characteristic function ygnjo,1, which is not Riemann integrable (by the proof
of Proposition 4.58). O

The point of the Proposition 4.59 is that the “hoped for” formula

b b
lim / fulx)dx = / lim () dx 4.22)

does not hold.
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Lebesgue’s Approach

To overcome the troubles suggested by Propositions 4.58 and 4.59, Lebesgue
thought to partition the “y-axis” rather than the “x-axis”. That is, suppose that
f :]a,b] — R is a bounded function with range in the closed interval [c,d]. Let
&, be an n-partition of [c,d] and consider the sets

Ey = {x€la,b]|f(x) € M—1,m]}, 1=<k=n.

Here, E,...,E, are pairwise disjoint and their union is [a,b]. Assume, further,
that there is a “length function” m defined on subsets of [a,b] such that when m
is evaluated at any interval (x,y), m gives the actual length of an interval (x,y):
m((x,y)) = y—x. With these assumptions, let

by = inf{f(x)|x € Ex} and L; = sup{f(x)|x € E},

and

ty =Y bom(E) and T, =Y Lim(E).

k=1 k=1

Define lower and upper “Lebesgue” integrals, respectively, by

b
/ fdm = sup {t,, | &, is an n-partition of [c,d], n € N}

b
/ fdm = inf{T,7 | &, is an n-partition of [c,d], n € N}
a

and say that f is Lebesgue integrable if

/abfdm = ffdm.

The value of partitioning [c, d] rather than [a, b] is that now oscillations of f over an
interval of [a, b] have no impact. However, one now requires the length function m,
and this function m has to be defined in such a way that m(E) can be evaluated even
if E is a quite complicated subset. Thus, measure theory arose.
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Lebesgue’s Criterion for Riemann Integration

Although the following theorem of Lebesgue will not be proved here, it is certainly
striking in that it shows that a bounded function f is Riemann integrable if and only
if f is continuous almost-everywhere.

Theorem 4.60. A bounded function f : [a,b] — R is Riemann integrable if and only
if the set D C [a, b] of points of discontinuity of f is a null set.

The Improper Riemann Integral

Another difference between Riemann and Lebesgue integration may be found in the
notion of an improper Riemann integral.

Definition 4.61. If f : (0,00) — R is a Riemann-integrable function on [a, b], for
every 0 < a < b, then the improper Riemann integral of f over (0, c0) is the quantity
denoted by [y f(x)dx and defined by

/Ooof(x)dx = nl_i)nolc/l/nnf(x)dx.

The theory of improper Riemann integrals is a continuous analogue of the theory
of conditionally convergent series. For example, in calculus it is shown that

*° sinx 7T . . .
—dx= 3 (as an improper Riemann integral).
0 X

However, the measurable function f(x) = 5‘% on (0, 00) is not (Lebesgue) integrable

on (0, 00). To prove this, one may argue by contradiction. Assume that f is integrable
on (0, 00). Thus, by Theorem 4.19, so is |f]:

Let 7 = x(rix)|f|, for each k € N. Then, {/i}ren is a monotone-increasing sequence
of measurable nonnegative functions. In fact, each hy; is integrable and |f|(x) =
limy, A (x) for every x € (77, 00). Thus, by the Monotone Convergence Theorem,

k—00

lim hkdm=/ If|dm < oo.
(7,00) (7,00)

We shall derive a contradiction by demonstrating that

lim hydm = +o0.
k—00 (7,00)
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To do this, decompose the interval (7, k7] as union of pairwise disjoint subintervals
(G, G+ D], for j = 1,...,k— 1. Note that i (x) > |sinx|/((j + 1)7) for all x €
(jmr, G+ 1)x]. Thus,

k—1
/ hedm =) / fodm
(7r,00) =1 (m.(j+ 1]

k—1

v

/‘ | sin x|
- x
i1 G (+Dm

k—1 1
Z(f+1)’

J=1

ENEN)

which diverges as k — oo.

As this discussion above points out, Lebesgue’s approach to integration is analo-
gous to the theory of absolutely convergent series, whereas Riemann’s approach is
more like the theory of conditionally convergent series.

Problems

4.62. Assume that (X,X,u) is a measure space and that ¢,¢ : X — R are
nonnegative simple functions.

1. If ¥ (x) < ¢(x), for all x € X, then prove that

LWMSl@W-

2. If o, B € R are nonnegative, then prove that ag + B is a nonnegative simple
function and that

/X(aw+ﬁW)du=an¢du+ﬁ/deu.

4.63. If f,g : X — R are nonnegative and measurable, and if f(x) < g(x), for all

x € X, then prove that
[rau < [ ean.
X X
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4.64. Suppose that f : X — R is measurable, nonnegative, and

/deu:O.

Prove that f = 0 almost everywhere.

4.65. Assume that (X, X, ) is a measure space and that f,, : X — R is a nonnegative
measurable function for each n € N. Assume that

f@ =) fi(v). VYreX.

n=1

If the series converges for every x € X, then prove that
o0
[ran=>" [ san.
X oYX

4.66. Assume that (X, X, 1) is a measure space and that f : X — R is a nonnegative
measurable function. Define a function v : ¥ — [0, 0o] by

v(E):/Efd,u, VEe X.

Prove that v is a measure on (X, X') and that v(E) = 0 for every E € X for which
w(E) = 0.

4.67. Assume that (X, X, ) is a measure space and that f : X — R is a nonnegative
measurable function for each k € N. Suppose that, for every x € X, limy f; (x) exists
and let f = limy fi.. If f(x) > fi(x), for every x € X and every k € N, then use Fatou’s
Lemma to prove that

[fd,u: lim /fkdu.
X k—o00 Jx

4.68. Assume that (X, X, ) is a measure space and that f : X — R is an integrable
function. If p(X) < oo, then prove that for every ¢ > 0 there is a simple function
¢ : X — R such that

/lf—wldu <e.
X

Is the assumption that (X) be finite a necessary assumption ? Explain.

4.69. Assume that (X,X,u) is a measure space and that f,f; : X — R are
measurable functions such that

klim (sup Ifi (x) —f(x)|) =0.
0 \ xex
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(That is, f; — f uniformly on X.) If ;£(X) < oo and each f; is integrable, then prove
that f is integrable and that

/fd,u: lim /fkd,u.
X k=00 Jx

4.70. Assume that (X, X', i) is a measure space and that f : X — R is an integrable
function, for each k € N. Furthermore, assume that

lim fi(x) exists almost everywhere.
k—00

If there is a nonnegative integrable function g : X — R such that, for every k € N,

i) = glx) VxeX,

then prove that

lim fﬁdﬂ:/(limﬁ)du.
k—o00 Jx x k—>00

4.71. If (X,Y) is a measurable space, then prove that a function f : X — C is
complex measurable if and only if Rf and If are measurable functions X — R.

4.72. Prove that if v is a complex measure on (X,X), and if f : X — C is an

integrable function, then
‘/fdv < [ irtaio,
X

where |v]| is the total variation of v (see Definition 3.70).

4.73. Prove that if (X, ¥, ) is a measurable space and g : X — R is a nonnegative
measurable function, then the function v, : X' — R defined by

Vo(E) = /gdu, Ec X,
E

is a measure on (X, X).

4.74. Compute the integral of Cantor’s ternary function @ over [0, 1].

4.75. Compute / fdm for each of the following sets E and functions f:
E
[0,1) and f(x) = (1—x2)~1/2;

(O, 1] andf(x) = xlogx;

(0,00) and f(x) = ™*;

1. E
2. E
3. F
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4. E = (0,00) and f(x) = ([x]")~!, where [x] denotes the largest integer n for which
n<ux;

5. E=Randf(x) = (1+x*)"".
4.76. Prove that

n

lim (1—}—{) e ¥dx  exists
0

n—00 n

and evaluate the limit.

4.77. Prove that

n

X\ .
lim (1 — —) % dx  exists
n—00 J n

and evaluate the limit.

4.78. Let u, be the characteristic function of (0, %] for each n € N. Show that
o0 o0

Z u,(x) converges for all x € R, but Z u, fails to be integrable.

n=1 n=1

4.79. Assume that (X, ¥, ;) is a measure space. Prove or disprove the following
o0

assertion: If u, : X — R is integrable, for each n € N, and if Z”” converges

n=1
absolutely on X to a function u : X — R, then u is integrable and

4.80. Consider the function f : [0, 1] — R given by the series

oo

X
fO=2 i

n=0

1. Show that f(x) = x+ 1, if x € (0, 1], and that £(0) = 0.
2. Does the series converge uniformly on [0, 1] ?
3. Is it true that

1 oo X oo 1 X
/ (2 (1+X)”)dx:;/0 o

4.81. Prove that the Radon-Nikodym Theorem (Theorem 4.36) holds for o-finite
measures on a measurable space (X, X).
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4.82. Prove that if {0 }en is a sequence of convex functions on an open interval
J € R such that sup, 9 (x) exists for all x € J, then sup, ¥ is a convex function.

4.83. Prove that every convex function is continuous.

4.84. Assume that J C R is an open interval and that ¢ : / — R has a continuous
second derivative d*1/dt? at every point of J. Prove that is ¥ is a convex function,
then d*1/dr? is nonnegative on J.

4.85. Assume that J is an open interval and that ¢ : / — R is a convex function.
Prove thatif #1,...,1, € [0,1] satisfy t; +---+1, = 1, and if x,...,x, € J, then

ﬁ(zthk) < Ztkz?(xk).
k=1 k=1

4.86. A function ¥ : J — R is strictly convex if
FAx+(1—-24)y) < Adx)+(1-1)J(y), VAe(0,1)and Vx#y.

1. Prove that ¢ (f) = ¢ is strictly convex on R for every nonzero o € R.
2. Prove that ¢ (r) = #’ on (0, 00) for every p > 1.
3. Prove that, for positive real numbers «y, ..., o,

1
(orr--00) " = = (a1 + - + @)
n

ifand only if o = -++ = «,.

4.87. Let oy,...,a, be positive real numbers and let py,...p, be positive real
numbers that satisfy pll N pln =1.

1. Prove Young’s inequality:

n
ot
o1...0, < E —.
=1 Pk

2. Characterise the cases of equality in Young’s inequality.

4.88. Suppose that (X, X, ) is a finite measure space and that f : X — C is
integrable. Furthermore, suppose that U C C is an open set for which E = f~!(E)

has positive measure. Prove that ﬁ / fdueU.
E
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Chapter 5
Banach Spaces

Various collections of functions carry the structure of a vector space, and functional
analysis is devoted to the study of such vector spaces, mainly from an analytic rather
than linear algebraic perspective. When working with vector spaces, one is required
to specify the underlying base field. In analysis, the natural choices are the fields
R and C, which are preferable to the field Q or some finite field F, because of the
completeness properties enjoyed by the real and complex fields. However, because
the field C is algebraically closed, whereas R is not, there is a richer and more
widely used theory in the case of complex vector spaces. Thus, the base field for all
vector spaces under consideration is assumed, with very few exceptions, to be the
field C of complex numbers.

By equipping a vector space with additional structure, such as a topology, linear
transformations of the space and the vector space itself are poised to be studied from
the point of view of analysis.

5.1 Normed Vector Spaces

The most basic vehicle for introducing a topological structure to vector spaces is
through the use of a norm.

Definition 5.1. A norm on a (complex) vector space V is a function ||-|| : V — R
such that, for all v,w e Vand @ € C,

1. ||lv|| =0, and ||v]| = 0 only if v =0,
2. lecv]l = feel [[o]l,
3. v +wll = vl +lwl.
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The inequality |[v +w]| < |v]| + ||w| is called the triangle inequality. Observe
that a norm || - || on a normed vector space V induces a metric topology, which is
also called a norm topology, on V via the metric d : V x V — R defined by

d(vl,v2)=||v1—v2||, v, € V.

Proposition 5.2. If ||- || is a norm on V, then a basis A for the norm topology 7
on 'V is given by

B ={B,(v)|lveV,reR, r>0},

where B,(v) ={we V||w—v]| <r}

Proposition 5.2 above is a reformulation, for normed vector spaces rather than
arbitrary metric spaces, of Proposition 1.39.

In equipping a vector space with a norm—and, hence, a metric topology—one
can ask whether the vector space operations of scalar multiplication and vector
addition are continuous.

Proposition 5.3. If V is a normed vector space, then the maps a: V xV — V and
m:CxV —V defined by

a(vi,v)=vi+v, and m(a,v)=av,YVaeC,v,v;,1,€V,

are continuous.

Proof. Exercise 5.99. O
Example 5.4. The equation ||§|| = Z |&12, for
=
i El k)
E=| 1 |eC",
L &n

defines a norm—called the Euclidean norm—on C".

Proof. The only nontrivial verification is that of the triangle inequality. If &, 7 € C”,
then

I& +nll> = E11P +29% [ D &7, | +lInll>.

J=1
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The complex version of the classical Cauchy-Schwarz inequality (1.2) is

dSogml = (D ER] D P
7=l j=1 j=1

Because N¢ < |¢| for every complex number ¢, the Cauchy-Schwarz inequality
above yields 23t (Z};l E;ﬁ,) < 2|l Inll. Hence, [I€ +nlI*> < (I€]l + [In])?, which
proves the triangle inequality. O

Example 5.5. Assume that u is a finite Borel measure on a compact Hausdorff
space X and let C(X) be the vector space of all continuous maps f : X — C. Then
each of the equations

Wl = [ 11

Il = max £

defines norms || - || and || - ||co on C(X).

Proof. Because X is compact and |f| € C(X) for each f € C(X), the maximum
modulus of each f € C(X) is achieved at some point x € X (Proposition 2.13).
Furthermore, bounded continuous functions are integrable on a finite measure space.
Hence, the definitions of || - ||; and || - || make sense for the vector space C(X).

As before, it is only the triangle inequality that is in need of verification, as the
other requirements for a norm are clearly met by each of | -||; and | - ||co. The
triangle inequality ||f +g|l1 < |If |1 + |lg]l1 is a consequence of the triangle inequality

for integrals—namely / hdp| < / || du—and the triangle inequality for complex

numbers, while the triangle inequality ||f 4 glloo < |Ifloo + |lglloo is @ consequence
of the triangle inequality for complex numbers and for the “max” function. O

There are many norms of interest on C". For example, by taking X = {1,...,n}

and p to be counting measure on X, Example 5.5 implies that

€] = max ||
1<j<n

I&loo = Y I&]
j=1

are norms on C”. (This can be easily verified directly as well.) To distinguish the
Euclidean norm from the two norms above, we write |||, for the Euclidean norm
||l || of Example 5.4
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Example 5.5 demonstrates how natural it is to consider different norms on a given
vector space. In moving from one norm to another, the shape of the closed unit ball
will change, and it may happen that V is complete in one norm but not in another
norm. With equivalent norms, this pathology does not arise.

Definition 5.6. If |- || and | - ||’ are norms on a vector space V, then || - || and || - ||’
are equivalent norms if there are positive constants ¢ and C such that

clvll =l = Clwl,

for every vector v € V.

If one uses the notation || - || ~ || ||’ to mean that there are positive constants ¢
and C such that c||v|| < ||v]|" < C|lv|| for every v € V, then it is easily proved that ~
is an equivalence relation on the set of all norms on a given vector space V.

Proposition 5.7. If 7 and 7' are the norm topologies on a vector space V
induced, respectively, by equivalent norms |- || and || - || on V, then F = T

Proof. Exercise 5.102. O
In finite-dimensional vector spaces, all norms are equivalent.
Proposition 5.8. All norms on a finite-dimensional vector space are equivalent.

Proof. Fix a linear basis {v1,...,v,} of V and let || - ||, be defined by

n
> e =
j=1

2

By Example 5.4, |- || is a norm on V. Because equivalence of norms is an
equivalence relation, it is sufficient to show that if |- || is a norm on V, then
[+l ~ 1l 1I-

Z||vj||2. Consider S = {£ € C"|||€]l2 =1} and the

Jj=1

To this end, let C =

function f : S — R defined by f(§) = Zéjvj . We claim that f is continuous.
j=1

Fix £ € S and consider a neighbourhood W C R of f(§). Thus, there is a ¢ > 0

such that (f(§) —e,f(§) +¢&) € W. Let V C C” be the set of all n € C" for which

IE —nll2 <&/C. Thus, U = SNV is a neighbourhood of £ in S and if € U, then
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& —rel = || 2 gu| —| D nv
j=1 j=1
< Z(gj —0j)V; [by Exercise 5.104]
j=1
<3l nllyl
j=1
n n
< Z|§j—r1j|2 Z [[vj]? [by Cauchy-Schwarz]
=1 =1
= 1§ =nll.C
<,

which implies that f () € W. Hence, f is continuous at every £ € S, which implies f
is a continuous function.

Because |¢]? = |0n|? + |3¢|? for every ¢ € C, S may be identified with the
Euclidean sphere 5§21 in R?". Thus, S is a compact set and, hence, the continuous
map f achieves its minimum value ¢ at some element of S.

Now if v = Zj ajvj € V for some ay, ..., o, € Cnot all zero and if the coordinates

of § € Sare & = o;/ (Y, |ox|*)!/%, then ¢ < f(&). Thus,

1/2 1/2

n n n n

2 2

e > Iyl < 1> e = D el < € D e
j=1 j=1 j=1 j=1

That is, c||v||> < ||[v]| < C||v|) for every v € V, which proves that || - | ~ ||-||. O
A slightly more general concept than that of a norm is the notion of a seminorm.

Definition 5.9. A seminorm on a vector space V is a function p : V — R such that,
forallv,we Vanda € E,

L. p(v) >0,
2. plav) = lalp(v),
3. p(v+w) < p(v) +p(w).

Seminorms differ from norms in the following way: with a seminorm p, the
equation p(v) = 0 can hold for nonzero v; however, with a norm || - ||, the equation
||lv|| = 0 holds only for v = 0. Nevertheless, one can obtain a norm from a seminorm
as follows.
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Proposition 5.10. If p is a seminorm on a vector space, and if ~ is the relation on
V defined by
v~w if pv—w)=0,

then ~ is an equivalence relation. Moreover, if the equivalence classes of elements
of V are denoted by

v={weV|w~ v},
then:

1. the set V/ ~ of equivalence classes is a vector space under the operations

V+w = (v—i'—w), v,wevV,
(av), aeC,veV;

oV
2. the function || - || : V/ ~— R defined by
[0 = p(v), veV,
isanormonV/ ~.

Proof. Exercise 5.106. O

Through the use of a norm, one can introduce the notions of convergent
sequences and series, as well as the idea of completeness.

Definition 5.11. A normed vector space (V, || -||) is a Banach space if (V,d) is a
complete metric space, where d is the metric d(v,w) = |[v —w||.

Normed vector spaces of finite dimension provide the simplest examples of
Banach spaces.

Proposition 5.12. Every finite-dimensional normed vector space is a Banach
space.

Proof. By Proposition 5.8 and its proof, if {vy,...,v,} is a basis for a normed vector
space V, then there are positive constants ¢ and C such that

1/2 1/2
n n n
2 2
(Yl = Y| = [ Xll| . (5.1)
j=1 j=1 j=1
for all oy,...,0, € C. Assume now that {wy}; is a Cauchy sequence of elements

in V. Write

n
wk=2a;k)vj, VkeN.

J=1



5.1 Normed Vector Spaces 171

Then inequality (5.1) implies that for each j = 1,...,n, the sequence {a;k)}k con-
verges in C to some o; (because C is complete). Let w = Z;;l a;v;. Inequality (5.1)
implies, again, that the sequence {wy}; converges in V to w. Hence, V is a Banach
space. O

Definition 5.13. If X and Y are nonempty subsets of a vector spaces V, then X +Y
denotes the set of all vectors of the form x+y, wherex€ X and y € Y.

The completeness axiom for Banach spaces has numerous consequences, such as
the following topological property exhibited by compact sets.

Proposition 5.14. Suppose that K and C are subsets of a Banach space V such that
K is compact and C is closed. If KN C = @, then there exists € > 0 such that

(K + B.(0)) N C = 0.

Proof. If the conclusion is not true, then there are v, € K and w, € V of norm
[lwa ]l < }l such that v, +w, € C, for every n € N. Since K is compact, {v, },en admits
a convergent subsequence {v,, }xeny With limit v € K. Note that ||[v — (v, +wp) || <
lv—vp || + n—lk; thus, v € C, as C is closed. But this contradicts K N C = @; therefore,
the conclusion must hold. O

The notion of basis for a vector space, which is a common feature of linear alge-
bra, has a limited role in Banach space theory because the defining conditions are
purely algebraic and do not take into account the topological or analytic properties
of the space. Nevertheless, it is interesting to examine the facts concerning linear
bases, as in Proposition 5.16 below, for instance.

Recall that if S is a nonempty subset of a vector space V, then:

1. the elements of S are linearly independent if, for every finite subset {vy,...,v,} C

S, the equation Zozjvj = 0 holds, for «,...,a, € C, only if each o; = 0; and
j=1

n
2. the span of S is the set of all linear combinations Zajvj, for all finitely many
j=1
Vi,...,0, €S.
The important point to keep in mind is that linear combinations are finite sums, even
though in analysis one considers infinite sums.

Definition 5.15. A linear basis of a vector space V is a subset B C V such that the
elements of ‘B are linearly independent and span V.

Recall from linear algebra that if a vector space V admits a finite linear basis
B, then every linear basis of V has cardinality equal to that of B and this integer
is called the dimension of V. In particular, V is finite dimensional if V has a finite
linear basis, and V is infinite dimensional if V has no finite linear basis. In the case
of infinite-dimensional Banach spaces, the question of existence of linear bases
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is addressed by the following proposition. The proposition also shows that the
completeness of Banach spaces (as metric spaces) forces linear bases of Banach
spaces to be of sufficiently large cardinality.

Proposition 5.16. IfV is an infinite-dimensional Banach space, then V has a linear
basis and every linear basis of V is an uncountable set.

Proof. By hypothesis, there is an infinite set B, of linearly independent vectors in
V. Let G be the set of all subsets ¥ C V of linearly independent vectors for which
Y D By, and define a partial order < on & by set inclusion: that is, X < Y if and
only if X,Y € G satisfy X C Y.

Let € C G be a linearly ordered subset and consider the set ¥ = U E. To

Ece
show that the elements of Y are linearly independent, select y,...,y, € Y. Thus,
there exist sets Ej,...,E, € € such that y; € E; for all j. Because € is linearly

ordered, either E; C E, or E; C E;. Thus, there is an i, € {1,2} such that y;,y, €
E,;,. Likewise, E;, C E3 or E3 C E;,; hence, there is an i3 € {1,2,3} such that
Y1,¥2,y3 € E;,. Continuing by induction we obtain an integer i, € {1,...,n} for
which yi,...,y, € E;. As E; consists of linearly independent vectors, we deduce
that yy,y2,...,y, € Y are linearly independent. Furthermore, Y 2 E D B for every
E € €, and so Y is an element of G and is an upperbound in G of the linearly ordered
set &. Hence, by Zorn’s Lemma (Theorem 1.8), S has a maximal element ‘B.

To show that B is a linear basis of V, consider the linear submanifold M =
Span®B. If M # V, then there is a unit vector v € V with v &€ M, which implies that
v is linearly independent of every vector in M and, in particular, of every vector in
B. Thus, B = B U {v} is a linearly independent set that properly contains 5. But
B < B and B # B contradict the maximality of B in &. Hence, it must be that
M =V, which implies that ®5 is a linear basis of V.

Now suppose that ®B5 is an arbitrary linear basis of V and assume, contrary to
what we aim to prove, that ‘B is a countable set 8 = {v,|n € N}. Thus, if V, =
Span{vy,...,v,}, then

V=UVn.

neN

Each V), has finite dimension and is, therefore, closed in the metric topology of V.
We claim that V,, is nowhere dense—that is, that the interior U, of V, is empty.
To this end, select v € U, and & > 0 such that B,(v) C U,. On the line segment
{(1=H)v+1tv,41 |t €[0,1]} connecting v and v,,41, select 7 € (0, 1) sufficiently small
such that ||(1 —f)v + tv,41 — V|| = t]|v,4+1 — V| < &. Hence, there is a w, € B.(v)
such that v,+1 € Span{v,w,} C V,, which is a contradiction. Therefore, it must be
that U, = @ for every n € N, which implies that each V,, is nowhere dense. By
Corollary 2.57 of the Baire Category Theorem (Theorem 2.55), a countable union
of nowhere dense sets in a complete metric space is nowhere dense. Hence, V is
nowhere dense, which is impossible because V is both open and closed in V. Thus,
no linear basis of V can be countable. O
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5.2 Subspaces, Quotients, and Bases

Because Banach spaces are vector spaces, their subspaces are of interest. However,
the presence of an underlying topology means that one needs to distinguish
subspaces that are closed in the topology from those that are not. Thus, the following
terminology is adopted.

Definition 5.17. Suppose that V is a Banach space and that L C V.

1. Lis a linear submanifold, or linear manifold, of V if
ogw) +aowr, €L, VYo, a0 €C,wi,wy L.

2. Lis a subspace of V if L is a linear submanifold of V and L is a closed set in the
topology of V.

If L is a subspace of a Banach space V, then the elements of the quotient vector
space V//L are denoted by v, for v € V, and are given by

v={weV|v—wel}.

Proposition 5.18. If L is a subspace of a Banach space V, then the function || - || on
the quotient space V /L, defined by

[0l = inf{llv—y[l [y € L}, (52)
is a norm on V /L such that, with respect to this norm, V /L is a Banach space.

Proof. Observe that, by definition, ||v| < ||v]|| for every v € V. To show |[v|| =0
only if v = 0, suppose that ||0|| = 0. Thus, there is a sequence of vectors y, € L such
that ||v —y,|| — 0. Because L is closed and v is the limit of the sequence {y,},en, v
must belong to L, which yields v = 0. It is readily apparent that ||a?|| = || ||0]| and
lv+w| < ||9]| + |[w]|, and so the function || - || defined by equation (5.2) is indeed a
norm on the vector space V/L.

Now suppose that {U;}reny be a Cauchy sequence in V/L, and select a subse-
quence {Vy, }jen With the property that [0y, — U5, || < 27 for every j € N. Therefore,
for each j there exists y; € (Ux, — Vx,_,) with [ly;|| < [[¥x, — Vs, | < 277. Hence,

o0 o0
Z lv;]| is convergent in R, which implies that Zyj is convergent in V to some

j=2 j=2
vector y. Consider y + V¢, € V/L. For any j € N,

Jj
Z(ﬁk,- —Umy) =Y

i=2

J
Zyi_y
i=2

95 = G+ 8] = [ @ =) 3] =

=

J
> 3y
i=2
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Because ) .o, y; converges to y € V, the sequence {Ux;}; converges to y + vy, in V/L.
However, as {vy,}; is a convergent subsequence of the Cauchy sequence {vy }en, the
sequence {V }; must also converge in V/L to y + Uy, . O

The next two lemmas give important analytical information about infinite-
dimensional Banach spaces, and we shall make use of them frequently in this study.

Lemma 5.19 (Increasing Subspace Chain Lemma). If V is an infinite-
dimensional Banach space and if {M,},en is a sequence of subspaces such that
M, C M, (proper containment), then for each § € (0,1) there is a sequence of
vectors v,, € V such that

1. v, € Mn+1 and Uy, Q/Mn,

2. Jvall =1,

3. \va—u| = & for all vectors u € M,, and

4. vk —v;|| = 8 for all j,k € N such that k # j.

Proof. Fix n € N. Because the containment M,, C M, is proper, the quotient space
M, +1/M, is nonzero; hence, there is a vector of norm §. Since § < 1, there are
vectors f, € M, and g, € M,,4 such that ||g,|| =6 and ||g, —f,|| = 1. Let v, = g, —fp-
Because v, = g, and § = ||v,,|| = inf{||v, —f|| |f € M,.}, we deduce that ||v, —u| > §
for all vectors u € M,,.

Having produced such a unit vector v, € M4 for each n € N, now select j,k € N
with k # j. Without loss of generality, assume that j < k. Thus, v; € M+ € M and,
therefore, [|vy —v;|| > 6. |

The second lemma is proved by precisely the same type of argument.

Lemma 5.20 (Decreasing Subspace Chain Lemma). If V is an infinite-
dimensional Banach space and if {M,},en is a sequence of subspaces such that
M, D M, (proper containment), then for each § € (0,1) there is a sequence of
vectors v,, € V such that

1. v, e M, and v, € M, 4,

Mol =1,

. lvn —ul| = 6 for all vectors u € M+, and

. Nk —vjl| = 6 for all j,k € N such that k # j.

AN w

A notable consequence of Lemma 5.19 is:

Proposition 5.21. If V is an infinite-dimensional Banach space, then there exists
a sequence {vV,}nen of (distinct) unit vectors v, € V such that {v,},en has no
convergent subsequences.

Proof. Select § € (0,1). By Lemma 5.19 there is a sequence {v, },en of (distinct)
unit vectors v, € V such that |vx —vj|| > § for every j # k. Thus, {v,},en has no
Cauchy subsequences and, therefore, {v, },en has no convergent subsequences. 0O
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Proposition 5.21 is noted here for future reference. The first use of the result is
in the following characterisation of the compactness of the closed unit ball in terms
of dimension.

Proposition 5.22. The closed unit ball in a Banach space V is compact if and only
if V has finite dimension.

Proof. Suppose that V has dimension n € N. By Proposition 5.8, the closed unit balls
of V and £°°(n) are homeomorphic. Because the unit ball of £°°(n) is a product of
n copies of the closed unit disc D = {z € C||z| < 1}, and because I is compact, the
closed unit balls of £°°(n) and V are compact.

If V has infinite dimension, then Proposition 5.21 shows that there exists
a sequence {v,},en of (distinct) unit vectors v, € V such that {v,},ey has no
convergent subsequences. Because sequences in compact metric spaces admit
convergence subsequences (Proposition 2.19), the unit sphere is not a compact set,
nor is any closed set that contains the closed unit sphere. Hence, the closed unit ball
of V is compact only if V has finite dimension. O

5.3 Banach Spaces of Continuous Functions

Recall from Definition 2.20 that a topological space X is locally compact if, for every
x € X, there is an open set U C X containing x such that U is compact. Assuming
X is locally compact, let C,(X) denote the set of all functions f : X — C that are
continuous and bounded. Thus, for every f € C,(X) means that there is an R > 0
such that |f(x)| <R for all x € X.

Theorem 5.23. If X is a locally compact space, then Cp(X) is a Banach space,
where the vector space operations are given by the usual pointwise operations, and
where the norm of f € Cy(X) is defined by

IfIF = sup [F@)l. (5.3)

Proof. 1t is elementary that C,(X) is a vector space and that (5.3) defines a norm
on Cp(X). Thus, it remains only to show that every Cauchy sequence in Cp(X) is
convergent in Cp(X).

Let {fi }xen C Cp(X) denote a Cauchy sequence. For each x € X,

[fn () —fn ()] < Slel)]? [ ) = fn O = lfoe =Sl -

Since {fi }ren is a Cauchy sequence in Cp(X), {fi(x) }xen is a Cauchy sequence in C
for each x € X. Because C is complete, limy f;(x) exists for every x € X. Therefore,
define f : X — C by f(x) = limgfi(x), for each x € X. We aim to show (i) that f is
continuous and bounded, and (ii) that {f; },en converges to f in Cp(X).
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Let ¢ > 0. Because {f; }xen is a Cauchy sequence, there exists N, € N such that
Ilfy =fnll < & for all n,m > N,. Assume that n > N,. Choose any x € X; thus,

[F) =fa)| = [f () =fn D) [+ [fin () = fu ()]
= lf(x) _fm(x)| + ”fm _fn“ .

As the inequalities above are true for all m € N,

[f () —fu )| < nlzrelfl\‘l (If ) =fn |+ fon = 21D

<0+e.

This right-hand side of the inequality above is independent of the choice of x € X.
Hence, if n > N, is fixed, then f —f,, is a bounded function X — C and

sup [f (x) =fu(D)] < .

xX€X

Since f is uniformly within ¢ of a continuous function, f is continuous at each x € X.
Furthermore, since the sum of bounded functions is bounded, f, + (f —f,) = f is
bounded. This proves that f € Cp(X). Finally, since f € Cp(X) satisfies ||[f —f,|| < ¢
for all n > N,, the Cauchy sequence {f; }ren converges in C(X) to f € Cp(X). O

Notational Convention For a compact space X, we denote C;(X) by C(X).

If X is compact and f € C(X), then f(X) is a compact subset of C; hence, f is
bounded and attains its supremum at some point of X. Therefore, the norm ||f|| is
given by

11 = max|f 9.

Because C has multiplication as well as addition, we may multiply f, g € C»(X)
to produce a function fg : X — C whose value (fg)[x] at each x € X is defined by

(R =f(g).

It is not difficult to see that fg € C(X) and that ||fg|| < |Ifl gl
Definition 5.24. An associative algebra—or, more simply, an algebra—is a
complex vector space A endowed by with a product (or multiplication) operation
such that, for all a,b,c€e Aand all @ € C,

(a+b)c = (ac+bc), alb+c)=ab+ac, a(bc)= (ab)c,

and

(¢a)(b) = a(ab) = a(ab).
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Furthermore, if ab = ba, for all a,b € A, then A is called an abelian algebra, and if
there is an element 1 € A such that al = la = a, for every a € A, then A is said to
be a unital algebra and 1 is the multiplicative identity of A.

It is not difficult to show that, if 1 and 1’ are multiplicative identities for an
algebra A, then 1’ = 1.

Definition 5.25. A Banach algebra is a complex associative algebra A together
with a norm || - || on A such that

L lxy[l < [|x[l{ly]l, for all x,y € A, and
2. A is a Banach space under the norm || - ||.

Furthermore, if A is a unital algebra, then A is a unital Banach algebra if ||1]| = 1.

Thus, if X is a compact space, then C(X) is a Banach algebra. The (constant)
function that sends each x € X to 1 € C is denoted by “1” and it serves as the
multiplicative identity for C(X) in the sense that f 1 = f for every f € C(X).

Definition 5.26. A uniform algebra on a compact space X is a subset A € C(X)
such that:

1. A is a Banach subalgebra of C(X);

2. 1e€A;

3. A separates the points of X—that is, if x;,x, € X are distinct, then there exists a
function f € A such that f(x1) # f(x2).

Discussion of uniform algebras makes sense only if X is Hausdorft:

Proposition 5.27. C(X) is a uniform algebra on a compact space X if and only if
X is Hausdorff.

Proof. Suppose that A is any uniform algebra on X and that x|, x, € X are distinct. By
hypothesis, there is a function f € A such that f(x;) # f(x2). In C there are disjoint
open sets V; and V, that contain f(x;) and f(x;), respectively. Thus, by continuity
of f, Uy = f~1(Vy) and U, = f~'(V,) disjoint open sets in X that contain x; and x,,
respectively, which proves that X is a Hausdorff space.

Conversely, suppose that X is Hausdorff. Because X is a normal space (Proposi-
tion 2.34), if xp,x; € X are distinct, then Urysohn’s Lemma applied to the point sets
{xo} and {x1} (which are closed because X is Hausdorff) yields a function f € C(X)
such that f(xp) = 0 # 1 = f(x1). Hence, C(X) is a uniform algebra. O

The elements of C(X) are complex-valued functions. Therefore, for each f €
C(X) one can consider the continuous function f : X — C defined by

f(x)=f(x), VxeX.

Definition 5.28. A nonempty subset S C C(X) is selfadjoint if f € S for every f € S.
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The Stone-Weierstrass Theorem, Theorem 5.30 below, asserts that if A is a
selfadjoint uniform algebra of continous functions f : X — C, where X is a compact
Hausdorff space, then A = C(X).

Lemma 5.29. Suppose X is compact and that A C C(X) is a unital, closed
subalgebra of C(X). If A is selfadjoint, and if f.fi,....fu € A are real-valued
functions, then A also contains the following real-valued functions:

(i) Ifl;

(ii) min(fi,....f,);
(iii) max(fi,....f,), and
(iii) fT and f~, where f* = S (|f| +£) and f~ = 5(If| = ).
Proof. Iff =0, then |f| = 0 and so |f| € A trivially. Assume, therefore, that f 7 0; by
normalising, we may assume without loss of generality that ||f|| = 1, which implies
that f(x) € [—1, 1] for all x € X. By Newton’s Binomial Theorem,

JlT—l——+Z( 1)"

which converges absolutely on [—1,1] and uniformly on compact subintervals of
(—1,1). For notational convenience, let ¢ denote the function on [—1, 1] given by
@(t) = +/1 —1t and write the power series expansion above of ¢ as

oo
o)=Y "
n=0

For each § € (0,1) let gs € C(X) be given by gs(x) = § + (1 —8)f(x)?; that is, g5 =
84 (1—=8)f?, where § € A is the constant function x — §. Because A is an algebra,
f* € A and gs € A. Furthermore, f(x)? € [0,1] for all x € X, and so 0 < gs < 1 and
0<1-—gs=(1-8)(1—f>) <1-6.Thatis,

1—gs(x)€[0,1-6], VxeX.
Fix k € N and define f; ; by

k
fre=Y_an(l—gs)",

n=0

where oy, ..., € R are the coefficients in the power series expansion of ¢. Thus,
fsk €Aand

fs.x — (g5)'7l = max
x€X

k
> (1 —gs(@)" — p(1—gs(x))
n=0

IA

Zant - ‘P(f)

max
1€[0,1-5]
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By Newton’s Binomial Theorem, this final limit tends to zero as k — oo. Hence,
(g5)"/? € A (as A is norm closed). Note that ||f> —gs|| = §[|1 +£2|| — 0 as § — 0;
that is, g5 — f? uniformly on X as § — 0. The function ¥ (f) = /7 is uniformly
continuous on the compact set [0,1], and so ¥ o gs — ¥ of? uniformly on X as
§ — 0. Because ¥ o gs = (g5)'/? € A and ¥ of? = |f|, the limit || (g5)"/> = |f|]| = O
implies that |f| € A. This completes the proof that |f| € A for every real-valued f € A.

As a consequence of the arguments above, if f],f, € A are real-valued, then the
continuous functions %(fl +f2+1fi —f2|) and %(fl + /£, —|fi —f2|) are elements of A.
That is, max(fi,f>) € A and min(f;,f>) € A. By induction,

max(fi,...,fn) = max (max(fi,...,.fni—1).fn)

and

min(fi,....f,) = min (min(fi, ..., f—1).f)

are elements of A. Likewise, f7,f~ € A. O

Theorem 5.30 (Stone-Weierstrass Theorem). If X is a compact Hausdorff space
and if A is a selfadjoint uniform algebra on X, then A = C(X).

Proof. First of all, because A is selfadjoint, A is spanned by real-valued functions.
Indeed, if f € A, then Rif = %(f +f)and 3f = Zii(f —f) are real-valued elements of A
and f = 9f +iJf. Therefore it is sufficient to prove that f € A for every real-valued
function f € C(X).

To this end, assume that f € C(X) and let ¢ > 0 be arbitrary. Fix xo € X and select
any x; € X for which x; # xy. Because A separates points, there is a function i € A
such that h(x;) # h(xo). At least one of Nh(x1) # Nh(xg) or Ih(x;) # IJh(xp) holds,
and so we may assume, because A is self-adjoint, that % is a real-valued function.
Consider now the real-valued function g,, € C(X) defined by

h(y) — h(xo)

8x () = £ (x0) + (f (x1) —f (x0)) [m

i|, VyeX.

In particular, for y = xo and y = x; we obtain g, (xo) = f(xo) and g, (x1) = f(x1).
Now this construction holds as long as x; 7 x¢; we define g,, to be f. What has been
proved, then, is the following assertion: given a fixed x( € X, there exists, for every
x € X, areal-valued g, € A such that g,(xp) = f(xo) and g,(x) = f(x).

Continuing with the assumption that xy € X is fixed, note that g, —f € C(X) for
every x € X. Hence, if W, C C is the open set W, = {z € C| Nz < &}, then

U= (g:—f) "' (W) = {y € X[8.(0)—f() < &}

is open in X. Furthermore, g,(x) = f(x) implies that x € U,. Hence, {U,}ex is
an open cover X. The compactness of X implies that this covering admits a finite
subcover, say, Uy,, ..., Uy,. The functions &y that define these n open sets determine
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another element of A: namely, min{g,,,..., gy, }, by Lemma 5.29. Because all of this
has depended on the fixed element xy € X, this minimum function shall be denoted
by hy,. That is, hy, = min{g,,,...,&x, } and A, has the property

hyo(y) <f)+e. VyeX. (5.4)

Now allow xj to vary throughout X, producing for each point x, the continuous
function A, € A described above. For each x( € X, consider the open subset V,, of
X defined by

on = {yex|hxo(y)_f(y) > _8}-

Since hy, (x9) —f(x0) = 0, xo € Vy,. Moreover,

hyo(y) > f(y) —&, VyeVy,.

Therefore, {V,, }+,ex is an open cover of X and, by the compactness of X, there is a
finite subcover: Vy,, ..., V,,. Let k = max{hy,,...,h,,}, which is an element of A
by Lemma 5.29. Thus, foreachj =1,...,m,

) = k() > fO) —e. YyeX. (5.5)

Combining inequalities (5.4) and (5.5) leads to

JO) —e<k(y) <fO)+e, VyeX.

That is, ||f —«| <e. O

Corollary 5.31 (Classical Weierstrass Approximation Theorem). Iff :[a,b] —
C is a continuous function, then for every & > 0 there is a polynomial p with complex
coefficients such that |f(t) —p(t)| <, for all t € [a,b].

Proof. Let A be the closure in C([a,b]) of the ring C[f] of polynomials in one
indeterminate 7. Thus, A is a norm-closed subalgebra of C([a,b]) and 1 € A.
Moreover A separates the points of [a,b], for if x;,x, € [a,b] are distinct, then
q(x1) = 0 and g(x,) # 0 for the element g € A given by ¢(f) = t —x;. Therefore, the
Stone-Weierstrass Theorem yields A = C([a, b]). In particular, by the construction
of A, if f € C([a, b] and if & > 0, then there is a polynomial p such that ||f —p|| < &.

O

In the case of non-compact, locally compact spaces, there are functions that, in
certain respects, mimic continuous functions on compact spaces.

Recall from Definition 2.40 that the support of a continuous function f : X — C
on a topological space X is the set suppf C X defined by

supp f = {x € X|f(x) # 0}.
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Definition 5.32. If X is a locally compact Hausdorff space, then let
C.(X) ={f : X — C|f is continuous and supp f is compact},

the set of all continuous complex-valued functions on X having compact support.

Proposition 5.33. If X is a locally compact space, then C.(X) is a subspace
of Cp(X).

Proof. Exercise 5.110. O

Another useful Banach space of continuous functions is the space consisting of
continuing functions that vanish at infinity.

Definition 5.34. Suppose that X is locally compact space. A continuous function
f : X — C vanishes at infinity if the set

xeX|[f(] = ¢}

is compact in X for every ¢ > 0.

The final result of this section makes note of the fact that Cy(X) has some
additional algebraic structure, and that it is a closed set in the topology of Cp(X).

Proposition 5.35. If X is a locally compact space, then

1. Cy(X) is a subspace of Cp(X), and
2. fe € Co(X), forall f € Cy(X) and g € Cp(X).

Proof. Exercise 5.111. O

5.4 Banach Spaces of p-Integrable Functions

Proposition 5.36. Suppose that (X, X, 1) is a measure space, and that p > 1. If
LPX, X, n) =4f: X — C|f is p-integrable },

then £P(X, X, |b) is a complex vector space. Furthermore, if p : P (X, X, u) = R

is given by
1/p
o= ([ ran) 56)

forallf € ZLP(X, X, 1), then p is a seminorm on LP (X, X, ).

Proof. Tt is clear that af € ZP(X, X, ), forevery o € C and f € ZP(X, X, ). If
f,.g € LP(X, X, n), then f + g € £P(X, X, ), by Minkowski’s inequality. Hence,
ZLP(X, X, ) is a vector space.
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To verify that p is a seminorm, the only nontrivial fact to confirm is the triangle
inequality holds. To this end, Minkowski’s inequality yields:

1/p
o +g) = (/leJrgl”dM)

(o) ()

p(f) +p(g).

Hence, p is a seminorm. a

IA

The seminorm p of Proposition 5.36 need not be a norm. For example, if f is the
characteristic function on the set Q of rational numbers, and if m denotes Lebesgue
measure on R, then f # 0, yet

1/p
o) = ([P am) = m@ =o.

On the other hand, Proposition 5.10 demonstrates that a bona fide normed vector
space can be obtained by passing to equivalence classes.

Definition 5.37. If p > 1, and if (X, ¥, u) is a measure space, then LP(X, X, i)
denotes the normed vector space

P(X.S.p0) = LXK, Z.0)/ ~,

where ~ is the equivalence relation f ~ g if p(f —g) = 0 and where p is the seminorm
in (5.6). The vector space L” (X, X, i) is called an LP-space.

Conceptual and Notational Convention The vector space L’ (X, X, i) is a vector
space of equivalence classes of p-integrable functions f : X — C. Thus, one properly
denotes the elements of 17(X, X, ) by f, where f € £7(X, X, 1n). However, it
is a standard practice to denote the elements of L’(X, X, ) as simply f rather
than f. Nevertheless, we have adopted the notation 27 (X, ¥, i) for the purpose
of designating functions, and so, in the interests of clarity, we retain the use of the
notation f for the equivalence class of f € 7 (X, ¥, it) in the normed vector space
LP(X, X, pn).
The following result gives rise to another class of Banach spaces.

Theorem 5.38 (Riesz). L7 (X, X, ) is a Banach space, for every p > 1.

Proof. Suppose that Uk}keN is a Cauchy sequence in 7 (X, X, i), for some sequence
of p-integrable functions f; € £7 (X , X, u). Because this sequence is Cauchy, one
can extract from it a subsequence {f;, }jen such that

. : 1y .
Wi =il < (3) + vien.
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Foreveryi € N, let g; € £P(X, X, i) be given by

Zlf+] —fi|.

Observe that {g;};en is a monotone-increasing sequence and that

i i 00
laill = D Wl =il Il = D27 < Y 27 =1
=1 j=1 =1
Thus,

/g’i’duf 1, VieN.
X

The converse to the Monotone Convergence Theorem (Theorem 4.23) implies that
lim; g;(x)? exists for almost all x € X; thus, lim; g;(x) exists for almost all x € X and
the limit function—call it g—is p-integrable. Let L € X denote the set of points x in
which lim; g;(x) exists; thus,

hm g,(x) = l1m Z i, () —fi; ()] - (5.7
If f : L — C denotes the function defined by
o0
@ =fi, @+ (fi () —fis () .
j=1
then series above converges absolutely, by (5.7), for every x € L. Extend f to all of

X by setting f(x) = 0 if x € X\L. The (i — 1)-th partial sum of f is precisely f,, and

il = Vi +Z(f —fo)| = Vil +8i-1 = 28.

Therefore, |f;,|? < 2PgP for all i € N. As g” is integrable and lim; fi, (x)” = f(x)? for
all x € L, the Dominated Convergence Theorem asserts that f7 is integrable. This
proves that f € ZP(X, X, ).

What remains is to show limy ||f —fi|| = 0. To this end, note that

If —fil? < (Ifl + Ifi,])! < 2Pg” VieN.
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Therefore, by the Dominated Convergence Theorem, |f —f;, |7 is integrable for every
i and the limit function—in this case 0—satisfies

lim [ [0—|f —f; | du = 0:
=00 X
that is,

tim [ =" du=0.
X

i—00

Hence, ||f — fk,- | = 0 as i — oo. To show that the entire Cauchy sequence {filken

converges in L (X, X', 1) to f, let & > 0. Since {fi}xen is a Cauchy sequence, there

exists NV, € N such that lim jn§ i, —fn. || < e. Because f = lim;f;, almost everywhere,
i€

Fatou’s Lemma yields the sought-for conclusion: namely, for any m > N,,

=7l / I —ful? du

IA

liminf [ [fi; —fml? du (Fatou’s Lemma)
ieN Jy

lim inf ”ka _fm “p
ieN

A

li]“i]lf i .= i p
iGN”}(}c‘ f}ve”
< &P,

This completes the proof that L7 (X, X', i) is a Banach space. O

By specialising to counting measure on N, one obtains the Banach spaces of
£7(N) of p-summable sequences of complex numbers:

o0
P(N) = § a = {a}ren|ar € C, forall k € N, and Z|ak|p <00
k=1

In this case, the seminorm p of Proposition 5.36 is in fact a norm on this space.

Corollary 5.39. Ifp > 1, then £?(N) is a Banach space with respect to the norm

lall = (Dakw)w.

keN
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Notational Convention If n € N, then ¢”(n) denotes the normed vector space of
sequences

a={}i=

of complex numbers, considered as a finite-dimensional subspace of £ (N).
Which measurable functions belong to .Z7(X, X, u)? In the case of simple
functions, the criterion is quite basic.

Lemma 5.40. If ¢ is a simple function on a measure space (X, X, ), then ¢ is
p-integrable if and only if ((p_l (C\ {0})) < 00.
Proof. Exercise 5.112. O

The following proposition is a type of approximation result.

Proposition 5.41. The linear submanifold {¢ | is simple and p-integrable} is
dense in [P (X, X, ), for every p > 1.

Proof. If f € £P(X,X, 1), then f is also p-integrable, which implies that both
the real and imaginary parts of f are p-integrable. Moreover, every real-valued
p-integrable function is a difference of nonnegative p-integrable functions, by
equation (3.3). Therefore, it is sufficient to prove that if f is a nonnegative p-
integrable function and if ¢ > 0, then there is a p-integrable simple function ¢ such

that/ If —olPdu < €.
X

Assuming f is nonnegative, there exists, by Theorem 3.14, a sequence of simple
functions ¢, : X — R such that 0 < ¢, (x) < f(x) and lim,, ¢, (x) = f(x) for every x €

X. Therefore, each ¢, is p-integrable. Moreover, because 0 < f(x) — ¢, (x) <f(x) for
all x € X and n € N, each f — ¢, is p-integrable and lim, (f (x) — ¢,(x))? = 0. Hence,

by the Dominated Convergence Theorem, lim | (f — ¢,)’du = 0. In particular,
T Jx

given & > 0, there exists an n € N such that / If — @ulP diu < €, which shows that
b

If = @ull <. O

The latter part of the proof of Proposition 5.41 does not use the property that the
functions ¢, are simple; indeed, the argument shows that the following useful and
rather strong approximation property holds.

Proposition 5.42. If p > 1, if f € £P(X, X, ) is nonnegative, and if {f,}en is a
sequence of measurable functions for which 0 < f,,(x) < f(x) and lim f,(x) = f(x)
n—>oo

for all x € X, then each f, € £P (X, X, ) and 1_i>m If —full = 0.
n o0

We conclude this section with another approximation result, which addresses the
cases of primary interest in analysis.

If f € C.(X), then the support of f has finite measure, because regular measures
take on finite values on compact sets. Therefore, if M = max,ey |[f(x)|, then
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/ fPdu= [ IfPdp < M psuppsf) < oo
X suppf

That is, f € ZP(X, X, 1) and, thus, determines an elementf el’(X,X, ). Itis in
this sense, then, that in Theorem 5.43 below the vector space C.(X) is viewed as
linear submanifold of L7 (X, X, ).

Theorem 5.43. If i is a regular measure on a locally compact Hausdorff space X,
and if X is a o-algebra that contains the Borel sets of X, then C.(X) is dense in
LP(X, X, 1.

Proof. Suppose that ¢ > 0 and choose a measurable set E € X' of finite measure. By
the regularity of x and Proposition 3.59, there are K, U C X such that K is closed,
Uisopen, KCECU, u(E\K) < %, and w(U\E) < % Thus,

w(U\K) = p(U\E) + w(E\K) < &/27.

The function ygx : K — [0,1] is continuous and has, by the Tietze Extension
Theorem (Theoerm 2.43), an extension to a continuous function h : X — C of
compact support such that supps C U and max,ex |A(x)| = 1. Thus,

iz —hlP = /XuE—deu
=/|xE—h|Pdu+/ |xE—h|”du+/ s — P de
K U\K Ue

=[ |XE—h|pdlL§[ (I+1)Pdp=2?w(U\K) < &°.
U\K U\K

That is, || ¥z — k|| < &, which proves that the characteristic elements xz are in the
closure of C.(X) in L (X, X, ).

Suppose next that ¢ is an arbitrary p-integrable simple function: ¢ = Zak XEes
k=1
where each o # 0. By Lemma 5.40, each Ej has finite measure. Let ¢ > 0 and
M = maxy |o|. For each k there exists g € C.(X) such that || yg, — gkl < &/(nM).
Therefore, with g = a1 g1 + -+ + a8, € C.(X) we have that

n

lo—2l = >l Iy —gill <e.
k=1

This proves that every simple function is in the closure of C.(X) in L7(X, ¥, ). By
Proposition 5.41, we deduce that the closure of C.(X) is L (X, X, u). O
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5.5 Essentially-Bounded Measurable Functions

Having spent some effort in studying the Banach spaces L7(X, X, u), for p € R with
p > 1, this section is devoted to what might be viewed as the case p = oco.

Definition 5.44. If (X, X, 1) is a measure space, and if f : X — C is a measurable
function, then the essential range of f is the set ess-ranf of all A € C for which

n(~ (@) >0,

for every neighbourhood U < C of A.
An alternate description of the essential range is as follows.

Proposition 5.45. Iff : X — C is a measurable function, then

ess-ranf = ﬂ ]@

E€X, u(E)=0

Proof. If A € ess-ranf and if E € X' is such that u(E°) = 0, then necessarily
A € f(E). If not, then there is an open set U containing A that is disjoint from
the closed set f(E), and so f~!(U) C E; however, E° has measure zero while
F£~(U) has positive measure (since A € ess-ranf), which is a contradiction. Hence,
ess-ranf C f(E) for every measurable set E with w(E) = 0.

Conversely, if A & ess-ranf, then ,u(flU)) = 0 for some neighbourhood U of
ALetE=f ~1(U)°. We claim that A & f(E). If, on the contrary, A were contained
in f(E), then f(E) N U would be non-empty, in contradiction to EN E = @. Hence,
f(E) C ess-ranf for every E € X' such that u(E) = 0. O

Definition 5.46. If (X, X, ) is a measure space, then the essential supremum of a
measurable function f : X — C is the quantity

ess-sup f = sup{|A||A € ess-ranf}.

If the essential supremum of f is finite, then f is said to be essentially bounded.

If ess-supf = M < oo, then the set {x € X||f(x)| > M} has measure zero; thus,
it is natural to use the term “essentially bounded” in describing the function f, even
though f may very well be an unbounded function.

The following proposition is essentially (ha!) self-evident.

Proposition 5.47. If (X, X, ) is a measure space, then the set L*°(X, X, ) of
all essentially bounded measurable functions X — C is a complex vector space.
Furthermore, the function p : £°°(X, X, ) — R defined by

p(f) = ess-suplf],

is a seminorm on £ (X, X, ).
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Definition 5.48. If ~ denotes the equivalence relation on .£*° (X, X, ) defined by
f ~ g if and only if ess-sup |f —g| = 0, and if

L¥(X, X u) = LXK, 2, 1)/ ~,

then L>°(X, X, ) is called an L*°-space.
By definition, if f € £°°(X, X, u), then the norm off € L*®(X, X, ) is given by

71l = ess-supf].

Theorem 5.49. L°°(X, X, i) is a Banach space.

Proof. Assume that {f,},cy is a Cauchy sequence in L (X, X, i), where each f, €
ZL°(X, X, ). For all k,n,m € N, let

E; = {x € X||fx(x)| > ess-ranf} and
Fom = {x € X[ |fu(x) = fin(x)| > ess-ran (£, —fn) }.

The measurable sets E; and F), ,, have measure zero, and therefore so does G, where

(i)

nm

If x € G, then |f,(x) —fu(x)] < |lf, —f.n| implies that {f;(x)}xen is convergent in
C to some complex number denoted by A,. Thus, if f : X — C is defined so that
f(x) = A, for x € G° and f(x) = O for x € G, then f is bounded and measurable, and

I =il = 0. O

As with LP-spaces, one can consider sequence spaces:

£°(N) = Ja = {ay}ren]|ox € C, forall k € N, and sup |oy| < ooy .
keN

Corollary 5.50. The sequence space £°°(N) is a Banach space with respect to the
norm

llall = sup |o|.
keN

For finite-length sequences, we use the notation £°°(n), as we have already done
with finite-dimensional £”-spaces.

Every function on the measurable space (N, Z?(N)) is continuous; therefore,
using counting measure p, we may consider the sequential analogue of Cy(N),
which is a Banach space denoted by ¢((N).
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Definition 5.51. The set ¢y(N) is defined to be
co(N) = a ={ar}ren|ax € C, forall k € N, and klim loag| = 07 .
—>00

The next result is the L*°-version of Proposition 5.41.

Proposition 5.52. The linear manifold {¢ | ¢ is simple and essentially bounded} is
dense in L° (X, X, ).

Proof. As in the proof of Proposition 5.41, it is sufficient to prove that if f is a
nonnegative essentially bounded function and if € > 0, then there is a simple function
@ such that ess-sup|f —¢| < e.

The proof of Theorem 3.14 shows that if f is a nonnegative essentially bounded
function, then there exists a monotone-increasing sequence of simple functions ¢,

such that ¢, (x) > nif f(x) > nand ¢,(x) = '72n] if";] <fx) < 2’—;, forj=1,...,2"n.

Now let C = ess-supf and choose ny € N such that nyp > C and ny > —log, ¢. Thus,
the set E = {x € X|f(x) > ny} has measure zero and

1
0 < f(x) —@n(x) < 7 <e Vx¢E.

Hence, ess-sup|f — ¢y, | < &. O

5.6 Banach Spaces of Complex Measures

The examples of Banach spaces to this point have involved vectors with finitely
many or countably infinitely many coordinates (entries), or have concerned func-
tions or equivalence classes of functions on a topological or measurable space. The
purpose of this section is to give an example of a Banach space that arises from
measures theory; in this case, the functions involved are defined on a o-algebra.

Definition 5.53. If (X, X') is a measurable space, then the set
M(X,X) ={v|vis acomplex measure on (X, X)}

is called the space of complex measures on (X, X).

As noted earlier, the set M (X, X') carries the structure of a complex vector space
in that, if o € Cand v; € M(X, X) for j = 1,2, then

(v +aav2) (E) = ayvi(E) + azv2(E),

for every E € X. Recall also from Proposition 3.69 that, if v € M(X, X'), then the
function |v|: ¥ — [0, o] defined by
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[V](A) = sup Z [V(E)|| #4 is a measurable partition of A
E€ Py

is a measure on (X, X') with |v|(X) < oco.

Theorem 5.54. The function || - | on M(X, X) defined by ||v| = |v|(X), for v €
M((X, X)), is a norm under which M(X, X) is a Banach space.

Proof. The verification that ||v|| = |v|(X) defines a norm on M(X, X') is left as an
exercise (Exercise 5.117).

Assume that {v}ren is a Cauchy sequence in M(X,X). Because |v(E)| <
[V|(E) < [v|(X) = ||v| for every E € ¥ and every complex measure v, for each
E € X the sequence {v;(E)}en is a Cauchy sequence in C. Because C is complete,
for every E € X there exists a unique v(E) € C such that v(E) = lim; vx(E). Hence,
we aim to show that the function E — v(FE) is a complex measure on (X, X') and
that limy ||[v —vi|| = 0.

Obviously v(@) = 0. If {Ei}le is a finite sequence of pairwise disjoint measur-
able sets, then

L

¢ ¢ ‘ .
v (lL:_Jl Ei) = kl_l)rrolo Vi (le_Jl Ei) = kl—i{go;wc(Ei) = ;kl_l)lgo vw(E) = Z])(Ei)_

i=1

That is, v is finitely additive.

Suppose now that {E;};en is a countably infinite sequence of pairwise disjoint
o0

measurable sets. For every j € N, define F; = UE,- to obtain a sequence {F;};en of
i=j -
measurable sets with the properties that F; D Fj4, for every j, and ﬂFJ =0.If it
j=1
were true that lim; v(F;) = 0, then it would follow from

(09 () -Eoeee

i=1

[e ) o0
that v (U Ei) = Zv(Ei). To prove that lim;v(F;) = 0, let &€ > 0 be selected
i=1 i=1
arbitrarily and let N € N be such that ||v,, — v,|| < & for all m,n > N. Thus, in letting
m — oo and fixing n > N, we obtain |[v(E) —v,(E)| < ¢ for all E € X. Because the
sequence {Fj};ecn is descending and has empty intersection, and because the measure
v, is finite, Proposition 3.22 on the continuity of measure (routinely modified to
apply to complex measures) yields lim; v, (F;) = 0. Thus, there exists a jo € N such
that v, (E;) < e for every j > jo. Consequently, if j > jo, then
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W (E)| = [v(E) = va(F)) + va(Fp| = [V(E) = va(F)] + [va(F))| < 2e.

Therefore, lim; v(F;) = 0, which completes the proof that v is countably additive.
Hence, v e M(X, X).

To show that limy |v — vi|| = 0, suppose that ¢ > 0 and that N € N is such that
|V —vull < & for all m,n > N.If {E;}/_, is an arbitrary finite measurable partition
of X and m,n > N, then

r
Zlvm(Ei)_Vn(Ei)l =< “Vm_vn” <eé&.

i=1

Thus,

D IWE) —vu(ED| = Tim D [vu(E) —va(E)| <.
i=1

i=1

Because the inequality above holds regardless of the size r of the partition of X, the
same inequality holds for any countable measurable partition &y of X, and hence
it also holds for the supremum over all countable measurable partitions X. That is,
|l[v—v,|| <& forevery n > N. Therefore, the Cauchy sequence {v; }ren is convergent
inM(X,X) tov. O

5.7 Separable Banach Spaces

As with topological spaces, the notion of separability is an important feature that a
Banach space might possess.

Definition 5.55. A Banach space V is separable if V has a countable dense subset.
Not surprisingly, finite-dimensional normed vector spaces are separable.
Proposition 5.56. Every finite-dimensional Banach space is separable.

Proof. By Proposition 5.8, for any fixed basis if {vy,...,v,} of V there are positive
constants ¢ and C such that

12 1/2
n n n
2 2
c E logj| =< E ol = C E |oyj| ;
j=1 j=1 j=1
for all «y,...,q®, € C. Because the countable set (Q 4 iQ)” is dense in the Euclidean

space C", if v = Zj';lozjvj € V and if ¢ > 0, then there are f4,...,8, € (Q+iQ)
such that
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1/2
n

n n
Yo=Y Bl < C| D le—Bi <e.
=1 j=1

J=1

That is, the countable set of all vectors of the form Z Bjv;, where B; € (Q +iQ)
j=1
for each j, is dense in V. a

There is a close relation between the separability of C(X) and the topology of X,
if X is compact and Hausdorff.

Theorem 5.57. The following statements are equivalent for a compact Hausdorff
space X:

1. C(X) is separable;
2. X is second countable;
3. X is metrisable.

Proof. Assume that C(X) is separable and that S = {f; },en is a countable dense
subset of C(X). For each n let V,, = f;! (31/3(1)), which is an open set in X, and
let # = {V, },en- Suppose now that x € X and U is a neighbourhood of x. Because
X is normal, there is a neighbourhood V of x such that {x} C V C V C U. Hence,
by Urysohn’s Lemma, there is a continuous function g : X — [0, 1] with g(x) =1
and g(U°) = {0}. By hypothesis, there exists f;, € S with ||f, —g|| < % In particular,
% > |fu(x) — g(x)| = |fu(x) — 1]. Thus, if z € V,,, then f,(z) # 0, which implies that
z € (U°)°. Thus, by letting B = V,,, this shows that there exists B € & such that
x € BC U. Hence, 4 is a basis for the topology of X and, therefore, X is second
countable.

Because Theorem 2.48 asserts that a compact Hausdorff space second countable
if and only if it is metrisable, we assume now that d is a metric on X that induces
the topology of X and we aim to prove that C(X) is separable. For each n € N
consider the open cover {B/,(x)},en of X. Because X is compact, we may extract a

finite subcover: {B1,(x,))}i% ;. Let % = U{Bl /n(Xn )}, and consider the subset

neN
9 C U x 9 in which

(Bl/,,(xn_j),Bl/m(xm,g)) € 2 if and only if By;,(x,;) N B1/m(Xime) = 9.

Because % is countable, so is 2. By Urysohn’s Lemma, that there exist functions
Jujme : X — [0, 1] with the property that

gt B1/a(xaj)) = {1} and [y e (Bijm(me)) = 10},

provided (B, (xu ). Bijm(xme)) € 2. Let .Z be the (countable) set of all such
functions f;, ;¢ and consider the sequence .% k defined as follows:

7% = {1}, where 1 denotes the constant function x — 1, Vx € X,
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and, for k e N,
k
F*={[]flh....ic 7).
=1
oo
Thus the set § = Spang_ ;g (U F k) is countable and is closed under sums and
k=0

products. Now let A = §. It is clear that A is a vector space over C, but it is also an
algebra. To verify this last assertion, suppose f,g € A and let ¢ > 0 be given. Then
there are fy, go € S such that ||[f —fo|| < € and ||g — gol|| < &. Further,

Ifg —fogoll = Ilfg —fog +fog —fogoll = If —/foll gl + Ilfoll lg — ol
= [F =Aollllgll + Al +)lig = goll

< (gl + 1 De + €.

Thus, because fygo € S, we deduce that fg € S = A, and hence A is an algebra. We
now show that A separates the points of X.

Let x,y € X be distinct and choose n € N such that % < %d(x, y). Because
{Bi/n (an)};’il is a cover of X, there are j, i such that x € By, (x,;) and y € By/,(x,).
The condition % < %d(x, y) implies that Bj/,(x,;) N Bi/n(xn;) = @. By the same
reasoning, if % < %(ﬁ —d(y,x,)), then y € By/,y(Xme) C Bin(x,,;) for some x,,¢.
Thus, fojme(x) = 1 and f;jme(y) = 0, which implies that A separates the points
of X.

Because every element of .% is a real-valued function, A is closed under complex
conjugation f > f. Moreover, A contains all the constant functions, since .%, C A.
Finally, given that A separates the points of X, the Stone-Weierstrass Theorem yields
A = C(X), and so S is a countable dense subset of C(X). Hence, C(X) is separable.

a

A similar theme prevails for certain L”-spaces.

Proposition 5.58. If X a compact metrisable space and if | is a regular Borel
measure on a o-algebra X that contains the Borel sets of X, then IF (X, X, 1) is
separable, for all p € R such that p > 1.

Proof. Letf € £7(X, X, i) and suppose that ¢ > 0. Theorem 5.43 asserts that ||f —
gll < &/2 for some g € C(X). By Theorem 5.57, there exists a countable subset
% C C(X) such that ¥ is dense in C(X). In particular, there exists & € € such that
maxex |g(x) —h(x)| < &/21(X)"/7. Thus,

=l = [ le=hPd < 550 = /2y

Thus, ||f — k|| < &, and so the countable set {/1|h € €} is dense in LP(X, X, ). O
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The results established to this point can be used to prove that L” (R", M(R"),m,,)
is separable, where m,, denotes Lebesgue measure on R”.

Theorem 5.59. 7 (R",9M(R"),m,) is separable for all n € N, and all p € R with
p=1

Proof. Exercise 5.118. O

In contrast to the results above, the Banach space L*°(X, X, ) is generally
non-separable. Indeed, the sequence space £°°(N) is not a separable space (Exer-
cise 5.119).

To conclude the discussion on separable spaces, we consider a Banach space of
continuous complex-valued functions which at first glance is not of the form C(X).
Specifically, let C(R/277Z) denote the set of all continuous 27 -periodic functions
f R — C. It is straightforward to verify that under the norm

IfIl = max AGIE

C(R/277Z) is a Banach algebra with identity 1, the constant function. An important
subset of C(R/27Z) is the set ¥ of trigonometric polynomials.

Definition 5.60. A trigonometric polynomial is a 2m-periodic function p : R — C
of the form

p0)y=>) e, 1eR, (5.8)
k=

where n <minZ and «,,, . ..,«,, € C.

The set ¥ of all trigonometric polynomials is a complex vector space, closed
under multiplication and complex conjugation, and contains the constant functions.
Therefore, one anticipates that the Stone-Weierstrass Theorem may have a formula-
tion in this context, and indeed it does, yielding the classical theorem of Weierstrass
on the uniform approximation of periodic continuous functions by trigonometric
polynomials.

Proposition 5.61 (Trigonometric Weierstrass Approximation Theorem). [ff :
R — C is a continuous 2m-periodic function, then for every € > 0 there is a
trigonometric polynomial p € ¥ such that

f(t)—p@®)| < &, forevery t € R.

Proof. Recall that S 1 is the unit circle in R2, which in the present context we view
as the unit circle T = {z € C||z]| = 1} in the complex plane. Every f € C(R/2n7Z)
determines a unique function F € C(T) whereby

F(e") =f(1), forevery reR.
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Conversely, each F € C(T) determines a unique f € C(R/2nZ) such that f(¢) =
F(e") for every t € R. In particular, let .7 C C(T) be the set of all the functions
P of the form P(e") = p(t), for trigonometric polynomials p € T. Observe .7 C
C(T) contains the constant functions and is closed under complex conjugation.
Furthermore, because ¢ = ¢/ if and only if # —¢ is an integer multiple of 27,
the function P(e) = e separates the points of T. Therefore, the closure of 7 in
C(T) is selfadjoint uniform algebra on T, which by the Stone-Weierstrass Theorem
can only be C(T). Hence, if f € C(R/27Z) and ¢ > 0, then there is a P € .7 such
that

IF(t) —p(t)| = |F(e")— P(e")| < &, forevery t € R,

where F € C(T) is the unique function determined by f and where p € T is the
unique trigonometric polynomial determined by P. O

Corollary 5.62. C(R/2nZ) is a separable Banach space.
Proof. Exercise 5.120. O

5.8 Hilbert Space

If p and ¢ are conjugate real numbers, then Holder’s inequality asserts that the
product of a p-integrable function f with a g-integrable function g is integrable.
In one special case, namely the case in which p = g = 2, the functions f and g come
from the same function space, 22X, X, ). For any function f € & 2(X, >, n), we

may write |f|? as ff to obtain ||f]|> = /ffdu. More generally, if f, g € £%(X, X, i),

X
then fg is integrable, by Holder’s inequality, and so we may consider the function
on the Cartesian product 22X, %, W) X 22X, %, W) that sends an ordered pair

(f,g) to the complex number / fgdu. This function is linear in f and conjugate-
X

linear in g, and has the property that (f,f) is mapped to |f]|2. Such a function on
LAX, D, u) x L*(X, X, ) is called a sesquilinear form, and these properties of
L?-spaces motivate the definition of an abstract Hilbert space.

Definition 5.63. An inner product on a complex vector space H is a complex-
valued function (-,-) on the Cartesian product H x H satisfying the following
properties for all vectors £,&,&,,1,711,1n2 € H and scalars « € C:

1. (£,€) =0, with (£,&) =0 if and only if § = 0;

2. (&) =(n.§)

3. (61 +&.m) = (E.n) + (&2,m) and (€, + n2) = (€, m) + (6. m2)s
4. (a§.n) =a(§.n) and (§,an) = a (& n).

The vector space H, when considered with the inner product {-,-), is called an inner
product space.

The simplest example of an inner product space is C".
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Example 5.64. The vector space C? is an inner product space, where (-,-) is
defined by

d
En) =) &
k=1

&1 n
fore=| : |.n=] : | eCL
€4 Nd

The Holder Inequality in the case of L*(X, X, i) is what is called the Cauchy-
Schwarz Inequality in abstract Hilbert space.

Proposition 5.65 (Cauchy-Schwarz Inequality). If (-,-) is an inner product on a
vector space H, then

e < (€622, (5.9)

for all £,n € H. Furthermore, if n # 0, then |(£,1)| = (£,€)"/%(n,n)"/? if and only if
& = An for some A € C.

Proof. The result is trivially true if (§,n7) = 0. Assume, therefore, that (£,7n) # 0.
Forany A € C,

0 < ({E—An&E—An)

(€.8) — 20 (A(n. &) + AP (n.n).

For
A — (S’E) ,
{n.§)
the inequality above becomes
(€.£)*(n.n)
0= -8+ —7m
(& mI?

which yields inequality (5.9). Further, note that if |(&,7)| = (£,£)"/?(n.n)"/?, then
(E—An,E—An)=0for A = &8 which yields & = An. |

- ey

With our experience with L?-spaces, the following proposition is a natural
consequence of the Cauchy-Schwarz inequality.

Proposition 5.66. If (-,-) is an inner product on a vector space H, then

&l = (.62 (5.10)

defines a norm || - || on H.
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Proof. If €, € H, then (£,n) + (n,&) = 2R ({£€,7)), and so

1§ +nl> = (€ +n. & +n) = [§]” +20(E n) + [In]?
< [EIP+2[¢E )+ Inl* < 1§12 +2 € Il + lIn]?

= (& + D>
Hence, equation (5.10) defines a norm on H. O

Observe that the Cauchy-Schwarz Inequality (5.9) now takes the form

1. < [EN Inl

and leads to the following useful proposition.

Proposition 5.67 (Continuity of the Inner Product). If &, € H and € > 0, then for
each 1 € H there is a 6, > 0 such that

[(§.m) — (So.m)| < &
for all & € H with ||§ —&]| < 6y,

Proof. The assertion is clear if n = 0. If  # 0, then let § = ¢||n||~". Thus, by the
Cauchy-Schwarz inequality,

[€.m) = Eo.m)| = [{E—&o.m)| = IE=Ell Inll < e,
for all £ € H with ||§ — & < . O

Definition 5.68. A Hilbert space is an inner product space H such that H is a
Banach space with respect to the norm ||| = \/zé LE).

The following example is the most generic example of a Hilbert space.

Example 5.69. The Banach space L*(X, X, 1) is a Hilbert space with respect to
the inner product

)= [ redn.
wheref,g € L*(X, X, ).

Proof. We need only note that (f.f) = / [f|>dyx, which is the square of the norm

of f in the Banach space LZ(X,E ,i). Hence, the norm on the Banach space
L*(X, X, ) is induced by the inner product given above. O

The concepts of Euclidean geometry greatly influence Hilbert space theory,
starting with the idea of perpendicular vectors.

Definition 5.70. In an inner product space H, two vectors &, 1 € H are orthogonal
if (§.n) =0.
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Proposition 5.71 (Pythagorean Theorem). |£ +n||> = €| + |0l for all pairs
of orthogonal vectors £,1 € H.

Proof. Use [|§ +nl> = (§ +n.§ +n) = [|1&]* + 2% ((§.1)) + [I]|* and the fact that
{€.1) = 0 to obtain [I£ +n]|> = [IE]> + [In]|*. O

A distinguished geometric property of Hilbert space is the parallelogram law
below.

Proposition 5.72 (Jordan-von Neumann Theorem). If H is an inner product
space H and if £,1 € H, then

18 +nl> + 115 — 1> = 2115]1* + 2[In]*. (5.11)

Furthermore, if V is a normed vector space in which the parallelogram law (5.11)
holds for all £,n € V, then there is an inner product that induces the norm on 'V,

Proof. The parallelogram law is verified by expanding the appropriate inner
products. Therefore, suppose now that V is a normed vector space and that
equation (5.11) holds for all £, € V. Define (-,) : VxV — C by

(&) = 1E+01” = 1§ =nl” +illE +inl® — il —inl*,

for £,n € V. Thus, (-,-) is an inner product and ||£| = (£,£)/? forall £ € V. O

The notion of convexity appeared earlier in the context of Jensen’s inequality.
This fundamental geometric idea is especially important in Hilbert space theory, as
demonstrated by Theorem 5.75 below, which has many important consequences for
Hilbert spaces that are not necessarily true for arbitrary Banach spaces.

Definition 5.73. A subset K of a vector space V is a convex set if
AM+(1-weKkK
for all A € [0, 1] and for all v,w € K.

Definition 5.74. If K is a nonempty subset of a normed vector space V and if vy €
V, then the distance from v to K is denoted by dist (v, K) and is defined by

dist (vo, K) = inf{|jvg—v| |v € K}. (5.12)

The main “convexity theorem” in Hilbert space is the following result.

Theorem 5.75. If K is a nonempty closed convex subset of a Hilbert space H, and
if & € H, then there is a unique 1 € K such that

dist (50, K) =[50 — ] .

Proof. The convexity of K will be used repeatedly in the following guise: if n, 7, €
K, then 5(n; +n2) €K.
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By definition of distance, for each k € N there is a vector n; € K such that
. 1
€0 —nell* < (dist(§0.K))* + T

Thus,

1280 — ( + 0a) 112 + 100 = 1all> = 10— 10) + Go— ) I
+11Eo—na) — Go— ) I?

= 2[1§0 = nall? + 21150 — 1ull?

A

4(dist(5.K))> + 1 + L,

where the second equality above follows from the parallelogram law. On the other
hand,

1
4(di5t(‘§0»K))2 = 4”50 - E(nn + nm)”2 = ||2‘i:0 - (nn + 77m)||2 .

Hence, |0, — na|I> < % + %, which proves that {n;}en is a Cauchy sequence. Let
n € H denote the limit of this sequence. Because K is closed, n lies in K and

dist(£0.K) < &0 —nll = &0 —nx +m—nll =< 1o —mell + lInx — 7l

< /(dist(&0.K)* + 1 + e —nll.

In letting kK — oo, the inequalities above sandwich to the equation

dist (§0.K) = |50 —nll.

To prove the uniqueness of the best approximant 7, let ’ € K satisfy dist (€, K) =
5o — 7'||. Thus, ||Eo —nl| = ||Eo — 1’|| and, by the parallelogram law,

[Eo—n")+ E—mI*+E—1)—E—n*= 2(||§0—77/||2 + ||§0—77||2) .

Therefore,
ln—n"I> = 4llg —nll* — 4ll& — 3+
= 4(dist(£0.K))* — 4ll&—3(n+ )|
< 4(dist(§.K))* — 4 (dist (§0.K))*

-0,

and so ' = 1. ]
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Definition 5.76. If S is a nonempty subset of a Hilbert space H, then the orthogonal
complement of S is the subset of H denoted by S* and defined by

St={neH|(nE) =0,VEeS}.

By linearity of the inner product in the first variable, it is not difficult to see
that St is a vector subspace of H. By the Cauchy-Schwarz inequality (that is, by
continuity of the inner product in the first variable), S* is closed. Thus, S* is a
subspace of H for every nonempty subset S C H.

Proposition 5.77. Let M C H be a subspace of a Hilbert space H and let £ € H and
n € M. The following statements are equivalent:

1. dist(§,M) = [|§ —n];
2. £—neMt.

Proof. Assume that dist(§,M) = ||§ —n||. Let ¥ € M. We aim to prove that (§ —
n,n') = 0. To this end, consider any « € C. Because n+an’ e M, ||E—(n+an)|| >
dist(§,M) = ||€ —n||. Thus,

1§ =117 < 166 —m —an'II* = 1§ —nll* = 2% (a(n.£ = m) + e [I0']1>,
which yields

20 (a(n E—n) < loellnII (5.13)

The complex number (1’, £ —n) is either zero or it is not. If it is zero, then £ —n is
orthogonal to 7, as desired. Thus, assume that (n/, € —n) # O and leta =1 (n’, & — ),
for some ¢ > 0. Inequality (5.13) becomes

2y E=n)> < 210" =PIl
Because (1, & —n) # 0 and 7 > 0, the inequality above implies that

2 < 1l

which is clearly impossible if  — 0F. Hence, it must be that {5, & —n) = 0, which
proves that £ — ) is orthogonal to every vector ' € M. That is, £ —n € M+

Conversely, assume that £ —n € M. If ' € M, then £ — 7 is orthogonal to n —n’
because n— 1’ € M. Invoking the Pythagorean theorem yields

IE=n' I =1E=m+a—m"1>=1E=nl>+In—7'1 = 1§ —nl.
Thus,

€ —nll < inf{l§ —n'll|n" € M} = dist(§,M),
which proves that ||§ — | = dist (¢, M). |
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Recall from linear algebra that if M and N are linear submanifolds of H, then
M + N denotes the set

M+N={w+68|weMand § € N}

and M + N is itself a linear submanifold of H.

Proposition 5.78. If M and N are subspaces of a Hilbert space H such that M C
N2, then M NN = {0} and the linear submanifold M + N is a subspace.

Proof. If £ € MNN, then the hypothesis M C N+ implies that £ € NN+, whence
0=(&&)andso & =0.

To show that the linear submanifold M + N is closed in the topology of H, select
a vector £ in the closure of M + N and suppose that {&; }en is a sequence in M + N
converging to &. Thus, {&}, is necessarily a Cauchy sequence.

For each k € N, there are w; € M and §; € N such that & = wy + §;. Because the
vectors of M are orthogonal to the vectors of N, the Pythagorean Theorem applies:

||§m—5n||2 = (W —,) + (5,,,—8,,)”2 = ”a)m_wn”2 + ||8m_8n||2~

Thus, the sequences {wy }reny C M and {3, }reny C N are Cauchy sequences. Let w €
M and § € N be the limits, respectively, of these sequences. Then § = w + § and so
M + N is closed. o

This situation described in Proposition 5.78 is formalised by the following
definition.

Definition 5.79. If M,N C H are subspaces of a Hilbert space H such that M C N L
then the orthogonal direct sum of M and N is the subspace M 4 N and is denoted by
M@N.

Proposition 5.80. IfM C H is a subspace, then H = M & M.

Proof. Obviously M @ M+ C H. Conversely, suppose that £ € H. Because M is a
subspace, M is closed and convex. Thus, by Theorem 5.75, there is a unique n € M
for which ||€ —n|| = dist (£, M). Therefore, £ —n € M~, by Theorem 5.77. Let v = 1
and§=&—ntogetw e M, § € Mt, and £ = w4+ § € M @ M~. This proves that
HcMeM*t. O

The direct sum decomposition in Proposition 5.80 above is internal in the sense
that one decomposes an existing space H as an orthogonal direct sum of two
subspaces. One could repeat this process finitely or countable infinitely many times
inductively. Alternatively, one frequently has a finite or countable family of Hilbert
spaces and aims to construct their (external) direct sum to create a new Hilbert space.

Proposition 5.81. If A is a finite or countable set, and if {H;}rea is a family of
Hilbert spaces in which (-,-,); denotes the inner product of Hy, then the vector
space

P H: = {Eren | D I&N < o0}

keA keA
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is a Hilbert space with respect to the inner product

(EDx ) = D (& e

keA

Proof. Exercise 5.123. O

If H, = H for every k and for some fixed Hilbert space H, and if A = N, for
example, then £%(N) denotes the Hilbert space in Proposition 5.81.

5.9 Orthonormal Bases of Hilbert Spaces

Definition 5.82. The elements of a collection & of vectors in an inner-product
space H are said to be orthonormal if each ¢p € € has norm ||¢|| =1 and (¢, ¢) =0
for all ¢, ¢’ € € in which ¢’ # ¢.

If ¢1,..., ¢ are orthonormal and if £ € Span{¢, ..., ¢}, then there are complex
numbers «y,. ..o such that

k
é‘_ = Zaj¢>j .
j=1

Because the inner product is linear in its first variable, for each £ € {1,...,k} we
have that

d
(€. ¢0) <Zo@¢,, ¢e> = a{d.e) = .

J=1

Hence, every £ € Span{¢y, ..., ¢} is expressed by uniquely by its Fourier series:

k
E=) (E.¢)¢ (5.14)

J=1
The Fourier series (5.14) also demonstrates that orthonormal vectors are neces-
sarily linear independent.

Proposition 5.83 (Gram-Schmidt Process). If vy,...,vx € H are linearly inde-
pendent vectors in an inner-product space H, then there are orthonormal vectors
d1,...,¢r € H such that

Span{¢y, ..., ¢} = Span{vy,..., v}
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Proof. Let ¢y = ||v1|~'v; and, inductively, for each j let ¢; = [lv; —w;| ' (v; —

w;), where w; = Ji;ll(l)j,gbi)qbi. The vectors ¢y,...,¢; are orthonormal and are

contained in the k-dimensional subspace Span{vy,..., vt}. Thus, by the linear inde-

pendence of orthonormal vectors, Span{¢;, ..., ¢} and Span{vy,..., v} coincide.
O

As noted earlier in Theorem 5.16, the concept of a linear basis is not really suited
to analysis.

Definition 5.84. A collection # of orthonormal vectors in a Hilbert space H is
called an orthonormal basis if 8’ = 2 for every set %’ of orthonormal vectors for
which %’ O 4.

In other words, an orthonormal basis is a maximal set of orthonormal vectors.

Proposition 5.85. If A is a set of orthonormal vectors in Hilbert space H, then %
is an orthonormal basis of H if and only if Span A is dense in H.

Proof. Exercise 5.124. O

The question of existence of orthonormal bases is not unlike that of linear bases
in that it requires Zorn’s Lemma to prove this fact.

Theorem 5.86. Every nonzero Hilbert space has an orthonormal basis.
Proof. Mimic the proof of Theorem 5.16. O

The cardinality of the basis is related to the topology of the Hilbert space by way
of the following proposition.

Proposition 5.87. A Hilbert space is separable if and only if it has a countable
orthonormal basis. Moreover, all orthonormal bases of a separable Hilbert space
are in bijective correspondence.

Proof. Let H be a Hilbert space. If H has a countable orthonormal basis {¢ }ren,
then the countable set

W = Spangoi¢x |k € N}

is dense in H by Proposition 5.85 and by the fact that Q + iQ is dense in C.
Conversely, assume that H is separable. If S is any countable, dense subset of H,
then the linear submanifold

W = Spanc{w |w € S}

is dense in H. The spanning set § must contain an algebraic basis for the vector
space W. Thus, W has a countable basis and to this basis one can apply the Gram-
Schmidt process to obtain a countable set {¢y}ren of orthonormal vectors whose
linear span & is dense in the closure W of W. But W = H, which indicates that
0+ = {0}. In other words, there are no nonzero vectors orthogonal to {¢ }ren, Which
proves that {¢ };en is a maximal set of orthonormal vectors. That is, {¢ }ren iS an
orthonormal basis of H.
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If H has finite dimension #n, then n is an algebraic invariant of the space H: all
linear bases of H must have the same cardinality, whence any two orthonormal bases
of H are in bijective correspondence. If H has infinite dimension and is separable,
then all orthonormal bases of H are countably infinite and are, therefore, in bijective
correspondence with one another. O

It is also true that if H is a nonseparable Hilbert space, then all orthonormal bases
of H are in bijective correspondence. The proof of this fact requires some cardinal
arithmetic; however, we will not need to use such a theorem in what follows, we
will not pursue this result here.

Hilbert spaces with a countable orthonormal basis are especially easy to analyse.
The following theorem, which is an abstraction of classical Fourier series, illustrates
this fact.

Theorem 5.88. If {¢}ren is an orthonormal basis of a Hilbert space H, then, for
every £ € H,

E—D (.0

k=1

lim
n—>oo

=0. (5.15)

Proof. For eachn € N let

Observe that
0 < [E—&l> = (E—&nE—E&) = IEI° = D& 001
k=1

Hence,
. 2 2
nlglfolog_ll(é,fﬁkﬂ < &I,

which implies that the sequence {£,},en is a Cauchy sequence. Because H is a
Hilbert space, this sequence has a limit & € H. We shall prove that £’ = &.

Choose k € N. Direct computation shows that (§ —£,,¢;) = 0 for every n > k.
Hence, if n > k, then

[{((E—&"). ) |

HE =+ 85—8).00) |

[((E =) pi) + ((En— ). ¢0) |
|{((6n—§").00) |

IA

16, =&l
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(The final inequality is the Cauchy-Schwarz inequality.) Thus,
0 < [{E=£).¢)| = Jim [I§ ¢l =0.
Therefore, § — &’ is orthogonal to every vector ¢ in the orthonormal basis. Thus,
§-¢=0. 0
Equation (5.15) asserts that if £ € H and {¢ }xen is an orthonormal basis for H,
then

=0.

lim
n—o0

E—D (E.¢)
k=1

This will be expressed as

£= (E.00) ¢ (5.16)

keN

Definition 5.89. If {¢}ren is an orthonormal basis of a separable Hilbert space H,
then the series

E=) ()

keN

is called a Fourier series decomposition of £ € H, and the complex numbers (&, ¢)
are called the Fourier coefficients of .

Proposition 5.90. Assume that {¢i}ren is an orthonormal basis for a separable
Hilbert space H.

1. (Parseval’s Equation) For every £,n € H,

(En) =D (&) (m. i) - (5.17)
keN
2. Forevery £ € H,
HEEDMA
keN

Proof. Express £ in its Fourier series decomposition

E=) (6.0,

keN

and consider

n

X

k=1
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Because lim,, o ||£, — &]| = 0, Proposition 5.67 shows that

(§.m) = lim (&,,n)

n—>oo

Tim (Z@,qsk) <¢k,n>)

k=1

Z(gv ¢k) (777 ¢k> .

keN

This proves Parseval’s Equation. The equation

HEEDMIEAk
keN
follows from Parseval’s Equation because ||£]|> = (£.£). |

We conclude with some examples of orthonormal bases.

Example 5.91 (Legendre Polynomials). [f ¢(t) = \/g and

%+1 1 d ., .,
=" ——_[(®-1. keN,
() k 2kk!dtk[( 'l ke

then {d)k},fio is an orthonormal basis of L*([—1,1],9M, m).

Proof. The functions ¢ are obtained from the linearly independent functions
1,1,#2,... by the Gram-Schmidt process. Thus,

Span £ = Span{l,1,2,7,...},

where £ denotes the set of Legendre polynomials. By the Weierstrass Approx-
imation Theorem, if ¢ € C([—1,1]) and & > 0, then there is a element f €
Span £ such that |9 (f) —f(¢)| < ¢ for all ¢ € [—1,1]. Furthermore, Theorem 5.43
states that C([—1,1]) is dense in L?([—1,1],9%,m). Hence, Span is dense in
L*([-1,1],9M,m), and so £ is an orthonormal basis of L*>([—1,1],90t,m). O

The next example is drawn from classical Fourier series.

Example 5.92 (Classical Fourier Series). If the function ¢, : [-m,n] — C
given by
eint

\/2717

for every n € 7, then {¢,\nez is an orthonormal basis of L*([—m, ], 90, m).

(1) = (5.18)
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Proof. Because

.

(Pn o) = ’ Gn ()P (1) dt = L ei(”—m)’dt’
-7 2w

-7

we have (¢, ¢,,) = 1 if m = n and (¢, ¢) = 0 otherwise. Thus, {@, }nez is a set
of orthonormal vectors in L2([—m, 7], O, m).

Theorem 5.61 shows that Span{¢,},cz is uniformly dense in C(R/277Z), the
space of all continuous 27w -periodic functions R — C. Furthermore, C([—r, 7]) is
a dense linear submanifold of L?([—, 7], 9t,m) (by Theorem 5.43). Therefore, it
is sufficient to show that every f € C([—m,x]) can be approximated to within &
in the norm of L*([—m, ], 9, m) by a 27-periodic continuous function 4. To this
end, choose f € C([—m,]) and let ¢ > 0. Let M = max {|f(r)||? € [-7, 7]} and
choose § > 0 such that § < % Let i € C([—m, x]) be the function that agrees
with f on [—7 + 8,7 —§], is a straight line from the point (—,0) to the point
(—m +6,f(—m +8)), and is a straight line from the point (7 —§,f (7 —§)) to the
point (7,0). Thus, |f(¢) —h(t)| =0 for t € [-m + 8,7 — 8] and |f (¢) — h(t)| < 2M for
all t ¢ [—m + 8, — §]. Hence,

|U‘—h||2=/ [f—h|2dm+/ If —h|>dm < 8M>$.
[—7,—n+4] [n—8,7]

That is, ||f — k| < e. |

The classical Fourier coefficients of f € L?([-m, 7], M, m) are the complex
numbers f (k) defined by

F®) = (f.d) -

In particular, if f : [-7, 7] — C is a continuous 2x-periodic function, then the
classical Fourier series

Zf‘(k) eikt

keZ
of f converges to f in the sense that
lim / Fy =Y Floe*Par | =o.
n—oo [-7‘[,7‘[] k——n

Very old books on analysis refer to this as “convergence in the mean” to f. But
from our perspective, convergence in the mean is more plainly understood to be
convergence in Hilbert space, as explained by Theorem 5.88.
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5.10 Sums of Vectors and Hilbert Spaces

The definition of Banach space involves Cauchy sequences, but it is sometimes
useful to extend this idea to nets.

Definition 5.93. If (A, <) is a directed set, then a net {v, }4ec4 in a normed vector
space V is said to be a Cauchy net if for every ¢ > 0 there exists ¢y € A such that
lve —vg|| <&, forall o, B € A such that g < & and orp < B.

Proposition 5.94. In a normed vector space V, every convergent net is a Cauchy
net. Conversely, if V is a Banach space, then every Cauchy net is a convergent net.

Proof. Exercise 5.128 O

If A is a set, not necessarily ordered, then . % (A) = {F C A|F is a finite set} is a
directed set under inclusion.

Definition 5.95. Assume that V is a normed vector space and that {vy}qes 1S a
collection of vectors in V.

1. A partial sum of the collection {v,}4ea is a vector vp of the form vy = Z Vg»

a€F
for some finite subset F C A.

2. The set {vr}rez(a) of partial sums is convergent if the net {vp}rez(a) is
convergent in V; the limit of this convergent net is denoted by Z Vy-
a€EA
Proposition 5.96. If {vy}eca is a family of vectors in a Banach space V, and if

E lvg |l is convergent in R, then E Vg IS convergent in V.
a€A a€A

Proof. Let e > 0. Because Z |va || is convergent, the net of partial sums is Cauchy.
a€A
Thus, there is an Fy € .% (A) such that the partial sums Z ||lvg || and Z vl

a€F| a€F;
differ by less than ¢ of Fy C F| and Fy C F5. Indeed, the same is true of the partial

sums Z ||ve || and Z ||lvg || Therefore, by the triangle inequality,
a€(F1UF) a€F)

2 V=) v

a€F a€F,

= E Vg

a€(F1UF)\Fo

IA

D7 el =D llvall

a€(F1UF,) a€F)y
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Hence, the net {vr}re#(4) of partial sums of the series Z vy is Cauchy, and so the

a€A
net is convergent by Proposition 5.94. O

Proposition 5.81 indicates how the direct sum @H,, of a countable family
neN

{H,}nen of Hilbert spaces H, is itself a Hilbert space. It useful to be able to carry
out a direct sum construction for arbitrary families {H, }4ec 4 of Hilbert spaces H,,.

In the Cartesian product 1_[ H,, denote by @HO, the set of all £ = (&,)qeq for

a€A a€A
which Z &, |1 is convergent. By the usual Hilbert space inequalities, we see that
a€A
@Ha is a complex vector space and that, if £ = (§,)y, 7 = (Ne)a € @Ha, then
a€A a€A

(En) =D (Ewr1a)

o

defines an inner product on @HQ.
a€A

Definition 5.97. The inner product space @Ha is called the direct sum of the

a€A
family {H, }4e4 of Hilbert spaces H,,.

Proposition 5.98. The direct sum of a family of Hilbert spaces is a Hilbert space.

Proof. Suppose that {£[}, <y is a Cauchy sequence of vectors £ = (é&"])a in
@Ha. Thus, for each «, the sequence {g:};']},leN is a Cauchy sequence in H,; let

aE€EA
&, € H, denote the limit of this sequence and consider & = (&), € HH“'
o

Let & > 0. Because {£["},cn is a Cauchy sequence, there exists 9 € N such that
| — £V < ¢ for all m,n > ny. Thus, for any F € .7 (A) and m > ny,

D IEDT — gl < gt — glol)2 < 2,

o€l

Thus, in letting m — oo,

D g — P < £

o€F
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for any finite subset F € A. Therefore, Z £ — El"]|% converges, which implies

a€A
that £ — £l € @Ha and, thus, £ € @Ha. The inequality [|£ —£I]|| < & shows
€A €A

that £ is the limit of the Cauchy sequence {£/"l},cn. Hence, @Ha is a Hilbert

a€A
space. O

Problems

5.99. Prove that if V is a normed vector space, then the maps a: VxV — V and
m: CxV — V defined by

a(vi,v) =v;+v, and m(x,v)=av,VaeC, v,v,0,€V,

are continuous.
5.100. Let V be a normed vector space.

1. Prove that the open ball B,(vy) is a convex set, for every vg € V and r > 0.
2. Prove that the closure C of a convex subset C C V is convex.

5.101. Suppose that V and W are Banach spaces. On the Cartesian product V x W
define

I, )|l = max {[[v]], [[wl]}.

1. Show that || - || is a norm on the vector space V x W under which V x W is a
Banach space.

2. Prove that the norm topology on V x W coincides with the product topology on
VxW.

5.102. If .7 and .7’ are the norm topologies on a vector space V induced,
respectively, by equivalent norms || - || and || - ||” on V, then prove that . = .7,

5.103. Suppose that X is a compact topological space and that y is a finite measure
on the Borel sets of X.

1. Prove that there exists C > 0 such that ||f||; < C||f]leo for every f € C(X).
2. Give an example of a compact space X and a finite measure p on the Borel sets
of X in which | - ||; and || - ||c are not equivalent norms on C(X).

5.104. In a normed vector space V, prove that

Hvdll = lvalll < flvr=vall, Vor,vaeV.
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5.105. Let p be a seminorm on a vector space V.

1. Prove that the function d : V x V — [0, 00) defined by
dlv,w)=pv—w), v,wevV,

is a pseudo-metric on V.

2. With respect to the topology on V induced by the seminorm p, prove that
the vector space operations (scalar multiplication and vector addition) are
continuous. That is, prove that V is a topological vector space.

5.106. If p is a seminorm on a topological vector space, and if ~ is the relation on
V defined by

v~w if plv—w)=0,

then prove that ~ is an equivalence relation. Moreover, if the equivalence classes of
elements of V are denoted by

v={weV|w~uv},

then prove the following assertions:
1. the set V/ ~ of equivalence classes is a vector space under the operations

DW= (tw), vweV,

av = (av), acC,veV;
2. the function
ol = p(). veV,
isanormon V/ ~.

5.107. Let (X, X, 1) be a measure space and p,q € (1,00) be conjugate. Assume
that f, g : X — R are nonnegative measurable functions. Prove that if f is p-integrable
and g is g-integrable, then

/ngdu = (/Xfpdu)l/p ([ngdu)l/q

if and only if there is a complex number A such that f¥ = Ag? or g? = Af? almost
everywhere.

5.108. Consider the function f(f) = /7 on a closed interval [0, 5], b > 0. Prove that
there is a sequence of polynomials p,, such that

1. p,(0) =0, for every n € N, and
2. lim (max |\/z_‘—pn(t)|) =0.

n—>00 \ t€[0,b]
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5.109. Prove that if X C R is compact and if f : X — C is a continuous function,
then for every ¢ > 0 there is a polynomial p with complex coefficients such that
If(t)—p(t)| < eforallt € X.

5.110. Prove thatif X is a locally compact space, then C.(X) is a subspace of C,(X).
5.111. If X is a locally compact space, then prove that

1. Cy(X) is a subspace of C(X), and
2. fg € Cp(X), for all f € Cyp(X) and g € Cp(X).

5.112. Prove that if ¢ is a simple function on a measure space (X, X, t), then ¢ is
p-integrable if and only if 11 (¢! (C\ {0})) < .

5.113. Suppose that f is an essentially bounded function on a measure space
(X, X, u). Prove that there exists E € X such that u(E) = 0 and sup |f(¢)| < oo
forallr e X\ E.

5.114. Prove that if f is an essentially bounded function on a measure space
(X, X, ), then

ess-supf = inf {& € R||f|~" (@, 00) has measure zero} .

5.115. Assume that f € £°°(X,X,u) is nonnegative and that {f,},en is a

monotone-increasing sequence of measurable functions for which 0 < f,,(x) < f(x)

and lim f,(x) = f(x) for all x € X. Prove that each f, € £°°(X, X, 1) and that
n—>oo

Tim [~ =0.
5.116. Prove that L°°(X, X, i) is an abelian Banach algebra.
5.117. Prove that the function || - || on M (X, X') defined by ||v|| = |v|(X) is a norm.

5.118. Prove that L”(R?, M (R?),my) is a separable Banach space, for every p > 1.
(Suggestion: Note that R? = |,y [—n.1]%.)

5.119. Prove that the Banach space £°°(N) is not separable.

5.120. Prove that the Banach space C(R/2mZ) of continuous 2 -periodic
complex-valued functions is separable.

5.121. Prove that in a Hilbert space H, Slisa subspace, for every S C H.
5.122. In a Hilbert space H, let M| and M, be closed subspaces.

1. Prove that (M + M)+ = Mi- N Mj-.
2. Prove or find a counterexample to (M; N M,)t = Mi- + M5-.

5.123. If A is a finite or countable set, and if {Hj };c is a family of Hilbert spaces
in which (-, -, }; denotes the inner product of Hy, then prove that the vector space

P He = {EDren | D lI&N* < oo}

keA keA
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is a Hilbert space with respect to the inner product

(EDe (k) = D (& e

keA

5.124. Prove that if 28 C H is a set of orthonormal vectors in a Hilbert space H,
then Z C H is an orthonormal basis of H if and only if Span % is dense in H.

5.125. Prove that every nonzero Hilbert space has an orthonormal basis. In
particular, if & C H is a set of orthonormal vectors, then prove that H has an
orthonormal basis 8 that contains &'.

5.126. Suppose that in a Hilbert space H, ¢y, ..., ¢, are orthonormal vectors. Prove
that if &,...,&, € H satisfy ||§ — ;]| < n~'/2 for each j, then &,...,&, are linearly
independent.

5.127. Consider the Fourier series expansions of fi(f) = ¢ and f;(f) = ¢* in
ZL?([-m,x]). Calculate the Fourier series of each f; and use Parseval’s identity to
establish each of the following formulae:

1 2
2p= g

(o]

1 T th(ar)
E ——— = —coth(an).
n=1n2+a2 o

5.128. Assume that V is a normed vector space.

1. Prove that every convergent net in V is a Cauchy net.
2. If V is a Banach space, then prove that every Cauchy net in V is a convergent net.



Chapter 6
Dual Spaces

In considering the elements of the vector space RY as column vectors, the vector
space (R9)’ of row vectors is obviously related to R?, but is not necessarily identical
to it. What, therefore, is one to make of row vectors and of the transpose & +—> &'
operation applied to column vectors £? The usual product of matrices and vectors
indicates that each &' is a linear transformation R? — R via £'(n) = &'n, for
(column) vectors 1 € R?. This is perhaps the simplest instance of duality, which
is an association of a closely related vector space V* of linear maps V — R to a
given real vector space V. This idea is at the heart of functional analysis (indeed,
this is where the “functional” part of “functional analysis” enters the picture), and
this notion is developed and explored in the present chapter.

6.1 Operators

Recall that a linear transformation from a vector space V to a vector space W (both
over some field I) is a function 7" : V — W in which T is additive and homogenous;
thatis, T(cjv; +@2v2) = o1 T (v) + 0, T (vo) forall vy, v, € Vand oy, o, € F. Unless
the context leads to ambiguity, the notation Tv shall be used in place of T'(v) for
linear transformations 7:V — Wand v € V.

Our interest is with vector spaces that are Banach spaces; thus, we shall require
that linear transformations between Banach space be continuous. In this regard, the
essential concept is that of “boundedness of a linear transformation”.

Definition 6.1. If V and W are normed vector spaces, then a linear transformation
T :V — W is bounded if there is a constant M > 0 such that | Tv|| < M|v|, for
every v € V; otherwise, T is unbounded.
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A bounded linear transformation is called a bounded operator, or simply
an operator, while an unbounded linear transformation is called an unbounded
operator.

In principle, a given normed vector space can admit both bounded and unbounded
operators, as the following example shows.

Example 6.2. Let C[t] be the normed vector space of complex polynomials with
norm ||f|| = maxXe.1] [f ()|, and consider the linear transformations D : C[t] — C[t]
and J : C[t] — C defined by Df = % and Jf = fol f()dt, respectively. Then J is
bounded and D is unbounded.

Proof. If f,, € C[t] is f,,(t) = 1", then Df,, = nf,—; for n > 2. Thus, ||f,)|| = 1 for every
n, but |Df,|| = n—1 = (n—1)||f,||; that is, no constant M > 0 exists for which
IIDf|| < M||f|| for every f € V. Hence, D is an unbounded operator.

On the other hand, for every f € V,

1 1 1
Wfl = ‘ [roa| < [Cyora < [wia= .

which shows that J is a bounded operator. O

As is often the case, finite-dimensional spaces do not exhibit any exotic features:
all linear maps are necessarily bounded.

Proposition 6.3. Assume that V and W are normed vector spaces.

1. If'V has finite dimension, then every linear transformation T : V — W is bounded.
2. If V has infinite dimension, and if W # {0}, then there is a linear transformation
T :V — W such that T is unbounded.

Proof. Suppose that V has finite dimension, and fix a basis & = {vy,...,v,}
of V. Set

1/2

n

2

v = [ Ty
j=1

By the triangle inequality and the Cauchy-Schwarz inequality,

1/2

n n n n
2
T E ajv; || = E o;Tv;| = E | 1 Tvjl < § |l .
j=1 j=1 j=1 Jj=1

Proposition 5.8 and its proof show that there is a constant C > 0 such that

1/2
n

n
2
Zlaﬂ < C Zajvj .
Jj=1

J=1

Hence, with M = Ct, we obtain || Tv| < M|v||, for every v € V.
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Next, suppose that V has infinite dimension and let 2 be a linear basis of V. From
A select a countably infinite subset {y; | k € N} C 2. Without loss of generality, each
vector of % may be assumed to be of norm 1. Because W is a nonzero vector space
there is at least one vector w € W of norm ||w|| = 1. Define a linear transformation
T : V — W by the following action on the vectors of the linear basis Z:

T(yx) = kw, foreach k € N;
T(y) = 0, foreach y € \{y |k € N}.

Note that ||T(vx)|| = k|w| = k. Because |y|| = 1, for every k € N, the linear
transformation 7 is unbounded. O

The importance of boundedness for linear maps is that boundedness is a synonym
for continuity.

Proposition 6.4. The following statements are equivalent for a linear transforma-
tion T : V — W between normed vector spaces V and W:

1. T is bounded;
2. T is continuous.

Proof. Assume that M > 0 is such that ||T(v)| < M|v||, for all v € V. Fix vy € V.
By the linearity of 7, ||T(v) — T (vo)|| = |T(v —vo)|| < M||v —vg||. Thus, if ¢ > 0
and if § = ¢/M, then |[v — vo|| < § implies that | T(v) — T(vo)| < e. That is, T is
continuous at vy. Hence, as the choice of vy € V is arbitrary, T is continuous on V.
Conversely, assume that 7 is continuous. In particular, T is continuous at 0. Thus,
for ¢ = 1 there is a § > 0 such th?t |lw| < & implies ||[T(w)|| < 1. LetM =2/6. If

v € V is nonzero, then let w = s ¥~ Thus, |lw]| < 8 and so ||T(w)| < 1. That is,

ITv] < M]jv]|. =

The next proposition is the first step toward the study of operators in the context
of analysis.

Definition 6.5. If V and W are normed vector spaces, then the set of all operators
T : V — W is denoted by B(V,W). In the case where W = V, the notation B(V) is
used in place of B(V, V).

Proposition 6.6. Assume that V and W are normed vector spaces.

1. The set B(V,W) is a vector space under the operations (T) + T,)(v) = T1(v) +
T,(v) and (aT)(v) =aT() for T, T\, T, € B(V,W)andv eV, x € C.
2. The function || -| : B(V,W) — R defined by

17|l

0#£veV vl

I = (6.1)

is a norm on B(V,W).
3. If W is a Banach space, then so is B(V,W).



218 6 Dual Spaces

Proof. 1t is clear that B(V, W) has the indicated structure of a vector space, and so
we turn to the proof that (6.1) defines a norm on B(V,W). To this end, note that
(using the fact that every linear transformation sends zero to zero) equation (6.1) is
equivalent to

1T < I vl YveV. (6.2)

Thus, |T|| = 0 only if ||T(v)|| = O for every v € V; hence, T(v) =0 forall v € V.
This proves that T is the zero transformation: 7 = 0. It is also clear that ||aT| =
|| || T, and so we now establish the triangle inequality. Let 7,7, € B(V,W). For
everyv € V,

1T+ To)vl| = 11 (v) + T2(v) |
= @I+ 1)l

< T+ 172D 1)
and so

1T+ ()|l
T\ +T5|| = sup ————— < |T1||+|T2|.
0#£veV [[v]

This completes the proof that equation (6.1) defines a norm on B(V, W).

Suppose now that W is a Banach space and select any Cauchy sequence {7} }ren
in B(V, W). Inequality (6.2) implies that {T;(v) }xen is a Cauchy sequence in W for
every v € V. Because W is a Banach space, each sequence {7} (v) }xen is convergent
in W; denote the limit by T'(v). Note that the map v — T(v) is indeed a linear
transformation 7': V — W. It remains to show that 7 is bounded and that limy, ||} —
T| =0.

Let ¢ > 0. Because {T}};en is a Cauchy sequence, there exists N, € N such that
T — Tyl <& foralln,m > N,.If v € Vandif n > N,, then

1T() =T, ()| < IT@) = Tu@)|| + Tn(v) =T (V)]
< |NT@) = Tu@)|l + 1T —Tall V]l
As the inequalities above are true for all m € N,

IT@) =T, = inf (IT@) =T + 17w =Tl 0]

<0+c¢]v].
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Hence, if n > N, is fixed, then T — T, is bounded and ||T — T,| < e. Therefore,
T,+ (T —T,) =T is bounded and | T —T,|| < ¢ for all n > N,. This proves that the
Cauchy sequence {7} }ren converges in B(V,W) to T € B(V,W). O

Two linear structures affiliated with an operator 7 € B(V, W) are recalled below
from linear algebra.

Definition 6.7. If 7 : V — W is a linear transformation between vector spaces V
and W, then

1. the kernel of T is the set kerT = {v € V|Tv = 0}, and
2. the range of T is the setranT = {Tv € W|v € V}.

It is clear that both ker7 and ran7 are linear submanifolds of V and W,
respectively. If T is continuous (that is, bounded), then ker 7 is normed closed and,
hence, is a subspace; however, the range of a bounded operator need not be closed
in general. There is one important instance in which ran T is always a subspace, and
that occurs with operators 7 that preserve the norms of vectors.

Definition 6.8. An operator 7 : V — W acting on normed vector spaces V and W

is an isometry if | Tv|| = ||v|| for every v € V.

Of course, every isometry T is of norm ||T|| = 1. Moreover, | Tv| = ||v| implies
that Tv = 0 if and only if v = 0, and so every isometry is an injection. On the other
hand, by scaling an operator T by « = || T||~', every nonzero operator is a scalar

multiple of an operator of norm 1, and so not every operator of norm 1 need be an
isometry.

Proposition 6.9. If V is a Banach space and if T € B(V,W) is an isometry, then
ranT is a subspace of W.

Proof. Let w € W be in the closure of the range of T. Thus, ||w—T(v,)|| — 0,
for some sequence of vectors v, € V, and so {T (v,) }»en is a Cauchy sequence in W.
Because ||Tv, —Tvy,|| = [|T(v,—vm) || = v, — vnll, the sequence {v, },en is Cauchy
in V. As V is a Banach space, there is a limit v € V to this sequence. Moreover,

ITv=wll < [IT(—=v)ll + Tva =wl = v =val + [Tv,—w|. VneN.

Hence, w = Tv. That is, the range of T contains all of its limit points, implying that
the range of T is closed. O

Definition 6.10. Two normed vector spaces V and W are said to be isometrically
isomorphic if there is a linear isometry 7 : V — W such that T is a surjection.

Thus, if V and W are Banach spaces, and if 7 : V — W is an isometry, then V is
isometrically isomorphic to the range of 7' (which by, Proposition 6.9, is a subspace
of W). Hence, T embeds V into W and in so doing preserves the Banach space
structure of V. In such cases, we say that “W contains a copy of V” because inside
W that copy of V appears (as a Banach space) no different from V itself.
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Example 6.11. If ¢ : R — C is a continuous 2m-periodic function such that
lp(H)| =1forallt € R, and if 1 < p < oo, then the linear map M, : LP(T) — L7(T)
given by Tf = (¢f) is an isometric isomorphism.

Further study of operators on Banach and Hilbert spaces will be taken up in later
chapters; the remainder of the present chapter is devoted to the quite special case
of operators that map complex normed vector spaces V to the 1-dimensional vector
space C.

6.2 Linear Functionals

Definition 6.12. If V is a normed vector space, then a linear functional on V is an
operator ¢ : V — C.

The familiar operation of integration is a basic example of a linear functional.

Example 6.13. If (X, X, i) is a measure space, then the map ¢, : L'(X, X, 1) — C
defined by

0u(f) = /X fdu.

forf e LY (X, X, ), is a linear functional on L'(X, X, 11).

Proof. The map ¢, is obviously linear. To show it is bounded, use the triangle
inequality:

(D] = '/deu

E/Vldﬂ= 171
X

Hence, ¢,, is bounded of norm |[|¢, || < 1. |
Another familiar example of a linear functional is drawn from linear algebra.

Example 6.14. If n € C", then the map ¢, : C" — C defined by
on (&) =D Em;.
j=1

for & € C", is a linear functional on C". Conversely, if ¢ is a linear functional on
C", then there exists a unique 1 € C" such that ¢ = @j,.

Proof. Tt is clear that @, is a linear functional. Conversely, any linear map of C"
onto C will be given by a 1 x n matrix whose action on C" is precisely that of ¢,,
for some n € C". O

The norm of ||¢, || depends upon the choice of norm for C".
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Definition 6.15. The set B(V,C) of all linear functionals on V is called the dual
space of V and is denoted by V*.

By Proposition 6.6, the dual space V* is a Banach space for every normed
vector space V. The determination of V* from V (or vice versa) is an important
and nontrivial problem. The next result is an example of an instance in which V* is
determined precisely from V.

Proposition 6.16 below is the first of many results that have the moniker Riesz
Representation Theorem. Other “Riesz Representation Theorems” in the present
book appear as Theorems 6.40, 6.51, and 10.1.

Proposition 6.16 (Riesz). Suppose that p and q are conjugate real numbers.

1. If g = (gi)ken € L4(N), then the function ¢ : {7 (N) — C defined by
o0
o(f) = _figk,
k=1

Jor f = (fi)ren € €P(N), is a linear functional on £ (N) of norm ||¢| = ||gl-
2. For each ¢ € ({P(N))* there is a unique g € £4(N) of norm | g|| = ||l¢|| such that

o(f) = _fig,
k=1

Jor every f = (fken € £7(N).

Proof. The proof of the first assertion is left to the reader as Exercise 6.54.

To prove the second assertion, select ¢ € (£7(N))*. If ¢; € £7(N) is the vector
with 1 in position k and O elsewhere, then let g, = ¢(e;) for each k € N. Select and
fix n € N, and consider the element f = (f;)ren € €7 (N) in which f; = 0 for every
k>nandf, = |gk|‘1_1sgn (gp) for each k = 1,...,n, where, for any o € C, sgno is

given by 0 if « = 0 and by = otherwise. Thus,

o]
fegr =187 (grsgn (21) = lgkl? and [filP = |gl? TP = |gil9.

Thus,

o(f) =9 (kaek) = fipled) =) lal’.
k=1 k=1 k=1

and so

n n 1/p n
> lgdl? = o) < lellIfll = llell (Z w) = [lo|| (ngrf)
k=1 k=1

k=1

1/p
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Thus,

n 1-1 n 1/q
P
ol > (Zw) - (Zw) .
k=1 k=1

Because the inequality above is true for arbitrary n € N, we deduce that g € £4(N)
and that [|g]| < [l¢].
Next consider /i, = |gi|9"'sgn (g,) for every k € N. Because

00 1/p 00 1/p
(Zw) =(Z|gk|Q) = Jlgllo”,
k=1 k=1

we have that h = (Iy)ren € €P(N). Thus, by the continuity of ¢, the triangle
inequality, and Holder’s Inequality, we have

(e.9) oo
¢ (Z hkek) D hegk
k=1 k=1

which implies that ||¢|| < ||g||. This proves that ||¢| = | g||-

Lastly, because each f € £”(N) is expressed uniquely in terms of the vectors
{er}reny C £P(N), the choice of g € £9(N) is also uniquely determined from the
equations g = ¢(ex), k € N. O

lp(h)| =

o0
<" el leel < Ia gl
k=1

Corollary 6.17. If p and q are conjugate real numbers, then ({7 (N))* and £4(N)
are isometrically isomorphic.

Proof. Let © : £4(N) — (£7(N))* be given by Og = ¢,, where ¢, € ({7(N))*
satisfies

P (f) = kagk,
k=1

for every f = (fi)ren € €7 (N). The map O is plainly linear and is also, by Proposi-
tion 6.16, isometric and surjective. Hence, @ is a linear isometric isomorphism of

(¢7(N))* and £9(N). O

Although Proposition 6.16 and Corollary 6.17 address the case of £” spaces over
N, precisely the same results hold true for the finite-dimensional Banach spaces
£P(n), for every n € N.

Some other accessible examples of interesting dual spaces (such as the dual of
£'(N)) are addressed in Exercises 6.57 and 6.56. There is an integral version of
Proposition 6.16, but establishing it requires somewhat more effort, and so further
discussion of it is deferred to Section 6.6.
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6.3 Hahn-Banach Extension Theorem

Notwithstanding the explicit determination of the duals of £”-spaces in the previous
section, the analysis of the dual space V* of abstract infinite-dimensional normed
vector spaces V is somewhat delicate. For example, to begin with, it is not at all
obvious that V* has any nonzero elements whatsoever. Proving that V* has elements
in abundance is the principal objective of the present section, and the main result
developed here, the Hahn-Banach Extension Theorem, is surely the most important
foundational theorem in functional analysis. At its heart is the following linear-
algebraic theorem.

Theorem 6.18 (Hahn-Banach Extension Theorem). Assume that V is a real
vector space and that p : V — R is a function such that, for all v,v;,v, € V and
alla > 0,

L. p(vi +v2) <p(v1) +p(v2), and
2. p(av) = ap(v).

If Lis a linear submanifold of V and if ¢ : L — R is a linear transformation for which
lo(v)| < p(v) for every v € L, then there is a linear transformation @ : V — R such
that @) = ¢ and —p(—v) < @(v) < p(v) for everyv € V.

Proof. The linearity of ¢ implies that —p(—v) < ¢(v) < p(v) for every v € L. If
@ = 0, then we may take @ to be @ = 0; therefore, assume that ¢ # 0.

Define a set G consisting of all ordered pairs (M, ) such that M is a linear
submanifold of V containing L and ¥ : M — R is a linear transformation satisfying
—p(—v) <9 (v) < p(v) for every v € M. The set & is nonempty since (L,¢) € &.
Define a partial order < on G by

(M,9,) < (M>,9,) ifand only if M, C M, and 192|M1 = 1.

With respect to this partial order, let § be any linearly ordered subset of &. Hence,
there is a linearly ordered set A such that

§={M,0)|Ae A}

Define M C V by

M = UMA,

AeA

and note that M is a linear submanifold of V containing L. Furthermore, the function
¥ : M — R given by 9 (v) = 9, (v), if v € M,, is well defined, linear, and satisfies
—p(—v) < 9 (v) < p(v) for all v € M. Thus, (M,v¥) € & and (M,?) is an upper
bound for §. Hence, by Zorn’s Lemma, & has a maximal element.
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Let (M, ?) denote one such maximal element of &. Suppose M # V; thus, there
exists (nonzero) vg € V\ M. If x,y € M, then

P +9(y) = Fx+y) <plx+y)
= p((x—vo) + (vo +y))
< plx—vo) +p(xo+y).

Thus,
?(x) —=p(x—vo) < p(vo+y) =B ().

Let §o € R satisfy

sup (9(x) =p(x—o)) = 8 = inf (p(vo+y) =P ().

XEM

Thus,
D (x)—do <p(x—vo) and D (y)+ o < p(vo+y)

for all x,y € M.
Consider now the linear submanifold M; = {x + ovg|x € M, a € R} of V, and
note that M| contains M and M # M. Define a function ¢; : M| — R by

U1 (x 4+ avg) = 9 (x) + ado,
and observe that $; is linear. If @ > 0, then
Hh(x+oavy) =« (ﬂ(a_lx) + 80) <ap(a~'x+vo) = p(x+awvp),
while if @ < 0, then
91 (x +avg) = |af (9 (—a™'x) =) < |a|p(—a ™ x—vg) = p(x + avp).

Therefore, by the linearity of ¥, —p(—v) < ¥;(v) < p(v) for every v € V,
which shows that (M, ?) € &. But the relation (M, ) < (M,,¢) with M| #M
contradicts the maximality of (M, ¥) in &. Therefore, it must be that M = V and so
@ = 1 is one desired extension of ¢. |

The function p in the statement of the Hahn-Banach Extension Theorem is called
a sublinear functional.

Definition 6.19. A function p : V — R for which p(v; + v2) < p(v1) + p(v2) and
p(av) = ap(v), for all v,v;,v, € V and all @ > 0, is called a sublinear functional.
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A more specialised version of the Hahn-Banach Extension Theorem, in which the
sublinear functional p is given by p(v) = ||v|| for some norm || - ||, is very frequently
used. Before stating this form of the result, we first indicate how to pass from a
complex normed vector space to a real normed vector space and then back again.

Thus, suppose, as usual, that V is a complex vector space and let ¢ : V — C be
an arbitrary linear transformation. The functions v, ¥, : V — R defined by

N =3 (p0)+00) ad ) = 5 (90) -0w)
satisfy ¥;(v1 4+ v2) = ¥;(v1) + ¥;(v2) and ¥;(rv) = ryy;(v) for v, v, v, €V, re R,
and j = 1,2. Thus, considering V as a real vector space, ¥; and y, are R-linear
transformations such that ¢(v) = ¥ (v) + iy, (v) for every v € V. Therefore, we
denote | and vy, by Re and Ig, respectively.
Now if V is a normed vector space and ¢ € V*, then for every unit vector v € V
we have

e W) = 3 (eI + p®1) = lp)],

which shows that Ng is a bounded linear transformation and that |Re| < ||¢|l.
On the other hand, given a unit vector v € V, there is a real number 6 such that
lp(v)| = €p(v). Thus, with w = ev € V, we have

1B (w)| = [% (p(e”v))] = |9 (0 ()| = o).

which shows that

lell="sup [e@)]= sup |pw)|=[NRe].
veV, |lv||=1 weV, |lwl=1
Hence, |R¢| = ||l¢]|. A similar argument shows that |S¢|| = ||¢]|.

The discussion above is summarised by the following lemma.

Lemma 6.20. IV is a normed vector space and if ¢ € V*, then Re and J¢ are
R-linear maps V — R such that |Re|| = ||S¢]| = |||

Conversely, suppose now that ¢ : V — R is a (real) linear transformation, where
V is considered as a vector space over R. Motivated by the fact that { = 0 ({) —
iN(i¢) for every ¢ € C, define ¥ : V — R by ¥ (v) = —y(iv), for v € V, and
¢ :V — Cby ¢ =1y +iy;. Observe that v is a R-linear transformation, ¢ is C-
linear transformation, and R = ¥ and IJ¢ = ;. If, in addition, V is a normed
vector space and ¥ is bounded, then the discussion preceding Lemma 6.20 shows
that ¢ is bounded and ||| = ||¥||. Thus:

Lemma 6.21. If V is a normed vector space and if ¥ : V — R is R-linear and
bounded, then the function ¢ : V — C defined by ¢(v) = ¥ (v) — iy (iv), forv €'V,
is C-linear, bounded, and satisfies ||| = |||
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The specialised form of the Hahn-Banach Extension Theorem is now ready to be
formulated and proved.

Theorem 6.22 (Hahn-Banach Extension Theorem for Normed Spaces). If L is
a linear submanifold of a normed vector space V, and if ¢ € L*, then there exists
@ € V* such that D), = ¢ and | @] = |¢].

Proof. Write ¢ = Ro + iI¢@. Because Ry and IJg are R-linear functionals on L
of norm ||R¢| = ||S¢|| = |l¢|| (by Lemma 6.20), it is sufficient to find R-linear
extensions ¥ and ¥, of Re and J¢, respectively, such that |¥;|| = ||¢|| forj=1,2,
and to then define @ by @ = ¥, 4 i¥,, using Lemma 6.21.

Therefore, we assume without loss of generality that ¢ : L — R is R-linear,
nonzero, and bounded of norm |[|y||. Thus, ¥ = |¥| "'y is R-linear of norm
Iyl =1.

Letp: V — R be given by p(v) = |[v||, for v € V. Thus, for every v,vi,v2 € V
and o > 0, we have p(vi + v2) < p(v1) +p(v2), p(av) = ap(v), and | (v)| < p(v),
for every v € L. Hence, by Theorem 6.18, there is an R-linear map V>R
extending ¥ and such that —p(—v) < ¥(v) < p(v) for every v € V; that is, such
that —||v|| < ¥ (v) < ||v| forall v € V. Hence, |¥| < 1= ||¢|| < ||| implies that
%]l = ||l¥]|, where ¥ = ||| is the desired R-linear extension of ¥ from L to V.

a

The Hahn-Banach Extension Theorem leads to the following result which shows
that the dual space V* of an infinite-dimensional normed vector space V contains
(many) elements other than 0.

Corollary 6.23. Ifv is a nonzero element of a normed vector space V, then there is
a ¢ € V* such that ||¢|| = 1 and ¢(v) = ||v|.

Proof. On the 1-dimensional subspace L = {ov |« € C}, let ¢y : L — C be given by

@o(av) = a||v]]. Then ¢y is a linear transformation and ¢o(v) = ||v||. The norm of
@o 18 1, since |@o(av)| = |a| |v]| = ||ev|. By the Hahn-Banach Theorem, there is
an extension of ¢y to a linear functional ¢ € V* such that ||¢|| = ||¢o] = 1. O

6.4 The Second Dual

By Corollary 6.23, for every v in a normed vector space V, there is a ¢ € V* such
that ||¢|| = 1 and ¢(v) = ||v||. Therefore, a normed vector space admits a rich family
of linear functionals. Treating the dual V* as a normed vector space itself, then its
dual (V*)* is likewise large. This “second dual” of V is important in many regards,
not the least of which is because the second dual of V contains V in a natural way,
which leads to a fruitful conceptual perspective in which the elements of V act on
the elements of V* (rather than vice versa, according to the definition of V*).

Definition 6.24. The second dual of a normed vector space V is the dual space
(V*)* of V*, and is denoted by V**.
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The following proposition shows that V** contains an isometric copy of V.

Proposition 6.25. If V is normed vector space, then there exists a linear isometry
AV — V** such that Av(¢) = @(v) for every v € V and ¢ € V*.

Proof. For each v € V, let w, : V* — C be the linear transformation defined by
wy () = p(v), for ¢ € V*. Because |p(v)| < ||¢|l ||v]|, for every ¢ € V*, the linear
map w, is bounded. Hence, w, € V**, for every v € V.

It is straightforward to verify that the map A : V — V** that sends each v € V to
the function w, is linear (i.e., Wy, + Wy, = Wy, 4+, and Aw, = wAv, for all v, v,,v €
V and A € C). Thus, A is a linear transformation. Moreover, for each v € V,

[Avl[= sup |wu(@)|= sup [p@)]=]v].
veV*, |lpll=1 peV*, lloll=1
Thus, A is a linear isometry. O

Definition 6.26. A Banach space V is said to be reflexive if the operator A in
Proposition 6.25 is a surjection.

The most immediate example of a reflexive Banach space is afforded by finite-
dimensional spaces.

Proposition 6.27. Every finite-dimensional Banach space is reflexive.
Proof. To prove this, suppose that & = {vy,...,v,} is a basis of V, then each v € V
has unique representation as linear combination of vy, ..., V,: v =) i %Vj- For each
k, let ¢y : V — C be defined by ¢ (Zjajvj> = ay. Clearly ¢ € V* and ¢ (v)) = 0, if
j # k and @ (vy) = 1. To show that ¢1,..., @, are linearly independent, suppose that
> ;¢@; = 0. Then, for any k € {1,2,...,n}, 0 = (Zjaj(p_,) v = 30 (vi) = o
Hence, ¢1,..., ¢, are linearly independent.

Using the basis {¢1,...,¢,} of V¥, repeat the argument above to produce a basis
{@1,...,D,} of V** that has the property that @ (¢) = 1 and D (¢;) = 0if j # k.
Define a function A : V — V** on the basis of V by A(v;) = @ and extend this by

linearity to all of V. The operator A plainly satisfies Av(¢) = ¢(v) for every v € V
and ¢ € V*, |

Proposition 6.16 provides another set of examples of reflexive spaces:

Example 6.28. Ifp > 1, then {7 (N) is a reflexive Banach space.

6.5 Weak Topologies

Suppose that X and Y are topological spaces and that .% is a family of functions
f: X — Y. Recall that Proposition 1.88 shows that the collection

2= (U)N--nf,(Uy) |n €N, U; C Y is an open set, f; € 7}
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is a basis for a topology (called the weak topology induced by .%) on X with respect
to which each function f € .% is continuous. In this section we shall consider two
particular choices of .% when X and Y are certain normed vector spaces.

Definition 6.29. If V is a normed vector space, then the weak topology on V is the
the weak topology on V induced by the family . = V*, and the elements of this
topology are called weakly open sets.

Note the use of the term “weak topology” in the setting of Banach space differs
slightly from the use of the term in topology in that reference to the choice of family
% is dropped. That is, when saying that V has the weak topology it is understood
implicitly that the family of functions inducing the topology is the family V* of all
bounded linear functionals on V.

Suppose now that a normed vector space has the weak topology. If vy € V and
U C V is a weakly open set, then there is a basic weakly open set B such that
vg € B C U. That is, there are ¢y,...,¢, € V* and open sets Wy,..., W, C C such
that

Vo € m%—l(Wj) cu.

J=1

As ¢(vg) € W; € C for each j, there are positive real numbers ¢1,...,&, such that,
for each j,

{CeClIE—givo)l <&} S W,
Hence,
Vg € {v eVl]lgi()—gi(vo)| <gj, Vj= ln} cu.

Proposition 6.30. If V is a finite-dimension normed vector space, then the weak
topology and the norm topology on V coincide.

Proof. Exercise 6.65. O

In contrast to Proposition 6.30, the weak topology and the norm topology are
strikingly different in the case of infinite-dimensional spaces. For example, in the
norm topology of an infinite-dimensional Banach space V there are bounded open
sets U C V that contain O € V (the open unit ball, for example); however, this is not
at all true for the weak topology.

Proposition 6.31. IfV is an infinite-dimensional Banach space, and if U C V is a
weakly open set such that 0 € U, then U is unbounded. In fact, there is an infinite-
dimensional subspace L C 'V such that L C U.
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Proof. Choose a basic weakly open set B such that 0 € B € U. Thus, there are

¢1,...,¢, € V* and open sets Wy,...,W, € C such that 0 € ﬂcpj_l(Wj). Let L =
j=1

ﬂker @j, which is a subspace of V contained in U. We need only verify that L has
j=1
infinite dimension. To this end, let @ : V — C" be the linear transformation

@1 (v)
d(v) = : , veV.

@n(v)

Note that ker @ = L. The First Isomorphism Theorem in linear algebra asserts that
the quotient space V/L is isomorphic to the range of @, which is a subspace of C".
Because the quotient of an infinite-dimensional vector space by a finite-dimensional
subspace cannot have finite dimension, it must be that L has infinite dimension. O

When it comes to the dual space V* of V, it is of less interest to endow V* with
the weak topology induced by the family V** than it is to endow V* with the weak
topology induced by the subfamily A(V) € V** indicated in Proposition 6.25—
namely, those functions f : V* — C for which there exist a v € V such that f(¢) =
@(v) for every ¢ € V*,

Definition 6.32. If V is a normed vector space, then the weak™ topology on V*
is the weak topology on V* induced by the subfamily A(V) € V** indicated in
Proposition 6.25.

To be clear, if ¢y € V*, then a basic weak™ open subset B C V* that contains ¢q
has the form

B={p e V*||lp)—¢o(v))| <¢, forallj=1,...,n},

for some n € N, vy,...,v, € V, and positive real numbers ¢,...¢&,.
The most important fundamental property of the weak™ topology is established
by the following theorem.

Theorem 6.33 (Banach-Alaoglu). If'V is a normed vector space and if X C V* is
the closed unit ball of V*, then X is compact in the weak™ topology of V*.

Proof. Foreachv eV, letK, ={A € C||A| <|v|}. Consider the space K = HKU’

veV

endowed with the product topology. By Tychonoff’s Theorem (Theorem 2.14), K is
a compact set. Furthermore, K is Hausdorff because each K, is Hausdorff.
Define f : X — K by f(¢) = (¢(v)),cy- and note that f is an injective function.
Select ¢ € X and consider an open set W C K that contains f(¢). Thus, there are
open subsets W,, € K, such that ¢(v) € W,, for every v € V, and W,, = K, for all
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but at most a finite number of vectors in V, say vy,..., v,, and W = l_[ W,. Because
veEV
each A(v)) is continuous on V*, the set A(v;)™! (W,;) is open in V*, which implies

that U; = {y € X|¢(v;) € Wy} is open in X for each j. Thus, if U = ﬂUJ-, then
j=1

U is an open set containing ¢ for which f(y) € W for every ¥ € U. Hence, f is
continuous at ¢, and so f is a continuous function on X.

On the other hand, if U C X is an arbitrary open set and if ¢ € U, then there is
a basic open set B such that ¢ € B C U. By definition, there are vy,...,v, € V and
€1,...,&x > 0 such that, for ¢ € X, we have ¢ € B if and only if | (v;) —(v))| < ¢
foreachj=1,...,n. Hence, if W,, = {1 € K, ||A —¢(v))| < &} and if W, = K, for
every v € V\ {vy,...,v,}, then W, = HW” is open in K and f(¢) € W, C f(U).

veV
Thus, f(U) = U W,,, which shows that f(U) is open. Hence, f ! is continuous, and
pelU

therefore f is a homeomorphism between X and f(X).

We now show that f(X) is a closed subset of K. Let A = (1,),ev € K be in the
closure of f(X). Suppose that vi,v, € V and a1, € C, and let € > 0. Define

U={y eX||Yv(v)—As]| <& veE{v,v,010 +0a02}},

which is an open subset of X. Thus, W = f(U) is open in K (because f is a
homeomorphism). The open set W contains A, and A is in the closure of f(X). Hence,
there exists ¢ € X such that f(¢) € W, and so

o) —Aul <&, [p(v2) —Ay| <e,

and
lp(a1v1 +02v2) = Agypy+ases | <&
Therefore,
[Aayvr+ogvs — 1Ay, —02dy, | < (14 o] +|ea])e.

As ¢ > 0 is arbitrary, we deduce that Ay, 40,0, = @14y, + 024,,. Therefore, the
map v — A, is linear and satisfies |1, | < |v]|| for all v € V, implying that this map
is an element of X and that A € f(X). This proves that f(X) is closed in K.

Because K is compact, Hausdorff, and f(X) is closed in K, we deduce that f(X)
is compact and Hausdorff; hence, X is compact and Hausdorff. O

The following striking theorem shows that all Banach spaces arise as subspaces
of C(X) for various choices of compact Hausdorff spaces X.

Proposition 6.34. For every Banach space V there is a compact Hausdorff space
X such that V is isometrically isomorphic to a subspace of C(X).
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Proof. Let X be the closed unit ball of V*, which is compact and Hausdorff when
endowed with the weak™® topology (Theorem 6.33). By Proposition 6.25, there is
an isometric embedding A : V — V** whereby Av(p) = ¢(v), for all ¢ € X and
v € V. Thus, we need only show that Av € C(X) for every v € V. To this end, select
v € V and consider the function Av : X — C. To show that Av is continuous at
@ € X, assume that W is an open set containing Av(¢) = ¢(v). Thus, there exists
e>0suchthat Wy ={A e C|[A—pW)| <} CW.IfU=Av"'(Wy) ={y €
X||¥(v) —¢(v)| < e}, which is a basic open set in X, then Av(U) € W, which
proves that Av is continuous at ¢. Hence, Av is continuous on X. a

If V is a separable Banach space, then one would hope that the topological
space X that arises in Proposition 6.34 above is a compact metric space, for then
the enveloping Banach space C(X) that contains V as a subspace would also be
separable (Theorem 5.57). This is indeed the case by the following result.

Proposition 6.35. IfV is a separable Banach space and X is the closed unit ball of
V*, then X is metrisable.

Proof. By hypothesis, there is a countable set that is dense in V; hence, there is a
countable set {v,},en C X that is dense in the closed unit ball of V.
The compact set D = {z € C||z| < 1} is a subset of the metric space C, and so the
product space D = l_[ D of countably many copies of ID is compact and metrisable
neN

in the product topology (by Tychonoff’s Theorem and Proposition 1.57).

Let f: X — D be given by f(¢) = (¢(v,)),en- To show that f is continuous at
each point of X, select ¢y € X and let W C D be an open set that contains f(¢y).
Thus, W = [,y Wy for some open sets W, € I for which W, = D for all n with
the exception of at most finitely many ny,...,n,, € N. Thus, there are positive real
numbers ¢, ...,&, such that {A € D||A —@o(vy)| < g}, for j=1,...,m. The set
U={p e X||p(vy)—9o(vy)| <e&j,j=1,...,n} is an open subset of X that contains
@o and satisfies f(U) € W. Hence, f is continuous at ¢y, which proves that f is a
continuous map X — D.

The continuous image of a compact set is compact (Proposition 2.9), which
implies that f(X) is compact. Furthermore, because D is metrisable, so is f(X).
Therefore, in particular, f(X) is Hausdorff. Because {v, },en is dense in the closed
unit ball of V and because each ¢ € X is continuous, the map f is injective. Hence,
f is a bijective continuous map from a compact space X onto a Hausdorf space
f(X). By Proposition 2.9, f is necessarily a homeomorphism, which implies that X
is metrisable. O

Corollary 6.36. For every separable Banach space V there exists a compact metric
space X and a subspace L C C(X) such that V and L are isometrically isomorphic.

Proof. Let X be the topological space given by the closed unit ball of V* in the
weak*-topology. By Proposition 6.35, X is metrisable; and, by Proposition 6.34 V
is isometrically isomorphic to a subspace L of C(X). O
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6.6 Linear Functionals on [ and L*°

For every p > 1, the elements of [”(X,X,u) are determined by p-integrable
functions f*: X — C. We shall write f > 0 for f € Z7(X, X', ) if f(x) = 0 for every
x € X, and wntef > 0 if there is a function g € Z”(X, ¥, ) with g > 0 and g = f.
The notation g < f is used to denote f — g > 0.

Definition 6.37. A linear functional ¢ : LP(X, X, u) — C is said to be positive if
o(f) > 0 forevery f € (X, X, pn) with f > 0.

Lemma 6.38. Every linear functional on LP (X, X, u), where p € R satisfies p > 1,
is a linear combination of four positive linear functionals.

Proof. By Lemmas 6.20 and 6.21, every ¢ € L”(X, X, 1)* is a linear combination
¢ = RN 4+ iS¢ of two continuous R-linear maps N, Jp : P(X, X, u) — R.
Thus, consider LP(X, X, ) as a Banach space over R and let ¥ = ¢, which is
continuous and R-linear. Define a real-valued function ¥ on the positive elements
of L/ (X, X, u) by

V() =sup{y(§)|g € L7 (X, Z. 1), 0= g <f}.

To confirm that the supremum above exists, note that 0 < ¢ < f and p > 1 imply
that |g|” < [f|7, and so [|g[| < [If]; thus, [ ()| < [[¥[[ 2]l < ¥ [l [|f]] and, therefore,
Y4 (f) exists and is such that ¥ (f) < ||[¥ | IIf]l-

Suppose now that g1,8> € Z7(X, X, ) satisfy 0 < g; < f. By the linearity of
¥, we have ¥ (1) + ¥ (&2) = ¥ (&1 + &2) < ¥+ (fi +/2); hence, Y4 (fi) + ¥+ () <
¥4 (fi +/2). On the other hand, if h € ZP(X, X, u) satisfies 0 < h < f} + /5, then
let g1 (x) = max{h(x) —f2(x),0} and g>(x) = min{h(x),f2(x)} to obtain p-integrable
functions g; and g, with 0 < g; < f;, for j = 1,2, and g, + g> = h. Thus, 1//(h)
V(&) + ¥ (&) < V() + v (R) yields ¥y (i +/2) < ¥4 (7)) + ¥4 (). Hence,
Y4 is an additive function on the positive elements of L7 (X, X, ). The function
¥ is also plainly positive-homogeneous in the sense that ¥4 (af) = a4 (f) for
everya > 0inRand f > 0in L/(X, X, j1).

Let Z = {f|f € £7(X, X, ) such that f(x) € R for all x € X}, which is a real
subspace of LP (X, X', ). Express each real-valued function f € Z7(X, ¥, u) as the
difference f = f* —f~ of positive p-integrable functions f* and f~ as prescribed in
equation (3.3), and define ¥4 on Z by

V() =y (FH) = v ().

In expressing each o € R as a difference o = a™ —a ™ of positives, we see that
Vi (af) = ayy (f) for every real-valued f € £7(X, X, it). As ¥4 is plainly additive
on %, we deduce that 4 is a continuous R-linear map on Z. Likewise, by defining
V_ =¥, — v on %, the map ¥_ is R-linear, continuous, and satisfies _(f) > 0
for every f > (0.
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Because every f € ZP7(X, X, ) has the form f = Nf + iJf, the maps ¥4 and
¥_ extend from Z to all of I7(X, X, 1) via ¥y (f) = ¥4 (Nf) + iv4(3f) and
V_(f) = v_(Rf) + iv_(3f), in each case yielding a continuous, positive, C-linear
map LP(X, X, ) — C with the property that ¥ = ¥4 —_. Hence, Rp is the
difference of two positive linear functionals. A similar argument shows that J¢
is a difference of two positive linear functionals, which implies that ¢ is a linear
combination of four positive linear functionals. O

The main result that we aim to prove in this section is Theorem 6.40, which is
based in part on the density of simple functions in L”. A proof technique related to
the density of simple functions is encompassed by the following lemma.

Lemma 6.39. Assume that p > 1 and that ¢ is a positive linear functional on
LP(X, X, ). Suppose that g : X — R is a nonnegative measurable function and that
fifv € LP(X, X, ), for k € N, have the following properties:

1. 0 <fi(®) <fix1(x) <f(x), forallx € X and k € N;
2. kl_l)ngoﬁc(x) =f(x), forall x € X;

3 o) = /fkgdp,for everyk € N,
X

Then o(f) = /X fody.

Proof. By Proposition 5.42, the first two of the three conditions above imply that
Jm [If —fi| = 0. Because 0 < fi(x)g(x) = f(x)g(x) and limfi(x)g(x) = f(x)g(x)
for every x € X, the Dominated Convergence Theorem yields

lim / g —figldu = 0.
k—o00 X

Hence,
‘so(f)—[xfgdu‘ = ‘w(f)—<p(ﬁ)+<p(ﬁ)—/xfgdu'
< W/ =Fillol+| [ G-nedn]
< WF=Alllel+ [ Vig—feldu.
Thus, by letting k — 0o, we obtain ¢(f) = /X fedu. ]

The following result is our second instance of a Riesz Representation Theorem.



234 6 Dual Spaces

Theorem 6.40 (Riesz). Suppose that p and q are conjugate real numbers. If
(X, X, ) is a o-finite measure space, and if 2 : L1(X, X, u) — LP(X, X, n)* is
defined by

Q@I = /X fedp. 63)

for all f € LP(X,X,n) and g € L9(X, X, 1), then 2 is a linear isometric
isomorphism.

Proof. Let g € Z1(X, X, 1) be fixed. By Holder’s inequality (Proposition 4.53),

1/p 1/q
[ telan < ( / lfl"du) ( [ Iglqdu) Vie 2P(X. 5.
X X X

Hence, the function ¢, : (X, X, ) — C defined by (pg(f) = [,fgdu is a linear
functional on L(X, X, ) for which ||g,(F)|| < IIf|l|l2]l for all f € LP(X, X, ).
Therefore, the function §2 indeed takes values in the dual of I”(X, X, ) and is
given unambiguously by £2(g) = ¢,. The map §2 is plainly linear, and the inequality
12(2) || = ll¢.ll < |l&ll implies that §2 is continuous.

To show that £2 is isometric, we need to show that ||g|| < |l¢,ll. Let {g: X — C
be the function {, = sgng—namely, the measurable function whose value at x € X

is 0, if g(x) = 0, and is £, if g(x) # 0. Thus, |g(x)| = &, (x)g(x) for all x € X.

Let f: X — C be defined by f = |g|‘”"§‘g. Observe that f is p-integrable and that
q
fe=1g17|g] = |g|'"» = |g|“. Thus,

el = /X lgldp = /X Fodp = 10e(D < el IF]

1/p 1/p
:”‘”g”(/x lfl”du) =||¢g||(/x Igl"du) — gl &,

Hence, because q—l% = 1, we deduce that ||g|| < ||¢,ll, which proves that £2 is a
linear isometry.

What remains, therefore, is to prove is that £2 is surjective. By Lemma 6.38, it is
sufficient to show that every positive linear functional on L” (X, X, i) is in the range
of £2. To this end, suppose that ¢ is a nonzero positive linear functional.

Assume, in the first instance, that ©(X) < oo. Define a function v : ¥ — R by
Vv(E) = ¢(xg), and note that v(E) > 0 (because yg > 0). Suppose that {E;}ren is

n

a sequence of pairwise disjoint measurable sets and let £ = U E. IfG, = U Ey,

keN k=1
n n

then yg, = Z XE, and, thus, v(G,) = Z v(Ey). Therefore, if F,, = E\ G, then G,

k=1 k=1
and F, are disjoint with union E, and so
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v(Fy) = ¢(fE) — (Z go(m)) =v(E)— (Zv@«)) :
k=1

k=1

The sequence { )(pG” }nen is monotone increasing to x7., and therefore the Monotone
Convergence Theorem yields lim ||y, — x| = 0. Hence, by the continuity of ¢,
n—>o0

v(E) = lim ) v(E) =) v(E).
k=1 k=1

This proves that v is countably additive. That is, v is a measure on (X, X).

Now suppose that E € X satisfies u(yg) = 0. Thus, || xg|| = 0 and so v(E) =
@(xg) = 0. Therefore, v is absolutely continuous with respect to . By the Radon-
Nikodym Theorem (Theorem 4.36), there exists g € ! (X, X, i) such that g(x) > 0,
for every x € X, and

v(E):/gd;L, VEe X.
E

Hence, if £ is a simple function in canonical form (see equation (4.1)), then

o(h) = /thdu.

Suppose that f € ZP (X, X, u) satisfies f(x) > 0 for every x € X. Proposition 5.41
shows that there is a monotone-increasing sequence {/;}ren of simple functions
hy. such that 0 < A (x) < f(x) for all x € X and limy /i (x) = f(x) for each x € X.
Therefore, the equations () = fx hygdp for every k € N and Lemma 6.39 yield

the desired formula ¢(f) = / fedu. Because every element of I7(X, X, u) is a
X

linear combination of positive elements, the formula (p(f) = / fgdu holds for every
X

feLrX, 2, n.

To show that g is g-integrable, let E;, = {x € X | g(x) < k} for each k € N and define
fi = x£.,87". Because {,(x) € {0,1} for all x € X, the function f; is bounded.
Furthermore, j(E;) < u(X) < oo implies that f; is p-integrable, and so ¢(f) =
fxfkgdu. Therefore, using frg = g% xg,, we have

/quu=/fkgdu=m)s||w|| Vil
Ey X

1/p 1/p
— ol (/ lfkl"du) — Jol (/gqcm) .
X X
1= 1/q
(/ quu) =(/ quu) <llell.
Ex Ex

This proves that
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Because /gkdu / g?du, where gy = yg,g, and because g(x)? = limy gi(x)?
Ex

for every x € X, Fatou’s Lemma (Corollary 4.9) yields the first of the inequalities
below:

/quu §liminf[ grdp < el
X kJx

Hence, g € (X, X, u), which thereby completes the proof (under the assumption
that (X) < oo) that £2 is surjective.

Assume now that u(X) = oo and that ¢ € [P(X,X,u)* is a positive linear
functional. Because (X, X, i) is o-finite, there is an increasing sequence {Ej}ren
of measurable sets E; of finite measure such that X = UEk' If, for each k € N,

keN
Y ={E:NA|A € X} and puy = 4|5, then the linear map f > f whereby a function
f 1 Ex — Cis sent to a function f : X — C in which f (x) = f (x), for x € Ey, and f (x) =
0, for x € E}, induces a natural linear isometry Ty, : L7 (Ey, Xk, i) — LP (X, X, ).
Therefore, we view L”(Ey, Xy, i) as a subspace of L(X,X,u) consisting of
equivalence classes of p-integrable functions on X that vanish on Ej. This is also
true for the conjugate g, via Ty, : LY(Ey, Xy, i) = LU(X, X, ).

Setting ¢x = Q1r(E;, 5,.,) Yields an element of the dual space of L7 (Ey, Xy, u).
Note that if m > n, then @, 1r&, 5, 1,) = ¢n- Furthermore, because w(E;) < oo,
the linear isometry §2; : LY(Ey, Xy, ux) — LP (Ex, Xy, k)™ given by equation (6.3)
yields an element £2;"!(¢x) of L4(E, Ek ). For each k € N select a representative

g € LY(Ey, Ek,uk) such that g = 2! (¢x). Hence,

oc(f) = / Segrdp = /fkékdu,
Ey X

for every fi € ZP(E, Xy, ir). Because any two representatives in .27 (Ey, Xy, [ix)
for a single equivalence class in L(E}, Xy, py) will differ only on a set of measure
zero, we see that for m > n the set {x € E, | g,,(x) 7# g.(x)} has measure zero. Let

F = U U{x € En|gm(x) 7é gn(x)}’
n=1m=n

which is a measurable set with w(F) = 0. Define g: X - C by g(x) =0if x € F,
and for x € F¢ by g(x) = gx(x) for any k € N that satisfies x € Ej. Therefore g is a
measurable function and g(x) = limy g, (x) for all x € X \ F. Because

/ Ly = ol < ol
Ey
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for every k, Fatou’s Lemma again yields

/g"dugliminf/gZd,u:/ gidme < lloll,
X k Jx Ey

which proves that g is g-integrable.
To complete the proof, .select any nonnegative f € £P(X, X, ) and, for each
k e N, let fi = f xg,. Thus, fi is an element of the subspace L’ (Ey, X, ux) and

o(f) = ee(fi) = /Efkgkdll = /E chfkng = /kagdu.

Furthermore, {f; }ren is @ monotone increasing sequence of nonnegative p-integrable
functions in which fi(x) < f(x) and limyf;(x) = f(x) for all x € X. Hence, by

Lemma 6.39, we have ¢(f) = / fegdu. Hence, because the positive elements span
X

L7(X, X, 1), the formula ¢(f) = / fedu holds for every f € 7 (X, X, j1). O
X

Corollary 6.41. If positive p and q are conjugate real numbers, and if (X, X, )
is a o-finite measure space, then for every ¢ € [/(X, X, u)* there exists a unique

g€ LI(X, X, ) such that ||g|| = |@|l and ¢(f) = / fedp, for everyf € [P (X, 2, ).
X

The hypothesis that (X, X, 1) be a o-finite measure space, in Theorem 6.40
above, can be removed; doing so, however, is rather subtle. The monograph of Bartle
[6] details how such an extension of Theorem 6.40 is achieved.

The case of L*°(X,X, ) is similar to that of L”, but there are some key
differences, which we make note of below.

Definition 6.42. Anelement f € L>°(X, X, i) is said to be positive if g = f for some
nonnegative function g € £ (X, X, ).

Note that if f € £°°(X, X, u) is such that ess-ranf C [0, 00), thenf is a positive
element of L*°(X, X, ). As with L{’ -spaces, we shall write write f > 0 for positive
elements, and use the notation ¢ <f to denote f — g > 0.

Definition 6.43. A linear functional ¢ : L*°(X, ¥, 1) — C is said to be positive if
@o(f) > 0 for every f € L°(X, X, u) with f > 0.

Lemma 6.44. Every linear functional on L*°(X, X, t) is a linear combination of
four positive linear functionals.

Proof. Exercise 6.68. O

Theorem 6.45 (Riesz). If (X, X, ) is a o-finite measure space, then the function
2:L®X, X, n) — L'(X, X, 10)* defined by

Q@) = [X fody. 6.4)
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forallf € L' (X,X,10) and g € L*(X, X, 1), is a linear isometric isomorphism.
Proof. Let g e £*°(X, X, ) be fixed. Because

/lfgldu =< (/ (eSS-SUPIgI)lfIdM) = llgll 1.
X X

the function ¢, : L'(X, ¥, 1) — C defined by g (f) = fx fgdu is a linear functional
on L'(X,X,p) and [lg,(H| < IfI &l for all f € L'(X, X, n). Therefore, the
function £2 takes values in the dual of L!(X, ¥, 1) and is given unambiguously by
£2(g) = ¢,. The map 2 is linear, and the inequality [|£2(g)|| = |l¢,|l < ||gll implies
that £2 is bounded.

Assume, to begin with, that ©(X) < oco. To show that £2 is isometric, let & > 0
and A, = {x € X||l¢||+& < |gx)|}. Foreachn e N, let E, = {x € X||g(x) < n}.

Thus, A = U E,NAforevery A € X. Set f, = xE,na. é—l and note that

neN

/ ol du = /
X E,NA,

Therefore, f, € (X, X, 1) and

8
lg]

‘ dpu = p(E,NA;) < u(X) < oo.

lollw(EnNAe) = llpll 7]l = /lengldu :/ lgldp = (lloll + ) (Ex NA,).

EnNAg

By continuity of measure,

lollie(Ae) = (Il + &)l n(Ae).

Hence, ((A,) = 0, which implies that ess-sup |g| < ||¢|| + &. However, as the choice
of € > 0 is arbitrary, ess-sup|g| < |l¢|, whence |g|| < [l¢,|l. That is, £ is an
isometry.

To prove is that £2 is surjective, suppose that ¢ € L'(X, X, 1)* is a nonzero
positive linear functional. Define a function v : ¥ — R by v(E) = ¢()£). As shown
in the proof of Theorem 6.40, v is a measure on (X, X, i), absolutely continuous
with respect to p. Therefore, by the Radon-Nikodym Theorem (Theorem 4.36),
there exists measurable function g such that g(x) > 0, for every x € X, and v(E) =
[zgdu, forall E € X. Hence, ¢(h) = [, hgdp for every simple function .

Suppose that f € Z1(X, X, ) satisfies f(x) > 0 for every x € X. Using Propo-
sition 5.41 we find a monotone-increasing sequence {/}ren of simple functions
Iy such that 0 < A (x) < f(x) for all x € X and limy /i (x) = f(x) for each x € X.
Therefore, the equations ¢(/i) = Jxhkgdp for every k € N and Lemma 6.39 yield

the desired formula ¢(f) = / fedju. Because every element of L'(X, X, 1) is a
X

linear combination of positive elements, the formula o(f) = / fegdu holds for every
X

fe L (X, X, ). The proof above, where it is shown that £2 is isometric, also shows
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that ess-sup |g| < ||¢||, and therefore g € Z*°(X, X, u). Hence, 2 is a surjective,
thereby completing the proof of the theorem in the case where p(X) is finite.

The proof of the remainder of the theorem is similar to the corresponding part of
the proof of Theorem 6.40 and is, therefore, left as an exercise (Exercise 6.69). O

Corollary 6.46. If (X, X, 1) is o-finite, then for each ¢ € L'(X, X, u)* there is a

unique g € L°(X, X, 1) such that o(f) = /fgdu, for every f € L"(X, X, i), and
X

gl = llell

6.7 Linear Functionals on C(X)

As with I” and L*° spaces, the notion of positive elements has a key role in
determining features of linear functionals on C(X), where X is a compact Hausdorff
space.

Definition 6.47. If X is a compact Hausdorff space, an element f € C(X) is said to
be positive if f(x) > 0 for every x € X.

As in the previous section, if f,g € C(X) are real-valued functions, then the
notation f < g is used to denote that g —f > 0.

Definition 6.48. A linear functional ¢ : C(X) — C is said to be positive if p(f) > 0
for every f € C(X) with f > 0.

The next result illustrates a somewhat surprising fact: if a linear transformation
on C(X) preserves positivity, then the linear transformation is necessarily continu-
ous.

Proposition 6.49. If X is a compact space and if ¢ : C(X) — C is a linear
transformation for which ¢(f) > 0 for every positive f € C(X), then ¢ is continuous.

Proof. Let 1 € C(X) denote the constant function x — 1 € C. For any f € C(X)
satisfying f(x) > O for all x € X, we have that 0 < f < ||f||1, which implies that
0 <o) = [flle(l) in R.
Suppose now that g € C(X) is real valued and write g = g* — g™, where g7,¢~ €
1

C(X) are given by gt = 3(|g| +¢) and g~ = 1(|g| —¢) and satisfy 0 < g* and

0<g~. Thus, [lg*|| < Il and [lg~]| =< lg]l. and

lo@) = lee)I+ el = (IsT I+ llg™ 1) ¢(1) < 2lglle(D).

Now let & € C(X) be arbitrary and write h = i h+ i3I h. Because the real-valued
functions N & and I i are given by Nh = %(h +h) and Ih = %(h—h), we have that
[RA] < [|7]l and [|SA|| < [[A]]. Thus,

le()] = lpMth)| + [e(Sh)| < 2[R Alle(1) +2[|Shlle(1) < 4[|Alle(1).

Hence, ¢ is bounded. O
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A straightforward adaption of the proof of Lemma 6.38 yields:

Lemma 6.50. Every linear functional on C(X) is a linear combination of four
positive linear functionals.

Examples of positive linear functionals are point evaluations f +— f(xg), and

integration f — / fdu. However, the two examples are related, for if X is compact
X

and Hausdorff and if xo € X, then / fdu = f(xp), if u is the point-mass measure
X

1= Bty

The following theorem, Theorem 6.51, is another Riesz Representation Theorem,
and is without doubt one of the major achievements of analysis. The version of
the theorem that is proved here requires the compact Hausdorff space X to be
second countable; under this assumption, the topology on X is metrisable, which
allows one to invoke Proposition 3.35 to show that the o-algebra constructed from
a particular outer measure includes the Borel sets of X. Even so, Theorem 6.51 is
true for arbitrary compact Hausdorff spaces, but showing that the measurable space
that is constructed in the proof actually contains the Borel sets of X is a much more
delicate task without the assumption that X be second countable (see [10, 50]). When
appealing to Theorem 6.51 at later points of the present book, it will always be the
case that the topological space under consideration is a second countable compact
Hausdorff space, and in many ways the specific version of theorem proved here is
in fact the most important of all cases.

Theorem 6.51 (Riesz). If X is a second countable compact Hausdorff space, and
if ¢ is a positive linear functional on C(X), then there exists a unique regular Borel
measure [ on the Borel sets of X such that

o(f) = [X fd.

for every f € C(X).

Proof. An important topological feature of (locally) compact Hausdorff spaces was
noted in the second version of Urysohn’s Lemma (Corollary 2.44) in Chapter 2: if
K and U are nonempty subsets of X such that K is compact, U is open, and K C U,
then there exists a continuous function f : X — [0, 1] such that f(K) = {1} and suppf
is a compact subset of U. This result is key to linking the topology of X to elements
of C(X) and, ultimately, to the functional ¢.

We begin with the construction of u from the positive linear functional ¢. Let
I ={feCX)|0<f(x) <1, VxeX}andletS: 7 — R (where 7 is the topology
of X) be defined by

s(U) = sup{ep(f)|f € # and supp f € U}.

Note that the compactness of X implies that the support of any f € C(X) is compact.
Now define a function pu* : Z(X) — R on the power set Z(X) of X by
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w*(S) =inf{s(U)|U € T and S C U}.

Our claim is that u* is an outer measure.

Because ¢(f) > 0 for every f € .#, the function s has nonnegative values.
Furthermore, if U; and U, are open sets such that U; C U,, then clearly s(U;) <
s(Up); thus, u*(U) = s(U), for every U € .7. Suppose the {U }ren is a countable
collection of open sets and let U = U Uy. If f € .7 satisfies supp f C U, then the

keN
compactness of supp f implies that there are finite many U} that cover supp f, say

Uks. s Uy, Let{hy. ..., h,} be a partition of unity of supp f subordinate to { Uy},
(Proposition 2.41). Thus, fh; € .# and supp fh; C Uy;, and so

n n n oo
o=@ |Fd b= o) <> u* Uy <D uw*U.
j=1 j=1 j=1 k=1
Therefore,

< ZM*(Uk),

k=1

w* (UUk) =sup{<p(f)|f€fandsuppfg UUk

keN keN

which shows that pu* is countably subadditive on open sets. To handle the case
of arbitrary subsets of X, assume that {Sj}ren is a countable collection of subsets
Si € X, and let ¢ > 0. By definition, for each k € N there is an open set Uy, containing

Sy and such that *(Uy) < pw*(Ey) + 5. Therefore,

r (UE) < (U Uk) et S E.
=1

keN keN

As ¢ > 0 is arbitrary, the inequality above implies that u* is countably subadditive,
which completes the proof that «* is an outer measure on X.

One other feature of ;* to mention before proceeding further is: if U; and U, are
disjoint open sets, then u*(U; U U,) = pw*(Uy) + pu*(U,). To see this, let & > 0 and
select fi,f> € .# such that suppf; € U; and u*(U;) < ¢(f;) +¢/2. Because Uy N U, =
@, the function fi + f3 is an element of .# and supp (f; +/f>) € (U; U U,). Thus,

w*(U) +p*(U2) <o) + o) + e = o(fi +f2) +& < p* (U1 UU,) + .

Hence, u*(U;) + u*(Uy) < u*(U; U Up) < u*(Uy) + n*(U,) implies that p* is
additive on the union of two disjoint open sets.

To show that every Borel set of X belongs to the o-algebra 9, (X) induced by
u*, recall that, because the compact Hausdorff space X is second countable, the
topology on X is induced by a metric d on X (Theorem 2.48). Suppose that A; and
A, are subsets of X such that dist(A;,A;) > 0. By continuity of the metric d, it will
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also be true that dist @1 ,Kz) > 0. Because X is normal, there are open disjoint sets
Vi and V, such that A; C V;. Let ¢ > 0 be given. If W is an open set containing
A{UA;, thenlet Uy = WNV;sothat Uy N U, =@ and A; C U;. Thus,

1 (A + 1 (Ay) < pw*(Uy) + pu*(Uz) = p* (U U U) < u™(W).

The infimum of the right-hand side over all open sets W that contain A; UA; yields
¥ (A; UA,), which shows that u*(A; UAy) = u*(A;) + n*(Ay). Therefore, by
Proposition 3.35, every Borel set of X belongs to the o-algebra 901, (X) induced
by w*.

Thus, let X' denote the o-subalgebra of 901,,« (X) generated by the topology of X,
and let u : ¥ — R be the measure defined by w(E) = u*(E), for every E € X. We
shall now show that p is a regular measure. By definition of u*, we already have
that

W(E) =inf{u(U) | U is open and U 2 E}, (6.5)

for every E € X. To complete the proof of the regularity of x, we need to show
(by Definition 3.58) that u(U) = sup{u(K)|K is compact and K € U} for every
open set U C X. Now if U = X, then there is nothing to show because U is compact.
Likewise, if u(U) =0, then u(K)u(U) = 0 for every compact K C U. Thus, assume
that U # X and that u(U) > 0. Clearly, sup{u(K)|K is compact and K C U} <
w(U). Conversely, suppose that & > 0 satisfies 0 < u(U) — ¢; by definition, there
exists a f € & with support suppf € U and ¢(f) > u(U) —e. Let K = suppf;
we shall compute p(K) using equation (6.5). To this end, let W be an open set
containing K. Because K = suppf € W, the definition of u yields w(W) > ¢(f) >
w(U) —e. Hence,

w(U) > u(K) = inf{(W)| W is open and W D K} > u(U) — e,

which implies that u(U) = sup{u(K)|K is compact and K C U}. Hence, u is a
regular Borel measure.
We now show that if K C X is compact, then

w(K) = infip(f) |f € 7 and f(K) = {1}}. (6.6)

To this end, select f € .# such that f(K) = {1}, and let U, = f~! (&, 00)), for each
a € (0,1). Note that K C U,, for each «. Suppose that g € .# has support suppg <
Uy. If x € suppg, then 0 < ag(x) < o <f(x); and if x € suppg, then 0 = ag(x) =<
f(x). Thus, ag < f in C(X), and so

ap(g) = p(ag) < o(f).
Thus,

w(Uy) = supie(g) | g € -7 and suppg C Uy} < %(f).
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As the inequality above holds for every « € (0, 1), we have

. 1
w(K) = infu(Ua) < lgfaw(f) =o(f).
Hence,

w(K) < infip(f)|f € & and f(K) = {1}}.

To show that the inequality above can be reversed, select ¢ > 0. By definition, there
is an open set W containing K and such that u(W) < u(K) + €. By Corollary 2.44,
there exists f € .# with suppf € W and f(K) = {1}. Therefore, ¢(f) < u(W), by
definition of x. Hence,

w(K) < infi(f)|f € 7 and f(K) = {1}} < (W) < u(K) +&,

which implies equation (6.6).

The integral representation of ¢ may now be established. Select any f € .#. Fix
neNandfork=1,...,ndefine U, =f! ((%oo)), andlet Uy =X and U4+, = 0.
These sets form a descending sequence

X=Uy=Uy2U,2U, 20U, 20,220, 2U, 2Up41 = Upt1 = 0.

Define f; = %XUk-H +(f— k;—l))(uk\UH]. Because the sets U; are open, each f; is
continuous. If x € Uy \ Ui+1, then ";—1 <flx) < Iﬁ’ and so

0<(f(x)—%)s'—‘—"‘1 .

n n n

for all x € Uy \ Ug41. Thus,

/xfk a

L (Upan) + / (F— Ky dp

U\Uk+1

IA

Lu(Uisn) + 2 U0 — 1 (Uss1)]

The fact that f;(x) = 1/n for every x € U4 yields %ﬂ(Uk+l) < / ftdp. Hence,
b

by summing over all k we obtain the inequalities

1 n 1 n
D IICAEY PRy A ©7)
Lyt X o
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The function f; is zero on U¢; thus, {x € X |fi(x) # 0} C Uy, which implies that
the support of f; satisfies suppfy € Uy C Uy—,. Therefore, by definition of 1, and
noting that nf; and f; have the same support, we have that ¢(nf;) < (£(Ur—1). On the
other hand, by continuity, f;(x) = % for all x € Uy ;. Therefore, by the compactness
of Uiy, and because nfi € .7 satisfies nf; mkﬂ) = {1}, equation (6.6) shows that
W(Ui+1) < @(nfi). Hence, by summing over all k and dividing by n we obtain the
inequalities

1 & 1 &
=2 wUit) () = = 3 (Ui (6.8)
k=1 k=1

Therefore, using the fact that |y —§| < (b+c¢) —2a if y € [a,b] and § € [a,c],
inequalities (6.7) and (6.8) yield

ZM(X)

‘ /fdu o] =~ (W) + (1)~ p(U) = 22

Because the choice of n € N is arbitrary, we obtain ¢(f) = / fdu. The integral

X
formula for arbitrary f € C(X) follows from the fact that the positive functions span
C(X) and the fact both ¢ and the integral are linear maps.

To prove the uniqueness of w, suppose that ji is another regular Borel measure

for which ¢(f) = /fd/l, for every f € C(X). Choose any open set U and let f € .¥

X
have support contained in U. Thus,
o) = [ rdn= [ sai= [ dp=pw)
X U U

By definition of p, the inequality above yields i (U) < i(U). To prove the reverse
inequality, let £ > 0 and select a compact set K such that K € U and i (U) < i(K) +
e. Select f € .# with suppf C U and f(K) = {1}. Therefore, equation (6.6) and the
definition of p yield

AU) < p(K)+e < o(f) +& < u(U) +e.

Hence, fi(U) = u(U) for all open sets U. By regularity of the measures, we deduce
that fi(E) = w(E) for all Borel sets E. O

Corollary 6.52. If X is a second countable compact Hausdorff space and if ¢ is a
linear functional on C(X), then there exist a regular Borel measures |11,..., L4 OR
the Borel sets of X, such that, for every f € C(X),

w(f)=/xfdv,

where v is the complex measure v = (1| — (h2) + i((t3 — Ua).
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Proof. Lemma 6.50 and its proof show that ¢ has the form ¢ = (¢ —¢2) +
i(¢3 — @4), for some positive linear functionals ¢; on C(X). Theorem 6.51 gives
a representing regular Borel measure y; for each g;. O

For each complex measure v on the Borel sets of X, the linear map f +— [, fdv
is bounded. Thus, the dual space of C(X) may be identified with the Banach
space M (X, X') of complex measures. One would like such an identification to be
isometric, and such is the content of the next theorem which characterises the dual
space of C(X).

Theorem 6.53. If X is a second countable compact Hausdorff space, then the map
@ :MX,XY)— C(X)* defined by

O] = /X Fav,

for every f € C(X), is a linear isometric surjection.

Proof. Exercise 6.70. O

Problems

6.54. Suppose that p and ¢ are conjugate real numbers. Prove that if g¢ = (gi)ren €
£4(N), then the function ¢ : £?(N) — C defined by

o(f) = _fige
k=1

for f = (fi)ren € €7(N), is a linear functional on £”(N) of norm |¢| = |||
6.55. Consider the Banach space £!(N).
1. Prove that if g = (gx)ren € £>°(N), then the function ¢, : £!(N) — C defined by

o0
(pg(f) = kagkﬁ
k=1

for f = (f)ken € £'(N), is a linear functional on £!(N) of norm ||¢|| = ||g||.
2. Prove that the function © : {*°(N) — (¢! (N))”™ defined by O(g) = ¢, (as above)

is a linear isometric isomorphism of £°(N) and (¢! (N))™.

6.56. Recall that cy(N) is the subspace of £°°(N) given by

co(N) = {(fi)ken | klggofk = 0}.
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1. Prove that if g = (gx)xen € £!(N), then the function ¢, : co(N) — C defined by

P (f) = kagk,
k=1

for f = (fi)ren € co(N), is a linear functional on ¢y(N) of norm |¢|| = | gl
2. Prove that the function ® : £'(N) — (co(N))* defined by ©(g) = ¢, (as above)
is a linear isometric isomorphism of £'(N) and (co(N))*.

6.57. Prove that if g = (gi)ren € £°(N), then the function ¢, : £!(N) - C
defined by

(e}
(pg(f) = kagkw
k=1

for f = (fi)ren € £'(N), is a linear functional on £!(N) of norm |¢| = ||g|-
Furthermore, prove that the function ® : {*°(N) — (Zl (N))* defined by ©(g) = ¢,
(as above) is a linear isometric isomorphism of £°°(N) and (Z' (N))*.

6.58. Prove that if V and W are Banach spaces, then the Banach space B(V, W) is
nonzero.

6.59. Suppose that M is a proper subspace of a Banach space V and that v € V is
nonzero and v &€ M. Prove that there exists ¢ € V* such that p(v) = 1 and p(w) =0
for every w € M. (Suggestion: consider the linear submanifold L = {w + av|w €
M, o € C} and the linear map ¢, : L — C defined by ¢o(w + av) = «.)

6.60. Assume that V is a real vector space and that p : V — R is a sublinear
functional. Modify the proof of Theorem 6.18 to show that if L is a linear
submanifold of V and if ¢ : L — R is a linear transformation for which ¢(v) < p(v)
for every v € L, then there is a linear transformation @ : V — R such that @, = ¢
and —p(—v) < ®@(v) < p(v) forevery v € V.

6.61. Suppose that V is a Banach space.

1. (a) Prove that if V* is a separable, then V is separable.
2. (b) Show by example that there are separable Banach spaces V for which V* is
nonseparable.

6.62. Prove that £7(N) is a reflexive Banach space, for all p € R such that p > 1.
6.63. Prove that neither c(N) nor £' (N) is a reflexive Banach space.

6.64. Let V be a normed vector space and suppose that ¢1,...,¢, € V*. Let

L= ﬁker(pj.
j=1

Assume that ¢ € V* satisfies (&) = 0, for every & € L.
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¢1(v)
1. Let @ : V— C" be given by @(v) = : , v € V. Show that there is a linear

@n(v)
functional ¥ : C" — C such that p(v) = ¥ (®(v)), for every v € V.
n

2. Show that there are A1,...,A, € C such that ¢ = Z)Lj(pj.

J=1

6.65. Prove that the weak topology and the norm topology on a finite-dimensional
normed vector space coincide.

6.66. Suppose that H is an infinite-dimensional separable Hilbert space.

1. Prove that the closed unit ball of H is weakly compact.
2. Prove that the zero vector is in the weak closure of the unit sphere of H.

6.67. Prove that the vector space operations on V* are continuous in the weak™
topology, for every normed vector space V.

6.68. Prove that every linear functional on L*°(X, ¥, i) is a linear combination of
four positive linear functionals.

6.69. Prove that if Theorem 6.45 is true for finite measure spaces, then it is also
true for o-finite measure spaces.

6.70. Assume that X is a second countable compact Hausdorff space, and define a
linear map @ : M(X, ¥') — C(X)* by @(v) = ¢,, where

ou(f) = /X fdv,

for every f € C(X). Prove that @ is an isometric surjection.

6.71. Suppose that p is a finite regular Borel measure on R, and consider the
functions g, : R — C, for n € Z, defined by g,(t) = ™. Prove that if / gndi =0
R

for every n € Z, then u = 0.



Chapter 7
Convexity

The linear character of functional analysis underscores the entire subject. In addition
to geometric structures such as subspaces, it can be important to consider subsets C
of vector spaces V that are locally linear in the sense that C contains the line segment
in V between every pair of points of C. That is, if u,v € C, then so is fu+ (1 —t)v
for every ¢ € [0, 1]. Such sets are said to be convex and they are crucial structures in
functional analysis, useful for both the geometrical and topological information that
they reveal about a space V.

7.1 Convex Sets

Recall that a subset C of a vector space V is convex if tu+ (1—t)v € Cforallu,v € C
and every ¢t € [0, 1]. More generally, a convex combination of elements vy,...,v, in
a vector space V is a sum of the form

> ;. (7.1)

J=1
n
where each ¢; € [0, 1] and th =1
=1
Proposition 7.1. A subset C is convex if and only if C contains every convex
combination of its elements.

Proof. Exercise 7.27. O

The scalars that arise in (7.1) are real, and so convexity can be studied completely
within the realm of real vector spaces. However, functional analysis is mostly carried
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out over the complex field. Thus, in this chapter, we shall use real vector spaces
when it is helpful to do so and then make use of the fact that every complex vector
space is also a real vector space.

Of course any subspace of a vector space is a convex set. Some basic convex sets
of real and complex numbers are:

. any interval J of real numbers;
. the open unit disc D of complex numbers;
. the closed unit disc ID of complex numbers;

B LN =

For every subset S C V there is a smallest convex set C that contains S.

Definition 7.2. If S C V, then the set of all convex combinations of elements of S
is called the convex hull of § and is denoted by Conv S.

The following theorem is very useful in the convexity theory of finite-
dimensional space.

Theorem 7.3 (Caratheédory). IfV is an n-dimensional vector space over R and

if S C V is nonempty, then for each v € Conv S there are vy,...,v,, € S such that v
is a convex combination of vy,...,V, and m <n—+ 1.
Proof. Letv € ConvS. Thus, v is a convex combination of vy,...,v,, € S, say

m
v = E 1vj,
Jj=1

where each #; 0. If m < (n+ 1), then the desired conclusion is reached. Therefore,
suppose thatm > (n+1). Let V=RxV and let ¥ v = (L) € V,for1 <j<m.
Since m > n+ 1 = dimV, the vectors ¥,...,7, € W are linearly dependent. Thus,
there are «y,...,®,, € R, not all zero, such that Zjajf)j = 0; hence, Zjocj =0inR
and } ;ov; =0inV.
Let i be such that

q;j
fj

o;

| ViFEL

oty
and set 5; = t; — —* for every j. Then
o

s;€[0,1], 5; =0, Zs] Zz,_l andv—Zs]vJ

j=1

m
But the number of nonzero summands in E s;v; is less than m since s; = 0. Hence,

Jj=1
if v can be expressed as a convex combination of m > n + 1 elements of S, then v
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can be expressed as a convex combination of m — 1 of these same elements. This
shows, by iteration of the argument, that the number of summands can be reduced
ton+1. O

The upper bound of n + 1 in Caratheddory’s Theorem is sharp, as one sees by
considering a triangle C in R? with vertex set S.

Corollary 7.4. If V is an n-dimensional vector space over C and if S C V is
nonempty, then for each v € Conv S there are uy,...,u,, € S such that v is a convex
combination of uy,...,u, and m <2n+ 1.

7.2 Separation Theorems

This section establishes a cornerstone result called the Hahn-Banach Separation
Theorem that provides analytic information from the knowledge that two convex
sets are disjoint. This theorem is applied to subsets of Banach spaces in a variety
of topologies (norm, weak, weak™®, etc.), and so the development below will not
immediately make use of Banach spaces and linear functionals, but rather topologi-
cal vector spaces V and linear transformations ¢ : V — C that are continuous in the
topology of V.

Recall that a vector space V is a fopological vector space if V is a topological
space for which addition and scalar multiplication are continuous functions VxV —
Vand Cx V — V, respectively.

Proposition 7.5. If'V is a topological vector space, then

1. W is an open subset of V if and only if there exists wy € W and open
neighbourhood U of 0 such that W = {wy} + U, and

2. for each open neighbourhood U of 0 € V and v € V there exists a € > 0 such that
Av e U forall A € Cwith |A| <e.

Proof. For (1), select wy € W and let U = {wy —w|w € W}. Because scalar
multiplication and vector addition are continuous, U is an open set and W =
{wo} + U. For (2), because scalar multiplication m : C x V — V is continuous, the
map m, : C — V defined by m,(a) = m(x,v) = av is continuous for each fixed
v € V. Thus if U C V is an open neighbourhood of 0 € V, then m ! (U) is an open
neighbourhood of 0 € C. Hence, there exists a € > 0 such that {1 € C||A| <&} C
m; (V). O

The next analytical tool is a sublinear functional (Definition 6.19) known as the
Minkowski functional.

Proposition 7.6. If C is an open convex subset of a topological vector space V such
that 0 € C, then the map p : V — R defined by

p(v) =inf{r>0[r v e}, (7.2)

forv €V, is a sublinear functional and C = {v € V|p(v) < 1}.
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Proof. The sublinearity of p is evident. Suppose that v € V satisfies p(v) < 1. Then
there exists t € (0, 1) and u € C such that }v =u. Thatis,v=tu=tu+(1—-1)0¢€
C. Conversely, if v € C, then there is an open set W such that v € W C C. By
Proposition 7.5, W may be taken to be W = {v} + U for some open neighbourhood
U of 0 for which 0 € U C C. Proposition 7.5 shows that there is a ¢ > 0 such that
gv € U. Thus, (1 +&)v =v+ev € W C Cimplies that p(v) < (1+¢e)" ' <1. O

Theorem 7.7 (Hahn-Banach Separation Theorem). Assume that C, and C, are
nonempty, disjoint convex subsets of a topological vector space V such that C, is
open. Then there are a linear transformation ¢ : V. — C and a y € R such that ¢ is
continuous and

?R(p(l)l) <y =< ?ﬁ(p(vz) , Yvie(Cy, veC,. (7.3)

Proof. Let C = U {vi—v2|v; € C3}, and note that C is open and convex. Further,
v1€Cy
0 C,as CiNCy, = 0. Select vy € C and let Cy = {vo—v|v € C}. Thus, Cy is open,
convex, and 0 € Cy. Let p be the Minkowski functional (7.2) associated with C.
Because 0 ¢ C implies vy & Cy, Proposition 7.6 yields p(vg) > 1.
Now let L = Spang{ve} and define wo : L — R by po(Ave) = Ap(vo), for all
A € R. The function u is linear over R and satisfies wo(Avg) = p(Avg) if A > 0. If
A <0, then po(Avg) = Ap(vg) <0 < p(Ag). Thus, po(w) < p(w) for every w € L. By
the version of the Hahn-Banach Extension Theorem in Exercise 6.60, 1o extends to
a linear transformation p : V — R such that —p(—v) < u(v) < p(v) forevery v € V.
Because Cj is open and contains 0, for each v € V there exists § > 0 such that
dv € Cy; thus,

—1>—p(=6v) =8(—p(-v)) = u(v) = n(dv) =< p(dv) < 1.

Therefore, |p(u)| < 1 for every u € U = Cy N (—Cy), an open neighbourhood of
0. Hence, for every ¢ > 0 such that ¢ < 1, W, = (—¢,¢) is a neighbourhood of
©#(0) =0 in R and the set U, = ¢U C U is a neighbourhood of 0 € V such that
w(U;) € W,. Thus, u is continuous at 0 € V. By Proposition 7.5, i is therefore
continuous at every v € V, which implies that i : V — R is a continuous linear
transformation. Because scalar multiplication and vector addition are continuous,
the linear transformation ¢ : V — C defined by ¢(v) = u(v) —iu(iv), forv € V, is
continuous and u = Ng.

Let N =kerpu = ="' ({0}), which is closed by the continuity of u. If v € C, then
vo—v € Cy and so

1 <p(vo—v) = u(vo—v) = u(vo) — (v) = p(vo) — u(v);

that is, u(v) > p(vo) —1 > 0, which implies u(v) # 0. Thus, keru N C = 2.
Therefore, because C is convex and w is continuous, p(C) is a connected subset
of R. But keru N C = @ implies that w(C) C (—00,0) or u(C) C (0,00). Without
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loss of generality, assume that pu(C) C (—00,0). Hence, u(vy) < u(v,), for all
v € Cy, vy € C,. Therefore, there is a y € R such that

sup u(vy) <y = inf u(vy).
1 €EC

v €Cy

Because C) is an open convex set and because j is a continuous linear transforma-
tion, the interval ©(Cy) is open in R. Hence, y & 1 (C;) and so the inequalities (7.3)
hold. |

In the case of Banach spaces, the following “Hahn-Banach Separation Theorem”
is of particular importance.

Corollary 7.8. If C; and C, are convex sets in a Banach space V such that C; N
C, =0, Cy is compact, and C, is closed, then there exist ¢ € V* and yy,y> € R such
that

S)i(p(vl) <Y1 <MWm< S)Tgo(v2), Vl)l eCi,1pe(C,. (74)

Proof. Assume that C;,C, C V are disjoint convex sets and that C; is compact and
C;, is closed. By Proposition 5.14, there exists € > 0 such that (C; +B.(0)) N C, = .
Note that C; 4+ B.(0) is convex and open. Thus, by Theorem 7.7, there exist ¢ € V*
and y € R such that

Ro(v) <y <NRe(v2), VYveC+B(0), v,eC.

However, as C; is compact, f¢(C) is compact and R¢ (C; + B:(0)) has compact
closure, disjoint from C,. Therefore, there are y;, > € R such that

Ro(v) <y1 <y2 <NRe(va),
for all v; € C; and v, € C,. a

A somewhat surprising consequence of Hahn-Banach Separation Theorem is the
following result about topology, which demonstrates the essential role convexity
theory plays in understanding Banach spaces.

Proposition 7.9. Let C be a nonempty convex subset of a Banach space V. If C and
EWk denote the closures of C in the norm and weak topologies of V, then C = EWk.

Proof. Because C is convex and closed, if vy ¢ C, then by the Hahn-Banach
Separation Theorem (Corollary 7.8) there exist ¢ € V* and y € R such that, for
allv e C, u(v) <y < u(vg), where u = Re. Therefore, there exists & > 0 such that
| (v) — 1 (vo)| > & for all v € C. In particular, for v € C,

lp(v) = @o)* = (1 (V) = 1 (v0)) + (1 (ivo) — w(i))* = (1(V) = p(v0))* = €7,

Hence, vy & 6Wk. This proves that E‘Wk cC.
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. — _ —=wk
Conversely, for any set C, it is always the case that C C c. O

To make additional concrete applications of the Hahn-Banach Separation Theo-
rem, one needs to have a sufficient amount of information concerning continuous
linear maps V — C on topological vector spaces V. The following proposition is
one such example.

Proposition 7.10. [f V* is the dual of a normed vector space V, then

1. V* is a Hausdor{f topological vector space in the weak™-topology, and
2. a linear transformation & : V* — C is continuous with respect to the weak*-
topology if and only if there exists v € V such that ®(¢) = ¢(v) for every ¢ € V*.

Proof. The proof of the first statement is left as an exercise (Exercise 7.30).

Linear maps of the form ¢ +— ¢(v), for fixed v € V, are continuous by the
definition of weak*-topology. Suppose, conversely, that @ : V* — C is an arbitrary
linear transformation and is continuous with respect to the weak*-topology. Thus, if
D C C is the open unit disc in C, then there is a basic weak*-open set U C V* such
that 0 e U € @~ 1(D). By definition, such a set U has the form

U= \veV* vl <e}.

J=1

for some vy,...,v, € Vand ¢ > 0. Therefore, |@(y)| < 1 for all ¥ € U. In particular,
if ¢ € V* is arbitrary and is nonzero on at least one v;, then

S ——
2max¢ |¢(ve)|

1

and so |@(¢)| < &' maxg |¢(ve)|. Hence

[2(p)| < M, (7.5)

for every ¢ € V*.
Consider the linear transformation T : V* — C" defined by

p(vr)
T(p) =
@(v,)

On the range of 7, define a function Ay :ranT — C by Ay(T¢) = @(¢). This
function Ay is well defined because, if ¢, ¢, € V* satisfy Tg; = T, then (¢ —
@2)(vj) = 0 for each j = 1,...,n, and so inequality (7.5) gives @(¢; —¢>) = 0.
Because Ay is also linear, A( extends to a linear functional A on C". Hence, A is
given by an n x 1 matrix A = [o] @3 -+ «,] and, for every ¢ € V*,
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B(p) = (To.y) = Y o) = | Y ;| = o),
j=1 j—1

where v = Zajvj. O
j=1
With Proposition 7.10 in hand, the following Hahn-Banach Separation Theorem
holds for dual spaces.

Proposition 7.11. Assume that V* is the dual of a normed vector space V. If
K C V* is weak™-compact and convex, and if ¢o & K, then there exist y € R and
vo € V such that

NReo(vo) <y = Ne(vo)
forevery ¢ € K.

Proof. The dual space V* is a Hausdorff topological vector space in the weak*-
topology. By the Hausdorff property, for each ¢ € K there are weak™*-open sets U,
and W,, such that ¢y € Uy, ¢ € W, and U, N W,, = @. Because K is compact, there
are finitely members W,, ..., W, of the open cover {W, } ek that cover K. Hence, if

U= ﬁU%. and W = OW%.,
j=1 J=1

then U and V are disjoint open sets with ¢g € U and K C V. The proof of
Theorem 7.7 shows that there is a convex open set Uy that contains the origin
and Proposition 7.5 shows that there is a ¢ > 0 such that C; = {gpo} + eUy C U.
Hence, C; is an open convex set disjoint from K. By Theorem 7.7 there exist a
weak*-continuous linear transformation @ : V* — C and y € R such that i@ (¢p) <
y < RP(p) for all ¢ € K. However, by Proposition 7.10, the map @ is given by
evaluation at some point vy € V. Hence, Ngy(vy) < y < Re(vy) for every ¢ € K.

O

7.3 Extreme Points

Triangles and squares are determined by their vertices, a disc by its boundary circle,
and a Euclidean ball in R? by its boundary surface (sphere). The general concept in
convexity theory that captures these phenomena is that of an extreme point.

Definition 7.12. An element v in a convex subset C C V is an extreme point of C
if the equation

v = Zt_,-vj, where each v; € C, th =1, and each #; € (0, 1), (7.6)
j=1 j=1
holds only for v; = --- = v, = v. The set of all extreme points of C is denoted by

extC.
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Thus, if C is convex, then v € C is an extreme point if v is not a proper convex
combination of elements other than itself. Geometrically this means:

Proposition 7.13. Let C be a convex set and v € C. The following statements are
equivalent:

1. v is an extreme point of C;
2. v is not interior to any line segment contained in C (i.e., if there are vi,v; € C
and t € (0,1) such that v = tvy + (1 —t)v,, then vy = v, = V).

Proof. Exercise 7.32. O

Proposition 7.13 implies that the extreme points of a convex set C must lie on
the topological boundary of C. If not all points of the boundary are extreme points,
then the boundary contains line segments. On the other hand, if every point on the
boundary is an extreme point, then we may think of the convex set as having a
curved or rounded boundary.

Example 7.14. The extreme points of the closed unit disc in the complex plane are
precisely the points on the unit circle.

Proof. To verify this assertion, note that if ¢ € extD, then necessarily |¢| has
modulus 1 by Proposition 7.13. Conversely, suppose that ¢ € I is such that |¢| = 1.
Thus, there exists 6 € R such that { = cosf +isinf. Assume that { =tA + (1 —1)u,
for some 7 € (0,1) and A, i € . The triangle inequality yields |A| = || = 1 and so
A =cosa +isina and u = cos § + isin B for some «, § € R. Hence,

1 =cos?6 +sin?6 = 1+ 22 — 2t + 2¢(1 — 1) (cos(a — B)) ,

which implies that cos(a — ) = —1; that, is « = 8 4+ (2k + 1)7 for some k € Z.
Thus, A = u =¢. O

Example 7.15. The set of extreme points of the closed unit ball of a Hilbert space
H is the set of unit vectors of H.

Proof. Let H; denote the closed unit ball of H. Choose any unit vector § € H and
assume that £ = r&; 4 (1 — )&, for some &;,&, € Hy and ¢ € (0, 1). Thus,

1= (§.8) =1(51.§) + (1 -1)(£.§)

expresses the number 1 as a proper convex combination of the complex numbers
(£1,€) and (£,€) in the closed unit disc D C C (as [(§,&)] < &[]l < 1).
Example 7.14 shows that 1 is an extreme point of I, and therefore 1 = (&,,&) for
eachj= 1,2, which give cases of equality in the Cauchy-Schwarz Inequality. Hence,
& =AiEforsome A; € C;but 1 = (§,,&) = A;(£,§) = A, yields §; =& = £, and so
& cextH,. O

Convex sets that are not topologically closed may fail to have extreme points.
For example, the open unit ball in a Hilbert space does not have any extreme points.
But even closedness of a convex set is an insufficient condition for extreme points
to exist.
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Example 7.16. The closed unit ball of L' ([0, 1],991,m) has no extreme points.

Proof. Extreme points of the closed unit ball in any Banach space, if they exist,
necessarily lie on the unit sphere. Thus, suppose that f € .Z!([0,1],99t,m) is such

that ||f]| = 1 and select a Borel subset E C [0, 1] such that / |f|dm = 1/2. Define

h,ge ([0, l]imm)byh 2f xe and g = 2f ype. Then /, g € L' ([0, 1], 9%, m) are
unit vectors and f = 3 L (h+ ). Because g # f, f is not an extreme point of the closed
unit ball of L' ([0, 1], 9, m). O

The main value in knowing the extreme points in a convex set (if they exist) is
that they can be used to recover the convex set itself by way of the convex hull. For
example, in the closed unit ball of a Hilbert space, every point is either an extreme
point or an average of two extreme points. Indeed, the zero vector is evidently an
average of £ and —£, for any unit vector £ € H. Suppose that n € H is of norm
Inll <1.Let & = —||n|~'n and & = ||n||~'n, so that & and &, are extreme points
of Hy. With t = %(1 — |Inl) we obtain n = t&; + (1 —¢)&,, and so the closed unit ball
of H is the convex hull of the unit sphere—that is, H; = Conv (extH).

In contrast to Example 7.16, a compact convex set will possess extreme points
and, moreover, knowledge of the extreme points of a compact convex set K is
sufficient to recover the entire set K.

Theorem 7.17 (Krein-Milman). [If K is a nonempty compact convex subset of a
Banach space space V, then

1. the set extK of extreme points of K is nonempty, and
2. K is the closure of the convex hull of the set extK,

Proof. Consider a convex subset F' C K with the property that if v € F and tv; +
(1—1)v, € F, for some ¢t € (0,1) and vy,v; € K, then vy,v, € F. (Such sets F are
called faces.) Assume further that F is compact and define

= {G C F|G is a nonempty compact face of F}.

Use reverse inclusion to partially order Sg: G| < G; if and only if G, C Gy. Let £
be a linearly ordered subset of Gr. Hence, if Gy,...,G, € £, then there is a j, such
that G; <X Gj, for all 1 <i < n. Hence, @ # Gj, € G| N---NG,. Therefore, the family
£ of compact sets has the finite intersection property, and so Fy # @, where

Fo=()G.
Gegl

As Fy is a nonempty compact face of F, Fy is an upperbound in G for £. Zorn’s
Lemma implies that G has a maximal element, say E.

Let o € V¥, y = max{Ngp(v)|v € E},and E, = {v € E|p(v) = y}. If r € (0, 1)
and vy, v; € E are such that rv; + (1 —t)v, € E,, then

y =the() + (1=DRe(v) <ty + (1 =)y =,



258 7 Convexity

which implies that v(, v, € E,. Hence, E, is a face of E and, as well, a face of F.
Furthermore, E, is closed, and so it is compact (since it is a closed subset of a
compact set). Thus, E, € & and E < E,. By the maximality of £ in &, E = E,.
We conclude, therefore, that for every ¢ € V* and all vy, v, € E, Rp(vy) = Re(vy).
The formula

@(v) = Ro(v) —iNRe(iv)

yields ¢(v; —vy) = 0 for every ¢ € V*, which proves that v; = v,. Hence, E is a
singleton set {vy}. But {vo} is a face of K if and only if v is an extreme point of K,
and so the set extK of extreme points of K is nonempty.

Next let C = Conv (extK) and consider the compact convex subset C of K. If C #
K, then let wy € K \6. By the Hahn-Banach Separation Theorem (Theorem 7.7),
there are ¢ € V* and y1,y, € R such that

Re(v) < y1 <2 <NRe(vg), YveC.
If § = max{NRp(w)|w € K}, then y, < Ne(wy) < 4. The set
K, ={w e K|Npw) =6}

is a compact face of K. Therefore, by the proof of the first statement, there is an
extreme point v of K in K,,. Thus, Re(vo) = § and Ne(vo) < & (since vy € extK C
(), which is a contradiction. Hence, it must be that C = K.

By changing the topology on a Banach space, one may produce different versions
of the Krein-Milman Theorem. One of the most useful versions occurs with the dual
space in its weak*-topology.

Theorem 7.18 (Krein-Milman Theorem: Weak*-Topology Version). If K is a
nonempty weak*-compact convex subset of the dual space V* of a normed vector
space V, then

1. the set extK of extreme points of K is nonempty, and
2. K is the weak™-closure of the convex hull of the set extK,

Proof. The proof proceeds as in the proof of Theorem 7.17 to produce, using Zorn’s
Lemma, a minimal face E of K.

Fix v € V and define y = max{f¢(v)|¢ € E} and let C, = {¢p € E|Rp(v) = y}.
The set C, is a weak™*-closed convex subset of K; thus, C, is weak™-compact. As in
the proof of Theorem 7.17, C, is a face of K such that C, C E. Therefore, C, = E
and, hence, E is a singleton set, whence K has an extreme point.

As in the proof of Theorem 7.17, the Hahn-Banach Separation Theorem is
required for the second statement. In the case of the weak™*-topology, it is the version
of the Hahn-Banach Separation Theorem given in Proposition 7.11 that yields the
result.
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One consequence of Theorem 7.18 is that it tells us something about the
geometry of the closed unit ball of dual spaces. Thus, Banach spaces that fail to
have this property are not the duals of other Banach spaces.

Example 7.19. L'([0,1],9,m) is not isometrically isomorphic to the dual space
V* of any normed vector space V.

Proof. Theorem 7.18 says that the closed unit ball of V* has an extreme point.
However, Example 7.16 shows that the closed unit ball of L' ([0, 1],90%,/) has no
extreme points. o

7.4 Extremal Regular Probability Measures

The purpose of this section is to give an interesting example in which the extreme
points of a compact convex set may be determined completely.

Assume that (X, Y') is a measurable space in which X is a compact Hausdorff
space and ¥ is the o-algebra of Borel sets of X. Consider the set

PX.X)={pneMX.2)|n(E) =0, VE€ X, n(X) = 1,

which is a subset of the closed unit sphere of the Banach space M(X,X) of
regular complex measures on (X,X). Because M(X,Y) is the dual space of
C(X), M(X, X) carries a weak™*-topology. Furthermore, because P(X, X') is weak*-
compact (Exercise 7.36), the Krein-Milman Theorem implies that P(X, ¥') is the
weak*-closure of the closed convex hull of the extreme points of P(X, X').

Recall that if K C X is a closed subset, then the o-algebra Y of Borel sets of K
isgivenby Xy ={KNE|E € X}.

Definition 7.20. The support of a regular measure  on a measurable space (X, X),
where X is a compact Hausdorff space and X' is the o-algebra of Borel sets of X, is
the smallest closed subset K C X for which u(X \ K) = 0.

Lemma 7.21. Assume K,, C X is the support of u € P(X, X). Then (i is an extreme
point of P(X, X) if and only if the restriction K| =g, of uto Xk, is an extreme point
OfP(Kva EKM)'

Proof. Assume that u is an extreme point of P(X, X). Let po, 1, 2 € P(Ky, Xg,)

1 - -

and such that Mg, =Mo= E(M + ). Define fi;: ¥ — Rby fi;(E) = wi(ENK,)
forall E € X, to obtain ji; € P(X, X'). Because K, is the support of jt, u(E) = w(EN
K,) forall E € X3 thus, u = 1 (i1 + fi2), and s0 pu = fi; = jL2, and SO jtg = i1 = Lo.

Conversely, assume that o = ft|;, is an extreme point of P(Ky,, X', ). Let p =

n

%(ul + o) for py, uy € P(X, X). If E € X satisfies w(E) = 0, then 0 = u(E) >
% w; > 0 implies that p; = 0. Thus, u; < w. If we show that the support of each p;
is contained in the support of w, then we conclude that y; = u, = u.
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Thus, it remains to prove that if w,u € P(X,X) is such that w < u, then
K, CK,. To this end, let U = (X \ K,,) N (X \ K,,), which is open, and let K =
(X\ U) N K, which is closed. Thus,

wX\K) =0 (UUKX\K,)) = o(U) +oX\Ky) = o).

Now since U C X\ K, we have u(U) < n(X\ K,) = 0. Thus, w <« u implies that
w(U) =0 and so w(X \ K) = 0. Hence, K C K,, and w(X \ K) = 0 which implies
that K = K, by definition of support and by the above arguments. Hence, K, = K =
X\U)NK, = (K, UK,) N K, implies that K, C K,. O

The following theorem is a cornerstone of probability theory.
Theorem 7.22. The following statements are equivalent for u € P(X, X):

1. W is an extreme point of P(X, X);
2. = 84y for some xo € X.

Proof. Assume that p is an extreme point of P(X, X). By Lemma 7.21, we may
replace X with the support of w, and so we assume without loss of generality
that X = K,,. Suppose, contrary to what we aim to prove, that the support X of
| contains at least two points, x and y. Because X is a normal topological space
(Proposition 2.34), there are open subsets Uy and V, containing x and y, respectively,
and such that U, N U, = @. Because X is the support of u, both U, and V, have
positive measure. Therefore, if f = yy, and g = yy,, then f and g are linearly
independent elements of L'(X, X, ;). Moreover, f is clearly linearly independent
of i, where 1 = yx. Hence, by Exercise 6.59, there is a linear functional ¢ on
L'(X, X, i) such that ¢(f) = 1 and (i) = 0.

Theorem 6.45 asserts that linear functionals on L'(X, X, t) are determined by
elements of L (X, X, 1). Hence, there exists ¢ € £ (X, ¥, ) such that ||¢|| = 1
in L®°(X, X, ) and [, pdp = 0. Define ji : ¥ — R by A(E) = [pdu. Let u; =
W+ it and o, = u— fi. Note that

m(E)=/Ed<u+m=/Edu+/E¢du=/E<1+¢>du.

Since 1 + ¢ is nonnegative for almost all x € X, this final integral above is
nonnegative. Likewise i, (E) is nonnegative. Further,

J(X) =/Xd(u+ﬁ) =M(X)+/X¢dM=M(X)+0= 1.

Hence, @i,z € P(X,X) and u = %m + %Mz- Because 1 # i (as ¢ # 0), the
measure [ is not an extreme point of P(X,Y). This contradiction implies that X
must be a singleton set, which is to say that u is a point-mass measure.

The proof that point-mass measures 8, are extremal is left as an exercise
(Exercise 7.36). O
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7.5 Integral Representations of Compact Convex Sets

The Krein-Milman Theorem asserts that every element xy of a compact convex set

K in a Banach space V is a limit point of the set of all convex combinations of the

extreme points of K. However, suppose that xj is already a convex combination
m

of extreme points of K, say xy = erxj, where xi,...,x, € extK and where
j=1
T1,..., T € [0, 1] satisfy ZJ. 7; = 1. Then, for every linear functional ¢ : V — C,

P(x0) =Y _79(x)).

j=1

That is,

@(xo) = /K pdpu, (7.7)

for every ¢ € V*, where u is the probability measure pu = Z 78(,;; on the Borel
=1
sets of K. Observe that not only is i a measure on the Boreljsets of K, but that it is
in fact supported on the Borel set E = {x{,...,x,,} (in the sense that u (K \ E) = 0.
If it were possible, for each xy € K, that the integral equation (7.7) held for some
regular Borel probability measure p supported on the extreme points of K, then
this would represent a sharpening of the Krein-Milman Theorem. The goal of this
section is to prove such a result (Theorem 7.25), due to Choquet, in the case where
the topology of K is metrisable.

Definition 7.23. If C is a convex set, then a function & : C — C is an affine
function if

hQAx+ (1 =1)y) = Ah(x) + (1= L)A(),
for every x,y € C and A € [0, 1].

In cases where the convex set C is a subset of a vector space V, one of the most
immediate ways to produce an affine function 4 on C is to take any linear map
¢ :V— Con V and then consider & = ¢|c.

Recall that f : C — R is convex if f(Ax + (1 —A4)y) < Af(x) + (1 —A)f(y) for all
x,y € Cand A € [0,1], and that f : C — R is concave if the function —f is convex.
Thus, every affine function £ on a convex set C is both convex and concave.

Lemma 7.24. Iff: K — R is a function on a compact, convex topological space K
such that f is bounded above by q € R, then the function f defined by

f(x) = inf{h(x)|h € AfK, f <h}, x € X,

is concave, upper-semicontinuous, and bounded above by q. Furthermore, if f itself
is concave and upper-semicontinuous, then f = f.
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Proof. By hypothesis, there is a real number g € R with f(x) < g for every x € K.
Therefore, if % = {h € AffK|f < h}, then the constant function r € .% and, hence,
f(x) < rfor all x € K, thereby establishing that f is bounded above by r.

To prove that f is concave, select x,y € K and A € [0, 1]. Thus,

FOx+(1=2)y) = inflh(Ax+ (1= A)y) |h € F}
= inf{Ah(x) + (1 — VD)h() |h € F)
> Ainf{h(x)|h € F} + (1 —A)inf{h(y) | h € F}

= M)+ (1=1f ().

Thus, f is a concave function.

Now select & € R and consider ((—o0,)). If x e ((—o00,a)), then F(x) <
« implies that there exists & € .% such that f(x) < h(x) < o, which implies that
x € h™' ((—oo,)). If, on the other hand, x € 1~ ((—oc,«)) for some h € .%, then

xef ' ((—o0,)). Hence,

7 (o) = | h 7 (~o0.0)).

heF

which is an open set since each /& € .# is continuous.

Now assume that f : K — R is upper-semicontinuous and concave. Because f is
upper-semicontinuous, the graph G(f) = {(x,f(x)) € VxR |x € K} of f is a closed
set. Further, the concavity of f implies that G(f) is convex.

Suppose, contrary to what we aim to prove, that f # f. Thus, f(x;) < f(x;) for
at least one x; € K, which implies that (x;,f(x;)) is separated from the closed
convex set G(f). Therefore, by the Separation Theorem (Theorem 7.7), there is a
(real) linear functional ¢ : VxR — R and a § € R such that ¢ ((x,f(x))) < § <
0] ((x1 ,f(xl))) for every x € K. In particular, using that V x R is a vector space,

0 < @[(x1.f(x1)) — (1. f ()] = @ ((0.f(x1) —f(x1)))

= (F(x1) —F(x1)) ((0, 1)),

and therefore ¢((0,1)) > 0.

For each x € K, let £, : R — R denote the function given by £,(s) = ¢((x,s)). If
s < s, then £,(s") — £:(s) = @((0,5" —s)) = (s —5)@((0, 1)), and so £, is a strictly
increasing function with limy_, oo €(s) = oco. Thus, because £,(f(x)) < §, there is
a unique r € R for which £,(r) = §. Therefore, let & : K — R denote the function
h(x) = r, where r € R is the unique real number such that ¢((x,r)) = §. Note that
the continuity of ¢ implies that 4 is continuous. Further, if x,y € K and A € [0, 1],
and if r = h(x) and s = h(y), then
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§=2A¢ () + 1=V ((,5)
= ¢ ((Ax,Ar) + (1 =)y, (1= 2)s))
= ((Ax+ 1=y, Ar+(1—21)s)).

Hence, h(Ax + (1 — A)y) = Ah(x) + (1 — A)Ah(y), which shows that & is an affine
function on K, and so h € AffK. Because, for every x € K, £, is strictly increasing
and £,(f(x)) = ¢((x,f(x)) < 8, we have that f(x) < h(x) for all x € K. Hence,
f(x) < h(x) for each x € K. However, ¢((x;,h(x;)) = & and ¢((x;,f(x])) > §—that
is, £, (h1(x1)) < £y, (f (x1))—implies that i (x;) < f(x;), by the strict monotonicity
of £,,. But this contradictsf < h. Therefore, this contradiction demonstrates that it
must be that f = f. O

Theorem 7.25 (Choquet). Assume that K is a convex subset of a real topological
vector space V. If K is compact, Hausdorff, and second countable, then the set extK
of extreme points of K is a Gs-set and for every xy € K there exists a regular Borel
probability measure [ supported on extK such that

@(xo) = / pdu
extK

for every ¢ € V*.

Proof. The topological conditions on K imply, by Theorem 2.48, that there is a
metric d on K that induces the topology of K. For each n € N, consider the subset

1 1
K,=lxeK|x= E(y—lrz), yv.z€K, d(y.z) > -

Each K, is a closed subset of K and x ¢ extK if and only if there is some n € N for
which x € K,,. Hence,

extK = ﬂKf,

neN

That is, extK is a Gs set; in particular, extK is Borel measurable.

The topological conditions on K also imply that C(K) is a separable Banach
space (Theorem 5.57); thus, AffK is also separable and, therefore, there is a
countable subset {&,},en C AffK such that {h,},en is dense in the unit ball of

o0

AffK. Because | h,|| <1 for all n, the series 22_"(}1,1)2 converges uniformly to
n=1

some f € C(K). As the function ¥ () = ¢*> has strictly positive second derivative

on R, the function y is strictly convex (Proposition 4.46); therefore, because 4, is

affine, the function v o h, = (h,)? is strictly convex. Thus, f is a convex function.
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In fact, f itself is strictly convex. Indeed, if x,y € K are distinct, then there is an
n € N such that £, (x) # h,(y) (because AffK separates the points of K). Hence, for
allA € (0,1),

¥ o hy(Ax+ (1=A)y) < Ay(0)? + (1 = D ha (),

which implies that f(Ax 4+ (1 —1)y) < Af (x) + (1 = A)f (y).

Fix xp € K and define p : Cr(K) — R by p(g) = g(xp), where g is the upper
envelope of g. Observe that p(g; + g2) < p(g1) + p(g2) and p(rg) = rp(g), for all
g1,82,8 € Cr(K) and all r € [0, 00). Hence p is a sublinear functional on Cg(K).

Assume that & € AffK. Because & is affine, continuous, and bounded,
Lemma 7.24 asserts that & = h. And if r > 0, then rf = rf and, therefore,
h+rf = h+ rf. On the other hand, if » < 0, then & + - rf is concave and so
h+r1f = h+ rf, again by Lemma 7.24. But since f < f and r < 0, we have
that h4+rf = h+rf > h+rf. Hence, if L = {h+ rf|h € AffK, r € R}, then
L is a linear submanifold in Cgr(K) and the function w : L — R defined by
w(h+ rf) = h(xo) + rf(xo) is linear and satisfies w(h + rf) < p(h + rf) for every
h+rf € L. Therefore, by the Hahn—Banach Extension Theorem, there is a linear map
£2 : Cr(K) — R such that £2; = w and £2(g) < p(g) = g(xo) for every g € Cr(K).

Suppose that g € Cr(K) is such that g > 0 and let ¢ = —g. Then ¢ < 0 implies
that ¢ < 0 and so £2(q) < q(xo) < 0. That is, £2(g) > 0, and so §2 is continuous,
by Proposition 6.49. The Riesz Representation Theorem (Theorem 6.51) yields
a regular Borel measure j such that £2(g) = [, gdu for every g € Cr(K). The
constant function x — 1 is affine and so £2(1) = 1 = u(K), which shows that y is a
probability measure.

Integration preserves order; thus, if & € AffK satisfies f < h, then]_‘ < h and

Foo) = w(f) = /K Fdp < /K Fdp < /K hd = (i) = i(x) = h(x).
Hence

/ Fdp <inflh(xo) | h € AFEK. £ < h} = F(xo).
K

which proves that [, fdu = [,.fdu.

Let E = {x € K|f(x) = f(x)}. Because f <f and [, fdu = [,.fdu, we have that
fEt.(]_‘—f) du = 0. Hence, as f —f is strictly positive on E¢, u(E°) = 0. Therefore, 1
is supported on E.

If x € K\ extK, then there are distinct y,z € K such that x = %(y + 7). Because f
is strictly convex,

109 <560 +70) = 5 (0 +70) <F (50+9) =Fw.

where the final inequality above holds because f is concave. Hence, E C ext K, which
proves that u is supported on the Borel set extK.



7.6 The Range of Non-Atomic Measures 265

Lastly, if ¢ € V*, then ¢|g is a continuous affine function K — R, and so

o (x0) = FE () = 0(gix) = /e e

which completes the proof. O

7.6 The Range of Non-Atomic Measures

If one considers the counting measure j on a finite set X, then the range R, =
{W(E)|E € X} of p is also a finite set. On the other hand, if m is Lebesgue measure
on [a, b], then the range of m is a continuum, namely the closed interval [0,b —al].
From the point of view of convexity, R,, is convex, while R, is not convex (assuming
X has at least two elements). The explanation for the convexity of R,, goes beyond
the particulars of Lebesgue measure—rather, it is the property of Lebesgue measure
being non-atomic that is at play here.

Recall from Definition 3.55 that a measure @ on a measurable space (X, Y) is
non-atomic if there are no atoms for u; that is, there are no sets E € X with the
property that u(E) > 0 and one of u(ENF) or w(ENF€)is 0 for every F € X.

Theorem 7.26 (Lyapunov). If u is a finite non-atomic measure on a measurable
space (X, X)), then the range of | is the closed interval [0, (X))

Proof. The Banach space L® (X, X, i) is the dual of L' (X, ¥, 1) (Theorem 6.45),
and so L*° (X, X', ) carries a weak™-topology. If

I ={y € L®°X, X, ) |ess-ranyy C[0,1]} and [ = {y € L°(X, 2, ) | € F},

then I is a convex subset of the closed unit ball of L*°(X, X, u), which is
compact with respect to the weak*-topology (Theorem 6.33). Therefore, the weak™-
compactness of I will follow from showing that I is weak*-closed. To this end,
suppose that ¥ € .Z*°(X, X, 1) is such that Y ¢ I. Thus, there is a A € ess-rany/
such that A ¢ [0,1]. Select an open set V C C that contains A but does not
intersect [0, 1]; by definition of essential range, the measurable set E = v~ (V) has
positive measure. The function g = ﬁ xe € LY(X, X, 1) induces a weak*-open

neighbourhood U C L*°(X, X, i) of w given by

1
U= ¢€L°°(X,2,/L)|/<pgdu=—/wdueV}~
X w(X) Jg

Note that ess-rang Z [0, 1] for every ¢ € U; on the other hand, if ¢ € .#, then
Jz0dp € [0,1(X)] and so ¥ & U. Hence, U NI = @, which proves that I° is a
weak™-open set.
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Next, consider the map & : I — R defined by & (/) = [x ¥ dp. Observe that &
is an affine function and that it is continuous with respect to the weak*-topology
on I. Hence, the range K of & is a compact convex subset of R. Indeed, because
[x¥du €[0,u(X)] for all ¥ € .7, and because 0 and (X) are plainly elements of
the set K, we deduce from the convexity of K that K = & (1) = [0, w(X)].

Select a € K and consider the set I, = {y € I|& (/) = a}. Because I, = I N
&7 ({a}) is the intersection of two weak*-closed sets, the set I, is a weak*-closed
subset of the closed unit ball of L>°(X, X, u); hence, I, is weak*-compact. The set
1, is also convex. Therefore, by the Krein-Milman Theorem, /, has an extreme point
¢. Assume, for the moment, that there is a measurable set £ C X for which ¢ = yg;
thus, a = &(¢) = [y xedp = [dp = p(E). The choice of a € K = [0, j(X)] being
arbitrary would yield [0, u(X)] € {w(E) |E € X} C [0, u(X)], thereby completing
the proof.

Therefore, it remains to show that there is a measurable set £ € X for which
¢ = . Assume, on the contrary, that ¢ # yg for every measurable set E. Thus, the
essential range of ¢ contains at least one point A different from 0 and 1. Therefore,
there exists & > 0 such that (¢, 1 —¢) is an open neighbourhood in R of A. If V is any
open set in C for which VNR = (g,1 —¢), then, by definition of essential range,
the measurable set E = ¢~ !(V) has positive measure. Because j is a non-atomic
measure, there is a measurable proper subset F' of E such that both F and E\ F
have positive measure. Likewise, there are measurable proper subsets G; C F and
G, C (E\ F) such that 0 < u(Gy) < u(F) and 0 < u(Gy) < w(E\ F). In the 1-
dimensional real vector space R any two real numbers are linearly dependent. Thus,
there are o, 8 € R not both zero such that

a (u(G1) —u(F)) + B (WE\F) — u(G2)) = 0.

By multiplying the equation above by an appropriate constant, we may assume that
« and B have been scaled so as to satisfy |a| < ¢ and || < e. Consider now the
measurable function

U =a(xe,—xr)+B8 (XE\F—)(Gz)s

which has the properties that [, 9du=0and 9 +9 € #. If ¢y = ¢+ and ¢, =
¢ — 0, then [y @1dp = [y ¢2dp = a, which is to say that ¢;,¢, € I,. However,
¢ # ¢; foreach jand ¢ = %((/31 + ¢,) contradict the fact that ¢ is an extreme point
of 1,. Therefore, it must be that ¢ = yg for some E € X. O

Problems

7.27. Prove that a subset C of a vector space V is convex if and only if C contains
every convex combination of its elements.

7.28. Determine the extreme points of a closed interval [a, b] in R.
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7.29. Let V be a topological vector space and assume that C C V is an open convex
set. If u : V — R is a continuous linear transformation for which u(v) # 0 for every
v € C, then prove that ;£ (C) is an open interval of R.

7.30. Prove that the dual space V* of a normed vector space V is a Hausdorff
topological vector space in the weak™-topology.

7.31. A cone in a finite-dimensional normed vector space V is a convex subset
C C V such that tv € C, forevery t € R and v € C. Let CT = {p € V*|p(v) >
0, Vv e C}.

1. Prove that CT is a cone in the dual space V*.
2. Prove that ™" = C.

7.32. Let C be a convex set and v € C. Prove that the following statements are
equivalent:

1. v is an extreme point of C;
2. if there are v;,v, € C and t € (0, 1) such that v = tv; + (1 — 7)v,, then v| =
Vp) = V.

7.33. Let C=10,1]x[0,1] x [0, 1] C R3.

1. Determine all the faces of C.
2. Of the faces found, identify those that correspond to extreme points of C.

7.34. Let C be a convex set in a vector space V. Show that if F; C C is a face of C
and F, C F) is a face of Fy, then F is a face of C.

7.35. Let {e,},en denote the canonical coordinate vectors of £!(N). Prove that the
extreme points of the closed unit ball of £!(N) are precisely the vectors of the form
ee,, for some # € Rand n € N.

7.36. Assume that X is a compact Hausdorff space and X' is the o-algebra of Borel
sets of X, and consider the set

PX.X)={pneMX,2)|n(E) =0, VE€ X, n(X) = 1,

which is a subset of the closed unit sphere of the Banach space M (X, ¥') of regular
complex measures on (X, X).

1. Prove that P(X, X') is weak*-compact.
2. Prove that if xy € X, then the point-mass measure g, is an extreme point of
P(X,X).

7.37. Prove that the vector space operations on V* are continuous in the weak™
topology, for every normed vector space V.

7.38. Suppose that V is a locally convex topological vector space and that K C V
is a convex, compact Hausdorff space. Prove that if xy € K is an extreme point of
K and p is a regular Borel probability measure such that ¢(xo) = |, x ¢ du for every
@ € V*, then 1 = 8¢y}, a point-mass measure concentrated on {xo}.
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7.39. If C is a convex set in a Banach space V, then an element vy € C is exposed
if there is a ¢ € V* such that R p(v) < Re(vy), for all v € C\ {vo}. Furthermore,
an exposed point vy of C is strongly exposed if, for any sequence {v;}reny C C, the
sequence {M@(vi) }ren converges to N (vg) only if {vi}ren converges to vy.

1. Prove that every exposed point of C is an extreme point of C.
2. Determine the strongly exposed points of £!(N).
3. Determine the strongly exposed points of £”(N), for p > 1.



Part IV
Operator Theory



Chapter 8
Banach Space Operators

If Banach spaces are viewed as the metric analogue of the notion of vector space,
then the concept of an operator is correspondingly viewed as the continuous
analogue of the notion of a linear transformation of a vector space.

Recall that one can compose linear transformation 7: V — W and S: W — Z to
produce linear transformation ST : V — W defined by ST'(v) = S(Tv), for v € V.
Similarly, one has the obvious notions of sum 7' + 7, and scalar multiplication aT
(where o € C) for linear transformations 7, Ty, T, : V — W. Of particular importance
are cases in which W = V, for in these cases the set of all linear transformations
V — V has the structure of an associative algebra. In considering only those linear
transformations 7 : V — V of a Banach space V that are continuous, it turns out that
the resulting set is also an associative algebra, known as a Banach algebra.

8.1 Examples of Operators

To this point we have encountered operators in the form of linear functionals and as
surjective isometries between certain Banach spaces. This section is a brief sampling
of operators of a more general type.

8.1.1 Matrices

The most accessible and most familiar examples of operators are to be found with
matrices. An m x n matrix T = [t;]i<i<m, 1<j<n, Where each t; € C, is a linear
transformation C* — C™. The entries of the i-th column of T represent the entries in
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the vector Te; € C™, where ey, ..., e, € C" are the canonical basis vectors (canonical
in the sense that e; is a column vector with 1 in the i-th entry and O in every
other entry). If C" and C™ are endowed with norms, then T is an operator by
Proposition 6.3.

Another convenient way to analyse matrices is to consider C" as a space of
functions. Specifically, let X = {1,2,...,n} and let X be the power set of X.
Consider L*°(X, X, u), where p is counting measure. Thus, each f € L*°(X, X, u)
is a function f : X — C in which

IfIl = max{f(k)|1 <k <n}.

Now assume Y = {1,...,m}, §2 is the power set of Y, and v is counting measure
on Y. As vector spaces, there are the obvious isomorphisms

C' >~ L*®(X,XY,u) and C" = L*(Y,,v).
Hence, an m X n complex matrix 7T is an operator
T:L®X,X,u) — L>®(Y,82,v).

There is nothing special about the choice of the L°°-norm, and one could just as
easily consider a matrix 7" as an operator

T:IP(X, X, 1) — L7 (Y,2,v)

for any choice of p,p’ € [1, 00).

8.1.2 Operators on Finite-Dimensional Banach Spaces

If V and W are finite-dimensional vector spaces, then by choosing bases for V and
W each operator T will have a matrix representation with respect to these bases.
Specifically, if By = {vy,...,v,} and By = {wy,...,w,} are bases for V and W,
respectively, then, foreachi = 1,...,n,

n
Tv; = E Ljw;j
j=1

for some unique choice of #;1,...,t;,, € C. The m x n matrix T= [tiili<i<m, 1<j<n is @
representation of 7" with respect to the bases %y and By .
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8.1.3 Finite-Rank Operators

An operator T € B(V) is said to have finite rank if the range of T has finite
dimension. In such cases, the rank of T is defined to be the dimension of the range
of T. If ¢y € V* and w € V are nonzero, then the operator Fy,, on V defined by
Fy,,(v) =¥ (w)v is of rank 1. Conversely, if F is a rank-1 operator, then there exist
nonzero ¥ € V* and w € V such that F = Fy,,,. Furthermore, if T has finite rank

n € N, then there are rank-1 operators Fy,...,F, € B(V) such that T = ZFJ The
j=1
proofs of these facts are left to the reader (Exercise 8.60).

8.1.4 Integral Operators

Let p € [1,00) and consider Banach spaces L7 (X, X, 1) and LP(Y, §2,v) for some
finite measure spaces (X, X,u) and (Y,£2,v). Assume that x : X xY — C is a
bounded measurable function and that M = sup{|k(s,?)|| (s,?) € X x Y}. For each
seY,letk;: X — Cbe given by x,(f) = «(s,t). Thus, for each f € £P(X, X, u) we
obtain a function (£f) : Y — C defined by

(HP)(s) = /X o di.

Because |k,(f)| < M for every (s,7) € X x Y, we deduce that

[reas = [ [rerirduas <oy [ iran.

Hence, the function (JZf) is p-integrable. Moreover, the map f + J£f is plainly
1in<?ar, and so we obtain an operator K : LP(X, X, u) — LP(Y,$2,v) defined by
K(f) = g, where g = ¥ f € £P(Y,$2,v), of norm | K| < M.

8.1.5 Multiplication Operators on C(X)

Let X be a compact Hausdorff space and fix a function ¢ € C(X). The map
My : C(X) — C(X) defined by Myf = ¥f is a bounded operator and it is clear
that ||My || < ||¥] = max{|y¥ (x)||x € X}. By taking f(x) = 1 for all x € X, we see

that |Myf|| = [ [ [f]l. Hence, [[My || = [|¥|.
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8.1.6 Integral Operators on C([0,1])

If « : [0,1] x [0, 1] — C is continuous, then the linear transformation K : C([0, 1]) —
C([0,1]) defined by

1
KF(s) = /0 (s 0f ()

for f € C([0,1]) is a linear transformation in which

1
< max [e(s.0)] / FO)di < Nl 1]
s5,1€[0,1] 0

/1 K(s,0)f (t)dt
0

[IKf|l = max
s€[0,1]

where ||« || is the norm of k as an element of C([0, 1] x [0, 1]). Operators of the form
K are called integral operators.

Another type of integral operator occurs with functions « : [0, 1] x [0, 1] — C that
are continuous on 0 <t < s < 1. In particular, if x(s,f) = 1 for0 <t <s <1 and
Kk (s,t) = 0 otherwise, then the corresponding integral operator K is given by

Kf(s) = /O 0y,

for f € C([0, 1]). This particular operator is known as the Volterra integral operator
and is frequently denoted by V rather than K.

8.1.7 Multiplication Operators on [’ (X, X, 1), 1 <p < o0

Assume that (X, X', u) p is a o-finite measure space. If y : X — C is an essentially
bounded Borel measurable function and if f € L7 (X, X, i), where p > 1, then

/ P < f (ess-sup ¥ [fP diu = (ess-supy)? / Py < oo
X X X

implies that ¥ induces a linear transformation My : [P(X, ¥, u) — LP(X, X, 1)
via My ) = (v f) for all f e I7(X, X, ). The inequality above shows that My,
is bounded and that

1My | < [V ]loo = ess-supyp.

To show, conversely, that ||/ [|eo < |My ||, assume first that ¥ is a simple function
such that ¥ # 0. Thus, if « € C satisfies |a| = ess-sup ¥ and if E = ¥ ~'({}), then
W(E) > 0. Because X is o-finite, there is a sequence of measurable sets F, € X,
each with finite measure, such that X = Un F,. Hence, there is at least one n € N for
which F = ENF), is a nonempty set of finite measure. Let /' = y(F)_l/” xr and note
that [[f|| = 1 and [Myf| = |o| = ||¥/|lcc. Hence, [My || = |¥/[loc if ¥ is a simple
function with ¥ # 0, and ||My || = [|¥||co is trivially true for ¢ = 0.
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Assume now that ¥ is an arbitrary essential bounded function. By Proposi-
tion 5.52, there is a sequence {¢},en of simple functions such that lim, ||y —
Pmlloo = 0. Because [[Myf —M,f| = [My—gfIl < ¥ —@ulloc|lf]l for every f €
LP(X, X, ju), we deduce that |[My —M,, || < || —@,lleo. Hence, lim,, |My —M,, || =
0 implies that [|My || = Tim, | My, | = 1im, [|gallec = |9 lco-

8.1.8 Weighted Unilateral Shift Operators

Consider an element o = ()reny € £°°(N) and the linear transformation S, :
£P(N) — £P(N), for p € [1, 0], defined by

U1 0
U2 a1V »
Sev = Sy Vs = | au, |° V€ P (N).

The linear transformation S, is clearly bounded of norm || Sy || = supy, ||, and Sy is
called a weighted unilateral shift operator.

If ay = 1 for every k € N, then the resulting weighted unilateral shift operator S,
is denoted simply by S and is called the unilateral shift operator on £7(N). Note that
S is an isometry, but is not surjective.

8.1.9 Adjoint Operators

Theorem 8.1. If V and W are Banach spaces, and if T € B(V,W), then there is a
unique operator T* : W* — V* with the property that

T*y (v) = ¥ (Tv), Yy eW  veV. 8.1)
Furthermore, if T, T,,T € B(V,W) and oy, € C, then

LAT*| = |IT]l,
2. (Ol]T] +0[2T2)* = Ot]Tl* +062T2*, and
3. lfW =V, then (T[Tz)* = TZ*TI*'

Proof. To prove the first assertion, observe that equation (8.1) above defines a linear
transformation of W* into V* such that

IT*v = sup [y (Tv)<[¥[IT].

veV, |v]=1

Thus, T* is a bounded linear transformation of norm ||7*|| < || T|.
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Conversely, for every & > 0 there is a unit vector v € V such that | T|| < || Tv|| +&.
Further, Corollary 6.23 of the Hahn-Banach Extension Theorem shows that there is
ay € W* of norm ||y || = 1 such that ¢ (Tv) = ||Tv||. Thus,

ITI < MTvl+e=[Y@Tv)+e=T"Y @) +e=<IT* ¥l vi+e=T"] +e.

Hence, ||T]| < [IT*].

To prove the uniqueness of T, suppose that 77 € B(W*,V*) satisfies equa-
tion (8.1) for all v € W* and v € V. Thus, fora fixedv € V,0 = ¢ (Tv) — ¢ (T'v) =
¥ (Tv —T'v) for all ¥ € W*. By Corollary 6.23, this means that Tv —T'v = 0.
Because the choice of v € V is arbitrary, we deduce that 7" = T.

The proofs of the remaining statements are left as an exercise (Exercise 8.67).

O

Definition 8.2. The operator T* is called the adjoint of T.

The explicit determination of the adjoint of a given operator 7 € B(V, W) depends
to a certain extent on how well one understands the dual spaces of V and W. For
example, if p,q > 1 satisfy p~! 4+ ¢! = 1, then by identifying the dual of £” as £¢
one sees that the adjoint of the weighted unilateral shift operator S, : €7 (N) — £/ (N)
is the operator S} : £4(N) — £9(N) defined by

A
(Sa)*p =S, = | ®es |, ¢etd(N). (8.2)

%]
Indeed, if v € £7(N) and ¢ € £4(N) = £7(N)*, then

o0 o0
P(Sav) =Y i1 = Y eupisve = (Sie) (v).
k=1 k=1

which shows that S has the form given by (8.2).

8.2 Mapping Properties of Operators

Because operators are continuous, the kernel ker 7 = {v € V| Tv = 0} of an operator
T : V — W is necessarily closed, as kerT is the pre-image of the closed set {0}
in W. It is natural, therefore, to ask about the range ran7 = {Tv|v € V} of an
operator. A simple sufficient condition for an operator to have closed range is that it
be bounded below in the sense of the following definition.
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Definition 8.3. An operator T € B(V,W) is bounded below if there exists § > 0
such that

Sloll < ITvll, VveV.

The positive real number § is called a lower bound for T.

Proposition 8.4. If V and W are Banach spaces, then every operator T : V — W
that is bounded below will have closed range.

Proof. The proof is a variant of the proof of Proposition 6.9 and is, therefore, left as
an exercise (Exercise 8.61). O

If one has a collection A of operators T : V — W in which V is a Banach space,
it may or may not be true that A is a bounded set in the sense that there is a K > 0
such that ||T|| < K for all T € A. The following theorem indicates that if A fails to
be bounded, then there is a dense G set G C V for which the norms of Tv, forv € G
and T € A, are arbitrarily large.

Theorem 8.5 (Principle of Uniform Boundedness). If A C B(V,W) is a
nonempty set of operators, where V is a Banach space and W is a normed vector
space, then exactly one of the following two statements holds:

1. thereis a K > 0 such that |T|| < K for every T € A; or
2. there is a dense Gg-set G C 'V such that

sup |[Tv|| =00 Vvegq.
TeA

Proof. ForeachT € Alet fr: V — R be the (nonlinear) continuous function f7(v) =
| Tv|, for v € V. By continuity, f; ' ([0,1]) = {v € V|||Tv|| < n} is a closed set and,
therefore,

K, = () f7" (0.n])

TeA

is a closed subset of V for every n € N. Let U, = V'\ K,,, which is open. Either every
U, is dense in V or there is at least one n € N for which U, is not dense.

Case #1: U, is not dense for some n.  In this case, fix such an n and choose vy €
K, = V\U, so that v lies outside the closure of U,. Thus, there is a p > 0 with
B,(vo) NU, = @. Hence, if ¢ = p/2, then vy + v € K, for all v € V that satisfy
||lv|| <e. Thatis, if |v|| <eand T € A, then

|Tv]l = [[(Tvo+Ty) —Tvo|l < T (vo+v)||+[Tv| < 2n.
Hence,
2n
IT| <=, VTeA,
g

which proves that A is a bounded set.
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Case #2: U, is dense in V for everyn € N.  In this case, let G C V be the Gs-set
defined by

G=()Un.

neN

By the Baire Category Theorem, G is a dense in V. By definition, if v € U,, then
there is a T € A with ||Tv|| > n. That is, if v € G, then supy 4 ||Tv|| = oo.
O

The next mapping property of operators to be considered originates in topology.

Definition 8.6. If X and Y are topological spaces and if f : X — Y is a function,
then f is called an open map if f(U) is open in Y for every open set U in X.

Using the terminology of open maps, one can say that if a continuous bijection
f:X — Y is an open map, then f is a homeomorphism. Our aim is to achieve a
similar statement for linear operators, and key result in achieving this aim is the
following fundamental theorem.

Theorem 8.7 (Open Mapping Theorem). Every surjective operator between
Banach spaces is an open map.

Proof. Assume that V and W are Banach spaces and that 7 : V — W is a surjective
operator. Our first objective is to prove that there exists a § > 0 such that

fwe W||wll <8} C{Tv|veVand |jv] < 1}. (8.3)

Assuming that inclusion (8.3) holds, there is an open ball Qy of radius § in W such
that 0 € Qy C T(U), where U is the open unit ball in V. Because in a normed vector
space every open ball is obtained by translation and scaling of an open ball about
the origin, we deduce that for every w € T(U) there is an open ball Q,, of radius
3, about w such that Q,, C T(U), thereby establishing that 7(U) is open. Similarly,
an open ball P in V may be translated and scaled to the open unit ball U, which
shows that T'(P) is open. Thus, the proof of the theorem hinges on establishing the
inclusion (8.3).

Set Uy = {v € V|||v|| < k} for each k € N and note that, because T is surjective,
W = U, T(Uy) Thus, if K; is the closure of each T(Uy), then W = U;K;. By the
Baire Category Theorem, there is at least one n € N for which the interior of K, is
nonempty. Select wy € intK,,; thus, there is a y > 0 such that wy +w € intK,, C K,, =
T(U,) for every w € W with |w|| < y.Let§ = y/(4n).

Choose w from the open ball Bs(0) in W and set w = %y||w||_'w. Because wy
and wo + w are in the closure of T(U,), there are sequences {u;}; and {z;}; in U,
with wo = lim; Tu; and wo +w = lim; Tz;. Thus, with v; = z; —u; we have that {v;};
is a sequence in U, with w = lim,; Tv;. Therefore, there is some vy € U,, with
I Tvo — W[l < 3yllwl|~"e. Hence, if v = (2|w|ly~")vo, then [[v]| < ||w[|/§ < 1 and
I Tv—w]| <e.
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The previous paragraph shows that for each nonzero w € B;(0) there exists v € V
of norm ||v|| < ||w||/8 < 1 such that | Tv —w]| < &. We aim to replace ||Tv—w|| <&
with an equality. The key point is that § is independent of ¢. Thus, assume that ¢ > 0
also satisfies ¢ < 1. Fix w € Bs(0) and set &; = %5 ¢. By the previous paragraph, there
exists v; € V with |Jvy|| < §7!w| and ||Tv, —w| < ;. Because w— Tv; € B;(0),
we apply the previous paragraph again with &, = %8 | to obtain a vector vy € V
with ||vs|| < 87Y||w—Tw;| and ||Tv, — (w—Tv;)|| < &. Repetition of the argument
yields, inductively, a sequence {v;};en in V such that, for every j € N,

k
e de
loll < 5= and w=>"Tu| < >
j=1
k 00
Hence, {Z vj} is a Cauchy sequence in V with limit v = Z v; of norm
j=1 j=1

[o.¢] oo 1
vl < Z;||vj|| = ””1“”2;21_—1 <l+e.
p= p=

By continuity of T, Tv = w.

The arguments of the paragraph above demonstrate that for every w € Bs(0) and
0 < & < 1 there is a vector v € V of norm ||v|| < 1 4 € such that Tv = w. Suppose
that w € Bs(0) is of norm ||w| < 18? and let v € V be a vector of norm ||v|| < 1+¢
that satisfies Tv = (1 + &)w. Therefore, ¥ = (1 + &)~ v is in the open unit ball of V

and Tv = w. Because ¢ is an arbitrary positive number in the interval (0, 1),

8
ew <6} = ew <——7 C{T eV, < 1},
wew(wl <8 = | {w vl <t S iTvlvev <1

O<e<l1

which completes the proof. O

8.3 Inversion of Operators

Our first goal in this section is to prove that if 7 : V — W is a bijective operator, then
the inverse linear transformation 7~! : W — V is also an operator.

Proposition 8.8. If'V and W are Banach spaces, then the following statements are
equivalent for T € B(V,W).

1. T is a bijection;
2. T is bounded below and has dense range.
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Proof. (1) = (2). Assume that T is a bijection. Because T is surjective, it is trivial
that T has dense range; further, the Open Mapping Theorem asserts that there is a
8 > 0 for which

{weW||w| <8} € {Tv|veVand |v| <1}.

In other words, using that T is also injective, for every w € W such that |w| < § there
is a unique v € V with ||v|| < 1 and Tv = w. The contrapositive of this statement is:
|Tv|| > 8 for every v € V such that ||v|| > 1. Hence, if v € V is nonzero, then ||v| v
is a unit vector and so || T(]lv||~'v)|| > §; that is, || Tv|| > §||v], which proves (2).
(2) = (1). Assume that T is bounded below by é > 0 and that T has dense range.
Because T is bounded below, T has closed range (Proposition 8.4) and is obviously
injective. But to have both dense range and closed range is to say that 7 is surjective.
Hence, T is a bijection. O

Proposition 8.8 has an important consequence: if an operator is bijective, then its
inverse is also an operator.

Corollary 8.9. If V and W are Banach spaces and if T € B(V,W) is a bijection,
then the linear transformation T~" : W — V is bounded.

Proof. Ordinary linear algebra demonstrates that the inverse function 7-' : W — V
of T is a linear transformation. By Proposition 8.8, T is bounded below by some
8 > 0 (and ranT is dense). Thus, 7~! is bounded and || T~'|| < §~! by the following
computation:

I7='wl = IT7 (To)ll = vl < 8wl

where w = Tv. O
Two criteria for the singularity of an operator are:

Corollary 8.10. IfV and W are Banach spaces, then an operator T € B(V, W) fails
to be invertible if

1. there is a sequence of unit vectors vy € V with infy | Tv|| = 0, or
2. ifthe range of T is not dense in W.

Another consequence of the inversion theorem for operators is a useful result
called the Closed Graph Theorem. Recall from Exercise 5.101 that the Cartesian
product V x W of Banach spaces V and W is a Banach space in its product topology.

Definition 8.11. If X and Y are topological spaces and if f : X — Y is a function,
then the graph of f is the set G(f) = {(x,f(x)) e Xx Y |x € X}.

Theorem 8.12 (Closed Graph Theorem). If the graph of a linear transformation
T :V — W of Banach spaces V and W is closed, then T is continuous.

Proof. Because T is linear, the graph G(T) of T is a linear submanifold of V x W.
The hypothesis that G(T') is closed implies that G(T) is itself a Banach space.
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Let p; and p, denote the projection maps of V x W onto V and W (the first and
second coordinates), respectively. Recall (or observe) that p; and p, are continuous
functions. In considering p; restricted to the graph G(T') of T we obtain a continuous
linear bijection s = py|g(r) : G(T) — V. By Corollary 8.9, the linear inverse s~ :

V — G(T) of s is continuous. Hence, so is the linear map 7 = pyos™ . O

8.4 Idempotents and Complemented Subspaces

Definition 8.13. A linear transformation E : V — V of a vector space V is
idempotent if E> = E.

If E is an idempotent, then so is 1 — E and their product satisfies E(1 —E) =
(1—=E)E = 0. If an idempotent E is continuous, then both ranE and kerE are
subspaces. The latter is clear; and to show the former, note that ran £ is the kernel
of the continuous idempotent 1 —E.

The most important of the algebraic properties of idempotent operators are
described in the next proposition.

Proposition 8.14. The following properties hold for idempotents E and F acting
on a Banach space V:

1. E+F is an idempotent if and only if EF = FE = 0;

2. E—F is an idempotent if and only if EF = FE = F;

3. if EF = FE, then EF is idempotent with range ranE NranF and kernel ker E +
ker F.

Proof. The proof of (1) is left as an exercise (Exercise 8.64).

To prove (2), assume that EF = FE = F. Thus, (E—F)> = E> —EF — FE +
F? = E—F, which shows that E — F is an idempotent. Conversely, if E—F is an
idempotent, then EF + FE = 2F,and so 2F —EF —FE = (1—E)F+ F(1—-E) = 0.
Hence, (1—E)+ F)> = (1—E)*+ (1—E)F + F(1—E) + F> = (1—E) + F. Thus,
(1—FE) + F is idempotent. Therefore, assertion (1) implies that 1 — E and F are each
idempotent and satisfy (1 —E)F = F(1 —E) =0, Hence, EF = FE =F.

To prove (3), note that EF = FE implies that (EF)?> = EF’E = E*F = FE,
which implies that EF is idempotent. Because ran EF = ran FE, ran EF C ran E, and
ranFE C ranF, we deduce that ran EF C ranE NranF. Conversely, if v € ranEN
ranF, then Ev = Fv = v and so v € ran EF. This proves that ran EF =ran ENranF.

If v ekerE and w € ker F, then EF (v +w) = FEv + EFw = 0, which implies that
ker E 4+ ker F C ker EF. Conversely, if v € ker EF, then v = Fv + (1 — F)v. Because
EFv =0only if Fv € kerE and F(1 —E)v = 0 only if (1 —F)v € kerF, we see that
EFv = 0 implies that v € ker E 4+ ker F. Hence, ker EF C kerE + ker F'. ad

The range of an idempotent is a subspace (Exercise 8.65), and so it is not
surprising that idempotents are used to reflect algebraically certain geometric
aspects of Banach spaces.
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Definition 8.15. Two subspaces M and N of a Banach space V are complementary
subspaces if

1. MNN = {0} and
2. M+N=V.

The most immediate example of a complementary pair of subspaces is that
furnished by two mutually orthogonal subspaces M and N = M' of a Hilbert
space H.

There is an intimate connection between complementary pairs of subspaces and
continuous linear idempotents.

Proposition 8.16. The following statements are equivalent for a pair of subspaces
M and N of a Banach space V:

1. M and N are a complementary pair;
2. there exists an idempotent E € B(V) such that ranE = M and kerE = N.

Proof. Suppose that M and N are a complementary pair of subspaces of V. Thus, for
each v € V there are unique u € M and w € N such that v = u 4 v. Hence, the linear
transformation E : V — V defined by E(u+w) = u, forall u € M and w € N, is an
idempotent with ranE = M and ker E = N. Therefore, all that is required to show is
that E is continuous. We shall use the Closed Graph Theorem (Theorem 8.12) to do
SO.

Let (v,z) € V x V be an element in the closure of the graph G(E) of E. Thus, there
is a sequence {(vi, Evi)}ren in G(E) such that limy ||[v — vi|| = limy ||z — Ev|| =
0. Each vy is expressed uniquely as vy = u + wy for some u; € M and wy € N.
Therefore, Ev; = u; and so limy ||z—u|| = limy ||z— Evi|| = 0; because M is closed,
this implies that z € M. Likewise, v — z = limy ((u + wy) —ug) = limywy € N, as N
is closed. Because N = kerE we have 0 = E(v —z) = Ev — Ez = Ev —z, which
implies that (v, z) € G(E). Therefore, the graph G(E) of E is closed, and therefore
E is continuous.

Conversely, if £ € B(V) is an idempotent operator such that ranE = M and
kerE = N, then 1 = E+ (1 — E) implies that M + N = V. If v € M NN, then
v=FEv=(1—-E)vandsov=Ev=E(1—-E)v=0v=0. O

Proposition 8.17. If M and N are a complementary pair of subspaces of a Banach
V, then the Banach spaces V/M and N are isomorphic.

Proof. By Proposition 8.16, there exists an idempotent E € B(V) such thatranE = N
and ker E = M. Thus, the function 7: V/M — N given by TV = Ev is a well-defined
linear bijection. The inverse S : N — V/M of T is given by Sw = w, for w € N.
Because ||Sw| = |w| < ||w||, S is continuous; hence, so is T (by Corollary 8.9). O

If one has a single subspace M of a Banach space V at hand, it is natural to ask
whether M is part of a complementary pair or not. Such a subspace M is said to be
complemented.



8.4 Idempotents and Complemented Subspaces 283

Definition 8.18. A subspace M of a Banach space V is said to be complemented in
V if there is a subspace N of V, called the complement of M, such that M and N
form a complementary pair of subspaces of V.

Besides subspaces of Hilbert spaces, other examples of complemented subspaces
are finite-dimensional subspaces.

Proposition 8.19. Every finite-dimensional subspace of a Banach space is comple-
mented.

Proof. Let {vy,...,v,} be a basis of a finite-dimensional space M of a Banach
space V. As in the proof of Proposition 6.27, there are linear functionals ¢; : M — C
such that @;(vy) = 0, for j # k, and ¢;(v;) = 1, for each 1 < j < n. By the Hahn-

Banach Extension Theorem, each of these linear functionals has an extension to a
n

continuous linear function ¢; : V — C. Let N = ﬂkertpj, which is a subspace of V
j=1

such that M NN = {0}. Choose any v € V and let w = ijl @j(v)v; € M. Consider

z=v—w. Because ¢;(z) = ¢j(v) —@;(w) = ¢;(v) —¢;(v) = 0, we deduce that z € N.

Thus, v =w+z€eM+N. ad

However, as the next result shows, not every subspace of a Banach space need be
complemented.

Proposition 8.20. The subspace cy(N) has no complement in £*°(N).

Proof. Write ¢ for ¢p(N) and £*° for £°(N). Let X = (0,1)NQand let o : N — X
be a bijection. By Exercise 1.101, there is an uncountable family {X} },c4 of infinite
subsets Xj C X such that X; N X, is a finite set for all A, A’ € A for which A’ £ A. For
each A € A, letfy, = (fi(n)),en € £ satisty f(n) =0, if a(n) €X), and f(n) =1,
if a(n) € X;. Because fy —fir & co whenever A’ # A, the family {f; }Jres C £%°/cy is
uncountable.

Choose ¢ € (£>°/co)™ and, for every n € N, let Z, (n) = o llo(f)] = %}. Suppose
thatfy,,....fs, € Z,(n). For each j, let

o(f,)
le(i)l

B =sgn (o)) =

m
Letv = Zﬂjﬁj € £%°. Because X3, N X, is a finite set for k # j,
Jj=1

[0l =inf{|lv—~All[h € co} = max |B;[ = 1.
1<j<m
Furthermore,
m
m

o)=Y Both) =Y lel) =Y - ="
=1 =1 j

i—1
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Thus, ||l = V]| el = l¢(V)] = ¢(D) > m/n implies that m is bounded above and,

hence, that Z, (n) is a finite set. Therefore, the set Z, = frlo(f) #0} = U Z,(n)
neN

is countable. Consequently, UZW is countable for every countable set {¢; }ren Of

keN
linear functionals on £%°/cy.

Assume, contrary to what we aim to prove, that there exists a complement
N to ¢y in £°°. By Proposition 8.17, there is a continuous linear isomorphism
T:£%°/co— N. For each k € N let y, € N* be the linear functional for which
Vi (g) = gk, for all g = (g,)nen € N. Observe that if y;(g) = 0 for every k € N,
then necessarily g = 0. Now let ¢ = y, o T, which is a linear functional on £*° /¢,
for every k € N.

On the one hand, because T is an isomorphism, if w € £%°/cy is such that
@r(w) =0 for every k € N, then necessarily w = 0. On the other hand, by the
argument of the previous paragraph, the set {A € A |3k € N such that ¢ (f,) # 0}
is countable. Hence, because A is uncountable, there is a A € A such that the
nonzero element f; of £%° /¢, satisfies ¢y (fi) = 0 for every k € N. Therefore, this
contradiction implies that N and £°°/c( cannot be isomorphic; that is, ¢y is not
complemented in £*°. |

Corollary 8.21. ¢((N) is not the range of any idempotent E € B({*°(N)).

Part of the definition for a pair of subspaces M and N to be a complementary pair
is that M + N = V—in other words, M + N is also closed. This leads naturally to
the question of whether M + N is closed for every two subspaces M and N such that
M NN = {0}. The answer is yes in one of the most important cases of all:

Proposition 8.22. Suppose that M is a proper subspace of a Banach space V and
that v € V is nonzero and v € M. Then M + Span{v} is closed.

Proof. By Exercise 6.59, there is a ¢ € V* such that ¢(v) = 1 and ¢(w) = 0, for
every w € M. Suppose that y € V is in the closure of M + Span{v}; thus, there
are sequences {w,}n,en in M and {&,},ey in C such that ||(w, + a,v) —y|| — 0.
Hence, o, = ¢(w, + o, v) approaches ¢(y) as n — oo, which implies that {w, },en
converges to y— ¢ (y)v. Because M is closed, y — ¢(y)v must therefore belong to M,
andsoy = (y—¢(y)v) + ¢(y)v belongs to M + Span {v}. O

Corollary 8.23. If M and N are subspaces of V such that M NN = {0} and N has
finite dimension, then M + N is a subspace.

8.5 Compact Operators

Definition 8.24. An operator K on a Banach space V is said to be compact if for
every sequence {v,},en of unit vectors v, € V there is a subsequence {Kv,, }jen of
{Kvp}nen such that {Kv,, }jen is convergent.
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An alternate definition for compactness is as follows (Exercise 8.74): an operator
K on a Banach space V is compact if and only if the image of the closed unit sphere
of V under the operator K has compact closure.

If V has finite dimension, then Proposition 5.22 shows that the closed unit
ball of V is compact. Therefore, by Theorem 2.19, any sequence {v,},en of unit
vectors v, € V admits a convergent subsequence {v,, }jen. Thus, using the continuity
of operators, for each 7 € B(V) the sequence {Tv,},en admits a convergent
subsequence—namely, {Tv,,j }jen. That is, if v = lim; U then

lim Tv,, =T (_lim v,,j) =Tv.
J—>00 j—>00

Hence, every operator T € B(V) is compact if V has finite dimension.
A variant of the argument above is the following observation, which will be used
frequently.

Proposition 8.25. IfV is a Banach space, A € C is nonzero, and if T = Al, then T
is a compact operator only if V has finite dimension.

Proof. Assume that V has infinite dimension and choose § € (0, 1). By Proposi-
tion 5.21, there exists a sequence {v, },en of unit vectors v, € V such that {v,},en
does not admit any Cauchy subsequences. Thus, the sequence {Tv,},en does
not admit any Cauchy subsequences and, hence, does not admit any convergent
subsequences. Therefore, T is compact only if V has finite dimension. O

Compact operators exhibit the following algebraic and analytic features.
Proposition 8.26. The following operators are compact:

ak, for every a € C and all compact operators K;

K\ + K>, for all compact operators Ky and Ky,

KT and TK, for all compact operators K and all T € B(V);

F, for all F € B(V) with finite-dimensional range;

K, for all operators K for which there exists a sequence {K,}nen of compact
operators K, such that lim, |K — K, || = 0.

SR N~

Proof. The proof of the first four assertions is left as an exercise (Exercise 8.70). To
prove the final statement, assume that there exists a sequence {K,,},en of compact
operators K, such that |[K — K, | < % for very n € N. As K| is compact, there is a
subsequence {vy j}; of {v;}; such that {K; v, ;}; is convergent. As K> is compact, there
is a subsequence {v,;}; of {v;;}; such that {K,v,;}; and {K v, ;}; are convergent.
Inductively, for each n € N there is a sequence {v,}; such that

1. {v,;}; is a subsequence of {v,_1;};, and
2. {Kqv,}; is convergent forall 1 <{ <n.

Now let &€ > 0. Choose p € N such that | K — K, || < e. Claim: {Kv,,»}, is a Cauchy
sequence. Note that if n > p, then {K,v,,}, is a subsequence of the convergent
sequence {K,v, »},. Hence, {K,v, .}, is convergent and, therefore, Cauchy. Thus,
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”Kvnﬂ _Kvm.m” =< ”(K_Kp)vn,n” + ”van,n _vam.m” + ”(K_Kp)vm,m”
< 284+ || KpVnpn — KpUmm ||

Thus, {Kv, ,}, is a Cauchy sequence and, hence, convergent. This proves that K is
compact. O

Corollary 8.27. The set of compact operators acting on a Banach space V is a
subspace of B(V).

Proof. The conclusion is a direct consequence of assertions (1), (2), and (5) of
Proposition 8.26. o

If M is a subspace of V, then the range of the identity operator restricted to M
(as a map M — V) obviously has closed range. The next proposition asserts that
the same is true for any perturbation 1 — K of the identity operator 1 by a compact
operator K.

Proposition 8.28. If K is a compact operator acting on a Banach space V, and if
M C V is a subspace, then

{w—Kw|we M}

is a subspace of V.

Proof. Let M C V be a subspace and assume that M Nker(1 —K) = {0}. (The case
where M Nker(1 —K) # {0} will be handled at the end of the proof.) Let

L={w—Kw|we M}

and suppose that y € L. We aim to prove that y € {w — Kw|w € M}. Thus, there is a
sequence of vectors y, € {w—Kw|w € M} with limit y; that is, there is a sequence of
vectors w,, € M such that ||y — (w, — Kw,)|| — 0. Assume that the sequence {w, },en
admits a subsequence of vectors w,, in which ||w,, || — oo. If this is the case, then
let v; € M denote the unit vector ||wy, ||~ 'w,,. The compactness of K implies that
the sequence {Kvyjren admits a convergent subsequence {Kvy, }jen with limit, say,
z € V. Note that

o, — Kvg || = -, — Ko .

[ |

As j — 0o we have [lwy, —Kwy || — [yl and [jwy, || — oc. Therefore, {v}jen
converges to z, which implies that z € M. However, we now have that z € M and z—
Kz = lim;(vy; — Kvy,) = 0; that is, z € M Nker(1 — K) = {0}. This is a contradiction
because 0 = z = lim; vy, where each vy, || = 1. Therefore, it cannot happen that the
sequence {w, }nen admits a subsequence of vectors wy, in which ||w,, || = oo.
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Because there is a y > 0 such that |w,| <y for all n € N, and because K
is a compact operator, the sequence {Kw,},en admits a convergent subsequence
{Kwy, }ken with limit, say, x € V. Now since

Kw,, — x and (w, —Kw,) =y,
we conclude that w,, — x4y, whence x+y € M. Thus, if w = x4y, then

(1=Kw =(1-K)(x+y) = lm (wy, —Kwy) =y,

which proves that the linear submanifold {w — Kw|w € M} is closed.

Suppose next that M Nker(1 — K) # {0}. Thus, if ¥ = M Nker(1 —K), then F is
a finite-dimensional subspace. (If not, then F is an infinite-dimensional space upon
which the compact operator K acts as the identity, in contradiction to the fact that the
identity operator 1 is not compact.) Proposition 8.19 asserts that F is complemented
in M; hence, there is a subspace N C M such that NN F = {0} and M = N+ F.
Consequently, each w € M has the form wy + wy, where w; € N and (1 —K)wy = 0.
Hence,

{w—Kw|w e M} ={w —Kw|w; € N}. (8.4)

Since N Nker(l — K) = {0}, the linear submanifold in (8.4) is closed by the
arguments developed initially. O

Corollary 8.29. If K is a compact operator on a Banach space V, then the range
of 1 — K is closed.

For operators acting on finite-dimensional spaces, injectivity implies surjectivity.
Although this fails to be true in infinite-dimensional spaces (even for compact
operators), this property holds for compact perturbations of the identity operator.

Proposition 8.30. IfK is a compact operator acting on a Banach space V such that
1 —K is injective, then 1 — K is surjective.

Proof. Assume, contrary to what we aim to prove, that 1 — K is not a surjection. Set
My =V and let

M, = {1—-K)y"v|jveV} = {(1—-K)w|weM,_,}, VneN.

Thus, My DM, DM, D+ DM, DM,y D ... is a descending sequence of
subspaces (by Proposition 8.28). This sequence is in fact proper, by the following
argument. Suppose for some n € N we have M, = M,1. Because 1 — K is not
surjective, there is a v € V\ran (1 — K). On the other hand, (1—K)"vy € M, = M, 41,
and so there is a vector wy € V such that (1 —K)""'wy = (1 — K)v,. That is,

(1 —K)n [(1 —K)W()—U()] =0.
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Because 1 — K and, hence, (1 —K)" are injective, we conclude that vy = (1 — K)wy.
But this would place vy in the range of 1 — K, in contradiction to vy € V\ran (1 —K).
Hence, it must indeed be true that the sequence {M, },,enuioy is properly descending.
Moreover, if v € M,,, then v = (1 — K)"w for some w € V; hence, Kv = (1 — K)"Kw
(as K and 1 — K commute). In other words, each M, is invariant under K.

Let 6 € (0,1) be fixed. For each n € N there is a vector in the quotient space
M, /M, of norm §. Since § < 1, this means that there is a unit vector v, € M,
such that ||v, —f|| = for all f € M,,. If j < k, then (1 —K)v; € (1 - K)(Mj—;) = M;
and Kv, € My C M;. Thus, (1 —K)v; 4+ Kv, € M; and so

8 < [lv;—[(1 = K)vj + Kvi] || = [[Kv; — Kvg.

Therefore, the sequence {Kv,},eny does not admit a Cauchy subsequence and,
hence, does not admit a convergent subsequence. This contradicts the fact that K
is compact. Thus, the original assumption that 1 — K is not surjective cannot hold.
That is, 1 — K is necessarily surjective. O

An important feature of compact operators is that the adjoint K* € B(V*) is
compact if K € B(V) is compact.

Proposition 8.31. IfK € B(V) is a compact operator, then K* € B(V*) is a compact
operator.

Proof. Let By= and By denote the closed unit balls of V* and V. Suppose that
{@n}nen is a sequence in By=. Because By+ is weak™ compact, by the Banach-
Alaoglu Theorem (Theorem 6.33), there is a ¢ € By* such that for every weak™
open neighbourhood U of ¢ in By= and j € N there is an n > j such that ¢, € U.
(That is, ¢ is a weak™ limit point of {¢, },en.)

Let ¢ > 0 and fix j € N. Because K(By) is compact, there are wy,...,w,, € K(By)
such that

KBy) c | JtweV|lw—w <e}.
k=1

Consider the weak™ open neighbourhood U C By of ¢ that is given by

U =Y eBy||y(wi) —pw)| <&, 1 <k <mj.

Because ¢ is a weak™ limit point of {¢, }.en, there is a n; > j such that ¢, € U. If
v € B, then there is a 1 < k < m such that ||[Kv —wy|| < . Hence,

IK*p(v) — K*¢n,(v)| = |@(Kv) — ¢y, (KV)|
< lp(Kv —wi) — @n (Kv — wy)|
+ o (Wi) — @n; (W) |

< 3e.
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Hence,

IK*¢ — Koyl = sup [K*¢(v) — K* ¢, (v)| < 3e.

lvll<t

As the choice of ¢ > 0 and j € N are arbitrary, this proves that there is a subsequence
{@n;}j of {@n}n such that {K*¢, }; is convergent (to K*¢). Hence, K* is a compact
operator. |

Proposition 8.32. IfK is a compact operator acting on a Banach space V such that
1 — K is surjective, then 1 — K is injective.

Proof. Because K is compact, so are K* and K** (Proposition 8.31). Because
1 — K is surjective, the defect spectrum o4(1 — K) is empty. But since o4(1 — K) =
0p(1—K™), we conclude that I —K™* is injective. As K* is compact, Proposition 8.30
implies 1 — K* is surjective. Therefore, the defect spectrum is 1 — K™*, and so the
point spectrum of (1 — K*)* is empty. In other words, 1 — K** is injective. The
restriction of 1 — K** to the subspace V of V** is precisely 1 —K; as 1 — K** remains
injective on any smaller domain, 1 — K is, therefore, an injective operator. O

8.6 Operator Algebra

The notion of a Banach algebra has already been encountered in our discussion
of the Stone-Weierstrass Theorem. The algebraic basis for the concept of Banach
algebra is that of an associative algebra. Recall from Definition 5.24 that an algebra
a complex vector space A that has a product (or multiplication) such that, for all
a,b,ceAandall @ € C,

(a+b)c = (ac+bc), alb+c)=ab+ac, a(bc)= (ab)c,
and
(xa)(b) = a(ab) = a(ab).

Recall that, if ab = ba, for all a,b € A, then A is called an abelian algebra, and if
there is an element 1 € A such that al = la = q, for every a € A, then A is said to
be a unital algebra and 1 is the multiplicative identity of A.

Definition 5.25 asserts that a Banach algebra is an algebra A together with a
norm || - || on A such that

L. lxyll < lIx|l]ly]l, for all x,y € A, and
2. Ais a Banach space under the norm || - ||.

Recall that if A is a unital algebra, then A is a unital Banach algebra if ||1] = 1.
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A norm || - || that satisfies the condition ||xy| < |lx|/||y||, for all x,y € A, is called a
submultiplicative norm.

Definition 8.33. A subset J of a Banach algebra A is an ideal of A if

1. J is a subspace of A, and
2.axeJandxae J,forallae Aandx € J.

If an ideal J of A satisfies J # {0} and J # A, then J is called a proper ideal of A.

Observe that, by definition, ideals are closed in the norm topology. We shall also
have need of the purely algebraic notion of ideal, which in the context of Banach
algebras are called algebraic ideals.

Definition 8.34. A subset / of a Banach algebra A is an algebraic ideal of A if

1. I is a linear submanifold of A, and
2.axelandxacl, forallacAand x €.

If an algebraic ideal I of A satisfies I # {0} and I # A, then [ is called a proper
algebraic ideal of A.

The set B(V), where V is a normed vector space, is a unital associative algebra
whereby the product ST of operators S,T € B(V) is simply composition—namely,
ST(v) = S(Tv), for all v € V—and the multiplicative identity 1 of B(V) is the
identity operator lv = v, forallv e V.

Theorem 8.35. Assume that V is a Banach space.

1. The set B(V) is a unital Banach algebra.

2. If V has infinite dimension, then the set K(V) of all compact operators on 'V is a
proper ideal of B(V).

3. If V has infinite dimension, then the set F(V) of all finite-rank operators on V is
a proper algebraic ideal of K(V).

4. The norm-closure F(V) of F(V) is an ideal of B(V) and m C J for every
nonzero ideal J of B(V).

Proof. The norm on B(V) is plainly submultiplicative and the norm of the identity
operator 1 is 1. By Proposition 6.6, B(V) is a Banach space. Hence, B(V) is a unital
Banach algebra.

Proposition 8.26 shows that K(V) is an ideal of B(V), while Proposition 8.25
indicates that 1 ¢ K(V) if V has infinite dimension. Proposition 8.26 also shows
that the algebraic ideal F(V) of B(V) is a subset of K(V). Therefore, because F(V)
is plainly an algebraic ideal of K(V), we need only verify that there is a compact
operator on V of infinite rank.

Let M; = V and select a unit vector v; € M;. By Proposition 8.19, the
1-dimensional subspace Span{v;} has a complement M,. Select a unit vector
vy € M. In the Banach space M;, the 1-dimensional subspace Span{v,} has a
complement M3. Note that M3 is also a complement to Span{v;,v,} in V. Because
V has infinite dimension, proceeding by induction yields a properly descending
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sequence of subspaces M} D M, D ... and unit vectors v; € My such that vy & M ;.
Indeed, for each k € N the subspace

Ny = (Span{vi, ..., vi—1}) + Myt

is closed (by Proposition 8.23 or by noting that N is a complement to Span {v;} in
V) and v, & Ni. Therefore, by Exercise 6.59, there exists ¢, € V* of norm ||¢i| =1
such that ¢, (vy) # 0 and ¢(w) = 0 for all w € Ny—in particular, ¢, (vy) = 0 for all
£ # k.

Define, for each n € N, the finite-rank operator K,, on V given by

Knv = Zz_k(/’k(v)vk,
k=1
forveV.If m>nandv €V, then

I Kn—Kvl = 3 27 M) oell = ol 32 27 = [ull(sm—s.),

k=n-+1 k=n+1

J
where {s;};en is the sequence of partial sums s; = 22_" of the convergent series

k=1
[}

22_". Hence, {K,},en is a Cauchy sequence of compact operators, and so this

k=1
sequence converges to some compact operator K. If k € N is fixed and n > k, then

there is a nonzero o, € R such that K,,v; = ;v and so Kv, = lim, K,, vy = o ;.
This proves that the range of the compact operator K contains the countable set
{vi}ren of linearly independent vectors, which implies that K has infinite rank.

It is straightforward to prove that the norm closure F (V) of F(V) is also an ideal
of K(V)—and, hence, of B(V). Suppose now that J is a nonzero ideal of B(V).
Consider an arbitrary operator F' € F(V) of rank-1. By Exercise 8.60, there exist
(nonzero) w € V and ¢ € V such that F = F, ,,, where F, ,v = p(v)wforallv e V.
Because J # {0}, there are nonzero T € J and u € V such that Tu # 0; and, by
Corollary 6.23, there exists 7 € V* such that ¢ (Tu) = 1. Let S = Fy,,, TF, ,; because
J is an ideal, S is an element of J. However, Sv = ¢(v)w for all v € V implies
that S = F, and thus F € J. This proves that J contains every rank-1 operator.
Exercise 8.60 asserts that every finite rank operator is a (finite) sum of rank-1
operators, which implies that F(V) C J. Thus, because J is closed, F(V) C J. O

Theorem 8.35 above shows that W is a minimal ideal of B(V). Interestingly,
for certain separable Banach spaces V the ideal F(V) is a proper ideal of K(V),
while for other separable Banach spaces (such as separable Hilbert spaces) F(V)
coincides with K(V). An example of a space V in which F(V) is a proper ideal of
K (V) is given by P. Enflo in [24].
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8.7 The Spectrum of an Operator

Another instance whereby the theory of operators on Banach spaces takes a great
deal of inspiration from the theory of linear transformations is in the notion of
the spectrum of an operator, which is the algebraic analogue of the concept of
eigenvalue in linear algebra. However, owing to the possible infinite dimensionality
of the domain of an operator, the study of the spectrum in operator theory relies a
great deal more upon analysis than it does upon algebra. At the heart of the matter is
the development of a mathematical result for operator theory that essentially fulfills
the role that the fundamental theorem of algebra plays in linear algebra.

Earlier we determined that the linear inverse 7~! of a bijective linear operator
T : V — W between Banach spaces is also an operator. In the case where W =V, the
inverse operator T~! € B(V) satisfies T~'T = TT~! = 1, where 1 € B(V) denotes the
identity operator 1v = v, for v € V. This gives rise to the usual algebraic formulation
of inverse:

Definition 8.36. If V is a Banach space, then an operator T € B(V) is invertible
in B(V) if there exists an operator S € B(V) such that ST = TS = 1 (the identity
operator lv = v, forallv e V).

Of course, if such an operator S € B(V) in which ST = TS = 1 exists, then S is
necessarily unique and is denoted by 7!,
Recall, from linear algebra, the following theorem:

Theorem 8.37. If T is an operator acting on a finite-dimensional Banach space V,
then the following statements are equivalent for a complex number A:

1. X is an eigenvalue of T;
2. T — Al is not invertible in B(V).

The eigenvalue problem in linear algebra is settled by the characteristic poly-
nomial in the sense that the eigenvalues of a matrix 7 coincide precisely with
the roots A of the characteristic polynomial c7(z) = det(zl — T). Therefore, it is
a consequence of the Fundamental Theorem of Algebra is that every complex
matrix has an eigenvalue. Thus, the eigenvalue problem for matrices is as much
a problem in algebra as it is in operator theory. The corresponding theorem in
operator theory states that every operator on a Banach space has nonempty spectrum
(Theorem 8.42). One proof of the Fundamental Theorem of Algebra is via complex
analysis (specifically, Liouville’s Theorem on bounded entire functions) and, not
surprisingly, it is by a very similar route that Theorem 8.42 is proved.

Lemma 8.38. IfT € B(V) and A € C are such that |A| > ||T)|, then (T —A1)~" exists
and

lim |[(T—AD~!' =o0.
[A|—o00
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Proof. Observe that T—Al = —A(1— %T). By hypothesis, || %TH < 1; thus,

5 -
<\ ) TSt -

o0
and so the series Z/\_ka converges to some S € B(V) with ||§]| < % Because
k=0

! ! 1 1 k1

we conclude that S = (1 — —T) !, which implies that 7 — A1 is invertible. Moreover,

1 1
T-A)7'=—=(1-=-D" - '
I =)~ MW )”_W(FHN) AT=1T]

Hence, lim [[(T—AD)~!|=0. |
[A|—o0

Lemma 8.39. [fT < B(V) satisfies |T|| < 1, then

Il
=== —.
=7
o0
Proof. Lemma 8.38 shows that (1 =7)~" = 7" and [[(1 =D)7'|| < =
k=0
Further,
[o%s) o0
-a-n= -3 =y
k=0 k=1
o0
k=0
< |71 =17
Hence, |1 —(1-7)7"]| < ||T|| °

Lemma 8.40. IfT € B(V) and Ay & o(T), then (T — A1)~ exists for all A € C for
which |A—Ao| < (T —Ao1)™H| 7L
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Proof. Forall A € C such that |A—A¢| < [[(T—A¢1)™!||”", Lemma 8.39 asserts that
(14 (Ao —A)(T —A1)™") is invertible. However,

T—A1 =T —Aol = (ho— )1 = (T=201) (1 + (o= A)(T— A1) 7).,
Thus, (T — A1)~ exists for all A € C for which [A —Ao| < [(T—Ao1)™|| 7L |

Lemma 8.41. Suppose that T € B(V), ¢ € B(V)*, and Ay € o(T). There is an & >
0 such that if 2 ={A € C| |A—X¢| < &}, then 2N o(T) =@ and the function
f: 2 — Cdefined by f(A) = ¢ ((T—)Ll)_l) is differentiable at L.

Proof. Lete = ||(T—Ao1)~!|"! and £2 = {1 € C| | — A¢| < &}. By Lemma 8.39,
2No(T)=0.Definef:2 —-Cbyf(h)=9¢ ((T—M)_l). For every A € £2,

(T-A)""'—(T=2) ' =LA —=20) (T—A)T(T—=2o1)7").

This yields a difference quotient:

A__IAO (T=A)T = (T=20) ™) = (T=AD (T =AD"

This limit, as A — Ao, appears to be (T — Ao1)~2. This is indeed true, since
(T =201+ Ao =MD" = (T—=2o )™ + (Ao = D(T =27

<2|(T =2 D)7HPIA = Ao

Hence,
(D) —f(Ao) -2
lim —————= = o((T — Aol ,
P p((T—2Ao1)™)
which implies that f is differentiable at A, € C. O

We are now prepared to prove every operator 7 on a Banach space V has a
nonempty compact spectrum.

Theorem 8.42. If V is a Banach space and T € B(V), then o(T) is a nonempty
compact subset of {¢ € C||¢| < || T}

Proof. Lemma 8.38 shows that a(T) € {¢ € C||¢| < ||T||}; in addition, C\ o (T) is
an open set, by Lemma 8.40. Thus, o (T') is bounded and closed, and hence o (T) is
compact. It remains to show that o (7)) is nonempty.

Assume, contrary to what we aim to prove, that o(7') = @. Choose any ¢ € B(V)*
and let f : C — C be defined by f(1) = ¢((T —Al)™!). By Lemma 8.41, f is
differentiable at each Ay € C. Hence, f is holomorphic on C. Lemma 8.38 shows

that lim ||(T—A1)"!|| = 0; therefore, as ¢ is bounded, lim f(1) =0 as well.
[A|—00 |A]—o00
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On the compact set {¢ € C||¢| < ||T||}, the continuous map f is bounded, and on
the complement of this set f tends to 0 as |A| — oo. Therefore, f is bounded on its
entire domain C. But the only bounded entire functions are the constant functions.
Thus, there is a & € C such that f(1) = «, for all 1 € C. Because Alim f(A) =0, the

—00

constant o must in fact be zero. This, therefore, proves that ¢ ((T—A1)"!) = 0 for all
@ € B(V)* and A € C. By the Hahn-Banach Theorem, this implies that (T —A1)"! =
0, for each A, which is impossible since 0 is not invertible. Therefore, it must be that
o(T) # 0. O

The methods used to prove Theorem 8.42 also lead to the following continuity
assertion: namely, that the set-valued map T + o (T) is upper semicontinuous.

Proposition 8.43. If T € B(V), then for every open set U C C that contains o (T)
there exists 5 > 0 such that 0 (S) C U for every S € B(V) for which ||S—T|| < .

Proof. Assume that U is an open subset of C that contains the spectrum of 7. By
Lemma 8.38, the function A — ||(T —A1)~!| tends to 0 as |A| — oco. Hence, there
exists M > 0 such that [(T—A1) 7| <M forall A ¢ U.Let § = M~'. If S € B(V)
satisfies |S—T|| < 6, and if A € U, then

1 1
S—A)—(T-AD|=|S-T|<b=— < —/———.
(520 = (T=AD] = IS =T <5 = 37 < 1oy

The invertibility of 7 — A1 and this inequality above show, by Lemma 8.40, that
S — Al is invertible. Therefore, if A € o(S), then Acannot be exterior to U. O

Although o (T) lies in the closed disc of radius || 7| and centre 0 € C, there could
be a smaller disc with the same centre that contains o (7). The radius of the smallest
of such discs is called the spectral radius.

Definition 8.44. The spectral radius of T € B(V) is the quantity spr7 defined by

sprT = max |A].
P AGG(T)| |

Theorem 8.45. If T € B(V), then lim | T"||'/" exists and
n
sprT = lim ||| "/". (8.5)

Proof. If A € o(T), then

(T"=2"1) = (T—=A1) Y X' = [ Y N7 (T =A1).

j=1 J=1
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If 7" — A"1 were invertible, then by the equations above (T — A1) would have a left
and a right inverse and, thus, be invertible (Exercise 8.69). Therefore, T" — A"1 is
not invertible. Thus, A" € ¢ (T") and |A|" < || T"||. Hence,

sprT < limirr'nlf |7V
Let £2, A C C be the open sets
={eCl|¢|(sprT) <1} and A={AeC|A||T| < 1}.
Note that A C £2 because sprT < || T
Now, choose any ¢ € B(V)* and define f : £2 — C by

FQ) =g ((1-A1)7").

If A € A, then (1 —AT)~! is a geometric series (Lemma 8.38); hence,

fA) =D "A'e(T"), VAeA.

n=0

On the other hand, if { € §2 is nonzero, then

1 1

0 =zo(G1-n").
¢ \¢

By Lemma 8.41, f is differentiable at each nonzero point of A. Thus, since 0 € A C

£2, f is holomorphic on the disc §2. By the uniqueness of the power series expansion

about the origin, we obtain

o0
FQ =", Vief.
n=0
Hence, lim |¢(¢"T")| = 0 for every ¢ € §2. Thus, for each ¢ € §2 there is an M, > 0

such that |p({"T")| < M¢, forall n € N.

Now fix ¢ € £ and consider the family {¢"T" |n € N}. Because B(V) embeds
into B(V)** isometrically as a Banach space of operators on B(V)*, we consider the
family {¢"T" |n € N} as acting on B(V)* in this way—namely,

F'T" (p) = @(C"'T"), ¢ €B(V)™.

By the Uniform Boundedness Principle (Theorem 8.5), either there is an R; > 0 such
that ||¢"T"|| < R for all n € N or sup, [|{"T"¢|| = oo for a dense set of ¢ € B(V)*.
However, the latter situation cannot occur, since |@({"T")| < M, for all n € N.
Hence, there is an R; > 0 such that ||{"T"|| < R, for all n € N. Thus,

T < R
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Now choose a nonzero ¢ € §2. Therefore, sprT < 1/|| and

limsup,, Ré/ S|

limsup |T"|"/" < ———— = — |
n

Iq 14

Hence,
limsup || 7"]|'/* < inf 1 =sprT.
" te2\(o} |¢]
This proves that

limsup ||T"||1/” <sprT < liminf ||T"||l/".
n n

That is, lim ||7"||'/" exists and equals sprT. O
n

The next result concerns the relationship between the spectra of ST and TS.
Proposition 8.46. o (ST)U {0} = o (TS)U {0}, forall S,T € B(V).

Proof. If 1 — ST is invertible, then (1 —7S)(1 +7ZS) = 1+ 7Z8)(1 —-1T95) =1,
where Z = (1 — ST)~!. Interchanging the roles of S and T leads to: 1 — ST is
invertible if and only if 1 — TS is invertible. Hence, if A # 0, then ST — A1 is invertible
if and only if 7S — A1 is invertible. O

If X C C, and if f is a polynomial, then f(X) denotes the set {f(¢)|¢ € X}.
Theorem 8.47 (Polynomial Spectral Mapping Theorem). IfT € B(V), then

fo(T) =o(f(1))

for every complex polynomial f.

Proof. Let f be a complex polynomial and suppose that A € o(T). Let g(r) = f(f) —
f(X). As g(A) = 0, there is a polynomial & such that g(f) = (¢ — A)Ah(t). Hence,
f(M)—fM1=g(T)=T—-AD)WT)=nWT)(T—A1).Iff(T)—f (1)1 were invertible,
then these equations imply that 7 — A1 has a left and right inverse, from which we
would conclude that T — A1 is invertible (Exercise 8.69). Therefore, as T — A1 is not
invertible, it must be that f(T) —f(A)1 is not invertible. That is, f (1) € o (f(T)). This
proves that f (o (T)) € o (f(T)).

Conversely, suppose that o & f ((T)). Thus, @ # f(A), for all A € o(T). Let
h(t) = f(t) — w and factor h: h(t) = (t —w1)™ -+ (t — w,,)"™™. Since (A1) # O for all
A eo(T), A # w; for every j and A € o(T). That is, w; € o(T) for each j. The
factorisation £ leads to the following expression for A(T):

f(D)—wl=T—w )" (T —w,1)".

Because w; € o (N) for each j, f(T) — wl is a product of invertible operators and is,
hence, invertible. Thus, w € o (f(T)), and so o (f(T)) < f (o (T)). |
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8.8 Eigenvalues and Approximate Eigenvalues

By Proposition 8.8, an operator T on a Banach space V is invertible if and only if T
is bounded below and has dense range. This fact leads to the following definitions
for subsets of the spectrum.

Definition 8.48. Assume that T is an operator on a Banach space V.

1. The point spectrum of T is the set o,(T) of all A € C for which the operator
T — Al on V is not injective.

2. The approximate point spectrum of T is the set 0,,(T) of all A € C for which the
operator T— A1 on V is not bounded below.

3. The defect spectrum of T is the set o4(T) of all A € C for which the operator
T — A1 on V does not have dense range.

The elements of o,(T) are precisely the eigenvalues of T—that is, the set of
A € C for which there is nonzero vector v (called an eigenvector) such that Tv = Av.
The elements of 0,,(T) are called approximate eigenvalues of T. If A € 0,,(T) and
if {vi}ren 18 a sequence of unit vectors for which limy || Tvi — Av|| = 0, then the
vectors vy are called approximate eigenvectors.

Proposition 8.49. IfV is a Banach space and T € B(V), then o4(T) = op,(T™).

Proof. Suppose that A € o4(T); thus, ran (7 — A1) is a proper subspace of V. Let
W = V/ran(T — A1) and let ¢ : V — W be the canonical quotient map g(v) = v,
for v € V. Since W is nonzero, there exists v € W* of norm ||| = 1. Let ¢ € V*
be given by ¢ = ¥ o ¢ and note that ran (T — A1) C kerg. Thus, T*¢ = A, which
shows that A € o;,(T™).

Conversely, assume that A € op(T*). Thus, there exists ¢ € V* of norm 1 such
that T*¢ = Ag; that is, ¢(Tv — Av) = 0 for all v € V. If the range of T — A1 were
dense, then we would conclude that ¢(w) = 0, for all w € V, and this would imply
that ¢ = 0, by Corollary 6.23. But since ¢ # 0, the range of 7 — A1 cannot be dense.
Hence, A € 04(T). O

Proposition 8.50. If V is a Banach space and T € B(V), then o,,(T) is compact
and 90 (T) C o4p(T).

Proof. To show that 0,,(T) is closed, let A € C\oap(T). Thus, there is a § > 0 such
that || (T—AD)v| > §||v||, forevery v € V. Let e = §/2. If u € Csatisfies |A —pu| <e,
then, for every v € V,

S[oll = T =ADv[l = [T —puhv + (u =)ol < (T = pDv| + [A=pl]v]]

which implies that 7 — 1 is bounded below by §/2. Hence, the complement of
04p(T) is open, which proves that 0,,(7T) is closed. As o (T) is bounded, 0,,(7) is
compact.

Suppose that A € do(T). Therefore, there is a sequence A, € C\o(T) such that
|A, —A| = 0. If there were a y > 0 for which ||(T —A1,1)7"|| < y for every n € N,
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then it would be true that 7 — A1 is invertible (by Lemma 8.40). Specifically, if ng is
such that [A,, —A| < 1/y, then the distance between the invertible operator T — A, 1
and the operator T — A1 satisfies

”(T_)Ll)_(T_Anol)” :Mno_)Ll < 1/7/ < ||(T—/\,,01)71||71.

This would imply that 7 — Al is invertible, contrary to the fact that A € o (7).
Hence, it must be that {|[(7 —A,1)7"||},en is an unbounded sequence; that is,
T =2, D7~ — 0.

By definition of norm, for each n € N there is a unit vector w,, € V such that

_ _ 1
”(T_/\nl) 1” < ”(T_Anl) 1Wn" +;

Let

1

— (T—X,1)"'w,, VneN.
”(T_Anl) lwn“

v, =

Thus, ||v,|| = 1 and

1

T—Ay,=——"——— An—A)Uy.

R [ S R L
Hence,

1
(T = A, = — + A=A,
(T =4, D)=~ = (1/n)

which converges to 0 as n — oo. That is, A € 0p(T). O

Corollary 8.51. Every Banach space operator has an approximate eigenvalue.

We turn now to some sample calculations of the eigenvalue and approximate
eigenvalue problem.

Example 8.52. The eigenvalue problem / ( / f(u) dm(u)) dm(s) = Af(¢t), for

almost all t € [0,1], in the Hilbert space L*([0,1],9%,m) admits countably many
solutions {Ai }ren given by

4

= ——
T 2k—1)2n2

where each eigenvalue Ay has a corresponding eigenvector

fit) = 2isin(t/ /A1)
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Proof. Consider the unit square [0,1] x [0,1] C R? and denote by .#? and L?,
respectively, the spaces .Z2([0,1],9,m) and L?([0,1],9,m). Define a linear
transformation % : £ — %2 by

t 1
Hf () = /0 ( / f(s)dm(s)) am(t), fe L%

The linear transformation . induces an operator K : L? — L? in which || Kf|| < |If],
for all f € .#2. The eigenvalue problem Kf = Af in L? corresponds to an eigenvalue-
type problem in .#?: namely,

t 1
/ (/ f(w) dm(u)) dm(s) = Af(¢), for almost all t € [0, 1].
0 s

As the left-hand side of the equation above is twice differentiable almost every-
where, differentiation once leads to

lf

! d
/t fuw)dm(u) = A e

Differentiation a second time yields
d*f
drr’

Evaluation of the two differential equations above at the boundary values for ¢ gives

FO =f(1)=0. -

Notice that (Kg, g) > 0, for every ¢ € L?, and so 0 < (Kf.f) = A||f||* implies that
A > 0. Therefore, the general solution of Af” +f = 01s £(1) = e/ V* + ape~"/ V%,
But £(0) = f(1) = 0 implies that &, = —a;. Hence, f(f) = 2isin(r/+/A). To satisfy
both f # 0 and f'(1) = 0, it is necessary and sufficient that «/LX = 7(2k—1) for some
k € N. Hence, the eigenvalues of K are

B 4
- (2k—1)2n?’

—f=2

Ak keN,

and the corresponding eigenvectors f; € L? are determined by the functions f;(f) =

2isin(t//Ar). O

Recall that the essential range of an essentially bounded function ¢ : X — C on
a measure space (X, X, i) is the set ess-ranyr of all A € C for which

n (W) >0,

for every neighbourhood U C C of A, and that Proposition 5.45 shows that

ess-rany = ﬂ Y(E).

E€X, u(E)=0



8.8 Eigenvalues and Approximate Eigenvalues 301

Example 8.53. If (X, X, i) is a measure space, then the approximate point spec-
trum of the multiplication operator My on L (X, X, i), where 1 < p < oo, is given by

Oap(My) = ess-ran .

Proof. Recall from Example 8.1.7 that if Y € £*°(X, X, ), then My, is defined
by My,f = yf, for f € [P(X, ¥, ) and has norm |My || < ess-supy. If, in addition,
(X, X, u) is a o-finite measure space, then ||My, || = ess-sup ¥ ; however, this equality
is not required for the spectral calculation below, and so we need not assume
anything special of the measure space (X, X, ).

Suppose that A € ess-ranyr. Choose any ¢ > 0 and for each E € X for which
W(E) = 0 let Fg C E be the measurable subset of X defined by

Fg=v~"(B.(1)) NE.

Note that each Fg is nonempty because A € ¥ (E). Now let

F= U Fg

ECX, u(X\E)=0

and consider the function f = yp. Thus, u(F) > 0 and

1My —ADF )P = /FII/f(t)—kl” FOF du) < & |If|1”.

Hence, My — Al is not bounded below, which proves that A € 0,,(My). Thus,
ess-rany C o,y (My,).

Conversely, suppose that A ¢ ess-ran . Thus, there exists at least one E € X' such
that w(E°) = 0 and A € ¥ (E), and so there is a § > 0 such that |y (1) —A| > § > 0 for
all 7 € E. Since 0 = u(E°), |If||” = [ [fIP du, for every f € £P(X, X, ). Further,
for any f € P (X, X, ),

II(Mw—M)fIIP=/Izllﬂ—ll"lfl"dﬂ25"/Elf|pdu=5"llf||”-

Thus, My, — A1 is bounded below, and so A & 0,,(My;,). Hence, 0, (My ) C ess-ranyy,
which completes the proof that o,,(My ) = ess-rani. O

It can happen that M, has no eigenvalues. For example, if X = [0,1], ¥ = X,
i =m, and ¥ (t) = t, then Mv,f' = Af implies that 0 = 1 (1) — Af(¢) for almost all 1 €
[0, 1], which can only happen if f(f) = 0 almost everywhere. But, in this case, f = 0
in LP(X, X, u), thereby violating the requirement that an eigenvector be nonzero.
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8.9 The Spectra and Invariant Subspaces of Compact
Operators

The nonzero points of the spectrum of a compact operator behave rather closely to
the eigenvalues of a matrix, as shown by the Fredholm Alternative below.

Theorem 8.54 (The Fredholm Aternative). Assume that K is a compact operator
on a Banach space V and that A € C is nonzero. Then exactly one of the following
statements holds:

1. Kv = Av for some nonzerov € V.
2. K— Al is invertible.

Proof. Propositions 8.30 and 8.32 show that 1 —K is injective if and only if 1 — K is
surjective. Therefore, if A € C is nonzero, then replacing K by the compact operator
%K and using the fact that 0 (K) = 0, (K) U0y (K), we obtain A € 0;,(K) or A € o (K).

a

The Fredholm Alternative has implications for what properties the spectrum of a
compact operator may exhibit.

Theorem 8.55. If K is a compact operator acting on an infinite-dimensional
Banach space V, then

1. 0 e o(K),

2. each nonzero A € o(K) is an eigenvalue of finite geometric multiplicity,
3. o(K) is a finite or countably infinite set, and

4. if o (K) is infinite, then 0 is the only limit point of o (K).

Proof. The fact that V has infinite dimension implies that K(V) is a proper ideal
of B(V) (Theorem 8.35), and so no compact operator can possess an inverse. Thus,
0 € o (K).

Assume next that A € 0 (K) is nonzero. Theorem 8.54 (Fredholm Alternative)
asserts that A is an eigenvalue of K. By Proposition 8.25, the dimension of ker(K —
A1) must be finite.

To show that o(K) is a finite or countably infinite set, it is enough to assume
that o (K) is infinite and to prove that O is the only limit point of o (K). Therefore,
assume that o(K) is infinite. Assume that O is not a limit point of ¢(K). There
exist, therefore, 1 > 6 > 0 and a sequence {A,}, C o(K) (distinct elements) with the
property that |A,| > § for every n € N. Each A, is an eigenvalue of K; let v, € V
be corresponding eigenvectors of length 1. Fix m € N and let fi,...,f,, € C[f] be
polynomials such that f;(A;) = 0, for j # i, and f;(A;) = 1. (Such polynomials exist;
for example, one could use the Lagrange interpolation to construct them.) Therefore,

ifay,...,a, € Csatisfy Zajvj =0, then 0 = f(K) Zoq,-vj = Zajf(kj)vj, for
j=1 j=1 j=1

every f € C[f]. In particular, if f = f;, then 0 = «;v;, and so «; = 0. This proves that

the sequence {v,}, consists of linearly independent vectors.
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For each m € N let M,,, = Span{vy,...,v,}, which yields an ascending sequence
M, C M, C --- of finite-dimensional subspaces of V. By Lemma 5.19, there is a
sequence of unit vectors w,, € V such that w,, € M, 4, ||w, —u|| > 6 for all u € M,,,
and ||w, —w,|| > 6 if m # n. Each subspace M, is spanned by eigenvectors of K;
thus, K maps M, back into itself. Therefore, K — A,,1 maps M,, into M,_;, by the
following calculation:

n n n—1
K= D) [ D v | =D (= Anvy = Dok = vy

j=1 j=1 j=1
Therefore, if £ < n, then u = Kwy; — (K—A,1)w, € M,,_,. Hence,

1Kwy = Kwell = | 2awy + (K = Ay )wy = Kwel| = [ dgws —ull = 2] W — L-ul

> |8 > 82> 0.

This means that {Kw,},, does not admit a convergent subsequence, in contradiction
to the compactness of K. Therefore, it must be that 0 is a limit point of ¢ (K). The
same argument shows that no nonzero A € ¢(K) could possibly be a limit point of
o(K). O

Definition 8.56. If . C B(V) is a nonempty subset, then a subspace M C V is
invariant for . if Sv € M for all § € . and v € M. If an invariant subspace M for
. is neither {0} nor V, then M is a nontrivial invariant subspace for .. The set of
all subspaces M C V that are invariant under . is denoted by Lat. and is called
the invariant-subspace lattice of ..

If .7 is a singelton set . = {T'}, for some operator T on V, then the notation
LatT is used in place of Lat.&.

One of the most basic examples of invariant subspaces comes from eigenvectors
(if they exist): if for some nonzero v € V and A € C one has Tv = Av, then the
1-dimensional subspace Span{v} is T-invariant. Indeed, if A is an eigenvalue of 7,
then entire eigenspace ker(7 — Al) is T-invariant. More generally, ker(7 — A1)* €
LatT for every k € N.

Definition 8.57. A subspace M C V is hyperinvariant for an operator T € B(V) if
M is an invariant subspace for {T}’, where

{TY ={SeB(V)|ST =TS}.
Because T € {T}’, any hyperinvariant subspace for T is an invariant subspace
for T.

Proposition 8.58. If A is an eigenvalue of T, then ker(T — A1) is hyperinvariant
forT.

Proof. Exercise 8.77. O



304 8 Banach Space Operators

The existence of nontrivial invariant subspaces depends on both the particular
Banach space at hand and on the size of the set .7 of operators. But even if . is a
singleton set . = {T}, the operator T may fail to admit any nontrivial invariant
subspaces [46]. It is still an open problem whether every operator acting on a
separable Hilbert space has nontrivial subspaces. A positive result, however, is the
following theorem of Lomonosov.

Theorem 8.59 (Lomonosov). If K € B(V) is a nonzero compact operator on
an infinite-dimensional Banach space V, then K has a nontrivial hyperinvariant
subspace.

Proof. Because K # 0, we may assume without loss of generality that || K| = 1.

If K has an eigenvalue A, then ker(K — A1) is hyperinvariant for K. If A # 0, then
the compactness of K implies the finite dimensionality of ker(K — A1), which means
that this hyperinvariant subspace is indeed nontrivial. If A = 0, then K # 0 implies
that ker K # V, and so again ker K is a nontrivial hyperinvariant subspace.

Assume, therefore, that K has no eigenvalues. Let vy € V be any vector for which
|[Kvg|| > 1. Observe that, because ||K|| = 1, the norm of vy necessarily satisfies
|lvg]l > 1. Let U be the open set U = {v € V||[v —vg|| < 1} and for each S € {K}’
let Wy be the open set Wy = S~ (U) = {v € V|||Sv —vo|| < 1}. If v € U, then
|lv—vp]l <1 and so ||Kv — Kvg|| < 1. Therefore, the condition ||[Kvy| > 1 implies

that the zero vector does not belong to K(U) or its closure C = K(U), which by
the compactness of the operator K is a compact subset of V. Hence, C is a compact
subset of V' \ {0}.
Because ||vg|| > 1, the zero vector neither belongs to U nor to any of the open
sets W, for S € {K}'. Thus, 0 ¢ U Ws. Suppose, though, that U Ws = V\{0}.
Se{K} Se{K}
Thus, {Ws}seixy is an open cover of the compact set C and so there are Si,...,S, €

{K} such that C C U Ws;. The vector Kvy is an element of K(U) and, hence, of
j=1

C; thus, Kvg € W, for some ij € {1,...,n}. Thus, S;, (Kvo) € U and KS; Kvy €

C, which therefore implies that KS; Kvg € Wsl.z, for some i, € {1,...,n}, and that

S;,KS;,Kvg € U. Continuing inductively and using the fact that S;K = KS; for all j

we deduce that for every m € N there is an i,,, € {1,...,n} such that

S,‘mS,‘m_l "'S,‘leU() = S,‘mKS,'m_l "‘SilKUQ eU.

Now if @ = max; ||S;|| and if S'ik = éS,-k, then

S’,-mS’im,l ---Sil (aK)’"vO eU

and is of norm no greater than ||(¢K)™|| [|vo|l. The fact that K has no eigenvalues
implies, by the Fredholm Alternative, that the spectrum of K is the singleton
set 0(K) = {0}. Therefore, o («K) = {0} which implies, by the Spectral Radius

Formula, that 0 = lim,, ||(@K)™||'/™. Hence, lim,, ||(@K)™|| = 0 which in turn
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implies that 0 € U because S‘[mg --S‘,-] (xK)™vy € U for all m. However, this
conclusion is in contradiction to 0 & U. Therefore, the assumption that U Ws =
Se{Ky
V'\ {0} cannot be true, and so there is at least one nonzero vector v € V for which
v & Wy for every S € {K}'.
With this vector v define a subspace M of V by

Im—1

M=1Sv[S e KV}

Note that M is hyperinvariant for K and that 0 # v € M, thus, the only question
is whether M # V. If it so happened that M = V, then {Sv|S € {K}'} would be
dense in V, and in particular there would exist some operator S € {K}' for which
|[Sv — vl < 1. However, this can never happen because v & Wy for every S € {K}'.
Hence, M # V. |

Problems

8.60. Recall that an operator 7' € B(V) has finite rank if the range of T has finite
dimension. In such cases, the rank of T is defined to be the dimension of the range
of T.

1. Prove thatif y» € V* and w € V are nonzero, then the operator Fy,,, on V defined
by Fy..(v) = ¥ (w)v is of rank 1.

2. Prove that if F is a rank-1 operator, then there exist nonzero ¥ € V* and w € V
such that F' = Fy .

3. Prove that if T has finite rank n € N, then there are rank-1 operators F,...,F, €

B(V) suchthat T = ZF]
j=1

8.61. Prove thatif V and W are Banach spaces, then every operator 7 : V — W that
is bounded below will have closed range.

8.62. If ¢ € £*°(X, X, u) has the property that |¢(x)| = 1 for almost all x € X,
then show the multiplication M,, : L (X, ¥, u) — LP(X, X, ), for a fixed p € [1, 00),
defined by

M(p (f) = <ﬂf
is an isometric operator.

8.63. Let H be a Hilbert space and suppose that £, &, € H, k € N, satisfy

klggo(ék,n) = (.n), VneH.
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1. Prove that the set S = {& | k € N} is uniformly bounded.
2. Prove that ||| < liminf; ||&].

8.64. Prove that if E and F are idempotents acting on a Banach space V, then E+ F
is an idempotent if and only if EF = FE = 0.

8.65. Prove that the range of an idempotent operator £ on a Banach space V is
closed.

8.66. Suppose that V is a Banach space and that T € B(V) is invertible. Prove that
I~ = 7).

8.67. Prove the following properties of the adjoint 7" of an operator T € B(V, W):
LT =TIl

2. (T +Ty)* =T} +T%,

3. if T is invertible, then T* is invertible and (T*)~! = (T~!)*, and

4. if W =V, then (T\ To)* = TS T}

8.68. Let V be a Banach space and consider V as a subspace of V**. Define T** to
be (T*)*. Prove that the restriction of 7** to V is T. That is, T**|, =T.

8.69. Assume that R,S,T € B(V) satisfy ST = TR = 1. Prove that T is invertible.
8.70. Prove that the following operators are compact:

1. aK, for every a € C and all compact operators K;

2. K1 + K>, for all compact operators K; and K3;

3. KT and TK, for all compact operators K and all T € B(V);
4. F, for all F € B(V) with finite-dimensional range;

8.71. Let X be a compact Hausdorff space, select ¢ € C(X), and let Ty, : C(X) —
C(X) be the operator of multiplication by y: Ty = yf, for all f € C(X). For each

AeC,letK), ={teX|y¥(t) # A} (the closure in X).

1. Prove that {t € X | ¥ () # A} is an open set, for every A € C.
2. Prove that if A € 0,(Ty ) if and only if K # X.

8.72. Assume that p,q € (1,00) satisfy 1/p + 1/q = 1. Define a linear transforma-
tion S : £#(N) — £7(N) by

U1 0
U2 o1V1

Sv =S U3 = | %@V [ Vvel’(N),
V4 o3V3

where {o; }reny C C is a sequence for which supy |ax| < oo.

1. Prove that S is an operator on £”(N).
2. Determine an explicit form for the adjoint operator S* on £9(N).



Problems 307

3. If ap; = 0 and apj—; = 1, for all j € N, then compute ||S].
8.73. Prove that |1— (A1 —=T)"'(S—T)| > 1,if S,T € B(V) and A € 6(S) No (T)".

8.74. Prove that an operator K on a Banach space V is compact if and only if the
set {Kv|v €V, |[v]| = 1} has compact closure.

8.75. Consider the unit square X = [0,1] x [0,1] C R?, and let k € C(X). Fix 1 <
p < oo and let I” denote L7(]0,1],m) (Lebesgue measure). Consider the integral
operator T, € B(L?).

1. Prove that if k is a polynomial, which means « has the form

m n
k(t,s) = Z ozijtis/, for some o5 € C,
i=0 j=0

then T, is an operator of finite rank.

2. If k € C(X) is arbitrary, prove that for every & > 0 there is a polynomial g € C[t, s]
such that |« (¢,5) — q(t,5)| < ¢, for all ,5s € [0, 1].

3. If k € C(X) is arbitrary, prove that for every & > 0 there is a finite rank operator
F € B(L”) such that ||T, — F|| < ¢.

Prove that if S, T € B(V) satisfy ST = TS, then

8.76. Prove that if 7 € B(V) satisfies TK = KT for every compact operator K, then
T = Al for some A € C.

8.77. Prove that if A is an eigenvalue of 7, then ker(7 — A1) is hyperinvariant for 7.

8.78. Suppose that T € B(V). Prove that if V has finite dimension or is nonsepara-
ble, then 7 has a nontrivial hyperinvariant subspace.

8.79. Determine the hyperinvariant subspaces of the operator S on £(n) given by

01 0 - 07
00 1
S=lo00 0

-
[0... ... 00_




Chapter 9
Spectral Theory in Banach Algebras

A Banach algebra is an associative algebra A with a norm || - || such that A is a
Banach space in this norm, and the norm satisfies ||xy|| < ||x||||y]| on all products
xy of elements x,y € A. Two examples of Banach algebras encountered to this point
are: (i) C(X), the algebra of continuous functions on a compact Hausdorff space
X, and (ii) B(V), the algebra of all bounded linear operators acting on V. A third
class of Banach algebras has also been encountered, but the algebraic structure of
these algebras has not yet been studied; these are the Banach algebras L (X, X', ),
whose algebraic structure is noted in Exercises 9.43 and 9.44.

In the case of the algebra B(V), the notion of spectrum for Banach space
operators was analysed in detail in the Chapter 8, motivated by the notion of
eigenvalue from linear algebra. However, the initial properties of the spectrum of an
operator T carried out in Chapter 8 made little or no specific reference to the action
of T on the space V, but rather made reference to the behaviour of T as an element
of the algebra B(V). Following this mode of thinking, the present chapter develops
spectral theory within the general context of Banach algebras, and concludes with a
few applications.

9.1 Banach Algebras

Recall from Definition 5.25 that a Banach algebra is a complex associative algebra
A together with a norm || - || on A such that |lxy|| < ||x||||y||, for all x,y € A, and A is

a Banach space under the norm || - ||. Furthermore, if A is a unital algebra, then A is
a unital Banach algebra if ||1]| = 1. A Banach algebra A is abelian if xy = yx for
every x € A.

The submultiplicativity of the norm, which is to say that ||xy|| < |lx]|||y]|, for all
X,y € A, ensures that multiplication is a continuous map A x A — A (Exercise 9.45).
The natural maps between Banach algebras are homomorphisms.
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Definition 9.1. If A and B are Banach algebras, then a function ¢ : A — B is

1. a homomorphism, if ¢ is a bounded linear operator and ¢ (xy) = ¢ (x)¢ (y) for all
x,y €A, and is
2. an isomorphism, if ¢ is a bijective homomorphism.

If A and B are unital Banach algebras, then a homomorphism ¢ : A — B for which
¢(14) = 1p is called a unital homomorphism.

Definition 9.2. Suppose that A is a unital Banach algebra.

1. An element x € A is invertible if there is an element y € A such that xy = yx = 1.
2. The spectrum of an element x € A is the set o (x) defined by

o(x) = {A € C|x—Al is not invertible in A}.
3. The spectral radius of x is the quantity sprx defined by

sprx = sup |A]|.
A€o (x)

As with operators in the Banach algebra B(V), if an element x € A is invertible,
then the element y € A for which xy = yx = 1 is necessarily unique and is denoted by
x~ 1 and is called the inverse of x. Furthermore, the results about invertible operators
and their spectra established in Section 8.7 made use only of the fact that B(V) is a
unital Banach algebra—that is, at no point was the action of an operator 7 on the
Banach space V considered. Therefore, the results of Section 8.7 carry over to unital
Banach algebras verbatim, including the following theorem.

Theorem 9.3. If A is a unital Banach algebra and if x,y € A, then

1. x is invertible if |1 —x|| < 1,

2. 0(x) is a nonempty compact subset of {A € C||A| < ||x]|},
3. o(xy) U{0} = o (yx) U{0}, and

4. sprx = lim,, ||x"|"/"

Recall that a division ring is a unital ring in which every nonzero element has an
inverse. Fields are of course division rings, but there exist division rings, such as the
ring of quaternions, that are nonabelian.

Corollary 9.4 (Gelfand-Mazur). [f a unital Banach algebra A is a division ring,
then A is isometrically isomorphic to the Banach algebra of complex numbers.

Proof. If x € A, then x has at least one spectral element A € o(x). Hence, x — A1
is not invertible. Because A is a division ring, it must be that x — A1 = 0, and so
x = Al. Note that |A| = || x| and that the map x > A is an isometric isomorphism of
A with C. |

Proposition 9.6 below adds to the list of Banach algebra properties mentioned
above in Theorem 9.3.
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Definition 9.5. If A is a unital Banach algebra, then the general linear group of A
is the set GL(A) consisting of all invertible elements of A.

Proposition 9.6. If A is a unital Banach algebra, then

1. GL(A) is a multiplicative group,
2. GL(A) is an open subset of A, and
3. the inverse map x — x~" is continuous on GL(A).

Proof. The set GL(A) is evidently a multiplicative group in the product of A, and
so we now prove that GL(A) is an open set. Select x € GL(A). If y € A satisfies
Iy =l <Ilx~"[I7", then

=2yl = ™ =)l < M=yl < 1,

and Proposition 9.3 shows that x~'y is invertible. Thus, y = xg for some g € GL(A),
implying that y is invertible. Hence, GL(A) is an open set.

Suppose now that x € GL(A) and that ¢ > 0 is given. Select § > 0 such that
§ < |lx 7 (1 4+&"|x7'|)~! and suppose that y € A satisfies ||y —x|| < §. Because
8 < ||x~1||7", the previous paragraph shows that y € GL(A). Furthermore, since ||1 —
Tyl <1,

o0
Ylx=GTy) T =) —xTy)n
n=0
implying that
o0 o
y—l — (Z(l _x—ly)n> X_l — x—l + Z(l —x_ly)"x_l.
n=0 n=1
Therefore,

o0
_ _ — —1
= =2 < DY e =y

n=1

o0
I 2=y Y e =yl

n=0

_ P =yl
=[x —yll

Thus, |x—y| <8 < |x7 7' 4+ Hx7 )~} yields

-1 —1y,—1)2 -1
™ e ™ {17 < flx—yll
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and

[lx~"11?

=[x flx =yl
-1 —1
o <=yl =l =

llx=yll

Hence, if ||y —x|| < 8, then |y~' —x7!|| < &, thereby proving that inversion is

continuous. O

Corollary 9.7. The group of invertible operators acting on a Banach space is an
open set.

Definition 9.8. If A is a Banach algebra, then a subset B C A is a Banach subalgebra
of A if B is a Banach algebra in the norm and the algebra operations of A. If A is a
unital Banach algebra and a Banach subalgebra B of A contains the multiplicative
identity of A, then B is a unital Banach subalgebra of A.

If B is a unital Banach subalgebra of a unital Banach algebra A, and if x € B, then
there are two possibilities for the spectrum of x:

1. a spectrum denoted by o4 (x) consisting all A € C for which x— A1 has no inverse
in A, and

2. aspectrum denoted by o(x) consisting all A € C for which x— A1 has no inverse
in B.

Evidently, if x — A1 is invertible in B, then it is invertible in A. Hence, C \ op(x) C
C\ 04 (x), implying that 64 (x) C op(x). On the other hand, if x € B is invertible in A,
there it can happen that x~! & B. A concrete case of this is provided by the following
example.

Example 9.9. Suppose that D is the open unit disc in C, and let A(D) denote the
disc algebra

AD) = {f|f € C(D) and fip is an analytic function},
which is a unital Banach subalgebra of C(dD). If f € A(D) is given by f(z) = z, for
z €D, then f is invertible in C(0D), but not in A(D).

Proof. The function inverse of the function f in the algebra C(dD) is precisely the
function f~!(z) = z. However, the map z > 7 is not analytic on ID, which implies
that /=1 ¢ A(D). O

The most general assertion relating the spectra o4 (x) and op(x) is given below.

Proposition 9.10 (Spectral Permanence). If B is a unital Banach subalgebra of
a unital Banach algebra A, then

oa(x) € op(x) and dop(x) S doa(x)

for every x € B.
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Proof. The inclusion 04(x) C op(x) has already been noted. By definition of
boundary, if A € dog(x), then there is a sequence of distinct points A, € (C\ op(x))
such that |A — A;| — 0. Therefore, each x — A;1 is invertible in A and

lim [[(x—Al) — (x—A,1)|| = 0.
k—o00

Suppose that it is not true that A € g4(x). Then the element x — A1 is invertible in
A and is a limit of invertible elements x — A;1. Therefore, using the continuity of
inversion in GL(A) (Proposition 9.6), we have that

Jim [x=AD == D)7 Y = 0.

However, each (x —A;1)~" is an element of B, and therefore (x —A1)~! € B also,
in contradiction of the fact that x — Al has no inverse in B. Therefore, it must be
that A € g, (x). Furthermore, because A = limy A and each A, lies outside o4 (x), we
deduce that A € do4(x). O

It sometimes happens that equality in the spectral inclusion o4 (x) € og(x) is
achieved.

Proposition 9.11. If B is a unital abelian Banach subalgebra of a unital Banach
algebra A, and if B has the property that
{yeA|yz=zy, forall z€ B} CB,

then o4(x) = op(x), for every x € B.

Proof. Let x € B; the inclusion g, (x) € op(x) is known from Proposition 9.10.
Therefore, suppose that A € 04(x). Thus, for some y € A, (x—Al)y = y(x—Al) = 1.
Thus, for any z in the abelian algebra B, we have z(x— A1) = (x— A1)z, and so

vz =yz(x—Al)y = y(x— Al)zy = 2y.
Therefore, by the hypothesis on B, y must be an element of B, which shows that
A € op(x). Hence, ag(x) C 04(x). O

The algebra B that appears in Proposition 9.11 is called a maximal abelian
subalgebra of A.

Definition 9.12. A unital Banach subalgebra B of a unital Banach algebra A is
called a maximal abelian subalgebra of A if

1. Bis abelian, and
2. {yeA|yz=zy, forallz€ B} CB.
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9.2 Ideals and Quotients

As was the case with B(V), it is interest to consider two-sided ideals of Banach
algebras.

Definition 9.13. An ideal of a Banach algebra A is a subset J C A such that

1. J is a subspace of A, and
2. axeJandxa e JforallaeJand x € A.

Furthermore, if an ideal J of A is satisfies J # A, then J is said to be a proper ideal
of A.

As we had done in our study of the Banach algebra B(V), if a linear submanifold
J of A satisfies ax € J and xa € J for all a € J and x € A, then J is called an algebraic
ideal of A.

Example 9.14. Suppose that X is a compact Hausdorff space, and let A be any
Banach subalgebra of C(X). If Y C X is a closed subset of X such that Y # X, then
the set

Jy={fe€A|f(t) =0, foreveryte Y}

is an ideal of A. Furthermore, if A is unital, then Jy is a proper ideal of A.

Proof. If f € Jy and g € A, and if ¢ € ¥, then fg(r) = f(¢)g(t) = Og(¢) = 0, which
implies that fg € Jy. Likewise, aif] + aof> € Jy, for all fi,f> € Jy and oy, € C.
Thus, Jy is an algebraic ideal of A. To show that Jy is closed, observe that, if f € Iy,
and if {f,,},,en is a sequence in Jy converging in A to f, then for every ¢ € Y and every
n € N, the inequality

FOI=lF@O—LO1 < If =fll

implies that f(#) = 0. Hence, Jy is an ideal of A.
If A is unital, then 1 & Jy because 1(f) = 1 # 0, for every ¢ € Y. Hence, Jy # A,
which implies that Jy is proper. O

Proposition 9.15. IfA is a Banach algebra, and if J is an algebraic ideal of A, then
J is an ideal of A. Moreover, if A is unital and if the algebraic ideal J satisfies J #A,
then |1 —x|| > 1, for every x € J, and J is a proper ideal of A.

Proof. By continuity of multiplication, scalar multiplication, and sum, the set J is
also an algebraic ideal of A.

Suppose that A is unital and J # A. If there were an element x € J such that
[1—x| <1, then x would be invertible, and so 1 = x~'x would be an element of
J, implying that J/ = A, which is in contradiction to the hypothesis on A. Hence, it
must be that |1 —x|| > 1, for every x € J. Therefore, it is also true that |1 —y| > 1
for every y € J. Hence, 1 ¢ J, which implies that J is a proper ideal. O
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If J is an ideal of a Banach algebra A, then A/J is a Banach space in the quotient
norm. The following result shows that the quotient space is also a Banach algebra.

Proposition 9.16. If J is an ideal of a Banach algebra A, then A/J is a Banach
algebra with respect to the quotient norm and multiplication defined by xy = (xy).
Furthermore, if A is a unital Banach algebra and J # A, then A/J is a unital Banach
algebra.

Proof. The fact that xy = (x.y) is a well-defined associative product on A/J is a
simple standard fact from ring theory. It is also clear that A/J is not just a ring, but
an associate algebra as well. By Proposition 5.18, A/J is a Banach space. Therefore,
the only issue left to address is the submultiplicativity of the quotient norm.

If x,y € A, then

)|l = inflxy—al < inf |(x—a)(y—b)||
aclJ a,beJ

(gnx—an) (;ggnxy—bn)

= (I 131-

IA

Now if A is a unital Banach algebra with J # A, then lisa multiplicative identity
for the ring A/J. Furthermore, Theorem 9.3 states that a is invertible for every
element a € J that satisfies |1 —al|| < 1. However, as J # A, the ideal J contains
no invertible elements. Hence, |1 —a|| > 1 for every a € J, and so

1> i =inf[1—a| > 1,
a€J

implying that A is a unital Banach algebra. O
Definition 9.17. An ideal N of a Banach algebra A is a maximal ideal if

1. N is a proper ideal of A, and
2. M = N, for every proper ideal M of A for which N C M.

Example 9.18. If X is a compact Hausdorff space, and if xy € X, then the set

Ty = {f € C(X) | (x0) = 0}

is a maximal ideal of C(X).

Proof. The point set {xo} is closed in X; thus, Example 9.14 shows that Ji,, is a
proper ideal of C(X). Suppose that M is an ideal of C(X) such that Jg,,; €M and
M # J,3- Select h € M such that h & Jy,1; therefore, h(xo) # 0.

On the Banach algebra C(X)/Jy,, define a function ¢ : C(X)/J,; — C by
#(8) = g(xo). If g1,8> € C(X) satisfy g1 = g2, then g (xo) = g2(xp), and s0 ¢ is a
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well-defined function. Indeed, ¢ is a unital, surjective homomorphism. Let A = m;h);

as ¢ is surjective, there is a k € C(X) /Jixo) such that A = ¢(k). Hence,

p(khy = ¢ (k)p(h) = 1 = p (1),

which implies that 1 — kh € ker¢; that is, 1 —kh € Ji,. Since h € M and Ji,; C M,
we deduce that 1 € M, and so M = A. Therefore, the ideal Jy,,, is maximal. |

As with rings (such as the ring of even integers), some Banach algebras may fail
to possess a maximal ideal. However, in the case of unital Banach algebras, maximal
ideals always exist.

Proposition 9.19. [f J is a proper ideal of a unital Banach algebra A, then there
exists a maximal ideal N of A such that J C N.

Proof. Let G be the set of all proper ideals 7 of A such that J € [ and I # A. Define a
partial order < on & by I < K if I,K € G satisfy I C K. Suppose that € is a linearly

ordered subset G. Define K = UI . Because € is linearly ordered, the set UI is

Ie¢ Ie¢
an algebraic ideal of A; hence, K is an ideal of A. If it were true that K € &, then K

would be an upper bound for €. Therefore, G would satisfy the hypotheses of Zorn’s
Lemma, implying that G has a maximal element N. Clearly a maximal element N
of G is a maximal ideal of A.

Therefore, all that is left to prove is that K € G. To this end, note that J/ C K, and
so it remains to show that K # A. Assume, on the contrary, that K = A. Since U Iis

Ie¢
dense in K, there exists I € € and y € I such that |1 —y|| < 1. On the other, because

I # A, we have that |1 —y|| > 1 (Proposition 9.15), in contradiction to |1 —y|| < I.
Hence, it must be that K # A. O

9.3 Abelian Banach Algebras

The study of unital abelian Banach algebras is very closely related to the space of
maximal ideals in such an algebra, and maximal ideals arise from a special type of
homomorphism which is called a character.

Definition 9.20. If A is a unital abelian Banach algebra, then a unital homomor-
phism p : A — C is called a character of A.

Proposition 9.21. Suppose that A is a unital abelian Banach algebra. If p is a
character of A, then ker p is a maximal ideal of A. Conversely, if N is a maximal
ideal of A, then there exists a unique character p : A — C such that N = ker p.

Proof. The kernel of every homomorphism of A is an ideal of A and the map
p:A/kerp — C in which p(x) = p(x) is a well-defined isomorphism of Banach
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algebras. Hence, A/kerp is a field. If M C A is an ideal of A that properly contains
ker p, then there is an x € M such that X is nonzero in A/ Kker p. Because A/kerp is
a field, there is a y € A such that y = x~!. Thus, xy—1 € kerp C M yields 1 € M
(because xy € M), and so M = A. Hence, ker p is a maximal ideal of A.

Conversely, suppose that N is a maximal ideal of A. Select a nonzero x € A/N;
thus, x € N. Define

My ={ax+ylacA, yeN}.

Evidently, M is an algebraic ideal of A, and so M = M, is an ideal of A that contains
N. As x € M and x ¢ N, the maximality of N implies that M be must A. Hence,
there are a € A and y € N such that |1 — (ax +y)|| < 1. Passing to the quotient and
noting that y = 0, we deduce that |1 —ax|| < 1, and so ax is invertible. Hence, there
exists z € A such that (ax)z = 1. The commutativity of A yields x(az) = (az)x = i,
implying that x is invertible. Therefore, A/N is a division ring. By the Gelfand-
Mazur Theorem, there is an isometric isomorphism @ : A/N — C. Thus, if 7 : A —
A/N is the canonical quotient homomorphism given by 7 (x) = x, for all x € A, then
p = U ox is a character on A with kernel kerp = N.

To prove the uniqueness of p, suppose that p : A — C is a character such that
ker p = ker p. For every x € A, the element x — p(x)1 belongs to ker p. Therefore,
x— p(x)1 also belongs to ker p, which implies that

0=px—px)1) = px)—px),

and so p = p. O

Proposition 9.21 identifies a bijective correspondence between maximal ideals
and characters, which leads to a bijective correspondence between the sets .#4 and
Ay, defined below.

Definition 9.22. If A is a unital abelian Banach algebra, then

1. the maximal ideal space of A is the set
My ={N C A|N is a maximal ideal of A}, and
2. the character space of A is the set
Ay = {p € A¥| pis a unital homomorphism A — C}.

An important fact about the character space is that it is a compact Hausdorff
space.

Proposition 9.23. The character space Zx of a unital abelian Banach algebra is a
weak™-compact subset of the unit sphere of the dual space A* of A.
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Proof. If p € Zy, then p(1) = 1 and, thus, ||p|| > 1. Suppose it is true that ||p|| > 1;
thus, there exists x € A with ||x|| = 1 and p(x) > 1. Let z = p(x)~'x. Because

=290 L

1
) T px)

o0
the series Zz” converges in A to an element y that satisfies y = z 4 zy. Thus, p(y) =
n=1
p(z) + p(z)p(y) = 1+ p(y), implying that 0 = 1. Therefore, it must be that || p| = 1,
which proves that %, is a subset of the unit sphere of A*.
To prove that %, is weak™*-closed, suppose that € A* is in the weak*-closure
of A*. Thus, if x,y € A and & > 0, then the weak*-open neighbourhood

U={pcA™lp(2)— V()| <& z€{l.xyx}}

intersects %4, and so there exists p € Z, such that p € U. Thus,
19 (xy) =2 ()P ()] < |9 (xy) — p(ey) [+ [p(Y) =P )| [p(x)]
+lp() = ()| |9 ()
< e(l+ [l + 121 IylD-

Hence, as ¢ > 0 is arbitrary, 9 (xy) = ¢ (x)¥ (), which proves that ¥ is a character
on A.

The unit ball of A* is a weak™*-compact and Hausdorff; hence, the weak*-closed
subset %4 has these same two topological properties. O

Let]: %Zs — 4 be defined by I(p) = ker p. By Proposition 9.21, [ is a bijection.
Therefore, using Proposition 9.21, one can endow the maximal ideal space .#4 with
a topology 7 via

T ={U C My |I""(U) is open in %y},

where %, has the weak*-topology.

Proposition 9.24. The maximal ideal space .# of a unital abelian Banach algebra
A is a compact Hausdorff space.

Proof. The map I : #, — .#} is a homeomorphism. |

The importance of characters in spectral theory is demonstrated by the following
result.

Proposition 9.25. If A is a unital abelian Banach algebra, and if x € A, then

o (x) ={p(x)|p € Zaj}.
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Proof. If p € Z4 and A = p(x), then (x— A1) € ker p. Because ker p is a proper ideal
of A, it contains no invertible elements. Hence, A € o (x).

Conversely, suppose that A € o(x). Because x — Al is not invertible, there is a
maximal ideal N of A such that x— A1 € N (Exercise 9.51). By Proposition 9.21,
there exists a character p : A — C such that ker p = N. Hence, p(x) = A. O

The following result is a basic application of Proposition 9.25 that is useful for
studying equations in Banach algebras. (See Exercise 9.48, for example.)

Proposition 9.26. If A is a unital Banach algebra, not necessarily abelian, and if
X,y € A satisfy xy = yx, then

ox—y) SiA-—plreal), pea(y)}.

Proof. Suppose that there exists a maximal abelian subalgebra B of A that contains
both x and y. In this case, Proposition 9.11 shows that o (z) = 0(2), for every z € B.
In particular, with z = x —y, this fact and Proposition 9.25 yield

o(x—y) = op(x—y) ={p(x—y)|p € Zp} = {p(x) —p(y) | p € %Zp}
C{A—pnlAeopx), peog(y)}

={A-plreok). pea@)}.

Therefore, we need only establish the existence of the maximal abelian subalge-
bra B.
If A itself is abelian, then take B = A. Thus, assume that A is nonabelian and let B,
m n

be the closure of the unital abelian algebra of all elements of the form Z Z aijj Y,
j=0 k=0

where each o, € C. Thus, By is a unital abelian Banach subalgebra of A. Let &

denote the set of all unital abelian Banach subalgebras C of A for which By C C.

The set G is nonempty, as By € &. Let < be defined by C; < Cy, if C;,C, € &

satisfy C; € C,. Suppose that £ is a linearly ordered subset of &, and define C to

be the closure of U C. By continuity of the algebraic operations, C € & and is an

ces
upper bound for £. Hence, by Zorn’s Lemma, G has a maximal element B.

To show that B has the property {a € A|az = za, for all z € B} C B, select an
element a € A for which az = za, for every z € B. Thus, the closure B of the set
{f(@z1+22]21,22 € B, f € C[1]} is a unital abelian Banach subalgebra that contains
By. Since, B C B, and because B is maximal in &, we deduce that B C B and, in
particular, that a € B. ]

We are now prepared for the major fundamental result of this section.

Theorem 9.27 (Gelfand). IfA is a unital abelian Banach algebra, then there exists
a contractive unital homomorphism I' : A — C(Z,) such that, for every x € A,
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1. T'(x)[p] = p(x), for all p € R,
2. the range of the function I (x) is 0 (x), and
3. IF(x)]| = sprx.

Furthermore, kerI' = ﬂ N.
Ne.y

Proof. The map I" : A — C(%,) is plainly unital, linear, and multiplicative.

For x € A, the function A* — C given by ¢ > ¢(x) is weak™*-continuous. Hence,
the map p — p(x) determines a continuous function I"(x) on the compact Hausdorff
space Z,. Proposition 9.25 shows that the range of I"(x) is o (x), and so the maximal
modulus of I'(x)[p], as p varies through the character space %y, is the spectral
radius of x. Therefore, ||I"(x)|| = sprx < ||x||, which implies that |I"|| < 1. Note
that I"(x) = 0 if and only if p(x) = 0 for all p € Z,; that is, I'(x) = 0 if and only
if x € kerp for every p € Z,. That is, by Proposition 9.21, I"(x) = 0 if and only if
x € N for every maximal ideal N of A. O

Definition 9.28. If A is a unital abelian Banach algebra, then the Gelfand trans-
form of A is the contractive unital homomorphism I" : A — C(%,) described in
Theorem 9.27.

We turn now to some examples of character spaces, beginning with an example
that involves C(X) itself.

Example 9.29. IfX is a compact Hausdorff space, then the character space of C(X)
is homeomorphic to X.

Proof. Example 9.18 and Exercise 9.52 show that the maximal ideals of X are of
the form

Jixy = 1 € C(X) | (x0) = 0},

for xo € X. Therefore, by Proposition 9.21, the characters of C(X) are all functions
ox : C(X) — C of the form p,(f) = f(x), for f € C(X), and x € X. Thus, we aim
to prove that the map ¥ : X — Zc(x), defined by ¥ (x) = py, is a homeomorphism.
Since Zcx) is a compact Hausdorft space, it is sufficient, by Proposition 2.9, to
prove that v is continuous and bijective.

The surjectivity of y is apparent. If x;,x, € X are distinct, then by Urysohn’s
Lemma there is a function f € C(X) with f(x;) = 1 and f(x,) = O; hence, p,, and
Px, take different values at f, which shows that ¥ is injective.

To prove the continuity of ¥, fix xy € X and consider a basic weak™ open
neighbourhood U of 1 (xp):

U={peZcx)|lp(f;) —px,(})| <g, forallj=1,...,n},

forsomen eN,f,...,f, € C(X), and positive real numbers ¢,...,&,. The equations
lp(fj) — px ()| = | p(f) —fi(x0)| imply that
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v U) = {x e X||fi(x) —fi(x0)| <, forallj=1,...,n}
= mj;'_l (Bej(ﬁ(XO))) s
j=1

which is open in X by the continuity of the functions f;. Thus, ¥ is continuous,
which completes the proof that i is a homeomorphism. O

The next example makes use of the Stone-Cech compactification. Recall that
Cp(X) denotes the unital abelian Banach algebra of bounded, continuous complex-
valued functions on a locally compact Hausdorff space X.

Example 9.30. IfX is a locally compact Hausdorff space, then the character space
of Cp(X) is homeomorphic to BX.

Proof. By Theorem 2.71, for every f € C,(X) there exists a unique f € C(8X) such
that f o tx (x) = f(x), for every x € X, where 1y : X — BX is a topological embedding
of X into X as a dense open subset, homeomorphic with X. Therefore, the function
7 : Cp(X) = C(BX) defined by 7 (f) = is a unital isometric isomorphism of abelian
Banach algebras. Therefore, the character space of C,(X) is homeomorphic to the
character space of C(8X). Because BX is compact, Example 9.29 shows that X
is homeomorphic to the character space of C(8X), and so the same is true of the
character space of C,(X) (Exercise 9.53). O

Example 9.31. The maximal ideal space of £°°(N) is homeomorphic to BN.

Proof. By endowing N with the discrete topology, every function N — C is
continuous. Thus, the bounded functions are precisely those given by the elements
of £N). Therefore, because £*°(N) = C;,(N), Example 9.30 shows that the character
space (and, hence, the maximal ideal space) of £°°(N) is homeomorphic to SN. 0O

Another algebraic structure of interest is the kernel of the Gelfand transform

Definition 9.32. The radical of a unital abelian Banach algebra is the ideal Rad A
of A defined by

RadA= (1] N.
Ne.#y
If RadA = {0}, then A is called a semisimple Banach algebra.
With this terminology:

Proposition 9.33. The Gelfand transform of a unital abelian Banach algebra A is
an injection if and only if A is semisimple.

If X is a locally compact Hausdorff space, then C,(X) is a semisimple Banach
algebra (Exercise 9.56). In contrast, the next example illustrates a situation where
the radical is so large as to be of co-dimension 1.
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Example 9.34. Fix n € N such that n > 2, and for each n-tuple (z9,z1,...,Zn—1) of

complex numbers, let T(2y,21,...,2,—1) denote the n x n upper triangular Toeplitz
matrix
(20 21 22+ Zu—1 ]
0z 21
TG0zt zm1) = | 0 0 . . 2
. . . Zl
- 0 ...... O ZO n

If 7, ={T (20,21 ++Zn—1) 120,21 - - - »Zu—1 € C}, then Z,, is a unital abelian Banach
algebra of operators acting on the Hilbert space £>(n) such that:

1. the character space of I, is given by %4, = {p}, where

p(T(z0.21,---+2n—1)) = Z0,

forall T(zo,z21,- . 2n—1) € T;
2. Rad 7, ={T(0,z1,....z0-1) | 21,-...20—1 € C}; and
3. 9,/Rad 9, is isometrically isomorphic to C.

Proof. If T(z9,21,...,2n—1) and T(wg,w1,...,w,—1) are elements of .7}, then

T(z0,21,- .. 2n=1) + T(Wo,wi, ..., wu1) = T (20 +wo, 814 .., Cum1),s

for some ¢; € C, and
T(Z()vzlv"' 7Zn—1)T(W07W15 . "’Wn—l) = T(W()’Wl""7W}’L—I)T(Z0’Zl""7zn—l)

= T(20w0, @1, ..., Wn—1),

for some w; € C. Thus, the map p : 7, — C, in which p (T'(z0,21,...,2,=1)) = 20, is
linear, multiplicative, unital, and bounded. That is, p is a character on .7},.

Gelfand’s Theorem asserts that the spectrum of each matrix in .7, is obtained
by evaluating all characters on .7, at that matrix. Therefore, since the spectrum of
T(z0,21,---,2n—1) is the singleton set {zo}, any other character on .7, necessarily has
the same value as p at each matrix 7'(z0,21,...,2.—1). Hence, Z 4 = {p}.

The radical Rad .7, of .7, is precisely the kernel of the Gelfand transform I".
Gelfand’s Theorem shows that the norm of I" evaluated at T'(z9,z1,...,2:—1) is the
spectral radius of T'(z9,z1,...,2,—1), namely |zo|. Thus, T(z9,z1,...,2,—1) € kerI"
if and only if zyo = 0. Hence, the equivalence class in .7, /Rad .7, of each matrix
T(20,21,---,Zn—1) is determined by zg, and so .7}, /Rad .7, is a division ring, implying
that .7, /Rad .7, is isometrically isomorphic to C, by the Gelfand-Mazur Theorem.

O
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9.4 Absolutely Convergent Fourier Series

Any norm-closed subalgebra of C(X) that contains the constant functions will be an
example of a unital abelian Banach algebra. A rather different type of example is
considered below, leading to a nontrivial application of the Gelfand theory of unital
abelian Banach algebras to absolutely convergent Fourier series.

If f : R — C is a 2z-periodic continuous function, then the Fourier coefficients
f” (n) of f are computed according to the usual fashion in the Hilbert space L2(T):

~ 1 T .
f(n) = Z/_ fe ™ dt,

forn € Z.

Definition 9.35. The Fourier coefficients f‘ (n) of a 2 -periodic continuous function

o0
f: R — C are summable if Z [f(n)| < 0.
—00
The summability of the Fourier coefficients of continuous functions in a property
that is not enjoyed by all continuous 2 -periodic functions.

Proposition 9.36. If a 27-periodic continuous function f : R — C has summable

o0
Fourier coefficients, then the series Z f (n)e™ converges uniformly on R to f.

—00
Proof. Exercise 9.60 O

Let AC(T) denote the set of all 2z-periodic continuous functions f : R — C
for which the Fourier coefficients of f are summable. By Proposition 9.36, such
functions have absolutely convergent Fourier series. By the linearity of the Fourier-
coefficient map f — f (n), the set AC(T) is a vector space.

Proposition 9.37. AC(T) is a unital abelian Banach algebra with respect to the
norm

IFll =" [F ).

forf € AC(T).

Proof. By the triangle inequality in C, the formula for ||f|| is indeed a norm on
AC(T). Thus, AC(T) is a normed vector space and the function W : AC(T) — £'(Z)

~

defined by Wf = (f(n) is a linear isometry. In fact this isometry is onto, for
n€zZ oo

if o = (aty)nez € £'(Z), then the series Zane’”’ converges uniformly on R to a
—00

continuous 2 -periodic function f such that f(n) = «,, for every n € Z. Hence, W
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is an isometric isomorphism of AC(T) and £'(Z), which proves that AC(T) is a
Banach space.
To show that the norm is submultiplicative, select f, g € AC(T). Since the series

> D f0amett

kEZ meZ

converges uniformly to fg, we have that f(¢)g(t) = Z Z f (k)g(n—k)e™ and
n€Z k€Z

PN AIOIED I IGHESIE (Z Uf(kn) (Z |§(n>|) :
nez n€”z k€Z k€EZ nez

Hence, |ifg|l < IIf|l llgll, implying that AC(T) is a Banach algebra. Lastly, the
constant function 1 € AC(T) has Fourier coefficient i(n) = 0 for every nonzero
n € Zand 1(0) = 1. Thus, 1] = 1, which implies that AC(T) is a unital Banach
algebra. The fact that AC(T) is abelian is obvious. O

With the Gelfand theory one can compute the spectra of absolutely convergent
Fourier series as follows.

Proposition 9.38. Iff € AC(T), then o(f) = {f(¢) |t € R}.

Proof. The main issue is to identify the character space %Zac(ry of AC(T). To begin,
note that if 7y € R, then the function p,, : AC(T) — C defined by p,, (f) = f (%) is
a character on AC(T). Conversely, select any p € Zac(r) and let A = p(e"). Thus,
[A] < lIpll lle®]l = 1. Because p is a character, A~! = p(e™) and so |[A~!| < 1 also.
Hence, |A| = 1 and so A = ¢/ for some #, € R. If f € AC(T), then define for each
m € N the trigonometric polynomial

m

In@®) =) aye™.

n=—m

By linearity of p, p(f;,) = fu(ty) for every m. Because lim ||f —f,,| = O implies (i)
m—>00

that p(f,,) — p(f) and (ii) that f,, — f uniformly on R, we deduce that p(f) = f(t;).
Hence, o (f) = {f(¢) |t € R}. |

Absolutely convergent Fourier series are of classical interest and have been
studied by the methods of hard analysis. It is interesting, therefore, to note that
by viewing these series as elements of the Banach algebra AC(T) one can obtain
some classically difficult results. A striking example is the following theorem of
N. Wiener.

Corollary 9.39 (Wiener). Iff:R — C is a continuous 27 -periodic function such
that the Fourier coefficients of f are summable, and if f(f) # 0 for every t € R, then
the Fourier coefficients of 1 /f are summable.
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Proof. If f(t) # 0O for every t € R, then 0 & o (f) and so f is invertible in AC(T). If
g =f"", then g(¢)f () = 1 for every t € R. Therefore, g = 1/f, implying that the
continuous 27 -periodic function 1/f has summable Fourier coefficients. O

9.5 The Exponential Function

The simplest of all Banach algebras is the unital abelian Banach algebra C. Among
the many holomorphic functions defined on all of C, the exponential function is one
of the most important. To begin this section, we shall see below how the exponential
function and its usual property of sending sums to products extends to the level of
Banach and abelian Banach algebras.

Proposition 9.40. If A is a unital Banach algebra, and if for each n € N the

1
function s, : A — A is defined by s,(x) = Z —x*, where x° = 1, then there exists a

!
prdle!

continuous function exp : A — A such that

1. {su}uens converges uniformly on {x € A| x| <} 10 exp. for every r > 0, and
2. |lexp)|| < e, for all x € A.

n k
Proof. Fix r > 0. The sequence {f,(r)},en of partial sums t,(r) = Z% of the
o k=0
series " = Zﬁ is a Cauchy sequence. If x € A satisfies ||x|| < r, then by the
k=0""

triangle inequality and the submultiplicativity of the norm,

¢ m ¢ m
I —sel = 3 P 5 T —ainl.
m=k+1 m=k+1
Hence, the sequence {s,(x)},en is Cauchy and, therefore, converges in A to the
element that we denote by exp(x). Observe that the inequalities above imply that
the converge of the functions s, : A — A to exp is uniform on the closed ball of
radius r that is centred at 0 € A, and that ||exp(x)|| < el |

Henceforth, we adopt the commonly used notation e* to denote exp(x).
Proposition 9.41. If A is a unital Banach algebra, then

1. &2 =1,

2. € is invertible and (¢)™' = e, for all x € A,

3 8 = ge“g™!, for all x € A and invertible g € A, and
4. &P =", ifxy = yx.
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Proof. Suppose that xy = yx. Apply the binomial formula to obtain

k
m 1
Z—(x+y) _Z Zev(m e)v ;g_

m=0

k
—,y’
o)

J=

Therefore, upon passing to limits and using the continuity of multiplication in the
algebra A, e = ¢¥¢,

It is clear that ¢” = 1. Suppose that x € A is arbitrary. The elements x and —x
commute to produce 1 = ¢® = e¢*e¢™, and so €' is invertible with inverse (¢*)~! =
e

Lastly, note that s,(gxg™") = gs,(x)g~" for all invertible g and all n € N, and so
e8¢ = ge*g™!, for all x € A and invertible g € A. O

The formula e = e*e” may fail if xy # yx.

The following proposition is of interest for one-parameter continuous groups
in A.
Proposition 9.42. If A is a unital Banach algebra and if x € A is fixed, then the
function ¥ : R — A defined by ¥ (t) = ™ is a homomorphism of the additive group
(R, +) into the multiplicative group GL(A) (that is, ¥ (s +t) = Y (s)¥ (1), for all
s,t € R). Furthermore,

}%%(W(r} —@(0)) = x.

Proof. Proposition 9.41 shows that ¥ (s +1) = ¥ (s)W¥(¢), as sx and tx commute. By
the power series expansion of ¢ we have

_(lI’(t) v (0) = - (Zkl'tx — 1) =x+t<22g{)

k=0 k=2

1
and so lim — (¥ () —¥(0)) = x. O
t—0t

Problems

9.43. Suppose that (X, X', ) is a measure space.

1. Prove that Z*°(X, X, 1) is a complex, associative abelian algebra with respect
to the product ¥ v, (¢) = ¥ (1) Y2 (¢), for all Yy, v, € L®°(X, X, 1) and ¢ € X.

2. Prove that L*°(X, X, i) is a Banach algebra, where the product on L*°(X, X, i)
is induced by the product on .Z*° (X, X, ).

3. Prove that the Banach algebra L°°(X, ¥, 1) is unital and abelian.

9.44. Determine the multiplicative identities of the unital abelian Banach algebras
£ (N) and £ (n).
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9.45. Prove that if {x,},eny and {y,},en are convergent sequences in a Banach
algebra A, and if x and y are the respective limits of these sequences, then the
sequence {x,y, }nen 1S convergent to xy.

9.46. Assume that A is a unital Banach algebra, and that ay,...,a, € A. Prove the
following statements. (Suggestion: use induction.)

1. If a;a; = 0, for all i,j with i < j, then

o Zaj gUa(aj).
Jj=1

j=1
2. If a;a; = 0, for all i,j with i # j, then

n

ol Zaj \ {0} = UG(GJ‘) \ 10}.

J=1 J=1

9.47. Suppose that A is a unital Banach algebra, and that a € A. Define functions
ly:A—>Aandr,:A— Aby{,(x) = ax and r,(x) = xa, for x € A.

1. Prove that £, and r, are bounded linear operators on A.

2. In considering £, and r, as elements in the unital Banach algebra B(A), prove
that 0 (£,) € o(a) and that o (r,) C o (a).

3. Prove that £, and r, are commuting operators, for every b € A.

9.48 (Sylvester). Suppose that A is a unital Banach algebra, and that a,b € A. Prove
that if o(a) No(b) = @, then for every y € A there exists a unique x € A such that
ax—xb =y. (Suggestion: Consider the operator D on A defined by D = £, —r}.)

9.49. Suppose that A is a unital Banach algebra, and that a,b € A are such that
o) C{¢eC||{|<d}and a(a) C{{ € C||¢| > 6}, for some § > 0.

o0
1. Prove that, for each y € A, the series Z a~""'yb" converges in A.

n=0
oo

2. Prove that if y € A and if x = Za_”_l yb", then x is the unique solution to the
n=0
Sylvestre equation ax —xb = y.
9.50. Suppose that A is a uniform algebra on a compact Hausdorff space X, and
suppose that f, g € A are such that |1 +f + g|| < 1. Prove the following assertions
forh=f+g:

L |14+ %A <1;
2. there exists & > 0 such that 1 + gh(r) € D, for every 7 € X;
3. his invertible in A.
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9.51. Prove that if A is a unital abelian Banach algebra, and if a € A is a nonzero
noninvertible element, then there exists a maximal ideal N of A such thata € N.

9.52. Prove that if N is a maximal ideal of C(X), where X is a compact Hausdorff
space, then there exists a point xy € X such that N = {f € C(X) |f(xo) = 0}.

9.53. Suppose that A and B are unital abelian Banach algebras.

1. Prove that if ¢ : A — B is a unital isometric isomorphism, then the map
o 1 X — FKa, defined by Ly (p)[a] = p(¢(a)), for a € A, is a homeomorphism
of maximal ideal spaces.

2. Prove that if a continuous bijection ¢ : Zg — %, is a homeomorphism, then the
map ¢¢ : C(#a) — C(Xp), defined by ¢¢(f) =fo¢, for f € C(#4), is a unital
isometric isomorphism.

3. Prove that A and B are unitally isometrically isomorphic if and only if the
character spaces of A and B are homeomorphic.

9.54. Anideal K of a Banach algebra A is said to be an essential ideal if K # A and
K N J # {0} for every nonzero ideal J of A. Prove that if X is a compact Hausdorff
space, the K is an essential ideal of C(X) if and only if there is a dense open subset
U of X such that K = {f € C(X) |f(x) = 0 for every x € U°}.

9.55. If A is a unital abelian Banach algebra such that ||x?|| = ||x||? for each x € A,
then prove that the Gelfand transform I" is an isometry.

9.56. Prove that if X is a locally compact Hausdorff space, then Cp(X) is a
semisimple Banach algebra.

9.57. If A is a unital abelian Banach algebra, then prove that

RadA = {x € A|o(xy) = {0}, forevery y € A}.

9.58. Prove that Rad (A/RadA) = {0}, for every unital abelian Banach algebra A.
9.59. Determine the character space of the disc algebra A(ID).

9.60. Prove that if a 2m-periodic continuous function f : R — C has summable
o0

Fourier coefficients, then the series Zf (n)e™ converges uniformly on R to f.

—00

9.61. Determine the matrix ¢5, where S is the matrix

(01 0 -0
00 1
S=lo00 0

-
[ 0... ... 00_




Chapter 10
Hilbert Space Operators

The theory of bounded linear operators acting on Hilbert spaces has a special place
in functional analysis. In many regards, it is a very specialised part of the subject;
yet, it is impressively rich in both theory and application. While the results already
established for operators acting on Banach spaces apply automatically to Hilbert
space operators, there is at least one aspect in which there is a slight but important
departure from Banach space operator theory, and it is the first issue addressed in
the present chapter.

10.1 Hilbert Space Duality and Adjoint Operators

Proposition 6.16 concerning the dual spaces of £” describes, in the case p = 2, an
isomorphism of Hilbert spaces. In fact, in the setting of abstract Hilbert space, all
linear functionals are determined by vectors, which is the content of the final Riesz
Representation Theorem in this book.

Theorem 10.1 (Riesz). Suppose that H is a Hilbert space. For every ¢ € H*, there
corresponds a unique 1 € H such that ||¢|| = ||n|| and (&) = (£,7n), for all £ € H.
Conversely, for each n € H, the formula ¢(&) = (£€,n), for £ € H, determines a
unique ¢ € H* of norm ||lg|| = [n]l.

Proof. First of all, suppose that ¢ € H*. If ¢ = 0, then take n = 0 and we obtain,
trivially, that ¢(§) = (€,n) for all £ € H. Therefore, assume that ¢ # 0. Because
H =kerp @ (kerg)=, the subspaces ker¢ and (ker )+ form a complementary pair,
and so the quotient space H/kerg and the Hilbert space (ker¢)' are isomorphic
(Proposition 8.17). Because the linear map ¢ : H/ kerg — C defined by ¢(§) = ¢ ()
is a well-defined linear isomorphism, the Banach space H/kerg is 1-dimensional;
hence, so is (kerg)=.

© Springer International Publishing Switzerland 2016 329
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Thus, kerg is spanned by some nonzero vector w € H. Let n = o(w)||w| ">w.
Because each £ € H has the form & = v + Aw for some v € kerg and A € C, we
obtain ¢(§) = A¢(w) and

¢(w) {w, w)
(60 = v+ 2w, EID ) = 2w) T = (6).
[Iwl| [Iwl|
Furthermore, |¢(£)| = |(£.7)| < ||€|| ||| implies that ||¢|| < ||7]|. On the other hand,
if £ = ||nl|~"n, then ||| = 1 and (&) = [In]|. Hence, [l[| = [I7].

To show the uniqueness of 1, assume 7’ € H is another vector for which ¢(§) =
(&,7') for every € € H. Then, (&,7") = (£, n) implies (§€,n—1n') = 0 for every £ € H.
Such is the case for £ = n— 17’ in particular; hence, ||n —7'||*> = 0.

The converse is clear. O

As a consequence of the Riesz Representation Theorem, Hilbert spaces a self-
dual. However, the natural notion of adjoint for Hilbert space operators is slightly
different from the adjoint of Banach space operators because, in the Hilbert space
setting, one needs to account for the fact that the inner product is not bilinear—
rather, it is conjugate linear in the second variable. In this regard, the notion of
adjoint in Theorem 8.1 is not the same as the adjoint that is shown to exist in the
proposition below.

Proposition 10.2. If T is an operator on a Hilbert space H, then there is a unique
operator T* on H such that

(T¢&.m) =(£.T"n), VéneH. (10.1)

Proof. Fix n € H and define ¢, : H — C by ¢,(§) = (T&,n) for all £ € H. Because
¢y is plainly linear, the Riesz Representation Theorem (Theorem 10.1) states that
there is a unique vector, which we will denote by n*, such that

(T&.n) = ¢y(§) = (E.n"), VéeH. (10.2)

Thus, n* represents ¢,

Now consider the function T* : H — H that sends each n € H to n* € H. It
is straightforward to verify that T7* is a linear transformation. Therefore equa-
tion (10.2) becomes

(T&.n) =(E.T"n), VE&neH. (10.3)

The Riesz Representation Theorem states that ||n*| = ||¢,||. Hence, for n € H,
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IT*nll = lln*ll = llesll = Sup (TE m
gl=1

< (sup IITSII) Il =171 linll-
lgl=1

That is, 7* is bounded and ||T*| < ||T|.

All that remains now is to show that the transformation T* that satisfies
equation (10.3) is unique. Suppose that S is an operator on H such that (T&,n) =
(&,Sn) for all £,n € H. Then for any n € H, (T*n—Sn,&) =0 for all £ € H. In
particular, 7*n — Sn is orthogonal to itself and so T*n— Sn = 0. Therefore, § = T*.

O

Definition 10.3. The operator 7* defined by equation (10.1) is called the adjoint of
the operator T and the map 7 +— T* on B(H) is called the involution on B(H).

A result related to Proposition 10.2 concerns bounded sesquilinear forms.

Definition 10.4. A function ¢ : H x H — C is a bounded sesquilinear form on H
if

L Y€+ ko, n) = a1y (€1.n) + ey (52.1),

2. Y& Bim + Bam) = B1¥ (§,m) + B, (€, m2), and
3. there exists C > 0 such that | (§,1)| < C||&] ||n|| for all £,1 € H.

for all S,Sl,éz,i’],nqnz € H and al,az,ﬂl,ﬂz e C.

Proposition 10.5. If v is a bounded sesquilinear form on H, then there exists a
unique operator T such that ¥ (§,n) = (T&,n), forall §,n € H.

Proof. As in the proof of Proposition 10.2, fixing n € H and defining ¢, : H — C
by ¢,(§) = ¥ (&,n), for all £ € H, results in an element ¢, € H* which, by
Theorem 10.1, has the form ¢,(§) = (£,7*) for some unique n* € H. The function
T* : H— H that sends each n € H to n* € H is a bounded linear operator, and yields
v (&,n) = (§,T*n), for all £, € H. Hence, by Proposition 10.2, ¥ (&,7n) = (T&,n),
forallé£,n e H. O

Proposition 10.6. The involution on B(H) has the following properties for all
S, T € B(H) and a € C:

LT =T;

2. (@T)* =&T*;

3 (SHT)* =S +T*;
4. (ST)* = T*S*.

Proof. To prove (1), the adjoint T** of T* is, by (10.3), the unique operator on
H for which (T*%,v) = (4, T**v)—equivalently, (T*¥,v) = (9, T**v)—for all
U,v € H. In setting v = & and ¥ = n, it follows that (§,T*n) = (T**&,n), for all
&,m € H. Because (§,T*n) = (T&,n), if £ is fixed, then for every n € H we have that
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(TE —T**E,n) = 0. Thus, the vector T§ — T**£ is orthogonal to itself, which means
that T§ — T**& = 0. As this is true for every £, we deduce that 7** = T. The proofs
of the remaining algebraic statements are straightforward. O

Through the use of the Hilbert space inner product, the norm of an operator can
be achieved as in Proposition 10.7 below. Another very important feature of the
norm of T € B(H), which is also shown below, is that ||T||?> = | T*T]||.

Proposition 10.7. If T € B(H), then

1Tl = sup  [{T&m)].
lel=lnll=1

Furthermore, |T*|| = ||T|| and |T*T| = ||T|>

Proof. If w € H, then ||w|| = sup{|p(w)||¢ € H*, ||¢|| = 1} (Corollary 6.23). Thus,
lo|| = sup{|{(w,n)||n € H, ||n|| = 1}, by the Riesz Representation Theorem. Hence,

T = sup [IT§]|= sup [{T&,n)|.
lgl=1 lel=lnli=1

Since |(T&,n)| = |(&,T*n)|, for all £, € H, we obtain | T*|| = || T|| immediately.
The norm on B(H) satisfies ||ST|| < ||S||||T|| for every S,T € B(H). Therefore,

17T < IT*INT] = N TINTI = 1T
Conversely, if £, € H are unit vectors, then the Cauchy-Schwarz inequality yields

(TE ) < ITEI? Inll* = (T€. T§) = (T*TE,§) < | T°T|.

Thus, |7 < |7*T]. O
Proposition 10.8. If T € B(H), then

1. kerT = (ranT*)* and
2. ranT = (ker T*)*.

Proof. For the proof of the first assertion, assume that £ € ker 7. Any vector in ran 7*
has the form T*n, for some n € H. Since (§,T*n) = (T&,n) = 0, we conclude that
£ e (ranT*)L.

Conversely, suppose that £ € (ranT*)*. Thus, for every n € H, 0 = (£,T*n). In
particular, if n = TE, then 0 = (£,T*n) = (§,T*T¢) = (TE,TE) = | T, and so
& ekerT.

The proof of the second assertion is left as an exercise (Exercise 10.105). O

Another aspect of the Hilbert space adjoint to be aware of—especially in light of
what has come before in the study of operators on Banach spaces—is that the defect
spectrum is characterised as follows:
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Proposition 10.9. If T € B(H), then A € 04(T) if and only if A € op(T%).
Proof. Exercise 10.107. O

The following little fact is very useful in the study of Hilbert space operators, as
seen in Corollary 10.11 below.

Proposition 10.10 (Polarisation Identity). For every pair of vectors & and n in
an inner product space,

(6 = 3 (€ +n4mh = (E—nE =)+ (€ +in & im) — (E —in & —in).

Proof. A straightforward computation confirms the result. O

Corollary 10.11. If S,T € B(H) satisfy (S&,&) = (T&,&) for every & € H, then
S=T.

Proof. By the Polarisation Identity, the hypothesis yields (S&,n) = (T&,n) for
every £,n € H, and so ((S—T)&,n) = 0 for every &, € H yields S—T = 0 by
Proposition 10.7. o

Isometries of Hilbert spaces are characterised by a succinct algebraic condition:
Proposition 10.12. An operator V € B(H) is an isometry if and only if V*V = 1.

Proof. If V is an isometry and £ € H, then ||]|? = ||V&||?> = (V*VE, £) implies that
((1=V*V)E, &) = 0 for every & € H. By the Polarisation Identity, this implies that
Vv =1

The converse is clear. O

Definition 10.13. A surjective isometry U € B(H) is called a unitary operator.
The following facts about unitary operators are readily confirmed.
Proposition 10.14. The following statements are equivalent for U € B(H):

1. U is a unitary operator;

2. U*U=U0U*=1;

3. for some orthonormal basis {¢;}; of H, {U¢;}; is also an orthonormal basis;
4. for every orthonormal basis {¢;}; of H, {U¢;}; is also an orthonormal basis.

Proof. Exercise 10.108. O

Isometries and unitaries are among the most fundamental of all Hilbert space
operators. Of equal importance are the projections.

Definition 10.15. An operator P € B(H) is a projection if P* = P = P,

In contrast to Banach spaces, where there can be subspaces without comple-
ments, every subspace M of a Hilbert space H has a complement, the most important
of which is M*. Hence, Proposition 8.16 has the following form in Hilbert space:
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Proposition 10.16. For every subspace M of H there exists a projection P € B(H)
such that M = ran P and M+ = ker P. Conversely, if P € B(H) is a projection and if
M = ranP, thenran(1 —P) = kerP = M*.

Proof. Because the subspaces M and M~* are a complementary pair, Proposi-
tion 8.16 shows that there exists an idempotent E € B(H) such that ranE = M
and kerE = M. Such an idempotent E necessarily satisfies E* = E because if
EDNy®S e MM, then

(E€E®n,y®d)=(£,y)=(EDnE(y ®9I)).

That is, E* = E and so the idempotent E is a projection.

Conversely, if P € B(H) is a projection, then it is also an idempotent operator,
and so its range M is a subspace of H. If £ € M and n € H, then P§ = £ and P* = P
yield

(. (A=Pyn) = (§.n) —(&.Pn) = (£.n) — (PE.n) = (§.n) — (§.1) = 0.

That is, (1 —P)n € M+ and so ran (1 —P) € M. And, if y € M+, then

ly —(1=P)y|> = (Py,Py) = (P*Py.y) = (Py,y) =0,

which shows that y = (1 — P)y and, hence, that ML C ran (1 —P). O

Proposition 8.14 on the algebraic features of idempotents translates into the
following proposition about projections.

Proposition 10.17. The following properties hold for projections P,Q € B(H):

1. P+ Q is a projection if and only if PQ = QP = 0;

2. P—Qis a projection if and only if PQ = QP = Q;

3. if PQ = QP, then QP is a projection with range ran P Nran Q and kernel ker P +
kerQ.

Another convenient relationship between T and T* occurs with invariant sub-
spaces.

Proposition 10.18. A subspace M C H is invariant under an operator T € B(H) if
and only if M is invariant under T*.

Proof. If M is invariant under T and if 7 € ML, then for every £ € M we have that
0 = (T&,n) = (£,T*n), which yields T*n € M~*. That is, M+ is T*-invariant. The
converse is proved in the obvious similar manner. O

With regard to invariant subspaces, we have the following useful algebraic
characterisations.

Proposition 10.19. Suppose that T, P € B(H), where P is a projection.

1. The range of P is invariant under T if and only if PTP = TP.
2. The range of P is invariant under T and T* if and only if TP = PT.
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Proof. For (1), if ran P is invariant under 7, then for every ¢ € H, TP§ € ranP and
so P(ranP&) = TPE. Conversely, if PTP = TP, for each n € ranP we have Ty =
TPn = PTPn € ranP, and so ran P is T-invariant.

To prove (2), if ran P is invariant under 7 and 7%, then by (1) we have that PTP =
TP and PT*P = T*P. Taking the adjoint of the second equation give PTP = PT;
hence, TP = PTP = PT. Conversely, TP = PT implies PTP = P>T = PT and, by
taking adjoints, that PT* = T*P, whence PT*P = T*P* = T*P. O

10.2 Examples

10.2.1 Matrix Representations

Suppose that T € B(H) and that 2 = {¢ }ien is an orthonormal basis of a separable
Hilbert space H. If 7 = [t;] is the (infinite) matrix representation of T with respect
to the orthonormal basis %, then the (i,j)-entry of 7 is determined via

7y = (T¢;, ¢i) .

In using this for 7* in place of T we conclude that the (p,g)-entry of the matrix
representation of 7* with respect to & is (T*¢,,$,). Furthermore, (T*¢,, ¢,) is
given by

(T*¢q’¢p) = (¢p’T*¢q) = <T¢p,¢q> = T_qp

Thus, the matrix representation 7* of T* is determined by transposing .7, the
matrix representation of 7, and then conjugating each entry. In other words, .7 * is
the conjugate transpose of 7.

10.2.2 Multiplication Operators

Recall from Section 8.1 that if (X, X, 1) is a o-finite measure space and if ¥ €
ZL*°(X, X, ), then ¥ induces an operator My :L2(X,2,u) — Lz(X,Z,u) via
My (f) = (¥ f) forall f € L*(X, ¥, ). Because (X, ¥, j1) is o-finite, Example 8.1.7

shows that || My || = ess-supyr
To calculate the adjoint of My, note thatif f, g € 22X, %, W), then

.My g) = [X figdu = /X Ufgdu = (Myf.3).

Hence, by the uniqueness of the Hilbert space adjoint, M:‘/j =M.
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10.2.3 The Bilateral Shift Operator

Let L2(_T) denote the Hilbert space L?([—m, ], 9%, m). Recall that an orthonormal
basis {¢}xez of L?(T) arises from the continuous functions ¢y : [—m, 7] = C, k € Z,
whereby

1 ikt
V2w ’
If f € £2(T), then f € L*(T) has a Fourier series decomposition

F=> Fkg:.

ke€Z

Hi(t) =

t€[—mn, ).

which is convergent in L?(T) and where
F&) = G.d)= | foe ™ dm(@).
-

Let ¥ (1) = €". The adjoint of the multiplication operator My is M. Therefore,
because ¥ (1) = ¢, if g = M,/,f and hh = (Mv,)*f, then
2(k)=f(k—1) and h(k)=f(k+1), VkeZ.
Thus, if B = My, then B shifts the Fourier coefficients of f € L*(T) forward by one
position, and its adjoint shifts the Fourier coefficients backwards one position. For
this reason, B is called the bilateral shift operator .
Put in terms of the action of B on the orthonormal basis of L?(T), we have

B = it and B*py =1, YkeZ.

One last observation: because BB* = B*B = 1, the bilateral shift operator B is a
unitary operator.

10.2.4 Toeplitz Operators

Continuing with the notation L?(T) for the Hilbert space L?([—m,7],9, m), the
linear submanifold

HA(T) = {fe LA(T)|f(k) =0, Vk< 0}
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is a subspace of L*(T) called the Hardy space. Let Py € B(Lz(’]I‘)) denote the
projection whose range is the Hardy space H*(T). If ¥ € .£°(T), then the Toeplitz
operator Ty, on H?(T) is the operator Ty = Py2My. The function ¥ is called the
symbol of the operator Ty,. Because (My)* = My, if f.& € H*(T), then

(Tyf.8) = (PiMyf.§) = (Myf . Pypg) = (Myf.§)
= (f.My8) = (Piof Myg) = (. Pr2Myg)
= (f.T;2).
Thus, (Ty)* = Ty.

In particular, if }p(t) =¢" and S = Ty, then § shifts t?ach element of the
orthonormal basis {¢ }r>0 forward one position, from ¢, to ¢4. In this case the
Toeplitz operator § is called the unilateral shift operator.

With respect to the orthonormal basis {¢ }x>0 of H*(T), the matrix representation
Ty ofa Toeplitz operator Ty, has a rather special form. Express ¥ as a Fourier series
in L*(T): ¥ = Y ,.cz s Observe that if k,j > 0, then k-th Fourier coefficient of
the product ¥ (r)¢;(7) is the same as the k-th Fourier coefficient of /'y (¢), which in
L?(T) is the Fourier coefficient arising from

(V). 1) = (B'Y . ).

where B is the bilateral shift. Thus, the (k,j)-entry of the matrix for Ty, is given by

(Tydy. i) = (PieMyy.de) = (Mydy. i) = (V). i)

= (B i) (¥, (B)* ) = (V. iy} = iy

Note that the (k41,4 1)-entry of Ty, is also o—;. Hence, the matrix representation
for T, is given by
oo X—1 00— OX—3 -~
ap Qg O— 0y
ywz Oy O] Oy 00— K

o ap o oy
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In particular, the unilateral shift S has matrix representation

0

0
=101 0 0°

0

10.2.5 Weighted Unilateral Shift Operators

The following class of operators were mentioned in Section 8.1.
If o = (@)ren € L2 (N) and S, : £2(N) — ¢3(N) is defined by

U1 0
1% o1V
Sav = Su| | vy [ | = | ey, |- vEL@D,

then S, is is called a weighted unilateral shift operator. The (Hilbert space) adjoint
(Sg)* of S, is given by

V1 &11)2
" " 1% &21}3
— — P
Sav = Sa V3 = 531)4 R ve (N),

Note that the Hilbert space adjoint of S, is slightly different from the Banach space
adjoint of S, that is given in equation (8.2) of Section 8.1.

10.2.6 Rank-1 Operators

An operator T € B(H) is of rank 1 if T has 1-dimensional range. Let ¢ € H be a
vector that spans the range of 7. Then, for each § € H, there is a unique oz € C for
which T¢ = ag¢p. The map H — C given by £ > o is easily seen to be linear and
bounded, and so by the Riesz Representation Theorem there is a vector Y € H for
which T¢ = (§,Y)¢, for every £ € H.
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This form of a rank-1 operator T is expressed by T = ¢ ® . That is,

T = (@@ V)[E]l = (5.¥)9,

forevery £ € H.

10.2.7 Direct Sums of Operators

If Tj € B(H;), for j=1,...,n, and if H is the Hilbert space direct sum H = @HJ
j=1
(see Proposition 5.81), then T =T, & --- @ T, denotes the unique operator on H

defined by T @éj = @Téj. Observe that T has norm || T|| = max; ||7;| and
J=1 J=1
that the adjoint of T is given by T* =T} @--- @ T,;. More generally, if @Ha is

aE€EA
the direct sum of a family {H, },e4 of Hilbert spaces (as in Proposition 5.98), and

if {To }uea is a family of operators T, € B(H,) such that sup,, || T || < oo, then the
linear transformation @ T, on @Ha defined by

a€EA a€EA

(EB Ta) [(Ea)a] = (TEa), -

€A

for (&,)q € @Ha, is an operator of norm sup, || 7 || and adjoint @ T;.

a€EA €A

10.3 Hermitian Operators

Much of the theory of Hilbert space operators is devoted to the ways in which 7" and
T* interact. The first case of interest occurs when T and T* are in fact the same.
Such operators are probably the most important in all of operator theory and its
applications.

Definition 10.20. An operator T € B(H) is hermitian if T* =T.

Example 10.21. A multiplication operator My on L*(X, X, ju) is hermitian if and
only if ess-ranyr C R.

Proof. Recall that if (X, X, 1) is a measure space, then M:/’j = My;. However, My, =
My if and only if ¥ () = ¥ (¢) for almost all 7 € X. O
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Forany T € B(H), T = 5(T +T*) + i (T —T*). Since T + T* and i(T — T*)
are hermitian, the hermitian operators span B(H). This is one reason why hermitian
operators are of importance.

If T € B(H) is hermitian, then (T, n) = (§,T*n) = (§,Tn), forevery £,n € H. In
particular, if n = &, this implies that (T§, &) = (T€, &), for all £ € H; that is, the form
& — (TE,&) is necessarily real valued if 7 is hermitian. This necessary condition is
also sufficient.

Proposition 10.22. An operator T € B(H) is hermitian if and only if (T£,£) € R
forall £ € H.

Proof. If T is hermitian, then for every vector &,

(T§.§) = (§.T7§) = (€.T¢) = (T§.§),

and therefore (T¢,£) € R.

Conversely, suppose that (T, %) € R for all ¢; then (T, #) = (&, T¥). However,
T* also satisfies (T0,0) = (3, T*), for every ¢ € H. Therefore, (¢,T¥) =
(9, T*¥), for every ¢ € H, and so T* = T, by the Polarisation Identity (Corol-
lary 10.11). O

Corollary 10.23. IfT € B(H) is hermitian and if M C H is a T-invariant subspace,
then the restriction T\y of T to M is hermitian.

Proof. If £ € M, then (T\§.&) = (T§,§) € R. Hence, by Proposition 10.22, T}y is
hermitian. O

The next set of propositions reveals some striking features of the spectra of
hermitian operators.

Proposition 10.24. If T € B(H) is a hermitian operator, then o (T) = 0,(T) C R.

Proof. Recall that o(T) = 0,,(T) U 04(T). By Proposition 10.9, A € o4(T) if and
only if A € 0,(T*). As T* =T, if we show that every eigenvalue of T is real, then
we will obtain 04(7T) C R. To this end, let T¢€ = A£ for some A € C and unit vector
& € H. Because (T¢,&) € R (Proposition 10.22), we obtain

A=A(.§) = (A§.8) = (T§.§) e R.
Hence, 04(T) = 0p(T) C R and
0(T) = 03p(T) U0g(T) = 0ap(T) U0, (T) S 04p(T) S o(T).

We now show that 0,,(7T') C R. Suppose that A € C\ R. For any nonzero § € H,
we have
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0 < [A=A[lI§I> = [{(T—ADE.&) — (T —ADE.E)]
= [((T=ADE.§) — (5.(T—A1)E)|
= 2[(T=ADEINIEN-

Hence, ||[(T — A& > %M—ﬂ |€]| for all £ € H. This proves that (T — Al)
is bounded below and, hence, A ¢ 0,,(T). This concludes the proof of
o(T) = 0,p(T) CR. O

Proposition 10.25. If T € B(H) is hermitian, then

IT|| = max{|A[|A € o (T)j.
That is, |T|| = sprT.
Proof. Let o = || T|. For any unit vector £ € H,

I(T? —e®DE|* = (T* — & DE(T* — &’ 1))
= 721> — 22| TE | + o* | €))7
< o?||TE|? — 202 | TE|? +o*

=o' —a?|TE|?. (10.4)

By definition of the norm of an operator, there are unit vectors &, € H such that
T, — |IT||. Hence, by inequality (10.4), lim,, || (7% —a?1)&,||? exists and is equal
to 0. Therefore, o € o (T?).

Because T? — a1 = (T + a1)(T —«l1), at least one of the two operators on the
right-hand side of this expression must fail to be invertible. Thus, « € o (T) or —« €
o (T). In either case, there is a A € o(T) such that |A| = ||T||. On the other hand,
|[A| < ||T||, for all A € o(T) (Theorem 8.42), which completes the proof. O

Proposition 10.26. Assume that T € B(H) is hermitian and let

ny = lnf (Tg:’E) and my, = Sup <T%—7S) N
=1 lel=1
Then my,m, € o(T) and o(T) C [mg,m,].

Proof. If T =T —my1, then T’ is hermitian and m; € o (T) if and only if 0 € o (T").
Therefore, we assume without loss of generality that m, = 0. Under this assumption,
the sesquilinear form [-,] : H x H — C defined by [£,n] = (T¢,n) satisfies the
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Cauchy-Schwarz inequality
&0l < (&€ ', VEneH.
Therefore, with = T,
ITEN* = (TE,TE) > < (TEE)(T?6,T§) < (TEE)TI I

Hence, | iﬁlf IT&|| = 0, which proves that T is not bounded below. That is, 0 € o (7).
El=1
On the other hand, if A < 0, then

I(T—ADEI? = ITEI? — 2M(TE.&) + A2|IE1> = A%

implies that 7 — A1 is bounded below. Hence, A & 0,,(T) = o(T). This proves that
o(T) € [0,00).

The proof that m, € o(T) and that o(T) C (—oo,m,] is left to the reader
(Exercise 10.116). O

Corollary 10.27. If T € B(H) is hermitian, then Convo (T) = {{T&,&) | ||| = 1}

Proof. The unit sphere .# is a Hilbert space H is a path-connected set, and so the
continuous map . — R given by £ > (T, &) has a path-connected range. Because
the infimum and supremum of the range of this map are the minimum and maximum
elements of the spectrum of 7, we deduce the equality of the sets Convo (T) and

UTEE) 1] = 15. O

By way of the classical Weierstrass Approximation Theorem, the usual polyno-

mial functional calculus T +— f(T) = ZajTj , where T is a Banach space operator

J=0
n

and f(r) = Zajtj is a polynomial with complex coefficients, extends to continuous
=0

functions in cases where T is a hermitian Hilbert space operator. The main result in

this direction is stated below, and it is a major tool in the analysis of Hilbert space

operators.

Theorem 10.28 (Continuous Functional Calculus for Hermitian Operators). If
T € B(H) is a hermitian operator, then for every continuous function f : o(T) — R
there is a unique hermitian operator f(T) with the property that

If(T) = gn(T)|| -0 (10.5)

for every sequence {q,},en of polynomials g, € R [t] for which

lim (max 1G] —q,,(t)|) =0.
tea(T)

n—>oo
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Furthermore, for all continuous functions f,g :0(T) - R and « € R,

L (D) = maxyeqor) [f(A)],

2. af (T) = a(f(T)),

3. (f+e)T) =f(T)+g(T), and
4. fo(T) =f(T)g(T).

Proof. Select a real-valued f € C(0(T)). By the Weierstrass Approximation Theo-
rem (Exercise 5.109), there exists a sequence {g, },en of polynomials with complex
coefficients such that lim,, (max,eU(T) If () — g () |) = 0. By considering %(Ch +4,),
we may assume without loss of generality that each ¢, has real coefficients.
The convergent sequence {g, }»en is necessarily Cauchy in C (o (T)). Furthermore,
qm(T) — q,(T) is hermitian, for all m,n € N, and so the Spectral Mapping Theorem
shows that

0 (gm(T) = (1)) = {gm(A) —gx(A) | A € 0 (T)}.

Thus, [|gm(T) — g,(T)|| = maxyeo(r) |gm(A) —g,(A)| (Proposition 10.36) and there-
fore {q,(T)},en is a Cauchy sequence of hermitian operators in B(H). Denote the
limit of this sequence by f(7T'), and observe that f(T) is independent of the choice of
approximating sequence {¢, },en-

Now if ¢ € R and f and g are polynomials with real coefficients, then
If(DI = maxzeor) [F(D af (T) = a(f(T)), (f+ &(T) = f(T) + g(T), and
fe(T) = f(T)g(T). Hence, by the approximation in equation (10.5), this properties
also hold for continuous functions f, g : o(T) — R. O

The map f +— f(T) in Theorem 10.28 is called continuous functional calcu-
lus for T. Not all Hilbert space operators admit continuous functional calculus
(Exercise 10.131), and so Theorem 10.28 is quite particular to hermitian (and
hermitian-like) operators.

A useful application of the continuous functional calculus concerns isolated
points in the spectrum of a hermitian operator. Recall from Definition 1.68 that a
limit point of a subset Y in a topological space X is a point x € X such that for every
open set U containing x there is an element y € Y such that y € U and y # x. By
Proposition 1.69, the closure of Y is given by ¥ = Y UL(Y), where L(Y) denotes the
set of limit points of Y.

Definition 10.29. If Y is a subset of a topological space X, then an elementy € Y is
an isolated point of Y if y € Y\ L(Y).

Proposition 10.30. An isolated point of the spectrum of a hermitian operator T is
necessarily an eigenvalue of T.

Proof. The set {1} is a closed subset of o (7). Because A is an isolated point of
o (T), the characteristic function f = yy3y, as a map o(T) — C, is a nonzero real-
valued continuous function such that f> = f. Therefore, by the continuous functional
calculus, the operator P = f(T) is hermitian, nonzero, and satisfies P> = P; in other
words, P is a nonzero projection. Now consider the function 4 : 6 (T) — C given by
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h(t) = tf (r), for t € o(T). Because h(t) = A if t = A and h(¢) = 0 otherwise, we see
that h(f) = Af(¢). Hence, the continuous functional calculus yields TP = Tf(T) =
Af(T) = AP, and so every £ € ran P satisfies T§ = A£. |

The spectrum of a compact operator K is finite or countable, and the nonzero
points of o (K) correspond to eigenvalues of finite geometric multiplicity (Theo-
rem 8.55). If a compact operator K acts on a Hilbert space H and if K* = K, then
the eigenvectors £ and 7 corresponding to distinct eigenvalues A and u of K are
orthogonal by the following computation:

A=) (& n) = (A&.n) — (&, un) = (K&, n) — (5. Kn) = (K&, n) — (K&, ) =0,

which implies that (£, 1) = 0 because A — u # 0. Hence, ker(K — A1) L ker(K — ul)
for every pair of distinct eigenvalues A and u of K.

Theorem 10.31 (Spectral Theorem #1). If K € B(H) is hermitian and compact,
then H has an orthonormal basis consisting of eigenvectors of K.

Proof. Express H as H = kerK @ (kerK)* = kerK @ (ranK*) = ker K @ (ranK). If
one finds orthonormal bases for each of ker K and (ranK), then the union of these
bases will be an orthonormal basis for H. Because kerK is the eigenspace of K
corresponding to the eigenvalue A = 0, it is enough to prove that (ranK) has an
orthonormal basis of eigenvectors of K. Furthermore, because (ranK) is a Hilbert
space invariant under K, we may assume without loss of generality that ker K = {0}
and that the range of K is dense in H.

Because ker(K — A1) Lker(K — ul) for every pair of distinct eigenvalues A and
w of K, we may form a direct sum (as in Proposition 5.98) of all the eigenspaces of
K. To this end, let

M= @ ker(K —Al).

A€6(K), A0

An orthonormal basis %), for M is obtained by taking an orthonormal basis %)
(necessarily finite) for each ker(K — A1) and then setting

2= | 4.
A€o (K),A#£0

The elements of %), are obviously eigenvectors of K. Therefore, it remains to prove
that M+ = {0}.

The subspace M is K-invariant, and so M is K*-invariant (Proposition 10.18);
that is, M+ is K-invariant. Because the restriction Ky of K to M~ is a compact
operator, the spectrum of K|, consists of 0 and nonzero eigenvalues. However, any
eigenvalue of K|,,. would also be an eigenvalue of K, and since the eigenvectors of
K corresponding to its nonzero eigenvalues all lie in M, it cannot be that K1
has nonzero eigenvalues. Therefore, because K|y,1 is hermitian (Corollary 10.23)
and because the norm and spectral radius of a hermitian operator coincide (Corol-
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lary 10.27), we deduce that K| ML = 0. But if M+ were nonzero, then nonzero vectors
in M+ would be elements of kerK, which would contradict kerK = {0}. Hence,
M~ = {0} and, therefore, M = H. O

A second formulation of the spectral theorem may be viewed as a “spectral
decomposition” of compact hermitian operators.

Theorem 10.32 (Spectral Theorem #2). The following statements are equivalent
for a compact operator K acting on a separable Hilbert space H:

1. K is hermitian;

2. there are a bounded sequence {A; }’ | of nonzero real numbers, where r is finite
or infinite, and a sequence {qb] 0f pairwise-orthogonal unit vectors in H such
that

a. K¢; = Aj¢;, for each j,
b. lim;A; =0, if r is infinite, and

c. K¢E= Z/\j(é,qﬁj)gbj,for every £ € H.
Jj=1
Proof. Assume (1). Theorem 10.31 asserts that H has an orthonormal basis
consisting of eigenvectors of K. The proof of Theorem 10.31 indicate that this basis
consists of two parts: (i) an orthonormal basis {y/};_, of ker K and an orthonormal
basis {¢;}/_, of

M= @ ker(K — Al),

A€a(K), A£0

where M =ranK. Let A; € R denote the eigenvalue corresponding to the eigenvector
¢;, which thereby ylelds property (2a). If r is infinite, then there must be infinitely
distinct points in the sequence {A; }]= because, by Theorem 8.55, (i) the eigenspace
associated with any individual nonzero eigenvector is finite dimensional (meaning
an individual point A; in the sequence is repeated in the sequence at most finitely
many times) and (ii) the point 0 € R is the only cluster point of o(K). Hence,
property (2b) holds.

To prove property (2c), express H as H = ker K & M so that £ € H has the form
& =y +n, where y € kerK and n € M. Write 7 in its Fourier decomposition:

r

=y (n.¢)¢.

J=1

Note that K& = Ky 4+ Kn = Kn and that (§, ¢;) = (1, ¢;) for every j. Thus,

Ks=1<n=2<n¢, K¢y = Zx (1.¢))9; ZA (€.6))9),

Jj=1 Jj=1 Jj=1

which proves property (2c).
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Conversely, if an operator K € B(H) satisfies (2), then, for every & € H,

(K&.£) = <ZA&¢J¢,,ZE¢I > ZAIMJ
i=1

because each A; is real. Hence, K* = K. |

10.4 Normal Operators

The relationship between an operator T and its adjoint 7* is an important one,
and indeed T* shares many of the properties that T possesses (such as the norm).
However, there may be very little relation between the two operators with regard to
how they act on the Hilbert space. This section considers one case in which there
is a rather strong algebraic link between T and T*, and this specific relationship is
called normality. The class of normal operators includes every hermitian operator
and every unitary operator.

Definition 10.33. An operator N € B(H) is a normal operator if N*N = NN*.

Example 10.34. The bilateral shift operator B on £*(Z) is normal, but the unilat-
eral shift operator S on £*(N) is nonnormal.

Proof. Because the bilateral shift operator B on £2(Z) is unitary, B is plainly normal.
However, the unilateral shift operator S on £2(N) is nonnormal, as S*Se; = ¢; but
S8*e; = 0 (where e, is the first canonical basis vector of ¢?(N)). O

The unilateral shift operator S is a good example of the challenges in quantifying
nonnormality. On the one hand, S is rather close to being a normal operator because
S*S — SS* = e; ® e; is a rank-1 operator. On the other hand, S is rather far from
normal in the sense of norm, given that ||S*S—SS*|| = 1.

Proposition 10.35. The following statements are equivalent for T € B(H):

1. T is normal;
2. |7\l = I T&]l, for all § € H;
3. the real and imaginary parts of T commute.

Proof. Exercise 10.119. O

The third equivalent statement of Proposition 10.35 above points to an intimate
relationship between normality and the property of being hermitian. The next set of
results illustrate how some of the spectral features of hermitian operators are shared
by normal operators.
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Proposition 10.36. If N € B(H) is normal, then sprN = ||N||.
Proof. By the spectral radius formula (Theorem 8.45),

sprN = lim |[N"||'/".
In particular,

sprN = lim kS (10.6)

Because N is normal, (N?)*(N?) = (N*N)?2. Thus,

IN?I12 = (V3" (V)| = [(N*N)(N*N) | = [N*N]1* = [N]..
which implies that |[N?| = ||N||>. By induction, ||[N?| = |N||*, for all k € N.
Hence, by (10.6), sprN = ||N]||. |
Proposition 10.37. If N is a normal Hilbert space operator; then 6 (N) = 0,p(N).

Proof. Because 6 (N) = 0,p(N) Uda(N) = 04p(N) U, (N*)*, it is sufficient to show
thatif A € 0,(N™), then A € 0,(N). Therefore, assume that Ae op(N*)andlet§ e H
be nonzero with N§ = A£. Because N is normal, it is also true that N — A1 is a normal
operator. Consequently, Proposition 10.35 implies that

0=[|(N* =Dl = (N =AD" ] = |V = 2D

Hence, A € 0,(N) C 04p(N). O

Using the properties of normal operators above, we can deduce precise informa-
tion concerning multiplication operators.

Example 10.38. If (X, X, ) is a o-finite measure space, then every multiplication
operator My on L*(X, X, 1), where ¢ € £°°(X, X, 1), is a normal operator with
spectrum
o(My) = ess-ranys
and norm
My || = sprMy = ess-supy.
Proof. The multiplication operator My, on L*(X, X, 1) has adjoint M = My, and it

is clear that My, commutes with every multiplication operator M,, not just with M.
In any case, My is a normal operator.
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Example 8.1.7 shows that [|My || = ess-sup ¥/, whereas Example 8.53 proves that
Oap(My) = ess-ranyy. The normality of My yields 0.,(My) = o (My) (Proposi-
tion 10.37), and so ||My || = sprMy,. |

Example 10.38 is indicative of the general case, for if N is a normal operator act-
ing on a separable Hilbert space H, then there is a o-finite measure space (X, X', )
and a surjective isometry U : H — L*(X, X, i) such that UNU ™! is the multiplication
operator My, on *X, x, W), for some ¥ € £ (X, X, u) (Corollary 11.34).

The proof of Proposition 10.37 reveals that N§ = A&if and only if N*§ = AE.
Therefore, if Né = A and Ny = un for distinct eigenvalues A and p of N and
nonzero vectors £ and 7, then

(A—w)(€.n) = (A&.n) — (€. um) = (N&.n) — (§.N"n)

= (N&,n) —(N&,n) =0,

which implies that (§,17) = 0. Hence, ker(N — A1) L ker(N — ul) for distinct
eigenvalues A and p of N. With this observation, the proofs of the spectral theorems
for compact operators carry over verbatim, with only change being the requirement
(in the hermitian case of the theorem) that the eigenvalues be real.

Theorem 10.39 (Spectral Theorem for Compact Normal Operators). The
following statements are equivalent for a compact operator K acting on a separable
Hilbert space H:

1. K is normal;

2. there are a bounded sequence {Aj};zl of nonzero complex numbers, where r is
Sfinite or infinite, and a sequence {¢; =1 of pairwise-orthogonal unit vectors in H
such that

a. K¢; = Aj¢;, for each j,
b. lim;A; =0, if r is infinite, and

c. K&= Z/\j(é,gbj)gbj,for every £ € H.
j=1

As with hermitian operators, normal operators admit a continuous functional
calculus. Below, C|s,7] denotes the commutative ring of complex polynomials in
two variables.

Theorem 10.40 (Continuous Functional Calculus for Normal Operators). If N
is a normal operator, then for every continuous function f : 6(N) — C there is a
unique hermitian operator f (N) with the property that

If(N) = ga(N.N*)|| = O (10.7)
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for every sequence {q,}nen of polynomials q, € Cls, ] for which

lim (rerg(%) If (2) —qn(z,Z)I) =0.

n—>00 \ z

Furthermore, for all continuous functions f,g : c(N) - C and « € C,

L f(N)|| = maxesvy [f(A)],

2. af(N) = a(f(N)),

3. (f+8 W) =f(N)+g(N), and
4. fg(N) =f(N)g(N).

Proof. The proof is identical to the proof of Theorem 10.28 except for the
approximation indicated in (10.7). The use of polynomials ¢ in two variables s and
t is necessary to invoke the Stone-Weirerstrass Theorem. That is, if . is the set of
all continuous functions on ¢ (N) of the form z — ¢(z,7), where g € C[s, ], then .
contains the constants, is self-adjoint, and separates the points of o (N). Hence, .
is dense in C (o (N)). O

Theorem 10.40 has an even stronger form, in which the use of continuous
functions is extended to bounded Borel functions on the spectrum of N. This
extension of continuous functional calculus to Borel functional calculus will not
be needed for the topics studied in this text, and so we shall not develop it here.

With Theorem 10.40 at hand, one can prove assertions such as the following
result.

Proposition 10.41. If A is an isolated point in the spectrum of a normal operator
N, then A is an eigenvalue of N.

Proof. Exercise 10.120. O

If a normal operator N leaves the subspace Span{£} invariant, for some nonzero
vector £ € H, then Span {£} is invariant under the action of N* also. But this feature
does not apply to all invariant subspaces of a normal operator.

Example 10.42. The subspace {>(N) of {*(Z) is invariant for the bilateral shift
operator B, but not for B*.

Proof. Because B is a forward shift, which is to say that Be; = ey for every k € Z,
itis clear that B € ¢*(N) for every £ € £?(N). However, with the vector ¢y € {2(N),
we have that B¥ey = e_; ¢ £*(N), and so £%(N) is not B*-invariant. O

Motivated by the dual-invariance feature exhibited by normal operators with
respect to the eigenvectors, one is led to the following class of operators.

Definition 10.43. An operator T € B(H) is a reductive operator if M+ is T-
invariant for every T-invariant subspace M C H.
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Evidently every hermitian operator is reductive. However, as Example 10.42
demonstrates, not every normal operator is reductive. If we consider only compact
normal operators, then the following positive result holds.

Proposition 10.44. Every compact normal operator is reductive.
Proof. Exercise 10.124. O

Do there exist reductive operators that are nonnormal? This is an open question,
equivalent to the long-standing open question of whether every operator on a
separable Hilbert space has a nontrivial invariant subspace. Therefore, we might
ask whether there exist compact reductive operators that are nonnormal.

Theorem 10.45 (Rosenthal). If a compact operator K is reductive, then K is
normal.

Proof. The first step of the proof is to show that there is a unit vector y € H such
that y is an eigenvector of both K and K*. This is achieved by a Zorn’s Lemma
argument.

Because K is compact, K has a nontrivial invariant subspace (Theorem 8.59).
Consider the family % of all nonzero K-invariant subspaces M C H such that
|Kjs |l = ||K||. The family .7 is nonempty because H € .% . Furthermore, the relation
< on . defined by

LM ifandonlyif LDOM

is a partial order on .Z.
Let {M}4e be linearly ordered chain in .% and consider the subspace

N= ﬂMa. (10.8)

a€A

Note that the subspace N is reducing for K. If it can be shown that N € .%, then N
will be an upper bound in .% for the linearly ordered chain {M},e .

Because H is a separable metric space, every open covering of an open set admits
a countable subcovering (by Exercise 2.103). Taking set-theoretic complements in
equation (10.8) leads to

H\N = J H\M,.

a€EA

which is a covering of the open set H \ N by the family of open sets H \ M,,. Hence,
by Exercise 2.103, {H \ M, }, admits a countable covering {H \ My, },eny of H\N.
Therefore,

N=(\M,,. (10.9)

neN
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Because the original descending chain was linearly ordered, the sequence of
subspaces M,, can be assumed to be ordered so as to satisfy

M, S M, for everyn € N. (10.10)

n+1°
Every compact operator achieves its norm on some unit vector. Therefore, for
each n € N there is a unit vector &, € M,, such that

K&l = [ Kppg,,, Il = 11K

Because K is compact, there is a subsequence {§,, }x of {§,}, such that {K§&, },
converges to a vector 7 € H. The norm of 71 is necessarily ||K||, since ||KE, || =
|K]| for every k € N. Equations (10.9) and (10.10) still hold if one replaces the
sequence of subspaces M, by the subsequence {My,, }ren. Therefore, without loss
of generality, it may be assumed that the original sequence {K§&,},en converges to
neH.

The closed unit ball of H is weakly compact by the Banach-Alaoglu Theorem.
Thus, the sequence {§, },en admits a subsequence {§,, }xen that is weakly convergent
to some vector § € H of norm ||§]| < 1. Fix k. For every j > k, the vector &,, belongs to
M,,, . Thus, the weak limit £ is also the weak limit of the sequence {§,,}j>¢ in M, -
Therefore the vector § belongs to M,,, . As this is true for any k, equation (10.10)
yields £ € N.

Foreachk e N,

17— K&y 1> = Inll> + 1 K& |I> = 20 (K&, 1) = 2| K[> =20 (K &y 1)
As k — oo, the equation above yields R (K, n) = ||K||>. Thus,
IKI? < K& m)| < [IKEI Il = IKENIK] < 1K,

and so ||K&|| = ||K||. This shows that £ € N is a nonzero vector (in fact it is a unit
vector). Hence, the orthogonally reducing subspace N is at least one-dimensional
and K achieves its norm on N. That is, N € .%, and so N is an upper bound in .% for
the linearly ordered chain {M},c4. By Zorn’s Lemma, .# has a maximal element,
say M.

Since M € .#, M is nonzero. We shall show that M is one-dimensional. Suppose
that dimM > 1. Because K|y is compact, there is a nontrivial subspace L € M
that is invariant under K|y;. Since the subspace L is K-invariant and because K is a
reductive operator, L+ is K-invariant. Hence, L and L+ N M are invariant under K.
This implies that Ky achieves its norm on L or on L' N M. Either case contradicts
the maximality of M in .#. Therefore, M must be one-dimensional. Thus, if y € M
is a unit vector, then y is an eigenvector of K and K*.

The second step in the proof shows that K is normal. Let & be a maximal family
of orthonormal vectors y € H for which y is an eigenvector of K and K*. If & is an
orthonormal basis of H, then K has an orthonormal basis consisting of eigenvectors
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and is, therefore, normal. Suppose that & is not an orthonormal basis of H. Since the
closure of the span of E is K-invariant, the subspace &1 is also K-invariant, since
K is a reductive operator. By the arguments in the first step, there is a unit vector
¥ € &+ which is an eigenvector of K1 and (K|s1)*. Since K is reductive, this
vector ¥ is an eigenvector of K and K*. But ¥ € &+, which is in contradiction to
the maximality of the family &. Hence, it must be that & is an orthonormal basis
of H. O

10.5 Positive Operators

To this point we have seen that hermitian operators have properties connected to
the real numbers, while normal operators have the flavour of arbitrary complex
numbers. In this section, the operator-theoretic analogue of a nonnegative real
number is introduced, which is one of the most important features of Hilbert space
operator theory.

Definition 10.46. An operator A € B(H) is positive if A is hermitian and o (A) C
[0, 00).

Corollary 10.27 provides an alternate criterion for the positivity of an operator:
Proposition 10.47. A € B(H) is positive if and only if (A£,E) > 0 for every &€ € H.
Corollary 10.48. T*T is a postive operator, for every operator T.

Positivity also captures information about the norm of an operator.

Proposition 10.49. If « is a positive real number and T € B(H), then a1 —T*T is
positive if and only if J/a > | T|.

Proof. Foreach & € H,

(@1 =TT)&,£) = a|I€]* — I TE|.
Thus, (@l —T*T)&,€) > 0 for every £ € H if and only if | T¢| < /a| ] for all
& € H. That is, ol — T*T is positive if and only if /& > ||T|]. O

One of the most useful features of positive operators is that they possess (unique)
positive square roots.

Theorem 10.50. IfA € B(H) is positive, then

1. there is a positive operator R € B(H) such that R?> = A, and
2. if Ry € B(H) is a positive operator such that R? = A, then Ry = R.

Proof. Since o(A) C [0,00) and the function f(f) = /7 is continuous on the
spectrum of A. Consider the hermitian operator R = f(A), which satisfies, by
Theorem 10.28, R2 = A. We now show that R is positive.
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By scaling A we may assume without loss of generality that ||A|| = 1. Thus,
0 (A) C [0, 1]. For each n € N, let g, be the n-th Bernstein polynomial approximating

f(t) = /t: namely,
(1) = Z \/E (") F(1—p
= Vn k

Therefore, g,(t) > 0 for all ¢ € [0,1], which implies that o(g,(A)) C [0,00),
by the Spectral Mapping Theorem; furthermore, lim, (maxte[o,l] lgn () —f (t)|) =0
([14, §10.3]). Thus, the sequence {g,(A)}, of positive operators converges to R.
Proposition 10.26 implies that the smallest element m, in o (R) has the form

my = ||siﬁ1£1 (RE.§).

If my < 0, then there must be a unit vector £ and an n € N such that (g, (A)&,£) < 0.
On the other hand, as g,(A) is positive, (g,(A)€,&) > 0 by Proposition 10.26.
This contradiction implies that m; > 0 and so R is positive. Thus, o(R) C [0, 00).
Furthermore, since 0 < ¢,,(r) < 1 for all € [0, 1], each ||g,(A)|| <1 and so ||R| < 1.

Assume that R; is positive and R? = A. Since [0,1] 2 0(4) = {A*|1 € 6(R))},
we see that o(R;) C [0,1]. Note that g,(t) — +/f uniformly on [0, 1] implies that
@n(t?) — v/72 = t uniformly. Thus, ¢,(R?) — R,. That is,

R, =limg,(R}) = limg,(A) =R,
n n

which proves that A has a unique positive square root. O

Notational Convention If A € B(H) is positive, then A'/? will denote the unique
positive square root of A.

The proof of Theorem 10.50 establishes the following result, which we record
here formally for future use.

Proposition 10.51. [f A is a positive operator and if f : 6(A) — R is a nonnegative
continuous function, then f(A) is a positive operator.

Definition 10.52. The Loewner ordering on the set B(H)s, of hermitian operators
is the partial ordering < in which S < 7, for hermitian S and 7, if and only if 7 — S
is positive.

Note that S < 7, for hermitian operators S and 7, if and only if (S&, &) < (T&,£),
for every £ € H. An elementary but useful fact about the Loewner ordering is:

Proposition 10.53. If S and T are hermitian operators for which S < T, then
X*SX < X*TX for every operator X € B(H).

Proof. Exercise 10.127. O
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The continuous functional calculus of Theorem 10.28 demonstrates that alge-
braic features of continuous maps f and g carry over to operators f(7) and g(7T)
(that is, the continuous functional calculus preserves sums, products, and scalar
multiplication). The situation is rather different when considering the preservation
of the Loewner order (see Exercise 10.132). There are, however, some positive
results, and the first of these (below) is amongst the most important.

Proposition 10.54. IfA and B are positive operators and if A < B, then A'/> < B'/2.

Proof. By the uniqueness of the positive square root of a positive operator, it is
enough to prove that if A, B € B(H) are positive operators such that A> < B2, then
A < B. Under these assumptions, note that if £ € H is a unit vector and if A € R, then
(B%£,£) — A(BE,£) is a real number and (BE,A§) is a real or complex number such
that

N(BE,AE) < |(BE,Af)| < |IBE|| |AE|l = (B’E.§)"/2(A%,§)'? < (B*E.§).

Now, to show that B—A is positive, it is sufficient, by Proposition 10.26, to prove
that A > 0 for each A € a(B—A). To this end, select A € 6(B—A). Because B—A is
hermitian, A is necessarily real and an approximate eigenvalue (Proposition 10.24).
Thus, there is a sequence of unit vectors &, such that lim,, ||[(B—A)&, — A&,|| = 0.
For every n we have that

|(BEw, (B—A1)Ex —A&)| < |IBIl [|(B—A)&, — A&all.

and therefore lim, (BE,, (B — A1)§, — AE,) = 0. Because every &, is a unit vector,

each of the sequences {(B%£,.£,) nen, {(BEn. &) bnen, and {(BE,,AE,)} e lies in a
compact subset of C. Hence, there is a subsequence {£,, }jen of {£,}nen such that

{(B%€,;.6n;) Ve, {(B&n;. En;) }jen, and {(BE,,. A&, ) }jen are convergent. Thus,

lim ((Bzénj»gnj) _A(Bsnj’sn_,-» = jE)r{.lo(BSnj’Agnj)

j—>00

= lim SR(BEnijsnj)

j—oo
< lim (B%,.£,).
j—)OO ; ;
which implies that

lim (—A(B&,.£,)) < 0.
Jim o En

If lim;(BE,,, §,,) # 0, then necessarily A > 0. If, however, lim;(B¢,,,§,,) = 0, then

0= lim (B, £,) = lim (B'/?¢,,B"/?¢,) = lim ||B'?, |
Jj—>o0 Jj—>o0 : j—>o0o
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yields

0= lim ||Bl/2(Bl/2€:nj)”2 = lim (stnj’s”f)'

Because, for every j € N,

<Bzgnj?gl’lj> = <A2€:nja§nj) = ”Aég-n_,-”2 >0,

we deduce from the inequality and limit equation above that lim; [|A§,, |? exists and

is equal to 0. Therefore, lim; || (B —A)&,; — A&, || = 0 holds only if A = 0. |

If A is a positive operator, then the compactness of the spectrum implies that two
scenarios are possible: either (i) 0 € o (A) or (ii) there exists § > 0 such that A > §
forall A € g (A). In the latter case, Proposition 10.26 yields 0 < § < (A£, &) for every
unit vector £ € H—in other words, §1 < A. This leads to a simple criterion for the
invertibility of positive operators:

Proposition 10.55. A positive operator A € B(H) is invertible if and only if there
exists a real number § > 0 such that §1 < A.

The next proposition asserts that the function ¢ — ! on (0,00) is operator
monotone.

Proposition 10.56. If A and B are invertible positive operators such that A < B,
then A=" and B™" are positive operators and B~' < A~

Proof. If T is an invertible positive operator, then for every n € H we have, using
E=T""n,

(T 'n,n) = (T"1(T§).T¢€)) = (£.T€) > 0.

Hence, T~! is a positive operator, by Proposition 10.47. (Alternatively, one could
argue via Proposition 10.51.)

By hypothesis, §1 < A < B for some real number § > 0. Hence, V81 < A2 <
B'/2, by Proposition 10.54, which implies that B'/? is invertible. Let T = A'/?2B~1/2
and choose any 7 € H. Thus, there is a unique £ € H for which n = B'/?£, and so

170> = [A"?€]> = (A&, €) < (BE.€) = IB'2£))> = [In]>.
Therefore, ||T|| < 1 and, hence, ||T*| < 1. Thus, |[B~'/2A'/29|]> < ||| for every
U eH.
Select any y € H and let ©¥ € H denote the unique vector for which y = A'/2¢.
Thus,
(B~ly.y) = IB7 2y | = 1B7'PAV9 > < 9> = A7 2y |P = (A7 vy,

which proves that B~! <A™, O
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Propositions 10.54 and 10.56 belong to a wider set of results on operator
monotone functions. These propositions say that the functions ¢ > /¢ and t +> ¢!
are operator monotone on [0, oo] and (0, 00), respectively. In contrast ¢ > £> is not
operator monotone in the sense that there exist positive operators A and B such that
A < Bbut A? £ B* (Exercise 10.132).

A common technique in measure theory is to write an arbitrary real-valued
function as a difference of two nonnegative functions whose product is zero. That
idea carries over, via functional calculus, to hermitian operators.

Proposition 10.57. If A is a hermitian operator, then there are positive operators
Aiand A_ €Ay suchthat A=Ay —A_and AftA_ =A_A4 =0.

Proof. Let X = [—||A||, ||A]|], which is a compact set that contains ¢ (A) and O.
Consider the functions f, g € C(X) defined by f(z) = (¢ + |¢z])/2 and g(z) = f(—1).
The functions f and g are nonnegative and vanish at 0; thus, by Proposition 10.51,
the operators f(A) and g(A) are positive. Let A+ = f(A) and A_ = g(A). Because
t=f(t)—g(t) and f(t)g(¢) = 0 for all f € X, the continuous functional calculus yields
A =A+—A_ andA+A_ =A_A+ =0. O

For compact positive operators, the min-max variational principle exhibited by
equation (10.11) below is very useful in the analysis and estimation of eigenvalues.

Theorem 10.58 (Courant-Fischer Theorem). IfA € B(H) is a positive compact
operator, then there are a bounded sequence {Aj};zl of real numbers, where r is
finite or infinite, and a sequence {¢; =1 of pairwise-orthogonal unit vectors in H

such that
1. A¢j = Aj¢;, for each j,

2. /\j > A’j+1 > O,fOV allj,
3. limjA; = 0, if r is infinite, and

4. AE =" A(E.¢))¢, for every § € H.
j=1

Furthermore, for each j such that 1 <j <r,

Aj= min ( max (A¢,¢)). (10.11)

LCH, dimL=j—1 \¢eLL, |¢ll=1

Proof. Theorem 10.32 provides the spectral decomposition of A. By relabelling the

indices, we may assume that the elements of the sequence {)kj};=1 are ordered so

that A; > A;11, for every j. Therefore, all that remains is to prove equation (10.11).
By Proposition 10.26 the spectral radius A, of A is given by

A1 = sup (A§,§).
[lEN=1
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But since A is compact, the unit eigenvector ¢, corresponding to the eigenvalue A,
also satisfies (A, ;) = A1 and the supremum above is in fact a maximum:

A= max (AE.§).

Let M; = Span{¢;}, which is A-invariant. Thus, Mj is A-invariant and the
restriction A| M- of A to M IJ- is positive and compact. Therefore, the spectral radius
of A, M- is given by

spradjn = max (A8 = max  (A£§).
geMi-, gl=1 ! geMi-, gl=1

Note that ¢; € Mf- for allj > 2, and so sprA‘Mll > A; for all j > 2. But since sprAlMlL
is also an eigenvalue of A, it must be that sprAlMll = A,. By induction, if M;_; =
Span{¢1,...,¢j—1}, then

Aj= max  (A£§)
geMt El=1

Suppose now that L C H is a subspace of dimension j— 1 and that {y(,..., ¥}
is an orthonormal basis of L. The matrix 2 = [(¢,, ¥s)]1<,<j1<s<j—1 1S @ linear
map of C/ into /7!, and so ker 2 # {0}. Select a unit vector « € ker 2 and let

J
&= Zaggbg, which is a unit vector in M;. The condition Z'«v = 0 implies that
(=1
e L+ . Furthermore,

o J J
(AE.6) =) > @A) = Y el =) lewl* = 4.
=1 =1

k=1¢=1
Hence, A; < max{(A§,£)|& € L1, ||€|| = 1} for every subspace L of dimension j— 1.
This completes the proof of equation (10.11). O
Definition 10.59. The unit operator interval is the subset I(H) of B(H) defined by

I(H)={A€BH)|0<A<1}.

Thus, I(H) is the set of positive operators A of norm ||A|| < 1—or, equivalently,
the set of positive operators A for which 1 —A is positive (Proposition 10.49).
The unit operator interval is plainly a convex set that contains every projection.

Proposition 10.60. An operator is an extreme point of the unit operator interval
I(H) if and only if it is a projection.
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Proof. Suppose that P is a projection and express P as a proper convex combination
P=1tA;+ (1 —1)A; of A1,A; € I(H), for some 7 € (0,1). If £ € kerP, then 0 =
(PE.E) = T(AIPE.E) + (1—7)(A26.£) = O gives |42 = (4,£.8) = 0forj = 1.2,
and so A& = A& = 0. Because it is also true that the projection 1 — P is given by 1 —
P=1(1-A;)+ (1—-1)(1—A;), the same argument shows that ker(1 —P) C ker(1 —
Ap) Nker(1 —A). Thus, the action of A; on each of ker P and (kerP)*+ =ker(1—P)
coincides with the action of P on these subspaces. Because H = ker P @ ker(1 — P),
we deduce that A} = A, = P. Hence, every projection P is an extreme point of /(H).

Conversely, suppose that A € I(H) is not a projection. This means, by Proposi-
tion 10.30 that A has a point of spectrum in the open interval (0, 1), say A. Select
f € C(6(A)) such that 0 < ¢+ f(t) <1 for every t € 6(A) and f(1) # 0. Thus,
f(A) #0and Ay = A+ f(A) and A, = A—f(A) are elements of I(H) such that
%Al + %Az = A but neither A| nor A, equal A. Thus, A is not an extreme point of
I(H). Hence, every extreme point of /(H) must be a projection. O

If H is finite-dimensional, then /(H) is a compact convex set and so, by the Krein-
Milman Theorem, /(H) is the closed convex hull of the set of projections. However,
a much sharper statement can be made.

Proposition 10.61. If H has finite dimension, then the unit operator interval 1(H)
is the convex hull of the set of projections on H.

Proof. Select A € I(H) and write A in its spectral decomposition: A = Z}"zl AiPj,
where A1,...,A,, are the distinct eigenvalues of A and each P; is a projection with
range ker(A—A;1). If §; is a unit eigenvector of A corresponding to the eigenvalue A;,
then A; = (1§, &) = (A§;,§;) € [0, 1]. Thus, we may assume the eigenvalues of A are
orderedsothat 1 > A > A, >---> A4, >0.Sett;=A;— A forl <i<m, 1, = Ap,

and 7,41 = 1 — Ay; thus, 71,..., 7,41 are convex coefficients such that Zf":] T =
Aj.Fori=1,....m, let Q; = Z;:lpj and let Q,,+1 = 0. Thus, Q1,...,0,,+1 are
projections and Y7 7,0, = A. O

10.6 Polar Decomposition

In working with complex numbers z, it is sometimes advantageous to express z in
its polar form z = ¢'?|z|, where 6 is the argument of z. One can do the same with
operators on Hilbert space, and the result is a major structure theorem for arbitrary
operators called Polar Decomposition.

Definition 10.62. For any T € B(H), the modulus |T| of an operator T € B(H) is
the positive operator |T| = (T*T)'/2.

One could of course elect to have defined |T| by (TT*)'/?, which results in a
different operator than (7*T)'/? (if, for example, T is the unilateral shift operator).
The adoption of (T*T)'/? for |T| is made so that the polar form T = U|T| appears,
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at least on the surface, in exactly the same form as the traditional way of expressing
the polar form of a complex number z—namely, as z = ¢'?|z|.

Definition 10.63. An operator V € B(H) is a partial isometry if there exists a
subspace M of H such that V}y, is an isometry and V), = 0.

The subspace M is called the initial space and of V, and the range of V is called
the final space of V.

Proposition 10.64. [fV € B(H) is a partial isometry with initial space M and final
space V(M), then

1. V*V is a projection with range M, and
2. VV* is a projection with range V(M).

Proof. Let P € B(H) be the projection with ran P = M. To show that V*V = P, first
note that V is a contraction because, for every £ € H, (1 — P)§ € M+ = kerV and
P& € M and so for every £ € M,

[VEI = [IV(PE + (1 —P)E| = [[VPE|| = |PE| < |I€]|-
Therefore, if £ € M is a unit vector, then
1= [[VE|? = (V*VEE) < [IV*VE[ €l < V¥V <1

gives a case of equality in the Cauchy-Schwarz inequality; hence, V*V§ = &, which
shows that V*V and P agree on ranP. If n € M+ = (ranP)* = ker P = ran (1 — P),
then V*Vn = 0 since M+ = ker V. Thus, V*V and P agree on (ran P)*. Hence, V*V
and P agree on H.

Let Q = VV*.Because V=V(V*V+ (1-V*V)) = VV*V = QV, the range of V
is contained in the range of Q. But @ = VV* implies that the range of Q is contained
in the range of V. Thus, ranQ = ranV = V(M). Lastly, Q is plainly hermitian and
Q> = (VW*)(VV*) = (VW*V)V* = VV* = Q. O

It is also true that if V is an operator such that V*V is a projection, then V is a

partial isometry (Exercise 10.138).

Theorem 10.65 (Polar Decomposition). For every T € B(H) there exists a partial
isometry V € B(H) such that

1. the initial space of V is ran|T|,
2. the final space of V is ranT, and
3. T=V|T|

Furthermore, if T = VR, for some positive operator Ry and partial isometry V,
with initial space ranRy, then Ry = |T| and V, = V.

Proof. Forevery £ € H,
NTIEN* = (ITIE ITIE) = (ITPE.§) = (T*TE,§) = || TE||*. (10.12)
Therefore, ker |T| = kerT.
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Let Vy : ran|T| — H be the function that maps each |T|§ € ran|T| to T§ e ranT.
Since |T|&; = |T|& only if & — &, € ker|T| = kerT, V, is a well-defined linear
surjection ran|7T| — ranT. Because || Vo || = ||| for all Y e ran|T|, V| extends (by
continuity) to an isometry ran|7| — H, denoted again by Vj. Therefore, the range
of the isometry Vj is closed and coincides with ran7. Now extend V| to a partial

isometry V € B(H) by defining Vi = 0 for all € ran |T|J_ = ker|T| =kerT. Hence,
V is a partial isometry with initial space ran|7T/|, final space ranT, and satisfies
VIT|=T.

Suppose next that T = V|R; for some positive operator R and partial isometry
V1 with initial space ranR;. Because, for every £ € H,

(T*T&,€) = | TE|” = IViRiE|* = [ Ri€||* = (RIE.£),

T*T = R? by the Polarisation Identity. Thus, |T| = (T*T)"/? = (R?)'/?> = R, by the
uniqueness of the positive square root. Hence, V|T| = V|T|. That is, V and V; agree

on ran|T|. But since the initial space of R; is ran|T|, R, is zero onran|T| . Hence,
V and V) agree on all of H. m|

Definition 10.66. The polar decomposition of an operator T € B(H) is the unique
decomposition of T as T = V|T|, where V is a partial isometry with initial space
ran|T| and final space ranT.

Two properties of the polar decomposition are noted below as corollaries for
future reference.

Corollary 10.67. If T = V|T| is the polar decomposition of T, then V*T = |T|.

Proof. The operator V*V is a projection with range ran7, and so V*V§& = & for
every £ eranT. |

Corollary 10.68. If T € B(H) is invertible, then the partial isometry V in the polar
decomposition T = V|T| of T is a unitary operator.

Proof. Equation (10.12) shows that there is a sequence of unit vectors {§, },en with
lim, || T§,|| = O if and only if lim, || |T|§,|| = O—that is, O € 0., (T) if and only if
0 € 04p(|T]). Thus, if 0 € 0,p(T), then 0 € 045 (|T|) = o (|T]), which implies that |T|
is invertible. Therefore, V = T|T|™' is invertible and the initial space of V is H,
which means that V*V = 1. Hence, V* = V!, which implies that V is unitary. O

The polar decomposition informs the theory of Hilbert space operators in a
variety of manners. For example, the polar decomposition yields the following
information about the geometry of the closed unit ball of B(H).

Proposition 10.69. If an invertible contraction T is not unitary, then T is the
average of two unitaries.

Proof. Corollary 10.68 shows that the polar decomposition of T is of the form T =
U|T|, for a unitary operator U. Because T*T < 1, 1 —|T|> = 1 — T*T is a positive
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operator. Note that T7*T # 1, because T is invertible but nonunitary. Hence, 1 — |T|?
is a nonzero positive operator. Define an operator W by W = |T| 4 i(1—|T|?*)"/? and
observe that

W*W = |T)>+ (1= |TP) +i(|ITI(1 = |T>)"/2 =1 —|T/»)"?|T]), and
WW* = TP+ (1= |TP) +i (=TI =T+ (1= |T»)/?|T]).

The operators |T| and 1 —|T|* obviously commute, and so |T| and f(1—|T?)
commute for every polynomial f. Hence, by the continuous functional calculus,
|T| and (1 —|T])"/?> commute, which implies that W*W = WW* = 1. Thus, the
operators U; = UW and U, = UW* are unitary and distinct, and

%(Ul +Uy) = U(%(W—i— W*)) = URN(W) = U|T| =

expresses T as an average of unitaries U; and U,. |

Returning to properties of the polar decomposition, a useful fact about the
modulus of a complex number z is that the real part Rz of z satisfies Nz < |z|. This is
not true verbatim in the case of operators, but a very closely related property holds.

Proposition 10.70. IfZ € B(H), then R(Z) < V|Z|V* for some isometry V.

Proof. Let Z = U|Z| be the polar decomposition of Z, where U is a partial isometry.
Decompose the hermitian operator 3% (Z) as a difference 3(Z) = Y — Y_ of positive
operators Y and Y_ such that Y, Y_ = Y_Y, = 0. Let Q € B(H) denote the
projection with range ran Y. Note that QY_ =Y_Q = 0. Now let R = Q(Z + |Z|)
and let R = W|R| be the polar decomposition of R in which W is a partial isometry
with final space ranR. Note that ranR C ranQ and so ranR C ranQ. Therefore,
because the projection WW* has range ranR, we deduce that ran (WW*) C ran Q.

The orthogonal complement of ran (WW*) in H is (ranR ) =kerR*.If ¢ ekerR*N
ran Q, then

0 = (§,R*€) = (RE.§) = (Q(Z+|Z))§.§) = (Z+1Z]§. Q§) = ((Z+ |Z])§.§)
= N((Z+12))§.£)) = (RZ +|Z])§.§) = (N(2)§.§) = (Y1.£.§).
where the final inequality is on account of £ € ranQ =ranYy and QY_ = 0. Thus,
(Y+£,€) = 0and Y, positive yield Y& = 0. However, ker Y | ran Y, implies that
Y & =0only if £ = 0. Hence,
(ran WW"‘)l NranQ = kerR* NranQ = {0}.

Therefore, WW* < Q and ran WW* = ran Q together yield WW* = Q.
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Let P = W*W, the projection with range (ker W) = ran|R|. Thus,
ker W*W NranQ = (ran|R|) NranQ = kerR* NranQ = {0}.

Thus, W*Wiran is injective. Therefore, if £ € ker(1—WW™*) Nran (1 —W*W), then
& = WW*E eranQ and W*W§E = 0 imply that £ = 0. Hence, the projection 1 —Q is
injective on the range of 1 —P.

Consider (1 —Q)(1 — P). Because ker(1 — Q)(1 — P) = ker(1 — P), in the polar
decomposition (1 — Q)(1 —P) = Wy|(1 — Q)(1 — P)| the range of the projection
W5 Wy is ran (1 — P) and the range of Wy W is contained in ran (1 — Q). Because
ran W = ranR C ran Q, we have (ran Q)+ C (ran W)=. Thus,

ran Wy € ran (1 — Q) = kerQ = (ranQ)* C (ran W)=,

which implies that (Wj W§&,n) = 0 for all £, € H. Hence, if V = W + W, then
VIV =WW4+WWo+WoW* +W;Wy=P+0+0+(1—-P)=1.
That is, V is an isometry.
Recall that Z = U|Z|, W(Z) = Y4 — Y_, ON(Z)Q = Y4, R = Q(Z + |Z|), and

R = W|R|. Thus,

4y = 20(Z+2%)Q = 20(U|Z| +|Z|U*)

= 0[(1+V)IZIA+U)* —(1-D)|Z|(1-V)*]

=0+ 0)|Z|[(1+U)*Q.

Note that [Q(1 4 U)|Z|(1 4+ U)*Q)* = Q(1 4 U)|Z|(1 + U)*Q(1 + U)|Z|(1 4 U)*Q.
Therefore, by the uniqueness of the positive square root, we obtain

4Y, < (Q(1+U)|Z|(1 + Uy*Q(1 + U)|Z|(1 + U)* Q) /2.

Let X = (1 + U*)Q and note that || X|| < ||Q|| + |U*|||1Q]l < 2. Thus, X*X <
[X*X|11 = |X||>1 <4-1, and so

o1+ U)ZI1+U)* 01+ U)|Z|(1+ U)*Q = Q(1 + U)|ZIX*X|Z|(1 + U)*Q

<41+ ) ZP(1+U)*Q).
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As the square root function is operator monotone, we now have that
4+ < QUL+ D)IZI(1+ V)" 01+ V) IZI(1+ U)* )
< 2(QU+V)ZP1+ 1) Q)"
= 2(RR*)'/?.
Because ran W, C (ran W)+ = (ranR)' = kerR*, the operator R*W, = 0; thus,
WR =0 and RV* = R(W* + W) = RW*. By passing to adjoints, VR* = WR*.
Therefore,
RR* = WV|R|*W* = W(R*R)W* = V(R*R)V* = V|Z|(1 + U)*Q(1 + U)|Z|V*,
and so RR* < 4V|Z|?V*. Hence, using that the square root is operator monotone,
4Y4 < 2(RR*)'? < 4(V|Z)PV*)!/2
= 4(V|Z|V*V|Z|V*)\/?
= 4V|Z|V*.

Hence, RZ <Yy < V|Z|V*. O

An important consequence of the proposition above is the following triangle
inequality for Hilbert space operators.

Theorem 10.71 (Triangle Inequality). If S,T € B(H), then there are isometries
V,W € B(H) such that

IS+ T| < VIS|V* + W|T|W*.

Proof. Let S+ T = U|S + T| be the polar decomposition of S+ T, where U € B(H)
is a partial isometry. Therefore, U*(S+ T) = |S+ T and so

S+T|=R(S+T) =RU*S) + RU*T).
Because ||[U*|| = 1, we have that UU* < 1 and therefore X*UU*X < X*X for every
X € B(H). Hence, by Proposition 10.54, |[U*X| = (X*UU*X)"/? < (X*X)!/? = |X|
for each X € B(H). Further, Proposition 10.70 asserts that there exist isometries V
and W such that R(U*S) < V|U*S|V* and R(U*T) < W|U*T|W*. Hence,
IS+ T| = R(U*S) + R(U*T) < V|U*S|V* + W|U*T|W* < V|S|V* + W|T|W*,

which completes the proof. O
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10.7 Strong and Weak Operator Topologies

Recall from Proposition 1.88 that if X is a set, {(Ye, 7%)}tea is a family of
topological spaces, and if g¢ : X — Y is a function, for each § € A, then there
is a coarsest topology on X in which each function gg : X — Y¢ is continuous. If
we let the set X be B(H), A = H, (Y¢, 7)) = H (in the usual topology of H), and if
each g : B(H) — H is the function g¢(T) = T%, then we obtain a topology on B(H)
called the strong operator topology.

Definition 10.72. The strong operator topology on B(H) is the coarsest topology
on B(H) in which the functions g¢ : B(H) — H defined by g:(T) = T§, for T € B(H),
are continuous for every £ € H.

Observe that in the strong operator topology (SOT) a basic open set containing a
given operator Ty € B(H) is a set of the form

Ug],wgm;glwgm = {T (S B(H) | ||T£:k — TOSk” < & forall k = 1, . ,m},

forsomeme N, &,...,§, € H,and ¢1,...&, € (0,00). In particular, if {T} }ien is a
sequence of operators such that, for some operator T € B(H), limy ||T.§ —T¢|| =0
for every £ € H, then T is the limit of the sequence {7}, in the strong operator
topology. (Here, “T is the limit of {7} };” means that for every SOT-open set U there
is an ny € N such that T} € U for every k > ny.)

Another application of Proposition 1.88 leads to the weak operator topology.

Definition 10.73. The weak operator topology on B(H) is the coarsest topology
on B(H) in which the functions f; , : B(H) — C defined by f; ,(T) = (T&,n), for
T € B(H), are continuous for every (£,1) € H x H.

In the weak operator topology, a basic open set containing Ty € B(H) is a set of
the form

Werbwimtcmseroen = AT € BUH) | [{T& —To&r.mie)| <&y forallk =1.....mj,

forsomemeN, &,....&,.,11,...,nm €H,and ¢1,...&, € (0,00). Thus, if T € B(H)
and if {T} }xen is a sequence of operators such that limy (& —T§&, n)| = 0 for every
&,m € H, then T is the limit of the sequence {T}}; in the weak operator topology.

One of the most useful features of the weak operator topology is the compactness
of the closed unit ball, which is an Alaoglu-type theorem in both its statement and
its method of proof.

Theorem 10.74. The set {T € B(H)|||T|| < 1} is compact and Hausdorff in the
weak operator topology.
Proof. For each ordered pair (£,1) € Hx H, let K¢ = {A € C||A| < €] lInl]}-

Consider the space K = H K ), endowed with the product topology. By
(6, EeHxH
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Tychonoff’s Theorem (Theorem 2.14), K is a compact set. Furthermore, K is
Hausdorff because each K¢ ;) is Hausdorff.

Let X ={T € B(H)|||T|| < 1} and consider X as a topological space in which the
topology on X is induced by the weak operator topology of B(H). Define f : X — K
by f(T) = ({T§.7n)) ., and note that f is an injective function. Select 7' € X and
consider an open set W C K that contains f (7). Thus, there are open subsets Wg ;) €
K p such that (T§,n) € W ), for every (§,1) € Hx H, and W ) = K¢, for all

but at most a finite number of elements in H x H—say (£1,11),..., (§,,1,)—and
W= 1_[ W - Hence there are positive real numbers ¢y, ..., &, such that
(E.neHxXH

Wiy = 2 € Cllz—(TEm;)| <&

for every j = 1,...,n. Therefore,

£ = (S e XIS =g )| < &}

J=1

which is a basic WOT-open neighbourhood of 7' € X. Hence, f is continuous at every
T € X, which implies that f is a continuous function on X.

On the other hand, if U C X is an arbitrary open set and if 7 € U, then
there is a basic WOT-open set B such that T € B C U. By definition, there are
&i,m),.... (¢, n,) € Hx H and positive real numbers ¢&1,...,¢, such that, for
S e X, we have S € B if and only if [((S—T)&.n;)| <¢ for each j =1,....n.
Hence, if Wg, ;) = {A € K | |12 —(T§,m;)| < ¢} and if Wie ;) = Kz for every

(€.m) € Hx H\{(E1.n1).....(En.n)}. then Wy =[] Wi, is open in K and
(6. EHXH
f(T) € Wr C f(U). Thus, f(U) = U Wr, which shows that f(U) is open. Hence,

TeU
f~':f(X) — X is continuous, and therefore f is a homeomorphism between X and
JX).

We now show that f(X) is a closed subset of K. Let A = (A(¢)) . € K be in the
closure of f(X), and define a function y : Hx H — Cby ¥ (§,7) = A(¢ ). Claim: ¥ is
a bounded sesquilinear form. To prove this claim, select vectors &, &1, &2, 10,12, 12 €
H and scalars o, a2, B1, B2 € C. Let ¢ > 0 be arbitrary. Define subsets W ) € K¢
as follows:
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Wt +artring) = {Z € Kot +ast2.m0) | 12— A1 +antang) | < 8} ;
Wigoprm+am) = 12 € Kgo.pim+2m) 12— Ao pim+pann) | < 8};

Wegom) = {Z € Ko lz= Ao < W} forj=1,2;

W(EjJIO) = {Z € K(Ej.nn) | |Z_A(Sj~,7]0)| < L} , forj=1,2;

Jogj
W, = K, in all other cases.

Thus, W = l_[ Wie.n is open in K and contains A. Because A is in the closure

(E.mEHXH
of £(X), there is an operator S € X with f(S) € W. Therefore,

lor (51, m0) — o (SE1.mo)| <&, |aa¥r (§2.m0) —2(SE2.m0)| < &,

and

[V (a1€1 + 0262, m0) — (S(a1é1 + @262),mo)| < e.

Hence,

[ (161 + 262, m0) — o1 ¥ (51, m0) — ¥ (52, m0) | < 3e.

A similar argument shows that

[ (Eo. Bim1 + Bama) — Byw (Go.m) — B (Bo.m2)| < 3e.

The choice of ¢ > 0 being arbitrary yields
Y€1+ a2b2.m0) = a1y (§1.m0) + 2 (62,70), and

¥ (€. Bim1 + Bamn) = By (Go.mi) + Bavr (Bo.2).

Hence, v is a sesquilinear form.

The boundedness of ¥ is immediate from |y (&,7n)| < ||| |In]l. By Proposi-
tion 10.5, there is a unique T € B(H) such that ¥ (&,n) = (T&,n) for all £,n € H.
Because ||T|| is the supremum of all |{T&,n)| as § and 7 range through unit vectors,
|IT|| < 1. This proves that T € X and, hence, that A = f(T) € f(X).

Because f(X) is closed in K and since K is compact and Hausdorff, we deduce
that f(X) is compact and Hausdorff; hence, X is compact and Hausdorff. O

The following example helps distinguish the two topologies on B(H).
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Example 10.75. The involution T v T* is continuous with respect to the weak
operator topology, but not with respect to the strong operator topology.

Proof. The proof of the first assertion is left as an exercise (Exercise 10.142).
Let S denote the unilateral shift operator on the Hilbert space £>(N), and let
T, = (8*)", for every n € N. Note that if § = (§)reny € H and n € N, then

IT.&ll = ( > w) /2.

k=n+1

Thus, lim ||7,£|| = 0, for every £ € £>(N); that is, the sequence {T,}, converges
n—>o0

to 0 with respect to the strong operator topology. However, | T £| = ||S"¢|| = ||€]]
because S is an isometry, and so 0* is not the SOT-limit of the sequence {7, },,
implying that the involution fails to be continuous with respect to the strong operator
topology. O

In contrast to Example 10.75, B(H) admits the same set of continuous linear
maps into C regardless of whether B(H) has the strong operator topology or the
weak operator topology.

Proposition 10.76. The following statements are equivalent for a linear transfor-
mation ¢ : B(H) — C:

1. @ is continuous with respect to the weak operator topology on B(H);
2. @ is continuous with respect to the strong operator topology on B(H);
3. there exist n € N and nonzero vectors &y,...,&,,01,...,N, € H such that

n

o(T) =Y (T&.m),

J=1

for every T € B(H).

Proof. (1) = (2). Assume that ¢ is continuous with respect to the weak operator
topology on B(H). Suppose that V C C is a nonempty open set, and select Ty € B(H)
and & > 0 so that B.(z9) € V, where zo = ¢(T)). Because ¢ is weakly continuous,
there is a basic WOT-open set W about Ty, say

W ={T e B(H)||(T§ —To&;,n;)| <gforallj=1,...,n},

for some nonzero vectors £1,...,&,,11,...,n, and positive real numbers ¢,...&,,
such that ¢(W) C B.(z0). For each j let & = ||n;|| "¢, and consider the SOT-open set

Ty = {T EB(H)| ||TEJ—T0§” < 5]‘ for alljz 1,...,]’[},
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By the Cauchy-Schwarz inequality, if 7 € W for every T € Uy,. Hence, ¢! (V) is a
union of SOT-open sets Uy, and therefore ¢ is continuous with respect to the strong
operator topology.

(2) = (3). Assume that ¢ is continuous with respect to the strong operator
topology on B(H). Therefore, using the open unit disc D in C, the set ¢! (D) is
SOT-open, and hence there exists a basic SOT-open set U about 0 € B(H) of the
form U = U, . ¢,:4,...s, for some nonzero £ € H and ¢; > 0. Let ¢ = min; g;; thus, if
T € B(H) satisfies ||T&;|| < ¢ for each j, then |p(T)| < 1.

LetC= % and suppose that R € B(H) satisfies RE; # O for at least one j. Let

n 1/2
a=C (Z ||Rsk||2) :
k=1

Thus, for any j,

_ clrgl

= 1 N1z
2(X %= IRE1?)

and therefore |¢(R)| < «. Hence, for every R € B(H),

n 1/2
le(R)| < C<Z||ng||2) .
k=1

By replacing each &, with C§; in the inequality above, we may assume without
further change of notation that

n 1/2
lp(R)| < (Z ||Rsk||2) :
k=1

1
—R¢; <-x<eg,

a ]

€
2

for every R € B(H).

In the Hilbert space H" = @H (the direct sum of n copies of H), consider the

1
linear submanifold Ly = {@j T&|T € B(H)}. If S, T € B(H) are such that S§; = T&;
forj=1,...,n, then
N 1/2
l9(S) —@(D)| = lp(S-T)| < (Z IS — T)EkHZ) =0.
k=1

Therefore, the map (@] TEJ-) > ¢(T) is well defined, linear, and contractive. Thus,
by the Hahn-Banach Theorem, there is a contractive linear functional ¥ on H such

v EDTE | =0
J
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for all T € B(H). The Riesz Representation Theorem yields a vector n = @/‘ n; in
H™ that implements /. In particular, for each T € B(H),

o(T) = <@ Tfj’@nj> =Y (T&.m)).
=1 j=1

j=1

The proof of (3) = (1) is obvious. O

Equipped with Proposition 10.76 and the Hahn-Banach Separation Theorem, the
following fundamental fact about B(H) is deduced.

Proposition 10.77. If K C B(H) is a convex set, then CWOT = C 59T,

Proof. Tt is clear that CS°T € CWOT To prove the inclusion C "7 € CS97 select
T € C"OT  If, contrary to what we aim to prove, T & C 57, then the Hahn-Banach
Separation Theorem implies that there are a SOT-continuous ¢ : B(H) — C and a
y € R such that

R(p®R) <y <e(T), VReC.

But Proposition 10.76 implies that ¢ is also WOT-continuous, and so the inequality
above implies that T ¢ C 9T, which is a contradiction. O

10.8 Matrices of Operators

Through the use of matrices of operators, a number of properties concerning
individual operators are revealed.

Proposition 10.78. If T € B(H), then the operator

A= 1T
T 1

is a positive operator on H® H if and only if |T|| < 1.
Proof. By Exercise 10.128, if Q is hermitian and X is invertible, then Q is positive

if and only if X* QX is positive. Factor the hermitian operator A = [ ! T:| as

T* 1
L[ Lot o LT _ yox,
™1 |lo1—T*T |01
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Because X = |:(1) T} is invertible, we have that A is positive if and only if the

matrix Q = |:(1) ] T*T} is positive. But Q is positive if and only if 1 —T*T is
positive, which is equivalent to saying that Q is positive if and only if ||T|| < 1, by
Proposition 10.49. O

A 3 x 3 version of Proposition 10.78 is:
Proposition 10.79. If T,,T, € B(H), then the operator
1 7,0
A=|(TF 1T
0751
is a positive operator on H® H @ H if and only if 1 — T} T\ — T, T} is positive.

Proof. Factor A as

T100][1 0 O0[1Ti0
A=|TF10 || 0(-TT) T, || 010
Loot1Jlo 7 1]loo1

Thus, A is positive if and only if the middle factor is positive, which in turn is
(1-T7T) T»
T 1

01 10f]1 0 1 T3 01
ol (a6 a—mn—ram o T Do)

which is positive if and only if 1 —T7T, — T, T is positive. |

positive if and only if

i| is positive. This matrix is equal to

The next theorem is one of the first ever dilation, or matrix completion,
theorems established for Hilbert space operators. Below, given a contraction 7,

. Lo | T .
the unspecified entries in the 2 x 2 operator matrix |:* I:| are determined so that
the completed matrix is a unitary operator.
Proposition 10.80 (Halmos). If T € B(H) satisfies ||T|| < 1, then the matrix

B T (]_TT*)I/Z
U_[(l—T*T)‘/2 —T* ]

is a unitary operator on H @ H.
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Proof. By Proposition 10.49, the condition ||T|| < 1 is equivalent to the positivity of

1 —T*T.Because ||T*|| = ||T|| < 1, we also have that 1 — TT™* is positive. Therefore,

in the definition of the matrix U, the (1,2) and (2,1) entries are well defined.
Computation of U*U and UU* leads to

vu=| r'T+(1-T*7) T*(1=17%)"2 = (1 =1*1)" 2 1*
and
“la-TnPreorr -1 =T+ TT

Therefore, it is enough to prove that T (1 — T*T)"/? = (1—TT*)"/?T. Let A and B
denote the positive contractions A = (1—T* T)l/ and B=(1— TT*)I/ 2. Observe
that

TA? = T—TT*T = B*T.

Thus, Tf(A%?) = f(B*)T for every polynomial f € C[f]. Hence, if {f,},en is
a sequence of polynomials converging uniformly on the interval [0, 1] to the
square-root function h(f) = /1, then Th(A%) = h(B*)T; that is, T (1 — T*T)l/ 2=
(1—TT*)"*T, which proves that U*U = UU* = 1 € B(H ® H). |

Proposition 10.80 has numerous interesting applications, one of which concerns
the weak operator topology.

Proposition 10.81. If H is an infinite-dimensional Hilbert space, then the closure
of the set {U € B(H) |Uis unitary} in the weak operator topology of B(H) is the set
of all T € B(H) for which ||T| < 1.

Proof. Select T € B(H) such that ||T|| < 1. Consider a basic WOT-open set W
containing 7', which by the definition of the weak operator topology is a set of the
form

W= ("\(S € BH) [ [((S— D). m)| < 3},

J=1

forsomemeN, &,....&,,n1,...,0m € H, and ¢1,...&, € (0,00). We aim to prove
that W contains some unitary operator U.
Let Hy = Span{&,...,&,, 01, - - ., Nm}- Because H has infinite dimension, we may

consider the finite-dimensional Hilbert space Hy @ Hy as a subspace of H; hence,
H decomposes as H = (Hy @ Hy) ® H,, where H; = (Hy @ Hp)*. Let P € B(H)
denote the projection with range H, and consider the contraction PTP acting on
Hy. By Proposition 10.80, there is a unitary operator Uy € B(Hy & Hp) such that
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Up= [ (P;P) )Z(:| Extend Uj to a unitary operator U acting on H = (Hy® Hy) ®H,,
where
Uy 0 (PTP)X O
U= 0 1 = Y Z 0
I 0 01y,

Note that PUP = PTP and so, foreachj=1,...,m

(U§j,m;) = (UPE;, Pyj) = (PUPE;, m;) = (PTPE;,n;) = (TP§;, P;) = (T&;, ;).

Thus, U € W. Hence, {T € B(H)|||T| <1} € {U € B(H)|Uis unitary}woT
Conversely, if T € B(H) satisfies |T|| > 1, then there are unit vectors &,n € H
such that |{T§,n)| > 1. On the other hand, |{U, n)| < U] lIn|| = I§[[lInll =1 for

/OT
every unitary operator U. Hence, T ¢ {U € B(H) | U is umtary} O

The following two results of this section are in the spirit of Propositions 10.80
and 10.81.

Proposition 10.82. IfA € B(H) is positive and ||A|| < 1, then

_ A (A(1-A))'/?
‘[(A(l—A))‘/z 1-A ]

is a projection operator on H ® H.
Proof. Exercise 10.133. O

Proposition 10.83. If H is an infinite-dimensional Hilbert space, then the closure
of the set {P € B(H) | Pis a projection} in the weak operator topology of B(H) is the
unit operator interval I(H).

Proof. Exercise 10.135. O

One of the most striking applications of matrices of operators involves an infinite
matrix. Let H be a Hilbert space and suppose that T € B(H) is a contraction.
Consider the Hilbert space ¢2(Z) of sequences & = (&,)nez of vectors &, € H for
which

> l&lP = lim Z &I < oo.

nez n——k

(The inner product is ((Xu). (M) = D ez {En, Nn).) With respect to this sequence
space, consider the operator U : £3,(Z) — £%(Z) defined by the following lower-
triangular infinite matrix, with entries indexed by Z x Z, of operators acting on H:
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.0
1 0
U= X T .
~T*YO0
10

where X = (1—TT*)"/?> and Y = (1—T*T)'/?, and where the operator T is the (0,0)-
entry of the matrix U, all remaining diagonal entries are 0, all subdiagonal entries
are 1 except for X and Y, and all other matrix entries are 0. By using arguments
like those employed in the proof of Proposition 10.80, one sees that the operator U
satisfies U*U = UU* = 1.

Let Py be the projection on £7(Z) with range given by the 0-th copy of H in
Z%(Z). Thus, PoUjranp, = T. Moreover, because U is in lower-triangular form,
Po(U*)ranp, = T* for every positive integer k. This leads to the following important
theorem.

Theorem 10.84 (Sz.-Nagy Dilation Theorem). If T € B(H) satisfies ||T|| < 1,
then there is a Hilbert space H that contains H as a subspace and a unitary operator
U on H such that

P(U"y =TF

for every positive integer k, where P € B(ﬁ) is the projection with range H.
Corollary 10.85 (von Neumann’s Inequality). IfT € B(H) satisfies |T|| < 1, then
Ilf (T)|| < 1 for every polynomial f € C[t] for which Tr‘lax f(z) <1

z|=1

Proof. Exercise 10.136. O

10.9 Singular Values and Trace-Class Operators

The spectral theory of compact hermitian operators leads to a general structure
theorem for arbitrary compact Hilbert space operators known as the singular value
decomposition.

Theorem 10.86 (Singular Value Decomposition). If K € B(H) is a compact
operator of rank r € NU {oo}, then there exist a sequence {s; =1 of real numbers
and orthonormal sets {¢>j};: L and {y; = of vectors such that

1. s; > 541 >0, for all j,
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2. 0 =limys;, if r = oo, and

3. K¢ = Zsj(§,¢j)wj,for every &£ € H.

j=1
Proof. Apply Theorem 10.32 to the compact positive operator K*K to obtain
a bounded sequence {)tj};/:l of (nonzero) positive real numbers and a sequence

i ?/: of pairwise-orthogonal unit vectors in H such that K*K¢; = A;¢;, for each
)jsj=1 OL P g )j P

/
7

J, lim;A; = 0, if #/ is infinite, and K*K¢ = ij(g,@)(pj, for every £ € H. Note
j=1

/

that ¥’ = rank (K*K). Furthermore, if R € B(H) is given by RE = Z \/)Tj(g,qu)qﬁj,
j=1

for every £ € H, then R is compact, positive, and R> = K*K. Therefore, by the

uniqueness of the positive square root, R = (K*K)!/?; thus, if 5= \/)L_J for each j,

then

KE =3 /At
j=1

forevery £ € H. Hence, if K = V|K] is the polar decomposition of K, and if ¢; = V¢;
for each j, then

KE =" si(6.¢) V5,

j=1
for all £ € H. Because the range of V is isometric on ran |K| and has range rank,
{¥i};=, is a set of orthonormal vectors and r’ = rank K. O

The singular decomposition of a compact operator K refers to the representation
in (3) of Theorem 10.86 of the action of K on the Hilbert space H.

Definition 10.87. The singular values of a compact operator K of rank » € NU {oco}
acting on a separable Hilbert space of dimension d € NU {oco} are the nonnegative
real numbers s;(K) defined by

si(K) = sj,

if 1 <j <r and where {sj};zl are the positive numbers arising in the singular value
decomposition (3) of K, and by

Sj(K) = 0,

if je {l1,...,d} is such that j > r.
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Using the notation ¢ ® v to denote rank-1 operators (of the form & > (£,v)¢),
the singular value decomposition of a compact operator K can be expressed as

d
K=Y s5(K)$;® ;. (10.13)

J=1

d
In the case where H has infinite dimension, the series Zsj(K)qﬁj ® ¥; converges in

j=1
the norm of B(H) to K. Indeed, if £ € H and N € N, then

2

N
KE=> " si(K) (¢ @IE]| =Y si(K)*[(E.v) > < sw(K)? (€]

j=1 >N
Thus,

N

K=Y " 5i(K) (¢ @ ¥))| < sw(K),

j=1

which converges to zero because lim sy(K) = lim /Ay(K*K) = 0. Hence, the
N—o00 N—oo

following proposition has been proved.

Proposition 10.88. IfH is a separable Hilbert space, then the algebraic ideal F(H)
of finite-rank operators on H is dense in the ideal K(H) of compact operators on H.

The following elegant application of Proposition 10.88 returns us to the notion
of complementation (see Definition 8.15) in Banach space theory.

Proposition 10.89 (Conway). If H is an infinite-dimensional separable Hilbert
space, then the subspace K(H) is not complemented in B(H).

Proof. Fix an orthonormal basis {¢,},en of H. Let £*° and ¢y denote £°°(N) and
co(N). For each ¢ € £*°, define M, on H by

My k=Y "yn)E dn).

n=1

for £ € H. The linear map x : £>° — B(H) in which () = My, is plainly linear and
isometric. Now if f € £°° has the property that f(n) # O for at most a finite number
of n € N, then My has finite rank. Such functions are dense in co; therefore, if f € ¢
and if {f; }xen is sequence in £°° converging to f and such that, for each &, f(n) # 0
for at most a finite number of n € N, then limy [|M; —M;, || = limy ||f —f|| = O shows
that M is a compact operator.
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Let B : B(H) — £°° be the contractive linear map defined by S(T) = ({(T'hu, dn)),,-
Suppose that K is a rank-1 operator, say K = y ® ¥, for some nonzero vectors y
and . Then, for a fixed n, (K¢, d,) = (¢dn, ¥){y,¢dn). Because (¥, ¢,) and (y, d,)
of the n-th Fourier coefficients of i and y, respectively, these complex numbers
converge to 0 as n — 0o. Hence, B(K) € ¢, for every rank-1 operator K, and so by
linearity B(K) € ¢, for all finite-rank operators K. Because F(H) is dense in K(H),
and because B is continuous and ¢ is closed in £°°, we deduce that S(K) € ¢ for
every K € K(H).

Assume, contrary to what we aim to prove, that K(H) is complemented in B(H).
Hence, there exists an idempotent operator & : B(H) — B(H) with range K(H)
(Proposition 8.16). Define now an operator E : £*° — {*° by E = fo& o and
observe that E is an idempotent with range cy. Therefore, by Proposition 8.16, ¢
is a complemented subspace of £°°, which is in contradiction to Proposition 8.20.
Therefore, it cannot be that K(H) is complemented in B(H). O

Returning to the study of singular values, we begin with two basic properties.
Proposition 10.90. IfK,K,,K,,S,T € B(H) and if K,K;, K, are compact, then
1. s;i(IK|) = s;(K) = s;(K*) and
2. 5;(SKT) < [[SIHIT ls;(K)
for every j.

Proof. Note that the singular values of K are simply the square roots of the
eigenvalues of K*K, labelled in non-ascending order. Thus,

si(IK[) = A;(IK]) = s;(K)

for every j.
Suppose that K = V|K| is the polar decomposition of K. Thus, KK* =
V(K*K)V*. Because

ranK*K = ran |K|? C ran K],

V*V(K*K) = K*K. Hence, KK* = V(K*K)V* yields f(K*K) = Vf(K*K)V* for
all polynomials f € R|[¢], and so |K*| = V|K|V* by continuous functional calculus.

Suppose now that |K|&€ = A£ for some A € (0,00) and nonzero & € H. Thus,
& eran|K|. Hence, if ¥ = VE, then ||y || = ||€]| and V*VE = &. Thus,

|K* |y = VIK|V*y = VIK|V*VE = VIK|E = AVE = Ay

That is, A is a nonzero eigenvalue of |K| if and only if A is a nonzero eigenvalue of
|K*].

The argument above shows that if {£&,...,&,} is an orthonormal basis for
ker(|K|—A1), then {V&;,..., V§,} is an orthonormal subset of ker(|K*|— A1), and so
the multiplicity of A as an eigenvalue of |K| is bounded above by the multiplicity of
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A as an eigenvalue of |K*|. By letting L = K* and invoking the argument again
shows that ker(|K| — A1) and ker(|JK*| — Al) have the same dimension. Hence,
5;(K) = sj(K*) for every j.

To prove the second assertion, because

ISK|* = (SK)*(SK) = K*(S*S)K < |IS|’K*K = ||S|*|K?,

Theorem 10.54 implies that |SK| < ||S|||K|. Therefore, the min-max variation
principle (equation (10.11)) in the Courant-Fischer Theorem (Theorem 10.58)
yields

5i(SK) = A;(ISK1) = [ISIA;(IKT) = 5;(K)
for every j. Thus,
si(SKT) < |ISls;(KT) = |IS|ls;(T*K*) < ISINT*|Is;(K™*) = S| I Tlls;(K)

for every j. O

Definition 10.91. A compact operator K acting on a separable Hilbert space of
dimension d € NU {oo} is a trace-class operator if

d

Y si(K) < oo.

j=1

Let T(H) denote the set of trace-class operators acting on a separable Hilbert
space H. Thus, we have

T(H) C K(H) C B(H).

If H has infinite dimension, then the inclusions above are sharp. The proper
inclusion of K(H) into B(H) has already been noted (as the identity operator is not
compact), and so consider the inclusion 7(H) € K(H). Select an orthonormal basis
{¢;}jen and consider the compact positive operator K for which K¢; = j_1¢j for all

o0
J € N. Because s;(K) = % for each j, the sum Zsj(K) diverges, and so K & T(H).
=1
On the other hand, observe that

KeTH) < |K|eT(H) < K" € T(H)
and that RKS € T(H) if K € T(H) and R, S € B(H).

The use of the adjective “trace” in Definition 10.91 above will be explained
shortly, but note that every operator of finite rank is a trace-class operator; in
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particular, if H has finite dimension, then every operator on H is a trace-class
operator.

In linear algebra, the trace of an n x n matrix T = [1;]/,_, is defined by TrT =

Zt,-,-, the sum of the diagonal elements of 7. If T is the matrix representation of an
i=1

operator on an n-dimensional Hilbert space with respect to some orthonormal basis
{¢i}i_, of H, then

T =) (Tdidi).

i=1

This motivates the definition of trace for operators on infinite-dimensional separable
Hilbert spaces, starting first with the cone B(H) of positive operators.

Definition 10.92. Let % = {¢;}72, denote an orthonormal basis of an infinite-
dimensional separable Hilbert space H. The function ty4 : B(H)+ — [0,00]
defined by

oo

©5(A) = ) _(Adi. ).

i=1

is called a canonical tracial weight on B(H) .

Besides its linearity, a distinguishing property of the trace of matrices is that
Tr (ST) = Tr(TS) for all matrices S and 7.

Proposition 10.93. If 9 is a given orthonormal basis of an infinite-dimensional
separable Hilbert space H, then

1. tg(0nA1 +aAr) = o1 15(A1) + aat5(Az), for all Aj € B(H) 4 and o € Ry,
2. t3(TT*) = 14(T*T), for every T € B(H),
3. t4(U*AU) = t4(A), for every positive operator A and unitary operator U, and
4. Ty = Ty for every orthonormal basis %’ of H.
Proof. Ttis clear that the property tg(1A; + 02A43) = a1 74(A1) + @2t4(A2) holds,
forall Aj,A, € B(H)+ and o1, € Ry

Let # = {¢:}2,. By way of the Fourier series decompositions of T*¢; and T¢;,

T (IT*) = LT 1) = X, (ST 61 8)T916) = X, X, (T 00

Y (T )| = X5 (T STy b)) = S AT T i)
= 14(T*T).

Hence, t4(TT*) = t(T*T).
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Suppose that A is positive and U is unitary; let T = A'/2U. Thus,
1(U*AU) = 15(U*AV?AV2U) = 14(T*T)
= 15(TT*) = 14(AV2UU*A"?)
= 15(A).

Lastly, if ' = {¢/}_, is an orthonormal basis of H, then let U € B(H) be the
unitary operator for which U¢; = ¢; for every i € {1,...,d}. Hence, for every A €
B(H)+,

15(A) = T4 (U*AU) = 14/ (A),

which completes the proof. O

In light of Proposition 10.93, we may drop the reference to the orthonormal basis
% when discussing a canonical tracial weight T4—since there is exactly one such
function—and denote the canonical tracial weight on B(H) by t.

The domain of definition of t can be extended to the R-vector space B(H)s, of
hermitian operators as follows. For any difference C = A| — A, of positive operators
A1 and A,, define 7(C) by

7(C) = t(A) —t(A2).

This is a well-defined function on B(H)s, because, if A| —A, = A} —A), then A] +
A, = A + A, € B(H) 4+ and therefore

T(A) + 1(A2) = T(A] +A2) = T(A; +A) = (A)) + T(A));

hence, 7(A;) — 7(A2) = t(A}) — 7(4)) in the extended real number system.

Definition 10.94. If H is a separable Hilbert space, then the canonical trace on
B(H) is the function Tr on B(H) defined by

Tr (A1 —A2) +i(B1 —B2)) = (t(A1) —t(A2)) +i(t(B1) — t(B2)),
for all positive operators Aj,A,, By, Bs.

o0
Alternatively, the canonical trace on B(H) is the map T +— Z(Tq&,-, ¢;) for some
i=1
(and every) orthonormal basis {¢;} 72, of H.
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Proposition 10.95. If H is an infinite-dimensional separable Hilbert space and if
K € B(H) is a trace-class operator, then the sum

> (Ko.o) (10.14)
WwER
is absolutely convergent in C for every orthonormal basis 9 of H.

Proof. By the singular value decomposition of K, there exist orthonormal sets
{qu}j?’il and {1//1-}]?’21 in H such that

K=Y s5i(K)¢;® ;.

J=1

If the set %, = {d’i}fgl’ which is an orthonormal basis for ran |K]|, is not already an
orthonormal basis of H, then it may be extended to one, say & = %, U %, where
4 is an orthonormal basis of (ran |K|)* = ker|K| = kerK. Thus, K& = 0 for every
w € Y, and so

r

D (Kei.¢i)

i=1

Z(Ka),a))

wEA

= Z(Ka),a)) =

wEAB

= Z<Zsj(K) (9. )V, ¢i>

i=1 \j=1

IA

> siK) (i )|

i=1

d
< ZSI(K) < Q.

i=1
Hence, the sum (10.14) is absolutely convergent. O

Corollary 10.96. If K is a trace-class operator acting on a separable Hilbert space
H of dimension d € NU {oco}, then

d
ITrK| < Tr|K| =) si(K).
=1

Proof. The proof of Proposition 10.95 shows that

ITek| < Y si(K).

i=1
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However, because A;(|K|) = s;(|K|) = 5;(K) for all i such that 1 <i < r, this latter

sum is precisely Tr |K| by the spectral theorem (Theorem 10.32). Since s;(|K|) =0
d

forr<j<d,» s(K|)=Tr|K]|. O
j=1
Every rank-1 operator ¢ ® ¥ is a trace-class operator, and therefore 7T(¢ ® V) is

also a trace-class operator, for every T € B(H). The traces of such operators (of rank
0 or 1) are easily determined as follows.

Example 10.97. If ¢, € H are nonzero and if T € B(H) is arbitrary, then

Tr(T(@Q V) = (T¢. V).

Proof. We may assume that ||/|| = 1, for if not we could replace ¢ with d=\vl¢
and ¥ with ¥ = ||| ~"y to obtain ¢ ® ¥ = ¢ ® V. Select an orthonormal basis
{¢;}; of H in which ¢ = v. Thus,

Tr(T(@®Y) =Y _(T((¢1¥) ¢.8) = (6, ¥)(Te. ) = (T, V),
J J
which completes the calculation. O

In particular, the computation above yields ||¢ ® ¥ ||; = |{d, V)]
The first major result about trace-class operators is the following theorem.

Theorem 10.98. The set T(H) of all trace-class operators acting on a separable
Hilbert space H of dimension d € NU {oo} is an algebraic ideal of B(H) and the
function || - ||; : T(H) — R defined by

d
Kl =) s;(K) (10.15)
=1
is a norm on T(H). Furthermore, with respect to the norm || |1, T(H) is a separable

Banach space and the algebraic ideal F(H) of finite-rank operators is dense in
T(H).

Proof. We shall assume for the proof that H has infinite dimension.

Proposition 10.90 shows that T(H) is closed under scalar multiplication, the
involution *, and under products of the form RKS, where K € T(H) and R, S € B(H).
All that remains, therefore, to show that T(H) is an algebraic ideal is to show
that Ky + K, € T(H) for every K;,K, € T(H). To this end, let K;,K, € T(H) and
consider |K; 4 K5 |. By the Triangle Inequality (Theorem 10.71), there are isometries
V,W e B(H) such that

Ky + K| < VIK|V* + WKW = X*X + Y*Y,
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where X = |K;|'/2V* and Y = |K,|'"/?W*. Proposition 10.93 asserts that 7(G*G) =
7(GG™) for every G € B(H), and therefore

t(|Ki + Ks|) < T(X*X 4 Y*Y) = 1(X*X) + 1 (Y*Y) = 1(XX*) + t(YY™).
Because XX* = |K;| and YY* = |K;|, the inequality above yields
TI‘|K1 -|-K2| < TI'|K1| +T1"|K2|.

By Corollary 10.96,

d d d
ZSJ(K] +K2) = TI'|K1 +K2| < TI'|K1 | +TI'|K2| = ZSj(K]) + ZSj(Kz).
=1 =1 =1

Thus, K + K, € T(H) and ||K; + K2l < ||Ki|l1 + ||K2||:. Hence, T(H) is an
algebraic ideal of B(H) and || - ||; satisfies the triangle inequality on T'(H).

If K € T(H) satisfies ||K||; = 0, then the only eigenvalue of |K| is 0, and so
the spectral radius of |K| is 0. Hence, |K| = 0 and therefore K = 0. The property
leK|l; = || ||K]||; is trivial. Since the triangle inequality was established in the
previous paragraph, || -||; is a norm on T(H).

Suppose that {K, },en is a Cauchy sequence in T(H). Because

”Kn_KmHI zsl(Kn_Km) = |||Kn_Km||| = ”Kn_Km”s

{K, }nen is a Cauchy sequence in B(H) and is, hence, convergent to some K € B(H).
Because each K, is compact and K(H) is norm-closed, the limit operator K must
also be compact. Furthermore,

1Ky Ky — K* K| = || K5 (K, — K) + (Ko — K) K| < | K, [ [ K — K| + [ K7 = KF[IK]|

implies that K K,, converges to K*K. Thus, by the continuous functional calculus,
I[Kx| = K] — 0.

Let {¢;}; be an orthonormal set of eigenvectors of |K| corresponding to the
nonzero eigenvalues A;(|K|) of K. If N € N, then

N

N N
>_5i(K) = Y A(KD = D (K| )
=1 =1

J=1

N
I DN < i
nlllgo2<|[<n|¢p &) < her}fTr|Kn|
j=

= liminf ||K,]|;.
n
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N
Now since lim,, ||K,||; exists, liminf||K,||; = lim ||K,]|;, and so the sum Zsj(K) is
n n
j=1
bounded above for all N. Hence, K is a trace-class operator.
If £ > 0, then there exists N € N such that |K, — K¢||; < & for all £,n > N. Thus,
if £ > N, then

|K—K¢|l; = lim ||K,—K¢|: <e.
n—>oo

Hence, {K,},en converges in T(H) to K, thus proving that T(H) is a Banach space.

To show that F(H) is dense in T(H), let K € T(H) have infinite rank; thus, the
positive trace-class operator |K| also has positive rank. Express |K| in its spectral
decomposition:

Kl =) XKD @),

J=1

N
for some orthonormal set {¢;}72,. Consider |K|y = Zsj(K)kj(|K|)¢j ® ¢;, which
j=1
is a positive operator of finite rank and satisfies |K|y < |K]| in the Loewner ordering.
Thus,

K| =Kyl = Tr (| K= K|y = Tr (K] = [K]x) = > A(K).
Jj>N
Because ()L,-(|K D):l € £'(N), the partial sums of the eigenvalues converge to the

sum of the eigenvalues; hence, lim ZA,-(|K|) =0and lim |||K|—|K]|y]|1 =0.
N—o0 N ’ N—o0
J
Express K in its polar decomposition: K = V|K| and let Gy = V|K|y, which is
an operator of finite rank. Thus,

IK=Gnlls = VK| = KM I < [VIHITK] = K| = K] = [K]v ]l

and so Nlim |IK—=Gn|l; =0.
—00
The proof of the separability of 7'(H) is left as an exercise (Exercise 10.145). O

The norm |- ||; on T(H) is called the trace norm. Note that the proof of
Theorem 10.98 shows that if

K=Y s5(K)¢;®Y;

J=1
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is the singular value decomposition of K € T'(H), then the sum converges in the trace
norm.

Because T'(H) is a Banach space, it is of interest to understand its dual. The
following theorem shows that the dual space of T'(H) is (isometrically isomorphic
to) B(H).

Theorem 10.99. If H is a separable Hilbert space, then for each T € B(H) the
Sfunction o1 : T(H) — C defined by ¢r(K) = Tr(TK) is a bounded linear functional.
Furthermore, the map §2 : B(H) — T(H)* defined by 2(T) = ¢r is a linear
isometric isomorphism.

Proof. Only the case in which H has infinite dimension will be treated.
If T € B(H) and K € T(H), then

o0 o0
ITe(TK)| < Te|TK| = Y s;(TK) < > | T]ls;(K) = | TI|[K |1
Jj=1 Jj=1

Furthermore, K — Tr 7K is plainly linear in K. Hence, the function ¢y is a bounded
linear functional on T'(H) of norm ||¢r| < ||T||. If & > 0, then by Proposition 10.7
there exist unit vectors ¢, € H such that ||T|| —e < [{T¢, ¥)|. Thus,

1T —e < {T¢. v} = lor(p @) < llerlll¢ @Il = lerl Il = llerl

which proves that ||¢r|| = ||T||. Because the map £2 : B(H) — T(H)* defined by
£2(T) = ¢r is linear in T, we deduce that £2 is a linear isometry.

To show that £2 is surjective, let ¢ € T(H)* and define ¥, : Hx H — C by
Yy (§.m) = ¢(§ @n). Because [y, (§.n)| < [l¢]lll§ @ nll = llellliElln]l and v, is
plainly a sesquilinear form, Proposition 10.5 implies that there exists an operator
T, € B(H) such that (§ ® ) = (T,,§,n), forall £, n € H.

o0

If K= Zsj(K)qu ® v is the singular value decomposition of a trace-class
j=1
operator K, then the sum converges in T(H) and, by the continuity of ¢ and the
trace,

0(K) =Y si(K)p(dy @) = D si(K) Ty, ¥5)
j=1 j=1
= SETr (T,(¢;© V)
j=1

= Tr(7T,K).
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In the notation established above, this means that £2(7,) = ¢. Hence, the linear
isometry £2 : B(H) — T(H)* is surjective. O
As a dual space, B(H) has a weak*-topology, which is also commonly referred

to as the ultraweak topology or the o-weak topology.

Definition 10.100. The ultraweak topology on B(H), where H is a separable
Hilbert space, is the weak™*-topology on B(H) induced by the isometric isomorphism
B(H) = T(H)*.

We noted in Proposition 10.76 that a linear transformation ¢ : B(H) — C is
weakly continuous if and only if it is strongly continuous, and that such linear maps
have the form

n

o(T) = (T&.n;).

J=1

for some finite sets {&;,...,&,} and {71,...,n,} of nonzero vectors. The situation is
slightly different with the ultraweak topology.

Proposition 10.101. If H is an infinite-dimensional separable Hilbert space, then
a linear transformation ¢ : B(H) — C is continuous with respect to the ultraweak
topology of B(H) if and only if there are sequences {§;}jen and {n;}jen of vectors
such that

o0 o0
D NI and D (il
j=1 j=1

converge and

o0
o(T) =) (T&.m).
j=1
for every T € B(H).
Proof. Exercise 10.147. O
It so happens that T'(H) is itself a dual space.

Theorem 10.102. If H is a separable Hilbert space, then for each S € T(H) the
function gs : K(H) — C defined by ¢s(K) = Tr(SK) is a bounded linear functional.
Furthermore, the map w : T(H) — K(H)* defined by w(S) = ¢s is a linear isometric
isomorphism.

Proof. If S € T(H) and K € K(H), then

oo

ITe (SK)| < Tr(ISK|) = ) " s;(SK) < [[K]| Y_5;(S) = IIK[| S]]
j=1 j=1



386 10 Hilbert Space Operators

Therefore, the linear transformation ¢s on K(H) is bounded of norm ||@s| < ||S||;.
Hence, w is a contractive linear map of T'(H) into the dual space K(H)*.

If ¢ € K(H)*, then define a function ¥ : Hx H — C by ¥(£,1) = ¢(E ® ).
Because £ ® (an) = «(§ ® n) for all « € C, the function ¥ is a sesquilinear form
and satisfies |¥(&,n)| < |l¢ll €]l lIn]l- Hence, by Proposition 10.5, there exists an
operator S € B(H) such that ¥ (§,7n) = (S&,n), forall £,n € H.

Recall from Example 10.97 that if ¢, ¢ € H, then Tr (S(¢ @ ¥)) = (S¢p, ¥ ). Thus,

n

if F is a finite-rank operator expressed as F' = Z ¢; ® ¥, then
J=1

Tr(SF) =Y Tr(S(@;®y)) = > _(Spr.v5) = Y 0 (@) = o(F).

j=1 j=1 j=1
Let S = V|S| denote the polar decomposition of S, and write |S| as |S| = V*S. If
k
{®;};en is an orthonormal basis of H, and if P, = Z ¢; ® ¢;, which is the projection
J=1
with range Span{¢y,...,¢}, then the operator P,W* is a finite-rank contraction.
Because (¢ @ $;))V* = ¢; ® (V¢;), we have that

k

k
loll = lp(PW*)| = ZS¢,,V¢J = D _(V*Sgy. )| = Tr(IS|Py).

=1

Therefore, klim Tr (|S|Pr) = Tr(]S]) exists, which implies that |S| and S are trace-
—00

class operators of norm ||S||; < ||¢||. Hence, w is surjective and isometric. |

To conclude, the final result describes the extreme points of the closed unit ball
of trace-class operators.

Theorem 10.103. The following statements are equivalent for S € 7 (H):

1. S is an extreme point of the closed unit ball of 7 (H);
2. rank S = 1 and Tr(S*S) = 1.

Proof. Denote the closed unit balls of 7 (H) and £'(N) by .7 (H); and (¢'(N)),,
respectively.
Assume that (1) holds. Express S in its singular value decomposition:

T¢ = Zs,(g,qu)wj, forevery £ € H, (10.16)
j=1
where r =rank S, s; >--->s, >0, and {¢1,...,¢,} and {V, ..., ¥, } are orthonormal

systems in H. Let {e,},en denote the canonical coordinate vectors of £!(N). The
extreme points of the closed unit ball of £!(N) are precisely the vectors of the form
ee,, for some 6 € R and n € N (Exercise 7.35).
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Now let s € £!(N) be the vector of the singular values of S. We aim to show that
s is an extreme point of the closed unit ball (61 (N))1 of £'(N). To this end, assume
that s = to + (1 — )8, for some a, B € (¢'(N))), and 7 € (0,1). Let A and B be
operators defined by the equations

d d
AE =) k)Y and  BE =) BiEH) Y,

j=1 J=1

Thus, S = tA + (1 — 7)B. Furthermore, A,B € . (H); because ||A]; = |||y and
IBlli = l|B]l:- Hence, A = B =S, as S is an extreme point of .7 (H),. But this
occurs only if « = 8 = s, which implies that s is an extreme point of the unit ball of
£Y(N). Thus, r = 1 and s; = 1, which yields rank S = 1 and Tr(S*S) = 1.

Conversely, assume that (2) holds: namely, S has rank 1 and Tr(S*S) = 1. The
polar decomposition S = U|S|, for some partial isometry W, shows that S and |S|
have the same rank. By the Spectral Theorem, |S| and S*S = |S|?> have the same
rank. Now since S*S has exactly one nonzero eigenvalue and Tr($*S) = 1, this sole
nonzero eigenvalue is 1, which implies that $*§ is a rank-1 projection.

Let P = §*S and let ¢ € H be a unit vector that spans the range of P. Define a
linear functional v : .7 (H) — C by

Y(T) = Tr(PW*T), T € 7 (H).
Thus, for any T € .7 (H);,

W (D) = Te(PW*T)| = (W*T.¢)| = [W*IITI < [Tl < 1.

In particular, R(T) < 1 for every T € 7 (H) with ||T||; < 1. The value of ¥ at S is

¥ (S) = Tr(PW*S) = Tr(S*S) = 1. Suppose now that S = tA + (1 — 7)B for some
A,Be T (H), and T € (0,1). Thus,

I =Ryl =thvA@)+1—-0)RYyB) <t+(1—-1)=1.

Hence, Ry (A) = Ry (B) = 1; however, because |{(A)| and | (B)| are at most
1, we deduce that in fact {(A) = ¥ (B) = 1. In particular for A, this means that
(W*A¢p,¢) = 1, which is a case of equality in the Cauchy-Schwarz inequality and
so W*A¢ = ¢, whence Ap = Weop = WP¢p = W|S|¢p = S¢. Furthermore, the equation
A¢p = W¢ implies that ||A¢|| = ||¢|| = 1 and so the operator norm of A is ||A| =
1. Thus, 1 < |JA|| < Al <1 yields 1 = ||A|| = ||A]l; = 1. Because ||A]| is the
spectral radius of |A| and || |A| ||; is the trace of |A|, the equation spr|A| = Tr(JA|) =1
implies that |A| has exactly one nonzero eigenvalue (namely, 1). Thus, |A| is a rank-
1 projection and A = V|A| (polar decomposition) has rank-1. Hence, if o = S¢, then
A& = (£,¢)w = S& for every £ € H. By a similar argument, B = S as well. Hence, S
is an extreme point of .7 (H). |
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Problems

10.104. Prove that T,S € B(H) are equal if and only if (T§,&) = (S¢€,&), for all
§eH.

10.105. Prove that ranT = (ker T*)%, for every T € B(H).

10.106. If S is the unilateral shift operator on ¢?(N), and if R is an operator on
£2(N) for which RS = SR and RS* = S*R, then prove that R has the form R = Al
for some A € C.

10.107. For T € B(H), prove that A € o4(T) if and only if A € op(T).

10.108. Prove that the following statements are equivalent for an operator U €
B(H):

1. U is unitary;

2.0U=U0U*=1;

3. for some orthonormal basis {¢;}; of H, {Ug;}; is also an orthonormal basis;

4. {U¢;}; is an orthonormal basis for H for every orthonormal basis {¢,}; of H.

10.109. Suppose that V € B(H) is an isometry.

1. Prove that 0,,(T) C T.
2. If V is unitary, prove that o (T) C T.

10.110. Prove that if P € B(H) is a projection different from 0 and 1, then o (P) =
{0,1}.

10.111. Suppose that P € B(H) is a nonzero projection acting on a separable Hilbert
space H and that {¢y },‘le is an orthonormal basis for the range of P, where d is either
finite or infinite. Prove that

d
PE = (£, ¢,
k=1

forevery £ € H.
10.112. Assume that 7' € B(H) is an operator of rank m € N.

1. Prove that if m = 1, then there are unit vectors y,n € H such that T€ = (€,y) n,
forall £ € H.
2. Prove that the rank of 7% is m.

10.113. Prove that if {¢};2 is the canonical orthonormal basis of the Hardy space
H?(T) and if S € B(H*(T)) is the unilateral shift operator, then S* satisfies S¢; =
¢r—1, for all k € N and S*¢y = 0.

10.114. With respect to the canonical orthonormal basis {¢};>, of the Hardy
space H?(T), find the matrix representation . of the unilateral shift operator
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S € B(H*(T)). Viewing . as acting on ¢2>(N U {0}), determine the action of the
matrix .% on a vector £ € £2(NU {0}).

10.115. Prove that if 7 € B(H) is hermitian, then

IT| = sup [{T%,£)|.
HES

10.116. Assume that 7' € B(H) is hermitian and let

mgzllinf (T€,6) and m, = sup (T€,§).
£l=1 lel=1

Complete the proof of Proposition 10.26 by proving the following statements.

1. my € o(T).
2. o(T) S (—o0,my]
3. o(T) C [my,m,].

10.117. Suppose that 7' is a hermitian operator and that o (T) = o1 U 07, where o)

and o0, are compact subsets of R with oy N o, = @. Prove that there are subspaces
M, and M, of H such that

1. H=M, &M,
2. M, is invariant under 7, for j = 1,2,
3. the operator Tj; is hermitian and has spectrum oj, forj = 1,2.

10.118. Assume that H is a separable Hilbert space and that for an operator K €

B(H) there are a bounded sequence {A;}7_; of nonzero real numbers, where r is

finite or infinite, and a sequence {¢j};=1 of pairwise-orthogonal unit vectors in H
such that

1. K¢; = A;¢;, for each j,
2. lim; A; = 0, if r is infinite, and

3. KE= Z)tj(§,¢j)¢j, forevery £ € H.
J=1
Prove that K is a compact operator.
10.119. Prove that the following statements are equivalent for 7 € B(H):

1. T is normal;

2. |T*§|| = || T&]|, for all § € H;

3.T*T =T1T".

10.120. Prove that if A is an isolated point in the spectrum of a normal operator N,
then A is an eigenvalue of N.

10.121. Let B denote the bilateral shift operator on L*(T). Prove that the Hardy
space H*(T) is invariant under B and that, with respect to the decomposition
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L*(T) = H*(T) @ H*(T)*, B is represented by an operator matrix of the form

S B2
O BZZ ’

where S is the unilateral shift operator on H>(T) and B}, # 0.

10.122. Prove that the following statements are equivalent for an operator T and
projection P on a Hilbert space H:

1. ranP is reducing for T;
2. 1—=P)T*P = (1—-P)TP = 0;
3. TP = PT.

10.123. A subspace L C H is said to be nontrivial if L is neither {0} nor H. Suppose
that T € B(H).

1. Prove that if H has finite dimension, then T has a nontrivial invariant subspace.
(Hint: think about eigenvectors.)

2. Prove that if H is nonseparable, then T has a nontrivial invariant subspace. (Hint:
if £ € H is nonzero, consider the subspace generated by T*£ for k € N.)

10.124. Prove that every compact normal operator is reductive.
10.125. Let S be the unilateral shift operator on ¢2(N).

1. Prove that if T € B({?(N)) satisfies TS = ST and TS* = S*T, then T = Al for
some A € C.

2. Prove that the only subspaces L C £?(N) that are invariant under both S and S*
are L = {0} and L = ¢*(N).

10.126. Assume that N € B(H) is normal. If 11,1, € 0,,(N) are distinct, and if
&,, 1, € H are unit vectors for which

lim [|(¥ = A1 1) | = lim |V = A2, =0,
then prove that

lim (§,.7,) = 0.

10.127. Prove that if S and T are hermitian operators for which § < T, then X*SX <
X*TX for every operator X € B(H).

10.128. Prove that if A is hermitian and X is invertible, then A is positive if and only
if X*AX is positive.

10.129. Prove that, for every operator T € B(H), the operator 1 + T*T is invertible
and positive, and

A+71*7) 2T+ T*T)!? =T.
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10.130. Suppose that A and B are positive operators such that AB = BA = 0. Prove
that if A’ and B’ are positive operators such that A’ < A and B’ < B, then A'B’ =
B'A'=0.

01
00

1. Prove that o (T) = {0}.
2. Prove that there are no operators R € B(C?) such that R* = T.

10.131. LetT = [ } € B(C?).

10.132. Let H = C? and consider hermitian operators A, B € B(H).

VB
if @ and B are nonnegative real numbers such that o > ||y |>.
2. Given an example of positive A, B € B(H) for which A < B but A> £ B>.

1. IfA= |:a Y :| € B(H), where «, 8, y € C, then prove that A is positive if and only

10.133. Prove that if A € B(H) is positive and ||A|| < 1, then
pe A (A(1—A))'/?
“l@aa-an'? 1-4A
is a projection operator on H & H.

10.134. The commutant of a nonempty subset . C B(H) is the set
S ={TeBH)|ST=TSVse.7}.

1. Prove that . is closed in the weak operator topology.
2. Prove that .% is an associative subalgebra of B(H).
3. Prove that if $* € . for every S € .7, then T* € .’ forevery T € .&".

10.135. Prove that if H is an infinite-dimensional Hilbert space, then the closure of
the set {P € B(H) | Pis a projection} in the weak operator topology of B(H) is the set
of all positive operators A € B(H) for which ||A|| < 1.

10.136 (von Neumman’s Inequality). Use the Sz.-Nagy Dilation Theorem to
prove that if T € B(H) satisfies ||T|| < 1, then ||f(T)| < 1 for every polynomial
f € C[t] for which IﬂaX Ifiz)] < 1.

z|<1

10.137. Prove that if T € B(H) is invertible, then T = U|T| for some unitary
operator U € B(H).
10.138. Prove that if V € B(H) is a partial isometry, then V*V is a projection.

10.139. Suppose that T,,7, € B(H) are hermitian operators such that 717, =
T,T; = 0. Prove that {(§,n) = 0 for all £ e ranT; and 5 € ranT5.

10.140. Assume that T € B(H) and A € C. Prove that

ker(T—Al) € LatT and ran(T—Al) € LatT.



392 10 Hilbert Space Operators

10.141. Prove that, for every T € B(H),
MeLlatT ifandonlyif M* eLatT*.

10.142. Prove that the involution 7 + T™* is a continuous function on B(H) with
respect to the weak operator topology.

10.143. Let ¢ : [0,1] — [0,1] be given by ¥ (r) = t and consider the (hermitian)
multiplication operator My, on L?([0, 1], 901, m).

1. Prove that My has no eigenvalues.
2. Prove that My has no finite-dimensional invariant subspaces.
3. Find one nontrivial subspace of L2([0, 1],90t, m) that is invariant under My, .

10.144. Prove that the space K(H) compact operators on a separable Hilbert space
H is separable.

10.145. Prove that the space T(H) trace-class operators on a separable Hilbert
space H is separable with respect to the trace norm || - ||;.

10.146. Assume that Tj;,

separable Hilbert space H.

for i,j = 1,2, are trace-class operators acting on a

T T2

21 T
2. Prove that | Ty || + | To2ll1 < [IT[|:-

1. Prove that T = ] is a trace-class operator on H @ H.

10.147. Assume that H is an infinite-dimensional separable Hilbert space and that
¢ : B(H) — Cis a linear transformation.

1. Prove that if B(H) has the weak operator topology, then ¢ is continuous if and
only if there are finite sets {£1,...,&,} and {n1,...,n,} of vectors such that

n

o(T) =) (T&,m;),

j=1

for every T € B(H).
2. Prove that if B(H) has the ultraweak operator topology, then ¢ is continuous if
and only if there are sequences {£;};en and {7;};en of vectors such that

o0 o0
D lgI> and Y [l
=1 =1

converge and

[e.]

o(T) = (T&.n)).

J=1

for every T € B(H).



Chapter 11
Algebras of Hilbert Space Operators

Collections of Hilbert space operators lead to a rich palette of algebraic structures.
Of principal interest in this chapter are certain associative algebras of operators,
called *-algebras, that are closed under the involution T +— T*. However, one
could also quite readily consider other algebraic structures, such as semigroups of
operators, Lie algebras of operators, or vector spaces of operators. Our focus on
x-algebras of Hilbert space operators (and their abstractions known as C*-algebras)
stems from the fact that such algebras are widely employed and studied, and
exhibit special features that are not present in more generic algebraic structures. The
monograph of Paulsen [42] has a good treatment of the theory of general operator
algebras and discusses a wide variety of applications to operator theory.

Operator algebras, in the sense formulated in this chapter, are sometimes
considered as the basis for noncommutative topology and noncommutative measure
theory, thereby completing the arc of this text by bringing us back to the book’s
topological and measure-theoretic beginnings.

11.1 Examples

Definition 11.1. A x-algebra of operators is a subset A C B(H) that is closed under
addition, product, scalar multiplication, and the adjoint operation. Furthermore, a
x-algebra A is called:

1. a C*-algebra of operators, if A is closed with respect to the norm topology of
B(H), and

2. avon Neumann algebra if A is closed with respect to the strong operator topology
of B(H).

By the term operator algebra we shall henceforth mean a x-algebra of Hilbert
space operators.

© Springer International Publishing Switzerland 2016 393
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One might wonder why there is not a third category of operator algebra, defined
by the requirement that it be closed with respect to the weak operator topology. The
reason for there being no third category of x-algebra is that nothing new is gained:
if A is a x-algebra of operators, then the closure of A in the weak operator topology
coincides with the closure of A in the strong operator topology, by the convexity of
A and Proposition 10.77. Thus, every von Neumann algebra is closed with respect
to the weak operator topology.

Notational Convention In keeping with notation that is standard in the operator
algebra literature, lowercase letters are used in this chapter to denote individual
operators, whereas uppercase letters denote algebras of operators.

Definition 11.2. A x-algebra A of operators is abelian if xy = yx for all x,y € A.
Before considering operator algebra theory, a few basic examples are considered.
Example 11.3. Group Algebras.

Proof. Suppose that G is a countable discrete group, with identity element e. Define
a Hilbert space £%(G) by

(G)={f:G—C| > _If(W|* < oo}.

heG

An orthonormal basis for this Hilbert space is given by the set {§,},ec, where
8g(h) =1if h = g and 0 if 4 # g. Thus,

C(G) =) a8 g €C. > e * < oot

g€G g€G

and the inner product on £2(G) is given by

<Xg:ag(sg, Zﬂgag> = a.f,.

g€CG g€CG

For each h € G, let A, : {*(G) — £*(G) be the operator that sends f € £%(G) to
the function whose value at k € G is f(h™'k). Note that A, is an isometry, and that
A1 = )&;1 = A}; thus, A;, is a unitary operator, for each € G.

The action of A on the basis elements of £2(G) is given by A,[8,] = 8, and so
A, considered as a map G — B (¢*(G)) in which h > Ay, is called the left regular
representation of G.

The group algebra C[G], which is the set all products of finite linear combinations
of elements from the set {A,|h € G}, is a =x-algebra of operators. The norm-
closure in B (£%(G)) of C[G] is denoted by C}(G), and is called the reduced group
C*-algebra of G. The SOT-closure of C[G] is denoted by V;(G), and is called the
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group von Neumann algebra of G. Evidently, C;(G) is a C*-algebra of operators,
and V) (G) is a von Neumann algebra of operators.

There is also the possibility of allowing G to act on the right, leading to operators
pn on £2(G) for which p,(8;) = 84, for every g € G. Hence, once again each pj is a
unitary operator, and the map p : G — B(H) is the right regular representation of G.
As with the left regular representation, one obtains a C*-algebra C; (G) and a von

———S0T
Neumann algebra V,(G) = C;(G) . O

Observe that C} (G) (equivalently, V3 (G)) is an abelian operator algebra if and
only if G is an abelian group. We shall mainly concern ourselves with C; (G) and
Vi (G), using V,(G) only for the purpose of studying V, (G).

Example 11.4. The C*-algebra K(H) of compact operators.

Proof. Theorem 8.35 shows that K(H) is a Banach algebra of operators, while
Proposition 8.31 implies that K(H) is closed under the adjoint. Thus, K(H) is a
C*-algebra of operators.

Note, however, that K(H) is not a von Neumann algebra if H has infinite
dimension, as 1 & K(H) but 1 is the SOT-limit of a net of compact operators
(Exercise 11.107). O

Example 11.5. Matrix operator algebras.

Proof. Suppose that A is a x-algebra of operators acting on H, and consider the set
M,,(A) of nx n matrices with entries from A. Given a matrix X = [a,-j]l’."jzl eM,(A),
define X* by X = [a;]}; _;. The map X > X™ is an involution on M, (A) and, thus
under the usual algebra operations on matrices, M, (A) is a *-algebra of operator
acting on the direct sum H™ of n copies of H.

If A is norm closed, then so is M,(A). To prove this, let X = [a;];; be in the
norm-closure of M, (A). Thus, there is a sequence of elements X; = [ag()] ij such that

|X —Xi|| — 0 as k — oo. Hence, for a given pair of i and j, ||a; —ag“)” — 0 as
k — oo. Thus, a;; € A, and therefore X € M,,(A).

By analogy, the same type of argument in which a SOT-convergent net of
matrices is reduced to n> SOT-convergent nets of operators shows that M,(A) is
SOT-closed if A is SOT-closed. O

Definition 11.6. A x-algebra A of operators acting on a Hilbert space H is unital if
the identity operator 1 € B(H) is an element of A.

In the examples above, the group algebra C[G] is unital, where the identity on the
Hilbert space £2(G) is given by the identity element of the group G; consequently,
C3(G) and V) (G) are unital operator algebras. If H has infinite dimension, then
K(H) is not unital, whereas if A is a unital x-algebra, then so is the matrix algebra
M,,(A), where the identity of M,,(A) is the diagonal matrix in which each entry is the
identity of A.

Definition 11.7. If . C B(H), then the *-algebra generated by . is the smallest
x-subalgebra of B(H) that contains ., and is denoted by *-Alg.¥.
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The definitions of C*-algebra and von Neumann algebra generated by a set of
operators are straightforward; however, note that the definition of von Neumann
algebra requires that it be unital.

Definition 11.8. Assume that . is a set of operators acting on a Hilbert space H.

1. The C*-algebra generated by . is denoted by C*(.”) and is defined to be the
norm-closure of x-Alg.".

2. The unital C*-algebra generated by . is denoted by C*(.#, 1) and is defined to
be the norm-closure of x-Alg (7 U {1}).

3. The von Neumann algebra generated by . is denoted by W*(.¥) and is defined
to be the SOT-closure of *-Alg (. U {1}).

If .7 consists of a single operator, x, then

n m s t
x-Alg(x) = Z Zaijxi(x*)i + Z Z,Bkg(x*)kx/Z [n,m,s,teN, a;, B € C

i=0 j=1 k=0 (=1
and

n

m s t
x-Alg(x,1) = ZZaijxi(x*)j + ZZ'B"Z ()xt n,m,s,t €N, o, P € C

i=0 j=0 k=0 £=0

In particular, any one of the algebras *-Alg(x), C*(x), or W*(x) is abelian if and
only if x*x = xx*.

Example 11.9. Algebras of multiplication operators.

Proof. Assume that (X, X, ) is a o-finite measure space and consider the Hilbert
space L*(X, X, 1u). For every essentially bounded Borel function ¢ : X — C, the
multiplication operator My on H has norm ||[My| = ||| (see Section 8.1) and
adjoint M:; = My, (see Section 10.2). It is clear that My, y, = My, My, = My, My,
and that My, y, +ary, = 1My, +o,My,, and so the set

{My | € L®(X, X, )}

is an abelian x-algebra of operators. Because the map L*®°(X,X,u) —
B(L*(X, X, 1)) given by y > My is multiplicative and a linear isometry, this
set is a norm closed algebra, isometrically isomorphic to L% (X, X, ). (This
isomorphism is also compatible with the conjugation on L*° (X, X', ) and involution
on B(L*(X,X,u)) in the sense that My = Ml’;.) Hence, the set of all such

multiplication operators on L?(X, X, i) form an abelian C*-algebra. |
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11.2 von Neumann Algebras

One of the most immediate ways by which examples of von Neumann algebras are
obtained is through the use of commutants. Recall from Exercise 10.134 that the
commutant of a nonempty subset . C B(H) is the set

S ={yeB(H)|sy=ys, Vs€.7}.
Furthermore, Exercise 10.134 shows that if s* € . for every s € ., then .%" is a
unital C*-subalgebra of B(H), closed in the weak operator topology.
Example 11.10. If G is a countable discrete group, then V,(G) C Vi (G)'.
Proof. Select any basis element &, of £2(G). If h,k € G, then

AnPil8g] = An[Sgk) = Sngk = PilSngl = prAnl,]-

Hence, A,pr = prAn. As the choice of &,k € G is arbitrary, and because commutants
are closed in the weak operator topology, xy = yx forx € V3 (G) andy € V,(G). O

Definition 11.11. The double commutant of a nonempty subset . € B(H) is the
set denoted by . and defined by " = (%")’.

Observe that it always the case that . C .%”.
The following example shows how the use of commutants can play a role in
showing that certain C*-algebras are von Neumann algebras.

Example 11.12. [f (X, X, 1) is a finite measure space, then L*°(X, X, ) is a von
Neumann algebra, when considered as a C*-algebra of multiplication operators
acting on the Hilbert space L*(X, X, jv).

Proof. Let H=L*(X, X, 1) and let M = {My |y € (X, X, n)}. Example 11.9
shows that M is a unital C*-algebra of operators acting on H. As M is abelian,
McM.

Conversely, suppose that z € M’. Let f € H by given by f = z(jix), where yx €
(X, X, ) is the characteristic function of X. Select any ¥ € £ (X, X, u);
because My z = zMy,, we have that

(Wf) = Myf = Myz(iix) = zMy (ix) = 2(¥).

Thus, [|()I> = 2601 < [lzI?[1¥/]1*. Now if E € £, then
[ = 1 P < e,
For each > 0, let E, = |[f|™' ((«r, 0)). Thus, the inequality above yields

o’ u(E) = | IfPdp < |z n(Ea).
Eqy
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Therefore, if w(E,) > 0, then o < ||z||. Hence, f € Z*°(X, ¥, 1) and the multipli-
cation operator My and the operator z agree on L*°(X, ¥, u). Because L*°(X, X, 1)
is dense in L?(X, X, i), the operators Mp and z necessarily agree on all of H, which
shows that z € M. Hence, M’ C M, which proves that M’ = M.

Because M = M’, M is necessarily closed in the weak operator topology, by
Exercise 10.134. Hence, M is also closed in the strong operator topology, and so M
is a von Neumann algebra. O

It is also true that L°°(X, X, ) is a von Neumann algebra if (X,X,u) is a
o-finite measure space (Exercise 11.108). However, there exist examples of measure
spaces (X, X, i) that are not o-finite and for which the C*-algebra L*°(X, X', i) of
multiplication operators is not a von Neumann algebra.

The role of the commutant in Example 11.12 is not accident, as the following
fundamental theorem of von Neumann demonstrates.

Theorem 11.13 (Double Commutant Theorem). The following statements are
equivalent for a unital C*-subalgebra M C B(H):

1. M=M";
2. M is a von Neumann algebra.

Proof. By Exercise 10.134, if M = M”, then M is necessarily closed in the weak
operator topology; hence, M is also closed in the strong operator topology, thereby
implying that M is a von Neumann algebra.

Conversely, suppose that M is closed with respect to the strong operator topology.
Because M € M”, we need only prove that M C M = M7 Let y € M” and
assume that U C B(H) is a SOT-open set containing y. Thus, there exist ¢ > 0 and
&1,...,&, € H such that

Beg..., (V) = {x € BHE) | [|ly6e — x| <&, k=1.....n} S U.

Consider the Hilbert space H™ obtained as the n-fold direct sum of H, and let
E=§@® - ®E € HM. Let M C B(H™) be the set of all n x n diagonal matrices
D of operators in which each diagonal entry dj; is a fixed element of M: that is, M
consists of all operators of the form D, = x@® --- @ x, where x € M. The commutant
of M consists of all nx n matrices of operators such that each entry of the matrix
is an element of M’, whereas M” consists of all n x n diagonal operators D whose
entries come from M” and which satisfy d;; = dj;, forall 1 <i,j <n. Hence, M=M".

Let p € B(H™) be the projection onto the closure L; of the linear submanifold
Ly = {D,£|x € M}. If z € M, then D,(D.§) € Ly for all x € M, and so Ly and
its closure, L;, are invariant under the algebra M. Because M is self-adjoint, the
invariance of L; under M implies that p € M ; hence, pDy = Dyp. In addition, £ € L,
because 1 € M, and so D,§ = D, (p§) = p(D,&) € L, which implies that D,§ is
within & of some vector in Lo. That is, |D,& — D,&||* < &? for some x € M, which

implies that the basic SOT-open neighbourhood B, ¢(y) of y intersects M. Hence,

SeM>”" = M, thereby proving that M C M. O
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The Double Commutant Theorem has an interesting consequence for the polar
decomposition of operators.

Proposition 11.14. If M is a von Neumann algebra and if the polar decomposition
of x € M is denoted by x = v|x|, then both |x| and v are elements of M.

Proof. Because |x| = (x*x)'/? = lim, f,(x*x) for some sequence of polynomials f,
for which f,(0) = 0 for every n € N, we see that |x| € C*(x) C M. Therefore, it
remains to show that v € M.

Suppose that y € C*(x,1)’. If £ € kerx, then xy§ = yx§ = 0 implies that yx €
kerx, and so kerx is invariant under y. Equation (10.12) in the proof of the polar
decomposition (Theorem 10.65) shows that || |x|& || = ||x€]|| for all £ € H, and so
ker|x| = kerx. Therefore, the restriction of y to the y-invariant subspace ker |x|
commutes with the restriction of x to x-invariant subspace ker |x]|.

Suppose now that 7 € ran |x|, say n = |x|y for some y € H. Thus,

vyn = vylx|ly = vlx[(yy) = xyy = yxy = yv(|x|y) = yvn.

Therefore, v and y commute on the linear submanifold ran |x|, and so they commute
on the subspace ran|x|. Because H = ran |x| @ ker|x|, we deduce that y and v
commute on H.

Hence, v lies in the commutant of C*(x, 1)’, and so by the Double Commutant
Theorem,

veC ) =C 1) M,

which proves the result. O

Note that the proof of Proposition 11.14 in fact shows that v and |x| belong to the
von Neumann algebra W* (x) generated by x.

The final fundamental result in von Neumann algebra theory considered in this
section concerns approximation. If A is a untial C*-algebra of operators, and if one

considers the von Neumann algebra M = A” = A sor generated by A, then it far from
apparent, for example, that an operator in the closed unit ball of M is the SOT-limit
of a net of operators from the closed unit ball of A. That such a fact is true is part of
what the density theorem of Kaplansky (Theorem 11.16) asserts below.

The proof of Theorem 11.16 requires the following technical fact.

Lemma 11.15. Let B(H)s, = {x € B(H) |x* = x} and define f : B(H)s, — B(H)sa
by f(x) = (14+x2)7122x)(1 +x2) V2, for x € B(H)s,. Then:

1. f(x) =2x(1+x*)"" and |f(x)|| < 1, for every x € B(H)s,, and

2. f is continuous with respect to the strong operator topology.

Proof. If x* = x, then (1 +x?) = {1 + A?|1 € 6(x)}, by the Spectral Mapping
Theorem. Thus, as o(x) C R, 0 € o(1 + x?). Because x commutes with 1 4+ x2, x

also commutes with any continuous function in x, including (1 4 x?)~'/2. Hence,
fx) =1 4+x)"220) (1 +x2)712 = 2x(1 +x2) 7L
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The spectral radius of 1+ x? is at least 1, and so the spectral radius of (1 +x?)~!
is at most 1; therefore, ||(1 +x?)~!|| < 1. Furthermore, elementary calculus shows
that the real-valued function 7 > ; er’tz is strictly increasing on the interval [—1, 1]
and has an absolute maximum value of 1 over all # € R. Therefore, the equality of

the norm and spectral radius for hermitian operators yields

sup  [[f()f < 1.

x€B(H)sa

To prove (2), note that if y, z € B(H)s, then
fO) —f@) =201+y)7 (b1 +22) =1 +y)2) 1 +2)7!
=2(1+y)7 0—z+y=2) (1 +2)7"
Hence, for every £ € H,
IF0E—=f@EN < |21 +y) ' -2 +22) &

+ 20+ G- +2) 7.

Now fix z € B(H)s, and suppose that (y4)ge4 is a net of hermitian operators that
converges in the strong operator topology to z. Because (1 +y2)7!|| < 1, for each
& € H we obtain

1200 +52) 7 e — 200 +22)7'E| <20 0a —2) (1 +25) '),

and so lim ||2(1 +3) e —2)(1+22)7'E || = 0. Similarly,

1201 +32) 7 (a2 =y)) A+ 22) €N < If G [(2—ya) (1 +22)7'E]|
< |G=y) (1 +2H)7'E]|.

Thus, lim 21 +52) ™ e —2)(1+22)'E| =0.
Combining the two limiting argument above yields lim||f(y,)& —f(2)€| = O,
o
which shows that f is continuous with respect to the strong operator topology. 0O

Theorem 11.16 (Density Theorem). Assume that A is a unital C*-subalgebra of

B(H) and that M = A% If

Ai={acAlla| <1}, Aw={acA|a*=a, |a| <1},
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and if
My ={xeM||x| <1}, Mia={xeM|x* =x, ||x| <1},

—SoT —Sor
theanisa :Al.sa and My = A, .

Proof. Let My, = {x € M|x* = x} and Ay, = {a € A|a* = a}. Example 10.75
asserts that the involution is continuous with respect to the weak operator topology,

and so M, = My "°". The set Ay, is convex, and so Ay O = A, ", by
Proposition 10.77. Therefore, the inclusions M = A ST g C M imply that
—WOT  —SOT
Mg, = Ag = Ag .

o . ——SOT  ——WoT -
Likewise, the set A g, is convex, and S0 A g, =Als , by Proposition 10.77.
Continuity of the involution with respect to the weak operator topology yields

—wor
Mo =M, and so

O O

sor sor wor
Al.sa S Mz :Ml,sa :Ml,sa~
Conversely, select x € M 5,. Let g : [-1,1] — [—1, 1] denote the inverse of the

strictly increasing function f(7) = ; ertﬂ on the interval [—1,1]. Thus, g(x) € M| .

—Ssor . .\
Because My, = As,  , there exists a net (ay)qea Of hermitian operators a, € Ag,
that converges in the strong operator topology to g(x). Hence, by Lemma 11.15, the

net (f(ay))qea of hermitian contractions f(a,) € A converges in the strong operator
topology to f (g(x)) = x, which proves that M| o, C Aj s sor

The proof that M| = Al sor is outlined in Exercise 11.113. O

11.3 Irreducible Operator Algebras

If A is a x-algebra of operators acting on a Hilbert space H, and if L C H is a
subspace invariant under A, which is to say that x§ € L for every £ € L and x € A,
then for every x € A the orthogonal complement L' is invariant under x*. Because
A is closed under the involution, we see that if L is invariant under A, then so is L*.
X11 X12

Writing H = L@ L* and each operator x € B(H) as a matrix |:
X21 X22

] of operators,

each element a € A therefore is a diagonal operator matrix:

[0
a= s
Oaz
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where a; = a|; and a; = a1 . Because A} = {a|.|a € A} and A, = {q;1 |a € A}
are *-subalgebras of B(L) and B(L'), respectively, the existence of a nontrivial
invariant subspace for A yields two x-algebras A; and A, that constitute A and for
which A CA; @A, € B(L)®B(LY).

If A cannot be reduced in this way, then A is said to be irreducible.

Definition 11.17. A x-subalgebra A C B(H) is an irreducible operator algebra if
H has dimension at least 2 and the only subspaces L of H that are invariant under A
are L={0}and L=H.

The following condition characterise irreducible operator algebras.

Proposition 11.18. If H has dimension at least 2, then the following statements are
equivalent for a x-subalgebra A C B(H):

1. A is an irreducible operator algebra;
2. if p € A’ is a projection, thenp =0 orp = 1; and
3. A ={Al|AeC}

Proof. The equivalence of (1) and (2) is a simple exercise (Exercise 11.110).
Evidently, if (3) holds, then the projections in A’ = {A1|A € C} occur when A = 0
or A = 1, and so (2) holds. Therefore, assume that (2) holds, and we shall prove that
(3) holds.

If A’ # {A1| A € C}, then there exists a hermitian operator y € A’ with at least two
points of spectrum; hence, by translation by a scalar if necessary, we may assume
that both o(y) N (—00,0) and o (y) N (0,00) are nonempty. Therefore, in writing
y =y4+ —y_, for positive y4,y_ € C*(y,1) CA’ with y;y_ = y_y; =0, it must be
that neither y nor y_ is the zero operator. Thus, y+y_ = 0 implies that the range of
y— is contained in the kernel of y, and so the range of y is not dense. Therefore,
the partial isometry v in A’ with final space ranyy yields a projection vv* € A’ such
that vv™* is neither 0 nor 1, in contradiction to assumption (2). O

Example 11.19. The C*-algebra generated by the unitaleral shift operator is an
irreducible operator algebra.

Proof. If s denotes the unilateral shift operator on £>(N), then Exercise 10.106
shows that the only operators y that commute with both s and s* are operators of
the form y = A1, for A € C. Therefore, C*(s)’ = {A1]|A € C}, and so C*(s) is an
irreducible operator algebra. O

The following concept, that of transitivity, is an import from the subject of pure
algebra, where analysis usually has no role.

Definition 11.20. A x-subalgebra A C B(H) is transitive if, for each pair of vectors
&,m € H in which £ # 0, there is an operator x € A such that x§ = 7.

Quite remarkably, irreducible C*-algebras are transitive.

Theorem 11.21. If A C B(H) is an irreducible C*-algebra, then A is a transitive
C*-algebra.
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Proof. By Proposition 11.18, the commutant of A is {A1|A € C}, and so the double

commutant of A is B(H). Therefore, A ST B(H) by the Double Commutant
Theorem. Hence, if ¢ > 0 is given and if y € B(H) and £ € H, then by the Density
Theorem (Theorem 11.16) there is an element a € A of norm ||a| < ||y| such that
|la& —y&|| < e. We shall make use of this last fact repeatedly in the argument below.

Select any &, € H with £ # 0; because A is closed under scalar multiplication,
we may assume without loss of generality that ||§|| = 1. If n =0,thena=0€ A
has the property that aé = 5. Therefore, assume that 1 # 0. Consider the operator
Yo € B(H) given by yo = n®§; thus, yoy = (y,&)n forall y € H, and so [[yo| = ||n]|
and yoé = 7. As explained in the previous paragraph, there is an operator ay € A of
norm ||lag|| < ||n]| such that ||ag— 7| < %

Now consider the operator y; € B(H) given by y; = (n—ao§) ® &, which has the
properties ||y;|| < % and y1& = n—ap&. Therefore, there is an operator a; € A of
norm |jai|| < |y < % such that ||a & — (n —apf)| < %. Continue this construction
inductively so that at the completion of the n-th step one has ay,...,a, € A, each of
norm ||a;|| <27/, and such that

z 1
Zaj s_ n < 2n+1 :
j=0

o0 o0
Now let a = Zaj, which converges in A because Z lla;|| is bounded above by a
j=0 =0

n
convergent geometric series. Because Zaj & —n| — 0 as n— oo, the operator
Jj=0
a € A satisfies af = 1, which proves that A is a transitive C*-algebra.

Kadison’s theorem on transitivity leads to the following useful result.

Proposition 11.22. [f an irreducible C*-subalgebra A C B(H) contains a nonzero
compact operator, then A contains every compact operator.

Proof. Let x € A be a nonzero compact operator. Thus, at least one of 91 (x) and J(x)
is nonzero, which implies that A contains a nonzero hermitian operator 4. Therefore,
h has a nonzero eigenvalue w. Express £ in its spectral decomposition as h = wqg + g,
where ¢ is the projection onto ker(h —w1) and where g = h — wq has eigenvalues
different from w. The characteristic function y,, of the set {w} is continuous on ¢ (%),
because {w} is an open subset of o (%). Hence, the continuous functional calculus
yields the operator ¢ = y,,(h) € A. Therefore, A contains an operator of finite rank.

Let y € A be an operator of least positive finite rank. If y is not a rank-1 operator,
then there are &, 7 € H such that y& and yn are linearly independent. Because A is an
irreducible C*-algebra, Theorem 11.21 shows that A is transitive. Hence, there exists
an operator a € A such that ayé = 7. The vectors yay€ and y€ are, therefore, linearly
independent. The operator ya plainly leaves the finite-dimensional subspace rany
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invariant. Therefore, the linear mapping ya : rany — rany has an eigenvalue A, and
so the rank of the restriction of (ya— A1) to rany is less than the dimension of rany,
and so the rank of the operator yay — Ay € A is less than the rank of y. But y has the
smallest positive rank in A, and so it must be that yay — Ay = 0; hence, yayé = Ay,
which is in contradiction of the fact that yayé and y¢ are linearly independent. It
must be, therefore, that y is indeed a rank-1 operator.

As arank-1 operator, y has the form y = £ ® n, for some &, n € H. Without loss of
generality, we may assume that (n,§) = 1.Let L = {8 € H|§ ® € A} and suppose
that there exists a nonzero § € L*. Because A is transitive, there is an operator b € A
such that b§ = 1. Because the rank-1 operator yb € A has the form yb = £ ® (bf),
the vector b§ is orthogonal to L; in particular, 0 = (b§,n) = (n,n) # 0, which is
a contradiction. Therefore, it must be that L = H. Hence, A contains all rank-1
operators of the form £ ® ¢, for all ¢ € H.

Select an arbitrary rank-1 operator, say & ® %, on H. By the transitivity of A,
there exists an operator ¢ € A with & = c£. Because both ¢ and § ® ¥ belong to A,
so does c(§ ® ¥9) = & ® 9. Hence, A contains every rank-1 operator, and so A also
contains the norm-closure of the linear span of the set of rank-1 operators; that is, A
contains K (H). O

Corollary 11.23. If A is an irreducible C*-algebra acting on a finite-dimensional
Hilbert space H, then A = B(H).

Example 11.24. The C*-algebra generated by the unilateral shift operator is unital
and contains every compact operator.

Proof. If s denotes the unilateral shift operator on ¢>(N), then s is an isometry,
which implies that s*s = 1. Given that s*s € x-Alg(s), we deduce that 1 € C*(s).
Example 11.19 shows that C*(s) is an irreducible C*-algebra; hence, C*(s) is also
a transtive C*-algebra.

The operator ss* fixes every component of a vector in £2(N), except for the first
component, which is sent to zero. Thus, the element p = 1 — ss* € C*(s) is the
projection of rank 1 onto the subspace spanned by the canonical unit basis vector
e;. Therefore, C*(s) is a transitive C*-algebra that contains a nonzero compact
operator, and so Proposition 11.22 shows that C*(s) contains every compact
operator on {2(N). |

If Ay and A, are operator algebras acting on Hilbert spaces H; and H»,
respectively, then A = A; ® A, = {a1 P az |aj € A;} acts on H = H; ® H,. However,
if it were to happen that A, = {0}, then the presence of H, is somewhat artificial,
making H overly large relative to the action of A upon it. For this reason, one is most
commonly interested in nondegenerate algebras.

Definition 11.25. A x-subalgebra A C B(H) is nondegenerate if the only & € H for
which x§ =0 foreveryxe Ais £ =0.

In contrast to degeneracy is the following concept.
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Definition 11.26. A vector £ € H is a cyclic vector for an operator algebra A C
B(H) if the linear submanifold {x& |x € A} is dense in H.

Example 11.27. If G is a countable discrete group, then the unit vector §, of £*(G)
is a cyclic vector for the group C*-algebra C3(G).

Proof. For each h € G, the action of the unitary operator A; on §, produces the
unit vector 8,. Therefore, the linear submanifold {x§,|x € C;(G)} contains the
orthonormal basis vectors for £2(G). Hence, §, is a cyclic vector for C(G). O

The relevance of cyclic vectors to operator algebra theory is indicated by the next
result.

Proposition 11.28. If H is a separable Hilbert space and if A C B(H) is a
nondegenerate C*-subalgebra, then there exist a finite or countable family {H,},
of pairwise-orthogonal subspaces H, C H and unit vectors &, € H, such that

1. each H, is invariant under A,
2. {x&,|x € A} is dense in H,, and

3. H= @Hn.

Proof. Select a unit vector § € H and denote the A-invariant subspace {x&, |x € A}
by H. Suppose that p € B(H) is the projection with range H. The invariance of
Hg under x,x* € A implies that xp = px (Proposition 10.19). Thus, for every x € A,

(1—p)xé = x(1—p)&, and so

(1-p)§ € [ kerx= {0},

X€EA

where the equality of the intersection of kernels kerx with {0} is because of the
nondegeneracy of A. Hence, § = p§ € He, and this is the case for every unit vector
EeH.

Let & consist of all sets & of unit vectors from H such that Hg L H,, for any pair
of distinct £, € &. Order & by set inclusion, and apply a Zorn’s Lemma argument
to produce a maximal element & in &. Because H is separable, the set & is finite
or countably infinite, and so we denote & by {§,},. Let Hy = @H&. If Hy # H,

then there is a subspace H; C H such that H = Hy @& H; and nHl is A-invariant.
Therefore, applying our arguments to Ay, would yield a unit vector n € H; which
is cyclic on some A-invariant subspace H;; of H;, which would therefore imply that
0 U{n} € G, in contradiction to the maximality of &. |

Corollary 11.29. If A is an irreducible operator algebra, then every nonzero vector
is a cyclic vector for A.

Proof. Because A is irreducible, the direct sum decomposition in Proposition 11.28
is trivial in the sense that » must be 1. However, the algebra A; was constructed in
the proof of Proposition 11.28 by selecting any unit vector £ € H and considering
the subspace H; = {x£|x € A}. As H; = H, the vector £ is cyclic for A. O
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11.4 Abelian Operator Algebras

The Gelfand Representation Theorem (Theorem 9.27) for abelian Banach algebras
certainly applies to any abelian C*-algebra. However, the presence of the Hilbert
space adjoint yields an even stronger form of Gelfand’s theorem.

Definition 11.30. If A and B are C*-algebras of operators, then a x-homomorphism
from A to Bis amap p : A — B such that, forall x,y € A and o, 8 € C,

L. plax+ By) = ap(x) + B o),
2. p(xy) = p(x) p(y), and
3. p(x*) = p(x)*.

Moreover,

4. If A and B are unital C*-algebras of operators, and if p maps the identity operator
in A to the identity operator in B, then p is said to be a unital map.
5. If a x-homomorphism p is bijective, then p is called an *-isomorphism.

In what follows, we shall be considering the complex number system C as a
1-dimensional C*-algebra of operators (with adjoint «* = @ and norm ||&| = |«]).
Moreover, if X is a compact Hausdorff space, then we shall regard C(X) as a
unital abelian C*-algebra acting on the Hilbert space L?(X, X, ), where u is a
fixed regular Borel probability measure on the Borel sets X of X, and where
f € C(X) is identified with the multiplication operator M; on L*(X, X, ). Under
this identification, f is identified with My = M}T and the norms of f and M; coincide.

Theorem 11.31 (Gelfand). If A C B(H) is a unital abelian C*-algebra and if %
is the maximal ideal space of A, then the Gelfand transform I' : A — C(%,) is an
isometric *-isomorphism of the C*-algebras A and C (%,).

Proof. If x € A, then
2
1217 = 163 ) = 10 0 || = [lx*x)> = (I«]%)”.

Thus, ||x?|| = ||x||* for each x € A and, therefore, I is an isometry by Exercise 9.55.

The maximal ideal space %, consists of all unital continuous linear maps p : A —

C for which p(xy) = p(x)p(y) for all x,y € A. Because A is abelian, for all z;,z, € A,
o0

the exponential map z > e* = E —‘z” satisfies ¢! T2 = ¢%¢? (Proposition 9.41).
n!
n=0

In particular, if 4 € A is a hermitian operator and 6 € R, then e~ i0hgith

= 1 implies

1= p(l) = p(e—ieheieh) — oi0p(h) ibp(h) _ |ei9p(h)|2.

As the equation above is true for every 6 € R, p(h) must be a real number. Thus,
if x € A is arbitrary, then expressing x = h + ig, where h,g € A are the real and
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imaginary parts of x, gives
r*) =rh—il(g) = ((h)+il(g)" = (I'(x)".

implying that the homomorphism I” is a *-homomorphism.

Because I is a unital *-preserving isometric homomorphism, the range of I" is a
unital self-adjoint Banach subalgebra of C (%,). Because I"(A) clearly separates the
points of %y, the Stone-Weierstrass Theorem asserts that I'(A) = C(Z%a), thereby
proving that I" is surjective. O

Theorem 11.31 demonstrates that the Gelfand transform of a unital abelian C*-
algebra of operators is an isometric *-isomorphism with C(X), for an appropriate
compact Hausdorff space X. However, if the abelian C*-algebra of operators is a von
Neumann algebra M, say M = L*°(X, X, i), then expressing M as a C*-algebra of
multiplication operators by continuous functions on some compact Hausdorff space
Y is slightly unnatural since M is already an algebra of multiplication operators.
Therefore, the Gelfand theory for an abelian von Neumann algebra should take a
measure-theoretic form, which is accomplished here in Theorem 11.33 below.

For simplicities of cardinal arithmetic, we will assume that the Hilbert spaces
upon which these abelian von Neumann algebras act are separable.

Theorem 11.32. Assume that M is an abelian von Neumann algebra acting on a
separable Hilbert space H. If M has a cyclic vector, then there exist a compact
metrisable space X, a regular probability measure on the o-algebra X of Borel
sets of X, and a surjective isometry u : H — L*(X, X, 1) such that the linear map
@ : L*°(X, X, u) — B(H) defined by

@(Mw) = M_le,M,

is an isometric *-isomorphism of the von Neumann algebra L*° (X, X, 1) of multi-
plication operators on L*(X, X, 1) and the von Neumann algebra M. Furthermore,
@ is continuous with respect to the strong operator topology on each of L°(X, X, i)
and M.

Proof. Because H is separable, Exercise 11.114 shows that the strong operator
topology on the closed unit ball of B(H) is separable and metrisable; hence, the same
is true of the closed unit ball M| of M with respect to the strong operator topology.
Let {a,},en be a countable SOT-dense subset of M;, and let A = C*({a,}n, 1),
which is a separable unital abelian C*-algebra for which A T — M. By the Density
Theorem, A; ot _ M;; and via the Gelfand transform I', A is isometrically *-
isomorphic to C(X), where because of the separability of A the space X is necessarily
compact and metrisable (Theorem 5.57).

Let & € H be a unit cyclic vector for M and define a linear functional ¢ on C(X) by
o(f) = (' ()€, £). By the Riesz Representation Theorem (Theorem 6.51), there
exists a regular Borel measure p on the o-algebra X' of Borel sets of X such that

o(f) = /X fdu.
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for every f € C(X). Define = : C(X) — B (LZ(X, X, /L)) by 7 (f) = M;, the operator
of multiplication by f. The map 7 is plainly a unital *-homomorphism, but it is
also isometric by Example 10.38. Thus, A is isometrically *-isomorphic with the
operator algebra {M; |f € C(X)} acting on L*(X, X, j1).

If n € H and ¢ > 0 is given, then there exists x € M with ||n—x&|| < &/2, and there
exists a € A with ||x§ —a€|| < &/2. Therefore, the linear submanifold Hy = {af |a €
A} is dense in H. If a1, a, € A satisfy a1& = a,&, then for every a € A we have that
(a1 —az)a&é = a(a; —ay)€ = 0, which implies that a;n = a,n for every n € H. Thus,
the function uy : Hy — C(X) defined by uy(a&) = I'(a) is well defined, linear, and
surjective. In viewing C(X) as a linear submanifold of L*>(X, X, 1), we have that the
norm of uy(a€) in L>(X, X, ;1) satisfies

o a®)| = / F@Pdp = / F(a*a)dy = ¢ (I (a*a)) = (a"a&.E) = a&]1>

Therefore, u is a linear isometry of Hy onto C(X), and so passing to closures in
each of H and L*(X, X, j1) yields a surjective isometry

3 il

u:H—CX) =~ =L*X.X,un.
The map u also has the following property: given a € A, then for every b € A,
ua(bg) = u(ab§) = I'(ab) = I'(@)I"(b) = M) (I" (b)) = M (u(b§).

Thus, ua = Mr4u, for every a € A. If x € M and if (a4)wea is a net of operators
a, € A converging strongly to x, then (uauu~'), converges strongly to uxu'.

Therefore, the net (M I(aq ))a is strongly convergent in B (L2 X, ,u)) to an operator
in C(X) Sor _ L*®(X, X, u) (Exercise 11.109). The same argument shows that if
(M 1*(40())0[ is strongly convergent to My, then (ay), converges strongly to u“MW u.
Hence, the isometric *-isomorphism @, : C(X) — A given by &y(M;) = I'"'f
has the property that u®,(My) = Myu and extends to an isometric *-isomorphism

@ CX) or A% and satisfies u®(My) = Myu for all essentially bounded
measurable functions . O

The case of noncyclic abelian von Neumann algebras may now be examined.

Theorem 11.33. If M is an abelian von Neumann algebra acting on a separable
Hilbert space H, then there exists a o-finite measure space (X,X, ) and a
surjective isometry u: H — L*>(X, X, i) such that the linear map ® : L (X, X, j1) —
B(H) defined by

@(Mw) = u_leu,

is an isometric *-isomorphism of the von Neumann algebra L*°(X,X,u) of
multiplication operators on L*(X, X, j1) and the von Neumann algebra M.
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Proof. By Proposition 11.28, there exist a finite or countable family {H,}, of
pairwise-orthogonal subspaces H,, C H and unit vectors &, € H, such that each H,

is invariant under M, {x§,|x € M} is dense in H,, and H = @H,,. Moreover, for

each n the restriction of M to H), is an abelian von Neumann algebra acting on
H, with cyclic vector &,. Therefore, by Theorem 11.32, My, = L*®°(X,, Xy, itn),
for some Borel probability measure w, on the Borel sets X, of some compact

metrisable space X,,. Let X = U X, the disjoint union of the family {X,},en,
and let ¥ = U X,. Define u: X — [0,00] by w(E) = Z,M(En). Because

w(X,) = wu(X,) =1 for every n € N, the measure space (X, X, ) is o-finite.
Furthermore, L?>(X, X, i) is given by @LZ(XH, s M) = @H,, = H, where the

Hilbert space isomorphism between each H,, and L*(Xy, X, bn) is implemented by
a surjective linear isometry u, : H, — L*(X,,, X, it,) and where u = @un is a

n
surjective isometry H — L*(X, X, /). Hence, O(My) = u_lM]/,u = @ u;lMy,m Uy

n
is an isometric *-homomorphism of L*°(X, X', u) onto M. O

Theorem 11.33 has the following important consequence: every normal operator
is unitarily equivalent to a multiplication operator.

Corollary 11.34 (Spectral Theorem for Normal Operators). If N is a normal
operator acting on a separable Hilbert space H, then there is a o-finite measure
space (X, X, ) and a surjective isometry U : H — L*(X, X, i) such that UNU™" is
the multiplication operator My, on L*(X, X, j1), for some Ve L®X, X, 1b).

Proof. Let M = W*(N), the von Neumann algebra generated by N. Because N is
normal, W*(N) is abelian. Thus, apply Theorem 11.33 to obtain the result. O

A more specific form of Theorem 11.34 is possible when W*(N) admits a cyclic
vector; see Exercise 11.115.

11.5 C*-Algebras

While the study of operator algebras has to this point been quite satisfactory, there is
some limit to what one can achieve using a purely operator-theoretic approach. For
example, if H is an infinite-dimensional Hilbert space, then the compact operators
form a proper ideal K(H) of B(H), and so one can consider the quotient Banach
algebra B(H)/K(H). One would be correct in thinking that the involution on
B(H) (and on the ideal K(H)) would lead to an involution on the quotient space
B(H)/K(H); further, as we shall see, the quotient norm behaves just like the operator
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norm in the sense that ||x*x|| = ||x||?, for every x € B(H)/K (H). Therefore, it is both
natural and necessary to consider Banach algebras that share the involutive and norm
properties of B(H).

Definition 11.35. A complex associate algebra A is said to be involutive if there
exists a function x — x* (called an involution) such that, for all x,y € A and o € C,

1. )" =x,

2. (x+y)* =x*+y*,
3. (ax)* = ax*, and
4. (xy)* = y*x*.

Definition 11.36. An involutive Banach algebra A is called a C*-algebra if, for
every x € A, ||x*x|| = ||x||. If, in addition, A admits a multiplicative identity 1, then
A is said to be a unital C*-algebra.

Evidently, every C*-algebra of Hilbert space operators is a C*-algebra as defined
above. Algebras of continuous functions offer another example, and they can be
considered in their original form rather than in the guise of a C*-algebra of
multiplication operators.

Example 11.37. If X is a locally compact Hausdorf{f space, then the algebra Cy(X)
of continuous functions f : X — C that vanish at infinity is a C*-algebra under the
norm ||f|| = max,ex |f (x)| and involution f* (t) = f(¢), for t € X.

Let us now explore a few more consequences of the axioms. If A is a C*-algebra
and if x € A, then

2 2
[Il1® = llx*xll < lx™ | llxll and [lx*[1% = [l [ < ™ = el 2],

implying that ||x|| < |[lx*|| and ||x*|| < ||x||. That is, ||x*|| = ||x|| and so the involution
on a C*-algebra is isometric.

If A is a C*-algebra with multiplicative identity 1 € A, then ||1]| = 1 by an
argument that is similar to the one above. Thus, C*-algebras with identity are unital
Banach algebras in the sense of Definition 5.25. Furthermore, if x € A, then

Fx=1"0)"" =D =x""==x.

Likewise, x1* = x. By the uniqueness of the multiplicative identity in a unital ring,
1* =1

Definition 11.38. If A is a C*-algebra, then a subset B C A is a C*-subalgebra of A
if B is a C*-algebra with respect to the sum, product, involution, and norm of A. If
A is unital and if the multiplicative identity of A belongs to B, then B is said to be a
unital C*-subalgebra of A.

If # C A is a subset of a C*-algebra A, then the C*-algebra generated by F
is the smallest C*-subalgebra of A that contains .# and is denoted by C*(.%). Of
special interest is the case in which .% = {x} for some x € A. In this regard, each of
the elements of the following type will generate abelian C*-algebras.
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Definition 11.39. Assume that A is a C*-algebra and x € A.

1. If x* = x, then x is said to be hermitian.
2. If x*x = xx™, then x is normal.
3. If A is unital and if x*x = xx* = 1, then x is unitary.

As noted earlier, if A is a unital C*-algebra, then the multiplicative identity 1 € A
is hermitian.

Definition 11.40. The set of hermitian elements in a C*-algebra A is denoted
by Aga.

As with Hilbert space operators, real and imaginary parts of every x € A are
defined

1 1
Rx==-(x+x*) and Jx= —(x—x%).
2 2i

Hence, Ay, is a real vector space and SpancAg, = A.
In the category of C*-algebras, the natural maps between C*-algebras are called
*-homomorphisms.

Definition 11.41. If A and B are C*-algebras, then a x-homomorphism from A to B
isamap p: A — B such that, for all x,y € A and «, 8 € C,

1. plax+ By) =ap(x) + Bp(y),
2. p(xy) = p(x) p(y), and

3. p(x*) = p(x)*.

Moreover,

4. If A and B are unital C*-algebras, and if p maps the identity of A to the of B, then
p is said to be a unital map.
5. If a x-homomorphism p is bijective, then p is called an x-isomorphism.

The Gelfand Theorem for unital abelian C*-algebras has exactly the same form
as the version for abelian C*-algebras of operators (and has exactly the same proof).

Theorem 11.42 (Gelfand). If A is a unital abelian C*-algebra, then the Gelfand
transform I' : A — C (%,) is an isometric x-isomorphism of A and C (%y).

Gelfand’s Theorem has many consequences, including a determination of the
C*-algebra generated by a normal operator (see Theorem 11.47).

Example 11.43. If A is a unital C*-algebra, and if x € A is normal operator, then
the character space of C*(x,1) is the spectrum of x, and the unital abelian C*-
algebra C*(x, 1) is isometrically x-isomorphic to C (o (x)).

Proof. Asx*x=uxx*,the algebra C*(x, 1) is abelian. Let I : C*(x, 1) = C(Zc*(x.1))
denote the Gelfand transform. Therefore,

o(x) ={p(x)|p € Zc*x1)}
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and the function ¢ : Zc+ (1) — 0 (x) defined by ¥ (p) = p(x) is surjective. To prove
that ¥ is injective, suppose that p; (x) = p,(x). Then it is also true that p; (y) = p2(y)
for every y € C*(x, 1), because {x,x*, 1} generates C*(x, 1) and p; and p, are unital
*-homomorphisms. Thus, v is injective

If {pg}aca is @ net in Zex(x,1) converging to p € Zc+(x,1), then, by definition of
weak*-topology, p(y) = lior[n 0 (), for every y € C*(x, 1). Hence, ¥ is a continuous

function. By Proposition 2.9, any continuous bijection from a compact space onto a
Hausdorff space is a homeomorphism. O

The following example is of interest from the point of view of topology.

Example 11.44. If (X,X, ) is a o-finite measure space, then there exists a
compact Hausdorff space Y such that L*°(X, X, ) and C(Y) are isometrically
*-isomorphic.

Proof. Let Y be the character space of the abelian von Neumann algebra
L*®(X, X, ), and apply Gelfand’s Theorem. O

In reference to the example above, we know that L>*°(X, ¥, 1) has a multitude
of projections, whereas a projection in C(Y) corresponds to the characteristic
function of some subset E of Y. Therefore, because continuous functions preserve
connectivity, the space Y must possess a high degree of disconnectivity. The next
example shows this fact explicitly, since SN is a nonmetrisable, totally disconnected
compact Hausdorff space (Proposition 2.79).

Example 11.45. The C*-algebras {°(N) and C(BN) are isometrically
*-isomorphic.

Proof. By Example 9.31, the maximal ideal space of £°°(N) is homeomorphic
to BN. Therefore, by Theorem 11.42, the C*-algebras £*°(N) and C(SN) are
isometrically *-isomorphic. O

The next result shows that the spectrum of a C*-algebra element x does not
depend on the particular C*-algebra that contains x.

Proposition 11.46 (Spectral Permanence). If B is a unital C*-subalgebra of a
unital C*-algebra A, then o4(x) = op(x) for every x € B.

Proof. Let x € B. The inclusion 04(x) C op(x) has already been noted in Propo-
sition 9.10. To prove the containment op(x) C o4(x) it is sufficient to show that
0 € op(x) implies 0 € 04 (x). This is most simply done by proving the contrapositive:
if x € B has an inverse x~! in A, then x~! € B.

Therefore, assume that x € B is invertible in A. Hence, x* is invertible as well,
since 1 = xz = zx implies that 1 = z*x* = x*z*. Consequently, x*x € B is invertible
in A.

Let C = C*(x*x, 1), the unital abelian C*-subalgebra of B (and of A) generated
by x*x. Applying the Gelfand transform on C to the hermitian element x*x yields
oc(x*x) C R. Proposition 9.10 on spectral permanence in abelian Banach algebras
now implies the following inclusions:
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oc(x*x) = doc(x"x) C 04 (x"x) C oc(x*x).

Therefore, oc(x*x) = 04 (x*x). Consequently, the invertibility of x*x in A implies
the invertibility of x*x in C € B. A left inverse for x in B is [(x*x)~'x*]x; because
x is in fact invertible in A, this left inverse is necessarily the inverse x~! € A of x.
Hence, x~! = (x*x)"'x* € B. O

The Gelfand Theorem (Theorem 11.42) carries the continuous functional cal-
culus for normal operators on Hilbert spaces to the more abstract setting of normal
elements in C*-algebras. Note that Proposition 11.46 allows us to adopt the notation
o (x), for the spectrum of x, unambiguously.

Theorem 11.47 (Continuous Functional Calculus). If x is a normal element of a
unital C*-algebra A, then the unital C*-subalgebra C*(x,1) of A generated by x is
abelian and

1. the character space Xc+(x1y of C*(x, 1) is homeomorphic to the spectrum of x,

2. there is an isometric isomorphism @ : C(0(x)) = C*(x, 1) such that @(1) = x,
where 1 € C(0(x)) is the function ((t) = t, and

3. (Spectral Mapping Theorem) for each f € C(o(x)), the spectrum of ®(f) €
C*(x,1) is

o (2(f) ={f (D [Ar ea(®)].

Proof. Example 11.43 shows that the character space of C*(x, 1) is homeomorphic
to o (x), via the homeomorphism ¥ : Zcx (1) — 0 (x) defined by ¥ (p) = p(x).
Let £2 : C(0(x)) = C(Zc*(x.1)) be defined, for f € C(0(x)), by

2Plel =1 W () =f(p(x)),

for each p € Zc+(x,1)- The map £2 is evidently a unital *-isomorphism and

2= max [2()p]l= max [f(p(x))]= max [f(1)]=If]]
PEZ, ) pE A€o0 (x)

Kc* (x1 R (x.1)

for every f € C(o(x)).

The map @ : C(o(x)) — C*(x,1) defined by @ = I'"! 0 £2 is a unital isometric
x-isomorphism. If ¢ € C (o (x)) denotes the function ¢(z) = ¢, then * € C (0 (x)) is
the function (*(¢#) = 7. The Gelfand transform evaluated at x € C*(x, 1) yields the
function I"(x) € C(Zc+(x,1)) defined by I"(x)[p] = p(x) for every character p. Hence,
@~ maps x to ¢, implying that x = @(¢) and x* = ®(1*). More generally,

@ ijzn:aka"? :Zm:zn:ak,xk(x*)f. (11.1)

k=0 j=0 k=0 j=0
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The spectrum of the element given in (11.1) is the range of the continuous function

m n

r ZZaijk(x*)j € C(Zc(x1))-

k=0 j=0
namely,

m m

33 wp@ () [0 € ZerpnAt =153 wd¥ (A e o)

k=0 j=0 k=0 j=0

Since the ring of all polynomials in commuting variables ¢ and 7 is uniformly dense
in C(o(x)) (by the Stone-Weierstrass Theorem), equation (11.1) shows that

o ((f) = f(D) A o)},

which completes the proof. O

Notational Convention In applications of Theorem 11.47 it is customary to denote
@(f) by f(x), for each f € C(0(x)).
Proposition 11.48. Suppose that A is a unital C*-algebra and h € A is hermitian.

Let X C R be a compact set such that X 2 o (h) U{0}. If f € C(X) satisfies f(0) =0,
then f(h) € C*(h).

Proof. By Exercise 11.123, the condition f(0) = 0 implies that there is a sequence
of polynomials f,, for which £,(0) = 0 and |f(¢) —f,,(t)] — O uniformly on X (and,
thus, on o (k) as well). Since f,(h) € C*(h),

im0l = tim (max 0 ~,01) =0,

and so f(h) € C*(h). |

In Proposition 11.48 above, the algebra C*(h) does not necessarily contain the
identity of A; thus, the conclusion f(h) € C*(h) is sharper than the conclusion of
Theorem 11.47, which is that f(h) € C*(h, 1).

The use of nonunital C*-algebras is necessarily in many settings; however, each
such algebra may be realised as a C*-subalgebra, of co-dimension 1, of a unital
C*-algebra.

Proposition 11.49. If A is a nonunital C*-algebra, then on the set

A'=AxC={(a,a)|lacA aeC}
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define an involution and vector space operations through the involution and the
vector space operations in each coordinate, and define multiplication by

(a,a)-(b,B) = (ab+ab+ Ba, apf).
Furthermore, let || -||" : A" — R be defined by
Iz = sup{lzbll |6 € A, ||b]| < 1}, (11.2)

forz€ Al. Then:

L |- is a norm;

2. A'is a C*-algebra with respect to || -|';

3. the ordered pair (0,1) is a multiplicative identity for A'; and
4. |al’ = ||all, for every a € A.

Proof. Ttis clear that A' is a Banach space and that (0, 1) is a multiplicative identity
for A'. Identify A with the subalgebra {(a,0)|,a € A} of A'. As vector spaces,
A'/A = C, and so A has codimension 1 in A'. Moreover, if z € A' and a € A, then
za € A.

Suppose that z € A! satisfies ||z||' = 0. If z € A, then ||z| = 0 implies that || zb|| = 0
for every b € A. In particular, ||zz*|| = 0, whence ||z*|| = 0. Since the involution on
A is an isometry, ||z|| = 0. This proves that z =0if z € A and ||z||" = 0.

Next, consider the possibility that z # 0 yet ||z]|" = 0. The paragraph above shows
that z € A (for otherwise z would be 0). Thus, z = (a, A) for some a € A and nonzero
A € C. The hypothesis ||z|]|’ = 0 again implies that z-b = 0 for all b € A—that is,
ab + Ab = 0 for every b € A. Hence, —A~'a is a left multiplicative identity for A.
By passing to adjoints, (—A~'a)* is a right multiplicative identity of A. Thus,

A la= (—)t_la) (—k_la)* = (—k_la)*.

In other words, —A "lais a multiplicative identity for A, which is in contradiction to
the hypothesis that A is a nonunital algebra. Therefore, it must be that ||z]|" = 0 only
if z = 0. The remaining properties required for || - ||’ to be a submultiplicative norm
are straightforward to verify and, thus, are omitted.

To verify the property ||z*z||’ = (||z||")? forallz € A',letz € A' and b € A. Because
A is an algebraic ideal of A, zb € A; thus,

I1z611* = 1| @b)* (zb) || = [16™ (" 2)bll = [16* *2)b]" < || |2z (11.3)

To show that ||z*z||" > (||z|")?, note that for each & > 0 there is a b € A with ||b|| < 1
such that [|zb] > (1 —#)]|z|/". Thus, [2*z]/ > (1 —¢)*(||z]’)* by (11.3). As & >0
is arbitrary, the inequality ||z*z||’ > (||z||’)?> must hold. Conversely, because || - || is
submultiplicative and * is an isometry on A! with respect to | - ||, the inequality
llz*zll" < llz*["llz" = (llz]l")” leads to the conclusion that [|z*z]|" = (|lz]I")?.
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To show | - ||” extends the norm || - || on A, let a € A. For every b € A with ||b|| < 1,
llab|| < ||la|| ||b]| < ||la|; thus, ||a]|” < ||a||. On the other hand, if a is normalised so as
to have norm ||a|| = 1, then ||a||’ > ||aa*|| = ||a*||* = ||a||* = 1 = ||a|. This proves
that ||a||” = ||a||, for every a € A. ]

Definition 11.50. If A is a nonunital C*-algebra, then the C*-algebra A' is called
the unitisation of A and the norm |||’ on A! is simply denoted by || - ||.

Proposition 11.46 indicates that the notation o (x) for the spectrum of x is
unambiguous. Therefore, one can define the spectrum for elements of nonunital
C*-algebras.

Definition 11.51. If A is a nonunital C*-algebra, and if x € A, then the spectrum of
x is the set

o(x) = {1 € C|x— Al is not invertible in A'}.

Another consequence of spectral permanence is that the norm on a C*-algebra is
necessarily unique.

Proposition 11.52. If A is a C*-algebra with norm || - || and if || - ||" on a norm such
that A is a C*-algebra with respect to || - |, then ||x||" = ||x|| for every x € A.

Proof. By (4) of Proposition 11.49, we may suppose without loss of generality that
A is a unital C*-algebra.

Let x € A and consider x*x. The Gelfand transform I" corresponding to the
unital abelian C*-algebra C of A! generated by x*x is an isometry. Hence, |x*x||
is the norm of I'(x*x) in C(Z%¢)—that is, || x*x|| is the maximum modulus of the
elements in the range of I"(x*x) and is, therefore, given by the spectral radius of
x*x (since o¢(x*x) = 0 (x*x) by spectral permanence). The invertibility of elements
in A is based upon a purely algebraic criterion; therefore, the spectrum of x*x is
independent of the norm on A. Consequently, [|x*x||" = spr(x*x) as well. Thus, for
eachx € A,

2 2
Il = flx*x])" = spr (x*x) = [lx*x]l = |lx||",

which completes the argument. O

11.6 Positive Elements and Functionals

The definition of a positive operator 7" acting on a Hilbert space H is not purely
algebraic in that the definition takes into the action of 7 on H, as well as the way the
inner product is defined. Therefore, in the abstract setting of C*-algebras a different
approach is required.

Definition 11.53. An element & € A is positive if h* = h and o (h) C [0, 00).
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In addition to positive operators acting on a Hilbert space, one has the following
example, which is a consequence of the definitions.

Example 11.54. If X is a compact Hausdorff space, then f € C(X) is a positive
element of the unital C*-algebra C(X) if and only if f(t) > 0 for every t € X.

Let A4 be the set
Ay ={he€A|h is apositive element of A}.

Note that if A is a C*-subalgebra of a C*-algebra B, then AL € B, (since the
spectrum of an element x is independent of the C*-algebra that contains x).

The first main objectives of this section are to show (i) that every positive element
has a unique positive square root, (ii) that A is a pointed convex cone, and (iii) that
x*x € A for every x € A. This latter fact is not as obvious as one might expect.
The final goal of this section is to examine those linear functionals on A that take on
nonnegative real values on positive elements of A.

Proposition 11.55. The following statements are equivalent for a hermitian ele-
ment h in a unital C*-algebra A:

1 heds;
2. h=b?for some b € Ay such that b € C*(h);
3. el =h|| <a, for every o > ||h||;

4. |laol —h| < o, for some oy > |||

Proof. (1) = (2). Because & is positive, o (h) C R4. Let X = [0, ||A]|] and let f €
C(X) be given by f(f) = +/t. By Proposition 11.48, the hermitian element b = f(h)
is an element of C*(h). Furthermore, o (b) = {f(v/A|A € o(h)} C [0,00), which
implies that b € C*(h)4+,andsob € Ay.

(2) = (3). Assume that & = b? for some positive b € C*(h). Choose any o > ||A|.
By spectral mapping, o (b?) = {A?| A € o(b)}; thus, o(b*) C R Since the norm of
a positive element is its spectral radius, 0 < A < ||k|| < « implies that « — A =
| —A| <« forevery A € o(h). Hence, o > spr(al —h) = |jal —A].

(3) = (4). This is trivial.

(4) = (1). Assume that g > ||h|| satisfies g > [|o1 —A||. Thus, if A € o (h), then
[A] <@g and |ep — A| < ap; thatis, A > 0. O

If 1 € A is positive, then the positive element b € C*(h) that satisfies b*> = h in
assertion (2) of Proposition 11.55 is unique, as shown by the following proposition.

Proposition 11.56. I by,b, € Ay are such that b} = b3, then by = b,.
Proof. Let B > 0 be large enough so that o (k) Ua (b)) Ua(by) C [0, 8], where
h = b} = b3. Therefore, for any g € C([0, A]),

b)) = M| < 1)|.
(F{CAll Ag%) lg(A)] < [nax lg(®)]
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By Exercise 11.123, there is a sequence of polynomials f;, such that f,,(0) = 0, for
all n € N, and |f,(f) — /1| = 0 uniformly on [0, 8] as n — oo. Thus, each f, (k) € A
and [|f, () —f(h)|| — 0. Note that £, (k) = £,(b}) € A, and so

() — byl = Tim 1 () — by | = tim £, () — | = imm | (57

where g, (t) = f,(t*) —t, for each n. Since g, — 0 uniformly on [0, 8] as n — oo, we
have that ||g,(b;)|| — 0, whence f(h) = b; = b,. |

Definition 11.57. If 1 € A, then the unique b € A for which b*> = h is called the
positive square root of h and is denoted by h'/2.

The decomposition of a hermitian operator as a difference of positive operators
with product 0 applies to the C*-algebra setting as well. The result is proved again
below because of the need to account for nonunital algebras.

Proposition 11.58. If h is a hermitian element of a C*-algebra A, then there are
positive hy ,h_ € Ay such thath=hy —h_and hyh_ =h_hy =0.

Proof. First assume that A is unital. The C*-algebra C*(h, 1) is a unital, abelian C*-
subalgebra of A; moreover, C*(h,1) and C(o(h)) are isometrically *-isomorphic.
Let X = [—||A||, ||2]|]], a compact set that contains ¢ (%) and 0. Consider the functions
f,g € C(X) defined by f(t) = (¢ + |t|)/2 and g(f) = f(—t). The functions f and
g are nonnegative and vanish at 0; thus, by the Spectral Mapping Theorem and
Proposition 11.48 the elements f (k) and g(h) are positive and belong to C*(h). Let
hy = f(h) and f— = g(h). Because t = f(t) — g(¢) and f(t)g(¢) = O for all ¢ € X, the
Continuous Functional Calculus yields h = hy —h_ and hyh_ = h_hy = 0.

If A is nonunital, then consider A as a C*-subalgebra of its minimal unitisation A'.
The argument above yields hy,h_ € C*(h)y CAy C (A')4 suchthat h =hy —h_
and hyh_ = h_hy = 0, thereby completing the proof. O

Our second objective for this section is achieved by the next result.

Proposition 11.59. If A is a C*-algebra, then A is a pointed convex cone. That is,
if y,8 € [0,00) and if h,k € A4, then

1. yh+38ke Ay, and

2. —heA;onlyifh=0.

Proof. Exercise 11.125. O
We now arrive at our third objective for this section.

Theorem 11.60. A = {x*x|x € A}, for every C*-algebra A.

Proof. If h € AL, then assertion (2) of Proposition 11.55 yields a positive element
b € C*(h) such that b> = h. Hence, h = b*b € {x*x|x € A}.

Conversely, let x € A. By Proposition 11.58, the hermitian element x*x € A may
be expressed as x*x = by —b_, where by ,b_ € Ay and byb_ = b_by = 0. To
show that x*x € A it is sufficient to prove that b_ = 0.
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Let ¢ = (b_)"/?> € Ay and a = xc. By Exercise 11.123, f(f) = +/f can be
approximated uniformly on o(b—) by polynomials p such that p(0) = 0. Since
p(b_)by = byp(b-) = 0 for any polynomial for which p(0) = 0, we conclude that
cb+ = bic = 0. Hence,

—a*a=—cx*xc = —c(by —b_)c =cb_c = b,
which implies that o (—aa™) C R. Thus,
o(a*a) Cc —(R4). (11.4)

Let u,v € A be the real and imaginary parts of a; thus, a = u + iv. By the
Spectral Mapping Theorem, u?> and v? are positive and so, by Proposition 11.59,
u?> +v? € A Therefore, a*a + aa* € Ay as well, since a*a + aa* = 2(u® + v?).
By Proposition 11.59 once again, we have that a*a + aa* + b> € A,. But

ata+aa* +b* =a*a+aa* —a*a=ada*:
this shows that aa* € Ay and so

o(aa*) C R. (11.5)

Theorem 9.3 asserts that o (aa™) U {0} = o (a*a) U {0}. Therefore, (11.4) and (11.5)
combine to give

o(a*a) € (-R4) NRy = {0}.

Therefore, the spectral radius of a*a is 0. Since the spectral radius and norm

coincide for hermitian elements, a*a = 0. That is, 0 = ||a*al| = ||a||?, which proves
that ¢ = 0. Since b> = —a*a = 0 and b_ is positive, we obtain b_ = [p?]'/? =
02 =0. O

Definition 11.61. If h,k € A, thenh <kifk—heAL.

The relation “<” on A, has the following properties (Exercise 11.126).If a,b,c €
Aga, then:

l.a<a;
2. ifa<band b < a, then b = a; and
3.iffa<band b <c,thena <c.

That is, “<” is a partial order on the R-vector space Ag,.

Proposition 11.62. If h,k € Ay, satisfy h <k, then x*hx < x*kx for every x € A.
Proof. If x € A, then
ke —x*hx = x*(k—h)x = x*(k—h)">(k—h)'*x = ¥z €Ay,

where z = (k—h)"/%x. O

As with Hilbert space operators, one has the following definition.
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Definition 11.63. If A is a C*-algebra and if x € A, then the modulus of x is the
element |x| € A defined by (x*x)!/2.

If X is a compact Hausdorff space and if w is a probability measure on the Borel
sets of X, then the linear functional ¢ : C(X) — C defined by

¢U)=iéfdu,

satisfies @(f) > 0 whenever f(z) > 0 for all r € X. This example motivates the
following definition.

Definition 11.64. A linear functional ¢ : A — C on a C*-algebra A is a positive
linear functional if ¢(h) > 0 for every h € A4. If, in addition, |¢| = 1, then the
positive linear functional ¢ is called a state on A. The state space of A is the set
S(A) of all states on A.

o0
Example 11.65. If {£,},en is a sequence of vectors for which Z €411 converges,

n=1

then the function ¢ : B(H) — C defined by

oo

P() =Y (xEy. &)

n=1
is a positive linear functional on B(H).

Positive linear functionals on A necessarily map Ag, onto R, which can be seen
via writing h € A, as h = hqy —h_, where hy,h_ € A4. Therefore, by expressing
any x € A in terms of its real and imaginary parts, we obtain

P(x*) =p(x), VxeA,VgeSA).

Proposition 11.66 (Schwarz Inequality). If ¢ € S(A) and x,y € A, then
(O < p(x* ) 9(y"y). (11.6)

Proof. The equation [x,y] = ¢(y*x) defines a sesquilinear form on A x A. Therefore,
the proof of the inequality can be achieved by arguing as in the proof of the Cauchy-
Schwarz inequality in Hilbert space.

Choose x,y € A. If [x,y] = 0, then the inequality holds trivially. Thus, assume that
[x,¥] # 0. Note that x*x,y*y € Ay imply that [x,x], [y,y] € R4. For any A € C,

0 < [x—Ay, x—2y] = [e.x] = 2R AD.x]) + (AP )]

For

_ [l

[y.a]”
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the inequality above becomes

.11 [y. ]
eI

which yields inequality (11.6). O

0 < —[x,x] +

If A is a unital C*-algebra, then there is a relatively simple criterion for a linear
functional to be a state.

Proposition 11.67. The following statements are equivalent for a linear functional
¢ of norm ||¢|| = 1 on a unital C*-algebra A:

1. @ isastate on A;
2. p(1)=1.

Proof. Assume that ¢ is a state on A. Because 1 = 1*1 € A} and ||1]| = 1, we
have that 0 < @(1*1) = ¢(1) < ||¢||||1|| = 1. To show that 1 < ¢(1), choose any
x € A with ||x|| < 1. Thus, ||x*x|| < 1. Since ||x*x|| = r(x*x) and o (x*x) C R4, the
hermitian element 1 —x*x is positive in A. Thus, 0 < ¢(1 —x*x) = ¢(1) — p(x*x),
which implies that ¢(x*x) < ¢(1). Therefore, by an application of the Schwarz
inequality,

lo(¥)| = |p(1*x)| < p(xr*0)p(1*1) < (1) < 1,

since ¢(1) < 1. Hence |p(x)| <1, for all x € A with ||x|| < 1, implies that |¢|| < ¢(1).
By hypothesis, ||¢|| = 1; therefore, ¢(1) = 1.

Conversely, suppose that ¢(1) = 1; thus, |¢| = ¢(1) = 1. It must happen that
¢(Asy) = R, for if not then there is a hermitian element & € Ay, such that ¢(h) =
o +ifB, where o, B € R and B # 0. Therefore, with k = B~ (h—al) € Ag,, we would
have that ¢(k) = i and, for each y € R,

(v +D? = li+yil? =lpk+yiD]> < o[k +yil|?
= [(k+yi)*(k+yiD| = [ +y*1] = ]| + 2.

Thus, (2y + 1) < ||k?| for all y € R. But this is impossible; therefore, it must be
that ¢(h) is real for every h € Ag,. If h € Ay, then ||¢|| = 1 and ¢(h) € R imply that
@(h) € [=[[2]l. [|R]]]. Thus, [[A]| = [|2]] — ¢(k) = O, which implies that ¢(h) = 0. O

For every ¢ € S(A) and x € A we have the basic inequality |¢(x)| < ||x||. If x
is positive, then equality is achieved for some state ¢, as shown by the following
result.

Proposition 11.68. For every h € A there is a state ¢ on A with ¢(h) = ||h].

Proof. If A is nonunital, then consider the unitisation Al of A; otherwise, let A!
denote A in the case where A is unital.
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Ifhe Ay, thenh € (A') 1 as well. Consider the unital abelian C*-algebra C*(h, 1)
generated by h. Via the Gelfand transform, there is a character p : C*(h,1) - C
such that p(h) = ||A||. Of course, p(1) = ||p|| = 1. By the Hahn-Banach Theorem, p
extends to a linear function @ : A! — C. Since ||®|| = @(1) = 1, @ is astate on A by
Proposition 11.67. Thus, if A is unital, we may take ¢ = @. If A is nonunital, then let
@ = @|4. Note that ¢(k) > 0 forall k € A, and that [|¢| < 1. Withk = ||h]| 'h e Ay,
we have ||k|| = 1 and ¢(k) = 1. Hence ||¢|| = 1, and so ¢ is a state on A. |

11.7 Ideals and Quotients

Ideals of C*-algebras inherit many properties of the ambient C*-algebra. First and
foremost of these is that every ideal of a C*-algebra is itself a C*-algebra, which is
proved as Theorem 11.70 below.

Lemma 11.69. If J is an ideal of a C*-algebra A and if x € J, then there is a
sequence {ey}nen C J+ such that o(e,) C [0,1], for alln € N, and ||xe, — x| — 0.

Proof. First suppose thatx € A. If A is unital and if e € A satisfies o (e) C [0, 1], then
I1—e|| <1 (Exercise 11.132). Thus, ||x —xe||? = ||(1 —e)x*x(1 —e)|| < |x*x(1 —
e)|| = ||x*x —x*xe||. If A is nonunital, then one can embed A into A' to produce the
same inequality. Therefore, regardless of whether A is unital or not,

[x—xe|® < |[x*x—x*xe|, VeeAy witho(e) C[0,1]. (11.7)
Suppose now that x € J. Because J is an ideal, x*x € J. Let h = x*x. For each
neN,letf,(t) =nt/(1+nt); thus, f, € C(c(h)),0 <f,(t) <1, forall ¢, and f,,(0) = 0.

Let e, =f,,(h). Theorem 11.47 and Proposition 11.48 show that e, € J+ and o (e,,) C
[0,1]. We aim to verify that ||h— he,|| — 0. To this end, note that if 7 € o (), then

t nt 1 1
t—lﬁl(t)zm:(l+nt)(;l) < ;, VZEU(h).

Therefore, by the fact that continuous functional calculus is an isometric
x-homomorphism, ||k — he,|| < 1/n. Hence, by inequality (11.7),

1
[x—xe,|? < |x*x—x*e,|| < —.
n

That is, lim |xe,—x| =0. |
n—oo

Theorem 11.70. IfJ is an ideal of a C*-algebra A, then J is a C*-subalgebra of A.

Proof. All that needs to be verified is that x* € J for every x € J. By Lemma 11.69,
there is a sequence {e, },en C J+ such that o(e,) C [0, 1], for all n € N, and ||xe, —
x|| = 0. Note that e,x™ € J for every n € N. The C*-norm is isometric, and so
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lim |le,x* —x*|| = lim ||xe,—x| =0.
n—>0o0 n—>o0
Because J is closed and because each e,x* € J, we conclude that x* € J. O

Define a function * on A/J by
% .
®) =),
It is clear that this definition above yields an involution on the associative algebra

A/J.
Recall that A/J is a Banach algebra under the quotient norm

%]l = inf{|lx—b[ b€ J5.

The new fact that is proved below is that the quotient norm satisfies the C*-norm
axiom ||x[|> = [l&*x].

Theorem 11.71. If J is an ideal of a C*-algebra A, then the quotient Banach

algebra A/J is a C*-algebra with respect to quotient norm and the involution
X = (x*).

Proof. Because J is closed under the involution, the function X > (x*) is a well-
defined involution on the quotient A/J. Because A/J is a Banach algebra in the
quotient norm, the only issue remaining to be verified is that the quotient norm
satisfies ||x||? = ||x*x||. To this end, fix x € A and define

E={ecJi|o(e) C[0,1]}.
If A is unital and if e € E, then ||l —e|| <1 and, for any b € J, ||x+ b|| > ||(x+

b)(1—e)| = ||(x—xe) + (b —be)|. If A is nonunital, then one can embed A into A'
to produce the same inequality. Hence,

lx+ bl > [(x—xe)+ (b—be)|, VYecE bel,
regardless of whether A is unital or not. By definition of the quotient norm,
|x|| <inf{||x—xe]|||e € E}. (11.8)

To show that equality holds in (11.8), let b € J. By Lemma 11.69, there is a
sequence {e,},en C E such that |be, —b|| — 0. Thus, for every n € N,

x4+ bl > || (x—xe,) + (b—bey)||,
and so

|lx+ b|| > liminf ||x—xe,| > inf ||x—xe|| > ||x]|.
n e€E
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Therefore,

13l = infflc + bl = |1x]
eJ

implies that ||x|| = inf{||x—e¢| | e € E}, for every x € A. Consequently, by invoking
inequality (11.7) we obtain

|%]|? = inf ||lx —xe||* < inf ||x*x —x*xe| = [|x* %],
e¢€EE e€E
implying that
01> < 1551 < 1511 (11.9)
Conversely, ||x*|| = inf{||x* —b*|||b € J} = inf{||[x—b]|||b € J} = ||k, since J is

x-closed. Therefore, inequality (11.9) is an equality. O

Quotient algebras occur by way of the kernels of *-homomorphisms. The main
features of x-homomorphisms are described by the following result.

Proposition 11.72. If A and B are C*-algebras, and if p: A — B is a
*-homomorphism, then

p is continuous and ||p|| < 1,

p is an isometry if and only if ker p = {0},
the kernel of p is an ideal of A, and

the range of p is a C*-subalgebra of B.

KN~

Proof. By Exercise 11.136, sprp(x*x) < spr(x*x), for all x € A. Thus,

lpC)I* = [lp@)* p(0)ll = sprp(x*x) < spr(x"x) = [lx*x]| = |lx]*.

That is, p is bounded and ||p|| < 1, which proves (1).

For (2), it is trivial that isometries are injective, and so only the converse is proved
here. Thus, assume that kerp = {0}. Assume, contrary to what we aim to prove,
that there is an element x € A with ||p(x)| < ||x||. Then, ||p(h)|| < ||k||, where h =
x*x€Aq. Letf :]0,]|h]|]] — R be any continuous function such that f'(r) = 0 for t €
[0, |o(R)||] and f(||2]|) = 1. By the Spectral Mapping Theorem, ||f(p(%))|| = 0 and
Ilf (B)|| = 1. Because f(p(h)) = p(f(h)) (by the continuity of p and the Weierstrass
Approximation Theorem), it must be that ||p(f(h))|| = 0. Since p is injective, this
means that f(h) = O—in contradiction of ||f(%)|| > 1. Therefore, it must be that p is
isometric if ker p = {0}, which proves (2).

Since p is continuous, ker p is closed. As the kernel of any *-homomorphism is
an algebraic ideal, we conclude that ker p is an ideal, thereby proving (3).

For the proof of (4), consider the quotient C*-algebra A/kerp and let ¢ :
A/ker p — B be defined by ¢ (¥) = p(x), for every x € A. Then ¢ is a well-defined
*-homomorphism with trivial kernel and range equal to the range of p. Thus, by (2),
¢ is an isometry, and so the range of ¢ is closed. Hence, the range of p is closed. O
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Corollary 11.73. If two C*-algebras are x-isomorphic, then they are isometrically
*-isomorphic.

One of the most important quotient C*-algebras occurs in operator theory.

Definition 11.74. If H is an infinite-dimensional Hilbert space, then the Calkin
algebra is the quotient C*-algbera Q(H) = B(H)/K(H).

Example 11.65 shows that B(H) admits positive linear functionals ¢ of the form

oo
Px) =Y (xE. ).
n=1
o
for sequences {£,}, in H in which Z €, 11> converges. With nonzero positive linear
n=1
functionals of this form, one can always find a compact operator k € B(H) such that
@(k) # 0 (Exercise 11.139). In light of the following example, not all states on B(H)
are given by such a formula.

Example 11.75. If H is an infinite-dimensional Hilbert space, then there exists a
state ¢ on B(H) such that ¢(k) = 0 for every compact operator k € B(H).

Proof. Let q : B(H) — Q(H) be the quotient map ¢g(x) = x, mapping B(H) onto
the Calkin algebra Q(H). Because H has infinite dimension, Q(H) # {0}. Select a
nonzero positive & € Q(H). By Proposition 11.68, there is a state ¢ on Q(H) with
¥ (h) = || h||. Let ¢ = ¥ oq, which is a positive linear functional such that ¢(1) = 1.
Because ¢ (K(H)) = {0} in Q(H), the state ¢ annihilates every compact operator
in B(H). O

11.8 Representations and Primitive Ideals

Some C*-algebras, such as the Calkin algebra, occur abstractly rather than as a
C*-algebra of Hilbert space operators. The goal of this section is to show, for any
C*-algebra A, the existence of *-homomorphisms 7 : A — B(H) (for an appropriate
choice of Hilbert space H) where by 7 is isometric; in so doing, A and the C*-
algebra 7 (A) of operators acting on H are isometrically *-isomorphic.

Definition 11.76. A representation of a C*-algebra A on a Hilbert space H is a
x-homomorphism 7 : A — B(H). Further, 7 is:

. unital, if A is a unital C*-algebra and 7 (1) = 1;

. nondegenerate, if the only & € H that satisfies m(a)é =0 forallae Ais § =0;
. cyclic, if there is a vector £ € H such that {w(a)§ |a € A} is dense in H;

. irreducible, if the commutant of 77 (A) in B(H) is {A1|A € C}.

AW N =

The following theorem reveals a close relationship between states and represen-
tations of C*-algebras.
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Theorem 11.77 (Gelfand-Naimark-Segal). Assume that ¢ is a state on a unital
C*-algebra A.

1. (Existence) There exists a unital representation w of A on a Hilbert space H, and
a unit vector § € H,; such that

a. &€ is a cyclic vector for w(A), and
b. o(x) = (m(x)&,&) for every x € A.

2. (Uniqueness) Given a triple (Hy,m,§) as in (1), if p: A — B(H,) is a unital
representation of A, if n € H, is a unit cyclic vector for p(A), and if ¢(x) =
(p(x)n,n), for every x € A, then there is a surjective isometry u : Hy — H, such
that u¢ = n and um (x) = p(x)u, for every x € A.

Proof. Let L= {x € A|p(y*x) = 0 for every y € A}. By the Schwarz inequality for

states, |@(b*a)| < p(a*a)p(b*b) for every a,b € A, This inequality implies that L is

a closed set; hence, because L is also a vector space, L is a subspace of A.
Foreachx e Landa,y €A,

¢ (v*(ax)) = ¢ ((*a)x) = ¢ ((@*y)*x) =0,

implying that ax € L.
Define a sesquilinear form (-,-) on the quotient vector space A/L by

(a.b) = p(b*a)

A straightforward computation shows that this form is well defined. Moreover, if
(a,a) = 0, then ¢(a*a) = 0 and, by the Schwarz inequality, ¢(y*a) = 0 for every
y € A. Thus, {(@,a) = 0 only if @ = 0, which proves that (-,-) is an inner product
on A/L. In the metric on A/L induced by the norm ||x|| = (,x)'/2, let H, be the
completion of A/L. Thus, H,, is a Hilbert space that contains A/L as a dense linear
submanifold.

For each x € A, let 7r(x) : A/L — A/ L be the (well-defined) linear transformation
7o(x)[a] = (xa). Because

Imo@)[@lll* = p(a* (x*x)a) < |¥"xllp(a*a) = |x|*[la]®,

the linear transformation 7y (x) extends to an operator 7 (x) on H, of norm at most
||x||. Furthermore,

(mo(x)a, by = ¢ (b* (xa)) = ¢ ((x*b)*a) = (a, 7o (x*)b)

implies that 7 (x)* = 7 (x). Because 7 is a contractive x-homomorphism of A into
B(H,), m is also a contractive *-homomorphism.

Let £ =1 € A/L C H, and note that (r (x)£,£) = ¢(1*x) = ¢(x) for every x € H,
and that

{r(x)é,|lac A} =A/L.

Hence, £, is a cyclic vector for m(A), which establishes the existence of the trip
(Hy,m, &) with stated properties in (1).
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The proof of the uniqueness assertion (2) is left as Exercise 11.138. O

Definition 11.78. If ¢ is a state on a unital C*-algebra, then a triple (H,,7x,§)
consisting of a Hilbert space H,, a representation 7 of A on H,;, and a unit vector
& € H, is called a GNS-triple for ¢ if (i) £ is a cyclic vector for 7w (A) and (ii)
o(x) = (T(x)€,&), for every x € A.

The main fundamental fact about representations C*-algebras is the following
theorem.

Theorem 11.79 (Gelfand-Naimark). For every unital C*-algebra A there exists a
Hilbert space H and a unital representation 7w : A — B(H) such that 7 is injective.
Moreover, if A is separable, then H can be taken to be a separable Hilbert space.

Proof. Fix z € A. By Proposition 11.68, there is a state ¢y on A such that ¢y(z*z) =
lz*z||. Let C, = {¢ € S(A) | ¢(z*z) = ||z*z||}, which is a convex and weak*-closed
subset of the unit sphere in the dual space of A. Therefore, the Krein-Milman
Theorem (Theorem 7.18) asserts that C, has an extreme point, say ¢. This state
@ is also an extreme point of S(A), for if ¢ = %((p] + @), then the fact that states
are contractive implies that ¢; (z*z) = ¢2(z*2) = ||z*z]|; hence, ¢;, ¢, € C,, implying
that o; = ¢, = @.

Suppose now that (H,m,£) is a GNS-triple for ¢. If 7 is not an irreducible
representation of A, then there exists a projection p € B(H) such that p # 0,
p # 1, and pr(x) = m(x)p for all x € A. If p§ were 0, then it would be true that
p((x)€) = m(x)p = & for every x € A; however, such vectors form a dense subspace
of H and this would imply that p = 0, contrary to the assumption on p. Likewise,
1—p #0.Lett = ||p€||? so that 1 —¢ = || (1 —p)&||> and ¢ € (0, 1). Define states ¢,
and ¢, by

1
P1(0) = T 0IpE.pE) and () = (x ()1~ )% (1 ~p)E).
Because ¢ = t¢; + (1 —1)p,, we have that ¢; = ¢, = ¢. In particular, the equation
(m()E.§) = 17 (n()p.p§) = 1~ {m (€. pE)

for every x € A implies that

(r(EpE—17'8)=0
for every x € A. Because the {m(x)€ |x € A} is dense, the equation above yields
pE = t7'&, which implies +~! is an eigenvalue of p. However, 1! ¢ {0,1} = o (p)

and, therefore, it must be that the only projections that commute with 7 (A) are 0
and 1. Hence, 7 is a unital irreducible representation and it has the property that

Iz1? = 7@ = 72| = (72" 2E.8) = ¢("2) = [l2"z] = ||z]>.

Hence, |7 ()| = |z]|-
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Denote the GNS-triple associated with the irreducible representation 7 in the

previous paragraph by (H., ., £;). Consider the Hilbert space H = @HZ and the
ZEA
representation 7w = @ 7, and note that 7 : A — B(H) is a unital representation of
ZEA

A for which 7(x) = 0 only if x = 0.

If A is separable and if {a,},en is a countable dense subset of A, then with H =
@Hun and 7 = @nan we have a representation 7 of A on the separable Hilbert

neN neN

space H for which 7 (x) = 0 only if x = 0. O

Corollary 11.80. Every C*-algebra is isometrically *-isomorphic to a C*-algebra
of Hilbert space operators.

Proof. If A is a unital C*-algebra, then Theorem 11.79 applies immediately to
achieve the assertion. If A is nonunital, then apply Theorem 11.79 to the unitisation
A to achieve an isometric *-isomorphism of A with a C*-algebra of Hilbert space
operators. a

A noteworthy fact that is a consequence of the proof of Theorem 11.79 is:

Proposition 11.81. If (H,,n, &) is a GNS-triple for a state ¢ on a unital C*-algebra
A, and if ¢ is an extreme point of the state space of A, then w is an irreducible
representation.

The converse of Proposition 11.81 is also true.
We begin our consideration of primitive ideals by noting a basic relationship
between irreducible representations of A and its ideals J.

Proposition 11.82. Assume that J is an ideal of a C*-algebra A.

1. If m : A — B(H) is an irreducible representation of A and if J € kern, then m;
is an irreducible representation of J.

2. If p:J — B(H) is an irreducible representation of J, then p extends to an
irreducible representation 7w : A — B(H) of A.

Proof. Assume that 7 : A — B(H) is irreducible. Let £ € H be any unit vector and
consider H; = {m(x)& |x € J}. Since J is an ideal of A, H; is 7 (A)-invariant. But
7 (A) is an irreducible operator algebra, and so H; = {0} or H; = H. We show that
only the latter condition holds. If it were true that H; = {0}, then 7 (x)7w(a)é =0
for every x € J and a € A; but vectors of the form 7w (a)§, a € A, are dense in H, and
so 7 (x) would be zero for every x € J, in contradiction to J € kern. Thus, H; = H.
The choice of § € H being arbitrary shows that 7, is an irreducible representation
of J.

For the second statement, assume p : J — B(H) is an irreducible representation
of J. Choose any unit vector x € H. For a € A define w(a) on the dense linear
submanifold {p(x)&|x € J} by m(a)[p(x)€] = p(ax)é. Then m(a) extends to an
operator on H and the map a — m(a) determines an irreducible representation of
AonH. O
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Definition 11.83. Assume that J is an ideal of a C*-algebra A.

1. J is a primitive ideal if J = ker for some irreducible representation w of A.
2. J is a prime ideal if, for any ideals I and K of A, the inclusion / N K C J holds
onlyif/ICJorK CJ.

The set of all primitive ideals of A is denoted by PrimA.
Proposition 11.84. J is prime, for every J € PrimA.

Proof. Suppose that J € PrimA and assume that / and K are ideals of A such
that /N K < J. Suppose that K € J. Then K € kerm, where & : A — B(H) is
an irreducible representation of A with kerm = J. Hence, m|x : K — B(H) is an
irreducible representation of K. Therefore, if £ € H is a fixed unit vector, then
H = [7(K)&] . In particular if x € I and y € K, then n(x) (z(y)§) = w(xy)€ = 0,
as xy € INK € J = kerx. But vectors of the form 7 (y)&, y € K, are dense in H;
thus, 7 (x) = 0 for every x € I, which proves that I C J. O

The converse to Proposition 11.84 is false in general, although it is true if A is
separable.

Proposition 11.85. If 1 is an ideal of A, then

= (\ J

I1CJ, JEPrimA

Proof. Clearly I is a subset of the ideal on the right-hand side of the equation above.
To show the other inclusion, assume that x & I. Thus, 0 7% x € A/I and so there is
an irreducible representation p of A/I such that ||p(x)|| = ||x||. f ¢ : A — A/ is the
canonical quotient homomorphism, then m = p o g is an irreducible representation
of A with I C kerm and x ¢ ker 7. Therefore, x is not an element of the right-hand
side of the equation above. O

Definition 11.86. Assume that .7 is a nonempty subset of PrimA. The closure of
%, which is denoted by .7, is the set

F={JePrimA| (1< J}.
1e7

A subset % C PrimA is closed if .Z = Z.
The closure operation satisfies the following properties:
(i 0=0;

(i) Z < .F;
Gi) #=2%#,
(iV) 9'1 Uyz = yl Uyg.

Proposition 11.87. There exists a unique topology 7 on PrimA in which the closed

sets F of PrimA are precisely those in which F = F, where F is given by
Definition 11.86.
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Proof. Exercise 11.140. O

The topology .7 in Proposition 11.87 is called the Jacobson topology, or the
hull-kernel topology, on PrimA.

Definition 11.88. Two representations 7; and m, of a C*-algebra A on Hilbert
spaces H; and H,, respectively, are equivalent, which is denoted by m; ~ my, if
there is a surjective isometry u : H; — H, such that ;(a)u = um;(a), for all a € A.

The next proposition is basically self evident.

Proposition 11.89. [fIrr A denotes the set of irreducible representations of A, then
~ is an equivalence relation on Irr A. Furthermore, if | ~ 1, then ker m; = ker .

Because equivalent irreducible representations have the same kernels, it is
convenient to identify such representations by passing to the space Irr A/ ~.

Definition 11.90. The spectrum of A, denoted by A, is the set IrrA / ~ of equiva-
lence classes of irreducible representations of A.

Elements of A will be denoted by 7, where w € Irr A.
Definition 11.91. Assume that J is an ideal of a C*-algebra A.

1. J is a primitive ideal J if J = kerz for some irreducible representation 7 of A.
2. J is a prime ideal if, for all ideals ;,I, € A, the inclusion /; NI, € J holds only
iflLCJorl, CJ.

The set of primitive ideals of A will be denoted by PrimA. Note that the map
A — PrimA, 7w+ kerm,

is a surjection, and via this surjection one endows the spectrum of A with a topology
as follows.

Definition 11.92. A subset U C A is an open set if {kerm |7 € U} is open in the
Jacobson topology of PrimA.

Thus, the surjection A — PrimA is an open, continuous map.

For the remainder of this section, the spectra and primitive ideal spaces defined
above are used to describe x-homomorphisms between abelian C*-algebras and to
analyse the structure of ideals in such algebras.

Proposition 11.93. [fA = Cy(X), where X is locally compact and Hausdorff, then
X ~ A ~ PrimA.

Proof. For each 19 € X let p,, : A — C be given by py,(f) = f(t), for all f € A.
Although A = {p, |7 € X} as sets, it is not yet obvious that A and % have the same
topologies. We first show that X is homeomorphic to PrimA by identifying the closed
sets of PrimA with closed sets of X.

Note that J € PrimA if and only if there is a fy € X such that J = {f € A|f(tp) =
0}. Suppose that . C PrimA is arbitrary. Thus, there is a subset F € X such that
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F = {kerp, |t € F}. Claim: .Z = F. To prove the claim, let f, € F. By definition,
kerp, € # if kerp, 2 (),c» I. But this is true, since (by continuity) we have

()1 =1{€CD)If(6)=0,¥ieF} S{f € Co(T)|f(tg) = 0}.

1e7

Conversely, assume that J = ker p;, € PrimA is such that J & {kerp; |t € F}. Thus,
to & F. By Theorem 2.43, there is an f € Cy(X) such that f(ty) = 1 and f(F) = {0}.
That is, f € (),c» I butf & J; hence, J 2 (;c.» I, which is to say that J ¢ Z. This
proves that 7 and PrimA have the same closed sets, and so PrimA is locally compact
and Hausdorff.

Because the open, continuous, surjective map A — PrimA is injective (for if p,, #
Py, then there is an f € Cy(X) such that f(¢;) # f(t2), and so g =f —f(#;) belongs
to ker p,, but g &€ ker p,,), it is also true that A and PrimA are homeomorphic. O

Proposition 11.94 (Poincaré Duality). Assume that X and Y are locally compact
Hausdorff spaces. Then a map 1 : Co(X) — Co(Y) is a *-homomorphism if and only
if there is a continuous map ¥ : Y — X such that

1. ¥~Y(K) is compact in Y for all every compact K C X, and
2. w(f) =fo, forall f € Cy(X).

Moreover,  is injective if and only if 7 is surjective, and \ is surjective if and only
if m is injective.

Proof. The sufficiency of the two conditions is clear, as the second defines a
*-homomorphism Cy(X) — C(Y), and the first condition shows that f oy vanishes
at infinity, so that indeed f oy € Cy(Y).

Conversely, given a x-homomorphism 7 : Cy(X) — Cy(Y), when 7 is composed
with a point evaluation p, : Co(Y) — C the result is a nonzero *-homomorphism
Co(X) — C. Hence, p,om = p, for some (uniquely determined) x € X. Lety : ¥ — X
be the function that sends y to x. To show that ¥ is continuous, we take advantage
of the homeomorphisms X ~ PrimCy(X) and Y >~ PrimCy(Y).

Let C C X be a closed set; thus, {kerp, |x € C} is closed in PrimCy(X). Choose
yo € ¥~1(C) and let xy € X be such that p,, = p,, o 7. Because ¥ =~ PrimCy(Y),
ker py, is in the closure of {ker p, |y € ¥ ~'(C)} in PrimCy(Y). That is,

m kerp, C kerpy, .
yey—H(O)

Hence, it is also true that

ﬂ kerpyom C kerpy,om.
yey—1(C)
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That is, ker p,, is in the closure of {ker p, | x € C} in PrimCy(X). But this is equivalent
to xo € C. As C = C, we obtain y, € ~!(C), which proves that ¥~ (C) is closed.
Hence, ¢ : Y — X is a continuous function.

Let K C X be compact. As X is Hausdorff, K is closed; thus, w_l (K) is closed in
Y, by the continuity of . By Theorem 2.43, there is a function f € Cy(X) such that
f(K) = {1}. Thus,

el = 53 2 v K).

Because 7 (f) vanishes at infinity, the set on the left-hand side above is compact,
which implies that ¥ ~!(K) is compact.
Because 7 (f) =f o, for all f € Cy(X), we obtain the desired formula for 7.
The remaining assertions of the proposition are straightforward to deduce. O

Proposition 11.95. Assume that I C Cyo(X) is an ideal. Let Z = ﬂ £ 10}, Then
fel
I={g e Cy(X)|gz =0}

Proof. Clearly I C {g € Co(T)|g|z = 0}. To prove the converse, assume that 1 & I.
Every ideal is the intersection of primitive ideals that contain it, and so

I = ﬂ ker p; .

ker p; 21

Therefore, i ¢ I implies that & ¢ ker p,, for some #, € X with I C ker p,,. Thus, fp € Z

and h(ty) # 0 imply that h & {g € Co(X) | gz = 0}. ]
Proposition 11.96. If I C Cy(X) is an ideal, then I = Cy(U), where U = X\ Z and
z=(")ros.

rer

Proof. The C*-algebra Cy(X)/I is abelian. Let Y denote its maximal ideal space.
We obtain a surjective homomorphism 7 : Cyp(X) — Co(Y) via

By Poincaré Duality, there is a continuous injective function ¥ : ¥ — X such
that (f) = f oy for every f € Co(X). Note that I = kerw, which means (by
Theorem 2.43) that Z = v (Y). Consider the isometric *-homomorphism y : [ —
C(U) whereby y(f) = fjy for every f € 1. If ¢ > 0, then

{teUllf(] =e} = {te UUZ||f(1)]| = &};

the set on the right-hand side is compact, since f € Cy(X). Therefore, y(f) € Co(U).

To see that y is surjective, let f € Co(U) 4 and define F : X — R by F(¢) = f(2),
ifteU,and by F(t) =0, if t € Z. Let r € RT. The set F~' (=00, 7] is ZUf~1(0, 7],
which is closed. Hence, F is lower semicontinuous. The set F~![r, 00) = f~![r, 00),
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which is also closed; therefore, F is upper semicontinuous. Thus F is continuous.
Moreover, F vanishes at infinity and f = y(F). Since Cy(U) is spanned by functions
in Cy(U)+, this proves that y is surjective. O

11.9 Traces and Factors

The set M,(C) of n x n complex matrices is a unital C*-algebra, since M,(C) =
B(C"), the C*-algebra of bounded linear operators on the Hilbert space C". Of the
many important functions defined on matrices, the trace functional is especially
relevant to functional analysis, as it is a positive linear functional that behaves as
though M, (C) were commutative. To be more precise, the function Tr : M,,(C) — C
defined by

[alj ij=1 Z Okes

is linear, has the property that Tr(x*x) > 0 for all x € M,,(C), and satisfies Tr(xy) =
Tr(yx), for all x,y € M,,(C). There is one additional feature: the trace is faithful,
which is to say that Tr(x*x) = 0 only if x = 0

Concerning M,(C) as an operator algebra, it is of course a von Neumann algebra
and its centre, Z (M, (C)) is trivial in the sense that Z (M,,(C)) = {11 | A € C}, where,
for any ring R, the centre of R is the abelian subring Z(R) of R defined by

Z(R) ={xeR|xy=yx, Vy eR}.

One additional feature of M, (C) is that its only ideals are {0} and M,,(C), making it
a simple algebra.

The purpose of this section is to introduce and examine operator algebras that
exhibit these same algebraic and functional-analytic properties that are present in
the matrix algebra M,,(C). The first fundamental concept is that of a trace.

Definition 11.97. A state t on a C*-algebra A is a trace if t(xy) = t(yx), for all
x,y € A. If, in addition, t(x*x) = 0 only if x = 0, then  is said to be a faithful trace.

Example 11.98. If G is a countable discrete group, then the group von Neumann
algebra V) (G) has a faithful trace.

Proof. Let £ € £?(G) be the unit vector £ = §,, where e is the identity of G, and
define 7 : V) (G) — C by t(x) = (x£,&). Thus, 7 is a state on V, (G), and it remains
to show that 7 is a faithful trace.

If g.h € G, then AyA4[S.] = 8n, and 5o (AgA4[Sc]. ) = (8gn. 8.), which is nonzero
if and only if gh = e. But gh = ¢ if and only if hg = e; therefore, (A,A,[8.].5.) =
(Ag)kh[Se],Se). Hence, if x,y € V,(G) are elements of the group algebra C[G], then
T(xy) = t(yx). Because multiplication in a Banach algebra is norm continuous
(Exercise 9.45), we deduce that 7(xy) = z(yx) for all x,y € C;(G).
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To show that t(xy) = t(yx) for x,y € V) (G), it is sufficient to assume that x
and y are hermitian and that ||x|| = |ly|| = 1 (because the hermitian operators of
V1 (G) span V,(G)). By the Density Theorem, there are nets {x,}, and {yg}s of
hermitian operators in the unit ball of C}(G) that are SOT-convergent to x and y,
respectively. In particular, with the unit vector £ and making use of the fact that

(g8, %) = 1(xeyp) = T(¥pXa) = (xa§,ypE) for all « and B, we see that
|7(y) = ()] = 2 (IIx€ = xo € [l + Iy —y5&1l)

and so |t(xy) — 7(yx)| = 0. Thus, 7 is a trace on V, (G).

Suppose now that x € V3 (G) satisfies (x*x) = 0. Thus, 0 = (x*x5,,8.) = [|xS.]|>.
Select any other orthonormal basis vector, say d,. Thus, §, = 8., = p(g)[.], where
p:G—B (EZ(G)) is the right regular representation. Because p, € V) (G)’, we have
that x8, = xp,8, = pyx8, = 0. Hence, x maps every orthonormal basis vector §, to
0, which proves that x = 0. ad

The proof employed in Example 11.98 shows how a certain type of trace

. —SOT . .
functional on a C*-algebra A extends to a trace on A~ . This fact is recorded below
for later reference.

Proposition 11.99. If £ is a unit cyclic vector for a unital C*-algebra A acting on

a Hilbert space H, and if the state t : B(H) — C defined by t(x) = (x£,£) is a trace
. —SoT

on A, then t is also a traceon M = A .

Proposition 11.99 is particularly useful in the following form.

Corollary 11.100. If (H,, 7w, &) is a GNS-triple for a trace t on a unital C*-algebra

—— 50T
A, then there is a trace Tty on the von Neumann algebra M = m(A) such that
T=T1yom.

Again motivated by the situation with the matrix algebra M,,(C), von Neumann
algebras with trivial centres are of particular interest.

Definition 11.101. A von Neumann algebra M is a factor if Z(M) = {A1|A € C}.

The von Neumann algebra B(H) is a factor (Exercise 11.141), and it is known,
for infinite discrete groups G, that V,(G) is a factor if and only if the conjugacy
class {h'gh|h € G} of g € G is infinite for every g # e. (The free group F, on
n > 2 generators is one easy example of a group that has infinite conjugacy classes.)
Another manner in which factors are obtained is through the tracial state space of a
C*-algebra (Proposition 11.103 below).

Definition 11.102. Assume that A is a unital C*-algebra.

1. The set T'(A) of all traces on A is called the tracial state space of A.

2. If (Hy, 7, &) is a GNS-triple for a trace T € T(A), and if 7 (A) sor is a factor, then
7 is said to be a factorial trace.
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It may happen that a C*-algebra does not admit a trace (for example, B(H) does
not, if H has infinite dimension), or it may admit a continuum of traces.

Proposition 11.103. If A is a unital C*-algebra, then the tracial state space T(A)
is weak*-compact and convex. Moreover, every extreme point of T(A) is a factorial
trace.

Proof. The assertion that T(A) is weak*-compact and convex is left as Exer-
cise 11.142.

Suppose that 7 is an extreme point of 7T(A), and suppose that (H,, 7, ) is a GNS-
triple for 7, and let M = @SOT. Assume, contrary to what we aim to prove, that
T is not factorial. Thus, the centre Z(M) of M is nontrivial. Because Z(M) is an
abelian von Neumann algebra and is nontrivial, there is a projection p € Z(M) such
that p # 0 and p # 1. If & = pé, then because {7 (x)&|x € A} is dense in H,, and
because 7 (x)&; = w(x)pE = pr(x)€ for all x € A, it cannot be that £, = 0. Similarly,
if & = (1—p)&1, then & # 0. Thus, ||& > = 1—[[&[* < 1.

For each j € {1,2}, let n; = ||&~'&; and 7;(x) = (7 (x)n;, n;), for x € A. Thus, T,
is a state on A. Since p € Z(M) C M = msm = @WOT, there is a net {x, }, of
hermitian elements in A such that {7 (xy)}, is convergent to p in the weak operator
topology of B(H ;). Therefore, for fixed x,y € A, we have that

(&1 &1) = (pr(y)E, &) = lim (7 (xa) 7 ()8, §) = lim{z (o xy)§, )
= lim 7 (xoxy) = lim 7 (yxex) = lim (7 (xo) 7 (0)§, 7 () *§)

= (pr()§. 71(»)*§) = (r(Vpr(0)§.§) = (pr(yx)§.§)
= (r()&1.61).

Hence, 1) is a trace on A. Similarly, 7, € T(A).

Let 5; = [|&]|* € (0,1) so that s; +s, = 1 and T = 5171 + 5272 Because
each 7(xy) = (m(x0)E, &), the net {t(xy)}y is convergent to (p€,£) = ||& > < 1,
whereas 7, (xy) = |11 72 (m (x,)&1, &) implies that net {T;(x,)}s is convergent to
lE N2 (€1 &) = IE]I721E1]17 = 1. Therefore, 7, # 1, in contradiction to the
hypothesis that t is an extreme point of 7(A). Hence, it must be that Z(M) is trivial,
which is to say that t is factorial. O

With the theory and examples developed to this point, we conclude this chapter
with the construction of a unital simple C*-algebra with a unique trace.

1 n
Let 7, : M2:(C) — C be given by © ([aij]ﬁjzl) = Zoq,;j. Thus, 7, is a trace on
=1
M (C) and basic linear algebra shows that it is the only element of the tracial state
space T (M (C,)). Denote the zero and identity matrices in M (C) by 0, and 1,,
respectively.
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For n € N, let ¢, : Mon (C) — M,u+1(C) be defined by
7-9/1 ()C) =xDx,

and note that 9, is an injective *-homomorphism and is trace preserving in the sense
that 7, = 7,41 © ¥,,. Consider now

B = {(xu)nen [Xn € M:(C) and sup ||x, || < oo}

and
J = {()nen € B[ lim [, || = 0}

The set B is clearly a unital C*-algebra with respect to the algebraic operations
and involution induced by each coordinate, and the norm ||(x,), || = sup||x,||, while

J is evidently an ideal of B. Let Q = B/J and denote the identity of Q by 1
and the canonical quotient x-homomorphism B — Q by ¢. For each n € N, let
ty i My (C,) — B and m,, : M (C,) — Q be defined by

() = (01,...,0p—1,x, %, (x), Bpt1 0 0 (x), Bp2 0 By 0 (%), ...)
and
Tw = qOLy.

Both ¢, and m, are injective *-homomorphisms, and 7,(1,) = 1 (see Exer-
cise 11.143). Let A, = m, (M (C,)), which is a finite-dimensional unital C*-
subalgebra of O, and observe that A, C A+ for every n (Exercise 11.143). Let

Ag = UA,, and A =A,.

neN

The unital C*-subalgebra A of Q above is called the Fermion C*-algebra.

Proposition 11.104. The Fermion C*-algebra is a simple unital C*-algebra with
trivial centre and a unique trace t. Furthermore, the trace t is faithful and factorial.

Proof. Let K C A be an ideal of A such that K # {0}. If KN A, = {0} for every

n € N, then because U (A, N K) is dense in K, we would have K = {0}; therefore, it

neN
must be that K NA,, # {0}, for some n. Because A, = M,:(C) is simple, we deduce

that KNA, =A,. However, as 1 € A,,, we also have that 1 € K, and so K = A, which
proves that A is a simple C*-algebra. The fact that Z(A) = {A1|A € C} is left as
Exercise 11.143.
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If x € A, for some n, then x = 7,,(a) for some matrix a € M,:(C), and we may
define the trace tp(x) of x by 7,(a). If k > n, then there is a unique b € My (C)
with x = 7 (b), namely b = Y4 o---0¥,(a) € My (C). (The uniqueness of b is on
account of the injectivity of 7;.) Moreover, the trace t;(b) of b is the same as the
trace t,(a) of a. Hence, the function 7 : Ao — C defined by 79(x) = 7,(a), if x =
7, (a) for some n and some a € M,:(C), is well defined, linear, positive, bounded,
and satisfies 7o(xy) = tp(yx) for all x,y € Ag. Hence, 1y extends to a trace t on A.
The uniqueness of t follows from the fact that Ay is dense in A and from the fact
that each matrix algebra M (C) has a unique tracial state. Therefore, T(A) = {t},
which implies that 7 is an extreme point of T'(A). Therefore, by Proposition 11.103,
7 is a factorial trace.

To show that t is faithful, consider the set D = {x e A4 |t(x) = 0} C A4. If
xeDandyeAy,then [t(yx)| = |t(xy)| = t(x"/>yx'/?) < |ly||r(x) = 0. Therefore,
if x € SpanD and if y € A4, then it is also true that |7 (yx)| = |t(xy)| = 0. Hence,
because AL spans A, and using the continuity of t, we obtain 7(xy) = 0 for every
x € K = SpanD and every y € A. In other words, K is an ideal of A. Evidently 1 € K;
thus, by the fact that A is simple, it must be that K = {0}. Hence, D = {0}, which
proves that 7 is a faithful trace. O

Corollary 11.105. If (H,,w,§) is a GNS-triple for the unique faithful trace t on

the Fermion algebra A, then R = w(A) sor is a factor and has a faithful trace tg
such that tg (7t (a)) = t(a), for every a € A.

Proof. Proposition 11.100 shows the existence of the trace tz with the stated
property tg ot = t, defined by z(x) = (x£, &) for x € R, while Proposition 11.104
asserts that 7 is factorial. All that remains is to show that the trace t is faithful.

Suppose that x € R satisfies 7g(x*x) = 0. Thus, 0 = (x*x£,£) = ||x£||%, and so
x€ = 0. For any a € A,

lx(@El> = (xm(a)t.xm(a)§) = tr (m(a)*x*x7(a))

tr (m(@)7(a)*x*x) = (m(a)7(a)*x*xE.§)

=0,

as xf = 0. Thus, x is zero on the dense linear submanifold {7 (a)|a € A}, and
therefore x = 0. O

Definition 11.106. The factor R described by Corollary 11.105 is called the
hyperfinite Il -factor.

Of course, the definition of the hyperfinite II;-factor R depends on the choice of
GNS triple for the trace t on the Fermion algebra A; however, this is not really an
issue because of the uniqueness assertion in the GNS theorem. The distinguishing
features of R are that it is a factor, it possesses a faithful trace, and it has a unital
separable strongly dense C*-subalgebra attained from an increasing sequence of
finite-dimensional factors (that is, simple matrix algebras).
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Problems

11.107. Assume that H is a Hilbert space, and consider the C*-algebra K(H) of
compact operators.

1. Show that, with respect to the strong operator topology of B(H), the identity
operator 1 € B(H) is the limit of a net of compact operators.
2. Show that K(H) is a von Neumann algebra if and only if A has finite dimension.

11.108. Prove that if (X, X, u) is a o-finite measure space, then L*°(X, X, u) is a
von Neumann algebra when considered as a C*-algebra of multiplication operators
acting on the Hilbert space L?>(X, X, ).

11.109. Assume that X is a compact Hausdorff space and that u is a finite regular
Borel measure on the o-algebra of Borel sets of X. Consider the following unital
operator algebras C and M acting on L?>(X, X, 1) as algebras of multiplication
operators:

C={Ms|feC(X)} and M={My|y € L¥X X 1)}

1. Prove that EISOZTM'
2. Prove that C =M.

11.110. Prove that a *-subalgebra A C B(H) is irreducible if and only if the only
projections p € B(H) that belong to the commutant A’ of A are p =0and p = 1.

11.111. Show that the von Neumann algebra generated by the unilateral shift
operator on £*(N) is B ((*(N)).

11.112. Show that the von Neumann algebra L°°([0, 1],90t,m) is not irreducible.

11.113. Let A be a unital C*-subalgebra of B(H) and let M = A%

1. Prove that the matrix operator algebras M, (A) and M, (M) acting on H @ H satisfy
——— 50T

My(N) = Mx(A) .

2. Prove that if x € M has norm ||x|| < 1, then the hermitian operator matrix X =
|: (1 x:| has norm || X|| < 1.

x*0

3. Prove that there exists a net of hermitian, contractive operator matrices (By)ge
in M;(A) converging to X in the strong operator topology of M,(B(H)).

4. Prove that there exists a net (by)qyea Of contractive operators b, € A converging
to x in the strong operator topology of B(H).

11.114. Assume that H is an infinite-dimensional separable Hilbert space. Let
B(H), denote the closed unit ball of B(H), and let J5or denote the strong operator
topology on B(H).
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1. Use the Kaplansky Density Theorem to show that (B(H)i, Zsor) is a separable
topological space.
2. Show that (B(H), Isor) is a metrisable topological space. (Suggestion: select a

countable dense subset {£,}, of the closed unit ball of H and show that d, defined
o0

by d(x,y) = Z % |x€, — &, |, is a metric inducing the topology Fsor.)
n=1
11.115. Suppose that a normal operator N on a separable Hilbert space has the
property that the von Neumann algebra N generates has a cyclic vector. Prove that
there exists a regular Borel probability measure on the Borel sets X of o(N) and a
unital isometric s-isomorphism p : W*(N) — L% (o' (N), X, 11) such that p(N) = v,
where ¢ : 0(N) — C is given by ¥ (¢) = 1.

11.116. If M is a von Neumann algebra acting on a Hilbert space H, and if a,b €
M., then prove that the following statements are equivalent for x € M:

1. |:;i Z:| is a positive operator on H ® H;

2. x = a'/?yb'/? for some y € M with ||y|| < 1.

11.117. Prove that a unital abelian C*-algebra A is a semisimple (Definition 9.32).
11.118. Prove that if A is a nonunital C*-algebra, then 0 € o (x), for all x € A.

11.119. Suppose that A is a C*-algebra with norm | - ||. Prove that if || - ||’ is a norm
on A that satisfies all of the axioms of a C*-norm, then ||x||" = ||x|| for all x € A.

11.120. If A is aunital C*-algebra and if u € A is unitary, then prove that o (1) C dD,
where ID is the open unit disc of the complex plane.

11.121. If A is a unital C*-algebra, then prove that the set of unitary elements of A
if the form ¢ for some hermitian / € A is a path-connected set.

11.122. If A is a unital C*-algebra and if x € A (not necessarily normal), then prove
or find a counterexample to each of the following statements.

1. o(x*) ={A|X o).
2. x*x is invertible if x is invertible.
3. xis invertible if x*x is invertible.

11.123. Suppose that X C R is a compact set such that 0 € X. Prove that if f € C(X)
satisfies £(0) = 0 and if ¢ > 0, then there is a polynomial p such that p(0) = 0 and
If(t)—p(t)| < eforallt e X.

11.124. In a unital Banach algebra A, an element x € A is quasinilpotent if
o(x) = {0}, and x is properly quasinilpotent if o(xy) = {0} for all y € A. Prove
that if A is a unital C*-algebra, then the only properly quasinilpotent element x € A
isx=0.
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11.125. If A is a C*-algebra, and if y € R4 and &,k € A4, then prove the following
assertions:

1. yheAy,;
2. h+keAt;and
3. —heAi onlyif h=0.

11.126. Suppose that a, b, c € Ag,. Prove the following assertions:

1. a<a;
2. ifa<band b <a, then b = a; and
3.iffa<band b <c,thena <c.

11.127. Suppose that A is a C*-algebra with x € A, h € A4, and xh = hx. Prove that
xh'/? = pl/2y,

11.128. If A is a C*-algebra and if a,b € A4 satisfy a < b and ab = ba, then prove
that a> < b*. Show by example that a < b does not always imply a® < b? if ab # ba.

11.129. If A is a unital C*-algebra, prove that 1 + x*x is invertible for every x € A.
11.130. Prove that o (ab) C R for all positive elements a and b in a C*-algebra A.

11.131. Prove that if A is a unital C*-algebra and if x € A is invertible, then there is
a unitary u € A such that x = u|x|.

11.132. Prove that if & € Ag,, where A is a unital C*-algebra, and if « > ||4]|, then

1. h<al, and
2. ||l —=h| <c.

11.133. Suppose that J is an ideal of a nonunital C*-algebra A. Consider the
inclusion of A in its unitisation A'. Show that J is an ideal of A'.

11.134. Suppose that J is a proper ideal of a unital C*-algebra A. Define J + C1 by

J+Cl={x+Al|xeJ, A eC}.

1. Prove that J + Cl1 is a unital C*-subalgebra of A.
2. Prove or find a counterexample to the following statement: the C*-algebras J!
and J 4 C1 are isometrically isomorphic.

11.135. Prove that if A and B are unital C*-algebras and if p: A — B is a
x-homomorphism, then o (p(x)) C o(x), for all x € A.

11.136. Prove that if A and B are C*-algebras and if p: A — B is a
x-homomorphism, then sprp(x*x) < spr(x*x), for all x € A. (A and B are not
assumed to be unital.)

11.137. Let g : B(H) — B(H)/K(H) be the unital x-homomorphism in which
q(x) = x, for every x € B(H). Compute the spectrum of ¢(s), where s € B(H) is
the unilateral shift operator on H = {*(N).
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11.138. Assume that ¢ is a state on a unital C*-algebra A and that (H,,n,§) and
(Hp, p,n) are GNS-triples for . Prove that there is a surjective isometry u: H, — H,
such that u¢ = n and um(x) = p(x)u, for every x € A.

[ee)
11.139. If {£,}, is a sequence in a Hilbert space H such that Z [lx,]|> converges,
n=1
and if &, £ O for at least one n, then prove that the positive linear functional ¢ on
B(H) defined by

oo

o) = (xE.§),

n=1

has the property that ¢(k) # 0O for at least one compact operator k € B(H).

11.140. Prove that there exists a unique topology .7 on PrimA in which a subset .%
of PrimA is closed if and only if

F ={JePrimA| (IS J}.
le7

11.141. Prove that B(H) is a factor.

11.142. Prove that the tracial state space T(A) of a unital C*-algebra A is weak*-
compact and convex.

11.143. LetJ = {(x;)nen € B| lim,, ||x,,|| = 0}, where

B = {(x;)nen | X1 € M2 (C) and sup ||x, || < oo},

and let Q = B/J. Denote the quotient map B — Q by ¢ and the identity elements of
M (C) and Q by 1,, and 1, respectively. Let &, : Mo (C) — M,u+1(C) be defined by
Pa(x) =xPx.

1. Prove that 77, : M (C) — Q is an isometric *-homomorphism such that ,,(1,) =
1, where m, = got, and ¢, : M (C) — B is defined by

ta(¥) = (01, Opm1, %, 0 (), Dy 000 (), .. ).

2. If A, = 7, (M (C)) for each n € N, then prove that A, C A, 4.
3.IfA= UA”’ then prove that the centre Z(A) of A is Z(A) = {A1|A € C}.

neN

11.144. Prove that the trace tx on the hyperfinite II;-factor R is unique.
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Lomonosov’s Theorem, 304

lower-limit topology, 35

Lusin’s Theorem, 108, 109

Lyapunov’s Theorem, 265

M
matrices of operators, 395
matrix completion, 370
maximal abelian subalgebra, 313
maximal ideal, 315
maximal ideal space, 317
measurable function, 78, 133
measurable partition, 113
measurable set, 78
measurable space, 78
measure, 84

absolute continuity, 137

absolutely continuous, 137

atomic, 106

complex, 113, 189

counting, 85

Dirac, 84

finite, 84

non-atomic, 106, 265

point mass, 84

probability, 84

regular, 107

signed, 110

signed, finite, 111

singular, 106

support of, 259

total variation, 114, 159
measure space, 84

o-finite, 88

signed, 111
metric, 13

Euclidean, 14

pseudo-, 211

uniform, 19
metric space, 13, 16

complete, 59
metric topology, 16, 166
metrisable space, 17, 21
Min-Max Variational Principle, 356
Minkowski functional, 251
Minkowski’s inequality, 150, 182
modulus, 420
modulus operator, 358
Monotone Convergence Theorem, 121
monotone increasing function, 29, 104
monotone increasing sequence, 82
multiplication operator, 273, 274

N
neighbourhood, 24
net, 48,208
Cauchy, 208
convergent, 48
non-atomic measure, 106, 265
nondegenerate operator algebra, 404
nonmeasurable set, 102
norm, 165
equivalent, 168
Euclidean, 166
submultiplicative, 290
trace, 383
norm topology, 166
normal
element of a C*-algebra, 411
normal operator, 346
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normal space, 51
nowhere dense set, 62
null set, 93

(0}

one-point compactification, 47

open cover, 39

open map, 278

Open Mapping Theorem, 278

open set, 9
basic, 10
weakly, 228

operator, 216
adjoint, 276, 331
bilateral shift, 336
bounded, 215
bounded below, 277
compact, 284
finite-rank, 273
hermitian, 339
idempotent, 281
integral, 274
invertible, 292
isometric, 219, 333
kernel, 219
lower bound, 277
modulus, 358
normal, 346
partial isometry, 359
positive, 352
projection, 333
range, 219
reductive, 349
trace-class, 377
unbounded, 216
unilateral shift, 275, 337
unitary, 333
Volterra, 274

weighted unilateral shift, 275, 338

orthogonal complement, 200
orthogonal vectors, 197
orthonormal basis, 203
outer measure, 88

Lebesgue, 95

P

parallelogram law, 198
Parseval’s Equation, 205
partial isometry, 359
partial order, 6

partial sum of vectors, 208
partition of unity, 56, 241

path connected, 65
Peano axioms, 5
point mass measures, 84
polar decomposition, 359, 360
polarisation identity, 333
polynomial
Legendre, 206
trigonometric, 194
positive

element of a C*-algebra, 416
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positive linear functional, 232,237, 239, 420

positive operator, 352
positive square root, 352, 354

Principle of Uniform Boundedness, 277

product topology, 19
projection map, 31
projection operator, 333
proper algebraic ideal, 290
proper ideal, 290, 314
pseudo-metric, 211
Pythagorean Theorem, 198

Q
quasinilpotent, 439
quotient

of a topological space, 42, 70

quotient norm, 173

quotient space, 42, 70, 173, 315,423

quotient topology, 32

R
radical, 321

Radon-Nikodym Theorem, 137, 160

range, 219

range of an operator, 219
reduced group C*-algebra, 394
reductive operator, 349
reflexive Banach space, 227
regular measure, 107
representation, 425

Riemann integrable function, 153

Riemann integral, 153
improper, 156

Riesz Representation Theorem, 221, 233, 240,

264,329
right regular representation, 395

S

Schroeder-Bernstein Theorem, 5, 29

second countable, 57
second dual, 226
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selfadjoint subset, 177
seminorm, 169
semisimple Banach algebra, 321,439
separable Banach space, 191
separable topological space, 57
sequence, 7
p-summable, 151
Cauchy, 8, 59
convergent, 44, 59
sequential cover, 88
sesquilinear form, 195, 331
set
w*-null, 93
cofinal, 49
countable, 6
directed, 48
linearly ordered, 6
nonmeasurable, 102
null, 96
partially ordered, 6
sigma-algebra, 77
signed measure, 110
signed measure space, 111
simple function, 82
canonical form, 119
singular measure, 106
singular value decomposition, 373
singular values, 374
Spectral Mapping Theorem
Polynomial, 297
spectral permanence, 312
spectral radius, 295,310
Spectral Theorem, 344, 345, 348
spectrum, 416
of a C*-algebra, 430
sphere
n-sphere ", 22
standard topology of R, 11
state, 420
state space, 420
Stone-Cech compactification, 67, 69
Stone-Weierstrass Theorem, 179, 194
strictly monotone increasing function, 29
strong operator topology, 364
strongly exposed point, 268
subalgebra
Banach, 312
subbasis, 13
subcover, 39
sublinear functional, 224
subnet, 49
subspace, 173
complementary pairs, 282
complemented, 283
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subspace topology, 17

sum of sets, 171

summable Fourier coefficients, 323
support, 55, 180, 259

Suslin’s Theorem, 104

Sylvestre’s equation, 327

Sz.-Nagy Dilation Theorem, 373

T
Tietze Extension Theorem, 52
topological boundary, 24
topological space, 9
T5, 40
connected, 63
extremely disconnected, 74
Hausdorff, 41
locally compact, 46, 175
normal, 51
second countable, 57
separable, 57
totally disconnected, 65
topological spaces
homeomorphic, 33
topology, 8
box, 19
co-countable, 9
co-finite, 9
coarser than, 9
discrete, 9
finer than, 9
indiscrete, 9
Jacobson, 441
lower-limit, 35
metric, 16, 166
metrisable, 17,21
norm, 166
product, 19
quotient, 32
standard, of R, 11
subspace, 17
ultraweak, 385
uniform metric, 19
weak, 31
weak™, 229
total variation of a complex measure, 114,
159
totally disconnected, 65
trace, 378,433
factorial, 434
faithful, 433
trace norm, 383
trace-class operator, 377
tracial state space, 434
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tracial weight, 378

triangle inequality, 13, 135, 159,
166

trigonometric polynomial, 194

U
ultraweak topology, 385
uniform, 327
uniform algebra, 177
uniform continuity, 45
uniform metric, 19
uniform metric topology, 19
unilateral shift operator, 337
unit operator interval, 357
unitary

element of a C*-algebra, 411
unitary operator, 333
unitisation, 416
upper semicontinuity of spectra,

295

Urysohn’s Lemma, 55
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Volterra integral operator, 274
von Neumann algebra, 393
von Neumann’s inequality, 373

W

weak operator topology, 364

weak topology, 31, 228

weak™ topology, 229

Weierstrass Approximation Theorem, 179,
180,212

weighted unilateral shift operator, 275

‘Wiener’s Theorem, 324

Y
Young’s inequality, 148

Z
Zorn’s Lemma, 6
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