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Preface

Mathematical Modeling I - preliminary is designed for undergraduate students. Two other followup
books, Mathematical Modeling II — advanced and Mathematical Modeling III - case studies in biology,
will be published. II and IIT will be designed for both graduate students and undergraduate students.

All the three books are independent and useful for study and application of mathematical modeling in

any discipline.
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1 Introduction

Mathematical models are of broad use in physics, life sciences, engineering, economics, management,
social sciences, and many other disciplines. However, all mathematical models are “wrong”, but some
are useful to help us better understand real-world systems. Models should be made for specific goals

with clear assumptions since they are only “valid” under certain conditions.

Real-world | Assumptions
phenomena Model
or data Simplification
Model L Analysis &
calibration Validation Simulation
Real-world Interpretation Mathematical

conclusions| ‘prediction [conclusions

Figure 1: A flow chart of the modeling process

Modeling Process:

Step 1. Identify the problem with specific goals and questions
Step 2. Post assumptions unambiguously

Step 3. Define variables and construct the model

Step 4. Analyze and simulate the model

Step 5. Validate the model with real phenomena or empirical data
Step 6. Apply the model to make predictions

Step 7. Possibly calibrate and extend the model

We can always improve the model with more details, but meanwhile we want to keep the model as simple

as possible such that we can obtain useful and in-depth results.

There have been many famous yet simple mathematical models in literature, such as the following ones:
e Newton’s law ' = ma, where F' is force, ™M is mass, @ is acceleration.
o Ohm’s law V = [ R, where V is voltage, I is current, R is resistance.

+ Kepler’s third law 7' = ¢R?3/2, where T is the orbital period of the planet, R is the mean

distance from the planet to the sun.
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Einstein’s relativity theory E' = M¢?, where E is energy, M is mass, ¢ is light speed.
Metabolic theory of ecology B = B,M 3/4 where B is organism metabolic rate, B is a
mass-independent normalization constant, M/ is organism mass.

Logistic population model dcTN —rN (1 _ %), where N is population size, 7 is the maximum
t

per capita growth rate, K is carrying capacity.
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2 Discrete-time models

2.1 Motivation

Discrete-time models are constructed to describe phenomenon in terms of fixed time steps. In general,
we consider a sequence of quantities, T, 1, T2, ..., where x; denotes the quantity after ¢ time steps. If

Tp+1 depends only on x,,, a discrete-time (in abbreviation, discrete) model is expressed by

Tpr1 = flz,), n=0,1,2,..
with some initial condition x(. This discrete model is called a difference equation.

This discrete model gives

r1 = f(xo)
zy = flz1) = f(f(zo)) = fP(z0)
zy = f(x2) = f(f(z1) = F(f(f(x0))) = [ x0)

The resulting sequence xg, T1, T2, T3, ... is called an orbit of the map f.

Zp in the discrete model can represent the population size of lemmings in month n, or the number of

bacterial cells in a culture on day 72, or the concentration of oxygen in the lung after the nth breath.
The difficulty is how choose the map f:

o Start with a knowledgable guess and necessary assumptions.

o Make adjustments to get a better model by comparing behavior of the current model to
reality.

o A good model should be in close agreement with the real-world data.

2.2 An example - bacterial reproduction

Bacterial cells divide into more cells after one sampling time. The number of bacterial cells in the next
measurement will be some multiple of the current number. We assume that this multiple is a constant
over several sample times. Note that this assumption is obviously invalid for many sampling times due

to resource and space limitations.
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Mathematical Modeling | - preliminary Discrete-time models

Denote B, as the cell number observed at the nth sampling time, then the model can be written as

B,i1 =rB, (Malthus model, 1798)

where the constant r is called the growth rate.
Solution: Given the initial cell number By,

Bl = T’BO
B rB; = r’B,
B3 = T’BQ = T’3BO

Bn = T‘nBO

which is the solution of this discrete model.

In reality, the growth rate r usually depends on the cell number because of competition for resource

and space. r = 1'(B,,) is a decreasing function of B,,. The more general model than Malthus model is

of the form
Byi1 = r(Bn)By.
360°
thinking
Deloitte
Discover the truth at WWW.dClOitte,CalcareerS © Deloitte & Touche LLP and affiliated entities.
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For instance, Verhulst model assumes

2
r(B,) =
(B =17 By
and thus the model becomes
2B
B, = o
+1 1 + %

The function r(B,,) is a decreasing function of B,, with the maximum 2 occurring at 3,, = 0. When

B, = K, r(B,) = 1, one-half of its maximum.

Solution: Direct iteration does not work. However, if we introduce a new variable ,, = 1 / B,, then the

sequence Ry, 71, Ry, ... satisfies the linear relationship

R, 1
Fonpr = 5"+ 550

Hence,

1 Rn_3+1 +1 1+1
92 2 2K 2K 2

B Rn_3+1 1+1+1
D 2K 2 922

ST N O IR
- oon 9K 2 on—1

a geometric series
Ry 1 1-(1-()"
2K 1—3
Ry 1=
2n K

Equivalently,

1-(z)"

N =

=

1
2" By +

The asymptotic behavior is

B, — K, as n — .
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2.3 Solution and equilibrium of a discrete model

The solution of a linear discrete model x,,,1 = rx,, (7 is a constant) is z,, = r"zo,n =0,1,2,3, ...,

since Ty, = rTp_1 = r’Tp_o = --- = r""ta; = r"x.
The long-term behavior as n — 00 is given as follows:
Ifr>1x, =1r"xy — ocoasn — Q.

Ifr =12, =2y — Tgasn — o0.

If-1<r<1,x,=1r"xg— 0asn— oo

Tg, M even,

=—-1,z,=(—1)"zg = .
Ifr > T ( ) 0 {_%7 n odd, and thus no convergence as n — 00

If r < —1, x, = r"x, thus |z, | = |r|"|xe| — 00 as n — oo, thus no convergence as n — 00. In

addition, 7" is positive when 7 is even, negative when n is odd.
Now we start to discuss equilibrium or fixed point.

Definition 1 A number x* is called an equilibrium or fixed point of x,, 1 = f(x,), if T, = x* for all

n=1,2,3,... when xq = x*. That is, x,, = T* is a constant solution to the discrete model.

For the model x,, 1 = 7%y, an equilibrium satisfies z* = rx*.If r # 1, 2* = 0 is the only equilibrium.

If 7 = 1, every number is an equilibrium.

Now let’s look at a slightly more complicated discrete model

Tpy1 =TTy + b,

where 7 and b are constants. An equilibrium x* satisfies * = ra* +0. If r # 1, 2" = T If
r=1,2" =2" 4+ b= b= 0, then there are two subcases: every number is an equilibrium if b = 0;

no equilibrium exists if b # 0.

As a summary, results for equilibria are listed below:

b
o @' = is the only equilibrium if 7 # 1.

+ Every number is an equilibrium if 7 = 1 and b = 0.

1o equilibrium exists if 7 = 1 and b # 0.
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Mathematical Modeling I - preliminary Discrete-time models

Solution of the model x,,+1 = rz, + b:

T, = TZp_1+0b
r(ran—o+0)+0b

720, o +b(1 +71)

= 7 (rzp_s+b) +b(147)
= o, 3+ b(1+7r+77%)

= "wo+b(L 4141+

L Cli T

= r"xg+0b-
0 1—r

b B br
1—r 1-—7r

= " |z — b + b
N O 1 r 1—7

Ifr=12x,41 =2, +0b thenz, =2,_1 +b=2,_9+20="---= x9+ nb.

= r"zy+
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As a summary, the solution is

T, = r"(azg—lb >+ b if r#£1;

- 1—r
T, = xo-+nb if r=1.

Now let’s discuss the long-term behavior for the case b # 0, since b = () reduces the model to

Tn+1 = T"Tn which has been discussed before.
: ) b b
Thenif r # 1, x, =7 (JJO + 1) + 1= - There are two cases:

o When|r| <1, z, — & (the only equilibrium) as n — 00. We call the equilibrium
T* = & stable.

b

« When |r| > 1, x, is not convergent as 7 — 00. We call the equilibrium =* = i

unstable.

oo if b>0

i ped N OO, We have known that no equilibrium

fr=1, xn:x0+nb—>{ o

exists in this case (r = 1,b # 0).

24 Cobwebbing

Revisit the nonlinear bacterial reproduction model

2B, .

Bn+1:1+%

F(B,).

*

Equilibria B* satisfy B* = 124??; = B* = ( or B* = K.Inthefirst panel of Figure 2, we plot the curve
F(B,,) and the diagonal line, whose intersections are equilibria. The red curves represent two sample
solutions. For the left one, we start from By = (.2, then plot a vertical line and find its intersection with
the curve F'(B,,). The ¥ value of the intersection is Bj. Plot a horizontal line from the intersection
(Bo, B1) and then find the intersection (B7, B1) with the diagonal line. From this intersection, we
plot a vertical line and find the intersection (B, B2) with the curve F'(B,,). Repeat this process, we
can find the orbit { By, By, B, ...}. Graphically we can see that this orbit is increasing and tends to
the equilibrium B* = K . For the right solution, we start from By = 1.8 and use the same graphic
approach to see that the orbit is decreasing but also tends to the equilibrium B* = K. This graphical

method is called cobwebbing.
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The second panel of Figure 2 exhibits the above two solutions in cobwebbing analysis. Both solutions
tend to the equilibrium B* = K (in this simulation K = 1). Actually all solutions with By > 0 tend
to K. Hence, the equilibrium B* = K is called stable, while the trivial equilibrium B* = () is called

unstable. We will discuss the stability theorem in the next section.

In reality there should be a threshold size below which bacteria go extinct due to predation. Hence, a

more complicated nonlinear bacterial reproduction model is given as

2
rB2

Bpy1 = —1— 2 F(B,).
14 (52)?
Equilibria B* satisfy B rBY gl D
quilibria B* satisfy B* = ———— =Uorl = -
1+ (B2 1+ (E0)2

The second case leads to a quadratic equation B*? — r K2B* + K2 = () whose roots are
B =K (% + (%)2 — 1). There are three cases:

If r K > 2, there are three equilibria B* = 0, B* = K <ﬂ — (%)2 - 1),
B* =K<%+ (55)%— 1).

If r K = 2, there are two equilibria B* =0, B* = K .

Cobwebbing for Bn+1=28n/(1 +Bn/K) Two sample solutions from cobwebbing

2 1.8
1.8F
1.6F
1.4 1
B Stable |
net1.21 1
1L
FB)
0.8- 0.8¢
0.6!Unstable
0.6f
0.4+
0ok 0.4
0 . . . 0.2 . . . , ,
0 0.5 B 1 1.5 2 0 5 10 15 20 25 30
h n

Figure 2: Cobwebbing analysis for the model
If 7KK < 2, there is only one equilibrium B* = ().

See the first two panels of Figure 3 for the case 7K' > 2, the third panel for the case 7K = 2, and the
fourth panel for the case rK < 2.
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=rBi/(1 +(Bn/K)2) Th‘ree samplg solutions‘from covaebbing (rK>2)

’ C?bwebbing for B[H ; 2
1.8 1K>2 = R ,
Stable
1.6F — 1 |
1.4r 4 |
F(B 1
B2t B) ]

i Unstable ] J
0.8f , 8 1
0.6 Stable 1 0.67 1
0.4r / B 0.4F |
0.21 1 02f .

0 L L 0 & & & &

0 0.5 1 1.5 2 0 5 10 15 20 25 30
B
n n

) 2 2 ! _.n2 2

5 Col?webblng for Bnﬂ=an/(1+(Bn/K)‘ ) » Co?webbmg for BHT1_an/(1+(Bn/K)‘ )
1.8 rK=2 b 1.8 rK<2 B
1.6 A 1.6F i
1.4 B 1.4 1

Semi-stable
B .12 1 B . 1.2r E
n+1 n+1
1t 1 1 f
0.81 1 0.8F 1
0.6r B 0.6F 1
Stable
0AﬁStabIe ] 0.45 ]
0.2f b 0.2/ b
! . . 0 . . .
00 0.5 1 15 2 0 0.5 1 1.5 2
B, B,

2
Figure 3: Cobwebbing analysis for the model Bn+1 = %

For the case 7/ > 2, we can observe from the cobwebbing that solutions with

By > K <% — (%)2 — 1) tend to K <% + (%)2 — 1) , while solutions with

By < K (% — (%)2 - 1) tend to () (extinction). The equilibria B* = 0 and

B*=K <ﬂ + (ﬁ)2 — 1) are stable, while the equilibrium B* = K (ﬂ — (@)2 — 1>

2 2 2 2

is unstable. The interval (0, K’ % — (%)2 — 1) is a pit of extinction. The extinction scenario,
generated by the stable trivial equilibrium is the main difference between the model with predation

and the model without predation.

For the case K = 2, solutions with By > K tend to K, while solutions with ) < B, < K tend to 0.
The equilibrium B* = K is semi-stable (stable from right, unstable from left), while the equilibrium B* = 0

is stable.

For the case 7K < 2, all solutions tend to 0. The only equilibrium B* = 0 is stable.
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2.5 General theory and analytical methods

In this section, we discuss the linear stability analysis for a discrete-time model z, 11 = f(z,).

Let ¥ be an equilibrium of the model ZTn4+1 = f(xn), that is, % = f(x*) Consider a perturbation
of #*: Tpn = T + Y with tiny Yn . Substitute it into the model to obtain z* + yp11 = f(z* + y,).
Apply Taylor’s series to obtain z* + y,+1 = f(z*) + f'(z*)y, + higher order terms, which leads
to Yn+1 = f'(*)y, + higher order terms. For tiny ¥n, higher order terms are negligible compared
the first order term f ’(x*)yn: Ynt1 = f ,(x*)yn. We call Ynt+1 = f /($*)yn the linearized equation,

where f’(z*) is a constant. Given the initial condition %0, the solution is

There are four cases for the deviation Yn:
« f'(x*) > 1: the deviation has geometric growth, thus the equilibrium Z* is unstable.
« 0 < f'(z*) < 1, the deviation has geometric decay, thus the equilibrium 2" is stable.
« — 1< f/(*) < 0: the deviation has geometric decay with sign switch, thus the
equilibrium =" is stable.
o f'(z*) < —1, the deviation has geometric growth with sign switch, thus the equilibrium
" is unstable.
As a summary of all the above cases, we arrive at the following theorem:
Theorem 1 (Stability Criterion) Let x* be an equilibrium of Tn+1 = f(xy), then we have the results:
If |f'(x*)] <1, 2" is stable.

If | f(x*)] > 1, & is unstable.

If | f/(x*)| = 1, there is no conclusion about the stability of ** . Higher order terms need to be examined

to determine stability.
The constant f'(x*) is called the eigenvalue of the map [ at .

Let’s look at a few examples to apply this theorem.

Example 1 Consider the discrete logistic equation Yp+1 = 7Yn(1 — yn/ K ), where the parametersT > 0,
K > 0. Find all equilibria and determine their stability.
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Solution: Let x,, = y,,/ K , then x,,.1 = rz,,(1 — x,,). Note that x,, > 0 represents population size,

and 7 > 0 is the maximum growth rate. Equilibria satisfy
z* =rz*(1—z")

which leads to 2* = 0 or x*= %1 The nontrivial equilibrium z* = > () ifand only if r > 1.

r

To check stability, we compute the eigenvalue:

f(x*) =r(1 —22%).

For the trivial equilibrium x* = 0, the eigenvalue f'(0) = r, thus 2* = 0 is stableif 0 < r < 1 and
unstable if 7 > 1.

For the nontrivial equilibrium z*= T;Tl, the eigenvalue f '(%) =2—r, thus z*= % is stable if
1 <r <3 (from |2 —r| < 1) and unstable if 7 > 3 (from |2 —7r| > 1 and r > 1).
rT

nl with » > 0 and K > (. Find all

Example 2 Consider the Beverton-Holt model Xp41 = ————
1+ % n

equilibria and determine their stability.

Solution: Equilibria Z* satisfy

*

rx

*

r =
ey

which leads to z* = 0 or z* = K (if  # 1). Note that for 7 = 1 the model becomes Tn4+1 = T,

which is not interesting.

To check stability, we compute the eigenvalue

For the trivial equilibrium z* = 0, the eigenvalue f'(0) = 7, thus 2* = 0 isstableif 0 < r < 1 and
unstable if r > 1.

1
For the nontrivial equilibrium " = K, the eigenvalue f '(K ) = - thus =¥ = K isstableif 7 > 1
and unstable if 0 < r < 1.
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Example 3 Revisit the bacterial reproduction models:w

Model I:
Bn+1 - ana

Model II:
2B,

By’
1+ Lo

Bn+1 =

Model III:

Solution: For Model I, equilibria B* satisfy B* =rB*. If r# 1, B*=0 is the only
equilibrium. If 7 =1, every nonnegative number is an equilibrium. The eigenvalue is
f'(B*) =r. For the case T #1, B*=( is stable if 0 <r < 1, unstable if > 1.

This result is consistent to cobwebbing analysis. For the case © = 1, |f'(B*)

= 1 for all equilibria,

there is no conclusion about stability from the stability theorem. Actually this case is a trivial case

B,,+1 = B,, whose solutions are obvious.

*ntiia iA)gx Gradua']te

Find out more and apply

redefining / standards

1y
2+

19 Click on the ad to read more

Download free eBooks at bookboon.com


http://s.bookboon.com/AXA

For Model II, equilibria B* satisfy B* = 12+Bé which has two roots B* = (0 or B* = K . The
2 K
eigenvalue at B* is f'(B”) = .. For the trivial equilibrium B* = 0, 1 (0)]=2>1,

(14 %)
thus B* = ( is unstable. for the nontrivial equilibrium B* = K,

1 x
f(K)| = 5 < 1,thus B* =k

is stable. The results are consistent to cobwebbing analysis.

*2
For Model III, equlhbrla B* satisfy B* = TB —— & Wwhose roots are B* = 0,

Hence, there are three equlhbrla if 7K > 2. The elgenvalue at B* is /(B*) = %.
T
For B* =0, |f'(0)] =0 < 1, thus B* = ( is stable.
2
For B* = K % — (1?) — 1|, the eigenvalue

(e

thus B* = — 1/ 7 — is unstable.
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We can apply the same idea to obtain

f/ K TK _'_ TK 2 1 . 1 2 (%)2 _1
2 2 N rK
2 feFr 1 et Jopr
Since 0 < = I = < 1, then
rkK ra rK\2
2 (7)
rkK rK\* 2 (%)2 —1
0 "| K| — — ] =1 =1-— 1
</ 2 < 2 ) ri =

thus B* = K (rf + (%)2 — 1) is stable.

Forthecase r ' < 2,theonlyequilibriumis B* = (O whichisstable. Thecase K’ = 2 isthe degenerate
case in which there are two equilibria B* = () (stable) and B* = K (semi-stable).

All these results are consistent to cobwebbing analysis.
Example 4 Consider the annuity for retirement with (0.5% as the monthly interest rate and a monthly
withdrawal of $2000. Develop a discrete-time model to describe the annuity problem. Determine equilibria

and stability. How much of an initial deposit is needed to deplete the annuity in 30 years?

Solution: Let ,, be the amount in the account after , months, then the discrete-time model is provided

by

Tni1 = (1 + 0.5%) — 2000

which can be simplified as

Tyt = 1.005z, — 2000

with the initial deposit z.

Equilibria * satisfy x* = 1.0052* — 2000 which leads to z* = 400000. The eigenvalue is
f'(z*) = 1.005 > 1, thus the only equilibrium z* = 400000 is unstable.
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Recall that the solution of x, 1 = 72, + b is

—r 1—r
T, = xo-+nb if r=1.

T, = r”(xo—lb )-i— b if r#£1;

In this example, 7 = 1.005 # 1 and b = —2000, thus we use the first formula to obtain

0 = asg = 1.005% (l’o —2000 ) —2000

1-1.005 1—1.005

from which we solve for the initial deposit: 79 = 333580.

As a conclusion, an initial deposit of $333580 allows the withdrawal of $2000 per month from the
account from 3() years. The total withdrawal is $720000, and at the end of 30 years the account is
depleted.

For discrete models, we have three ways to judge stability of equilibrium values:

1. Solving the model;
2. Cobwebbing analysis;
3. Stability criterion.
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2.6 Optimization of discrete models

The basic optimization model is given as

Optimize (maximize or minimize) f(X)

subject to
9 (X ) > by
g2 (X ) _ by
: < :
In(X) bn
Here,

« X isavector with a group of decision variables whose values are discrete.
o f(X) is called the objective function.

e 91(X),92(X), ..., gn(x) are called constraint functions, and their associated side

conditions are called constraints.
Goal: We seek the vector X = X, to optimize the objective function f(X) and meanwhile to satisfy

all constraints ¢i(X) bi,i=1,2,...n.

VAN AV

Example 5 A carpenter wants to decide how many chairs and how many benches he should make each
month. One chair contributes to $20 net profit, and one bench contributes to $18 net profit. A chair requires
10 board-feet of lumber and 5 hours of labor, and a bench requires 20 board-feet of lumber and 4 hours of
labor. Every month the carpenter has lumber up to 1000 board-feet and labor up to 360 hours.

Solution: Let 1 and xy are the number of chairs and the number of benches produced each month,

respectively. The optimization problem can be described as

Maximize the total net profit f(z1,x2) = 20x; + 182

subject to
10z + 20z < 1000 (lumber)
Sxy +4zy < 360 (labor)
ry > 0 (nonnegativity)
ro > 0 (nonnegativity)
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301 (160/3, 70/3) ]
20F 1
10L 1

0 20 40 60 80 100

Figure 4: The convex set (shaded region) formed by constraints.

If an optimal solution to a linear problem (both the object function and all constraints are linear) exists,
it must occur among the extreme points of the convex set formed by the set of constraints (see the
shaded region of Figure 4). A set C' is convex if for any two vectors =,y € C', (1 —r)x +ry € C
forall 0 <r <1.

The shaded region generated by constraints has four extreme points: (0,0), (72,0), (0,50),
(160/3,70/3). Weevaluate the objection functionateach extreme point: f(0,0) = 0, f(70,0) = 1440,
£(0,50) =900, f(160/3,70/3) = 1486.7.Hence, the maximum monthly profitis $1486.7, occurring
at the internal extreme point (160/3, 70/3), about 53 chairs and 23 benches.

Note: The maximum monthly profit can occur at a boundary extreme point. For instance, if we assume
that one chair contributes to $20 net profit and one bench contributes to $15 net profit, then the maximum

monthly profit occurs at (70, 0).
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3 Continuous-time models

3.1 Motivation and derivation of continuous models

We derive a continuous model from a discrete model for population prediction. Let N(t) be the
population size at time ¢. In a small time period At, a percentage b of the population is born, and a

percentage d of the population dies. Thus the change of the population size during the time period At is
N(t+ At) — N(t) = bN(t)At — dN(t)At.

Note that b and d have the unit per time, and they are called growth and death rates. Divide both sides
by At to obtain

N(t + At) — N(t)
At

= (b— d)N(t).

Let At — 0, we have

ﬁ business
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using the definition of derivative. Let ov = b — d, then the model becomes

dN

— =aN.
a
Give the initial condition N (tg) = N, the continuous-time model »r = aN is defined for t > tg.

Solution: We apply separation of variables to obtain

dN

which leads to
InN=at+C

for some constant C'. We then use the initial condition N (ty) = N to obtain In Ny = aty + C, thus
C = In Ny — aty. Substitute it back into the solution, then In N = at + In Ny — aty, which leads
to In(N/Ny) = a(t — ty), and thus

N(t) = Noea(tito),
which is the solution of the continuous model.

We apply this model to the Chinese census data: the 2000 census for the population of China was
1262600000 and in 1980 it was 981235000. Substitute these values into the solution by letting ¢, = 1980
and Ny = 981235000:

1262600000 = 9812350002000~ 1980)

from which we solve for ov: &« = 0.0126. Hence the model becomes

N(t) = 981235000¢-0126(¢-1980)

which can be used to predict future population. For example, in 2010 the Chinese population size should
be N(2010) = 981235000¢%0126(2010-1980) — 1432000000, overestimate the realistic number
1338300000. How about the year 21002 N (2100) = 981235000e0-0126(2100-1980) — 4450700000,

obviously unsustainable in China. Clearly the model is oversimplified.
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We improve the model with limited growth. The constant « should be a decreasing function of the
population size N and becomes zero when N reaches the sustainable maximum populations size M.

The simplest to incorporate the population ceiling is
a=r(M—-N)
which is

« positive when N < M;
e zero when N = M;
 negative when N > M.

Therefore, the improved model is provided by

dN

= — (M —-N)N
7 = )N,

called logistic population growth model.
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Solution: We apply separation of variables to obtain

/wd—iNNW/”“
/L(MlN é)di\f /rdt

1
M(—ln]M—N]—i—lnN):rt—i-C’

InN —In|M — N|=M(rt+C)

Use the initial condition N (ty) = Ny < M = In Ny — In(M — Ny) = M(rty + C'), from which
No

1
wesolvefor C': ' = — 1 — rt,. Hence,
MU M-N,

Ny
1nN—1n|M—N|:M(T‘t+M1nM N, —rto)

Consider the case N < M which is usually valid according to the definition of M, then

N(M — No)

1 R S
" No(M — N)

:’I“M(t—to)

N(M — Ny) = No(M — N)erMt=to)
N(M — Ny) + NyNerMt=to) — Ny pferM(t=to)

NOMerM(t—to)
M — NQ —+ NoerM(tftO)

N(t) =

M Ny
No + (M — Ny)e—rM—to)

N(t) =

This is the solution of the improved model with limited growth. We can easily observe that

N({t)—> M as t— .
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t

Figure 5: The logistic curve: the solution of the model % = r(M — N)N with the initial condition N(ty) = Ny.

3.2 Differential equation models
Consider a general first-order differential equation:

dx

Definition 2 The collection of short line segments of slope f(t,x) at selected points (t,z) in tx-plane is

called a slope field. Solution curves follow these tangents.

dx
If f(t, ) is independent of t, i.e. i f(x), then the differential equation is called autonomous. The
d
values of x such that d—f = 0 are called equilibrium values or steady states or fixed points. A phase line is
a plot on the x axis that shows all fixed points together with the intervals where we can determine the signs

dx d*z
of — and proE from which we know the monotonicity and concavity of solution curves.

Given an initial condition x(ty) = xo, the solution curve of the initial value problem (IVP)

d
d—f = f(t,x),z(to) = xo passes through the point (ty, o) and has slope f(to, o) there.

Let’s look at a simple example to perform the phase line analysis.
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dz
Example 6 For the autonomous differential equation - x(x — 1), determine equilibrium values and

perform the phase line analysis.

Equilibrium values are *° = 0 and =* = 1, i.e. the equation has two constant solutions © = 0 for all
t and © = 1 for all t.

It is easy to determine that

d
d—f = x(:r— 1) is positive if £ < 0 or > 1; negative if 0 < z < 1.

>z d dx d dx
We can compute Foie @(E) = %(x(a: —1))=(2x — 1)E = (2z — 1)z(x — 1), which is
positive if £ > 1 or 0 < x < 1/2; negative if 1/2 < x < 1 or & < 0. According to these facts, we

can plot the phase line as in Figure 6.

x>0 x'<0 x>0

X'<0 X0 x'<0  x">0

dx
Figure 6: The phase line analysis of i x(z—1).
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Without solving the differential equation, we can also sketch representative solution curves using the

phase line (see Figure 7). It is not difficult to observe that Figures 6&7 are consistent.

The equilibrium = = 0 is stable since solution curves near £ = 0 tend towardto © = 0 as © increases.
The equilibrium @ = 1 is unstable since solution curves near x = 1 (except = 1 itself) move away
from © = 1 as ¢ increases. Note that the phase line is enough to judge stability of equilibrium values.

Strict definitions of stability can be found in most ordinary differential equation textbooks.

equilibrium

equilibrium

dz
Figure 7: Some representative solution curves of P z(z —1).

3.3 Some basic theorems

dz
For the differential equation —— = f(#, x), we have the following basic theorems that can be useful for

dt

the preliminary analysis of a differential equation model.

d
Theorem 2 (Existence and Uniqueness) Under some mild conditions (f (t, x) and df (t,x) are continuous
x

with respect to t and X ) most differential equation models satisfy, we have the following basic results for
dz
- = f(tvx):

dt
« Existence of solutions Each point in tx-plane has a solution passing through it.
« Uniqueness of solutions Only one solution passes through each point (t, ).
o Continuous dependence Solution curves through nearby initial points remain close over a

short time.
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x
Theorem 3 (Stability Criterion) Let x* be an equilibrium of an autonomous equation — = f(x). Then

dt

o % is stable when f'(x*) < 0;
o T" is unstable when f'(x*) > 0;

o there is no conclusion about the stability of ** when f'(z*) =0.
Note that f'(Z") is called the eigenvalue of 7*.

Example 7 Determine equilibrium values and their stability for the differential equation

dx
pri (x4 1)(x—2).

Solution: Equilibrium values are * = —1 and z* = 2.
flx)=(x+1)(z—2)=2>—2 -2,

then f'(z) =2x — 1, thus f/(z*) = 22* — 1.

f /(—1) = —3 < 0, hence the equilibrium solution # = —1 is stable.
f ,(2) = 3 > 0, hence the equilibrium solution * = 2 is unstable.

Example 8 Revisit the logistic population growth model v r(M — N)N to determine equilibrium

values and their stability.

Solution: Equilibrium values are N* = M and N* = 0.
f(N)=r(M — N)N =rMN —rN?,

then f'(N)=rM —2rN  thus f'(N*) =rM — 2rN*.

f/(M) = —rM < 0, hence the equilibrium solution N = M is stable.
f'(0) =7M > 0, hence the equilibrium solution N = 0 is unstable.

Similar to discrete models, we have three ways to judge stability of equilibrium values of autonomous

differential equations (a group of continuous models):
1. Solving the model;

2. Phase line analysis;

3. Stability criterion.
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34 Separation of variables

Consider the nonautonomous differential equation

dx
a = f(t7x)7

which is separable if
[t x) = p(t)g(z).
Note that p(t) or q(x) may be a constant function. For a separable equation, we can express it as

dx dx
- =p(t)g(x) = /@ = /p(t)dt,

from which we can obtain the general solution to the differential equation.
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Example 9 Solve the differential equation cji_f = 4 (xt)Q.

Solution: This equation is separable because we can rewrite it as

dx 9 9
e 1
o t*(1 4 z°),

then

d
/ * :/tht,
1+ 22

tan"!(z) = £*/3 + C,
x = tan(t*/3 + C),

where (' is a constant determined by the initial condition.

t
€t+z ’

Example 10 Solve d_x =
dt

Solution: This equation is separable because it is equivalent to

d:c_ t 1
dt — eter’

/exda::/itdt
e

= ¢ = [te~'dt = integration by parts = —(te " — [e7'dt)+C = —(te ' +e )+ C =
—(t+ 1)e~ " + C. Hence, the general solution is z(t) = In[—(t + 1)e~" + C|], where the

Thus,

constant C depends on the initial condition.

For instance, given the initial condition x(0) = 0, then

z(0) =In[-1+C] =0,
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which leads to C' = 2. Then the solution of the IVP

d_
dt — ett’
(O> =0,

is (t) = In[—(t + 1)e " + 2].

dr  €"
Example 11 Solve the IVP {  dt 2’
(1) =0.

Solution: We apply separation of variables to obtain

/xe_f”dx = /t_2dt,

—(ze™ — /e‘xda:) =—t1+C,

—(ve " e ") =t + O,
—(z+1De®=—t"1+C.

Then use the initial condition x(1) =0 to obtain — 0+ 1)6_0 =171+ O, which gives
C = 0. Hence, the solution to IVP is

1 1
_ De ™™ = - _ =
(x+1)e it

which provides an implicit formula for x(t) . There is no explicit formula for z(¢) since the resulting

algebraic equation is a transcendental equation.

35 Linear equations

Let’s start with a lake pollution problem, which is a common and extremely severe issue in many lakes
around the world. We let V(t) be the lake volume at time t, and P(f) be the amount of pollutant in

the lake at time ¢. Then the concentration of pollutant is the ratio

Download free eBooks at bookboon.com



Mathematical Modeling I - preliminary Continuous-time models

Over the time interval [¢, ¢ + At], the change in the amount of pollutant Ap is the amount of pollutant

that enters the lake minus the amount that leaves:

Ap = amount input — amount output.

If water enters the lake with a constant concentration c;,, at a rate 7;,, then

amount input = r;,c;, At.

. . . . t
If water leaves the lake at a constant rate 7oyt , since the concentration of pollutant in lake is p ( ) , then

V(#)
amount output = rout%ﬁt.
Thus,
Ap = ripcin At — rout%At,
Ap p(t)

At = TinCin — Toutm-

1y
2+
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Let At — 0, we have

Suppose V' (0) =V} is the volume of the lake initially, then V' (t) = Vi + (rin — 7out)t > then the

model becomes

dp Tout
— = TinCin —
dt VE) + (Tin - 7ﬂout)t

P.

We can rewrite this differential equation as

dp + Tout
dt Vb + (Tin - Tout)t

P = TinCin,

dp
— +g(t = TinCin,
o Taltp

where (t) = m , is the lake pollution model.

This is an example of a linear first-order differential equation. Can we solve this equation to find the
amount p(t) of pollutant in the lake at time ¢? The answer is positive. We will discuss the general

method and then come back to the lake pollution example.

In general, the first-order linear equation is of the form

¥+ P(t)r = Q(t),

which is the standard form of the linear equation. The method is to multiply both sides by an integrating

factor
u(t) _ ef P(t)dt

(Note that we introduce no arbitrary constant of [ P(t)dt since only one function is needed for

(4(t).) Then the equation becomes
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Because /' (t) = p(t)p(t), then the equation becomes

1
then we obtain the general solution x(t) = % +— /,u(t)@(t)dt = Ce~ /P04
i

t
efP(t)dt/ef P(t)dtQ(t>dt ‘ 'LL( )

J/

tin the first factor is different from t in the second factor

Example 12 (Lake pollution problem) Return to the lake pollution example:

d
d_]t) + g(t)p = TinCin,
Tout
where g(t) = Vo (ron — rou )t
dp

Let O = TinCin, then T g(t)p = a.

Solution: Multiple both sides by an integrating factor

Tout Tout L
//L(t) = efg(t)dt = €f VO"'(Tin_Tout)tdt — @Tin"Tout 11’1‘V0+(7‘1n Tout)t"

then

plt) = S 4 & [ wtora

plt) — plt)

Lout In ‘VO+(7‘in_7‘out)t‘

where i(t) = e7in—Tout

and C is a constant determined by the initial condition. Note

that £4(t) in the second term cannot be canceled out.
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Tout

Tout
Tout (Vo (rin —out)t - Tin~Tout Tin rout
pu(t) = erinrour MOF i Trou)) (Vo (rin—rou) )TN (Vg (V) Ten ot

If we assume that V{ + (73, — 7ou¢)t > 0 for all ¢ in the studied interval [0, 7], then

Tout 1 1
Then M(t)dt - /(‘/O + (Tin - rOUt)t) fin T Tout dt - Tin — Tout Tinril;fout + 1 <% i (Tin -
—Tout 1 Tin — Tou —Tin__ 1
Tout)t) Tin —Tout +1 , ” , i (‘/O + (Tin - Tout)t> Tin"Tout — —— (‘/b + (Tin —
wn — Tout in ;

wm
Tout)t) "in~"out . No arbitrary constant is needed in the above calculation since (' is already

incorporated in the expression of P(t).

Therefore, the solution is

p(t) = C(‘/()—’_(Tin_rout)t) TD::T;"” +a(%+(rin_rout>t) Toufzii” %(%"‘(Tin_rout)t) Ti"_i:}o“t =
C(Vo + (Fin — Tout)t)out 7w + (Vo + (Fin — Tout)1)-

sssssssssssssvssssssssssssssssssssssssssssesssssnsssssssssssssssssssssssfilcgte]-Lucent @
www.alcatel-lucent.com/careers

"'," / =3 -
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Example 13 Find the general solution of the linear equation

tr' + x = cos(t), ¢>0.

Solution: Rewrite the linear equation in the standard form

thus P(t) = %7 Q(t) = COSt(t), An integrating factor satisfies

[(t) = o PMdt _ f Tdt _ et _ 4

Multiply both sides of the linear equation by /4(t) to obtain
tx' + x = cos(t),

(tz) = cos(t),

te = /cos(t)dt +C,

t>0.

sin(t)  C
t Y

Hence, the general solution is (t) = % + % for t > 0.

Example 14 Solve the IVP

¥+x=¢e, t>0
z(0) = 1.

Solution: An integrating factor is p(t) = e/ 1 — ¢! Multiply both sides of the linear equation by e
g g ply q y

to obtain
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er = /e2tdt +C,

1
ele = —e* 4+ C,
2
T = 1et +Cet
5 .

1
The general solution is () = %et + Ce™" . The initial condition #(0) = 1 implies that 3 +C=1,

thus C' = 5 Therefore, the solution to IVP is

1 1 t —t
x(t) = §et + ie_t = % = cosh(t)

(a hyperbolic cosine function).

3.6 Optimization of continuous models

We study the optimization problem:
Optimize f(X)
subject to constraints

gi(X){ }bi forall i€l

IN IV

where the objective function f is continuous but nonlinear. We discuss a representative example to

show how to construct and solve an optimization problem.

Example 15 A PC company plans to introduce two new products: 21-inch all-in-one computer and 27-
inch all-in-one computer. The cost of a 21-inch all-in-one computer is $500, the cont of a 27-inch all-in-one
computer is $600, and the fixed cost is $100,000. The suggested retail price of a 21-inch all-in-one computer
is $900, and the suggested retail price of a 27-inch all-in-one computer is $1050. In the competitive market,
for each additional computer of a particular type sold, the selling price falls by $0.10. Furthermore, the
selling price for each 21-inch computer is reduced by $0.03 for each 27-inch computer sold, and the selling
price for each 27-inch computer is reduce by $0.04 for each 21-inch computer sold. If we assume that all
computers made by this company can be sold at the above prices, how many computers of each type should

the company manufacture to maximize its profit?
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Solution: We define the variables for the two types of computers (7 = 1, 2):
1 _ number of 21-inch all-in-one computers
L2 — number of 27-inch all-in-one computers
P; — selling price of T;

R — revenue obtained from computer sales

(' — cost to produce the computers

P — net profit from the sales of the computers

We have two independent variables 71 and 72, all other variables defined above can be expressed as

functions of 1 and Z2:

P, =900 — 0.1z — 0.032-
P, =1050 — 0.04z; — 0.129
R = P2y + Poxy
C' = 100000 + 500z + 600z,
P=R-C

and
T Z 0, i) Z 0

/
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Optimization problem:

To maximize the profit function
P(zy,z9) = R-C
= (Pizy + Pyxs) — (100000 + 5002, + 600x5)
(900 — 0.1z, — 0.03x2)z; + (1050 — 0.042; — 0.129) 75
—(100000 + 500z + 600z2)
= 400z; — 0.12% + 45025 — 0.123 — 0.072,29 — 100000

The necessary conditions of obtaining the maximum net profit are

oP oP
— =0 d —=0
0xq o 09 7
that is,
P
a— = 400 —-0.2x; —0.072y =0
3:(:1
oP
— = 450—-0.229—0.072;y =0
81‘2

= x1 = 1382, 1z~ 1766.

At 1 = 1382, xo = 1766, the total net profit is

P(1382,1766) = $573790.

This should be the maximum profit or the minimum profit. We have three ways to judge whether it is

the maximum profit:

1) Compute P(x1,x2) at some positive integers T; and Ty (we can choose (71, Z2)
near (1382, 1766)), and compare with (1382, 1766). It is easy to see that
(Z1,Z2) < P(1382,1766), thus P(1382,1766) is the maximum profit.

2) Use the second-derivative test from multivariable calculus:

92 P
—(1382,1766) = —0.2 < 0
8$% ( ? )

and

2P 2P 2P 2
PO —( 0 ) (1382,1766) = 0.0351 > 0.

02 03 02101,

These two inequalities imply that (1382, 1766) is the maximum profit.
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3) Sketch P(xy,x9) for x1 > 0, x9 > 0, which can show that the profit P(zy,z5) at
(1382,1766) is indeed the maximum profit.

Another important type of optimization problems is listed as follows:

maximize or minimize f(z) subject to ¢ () = c.Here v € R",

To find the local maxima and minima of the function f(x) subject to equality constraints g(7) = ¢
, we introduce a new variable A called a Lagrange multiplier and study the Lagrange function defined
by L(z,\) = f(x) + Ag(x) — ¢, where the A term may be either added or subtracted. If f(x) is
a maximum or minimum, then there exists \ such that (, \) is a stationary point for the Lagrange
function. Note that the method of Lagrange multipliers provides a necessary condition for optimality,
that is, not all stationary points of the Lagrange function yield a solution of the optimization problem.
Example 16 Maximize f(z1,22) = 21 + 29 subject to the constraint 13 + 13 = 1.

Solution: We apply the method of Lagrange multipliers to obtain the Lagrange function

L(x1,22,\) = f(z1,29) + Mg(21,22) — ) = 21 + 79 + N2 + 25 — 1).

Stationary points satisty

L
81’1
oL
— =142\, = 0
8352
oL

= A = £V2/2 which lead to two stationary points (—v/2/2, —v/2/2) and (v/2/2,/2/2).
We evaluate the objective function f(71,%2) at these stationary points:

F(=V2/2,-v2/2) = =2

and

f(V2/2,V2/2) = V2.

Hence, similar to the example 15, we can judge that the maximum is V2, occurring at (V2/2, \/5/ 2).
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4 Sensitivity analysis

Sensitivity analysis is to study how the variation in the output of a mathematical model depends on

different sources of variation in the input of a mathematical model.

One common type of sensitivity analysis is to determine how a focused quantity (depending on variables)

is related to perturbation of each parameter.

Sensitivity analysis is of important use in many ways. For instance, we perform sensitivity analysis to test
robustness of model predictions, or to understand (relative) importance of parameters to the focused

quantity and check their relationships (positively or negatively related, strength of relationships).

Definition 3 The normalized forward sensitivity index of a variable, w , that depends differentiably on a
parameter, P, is defined as

ou p

u . _

L ap

We now look at some examples to show how to use sensitivity analysis.
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Example 17 We consider the logistic population growth model

(- 5)

Assume the experiment (or field observation) is terminated at 1 = 10, how does the final population size

depend on the parameters T and K ?

Here, given the initial condition x(0) = 1, and the default parameter values are v = 0.1, K =5,

compute the normalized forward sensitivity index of the final population size that depends on 1 or K .

Solution: We apply Separation of Variables to find the solution

K
1+ (K —1)ert

(t) =

In the end of the experiment, the final population size is

K

10 =1 (g~ 1ye0r

The 7 -related sensitivity index is

w00 0x(10) r
= or x(10)
—K[(K —1)(—10)e~10"] r
(1 (K- De 02 K[+ (K = De ]
107 (K — 1)e10r
14+ (K —1)e10r’

At default parameter values, %ﬂf(lo) |7~:o.1,K:5 = (0.5954.

x 0x(10 K
o0 _ 02(10)

KT Tor T 2(10)
14+ (K —1)e 10 — Ket0r K
(T (K —De 02 Ko+ (K- 1e o]
1 — 6—107"

1+ (K — D)e o

At default parameter values, 7;{(10) |T:0'17 x—5 = 0.2558.
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The sign of the sensitivity index means positive or negative dependence of the studied quantity on the
parameter. The absolute value of the sensitivity index indicates how sensitive the studied quantity depends
on the parameter. Positive o 1o and positive 7?((10) mean that the final population size is positively
related to 7 and K. And |7, (10)| > |7f((10)| means that the final population size is more sensitive to 7

(growth rate) than to K (carrying capacity), or 7 has larger effect on the final population size than K.

u
Note 1: If we cannot find an explicit expression for %, we can still compute Tp numerically:

= ap " Ap u(p)’

. Ou szu(p#—Ap)—u(p) D

in which 2Ap should be tiny, for example, 1% of the default P value. We can use Matlab solver to obtain
u at P and u at P+ AP, then we can compute Yp numerically. Of course, the above discussion is

under default parameter values, which are needed in Matlab simulations.

Note 2: The sensitivity index can be applied to any mathematical model, for instance, a discrete equation,

a system of differential equations, a system of discrete equations, etc.

Example 18 Revisit the discrete bacterial reproduction model:

2
rB;

By = :
T

Determine sensitivity of the stable internal equilibrium with respect to the parameters 1 and K. The default

parameters values are v = 1, K = 4.

Solution: Equilibrium values satisfy

rB*?

B = ———5
1+ (%)

=B*=0,B"=K (% — (%)2 - 1) B =K &+ (%)2 — 1). As we have discussed
2

in Chapter 2, the stable internal equilibriumis B* = K <% +4/ ()" = 1>.The sensitivity indices are
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B*| B oB* o r
Vr lr=1,K=4 = ar B

r=1,K=4

8 1

= 4 <2+ m) ST
1.15,

Q

r=1,K=4 — BK B*

(/) ) )
K

K (47 1)
1

[eralie sl s

B
v
K r=1,K=4

r=1.K=4

Q

Hence, the stable internal equilibrium is positively related to the parameters r and K, and it is more

sensitive to /K thanto 7.
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Example 19 We consider nearly pristine coral reefs where much of the prey use coral as refuge and are
inaccessible to the predators. Singh, Wang, Morrison, Weiss (2012) constructed a mathematical model
with an explicit refuge to illustrate a new biologically plausible mechanism that can explain stable inverted
biomass pyramids in nearly pristine coral reefs. New modeling components include a refuge of explicit size,
a refuge size dependent functional response, and refuge size dependent prey growth rate. The prey-predator

model in a coral reef is provided by

dx T

= = ae (1)~ by,
dy

Y = fery—dy

where T is the prey biomass, Y is the predator biomass, b is the maximum predation rate, KX is the prey
carrying capacity, 1 is the refuge size in coral reef, ¢ is the biomass conversion efficiency, and d is the pre-

dator death rate. The functions in the model are the prey growth rate function q(r) = 0.003 + (%) ;

1

the predation response function f(x,r) = TFe—10G—7-

Compute sensitivity indices of the biomass ratio (predator to prey) at the coexistence equilibrium with

respect to all parameters.

Note: We will learn how to analyze such a model in Chapter 6. Usually explicit solutions cannot be obtained,

thus qualitative analysis is of necessary use.

Solution: Similar to the case of one differential equation, equilibrium points (7", y*) satisfy

dx
— =0
dt
dy
—~ =0
dt

a(r)z(l —x/K) =bf(x,r)y = 0
cbf(x,r)y—dy = 0

= three possibilities: (0, O), (K ) O), and the coexistence equilibrium (3_7, 3]) where

T=r—+m%-1) >0 9= “(Z)C:i (1 —£) > 0. The biomass ratio at the coexistence

equilibrium is
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a(r)e
d

K<

r

Sensitivity analysis

1 be r

from which we can compute 7%, 4%, 7 7% A%, 4% Given default parameter values:
r=0.9,¢=0.15,d = 0.0005, K = 2.0,b = 0.24, we can obtain the sensitivity table:

1.55

0.61

-0.61

0.11

o ~ Q.

0.05

The biomass ratio is most sensitive to variation in the refuge size (r) and least sensitive to variation in

the predation response (b). The signs of the sensitivity indices illustrate that the biomass ratio is an

increasing function of r (per unit area coral reef refuge size), b (maximum predation rate), ¢ (biomass

conversion efficiency) and K (prey carrying capacity) and a decreasing function of d (predator death rate).

50
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5 Systems of difference equations
(discrete)

5.1 Analytical methods

We consider a two-dimensional discrete-time system:

Tpy1 = f(xnvyn)7
Yny1 = g($nayn)

The qualitative analysis of a higher dimensional discrete-time system is, although more complicated,

similar to a two-dimensional discrete-time system.

Same logic as the scalar case, equilibria (z*, y*) satisfy
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Stability of an equilibrium (2*,4*) can be determined by the following theorem:
Theorem 4 (Linear stability analysis) Let (x*,y*) be an equilibrium of

Tpy1 = f(xnayn)a

Yn+1 = g<xn7yn)7

and f, g are at least twice continuously differentiable. Let

IL (2", ) oL(x,y*)
J(m*,y*>=<%ﬁ , %

OTn ("E 7?/*) @(ZL‘*, y*)

be the Jacobian matrix of / , evaluated at (z*,y*). Then
(x*,y*) is stable if all eigenvalues of J have magnitude less than one;

(x*,y*) is unstable if at least one of the eigenvalues has magnitude greater than one.

Note 1: Eigenvalues \ of .J are obtained from the characteristic equation det(.J — AI) = 0 where

I denotes the identity matrix.

Note 2: Magnitude of a real eigenvalue is absolute value, while magnitude of a complex eigenvalue

la+bi| = Va1 2

Note 3: This stability theorem can be easily extended to a higher dimensional system. For a system of m
difference equations, the Jacobian matrix will be m X m , and there will be m eigenvalues (counting

multiplicity).

Note 4: For a two-dimensional system, the characteristic equation det(JJ — AI) = 0 is equivalent to
A2 — (trJ)X + det J = 0. We can show that trJ| < 14 det J < 2 (Jury conditions) are sufficient
and necessary conditions for all eigenvalues of J to have magnitude less than one, then the equilibrium

(x*a y*) is stable.

If additionally (trJ)? — 4 det J > 0, then (2*, y*) is a stable node (real eigenvalues);
If additionally (trJ)? — 4 det J < 0, then (2*, y*) is a stable spiral (complex eigenvalues).

We will apply the above definition and theorem to analysis some discrete-time systems.
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5.2 Some examples

Example 20 We consider love affairs between Romeo and Juliet. Let X, be Romeo’s love/hate for Juliet on
day n, and let Yn be Juliet’s love/hate for Romeo on day n. X, > 0 implies Romeo loves Juliet, Tn < 0
implies Romeo hates Juliet, and x,, = ( implies Romeo is neutral to Juliet. The larger |x,| , the stronger

feeling of love/hate. Parallel assumptions hold for Yn . A simple linear model is provided by

Tpni1 = aT, + by,
Yns1 = CTp+ dyy,

where @ and d are response rates to their own feelings, b and c are response rates to the feelings of the

other. The sign of b or c determines a particular romantic style. Analyze this linear model mathematically.
Solution: Equilibria (z*, y*) satisfy
= ar"+ by’

(a—1zx*+by* = 0
cx*+(d—-1)y" = 0

() )= ()
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Two cases: i) det (a ; 1 d f 1) = 0; ii) det <a ; 1 d 3 1) — (). We discuss these two cases

one by one.

L d E 1) # 0, then (z*, y*) = (0, 0) is the only equilibrium. Stability of this unique

equilibrium is determined by the Jacobian matrix J = a Z = trJ=a+d,detJ =ad—bc.
c

According to Jury conditions, (0,0) is stable if |a + d| < 1+ ad — be < 2.

i) If det (“ B
C

If det (a;l b )—O,then (a—1)(d—1) —bc =0, that is a—1 = b 1,thusthetwo

d—1 c d—
algebraic equations are identical, we only need to solve from one equation, e.g. the first equation:

* l1—a

= =3*2", which is the only condition for equilibria to

Figure 8: Different showcases of Romeo and Juliet's love affairs.
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—a x*) are equilibria. All equilibria have
—a

1
the same Jacobian matrix because the system is linear. Therefore, any equilibrium (:p*, ;p*)

satisfy. Hence, all points of the form (x*,y") = (2

)

is stable if |a+d| < |1+ ad—bc < 2| which is equivalent to la+d| <a+d<2 (since
det <a ; 1 d E 1> =0=ad —bc+ 1= a+d). However, the first Jury condition is never satisfied,
then at least one eigenvalue has magnitude greater than or equal to one. To determine stability, We need

to examine more details.

Actuallywhen a + d > 0, |a +d | = a + d ,atleast one eigenvalue has magnitude one with the proof:
N —(tr)A+det J=0= N — (a+d)A+ad —bc=0=

a+d+/(a+d)?—4(ad — bc)
2
a+dx/(a+d?—4(a+d-1)

2
a+d+\/(atd—2)2
2

a+d=+x(a+d—2)
2

which leads to eigenvalues A\; = a + d — 1, A2 = 1. In general, we may need to look at higher order
terms of the right hand side of the system when one or a few eigenvalues have magnitude one and all
other eigenvalues have magnitudes less than one. Fortunately the system here is linear (no high order
terms), then the stability is determined by the eigenvalue whose magnitude is not one. Hence, all equilibria
(z, 1_a:r*) are stableif [a+d— 1| <1< 0<a+d < 2.

When a-+d <0, la+d| > a+d’ the eigenvalues M=a+d—-1<—-=1,A=1 Since
\)\1‘ = |a +d— 1| > 1, then the stability theorem implies that all equilibria (g;*, 1-

ag;*) are

unstable.

Figure 8 shows various possible relations between Romeo and Juliet, depending on different parameter
values. We only vary the parameters in the first equation since %, and ¥, are symmetric. From the
figure, we can observe that when Romeo and Juliet have opposite response rates of their own feelings
(first and second panels), or when the response rates of the feeling of the other have opposite signs
(fifth and sixth panels), oscillations occur, that is, Romeo and Juliet love or hate each other alternatively.
When all response rates are nonnegative, there are two possibilities: the feeling variables are increasing
functions of time when at least one response rate of the feeling of the other is large (b = (.8 in the
third panel), that is, Romeo and Juliet love each other more and more if one of them loves the other
deeply; the feeling variables are decreasing functions of time when both response rates of the feeling of
the other are small () = (.3 in the fourth panel), that is, Romeo and Juliet love each other less and less

if both of them only love each other a little bit.
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Example 21 We consider host-parasitoid interactions (see Figure 9). Parasitoids lay eggs on hosts, and thus
hosts are separated into two groups. Parasitized hosts give rise to the next generation of parasitoids, while
non-parasitized hosts give rise to the next generation of hosts. Write up a simple model for host-parasitoid

interactions and perform mathematical analysis.

lay eggs
Parasitoids non-parasitized

parasitized hosts
give rise to the next
generation of parasitoids

o the next
generation of
hosts

Figure 9: A flowchart of host-parasitoid model.

Solution: Let /7,, be the number of hosts at generation 7, P, be the number of parasitoids at generation
n. Let f(H,, P,) be the fraction of hosts that are not parasitized, then the number of hosts not
parasitized is f(Hy, P) H,,, and the number of hosts parasitized is [1 — f(Hy, Pn)]H,. To simplify
the model, we assume that the host population grows geometrically in the absence of the parasitoids
with the reproduction rate b > 1, and that the average number of eggs laid in one host that give rise

to adult parasitoids is ¢ > (. With these assumptions, we obtain the discrete model:

Hn+1 = bf(HmPn)Hm
P, cll — f(H,, P,)|H,.

If we assume that the fraction of hosts not parasitized is a decreasing function of the parasitoid population
and independent of the host population, then we can choose f(H,,, P,) = e~*" . Hence, the model
becomes

H,.1 = bH,e ™,

Poy1 = cHy[l —e ™,

which is the classic Nicholson and Bailey’s model.
Equilibria satisfy

H* = bH*e ",
P* = cH*[l —e],

which leads to (H*, P*) = (0,0) and (H*, P*) = (af(g:buv %) (it makes sense since b > 1).

We determine stability by evaluating the Jacobian matrix

. s be—oF” —abH*e "
J(H >P ) - ( C[l _e—aP*] acH*e—aP* )
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at each equilibrium: (0, 0) = ( g 8 ) which leads to eigenvalues Ay = b > 1, Ay = 0, thus (0, 0)

—_

_ blnb
is unstable; .J( acb(lbn_bl), by — ( (b-1) ﬁ’;l) ) whose trace and determinant are tr.J = 1 + ;Ilb ,
D b—1

detJ =1Inb+ g. Since b > 1, |trJ]| < 1+detJ, the first Jury condition is satisfied. Since

det J > 1 for all > 1, then the second Jury condition (1 + det J < 2) is never satisfied (the

blnb  Inbd )
ac(b—1)’

inequality has the opposite direction without equal). Hence, ( is unstable. A natural question

appears: where do solutions go? A stable cycle or chaotic attractor! This is out of the scope of this book.

Note: If 1 + det J = 2, then the situation can be more complicated. Besides the Jacobian matrix, high

order terms need to be examined to determine stability. Same logic holds for the first Jury condition.

A sample simulation will be provided in Chapter 8 (see Figure 20).
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6 Systems of differential equations
(continuous)

6.1 Some motivation examples

Example 22 (A competition model) Consider a pond that supports two fish types: trout and bass. They
compete for food. Let x(t) be the population of trout at time t and Y(t) be the population of bass at
time T. The model is provided by

d

d—f = ax — bxy, (growth-competition)
dy "

o = My nay, (growth-competition)

where a,b,m,n >0, x,y > 0. The parameters @ and ™M represent the per capita growth rates of trout

and bass, respectively. The parameters b and n represent the competition strengths between trout and bass.

The mathematical analysis of this model will be discussed later. This model only considers the between-
species competition. To incorporate both between-species and within-species competitions, we have the

following well-known model.

Example 23 (The Lotka-Volterra competition model) Let y1(t) be the population of species 1 and Y2(t)
be the population of species 2. The model incorporating both between-species and within-species competitions

can be provided by

d
% = 7“191(1_91—@192)7
d
% T2?J2(1 — Y2 _a2y1)7

where T1,72,a1,a2 >0, y1,y2 > 0. The right hand side of either equation is formulated as growth -
within species competition — between species competition. This model is usually called the Lotka-Volterra

competition model.

We will return to this example as well after we study basic analytical methods.
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Example 24 (A basic epidemic model) Epidemic models are constructed for understanding the spread of
an infectious disease in a host population.

We define the variables and the parameters as follows:

S — the number of susceptible individuals

I — the number of infectederinfectious individuals
R — the number of recovered individuals

B >0 — the transmission coefficient

o > 0 — the recovery rate

v > 0 — the rate for the loss of immunity

infection recovery

loss of immunity

Figure 10: A flowchart of SIR epidemic model.

Infected individuals can infect susceptible individuals and can be recovered. It is possible for recovered
individuals to lose their immunity after some time. The classical SIR (susceptible-infected-recovered) model

describing the above process is provided by

S' = _BSI+~R.
I' = BSI—al,
R = al — 4R,

where 3S1 is the rate of new incidences via direct contact between S and I , using the mass-action form.
(S+ 1+ R) =0= S+ 1+ R = constant, say N, then
S" = —BSI+~(N-S-1),

I' = BSI—al,
R = N-S—1,
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which is actually a two-dimensional system of differential equations since the third equation is an

algebraic equation.

If we assume permanent immunity, then v =0, then

S" = —pSI,
I' = BSI—al,
R = ol
or equivalently
S" = —pBSI,

I' = BSI-—al,
R = N-S—1,

6.2 Nondimensionalization

Nondimensionalization is a technique to reduce the number of free parameters without losing any

property of the model. We discuss this technique in two examples.

Example 25 Nondimensionalize the logistic growth model N' = 1N (1 - %)

EXPERIENCE THE POW
FULL ENGAGEMENT...

RUN FASTER.
RUN LONGER..
RUN EASIER...
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~ N
Let N = 17 which has no unit, then

which leads to

Let { = rt which has no unit, then

N _ava_ i
at - ardt | dE

thus
dN -
re~ = rN(1 - N),
dt
N . .
dt

If we delete tilde, then we obtain the nondimensionalized model N/ = N (1 — N ) which has no

parameters!

Example 26 Nondimensionalize the competition model

x ax — bxy,
"= my—nay.
~ n - 7 m
Let 1 = —x, y= —y, t =at, y = —, all of which have no units, then the model becomes
a a a
]

Delete tilde to obtain the nondimensionalized model:

T = T —ay,

= MKy — Y,

which has only one parameter!
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6.3 Analytical methods

For a system of differential equations, usually we cannot solve it explicitly, thus qualitative analysis is
useful to understand dynamical behaviors of a system. In this section, we study the qualitative analysis

of a system of two differential equations:

) = fi(zy, @),

95/2 = f2($1,$2)-

et ¥ = 1 xXr) = fl (:C) ) = ( fl (:Ch x2) ) we have the vector rorm:
Let (b ),f( ) (fz(x) ey 12) ) have the vector form:
¥ = f(x).

Actually, for any number of autonomous differential equations, we can always write the system as this

vector form.

Nullclines

The 1 -nullcline is the set of points (21, 2) such that x| = fi(z1,22) =

0.
The 2-nullcline is the set of points (xy, z5) such that xh = fo(x1,29) = 0.

Equilibrium points (or fixed points or steady states)
All equilibrium points (27, x3) satisfy

fl(CET,SC;) = 07
fQ(xiwx;) = 0,

the intersection(s) of x1- and Z2-nullclines.

Stability of equilibrium points

‘o o (w7, 03) Gl (af, 23)
. . ) , , o .
Jacobian matrix at (7, x3): J(xt,x%) = g% " 29}; X Characteristic equation:

a_xl(x;xé) 8_w2($>{7x2)
det(J(x7,z5) — AI) = 0 whose roots \;, \, are eigenvalues.

Stability criterion:
The equilibrium point (z7], 25) is (asymptotically) stable if all eigenvalues have negative real parts.
The equilibrium pint (7], 3) is unstable if at least one of the eigenvalues has positive real part.

For a system of two differential equations, the condition “all eigenvalues have negative real parts” is

equivalent to det J(x}, z5) > 0 and trJ(z7, z5) < 0.
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Figure 11: Types and stability of an equilibrium point.
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Besides stability, we can classify equilibria in more detail (see Figure 11).

« When both eigenvalues are real and negative, then the equilibrium point (27, x3) is a stable
node (see panel (a)).

« When both eigenvalues are real and positive, then the equilibrium point (z}, z3) is an
unstable node (see panel (b)).

o When one eigenvalue is negative (real) and one eigenvalue is positive (real), then the
equilibrium point (x7,x3) is a saddle (unstable) (see panel (c)).

o When both eigenvalues are complex and have negative real parts, then the equilibrium point
(%, z3) is a stable spiral (see panel (d), counterclockwise versus clockwise).

o When both eigenvalues are complex and have positive real parts, then the equilibrium point

(27, 23) is an unstable spiral (see panel (e), counterclockwise versus clockwise).

Note: For a system of two differential equations, complex eigenvalues are complex conjugates which have
the same real parts, thus the following two cases are impossible: i) one complex eigenvalue has positive
real part while the other complex eigenvalue has negative real part; ii) one eigenvalue is complex while

the other eigenvalue is real.

Revisit Example 22:

dz b
— = ax — by,
dt Y
dy
= = my —nxy,
dt Y Y
where a,b,m,n >0, z,y > 0.
Equilibrium points (x*, y*) satisfy
ar® —bx*y* = 0
my* —nz*y* = 0

There are two possibilities: (0,0), (m/n,a/b).

We can determine their stability by checking the Jacobian matrix

Hong) ( a—by —bo )

—ny m-—nx

*

At each equilibrium point (2*, y*), J(z*,y*) = ( a_—nl;y m_—b]?;x* )
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For the equilibrium (0, 0),

J(0,0):(g 7%)

det(J(0,0) = AX) =0
a— A 0
det ( 0 m—)\ )
(a—=X)(m—=X)=0
Eigenvalues: A\ = a > 0, Ay = m > 0. Thus, the equilibrium (0, 0) is an unstable node.

For the equilibrium (m/n, a/b),

J(m/n,afb) = ( ey )
det(J(m/n,a/b) —A\I) =0

-\ —bm/n\
det(—na/b )y )—O

A2 —am =0

A= ++v/am

Since am > 0, we obtain two real eigenvalues: \; = +y/am > 0,9 = —y/am < 0. Thus the
equilibrium (m/n, a/b) is a saddle (unstable).

Revisit Example 23:

d
% = 7“1y1(1 — Y — a1y2)7
d
% T2?J2(1 — Y2 _a2y1)7

where 71,79, a1, Qo > 0, Y1, Yo = 0.
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Equilibrium points (41, ¥2) satisfy

(L=t —a1g2) = 0
roy2(1 — Go —asth) = 0

There are four possibilities: (0,0),(1,0),(0,1), (¥, y5) where ¥5, ys satisfy

L —yi —a1ys
1 —y; — agy;
x _  l—aq ¥ l—ag
= yl T 1-aja2’ y2 T l—ajas’
Jacobian matrix
fh 0N
= = _ o] 0
Jn92) = | oh of
Oy Oyz (91,92)

_ | =2y — a1ye)
—T2a2Y2

—Tiai1y
ro(1 — 2ys — asyr)

( r1(1 =2y — a192)

—Tria1Y1
—T202Y2 ro(l — 29y — asty) )
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For the equilibrium point (0,0), the Jacobian matrix .J(0,0) = "

A1 =11 > 0, A2 = ry > 0, thus the equilibrium (0, 0) is an unstable node.

has eigenvalues

- —rax
0 Tg(l — CLQ)
A1 = —r1 < 0, A2 = r5(1 — ay). Thus the equilibrium (1, 0) is asymptotically stable (a stable node)

For the equilibrium point (1, 0), the Jacobian matrix J(1,0) = has eigenvalues

if ay > 1, and it is unstable (a saddle) if ay < 1.

7"1(]. - al) 0
—T2a2 )
A1 =11(1 —ay1), \g = —ry < 0. Thus the equilibrium (0,1) is asymptotically stable (a stable node)

For the equilibrium point (0, 1), the Jacobian matrix J(0,1) = < has eigenvalues

if a; > 1, and it is unstable (a saddle) if a; < 1.

For the coexistence/internal equilibrium point (y7, 43 ), the Jacobian matrix

* * *
J(y* y*) . Tl(]- - 2y1 - alyQ) —riay;
1oz —T202Y5 ro(1 — 2y5 — agyy)
2
_ 2-2a1 _ a1—aiaz P
— Tl(l l—aja2 ) l—ajaz ) r1 l—aiaz
. az—aj r (1 _ 2—2a2 __ az—alaz)
217a1a2 2 l—ajaz 1—ajaz
r1(17a1a272+2a17a1+a1a2) 1 (a%*al)
— l—ajaz l1—ajas
rz(agfcn) ro(l—aiaz—2+2a2—az+aiaz)
l—ajaz l1—ajas

_ 1( ri(a —1)  rai(a —1) >

1 —ajas \ r2a2(as —1) ma(ag —1)

Now we check the conditions trJ(y;, y5) < 0 and det J(y7,y3) > 0. All eigenvalues have negative

real parts if and only if

o] — ri(ay — 1) +ro(ag — 1) — 0
1-— a1a9
and
det J = rirg(a —1)(ap = 1) aagrira(oen — 1)(az —1)  rira(ar —1)(ap — 1) > 0.

(1 — a1a2)2 (1 — CL1G2)2 1— a1a9
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We consider four cases:

7”17“2(Cl1 - 1)(02 - 1)
1 — a1a9

(i) a; > land a9 > 1 = < (), the second inequality is violated,

thus the coexistence equilibrium (7, ¥/5) is unstable.

(ii) a; < 1and as < 1 = both inequalities are valid, thus the coexistence equilibrium
(yf, Y5 ) is asymptotically stable.

(iii) a3 > land as <1 = itis difficult to determine whether any of the two inequalities are
valid.

(ivy. ay < 1land a9 > 1 = itisdifficult to determine whether any of the two inequalities are

valid.

Since populations Y1,Y2 are nonnegative, we only consider the first quadrant of the phase plane
(Y1-y2 plane). We need to examine whether ¥, y5 are nonnegative.
For case (iii) and case (iv), ¥ y3 = %

the coexistence equilibrium (y7, ¥3) is unfeasible.

< 0, thus either g} or y3 is negative. This means that

For case (i) and case (ii), the coexistence equilibrium (¥, y5) is obviously feasible in the first quadrant.

As a conclusion, there are four cases under different values of a1 and as.
y1-nullcline: f1(y1,%2) =0 < y1 =0o0r 1 —y; —ayys = 0.
yo-nullcline: f2(y1,92) =0 & y2=00r 1 — Yo —agy; = 0.

Intersections of different nullclines provide equilibrium points.

We plot phase portraits for the four cases in Figure 12 accordingly. Nullclines and equilibria are sketched
with some representative solutions. Solid points represent stability while circles represent instability. The
dotted curve in the first panel represents the separatrix (stable manifold of the internal saddle) for the
attracting basins of the two stable equilibrium points. This panel indicates that when both species are
strong in between-species competition (a; > 1, as > 1), who wins the competition depends on the
initial population sizes. All solutions in the second panel tend to the only stable equilibrium (%7, %5 ) . This
panel indicates that when the between-species competitionis weak (a; < 1, as < 1), the two competing
species can coexist. All solutions in the third panel tend to the only stable equilibrium (0, 1), and the
intersection of the two internal nullclines is in the second quadrant. This panel indicates that when
species 1 is stronger than species 2 (a; > 1 > ag), species 1 always wins the competition. All solutions
in the fourth panel tend to the only stable equilibrium (1, 0), and the intersection of the two internal
nullclines is in the fourth quadrant. This panel indicates that when species 1 is weaker than species 2
(a1 < 1 < ay), species 2 always wins the competition. These results are all reasonable in biology, thus the

simple Lotka-Volterra competition model captures the main qualitative features of species competition.
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Figure 12: Phase portrait of the Lotka-Volterra competition model.

Revisit Example 24:
S = —pBSI
I' = BSI—al

d(S\ —BST
at\ I )\ BSI—al

which is simple but still a nonlinear system.
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Equilibria (S*, I*) satisfy

_BS* T = 0,
BS*T* —al* = 0.

The first equation implies that S* = 0 or [* = 0.
When S* = (), the second equation implies that /* = 0.
When [* = (), the second equation is always satisfied, thus S* can be any nonnegative number.

Hence, we have infinitely many equilibria (S,0), S > 0.

To determine the type and stability of equilibria, we need to consider the Jacobian matrix at each

equilibrium and compute eigenvalues. The Jacobian matrix J(S,1) = _65[[ /B;’B Sa
= 0 -BS N
= J(5,0)= ( 0 8 56_ o = FEigenvalues are A; =0 (neutral for stability),

.5 >0 if S>a/p;
A2_55_0‘{«) if S<a/B.

Based on the value of .S, should the model have a group of equilibria unstable and a group of equilibria
stable?
dl dI/dt BSI—aol «

o — — 14 =
dS ~ dsjdt | —BsI "B

then = [ (~1+ %) dS =S+ 4InS+C.

If the initial point is (So, 1), then Iy = —Sp + %ln So+C=C=1,+5 — %ln So. Hence,
I = %1DS—S+([0+SO— %hlSo),

Phase portrait is sketched in Figure 13 that shows the following observations:

If So > «/f3, then I initially increases, reaching its maximum at S = «//3, and then decreases.

Therefore, there is an outbreak (or epidemic) in this case.
If Sy < a/3, then no epidemic is possible, and I decreases from the beginning.

Obviously, the value /[ represents the critical population size for causing an epidemic.
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Figure 13: Phase portrait of the SIR epidemic model.
We look at one more example, which will be discussed again in Chapter 7.

Example 27 Analyze the model

dx
— = —m+m(p— ol —a3),

dt

dx
—2 = m Fas(p— a2t —a3).

dt

Solution:
T1-nullcline: — x9 + 21 (p — x% 13) = 0,
T2 nullcline: =7 + xo(p — 551 - 5’72)

both of which are not straight lines.

Equilibria (27, 23) satisfy

—wytai(p—ay —ay’) = 0

oy +ay(u— 27" —a3’) = 0
=

zi(p—ai’ —a3’) = 2

zy(p— i’ —23%) = —a)
=

(01" + 25") (n — 27" — 23) = 0
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*2 *2 *2 *2
;" +2y" =0 or p—ai"—x5"=0

The system has only one equilibrium point (0, 0).

To determine its stability, we examine its Jacobian matrix:

2

(p=3rt—a3 —1-— 2z,
J@1,22) = < 1—2w29  p—a?— 323

ﬂa@—(f‘j)

det(J(0,0) — AI) = 0

p=XA =1\ _
det< 1 M_)\>—0

(=272 =-1

A—p)?=-1
A— = =+1
A=t

Eigenvalues are two complex conjugates: A\ = ft+19, \g = pt — 7 .
Hence, the only equilibrium point (0, 0) is

o astable spiral when p < 0,

« an unstable spiral when 1 > 0.

This example provides the canonical form for the Hopf bifurcation, from which the limit cycle occurs.

We will discuss basic bifurcations in Chapter 7.

Stability of an equilibrium we discuss in this book is local stability (initial points are close to the
equilibrium). Global stability of an equilibrium in a two dimensional system can be determined by

Poincaré-Bendixson theorem (to claim all possibilities) and Dulac criterion (to exclude limit cycles).
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6.4 Higher dimensional systems

In this section, we briefly mention the analysis of a system with dimension three or higher. The general

system can be expressed as

del
T MG PR )
L= filwn )
dz,
7, = n\L1, " 5 Tn
de 1 fi(x) filwy, o )
In the vector notation, the system is i f(x), where=| i |, f(x)= 2 = :
t Tn fn(I) fn(xlv"' 7xn)

Equilibria 2* satisfy f(2*) =0 <
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Stability of each equilibrium x* is determined by the associated Jacobian matrix

9 * 0 *
a_ﬁ(x ) e aiill(x )
J(z*) = : :
0 n * 0 n *
(@) o g
det(A — J(z*)) = 0 = Eigenvalues At A2, -+, Ay (some of them may be same) = Stability of

* and local solution behaviors.

The characteristic equation det(A] — J(z*)) = 0 is a polynomial with degree 7 . Here . > 3, thus
it is likely that we cannot obtain all eigenvalues explicitly. We usually apply Routh-Hurwitz theorem that

provides conditions for all eigenvalues to have negative real parts.

Global stability of an equilibrium in a system with dimension three or higher is extremely complicated
and may be determined by Lyapunov functions or theory of monotone dynamics systems or compound

matrices if lucky.
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7 Bifurcation analysis

Bifurcation analysis is an important technique to understand the role of key parameters in the output
of the studied model and to examine the robustness of theoretical results. In this textbook, we only
consider one bifurcation parameter. Multiple bifurcation parameters are more complicated but follow
similar ideas. We will discuss one-dimensional flows (generated from one equation) for typical bifurcation
types: saddle-node bifurcation, transcritical bifurcation, pitchfork bifurcation. We will also discuss two-
dimensional flows (generated from a system of two equations) for typical bifurcation types: saddle-node
bifurcation, transcritical bifurcation, pitchfork bifurcation, Hopf bifurcation. Note that Hopf bifurcation
can only occur in a system of two or more equations. These typical bifurcation types frequently appear

in higher dimensional equations as well.

7.1 Saddle-node bifurcation

The saddle-node bifurcation occurs when equilibrium points are created and destroyed. As the bifurcation

parameter varies, two equilibrium points move toward each other, collide, and finally disappear.

x
Example 28 For the equation — =1 + x?, discuss how equilibrium points and their stability change

dt

as the parameter 1 varies.

Solution: When r < 0, there are two equilibrium points: z = \/—7 (unstable), © = —/—7 (stable).
When r = (, the only equilibrium point z = ( is half-stable.

When 7 > 0, no equilibrium points exist.

These three cases are plotted in Figure 14.

We can plot these results in a bifurcation diagram (the last panel of Figure 14) which sketches the key
dynamical features (equilibria, limit cycles, etc.) versus the bifurcation parameter. The saddle-node

bifurcation occurs at » = (.

x
Example 29 For the equation — = r — %, discuss how equilibrium points and their stability change as

the parameter r varies. Plot the bifurcation diagram.
We leave this problem to readers since the process is same as Example 28.

Other names of saddle-node bifurcation include fold bifurcation, turning-point bifurcation.
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Figure 14: Three cases of Example 28 and the bifurcation diagram.

7.2 Transcritical bifurcation

The transcritical bifurcation occurs when an equilibrium point always exists but changes its stability as

the bifurcation parameter varies.

x
Example 30 Perform bifurcation analysis of the equation — = rx — °.

dt

Solution: Equilibrium points are x = 0 and x = 7.

When 7 < 0, the equilibrium point x = 0 is stable and the equilibrium point & = 7 is unstable.
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When 7 = 0, the equilibrium point = 0 and the equilibrium point © = 7 collide and are half-stable.
When 7 > 0, the equilibrium point = 0 is unstable and the equilibrium point = 7 is stable.
These three cases are plotted in Figure 15.

The equilibrium point 2 = 0 exists for all values of 7. As 1 increases from negative to positive, the two

equilibrium points exchange their stabilities. We conclude these results in a bifurcation diagram (the

last panel of Figure 15). The transcritical bifurcation occurs at 7 = 0.

Figure 15: Three cases and the bifurcation diagram of Example 30.

Download free eBooks at bookboon.com



Mathematical Modeling | - preliminary Bifurcation analysis

7.3 Pitchfork bifurcation

There are two types of pitchfork bifurcation: supercritical and subcritical. The supercritical pitchfork
bifurcation occurs when the following dynamical switch occurs: As the bifurcation parameter varies,
a forever existing equilibrium changes its stability from stable to unstable, and two new equilibrium
points appear and are stable. The subcritical pitchfork bifurcation occurs when the following dynamical
switch occurs: As the bifurcation parameter varies, a forever existing equilibrium changes its stability

from unstable to stable, and two new equilibrium points appear and are unstable.
I , dx 3 .
Example 31 Perform bifurcation analysis of the equation i rx — x° (supercritical case).
Solution: When r < 0, z = 0 is the only equilibrium and stable.
When r > 0, there are three equilibria: x = 0 is unstable, and * = :I:ﬁ are stable.
The first two panels of Figure 16 show the phase portraits of these two cases.
We conclude the supercritical pitchfork bifurcation (occurring at r = 0) in a bifurcation diagram (the
third panel of Figure 16). We can observe that as the bifurcation parameter r increases from negative

to positive, the trivial equilibrium changes its stability from stable to unstable, and two new stable

equilibria appear.

360°
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dx
Example 32 Perform bifurcation analysis of the equation — = 7T + @® (subcritical case).

dt

Solution: When 7 > 0, & = 0 is the only equilibrium and unstable.
When - < 0, there are three equilibria: © = 0 is stable, and * = £+/—7" are unstable.
The fourth and fifth panels of Figure 16 show the phase portraits of these two cases.

We conclude the subcritical pitchfork bifurcation (occurring at 7 = 0) in a bifurcation diagram (the
last panel of Figure 16). We can observe that as the bifurcation parameter r decreases from positive
to negative, the trivial equilibrium changes its stability from unstable to stable, and two new unstable

equilibria appear.

The supercritical pitchfork bifurcation is also called a forward bifurcation. The subcritical pitchfork

bifurcation is also called an inverted or backward bifurcation.

7.4 Generic saddle-node bifurcation

In this section, we discuss the generic form of saddle-node bifurcation which can be extended from the
normal from of saddle-node bifurcation (Section 7.1). Similar ideas can be applied to discuss generic

transcritical or pitchfork bifurcation.
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Figure 16: The first three panels are for supercritical pitchfork bifurcation
and the last three panels are for subcritical pitchfork bifurcation.
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dx
The normal form of saddle-node bifurcation is — = r + 2. We first discuss the extension of this

normal form with a higher order term, and then we discuss the generic form.

d
Lemma 1 The equation d—j =r + 2% 4+ O(2%) is locally topologically equivalent near the origin to the

equation d_f =4 2%
Topological equivalence means that one object can be continuously deformed to the other, i.e. there is a
homeomorphism of one onto the other, i.e. there is a one-to-one map between them that is continuous
in both directions. This lemma claims that adding a higher order term will not change the existence of
saddle-node bifurcation. The proof can be found in “Elements of Applied Bifurcation Theory” by Yuri

A. Kuznetsov.

dx
Generic case: — = f(xz,r),z € Rl, r € R, with s smooth function f,andat r = 0, the equilibrium

x = 0 has the eigenvalue A = f,(0,0) = 0 (saddle-node bifurcation condition).

Expand f(x,r) as a Taylor series with respect to = at zz = 0:

f@.r) = folr) + filr)z + folr)a® + O(°).
Equilibrium condition: f(0,0) = 0,ie. f3(0) = 0;
Saddle-node bifurcation condition: f,(0,0) = 0, ie. f1(0) = 0.

When solutions are near the bifurcation point, the generic equation becomes the normal equation plus

higher order terms.

dx
Theorem 5 Suppose that a one-dimensional system i f(z,r),z € R, r € R, with smooth f,
has the equilibrium x = 0 at r = 0. Assume that

(AD) A = £,(0,0) =0
(A2) f,,(0,0) #0

(A3) £.(0,0) #0
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where (A2) and (A3) are for invertibility. Then there exist invertible coordinate and parameter changes

transforming the system into
E =
dx
Theorem 5 together with Lemma 1 implies that the generic case 7 = f(x,r) with (A1),(A2),(A3)

and the equilibrium z = 0 at = 0, is locally topologically equivalent near the origin to one of the

normal forms:

Is this useful? No doubt!

Even if we cannot compute bifurcation points by hand, the existence conditions of bifurcations provide

underlying ideas for programming of bifurcation diagrams (Matlab, xppaut, etc.).

dx
Example 33 Determine whether the equation — =1 —x —e * 2 f (x,r) possesses saddle-node

dt

bifurcation.

Solution: At r = (0, = 0 is not an equilibrium, since f (07 0) =—-1+#0.

Rewrite the equation as Ccli_i = (7’ — 1) +1—x—e"
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d _
Letf:r—l,thend—f:f—i—l—z—e_xéf(:v,f).

Now f(O, O) =0, ie. £ =0 is an equilibrium at 7 = (. We can check the three conditions in

Theorem 5:

(A1) A = £,(0,0) = =1 4 | (g0) = 0
(A2) f,2(0,0) = —e |00y = =1 #0
(A3) f-(0,0) =1 #0

Hence, there exists a saddle-node bifurcation as the bifurcation parameter 7 (or 7 ) varies. The bifurcation
value of the parameter for the original equation is 7 = 1 (i.e. 7 = 0). The bifurcation diagram can be

plotted using Matlab or xppaut.

7.5 Saddle-node, transcritical, and pitchfork bifurcations in two-dimensional
systems

We start our discussion from an example.

Example 34 Perform bifurcation analysis of a simple decoupled system:

dz 9

E = MU=,

dy
a — Y
Solution: If z; > 0, there are two equilibria (\/1t,0), (—/ft, 0). Their stability can be determined by

their Jacobian matrices:

-2/ 0
J(1, 0) = ( 0\/7 1 ) = (\/ﬁ, 0) is a stable node;

B (2 0N (o)
J( \/ﬁjo)—( 0 _1> (—+/1,0) is a saddle.
0 0
0 —1
which cannot tell the stability. However, we can solve the decoupled system easily to obtain that the

If ;4 = 0, the system has a unique equilibrium (0,0). The Jacobian matrix is J(0,0) =

equilibrium (0, 0) is a saddle-node (one side like a saddle and one side like a stable node). This may be

the reason for the name “saddle-node” bifurcation.
If ;1 < 0, no equilibria exist since {t — 22 <0,

These three cases are plotted in Figure 17.
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Figure 17: Three cases and the bifurcation diagram of Example 34.

As [t decreases from positive to negative, the saddle and the node approach each, then collide when
it = 0, and finally disappear when 1t < 0. We conclude these results in a bifurcation diagram (the last
panel of Figure 17) in which we plot x versus [t since the change of equilibria occurs in & -coordinate.

The bifurcation diagram is the same as the one-dimensional case il z2.
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Typical examples for transcritical and pitchfork bifurcations of two dimensional flows are listed below:

(transcritical)
dx 9
Pl pxr —x
dy
a 7

(supercritical pitchfork)
dz

- M 7’
dy B
a Y

(subcritical pitchfork)

d—x*m+x3
aw - F
dy _ _
a Y

More complicated examples can be found in “Nonlinear dynamics and chaos” by S.H. Strogatz.

7.6 Introduction of Hopf bifurcations

As the bifurcation parameter varies, a real eigenvalue passes through A = 0 (see the first panel of Figure

18). This is the case for saddle-node, transcritical, or pitchfork bifurcation.

As the bifurcation parameter varies, two complex conjugate eigenvalues simultaneously cross the

imaginary axis into the right half-plane (see the second panel of Figure 18). This is the case for Hopf

bifurcations.
Hopf bifurcation has two main types: supercritical and subcritical.

Example 35 Perform bifurcation analysis for the system

r_ r—rs
a "
% = w+br?

in polar coordinates where [L is the bifurcation parameter. (supercritical case)
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Figure 18: Two complex planes, and two phase portraits and the bifurcation diagram of supercritical Hopf bifurcation (Example 35),
and two phase portraits and the bifurcation diagram of subcritical Hopf bifurcation (Example 36).

86

Download free eBooks at bookboon.com



Solution: In Cartesian coordinates, x* = 7 cosf,y = r sin 6, then

d d do
_f - d—:cose—%sw = (pr—r")cosf—r(w+br?)sind = (= (2" +y")z —
(w + b(g;;Q + yz))y; similar for % Hence the system becomes

dx .

o = pur — wy + cubic terms

d

d_?é = wx + puy + cubic terms

The Jacobian matrix at the origin (the trivial equilibrium) is

=00

Eigenvalues A = y & iw cross the imaginary axis from left to right as /¢ increases from negative to

positive values.

When 4, < 0, the origin is a spiral sink.

When g > 0, the origin is a spiral source, and all solutions tend to a limit cycle.

The third and fourth panels of Figure 18 exhibit the phase portraits of these two cases.

We conclude these results in a bifurcation diagram (the fifth panel of Figure 18). The supercritical Hopf
bifurcation occurs at j¢ = 0. It is usually difficult to prove existence of a limit cycle and its stability, but

we can definitely check them numerically.

Example 36 Perform bifurcation analysis for the system

% = ,ur+7”3—r5
Cjif = w+br?

in polar coordinates where [ is the bifurcation parameter. (subcritical case)

Solution: Similar to Example 35, we can obtain the system in Cartesian coordinates

x = rcosf,y = rsin 0, and perform local stability analysis.
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When — 1/4 < ;1 < 0, the origin is a spiral sink. There is an unstable limit cycle and a stable limit

cycle. Bistability occurs with the unstable limit cycle as the separatrix.
When g > 0, the origin is a spiral source, and there is a stable limit cycle.
The sixth and seventh panels of Figure 18 exhibit the phase portraits of these two cases.

We conclude these results in a bifurcation diagram (the last panel of Figure 18). The subcritical Hopf

bifurcation occurs at 1 = 0.

Readers may be curious about the case ;1 < —1/4. Actually yt = —1/4 is a saddle-node bifurcation of
limit cycles (a type of global bifurcations). When < —1/4, no limit cycles exist. When pt = —1/4,
one limit cycle exists and is half-stable. When — 1 / 4 < p < 0, two limit cycles exist (one stable, one
unstable). We do not expand the details of this global bifurcation since we only discuss local bifurcations

in this textbook.

7.7 Normal form of Hopf bifurcation

The normal form of supercritical case is provided by

d
d—f = px —y— (@ +y°)
d
CTZL{ = x4 py—y@®+y°)

The normal form of subcritical case is provided by

d
d—f = pr—y+z(2® +y°)
dy
- = z+ py + y(a® + )

Supercritical case:
The system has the equilibrium (0, 0) for all /4 values (additional equilibria are possible). The Jacobian

matrix J(0,0) = ( ﬁt _,ul > = Eigenvalues \ = p =+ 1.
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Figure 19: Two phase portraits and two bifurcation diagrams of supercritical Hopf bifurcation (normal form),
and two phase portraits and two bifurcation diagrams of subcritical Hopf bifurcation (normal form).
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Introduce the complex variable z = x + iy, then zZ = x — iy, |2|> = 22 = 2% + .

dZ_d$ ,dy_ . . . . 2 2\ . 2
= i = ple b iy) il iy) — (@ i) (@t ) = (ot i)z - 2]l

Let z = re?, where r = /22 + 32 > 0,tanf = y/x, then

dz _ dr i0 4 ;W o
- = — € ri—e .
it~ dt dt
Hence,
dr ,  do . |
T i e = (ot i)z — 2l = (i — o) = et i — 1),

There are two groups in this equality: ¢ and ie' . Setting the coefficients of them equal on both sides

to obtain
= =)
df
— =1
dt

’ntiia iA)gx Graduate

Find out more and apply

redefining / standards

1y
Qy
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The second equation implies that all orbits keep rotating in the counterclockwise direction with a

constant speed.

d
When # < 0, we have & < 0 for 7 > 0 (actually r > 0 is always true except for the origin where

r = (), and thus the only equilibrium (of the original system) 7 = 0 is a spiral sink.

dr
When g = 0, we have i —13 < 0 for r > 0, and thus the only equilibrium 7 = 0 is still a spiral

sink.

dr
When g, > 0, we have % = T(/L — 7’2) >0for0<r< \/ﬁ . In this case, there are two possibilities

r
from— =0:r =0andr = \/ﬁ (since r > 0, thenegative oneisnotfeasible). = () iscorresponding

dt

to an unstable equilibrium, and 7 = \/,l_l is corresponding to a stable limit cycle.

The first two cases above are combined in the first panel of Figure 19, and the third case is plotted in

the second panel of Figure 19.

We conclude the above results in bifurcation diagrams (the third and fourth panels of Figure 19). Similar
analysis can be done for the subcritical case, for which we also plot phase portraits (the fifth and sixth

panels of Figure 19) and bifurcation diagrams (the seventh and eighth panels of Figure 19).

7.8 Generic Hopf bifurcation

We start this section with a lemma.

Lemma 2 The system

i(3)= () ) e (D) (IG)T)

is locally topologically equivalent near the origin to the system

$(5)-(1 ) E)n ()

Any generic two-dimensional system undergoing a Hopf bifurcation can be transformed into one of the

normal forms (supercritical “-” in cubic terms, subcritical “+” in cubic terms) plus some higher order

terms.

d
Consider 7 ( Z ) = f(z,y, p), withasmooth vector function f,whichhasat ;¢ = 0 the equilibrium

(0,0) with eigenvalues \ = Ziwg, wy > 0.
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Theorem 6 Suppose a two-dimensional system dle_ f(x,y, p) with smooth f, has the equilibrium

(0,0) with eigenvalues \(11) = a(p) & i8(p) for all sufficiently small |p|. Assume the following

conditions are satisfied:

(B1) a(0) =0, 8(0) = wy > 0 (key Hopf bifurcation condition).

(B2) 1,(0) # 0, where [, is the first Lyapunov coefficient (nondegeneracy condition).
(B3) o/(0) # O (transversality condition).

Then there exist invertible coordinate and parameter changes and a time reparametrization transforming

d
the system p ( z ) = f(z,y, p) into

w(0)= (1) (5) e

Theorem 6 together with Lemma 2 leads to the following theorem.
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Theorem 7 (Topological normal form of Hopf bifurcation) Any generic (=(B2)+(B3)) two-dimensional,
one-parameter system c(iit < ;j > = f(x,y, p), having at 1, = () the equilibrium (0, 0) with eigenvalues
((B1) <) A1(0) = iwo, A\y(0) = —iwg, wy > 0, is locally topologically equivalent near the origin to

)i(x2+y2)( )

one of the following normal forms:

da
dr

Example 37 Consider a predator-prey model

Kl

&I
N———
I
N
— I
= L
N———
N
Q&I

<

dx cxy
h— 1— ) —

dt ra(l—a) a+z
dy cxy

bt —d

dt a+w 4

to examine whether Hopf bifurcation exists.
See the solution in “Elements of Applied Bifurcation Theory” by Yuri A. Kuznetsov.
The bifurcations we discussed so far are popular ones, but there are many other bifurcations we have not

discussed, for example, saddle-node bifurcation of limit cycles, infinite-period bifurcation, homoclinic

bifurcation, etc.
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8 Matlab programming

All basic Matlab knowledge can be learned from Matlab manual. All Matlab commands and the way to
use them can be found from Matlab help files. In this chapter, we use Matlab to run simulations for some
typical examples that are relevant to contents we have learned so far. Readers can modify these sample
Matlab files for similar models. To change the model dimension, we need to change the dimensions of

vectors and matrices.
The Matlab .m file for the host-parasitoid model is listed below.

% TwoDifferenceEquations.m - this MATLAB file simulates the host-parasitoid model
k=1.8; %parameter input

a=1; %parameter input

c=1; %parameter input

x0=1; %input initial population of host
y0=1; %input initial population of parasitoid
n=30; %input time period of run
x=zeros(n+1,1);

y=zeros(n+1,1);

t=zeros(n+1,1);

x(1)=x0;

y(1)=y0;

for i=1:n

t(i)=i-1;

x(i+1)=k*x(i)*exp(-a*y(i));
y(i+1)=c*x(0)*(1-exp(-a*y(D);

end

t(n+1)=n;

figure

subplot(221)

plot(t,x,t,x,0')

title(Host population’)

subplot(222)
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plot(ty,t.y,”)

title('Parasitoid population’)
subplot(223)

plot(t,y,t.x,t,x,0,t,y,*")

titleCHost and parasitoid populations’)
subplot(224)

plot(x,y;0-")

title(CHost vs parasitoid’);
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Host population Parasitoid population

70

0 10 20 30 0 10 20 30

Host and parasitoid populations

Host vs parasitoid
5 .

0 20 40 60 80

Figure 20: The sample simulation for the host-parasitoid model.

The simulation results of this program are sketched in Figure 20. Readers can simply modify this program

to run simulations for any model with a group of difference equations.

26
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Figure 21: The sample simulation for a system of three dierential equations.

Matlab programs for a system of differential equations are simple. We provide an example of three

differential equations below.

%ThreeDmodel.m

function dy = ThreeDmodel(t,y)
dy = zeros(3,1); % a column vector
dy(1) = y(2) * y(3);

dy(2) = -y(1) * y(3);

dy(3) = -0.5 * y(1) * y(2);

%ThreeDifferentialEquations.m

options = odeset('RelTol}1e-3;AbsTol}[1e-3 1e-3 le-4]);
[T,Y] = ode45(@ThreeDmodel,[0 20],[0 1 1],0ptions);
plot(T,Y(:,1),- .Y (:,2),-3T,Y(5,3),)

The simulation result is sketched in Figure 21.
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pplane8.m, copyright by John C. Polking at Rice University, is a useful program for a system of two
differential equations, more specifically for planar autonomous systems. We can use it to simply plot
equilibria, nullclines, sample solutions, etc.. pplane8.m can be downloaded from John C. Polking’s
website. We show how to use pplane8.m in Figures 22 and 23. We first download pplane8.m into our own
computer and run it in Matlab. A user friendly interface shows up. We can define our two dimensional
system, parameters, plotting window size, and the type of direction field. Click “proceed” on the right-
bottom corner to obtain the phase plane in which we can plot all dynamical features we want, such as
equilibria and nullclines. We can also sketch sample solutions by simply clicking on the phase plane.

The point we click will be used as the initial point for the generated solution.

pplane8.m can be applied to plot phase portraits of all the two dimensional examples in Chapters 6 and 7.
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Figure 22: pplane8.m guidance.

29
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Figure 23: pplane8.m guidance - continued.
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Two sample .m files to plot the Hopf bifurcation are provided below. The first one defines the model,

and the second one sketches the Hopf bifurcation diagram using a “for” loop.

%bif__odef.m

function xprime=bif__odef(t,x)

global R;
us=12;
Km=2000;
A=15;
B=70;
Gs=.44%A;
Gw=.63%A;
alpha=0.5;
1=0.01;
ut=us/6;
Gt=5*Gw/6+Gs/6;

xprime=[ut*x(1)*(1-x(1)/Km)-alpha*A*x(1)*x(2)/(alpha*x(1)+B)
R*x(2)*(A*alpha*x(1)/(alpha*x(1)+B)-Gt)-1*x(2)2
I;

%bif__odemain.m
rect = [200 80 700 650]; %fix the window size and position

set(0, defaultfigureposition;rect);
global R;

option=odeset(’AbsTol,1e-8,RelTol’1e-5);
inc=[0:0.1:50]’;

time=[ inc ] ;

limit=[ 400:1:500];

for R=0:0.01:1;

IC=[1000,20];

[t,U] = 0de23s(’bif__odef’time,IC,option);
u2=U(limit,2);

usmin=min(u2);

usmax=max(u2);

plot(R, usmax,b>MarkerSize, 5);

plot(R, usmin,r;MarkerSize, 5);

hold on
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Figure 24: A sample Hopf bifurcation diagram.

end

xlim([0 1]);

ylim([0 300]);
xlabel(conversion rate, R);

ylabel(Clemming’);

The Hopf bifurcation, sketched by these two .m files, is shown in Figure 24. The main idea is to take
maxima and minima of the tail of the solution. We need to run the simulation for a sufficiently long
time such that the solution is stabilized, and we need to choose the length of the tail reasonably long

such that at least one period of the limit cycle is included.
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9 Data fitting

In this chapter, we focus on the most popular and simplest technique - least-square method - to perform
data fitting. Given a model and a data set, how to obtain optimal parameter values to fit data? If the
model with optimal parameter values cannot fit data well, then either the model is problematic or the

data is not accurate.
The least-square data fitting method is defined as follows:

Consider a system of differential equations

y = f(t,y,p), yeR", feR" peR™,

where P is the vector of m parameters. Given a group of k data points:
(tla y1)7 (t2792)> T (tka yk);

we can compute optimal parameter values for the parameters P by minimizing the error

k

error(p) = Z ly(ti,p) — vil*.
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Sample .m files to apply this technique are provided below. The first file is to define the model, the second
file is to compute the error function defined in least-square method, and the third file is to find optimal

parameter values and use them to run the solution for a comparison with data.

%PPmodel.m

function value = PPmodel(t,y,p)

%Predator-prey model

%Parameters: p(1)=a, p(2) = b, p(3) = ¢, p(4) = d.
value=[p(1)*y(1)-p(2)*y(1)*y(2)

PGy (1)*y(2)-p@)y(2);

%PPerror.m

function error = PPerror(p)

%Error function for the predator-prey model

clear y;

years = 0:20;

DataX = [20.0 45.1 70.2 78.3 36.4 21.5 18.6 21.7 22.8 25.9 27.0 40.1 57.2 77.3 52.4 19.5 11.6 8.7 15.8
16.9 25.0];

DataY = [5.0 6.1 10.2 35.3 60.4 42.519.6 13.7 8.8 9.9 7.0 8.1 12.2 20.3 46.4 51.5 30.6 16.7 10.8 11.9 9.0];
[t,y] = ode23 (@PPmodel,years,[DataX(1); DataY(1)],[],p);
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Figure 25: Least-square data fitting of the Lotka-Volterra predator-prey model to a data set.
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value = (y(:,1)-DataX’).A2+(y(:,2)-DataY’).A2;

error = sum(value);

%LeastSquareDataFitting.m

%Parameter estimation and run the simulation to compare with data

guess = [0.5; 0.02; 0.02; 0.8];

[p,error] = fminsearch (@PPerror, guess)

[t,y] = ode23 (@PPmodel, [0, 20],[20.0; 5.01,[],p);

years = 0:20;

DataX = [20.0 45.1 70.2 78.3 36.4 21.5 18.6 21.7 22.8 25.9 27.0 40.1 57.2 77.3 52.4 19.5 11.6 8.7 15.8
16.9 25.0];

DataY = [5.0 6.1 10.2 35.3 60.4 42.5 19.6 13.7 8.8 9.9 7.0 8.1 12.2 20.3 46.4 51.5 30.6 16.7 10.8 11.9 9.0];
subplot(2,1,1)

plot(t,y(:,1),r years,DataX,ko’)

axis([0 20 0 100])

subplot(2,1,2)

plot(t,y(:,2),r,years,DataY;ko’)

axis([0 20 0 100])

The least-square data fitting for the Lotka-Volterra predator-prey model is shown in Figure 25. We can

observe that the model fits the data well with the optimal parameter values.

The optimal values of the parameters a, b, ¢, d can be read from the command window of Matlab as
below. The vector P gives optimal parameter values a, b, ¢, d in the order.
>>

p:

0.7571
0.0374
0.0234
0.6547

€rror =

2.0503e+003
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