

ey



lazar
0824745000_tn_std.jpg



NUMBER THEORY ARISING
FROM FINITE FIELDS



NUMBER THEORY ARISING
FROM FINITE FIELDS
Analytic and Probabilistic Theory

John Knopfmacher
University of the Witwatersrand
Johannesburg, South Africa

Wen-Bin Zhang
University of the West Indies
Kingston, Jamaica

MARCEL DEKKER, INC. NEW YORK • BASEL

D E K K E R



ISBN: 0-8247-0577-7

This book is printed on acid-free paper.

Headquarters
Marcel Dekker, Inc.
270 Madison Avenue, New York, NY 10016
tel: 212-696-9000; fax: 212-685-4540

Eastern Hemisphere Distribution
Marcel Dckkcr AG
Hutgasse4, Postfach 812, CH-4001 Basel, Switzerland
tel: 41-61-261-8482; fax: 41-61-261-8896

World Wide Web
http://www. dekkcr.com

The publisher offers discounts on this book when ordered in bulk quantities. For more information,
write to Special Sales/Professional Marketing at the headquarters address above.

Copyright © 2001 by Marcel Dekker, Inc. All Rights Reserved.

Neither this book nor any part may be reproduced or transmitted in any form or by any means, elec-
tronic or mechanical, including photocopying, microfilming, and recording, or by any information
storage and retrieval system, without permission in writing from the publisher.

Current printing (last digit):
1 0 9 8 7 6 5 4 3 2 1

PRINTED IN THE UNITED STATES OF AMERICA



PURE AND APPLIED MATHEMATICS

A Program of Monographs, Textbooks, and Lecture Notes

EXECUTIVE EDITORS

Earl J. Taft Zuhair Nashed
Rutgers University University of Delaware

New Brunswick, New Jersey Newark, Delaware

EDITORIAL BOARD

M. S. Baouendi Anil Nerode
University of California, Cornell University

San Diego
Donald Passman

Jane Cronin University of Wisconsin,
Rutgers University Madison

Jack K. Hale Fred S. Roberts
Georgia Institute of Technology Rutgers University

S. Kobayashi David L. Russell
University of California, Virginia Polytechnic Institute

Berkeley and State University

Marvin Marcus Walter Schempp
University of California, Universitat Siegen

Santa Barbara
Mark Teply

W. S. Massey University of Wisconsin,
Yale University Milwaukee



MONOGRAPHS AND TEXTBOOKS IN
PURE AND APPLIED MATHEMATICS

1. K. Yano, Integral Formulas in Riemannian Geometry (1970)
2. S. Kobayashi, Hyperbolic Manifolds and Holomorphic Mappings (1970)
3. V. S. Vladimirov, Equations of Mathematical Physics (A. Jeffrey, ed.; A. Littlewood,

trans.) (1970)
4. B. N. Pshenichnyi, Necessary Conditions for an Extremum (L. Neustadt, translation

ed.; K. Makowski, trans.) (1971)
5. L. Narici et a/., Functional Analysis and Valuation Theory (1971)
6. S. S. Passman, Infinite Group Rings (1971)
7. L. Dornhoff, Group Representation Theory. Part A: Ordinary Representation Theory.

Part B: Modular Representation Theory (1971,1972)
8. W. Boothby and G. L. Weiss, eds., Symmetric Spaces (1972)
9. Y Matsushima, Differentiate Manifolds (E. T. Kobayashi, trans.) (1972)

10. L. E. Ward, Jr., Topology (1972)
11. A. Babakhanian, Cohomological Methods in Group Theory (1972)
12. R. Gilmer, Multiplicative Ideal Theory (1972)
13. J. Yeh, Stochastic Processes and the Wiener Integral (1973)
14. J. Barros-Neto, Introduction to the Theory of Distributions (1973)
15. R. Larsen, Functional Analysis (1973)
16. K. Yano and S. Ishihara, Tangent and Cotangent Bundles (1973)
17. C. Procesi, Rings with Polynomial Identities (1973)
18. R. Hermann, Geometry, Physics, and Systems (1973)
19. N. R. Wallach, Harmonic Analysis on Homogeneous Spaces (1973)
20. J. Dieudonne, Introduction to the Theory of Formal Groups (1973)
21. /. Vaisman, Cohomology and Differential Forms (1973)
22. B.-Y. Chen, Geometry of Submanifolds (1973)
23. M. Marcus, Finite Dimensional Multilinear Algebra (in two parts) (1973, 1975)
24. R. Larsen, Banach Algebras (1973)
25. R. O. Kujala and A. L. Vitter, eds., Value Distribution Theory: Part A; Part B: Deficit

and Bezout Estimates by Wilhelm Stoll (1973)
26. K. B. Stolarsky, Algebraic Numbers and Diopnantine Approximation (1974)
27. A. R. Magid, The Separable Galois Theory of Commutative Rings (1974)
28. 8. R. McDonald, Finite Rings with Identity (1974)
29. J. Satake, Linear Algebra (S. Koh et al., trans.) (1975)
30. J. S. Go/an, Localization of Noncommutative Rings (1975)
31. G. Klambauer, Mathematical Analysis (1975)
32. M. K. Agoston, Algebraic Topology (1976)
33. K. R. Goodearl, Ring Theory (1976)
34. L. E. Mansfield, Linear Algebra with Geometric Applications (1976)
35. N. J. Pullman, Matrix Theory and Its Applications (1976)
36. B. R. McDonald, Geometric Algebra Over Local Rings (1976)
37. C. W. Groetsch, Generalized Inverses of Linear Operators (1977)
38. J. E. Kuczkowski and J. L Gersting, Abstract Algebra (1977)
39. C. O. Christenson and W. L. Voxman, Aspects of Topology (1977)
40. M. A/agate, Field Theory (1977)
41. R. L. Long, Algebraic Number Theory (1977)
42. W. F. Pfeffer, Integrals and Measures (1977)
43. R. L Wheeden and A. Zygmund, Measure and Integral (1977)
44. J. H. Curtiss, Introduction to Functions of a Complex Variable (1978)
45. K. Hrbacek and T. Jech, Introduction to Set Theory (1978)
46. W. S. Massey, Homology and Cohomology Theory (1978)
47. M. Marcus, Introduction to Modern Algebra (1978)
48. £. C. Young, Vector and Tensor Analysis (1978)
49. S. B. Nadler, Jr., Hyperspaces of Sets (1978)
50. S. K. Sega/, Topics in Group Kings (1978)
51. A. C. M. van Roo/j, Non-Archimedean Functional Analysis (1978)
52. L. Corwin and R. Szczarba, Calculus in Vector Spaces (1979)
53. C. Sadosky, Interpolation of Operators and Singular Integrals (1979)
54. J. Cronin, Differential Equations (1980)
55. C. W. Groetsch, Elements of Applicable Functional Analysis (1980)



56. /. Vaisman, Foundations of Three-Dimensional Euclidean Geometry (1980)
57. H. I. Freedan, Deterministic Mathematical Models in Population Ecology (1980)
58. S. B. Chae, Lebesgue Integration (1980)
59. C. S. Rees et a/., Theory and Applications of Fourier Analysis (1981)
60. L Nachbin, Introduction to Functional Analysis (R. M. Aron, trans.) (1981)
61. G. Orzech and M. Orzech, Plane Algebraic Curves (1981)
62. R. Johnsonbaugh and W. E. Pfaffenberger, Foundations of Mathematical Analysis

(1981)
63. W. L. Voxman and R. H. Goetschel, Advanced Calculus (1981)
64. L J. Corwin and R. H. Szczarba, Multivariable Calculus (1982)
65. V. I. Istratescu, Introduction to Linear Operator Theory (1981)
66. R. D. Jarvinen, Finite and Infinite Dimensional Linear Spaces (1981)
67. J. K. Beem and P. E. Ehriich, Global Lorentzian Geometry (1981)
68. D. L. Armacost, The Structure of Locally Compact Abelian Groups (1981)
69. J. W. Brewer and M. K. Smith, eds., Emmy Noether: A Tribute (1981)
70. K. H. Kirn, Boolean Matrix Theory and Applications (1982)
71. T. W. Wieting, The Mathematical Theory of Chromatic Plane Ornaments (1982)
72. D. B.Gauld, Differential Topology (1982)
73. R. L. Faber, Foundations of Euclidean and Non-Euclidean Geometry (1983)
74. M. Carmeli, Statistical Theory and Random Matrices (1983)
75. J. H. Carruth et a/., The Theory of Topological Semigroups (1983)
76. R. L. Faber, Differential Geometry and Relativity Theory (1983)
77. S. Bamett, Polynomials and Linear Control Systems (1983)
78. G. Karpilovsky, Commutative Group Algebras (1983)
79. F. Van Oystaeyen and A. Verschoren, Relative Invariants of Rings (1983)
80. /. Vaisman, A First Course in Differential Geometry (1984)
81. G. W. Swan, Applications of Optimal Control Theory in Biomedicine (1984)
82. T. Petrie and J. D. Randall, Transformation Groups on Manifolds (1984)
83. K. Goebel and S. Reich, Uniform Convexity, Hyperbolic Geometry, and Nonexpansive

Mappings (1984)
84. T. Albu and C. Nastasescu, Relative Finiteness in Module Theory (1984)
85. K. Hrbacek and T. Jech, Introduction to Set Theory: Second Edition (1984)
86. F. Van Oystaeyen and A. Verschoren, Relative Invariants of Rings (1984)
87. B. R. McDonald, Linear Algebra Over Commutative Rings (1984)
88. M. Namba, Geometry of Projective Algebraic Curves (1984)
89. G. F. Webb, Theory of Nonlinear Age-Dependent Population Dynamics (1985)
90. M. R. Bremner et a/., Tables of Dominant Weight Multiplicities for Representations of

Simple Lie Algebras (1985)
91. A. E. Fekete, Real Linear Algebra (1985)
92. S. 6. Chae, Holomorphy and Calculus in Normed Spaces (1985)
93. A. J. Jerri, Introduction to Integral Equations with Applications (1985)
94. G. Karpilovsky, Projective Representations of Finite Groups (1985)
95. L. Narici and E. Beckenstein, Topological Vector Spaces (1985)
96. J. Weeks, The Shape of Space (1985)
97. P. R. Gribik and K. O. Kortanek, Extremal Methods of Operations Research (1985)
98. J.-A, Chao and W. A. Woyczynski, eds., Probability Theory and Harmonic Analysis

(1986)
99. G. D. Crown et at., Abstract Algebra (1986)

100. J. H. Carruth et a/., The Theory of Topological Semigroups, Volume 2 (1986)
101. R. S. Doran and V. A. Belfi, Characterizations of C*-Algebras (1986)
102. M. W, Jeter, Mathematical Programming (1986)
103. M. Altman, A Unified Theory of Nonlinear Operator and Evolution Equations with

Applications (1986)
104. A. Verschoren, Relative Invariants of Sheaves (1987)
105. R. A. Usmani, Applied Linear Algebra (1987)
106. P. Blass and J. Lang, Zariski Surfaces and Differential Equations in Characteristic p >

0(1987)
107. J. A. Reneke et a/., Structured Hereditary Systems (1987)
108. H. Busemann and B. B. Phadke, Spaces with Distinguished Geodesies (1987)
109. R. Harte, Invertibility and Singularity for Bounded Linear Operators (1988)
110. G. S. Ladde et a/., Oscillation Theory of Differential Equations with Deviating Argu-

ments (1987)
111. L Dudkin et al., Iterative Aggregation Theory (1987)
112. T. Okubo, Differential Geometry (1987)



113. D. L. Stand and M. L Stand, Real Analysis with Point-Set Topology (1987)
114. T. C. Gard, Introduction to Stochastic Differential Equations (1988)
115. S. S. Abhyankar, Enumerative Combinatorics of Young Tableaux (1988)
116. H. Strade and R. Famsteiner, Modular Lie Algebras and Their Representations (1988)
117. J. A. Huckaba, Commutative Rings with Zero Divisors (1988)
118. W. D. Wallis, Combinatorial Designs (1988)
119. W. Wieslaw, Topological Fields (1988)
120. G, Karpilovsky, Field Theory (1988)
121. S. Caenepeel and F. Van Oystaeyen, Brauer Groups and the Cohomology of Graded

Rings (1989)
122. W. Kozlowski, Modular Function Spaces (1988)
123. E. Lowen-Colebunders, Function Classes of Cauchy Continuous Maps (1989)
124. M. Pave/, Fundamentals of Pattern Recognition (1989)
125. V. Lakshmikantham et a/., Stability Analysis of Nonlinear Systems (1989)
126. R. Sivaramakrishnan, The Classical Theory of Arithmetic Functions (1989)
127. N. A. Watson, Parabolic Equations on an Infinite Strip (1989)
128. K. J. Hastings, Introduction to the Mathematics of Operations Research (1989)
129. B. Fine, Algebraic Theory of the Bianchi Groups (1989)
130. D. N. Dikranjan et a/., Topological Groups (1989)
131. J. C. Morgan II, Point Set Theory (1990)
132. P. BilerandA. Witkowski, Problems in Mathematical Analysis (1990)
133. H. J. Sussmann, Nonlinear Controllability and Optimal Control (1990)
134. J.-P. Florens et a/., Elements of Bayesian Statistics (1990)
135. N. Shell, Topoiogical Fields and Near Valuations (1990)
136. B. F. Doolin and C. F. Martin, Introduction to Differential Geometry for Engineers

(1990)
137. S. S. Holland, Jr., Applied Analysis by the Hilbert Space Method (1990)
138. J. Okninski, Semigroup Algebras (1990)
139. K. Zhu, Operator Theory in Function Spaces (1990)
140. G. 6. Price, An Introduction to Multicomplex Spaces and Functions (1991)
141. R. B. Darst, Introduction to Linear Programming (1991)
142. P. L. Sachdev, Nonlinear Ordinary Differential Equations and Their Applications (1991)
143. T. Husain, Orthogonal Schauder Bases (1991)
144. J. Foran, Fundamentals of Real Analysis (1991)
145. W. C. Brown, Matrices and Vector Spaces (1991)
146. M. M. RaoandZ. D. Ren, Theory of Orlicz Spaces (1991)
147. J. S. Go/an and T. Head, Modules and the Structures of Rings (1991)
148. C. Small, Arithmetic of Finite Fields (1991)
149. K. Yang, Complex Algebraic Geometry (1991)
150. D. G. Hoffman et a/., Coding Theory (1991)
151. M. O. Gonzalez, Classical Complex Analysis (1992)
152. M. O. Gonzalez, Complex Analysis (1992)
153. L W. Baggett, Functional Analysis (1992)
154. M. Sniedovich, Dynamic Programming (1992)
155. R. P. Agarwal, Difference Equations and Inequalities (1992)
156. C. Brezinski, Biorthogonality and Its Applications to Numerical Analysis (1992)
157. C. Swartz, An Introduction to Functional Analysis (1992)
158. S. B. Nadler, Jr., Continuum Theory (1992)
159. M. A. AI-Gwaiz, Theory of Distributions (1992)
160. £ Perry, Geometry: Axiomatic Developments with Problem Solving (1992)
161. £ Castillo and M. R. Ruiz-Cobo, Functional Equations and Modelling in Science and

Engineering (1992)
162. A. J. Jerri, Integral and Discrete Transforms with Applications and Error Analysis

(1992)
163. A. Chariier et al., Tensors and the Clifford Algebra (1992)
164. P. Biter and T. Nadzieja, Problems and Examples in Differential Equations (1992)
165. E. Hansen, Global Optimization Using Interval Analysis (1992)
166. S. Guerre-Delabriere, Classical Sequences in Banach Spaces (1992)
167. Y. C. Wong, Introductory Theory of Topological Vector Spaces (1992)
168. S. H. KulkamiandB. V. Limaye, Real Function Algebras (1992)
169. W. C. Brown, Matrices Over Commutative Rings (1993)
170. J. Loustau and M. Dillon, Linear Geometry with Computer Graphics (1993)
171. W. V. Petryshyn, Approximation-Solvability of Nonlinear Functional and Differential

Equations (1993)



172. E. C. Young, Vector and Tensor Analysis: Second Edition (1993)
173. T. A. Bick, Elementary Boundary Value Problems (1993)
174. M. Pavel, Fundamentals of Pattern Recognition: Second Edition (1993)
175. S. A. Albeverio et a/., Noncommutative Distributions (1993)
176. W. Fulks, Complex Variables (1993)
177. M. M. Rao, Conditional Measures and Applications (1993)
178. A. Janicki and A. Weron, Simulation and Chaotic Behavior of a-Stable Stochastic

Processes (1994)
179. P. Neittaanmaki and D. Tiba, Optimal Control of Nonlinear Parabolic Systems (1994)
180. J. Cronin, Differential Equations: Introduction and Qualitative Theory, Second Edition

(1994)
181. S. Heikkila and V. Lakshmikantham, Monotone Iterative Techniques for Discontinuous

Nonlinear Differential Equations (1994)
182. X. Mao, Exponential Stability of Stochastic Differential Equations (1994)
183. 8. S. Thomson, Symmetric Properties of Real Functions (1994)
184. J. E. Rubio, Optimization and Nonstandard Analysis (1994)
185. J. L Bueso et a/., Compatibility, Stability, and Sheaves (1995)
186. A. N. Michel and K. Wang, Qualitative Theory of Dynamical Systems (1995)
187. M. R. Darnel, Theory of Lattice-Ordered Groups (1995)
188. Z. Naniewicz and P. D. Panagiotopoulos, Mathematical Theory of Hemivariational

Inequalities and Applications (1995)
189. L. J. Corwin and R. H. Szczarba, Calculus in Vector Spaces: Second Edition (1995)
190. L. H. Erbe et a/., Oscillation Theory for Functional Differential Equations (1995)
191. S. Agaian etal., Binary Polynomial Transforms and Nonlinear Digital Filters (1995)
192. M. I. Gil', Norm Estimations for Operation-Valued Functions and Applications (1995)
193. P. A. Grillet, Semigroups: An Introduction to the Structure Theory (1995)
194. S. Kichenassamy, Nonlinear Wave Equations (1996)
195. V. F. Krotov, Global Methods in Optimal Control Theory (1996)
196. K. /. Beidaret a/., Rings with Generalized Identities (1996)
197. V. I. Amautov et a/., Introduction to the Theory of Topological Rings and Modules

(1996)
198. G. Sierksma, Linear and Integer Programming (1996)
199. R. Lasser, Introduction to Fourier Series (1996)
200. V. Sima, Algorithms for Linear-Quadratic Optimization (1996)
201. D. Redmond, Number Theory (1996)
202. J. K. Beem et a/., Global Lorentzian Geometry: Second Edition (1996)
203. M. Fontana et a/., Prufer Domains (1997)
204. H. Tanabe, Functional Analytic Methods for Partial Differential Equations (1997)
205. C. Q. Zhang, Integer Flows and Cycle Covers of Graphs (1997)
206. E. Spiegel and C. J. O'Donnell, Incidence Algebras (1997)
207. B. Jakubczyk and W. Respondek, Geometry of Feedback and Optimal Control (1998)
208. T. W. Haynes et a/., Fundamentals of Domination in Graphs (1998)
209. T. W. Haynes etal., Domination in Graphs: Advanced Topics (1998)
210. L A. D'Alotto et a/., A Unified Signal Algebra Approach to Two-Dimensional Parallel

Digital Signal Processing (1998)
211. F. Halter-Koch, Ideal Systems (1998)
212. N. K. Govil et a/., Approximation Theory (1998)
213. R. Cross, Multivalued Linear Operators (1998)
214. A. A. Martynyuk, Stability by Liapunov's Matrix Function Method with Applications

(1998)
215. A. Favini and A. Yagi, Degenerate Differential Equations in Banach Spaces (1999)
216. A. Illanes and S. Nadler, Jr., Hyperspaces: Fundamentals and Recent Advances

(1999)
217. G. Kato and D. Struppa, Fundamentals of Algebraic Microlocal Analysis (1999)
218. G. X.-Z. Yuan, KKM Theory and Applications in Nonlinear Analysis (1999)
219. D. Motreanu and N. H. Pavel, Tangency, Flow Invariance for Differential Equations,

and Optimization Problems (1999)
220. K. Hrbacek and T. Jech, Introduction to Set Theory, Third Edition (1999)
221. G. E. Ko/osov, Optimal Design of Control Systems (1999)
222. N. L Johnson, Subplane Covered Nets (2000)
223. 6. Fine and G. Rosenberger, Algebraic Generalizations of Discrete Groups (1999)
224. M. Vath, Volterra and Integral Equations of Vector Functions (2000)
225. S. S. Miller and P. T. Mocanu, Differential Subordinations (2000)



226. R. Li et a/., Generalized Difference Methods for Differential Equations: Numerical
Analysis of Finite Volume Methods (2000)

227. H. Li and F. Van Oystaeyen, A Primer of Algebraic Geometry (2000)
228. R. P. Agarwal, Difference Equations and Inequalities: Theory, Methods, and Applica-

tions, Second Edition (2000)
229. A. B. Kharazishvili, Strange Functions in Real Analysis (2000)
230. J. M. Appell et a/., Partial Integral Operators and Integra-Differential Equations (2000)
231. A. I. Prilepko et a/., Methods for Solving Inverse Problems in Mathematical Physics

(2000)
232. F. Van Oystaeyen, Algebraic Geometry for Associative Algebras (2000)
233. D. L Jagerman, Difference Equations with Applications to Queues (2000)
234. D. R. Hankerson et a/.. Coding Theory and Cryptography: The Essentials, Second

Edition, Revised and Expanded (2000)
235. S. Dascalescu et a/., Hopf Algebras: An Introduction (2001)
236. R. Hagen et a/., C*-Algebras and Numerical Analysis (2001)
237. V. Talpaert, Differential Geometry: With Applications to Mechanics and Physics (2001)
238. R. H. Villa/real, Monomial Algebras (2001)
239. A. N. Michel et a/., Qualitative Theory of Dynamical Systems, Second Edition (2001)
240. A. A. Samarskii, The Theory of Difference Schemes (2001)
241. J. Knopfmacher and W.-B. Zhang, Number Theory Arising from Finite Fields (2001)

Additional Volumes in Preparation



PREFACE

Since the first author's monograph Analytic Arithmetic of Algebraic Func-
tion Fields was published twenty years ago, some remarkable advances have
been made in many directions in this area, particularly regarding abstract
prime number theorems, the theory of additive formations, mean-value the-
orems for multiplicative functions, the probabilistic theory of distribution
of values of additive functions, as well as the theory of factorization of poly-
nomials over finite fields, Ramanujan expansions etc. We now have a rather
mature and rich theory which is well developed, and it is therefore time to
give a readable account of the theory in a new book.

This new book aims to give a comprehensive treatment of the subject,
starting with the now classical results of the first author and moving all the
way to the latest contributions to research in the area, many of which are
due to the second author.

The book focuses strongly on abstract prime number theorems, mean-
value theorems of multiplicative functions, and the normal distribution of
values of additive functions. These topics are covered in Chapters 3, 5, 6,
and 7, which include many new results obtained only in the past twenty
years. The material in the older monograph is reviewed, updated and
treated in detail in Chapters 1, 2, and 4, mainly. In mathematics, the
theory which is exposed here diverges strongly from classical analytic num-
ber theory in its alternative abstract prime number theorems. The whole
of Chapter 5 is devoted to this important aspect of the subject.

The style of the last chapter, Chapter 8, is quite different from that of
previous chapters in the sense that it is a survey of significant results in
some topics not covered in previous chapters. This survey may compensate
for the incompleteness of the main discussion regarding those aspects of the
theory which are not fully treated.

in



iv Preface

Last we observe that this book is not only a collection of distinct
theorems, proven separately. The authors have tried to organize theorems
relevant to each other in appropriate groups, through discussions of rela-
tionships amongst the results. Readers may find many new facts in this
aspect of the treatment, which are not exposed in the original papers.

As the interest in number theory arising from finite fields has steadily
increased in recent years, readers in different areas of pure and applied
mathematics, in computer science, and in other sciences and technologies
may also find this book quite useful. It could also be used as a graduate
textbook and has the advantage of bringing the reader right to the present
cutting edge of research in this area.

The first author thanks Richard Warlimont and the author's son, Arnold
Knopfmacher, for much fruitful research collaboration. Also, he expresses

his appreciation of and admiration for Richard Warlimont, for generously
providing advance copies of his many major contributions to this area and
for his kind interest in and helpful comments on this project.

The _ authors also wish to thank Marcel Dekker, Inc., for its inter-
est in publishing this book and Ingrid Eitzen for her careful typing of the
manuscript.

John Knopfmacher

Wen-Bin Zhang
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INTRODUCTION

This book may be regarded as essentially a revised and much enlarged new
edition of the first author's monograph Analytic Arithmetic of Algebraic
Function Fields1. It is intended as an introduction to one branch of the
wider topic of Abstract Analytic Number Theory treated in the first author's
earlier book, with the latter title2. Although this aspect of the subject was
not discussed in [AB], it appears to be a fundamental one for the type of
theory concerned. It provides in many ways a parallel, in the context of
polynomial rings and algebraic function fields over finite fields, as well as
certain related systems, to the kind of analytic number theory appropriate
to ordinary integers, algebraic number fields, and corresponding further
mathematical systems. At the same time, the present results are frequently
of a more precise nature than their more classical counterparts relating to
integers, number fields, and so on.

The possibility of developing an arithmetical theory based mainly on
the foundation of the axiom referred to here as Axiom A& seems to have
first been pointed out in papers by Fogels [1], However, in these papers,
Fogels dealt only with some very special (though non-trivial) consequences
of Axiom A#, and referred only to polynomial rings and algebraic function
fields over finite fields in order to motivate the axiom. The approach of the
present monograph is somewhat different in that:

(i) it investigates a variety of more basic number-theoretical consequences
of Axiom A& (in some cases together with an additional assumption),

•'See the bibliography - for simplicity, this book shall be referred to throughout as
[ANAL]. However, although for completeness a few academic comparisons with [ANAL]
are sometimes included below, a knowledge of or access to [ANAL] is not required for
a reading of the new book below.

2See bibliography - this book will be denoted by [AB].

1



2 Introduction

(ii) it shows how further concrete motivation for introducing the axiom is
provided by various asymptotic enumeration theorems regarding finite
modules and certain kinds of finite algebras over principal orders in
algebraic function fields, and

(iii) it attempts to lay stress on the fact that the application of arithmetical
consequences of Axiom A& to objects such as modules or algebras then
gives rise to a variety of further enumeration theorems concerning such
entities, which were not known previously.

Put in a different way, the main objective in introducing and developing
the axiomatic discussion below is (as in [AB]) in order to unify (and simplify)
the treatment of certain "arithmetical" phenomena which occur naturally in
a multiplicity of contexts, some of which are not usually viewed in a number-
theoretical way. The main axiomatics are not introduced for the sake of
generalization alone, although sometimes weaker hypotheses are introduced
simply in order to explore the theoretical ramifications of certain types of
conclusions.

The derivation of further concrete enumeration theorems emphasized in
point (iii) above amounts in each case to applying some abstract arithmeti-
cal proposition based on Axiom .4* to a specific mathematical system which
has been shown to fall under the scope of Axiom A* as the consequence
of some (non-trivial) asymptotic enumeration theorem. Given the detailed
description of natural examples of such systems appearing in Section 1.1
below, such a deduction becomes straight-forward. For this reason, even
though (as in similar cases in [AB]) such deductions constitute a major aim
of this monograph, they will normally not be spelled out explicitly. Similarly,
special instances of apparently new abstract theorems will not usually be
pointed out individually. As far as the authors are aware, many of the re-
sults below had not previously been published in books or journals (neither
in abstract nor in "applied" form) before the appearance of [ANAL], and
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several others appear for the first time in this book or have not appeared
previously in book form.

Regarding prerequisites for reading the later text, despite the above re-
marks about new results, it has been designed to be as easily accessible
as possible to readers at the beginning graduate level in mathematics. No
initial knowledge of the area is assumed, apart from that arising from an el-
ementary reading of ordinary number theory. However a brief perusal of the
Introduction to and Chapter 1 of [AB] might be helpful. Although periodic
references are made to [AB], most of these are for purposes of technical com-
parison only, or else quote results which could at least be accepted without
proof on a first reading. Thus a full preliminary knowledge of [AB] is defi-
nitely not required, if occasional quotations from [AB] are accepted without
proof initially. Further, so as to keep the development as self-contained
as possible, the essential initial concepts will be recalled in detail as they
become required below, and the subject will to a large extent be developed
ab initio, subject to the preceding comments. Two further sets of comments
relating to prerequisites seem desirable:

Firstly, in keeping with the aims outlined above, we have attempted
to keep the discussion as elementary as possible in the early and some
later sections, from the point of view of real and complex analysis. Thus
complex analysis is often either avoided, or kept to a moderate level when
its introduction really seems desirable.

Secondly, there is an important point connected with prerequisites con-
cerns algebraic function fields, and topics in algebra. The present mono-
graph covers some aspects of the analytic "arithmetic" of algebraic function
fields, polynomials, and certain related systems of modules and algebras
over finite fields, but it does not attempt to provide a detailed and com-
prehensive introduction to either function fields and their "zeta" functions,
or to the theory of finite modules and algebras connected with function
fields. Since much of our basic concrete motivation for introducing and in-
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vestigating consequences of Axiom A* below stems from information about
the preceding entities, it has been necessary (in order not to contradict the
earlier remarks about minimal prerequisites) to include an outline of a few
relevant known facts about such matters. (References to fuller treatments
of these preliminary facts are provided at the appropriate stages, but partic-
ular mention may be made for example to the books by Deuring [1], Eichler
[1], Jacobson [1] and Thomas [1].) Although the outline of initial facts just
referred to covers some quite advanced topics, a detailed understanding of
the background to these matters is not required in order to appreciate the
motivation for Axiom ^4*, or in order to follow the axiomatic development
thereafter. In addition, some preliminary remarks in Section 1.1 about
polynomial rings over finite fields, and modules over such rings, require no
advanced knowledge and should in themselves provide reasonable partial
motivation for the abstract discussion.

In connection with the further development of this subject, it may be
remarked that, in addition to the actual topics treated below, many other
aspects of classical-type analytic number theory (relating to the Axiom A
in [AB]) may be expected to have (sometimes sharper) counterparts in the
present setting. A few further developments and some open questions or
research projects in this direction are surveyed in the final Chapter 8 below.



CHAPTER 1

ADDITIVE ARITHMETICAL SEMIGROUPS
AND AXIOM A*

1.1 Basic Concepts and Examples

Polynomial rings and algebraic function fields in one variable over a finite
field F?, as well as certain classes of finite modules and algebras connected
with these, provide reasonable motivation for studying consequences of a
particular Axiom A^ concerning the asymptotic behaviour of certain kinds
of arithmetical semigroups discussed below. This monograph deals partic-
ularly with consequences of Axiom .4* with respect to asymptotic average
values of arithmetical functions, and regarding asymptotic densities of sets
of special "arithmetical" or number-theoretical interest. In addition, in the
process of establishing the validity of Axiom .4* for suitable semigroups
relating to special types of modules and algebras, it includes various asymp-
totic enumeration theorems regarding isomorphism classes, which have some
intrinsic interest independent of the present abstract arithmetical context.
(As emphasized implicitly in the Introduction, the application of conse-
quences of Axiom ,4* to semigroups connected with modules and algebras
often provides further non-obvious enumeration theorems for such objects.)

In order to formulate the basic axiom in question, first recall (cf. [AB],
page 11) that an arithmetical semigroup is by definition a commutative
semigroup Q with identity element 1, which contains a countable subset P
such that every element a ̂  1 in G admits unique factorization into a finite
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product of powers of elements of P, together with a real-valued mapping
on Q such that:

(i) |1| = 1, |p| > 1 for p € 7>,

(ii) ab\ — \a\ \b\ for all a, b € Q ,

(iii) the total number N(x) of elements a with |a < x is finite, for each
x > 0.

The elements of P are called the primes of Q, and | is called the norm
mapping on Q. It is obvious that, corresponding to any fixed constant c > 1,
the definition d(a) = logc [a yields a mapping d on Q such that:

(i) 5(1) = 0, d(p) > O f o r p e P ,

(ii) d(ab) = d(a] + d(b) for all a, b <E Q,

(iii) the total number N#(x) of elements a with <9(a) < x is finite, for each
x > 0.

Conversely, any real-valued mapping d with the last three properties
yields a norm on Q, if one defines \a = c3^. In cases where such a mapping
d is of primary interest, we call Q together with d an additive arithmetical
semigroup, and refer to d as the degree mapping on Q; compare [AB] page 56.
In particular, because it suffices for all the natural examples cited below,
throughout this monograph (unless otherwise stated) it shall be assumed
that the symbol Q denotes an additive arithmetical semigroup relative to an
integer-valued degree mapping d.

In these circumstances, we shall be particularly concerned with arith-
metical consequences of assumptions about the total number (7*(n) or G(n)
of elements of degree n in Q, or about the total number P#(n) or P(n) of
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primes of degree n in Q. For convenience below, unlike the usage in [AB]
and [ANAL], the simplified notations G(n) and P(n) will usually replace
G*(ra) and P*(n), respectively, in this book. On the basis of the motiva-
tion supplied by numerous natural examples to be listed below, the main
emphasis in this book will be on semigroups satisfying

Axiom A&: There exist constants A > 0, q > 1, and v with 0 < v < 1
depending on Q, such that

as n —> oo.

As in [AB], our main purpose in investigating arithmetical consequences
of axioms on the asymptotic behaviour of arithmetical semigroups is to ob-
tain conveniently unified derivations of results that are valid for reasonably
large classes of concrete semigroups that occur naturally in various contexts.
The following are examples of semigroups satisfying Axiom A^.

(1.1.1) EXAMPLE: Galois polynomial rings. Let Kq[X] denote a
polynomial ring in an indeterminate X over the finite Galois field Wq with
q elements (q a prime-power)3. The subset Qq = Q(q,X) consisting of all
monic polynomials in Wq[X] forms a semigroup under multiplication, which
may be identified essentially with the semigroup of all associate classes
of non-zero elements in Wq[X] discussed briefly in [AB], Chapter 3. In
particular, Qq together with the usual degree mapping on polynomials forms
an additive arithmetical semigroup such that

3Note that, in Axiom A&, the constant q need not necessarily be a prime-power or
an integer. However, little would be lost in assuming q to be a prime-power, since this
is the case in all the cited examples.
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(1.1.2) EXAMPLE: Finite modules over Wq[X]. Let Fq denote
the category of all finitely-generated torsion modules over the above ring
Fg[-X"]. The ring F9[A"] is a principal ideal domain, and thus a quite explicit
description of the modules in J-q may be deduced from the well known theory
of finitely-generated modules over principal ideal domains. In particular,
J-q satisfies the Krull-Schmidt theorem, and the indecomposable modules
in J-q are essentially the various cyclic modules of type Wq[X}/(pr), where
p denotes a prime (irreducible) polynomial in Fg[-X"], and r is a positive
integer. Further, if / denotes an arbitrary polynomial of degree n > 0
in F?[A"], it follows easily from the division algorithm in F?[X] that the
quotient ring (or module) Wq[X]/(f] contains exactly qn elements. Thus the
preceding remark about the structure of modules in J-q implies that every
module in J-q is finite of cardinal some power of q, that J-q coincides with
the category of all (unital) modules of finite cardinal over F,[Jt], and that
the total number J~q(n) of non-isomorphic modules of cardinal qn in J-q is
finite for each n = 0 , 1 , 2 , . . . .

Thus, relative to the degree function d(M) = logg card(M) {M in JT?},
jFg forms an additive arithmetical category as defined in [AB], page 56. In
Section 2.1 below, we shall prove that the associated additive arithmetical
semigroup consisting of the set of all isomorphism classes of modules in J-q

satisfies Axiom A&, and in fact

fq(n) = P0(q~l}qn + 0 (qin) as n -» oo,

where Po(y) = IT^Li(l — yr)~l is the classical generating function for arith-
metical partitions (cf. [AB], page 63, say). Thus here, as indicated earlier,
verification of the relevant asymptotic axiom amounts to establishing an
asymptotic enumeration theorem which has some interest independent of
any abstract number-theoretical considerations. Similar remarks apply to
many of the other natural examples to be considered later, and in fact most
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of the general comments on motivation for the relevant abstract theories,
that were made in [AB] (for example, in its Introduction), may be applied
without essential change to the abstract discussion below. (At the same
time, as with [AB], a reader need not be deterred from proceeding with the
general treatment because of a lack of familiarity with all aspects of the
individual concrete examples listed - although there has been no attempt
here at indicating more than an outline of the detailed mathematical foun-
dations underlying our motivating examples, only a cursory awareness of
their nature is required for a first reading.)

(1.1.3) EXAMPLE: Semisimple finite algebras over Wq[X}. Let
D denote an integral domain. By a D-algebra, we understand a (unital) D-
module A which is simultaneously an associative ring, and satisfies: X(xy) =
(\x}y = x(\y] for all A e _D, and x, y 6 A. In the theory of such algebras,
a particularly well understood class is that of the semi-simple algebras
subject to a descending chain condition; see Jacobson [1], Chapter 4. In
particular, letting S — SD denote the class of all semi-simple D-algebras
of finite cardinal, the standard structure theory implies that every algebra
in S has a unique expression (up to isomorphism and rearrangement) as
a direct sum of simple finite D-algebras. Here a simple J9-algebra is an
algebra in which not all products are zero, which contains no proper ideals
that are simultaneously submodules, and it is a consequence of standard
theory that every simple D-algebra of finite cardinal reduces to a total
matrix algebra Mn(F] over a finite -D-algebra F which is a field. In the
case when D is the polynomial ring F?[X], it can be deduced further (cf. say
J. Knopfmacher [1,2]) that the simple finite D-algebras are isomorphic to
the various total matrix algebras Mn(Fr] [n, r = 1,2, . . . ] , where FT denotes
a field extension of degree r of the field FI = Wq[X]/(p), for some prime
polynomial p. Further, if p has degree m, it is easy to see that such an
algebra Mn(Fr) contains exactly qmrn elements.

The above remarks imply that SD forms an additive arithmetical cate-
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gory relative to the degree function d(A) = logg card(A) {A in SD}, when
D = F,[X]. Letting Sq denote the category SD in this case, it will be proved
in Section 2.1 below that the associated additive arithmetical semigroup of
all isomorphism classes of algebras in Sq satisfies Axiom ^4*, with

Sq(n) = Aqqn + 0 q*n as n -> oo,

where Aq = rirm2>i(l ~ ql~rm )-1
j and Sq(n) denotes the total number of

non-isomorphic algebras of cardinal qn in Sq.

(1.1.4) EXAMPLE: Integral divisors in algebraic function fields.
Let K denote a field of algebraic functions in one variable over a finite
constant field Fg with q elements, i.e., let K be an extension field of finite
degree over the field of fractions ¥ q ( X ) of the polynomial ring F,[X]. A
fairly extensive class of natural examples of semigroups satisfying Axiom
,4* stems from the theory of such algebraic function fields, and in order to
describe such examples we shall need to recall some well known properties
of these fields (treated at length in the books of Deuring [1] and Eichler [1],
for example).

The polynomial ring Wq[X] and its field of fractions Wq(X) are in many
ways "arithmetical cousins" of the ring Z of all rational integers and the field
Q of all rational numbers. In a similar way, it has long been recognized that
algebraic function fields like K above are in many ways natural analogues
of ordinary algebraic number fields (i.e., extension fields of finite degree over
Q. With the exception of special studies relating to the polynomial ring
F?[,X"], the derivation of an analogue of Landau's Prime Ideal Theorem, and
investigations of a parallel to the Dedekind zeta function of a number field,
this "arithmetical" parallel between the two classes of fields has not been
pursued very extensively in relation to many questions of analytic number
theory. Consequently, a large proportion of the results to be derived later
subject to Axiom A# appear to be relatively new when applied to algebraic
function fields, as well as for the other examples listed above. (However,



Section 1.1: Basic concepts and examples 11

this comment is partly but less widely applicable to the specializations valid
for IF9[-X"] also, since here one may also refer to various research papers, such
as those of Carlitz [1-3], Carlitz and Cohen [1-2], E. Cohen [1], S.D. Cohen
[1-2] and Shader [1], for example; cf. also [AB], Chapter 3.)

The analogue of the Dedekind zeta function of an algebraic number field
for a function field K as above is

where the sum is over all integral divisors a of K, N(a) denotes the "abso-
lute norm" of a, and the product is over all prime divisors p; see for example
Eichler [1], page 300. It is known (cf. Eichler [1], say) that

where L(q~z) is a polynomial with rational integer coefficients in q~z , whose
degree is twice the "genus" of K. Further, by a theorem of A. Weil, every
zero z of L(q~z) has real part |, i.e., the "Riemann hypothesis" is valid for

By way of illustration it may be noted that the field KQ = F?(JY) has
the zeta function (0(z) = (1 - q~z)~l (1 - ql'z}~1-

Now let GK denote the multiplicative semigroup of all integral divisors
of K. Then GK forms an additive arithmetical semigroup relative to the
degree function d(a) = logqN(a), and (if K(n) denotes the total number
of divisors of degree n in GK} one has

n=0

By comparing this with the equation for (,K(Z) quoted above, and com-
paring coefficients, it follows that

K(n} = AKqn + B for n > 2g,
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where AK = -^L(q~l), 2g = degL(q~z), and B is a constant. Thus

K(n) = AKqn + O(l) as n -> oo,

and hence QK satisfies Axiom J\$. (Although the fact will not be used here,
it may be interesting to remark that the polynomial L(q~z] is known to
satisfy a certain functional equation relative to the substitution z —> 1 — z
which implies that L(q~1} = q~9h, where h is the "class number" of A'.)

(1.1.5) EXAMPLE: Ideals in the principal order of an algebraic
function field. Let D denote the ring of integral functions m the algebraic
function field K discussed above, i.e., the principal order in K with respect
to F?[X]; for later purposes, it will be convenient to refer to D simply as the
principal order in K. Unlike the situation in algebraic number theory, the
theory of the non-zero ideals within D does not quite coincide with that
of the integral divisors in K. The distinction arises from the (finite) set
of prime divisors of K induced by the denominator divisor of X in Wq(X};
the set Qrj of all non-zero ideals of the ring D may be identified essentially
with all those integral divisors of K that are not divisible by any of these
particular prime divisors. Thus Qrj forms a sub-semigroup of QK, and it
turns out that the absolute norm N(a] of an ideal a in Qrj is equal to the
total number of elements of the quotient ring D/a; cf. Eichler [1], page 300.

Now let D(n) denote the total number of ideals of degree n in D, i.e.,
ideals of absolute norm qn. Then, as in [AB], Chapter 3, it may be deduced
that (relative to the absolute norm) the arithmetical semigroup GD has the
zeta function

n=0 P

where the product is over all prime ideals p in D. Thus
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where the last product is over the finite set of prime divisors of K arising
from the "denominator divisor" of X in Wq(X}. By the formulae for (,K(Z]
quoted earlier, it therefore follows that

where Q(q~z) is also a polynomial with rational integer coefficients in q~z.
By equating coefficients of the powers of q~z, this implies that £)*(n) =
Q(q~l)qn for n > M, where M = degQ(<?~2). Thus

D(n) = ADqn + 0(1) as n -> oo,

where AD — Q(q~1}', compare Example 1.1.1 above, which is essentially the
special case of the present example that occurs when K = ¥ q ( X ) .

The fact that the semigroup Qrj satisfies Axiom A% will turn out later on
to be particularly significant for the purpose of establishing both asymptotic
enumeration theorems, and the validity of Axiom .4*, in relation to the
following examples:

(1.1.6) EXAMPLE: Finite modules over a ring of integral func-
tions. Let J- = f r j denote the category of all finitely-generated torsion
modules over the ring D of "integral functions" considered above; when
D = Wq[X], J-^D reduces to the category J-q of Example 1.1.2. In the general
case, D is a domain of the kind treated in the book of Jacobson [1], Chap-
ter 6, and the module theory developed there implies that J- is a category
satisfying the Krull-Schmidt theorem, and that the indecomposable mod-
ules in J- are isomorphic to the various cyclic modules D/pr , where p is a
prime ideal in D and r is a positive integer. By an earlier assertion about
the absolute norm of an ideal in QD, it follows that such a module D / pT

contains exactly N(p)T elements.

In view of the above remarks, it is not hard to deduce that T coincides
with the category of all (unital) modules of finite cardinal over D, and
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}- forms an additive arithmetical category relative to the degree function
<9(M) = logg card(M) {M in f}. It follows from an asymptotic theorem
regarding JF to be proved later that the associated additive arithmetical
semigroup of all isomorphism classes of modules in f satisfies Axiom A^ .

(1.1.7) EXAMPLE: Semisimple finite algebras over a ring of in-
tegral functions. Consider the category S — SD discussed in Example
1.1.3 above, in the case when D is the present ring of integral functions
in the field K. Then (cf. say J. Knopfmacher [1,2]) the description of the
simple D-algebras given earlier for the case when D — Wq[X] can be shown
to extend to the present more general case in such a way that they may
now be listed (up to isomorphism) as the various total matrix algebras
Mn(FT)[n,r = 1,2, . . . ] , where FT denotes a field extension of degree r of
the finite field FI = D / p {p a prime ideal in D}; here Mn(Fr) has cardi-
nal N(p]rn . Thus, relative to the degree function d(B) — log? card(.B)
{B in S}, S also forms an additive arithmetical category in the present
case, and it will be proved later that its associated arithmetical semigroup
also satisfies Axiom A* .

It is interesting to note that the above natural examples appertaining
to Axiom A& are the direct polynomial and function field analogues of
the main concrete examples of arithmetical semigroups satisfying Axiom A
that were discussed in [AB], Part II, the latter examples being grounded
on properties of algebraic number fields. Further, one may in a sense view
Axiom A* as a kind of "discrete" additive analogue of Axiom A: For, it is
easy to verify that Axiom A^ (in the form stated earlier) is equivalent to
the assertion that, as n — » oo,

where A' = ~~[A. Thus, if Q is regarded as an arithmetical semigroup
relative to the norm a j = qd^ , Axiom A* is equivalent to the assertion
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that, as x — > oo via powers of q alone,

In view of these remarks it is not surprising that many conclusions based
on Axiom A are parallel by conclusions subject to Axiom .4*. However, as
will be seen shortly, the consequences of Axiom A& often tend to give more
precise information, and have simpler proofs.

We conclude this section with another algebraic example, and a simple
proposition showing that every arithmetical semigroup satisfying Axiom A*
has infinitely many sub-semigroups satisfying the same axiom.

(1.1.8) EXAMPLE: Homogenous polynomials over Wq. We thank
Arnold Knopfmacher for this example: Let F?[.X"i, . . . , Xk] denote a polyno-
mial ring in k indeterminates Xi, . . . , Xk over F?. Let T-Lq^ denote the set of
all associate-classes of homogeneous polynomials in F9psT1; . . . , Xk}, where
two polynomials are called associates if and only if they differ at most by a
non-zero factor A 6 Wq. If d now represents total degree, then T~Lqtk forms an
additive arithmetical semigroup with exactly

elements of degree n; this equation follows easily with aid of the standard
combinatorial proposition that there are (™"f 71) different solutions of the

\ K i /

equation r\ + r% + • • • + r^ = n in non-negative integers r,- (cf. say van Lint
and Wilson [1], Chap. 13).

In particular, for k = 2, the semigroup Hq^ satisfies Axiom A&.

(1.1.9) PROPOSITION. Suppose that Q is an additive arithmetical
semigroup satisfying Axiom A& as stated above, and let Q(k] denote the
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set of all elements of Q that are coprime to a given element k G Q. Then
Q(k] also forms an arithmetical semigroup satisfying Axiom A& , and (with
self-explanatory notation) as n — > oo

prime p\k

PROOF. First note that Q ( l ) = 0, and that in general Q(k) is a sub-
semigroup of Q depending only the distinct primes pi,...,pm dividing k.
Then observe that, for a prime p G P,

G(p)(n) = G(n}~ £ 1 = G(n) - £ 1
d(a}~n, p\a d(pb)=n

= G(n] - G(n - d ( p ) } =

The stated formula for G(fc}(n) now follows by induction on the number ra
primes pi\k. D



1.2 The Zeta or Generating Function

For the rest of this chapter, unless the contrary is explicitly indicated, (Q, d)
shall denote an arbitrary additive arithmetical semigroup satisfying Axiom
A^ in the form stated earlier. Here properties relating to the degree function
d are usually of greatest interest, and so most of the discussion will be
expressed accordingly.

Since the degree mapping d only is assumed to be integer-valued, special
interest attaches to the counting function G*(n) or G(n), and P*(n) or
P(n), defined in the previous section for n = 0 ,1 ,2 , . . . . These numbers are
inter-related by means of the useful Euler product formula for Q below,
so named because of its analogy with similar formulae for ordinary integers
and algebraic number fields stemming from Euler and (later) Dedekind. A
fuller treatment of such formulae for arithmetical semigroups is given in
Chapter 3 of [AB], but a simple alternative starting approach should suffice
here:

As a matter of temporary convenience, first suppose that Q is an arbi-
trary arithmetical semigroup with an integer-valued norm mapping |. Also
as temporary notations only, let G'(n) denote the total number of elements
of Q with norm n, and let P'(n] denote the corresponding number of prime
elements of Q. Then, ignoring questions of convergence initially, note (along
lines stemming from Euler) that unique factorization into prime elements
implies that the series

n=l agC?

= 1+ E
all products

p, -1 pr2 ...p^1 with

17
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= n (i + br + br2* + • • • ) = n a -

m=2

As a function of z, (,g(z] is called the zeta function of Q, and the last
product is its "Euler product" formula. In the case when Q is an additive
arithmetical semigroup with a = c9^ for some integer c > 1, one may
substitute the symbol y for c~z and directly obtain the modified Euler
product formula:

n=0 m=l

then Zg(y) = S^L0 G$(n)yn is called the modified zeta, or enumerating,
or generating, function of Q.

Note that when Q satisfies Axiom A& and q is also an integer then q
would be a natural (though not essential) choice for the preceding integer
c > I used in defining the corresponding norm mapping on Q. When rel-
evant, such a choice will usually be followed, unless otherwise indicated.
(Observe once more that although the constant q > 1 of Axiom A& is not
stipulated to be an integer, all the cited natural instances of this axiom
involve prime-power values for q; hence little would be lost in assuming
such an extra condition. Since the abstract development of consequences
of Axiom A* below centres on properties of an arbitrary but fixed addi-
tive arithmetical semigroup Q satisfying Axiom A*, it will be convenient
for much of the later discussion in this book to use the simplified nota-
tions Z ( y ) , G(n) and P(n] for Zs(y), G*(n) and P*(n), respectively. The
(modified) Euler product formula for Q will then have the appearance

m-l
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The next proposition deals with the analytical validity of this formula
under Axiom .4*, when y takes complex values:

(1.2.1) PROPOSITION. The radius of convergence of Z(y) is q~l, and
Z ( y ) satisfies the above "Euler product" formula analytically and is non-
zero when \y\ < q~l. Further, Z ( y ) extends to a regular analytic function
°f y f°r all complex y ^ q~l in the open disc \y\ < q~v, and has a simple
pole with residue —q~lA at y = q~l.

PROOF. Since G(n) = 0(gn), it is obvious that Z ( y ) is absolutely con-
vergent for \qy\ < 1, i.e., \y\ < q~l. Hence, with any convenient choice of
an integer c > 1, the corresponding series (g(z) is absolutely convergent for
Rez > 1. Hence it follows from Corollary 4.2.2 of [AB] that Z ( y ) satisfies
the Euler product formula analytically and is non-zero, when \y\ < q~l.

~Now let Rn = G(n) - Aqn . Then, for \y\ < q
OO OO A OQ

z(y] = A £ qnyn + E R
nyn = 73— + E Rnyn-

7i=0 n=0 l %y 7i=0

Since Rn ~ O(qvn) by Axiom .4*, one sees that the last series represents
a regular analytic function of y in the disc \y\ < q~" . Hence the other
assertions about Z(y) follows from the preceding formula. D

In parallel with other situations of abstract analytic number theory, it
is sometimes useful to have information about the asymptotic behaviour of
partial sums of Z(y) for general complex values of y:

(1.2.2) PROPOSITION.

(i) For \y\ < q~l ,
^G(n)yn

n<N
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(ii)

E G(n)q~n = AN + 70 + A + O(q^"~1' ),
n<N

where

~ „ _ „ _ . / A

"m For

PROOF.

z/M«r",
^ G(n)2/" = ̂ ^ l + \ 0(N) if \y\ =

n<N n>N \n>N

= Z(y} + 0(\qy\N),

since \qy\ < 1.

(ii) Let #n = G(n) - Aqn. Then, by Axiom A*,

E G(n)9-n =
n<]V n<

n=0 n>N

since i/ < 1.
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(iii) For y ^ q~l,

Y G(n)yn = —^— \(qy)N+1 ~ l] + Y Rny" •£_j V / # _ 1 1 j ^-_J

n<N "y ~~ l n<N

The three cases of assertion (iii) are then easily dealt with, with the aid of
elementary properties of geometric progressions. D

It is interesting to note that, relative to the norm on Q defined by some
integer c > 1, assertion (ii) above implies that the constant 70 satisfies

7G = lim •

A

v ; ( z - l ) l o g c j '

and

\a\<x logc

as x — * oo via powers of c alone. Therefore the constant FG is closely
analogous to the "Euler constant" of an arithmetical semigroup satisfying
Axiom A (cf. [AB], page 89), and the same name may be applied in the
present constant. (If convenient, we may also write 7,3 = 75.)

By way of illustration, consider the Euler constants of the semi-groups
QK and QD discussed in Examples 1.1.4 and 1.1.5 above:

Firstly, by Proposition 1.2.2 (ii),

( ^M _ ^(g-1) 1
r I l-« 0-1 I— — — - —19 K = , , ,l-qyj j/-?-1 ( 1 -qy

by 1'Hopital's theorem on limits or the definition of a derivative. Similarly,
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In particular, by substitution in the last formula (or by a direct argument)
when D = F7[.Y], one finds that the semigroup Qq of all monic polynomials
in F7[-X] has Euler constant zero. This fact contrasts strongly with the non-
triviality of the classical Euler constant 7 = 0.57221 . . . , which arises from
the semigroup N of all positive integers.

The next proposition shows that, for a general semigroup Q as before,
all the coefficients 7,- = 7; (£7) (i > 0) in the Laurent expansion of Za(y~)
about y = q~l satisfy relations of a type analogous to those that occur in
Proposition 1.2.2 (ii) for the Euler constant JG = 7o! hence these coefficients
may be referred to as the generalized Euler constants of Q when i > 1. (For
the analogous theorem subject to Axiom A of [AB], see J. Knopfmacher

[4]-)

(1.2.3) PROPOSITION. Let the Laurent expansion o f Z ( y ) about y
be written in the form

A °°
'

Then

7, = <?' E

n=l

PROOF. This proposition is a consequence of Axiom A* together with:

(1.2.4) LEMMA. Let F(y) = £^!0&(n)t/n be a power series with
coefficients b(n) having the property that there exist constants B ^ 0, x > 1
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and a < I , such that

b(N) = BxN + O(xaN] as N -> oo.

Then the radius of convergence of F(y] is x~l, and -F(y) can be extended
to a regular analytic function of y for all complex y ^ x~l in the open disc
\y\ < x~~a, in such a way that F(y) has a Laurent expansion about y = x~l,
of the form

D

F(ff) = T—-1 xv
where

a. - x' Y" \Un\x~n -B\+OPi ~ x L^ 1 j I [O^F -°j T L/

" j f6(n)x-n - B| .
z y L J

PROOF. It follows from the asymptotic hypothesis on b(N) that F ( y ) is
absolutely convergent when \xy\ < 1, i.e., when \y\ < x~l. Also, similarly
to the proof of Proposition 1.2.1, if rn = 6(n) — Bxn and \y\ < x~l,

r> oo

where the last series is absolutely convergent for \y\ < x~a . Thus F(y) has
radius of convergence x"1, and about y = x"1 the function g(y] = Z^0 rnyn

has a Taylor expansion of the form

where
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Now, for z > 0,

n<N I ' ^

n>N

with the aid of (Abelian) partial summation, as discussed for example in
[AB], Chapter 4, §2. This proves the lemma. D



1.3 Averages and Densities in Simple Cases

We turn now to initial discussions of the "average values" of arithmetical
functions, and of the "densities" of certain subsets of Q. Here, any complex-
valued function on Q is referred to as an arithmetical function, but, as in
[AB], our main concern will be with special functions arising from particular
number-theoretical considerations.

Given an arithmetical function /, the average- (or mean-) value of /
for elements of degree N in Q is denned to be f(N)/G(N), where f ( N ) =
53a(a)=jv f ( a ) . Note that here the bar over / does not indicate complex-
conjugation; sometimes we may also write F(n) for f(n), alternatively, and
refer to F or / as the summatory function associated with /. If this
average value tends to a finite limit m = m(f) as TV —>• oo, we shall call m(/)
the asymptotic mean—value of /. If, in addition, / is the characteristic
function of some subset E of Q, we shall call its asymptotic mean-value
d = d(E) the asymptotic density of E in Q. (Recall that the characteristic
function of E is the function that takes value 1 on elements of E, and value
0 otherwise.)

Regarding the determination of average values (as in Theorem 3.1 below,
for example), attention may and normally will be confined to specifying the
asymptotic behaviour of the relevant numbers f ( N ) as N —> oo, since the
same denominator G(N] appears throughout and is given asymptotically
by Axiom A*. In this connection, it is also worth noting that the present
terminology is consistent with that used in [AB], Chapter 4, in the context
of Axiom A:

In order to verify this assertion, note firstly that, if / has a mean-value
m(/) in the above sense, then a standard elementary theorem on limits

25
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implies that

Conversely, if the last limit is assumed to exist, the fact that

£ G(n) ~ -^—qN+l as N -> oo
n<W ?-l

implies that

/(«)- £ 7H
n<AT-l

N N

= £

m(/) gN+1 - qN = Am(f)qN as TV -> oo;

thus m(/) is also the asymptotic mean-value of / in the present sense.

(1.3.1) THEOREM. Let /, g be arithmetical functions such that4

f * ( y ) = [Z(y)}kg#(y),

where k is a positive integer, and g^(y) is absolutely convergent for \y\ <
qT , T > — 1. Then as n — > oo,

In particular, if k = 1, f has the mean-value

PROOF. First consider the case when / is the generalized divisor function
dk such that d k ( a ) = Ei,162...i,fc=0 1{° ^ ^}:

4Here, and later on, repeated use will be made of the associated power series or
generating-function of /: /*(j/) = E!T=o f(n)yn °f a given arithmetical function /.
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(1.3.2) LEMMA. Fork>2,

dk(N) = „ ,,JVfc"V + 0(Nk-2qN) as N -> oo.
(*-!)!

PROOF. By Theorem 3.3.1 of [AB], df(y) = [Z(y)]k. The lemma will
be proved by induction, starting with the divisor function d = d%. Since
d*(y] = [Z(y}}\

N N

r=0 T=0

r=0

which proves the lemma for k = 2.

Now let k > 2, and assume that the lemma has already been proved for
r f fc_i . Then the formula df(y) = df_l(y}Z(y] implies that

Tk(N) =

where B = Ak~l/(k - 2)1 . Therefore

ABqNrk~2 + O^-y^1-")) + 0(rk-3qNk~2 -^1-") k-3N

r=0

1

by the elementary estimate:

N'W™ =
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This proves the lemma. d

(1.3.3) COROLLARY. The average value of the divisor function d for
elements of degree N in Q is equal to

AN + 0(1) as JV-»oo. D

Theorem 1.3.1 is a direct consequence of Lemma 1.3.2, Axiom A^ and:

(1.3.4) LEMMA. Let F^y) = F2(y}F3(y), where Ft(y) = Y^=Qct(n)yn.
Suppose that F3(y) is absolutely convergent for \y\ < xr (where x > 1 and
T > —I), and that

c2(7V) = BNuxN + O(NvxaN) as N -> oo

(where a < I , and u, v are non-negative integers). Suppose also that a < 1
if u = 0, while u > v if a = 1. Then, as N —> oo,

ci(JV) =

PROOF. It is understood that the numbers, 5, u, u, x, a are constant rela-
tive to N. Then the assumption about c2(JV) shows that F%(y) is absolutely
convergent in an open disc with centre the origin, and hence

= E c,(N-r}c3(r} = £ {B(N-r)"xN-r+O ((N - r}vx^N-^) }c3(r}
r=0 r=0

In the case when u = 0, we have a < 1, and so

NvxaN = Q(xc.'N} ag JV -> 00,
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for a suitable constant a' > a with T > —a' > —1. Therefore, in this case,

r=0 \ r=0

Hence the lemma follows when u = 0.

When u > 0, one can write

NvxaN = O(Nu~lxN) as N -> oo,

and therefore

CH ) &x /_^c3\r)x 2—t I • I \ r> ' \ 2^ 3V )r
r=0 j=0 V / V r=0

i=0 r=0

where e > 0 is arbitrary and may be chosen so that r > —1 + e. Hence
the lemma follows in this case also, since F3(y) is absolutely convergent for
\y\ < xr. n

We may now consider some applications of Theorem 1.3.1 to special
arithmetical functions of the kinds discussed in [AB], pages 39-40, based on
the fact that their associated power series bear simple relationships with the
generating function Z ( y ) . The relationships referred to are given in [AB],
Theorem 3.3.1, and for the purpose of reference to that theorem it should
be emphasized that the coefficients of the series /*(y) are here denoted by
/(n), instead of by f*(n)(n = 0, 1, 2, . . .).

First consider the unitary-divisor function dt such that d f ( a ) is the
total number of divisors d of a 6 Q for which d and a/d are coprime. By
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[AB], Theorem 3.3.1, df(y) = [ Z ( y } } 2 / Z ( y 2 ) . Since the series for Z(y2) is
absolutely convergent for \y\ < q~z, and [Z(y)]~l = /z*(2/), where /z is the
Mb'bius function on Q, and since |/z(n)| < G(n) (see [AB], pages 37, 69),
Theorem 1.3.1 therefore implies:

(1.3.5) PROPOSITION. The average-value of the unitary-divisor func-
tion df for elements of degree N in Q is asymptotically

AN/Z(q-2) as N -» oo. D

Next consider the point-wise square d2 of the divisor function d. By
Theorem 3.3.1 of [AB], d2*(y] = [Z(y)]4/Z(y2). Therefore in this case,
Theorem 1.3.1 yields:

(1.3.6) PROPOSITION. The average-value of d2(a) for elements a G Q
of degree N is asymptotically

A3N3/GZ(q-2) as N -> oo. D

In [AB], the function /3 denned as follows was found to have interesting
properties: Let a = p^p?2 .. .p^ for distinct primes p,- £ P, and r,- > 1;
then define j3(a) = r1r2 . . .rm . Also let /3(l) = 1. Then (see [AB] page
46) 0(a) can be interpreted as the total number of divisors d of a such
that p2\d whenever a given prime p\d. By Theorem 3.3.1 of [AB], /?*(y) =
Z(y}Z(y2)Z(y3)/Z(y6). Hence Theorem 1.3.1 implies:

(1.3.7) PROPOSITION. The function P has the asymptotic mean-value

. D
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Now consider the set Q^/.) °f all k-free elements of Q, i.e., elements that
are not divisible by any A;th powers bk other than 1. By [AB], Theorem
3.3.1, the characteristic function qk of Q(k) satisfies the relation: qf(y) =
Z ( y ) / Z ( y k ) . Hence we deduce:

(1.3.8) PROPOSITION. The set Q(k) of all k-free elements of Q has the
asymptotic density l/Z(q~k] in Q(k > 2). CD

Since Z(q"k] = C,g(k] when c = q is an integer, this last proposition
is directly analogous to Proposition 4.4.5 of [AB], which deals with the
density of Q^ subject to Axiom A. In fact, as was mentioned earlier, most
of the present results are not only analogous to ones discussed in [AB] Part
II, but they often yield more precise information than the corresponding
conclusions subject to Axiom A] for example, compare Proposition 1.3.6
with the case k = 2 of Proposition 4.4.1 in [AB].



1.4 Asymptotic Moments of Specific
Functions

In addition to studying the average value, it is sometimes of interest to
investigate the kth moment of an arithmetical function / over elements of
degree TV in Q (i.e., the average value of the point-wise kth power /* for
elements of degree JV), for some number k ^ 1. For example, Proposition
1.3.6 gives the asymptotic behaviour of the second moment of d for elements
of large degree N. If the kth moment of / is asymptotically constant, i.e.,
if fk has a mean-value m ( f k ) , we shall refer to m ( f k ) as the asymptotic
kth moment of /.

In order to derive some results about kth moments in certain cases, and
also for other purposes later on, it is convenient here to first recall a few
general concepts, and propositions concerning them, which were discussed
in [AB]. These concepts particularly concern certain kinds of arithmetical
functions which occur repeatedly in specific number-theoretical problems:

Firstly, an arithmetical function / is called multiplicative if and only
if /(I) = 1 and /(aft) = /(a)/(6) whenever a, b £ Q are coprime; / is
completely multiplicative if and only if /(I) = 1 and f ( a b ) — f ( a ) f ( b )
for all a, 6 6 Q. Secondly, an arithmetical function / is said to be prime-
independent if an only if, for any prime-power pr, the value f(pT) is inde-
pendent of the prime p 6 P] a PIM-function is one which is both prime-
independent and multiplicative. Next, an additive function is defined to be
a function g on Q such that g(ab) = g(a) + g(b) whenever a, b are coprime,
and a completely additive function g is one such that g(ab) = g(a) + g(b)
for all a, b € Q', g is a PIA-function if it is both prime-independent and
additive.

It is convenient at this stage to state an important lemma 1.4.1 on

32
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multiplicative functions, even though it will not be used directly before
Chapter 3 below. This lemma involves pseudo-convergent infinite products
of formal power series, as treated in [AB], Chapter 2. Strictly speaking,
the discussion in [AB] concerns pseudo-convergent products of arithmetical
functions relative to a certain non-archimedean metric /a, but by directly
analogous arguments one can derive a corresponding theory for formal power
series relative to the metric a defined on page 36 of [AB]. Essentially, a
pseudo-convergent product is simply a formal product, and Lemma 1.4.1 is
merely a translation of [AB], Corollary 2.4.2, into the context of an additive
arithmetical semigroup, similar to the other kinds of translations into this
context treated in [AB], Chapter 3. (The lemma does not depend on either
Axiom .4* or the assumption that d be integer-valued. Its validity for
complex values of y in terms of ordinary convergence will be discussed in
individual instances when this is needed later.)

(1.4.1) CANONICAL PRODUCT LEMMA.

(i) If f is a multiplicative function on Q then

f*(y] = II 1 + f(p}yd(p) + f(p2}y28(p) + ••• + f(pr)yrd(p) + ••
Hence, if f is a PIM-function, then

f*(y] = n
m>0

where cr = f ( p r ) {p&P}.

(ii) If f is a completely multiplicative function on Q then

P&T

Hence, if f is both prime-independent and completely multiplicative,
then

f*(y}= n a - ^Tp(m) ,
m>0
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where a = f ( p ) {p € P}. d

In order to study the various fcth moments of a given function, and more
generally the average values of functions which are not necessarily related
by simple finite formulae to Z(y), use can often be made of Lemma 1.4.2
below. This lemma is essentially a re-statement for the present situation
of Proposition 4.3.7 and Lemma 4.3.8 of [AB], and may be proved by argu-
ments which are almost identical with those in [AB]:

(1.4.2) LEMMA. Let f denote a PIM-function on Q such that f(pT) ^ 0
for some prime-power pr £ Q. Suppose that f ( p r ) + O(tr) as r —> oo (p G
P), for a constant t satisfying I < t < q0 , where q0 = min{|p| : p 6 P}
and m is the least positive integer such that f ( p m ) ^ 0. Then

f * ( y ] = [ Z ( y m ) } k g * ( y ) ,

where k = f(pm), and <?*(y) is a series which is absolutely convergent when
\y\ < <f jor some T > —1/m. Further, for \y\ < qr',

Lr=0

where the product is also absolutely convergent. D

In connection with Lemma 1.4.2, it is worth noting that the above abso-
lutely convergent product decomposition for y\ < qr remains valid for any
-P/M-function g such that (for p 6 P} either

(i) d(pr) = 0 (0 < r < m) and g(pT) = O(tT) for a constant t < %~T,
where T < — l/(m + 1), or

(ii) g(p) 7^ 0 and g(pT] = O(tr) for a constant t < (j^T, where r < —1;
compare Lemma 4.3.8 of [AB]. (The remark at the top of [AB], page
100, regarding another generalization, may also be noted.)
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The following applications of Lemma 1.4.2 and Theorem 1.3.1 yield con-
clusions analogous to but more precise than the corresponding ones which
appeared in [AB], Chapter 4, §4, on the basis of Axiom A:

(1.4.3) PROPOSITION. For k = 1,2, . . . , there exist constants Bk, B*k

such that the kth moments for elements of degree N of the divisor function d
and the unitary-divisor function d* are respectively asymptotic to BkN2 ~1

and B*kN2k~l, as N -> oo.

PROOF. Some special cases of this proposition were considered already in
the previous section. In general, we note (as in [AB], pages 100, 102) that
dk, dk are P/M-functions such that dk(pr] = (r + 1)*, dk(pr) = 2k, for any
prime-power pr G Q. Thus dk, dk satisfy the hypothesis of Lemma 1.4.2,
and so

dk*(y) = ( Z ( y } f g t ( y ) , dk*(y] = [ Z ( y ) f h f (y)

for certain suitably convergent series <?*(j/), hf(y~). Thus the stated con-
clusions follow from Theorem 3.1. d

The next proposition seems intuitively to be expected in view of Propo-
sition 1.4.3. However such intuition needs to be treated carefully, since (just
as in the parallel situation discussed in [AB], pages 102, 103) one can for ex-
ample verify that the stated mean-value of d/d* differs from the "expected"
number Z(q~2) = Bl/Bl.

(1.4.4) PROPOSITION. For k — 1,2, . . ., the point-wise quotients d/d*
and d f / d possess the asymptotic kth moments

m ( ( d / d f ) k ) =
per r=2

r=2
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PROOF. Since d, d* are P/M-functions taking the values on prime-powers
listed earlier, Lemma 1.4.2 can be applied to f i = (d/d*)k and /2 = (d*/d)
so as to give

f * ( y ) = ZG(y)F?(y), ff(y] = ZG(y)F*(y)

for certain suitably convergent series F f ( y } . Further (as in [AB], page 103),
Fi = (1 — f]fii where for a given P/M-function /

r=0

It therefore follows from Theorem 1.3.1 and Lemma 1.4.2 that /,• has the
mean-value Fi(q~l), and that Fi(q~l) has the stated product decomposition

In a similar way, one may extend Proposition 1.3.7 to:

(1.4.5) PROPOSITION. For every k = 1,2,.. . , the function /3 possesses
the asymptotic kth moment

m(0k] = TT <! 1 + £ \rk - (r - l)k]<,-raM
r=2

PROOF. Exercise. D

It seems worth remarking that, in addition to asymptotic moments as
above, the functions d/d*, d*/d and /3 also possess asymptotic distribution
functions, as defined in [AB], page 145. In fact, all the results on distri-
bution functions of prime-independent arithmetical functions discussed in
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[AB], Chapter 5, §3, may be carried over to the present context without
change, if one now substitutes Theorem 1.3.1 and Lemma 1.4.2 for the cor-
responding results used in [AB] subject to Axiom A. A more detailed and
refined development of "probabilistic number theory" for Q is elaborated in
Chapters 6, 7 below.



1.5 Error Estimates for Certain Averages

In deriving the general asymptotic conclusion of Theorem 1.3.1 earlier, use
was made of Lemma 1.3.2, which gives an asymptotic formula for the average
value of the function dk, involving both a dominant term and an estimate
for the remainder. Such remainder or error estimates are often useful, and
so we shall now prove a theorem which yields information of this kind in a
variety of special cases of interest.

(1.5.1) THEOREM. Let f , g be arithmetical functions with the property
that

where k is a positive integer, and suppose that (for some constant T > —1)

g(N] = O(q-TN] as N -» oo.

Then, as N —> oo,

0(Nq»N) i f k = l,
0(qvN) ifk = l,
O(Nk'2qN) ifk>2.

PROOF. This theorem is a consequence of Axiom .4*, Lemma 1.3.2 and
two further auxiliary conclusions below:

(1.5.2) LEMMA. Let F^y) = F2(y)F3(y), where F;(y) = ^=0ci(n)yn.
Suppose that, as N —> oo,

= BxN+ O(xaN}, .

38
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where B, x, a, r are constants satisfying x > 1, a < 1, r > — 1, Then, as
N-* oo,

O(x~TN) t /T<-a ,
0(NxaN) i f r = -a,
O(xaN] ifr>-a.

PROOF. It follows easily from the above hypothesis that F3(y) is abso-
lutely convergent for \y\ < XT , while F2(y] and F\(y] are both absolutely
convergent for \y\ < x~l . Further, for \y\ < XT ,

E cs(ry = F3(y) + O ( E |x-Ty r) = F3(y) + O
r=0 \r>W /

in particular,

r=0

Then the assumed equation for Fi(y) and the estimate for c2(./V) give

£ c2(N - r)c3(r) = £ [flz"-' + O^"^)] c3(r)
r=0 r=0

/ N

"" c3(r)|x—O
V r=0

= BxNF3(x-1) + 0(x~TN} + O (xaN Y^ x
V r=0

If T < —a, the preceding remainder terms reduce to O(x~rN} +
O(x~aNx-(r+a^N} = O(x-TN); i f r = -a, they become O(x-T;v)+O(Afxa]v)
= O(NxaN); lastly if r > —a, convergence of the geometric series implies
that the remainder is O(x-TN) + O(xaN} = 0(xaN}. This proves the lemma.
D
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Lemma 1.5.2 covers the case k — 1 of Theorem 1.5.1. For the general
case, consider:

(1.5.3) LEMMA. Let F^y) = F2(y}F3(y}, where Ft(y) = E~=o ^(n}yn .
Suppose that (as N — > ooj

= BNuxuN u-lxN), c3(N) =

where B, u, x, T are constants such that x > 1, T > —I, and u is a positive
integer. Then as N — > oo

= BF3(x'1)NuxN + O(Nu-lxN).

PROOF. As in the proof of Lemma 1.3.4,

Cl(N) =
T=0

r=0

1=0
V

[) c3(r)|z"
=o

z~r + O £ ̂  E
i=0 r=0

where e > 0 is arbitrary and may be chosen so that r > — 1 + e. In the
present situation, the estimate for J^L0 c3(r)x~T which occurred in the proof
of Lemma 1.5.2, and the absolute convergence of F3(y) for \y\ < xr, imply
that

Cl(7V) = BNuxN [F3(x~l) + 0(x-^+r)N)} + 0(Nu-lxN}.

Therefore Lemma 1.5.3 follows. d
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In the first place, Theorem 1.5.1 may be used to refine some of the
conclusions relating to average values of special arithmetical functions that
were discussed in Section 1.3.

(1.5.4) PROPOSITION. The average value of the unitary-divisor func-
tion d* for elements of degree N in Q is

A[Z(q-2)]-lN + 0(1) as N -* oo.

PROOF. The proof of Proposition 3.5 shows that df(y) = [Z (y)}2 g# (y),
where g*(y] = f i # ( y 2 ) = E^o/^)^"- Since |/l(n)| < G*(n), Axiom A*
then implies that ~g(N) = O(qzN) as N —> oo. Hence the present proposition
follows from Theorem 1.5.1. D

The next proposition follows in a similar way from Theorem 1.5.1 and
the equation d2*(y) = {Z (y)]4 / Z ( y 2 ) .

(1.5.5) PROPOSITION. The average value of d2(a) for elements a G Q
of degree N is

}]-lNz + O(N2) as N -> oo. D

For the function /3, we now obtain the improved conclusion:

(1.5.6) PROPOSITION. The average value of (3 for dements of degree
N in Q is

if V = |,
ifv>\.
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PROOF. We have /3#(y) = Z ( y ) g # ( y } , where g # ( y ) = Z(y^Z(y3}/Z(y6}.
Then g*(y] = Z(y2)h*(y), where h*(y) = Z ( y 3 ) / Z ( y 6 ) is absolutely con-
vergent for \y\ < q~z. Hence

g(N) =

since h f ( q ~ ? ) is absolutely convergent. Hence Theorem 1.5.1 may be ap-
plied with k = I and r = — |. D

If XB denotes the characteristic function of a given subset E of £/, it is
reasonable to describe the average value of XE f°r elements of degree N in
£ as the density of E relative to elements of degree N. By appealing to
the equation q f ( y ) = Z(y)/Z(yk], the following refinement of Proposition
1.3.8 (phrased in the preceding terminology) may be deduced:

(1.5.7) PROPOSITION. For k > 2, the density of the set Q^ of all
k-free elements in Q relative to the elements of degree N is

ifv>l/k.

In the next section, Lemma 1.5.2 will be applied to the asymptotic enu-
meration of finite modules and semisimple algebras over the ring of integral
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functions in an algebraic function field over F, and in particular this will
lead to the verification of Axiom *4* for the categories J-q and Sq discussed
in Section 1.1. Before turning to this, however, it may be of interest to first
consider some questions relating to arithmetical functions of the Euler and
divisor-sum types:

In the present context of an additive arithmetical semigroup Q satisfying
Axiom .4*, one "Euler-type" function of special interest is the function <f>*
on Q such that <f>*(a} is the total number of elements of the same degree as
a that are coprime to a in Q\ also, the "divisor-sum" function of greatest
relevance here seems to be the function cr* such that <r*(a) = Y^d\a d(d).

(1.5.8) PROPOSITION.

(i) The average value of <$>+ for elements of degree N is

M7( -21-1 N ,
A[Z(q ] q +

(ii) The average value of u* for elements of degree N is

-AN2 + O(N).
LJ

PROOF. First consider the following lemma, which does not depend on
Axiom A.^:

(1.5.9) LEMMA.

(ii)
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PROOF. By [AB], Corollary 2.5.3, the Mobius function // on Q has the
property that Z^uM^) = 0 for 1 7^ a € £; also, the last sum is trivially
equal to 1 for a = 1. Therefore, if (6, a) denotes the g.c.d. of b and a in C/,
then

i /n\ \~^ i v^ V^0*1 a) = > I = > >T*\ I ^__! / j / ^

8(6)=9(a),(6,a)=l 9(6)=9(o) d\(b,a]

__ X ^ / T\ X "^ -i __ V"

/ _j r^\ / / _j /

d\a d\b,d(b)=d(a) d\

Hence

d(a)=:n d(a)—n d\a
\ \—^ \—** \^—^) = > > >/ / ^ / y £__ J

Since fj,tt(y} = I / Z ( y ) , the formula for (j>f(y) follows.

In the case of cr», its definition gives

oT(n) = E a,(a) = E E *(<0 = E E E
9(a)=n 3(a)=7i cci=a i+j=n 9(c)=j 9(d)=

j+j=n

This implies the stated formula for crf(y}. D

It now follows that

r=0 r=0

r=0 \ r=0
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J<r r
r>N

N
\ ^ ~—VT

r=0

( ni ]\TS,N\ ;f ,,
,2AT,,#/V-2\.,

This proves the assertion of Proposition 1.5.8 about the average value of <

In the case of ov, we have

r=0 r=0
N / N

A2qnEr + 0(Y,'>
r=0 V=0

1 9 9 A T

This implies the second assertion of Proposition 5.8. d

(1.5.10) COROLLARY. T/ie sei o/a// ordered pairs of coprime elements
of the same degree possesses the asymptotic density [Z(q~2)}~ within the
set of all ordered pairs of elements of the same degree in Q.

PROOF. There are [G(N)]'2 ~ A2q2N ordered pairs of elements of degree
N in £7, and <f>*(N] ~ A2[Z(q~2)}~~ q2N pairs of coprime elements of this
degree. Hence, in an obvious sense, the stated "asymptotic density" exists.
n

The above corollary confines attention to pairs of elements of the same
degree. In order to deal with arbitrary ordered pairs, one may instead
make use of the "Euler" function (j) defined in [AB], page 40, which has the
property that </>(a) is the total number of elements 6 such that b is coprime
to a and d(b) < d ( a ) . By Theorem 3.3.1 of [AB], if Af|(n) = Er<nG(r),
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then

\n=0

Bearing this in mind, the reader may perhaps like to verify the conclusion
of the following lemma, as an exercise.

(1.5.11) LEMMA. The average value of <f> for elements of degree N is

-^(g-T^ + j

With the aid of this lemma, we now prove:

(1.5.12) PROPOSITION. The set of all ordered pairs of coprime ele-
ments of Q possesses the asymptotic density [Z(q~2)} within the set of all
ordered pairs of elements of Q.

PROOF. Asymptotically, as N —» oo, there are Hry-A^ ordered pairs
a, b e Q with d(a) < TV, d(b) < N. Also, as in [AB], page 248, it may
be noted that the total number A(JV) of ordered pairs of coprime elements
a, b € Q with d(a) < N, d(b) < N is given by

y y i/ -/ /__j
8(a)<N 9(a)<N,(b,a)=l

v y 1+ y y iL-J / ^ ' /_/ / J

a(6)>8(oj7(6,o)=l

O V^ Af \ ^ Y^ 1z y (p( a ] — y / i/ J T \ J / j / J

d(a)<N d(b)=8(a),(b,a)=l

= 2 E ?(«) - E ^(«)-
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Therefore, by Proposition 1.5.8 and Lemma 1.5.11, as N —> oo,
2N+2

A(n) ~ a

-2\-]-l 27V •V (z(q-2)}-1-
Hence, in an obvious sense once more, one obtains the stated "asymptotic
density" [^(<?-2)]~1. D

By way of illustration, it may be noted that for the semigroup Qq of
all monic polynomials over Wg the above results imply that the asymptotic
density of the coprime pairs of polynomials is 1 — q~l. Similarly, the next
proposition implies that for coprime ^-tuples of polynomials in Qq the cor-
responding asymptotic density is 1 — ql~k .

(1.5.13) PROPOSITION. The set of all coprime ordered k-tuples of
elements of Q possesses the asymptotic density [Z(q~k)}~~ within the set of
all ordered k-tuples of elements of Q, where k > 2.

PROOF. The following argument provides an alternative proof of Proposi-
tion 1.5.12, in the special case when k = 2: Firstly, note that (as N — -> oo)

r i k
there are asymptotically MyAg^ ordered fc-tuples G J , . . . , ^ 6 G with
d(a,i) < N. Let A fc(A^) denote the total number of these fc-tuples which
are coprime, i.e., for which the g.c.d. of ai, . . . , « & is 1. Then, by a simple
re-wording of Lemma 4.5.13 of [AB],

£ n(a) £ G(n) ,
9(a)<7V [n<N-d(a) )

where fj, is the Mobius function on Q. Therefore, if B = ~^A and v > 0,

T<N
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r<IV

BkqNk £ H(r}q^ + O (q^^ £
r<N r<N

r>7V

O qN(k-l+^ 9(2-*-"

E 9(1~fc)r +
r<N ) }

Similarly, if v = 0, one obtains

( (-)( \r2 N(k-l)\ -f L _ oU(^V g ) il * _ ;,
-i) if jfc > 2.

In an obvious sense yet again, it follows that the stated "asymptotic density"
exists. D

(1.5.14) COROLLARY. As N — > oo; i/ie total number A/-(JV) of coprime
ordered k-tuples cti, . . . , a^ G (7 u)fi/z 3(at-) < A^ is egua/ to

D



CHAPTER 2

ASYMPTOTIC ENUMERATION AND MORE
REFINED ESTIMATES

2.1 Asymptotic Enumeration of Modules
and Algebras

Consider the category J-q of all (unital) modules of finite cardinal over the
Galois polynomial ring Fg[X], which was discussed under Example 1.1.2 of
Section 1.1. This is a special case of the category FD of Example 1.1.6 in
Section 1.1 but, since our treatment of the latter category uses facts about it
which may be less familiar to some readers, we begin with a direct discussion
of J-q alone.

(2.1.1) THEOREM. The total number Fq(N) of non-isomorphic mod-
ules of cardinal qN in J-q is equal to

P0(q-l}qN + O (q^N) as N -> oo,

where Po(y) = II^Li (^~~yr}~1 is the classical "partition" generating function.

PROOF. Following the general pattern of discussion in Chapter 3, §2, of
[AB], we see from the earlier description of the "primes" (i.e., indecompos-

49
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able modules) in JF9 that Fq has the generating function

n=0

r=l
oo

r=l

where

= II 1 U ~~ yrd^\ : r > 1, monic prime polynomials p e GF[q,t]
OO __ .- _-.

= JJ JJ < f l — yr3(p>\ ; monic prime polynomials p
*

Zq(y] = JJ < f 1 — ys(p'j : monic prime polynomials p €

is the generating function of the semigroup Qq. Since

oo

%) = E9V = (i-9y)-1 ,
n=0

by Example 1.1.1 (see also [AB], page 60), it follows that

r=l

Now let Fm(y) = Yl^Lm(l — qyr)~l. For r > m > 1 and \y\ < p <

therefore Y^=m (1 — iyr)~l ~ 1 converges uniformly for \y\ < p < q~llm.
By standard theorems on infinite products of analytic functions (see for
example Knopp [1], §57), it follows that Fm(y) is an analytic function of y
in the disc \y\ < q~llm, and that its Taylor expansion about the origin may
be calculated by formal multiplication of the series for (1 — qyr] [r > m].
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Hence, if F2(y) = E~=o«nyn, F3(y) = £~=0&nyn,

51

aN =
0<r<|/V

since -Pa^"5) is absolutely convergent. Since Zyry(y) = (1 — qy)~l

Lemma 1.5.2 may now be applied, with B = I , x = q, a = 0 and r
This yields the conclusion:

as TV -4 co, with P0(y) = n^i (1 n

(2.1.2) COROLLARY. The associated additive arithmetical semigroup
of Fq satisfies Axiom A^ . d

The analogue of Theorem 2.1.1 for the category Sq of Example 1.1.3 in
Section 1.1 is:

(2.1.3) THEOREM. The total number Sq(N] of non-isomorphic semi-
simple Wq[X]-algebras of cardinal qN is equal to

AqqN + as N -> oo,

PROOF. From the earlier discussion of Example 1.1.3, and similarly to
the treatment of Example 3.2.5 in [AB], one sees that the Euler product
formula for the generating function of the category Sq yields:

n=0
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= JJ | (l — yrm ^p'} : r > 1, m > 1, monic prime polynomials

p e F,[X]}
= IT IT{ (l ~ 2/rm ) ' monic prime polynomials p>

r,m>l

= E Wm2),
r,m>l

where Zq(y) again denotes the generating function of Qq.

Consider the product H ( y ) = fl^Li llm=2 (l ~ W7"7"2) "*• As in the proof
of Theorem 6.1, for \y\ < p < q~*,

CO CO

T T' J / •* (i-^-T1 CO

^ V— 1 „ ,4 £—<
r=l m=2 ' ' A ~ W r=l

9 V^

oo

E
m=2

\y
y\rm2

r2
1 - qp4 ̂  1 - |y|m

where the last ("Lambert") series is uniformly convergent; compare Knopp
[1], §58. Hence, as in the discussion of Fm(y) in the proof of Theorem 2.1.1,
it may be deduced that the power series in y for H(y] converges absolutely
when \y\ < q~*. Thus the power series for F 3 ( y ] H ( y ] converges absolutely
when \y\ < q~ 3

Now, similarly to the proof of Theorem 2.1.1, write Zsq(y) = (1 —
9!/)~1*I2(y), where FZ = F2(y}H(y] = E™=0<yn, and verify that a*N =
O(q?N) as TV —* co. The present theorem then also follows from Lemma
1.5.2. D

(2.1.4) COROLLARY. The associated additive arithmetical semigroup
of Sq satisfies Axiom A^. Q

The extension of Theorems 2.1.1 and 2.1.3 to the categories J~D, SD of
Examples 1.1.6 and 1.1.7 of Section 1.1 is quite straight-forward if one
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assumes the facts about these categories and about algebraic function fields
which were quoted in Section 1.1:

(2.1.5) THEOREM. Let F = FD denote the category of all (unital)
D -modules of finite cardinal, where D is the ring of integral functions in
an algebraic function field in one variable over F?. Then the total number

of non-isomorphic modules of cardinal qN in J- is equal to

where Af = Arj 11̂ 2 C-o(r)) and Arj is the constant described in Example
1.1.5.

PROOF. The ring D is assumed to be as described in Example 1.1.5. Then
the earlier description of the indecomposable modules in J- implies that

Zf(y] = nil1" yTd(p)}~1 : r > 1, prime ideals p in D

where d(a) — logqN(a) denotes the degree of an ideal a in D, and Zrj(y]
is the generating function of the semigroup Qrj. Then

where Q(y] is the result of substituting y for q~z in

Since D(n) = Arjqn + O(l), where Arj — Q(q~l), there exists a positive
constant C such that D(n) < Cqn for n > 0.
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Continuing with the pattern of the proof of Theorem 2.1.1, we now note
that (for r > m > 1 and \y\ < p < q~l/r)

n=l 1 -qp»

Therefore Y^=m \^o(yr} ~ 1| converges uniformly for \y\ < p < q~l/m, and
so in the present general case the product Fm(y) = Y[^Lm Zo(yr} also defines
an analytic function of y in the disc \y\ < q~l/m, whose Taylor expansion
may be calculated by formal multiplication of the series for Zrj(yr) [r > m].
The rest of the proof of Theorem 2.1.1 carries over without change, except
that one must now use the estimate D(r) = O(qT), and substitute B = AD
in Lemma 1.5.2. This yields:

f(N) = AfqN + O (q^N) as N -» oo,

where
oo oo

Ayr = ADF,(q-1} = ADH ZD(q-r) = AD JJ (o(r). a
r=1 r=2

(2.1.6) COROLLARY. The associated additive arithmetical semigroup
of the category jFp satisfies Axiom A^. d

It is interesting to observe the close parallel between Theorem 2.1.5 and
Theorem 5.1.1 in [AB], which concerns finite modules over the ring of all
algebraic integers in an algebraic raum&erfield. In particular, Theorem 2.1.1
regarding the polynomial ring counterpart fq of the category of all ordinary
finite abelian groups, corresponds to a theorem of Erdos and Szekeres given
as Corollary 5.1.2 in [AB]. Similarly, Theorem 2.1.3 is a close analogue of
Theorem 5.1.7 in [AB], which covers the category of all semisimple finite
rings, while the following theorem is analogous to one concerning semisimple
finite algebras over a ring of algebraic integers (see J. Knopfmacher [1]):
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(2.1.7) THEOREM. Let S = So denote the category of all semi-simple
finite algebras over the ring D of integral functions in an algebraic function
field in one variable overWq. Then the total number <S(W) of non-isomorphic
algebras of cardinal qN in S is equal to

where As = AD Ylrm^>i (c^m2).

PROOF. Exercise. D

(2.1.8) COROLLARY. The associated additive arithmetical semigroup
of the category Srj satisfies Axiom A^ . C3



2.2 Sharper Average and Enumerative
Estimates

Some of the earlier asymptotic estimates can be refined a little further by
methods of an essentially elementary kind. In the first place, Corollary
1.3.3 may be sharpened so as to yield the following analogue of the classical
Dirichlet divisor formula for Q; the stated error estimate is due to S.D.
Cohen [4].

(2.2.1) PROPOSITION. As N — > oo;

d(N) = AqN[AN + 27G + A]

where 7G is the Euler constant of Q .

PROOF. From the equation d*(j/) = [Z(j/)]2, it follows (with Rn =
G(n] - Aqn again)

d(N) = ^G(n}G(N-n} =
n=0 n-0

n=0 n=0

= (N + l)A2qN + 2AqN {7G
n=0

by the proof of Proposition 1.2.2 (ii), and Axiom .4*. This yields the stated
formula. D

The next conclusion sharpens Proposition 1.5.4:

56
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(2.2.2) PROPOSITION. As N —> oo,

~c£(N) = A[Z(q~2)]~lqN A7V + 27G + A-

O(N2q^N] ifv<\,

0(NqvN] ifv>\.

PROOF. Since off (y) - p*(y2}d#(y], Proposition 2.2.1 implies :

d(N - 2r)

{AqN-2r[A(N - 2r) + 27G + A] + O(Nq"(N-^}}
1r<N

O NqvN E l?(r)k~

V^ n-r

'} ilv>\.

Now Y^T>i-N 1~T = O(q"^N), and partial summation (cf. [AB], page 83, say)
gives

dt
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by partial integration. Substitution in the preceding formula for d f ( N ) now
yields Proposition 2.2.2. D

The following technique for seeking asymptotic estimates, based on rel-
atively elementary complex analysis and ideas of Darboux, is often easier
to apply than methods which are "completely elementary". For this rea-
son, the approach is often useful, even though it may not directly yield the
sharpest possible estimates in all individual cases.

Suppose that F ( y ] = Z)£Lo cnyn is analytic for \y\ < R, with the possible
exception of a finite number of poles z for which z < R, and consider any
r > 0 such that F(y) is analytic throughout the disc \y < r. Then, by
Cauchy's integral formula,

F(y)

while, by Cauchy's residue theorem,

y
where the sum extends over the (possibly empty) set of poles of F ( y ] in
\y\ < R. Hence

Now, if h(6) = F(Re*e), integration by parts and the fact that h(B) is
differentiable arbitrarily often show that, for any positive integer k,

J\y\=
F(ii\ r2^
-^dy = iR~N / h(9}e-NlBd6
y ' Jo



Section 2.2: Sharper average and ... 59

(^ h'(
Jo

By the Riemann-Lebesgue lemma of Fourier analysis, the last integral is
o(l) as N — > co. Hence one may deduce:

(2.2.3) LEMMA. Let F(y] = E™=0cnyn be analytic for \y\ < R, with
the possible exception of a finite number of poles z with \z < R. Then, for
any a > 0,

CN = - £ Res + o(N-aR~N) asN->oo,
<7

where the sum- is over the poles of F ( y ) in \y\ < R. O

In many cases, Lemma 2.2.3 reduces the problem of estimating the
asymptotic average value of a given arithmetical function / for elements
of large degree N to the fairly simple one of calculating the residue of N${
at a suitable point y. For example, it leads to the following refinement of
Lemma 1.3.2.

(2.2.4) PROPOSITION. There exists a polynomial Qk(N) of degree k — l
. k _ i

(k > 2) in N , with leading coefficient ^_1, j ; such that, for any a > 0,

= AqNQk(N] + O(N~aqN} as N -> oo.

PROOF. The associated power series of the generalized divisor function d^
satisfies df = [.£(?/)] , and so Proposition 1.2.1 implies that df(y] is analytic
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for \y\ < q~v apart from having a pole at y = q~l. Further, Proposition
1.2.1 also implies that, near y = q~l, Zs(y) has an expansion of the form

where g(y] is analytic at and near y = q l. Therefore, near y — q l ,

i k

y y -q l

TV 1
N+l I V^ I ~l ~ \ rf -l\r I I V^ I -l\

= - -
T=0 \ r / ) \t = -k

for certain constants at, with a_j; = ( — <?~1A) . Hence the residue of -vpr
at y = q~l is the quantity

qN+l i

say, where Qk(N] is a polynomial of degree k — 1 in N, whose leading
coefficient is

a'kA ( -K(k-l}\\ ( J f c - l ) ! '

In order to deduce the proposition from Lemma 2.2.3 one may now
substitute R = q~l + c where £ > 0 is a suitable constant. Then Lemma
2.2.3 implies that, for any a > 0,

Tk(N] = AqN(,

*aw). D
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It may be noted that Proposition 1.2.2 (ii) implies that the above func-
tion g(y) has the value g(q~1} = 70 at y = q~l. This leads to the conclusion
that the coefficient of Nk~2 in Qk(N) is equal to

A - ( 2 ) ! ~ (k - 1)! ̂

since a_/t = ( — q 1A) and d-k+i = k( — q lA) 70 For k — 2, this
coefficient therefore reduces to the constant 270 + A found in Proposition
2.2.1.

By another application of Lemma 2.2.3 one can deduce the following
refinement of Proposition 1.5.5:

(2.2.5) PROPOSITION. There exists a polynomial Q(N) of degree 3 in
N, with leading coefficient ^A3[Z (q~2)}~1, such that, for any a > Q,

d*(N) = AqNQ(N) + 0(N~aqN) as N -> oo.

PROOF. The details are left as an exercise; the reader may perhaps also
care to calculate the coefficients of Q(N). d

It is interesting to compare some of the preceding asymptotic results
with the corresponding explicit algebraic one available for the elementary
semigroup Qq of all monic polynomials over F?. Here the generating function



62 Section 2.2: Sharper average and ...

reduces simply to (1 — qy)~l, and this leads to explicit algebraic formulae for
the associated power series of arithmetical functions of the kinds discussed
above; compare [AB], Proposition 3.3.2.

For example, in this special case,

N Ni y •
N=0

Hence Qk(N) = ^ + M
 (t-i)! for

exactly for all TV > 0.

Also, for the same semigroup,

df(y) = (i -«/2)(i -<?2/)~2

and so now one obtains the exact equations

3T(TV) = ( ?
A r[( l -<r1)TV + l +

d?(N) = i ^(JV + 1) [(1 - q-l)N2 + (5 + g-1)^ + 6] ,

for TV > 2.

We conclude this section with an exposition of some refinements of the
theorems of Section 2.1, which is based on unpublished joint notes by D.B.
Sears and J.N. Ridley [1]. The refinements in question replace the estimates
of type AqN + O(q^N] of Theorems 2.1.5 and 2.1.7 by asymptotic series of
arbitrary length:

(2.2.6) THEOREM. For any fixed integer k > 2, the total number JF( TV)
of non-isomorphic modules of cardinal qN in the category F = Frj has the
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asymptotic expansion

k-l
F(N] = Y AT(N)qNlr + O(qN/k} as N -> oo,

r=l

where the AT(N] are numbers (independent of k) expressible in the form

1 r —1 oo
A ( AT\ /I V^ —1-nimN/r TT <7 { 2-rrimt/r —iAr(l\) = -AD 2^ e ' ]_]_ ZD l e ' <?

r m=0

/ra addition,

k T r-1

, Jm
fc.

^(7V) = AD lim J] -/^ ̂  e-2«mJV/r JQ ̂  ^2»im*/rg-t/rj _

m=0

The proof of this theorem will be combined with that of:

(2.2.7) THEOREM. For any fixed integer k>2, the total number S(N)
of non-isomorphic algebras of cardinal qN in the category S = SD has the
asymptotic expansion

k-l
Cf J\.T\ \ A D / AT\ N f r i f^if \rO(k] N/k\ ATo(lv) = y j DT\N)q ' + U(l\ v 'q ) as 1\ —> CXD,

r=l

for certain numbers BT(N) with Br(N) = O(N5^~l) as N —> oo, where
0(k] — 6(k} — 2 + maxi<r<A; S(r), and S(r) — J2d2\r 1- In particular, for
r < 4,

£r(AO = -ADr m=0 s=l t=l
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PROOFS OF THEOREMS. In view of the identities
oo oo oo

) , Zs(y) = JJ II W*),

which appear (implicitly, in the second case) in the proofs of Theorems 2.1.5
and 2.1.7, the proofs of the present theorems may be combined by initially
considering an arbitrary formal power series identity of the form

n=0 r=l

where a(r) is a positive integer, and g(y) has an expression of the form

in which Q ( y ) denotes an arbitrary polynomial in y with Q(0) = 1; here q
may be an arbitrary constant greater than 1. In specializing to Z?(y} and
Zs(y}: one is then interested in the two cases:

(i) a(r) = 1 for r > 1, and (ii) a(r) = £^2|r 1-

(2.2.8) LEMMA. For any fixed integer k > 1, let

r=k n=0

and suppose that a(r] = O(r^) as r — > co, where /? is constant. Then the
series for fk(y] converges absolutely for \y\ < q~l/k , and

bN = O Na-lqNk as N -> oo.

In addition, for \y\ < q~s~l'k(s > 0), and any non-negative integer t,

]T j^y = O {^Na^+t'lq-sN] as N -* oo.
3>N
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PROOF. By the assumed form of the function g ( y ) , it follows (as in the
discussion of Example 1.1.5) that

/" for
n=0

where cn = P(q~l)qn for n > degP(y}. Therefore there exists a constant
B > 0 such that, for r > k > 1 and \y\ < p < q~l/r ,

n=l

Hence, for \y\ < p < q~l/k,

r=k

by the order assumption on a(r), where C is a positive constant. It follows
that the power series in y for

CO

My) = II {i + (9(yr) - i])a(r)
r=yt

is both uniformly and absolutely convergent for \y\ < p < q ~ l / k ] hence f k ( y )
is an analytic function of y for \y\ < q~l/k .

Er=oNow note that fk(y] = g(yk)aWfk+1(y), and that if g(yk)aW =
then each coefficient c'r occurring here is dominated in absolute value by the
coefficient of yrk in the expansion of
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here B can be chosen to agree with the constant considered earlier. Thus

\b.

where M = a(k). Hence, if f k + l ( y ) = £~ 0 Vnyn then

V- >h < RM r- /M + r - l N
2_^ crbN_Tk, < a 2_j \

0<r<N/k

Lj J\T 11 ^—^ ,

oo,NM-\Nlk] as N

since the power series in y for fk+\(y} is absolutely convergent for \y\ <
_-i/(fc+i)*/

Lastly, for |y| < q~e~l/k(e > 0), and any non-negative integer t,

Now, for any non-negative integer m, and 0 < x < 1, consider

r=0

E £Z—^ ^^
r=0 l>s=0

m

as ./V
n

s=0 \ ° / r=0

co. This conclusion then yields the final assertion of the lemma.
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Continuing our discussion of the initial function /(?/), now write it as
F(y] = Fk(y}fk(y] (k > 2], where Fk(y) = fc1 <?(</TW, and fk(y) is
denned as in Lemma 2.2.8. Then Fk(y~) is a rational function of y, and so
it has a partial fraction decomposition which may be written in the form

k-l r-l <*(r)

r=l m=0 t=l

where S(y) is a polynomial in y, and the c(r, m, t) are constants. In particu-
lar, for later purposes we note that, if a(r) = 1 then one may use PHospital's
limit rule to deduce that the ensuing constant

c(r, m, 1) = lim
• ,_,0-l/rc2*;m/r

t=l

In general, the partial fraction decomposition of Fk(y) leads to a power series
expansion Fk(y] = E^=o7n2/n for \y\ < q~l, so that (if S ( y ) = ^=0Snyn]

n=0

with £n = jn — Sn. (Since S(y) is a polynomial, of degree T say, it follows
that Sn — 0 and en = jn for n > T. Here jn should not be confused with
the earlier generalized Euler constants.)

Now, as in Lemma 2.2.8 assume that a(r) = O(r^) as r —> oo, where /3
is constant. Then the coefficient a^ of yN in the Taylor expansion of f(y]
about the origin is given (for N > T) by

N N

3=0 j=0

= O (N
a^-lqN/k] + V bjEN.j as TV -+ oo,

\ / * ^
3=0
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by Lemma 2.2.8. Further,

£>„_,- = E?N/r E e-2^ N/r E
j=0 r=l m=0 t=l

where
EW = £

Since the binomial coefficient f ~l^l~ ) can be written as a polynomial
6)(AO + 6(N)j + • • • + tt-iWJ*-1 in which each coefficient £S(JV) is itself
a polynomial in JV (depending on t and of degree at most t — 1), the last
sum £(w' can be written in the form

5=0

^ - E i'
where

oo

T), = 2^jsbj (e ™ m Tq r) ;
3=0

this last series converges since fk(y) is analytic in y for \y\ < q~llk. Therefore

t-i , / \ \
S(AO = ̂  r]s£s(N) + O (Nt+a(k)-2q(l~lr)N j as TV -* oo,

s=0 ^ '

since Lemma 2.2.8 implies that

E^

This conclusion about E^ ' then implies that, as A^ —> oo,
TV k-l

j=0 T = l
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where 0(k) = a(k} — 2+max {«(!),. - . ,ot.(k — 1)}. Thus, for any fixed integer
k > 2, the coefficient a^v of yN in the Taylor expansion of f ( y ] about the
origin can be expressed in the form

k-l

aN = Y^ Cr(N)qN/T + O (NeWqN'k) as N -» oo.
r=l

In order to complete the present proof, it remains to make some com-
ments about the coefficients Cr(N) appearing in the last asymptotic for-
mula. Firstly, in order to see that the formula does give successively better
approximations to a AT, we note that the above argument implies that

Cr(N) = O (Na(-r>-1) as A^ -^ oo.

Secondly, it may be observed that, if a(r) = 1 for r < fc, then the ear-
lier multiple-sum expression for Sj=o ^j£N-j together with the subsequent
discussion of the term S'w) leads to the formula:

N k-l r-1
\^h-F*T • — ̂  aNlr ̂2_^03£N-3 — /., 1 / .
j=0 r=l m=0

Hence the earlier evaluation of c(r, m, 1) in the case when a(r) = 1 implies
that, if a(r] = I for r < k, then Q(k) = a(k) — 1, and

i r —1 co .- •.

Cr(N] = -P(q~1} E e-2mmN/T H 9

This last equation shows that CT(N] is independent of k and that Ci(-/V)
is also independent of N. It also now yields the expression for Ar(N) in
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Theorem 2.2.6 since, in the context of that theorem, a(r] — 1 for all r.
Similarly it yields the evaluation of BT(N] [r < 4] stated in Theorem 2.2.7.

Lastly we observe that the final assertion of Theorem 2.2.6 is a conse-
quence of the earlier evaluation of c(r, m, l ) when a(r) = 1, together with
the fact that F^y] — » f ( y ) uniformly as k — > oo (for \y\ < p and arbitrary
P<q~1). n

In the special case in which D is the Galois polynomial ring IF^fX], it fol-
lows from Theorem 2.1.1 that the coefficient A\ = Ai(JV) in the asymptotic
formula of Theorem 2.2.6 reduces to PO( (?~ I)I where Po(y) is the classical
partition generating function. It has been shown by J.N. Ridley and D.B.
Sears [1] that, in this special case, all the coefficients Ar(N} can be expressed
in terms of values of certain extended partition generating functions; JF?(7V)
also satisfies the simple algebraic formula:

Fq(N) = YiPr(N-r}qr,
r=0

where pr(n) denotes the total number of partitions of n into parts of size
at most r. In addition, still for D = Wq[X], these authors (loc. tit.} have
proved a remarkable theorem to the effect that: The asymptotic series of
Theorem 2.2.6 provides a convergent infinite series representation

Fq(N) = ^Ar(N)qN/r for allN>0
r=l

if and only if q > 13.



CHAPTER 3

ABSTRACT PRIME NUMBER
THEOREMS (I)

3.1 General Remarks and Preliminary
Results

In the contexts to be considered in the next sections and later, which involve
hypotheses like Axiom .4* or weaker forms of this axiom, we shall show
that there exist both abstract prime number theorems which are closely
analogous to the classical Prime Number Theorem for N, and also theorems
which diverge significantly from the classical type of conclusion. The latter
results will be discussed more fully in Chapter 5.

The abstract prime number theorem of "classical-type" may be viewed
as generalizations of the concrete asymptotic enumeration theorems (0.2)
and (3.1.1 - 6) in sub-section 3.1.1 below. The latter enumeration results
stem from the main concrete examples of natural additive arithmetical semi-
groups satisfying Axiom .4*, which were introduced in Section 1.1 earlier.
They centre strongly around hypotheses entailing Axiom .4*, and the exis-
tence of suitably large zero free regions for the generating function Z(y}.

In this connection, a somewhat unexpected and paradoxical situation
arose in the development of this topic. Axiom .4* appears initially to pro-
vide a comprehensive simple way of encoding the general counting behaviour
of the concrete motivating examples of Section 1.1. In the first two chap-

71
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ters, it provided a convenient basis for uniformly deriving information on
the asymptotic behaviour of arithmetical functions and densities within the
context of the main examples, together with the possibility of potential new
applications to any further concrete examples of interest which might arise
in future. In this way, Axiom A& appeared to provide a kind of direct "poly-
nomial type" or "function-field type" of parallel to the role of the Axiom A
treated in [AB], which generalizes the asymptotic behaviour of classical and
algebraic number theory, together with that of algebraic examples parallel
in nature to those of Section 1.1.

Regarding the counting of "primes" Axiom A leads to uniform gen-
eralizations of the classical Prime Number Theorem for N, and parallel
theorems within algebraic number theory. Consequently one might have
expressed Axiom A# to directly lead to similar uniform generalizations of
the "classical-type" asymptotic enumeration conclusions (0.2) and (3.1.1
to 6) in sub-section 3.1.1 below, particularly since the Axiom *4# type of
situation appears at first sight to be somewhat "simpler" than that which
surrounds Axiom A. Paradoxically, despite some positive initial contribu-
tions towards these questions (cf. say J. Knopfmacher [3], [ANAL], Section
8, and S.D. Cohen [1]), it turned out that Axiom A^ by itself does not
suffice for this in all cases. Indlekofer, Manstavicius, Warlimont and W.-B.
Zhang showed that a single unexpected and awkward zero of the generating
function can possibly occur if only Axiom A$ is assumed, and this leads to
the non-classical type of theorems referred to above.

Such an extra zero does not occur for the original motivating exam-
ples which led to Axiom A^ on the grounds of naturally-occurring, pre-
existing situations in other parts of mathematics (cf. Section 1.1). Neverthe-
less, theoretical analytical examples can be constructed (cf. say Indlekofer,
Manstavicius and Warlimont [1], Zhang [1], and Example 3.8.1 below) for
which there is such a zero, although no examples have been exhibited up to
now in which such a zero occurs in any pre-existing, naturally interesting,
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context. If one bears in mind the emphasis in Chapters 1 and 2 on concrete,
natural applications of the general discussion, this leads to a divergence in
approaches to further investigations:

On the one hand, the simple and seemingly appropriate choice of Axiom
Af as a basic assumption might be regarded as an incomplete encoding of
the fundamental situation to be unified by appropriate axiomatic hypothe-
ses, and some additional hypothesis or axiom could be introduced so as to
both include all the desired applications, and exclude the "pathological" ex-
tra zero which leads to the theoretical non-classical abstract prime number
theorems (which have not yet admitted any significant natural applications).

On the other hand, one could continue to study all possible consequences
of both Axiom .4* and some weaker forms of this axiom, purely for the
theoretical interest of the implications derived, and without special emphasis
on other mathematical applications.

Although the main emphasis and spirit of the first author's earlier mono-
graphs [AB] and [ANAL] is more in keeping with the first alternative above,
the present monograph will also admit some compromises by including cer-
tain results and discussions of them in the spirit of the second alternative.
At the same time, various other results will restrict attention to the "clas-
sical" type of situation, in view of the more concrete applicability of this
case.

3.1.1 Prime counting estimates in concrete cases

Within the context of the main natural examples given in Section 1.1 for the
concrete occurrence of cases of Axiom A$, it is actually possible to obtain
both exact and asymptotic formulae for the relevant numbers P(m):
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Firstly consider the elementary semigroup Qq of all monic polynomials
in a Galois polynomial ring FJ.X]. A well known theorem about polyno-
mials over finite fields (cf. say Chapter 3 of Lidl and Niderreiter [1], or
[AB], Proposition 3.2.3), states that the total number Pq(m) of irreducible
polynomials of degree m in Qq satisfies the exact equation

/ ii ,,d\m

where /j, denotes the classical Mobius function on the positive integers.
Therefore

Pq(m) = -{<T+ £
m ( 2<d\

rm] + o £ q
m/d

\3<d\m /

= ~ k + ° («*m)+° H|m)}
= ^- + 0p- . (0.2)m \ m I

This last conclusion may be regarded as the asymptotic "prime number
theorem" for the special semigroup Qq.

Now let Pf(m) denote the total number of non-isomorphic indecompos-
able modules of cardinal qm in the category JF = jFg described in Example
1.1.2 of Section 1.1.

(3.1.1) PROPOSITION. The total number Pf(m) of non-isomorphic
indecomposable modules of cardinal qm satisfies:

Pr(m) = £P,(r) = V) ! ̂  »C//W/d
y

r\m T\m d\r
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as m —> oo.
m

PROOF. By the discussion of J~ in Example 1.1.2, every indecomposable
finite module over Fg[X] is isomorphic to a module of the form Wq[X}/(pr],
where p is an irreducible polynomial and r is a positive integer, and con-
versely all such modules are indecomposable. Further, the cardinality of
this module is qrde&P. Therefore

Pf(m) = E 1 = E E 1
rdegp—m r]m degp—^

- Vp (—} - VPM~ Z^ri ( I ~ 2_jri\< )•i \ / /r jm r m

The explicit formula for Pq(m) quoted above then leads to the stated explicit
formula for Pr(m), while the above asymptotic formula for Pq(rn) now
implies that

2<r|n

as TO —> oo.

Another specific example of an additive arithmetical semigroup for which
it is easy to give a direct proof of an asymptotic "prime number theorem"
is given by the semigroup associated with the category S = Sq described in
Example 1.1.3 of Section 1.1:
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(3.1.2) PROPOSITION. The total number Pg(m] of non-isomorphic
simple algebras of cardinal qm in S satifies:

d\r

m qm

= — + CM —— as m — > oo.
m \ m /

PROOF. According to Example 1.1.3, the simple finite algebras over
are isomorphic to the various total matrix algebras of the form M
[k,r = 1,2,. . .], where FT is a field extension of degree r of the field
Fq[X}l(p) (p a prime polynomial); further, Mk(FT] has cardinal <j,r*
Hence

P5(m) = E 1=E E *
rk2 deg p=m k2 \m r deg P= J7

by the first equation for Pf(m) in the proof of Proposition 3.1.1. The
asymptotic formula for Ps(m) may then be deduced from that for Py^(m}
by a slight variation of the preceding proof of the asymptotic formula for
that function. D

Similar sharp conclusions may be derived for the other concrete exam-
ples of arithmetical semigroups satisfying Axiom A* that were discussed
in Section 1.1. These examples all arise from consideration of an algebraic
function field K in one variable over the finite field Wq, and the principal
order D in K, and also the categories J^o, SD generalizing fq and Sq.
As before, our starting point for dealing with these examples will be the
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equation for the zeta function of K quoted under Example 1.1.4:

where L(q~z) is a polynomial with rational integer coefficients in q~z . In the
treatment of Example 1.1.5, it was noted that K has only a finite number
of prime divisors that cannot be identified with prime ideals in the ring D,
so that by multiplying by the product over those former prime divisors p
one obtains the zeta function

where Q(q~z] is also a polynomial with integer coefficients in q~z . By the
theorem of Weil quoted in Section 1.1, which implies that every zero z of
L(q~z] has real part |, and by Lemma 3.1.4 below, we now obtain:

(3.1.3) THEOREM. Let P/<(m) denote the total number of prime
divisors of degree m in K, and let Po(m) denote the total number of prime
ideals of degree m in D. Then, as m — > oo,

PK(m) = l- + Ol*—\=PD(m).

(3.1.4) LEMMA. Let Q denote any additive arithmetical semigroup
whose generating function can be expressed in the form

where Q(y} = TlfLi^ ~ aiy)> ai complex, is a polynomial in y. Then the
total number P(rri) of primes of degree m in Q is given by

£[/-<•!--=4],
d\m
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where fi is the classical Mo'bius function. Hence, as m —> oo,

m \ m

where q0 = max <p , ai , . . . , Q:M

PROOF. The case of the special semigroup Qq is covered by this lemma if
we take Q(y) — 1. The present proof extends that of Proposition 3.2.3 of
[AB], which deals with Qq directly:

Firstly, consider the logarithmic derivative DL(/) = /'// °f an invertible
formal power series /. As in [AB], page 61, the Euler product formula

/ I m\-P(m)"\y> ~~ i± \L y )
m=l

leads to the formula

z(y)= R
m=l

m=l

At the same time,

DL(Z(y)) = D:

M

= E
n=0

Comparison of the coefficients in the two expressions then yields the equa-
tions
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The stated algebraic equation for P(m) therefore follows by ordinary Mobius
inversion.

For the required asymptotic formula, one may now deduce that

1 ( v-P(m) = jq _ a i _ . . . _ « M + ^ ;
" fc I jl_ m ̂  o

1

m *• •*

Now consider the categories F = FD and S = SD denned in Examples
1.1.6 and 1.1.7, relative to the principal order D in the algebraic function
field K discussed earlier.

(3.1.5) THEOREM. Let Pyr(m] denote the total number of non-
isomorphic indecomposable modules of cardinal qm in J-. Then

r\m

m q2m

= — + O I - —— as m -> oo.
m \ m

PROOF. This theorem follows in essentially the same way as Proposition
3.1.1 earlier, after it has been observed that the description of the indecom-
posable modules in JF given under Example 1.1.6 implies that

N(p) r=gm r|m N(p)=?m/r
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The asymptotic formula then follows with the aid of Theorem 3.1.3.

In a similar way, one may now deduce:

(3.1.6) THEOREM. Let Ps(m) denote the total number of non-
isomorphic simple algebras of cardinal qm in S. Then

m I ' | m \
— + O \ -— \ as m —> oo. D
m [ml

Lastly, we note that Example 1.1.8 also involves exact and sharp asymp-
totic conclusions, via the earlier equations (0.1) and (0.2) for Pg(m), and
the next proposition.

(3.1.6) PROPOSITION. The total number P,i2(m) of primes of degree
m in the semigroup T~iq^ of Example 1.1.8 satisfies

Pq(m)

PROOF. The equation for Hq^(n) under Example 1.1.8 shows that

n+l -
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and so the generating function for 'Hq^ is

00 / \

= Y \ Y f \y/_^i z_^ i i y

f> <ff
2—< ^ _ „,

OO CO

Thus the Euler product formula for Qq yields

Hence (3.1.6) follows. D

3.1.2 Additive convolution of ordinary arithmetical
functions

In the further discussion, we shall apply some techniques of additive convo-
lution of ordinary arithmetical functions of non-negative integers. In this
subsection we introduce the elementary theory of additive convolution first.

A complex-valued function f ( n ) defined for all non-negative integers
n will here be called an (ordinary) arithmetical function. The addition
of arithmetical functions / and g, and scalar multiplication by A G C, are
defined by setting

(/ + ff)(n) = f ( n ) + g(n), (Xf)(n) = A/(n).

The function h denned by setting
n

h(n) = ^f(k)g(n-k), for n = 0 , 1 , 2 , . . . ,
k=0
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is called the additive (or Cauchy) convolution of / and g, and denoted
by / * 9- It is easy to see that additive convolution is commutative and
associative. Also, the additive convolution and addition are distributive in
the sense that

f * ( g + h) = f*g + f*h.

Moreover, for A 6 C,

The function
f 1, for n = 0,

em = <
^ J \ 0, f o r n > 1,

is the additive-convolution identity, that is

/*e = e*/ = /

for every arithmetical function /. Therefore, arithmetical functions under
addition, scalar multiplication, and additive convolution form a commuta-
tive algebra with identity. In this algebra, we have the following useful
inequality

\f*9\<\f\*\9\, (1-1)

which is easily verified.

If there exists an arithmetical function f~l such that f*f~l = f~l*f = e
then / is said to be invertible and f~l is called an (additive-convolution)
inverse of /. The equation / * /~1 = e is equivalent to the infinite system
of equations
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Hence it is clear that /(O) 7^ 0 is necessary for the existence of an inverse
f~l. This condition is also sufficient. Actually, if /(O) ^ 0 the first equation
of the above system gives the value /~1(0). Then, by induction, knowing
/~1(0), /~:(1), . . . ,f~l(n — 1) from the first n equations of the system, the
value f~l(n) is given, from the (n + l)-th equation, by

Therefore, an arithmetical function f is invertible if and only if f ( 0 ) ^ 0.

We define a differentiation operator L on the algebra of arithmetical
functions / by setting

(Lf)(n) = n f ( n ) , n = 0 , 1 , 2 , . . . . (1.2)

The operator L is an analogue of the "differentiation" operator defined on
the algebra of arithmetical functions of a positive integer, under addition,
scalar multiplication, and multiplicative (or Dirichlet) convolution (see e.g.
Apostol [1], Chapter 2). It has the important derivative property

*g + f*Lg. (1.3)

This is easily verified from the equation

n £ f(k)g(n - k) = £ k f ( k ) g ( n - k] + £ f ( k } ( n - k}g(n - k}.
k=0 k=0 fc=0

We define Lkf = L ( L k ~ l f ] , k = 2 ,3 , . . . , recursively. Then the general
Leibniz formula

m\ (^/)*(^<?) (1.4)
*• I

is easily verified by induction. In particular, we have

L2(f * g) = L2f * g + 2Lf * Lg + f * L2g. (1.5)
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Note: In certain situations it may be useful to consider both the above
additive convolution *0 = * and the Dirichlet-type convolution *x only
(denoted by * in [AB], Chapter 2). In such cases, the notations *Q and *i
will be introduced in order to avoid confusion.

3.1.3 Generating functions and von Mangoldt's
function

Let / be an ordinary arithmetical function (denned for all non-negative
integers n). In line with common usage, the generating function of / is, by
definition,

n=0

Here the right-hand side is a convergent power series under certain condi-
tions on the growth of magnitude of |/(n)|; note that /(O) = /(O). Hence
f is invertible if and only if /(O) / 0. We also note that the generating
function of Lf is

oo

En/(n)j,n = y/'(y).
n=0

If h = / * g is the (additive) convolution of functions / and g, then the
generating function h ( y ) of h satisfies

= f(y}g(y)-
We note that the generating function of Lh is

(Lh}(y} = yh'(y] = (yf'(y))g(y) + f(y}(yg'(y}}

which is the generating function form of (1.3) above.
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Let now (Q, d) be an additive arithmetical semigroup, with Euler prod-
uct formula

oo oo

Z(y] = £ G(n)yn = J] (1 - !/TP(m). (1-6)
n=0 m = l

In the further discussion, information about P(m) will be derived from this
formula with the aid of the von Mangoldt function A defined on Q by setting

)i if cs is a prime power pr ^ I;
A(a) = <

I 0, otherwise,

which is an analogue for Q of the classical von Mangoldt function of ordinary
number theory (see e.g. Apostol [1], Chapter 2). the summatory function
of A then satisfies

A ( m ) = £ A(a )= £ d(p).
3(a)=m p€T,r>l

S(pr)=m

The properties of A developed below show that it is a counterpart of Nm,
the number of points with coordinates in Wqm of an algebraic curve C defined
over the finite field Wq (see Bombieri [2]). Firstly, we have A(0) = 0, and

r\n

and so, by the classical Mobius inversion formula of elementary number
theory,

where ft is the classical Mobius function on N. The function A(n) of n > 1 is
often technically easier to handle than P(n) when one investigates problems
involving the distribution of primes in an additive arithmetical semigroup,
especially in the investigation of abstract prime number theorems. The
functions A and G satisfy the convolution equation

(1.7)
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which is an analogue of Chebyshev's identity in classical number theory.

An easy way to verify (1.7) is to first note that, for a — pTipTJ ... p^" € Q
where pi £ "P are distinct,

i-I !-lp;|o d\a

(Thus the degree mapping d = A *j (", where *j is the Dirichlet-type con-
volution on Q and £ is the constant function with £(&) = 1 for 6 G £/.) It
follows that

) = nG(n) = ^ 3(a) = £ £
9(a) = n 9(a)=n d\a

= £ £
9(o)=n cd=o

= £ £ £

fc=0 8(d)=n-k k=0

which proves (1.7).

In terms of generating functions, (1.7) implies that

n=0

or

It is this last equation which particularly brings out the abovementioned
analogy of A(m) with the counting numbers Nm for certain algebraic curves
C.
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From (1.7), we obtain also

Substitution of LG = A * G into the right-hand side yields

L2G = A * A * G + L A * G (1.8)

which is an analogue of the Selberg identity of classical number theory (see
e.g. Apostol [1], Chapter 2).

Lastly we note that the usefulness of A in deriving asymptotic infor-
mation about the numbers P(n) (abstract prime theorems) within contexts
which are fairly closely related to Axiom .4* stems largely from the follow-
ing simple proposition.

(3.1.7) PROPOSITION.5 If G(n) < qnk(n) for a constant q > I and a
function k(n) <C na for a constant a, then

P(m) = 1 A(m) + O (q^mk (^) log m) ,

and so
P(m) ~ — qm if and only if A(m) ~ qm as m — * oo.

m

PROOF. Note that

p i ]
r V r2<r|m

Therefore, since P(r) < G(r) <C <?rA:(r),
/

T / \ r^ f \ . x - ^ l ^ ^ , / ' l t ' \ X——V ^A(m) =

— ) log m ) .
^ /

5The notation <C is used here as usual, as a replacement for O( ).



3.2 Chebyshev—Type Upper Bounds

We first consider Chebyshev-type upper bounds for P(ra), the distribution
function of prime elements in Q. Such upper bounds are of interest for two
reasons besides their easy proofs. As is well-known, a number of theorems in
classical number theory (e.g. the Hardy-Ramanujan theorem on ui(n) and
fi(n)) can be proved with the aid of the Chebyshev theorem and without
appealing to the classical prime number theorem. A similar situation exists
in the theory exposed in this monograph. Also, as we shall see from the
discussion of this chapter, unlike the abstract prime number theorem, which
requires rather restrictive conditions, the Chebyshev type upper bounds
can be established under rather loose ones and hence holds in principle for
a much larger variety of additive arithmetical semigroups. This makes it
possible to prove many theorems in the following chapters under these looser
conditions.

(3.2.1) THEOREM. (Chebyshev-type upper bounds) Suppose there
exist constants A > 0 and q > I such that

£sup<\G(m)q-m - A < oo. (2.1)

Then A(n) < qn and P(n) < qnn~l.

This theorem has the following direct corollary which is convenient to
apply; for further reference, see Zhang [1,2].

(3.2.2) COROLLARY. If there exist constants A > 0, q > I , and 7 > 1
such that

then A(n) < qn and P(n) < qnn~l.
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PROOF. To prove Theorem 3.2.1, we need several lemmas. We first define
an auxiliary function

f i 1
g i ( n ) = m a x { s u p \G(m)q-m - A ,n~5/4\, n > 1. (2.2)

^n<m J

By (2.1),
oo

V"^ () ( \ <? I1) "\\

n=l

Moreover, Q\(n) is non-negative and non-increasing.

(3.2.3) LEMMA. If Q\(n) is a non-negative and non-increasing arith-
metical function satisfying (2.3), then there exists an arithmetical function
Q(n) defined for n > 0 such that

Q(n) is non-increasing, (2-4)

Q(n) > Qi(n] for all n £ N, (2.5)
CO

£g(n)<co, (2.6)
n=0

Q(n)<4Q(2n). (2.7)

PROOF. Define Q(n) recursively by setting

O( = { ^W' for 0 < n < 2,
^H' ~ \ max{g1(2m),4-1g(2m)}, for 2m < n < 2m+1, m € N.

We now verify that this function satisfies each of the following conditions

(1) Q(n) > Qi(n) (obvious).
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(2) Q(n) is non-increasing.

Here, first note that Q(n) is constant for 2m < n < 2m+1. If 1 < m < 2 <
n2 < 22, then

Q(n2) = max{Qi(2),4-1Q(2)} <

If 2™-1 < n! < 2™ < n2 < 2m+1, then

since, by (1), g i(2m) <

(3) g(n)

For (3) note that, if 1 < n < 2, we have 2 < 2n < 4, and if 2n = 2, then
<5(n) = <5(2n) = Qi(l), and we have nothing to show. If 2 < In < 4, we
have

Q(2n) = max{g1(2),4-1Q(2)} > 4-^(2) = ^lQ(n).

For 2m < n < 2m+1, m > 1, we have 2m+1 < 2n < 2m+2, and hence

Q(2n) = max{gi(2m+1),4-1g(2m+1)}

(4) o

To verify (4), note that ££L0 Q(n) < oo if and only if £m=i Q(2m)2m < oo,
since Q(n) is non-increasing. There are two distinct cases that we need to
consider separately:

Case I. 4~xg(2m) > Qi(2m) for all m > m0. In this case,

g(2mo+1) =
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By induction, for all m > m0 + 1, we have

Q(2m) =4-(m"'no)Q(2mo).

Therefore

oo oo

]T Q(2m)2m = ]T 4-(m-
m=mo+l m=mo + l

= g(2m°)2mo.

Case II. There exists an infinite sequence mi < m-i < • • • < rcik <
mk+l < • - . such that Q1(2m '=) > 4-1<2(2m*), and Qi(2m) < 4-ag(2m) for
all m ^ {rrik '• k = 1,2,...}. In this case, we can deduce that

\ ^ S\{t)m\f)ffl. ^ A S~) /O?7^fc^^>771i:y Q\z )i s 4yi(z )L .

Actually, if m^i — m^ + 1, then the left-hand side equals

g(2m*+1)2mfe+1 =

Therefore we consider m^ < m^ + 2 < m^.+1. We have

and
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By induction, for all m 6 [mk + l,mjt+1], we have

It follows that
mfc+l

1(2m '=)

_/

<

Thus we obtain

71=1

since Qi(n) is non-increasing and 2mfc - 2m*-1 > 2m*~1. D

(3.2.4) LEMMA. Assume (2.4), (2.6) and (2.7). Then the function
Q(n) has the following properties:

n

t=0

Q(n] = o(n-1). (2.9)
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PROOF. We have

Y.Q(t}Q(n-t] < 2 £ Q(t)Q(n-t)
<=0

by (2.4), (2.6), and (2.7). Moreover, by (2.6) and (2.7),

nQ(2n) < Q(n + 1) + • • • + Q(1n) < e/2

for n > n0 sufficiently large. Thus (2.9) follows. n

We now define arithmetical functions t/ and M by setting

f l, for n = 0,
-2no, f o rn = n0, (2.10)
0, otherwise,

and

M ( n ) = ( ° ' ^ i f n - n ° ' (2.11)1 J ( qnQ(n), if n > n0, l ;

where n0 is a positive integer to be specified later and where Q(n] is the
function denned in Lemma 3.2.3.

(3.2.5) LEMMA. Assume (2.1). Let Q(n) be the function defined
in Lemma 3.2.3 with Q\(n) defined in (2.2). Then, for fixed n0 sufficiently
large, the arithmetical function V :— G*U*M is non-negative and V(n) — >
oo as n — > oo.



94 Section 3.2: Chebyshev-type upper bounds

PROOF. We first note that G * M(n) = 0 and hence V(n) = 0 if n < n0.
For n0 < n < 2n0, it is easy to see that

V(n) = G* M (n) - qn°G * M(n - n0) = G * M(n) > 0.

Therefore we may assume that n > 2n0. Write

G(n) = Ag
n + Rn = qn(A + rn), for n > 1.

By (2.2) and (2.5), rn\ < Q^n) < Q(n). Then we have

V(n) =
i=0 \m=0

"][; G(<)M(n - t) -q^" £
t=0 t=no

<=no+l

n— no —1

Q(t - n0}Q(n - t)
i=no+l

> Aqn

m=n — no
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n-2no-l
-<?" E Q(^Q(n-n^-t}~qnQ(n-n0)

> AqnnQQ(n) - (5K + 4)<f Q(n)

since, by (2.8) and (2.7),

t=i
and

n-2no-l

E Q(t}Q(n -no-t)< KQ(n - n0) < 4A'(

for n > 2n0. We now choose n0 satisfying

An0 > 2(5K + 4)

and arrive at
V(n}>l-An0qnQ(n).

Thus V(n) > 0 and V(n) -> oo as n -> oo by (2.5) and (2.2). D

PROOF OF THEOREM 3.2.1 It suffices to show that A(n) <C qn. We begin
with the convolution equation (1.7)

Convolving both sides of this equation by U * M, where the arithmetical
functions U and M are defined in (2.10) and (2.11), respectively, we obtain

A * G * U * M(n] = LG * U * M(n). (2.12)

We then show that the magnitude of the right-hand side of (2.12) is O(qn).
Actually we have

LG*U(n) = nG(n] - (n - nQ}G(n - n0}qn°

= An0qn + nqnrn - (n - n0)qnrn_no
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since < Q(n) = o(n~l), by (2.9). Therefore,

LG*t /*M(n) = £ 0(qn~t}qtQ(t]
t=n0 + l

= 0(qn) (2.13)

by (2.6). Now, from (2.12) and (2.13), for n sufficiently large,

A(n - ni)V(m) < A * V(n) < Kqn,

where V = G *U * M is non-negative by Lemma 3.2.5 (A is non-negative).
This implies that A(n - n:) < /£^n, i.e., A(n) < Kqn+ni since for fixed n1;

sufficiently large, V(ni) > 1 by Lemma 3.2.5. n

Having proved Chebyshev-type upper bounds, it is then natural to
ask for Chebyshev-type lower bounds. To answer this question, a conse-
quence of Theorem 5.4.1 of Chapter 5 below will show that a lower estimate
A(n) ;» qn is, in the general case, essentially equivalent to the abstract
prime number theorem, and hence requires the same restrictive conditions
as the latter does. This indicates a major divergence of the theory of addi-
tive arithmetical semigroups from classical number theory.



3.3 Mertens—Type Asymptotic Estimates
and Prime Divisor Functions

In this section we consider some consequences of Chebyshev-type upper
bounds. We first deduce Mertens-type asymptotic estimates with the aid
of those bounds. These estimates have many uses. In particular, we shall
apply them to the investigation of the prime divisor functions u; and 0 on Q
such that o>(a) equals the total number of different primes dividing a 6 Q,
while 0(a) counts these primes together with their multiplicity relative to

3.3.1 Mertens—type estimates (cf. Zhang [3])

(3.3.1) THEOREM. Suppose there exist constants A > 0 and q > 1 such
that

CO

Y,sup\G(m)g-m -A <oo. (3.1)
re=1n<m

Then
n

(3.2)
m=l

PROOF. As in the proof of Theorem 3.2.1, we begin with the convolution
equation (1.7)

A * G = LG,

i.e.,
A ( n ) + £ K(s}G(n-s) = nG(n), n>l. (3.3)

l<s<n-l

We write again
G(n)=qn(A + rn), n>l.

97
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Dividing both sides of (3.3) by <?n, we obtain

\(rn\ \( C\ J\( C\l\\ ll} . x—> / V I 6 J ^—^ /11 6 I .
^ / i A \ V / _1_ X ^ 7^ ^— f~l /\ —1— T*

f,Tl • ' "J syS f J j-iS

and hence
v^ A(
2^ ~T

since A(n) < g", by Theorem 3.2.1, and ̂ =1 r«l < °°' by (31)- D

(3.3.2) THEOREM. Assume (3.1).

_ _ +O(n~1}, (3.4)
9(p)<n l<m<n

where c is a constant.

PROOF. We have A(n) < qn, and the sum

(3.5)
k=i

by Theorem 3.3.1. Then, for the classical Mobius function /z on N,

E
m=l r|m

r=l

•e-̂  ty.(r) _r Y^ Av J v^
^ / ———Q ~r / ——— /^—' r ^ £—i j. ^—'

= Si + 62,
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say. By (3.5), we have

= £.
r=l

n-l i n-1

= logn + cj + O(n~1),

where

and 7 is the classical Euler constant. To obtain an asymptotic formula for
52, let

5 = 2

Then
oo _sr

E —— <<?"2r- (3-6)
s=2

Hence

Thus we obtain

By (3.6)
n AM

^ '

i + O ( n-lq~n ]T A(r) j . (3.7)
r=l

d - r V 7ar — C2 ~" / _ , ———— "r^ — '
r=l ' r=n+l '

( oo -/

E
r=n+l
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where

r=l ' s=2

Moreover, the last sum in (3.7) is
n

r=l

It follows that

Then (3.4) follows with c = cx + c2. n

(3.3.3) THEOREM. Assume (3.1). Then

9(p)<n l<m<n

PROOF. As in the proof of Theorem 3.3.2, we have

£ mP(m)q-m = ^ A(r) ^ /,(5)^sr

l<m<n r=l l<s<

r=l

say. By (3.5),

Moreover, since

we have

r=l r=l
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Then (3.8) follows. D

(3.3.4) THEOREM. Assume (3.1). Then

n
where €3 is a positive constant.

PROOF. The left-hand side equals

exp{ £ Iog(l -<f 8 <*>)j

,-23(p)

\3(P)<«

by (3.4). The last sum equals

m < T = c2 + «
l<m<n ?n>Ti

where
^<Tm

m=l

Thus (3.9) follows. D

The following lemma gives some elementary estimates which will be used
repeatedly later.
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(3.3.5) LEMMA.

(i) Let q > 1 and 7 > 0. Then

= 0(qnn (3.10)

(ii) Suppose P(m) <C qmm~l with q > 1. Then, for any positive integer
n,

-1). (3.11)
Km<n

PROOF. We first have

<C

Thus (3.11) is a direct consequence of (3.10) with 7 = 1. D.

3.3.2 Prime divisor functions

As an application of the above Mertens-type asymptotic estimates, we in-
vestigate some "statistical" properties of the prime divisor functions o> and
0 on an additive arithmetical semigroup Q, such that (for a 6 Q~) w(a) and
0(a) denote the number of distinct prime divisors of a and the total number
of prime divisors of a with multiplicity counted, respectively.
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Remark. These two functions were investigated in [ANAL], with similar
conclusions to those below, within the general context of Axiom A*. How-
ever the following two theorems under the very weak condition (3.12) are
proved for the first time in this monograph, and the proofs have not been
published before. The proofs are simpler.

(3.3.6) THEOREM. Suppose there exist constants A > 0, q > I , and
7 > 1, such that

G(n) = Aqn + O f/n^) . (3.12)

Then
£ w(a) = ?

n(Alogn + c1 + 0(n-1)) (3.13)
9(a)=n

and
$3 0(a) = < ?

n (Alogn + c2 + 0(n-1)), (3.14)
d(a)=n

where GI and c2 are constants.

£1=

PROOF. We have

9(o)=n 9(a)=n p|o 3(p)<n 9(a)=n
p\a

= E £ 1= £
8(p)<n d(b)=n-d(p) 8(p)<n

= £ G(n-m)P(m)
l<m<n

and hence we may write

£ w(a) = P(n) +
9(o)=n

Km<n-l
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( m )
Km<ra-l

- P(n) + Sl + S2 + 53, (3.15)

say. By (3.2),

5(n) := E A(m)g-m = n + O(l).
m=l

Hence

^ v m ~ ^ mKm<n-l Km<n-l

5(n — 1) ^ S(m)

where
^ S(m] — m

cs = 7 + E m(m + i)

and 7 is the Euler constant, since

E/ —/————T" ~ /_/

Then

Sl = E
Km<n-l

(3.16)
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Also, by (3.12) and A(n) < qn,

S, = qn V of- 7 —— 1——- } = qnO(n-1}, (3.17)
" \ m (n — m}i I\<m<n-\ V" V* '"/ /

since
^ — > 1 _ ^ ^ — ̂  1 _ -^

"

and
~

i<^<« ln ~~ my™ i<m<2. TO

for 7 > 1.

Finally,

S3 = E (Aqn-m+ O(qn-m(ri-i
Km<n-I

?" E -
Kro<7i-l

P(m}-

(3.18)

where
00 _ / A(nC4 = X) 9~m (P(m)- -—

since

and
V — ̂
N

_
2 4
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Thus (3.13) follows from (3.15), (3.16), (3.17) and (3.18).

We then turn to the function fi. Note that

£ n(a) = £ £ i = £ £ i
d(a)-n d(a)=n r>l,PeP r>l,pGP d(a)=n

pT[a rd(p}<.n pr\a

= £ "(«) + £ G(n-rd(p)). (3.19)
9(a)=n r>2,p€P

rd(p)<n

The last sum can be written in the form

rm)P(m) = Ag"
r>2,m>l r>2 ,m>l

r7n<n rm<n

-(r--l)m
Y O{ -1 ——— - —— + y P(m)./— ' ^ ^ '

r>2,m>l
rm<n

We have

r>2,m>l
rm<n

where

r>2,m>l 771=1

since

r>2,m>l r>2,m>l
rm>n rm^n

-(r~l)

r>2
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r>n 2<r<n

<<r n + E 9~n+?
2<r<n

<rn + 9~*n.
Moreover, we have

/ a-(r-i)m \
E ° 7~^—\— ^ n""

rm< y

r>2

and

< „- -
r>2 ,m>i - n
~ <?"7n<n

»>

"

Hence

Finally,

0
r>2,m>i

Therefore, the last sum in (3.19) equals

qn (Ac, + 0(n

and (3.14) follows from (3.13) and (3.19). D
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From Theorem 3.3.6, the mean- or average-values of u> and fi for ele-
ments of degree n are

and

G(n) 9(a)=n A

respectively.

We next consider an analogue of a theorem of Hardy and Ramanujan
on the classical functions w(n) and Q(n) of n 6 N.

(3.3.7) THEOREM. Assume (3.12). Let f ( a ) denote w(a) or 0(a).
Then, for any fixed 8 > 0,

a : d(a) = n, |/(a) — logn > (logn)2+l5}- = o(G(n)).

PROOF. Note that

a :d (a ) = n, |0(a)-logn| >

C |a : <9(a) = n, w(a) - log n| > (log

U |a : d(a) = n, 0(a) - w(a) > (log

for n > UQ sufficiently large. By Theorem 3.3.6,
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and hence

a: d(a) = n, 0(a) -

5-» E
9(a)=n

The stated conclusion for 0 is a direct consequence of that for u>. We need
only prove the theorem for u>.

Now consider

= y y u(a)= y F/ j / ^ <~\™>) / _, / J
p|a

Since u>(b] < u)(pb) < u>(&) + 1, we have

y^ V^ u(b] < ^ ( (a/ j / j \ ) — / j \ \
d(p)<n 9(6)=n-8(p) 8(a)=n

and

V^ i i ^ ^ 2 ^ V^ V^ i fL\ i 1 \> ( w i a l ) < > > ( w l o i + l )Z_/ v \ / / — z__/ / j \ \ / ' /
9(a)=rc 9(p)<n 8(6)=n-8(p)

= E

E Y^ mE w(6) •
9(p)<n 8(&)=ra-8(p)

by (3.4). Hence

V^ / / \ \ 2 v-v v-^E Ma)) = E E <
9(a)=ra 9(p)<n 9(6)=n-9(p)
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8(pp')<n

We have

G(n-d(pp')) = £ ! n E
3(pp')<n

By Theorem 3.2.1, the first sum on the right-hand side of (3.20) equals

P(n-™)P(m)T 1 - VZ.̂  ~~ Z—/
9(p)+9(p')=n m<n-l

1<?" E/ j i _ \ ^ 1^TC_I (^n — mjm n

Applying (3.4) twice, the second sum on the right-hand side of (3.20) equals

EE
9(p)<n 9(p')<n-9(p)

(log (n-%)-!) +0(1))

- m - l ) + O(logn).
m<n-2

We have

m<n-2

m<n-2

— A(m)i /- n . n n A' - " ' - — m — 1) + C'(logn)
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To evaluate the last sum, let

m<t "t

for t 6 N and So = 0. Then it equals

53 (Sm - S'm-i)log(n -m - 1)
m<n-2

= 53 S m ( l og (n -m- l ) - l og (n -m-2) )
m<n-3

= 53 logm( log(n — ra — 1) — log(n — m — 2)) + 0(logn)
m<n— 3

= (logn)2 + 0(logn)

by (3.16), since

m( l°g(n — TO — 1) — l°g(n — m — 2))
m<n-3

- TO - 2)

and
v^ 1 , .53 — log 1- ——— < logn

n

53 — log (1 - ——— ) < - 53 | log(n-m-2) -logrc <logn.~. Q m V n / nn ~. ,m<n— 3 <m<n— 3

Hence, the second term on the right-hand side of (3.20) is

To estimate the last term on the right-hand side of (3.20), we have

8(pp')<n
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m<n — 1
E

d(pp')=m

<C
l o m

m< , (n — m)'1' mn— 1 V /

since

and

E—
9(pp')=m

log
777

1 log TO

— 777 I "> 77?m TO

<

E^ + ̂ E
-7+1 , 10§n

1 logm

Hence the last term on the right-hand side of (3.20) is

This gives

E G(n - d(pp')) = Af (log n)2 + O(qn log n)
d(pp')<n

and then

d(a}=n

We now have

\a : d(a) = n,

o;(a))2 = A<f(log n)2 + 0(9
n log n).

(a;(a)-logn)
3(o)=n
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d(a}=n

(logn)2G(n)

Theorem 3.3.7 gives us some information about the distribution of values
of io(a) and 0(a) about their "mean". For any real-valued function / defined
on Q, we say that / has normal value F(n) for elements of degree n in Q
if and only if

holds for "almost all" a 6 Q of degree n (i.e., for all but o(G(n)) elements a
of degree n), and for each fixed s > 0. Theorem 3.3.7 implies that the mean
values of u> and fl are essentially also their "normal" values. More accurate
information about the distribution of values of u> and 0 will be obtained in
Chapter 7 by deeper methods.



3.4 Abstract Prime Number Theorems and
Zeros of the Generating Function

With the aim of deriving sharper asymptotic information about the numbers
P(n), we shall first investigate the relation between abstract prime number
theorems and the zeros of the modified zeta (i.e. generating) function

oo oo

Z(y) := £ G(n)yn = U(l- ym}~p(^ (4.1)
n=0 m=l

of Q. By the proof of Proposition 1.2.1 earlier, the infinite "Euler" product
on the right-hand side converges absolutely and hence the generating func-
tion Z(y) has no zeros in the disk { \ y \ < q~1}, if G(n) <C qn. However, for
the derivation of abstract prime number theorems in the classical sense, the
zero-free region of Z(y) must be extended to include the circle \y\ •= q~1,
as the following theorem shows.

(3.4.1) THEOREM. Suppose that there exist constants q > 1 and 7 > 1
such that

A ( n ) ~ g
n , ("P.N.T.") (4.2)

and
G(n)-qG(n-l) = O(qnn~'<) (4.3)

both hold. Then Z(y] has no zeros on the circle \y = q~l.

Remarks. Condition (3.12) with 7 > 1 implies (4.3) and, conversely,
condition (4.3) implies that G(n) = Aqn + O(qnn-^1}. Thus the "P.N.T."
condition (4.2) is equivalent to P(n) ~ qnn~l by Proposition 3.1.7, if (4.3)
holds.

PROOF. To prove Theorem 3.4.1, we need the following inequality:

114
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(3.4.2) LEMMA. Let 7 be a constant satisfying 1 < 7 < 2. Then

^~X* c (zi - Xi)~<-\ for 0 < n - x2 < 1.
n=l

PROOF. Actually
oo n __ y,n yji __ n ^n. __ ^n

/ J ^.-V f J .n'V ^-—J v-t'Y

say. It is easy to see that

1

and that

PROOF OF THEOREM 3.4.1. Consider the function
oo

Z0(y) := (1 - qy)Z(y) = 1 + E (G(n) - ?G(n - 1)) y»,
n=l

which has a continuous continuation to the circle \y\ = q~l, by (4.3). It
suffices to show that Zo(y) has no zeros on \y\ = q~l .

On the one hand, by (1.7), we have
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Let an = A(n) - qn. Then, by (4.2), an = o(qn). It turns out that
OO

log (Z0(rea}) = £ -irV"9, 0 < r < q~\
V ' ^i n

since Z0(0) = 1. Therefore, for any given e > 0, we have

|Zo(re*)| = expJ.Ref;^-
n=l

(rq)n

n

where c = c(e) is a constant since Re(anq~nemS] > —e for n > n0.
other hand, by (4.3),

(4.4)

On the

- Z0(rete) - qG(n
71=1

^ 1

n=l n<

for 0 < r < r: < <? . It follows that

from Lemma 3.4.2.

Now suppose that Theorem 3.4.1 is false and ZQ(q~lel6

upon letting r\ —* q~l in (4.5), we would obtain

Z0(re"

Taking e — (7 — l)/2 in (4.4), we would have

e-c(l -

(4.5)

= 0. Then,

or
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this is certainly absurd for r sufficiently close to q~l. D

Conversely, we have the following result which is a "conditional" abstract
prime number theorem and an "inverse" of Theorem 3.4.1 in some sense.

(3.4.3) THEOREM. Suppose that there exists a constant q > 1 such
that

oo
V^ — 2n 2 I/"I/ \ /"I/ 1 \ |2 . (i e\y q n \\jr(n) — q(j\n — i j | < oo. l^'"J
n=l

If Z0(y] = (1 — q y ) Z ( y ) is continuous on the closed disk {\y\ < q~1} and
has no zeros on the circle \y\ = q~l, then

A ( n ) ~ < f ("P.N.T.").

PROOF. First note that the condition (4.6) implies

G(n)~qG(n-l) = o^n'1}.

Hence

m=l

Then the absolute convergence of Z ( y ) = U™=l(l - j/m)-p(m) for \y\ < q~l

follows from a similar argument to the one in the proof of Proposition 1.2.1
since P(n) < G(n). We then have

,-1
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Therefore,

y=r 0

~lwith 0 < r < q~l . We note that

Z'0(rete} - Z'Q
2dd

= 27T £ n2 (G(n) - qG(n - I))2 q~2n+2 ((qr)n~l - (qr^1

n=l

by (4.6), since ((qr)n~l — (qri)n~l) < 1. Therefore there exists a function
F(6) G L2[-7r,7r] such that Z'0(reie] -» F(0] in L2[-ir,w} as r -> g-1-, by
the completeness of the space Z/2[— ^r,71"]- It follows that

since Z0(y] is continuous in {|j/| < q""1} and has no zeros on it. Therefore
we obtain

A(n) = f + *
V ^

because the last integral tends to zero as n —> oo, by the Riemann-Lebesgue
lemma. n

(3.4.4) COROLLARY. Suppose there exist constants q > 1, A > 0 and
7 > |, such that

G(n] = Aqn + O (qnn-~<) .

If Z0(y] had no zeros on the circle \y\ = q"1 then A(n) ~ qn.

Note. The condition 7 > | can be replaced by 7 > 1, as shown by
Warlimont [1]. We shall not pursue this result here.
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The next theorem is also a "conditional" abstract prime number theo-
rem, but with a remainder term.

(3.4.5) THEOREM. Suppose that Q satisfies Axiom A* , i.e. there exist
constants A > 0, q > I , and v with 0 < v < 1 such that

). (4.7)

If the generating function Z(y] has no zeros on the circle \y\ = q~l then

A(n) = qn + 0(qan) (4.8)

holds for some 0 with v < 0 < 1 .

Remark. In addition to (4.7), Indlekofer [1] makes the assumption that
the function ZQ(y) = (1 — qy)Z(y), for |y| < q~l is of Nevanlinna type. This
leads to still more precise information about the remainder in (4.8).

PROOF. Note that the function Zo(y) = (l — qy}Z(y] is holomorphic in the
disk {\y\ < q~"} by (4.7), and has no zeros in the closed disk {|y| < q~1}.
Therefore, by the compactness of the circle |y| = q~l, there exists some
constant $1 with v < Q\ < 1 such that Zo(y) has no zeros in { \ y \ < q~Sl}.
If we shift the integration path in the formula

\=r 0y

with r < q~l, to a circle with radius r — q~e where BI < 6 < 1, then we
arrive at the conclusion. n



3.5 Explicit Abstract Prime Number
Theorems

3.5.1 Versions of Zhang [1]

The results of Section 3.4 show that a key to establishing an abstract prime
number theorem in the classical sense is to discover conditions which guar-
antee that the generating function Z ( y ) has no zeros on the circle \y\ = q~1 .
For this, we first have the following theorem, which is sharp as Example
3.8.1 below will show.

(3.5.1) THEOREM. If there exist constants q > 1 and A > 0 such that
oo

) - Ag») V < °° (5-1)
71 = 1

then Z(y) has no zeros on the circle \y\ = q~l .

PROOF. The following proof is a simplication of the one first given by
Zhang [1]. To prove Theorem 3.5.1, we first note that, by (5.1),

and hence
G(n) = Aqn +

Therefore, essentially as in the proof of Proposition 1.2.1, one sees that
Z(y] has an analytic continuation in the disk \\y\ < q~? j as a meromorphic
function, with the only singularity being a pole of order one at y — q~l . We
divide the further proof of Theorem 3.5.1 into several lemmas.

(3.5.2) LEMMA. Assume Axiom A^ , i.e. suppose there exist constants
A > 0, q > 1, and v with 0 < v < I , such that

G(n) = Aqn + 0(qm}.

120
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Then Z(y) has no zeros on the circle \y\ = q~l , except perhaps at the point
y = —q~l where it has at most a simple zero.

PROOF. Consider the "associated zeta function" ( ( s ) :— Z(q~s) with
Res — a > |, (not to be confused with the Riemann zeta function). Then

it) = n
m=l

for a > 1, and we have

C(<r) = Z(q~°} = VJ G(n)q-n° = '-2-^*1 (1 + Q(a - 1))
n~0

as a — > 1+. Since

oo

X) P(m) ̂  T9~mfc<T 3 + 4 cos(f ybn log
=l k=l k

> 1 for a> 1,

in view of 3 + 4cos$ + cos IB = 2(cos$ + I)2 > 0, ((a + it) has no zeros
on the line <r = 1 except possibly at those points with t = rmr/ log q,
m = ±1, ±3,..., where it has a zero of order at most one. Therefore Z(y)
has no zeros on the circle \y\ = q~1, except possibly at the point y = — q~l

where it has at most a simple zero. D

(3.5.3) LEMMA. Assume (5.1), and suppose that Z(y) has a zero at
y = -q~l. Let

(5.2)

71=1

Then
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PROOF. We first show that

lirn Z(re'e) - d9 = 0. (5.3)

Actually, we have

where
Aqy

n=l

The function f ( y ) is holomorphic in the disk {\y\ < q~*} by (5.1) and we
have

f(reie) -

= 27r '
71=1

for r < q~z, n < <?". We note that ( ( < p r j — lq*rij j < 1. Therefore,
by (5.1),

lim = 0.

f 2 1Also, note that g(y) is uniformly continuous on the annulus j q~z < \y\ < q~?
Therefore (5.3) follows from the inequality

+ f ( r e ' 0 ) - f(rie
tB)< 2 g(rete) -

Now consider Z(y)Z(—y). By the hypothesis that Z(y) has a zero at
y = —q~l, Z ( y } Z ( — y ] has no poles at y = q~l and y = —q~l. Therefore, it
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is holomorphic in the disk ||?/| < q~%\. We have

l»l=r yn+l

emeZ(re'e}Z(-re'8}d0. (5.4)

By (5.3), there exists a function F(0] G LI[—7r,7r] such that

lim d0 = Q.

Therefore, if we take the limit as r —> <^~2 — on the right-hand side of (5.4),
then we obtain

H(n) =*£- I* einSF(0)dO.

It follows that H(n) = o (<p), since the last integral tends to zero as n —> oo
by the Riemann-Lebesgue lemma. d

PROOF OF THEOREM 3.5.1 Write
CO

Z(y)Z(-y}= n

and

m=l
7i even

n=0

m=l V ^ a / n=0
m even

Then
x _ J G f ^J , if n is even;

1 0, if n is odd.

Also, since
1 + ym ~ im

"] — 7/Tl ^ ' ^—^
1 i/ fc=0
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and the P(m) are non-negative integers, the G^(n) are all non-negative
integers. Therefore

\ / 00

, G^}yn E
n=l \n=0 / \n=0

and

H(n) =

Suppose that Theorem 3.5.1 is not true, and that Z(y) has a zero at y =
—q~1. Then we would have

liminf q-nH(1n) > lim qnG(n) = A > 0;
n—>oo ^ ' n—>oo v '

this contradicts (5.2). n

Theorem 3.5.1 has the following direct corollary which is convenient to
apply.

(3.5.4) COROLLARY. If there exist constants q > 1, A > 0, and 7 > \,
such that

G(n) — Aqn + O (q^n~'1}

then Z(y] has no zeros on the circle \y\ = q~l.

This corollary combined with Example 3.8.1 below shows that Theorem
3.5.1 is in some sense "sharp".

Furthermore, by combining Corollary 3.5.4 and Theorem 3.4.5, we ob-
tain the following abstract prime number theorem.

(3.5.5) THEOREM. Suppose that there exist constants q > 1, A > 0,
and v with 0 < v < | such that
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or that (for v = \) there exists also a constant 7 > | such that

Then
A(n) = qn + 0(qen) (5.5)

holds for some 9 with v < 0 < 1.

Remark. Theorem 3.5.5 gives rise to the problem initiated by S.D. Cohen
[1] to describe more precisely in terms of v the quantity 6 in the remainder
of (5.5). Example 3.8.6 below will show that there is not too much we can
say about 0 in terms of v.

3.5.2 Versions of Indlekofer-Manstavicius—
Warlimont [1]

Now consider some theorems given by (or equivalent to ones given by) In-
dlekofer, Manstavicius and Warlimont [1].

(3.5.6) THEOREM. Assume P(n) < qn, n = 1 ,2 , . . . , for some q > I.
Suppose that Z(y) can be analytically continued in the disk l\y\ < q~z \ to a
meromorphic function with only singularity being a simple pole at y = q~l.
If

liminf fl - q^x] Z(x]Z(-x] < 0 (5.6)i \ / v / v / — v /

z^0-j-
-1then Z(y] has no zeros on the circle \y\ = q

Remark 1. This theorem implies that, if

lim (l - q*x) Z(x}Z(-x) = 0, (5.7)
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then Z(y) has no zeros on the circle \y\ = q~l. This is a weaker and non-
equivalent conclusion.

Remark 2. One can deduce Theorem 3.5.1 from Theorem 3.5.6. Actually,
(5.1) implies the conditions of Theorem 3.5.6 as well as (5.2) by Lemma
3.5.3. From (5.2), we have

n—1 n=no-f-l

for 0 < x < q~2. Hence

/ n° \ +1
(l - q?x) Z(x)Z(-x] < (l - q*x) ( 1 + X) H(n)xn + eq^xno+\

V n=l /

and then
limsup f 1 — q z x ) Z(x]Z(—x] < e
x-+q~2 —

for each e > 0. Thus (5.6) follows.

Theorem 3.5.6 is an equivalent form to:

(3.5.7) THEOREM. Assume the conditions of Theorem 3.5.6. If
Z(-q-1} = 0, then

for real x —> q~^ — .

PROOF. Actually, (5.8) holds if and only if

liminf [l - q^xj Z(x}Z(-x] > c (5.9)
x-*q-Z-

for some c > 0. If Z(—q~~1} = 0, then Theorem 3.5.6 implies (5.9), and
Theorem 3.5.7 follows. Conversely, if (5.6) holds, then (5.9) does not, and,
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by Theorem 3.5.7, Z(—q~l) ^ 0. Thus Z(y) has no zeros on the circle
\y = q~l, by Lemma 3.5.2. Then Theorem 3.5.6 follows. d

PROOF OF THEOREM 3.5.7 As in the proof of Theorem 3.5.1, we have

Z(y)Z(-y) = g(y)Z(y*), \y\ < q~\

where

n=l
n even

Note that g is holomorphic for |y| < q~l and that <?(0) — 1. Let

71=1

Then cn > 0. We note that the functions ^(j/2) and ^^^^(j/) are holomor-
phic for |y| < q~z and that Z(y2] ^ 0 there. Hence

is holomorphic there too. Therefore the power series expansion (5.10) holds
for \y\ < q~? too. We then obtain

for 0 < x < 9 ~ 2 . It follows that

Z(x)Z(-x) > Z(x2)

for 0 < x < q~i . Since Z(y2) has a simple pole at y = < ? ~ 2 , and Z(x'2) > 0
for 0 < x < q~i, we see that

< Z(z2)

for 0 < x < q~5, and (5.8) follows. D
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(3.5.8) EXAMPLE. As in Theorem 2.1.1 earlier, consider the generating
function Zfq(y] of the category jFg. Then, as before,

r=l

Hence, for 0 < x < q 2 ,

T odd s=l

_1 , 1 \ —2 /

r odd ' s=2

1 °°T n ( i -
As x — )• < ? ~ 2 — , f 1 — ^ ^ x — > +00 and

= a - <?)-1 n (i -
x— >q 2 — r 0<Jd r odd

'"2 = ft

Hence, we have

i • /- , \ 7 ( \ 7 ( \ —

By Theorem 3.5.6, Zfq(y) has no zeros on the circle \y\ — q~l. Thus the
total number Pp(n) of non-isomorphic indecomposable modules of cardinal
qn satisfies

as n —> co, where | < 61 < 1, which is a weaker form of Proposition 3.1.1
above.



3.6 A Tauberian Theorem of Bombieri

The proofs of the abstract prime number theorms given so far are analytic.
Elementary proofs can be constructed on the basis of the following tauberian
theorem (cf. Zhang [4]), which is a refinement of one of Bombieri [2].

(3.6.1) THEOREM. Suppose that am > 0, m = 1,2, . . . , and that

m-l
mam + ̂  a;am_; = 2m + 0(1), (6.1)

and
m

i=l

as m —•> oo. Then

am = I + O ( — ) as m —> oo.

Remark 1. Let am = 1 if m is not a square of an integer, and an2 = 1 -f- ̂
for n > 1. Then plainly the conditions of Theorem 3.6.1 are satisfied. This
example shows that am = 1 + 0 ( — j is sharp.

Remark 2. The condition (6.2) cannot be replaced by the condition

m

(6.3)

A counter-example is an = 2 if n is odd, and an — 0 if n is even. Then the
an satisfy (6.1) and (6.3), but not (6.2). A tauberian theorem of Erdos [1]
shows that (6.1) implies (6.3). Therefore, the condition (6.1), together with
the non-negativity of an is not alone sufficient to imply am = 1 + o(l). To

129
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guarantee the convergence of am as m —> oo, some other condition beyond
(6.1) (and its implication (6.3)) is needed. This reveals another important
divergence of the theory of additive arithmetical semigroups exposed in this
monograph from classical number theory. As is well-known, in classical
number theory (see, e.g. Erdos [1]), the Selberg formula is alone sufficient
in order to deduce the prime number theorem for N. However, for additive
arithmetical semigroups, the abstract Selberg-Bombieri formula (see (7.2)
of Section 3.7) is not sufficient by itself.

Remark 3. We shall give a proof of Theorem 3.6.1 with the supplemen-
tal condition (6.3). This is merely an equivalent form of Theorem 3.6.1,
because, as we mentioned in Remark 2, (6.3) is actually a consequence
of (6.1). With the supplemental condition (6.3), our proof of Theorem
3.6.1 is self-contained and shorter, because we have no need to appeal to
the proof of Erdos's tauberian theorem. In point of view of being self-
contained,Theorem 3.6.1 with supplemental (6.3) will be sufficient to con-
struct elementary proofs of an abstract prime number theorem. Actually,
in our elementary proofs, which we shall introduce in the next section, the
condition (6.3) is merely the Mertens-type asymptotic estimate (3.2) which
was proved in Theorem 3.3.1.

Let am — I + rm. From (6.1), (6.2), and (6.3), we have

fc=i

m

£r* = O(l), (6.5)

and
771

(6.6)
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Moreover, since am > 0, from (6.1),

mam < 2m+ 0(1)

and then
0 < l + r m = a m < 2

Hence

Thus we have

It suffices to show that rm = O ( — }.

(6.7)

To this end, we first prove the following lemma, which is a strengthened
form of the lemma given in Bombieri's paper. The proof follows his general
idea.

(3.6.2) LEMMA. We have

limsup|rm + rm+1| < 1, limsup m - rm+i (6.8)

Remark. This lemma shows that rm has a kind of slow oscillation, which
is essential for proving Theorem 3.6.1.

PROOF. From (6.4) and (6.7), we have

m-l
m rk O(logm). (6.9)

k=l

To prove the first part of (6.8), suppose on the contrary that

limsup rm + rm+1 = I > I .
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Then, for any given e positive and sufficiently small, the set

M £ : = { m G N : rm + rm+l > I - £ > 1}

contains infinitely many m. For each m € M£, let the set

/ = /(m, e) := [k 6 N : k < m, \rk + rk+l <l

Then, from (6.9), for m 6 Me, we have

m(£ -e)<(l-Ve) \I\ + (I + e)(m - |/|) + O£(logm),

where |/| is the number of fc's in /. It follows that

(6.10)

Therefore, if we choose e positive and sufficiently small then for m in M£

sufficiently large there is an interval [a, b] with integral end points a and b
such that

m 1
(6.11)

and such that

Vk + rk+i | > i > 1 for all k e [a, b]. (6.12)

Actually, if such an interval [a, b] did not exist, then for every n between y
and m there would be some k G / such that — 7—7= < n — k < -T^T-, andlu^/e — — lu^e '

hence the union of the intervals Ik = \k — jAj, k + ̂  with fc G / would

cover the interval y,m . However, the total length of intervals Ik is, by
(6.10), at most

1/1

m

m
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for m sufficiently large, where the two 0e-constants may be different.

Since rk\ < l + O f j M , (6.12) shows that rk and rk+i have the
for all k E [a, 6]. It follows that

133

same sign

ke[a,b]

^—\ / -. Tfi
Z~s

T*
(rk + rk+l) + -^ +

> - E— o /^
]_
2

However, from (6.5),

1
207?

20^'

E
k€[a,b] k=l

o-l

£'*

which is certainly absurd if e is small enough. This completes the proof of
the first part of (6.8).

Similarly, to prove the second inequality of (6.8), suppose on the contrary
that limsup^ —r.m+l = I > I . A similar argument shows that there
is an interval [c, d] with integral end points c and d such that

1 ,
—- < c < d < m,
Li

c >

and such that

\rk - rk+i > I - v^ > 1 for all k 6 [c, d]. (6.13)

Since rk\ < I + O f j H , (6.13) shows that rk and rfc+1 have the opposite
sign for all k 6 [c, d]. Then the numbers r^k have the same sign, and the
numbers r2k-i — r2k have the same sign, for all 2k E [c, c?]. It follows, from
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(6.13) and (6.5), that

snce

E

-- E2 Z^

+0(1)

(6.14)

E (r2k-l + r2/c) = E :

2k£[c,d] ki<k<k2

Now, (6.14) contradicts (6.6) if £ is small enough. This proves the second
part of (6.8). D

PROOF OF THEOREM 3.6.1. Let A = limsup™.^ rm . We first show
A = Q. From (6.4) and (6.7), 0 < A < 1 and A < A2. Hence, either A = 0
or A = 1. If A = 0 there is nothing to do. Therefore, we may assume A = 1.
By (6.4) and (6.7), we have

m-l

m r.

Since A = I , for £ positive and sufficiently small, there exist infinitely many
m such that \rm > 1 — £. If we argue as in the proof of Lemma 3.6.2,
then for each m sufficiently large there is an interval [e, /] with integral end
points e and / such that

1771

and such that

-<e<f<m,
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This inequality contradicts (6.8). Actually, for k, k + 1 € [e, /], if r^ and
rk+l have the same sign then rk + r>+1 > | and if rfc and r^+1 have the
opposite sign then r^ — r^+i > |. Hence, at least one of the limits in (6.8)
would exceed 1. This proves lim.-m— >co r mm —

It remains to show rm = O (^)- From (6.4), there exists a constant A'
such that

m-l

k=l
< K (6.15)

holds for TO = 1 ,2 , . . . . We fix a positive integer m0 sufficiently large so
that, for m > TOO,

i m i 1
(6.16)

i
-i-

i
-t

We shall show that for every positive integer k if m > 2*TO0 then

-l\k+l f.

where

(6.17)

(6.18)

This leads to the conclusion of the theorem immediately. In fact, for any
m > 2m,o, if we take k satisfying 2k+lmo > m > 2kmo, from (6.17), we shall
have

, „_,,._, K 1
1 — T] TO

——
TO 1 — I] TO

— < TOO
K

1 — 77 / m

To prove (6.17), we first note that, for k = 1, (6.17) is certainly true.
Actually, we have, from (6.15) and (6.16),

1_

TO

[m/2]
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1 1 [m/2]< -<-y- m 12 ±? m

Therefore, we assume (6.17) for 1 < k < £ and consider m > 2f+lm0. We
write ?7fc = l + 7 j + 7/2 + - - - + r)k~l. Then, by the induction hypothesis,

K
m — s

Vm\4) ^
1 A'

(6.19)

since, for s < y , m — 5 > y > 2em0. We shall estimate the last two
sums in (6.19) separately.

First, by (6.16),

[m/2] 1 [m/2]

s=l m-s

< I
1

4 \ m - 2-1-1

+ E
[m/2]

E

m — s

m — s

since

Hence

[m/2]

E m — s E
r /oim— [m/2]

m
1 2 K

5=1

<-—— Tltf.
m — s 6m (6.20)



Section 3.6: A tauberian theorem ... 137

Secondly, by (6.16) and (6.17) with 1 <k<t,

[m/2]

E K
s=l

+T
[m/2]

E
s=[2-'m] + l

[2~e+2m]

E 1\3 K

+ E

m \m

[m/2]

[m/2]

E -, (6.21)

say. Therefore, if I = 1, we have El=i \rs\ < m2~V4. If t > 2, we have

3 3 1
4 4 4
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l\e~l TO

4,

and

< Vr
~ 2

[m/2]

E
s=[2-'m] + l

I X ^ T O

4j 2 '

T - °
m/2

since [2-£TOJ > 2-'-1m for TO > 2WTO0 > 2^+1. Therefore, from (6.21),
[m/2]

Ir < ± J
2" "" ' V4/ 2

TO i-^e+i

Hence, if t > 2,

_2_
TO V 4 y
0 / I \ ^+1 lm/2J2 / 1 ^ E

s=l < U TO
£-i"

2Hog2O

- 74/
1V+2 1 K

16 TO
(6.22)

Plainly, (6.22) holds if t = I .

Now, by applying (6.20) and (6.22) to (6.19), we arrive at

' -2 J_# 2^ A^
16 TO 3 TO TO

m
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This completes the proof of (6.17) and hence the proof of the theorem.
D



3.7 Elementary Proofs

Based on the tauberian theorem of Bombieri, we can construct elementary
proofs of abstract prime number theorems (cf. Zhang [4]).

We begin with an elementary proof of the following formula.

(3.7.1) THEOREM. (Abstract Selberg-Bombieri Formula) Suppose
there exist constants A > 0, q > 1, 7 > 3, and c > Q, such that

\G(n}-Aqn<cqnn-i, n = i > 2 , . . . . (7.1)

Then

m-l _

mA(m) + Y, A(r)A(m - r) = 2mqm + O(qm], (7.2)
r=l

where the 0-constant depends only on a, q, 7, and c.

Remark. (7.2) is an analogue of Selberg's formula in classical prime number
theory, and was first proved by Bombieri in [1] for an algebraic curve C.
As is well-known, Selberg's formula is the starting-point of the famous
elementary proof of the classical prime number theorem by Selberg and
Erdos.

PROOF. The starting-point of our proof is the convolution identity (1.8)

(LA + A * A) * G = L2G,

of Section 3.1 earlier. This implies

LA + A * A = JL2G*CT1 , (7.3)

140
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where G~l is the additive-convolution inverse of G. Since
oo oo

EG-'W^ na-np(m),
n=0 m=l

it is plain that [G^ra)! < G(n).

The arithmetical function L2G can be approximated well by a function
of the form

where the function T is defined by setting T(n) = qn, n = 0 ,1 ,2 , . . . , and
the coefficients c2 and c3 will be specified later. Write

G(n) = Aqn + anqnn-~<, n = l , 2 , . . . ,

where an\ < c by (7.1). Then

(G*T}(n) = q
nlAn + (l+al) + O I-——l-——v A ; { v ^ \ («+ I)7"1

where c^ = ^^lj OsS""7, and

(G*r*T)(ra) = E G

= n

/ 1 \7~

where cr2 = £«i ass~i'+1. If we introduce E = L2G - 2(G * T * T) - c2G *
T — CsG, and choose

c2 = -1 - | (1 + *!), c3 = 1 {-(2 + c2)(l + <rO + 2a2} ,

then ^(0) = -2 - c2 - c3 and

J?(n) = <f j - (2( l + CTl) + A + c2A)n

+ (-(2 + c2)(l + ax) + 2a2 - c3A)
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for n > 1. Now rewrite (7.3) as

LA + A * A = 2T * T + c2T + c3e + R * G~l,

where e is the additive-convolution identity denned in Subsection 3.1.1.
Then

m-l _

mA(m) + ]JT} A(r)A(m — r) =
r=l

since

5=0

s=l

for 7 > 3. D

We next give an elementary proof of formula (7.7) below, which we shall
call the second analogue of Selberg's formula. This formula is of independent
interest, even though in the further discussion we need only (7.6), which is
a consequence of (7.7) and can be proved more easily.

(3.7.2) LEMMA. Let

k=o

If there exist constants AI > 0, q > 1, and 7 > 1 such that

H(2n) = Avq2n + 0 (q^n

as n — > co; then

(7.4)

(7.5)

(7.6)
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Furthermore, if (7.5) holds with 7 > 3 then

nA(2n) + £ A(2s)A(2n - 2s) = 2nq2n + O (q2n) . (7.7)
s=l

PROOF. First note that

n=0 n=0 n=0
oo (i-ymr2p(m) n

= n a - y

-2P(m) TT /-, 9,™A~P(m)

m even m odd

t,™\-p(m)
m=l

where

( 0, if m is odd;
2P(m) + P (f) , if m = 2k with jfc odd;
2P(m), i f 4 | m .

Therefore, H(n) > 0 for all n.

Now define arithmetical functions HI and Aj by setting Hi(n) = H(2n)
and Aj(ra) = A(2n). Then /fi(n) = Ai(g2)n + O (Vfn-^), with A! > 0
and g2 > 1 by (7.5). It is easily verified that

OO OO

71=1 71=0

n=0

n=0
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or, equivalently,

Therefore, if (7.5) holds with 7 > 1, then HI satisfies the condition of
Theorem 3.3.1, and hence

" A :(fe) _ » A(2AQ _

Furthermore, if (7.5) holds with 7 > 3, then HI satisfies the conditions of
Theorem 3.7.1. Hence

nAi(n) + V A1(s)A1(rz - s) = 2nq2n + 0 (<?'") ,
—' \ /

S —1

and (7.7) follows. D

We now derive a third version of the abstract prime number theorem.
Its proof is elementary.

(3.7.3) THEOREM. Suppose there exist constants A > 0, B > 0, q >
1, 7 > 3, and S > 1, such that

G(n) = Aqn + O (qnn^] , n = l , 2 , . . . (7.8)

and
In

fc=0

Then
f nn\

(7.10)

PROOF. The present hypotheses imply, by Theorem 3.7.1 and Lemma
3.7.2, that

' - * ) =

"
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and

Also, the hypotheses imply, by Theorem 3.3.1 that

Let at = -V-. Then the earlier conditions (6.1), (6.2), and (6.3) are satisfied.
Thus, (7.10) follows from Theorem 3.6.1. D

Remark. The condition (7.9) with B > 0 may be regarded as an elemen-
tary counterpart of the non-vanishing at y = —fl of the generating func-
tion Z ( y ) . Actually, as in the proof of Lemma 3.7.2, 1 + J2%Li H(n}yn =
Z ( y ) Z ( — y ) . From Lemma 3.5.3, if Z ( y ) has a zero at y = —q~l, then
H(2n] = o(qn) and hence B — 0 in (7.9). Conversely, if Z(y) has no zero
at y = —q~1, then Z ( y ) Z ( — y ) has a pole of order one at y = q~l , and so
(7.9) with B > 0 follows.

We can deduce Theorem 3.5.6 from Theorem 3.7.3 by an elementary
argument:

(3.7.4) PROPOSITION. Assume the conditions of Theorem 3.5.6. Then
(5.5) implies (7.9) with a constant B > 0.

PROOF. The conditions of Theorem 3.5.6 imply G(n) = Aqn + Ov (qm)
for each v > |. Actually,

,' 2m \y\=r yn+l

where 0 < r < q~1. Now, Z ( y ) has an analytic continuation in the disk
{\y\ < f^}i f°r convenience, denoted by the same notation Z(y), which is
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a meromorphic function with only singularity being a simple pole at y = q~l.
If we shift the integration path to the circle {\y\ = q~"} with any v > |,
then we obtain

G(n) = __ , 2?rz

= AI<JI + (3,, (<?""),

where AI = Resy=?-i Z ( y ) , since Z ( y ) is bounded on the circle {\y\ = q~"}.

We first show that there exists a constant B such that

(7.11)

for each v > \. Let G(n) = Aqn + anqn/2, n = 1 ,2 , . . . . Then an =

' / 0 ~ n with i/o = ^± < i/ < 1. We have

) = 2G(2n) + Y, (

= (2A - A2)g
2n +

271-1

k=l

Let <j = E^r i (~ l ) k akq~ k ^ 2 - Then

2n-l oo

i=l fc=2n
oo= < r +£°"'

Also,
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Hence
H(2n) = ( 2 A - A 2 -

and (7.11) follows with B = 2A - A2 + 2ACT.

Now, assume (5.5). We claim that J9 > 0. Actually, B > 0 since all
H(n] > 0, from the proof of Lemma 3.7.2. Suppose the claim is not true,
so that 5 = 0. Then

CO

E -rj ( \ fl __ r7 ( \ /7 / \n\Tl}X — / J \ X } L J \ — X ]\ / \ / \ /

n-O

is holomorphic for — q~? < x < q~z, by (7.11). As in the proof of Theorem
3.5.6, we have

Z(x)Z(-x)=g

where
00

</(*)= E l-xn

n even

Note that Z(x2) ^ 0 for — q~? < x < q~?, and hence g ( x ) is holomorphic
for — q~? < x < q~z too. The same argument as for the second part in the
proof of Theorem 3.5.7 applies again, and we conclude that

Z(x)Z(-x),

which contradicts (5.5). d

Since (5.5) implies (7.9) with B > 0, by Theorem 3.7.3, the abstract
prime number theorem holds. Then, by Theorem 3.4.1, Z ( y ] has no zeros
on the circle \y\ = q~l. This gives another proof of Theorem 3.5.6.

One can also deduce Theorem 3.5.1 from Theorem 3.7.3 by an elemen-
tary argument:

(3.7.5) PROPOSITION. The condition (5.1) implies (7.9) with a con-
stant B > 0.



148 Section 3.7: Elementary proofs

PROOF. We first show that there exist a constant B such that

H(2n] = Bq2n + o(qn)

as n -> oo. Let G(n) = Aqn + anqn/2. Then (5.1) implies £~=1
 al

an —> 0 as n —> oo. Hence
2n-l n-l

A=l fc=l

= "(I)

as n —> oo, since, by the Cauchy-Schwarz inequality,

< oo and

n-l

k=i

'n-l \ 2 /n-l

Thus
2n-l

H(2n) = 2G(2n)+ ^(-l)kG(k)G(2n-k)
fc=i

2n-l

A=l
(V + a*,*/3) (Aq^~k + a^-fc

- A2 + 2Ar ?
2" + o(qn

We claim 5 = 2A— A2-\-2Aa > 0. Suppose on the contrary that B = 0.
Then H(2n) = o(qn]. As in the proof of Theorem 3.5.1, we write

__ P(m)
Y, H(n)xn = Z(x)Z(-x) =
n=0

for — q~l < x < q~l, and

m=l
m even

n=0
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„_, -1 \ .1. — tt/ / _ n771^^1 Tl—U
?n even

Then G^(n) > 0 and

1 0 , it n is odd.

As in the proof of Theorem 3.5.1, it follows that

liminf q~nH(1n} > lim q~nG(n) = A > 0;
n->00 V / — JJ^OQ 1 V /

this contradicts H(2n) = o(qn). D

Theorem 3.7.3 has some advantages over Theorems 3.5.1 and 3.5.6. It
does not assume an analytic continuation of Z(y) in the disk |[j/| < q~? >
to a meromorphic function with the only singularity being a pole of order
one at y = q~l, or an essentially equivalent condition on G(n}. Instead, the
condition (7.8) is very weak. This condition guarantees only the convergence
and second-order smoothness of Z(y] on the circle \y\ = q~l.

Finally, by combining Theorem 3.7.2 and Theorem 3.4.5, we obtain the
following abstract prime number theorem.

(3.7.6) THEOREM. If the condition (7.8) of Theorem 3.7.3 is replaced
by Axiom A& , then

holds for some 0 with 0 < 9 < 1 .

Remark. An elementary proof of Theorems 3.7.3 and 3.7.6 can also be con-
structed on the basis of Lemma 3.6.2 and a lemma of Wirsing (see Wirsing
[1] and Chandrasekharan [1]). We shall not introduce this proof here, but
interested readers may read Zhang [4],



3.8 Two Analytical Examples

In this section, we shall give two analytical examples (cf. Zhang [I]}. The
first one shows that the Theorems 3.5.1 and 3.5.6 are sharp and that, in
the general case, a positive lower bound for K(n)q~n does not exist, even
with G(n) subject to rather restrictive conditions. (In these examples, the
word formal is used to indicate that actual arithmetical semigroups are
only defined implicitly in terms of suitable analytical parameters, and not
in terms of any pre-existing algebraic or other natural context.)

(3.8.1) EXAMPLE. Let q > 2 be a positive integer. Let

2qk = rk mod k, 0 < r^. < k,

for k = 1, 2, . . . . Formally set

| -, • £ 1I I , if K is even.

(We could instead put P ( k ] = 0 for k even.) Then the P(k) for k = 1,2, . . .,
are all positive integers, and kP(k) <C qk. Note that kP(k] > 2qk, if k is
odd. Therefore, the corresponding formal von Mangoldt function satisfies

{ 2qn + cn, if n is odd,
29?+cn , if n = 2k with k odd, (8.1)
cn, i f 4 | n ,

where cn > 0, and cn <C q^ logn. Thus, the earlier abstract prime number
theorems do not hold here.

It is easily verified that the corresponding formal generating function

m=l

150
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converges absolutely in the disk {\y\ < q~1}.

(3.8.2) PROPOSITION. If we formally write

oo

Z(y) = 1 + £ G(n}yn

n=l

then the G(n) are all positive integers, and there exists a positive constant
A such that

g*n~*< |G(n)-Ag" <^n~? (8.2)

holds for n sufficiently large. Moreover, Z(y] has a zero of order one at

y = ~y~l •

We divide the proof of Proposition 3.8.2 into several lemmas. Let T> be
the domain formed by cutting the complex plane along the real axis from
—oo to — q~2, and from q~2 to +00, and along the imaginary axis from
—zoo to —iq~i, and from iq~? to zoo.

(3.8.3) LEMMA. The above function Z(y] has an analytic continuation
in T> n | \y\ < q~*\ as a single-valued meromorphic function with the only
singularity being a pole of order one at y — q~l, and the only zero of order
one at y = —q~l-

PROOF. By (8.1), we have

where the function f ( y ] := Y^?=i cnyn~l is holomorphic in the disk | \y\ < q~* \.
It turns out that
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(8.3)-qy \i-9!/V • - - - -
where the function F(y] = Y^=\cnn~lyn 'ls, like /(jy), holomorphic in the
disk ||T/| < <7~3 j. Moreover, in (8.3), the function

is the single-valued branch with M(0) = 1 of the associated multiple-valued
function. The domain where M(y) is holomorphic is V. O

We have

G(n} = ̂  [,

where 0 < T~I < q"1. From Lemma 3.8.3, if we shift the integration contour
to the circle |y| = q~^~e then we shall obtain

However, it is possible to get the more accurate estimate (8.2) by introducing
a complicated integration path C (Fig. 1)
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Figure 1

(3.8.4) LEMMA. We have

G(n] = Aqn+- (8.4)

where A = 2 \ and

•exp |F (q 2aj j da,

* r1*'' -n-T ((** +p / a n

Jl
_

"~<7 2 Q!

iq 2
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PROOF. With reference to Figure 1, define an integration contour C
which consists of the circle \y\ = r2 with r% = q~3~£ cut at points ±g~s~£ ,

~£, the line segments AB and NO on the lower edge of the cut of T>
along the real axis, the line segments DE and KL on the upper edge, the
segments FG and ST on the right edge of the cut along the imaginary axis,
the segments IJ and PQ on the left edge, and the small circles BCD, GHI,
LMN, and QRS centered at q~i , iq~i, — <7", and —iq~2 respectively with
the same radius 77 sufficiently small. Thus we have

with A = 2 f2^)2 exp {-F(<7 :)} > 0. We shall estimate the last integral on
each part of C separately.

It is easy to see that the integrals on the arcs EF, JK, OP, and TA are
all Oe (q(*+e)n}. To evaluate the integrals on the line segments, we now

i

consider the function M ( y ) = (^

Note that M ( y ) acquires a factor —1 when y jumps from AB to DE and
so does the integrand Z(y)y~n~l. Also note that the argument of 1 — <p y
increases by — TT, and hence the argument of M(y] increases by --, when y
tours from C to D along the circle BCD. Therefore

Z ( y ) o Z ( y )i +t }miv=ttJAB JDE) yn+l JLDE yn DE y n+l •dy

= 2 / , z ——-^^2- 1£-J-1 e*Wdy. (8.6)I -l+r, yn+l l-qy \ q y l - l l y ^ >
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Similarly,

/ f f \ Z(y) r Z(y]
\JKL JNOJ yn+l JNO yn+l

-j_7) yn+l 1 — qy \qy2 — I/

FG JuJ yn+l Ju

_ i _
ri ^

= 2 / _ i
%tj } 1. — ItjO

and

PQ JST) yn+l JST yn+l

-1 l+itq fqt2-!^2

_—
-9-i_, (tt)n+l l - i t q q t * +

Moreover, on the circle BCD, if we set y — q~? = rje*e, 0 < 0 < 2?r, then

and hence

— ~ > 0 as 77 — > oo,'BCD yn+l

since the circumference of BCD is 2wr]. Similarly, the integrals on the small
circles GHI, LMN, and QRS tend to zero as rj — » 0 too.

From (8.6), (8.7), (8.8), and (8.9), if we let rj -> 0 in (8.5) and take the
limit on the right-hand side then we obtain
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where

!2 + l

Now if we make the substitution y = q~?a in I£>, t = q~ia in 7^3', y
—q~za in I^\ and t = —q~ia in I^f1, then the required expressions of 7^
7^2), 7f), and 7^4) follow. n

(3.8.5) LEMMA. FFe /iai;e

i

where a is an arbitrary constant with a > 1.

PROOF. Actually we have

oTn-l(a- ^nJ Ji
_\_

> n 2|

and, by integration by parts,

a
i
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+ 2(n +
n i

Also,

-n-l. a - . n

Proof of Proposition 3.8.2 By Lemma 3.8.4, it remains to show that

<

holds for n sufficiently large. We write

+ / < (8.10)

(720: + 1
~exp{F(q 2a)}

qza + I
explF(—q 2a)| jda.

Hence, by Lemma 3.8.5,

Moreover, we have

/(I)
n

JI
a-n-l I — — —aa <C < 2 ̂  2 -

<
a2-!

+ 1 g2 a — 1 exp \F(q ia

,*-

= -q2 I « 1 2 1/i \ a-1 — I — 1
exp {F(q 2a} da,
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since the coefficients of F(y) = Z^Li cnn~lyn are all positive, and hence
a > F-q-^a. It follows that

for some constant c > 0, by Lemma 3.8.5. Therefore

Finally, we have

n fQ6 ~&
 n/ _L j\ty ^^ 02" / ct~n~^dd <^T o^n~^n n Ji

This proves (8.10) and completes the proof of Proposition 3.8.2. n

Example 3.8.1 also serves other purposes and we shall revisit it in Chap-
ter 5 below.

We now turn to the second example of this section. A famous monograph
of A. Weil [1] gave the first proof of the so-called "Riemann hypothesis for
algebraic curves over Galois fields". We may also consider an analogue of
the Riemann hypothesis for additive arithmetical semigroups:

Suppose Q is an additive arithmetical semigroup satisfying Axiom .4*,
for which

G(n) = Aqn + O(ql/n), n = l , 2 , . . . (8.11)

for constants q > 1, A > 0, and v with 0 < v < \. Then the associated gen-
erating function Z(y] has an analytic continuation in the disk { \ y \ < q~"}
as a meromorphic function with the only singularity being a simple pole at
y = q~l. The "Riemann hypothesis for Qi" will be understood to be the
assertion that Z ( y ) has no zeros in the disk j [ ? / | < <?"[. A problem (cf.
S.D. Cohen [1]) relevant to this hypothesis is to describe more precisely in
terms of v the quantity 9 in the remainder term of the abstract prime num-
ber theorem, see Theorem 3.5.5. The following example shows that there
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is not too much we can say about 9 in terms of z/, and that, in the general
case, the Riemann hypothesis is not true for arbitrary additive arithmetical
semigroups.

(3.8.6) EXAMPLE. Let q and 77 be real numbers with q > 1, and
1 > r/ > 0. Let k be a positive integer, and k > 2. Set

o, if t\m,

for m = 1,2 , . . . , where fj, is the classical Mobius function on N. Let ft =
q1'71. Let

if m < mo,

, if m > mo,
r\m (=2

for m = 1,2, . . . , where [a] denotes the largest integer not exceeding a, and
m0 is sufficiently large. Plainly,

m ~m+l

and, if I m,

Mm) | =
m

Therefore,

(<Z-
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if 77i > 7710(77, &), and hence the Sm are positive integers. Moreover, Sm <
2qm.

Let
Sm = rm mod m, 0 < rm < m

for m = 1, 2, . . . . Set formally

P(m) = -(Sm-rm + m).

Then the P(m), m = 1,2,. . . , are all positive integers, and

mP(ra) = <7m + m - rm + 0m,

with |0m < 1 if m < m0, and

mP(m) — J - ̂
r\m r J t=1

m m,

with \0m < 1 if m > m0.

The associated formal generating function is, for \y\ < q~l,

m|n

(n=l 'l \rn\n

(8.12)

where

n=l \m |n
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E

is holomorphic in the disk {\y\ < I } . Note that

Moreover, since

we have

- - ,
-\ I v \ I \ In— 1 \m|n \ r\rn

?i2/)- (8.14)
71 = 1

Similarly, if I \ n, then

y^'
and, if £ | n, then

Therefore,

fc OO

EE
(=•2 n=l
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From (8.12), (8.13), (8.14), and (8.15) we obtain

1 , . ¥r 1z(y] = s=k+i i - qys

This shows that Z ( y ) is a meromorphic function in the disk Uy\ <
with a simple pole at y = q~l and a simple zero at y — gf1 = q~l+r] . It is
easy to see that

G(n) = Aqn +

with
OO -I

IT ——— -

We note that rj and A; can be chosen arbitrarily small and arbitrarily
large independently. Therefore, this example shows that, no matter how
small v > 0, in (8.11) is, Z(y) may have a zero very close to \y\ = q~1 .

This example also shows that the Riemann hypothesis can hold only for
very special additive arithmetical semigroups.



CHAPTER 4

MORE APPLICATIONS OF
PRIME COUNTING

4.1 More Properties of Prime Divisor
Functions in the "Classical" Case

We now return to the prime divisor functions u> and 0, in the "classical"
case when Q satisfies Axiom .4*, and the generating function Z ( y ] has no
zeros for \y\ < q~l (i.e., there is no exceptional zero at y — —q~1^).

4.1.1 Some general results

For a start, consider the subsets <?fven and Q"ven of Q consisting of all elements
a E Q such that f2(a) (respectively, w(a)) is even, and let G^id and S^d
denote the respective complements of these sets in Q. We wish to investigate
the densities of these sets in Q , as well as their relative densities in the subset

of all fc-free elements of Q (k > 2).

In order to explain the term "relative density" used here, let E and H
denote subsets of Q, and let XE and XH denote their characteristic functions.
Then the total numbers of elements of degree N in E and H are E(N) =
XE(N), and H(N) = XH(^), respectively. If the ratio E(N)/H(N) tends

163
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to a limit S as N — > oo, we call S = S(E, H) the relative asymptotic
density of E in H . According to this definition (which is sufficiently general
for present purposes), if E has the relative density 8 in H, then the ratio
E(N}/H(N) must be meaningful for all sufficiently large N, i.e., H(N) > 0
for all large enough N. Therefore a standard elementary theorem on limits
implies further that

thus the present terminology seems reasonable from an intuitive point of
view, and is consistent with that for the "absolute" case H = Q which was
discussed in Section 1.3 earlier.

(4.1.1) THEOREM. The sets £e
n
ven and £"dd both have asymptotic

density |, as well as relative asymptotic density | in the set Q(k) of all
k-free elements of Q (k > 2). More precisely, for every a > 0, as N — > oo;

"n Q(k) (N) = z(q-k + o tf-V = ed n Q(k)

PROOF. As with the corresponding Theorem 6.2.1 of [AB] subject to
Axiom A, our discussion of the distinction between the even and odd values
of 0 is facilitated by consideration of the Liouville function A on Q such
that A(a) = (-l)n(a) for a 6 Q, as well as the function \k (k > 2) such that
Afe(a) = A(a) if a is fc-free, while Afc(a) = 0 otherwise. (Recall that A2 is
simply the Mobius function fj, on Q).

(4.1.2) LEMMA. The functions A, A^ (including n) have asymptotic
mean-value zero.
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PROOF. By Theorem 3.3.1 of [AB], X*(y) = Z(y2)/Z(y), while

f Z ( y 2 ) / Z ( y } Z ( y k } if k is even,
Af (y) =

[ Z ( y 2 ) Z ( y k } / Z ( y ) Z ( y 2 k ) if fc is odd.

These formulae, together with Proposition 1.2.1 and the non-existence of
zeros of Z(y) for y\ < q~l, show that A*(j/) and A*(j/) are analytic functions
of y for |y| < g"1. Therefore Lemma 2.2.3 implies that, for every a > 0,

A(JV) = O N~aqN = Ifc(JV) as N -* oo. n

In view of Lemma 4.1.2, Axiom ,4* and Proposition 1.5.7, the present
theorem about fi may now easily be deduced from the equations

and
(£e

n
ven n gk) (N} + (ae"ven n gk) (N} = Qk(N)

L a
( _ \ / \ —
fll o f \ ( AT\ I f±l r~i /^ \ / A T \ \ / A T \
^even I 1 »fcj l^J ~ (yeven ^ » f c ) (^ ) = ^k(^< )

The theorem corresponding to Theorem 3.9.1 for the function u> is:

(4.1.3) THEOREM. The sets C^ven and Q"dd both have asymptotic
density ^, as well as relative asymptotic density | in the set Qk of all k-free
elements of Q (k > 2). More precisely, for every a > 0; as N —> oo,

o N-"q
N = a- n
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PROOF. For this theorem, we shall make use of the functions £ and £fc

analogous to A and A & , such that £(a) = ( —l)w( a) for a e (?, ^(a) = £(a)
if a is fc~free, and £fc(a) = 0 otherwise. (Then £2 also coincides with the
Mobius function on Q.) Since u is prime-independent and additive, £ and
£k are P/M-functions, and so the Canonical Product Lemma 1.4.1 implies
that (formally, at least)

_m>° m 2m (k-lm\PW (L1)

m>0

Therefore

= n | i -

nI ( / _.m \ i F(m)

f 2m ) p(m)
#/ \ TT J i " I= p (y) IM 1 - n m^2 fm>o I (-1 y ) )

Now, by Proposition 1.2.1 and Z(y) 7^ 0 for |y| < q~l, /x*(y) is analytic for
|y| < c?"1 and (in the ordinary analytical sense) is represented by the abso-
lutely convergent product Ilm>o (1 ~ yn) when |y| < q~l. In particular,
this implies that J2m>o P(m)y2m is absolutely convergent for |y| < ^"2, and
so

2^f(m)
m>0

is also absolutely convergent for such y. Therefore the second product in
the last expression for £*(y) above is absolutely convergent when |y| < q~?,
and so £*(y) is an analytic function of y in the closed disc |y| < q~~l



Section 4.1: More properties of ... 167

Next, in a similar way, note that

a. ykm-ym\P(m}
 #, , -^ / ykm-y*mP(m}

1+ = ** +_
m>0 \ y / m>0

Since |/m - z/2m = l2/(fc-2)m - 1| |j/2m < 2|?/2m for |j/| < 1, it follows from
the discussion above that the second product in the last expression for £*(j/)
is also absolutely convergent when \y\ < q~5. Thus £*(j/) is also analytic
for \y\ < q~\

By Lemma 2.2.3, the above conclusions imply that, for any a > 0

£(N) = O (N~aqN) = £ k ( N ) as N -•> oo.

The proof of Theorem 4.1.3 may then be completed by an argument directly
analogous to that which concluded the proof of Theorem 4.1.1. D

Another approach to the "statistical" properties of functions like 0 and
u is to consider the frequency with which they take on some particular
value k > 1. For this purpose, let 7%(./V), pk(N) and TTk(N) denote the
total numbers of elements a 6 Q of degree N such that (i) fi(a) = k, or (ii)
ui(a) = k, or (iii) w(a) = k and a is square-free, respectively. For Tk(N)
and TTk(N), the following theorem was proved by S.D. Cohen [2] in the case
when Q is the special semigroup Qq.

(4.1.4) THEOREM. As N — > oo, each of the functions rk(N), pk(N)
and irk(N} has the asymptotic value

|

(k-l)lN^ ' \ N

PROOF. The functions Ti(N], •KI(N) coincide with P(N), and so the stated
conclusions about TI and ?TI are immediate consequences of the abstract
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prime number theorem (3.4.5). Now suppose that k > 1, and (for r > 1)
consider the additional function

Vr(N) = E 1,

where the sum is over all ordered r-tuples (pl,...,pr) of primes p, with
d(plP2...pr) = N. Then

rlirr(N) < Vr(N] < r\TT(N),

and

E E/__v / ^
2d(Pl)<N

m<|jV

where Vo(N) = 1. Therefore we obtain:

^ Vk(N] < rk(N) < 7rk(N] + £ P(m)Vk_2(N - 2m), (1.2)

and
1 _ 1

(1.3)

Now consider:

(4.1.5) LEMMA. As N -» oo,
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PROOF. By the abstract prime number theorem (3.4.5), the stated formula
is certainly valid for Vi(N) = P(N). Now, as an inductive hypothesis on k,
assume the formula for Vk, and consider

kNVk+l(N) = Y, kd(Plp2...pk+l}

E {d(p-2ps • • • Pk+l) + 9(pip3 . . . Pk+l) +

= (* + i) E E
d(pi)<N 3(p2p3...p)=+i)=W-9(pi)

= (* + l) E [N-d(p,)}Vk(N-d(Pl))
d(pi)<N

= (k + l ) ^ (N-m)P(m}Vk(N-m).
m<N-l

Therefore, by the assumption on 14,

kNVk+l(N]
nm

—— +
,,^,-L m

m})k-lqN- + 0(( log(N -

m<N-l

by Lemma 4.1.6 below. Hence the stated asymptotic formula for Vk(N)
follows by induction on k. D

4.1.6 LEMMA. For any positive integer k, as N —>• oo,

1 = (log JV) fc

m<N-l
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PROOF. We have

m<N-l m<N-l

1 v-

Now, for any r > Q and k > 1, partial summation gives

by the formula

Therefore

m<N

(logN}^

• + 0(x*).
m<x

N r+l
O

It now follows that, for k > 2,
k-i

1

r = 0 J V m<JV-l

c° 1

I1 - ]v) i(log N}k~l + 0((log JV)fc

0(( log l - l -
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The assertions of Theorem 4.1.4 about Tk(N] and TTk(N) may now be
deduced from the inequalities (1.2) and (1.3) above, together with the fol-
lowing consequences of Lemma 4.1.5 and the following lemma, which is
easily deduced by partial summation:

(4.1.7) LEMMA. For any real a, and q > I,

y>V = -^— naqn+l + O(na-lqn} as n-> oo. D

Now consider two cases:

Case (i). For k = 2,

P(m)Vk-.2(N - 2m) = O I £ — | = O
,i ,- ?7i

(MJ. For k > 2,

X) P(m)14_2(7V - 2m)

= o

r y f- + 2 ^ g~m
^ Vm N-lm) N

m<|JV
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In order to complete the proof of Theorem 4.1.4, it remains to consider
the function pk(N): By definition of pk(N) and Trk(N), pk(N} - TTk(N)
is equal to the total number of elements a 6 Q of degree N that can be
expressed in the form a = pmb for some p € P, m > 2, and an element b
with w 6 = k-l. Thus

= o

N-

E <^[]V

\8(b)<N-2 /

Therefore

T<N-2

Now note that p\(N] is the number of prime-powers pm € t/ of degree
N , and hence that

E E i =
m<N d = ^L

E
2<m<N

for any a > 1. Thus the assertion of Theorem 4.1.4 holds for p i ( N ) . Then
assume the corresponding conclusion for pk-i(N), k > 2. In that case,

v-^ -IrE? 2 /
r</V

(log r) fc-2
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r<N

by Lemma 4.1.7. Therefore the above inequality for p k ( N ) — wk(N) together
with the result for 7Tj.(JV) already proved leads to the required conclusion
about p k ( N } . Hence the stated conclusion follows by induction on k. D

4.1.2 Sharper estimates in concrete cases

The error estimates O (N aqNj in Theorems 4.1.1 and 4.1.3 may be sharp-
ened as below in various concrete cases:

(4.1.8) LEMMA. Let Q denote any additive arithmetical semigroup with
the properties specified in Lemma 3.1.4, ana l£t M> -^ ^fc> £ ana £k denote
the corresponding arithmetical functions on Q. Then as N —* oo

j[(N} = O (NM-lq"N) , ~X(N) = O (NMqm} , A fc(AO = O

= O

where 9 is the number defined in Lemma 3.1.4-

PROOF. Firstly, in the notation of Lemma 1.4.2, we have

i M

n=l
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where
r — V^ /T^l/vfa nku

Cn — 2_j al al ' • ' aM '
ki+...+kM=n

Since |o;,- < q8 (by definition of (9), it follows that

Hence
= Cff — qCf{_i = O (N ~~ q ) as TV —> oo.

Next, the preceding conclusion and the equation A*(y) =
imply that

A(7V)=

since a discussion parallel to that of Example 1.1.5 earlier shows easily that
the total number G(n) of elements of degree n in Q satisfies:

G(n) = Aqn + 0(1) as n -> oo,

where A = Q(q~l). Since 0 > |, it then follows that

= O

Now, for an even integer k, the conclusions already derived, together
with the equation \ f ( y } = X#(y)/j,#(yk), lead to:

\k(N) = ^ A(7V-Jbr)7l(r) = o( X) ^V(Af"fcr)^M~Vr)
0<r<N/k \r<N/k )

= O (N2M-lqeN £ g«(1-*)">) = O (N™-lqBN) .
\ r<N/k I
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Then, for an odd integer k, the equation Xf(y) = Z(yk~)Xfk(y), together
with the preceding result for X^k-, yields:

A,(AO = £ H#(r}\,k(N-kr) = o( £ ^M-y^-H J
0<r<N/k \r<N/k )

= O (N2M-lq6N £ q^-^A = O (N2M-lqeN) ,
\ r<N/k I

since 0 > l/k.

Lastly consider the functions £ and £fc on Q, corresponding to those
discussed in the proof of Theorem 3.9.3. Regarding £, the proof of Theorem
4.1.3 implies that £*(?/) = ^(y)F(y) where F ( y ) is an analytic function of
y for \y\ < q~z. Hence, if F(y) = Y^=Qanyn,

0<r<N \r<N I

V r<N /

This conclusion implies the stated estimate for £ ( N ) , if 6 > |. On the other
hand, if 6 = |, it follows from the formula for fJ^(y) stated at the beginning
of this proof that /^*(y) is an analytic function of y for \y\ < q~*', therefore
the earlier reasoning (in the proof of Theorem 4.1.3) about the function
F(y) now implies that it is analytic for \y\ < q~*. Thus the stated estimate
for £(N) also follows when 9 = |. The discussion of £ f c(7V) is similar. D

For the semigroups Qpf and QD of Examples 1.1.4-5, Lemma 4.1.8 leads
to:

(4.1.9) THEOREM. For both the special arithmetical semigroups QK
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and QD, there exists a constant M such that, as N —> oo;

]J,(N} = O (NM-lq-?N) , \(N) = 0 (NMq^N) , Xk(N) = O

and

PROOF. By the earlier discussion of the zeta function of QD, this semigroup
satisfies the hypotheses on Q in Lemma 4.1.8, with Q = |. Hence the case
of <3r> follows immediately, with M equal to the degree of the polynomial
(l-qy)Z(y).

For QK-, we have the generating function

L(y)ZK(y) =

where L(y) is a polynomial of degree 1g in y, g being the "genus" of K (see
Example 1.1.4). In addition,

L(y) = l[(l-aty),
«'=!

where a;| = q? . Therefore, for the semigroup QK,

-qy]

71 = 1

where
oo

n=0
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Then, exactly as in the first part of the proof of Lemma 4.1.8, it can be
verified that fi^ = O (NM~lq2N), and hence that

-jl(N) = O (NM~lq?N

where M = 2g. The remaining estimates may now be deduced from this
one by essentially the same arguments as those used in the latter part of
the proof of Lemma 4.1.8, when 0 = |. d

The particularly sharp information about the generating functions Zrj(y)
and Zf((y) can be used to refine various other estimates concerning arith-
metical functions on Qrj and QK\ for example this is true for many of the
estimates discussed in Chapters 1, 2. However, similar refinements seem
to be less easy to derive for functions on the associated arithmetical semi-
groups of the categories JF = FD and S = SD, and so the abstract theory
of semigroups satisfying Axiom A^ is especially convenient for the purpose
of deriving asymptotic conclusions about those specific systems. Further,
in many cases, the consequences of the abstract theory are probably also
sufficient for the needs of particular applications to QD and QK. For these
reasons, it seems usually to be more profitable to study consequences of Ax-
iom .4* (and if necessary the assumption that Z(y) ^ 0 for \y\ < q~l) than
to undertake specific corresponding investigations of our special examples of
arithmetical semigroups satisfying such conditions. (As with all axiomatic
studies of course, this procedure also has the advantage of admitting the
possibility of interesting applications to further concrete systems not yet
treated in such a context.) Consequently, we shall not pursue the search
for sharper estimates further over here, apart from including the following
slightly weaker form of Theorem 3.1.9 within the context of the categories
f and S:

(4.1.10) THEOREM. For the associated arithmetical semigroups of the
categories F = FD and S — SD, the quantities Ji(N), A(JV), \k(N],
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and £k(N} are of the form

where e > 0 is arbitrary (but the implied constant may depend on e).

PROOF. Let /j,D, fj,f and fj,s denote the Mobius functions relative to the
semigroups Qrj, QT and Qs corresponding to D, F and S, respectively. By
the proof of Theorem 2.1.5, when |y| < q~l ,

where -^(j/) is a non-zero analytic function of y for \y\ < q~*. Since (by
the proof of Lemma 4.1.8) ^(y) is an analytic function of y for \y\ < q~z ,
it follows that //*(y) is analytic for \y\ < q~? . By the standard formula for
the radius of convergence of a power series, this implies that

Hence (for any e > 0)

= O (q*N(l + e)w) as N -» oo.

Now consider the Liouville and other functions A, A^, £ and ^ relative
to Qj?. Following the general line of proof of Lemma 4.1.8, now choose any
fixed e > 0, and note that the equation A*(t/) = Zf(y2}^:(y} then implies
that

\(N] =

= 0
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Next, for an even integer k, we see that the equation A* (y)
leads to

0<r<N/k

r<N/k

The case of \k when k is ocW will be left as an exercise.

Now consider the function £. Since /^*(y) is analytic for |y| < ^"2, the
function F(y) such that £*(y) = /z*(y)^(2/) again turns out to be analytic
for |y| < <?-i. Therefore, if F(y) = En=0anyn,

= E VAN ~ r)ar = O I E
0<r<W \r<7V

= O (l + e)w E
r<N

e}N

Finally, the cases of ̂  and of the functions on the semigroups Q$ will also
be left as exercises. d



4.2 Maximum Orders of Magnitude in the
"Classical Case"

In addition to studying the average values or closely related "statistical"
properties of arithmetical functions, it is sometimes interesting to investi-
gate the "extreme" values of such functions in the sense of their (suitably
interpreted) maximum and minimum orders of magnitude. For unbounded
special functions of the kinds considered earlier, one approach to a defini-
tion of the last two terms is as follows (cf. also [AB], Chapter 5, §2). In this
section, we shall again assume Axiom .4* and Z ( y ) ^ 0 for \y\ < q~l .

Given any non-negative real- valued arithmetical function / on Q, and a
positive real-valued function F (defined for all sufficiently large real num-
bers), the values /(a) [a G Q] are said to have the maximum order of
magnitude -FX(«[) for a large provided that

limsup — TTTT = 1-

If (instead)

then the values /(a) are said to have the minimum order of magnitude
-F(|a|). Although these definitions are slightly restrictive, they were ade-
quate for the particular functions studied in [AB]; in the present situation,
apart from perhaps wishing to re-phrase the above definitions in terms of
the degree function <9, one might also like to investigate properties of the
associated ordinary arithmetical functions

(a), and /m

(For example, if Q contains a prime of degree 1, it is not hard to verify that
= 1, c/*min(Ar) = 2, and Qmax(-/V) = N for every positive integer N.)

180
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In general there are many unsolved questions regarding the determination
of maximum and minimum orders of magnitude for a given arithmetical
function /, and the same is true for the related functions /max(./V) and
/min(Af). Consequently, this section contains only a few and fairly restricted
results, concerning maxima in particular,

One moderately general theorem, which yields partial information about
maximum orders of magnitude, appears under the heading of Corollary 5.2.8
in [AB]. A special case of this, which is adequate for present purposes, may
be formulated as follows:

(4.2.1) THEOREM. Let H. denote any arithmetical semigroup such that

NH(x} = ]T H(n) = O(xs] as x -+ oo, and BH(x) > Cx6,
n<x

where <5, C are positive constants, and

6H(x} = £ logb|.
prime p, jp|<£

Let f denote a non-negative real-valued multiplicative function on H, such
that

(i) for some constant B > 0, f(pT] < eB^ for all prime-powers pr ^ I ,

(ii) for some integer t > I , there is a constant T > 1 with r = [/(p*)] >
[f(pr)} for att prime-powers pr ^ 1.

Under these circumstances, log /(a) has the maximum order of magnitude

(logr)(log
log log | a

for a\ large. D
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For our semigroup Q satisfying Axiom A* without Z(y) = 0 for \y\ <
q~l, this theorem implies:

(4.2.2) COROLLARY. Let f denote a non-negative real-valued multi-
plicative function on Q such that:

(i) for some constant B > 0, f(pT) < eB^ for all prime-powers pr ^ I ,

(ii) for some integer t > 1, there is a constant r > 1 with T = [/(p*)] >
[/(]/)] 'r for all prime-powers pr ^ 1.

Then log f ( a ) has the maximum order of magnitude

(logT)(log|a|)

and hence
log N

limsup ——— log/max(/V) = logr.
jv^oo TV log q

PROOF. If Q is regarded as an arithmetical semigroup relative to the
norm a = q9^, it follows from remarks made at the end of Section 1.1,
that NG(X) = 0(x) as x —>• oo. Also, in the present case,

) = Y^ d(p)\ogq= ^ rP(r)logq
p£Ptq3W<x T<>°KX

— — l o g ?

r<N

where N = []^|, and a > 0 is arbitrary. Therefore, by Lemma 3.9.7,

0G(x) = (log q) | -^ (qN - l) + O (N-qN) | > CqN

> Cq(^'1^ = — x,q
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for some positive constant C. This shows that Theorem 4.2.1 (with 6 — 1)
is applicable here, and yields the assertion about the maximum order of
magnitude of log/(a).

In order to deduce the final conclusion of the corollary in detail, note that
the above conclusion about the maximum order of magnitude of log /(a)
implies that (for any e > 0)

log log a

whenever a is sufficiently large, while

loglog|a v

for infinitely many a € Q. Therefore, whenever TV is sufficiently large, there
exist elements ajv G Q of degree TV such that

(logT)Nlogq
logTV l + j'

for arbitrary e' > 0 when TV is sufficiently large. On the other hand, for
infinitely many integers TV there are corresponding elements 6/v € Q of
degree TV such that

for arbitrary e' > 0 when TV is sufficiently large. This proves the corollary.
D

Another way of putting the final conclusion of Corollary 4.2.2 is to state
that the ordinary arithmetical function log/max(TV) itself has the maximum
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order of magnitude

By essentially the same arguments as those used in [AB], Chapter 5, §2,
it may be verified that Corollary 4.2.2 leads to the following conclusions
about the particular functions d, d«, /3 and u>:

(4.2.3) THEOREM.

log TV
(i) lim sup — —— log <imax(TV) = log 2;

A^co TV log q

logN
(ii) lim sup — —— log d* max(TV) = log 2;

AT-+OO N log q

log TV 1
(Hi) lim sup — —— log /3max(TV) = - log 3;

W^oo TV log <? 6

log JV
(wj lim sup—- —— wmax(7V) = l. D

Now consider the generalized divisor function dk, and also the gener-
alized unitary-divisor function d*k such that d^(a] is the total number of
ordered fc-tuples ( f t j , . . . ,&j(.) of pair-wise coprime elements b^ 6 Q with
product &J&2 • • • b/, = a 6 Q.

(4.2.4) THEOREM. For k>2,

log TV log TV
limsup -^q——log4max(A^) = lim sup ———log <*„*„„ (AT)

= log A;.
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PROOF. It was noted in [AB], Chapter 2, §6 that dk is a P/M-function, and
that, within the "Dirichlet algebra" Dir(£), dk(z] = [(G(z}}k . By Corollary
2.4.2 of [AB], this equation for d k ( z ] implies that

-k
**(?>-" = !-?-*

r=0

and hence that

(The last equations can also be derived directly, by observing that dk(pr]
is equal to the total number of partitions of r into exactly k positive sum-
mands.) Thus

d k ( f ] =

for a suitable constant B > 0. Also

since k + i < (i + l)& for z = 0 ,1 , . . . ,r — 1. This shows that condition (ii) of
Corollary 4.2.2 is satisfied by dk, with t = I and T = k = dk(p). Therefore
the stated conclusion about c?jtmax(Ar) follows from Corollary 4.2.2.

Next consider:

(4.2.5) LEMMA. For any a € Q,

where a* is the "core" ("greatest" square-free divisor) of a.

PROOF. (This lemma does not depend on Axiom .4*.) Firstly, the as-
sertions are obvious for a = 1 £ Q. Next, for a = p^p^ •••pT

r^t where
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the pi E P are distinct and r; > 1, we have a* = p\pi...pm- Then, if
&i&2 . . . fyc = a,, the elements 6; 6 C7 must be mutually coprime. Hence

since ̂  is multiplicative, and <4(p,-) = fc.

Next suppose that 6 1 6 2 . - - & f c = ct, where the 6; are mutually coprime.
In that case, any 6; ^ 1 must be a product of one or more powers pj3 .
Thus there is a 1-1 correspondence hi <-» c; = 6;* between those ^-tuples
(&i, . . . , 6jt) of pair-wise coprime elements &,- with bib^.-.b^ = a and all
fc-tuples (GI, . . . , Cfc) such that C!C2 . . . c^ = a*. Therefore

By Lemma 4.2.5, it is now clear that d*k is a P/M-function, with d^(pr} =
k for any prime-power pr ^ I in Q. Hence d*k satisfies all the conditions of
Corollary 4.2.2, and Theorem 4.2.4 follows. D

Although Corollary 4.2.2 suffices for the present applications to explicit
examples of arithmetical functions, it is at least of theoretical interest to
record some extensions of Theorem 4.2.1 and Corollary 4.2.2 for more gen-
eral P/M-functions:

(4.2.6) THEOREM. LefH denote an arithmetical semigroup such that

NH(x) = O(xs) as x -> oo, and 0H(x) > Cx6,

where 6, C are positive constants, and

OH(X) = £
prime p, \p\<x
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Let f denote a non-negative real-valued PIM-function on H such that (for
some constant B > 0) f ( p r ) < eB^ for every prime-power pT in Ti., and let

T = sup \[f(pr}} : p prime in H, r > 1 j .

Then log f ( a ) has the maximum order of magnitude

(logr)(log|al)
log log | a

PROOF. This theorem is essentially a special case of Corollary 5.2.8 of
[AB], whose proof was based on two auxiliary results. The first of these
([AB], page 135) implies that

limsup
al^oo log a \l log log \a

for any p > 1 such that ps > T. However, if r < 1 then f ( a ) < I for a ^ 1,
and so the inequality

r log /(«)hm sup - ——— — —— - ——— r < log T- ——— — —— -
log a\l log log

is clear in that case.

On the other hand, for a prime-independent function / with the given
properties, the second auxiliary result referred to ([AB], page 136) implies
that, for every positive integer t and any prime p in 7i,

*- log /(p')< limsup: lGg/(a)

t ~*^'- "^logal/ log log |a

Therefore

lim sup - ——— ~ f - ——— = log T. D
log a|/log log a
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By an argument similar to that used for Corollary 4.2.2 earlier, one may
now deduce:

(4.2.7) COROLLARY. Let f denote a non-negative real-valued PIM-
function on Q such that, for some constant B > 0; f ( p r ) < eB^ for every
prime-power pr in Q, and let

Then log /(<z) has the maximum order of magnitude

(logT)(log|a|)
log log | a

and
log TV

limsup —f—— log /max(/V) = log r. D
AT^OO TV log q



CHAPTER 5

ABSTRACT PRIME NUMBER
THEOREMS (II)

5.1 A Theorem of Indlekofer—Manstavicius—
Warlimont

The abstract prime number theorems of Chapter 3 are theorems in the
"classical" sense, in that the main asymptotic estimates are of the form
P(m) ~ ^, or, equivalently, A(m) ~ qm. Further investigation also reveals
the existence under suitable conditions of alternative asymptotic estimates
of the form either A(m) ~ qm, or A(m) ~ (1 + (-l)m+1)<?m; equivalently
either P(m) ~ ^ or P(m) ~ (1 + f-l)m+1) ^-. Indlekofer, Manstavicius\ / rn v y \ L V / / 7 7 i >

and Warlimont [1] first investigated an abstract prime number theorem of
this non-classical type. Such new theorems are novel and deserve further
investigation because they also have interesting consequences (see Chapter
6 below).

Consider again Axiom .4*, that there exist constants A > 0, q > 1, and
v with 0 < v < I such that

G(n) = Aqn + 0(qvn). (1.1)

Then Proposition 1.2.1 implies that the generating function Z ( y ) has an
analytic continuation in the disk {\y\ < q""}, as a meromorphic function
with the only singularity being a pole of order one at y = q~l. From

189
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Lemma 3.5.2, either Z(y] has no zeros on the circle \y\ = q~l, or it has a
single zero (of order one) on this circle, at y — —q~l. In the first case, by
Theorem 3.4.5, we have an abstract prime number theorem in the classical
sense, with

for some 6 with v < 0 < 1. In the second case, Zi(t/) = jr2^ Z ( y } '1S holo-
morphic in the disk {\y\ < q~"}, and has no zeros in the disk {\y\ < q~1}-
Therefore there exists some constant 6\ with v < 6\ < 1 such that Z\(y]
has no zeros in j \y\ < q~ei j. If we shift the integration path in the formula

with 0 < r < ^~"1 to a circle |j/| = q~9 with 0j < 5 < 1, then we obtain

This is also an abstract prime number theorem of non-classical type. The
following theorem of Indlekofer-Manstavicius-Warlimont [1] gives a deeper
analysis in this case.

(5.1.1) THEOREM. Assume Axiom A* as before. If Z ( y ) has a zero
at y — —q~l, then it has no other zeros in the disk { \ y \ < q~v}. In this case

(1.3)

for every 0 with v < 0 < 1 .

The proof of Theorem 5.1.1 will be based on the following lemma which
is a special form of Dirichlet's approximation theorem:
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(5.1.2) LEMMA. Let ai,...,an be real numbers. Given any positive
integers T and M, there exist an integer h satisfying T < h < TMn, and
integers ki,..., kn such that

—, z = l , . . . , n . (1.4)

PROOF. Let / denote the unit interval [0,1], and let In be the unit cube in
n-dimension Euclidean space Rn. Divide In into Mn cubes of side length j^.
Let a = (ai,.. . , an), regarded as a point in En, and consider the sequence
of points

(mTai - [mTai],..., mTan - [mTan]), m = 1 ,2 , . . . , Mn + 1,

which are all in the unit cube 7n, where [a] denotes the largest integer
not exceeding a. There are Mn + I points and Mn small cubes. Thus at
least one small cube contains two points. Say that m' < ra and points
(m'Tai — [m'Tai],..., m'Tan — [m'Tan]) and (mTai — [mTai],..., mTan

— [mTan]] lie in the same small cube. Let h — T(m — m') and k{ = [mTai] —
[m'Tat], i = 1,... ,n. Then h is an integer satisfying T < h < TMn and

\ha{ — ki\ — \(rnTa.i —

< —. n
~ M

We next prove the following lemma by using Dirichlet's approximation
theorem:

(5.1.3) LEMMA. Let ai,...,an be real numbers and j3i, . . . , /3n be
positive real numbers. Then

limsup ̂  /?,- cos(2m7ras- =
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PROOF, Plainly,

lim sup 53 A' cos(2m7raj-) <
771—'•CO • i i

1=1 t=l

since /?i , . . . ,/?„ are positive. It suffices to show that there exists a sequence
of positive integers nth, h = 1,2, . . . , such that

1* ^ ^ r\ / c\ \ _ >T ^ fD / I pr ^

h~>°° i=l t=l

Actually, by Lemma 5.1.2, there exist an integer m^ satisfying h < m^ <
hn+l and integers kith, • • • , &n,/i such that

la-m - J f c - \<- i = l n (16)*'/l h' > • • • > •

Hence
n n
/ ^Dj COS( LTTl^fKOi j j :r:I / ^7j COS I ^7T( QL^m^ — /C^ / i j ) ,
t=l i=l

and so (1.5) follows from (1.6) as h —> oo. n

PROOF OF THEOREM 5.1.1. We shall show that if Z ( y ) has a zero at
y = —q~l then it has no other zeros in the disk { \ y \ < q~'/}. Then (1.3)
follows from the formula (1.2), by shifting the integration path to a circle
\y\ = q-6 with v < 9 < I.

Suppose on the contrary to our assertion that Z ( y ) has some zeros in the
annulus {q~l < \y\ < q~"}. Let p be the minimum of the moduli of these
zeros, and let pe2""3, j = 1, . . . , n denote all those zeros with modulus p.
Then there exists a number TJ with p < r/ < q~u', such that there exist no
zeros of Z(y) in the annulus {p < \y\ < TJ}. If we shift the integration path
in the formula

\y\=T Z(y)
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with 0 < r < q~l to the circle \y\ = 77, then we have

A(m) = q

and therefore

A(2m) = -

Note that the pe~2ma> are also zeros of ^(y). Hence

-2m \p
P / j

/ ^
3 = 1

,
'

--2m

j=l

cos(4m7raj).

It follows that

A(2m) = -/

193

(1.7)

Note that 0 < p < r). Combining it with Lemma 5.1.3, (1.7) implies that
there exist infinitely many m sufficiently large such that

A(2m) < -%-2m < 0.
Zi

This is certainly absurd, since A(m) is non-negative. d



5.2 The Total Number of Zeros of the
Generating Function

Abstract prime number theorems of the above alternative forms give rise to a
fundamental question: what conditions ensure such alternative asymptotic
estimates? If Axiom A* is assumed, then, from Lemma 3.5.2, Z ( y ) has
either no zeros, or only a zero y = —q~l of order one on the circle \y\ = q~l,
and in that case an alternative asymptotic estimate follows. Hence the real
question here is: what weaker or other conditions will ensure an alternative
asymptotic estimate?

To start to answer this question, we begin with an investigation of the
zeros of Z ( y ) on the circle \y\ = q~l. Assume that there exist constants
A > 0, q > 1, and 7 > 1 such that

G(n] = Aqn + O (qnn->) , n = l,2,.... (2.1)

Then the generating function Z(y) is continuous in the closed disk {\y\ < q~1}.
It has no zeros in the open disk { \ y \ < q~1}, but may have zeros on the circle

If q le2™6 is a zero of Z(y}, where 0 is a real number, the real number

a(6) :=sup |a : limsup (V1 - r)~° Z (re2"0) < oo 1 (2.2)
I r-^?-1- J

is called, by definition, the order of q~lelm6. Note that a(0) is non-
negative, but need not be a positive integer. An equivalent definition is

„(«):- lioiinf (2.3)V ' r-.,-i- log (q~l -r) "• J

which may be seen as follows: On the one hand, if

limsup lq — r Z(r(?na)\<oo

194
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then

and hence

It follows that

Z re2™1 < Ka,

loe

q — r

Z re2"" - a log (q~l - r < log Ka

loe 7* liriB

>a + logger

log (^f-1 - r) ' log (q~l - r) '

since log (q~l — r) < 0 for r sufficiently close to t?"1. Thus

liminf
log Z

-!_ log (q--i - r) > a.

On the other hand, if

log Z (re2"6} I
liminf ———-—-——-^ > a
r-^g-1- log (q l - r)

then, for r sufficiently close to q~l,

log Z (re2"9)
log(q~l -r)

and hence

Thus

This shows that

limsup (q~l — r] Z (re27™")
r^o-1- I \ I

< 00.

log Zfre2"'")!
liminf . ———flx - r)

— sup< a : limsup (q~l - r) Z Ire27"9) < oo
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In this section, we shall prove the following theorem which gives the
"total number" of zeros of Z(y) on the circle \y\ — q~l, subject to (2.1)
above (cf. Zhang [6]).

(5.2.1) THEOREM. Suppose that (2.1) holds. Then the "total number"
of zeros of Z ( y ) on the circle \y\ — q~l is at most one, in the sense that

or
2 £ a ( 0 ) < l , (2.5)

according as —q~1 is or is not a zero of Z(y), where the summation is taken
over all zeros of Z ( y ) on the upper half of the circle \y\ — q~! .

Remark. We note that a f |j is the order of the zero — q~l. The upper
bound of the total number of zeros given in (2.4) and (2.5) is the best
possible as Examples 3.8.1 of Chapter 3 shows.

We shall first prove the following more general formulation of Theorem
5.2.1, and then deduce Theorem 5.2.1.

(5.2.2) THEOREM. Let f ( z ) be a function continuous on {z € C :
z\ < I and z ^ I } , and holomorphic in the disk {\z\ < 1}. Suppose that

f ( z ) has no zeros in this disk. Also suppose that

oo
V^ k z\<l, (2.6)
k=i

with coefficients ck > 0, and that, for some constant r > 0,

r l im/(r ) ( l - r r (2.7)
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exists and is positive. Let 0 < dl < • • • < Ok < 1 be arbitrary. Then

Z r. (2.8)

To prove Theorem 5.2.2, we begin with the representation of the solution
set of the diophantine equation a\9i + • • • + a^k = ™-

(5.2.3) LEMMA. Given 0 = (0i, . . . ,0 f c) £ M* with 0 < Bl < • • • < 6k <
I arbitrary, let

S = S(0) := {a = (a l5 . . . , a,) € Zk : (a, 6) € z} , (2.9)

w/iere (a, $} = a101 + - • -H-a^. //S1 ̂  {0} f/ien i/iere exi'sf a positive integer
m < k (m is the "dimension" of S), and a matrix C = C(0) E M (m X k,Q)
of rank m such that

S = {fiC : /3 6 7Lm} .

PROOF. We consider two possible cases separately.

Case I: The equation aj^i + • • • +Cfk^k = z nas no solutions in Zk for all
z 6 Z, z ^ 0. Then the homogeneous equation a\9i + - • • -\-dk6k = 0 has non-
zero solutions, since 5 ^ {0}. We consider a maximal subset of elements,
linearly independent over Q, of the set {9i,...,0k}. Upon changing the
subscripts, we may assume that {#!,..., Of} is such a subset. Then I < k.
There exist as<t GQ, t = I,. . . ,1, s = I -\- 1, . . . ,k such that

(2.10)
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If a 6 S, then

0 =

It follows that
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+ • • • + akek

+ c*t+iat+i,i + • • • +

ti + • • • + akakti = 0,

+

and hence

j + • • • + akak,e = 0

Let m = k — I and

C1 =

= —ate+iae+iti - • • • — akaktt.

1 • • • 0

-ak,i • • • -ak,e 0 • • • 1

Then S = {/3C : /3 6 Zm}. Obviously, the rank of C is m.

Case II: The equation otiBi + • • • +akOk = z has solution in Zk for some
z 6 Z, z ^ 0. Then the set M = {z : 0 < z = (a,0) for some a E S} is
non-empty. Let z0 = min{z : z £ M} and a° = (a°, . . . , a°k) € 5, such that
ot°0i + • • • + a°0k = ZQ. We claim that, for each a 6 Z*, a € 5 if and only
if there exist i £ Z and 77 = (T/I, . . . ,77^) 6 Zfc such that a = ta° + r] and

TjlOi + • • • + TJkOk = 0,
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and claim that if a € S then the representation a — ta° + rj is unique.
Actually, if atOi + • • • + ak9k = 0, then a = 0 • a° + rj with 77 = a. If
«i$i + • • - + akOk = z G Z and z 7^ 0, then z = tz0 for some t € Z. Otherwise,
z = tz0 + r with t, r £ Z and 0 < r < z0. Then a' = a - to0 & Zk and

= z — tzn = r.

This contradicts the definition of ZQ. Thus 2 = tz0, and 77 = a — ta° satisfies
(f],0) = 0. Clearly, t and 77 are unique and the claims hold.

Now, if the homogeneous equation a.id\ + • • • + oikOk — 0 has only the
solution (0, . . . , 0) € Z*, then 77 = 0 and a = to0. Let m = 1, C = a° and
then S = {/3C : j3 <E Z}.

Thus we may assume that the homogeneous equation aiOi + • • • -\- 0.1,8 k =

0 has non-zero solutions in Z*. Then, as in Case I, we may assume that
{$!, . . . , Oe} is a maximal subset of elements, linearly independent over Q, of
the set {$}, . . . , $/<.}, and that there exist aSjt, t = I , . . . ,1, s = £ + 1,. . . ,k
such that (2.10) holds. Let m = k — f. + 1 and

C =

a

Then 5 = {^(7 : /3 6 Zm}. Finally, the rank o f C i s m
the first row of C is linearly independent of other rows.

snce

We now turn to the proof of Theorem 5.2.2:

For x = (>!,..., z fc) €
j and {x,t/} =

, y = (yi,...,yk) e M fc, we set ||x|| =
+ • • • + Xfc7/fc . Let A' be a positive inte-
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ger. We consider the inequaltiy

0 <

W\<K

where a = (o^ , . . . , a^} and

= £ n(a,A)cos(a,x), (2.11)

0,
n(a,A'): = V 1 = A.

TT (A -
•*••!• ^

if H > A,

if « < A .^
(2.12)

Proof of Theorem 5.2.2 Let x = 27rm(^, . . . , 0fc) with m 6 N, in (2.11). We
multiply both sides of (2.11) by cmrm and sum over m. Then from (2.6),
for 0 < r < 1,

0 < 53 n(a,A')log/(re27r!<a '9

E f r-"1

n(a ,A,

/

log/(r)

n(a,/01og (2.13)

It follows that

log
log(l - r) n(a,K) log/(r) (2.14)

Let
N(8,K):=
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where S is defined in (2.9), and

Nj(0,K):= £ n(a,K} (2.15)

where

S0 = Sj(9) := {a 6 Zk : (a, 6) - 6} € Z>, J = 1,. - - , fc.

Note that S1, Sj, j = 1 , . . . , k are mutually disjoint, and that

Sj = {a + tj : a £ S}, j — 1 , . . . , k,

where ej is the jth vector of the standard basis of Rk. From (2.14), we have

log(l-r)

,A') log |/(
N(0,K) log(l-r)

log/(r)
(2.16)

Note that, from (2.7),

and that
log

lim inf >0
log(l - r)

for (a, 6) $. Z, since f(z~) is continuous on {z € C :
follows, from (2.16), that

lim inf -
log(l - r)

z\ < 1, z ^ 1}. It

(2.17)



202 Section 5.2: The total number o f . . .

We claim that

(2.18)

Actually, if 5 = {0}, from (2.12), we have

N(0, K] = n(0, K) = Kk

and
N j ( 0 , K ) = n(ehK) = Kk~l(K - 1).

If S ^ {0}, by Lemma 5.2.3, there exists a matrix C = C(0) £ M(m x k,(
of rank m > 0 such that S = {/3C : /3 6 TLm}. We note that

\\(3C\\<K

since 11/3(711 < ||/3| E™=i E*=i 1^1- Hence

N(0,K)= E f[(A:
0&m j=l

\\{3C\\<K

where Cj is the jth column of C. Also,

E
i=l

j = 1 , . . . , k. Thus the claim holds.

Now, (2.8) follows from (2.17) and (2.18), by letting K ->• oo on the
left-hand side of (2.17). D

Proof of Theorem 5.2.1 Consider f ( z ) := Z(q~lz). Then, from (2.1),

J V / 1 '1 — z
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where
ZQ(q~lz) = 1 - (1 - A)z + (1 - z] 5J ann^zn,

with an = 0(1), is continuous on the disk \\z < 1} since 7 > 1, and is
holomorphic in the disk {\z < 1}, and Zo(q~l) = A > 0. It follows that

lim_/(r)(l -r) = A > 0.

Also, it is easy to see that

and so (2.6) holds with ck = K(k}k~lq~k > 0.

Thus (2.4) and (2.5) follow from Theorem 5.2.2. D



5.3 The Orders of the Zeros

If 7 > 2 in (2.1), then the orders of zeros of the generating function Z(y] are
positive integers, as the following theorem shows. This theorem (cf. Zhang
[6]) is essentially best possible, as Example 5.3.3 will show.

(5.3.1) THEOREM. Let q~le2"e be a zero of Z ( y ) , with order a = a(9]
where 0 < 0 < 1. If (2.1) holds with 7 > 1 + a, in particular, if d ̂  | and
(2.1) holds with 7 > \, or if 9 — \ and (2.1) holds with 7 > 2, then a is a
positive integer. Moreover,

T 7(a -1 2mfl / nlim -,—-——r^,—„ . „ = ——;— Zv ' (q e * (J,- -i 2"a9 r 'cv>

and Z(y) (q~le2™6 — yj is continuous on the region {y : \y\ < q~l, \y —
q~le2mS < e}, for some e > 0.

As in Section 5.2, we shall first prove a more general theorem, and then
deduce the required conclusion:

(5.3.2) THEOREM. Let f ( z ) = S(z}+R(z) where S(z) is holomorphic
in the disk {\z\ <!}, and

CO

#(*) = £>„*", \Z < 1 ,
n=0

with rn = O(n~^}. Suppose that S(z) is continuous on {z : \z < 1 and
z ^ 1}, and that for some constant r > Q,

\\rn_ 5(r)(l - r)T

exists and is positive. Also suppose that /(z) ^ 0 in the disk {\z\ < I } , and

k=l

204
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with coefficients c^ > 0. Let

a = a(0] := sup

//7 > 1 + a, in particular, i/0 < 0 < 1, # ^ |, and 7 > 1 + \, or if 9 = |
7 > 1 + r, i/zera a is a positive integer. Moreover,

( 2iri8\ ( — I}"
™ LILHlim

Of

f ( z ) / ( e 2 7 r i e - z)a is continuous on {z : \z < 1, z - e2"e| < e}, for
some e > 0.

Proof of Theorem 5.3.2 Without loss of generality, we may assume that 7
is not an integer. We have to show that a is an integer. Suppose on the
contrary that a is not an integer. Then, from the definition of a,

I It 27rifl\|

lim_ '^ _ ;| = 0 (3.2)

for all integers k < a.

Note that all derivatives f^k\z) with k < 7 — 1 are continuous on {z :
\z < 1, z — e27™8| < e} for some e > 0. Hence, for 1 < k < 7 — 1, we have
the Taylor formula

j ( i o ) — y —r j 16 16 I T ' — J_ 1
n=l

1 f r

Moreover, if k = [7] — 1, then

< (i - <r~M,
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snce

rnn(n - 1 ) . . . (n - k

k<n<M n>M

with M = (1 — i)"1. Hence, if A; = [7] — 1, the last term of (3.3) equals

/c.

and we obtain

n=l ""

-rr1). (3.4)

Since a < 7 — 1, from (3.2) and (3.4), we obtain, by induction,

/W(-e2«^ = 0 for i < n < [a]. (3.5)

Now, from (3.4) and (3.5), if [a] < [7] - 1 then

and if [a] = [7] — 1 then
/(re2"9)

1.(1 - r)^
This implies that a > min{[a] + 1, 7 — 1}; which contradicts a < 7 — 1.
Therefore, a must be a positive integer.
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Finally, because a is a positive integer and a < 7 — 1, (3.1) follows from
(3.4) since /(n)(e27™9) = 0 for 1 < n < a, by induction. Moreover, for z in
{z : z\ < 1, \z — e27rifl| < e} with some e > 0, we have the Taylor formula

with fc = [7] — 1, and so the continuity of f(z)/(e2m8 — z}a follows. D

Proof of Theorem 5.3.1 Let f ( z ) := Z^"1^. Then we can write f ( z ) =
S(z] + R(z), where

and

71=1

with rn = O(n~7). Then S(z) is continuous on {z : z\ < 1 and z ^ 1}, and

lim_5'(r)(l - r) = A > 0.

Thus f ( z ) satisfies the hypotheses of Theorem 5.3.2, and Theorem 5.3.1
follows directly. D

The following example shows that a (|j may not be integral if (2.1)
holds with 7 < 2, and hence the result in Theorem 5.3.1 is in some sense
essentially "best possible".

(5.3.3) EXAMPLE. Let m be an arbitrary positive integer such that
m > 4. Formally set q = m2, a = f2^ , and
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Then the A(n) are all positive integers. We have P(l) = A(l) > 0 and, for
n > 2,

P(n) = £)A(r> - > A ( n ) - £ A(r

"

-l -4) >0.

Thus the P(n) are all positive integer too.

It is easy to see that here

i i , )1 - qy l + qy

and hence

which has a zero y — —q~l with non-integral order a.

Then we have

dz
'

where 0 < TI < q l and 0 < r < 1. Using the technique of contour
integration, we can show that (cf. Zhang [6])

G(n] = qn + (

For any 7 < 2, we can choose m sufficiently large, so that 1 + a > 7. Then
(2.1) holds with 7 < 2 and Z(y) has a zero at y = —q~l, with non-integral
order a.
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Theorem 5.3.1, combined with Theorem 5.2.1, has the following direct
consequence:

(5.3.4) COROLLARY. // (2.1) holds with 7 > f, then Z ( y ) has either
no zeros on the circle \y\ = q~l, or exactly one zero y = —q~l, which then
has order not exceeding one there. If (2.1) holds with 7 > 1, then the only
zero y = —q~l is of order one.

Proof. Since a(9] is a non-negative integer for 0 < 6 < |, (2.4) and (2.5)
show that a($) = 0. Then the only possible zero is y = — q~l, with order
a f |J < 1. If (2.1) holds with 7 > 2, then a f |j is an integer, and hence
a l = 0 or 1. D

Next, Theorem 5.3.2, combined with Theorem 5.2.1, has the following
direct consequence:

(5.3.5) COROLLARY. // /(z) satisfies all conditions of Theorem 5.3.2
with T = I and 7 > |, then f ( z ) has either no zeros on the circle z = 1 or
exactly one zero z = —I, which is then of order not exceeding one there. If
7 > 2, then the zero z = — 1 is of order one.

Proof. Since

with real coefficients ck > 0, the McLaurin series of f ( z ] has real coefficients.
Hence the zeros of f ( z ) are pairwise conjugate. We note that

a(0) = sup {/? : (1 - < l

log(l - r)
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Therefore, a similar argument to the one given in the proof of Corollary
5.3.3 shows that the only possible zero is z = —1, with order a < 1. If
7 > 2, a is an integer, and hence a = 0 or 1. D



5.4 An Alternative Abstract Prime
Number Theorem

We can now give an answer to the fundamental question proposed in Section
5.2 (cf. Warlimont [1] and Zhang [7]).

(5.4.1) THEOREM. //

G(n] = Aqn + 0 (qnn-^ (4.1)

with A > 0, q > I , and 7 > 2; then either

A(n) = qn l + 0(n-~t+1} (4.2)

or

(4.3)

Remarks. This theorem is a refinement of results of Warlimont [1] and
Zhang [7]. The proof of (4.2) given below, due to Zhang, is published for
the first time in this monograph, while the proof of (4.3), due to Warlimont,
applies the same ideas as in the proofs of Theorem 5.5.1 and 5.5.4 below.

This theorem is essentially a variant of a tauberian theorem about the
solution A(n) (not to be confused with the Liouville function A of classical
number theory) to the convolution equation

\*g(n} = ng(n), n = 0 , l , 2 , . . . . (4.4)

Thus, we shall first prove the following general tauberian theorem, and then
Theorem 5.4.1 will follow directly.

211
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(5.4.2) THEOREM. Let A(n) be arithmetical functions satisfying (4-4)-
If\(n) > 0, g(0) = 1 and

g(n) = A+0(n~ 7 ) , n > l , (4.5)

with A > 0 and 7 > 2; then either

X(n} = 1+0 (rr7+1) (4.6)

or
A(n) = 1 - (-l)n + O n~7+2 - (4.7)

Proof. Note, from (4.4), that g(n) > 0. Also note, from (4.5), that the
generating function

CO

n=0

satisfies the conditions of Theorem 5.3.2 with T = I and 7 > 2. Hence, by
Corollary 5.3.5, G(z] has either no zeros on the circle z\ = I or exactly one
zero z = — 1, of order one there. We shall show that in the first case (4.6)
holds, and in the second case (4.7) holds.

Thus we first assume that G(z) ^ 0 on the circle z\ = 1. Let V(z] :=
(1 - z)G(z). Then V(z) ^ 0 on the closed disk {\z\ < 1}. Note that

and
oo

V'(z) = E m(g(m) - g(m -
m=l

Let A(n) = 1 + rn. Then

27TZ \z\=i V(z] zn 27r .v V(e'e)
.„ i(m-n)e

--^-dO. (4.9)
m=l
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We need to show that rn = O(n~7+1). Without loss of generality, we may
assume n > 87. Let k denote the greatest positive integer less than 7 — 1.
Then V(z] has continuous derivatives of order < k on {\z\ < 1}. Let

•ir pi(m~n)

We claim that
(4.10)

for m ^ n. This is certainly true for TO 6 {n — 1, . . . , n — Ik + !}• Hence,
we may assume that m > n o r m < n — 2k. By integration by parts, we
obtain

-

TO — n
,(,(.)-,(,

v i(m+a-n\
(4.11)

For s ^ {n — m,n — m — l , . . . , n — TO — fc+1}, applying integration by parts
k times yields

• i, fi(m+s~n)g 1

(TO + 3 — n)(m + s — n + 1) . . . (m + s — 1)

where P(z05
:Ci) • • • , £fc) is a polynomial in

cients, and hence
i j • • • ,xk with integer coeffi-

From (4.11) and (4.12), if TO > n, we obtain

1 c-7+1 1

m — n ~^ (s + TO — n)fc (TO — n)— nk+l
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If m < n — 2k, we obtain

1
I ^— V

n - m - fc

(n - m)-^1 + (n - m - l)-7+1 + - - - +

1 f s~7+1

-

,s
s<T^m-fc n - TO -

-Y+l

Note that 2=f=^ > 2==-. Hence we have

+ 2^
"~?~*<s<n—m — kl

< (n - m)"*1 + (n - m)""1^1 log(n - m)

n-m~k.

Moreover,

- m
4=1 • t=l

if e > 0 and 7 — 1 — £ > k. Therefore, if m < n — 2k, we also have

Now, from (4.9) and (4.10), we obtain

00 777-^+1
— —

— \n-rn



Section 5.4: An alternative abstract ... 215

since

_ \ ^ ^ I (n - m}k+1
m<n \ \™<f f <m<nj V* "V

and
v-^ rn~

This proves (4.6).

Next assume that G(-l) = 0. Let S(n) := A(n) - (1 + (-l)n+1). Also,
let

Then

1 T ^ n=0

Since G(-l) = 0, V(-l) = 0 and we have

w ( n ] = E (-l}k(9(m)-g(m-l})

m=0
oo

m=n+l

and hence w(n}\ <C n~"f+1, n > 1. Let

oo

^(0) :=W(z)W(-z) = Y,'
n=0

Then
e(n) = V)
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Note that

E(z) = G(z}G(-z} = «p

Hence e(n) > 0 since A(n) > 0. Let

=i
< I-

n=0

,1k < 1.

Then
(n}\ < e(n) <

We now have,
j+k=n

zG'(z) 1 1
n=0 l-Z l + Z

and then

Therefore

6(n) = Y, mw(m)d(h)(-lYw(e).

n + ,-7+1

This proves (4.7). Q

Proof of Theorem 5-4-1 We have

A * G(n) = nG(n),
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Let A(n) = qn\(n) and G(n) = qng(n). Then A(n) and g(n) satisfy the
conditions of Theorem 5.4.2. Thus (4.2) and (4.3) follow from (4.6) and
(4.7). D

We may also consider an elementary proof of the above alternative
abstract prime number theorem. The question of an elementary proof
was also proposed by Bombieri [2] in a different form, in relation with
Bombieri's tauberian theorem given in Section 3.6 of Chapter 3. An an-
swer to Bombieri's question was given by A. Granville in [1]. A. Hildebrand
and G. Tenenbaum [1] considered a similar problem in more general form,
and proved the following theorem. However, their proof is not elementary,
and will not be treated here.

(5.4.3) THEOREM. Suppose {an}'^>_l is a sequence of non-negative
real numbers satisfying

71-1

k=l

where R(n] is a positive-valued function with the properties: (1) R(n) is
non-decreasing, (2) R(n}/n is non-increasing, and (3) linin^^ R(n)/n =
0. Then either

or



5.5 Beurling-Type Abstract Prime
Number Theorems

Another class of abstract prime number theorems which are not of classical
type consists of "Beurling-type" abstract prime number theorems. In this
section, we shall give a brief survey of some Beurling-type abstract prime
number theorems, without involving any proofs. (Readers interested in the
proofs may read Warlimont [1] and Zhang [2,6,7], in particular.)

While investigating the proof of the classical prime number theorem,
Beurling [1] (cf. also Bateman and Diamond [1]) suggested the consideration
of the following general situation:

Let 'P be a sequence {pi,p25 • • •} of positive real numbers such that

1 < Pi < P2 < • • ' , Pj —> °° as j —»• °°;

which is called, following Beurling, a sequence of generalized primes. The
multiplicative semigroup Q generated by ~P is countable and may be ar-
ranged in a non-decreasing sequence

n0 = 1 < HI < n2 < • • • ,

which is called the sequence of generalized integers associated with "P.

Based on this suggestive (but slightly deceptive) nomenclature, Beurling
[1] and others (see e.g. also Bateman and Diamond [1], Diamond [1-4], R.S.
Hall [1,2], Miiller [1,2] and Ryavec [1]) raised and answered various analyt-
ical questions in parallel to the asymptotic counting problems of classical
prime number theory in N, some of which will be described shortly.

Warning Remark. Without questioning the soundness of the main ana-
lytical conclusions of these authors, readers should however be warned that

218
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in some of the cited literature there is a deceptive looseness or incomplete-
ness of description of the initial concepts involved, which should at least be
clarified: The source of this imprecision lies in a frequent failure to dis-
tinguish between P and Q as sets of real numbers rather than as sequences.
Thus generalized primes or integers which are distinct as sequence elements
are allowed to have the same real value, and generalized integers n; and
rij of possibly equal value should nevertheless be distinguished if they arise
from distinct formal products of generalized primes. In actual fact the au-
thors of papers on "generalized" or "Beurling" numbers often implicitly deal
with an arithmetical semigroup £0, with prime set PQ and a not necessarily
integer- valued norm mapping | |, and then (sometimes loosely) identifying
PO and £/Q with the image sets P = \Po and Q = \Q$\.

Taking the above comments as understood we now turn to the asymp-
totic analysis of suitable counting functions associated with Q, P: Let

denote the basic counting function of generalized integers, and the coun-
terpart of the Chebyshev function in classical number theory, respectively.
Beurling showed that if

N(x) = Ax + O z log"7 z (5.1)

with positive constant A and 7 > | then

ip(x) ~ x as x —> oo, (5-2)

which is a counterpart of the prime number theorem for N. He also showed,
by examples, that if 7 = | in (5.1), then the prime number theorem need
not hold. Beurling investigated also the more general case in which

n

N(x) = x Y, A, log^-1 x + O (x log"7 x) , (5.3)
v=l
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where pi < p^ < • • • < pn and Ai,A2,... ,An are arbitrary real numbers.
He showed that if (5.3) holds with 1 < pn = T < 2 for some An > 0 and
7 > 1 + I then i/j(x) ~ TX, a generalization of the prime number theorem.
However, if r > 2, even an O(l)-error term in (5.3) does not guarantee
ij}(x) ~ rx. Still Beurling proved that, if (5.3) holds with pn = T > 2 for
some An > 0 and 7 > 1 + ^, then there exist 0 < ij < £2 < • • • < ^ < °o
with q < [r/2] such that

r ?
ip(x} ~ x < T — 2 Y^ cos (fw log x — arctan f

I „=!

as x —> oo.

We can also consider abstract prime number theorems and Chebyshev-
type upper bounds on additive arithmetical semigroups which satisfy a
"Beurling-type" condition of the form

G(n}^qnya,np"-1+ 0 <fn^ , (5.4)

or
G(n) = qn^a^-l+0(qm), (5.5)

where pi < pi < • • • < pr and AI, A 2 , . . . , AT are arbitrary real numbers
such that q > 1, pr > 0, AT > 0, 0 < v < 1, and 7 > 1. In this case, a
generalization of the abstract prime number theorem (henceforth, P.N.T.}
states that P(n) ~ prqnn~l, or (equivalently) A(n) ~ /V?™) as n ̂  oo.

5.5.1 Chebyshev—type upper bounds (cf. Zhang [2])

(5.5.1) THEOREM. Suppose that
oo r
2_, sup G(m}q~m — 2_] Al/mp'/~ < oo, (5-6)
n=l n<n i/=l
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and pr > 1. Then A(n) <C qn. Moreover, if pi > 0, then

V^M = / v n + jR(n) + 0(1)) (5.7)
m = l ^

where R(n] is an elementary function of n with R(n) <C na for some a < 1.

Remark. This function J?(n) is a sum of a finite number of terms of the
form

Here k G N, £ € M U {0}, p = (/?!, . . . , pr) and !,(/>) is a linear function of
/ > i , . . . ,/5 r_i and 4, - I, I G H, £ < [/>„], z/ = 1,2, . . . ,r. The coefficients of
L(p) are non-negative integers and their sum is k. the coefficient a in (5.8)
is an explicit rational function of />i, . . . , pT and AI, . . . ,Ar. In particular,(5-9)

On the basis of Theorem 5.5.1, we can (cf. Zhang [8]) prove mean value
theorems of multiplicative functions on additive arithmetical semigroups
which are analogues of the Halasz theorem, the Halasz-Wirsing theorem,
and the Halasz-Wirsing-Delange theorem in classical probabilistic number
theory, respectively. (Also, see Chapter 6 below.)

(5.5.2) COROLLARY. //
r

G(n) - qn V A^n""'1 + O (qnn~~t}\ i -i ^—j " \ /
u-l

with 7 > 1, then A(n) <C qn, and (5.7) holds.

On the basis of Corollary 5.5.2, an analogue of the Erdos-Wintner the-
orem can be proved for additive arithmetical semigroups (cf. Zhang [3]).
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5.5.2 Beurling—type abstract prime number
theorems (cf. Warlimont [1] and Zhang [6])

The following theorem contains a complete answer to the question about
the relation between Beurling-type abstract prime number theorems "close
to classical sense" and zeros of the generating function Z ( y ) on the circle

(5.5.3) THEOREM. Assume (5.4) with 7 > 1. Then A(n) ~ prqn if
and only if Z(y) ^ 0 on the circle \y\ = q~l.

The next theorem about the "total number" of zeros of the generating
function Z(y) on the circle \y\ = q~l is a generalization of Theorem 5.2.1,
under the condition (5.4) with 7 > 1. It is a direct consequence of Theorem
5.2.2.

(5.5.4) THEOREM. Suppose that (5.4) holds with 7 > 1. Then the
"total number" of zeros of Z(y) on the circle \y\ = q~l is at most r = pr,
in the sense that

a(-} +2 Y, a(°} ^ r >
o<»<i

or

2 X) a(0) < r,

according as —q~l is or is not a zero of Z(y), where the summation is taken
over all zeros of Z ( y ) on the upper half of the circle \y\ = q~l.

If we strengthen the condition (5.4) with 7 > 1 slightly, then the order
of a zero of Z(y] will be a positive integer:
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(5.5.5) THEOREM. Let q-le^ia be a zero of Z ( y ] , with order a = a(B)
where 0 < 9 < 1.

(1) If (5.4) holds with 7 > I , then a > min{l,7 — 1}.

(2) If (5.4) holds with 7 > 1 + a, in particular, if 0 ̂  | and (5.4) holds
with 7 > 1 + f or if & = \ and (5-4) holds with 7 > 1 + T, then a is
a positive integer.

Moreover, if (5-4) holds with 7 > 1 + a, then

? I 1-Ki.&\ I -I \a
-
a

0
'

and Z(y}/ (q~le2l"B - yj" is continuous on {y : \y[ < q~l, \y — q"le2"8 <
e}, for some e > 0.

Next, in the case r = pr < 1, we have an abstract prime number theorem
"close to the classical sense":

(5.5.6) THEOREM. // (5.4) holds with 0 < r = pr < I , and 7 > 1 + r,
then A(n) ~ rqn.

This last theorem can fail if r = pr > 1:

(5.5.7) THEOREM. For r = pT > I , the hypothesis

G(n] = qnf^ A»nP"~l

v=l

does not generally entail A(n) ~ rqn. However for T > 1:
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(1) If the condition (5.4) holds with 7 > 1 + r , then there exist a non-
negative integer k with k < (r + l)/2, k real numbers $1; . . . ,0k with
0 < $1 < • • • < 9k < \, ind k positive integers nj , . . . ,nk, such that

A(n) = qn IT - 2 ̂  nv cos 2n7r^ - (-l)nnA + o(l) , (5.10)

2 f>, < [r] »/ 0* = iL (5-11)
v=l Z

or

and

2ZX<[r] if Ok<\. (5.13)

(2) If the generating function Z(y) has no zero at y = — q~l, and (5.4)
holds with 7 > 1 + \, then (5.12) and (5.13) hold with k < r/2. In
particular, if T < 2 and Z (—q~l) ^ 0, then A(n) = qn(r + o(l)).

The first part of Theorem 5.5.7 is shown by two examples in Zhang [6].

5.5.3 Remainder estimates (cf. Zhang [7])

In Theorems 5.5.6 and 5.5.7, the remainders are of o(l) form. In appli-
cations, a better estimate of the remainder than o(l) is required. This
estimate has been given in case G(n] — Aqn + O (<?™n~7) with 7 > 2 in
Theorem 5.4.1. It sounds best possible in some sense. In the general case,
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we have the following theorem. Here it seems possible to relax the condition
7 > max{2 + /9r,3) in the theorem to 7 > max{l + pr,2}.

Let [a]i denote the greatest integer less than a. Also, as usual, let [a]
denote the greatest integer less than or equal to a. Thus [a]i = [a] — 1 or
[a]i = [a] according as a is or is not an integer. Let R\ denote the set of pj
which are positive integers, R2 denote the set of PJ which are 0 or negative
integers, and R$ the set of PJ which are non-integers. Set

mi := min {[pr - P j } , Pj <£ (Ri U R3} - { p r } } (5-14)

if (Ri U RS) — {pr} is not empty. Also, set

[/v]i, if some pj = 0;
"m-2 := ^ [7^ — 1, if R2 = 0 and if pT is an integer; (5.15)

[pr], else.

(5.5.8) THEOREM. Assume (5.4) with q > 1 and 7 > max{2 + pr,3}.
Then there exist some constant CTO > 0, k real numbers 0 < 6\ < • • • < 0k <
|j and k positive integers n i , . . . , njt such that

/ k~l \
A(n) = qn (pT - 2 Y^ ne cos 2nirOf - (-l)nnk + O (qnn~t~a^ (5.16)V e=i )

and
k-l

nk + 2^Tnt<pr (5.17)
e=i

if @k = | or such that

( k \
A(n) = qn ipr - 2 53 ne cos 2n7r6»£ + O (<f n^"17) (5.18)

V fci /
and

k

2Y.ne^Pr (5.19)
t=i
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if @k < |- Here the non-negative integer k < (pr + l)/2 and a is any
constant satisfying 0 < a < a0. Also,

t := min{m1,m2,m3,[7]1 -3} (5.20)

with
j Mi - 1 -maxfn!,. . . ,^}, ifk>l,

m3 :— S r , •/ ; n (O.Zij
( Wi -1, ifk = Q

if (Ri U RS] = {pr} is not empty and if pr — pj are not all positive integers
for pj 6 (Ri U R3) - {pr} and

i := min{m2,m3, [7Ji - 3} (5.22)

otherwise.

Remark. For effective computation of the value of constant <TO, see Zhang
[7]-



CHAPTER 6

GENERAL MEAN-VALUE THEOREMS

In this chapter we study the mean-value properties of complex-valued mul-
tiplicative functions / satisfying |/(a)| < 1 for all a in an (additive) arith-
metical semigroup Q . Thus we study the asymptotic properties of the sum-
matory function

F(n) : = f ( n ) = ^T /(a), as n -> oo.
d(a)=n

The generating function of F and / is
oo

F ( y ) : = X>(n)2/" = ;C/
n-0

= n fc=i
by Lemma 1.4.1.

Several authors have made contributions to this subject (e.g. Indlekofer
and Manstavicius [1], Warlimont [4], and Zhang [8]). The discussion given
here follows mainly the paper [8] of Zhang.

6.1 Preliminaries

We first prepare the ground for the proofs of mean-value theorems by in-
troducing preliminary estimates and convolution techniques.

227
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6.1.1 Preliminary estimates

(6.1.1) LEMMA. LetGk(z] ~ T,%L0Ck,nzn,
Suppose that ciin < C2>n, n = 0 ,1 ,2 , . . .
0 < r < R we have

= 1,2, converge for \z\ < R.
Then for 0 < 77 < TT and

' d8.

PROOF. We have

/ s i n ( f ) \ 2

{—W^} > f o r x ^ O ,
V 2 /

1, for x = 0.

Therefore, for 0 < r < R, we have

< 2

= 2

Gl (re I

CO fr>

< 2 X) c2,nc2,mr"+m /
n,m=0 J-^

/•" / I= 2 I - '
J-7J \

< 2 D
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Let
T(z) := F

For simplicity of computation, we shall use T(z) instead of F(y] in the
proofs of mean-value theorems in the following sections. Thus we begin
with an analysis of T(z).

(6.1.2) LEMMA. Assume G(n) < qn with q > I . Let f be a
multiplicative function such that |/(a)| < 1 for all a G Q. If for each
p G V with d(p) < |̂  there exists a positive integer k(p) such that
qd(p) - i _ q-d(p)(k(p)--i) > 0; and such that f ( p k ] = 0 for all 1 < k < k(p),
then, for \z < 1, T(z) ^ 0 and

T ( z ) = T 1 ( z ) T 2 ( z ) T 3 ( z ] , (1.1)

where
/ 00 \

(1-2)

')-'
is holomorphic in the disk {\z < 1}, and

/ 00

fc=i

is holomorphic in the disk {\z < q},

is holomorphic in the disk {\z <
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PROOF. For z\ < 1, we have

a€B m=0

m=0
< OO.

Hence T(z] is holomorphic in the disk {\z < 1}, and the canonical (Euler-
type) product formula

/ 00 \

T(z) = TT 1 + Y^ f ( p }(q~1z} ^p'P V ^ i /
holds there. It follows that T(z) ^ 0 for z < 1, since

(1.5)>0

for p with d(p) > j^", and

> i - E (.-'
k=k(p)

I - (q-l\Z\f(p)

> 0

for p with d(p) < |̂

Then, for \z < 1,

(1.6)

< oo.
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Hence the infinite product (1.3) converges absolutely, and T2(z) is holomor-
phic in the disk {\z < I } .

We now consider the infinite product (1.4). For z < q1/2, we have

__ oo

£ £ (/(/)- f(pk-l}f(p}}(<i-lz}kd(p]

S E
_ , . 1^^ »̂ i (_>

-2m 2m

< 00.

Hence the infinite product (1.4) converges absolutely for z < q1/2, and thus
T3(z) is holomorphic in the disk {\z < q1/2}.

Finally, we have

k=l

for z\ < q, and (1.1) follows. D

3.1.3) LEMMA. Suppose that

n=l
< 00,

either
G(n}q~n -A =

or

<oo.

(1.7)

(1-8)

(1.9)



232 Section 6.1: Preliminaries ...

Let f be a completely multiplicative function such that |/(a)| < 1 for all
a € £. Then, for 0 < r < 1,

reieT'(reie 1
1-r

(1.10)

PROOF. Since / is completely multiplicative, we have

Note that

Hence, by Lemma 6.1.1,

ret9T'(re10)
< 2

T(re.a)

We need now a suitable choice of 77:

From (1.7), we have

1 r

1

where
R(y) = 1 - - A

(1.11)

is continuous on the closed disk { \ y \ < q~1}. Note that Z ( y ) has no zeros
in the open disk {\y\ < q~1}- Hence there exists a number rj > 0 such that
A + (1 - qy}R(y] ^ 0 for y = reie with 0 < r < q~l, \6\ < ??, since A > 0.
We now fix 0 < TJ < TT. Then we have, for z\ < 1,

q-lzZ'(q-lz) _ z
1 - z
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It follows that

reieZ'(q-lre dO

< 1 +
-re. i f l |2

R'(q~lre1'

We have

••n 1 dd 2?r

by the Poisson integral formula (cf. Titchmarsh [1]). Also, we have

= 27T m2

If we assume (1.8), then plainly

m - A)
2 °° 1J

 r2m ~ y^ r2m ^ X

m—1 ?n=l

If we assume (1.9), letting SQ = 0 and

n

S
_ ^

n'-= Z^r

m=l

then, by summation by parts, we have

2n

n=l (1-r)
-1

1 -r
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Thus we obtain
reieZ'(q-lreie

Z(q~lre* 1-r
(1.12)

and then (1.10) follows from (1.11) and (1.12). D

(6.1.4) LEMMA. Assume that (1.7) and either (1.8) or (1.9) hold. If
f satisfies the conditions of Lemma 6.1.2, then for 0 < r < \, (1.10) hold
too.

PROOF. By Lemma 6.1.2, for 0 < r < 1, we have

T'(re'6} T'(reie] T'(rei0} T'(rei6}
T2(re°»

and
re'eT'(re'8

(1.13)

since 1 < T3(z}\ < 1 and \T^(z}\ < 1 in the disk {\z < I } . Then, note
that

Hence, by Lemma 6.1.1,

< 2
Z(q-lrei(> de,

and the argument in the proof of Lemma 6.1.3 yields

re 1
1 -r

(1.14)

We now consider
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where

k=l

(by (1.5) and (1.6), m(z;p)| < 1 for z < 1). We note that, for \z < 1,

|m'(z;p)| =

Let
k=l

l+m(z ;p )

Also , i f a (p )>gf , l e t

00 / 00

=1 \ Jt=l
=S>(«;p)*8(o).

J a

Then |^(a;p) < h ( a ; p ) for all a e ^, since |/(pfc)| < 1- We note that

1 - -1^8^ 1

0 0 / 0 0

fcl \ fc=l

By Lemma 6.1.1, for 0 < r < 1,

- r < 2
1 -

/:
1r)S(p) cos (d(p)0)

J Mp)l-4(«rir)28<">

1 -r2 '
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since, by Poisson's integral formula,

du 1
27T ./_, i _ 4(g-ir)8(p) cos u + 4(<T1r)2S(p)

If d(p] < |2*2, letvr/ log?'

1 - 4(g-1r 28(p)

00 / CO

Then |^(a;p)| < h(a;p) for all a £ Q too, since /(p ) = 0 for all 1 < k <
k(p). Note that

i-
CO CO

£ E
By Lemma 6.1.1 again, for 0 < r < 1,

/•$o-f?7 /7/5 y^
/ < 2 /

Jflo I I +m(re'e:n} 2 V-Tm(reie;p) — (g~1re'9)
d6

/; \k(p)9(p) 2 '

Note that 9
3(P) - 1 - g-8(p)(*(p)-0 > 0. If qaW - 1 - ?-S(P)(*(P)-I) > Q, then

since

d(p)
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If qd^ - 1 - g-sMO(p)-i) = 0, we have 1 = q~d^ + q~k(p)d(p\ and then

a^ (logr

for &(p)<9(p)| logr + iO\ < |. Thus we can choose a positive number r/
satisfying

r, < 1

so that, for logr < 77, \6\ < TJ,

We note that there are only a finite number of p with d(p) < |
we can fix 77 > 0 so that

Hence

+ m(reie;p)\ J-n | log/

rj

-, dO

| log r ~~ 1 — r

where the constant implied by <C is uniform. It now follows that

f-Oo+r,

«

re i6T[(rei6

m'(reie;p)
m(rei6;p)

1-r '

and then
reieT[(rei(

1 -r
(1.15)
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Thus (1.10) follows from (1.13), (1.14), and (1.15). D

As the following lemma shows, either condition (1.8) or condition (1.9)
can be replaced by the Chebyshev-type upper bound A(n) <C qn. For
brevity, an (additive) arithmetical semigroup Q will be said to be a Cheby-
shev (additive) arithmetical semigroup if and only if A(n) <C qn, or, equiv-
alently, P(n) <C qn /n, holds in Q.

(6.1.5) LEMMA. Assume thatQ is a Chebyshev arithmetical semigroup
satisfying (1.7). Let f be a completely multiplicative function such that
|/(a)| < 1 for alia 6 Q, or a multiplicative function satisfying the conditions
of Lemma 6.1.2. Then (1.10) holds for 0 < r < 1.

PROOF. We first note that

and hence

Z(q-lrei<>

= £
n=l

2"
1

1̂ "

Then, in the case of a completely multiplicative function /, (1.10) follows
from an argument similar to the one in the proof of Lemma 6.1.3. In the
case of a multiplicative function / satisfying the conditions of Lemma 6.1.2,
(1.10) follows from an argument similar to the one in the proof of Lemma
6.1.4. D
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6.1.2 Convolution of functions on (additive)
arithmetical semigroups

In sub-section 3.1.1 earlier there was a brief discussion of the additive con-
volution *0 °f complex-valued functions of non-negative integers, which
has parallels with the multiplicative (or Dirichlet-type] convolution *i of
arithmetical functions on an arithmetical semigroup Q, treated in detail in
Chapter 2 of [AB]. As noted earlier, the simpler single notation * will be
used in both cases, unless there is a need to avoid confusion between the
two. For convenience in presenting the next sections, we now briefly recall
or note a few basic properties of * = *j for the case when Q is an additive
arithmetical semigroup as before.

Firstly recall that the multiplicative convolution *, which is commutative
and associative, and linear over complex scalar multiplication, is defined by

( f * g ) ( a } = E/(%(c) for a € Q.

Under * the resulting algebra of all arithmetical functions on Q has the
identity element 6, where 8(1) = 1 and 8(a) = 0 for a ^ 1 in Q. Also we
have the following useful inequality

which is easily verified. Another useful formula is

( / * < ? ) ( « ) = E F(m-d(a))g(a), (1.17)E
d(a)=m

where F(n) = Y^8(a)=nf(a) is the summatory function of /. Actually, we
have

E (/*<?)(«) = E £/(<%(*)
9(o)=m 9(o)=m W=a
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E f(d}g(b)
d(b)+S(d)=m

E f ( d )
d(d)=m-d(b) /

and (1.17) follows.

Next recall ([AB], Chap. 2, §2) that an arithmetical function / is invert-
ible relative to *, i.e. there exists a function f~l on Q such that / * f~l =
f~1 * / = <$, if and only if /(I) ^ 0, and then the inverse f~l is unique.
Further ([AB], Chap. 2, §4), if / and g are both multiplicative on Q then
f~l

: g~l and f*g are also multiplicative. (For h = f*g, this assertion may
also be seen simply as follows: If a and b are coprime then every divisor d
of ab can be uniquely written as d = d^d^ with di \ a and d% \ b. Hence

h(ab) = £
d\ab

^\a

= h(a}h(b).

The formal "differentiation" operator L on the algebra of arithmetical
functions of non-negative integers, discussed in sub-section 3.1.1 earlier,
has an analogue for arithmetical functions / on £/, defined by setting

L f ( a ) = d(a)f(a) for a € Q.

Then L is also a derivation (or formal "differentiation") operator, in view
of the important property

(This is easily verified with the identity

d(a) £ f(d)g(b)
bd=a
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Note that, if F and G are the summatory functions of / and g, and F ( y )
and G(y) are generating functions F and G (or / and <?) respectively, then
the generating function of the convolution h = f * g is

H(y) =

and the generating function of Lf is



6.2 General Mean-Value Theorems

We shall formulate some general mean-value theorems in terms of slowly
oscillating functions.

6.2.1 Slowly oscillating functions

Let L(x] be a complex-valued function, defined and non-zero for all suffi-
ciently large positive real numbers x. If

lim = 1 (2.1)
" —X—>OO

holds for every fixed positive number u, then L(x] is said to be slowly
oscillating.

The most commonly used property of slowly oscillating functions is given
in the following lemma, which in its present form is due to van Aardenne-
Ehrenfest, de Bruijn and Korevaar [1].

(6.2.1) LEMMA. Let L be a measurable, slowly oscillating function.
Then (2.1) holds uniformly for u on any finite interval a < u < b with
0 < a < b < oo.

A short proof of this lemma is given in Elliott [1, Vol. I], Lemma 1.3.

6.2.2 The general mean—value theorems

We shall first prove the following general mean-value theorem, an analogue
of Haldsz's theorem (cf. Halasz [1], or Elliott [1], Vol. I) in classical proba-

242
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bilistic number theory. As is well-known, in the classical theory, the values
/(2fe) of a multiplicative function / on powers of 2 require special consid-
eration. The same situation occurs in the theory of additive arithmetic
semigroups when d(p) < j^-. Thus we need extra constraints on the values
f ( p k ) of / on powers of such primes p so that / becomes tractable.

(6.2.2) THEOREM, (cf. Zhang [8]). Suppose there exist a constant c,
real constants a and q > I , and a measurable, slowly oscillating function L
with \L(x)\ = 1 such that

F(m] = cqm(-l+l^L(m) + o(qm) (2.2)

as m —> oo. Then the asymptotic formula

F(ii\ — C T I \-Lnl I f 9 1}_/ ' I (I I —— ———————————;——— Jj 1 ———————j——~ t —|— (J I p I 1 £j .(_) I

holds as \y\ —>• q~l~.

Conversely, suppose that

°° i
X; \G(n)q-n - A < oo, (2.4)
71 = 1

and either
G(n}q~n - A = 0(n~l) (2.5)

or
00

X] n (G(n)9-n - A) < oo. (2.6)
n=l

Moreover, suppose |/(a)| < 1 /or a// a € £7, and either

(i) f is a completely multiplicative function on Q, or

(ii) f is a multiplicative function such that, for each prime p with d(p) <
j^, there exists a positive integer k(p] such that qd^ — 1— q(k(p^~l)a(p) >
0, and f ( p k ] = 0 for all I < k < k ( p ) .
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Then (2.3) implies (2.2).

The following proof is modelled after arguments in Elliott [1], in several
aspects.

PROOF. Assume (2.2). Then

00

F(y) = Y, (cqn(l+1

n=0
oo

„!+«*,, ,\n

n=0
oo

c£)L(n)(9
1+"*3,)n + °

7i=0 \n=0

n=0

as I T / I —* <?-1—. Let M be a large positive constant, to be specified later,
and let

MI = M-x(l - qlylY1, M2 = M(l - q \ y \ ) ~ l -

By Lemma 6.2.1, we have

for MI < n < M2, and hence

as 12/| —> q~l—. It follows that

1
^(!/)- 1 -

_J:__
-q\y\)

L(n}(ql+tay)n + o
n=0
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n>M2

We then have

and

E
n<Mi

since 1 — x < e~x. Therefore, we arrive at

C L( 1 \-LJ ' •

l-q\y\J

< 1\c\(M ~l 1 -

Given any e > 0, we can first choose M sufficiently large so that the first
term on the right-hand side is less than |(1 — q\y\] . Then, for \y\ —> q~1—,
the second term does not exceed |(1 — q\y\}~~1. Thus the right-hand side
is less than e(l — g|y|)~ for \y\ sufficiently close to q~l, and (2.2) follows.
This proves the first part of the theorem.

Conversely, we note that

9(o)=n

by (2.4), and hence the infinite series and infinite product in (0.1) converge
absolutely for \y\ < q~l. We first assume (2.2) with a = 0, i.e.

1F(y} = •L -
l-qy \l-q\y\J \l-q\y\J

-
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for \y\ —> q~1—. To deduce (2.3) with a = 0, we start with

where 0 < r < q~l. For simplicity of computation, let

T(z) : = F(q-lz), z < I.

Then
nm r T'(z\1_ / ii£Z <fe = mjp(m)
2niJ\z\=r zm v ;

where 0 < r < 1. To show (2.3) with a = 0, it is sufficient to obtain

(2.7)v ;

To this end, we first have

as z\

\-z V i - A) V i - I *
1—. Now, on the left-hand side of (2.7), we set r = 1 — ~. Let K be

a large positive number and let m be so large that ra > 2A'2. We break the
circle z = rel6 into two arcs A0 : \9\ < ~ and AI : ^ < \0\ < TT and estimate
the integral on the left-hand side of (2.7) on each arc separately. This will
show that the integral on AQ produces the main term on the right-hand
side of (2.7), whereas the integral on AI produces an o-term.

(i) Estimate of JAg. For z 6 A0, z fixed for the moment, consider the
circle w — z\ = ̂ . By (2.8) and Lemma 6.2.1, we have

1
1-to \l-\w\J \1-

c
I — w

w
I I / N

£(m) + o(m),
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since 1 - £- < \w < 1 - =L and

L
— w

It follows, by Cauchy's inequality for derivatives of analytic functions, that

T'(z) =
(I-*)

L(m) + o(m2).

Hence we have

1 f T'(z}
2m JAO zm dz = 0(m*). (2.9)V ' m V ;

The integral on the right-hand side of (2.9) can be evaluated by using
the residue theorem. Thus, let rm = 1 - (l - ±] eiK/m and let C\ denote
the path consisting of two line segments z = /)e±lA/m, r < p < 1 + rm, and
the circle arc: z = (1 + rm}e*e, \0\ < ~. We note that

K L A 1\ / K\ 1 ]1/2 K
— »r r o= 2 1-- 1-cos— + — »—.m L V m/ V m/ TTZ^J ?n

Applying the residue theorem to the contour integral on A0 U Ci, we obtain

1
2iri JAO (1 -

= m +
1

We have

elK/mdp

/'
iK/mdp

(I - pe-iK/™)2(pe-iK/m)
_____(l+rm)eiei
(!-(!+ rm)e'9)2 ((1

(2.10)
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Note that ll - pe±iK/m > sin - > —, and hence the first two integrals on
1 ' —— 771 —— 7T771 1 °

the right-hand side of (2.10) are

m pm m m -

Also, note that 1 — (1 + rm)e'e > rm ^> — , and hence the last integral on
the right-hand side of (2.10) is

< ( — ) —— < K~lm.
\m/ m

It follows that

—— I2-jri JA
dz

Ao -
(2.11)

(ii) Estimate of f A i . By Lemma 6.1.2, T(z) ^ 0 for z < 1. We have

A, z < /~ \JA,
reieT'(reie)

T(reie}

L

1/2

1/2

Then, by Lemma 6.1.3 in case of a function / satisfying the condition (i) or
by Lemma 6.1.4 in case of a function satisfying the condition (ii),

i.ftrnlf 5'/9\ 2

Also we have

/ T(reie)
JA,

By (2.8),

T(reie

'r~mde< max

1
1-r

= m.

. (2.12)

T(rei6)\ <
1 - re*

+ o(m).



Section 6.2: General mean-value theorems 249

For ^ < 101 < TT,
771 —— ' I —— '

\\-re16 >
m

and hence

max T(reifl 1/2
< O / + o m1/2

To estimate the integral on the right-hand side of (2.12), by Lemma 6.1.2,
we have

/ ,V)N 3/2 ,„

From the same lemma, we have, for z\ < 1,

o oo iE E T
Note that

By Lemma 6.1.1, we have

/ iflx 3/2 ,.

P k=l

1 — re1

3/2

< 1 fJ ~ 7T

The last integral equals

E

k=0
1

Z-^i

.1=0

oo

<i + E*-1
k=l

r e

(1- « m1/2.
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It follows that

Ai z
«

0K-*m+o(m (2.13)

Combining (2.9), (2.11), and (2.13), we finally arrive at

1
1m J\z\=r Zm

cL(rn) f dz
~~ ———— / ——————— ~

27T? IA ( 1 _ Z \^ Zm

= cmL(m) + o(Krn) + O

We note that the left-hand is independent of K. Hence, given e > 0, the
last term O (K~*rn\ on the right-hand side is less than |m for fixed K,
sufficiently large. Then, for m sufficiently large, o(Km) does not exceed
|m. This proves (2.7), and hence (2.3) with a = 0.

To finish the proof, now assume (2.3) with a ^ 0. Then, for the function
/(a)<?~ t9(a)a, its generating function satisfies

TL
I

l-qy \l-q\y\

The above argument yields

l-q\y\J'

Hence
E

9(o)=n
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Theorem 6.2.2 has the following immediate consequence.

(6.2.3) COROLLARY. Assume
oo

Y,sup\G(m}q-m ~A <oo, (2.14)
n = 1n<m

or, in particular, assume

G(m] = Aqm + O (qmm-^ (2.15)

with 7 > 1. Then (2.4) and (2.5) hold. Thus, for a function f satisfying
|/(a)| < 1 for all a £ Q and either condition (i) or (ii) of Theorem 6.2.2,
(2.3) implies (2.2).

As is seen in Section 6.1, either condition (2.5) (see (1.7)) or condition
(2.6) (see (1.8)) can be replaced by a Chebyshev-type upper bound A(n) <C
qn.

(6.2.4) THEOREM. Instead of either (2.5) or (2.6), assume that Q is
a Chebyshev additive arithmetical semigroup satisfying (2.4)- Then, for a
function f satisfying |/(a)| < 1 for all a E Q and either condition (i) or (ii)
of Theorem 6.2.2, (2.3) implies (2.2).

PROOF. The proof of Theorem 6.2.4 is the same as the one of Theo-
rem 6.2.2, with the only difference that Lemma 6.1.5 is used now whereas
Lemmas 6.1.3 and 6.1.4 were used in the latter. D

From Theorems 6.2.2 and 6.2.4, the theory of mean-value properties of
multiplicative function may be developed in two parallel lines: one assumes
condition (2.4) and either (2.5) or (2.6), and another assumes Chebyshev
semigroups satisfying (2.4). For simplicity, in the further discussion, we
consider only Chebyshev semigroups satisfying (2.4), and omit the parallel
results for semigroups satisfying (2.4) and either (2.5) or (2.6).



6.3 An Analogue of the Halasz-Wirsing
Theorem

The following theorem is an analogue of the Haldsz-Wirsing theorem in
classical probabilistic number theory (cf. Halasz [1], Wirsing [2], and Elliott
[1]). There are no extra constraints on values of f ( p k ) on powers of primes
p with d(p] < j^5— in this theorem.

(6.3.1) THEOREM, (cf. Zhang [8]). Suppose either (i) that Q is
a Chebyshev additive arithmetical semigroup satisfying (2-4), or (ii) that
(2.14) holds. Let f be a multiplicative function with |/(a)| < 1 for all
a G Q • If there exists a real number a such that

(3.1)
p

converges for 0 = a, then

F(m) = Aqm(l+^ H (l ~ 3~8(P}) l + E
8(p)<m V k=l

) (3.2)

as m —> co. On the other hand, if there exists no such a, then

F(m) = o(qm).

Remark. Condition (ii) of this theorem implies condition (i), and is actually
a particular case of the latter. However, we emphasize condition (ii) in the
theorem, for its convenience of applications. In particular, if we assume
(2.15) with 7 > 1, then (2.14) holds.

To prove Theorem 6.3.1, we need two more lemmas.

252
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(6.3.2) LEMMA. Assume (24), and \f(p)\ < 1 for all p£P. If

(3.3)

then we have, for each fixed M > Q, uniformly for y = relS with \0\ <
M(q~l - 77) and \(q~l - n] < q~l - r < q~l - r,,

(3.4)

as -,-1

PROOF. It suffices to show that

and

Firstly, by (3.3),

Si < 2
8(p)<Mi

+ 2
9(p)>Mj

< 2
8(p)<M!

for MI sufficiently large. Fixing MI, we have

Iimsup5i < e,

since y —> q~l as n —> t?"1—. Then (3.5) follows.

Next, to show (3.6), first note that

(3.5)

(3.6)
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Actually,

— e

since r > 77. Hence

E

«

(2q(q~l - r) — r

since

Then

< e +

since 1 - Re f(p) > 1 -
from (3.5) that

and then (3.6) follows.

__
'̂  J- C- p

\/l - e2 for ]/m/(p)| < e < l!). It follows

Q

(6.3.2) LEMMA. Suppose that (2.4) holds. Let f be a multiplicative
function with |/(«)| < 1 for all a G Q. If (3.3) holds, then, for each fixed
M > 0, uniformly for y = re'6 with M(l — q \ y \ ) < \0\ < TT,
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PROOF, For \y\ < q~l,

P 4=1

and so

F(y)
Z(\y\) k=l

where

with

E

It is easy to see that, for \y < q~l,

«
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|ni(y)|

Note that

= n2(y)z(y]

where y is the complex conjugate of y and

n 2 (y) : =

= exp

with #2(?/)| < 1 for |y| < q'1. Thus

ITT' a

exp

It follows from (3.7), (3.8), and (3.1) that

exp { -2Z(\y\}\Z(y)\

(3.7)

(3.
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since

Hence

< exp 2

< 1,
\y\a^(l-Ref(p))

- qy I >

< 4 (I-Re f(p}} + 4 l -

\F(y)

since, for M(l - g|y|) < \0\ < ?r,

- q

M(l-q\y\).

1/2

1/2

1/2

Proof of Theorem 6.3.1. We note, from Theorem 3.2.1 of Chapter 3,
that an additive arithmetical semigroup satisfying the condition (2.14) is
a Chebyshev semigroup. It is sufficient to prove the theorem under the
assumption (i). We shall write / as the convolution of special functions g
and h as follows:

Define multiplicative functions g and h by setting

g(pk} = \ if dtp) > j2^,\* / — log g '
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and

respectively. Then g * h is multiplicative too, and g(l) = I = h(l}. It is
easily verified, from the definition of g and h, that f ( p k ) = (g * h)(pk] for
all powers of primes p. Hence / = g * h. Then

(3.9)

converges or diverges according as (3.1) converges or diverges.

First assume that (3.1), and hence (3.9), diverges for all real 0. From
the proof of Lemma 3.2 with h in place of /, we have, for \y\ < q~l,

\H(y)\1 V" ""exp<-

From this fact,
\H(,,\\

• 0z(\y'.
as y = re'8 —> q~le*e, with r —> q~l— for 0 < 9 < 2?r. By Dini's theorem
(cf. Courant and Hilbert [1], Chapter 2, §2), this convergence is uniform for
0 < 0 < 27T. Hence

Z(\y\}
as \y\ — > g"1— . Also, note that

Thus

Then, by Theorem 6.2.2,

H(m}= Y. h(a}=o(q



Section 6.3: Analogue of Halasz-Wirsing Theorem 259

Therefore we have, by (1.17),

F(m) = V (9*h)(a) =
3(a)<m

= E
9(a)=m

(3.10)

Note that

Therefore, given 0 < e < oo

E
for MI sufficiently large. Hence

E l ^
9(a,

8(a)=m

'• \^ -d(a)
£ rX "

8(a)>m
(3.11)

for m > MI. To estimate the second term on the right-hand side of (3.10)
we note that, for m — d(a) > M2 with M2 sufficiently large,

and hence

E
i(a)<m-M2

Also, there exists a constant B > 0 such that

for 3(a) < 77i, and hence

E -
Mi<3(a)<m
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It follows that

E ,
d(a)<m

E + E
m-M2<3(a)<my

for m > M! + M2. Then F(m) =
(3.12).

(3.12)

o(qm) follows from (3.10), (3.11), and
. .

Assume now that (3.1), and hence (3.9), converges for 9 = 0. Then,
in the proof of Lemma 6.3.2,

as
s proof of Lemma 6.3.2,

# M IT f \ )——— = f f i (y)exp^-
Zy/J

where

#i(y): = II

(3.13)
«S<!

log 9 —
i=l

/ 00n ^+Y,(f(pk}-f(pk-l}f(p}} »,kd(P)

x exp ^ — 2_y

is holomorphic for \y\ < q~?. Set

and
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Clearly, \L\ = 1. Let u = (1 — <?|j/|)~ . To show that L(u) is a slowly
oscillating function of u, it suffices to note that, for | u < v < u, by Lemma
6.3.1 with i] = q~l(l -v~1},

= exp{o(l)}

as u — >• oo. Then, by the same lemma,

- E
= (ci + oM(l))exp{oM(l) + o

"1— uniformly for |0| < M(l — <?|j/|). Hence

H(y) = ClZ(y}L

as

Also, for M(l - q\y\) < |0|, by Lemma 6.3.2,

H ( y ) - ClZ(y)L

Thus we have

ClA L

as By Theorem 6.2.4,

H(m) = ClAqmL(m} + o(q
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Then we obtain

F(m}= £ H(m - d(a))g(a) = £ g(a) + Sl
9(a)<m d(a]~m

say, where

and
8(a)<m

8(a)<m

as is shown above. Write

= ClAqmL(m)
8(a)<Ml

+ClA

Let c = aq-d^g(a). Then

|5i - cAqmL(m)\ < e Cl\A(K +

for m > MI + MS with MS sufficiently large, since

uniformly for d(a) < M\. Hence we arrive at

F(m) = cAqmL(m) +

It remains to show

cL(m) — J^J (1 — c (3.14)
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Actually, let 1 — qr = m~1 . Then q~l = r + (qm)~l , and thus

e x p -

x exp < i ^2 r Imf(p)

x n

n
snce

as r -> 5'1-, by the convergence of (3.1) with 6 = 0, and 0 < ra(p>(l
< 9~9(P)(1 - ^e/(p)). Then by (3.13),

(3.15)

snce

H(r) 0
9(i

We have

^IK1 -rd(p}) I I +
)
1
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Note that
oo oo

£ r3« = ^ P(n)rn < E «~Vr"
8(p)>m n=m+l n=m+l

< - E
771 n=m+l

< 1.

Hence, by the Cauchy-Schwarz inequality,

c -v J/2 / >, 1/2

= 0(1).

Thus

3(p)>m \ 4=1

= exp{o(l)}. (3.17)

Also,

n<m

n<m

< E
n<?n

_ 1
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since, by Bernoulli's inequality,

1 \n n
-- >!--mj m

Hence, by the Cauchy-Schwarz inequality again,

E (<T9(p)-r8(p))|l

(p)<m

f
X 2

9(p)<m )

(3.18)

snce

as m — > co, by the convergence of (3.1) with 6 = 0. Thus

a(p)<m

*=i
xexp{ JR(r)},

where

R(r] =
riff

+ log (1 - r^/fr))-1 + log (1 - q - d ( p ) f ( p ) }
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+ log

+ log

£

oo -i / oo

fcl *• \ \k=2

oo

by (3.18). Therefore, we obtain

(3.19)
8(p)<m \ k=l

Then (3.14) follows from (3.15), (3.16), (3.17) and (3.19).

Finally, assume that (3.1) converges for 9 — a / 0. Then, for the
multiplicative function f(a)q~'3^a, (3.1) converges for 0 = 0. The above
argument yields

^ f(a)q-td^a = Aqm J] (
9(a)=m 9(p)<m

and then (3.2) follows. D



6.4 Mean- Values of Multiplicative
Functions

We finally deduce the following theorem on mean-values of multiplicative
functions, which is an analogue of the Haldsz-Wirsing-Delange theorem (cf.
Halasz [1], Wirsing [2], Delange [1], and Elliott [1]).

(6.4.1) THEOREM, (cf. Zhang [8]). Suppose (i) that Q is a Chebyshev
additive arithmetical semigroup satisfying (2.4), or (ii) that (2.14) holds.
Let f be a multiplicative function with |/(a)| < 1 for all a £ Q. Then the
(asymptotic) mean-value

m} (or m(/)) = lim^ — — £ /(a)
\ ' d(a)=n

exists and is non-zero if and only if

(i) for each p with <9(p) < ,

k=\

and

(ii) the series

£9-8W(ip
converges.

Moreover, if (i) and (ii) are satisfied, then

4=1

267
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Further, the mean-value mj exists and is zero if and only if either there
exist a real number a and a prime pQ with <9(po) < j^2-^ such that the series

p

converges, and such that
oo

l + £)
k=l

or the series
Y,q-d^

p
diverges for all real numbers 6.

PROOF. If conditions (i) and (ii) hold, then (3.1) converges with $ = 0.
Therefore, from (3.2) with a — 0 of Theorem 6.3.1, we obtain

- n <i - «-»> E f
which is non-zero since conditions (i) and (ii) guarantee the non-vanishing
of each factor and the convergence of the infinite product. If the condition
(iii) holds then, by (3.2), F(m) = o(qm] and mf = 0. Finally, if the
condition (iv) holds then plainly, by Theorem 6.3.1, m.f — 0.

Conversely, assume first that / has mean-value TO/ = 0. Then either
(3.1) diverges for all real 0, that is, the condition (iv) holds, or (3.1) con-
verges for 6 = a, a real number. In the second case, for the function
g ( a ) := f(a)q~'^\

converges and then so does (3.1) with g in place of / and 0 = 0. Also,

TO, = lim — U- V 9(a) = lim q~wm^^: = 0-9 m-»oo Hrn} *-*' m^oo^ G(m\^V'1) 9(a)=m (J\"l)
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Therefore, by (3.2) of Theorem 6.3.1 with a = 0 and g in place of /, we
obtain

/ C O \

lim H (1 - q-3(p)] I 1 + E <l~kd(p)9(pk} = °;
m~*c° 9(p)<m V fc=i /

that is,

iim
m—*co

Hence there must be a prime p with <9(p) < j^- such that

ib=l

(if 9(p) > j^2-^, this sum is never zero), i.e., the condition (iii) holds.

Assume then m/ ^ 0. Then (2.2) holds with a = 0, L(m) — 1, and
c = m-f. Theorem 6.2.2 implies that the generating function

as \y\ —> q~ —. However,

^(y)
where

CO

8(p)<[2|| V *=1

oo . . \
,,fc9(p) 1II ( * + Z) (/(/) - f(pk :)/(P)) y* i
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is holomorphic in the disk ||?/| < q~5 \. Hence we obtain

lim
F(r)

-:_ Z ( r ] = F^ 4m,_ 6XP j - E 3
 r"(P}(1 - /W)

IP/ — \OK a

c rrij
~A = ~A~

Thus F<i(q~1} ^ 0, and hence the condition (i) holds. Also,

must converge, and then

lim
T—*"<?

does exist. Now

E

with
<jT
m

(4.1)

Hence, by the well-known Littlewood tauberian theorem (cf. Titchmarsh

[1]),

E I E Irnf(p}}q-m

is convergent, and then so is

(4.2)
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This implies the condition (ii). Since (4.1) converges, we may also appeal
to (3.2) with a = 0 and deduce the convergence of (4.2) as in the classical
probabilistic number theory (cf. Elliott [1], Vol. I, Chapter 6). d

To conclude our discussion, as a consequence of Theorem 6.4.1, we prove
the following alternative mean-value theorem, which is in some ways an
analogue of a fine theorem of Wirsing (cf. Wirsing [2], Elliott [1]).

(6.4.2) THEOREM. (cf. Zhang [8]). Suppose (i) that Q is a Cheby-
shev additive arithmetical semigroup satisfying (2.4), or (ii) that (2.14)
holds. Let f be a multiplicative function such that |/(a)| < 1 for all a € Q.
If there exist a subset PI ofP and a number e > 0 such that

and such that
(Ref(p)) + (1 + e)2(/m f(p)) < 1 (4-3)

for all p ^ PI, then

J™ 7v~T X) /(a)> or h> T v Y H /(a)> (4'4)
V-T1 ' < £ I Q/ -, l_T 1 / / i / Q/ \v x o{a)—m * ' o^aj—m

exists.

Remark. Warlimont [4] proved this result under the condition \ I m f ( p ) \ <
K (I - \ R e f ( p } \ ] , with 0 < K < ̂ . This condition implies (Re f(p)}2 +
K~2(Im /(p))2 < 1. A simple example /(a) = ( —l)9( a) shows that, under
the condition (4.3), mj does not necessarily exist and therefore the alterna-
tive shows substantial divergence from the classical theory. Also, a simple
example /(a) = id(-a\ for which neither limit of (4.4) exists, shows that a
condition of the kind of (4.3) is necessary for the truth of the theorem.
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PROOF. By Theorem 6.4.1, if the condition (iii) or the condition (iv) holds,
then m,j = 0. Therefore we may assume that there exists a real number a
such that

D?-8(p)(l-^e(/(p)?-''8(p)0)) (4-5)
p

converges. Also we may assume that if (3.1) converges for 0 = a', in par-
ticular, «' = a, then

oo

1 + E q-kd^l+'^f(pk) / 0 (4.6)
k=l

for all p (for p with d(p) > j^, this is certainly true). From (4.3) and (4.5),
we can conclude that

converges. Actually we have, for p <£ "Pi,

(Re f(p)) cos 6 + (1 + e)(Im f(p)} sin

and hence

e(Im f ( P } } sin (ad(p) log g) < 1 - Re ( f ( P } q - ' a d ( p ) } .

Then the convergence of (4.7) follows from the inequality

+2 £ <
9(p)<M

2 E <rs(p)
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Now let g(a) := f(a}q-id^a. From (4.5) and (4.6) with a' = a, conditions
(i) and (ii) of Theorem 6.4.1 with g in place of / hold. Thus

~,— ima

mg = lim Y" g(a) = lim ^ /(a) 7^ 0
m-+oo G(m) ^ m-^co G(m) p,^v ' 9(o)=m v ' 9(a)=m

eixsts. It follows that

F(m) = Amsg
m(1+ia) + o(qm).

Similarly, let h(a) := f(a)qi9^a. From (4.7) and (4.6) with a' = -a, we
conclude that

Hence a log q = 0 or TT mod 2?r. If a = 0, m/ = mg ^ 0. If a log q = TT mod
2-7T, then

9(a)=m



6.5 Mean-Values of the Functions A and ^

As an application of Theorems 6.4.1 and 6.4.2, combining with Theorem
5.4.1 of Chapter 5, we consider again (asymptotic) mean-values of the Li-
ouville and Mobius functions A and ft defined on an additive arithmetical
semigroup Q (cf. Lemma 4.1.2 of Chapter 4 for the "classical" case).

(6.5.1) THEOREM, (cf. Zhang [7]). Assume that

G(m) = Aqm + O (qmm~'1] (5.1)

holds, with constants A > 0 and 7 > 2. Then

£ A(a) = 0(gm), £ M«) = o(<n
9(o)=m d(a)—m

if the generating function Z(y) of Q has no zeros on the circle {\y\ = q~1};
otherwise,

( — '\}m ( — \\m

lim ̂ - Y, A(«), lim W^V E /*(«)-co G(m) 9(^m —oo G(m) a^l,/'

exz'sf, if Z(y] has a zero at y = —q~l.

Remark. The mean-value of JJL is also considered by Warlimont [4], and
Indlekofer and Manstavicius [1]. If Z(y) has a zero at y = —q~l, then the
order of the zero is one and Z(y] has no other zeros on the closed disk
{ \ y \ 5: q~l}i as we know from Corollary 5.3.4 of Chapter 5. In this case,
fj, does not have a mean-value because of the dominant perturbation of
the zero at y = —q~l; instead, it has alternative mean-values by Theorem
6.4.2. This is well illustrated by Example 3.8.1 of Chapter 3, as we shall see
from a brief discussion given at the end of this section. We note that this
phenomenon does not occur in the theory of Beurling's generalized integers
(cf. Zhang [9]).

274
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PROOF. As in classical number theory, we have

Z3(r) Z(rei2

= II
m=l

4 cos cos
m=l

> 1,

for 0 < r < q~l and all 6* G M, since 3 + 4coskmO +cos2A;m^ > 0 (see
Section 3.5). Note that, for 9 ̂  (2n + l)7r, n € Z, limr_g-i_ Z(re2!'e)| exists
and is finite. Hence, for 0 ^ (2n + I)TT, w G 2,

oo,

or, equivalently,
log(Z(r) Z(reiff)

as r —> q~l—. We note that

oo

m=l A;=l

m=l

since P(m) <C qmm~l. Therefore we have

(1 + flee™*)-* oo
m=l

as r — > 9-1— for all 0 ^ (2n + I)TT, n € 2. If we now take / = A or / = // in
Theorem 6.4.1, then we find that

= lim

= oo
m=l
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holds for all 0 6 K and 9 ̂  (2"o+^, n G Z, because f ( p ) = -1.

For 0 = ' f+ 'T,logo '

S =
m=l

oo
= 2

Assuming (5.1) with 7 > 2, by Theorem 5.4.1 of Chapter 5, we have

m ' ' = oo

if Z(j/) has no zeros at y = — <?~:, since

r|n

(/iere // is the classical Mobius function). Hence S diverges for all real
numbers 9, and

£ /(a)=0(<T) (5.2)

by Theorem 6.4.1, if Z(j/) has no zeros at y — —q~l. Now assume that Z(y)
has a zero at y = —<f~l- Then, by Theorem 5.4.1 of Chapter 5,

• V^ l nt -= > —U m

converges for a — ( "p
 )7r, n G Z. In this case, / does not have mean-value

0 (by Theorem 6.4.1). Actually, if / = A then, for each p, we have

k=l
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and, it f = fj, then we have

since q > 1, <9(p) > 1. It remains to determine whether / has a non-zero
mean-value. We have

^.ii, — l)a~2m+1

m=l

by Theorem 5.4.1 of Chapter 5. Therefore, by Theorem 6.4.1, / does not
have a non-zero mean-value and the mean-value rrif does not exist if Z(y)
has a zero at y — —q~l. Then Theorem 6.4.2 implies that

£ /(«)
„!.——-^ LTIml n, >^ ' a(a)—m

exists. D

Theorem 6.5.1 is well illustrated by Example 3.8.1 of Chapter 3. Con-
sider the additive arithmetical semigroup Q defined there. Then the gener-
ating function of fj, or its summatory function is

M ( p ) : = £ M a ) y 8 ( o ) = £ ( £ M(«)U m , | f f | <

It is easily seen that

M(y) = U(l
p m=l

1 1 - qy 11 - qy2

l+qy\l+qy*

which is meromorphic in the domain T> n \\y < q~*\- Here the domain
T> is formed by cutting the complex plane along the real axis from — oo to
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—q~i, and from q~? to +00, and along the imaginary axis from —zoo to
— z'<7~2, and from iq~? to zoo. Also, here the function F(y^) is holomorphic
in the disk ||j/| < q~$ I and the function

l+qy2

is the single-valued branch with -Hi(O) = 1 of the associated multiple-valued
function in T>. Therefore we have

where 0 < r < q~l. If we shift the integration contour to the circle \y\ —
q~2~e, then we obtain

£ M") = «« ̂  + ±[ , ^dy

Therefore

Hence ^ does not have a mean-value here, because of the dominant pertur-
bation of the zero of Z(y) at y = —q~l.



6.6 Mean- Value Theorems for Beurling-Type
Semigroups

Some theorems in previous sections have also been proved for Beurling-type
additive arithmetical semigroups (see Section 5.5), with the following con-
dition (6.3) in place of (2.4), and the condition (6.6) in place of (2.14), etc.
In particular, we now state the following two theorems without including
proofs, which correspond to Theorem 6.2.1 and Theorem 6.5.1 respectively.
Readers with interest in proofs may read Zhang [7,8].

(6.6.1) THEOREM. Suppose there exist a constant c, real constants
a,r > 0, and q > I , and a measurable, slowly oscillating function L(x)
with \L(x)\ = 1, such that

m(l+ia) T- 1
q

as m

r L(m)

oo. Then the asymptotic formula

(6.1)

holds as q~l— .

Conversely, let p\ < • • • < pr be constants such that pr = T > 1, and
!, . . . , AT be real constants such that AT = A > 0. Set

Suppose that

and either

oo

E
n=l

G(n)q-n-Q(n)

}q-n - Q(n] = C

279

oo (6.3)

(6.4)
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or
oo 2

^ n (G(n)q~n - Q(n)) < oo. (6.5)
n=l
E-
n=l

Moreover, suppose |/(a)| < 1 /or a// a £ Q, and either

(i) f is a completely multiplicative function on Q, or

(ii) f is a multiplicative function such that, for each prime p with d(p) <
^^-, there exists a positive integer k(p) such that <
0, and f ( p k ) = 0 for all 1 < k < k(p).

Then (6.2) implies (6.1).

Note. If we assume

, sup
n=ln<m

G(m)q-m - Q(m)\ < oo, (6.6)

or, in particular, assume
T

G(m) = qm YJ A^m"^1 + O (q
mm~'t^ (6.7)

with 7 > 1, then (6.3) and (6.4) hold.

(6.6.2) THEOREM. Assume (6.7) with q > 1 and 7 > max{2 + /v,3}.
Then

'Y, Ma) = °
d(a)-m

and

9(a)=m

if Z ( y ) has no zeros at y — —q~l or a zero at y = — q~l of order less then
pr; otherwise both
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CHAPTER 7

BASICS OF PROBABILISTIC NUMBER
THEORY FOR SEMIGROUPS

7.1 Necessary Results from Theory of
Probability

In this chapter we shall investigate the limit distributions of real-valued
additive functions on (additive) arithmetical semigroups. Especially, we
shall prove an analogue of the well-known Lindeberg-Feller central limit
theorem, and an analogue of the celebrated Erdos-Kac theorem. Since the
probabilistic theory of (additive) arithmetical semigroups is still developing
and new results are still being published, we shall confine ourselves here to
basics of the theory. For readers with interest in the classical background
of theorems in this chapter, we refer to Elliott's monograph [1].

Several authors have made contributions to this subject, e.g. Indlekofer
and Manstavicius [1], and Zhang [3]. The discussion given in this chapter
follows mainly the paper [3] by Zhang.

In the following discussions, as in the classical probabilistic number the-
ory, a theorem is usually formulated in the fashion of probability theory,
the basic idea of a proof of the theorem is illustrated by a proper probabil-
ity model, and then the proof appeals to relevant theorems in probability
theory. Hence some familiarity with the basics of the theory of convergence
of distributions in probability theory is a prerequisite below, although, in

282
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this section first, we also give a brief survey of certain relevant concepts
and necessary results, which are well-known and may be found in standard
references in probability theory (e.g. Gnedenko and Kolmogorov [1], and
Billingsley [1]). We shall state such results without proofs.

7.1.1 The Chebyshev inequality and other
initial results

Let (0, f', P) be a probability space, that is, F is a <j-field of subsets of the
sample space 0 and P is a probability measure on J-. The members of J-
are called measurable sets. A random variable on (0, J-", P) is a real-valued
function X(u>] which is defined for u> £ 0 and measurable on J-'.

Then for each one-dimensional real Borel set A, the event [X € A] =
{u; : X(iJ) 6 A] is measurable; especially, so is [X < x] for each real number
x. The distribution or law of X is the probability measure

n(A) = P[X e A]
defined on the cr-field of one-dimensional Borel sets. The distribution func-
tion of X is the function

F ( x ) : = /j,(-oo,x] = P[X < x]

defined for real x. Hence F(x] is non-decreasing and right-continuous.
Moreover

lim F(x] = 0, lim F(x] = 1.
X—> — 00 X—» + 00

Conversely, any real-valued function F(x) with these properties is the dis-
tribution function of a random variable on some probability space.

The distribution functions most commonly used are determined by a
finite number of parameters. Among these parameters are the mean (or
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expectation) EX and the variance Var X of a random variable X, which
are respectively denned by

and
VarX

/

oo
x d F ( x ) ,

-OO

/

CO

(x -
•oo

where F(x] is the distribution function of X. The variance can also be
written in the form

VarX = E(X2)-(EX}2.

(7.1.1) LEMMA. (The Chebyshev inequaltiy)

for any a > 0.

The idea of this well-known inequality has proved of the greatest im-
portance in probability and statistics.

For any random variables Xj, j = l , . . . , n , on the same probability
space 0,

E(Xl + --- + Xn) = EXl + --- + EXn.
If X j , ] ' — 1, . . . , n are independent, i.e.,

, <xl,...,Xn<xn] =

for all Xi, . . . , £„, then

Var(Xi + ---+X

To prove our main theorems in Section 7.6 below, we need the following
existence theorem for independent sequences of random variables.
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(7.1.2) LEMMA. ///in, n = 1,2, . . . , is a finite or infinite sequence
of probability measures on the a-field of one-dimensional Borel sets, then
there exists on some probability space (fi,^7, P) an independent sequence
Xn, n = 1,2, . . . , of random variables such that Xn has distribution fj,n.

For a proof of this existence theorem, we refer to Billingsley [1], Chapter
4, Theorem 20.4.

Let X and Y be independent random variables, with respective distri-
bution functions F(x) and G(x). Then X + Y has the distribution function

/
CO

G(y-x}dF(x),
-OO

which is called the convolution of F(x) and G(x), denoted by F * G. This
convolution operation is commutative and associative.

7.1.2 Weak convergence, characteristic functions,
and the continuity theorem

If Fn(x] and F(x) are distribution functions, and if

lim Fn(x] = F ( x )
n—>oo ^ ' ^ '

holds for each x at which F(x) is continuous, then we say that Fn converges
weakly to F as n —> oo, and write Fn =£• F. Sometimes F(x] will then be
referred to as the limit distribution or limit law. In this case, if Fn and F are
distribution functions of random variables Xn and X respectively, we also
say that Xn converges in distribution or in law to X, and write Xn => X.

Associated with a distribution function F(x] is the characteristic func-
tion, defined by
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the Fourier transform of F(x). This characteristic function is denned for all
real values of t. It is uniformly continuous for — oo < t < oo and satisfies

The characteristic function (f>(t] contains all information about the distri-
bution function F(x), because (j> uniquely determines the function it comes
from. This fundamental fact is a consequence of an inversion formula given
as follows.

(7.1.3) LEMMA. (Inversion formula) Let u and v be continuity points
of F(x], and let (j>(t) be the characteristic function of F(x). Then

F(u) - F(v) = lim — /
V ' V ' T-»oo 27T J-T it

Weak convergence of distribution functions can be formulated in terms
of characteristic functions, as follows:

(7.1.4) LEMMA. (Continuity theorem) Let (j)n(t) be the characteristic
function of the distribution function Fn(x), n = 1,2, . . . . Then the following
propositions are equivalent:

(i) The distribution functions Fn(x] converge weakly to a distribution
function F(x] as n — » oo.

(ii) There exists a function <f>(t] defined for — oo < t < oo such that (f>(i)
is continuous at t = 0 and linin^oo <f>n(£) = </>(t) , — oo < t < oo.

(Hi) There exists a function <f>(t] defined for — oo < t < oo such that
limn-foo (f>n(t] = <j)(t) uniformly on every finite interval o f t .
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In cases (ii) and (iii), <t>(t] will be the characteristic function of some
distribution function F(x\ and Fn(x) =/• -F(x) as n —> oo.

For a proof of this important theorem, we refer to either Gnedenko and
Kolmogorov [1], Chapter 2, Theorems 1 and 2, or Billingsley [1], Chapter
5, Section 26.

In investigating weak convergence of distribution functions, the following
theorem, sometimes called the Slutsky theorem, is also useful.

(7.1.5) LEMMA. // Xn converges in distribution to X, and if Yn

converges in distribution to a constant c0, then

(i) Xn + Yn converges in distribution to X + CQ, and

(ii) XnYn converges in distribution to cQX.

We refer to Parzen [I] for this result. It is also implied by the remark
following Lemma 1.7 in Elliott [1].

7.1.3 The central limit theorem and
the Kolmogorov theorem

A normal distribution function is

f X l.a — ltf
2«2 cm,

where fj, is the mean and a2 is the variance. A random variable is said to
be normally distributed if it has normal distribution function.
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In particular, the standard normal distribution function is

1 fx u2

e

Let TV denote a random variable which has distribution function $(x). Then
EN = 0 and Var/V = 1.

The central limit theorem states roughly that the sum of many indepen-
dent random variables will be approximately normally distributed if each
summand has high probability of being small. Suppose that for each posi-
tive integer n, random variables

are independent; the probability space for the sequence may change with n.

(7.1.6) LEMMA. (The Lindeberg- Feller central limit theorem) Sup-
pose

Let Sn = Xni + • • • + Xnkn, and s2
n = Y,k=i ank- If ^e Lindeberg condition

holds for each e > 0, then Sn/sn =3- N .

Conversely, if Sn/sn => N , and

max P

(especially,

>e] -> 0, (1.2)
~ J v ;

cr2

max —^— —» 0)
Kk<kn s2
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holds for each e > 0, then (1.1) is satisfied.

For proofs of this famous theorem, we refer to Gnedenko and Kolmogorov
[1], Chapter 4, Theorems 3 and 4, or Billingsley [1], Chapter 5, Theorems
27.2 and 27.4.

The standard normal distribution is a particular case of infinitely divis-
ible distributions. A distribution function F is said to be infinitely divisible
if and only if for each positive integer n there exists a distribution function
Fn such that F is the n-fold convolution Fn * • • • * Fn (n copies) of Fn.

If the associated characteristic functions of distribution functions F and
G are (f>(t] and i^(t) respectively, then the characteristic function of the
convolution F * G is

In terms of characteristic functions, if <j)(t) denotes the characteristic
function of an infinitely divisible distribution function F, then for each
positive integer n, there will be a characteristic function <f>n(t) such that
(j)(t) = (<j)n(t}}n for -co < t < oo. If the distribution function F(x] of a
random variable X is infinitely divisible, we also say that X is infinitely
divisible.

(7.1.7) LEMMA. (The Kolmogorov theorem) A distribution function
with mean 0 and finite variance <j2 is infinitely divisible if and only if its
characteristic function (/>(t] is of the form

a00 1 -I

(ettu-l-itu)—dK(u) ,
-oo U* )

where K(u) is a non-decreasing and right-continuous function and A'(oo) —
K( — 00) is finite.

Remark. Actually, A'(oo) — K( — oo) = <j2.
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For proofs, we refer to Gnedenko and Kolmogorov [1], Chapter 3, or
Billingsley [1], Chapter 5, Theorems 28.1, 28.2, and 28.3.

Let Kn(x) and K(x) be non-decreasing and right-continuous functions
defined for — oo < x < oo, such that lim^^-oo Kn(x) — 0, lira^-cx, K(x) =
0, and lim^^oo Kn(x] and lim,,.^;^ K(x] are finite. If

lim Kn(x) = K ( x ]
n— too ^ ' ^ '

holds for each x at which K(x) is continuous, then we say that Kn(x)
converges vaguely to K(x). If Kn(x) and K(x) are distribution functions,
then the vague convergence and the weak convergence are equivalent.

(7.1.8) LEMMA. Let Fn(x) be a sequence of infinitely divisible distri-
bution functions with mean zero, and uniformly bounded variances. Let the
characteristic function of Fn(x) beaoo *\

(eltu - 1 - itu)u-*dKn(u)
-00 J

Then Fn(x] converges weakly to a distribution function F(x) if and only if
F(x] is infinitely divisible and Kn(u) converges vaguely to K(u) as n — > oo,
where the characteristic function of F(x) is

(ettu - 1 - itu}u~2dK(u)

For proofs, see Gnedenko and Kolmogorov [1], Chapter 3, Theorem 3,
or Billingsley [1], Chapter 5, Theorem 28.4.

7.1.4 A finite probability space

Let / be a complex-valued function defined on an arithmetical semigroup
(G,d), not identically zero. Recall that / is said to be additive if and only
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if /(a&) = /(a) + /(&) holds for each pair of coprime a, 6 G £. An additive
function / is said further to be strongly additive if and only if f ( p k ] = f ( p )
for each prime power pk with k > 1; this condition should not be confused
with complete addivity, when f ( a b ) = f ( a ] + f(b] for all a, b € Q.

Now, consider a real-valued additive function /. For a positive integer
m and a real number x, write

*m (/,*):= £ 1-
3(o)=m
/(*)<*

If there exists a distribution function .F(x) such that

as TO — + co, then we say that / has the limit distribution function F(x].

The function vm(f,x}/G(m) of a; is a distribution function on a natural
probability model: Let 0 := {a : a 6 £?, <9(a) = TO}, which is a finite set of
G(m] elements. The "local" function fm(a) '.= f ( a ) for a E 0 assumes only
a finite number of values, {x1 ,X2, . . . , £(}, say. The subsets A,- := {a : a 6
^> fm(a) = x,-}, z = 1, . . . ,i, of 0 are pairwise disjoint and form a partition
of fi. The (<7-) field J7 generated by this partition consists of unions of a
finite number of subsets A;. For A £ J-, let z'(A) = \A\/G(m), where |A|
denotes the number of a £ A, or the cardinality of A. Then v is a probability
measure on JF, and (f),jF, i/) is a finite probability space. (In Section 7.5,
we shall consider a "finer" probability space). Now fm is measurable on J-',
and hence a random variable on (fi, JF, j/). The distribution function of fm

is

"[/m < z] = (G(m))-1 {a : a G fi, /m(a) < x}

™ (14)
G(TO) ' ( '
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the relative frequency of the "event" [fm < x\.

We may also define a limit distribution function F ( x ] by

rtbJS 1=*FW' <L5)
i\ I 8(n)<m

f(a)<x

where 7(m) = ]Cn<m G(n) is the total number of elements of degree n < m
in Q. However, F(x] is a limit distribution function in the sense (1-5) if
and only if it is one in the sense of (1.3). This is a consequence of the
following well-known case of the Cesaro theorem and an inverse of this case
not known in literature.

(7.1.9) LEMMA. Let an, n = 1 ,2 , . . . and &„, n = 1 ,2 , . . . be two
sequences of real numbers such that bn > 0 and Y^=i bn — °°-

(1) //limn_00an/6rl = s then
,. al +a 2 + ••• + anlim -——-——————— = s. (1.6)^ ^ '

(2) Conversely, if (1.6) exists and ifY^=i bn <C bm then lim^oo an/bn =
s.

PROOF. A proof of (1) is well-known in Polya and Szego [lj.

To prove (2), let Y^=\ bn 5± Kbm, where K is a positive constant. Given
e > 0, for m sufficiently large,

o-i + a? + • • • + ams - £ < -——-——————-— < 5 + e.
«i + 62 + • • • + bm

Hence
m-}-l Tn m-j-1 m

n=l n = l n=l n=l
m + 1

< S6m+1 +2£^bn

n=l
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and similarly
m+l

s6m+i — 2s Y, bn < am+i-
n=l

It follows that
5 - 2eK < ±i < s

.e.,
r fl™lim - — = 5.

Now let F(x) be a limit distribution function in the sense of (1.3). If
we take an = vn(f,x) and bn = G(n), then an/bn converges to F(x] at each
point of continuity of F ( x ] . The left-hand side of (1.5) equals

-L- Y Y 1 = Y V n ( f , x } l Y G(n]
^fm) t—S *-^ t—' n V J ' ;/ ^-^ V '
'\ / n<m 9 a = n n<?n n<?7i

bo + 61 + - • • + bm

and, by (1) of Lemma 7.1.9, converges to F(x) at each point of continuity
of F(x), i.e., F(x] is also a limit distribution function in the sense (1.5).
Conversely, if we assume G(n) = Aqn + o(qn) with A > 0 and q > 1 then
^2n<m G(n) <C G(rn). In a similar way, by (2) of Lemma 7.1.9, a limit
distribution function F(x) in the sense (1.5) is also one in the sense of (1.3).

In this monograph, we consider the limit distribution function F(x) in
the sense of (1.3).

The mean of fm is

t i t

1=1 ( j ( m ) i=l
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and the variance of /m is

d(o)=m

•'•2/ -\
(a ) ~ 7TO m) \ a/ \\ ' 3(a)=m \ ' \9(a)=m

We are mainly interested in additive functions. Assume that

G(m) = Aqm + O(qmm'"t), m > 1

holds with A > 0, q > 1, and 7 > 1. If / is additive, then

gE f ^ = g^_ E / ( ? * ) = £ 'kfc) £ L
a^-m

It will be shown in Lemma 7.3.3 that the inner sum on the right-hand side
equals

£ m-kd(p) (^ __ q-d(p)\ ^ (•
\ /

for kd(p) < m. Hence

E /(«) =
8(a)=m

E
_kd(p)<m

\kd(p)<m

Under further conditions on /, as we did in the proofs of (3.13) and (3.14)
on w(a) and fi(a) in Chapter 3, we can write the mean

^y E /(«)= E f(pk}fka(p] (i - fd(p]} + Rm, (1-7)
^ ' d(a)=m
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where Rm is the remainder. Similarly, we have

2/2(«) = E E
d(a)=m

= T y f2^« fc
/ ^ z ^

d(a)=mpk\\a

/(/)!
(/)+ E E /(Pl)/(/2

say. Then

= E / ) E

E

\kd(p)<m

E
Also,

E
kd(p-i)<m,ld(p2)<m

The inner sum on the right-hand side equals

<ra(p))).

E
9(a)=m

Aqm-kd(P1)-td(p2) A _

+° 7-S.*, .V ^ m — KO(pi) —

for kd(pi) + Id(p2) < m (see Lemma 7.3.3). Hence

= Aq"
P?P

fc8(pl)+«(p2)<m

(1.8)

(1.9)
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x ^i - .

E -kd(Pl)-ed(P2)

—'Y \x (m — kd(pi) ~ £-d(p<2)) )/

E

X 1 —

From (1.8), (1.9), (1.10), and (1.7), we can write the variance

(1.10)

/(«)
= E .

fc9(p)<m
(1.11)

vhere Qm is the remainder.



7.2 Limit Distribution Functions of Real-
Valued Additive Functions

We first prove the following analogue of the Erdos-Wintner theorem in
classical probabilistic number theory (cf. Erdos and Wintner [1], Elliott
[1]). The proof is based on Theorem 6.4.1 of Chapter 6, and Lemma 7.1.4,
the continuity theorem.

(7.2.1) THEOREM, (cf. Zhang [3]) Suppose (i) that Q is a Chebyshev
additive arithmetical semigroup, satisfying

G(n}q~n - A

with constants A > 0 and q > I , or (ii) that

E
n=l

<

E sup
n-.ln<m

G(m}q-m - A < CO

holds. Then a real-valued additive function f on Q has a limit distribution
function F(x] if and only if the three series

E T8(p)> E /(p)T9(p), E f(p}fd(p) (2.1)
all converge. Moreover, the limit distribution function F(x) has the char-
acteristic function

II (l - T9(P)) 1 + E q-^e , (2.2)
p \ k=i I

where the infinite product is taken over all p £ P in ascending order of d ( p ) .

Remark. Our proof of the sufficiency of the conditions follows the idea of
Delange [1]. A direct proof is certainly possible also.

297
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PROOF. It is sufficient to prove the theorem under condition (i) since con-
dition (ii) implies (i). By the continuity theorem, / has a limit distribution
function F(x) if and only if there exists a function <j)(t) which is continuous
at t = 0 such that

G(m) I G(m) ./T'V / / \ I d(a)=m

as m —> oo for —oo < t < oo. Moreover, </>(i) is the characteristic function
of F(x). We note that the function g ( a ) := e'^^ is multiplicative, and
|g(a)| = 1 since /(a) is real-valued and additive. Hence, by Theorem 6.4.1
of Chapter 6, (2.3) holds with <^(i) given in (2.2) if the series

E -8(p) /i f , i t f ( p ) \ O A\
q v1 ) v '

p
converges for —oo < t < oo. Actually, if

oo

for each p with d(p) < j^^, then (2.3) holds with <^(i) as given in (2.2), and
if

ik=l

for some p with d(p) < j^-, then ^(f) given in (2.2) is zero and (2.3) holds
again. Conversely, if (2.3) holds with <^(f) ^ 0 for some t, then, by the same
theorem, (2.4) converges and (f>(t] is given by (2.2).

Now, suppose first that the three series in (2.1) are all convergent. We
claim that this implies the uniform convergence of the series (2.4) for \t\ < T
for each T > 0. This implies immediately that / has a limit distribution
function F(x) which has the characteristic function </>(£) given in (2.2). Ac-
tually, we may write the series (2.4) as

•H-ffr*} f'tfM] h(-n\ \ "" r,— 9(p)'-t f (^l. (n\%ij \p) — c I '^\P) — / y ^ J \P)'^\P)
P

(2.5)
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where

0 f o r | / ( p ) | > l .

Applying the simple inequality

?2 1
T> 2^l '. z J

i^hich holds for each real number /?, we have

and hence the first series in (2.5) converges absolutely and uniformly for \t\ <
T. Then it is plain that the second series in (2.5) converges uniformly for
\t\ < T. Finally, the last series in (2.5) converges absolutely and uniformly
for —oo < i < oo. This proves the claim.

Suppose then that / has a limit distribution function F(x] with a char-
acteristic function <j>(t). There exists a constant T > 0 such that

\4>(t}\>1- for |t| <T,

since </>(t] is (uniformly) continuous, and </>(0) = 1. Thus (2.3) holds for
\t\ < T, and <j>(t] must be of the form (2.2). Moreover, the series (2.4)
converges for |t| < T.

We need to show that the three series in (2.1) are convergent. To this
end, write

W) = <

where

d(p)<M k=l
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is a finite product of continuous functions,

f a ( t ) : = TJ (l-q-3(p)] '
d(p)>M

= exP{- y; <?-9 ( p )f i -

E

3(p)>M

A 1

and

: = JJ
S(p)>M k=l

.(2.7)
d(p)>M

Note that <^i(t) is continuous and hence has an upper bound for \t\ < T.
Therefore

for * < T-

Then note that the infinite product on the right-hand side of (2.7) converges
uniformly for — oo < t < oo, since each factor function (sum of an infinite
series) is non-vanishing provided that M is sufficiently large, and since

E

m>M

< oo-
m>M

Hence ^a(i) is also continuous, and has an upper bound on \t\ < T. There-
fore

\fa(t)\ > 1 for \t < T. (2.8)
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Finally note that the first series on the right-hand side of (2.6) is exactly
the series (2.4) without regarding the first few terms, and that the second
series on the right-hand side of (2.6) converges uniformly for — oo < t < oo.
It follows, from (2.8), that

exp _
S(p)>M

> 1

for \t | < T, and hence

<K

(only a finite number of p satisfying d(p) < Ml), or, equivalently

E<ra (p )(i-cos*/(P)) = 2;p
for \t\ < T. This implies that

2

and then

in2s n

9\ '

;

T8(P)/2(P) «

with 8 = ̂ . Also, integrating (2.9) gives

q-d(p) I (1 - cos </(p)) df < AT,
Jo

and we obtain

and then

E

i - - <

(2.10)



302 Section 7.2: Limit distribution functions

It follows that

Now, (2.10) and (2.11) imply the convergence of the first and the third series
in (2.1).

To show the convergence of the second series in (2.1), note that the
imaginary part of (2.4) is

which converges for \t\ < T. This fact and the convergence of the first series
in (2.1) imply that

converges for |i| < T. We note that

for |i| sufficiently small and |/(p)| < 1, and, from the convergence of the
third series in (2.1), that

y^

converges. It follows that

E^
converges, and then the second series in (2.1) does too. D



7.3 An Analogue of the Turan-Kubilius
Inequality

In this section, we assume that

G(m] = Aqm + O qmm-"> , m > 1 (3.1)

holds with constants A > 0, q > 1, and 7 > 1. We shall then establish an
analogue of the classical Turan-Kubilius inequality (cf. Elliott [1]) in Lemma
7.3.1.

Let /(a) be a complex-valued additive function on an arithmetical semi-
group Q, so that

/(«) = E /(pfc).
p<=I|a

where as usual pk || a signifies that pk is the highest power of p dividing a.
For m > 0, set

kd(p)<m

and

- <T9(P))

(see (1.7) and (1.11)).

(7.3.1) LEMMA, (cf. Zhang [3]). There exists a constant K depending
only on the constants A, q, 7, and the 0 -constant in (3.1), such that

£ |/(a) - £(m)|2 < KG(m)D\m). (3.2)
9(o)=m

303
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Before giving a proof of Lemma 7.3.1, we record here the following in-
teresting "dual" of the inequality (3.2), although it is not used subsequently
in this chapter.

(7.3.2) LEMMA. The inequality

\—^ / \> q(a) —/—j 3 \ /
kd(p)<m

< KG(m] V" b(«)|2
9(a)=m

holds for any complex-valued function g on Q.

E
d(a.)=r.

(3.3)

PROOF. Let

C(pk,a) =
_g-*8(p)/2 - -S

, if pk || a,
otherwise.

If we replace f ( p k ) by f(pk}q
kd(p)/^ in (3.2), then the inequality obtained

may be rewritten in the form

E E
kd(p)<m

<KG(m)
k8(p)<m

The inequality (3.3) follows by applying the "principle of duality" (Elliott
[1], Chapter 4, Lemma 4.3) to the above inequality. D

In order to prove Lemma 3.1, we need several elementary estimates. We
remark, once and for all, that all (9-constants in these estimates depend
only on the constants A, q, 7 and the (9-constant in (3.1).
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(7.3.3) LEMMA. For any positive integer m, a non-negative integer k,
and a prime p G Q such that kd(p) < m, we have

/ nm-kd(p) \
V 1 = Adm-k3(p] (l - a~9(p)X) + O —— ————— (3 4)

' ( '

Also, for any positive integer m, non-negative integers k and I, and distinct
primes pi and pi such that kd(p\) + ld(pz] < m, we have

Pl\\a,P2\\a

+01-.——* — . (3.5)
\(m - &<9(pi) - "*'•" U7 '

PROOF. We may write a = Pip^a' on the left-hand side of (3.5), with
= 1 and d(a') = m — kd(pi) — ld(pt). Hence

E i- E
a' a'

d(a')=m-kd(P1)-ld(p2) 3(a')=m-(k+l)d(Pl)-td(p2)

1+

Then (3.5) follows from (3.1) by calculation. For simplicity, we consider
only the case that (k + l ) d ( p i ) + ld(pi) < m and kd(p\} + (£+l)9(p2) > m;
a similar calculation applies to other cases. Thus we have

£ 1 = G(m-kd(p1)-ed(P2))
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where r = 1 or 0 according as kd(p\} + (I + I)<9(p2) = m or not. By (3.1),
the right-hand side equals

nm-kd(P1)-td(p2)
A

9
m-k3(P1)-ld(p2) Q

Note that 9(Pl) < rn-kd(Pl)-ld(p2} < 5(p2), and hence (m - kd(pl) -
y < 93(P2), since q > 1. Therefore

E
a

9(a)=m

+ 0

_

7m-i9(pi)-*9(p2)

_

\m-kd(pi} -

This proves (3.5) in this case.

Similarly, we can prove (3.4). D

(7.3.4) LEMMA. For any complex-valued function f ,

(3.6)

PROOF. By the Cauchy-Schwarz inequality,

\E(m}\ < E f(p -kd(P) E
_kd(p)<m_k8(p)<m

The sum in the second factor on the right-hand side equals

v~^ -
l<n<m p,k

kd(p)=n

E 1 V^ -n V^1 = 2^ ? 2^
l<n<m k\n

q-nO(qnn-l]=0(\0gm),
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by (3.11) of Chapter 3. D

(7.3.5) LEMMA. For any non-negative function f ,

/ j ^ V / — ^ V /

Also, for any complex-valued function f ,

9(a)=m

(3.7)

PROOF. To prove (3.7), write

= E
9(a)=m

f2(«) =

E/2
p

.P*l|a

/2(/)

E
Oj- \ __

(p f c)-f

E

E/
A

- E
531 ^£v 9

p f l l ° . P 2 l l

1 +

V
(pfc)

/

/(pf)/04)
z

y^ f (pi ) f (p9) y^/ ^/ J \ r ^ l / J \i Z / / -j

d(a]=m

+ 53,

say. By (3.4),

0

3(a)=7n

(3.9)

(m — kd(p})'

< qmD\m). (3.10)
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By (3.5),

E

f l -(

E
= Aq* E

kd(pl)+l8(P2)<m

X (l - <?~'

/

+0

+

q

E

say. Since / is non-negative,

Ag"

l - O (m - kd(Pl) -

-kd(p,)-td(p-2)

m —

(3.11)

E5*4 < Aqr'

Then, by the Cauchy-Schwarz inequality,

E

(3.12)
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< qmD2(m), (3.13)

since

E q-kd(PJ)-ed(P2)

(m —
kd(pi)+ld(P2)<m

m—1 — n

m - E
A

n=l

= 0(1)
n=l

E
n=l

for 7 > 1. Finally, by the Cauchy-Schwarz inequality again,

E

E

E

since

_ !_
2

(3.14)

Pl^P2
Aa(pi)+W(p2)=m

From (3.9), (3.10), (3.11), (3.12), (3.13), and (3.14), (3.7) follows.
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We now prove (3.8). Let

s7 == E /(«)= E E/(P*) = E /(/) E
8(a)=m

By (3.4),

kd(p)<m

r , / n™-w(p) \
/(/>k- M( l - , -« ) + 0 jJ-jg^

+ E /(/
' E

A:8(p)<m

• E"

E
&5(p)<m

q~
(m —

-kd(P)
(3.15)

By the Cauchy-Schwarz inequality and (3.11) of Chapter 3, the second term
on the right-hand side of (3.15) is

E
kd(p)=m

/(p4
<

{kd(p)

\ n|m /

Finally, by the Cauchy-Schwarz inequality again,

«-^(P)

(3.16)

E

E
-ka(p)

D(m)m~ (3.17)
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since, by (3.11) of Chapter 3,

7-fc9(p)

(m - n)
m — l i

n=l n=l

<C m"27 logm + rn"1 <C m"1.

Thus (3.8) follows from (3.15), (3.16), and (3.17). D

PROOF OF LEMMA 3.1 We first assume that / is real-valued and non-
negative. By (3.7), (3.8), and (3.6), we have

£ \f(a)-E(m}\2= £ f\a}-1E(m] £ /(a) + G(m)E\m}
t?(a) = m 3(a) = m 9(a)~ m

< A9
m£;2(m) + 0 (qmD2(m))

-2E(m) (AqmE(m] + O (qmD(m)m-^) + G(m)E2(m)

= E\m)O (qmm-^ + O (qmD2(m)) + 0

= O

and (3.2) follows.

Then assume that / is real-valued. Define additive functions f i and /2
by

, . , .
f i ( p )

and, accordingly,

f(pk)+f(pk) f ( P
k } - f ( p k }
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Then, / = /i - /2, E(m) = #i(m) - £2(m), and

I £ ( \ 7~~i / "\ |2 ^- o l - / * / v\ 7 7 1 / \ 12 i o i x / \ r 1 / A l - ^|/(a) - £(m)| < 2|/1(a)-Ei(m)| + 2|/2(a) - _E2(m)| .

It follows that

E |/(a)- JE(m)|2« E l / i (a ) -^ i (m)i 2 + E \M") ~ ^(m)
8(o)=m 8(o)=m 9(a)=m

\/ta(p)<m kd(p)<m

i.e., (3.2) holds.

Finally, if / is complex-valued, define

gi(a} = R e f ( a ) , g2(a) = Im f ( a ) .

In a similar manner, we can deduce (3.2). d

We shall use the following variant of Lemma 7.3.1 in the proof of Theo-
rem 7.6.1.

(7.3.6) LEMMA. Let f be a complex-valued strongly additive function
on Q, and let

j / (m):= E /(P)<T9(P) (3-18)
8(p)<m

and

"("*):=

T/zen

9 P - (3.19)
3(p)<m /

\f(a}-V(m}\2^qma\m). (3.20)
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PROOF. The left-hand side of (3.20) equals

8(a)=m

= £ \f(a)-E(m)\2 + 2Re(E(m)-V(m}} £ (f(a)-E(m))
3(a)=m 9(o)=m

+G(m)| .E(m)-i/(m)I2 , (3.21)

where /(a) and E(rn) denote the complex conjugates of /(a) and E(m],
respectively. Since a strongly additive function is additive, by Lemma 7.3.1,
the first term on the right-hand side of (3.21) is O(qmD2(m)). By (3.8),
(3.1), and (3.6), the second term on the right-hand side of (3.21) is

O (\P(m\ — i/(m}\nm r>(m}m~l~s I J_l/( / / t l — I/\ IlL I y ij\!li\ni

Therefore it is sufficient to show that

and

\E(rri) — v(m)

D2(m] = 0

(3.22)

(3.23)

Actually, we have

\E(m)-v(m)\ <
kd(p}<m

k>-i

. g-aW)

E
d(p)<m

(3.24)

The first term on the right-hand side of (3.24) equals

E
9(p)<n

- <r9(p)) E
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/ ^
d(p}<m

Z-^j
d(p)<T.

<cr(m),
\9(p)<m /

by the Cauchy-Schwarz inequality, since

E -
d(p)<m l<n<m

- 0(1).

E .
Kn<m

Similarly, the second term on the right-hand side of (3.24) is

—— Z._4

,-39(p)

_8(p)<m
< o-(m)

Thus, (3.22) follows.

Finally, we have

_ y^
3(p)<m

E

This proves (3.23). D



7.4 A Fundamental Lemma

In this section, we shall establish a pair of inequalities, which is the counter-
part of a so-called fundamental lemma in classical probabilistic number
theory (cf. Kubilius [1]), and in the theory of sieve methods (cf. Halberstam
and Richert [1]).

Accordingly, this pair of inequalities is also called a "fundamental lemma"
here. It will be used to analyze a probability model in the next section. Here
we shall set up this lemma via a sifting process, as in the classical theory of
sieve methods.

We first need an order relation in an arithmetical semigroup Q. Since
each G(m} is a finite number, elements a of Q can be arranged in a sequence
for which d(a) is monotonically increasing. This sequence defines an order
relation on Q in a natural way, denoted as usual by <, so that a < a' implies
d(a) < d(a'). Of course, many different order relations with this property
may be defined in general. However the specific order relation chosen is not
important for our purpose, because the fundamental lemma depends only
on the degree mapping d and is independent of the concrete order relation
<, as we shall see.

Let a be squarefree and a ̂  1, so that we can write the canonical prime
decomposition of a in the form

a = Pi---pm with pi> ••• > pm.

As usual, let u;(a) = m denote the total number of distinct prime divisors
of a. For convenience we introduce notations A(a) — pi and S(a) = pm,
for the "largest" and the "least" prime divisors of a, respectively. Also, for
completeness, put A(l) = 1 and 8(1} = oo > a, for all a £ Q.

Let P* be a set of primes of Q, a G Q, and r be a real number with

315
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r > 1. We write

P*(a) := I] P, Pr' '•= II P-

(Notice the slight difference between these two definitions.) Let x be a
function defined on Q such that x(l) = 1, and define x(d) by

(i)

(»)

Then, for squarefree a,

d\a

This leads to the following identity which is an analogue of the Fundamental
Sieve Identity treated by Halberstam and Richert [2].

(7.4.1) LEMMA. For any complex-valued function h on Q , and any
element w of Q with w > I , we have

d\P*(w) d\P*(w)

+ ^ fj,(d)x(d) E (J*(t)h(dt), (4-2)
d|p-H *|P-(«(d))

where fj, is the Mobius function on Q.

PROOF. We have

E n(d}h(d] — ^
d\P*(w) d\P'(w)
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d\P'(w) t\d

= E x« E
i|P*H d\P"(w)

t\d,A(d/t)<S(t)

Let d = id'. Then the inner sum on the right-hand side equals

E

Let ^4 be a finite sequence of elements of Q, not necessarily distinct, and
Ad denote the subsequence of A consisting of the elements divisible by d.
We denote the cardinality of A, or A^ by |.4|, or \Ad\, and consider two
"sifting" functions

S(A,P*,w) = \ { a : at A, (a,P*(w)) = 1}| (4.3)

and
S(A,P*,r) = \{a: a € A, (a, Pr*) = 1}|, (4.4)

where (a, 6) = 1 indicates that a and 6 are coprime. Then, from Lemma
7.4.1, with h(d) = \Ad , we have

(4.5)

(7.4.2) LEMMA. Suppose that there exists a positive integer n such
that, for each divisor d of P* ,

n, (4.6)
0, ifd(d)>n.
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If X+(d] is a function defined on divisors d of P* such that x+(d] is non-
negative, and such that X+(d] = 0 when u)(d] is even, then

S(A,P*,r] < A ?
n n l - < T a p ) ( l - S r + ) (4.7)
\p\p; I

d\Pr* d\P'
8(d)>n d(d)<n

where
S+ = ^^d)x

+(d}q-8^ n (l-g-^)"1.
d\pr* p\pf

S(d)<p

I f x ~ ( d ) is a function defined on divisors d of P* such that x~(d) is non-
negative, and such that X~(d] = 0 when w(<i) is odd, then

S(A,P*,r) > Aqn\[[(].-q-^p>)\(l-S-) (4.9)
Wr* /

d\Pf d\P*
8(d)>n d(d)<n

where
S- = Y.^}x-(d}<l-d(d} n (l-q-8MYl. (4.10)

d\p; P\pr'
6(d)<p

PROOF. For d \ P* ', let x±(d) = 0. From (4.5), we have

S(A,P*,r)< ^n(d)X
+(d)\Ad. (4.11)

d\pr*
By (4.6), the sum on the right-hand side equals

d(d)<n d(d)=n

= S,+ E n(d)x+(d}Rd, (4.12)
d\p>

d(d)<n
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where

Sl = Aqn £
d\pT>

3(d)<n

t\P'(S(d))

(4-13)

by (4.2). The sum of the first two terms on the right-hand side of (4.13)
can be written as

w n
P\P'(S(d))

with S+ defined in (4.8). This proves (4.7)

Similarly, we can prove (4.9). d

In order to arrive at the "fundamental lemma", we give X+(d] and x~(^)
the Buchstab-Rosser type structure (cf. Iwaniec [1], Halberstam and Richert
[1]) with two parameters /3 and Y: Thus, for

d = p^ - - - p k with pl > p2 > • • • > pk,

we let

x+(d) =r]
+(pl)r,+ ( p l p 2 ) - - - r ] + ( p l p ^ - - - p k ) , (4.14)

where

1, if <jj(a) is even,
ri+(a)=\ 1, i fw(a ) is odd and /?<9(<5(a)) + <9(a) < y, (4.15)

0, otherwise,



320 Section 7.4: A fundamental lemma

and let
X~(d] = rj~(pl)r}~(p-Lp2)---Ti~(pip-2---pk), (4.16)

where

{ 1, if o>(a) is odd,
1, if w(a) is even and Pd(6(a)} + d(a) < Y, (4.17)
0, otherwise.

Then, from (4.14),

X+(d] = r,+ (Pl) • • • r,+(Plp2 • • • p,_0 (l - r,+ (Plp2 • • • pk)} (4.18)

is non-negative, and x+(d] = 0 when w(<f) = k is even. Similarly,

x-(d) = r)-(Pl)---r]-(plp2---pk_1

is non-negative, and X~(cQ = 0 when u>(d] = k is odd. Thus (4.7) and (4.9)
hold.

(7.4.3) LEMMA. Let /3 > 1 and Y > 2. We have

Y - f)(A!d}} ( 6 4-
1 ( ) )

d(S(d)) (4-19)

(4-20)

PROOF. To prove (4.19), note that x+(cQ = 1 implies that uj(d) is odd.
Let

• • P2k+i with pi > p2 > • • • > P2k+i •
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x+(°0 = x + ( p i - - - p 2 f c ) - x+ (PI
Then

and thus

By (4.14) and (4.15), this implies

I)8(p3) + d(P2) + d(Pl) < F,

d ( p i ) < Y ,

PI) < y,

(4.21):
(4.21)2

(4'.21)«

(4.21),

Let
x2 + • • • + xs, if s is a positive integer,

Then, from (4.21) we can deduce, by induction, that

(4.22)

for 1 < f. < k. Actually, from (4.21)1; we have

and (4.22) is certainly true for 1=1. Then for 1 < I < k, from (4.21)m

and (4.22), we have

(13 + 1
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< (Y - e-i

Hence

<
2(13-1) I (4.23)

Now, (4.21)^+i implies

/3d(p2t+'2) + <9(p2€+i) + • • • + d(pi) < Y — <9(pi), (4.24)

since d(p2i+2) < 5(p2£+i)- It follows, from (4.23) and (4.24), that

1 +

This proves (4.22).

We now obtain, from (4.21)fc+1 and (4.22) with I = k,

and hence

d(P i- 1K— 1

This proves (4.19).
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Similarly, for x~(d) = 1)

d = pip-2 •• -pik with pi > p2 > • • • > Pik

and, by (4.16) and (4.17), we have

y,
F.

Let

2.

Then, from (4.25), we can deduce, as before, that

a(p2)) < (y -
for 2 < £ < A;. From (4.25)fc and (4.26) with £ = k, we obtain

>
Y-d(Pl]

/3
13-1

(4.25):

(4.25) f c_i
(4.25),

, (4.26)

and (4.20) follows. n

(7.4.4) LEMMA. (Fundamental Lemma) Assume that there exists a
positive integer n such that (4-6) holds for each divisor d of P*. Then, for
any given positive number L such that L > 2 and Lr < n, and any given e
such that 0 < e < 1,

S± = a (L-^-^) (4.27)
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holds with Y = Lr, /3 = maxjeL, /3i}, where /3i is an absolute constant.
Hence

S(A,P',r) - Aqn I]
\f\Pf I

< Y, v(d)x+(d)Rd, (4-28)
d\P*

8(d)<Lr

and

S(A, P*,r)- Aqn \ H (l - q ~ d ( p ] )
\P\Pr'

(4.29)

; wrf/i x+(^) an(^ X~(^) defined in (4-14) and (4-16) respectively.

PROOF. Set Y = Ir in Lemma 7.4.3, and in (4.15) and (4.17). First,
note that X

+(d] = 0 for d(d] > Lr, by (4.15). Actually, if u(d) is odd
then i]+(d] = 0 by definition, and hence x+(^) = 0- If u>(d] is even, then
ui(d/S(d)) is odd and

and thus i]+(d/S(d)') — 0, and hence X+(<^) = 0 too. Therefore the sum in
the second term on the right-hand side of (4.7) becomes the sum on the
right-hand side of (4.28). Thus, to prove (4.28), it is sufficient to obtain
the estimate

s+ = oe

for S+ denned in (4.8).

From (4.21)*+! and (4.19), we obtain, for x+(d) = 1,
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(i) {3d(S(d}) + d(d] > Lr,

Hence, from (i),

>Lr,

and then
/ ;\ x^ f T /Q 1 T. ( A QO^

Also, from (ii),

3(8(d}}

and then

d(8(d}} - L - \ \ p - l ,

Note that

, -in
/ na(«(d))<8(p)<r 11

9(p)<r

<4-32'
by (3.9) of Chapter 3. Therefore, from (4.32) and (4.31),

«?<Pd(p)<r
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with some constant K, for x+(<i) = 1- Then, from (4.30) and (4.33), we
obtain the estimate

|S+ <K- (4.34)

with

Toward the sum on the right-hand side of (4.34), the contribution of those
terms with u>(d) = k is, by (4.33) and Stirling's formula,

a(s(d0)}<a(P)<r

n
\_d(s(da))<d(p)<r

where d0 is a divisor of P* such that X+(do) = 1, w(of0) = k, and

S(d0) = mm {6(d} : d P*, X
+(d] = 1, w(d) =

Thus, we obtain

<K-L-l
where

1 log(2A'L-1/3) + log/30) .

If L is large, L > £0(A',s), let /3 = aL with 0 < a < min||,e|. Then

2 \ 2
/ ? - ! / - /? '
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and we have

Cfc < Poe (k'1 log(2A'a) + 2(aZ,)~1)

< goe flQg(2A^) + *_} < Ci
~ \ (1 - o)L aLJ ~ L '

since f c > L — /3 = (1— a)L and /30 < 2. Therefore we obtain
T ,n \ k< tf_eiL. y; f^)

— T 1 A^ \ L )

T) (I~~L) =Oe(L ) •
If X is small, L < L0(K,e), choose 0 so large that e/30log/?0 < |. Then

o

for fc > A;0. We obtain

This proves (4.28).

Similarly, x~(d) = 0 for d(d) > Lr, by (4.17). The sum in the second
term on the right-hand side of (4.9) is zero, and the last sum of (4.9)
becomes the right-hand side of (4.29). From (4.25)fc and (4.20), (i) and (ii)
hold for x~(d) = 1 too. An argument similar to the one given above yields
the estimate

and (4.29) follows. D

(7.4.5) LEMMA. Assume that there exist constants A > 0, q > I , and
7 > 1 such that (3.1) holds, and such that, in addition to (4-6),

(4.35)



328 Section 7.4: A fundamental lemma

holds for d(d] < n/k with k > 1. Then, for any given number L such that
L > 2 and Lr < n/k,

S(A,P',r) = Af I] l - <
\P\Prf

+ Os L~(I~^L + Ok r2n^ . (4.36)

PROOF, We have

d\P? d\P*
d(d)<Lr d(d)<n/k

and hence

(I - q-°v>'f ":

P\Pr'
?-B n (i - ?-8wr E

<C r*n-\

by (3.9) of Chapter 3. D



7.5 A Probability Model

As in the classical probabilistic number theory, a probability model will
clarify the idea of the proofs of the main theorems, given in the next section.

Let / be a real-valued strongly additive function on an arithmetical
semigroup Q. Let r and m be positive integers with r < m. In the proofs,
we shall use, instead of /, the function fr such that

p\a
d(p)<r

a truncation of /. Here, as usual, the sum in the definition is assumed zero
when the number of summands is zero. Note that fr is strongly additive,
and /r(a) = /(a) when d(a] < r. Consider fi := {a : a € Q, 9(a] = m}.
The range of fr on fi is a finite set {x1;... , o^}, say. The subsets {a : <9(a) =
m, /r(a) = x;}, i — 1,. . . , t of 0 are pairwaise disjoint. Let Pr := IIs(p)<rP-
Then,

{a : d(a) = m, fr(a) = X;} = \J Eg,
3\Pr

where the subset

Eg := {a : d(a) = m, g \ a, ( a , P r / g ) = 1} .

For a G fi, if g is the greatest common divisor (in the sense defined in a
free commutative semigroup) of a and Pr, then a G Eg. Hence the class of
non-empty sets Eg for divisors of Pr forms a partition of 0. Let £ = {g :
g | Pr, Eg ^ </>}. The (cr—) field J- generated by this partition consists of
unions E of a finite number of sets Eg, with g £ £. Define an additive set
function v(E') on J- by setting

. . f r > \ \E9\

329
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where \Eg is the cardinality of Eg. Then v is a probability measure on J-.

We now use the fundamental lemma (Lemma 7.4.5) to analyze the mea-
sure v.

(7.5.1) LEMMA. Suppose that

G(n] = Aqn + (

holds, with A > 0, q > 1 and 7 > 1, and that ~ = o(l) as m
/or divisors g of Pr with d(g] < y,

\p\(Pr/g)
+ O r2(m-2

(5.1)

oo. Then,

(5.2)

PROOF. Let

Then

m\
-J

m
as m —> oo. For m sufficiently large,

m

Let
.4 := {a : d ( a ) = m, g a} ,

and P* := {p : (p,^) = 1}. Then

\Eg =S(A,P*,r)

and, for divisors d of Pr* with 9(<i) < m — <9(g),

{a : 3(a) = m, gd \ a} = G(m — 9(^) — d(d))

f\q ' ^ ' -)- O (q ^ ' ^ '{rn — o[gj —

(5.3)
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By Lemma 7.4.5, with n — m — d ( g ) , L given by (5.3), k = 2, and e — |,
we have

S(A,P*,r) = Agm~9(s) II
\p\(Pr/a)

x

and (5.2) follows. D

Then, by (5.2),

- <T8(P) l + 0 r2(m-2

Let ng := q~8^ np|(pr/5) l ~ g~9^J. Thus /zs is a good approximation of

v(Eg} for divisors g of Pr with d(g) < f , provided that 7 > 2 (^ = 0(1)!).
The following lemma shows that f i g : g \ PT, is a probability density.

(7.5.2) LEMMA. We have

PROOF. We may write the left-hand side in the form

, \ — i \
(5.5)

/ \9\Pr P\S

The second factor equals

n E <ris(p) - E ̂ 8(s) E



332 Section 7.5: A probability model

where k ( b ) denotes the product of distinct prime divisors of b. Hence the
second factor of (5.5) equals

E <rsw = n
k(a)\Pr p\Pr

Then (5.4) follows. D

Therefore we may anticipate that the density fj,g, g \ Pr, leads to a good
approximation of v(E) on f.

(7.5.3) LEMMA. Let

and

P\Pr

Then, for n > es,
I

E

where

d\pr '"V"; \p|pr
d(d)>n

A = log (ns"1) — log log (ns"1) — 1.

PROOF. We have

= n 1 + 9~9(pUi - 9~a(p)r s(p)
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Since 1 + 1 < e\ and el - 1 < te\ when t > 0,

P\Pr

< exp A E q~a(p]d(p}qxa(p] log q
( P\Pr )

< exp | Xq rs logt/j .

Let A = -^—. Thenrlogg

<
3(d)>n

= II (l-?~ a (

pin

Let p — log (n^"1) — log log (ns~l). Since ns"1 > e, /> > 0. Then

p(ep — ns~l) = — ns~l I log (ns-1) — log log ns~1

log log (ns~l) _
-i '

and (5.6) follows. D

From (5.6), we obtain the estimate

V^ -9(d) TT
J (J ||

d\Pr P\(Pr/d)
8(d)>n

P\Pr d\PT

3(d)>n
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(7.5.4) LEMMA. Suppose that (5.1) holds with A > 0, q > 1, and
7 = 2, and that ~ = o(l) as rn — » oo. Then, for E £ f, E =
where Egj ^ 0, and gj ^ g3 for i ^ j , we have

P\(PrlS])

(5.8)

PROOF. We have

E.3} E E G(m] = Sl + 52,

say. By Lemma 7.5.1,

Sl = {l + O (r2

To evaluate ^2, we apply (5.7) with n =

E n-d(a,) TT
<? 11

/ /
P\Pr

. Note that

> = r + 0(l),
8(p)<r

by (3.8) of Chapter 3. Hence, in (5.7),

ns =
m-t-l

and
77?

A = (l + o(l)) log-.
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Then

Q < V \2 ~
9(s)<f

= l - l + 0 ( r 2 m - 2 ) £ 9~8W n l-?-8(p)

by Lemma 7.5.2. Then, by (5.7),

8-2 = O(exp{-(l + o(l))m(2r)-1log(m(2r)-1)}) +O(r 2

= 0(r2m-2).

Therefore

v(E) = X) (?"Sfe) II l - <?-3(p) + 0(r2m-2)

by (5.7) again. n

If we let

Eg-8te) n
for £^ = Ui<j<fc£Sj. , then Lemma 7.5.4 shows that /^(-E) is a good approxi-
mation of v(E), provided that -^ = o(l) as m — > oo. Unfortunately, fj, is not
a probability measure on JF. To see this, we note that for some divisors g
of PT the sets Eg are empty. If fj, were a measure, we would have fJ-(Eg] ~ 0
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(instead of n(Eg] = /ifl!) for those Eg, which would imply /i(fi) < 1 (see
Lemma 7.5.2).

Therefore, in the proof of Theorem 7.6.1 of the next section, we have to
appeal to another probability space, on which there exists an independent
sequence of random variables such that the distribution of their sum has
the density jj,g.



7.6 Infinitely Divisible Distributions and
a Central Limit Theorem

Let / be a real-valued strongly additive arithmetical function on an arith-
metical semigroup Q, and

er(z) := £
\d(p)<x

(see (3.18) and (3.19)). Following Kubilius [1] (cf. also Elliott [1]), we shall
say that / belongs to the class H if and only if there exists a function
r = rx such that

(6.1)

as x — > oo.

We shall now prove a main theorem, Theorem 7.6.1, an analogue of
the Kubilius Main Theorem (Kubilius [1], Elliott [1]). For convenience, let
P(a,x,m) denote a proposition on elements a in £/, with parameters x and
m, and let

i/m(P(a,i ,m)):= £ 1 (6.2)
d(a) = m

P(a,a;,m)

be the number of true values of P(a, x, m) among those a with d(a] = m.

(7.6.1) THEOREM, (cf. Zhang [3]) Suppose that there exist constants
A > 0, q > 1 and c > 0, such that

\G(n) - Aqn < cqnn-\ n = l , 2 , . . . . (6.3)

337
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Let f be a real-valued strongly additive function of class H. Then the rela-
tive frequency

-vn(f(a)-ii(m)<xa(m}} (6.4)
G(m)

converges weakly to a limit distribution as m — » oo if and only if there exists
a distribution function K(x] such that

W -+ K(x) (6.5)
a >8(p)<m

weakly as m —> oo. Moreover, the limit distribution has mean zero, variance
1, and characteristic function (f>(t) given by

/

oo , ,
(eltx - 1 - itx) x~2dK(x). (6.6)

-00 ^ '

In addition, whether (6.4) converges or not,

--J-— £ ( / (« ) -Mm)) ->0 , (6.7)
V / \ / offl l^TTT.

ana7
i

G(m)<r2(m) a(£n

flS 771 —> OO.

To prove Theorem 7.6.1, we introduce a finite sequence {Xp, d(p) < r}
of independent random variables on some probability space such that

{ f ( p ) , with probability q~ 'p',
0, with probability 1 — q~9^.

By Lemma 7.1.2, such a sequence {Xp, d(p] < r} exists. The following
lemma shows that the sum ^g(p)<r Xp and the function /r(a) have the same
limit distribution function as m • oo.
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(7.6.2) LEMMA. Let r = r(m) be defined as in (6.1). Let P be
the probability measure of the probability space on which Xp, d(p) < r are
defined. Then

1

= P E
|_3(p)<r

5- z c r r 2 ~ 20(r2m

uniformly for —oo < x < oo anrf m 6 N.

PROOF. Let

jB := I a : d(a) = m, f r ( a ) — /z(r) < xcr(r) j.

Then the left-hand side of (6.9) is just v(E}. We claim that

E
9(p)<r

E

Actually, if E is non-empty, then

U

(6.9)

(6.10)

where 5 is the set of g such that g Pr, and such that Eg ^ 0 (see Section
7.5). By Lemma 7.5.4,

where
ITII
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P Xp - /Z(r) < xa(r]
\8(p)<r

3\Pr

E
3\Pr

Hence (6.10) holds. If E is empty, then

P E -
[9(p)<r

and (6.10) holds plainly.

Now, if g is a divisor of Pr and g
m, g a, (a^PT/g} = 1} = 0, and hence
(5.7),

9\Pr,gte
< E

g\Pr

then i?g = {a : <9(a) =
> f by Lemma 7.5.1. By

log . (6.11)

Then (6.9) follows from (6.10) and (6.11). n

PROOF OF THEOREM 7.6.1. We define, by truncation, the strongly
additive function fr such that

f r ( a } =
p\a

9(p)<r
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where r = r(m) is denned in (6.1). Accordingly, define

= E

and

Thus fj,r(x) = n ( r ] and crr(x] = <r(r) for x > r. Then, for each fixed e > 0,

1
G(m) (/(a) - f r ( a ) } ~

E

£ < r m

E
P|Oa(o)=m

by an analogue of Chebyshev's inequality. By Lemma 7.3.6, the right-hand
side is

1 iT2(m) —
O W (III' \ ^r\< \ 'v / \r<9(p)<m

since / is of class .ff. This implies that

S^cr* ( m )

cr(m)

converges to 0 in distribution. By Lemma 7.1.5, the relative frequency (6.4)
converges weakly to a distribution function F(x] as m —> oo if and only if

1
G(m

-vm (fT(a) - fJ,T(m) < xa(m}} (6.12)

converges weakly to the same function F(x}. Since <jr(m)l<j(rn) = cr(r)/cr(m)
—>• 1 as m —» cxo, by Lemma 7.1.5 again, it turns out that (6.12) converges
weakly to F(x), and hence (6.4) does too, if and only if so does

1
G(m) (fr(a) ~ < xaT(m)) .
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By Lemma 7.6.2,

r<t \ m UK"/G(m)

_ p E ^
_9(p)<r

— ^i r ^/ / i J ^ X U j - l / / t

'p — /Z(r) < xcr(r)
.

uniformly for —oo < x < oo, and m G N. Since ^ —> 0 as m —> oo, it follows
that (6.4) converges weakly to a distribution function F(x} as m —> oo if
and only if

P E (6.13)

converges weakly to the same F(x).

Now the distribution function (6.13) has the characteristic function

r) _ \

since JTP, d(p) < r are independent. Hence

E
8(p)<r

where

rjm(t] =

We have

3(p)<r
- l - - l

+ 2
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The last sum equals

n=r0

n~lsince P(n) <C qnn~l. Given e > 0, we fix r0 so that

r0 1 - 9"

Then, for m sufficiently large, r = r(m) > TO, we have

r,m(t}\ < £+ £ log(H-9-S(p)(ef t /W/"(r)-l))
9(p)<r0

It follows that
l imsup|77m(f) | < e,

m — t'OO

and hence, letting e — > 0,

lim | 7 / m (< ) |=0 .
m— >cx> v x

Thus
o

-0

as m — > oo, where

a(P)<7-

Note that K(r, u] is a distribution function of u. Now, by Lemma 7.1.7, the
Kolmogorov theorem,

oo , ,
(e'tu - 1 - itu) u~2

- ^ '

is the characteristic function of an infinitely divisible distribution. It fol-
lows, by Lemma 7.1.8, that (6.4) converges weakly to a limit distribution
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function F(x) if and only if there exists a distribution function K(u) such
that K(r,u) =/• K(u) as r —> oo. This proves the main part of Theorem
7.6.1.

To prove (6.8), we note, from the proof given above, that

E
a(o)=m

It is sufficient to show that

(6.14)

as m — > oo. The last sum can be rewritten as

The first sum equals

d(a}=m
(6.15)

E
d(a}=m

E f(p)
p\a

\9(p)<r 1

= E /2(p) E
8(p)<r 9(o)=

p\a

= Aq
9(p)<r

E

m

v^
Pl|a,P2|a
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The second sum in (6.15) equals

E E /(P) = E
8(p)<T

Note that, by the Cauchy-Schwarz inequality,

/(P) E
9(o)=m

E E
<r(r)(l r ?

and that

E
9(p)<r

Then (6.14) follows since (\ogr)^m~'y —> 0.

Similarly we can prove (6.7). n

The next theorem specifies the normal distribution. We need one more
lemma for its proof.

(7.6.3) LEMMA. Let &(x) be a non-decreasing function, defined for
0 < x < oo and positive for sufficiently large x. Then there exists a function
r(x) such that

r rr( T\
I (6.16)r

~x cr(x)

as x —> oo if and only if for each fixed positive number a,

a (ax)
———/——s— ——^ J- (6.17)

as x —>• oo.
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PROOF. First, assume that the two conditions in (6.16) hold. Note that
CT(X) is non-decreasing, and that if 0 < a < 1 then r < ax < x for x
sufficiently large. Hence

(j(r) a(ax}

and (6.17) follows if 0 < a < 1. If 1 < a, then 0 < ^ < 1, and we have

<7 ax
-i

cr(ax)

as x —> oo.

Then assume (6.17). Then, for each k G N, there exists x^ such that

- 1
fc '

for all x > Xfc. We may assume that 0 < xi < x-i < • • •, and x^ —> oo as
k —>• oo. Let 2/o = 0 and y/t = x^ + x^+i, fc > 1. Define

2/fc+i - x -
k yk+i —yk k + 1 yk+i - yk'

for yk < x < j/fc+i, k = 0,1, 2 , . . . . Then r(x) is continuous. We have

I / ? /7 i -i — T* T* — ? / r \ '7*/ \ ,- -1 / i/A;+l ^ . ^ i/A; \ ^
»"(3:) < T 2/A————— + 3/fc+i————— = T« V j/fc+i - j/i ?/jt+i - y ^ y ft

and, similarly,

for 2/A < x < 2/fc+1. Hence
k+ 1

k + 1 k '
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and

a ( x ) ~ a ( x ) -
for 2/fc < x < yk+i- Note that x > x^+i when x > y^. Hence

k + 1 o"(z) ~~

for 2/fc < £ < 2/fc+i- This proves (6.16). d

(7.6.4) THEOREM. (cf. Zhang [3]) Suppose that (6.3) holds with
A > 0, q > I , and c > 0. Lei f be a real-valued strongly additive function
on Q. In order that

-i-^m (/(«) - p(m) < x(T(ra}} -> -L f c^/^ (6.18)

uniformly as m —> oo ft is sufficient that

^-T £ /2(P)<T8(P) - 0 (6.19)

as TO —> oo; /or eacA jizerf £ > 0.

Conversely, if f belongs to the class H then the condition (6.19) is also
necessary.

Remark. Condition (6.19) is an analogue of the well-known Lindeberg
condition in probability theory (cf. Billingsley [1]).

PROOF. If (6.19) holds for each fixed e > 0, then, for 0 < a < 1,

£ f2Mn-aM
am<d(p)<m
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am<.o(p)<.m

The last sum equals

am<n<m

by (3.4) of Chapter 3. Therefore

limsup I 1 —

Letting e —> 0, we obtain,

lim ( l

1_
a

cr2(am)
- ^ 2< ez log — .

a

<72(m)

and hence (6.17) follows. Thus, by Lemma 7.6.3, / must be of class H.
Also, (6.19) implies that

3(p)<m

and

sE
j(p)<s<r(m)

d(p)<m

as m — > oo, for each e > 0. Hence (6.5) holds with the distribution function

0, if x < 0.
(6.20)V ;
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Since the limit distribution has characteristic function

<t>(t) = exp { r (eiix - I - itx) x~*dK(x]

the limit distribution is the standard normal. Thus (6.18) follows from
Theorem 7.6.1.

Conversely, if /(a) is of class H, then (6.19) follows from (6.18), (6.6),
and (6.5). D

The following theorem (Zhang [3]) is an immediate consequence of The-
orem 7.6.4.

(7.6.5) THEOREM. Suppose that (6.3) holds with A > 0, q > 1, and
c > 0. Let f be a real-valued strongly additive function on Q such that
\f(p)\ 5- 1 for o-tt primes p, and such that <j(m) —> oo as m —> oo. Then

1
 f J : t \ - t \ ^ , \ \ i r -7^-^m (/(a) - Mm) < z<r(m))-»-7= / ^

-oo

uniformly as m — » oo.

Actually, in the case of Theorem 7.6.5, ecr(m') — > oo as m — » oo for each
fixed e > 0, and hence

= 0
8(p)<m

\i(p)\>ea(m)

for m sufficiently large.

As an interesting application of Theorem 7.6.5, we consider the function
given by /(a) = w(a), the total number of distinct prime divisors of a. This
was investigated earlier in Theorem 3.3.6 and (especially) in Theorem 3.3.7,
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an analogue of the Hardy-Ramanujan theorem. Now, by (3.4) of Chapter

3,
Ji(m) = <72(m) = ^ q~d(p) = logm + c+O(m~1}.

d(p)<m

Since |/(p)| = 1, Theorem 7.6.5 implies that

G(m)
< X

uniformly as m — > oo, which is an analogue of the celebrated result of Erdos
and Kac [1,2].



7.7 Rate of Convergence to the Normal Law

To conclude our discussion on this chapter, we state, without proof, a central
limit theorem with a best possible error estimate for additive functions as
well as for strongly additive functions on arithmetical semigroups (cf, Zhang

Let / be a real-valued additive function denned on an arithmetical semi-
group Q. Let f)(m) be an arithmetic function denned for m € N, such that
/3(m} —•> oo as m —» oo. Also let

am ~
kd(p)<m

| /(p*)|</3(m)

and

(7.7.1) THEOREM. Assume that

G(m] = Aqm + O (qmm-^ , m > 1 (7.2)

holds with constants A > 0, q > 1, and 7 > 2. Then the estimate

-^vm (f(a) - a(m) < x^(m}} = $(x) + O (inf A(e; m)) , (7.3)

with

A(e;m) : = £+ 1 -
I E

8(p)<m

kd(p)<m,k>-2
60(m)<\f(pk)\</3(m)

351
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(7.4)

holds uniformly for all real x, and m > ^2 . The O-constant in (7.3)
depends as most on A, q, 7 and the O-constant in (7.2).

In particular, if / = u> again, and,

/32(m) = cr2(m) = logm + c+ C^m"1),

then, by Theorem 7.7.1, it can be shown that

(a) — log^ > ™ —
.^f / \ " 777, 1 K——————— _r **' I ——G(m]

where the error estimate is best possible (cf. Zhang [5]).

The counterpart of Theorem 7.7.1 in classical probabilistic number the-
ory has a long history. Readers with interest in this history may read Elliott
[1], Chapter 20, concluding remarks.



CHAPTER 8

SURVEY OF SOME FURTHER TOPICS

8.1 Asymptotics of Factorizations

Commencing over 70 years ago, certain asymptotic problems were investi-
gated by A. Oppenheim [1] and others, concerning "factorisatio numero-
rum" of integers, i.e. concerning especially (i) the total number f ( n ] of
factorizations of a natural number n > 1 into products of natural numbers
larger than 1, when the order of the factors is disregarded, and (ii) the corre-
sponding total number -F(n) of factorizations when the order of the factors
is counted. For instance, /(12) = 4 while ^(12) = 8.

It is meaningful to consider such questions also within the partly analo-
gous but distinct context of additive arithmetical semigroup Q. The follow-
ing two basic results were obtained by A. Knopfmacher, et al. [1]:

(8.1.1) THEOREM. If Q satisfies Axiom A^, then the average number
of unordered factorizations of an element of degree n in Q has the form

oo,/(n) = Cgn-3/4exp (2%/An) (l + O ("'*)) as "

where
-3/4 A/2 / c o oo %(n-k\ _ 1

m " m

k=2

353
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The asymptotic estimation of ordered factorizations is far simpler than
that in Theorem 8.1.1, which appears to require more delicate techniques
of complex contour integration. The conclusion for the ordered case (under
a weaker hypothesis than Axiom ^4*) is given by:

(8.1.2) THEOREM. Suppose thatQ ^ {1} has zeta function Z ( y ) which
is holomorphic in some disc \y\ < r, and takes values larger than 2 for some
real values of y < r. Then

F(n) = -y + O <o n as n -+ oo,

where y0 € (0,r) is the unique real solution of Z(y}—2 = 0, andy0 < t0 < r.

A more subtle version of this theorem, requiring a more delicate proof,
is given by A. Knopfmacher, et al. [2]:

Suppose that Q has an infinite subset E of elements ^ 1, whose "zeta"
function

oo

ZE(y) = 1 + E EW
71=1

is holomorphic in some disc \y\ < r, where E(n) = ^{e G E : d(e) = n}.
Also suppose that limreai y-*T-i ZE(y} > 2, and that there exist positive
integers ki,...,kh with g.c.d. one, such that E(ki) > 0. Then let Fs(b}
equal the total number of ordered factorizations of b 6 Q into elements of
E.

3.1.3) THEOREM. Under the preceding assumptions on E,

FE(n)= £ FE(b) = y- + O n as
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where y0 6 (0, r) is the unique real solution of ZE(I/) — 2 = 0, and y0 < t0 <

This result is the analogue of a sharpened form of a theorem of Erdos
[1] for positive integers, also given by A. Knopfmacher, et al. [2]. The latter
reference also determines the exact values of the constants which occur in
Theorem 8.1.3, when Q satisfies Axiom ^4*, and E is the set P of all prime
elements in Q or the set (?(2) °f all square-free elements in Q.

After deriving estimates for the numbers of unordered and ordered fac-
torizations of elements of £/, a natural sequel would be to investigate the
lengths (i.e. the numbers of factors) of the unordered and ordered factoriza-
tions of elements of Q . The following results provide asymptotic estimates
for the means and variances of these lengths for elements of degree n in Q\
see A. Knopfmacher, et al. [3].

(8.1.4) THEOREM. Let Q satisfy Axiom A*. Then the mean jj,(n)
and variance v(n) for the lengths of unordered factorizations of elements of
degree n in Q have the form

where in each case • • • indicates an asymptotic expansion in powers ofl/^/n.

Note: The symbols \i and v used here should not be confused with other
uses of these symbols in the present book.

(8.1.5) THEOREM. Suppose that Q ^ {1} has a zeta function Z ( y )
with positive radius of convergence R. Also suppose that Y(UJ) : = Z(u>) — 1
satisfies the conditions:

(i) Y(p) = 1 for some p 6 (0,R), and
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(ii) Y(u>} ^ 1 for all LO ^ p with uj\ = p.

Then the mean /t(n) and variance v(n) for the lengths of ordered factoriza-
tions of elements of degree n in Q satisfy

jj,(n) = an + b + O(n6n], u(n) = en + d + O(n20n),

where a,b,c,d, and d with 0 G (0,1), are constants depending on Q, which
can be explicitly specified.

Theorems about more general additive arithmetical semigroups some-
times simplify considerably for the important special semigroup Qq of all
monic polynomials in one indeterminate over F?, but this is not always the
case. For example, Theorem 8.1.5 simplifies as below (cf. A. Knopfmacher,
et al. [3]), while the earlier theorems of this section do not appear to admit
similar reductions.

(8.1.6) THEOREM. For the semigroup Qq,

i f n = 1, f 1, ifn = 1,

The following different types of results about factorizations, due to A.
Knopfmacher and Warlimont [1], exhibit some instances of asymptotic state-
ments which are especially intuitive in the case of the special semigroup Qq:

Many deterministic as well as probabilistic factorization algorithms for
a polynomial in Qq require that a distinct-degree factorization of the poly-
nomial be performed as the initial step; see e.g. Knuth [1]. In particular,
the further application of all such algorithms becomes unnecessary if the
polynomial has only irreducible factors of distinct degrees. It is therefore of
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interest to determine the probability of the last case, when such methods
are being applied. For large q —> oo, Greene and Knuth [1] showed that an
asymptotic probability e~7 is obtained, where 7 is Euler's classical constant.
However, such factorization algorithms are usually applied over small finite
fields, and the following theorem applies over any fixed field Wq.

(8.1.7) THEOREM. Letj0(n,q) denote the number of polynomials f of
degree n in Qq of the form f = p\pi • • • Pk for some irreducible polynomials
pi , . . . ,pk of distinct degrees. Also let 7i(n, q} denote the number of polyno-
mials f of degree n in Qq of the form f = p^p?2 '' ' pr£ for some irreducible
polynomials Pi,-.. ,pk °f distinct degrees, and some exponents r1;. .. , r^ .
Then there exists a constant c > 0 such that for j' = 0,1

c
-,n

where

The limiting constants

are also computed and estimated accurately by A. Knopfmacher and War-
limont [1], showing in particular that for q > 11 they are already fairly close
to the earlier asymptotic probability e~7 = 0.5614.. . .

Rather wide-ranging generalizations of Theorem 8.1.7 were obtained by
A. Knopfmacher and Warlimont [2] for an arbitrary (additive) arithmetical
semigroup Q satisfying the hypothesis

oo

^ sup G(m)q~m — A < oo,
n=0m>n
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which occurred for example in Theorem 3.2.1 and 3.3.1 earlier. For more
details, we refer to the paper just cited, which deals also with still more
general factorization patterns than those involved for ij(n,q} above. Re-
cently, R. Warlimont has obtained various extra results (as yet unpublished)
which sharpen or extend the preceding conclusions further; for still further
results, see also A. Knopfmacher and Ridley [1], and A. Knopfmacher and
Warlimont [3].



8.2 Direct Factors of Arithmetical
Semigroups

Earlier in this book we have occasionally considered the question of deter-
mining the existence and value of the asymptotic density

of a specific subset E of Q. An interesting case in which this is always
possible occurs when E is an algebraic direct factor of Q, i.e. when there
exists a subset F of Q such that every element a G Q can be expressed
uniquely in the form a — ef for elements e 6 E, f G F. In such a case, we
shall write Q = E ® F.

For example, for any fixed positive integer A:, we have Q ~ Qk ® Q^k)
where Qk is the set of all fc-th powers afc (a 6 £?), and £/(£) is the set of
all k-free elements of Q. Also, if P = P U Q is a partition of the set P
of all prime elements of Q into disjoint subsets P, Q, and ER denotes the
sub-semigroup generated in Q by a subset R of P, then (J = Ep ® £?Q.

By way of illustration, we note that the results described below include
the earlier Propositions 1.3.8 and 1.1.9 (which covered the preceding exam-
ples for any k > 1, and any finite subset P of P). The general results, which
are due to Indlekofer, J. Knopfmacher and Warlimont [1], are analogues of
theorems for the semigroup of N of all natural numbers, due to Saffari [1]
and Erdos, et al. [1]. The case of the special semigroup Qq was partially
treated by J. Knopfmacher [1].

(8.2.1) THEOREM. Suppose that Q = E ® F, and let ZH(y) =
X]^L0 H(n)yn denote the "zeta" function of a subset H ofQ, formally putting
#(0) = 1 even if I £ H.

359
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(i) If G(n) ~ Aqn as n —s- oo, for constants A > Q, q > 1 then E
and F have asymptotic densities o ( E ] , S(F] and 8(E) — Zp(q~1} ,
8(F] = ZE(q-lY\ where ZH(q-l)~l = 0 if ZH(q~l) = oo.

(ii) If Q satisfies Axiom ^4*, then ZEnp(<J~1} < °° implies Z^(q~1} < oo.
If further EHP = 9, then £esEB t^/^q~d(^ < oo for 1 < t < q.

A special type of direct factor E has been investigated in more detail by
Warlimont [6] under Axiom «4*:

Given some integer k > 1, let 'R, denote the union of h (< <f(k}} distinct
residue classes 72 . j , . . . , 7^ of integers, where 71 j is the class of integers
m = TJ (mod A;) for an integer T-J coprime to k. Then let E = E(7V) denote
the set of all elements of Q whose prime factors p all have d(p] E 71. In that
case, E(7i) coincides with the earlier example ER of a direct factor, with
R = {p E T' '• d(p) € 7£}. Warlimont [6] studies the asymptotic approach
of Epi(n)IG(n) to its limit S(ER] in a subtle way, according to properties
of k and the zeta function of Q. In particular, his main conclusion is:

(8.2.2) THEOREM. If k is odd, then

ER(n] ~ KG(n}n-l+h'k as n -> oo

through multiples of d := gcd ( r i , . . . , r/j, A;); /or a constant K > 0 depending
on 71 and Q.

Interested readers may wish to consult Warlimont [6] for corresponding
information about situations in which k is even.



8.3 Sets of Multiples

Previously in this book we have considered only one type of asymptotic
density 6(E) when relevant, for a subset E of Q. In classical analytic number
theory, variations of ordinary asymptotic density are sometimes significant
in the study of subsets of the natural numbers N. In parallel with this,
Warlimont [5] studied variations of 6(E) in proving analogues for Q of some
basic theorems on "sets of multiples" in H (which were included recently in
the book by Hall [1], for example).

Given B C Q^ consider then the set M(B] of all elements a G Q which
are multiples in Q of at least one element 6 £ B. In order to investigate
the asymptotic density of M(B), Warlimont [5] first considers (with slightly
different notations) the following variations of this concept for a subset H
of Q:

Letting H(n) = #{a 6 H : d(a] = n] as before, define

Kfu\ r ~6(H] = hmn 'G(n) '

SQ(H] = lim^oo—— ^ H(m)

~So(H] =

and let

~ "*•" At/ N 5 '-'(>\-L-L I — J--11-11 , , / , ^77 Ti«^°° G(n) «^°° n + 1 ̂  G(m)

if the limits exist. Then £0 is a kind of parallel to "logarithmic density" in
N, and

S(H) < S0(H] < 60(H] < S(H).
Thus S0(H] exists and equals S(H], if S(H] exists. The converse is not
necessarily true; see Theorem 8.3.2 (ii) below.
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The results below were all derived by Warlimont [5]: First suppose that
there are constants A > 0, q > I such that

G(n) ~ Aqn as n — s- oo.

Then, by using the "principle of inclusion and exclusion" or "sieve formula"
of combinatorics, Warlimont shows that 6(M(E}} exists for every finite
subset E of Q, and if E = {ei, . . . , e^} then

8(M(E}} =
r=l

Hence
6*(M(B)) := sup {<5(Af (E)) : E C B, E finite }

is always well-defined, and 8*(M(B}} < 8_(M(B)).

(8.3.1) THEOREM. Suppose that G(n) ~ Aqn as n — > oo, for constants
A > Q, q > 1. Let 5 6e any subset of Q such that Y^beB<]~9^ < °°; or

the elements of B are pairwise coprime. Then S(M(B}} exists, with value
8(M(B}} = 8*(M(B)}.

The next theorem of Warlimont is based on longer and more delicate
arguments:

(8.3.2) THEOREM. Suppose thatQ satisfies Axiom A*. Then80(M(B}}
exists for every subset B of Q , and

S0(M(B}} = 8*(M(B}} = 8(M(B}}.

(ii) Given any e > 0, there exists a subset Be of Q such that 8_(M(Be}] < e,
while ~8(M(Be}} = 1.

These results are analogues of two theorems for N due to Davenport
and Erdos, and Besicovich, respectively. They appear to be precursors of
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various other interesting analogues of results relating to classical sets of
multiples in N, which the first named author of the present book hopes to
treat elsewhere.



8.4 Further Properties of Special Sets
and Functions

In Section 4.1 earlier, some properties of the prime divisor functions u> and Q
were studied within the so-called "classical" case of Axiom A^ . Warlimont
[7] has derived some further results as below, for the general case of Axiom
A*:

For integers k, N £ N, first rewrite the earlier-defined functions
and 74 (TV) as r r i ( N , k ] , 7T2(./V, A;) and ir3(N,k), respectively.

Let L(N, k} = ^-i).'1- Then, for the "classical" case of Axiom A*
(here called case 1), Theorem 4.1.4 earlier has the corollary

as 7V-^co, (4.1)

for fixed k. For the complementary case 2 of Axiom ^4* in which case 1 is
false, Warlimont [7] adds firstly the conclusion

N
as # ->«>, (4.2)

for fixed k. He then uses analogues of some classical number-theoretical
techniques of A. Selberg in order to investigate the more difficult cases
when k may vary together with N. His main conclusion is:

(8.4.1) THEOREM. Suppose that Q satisfies Axiom A*, and let A =
min{9(p) : p G 7-*}. Fix any real number K > 0 when j = 1 or 2, and fix
some K > 0 with K < q^ when j = 3.

(i) In case 1 of Axiom A*

3 ' N
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uniformly for 1 < k < K log N.

(ii) In case 2 of Axiom A#,

r,(N, t) = £iW t) {^ (j^l AT + t

uniformly for 1 < k < KlogN.

Here Fj(z) and F j ( z , h ) are explicitly definable functions of complex z
(and of h £ N in the second case).

Some different problems concerning the prime divisors of elements of Q
concern asymptotic estimates for the numbers of elements of degree n in
Q, which are free o/(or else are divisible only by) "large" prime elements p,
i.e. primes p with d(p) > m (or d(p) < m, respectively}. In other words,
asymptotic estimates are sought for the functions

i/>(n, rn) = $ {a e Q : d(a] = n and p\a =/• d(p) < m} ,

and
yj(n,m) = # {a £ Q : d ( a ) = n and p\a =4> 5(p) > m} .

Such questions are analogous to well known ones of classical analytic number
theory. Warlimont [5, Part 1] and Manstavicius [1,2] derived asymptotic
estimates under Axiom A^ for the functions ij)(n, m) and y>(n, TO) as n, m —»
oo, and their conclusions involve delicate analogies with classical ones for
natural numbers due to K. Dickman and A. Buchstab, as well as later
authors. As with Theorem 8.4.1 above, the proofs and exact details are
non-trivial and here we shall quote only two basic theorems of Warlimont
[5]. Interested readers are referred to this paper for more details, as well
as to Manstavicius [1,2] for very sharp further information. (The special
semigroup Qq was also considered in a similar context by Car [1].)
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(8.4.2) THEOREM. Suppose that Q satisfies Axiom A* . Then

ip([mu],m} ~ p ( u ) G ( [ r n u } } as m — > oo,

where p ( u ) is the classical Dickman function of real u > 0.

(8.4.3) THEOREM. Suppose that Q satisfies Axiom A* .

(i) Then, in the "classical" case 1,

^ ([mu], m) = elLo(u}W(rn}G ({mu}} as m -> oo,

where 7 is Euler's classical constant, w(u) is Buchstab's classical func-
tion of real u>\, and W(m) = TlS(P)<m (l - ?9(p)) •

(ii) In case 2 of Axiom A^ ,

<p(n, m) = W(m)G(n} f e^ ( -} + O ( -}}
L \mj \mj )

for I < m < n, and n — j (mod 2), where e^c^o and e^uii are the fun-
damental functions f and F, respectively, which occur in the classical
"linear sieve" (cf. Halberstam and Richert [1], Chap. 8).

Remark. In the proof of Theorem 8.4.3, Warlimont [5] derives and uses
the following Mertens type formula subject to Axiom A^'.

W(m):=

cf. also Theorem 3.3.4 earlier.

ar \s ' md(p)<m



8.5 More About Polynomials and Finite
Fields

It was stressed earlier that the multiplicative semigroup Qq of all monic
polynomials in one indeterminate over a finite field Fg is one of the most
basic and yet still interesting natural examples of an additive arithmetical
semigroup satisfying Axiom A&. A large proportion of the results treated
in this book have corollaries for Qq, which are easy to read off but still
non-trivial. Since their proofs are usually no harder to develop within
the abstract context of Axiom A*, or sometimes even weaker assumptions,
and since Axiom A^ covers many other natural semigroups also, most of
this book's preceding developments were carried out within a more abstract
context, and without continual explicit singling out of the important special
example Qq.

In view of these remarks and because the other concrete examples de-
scribed in Chapter 1 are also constructions founded essentially on finite
fields, it is therefore indeed appropriate to regard the present book as be-
ing about a systematic branch of "number theory arising from finite fields",
despite the more abstract formulation of much of the discussion.

In making these remarks, we emphasize that there are certainly other
topics which could be viewed as falling under a similar umbrella heading,
e.g. further topics stemming also from algebraic geometry, or from non-
archimedean analysis. Various such undoubtedly valid and significant dif-
ferent directions have been extensively treated by other authors, but they
will not be pursued here; e.g. one should note the recent book by Goss [1],
as well as its references.

Instead, we do wish to add a few more observations about some arith-
metical properties of the important special semigroup Qq which are particu-
larly close in spirit to the type of results developed in this book. Because of

367
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its explicit concrete description, certain questions of analytic number the-
ory for additive arithmetical semigroups have particularly simple answers
for Qq, in which asymptotic estimates can be replaced by exact algebraic
formulae. Examples of this phenomenon occur if one compares certain of
the asymptotic conclusions for arithmetical functions treated in Chapter 1
earlier with their algebraic counterparts for Qq as given in [AB], Chapter
3 - many of those conclusions going back to developments initiated by L.
Carlitz around 65 years ago; e.g. see Carlitz [1,2,3], Carlitz and Cohen [1]
and E. Cohen [1]. Nevertheless, as was noted e.g. in Section 8.1 above, not
all phenomena or results of the analytic number theory of additive arith-
metical semigroups have elementary or exact algebraic counterparts in the
case of Qq.

We conclude this section by describing a few more examples of theorems
in the spirit of earlier results treated in this book, which admit particularly
precise answers for the special semigroup Qq, and also possess the novelty
that certain of their proofs are facilitated by the ad hoc use of special new
arithmetical semigroups; for further details, and references to work by oth-
ers, see A. Knopfmacher and J. Knopfmacher [1,2]:

First let Mq(n, k] denote the total number of polynomials of degree n in
Qq which have exactly k < n distinct zeros in Fg, and let M*(n, k} denote the
corresponding number when k counts the multiplicity of repeated zeros for
a polynomial. Then explicit algebraic formulae can be derived for Mq(n, A;)
and M*(n, fc), for example

q if n>q, (5.1)

and
-1 ' ~ " ( 1 - - I if n>q + k. (5.2)

V 1}
Such formulae can be used to deduce:
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(8.5.1) THEOREM.

(i) The mean or average number of distinct zeros in Wq of a polynomial
of degree n in Qq equals 1, and the variance about this average equals
1 — -.

(ii) The mean or average number of zeros in Wq of a polynomial of degree
n in Qq, when multiplicity of zeros is counted, equals

q — ql~n q
• —— as n —-> co.

q - l g-

while the corresponding variance about this average has the limit
as n —> oo.

It is interesting to observe that (5.1) and (5.2) imply that the "probabil-
ity" of obtaining k zeros follows a binomial probability law with parameter
l/q for distinct zeros when n > q, and a truncated negative binomial law
for n > q + k, when multiplicity of zeros is counted.

The preceding results can be extended considerably as below, with the
added bonus of sharp applications to the prime divisor functions w and 0
on Qq:

Now let Mq(n, k, r) denote the total number of polynomials of degree n in
Qq which have exactly k < min f ^ , ?r(r)J distinct irreducible factors of de-
gree r in Qq, where for brevity we here write ?r(r) = Pq(r], and let M*(n, k, r)
denote the corresponding number when multiplicity of repeated irreducible
factors is counted; thus M,(n, fc, 1) = M,(n, k), M*(n, k, 1) = M*(n, k). Ex-
act algebraic formulae can be derived for these extended counting numbers,
for example

A f , ( n , A ; , r ) = C 1 ' /
g

n - * M l - ) if n > r7r(r), (5.3)
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and

~ > ( r ) i f n>r*r + k .

(5.4)
Such formulae again lead to exact formulae for the means, as well as exact
or asymptotic formulae for the corresponding variances, of the numbers of
irreducible factors of degree r of a polynomial of degree n in Qq, which are
respectively distinct or counted with multiplicity. In more detail, we state:

(8.5.2) THEOREM.

(i) The respective means are 7r(r)/or
; and

7r(r)
as n —> oo.

qr - I \ * J qr ~

(ii) The respective variances about the means are exactly

7r(r)(or - l)/g2r if n > 2r, or ir(r)(qr - 7r(r))/a2r if n < 2r,

in the distinct case, and asymptotically

7r(r)«f
as n —> oo

(f - I)2

in the other case.

For general r > 1, we remark that the two types of "probability" of k
irreducible factors of degree r again follow respectively a binomial probability
law or a truncated negative binomial law, with parameter l/qr now.

Next consider again the prime divisor functions u; and 0. Theorem 3.3.6
earlier implies asymptotic estimates for both these functions, of the form
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logn + c + 0(l/n) as n —> oo, where c is an explicitly definable constant
depending on the function and semigroup under consideration. For Qq, these
averages for polynomials of degree n can also be written explicitly in the
form

n T r f r ) " 7r(r) / _ [a A
Y"] ——, °r y~! ———— (1 ~ q~Tt~> ) , (5-5)

respectively, in view of Theorem 8.5.2; these formulae also lead to the pre-
ceding asymptotic estimates in the case of Qq.

The corresponding variances about the means of u; and 0 for polynomials
of degree n can be expressed by similar though more cumbersome algebraic
formulae, which can be used to deduce:

(8.5.3) THEOREM. The variances of 10 and fi about their means, for
polynomials of degree n in Qq, have the form

i ^ f\°gn\log n + c + O \ ——— as n —» oo

where c' is an explicit constant depending on the function under considera-
tion.

Lastly, although it differs from the main kinds of investigation treated
in this book, we mention very briefly another parallel between the analytic
number theory of Qq and N, which stems from the special property (shared
by polynomials and integers) that greatest common divisors (g.c.d.'s) can be
determined by the "quotient-remainder" Euclidean algorithm. (Of course,
some other mathematical objects also share such a property, but this is not
generally true for elements of all arithmetical semigroups.)

Various authors (see initially Heilbronn [1] and Dixon [1]) have used
methods and results of classical analytic number theory to derive asymp-
totic formulae involving the average length (or number of repetitions) of the
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Euclidean algorithm needed to reach the g.c.d. of a pair of natural num-
bers a, 6. Alternatively, this may be regarded as the average length of the
finite simple continued fraction of the ratio a/6. The well-known algebraic
analogies between polynomials and integers then made it seem plausible
that parallel asymptotic conclusions should hold in the case of polynomials
over Wq.

In fact, after development of some initial analogies of this kind, it turned
out that, unlike the situation for integers, exact algebraic formulae could
be derived by algebraic and combinatorial methods for the case of polyno-
mials over Wq. These formulae yielded simple asymptotic corollaries of the
required kind, but without the need for delicate tools of analysis or analytic
number theory. Interested readers may refer in particular to the papers of
A. Knopfmacher and J. Knopfmacher [3], A. Knopfmacher [1], and Friesen
and Hensley [1], for actual formulae and further details.



8.6 Ramanujan Expansions of Arithmetical
Functions

In contrast with the usual asymptotic and quasi-statistical or probabilistic
type of investigations of arithmetical functions and densities (which make
up such a large portion of both classical analytic number theory, and the
type of theory treated in most of this book under the different setting of ad-
ditive arithmetical semigroups), a very intriguing different kind of analysis
of arithmetical functions was initiated just over 80 years ago by the amaz-
ing self-taught mathematician Sriniwasa Ramanujan. This work, which is
sketched very briefly below, was started by Ramanujan [1] and was carried
forward soon afterwards by G.H. Hardy [1], and then later by many further
researchers. Excellent surveys with large bibliographies have been provided
in recent years by Schwarz [1,2] and Mauclaire [1], while Schwarz and Spilker
[1] have recently provided a comprehensive introduction to such topics, as
well as many of the more standard types of questions of classical analytic
number theory whose analogues have been explored in this book.

In the case of general arithmetical semigroups, some initial analogies
with classical results on so-called Ramanujan expansions, were developed
by J. Knopfmacher ([AB], Chapter 7, and [5]), J. Knopfmacher and Slattery
[1] and Slattery [1].

The last two cited works contain the beginnings of a comprehensive
theory within the Axiom A& context, for which still further results may be
expected.

A very rapid sketch of the abovementioned topics follows. Firstly, a key
example of the innovative paper by Ramanujan [1] concerns the classical
sum of divisors function a on N, such that <j(n) = Y^d\n d. Ramanujan
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showed that
a(n) _ 7T2 ~ cT(n)

n ~ 6 ̂  r* ' (6J)

where cr(n) is the special trigonometric sum

crn= , =
l<a<r d|gcd(r,n)

gcd(a,7-) = l

Ramanujan, and soon afterwards Hardy, use ad hoc methods to establish
(6.1) and various other striking expansions of arithmetical function values
in terms of the sums c r(n), which later became commonly referred to as
Ramanujan sums.

Next, certain authors noted further that expansions like (6.1) for an
arithmetical function / on N (e.g. for f ( n ) — a(n)/n) can often (though
not always) be expressed in the form

/(n) = £ a?-(/)cr-(n) for all n > 1,
r=l

where

On the basis of a suitable asymptotic orthogonality property of the functions
c\i C2i C3t • • -i "explanations" were then sought for the existence of such point-
wise convergent "Ramanujan expansions" of suitable arithmetical functions
/, in terms of concepts and results parallel with classical harmonic analy-
sis. (The significance of paying special attention to explanations based on
analogies with classical-style harmonic analysis was recently brought out
dramatically when Hildebrand [1] gave a short algebraic proof that every
arithmetical function / has an expansion

oo
f(n) — 'Sp /, „ („} (a o\
J\n) — 2—iOTCr\'ln (D"3)

r=l
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in terms of coefficients br which can be defined recursively in terms of /,
but without any obvious natural parallel to Fourier-type coefficients.)

Basic results of the above type of theory of arithmetical function expan-
sions are surveyed and treated in the earlier works listed above. Interesting
new approaches towards conceptual explanations for the existence of Ra-
manujan expansions for both those cases which can be fitted under the
umbrella of a classical-type harmonic analysis (e.g. for functions / like the
(6.1) example), and for other interesting natural examples (e.g. the divisor
function d on N), have recently been developed by Lucht [1,2].

For arithmetical semigroups, certain results were first developed in gen-
eral and for Axiom A in the references by J. Knopfmacher cited above, and
then for Axiom A* in the paper by J. Knopfmacher and Slattery [1]. A
very brief sketch follows for the last case:

Firstly, it is clear from the second equation of (6.2) above that a possible
fruitful analogue of the Ramanujan sum cr(n) when r, n are now elements
of a general arithmetical semigroup Q is provided by

V (T

^{r^\d,

for general Q with Mobius function /i, or by

cr(n) := 2^ r- . ,
d|gcd(r,n)

for an additive arithmetical semigroup Q (the case which we shall assume for
the rest of this section). It can then be verified that the new sums are not
only meaningful in the generalized situation but actually do have properties
similar to those of the classical Ramanujan sums.

Although the periodicity derived from the connection with trigonomet-
rical sums in the classical case has no meaning in the generalized context,
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a near replacement is provided by the concept of evenness, which was ob-
served and developed by E. Cohen [1,2,3,4] for both classical arithmeti-
cal functions and similar functions of isomorphism classes of finite abelian
groups. For general additive Q and k £ Q, an arithmetical function is called
even (mod k) if and only if

f ( n ) = f ( ( k , n ) ) for every n E G,

where (k,n) — gcd(k,n} in Q. Then cr has this property for r\k, and it can
be shown that {CT : r\k} spans the complex vector space of all functions
on Q which are even (mod A;). Thus {cr : r E Q] spans the vector space £
of all even functions on Q (i.e. functions which are even (mod k) for some
keG).

In analogy with classical theories of almost periodic functions, one may
then consider concepts of almost evenness. In particular, since even func-
tions must be bounded, we define a function / to be uniformly almost
even on Q if and only if / lies in the closure of £ relative to the uniform
norm such that

Also, in analogy with Besicovitch's classical theories of "almost periodicity",
we call / almost even (B) if and only if / lies in the closure of £ relative
to the seminorm |i such that

i l l = hmsup —— _ Y. \9(a}\-

For a function / of one of these last types, it can be shown subject to
Axiom A& that all the Ramanujan coefficients

Or(/) = J-jm(/ • c,)

exist, where now (f>(r) := cr(r) is one particular counterpart to the classical
Euler function on N. In particular, if ^,a^g(/J- * f}(o,)q~d^ is absolutely
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convergent, then it can be proved that / is almost even (B) and

'w. (6.4)
b£Q,r\b

Given the existence of the coefficients, it then becomes interesting to
seek conditions under which / has a pointwise convergent Ramanujan
expansion:

oo

r=l

A number of further technical conditions on functions / on Q subject to
Axiom A&, which ensure both that / is almost even (B] and that its
Ramanujan expansion is pointwise everywhere absolutely convergent, are
treated in the paper by J. Knopfmacher and Slattery [1]. A fuller treatment
of uniformly almost even and of so-called almost even (-BA) functions sub-
ject to Axiom _4# appears in the thesis of Slattery [1]. Still further results
apparently remain to be developed in these directions.



8.7 Additive Arithmetical Formations

One of the earliest definitive theorems of classical analytic number theory
was the famous Dirichlet Theorem on Primes in Arithmetical Progressions,
to the effect that there exist infinitely many integer primes p = r(modm)
whenever m,r are coprime positive integers. This theorem was published in
1837, and despite later simplifications has apparently never been proved in
complete generality without some use of methods and results of analysis. Af-
ter the much later establishment of the classical Prime Number Theorem, it
was refined into the Prime Number Theorem for Arithmetical Progressions,
which in its simplest form states that

i \ x
7Tm,r(z) ~ 77—r-j—— as x —> oo,<p(m) log x

where wmf(x] is the number of positive integer primes p < x with p =
r(modm), and cj> is the classical Euler totient function.

This type of asymptotic equidistribution conclusion for prime numbers
was soon accompanied earlier in the 20th century by similar types of theo-
rems due to E. Landau, concerning prime ideals in ideal classes, in classical
algebraic number theory.

Theorems of the above kinds were subsequently generalized by vari-
ous authors into a type of relative abstract analytic number theory based
on generalized "arithmetical progressions" or "ideal classes" within certain
structures which extend or enlarge the scope of the Axiom A treated in
[AB]. An introduction to this type of theory, with fuller details and ref-
erences to earlier work (e.g. by Forman and Shapiro [1], J. Knopfmacher
[8,9], and Miiller [1,2]) is given in [AB], Chapter 9. In the remainder of this
section, we shall only recall a few of the basic concepts and results involved,
as a prelude to briefly sketching an impressive analogous theory initiated
by Halter-Koch and Warlimont [1] for a context extending or enlarging the
scope of Axiom .4* for additive arithmetical semigroups.

378
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Firstly consider an arbitrary arithmetical semigroup Q on which a
("congruence-type") equivalence relation ~ is given such that ab ~ a'b'
whenever a ~ a', b ~ 6', and such that the corresponding set F = G/~
of equivalence classes [a] (a G £7) forms a finite abelian group under the
operation

[a] [6] = [ab}.

In such a case, (£,~) or ((/, F) is called an (arithmetical) formation,
with class group F, and class number h = card F.

A few examples of formations are provided by:

(i) (G,=) for which F is trivial, h = 1;

(ii) (N(m),= (modm)), where N(m) is the set of all natural numbers
coprime to a given m £ N, and h = <f>(rn);

(iii) (<?/<, ~), where C/A- is the semigroup of all integral ideals of a given
algebraic number field K, ~ denotes standard ideal class equivalence
in GK, and h is the standard class number hff of K.

The type of analytic number theory developed for formations (Q, ~) in
[AB], Chapter 9, is concerned with those formations that satisfy Axiom
A*. There exist constants A > 0, 6 > 0, and 77 with 0 < r/ < 8, such that
for any class a G F

^
${a G ct : a < x} = —x + 0(xn} as x —> oo.

n,
This axiom is then equivalent to the two conditions:

(i) Q satisfies Axiom A o/[AB]:

#{a 6 Q : a < z} = Ax5 + O(x7)) as x -» oo

/or constants A > 0, 5 > 0 arerf ?y wii/i 0 < rj < 5, and
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(ii) for any classes a, a' in T = Q j ~,

lim #{a 6 a : al < x}/#{a' € a' : a' < x} = 1.
X — >CO

Although previous authors such as those cited above implicitly or explic-
itly investigated asymptotic consequences of Axiom A* in general, certain
particular aspects of the development in [AB], Chapter 9, are restricted
to formations which satisfy a certain additional Axiom A**, which encom-
passes all the natural motivating examples described in that chapter - this
simplifies the approach to the applications of immediate interest, but could
also be viewed as an introduction to the more theoretical general case.

The analytic theory of additive arithmetical formations initiated by
Halter-Koch and Warlimont [1] provides both an analogue of the previ-
ous theory, and an extension of earlier research on rational or algebraic
function fields over a finite field, going back to work of Kornblum [1] and
E. Artin [1] more than 75 years ago, followed by Hayes [1] in 1965.

Following Halter-Koch and Warlimont [1] (without continual further ci-
tations to that paper), first define an additive (arithmetical) formation
to be a triple (£/,~,/o) such that (<?,~) is a formation for which Q is an
additive arithmetical semigroup, and for some n0 6 N there is given a group
epimorphism

/o : T -> 1/n0Z

with the property that d(a) £ f o ( a ) for all a £ T and a 6 a. (If (Q, ~) is
a formation with Q additive, and no = gcd{9(a) : a ~ 1}, then it is fairly
easily shown that there exists a unique group homomorphism /o : F — >
Z/UQZ with /o([a]) = d(a) + n0Z, and /0 is surjective if 1 = gcd{<9(a) : a E

5}-}

An additive counterpart to Axiom A* then provided by Axiom
There exist constants B > 0, q > I , and v with 0 < v < 1, such that for
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any class a G F and k G fo(ct)

a(k) := #{a£a: d(a] = k} = jqk + 0(qvk) as k -* oo.

If this axiom (referred to below as ylzz'om 0, for short) is satisfied, it

can be deduced that the assumed constant no 6 N must equal the gcd

{d(a) : a ~ 1}, and, for any k G N,

G(k] = — qk + 0(q"k) = —— qk + O(sk] as k -+ oo,
n0 ?^o

in terms of the preferred notation A = B/h and s = 5" of Halter-Koch and
Warlimont.

Just as the investigation of asymptotic consequences of Axiom A* is
aided by the study of analytical properties of so-called L-series, the in-
vestigation of consequences of Axiom B is aided by studies of the relative
zeta functions

00 /

E x(
k=0

relative to the characters x of F (i.e. the group homomorphisms x of F into
the multiplicative group of non-zero complex numbers).

Analytical studies of these new zeta functions Z(y, x) turn out to be
rather technical and subtle. For the purposes of establishing an appropri-
ate abstract prime number theorm for additive formations (or prime el-
ement theorem, for short), additive arithmetical formations are classified
into types I or II according as no zeta function Z(y,x) has zeros on the
circle \y\ — q~l, or else some zeta function does have such zeros. (Under
Axiom B, each Z(y,x) '1S meromorphic for \y\ < s"1, and has no zeros for

\y\<q~1.)
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By means of delicate arguments, Halter-Koch and Warlimont derive a
prime element theorem for both types, of which the "more classical" type I
case has the following form:

(8.7.1) PRIME ELEMENT THEOREM FOR TYPE I FORMATIONS. Let
(£/, ~, /0) be an additive formation satisfying Axiom B. Let r with s < r < q
be such that no zeta function Z(y,x) has a zero on \y\ — r~l, but Z(y,x)
has a zero y with q~l < \y\ < r~l if it has one with q"1 < \y\ < s~l. Also
suppose that the formation is of type I, and let £ > max(r, ^Jq). Then the
prime element function

Pa(k): = #{p£pna: d(p) = k}

= -f ~ + O pH f°r all a e r and k£ fa(a) (7.1)
11 K \ /C /

if and only if no zeta function Z(y,x) has a zero with \y\ < ̂ l.

For type II formations, an analysis more delicate than one given by
Halter-Koch and Warlimont can show

(8.7.2) THEOREM.

(i) If the zeta function Z ( y , X o } with the principal character XQ has a zero
at —q~l then

for all a 6 F and k 6 f o ( a ) , where £0 = maxjr, ^/q} and

(it) If Z(y,xo) does not have zeros at —q~l then

<7-3 '
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where q~lz0 is the only zero of some zeta function Z(y,X) on the circle
\y\ = q~l and the character x is identically 1 on the ker(/0).

This result is a refinement of the result of Halter-Koch and Warlimont
and a generalization of a theorem of Indlekofer-Manstavicious-Warlimont
[1], i.e., Theorem 5.1.1 of this book.

Zhang [9] has investigated further conditions which lead to type I for-
mations and conclusions like (7.1).

(8.7.3) THEOREM. An additive formation (<7,~,/o) is of type I, if any
of the following two conditions is satisfied:

(i) There exists constant B > 0 and q > 1 such that

£ £ Uk] - qk\~k < oo;

(ii) There exists constants B > 0 and q > 1 such that

a ( k ) = *j-qk + Ov(qvk)

for every a G F anrf A; G fo(cc) with every fixed v > |. /I/so, /or every
character x,

liminf (l - ^z) Z (ixK1)^^) ^ (x2(«r :)^,X2) < 0,

where QI is an arbitrarily fixed congruence class satisfying <9(ai) C

This theorem is a generalization of Theorems 3.5.1 and 3.5.6 together.
Both Halter-Koch and Warlimont, and Zhang, also discuss applications to
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important special formations arising from algebraic function fields over a
finite field.

Lastly, Halter-Koch and Warlimont [1] establish (i) an "Inversion The-
orem" to the effect that the conclusions of their prime element theorems for
both types of formations are essentially equivalent to Axiom B, and (ii) a
"Realization Theorem" showing how to formally construct additive forma-
tions satisfying Axiom B with ^q < s < q, given any group epimorphism
/o : F —» Z/ngZ of an arbitrary finite abelian group F onto some quotient
group Z/n0Z of (Z, +).
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NOTATIONS

Notation Section Interpretation

N - the (set of) positive integers

Z - the integers

Q - the rational numbers

R - the real numbers

C - the complex numbers

TLjnTL - the quotient ring of Z modulo ideal nTL

O( ) - big oh notation

o( ) - little oh notation

<C — Vinogradov's notation for O( )

Q - additive arithmetical semigroup

P - the primes in Q

d - the integer-valued degree mapping on Q

G#(n),G(n) - number of elements of degree n in Q

P&(n),P(n) - number of primes of degree n in Q

Z g ( y ) , Z ( y ) - the enumerating, or generating, or zeta function of
Q

Z(y, x) 8.7 the zeta function associated with character x of ad-
ditive arithmetical formation Q

8.1, the finite field with q elements

2.2 the ring of polynomials in X over F9

the ring of polynomials in X\,.. . , Xk over F?

8.1, the additive arithmetical semigroup of monic poly-
nomials in F X

1.1, 2.1
8.5
1.1, 2.1,
1.1
1.1, 2.2
8.4, 8.5

397



398 Notations

Notation Section Interpretation

Gf(n) 1.1 number of elements of degree n in Qq

Tq 1.1, 2.1 the category of finitely-generated torsion modules
over Wg[X]

J-q{n) 1.1 number of non-isomorphic modules of cardinal q" in
Tq

Sq 1.1,2.1 the class of semi-simple D-algebras of finite cardinal
when D = Wg[X]

Sq(n) 1.1,2.1 number of non-isomorphic algebras of cardinal q" in
Sq

K 1.1 the field of algebraic functions in one variable over
IF,

GK 1-1 the additive arithmetical semigroup of integral divi-
sors in K

Or, C/K2) 1-1 the zeta function of K

D 1.1 the ring of integral functions in K

QD 1-1 the additive arithmetical semigroup of non-zero ide-
als of D

(D(Z) 1-1 the zeta function of Qrj

J-D 1.1, 2.1 the category of finitely-generated torsion modules
over D

SD 1-1 the class of semi-simple finite algebras over D

"H},2 1.1 the additive arithmetical semigroup of associate
classes of homogeneous polynomials in W q [ X i , X-2\

Zq(y),ZD(y),Zf(y) 2.1 generating functions of Qq, QD, F, resp.

7 1.2, 3.1 classical Euler constant

7G 1.2 Euler constant off?

7gK 1.2 Euler constant of QK

7gD 1.2 Euler constant of </£>

7i> 7i(G) 1-2 generalized Euler constants of Q

Q(k) 1-3, 4.1, 8.2 the subset of fc-free elements of Q

Q(k) 1-1 the subset of Q of elements coprime to k in Q
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Notation

raj, m(/)

o, 6(E)

f*(y), F(y)

dk(a)

dt(a)

d ( N ) , 1£(N), <4(AT)

d#(y), d f ( y ) , df(y)

f *9
L, Lf
A(o)

A(m)

A*(y)

w(a)

even' "even

H(a)

, M ( y )

Section

1.3

1.3, 6.4
1.3, 4.1, 8.2

1.3, 6.1, 6.2,
6.3, 6.4, 6.6
1.3
1.3

2.2
2.2

1.5

1.5
3.1, 6.1
3.1, 6.1

3.1

3.1, 3.4, 3.8,
5.3
3.3, 4.1, 7.6,
7.7
3.3,4.1

4.1

4.1

4.1, 6.5, 6.6,
7.4
2.2, 4.1, 6.5,
6.6

Interpretation

summatory function of /(a) with <9(a) = n

(asymptotic) mean-value of /

asymptotic density of subset E

generating function of / on Q

number of factorizations 6162 • • • b^ — o,

number of divisors d of a for which d and a/d are
coprime

summatory functions of d ( a ) , d»(a), djt(a), resp.

generating functions of d ( a ) , <f*(a), djt(a), resp.

number of elements of the same degree as a and co-
prime to a in Q

sum of degrees of divisors of a

convolution of arithmetical functions / and g

differentiation operator on arithmetical functions

von Mangoldt function on Q

summatory function of A(a)

generating function of A(m), A(a)

number of distinct prime divisors of a

number of prime divisors of a, counting multiplicity

subsets of elements a of Q with £2(a), w(a) even, resp.

subsets of elements a of Q with fl(a), w(a) odd, resp.

classical Mobius function

Mobius function on Q

generating function of n(a)
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Notation

/^(n) , v(n\

jl(n\ J^ffi)

HD,Hr,Hs
X(a)

(£l,F,P)
P(A)
X,X(u)

H(A)
EX
VarX

F*G

Fn^F

$(x)
•p*
S(A,P*,w)
S(A,T*,r)

/rO)

V(E)

Vm(P(a,x,m)}

E®F
M(B)

&(M(B}}

(G,~,fo)

Section

8.1

8.1

4.1

4.1, 6.5, 6.

7.1

7.1, 7.6

7.1

7.1

7.1

7.1

7.1
7.1

7.1

7.4

7.4
7.4

7.5

7.5
1 7.6

8.2

8.3

8.3
8.7

Interpretation

mean, variance of lengths of unordered factorization
on Q, resp.

mean, variance of lengths of ordered factorization on
Q, resp.

Mobius functions on D, J- S

Liouville function on Q

probability space

probability of A in J-

random variable on (Q,.?7, P)

distribution or law of a random variable

expectation (or mean) of random variable X

variance of random variable X

convolution of distribution functions F and G

weak convergence of distribution functions

the standard normal distribution function

subset of V

sifting function

sifting function

a truncation of /(a)

additive set function of E

number of true values of a proposition P(a,x,m)
among a with 9(o) = m

direct factor decomposition

the subset of elements be with 5 in given subset B of
Q
the asymptotic density of M(B)

additive arithmetical formation



INDEX

abstract prime number theorem
version of Zhang 120
version of Indlekofer-Manstavicius-Warlimont 125
third version of 144
elementary proofs of 140
Beurling-type 218

abstract Selberg-Bombieri formula 140
second 142

alternative abstract prime number theorem 211
arithmetical formation 379

additive 380
of type I, II 381

arithmetical function
additive 32

completely 32
strongly 291

multiplicative 32
completely 32

prime independent 32
PIA- 32
PIM- 32, 185

arithmetical semigroup 5
additive 6

asymptotic enumeration 49
sharper 56

asymptotic density 25
Axiom .4 5 ,21 ,25 ,35
Axiom A* 5
Axiom (A*)* = Axiom B 380

B
Beurling's generalized primes 218

integers 218
Buchstab-Rosser type structure 319
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402 Index

central limit theorem 347
characteristic function 285
Chebyshev arithmetical semigroup 238
Chebyshev identity 85
Chebyshev inequality 284
Chebyshev-type upper estimate 88

lower estimate 96
class H 337
continuity theorem 286
convergence in distribution (in law) 285
convolution

additive (or Cauchy) 81
multiplicative (or Dirichlet) 84
of distribution functions 285

D
Dedekind's zeta function 11
direct factor 359
Dirichlet's approximation theorem 191
distribution function 283

infinitely divisible 289, 337
E

Euler constant 21
generalized 21

Euler product formula 17
Erdos-Kac theorem 350
Erdos-Wintner theorem 297

F
factorization

ordered 354
unordered 353

field
finite (or Galois) 5
algebraic function 12

finite module
over IF, [X] 8
over a ring of integral functions 13

fundamental lemma 315
fundamental sieve identity 316
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Galois polynomial ring 7
general mean-value theorem 242

H
Hardy-Ramanujan theorem 108
homogeneous polynomial over F? 15

I
ideals in the principal order 12
integral divisor 10
inversion formula 286
inversion theorem of additive formation 384

K
Kolmogorov theorem 289
Kubilius Main theorem 337

L
limit distribution function 291

existence of 297
Lindeberg condition 347
Lindeberg-Feller central limit theorem 288
Liouville function 164

M
Mangoldt function 84
mean-value 25, 267

of A, fj. 274
mean-value theorem 252, 267

for Beurling type semigroups 279
Mertens-type estimates 97
moments 32

N
normal distribution function 287

standard 288
normal value 113

O
order of a zero 194
order of magnitude

maximum 180
minimum 180
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partition function 8, 49
prime counting estimate 73
prime divisor function 102, 163
prime element theorem for additive formation 382
probability space 283

a finite 290
R

Ramanujan coefficient 374
Ramanujan expansion 373
Riemann hypothesis 11, 158
ring of integral functions 14

S
Selberg identity 87
semisimple finite algebra

overFjX] 9
over a ring of integral functions 14

set of multiples 361
sieve method 315
slowly oscillating function 243
Slutsky theorem 287

T
tauberian theorem

of Bombieri 129
of Erdos 130

theorem of Hildebrand and Tenenbaum 217
Turan-Kubilius inequality 303

W
weak convergence 285

Z
zeta function 17

of A' 11
otGo 12
of Qq 50
associated with character x 381
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