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Complex Funktions c-1 Introduction

Introduction

This is the first book containing examples from the Theory of Complex Functions. All the following
books will have this book as their background.

Even if I have tried to be careful about this text, it is impossible to avoid errors, in particular in the

first edition. It is my hope that the reader will show some understanding of my situation.

Leif Mejlbro
27th May 2008
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Complex Funktions c-1 The complex numbers

1 The complex numbers

Example 1.1 Split a complex fraction into its real and imaginary part.

Let a 4+ b # 0 and ¢+ id be two complex numbers, where a, b, ¢, d € R. Since in general,
z-Z2=(x+iy)(x —iy) = 2® +y° = |2,

we get by a multiplication with the complex conjugated of the denominator in both the numerator
and the denominator that
c+id c+id a—1b ac+bd+_ ad — bc
pr— . pr— /I/ . .
a+ib a+ib a—ib a?+b? a?+bv?’

and we immediately split into the real and the imaginary part.

In particular,

ISINIRSY
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Complex Funktions c-1 The complex numbers

Example 1.2 Write the following complex numbers in the form x + iy:

3+ 41 (©) 1414
c .
1—2i 1—1

(@) (L+% (0

a. By a small computation,

A4+ =124+®+2-1-i=1—-1+42i=2i.

b. THE STANDARD METHOD, i.e. a multiplication by the complex conjugated of the denominator in
both the numerator and the denominator gives

3440 344 142 1 1
= . = — — 4 — _f_ 1 . :_1 2’.
=2 1-9i 142 5B 8FlAFO}= {54101} Y

ALTERNATIVELY,
3+di=—{1-4-22i} =—(1-2i)* = (1 —2i)(—1+ 2i),
which gives by insertion

34+4i  (1—20)(1+2i)

= = —1+ 24.
1—2i 1—2i e
c. THE STANDARD METHOD:
1471 1+4 1414 1 24

= . :—1 '2:—:'_
=1 14 aUti=g =i

ALTERNATIVELY, apply polar coordinates, because
. LT . T
1+z:\/§exp<zz> and l—z:\/iexp(—zz),
hence

1+i ﬁexf’(%)

=1 \/iexp(—i%

(.71> T Lo T .
— ) = _ 5in — = 1.
)—exp 22 = COS + 7 sSin =1

Example 1.3 Write the following complex numbers in the form x + iy:

1
@ —rg O (THmEti),
. . . 241
(¢) (G+1)(E—2)(E+3), (d) 5
a. THE STANDARD METHOD,
1 B 1 _1_3i—_1_3i——1—3i
—1+3 —1+4+3 -1-3 10 10 10
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Complex Funktions c-1

The complex numbers

b. SIMPLE MULTIPLICATION,
(T4+mi)(m+i)=Tr —n+i(r>+ 7)1 +i (7> +7).
c. SIMPLE MULTIPLICATIONS,

((+1)(E-2)i+3)={-1-2+i(-2+1)}(3+14)
—B3+4)(8+i)=—-{9—1+6i} = —8— 6i.

d. THE STANDARD METHOD,

240 244 24i 1
tr_2t +Z—_(4—1+4¢)=§+

2—i 2-i 2+i 5 B

(SAR I

Example 1.4 Write the following complex numbers in the form x + iy:

(243i)(-1+2i) 1—i

(a) % =3i" +i% (1—4%) — (—9)"®, (b)

a. THE STANDARD METHOD, in which we use that i2 = —1 and i* = 1, etc.,

20— 30T +40 (1—4%) — (—i)"® =i® = 3® +* (L +14) —4°
=—-1+3i—(1+4)+1=—-1+2i

b. THE STANDARD METHOD gives

2430)(-14+2) 1—i (2+30)2+i)i 1—i 1+2

244 1-2i 244 C1-2i 1+2
1 3 1 18
:(2+3¢)i—3(1+2+¢{—1+2}):—3+2¢—Z—gi=—3+

Example 1.5 Write the following complex numbers in the form x + iy:

(a) (1274—‘31') + (5 — 24), (b) (1 - i)(21++i)‘,
(c) 3+Z‘ (4) 1—Z|—i+ z‘z'
a. TRIVIAL,

(2+3i)+(b—2i) =T+1.
b. STANDARD MULTIPLICATION,

(1—i)2+i)=2+1+i(-2+1)=3—1i.

244 C1-2i

9.

- 1.

5
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Complex Funktions c-1 The complex numbers

c. MULTIPLY THE NUMERATOR AND THE DENOMINATOR BY THE CONJUGATED OF THE DENOMINA-
TOR,

1—i 1—4 3—i 3—1—4i

1 2
317 347 3-i 10 5 5"

d. MULTIPLY THE NUMERATOR AND THE DENOMINATOR BY THE CONJUGATED OF THE DENOMINA-
TOR,

i 1+i i 1—i RS 3
= . 1_ — 1_ —_ —
Tri 1 T4i 1- T thor=g

Example 1.6 Prove that

‘ (3 — 4i)(2 +19)
(2—4i)(6 + 8)

1
i

We show three methods, of which the first one is recommended.

1) THE DIRECT METHOD. The simplest method is to take the absolute value separately of each factor:

(3 — 44)(2 + 1)

3—4il-[24+d] 1 V31422112 1
(2 — 4i)(6 + 8)

T2l —2i-23+4] 4 VI2r22-32t42 4

2) ALTERNATIVELY, though less convenient we first compute the product,

(B—4i)(2+14) 64+4+i(3—-8)  10—5i 10—5i 44+8i
(2—4i)(6+8i)  12+32+i(—24+16) 448 44— 8 44+8i
440 +40+i(—2204+80) 480 —140i 24 —7i
B 1936 + 64 2000 100
hence
(B—4i)(2+4) | _[24-Ti| V24247  576+49 V625 25 1
(2—4i)(6+8i)| | 100 | 100 100 100 100 4

3) ALTERNATIVELY we also have the following variant of 2.,

(3 — 4i)(2 + 1) 6+4+i(3-8 105

(2—4i)(6+8i) 12+32+i(—24+16) 44— 8’

and then we proceed in the following way,

_J10-5i]  52—i  5/4+1  5/5  5V5 1

‘ (3 — 4i)(2 +4)
(2 —4i)(6 + 8i)

|44 -8i| 411 -2i] 4y12T1+4 4125 4-5V5 4
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Complex Funktions c-1 The complex numbers

Example 1.7 Compute P(1+1i), where

P(z) =25 +2i2%— 2.

Here we suggest two solutions, of which the former is the most obvious, which that latter which is
recommended is much easier.

1) THE OBVIOUS SOLUTION. Using the binomial formula we get

P(1+1) (1+3)° 4+ 2i(1+4)> — (1 +14)
{145 +10:* + 106° + 5i* +i°}+2i {1+ 3i + 3> +°}—1—i
= 1-10+5+i(5-10+1)+2i(1 -3+if{3—-1}) —1—i

= 4-4i-4i—-4-1—1=-9—-9i.

2) ALTERNATIVELY the computations become much easier, if we note that
(1+1)% = 2i.
Then

P(14+i)=(1+1i){(20)>+2i-2i —1} = (-4 —4—1)(1+14) = —9 — 9i.

360°
thinking.

Deloitte.

Discover the truth at www.deloitte.ca/careers © Deloitte & Touche LLP and affliated entities.

N
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Complex Funktions c-1

The complex numbers

Example 1.8 We write as usual z = x + 1y. Split the following expressions into their real and

maginary part:

. By computing

23 = (x +iy)® = 23 + 322 - iy + 3z - (iy)? + (iy)® = 2 — 3xy® + i (3332y - y3) .

it follows immediately that

Re{zg} = 2% — 3ay? og Im {xg} = 32y — .
. It follows from

2 Z=le* =2+,
that

Re{z -z} =a22+y*> og Im{z-Z}=0.

. By a standard computation we first get

z x—iy (v—iy)? 2% -y 2ry .
—_ = = = —_ - 1.
2 l’+’L’y x2+y2 $2+y2 1'2+y2

Then it immediately follows that

= 2 _ 2 = 2
Red V=2 "Y 4 qmiZl—_ 2
z £E2+y2 z $2+y2

. We get by the standard procedure (multiplication of the numerator and the denominator by the

conjugated of the denominator)

z—i  wtiy—i  w+ily—1) (—y+1)+iz
1-zi  1—(z—iy)i (~y+1)—iz (~y+1)+iz
eyt ) —ay - D) +i{-(y—1)* + 2%}
a 2?4 (y — 1) ’
hence

— _ _ 2 () 1)2
Re{ 2 _z _ 2x(y — 1) ’ w2 _z =z (y 1)'
1-%zi 22+ (y —1)2 1-%zi a2+ (y —1)2
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Complex Funktions c-1 The complex numbers

Example 1.9 Ezpress the following by means of x and y:

(@ Js—1P, CHER
@ |22 a2, (d) e

a. A direct computation gives

lz=1P =z -1 +iy?=(@2-1)2+y*> (=2>+y*—22+1).
b. Again by direct computation,

|z|4 _ (|z|2)2 _ (xQ +y2)2 (: 2t 4 2x2y2 +y4) )

c. And once more direct computation (for z # 1),

r+ 141y
r—1+41y

z—1

z+1’_ @24y _\/x2+y2—2x+1

(x —1)2 + g2 24y -2 +1

d. It follows from
z4+i  i(z4id)  i(z40)

= = =1 for z # —1i

1—idz (1l —iz) z+1 7~
that

AUl JENH R

1—1z

ALTERNATIVELY, put z = x + iy. Then we get for z # —i,

z+i eri(erl)‘_ r+ily+1)| a2+ (y+1)2
1—iz 1 —i(z +dy) (1+y) —ix V1 +y)? + 22 ’

where the latter computation may be performed in different ways.

1
Example 1.10 Let z € C\ {0}. Prove that Re{—} > 0, if and only if Re{z} > 0.
z

We shall give two methods of solution:

1) ANALYTICALLY: We get for z # 0,

1 z T — 1y T Ly
_—= — = = — 1 s
z  z-zZ  x?+y?  2?4y? x2 + y?
hence
Re 1 >0, ifandonlyif Re{z} >0
ed—p = —— if and only if z = Re{z )
z 2+ 9? ’ Y
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Complex Funktions c-1 The complex numbers

. 1 1 .
2) POLAR COORDINATES (and geometrically). If we put z = r ,e?, then — = — e~%_ hence
z

Re{z} =1 cosf and Re {1} _1 cos(—0) = ! cos 0,
z r r

z

1
and it follows that Re{z} and Re { } have the same sign for z # 0.

Example 1.11 Let x;zy =a+ib, where z, y, a, b€ R, 22 + 4% £ 0. Vis, at a®> + 1% = 1.
y

xT

We have two main variants:
1) The simplest variant is the following,

lo —iyl*  a?4y?

2 32 012
a® + |a + ib| TEiE Pt , z #
2) ALTERNATIVELY, we get for z # 0 that
2 . 2 192 22 9l
P T et ] W [t Wl it At 1
x4 iy rx+iy x—iy x2 + 92 (22 +y2)°
2
B (IE2 7y2) +4:c2y2 B :c4+y4 —2x2y2 +4(E2y2 B x4+y4+2x2y2 -
ot 4yt 4 2022 a4yt 4 22292 oot yt 2222

Example 1.12 Let a and b be complex numbers, for which ba+a # 0 for every z € C, where |z| = 1.
Prove that, if |z| = 1, then

az+b

= =1.
bz+a

The condition
bz+a#0 for every z € C, for which |z| = 1,

only means that |b| # |al.
If |z| = 1, then

|22 =2-Z2=1,

hence

N
Il
N
®
=]
Q.
0
Il
\’H
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Complex Funktions c-1 The complex numbers

and thus
az+b| | az+b |  |az+0 5 laz +b]
bz+a 5~£+a az—i—b' laz + b
z Z

ALTERNATIVELY, put z = €', thus |z| = 1. Then

ae® +b
(e~ +1b)ei®

ae? +b B
bei® +a

az+b
ba+a

|a et + b|

=1

‘aei‘9 + b’ - |et]

Remark 1.1 This result shows that if |a| # |b|, then the function

az+b
bz+a

f(z) =

maps the unit circle into itself. ¢

SIMPLY CLEVER SKODA

We will turn your CV into
an opportunity of a lifetime

:ffmf/// 77

J rg /i ‘#'\-.

b ‘}él? &

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

14 Click on the ad to read more
Download free eBooks at bookboon.com



http://www.employerforlife.com

Complex Funktions c-1 The complex numbers

Example 1.13 Find the mazimum of |22 + 1| on the unit disc

{zeC||z| <1}

We shall give two solution of which the former is in line with the Theory of Complexr Functions. In
the latter method we shall only apply real methods, which in general cannot be recommended here.

1)

THE SIMPLE SOLUTION. Since
|22 +1 <[P+1<2  for 2] <1,

the maximum must be < 2.
On the other hand we obtain the value 2 at the points z = +1 in the closed unit disc, and we
conclude that the maximum is indeed 2.

ALTERNATIVELY, apply the known real methods. Put
2 L2 2
|22 + 1| = |o:2 1+ 21:17y| = (m2 — 2+ 1) + 4z2y?
= 2+t +1—20%2 + 227 — 2% + 42?y?
ot 4yt + 202y + 222 — 2% + 1.

o(2)

Then we find the maximum of |22 + 1| by first finding the maximum of ¢(z) = |22 + 1|2.
The possible stationary points are the solutions of the following system of two equations,

0

8—@ = 4x3+4xy2+4x:4x(x2+y2+1):0,
x

0 .

a—z = 4Pt daty —dy =4y (2 +y7 —1) =0.

It follows from the former equation that = = 0, so by insertion into the latter equation we get the
possibilities y = 0 and y? — 1 = 0, thus y = —1, 0, 1.
Hence the stationary points are

((E,y) = (07 *1) ~ —i, (ZL',y) = (030) ~ 0, (l'vy) = (Oa 1) ~ i,

corresponding to

(p(*i) =0, ap(O) =1, @(7’) =0.

We shall still go through the values on the BOUNDARY, thus we put 22 + 32 = 1. First we reduce

o(z) = ' +yt+22%% + 207 — 2%+ 1
— (@4 2) 222+ 7)) +1— 4y
= 1+2+1—-4y*=4(1-¢7), for y € [~1,1].

Clearly, the maximum on the boundary is obtained for y = 0, corresponding to z = x = 1. Then
p(£1) = 4(1 - 0) = 4,

and we conclude that the maximum of ’22 + 1| on the closed unit disc is v/4 = 2.

15
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Complex Funktions c-1 The complex numbers

Example 1.14 [t is well-known that the function f(z) = Z describes a reflection with respect to the
x-azis. Find a corresponding function g(z), which describes a reflection with respect to the y-axis.

Since

9(2) = gz +iy) = —x +iy = —(v —iy) = %,

the map is given by

g(z) = —z.

Example 1.15 Prove that |1 — z| = |1 — Z|, and give a geometric interpretation of the result.

If we put z = x + 1y, then

1—zl=—-z—uwyl=({1-2)+y2%
and
1=z =1 -z+iyl=v(Q—-2)*+y?
hence |1 — 2| = |1 —Z|.
o4 r4
1 11-2|
0 05 15 2
11 [1-konj(z)|
2] konj(z)
Since |1 — z| = |z — 1], we can also write the equation in the form
lz—1|=z-1].

The interpretation of this equation is that the distances from 1 to z and to z, resp. are the same.

16
Download free eBooks at bookboon.com



Complex Funktions c-1 The complex numbers

Example 1.16 Sketch the set of points in C, for which

(@) |z =1, (b) |z <1, (¢) [z=1]=1, (d) [z-1]=1.

0.5

Figure 1: (a) The point set described by |z| = 1 is the unit circle.

Find out more and apply

redefining / standards M
f E by

Click on the ad to read more
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Complex Funktions c-1 The complex numbers

0.5

Figure 2: (b) The point set described by |z| < 1 is the open unit disc.

-0.5

-1

Figure 3: (c¢) The point set described by |z — 1| = 1 is the circle with centre at 1 ~ (1,0) and radius 1.

Example 1.17 Sketch the set of points in C, for which

(a) Argz:%, (b)) Rez=1, (¢) Imz=—1, (d) Re(z—1)=|z|.

(a) The point set is the open half line from 0 (0 excluded) in the first quadrant of the angle % with
the z-axis.

(b) The point set is the straight line through the point 1 on the z-axis which is parallel with the
y-axis.

(c) The point set is the straight line through the point —1 ~ —i on the y-axis and parallel with the
Z-axis.

(d) The solution set is empty. In fact,

0<|z|=Re(z—1)=2—-1

18
Download free eBooks at bookboon.com



Complex Funktions c-1 The complex numbers

Figure 4: (c¢) The point set described by |z — 1] > 1 is the closed complementary set of the disc with
centre at 1 ~ (1,0) and radius 1.

Figure 5: (a) The point set described by Arg z = Z

0.5 0.5 15

05

Figure 6: (b) The point set described by Re z = 1.

19
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-0.5

Figure 7: (c¢) The point set described by Im z = —1.

implies that x > 1, and

x—1=|z| =22+ y> > Va2 =|z| =z,

which again implies that —1 > 0, and that is not possible.

Example 1.18 Sketch the set of points in C, for which

(a) Rez>0, (b) a<Imz<b, (c) R61:%7 (d) o <Arg z<p,
z

where a, b, o, B, R are real constants, satisfying

a < b, —r<a<p<m, R #0.

04 -02 02 04 06 08 1

Figure 8: (a) The point set described by Rez > 0.

(a) The point set described by Re z > 0 is the open right hand half plane.

20
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1 05<Imz<15

-05 o 05 i 15

Figure 9: (b) The point set described by a < Im z < b, where a = 0.5 and b = 1.5.

Re 1/z=1/R

Ri2=-2/2 =1

05

1 1
Figure 10: (c¢) The point set described by Re — = = for R = —2.
z

(b) The point set described by a < Imz < b is the open parallel strip between the lines y = a and

y=b.
. 1 1 - . .
(c) The condition Re P2 R # 0, is in real coordinates given by
T 1

WZE7 (z,y) # (0,0),

thus
R\? R|®
2 _ f 2 _ | Iv
x° — Rx + <2> +y ' 5|

which we write in the standard form,

B L e |R
D Y =13

2

o (zy) #(0,0).

21
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Complex Funktions c-1 The complex numbers

1 1
This standard form shows that the point set described by Re— = I R # 0, is the the circle of
z

with the exception of point (0,0). It follows that the solution

centrum at (%,0) and radius ‘?

set lies in the left hand half plane, when R < 0, and in the right hand half plane, when R > 0. We
have chosen R = —2 < 0 on the figure.

a<Agz<b

Figure 11: (d) The point set described by a < Arg z < b is the angular domain between the open half
lines given in polar coordinates by ¢t = @ and ¢ = b. The half lines belong to the set with the exception
of the point (0,0).
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Complex Funktions c-1 The complex numbers

(d) The point set described by o < Arg z < (3 is the angular domain between the half lines t = «
and t = 8. Tt is not closed, because the point (0,0) does not belong to the set, neither is is open
because the open half lines belong to the set.

Example 1.19 Assume that ¢ € R and o € C\ {0}. Prove that
az+az+c=0

is the equation of a straight line in the (x,y)-plane.

It follows from 2Rew = w +w

w=az=(a+1ib)(z+iy),
that

O=az+az+c=2Re{(a+ib)(z+iy)} =2ax —2by +c.
Since o = a + ib # 0, this is the equation of a straight line.
ALTERNATIVE it follows by a direct computation that

0 = az+az+c=(a+ib)(z+iy)+ (a—ib)(x —iy)+c
= azx —by+i(bx + ay) + ax — by — i(bx + ay) + ¢ = 2ax — 2by + c.

23
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Complex Funktions c-1 The complex numbers

Example 1.20 Assume that ¢ € R and o € C satisfy the condition |a|? > c.
Sketch the set of z € C, for which

z2Z4+az+az+c=0.

Figure 12: The geometric solution using convenient reflections.

It follows from
0 = 2Z2+az+ZZ+c=z2Z+az+az+aa+c—|af?
= (z+a@)z+a)—{laf —c} = [z +a]" — {|af* — ¢},

and a rearrangement that

[z +al =z = (=a)] = V]af* —c.

Then we conclude from the geometrical interpretation that the point set is a circle of centrum —a
(reflection of o with respect to the y-axis) and radius /|«a|? — c.
However, if |a|? = ¢, then we only get the point z = —a.

ALTERNATIVELY we put z = x + iy and o = a + ib, where the assumption is that a? + b* > ¢. Then

0 = zz+az+az+c=|z>+2Re(az) +c=a>+y*+2ax —2by +c
= (z+a)’+(y—b)?*>—{a® +° - ¢},

hence
(xr+a)+(y—b?=a*+b*—c

It follows that the point set is a circle of centrum at (—a,b) ~ —@ and radius
Va2 + 02 +c=/|a]? —c.

24
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Complex Funktions c-1 The complex numbers

Example 1.21 Let a € C be a constant, satisfying Re a > 0.
Find the three point sets in the z-plane, for which 272 s <1, =1 or > 1, respectively.
—z

a

We shall find the set of the z, for which

a—z —zZ4+a

a+z z+4a

is real (since otherwise the order relation does not make sense).
We get by solving the equation,

au+uz=a—=z.
When we put a = o+ i3, Rea = a > 0, then

a—ﬁu:a+iﬂ—(a—iﬁ)u: 1—u

u+1 u+1 OPl—&—u

If w =1, then z = if5.
11—
Ifu>1,thenx:a-—u<0,hence
14w
—a<z<0 and y=p.

If u < 1, u # —1, then we obtain the remaining parts of the line y = 3, thus in a complex description,
x + i3, where either

r < —a, corresponding to —oo <u < —1,
or
0 <z, correspondingto —1<u<1.

The three point sets all lie on the line y = .

25
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Example 1.22 Let z1, zo € C. Prove that

|Zl + 2’2|2 + |Zl — 2’2|2 = 2 (|Zl|2 + |2’2|2> ,
and give a geometrical interpretation of this result.
If we put 21 = x + iy and 2o = a + b, then

it el -al = @+ta)’+ @+ + (@ -a)’+ (-0’ =20 +y) +2(7 + V)
2(2* +y?) +2(a®+b%) =2 (|zl|2 + |22\2) .

z 14z 2

0 z1-z 2

This means geometrically that the sum of the squares of the four sides of a parallelogram is equal to
the sum of the squares of the diagonals.

Example 1.23 Let z = x +iy. Prove that z* is real, if and only if either xy = 0 or |z| = |y|; and
that z* is imaginary, if and only if x = + (1 + \/5) Y.

1) Let 2* = a € R where a > 0. Then

z:glc—i—z'y:\‘VE'{(zosjg—i—isinZg}7 p=0,1,2 3,

thus
x:{‘/acos% and y:%sin%,
and we get
Ty = ({‘/E)Qcos% ~sin7 = % a cotsinpm = 0.

If on the other hand, x - y = 0, then either x = 0 or y = 0, ind it follows trivially that
2= (z+iy)* e R

26
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an1/4)

lal*(1/4)

2) If instead @ € R and a < 0, then we get

r=x+iy= {‘/E-{cos(%—i—%)—i—isin(%—i—%)}.
It follows from
T 7r LT 7r V2
jeos (F+r3)[ =l (T +r3)[ =5

that if 2* = a < 0, then |z| = |y|.
If on the other hand |z| = |y|, then

z:m+iy:r-ilii,
V2
and since
{ilii}:_l
NG )
we get 2 = —r* < 0.

3) Assume that 2* =ia, a € R, where a > 0. Then

1a=|ajexp (t—
p 1)

27

Download free eBooks at bookboon.com



Complex Funktions c-1

The complex numbers

thus
z:x—}-iy:\“/E'{cos(z—i-pﬁ)—|—isin(z—|—pz>}, p=0,1,2 3.
8 2 8 2
Since y # 0, it follows that
T 2 (Z4pT)- (% + )
v cos(g—i—p 2>: 2 cos 8+p 5 1+1 :cos 4—|—p7r +1
Y sin(z—i—p-ﬁ) 2Sin(£+p-ﬁ)cos(ﬁ+p~z) sin(z—i—pﬂ)
8 2 8 2 8 2 4
4 (-1 +1
= \/51—:11\/57
75.(_1)1)
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Complex Funktions c-1 The complex numbers

an1/4)

hence

T = (1 + \/5) Y.
If on the other hand, z = (1 + \/5) y, then it follows by insertion that

4 2
o= ygea{1avarif =yt {1e2-122v2 42 (1412)}
2

y{2x2va42i(14v2)} 7y4(212f2)2(1+i)2
gt (4+8£8v2) 20 =iy’ (32v2),

i.e. precisely the required form.

lalr(1/4)

4) If a < 0, then

o= |ajexp (i o
17a = |a|lex 17—
P B s

and we get

3 3
z=x+iy= \4/a|-{cos<87r+p;r>+isin(§+pg>}, p=0,1,2, 3.
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We derive as above that

3T 0 3m 1
g 08 §+p§ cos Z+p7r + _\%,(_1)1”_1

- = = = =-1 2
Y s 37 +po sin s + pm \/Li (=1 e
s P9 g P
thus
r=— (1 F \/§> Y.

On the other hand, if x = — (1 + \/5) y, then it follows by insertion that
4 2
A= gt {-(12va)+i} =yt fir2-122v2-2i (15 V2)}

v {22v2 -2 (11\/5)}2:1/4 (212\@)2(1_2«)2
y' (4+ Sis\/i) - (—2i) = ~8iy* (3i2\/§) :

which is precisely the required form.

Example 1.24 Prove that for all z € C,

Rez| + [Tmz| < V2 |z].

If we put z = x + 7y, this inequality is also written
o] + [yl < V2 Va2 +y2

The left hand side is > 0, so this inequality is equivalent to
(2l + [y])? < 222 + 2%,

hence we shall only prove this latter inequality. This follows from

20 + 2y — (Jo| + |y])? = 20 + 29" —a® =y = 20| - [y| = 2 +¢* — 2Ja] - |y| = (2| —

[y])? > 0.
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2 Polar form of complex numbers
Example 2.1 Write the following complex numbers in their polar form;

(@) 14+, () 1+iV3, (c) 1—iV3, (d) —5i.

(a)

Lrimvaen (i) =vaep(i{Tor)), pez
(b)

1+¢\/§=2exp(zg)=2eXp(¢{§+2p7r}), pez.
(c)

L E=re (D) 2o (T i), pez
(d)

_5i =5 exp (—’g) — 5 exp (z{—g +2p7r}) ,  pEL
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Polar form of complex numbers

Example 2.2 Find the values of z € C for which

eiz = ¢elZ,

If we put z = x + 1y, then

iz = el T—y — g Y i¥

and
el — oilT—iy) _ oy iz

Hence if €7 = ¢'Z, then y = 0 and e~ = ¢'*, s0
eQia: — 1= €2ip7r

and we get x = pm, i.e.
z = pm, pE L.

On the other hand, if z = pm, p € Z, then
ei_z — !PT — (71>p

and

and the equation is fulfilled. Hence the complete solution is

z = pm, pEZ.

Example 2.3 Write the following complex numbers in the form of e*:

(@) L (b) 1, © 4 (d)
() 1+i, (f) 114, (9) —1+i, (h)

()

1 =e2rm, p € Z.
(b)

—1 = !@ptm pE L.

(c)

i=elPPrT pez.

_Z"

-1 —uq.
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(d)

—i = i) p € 7.
(e)

1+i=+2eGH2m ez
()

1—i=\2eit2m ez
(2)

—1+i= ﬂei(%+2p)”, pEZ.
(h)

—1—i=+2e 14T p € Z.

Example 2.4 Write the following complex numbers in the form x + iy:
. 2T K
(@) explim),  (b) exp (?) S @ 3e(iD).

(d) m-exp (— %) , (e) exp (z g) .

(a)

expli®) = cos 7+ sinm = —1.
(b)

(25 o (2) o (2) = L i
(c)

3'exp(i—) :3cos(f) 43 sin(—) 32£—|—232£
(d)

. ™ . (T V3 T T3
o (i) <o (§) - esn (§)} = {7} - 572
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(d)

Example 2.5 Assume e® = e*. Prove that there exists a k € Z, such that z = w + 27w k.

Two complex numbers are identical, if and only if they have the same absolute value (i.e. same module)
and (assuming that the modulus is # 0) if their arguments agree modulo 2.

If we put z = = + 7y and w = u + iv into the exponential function, then
w u v

e =¢e" . e'Y and eV =¢e" ¢

The module is e” = e* # 0, hence x = u, and concerning the arguments we get y = v (mod 27), hence
y = v+ 2k« for some k € Z. Finally,

z=x+iy=u+i(v+2rk)=u+iw+2rki=w+2nki

for some k € Z.
Example 2.6 Find the real and the imaginary part of (1 +14)%°.

It follows from (1 + )% = 21 that
(14492 = {(1+4)}' = {24}10 = 210410 = 2102 — _1024,
thus
Re{(1+1)*°} =-1024, and Im{(1+i)*°}=0.
ALTERNATIVELY we use polar coordinates. Since
1+i=\/§exp(ig),
we get by using polar coordinates that
(1+0)% = {\/E exp (z g) }20 - (2%)20 exp (z 20 %) — 910 5im _ 1024617 — 1024,
and it follows as before that

Re{(1+i)*°} =-1024, and Im{(1+i)*’} =0.

34
Download free eBooks at bookboon.com



Complex Funktions c-1 Polar form of complex numbers

Example 2.7 Prove for any complex number z # 1 that

Pk |

1+z4+- 42" = ——.
z—1

Use this result for z = e'%, 0 < 6 < 27, in proving that

. 1
sin n+—-1,60
1 2
1+cos€—|—cos29+~--+cosn6‘:§—|— .

2 sin —

P |
If z # 1, then — -1 is defined. Since

42"z D) (=) = (" =)+ (=) 4+ (P 2) (2 1) = 2
we get precisely that

2l

l4+z4---4+2"=
z—1
If 0 < 6 < 2, then e*? # 1, hence according to the above,

ei(n—i—l)@ -1

14 eif 4 o210 . in=1)0 | ino _ }
et? —1

Excellent Economics and Business programmes at:

i

Eﬂq{ university of -y (AACSB>
4&5 groningen ) N

/

| 4

| |
“The perfect start

of a successful,
international career.”

; . HERE
5. 2 A CLICK

to discover why both socially
and academically the University
of Groningen is one of the best

I laces for a student to be
www.rug.nl/feb/education P

35 Click on the ad to read more
Download free eBooks at bookboon.com



http://www.rug.nl/feb/bookboon?utm_source=AdBookboon&utm_medium=Bookboon&utm_campaign=130215Bookboon

Polar form of complex numbers

Complex Funktions c-1

The real part is

eiln+1)6 _ 1 ei(n—&-%)e _ e—i%&
1+cos€—|—cos29+~--—i—coan:Re{.e—l}:Re — —
ettt — _i 8

R {cos(n+%)9—|—isin(n—|—%)9—cosg+ising} sin(n+ 4)0  sin§
= € . . 9 = . 9 . 9
2i sin 5 2 sin 5 2 sin 5
1 sin(n+ 1)0
2 2 sin g

Example 2.8 Prove for every x # pm, p € Z, that

+oo +oo
E cos" x - sinnx = 0, g cos” x - sinnx = cot x.
n=1 n=1

Since | cosnz| < 1 and |sinnz| < 1, and since | cosz| < 1 for x # pm, p € Z, both series are absolutely

convergent.
Then we get
—+oo —+oo +oo +oo
E cos" x - cosnx + 1 E cos" x - sinnx = E cos™ - {cosnz + i sinnz} = g cos"x-e'"”
n=1 n=1 n=1 n=1
+oo i
P\ COST - € cos T Ccos T 1 cosx .
= E (COS:L’~€ ) = - - = — = ——= — =1 cotx.
1—cosx-e*'T e *T —cosx COST — 1 SINT — COST 1 sSInx

Finally, by splitting into the real and the imaginary part,

—+oo

—+oo
g cos" x -sinnx = 0, E cos” x - sinnx = cot x.
n=1 n=1

Example 2.9 Apply Moivre’s formula in order to express cos30 and sin360 by means of cos@ and
sin 6.

We get by Moivre’s formula and the binomial formula,
cos30 + i sin36 = (cos 0 + i sin0)* = cos® § — 3 cosf sin® 0 + i {3 cos® f sind — sin® 0},

hence by splitting into the real and the imaginary part,

cos30 = cos® 0 — 3 cosf sin? @ = 4 cos®> H — 3 cos¥,

and
sin30 = 3 cos? 0 sinsinf — sin® 0 = 3 sin @ — 4 sin® 6.
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Example 2.10 Apply Moivre’s formula to prove that
cos 80 + 28 cos46 + 35 = 64 (cos8 6 + sin® 9) .

First method. Whenever one shall apply Moivre’s formula, one must usually do a lot of computa-
tions.

First we rewrite the left hand side to a homogenous trigonometric polynomial of degree 8, by using
1 = cos? 6 +sin?6.

We find by the binomial formula that

cos8) = Ree'®? :Re{e“’}8 = Re(cosf +i sin9)®
= cos® 0 — 28 cos® Osin% 0 + 70 cos? Osin* 6 — 28 cos? Osin® O + sin® 0,
cos4d = Re {ei9}4 = Re(cosf +i sin9)*

= (cos4 6 — 6 cos®@sin? @ + sin’ 9) . (0052 6 + sin® 0)2
(cos4 6 — 6 cos®fsin® 0 + sin* 0) . (cos4 6 + 2 cos? 0 sin® + sin* 0)
= cos®0 — 4 cos® Osin? 0 — 10 cos? Osin* @ — 4 cos? Osin® O + sin® 0,
and
1= (cos2 6 + sin’ 0)4 =cos®0 + 4 cos® Osin® 0 + 6 cos* Osin? 6 4 4 cos? O sin® 0 + sin® 6.
Summing up,
cos 80 = cos® 0 — 28 cos® sin? 0 + 70 cos? Osin* @ — 28 cos? Osin® O + sin® 6,
28 cos 40 = 28 cos® § — 112 cos® O sin” 6 — 280 cos® A sin® @ — 112 cos? sin® § + 28 5in® 6,

35 = 35 cos® 0 + 140 cos® 0 sin? 6 + 210 cos* 6 + 140 cos? O sin® 6 + 35 sin® .
Finally, by an addition,

cos 80 4 28 cos 46 + 35 = (1 + 28 + 35) (cos® 0 + sin® 0) = 64 (cos® 6 + sin® 9).

Second method. It is here much easier to use Euler’s formule and then compute from the right
towards the left,

64 . N
64 ,89 — i0 —i6
cos —256 (e +e )
— Z(6819+8e610+28€410+56€219+7O+5667219+2867410_"_8676294_67819)
and analogously
64 . S0 8
.8 . 0 —1 0
64sin°0 = 2568 (e —e )
= (%7 =8 4 28¢M0 — 567 +70 — 5670 + 287 — 87O 7).

Finally, by an addition,

64 (cos8 6 + sin® 9) = (egw +928¢e%? 1 70 428740 + e_sw) = cos 86 + 28 cos 40 + 35.

DO | =
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Third method. One can also apply the well-known trigonometric relations,
1 3 2t 1 — cos2t
cos?t = —’—C% and sin?t = %

with different values (6, 20 and 46) of t. When we compute from the right towards the left, we get
26
64 (cos® 0 + sin® 0) = 64 { (cos? 0)4 + (sin® 9)4} = {(1+cos20)* + (1 — cos20)*}
= 4{(1 + cos® 260 + 2(:0529)2 + (1 + cos? 26 — 2(70529)2}

1 49\ ° 1 49
:4~2{(1+C08229)2+4cos229}:8-{(1+i> +4~i}

2 2
=2(3+cos40)* + 16 (1 + cos40) = 2 (9 + 6 cos 460 + cos® 40) + 16 cos 40 + 16
1 80
= 18+ 12cos40 + 2- “% +16.cos 40 + 16 = cos 80 + 28 cos 40 + 35.

Fourth method. The same as in the third method, with the only exception that we now compute
from the left towards the right. It is seen that one must here use far more skill:

cos 80 + 28 cos 40 + 35 = 2cos> 46 — 1 + 28 cos 46 + 35
= 2(2c0s?20 —1)” + 28 (2c0s? 20 — 1) + 34
—2{2(2c0s?0 ~1)" ~ 1} +56 (2c0s?0 — 1)" + 6
= 2{2 (4COS49—400829+ 1) — 1}2 + 56 (400549—4(:0829—|— 1) +6
=2 (8c0s49 — 8cos? 6 + 1)2 + 224 cos* 0 — 224 cos? 0 + 62
=2 (640088 0+ 64cos @ +1 — 128 cos® @ + 16 cos* § — 16 cos? 9) + 224 cos 0 — 224 cos? 6 + 62
= 64.cos® 0 + 64 cos® 0 — 256 cos® 0 + 384 cos” 6 — 256 cos® 0 + 64
(1) = 64cos® 6 + 64 (00589 —4c0s® 0 + 6cos @ — 4cos? O + 1)
= 64(:0589—1—64{(1 — sin29)4 —4 (1 —sin20)3 +6(1 — sin? 9)2 —4(1 — sin? 9) + 1}
= 64 cos® 0 + 64 {sin® 0 — 4sin® 0 + 6sin* 6 — 4sin® 0 + 1
—4 (1 —SSin26+3sin49—sin69) +6(1 —2sin?0 +sin* 0 — 4 + 4sin? 0 + 1}
= 64cos® 0 + 64 {sin® 0 + (—4 + 4)sin® 6 + (6 — 12+ 6) sin* 0
+(—4+12—124+4)sin® 0 +1—-4+6+1}
= 64 cos® 0 + 64sin* 6.

Fifth method. This is the same as the fourth method until (1). If we here recognize (1 — cos? 9)4,
then the computations become easier in the following way,

cos 86 + 28 cos 460 + 35
= 64cos® 0 + 64 (c0s8 0 — 4cos® @ + 6 cos* —4cos? 6 + 1)
4 4.3 4-3-2
:6400589+64{1+I (—c0529)1+ﬁ (—00529)2+ 193 (—c0520)3+ (—00826‘)4}

= 64cos® 0 + 64 (1 — cos? 9)4 = 64 cos® 0 + 64 (sin2 9)4 = 64cos® 0 + 64sin® 6.
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3 The binomial equation
Example 3.1 Solve the binomial equation
23 =-2-2i

Since r = | — 2 — 2{| = 2\/5, every root must lie on a circle of radius /r = V2v/2 = \/5, and of

3T
centrum 0. Since ——- is an argument for —2 — 24, an argument for one of the three roots is given by

e:-%,thus

z1 = \/icxp (—i %) = \/i{cos (7%) + 1 sin (—%)} =1—q.

The other two roots also lie on the circle |z| = /2, and since the form an equilateral triangle, we get

and
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Example 3.2 Given a, b € R. Find z, y € R expressed by a and b, such that

(z +iy)* = a +ib.

When we compute the left hand side, we get
(z +iy)? = 2% — y* + 2ixy,
so by a splitting into the real and the imaginary part we obtain the two equations
22—y’ =a og 2xy = b.
This implies that
a2 4+ b2 = (x2 7y2)2 T dz?y? = (3:2 Jry2)27
hence
24+ y2=a®+b2 >0

When this is compared with 2% — y? = a, we get

212 _ 2112
g2 AEVETY gy e TaEVA Ry
2 2

thus

a++va?+b? —a+Va*+b* a2+b2
(2) z=%\| —

2

Hence a solution is necessarily of the form (2). We see, however, that (2) usually gives four possibilities,

and they cannot all be solutions, because we know that there are only two solutions. Hence we must
check all our possible solutions.

The equation 2 — y? = a is of course always satisfied, so we turn towards 2zy = b.

If b = 0, then either x = 0 or y = 0, according to (2), and the equation 2zy = b = 0 is of course
fulfilled. (In this case (2) produces actually only two solutions).
If b # 0, then a check shows that the solution is

a++va?+ b2 71 —a++Va?+b?
0]

where the signs are corresponding.
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Example 3.3 Find all the cubic roots of

(-1+i*sqri(3))/2

(~1-i*sart(3))/2

Figure 13: (a) The cubic roots of 1.

(a) The three cubic roots are of course

ie.

1+i*sqrt(3)

1+'sart(3)

Figure 14: (a) The cubic roots of —8.

(b) The three cubic roots of —8 are

-2, 1+ivV/3, 1—iV3,
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i.e.

T
2e'™,

i
2o (i),
exp z3

2 exp <—i g) .

(sqri(@)+/2

(sart(3)+i)/2

Figure 15: (a) The cubic roots of 1.
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(c) The three cubic roots of i are

3 1 1
—i, —£+i—, @4_1'_’
2 2 2 2

thus

(-i3) 5 (%)
exp(—ig ), exp Z6 , exp Z6 .

Example 3.4 Find all complex roots of

(a) Vi, (b)) V/=1+i, (¢) V=1, (d) V-32.

Figure 16: (a) The square roots of i.

(a) The symbol v/i means the roots of the equation

zQ:i:exp<i<g+2p7r>), pEL,

SO

™ ¥ 1 .
2z = exp (<Z —|—p7r)) = +exp (z Z) = iﬁ (1+1).
(b) The symbol ¢/—1 + 1 is the set of roots of the equation

3
23:_1+i:\/§exp<i(zﬂ-+2pﬂ'>>, pEZ,

SO

2
Z:{B/iexp(Z(%—&—p?ﬂ-)), p2051727
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2/1/6)

Figure 17: (a) The cubic roots of —1 + 4.

or, more explicitly,

21

Z2

z3

1

) 1 1 ;

- (J5+ig) = e

1 ! N .
\3/—5(1+z)5(—1+2\/§)f2w( 1—V3+i{-1+V3}),
1 L1 e L
\3/—5(1—&-2)-5(—1—2\/5)——2\3/5( 1+V3—i{1+V3}).

Figure 18: (a) The quadruple roots of —1.

(c) The symbol v/—1 is the set of roots of the equation

2t =—1=-exp(i(n +2p7)), peZ,

SO

z:exp(i(ngpz)), p=0,1,2 3
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Figure 19: (a) The fifth roots of —32.

or more explicitly,
E{l-i-'l 1+,1 1 .11 _1}
z —ti—=, =+ —=, ==, —=—1—=.
V2 V2T V2 V2 v V2TV V2
(d) The symbol /—32 means the set of solutions of the equation
Z5 —_39— 25 ei(7r+2p7r), pE Z,

the solution of which are

P
ZZQeXp(i<75T+p~57T)>, p=0,1,2 3, 4.

Remark 3.1 Note that we for p = 2 obtain the trivial solution z = —2. The remaining roots can
be expressed by means of square roots, if we apply the results of the folloing Example 3.5. ¢

Example 3.5 Prove that

T 145 1T V10—2V5
cos 5 = 1 and sin 3 = — 1

HiNT: Apply that

i) =
COS — 7 SIn — = —
b) 5 ’

T
and put x = cos —.

Ifweputx:c,os§>0, then sin — = 1 —22 > 0, hence
5 5
0 = (cos%—kising) +1=(e+ivi—a?) +1

= 2°+5iz*/1— 22 —102° (1 —xQ) — 10i 2* (1 —xQ) V1— a2
452 (1—a?)’ +i(1—-2%)°V1-a? + 1.
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Complex Funktions c-1 The binomial equation

When we split into the real and the imaginary part we get the two equations

0=a® - 102% (1 — 22) + 52 (1 — 22)” + 1,
(3)
0= vT—27- {50t~ 102% (1 - a%) + (1-22)"}.

We have assumed that /1 — 22 # 0, hence (3) is reduced to
0 = 2°+4+102° — 1023 + 52° — 102 + 5x + 1 = 162° — 2023 + 5z + 1
= (z+41)(162* — 162® — 4% + 4z + 1)
0 = 52t +102* — 1022 + 2* — 222 + 1 = 162* — 1222 + 1,

and since x = —1 is not a common solution, it follows that we shall only solve the following reduced
system of equations,

162 — 162% — 422 + 42 4+ 1 = 0,

162* — 1222 + 1 = 0.

sesssssssrssssessansansrssrsarsansarsarsassrssrnssnnsrnsssssssssessesessfilCcate]-Lucent @
www.alcatel-lucent.com/careers

2%

One generation’s transformation is the next’s status que:

In the near future, people may soon think it's strange that
devices ever had to be “plugged in.” To obtain that status, there
needs to be “The Shift".

N
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Complex Funktions c-1 The binomial equation

Then by a subtraction,
1623 — 822 — 4a = 4z {4332 —2x — 1} =0.

The solutions are 0 and

24416 2+2V5 1++5
xr = = =
8 8 4

so the solution of the original equations must be one of these.

Since (3) has a solution z = cos 3 > 0, and since the only positive of the possible solution is

1+
==
we conclude that
cosz—1+\/g
5 4
hence
2
|y <1+\/3> CV16—1-6-2V5  /10-2V5
5\ 4 - 4 - 4 '

ALTERNATIVELY, it follows from (3) that in particular,
0=162" —242° + 5z + 1= (z+1) (162" — 162° — 42® + dx + 1) .
Since

162* — 162° — 42% + 42 + 1 = 162* — 162° — 82% + 422 + 4z + 1
— (42%)° = 8222w + 1) + (20 + 1)% = (42® — 20 — 1)°,

it follows that x = cos g €10, 1] fulfils the equation

162° — 202° + 52 4+ 1 = (w + 1) (42® — 20 — 1)°

— 4z +1) (x—@)Q (x_%gﬂ>2

=4{z—(-1)} (x 1+4\/§> <x ! _4\/5> ,

and we conclude that z = cos g €10, 1 belongs to the set

11+\/51—\/5
4 4 '

Since only 1 is positive, we conclude
o8 L V5
5 4
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Complex Funktions c-1 The binomial equation

and then

oo 10 — 2v/5
sl — = ——

5 4

is found as above.

1+k_10

ALTERNATIVELY, the example can be solved geometrically by noting that AABC' is the same angle
as ABCD. Then

4B _1BC| L 1 ko
|BC| |CDJ’ ko 1—kio

We obtain the equation of second degree
kg +kio—1=0,

hence

1+ 1 V5 —1
o=—5 C)ygtl="5—

where we have exploited that k1p > 0. Finally, since |[AB| =1,

1 1 1
cost = |AE| = |AD|+ 3 |DC| = ki + 5 |DC| = ko + 5 (1= ko)
145
(14 ko) = 1

N =

Remark 3.2 The notation kip is due to the fact that it is the length of the cord of the regular
decagon, inscribed in the unit circle. ¢
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Example 3.6 Find all roots of the equation
2 4i=0.

We rewrite this equation as

24:7i:exp(i(7g+2pw)), pEL,
thus
T T
= | —— - =0,1, 2, 3.
z exp(z( 8+p 2)), p=20,1,2,3

It follows from

cos T = Jcos G +1 1+\/L§_ \/§+1_\/2+\/§
8 ' 202 2

and
.om [l—cosf 1*%_ V2-1 V2-2
METV T TV T TV e T 2
that
T .7 1 .
z1 = cosgfzsmg = 5{\/2+\/572\/27\/§},
1
s = iz - 5{\/2—\/54—2'\/2—!-\/5},
1
1
o = —iz = S{-ve-Vva-iv2+ iy

Example 3.7 Compute
(=3 +4i)"%.

It follows by inspection that

34 4di=1-4+2-2i=(142i)%
thus

(=3 +4i)7 = +(1 + 2i),

and hence
N2 1 1 —3 —44)(1 —2i
(-3+4)7F = : <=7 : gl ) —2)
(—3 + 4i)(—3 + 4i)2 (=3 + 4i)(1 + 2i) 25-5
_ i(3+4z)(1—2z) :i3+8—6z+4z :ill_%.
125 125 125
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The binomial equation

Example 3.8 Assume that n € N\ {1}. Prove that

.m . 2w . (n—=1Dm n
sin — - sin — - - - sin = T
n n n 2n=

1
HINT: Prove that the left hand side can be written as—— times the product of the roots of the

2n—1

polynomial (1 — z)™ — 1, which are different from zero.

The equation (1 — z)™ — 1 = 0 has the solutions

2
1—z:exp<iﬂ>7 p=0,1,...,n—1,
n

so when we rewrite each solution in the following way,

L 2pm 2r . . 2pm
z, = 1l—exp ZT =1—cosz—zsmT=1

. pT .opm . p . pm
= 2s1n—~(sm——zc0s—)=2$1n—~ -
n n n n

/

. (1—2sin21£)—i-2cosp—ﬂ-sin1£
n n n

1 pT >
exp (z —) ,
i n
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Complex Funktions c-1 The binomial equation

then
2 1 n—1 n—1 n—1
sinﬁ ~sin%~ sin (n - ) = ;n_l H exp (*Z —W) H Zp
p=1 p=1
Zn—l n—1 - n—1
= 5T P (—z s (n— 1)n> H % = 5oy OXP ((n —1)i —) exp (—(n —1)i _) H 2
p=1 =1

1

n—1
= on—1 H p-
p=1
Now, we also have

(1—2)"—1 = f:( ?)(-1)]’2«1'—1:271:( ';‘ )(—1)jzj:—zﬁ(zp—z)

=0
n—1
p

Hzp~z+~'+(—z)”.

=1

so by identifying the coefficients for j = 1 we get

—ﬁzp=(2)<—1>1=—n,

hence by insertion,

T . 27 . (n—=Dm n
sin — - sin — - - -sin = T
n n n 2n=

Example 3.9 Solve the equation z™ = Z for every n € N.
Also, solve the equation, when n € Z.

If n = 1, then the equation becomes z = Z. The set of complex numbers which are equal to their
complex conjugated, is equal to the set of real number, hence the solution is R.

If n > 2, then z = 0 is trivially a solution.
Then assume that z # 0. Put z = re*?, r > 0, which gives

e = e r >0,
thus

rn—lei(n+1)9 - 1.

2
We conclude thatrzland@z%,pzo, 1, ..., n, so the equation has the n + 2 solutions
n
0 d , 2 1,2 +1
z0 = an z, =exp | , =1,2,...,n+1.
0 P p n+1 p
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The binomial equation

If n = 0, then the equation is reduced to Z = 1, and it follows that the solution is z = 1.

Finally, let n < 0. If we write n = —m, m € N, then z=™ = Z. In particular, 0 is never a solution.
If m =1, then z~! = 7 is rewritten as
1=%-2=|z2%
and the set of solutions is the unit circle.
When m > 1, we use polar coordinates z = r e, so
1=z 2m = pmtl L o=i0  gimd _ pmt1gi(m—1)0
hence r =1 and 0 = % Thus we obtain in this case m — 1 = |n| — 1 = —n — 1 solutions,
Zp = exp (z Tj‘”ﬁl) = exp (—z 2;3_71‘1) , =1,2,...m—1=—-—n-—1.

Example 3.10 Prove that the function

f(z) =22* — 122%% + 2y* — 323 + 929® + i (8z%y — 8zy® — 92y + 3y°) ,

can be written as a polynomial in the complex variable z.

Then find the roots.

Concerning polynomials, a good strategy is to identify the degrees of the pair (x,y), which occur. We

see that we have the degrees 4 and 3, and since

4

and

2t = (z +iy)t = 2 + diady — 6229 — dizyd + yt = 2t — 6222 + oyt i (4x3y — 4ay®)

23 = (z +iy)® = 23 + 3izy — 3ay® —iy® = 2® — 3ay® + i (3x2y — y3) ,

it follows that

flz) =

22* — 122%9% + 2y* — 323 + 9wy® + i (8x3y — 8zy® — 92%y + 3y3)

= 2 (m4 — 6%y +yt +i {4x3y — 4xy3}) -3 (1‘3 — 3xy® +i {31:23/ - yg})

= 224323,

thus

f(z) =22% =323 =223 <z —

3
2 )

3
and the roots are z = 0 (of multiplicity 3) and the simple root z = ok
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Example 3.11 (ENESTROM’S THEOREM). Given the real numbers py, p1, - .., Pn, for which
Po>p1>p2 > >pp > 0.

Prove that the polynomial
P(z) =po+p1z+p22° + -+ +ppz"”

does not have a zero in the open unit disc |z| < 1.

HINT: Consider (1 — z)P(z).

When we compute (1 — z)P(z) we obtain

(1-2)P(2) = (po+p1z+p22°+- +pn2") = (poz +p12° + - + pp_12” + pu2" )
= po—(Po—p1)z— (P —p2)2® — - — (P—1— Pn) 2" — p2™th.

According to we assumption we have p;_1 —p; > 0, so when |z| < 1 we get the estimate

|(1=2)P(2)] >po—(po—p1) —(p1 —p2) = — (Pn—1 — Pn) — Pn =0,

and we conclude that (1 — z)P(z) # 0 for |z| < 1, so in particular that P(z) does not have any zero
in the open unit disc.
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Complex Funktions c-1 Equations of second degree

4 Equations of second degree

Example 4.1 Let zg € C\ {0}. Solve the equation
1 1 1

z24+ 29 z 20

Here we of course must assume that z # 0 and z # —z;. When we multiply by the common
denominator zoz (z + z9), we get

202 = (2 + 20) 20 + 2 (2 + 20) = 202 + 25 + 2% + 220 (: (z+zo)2),
and we obtain the equation
z2—|—zoz—|—zg =0,

the solutions of which are

_ a0 E /ag — 45 . (—E:I:z\/g>
5 .

2 2

Remark 4.1 Many years ago, in the 1970s, I constructed this example, because many of my students
erroneously believed that one always had

1 1 1

a+b a b

It will be proved below that this is never true in R. Furthermore, it is proved that there are complex
solutions, but they do not match with the wrong “rule of calculation”. ¢

Example 4.2 Find the roots of z2° + (6 + i)z + 7 — 3i.

When we apply the solution formula, we get

s —
.- (649 \/(6;2) U 32):%{—6—ii\/35+12i—28+12i}

{—G—iim}zé {—6—¢i¢m}

{—6—ii\/42+(3i)2+2~4-3i}

{—G—ii (4+3i)2}:%{—6—ii(4+3i)}

1
si-2+2i) = —1+4,

I
e e, DO | = DO | =N |

1
5 (10 —4i) —5 — 2i,
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so the roots are
z1=—1-+1 and 29 = —H — 2.

A cHECK shows that the sum of the roots is
(-14+i)+(-5—-2i)=—6—i=—(6+1),

i.e. the coefficient of z of the opposite sign, and the product of the roots is
(=144)(-5—2i)=5+2—5i+2i="7-—3i,

i.e. equal to the constant term of the polynomial. We see that the check is OK. ¢

Remark 4.2 If one does not see immediately that 7 = 42 — 32, then we may try to solve the equation
(a +ib)? = 7 + 24i. This gives us the equations

a? = =T og 2ab = 24,
hence

(0 +6%)° = (a® — b%)° + (2ab)? = 72 + 242 = 49 + 576 = 625 = 257,
and thus

a® +b* =25,

so when we combine it with a? — b2 = 7 we obtain a? = 16 and b% = 9.

Example 4.3 Solve the equation

1 1
§(z+§>—a fora e C.

Prove that the equation has precisely one solution in the open unit disc |z| < 1, if and only if a does
not belong to the real interval [—1,1].

Here we must assume that z # 0. Then by a multiplication by 2z and a rearrangement we get

(4) 2> —2az+1=0,

the solutions of which are

z=a++Va?—1.

Denote the roots by z; and zo. The structure of (4) shows that the product of the roots is 1, hence
21 - 29 = 1. If therefore e.g. |z1| > 1, then we necessarily must |2z2| < 1, and wvice versa. This shows
that we have precisely one solution in the open unit disc |z| < 1, if and only if the other solution lies
in the open complementary set |z| > lof the closed unit disc.
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The condition that this is not the case is equivalent to |z1| = |z2] = 1. Let z be a shorthand for any
of these solutions. Then z = €. if |2| = 1, and it follows by insertion that

1 N\ 1,
= - — = — v v == 9.
=3 (z + z) 5 (e’ +e7") = cos

This shows that a goes through the interval [—1, 1] twice, when 6 goes through the parameter interval
[0, 27] once.

Therefore, if a ¢ [—1, 1], then there is precisely one solution in the open unit disc |z| < 1.

Finally, if a € [—1,1], then it follows from

z=a+Va?—1=a+iV1—a2, 1—a®>0,
that
2P =d*+1-a® =1,

and we have proved that in this case both z; and z5 lie on the unit circle.

Remark 4.3 The function
1 1

is also called Joukovski’s function. It was many years ago applied by Joukovski in order to describe
the streamlines around the wing of an aeroplane. ¢

Example 4.4 Prove that 1 £ i are the roots of the polynomial
2 =223 4322 — 224 2.

Then find all its roots.

First method. It is seen by inspection that

24—223+322—2z+2=(z4—2z3+222)+(z2—2z+2)
=("+1) (" —22+2)=(2*-1) { -1} +1),

hence the roots are z = +7 and z =1 £+ 4.
Second method. When 1 + ¢ are roots, then
-—{1+iNe-{1-iH={z-1}-){z-1}+i)=(z—-1)2+1=22-22+2
must be a divisor in the polynomial. Again we find that
242234322 -2242= (z2—|—1) (z2—22—|—2),

so the roots are z = 7 and 1 £ 4.
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Example 4.5 Given that 1 — i is a root, find all the roots of the polynomial

24 —22% 4622 — 82 +8.

First method. It is seen by inspection that

24923 4622-82+48 = 24—223—1—222—}—422—82—1—8:(22—1—2)(22—22—{—2)
= (224-22)({,2—1}2—1—1),

and we get immediately the roots z = +2i and z = 1 + 4.

Second method. The polynomial has only real coeflicients, so the roots are either real, or pairwise
complex conjugated. Thus, since 1 — i is a root, also 1 + ¢ must be a root, hence

z—{1—-iNe-{1+i)={z-1}+i){z—1} —i) =22 - 22+ 2
must be a. By a polynomial division we get
24 -2 4622 -82+8= (z2+4) (z2—2z—|—2),

and it follows as before that the roots are z = +2¢ and z = 1 + 4.
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Complex Funktions c-1 Equations of second degree

Remark 4.4 It is worth mentioning that a division by
z—{l—i}=2z—-1+41i

will give some very unpleasant calculations and that such a division only reduces the problem to a
messy equation of third degree. Therefore, one should always exploit the the roots are either real or
pairwise conjugated, if the polynomial has real coefficients. ¢

Example 4.6 Solve the equation (z4 — 16) (23 + 1) =0.

It is seen by inspection that the four roots of z* — 16 are 2, 2i, —2, —2i, and that the three roots of

1 V31 V3

234+ 1 are —1, 3 +1 55" 7 5 Hence, the seven roots are

V3
T

SE

| =
N —

Remark 4.5 The example is of course trivial, when it is solved in this way. However, it is a warning
against starting by multiplying the two factors, in which case one shall get the equation of seventh
degree:

27424 —162° — 16 = 0.

This is not very smart, even if it in this case is possible to guess the rational roots z = —2, —1 and 2.
Then we get by the usual reduction that

2742 —162% — 16 = (2 +2) (2 + 1)(2 — 2) (2* — 2° + 522 —4z+4) =0,
and the problem has now been “reduced” to finding the roots of the equation
22— 22 4+ 522 — 42 + 4,
which does not look very promising.

The lesson here is that one in almost every case should keep a given factorization and not multiply
the factors. ¢
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Example 4.7 Solve the equations

(a) 2 +3=0, (b) 2*+16=0,
(¢) 22 -2 4+1=0, (d) 22+224+2+1=0.

(a) The binomial equation is here written as

23 = =3 = 3¢ mt2Pm), pEL,
thus
, 2
zxs/g-exp(i{ng%)), p=20,1,2

More precisely,

Z0:\3/§<%+Z§>, 21:_%, 22:%<1_1L§>

(b) The binomial equation is here written
2 =16 = 24ei(”+2p”), pE L,
thus

zzQexp(i{%—i—p-ﬂ}), p=20,1,2 3.

2

More precisely,

20:2(%+i%>=\/§(1+i), le’L’Zo:\/i(—l—Fi),
22:—20:—\/§(l+i), 23:—21:\/5(1—1)
4

(c) The equation is a disguised equation of second degree in z*, so
0=28—22441= (z4—1)2,
and it follows that the eight roots are
1,1,4,4, —1, =1, —i, —1,
because the binomial equation z* — 1 = 0 has the four roots 1, i, —1, —i.
(d) It follows by inspection that
P+ +24+ D)2+ D)+ (z+1) =(2+1) (2 +1),

and we conclude that the roots are —1, 7 and —i.

ALTERNATIVELY it is seen that 23422+ z+1 are the first four terms of a quotient series. Therefore,
if 2 # 1, then
4
P
22422421 = ,
z—1

The numerator z*—1 has the four roots 1, i, —1, —i, and when z = 1, it follows that 23+ 224241 =
4 # 0. Therefore, we conclude that the three roots are i, —1, —i.

z # 1.
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Example 4.8 Prove that all the roots of the equation

(z+1)P°+25=0

lie on the line x = —5
Then prove that this is in general the case of the roots of the equation

(z+1)"+2"=0,

for every n € N.

We shall immediately prove the general result. Clearly, z = 0 is not a solution of the equation. When

we divide by 2", the equation becomes

1 n
(Z+ ) r1=o0.
z

z+1
By putting w = 2l we get the binomial equation w™ = —1, and in particular |w| = 1.
z

We then check what the unit circle |w| =1 is mapped into by the inverse transformation

If we here put w = €%, 0 # 2pr, p € Z, i.e. w # 1, then

1 e _1 cost) —1—1sin0 cosf) —1 —1sinf

e —1 (el —1) (e~ —1) TI1t1- (e +e=i0) —  2(1—cosf)

1 . sin 6

2 " 2(1 —cos )’

Therefore, every root z = x + iy of the original equation must therefore have the form

0

1 sin 6 1 . 2sin g cos 5 1 i
z=—gti gy =5t 37 575
2 2(cosf — 1) 2 2(1—25111 5 — ) 2 2
. . 1 .
and it follows that the real part is always z = ~5 as required.
Remark 4.6 It also follows from the above that since w™ = —1, then
2p+1
g ZpH T oo,
n

hence by an insertion,

1 ) 2 1
Zp:___zcot<M

=0,1,...,n—1
2 2 2n )) p 07 ) 7” <>
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Example 4.9 Find all the complex solutions of the equation

{22 —2(1 +i)z —2}" = —8i.

This equation can also be written
w* = —8i, where w = 2% —2(1 +14)z — 2.
Let us first solve the binomial equation:
w = +2(1 — ).
By insertion we get two equations of second degree, which are solved in the usual way:
1) If w = 2(1 — 9), then after a reduction
22 —2(1+1i)z—2i=0,
hence
z=1+i+V2i+2i=1+i+v2(1+1).
2) If w = —2(1 — i), then after a reduction
22— 2(144)+2i—4=0,
hence

z=14+1EV21-2i+4=1+4+1%2.

Summing up, the given equation of fourth degree has the roots

(1T+V2)(1+i), (1-=vV2)(1+i), 3+i,  —1+i.
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5 Rational and multiple roots in polynomials
Example 5.1 Find all the roots of the polynomial
p(z) = 2% — (14 2i)2% — (1 —2i)z + 1,

given that it has a multiple root.

Since
P'(2) = 32% — (2 + 4i)z — (1 — 24),

it follows by the usual algorithm of division that

1 142, . 4 4 142, . 4.
p(z) {Sz 9 }p(z)+9zz+9 {Sz 9 }p(z)+91(z 1)

The multiple root is a root in both p(z) and in p’(z), so it follows that it must be z = i.

Since now z = i is a root of at least second order, (z — )% = 2% — 2iz — 1 must be a divisor in p(z).

We obtain by division that
p(z) =2 —(142i)22 = (1= 2i)z+ 1= (2 —1)(z — i),

and the three roots are 1, ¢ and 1.

[ ]
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Complex Funktions c-1 Rational and multiple roots in polynomials

Example 5.2 Find all the roots of the equation

A2 —42% — 2522 + 2+ 6 = 0.

It follows by an inspection that
42t — 423 — 2522 4 246 =42 — 423 — 2422 — 22 4246
1 1
=422 (" —2-6)— (2 —2—-6) = (42 —1) (> =2 —6) :4(z—§> (z+§) (z=3)(z+2).

We conclude that the roots are
1 1
4 _ia 57
ALTERNATIVELY, the equation has only integers as coefficients, hence the possible rational roots must
be among

3 3 11
£6, £3, £7, £7, £2, £l Eo, ko

thus only 16 possibilities. By using a pocket calculator we get

P(6) = 3432, P(1) = —18, P(—6) = 5148, P(-1) = —12,
P(3) =0, P(3) = —7,734374, P(—3) = 210, P(—3) = —5,859375,
p(3) = —42, P(3) = 4,640625, P(=3) =—18, P(—1) = 4,265625

1 1
It follows from this table that 3, —2, — and —= are indeed roots. Since a polynomial of fourth degree

has precisely 4 roots (counted by multiplicity), we have found all the roots.

Example 5.3 Find the possible multiple roots of the polynomial
42° 4 (84161) 2% +(—27432i) 23 — (294 441) 22 + (44 +12i) 2 — 12,
and then find all roots.
This is a difficult example, because the polynomial is of fifth degree, and because the coefficients are

complex. A pocket calculator will here be quite helpful, though I did not use one while I was working
on this example).

It follows after a differentiation that the task is to find all the common divisors of
42° 4+ (8+160) 2% + (274 32i)2° +(—29—440) 2> + (44 +12i) 2 — 12,

®) 202% 4 (32+4641) 23 4 (—81+96i) 2 + (—58 — 884 ) 2+ (44 +12i).

The former polynomial of (5) is multiplied by med 5, and the latter with z. This gives
202° 4+ (40+80i) 21 + (—135+41607) 23 + (—145— 2204 ) 2? + (220 + 607 )  — 60,

202° +(32+64) 2%+ (—81+964) 23 + (58 —881) 22+ (44+12i) 2,
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hence by a subtraction,
(84167) 2% + (—54+64i) 23 + (—87—132i) 2> + (176 +48i) 2— 60,

and we have obtained a polynomial of fourth degree which also must have the multiple root as a root.
The coefficients of the highest order term is 8 + 16i = 8(1 4 2i), so we multiply the latter polynomial
by 1 — 2i. Then

402 4 (T44+172) 23+ (—3514424) 22 + (272 —3044) 2 — 60+ 1204,

which also must have the possible multiple roots as roots.
If we subtract twice times the latter polynomial of (5), from this polynomial, we obtain the following
reduce polynomial, which also has the wanted roots as some of its roots,

(10+444) 2> + (—189—1504) 2% + (388 — 1287 ) 2+ (—148+964).

Since 10 + 44i = 2(5 + 22i), we obtain a “nicer” expression which we multiply this polynomial by
5 — 22¢, hence

10182° + (4245434084 ) 2% + (876 — 91764 ) 2+ (1372+37361).
We have now reduced our system to

202% 4 (32+4-641) 23+ (—81+96i) 22 + (—58 — 884 ) 2+ (44 +12i),

(6)
101823 +(—4245+3408) 22 + (—876 — 91767 ) 2+ (1372+37364).

If we multiply the former polynomial of (6) by 509 and the latter by 10z, then we get the following
rather messy system,

101802% + (16 288+325761) 2> + (—41 229+48 864i) 2% + (29 522 —44 792i) 2+ (22 396+ 6 108i),

10 1802* 4 (—42 450434 0807 ) 23 + (—8 760—91 7607) 22 + (13 720+ 373604) z,
hence by a subtraction,
(58 738 —15044) 2° +(—32 4694140 624i) 22 + (43 242 —82 1527 ) 2+ (22 396-+6 108).

This expression is then multiplied by 1018,

(59795 2841531 072i)2° +(—33 053 442+ 143153 232i) 2>
(44020 356 —83 630 7367) 2+ (22 799 12846 217 9444),

which should be linked with the latter expression of (6) when it is multiplied by 58 738 — 15044, thus

(59795 2841531 072i) 2% + (—244 217 1784206 563 584i) 2>
+(—65255192 — 537 662 3847)z + (86 207 480 + 217 381 6807).

Then by a subtraction,
(211 163 736 —63 408 532i) 22 + (21 234 8364454 031 648i) 2 +(—63 408 352—211 163 7361).
A division by 4 reduces this polynomial to

52790 934 — 15852 088i) 2%+ (5 308 7094113 507 912i) 2 +(—15 852 088i — 52 790 9341).
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Then we see that 49 is also a divisor, so we can reduce to
(1077 366—323 5121’)22 +(108 341+2316488:)z+(—323512—1 077 3664).

Then we multiply by 1077366 + 323 5124, in order to get

1265377 5121002 4 (=632 688 756 05042 530 755 024 200) 2 — 1 265 377 512 100
= 632688 756 055 {222 4 (—1 4 4i)z — 2i} .

The task has now been reduced to find the common roots of the system

425+ (8+161) 2%+ (—27+32i) 23+ (—29—44i) 22+ (44+12i) 2 —12 = 0,

(7)
222+ (—1+4i)z—2i = 0,

where we use the original polynomial as our first one, because it looks ‘simplest’, concerning the
coeflicients. Notice that any of the polynomials derived above could be used instead.
Then again we perform a division by polynomials, but this time we (fortunately) obtain

42° + (84164) 2% + (—27+32i) 23 + (—29 —444) 2% + (44 +12i) 2 — 12
= (222 +{-1+4i}2—2i) (22°+{5+4i}2*+{-3+10i} 2 —6i) .

According to the theory, the roots of 222 + {—1 + 4i}z — 2i must be double roots of the original
polynomial. Hence, we can perform another division by a polynomial, which gives us

42° 4 (8+160) 2% +(—27432i) 23 4 (—29—447) 2% + (44 +12i) 2 — 12 = (2z2+{—1+4i}z—2i)2 (2 +3).
Therefore, we shall only find the roots of
22% 4+ (=1 4 4i)z — 2.

We get by using the usual solution formula,

1—4it/(1—4)2+4-2-2i 1-4it/-15-8i+16i 1—4i+/—15+38i
o 4

= 4 - 4
1
14t 1+ (40242140 1—4it /A1 +40)2 1—4dit(1+4) 9
n 4 a 4 a 4 o
—2i.

The factorial expansion is therefore

4 (z — %)2 (2 +2i)%(z + 3),

and the roots are

1 1
—2i

57 57 ) =21
2 2

3

Remark 5.1 Once again we see why man should always keep a factorial expansion as long as possible.
One loses a lot of information by multiplying the factors. ¢
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Remark 5.2 The computations above may be performed in various ways, some of them will not give
as awkward numbers as the method above. The purpose here has only been to demonstrate what may
happen if one slavic follows the standard method without using one’s brain. ¢

Remark 5.3 It is also worth mentioning that there exists an ALTERNATIVE method of solution. In
the actual case it will also lead to huge computations, but one advantage is that all its coefficients will
remain real. The idea is that if one splits int the real and the imaginary part,
P(2) = 42°+(84+166)2° +(-27+32i)23 4+ (—29—44i) 2% + (44 +12i)z— 12
= {42°+482" 2722027 +442 12} + i {162 +322° — 442>+ 122}
= {42°+82"—272° 2922 +442— 12} + 4iz {42*+82°—112"+32},

we conclude that the possible real roots necessarily must be real roots of both the real part and the
imaginary part. Now, z = 0 is not a roots, so we shall find the common divisors of

425 + 82% — 2723 — 2922 + 442 — 12,
423 + 822 — 11z + 3.
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Complex Funktions c-1 Rational and multiple roots in polynomials

When we apply the method of division of polynomials, we get the even better result, namely that the
division is successful,

425482 —272° - 2922 +442—12 = (42° 482> —112+3) (2*—4) .
Hence,
P(z) = {42°+82" —272° — 292° 4+ 442 — 12} + 4iz {42° + 82> — 112 + 3}
= (P +4iz—4)(42° +82° — 112 +3) = (2 + 20)* (42° + 82" — 112+ 3) .
Here we can check in the latter factor, if

3 .3 11
+3, £, £, £1, £, -
37 27 4) ) 27 4)

are roots. Alternatively we may check if there are other multiple roots, i.e. we shall find the common
divisors of

423 + 822 — 11z + 3,
1222 4+ 162 — 11.

The former polynomial is multiplied by 3 and the latter by z. This gives the equivalent system

1223 4 2422 — 332 + 9,
1223 4+ 1622 — 11z,

hence by a subtraction, 822 — 22z + 9, and the task has been reduced to finding a common divisor of

1222 4162 — 11,
822 —222+0.

First we write this system as
2422 + 32z — 22.
2422 — 66z + 27,

1
Then by a subtraction, 98z — 49, and thus z = ok Finally, by insertion,

1 1 1 1 11
+8 s —11->+43=-+2- 2 +3=0,

4. —
23 22 2 2 2

1
and z = = is a root of multiplicity 2.
When we divide by

(22 —1)2 =422 — 42+ 1,
we get
42° 482 — 11243 = z(42° —4z+1) +122° — 122+ 3
= 2(42% =4z +1) +3 (42" — 42+ 1)
= (2+3)(22 - 1)%
and we have again proved that

P(z) = (22 — 1)%(2 4 2i)%*(z + 3).
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Example 5.4 Find all the possible multiple roots of the polynomial
25 4(940) 2 4 (274104) 2 4+ (234-374) 2% + (—24+60i) 2 — 36+ 364,
and find all its roots.
After we have been taught a lesson in Example 5.3 we first try to find the possible real roots. These

must be the common roots of the polynomials

25 +928 +272% + 2322 — 242 - 36 = Pge(2)

22 4+1023 + 3722 + 602 + 36 = Pr,(2).
When we multiply by z, we get
25 4+ 102% + 3723 +602% + 362 = 2 - Pp(2),
and we conclude that
Pre(2) = 2° 4+ 92* +272% 42327 — 242 — 36 = (2 — 1) Pr,n(2),
thus
P(z) = Pre(2) +i Prn(z) = (2 — 1 +14) (2* +102° + 372 + 60z + 36) .
This proves that 1 — i is a root, and the task has been reduced to finding the multiple roots of
24 +1023 + 3722 + 60z + 36,

i.e. we shall find the common divisors of

2% +102% 4+ 3722 + 602z + 36,

(8)
423 4+ 3022 + 74z + 60.

When the former polynomial of (8) is multiplied by 4 and the latter by z, we obtain the following
equivalent system,

Az% + 4023 + 14822 + 240z + 144,

42 4+ 3023 + 7422 + 602,
thus we get by a subtraction the polynomial
102% 4 742% + 180z + 144.
We have now reduced (8) to the simpler and equivalent system

1023 + 7422 + 180z + 144,

(9)
223 + 1522 4+ 372 + 30,

where the latter expression of (9) stems from the latter expression of (8) after a division by 2.
When the latter expression of (9) is multiplied by 5, then

1022 + 7522 + 185z + 150.
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From this we subtract the former expression of (9) in order to get
22 45246 =(2+2)(z+3).
Then put z = —2 and z = =3, into P(z) = (2 — 1 + i) Pr;(2), i.e. we check the solution,

P(~2) = P(-3) =0,

because
Prm(—=2) = 2*—10-2%+37-22 ~60-2+36 = 16 — 80 + 148 — 120 + 36 = 0,
Prn(=3) = 3*—10-3%4+37-32-60-3+36=9(9—-30+37—20+4) =0.

According to the theory, both —2 and —3 are multiple roots (of multiplicity 2), thus
P(z) = (z —1+14)(2 +2)*(2 + 3)%,

and the roots are
1—q, -2, -2, -3, -3

ALTERNATIVELY we demonstrate in the following what happens, if we instead apply the standard
method. It follows after a differentiation that we shall find the common divisors of

254 (9414) 2+ (27+104) 23+ (234 37i) 22+ (—24460i) 2 — 36+ 364,
524+ (36+4)23 +(81+304) 22 + (46 +744) 2+ (—24+60i).
Multiply the former polynomial by 5 and the latter by z. Then
525 +(45+5i) 21 + (1354504 ) 2% + (115+185¢) 2% + (—120+300i) z — 180+ 1804,
525+ (36+4i) 2%+ (81+30i) 23 + (46 +74i) 2% + (—24+604) z,
hence by a subtraction
(941)2* 4+ (54+200) 2 +(69+1114) 2% + (96 +2404 ) 2 — 180+ 180i.
When we multiply by 9 — ¢ we obtain the polynomial
822"+ (506+1264)2° + (73249304 ) 2% + (—624+22561) 2+ (—1440+1800i),
and it follows after a division by 2 that we shall find the common divisors of
412%+(253+31) 2% + (366 +4651) 2% + (—312+1128i) 2+ (—720+9004),
524+ (36+4i) 2>+ (81+30i) 22 + (46 +74i) 2+ (—24+60i).
Multiply the former polynomial by 5 and the latter by 41. Then we obtain the equivalent system

20524+ (1265 + 3157) 23+ (1830423251) 22 + (—1560+ 56407 ) 2 + (—3600+45004),

20524+ (1476 +1644) 23 + (3321 +1230i) 2% + (1886430347 ) 2 + (984 +24601).
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By a subtraction,
(211—1510) 23 + (1491 —1095) 22 + (3446 — 26067 ) 2+ (2616 — 20404 ),
and we have got the system
52%+(36441)23 4 (814307) 22 + (464 74%) 2+ (—24+60i),
(211—1514)23+ (1491 —1095) 22 + (3446 — 26061) z + (2616 — 20407).
The former polynomial is multiplied by 211 — 1514, and the latter by 5z. then
(1055—17550) 2% + (8200 —4592i) 2% 4 (21621 — 59017) 22 + (20880 + 8668i)z + (3996 + 162844),
(1055—"755i) 2* 4 (7455 —54754) 23 + (17230 — 130307 ) 22 + (13080 — 10200i) 2,
and hence by a subtraction,
(745+883i)23 + (43914 7129i) 22 + (78004 188687 ) 2+ (3996 + 162841)

(211 —1517) 23+ (1491 — 1095¢) 22 + (3446 — 26067 ) 2+ (2616 — 2040i)..
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We get

(200 528 + 73818i)2% + (2002 980 + 841 1784)22
(4494 868 + 2803 3481)z + (3302 040 + 2832 528i),

(290528 + 73818i)23 + (2077 680 + 500 7787) 22
(4868 368 -+ 1101 348i)z + (3 750 240 + 790 128i).

Then by another subtraction,
(74700 —3404004) 22 + (373 500 — 1 702 0007 ) 2 + (448 200 — 2 042 4004).
Here we can remove the common factor 100, so

(747 — 3404i) 22 + (3735 — 170204)z + (4482 — 20424i).

Now,
3735 — 170200 = 5(747 — 34044),
4482 — 204247 = 6(747 — 34041),

so when we divide the polynomial by 747 — 3404, we get
2% + 52 + 6.

Then by another division,

254 (944) 24 4+ (274100) 23 4 (23 +-370) 22 4 (—24+607 ) 2 — 36 + 361
= (2 +52+6) (z°+ (4 +1)2° + (1 +5i)z + (—6 + 6i)) .

Since this division was successful, the roots of 22 + 5z + 6 must be double roots, so 2% 4+ 5z + 6 must
again be a divisor. Then

224 (4+41) 2% +(1+50) 2+ (—6+6i) = (2°+52+6) (2—1+4),
and we finally obtain the factorial expansion
P(z)=(z—141) (22 +5246)° = (z — 1 +i)(2 + 2)*( + 3)°.

It follows that the roots are
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6 Symbolic currents and voltages
Example 6.1 Let 11 = I sin (wt + 1) and 1o = Iy sin (wt + @) be two sine currents. Find
L=11+ 13 =1 sin(wt + ¢),

first by using the trigonometric addition formule, and then by using complex currents.

The addition formulae. We get by a direct computation that

t = 11+t =1I1sin(wt+ ¢1) + Iasin (wt + ¢2)
= Iisinwt-cosyy + Iz sinwt - cos g + [ coswt - sin 1 + I3 coswt - g

= {I1cosp1 + Iz cos s} sinwt {11 sin gy + I sin pa} cos wt,
and
t=1Tsin(wt+¢) =1 cosp-sinwt + I sinp - coswt, teR.
When we identify the two expressions we obtain the equations

I cosp = I cos 1 + I cos g,

(10)
I sinp = I sin @1 + I3 sin @9,
hence
I? = TIPcos® o+ I*sinp = (I1 cos 1 + Iy Cos<p2)2 + (I1sinpy + Iy singog)2
= I?cos? 1 + 21115 cos @1 cos o + I3 cos? g + I?sin? 1 + 211 I sin @y sin @y + I2 sin? @y
I? + I3 + 21115 cos (¢1 — ¢2)
SO

I= \/112 + I3 + 211 I3 cos (o1 — p2),

and ¢ is described by the equations

I I . Iy . I .
COSSO:TCOSSD1+TCOSQ02a Sln<p:75m<p1+78mg02.

The complex current. If we instead use the complex current, we get
I =16"% = [ + [,e'? = [ cos w1+ Iz cos g +i{I1sinp) + Irsings},

and we conclude again (10).
The remaining part of the example is then treated as in the first variant.
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7 Geometrical point sets

Example 7.1 Find the plan point sets which are defined by the conditions
(@) |z—al+]z=bl=Fk  (b)|z—al+]z=b <k,

where a, b € C and k € Ry, and where k > |a — b|.

(a) 1) The geometric condition is:

e Find all point z, for which the sum of the distances from z to a and from z to b is a constant
k.

This is the definition of an ellipse with the focal points a and b. If, however, a = b, then we

k
get a circle instead of centrum a and radius o

2) Analytically this is proved in the following way:
Put

z=x+1y, a=ay;+1tay and b=0b; +ibsy.

Then the equation becomes

Va—a)+@-a)=k—J@-b)+y-b)? (=0
By squaring,
(x2 — 2a1x + a%) + (yg — 2a0y + a%)

= k> + (2% — 2b1z + b3) + (y2 — 2boy + b3) — 2k\/(x — b))+ (y — ba)”.

This equation is rewritten as

2k\/(x—b1)2+(y—b2)2 =2(a1 — b))z +2(az—bo)y+ {k*+ b7 +b5—af —a3}.
By another squaring we get qualitatively the equation of an ellipse,
A% (21— a)® + B (y1 — B)* = C2,

where x1 and y; are linear expressions in x and y, and where x1 and y; are linearly independent.
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(b) In this case we only add all the interior points of the ellipse.

Example 7.2 Find the set of all points in C, for which

(a) |z—2|=]z— 21, (0) |z —2|=2|z — 2i|.
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(a) Geometrically, {z € C | |z — 2| = |z — 2|} is the set of all points z, which have the same distance
from 2 and 2i, thus a bisector.
By considering a figure we see that this bisector is

{zeC|z=t(1+1),teR}

ALTERNATIVELY the condition |z — 2| = |z — 24| is equivalent to
Y P VIC PP

thus
2? —dx+ 44 y* = 2% +y* — dy + 4,

which is reduced to y = x.

(b) The equation |z — 2| = 2|z — 2| is equivalent to
|z =2P=(z—2°+y* =4z —2i]* =4 {2* + (y — 2)*},
hence
z? — 4z + 4+ y? = 42% + 4y® — 16y + 16.
Then by a reduction,
322 + 3y% + 4z — 16y + 12 = 0.

A division by 3 and an addition of some convenient terms give

2 (Y e 16 (B 2\, (8 4, 6 3632
3 3) Y T3 YT 3) T\3 3 T9" 9 9 9o

and we get

(3 <=5 =56

2 8 4
The set is a circle of centrum —3 §) and of radius 3 V2.
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Example 7.3 Find the set of points in C, for which

(a) |z=1|+|z+ 1| =3, ®) |z=1—-|z+1 =1

(a) Here we get an ellipse, cf. Example 7.1.
If we put z = x + 1y, then the equation is also written

Ve -1+ =3-VE+1)2+y2  (20),

hence by a squaring,

22 =24+ 1492 =2+ 204+ 1+ 4+9—-6/(x+1)2+ 42

A reduction gives
9
6y (x+1)2+y2=9+4x >0, dvs.xz—i .

Then by another squaring,

3622 4 72x + 36 + 36 + 36y% = 81 + 1622 + 72z,
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which is reduced to 2022 4 36y? = 45, or to an equation of an ellipse of centrum (0, 0) and of half

axes
45 3 [45 /5
— = and — = —
20 2 36 2

(b) Here we get an arc of an hyperbola.
If we put z = x + 1y, we can also write the equation

@=12+y2 =1+ +1)2+y2 (21,
hence by a squaring,
2 =214y =2+ 20+ 14y  + 142V (@ +1)2 42
This is reduced to

1
2y/(x+1)2+y?>=—-4zx -1 <>07 thusm<—1>.

Then by another squaring,

1
4a% + 8z + 4 + 4y = 1627 + 8z + 1, gcg—i,

which is reduced to

1
1222 — 49% = 3, mS—Z,

or in its normal form,

z)? Y ’ 1
1) {Z} Y
2

This is the equation of a branch of an hyperbola in the left hand half plane.

Example 7.4 Give a geometric description of the sets

(a) {zeC|Im(z*) >0}, (b) {z€C|l|z—4] > |z},

T
(¢) {ZEC|—7T< Argz<§,|z|>2}.

(a) Since
2% =2 —y® + 2ixy,

it follows that Im (22) > 0, if and only if zy > 0, so the set is the union of the open first quadrant
and the open third quadrant.

(b) Geometrically we shall find the set of points, the distance of which to 4 is bigger than the distance
to 0. If we draw the vertical line z = 2, we get precisely those points for which

|Z _4| = |Z‘7

which is geometrical trivial.
The wanted domain is then the left hand half plane z < 2.
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Analytically it follows by a squaring that |z — 4] > |z] is equivalent to the inequality
(33—4)2+y2>x2+y2,

and we obtain by a reduction = < 2.
m
a0

(c¢) The domain is the intersection of the open set |z| > 2 and the angular space —m < Arg z < 5

i.e. the interior of the union of the first and third and fourth quadrant.
Thus the complementary set is the union of the closed second quadrant and the closed disc of
centrum (0, 0) and of radius 2.

Example 7.5 Let z1 and z3 be two given points in the z-plane, and let ¢ € Ry and k €] — 7, 7).
Describe the set of points z € C, for which

z— 2z z—z1

=k.

(a) =¢ (b)) Arg

zZ — Z9 zZ — Z9

(a) If ¢ =1, then the equation becomes

|2 — 21| = [z — 2],
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which is geometrically interpreted as the set of points z, which have the same distance to z; and

1
2. This set is constructed as the line through 3 (21 + 22), and perpendicular to the vector z; — z5.

If ¢ # 1, then |z — 21| = ¢|z — 23] is equivalent to
(w—2)"+(@y—y)'=¢ {(fﬂ —22)" 4+ (y - yz)Q} ;
hence by a small computation,

a:2—2x1x+x%+y2—2y1y+y%:c2{x2—2x2m+x2+y2—2y2y+y§},

and thus

(¢ =1)2® =2 (Fry—z1) 2+ () y* =2 (Pya—wn) y+Pag —ai+Pys —yi = 0.
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Since ¢? # 1, we obtain a circle,

o o Clma—x Cro—a\° | 5, L Pyp-n Ay )
= =2 T+ a2 +y~ =2 2 y+

2 -1 1 1 2-1
2 2
_ 02952—961 " CQyz—yl i —02$%+$1—0292+y% - R2
2 -1 -1 c2-1 ’

Remark 7.1 This circle is constructed by first finding the two points A and B on the line ¢

through z; and zs, such that

zZ— 2z

zZ — 22

Then AB is the diameter of the circle. ¢

n
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(b) The equation

zZ— 2z

Arg =k

zZ — Z9

is most easy to solve geometrically when we consider the corresponding circle, which goes through
the three points z, z; and zs.

We se that £z20C = Z292C = x, because AzyC'z has two radii as sides. For the same reason,
L212C = £22:C =y and LCz921 = £212C = . The sum of the angles in a triangle is always 7,
hence it follows from Az;zze that

2@+y+p) =m,

and analogously of ACz;z, that
2042k =m,

hence
Lzizzo =x +y =k,

no matter where z is lying on the circle above the the line z125.

Remark 7.2 By means of the concept of conformal mapping, which will be treated in a later
book in this series, it is easy to prove that when z; and z5 are kept fixed, then the two families of
circles considered above are orthogonal.

Remark 7.3 For given ¢ and k it follows that

zZ— 2z :
L2t =a.
zZ — Z9
If a # 1, then
2900 — 21
2=
a—1

and z is uniquely determined.
Therefore, we may consider (c, k) as curvilinear coordinates in C\ {z1,22}. ¢

(b’) An ALTERNATIVE SOLUTION of the equation

Arg(z_zl) =k.
zZ — Z9

First note that if z # 21 and z # z5, then

z—z1 (2—21)(Z—7%)

w = u+iv:z—z2: |Z_Z|2
= ﬁ{(iﬂ—xl)ﬁ-(y—yﬂ} {(z—z2)—i (y—y2)}
1

= m {l(x—z1) (x—22)+(y—y2)] + i [(x—m2) (y—y1)— (x—21) (y—12)]},
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where we do not compute the denominator |z — 22|2, because we shall only use that
|z — z|* > 0.

When we split into the real and the imaginary part, we get

1

O {2?—(z1422) 2+ 2122 +Y° — (Y1 +Y2) Y+ 1192}
— <2
1

vo= m{xy—ylw—:cgy—i—xgyl—xy+y2x+x1y—w1yg}
— <2
1

= m{(92—%)1‘—(932—331)y+l‘2y1—$1y2}~

— X2

A check shows that v = 0 describes the line through z; and zo with exception of these two points.
On the other hand, we get for v = 0 that

0 for u > 0,

Arg (Zzl> = Arg(u+iv) = Argu=
ZTR T for u < 0,

and it follows almost immediately from the expression of u above (due to the squared terms) that

u > 0, if and only if (x,y) lies on one of the line segments outside [z1, 23] (assuming that v = 0),

and hence u < 0 for (z,y) € [21, 22|, where [21, z2] denotes the line segment in the plane between

z1 and zs.

In this way we fix the curves for k = 0 and for k = 7.

In our next case we have v > 0, thus (z,y) lies in one of the half planes determined by the line ¢
through z; and z5. We shall tacitly assume this in the following and not repeat ourselves.
It follows from v > 0 that

Arg (Z - Zl) = Arg(u +iv) = Arccot (E) €10, [,
v

zZ — Z9

because Arccot typically is more fundamental in the Theory of Complexr Functions than Arctan.
The curves of this half plane therefore correspond to the equation

Arg (Z — Zl) = Arccot (E> =k €]0,n],
v

Z — Z9

or equivalently

(11) M:cotkzceR.

v(z,y)
When we multiply by v(x,y) and insert the expressions of u(z,y) and v(z,y) we get by cancelling
|Z - 22|27
2 — (v 4 @) +w1w2 +y° — (Y1 +¥2) U+ 1102
=c{(y2 —y1)® — (w2 — 1) Yy + T2y1 — T1Y2},

which is qualitatively the equation of a circle. If we put (z,y) = (x1,91) and (z2,y2) into (11), it
follows that both sides become 0, so the system of curves is the restriction of all circles through
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(21,y1) and (x2,y2) to the half plane determined by v > 0, i.e. determined by the line ¢ through
(z1,91) and (w2, y2).

If instead v < 0, then we get the other half plane, and

zZ — Z9

z —

hence Arg( Zl) = k is equivalent to Arccot(g) =k + m, i.e. to (11), because cot has period
zZ — 29 v

. We again derive (11), and we find the same system of curves, only restricted to the other half

plane.
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Example 7.6 Find the domain in the z-plane, which is characterized by the condition
|22 +az+b| < R?,

where a, b € C and R € Ry. Indicate the values of R € R, for which this domain is connected, and
for which is it disconnected.

Let o and (8 be the roots of the polynomial, i.e.

Z4az+b=(z—a)(z-03).
a a a®
Ifa=p (: —5), then we get an open disc of radius R and centrum —3 In this case, b = R and

the domain is of course connected for every R € R..

If a # 3, then
|2 +az+b|=|z—al |z — 8| < R?,

thus the product of the distances from z to «, and from z to 3, is smaller than R2. (The boundary

curves are also called Cassini’s rings).

The midpoint of the line segment between o and [ is given by # = —%. The set is disconnected,

a
if this point does not belong to the point set, and it is connected, if —5 belongs to the point set. If

a
we put z = —5 then

2
|22+az+b|—‘%—a~g+b':’b—— :

Since
a a
a3 =[o+3],
this can also be expressed by
2 2 1
nseb=for 5 o g <o 5 e 3 =Yoo
The condition of connectedness is therefore,

2
R > ’b——

Czl , thus |ao — 3| < 2R.

The set is disconnected, if

2

a

< bh— —
0<RZ ’ 1

) thus 0<2R<|a-0.
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