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Introduction

Introduction

This is the first book containing examples from the Theory of Complex Functions. All the following
books will have this book as their background.

Even if I have tried to be careful about this text, it is impossible to avoid errors, in particular in the
first edition. It is my hope that the reader will show some understanding of my situation.

Leif Mejlbro
27th May 2008

Download free eBooks at bookboon.com



Complex Funktions c-1

 

6  

1 The complex numbers

Example 1.1 Split a complex fraction into its real and imaginary part.

Let a + ib �= 0 and c + id be two complex numbers, where a, b, c, d ∈ R. Since in general,

z · z = (x + iy)(x − iy) = x2 + y2 = |z|2,

we get by a multiplication with the complex conjugated of the denominator in both the numerator
and the denominator that

c + id

a + ib
=

c + id

a + ib
· a − ib

a − ib
=

ac + bd

a2 + b2
+ i · ad − bc

a2 + b2
,

and we immediately split into the real and the imaginary part.

In particular,

1
z

=
1
z
· z

z
=

z

|z|2 =
x

x2 + y2
− i · y

x2 + y2
for z �= 0.

The complex numbers
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Example 1.2 Write the following complex numbers in the form x + iy:

(a) (1 + i)2, (b)
3 + 4i
1 − 2i

, (c)
1 + i

1 − i
.

a. By a small computation,

(1 + i)2 = 12 + i2 + 2 · 1 · i = 1 − 1 + 2i = 2i.

b. The standard method, i.e. a multiplication by the complex conjugated of the denominator in
both the numerator and the denominator gives

3 + 4i
1 − 2i

=
3 + 4i
1 − 2i

· 1 + 2i
1 + 2i

=
1
5
{3 − 8 + i(4 + 6)} =

1
5
{−5 + 10i} = −1 + 2i.

Alternatively,

3 + 4i = −{1 − 4 − 2 · 2i} = −(1 − 2i)2 = (1 − 2i)(−1 + 2i),

which gives by insertion

3 + 4i
1 − 2i

=
(1 − 2i)(1 + 2i)

1 − 2i
= −1 + 2i.

c. The standard method:

1 + i

1 − i
=

1 + i

1 − i
· 1 + i

1 + i
=

1
2

(1 + i)2 =
2i
2

= i.

Alternatively, apply polar coordinates, because

1 + i =
√

2 exp
(
i
π

4

)
and 1 − i =

√
2 exp

(
−i

π

4

)
,

hence

1 + i

1 − i
=

√
2 exp

(
i
π

4

)
√

2 exp
(
−i

π

4

) = exp
(
i
π

2

)
= cos

π

2
+ i sin

π

2
= i.

Example 1.3 Write the following complex numbers in the form x + iy:

(a)
1

−1 + 3i
, (b) (7 + πi)(π + i),

(c) (i + 1)(i − 2)(i + 3), (d)
2 + i

2 − i
.

a. The standard method,

1
−1 + 3i

=
1

−1 + 3i
· −1 − 3i
−1 − 3i

=
−1 − 3i

10
= − 1

10
− 3

10
i.

The complex numbers
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b. Simple multiplication,

(7 + πi)(π + i) = 7π − π + i
(
π2 + 7

)
?6π + i

(
π2 + 7

)
.

c. Simple multiplications,

(i + 1)(i − 2)(i + 3) = {−1 − 2 + i(−2 + 1)}(3 + i)
−(3 + i)(3 + i) = −{9 − 1 + 6i} = −8 − 6i.

d. The standard method,

2 + i

2 − i
=

2 + i

2 − i
· 2 + i

2 + i
=

1
5

(4 − 1 + 4i) =
3
5

+
4
5

i.

Example 1.4 Write the following complex numbers in the form x + iy:

(a) i26 − 3i7 + i6
(
1 − i3

)− (−i)18, (b)
(2 + 3i)(−1 + 2i)

2 + i
− 1 − i

1 − 2i
.

a. The standard method, in which we use that i2 = −1 and i4 = 1, etc.,

i26 − 3i7 + i6
(
1 − i3

)− (−i)18 = i2 − 3i3 + i2(1 + i) − i2

= −1 + 3i − (1 + i) + 1 = −1 + 2i.

b. The standard method gives

(2 + 3i)(−1 + 2i)
2 + i

− 1 − i

1 − 2i
=

(2 + 3i)(2 + i)i
2 + i

− 1 − i

1 − 2i
· 1 + 2i
1 + 2i

= (2 + 3i)i − 1
5

(1 + 2 + i{−1 + 2}) = −3 + 2i − 3
4
− 1

5
i = −18

5
+

9
5

i.

Example 1.5 Write the following complex numbers in the form x + iy:

(a) (2 + 3i) + (5 − 2i), (b) (1 − i)(2 + i),

(c)
1 − i

3 + i
. (d)

i

1 + i
+

1 + i

i
.

a. Trivial,

(2 + 3i) + (5 − 2i) = 7 + i.

b. Standard multiplication,

(1 − i)(2 + i) = 2 + 1 + i(−2 + 1) = 3 − i.

The complex numbers
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c. Multiply the numerator and the denominator by the conjugated of the denomina-

tor,

1 − i

3 + i
=

1 − i

3 + i
· 3 − i

3 − i
=

3 − 1 − 4i
10

=
1
5
− 2

5
i.

d. Multiply the numerator and the denominator by the conjugated of the denomina-

tor,

i

1 + i
+

1 + i

i
=

i

1 + i
· 1 − i

1 − i
+ 1 − i =

i + 1
2

+ 1 − i =
3
2
− 1

2
i.

Example 1.6 Prove that∣∣∣∣ (3 − 4i)(2 + i)
(2 − 4i)(6 + 8)

∣∣∣∣ = 1
4
.

We show three methods, of which the first one is recommended.

1) The direct method. The simplest method is to take the absolute value separately of each factor:∣∣∣∣ (3 − 4i)(2 + i)
(2 − 4i)(6 + 8)

∣∣∣∣ = |3 − 4i| · |2 + i|
2|1 − 2i| · 2|3 + 4i| =

1
4
·
√

32 + 42 · √22 + 12

√
12 + 22 · √32 + 42

=
1
4
.

2) Alternatively, though less convenient we first compute the product,

(3 − 4i)(2 + i)
(2 − 4i)(6 + 8i)

=
6 + 4 + i(3 − 8)

12 + 32 + i(−24 + 16)
=

10 − 5i
44 − 8i

=
10 − 5i
44 − 8i

· 44 + 8i
44 + 8i

=
440 + 40 + i(−220 + 80)

1936 + 64
=

480 − 140i
2000

=
24 − 7i

100
,

hence∣∣∣∣ (3 − 4i)(2 + i)
(2 − 4i)(6 + 8i)

∣∣∣∣ =
∣∣∣∣24 − 7i

100

∣∣∣∣ =
√

242 + 72

100
=

√
576 + 49

100
=

√
625

100
=

25
100

=
1
4
.

3) Alternatively we also have the following variant of 2.,

(3 − 4i)(2 + i)
(2 − 4i)(6 + 8i)

=
6 + 4 + i(3 − 8)

12 + 32 + i(−24 + 16)
=

10 − 5i
44 − 8i

,

and then we proceed in the following way,∣∣∣∣ (3 − 4i)(2 + i)
(2 − 4i)(6 + 8i)

∣∣∣∣ = |10 − 5i|
|44 − 8i| =

5|2 − i|
4|11 − 2i| =

5
√

4 + 1
4
√

121 + 4
=

5
√

5
4
√

125
=

5
√

5
4 · 5√5

=
1
4
.

The complex numbers
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Example 1.7 Compute P (1 + i), where

P (z) = z5 + 2i z3 − z.

Here we suggest two solutions, of which the former is the most obvious, which that latter which is
recommended is much easier.

1) The obvious solution. Using the binomial formula we get

P (1 + i) = (1 + i)5 + 2i(1 + i)3 − (1 + i)
=
{
1 + 5i + 10i2 + 10i3 + 5i4 + i5

}
+2i
{
1 + 3i + 3i2 + i3

}−1−i

= 1 − 10 + 5 + i(5 − 10 + 1) + 2i(1 − 3 + i{3 − 1}) − 1 − i

= −4 − 4i − 4i − 4 − 1 − i = −9 − 9i.

2) Alternatively the computations become much easier, if we note that

(1 + i)2 = 2i.

Then

P (1 + i) = (1 + i)
{
(2i)2 + 2i · 2i − 1

}
= (−4 − 4 − 1)(1 + i) = −9 − 9i.

The complex numbers
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Example 1.8 We write as usual z = x + iy. Split the following expressions into their real and
imaginary part:

(a) z3, (b) z · z,

(c)
z

z
, z �= 0, (d)

z − i

1 − z i
, z �= i.

a. By computing

z3 = (x + iy)3 = x3 + 3x2 · iy + 3x · (iy)2 + (iy)3 = x3 − 3xy2 + i
(
3x2y − y3

)
.

it follows immediately that

Re
{
z3
}

= x3 − 3xy2 og Im
{
x3
}

= 3x2y − y3.

b. It follows from

z · z = |z|2 = x2 + y2,

that

Re {z · z} = x2 + y2 og Im {z · z} = 0.

c. By a standard computation we first get

z

z
=

x − iy

x + iy
=

(x − iy)2

x2 + y2
=

x2 − y2

x2 + y2
− 2xy

x2 + y2
· i.

Then it immediately follows that

Re
{

z

z

}
=

x2 − y2

x2 + y2
og Im

{
z

z

}
= − 2xy

x2 + y2
.

d. We get by the standard procedure (multiplication of the numerator and the denominator by the
conjugated of the denominator)

z − i

1 − z i
=

x + iy − i

1 − (x − iy)i
=

x + i(y − 1)
(−y + 1) − ix

· (−y + 1) + ix

(−y + 1) + ix

=
x(−y + 1) − x(y − 1) + i{−(y − 1)2 + x2}

x2 + (y − 1)2
,

hence

Re
{

z − i

1 − z i

}
= − 2x(y − 1)

x2 + (y − 1)2
, Im

{
z − i

1 − z i

}
=

x2 − (y − 1)2

x2 + (y − 1)2
.

The complex numbers
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Example 1.9 Express the following by means of x and y:

(a) |z − 1|2, (b) |z|4,

(c)
∣∣∣∣z + 1
z − 1

∣∣∣∣ , z �= 1, (d)
∣∣∣∣ z + i

1 − iz

∣∣∣∣ , z �= −i.

a. A direct computation gives

|z − 1|2 = |(x − 1) + iy|2 = (x−1)2 + y2
(
= x2 + y2 − 2x + 1

)
.

b. Again by direct computation,

|z|4 =
(|z|2)2 =

(
x2 + y2

)2 (
= x4 + 2x2y2 + y4

)
.

c. And once more direct computation (for z �= 1),

∣∣∣∣z + 1
z − 1

∣∣∣∣ =
∣∣∣∣x + 1 + iy

x − 1 + iy

∣∣∣∣ =
√

(x + 1)2 + y2

(x − 1)2 + y2

⎛
⎝=

√
x2 + y2 − 2x + 1
x2 + y2 − 2x + 1

⎞
⎠ .

d. It follows from

z + i

1 − iz
=

i(z + i)
i(1 − iz)

=
i(z + i)
z + i

= i for z �= −i,

that∣∣∣∣ z + i

1 − iz

∣∣∣∣ = |i| = 1.

Alternatively, put z = x + iy. Then we get for z �= −i,∣∣∣∣ z + i

1 − iz

∣∣∣∣ =
∣∣∣∣ x + i(y + 1)
1 − i(x + iy)

∣∣∣∣ =
∣∣∣∣x + i(y + 1)
(1 + y) − ix

∣∣∣∣ =
√

x2 + (y + 1)2√
(1 + y)2 + x2

= 1,

where the latter computation may be performed in different ways.

Example 1.10 Let z ∈ C \ {0}. Prove that Re
{

1
z

}
> 0, if and only if Re{z} > 0.

We shall give two methods of solution:

1) Analytically: We get for z �= 0,

1
z

=
z

z · z =
x − iy

x2 + y2
=

x

x2 + y2
− i

y

x2 + y2
,

hence

Re
{

1
z

}
=

z

x2 + y2
> 0, if and only if x = Re{z} > 0.

The complex numbers
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2) Polar coordinates (and geometrically). If we put z = r , eiθ, then
1
z

=
1
r

e−iθ, hence

Re{z} = r cos θ and Re
{

1
z

}
=

1
r

cos(−θ) =
1
r

cos θ,

and it follows that Re{z} and Re
{

1
z

}
have the same sign for z �= 0.

Example 1.11 Let
x − iy

x + iy
= a + ib, where x, y, a, b ∈ R, x2 + y2 �= 0. Vis, at a2 + b2 = 1.

We have two main variants:

1) The simplest variant is the following,

a2 + b2 = |a + ib|2 =
|x − iy|2
|x + iy|2 =

x2 + y2

x2 + y2
= 1, z �= 0.

2) Alternatively, we get for z �= 0 that

a2 + b2 =
∣∣∣∣x − iy

x + iy

∣∣∣∣
2

=
∣∣∣∣x − iy

x + iy
· x − iy

x − iy

∣∣∣∣
2

=
∣∣∣∣ (x − iy)2

x2 + y2

∣∣∣∣
2

=

∣∣x2 − y2 − 2ixy
∣∣2

(x2 + y2)2

=

(
x2 − y2

)2 + 4x2y2

x4 + y4 + 2x2y2
=

x4 + y4 − 2x2y2 + 4x2y2

x4 + y4 + 2x2y2
=

x4 + y4 + 2x2y2

x4 + y4 + 2x2y2
= 1.

Example 1.12 Let a and b be complex numbers, for which b a+a �= 0 for every z ∈ C, where |z| = 1.
Prove that, if |z| = 1, then∣∣∣∣ az + b

b z + a

∣∣∣∣ = 1.

The condition

b z + a �= 0 for every z ∈ C, for which |z| = 1,

only means that |b| �= |a|.
If |z| = 1, then

|z|2 = z · z = 1,

hence

z =
1
z

and |z| = 1,

The complex numbers
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and thus

∣∣∣∣ az + b

b z + a

∣∣∣∣ =
∣∣∣∣∣∣∣

az + b

b · 1
z

+ a

∣∣∣∣∣∣∣ =
|az + b|∣∣∣∣a z + b

z

∣∣∣∣
= |z| · |az + b|∣∣az + b

∣∣ = 1.

Alternatively, put z = eiθ, thus |z| = 1. Then

∣∣∣∣ az + b

b a + a

∣∣∣∣ =
∣∣∣∣a eiθ + b

b eiθ + a

∣∣∣∣ =
∣∣∣∣∣ a eiθ + b(

a e−iθ + b
)
eiθ

∣∣∣∣∣ =
∣∣a eiθ + b

∣∣∣∣∣a eiθ + b
∣∣∣ · |eiθ|

= 1.

Remark 1.1 This result shows that if |a| �= |b|, then the function

f(z) =
az + b

b z + a

maps the unit circle into itself. ♦

The complex numbers
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Example 1.13 Find the maximum of
∣∣z2 + 1

∣∣ on the unit disc

{z ∈ C | |z| ≤ 1}.

We shall give two solution of which the former is in line with the Theory of Complex Functions. In
the latter method we shall only apply real methods, which in general cannot be recommended here.

1) The simple solution. Since∣∣z2 + 1
∣∣ ≤ |z|2 + 1 ≤ 2 for |z| ≤ 1,

the maximum must be ≤ 2.
On the other hand we obtain the value 2 at the points z = ±1 in the closed unit disc, and we
conclude that the maximum is indeed 2.

2) Alternatively, apply the known real methods. Put

ϕ(z) =
∣∣z2 + 1

∣∣2 =
∣∣x2 − y2 + 1 + 2ixy

∣∣2 =
(
x2 − y2 + 1

)2
+ 4x2y2

= x4 + y4 + 1 − 2x2y2 + 2x2 − 2y2 + 4x2y2

= x4 + y4 + 2x2y2 + 2x2 − 2y2 + 1.

Then we find the maximum of
∣∣z2 + 1

∣∣ by first finding the maximum of ϕ(z) =
∣∣z2 + 1

∣∣2.
The possible stationary points are the solutions of the following system of two equations,

∂ϕ

∂x
= 4x3 + 4xy2 + 4x = 4x

(
x2 + y2 + 1

)
= 0,

∂ϕ

∂y
= 4y3 + 4x2y − 4y = 4y

(
x2 + y2 − 1

)
= 0.

It follows from the former equation that x = 0, so by insertion into the latter equation we get the
possibilities y = 0 and y2 − 1 = 0, thus y = −1, 0, 1.
Hence the stationary points are

(x, y) = (0,−1) ∼ −i, (x, y) = (0, 0) ∼ 0, (x, y) = (0, 1) ∼ i,

corresponding to

ϕ(−i) = 0, ϕ(0) = 1, ϕ(i) = 0.

We shall still go through the values on the boundary, thus we put x2 + y2 = 1. First we reduce

ϕ(z) = x4 + y4 + 2x2y2 + 2x2 − 2y2 + 1

=
(
x2 + y2

)2
+ 2
(
x2 + y2

)
+ 1 − 4y2

= 1 + 2 + 1 − 4y2 = 4
(
1 − y2

)
, for y ∈ [−1, 1].

Clearly, the maximum on the boundary is obtained for y = 0, corresponding to z = x = ±1. Then

ϕ(±1) = 4(1 − 0) = 4,

and we conclude that the maximum of
∣∣z2 + 1

∣∣ on the closed unit disc is
√

4 = 2.

The complex numbers
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Example 1.14 It is well-known that the function f(z) = z describes a reflection with respect to the
x-axis. Find a corresponding function g(z), which describes a reflection with respect to the y-axis.

Since

g(z) = g(x + iy) = −x + iy = −(x − iy) = −z,

the map is given by

g(z) = −z.

Example 1.15 Prove that |1 − z| = |1 − z|, and give a geometric interpretation of the result.

If we put z = x + iy, then

|1 − z| = |1 − x − iy| =
√

(1 − x)2 + y2,

and

|1 − z| = |1 − x + iy| =
√

(1 − x)2 + y2,

hence |1 − z| = |1 − z|.

|1-konj(z)|

|1-z|

konj(z)

z

–2

–1

0

1

2

0.5 1 1.5 2

Since |1 − z| = |z − 1|, we can also write the equation in the form

|z − 1| = |z − 1|.

The interpretation of this equation is that the distances from 1 to z and to z, resp. are the same.

The complex numbers
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Example 1.16 Sketch the set of points in C, for which

(a) |z| = 1, (b) |z| < 1, (c) |z − 1| = 1, (d) |z − 1| ≥ 1.

–1

–0.5

0.5

1

–1 –0.5 0.5 1

Figure 1: (a) The point set described by |z| = 1 is the unit circle.

The complex numbers
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–1

–0.5

0.5

1

–1 –0.5 0.5 1

Figure 2: (b) The point set described by |z| < 1 is the open unit disc.

–1

–0.5

0

0.5

1

0.5 1 1.5 2

Figure 3: (c) The point set described by |z−1| = 1 is the circle with centre at 1 ∼ (1, 0) and radius 1.

Example 1.17 Sketch the set of points in C, for which

(a) Arg z =
π

4
, (b) Re z = 1, (c) Im z = −1, (d) Re(z − 1) = |z|.

(a) The point set is the open half line from 0 (0 excluded) in the first quadrant of the angle
π

4
with

the x-axis.

(b) The point set is the straight line through the point 1 on the x-axis which is parallel with the
y-axis.

(c) The point set is the straight line through the point −1 ∼ −i on the y-axis and parallel with the
x-axis.

(d) The solution set is empty. In fact,

0 ≤ |z| = Re(z − 1) = x − 1
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–1.5

–1

–0.5

0.5

1

1.5

–1 –0.5 0.5 1 1.5 2 2.5

Figure 4: (c) The point set described by |z − 1| ≥ 1 is the closed complementary set of the disc with
centre at 1 ∼ (1, 0) and radius 1.

pi/4

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

Figure 5: (a) The point set described by Arg z =
π

4
.

–1

–0.5

0.5

1

–0.5 0.5 1 1.5

Figure 6: (b) The point set described by Re z = 1.
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–1.5

–1

–0.5

0.5

1

–0.5 0.5 1 1.5

Figure 7: (c) The point set described by Im z = −1.

implies that x ≥ 1, and

x − 1 = |z| =
√

x2 + y2 ≥
√

x2 = |x| = x,

which again implies that −1 ≥ 0, and that is not possible.

Example 1.18 Sketch the set of points in C, for which

(a) Re z > 0, (b) a < Im z < b, (c) Re
1
z

=
1
R

, (d) α ≤ Arg z ≤ β,

where a, b, α, β, R are real constants, satisfying

a < b, −π < α < β ≤ π, R �= 0.

Re z > 0

–1

–0.5

0.5

1

–0.4 –0.2 0.2 0.4 0.6 0.8 1

Figure 8: (a) The point set described by Re z > 0.

(a) The point set described by Re z > 0 is the open right hand half plane.
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0,5 < Im z < 1,5

–0.5

0

0.5

1

1.5

2

–0.5 0.5 1 1.5

Figure 9: (b) The point set described by a < Im z < b, where a = 0.5 and b = 1.5.

R < 0

Re 1/z = 1/R

R/2 = –2/2 =–1

–1.5

–1

–0.5

0.5

1

–2 –1.5 –1 –0.5 0.5

Figure 10: (c) The point set described by Re
1
z

=
1
R

for R = −2.

(b) The point set described by a < Im z < b is the open parallel strip between the lines y = a and
y = b.

(c) The condition Re
1
z

=
1
R

, R �= 0, is in real coordinates given by

x

x2 + y2
=

1
R

, (x, y) �= (0, 0),

thus

x2 − Rx +
(

R

2

)2

+ y2 =
∣∣∣∣R2
∣∣∣∣
2

,

which we write in the standard form,

(
x − R

2

)2

+ y2 =
∣∣∣∣R2
∣∣∣∣
2

, (x, y) �= (0, 0).
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This standard form shows that the point set described by Re
1
z

=
1
R

, R �= 0, is the the circle of

centrum at
(

R

2
, 0
)

and radius
∣∣∣∣R2
∣∣∣∣ with the exception of point (0, 0). It follows that the solution

set lies in the left hand half plane, when R < 0, and in the right hand half plane, when R > 0. We
have chosen R = −2 < 0 on the figure.

t=b t=a

a < Arg z < b

0

0.5

1

1.5

2

–1 1 2 3

Figure 11: (d) The point set described by a ≤ Arg z ≤ b is the angular domain between the open half
lines given in polar coordinates by t = a and t = b. The half lines belong to the set with the exception
of the point (0, 0).
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(d) The point set described by α ≤ Arg z ≤ β is the angular domain between the half lines t = α
and t = β. It is not closed, because the point (0, 0) does not belong to the set, neither is is open
because the open half lines belong to the set.

Example 1.19 Assume that c ∈ R and α ∈ C \ {0}. Prove that

α z + α z + c = 0

is the equation of a straight line in the (x, y)-plane.

It follows from 2Rew = w + w

w = α z = (a + ib)(x + iy),

that

0 = α z + α z + c = 2Re{(a + ib)(x + iy)} = 2a x − 2b y + c.

Since α = a + ib �= 0, this is the equation of a straight line.

Alternative it follows by a direct computation that

0 = α z + α z + c = (a + ib)(x + iy) + (a − ib)(x − iy) + c

= ax − by + i(bx + ay) + ax − by − i(bx + ay) + c = 2ax − 2by + c.
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Example 1.20 Assume that c ∈ R and α ∈ C satisfy the condition |α|2 ≥ c.
Sketch the set of z ∈ C, for which

z z + α z + α z + c = 0.

ª

a-ª

–1

–0.5

0

0.5

1

1.5

–2 –1 1 2

Figure 12: The geometric solution using convenient reflections.

It follows from

0 = z z + α z + z z + c = z z + α z + α z + α α + c − |α|2
= (z + α) (z + α) − {|α|2 − c

}
= |z + α|2 − {|α|2 − c

}
,

and a rearrangement that

|z + α| = |z − (−α)| =
√
|α|2 − c.

Then we conclude from the geometrical interpretation that the point set is a circle of centrum −α
(reflection of α with respect to the y-axis) and radius

√|α|2 − c.
However, if |α|2 = c, then we only get the point z = −α.

Alternatively we put z = x + iy and α = a + ib, where the assumption is that a2 + b2 ≥ c. Then

0 = z z + α z + α z + c = |z|2 + 2Re(α z) + c = x2 + y2 + 2ax − 2by + c

= (x + a)2 + (y − b)2 − {a2 + b2 − c
}

,

hence

(x + a)2 + (y − b)2 = a2 + b2 − c.

It follows that the point set is a circle of centrum at (−a, b) ∼ −α and radius√
a2 + b2 + c =

√|α|2 − c.
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Example 1.21 Let a ∈ C be a constant, satisfying Re a > 0.

Find the three point sets in the z-plane, for which
a − z

a − z
is < 1, = 1 or > 1, respectively.

–1 < u < 1u > 1u < 1

ib-a+ib

–0.5

0

0.5

1

1.5

–2 –1 1 2

We shall find the set of the z, for which

u =
a − z

a + z
=

−z + a

z + a

is real (since otherwise the order relation does not make sense).
We get by solving the equation,

a u + u z = a − z.

When we put a = α + iβ, Re a = α > 0, then

z =
a − a u

u + 1
=

α + iβ − (α − iβ)u
u + 1

= α · 1 − u

1 + u
+ iβ.

If u = 1, then z = iβ.

If u > 1, then x = α · 1 − u

1 + u
< 0, hence

−α < x < 0 and y = β.

If u < 1, u �= −1, then we obtain the remaining parts of the line y = β, thus in a complex description,
x + iβ, where either

x < −α, corresponding to −∞ < u < −1,

or

0 < x, corresponding to − 1 < u < 1.

The three point sets all lie on the line y = β.
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Example 1.22 Let z1, z2 ∈ C. Prove that

|z1 + z2|2 + |z1 − z2|2 = 2
(
|z1|2 + |z2|2

)
,

and give a geometrical interpretation of this result.

If we put z1 = x + iy and z2 = a + ib, then

|z1 + z2|2 + |z1 − z2|2 = (x + a)2 + (y + b)2 + (x − a)2 + (y − b)2 = 2
(
x2 + y2

)
+ 2
(
y2 + b2

)
= 2

(
x2 + y2

)
+ 2
(
a2 + b2

)
= 2
(
|z1|2 + |z2|2

)
.

z_1-z_20

z_1

z_1+z_2

z_2

This means geometrically that the sum of the squares of the four sides of a parallelogram is equal to
the sum of the squares of the diagonals.

Example 1.23 Let z = x + iy. Prove that z4 is real, if and only if either xy = 0 or |x| = |y|; and
that z4 is imaginary, if and only if x = ± (1 ±√

2
)
y.

1) Let z4 = a ∈ R where a > 0. Then

z = x + iy = 4
√

a ·
{

cos
pπ

2
+ i sin

pπ

2

}
, p = 0, 1, 2, 3,

thus

x = 4
√

a cos
pπ

2
and y = 4

√
a sin

pπ

2
,

and we get

xy =
(

4
√

a
)2 cos

pπ

2
· sin pπ

2
=

1
2
√

a cot sin pπ = 0.

If on the other hand, x · y = 0, then either x = 0 or y = 0, ind it follows trivially that
z4 = (x + iy)4 ∈ R.
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a^(1/4)

|a|^(1/4)

2) If instead a ∈ R and a < 0, then we get

z = x + iy = 4
√

a ·
{

cos
(π

4
+

pπ

2

)
+ i sin

(π

4
+

pπ

2

)}
.

It follows from∣∣∣cos
(π

4
+ p

π

2

)∣∣∣ = ∣∣∣sin(π

4
+ p

π

2

)∣∣∣ =
√

2
2

,

that if z4 = a < 0, then |x| = |y|.
If on the other hand |x| = |y|, then

z = x + iy = r · ±1 ± i√
2

,

and since{±1 ± i√
2

}
= −1,

we get z4 = −r4 < 0.

3) Assume that z4 = i a, a ∈ R, where a > 0. Then

i a = |a| exp
(
i
π

4

)
,
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thus

z = x + iy = 4
√

a ·
{

cos
(π

8
+ p

π

2

)
+ i sin

(π

8
+ p

π

2

)}
, p = 0, 1, 2, 3.

Since y �= 0, it follows that

x

y
=

cos
(π

8
+ p · π

2

)
sin
(π

8
+ p · π

2

) =
2 cos2

(π

8
+ p · π

2

)
− 1 + 1

2 sin
(π

8
+ p · π

2

)
cos
(π

8
+ p · π

2

) =
cos
(π

4
+ pπ
)

+ 1

sin
(π

4
+ pπ
)

=
1√
2
· (−1)p + 1
1√
2
· (−1)p

= 1 ±
√

2,
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a^(1/4)

hence

x =
(
1 ±

√
2
)

y.

If on the other hand, x =
(
1 ±√

2
)
y, then it follows by insertion that

z4 = y ∗ 4
{

1 ±
√

2 + i
}4

= y4
{

1 + 2 − 1 ± 2
√

2 + 2i
(
1 ±

√
2
)}2

= y4
{

2 ± 2
√

2 + 2i
(
1 ±

√
2
)}2

= y4
(
2 ± 2

√
2
)2

(1 + i)2

= y4
(
4 + 8 ± 8

√
2
)
· 2i = 8iy4

(
3 ± 2

√
2
)

,

i.e. precisely the required form.

|a|^(1/4)

4) If a < 0, then

i a = |a| exp
(

i
3π
2

)
,

and we get

z = x + iy = 4
√
|a| ·
{

cos
(

3π
8

+ p
π

2

)
+ i sin

(
3π
8

+ p
π

2

)}
, p = 0, 1, 2, 3.
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We derive as above that

x

y
=

cos
(

3π
8

+ p
π

2

)

sin
(

3π
8

+ p
π

2

) =
cos
(

3π
4

+ pπ

)
+ 1

sin
(

3π
4

+ pπ

) =
− 1√

2
· (−1)p + 1

1√
2
· (−1)p

= −1 ∓
√

2,

thus

x = −
(
1 ∓

√
2
)

y.

On the other hand, if x = − (1 ±√
2
)
y, then it follows by insertion that

z4 = y4
{
−
(
1 ±

√
2
)

+ i
}4

= y4
{

1 + 2 − 1 ± 2
√

2 − 2i
(
1 ±

√
2
)}2

= y4
{

2 ± 2
√

2 − 2i
(
1 ±

√
2
)}2

= y4
(
2 ± 2

√
2
)2

(1 − i)2

= y4
(
4 + 8 ± 8

√
2
)
· (−2i) = −8iy4

(
3 ± 2

√
2
)

,

which is precisely the required form.

Example 1.24 Prove that for all z ∈ C,

|Re z| + |Im z| ≤
√

2 · |z|.

If we put z = x + iy, this inequality is also written

|x| + |y| ≤
√

2 ·
√

x2 + y2.

The left hand side is ≥ 0, so this inequality is equivalent to

(|x| + |y|)2 ≤ 2x2 + 2y2,

hence we shall only prove this latter inequality. This follows from

2x2 + 2y2 − (|x| + |y|)2 = 2x2 + 2y2 − x2 − y2 − 2|x| · |y| = x2 + y2 − 2|x| · |y| = (|x| − |y|)2 ≥ 0.
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2 Polar form of complex numbers

Example 2.1 Write the following complex numbers in their polar form;

(a) 1 + i, (b) 1 + i
√

3, (c) 1 − i
√

3, (d) − 5i.

(a)

1 + i =
√

2 exp
(
i
π

4

)
=

√
2 exp

(
i
{π

4
+ 2pπ

})
, p ∈ Z.

(b)

1 + i
√

3 = 2 exp
(
i
π

3

)
= 2 exp

(
i
{π

3
+ 2pπ

})
, p ∈ Z.

(c)

1 − i
√

3 = 2 exp
(
−i

π

3

)
= 2 exp

(
i
{
−π

3
+ 2pπ

})
, p ∈ Z.

(d)

−5i = 5 exp
(
−i

π

2

)
= 5 exp

(
i
{
−π

2
+ 2pπ

})
, p ∈ Z.

Polar form of complex numbers
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Example 2.2 Find the values of z ∈ C for which

ei z = ei z.

If we put z = x + iy, then

ei z = ei x−y = e−ye−i x

and

ei z = ei(x−i y) = ey ei x.

Hence if ei z = ei z, then y = 0 and e−i x = ei x, so

e2i x = 1 = e2i pπ,

and we get x = pπ, i.e.

z = pπ, p ∈ Z.

On the other hand, if z = pπ, p ∈ Z, then

ei z = ei pπ = (−1)p

and

ei z = ei pπ = (−1)p,

and the equation is fulfilled. Hence the complete solution is

z = pπ, p ∈ Z.

Example 2.3 Write the following complex numbers in the form of ez:

(a) 1, (b) −1, (c) i, (d) −i,
(e) 1 + i, (f) 1 − i, (g) −1 + i, (h) −1 − i.

(a)

1 = e2i pπ, p ∈ Z.

(b)

−1 = ei(2p+1)π, p ∈ Z.

(c)

i = ei(2p+ 1
2 )π, p ∈ Z.

Polar form of complex numbers

Download free eBooks at bookboon.com



Complex Funktions c-1

 

33  

(d)

−i = ei(2p+ 3
2 )π, p ∈ Z.

(e)

1 + i =
√

2 ei( 1
4+2p)π, p ∈ Z.

(f)

1 − i =
√

2 ei(− 1
4+2p)π, p ∈ Z.

(g)

−1 + i =
√

2 ei( 3
4+2p)π, p ∈ Z.

(h)

−1 − i =
√

2 ei(− 3
4+2p)π, p ∈ Z.

Example 2.4 Write the following complex numbers in the form x + iy:

(a) exp(i π), (b) exp
(

2i π

3

)
, (c) 3 exp

(
i
π

4

)
,

(d) π · exp
(
− π

3

)
, (e) exp

(
i
π

2

)
.

(a)

exp(i π) = cos π + i sin π = −1.

(b)

exp
(

2i π

3

)
= cos

(
2π
3

)
+ i sin

(
2π
3

)
= −1

2
+ i

√
3

2
.

(c)

3 · exp
(
i
π

4

)
= 3 cos

(π

4

)
+ 3i sin

(π

4

)
=

3
√

2
2

+ i
3
√

2
2

.

(d)

π · exp
(
−i

π

3

)
= π
{

cos
(π

3

)
− i sin

(π

3

)}
= π ·

{
1
2
− i

√
3

2

}
=

π

2
− i

π
√

3
2

.
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(d)

exp
(
i
π

2

)
= cos

(π

2

)
+ i sin

(π

2

)
= i.

Example 2.5 Assume ez = ew. Prove that there exists a k ∈ Z, such that z = w + 2π k i.

Two complex numbers are identical, if and only if they have the same absolute value (i.e. same module)
and (assuming that the modulus is �= 0) if their arguments agree modulo 2π.

If we put z = x + iy and w = u + iv into the exponential function, then

ez = ex · ei y and ew = eu · ei v.

The module is ex = eu �= 0, hence x = u, and concerning the arguments we get y ≡ v (mod 2π), hence
y = v + 2k π for some k ∈ Z. Finally,

z = x + iy = u + i(v + 2π k) = u + iv + 2π k i = w + 2π k i

for some k ∈ Z.

Example 2.6 Find the real and the imaginary part of (1 + i)20.

It follows from (1 + i)2 = 2 i that

(1 + i)20 = {(1 + i)}10 = {2 i}10 = 210 i10 = 210 i2 = −1024,

thus

Re
{
(1 + i)20

}
= −1024, and Im

{
(1 + i)20

}
= 0.

Alternatively we use polar coordinates. Since

1 + i =
√

2 exp
(
i
π

4

)
,

we get by using polar coordinates that

(1 + i)20 =
{√

2 exp
(
i
π

4

)}20

=
(
2

1
2

)20
exp
(
i 20

π

4

)
= 210 e5i π = 1024 ei π = −1024,

and it follows as before that

Re
{
(1 + i)20

}
= −1024, and Im

{
(1 + i)20

}
= 0.
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Example 2.7 Prove for any complex number z �= 1 that

1 + z + · · · + zn =
zn+1 − 1

z − 1
.

Use this result for z = ei θ, 0 < θ < 2π, in proving that

1 + cos θ + cos 2θ + · · · + cos nθ =
1
2

+
sin
((

n +
1
2

)
θ

)

2 sin
θ

2

.

If z �= 1, then
zn+1 − 1

z − 1
is defined. Since

(
zn + zn−1 + · · · + z + 1

)
(z−1) =

(
zn+1 − zn

)
+
(
zn − zn−1

)
+ · · ·+ (z2 − z

)
+(z−1) = zn+1 −1,

we get precisely that

1 + z + · · · + zn =
zn+1 − 1

z − 1
.

If 0 < θ < 2π, then ei θ �= 1, hence according to the above,

1 + ei θ + e2i θ + · · · ei(n−1)θ + ei n θ =
ei(n+1)θ − 1

ei θ − 1
.
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The real part is

1 + cos θ + cos 2θ + · · · + cos n θ = Re
{

ei(n+1)θ − 1
ei θ − 1

}
= Re

{
ei(n+ 1

2 )θ − e−i 1
2 θ

ei θ
2 − e−i θ

2

}

= Re

{
cos(n + 1

2 )θ + i sin(n + 1
2 )θ − cos θ

2 + i sin θ
2

2i sin θ
2

}
=

sin(n + 1
2 )θ

2 sin θ
2

+
sin θ

2

2 sin θ
2

=
1
2

+
sin(n + 1

2 )θ
2 sin θ

2

.

Example 2.8 Prove for every x �= p π, p ∈ Z, that

+∞∑
n=1

cosn x · sinnx = 0,
+∞∑
n=1

cosn x · sinnx = cot x.

Since | cos nx| ≤ 1 and | sin nx| ≤ 1, and since | cos x| < 1 for x �= p π, p ∈ Z, both series are absolutely
convergent.
Then we get

+∞∑
n=1

cosn x · cos nx + i

+∞∑
n=1

cosn x · sinnx =
+∞∑
n=1

cosn x · {cos nx + i sinnx} =
+∞∑
n=1

cosn x · ei nx

=
+∞∑
n=1

(
cos x · ei x

)n
=

cos x · ei x

1 − cos x · ei x

cos x

e−i x − cos x
=

cos x

cos x − i sinx − cos x
= −1

i

cos x

sin x
= i cot x.

Finally, by splitting into the real and the imaginary part,

+∞∑
n=1

cosn x · sinnx = 0,
+∞∑
n=1

cosn x · sinnx = cot x.

Example 2.9 Apply Moivre’s formula in order to express cos 3θ and sin 3θ by means of cos θ and
sin θ.

We get by Moivre’s formula and the binomial formula,

cos 3θ + i sin 3θ = (cos θ + i sin θ)3 = cos3 θ − 3 cos θ sin2 θ + i
{
3 cos2 θ sin θ − sin3 θ

}
,

hence by splitting into the real and the imaginary part,

cos 3θ = cos3 θ − 3 cos θ sin2 θ = 4 cos3 θ − 3 cos θ,

and

sin 3θ = 3 cos2 θ sin sin θ − sin3 θ = 3 sin θ − 4 sin3 θ.
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Example 2.10 Apply Moivre’s formula to prove that

cos 8θ + 28 cos 4θ + 35 = 64
(
cos8 θ + sin8 θ

)
.

First method. Whenever one shall apply Moivre’s formula, one must usually do a lot of computa-
tions.
First we rewrite the left hand side to a homogenous trigonometric polynomial of degree 8, by using

1 = cos2 θ + sin2 θ.

We find by the binomial formula that

cos 8θ = Re ei 8θ = Re
{
ei θ
}8

= Re (cos θ + i sin θ)8

= cos8 θ − 28 cos6 θ sin2 θ + 70 cos4 θ sin4 θ − 28 cos2 θ sin6 θ + sin8 θ,

cos 4θ = Re
{
ei θ
}4

= Re (cos θ + i sin θ)4

=
(
cos4 θ − 6 cos2 θ sin2 θ + sin4 θ

) · (cos2 θ + sin2 θ
)2

=
(
cos4 θ − 6 cos2 θ sin2 θ + sin4 θ

) · (cos4 θ + 2 cos2 θ sin2 +sin4 θ
)

= cos8 θ − 4 cos6 θ sin2 θ − 10 cos4 θ sin4 θ − 4 cos2 θ sin6 θ + sin8 θ,

and

1 =
(
cos2 θ + sin2 θ

)4
= cos8 θ + 4 cos6 θ sin2 θ + 6 cos4 θ sin4 θ + 4 cos2 θ sin6 θ + sin8 θ.

Summing up,

cos 8θ = cos8 θ − 28 cos6 θ sin2 θ + 70 cos4 θ sin4 θ − 28 cos2 θ sin6 θ + sin8 θ,

28 cos 4θ = 28 cos8 θ − 112 cos6 θ sin2 θ − 280 cos4 θ sin4 θ − 112 cos2 sin6 θ + 28 sin8 θ,

35 = 35 cos8 θ + 140 cos6 θ sin2 θ + 210 cos4 θ + 140 cos2 θ sin6 θ + 35 sin8 .

Finally, by an addition,

cos 8θ + 28 cos 4θ + 35 = (1 + 28 + 35)
(
cos8 θ + sin8 θ

)
= 64

(
cos8 θ + sin8 θ

)
.

Second method. It is here much easier to use Euler’s formulæ and then compute from the right
towards the left,

64 cos8 θ =
64
256
(
ei θ + e−i θ

)8
=

1
4
(
e8i θ + 8 e6i θ + 28 e4i θ + 56 e2i θ + 70 + 56 e−2i θ + 28 e−4iθ + 8 e−6i θ + e−8i θ

)
and analogously

64 sin8 θ =
64

256 · i8
(
ei θ − e−i θ

)8
=

1
4
(
e8i θ − 8 e6iθ + 28 e4i θ − 56 e2i θ + 70 − 56 e−2i θ + 28 e−4i θ − 8 e−6i θ + e−8i θ

)
.

Finally, by an addition,

64
(
cos8 θ + sin8 θ

)
=

1
2
(
e8i θ + 28 e4i θ + 70 + 28 e−4i θ + e−8i θ

)
= cos 8θ + 28 cos 4θ + 35.
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Third method. One can also apply the well-known trigonometric relations,

cos2 t =
1 + cos 2t

2
and sin2 t =

1 − cos 2t

2
with different values (θ, 2θ and 4θ) of t. When we compute from the right towards the left, we get

64
(
cos8 θ + sin8 θ

)
= 64

{(
cos2 θ

)4
+
(
sin2 θ

)4}
=

26

24

{
(1 + cos 2θ)4 + (1 − cos 2θ)4

}
= 4
{(

1 + cos2 2θ + 2 cos 2θ
)2

+
(
1 + cos2 2θ − 2 cos 2θ

)2}

= 4 · 2
{(

1 + cos2 2θ
)2

+ 4 cos2 2θ
}

= 8 ·
{(

1 +
1 + cos 4θ

2

)2

+ 4 · 1 + cos 4θ

2

}

= 2 (3 + cos 4θ)2 + 16 (1 + cos 4θ) = 2
(
9 + 6 cos 4θ + cos2 4θ

)
+ 16 cos 4θ + 16

= 18 + 12 cos 4θ + 2 · 1 + cos 8θ

2
+ 16 cos 4θ + 16 = cos 8θ + 28 cos 4θ + 35.

Fourth method. The same as in the third method, with the only exception that we now compute
from the left towards the right. It is seen that one must here use far more skill:

cos 8θ + 28 cos 4θ + 35 = 2 cos2 4θ − 1 + 28 cos 4θ + 35
= 2
(
2 cos2 2θ − 1

)2
+ 28

(
2 cos2 2θ − 1

)
+ 34

= 2
{

2
(
2 cos2 θ − 1

)2 − 1
}

+ 56
(
2 cos2 θ − 1

)2
+ 6

= 2
{
2
(
4 cos4 θ − 4 cos2 θ + 1

)− 1
}2

+ 56
(
4 cos4 θ − 4 cos2 θ + 1

)
+ 6

= 2
(
8 cos4 θ − 8 cos2 θ + 1

)2
+ 224 cos4 θ − 224 cos2 θ + 62

= 2
(
64 cos8 θ + 64 cos4 θ + 1 − 128 cos6 θ + 16 cos4 θ − 16 cos2 θ

)
+ 224 cos4 θ − 224 cos2 θ + 62

= 64 cos8 θ + 64 cos8 θ − 256 cos6 θ + 384 cos4 θ − 256 cos2 θ + 64
= 64 cos8 θ + 64

(
cos8 θ − 4 cos6 θ + 6 cos4 θ − 4 cos2 θ + 1

)
(1)

= 64 cos8 θ + 64
{(

1 − sin2 θ
)4 − 4

(
1 − sin2 θ

)3
+ 6
(
1 − sin2 θ

)2 − 4
(
1 − sin2 θ

)
+ 1
}

= 64 cos8 θ + 64
{
sin8 θ − 4 sin6 θ + 6 sin4 θ − 4 sin2 θ + 1

−4
(
1 − 3 sin2 θ + 3 sin4 θ − sin6 θ

)
+ 6
(
1 − 2 sin2 θ + sin4 θ − 4 + 4 sin2 θ + 1

}
= 64 cos8 θ + 64

{
sin8 θ + (−4 + 4) sin6 θ + (6 − 12 + 6) sin4 θ

+(−4 + 12 − 12 + 4) sin2 θ + 1 − 4 + 6 + 1
}

= 64 cos8 θ + 64 sin4 θ.

Fifth method. This is the same as the fourth method until (1). If we here recognize
(
1 − cos2 θ

)4,
then the computations become easier in the following way,

cos 8θ + 28 cos 4θ + 35
= 64 cos8 θ + 64

(
cos8 θ − 4 cos6 θ + 6 cos4 −4 cos2 θ + 1

)
= 64 cos8 θ + 64

{
1 +

4
1
(− cos2 θ

)1
+

4 · 3
1 · 2

(− cos2 θ
)2

+
4 · 3 · 2
1 · 2 · 3

(− cos2 θ
)3

+
(− cos2 θ

)4}

= 64 cos8 θ + 64
(
1 − cos2 θ

)4
= 64 cos8 θ + 64

(
sin2 θ

)4
= 64 cos8 θ + 64 sin8 θ.
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3 The binomial equation

Example 3.1 Solve the binomial equation

z3 = −2 − 2i.

Since r = | − 2 − 2i| = 2
√

2, every root must lie on a circle of radius 3
√

r = 3
√

2
√

2 =
√

2, and of

centrum 0. Since −3π
4

is an argument for −2− 2i, an argument for one of the three roots is given by

θ = −π

4
, thus

z1 =
√

2 exp
(
−i

π

4

)
=

√
2
{

cos
(
−π

4

)
+ i sin

(
−π

4

)}
= 1 − i.

The other two roots also lie on the circle |z| =
√

2, and since the form an equilateral triangle, we get

z2 = z1 · exp
(

2iπ
3

)
= (1 − i) ·

(
−1

2
+ i

√
3

2

)
=

√
3

2
− 1

2
+ i

{√
3

2
+

1
2

}
,

and

z3 = z1 · exp
(

4iπ
3

)
= (1 − i) ·

(
−1

2
+ −i

√
3

2

)
= −

√
3

2
− 1

2
− i

{√
3

2
+

1
2

}
.
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Example 3.2 Given a, b ∈ R. Find x, y ∈ R expressed by a and b, such that

(x + iy)2 = a + ib.

When we compute the left hand side, we get

(x + iy)2 = x2 − y2 + 2ixy,

so by a splitting into the real and the imaginary part we obtain the two equations

x2 − y2 = a og 2xy = b.

This implies that

a2 + b2 =
(
x2 − y2

)2
+ 4x2y2 =

(
x2 + y2

)2
,

hence

x2 + y2 =
√

a2 + b2 ≥ 0.

When this is compared with x2 − y2 = a, we get

x2 =
a +

√
a2 + b2

2
(≥ 0), y2 =

−a +
√

a2 + b2

2
(≥ 0),

thus

(2) x = ±
√

a +
√

a2 + b2

2
og y = ±

√
−a +

√
a2 + b2

2
.

Hence a solution is necessarily of the form (2). We see, however, that (2) usually gives four possibilities,
and they cannot all be solutions, because we know that there are only two solutions. Hence we must
check all our possible solutions.

The equation x2 − y2 = a is of course always satisfied, so we turn towards 2xy = b.
If b = 0, then either x = 0 or y = 0, according to (2), and the equation 2xy = b = 0 is of course
fulfilled. (In this case (2) produces actually only two solutions).
If b �= 0, then a check shows that the solution is

x = ±
√

a +
√

a2 + b2

2
og y = ± b

|b|

√
−a +

√
a2 + b2

2
,

where the signs are corresponding.
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Example 3.3 Find all the cubic roots of

(a) 1, (b) − 8, (c) i.

(–1-i*sqrt(3))/2

(–1+i*sqrt(3))/2

1

Figure 13: (a) The cubic roots of 1.

(a) The three cubic roots are of course

1, −1
2

+ i

√
3

2
, −1

2
− i

√
3

2
,

i.e.

e0, exp
(

i
2π
3

)
, exp

(
i
4π
3

)
.

1-i*sqrt(3)

1+i*sqrt(3)

–2

Figure 14: (a) The cubic roots of −8.

(b) The three cubic roots of −8 are

−2, 1 + i
√

3, 1 − i
√

3,

The binomial equation
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i.e.

2 eiπ, 2 exp
(
i
π

3

)
, 2 exp

(
−i

π

3

)
.

-i

(sqrt(3)+i)/2(-sqrt(3)+i)/2

Figure 15: (a) The cubic roots of i.

The binomial equation
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(c) The three cubic roots of i are

−i, −
√

3
2

+ i
1
2
,

√
3

2
+ i

1
2
,

thus

exp
(
−i

π

2

)
, exp

(
i
5π
6

)
, exp

(
i
π

6

)
.

Example 3.4 Find all complex roots of

(a)
√

i, (b) 3
√−1 + i, (c) 4

√−1, (d) 5
√−32.

1

Figure 16: (a) The square roots of i.

(a) The symbol
√

i means the roots of the equation

z2 = i = exp
(
i
(π

2
+ 2pπ

))
, p ∈ Z,

so

z = exp
((π

4
+ pπ
))

= ± exp
(
i
π

4

)
= ± 1√

2
(1 + i).

(b) The symbol 3
√−1 + i is the set of roots of the equation

z3 = −1 + i =
√

2 exp
(

i

(
3π
4

+ 2pπ

))
, p ∈ Z,

so

z = 6
√

2 exp
(

i

(
π

4
+ p · 2π

3

))
, p = 0, 1, 2,
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2^{1/6)

Figure 17: (a) The cubic roots of −1 + i.

or, more explicitly,

z1 = 6
√

2 ·
(

1√
2

+ i
1√
2

)
=

1
3
√

2
(1 + i),

z2 =
1
3
√

2
(1 + i) · 1

2
(−1 + i

√
3) =

1
2 3
√

2
(−1 −

√
3 + i {−1 +

√
3}),

z3 =
1
3
√

2
(1 + i) · 1

2
(−1 − i

√
3) =

1
2 3
√

2
(−1 +

√
3 − i{1 +

√
3}).

1

Figure 18: (a) The quadruple roots of −1.

(c) The symbol 4
√−1 is the set of roots of the equation

z4 = −1 = exp(i(π + 2pπ)), p ∈ Z,

so

z = exp
(
i
(π

4
+ p

π

2

))
, p = 0, 1, 2, 3,

The binomial equation
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–2

Figure 19: (a) The fifth roots of −32.

or more explicitly,

z ∈
{

1√
2

+ i
1√
2
,− 1√

2
+ i

1√
2
,− 1√

2
− i

1√
2
,

1√
2
− i

1√
2

}
.

(d) The symbol 5
√−32 means the set of solutions of the equation

z5 = −32 = 25 ei(π+2pπ), p ∈ Z,

the solution of which are

z = 2 exp
(

i

(
π

5
+ p · 2π

5

))
, p = 0, 1, 2, 3, 4.

Remark 3.1 Note that we for p = 2 obtain the trivial solution z = −2. The remaining roots can
be expressed by means of square roots, if we apply the results of the folloing Example 3.5. ♦

Example 3.5 Prove that

cos
π

5
=

1 +
√

5
4

and sin
π

5
=

√
10 − 2

√
5

4
.

Hint: Apply that(
cos

π

5
+ i sin

π

5

)5

= −1,

and put x = cos
π

5
.

If we put x = cos
π

5
> 0, then sin

π

5
=

√
1 − x2 > 0, hence

0 =
(
cos

π

5
+ i sin

π

5

)5
+ 1 =

(
x + i

√
1 − x2

)5
+ 1

= x5 + 5i x4
√

1 − x2 − 10x3
(
1 − x2

)− 10i x2
(
1 − x2

)√
1 − x2

+5x
(
1 − x2

)2
+ i
(
1 − x2

)2√
1 − x2 + 1.
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When we split into the real and the imaginary part we get the two equations

(3)

⎧⎪⎨
⎪⎩

0 = x5 − 10x3
(
1 − x2

)
+ 5x

(
1 − x2

)2 + 1,

0 =
√

1 − x2 ·
{

5x4 − 10x2
(
1 − x2

)
+
(
1 − x2

)2}
.

We have assumed that
√

1 − x2 �= 0, hence (3) is reduced to⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 = x5 + 10x5 − 10x3 + 5x5 − 10x3 + 5x + 1 = 16x5 − 20x3 + 5x + 1

= (x + 1)
(
16x4 − 16x3 − 4x2 + 4x + 1

)
0 = 5x4 + 10x4 − 10x2 + x4 − 2x2 + 1 = 16x4 − 12x2 + 1,

and since x = −1 is not a common solution, it follows that we shall only solve the following reduced
system of equations,⎧⎨
⎩

16x4 − 16x3 − 4x2 + 4x + 1 = 0,

16x4 − 12x2 + 1 = 0.

The binomial equation
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Then by a subtraction,

16x3 − 8x2 − 4x = 4x
{
4x2 − 2x − 1

}
= 0.

The solutions are 0 and

x =
2 ±√

4 + 16
8

=
2 ± 2

√
5

8
=

1 ±√
5

4
,

so the solution of the original equations must be one of these.
Since (3) has a solution x = cos

π

5
> 0, and since the only positive of the possible solution is

x =
1 +

√
5

4
,

we conclude that

cos
π

5
=

1 +
√

5
4

,

hence

sin
π

5
=

√√√√1 −
(

1 +
√

5
4

)2

=

√
16 − 1 − 6 − 2

√
5

4
=

√
10 − 2

√
5

4
.

Alternatively, it follows from (3) that in particular,

0 = 16x5 − 2 + x3 + 5x + 1 = (x + 1)
(
16x4 − 16x3 − 4x2 + 4x + 1

)
.

Since

16x4 − 16x3 − 4x2 + 4x + 1 = 16x4 − 16x3 − 8x2 + 4x2 + 4x + 1
=
(
4x2
)2 − 8x2(2x + 1) + (2x + 1)2 =

(
4x2 − 2x − 1

)2
,

it follows that x = cos
π

5
∈ ]0, 1[ fulfils the equation

16x5 − 20x3 + 5x + 1 = (x + 1)
(
4x2 − 2x − 1

)2
= 4(x + 1)

(
x − 2 +

√
4 + 16
8

)2(
x − 2 −√

4 + 16
8

)2

= 4{x − (−1)}
(

x − 1 +
√

5
4

)2(
x − 1 −√

5
4

)2

,

and we conclude that x = cos
π

5
∈ ]0, 1[ belongs to the set

{
−1,

1 +
√

5
4

,
1 −√

5
4

}
.

Since only
1 +

√
5

4
is positive, we conclude

cos
π

5
=

1 +
√

5
4

,

The binomial equation
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and then

sin
π

5
=

√
10 − 2

√
5

4

is found as above.

k_10k_10

1-k_10

k_10

1

ED C

B

A

Alternatively, the example can be solved geometrically by noting that �ABC is the same angle
as �BCD. Then

|AB|
|BC| =

|BC|
|CD| , thus

1
k10

=
k10

1 − k10
.

We obtain the equation of second degree

k2
10 + k10 − 1 = 0,

hence

k10 = −1
2

+

(−)

√
1
4

+ 1 =
√

5 − 1
2

,

where we have exploited that k10 > 0. Finally, since |AB| = 1,

cos
π

5
= |AE| = |AD| + 1

2
|DC| = k10 +

1
2
|DC| = k10 +

1
2

(1 − k10)

=
1
2

(1 + k10) =
1 +

√
5

4
.

Remark 3.2 The notation k10 is due to the fact that it is the length of the cord of the regular
decagon, inscribed in the unit circle. ♦
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Example 3.6 Find all roots of the equation

z4 + i = 0.

We rewrite this equation as

z4 = −i = exp
(
i
(
−π

2
+ 2pπ

))
, p ∈ Z,

thus

z = exp
(
i
(
−π

8
+ p · π

2

))
, p = 0, 1, 2, 3.

It follows from

cos
π

8
=

√
cos π

4 + 1
2

=

√
1 + 1√

2

2
=

√√
2 + 1
2
√

2
=

√
2 +

√
2

2
,

and

sin
π

8
=

√
1 − cos π

4

2
=

√
1 − 1√

2

2
=

√√
2 − 1
2
√

2
=

√
2 −√

2
2

,

that

z1 = cos
π

8
− i sin

π

8
=

1
2

{√
2 +

√
2 − i

√
2 −√

2
}

,

z2 = i z1 =
1
2

{√
2 −√

2 + i
√

2 +
√

2
}

,

z3 = −z1 =
1
2

{
−
√

2 +
√

2 + i
√

2 −√
2
}

,

z4 = −i z1 =
1
2

{
−
√

2 −√
2 − i

√
2 +

√
2
}

.

Example 3.7 Compute

(−3 + 4i)−
3
2 .

It follows by inspection that

−3 + 4i = 1 − 4 + 2 · 2i = (1 + 2i)2,

thus

(−3 + 4i)
1
2 = ±(1 + 2i),

and hence

(−3 + 4i)−
3
2 =

1
(−3 + 4i)(−3 + 4i)

1
2

= ∓ 1
(−3 + 4i)(1 + 2i)

= ∓ (−3 − 4i)(1 − 2i)
25 · 5

= ± (3 + 4i)(1 − 2i)
125

= ±3 + 8 − 6i + 4i
125

= ±11 − 2i
125

.
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Example 3.8 Assume that n ∈ N \ {1}. Prove that

sin
π

n
· sin 2π

n
· · · sin (n − 1)π

n
=

n

2n−1
.

Hint: Prove that the left hand side can be written as
1

2n−1
times the product of the roots of the

polynomial (1 − z)n − 1, which are different from zero.

The equation (1 − z)n − 1 = 0 has the solutions

1 − z = exp
(

i
2pπ

n

)
, p = 0, 1, . . . , n − 1,

so when we rewrite each solution in the following way,

zp = 1 − exp
(

i
2pπ

n

)
= 1 − cos

2π
n

− i sin
2pπ

n
= 1 −

(
1 − 2 sin2 pπ

n

)
− i · 2 cos

pπ

n
· sin pπ

n

= 2 sin
pπ

n
·
(
sin

pπ

n
− i cos

pπ

n

)
= 2 sin

pπ

n
·
(

1
i

exp
(
i
pπ

n

))
,

The binomial equation
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then

sin
π

n
· sin 2π

n
· · · sin (n − 1)π

n
=

in−1

2n−1

n−1∏
p=1

exp
(
−i

pπ

n

) n−1∏
p=1

zp

=
in−1

2n−1
exp
(
−i

π

n
· 1
2

(n − 1)n
) n−1∏

p=1

zp =
1

2n−1
exp
(
(n − 1)i

π

2

)
exp
(
−(n − 1)i

π

2

) n−1∏
p=1

zp

=
1

2n−1

n−1∏
p=1

zp.

Now, we also have

(1 − z)n − 1 =
n∑

j=0

(
n
j

)
(−1)jzj − 1 =

n∑
j=1

(
n
j

)
(−1)jzj = −z

n−1∏
p=1

(zp − z)

= −
n−1∏
p=1

zp · z + · · · + (−z)n.

so by identifying the coefficients for j = 1 we get

−
n−1∏
p=1

zp =
(

n
1

)
(−1)1 = −n,

hence by insertion,

sin
π

n
· sin 2π

n
· · · sin (n − 1)π

n
=

n

2n−1
.

Example 3.9 Solve the equation zn = z for every n ∈ N.
Also, solve the equation, when n ∈ Z.

If n = 1, then the equation becomes z = z. The set of complex numbers which are equal to their
complex conjugated, is equal to the set of real number, hence the solution is R.

If n ≥ 2, then z = 0 is trivially a solution.
Then assume that z �= 0. Put z = r ei θ, r > 0, which gives

rneinθ = r e−iθ, r > 0,

thus

rn−1ei(n+1)θ = 1.

We conclude that r = 1 and θ =
2pπ

n + 1
, p = 0, 1, . . . , n, so the equation has the n + 2 solutions

z0 = 0 and zp = exp
(

i
2pπ

n + 1

)
, p = 1, 2, . . . , n + 1.

The binomial equation
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If n = 0, then the equation is reduced to z = 1, and it follows that the solution is z = 1.

Finally, let n < 0. If we write n = −m, m ∈ N, then z−m = z. In particular, 0 is never a solution.

If m = 1, then z−1 = z is rewritten as

1 = z · z = |z|2,

and the set of solutions is the unit circle.

When m > 1, we use polar coordinates z = r eiθ, so

1 = z zm = rm+1 · e−iθ · eimθ = rm+1ei(m−1)θ,

hence r = 1 and θ =
2pπ

m − 1
. Thus we obtain in this case m − 1 = |n| − 1 = −n − 1 solutions,

zp = exp
(

i
2pπ

m − 1

)
= exp

(
−i

2pπ

n + 1

)
, p = 1, 2, . . . ,m − 1 = −n − 1.

Example 3.10 Prove that the function

f(z) = 2x4 − 12x2y2 + 2y4 − 3x3 + 9xy2 + i
(
8x3y − 8xy3 − 9x2y + 3y3

)
,

can be written as a polynomial in the complex variable z.
Then find the roots.

Concerning polynomials, a good strategy is to identify the degrees of the pair (x, y), which occur. We
see that we have the degrees 4 and 3, and since

z4 = (x + iy)4 = x4 + 4ix3y − 6x2y2 − 4ixy3 + y4 = x4 − 6x2y2 + y4 + i
(
4x3y − 4xy3

)
and

z3 = (x + iy)3 = x3 + 3ix2y − 3xy2 − iy3 = x3 − 3xy2 + i
(
3x2y − y3

)
,

it follows that

f(z) = 2x4 − 12x2y2 + 2y4 − 3x3 + 9xy2 + i
(
8x3y − 8xy3 − 9x2y + 3y3

)
= 2

(
x4 − 6x2y2 + y4 + i

{
4x3y − 4xy3

})− 3
(
x3 − 3xy2 + i

{
3x2y − y3

})
= 2z4 − 3z3,

thus

f(z) = 2z4 − 3z3 = 2z3

(
z − 3

2

)
,

and the roots are z = 0 (of multiplicity 3) and the simple root z =
3
2
.

The binomial equation
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Example 3.11 (Eneström’s theorem). Given the real numbers p0, p1, . . . , pn, for which

p0 > p1 > p2 > · · · > pn > 0.

Prove that the polynomial

P (z) = p0 + p1z + p2z
2 + · · · + pnzn

does not have a zero in the open unit disc |z| < 1.
Hint: Consider (1 − z)P (z).

When we compute (1 − z)P (z) we obtain

(1 − z)P (z) =
(
p0 + p1z + p2z

2 + · · · + pnzn
)− (p0z + p1z

2 + · · · + pn−1z
n + pnzn+1

)
= p0 − (p0 − p1) z − (p1 − p2) z2 − · · · − (pn−1 − pn) zn − pnzn+1.

According to we assumption we have pj−1 − pj > 0, so when |z| < 1 we get the estimate

|(1 − z)P (z)| > p0 − (p0 − p1) − (p1 − p2) − · · · − (pn−1 − pn) − pn = 0,

and we conclude that (1 − z)P (z) �= 0 for |z| < 1, so in particular that P (z) does not have any zero
in the open unit disc.

The binomial equation
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4 Equations of second degree

Example 4.1 Let z0 ∈ C \ {0}. Solve the equation

1
z + z0

=
1
z

+
1
z0

.

Here we of course must assume that z �= 0 and z �= −z0. When we multiply by the common
denominator z0z (z + z0), we get

z0z = (z + z0) z0 + z (z + z0) = z0z + z2
0 + z2 + zz0

(
= (z + z0)

2
)

,

and we obtain the equation

z2 + z0z + z2
0 = 0,

the solutions of which are

z =
−z0 ±

√
z2
0 − 4z2

0

2
= z0

(
−1

2
± i

√
3

2

)
.

Remark 4.1 Many years ago, in the 1970s, I constructed this example, because many of my students
erroneously believed that one always had

1
a + b

=
1
a

+
1
b
.

It will be proved below that this is never true in R. Furthermore, it is proved that there are complex
solutions, but they do not match with the wrong “rule of calculation”. ♦

Example 4.2 Find the roots of z2 + (6 + i)z + 7 − 3i.

When we apply the solution formula, we get

z =
−(6 + i) ±√(6 + i)2 − 4(7 − 3i)

2
=

1
2

{
−6 − i ±√

35 + 12i − 28 + 12i
}

=
1
2

{
−6 − i ±√

7 + 24i
}

=
1
2

{
−6 − i ±√

16 − 9 + 24i
}

=
1
2

{
−6 − i ±

√
42 + (3i)2 + 2 · 4 · 3i

}
=

1
2

{
−6 − i ±

√
(4 + 3i)2

}
=

1
2
{−6 − i ± (4 + 3i)}

=

⎧⎪⎪⎨
⎪⎪⎩

1
2
{−2 + 2i} = −1 + i,

1
2
{−10 − 4i} = −5 − 2i,
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so the roots are

z1 = −1 + i and z2 = −5 − 2i.

A check shows that the sum of the roots is

(−1 + i) + (−5 − 2i) = −6 − i = −(6 + i),

i.e. the coefficient of z of the opposite sign, and the product of the roots is

(−1 + i)(−5 − 2i) = 5 + 2 − 5i + 2i = 7 − 3i,

i.e. equal to the constant term of the polynomial. We see that the check is OK. ♦

Remark 4.2 If one does not see immediately that 7 = 42−32, then we may try to solve the equation
(a + ib)2 = 7 + 24i. This gives us the equations

a2 − b2 = 7 og 2ab = 24,

hence(
a2 + b2

)2
=
(
a2 − b2

)2
+ (2ab)2 = 72 + 242 = 49 + 576 = 625 = 252,

and thus

a2 + b2 = 25,

so when we combine it with a2 − b2 = 7 we obtain a2 = 16 and b2 = 9.

Example 4.3 Solve the equation

1
2

(
z +

1
2

)
= a for a ∈ C.

Prove that the equation has precisely one solution in the open unit disc |z| < 1, if and only if a does
not belong to the real interval [−1, 1].

Here we must assume that z �= 0. Then by a multiplication by 2z and a rearrangement we get

(4) z2 − 2a z + 1 = 0,

the solutions of which are

z = a ±
√

a2 − 1.

Denote the roots by z1 and z2. The structure of (4) shows that the product of the roots is 1, hence
z1 · z2 = 1. If therefore e.g. |z1| ≥ 1, then we necessarily must |z2| ≤ 1, and vice versa. This shows
that we have precisely one solution in the open unit disc |z| < 1, if and only if the other solution lies
in the open complementary set |z| > 1of the closed unit disc.
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The condition that this is not the case is equivalent to |z1| = |z2| = 1. Let z be a shorthand for any
of these solutions. Then z = eiθ, if |z| = 1, and it follows by insertion that

a =
1
2

(
z +

1
z

)
=

1
2
(
eiθ + e−iθ

)
= cos θ.

This shows that a goes through the interval [−1, 1] twice, when θ goes through the parameter interval
[0, 2π] once.
Therefore, if a /∈ [−1, 1], then there is precisely one solution in the open unit disc |z| < 1.
Finally, if a ∈ [−1, 1], then it follows from

z = a ±
√

a2 − 1 = a ± i
√

1 − a2, 1 − a2 ≥ 0,

that

|z|2 = a2 + 1 − a2 = 1,

and we have proved that in this case both z1 and z2 lie on the unit circle.

Remark 4.3 The function

f(z) =
1
2

(
z +

1
z

)
, z �= 0,

is also called Joukovski’s function. It was many years ago applied by Joukovski in order to describe
the streamlines around the wing of an aeroplane. ♦

Example 4.4 Prove that 1 ± i are the roots of the polynomial

z4 − 2z3 + 3z2 − 2z + 2.

Then find all its roots.

First method. It is seen by inspection that

z4 − 2z3 + 3z2 − 2z + 2 =
(
z4 − 2z3 + 2z2

)
+
(
z2 − 2z + 2

)
=
(
z2 + 1

) (
z2 − 2z + 2

)
=
(
z2 − 1

) ({z − 1}2 + 1
)
,

hence the roots are z = ±i and z = 1 ± i.

Second method. When 1 ± i are roots, then

(z − {1 + i})(z − {1 − i}) = ({z − 1} − i)({z − 1} + i) = (z − 1)2 + 1 = z2 − 2z + 2

must be a divisor in the polynomial. Again we find that

z4 − 2z3 + 3z2 − 2z + 2 =
(
z2 + 1

) (
z2 − 2z + 2

)
,

so the roots are z = ±i and 1 ± i.
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Example 4.5 Given that 1 − i is a root, find all the roots of the polynomial

z4 − 2z3 + 6z2 − 8z + 8.

First method. It is seen by inspection that

z4 − 2z3 + 6z2 − 8z + 8 = z4 − 2z3 + 2z2 + 4z2 − 8z + 8 =
(
z2 + 2

) (
z2 − 2z + 2

)
=
(
z2 + 22

) ({z − 1}2 + 1
)
,

and we get immediately the roots z = ±2i and z = 1 ± i.

Second method. The polynomial has only real coefficients, so the roots are either real, or pairwise
complex conjugated. Thus, since 1 − i is a root, also 1 + i must be a root, hence

(z − {1 − i})(z − {1 + i}) = ({z − 1} + i)({z − 1} − i) = z2 − 2z + 2

must be a. By a polynomial division we get

z4 − 2z3 + 6z2 − 8z + 8 =
(
z2 + 4

) (
z2 − 2z + 2

)
,

and it follows as before that the roots are z = ±2i and z = 1 ± i.
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Remark 4.4 It is worth mentioning that a division by

z − {1 − i} = z − 1 + i

will give some very unpleasant calculations and that such a division only reduces the problem to a
messy equation of third degree. Therefore, one should always exploit the the roots are either real or
pairwise conjugated, if the polynomial has real coefficients. ♦

Example 4.6 Solve the equation
(
z4 − 16

) (
z3 + 1

)
= 0.

It is seen by inspection that the four roots of z4 − 16 are 2, 2i, −2, −2i, and that the three roots of

z3 + 1 are −1,
1
2

+ i

√
3

2
,

1
2
− i

√
3

2
. Hence, the seven roots are

2, 2i, −2, −2i, −1,
1
2

+ i

√
3

2
,

1
2
− i

√
3

2
.

Remark 4.5 The example is of course trivial, when it is solved in this way. However, it is a warning
against starting by multiplying the two factors, in which case one shall get the equation of seventh
degree:

z7 + z4 − 16z3 − 16 = 0.

This is not very smart, even if it in this case is possible to guess the rational roots z = −2, −1 and 2.
Then we get by the usual reduction that

z7 + z4 − 16z3 − 16 = (z + 2)(z + 1)(z − 2)
(
z4 − z3 + 5z2 − 4z + 4

)
= 0,

and the problem has now been “reduced” to finding the roots of the equation

z4 − z3 + 5z2 − 4z + 4,

which does not look very promising.

The lesson here is that one in almost every case should keep a given factorization and not multiply
the factors. ♦
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Example 4.7 Solve the equations

(a) z3 + 3 = 0, (b) z4 + 16 = 0,
(c) z8 − 2z4 + 1 = 0, (d) z3 + z2 + z + 1 = 0.

(a) The binomial equation is here written as

z3 = −3 = 3 ei(π+2pπ), p ∈ Z,

thus

z = 3
√

3 · exp
(

i

{
π

3
+

2pπ

3

))
, p = 0, 1, 2.

More precisely,

z0 = 3
√

3

(
1
2

+ i

√
3

2

)
, z1 = − 3

√
3, z2 = 3

√
3

(
1
2
− i

√
3

2

)
.

(b) The binomial equation is here written

z4 = −16 = 24ei(π+2pπ), p ∈ Z,

thus

z = 2 exp
(
i
{π

4
+ p · π

2

})
, p = 0, 1, 2, 3.

More precisely,

z0 = 2
(

1√
2

+ i
1√
2

)
=

√
2 (1 + i), z1 = i z0 =

√
2 (−1 + i),

z2 = −z0 = −√
2 (1 + i), z3 = −z1 =

√
2 (1 − i).

(c) The equation is a disguised equation of second degree in z4, so

0 = z8 − 2z4 + 1 =
(
z4 − 1

)2
,

and it follows that the eight roots are

1, 1, i, i, −1, −1, −i, −i,

because the binomial equation z4 − 1 = 0 has the four roots 1, i, −1, −i.

(d) It follows by inspection that

z3 + z2 + z + 1)z2(z + 1) + (z + 1) = (z + 1)
(
z2 + 1

)
,

and we conclude that the roots are −1, i and −i.

Alternatively it is seen that z3+z2+z+1 are the first four terms of a quotient series. Therefore,
if z �= 1, then

z3 + z2 + z1 =
z4 − 1
z − 1

, z �= 1.

The numerator z4−1 has the four roots 1, i, −1, −i, and when z = 1, it follows that z3+z2+z+1 =
4 �= 0. Therefore, we conclude that the three roots are i, −1, −i.
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Example 4.8 Prove that all the roots of the equation

(z + 1)5 + z5 = 0

lie on the line x = −1
2
.

Then prove that this is in general the case of the roots of the equation

(z + 1)n + zn = 0,

for every n ∈ N.

We shall immediately prove the general result. Clearly, z = 0 is not a solution of the equation. When
we divide by zn, the equation becomes(

z + 1
z

)n

+ 1 = 0.

By putting w =
z + 1

z
we get the binomial equation wn = −1, and in particular |w| = 1.

We then check what the unit circle |w| = 1 is mapped into by the inverse transformation

z =
1

w − 1
.

If we here put w = eiθ, θ �= 2pπ, p ∈ Z, i.e. w �= 1, then

z =
1

eiθ − 1
=

e−iθ − 1
(eiθ − 1) (e−iθ − 1)

=
cos θ − 1 − i sin θ

1 + 1 − (eiθ + e−iθ)
=

cos θ − 1 − i sin θ

2(1 − cos θ)

= −1
2
− i · sin θ

2(1 − cos θ)
.

Therefore, every root z = x + iy of the original equation must therefore have the form

z = −1
2

+ i · sin θ

2(cos θ − 1)
= −1

2
+ i · 2 sin θ

2 cos θ
2

2
(
1 − 2 sin2 θ

2 − 1
) = −1

2
− i

2
cot

θ

2
,

and it follows that the real part is always x = −1
2

as required.

Remark 4.6 It also follows from the above that since wn = −1, then

θ =
(2p + 1)π

n
, p = 0, 1, . . . , n − 1,

hence by an insertion,

zp = −1
2
− i

2
cot
(

(2p + 1)π
2n

)
, p = 0, 1, . . . , n − 1. ♦
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Example 4.9 Find all the complex solutions of the equation

{
z2 − 2(1 + i)z − 2

}2
= −8i.

This equation can also be written

w2 = −8i, where w = z2 − 2(1 + i)z − 2.

Let us first solve the binomial equation:

w = ±2(1 − i).

By insertion we get two equations of second degree, which are solved in the usual way:

1) If w = 2(1 − i), then after a reduction

z2 − 2(1 + i)z − 2i = 0,

hence

z = 1 + i ±√
2i + 2i = 1 + i ±

√
2(1 + i).

2) If w = −2(1 − i), then after a reduction

z2 − 2(1 + i) + 2i − 4 = 0,

hence

z = 1 + i ±√
2i − 2i + 4 = 1 + i ± 2.

Summing up, the given equation of fourth degree has the roots

(1 +
√

2)(1 + i), (1 −
√

2)(1 + i), 3 + i, −1 + i.
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5 Rational and multiple roots in polynomials

Example 5.1 Find all the roots of the polynomial

p(z) = z3 − (1 + 2i)z2 − (1 − 2i)z + 1,

given that it has a multiple root.

Since

p′(z) = 3z2 − (2 + 4i)z − (1 − 2i),

it follows by the usual algorithm of division that

p(z) =
{

1
3

z − 1 + 2i
9

}
p′(z) +

4
9

iz +
4
9

=
{

13 z − 1 + 2i
9

}
p′(z) +

4
9

i (z − i).

The multiple root is a root in both p(z) and in p′(z), so it follows that it must be z = i.

Since now z = i is a root of at least second order, (z − i)2 = z2 − 2iz − 1 must be a divisor in p(z).
We obtain by division that

p(z) = z3 − (1 + 2i)z2 − (1 − 2i)z + 1 = (z − 1)(z − i)2,

and the three roots are 1, i and i.
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Example 5.2 Find all the roots of the equation

4z4 − 4z3 − 25z2 + z + 6 = 0.

It follows by an inspection that

4z4 − 4z3 − 25z2 + z + 6 = 4z4 − 4z3 − 24z2 − z2 + z + 6

= 4z2
(
z2 − z − 6

)− (z2 − z − 6
)

=
(
4z2 − 1

) (
z2 − z − 6

)
= 4
(

z − 1
2

)(
z +

1
2

)
(z − 3)(z + 2).

We conclude that the roots are

−2, −1
2
,

1
2
, 3.

Alternatively, the equation has only integers as coefficients, hence the possible rational roots must
be among

±6, ±3, ±3
2
, ±3

4
, ±2, ±1,±1

2
, ±1

4
,

thus only 16 possibilities. By using a pocket calculator we get

P (6) = 3432, P (1) = −18, P (−6) = 5148, P (−1) = −12,
P (3) = 0, P ( 3

4 ) = −7, 734374, P (−3) = 210, P (− 3
4 ) = −5, 859375,

p(2) = −60, p( 1
2 ) = 0, P (−2) = 0, p(− 1

2 ) = 0,
p(3

2 ) = −42, P ( 1
4 ) = 4, 640625, P (− 3

2 ) = −18, P (− 1
4 ) = 4, 265625.

It follows from this table that 3, −2,
1
2

and −1
2

are indeed roots. Since a polynomial of fourth degree

has precisely 4 roots (counted by multiplicity), we have found all the roots.

Example 5.3 Find the possible multiple roots of the polynomial

4z5+(8+16i)z4+(−27+32i)z3−(29+44i)z2+(44+12i)z−12,

and then find all roots.

This is a difficult example, because the polynomial is of fifth degree, and because the coefficients are
complex. A pocket calculator will here be quite helpful, though I did not use one while I was working
on this example).

It follows after a differentiation that the task is to find all the common divisors of

(5)

⎧⎨
⎩

4z5+(8+16i)z4+(−27+ 32i)z3+(−29−44i)z2+(44+12i)z−12,

20z4+(32+64i)z3+(−81+96i)z2+(−58−88i)z+(44+12i).

The former polynomial of (5) is multiplied by med 5, and the latter with z. This gives⎧⎨
⎩

20z5+(40+80i)z4+(−135+160i)z3+(−145−220i)z2+(220+60i)z−60,

20z5+(32+64i)z4+(−81+96i)z3+(−58−88i)z2+(44+12i)z,

Rational and multiple roots in polynomials
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hence by a subtraction,

(8+16i)z4+(−54+64i)z3+(−87−132i)z2+(176+48i)z−60,

and we have obtained a polynomial of fourth degree which also must have the multiple root as a root.
The coefficients of the highest order term is 8 + 16i = 8(1 + 2i), so we multiply the latter polynomial
by 1 − 2i. Then

40z4+(74+172)z3+(−351+42i)z2+(272−304i)z−60+120i,

which also must have the possible multiple roots as roots.
If we subtract twice times the latter polynomial of (5), from this polynomial, we obtain the following
reduce polynomial, which also has the wanted roots as some of its roots,

(10+44i)z3+(−189−150i)z2+(388−128i)z+(−148+96i).

Since 10 + 44i = 2(5 + 22i), we obtain a “nicer” expression which we multiply this polynomial by
5 − 22i, hence

1018z3+(−4245+3408i)z2+(−876−9176i)z+(1372+3736i).

We have now reduced our system to

(6)

⎧⎨
⎩

20z4+(32+64i)z3+(−81+96i)z2+(−58−88i)z+(44+12i),

1018z3+(−4245+3408)z2+(−876−9176i)z+(1372+3736i).

If we multiply the former polynomial of (6) by 509 and the latter by 10z, then we get the following
rather messy system,⎧⎨
⎩

10 180z4+(16 288+32 576i)z3+(−41 229+48 864i)z2 +(−29 522−44 792i)z+(22 396+6 108i),

10 180z4+(−42 450+34 080i)z3+(−8 760−91 760i)z2 +(13 720+37360i)z,

hence by a subtraction,

(58 738−1 504i)z3+(−32 469+140 624i)z2 +(−43 242−82 152i)z+(22 396+6 108i).

This expression is then multiplied by 1018,

(59 795 284−1 531 072i)z3+(−33 053 442+143 153 232i)z2

+(−44 020 356−83 630 736i)z+(22 799 128+6 217 944i),

which should be linked with the latter expression of (6) when it is multiplied by 58 738− 1 504i, thus

(59 795 284−1 531 072i)z3+(−244 217 178+206 563 584i)z2

+(−65 255 192 − 537 662 384i)z + (86 207 480 + 217 381 680i).

Then by a subtraction,

(211 163 736−63 408 532i)z2+(21 234 836+454 031 648i)z +(−63 408 352−211 163 736i).

A division by 4 reduces this polynomial to

52 790 934−15 852 088i)z2+(5 308 709+113 507 912i)z +(−15 852 088i−52 790 934i).
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Then we see that 49 is also a divisor, so we can reduce to

(1 077 366−323 512i)z2+(108 341+2 316 488i)z+(−323 512−1 077 366i).

Then we multiply by 1 077 366 + 323 512i, in order to get

1 265 377 512 100z2+(−632 688 756 050+2 530 755 024 200)z−1 265 377 512 100
= 632 688 756 055

{
2z2 + (−1 + 4i)z − 2i

}
.

The task has now been reduced to find the common roots of the system

(7)

⎧⎨
⎩

4z5+(8+16i)z4+(−27+32i)z3+(−29−44i)z2+(44+12i)z−12 = 0,

2z2+(−1+4i)z−2i = 0,

where we use the original polynomial as our first one, because it looks ‘simplest’, concerning the
coefficients. Notice that any of the polynomials derived above could be used instead.
Then again we perform a division by polynomials, but this time we (fortunately) obtain

4z5+(8+16i)z4+(−27+32i)z3+(−29−44i)z2+(44+12i)z−12
=
(
2z2+{−1+4i}z−2i

) (
2z3+{5+4i}z2+{−3+10i}z−6i

)
.

According to the theory, the roots of 2z2 + {−1 + 4i}z − 2i must be double roots of the original
polynomial. Hence, we can perform another division by a polynomial, which gives us

4z5+(8+16i)z4+(−27+32i)z3+(−29−44i)z2+(44+12i)z−12 =
(
2z2+{−1+4i}z−2i

)2
(z + 3).

Therefore, we shall only find the roots of

2z2 + (−1 + 4i)z − 2i.

We get by using the usual solution formula,

z =
1 − 4i ±√(1 − 4i)2 + 4 · 2 · 2i

4
=

1 − 4i ±√−15 − 8i + 16i
4

=
1 − 4i ±√−15 + 8i

4

=
1 − 4i ±√1 + (4i)2 + 2 · 1 · 4i

4
=

1 − 4i ±√(1 + 4i)2

4
=

1 − 4i ± (1 + 4i)
4

=

⎧⎪⎨
⎪⎩

1
2
,

−2i.

The factorial expansion is therefore

4
(

z − 1
2

)2

(z + 2i)2(z + 3),

and the roots are

1
2
,

1
2
, −2i, −2i, −3.

Remark 5.1 Once again we see why man should always keep a factorial expansion as long as possible.
One loses a lot of information by multiplying the factors. ♦
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Remark 5.2 The computations above may be performed in various ways, some of them will not give
as awkward numbers as the method above. The purpose here has only been to demonstrate what may
happen if one slavic follows the standard method without using one’s brain. ♦

Remark 5.3 It is also worth mentioning that there exists an alternative method of solution. In
the actual case it will also lead to huge computations, but one advantage is that all its coefficients will
remain real. The idea is that if one splits int the real and the imaginary part,

P (z) = 4z5+(8+16i)z5+(−27+32i)z3+(−29−44i)z2+(44+12i)z−12
=
{
4z5+8z4−27z3−29z2+44z−12

}
+ i
{
16z4+32z3−44z2+12z

}
=
{
4z5+8z4−27z3−29z2+44z−12

}
+ 4iz

{
4z4+8z3−11z2+3z

}
,

we conclude that the possible real roots necessarily must be real roots of both the real part and the
imaginary part. Now, z = 0 is not a roots, so we shall find the common divisors of{

4z5 + 8z4 − 27z3 − 29z2 + 44z − 12,
4z3 + 8z2 − 11z + 3.

Rational and multiple roots in polynomials
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When we apply the method of division of polynomials, we get the even better result, namely that the
division is successful,

4z5+8z4−27z3−29z2+44z−12 =
(
4z3+8z2−11z+3

) (
z2−4

)
.

Hence,

P (z) =
{
4z5 + 8z4 − 27z3 − 29z2 + 44z − 12

}
+ 4iz

{
4z3 + 8z2 − 11z + 3

}
=
(
z2 + 4iz − 4

) (
4z3 + 8z2 − 11z + 3

)
= (z + 2i)2

(
4z3 + 8z2 − 11z + 3

)
.

Here we can check in the latter factor, if

±3, ±3
2
, ±3

4
, ±1, ±1

2
, ±1

4
,

are roots. Alternatively we may check if there are other multiple roots, i.e. we shall find the common
divisors of{

4z3 + 8z2 − 11z + 3,
12z2 + 16z − 11.

The former polynomial is multiplied by 3 and the latter by z. This gives the equivalent system{
12z3 + 24z2 − 33z + 9,
12z3 + 16z2 − 11z,

hence by a subtraction, 8z2 − 22z + 9, and the task has been reduced to finding a common divisor of{
12z2 + 16z − 11,
8z2 − 22z + 9.

First we write this system as{
24z2 + 32z − 22.
24z2 − 66z + 27,

Then by a subtraction, 98z − 49, and thus z =
1
2
. Finally, by insertion,

4 · 1
23

+ 8 · 1
22

− 11 · 1
2

+ 3 =
1
2

+ 2 − 11
2

+ 3 = 0,

and z =
1
2

is a root of multiplicity 2.
When we divide by

(2z − 1)2 = 4z2 − 4z + 1,

we get

4z3 + 8z2 − 11z + 3 = z
(
4z2 − 4z + 1

)
+ 12z2 − 12z + 3

= z
(
4z2 − 4z + 1

)
+ 3
(
4z2 − 4z + 1

)
= (z + 3)(2z − 1)2,

and we have again proved that

P (z) = (2z − 1)2(z + 2i)2(z + 3).
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Example 5.4 Find all the possible multiple roots of the polynomial

z5+(9+i)z4+(27+10i)z3+(23+37i)z2+(−24+60i)z−36+36i,

and find all its roots.

After we have been taught a lesson in Example 5.3 we first try to find the possible real roots. These
must be the common roots of the polynomials⎧⎨
⎩

z5 + 9z4 + 27z3 + 23z2 − 24z − 36 = PRe(z)

z4 + 10z3 + 37z2 + 60z + 36 = PIm(z).

When we multiply by z, we get

z5 + 10z4 + 37z3 + 60z2 + 36z = z · PIm(z),

and we conclude that

PRe(z) = z5 + 9z4 + 27z3 + 23z2 − 24z − 36 = (z − 1)PIm(z),

thus

P (z) = PRe(z) + i PIm(z) = (z − 1 + i)
(
z4 + 10z3 + 37z2 + 60z + 36

)
.

This proves that 1 − i is a root, and the task has been reduced to finding the multiple roots of

z4 + 10z3 + 37z2 + 60z + 36,

i.e. we shall find the common divisors of

(8)

⎧⎨
⎩

z4 + 10z3 + 37z2 + 60z + 36,

4z3 + 30z2 + 74z + 60.

When the former polynomial of (8) is multiplied by 4 and the latter by z, we obtain the following
equivalent system,⎧⎨
⎩

4z4 + 40z3 + 148z2 + 240z + 144,

4z4 + 30z3 + 74z2 + 60z,

thus we get by a subtraction the polynomial

10z3 + 74z2 + 180z + 144.

We have now reduced (8) to the simpler and equivalent system

(9)

⎧⎨
⎩

10z3 + 74z2 + 180z + 144,

2z3 + 15z2 + 37z + 30,

where the latter expression of (9) stems from the latter expression of (8) after a division by 2.
When the latter expression of (9) is multiplied by 5, then

10z3 + 75z2 + 185z + 150.

Rational and multiple roots in polynomials

Download free eBooks at bookboon.com



Complex Funktions c-1

 

69  

From this we subtract the former expression of (9) in order to get

z2 + 5z + 6 = (z + 2)(z + 3).

Then put z = −2 and z = −3, into P (z) = (z − 1 + i)PIm(z), i.e. we check the solution,

P (−2) = P (−3) = 0,

because

PIm(−2) = 24 − 10 · 23 + 37 · 22 − 60 · 2 + 36 = 16 − 80 + 148 − 120 + 36 = 0,

PIm(−3) = 34 − 10 · 33 + 37 · 32 − 60 · 3 + 36 = 9(9 − 30 + 37 − 20 + 4) = 0.

According to the theory, both −2 and −3 are multiple roots (of multiplicity 2), thus

P (z) = (z − 1 + i)(z + 2)2(z + 3)2,

and the roots are

1 − i, −2, −2, −3, −3.

Alternatively we demonstrate in the following what happens, if we instead apply the standard
method. It follows after a differentiation that we shall find the common divisors of⎧⎨
⎩

z5+(9+i)z4+(27+10i)z3+(23+37i)z2+(−24+60i)z−36+36i,

5z4+(36+4)z3+(81+30i)z2+(46+74i)z+(−24+60i).

Multiply the former polynomial by 5 and the latter by z. Then⎧⎨
⎩

5z5+(45+5i)z4+(135+50i)z3+(115+185i)z3+(−120+300i)z−180+180i,

5z5+(36+4i)z4+(81+30i)z3+(46+74i)z2+(−24+60i)z,

hence by a subtraction

(9+i)z4+(54+20i)z3+(69+111i)z2+(−96+240i)z−180+180i.

When we multiply by 9 − i we obtain the polynomial

82z4+(506+126i)z3+(732+930i)z2+(−624+2256i)z+(−1440+1800i),

and it follows after a division by 2 that we shall find the common divisors of⎧⎨
⎩

41z4+(253+3i)z3+(366+465i)z2+(−312+1128i)z+(−720+900i),

5z4+(36+4i)z3+(81+30i)z2+(46+74i)z+(−24+60i).

Multiply the former polynomial by 5 and the latter by 41. Then we obtain the equivalent system⎧⎨
⎩

205z4+(1265 + 315i)z3+(1830+2325i)z2+(−1560+5640i)z+(−3600+4500i),

205z4+(1476+164i)z3+(3321+1230i)z2+(1886+3034i)z+(−984+2460i).
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By a subtraction,

(211−151i)z3+(1491−1095i)z2+(3446−2606i)z+(2616−2040i),

and we have got the system⎧⎨
⎩

5z4+(36+4i)z3+(81+30i)z2+(46+74i)z+(−24+60i),

(211−151i)z3+(1491−1095i)z2+(3446−2606i)z+(2616−2040i).

The former polynomial is multiplied by 211 − 151i, and the latter by 5z. then⎧⎨
⎩

(1055−755i)z4+(8200−4592i)z3+(21621−5901i)z2+(20880 + 8668i)z + (3996 + 16284i),

(1055−755i)z4+(7455−5475i)z3+(17230−13030i)z2 + (13080 − 10200i)z,

and hence by a subtraction,⎧⎨
⎩

(745+883i)z3+(4391+7129i)z2+(7800+18868i)z+(3996+16284i)

(211−151i)z3+(1491−1095i)z2+(3446−2606i)z+(2616−2040i).
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We get⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(290 528 + 73 818i)z3 + (2 002 980 + 841 178i)z2

+(4 494 868 + 2 803 348i)z + (3 302 040 + 2 832 528i),

(290 528 + 73 818i)z3 + (2 077 680 + 500 778i)z2

(4 868 368 + 1 101 348i)z + (3 750 240 + 790 128i).

Then by another subtraction,

(74 700−340400i)z2+(373 500−1 702 000i)z+(448 200−2 042 400i).

Here we can remove the common factor 100, so

(747 − 3404i)z2 + (3735 − 17020i)z + (4482 − 20424i).

Now,

3735 − 17020i = 5(747 − 3404i),
4482 − 20424i = 6(747 − 3404i),

so when we divide the polynomial by 747 − 3404i, we get

z2 + 5z + 6.

Then by another division,

z5+(9+i)z4+(27+10i)z3+(23+37i)z2+(−24+60i)z−36+36i
=
(
z2 + 5z + 6

) (
z3 + (4 + i)z2 + (1 + 5i)z + (−6 + 6i)

)
.

Since this division was successful, the roots of z2 + 5z + 6 must be double roots, so z2 + 5z + 6 must
again be a divisor. Then

z3+(4+i)z2+(1+5i)z+(−6+6i) =
(
z2+5z+6

)
(z−1+i),

and we finally obtain the factorial expansion

P (z) = (z − 1 + i)
(
z2 + 5z + 6

)2
= (z − 1 + i)(z + 2)2(z + 3)2.

It follows that the roots are

1 − i, −2, ,−2, −3, −3.
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6 Symbolic currents and voltages

Example 6.1 Let ι1 = I1 sin (ωt + ϕ1) and ι2 = I2 sin (ωt + ϕ2) be two sine currents. Find

ι = ι1 + ι2 = I sin(ωt + ϕ),

first by using the trigonometric addition formulæ, and then by using complex currents.

The addition formulæ. We get by a direct computation that

ι = ι1 + ι2 = I1 sin (ωt + ϕ1) + I2 sin (ωt + ϕ2)
= I1 sinωt · cos ϕ1 + I2 sinωt · cos ϕ2 + I1 cos ωt · sinϕ1 + I2 cos ωt · ϕ2

= {I1 cos ϕ1 + I2 cos ϕ2} sinωt {I1 sinϕ1 + I2 sinϕ2} cos ωt,

and

ι = I sin(ωt + ϕ) = I cos ϕ · sinωt + I sinϕ · cos ωt, t ∈ R.

When we identify the two expressions we obtain the equations

(10)

⎧⎨
⎩

I cos ϕ = I1 cos ϕ1 + I2 cos ϕ2,

I sinϕ = I1 sinϕ1 + I2 sinϕ2,

hence

I2 = I2 cos2 ϕ + I2 sin2 ϕ = (I1 cos ϕ1 + I2 cos ϕ2)
2 + (I1 sinϕ1 + I2 sinϕ2)

2

= I2
1 cos2 ϕ1 + 2I1I2 cos ϕ1 cos ϕ2 + I2

2 cos2 ϕ2 + I2
1 sin2 ϕ1 + 2I1I2 sinϕ1 sinϕ2 + I2

2 sin2 ϕ2

= I2
1 + I2

2 + 2I1I2 cos (ϕ1 − ϕ2) ,

so

I =
√

I2
1 + I2

2 + 2I1I2 cos (ϕ1 − ϕ2),

and ϕ is described by the equations

cos ϕ =
I1

I
cos ϕ1 +

I2

I
cos ϕ2, sinϕ =

I1

I
sinϕ1 +

I2

I
sinϕ2.

The complex current. If we instead use the complex current, we get

Ĩ = I eiϕ = I1e
iϕ1 + I2e

iϕ2 = I1 cos ϕ1 + I2 cos ϕ2 + i {I1 sinϕ1 + I2 sinϕ2} ,

and we conclude again (10).
The remaining part of the example is then treated as in the first variant.
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7 Geometrical point sets

Example 7.1 Find the plan point sets which are defined by the conditions

(a) |z − a| + |z − b| = k, (b)|z − a| + |z − b| ≤ k,

where a, b ∈ C and k ∈ R+, and where k > |a − b|.

(a) 1) The geometric condition is:
• Find all point z, for which the sum of the distances from z to a and from z to b is a constant

k.
This is the definition of an ellipse with the focal points a and b. If, however, a = b, then we

get a circle instead of centrum a and radius
k

2
.

2) Analytically this is proved in the following way:
Put

z = x + iy, a = a1 + ia2 and b = b1 + ib2.

Then the equation becomes√
(x − a1)

2 + (y − a2)
2 = k −

√
(x − b1)

2 + (y − b2)
2 (≥ 0).

By squaring,(
x2 − 2a1x + a2

1

)
+
(
y2 − 2a2y + a2

2

)
= k2 +

(
x2 − 2b1x + b2

1

)
+
(
y2 − 2b2y + b2

2

)− 2k
√

(x − b1)
2 + (y − b2)

2
.

This equation is rewritten as

2k
√

(x − b1)
2 + (y − b2)

2 = 2 (a1 − b1)x + 2 (a2 − b2) y +
{
k2 + b2

1 + b2
2 − a2

1 − a2
2

}
.

By another squaring we get qualitatively the equation of an ellipse,

A2 (x1 − α)2 + B2 (y1 − β)2 = C2,

where x1 and y1 are linear expressions in x and y, and where x1 and y1 are linearly independent.
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(b) In this case we only add all the interior points of the ellipse.

Example 7.2 Find the set of all points in C, for which

(a) |z − 2| = |z − 2i|, (b) |z − 2| = 2|z − 2i|.

–2

–1

1

2

–2 –1 1 2
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(a) Geometrically, {z ∈ C | |z − 2| = |z − 2i|} is the set of all points z, which have the same distance
from 2 and 2i, thus a bisector.
By considering a figure we see that this bisector is

{z ∈ C | z = t(1 + i), t ∈ R}.
Alternatively the condition |z − 2| = |z − 2i| is equivalent to

|z − 2|2 = (x − 2)2 + y2 = |z − 2i|2 = x2 + (y − 2)2,

thus

x2 − 4x + 4 + y2 = x2 + y2 − 4y + 4,

which is reduced to y = x.

1

2

3

4

–2 –1 1 2

(b) The equation |z − 2| = 2|z − 2i| is equivalent to

|z − 2|2 = (x − 2)2 + y2 = 4|z − 2i|2 = 4
{
x2 + (y − 2)2

}
,

hence

x2 − 4x + 4 + y2 = 4x2 + 4y2 − 16y + 16.

Then by a reduction,

3x2 + 3y2 + 4x − 16y + 12 = 0.

A division by 3 and an addition of some convenient terms give

x2 +
4
3

x +
(

2
3

)2

+ y2 − 16
3

y +
(

8
3

)2

=
(

2
3

)2

+
(

8
3

)2

− 4 =
4
9

+
64
9

− 36
9

=
32
9

,

and we get(
x +

2
3

)2

+
(

y − 8
3

)2

=
32
9

=
(

4
3

√
2
)2

.

The set is a circle of centrum
(
−2

3
,
8
3

)
and of radius

4
3
√

2.
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Example 7.3 Find the set of points in C, for which

(a) |z − 1| + |z + 1| = 3, (b) |z − 1| − |z + 1| = 1.

(a) Here we get an ellipse, cf. Example 7.1.
If we put z = x + iy, then the equation is also written√

(x − 1)2 + y2 = 3 −
√

(x + 1)2 + y2 (≥ 0),

hence by a squaring,

x2 − 2x + 1 + y2 = x2 + 2x + 1 + y2 + 9 − 6
√

(x + 1)2 + y2.

A reduction gives

6
√

(x + 1)2 + y2 = 9 + 4x
(
≥ 0, dvs. x ≥ −9

4

)
.

Then by another squaring,

36x2 + 72x + 36 + 36 + 36y2 = 81 + 16x2 + 72x,
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which is reduced to 20x2 + 36y2 = 45, or to an equation of an ellipse of centrum (0, 0) and of half
axes√

45
20

=
3
2

and

√
45
36

=
√

5
2

.

(b) Here we get an arc of an hyperbola.
If we put z = x + iy, we can also write the equation√

(x − 1)2 + y2 = 1 +
√

(x + 1)2 + y2 (≥ 1),

hence by a squaring,

x2 − 2x + 1 + y2 = x2 + 2x + 1 + y2 + 1 + 2
√

(x + 1)2 + y2.

This is reduced to

2
√

(x + 1)2 + y2 = −4x − 1
(
≥ 0, thus x ≤ −1

4

)
.

Then by another squaring,

4x2 + 8x + 4 + 4y2 = 16x2 + 8x + 1, x ≤ −1
4
,

which is reduced to

12x2 − 4y2 = 3, x ≤ −1
4
,

or in its normal form,{
x
1
2

}2

−
{

y
√

3
2

}2

= 1, x ≤ −1
4
.

This is the equation of a branch of an hyperbola in the left hand half plane.

Example 7.4 Give a geometric description of the sets

(a)
{
z ∈ C | Im (z2

)
> 0
}

, (b) {z ∈ C | |z − 4| > |z|},

(c)
{

z ∈ C | −π < Arg z <
π

2
, |z| > 2

}
.

(a) Since

z2 = x2 − y2 + 2ixy,

it follows that Im
(
z2
)

> 0, if and only if xy > 0, so the set is the union of the open first quadrant
and the open third quadrant.

(b) Geometrically we shall find the set of points, the distance of which to 4 is bigger than the distance
to 0. If we draw the vertical line x = 2, we get precisely those points for which

|z − 4| = |z|,
which is geometrical trivial.
The wanted domain is then the left hand half plane x < 2.
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–1

–0.5

0

0.5

1

–1 1 2 3 4

Analytically it follows by a squaring that |z − 4| > |z| is equivalent to the inequality

(x − 4)2 + y2 > x2 + y2,

and we obtain by a reduction x < 2.

(c) The domain is the intersection of the open set |z| > 2 and the angular space −π < Arg z <
π

2
,

i.e. the interior of the union of the first and third and fourth quadrant.
Thus the complementary set is the union of the closed second quadrant and the closed disc of
centrum (0, 0) and of radius 2.

Example 7.5 Let z1 and z2 be two given points in the z-plane, and let c ∈ R+ and k ∈ ] − π, π].
Describe the set of points z ∈ C, for which

(a)
∣∣∣∣z − z1

z − z2

∣∣∣∣ = c, (b) Arg
z − z1

z − z2
= k.

(a) If c = 1, then the equation becomes

|z − z1| = |z − z2| ,

–3

–2

–1

1

2

3

–3 –2 –1 1 2 3
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which is geometrically interpreted as the set of points z, which have the same distance to z1 and

z2. This set is constructed as the line through
1
2

(z1 + z2), and perpendicular to the vector z1−z2.

If c �= 1, then |z − z1| = c |z − z2| is equivalent to

(x − x1)
2 + (y − y1)

2 = c2
{

(x − x2)
2 + (y − y2)

2
}

,

hence by a small computation,

x2 − 2x1x + x2
1 + y2 − 2y1y + y2

1 = c2
{
x2 − 2x2x + x2 + y2 − 2y2y + y2

2

}
,

and thus(
c2−1

)
x2−2

(
c2x2−x1

)
x+
(
c2−) y2−2

(
c2y2−y1

)
y+c2x2

2−x2
1+c2y2

2−y2
1 = 0.
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Since c2 �= 1, we obtain a circle,

x2 − 2
c2x2−x1

c2 − 1
x+
(

c2x2−x1

c2 − 1

)2

+y2−2
c2y2−y1

c2 − 1
y+
(

c2y2−y1

c2 − 1

)2

=
(

c2x2−x1

c2 − 1

)2

+
(

c2y2−y1

c2 − 1

)2

+
−c2x2

2+x1−c2y2+y2
1

c2 − 1
= R2,

thus{
x − c2x2 − x1

c2 − 1

}2

+
{

y − c2y2 − y1

c2 − 1

}2

= R2.

z_2z_1

BA

Remark 7.1 This circle is constructed by first finding the two points A and B on the line 

through z1 and z2, such that∣∣∣∣z − z1

z − z2

∣∣∣∣ = c.

Then AB is the diameter of the circle. ♦

C

2k

k

z

z_1z_2
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(b) The equation

Arg
z − z1

z − z2
= k

is most easy to solve geometrically when we consider the corresponding circle, which goes through
the three points z, z1 and z2.
We se that ∠zz2C = ∠z2zC = x, because �z2Cz has two radii as sides. For the same reason,
∠z1zC = ∠zz1C = y and ∠Cz2z1 = ∠z1zC = ϕ. The sum of the angles in a triangle is always π,
hence it follows from �z1zz2 that

2(x + y + ϕ) = π,

and analogously of �Cz1z2 that

2ϕ + 2k = π,

hence

∠z1zz2 = x + y = k,

no matter where z is lying on the circle above the the line z1z2.

Remark 7.2 By means of the concept of conformal mapping, which will be treated in a later
book in this series, it is easy to prove that when z1 and z2 are kept fixed, then the two families of
circles considered above are orthogonal. ♦

Remark 7.3 For given c and k it follows that

z − z1

z − z2
= c · eik = α.

If α �= 1, then

z =
z2α − z1

α − 1
,

and z is uniquely determined.
Therefore, we may consider (c, k) as curvilinear coordinates in C \ {z1, z2}. ♦

(b’) An alternative solution of the equation

Arg
(

z − z1

z − z2

)
= k.

First note that if z �= z1 and z �= z2, then

w = u + iv =
z − z1

z − z2
=

(z − z1) (z − z2)
|z − z2|2

=
1

|z−z2|2
{(x−x1)+(y−y1)} {(x−x2)−i (y−y2)}

=
1

|z−z2|2
{[(x−x1) (x−x2)+(y−y2)] + i [(x−x2) (y−y1)−(x−x1) (y−y2)]} ,
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where we do not compute the denominator |z − z2|2, because we shall only use that

|z − z2|2 > 0.

When we split into the real and the imaginary part, we get

u =
1

|z−z2|2
{
x2−(x1+x2)x+x1x2+y2−(y1+y2) y+y1y2

}
,

v =
1

|z−z2|2
{xy−y1x−x2y+x2y1−xy+y2x+x1y−x1y2}

=
1

|z−z2|2
{(y2−y1)x−(x2−x1) y+x2y1−x1y2} .

A check shows that v = 0 describes the line through z1 and z2 with exception of these two points.
On the other hand, we get for v = 0 that

Arg
(

z−z1

z−z2

)
= Arg(u+iv) = Arg u =

⎧⎨
⎩

0 for u > 0,

π for u < 0,

and it follows almost immediately from the expression of u above (due to the squared terms) that
u > 0, if and only if (x, y) lies on one of the line segments outside [z1, z2] (assuming that v = 0),
and hence u < 0 for (x, y) ∈ [z1, z2], where [z1, z2] denotes the line segment in the plane between
z1 and z2.
In this way we fix the curves for k = 0 and for k = π.

In our next case we have v > 0, thus (x, y) lies in one of the half planes determined by the line 

through z1 and z2. We shall tacitly assume this in the following and not repeat ourselves.
It follows from v > 0 that

Arg
(

z − z1

z − z2

)
= Arg(u + iv) = Arccot

(u

v

)
∈ ]0, π[,

because Arccot typically is more fundamental in the Theory of Complex Functions than Arctan.
The curves of this half plane therefore correspond to the equation

Arg
(

z − z1

z − z2

)
= Arccot

(u

v

)
= k ∈ ]0, π[,

or equivalently

(11)
u(x, y)
v(x, y)

= cot k = c ∈ R.

When we multiply by v(x, y) and insert the expressions of u(x, y) and v(x, y) we get by cancelling
|z − z2|2,

x2 − (x1 + x2)x + x1x2 + y2 − (y1 + y2) y + y1y2

= c {(y2 − y1)x − (x2 − x1) y + x2y1 − x1y2} ,

which is qualitatively the equation of a circle. If we put (x, y) = (x1, y1) and (x2, y2) into (11), it
follows that both sides become 0, so the system of curves is the restriction of all circles through
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(x1, y1) and (x2, y2) to the half plane determined by v > 0, i.e. determined by the line 
 through
(x1, y1) and (x2, y2).

If instead v < 0, then we get the other half plane, and

Arg
(

z − z1

z − z2

)
= Arg(u + iv) = Arccot

(u

v

)
− π ∈ ] − π, 0[,

hence Arg
(

z − z1

z − z2

)
= k is equivalent to Arccot

(u

v

)
= k + π, i.e. to (11), because cot has period

π. We again derive (11), and we find the same system of curves, only restricted to the other half
plane.
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Example 7.6 Find the domain in the z-plane, which is characterized by the condition∣∣z2 + a z + b
∣∣ < R2,

where a, b ∈ C and R ∈ R+. Indicate the values of R ∈ R+, for which this domain is connected, and
for which is it disconnected.

Let α and β be the roots of the polynomial, i.e.

z2 + a z + b = (z − α)(z − β).

If α = β
(
= −a

2

)
, then we get an open disc of radius R and centrum −a

2
. In this case, b =

a2

4
, and

the domain is of course connected for every R ∈ R+.

If α �= β, then∣∣z2 + a z + b
∣∣ = |z − α| · |z − β| < R2,

thus the product of the distances from z to α, and from z to β, is smaller than R2. (The boundary
curves are also called Cassini’s rings).

The midpoint of the line segment between α and β is given by
α + β

2
= −a

2
. The set is disconnected,

if this point does not belong to the point set, and it is connected, if −a

2
belongs to the point set. If

we put z = −a

2
, then

∣∣z2 + a z + b
∣∣ = ∣∣∣∣a2

4
− a · a

2
+ b

∣∣∣∣ =
∣∣∣∣b − a2

4

∣∣∣∣ .
Since∣∣∣α +

a

2

∣∣∣ = ∣∣∣β +
a

2

∣∣∣ ,
this can also be expressed by

∣∣z2 + a z + b
∣∣ = ∣∣∣α +

a

2

∣∣∣ · ∣∣∣β +
a

2

∣∣∣ = ∣∣∣α +
a

2

∣∣∣2 =
∣∣∣β +

a

2

∣∣∣2 =
1
4
|α − β|2.

The condition of connectedness is therefore,

R >

√∣∣∣∣b − a2

4

∣∣∣∣, thus |α − β| < 2R.

The set is disconnected, if

0 < R ≤
√∣∣∣∣b − a2

4

∣∣∣∣, thus 0 < 2R ≤ |α − β|.
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