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Series Preface

This series is designed particularly, but not exclusively, for students reading degree
programmes based on semester-long modules. Each text will cover the essential core
of an area of mathematics and lay the foundation for further study in that area.
Some texts may include more material than can be comfortably covered in a single
module, the intention there being that the topics to be studied can be selected to
meet the needs of the student. Historical contexts, real life situations, and linkages
with other areas of mathematics and more advanced topics are included. Traditional
worked examples and exercises are augmented by more open-ended exercises and
tutorial problems suitable for group work or self-study. Where appropriate, the use
of computer packages is encouraged. The first level texts assume only the A-level
core curriculum.

Professor Chris D. Collinson
Dr Johnston Anderson
Mr Peter Holmes



Preface

Numbers and geometry are historically the two foundations upon which
mathematics has been built over some 3000 years, and the subjects discussed in this
book span much of that period. We consider some topics which were studied by the
Pythagorean school of philosophy in Ancient Greek times around 500-600 BC, and
also ideas about numbers which were formulated at the end of the 19th century.

After an introductory chapter, which develops some of the logical structures used in
mathematical reasoning, there are five chapters dealing with different features of the
number system. I have not attempted to give a mathematically complete
development of number systems right from their basic logical foundations, but to
document some of the important and more interesting and applicable aspects. I have
chosen the material so as to illustrate mathematical techniques which are used in
other contexts. So, in Chapter 2, which explores integers, we begin to consider the
method of making deductions from a basic set of rules or axioms, a method which
has become the hallmark of many parts of mathematics during the past couple of
centuries. We also consider algorithms, which are systematized procedures for
carrying out calculations. These occur in the work of Euclid around 300 BC but are
of particular importance now that they can be implemented on computers. In
Chapter 3 we apply the notion of an equivalence relation introduced in Chapter 1 to
the study of fractions. Again this tool is used throughout mathematics. One of the
Pythagorean discoveries was related to the notion that there is no fraction whose
square is equal to 2. Describing mathematically how to complete the system of
fractions so as to include numbers like square roots was one of the achievements of
the late 19th century, and in Chapter 5 I have chosen one of several approaches,
again because of the widely applicable ideas involved. Finally, we look briefly at the
complex numbers, where negative numbers have square roots.

Having laid the foundations of the number system we turn to the analysis of infinite
processes involving sequences and series of numbers. The methods and concepts are
those which help to provide the mathematical foundations of the theory of limiting
procedures, which in turn lie at the heart of the differential and integral calculus.
Chapter 9 uses this material to give an account of the system of decimal
representation of numbers.

The final chapter of the book gives a glimpse of some of the directions in which the
topics studied may be developed, and includes some suggestions for self-study
projects.

Throughout the book I have emphasized the multiple perspectives necessary to gain
a good understanding of any area of mathematics. These are exemplified in Chapter
4 on inequalities, where I have exhibited the notion of proof by logical deduction,
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and the illustration of concepts and techniques from a graphical, numerical and
algebraic viewpoint. The notion of proof based on logical inference is central to
mathematics and I have given some prominence to ‘indirect” methods of proof
involving logical contradiction, and also to proof by Mathematical Induction, as
codified by Guiseppe Peano in 1889.

Most authors of textbooks share the view that mathematics cannot be learned
simply by reading, but that there has to be some active participation, consequently
the worked examples and the exercises are a vital component of this book. In
addition, sharing ideas with others is indispensable, and I have included a number of
tutorial problems aimed at stimulating group work and discussion, either in class
time or through private study.

Computers impinge on most areas of mathematics nowadays, both for their
numerical and their graphical capabilities. I have included small segments of
computer code where it is appropriate, especially to illustrate the workings of some
algorithms. The book can be read without this component however. Equally
important is the geometrical representation of sequences through their interaction
with graphs. There are many excellent packages available, and of these the one I
have chosen to refer to explicitly is 4 Graphic Approach to Calculus (abbreviated in
the book as Graphical Calculus) by David Tall and Piet van Blokland, available
through Rivendell Software, 21 Laburnum Avenue, Kenilworth, Warwickshire,
CV8 2DR, UK. This runs on an IBM compatible PC with CGA, EGA or Hercules
graphics. For readers with access to a BBC or BBC Master computer there are
earlier versions under the title of Supergraph. There are, of course, some public
domain graph plotters available.

Finally, there are a number of acknowledgements. I am grateful to the series editor,
Dr Johnston Anderson, and to the publishers for their efforts in helping this book to
come to fruition. I am also grateful to my colleagues at Southampton—in particular
Professor Martin Dunwoody—for the interest they have shown. I am grateful to
Ray d’Inverno and David Firth for introducing me to the intricacies of TgX and
P;CTgX which were used to produce the manuscript and diagrams.

Without our students the drive to communicate mathematics would be considerably
less, and in this context I am most grateful to Gemma Cotterell, who read much of
the book in draft and commented perceptively on many aspects. Finally , I have to
acknowledge the help and support of my wife, Ann, without whom nothing would
be possible.

Keith Hirst, Southampton
December 1993



] o Setsand Logic

Sets are the building blocks of mathematics. We use them to construct abstract ideas
from simpler ideas or objects. For example, the idea of ‘even’ can be thought of as a
common property abstracted from the set of numbers {2,4,6,8,...}. The idea of a
continuous function is an abstraction of a common observation about the set of
graphs of many familiar functions. In this case it is much more difficult to imagine a
list of all the continuous functions, and an alternative way of describing a set is
through some defining property which all the members of the set share. So our set of
even numbers can be described as the set of all positive whole numbers that are
divisible by 2 with no remainder. In the case of continuous functions it is more
difficult to give such a property, and indeed the formulation of a definition of a
continuous function occupied mathematicians for a good part of the 18th and 19th
centuries.

If sets are the building blocks, then logic provides a framework whereby these
building blocks can be joined together to form mathematical theories. Logic
provides agreed criteria of validity whereby we can establish properties within a
theory in the way that Euclid did in his books known as The Elements, compiled in
about 300 BC. The study of logic and the formulation of some of the logical rules of
deduction were carried on in ancient Greece, particularly by Plato and Aristotle
during the 4th century BC, and this provided models for reasoning, not only in
mathematics.

In the late 19th and early 20th centuries, there was a resurgence of interest in the
study of logic as a subject. One of the aims of the time was to try to establish a
foundation for the whole of mathematics based purely on sets and logic. Attempts
were made to give precise rules, in symbolic form, called axioms, for the theory of
sets, and to do the same for symbolic logic. The enterprise was not as successful as
its originators had hoped, but it gave rise to a wealth of ideas, some of which are
particularly useful in some branches of Computer Science today.

In this chapter I shall not try to give an axiomatic description of sets and logic. I
shall describe those aspects of these topics which will be helpful in the study of
numbers and sequences, and introduce just the symbolism which is generally found
to be useful in analysing some of the ideas involved.

1.1 Symbolism

Notation and symbolism in mathematics is often thought of as a barrier to
understanding. This is not surprising as it emphasizes the abstract and general
nature of some of the ideas and operations. It is important therefore to emphasize
the functions of symbolism. Firstly, symbols can act as abbreviations for phrases
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that would be cumbersome if used in words repeatedly. Many of the common
symbols are like this, and will be familiar from school mathematics. For example
nobody these days would write equations with the word ‘equals’ in place of the
symbol ‘=" which represents the notion of equality. However, it should be recalled
that even such a common symbol had to have its first appearance in the literature. In
this case it is usually ascribed to Robert Recorde in his book Whetstone of Witte
(1557). He explains that he will use ‘a paire of paralleles . .. because noe 2 thynges
can be moare equalle’. The parallel lines in his symbol for equality are much longer
in fact than we use today. Abbreviation is only one function however. The main use
of symbols is when they relate to one another, as in an equation or in a formal
statement of some kind. The aim there is to try to eliminate the ambiguity which is
bound to occur when verbal statements are used, just by the nature of human
language. For example, the statements “You do that again and you will be in
trouble’ and ‘If you do that again then you will be in trouble’, which we would use
synonymously, suggest that in ordinary language the word ‘and’ can sometimes be
used in place of “if ... then’. This is certainly not the case in logical deductions, and
the use of some form of symbolism can help to emphasize that we are using the
language of mathematics rather than the language of English discourse. The
structure of a symbolic statement can often help to indicate similarities between
disparate ideas, in a way that verbal statements would not. It can show us for
example that the logical structure of two mathematical arguments is identical, even
though the content of one may be arithmetic, whereas the other could concern
geometry. We shall use symbolic statements when they are helpful, while aiming to
keep them at a level which does not inhibit understanding of the underlying ideas. In
many cases we shall use both verbal and symbolic forms, and discuss the translation
between them. In fact, it is often helpful to understanding to translate a symbolic
statement into words.

We will be discussing various sets of numbers a great deal, and so we shall use a
conventional symbolic letter to replace their verbal name, as follows: N will stand
for the Natural Numbers (the counting numbers 1,2,3, etc); Z will stand for the
Integers (whole numbers, positive, negative or zero—Z stands for the German word
Zahlen, meaning simply ‘numbers’); Q stands for the rational numbers, the fractions
(Q stands for quotient, and a fraction is the quotient of two integers); R stands for
the real numbers, all the numbers both rational and non-rational, including familiar
non-rational numbers like /2 and =; finally, C will stand for the complex numbers
(which include numbers whose squares are negative).

1.2 Sets

We have seen examples in the introduction to this chapter of sets described by lists
and sets described by rules or properties. The aspect of a set of objects we are
concerned with at this point is simply that of determining whether a given object is a
member of that set. Imagine that we ask a class of 100 students to think of a
number. We record each number on a piece of paper. We now simply want to test
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whether a given number, say 327, was thought of. We look in the list, and it is
immaterial where 327 occurs. The order within the list therefore does not matter,
and neither does it matter whether 327 appears more than once. Sometimes order
does matter, as in coordinate geometry, where (1,2) and (2,1) are different points. In
the basic theory of sets however, we are not concerned with order or repetition.
These notions can be added later as developments of the theory when we need them.

We use the following notation in connection with the two ways of describing sets.
We conventionally enclose sets within braces { }, and for sets described by lists we
just list the members inside the braces, either as a complete list such as
S=1{2,3,5,7,11,13,17, 19} where the role of S is simply to act as a name for the set
in case we want to refer to it a great deal. Sometimes we cannot list all the members
explicitly, and then we make assumptions about the reader interpreting the pattern
we are trying to indicate in the way we intend. For example, if we write
T={3,6,9,12,15,...} we might assume that readers will interpret this as
continuing and including all the positive integer multiples of 3. Using the same two
sets we can introduce the notation for sets described by rules. So we have

S = {x: x is a prime number less than 20} and T = {n : n = 3k for some positive
integer k}. Membership is indicated by the symbol €, read as ‘belongs to’ or ‘is a
member of”. So we can write 7 € S and 36 € T. For the negation, we would write

4 ¢ Sand 23 ¢ T for example. We sometimes want to indicate what overall set of
numbers some variable is to be drawn from in describing a set, so that, for example,
we would write {z € Q: 2 < ¢ < 3}, and read it as ‘the set of rational numbers lying
between 2 and 3 inclusive’. We will also need to translate from one form of
description to another, as with the two descriptions of S and T above. As another
example, we could write the fact that the numbers 2 and 3 are the only solutions of
the quadratic equation x> — 5x + 6 = 0 as an equality between sets described in the
two forms, as

{x:x*-5x+6=0}={2,3}.

EXERCISES 1.2

1. Write the following sets as lists:
(i) {xeN:2<x*<75},
() {r:1eZand —4 <1t<4},
(ili) {p: pis a two digit prime number},
(iv) {x:x®—2x? - 5x+ 6 = 0},
™ 1y =22 +y=0}

2. Write the following sets using rules:
@ {1,-1,2,-2,3,-3},
(i) {1,4,7,10,13,16,19,22,...},
@) {-1,—4,-9,-16,-25,-36,...},
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(iv) {0.1,0.01,0.001,0.0001,0.00001, ...},
(v) {a,e,i,0,u}.
3. Decide which of the following are true statements:
(i) 6 € {2,4,8,16,32},
(i) 10€{x:x=3n+1and n e N},

(iii) {2} = {x: x? = 4}, (notice the notation {2} for the set containing only one
member, the number 2),

iv) {1,2,1,4,1,6,6} = {1,6,4,2},

™ {p.q,r,s} = {p,q,{r,s}},
(vi) {2w:we Z} ={2,4,6,8,10,...}.

1.3 The Logic of Mathematical Discourse

The truth of a mathematical statement is investigated by two means. The first
involves analysing the statement into its constituent parts and understanding the
logical connections between them. The second involves analysing the mathematical
content of the components themselves. The tools used in the second case will be
those of algebra, geometry, calculus etc. In the first type of analysis, the main tool is
that of logic, and we shall discuss some aspects of that in this section. It is not my
intention to explore mathematical logic in detail, but to understand the ways in
which simple connecting words and phrases are used to relate statements. The
simplest of these is ‘and’. For a statement like ‘3 is prime and 4 is a perfect square’,
its truth relies on the fact that we understand the use of the word ‘and’ to require
that both components of the statement are true, and indeed our knowledge of
numbers tells us that this is the case. The statement ‘3 is prime and 6 is an odd
number’ will be seen to be false by the same usage of the word ‘and’. With this
particular connective word there is no ambiguity. The word ‘or’ does give rise to
ambiguity, because in English it is used sometimes in an inclusive sense and
sometimes in an exclusive sense. If, in English, it is important to be precise we
sometimes use and/or for the inclusive case, and either—or for the exclusive case. In
mathematical discourse it is conventional to use ‘or’ with the inclusive meaning, so
that ‘3 is prime or 6 is an odd number’ is taken as true, and also ‘3 is prime or 4 is a
perfect square’ is true, where the first compound statement has only one true
component whereas the second compound statement has two true components. If
we wish to use the exclusive ‘or’ then we would use a construction like ‘P or Q but
not both’, so that ‘3 is prime or 6 is odd but not both’ is true, whereas ‘3 is prime or
4 is a perfect square but not both’ is false. Notice that the word ‘but’ has been used
here. It carries a nuance of meaning in English different from ‘and’, whereas in
mathematical discourse the logical function of ‘but’ is identical with that of ‘and’.

Many mathematical arguments proceed by a sequence of deductions, which tell us
that one statement in a chain of reasoning implies the next. The logical analysis of
statements of implication is therefore important, and we shall discuss this is some
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detail. There are sets of synonymous words and phrases used in this context and we
shall try to consider them all. Mathematical logic can be approached in a purely
symbolic fashion, which we are not doing here, but it is convenient to use the
abbreviation P=-Q for the statement ‘P implies Q’. The first task is to decide about
the truth of the compound statement ‘P implies Q’ in relation to the truth of its
constituent parts P (called the premise) and Q (the conclusion). If both are true then
‘P implies Q’ will be true. We should notice that the implication being considered
here is a purely logical one; there need be no material connection between P and Q,
so that the statement ‘2 is a prime number implies that this book has more that 10
pages’ will be taken as logically true. If P is true and Q is false we cannot have P
implying Q and so the compound statement ‘P implies Q’ will be false.

So far this reflects the use of implication in ordinary language, but now we have to
grapple with the situation where P itself is false. The first reaction is to wonder how
a false statement could imply anything. Recall however that in algebra we often
work with equations which are true for some values of the variable and false for
others, but we operate on them using valid rules of algebra. So, for example, we
would agree on the truth of the statement ‘x = y = x> = y*’ in ordinary algebra,
even though a special case would be ‘—1 = 1 = 1 = 1’ where the premise is false but
the conclusion is true. A non-mathematical example will help to make the point.
Consider the statement ‘if you pass the examination I will give you £50°. The only
circumstance in which you might accuse me of lying is if you did pass the
examination and I did not give you £50. If you didn’t pass and did not get £50 you
would not be aggrieved. If you did not pass but I nevertheless gave you £50 you
might be surprised, but you would not claim to have been cheated. We often write “if
P then Q’ for ‘P implies Q’ and the if-then phraseology may help to make it clearer
that we are dealing with conditional statements. Acceptance of the algebraic
statement concerning squaring also entails the truth of 2 = 5 implies 4 = 25°, which
we accept as logically true even though both components are false. We emphasize
that the reason is not that we habitually use such arithmetic statements, but that we
often use conditional statements involving variables, whose truth is contingent on
the values of these variables. There follows a table of synonyms for implication.

P=Q Q=P
P implies Q Q implies P
if P then Q if Q then P
QifP PifQ
Ponlyif Q Qonlyif P
P is sufficient for Q Q is sufficient for P
Q is necessary for P P is necessary for Q
P entails Q Q entails P
Q follows from P P follows from Q

As one example, the equivalence of ‘P implies Q’ and ‘P is a sufficient condition for
Q’ reminds us that a careful analysis of the logic of both statements tells us that each
is saying that knowledge of P enables us to deduce Q. Finally, from the discussion
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above, we emphasize that if we are trying to prove a statement of the form ‘P implies
Q’ the only way it can fail is if P is true and Q is false.

Care is needed to distinguish'between ‘if” and ‘only if’. Consider the statement ‘the
number 7 is divisible by 4 if its units digit is even’. This can be re-phrased ‘if the units
digit of the number 7 is even then » is divisible by 4°. This is false, as the example

n = 42 shows. Now consider the statement ‘the number 7 is divisible by 4 only if'its
units digit is even’. This is equivalent to saying ‘if the number # is divisible by 4 then
its units digit must be even’. This is true, since if # is divisible by 4 its units digit
could certainly not be odd.

TUTORIAL PROBLEM |

Discuss the synonyms in the table above, finding examples both from
everyday language and from mathematical discourse which help to clarify the
logical equivalences involved.

Another phrase that is commonly used in mathematics is ‘P if and only if Q’. This
can be analysed as ‘P implies Q and Q implies P’, and in many situations where we
want to prove an ‘if and only if* statement we will prove the two implications
separately. If we have a situation where ‘P if and only if Q’ is true we say that P and
Q are logically equivalent.

The remaining logical idea we have to discuss in this section is that of negation, and

particularly its interaction with implication. For single statements it is clear that ‘not
P’ is true if and only if P itself is false. By analysing the logic of ordinary language it

can be seen that ‘not (P and Q)’ is equivalent to ‘(not P) or (not Q)’, with a reminder
that ‘or’ is being used inclusively.

TUTORIAL PROBLEM 2

Find examples to illustrate the equivalence of ‘not (P and Q)’ with ‘(not P) or
(not Q). Illustrate also the equivalence of ‘not (P or Q)’ with ‘(not P) and
(not Q)’. Investigate the analogous equivalence if ‘or’ were used in the
exclusive sense.

To analyse the interaction of negation and implication, we will start with an
example.

Example |

Show that if m? is an even number then m is an even number.

Let us suppose that m is an odd number. Then m can be written in the form
m = 2t + 1, where ¢ is an integer. Squaring then gives
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mr=(2t+ 1) =42 +414+1 =227 +21) + 1,

showing that m? is odd. Common sense logic then argues as follows: if we have m?
even then we could not have m odd, because that would imply that m? is odd. So m
itself is in fact even.

The underlying logic of the argument in Example 1 can be expressed through the
logical equivalence of the statement ‘P implies Q’ with ‘(not Q) implies (not P)’. This
is exactly what we have used. We have shown that m? even implies m even by
establishing the logically equivalent statement that m not even implies m? not even.
This kind of argument occurs sufficiently often in proofs for us to introduce some
nomenclature. If ‘P implies Q’ is a conditional statement, then its equivalent form
‘not Q implies not P’ is called the contrapositive.

Given a statement ‘P implies Q’ of implication, we often wish to consider the reverse
implication ‘Q implies P’, called the converse of ‘P implies Q’. It is important to
realize that a statement and its converse are not logically equivalent. For instance,
the ordinary rules of algebra give us the truth of ‘a = b implies a®> = »%’. The
converse is not true however, because for instance (—2)* = (+2)?, but this does not
imply that —2 = +2.

Sometimes the converse of a statement is true, but this is a consequence of the

mathematical content of the statement and not a matter of logic. So, for example,

the converse of the statement in Example 1 is true, because m even does imply that
2 .

m* is even.

The argument in Example 1 is an illustration of an indirect proof, where one
assumes that the conclusion is false. A related method of proof is known by the
Latin term reductio ad absurdum. One of the best known examples of this is the
proof that /2 is not a rational number, and this is given as Proposition 1 in

Chapter 5. The logical idea is that we assume the conclusion to be false, and derive a
logical contradiction saying that some other statement R is both true and false. This
is absurd, and so the original assumption that the conclusion was false cannot be
correct. Indirect proofs occur a great deal, and in solving problems it is always a
good strategy to ask whether an indirect method might work if one cannot see a
method involving a direct chain of deduction from premise to conclusion.

EXERCISES 1.3

1. Write the contrapositive and converse of the following statements of
implication. Decide in each case whether or not the converse is true.

(i) If m?> = 10 then m is not a rational number.
(i) If x=2then x> — 5x + 6 = 0.
(iii)) If 6 = 7 then sin 0 = 0.
(@iv) Iff(x) > 0 for all x between 0 and 1 then fol f(x)dx > 0.
(v) If f'(a) = 0 and f”(a) < 0 then f (x) has a local maximum at x = a.
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2. Give proofs of the following statements using the contrapositive. You may wish
to rephrase them, referring to the logical equivalences discussed before Tutorial
Problem 1 above.

(i) The number m being odd is a necessary condition for n* to be odd.
) t=1+2+...+kift=k(k+1)/2.
(iii) x? < 2 is a sufficient condition for x2 + x — 12 < 0.

(iv) The integer n cannot be expressed as a sum of two square integers if n has
remainder 3 on division by 4.

(v) A chord of a circle does not pass through the centre of the circle only if it
subtends an angle different from 90° at the circumference.

1.4 Statements Involving Variables

The statement ‘x?> — 2x — 3 = 0’ is neither true nor false. It contains the ‘free
variable’ x. When we are discussing such a statement we have to make it clear what
set values of x can be drawn from. We are often interested in finding the values of x
for which the statement is true, and in this case, if x can stand for any integer, it is
true when x = —1 and when x = 3. On many occasions however, an equation or
some other kind of statement involving a variable may be too complicated to solve,
and we will then be interested to know whether there are any values of x at all which
when substituted will give a true statement. Statements involving variables are
sometimes referred to as open statements or open sentences, to distinguish them
from statements such as ‘13 is a prime number’ which are definitely either true or
false.

Sometimes we find statements which are true for all values of x which can be
substituted: for example, x> — 1 = (x — 1)(x + 1) is true for all numbers x. Another
example is cos?d + sin?0 = 1, again true for all numbers . Such statements are often
called identities.

So the two most common questions we ask about a statement involving a variable
are (i) is there any value of the variable which makes the statement true? (ii) is the
statement true for all values of the variable? It is useful to symbolize such
statements, as they appear in many places later in this book and throughout
mathematics.

The symbolic statement 3x € T, S(x) stands for ‘there exists a member x of

the set T such that S(x)’, where S(x) is some statement involving the

variable x. So, for example, as we saw at the beginning of this section, the
statement Ix € Z, x2 — 2x — 3 = 0 is a true statement. To demonstrate its truth we
can specify those values of x which satisfy the equation, namely x = —1 and x = 3.
Notice however, that to demonstrate the existence we only need to produce one
value of x which satisfies the equation. Finding both is superfluous, but of course
more informative.
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The symbolic statement Vx € T, S(x) stands for ‘for all (for each, for every)
member(s) x of the set 7, S(x)’, where S(x) is some statement involving the variable
x. The two identities given earlier in this section illustrate this, for the statements

VxeR,x*—1=(x—1)(x+1) and V€ R,cos?f+sin’f = 1

are both true. To demonstrate their truth is part of the development of elementary
algebra and trigonometry respectively. Generally, to prove ‘universal’ statements of
the form Vx, ... is more difficult than to prove ‘existential’ statements Jx, . .. .
Statements of the kind we have been considering are often referred to as quantified
statements. The symbol V is the universal quantifier, and 3 is the existential quantifier.
It is important to note that in a quantified statement the variable is no longer a free
variable. This means that, for example, the two statements

VxeR, x> —1=(x-1)(x+1) and VieR,Z2-1=(—-1)(t+1)
say exactly the same thing. The letter used for the vuriable is immaterial.

Throughout this book we shall be working with statements involving quantifiers.
Their expression in symbolic form does offer some clarity, but it is important to be
able to handle both symbolic and verbal forms, and we shall work with both in most
cases. So, for example, if we consider a statement like ‘all positive real numbers have
a real square root’, we can see that it begins ‘all positive real numbers’. We have a
choice as to how to express this, for example we could define R* as a symbol for the
positive reals and write ‘Vx € R*’, or we could take it as understood that x is real,
and write ‘Vx > 0’, or we could write ‘Vx € R,x > 0 = ...”. Now the word ‘have’ in
the sentence is asserting the existence of a number with the specified property. We
shall need to choose a variable to stand for this number, say y. To say that y is a
square root of x is equivalent to saying that y?> = x. So we can reformulate the
verbal statement in an alternative verbal form which corresponds more closely to the
analysis we have undertaken; ‘for every positive real number x, there exists a real
number y such that y* = x’. Finally, we can translate this into its symbolic
counterpart;

Vx eRt,3y eR, y? = x.

When we encounter such statements we shall sometimes want to disprove them, and
this requires us to think about the negation of a quantified statement. We shall do
this through an analysis of ordinary language. If we say that a statement of the form
‘for all x, S(x)’ is false, this is logically equivalent to saying that it is possible to find
at least one example of a value of x which renders S(x) false. So, for example, the
statement ‘for all integers x, x/2 is an integer’ is shown to be false merely by saying
that if x = 3 then x/2 is not an integer. Such a case is known as a counterexample. If
we wish to negate a statement of the form ‘there exists x such that S(x)’ then we
have to demonstrate that for all values of x, S(x) itself is false. To summarize:

not(Vx, S(x)) is equivalent to 3x, (not S(x)),

not(3x, S(x)) is equivalent to Vx, (not S(x)).
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EXERCISES 1.4

1. Translate the following verbal statements into symbolic statements using
quantifiers. In each case say whether the statement is true.

(i) Every integer is a rational number.

(ii) There is a rational number between —1 and +1.
(iii) All the roots of the equation 2x*> — 5x + 3 = 0 are integers.
(iv) Every rational number is less than its square.

(v) There is a real number satisfying sin x = —2.

2. Express each of the following symbolic statements in verbal form, and state
whether each is true. Write the negation of those statements that are false using
quantifiers.

(i) Vx e R,cos x =0 = |x] < 2m.
(i) 3¢ € Q,23¢9 = 78.

(i) Va € {1,2,3},*  —h+7>0.
(iv) VxeR,cosmx=0=>x € Q.
(V) ViteZ,t<0or+teR.

1.5 Statements Involving More Than One
Variable

The statement Vx € R*,3y € R, »? = x about square roots which we encountered
near the end of the previous section involved two quantifiers, and we need to
consider such statements a little more closely. Consider the two statements ‘every
citizen has a duty to help others’ and ‘every citizen has a date of birth’. In the first
case the abstract notion of ‘duty to help others’ is something which does not vary
from one citizen to another (although the manner in which that duty is discharged
may vary). On the other hand the ‘date of birth’ is something that will vary from one
person to another. We shall find it important to distinguish these cases, and the use
of quantifiers will help to clarify this distinction. Let us consider the statement about
birthdays. We can reformulate this using variables as follows: for every person P,
there is a date D such that D is P’s birthday. We would all agree that such a
statement is true. If we now reverse the order of quantification we obtain the
statement: there is a date D such that, for every person P, D is P’s birthday. Is this
true or false? To decide this we have to try to produce a value of D which makes the
statement [for every person P, D is P’s birthday] true. Let us try one value, for
example D = 4th February. The statement in brackets then becomes [for every
person P, 4th February is P’s birthday]. This is patently false, and I am sure
everyone could provide a counterexample. Any other value of D we try will similarly
render the statement false. This demonstrates that the order of quantification is
important, whereas sometimes in ordinary language the order can be used
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ambiguously. Let us now consider a more mathematical example with the two
statements:

VxeZ,[3yeZ,x<y] and FyeZ, [VxeZ, x <y

We do not usually find square brackets used in such statements; they are inserted
here for clarity of explanation. The first statement is asserting that, given any real
number x, there is a larger one y. This is clearly true, for example y = x + 2 will
suffice. It should be noted here that the value of y can and does depend upon x. The
second statement is asserting the existence of a real number greater than all real
numbers, and this is false; there is no largest real number. A further analysis using
negation of quantified statements will serve to emphasize this conclusion. The
statement

not(y € Z, [Vx € Z, x < y))
is equivalent to

Vy € Z,not[Vx € Z, x < y,
which in turn is equivalent to

Vy € Z,3x € Z, not[x < y],
and therefore equivalent to

VyeZ,IxeZ, x>y,

which is easily seen to be true, for example by taking x = y + 1 (or even x = y).

TUTORIAL PROBLEM 3

Find some more statements, both from ordinary language and from
elementary mathematics, where changing the order of quantification changes
the meaning and truth of such statements.

TUTORIAL PROBLEM 4

Discuss the equivalence between the symbolic statement
Va>0,3b>0,b<a

and the verbal statement ‘there is no smallest positive real number’. Illustrate
why this is true by using a number line.

Formulate an analogous symbolic statement equivalent to ‘there is no largest
real number’.
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EXERCISES 1.5

1. Translate the following verbal statements into symbolic statements using
quantifiers. In each case say whether the statement is true.

(i) There is an odd integer which is an integer power of 3.

(ii) Given any positive rational number, there is always a smaller positive
rational number.

(iii) Given a real number a, we can always find a solution of the equation
cos(ax) = 0.

(iv) For every real number x we can find an integer n between x and 2x.

(v) Given any real number k there is a solution of the equation kx = 1.

(vi) For every positive real number a there are two different solutions of the

equation x> = a.

2. Express each of the following symbolic statements in verbal form, and state
whether each is true. Write the negation of those statements that are false using
quantifiers.

(i) VxeR,IyeR,x+y=0.

(i) IyeR,VxeR, x+y=0.

(i) Ve e R,Vrn e N, nt > ¢.

(iv) 3aeN,IbeZ a® - b =3.

V) VueR,IveR,VweR,u+v<w.

1.6 Equivalence Relations

Human beings classify their experiences. It is the only way to make sense of the
world. Think about a young child learning colours. Parents will talk to the child
about a variety of toys and other things and use the word ‘red’. The child somehow
has to discern what these phenomena have in common and to ignore differences in
order to acquire the abstract concept of ‘red’. The fact that one object is a lego brick
and the other a pair of mittens must be ignored. It is the idea that they are both red
that is being emphasized. The learning is experiential: you can’t tell a 3 year old
child about light of a certain wavelength!

We engage in this kind of activity all our lives; it is the basis of language. If we think
about any everyday word like chair, car, umbrella, bird, we are generally thinking
not of individual objects but of classes of objects. This is done also in science and
mathematics. Biologists classify organisms, and indeed there is a whole subject of
taxonomy. Organic chemists think about alcohols, a whole class of compounds
which have some common feature. Physicists think about the concept of force,
which manifests itself in a variety of circumstances. In school mathematics we learn
the notion of a right-angled triangle, even though there are infinitely many different
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possible shapes and orientations. We learn to regard sets of equivalent fractions as
relating to the same number.

In everyday life, classifications are often a bit fuzzy; many of you will have had
arguments about whether a colour is blue, green or turquoise. Sometimes we have to
be exact however; for example every motor vehicle must be precisely classified as a
car, van, motorcycle, heavy goods vehicle, etc, for the purposes of road tax. Another
example relates to hovercraft. When they were first developed it was very difficult to
decide whether they should be covered by regulations for ships or for aircraft, and it
was legally important to decide. It is this exact kind of classification we use in
mathematics, and as with motor vehicles we divide up a set into subsets in a
particular way. Let us pursue this example a bit further. Let ¥ denote the set of all
motor vehicles in the UK. This set is partitioned into subsets {car, van, ...} in the
following way.

(i) Any two subsets are either identical or disjoint.
(ii) The subsets together make up the whole of V.
(iii) No subset is empty.

In mathematics, an alternative way of characterizing such partitions has been
developed, by looking at relationships between individual objects in the same class,
which is somewhat analogous to the way in which road tax regulations seek to define
vehicle types by specifying characteristic properties that all vehicles of a particular
class share. We consider relationships all the time in mathematics: for example, we
might say that one number is smaller than another; one number is the square of
another; one triangle is a reflection of another; one fraction is equivalent to another.
Relationships arising from partitions are called equivalence relations. They are
characterized by three properties described below. Before we give the abstract
definitions let us look at another example. We consider the set N of natural numbers
and say that a is equivalent to b if and only if @ and b have the same remainder on
division by 5. If we now group together numbers which are equivalent we will obtain
five subsets:

{1,6,11,16,...}
{2,7,12,17,...}
{3,8,13,18,...}
{4,9,14,19,...}
{5,10,15,20,...}
You should check that these subsets satisfy the three properties of a partition

explained earlier. The subsets of a partition are called equivalence classes, and so in
this example there are five equivalence classes.

Following these examples we are now in a position to give definitions of partition
and equivalence relation in terms of sets and logic.
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e Definition |

A partition of a set S is a collection {4, B, C, ...} of subsets of S with the following
properties.

(i) If K and H denote any two subsets of the partition then K = H or K and H have
no members in common (i.e. they are disjoint).

(ii) Every member of the subset S is a member of a set in the partition.

(iii) Every subset in the partition contains at least one member of S.

In defining an equivalence relation we shall need to introduce a symbol to stand for
the relationship. We shall use the symbol =. So, in the last example, a = b would
stand for ‘a has the same remainder on division by 5 as &’. In general, we would read
a = b as ‘ais equivalent to b’ or ‘ais related to b’. (]

e Definition 2

A relationship = on a set S is an equivalence relation if the following three
properties are satisfied.

(i) (reflexivity) Va € S,a= a.
(ii) (symmetry) Va,b€ S,a=b=b=a.
(iii) (transitivity) Va,b,c€ S,a=bandb=c=a=c.

Verbally, these properties can be stated

(i) every ais related to itself,
(i) if a is related to b then b is related to a,

(iii) if a is related to b and b is related to c then a is related to c. (]

We have quoted the example of equivalent fractions in this context, and we shall
pursue that idea further in Chapter 3, using the notion of an equivalence relation. In
the example involving remainders on division by 5, we saw how the relationship
gave rise to a partition of the set of natural numbers.

TUTORIAL PROBLEM 5

Let S denote the set of lines in the plane. Show that the relationship described
by ‘/ is parallel to m’ is an equivalence relation on S. Discuss which of the
three properties in Definition 2 are satisfied by the relationship described by
‘lis perpendicular to m’.

We shall conclude this section by giving a proof that partitions and equivalence
relations are really the same idea, looked at from different points of view.
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e Proposition |

Given an equivalence relation = on a set S, the collection of equivalence classes
forms a partition of S. )

PROOF
We have to prove that the collection of equivalence classes satisfies the three
properties in the definition of a partition.

Suppose 4 and C are any two equivalence classes which are not disjoint. So there is
some member, say b, which belongs to both. Now let @ denote any member of 4 and
¢ any member of C. Since a and b both belong to 4, we must have a = b. Since b and
¢ both belong to C we must have b = ¢. Transitivity for equivalence relations now
tells us that @ = ¢, and so a and ¢ belong to the same equivalence class. Hence
A=C.

Now let s denote any member of S. By reflexivity s = s, and so every s is in some
equivalence class, and likewise any equivalence class contains at least one member.
This establishes the second and third properties of a partition. ®

We have apparently not used the symmetry property of an equivalence relation in
this proof, but in fact it is implicit in the first part. A purely symbolic argument
would demonstrate this, but we have preferred a verbal proof, and symmetry is
implicit in the language used.

e Proposition 2

Given a partition of a set S, the relation = defined by ‘a = b if and only if ¢ and b
belong to the same subset in the partition’ is an equivalence relation. [ )

PROOF
Given any a € S, then of course a is in the same subset as itself, and so a = a. This
proves reflexivity.

If a = b then a is in the same subset as b, so that naturally 4 is in the same subset as
a,i.e. b = a, proving symmetry.

Now suppose a = b and b = c. So a is in the same subset as b and b is in the same
subset as ¢. These two subsets are not disjoint, since b belongs to both, and so by the
first partition property they must be identical. So a belongs to the same subset as ¢
and hence a = ¢, proving transitivity. [ )

The first two parts of this proof seem to be stating the obvious. This is because the
notion of equivalence is so deeply embedded in our ordinary language.

Example 2

A relationship is defined between integers by: a = b if and only if a — b is an integer
multiple of 4. Show that this is an equivalence relation and determine the:
equivalence classes.
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Given any a € Z, a — a = 0 x 4. This proves reflexivity.

Ifa=bthenforsomen € Z,a—b=nx4,s0b—a=(—n) x 4, showing that
b = a. This proves symmetry.

To demonstrate transitivity, suppose thata=band b =¢,i.e.a— b =n x 4 and
b — ¢ = m x 4 for some m,n € Z. Adding the two equations gives
a—c=(n+m)x4iea=c

To determine the equivalence classes, we note that a — b = n x 4 can be rewritten as
a = b + n x 4, so that given a number b, adding any multiple of 4 will give a number
in the same class as b. If we start with b = 0, then with b = 1 etc, we find that b = 4
gives the same class as b = 0, because 0 and 4 are equivalent. This gives just four
equivalence classes, namely

{...,—8,-4,0,4,8,12,.. },{...,-7,-3,1,5,9,...},
{...,~6,-2,2,6,10,...},{...,=5—1,3,7,11,...}. °

EXERCISES 1.6

1. For each of the following relations, determine which of the three properties of
reflexivity, symmetry and transitivity they satisfy. For those which are
equivalence relations describe the equivalence classes. (In each case the set is
specified and then the definition of the relationship is given.)

(i) S'is the set of citizens of Spain: p = ¢q if and only if p is a brother of g.

(ii) S'is the set of cities, towns and villages in England: 4 = k if and only if 4 is
in the same county as k.

(iii) S'is the set of triangles in the plane: ¢ = dif and only if d can be obtained
by a translation of c.

(iv) S=Q:x=yifand onlyif y = —x.

(v) Sis the set of differentiable real functions: f{x) = g(x) if and only if
f(x) =g'(x) for all x.

(vi) Sis the set of points in the plane: (x;,y;) = (x2,y,) if and only if
R+ =x3+53

Summary

There are two key ideas in this chapter, used throughout mathematics. The first is
the process of mathematical proof, analysing the logical relationships between
statements, especially those involving implications. The notion of indirect proof
using the contrapositive or contradition is equally important. The other area
emphasized is the logical analysis of quantified statements involving variables. This
will be used in many places in this book, particularly in Chapters 5 and 7.
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EXERCISES ON CHAPTER |

1. Write the following sets as lists:
(i) {p: pis a prime number and p? < 1000},
(i) {(m,n) :m € Z,n € Z and m?* + n* < 20},
(iii) {r € R:tant=—1}.

2. Write the following sets using rules
@ {1,3,6,10,15,21,28,...},
@) {...,-7n/2,-3%/2,7/2,57/2,97/2,.. .},
(iti) {h,i,r,s,t}.

3. Decide which of the following are true statements:
) {4,3,5,9} = {9,3,4,5},
(i) {2} = {¢: ¢ is an even prime number},
(i) {nm:ne€Z} = {x € R:sinx =0},
(iv) —le {2x—-5:x e N}.

4. Prove or disprove the following statements:
(i) nis a multiple of 3 if the sum of its digits is a multiple of 3,
(ii) nis a multiple of 3 only if the sum of its digits is a multiple of 3,

(iii) n is divisible by 3 if the number formed from its last two digits is divisible
by 3,

(iv) nis divisible by 3 only if the number formed from its last two digits is
divisible by 3,

(v) nis divisible by 4 if and only if the number formed from its last two digits is
divisible by 4.

5. Write the contrapositive and converse of the following statements of
implication. Decide in each case whether the statement and/or the converse is
true. Prove those statements and converses which are true, and give an
explanation for those which are false.

(i) If m?* =9 thenm = 3.
(i) If 8 = 37/2 then cos 8 = 0.
(i) If x = 2 then x2 — 5x + 6 > 0.

6. Translate the following verbal statements into symbolic statements using
quantifiers. In each case say whether the statement is true.

(i) The equation cos 2x = cos’x—sin’x is an identity.
(ii) There are no rational numbers satisfying x> — x — 1 = 0.

(iii) All the roots of the equation x> — 4x? + 7x — 6 = 0 are square integers.
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Express each of the following symbolic statements in verbal form, and state
whether each is true. Write the negation of those statements that are false using
quantifiers.

i) VeeR,c#0=>3deR,cd=1.
(i) VieR,IneZ,n<t<n+1.
(i) 3geQ,VneZ,nx g €N.
For each of the following relations, determine which of the three properties of
reflexivity, symmetry and transitivity they satisfy. For those which are

equivalence relations describe the equivalence classes. (In each case the set is
specified and then the definition of the relationship is given.)

(i) Sis the set of people living in Southampton: i = j if and only if i is older
than j.
(i) S is the set of points in the plane: (x;,y;) = (x2, y2) if and only if
X1 +y2=x2+y1.
(iii) S =Z: m = nif and only if m is an integer multiple of n.
(iv) S=N:a=bifand only if a — b is a prime number.
(v) S=2Z:c=difand only if d = ¢ + 7k for some k € Z.



2 o The Integers

‘God made the integers, and all the rest is the work of man.” So wrote the
mathematician Leopold Kronecker (1823-1891). Whilst we may find this statement
strange, it does express the idea that any mathematical theory has to start
somewhere; that there have to be some basic statements on which the theory is built.
These statements are called axioms, and are not part of the development of the
theory; they are agreed foundations. In the case of subjects like number theory and
geometry, many of whose properties become familiar long before we wish to
consider a formal theory, the axioms are formulated to express ideas that are part of
our already existing knowledge and understanding. This activity was undertaken in
respect of the natural numbers by Guiseppe Peano (1858-1932), and an analysis of
his system, known as the Peano Axioms, reveals that they are based on the idea of
counting; more precisely on the idea that each number has a successor. This notion
is found useful in many situations where we have an ordered set of things, and the
notion is included in some computer languages, for example Pascal.

Peano worked in a number of areas of mathematics, and was especially interested in
mathematical logic. In 1889 he published a booklet entitled “The principles of
arithmetic, presented by a new method’. The bulk of this is written purely in
mathematical and logical symbols, with the preface and a few explanatory notes in
Latin. He refers particularly to the work of George Boole, Hermann Grassmann,
Richard Dedekind and Georg Cantor as helping him to develop his axioms. Peano
begins with nine axioms. Four of these are concerned with the use of the = symbol,
and essentially are saying that the relationship of equality has the properties of an
equivalence relation, as defined in §1.6. The remaining axioms are used to give a
formal characterization of the system N of natural numbers. Peano used the
notation a + 1 to denote the number following a, and then used the axioms to define
addition. This has an appearance of circularity, as though addition were being used
to define addition. Later formulations dealt with this by using a separate notation
for the number following a, and this helps to make it clear that the development is
not circular. We shall follow this procedure.

2.1 Peano’s Axioms

The system N of natural numbers satisfies the following axioms.

There is a successor function on N, denoted by succ.

2. There is a member of N, denoted by 1, which is not the successor of any
number.

3. The successor function satisfies succ(a) = succ(d) if and only if a = b, i.e. itisa
one-to-one function.
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4. If Sis a subset of N having the properties
G 1les,
(ii) if k € S then succ(k) € S,
then S = N.

The last axiom is known as the axiom of induction. If one thinks of succession as
reflecting the idea of counting on by 1, then this axiom says that if we start at 1
(property (i)) and continue counting on from wherever we reach (property (ii)), then
we will eventually be able to reach any number. This sounds obvious, and the fact
that it does demonstrates that we have the intuitive idea that we could count for
ever, even though most of us will only ever have counted up to a few hundred
perhaps. This is the aim of the axiomatization, to formulate a set of mathematical
rules which faithfully reflect our views of what the number system is. Having
achieved this formulation, it proves to give us an extremely powerful tool for
establishing properties of the number system on a proper mathematical footing,
often reflecting some pattern of regularity observed from a few special cases, and
conjectured to be true in general.

We mentioned the use of the successor function in the Pascal programming
language. The following segment of Pascal code would, in theory, print out all the
natural numbers. (In practice of course most computer systems can only handle
integers within certain limits.)

n:=1;
repeat

write(n);

n:=succ{n) ; (this is equivalent to n:=n+1)
until false;

Peano used his system of axioms to develop the whole of arithmetic, including the
four arithmetic operations, rules of indices, divisibility and some elementary number
theory, and some of the properties of rational and irrational numbers. We shall not
give the full development here, but illustrate the methods used by explaining how
addition can be defined from the axioms.

Addition is defined by the following two rules:

(i) a + 1 is defined to be the successor of a,
(ii) a+ (b + 1) is defined to be the successor of a + b.

The next important step is to prove that this does properly define addition of any
two numbers. To do this we use the axiom of induction, as follows.

Let a denote an arbitrary member of N. Let S be the subset of numbers b for which
the two rules properly define a + b. Rule (i) for addition above tells us that 1 € S,

while rule (ii) tells us that whenever b € S then the successor of b € S. The axiom of
induction then says that S = N, so that a + b is well defined for all numbers a and 5.
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The definition of addition is an example of definition by induction, sometimes called
recursive definition. As another example of this, consider the following inductive
definition of the factorial function.

We define n! for n € N by the following two properties,
(i) 1!is defined to be 1,

(ii) for all k € N, we define (k + 1)! to be (k + 1) x k!.

Discuss how this gives a proper definition of the factorial function, using the
axiom of induction.

As a further illustration we shall see how the ¥ (Greek capital ‘sigma’) notation for
sums can be fitted into the framework of inductive definition.

Suppose we have a function f{i) defined on N (for example f(i) = i?), and that we
want to add a large number of successive values of this function. So, for example, we
may want to find the sum of the first n square numbers. We use two forms of
notation for this, expressed as the two sides of the identity

n
Zi2=12+22+32+...+n2.
i=1

The right-hand side is meant to indicate the procedure of continual addition. The
left-hand side is an abbreviated notation which makes use of the fact that we have a
general formula (i?) for the number we are adding, and is also often more
algebraically convenient than the right-hand side notation. We can define the left-
hand notation inductively as follows:

Zf(z) is defined for all n by (i) f(1) if n=1,
i=1

n+1

(ii) Zf(i) =fln+1)+ if(i).

Another way of appreciating the axiom of induction is to demonstrate its
equivalence with an intuitively obvious property of the natural numbers, the well-
ordering principle, which states that any non-empty subset of the natural numbers
has a least member.

e Proposition|

The axiom of induction implies the well-ordering principle. ()
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PROOF

Let T be any non-empty subset of N. If 1 is a member of T then it is the least
member of 7. So suppose that 1 is not a member of 7. We now proceed to construct
a proof by contradiction. Assume that T does not have a least member. Let S denote
the set of numbers a with the property that a is smaller than all members of 7. We
know that 1 € S. Now if a is a member of S we cannot have a + 1 being a member of
T, because a is less than all members of T and so a + 1 would be the least member of
T. This argument shows that if a € S then a + 1 € S. So the axiom of induction
implies that S = N. This would imply that 7 had no members at all. This is a
contradiction, and so the assumption that 7" has no least member must be false. @

e Proposition 2

The well-ordering principle implies the axiom of induction. ®

PROOF
Let S denote a subset of N having the two properties

i) 1€8S,
(ii) if k € S then succ(k) € S.

We have to prove that the well-ordering principle implies that S = N. Let T denote
the set of numbers not in S. If T is non-empty then it has a least member, denoted by
a. Property (i) implies that a # 1,s0a— 1 e N and a — 1 ¢ T, and therefore

a — 1 € S. But now property (ii), with k replaced by a — 1, implies that @ € S and so
a ¢ T. We have shown that a € T'and a ¢ T, which is a contradiction. This is an
example of reductio ad absurdum, discussed in §1.3. We must therefore have T
empty, i.e. S =N. )

Notice that we have used subtraction in this proof, without in fact having defined it.
In a complete account of the foundations of the number system we would do so
after the development of addition as outlined above.

2.2 Proof by Mathematical Induction

The axiom of induction is the basis of an important method of proof known as
‘Proof by Mathematical Induction’. This involves proving statements involving a
variable n, typical examples being

()forallneN, B +23+ 3+ ...+ =n’(n+1)?/4,

(ii) for alln > 3,2" > 1 4 2n,
(iii) for all n > 4, n! > 2",
Each of these statements is of the form P(n), and the variable » ranges over all
natural numbers from some initial number onwards. To explain the procedure we
shall take this initial number to be 1, without any loss of generality. The procedure is

as follows. We first establish that P(1) is true. Now let us suppose that # is the first
number for which we do not (yet) know that P(n) is true. (Another way of stating
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this is to suppose that P(k) is true for 1 < k < n — 1.) From this supposition we aim
to deduce that P(n) is true. Before discussing this further we shall justify the
procedure. Let S be the set of numbers # for which P(n) is true. The procedure
shows that 1 € S and thatif »n — 1 € Sthen n € S. The axiom of induction then says
that S = N, i.e. that P(n) is true for all » € N. In practice, it is often the case that
P(n) is deduced using only P(n — 1), as in examples 1 and 2 below. In some cases,
like Example 3, we deduce P(n) from P(k) for some value(s) of k between 1 and
n—1.

Both stages in the procedure of proof by induction are important. The second stage,
referred to as the inductive step, is clearly needed, and is usually the major part of the
proof. The supposition that P(k) is true for 1 <k < n — 1, used in proving the
implication, is called the inductive hypothesis. The first stage, showing that the
statement is true for some starting value (in many cases n = 1), is equally important.
(It is often referred to as the anchor or initialization for the proof.) For example, the
implication n — 1 = n = n = n + 1 is true, even though the constituent equations are
both invalid, because adding 1 to both sides of an equation is a valid algebraic
operation. This corresponds to the inductive step in a proof. However, this does not
mean that we can show that » = n + 1 for all n. There is no anchor; no initial value
of n from which a set of true statements can begin. We shall now consider some
examples of this procedure. In the first we shall label the components of the proof
explicitly. Later we drop that practice, but these stages are always present.

Some accounts of mathematical induction make a distinction between the case
where the inductive hypothesis supposes that P(k) is true for 1 <k <n— 1, as we
have done, and the simpler form of the hypothesis which supposes only P(n — 1).
The first situation is sometimes referred to as strong induction, but in fact the two
forms are equivalent.

Example |

1 2
Prove by mathematical induction that Z P = ——(%_—)
i=1

Notice that we are using the summation notation as explained above after Tutorial
Problem 1, in this case with f(i) replaced by i*.

for alln € N.

The anchor step

When n = 1 both sides of the equation are equal to 1, so the result is true.

The inductive hypothesis

Suppose the result is true for 1 <k < n— 1, i.e. that Zz =

K (k + 1)
1<k<n-1. i=1 4

The inductive step

We shall show that P(n — 1) = P(n) where P(n) stands for the equality we are trying
to establish. We have
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n n—1 2 2
-1
E B=n4+ E P=n+ g’—’# (using the inductive hypothesis)
i=1 i=1
A+ (n—1’n* (P +2n+1) nP(n+1)
- 4 - 4 - 4 ’

Conclusion

We have shown that we can deduce P(r) from the hypothesis that P(n — 1) is true,
and so together with P(1) this establishes by induction that the result is true for all
values of n.

Firstly, we note the contraction ‘by induction’ is often used instead of ‘by
mathematical induction’. More importantly though, we should discuss the phrase
‘suppose that the result is true for 1 < k < n — 1’. This looks as if we are assuming
what we want to prove, and this causes doubts in the minds of many concerning the
validity of the method, despite the explanation in terms of the axiom of induction.
To understand this we should recall that the procedure in Example 1 involved
establishing the truth of the statement P(n — 1) = P(n). We discussed statements of
implication in some detail in §1.3, and there we noted that a statement of the form
‘p implies ¢’ is making no assertion about the truth of p or of ¢. The truth of such an
implication simply asserts the validity of the deduction which the implication
contains. This is emphasized by the conditional ‘if’ in the version ‘if P(n — 1) then
P(n). The discussion in §1.3 made it clear that a statement of implication p = ¢ is
true when the premise p is false, and so when we say ‘suppose that P(n — 1) is true’
this is to be regarded as the beginning of a demonstration of the truth of the
implication P(n — 1) = P(n), where we have taken it for granted that if P(n — 1)
were false then the implication would certainly be valid, in view of §1.3.

Given this discussion, the question will often be asked as to whether we can prove
that the method of induction is valid. Some books attempt to do this by appealing to
the well-ordering principle, which some find intuitively more appealing than
induction. However, this would be circular, because we have shown that the axiom
of induction and the well-ordering principle are in fact logically equivalent. So what
we have to realize is that the validity of the method of proof by induction is at root a
matter of an axiom. We choose to accept the method as valid, just as in fact we
choose to accept as valid all other logical procedures we use. It may be of interest to
note that not all mathematicians share this view. Some would regard the procedures
of logic as existing a priori rather than being human inventions. This is a point of
view often ascribed to the Ancient Greek philosopher Plato.

Discuss in your tutorial group the logical principles underlying the procedure
of proof by mathematical induction. Discuss your reasons for belief in its
validity.




The Integers 25

In the next example the anchor for the proof of the first result is different from 1.
The necessity for this is made clear in the statement of the problem.

- Example 2
(a) Prove by induction that 2" > 1 + 2n for alln > 3.

(b) Prove by induction that n? + 3n is divisible by 2 for all n € N.

(a) When n = 3 the statement says 23 > 1+ 2 x 3, which is true. Suppose that
271 > 14 2(n — 1). We then have

2" =2x2"1>2(14+2(m—1)) (by the inductive hypothesis)
=244n-1)=2+2(n-1)+2(n—-1)>3+2(n—-1)=1+2n.

(We have used 2 + 2(n — 1) > 3 here. This is certainly true because n — 1 > 3.)

This has shown that if the inequality is valid for n — 1 then it is valid for n. This is
the inductive step which, together with the anchor step, proves the inequality for all
n>3.

In fact, in this example the inequality is not valid for n = 1 or for n = 2, so that
neither of these would have served as an anchor value.

(b) When n = 1, n? 4 3n = 4, which is divisible by 2. This establishes the anchor for
the induction.

Now suppose the result is true for n — 1. We then have
+3n=m-124+2n-1)+1+3n—-1)+3
=((n—1)2+3(n-1)+2(n+1).

The first term, (n — 1)? 4 3(n — 1), is divisible by 2 by the inductive hypothesis. The
second term, 2(n + 1), is divisible by 2 because of the factor of 2. So the whole
expression is divisible by 2. We have therefore deduced the result for n, and so by
induction the result is true for alln € N.

Example 3

Prove that for all n > 2, n can be expressed as a product of primes. (In the case of a
prime number itself we allow the ‘product’ to contain just the one factor.)

By the convention above, 2 is a product of primes (with just the single factor 2).
Now suppose that k can be expressed as a product of primes for2 <k <n—1.
Consider the number #. If it is a prime number then it is a (one-factor) product of
primes. If it is not prime then it can be expressed as a product n = r x s where r and
s are both numbers between 2 and n — 1. The inductive hypothesis asserts that each
of these two numbers can be expressed as a product of primes, and this shows that n
itself is also a product of primes. So by induction every » > 2 can be written as a
product of prime numbers.



26 Numbers, Sequences and Series

EXERCISES 2.2

1. Prove the following by the method of mathematical induction,

(i)i(Zi—l):nz, (ii)ir=ﬂ’%1_), (iii)ix’:ll__xn: (x # 1).
i=1 r=1

s=0

2. Prove by induction that for x > —1, (1 +x)" > 1 + nx foralln € N.
3. Prove by induction that 5" + 2.3"*! + 1 is divisible by 4 for all n € N.

4. Consider the inequality #! > 5". Find the smallest integer H for which this
inequality is true, and then prove by induction that n! > 5" for alln > H.

5. A set of isosceles right-angled triangles is constructed as follows. The first
triangle has sides containing the right-angle being of unit length. The second has
as its hypotenuse one of the shorter sides of the first. The third has as its
hypotenuse one of the shorter sides of the second, and so on. Fig 2.1 shows the
construction as far as the fifth triangle.

Fig. 2.1 The first five triangles for Exercise 5.

Find the length of the hypotenuse for each of the first five triangles. Write down
a conjecture based on this pattern for the length of the hypotenuse of the nth
triangle. Prove your result by induction. Find a formula for the total area of the
first n triangles.

6. Let S(n) denote the sum of the first n natural numbers, with alternating signs,
for example S(8) =1—-2+3—4+5— 6+ 7 — 8. Write down the first 10
values of S(n) and use these to conjecture formulae for S(2n) and S(2n + 1).
Prove your conjectures by induction. Try to devise a single formula for S(n)
which is valid for both even and odd values of n.

2.3 Negativé Integers

Peano’s Axioms were formulated specifically to describe the natural numbers, or
positive integers, and it can be shown that there is essentially only one system
satisfying them, in the sense that any apparently different system has only superficial
changes, such as the names or symbols used for the individual elements. One of the
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things we did not discuss was Peano’s use of the axioms to prove the rules of
algebra, things like a+ b = b+ a, a x 1 = a, etc. Another approach to describing
number systems is to list the rules of algebra as axioms. A list of such axioms will
generally encompass many systems which differ from one another in structure as
well as in surface detail. Such axioms are at the root of the subject of abstract
algebra, with its various branches, such as group theory and the theory of rings and
fields. In Examples 4, 5 and 6 below we have used some of these rules. We have
given their names and also their algebraic formulations. These can all be proved by
induction, and Peano did some of this in his 1889 booklet. We shall discuss these
axioms more systematically in the context of rational numbers in Chapter 3. In this
section we shall approach the negative integers by looking only at the additional
algebraic rules which the system Z of all integers (positive, negative and zero)
satisfies but which N does not. These are as follows.

(i) There is a number in Z, denoted by 0, with the property that a + 0 = a for all
a € Z. The number 0 is referred to as the zero, or the additive identity.

(ii) For every number a € £ there is a number x € Z which satisfies the equation
a + x = 0. The number x is called the additive inverse of a, and denoted by —a.

Notice that in (ii) the order of quantification, as discussed in §1.5, is important.
Expressing (ii) in the symbolic form introduced in that section would give

Va € Z,3x € Z,a + x = 0. In many situations in algebra where we try to extend a
system, it is in order to be able to solve equations which have no solutions in the
parent system. In this case we cannot, for example, solve the equation 3+ x =0
within N, but we can solve it within Z.

We shall now look briefly at the use of these additional rules of algebra to prove
some of the familiar properties of negative numbers. As we go through these
examples we shall highlight the underlying rules of algebra being used as they occur.
The first example might suggest that we have gone completely daft! Readers can be
assured however that mathematicians do not normally spend time repeatedly
multiplying zero by itself!

Example 4
Prove that 0 x 0 = 0.
0+0=0 rule (i) witha =0
0x(0+4+0)=0x0 multiplying both sides by 0
(0x0)+(0x0)=0x0 ‘distributive rule’:

ax(b+c)=(axb)+(axc)
((0x0)+(0x0)+x=(0x0)+x adding x to both sides, where x is the
solution of (0 x 0) + x = 0 guaranteed
by rule (ii)
(0x0)+((0x0)+x)=(0x0)+x ‘associative rule’:
(@a+b)y+c=a+(b+c)
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(0x0)+0=0 using the property of x
(0x0)=0 using rule (i) witha=0x 0
- Example 5
Prove thata x 0 =0 foralla € Z.
a+0=a rule (i)
0+a=a ‘commutative rule: a+b=5b+a
ax(0+a)=axa multiplying both sides by a
ax0+axa=axa distributive rule

(ax0+axa)+x=axa+x adding x to both sides, where x is the solution of
(a x a) + x = 0 guaranteed by rule (ii)
ax0+(axa+x)=axa+x associative rule
ax04+0=0 using the property of x
ax0=0 using (i) with a replaced by (a x 0)

Notice that in Example 5 we have used less brackets than in Example 4. We have
assumed the usual convention of multiplication having precedence over addition
(many will have learned a mnemonic such as BODMAS for the precedence
conventions in algebra).

Example 6

Prove that (—a) x (—-b) =a x b.

In algebra we normally write ab instead of a x b, and we shall do that in this
example.
(a+(-a)(b+ (b)) =0x0=0 property (ii) and
Example 5
ab + (—a)b + a(=b) + (—a)(—b) =0 expansion
(distributive rule)
ab + (—a)b + a(—b) + (—a)(—b) + (—a)(=b) = (—a)(—b) adding (—a)(-b) to
both sides
ab + (—a)b + (—a)(—b) + a(—b) + (—a)(—b) = (—a)(—b) rearranging
(associative rule)
ab + (—a)(b+ (—b)) + (a+ (—a))(—b) = (—a)(—b)  using the
distributive rule
ab+ (—a) x 0+ 0 x (=b) = (—a)(—b)  using property (ii)
ab+0+0=(—a)(—b) Example 5 and the
commutative rule
ab = (—a)(—b) using the property
of 0
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Discuss in your tutorial group how you were introduced to negative numbers
at school. Try to remember how the rule ‘minus times minus equals plus’
proved in Example 6 was explained at school. Try to devise an explanation of
this rule which would be convincing within the context of school
mathematics.

2.4 Division and the Highest Common Factor

Further exploration of the integers concerns arithmetic matters, things like prime
numbers, integer solution of equations like x2 + y* = z2, and many other topics.
This is the subject of Number Theory, which is not part of this book. We shall
explore just one topic, that of the highest common factor (h.c.f.) of two numbers.
We first prove the fundamental result concerning division. When we divide one
integer into another we obtain a quotient and a remainder. Proving that this always
happens illustrates both the use of the well-ordering principle and proof by
contradiction.

e Proposition 3
Given integers a and b > 0, there are integers g and r which satisfy

a=bg+r where0<r<b.

Furthermore, ¢ and r are unique. [

PROOF

Let T denote the set of numbers of the form a — bz, where ¢ can be any integer. If
a>0thent=0givesa— bt =a>0.If a <0 then ¢t = a gives

a — bt = a(1 — b) > 0. So T always contains non-negative numbers, and so it
contains a smallest non-negative number, using the well-ordering principle. Let r
denote this number, and let g be the corresponding value of ¢. Now if r > b then
sincer =a—bgwehaver —b>a—bg—b=a—-b(qg—1) > 0,so that r would not
be the smallest non-negative number in 7. This is a contradiction, and so r > b must
be false. Thus, 0 < r < b.

We now have to prove uniqueness. This is typical of many such proofs, where we
assume two possibilities and show that in fact they are identical. So we suppose that
a=bq, +ryand a = bg, + r2, where 0 < r; < band 0 < r, < b. Equating the two
expressions for a gives bqy + r; = bgy + r2, and so b(q; — g2) = r, — r1. Now the
left-hand side of this equation is an integer multiple of 5. But because r; and r, are
both between 0 and b we must have —b < r, — r; < b. The only integer multiple of b
strictly between —b and b is zero. So both sides of the last equation must be zero,
giving q; = g2 and r; = r,, proving uniqueness. [ )
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Note that if r = 0 then a = bg, i.e. if the remainder is zero then a is an integer
multiple of 5. Another way of expressing this is to say that b is a divisor (factor) of g,
abbreviated to b|a. Given two integers a and b, the integer k is a common divisor of
a and b if k|a and k|b. A number d > 0 is a greatest common divisor (g.c.d.), or
highest common factor (h.c.f.) of a and b if d|a and d|b, and if k|a and k|b implies
that k|d. Two questions immediately arise: how do we know that there is such a
number, and is it unique? The next result establishes this.

e Proposition 4

Let a and b be two non-zero integers. The least positive integer of the form ax + by,
where x and y are also integers, is the unique h.c.f. of a and 5. [ )

PROOF

Taking x = a and y = b shows that there are positive integers of the form ax + by.
The well-ordering principle guarantees the existence of a smallest such positive
integer, d. So d = as + bt for some integer values of s and z. Now any common
divisor of @ and b is a divisor of as + bt and therefore a divisor of d. We now have to
prove that d itself is a divisor of both a and b. Suppose that d is not a divisor of a.
Proposition 3 tells us that a = gd + r, where 0 < r < d. (We cannot have r = 0 since
otherwise d|a.) But

r=a—qd=a— q(as+ bt) = a(l — gs) + b(—qt).

So ris a positive integer of the form ax + by. This is a contradiction, because r < d
and d is the least such positive integer. So we must have d|a, and similarly d|b. To
prove uniqueness, suppose that d; and d, are both a h.c.f. of a and b. The definition
of h.c.f. tells us that since d, is a h.c.f., d,|d,. Similarly d,|d, and so d| = d,, since
they are both positive integers. o

The question now arises as to how we can find values of x and y, and hence find the
h.c.f. This is achieved through the Euclidean Algorithm, which determines the h.c.f.
first and then enables x and y to be calculated. The values of x and y are not unique.
This algorithm appears in Euclid’s Elements, Book VII, Proposition 2. The term
used by Euclid is usually translated as ‘greatest common measure’, reflecting the
idea that numbers were thought of as synonymous with measurement at the time
(around 300 BC).

2.5 The Euclidean Algorithm

Suppose a and b are two positive integers, and assume without loss of generality that
a > b, and that b is not a factor of a. We can therefore divide b into a and, from
Proposition 3, obtain a = bq + r, with r # 0. It will be convenient to have names for
numbers playing the roles a and b, and if we imagine b divided into a written in the
notation of fractions (a/b) then it makes sense to call a the numerator and b the
denominator, and we shall do this in the equation a = bg + r. The Euclidean

. Algorithm proceeds in stages as follows. At the first stage, the quotient ¢ and the



The Integers 31

remainder r are denoted by ¢; and r| respectively, signifying that they are the first of
a set of such numbers:

a=bqg +ry, 0<r <b.

The denominator now becomes the numerator, and the remainder becomes the
denominator.

b=riq; +ra, 0<r<n

The process is now repeated over and over again.

r = r2qs +r3, 0<ri<n

rmAZZrm—lqm+rm, 0<rm<rm‘1

"m—1 = 'mqm+1.

From the inequalities for the remainders we can see that they form a decreasing set
of non-negative integers. Such a process cannot therefore continue for ever, and
there must come a stage at which the remainder is zero. This is signified by the last
step shown above. The last remainder r,, turns out to be the h.c.f. of a and 5. We can
see this by tracing through the steps in the algorithm. The last step tells us that r,, is
a divisor of r,,_;. Therefore, in the penultimate step, r,, is a divisor of both terms on
the right-hand side, and so is a divisor of r,,_,. This argument is repeated step by
step, eventually telling us that r,, is a divisor of b, and then of a.

We have shown that the last remainder r,, is a common divisor of a and b. We now
need to show that any other common divisor is a factor of r,,, proving that this is the
h.c.f. The first equation in the algorithm tells us that if d|a and d|b then d|r,. From
the second step we can now deduce that d|r,. This argument proceeds through all the
stages of the algorithm, showing that d is a divisor of all the remainders, and in
particular of the last one, 7p,.

When two numbers have no common factor, the algorithm gives 1 as the last
remainder, as in Example 7 below. It is convenient to say that, in this case, the h.c.f.
is 1, so that two numbers always have a h.c.f. Euclid treats this case separately, as
Proposition 1 in Book VII of Elements. He says that two such numbers are prime to
one another, and we use the adjective coprime in these circumstances. He describes
the situation by saying that the two numbers have no common measure, and that the
process ends with unity. It is difficult for us to appreciate the difference in
conception which this distinction reflects, because we have a firm notion of numbers
as abstract entities, used for a variety of purposes apart from measurement.

So far the algorithm has been shown in general terms, and so really to understand it
we need some numerical examples. In the first example we illustrate the case of
coprime integers, and we have also indicated the process of replacing numerator by
denominator as described at the beginning of this section.
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Example 7
Use the Euclidean Algorithm to find the h.c.f. of 8273 and 482.

8273 = 482 17479,

4sz’= 9% 6 +8,

7'=8 <9+17,
8’=7’1+1’
i=1'7

So the h.c.f. of 8273 and 482 is 1.

Because the same step is repeatedly used in the algorithm, it is easy to program for a
calculator or a computer in any language which allows loops. For example, the
following segment of Pascal would produce the steps of the algorithm line by line
(with a proper formatting of the wr iteln statement), when incorporated in a
complete program.

num: =a;
den:=b;
repeat
quo:=num div den;
rem:= num mod den;
writeln("num = quo x den + rem");
num:=den;
den:=rem;
until rem=0;
A number of languages including Pascal and BBC Basic have operators div and
mod to find the quotient and remainder respectively from an integer division. The
last two indented statements achieve the interchange of numbers shown by dashed
lines in the last example.

Example 8

Use the Euclidean Algorithm to find the h.c.f. of 596 and 328. Find all possible
integers x and y so that 596x + 328y is equal to the h.c.f.

596 = 328 x 1 + 268, (1)
328 = 268 x 1+ 60, 2
268 = 60 x 4 + 28, 3)

60 =28 x 2+4, (4)

28=4x17.
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The last remainder is 4, and so the h.c.f. of 596 and 328 is 4. To find x and y we
‘unscramble’ the algorithm as follows.

4=60-2x28 from (4)
= 60 — 2(268 — 4 % 60) 28 = 268 — 4 x 60 from (3)
=—-2x%x268+9x60
= —2x 268 +9(328 — 1 x 268) 60 =328 — 1 x 268 from (2)
=9 x 328 — 11 x 268
=9 x 328 —11(596 — 1 x 328) 268 =596 — 1 x 328 from (1).

So4 =—11 x 596 + 20 x 328.
So x = —11 and y = 20 is one pair of possible values.

Now suppose that x and y is any other pair of values satisfying 4 = 596x + 328y.
Using the particular values found above tells us that

596 x (—11) + 328 x 20 = 596x + 328
328(20 — y) = 596(11 + x).

Dividing both sides by 4 (the h.c.f.) gives
82(20 — y) = 149(11 + x).

Now 82 and 149 have no factors in common, and so 11 + x must be a multiple of 82.
So let 11 + x = 82m, giving x = 82m — 11. We now substitute to obtain

82(20 — y) = 149 x 82m, and so 20 — y = 149m, giving y = 20 — 149m. We have
therefore found all the solutions, and we can write

4 = 596(82m — 11) + 328(20 — 149m).

The method used here will work for any numerical example.

EXERCISES 2.5

1. Use the Euclidean Algorithm to find the h.c.f. for the following pairs of
numbers a and b,

(i) 87 and 72,
(ii) 1073 and 145,
(iii) 7537 and 8039.

In each case find all the pairs of integers x and y for which ax + by is equal to
the h.c.f.

2. Letaand b be two integers, and let d denote the h.c.f. Prove that if d|c then
ax + by = c¢ has integer solutions for x and y.
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Suppose now that d is not a divisor of c, so that we can write ¢ = dq + r, where
0 < r < d. Use this, together with the results of Proposition 4, to show that the
assumption that ax + by = ¢ has integer solutions, leads to a contradiction.

(These two together show that a necessary and sufficient condition for
ax + by = c to have integer solutions is that the h.c.f. of a and 4 is a divisor of c.)

3. Use the result of Exercise 2 to determine in each case whether the following
equations have integer solutions. Find all the solutions for those that do.

(i) 301x + 84y =5,
(ii) 345x + 735y = 60,
(iil) 87x + 53y = 13.
4. Prove that if dis the h.c.f. of a and b then nd is the h.c.f. of na and »b.

5. Write a program, for your calculator or computer, which will accept two
integers as input, exhibit the steps of the Euclidean Algorithm and finally tell
you the h.c.f. of the two integers.

6. Letaand b denote two integers. A number k is a common multiple of @ and b if
alk and b|k. Show that the set of common multiples contains positive integers.
Let m denote the least common multiple (l.c.m.), whose existence is guaranteed
by the well-ordering principle. Prove that if k is any common multiple of @ and b
then m|k. [Assume the contrary and then use the result of Proposition 3 applied
to m and k to derive a contradiction.]

2.6 Digital Representation

Our digital notation for integers is based on the number ten, in the sense that 7234 is
short for 7 x T3 +2 x T? 4+ 3 x T + 4, where T stands for the number ten—for
most people equal to the number of their fingers (digits). The convention of using
ten as the base for number notation is a very old one, but by no means universal, as
many books on the history of mathematics relate. When we consider the notation
with T used in place of ten as above, it is clear that there is no reason why 7 should
not be replaced by other numbers. In common use in recent times, in connection
with computers, are the bases 2 (binary), 8 (octal) and 16 (hexadecimal). In the
decimal system the single digits are the familiar ones 0, 1, ..., 9. In the binary system
only 0 and 1 are used. In octal we have 0, 1, ..., 7 and in hexadecimal we use
0,1,...,9,A, B, C, D, E, F for single digits, so that, for example, D in hexadecimal
is equivalent to 13 in decimal notation, 15 in octal and 1101 in binary. There are
many interesting patterns which can be observed in various digital notations. For
example, if numbers are expressed in base six then they are divisible by three if and
only if the right-hand digit is either 3 or 0. Readers who are interested are invited to
explore some of the patterns which can arise. To do this we need to be able to
convert from one number base to another. Because we are so familiar with base ten
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we shall restrict ourselves here to conversions to and from base 10, and we shall
illustrate the methods through examples.

Example 9

The number 7521 is expressed in base eight. Convert it to base ten.

As the number is in base eight, it represents 7 x 83 + 5 x 82 42 x 8 + 1. This gives
3921 in base ten.

Example 10

The number 2E5A is expressed in the hexadecimal system. Convert it to base ten.

In hexadecimal A and E represent 10 and 14 respectively in decimal. So in base ten
2ESA represents

2x1634+14 x 1624+ 5 x 16 + 10 = 11866.

Example 11

The number 654 is expressed in base ten. Convert it to base seven.

We apply continued division by 7 as follows, using the quotient/remainder notation.

654 =93 x7+3, : (1)
93=13x7+2, (2)
3=1x7+6, (3)
1=0x7+1.

We stop when the quotient first becomes zero. The digits of the representation in
base seven are then obtained by reading off the remainders in reverse order, giving
1623. The justification is given by reversing the process.

BxT7T=(1x7+6)x7 from (3),
=1x7*+6x7.
B=1x7+6x7+2 substituting in (2).

BxT=(1x7P+6xT7+2)x7
=1xP+6x7+2x17.
654=1x7+6xT*+2x7T+3 from (1).

Example 12

Write a computer program to convert the positive integer n from base ten to base 7.

Recall that if we have two numbers then in some languages, including Pascal and
BBC Basic, mod gives the remainder and div gives.the quotient when the two
numbers are divided. The following segment of Pascal code implements the division
procedure which we used in Example 11.
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b:=n;

repeat
a:=b mod T;
write(a);
b:=b div T;

until b=0;

This can be incorporated in a complete program which prompts the user to input the
number 7 and the base T. We are converting from base ten and so the assumption is
that the computer reads numbers input in base ten. Note that the wr it e statement
will output the digits in reverse order, as they occurred in Example 11. Those readers
who are proficient programmers can work out a way of making the output digits
appear in the correct order.

As well as there being interesting patterns in this topic, it is also instructive to
explore the algorithms of arithmetic in bases other than ten. A detailed exploration
of this is unfortunately outside the scope of this book.

Try to devise a method of working out 153 x 245, where these numbers are
written in base six, where the procedure must not involve conversion to base

EXERCISES 2.6

1. Convert the date, month and year of your birth into binary numbers.

2. Complete a program along the lines of Example 12. Try to arrange the output
with the digits in the correct order.

3. Devise a quick way of converting numbers from base four to hexadecimal.

4. Try to find a way of converting 24351 in base eight into base six, without an
intermediate conversion to base ten.

5. Write a program to convert a number from base S to base T, where .S and T are
both less than ten. Discuss the problems involved when S or T is greater than
ten.

6. Show that 144 is a square in base seven. What is it the square of? Is 144 a square
in any other base (greater than four)? Explain your answer.

Summary

In this chapter we have looked at some properties of the set of integers. We have
given just a taste of a number of different aspects, all of which are capable of much
more detailed development. In looking at the foundations through the Peano
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Axioms we have chosen a historically important contribution, which looked at the
integers from a formally logical point of view. The method of proof by mathematical
induction grows out of the axioms, and is important throughout mathematics.
Readers who have not met this before are urged to master both the method and the
underlying principles. In considering the negative integers, we have chosen to give
just a glimpse of the methods used in abstract algebra, where properties have to be
derived ultimately from a set of axioms which specify how the operations of the
algebraic system work. We have covered just one topic concerned with the
arithmetic of integers, which is at the beginning of the vast subject of number
theory. The Euclidean Algorithm has algebraic applications as well as purely
arithmetic ones, and again is historically of interest. Finally, we have looked very
briefly at the mathematical principle underlying the way we write numbers, which is
at the root of the familiar algorithmic processes of addition, subtraction,
multiplication and division. In present day mathematics there is a good deal of
emphasis on algorithms, and their implementation on computers.

EXERCISES ON CHAPTER 2

1. Prove the following by induction

>/ = "(”—“Ll)éi”ii) (ii)imZ"’" — (=124 1.
j=1 m=1

2. Prove by induction that 10” > n!0 for all n > 10.

3. The binomial coefficients are defined as follows. Firstly we define () = (") = 1

foralln > 1. For 0 < r < n we then define inductively ("*') = (,")) + (*).

n 1 r—1 r
Prove by induction that (r) = (T—nrw

4. Adapt the proof of Proposition 4 to show that if a, b and ¢ are non-zero
integers, then the least positive integer of the form ax + by + cz, where x, y and
z are also integers, is the highest common factor of a, b and c.

5. Letd=h.cf.(a,b). Prove that h.cf.(a,b,c) = h.c.f.(d, c). Use this result to find
the highest common factor of 682, 651, 527 using the Euclidean Algorithm.

6. Write a computer program to calculate the highest common facior of three
integers using the Euclidean Algorithm.
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We can learn a great deal about the way we think about numbers today by taking a
historical perspective, and we shall do this very briefly before embarking on a study
of the rational numbers. We begin, as with so many mathematical ideas, with the
Ancient Greeks and, in particular with Pythagoras and his followers, who lived
around 500 BC. The school of philosophy that they founded studied four subjects in
what we might loosely call the scientific domain. These were arithmetic, geometry,
music and astronomy. A basic tenet of the Pythagoreans was that number is
everything, and this referred to positive whole numbers. This is not the place to
describe their numerical approaches to music and astronomy, save to say that the
phrase ‘the music of the spheres’ has its roots there. Pythagoras’ Theorem, which we
regard today as belonging to geometry, also has an arithmetical side, relating to
such phenomena as the 3,4,5 triangle, which had been used in much earlier times as
a device for measuring right-angles. Many solutions of the integer equation

a* + b*> = ¢* appear to have been known, and it may have been thought that all
right-angled triangles fitted into such a pattern. This would have meant that given a
right-angled triangle, one could find a sufficiently small unit of length so that each
side of the triangle would be an integer multiple of this length, i.e. that each side
could be ‘measured’ by this length. Pairs of lengths for which this could be done
were said to be commensurable. The discovery, attributed to Pythagoras himself,
that this was not the case is described in historical accounts as a ‘crisis’ in Greek
mathematics. The fact that for an isosceles right-angled triangle the hypotenuse and
another side were incommensurable cast doubt upon the whole basis of the
Pythagorean view that everything was based on whole numbers. In modern terms

it is the equivalent of saying that /2 is irrational. We discuss this further in
Chapter 5.

Another point of view that is worth discussing is the relationship between number
and measurement. Much of the geometry of Euclid concerning comparisons of
lengths or areas would nowadays be expressed through numbers, for we identify
number and length very closely. For Euclid however, his writing suggests that this
was not the case. Many of his results are obtained by direct comparison of segments.
His proof of the Euclidean Algorithm talks about one segment ‘measuring’ another.
In our terms we would say that the length of one segment is an integer multiple of
the length of another.

Proportionality was expressed in terms of relationships between whole numbers.
Fractions were not regarded as single entities in the way in which we think of a

half, for example, as an individual number. ‘A half* seems to have been thought of
as a relationship which reflected the fact that one number was twice another. In fact,
this notion is at the root of the way we shall approach the construction of the
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rational number system in §3.2. Relationships of proportionality between
incommensurable numbers caused particular difficulties. Some of the theory is
attributed to the Greek mathematician Eudoxus, and it is his work which is
generally considered to be the content of those parts of Euclid’s Elements which deal
with the subject.

Euclid is commonly said to have had no algebra. This is true only insofar as there
was no algebra of numbers in the form we have it today. Some of the axioms we
shall study in §3.1, which concern the rules of algebra, are in fact present in Euclid.
The important difference is that they refer to a kind of geometrical algebra, which
expresses relationships between line segments, areas and volumes. For example,
Book II, Proposition 1 of Euclid’s Elements states, ‘If there be two straight lines, one
of which is divided into any number of parts, the rectangle contained by the two
straight lines is equal to the rectangles contained by the undivided line, and the
several parts of the divided line’. (This translation is taken from an 1862 edition for
schools.) In terms of numerical algebra this is equivalent to a statement of the
distributiverule a(b+ c+d+...) = ab+ ac + ad+ .. .. Euclid’s geometrical
algebra is highly developed, as anyone who studies the geometrical books of the
Elements will agree.

It needs a deep and detailed study of Greek mathematics to be able really to
appreciate the difference between their ideas and ours, but at least we should realize
that today’s view of number is the product of historical evolution, and may
therefore change in the future. Our contemporary notion of number has therefore
developed over a period of at least 3000 years. Our present conceptions of the real
number system were formulated only about 100 years ago, and we shall discuss that
in Chapter S.

There are two points of view we can take in moving from a discussion of the integers
to a consideration of the rational number system. One is to add extra axioms, as we
did when we discussed the negative integers in §2.3. The second is to construct the
rationals from the integers, through an abstract mathematical approach. Both of
these will, of course, reflect our long-standing acquaintance with rational numbers
and fractions from everyday mathematics and from school.

3.1 Solving Equations

To solve linear equations in the system of integers we need to be able to subtract,
and §2.3 discussed procedures for defining subtraction. Within the system of rational
numbers we need to be able to progress from multiplication to division (apart from
division by zero which is inadmissible). Like subtraction, this can be done by
specifying some algebraic axioms that the rational numbers must obey. In §2.3 we
simply introduced the necessary extra axioms. In this section it is appropriate to give
a comprehensive list for reference. Some axioms were referred to in Examples 4, 5
and 6 of Chapter 2. The axioms concern the algebraic operations of addition and
multiplication. Besides these, there are axioms for ordering which deal with
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inequality and the way it interacts with addition and multiplication. The topic of
inequality will be dealt with in Chapter 4 and so here we restrict discussion to the
algebraic axioms.

In the rational number system Q there are two operations, addition, denoted by +,
and multiplication, denoted by x, which satisfy the following axioms

Al (Closure) Va,b € Q,a+ b € Q.

A2 (Associativity) Va,b,c € Q,a+ (b + ¢) = (a+ b) + c.

A3 (Additive Identity) 3z € Q,Va € Q,a+z =a.

A4 (Additive Inverse) Va € Q,Ix € Q,a + x = z.

A5 (Commutativity) Va,b € Q,a+ b=b+a.

M1 (Closure) Va,b € Q,a x b € Q.

M2 (Associativity) Va,b,c € Q,a x (b x ¢) = (a x b) x c.

M3 (Multiplicative Identity) Je € Q,Va € Q,a x e = a.

M4 (Muitiplicative Inverse) Va € Q,a #z= Iy € Q,ax y =e.
M35 (Commutativity) Va,b € Q,ax b=b x a.

D (Distributivity) Va,b,c € Q,a x (b+¢) = (a x b) + (a x ¢).

This is a very abstract presentation, but is recorded here in this form because it is a
set of axioms that is satisfied not just by Q but by a variety of other systems.
Readers should try to put some of these statements into words. For example, Al can
be read as ‘the sum of two rational numbers is another rational number’. Notice that
Al allows us to combine only two numbers, so to add more than two we have to
combine them successively in pairs. Axiom A2 tells us that it does not matter which
order we do this in; adding a to the sum of b and ¢ gives the same result as adding ¢
to the sum of @ and b. Adding a fourth number d can again be done in any order,
and so on. The same considerations apply to multiplication, as in axioms M1 and
M2.

Those readers who have met modular arithmetic will find that all those systems
satisfy the axioms when the modulus is a prime number, and that only M4 fails for
composite moduli. Any such system is called a field, and these are studied in many
contexts. In the case of the rational number field, the element z postulated in axiom
A3 is of course zero. In M3, e is the number 1. However, in fields whose elements
are not numbers it is important to use symbols which make it clear, for example,
that in A3 we are not necessarily referring to the number 0. In A4 the number x is
nothing other that what we define to be —a, as in 2.3. In M4 the number y is the
reciprocal of a, denoted by 1/a or a~!. Notice in M4 the condition a # z. This
corresponds to the usual restriction ‘you can’t divide by 0’. In Example 5 in
Chapter 2 we proved that in Z multiplying by zero always gives zero. The reasoning
given there used axioms from the list above, and so the result is true in Q as well.
This means that if = 0 then a x y = 0 for all values of y, so that there could not be
asolutionofax y = 1.
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The discussion above, showing that division by zero is impossible, assumes
that the numbers 0 and 1 (z and e in the axioms) are different. Discuss
whether this follows from the axioms given, or whether it needs to be added

to the list.

We shall not be using such an abstract approach very much, but those who are
interested will find some examples within the exercises for this section.

These axioms are those which enable us to solve linear equations. They are all
satisfied by the real and complex numbers as well as the rational numbers, and so
the following example applies to all three number systems.

Example |

Show how the axioms for a field give the solution of the equation ax + b = ¢, where
a # 0. Notice that we are following the usual algebraic convention of denoting
multiplication by juxtaposition, i.e. we write ax instead of a x x.

ax+b=c,

(ax +b) + (=b) = c + (=b),

ax + (b + (=b)) = ¢+ (-b),
ax+0=c+ (-b),
ax = ¢+ (-b),

ax=c—b,

Ixx=al(c-b
xxl=al(c—b
x=al'(c—b

e Definition |

using A4, which ensures the existence of —b,
using A2,

using A4,

using A3,

using ¢ — b as an abbreviation for ¢ + (—b),
using M4, which ensures the existence of a!,
using M2,

using M5,

using M4,

using M5,

using M3.

We define the fraction 1—), where p € Z, g € Z and g # 0, to be the solution x of the

equation gx = p.

Example 2

Show how to use Definition 1 to add two fractions.

Let x and y be two fractions, where gx = p and sy = r. Multiplying the first by s and
the second by ¢ gives gsx = ps and gsy = gr. Adding these two equations and
factorizing (axiom D) gives gs(x + y) = ps + gr. This demonstrates, from
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Definition 1, that

p r_pstar
q s qs
TUTORIAL PROBLEM 2

Try to remember how you were introduced to multiplication and division of
fractions at school. Try to formulate a convincing explanation of the rule
‘turn upside down and multiply* for division of fractions. You may wish to
tackle Exercises 1 and 2 first.

EXERCISES 3.1

1.

Suppose that px = ¢ and that gy = p (pq # 0). Prove from the axioms that
xy = 1, i.e. that y is the multiplicative inverse of x.

Let x and y be two fractions, where gx = pand sy = r (p,q,r,s € Z,
q # 0,s # 0). Use Definition 1 to obtain the usual expressions for x — y, xy and
x/y (defined as xy~!) using a similar approach to that of Example 2.

Prove that the additive identity in a field is unique, i.e. that if z; and z, both satisfy
axiom A3 then z; = z,. State explicitly which axioms you use in the course of
your proof. Prove also that the multiplicative identity (axiom M3) is unique.
Prove, without using axiom M5, that (a x b)™' = b~! x a~! by showing that if
y=b"" x a~! then (a x b) x y = e, thus demonstrating that 5~! x a~! satisfies
the definition of multiplicative inverse given through axiom M4.

3.2 Constructing the Rational Numbers

Deduction from axioms as a way of establishing the foundations of number systems
is discussed in several places in this book, in particular in the previous section. In
this chapter we shall therefore pay rather more attention to mathematical
construction as a method of embedding the integers in the larger system of rational
numbers. The underlying idea is that of fractions, which we are familiar with from
school mathematics. The essential components of a fraction we have to work with
are the numerator and denominator, both of which are integers. The fact that we
conventionally write them with one over the top of the other, separated by a short
horizontal line, is less important. We could write them in any way we like, so long as
we knew which integer was the numerator and which the denominator. We make use
of this idea to write fractions as ordered pairs of numbers, rather like coordinates.
For example, instead of writing § we could write (1,2) where the first component is
the numerator and the second component is the denominator. The idea of an
ordered pair like (1, 2) is not contained within the fundamental language and
symbolism of sets introduced in Chapter 1, where we remarked that in the
specification of sets the order of the members of a set was immaterial. In fact,
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ordered pairs can be described in terms of sets in a way which was devised by the
20th century Polish mathematician Kuratowski.

e Definition 2
Given x and y (not necessarily distinct) the ordered pair (x, y) is defined by

(x,») = {x,{x, }}.
TUTORIAL PROBLEM 3

Discuss Definition 2. In particular show that if x # y then {x, {x,y}} #
{y,{y, x}}, so that (x, y) and (y, x) are different. Show also that if (x,y) =
(3, x) then x = y. Try to extend these ideas to give a definition of an ordered
triple (x, y, z) and prove some similar results concerning equality of triples.

Having established the notion of an ordered pair we are now in a position to
formulate the construction of Q.

e Definition 3

A fraction is defined to be an ordered pair (a, b) where a and b are integers, and
b #0.

The purpose of this definition is to establish a logical connection back to the
language of sets. We shall continue to use the traditional notation for fractions.

Now, a number like ‘three-quarters’ has many representations as fractions. We
regard the following as fractions all of which represent the same number

36 15300 —12 3 x 105 -3

4°8°20°400°—16°4 x 106’ —4~
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When we learn about this at school, we use the term ‘equivalent fractions’ to signify
the relationship between them. This suggests that there is an equivalence relation, in
the sense of §1.6, where we would expect the equivalence classes to be just the sets of

equivalent fractions. Because we are trying to use the integers as the basis for our
construction we must use only integer arithmetic in the definitions. The clue here

comes from noticing that if we take any two of the fractions from the above list and
cross multiply we obtain equal integers. For example with the first two in the list it is

the case that 3 x 8 =4 x 6. This is a statement about integers.

e Definition 4

Two fractions g and ‘Eiare said to be equivalent if ad = bc.

e Proposition |

The relation described in Definition 4 is an equivalence relation.
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PROOF
We shall use the notation = for equivalence, as in §1.6.

(i) Reflexivity. For all ,b € Z, ab = ba and so % = g.

(ii) Symmetry. Suppose g = f—1 Then ad = bc, and so, by commutativity for the

integers, cb = da, showing that 2 = %.
e a_c c_e L
(iii) Transitivity. Suppose 5 = 7 and y = }, Then ad = bc and ¢f = de. Multiplying

both left-hand sides and both right-hand sides together gives adcf = bcde. This
factorizes to give (af — be)cd = 0. Now b, d, f are non-zero, being denominators.
Since ad = bc and ¢f = de we conclude that if ¢ = 0 then a = 0 and e = 0, giving
af = be. If ¢ # 0 then since d # 0, (af — be)cd = 0 implies that af — be = 0, i.e.
a_e
b= f
Readers studying this proof may have wondered why, after having obtained the
equation (af — be)cd = 0, we did not simply divide by cd in the case ¢ # 0. Division
is something which occurs within Q but not within Z, and we are trying to construct
Q using only the properties of the integers. We have, in fact, used the property that
pq = 0 implies p = 0 or ¢ = 0. This can be proved within the algebra of integers, and
therefore without recourse to division.

af = be. This shows that establishing transitivity. e

We are now in a position to define rational numbers.

e Definition 5

The rational number system Q is the set of all equivalence classes corresponding to
the equivalence relation given in Definition 4. [ )

This is a very abstract definition, and we usually work with a representative from an
equivalence class, so that we would take % as a representative for the rational number
‘one half’.

TUTORIAL PROBLEM 4

Try to show that each equivalence class contains a pair (a, ) for which the
h.c.f. of a and b is 1. Show that there is a unique such pair for which b is
positive. Finally, show that the equivalence class consists of the set
{(ma,mb) : m € Z, m # 0}.

So far we have defined just the numbers themselves, and so the next task is to
describe how to do arithmetic. As in the previous section we shall only discuss
addition, leaving the details for the other arithmetic operations to the exercises.
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There are some important principles here, relating to the fact that we have defined
rational numbers as equivalence classes of fractions. Our task is not simply to state
how to add fractions, but how to define addition of the equivalence classes. The
method is to take a representative fraction from two equivalence classes, add them,
and then define the sum of the classes to be the class containing the sum of the two
fractions. There is a problem with this, namely that we have to be certain that if we
were to choose different fractions we would always end up in the same equivalence
class. The next result shows that this is indeed the case.

e Proposition 2

Suppose we have two rational numbers x and y and that we are given two
representative fractions from each, so that

a_l = a_2 and C_l = E_Z_
by by d  d
We then have
aidi + bicr _ ayds + by ®
b d, - bydy )
PROOF

The equivalence of the given fractions tells us that a;5, = ayb; and that ¢1d; = ¢, d,.
We multiply the first equation by djd, and the second by b;5,. We then add them
and factorize. This procedure gives

a1b2d1d2 = azbldldz
Cld2b1b2 = Czdlblbz
a\bydidy + c1dyb1by = axbidydy + c2d1 b1 by
(a1dy + byc1)brdy = (ards + bycr)bd, .

From Definition 4 this equation tells us that

aidi + bicr _ amdr + baca
bidy, | by ®

This kind of situation occurs in many places in algebra when we wish to combine
equivalence classes in some way. The phraseology commonly used is to say,
when we have proved such a result, that the operation (in this case addition) is
‘well-defined’.

We introduced this section by saying that the integers could be embedded in the
rationals. This means that there is a subset of the rational numbers which behaves in
every way, both arithmetically and algebraically, like the integers. In the language of
abstract algebra this subset would be said to be isomorphic to the integers. The
subset in question comprises the equivalence classes containing fractions of the form
(n,1), where n € Z. In Example 2 we derived, using Definition 1, the expression for
the sum of two fractions, and we proved in Proposition 2 that this was compatible
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with the equivalence relation. This tells us that (n;, 1) + (n2,1) = (11 + n2,1), and so
this subset is behaving exactly like the integers. Note that » = 0 is permitted, it is
only the denominator which cannot be zero.

EXERCISES 3.2

1. Prove versions of Proposition 2 for the operations of subtraction, multiplication
and division, as follows. Suppose we have two rational numbers x and y and
that we are given two representative fractions from each, so that

a_@ g 9_0
by b d  d’
Prove that
a1d1 - b]C] — a2d2 — bz(.‘z ﬂ — 252_ d a|d1 _ azdz
bdi by ' bidy T by’ bici ~ by’

3.3 Continued Fractions
Most readers will be familiar with the decimal expansion for fractions, for example

1 1 3 1

=01 g=0125 255=215 2=0333....

In this section we shall look briefly at a different expansion for rational numbers.
Like decimals this can be extended to all real numbers. We find that continued
fractions do not lend themselves to arithmetic procedures in the same way as
decimals. One of their chief properties is that they give very good approximations
with fewer terms than decimals.

There are references to continued fractions in the mathematics of the Arab

world and in Indian writings at a time when European scientific culture was virtually
non-existent, in the centuries around 500 AD. A modern algebraic theory can be
traced back to the Renaissance Italian mathematician Bombelli, and thereafter
through the work of Brouncker and Wallis in England, and Huygens, Lambert,
Lagrange and others in continental Europe. In particular, the book De Fractionibus
Continius by the great Swiss mathematician Leonhard Euler (1707-1783) contains
much of what we use today of the algebraic theory of continued fractions. Like so
much mathematics however, we can trace this topic back to Euclid, and we shall
begin by recalling the calculations involved in the Euclidean Algorithm illustrated
by Example 8 in Chapter 2.

596 = 328 x 1 + 268,
328 =268 x 1+ 60,
268 = 60 x 4 + 28,
60 =28 x 244,
28=4x17.
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We rewrite these calculations as

596 + 268
328 328°
328 N 60
268 268’
268 _, 28
60 60’
@ =2+ i
28 28’
28
Vi 7.
If we invert the second equation and substitute in the first we obtain
596 1 R 1+ 1
o T e
268 268
Substituting for 60/268 by inverting the third equation then gives
59_6 =1+ _—1
268 1+ 1
44 28
60

We can continue this process of inversion and substitution down to the end of the
algorithm to obtain

596 _,, 1
268 1 '
14—
P

2+1

7

We can see that the quotients from each stage of the algorithm appear as the
denominators in the continued fraction. They are referred to as partial quotients. This
means that we do not need to rearrange the steps of the algorithm by division as we
have done here. We can simply read off the partial quotients from the algorithm itself.
So, referring to Example 7 in Chapter 2 we can immediately write down

8273 1
6+———
[ Qo E——
* 1

1 —
t7

This notation is very cumbersome, and various abbreviated notations have been
devised. The two most common are illustrated as follows

596 + 1 1 1 l

328 1+ 4+ 2+ 7
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8273
5 = [17:6,9,1,7]

where the semicolon indicates the integer part as the first entry.

We have seen how to convert a rational number into a continued fraction. To
perform the reverse process we should proceed from the right-hand end. Using the
first example this would give

s96_, 1 111 111
328 1+ 4+ 2+ 7 1+ 44 21
LIS U S DL I
1+ 4+ 15/7 14+ 4+ 15
L L1567 149
1+ 67 82 82

There are two things to notice about this. Firstly the procedure is very cumbersome.
In fact, in order to obtain approximations we need to stop the continued fraction at
various stages and convert each to a rational number. What we therefore need is a
more systematic method, and we shall obtain a process beginning from the left
instead of the right. Secondly, we notice that we do not end up with the fraction we
started with. We found in Chapter 2 that the h.c.f. of 596 and 328 is 4, and if we
cancel this highest common factor we obtain the fraction in its lowest terms, namely
149/82. This is always the case, and we shall see why.

In order to make progress we need to move from arithmetic examples to algebraic
procedures. Suppose we have a continued fraction with successive partial quotients
a),a, as, .. .. If we stop this continued fraction at the nth partial quotient we obtain

1 1 1

This is called the nth convergent of the continued fraction. If we work out the first
few of these by unscrambling the algebra in the same way that we converted the
arithmetic example above to a fraction, an algebraic fraction will result. We will use
Pn and g, to denote the numerator and denominator respectively of the algebraic
fraction arising from c,. We find that

a
C1=a1=_l=£l‘a

1 q1

1 aa 1
P R L gy -

a a q2

1 1 aa;as+a+a ps
GB=a+——=—"——— =",

a+ a; @maz + 1 q3

1 1 1 aaasas+aa;+ajas+azas+1  py
Gg=a+———= ==.

a+ ast+ as aazas +ax + ag q4

You are invited to verify the algebra involved in establishing these relationships.
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At this stage we should begin to look for some relationships amid all this algebra,
and if we look at the effect of the introduction of a4 into ¢4 we notice that we can
write

a@mas+a+a)+(@a+1) aps+p
as(azaz + 1) + a2 asqs +4q2°

C4 =

Having noticed this relationship, we can look back to the previous case and see that

6 = az(may + 1)+ a _@p+p
a3(az) +1 a3q2 + q

We will now prove that relationships between successive convergents always follow
this pattern. It provides a further example of proof by induction.

e Proposition 3

Given the continued fraction

if ¢n = pn/qn denotes the nth convergent, then for all » € N we have the recurrence
relations

DPn = QnPn—1 +Pn—2a
qn = anqn-1 + qn-2,

where we define pp = 1,99 = 0,p_; = 0,91 = 1. [ )

PROOF

The recurrence relations are valid for n = 3 and n = 4. These cases have been
verified above by direct calculation, as were p; = a;,¢; = 1,
p=aa+l=ap+1,¢=a.

We can now see that the conventions introduced at the end of the statement of the
theorem are designed to ensure that the recurrence relations are valid for » = 1 and
n = 2, for algebraic convenience.

If we study the calculations involved in the evaluation of the first four convergents,
we can see that they have not used the assumption that the values of the partial
quotients a are integers. They can be any non-zero numbers, rational or otherwise.
We make use of this by considering the kth convergent

1 1 1

gk=aq+—— ... —,
a+ a3+ ax

. 1 .
and replacing a; by ax + T to obtain c¢y;.
k+1



50 Numbers, Sequences and Series

Now suppose that the recurrence relations are valid for » = k. We then have

Pk _ OkPk-1 + Pk-2

Cr = = .
gk AkGk—1 t+ k-2

. 1 .
As explained above, replacing ax by ax + P gives ci+1. So
k+1

1
Qg + —— | pr—1 + Pi—
_Pen _ ( k ak-H)Pk 1 T Pk-2

Gkt Gks1 1 '
* (ak + —) Q-1 + Gk—2
Ak+1

Multiplying the numerator and the denominator by a;; and rearranging the terms
gives
cpny = Dt i1 (@kPr-1 + Pk=2) + k-1 _ @i 1Pk + Pi—1

T Gk @ (@G-t + Go-2) + Qo1 G Gic + Gt

using the inductive hypothesis. This implies that both the recurrence relations are
valid for n = k + 1, and hence proves the theorem by induction. )

These recurrence relations enable us to calculate successive convergents starting
from the left of the continued fraction, rather than having to work out each one
separately by unscrambling each continued fraction from the right-hand end. We
can set out the calculations systematically in the form of a table. We shall use the
first illustration in this section.

k -1 01 2 3 4 5§

a 114 2 7
pk 0 1 1 2 9 20 149
ge 10 1 1 5 11 82

Let us illustrate the use of the recurrence relations from this table by considering
k =3,4,5in turn.

p=apr+p=4x2+1=9,

B=agr+q=4x1+1=5,

Ps=asp3+p2 =2x94+2=20,

qga=asq3+q2=2x5+1=11,

ps=aspa+p3=Tx20+9 =149,

gs=asqs+q3=7x11+5=282.

Consider the last two equations from a visual point of view on the table, and
suppose that we had completed the calculations as far as p4 and g4. To calculate ps
we start at as, so we move to the 7. Now move left diagonally down one row (20)
and multiply, and then across to the left (9) and add. To calculate g5 we start at as,
so move to the 7 again. Now move left diagonally down two rows (11) and multiply,
and then across to the left (5) and add. One soon becomes accustomed to this
systematic approach and it enables the convergents to be calculated very quickly. -
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It was pointed out above that when we convert a continued fraction into its rational
number, we obtain a fraction in its lowest terms, as in this illustration. In fact we
notice from this example that for all values of » > 1 in the table p; and g have no
common factors. We shall now prove this result.

e Proposition 4
(i) For alln € N we have

Pndn-1 — qnPn-1 = (—l)n'

(i1) For all n € N the highest common factor of p, and g, is equal to 1. °

PROOF

(i) From the calculation of the first four convergents earlier in this section the result
can be verified for small values of n. (The algebra is fairly involved for n = 3 and

n = 4.) For n = 1 the conventions introduced in Proposition 3 tell us that

Pgo—qro=a x0—1x1=—1=(-1)",
so the equation is satisfied for n = 1.

Suppose that the equation is valid for » — 1. Using the recurrence relations of
proposition 3 gives

Prn—1 — GnPn—1 = (@nPn-1 + Pn—2)qn-1 — (angn-1 + Gn—2)Pn-1
= _(_pn—lqn—Z - Qn—an—z) = (_1)n7

using the inductive hypothesis. Hence, the equation is valid for all » € N by
induction.

(ii) Using the equation tells us that if d is a positive divisor of p, and of g, then dis a
divisor of the left-hand side, and so is a divisor of (—1)". Hence, d = 1 and p, and g,
therefore have no common factors. (]

Finally, let us look briefly at the use of continued fractions as approximations. If we
have a number A4, and we take as an approximation a number 4, with the first n
decimal places equal to those of 4, we have

1
A, <A< A+ 0
Now 4, can be expressed as a fraction p/q with denominator ¢ = 10", so that
|4 — A,| < 1/q. If we now consider convergents for the continued fraction for A4 it

can be shown that for any n, A always lies between the two successive convergents c,
and ¢,.. This tells us that

1

Dn+1 _ & _
Gn+19n’

qn+1 qn

IA "cnl < |Cn+1 - Cn| =

using the result of Proposition 4. So if we now use p/q to denote c,, we have
|4 — cn| < 1/¢%, because gn41 > g from the recurrence relation. So # places along
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the continued fraction will give a much better approximation than » decimal places.
Let us illustrate this with reference to the continued fraction for 7. This is an infinite
continued fraction for which the first few places were worked out by Lambert in
1770. He showed that

m=1[3;7,15,1,292,1,1,1,2,1,3,1,14,2,1,1,2,2,2,2,1,84,2, .. ].

There is no discernible regular pattern to the partial quotients. If we evaluate the
first few convergents using the tabular method we obtain

k -1 01 2 3 4
ax 37 15 1
P 0 1 3 22 333 355
g« 1 0 1 7 106 113

The second convergent is 373, and the fourth is ?—% You will have used 22/7 as an
approximation for 7 for a long time no doubt, and its first two places agree with
those of 7. For the fourth convergent the first six decimal places agree, in fact the
error is at most 3 in the seventh decimal place. The fourth has been chosen here
because it is easy to remember, as it contains two 1s, two 3s and two Ss.

EXERCISES 3.3

1. Evaluate the continued fractions for the following rational numbers.

89 1101011 1393 6961 169
55’ 1001010 972’ 972’ 70°

2. Practice the tabular method by choosing a few sets of six integers, use them as
partial quotients for continued fractions, and calculate the associated rational
number, and the intermediate convergents.

3. Euler, whose book is referred to above, found several continued fractions
connected with the exponential number e. In particular

e—1=[1;1,2,1,1,4,1,1,6,1,1,8,.. ],
e—1

=1[0;1,6,10,14,18,22,.. |,

where the second one continues with the partial quotients increasing by 4 each
time. Calculate the first seven convergents of each, using the tabular method,
and show that the second continued fraction gives better approximations to the
number e. [This relates to the fact that the partial quotients are larger than those
in the first expansion.]

4. Write a computer program to calculate the continued fraction and the
convergents for a rational number. You can base it on the program segment for
the Euclidean Algorithm given in §2.4. The recurrence relations in Proposition 3
can be used to generate the numerators and denominators for the successive
convergents. The initial values given in the statement of Proposition 3 will be
useful for starting data.
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Summary

One of the main purposes of this chapter has been to illustrate two of the methods
used in many places in mathematics.

The first is the axiomatic method, which seeks to formalize parts of mathematics
which have perhaps been explored less formally or on an empirical basis. It has been
part of the methodology of mathematics since the time of Euclid, and it experienced
a major resurgence during the 18th and 19th centuries with the invention of different
kinds of geometry and algebra.

The second approach to rational numbers again exhibits a general methodology,
that of creating new mathematical structures, especially using the mechanism of
equivalence relations. This is used in many branches of analysis, algebra and
geometry, and particularly in modern topology. As one example, we can cite the
investigation of the symmetries of regular solid shapes.

In applying these general approaches to a topic as familiar as that of fractions, it is
hoped that some feeling for the methodology will be acquired, so that later
applications in less familiar areas will be facilitated, in particular when group theory
is studied.

The final section of this chapter, on continued fractions, has barely scratched the
surface of this fascinating subject. It is intended to give a new perspective on the
topic of fractions, which most readers will have studied for many years. It contains
some more proofs by induction, and provides some new types of calculation which
students can enjoy. In particular, it contains examples of algorithms, another
general method of increasing importance in present day mathematical research.

EXERCISES ON CHAPTER 3

1. Consider the simultaneous linear equations a;x + b1y = ¢; and a,x + by = c3.
Analyse the procedure for solving these equations for x and y in terms of the
axioms for Q, in a similar way to Example 1.

2. Prove that for all a € Q the additive inverse identified in axiom A4 is unique.
Prove that for a # 0 the multiplicative inverse (axiom M4) is unique.

3. Show that the rational number system as constructed in §3.2, with addition
as defined before Proposition 2, and with multiplication defined similarly
(Exercise 1 showing that multiplication is ‘well-defined’), satisfies the axioms for
a field as given in §3.1. You will need to use the fact that all the axioms except
M4 are true with Z replacing Q. Note that the definitions of the operations
themselves ensure that Al and M1 are satisfied.

(The verification of axioms—particularly associativity—is regarded as tedious
but necessary by many mathematicians. It is suggested that at the least you
should describe the equivalence classes of fractions which act as additive and
multiplicative identities and inverses, and verify axioms A3, A4, M3 and M4.)
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4. Explain how the result of Proposition 4(i) enables us to write down a solution of
the equation p,x + ¢,y = 1, where x and y are integers. Find all the integer
solutions of the equation 1393x + 972y = 1. (Refer to Example 8 in Chapter 2
for a method of finding all solutions once one has been determined.)



So far we have concentrated on the arithmetic operations of numbers and the
associated algebraic properties. The other important properties we have to consider
are those relating to the ordering of numbers; the idea that oneis larger than
another. This leads to the problem of solving an algebraic inequality such as

x? — 3x + 4 < 0. From school mathematics solving equations isa familiar activity,
but manipulating inequalities less so. We shall therefore start with. the basic rules for
manipulating inequalities, and then look at several methods for solving them. The
solutions of the inequalities we consider will be sets of real numbers, which are not
formally defined until Chapter 5. It is sufficient here to rely on the intuition provided
by reference to the standard number line, where larger numbers are situated to the
right of smaller ones.

4.1 The Basic Rules for Inequalities

In Chapter 3 we listed the rules for algebra as a system of axioms. The rules for
inequalities concern interaction with the operations of arithmetic. We formulate
them as axioms for ordering as follows, where in each case the variables a, b, ¢ can
take all values in the real numbers. It is axioms O3 and O4 which are used in the
algebraic manipulation of inequalities.

Ol (Trichotomy) If a # b then eithera < bor b < a.

02 (Transitivity) If a < band b < cthena < c.

O3 (Translation) If a < bthena+c¢ < b +c.

O41If a < band ¢ > 0 then ac < bec.

It is very important to note that O4 requires the multiplier ¢ tobe positive. An
example will illustrate this. If we take 2 < 5 and multiply bothsides by 3 we obtain

6 < 15, which is true. If on the other hand we try to multiply by —3 we would obtain

—6 < —15 which is false. In fact the inequality is reversed, so that —6 > —15. This
always happens, as the following result demonstrates.

e Proposition |
If a < b and ¢ < 0 then ac > bc. ®

PROOF

Since ¢ < 0 we can add —c to both sides and use O3 to obtain 0 << —c. We can

now use 04 to deduce that a x (—c) < b x (—c), so that —ac < — bc. Finally, we

can add ac and bc to both sides using O3 to obtain bc < ac, which is equivalent to

ac > bc. ®
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We can illustrate O3, O4 and this last result on a number line, where we interpret
addition as a shift and multiplication as a magnification. The first two figures
illustrate the idea of adding to both sides of an inequality, where the number added
can be positive or negative.

-2 -1 0 1 2
| | | | |
\\ |

|
| | ] ] |
-2 -1 0 1 2

Fig4.l If a<bthena+|<b+1.

-2 -1 0 1 2
| | | | |

I
|
| | [
-2 -1 0 1 2

Fig4.2 Ifa<bthena— Il <b—1I.

The second pair of figures illustrates multiplying. In the first case, order is preserved,
while in the second case order is reversed, corresponding to the result of
Proposition 1.

I I I
-2 -1 0 1 2

Fig 4.3 If a<bthen 2a<26b.

[ |
-2 -1 0 1

Fig 4.4 If a<bthen (—2)a>(—2)b.

™~
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Example |
Show that if a < 0 then a® > 0.

We use the result of Proposition 1 in the particular case when b = a and ¢ = a. This
then gives a x a > 0 x 0 = 0, using Example 5 of §2.3.

Many inequalities involve the magnitude of a number, representing its size without
regard to sign. We use a convenient notation for this, described as follows.

e Definition |
For any number x we define the modulus (or magnitude) of x by

Ix| = X, if x > 0;
—-x, ifx<O.

TUTORIAL PROBLEM |

Draw the graphs of y = |x|, y = x + |x|, ¥ = |2x — 3| and explore other
graphs involving the modulus.

Example 2
Show that for all @, b, |a + b| < |a| + |b|. This result is known as the triangle
inequality, for reasons that will become clear in Chapter 6.

A useful property of the modulus is that |a| is the positive square root of a?, and we
use that here, as follows,

(la+b])* = (a+ b)® = @ + b* + 2ab = |a*+|b|*+2ab < |a*+|b*+2|al|b|
= (|al + [B])*.

Taking the positive square root of both ends of this chain of relations gives the
result. Now we shall have equality if and only if ab = |a||b|, i.e. if and only if ab > 0.
So either a and/or b is zero or else a and b must both be of the same sign.

TUTORIAL PROBLEM 2

Construct a proof by induction that

la1 +ax+ ...+ ay| < |ai| + |az| + ... |an|- The result is trivial for n = 1, and
Example 2 gives the case n = 2. The inductive step should use the case n = 2
to deduce that |a; +a, + ... +ay| < |a1 + a + ...+ @y_1| + |a,| and then an
appropriate inductive hypothesis should be invoked.
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EXERCISES 4.1

1. If0 < a < b, use axiom O4 to deduce that a> < b%. [Hint: take c =aand ¢ = b
in turn.]

2. Find examples, involving negative numbers, where (i) a < b and @* < b?,
(ii) @ < b and @® > b?. Try to discover rules to determine which of these cases
occurs in general.
Suppose a < b and ¢ < d. Use axiom O3 to show thata+c < b+ d.

4. Suppose a < b and ¢ < d. Find some numerical examples to show that either
a—c<b-dora—c>b— dcan occur, depending on the numbers involved.

5. Show thatif 0 < a < b then 1/b < 1/a (use axiom O4). Investigate this situation
in the case where a < 0 or b < 0, or both.

4.2 Solving Inequalities Graphically

If we have an inequality of the form f{x) < g(x) to solve, we can draw the graphs of
f(x) and g(x) and investigate where the first lies below the second. Generally, this
will be achieved by finding the points of intersection, which involves solving the
equation f{x) = g(x). Solving equations is a more familiar procedure. We shall
illustrate the method with some examples.

Example 3

Solve the inequality x* — 4x + 1 < 3.

-3+

Fig 4.5 Solving the inequality xX*—4x+ | <3 graphically.

Figure 4.5 shows the graphs of y = x* — 4x + 1 and y = 3 on the same diagram,
from which it can be seen that the solution of the inequality consists of all the values
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of x between the points P and Q. These can be found by solving the equation

x* — 4x + 1 = 3. This is a quadratic equation whose solutions are x = 2 + /6, and
so the solution of the inequality is the set of all values of x satisfying
2—-/6<x<2+4/6.

Example 4

2-x

3T x <4.

Using the same method as Example 3 we draw the graphs of y = (2 ~ x)/(3 + x)
and y = 4 on the same axes. It can then be seen, in Fig 4.6, that the solution consists
of all the values of x to the left of the vertical asymptote, together with all the values
to the right of the point P. The vertical asymptote is at x = —3, and the point P is
found by solving the equation gjr—j‘c = 4, which gives x = —2. So the solution of the
inequality is the set of all values of x satisfying x < —3 or x > —2.

Solve the inequality

—10+

S A S R

Fig 4.6 Solving the inequality %’; < 4 graphically.

Example 5

Solve the inequality sin x > x? — 2.
Once again we draw two graphs on the same axes, namely y = sin x and y = x% — 2.

We can see from the part of the graphs that we have drawn that there are two
points, P and Q, where they intersect. We now observe that because the quadratic
graph increases to the right and also to the left, and because —1 < sin x < 1 for all
x, there can be no other points of intersection. This means that the solution consists
of all those values of x lying between P and Q. In this case we cannot solve the
equation sin x = x? — 2 exactly, as we were able to do with the equations in
Examples 2 and 3 in this section. We must use a graphical or numerical method, and
in this case the computer package Graphical Calculus was used, with its Zoom
facility enabling us to obtain a good approximation to the points of intersection. In
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this way we can say that the solution of the inequality is approximately the set of
values of x satisfying —1.0614 < x < 1.7285, where the left-hand number has been
rounded down and the right-hand one rounded up. This gives a slightly larger
interval than the true one, which is what is needed sometimes in problems of
estimation.

>

-7

S b

Fig 4.7 Solving the inequality sin x> x*—2 graphically.

EXERCISES 4.2

1. Solve the following inequalities graphically,
() x2—4x+2>3, ([i)x?—dx+2< -2, (iii)x* —4x+2<4,
(iv) x2 —4x+2 < 3.
2. Solve the following inequality graphically,
x+2

3.
x—1"

-2<

3. Solve the inequality cos x < 3 — x. Give your answers correct to four decimal
places if you have a suitable calculator or computer available.

4.3 Solving Inequalities Algebraically

The basic rules for manipulating inequalities were discussed in §4.1. They show some
similarities to the procedures for solving equations and so we shall see some familiar
processes taking place in the following examples. We shall first deal with the
inequalities in Examples 2 and 3 above from an algebraic point of view.

Example 6

Solve the inequality x*> — 4x + 1 < 3.
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Completing the square gives (x — 2)2 — 3 < 3. Adding 3 to both sides then gives

(x — 2)? < 6. We now have an inequality of the form > < 4, where 4 is a positive
real number. Unlike an equation, we cannot simply take the square root of both
sides. If 2 < 4 it is incorrect to deduce that ¢ < 2, because for example t = —5
satisfies the second inequality but not the first. The correct deduction is —2 < ¢ and
t < 2, which we conventionally write together as —2 < ¢ < 2. Returning to the
example, we can now say that (x — 2)> < 6 implies that —/6 < (x — 2) < /6.
Adding 2 throughout finally gives 2 — /6 < x < 2 + /6 as the solution.

Note that we could write |¢f| < 2 in place of —2 < ¢ < 2, and also |x — 2| < /6 as
equivalent to —/6 < (x — 2) < /6.

~ TUTORIAL PROBLEM 3

Use the method of completing the square shown in Example 6 to prove that
the general quadratic expression ax? + bx + c is positive for all real x if and
only if b < 4ac and a > 0. Find analogous conditions for the quadratic to be
negative for all real x. Find the solutions of ax? + bx + ¢ > 0 in the case
when b? > 4ac. (Remember to consider both @ > 0 and a < 0.)

Example 7

. . 2—x
Solve the inequality I x < 4.
It is tempting to perform the same algebraic operation we would if we had an
equation, namely to multiply both sides by (3 + x). Let us do that and see what
happens. We then obtain 2 — x < 4(3 + x), and s0 2 — x < 12 + 4x. Axiom O3 tells
us that we can add to and subtract from both sides of an inequality, and so we
obtain 2 — 12 < 4x + x,i.e. —10 < 5x, giving x > —2. However, if we look back to
Example 4 where we solved this inequality graphically we observe that we have
obtained only part of the solution. We appear to have lost the other part, x < —3.
What has happened is that we have failed to use the important part of axiom O4
which says that an inequality is preserved if the multiplier is positive. Proposition 1
then established that the inequality is reversed if the multiplier is negative. We have
not considered here the sign of (3 + x), the multiplier. We shall now do that to
obtain the complete solution algebraically.

Case 1: (3 + x) > 0. In this case the algebra above is correct, giving x > —2.

Case 2: (3 + x) < 0. Multiplying by the negative quantity (3 + x) now gives

2 — x > 4(3 + x), i.e. the inequality has been reversed. This rearranges to give

x < —2. But we have the initial condition, equivalent to x < —3. So the solution to
Case 2 is x < —2 and x < —3. The set of values of x satisfying both these inequalities
simultaneously gives x < —3.
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To give a complete explanation of Case 1 we really should have taken the initial
condition there into account, so we conclude that x > —2 and x > —3, which this
time reduces to x > —2.

Example 8

. . 3-2x
Solve the inequality poan <3-—x

In dealing with equations we are accustomed to the algebraic strategy of collecting
all the terms on one side. This is a strategy which is also useful here, and so we
obtain
3-2x
——-(3- 0.
x2+1 (3-x)<
It is often a good idea to minimize the possibility of errors arising through having
several minus signs, and with this in mind we rewrite the last inequality as
3-2x
_— -3)<0.
x2+1 +x=3)

Putting this over a common denominator gives

3-2x+(x=3)(x*+1)

x2 41 <0.

We can now simplify the algebra by realizing that x? + 1 is positive for all values of
x, and so the expression will be negative if and only if the numerator is negative. So
we now have to solve 3 — 2x + (x — 3)(x? + 1) < 0. (Note that we could also have
obtained this by multiplying both sides of the original inequality by x + 1, which is
positive for all x.)

Multiplying out the brackets and collecting terms gives x(x* — 3x — 1) < 0. We now
have an expression which is a product of two factors, and so will be negative if and
only if the two factors have opposite sign. We will therefore consider two cases.

Casel: x >0and x2 —3x—1<0.

Completing the square for the quadratic gives (x — %)2— 13, and so this case gives

3\? 13
x>0 and (x—z) _Z<O’

3\? 13
x>0 and <X—§) <T,

x>0 and

V13 3 VI3
) <x<2+ >

N W

J13

3 . . .. .
Now 375 is a negative number, so that the two conditions of this case
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amalgamate to give

0<x<2+\/13.

Case 2: x < 0 and x2 —3x—-1>0.

This time completing the square and rearranging gives

2
x<0 and (x—%) >?.

The second inequality is of the form 2 > 4 and, as in Example 6, a numerical

illustration will help. If we have 2 > 4 then ¢ could be positive or negative, giving
two possibilities, namely ¢ > 2 or ¢ < —2. So Case 2 becomes

3 V13 3 /13
x<0 and ( <§——— or x>§+—2—).

The fact that x is negative means that the third inequality cannot be satisfied, and so
this case reduces to

PENVALY
2 2
Finally, putting together Cases 1 and 2 gives the complete solution as
3 V13 Vv 13
<§_T or 0<x <2+ >

Both the algebra and the logic in this example offer some difficulties, and it is
advisable to check with a graphical method if possible, using a graphical calculator
or a computer package if available.

In the final example in this section we use a combination of the graphical and
algebraic approaches.

Example 9
Solve the inequality 2|x| > [2x — 5| + |x + 1].

We first draw graphs of each side of the inequality on the same axes, either ‘by hand’
or using a graphical calculator or a computer (Fig 4.8).

The dashed graph represents y = 2|x| and the solid graph represents

= |2x — 5| + |x + 1|. The latter graph changes direction where x = —1 and
x =5/2,i.e. when |x + 1| = 0 and where |2x — 5| = 0. From the graph we can see
that the solution of the inequality consists of the numbers between the points P and
Q. In the neighbourhood of the point P, [2x — 5| + |x + 1| =
—(2x —5) + (x+ 1) = —x + 6. So to find P we have to solve the equation
—x + 6 = 2x, giving x = 2. In the neighbourhood of 0, 2x — 5| + |x + 1| =
(2x — 5) + (x + 1) = 3x — 4, so we have to solve 3x — 4 = 2x, giving x = 4. The
solution is therefore the set of values of x satisfying 2 < x < 4.
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Fig 4.8 Solving the inequality 2|x|>|2x—5|+|x+1|.

EXERCISES 4.3

1. Solve the inequalities in the first two exercises of §4.2 algebraically.
2. Solve the following inequality algebraically and confirm your results
graphically.
Tx—8

4.4 A Tabular Approach to Inequalities

We saw that Example 7 involved a consideration of the signs of factors in a product.
In this section we shall look at some more examples of this kind, adopting a
systematic analysis of sign changes. We shall consider examples in which we assume
that some inequality has been rearranged so that is has the form f(x) > 0, where the
formula for f(x) involves the product and quotient of a number of factors. In the
most straightforward examples these factors are linear, and we shall begin with such
a situation.

Example 10
(x+3)(x—-2)
(x+1D)2x—1)

There are four factors in the rational function here, and the changes of sign occur at
x=-3,-1,1/2 and 2. The function will be positive if and only if an even
number of these factors is negative. We set out a table in which we mark divisions
relating to the sign changes, and an indication between these divisions of the sign of
each factor.

Solve the inequality > 0.
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-3 -1 12 2
x+3 - + + + +
x+1 - = + + +
2x -1 - - - + +
x—2 - - - - +
TOTAL - - + - +

Fig 4.9 Tabular solution of the inequality %-)(—(% > 0.

We conclude from this table that the inequality is satisfied if x < —3 or
—l<x<1/20rx>2.

In fact, any inequality of the form R(x) > 0, where R(x) is a rational function, can
in theory be solved by this tabular method. Any polynomial factorizes into a
product of factors which are either linear or non-factorizable quadratic. The
factorization can be arranged so that these quadratic factors are positive for all x,
and so can be omitted, as we did with x> + 1 in Example 7. The problem therefore
reduces to one of a product and quotient of linear factors which can therefore be
dealt with exactly like Example 10.

For the other example in this section we shall consider an inequality involving a
non-rational function.

Example 11
Solve the inequality (x — 1)(x + 2)sinx < 0.
Again we consider the values of x where the expressions change sign. These are

x = 1, x = —2 and integer multiples of 7. We construct a table of the kind used in
Example 10.

—37 -2 - =2 0 1 T 27 37
| | | | | | | | |
sin x - + - = |+ + - +
x—1 - o R e + +
x+2 — — - + + + + +
TOTAL — + — + - + - +

Fig 4.10 Tabular solution of the inequality (x— I)(x+2) sin x<0.

Outside the confines of this table the product of the three factors will clearly
alternate in sign, changing every time an integer multiple of 7 is encountered. So we
can say that the values of x which make the product negative satisfy —7 < x < —2
or0 < x < lornr < x < (n+ 1), where n can be any odd integer satisfying n > 1
orn< 3.
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EXERCISES 4.4

1. Solve the following inequalities using the tabular method,

@ ﬁ_—g’) <0, (i) (x=2)(x+3)(* — 5x+6) <0,
2 _
(iii) xz—)iS?‘:-—6 >0, (@v)(x+3)cosx>0, (v)sinxlnx<0.

4.5 Increasing and Decreasing Functions

A function f(x) is an increasing function if the value of f(x) increases as the variable
x increases. This means that the graph moves up as you move along the x—axis, with
the normal orientation of Cartesian axes. These ideas can be stated in terms of
inequality as follows.

A function f(x) is said to be increasing for x between a and b if for all values of x
and y satisfying a < x < y < b we have f(x) < f(»). Notice the use of the < symbol
in the last inequality. This allows the possibility of equality in some cases, which
means that the graph of f(x) could have horizontal portions, as with a distance-time
graph when the moving object has periods of rest.

Common examples of increasing functions are the exponential and logarithmic

functions, the cube function and the tangent function between —/2 and 7/2. Using
increasing functions enables us to deduce complicated inequalities from simpler ones.
For example, since x?> > x for all x > 1 it follows that exp(x?) > exp(x) for all x > 1.

Example 12
Solve the inequality exp((x — 1)(x + 2) sin x) < 1.

Since the logarithmic function is increasing, the inequality will be satisfied if and
only if In(exp((x — 1)(x + 2) sin x)) < In 1. Using the fact that logarithm and
exponential are inverse functions, and that In 1 = 0, this reduces to the inequality
(x — 1)(x + 2) sin x < 0, which was solved in Example 9.

Example 13
Solve the inequality In(3x? + x + 1) > 0.

The exponential function is increasing, so this inequality is equivalent to
IX+x+1> ¢? = 1. Using the method of completing the square discussed in
Examples 6 and 8 gives the solution as x > 0 or x < —2. The detailed calculations
are left to the reader.

A function f(x) is said to be decreasing for x between a and b if, for all values of x
and y satisfying a < x < y < b, we have f(x) > f(y). Pictorially the graph goes
down as you move along the x—axis in the positive direction. Common examples are
e™*, cos x for x between 0 and =, 1/x for x > 0. The reciprocal function is often
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encountered in dealing with inequalities. So, for example, because x> > x? for x > 1
it follows that 1/x* < 1/x? for x > 1, since the reciprocal function is decreasing.

EXERCISES 4.5

1. Use the fact that the logarithmic function is increasing to solve the inequality
e < 27,
2. Solve the inequality ((x — 1)(x+2))* < ((x = 3)(x + 5))°.
2—x
X

3. Solve the inequality In (m) < 0, using the results of Example 7.

Summary

The purpose of this chapter has been to explore a variety of methods of finding the
solutions of inequalities. When the tabular method is applicable it gives a
straightforward approach, but it depends on the function being given as a product
or quotient of expressions, for each of which the points of sign change are known or
can easily be found. The graphical method is in some ways the most flexible, as it
gives a picture of the situation as well as reducing the problem to the solution of
equations. Drawing graphs ‘by hand’ is sometimes tricky, but with a graphical
calculator or a graph plotting computer package the pictorial aspect is automatic.
There is still some mathematical thinking to be done however, for one must be
certain that all the points of intersection of the graphs used are included in the part
of the graph shown on the screen. If this is not so, it is possible in most cases to
change the domain on the calculator or computer, but if one forgets to investigate
this matter then it is easy to miss parts of the solution. The algebraic approach in
§4.3 is in some ways the most demanding, especially where it splits into several cases
according to the sign of any multiplying factor used. Ideally, one will use an
approach where graphical and algebraic skills can be employed in conjunction and
reinforce one another.

EXERCISES ON CHAPTER 4

1. Using only Axiom O3 prove that if a < b then —b < —a.
2. Provethatifa < b < 0 then b* < %

3. If0 < a < b, prove by mathematical induction that a” < 5" for all positive
integers n.

4. Solve the following inequality graphically
2x+3

-1< < 5.

Rearrange each side of the inequality in a form suitable for solution by the
tabular method, and implement the method to check the results of the graphical
approach.

5. Solve the inequality —} < sin x < .



5 ¢ The Real Numbers

Having explored some aspects of the integers and the rational numbers in Chapters
2 and 3 we now have to consider the next stage and analyse what it is that
distinguishes the real numbers from the rational numbers. One of the methods we
have used in previous chapters is to consider the solution of equations, and in
discussing the solution of x? = 2 we highlight a defect of the rational number
system, showing that there are gaps. These are not in the form of ‘gaping holes’, for
between any two rational numbers there is always another, so there are no gaps in
the form of intervals.

Extending the integers to the rationals was an algebraic matter. Extending the
rationals to the reals in quite different, and a conceptually more advanced process.
The method we shall use involves a close analysis of statements involving
quantifiers, which were introduced in Chapter 1. It is one of several possible
approaches to the analysis of the relationships between the real and rational
numbers.

5.1 Gaps in the Rational Number System

The Greek problem of incommensurability was referred to in Chapter 3. We can
transform this problem into one involving numbers as follows.

If ABCD denotes a square, then Pythagoras’ Theorem tells us that the diagonal AC
satisfies the equation AC? = 24B2. If the side 4B and the diagonal AC were
commensurable, it would be possible to find a common unit of measurement. AC
would then be, say, m units long, and 4B would be, say, » units long. We would
therefore have m? = 2n?. This is now a statement about numbers rather than
lengths. If we divide both sides by n? we obtain (m/n)2 = 2, so the problem can be
seen as one of investigating whether there is a rational number whose square is equal
to 2. We shall prove that this is impossible, using the method of reductio ad
absurdum described in Chapter 1.

e Proposition |

There is no rational number whose square is equal to 2. )

FIRST PROOF

Suppose that there is a rational number m/n whose square is equal to 2. By
cancelling, if necessary, we can assume that m/n is a fraction in its lowest terms, i.e.
that the integers m and »n have no common factors. Now m? = 2n? implies that m? is
even. Therefore, m is even (Example 1 of Chapter 1) and so we can write m = 2k.
Hence (2k)* = 2n?, i.e. 4k? = 2n?. This tells us that n? = 2k2, so that n? is even,
implying that n is even. But m and n both being even implies that they do have a
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common factor of 2. This is the contradiction which the method of reductio ad
absurdum entails. The assumption of a rational number whose square is 2 must
therefore be false.

SECOND PROOF

Here we use the fact that a prime factor of a square number occurs an even number
of times in the factorization. For example 7056 = 842 = 24.32.72, We consider the
equation p?> = 2¢?. On the left-hand side the prime factor 2 must occur an even
number of times (remember that 0 is even), whereas on the right-hand side 2 will
occur an odd number of times. This is a contradiction to the fact that the prime
factorization of a number is unique. So it is impossible to have integers p and ¢
which satisfy p? = 242 °

TUTORIAL PROBLEM |

Discuss where such proofs break down if we attempt to show that there is no
rational number whose square is equal to 9.

The relationship between measurement and number raises another problem. We are
accustomed to representing the real number system by points on a line, most
commonly in coordinate geometry. However, the phenomenon of
incommensurability is bound to raise serious questions. If the diagonal of a square
cannot be measured in terms of the units employed to measure the sides, how can we
justify the assumption that, on a line, a point whose distance from a chosen origin is
equal to the diagonal of a square will in fact correspond to a number? So are there
points on the line which do not correspond to numbers? We might also imagine that
other problems could give rise to the reverse question as to whether there could be
numbers which would not be associated with points on the line. These are difficult
and subtle questions, which occupied philosophers and mathematicians in Greek
times and have done so ever since. We shall not pursue them here, but simply note
that they point to the desirability of formulating a description of the real number
system in purely arithmetic terms, without reference to geometry (other than as
analogy).

EXERCISES 5.1

1. Prove that there is no rational number whose square is equal to 3, using the first
form of the above proof.

2. Prove that there is no rational number whose square is equal to 12.

3. Prove that there is no rational number r satisfying the equation > = 4.

5.2 An Historical Interlude

In this section we shall consider briefly some of the historical background to the
development of mathematical descriptions of the real number system.
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When Isaac Newton (1642-1727) invented the differential calculus it was found to be
a very powerful method for solving problems in many situations involving motion,
from ballistics to planetary orbits, and so the calculus gained many strong
supporters and exponents. However, the logical foundations came in for
considerable criticism in some quarters, with justification, both in terms of the state
of mathematics at the time and also in hindsight. Two ideas in particular were given
much thought in succeeding years; the nature of a function, and the concept of a
limit.

Leonhard Euler (1707-1783) realized that some of the difficulties arose through
attempting to interpret the foundations of the calculus geometrically. He viewed the
notion of function rather formally in terms of its algebraic representation rather
than describing a relationship between numbers. His view of the ratio 0/0, which
occurs when we try to calculate the differential coefficient, remained unsatisfactory.

An early realization that a proper theory of limits was needed came through the
work of Jean le Rond d’Alembert (1717-1783), but he still considered that the ratio
0/0 could be made meaningful.

Joseph Louis Lagrange (1736-1813) tried to base the calculus on a purely algebraic
approach. His view of a function was formal, like that of Euler, but he went further
and asserted that an arbitrary function can be expanded as a power series

fla+x) =fla) + aix+ ayx* +asx* + ...,

that the coefficients could be determined purely algebraically and, in fact, related to
the successive differential coefficients of f(x). In fact, the series expansion had been
developed by Brook Taylor (1685-1731) in around 1717, but Lagrange sought to
admit as functions only those which satisfied his algebraic criteria. Other
relationships arising, for example, through graphs having discontinuities or sharp
corners would not be admitted as functions in Lagrange’s programme. Euler had
also done a great deal of work on series, and his profound intuitive insights had led
him to many correct conclusions by means of some dubious reasoning. Carl
Friedrich Gauss (1777-1855) undertook some rather more careful work in this area,
and began to investigate conditions for convergence of some important series.

Significant progress was made by Augustin-Louis Cauchy (1789-1857), who also
realized that a proper theory of limits was required, and began to develop such a
theory, formulating definitions with considerably more precision than had been
achieved previously. Much of this work appeared in a famous book Cours d’Analyse
in 1821.

One strand of development which came to play an increasingly important role
related to a problem from physics—that of determining the motion of a vibrating
string with an arbitrary starting shape. Euler and d’Alembert had both investigated
this problem, and in fact one of the features was that the initial configuration need
not be representable as a function as understood by Lagrange. For example, a string
plucked at its middle point could have an initial shape with a sharp corner at the
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middle. Brook Taylor, and later Euler, investigated solutions of the problem
involving sums of trigonometric functions rather than powers of x as in Lagrange’s
theory. Two other important people in this work were the Bernoullis, John (1667—
1748) and Daniel (1700-1782).

A related problem was that of heat conduction, and Joseph Fourier (1768-1830)
investigated this, culminating in 1822 with the publication of his book Théorie
Analytique de la Chaleur. He too was concerned with expressions involving sums of
trigonometric functions. These have become known as Fourier Series, and they
represent periodic functions in the form

fix) =ao+a; cos x+ by sin x+az cos 2x+ by sin 2x+ ...

They have been widely used in investigating waveforms of all kinds, especially sound
waves, and they form a theoretical basis for electronic sound production that can
imitate conventional musical instruments and produce other sounds as well—the
modern synthesizer.

It was recognized quite soon that the Lagrange notion of a function was inadequate,
as Fourier Series could represent graphs with many discontinuities, composed of
disconnected, unrelated pieces. Mathematicians such as Peter Lejeune Dirichlet
(1805-1859) and Bernhard Riemann (1826—1866) undertook a considerable amount
of research into the conditions under which a given function can be represented by a
Fourier Series. Because of the discontinuities which can occur at individual points,
or values of x, it began to emerge that investigation was needed into the structure of
numbers themselves.

Lagrange’s notion of a function had suggested that a function with a continuous
graph should be differentiable. Subsequent developments suggested isolated
exceptions, at corner points for example, but this idea was completely overturned
when examples were constructed of functions which were continuous everywhere
but differentiable nowhere. This was done geometrically in about 1830 by Bernard
Bolzano (1781-1848), and then analytically in 1861 by Karl Weierstrass (1815—
1897). The latter example again involved a sum of trigonometric functions.
Weierstrass realized how necessary it was to base theories of limits upon a precise
analysis of the number system, and the nature of irrational numbers in particular,
and this he began to investigate. Many mathematicians took part in this
development during the latter part of the 19th century, among them Eduard Heine
(1821-1881) and in particular Georg Cantor (1845-1918) and Richard Dedekind
(1831-1916). It is these latter two mathematicians whose names we chiefly associate
with the development of the theory of real numbers, and the analysis of the
relationships between rational and irrational numbers. It is interesting to note that
Cantor himself worked on problems involving trigonometric series, which serves to
emphasize their importance in this development. He also invented a system of
infinite (transfinite) numbers, and began to undertake research into many aspects of
the structure of the number line, leading to the growth of topology in the first part of
the 20th century.
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5.3 Bounded Sets

We shall consider the step from rational numbers to the real number system through
the notion of a bounded set. To visualize the ideas being introduced we shall rely on
the number line, in spite of the logical reservations expressed in §5.1. In fact, we shall
describe the concepts involved verbally, symbolically and geometrically. For the
purposes of illustration the sets shown in the figures below appear as intervals. This
will not be the case in general, and we shall give examples not involving intervals.

e Definition |

A set S of numbers is said to be bounded above if there is a number which is greater
than all members of S. Symbolically

3U,Vx e S,x < U.

Any number U with this property is said to be an upper bound for S. [ )
S
| | —
T T T
u U u U

Fig 5.1 Each of the numbers marked U'is an upper bound for §.

As an illustration, consider the set S consisting of all the numbers of the form 3 — »
where n € N. Each of the numbers U = 2,7, 7 is an example of an upper bound for
this set.

e Definition 2

A set S of numbers is said to be bounded below if there is a number which is less
than all members of S. Symbolically

AL, Vx € S,x > L.

Any number L with this property is said to be a lower bound for S. [ )
| | 1 S
T ! T R —
L L LL

Fig 5.2 Each of the numbers marked L is a lower bound for S.

As an illustration, consider the set S consisting of all the numbers of the form
n+ 1/n where n € N. Each of the numbers L = —3,0,2 is an example of a lower
bound for this set.

e Definition 3

A set S of numbers is said to be bounded if it is bounded above and also bounded
below. Symbolically

3L,3U,Vvxe S, L<x< U. [ ]
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S 1 |
— | —— — | +
L L U U

Fig 5.3 Sis bounded. Note that S can have several components.

As an illustration, consider the set .S consisting of all the numbers of the form 1 — 1/n
where n € N. Each of the numbers U = 1, 2, 7 is an example of an upper bound for
this set. Each of the numbers L = —3, —2, 0 is an example of a lower bound for S.

Definition 3 involves two quantified variables L and U. The next result shows that
these can be replaced by just one.

e Proposition 2
A set S is bounded if and only if IM,Vx € S, {x| < M. ®

PROOF

Now |x| < Misequivalentto —M < x < M.So L = —M and U = M satisfy
Definition 3. This shows that if the set .S has the property in the statement of the
proposition, then it has the property in Definition 3. To complete the solution we
must establish the converse, namely that if .S satisfies Definition 3 then S has the
property given in this proposition. Every member x of the set S satisfies L < x < U.
We let M denote the larger of the two numbers |L|, |U|. This means that |L| < M
and |U| < M, sothat —-M < L < M and —M < U < M. Putting together all these
inequalities gives - M < L < x < U< M, ie. |x| < M. [

If we look at Fig 5.3 we can see that we should be able to move an upper bound U to
the left until it meets the set S, i.e. that there should be a smallest upper bound for S.
We firstly remark that if x € S then no number less that x can be an upper bound
for S. So the set of all upper bounds for S is bounded below.

o Definition 4

If S'is a set which is bounded above then a number /is said to be the least upper
bound (l.u.b.) for S'if

(i) /is an upper bound for S,

(i) there is no number less than / which is also an upper bound for S, i.e. given any
number less than /, we can find a larger member of S. [ )

We can express these properties symbolically:
i) Vxe S, x <,
(i) V8> 0,3x e S,x > - 0.

We can illustrate this with a diagram on a number line.

S z€S

———ﬁ_

-5 !

Fig 5.4 The positive number (3 can be as small as we like, and x depends on (.
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TUTORIAL PROBLEM 2

(i) You will notice that Definition 4 talks about ¢Ae l.u.b. rather than a l.u.b.
There is an implicit assumption of uniqueness. Discuss how it follows
from the definition that a set cannot have more than one l.u.b.

(ii) Formulate an appropriate definition for greatest lower bound (g.1.b.).
Express it in words, in symbols, and illustrate it on a number line.

In several texts the word supremum (sup.) is used as a synonym for least upper
bound, and infimum (inf.) for greatest lower bound.

One thing which our pictures have not made clear is whether the least upper bound
belongs to the set. This may or may not be the case, and a couple of examples

will illustrate this. The intuition is clear when they are imagined on a number line,
but we shall show that they fit with the more abstract symbolic definition in each
case.

Example |

Let S denote the set of all rational numbers r satisfying » < 3. Show that 3 is the
Lu.b. of S. (In this case 3 € S so S includes its l.u.b.)

From the given inequality r < 3 so that part (i) of Definition 4 is satisfied. Now
whatever the value of 3 > 0,3 >/ — 3 and 3 € S so that part (ii) of the definition is
satisfied. Hence 3 is the l.u.b. for S.

Example 2

Let T denote the set of all rational numbers r satisfying r < 2. Show that 2 is the
L.u.b. of S. In this case 2 ¢ T and so T does not include its L.u.b.

Part (i) is demonstrated as in the last example. For allr € T, r < 2 so that 2 is an
upper bound for 7. The second part is a little less straightforward since 2 € T. It
relies on the result that between any two numbers it is always possible to find a
rational number. This is proved in Proposition 7 below. This means that for any
value of 8 > 0 it is possible to find a rational number r satisfying2 — < r < 2.
Since r < 2, r € T and so part (ii) is verified.

One’s intuition suggests that the least upper bound and greatest lower bound
correspond to the largest and smallest members of the set. When these numbers exist
this is indeed the case, but a bounded set need have no largest or smallest member,
as the following examples illustrate.

Example 3

Let S denote the set of rational numbers satisfying x < 6. Then .S has no largest
member.
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The number 6 is not the largest member of S because it does not belong to S, and
indeed no number greater than 6 belongs to S. On the other hand if /is a member of
S which is less than 6 then the number (/ + 6)/2 is a rational number which is
greater than /, and less than 6, so that it is a member of S. So / could not be the
largest member of S. This demonstrates that S has no largest member.

Of rather more interest is the following example, relating to the previous discussion
concerning numbers whose square is equal to 2.

Example 4

Let S denote the set of all rational numbers whose squares are less than 2. Then S is
a bounded set but it has no largest member.

If x > 2 then x> > 4 > 2, and so x ¢ S. Hence, the number 2 is an upper bound
for S. It is clearly not the least upper bound, as a similar argument demonstrates
that 3/2, for example, is also an upper bound for S. Similarly, —2 is a lower bound
for S, so that S is a bounded set. Suppose that / were the largest member of S. We
cannot have /2 = 2, for there is no such rational number, as we have shown. We
cannot have /2 > 2 for then / ¢ S. We shall show that /? < 2 is also impossible.

If I? < 2 we shall show that we can find a larger number / 4 o (o > 0) whose square
is also less than 2, as follows:

(I+a)? =P +2a+a?
<IP?P+4a+0? since I<2
<>+ 5a provided a<1
<2 provided a< (2-1%)/5.

Proposition 7 below ensures that the value of « satisfying the last inequality can be
chosen to be a positive rational number.

The final example in this section is a somewhat more abstract one to show how the
definition can be used in general circumstances.

Example 5

Let 4 and B be sets of numbers which are bounded above, with l.u.b. a and b
respectively. Let C denote the set of all numbers of the form x + y, where x € 4 and
y € B. Show that the L.u.b. of Cisa + b.

Forallx € Aand y € B, x < aand y < b, using part (i) of the definition of l.u.b.
Hence, x + y < a+ b, and so a + b is an upper bound for C. We now apply part (ii)
of the definition of l.u.b. to 4 and to B, with (3 replaced by 3/2. (You may need
some tutorial discussion to explore the logic of this.) So for any positive number 3,
there are numbers x € 4 and y € B satisfying x > a — /2 and y > b — 3/2. Thus,
x4y > a+ b — [ and so we have shown that there is a number in C exceeding

a+ b — (. So part (ii) of the definition is satisfied, showing that a + b is the L.u.b.
for C.
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In §5.2 we discussed in outline some of the historical developments leading to the
idea among mathematicians that it was necessary to have a precise description of a
number which did not depend upon intuitions relating to the number line. There are,
broadly speaking, two approaches to this. One is to take the rational number system
as given in a precisely described form and use this to construct a set which has all the
properties we wish the real numbers to have. This is the approach which Dedekind
and Cantor adopted. The other approach is to develop the real numbers as an
axiomatic system in the same way that Peano did for the integers, and this is the
method we shall adopt here. We clearly want the real numbers to form an extension
of the rational numbers, so we shall take as axioms those rules which the rationals
obey. We must then have an axiom which will remedy the “deficiency’ of the
rationals in having no number whose square is equal to 2 (and many other such
properties). In terms of a number line we do not want there to be a ‘hole’ where such
a number ought to be. The rational number system is incomplete in this sense and
the final axiom remedies this.

e The axiom of completeness for the real number
system

This states that every non-empty set of real numbers which is bounded above must
have a least upper bound in the set of real numbers. o

Let us immediately use this axiom to show that there is a real number whose square
is equal to 2.

e Proposition 3

There is a real number satisfying the equation x? = 2. [ )

PROOF

We consider the set of all rational numbers  satisfying 72 < 2. We know that this set
is bounded above, and the axiom of completeness says that S must have a least
upper bound /. We shall show that /2 = 2 by demonstrating that /2 < 2 and /2 > 2
are both impossible. We can make use of the calculations in Example 4. Firstly, we
showed there that if /> < 2 then we can find a larger number / + o whose square is
also less than 2, implying that / could not be an upper bound for S. Now suppose
that /2 > 2. We shall show that there is a number of the form / — 3 where 3 > 0
whose square is also greater than 2. This will mean that / — 3 is also an upper
bound, so that / could not be the least upper bound. Now

(-8’ =1 -28+p
> 1%~ 4B (since 4% >0 and /< 2)
>2 provided < (I*-2)/4.

So we have shown that there is a real number whose square is 2, finally legitimizing
the use of the symbol /2 for the number / defined above. o
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This axiom will also guarantee the existence of the solution of many equations
besides x> = 2. From elementary mathematics we have the formula for the solution
of a quadratic equation. Sometimes there will not be real solutions (e.g. x> + 1 = 0)
but where there are they all involve square roots. Clearly we can envisage more
complicated polynomial equations such as x” — 5x* + 2x* — x 4+ 3 = 0. Numbers
which satisfy such equations are called algebraic numbers. One of the remarkable
things about the real number system is that the set of all these algebraic numbers
together with the rational numbers forms only a tiny part of the real number system.
Cantor himself was able to demonstrate that, in a certain sense, the set of numbers
which are not algebraic is infinitely larger than the set of those which are. So what
do these other numbers (called transcendental numbers) look like. Well, curiously,
we do not have names or symbols for most of them. Some common numbers like 7
and the exponential number e have been shown to be transcendental, but a number
like 7 + ¢ has so far defied all attempts to determine whether or not it is
transcendental. This, in fact, makes us think what on earth we might mean by the
sum of two numbers about which we know very little. Certainly their decimal
expansions are in no way regular so we cannot use that as an approach to defining
the sum of two real numbers. Such is the power of the axiom of completeness that
we can use this to add any two real numbers, assuming only that we know how to
add rationals. This is discussed in the next section of this chapter.

EXERCISES 5.3

1. For each of the sets described below, say whether it is bounded above, and/or
bounded below, and if so what its least upper bound and/or greatest lower
bound are. State also whether the set has a largest and/or smallest member, and
if so identify it.

(i) The set of all even positive integers.
(ii) The set of all rational numbers r satisfying0 < r < 1.
(iii) The set of all values of x for which x = sin ¢ for some real number ¢.

(iv) The set of all numbers of the form 3=™ + 57", where m and n are any
positive integers.

(v) The set of all real numbers x satisfying —1 < tan x < 1.
(vi) The set of numbers of the form 1 + 1/n, where n is any positive integer.
(vii) The set of positive integers 7 satisfying n? < 10.
(viii) The set of real numbers y of the form y = (2x + 5)/(x + 1), where x can
be any positive real number.

2. Let S denote the set of rational numbers whose squares are less than 8. Show
that S is bounded and that it has no largest member. Show that S has no
smallest member.

3. Let S denote a set of numbers which is bounded above, with L.u.b. /. Let T
denote the set of all numbers of the form —x, where x can be any member of S.
Show, using the definition, that T is bounded below and that g.1.b.T = —l.u.b.S.
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4. Let 4 and B be bounded sets of numbers. Let D denote the set of all numbers of
the form x — y, where x € 4 and y € B. Find an example using intervals (sets of
numbers of the form p < x < ¢) to show that it is not true in general that

lub.D =lub.4 —lLu.b.B.

Explore some more examples and try to find some general relationships which
are valid, involving the L.u.b. and g.1.b. of 4, Band D.

5. Investigate the situation similar to that of Exercise 4, with subtraction replaced
by multiplication.

6. Let S be a set of numbers which is bounded above. Let T denote the set of all
upper bounds of S. Show that T"is bounded below, that it contains its g.1.b., and
that g.1.b.7 = L.u.b.S.

5.4 Arithmetic and Algebra with Real
Numbers

The definition of real numbers using the axiom of completeness is a rather abstract
one, and so the question arises as to how we might add and multiply real numbers
like 1/2. This is quite different from the situation with integers and rational numbers.
In the latter case we have the familiar rule for adding fractions discussed in
Chapter 3. To develop the whole of the theory of arithmetic for real numbers
includes defining addition and multiplication as well as the relation of ordering,
establishing that all the familiar algebraic properties are satisfied, for example that
a(b + ¢) = ab + ac, and demonstrating consistency with the existing arithmetic for
rational numbers. This is an enterprise which is outside the scope of this book, but
we shall give a flavour of what is involved by outlining the method of defining
addition of two real numbers.

Let 4 and k denote any two real numbers. We let S denote the set of rational
numbers a less than A, and T denote the set of rational numbers b less than k. We
now define the set U to be the set of all rational numbers of the form a + b, where
a€ Sand b € T. Since § and T are bounded above there are rational numbers p and
g which are greater than 4 and k respectively. Since a < p and b < g we have

a+ b < p + q, where the operation of addition is being performed between rational
numbers. Thus, the set U is bounded above, with p + ¢ as an upper bound. The
axiom of completeness tells us that this set U therefore has a least upper bound, and
we define this least upper bound to be the sum 4 + k.

As an example of the necessity of establishing that real numbers satisfy the rules of
arithmetic, we shall give an outline of what is necessary in order to show that

V2 % /3= /6.

e Proposition 4

There is a unique positive real number satisfying the equation x* = 2. [ )
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PROOF

Existence was established in Proposition 3. Here we are demonstrating uniqueness.
The proof uses the method of contradiction. Suppose that x; and x; are both
positive numbers satisfying x> = 2. Then x? = x3, and so x? — x3 = 0. Factorizing
this gives (x; + x2)(x1 — x2) = 0. We must therefore have (x; + x;) = 0 or

(x; — x2) = 0. Since x; and x; are both positive we cannot have (x; + x;) = 0.
Hence (x; — x;) = 0 and so x; = x,, proving uniqueness. (

TUTORIAL PROBLEM 3

Find all the places in the above proof where assumptions have been made
about the algebraic properties of real numbers, and list these properties.

e Proposition 5
V2 X /3 =1/6 °

PROOF

Leta = /2, b= /3 and ¢ = /6. In other words, let a, b, c denote the unique
positive real numbers satisfying x*> = 2, x*> = 3 and x* = 6 respectively, whose
existence relies on the axiom of completeness. So a* = 2 and b = 3. Multiplying
these two equations together gives a> x b? = 2 x 3 = 6. The associative law of
multiplication for real numbers enables us to regroup the left-hand side of this
equation to give (a x b)> = 6. Now a and b are positive and so a x b is positive.
(Here is another assumption which would need to be justified in a complete
account.) But there is only one positive number, c, satisfying x? = 6, so that
axb=c,ie. /2 x+3=4/6. °

We shall now consider some relationships between irrational numbers and rationals.
We first show that they are thoroughly intermixed on the number line, that is, we
cannot find any intervals consisting entirely of rationals or entirely of irrationals.

e Proposition 6

Given any two positive real numbers a and b, there is a positive integer n satisfying
na > b. (This is known as the Archimedean Property.) o

PROOF

As on so many occasions, the proof employs the method of contradiction. So we
suppose that the result is false, i.e. that there are two real numbers a and b such that
for every positive integer n, na < b. This means that the set .S of numbers of the form
na is bounded above by b. S therefore has a l.u.b. . Now / — a < / and so there is a
member of the set S between [/ — a and /, i.e. there is a positive integer ng satisfying

[ — a < mpa < I. Adding a to each side of the left-hand inequality gives / < (np + 1)a,
giving a member of S greater than /. This is a contradiction. [ )
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e Proposition 7

Between any two real numbers there are both rational and irrational numbers. ®

PROOF

We shall prove the result for positive numbers. Let p and g denote two positive real
numbers with p < ¢. The method of proof essentially looks at the gap between p and
g, finds a number of the form 1/n smaller than this gap, where # is a positive integer,
and then counts along in units of 1/n. It is impossible to jump over the gap with this
unit, and so there will be a multiple of 1/r in the gap. We can formalize this as
follows.

Since 0 < ¢ — p, we have 0 < 1/(q — p). We use the Archimedean Property with
a=1and b = 1/(q — p). Consequently, there is a positive integer »n satisfying

n > 1/(q — p). Rearranging this inequality gives 0 < (1/n) < g — p. Again using the
Archimedean Property gives a positive integer m satisfying m(1/n) > g. Let mq
denote the smallest such m. Then

mo—l

< g and ?Zq.

Putting these inequalities together gives

my—1 my 1 1
—_— = -——2> - —_ — = p.
- T n24->4-(qg-p)=p

We have therefore shown that

-1 \
mo <q, ‘

p<

giving a rational number between p and ¢. Furthermore we have

O<L<%<(b~a),

ny/2
and by the process above we can find a positive integer m, satisfying
< i <
4 ny2 q,

giving an irrational number between p and q. °

TUTORIAL PROBLEM 4

Fill in the details of the second part of the above proof. Explain how to
extend the result to the case where p and g are not both positive.

We now look at an example of an algebraic relationship involving rational and
irrational numbers.
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Example 6
Suppose that a and b are rational numbers satisfying a + b,/2 = 0. Prove that
a=b=0.

If b # 0 then we can rearrange this equation to give /2 = —a/b. But —a/bisa
rational number. This is a contradication since /2 is irrational. So we must have
b = 0, and therefore a = 0.

TUTORIAL PROBLEM §

Let us now generalize this a little and consider the equation

a+ by/2+ ¢y/3 =0, where a, b, c are rational numbers. Rearrange the
equation by subtracting a from both sides. Squaring both sides of the new
equation will give a relationship similar to that of Example 6 but involving
/6. Use this to show that we must havea=b =c =0.

EXERCISES 5.4

1. Find a rational number between 7/2 and /2.
2. Find an irrational number between 2/3 and 3/4.

3. Decide whether each of the following is always true, sometimes true, or always
false:

(i) rational x rational = rational,

(ii) irrational + irrational = irrational,
(iii) rational + irrational = irrational,
(iv) rational x irrational = irrational,

(v) irrational x irrational = irrational.

Summary

The topics discussed in this chapter are among the most conceptually demanding in
basic mathematics. The brief historical sketch in §5.2 indicates the difficulties
involved in developing the ideas to the form we have them today. We mentioned
that a well-developed theory of real numbers is necessary for a theory of limits, and
we shall look at this in relation to sequences in Chapter 7. The ideas are also vital for
a proper foundation for the theory of functions and calculus, and are discussed in a
sequel to this book, on Analysis.

EXERCISES ON CHAPTER 5

1. For each of the sets described below, say whether it is bounded above, and/or
bounded below, and if so what its least upper bound and/or greatest lower



82

Numbers, Sequences and Series

bound are. State also whether the set has a largest and/or smallest member, and
if so identify it.
(i) The set of all prime numbers.

(ii) The set of numbers x of the form x = s+ ¢ where —1 < s < 1 and
-1<t<1.

(iii) The set of numbers of the form (—1)"n, where n is any positive integer.
(iv) The set of rational numbers x satisfying x* < x.

Let A and B denote bounded sets of positive numbers. Let C denote the set of
all numbers of the form a x b, where a € A and b € B. Prove from the definition
that

Lu.b.C =1lub.4 x L.ub.B.

Let 4 and B denote bounded sets of positive numbers. Let D denote the set of
all numbers of the form a = b, where a € 4 and b € B. Find examples to show
that it is not necessarily true that

lub.C =1lub.4 +lLub.B.
Show that if a + 5v/2 + ¢v/4 = 0, where a, b, ¢ are rational numbers, then
a=b=c=0.
Explain how the axiom of completeness together with the result of Exercise

5.3(3) implies that every non-empty set of real numbers, which is bounded
below, has a greatest lower bound in the set of real numbers.

Show that there is a real number satisfying the equation x> = 4. Prove that it is
unique.



In previous chapters we have discussed extensions of the number sy/stem, one
important aim being to increase the kinds of equations which can e solved. So, if
we start with the natural numbers, in order to be able to solve equaations such as

4 + x = 2 we have to create the integers. To deal with 2x = 3 wenesed to construct
the rational numbers. Finally, we analysed what is needed to chara. cterize the real
number system to solve equations like x?> = 2. There are still equations with no
solution however, for example x> + 1 = 0, and it is partly in resporase to this that we
extend the number system once again. A formal solution of x* +1 = 0 would be

x = v/—1, but we know from Axiom O4 and Exercise 1 of §4.1 that the square of
any non-zero real number is positive and so cannot equal —1.

It is interesting historically that one of the early appearances of V' —1 was not in
connection with quadratic equations but with cubics. The solution of quadratics had
been known for a very long time, and it would have been said that ax? + bx + ¢ =0
had no roots when %> — 4ac < 0. With cubics the situation was different. In the 16th
century, Italian algebraists discovered how to solve equations of degree 3 and 4. The
chief figures involved were Bombelli, Scipione del Ferro, Cardano, Tartaglia and
Vieta. It is interesting to read about the mathematics they used,as well as the
chicanery and intrigue involved in the various efforts to claim precedence for the
invention of the method. This method gave rise to square rootsof megative numbers
even when the cubic had all three roots real. An example, which wzas used in the
writings of the time, considered the equation x3 — 15x — 4 = 0.Orae obvious
solution of this is x = 4, and it is then straightforward to showtha t the other two
solutions are x = —2 + /3. The general formulae developed gave rise to the
expression

x= {21 VT2l + {2 Vo121

Expressions such as this seem to have been used in a purely forma 1 sense, without
any meaning being attached to them. Words such as ‘sophistry app pear, with the
comment that they are ‘as subtle as they are useless’. Cardano called them numeri
ficti, and the fact that we still speak of imaginary numbers todayis testimony to the
persistence of such a philosophical attitude. Such numbers occurresd from time to
time thereafter, and luminaries such as Descartes and Newton had doubts about
them. Another occurrence involved the attempt to integrate the reciprocal of a
quadratic with no real roots by the method of partial fractions. Thuis led to the
appearance of logarithms of imaginary numbers, a matter of controversy between
Leibnitz and J. Bernoulli. Euler wrote on the matter in a famous p» ublication of
1749: De la controverse entre Mrs. Leibnitz & Bernoulli sur les Log airithmes des
Nombres Negatifs et Imaginaires. (Notice the 18th century abbrevi ation for
Messieurs.)
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Applications of these new numbers were considered by the great German
mathematician, physicist and astronomer Carl Friedrich Gauss (1777-1855). It is
clear, through the process of completing the square, that if we can solve x2 +1 =0
then we can solve any quadratic equation, and the investigations alluded to above
indicated that cubic and quartic equations would also be soluble. But what about
equations containing higher powers of x? Would we need to extend the number
system yet again in order to bring these equations within the scope of numeric
solution? What Gauss was able to prove in his doctoral dissertation in 1799 was that
the complex numbers provide the roots of all polynomial equations. We note in
passing that he did not do this by generalizing the formulae for cubics and quartics,
indeed the work of Galois and Abel was to show that in an algebraic sense there
could be no general formulae for equations of degree higher than 4.

The philsophical question of what the square root of a negative number could
possibly mean was answered to some extent by showing that it could be represented
geometrically. Like the algebraic development, this took some time, with a number
of mathematicians generating the essential ideas, including Descartes (1637), Wallis
(1673), Wessel (1797), Argand (1806) and Gauss himself, who published an account
of the representation of complex numbers in the plane in 1831. He had been aware
of this some 20 years earlier, but it seems that his natural caution led him to be wary
of publicly acknowledging ideas which were still felt to be philosophically suspect.

It was the Irish mathematician, linguist and astronomer William Rowan Hamilton
(1805-1865) who finally showed in 1833 how one could define complex numbers
solely in terms of real numbers without the need for a fictitious quantity like a non-
existent square root of a negative number. The story of this and his subsequent
investigations is a fascinating one, culminating in his invention of a hypercomplex
number system, the quaternions, and the famous (if not apocryphal) episode of his
scratching the crucial equations on a stone bridge. Hamilton’s approach is at root
the one we adopted in §3.2, that of constructing one system from another. We shall
explore this in some detail in the following section. '

The story does not end there. A great deal has been done during the past two
centuries in calculus and analysis involving complex numbers and functions, giving
rise to one of the most powerful and satisfying branches of mathematics, which is a
cornerstone of many undergraduate courses.

6.1 Hamilton’s Definition

A common approach to the introduction of complex numbers is to define them as
‘expressions of the form a + bi where a and b are real numbers and i = v—1". We
then multiply them as if they obeyed all the rules of algebra to obtain

(a+ bi)(c + di) = ac + bei + adi+ bdi* = (ac — bd) + (ad + be)i.

Unfortunately this does not tell us what +/—1 means. Replacing ‘i = v/—1’ by

‘i = —1" does not help, because we have nothing to tell us that there is a solution to
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this equation. The symbol ‘i’ remains mysterious and imaginary. Modern algebra
has the notion of a field extension by adjoining an undefined variable satisfying
specified relations, but this is far too abstract for an introductory approach.

The solution to the problem arises from the work of Hamilton in 1833 referred to in
the introduction. He gave a formal definition of complex numbers in terms of
ordered pairs. The fact that the geometrical representations involved coordinates
fitted in very well with the ordered pair idea. We shall give his definition and look at
some of the consequences, in particular showing how it leads to the traditional
notation for complex numbers used at the beginning of this section.

o Definition |

The set € of complex numbers consists of all ordered pairs (a, b) of real numbers,
with operations of addition and multiplication defined by

(a,b) + (¢,d) = (a+¢,b+d),
(a,b) x (c,d) = (ac — bd, ad + bc). ®

Naturally, Hamilton formulated his definitions of the arithmetic operations to
reflect the way the traditional notation worked. He certainly did not invent
arbitrarily what at first sight appears to be a bizarre way of describing
multiplication.

We showed in §3.2 that the set of rational numbers contains a subset which behaves
like the integers. We can show here that in this sense the real numbers are embedded
in the complex numbers, for if we consider the subset of € for which the second
component is zero we have

(a,0) + (¢,0) = (a+¢,0) and (a,0) x (c,0) = (ac,0).

So this subset behaves exactly like the real numbers in respect of arithmetic and
algebra.

This means that the complex number (—1,0) is the image of the real number —1.
Furthermore the definition of multiplication tells us that (0,1) x (0,1) = (—1,0). It
is this relationship which gives meaning to v/—1 in terms of real numbers, for we
have shown that (0, 1) is an ordered pair of real numbers which when multiplied by
itself gives the embedded image of —1.

Now that Hamilton’s definition has given a meaning to and established the
mathematical existence of complex numbers in terms of real numbers, we shall make
the link with the traditional notation. Given a complex number (a, ), it is
straightforward to verify that the definitions of addition and multiplication give

(a,b) = (a,0) + (5,0) x (0,1).

We have seen that numbers with zero as the second component mimic the behaviour
of real numbers, and so we can legitimately abbreviate (a,0) and (b, 0) as a and b.
We shall then abbreviate (0, 1) with the symbol ‘i’, so that we can now write
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(a, b) = a + bi, where we have adopted the usual procedure of denoting
multiplication by juxtaposition, i.e. writing bx i simply as bi.

Does —1 have any other square roots? The implication x> = y? = x = £y uses only
the algebraic properties of the number systems for its justification, and it applies to
the complex numbers as well as to the integers, rationals and reals. So every non-
zero complex number has exactly two square roots. In the case of —1 these are i and
—1.

6.2 The Algebra of Complex Numbers

As far as solving equations is concerned, the algebraic rules are the same as those of
the rational numbers as given in Chapter 3, as we shall show. This serves as a
general demonstration of what is involved in verifying that a given system obeys a
particular set of axioms. We use the Hamilton notation in the following proposition
as an illustration that it can be used in calculations as well as simply in definitions.
Thereafter, we shall revert to the traditional notation for complex numbers.

® Proposition |

The complex numbers obey the axioms for a field. )

PROOF
We refer to the axioms by the labels used in Chapter 3.

Al. This follows from the definition of addition (Definition 1 above).

A2. This is inherited from the corresponding property for the real numbers. Using
the Hamilton notation we have

(a,b) + ((¢,d) + (e,f)) = (@a+ (c+e),b+ (d+f)) from the definition,
=((a+c)+e (b+d) +f) using associativity in R,
= ((a,b) + (c,d)) + (e,f) from the definition.

A3. For all (a,b) € C, (a,b) + (0,0) = (a, b) from the definition of addition. So
(0, 0) is the additive identity in €. It corresponds of course to the real number 0.

A4. For all (a,b) € C,(a,b) + (—a, —b) = (0,0) from the definition of addition. So
(—a, —b) is the additive inverse of (a, b).

AS. This is inherited from the corresponding property for the real numbers, giving
(avb) + (C1d) = (a+c7b+d) = (c+a,d+b) = (C,d) + (a7b)'

MI1. This follows from the definition of multiplication (Definition 1 above).

M2. This involves some tedious algebra. We commented on this in Exercise 2 of
§3.2. The calculations are as follows. Observe that they use distributivity and
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associativity for the real numbers.

(a,b) x ((c,d) x (e,))

= (a,b) x (ce — df, ¢f + de)

= (a(ce — df) — b(cf + de), a(cf + de) + b(ce — df))

= (ace — adf — bef — bde, acf + ade + bce — bdf)

= (ace — bde — adf — bef, acf — bdf + ade + bce)

= ((ac — bd)e — (ad + bc) f, (ac — bd)f + (ad + bc)e)

= (ac — bd,ad + bc) x (e,f)

= ((a,b) x (c,d)) x (e,/).
M3. For all (a,b) € C, (a,b) x (1,0) = (a,b). So (1,0) is the multiplicative identity,
corresponding to the real number 1.

M4. Here we have to try to solve the equation (a,b) x (x,y) = (1,0). Using the
definition of multiplication this gives (ax — by, ay + bx) = (1,0). Two ordered pairs
are equal if and only if the respective components are equal. This leads to the
simultaneous linear equations

ax—by=1,
ay+bx=0.

It is left to the reader to verify that, provided a? + b* # 0, the solution of these
equations is
=9 _ b
2+ YT T2
So every non-zero complex number has a multiplicative inverse. For real numbers
we also refer to this as the reciprocal, and we shall do so for complex numbers. We
shall also use the normal reciprocal notation in the case of complex numbers. The
result here can therefore be written in the traditional notation as
1 a b ;
a+bi @2+b a+b7

MS5. We use commutativity for multiplication of real numbers, so that
(a,b) x (¢c,d) = (ac — bd, ad + bc)
= (ca — db,da + cb)
= (¢, d) x (a,b).

The final axiom is that of distributivity, and we shall leave that as an exercise. ]
TUTORIAL PROBLEM |
Undertake a careful analysis of the proof of M2 above and decide exactly

which properties of addition and multiplication in the real numbers have
- been used at each stage.
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The next set of axioms we have to consider is that of order. This is dealt with as
follows.

e Proposition 2

It is impossible to define an order relation on € which is compatible with addition
and multiplication. [ )

PROOF

Compatibility with addition and multiplication refers to Axioms O3 and O4 in §4.1,
which govern the manipulation of inequalities. We shall show that the assumption of
the existence of a relation of inequality satisfying the order axioms leads to a
contradiction. Now Axiom O4 and Example 1 of §4.1 demonstrate that the square

of any non-zero number is greater than zero. This used only axioms from the list, and
so applies to the complex numbers as well as to the rational and real number systems.
So —1 = i?2 > 0, and adding 1 to both sides of this inequality by Axiom O3 gives

0 > 1. But 1 isa square (1 = 12) and so 1 > 0. This contradicts Axiom O1. So there is
no order relation on € which satisfies the axioms. This means that it makes no sense
to talk about one complex number being larger or smaller than another. ®

Having discussed the algebraic structure of C we shall now consider some of the
quantities used in the arithmetic and geometry of complex numbers. It is traditional
to use z to denote an arbitrary complex number, analogous to the use of x for real
numbers.

e Definition 2

Given a complex number z = x + yi we define the following quantities.

(i) x is called the real part of z, and is denoted by Re(z).
(i) y is called the imaginary part of z, and is denoted by Im(z).

(iii) The complex conjugate of z is defined to be x — yi. There are various notations
in use, among the most common of which are z* and z. We shall use z*.

(iv) The modulus of z is defined to be the non-negative real number /(x2 + y?). It is
denoted by |z|.

Note that y, the imaginary part of z, is a real number, a point which sometimes
causes confusion. This and the other parts of Definition 2 will make more sense in
the next section when we shall interpret them geometrically. o

Example |
Show that (i) z + z* = 2 Re(z), (ii) z — z* = 2i Im(z2), (iii) zz* = |z,
This is an exercise in using the definitions.

(i) Adding z to its conjugate gives z + z* = (x + yi) + (x — yi) = 2x = 2 Re(2).
(ii) Subtracting gives z — z* = (x + yi) — (x — yi) = 2yi = 2i Im(z).
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(iii) Multiplying z by its conjugate gives
22" = (x4 yi) (x — yi) = (2 + ) + (=xp + yx)i = (2 +y?) = 2"

In the discussion of Axiom M4 above we found an expression for the reciprocal of a
complex number. That expression is consistent with the result of Example 1, which
can be written as

1 z*

-= (z#£0).

z e

Example 2

Find the real and imaginary parts of the complex number 3-2

143i

The result of Example 1 shows that if we multiply the denominator by its conjugate
we obtain a real number. The strategy for this problem is therefore to multiply
numerator and denominator of the given number by the conjugate of the

denominator. This gives
3-2  (3-2i)(1 —3i)_(3—6)-+—(—9—2)i___i__£i

1+3i (1+3i)(1-31) 12 + 32 10 107
So the real part is —3/10 and the imaginary part is —11/10.

e Proposition 3

Complex conjugation commutes with addition, multiplication and division, i.e.
i) @+z) =zi+z, ) @) =7z () (1/2"=1/(). .

PROOF

A comment on the language used here is in order. The use of the word ‘commutes’
relates to the commutative axioms (A5 and M5 in Chapter 3), which essentially say
that the order of operations can be reversed. So the concise phrase ‘conjugation
commutes with addition’ symbolized in (i) means that if we add two complex
numbers and then find the conjugate of the sum, we will obtain the same answer by
finding the conjugate of each number separately and then adding these conjugate
numbers together. The use of the word ‘commutes’ in this sense occurs a good deal
in algebra and geometry.

Proof of the three properties is a matter of algebraic manipulation. We let
z1 = X1 + y11, etc.
(@) (a1 +2i) + (2 +32))" = ((x1 +x2) + (1 +22)i)°
= ((x1+x2) — (1 +32)i) = (x1 = yii) + (x2 = p2i).
(ii) ((x1 4+ i) (22 + y21))" = ((x1%2 — y1y2) + (x1y2 + y1x2)i)”
= ((x1x2 — y1y2) = (x192 + y1x2)i) = (x1 — i) (32 — y2i).

1\ X y \
(i) (x +yi) - (Jc2+y2 X2+ 2 1)

— (i) =
- x2+y2 x2+y2 —x—yl o
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e Proposition 4

If the complex number z is a root of a polynomial with real coefficients, then the
conjugate z* is also a root of the polynomial. L

PROOF
Suppose that @,z" + a,_12""' + ... + 22> + a1z + ap = 0, where the coefficients
ay, . . . ,a, are real numbers.

We first note that if @ denotes a real number then a* = q, for
a* = (a+0i)* = a — 0i = a. Using the results of Proposition 3, extended as in
Exercise 3 below, we then have

(an2" + 127 @ taz+ @) =0"=0
@) +a,_ (7)) + .. a3 (2) +aiz +a =0,
an(2*) + @1 () + . 4 aa(2*) @zt +ap = 0.

Therefore z* is a root of the polynomial. [ )

Example 3

Given that z = 1 + i is a solution of the equation z* — 5z% 4+ 10z — 6, find the other
solutions.

The result of proposition 4 tells us that z = 1 — i is also a solution. This tells us that
(z— (141i)) and (z — (1 — i)) are both factors of z* — 5z + 10z — 6, so that
(z=(1+i))(z = (1 —i)) = 22 — 2z + 2 is a factor. Polynomial division then gives

=52 4+10z2-6= (2 —2242)(2+22-3) = (> =22+ 2)(z - 1)(z + 3),

so that the four solutions are 1 +1i,1 —1i,1,-3.

Discuss and fill in details in the following argument, which generalizes the
result of Example 3. Construct examples to illustrate the various assertions.

Suppose we have a polynomial of degree n with real coefficients. We
commented in the introduction that Gauss proved that the roots of this are
all complex numbers (some of which may be real, i.e. with imaginary part
zero). This enables the polynomial to be factorized completely into linear
factors (some of which may be repeated). Proposition 4 tells us that non-real
roots of such a polynomial occur in conjugate pairs. Corresponding pairs of
linear factors will always multiply to give a real quadratic. Thus, every
polynomial with real coefficients can be factorized into a product of real
linear and real quadratic factors.

In Exercise 5 below you are asked to show that |z;2z;| = |z;||z2|. The analogous result
for addition is false, as the following illustration shows. Let z; = 3 + 4i and
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zy = 5 — 12i. Then z; + z; = 8 — 8, and calculating the moduli of these numbers
gives |z1| = 5, |z2] = 13 and |z; + 25| = /128 = 8+/2. S0 |21 + 23| # |z1| + |22|- The
value of the left-hand side is approximately 11.3 whereas the right-hand side is equal
to 18. In fact the relative magnitudes are always this way round, as the following
result demonstrates.

® Proposition 5—The triangle inequality

For all complex numbers z;, z; we have |z; + 23| < |z1| + |z2]. ]
PROOF

The reason for the name ‘triangle inequality’ will become clear in the next section,

where a geometrical justification will be given. We shall first establish a result to be
used in the course of the proof.

Let z = x + yi. Then Re(z) = x = /(x?) < /(x? + »?) = |z|. Equality occurs if and
only if y = 0, i.e. when z is real. We now have
|21 + 22> = (21 + 22) (21 + 22)" = (21 + 22) (2} + 23)
= z12] + 2225 + 2125 + 2122
= |z +z 42125 + (2123)"
= |z1)*+|z2]*+2Re(z12})
< |1z +2|(2123)]
= |z1P+Hza 42|71 |23
= |21’ +|z*+2l21|z2]
= (lz1] + |za])".

Taking the square root gives the result. [ )

TUTORIAL PROBLEM 3

In the chain of argument in Proposition 5 we have used some results from
earlier propositions in this section, parts of Definition 1, and some results
from the exercises below. Find the justification for each step in the argument.

EXERCISES 6.2

1. Express the following complex numbers in the form a + bi, where a and b are
real.

(i) (4 = 20) (=3 +7i), (ii) 7—_1—5, (iii) :}1 f ;‘I

2. Prove from Definition 2(iv) that |z;2;| = |z1||z2| and that |1/z| = 1/|z|. Extend
the first result to » complex numbers by induction.

3. Show from the definition of complex conjugate that (z*)* = z.
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4. Prove that |z*| = |z|.

5. Express (1 + i) in the form a + bi where a and b are real. Use this to write down
a square root of i. Try to find the other square root of i. Try to find the square
roots of —i.

6. Solve the quadratic equation z> — 2z —i = 0.
7. Replace z; by z; — z; in the triangle inequality to show that
|21 — z2| 2 |21] — |z2].

Deduce that |z) — 23| > ||z1] — |z2]|-

6.3 The Geometry of Complex Numbers

We remarked in the introduction that geometrical representations for complex
numbers were investigated during the 17th—19th centuries. The Hamilton notation
itself is of the same form as that used in two-dimensional coordinate geometry, and
so it seems natural to represent a complex number x + yi as the point (x, y) in the
Cartesian coordinate plane. This representation is referred to variously as the
Argand Diagram, the Gaussian plane etc. Not wishing to single out any one
particular mathematician above the others involved, we shall follow the practice of
referring simply to the complex plane. In this context, the x and y-axes are called the
real axis and the imaginary axis respectively.

Representing complex numbers in the plane would not be especially significant
unless the various operations and quantities associated with complex numbers had
an interpretation, and we shall explore this here and in subsequent sections of this
chapter. Adding a visual component to the algebraic aspect of complex numbers will
enable a much richer concept image for complex numbers to be established. Firstly
we shall illustrate the basic quantities described in Definition 2.

.._--------/—/! Z=(I)+yi

Im(2)

OF— <« —
N

~Re(z) =z —

|
1
|
1
1
|
~ |
e

z=z—Y

Fig 6.1 The complex plane: real and imaginary parts, conjugate and modulus.

We shall now consider another important quantity associated with the complex
number z.
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e Definition 3

The argument of a non-zero complex number z is the angle 6 between the line
joining O to z and the positive real axis. It is denoted by arg(z). In order to associate
a unique such angle with z we adopt the convention that —7 < 0 < 7. ®

The choice of the interval for 8 is particularly important in applications in calculus.
It is often referred to as the principal argument. The angle is marked on Fig 6.1. The
argument can be determined from the real and imaginary parts, because we can see
from Fig 6.1 that tan 6 = y/x. However, it is insufficient to try to invert this formula
as @ = tan~!(y/x). This is because the tangent function has period =. By way of
illustration of this point, if we plot the complex numbers 1 + i and —1 — i we can

see that arg(1 +1i) = w/4 and arg(—1 — i) = —3n/4. However, in both cases the
value of y/x is equal to 1, so the quantity y/x cannot be used to determine the
argument without considering which quadrant the complex number is in. The value
of the inverse tangent is always between +7/2, as most electronic calculators will
confirm.

TUTORIAL PROBLEM 4

Discuss how the following specification determines the value of the argument
of the complex number x + yi. Give some numerical examples and illustrate
them in the complex plane.

tan~!(2) if x > 0;
z if x=0and y > 0
arg(x +yi) = ¢ —% ifx=0and y <0;

—m+tan~'(%) if x<0andy<O0;
m+tan~'(?) ifx<Oandy>0.

We see in Fig 6.1 that |z| can be interpreted as a measure of the distance between the
point z and the origin O. The formula for |z| in Definition 2 can be seen to relate to
Pythagora’s Theorem. We can extend this a little further by considering two points
in the complex plane z; = x; + y;i and z; = x; + y»i. We then have

21—z = (%1 — x2) + (1 — »2)i,
|zt — 22| = V((x1 — x2)* + (1 — 32)?).

The last expression gives the Pythagorean distance between the points (x;, y;) and
(x2,¥2) in Cartesian coordinates. We can therefore interpret |z; — z,| as a measure of
the distance between z; and z; in the complex plane.

Example 4

Describe geometrically the set of complex numbers z satisfying the equation
|z—(1+1i)] =3.
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|z — (1 +1)| measures the distance between z and 1 + i, so we are considering the set
of points in the complex plane whose distance from 1 + i is equal to 3. This is the
circle with centre 1 + i and radius 3.

Example 5

Describe geometrically the set of complex numbers z satisfying 1 < |z| < 3.

|z| measures the distance from the origin, and so we have the set of numbers whose
distance from the origin lies between 1 and 3, i.e. the region contained within the
two circles, centre the origin and radii 1 and 3. The inequality symbols indicate that
the outer circle is part of the set but the inner circle is not.

Example 6

Describe geometrically the set of complex numbers z satisfying —7/4 < afg(z) < /4.

Referring to Fig 6.1 tells us that we have the set of points for which the angle 4 lies
between +7/4, i.e. the infinite wedge-shaped region in the right-hand half-plane
contained between the lines y = x and y = —x. The lines themselves are excluded.

We now turn our attention to addition. The Hamilton notation for complex
numbers, as well as being the same as for Cartesian coordinates, is also that used for
two-dimensional vectors, and the Hamiltonian definition of addition is precisely that
of vector addition. We would therefore expect a diagram for complex addition to
appear the same as the parallelogram rule for vector addition. Subtraction is dealt
with similarly, and we can see both in Fig 6.2. The diagram also illustrates the

21+ 23

A
4
N

/7 b4

’
[
(Wie

—(2'1 + 22)

Fig 6.2 Addition and subtraction in the complex plane.
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triangle inequality (Proposition 5). If we consider the triangle whose vertices are the
origin, the point z; and the point z; + z,, we can see that, from the properties of
parallelograms, the distance from z; to z; + z; is equal to that from the origin to z5.
Using the fact that the sum of two sides of a triangle always exceeds the third side
confirms that |z + 23| < |z1| + |z2].

TUTORIAL PROBLEM 5

Plot some complex numbers on graph paper and verify that sums and
differences do follow the parallelogram rules illustrated in Fig 6.2.

If we look again at Fig 6.1, particularly at the interpretation of the modulus, and
also consider the difficulties about giving a precise definition for the angle in terms of
x and y, we can perhaps see that, in fact, polar coordinates will be a useful device in
the complex plane, and we shall consider this next.

6.4 Polar Representation

The equations relating Cartesian and polar coordinates are
x =rcosf and y =rsiné.

We can therefore write z in polar form as
z=x+yi=r(cosf +isinf).

Notice that we write isin @ instead of sin fi so as to avoid possible confusion of the
last expression with sin(6i). Recalling the meanings of  and # in polar coordinates
we see immediately that

r=|z| and 0 = arg(z).
Polar coordinates are better for considering multiplication. If we write two complex
numbers z; and z; in polar form as
zy =ri(cos @) +isinb)), 2z, =ry(cosf, +isinb,)
and multiply them together we obtain
2123 = r1ra(cos 0; + isin 0;)(cos B, + isin 6;)
= r1r2((cos 6y cos 8, — sin 6; sin 6,) + i(cos 6; sin 8, + sin 6 cos 65))
= rirz2(cos(8; + 6>) +isin(6; + 6,)),
using trigonometric addition formulae. This tells us that |z, zy| = r1r; = |21]|22],
which you may have verified in Cartesian form in Exercise 2 of §6.2. The formula
also suggests that arg(z,z,) = arg(z;) + arg(z;). This is not always true, because if 6;
and 6, are both between —x and T, it does not follow that 6; + 6, is within these
limits. In fact, if it is outside then we find that arg(z,z,) and arg(z;) + arg(z,) differ

by some multiple of 27, and this also happens when we add more than two
arguments in this way. Example 7 illustrates this.
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Example 7

Letz; = —1 +iy/3 and z; = —1 +i. Express z; and z; in polar form, and investigate
the relation between arg(z;z;) and arg(z;) + arg(zz).

. A
-1+1i,/3e
\
\
\\
—1+4+1e . \\\ —--\02
\v’,\:—’ -‘\\\\
2wy
LA NEN 0 AV
LIRS .
\‘ A -

17w /125 . =Tr /12

21220

Fig 6.3 Diagram for Example 7.

From the definition of the modulus we can calculate that |z;| = 2 and |z;3| = /2.
From the diagram we can find the angles, so §; = 120° = 27/3 and
6, = 135° = 3w /4. This gives all the information we need, and so

2 .. 2w 37 .. 3w
z1 = 2(cos?+1s1n?), Zp = ‘/2<COST+ISIHT)'

If we now use the polar product formula we obtain

1 1
2123 = 24/2 (cosﬂ +i sinﬁ).

12 12
However, 177/12 is not between —7 and 7. We need to find the appropriate value
for the argument and this is best done from the diagram. We have indicated the
position of z;z, on the diagram, and we can see that the appropriate value for the
angle to lie between —7 and 7 is —77/12, so that
arg(z1z2) = (arg(z1) + arg(z2)) — 2 in this case.

TUTORIAL PROBLEM ¢

Explore some more examples like Example 7. Try to find some general
relationships between arg(z,z;) and arg(z;) + arg(z), depending on which
quadrants the numbers are in.
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Example 8
Express the conjugate of a non-zero complex number in polar form.
From Fig 6.1 and also from the formulae in Tutorial Problem 4 we can see that
arg(z*) = —arg(z). So if z = r(cos 6 + isin §) then
z* = r(cos(—0) + isin(—8)) = r(cos@ —isin6).

® Proposition 6—de Moivre’s theorem
If z = r(cos 6 + isin ) then z" = r*(cos(nf) + isin(nf)) for alln € N. °

PROOF
We shall give a proof of this theorem by induction. The result is certainly true for
n = 1—there is nothing to prove. Suppose that the result is true for n — 1. We use
the polar formula for the product of two numbers in the following calculations.
=zxz"!
= r(cosf +isin @) x r""!(cos(n — 1)8 + isin(n — 1)6)
= r"(cosfcos(n — 1)0 —sinfsin(n — 1)0
+icos@sin(n — 1)6 +isinfcos(n — 1)6)
= r"(cos(8 + (n — 1)0) +isin(6 + (n — 1)8))
= r"(cos(nf) + isin(nd)).

Hence by induction the result is true for all n € N. ()

TUTORIAL PROBLEM 7 |

Extend the polar formula for the product of two numbers to the case of n
numbers, i.e. prove by induction that

2120 ...Zp =11F2 ... ta(cos(0) + 02+ ...+ 0,) +isin(0) + 6, + ...+ 6,)).

This is a generalization of de Moivre’s theorem.

EXERCISES 6.4

1. Find the modulus and argument of the numbers 1 +1i, —i, 1 —iy/3,-2, /3 —1i.
2. Interpret geometrically the sets of points in the complex plane satisfying:
@) |z —il = |z - 1],
@) |z+ 1| =2,
(iii) Re(z) = -3,
(iv) Im(z) < 1.
3. Letz = -1+iy/3andz, = —1+i. Express z; and z; in polar form, and find
arg(z1z2).
4. Letz=r(cosf + isinf). Express 1/z in polar form.
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5. Prove the result zz* = |z|* using the polar form of complex numbers.

6. Prove that the result of de Moivre’s theorem is true for negative integers, using
the theorem for positive integers and Exercise 4.

6.5 Euler’s Formula

In this section we shall look at a fundamental relationship between the exponential
and trigonometric functions, which bears the name of the great mathematician
Euler. It is a formula which is used extensively in complex calculus. To derive it we
shall need to assume some results from calculus, namely the series expansions of the
exponential, sine and cosine functions.

ef=14+x+ 2+X3+X4+
B 20314l
x2 x* Xt

cosx:l—E—FE—a%—...,
. 2 X X
sinx = x — §+——?+

We now replace x in the exponential expansion by i§. We then separate out the real
and imaginary parts of the resulting expression. We shall assume without proof the
validity of all the algebraic manipulations we carry out on these expansions.
(19) (6 (9)* @9)°  (i0)° = (i)

R TR R TR TR
92 03 6t 6 6 ¢

=1+i6—'2—! 4'+ 5——5—17774‘

6> o 06 . @ ¢ ¢
=(1-4+=—Z 4. ) +il0-+=—=+...).

U =1+i0+

21 4 6! 3t st 7

The expansions on the right are those of the trigonometric functions, and so we have
Euler’s Formula:

e = cos@ +isiné.
One particular case which is often quoted is obtained by putting § = 7. Using the
fact that sinw = 0 and cos m = —1 enables us to deduce that

e+ 1=0.
This is thought to be remarkable because it connects in one simple formula the well-

known numbers 7,1, e and 1, which separately arise in quite disparate branches of
mathematics. This formula has been observed emblazoned on T-shirts!

Using the laws of indices for the exponential function we can now see the polar
multiplication relationship and de Moivre’s theorem from a much more natural
perspective. The polar form of a complex number can be written using Euler’s
Formula as

z = r(cosf + isin§) = re®.
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This polar exponential form is used throughout complex calculus, and we shall
exploit it here. Multiplying two numbers gives

i0

2123 = ref' re® = rirel@+6),

The laws of indices clearly extend this to the case of n numbers, and we can derive
de Moivre’s theorem as follows

(r(cos @ +isin )" = r"(e?)" = rei™ = r"(cos(nb) + isin(nh)).

Example 9

Use Euler’s Formula to obtain the trigonometric identities for cos(4 — B) and
sin(4 — B).

cos(4 — B) +isin(4 — B) = l4~5) = ¢l4ei(-B)
= (cos 4 + isin 4)(cos(—B) + isin(—B))
= (cos A + isin 4)(cos B — isin B)
= (cos A cos B + sin 4 sin B)
+ i(sin 4 cos B — cos 4 sin B).

Equating real and imaginary parts then gives

cos(4 — B) = cos Acos B + sin Asin B
sin(4 — B) = sin A cos B — cos A sin B.

In calculus you will meet the hyperbolic functions, defined in terms of exponentials,
and Euler’s Formula gives a close connection between these and the trigonometric
functions. As functions of a real-variable, trigonometric and hyperbolic functions
behave quite differently. The next example shows one aspect of this. As a function of
a real variable, €* is not periodic in the sense of the trigonometric functions, whereas
as a function of a complex variable it is.

Example 10

Show that the exponential function is periodic with period 2i.

Using the laws of indices gives, for any complex number z,

242m __ aza27i

e e“e’™ = e’(cos 2w + isin 27) = €.

This shows that the exponential function is periodic, but it only demonstrates that
2mi is an integer multiple of the period.

Now if e#t® = 7 then e® = 1. In the next tutorial problem you are asked to deduce
that o = 2ni for some n € Z. This shows that the period is 27i.
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TUTORIAL PROBLEM 8

To show that if e* = 1 then a = 2n7i. Write « in Cartesian form and deduce
from |e“| = 1 that the real part of « is zero. Then use properties of
trigonometric functions to deduce that the imaginary part of a is an integer
multiple of 2.

EXERCISES 6.5

1. Show that e7' is the conjugate of e'.

2. Use Euler’s Formula to obtain the trigonometric identities for cos(4 + B) and
sin(4 + B).

3. Show that Ie“’] = 1 for all real numbers 6. (This shows that all such numbers lie
on the unit circle centred at the origin in the complex plane.) Plot the following
numbers on the unit circle,

Ci”, ei(—w), ei7r/2’ ei‘fr/3, ei(-27r/3)’ ei(—ﬂ/Z)‘

4. Use Euler’s Formula to establish the following results,

elf 4 e-if . eif _ o—if
cosf = ———, sinf=—>—.
2 2i

6.6 The Roots of Unity

Much of our discussion about number systems has involved solving equations, and
we continue that theme in this section. We mentioned in the introduction that Gauss
showed that any polynomial equation has all its roots within the complex numbers,
and here we shall explore the roots of the equation z” = 1, where » is an arbitrary
positive integer. In the cases n = 2, 3 these are called, respectively, the square roots
and the cube roots of 1 (unity), and in general we refer to the solutions as the nth
roots of unity.

We use the polar exponential form z = rei®, and so z* = 1 gives "¢ = 1. Using the
result of Exercise 3 in the previous section then tells us that " = 1, and since ris a
non-negative real number we must have » = 1. So z = ¢! for some value of §, and
again referring to Exercise 3 above we can see that all the roots of unity will lie on
the unit circle in the complex plane. So we must have " = 1, which tells us that
cos(nf) = 1 and sin(nf) =0. It follows that #n6 must be an integer multiple of 2, i.e.
@ = 2kr for any k € Z. This gives the solutions of z" = 1 as

2k
z=¢n forkelZ.

This apparently gives us infinitely many solutions, but we shall see that different
values of k do not necessarily give different values of z. This relates to Example 10. If
we consider two possible values of k giving the same value of z then we have

i2k|7l’ i2kz’ll'
Z=€ n =€ n .,
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Dividing the two exponential expressions and using the laws of indices then gives

. 2(k1 —-kz ™
el n =

Using Euler’s Formula and equating real and imaginary parts then gives
cos(—z(kl ;k2)7r> =1 and sin (—z(kl ;kZ)ﬂ) =0.

This happens if and only if 2(k; — k)7 /n is an integer multiple of 27, so that k; — k;
must be an integer multiple of n. Therefore, there will only be » different values of &
which give rise to distinct values of z. In particular, if we take k = 0,1,2,...,n— lin
turn this will give rise to the n distinct values of z. We can therefore list the distinct
solutions of z" = 1 as

21r l41r 61r i2(n-—l)7r
l,e'n,en,en,...,e" n

Recalling that these numbers all lie on the unit circle we can see that the arguments
increase from one to the other by the addition of 27/n, so that they will be equally
spaced around the circle, at the vertices of a regular n-sided polygon.

Example ']

Find the solutions of the equation z6 = 1 and plot them in the complex plane.
Express them all in Cartesian form.

The theory above tells us that the solutions will be

z=d (k=0,1,2,3,4,5)

Cos 2er +isin 2fem
= cos( == <)

These are plotted in Fig 6.4 (page 102) at the vertices of a regular hexagon, and
expressed in Cartesian form using knowledge of trigonometric values.

TUTO&}M. %,WLEN 9

If we now let Zr = e‘zk”/ 6 we can explore successive powers. The theory above

tells us that the first six powers of z; will give all the distinct 6th roots of
unity. Verify that the first six powers of zs also give all six roots. Plot and
label them. Calculate successive powers of the other roots and plot and label
them also, showing that in these cases we do not obtain all six roots. In
particular, verify that z3 = 1,z = land z; = 1.

Following this situation, a root of unity whose successive powers give all the
roots is called a primitive root of unity. It turns out that z; = ¢2"/" is a
primitive nth root of unity if and only if the highest common factor of k and
nis equal to 1. Try to prove this result.
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\
—14+ie | ol +i¥2

_%_i%é_ 1_ 8
2 2

Fig 6.4 The solutions of 2= in the complex plane.

Let us return to the sixth roots of unity, using the notation of Tutorial Problem 9.
We can factorize z6 — 1, knowing the roots, and noting that zy = 1, as

2 —1=(z-1)(z-21)(z-2)(z—23)(z — z4)(z — z5).

We can use this to find various relationships. For example, by considering the
constant term we can see that the product of the roots will be equal to —1. Another
interesting result is obtained by considering the sum of the roots. This would
correspond to the coefficient of z°> on the right-hand side if we were to multiply out
the brackets. This coefficient must be zero from the left-hand side, so that the sum of
the roots is zero. This in fact generalizes. The algebraic reasoning is exactly the
same, and so the sum of the nth roots of unity is zero. In the case when n is even it is
easy to see this from the complex plane. From Fig 6.4 we can imagine that if instead
of a hexagon we had a regular polygon with an even number of vertices, then every
vertex would correspond to one immediately opposite, joined through the origin.
For each root its negative is therefore also a root, so that they clearly all sum to
zero. For the case of an odd value of # this reasoning does not work, but the result is
nevertheless true, as the algebra has demonstrated. We can certainly see that the sum
of the roots will be real, using Proposition 4. For any root of unity its conjugate will
also be a root of unity, and when we add them the imaginary parts will cancel. If, for
instance, we draw a regular pentagon in the unit circle with one vertex at 1 on the
real axis we can see that it is symmetrical about the real axis, and we can use the
reflective symmetry to pair off each non-real vertex with its conjugate.

Example 12

Prove that

1+ 2—7E + cos 4—” + cos @ + cos 81 =0
cos 5 5 5 5) =0
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The sum of the Sth roots of unity is zero. Therefore, the sum of the real parts is also
zero. The left-hand side of the equation is the sum of the real parts of the Sth roots
of unity.

Finally, in this section we shall investigate the more general equation z” = o, where
a is some complex number different from 1. If we write « in polar form as o = rei®
then there is a unique positive real nth root of the positive real number r and if we
write zo = /rel/" then the laws of indices tell us that z} = @, so that we have found
one solution. If we have amother solution z; then (z;/z)" = 1, so that z;/z is an
nth root of unity. So all the solutions of z” = «a will be of the form

. 2km
z=1z0¢' n (k=0,1,2,...,n—1).

Example 13

Find the 7t;ourth roots of i. In polar exponential form we have i = ¢! 3. So one root
will be e'8, and therefore, using the laws of indices, the set of four will be

i T i2_7" iz i4_7" iz i6_7|'
€8, e8xed,e8xed4,e8xe 4.

We can simplfy these as follows,
ST SR Y
¢'8,ie'8, —e'8, —ie's.

They lie at the vertices of a square as in Fig 6.5.

/\.ti
L

Fig 6.5 The fourth roots of i in the complex plane.

EXERCISES 6.6

1. Find the fourth roots of unity. Express them in polar exponential and Cartesian
form, and plot them in the complex plane.

2. Find the cube roots of 8i. Express them in polar exponential and Cartesian
form, and plot them in the complex plane.
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3. Find the cube roots of unity. Let w;,w, denote the two non-real roots. Show that
Wl = wa, wy =wi, W = wy, Wi =w.
Interpret these relationships in the complex plane.

Show that if |z| = 1 and Re(z) = —} then z is a cube root of unity.

5. Use the polar exponential form of the sixth roots of unity and the results of
Exercise 4 of §6.5 to factorize z° — 1 into a product of real linear and quadratic
factors.

6. Find the primitive 8th roots of unity.

Summary

The theory of complex numbers and the calculus of complex functions are among
the greatest achievements of post-Renaissance mathematics. In this chapter we have
introduced the basic elements of complex numbers.

In many ways the most important thing in this chapter is Euler’s Formula. The
geometrical representation of complex numbers, the use of polar coordinates and
the complex exponential form are vital ingredients without which complex function
theory and its applications would be impossible. We have explored just one instance
of how powerful the polar exponential form can be in the section on the roots of unity.

In coordinate geometry, Cartesian coordinates are likely to be much more familiar
than polar coordinates, but in the context of complex numbers the Cartesian form
has considerable limitations. It is therefore the polar aspect of complex numbers
which merits most study, and readers should aim to become fluent in this form of
representation.

EXERCISES ON CHAPTER 6

1. Verify from Hamilton’s definition that complex numbers obey the distributive
axiom. Give a careful analysis of which algebraic rules for R you use at each
stage of your calculations.

2. Work through the proof of Proposition 1 using the traditional notation in place
of Hamilton’s.

3. Extend the results of Proposition 3, proving by induction that

Ci4+z+...+zm) =8+ +. + 2z,

(2} X zg X ... X 2Zp)" = 2] X 23 X ... X Z,.

Deduce that

1 L 1
ZTX'—*X...X—*.
2y X 23 X ... X Zp 3z z

Write down the results for the special case z) = zy = ... =z, = z.
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Solve the quadratic equation iz> — (2 + 3i)z + (3 + i) = 0, expressing the
solutions in the form a + bi where a and b are real.

Use de Moivre’s theorem to show that
cos3A =cos> A —cos Asin®A4 and sin34 = cos® 4Asin 4 — sin’ 4.

Find a formula for cos 34 in terms of cos 4 only and for sin 34 in terms of sin 4
only.

Let z = r(cos  + isin §) denote a complex number expressed in polar form.
Prove thate™ < |&*| < €.

7. Expressing z in polar form, find all complex numbers satisfying |e?| = |e®|.

10.

11.

Find the fourth roots of 2 — 2i. Express them in polar exponential and Cartesian
form, and plot them in the complex plane.

Prove that

i 2—7r + sin 4—” + sin 6——” + sin 8—7r + sin IO—W + sin 12r =0
N 7 7 7 7 7 )=

Find all the solutions of the equation (z — 1)* = (z + 1)*. Simplify the resulting
trigonometric expressions for z and hence show that the solutions are all purely
imaginary.
Find all the solutions of the equation

B-2444=0,

expressing them in polar exponential form.
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A sequence of numbers is a set of numbers arranged in some particular order, as
when we count 1, 2, 3,4, 5, . ... Arrangements of this kind, whether of numbers, or
days of the week, or students’ position in an examination, are described in English
using ordinal numbers, i.e. ‘first’, ‘second’ etc, and in thinking of a numerical
sequence we are simply labelling the numbers in this ordinal fashion. Such activities
occur very early in our mathematical development; indeed they begin with counting
and number rhymes and games. Learning to count, and learning to generate
patterns like 2, 4, 6, 8, 10, ... . involves the understanding of rules for moving from
one place in the sequence to the next, and we considered this in the context of
mathematical induction in Chapter 2. One of the activities which many pupils
undertake when they are learning a multiplication algorithm is that of doubling.
Here, the sequence of numbers 2, 4, 8, 16, 32, 64, ... is generated by an inductive
process whereby to obtain any number from its predecessor we multiply by 2. This
has the potential of continuing without ever stopping, generating an infinite sequence
of numbers.

One of the most important occurrences of sequences is in connection with
approximations, and we encounter this with decimals. For example we know that it
is impossible to express the number 7 as a fraction, and so if we wish to perform
arithmetic using 7 we can only do so by substituting for 7 a number with which we
can actually calculate. If the calculations involve decimals we may use 3.14, or maybe
3.142, depending upon the degree of accuracy required. The decimal expansion
continues without stopping, and we occasionally see in the media that the latest
supercomputer has calculated 7 to a few million more decimal places than before.
The first few places are given by 3.14159265, and we would use this knowledge to
generate a sequence of approximations, 3.14, 3.142, 3.1416, 3.14159, 3.141593,
3.1415927, ..., where we hope that each number is a better approximation to 7 than
its predecessor, in the sense that the numbers are getting closer to 7 as we progress
along the sequence. Investigating the properties of such sequences of approximations
occupied many mathematicians, among the foremost of whom were Cauchy, Euler
and Weierstrass. In §5.2 we gave a very brief historical survey, mentioning the
development of a theory of limits. In this context the analysis of infinite sequences
was especially important, and part of this was the formulation of a mathematically
adequate definition of the limit of an infinite sequence. We shall consider this
together with some of the important properties of limits of sequences in this chapter.

7.1 Defining an Infinite Sequence

If we consider two of the patterns in the introduction, the even numbers and those
obtained by doubling, we can express both of them through an algebraic formula. In
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the first case the formula 2n would give the nth number in the sequence, and in the
second case this could be expressed by 2". The variable 7 is of course a natural
number, and n = 1,2,. .. corresponds to the first, second ... number in the sequence.
So in this case any member of the sequence is expressed as a function of the variable
n, the function being given by an algebraic formula, the familar way we use of
expressing functional relationships. In fact, an abstract definition of a sequence is
little more than that.

e Definition |

An infinite sequence is a function with domain N. ®

Like many definitions in mathematics, this is very concise. It can be thought of as an
abstract way of describing a sequence which encapsulates the ideas from the
discussion here. It is a way of placing a set of numbers in a specified order
determined by the ordering in N through the functional relationship. The definition
says nothing about the values of the function. If they were real numbers we would
have a real sequence, but they could equally well be vectors, or transformations, or
some other mathematical objects. We might well want to investigate a sequence of
rotations in the plane for example.

In dealing with sequences we traditionally do not use the normal functional
notation. We use a suffix notation instead, and this would have been used
historically before the concept of a function was seen to be as universal as we
consider it now. We discussed this briefly in §5.2. So instead of writing f(n) to
denote the nth number in a sequence, we use a,, b,, or some such literal notation.
We would therefore write a, = 2n to express the fact that we were considering an
infinite sequence where the nth number was given by the formula 2x. If we want to
refer to the sequence as a single mathematical entity we may choose to abbreviate it
as a single letter, like 4, or sometimes we use a notation involving parentheses (ay).
Such notation seems rather pedantic, but would be used in situations where it is
important to distinguish between the sequence as a whole and the nth member of
that sequence. Often we find the notation a, used ambiguously to denote either the
sequence or its nth member, just as f(x) is used for both the function and its value.
Sometimes the notation ay is used for the first member of a sequence, rather than
a;. This may be for algebraic reasons, but is often used to indicate that aq is an
initial guess made before a sequence of systematic approximations is generated. We
shall follow this practice where appropriate. Finally, we have a piece of
terminology. The numbers in a sequence are commonly referred to as the terms of
the sequence, so that we would talk about ‘the sequence whose nth term is given

by 2n’.

We mentioned mathematical induction, and both the examples above could be
defined this way as follows.

For the even numbers we have a; =2 and a, = a,_; +2forall n € N.

For the doubling sequence we have a; = 2and a, =2 x a,_; foralln € N.
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TUTORIAL PROBLEM |

Prove by induction that these recursive definitions do give sequences with the
corresponding algebraic formulae.

Another example of a sequence defined by induction is the well-known Fibonacci
sequence. This is defined inductively by

a=1 a=1, a,=a,_1+a,, forn>3.

This says that each term of the sequence is the sum of the previous two, where it
starts with two 1s. The first few terms are 1, 1, 2, 3, 5, 8, 13, 21, 34, 55.

TUTORIAL PROBLEM 2

Find some interesting properties of the Fibonacci sequence. Many books on
number theory discuss this sequence and its applications.

7.2 Solving Equations

A common context for sequences of approximations is that of solving equations that
do not have rational arithmetic solutions. We begin with an example involving /2,
i.e. solving the equation x? = 2.

Example |

Find a sequence of rational numbers which gives an approximation to /2.

There are many ways of doing this, and here we choose just one. We can easily find a
number whose square is quite close to 2, for example (3/2)° = 21 Soleta; =3/2
denote the first approximation. Because a? > 2 we shall have (2/a;)* < 2. So a; is a
bit too big and 2/a is a bit too small. The average of these two numbers should
therefore give us a better approximation, and so we let

a —1 a+2
2_2 ! al'

Doing the arithmetic gives a, = 17/12, a number whose square is closer to 2 than
that of 3/2. We can continue this process, and use a recursive definition, letting
a; =3/2 and

1 L2
a,,—2 an_1 a1 .

If we begin this procedure with a; = 3/2 we shall obtain the following table of
results. The formula will always give rise to a fraction, and we have listed these and
also a decimal approximation to each fraction. We have also shown the square of
each approximation, again giving a decimal approximation, to give an idea of how
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quickly the errors decrease.

n x,  decimal x2  decimal
1 32 15 9/4 2.25

2 17/12  1.4166667 289/144 2.0069444
3 577/408 1.4142157 332929/166464 2.0000060

In this case we need only three steps to obtain a very good approximation.

Because such a procedure uses the same steps repeatedly, it is referred to as an
iterative process, and it can easily be programmed. The following short segment of
Pascal will produce a table of decimal approximations (where the variable x is of
type real). Expert programmers might like to expand it to produce the fractional
approximations also.

X:=2; n:=1;

repeat

writeln(n,x,x*x); (properly formatted)

X:=(x+2/x)/2;

until abs(x*x-2)<1E-6; (or some other stopping condition).

TUTORIAL PROBLEM 3

Perform the fourth iteration in Example 1. The exact arithmetic may be
beyond your calculator, so try to devise a way of working out the integer
arithmetic exactly but economically, using your calculator where it will give
exact partial answers.

If we replace the approximations in the recursive definition

1 2
anzi an—l+a :

by the variable x we obtain the equation

x—l x+Z
T2 x)

When this equation is simplified it yields x?> = 2, whose positive solution is the
number which we have been approximating. This procedure can be generalized, so
that to solve an equation we try to rearrange it in the form x = F(x), and then
generate an iterative sequence defined by a, = F(a,—1), with a first approximation
which we may guess from a graph. We shall explore this procedure in some detail
with another example.

Example 2

Use iteration to find approximate solutions for x* — 5x + 3 = 0.
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The equation can be rearranged in the form x = F(x) in many ways, and we explore
four of them here, namely

_x3+3

_5x-3 5x—3
5 ! = X )

b

x=x—4x+3, X 5 )
x x

X

If we look at a graph of the original cubic (Fig 7.1) we can see that it has three roots,
near to 1.8, 0.6 and —2.5. Using each of the iterations associated with the four
rearrangements gives a variety of results, some of which are in the table below.
Graphs of the various rearrangements are also given, in Fig 7.2. In each case the
graph of y = x has been drawn (the axis scales are unequal). The intersection of

y = x with y = F(x) gives x = F(x), which is the equation giving rise to the iteration.
From the graphs it can be seen that all these intersections correspond to roots of the
original cubic equation. All the graphs in this example were initally explored on the
computer package Graphical Calculus which can solve equations iteratively using
sequences derived from x = F(x).

In the next section we shall begin to analyse the approximation errors involved. The
table below shows the variations in the number of steps needed to achieve a
prescribed degree of accuracy.

F(x) Initial value Root No. of steps
3 .
x 5+3 a =1 0.65662043 16
x> +3
5 ap=-2.5 out of range 8
3
x :3 a=-24  0.65662043 17
x3—4x+3 ay=1 out of range 6
x> —4x+3 ag = —2.5 out of range 4
x 3 a =1 183424318 31
x
5 ; 3 ay=04 out of range 14
x
Sx—3 a=1 1.83424318 15
x

Note that we have used g to denote the initial guess, as discussed above. The entries
‘out of range’ describe a situation where the sequence generated becomes very large
in magnitude, and is soon beyond the numbers a computer can deal with. A full
appreciation of this example can only be obtained by exploring it on a computer or a
graphics calculator.
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1-7

Fig 7.1 Graph of y=»x>—5x+3.

T, = (z3_,+3)/5 T, =2_ —4z,_,+3
Tn = (5T,- — 3)/22_, Tn = \/(5Zn-1 — 3)/ZTn_s

Fig 7.2 Various iterations for solving x> —~5x+3=0.
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EXERCISES 7.2

1. Use the method of Example 1 to find a sequence of rational approximations to
V/5. Write a computer program to generate the sequence.

2. Rearrange the following equations in the form x = F(x) in as many ways as you
can think of.

i) ¥®—6x—4=0, (i) x*=sinx, (iii) e =32-2.

Use a graphics calculator or a computer package to draw graphs of y = F(x)
and y = x. Investigate the behaviour of the associated sequences given by

a, = F(a,_1), choosing various initial values. Draw up tables of results as in
Example 2.

3. Achordis drawn in a circle in such a way as to cut off a segment whose area is
equal to one third of the area of the whole circle. Find, to as many decimal
places as you can, the distance from the centre of the circle to the centre of the
chord.

7.3 Limits of Sequences

In §5.2 we saw that the requirement for a mathematical analysis of limits became a
necessity during the 19th century. We shall analyse one of the illustrations used in
Example 2 above to indicate some of the features which contribute to an abstract
definition of the limit of a sequence. If iterations are explored using a computer
package it becomes clear that there are many situations where the successive
approximations become closer and closer to some number which a graph will have
told us corresponds to a root of the equation being studied. We refer to this number
as the limit of the sequence. It is a value which is approximated by considering a, as
n increases. It is conventional to say that we are considering the limit as n tends to
infinity. This language, historically derived, has its dangers, for it is tempting to
think that there is a number ‘infinity’ towards which » tends. We shall mostly try to
avoid this terminology and simply talk about the limit of a sequence.

Consider the iteration which occurred in Example 2 given by
@ +3
n — 5 .
We saw that with a suitable choice of gy the sequence approximated to a limit in the

region of 0.65. Let us choose ag between 0.6 and 0.7, and investigate bounds for q;.
Now

3 ’ 3 3 3
@3 g 06 +3<a1<0'75+ ,

a) =
giving 0.6 < 0.6432 < a; < 0.6686 < 0.7.

In fact the same algebra shows that if 0.6 < a,—; < 0.7 then 0.6 < a, < 0.7 and
hence by induction that all members of the sequence lie between 0.6 and 0.7 if the
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first term is in this interval. This information is numerically fairly crude, but we can
refine it as follows. We first note that the limit / of the sequence also lies between 0.6
and 0.7, and is a root of the equation, therefore satisfying / = (/> + 3)/5. We now
have

3 3 3
|3 _|e +3 P43
|an — | = |- 2=— l‘—l S 5
a_ - @_ +apl+1?
= ___"-15 ‘=|an-1—ll%

0.72 4+ 0.72 +0.72
5

< l|ap1 — 1| x
= 0.294|a,_ — .
So applying this inequality repeatedly gives
|an — 1| < 0.294|a,_1 — 1| < (0.294)%|a,—> — ]|
< (0.294)%|a,_3 — 1| < (0.294)"|ap — | < (0.294)" x 0.1.

Now suppose we want to find how many terms of the sequence we need to generate
to achieve an accuracy of 1077 in the approximation. The last set of inequalities tells
us that this will be attained provided (0.294)" x 0.1 < 1077, i.e. (0.294)" < 107°. To
solve this inequality we need to apply the logarithmic function to both sides (see
Example 11 and Exercise 1 of §4.5). This gives
—61n(10)

nin(0.294) < —61In(10), so n> n(0.293) ~ 11.3.
(Notice that in the last inequality we have divided by the negative number In(0.294)
which is why the inequality sign has become reversed.) So we need n > 12. This
means that we can be certain of the desired accuracy from the 12th term onwards. In
fact, if the iteration is performed 12 times a somewhat better accuracy will be
obtained. This is because we have been using the fairly crude relationship
lan — I| < 0.294|a,_1 — I|. Nevertheless, from this inequality we have been able to
obtain some valuable information. It is worth noting that this analysis did not
require us to know the exact value of /. This will be the case for many sequences,
where we shall need to determine whether or not they have a limit without
necessarily being able to find or guess in advance what that limiting number will be.

How far along the sequence above do we need to go in order to achieve an
accuracy of 107502

The two measures of accuracy, 10~7 and 10~%, could be replaced by an arbitrary
measure, as small as we like. If that measure were denoted by the Greek letter €
(read as ‘epsilon”) we would have to solve the inequality (0.294)" x 0.1 < ¢, giving
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In(e) — In(0.1)
1n(0.294)

n>

So if we let N denote the smallest integer which is greater than the number on the
right-hand side then we shall have accuracy better than e for all terms of the
sequence for whichn > N.

The discussion here concerning measures of accuracy covers precisely those features
which comprise the abstract definition of the limit of a sequence.

e Definition 2

A sequence (an) has limit / if, for an arbitrary positive measure of accuracy e, there is
a position N in the sequence from which all the terms of the sequence satisfy

|ax — 1| < €, i.e. this inequality is satisfied for all values of n which exceed N. We can
formulate this as a logical statement involving quantifiers as follows:

Ve>0,INEN,Vn > N,|a,— | < e. [

A sequence which has a limit is said to converge. A sequence which does not have a
limit is said to diverge. We use two notations, either lim(a,) = / read as ‘the limit of
the sequence (a,) is I, or a, — [ read as ‘a, tends to /.

This symbolic statement appears somewhat forbidding, and has to be understood
not only through the verbal equivalent in the definition, but also through the
previous discussion and through the work in the rest of this chapter. It is abstract
and logically complex, as is to be expected from something which took a couple of
hundred years to evolve into this formulation.

Having considered the definition verbally and symbolically, and in Example 2
numerically, we shall give a graphical interpretation. In Fig 7.3 we have plotted the
terms of the sequence as points (n, a,). The limit is shown by drawing a horizontal
line at height /. The figure is meant to indicate that terms a, for which n > N all lie
within € of /, so they lie between the two dashed lines. For preceding terms, some
may be within the dashed lines and some not. Notice that there may be terms of the
sequence actually equal to /. The use of language such as ‘tends to’ and ‘limit’

-~
-— N —s— \ —

B e e R
¥

Fig 7.3 Graphical representation for lim(a,) =1.
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suggests that this should perhaps not be the case. In fact, if we consider the
sequence, all of whose terms are equal to 2, according to the definition the limit of
this sequence is 2, because |a, — 2| = 0 for all n, and so certainly |a, — 2| < € for any
€ > 0. We shall return to this point after the proof of Proposition 1.

In order to apply the definition to particular sequences we do sometimes have to try
to guess the value for the limit /, and so you are encouraged to explore on a
computer or calculator the successive terms of any sequence considered in order to
try to guess the limit.

TUTORIAL PROBLEM 5

It is implicit in the discussion above, and in the rest of the chapter, that limits
are unique, i.e. that a sequence cannot have more than one limit. Notice
however that nothing in the definition states this. Construct a proof from the
definition by filling in the details of the following outline.

Suppose a sequence (a,) has two limits, /and m. We use the triangle
inequality to say that

|l —m| = |(an —m) = (an = D)| < |an —m| +|a, — 1],

From the definition each of the two terms on the right can be made as small
as we like by ensuring that » is sufficiently large. This shows that the non-
negative number |/ — m| is smaller than any positive number, and so it must
be zero, proving that / = m.

In Example 2 we found some situations where the terms of the sequence of
approximations became very large, and it seemed clear that, apart from the
limitations of computer arithmetic, this would continue with no upper bound, that
the terms could become arbitrarily large, and remain so. The traditional language
for describing this situation is to say that the sequence tends to infinity, again with
the danger that we may be led into thinking of the word ‘infinity’ as denoting a
number. When we look at the definition of this behaviour we see that this is not the
case. The symbolism used is a, — 0o, and the use of the symbol oo to stand for
‘infinity’ is even more dangerous in this regard.

e Definition 3

A sequence (ay) is said to tend to infinity if, however large a number is specified,
there is a position in the sequence from which all the terms exceed that number.
Symbolically we have

VKe ,ANe€ ,vn>N,a, > K. e

Example 3
Prove from Definition 3 that the sequence defined by a, = In(n + 1) tends to infinity.
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Let K denote an arbitrary real number. We want to solve the inequality a, > X, in
this case In(n + 1) > K. This is satisfied if and only if n + 1 > eX,i.e.n > e — 1. So
if we let N denote the least integer greater than eX — 1 we have shown that for all
values of n > N we have a, > K.

Note that we have proved the existence of N by giving an expression for N in terms
of K. The order of quantification allows this dependence of N upon K, as was
discussed in §1.5. Note also that the definition does not require us to find the
smallest such K.

TUTORIAL PROBLEM 6

Formulate a definition of a sequence tending to —co, i.e. the terms becoming
arbitrarily large and negative. Give an example and show that it satisfies your
definition.

Having given definitions which, certainly in their symbolic form, seem very abstract,
we need to see whether they are sensible and useful, i.e. that

(i) particular sequences which intuition tells us have limits are assigned these
limits by the definition,

(i) the definitions can be used to prove results about limits, again which intuition
and examples tell us should be valid.

An example of (ii) involves the idea that if one sequence of numbers becomes close
to / and another sequence of numbers becomes close to m, then adding
corresponding terms should give us a sequence whose limit is / + m. This is one
aspect of the algebra of sequences, contained in the next proposition.

e Proposition |—The algebra of sequences
Suppose lim(a,) = / and lim(b,) = m. Then
() lim(a, + bs) =1+ m,
(i) lim(k +a,) =k+1! forany keR,
(iii) lim(k x a,) =k x [ forany ke€R,
(iv) lim(a, — ) =1[/—m,
(
(

(v) lim(a,b,) =
(vi) lim(1/b,) = l/m provided b, # 0,m # 0,
(vii) lim(a,/b,) =1/m provided b, #0,m # 0. °

Before embarking on the proof we shall give an illustration of the use to which this
proposition is put. We shall determine the limit of the sequence (a,) given by

> +3n-5
32 —n+7"’

an =
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using the result that lim(1/z) = 0. We rewrite a, as

_243/n—5/n?
=3 N n+ 1

Now using (v) tells us that lim(1/n?) = lim(1/n) x lim(1/n) = 0. Then from (iii) we
deduce that lim(5/n?) = lim(7/n?) = lim(3/n) = 0. Using (iv) and (ii) then gives
lim(2 + 3/n — 5/n*) = 2 and lim(3 — 1/n + 7/n*) = 3. Finally, applying (v) gives
lim(a,) = 2/3.

PROOF

The proofs in this proposition are the most logically complex in this book, and so we
have included some discussion alongside the formal aspect, to explain something of
the underlying intuition. The proofs need analysis of statements involving
quantifiers and a detailed understanding of the relationships between the variables
used. We have made the point already that this area of mathematics took the most
able mathematicians of the 19th century a great deal of effort to develop. Whilst
drawing this to the reader’s attention I make no apology for including a small
amount of logically challenging work alongside the more straightforward examples
and methods.

(i) The central idea here is that we know something about the size of |a, — /| and
|b, — m| and from this we try to deduce something about the size of

|(@n + bn) — (I + m)|. By ‘size’ we are referring to the idea of a measure of accuracy
considered in the discussion leading up to Tutorial Problem 4. So we are trying to
express what we want to know in terms of what we already know, as we do
throughout mathematics. Intuitively, if we know that a, is close to / and b, is close
to m, both to within a measure of accuracy 7, we would expect a, + b, to be within
2n of I + m. Suppose for example that we wanted now to ensure that a, + b, was
within 107 of / + m. We would then expect to have to choose = 10"7/2. In
Definition 2, € represents an arbitrary measure of accuracy, exemplified by the
number 107 above. We have then specified 7 in terms of €. This is the essential
feature of the logical relationship between the variables € and 7 as they appear in the
formal presentation of the proof. The final thing we have to realize is that in
Definition 2 the letter e could be replaced by a, 3, 5 or indeed any symbol, without
altering the meaning of the statement at all. This idea was discussed briefly in §1.4.
We present the formal proof as follows.

Let € denote an arbitrary positive number. Let = €/2. Since lim(a,) = / and

lim(b,) = m, from the definition there are natural numbers N; and N, for which

|a, — | <nforalln > N, and |b, — m| < n for all n > N;. Let N denote the larger of
the two numbers N; and N,. Then both inequalities are satisfied for n > N. Using
the triangle inequality we have

|(@n +bn) — (I+m)| =|(@an =0 + (bn —m)| < |an —I| + |by —m| <n+n=c¢

(ii) The idea here is the straightforward geometrical notion that if we shift both a,
and / by an amount & then the distance between them remains unchanged.
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Let € denote an arbitrary positive number. From the definition, since lim(a,) = I,
there is a number N € N such that for alln > N, |a, — I| < €. So we can deduce that
foralln > N, |(k + an) — (k+ )| = |an — I| < e. This shows that lim(k + a,) = k + /.

(iii) Again if we know that a, is within the measure of accuracy 7 of /, we would
expect ka, to be within kn of k/ (in the case k > 0). So to achieve an accuracy of € we
would need to choose 7 to satisfy kn = €. This can be done, for Definition 2 specifies
that its requirements can be met for any measure of accuracy.

Let € denote an arbitrary positive number. From the definition, since lim(a,) = /,
corresponding to any number n > 0 there is a number N € N such that for all

n> N,|a, — | < n. Now if k # 0 we let n = ¢/|k|. So for all

n > N, |ka, — kl| < |k|n = e. This shows that lim(ka,) = k/. If k = 0 then ka, = 0 for
all n and so lim(ka,) = 0 = kl.

(iv) This follows from (i) and (iii). We first deduce from (iii), by taking k = —1,
that lim(—b,) = —m. We then use (i) with the two sequences (a,) and (—b,) to show
that lim(a, + (—bx»)) = [+ (—m) which gives the result we want.

(v) As before, we know that |a, — /| and |b, — m| can be made as small as we
please, for sufficiently large values of n. We have to demonstrate that this is true of
|anbn — Im|. The algebraic relationship is not so obvious here. A reasonable strategy
is to multiply a, — / and b, — m, since we are aiming at a product. This gives

(an — D)(by — M) = apby + Im — aym — byl.

We want a,b, — Im, whereas the above expression contains +I/m. This suggests that
we rewrite the right-hand side as

apby — Im + Im + Im — aym — byl = (a,b, — Im) — m(a, — 1) — (b, — m).
Putting this information together gives
anby — Im = (an — 1)(bn — m) + m(a, — 1) + (b, — m).

We are aiming for a measure of accuracy signified by ¢, and we could achieve this if
we were able to ensure that each of the three factors on the right-hand side was at
most €/3. If |a, — /| and |b, — m| were both less than /(e/3) this would deal with the
first factor. If |a, — I| were less than ¢/|m| this would take care of the second factor,
and likewise with the third factor if |b, — m| were less than ¢/|/|. But we can achieve
any measure of accuracy we like for |a, — /| and |b, — m| through Definition 2. In
this discussion we have divided by both / and m, and we shall deal only with the case
where neither / nor m is zero, leaving the exceptions to Tutorial Problem 7. The
formal proof begins in the same style as the previous parts, the written conventions
of style being a part of the process of proof.

Let € denote an arbitrary positive number. We now specify variables « and 3 in
terms of e.

i € € . € €
So let a_mm(\/g,m) and ﬁ_mm(\/;’:;_ll—l)’



Sequences 119

where ‘min’ indicates the smaller of the two numbers in parentheses. Since

lim(a,) =/ and lim(b,) = m, there are integers Ny and N, such that for all

n > Ni,|a, — Il < aand for all n > Ny, |b, — m| < B. Now let N denote the larger of
N, and N,. For all n > N we then have

|anbn — Im| = |(an — ) (bp — m) + m(a, — 1) + (b, — m)|
< |ay — l||bp — m| + Im”an — | + |l||bn — m|

\/ \/” T+ 37—

This shows that lim(a,b,) = Im.

(vi) For this part of the proof we suggest that readers attempt to devise an
informal strategy for dealing with |(1/b,) — (1/m)| along the lines of the earlier
discussions. A formal proofis as follows.

Since lim(b,) = m we know from the definition that if € = |m|/2 then there is a
number N; € N such that for all n > Ny, |b, — m| < |m|/2. It follows that

|bn) = |by — m+m| > |m| — |b, — m| > |m|/2.

This implies, in particular, that for n > Ny, b, # 0. Also, if 7 is any positive number,
there is a corresponding integer N, such that for alln > N, |b, — m| < . Now let ¢
denote an arbitrary positive number, and let ) = €|m* /2. Let N denote the larger of
N1, N>. Then for all n > N all the inequalities above hold and so

1 1| _|ba=m| _|b=m| 7

by m|  |by||m] %Im“ml %lmlz

= €.

This shows that lim(1/6,) = 1/m.

(vii) This follows by using result (v) and then replacing the sequence (b,) by the
sequence (1/b,), using the result of (vi). ()

Note that one consequence of (iv) is that if we consider the special case where the
sequences (a,) and (b,) are the same, we obtain the result that the sequence, all of
whose terms are zero, has limit zero. Using this sequence in (ii) then tells us that the
sequence, all of whose terms have the constant value &, has limit k. We referred to
this point just after Definition 2 above.

TUTORIAL PROBLEM 7

Try to construct a proof of the cases in (v) which were omitted. Try to show
that if lim(a,) = 0 and lim(b,) = m then lim(a,b,) = 0.

An important result involves the comparison of a sequence with other sequences
having known limits.
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® Proposition 2—The sandwich theorem

(i) Suppose that (a,) and (b,) are two sequences having the same limit /. Suppose
that (x,) is a sequence with the property that there is a number M € N such that
foralln > M,a, < x, < b, (i.e. x, is ‘sandwiched’ between a, and b,). Then the
sequence x, also has the limit /.

(ii) Iflim(b,) = 0 and if there is a number M € N such that for alln > M,
|X4| < |bn|. Then lim(x,) = 0. °®

PROOF

This result is clear intuitively. If we have two sequences whose terms get very close
to /, then a sequence whose terms are ultimately sandwiched between those of the
first two must also get very close to /. We have commented that a test of a good
definition is whether it gives rise to results such as this one which are intuitively
obvious.

(i) Let e denote an arbitrary positive number. From Definition 2, there is a number
N € N such that for all n > Ny, |a, — /| < e. For the purposes of this proof we need
to write |a, — /| < e in the equivalent form —e < a, — / < €. Again from Definition 2
there is a number N; € N such that for alln > N,, —e < b, — [ < e. Now let N
denote the larger of N, N>. Then for all n > N we have

Xn— 1= (xn — an) + (an — I) > (@, — I) > —¢, using the fact that x, > a,. Similarly,
foralln > N wehave x, — I = (x, — by) + (bs — I) < (bn — I) < ¢, using the fact that
xn < b,. We have now shown that foralln > N, —e < x, — [ < ¢, i.e. that

lim(x,) = 1.

(i) Thisis a special case of (i) obtained by considering —|b,| < x, < |b,| and [ = 0.
It is used sufficiently often to be highlighted in this way. [ )

In Proposition 2 the relationship between the sequences is required not for all n, but
only for all n beyond a certain stage. An alternative way of expressing this is to say
that we require the relationship to be satisfied for all » with a finite number of
exceptions. Changing a finite number of terms of a sequence will not affect whether
it converges, or the value of its limit.

In finding the limits of sequences whose terms are given by particular formulae we
shall rely on a small number of standard sequences together with the algebraic
results in Proposition 1, and the technique of Proposition 2, often using part (ii). We
shall therefore move away from having to use the abstract definition all the time.

® Proposition 3—Some standard sequences
(i) Foreveryp > 0, lim(n?) = 0.
(i) Forevery x > 0, lim(y/x) = 1.
(iii) lim(y/n) = 1.
(iv) For every x for which |x| < 1, lim(x") = 0.
(v) For every x for which |x| < 1, and every p > 0, lim(#’x") = 0. )
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PROOF

(i) Let € denote an arbitrary positive number. Then n? < ¢if and only if

n > ¢~ (1/P)  this inequality being simply a rearrangement of the first. So let N denote
the smallest integer greater than e (/7). and then for all # > N we have shown that
[n=? — 0] < €. Note that n~# > 0 for all n, and so |n™? — 0| = n™. Some special cases
we often use are p = 1, giving lim(1/n) = 0, and other integer values of p, for
example p = 3 giving lim(1 /#*) = 0. Results such as this can be confirmed
numerically using your calculator and trying large values of # in the formulae.

(i) Firstly if x = 1 we have the constant sequence all of whose terms are equal to 1,
which has limit 1.

Now suppose x > 1, and let y» = ¥/x — 1, so that y, > 0. Rearranging this equation
gives x = (1 + y,)" > 1 + 71y, using the binomial theorem and the fact that y, > 0.
Rearranging the inequality gives 0 < y, < (x — 1)/n. Using (i) with p = 1 and result
(iii) of Proposition 1 with & = x — 1 tells us that lim((x — 1)/n) = 0, and so by
Proposition 2(ii) lim(y,) = 0. But y/x = 1 + y, and so lim({/x) = 1, using
Proposition 1(ii).

Now if 0 < x < 1then 1/x > 1 and so lim(s/1/x) = 1. Hence, lim(1/{/1/x) = 1
and so lim(y/x) = 1 in this case also.

(i) We know that ¢/n > 1 and so we can write y/n = 1 + ¢, where ¢, > 0. Using
the binomial expansion gives

n>n(n—1) t2

n=(1+1)"> andso 0<¢, < L

20 " n—1

Now lim(/2/(n — 1)) = 0 and so by Proposition 2(ii) lim(z,) = 0, so that
lim(y/n) = 1.

(iv) If x = 0 we obtain the constant zero sequence, and the result is trivial. If

0 < |x| < 1, we can write [x| = 1/(1 + ¢), where ¢ > 0. So |x|"= 1/(1 + ¢)" < 1/nc,
using the binomial theorem. But lim(1/nc) = 0 and so lim(x") = 0 by Proposition
2(ii).

(v) Leta, =n"x". Then

1 Py n+1 . 1\?
=lim< (fi-> x p ) =11m((1 +—) lxl) = |x|.
n x n

We now let 4 = 1(1 + |x|) so that 4 is half way between |x| and 1,and 0 < 4 < 1.
Letting € = A — |x| ensures that € > 0, and Definition 2 guarantees that there is an
integer N such that for alln > N, |a,41/a,| < A. Then foralln > N

Ap1

lim

Qn

'anl = E-an—l-z—n:i . .%GN < AnﬁNllN = A" x (A_NaN).
n—1 Qn—

Now (A~ Vay) is a constant, and lim(4") = 0 using (iv), since 0 < 4 < 1. Therefore,
by Proposition 2(ii), lim(a,) = 0. °
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Example 4

Prove that if a, > 0 for all n and if lim(a,) = 0 then (1/a,) — oo.

Let K be an arbitrarily large positive number, and let e = 1/K. Since lim(a,) = 0,
there is an integer N such that for all n > N, |a,| < €. Using the fact that a, > 0
enables us to deduce that for alln > N, (1/a,) > 1/e = K. Looking back to
Definition 3, this shows that (1/a,) — oc.

Example 5

Discuss the behaviour of the sequences defined by a, = 1/ncos(nr), and
b, = ncos(nm).

When investigating the behaviour of sequences it is sometimes helpful to write out
explicitly the first few terms from the general formula, to gain a better understanding
of the pattern the sequence follows. In this case for (a,) the first few terms are
—1,+1/2,-1/3,+1/4,—1/5, and this should be sufficient to appreciate what is
happening, and that the sequence looks as if it has limit zero. To justify this we note
that cos(nm) = %1, so that |a,| < 1/n (in fact we have equality). The sequence (1/n)
has limit zero, using Proposition 3(i) with p =1, and so by Proposition 2(ii)

lim(a,) = 0.

We now turn to b,. The first few terms are —1,+2, —3, +4, —5, and it is clear from
this that the sequence has no limit. It is also the case that the sequence does not tend
to infinity, for although the terms become very large in magnitude they alternate in
sign, so that the subsequence (2,4, 6,...) tends to infinity whereas the subsequence
—1,-3,-5,... tends to minus infinity. If we want a concise description of the
overall behaviour we could say that it oscillates unboundedly.

The most important thing about this example is that it shows that lim(a,) = 0 does
not imply that (1/a,) tends to infinity. This is a common mistake, and we should
observe that in Example 4 the conclusion required the additional condition that the
terms of the original sequence should be positive.

Example 6
Determine the limiting behaviour of the sequences defined by the following formulae
n?+3n—4 n? 5"
. o . 3 B
(i) W dn 16 (ii) L (iii) o (iv) vr24+n—n.

(i) A general strategy in examples involving algebraic formulae of this kind with
sums, quotients etc. is to look for the component which tends to infinity most
rapidly and then divide it into top and bottom. In this case the dominant component
is n?, and so we write

nw+3n—4 143/n—4/n* 1+4+3x0-4x0 1
= g = —.
22 —dnt6 2—d/nt 6/ 2-_4x046x0 2

We have used the fact that negative powers of n tend to zero (Proposition 3(i)) and
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then the algebra of limits (Proposition 1). As we do more examples the need to refer
explicitly to these propositions for justification will diminish through familiarity.

(i) This is a special case of Proposition 3(v) with p = 2 and x = 2. It is therefore
what we have classified in Proposition 3 as a standard type of sequence, whose
behaviour we shall simply quote when we need it. Notice that both numerator and
"denominator separately tend to infinity, and the fact that the quotient tends to zero
can be expressed by saying that the denominator tends to infinity more quickly than
the numerator, or ‘exponentials tend to infinity faster than powers’. This is an
informal but useful way of expressing the general result of Proposition 3(v).

(iii) The same reasoning as in (ii) tells us that (n(>/?) /5") — 0, and now the fact that
the terms are all positive enables us to use Example 4 to say that (5"/n®/?) — co.
Again exponentials tend to infinity faster than powers.

(iv) This is an example which does not easily fit into the standard patterns
established in Proposition 3. Both components of the subtraction tend to infinity
and so there is no algebraic way of guessing the limit. We should not try to treat
infinity as a number, and an argument which says that since both parts tend to
infinity the sequence overall must tend to co — oo = 0 is invalid, and in fact the
conclusion is false as we shall see. You are encouraged to explore values of this
sequence on your calculator to see whether you can guess what the limit might be.
We shall in fact establish it algebraically by rationalizing the difference of two
square roots, using the factorization a> — b* = (a — b)(a + b) as follows

el z(\/n2+n—n)(\/n2+n+n)_ n
Ve Witntm  V@inin
1 11

_,/1+l+1_>1+1:5'

Note that we have assumed that if lim(a,) = / > 0 then lim \/a, = /I.

TUTORIAL PROBLEM 8

Try to construct a proof that if lim(a,) = / > 0 then lim /a, = /I. For what
sorts of other functions f do you think that a, — [/ implies that f{a,) — f(I)?

TUTORIAL PROBLEM 9

Adapt the method used in proving Proposition 3(iii) to show that

lim(n'/v*) = 1. You will need to use the binomial expansion and pick out the
term containing £2, and then rearrange the resulting inequality. Try to
generalize this result, replacing 1/n by other powers of n.
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EXERCISES 7.3

1. A sequence (b,) is defined in terms of the sequence (a,) by b, = |an|. Prove that
if lim(a,) = ! then lim(b,) = |/|. Give examples to show that the converse is not
necessarily true.

2. Prove thatif a, — oo then lim(1/a,) = 0, using an approach similar in structure
to that of Example 4.

3. Determine the limiting behaviour of the sequences whose nth terms are given by
the following formulae.

(i) 1+;15, (i) m*—2n, (i) n(1+(=1)"), (iv) :_' W) Z_
(vi) a (vii) 2ln() (vii) /n++/n, (ix) ﬁ
n!’ (n+ 1)2", ’ omn’
2l ~ ’ . 3!
0 oz O gy O e i
(xiv) \/;-Fi/if (xv) Va"+b" (a>b>0), (xvi) %,

(xvii) sm( ) (xviii) ncos(}i), (xix) sin”0, (xx) cos(nd).

4. Give examples of sequences (ayp), (b,) such that a, — oo and b, — oo while

(i) (ap—bp) — —o0,  (ii) (an—by) —0, (iii) (an— bs) — 00,
(iv) (an—5bn) =2, (v) (an— by) oscillates unboundedly,

(vi) (Z—) oo, (Vi) (Z—)—»o (viii) (Z—) - 3.

7.4 Increasing and Decreasing Sequences

Some of the sequences we have encountered have behaved in a regular fashion in the
sense that the successive terms have increased in value, for example

1,3,5,7,9,..., or 3'3'3°5°6"" "
In the first case the sequence has no limit, whereas in the second case the limit
will be 1. Even though the behaviour is clear, we shall formulate a definition.

e Definition 4

(i) A sequence (a,,)'is said to be non-decreasing if a, < a4 for all n € N. (Some

books use the term ‘weakly increasing’ instead of ‘non-decreasing’.)
(i) A sequence (ay) is said to be strictly increasing if a, < an41 foralln € N.
(iii) A sequence (a,) is said to be non-increasing if @, > a,4; for alln € N.

(iv) A sequence (ay) is said to be strictly decreasing if a, > an41 foralln e N.
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(v) A sequence satisfying any of these four criteria is said to be monotonic (the
word signifies that the terms of the sequence move in one direction—up or
down in value). So a sequence which is neither increasing nor decreasing can
simply be said to be not monotonic.

The distinction between (i) and (ii) is exemplified by a sequence such as
1,1,2,2,3,3,..., which satisfies (i) but not (ii). In this section the results we obtain
will cover (i) as well as (ii), although most of the examples will be strictly increasing.
We shall use the single word ‘increasing’ for sequences of type (i) or (ii). Results
concerning increasing sequences will have analogues for decreasing sequences. In
most cases the relationship can be established simply by noting that if (a,) is a
decreasing sequence then the sequence (—a,) is increasing. We shall therefore
concentrate on increasing sequences as far as establishing proofs are concerned. A
significant difference between the first two sequences quoted in this section is that
the terms of the first can become arbitrarily large, whereas those of the second
cannot. The terms of the second form a bounded set in the sense of Definition 1 of
Chapter 5. We shall repeat that definition here, in the context of sequences, to save
continual reference back to Chapter 5. [ )

e Definition 5

(i) A sequence (ay) is said to be bounded above if there is a real number K such
that a, < K for all n € N, i.e. all the terms of the sequence are less than (or

equal to) K.

(ii) A sequence (a,) is said to be bounded below if there is a real number H such
that a, > H for all n € N, i.e. all the terms of the sequence are greater than (or

equal to) H.
(iii) A sequence is said to be bounded if it is bounded above and bounded below.

(iv) A sequence is unbounded if it does not satisfy (iii), i.e. if it is not bounded
above or if it is not bounded below (or both). [ )

TUTORIAL PROBLEM 10
Formulate and prove a version of Proposition 2 in Chapter 5 for sequences.

We shall now consider sequences falling into the various categories specified by
Definitions 4 and 5, and investigate their limits. For example, the first sequence in
this section is increasing, unbounded and divergent (has no limit). The second is
increasing, bounded above and convergent.

TUTORIAL PROBLEM I1

Find examples of sequences to fill as many as possible of the triangular cells
in the grid of Fig 7.4. So for example the sequence defined by a, = n* would
fit into the cell corresponding to increasing, not bounded, and divergent (D).
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Bounded Bounded Not
Above Below Bounded
C C C
Increasing
D D D
C C C
Decreasing
D D D
C C C
Not
Monotonic b D D

Fig 7.4 Sequence grid for Tutorial Problem I1.

Having investigated Tutorial Problem 11, it will have been found that some cells
cannot be filled. For instance no example will fit the cell corresponding to
increasing, bounded above and divergent. This leads to the formulation of the
following important result.

e Proposition 4

An increasing sequence (a,) which is bounded above is convergent, i.e. it has a
limit. ®

PROOF

We shall give a proof using the axiom of completeness for the real number system
given in Chapter 5. In fact this result is equivalent to that axiom, although we shall
not prove that here. In some accounts of the theory of sequences the result is taken
as an axiom. This means that the theory of sequences could be explored without
having to study the foundations of the real number system first. In fact it will be seen
that the definition of least upper bound is structurally similar to the definition of
limit. The definitions of bounded sets and bounded sequences are identical.

The set of numbers S = {a, : n € N} (the set of terms of the sequence) is a set of
numbers which is bounded above. The axiom of completeness tells us that this set
has a least upper bound /. We shall prove that lim(a,) = 1.

Let € denote an arbitrary positive number. Using part (ii) of Definition 4 in Chapter
5, with (3 replaced by e, tells us that / — € is not an upper bound for the set S and so
there is a member of S greater that / — €. This member is a term of the sequence, say
ay. Now the sequence is increasing, so for all n > N, a, > ay. Also, the set is
bounded above by / so that a, < [ for all n. This tells us that 0 < a, — / < ¢ for all
n> N.If0 <a, — I < ethen |a, — I| < ¢, proving that lim(a,) = L. [ )



Sequences 127
TUTORIAL PROBLEM 12

Formulate and prove a corresponding result for decreasing sequences which
are bounded below.

Example 7: The exponential limit

Show that the sequence defined as follows has a limit

ap = (1+1) .
n

This is a sequence for which intuition is not a good guide. It is possible to argue as
follows.

(a) The nuinber in brackets is bigger than 1 and it is raised to the power n. So as n
increases it will tend to infinity.

(b) The number in brackets has limit 1, and 1 raised to any power is equal to 1, so
the limit is 1.

Neither result is correct as we shall see. We cannot separate the roles of # in this
way. They are both changing together. Explore this sequence on your calculator.

If we expand a, by the binomial theorem we obtain

1 4n l+n(n—l)i
n = ‘n 20 m2 n! n"

UM U I S VO BN St ni )
2! n n! n n n

The (p + 1)st component in this expression is equal to

H0-96-9 (-2

This is positive, and for each value of p it increases as n increases. Also, the number
of components in the expansion of a, increases as » increases. Hence (a,) is an
increasing sequence. We can also deduce from the expansion that

+n(n—l)(n-2)...(n—n—|—1) 1

1 1 1
1+1<an<1+1+5+§...+a
1 1 1

1
=14+2(1-5)<3.
1+2<1 2n)<

So (ay) is increasing and bounded above. It therefore has a limit, which the
calculations above tell us lies between 2 and 3. In fact the limit is the well-known
exponential number e = 2.71828 . . ., although we shall not prove that here.
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It is in fact the case that for any real number x,
. (. X\"
hm(l -+ —) =e".
n

This result is sufficiently important to be committed to memory, but is quite
complicated to prove.

7.5 Iteration

In this section we return to the procedure of defining sequences by iteration, which
we discussed in §7.2. Here we shall develop further the graphical illustration of such
sequences and demonstrate the use of Proposition 4 to establish the existence of
limits for iterative sequences.

In Fig 7.5 we see graphs of y = F(x) and y = x, which we use to solve the equation
x = F(x). Suppose that we guess a first approximation a;, and mark this value on
the x-axis. A line drawn from this point parallel to the y-axis will meet the curve at
the point (a;, F(a;)), whose y coordinate is F(a;), i.e. a;. If we draw a line parallel to
the x-axis from the point on the graph, we meet the y axis at the value a; as shown
on the figure. We can now copy this value down onto the x-axis by drawing along to
the line y = x and then dropping the perpendicular onto the x-axis. We now have
the value a, on the x-axis and so we can repeat the whole procedure, leading to the
value a; on the y-axis and thence on the x-axis. On the figure we have continued the
procedure beyond this stage, but omitted the parts of the construction going to the
axes. Without those we see a kind of stepped line between the two graphs tending
towards the point of intersection. This is often referred to as a staircase diagram,
and indicates that in this case the sequence is an increasing one. The diagram also
suggests that the sequence (a,) is converging to the limit / found from the solution of
x = F(x) at the point of intersection shown in the figure. When we have a particular

y y=z
y = F(z)
(7 Y S i ettty : g
0 gy~ SRRty : i §
a, a; da |z

Fig 7.5 Graphical representation for a, = F(a,).



Sequences 129

formula for F(x) we can then set about calculating / and then proving analytically
that the sequence generated does indeed converge to /, as in the examples below.

It is important to realize that the last step is necessary, as the following example
illustrates. Suppose F(x) = —x and that a; = 3. The solution of x = F(x) is given by
x = —x, i.e. x = 0. But the sequence generated is 3, —3, 3, -3, 3, ... which does not
have a limit. Logically the relationship is that if (a,) has a limit / then / = F(/).

This example shows that the converse is not true in general.

Example 8
The sequence (ay,) is defined by
_ _3a,1+4
ai=1 and a, =213

Show that the sequence has a limit and find the value of the limit.

As in many places in this book, we explore this example from three perspectives,
algebraic, graphical and numerical.

We represent the sequence graphically in Fig 7.6, as described above. In order to
exhibit the ‘staircase’ more clearly we have started not with the first term equal to 1,
but —1.4. The third term is then 1, but starting the diagram there would give little
indication of the pattern of steps because the slope of the curve is small at the point
of intersection. The procedure of ‘backtracking’ from a given point, i.e. given a,, to
find its predecessor according to the iterative formula, was used to choose —1.4 as
the starting position for the diagram. Moving backwards like this is important in
some applications of iterative sequences, although we shall not encounter them in
this book.

i ettt Sttt R )

Fig 7.6 Staircase diagram for Example 8.
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The diagram suggests that the limit is the positive solution of the equation

= 3x+4
T 2x+3’
We can see from the figure that the sequence appears to be increasing and bounded

above, with all the terms less than /2. We prove these properties algebraically from
the formula.

ie. x=./2.

We first prove by induction that 0 < a, < /2 for every n. The result is true forn = 1
since a; = 1. We can rewrite the iteration formula as

3.1 1
T2 22a,.,+3
So if the result is true for a,_;, i.e. 0 < a,_; < /2, then the original form of the

formula makes it clear that a, > 0, and the rearranged form enables us to deduce
that

an

31 1 < 31 1 —
T 2%2a, 43 2 220243 V©
This gives the result for a,, and so it is true for all » by induction. This shows that

the sequence is bounded above (and below). We now use the result in the form
a? < 2 to deduce that for all n

_da,t4 _4-2a 4-2x2_
Il == 3 " T %13 24,43

So we have established algebraically that the sequence is increasing and bounded
above. It therefore has a limit /. By the algebra of limits

i <3a,,+4> 3144

M™2a,+3) "2+3

Now lim(a,4+;) = I (see Tutorial Problem 13 below) and so using the iteration
formula we conclude that

31+ 4
2/+3
All the terms of the sequence are positive, so / cannot be negative. Therefore / = /2.

We can take this further and analyse the approximation errors, letting e, = /2 — a,,.
Using the iteration formula gives

3a,+4
2a, + 3

g fi__(-2v2)  3-2y2
© e T2(V2—ent3) 2243

(The first of the approximations above is valid when e, is small, and in fact is very
good after only around five steps.) This shows that the errors decrease quite rapidly,
so this is an iteration with a good rate of convergence. Evaluating the first few terms

=1 which gives P =2 ie [==,/2.

3(V2—en)+4  (3—2¢/2)e,
2(v2—e)+3 2(/2—e+3)

en+1:\/2—an+1=\/2— :\/2_

~ 0.0295.
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of the sequence to seven places of decimals, using a calculator, gives, starting with
a =1,
a = 1.4 a3 = 1.4137931

as = 1.4142011 as = 1.4142131
as = 1.4142135 a7 = 1.4142135

The errors for ag and a7 are approximately 3.036 x 108 and 9.2 x 10~10
respectively. This fits quite well with the estimate above for the ratio of successive
errors.

~ TUTORIAL PROBLEM 13

Explain why lim(a,) = / implies lim(an11) = L.

Example 9
The sequence (ay,) is defined by
1
a =2 and an=m.

Show that the sequence has a limit and find the value of the limit.

A few iterations on a calculator will begin to clarify the behaviour of this sequence,
giving (to seven decimal places),

a =2 ay =0.25

az = 0.4444444 as = 0.4090909
as = 0.4150943 as = 0.4140625
a7 = 0.4142394 ag = 0.4142091
ag = 0.4142143 ajo = 0.4142134

This confirms that the odd terms form a decreasing sequence and the even terms
form an increasing sequence. The graph and the data suggest that the odd terms are
all bigger than the intersection value /2 — 1 and that the even terms are all less than
this value. We shall prove all these facts algebraically.

In Fig 7.7 we have drawn the graphs of y = x and y = 1/(x + 2). The formula tells
us that all the terms of the sequence will be positive, and so it is the positive
intersection which is relevant. The two graphs intersect where x = 1/(x + 2), giving
x = /2 — 1. We have begun to plot the sequence using the graphs as explained at
the beginning of this section. In the window to the right of the graph we have
magnified schematically the part of the graph near to the intersection, in order to
exhibit the behaviour of the sequence more clearly. (We can use a Zoom facility
which Graphical Calculus has, and which is also on some graphics calculators.) This
time we do not see a staircase but a plot which winds around the point of
intersection. For obvious reasons this type of configuration is referred to as a
cobweb diagram. The visual properties reflect the numerical calculations above.
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YA y=zo

B

b -

a; = 0.25 a; = 2

Fig 7.7 Cobweb diagram for Example 9.

Firstlya; =2 > /2 - 1.1fa,-1 > /2 — 1 then
1 1 1
< = =./2 —
a2 -ns2 sl V
Secondly if 0 < a,—1 < /2 — 1 then
1 1 1
= = == 2_1.
W= 2 A D2 vari VY

This shows that the terms of the sequence alternate either side of /2 — 1.

O<a,=

1.

In order to deal with the even and odd terms separately we need to relate a, to a,».

1 1 an +2

an+1+2_ 1 _+_2_2an+5
a, +2

any2 =

We can now use this to investigate the relative sizes of a, and a,,, as follows

o am+2 a,+2-2d—5a,
i = = 5 T 24,45
_21=2a,—a))  2((v2-1)—a)((v2+1) +an)
T 2a,+5 2a,+5 ’

Considering the sign of the first bracket in the last numerator tells us that if

a, > /2 — 1 then a,4» — a, < 0. It also tells us that if 0 < a, < /2 — 1 then
Ay —a, > 0.

An alternative, and often useful, method of dealing with a,,, — a, is to substitute for
both terms. Omitting the details of the algebra, this gives

an+2 an +2 ap — Qy_3

It = O = 5 2ap2+5 (Qant5)(2an2+5)

So the sign of a,.2 — a, is the same as the sign of a, — a,_,. From the calculations at
the beginning of this example we know that a; — a; < 0 and a4 — a; > 0. This
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enables us to deduce that (a), a3, as, . . .) is a decreasing sequence, and that
(@a,4a4,a, . ..) is an increasing sequence.

Putting these results together, we have shown that when a; = 2 the sequence
(a1,as,as, ...) is decreasing and bounded below, and that the sequence

(a2, a4, as, . . .) is increasing and bounded above. So both sequences have limits and,
from the equation relating a, to a,, it follows that both limits will satisfy
I=(142)/(21+5). Solving this equation gives / = /2 — 1 or I = —(y/2 + 1). All the
terms are positive so the first solution is the one which applies to both the even and
odd subsequences. So both subsequences have the same limit, and therefore the
entire sequence converges to /2 — 1.

EXERCISES 7.5

1. Draw the curves 3y = x> + 2 and y = x on the same axes. Use the graphs to
illustrate the fact that if —2 < a; < 1 then the sequence (a,) defined by
3a, = af,_l + 2 converges to 1. Prove this result, showing that for a, in the stated
interval the sequence is increasing and bounded above by 1. If e, =1 — a,
obtain an estimate of the ratio e, /e,. What does this tell you about the rate of
convergence of the sequence (a,)? Check with a calculator.

Find out what happens if a; lies outside the interval between —2 and 1, and
again prove your results algebraically.

2. Investigate the following sequences in the same way as in Exercise 1, considering
a; in the various intervals specified.

(i) an=

+2, (a1 >0;a <0),

n—1

1
(ii) a,,=2—a , (@>1a1<0,0<a <1/2;1/2<a; <1).
n—1

3. Express the terms a, of the sequence

V2,24 V2, 2+ 2+ V2,...

by means of a relationship expressing a, as a function F(a,_1) of a,—;. Illustrate
graphically how the terms a, increase towards 2. Prove by induction from your
iterative formula that /2 < a, < 2 for all n and that a,. > a, for all n. Deduce
that a, has a limit and find its value. Prove also that |a,41 — 2| < |a, — 2|/2 for
all n. What does this tell you about the rate of convergence? Check the results
on a calculator.

7.6 Complex Sequences

If we consider Definition 2 for the limit of a sequence we see that it involves the
quantity |a, — /|. We can therefore interpret this as the modulus and thereby apply
the definition to sequences of complex numbers. Recall from Chapter 6 that |a, — /|
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gives the distance between the complex numbers a, and / in the complex plane,

and so to say that |a, — /| < € says that a, is within distance € of /. In the complex
plane this means that a, lies within a circle with centre / and radius e. Thinking of €
as being small says that a, and / are very close together in the complex plane.

This fits in with our intuitive idea of the limit of a sequence where we think of the
terms getting closer and closer to the limit. Since the definition is the same for
complex as for real sequences it follows that consequences such as Proposition 1 on
the algebra of limits are also valid, with identical proofs. Results (iv) and (v) of
Proposition 3 also carry across to complex sequences. It is worth checking the
proofs to confirm that x could represent a complex number in those contexts. We
can relate the behaviour of complex sequences to the sequences of real and
imaginary parts as follows.

e Proposition 5

Suppose (a,) is a sequence of complex numbers. Then
lim(a,) =/ if and only if lim(Re(a,)) =Re(/) and lim(Im(a,)) =Im(/) @

PROOF

We shall exhibit the geometrical reasoning which leads to verification of the limit
definitions. We shall leave the interested reader to write out a complete analytical
proof, perhaps with tutorial help.

.... —sT
o

o | ol

Fig 7.8 Regions for convergence of complex sequences.

If Re(a, — I) < ¢/4/2 and Im(a, — I) < /2 then a, lies in the square with centre /
and sides of length 2¢/+/2 parallel to the real and imaginary axes. The right-hand
diagram in Fig 7.8 shows that a, will then be in the circle with centre / and radius e,
so that |a, — /| < e. This deduction is used to show that if lim(Re(a,)) = Re(/) and
lim(Im(a,)) = Im(/) then lim(a,) = L.

If |a, — /] < € then the left-hand diagram shows that a, will lie within the square with
centre / and sides of length 2e, so that Re(a, — /) < e and Im(a, — /) < e. This
deduction is used to show that if lim(a,) = [ then lim(Re(a,)) = Re(/) and
lim(Im(a,)) = Im(J). o

TUTORIAL PROBLEM 14

Investigate the behaviour of the sequence (¢") for various values of 6.
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EXERCISES 7.6

1. Show that for a complex sequence (ay,), lim(a,) = 0 if and only if lim(|a,|) = 0.
Deduce that if a, = r,(cos(6,) + isin(6,)) then lim(a,) = 0 if and only if
lim(r,) =0.

2. Determine the limiting behaviour of the sequences (a,) defined as follows.

(ii)) an=(0.8+0.60)", (iv) a,= e/,

If you have computer graphics facilities (as with Basic on a BBC machine, or
TurboPascal, or a programmable graphics calculator) write programs to plot
some terms of these sequences in the complex plane (in (iv) you will have to
choose some specific values to try for ).

Summary

In this chapter we have considered infinite sequences of numbers. The idea of a
sequence which can continue without coming to an end is related to mathematical
induction, particularly by using induction to define terms of a sequence from their
predecessors. This leads to the idea of iteration as a method of generating a
sequence, especially in the context of successive approximations.

In seeking to give a mathematical definition of the limiting behaviour of sequences
we have relied on a detailed introductory example, but also, naturally, on the
historical development of the formulation of Definitions 2 and 3. The fact that these
took eminent European mathematicians much of the 18th and 19th centuries to
accomplish is testimony to the logical complexities involved. This section of the
chapter is therefore the most demanding in the book. Proposition 1, on the algebra
of limits, shows these definitions in action, being used to prove results we apply all
the time. The proofs should be studied with a view to gaining some understanding of
how the logic of the definitions is handled, and will benefit from tutorial discussion.
In the author’s view it may not be appropriate to try to learn the proofs at this stage.
Proposition 3 on the other hand shows the definitions in action in a less abstract
setting, dealing with particular sequences. The purpose of that proposition is to
establish a small number of standard results which will be used frequently, in
conjunction with the rules for limits embodied in Proposition 1. This is very similar
to the methods involved in differentiation and integration, where one learns a few
standard results and then applies rules for products, quotients etc. The methods of
this section are important and should be mastered through the examples and
exercises.

We have considered the relationship between the existence of a limit for a sequence
and the completeness of the real number system studied in Chapter 5. These ideas
were closely interrelated historically. The establishment of the exponential limit is
one consequence, and the result, in Example 7, should be learned. The main
application is to iterative procedures, and here I have re-emphasized the importance
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of multiple perspectives, with algebraic, graphical and numerical aspects studied.
Omitting one of these systematically will certainly impede the development of a clear
understanding of the behaviour of sequences, and computers and calculators can
greatly assist with numerical and graphical situations.

Finally we have considered very briefly sequences of complex numbers, again
emphasizing the geometrical view, given through the complex plane.

EXERCISES ON CHAPTER 7

1. Rearrange the equation e* = 3x? — 2 in the form x = F(x) in as many ways as
you can think of. Use a graphics calculator or a computer package to draw
graphs of y = F(x) and y = x. Investigate the behaviour of the associated
sequences given by a, = F(a,_1), choosing various initial values.

2. Assuming that if lim(a,) = /, (a, > 0,/ > 0) then lim(In(a,)) = In(/), use the
properties of the logarithmic function together with the result of Proposition
3(iii) to show that

lim (ylfl_”_)) =0.

Use the results from Tutorial Problem 9 to show that replacing n by a positive
power of n in the denominator of In(n)/n still gives limit zero. This tells us that
powers tend to infinity faster than logarithms.

3. Determine the limiting behaviour of the sequences whose nth terms are given by
the following formulae.

3 _ 32 2 1n/2 .3
() T2 m>@+a L (i) o, (iv) MY,

3(n—1)7>+4’ 2n? '
., n n+Inn+2" . n?+1
W =1 ) e 09 e
..., sin(e") . a1+ (=1)"
(viii) pa— (ix) T

4. The sequence (a,) is defined as follows. Prove that the sequence is increasing
and bounded above, and therefore converges.

SR I .
Th+l n4+2 7 20

an

5. The sequence (ay,) is defined by a; = 6 and
4 = 1la,_, — 8_
p1+5
Illustrate the behaviour of this sequence graphically. Prove from the recurrence

equation that a, > 4 for all n, and that a, is a decreasing sequence. Deduce that
the sequence has a limit, and find its value.



o Infinite Series

Infinite series are very important in many branches of mathematics, and like
sequences are used to provide approximations. In particular, they are used to
provide polynomial approximations to trigonometric and many other classes of
functions, and also to enable us to find out about functions for which there is no
algebraic formula. Many mathematicians have investigated their properties, and
with the invention of calculus they achieved great prominence. Like so many topics
we find the name of Euler associated with discoveries involving series.

The Ancient Greek philosopher Zeno (c. 450 BC) was responsible for expounding a
number of so-called ‘paradoxes’ concerned with motion. One of them concerned
Achilles, who could run very swiftly, and a tortoise. An account of this paradox
using measures of distance is as follows. Suppose that Achilles races against the
tortoise and starts 100 metres behind. Suppose that Achilles can run 10 times faster
than the tortoise. After Achilles has covered 100 metres the tortoise will still be 10
metres in front. After Achilles has covered those 10 metres the tortoise will still be
leading by 1 metre. When Achilles has covered that one metre distance the tortoise
will have moved on 10 cm. This process can continue for ever, so that Achilles will
never catch the tortoise.

O

—

Achilles Tortoise

Fig 8.1 Achilles chasing the tortoise.

We leave it to readers to discuss a resolution of the paradox itself, but we shall
consider a method of finding where Achilles catches the tortoise. We can use the
reasoning above to say that Achilles has to cover all the distances specified,
continuing potentially without end, and so the total distance will in some sense be
the sum of these distances, which in metres will therefore be

100+ 10+ 1+ 0.1 +0.01 + 0.001 + ... (continuing without stopping).

We have no way of performing such a calculation by the ordinary processes of
arithmetic, but we can find the total distance which Achilles has covered at each
stage of the procedure. After the first stage he has run 100 m, after the second stage
110 m, after the third stage 111 m, and so on. This gives us a potentially infinite
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6. Let S denote an infinite set of real numbers, bounded above, with least upper
bound /. Use the definition of 1.u.b.(S) to show that it is possible to find a
strictly increasing sequence (a,) of numbers belonging to S for which
lim(a,) = 1.
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sequence of total distances beginning
100,110,111,111.1, 111.11, 111.111,... ..

We can see that all these distances are less than 112 m, and that the sequence is
increasing. This tells us, by Proposition 4 of Chapter 7, that the sequence has a limit.
This limit would seem to be a sensible interpretation for the potentially infinite
addition of distances. What we have done here is to start with an infinite sequence of
separate distances and generated an infinite sequence of partial totals. The limit of
the sequence of totals suggests itself as a reasonable definition of the infinite sum of
the separate distances.

TUTORIAL PROBLEM |

Find an iterative formula for the total distance d,, covered after n stages of
Achilles’ pursuit of the tortoise, where d; = 100. Investigate the convergence
of this sequence by the methods of §7.5.

8.1 Convergence

In the introduction we considered the process of ‘infinite addition’ by generating a
sequence of partial sums. This close relationship contributes to a confusion about
the difference between a sequence and a series. After all, the words ‘convergence’
and ‘divergence’ are used in both contexts. An additional factor is the use of the
words in everyday language. We often encounter things like ‘find the next letter in
the series J, F, M, A, M, ..., and indeed in some school textbooks the word ‘series’ is
used in place of ‘sequence’ for a succession of letters or numbers. The description of
the process in the introduction suggests the formal Definition 1 below, which makes
the distinction clear, in that a series is defined as a pair of sequences related in a
particular way. The confusion can also arise because textbooks very rarely use this
formal definition in discussion about series, but always use the associated X
notation. In fact, this practice has some advantages, and we shall follow it in this
book.

e Definition |

An infinite series is an ordered pair ((a,), (s4)) of infinite sequences, where s; = a;
and 5,11 = S, + @yy1. a, is called the nth term of the series and s, is called the nth
partial sum of the series. If the sequence (s,) of partial sums has a limit then the
series is said to converge, and the value of lim(s,) is called the sum of the infinite
series. Otherwise the series is said to diverge. [ )

Notice that we have defined the partial sums from the terms, and this is the order
relating to most situations involving series. We can invert the definition if we wish by
starting with a sequence (s,) and then defining the sequence (a,) by a1 = s; and
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a, = S, — sp—1. Notice also that the definition works equally well with real or
complex terms, although a majority of the examples in this chapter involve real
numbers.

TUTORIAL PROBLEM 2

Show that if we start with s, and define a, as above, then applying Definition
1 to the resulting sequence (a,) yields the sequence (s,) we started with, so
that the two approaches are indeed equivalent.

We now introduce some further notation and terminology. Firstly if we look back to
the definition of the ¥ notation in §2.1 we see that the structure is exactly that of
Definition 1, and so using that notation we have

n
Sp = E a;.
i=1

When the series converges, so that lim(s,) = S, say, we write

o0
S=Za,~ or S= Za[.
i=1 ieN
The latter notation avoids the danger of interpreting the symbol oo as if it were a
number. However, it is much less commonly used than the former in textbooks, and
so we shall use the first notation with the ‘health warning’ concerning co. We will
often use the even more abbreviated notation Ya;. Another point about the notation
is that it is normally used (ambiguously) to denote both the series and its sum (when
convergent). So we find statements like
1 7 1
the series ==—. The series — diverges.
We shall begin discussion of examples with what may be a familiar situation, that of
a geometric series.

Example |

Find a formula for the nth partial sum of the series whose sth term is given by
a, = ar"~!, where a and r are constants. Discuss convergence of the associated
infinite series.

It is often helpful to write out the first few terms of a sequence or a series explicity,
so that in this case the sequence of terms is (a, ar, ar?,ar?,...). We see that each term
is obtained from its predecessor by multiplying by r, which can also be seen as the
invariant ratio of successive terms. So r is called the common ratio, or common
multiplier. There is a well-known and rather ingenious method of finding a formula
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for s, as follows.

Ss=a+ar+a’ +ar+.. . +a"’,

rs, = ar+art+ar +...+ar ! +ar.
So (1-r)sp=a —ar".
So if r # 1 we obtain
_a(l=r")
" 1—r

If r = 1 then all the terms are equal to @ and so s, = na. Now if |r| < 1 then

lim(r*) = 0 and so lim(s,) = a/(1 — r). If r > 1 then s, — oo. If r = —1 then the
sequence s, is bounded but has no limit. The best way to appreciate this is to write
out the first few terms of both (a,) and (s,) in this case. If r < —1 then the sequence
sy oscillates unboundedly.

Example 2

Find a formula for the nth partial sum of the trigonometric series whose nth term is
given by a, = cos(nf). Discuss convergence of the series.

The easiest method of dealing with this problem is to use the complex exponential
(§6.5). This will enable us to sum both the cosine series and the related sine series
together. We obtain a geometric series with common ratio €.

n
Z(cosk0+ isinkf) = Ze‘ka = e‘BZe i(k=1)6 — ’9e 11 (€% #1),
k=1

using the result of Example 1. (We leave it to the reader to deal with the case
e = 1.) We now need to separate this into real and imaginary parts. We use the
identity

eia —1= eia/Z(eia/Z _ e-ia/Z) — eia/22i sin(a/2),
(see Exercise 4 of §6.5.) Applying this result to the previous expression gives

we™®—1 ., e"22isin(nf/2) sitr+1/2 Si(19/2)

© @17 ° 22sin(6/2) sin(6/2)
Finally this gives
< _ n+1 )\ sin(nd/2)
;cos(kO) = cos( 3 6) sn(8/2)
and
. . (n+1 )\ sin(nf/2)
sin(kf) = sm( 0) - .
; 2 sin(6/2)

We can see from summing the geometric series that convergence of the infinite series
depends on the limiting behaviour of the sequence (¢"). Now these complex
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numbers always lie on the unit circle, centred at the origin in the complex plane. If n
increases by 1 then the argument increases by 6, so that the sequence of numbers
moves around the circle in regular steps. If 6 is a rational multiple of 7 then €' is a
root of unity, and so the sequence will repeat, with the terms moving around the
vertices of the appropriate regular polygon (see §6.6). The sequence therefore does
not have a limit. If 6 is not a rational multiple of « then the sequence does not
repeat, but the terms are uniformly distributed around the circle, and again do not
tend to a limit. This result is not easy to prove and is outside the scope of this book.
We shall return later to the question of convergence of this series. Notice that in this
example we have used k as the variable of summation rather than i, because we are
naturally using i to denote the complex number. Other symbols for this variable
could have been chosen, for example j, r, s, etc.

Example 3

Prove that the series whose nth term is 1/n(n + 1) converges, and find its sum.

As with the previous examples, we can find an explicit formula for the partial sums
of this series. We first decompose the term into partial fractions,
111
nin+1) n n+1’

The easiest way to see how these add up is to write out the pattern of the first few
terms without the ¥ notation. So

S -2 G m)

i=1
(PN (LN, (i
T\l 2 2 3 3 4 n n+1)

We can see that most of the fractions cancel, and we are left with

2”: P,
i(i+1) " n+l’

i=1

Now lim(1/(n + 1)) = 0, so the series converges, and its sum is 1.

One very important infinite series is the exponential series

1 1 1 1
ittt
which converges to the exponential number e =~ 2.71828, which we encountered in
Example 7 of Chapter 7. We sometimes see this expressed in ¥ notation as

1
C=Z;,

n=0""

i.e. with the summation starting at n = 0 rather than n» = 1, and where the
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convention that 0! = 1 is used, as it is in probability theory. A complete proof that
the series converges to the exponential number is outside the scope of this book.

EXERCISES 8.1

1. Adapt the method used in Example 1 to find a formula for the partial sum
14+2r+377+48 + ... +n L.

Show that for |r| < 1 the associated infinite series converges, and find its sum.
Investigate the cases [r| > 1,r =1,r = —1.

2. Use the method of partial fractions in a similar way to that of Example 3 to
obtain a formula for the sum of the finite series

Z(/+4 YG+5)(+6)

Show that the associated infinite series converges with sum 1/10.
3. Using the method from Example 2, find formulae for

cos(a + 0) + cos(a + 260) + cos(a + 36) + ... + cos(a + nb),

cos(a + 6) — cos(a + 26) + cos(a + 30) — ... + (=1)""! cos(a + nf),

and the associated sine series.

8.2 Tests for Convergence

If we can find explicit formulae for partial sums then we can determine convergence
as above by considering the sequence of partial sums. In many cases however such a
formula cannot be obtained, and so to find the sum we have to invoke some
algebraic or analytical theory, or estimate numerically by calculating the partial sum
for a large number of terms. Before embarking on such investigations one needs to
know whether the series does converge, for otherwise all such approaches will be a
waste of effort. Much of the rest of this chapter is concerned with this idea of testing
a series for convergence in the absence of partial sum formulae. The first result is, in
effect, a test for divergence.

e Proposition |

If the series Xa, converges then lim(a,) = 0. °

PROOF

Let (s,) denote the sequence of partial sums, and let S denote the sum of the series,
so that § = lim(sy). NOW @nt+1 = S4+1 — 5, and using the result of Tutorial Problem
13 in Chapter 7 tells us that lim(s,+;) = S. The algebra of limits together with the
tutorial problem just referred to then gives

lim(a,) = lim(ap41) = im(sp41 — $,) = im(sy41) — lim(s,) = S-S =0. o
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It is very important to be careful about the logic of this result. Using the logical
symbol for implication we can abbreviate the statement to

Zan convergent = lim(a,) = 0.

The contrapositive of this can be written
lim(a,) #0 = Z a, diverges.

Note that in this statement lim(a,) # 0 should really be amplified to include the case
where (a,) does not have a limit. This can now be applied to deal with the
convergence part of Example 2. There we have a, = €, and because |a,| = 1 this
means that we cannot have lim(a,) = 0 and so the geometric series in that example
cannot be convergent.

Finally, and most importantly, we should notice that the converse of Proposition 1
is not true, as the next example will show. This means that knowing lim(a,) =0
does not enable us to make any deduction about whether Xa, converges. In the
language of §1.3, lim(a,) = 0 is a necessary but not a sufficient condition for
convergence of Xa,. The use of the converse is a very common error in this context,
and should be guarded against. The results of the next two examples should be
learned as illustrations of this situation. The series in Example 4 diverges whereas
that in Example 5 converges, but in both cases the nth term of the series tends to
ZEero.

Example 4
The series ¥(1/n) diverges.

We shall show how the proof works, but we will not include all the algebraic details.
We write out a number of terms of the series and group them as shown.

teg+ (5+3) + (GHe+7+5) + (5ot +18) +--
2 3 4 5 6 7 8 9 10 16
S R S A
2 4 8 16
1 1 1 1
=1 +§+§+§+5+...
We can clearly continue in this fashion and produce a partial sum with as many
halves as we like, so that the sequence of partial sums will be unbounded and have
no limit. (Readers with a taste for complete analytical proofs can fill in all the
details.)

Example 5

The series ¥(1/n?) converges.

We consider the partial sums of this series, using the partial fraction approach of
Example 3.
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1 1 1 1
Sn=1+?+¥+47+...+;5

<1+1+1+1++1-—1+11<2
Ix2 2x3 3x4 T (n—1)xn_ n '
This shows that the sequence of partial sums is bounded above. It is increasing,
because the terms of the series are positive, so to get from s, to s,+ we are always

adding a positive number. Therefore the sequence (s,) has a limit, i.e. the series
converges. In fact, the sum of this series is 72/6, but this is not easy to prove.

The technique used in this example can be generalized as follows.

® Proposition 2—The comparison test

Suppose that Xa; is a convergent series of non-negative terms, with sum S, and that
Yb; is a series having the property that 0 < b; < g; for all i € N. Then ¥b; converges,
with sum 7, where T < S. )

PROOF

Let (s,) denote the sequence of partial sums for the series £a; and let (#,) denote
the sequence of partial sums for the series £b;. Because the terms of both series are
non-negative, both sequences of partial sums are increasing. Because Xa; converges,
lim(s,) = S and moreover s, < S for all n. Since b; < g; for all i it follows that

tn < sy < Sforall n. So (t,) is a sequence which is increasing and bounded above
(by S). It therefore converges to a limit 7 which cannot be greater than S. [ )

TUTORIAL PROBLEM 3

Show that in the comparison test the conclusion is true under the apparently
weaker hypothesis that 0 < b; < g; for all i > N for some positive integer N,
rather than the inequality being satisfied for all values of i. This modification
is typical of many situations involving limiting behaviour, where changing a
finite number of terms of a series makes no difference to convergence.

The contrapositive of the comparison test is useful as a test for divergence. Under
the same hypothesis 0 < b; < a; for all i, if Xb; diverges then the sequence (¢,) tends
to infinity. The sequence (s,) therefore tends to infinity, and so Xa; diverges.

e Proposition 3—The algebra of series

Suppose that Xa, and Xb, are convergent series with sums S and T respectively.
Then

(i) the series X(a, + by) converges with sum S + 7,

(i) the series ka, converges with sum kS, where k is a constant. [ )
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PROOF
These results follow by applying the algebra of sequences (Proposition 1 of
Chapter 7) to the sequences of partial sums.

TUTORIAL PROBLEM 4

We include here some results relating to Proposition 2.

(i) Show that if Xa, diverges then Xka, diverges, where k is a non-zero
constant.

(ii) Proposition 1(v) of Chapter 7 concerns products of sequences. Products
of series are not so straightforward, and the fact that Ya, converges to 4
and ¥b, converges to B does not imply that ¥a,b, converges to AB;
indeed it may not converge at all. Using the result of Proposition 6 below
will tell us that if a, = b, = (—1)"/4/n then Za, and b, both converge.
Use the result of Example 4 to show that Xa,b, diverges in this case.

Use the comparison test and the result of Proposition 1 to show that if ¥a,
and Xb, both converge, and if a, and b, are non-negative for all n, then
Yay,b, converges.

Example 6

Discuss convergence of the series whose nth terms are given by the following
formulae, using the comparison test.

0 a _n3+4n+3 (i) b  n*+4n+3 (i) o = n* —2n
i) MU e o) ML v/ s

As with Example 6(i) of Chapter 7, we use the strategy here of looking for the parts
of the expression tending to infinity most rapidly, in order to try to gain an intuitive
idea of how the series will behave before attempting a precise application of the
comparison test.

(i) When 7 is very large the numerator is dominated by the n3 component. The
denominator is governed by /' = n>. So, effectively, we have something which
behaves like n3/n’, i.e. like 1/n?, which suggests convergence, by reference to
Example 5. In applying the comparison test we therefore need to find an expression
behaving like 1/n? which is larger than a,. We need to take care over inequalities
involving algebraic fractions (Exercise 5 of §4.1 is relevant here). These
considerations lead us to the following algebra.

mw+dn+3 nP+4n’ 4300 8
0 < a,, = 10 < = —2 .
V(! +n) V(') n
Example 5 and Proposition 3(ii) tell us that £8/n? converges, and so Za, converges
by comparison.

(i) This time the numerator again behaves like #3, but the denominator is
governed by 1/n® = n*. So b, is behaving like 1/n, suggesting divergence, by
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Example 4. This time we need to find an expression smaller than b, behaving like
1/n, in order to prove divergence.

_n’+4n43 n’ 1

" /(n8 +3n7) > V/(n® +3n8)  2n

Example 4 and Tutorial Problem 4(i) tell us that ¥(1/2n) diverges, and so b,
diverges, by comparison.

(iti) The relative algebraic degrees of the numerator and denominator again
suggest behaviour like 1/n, indicating divergence. This time we need to be a little
more careful with the inequalities. We cannot simply omit all the components apart
from n? from the denominator, for this will yield an inequality the wrong way
round. We do want a comparison of the numerator with something of order »?, and
we can, in fact, say that

n? —2n>n*/2 provided n®>4n, ie. n>2.
So for n > 2 we have

. = n? —2n n?/2 1
T /(8 +3n2 4+ 5) 7 /(n® +3n8 +5n8)  6n’
As with (ii), Example 4 and Tutorial Problem 4(i) tell us that ¥(1/6n) diverges, and
so X¢, diverges, by comparison.

Example 7

Prove by comparison that ¥(1/r?) is convergent if p > 1 and divergentif p < 1.

This is a generalization of Examples 4 and 5. We will deal with divergence first. For
p < 1,1/n? > 1/n, and so using the result of Example 4 tells us that ¥(1/n?) is
divergent, by comparison.

Now suppose that p > 1. We group the terms for comparison in a similar way to the
method used in Example 4. We write out the first few terms explicitly to make the
reasoning clear.

PR UV L S VI PR S L UL U S
2 3 4 S 60 TP 8 910 167
S WHLIFULIVEL AR SRR S U S VR S S
20 20 4P 4p  4p 4 B Rp @ 8r
UL APUN SO (PR S S L. S
A O T

by summing the geometric series whose common ratio is 1/27~!, which is less than 1
because p — 1 > 0. Therefore, by comparison, the original series converges.

The series $(1/n”) defines a function of the variable p for all real values of p > 1.
This function has been studied extensively, in particular at the turn of the century in
connection with the distribution of prime numbers. It is known as the Riemann
Zeta-function, denoted by ((p), and named after the German mathematician
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Riemann (1826—1866). In fact the series can be generalized to allow p to be any
complex number with real part greater than 1.

In Example 8 we used a geometric series for comparison. This can also be
generalized, as follows.

e Proposition 4—d’Alembert’s ratio test

We shall give this in two forms.

(i) If the series Xa, has all its terms positive, and if there is a number & < 1,
independent of n, such that the ratio a,1/a, < k for all values of n exceeding
some number N, then the series converges.

(ii) If the series Xa, has all its terms positive, and if the ratio a,+/a, has a limit
[ < 1, then the series converges. Py

PROOF
We shall use the comparison test as modified by the result of Tutorial Problem 3.
For n > N we can write

The right-hand side is the nth term of a geometric series with common ratio k < 1,
which therefore converges. So Xa, converges by comparison.

(i) Lete=(1-10)/2>0.Letk=1I[+¢e=(1+1)/2 < 1. Because lim (ant1/an) =1,
it follows that there is a number N so that for alln > N, |a, — I| < €, i.e. a1 /a, < k.
So the hypothesis of (i) is satisfied and hence the series converges. °

It is important to note that we must have k and / strictly less than 1. For example, if
we let @, = 1/n then a,11/a, < 1for all n, and also lim(a,41/a,) = 1. The series Xa,
diverges, as we already know from Example 4. However, if we take a, = 1/n? the
limit of the ratio of successive terms is again one, but the series converges.

We conclude that if the limit of the ratio is equal to 1 this gives us no information
about convergence.

It is natural to ask what happens if the limit of the ratio is greater than 1. In this case
we conclude that the terms are eventually increasing. They do not therefore tend to
zero and so the series diverges by the contrapositive of Proposition 1.

Example 8.

Show that the following series converge, using the ratio test.

) n? 3 . n+1 !
@) Z%n))—,fz— i 3 ; C i) Y
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(i) We calculate the ratio of successive terms to obtain

1 _ (1 +1)!(n+ 1322 Qn)!12"  (n+ D@+ DF 9
an  (2n+ 212272 a3 2n+2)2n+ )22 16

Therefore the series converges, by the second form of the ratio test.

(i) We again calculate the ratio of successive terms to obtain

Gnyy  N+2 n! n+2

. = 0<1.
4  (+ D n+1l (my1?

Therefore the series converges. Notice that in the statement of the test the only
requirement is that / < 1, so that / = 0 satisfies the conditions.

(iii) The ratio of successive terms in this case gives

@_(n-{—l)!.y_n%-l
a, 1001 pl T 10

This ratio tends to infinity and so the series diverges. In fact it is enough to note that
the ratio is bigger than 1 for n > 9, and so the equivalent for divergence of form (i)
of the ratio test applies. It is interesting to note that in fact the ratio is less than 1 for
the first nine cases, so that the terms of the series decrease for a while, but then
increase, and in fact the terms themselves tend to infinity, so that we could also
establish divergence by using the contrapositive of Proposition 1.

® Proposition 5—Cauchy’s root test
Like the ratio test we shall give this in two forms.

(i) If the series Xa, has all its terms positive, and if there is a number £ < 1,
independent of , such that y/a, < k for all values of n exceeding some number
N, then the series converges.

(ii) If the series Xa, has all its terms positive, and if y/a, has a limit / < 1, then the
series converges. [ )

PROOF

We shall prove part (i) only. Part (ii) follows from part (i) in exactly the same way as
the corresponding deduction for the ratio test, and we leave the details to the reader.
Like the ratio test this result involves comparison with a geometric series, since

v/a, < kis equivalent to a, < k", and since kK < 1 the geometric series Yk" converges,
implying convergence of Xa, by comparison. [ )

As with d’Alembert’s ratio test, it is important that k and / are strictly less than 1.
The same examples we used in that connection demonstrate that Cauchy’s root test
is also inconclusive if k or /is equal to 1. If / > 1 or if {/a, > 1 for all sufficiently
large n then a, / 0 and so the series diverges.
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So far the tests in this section have involved series all of whose terms are non-
negative. We finish with a special test for series whose terms alternate in sign. Such
series occur sometimes in approximations to functions.

® Proposition 6—Leibniz’s alternating test

If (a,) is a decreasing sequence of positive real numbers with limit zero then the

series ¥(—1)"a, converges. [
PROOF
We consider first the sequence of even partial sums, bracketed in two ways.
Som=a1—ay+a3—as+...+ay-1 —an
=(ay — a2) + (a3 - a4) +...+ (az,,_l - az,,)
=a) — (az - 03) - (a4 - a5) — .. (az,,_z — a2,,_1) — QAyp.

We use the hypothesis that a; > a, > a3 > . ... The first bracketing then shows that
(s20) is an increasing sequence. The second bracketing shows that 5, < a; for all n.
So the even partial sums form an increasing sequence which is bounded above, and
it therefore has a limit. We now observe that s, = $2, + @2n+1, and so the fact that
lim(a,) = 0 tells us that the sequence of odd partial sums has the same limit as the
sequence of even partial sums. Therefore, the entire sequence of partial sums has a

limit, proving that the series is convergent. o

Example 9
1

Prove that the series 1 —3+1—-1+1—-14 s convergent.

This is a straightforward application of Leibniz’s test. The general term of the series
is (—1)"/n. The sequence (1/n) is decreasing with limit zero, so that the series
satisfies all the conditions for the test and is therefore convergent. (In fact its sum is
In(2).) Note that without the alternating signs, in other words with all the terms
positive, we have ¥1/n, which diverges.

The condition that (a,) should be a decreasing sequence used in Leibniz’s test
cannot be dropped. If we consider the series

PRNESIL N U S U S I
273 45 8 16

we find that the positive terms form a divergent series, whereas the negative terms
form a convergent geometric series with commmon ratio % The complete series
therefore diverges, for the sequence of partial sums will tend to infinity.

There are a number of other tests for convergence which have been developed. They
are rather specialized, and can be found in older books (see §10.5 for references).
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EXERCISES 8.2

1. Determine the convergence or otherwise of the series Xa,, where a, is defined by

the following formulae.

. 1 .. 1 1
0 5y @ g (i) T i)

2 __ n
v TIEy VRV Gy
wii) ST @0 s 0 S

2. Use the ratio test to determine whether the following series converge. In each
case write down a formula for the general term a, following the numerical

patterns given.

0 2ea(2) (@) o (2) -

5 52 53 54

(11) §+ﬁ+§‘2—3+m+...

(i) l+ E n 1.2.3 + 1.2.34 +
3 35 357 3579

. 7P

() T+ttt

o) 1,2, 3 4
Vi gtetatat

(vi) 1+2.2!+22.3!+23.4!+24.5!+25.6!
YWoaTTs 0 17 TT6 37
3. Use the algebra of series (Proposition 3) to express the series

00 r+12
Z( r!)

r=1

in terms of the exponential series, to show that its sum is 5e — 1.

8.3 Series and Integrals

(iv) Vn+1-+n,

For some regularly behaved series it is possible to make comparisons with integrals,

in particular if the series is of the form Xf{n), where f{x) is a positive decreasing
function of the real variable x. The situation is illustrated in Fig 8.2, where we
compare the areas of rectangles with that of the shaded region.

The rectangles we use have base 4B, which has length 1, and heights equal to the
value of the function at the appropriate points. The shaded region has its area given
by an integral, so we have
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y

1 2 3 TTh on+1

Fig 8.2 Comparing series and integrals through areas.

area (rectangle ACDB) < shaded area < area (rectangle AEFB),

n+l1
fn+1) < / (x)dx < f(n).

Copying the right-hand inequality, and replacing n by n — 1 in the left-hand
inequality enables us to deduce that

[ rwarsss [ e

If we sum each of these chains of inequalities for » from 1 to k we obtain

k+1 k+1 k
> f)< [ fxar<d o, m
n=2 n=1
k+1 k k
f@dx <Y S < [ ) d (1)
1 n=1 0

Notice first that if we imagine that we can perform the indefinite integration and
then substitute the limits, the answer will contain the integer variable k. In other
words, the integrals themselves form a sequence of real numbers, and we can discuss
convergence of such sequences. We can conclude a number of things from the
inequalities, using the fact that both the sums and the integrals increase as k
increases, because f'is a positive function. These deductions can be summarized in
Proposition 7.

® Proposition 7—The integral test

Suppose that f(x) is a positive decreasing function of the real variable x. The infinite
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k
series 3f (n) converges if and only if the sequence of integrals / f(x) dx converges
1

as k tends to infinity. ™

PROOF
k
(a) Suppose that lilin ( / f(x) dx) = [, where we have used the notation lilin to
0

draw particular attention to the fact that k& is the integer variable in the sequence
defined by the integral. Then from the right-hand inequality of (IT) we deduce that
k

Z f(n) < Ifor all k, so the associated infinite series converges, because the

n=1
sequence of partial sums is increasing and bounded above.

(b) Similar reasoning to that of (a) applied to the right-hand side of (I) tells us that
if the infinite series converges then the integral also tends to a limit as &k tends to
infinity.

.

() We can also conclude, from the left-hand side of (I), that if the infinite series
diverges then the sequence of integrals also diverges.

(d) Finally, we deduce from the left-hand side of (II) that if the sequence of
integrals diverges so does the infinite series. [ )

We can make a further deduction from the left-hand side of (II).
k k k+1
=3 fn) - / f)dxe> [ fx)dx > o0.
n=1 1 k
So the sequence (T%) is bounded below. Moreover
k+1

Tirr — Tk = flk +1) — (x)dx < 0
k

from the original comparison of areas. So the sequence (7%) is decreasing and
bounded below, and therefore has a limit. This shows that

k k
- x)dx
> 7t /lf( )

has a limit as k tends to infinity whether the series converges or diverges. The next
example is an application of this result.

Example 10

k
Show that Z% — In(k) has a limit.
n=1
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We apply the above result with f(x) = 1/x, so that

k k k 1
> fie) - | feax= >~ (k)

The limit in question is, in fact, a well-known constant, known as Euler’s constant,
usually denoted by the Greek letter +, and having approximate value 0.5772. It is
not known whether Euler’s constant is a rational number.

We can use the techniques developed here to investigate the rate of convergence,
i.e. how many terms of a series we need to add in order to approximate to

the sum with a specified degree of accuracy. We shall consider this through
examples.

Example |1

How accurate an estimate do we get if we add the first 10 terms of the series £1/n%?
How many terms do we need to achieve an accuracy of at least 10747

In the same way as we deduced (II) from the preceding inequalities we have

k+1 1 k 1 k 1
m+1 X = n m X

Evaluating the integrals then gives

1 1 ko 1 1
— )< —<([===).
(m+l k+1>_ Zn2_<m k)

n=m+1

Taking the limit as & tends to infinity gives

1 =1 1
——=< ) 55—
m+ 1 n=m+1 G m
Now the sum here is the difference between the sum of the complete infinite series
and the result of adding the first m terms, and so it gives a measure of the error
involved in adding just these first m terms. We shall denote this by E,,. If we take
m = 10 this shows that

li <Ep< %

So adding the first 10 terms gives an error within these limits. If, to this total, we
add 1/11 the error would be between 0 and 1/10 — 1/11 ~ 0.009. Performing this
calculation gives an estimate of 1.6407. We have already quoted the sum of the
infinite series as 72/6 which is approximately 1.6449. This confirms the result of the
error analysis. To obtain a partial sum with an accuracy of 10~* we would need to
find m such that E,, < 1074, i.e. 1/m < 1074, giving m > 10000, so that convergence
is fairly slow.
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Example 12
Apply the integral test to investigate the convergence of the series
nz;: n nZ; n(ln(n))?

where p > 0. Investigate the rate of convergence in case (ii) when p = 2.

(i) We dealt with this situation in Example 7, and so this provides some confirmation
of the integral test in action. We let f{x) = 1/x”. This is a positive decreasing
function when p is positive. Calculating the integral gives, for p # 1,

/k1 -1 =k 1
—dx = — = 1- .
| XP p-Dxt , p-1 kp=1

This has a limit (1/(p — 1)) if p > 1, but diverges if p < 1. For p = 1 the integral
gives In(k) which also diverges. So the integral test tells us that the series converges
for p > 1 and diverges forp < 1.

(ii) Notice that in this case the summation begins with n = 2 simply because the
function is undefined when n = 1. Again working out the integral gives

/k L e 1 ! 1
> x(X)Y (- D), P 1\m@)Y" (nk)y")

2

This has a limit (In(2)) "%~ /(p — 1) if p > 1 but diverges if p < 1. For p = 1 the
integral becomes

k
/2 xl_r:()—c_) dx = In(In(k)) — In(In(2)) — oo.

So the integral test tells us that the series converges for p > 1 and diverges for p < 1.

To investigate the rate of convergence when p = 2 we use the method of Example 11.
So

R o 1 o
/m+1 x(ln(x))2 dx < ,,;n;rln(ln(n))2 = /m x(In(x))? dx.

R S i 111
In(m+1) Ink+1)~ (In(n))*> ~ In(m) In(k)

n=m+11
Taking the limit gives
1 20 1 1
- < < )
In(m+1) ~ n=zm:+-l n(In(n))? ~ In(m)

So to obtain a partial sum which is within 10~ of the infinite sum we need
In(m) > 104, i.e. m > €(1®) ~ 10**. Indeed, to obtain a partial sum within 10~! of
the infinite sum we need m > €!® ~ 22026. So convergence is extremely slow.
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Having seen some slowly convergent series we can investigate the same question for
a geometric series. In this case the difference between the partial sum s, and the
infinite sum is #**! /(1 — r). So to obtain a partial sum within 10~* of the infinite sum
we need to solve the inequality 7!/(1 — r) < 104, We leave the detailed solution of
this inequality to the reader. When r = 0.9 it gives n > 109, and when r = 0.5 we
need n > 14, so convergence is quite quick.

EXERCISES 8.3

1. Use the integral test to find the values of p for which the following series

converges
s 1
rz:; rin(r)(In(In(r)))?”

2. Estimate the number of terms needed to find the sums of the following
convergent series correct to within 1074,

: - -5/3 ii c 1
RPN P M il

n=2N

8.4 Complex Series and Absolute
Convergence

We remarked after Definition 1 that the notion of an infinite series is applicable
when the terms are complex numbers. We discussed sequences of complex numbers
in §7.6, and proved there that a complex sequence converges if and only if the
sequences of real and imaginary parts both converge.

TUTORIAL PROBLEM §

Show that if z, = x, + y,i, then the complex series ¥z, converges if and only
if the real series £x, and Ly, both converge, using the result of Proposition 5
in Chapter 7.

This means that we can test for convergence by trying to apply the tests of the
previous section to the series of real and imaginary parts separatély. A further aspect
of convergence, which is important in relation to both real and complex series is that
of absolute convergence, defined as follows.

e Definition 2

An infinite series ¥z, of complex or real terms is said to be absolutely convergent if
the series (of non-negative real numbers) ¥|z,| converges. A series which is
convergent but not absolutely convergent is said to be conditionally convergent. @
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In testing for absolute convergence we are concerned with X|z,|, which is a series
with non-negative real terms. The various tests developed in the previous section are
therefore directly applicable. Referring back to Example 9 shows a series, £(—1)"/n,
which is convergent but not absolutely convergent. The next proposition
demonstrates that the set of absolutely convergent series is a subset of the set of
convergent series. Before proving it we shall analyse real series in relation to the
positive and negative terms separately.

Let a, be a series of real terms, and let

v+ Jan ifa,>0; g = 4 9 if a, < 0;
4 =V0, ifa,<0; “mT0, if a, > 0.

TUTORIAL PROBLEM 6

Explain why a, = a4 — a, and why |a,| = a; + a;, for all n.

e Proposition 8

If the series Xz, is absolutely convergent then it is convergent. [ )

PROOF

We decompose the terms into their real and imaginary parts, so let z, = x,, + yai.
Now for all n, |x,| < |z,| and |yn| < |z4|. So by comparison X|x,| and X|y,| are both
convergent. Furthermore, 0 < x < |x,], 0 < x; < |x4, 0 <y} < |yn| and

0 < y7 < |ynl, and so by comparison the series Xx;', Xx;, Xy, and Ly, all
converge. The first result from Tutorial Problem 6, and the algebra of series
(Proposition 3) now tell us that ¥x, and Xy, both converge, and so finally Xz,

converges. [ J

The importance of this idea lies in the fact that operations which are valid for finite
arithmetic addition are generally valid for absolutely convergent infinite series. So,
given such a series we can bracket the terms however we like, and add within the
brackets first, and the new series will have the same sum as the old. We can add the
terms in a totally different order and still have the same sum. Proving such results in
general is outside the scope of this book, but we shall give one example of a
conditionally convergent series where changing the order of summation actually
changes the sum. We consider the series

1 1 1 1 1
1_§+§_Z+§—6+..._ln(2),

where the terms are alternately positive and negative. We shall use the result of
Example 10, so if we let v, = 1+ (1/2) + (1/3) + ... + (1/n) — In(n) then
lim(7y,) = 7 (Euler’s constant). Now let us add the series by taking a positive term
followed by two negative terms, to give

BTN



158 Numbers, Sequences and Series

All the terms of the original series are present, indeed it would be possible to give a
formula to indicate the position of each in the rearrangement. We consider the
partial sum consisting of 3n terms,

11
n=1-3-7% 6 8 "1 dn—2 an
+

3
_(p Lt L1, 1
= TR w— >Ta +E
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= -|—§ 3ttt stat T, 2+4+.”+E

= (Y2 + In(2n)) — (% + In(n)) /2 — (720 + In(2n)) /2
= (y2n —W)/2+1n(2)/2 — In(2)/2.

Considering the remaining partial sums gives

1

B3n41 = 3n +5n—1+_1 —1In(2)/2;  tans2 = t3n
This shows that the sum of the rearranged series is half that of the original one. This
is a startling result. The idea that we can add a collection of numbers and, by
changing the order of addition, change the sum is totally different from finite
arithmetic, and serves to illustrate that the limiting processes involved in dealing
with infinite series need careful analysis whenever they are used. We can go beyond
this example, for a result known as Riemann’s Rearrangement Theorem says that a
conditionally convergent series can be rearranged so that its sum is equal to any
specified number. It can also be rearranged so as to diverge to infinity, or to negative
infinity. It can also be rearranged so that the sequence of partial sums oscillates
between any two specified bounds. In other words, we can make it do almost
anything we might think of! None of this happens with absolutely convergent
series—they behave very respectably. One of the main contexts where absolute
convergence is encountered is that of power series, which we discuss in the next
section.

8.5 Power Series

If you use a function button on your calculator, for example the ‘sin’ key, it is
natural to ask how it works. The calculator will not have a table of the sine function
built in, and indeed basically all it can do is addition. This of course extends to
multiplication as repeated addition. So to deal with the sine function an
approximation has to be computed using the basic operations of arithmetic. The
idea of such approximations was investigated long before the advent of calculators,
indeed centuries ago, and so the theory of such approximations is well developed.
The usefulness of these approximations lies in the capability they have for including
a real variable, and to be valid over some interval of real numbers, rather than
relating to just one number, like the exponential series discussed at the end of §8.1.
In fact, much of the theory is valid for a complex variable, which we shall use.
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e Definition 3

A power series is an infinite series of the form Xa,z", where z is a complex variable
and (a,) is a sequence of complex numbers, referred to as the coefficients. The
summation conventionally begins with n = 0, since z’ = 1 allows a constant term ag.
In the power series representation of the elementary functions, the coefficients are
invariably real numbers, and we shall use real coefficients in the examples. )

Example 13

Find the values of z for which the power series Z

+ 1)2

Z" converges absolutely.

We use the ratio test. The ratio of the absolute value of successive terms is

(n+2)°z™ 2 (n+2>zﬂ_%lz_l
on+l (n+ 1)2|z|n n+1

2 27

Thus, the series converges absolutely if |z|/2 < 1, i.e. |z| < 2, and diverges if

|z|/2 > 1, ie |z| > 2. If |z| = 2 the ratio test is inconclusive. However, in that case, the
ratio is in fact greater than one for all », so that the terms increase in magnitude and
therefore will not tend to zero. We therefore have divergence if |z| = 2.

We notice in this example that the values of z for which we have convergence satisfy
|z| < 2. This is the interior of a circle in the complex plane. In fact this happens
almost universally, as we shall prove in the next two propositions.

e Proposition 9

If the power series a,z" converges for z = C then the series converges absolutely
for all values of z satisfying |z| < |C]. [

PROOF

Since Xa,C" converges, lim(a,C") = 0. From the definition of a limit, taking e = 1,
there is a positive integer M such that for alln > M, |a,C"| < 1. We now define a
number K by

K = max{|ao|, |a:C|, |2C?|,. .., |anC|, 1}.
We then have |a,C"| < K for all n. Thus, for all #n and for |z| < C

|anz"| = |a,C"|

zn zm

< k2]

<K

The right-hand expression is the nth term of a geometric series with common ratio

|z/C|, less than 1, and therefore convergent. So Ya,z" is absolutely convergent, by
comparison. e

TUTORIAL PROBLEM 7

By considering the contrapositive of the last result show that if Xq, D"
diverges then Xa,z" diverges for all values of z satisfying |z| > |D|.
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e Proposition 10

Let Xa,z" be a power series. Then there are three possibilities.

(a) It converges absolutely for all z.
(b) It converges only for z = 0.

(c) There is a positive real number R such that the series converges absolutely if
|z| < R and diverges if |z| > R. The number R is called the radius of convergence
of the power series. The circle |z| = R is called the circle of convergence. °

PROOF
(a) The series Xz"/n! converges absolutely for all z, as can be verified using the
ratio test.

(b) The series Xn!z" diverges for all z # 0, as can be verified using the ratio test.

(c) The proof of this result uses the axiom of completeness for the real number
system discussed in Chapter 5. It uses the logic of the definition of least upper bound
(Definition 4 of Chapter 5). We shall give the proof here as an important application
of the concept of least upper bound. The most important thing to understand at this
stage however is the significance of the result, and the subsequent examples will
illustrate that.

Let S be the set of non-negative real numbers s having the property that Xa,s” is
convergent. Having dealt with cases (a) and (b), S will not contain all positive real
numbers, so that there is some number D not in S. Tutorial Problem 7 then tells us
that no number greater than D can be in S, and so S is bounded above. Now 0 € S
(every power series converges when z = 0 as all the terms are zero, except perhaps
the first). So S has a least upper bound, denoted by R.

It follows firstly that if |z| > R then the power series diverges, for if not we would
have numbers greater than R for which the series converged, and so R would not be
an upper bound for S. Now let zy be any number satisfying |zg| < R. We define the
positive real number H by H = (|zo| + R)/2. If the power series were divergent for

z = H then H would be an upper bound for S. But H < R and so we conclude that
the power series converges for z = H. Proposition 9 then tells us that the power
series converges absolutely for |z| < H and so in particular for z = z. o

If we look back at Example 13 we can now see that we established that the power
series in that example has radius of convergence 2.

Example 14

Find the radius of convergence of the following power series. Investigate what
happens on the circle of convergence.

(i) i : Zznz" (iii) ;% ;(2—(—1)")2"2".

In each case we apply the ratio test for absolute convergence.
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zn+1 2 2

n n

m+ 12|77 [+ 1)
and diverges if |z| > 1. The radius of convergence is therefore equal to 1. For |z| =1

the power series becomes £(1/n?) which converges. So the power series is absolutely
convergent everwhere on the circle of convergence.

@ z| — |z|. So the series converges absolutely if |z| < 1,

zn

(ii) The ratio test again gives R = 1. This time however when |z| = R we have
T|n?z"| = £n?, which diverges because the nth term does not tend to zero. So we
have divergence everywhere on the circle |z| = 1.

(iii) Once more the ratio test gives R = 1. This time the behaviour on the circle of
convergence varies. For z = 1 the series is 3(1/n) which diverges. For z = —1 the
series becomes X(—1)"/n, which converges. A general analysis of the behaviour on
the circle of convergence is somewhat involved, but readers may like to explore the
behaviour when z = i.

(iv) If we calculate the ratio of successive terms we obtain

(2 ( 1)"+1 onetl g+l
2-(-1)")2nz

| n+1
- 2

If n is even this reduces to 6|z|, while if n is odd it gives 2|z|/3. So the sequence of
ratios does not have a limit, and we have to find another approach, using a
comparison. The clue comes from realizing that the factor 2 — (—1)" is bounded
above, and bounded below by a positive number, and experience shows that
replacing this by a constant makes no difference to the radius of convergence. So we
use the inequality 2 — (—1)" < 3 and consider the power series $3.2"z". Applying the
ratio test tells us that this series has radius of convergence equal to %, and so by
comparison the original series converges absolutely for |z| < % So the radius of
convergence for the original series is not less than % If we now substitute z = %into
the orginal power series we obtain $(2 — (—1)"). This series diverges, because the
nth term does not tend to zero. To summarize, we have established that the power
series converges absolutely if |z| < }, and diverges if z = 1. This demonstrates that
the radius of convergence is equal to 1.

The elementary functions can be defined by means of power series, and a finite
number of terms used as a polynomial approximation as discussed at the beginning
of this section. Proving these results is part of many calculus courses, under the
heading of Taylor’s Theorem. This is outside the scope of this book, but we record
here these power series because they are so important.

2 B3 g
e—1+z+2|+3|+4'+
2 A
cosz=1-— 2-}-4' 6!+"'
) 2 2 7
Smz=z——+——=+...

3-st
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These definitions are first encountered when z is replaced by x—a real variable (see
§6.5). The definitions are equally applicable to complex variables however, and in
the study of that topic we find that the exponential and trigonometric functions are
much more closely related than the real variable situation would suggest.

1. Show that the power series for the exponential, sine and cosine functions are
absolutely convergent for all z.

2. Find the radius of convergence R of the power series Xa,z"” where a, is given by
the formulae below. Note that in some cases the formula is undefined for n = 0.
In those cases let ap = 1 for completeness sake, since the value of @y makes no
difference to the radius of convergence. In each case determine whether the

power series is convergent when z = R and z = —R (the two points where the
circle of convergence intersects the real axis).
2" 2"
. 3 .o vea
i) ay=n’, (i) a,= ik (ili) a,= o
3 n n+1
. n 1 . (=1
(iv) 4 = (v) a,,=';a, (vi) ty =,

(i) an=1+ (14t (i) a=CR a,,:(1+%)"_

3. Show that the radius of convergence of the power series X(n + 1)z" is equal to 1.
Show that inside the circle of convergence its sum is (1 — z)_2.

Summary

The study of infinite series is motivated partly by the desire to extend the processes
of arithmetic so as to give meaning to the notion of adding an infinite set of
numbers. This has been done through the theory of limits of sequences explored in
Chapter 7. A major part of the chapter has involved developing tests for
convergence to deal with situations in which it is not possible to find explicit
algebraic formulae for sums.

We emphasized the important fact that if we have a series for which we know that
the nth term tends to zero, this does not tell us whether the series converges or
diverges. Examples 4 and 5 were given in illustration of this.

The basic technique involved in the tests was that of comparison, whereby the
convergence or otherwise of a series with algebraically complicated terms can be
compared with one whose terms are simpler. Two specific tests, attributed to
d’Alembert and Cauchy, were derived from this, principally by comparison with
geometric series. A special test involving integrals was developed as a tool for
investigating how fast a series converges, i.e. how many terms are needed to provide
an estimate for the infinite sum with a specified measure of accuracy.
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We introduced absolute convergence in the context of complex numbers, although it
is a useful concept for real series. We presented a remarkable example of a situation
where changing the order of summation changes the sum. Finally, we considered
power series, which are used as tools for working with approximations to functions.

The chapter has involved some analytical proofs, in particular that of the existence
of the radius of convergence of a power series, using the least upper bound axiom
for the real number system. Some analytical reasoning also occurred in establishing
the validity of the tests for convergence. The most important aspect to the chapter
however is the examples, which have attempted to show how to apply the various
results, and the exercises giving practice in such applications.

EXERCISES ON CHAPTER 8

1. Prove the formulae obtained in Example 2 by mathematical induction, using
trigonometric identities but without reference to complex numbers.

2. Determine the convergence or otherwise of the series Xa,, where a, is defined by
the following formulae.

L n+l o N2 . 2M(P 1) (-=1)"Inn

(l) m y (ll) (_3),1 y (lll) —Sm N (IV) -\V_—n— .

3. Estimate the number of terms needed to evaluate ¥n~™ correct to within 103,

4. Find the radius of convergence for each of the following power series. Show that

the first converges everywhere on the circle of convergence, and that the second
diverges everywhere on the circle of convergence.

. o (_l)ﬂzn i c- _1\*(Hn 2
(i) z;)(n—Jrl—)z (ii) ZO< 1)"(2" +n?)2".

5. Adapt the method used in Example 14(iv) to prove that if 0 < k£ < a, < K for all
n € N then the power series Ya,z" has radius of convergence equal to 1, and that
it diverges everywhere on the circle of convergence.



Decimals are a familiar topic in school mathematics. They have become more
important in recent years with the introduction of the decimal system of money in
the UK in 1971, and an increasing use of the metric system for measurement. They
permit an ease of calculation which the previous systems of measurement used in the
UK and the USA do not have (although those have advantages such as divisibility
of many of the units by 3).

We shall not be concerned with the arithmetic of decimals in this chapter. We shall
instead concentrate on their analysis, especially in relation to infinite decimals. As a
particular case we shall analyse some of the properties of recurring (periodic)
decimals.

The positional significance of the digits is what gives the decimal notation its
essential structure, and this is learned at a very early stage in relation to integers, in
interpreting the meaning of the separate digits in a number like 362, whereas the
structural meaning of the decimal notation is learned rather later. For example, we
can interpret 3.125 as
1 2 5 125 1 25

3770 100 1000 = >T000 8 8"
where the last three steps are using the arithmetic of fractions. We learn something
of this process at school, and also the reverse process of converting a fraction into
a decimal equivalent. When we convert a fraction to a decimal we encounter
examples like 1/3, where the conversion algorithm gives a potentially infinite
sequence of threes. We shall consider what this means, along with similar
phenomena.

In using decimals for measurement we often use the convention that a decimal does
not represent an exact number, since there will always be errors of measurement.
So, if for example we said that a length of wire measured 2.17 metres, we would
conventionally mean that its true length was somewhere between 2.165 and 2.175
metres. This then leads to an analysis of the way in which such measurement errors
combine. We will not consider this aspect of decimals in this book.

In the decimal system we use powers of 10 as denominators. This is based on a
long history, and is, of course, related to the number of fingers most humans have,
hence the use of the word ‘digits’. Mathematically, there is no reason why the
number 10 should not be replaced by an arbitrary positive integer r. We could for
example use 6 in place of 10. In that framework we would intepret 3.125 as

1 2 5 51 699

34+-++

et e =316 216 In practice, the use of 6 has little application, but
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replacing 10 by 2, 8 or 16 is of use in connection with computer arithmetic, as was
mentioned in §2.6. The terminology is somewhat confused here. Some authors will
talk about ‘decimals in base six’, others will use terms like ‘siximals’ or ‘heximals’.
We shall talk about ‘expansions in base six’, since much of our discussion will
concern expanding a number into digital form.

9.1 Infinite Decimal Expansions

In this section we shall consider some of the theory behind decimal expansions, and
link it with the work on sequences and series in the previous two chapters. We shall
present the topic in a way which would enable 10 to be replaced with a general
positive integer r as discussed at the end of the introduction. We prefer to use 10 as
the base in the exposition, rather than a general value of r, as that will help to keep
the theory in touch with the decimals which readers will be accustomed to.

ai az as
10102108
i.e. an infinite series, where the numbers (a,) satisfy 0 < a, < 10 for alln > 1. The
expression above is an infinite series with non-negative terms, and we have

a,/10" < 9/10". The right-hand side of this inequality is the nth term of a geometric
series with common ratio 1/10 < 1, which is therefore convergent. The original
series is therefore convergent by comparison. This establishes that every infinite
decimal represents a real number. We know already that finite decimals represent
real numbers just from the arithmetic of fractions. The next task is therefore to
investigate the converse, i.e. if we start with a real number is there a decimal
expansion for that number, and can we find it? What we shall do is to develop an
algorithm which starts with a real number and constructs an expansion. We then
have to prove that the sum of the resulting infinite series is equal to the number we
started with.

An infinite decimal is an expression of the form ay + + + .l

When we convert a fraction to a decimal we do it by division. We shall analyse this
process and convert it to an algorithm based on integer arithmetic. We consider the
example 297/43, for which the first few steps of the long division process appear as

6.906. ..
43 [297.000. ..
258
390
387
300
258
42....

The first step is to express the fraction 297/43 in the form of a quotient and a
remainder, i.e. 297 = 6 x 43 + 39. This is reminiscent of an individual step in the
Euclidean Algorithm (§2.5). The next step is to multiply the remainder by 10 and
again divide by 43. (Multiplying by 10 corresponds to ‘bringing down a zero’ in long
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division.) This process continues, and so we can write out the steps exhibited in the
long division as follows.

297 =6 x 43 + 39
10x39=9x43+3
10x3=0x43+30
10 x 30 = 6 x 43 +42.

This is now in a form which can be translated into a simple computer program, a
possible core of which is the following segment of Pascal, where we start with a and
b playing the roles of 297 and 43 respectively. The program is typical of others we
have met in this book, involving a repeat —— unt il loop, which reflects what
we have described mathematically as an iterative procedure. The similarity of
structure with the programs sketched in Examples 7 and 12 of Chapter 2 should be
noted.

repeat
quotient:= a div b;
remainder:= a mod b;
write(quotient);
a:= 1l0*remainder;

until rem=0 or (some stopping condition).

The program obviously needs adjusting in respect of line 4 so that the decimal point
appears, and some thought needs to be given to a stopping condition, for as we shall
see such a program could otherwise continue for ever. The easiest method would
probably be to insert a variable which increases by 1 each time the loop is repeated,
and stops the program when it reaches a specified value, i.e. after a chosen number
of steps. Notice that in the steps of the method and the program we could replace 10
by 6 or some other number r to obtain the expansion in another base. To
understand this we note that another way of looking at a step such as

10 x 39 = 9 x 43 + 3 is that it determines how many tenths there are in 39/43.
Replacing 10 by 6 would therefore determine how many sixths there are in 39/43.

TUTORIAL PROBLEM |

Expand the Pascal segment above into a working program, and test it. (A
similar structure in Basic will work.)

We now use the idea from the programming approach to formulate the algorithm in
mathematical terms, using notation that will identify the quotients with the digits in
the expansion. We shall want the algorithm to be able to cope with non-rational
numbers and so we cannot use division as we have with fractions. Another way to
think about the quotient when a is divided by b is to regard it as the largest integer
which does not exceed x = a/b. This is a well-known function of a real variable,
denoted by [x]. It is also a function of a real variable in Pascal, denoted by
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int (x). We shall use the latter notation in the mathematical development, as it
gives a clearer reminder of the integer part function than the more abbreviated [x].

e Proposition |

To convert a real number Into a decimal expansion. [ )

Algorithm

Given a real number x, let ap = int(x) and let x; = x — ap, so that x = ap + x;. We
now define sequences (a,) and (x,) inductively by a,—; = int(10 x x,_;) and

Xp, = 10 X X,—1 — ay,—1. We then have 0 < x, < 1 for all », since x, is the result of
removing the integer part from a real number. So 0 < 10 x x, < 10 and therefore
0 < a, < 10 for n > 1 because a, = int(10 x x,).

o0
. a . . .
Finally we have x = —~ = gg.a1aaz ... in decimal notation. L ]
310

VERIFICATION The first thing to note is that because 0 < a, < 10 for n > 1, the
infinite series converges, as explained at the beginning of this section. To show that
the sum of the series is equal to x we need to consider the sequence of partial sums.
We prove that

", a, 1

<x=) 2 <—.
0<x=2 70 <Tom
n=0
For n = 0 this statement becomes 0 < x — ap < 1, which is true. In order to
understand the algorithm better we shall work through the next two steps, even
though, for an inductive proof, only the initial step is logically required.

So we have a; = int(10x;), and we can write 10x; = a; + x where 0 < x; < 1. We
deduce that

X1 =%+T—(2) giving x=ao+;z—(1)+%% where 0<x, <1.
We now execute the second step, so a; = int(10x;), and we can write 10x; = a2 + x3
where 0 < x3 < 1. We deduce that

a X3

x —ﬂ+E iving x=a +ﬂ—|——+———
2 g 0710 " 102 T 102

= < .
TRET) where 0<x3< 1

We now perform the inductive step, so suppose that

ai a as Am—1 Xm
x=a0+E+W+W++W—_—I+Wn—_—I where 0< x, < 1.
The algorithm then gives a,, = int(10x,,) and so 10x,, = @m + Xpm+1, where
0 < xm41 < 1. We can then substitute for x,, to obtain

a Am—
3_+_‘”+ m—1

ai a Onm  Xm+1
X=a+—=+——=+ 10m'1+10—m+ 107

2 <
10 102 T 103 where 0 < xpp < 1.
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From this equation we conclude that for all m € N,

m
an _ Xm+l 1

<x- —_—= .
0=X= 270 = om <107

This tells us that as m increases the difference between x and the partial sum of the
series tends to zero, so that the infinite series converges, with sum x. ®

Two questions arise immediately as a result of this algorithm. Firstly, can any
sequence of digits (a,) arise from the algorithm? Secondly, can a number x have
more than one decimal representation, possibly obtained through a different
algorithm? The answer to the second question is yes, but in one sense only. If we
consider the decimal 0.999. .. having an infinite sequence of nines, this represents a
geometric series whose first term is 9/10 and whose common ratio is 1/10. The series
therefore converges, and the formula for the sum of an infinite geometric series gives
the answer 1. This implies that the decimals 1.000. .. and 0.999 ... represent the
same number. A similar example which readers can verify is that the decimals
0.25000. .. and 0.24999 ... both represent the number 1/4. We shall discuss this
further in the last section of this chapter, but at this point we shall prove that this is
the only multiple representation which can occur, so that apart from this kind of
case we will have uniqueness.

We first demonstrate that the algorithm itself will never give rise to an infinite
sequence of nines. Suppose a number x corresponds to a decimal for which a, = 9
for all n > K. Then

K o)
a 9 1
=2 5= 2 10~ 10k
n=0 n=K+1
summing the infinite geometric series. But we have shown that for decimals arising
K
an

from the algorithm we have x — < —

1 o <108 %° that equality is impossible.

We now show that apart from an infinite sequence of nines we cannot have two
different decimal representations for a given number. This entails an affirmative
answer to the first question above, for if we have a decimal we know that it
converges to some number x, and this uniqueness result tells us that we could not
obtain a different sequence of digits from the algorithm applied to x. The proof is by
contradication, so let us suppose that

10" Z 107

Suppose that the sequences (a,) and (b,) differ for the first time when n = K, and
that without loss of generality ax > bg. Then

a bK <. b, —a 1 . b,—a
10n an_ K1K > 10nn210_1<_z nlonn'

n=K+1 n=K+1
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Now —9 < b, — a, < 9 for all n, and unless b, = 9 and a, = 0 for alln > K+ 1 the
right-hand sum will be strictly less that the geometric series

9 1 1
—, whose sumis ——, implying 0> _——
n=;+1 107 10% 10% n;-l

b, —ay
107

>0,

which is a contradiction. This shows that if we exclude infinite sequences of nines,
the decimal representation is unique, and when we speak of the decimal
representation we shall be referring to the one not containing an infinite tail of
nines.

Infinite tails of other digits are not ruled out, and one particular case is where the
digits are all zero from some point onwards. Essentially this means that we can
consider the algorithm as finishing in a finite number of steps, since all the x, are
zero from some point onwards. We refer to such decimals as terminating or finite
decimals. These correspond to fractions of a particular form as we shall now
demonstrate. If we first take a finite decimal ag.a1a; . . . an, this represents

a0+ﬂ+£+m+i,,,_:a010'"+a110'"-1 +@l0" 2+ +an

10 102 10m 10m

This is a fraction whose denominator is a power of 10. There may be some
cancellation possible, but after this has occurred the resulting denominator will still
not have any prime factors apart from 2 and 5. Conversely, suppose we have a
fraction whose denominator is of the form 2759. We can convert it into a fraction
whose denominator is a power of 10 by multiplying numerator and denominator by
a power of either 2 or 5, so as to make the two powers the same. A fraction with a
power of 10 as its denominator then clearly gives a finite decimal, since the digits of
the numerator will be those of the decimal itself. We can illustrate this with an
example,

7493 7493 7493 x 54 _ 4683125
16000 ~ 2753 T 2753 x 54 T 107
This tells us that if we have a fraction in its lowest terms whose denominator

contains a prime factor different from 2 or 5 then its decimal representation will not
terminate.

= 0.4683125.

The proof of Proposition 1 and the subsequent discussion about uniqueness work in
exactly the same way if we consider expansions in base r in place of base 10. Infinite
sequences of nines would become infinite sequences of (r — 1)s; so, for example, in
base 6 the expansion 0.31555. .. and 0.32000 . . . represent the same number.

TUTORIAL PROBLEM 2

Show that in base r a fraction in its lowest terms has a terminating expansion
if and only if the denominator has no prime factors which are not prime
factors of r.
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9.2 Periodic Decimals

If we convert some fractions into decimals using the division algorithm explained in
the previous section we find some interesting patterns of digits appearing. In using
examples to illustrate these patterns the arithmetic calculations will be left to the
reader. Most pupils at school encounter the decimal for 1/3, where the division
process gives a potentially unending sequence of threes. A few other examples
demonstrate the possibilities:

3 5 23
ﬁ_0'2727"" ﬂ_0'208333“" ﬁ—0.30666...,
5

7= 0.714285714285714. ..
In each of these examples we find a repeating pattern. In some it starts at the
beginning and in others after a few initial digits. Decimals with this repeating
property are called periodic, or recurring. It is clearly inconvenient to write down
the periodic sequence several times and so there are various notations to indicate
this, the most common of which consists of a dot placed over the recurring digit
when there is just one, or the first and last digits of the period otherwise. In this
notation we would write

13—1 =0.27, S _ 0.2083,

23 .5 . .
2 %_0.306, 7_0.714285.

e Proposition 2

Every fraction gives rise to a decimal which is eventually periodic. If the
denominator is n then the length of the sequence of repeating digits is at most
n—1. {

PROOF

We suppose that the integer part of the fraction has been determined, and we will
therefore restrict the discussion to fractions between 0 and 1, so that the numerator
is less than the denominator. If we recall the division process applied to a fraction
m/n we can see that at each stage the remainder is multiplied by 10 to become the
numerator for the subsequent division. If we obtain a remainder of zero then the
process has terminated and we obtain a finite decimal. In terms of periodicity we
could consider this as having an infinite sequence of zeros, and therefore having
period length 1. If we do not obtain a remainder zero the division process continues
without ending. In that case the number of different remainders is at most n — 1, and
as soon as we obtain a remainder which has occurred previously the sequences of
quotients and remainders begin repeating. We therefore have periodicity, of length
atmostn — 1. )

Example |

Find the decimal expansion for 1/17, using a calculator.
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We shall modify the division algorithm and use the calculator to generate several
digits at once. The calculations which follow can be set out on paper to mimic long
division. The numerical results of course refer to the author’s own ancient
calculator. Readers should follow this example with a calculator. Entering 1 + 17
gives 0.058823529. We shall use all but the last digit, keeping that as a check. The
multiplication 5882352 x 17 gives 99999984. Subtracting this from an appropriate
power of 10 will give a remainder of 16. So the next step involves 16 + 17. This gives
0.94117647, and we can see that the first digit 9 agrees with the 9 which we retained
as a check from the first step. We now multiply 94117647 x 17 and obtain
1599999999, which leaves remainder 1 when subtracted from 16 x a power of 10.
We began the process by dividing 1 by 17, and so we will have repetition from this
point on. In fact we have generated 16 digits in these two steps, and we know that
the period length cannot be more than 16. We can summarize these calculations in a
form which reflects the division algorithm as follows:

100000000 = 5882352 x 17+ 16; 1600000000 = 94117647 x 17 + 1.
Finally we can write 1/17 =0.0588235294117647, which has period length 16.

In other cases the period will be less than n — 1, as in the example 3/11, which has
period 2. To calculate the length of the period without working out the decimal itself
we can proceed as follows. We first express the fraction in its lowest terms. We then
remove from the denominator any powers of 2 or 5, giving a number M. In general,
the length of the period depends on the remainders when successive powers of 10 are
divided by M. The smallest power which has remainder 1 gives the length of the
period. We can illustrate this with some examples. For those quoted above we find
that for 5/24 we have 24 = 23 x 3, so that M = 3, and 10! has remainder 1 on
division by 3, giving period length equal to 1. For 5/7 successive powers of 10 give
remainders as follows when divided by 7

10: rem 3, 10?: rem 2, 10°: rem 6, 10*: rem 4, 10°: rem 5, 10°: rem 1.

So 5/7 has period length 6. For 3/11, 10 gives remainder 10 on division by 11 (with
quotient zero) and 100 gives remainder 1, so that 3/11 has period length 2. The
general result can be expressed as follows, but the proof is outside the scope of this
book.

e Proposition 3

Consider the decimal corresponding to the fraction a/b, where a and b have no
common factors. If b = 2?57 and max(p, ¢) = m then the decimal terminates after m
* digits. If b = 2?59M, where M > 1 and M is not divisible by 2 or 5, and if ¢ is the
smallest power of 10 giving remainder 1 on division by M then the decimal begins
with m non-recurring digits and is then periodic with period length c. ()

TUTORIAL PROBLEM 3

Work out some examples to illustrate the result of Proposition 3.
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If we have a decimal with denominator » and with the maximum period length n — 1
then the sequence of remainders must contain all the integers between 1 and n — 1
inclusive, for otherwise there would be repetition after fewer than n — 1 digits. So
calculating the decimal for m/n simply corresponds to starting the division process
at the position where m appears in the sequence of remainders. So all fractions of
this form will have the same periodic sequence for the recurring part of the decimal,
but starting at a different place. The most familar example concerns the fractions
with denominator 7. If we write down the decimals for these fractions with the
numerators in the order in which the remainders for powers of 10 appeared above
we find that

—3- =0.428571, % =0.285714, g =0.857142, ; =0.571428,
5 . .1 . .

2 —=0.714285, = = 0.142857.

Z 0.71 85,7 0

We have shown that a fraction corresponds to a recurring (or finite) decimal. We
now prove the converse result.

e Proposition 4

Every recurring decimal corresponds to a fraction. ®

PROOF
If we have a recurring decimal with a few initial digits we can decompose it as the
following example illustrates

0.253471 = 0.253 + 0.000471 = 0.253 + 0.471 x 1073.

If we know that the decimal 0.471 corresponds to a fraction, then since a finite
decimal also corresponds to a fraction, the decomposition shows that the original
decimal gives a fraction. This demonstrates that we need only prove the result for
purely periodic decimals, i.e. those with no initial digits. So suppose we have the
decimal 0.4, a; . . . a,. If we consider the finite decimal consisting of just one period
we have

a0+ 410"+ +a, A

0.(11(12...61,, 107 —‘1‘&,‘:

where A stands for the numerator. The recurring decimal therefore corresponds to a
geometric series with common ratio 1/10", which we can sum as follows

4, A 4 A
R ZNTEIR T S
which is a fraction. ®

Proposition 4 will also work if 10 is replaced by a general number r as the base of
expansion, because the calculations in the proof are algebraic and not arithmetic in
nature.
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- Example 2
Find the fractions corresponding to the decimals 0.471 and 0.253471.

We could use the general result in the proof of Proposition 4, but it gives a better
understanding to work from first principles. The recurring decimal corresponds to a
geometric series which we can sum, as follows

471 471 471 471 1 1
0.471471471”.—TO_3+W+1_09+”._1—O§(1+W+W+“')

_471 1471 100 471157
T1091-(1/10%)  10310°—1 999 333

We can now follow the first part of the procedure in the above proof and write

0471 253 157 84406

We can see from the first part of this example that there is an easily remembered rule
for converting a purely periodic decimal into a fraction. The numerator consists of
the integer whose digits form a single period, with length k say, and the denominator
consists of & nines. So with this rule we can write 0.471 = 471/999,

0.27 =27/99 = 3/11, 0.00231 = 00231/99999 = 231/99999 = 77/33333. Notice in
the last example that we need to be careful when there are zeros at the beginning of
the period. In case of doubt we can always use the geometric series.

TUTORIAL PROBLEM 4

Devise a rule for converting a purely recurring expansion in base 6 into a
fraction. Illustrate your result with an example and verify it by using the
geometric series.

A consequence of the propositions of this chapter is that any irrational number will
have a decimal which is neither terminating nor recurring, so that the sequence of
digits has no infinitely repeating pattern. In particular, numbers like /2, 7, and the
exponential number e have decimals which are infinite and non-periodic. The
generalizations we have commented on relating to other bases of expansion tell us
that irrational numbers do not have periodic expansions in any base. There are
many interesting questions which can be asked about the overall proportion of
individual digits or sequences of digits in such expansions, but they are outside the
scope of this book.

In the case of fractions some bases will give finite decimals whereas others will give
infinite periodic expansions. For example, in base 10 (decimal) we have 1/3 = 0.3,
whereas in base 6 we have 1/3 = 2/6 = 0.2, reflecting the fact that the expansion
terminates if the base and the denominator do not have any prime factors different
from one another.
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TUTORIAL PROBLEM §

Investigate expansions in various bases for some fractions, illustrating in
particular the comment above arising from the expansions of 1/3.

9.3 Point Nine Recurring

The assertion that 0.9 = 1 causes problems for many students. Giving a
mathematical explanation, as we did when discussing uniqueness in the previous
section, seems not to remove these doubts, and so we have to look for reasons which
are partly psychological. Most situations involving numbers exhibit some kind of
uniqueness, beginning with the standard digital representation of whole numbers in
base ten. It is inconceivable that a number such as 2314 could have an alternative
representation in base ten such as 3702. It is this desire for uniqueness which seems
to be part of the psychological difficulty. Learning non-uniqueness in the case of
rational numbers causes some pupils problems, and to recognize why 4/6 and 14/21
represent the same number is a non-trivial task, at whatever level one approaches
this. We demonstrated an approach using equivalence relations in Chapter 3, and
there are naturally explanations within the context of school mathematics. Many
introductions to the study of decimals are closely related to the division process,
where uniqueness is guaranteed. This comes out of experience, so if you repeat the
process with a given fraction, a different decimal will not result except from an
arithmetical error. In fact, we showed above that the ambiguous case of an infinite
tail of nines could not occur through the algorithm. In areas other than mathematics
there is a constant search for uniqueness of representation so as to avoid ambiguity
of communication. In the sciences, highly technical language is developed with this
aim in mind. An example from geography concerns latitude and longitude. It is
sometimes difficult to remember that latitude goes from 180°E to 180°W whereas
longitude goes from 90°S to 90°N. Why couldn’t they both use the same interval? In
fact, if both used 180° for the two extremities each position on the surface of the
earth would have two sets of coordinates, for example the point 10°W, 50°N would
be the same as 170°E, 130°N. A choice of interval also occurred when we specified
the argument of a complex number in Chapter 6. Similar choices occur when we
describe cylindrical and spherical polar coordinates in three-dimensional geometry.
Sometimes we learn to tolerate multiple representation. For example, in dealing with
the complex exponential, as in §6.5, it is so useful to allow 8 to be unrestricted when
we are using €' that it is worth paying the price of non-uniqueness.

Returning to the question of 0.9, acceptance of this as a legitimate decimal saves
having to mention a condition such as ‘provided the decimal contains infinitely
many digits different from 9’ every time we undertake some general exploration of
decimals. We decide to allow all sequences of digits, and then recognize that
numbers having terminating decimals possess the alternative expansion with a tail of
nines. This is a mathematical decision, and will not necessarily be expected to
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remove the psychological feeling that 0.9 ought somehow to be just slightly less
than 1. We have to recognize that the decision to accept equality is made for
mathematical reasons, and come to terms with the intellectual consequences. This is
a topic which has engaged the interest of many teachers in schools and universities
over the years, and you may be interested in some articles on the subject which have
appeared from time to time in the journal Mathematics Teaching. Issue No. 115
(June 1986) contains one such article, and it refers to others. A collection appeared
in Readings in Mathematical Education—Exploring Numbers published by the
Association of Teachers of Mathematics in 1987.

Summary

This chapter contains no end-of-section exercises. The aim has not been to develop
purely arithmetical skills in dealing with decimals, indeed it is hoped that the
calculations involved in examples will be done by readers using a calculator or a
computer. A study of the material of the chapter will indicate that there is more to
decimals than simple arithmetic tools. Their structure is based on that of infinite
series, and therefore depends ultimately on the analysis of limiting processes, unlike
the study of fractions, which is less analytic and more algebraic in nature. The
results proved in the chapter are designed to gather together the basic facts about
decimal representations, in particular the notion that rational numbers have
decimals which are either finite or recurring, and irrational numbers have decimals
which are infinite and not periodic. The other theoretical aspect studied is an
analysis of the standard algorithm for constructing decimals, which in the case of
fractions is considered from the perspective of division. Finally, we have looked
briefly at patterns which can occur in the periodic representation of fractions. This is
a fascinating topic, and we hope that the small number of illustrations will have
whetted the reader’s appetite to carry out further investigations.

EXERCISES ON CHAPTER 9

1. Use your calculator as in Example 1 to find the decimal expansion for 1/47.

2. Investigate the cyclic patterns occurring within the decimals for fractions with
denominator 13.

3. Without working out the decimal expansions, determine the period lengths of
the decimal expansions for the fractions 3/21, 12/43, 53/96, 7/23.

4. Write a computer program to find the period length of the decimal expansion of
a fraction m/n.



In this final chapter we discuss briefly a few of the ways in which the topics in

the previous chapters progress further, some of which will be met in later
undergraduate courses. We shall give references to further reading and make

some suggestions for self-study projects which students can undertake, with the help
of a tutor, if that option is available within their course. In a few places we have
referred to the historical context for mathematical ideas, but we have barely
scratched the surface of that aspect, and so we urge readers to delve into the
history of the subject from time to time, and to that end we recommend C.B. Boyer
and U.C. Merzbach, 4 History of Mathematics (2nd Edition), John Wiley & Sons,
1989. For books concerned more specifically with the history of numbers we
recommend Numbers, their History and Meaning by Graham Flegg, Pelican, 1984
and Numbers and Infinity by E. Sondheimer and A. Rogerson, Cambridge
University Press, 1981.

10.1 Sets, Logic and Boolean Algebra

The discussion of logic in Chapter 1 was undertaken chiefly to provide some
background for the study of the reasoning involved in mathematical proofs, rather
than as a topic in its own right. We did not therefore study logical symbolism and its
uses in detail. Symbolic logic is an interesting topic and enables one to analyse the
structure of complicated statements with many components by means of algebraic
symbolism and calculations. Logical puzzles can also be solved using these tools.
Statements are either true or false, i.e. they have two possible states. The elementary
components of the circuits used in computers also have two states, on and off, just
like switches. The study of such systems is associated with the name of George Boole
(1815-1864), whose best known work Investigation of the Laws of Thought was
published in 1854. Another direction for the study of sets and logic was the
questioning of foundations, developing systems of axioms for sets themselves. This
is a somewhat abstract and esoteric topic, but it occupied many eminent
mathematicians in the years either side of 1900. One of the best known results,
which arose out of this perspective, is Godel’s Incompleteness Theorem, which
essentially says that any logical system extensive enough to contain arithmetic will
have statements which can neither be proved nor disproved within the system. There
are many popular accounts of this spectacular result, and we refer the reader to the
splendid book by Douglas R. Hofstadter, Gddel, Escher, Bach, Harvester Press 1979,
for this and many other insights into mathematics. For the reader who is interested
in some of the philosophical issues we recommend Language, Logic and
Mathematics by C.W. Kilmister, English Universities Press, 1967.



Further Developments 177

Project |

A study of Boolean Algebra with applications to switching circuits. There are many
books which cover this topic, but we recommend Chapter 1 from the second or
subsequent editions of the classic book, first published in 1956, by J.G. Kemeny,
J.L. Snell and G.L. Thompson, Introduction to Finite Mathematics, Prentice Hall.

One of the far-reaching discoveries of the late 19th century was made by Georg
Cantor (1845-1918), who invented methods of comparing the sizes of infinite sets.
This essentially enables us to say that two sets have the same size by matching them
via a one-to-one correspondence. For example, I can tell that I have the same
number of fingers on both my hands without counting them, simply by physically
matching them together. When we do this for infinite sets we begin to encounter
properties which are radically different from ordinary finite sets. For example, the
function f(n) = 2n describes a matching between the set of all integers and the set of
even integers, so that in Cantor’s theory an infinite set and some of its subsets might
be equally numerous. Because this is so different from our experience with finite sets
it is sometimes referred to as a paradox, but it is logically valid. Cantor was able

to develop theories of infinite numbers on this basis, and to investigate their
arithmetic.

Project 2

A study of Cantor’s theories of cardinal and ordinal number. As a starting point we
suggest an article by the author of this book Infinite sets and how to count them
which appeared in the journal Mathematics Teaching, No. 58, 1972. A highly
entertaining book which sets the theory in the context of improbable stories such as
a hotel with an infinite number of rooms is Stories about Sets by N.Y. Vilenkin,
Academic Press, 1968. The book Numbers and Infinity by Sondheimer and Rogerson
cited in the introduction also touches on this topic.

10.2 Number Theory and Continued
Fractions

To Gauss is attributed the remark ‘Mathematics is the queen of the sciences, and
number theory is the queen of mathematics’. In terms of historical antiquity,
number theory is on a par with geometry, for the books of Euclid concern both
topics. In Chapter 2 we met the Euclidean Algorithm, a remarkable result which has
proved to be an efficient calculating tool for over 2000 years. Number theory has
been at the root of many branches of mathematics over the centuries, and many
university courses will include a study of parts of the topic. For students who are
sufficiently fascinated by numbers to wish to begin a study of the subject on their
own we recommend A Pathway Into Number Theory by R.P. Burn, Cambridge
University Press, 1982. This book is organized as a progression of problems through
which readers can build up an insight into number theory at their own pace.
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Project 3

A study of solving equations in modular arithmetic. We have met the idea of
remainders in several places in this book, especially when dealing with decimals.
Modular arithmetic is the arithmetic of remainders, so that if we take, for example,
the basic divisor (modulus) as 7, then as far as remainders are concerned, we can say
that 5 + 4 = 2. This gives rise to a finite arithmetic, for the only possible remainders
are 0...6. We can investigate solving both linear and quadratic equations in such
finite systems.

In Chapter 3 we introduced continued fractions. This is a topic which is important
in number theory, but is not always included in an introductory course. We studied
continued fractions for rational numbers, but irrational numbers also can be
expanded in that form, and they are used for approximations. A good introduction
is the book Continued Fractions by C.D. Olds. This is part of the New Mathematical
Library, published by the Mathematical Association of America. The series as a
whole is well worth exploring.

Project 4

A study of continued fractions for quadratic irrationals, i.e. numbers of the form

(p + +/d)/q where p, g, d are integers. The theory, established by Euler, Lagrange
and others, shows that such quadratic numbers have continued fractions which are
periodic. Of particular interest are those associated with square roots such as /76,
and there are many patterns within these numbers which students can investigate for
themselves.

10.3 Real Numbers and More

In Chapter 5 we gave a brief historical account of the background leading to the
development of theories of real numbers at the end of the 19th century. That
historical process rejected the notion of infinitely small quantities with which
Newton had sought to reason. The matter seemed to have been settled by Dedekind
and Cantor, but in 1960 the American mathematician Abraham Robinson
resurrected the idea, this time by establishing a logically rigorous formulation of a
hyperreal number system, having the ordinary real numbers embedded as a
subsystem, and having well-defined arithmetic operations and an order relation, but
containing additional elements, called infinitesimals, which were different from zero
but less that any ordinary positive real number. This system then was able to serve
as a logical foundation for the theory of limits in which, broadly speaking, the
component ‘for all € > 0’ which we have used in the definition of limit is replaced by
‘for all infinitesimals’. This method of approach to the calculus has not caught on,
and present day undergraduate courses in analysis take essentially the point of view
developed by Cauchy and Weierstrass in the 19th century, with the theory of real
numbers included. Interestingly, the new development is referred to as ‘non-
standard’ analysis, and it features in final year courses only in some universities.
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Project 5

One of the chief advocates of a ‘non-standard’ approach to calculus is H.J. Keisler,
who published a book called Elementary Calculus, Prindle, 1976. This can form the
basis of an interesting ﬁnal_year project, with tutorial supervision.

10.4 Complex Numbers and Beyond

We saw in Chapter 2 that Hamilton discovered in 1833 how to represent the
complex numbers as an algebra of pairs. He spent a good deal of time subsequently
searching for a way of formulating a system of triples (a, b, ¢) which would obey the
normal rules of algebra. He failed in this, largely because it is impossible! There is a
short article which explains this by Kenneth O. May, The Impossibility of a Division
Algebra of Vectors in Three Dimensional Space, which appeared in the American
Mathematical Monthly, Vol. 73, 1966, pp 289-91. It was 10 years later in 1843 that
Hamilton suddenly realized that a four-dimensional algebra was possible, and it is
asserted that in his excitement he scratched the defining equations on a stone bridge.
The system he invented is called the quaternions, and a brief introduction is given in
Chapter 26 of the history of mathematics book recommended at the beginning of
this chapter. Nowadays quaternions are most commonly met in courses on group
theory or abstract algebra.

Returning to complex numbers, one of the topics we did not discuss in Chapter 6
was the geometry of complex functions. For a real function given by y = f(x) both
variables can be represented on a number line. They are therefore one-dimensional,
and so the functional relationship between x and y can be represented in two
dimensions through the Cartesian graph. For complex variables, with an equation
like w = 23, both variables are two dimensional, and so in theory we would need a
four-dimensional space to draw a graph. To overcome this difficulty we proceed by
considering two representations of the complex plane side by side. One of them
corresponds to z and the other to w. If we therefore plot a point suchasz =1 +1,
this will give rise to the point (1 +i)* = —2 + 2i in the w-plane. If we imagine all
points on the imaginary axis in the z-plane this corresponds to z = yi with y varying
over all real numbers. We then have w = (yi)® = —yi. So w also lies on the
imaginary axis. The negative sign indicates that if a point moves up the imaginary
axis in the z-plane then its image in the w-plane will move down the imaginary axis
there. Also, we see that the rate at which these lines are traced out will vary, for if y
varies at a uniform rate then the rate of change of y* will be variable. One can
investigate the images, in the w-plane, of many types of curves and regions in the z-
plane under transformations defined by functions of z. Of particular importance are
the bilinear or M6bius transformations defined by w = (az + b)/(cz + d) where

a, b, c,d are complex numbers. Complex transformations have many applications,
for example in aerodynamics and in heat conduction problems. Investigating the
algebra of transformations provides tools to construct the visual images, but now we
have the added power of computer graphics. There are several packages available,
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among which is one of the options within Graphical Calculus, which we have
referred to on other occasions in this book.

Project 6

A study of the geometrical aspects of complex transformations. Many books on
complex analysis contain relevant material with varying emphasis. For one with a
good coverage we suggest R.V. Churchill and J.W. Brown, Complex Variables and
Applications, McGraw Hill. The first version of this was published in 1948, but it has
been through several editions. Chapter 7 of the fourth edition (1984) for example
discusses many of the standard transformations and is well illustrated.

10.5 Sequences and Series

Infinite series are used in many places in mathematics, and will be encountered in
many university course units. They are used to represent functions in calculus,
algebra, number theory, applied mathematics, theoretical physics, probability,
statistics, etc. The accuracy of approximations derived by truncating series is
discussed in Numerical Analysis. Approximations to solutions of differential
equations which do not have exact algebraic solutions are often obtained by a set of
methods known as ‘solution in series’, and sometimes this involves the sequence of
coefficients in a power series being defined inductively through the differential
equation. In probability theory and in combinatorial mathematics, series are used in
the context of generating functions, where the aim is to use a very simple formula
whose expansion in a power series will generate an infinite sequence of coefficients
which may represent probabilities, or numbers of ways of counting collections of
objects etc. Because they occur so widely we shall focus here on less common aspects
of series.

The first concerns series which diverge. Euler himself thought that the series
1+1—-14+1-1+1—..., which is divergent, ought somehow to be associated
with the number %, because that is the average of 0 and 1. This is a somewhat
metaphysical way of arguing, but during the 19th and early 20th centuries several
mathematicians developed theories which put the notion of associating a number
with a divergent series through averages on a proper mathematical footing.

Project7

The English mathematician G.H. Hardy wrote a book Divergent Series, first
published in 1949. A study of this topic is rather specialized, but the first two
chapters of that book give an excellent historical introduction to the subject, and
contain some examples which can be studied with some profit. A further study of
divergent series is probably better approached through somewhat older books, for
example T.J. Bromwich, Introduction to the Theory of Infinite Series, which first
appeared in 1908 but has been reissued many times. K. Knopp’s Theory and
Applications.of Infinite Series is another book with a similarly distinguished history.
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Both are rich in historical references to original sources. Books of this era contain
other interesting aspects of series which are now studied very little.

Project 8

As well as adding an infinite sequence of numbers one can imagine multiplying a
sequence, giving an infinite product. This can be approached through partial
products, analogous to partial sums, and the limit of the sequence of partial
products can be investigated. Books such as Bromwich and Knopp will generally
have a section on infinite products, as does E.C. Titchmarsh, The Theory of
Functions, Oxford University Press, 1932.

Project 9

Of rather more central importance is the topic of Fourier Series, which in some cases
will be the subject of all or part of a lecture course. Even in those circumstances it is
a sufficiently rich theme to provide subjects for individual projects. Most of the
books mentioned above have a section on Fourier Series. Such series contain a real
variable and can represent a function. Instead of powers like x" the series are based
on the sequences of trigonometric functions (cos nx) and (sin nx). They can
therefore be used to provide good approximations to periodic functions, and the
application to waveforms from physics and electronics is what makes them so
useful, in addition to their mathematical importance. We referred to them briefly in
§5.2. They have a central importance in the historical development of analysis
during the 19th century, and a good account of this is to be found in J.H. Manheim
The Genesis of Point Set Topology, Pergamon, 1964.

10.6 Decimals
Project 10

In Chapter 9 we gave a glimpse of some of the fascinating number patterns which
appear in the study of periodic decimals. This can form the basis of a project which
might be somewhat more exploratory and less book-based than some of those
offered above. Writing programs to implement algorithms for converting fractions
into decimals in various bases will help to reinforce understanding of the theory, and
can then be used to generate data in order to look for patterns, make conjectures
and attempt proofs.

Project |1

We hinted in Chapter 9 that even for non-periodic decimals there are interesting
questions to be asked about the distribution of digits which can occur. Some aspects
of this are discussed in G.H. Hardy and E.M. Wright, The Theory of Numbers, a
classic in its field, published by Oxford University Press, first in 1938. In their
chapter on decimals they discuss the intriguing result which states that almost all
numbers have decimals in which each of the digits 0, ..., 9 appears a tenth of the
time. Understanding what this means would be the aim of this project. We'can give
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a hint of what is involved by sketching a result concerning numbers whose decimals
do not contain a 4. Readers are invited to try to fill in the details, perhaps in a
tutorial context. If we consider just the numbers in the interval from 0 and 1, those
without a 4 in the first decimal place occupy only 9/10 of the interval. Of these
numbers, those also without a 4 in the second decimal place occupy only 9/10 of the
9/10. If we continue this reasoning we find that those numbers without a 4 in the
first n places occupy a set of intervals of total length (9/ 10)". The limit of this is
zero, and in this sense we can say that the measure of the set of numbers without a 4
is zero, and so almost all decimal numbers have a 4 somewhere.
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Answers to Exercises

We have given here answers to most of the end of section exercises, but not to end of
chapter exercises, as tutors may wish to use some of those for assessment purposes.
Answers rather than full solutions are provided. It is hoped that appropriate proofs
or worked examples will enable full, well written solutions to be reconstructed. The
abbreviated style used is therefore not to be taken as a model of how to write
mathematics. In a few cases, for example where readers are asked to write short
computer programs, or write detailed proofs similar to those in the text, no answers
are given.

EXERCISES 1.2

1. ()1{2,3,4,5,6,7,8}, (i) {—4,-3,-2,-1,0,1,2,3,4},
(ii) {11,13,17,19,23,29,31,37,41,43,47, 53,59,61,67,71,73,79, 83,89,97},
@iv) {1,-2,3}, (v) {0, 1}.
2. (){t:te€Z and 0 < |¢t] < 3}, (ii) {m : m = 3k — 2 where k € N},
(iii) {—a? : a €N}, (iv) {y : y = 107,k € N, written as a decimal},
(v) {v:vis a vowel in the English alphabet}.
3. (i) False, (ii) True, (iii) False, (iv) True, (v) False, (vi) False.

EXERCISES 1.3

1. Ineach case the contrapositive is written first, followed by the converse.

(i) If mis a rational number then m? # 10. If m is not a rational number then
m? = 10. Converse false.

(i) If x2 — 5x + 6 # 0 then x # 2. If x> — 5x 4+ 6 = 0 then x = 2. Converse
false.

(iii) If sin § # 0 then 6 # . If sin § = 0 then # = 7. Converse false.

@iv) If [} f(x)dx < O then f(x) % 0 for 0 < x < 1.If [ f(x)dx > 0 then
f(x) > 0for 0 < x < 1. Converse false.

(v) If f(x) does not have a local maximum at x = a then f”(a) # 0 or f”'(a) > 0.
If f(x) has a local maximum at x = a then f’(a) = 0 and " (a) < 0.
Converse false.

2. Sketch proofs given; readers to fill in details.

(i) Contrapositive: m even implies m* even. Let m = 2k, then m>® = 8k, i.e.
even.

(ii) Use the formula for the sum of an arithmetic progression in the
contrapositive.

(iii) Draw graphs of the quadratic functions.
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(iv) Consider the possible remainders when x? is divided by 4 in the two cases
of x even and x odd respectively. Then consider possible remainders for
25 42
X+ y-.
(v) The contrapositive is a statement of the theorem that the angle in a
semicircle is a right-angle.

EXERCISES 1.4

1.

()VxeZ,x Q. True. (i) I €Q, -1 <t < 1. True.

(iii) Vx, 2x? — 5x+ 3 = 0 = x € Z. False. (iv) Vy € Q, y < )°. False.

(v) 3x € R, sin x = —2. False.

(i) Any real number whose cosine is equal to zero is less than 27 in magnitude.
False. 3x € R, cos x = 0 and |x| > 2. (ii) There is a rational number satisfying
the equation 23¢q = 78. True. (iii) If 2 is 1, 2 or 3 then A* — h + 7 is positive.
True. (iv) Whenever cos 7x is zero, x is a rational number. True. (v) Every
integer is either negative or has a real square root. True.

EXERCISES 1.5

1.

)ImeZ IneZ2m+1=3"True. (i)Vs€Q,s>0=>NecQ,0<t<s.
True. (iii) Va € R, 3x € R, cos(ax) = 0. False. (iv)Vx e R,In € Z, x < n < 2x.
False. (v) Vk € R, 3x € R, kx = 1. False. (vi) Va € R, 3x,3y,x # y and

x? = y* = a. False.

(i) Given any real number x, there is a solution y of the equation x + y = 0.
True. (ii) There is a real number y which, whatever number x is added to it,
gives zero. False. Negation: Vy € R, 3x € R, x + y # 0. (iii) For every real
number ¢ and for every positive integer n, nt is greater than ¢. False. Negation:
3t € R, In € N, nt < t. (iv) There are integers a and b, with a positive, satisfying
the equation a> — b? = 3. True. (v) Corresponding to any real number, we can
find another real number so that the sum of the two is less than all possible real
numbers. False. Negation: 3u e R,Vv e R, Iw e R, u+v > w.

EXERCISES 1.6

1.

Answers are given to indicate which of the three properties (R,S,T) are satisfied.
(i) None (remember sisters). (ii) R,S,T. (Ignoring any ambiguities for places
having a county boundary going through the middle.) An example of an
equivalence class would be the list of all towns and villages in Hampshire. (iii)
R,S,T. An equivalence class is a set of all translates of one triangle. (iv) S only.
(v) R,S,T. An equivalence class is a set of all functions of the form f(x) + ¢,
where fis a fixed function and ¢ ranges over all real numbers. (vi) R,S,T. The
equivalence classes are circles, centred at the origin.
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EXERCISES 2.2

In each case we have sketched the anchor step, and given just the algebra involved in
the inductive step. Readers should formulate a statement of the inductive
hypothesis.

1. (i) Anchor: LHS = RHS = 1 whenn = 1.
Inductive step: k2 +2(k + 1) — 1 = (k + 1)%.
(ii)) Anchor: LHS = RHS = 1 whenn =1
Inductive step: k(k+1)/2+ (k+ 1) = (k+ 1)(k +2)/2.
(iii)) Anchor: LHS = RHS = 1 whenn = 0.
Inductive step: (1 — x¥*1)/(1 — x) + x**1 = (1 — x¥*2)/(1 — x).
2. Anchor: LHS = RHS = 1+ xwhenn=1.
Inductive step: (14 x)¥! = (1 +x)(1 + x)* > (1 + x)(1 + kx) =
1+ (k+ Ux +kx? > 1+ (k+ 1)x.

3. Anchor: Whenn=1,5"+2.3"1 +1=124.
Inductive step: S¥*1 +2.3%+2 + 1 = 5.5k + 6.3k + 1 = (4.5F + 4.3k+1)+
(5 + 2.3¥*1 4 1). Both brackets are divisible by 4.

4. Anchor: H = 12 is the smallest value.
Inductive step: (k + 1)! = (k + 1)k! > (k + 1)5F > 551 since k > 12.

5. The hypotenuse of the nth triangle has length (1/4/2)"%. The area of the nth
triangle is (1/2)". The total area of the first n triangles is 1 — (1/2)".

6. S(2n)=—nm; S@n+1)=n+1.8@n) = (=1 L(n+i1 - (-1)").

EXERCISES 2.5

1. () hcf. =3=287(5—24m) + 72(29m — 6).
(ii) h.c.f. = 29 = 1073(5m — 2) + 145(15 — 37m).
(iii) h.c.f. =1 =7537(8039m — 3443) + 8039(3228 — 7537m).

2. Letc = kd. Then d = axy + by, for some x;, y; so ¢ = a(kx;) + b(ky,). If
c=dq+r(0<r<d)thenax+ by = (ax; + by1)g+r.So
r=a(x — x19) + b(y — y19). Now r < d and so we must have r = 0, so d|c.

3. (i) The highest common factor of 301 and 84 is 7, which is not a divisor of 5.

No solutions. -

(i) h.c.f.(345,735) = 15|60 : 345(49m — 68) + 735(32 — 23m) = 60.
(iii) h.c.f.(87,53) = 1|13 : 87(53m — 182) + 53(299 — 87m) = 13.

4. d= ax + by for some x, y so nd = nax + nby. Now nax + nby = n(ax + by) < nd
only if ax 4+ by < d since n > 0. But d is the smallest positive integer
combination of a, b so nd is the smallest positive integer combination of na, nb.

EXERCISES 2.6

1. 100/10/11110010110.
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3.

6.

Take the digits in pairs. The following example illustrates the procedure.
Consider 2311322 in base four. We group this as 2|31|13|22. Consider each pair.
22 ~ 2 x4+2 =107y = Anex.

13~ 1 x4 +3x42=(1x4+3)4=7x16.

31 ~ (3 x4+ 1).4* = 137gy x 167 = Dygy.16%.

Finally, 2 ~ 2.4% = 2.163. So 2311322 in base four converts into the hexadecimal
representation 2D7A. Once the pairing mechanism is understood we do not
need to write down the intermediate steps as we have done here. In fact there are

only 16 possible pairs, so we could simply compile a conversion table for these
directly into hexadecimal and then refer to that.

Following the procedure in Example 11, we find that we need the six times table
in base eight in order to perform the divisions. Once we have complied this we
do not need to refer to base ten.

144 = m* + 4m + 4 in base m. This is (m + 2)? which is 122 in base m.

EXERCISES 3.1

1.

2.

px=q= (px)y = qy = p(xy) = gy = p(xy) = p = p~' (p(xy)) =
o=@ P =plp=1xy)=1=xp=1

(@) gx =p,sy =r = qsx = ps,qsy = qr = qs(x — y) = ps — qr.
(b) gx =p,sy =r = gsxy = pr.

() gx=p,sy=r=s5yl=r1=gs!

xy~' =prt = gr(xy™") = ps.
SupposeVa,a+zj=a+z=a Ix,a+x=z1 =>a+x+z1 =
at+x+zy=>2z1+2) =2 = 21 = 23.

SupposeVa £ z,ax ey =aXe;=a.3y,axy=e =>axyxe =
axyXe =e Xe =e€ Xe =>e =e.

1 1

(axb)x(b'xa)y=ax(bxb)xal=axexa'=axa

M2, M3 and M4.

= e using

EXERCISES 3.2

1.

a1by = axby, c1dy = crdy = arbydidy = axbididy, c1drb1by = ¢,d by by. Subtract
and factorize. (a1d1 — b1C1)b2d2 = (a2d2 - Czdz)b]dl.

a1b2 = azbl,C]dz = Czdl = a1b2c1d2 = azb102d1 = (alc1)(b2d2) = (azcz)(bldl).
albz = azbl,cldz = Czdl = albzczdl = azblcldz = (aldl)(bzcz) = (azdz)(blcl).

EXERCISES 3.3

1.

89/55=[1;1,1,1,1,1,1,1,2] 1101011/1001010 = [1; 10, 100, 1000]
1393/972 = [1:2,3,4,5,6] 6961/972 = [7;6,5,4,3,2]
169/70 = [2;2,2,2,2,2].
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In the first case the first seven convergents are 1/1;2/1;5/3;7/4,12/7;55/32;
67/39; giving e ~ 2.7179 ... . The first two decimal places are correct. In the
second case the first seven convergents are 0/1;1/1;6/7;61/71;860/1001;
15541/18089;342762/398959; giving e ~ 2.718286 . .. . The first five decimal
places are correct.

EXERCISES 4.1

1.

S

0O<a<b=>0<aa<ab;0<a<b=0<ab<bb. Transitivity gives

a.a < b.b.

—1<3and (-1)? <32 —4 < —-2but (-4)* > (-2)~
a<b=a+c<b+c;c<d=c+b<d+b. Transitivity givesa+ ¢ < b+ d.
3<7,2<4and3-2<7-43<42<7but3—-2>4-7,

a>0,(1/a) < 0= a.(1/a) <0,ie. 1<0,contradiction. So if a > 0 the
reciprocal of a is also positive. Now a < b = a.(1/a) < b.(1/a) =

1 <b.(1/a) = (1/b) < (1/b).b.(1/a) = (1/b) < 1.(1/a) = (1/a).

EXERCISES 4.2

1.

2.
3.

(@) x <2—+/5orx>2++/5 (i) x = 2. (iii)) 2 — /6 < x < 2+ /6. (iv) No
solutions.

x<0Qorx>1.

x < 3.7944 rounded correct to four decimal places.

EXERCISES 4.3

1.

For Exercise 1, we complete the square, so x? — 4x + 2 = (x — 2)? — 2. The four
inequalities then become (x — 2)2 > 5 (x — 2)2 <0;(x— 2)2 < 6;(x— 2)2 < -1
giving the solutions quoted for Exercises 4.2.

For the inequality of Exercise 2, we must consider two cases, 2x — 1 > 0 and

2x — 1 < 0. Multiplying by 2x — 1 when positive preserves the inequality, and
when rearranged gives x > 0 and x > 1, so giving x > 1. Multiplying by 2x — 1
when negative reverses the inequality, and when rearranged gives x < 0 and

x < 1. Since in this case x < % this gives x < 0. So the total solution is x < 0 or
x> 1.

Since x2 + 2 is always positive we can cross multiply. The solutionis —1 < x < 0
orx > 5.

EXERCISES 4.4

1.

() x<-2orl<x<3.

(ii) =3 < x <2 or2 < x < 3. Note that when x = 2 the left-hand side is equal
to zero.

(iii) x < =2 orx > 3.
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(iv) —7——7l'<x<——5—7r —3—7T<x<—3—E<x<E
T2 27 2 T2 2’
ST
2 272 270

VMo<x<lir<x<2mn3r<x<4mSr<x < 6m,....

EXERCISES 4.5

1.
2.

Taking logarithms gives x < x?In 2, giving x < 0 or x > 1/In2.

The cube function is increasing, so the solution is the same as the inequality
without the cube. This gives x > 13.

One might say that since the logarithmic function is increasing, and In 1 = 0, the
inequality becomes that of Example 7, so that x < —3 or x > —2. This ignores
the fact that one cannot have the logarithm of a negative number. So we must
have (2 — x)/(12 + 4x) > 0, giving —3 < x < 2. So the solution of the inequality
is—2<x<2.

EXERCISES 5.1

2.
3.

12 =12 = (r/2)* = 3. Now use the result of Exercise 1.

Suppose (p/q)3 = 4, where p and ¢ have no common factors. Then p* = 44°.
2|p> = 2|p. (Prove this.) Let p = 2a, so 8a® = 4¢°, giving ¢* = 24°. 2|¢* = 2|q.
Contradiction.

EXERCISES 5.3

1.

(1) gl.b. =2; min = 2; no L.u.b.; no max.
(ii) gl.b. = 0; min = 0; L.u.b. = 1; no max.
(iii) g.l.b. = min = —1;Lu.b. = max = 1.
(iv) gl.b. = 0;no min; Lu.b. = 37! +5-! = max.
(v) Unbounded above and below.
(vi) g.lb. = 1; no min; L.u.b. = max = 2.
(vii) g.l.b. = min = 1; Lu.b. = max = 3.
(viii) g.l.b. = 2; no min; L.u.b. = 5; no max.
x>3=2>x2>8x< -3=x%>>8.S0Sisbounded and x> < 8 = -3 < x < 3.

To show that S has no largest member follow Example 4. To show that it has no
smallest member adapt Example 4 to deal with negative numbers.

Let/=1lub.(S).()xeS=x<Ilxe€T=>-x€S=>x>-1SoTis
bounded below. (i) Let 3 > 0. Ix € S, x > [ — 8. So —x < —I + (3, so we have
found a member of T less than —/ + 3. Thus —/ = g.1.b.(7).
LetA={x:2<x<4}, B={x:-3<x<1}.

lub.(4) —lub.(B)=4—-1=3.But4— (-3) =7 € D,so 3 # l.u.b.(D).
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Letd={x:-3<x<-1}, B={x: —4<x<-2}.Then
Lu.b.(4) x Lu.b.(B) = —1 x —2 = 2. But =3 x —4 = 12 belongs to the product
set.

If a is any member of S then Vy € T,y > a. So T'is bounded below. Let

I =Lu.b.(S). Then/ € T. If m < I then m is not an upper bound for S and so
m & T. Thus, / is the smallest member of T, which is therefore bounded below
and contains its g.1.b.

EXERCISES 5.4

1.
2.
3

2 lies between the two numbers given.

2 1 . .

3 + E\—/E lies between the two numbers given.

(i) True. (ii) Sometimes false, e.g. /2 + (1 — 4/2) = 1. (iii) True. (iv) False only
if the rational is zero. (v) Sometimes false, €.g. 1/2 x /18 = 6.

EXERCISES 6.2

1.
2.

() 2 + 34i; (ii) (7/65) + (4/65)i; (iii) —(8/25) — (19/25)i.

|z122*= (x1%2 — 11 y2)? + (x1y2 + x2y1)°. Multiplying out, collecting terms and
factorizing gives (x3 + 12)(x3 + »3) = |21/*|22]*. Now take square roots. This
gives an anchor, for n = 2. We use this case for the inductive step.

|21 .. Znzns1] = |21 - . . Zu||Zns1] = |21l|22] - - - |Zn]|Zn41 |-

11/2] = |(x = y)/ (2 + 31| = (@ + )/ (2 + 1) = 1/ (2 +?) = 1/[2].
()Y =(x—yi)f=x—(—pi=x+yi=2z

2| = X+ (=)’ = P + Y2 = 2].

(1 +1)* = 2iso (1 +1i)/4/2 is a square root of i. The other one is —(1 +1)//2.
The square roots of —i are +(1 —i)/+/2.
2-2z—i=(z-1+1-i=0,50z=1+v=1+1.

[zl| = |(21 — 22) + 25| < |21 —22| + |22|. So |21 — 22| > |21| — |22|, and similarly
|21 — 22| 2 |z2| = |z1].

EXERCISES 6.4

1.

2.

|1+i] = y/2; arg(1 +1i) = n/4; |—i| = 1; arg(—i) = —7/2; |1 —i\/3| = 2;
arg(1 —iy/3) = —m/3; |-2| =2; arg(-2) =m; |[V/3 —i[ =2
arg(y/3 —1) = —n/6.
(i) Perpendicular bisector of the segment joining the points i and 1.
(ii) Circle, centre —1, radius 2.
(iii) The line x = —3 (parallel to the y-axis).
(iv) The half-plane below the line y = 1, and including the line itself.
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3. z; =—1+iy/3 =2(cos(2n/3) +isin(27/3));

2y = —1 +1i=+/2(cos(3n/4) + isin(3n/4)). 2n/3 + 3n/4 = 17n/12 ~ —Tm/12.
So arg(z1z2) = —Tn/12.

1/z= (1/r)(cos@ —isin@).

zz* = r(cos 8 + isin B)r(cos § — isin §) = r*(cos? 6 + sin® §) = r? = |z|*.

z7" = 1/z" = 1/(r"(cos(nf) + isin(nd))) = (1/r")(cos(—nb) + isin(—nf)).

EXERCISES 6.5

1. (e)* = (cosf +isinf)* = cos§ — isin@ = cos(—0) +isin(—6) = e,

AN

2. Similar to Example 7 with appropriate changes of sign.

3. |ei9|2_—_ cos2f +sin’ 4 = 1.

4. % =cos@+isinf; e = cos§ — isinf. Adding the two equations gives the
first result, and subtracting gives the second.

EXERCISES 6.6

1. The fourth roots of unity are 1, €™/2; e'™;
2. 8i = 8¢i™/2. The cube roots are 2¢!("/6+277/3) n — 01,2, i.e. 2ei7/6; 2¢157/6; 2¢97/6,
3. Letw; = 623 wy = 6/3 = ¢=27/3 — s (2 = 47/3 =y,
w} = e8/3 = €i2"/3 = ;; w) and w; are reflections of one another in the real
axis. Together with the point 1 they form an equilateral triangle.

4. If |z = 1and x = —Lthen)? =3/4 50y = £/3/2. -4 £ 1\/3 = e*2"/3 These
are the two non-real cube roots of unity.

5. 2—1=@-DE+)(Z-z+1)(+z+1).
The primitive 8th roots are e2™/8 (k = 1,3,5,7).

EXERCISES 7.2

1. xpp1 = (X0 +5/%4)/2; X1 =2.
2. () x=(x*—-4)/6; x = Vbx+4 etc.
(i) x = V/sinx; x = (sinx)/x etc.
(iii) x =In(3x? —2); x = /(e* +2)/3 etc.
3. Suppose the angle subtended by the chord is 2x. Then considerations of area

lead to the equation x = (7/3) + (sin 2x)/2. Solving numerically gives
x = 1.3026628 ... and 04 = 0.2649321 ... x radius.

EXERCISES 7.3

1. |b, — |I|]] = |las] — |1]| £ |an — 1| by Exercise 7 of §6.2. So
lan — I| < € = |by — |l]| < €. If a, = (—1)" then b, = 1 for all n so0 lim(b,) = 1,
but (a,) has no limit.

e?/2 e 1; 1; —1; —i.
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(i) 1; (ii) oo; (iii) oscillates unboundedly; (iv) 0; (v) 0 if |a| < |b], oscillates
unboundedly if a/b < —1, o if a/b > 1, 1 if a = b, oscillates boundedly if

a = —b; (vi) 0; (vii) 0; (viii) 1; (ix) 0; (x) oo; (xi) oo; (xii) 1; (xiii) 1/3; (xiv) 1; (xv) a;
(xvi) oo; (xvii) oscillates boundedly; (xviii) oo; (xix) 1 if sin @ = 1, oscillates
boundedly if sin § = —1, otherwise zero; (xx) no limit unless 6 is a multiple of
2.

(i) an = n; by = n?, (ii) @n = n; by = n, (iii) a, = n%; by =n,

(V) @y = n+2; by =n, (V) @y = n? + (=1)"m; by =12, (Vi) @y = 15 by =1,

(vii) a, = n; b, = n?, (viil) a, = 3n; by, =n.

EXERCISES 7.5

The proofs for these exercises are similar to those of Examples 8 and 9.

1.

ens1/en=(1+a,+ ai) /3 — 1 so convergence will be slow.

If a; < —2 the sequence decreases and diverges. If a; > 1 the sequence increases
and diverges. If a; = —2 then g, = —2 for all , so lim (a,) = —2.

(i) If a; < 0 then eventually some term of the sequence will be positive. From
that point on the terms alternate either side of 1 4+ /2. The behaviour is
similar to the sequence in Example 9. The limit is 1 + /2.

lim (es+1/en) = (V2 - 1)/(v/2+1) = 0.17.

(ii) For any a; # 0 the sequence converges with limit 1. Eventually some term
of the sequence will exceed 1 and from then onwards the sequence is
decreasing. lim (ex+1/€s) = 1.

Ani1 = V2 + an; a1 = /2. The limit of the sequence is 2. The inequality tells us
that accuracy is at least doubled at each stage.

EXERCISES 7.6

1.

2.

||@n| — O] = ||an|| = |an| = |ax — 0]. So |a, — 0] < € if and only if ||a,| — 0] < e.
|an| = rn so lim (@,) = 0if and only if lim (r,) = 0.

@) |an] = (0.7 + 0.7i"= (0.98)"% — 0. (ii) |aa| = [0.8 + 0.8i|"= (1.28)"* — oo.
(iii) |a,| = 0.8 4 0.6i"= 1 + 0. arg(0.8 + 0.6i) = tan~'(4/3), so the sequence
has no limit. (iv) |a,| = 1 for all n. arg(a,) = a/n — 0, so lim(a,) = 1.

EXERCISES 8.1

1.

s, =1+2r+3%+ ...+,

Sy = r+20 4.+ (n =1
ss(l=r)=14r++...+r = =01-r/(1=r)—n", (r#1),

sn=(1—r)/(1=r?=n/(1-r).

For |r| < 1,lim(s,) = 1/(1 - r)2. For |r| > 1 we have divergence.
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- (j+4)(j‘i 5G+6) _j-i4+j-|5— 5 _j-|3- < - The sum cancels down to
_§+%+n—f—_—§—;%.Thelimitis _§+%= T16'

kz:;(—l)kﬂ cos(a + k) = —cos (a + (n+ 1)2(0 + 71')) sm(:o(g(;/g/z)

kil () sin(ek9) = —sin (a * — 1)2(9 - W)) Sin(:ése(;_/;r))h) :

For the second pair of series use (—1)*"! = elk+)7 to obtain a geometric series.
In all four the summation and identity from Example 2 can be used.

EXERCISES 8.2

1. (i) D (comparison), (ii) C (comparison), (iii) D (comparison), (iv) D (evaluate
partial sum), (v) C (comparison), (vi) C (comparison), (vii) C (geometric series),
(viii) D (nth term does not tend to zero), (ix) D (nth term does not tend to zero),
(x) C (Leibniz’s test).

2. (@) C, (i) D, (iii) C, (iv) C, (v) D, (vi) D.

00 2 00
(r+1) r(ir—1)+3r+1
3. Z_; . >

|
1 r

r:

r(r—1) &X3r X1
=Y Tttt
r=1 r=1 r=1
=1 =, 1 .1
=0+1+ 7n_!+3+3zﬁ+zﬁ
m=1 m=1 m=1

=0+1+(—1)+3+3—-1)+(e—1)=5e—1.

EXERCISES 8.3

B L O (LY ¢ |
' /3 rinr(In(lnr))? ~ I-p |, (P #1)

—0ask—ooifp>1;

—owask—oooifp<l.

k dr .
_/; m - [ln(ln(ln r))]3 — 00 as k — oo.

So the series converges if p > 1 and diverges if p < 1.
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Answers to Exercises

o0 (o ¢]
@) Z n? < / xR dx = % m~23 < 10~ for

n=m+1 m

3 3/2
m> (Ex 104) ~1,837,117.

R 1 ©°  dx 1 4.
(ii) Z 7 < 7= 3 <1077 if
n(lnn) m x(lnx)"  3(lnm)

n=m+1

m > exp(v/104/3) ~ 3,072, 542.

EXERCISES 8.5

In each case applying the ratio test gives a ratio limit of zero for all values of z.

1.
2.

(i) R =1;D, D (nth term does not tend to zero when z = *1),
(ii) convergent for all z (it is the series for %),
(iii) R =1; C, C (standard series when z = +}),
(iv) R =2;D, D (nth term does not tend to zero when z = £2),
(v) R =1; D, D (nth term does not tend to zero when z = 1),
(vi) R=1;Cwhenz=1,Dwhenz=—1,
(vii) R = 1; D, D (nth term does not tend to zero when z = £1),
(viii) R =1, C, C (standard series when z = £1),
(ix) R =1; D, D (nth term does not tend to zero when z = +1).

3. The ratio test gives r = 1. Use the results of Exercise 1 of §8.1 for the sum.
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Abel, 84
Absolute convergence, 1568, 159-60
Achilles and tortoise, 138-9
Addition
complex numbers, 85, 86, 88, 89, 94-5
inequalities, 56
infinite, 139
Peano’s axioms, 20-1
rational numbers, 40, 44-5
real numbers, 78
Additive identity
complex numbers, 86
integers, 27
rational numbers 40, 42
Additive inverse
complex numbers, 86
integers, 27
rational numbers, 40
Algebraic numbets, 77
Algebraic solution of inequalities, 604
Alternating test, Leibniz’s, 150
Anchor step, proof by induction, 23, 25
And, 4
Approximations
continued fractions as, 51-2
power series as, 158
sequences as, 106
Archimedean Property, 79, 80
Argand, 84
Argand Diagram, see Complex plane
Arguments, complex numbers, 93, 95-6
Aristotle, 1
Associativity
complex numbers, 86, 87
integers, 27, 28
rational numbers, 40
Axioms, 1, 19, 27
complex numbers, 86-9
inequalities, 55
Peano’s, 19-22, 26-7
real number system completeness, 767,
126
solving equations, 3941

Backtracking, 129
Basic, 32, 35
Bernoulli, Daniel, 71

Bernoulli, John, 71, 83
Bilinear transformations, 179
Binary system, 34

Blokland, Piet van, xii
Bolzano, Bernard, 71
Bombelli, 46, 83

Boole, George, 19, 176
Boolean algebra, 176-7
Bounded sequences, 125, 130, 133
Bounded sets, 72-8
Bromwich, T.J., 180, 181
Brouckner, 46

Calculus, 70, 71
Cantor, Georg, 19, 71, 76, 77, 177
Cardano, 83
Cauchy, Augustin-Louis, 70, 106, 178
Cauchy’s root test, 149-50
Circle of convergence, 160-1
Closure rule, 40
Cobweb diagrams, 131-2
Commutativity
complex numbers, 87, 89
integers, 28
rational numbers, 40
Comparison test, series, 145, 1467
Completeness, real number system, 76-7, 126
Complex conjugate, 88-90, 97, 102
Complex functions, 179-80
Complex numbers, 2, 834, 179-80
algebra of, 86-92
Euler’s formula, 98-100
geometry of, 92-5
Hamilton’s definition, 84-6
polar representation, 95-8
roots of unity, 1004
solving equations, 41
Complex plane, 92-5
sequences, 134
Complex sequences, 133-5
Complex series, 141-2, 156-8
Computer programs
digital representation, 35-6
division, 166
Euclidean Algorithm, 32
Peano’s axioms, 19, 20
sequences, 109



Conclusion, 5
Conditional convergence, 156
Conditional statements, 5
Conjugate, complex, 88-90, 97, 102
Continued fractions, 46-52, 178
Continuous functions, 1
Contradiction, proof by, see Reductio ad
absurdum
Contrapositive, 7, 144, 145
Convergence
sequences, 114, 126
complex, 134
series, 70, 13943
absolute, 156-8
decimals, 167-8
integral test, 153-6
power, 159-61
tests for, 143-51
Convergents, 48, 49, 50, 52
Converse, 7, 144
Coprime numbers, 31
Cosine function
decreasing nature, 66
series, 141
expansion, 98
power, 161
Counterexamples, 9
Cube function
complex numbers, 83
increasing nature, 66

D’Alembert, Jean le Rond, 70
D’Alembert’s ratio test, 148-9, 159,
De Moivre’s theorem, 97, 98-9
Decimal expansion for fractions, 46
Decimals, 346, 164-5, 181-2

infinite expansions, 165-9

periodic, 1704

point nine recurring, 174-5
Decreasing functions, 667
Decreasing sequences, 124-5, 131, 133
Dedekind, Richard, 19, 71, 76
Deductions, 4-5
Denominators, 42
Descartes, René, 83, 84
Differential calculus, 70, 71
Digital representation of integers, 34—6
Dirichlet, Peter Lejeune, 71
Disjoint subsets, 13, 14
Distributivity

complex numbers, 867

integers, 27, 28

rational numbers, 39, 40

160-1

Index

Divergence
sequences, 114
series, 139, 146-7, 149-50, 155, 180
power, 160, 161
Division
complex numbers, 89
integers, 29-30

Equivalence classes, 13, 15-16
fractions, 445
Equivalence relations, 12-16
fractions, 434
Euclid
continued fractions, 46
geometry, 38, 39
integers, 30
logic, 1
Euclidean Algorithm, 30-4, 38
continued fractions, 46
Eudoxus, 39
Euler, Leonhard
calculus, 70
complex numbers, 83
continued fractions, 46, 52
sequences, 106
series, 138, 180
vibration of a string, 70, 71
Euler’s constant, 154
Euler’s formula, 98-100, 101
Exclusive or, 4
Existential quantifier, 9
Exponential function
decreasing nature, 66
Euler’s formula, 98-100
increasing nature, 66
power series, 161
series, 141-3
Exponential limit, 127-8

Factiorial function, 21
Fibonacci sequence, 108
Fields, 40
Fourier, Joseph, 71
Fourier series, 71, 181
Fractions, 42-3
continued, 46-52, 178
and periodic decimals, 172-3
see also Rational numbers
Functions, historical background, 70, 71

Galois, 84
Gauss, Carl Friedrich
complex numbers, 84, 90, 100
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Gauss, Carl Friedrich cont.
number theory, 177
real numbers, 70
Gaussian plane see Complex plane
Geometric series, 140-1, 156
Godel’s incompleteness theorem, 176
Graphical Calculus
availability, xii
complex functions, 179-80
inequalities, 59
iteration, 110, 133
Graphical solution of inequalities, 58--60,
63-4
Grassmann, Hermann, 19
Greatest common divisor (g.c.d.), 30
Greatest lower bound (g.1.b.), 74

Hamilton, William Rowan, 84-6, 92, 94, 179

Hardy, G.H., 180

Heat conduction, 71

Heine, Eduard, 71

Hexadecimal system, 34, 35

Highest common factor (h.c.f.), 29-30
Euclidean Algorithm, 314
rational numbers, 44, 51

Huygens, 46

Hyperbolic functions, 99

Identities, 8
If, 6
If and only if, 6
Imaginary part of complex number, 88-9
Implication, 5-7
Increasing functions, 66, 67
Increasing sequences, 124—6, 130-1
Increasing series, 145
Indirect proof, 7
Induction
axiom of, 20, 21-2, 23, 24
definition, by, 21
proof by mathematical, 22-6
rational numbers, 49
Inductive hypothesis, 234, 25
Inductive step, 23, 25
Inequalities, 54
algebraic solution, 604
basic rules, 54-8
graphical solution, 58-60
increasing and decreasing functions, 667
tabular approach, 64-6
Infimum, see Greatest lower bound
Infinite addition, 139
Infinite decimal expansions, 165-9

Infinite sequences, 106-8
Infinite series, 138-9
complex, 156-8
convergence, 139-43
absolute, 156-8
tests for, 143-51
decimals, 165
and integrals, 151-6
power, 158-62
Infinite sets, 177
Infinitesimals, 178
Initialization, see Anchor step, proof by
induction
Integers, 2, 19
digital representation, 346
division and highest common factor, 29-30
Euclidean Algorithm, 304
negative, 26-9
Peano’s axioms, 19-22
proof by mathematical induction, 22-6
Integral test, 152-5
Integrals, and series, 151-6
Irrational numbers
continued fractions, 178
limit theory, 71
and rational numbers, 79-81
Isomorphism, 45
Iteration
sequences, 109-10, 112-13, 128-33
series, 139

Keisler, H.J., 179
Knopp, K., 180, 181
Kronecker, Leopold, 19
Kuratowski, 43

Lagrange, Joseph Louis de, 46
calculus, 70
functions, 71
vibration of a string, 70, 71
Lambert, 46, 52
Least upper bound (l.u.b.), 73-4, 75, 78
Leibniz, Gottfried Wilhelm, 83
Leibniz’s alternating test, 150
Limits, 70, 71
sequences, 112-24
exponential, 127-8
iterative, 128-31
series, 139
Lists, sets described by, 2, 3
Logarithmic function
complex numbers, 83
increasing nature, 66



Logic, 1,4-8
symbolic, 176

Lower bounds, 72-3, 75
greatest, 74

Magnitude, see Modulus
Measurement

and decimals, 164

and real numbers, 69
Moébius transformations, 179
Modular arithmetic, 40, 178
Modulus, 57

complex numbers, 88, 90-1

complex sequences, 133
Monotonic sequences, 125
Multiplication

complex numbers, 85, 86-7, 88-9,

95

inequalities, 56

rational numbers, 40

real numbers, 78
Multiplicative identity

complex numbers, 87

rational numbers, 40, 42
Multiplicative inverse

complex numbers, 87

rational numbers, 40, 42

Natural numbers, 2

Negation, 6-7

Negative integers, 26-9
Newton, Isaac, 70, 83
Non-decreasing sequences, 124
Non-increasing sequences, 124
nth convergent, 48, 49, 50, 52
Number theory, 177-8
Numerators, 42

Octal system, 34, 35
Only if, 6
Open statements, 8
Or, 4
Order relations, complex numbers, 88—9
Ordered pairs, 42-3
complex numbers, 85, 87

Partial quotients, 47-8
Partial sums, 139, 141, 144-5, 150, 153-6
Partitions, 13-15
Pascal
digital representation, 35-6
division, 166
Euclidean Algorithm, 32
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Peano’s axioms, 19, 20
sequences, 109
Peano, Guiseppe, 19
Peano’s axioms, 19-22, 267
Periodic decimals, 1705
Pi, 52
Plato, 1, 24
Polar representation of complex numbers,
95-9
Power series, 70, 158-62
Premise, 5
Primitive root of unity, 101
Principal argument, 93
Proof by mathematical induction, 22-6
rational numbers, 49
Proportionality, 38-9
Pythagoras, 38
Pythagoras’ Theorem, 38, 93

Quantified statements, 9
order of, 1011
Quaternions, 179

Radius of convergence, 160, 161
Ratio test, d’Alembert’s, 148-9, 159, 1601
Rational numbers, 2, 38-9
constructing, 42-6
continued fractions, 4652
and irrational numbers, 79-81
and real numbers, 68-9, 76
solving equations, 3942
Real numbers, 2, 68-9, 178-9
arithmetic and algebra, 78-81
bounded sets, 72-8
and complex numbers, 85
historical background, 69-71
solving equations, 41
Real part of complex number, 88-9
Reciprocal function
complex numbers, 87
decreasing nature, 667
Recorde, Robert, 2
Recurrence relations, 49-50, 51
Recurring decimals, 170-5

Recursive definition, see Induction, definition

by

Reductio ad absurdum (proof by contraction),

7,22
division, 29, 30
rational numbers, 68-9
real numbers, 79
Reflexivity, 14, 15-16
rational numbers, 44
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Riemann, Bernhard, 71, 148

Riemann Zeta-function, 147-8

Riemann’s Rearrangement Theorem,
158

Robinson, Abraham, 178

Root test, Cauchy’s, 149-50

Rules, sets described by, 2, 3

Sandwich theorem, 120
Scipione del Ferro, 83
Sequences, 106, 181
complex, 133-5
decimals, 168-9
increasing and decreasing, 124-8
infinite, 106-8
iteration, 128-33
limits, 112-24
and series, differences, 139
solving equations, 108-12
Series, 138-9, 180-1
complex, 156-8
convergence, 13943
absolute, 156-8
tests for, 143-51
decimals, 165, 168
Fourier, 71, 181
historical background, 70, 71
and integrals, 151-6
power, 158-62
Sets, 1,24
bounded, 72-8
infinite, 177
Sine function
in calculators, 158
series, 141
expansion, 98
power, 161
Staircase diagram, 128, 129
Strictly decreasing sequences, 124
Strictly increasing sequences, 1245
Strong induction, 23
Subtraction, complex numbers, 88, 94-5
Successor function, 19, 20
Summation, 21
Supergraph, xii
Supremum, see Least upper bound

Symbolic logic, 176

Symbolism, 1-2

Symmetry, 14, 15-16
rational numbers, 44

Tabular approach to inequalities, 64-6
Tall, David, xii
Tangent function
complex numbers, 93
increasing nature, 66
Tartaglia, 83
Taylor, Brook, 70, 71
Taylor’s Theorem, 161
Terms of sequences, 107
Titchmarsh, E.C., 181
Topology, 71
Transcendental numbers, 77
Transitivity, 14, 15-16
fractions, 44
inequalities, 55
Translation, 55
Triangle inequality, 57
complex numbers, 91, 95
sequences, 115
Trichotomy, 55
Trigonometric function, 98-100
Trigonometric series, 71

Unity, roots of, 1004

Universal quantifier, 9

Upper bounds, 72, 73, 75
least, 734, 75, 78

Variables in statements, 8—12
Vibration of a string, 701
Vieta, 83

Wallis, 46, 84

Weakly-increasing sequences, 124

Weierstrass, Karl, 71, 106, 178

Well-defined operations, 45

Well-ordering principle, 21-2, 24
division, 29, 30

Wessel, 84

Zero, 138
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