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Foreword

The International Mathematics Olympiad (IMO), in the last two decades,
has become an international institution with an impact in most countries
throughout the world, fostering young mathematical talent and promoting a
certain approach to complex, yet basic, mathematics. It lays the ground for
an open, unspecialized understanding of the field to those dedicated to this
ancient art.

The tradition of mathematical competitions is sometimes traced back to
national contests which were organized in some countries of central Europe
already at the beginning of the last century. It is very likely that a slight
variation of the understanding of mathematical competition would reveal even
more remote ancestors of the present IMO. It is, however, a fact that the
present tradition was born after World War II in a divided Europe when the
first IMO took place in Bucharest in 1959 among the countries of the Eastern
Block. As an urban legend would have it, it came about when a high school
mathematics teacher from a small Romanian town began to pursue his vision
for an organized event that would help improve the teaching of mathematics.

Since the early beginnings, mathematical competitions of the international
olympiad type have established their own style of problems, which do not
require wide mathematical background and are easy to state. These problems
are nevertheless difficult to solve and require imagination plus a high degree of
original thinking. The Olympiads have reached full maturity and worldwide
status in the last two decades. There are presently over 100 participating
countries.

Accordingly, quite a few collections of Olympiad problems have been
published by various major publishing houses. These collections include
problems from past olympic competitions or from among problems proposed
by various participating countries. Through their variety and required detail
of solution, the problems offer valuable training for young students and a
captivating source of challenges for the mathematically interested adult.

In the so-called Hall of Fame of the IMO, which includes numerous
presently famous mathematicians and several Fields medalists, one finds a
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list of the participants and results of former mathematical olympiads (see
[HF]). We find in the list of the participants for Greece, in the year 2003, the
name of Michael Th. Rassias. At the age of 15 at that time, he won a silver
medal and achieved the highest score on the Greek team. He was the first
Greek of such a young age in over a decade, to receive a silver medal. He is
the author of the present book: one more book of Olympiad Problems among
other similar beautiful books.

Every single collection adds its own accent and focus. The one at hand
has a few particular characteristics which make it unique among similar
problem books. While most of these books have been written by experienced
mathematicians after several decades of practicing their skills as a profes-
sion, Michael wrote this present book during his undergraduate years in the
Department of Electrical and Computer Engineering of the National Techni-
cal University of Athens. It is composed of some number theory fundamentals
and also includes some problems that he undertook while training for the
olympiads. He focused on problems of number theory, which was the field of
mathematics that began to capture his passion. It appears like a confession
of a young mathematician to students of his age, revealing to them some of
his preferred topics in number theory based on solutions of some particular
problems—most of which also appear in this collection. Michael does not limit
himself to just those particular problems. He also deals with topics in classical
number theory and provides extensive proofs of the results, which read like
“all the details a beginner would have liked to find in a book” but are often
omitted.

In this spirit, the book treats Legendre symbols and quadratic reciprocity,
the Bertrand Postulate, the Riemann ζ-function, the Prime Number Theorem,
arithmetic functions, diophantine equations, and more. It offers pleasant
reading for young people who are interested in mathematics. They will be
guided to an easy comprehension of some of the jewels of number theory. The
problems will offer them the possibility to sharpen their skills and to apply
the theory.

After an introduction of the principles, including Euclid’s proof of the
infinity of the set of prime numbers, follows a presentation of the extended
Euclidean algorithm in a simple matricial form known as the Blankinship
method. Unique factorization in the integers is presented in full detail, giving
thus the basics necessary for the proof of the same fact in principal ideal
domains. The next chapter deals with rational and irrational numbers and
supplies elegant comprehensive proofs of the irrationality of e and π, which
are a first taste of Rassias’s way of breaking down proofs in explicit, extended
steps.

The chapter on arithmetic functions presents, along with the definition of
the Möbius μ and Euler φ functions, the various sums of divisors

σa(n) =
∑

d|n
da,

x



Foreword

as well as nice proofs and applications that involve the Möbius inversion
formula. We find a historical note on Möbius, which is the first of a sequence
of such notes by which the author adds a temporal and historical frame to
the mathematical material.

The third chapter is devoted to algebraic aspects, perfect numbers,
Mersenne and Fermat numbers, and an introduction to some open questions
related to these. The fourth deals with congruences, the Chinese Remainder
Theorem, and some results on the rings Z/(n · Z) in terms of congruences.
These results open the door to a large number of problems contained in the
second part of the book.

Chapter 5 treats the symbols of Legendre and Jacobi and gives Gauss’s first
geometric proof of the law of quadratic reciprocity. The algorithm of Solovay
and Strassen—which was the seminal work leading to a probabilistic perspec-
tive of fundamental notions of number theory, such as primality—is described
as an application of the Jacobi symbol. The next chapters are analytic, intro-
ducing the ζ and Dirichlet series. They lead to a proof of the Prime Number
Theorem, which is completed in the ninth chapter. The tenth and eleventh
chapters are, in fact, not only a smooth transition to the problem part of the
book, containing already numerous examples of solved problems, they also,
at the same time, lead up to some theorems. In the last two subsections of
the appendix, Michael discusses special cases of Fermat’s Last Theorem and
Catalan’s conjecture.

I could close this introduction with the presentation of my favorite problem,
but instead I shall present and briefly discuss another short problem which is
included in the present book. It is a conjecture that Michael Rassias conceived
of at the age of 14 and tested intensively on the computer before realizing its
intimate connection with other deep conjectures of analytic number theory.
These conjectures are still today considered as intractable.

Rassias Conjecture. For any prime p with p > 2 there are two primes p1, p2,
with p1 < p2 such that

p =
p1 + p2 + 1

p1
. (1)

The conjecture was verified empirically on a computer and was published
along with a series of problems from international Olympiads (see [A]). The
purpose of this short note is to put this conjecture in its mathematical context
and relate it to further known conjectures.

At first glance, the expression (1) is utterly surprising and it could stand
for some unknown category of problems concerning representation of primes.
Let us, though, develop the fraction in (1):

(p− 1)p1 = p2 + 1.

Since p is an odd prime, we obtain the following slightly more general
conjecture: For all a ∈ N there are two primes p, q such that

xi
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2ap = q + 1. (2)

Of course, if (2) admits a solution for any a ∈ N, then a fortiori (1) admits
a solution. Thus, the Rassias conjecture is true. The new question has the
particularity that it only asks to prove the existence of a single solution.
We note, however, that this question is related to some famous problems, in
which one asks more generally to show that there is an infinity of primes
verifying certain conditions.

For instance, the question if there is an infinity of Sophie Germain primes
p, i.e., primes such that 2p+ 1 is also a prime, has a similar structure. While
in the version (2) of the Rassias conjecture, we have a free parameter a and
search for a pair (p, q), in the Sophie Germain problem we may consider p itself
as a parameter subject to the constraint that 2p + 1 is prime, too. The fact
that there is an infinity of Sophie Germain primes is an accepted conjecture,
and one expects the density of such primes to be O(x/ ln2(x)) [Du]. We obtain
from this the modified Rassias conjecture by introducing a constant a as factor
of 2 and replacing +1 by −1. Thus q = 2p + 1 becomes q = 2ap − 1, which
is (2). Since a is a parameter, in this case we do not know whether there are
single solutions for each a. When a is fixed, this may of course be verified on
a computer or symbolically.

A further related problem is the one of Cunningham chains. Given two
coprime integers m,n, a Cunningham chain is a sequence p1, p2, . . . , pk of
primes such that pi+1 = mpi +n for i > 1. There are competitions for finding
the longest Cunningham chains, but we find no relevant conjectures related
to either length or frequencies of such chains. In relation to (2), one would
rather consider the Cunningham chains of fixed length 2 with m = 2a and
n = −1. So the question (2) reduces to the statement: there are Cunningham
chains of length two with parameters 2a,−1, for any a ∈ N.

By usual heuristic arguments, one should expect that (2) has an infinity
of solutions for every fixed a. The solutions are determined by one of p or q
via (2). Therefore, we may define

Sx = {p < ax : p is prime and verifies (2)}

and the counting function πr(x) = |Sx|. There are O(ln(x)) primes p < x, and
2ap−1 is an odd integer belonging to the class −1 modulo 2a. Assuming that
the primes are equidistributed in the residue classes modulo 2a, we obtain the
expected estimate:

πr(x) ∼ x/ ln2(x) (3)

for the density of solutions to the extended conjecture (2) of Rassias.
Probably the most general conjecture on distribution of prime constella-

tions is Schinzel’s Conjecture H :

Conjecture H. Consider s polynomials fi(x) ∈ Z[X ], i = 1, 2, . . . , s with posi-
tive leading coefficients and such that the product F (X) =

∏s
i=1 fi(x) is not

xii
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divisible, as a polynomial, by any integer different from ±1. Then there is at
least one integer x for which all the polynomials fi(x) take prime values.

Of course, the Rassias conjecture follows for s = 2 with f1(x) = x and
f2(x) = 2ax − 1. Let us finally consider the initial problem. Can one prove
that (2) has at least one solution in primes p, q, for arbitrary a? In [SW],
Schinzel and Sierpiński show that Conjecture H can be stated for one value of
x or for infinitely many values of x, since the two statements are equivalent.
Therefore, solving the conjecture of Rassias is as difficult as showing that
there are infinitely many prime pairs verifying (2). Of course, this does not
exclude the possibility that the conjecture could be proved easier for certain
particular families of values of the parameter a.

The book is self-contained and rigorously presented. Various aspects of
it should be of interest to graduate and undergraduate students in number
theory, high school students and the teachers who train them for the Putnam
Mathematics Competition and Mathematical Olympiads as well as, naturally,
to scholars who enjoy learning more about number theory.
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Professor Preda Mihăilescu, who has been my mentor in Mathematics since
my high school years and has written the Foreword of the book.

I would like to thank Professors M. Filaseta, S. Konyagin, V. Papanicolaou
and J. Sarantopoulos for their very helpful comments concerning the step-by-
step analysis of Newman’s proof of the Prime Number Theorem. Professor
P. Pardalos has my special appreciation for his valuable advice and encour-
agement. I would like to offer my sincere thanks to Professors K. Drakakis,
J. Kioustelidis, V. Protassov and J. Sandor for reading the manuscript and
providing valuable suggestions and comments which have helped to improve
the presentation of the book.

This book is essentially based on my undergraduate thesis on compu-
tational number theory, which I wrote under the supervision of Professors
A. Papaioannou, V. Papanicolaou and C. Papaodysseus at the National Tech-
nical University of Athens. I have added a large number of problems with their
solutions and some supplementary number theory on special topics.

I would like to express my thanks to my teachers for their generous advice
and encouragement during my training for the Mathematical Olympiads and
throughout my studies.

Finally, it is my pleasure to acknowledge the superb assistance provided
by the staff of Springer for the publication of the book.

Michael Th. Rassias



  



1

Introduction

God created the natural numbers. The rest is the work of man.
Leopold Kronecker (1823–1891)

Number Theory is one of the most ancient and active branches of pure mathe-
matics. It is mainly concerned with the properties of integers and rational
numbers. In recent decades, number theoretic methods are also being used
in several areas of applied mathematics, such as cryptography and coding
theory.

In this section, we shall present some basic definitions, such as the defini-
tion of a prime number, composite number, rational number, etc. In addition,
we shall present some basic theorems.

1.1 Basic notions

Definition 1.1.1. An integer p greater than 1 is called a prime number, if
and only if it has no positive divisors other than 1 and itself.

Hence, for example, the integers 2, 3, 13, 17 are prime numbers, but 4, 8, 12,
15, 18, 21 are not.

The natural number 1 is not considered to be a prime number.

Definition 1.1.2. All integers greater than one which are not prime numbers
are called composite numbers.

Definition 1.1.3. Two integers a and b are called relatively prime or
coprime if and only if there does not exist another integer c greater than
1, which can divide both a and b.

For example, the integers 12 and 17 are relatively prime.

M.Th. Rassias, Problem-Solving and Selected Topics in Number Theory: In the Spirit     
of the Mathematical Olympiads, DOI 10.1007/978-1-4419-0495-9_1,  
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2 1 Introduction

Prime numbers are, in a sense, the building blocks with which one can
construct all integers. At the end of this chapter we are going to prove the
Fundamental Theorem of Arithmetic according to which every natural number
greater than one can be represented as the product of powers of prime numbers
in a unique way.

This theorem was used by the ancient Greek mathematician Euclid, in
order to prove that prime numbers are infinitely many.

We shall now present the proof of the fact that the number of primes is
infinite. The following proof is due to Euclid and is considered to be one of
the most elementary and elegant proofs of this theorem.

Lemma 1.1.4. The least nontrivial divisor of every positive integer greater
than 1 is a prime number.

Proof. Let n ∈ N, with n > 1 and d0 be the least nontrivial divisor of n.
Let us also suppose that d0 is a composite positive integer. Then, since d0 is
composite, it must have a divisor m, with 1 < m < d0. But, in that case, m
would also divide n and therefore d0 would not be the least nontrivial divisor
of n. That contradicts our hypothesis and hence completes the proof of the
lemma. �

Theorem 1.1.5 (Euclid). The number of primes is infinite.

Proof. Let us suppose that the number of primes is finite and let p be the
greatest prime number. We consider the integer

Q = p! + 1.

Therefore, if Q is a prime number it must be greater than p. But, this contra-
dicts the property of p being the greatest prime number. On the other hand,
if Q is not a prime number, then by the previous lemma it follows that it will
certainly have prime divisors. However, if Q is divided by any prime number
less than or equal to p, it leaves remainder 1. Thus, every prime divisor of Q
is necessarily greater than p, which again contradicts the property of p.

So, the hypothesis that the number of primes is finite, leads to a contra-
diction. Hence, the number of primes is infinite. �

We shall now proceed to the proof of a theorem which is known as
Bezout’s Lemma or the extended Euclidean algorithm.

Theorem 1.1.6. Let a, b ∈ Z, where at least one of these integers is different
than zero. If d is the greatest positive integer with the property d | a and d | b,
then there exist x, y ∈ Z such that d = ax+ by.

Proof. Let us consider the nonempty set

A = {ax+ by | a, b, x, y ∈ Z, with ax+ by > 0}.
We shall prove that the integer d is the least element in A.
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Let d′ be the least element in A. Then, there exist integers q, r, such that

a = d′q + r, 0 ≤ r < d.

We are going to prove that d′ | a. In other words, we will show that r = 0.
Let r �= 0, then

r = a− d′q = a− (ax1 + by1)q,

for some integers x1, y1.
Therefore,

r = a(1 − x1q) + b(−y1q).
But, by the assumption we know that r �= 0. Hence, it is evident that r > 0
and r = ax2 + by2, with x2 = 1 − x1, y2 = −y1q ∈ Z. However, this is
impossible due to the assumption that d′ is the least element in A. Thus,
r = 0, which means that d′ | a. Similarly, we can prove that d′ | b.

So, d′ is a common divisor of a and b. We shall now prove that d′ is the
greatest positive integer with that property.

Let m be a common divisor of a and b. Then m|ax + ay and thus m | d′,
from which it follows that m ≤ d′. Consequently, we obtain that

d′ = d = ax+ by, for x, y ∈ Z. �

Remark 1.1.7. The positive integer d with the property stated in the above
theorem is unique. This happens because if there were two positive integers
with that property, then it should hold d1 ≤ d2 and d2 ≤ d1. Thus, d1 = d2.

As a consequence of the above theorem we obtain the following corollary.

Corollary 1.1.8. For every integer e with e | a and e | b, it follows that e | d.
Definition 1.1.9. Let a, b ∈ Z, where at least one of these integers is nonzero.
An integer d > 0 is called the greatest common divisor of a and b (and
we write d=gcd(a, b)) if and only if d | a and d | b and for every other positive
integer e for which e | a and e | b it follows that e | d.1

Theorem 1.1.10. Let d = gcd(a1, a2, . . . , an), where a1, a2, . . . , an ∈ Z. Then

gcd
(a1

d
,
a2

d
, . . . ,

an

d

)
= 1.

Proof. It is evident that d | a1, d | a2, . . . , d | an. Hence,

a1 = k1d, a2 = k2d, . . . , an = knd, (1)

1 Similarly one can define the greatest common divisor of n integers, where at least
one of them is different than zero.
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where ki ∈ Z for i = 1, 2, . . . , n. Let
(a1

d
,
a2

d
, . . . ,

an

d

)
= d′ > 1.

Then, similarly we obtain

d′ | a1

d
, d′ | a2

d
, . . . , d′ | an

d
.

Consequently, there exist integers k′1, k
′
2, . . . , k

′
n, for which

a1

d
= k′1d

′,
a2

d
= k′2d

′, . . . ,
an

d
= k′nd

′. (2)

Therefore, by (1) and (2) we get

a1 = k′1d
′d, a2 = k′2d

′d, . . . , an = k′nd
′d.

Thus,
d′d | a1, d

′d | a2, . . . , d
′d | an.

Hence, dd′ | d, which is impossible since d′ > 1. Therefore, d′ = 1. �

Theorem 1.1.11. Let a, b, c ∈ Z and a | bc. If gcd(a, b) = 1, then a | c.
Proof. If gcd(a, b) = 1, then

1 = ax+ by, where x, y ∈ Z.

Therefore,
c = acx+ bcy.

But, since a | acx and a | bcy, it yields a | c. �

1.2 Basic methods to compute the greatest common
divisor

Let a, b ∈ Z. One way to compute the greatest common divisor of a and b is
to find the least element in the set

A = {ax+ by | a, b, x, y ∈ Z, with ax+ by > 0}.

However, there is a much more effective method to compute gcd(a, b) and is
known as the Euclidean algorithm.
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1.2.1 The Euclidean algorithm

In case we want to compute the gcd(a, b), without loss of generality we can
suppose that b ≤ a. Then gcd(a, b) = gcd(b, r), with r being the remainder
when a is divided by b.

This happens because a = bq + r or r = a − bq, for some integer q and
therefore gcd(a, b) | r. In addition, gcd(a, b) | b. Thus, by the definition of the
greatest common divisor, we obtain

gcd(a, b) | gcd(b, r). (1)

Similarly, since a = bq + r, we get gcd(b, r) | b and gcd(b, r) | a. Hence,

gcd(b, r) | gcd(a, b). (2)

By (1) and (2) it is evident that gcd(a, b) = gcd(b, r).
If b = a, then gcd(a, b) = gcd(a, 0) = gcd(b, 0) = a = b and the algorithm

terminates. However, generally we have

gcd(a, b) = gcd(b, r1) = gcd(r1, r2) = · · · = gcd(rn−1, rn) = gcd(rn, 0) = rn,

with

a = bq1 + r1, because b ≤ a

b = r1q2 + r2, because 0 ≤ r1 < b

r1 = r2q3 + r3, because 0 ≤ r2 < r1

...

rn−2 = rn−1qn + rn, because 0 ≤ rn−1 < rn

rn−1 = rnqn+1 + 0, because 0 ≤ rn < rn−1.

Therefore, rn is the greatest common divisor of a and b.

1.2.2 Blankinship’s method

Blankinship’s method is a very practical way to compute the greatest common
divisor of two integers a and b. Without loss of generality, let us suppose that
a > b > 0. Then, the idea of this method is the following. Set

A =
(
a 1 0
b 0 1

)
.

By doing row operations we try to transform A, so that it takes the form
(
d x y

0 x′ y′

)
or

(
0 x′ y′

d x y

)
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In other words, we try to transform A so that it has a zero element in its
first column. Then, gcd(a, b) = d, as it appears in the first column of the
transformed matrix. More specifically, we have

d = ax+ by.

Hence, by the above argument, it follows that by Blankinship’s method, not
only can we compute gcd(a, b), but also the coefficients x, y, which appear in
Bezout’s Lemma.

EXAMPLE 1.2.1. Compute the greatest common divisor of the integers 414
and 621.

Consider the matrix

A =
(

621 1 0
414 0 1

)
.

Let Ri be the ith row of A. We substitute R1 with R1 −R2 and we get

A ∼
(

207 1 −1
414 0 1

)
.

Furthermore, if we substitute R2 with R2 − 2R1, we get

A ∼
(

207 1 −1
0 −2 3

)
.

Hence, we succeeded to transform A so that it has a zero element in its first
column. Therefore, we obtain that gcd(414, 621) = 207 and more specifically

207 = 621 · 1 + 414 · (−1). �

1.3 The fundamental theorem of arithmetic

Theorem 1.3.1 (Euclid’s First Theorem). Let p be a prime number and
a, b ∈ Z. If p | ab, then

p | a or p | b.
Proof. Let us suppose that p does not divide a. Then, it is evident that
gcd(a, p) = 1 and by Bezout’s Lemma we have 1 = ax + py and thus
b = abx+ pby, where x, y ∈ Z. But, p | abx and p | pby. Therefore, p | b.

Similarly, if p does not divide b, we can prove that p | a. Hence, p | a or
p | b. �

Theorem 1.3.2 (The Fundamental Theorem of Arithmetic). Every
positive integer greater than 1 can be represented as the product of powers
of prime numbers in a unique way.
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Proof.

Step 1. We shall prove that every positive integer n > 1 can be represented
as the product of prime numbers.

If d is a divisor of n, then 1 < d ≤ n. Of course, if n is a prime number,
then n = d and the theorem holds true. On the other hand, if n is a composite
integer, then it obviously has a least divisor d0 > 1. But, by the above lemma
we know that the least nontrivial divisor of every integer is always a prime
number. Hence, d0 is a prime number and there exists a positive integer n1

for which it holds
n = d0n1.

Similarly, the positive integer n1 has a least nontrivial divisor d2 which must
be prime. Therefore, there exists another positive integer n2, for which

n = d1d2n2.

If we continue the same process, it is evident that n can be represented as the
product of prime numbers. Furthermore, because of the fact that some prime
numbers may appear more than once in this product, we can represent n as
the product of powers of distinct primes. Namely,

n = pa1
1 p

a2
2 · · · pak

k , where k ∈ N.

The above form of representation of a positive integer n is called the canonical
or standard form of n.

Step 2. We shall now prove that the canonical form is unique.
Let us suppose that the positive integer n can be represented as the

product of powers of prime numbers in two different ways. Namely,

n = pa1
1 p

a2
2 · · · pak

k = qb1
1 q

b2
2 · · · qbλ

λ , where k, λ ∈ N.

Then, by Euclid’s first theorem, we obtain

pi | pa1
1 p

a2
2 · · · pak

k

which yields
pi | qb1

1 q
b2
2 · · · qbλ

λ

and therefore, for every i, with 1 < i < k, there exists a j, with 1 < j < λ
for which pi | qj and thus pi = qj . Thus, it is clear that k = λ and the sets
{p1, p2, . . . , pk}, {q1, q2, . . . , qλ} are identical.

Hence, it suffices to prove that

ai = bi,

for every i, where i = 1, 2, . . . , k = λ. Let us suppose that ai > bi. Then, we
have
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pa1
1 p

a2
2 · · · pai

i · · · pak

k = qb1
1 q

b2
2 · · · qbi

i · · · qbk

k

= pb1
1 p

b2
2 · · · pbi

i · · · pbk

k .

Thus,
pa1
1 p

a2
2 · · · pai−bi

i · · · pak

k = pb1
1 p

b2
2 · · · pbi−1

i−1 p
bi+1
i+1 · · · pbk

k . (1)

But, ai − bi ≥ 1 and therefore by (1) we obtain

pi | pa1
1 p

a2
2 · · · pak

k and pi � |pb1
1 p

b2
2 · · · pbk

k ,

which is a contradiction.
Similarly, we are led to a contradiction in the case ai < bi. Therefore, it is

evident that ai = bi must hold true for every i = 1, 2, . . . , k. This completes
the proof. �

Definition 1.3.3. A positive integer n is said to be squarefree, if and only
if it cannot be divided by the square of any prime number.

Lemma 1.3.4. Every positive integer n can be represented in a unique way
as the product a2b of two integers a, b, where b is a squarefree integer.

Proof. Since for n = 1 the lemma obviously holds true, we suppose that
n > 1. By the Fundamental Theorem of Arithmetic we know that every
positive integer greater than 1 can be represented as the product of powers of
prime numbers in a unique way. Therefore, we have

n = pa1
1 p

a2
2 · · · pak

k , where n ∈ N.

Let us consider the set A = {a1, a2, . . . , ak}. If mi are the even integers in A
and hi are the odd integers in A, then clearly we have

n = (pm1
i1
pm2

i2
· · · pmλ

iλ
)(ph1

j1
ph2

j2
· · · phμ

jμ
)

= (p2e1
i1
p2e2

i2
· · · p2eλ

iλ
)(p2f1+1

j1
p2f2+1

j2
· · · p2fμ+1

jμ
)

= (pe1
i1
pe2

i2
· · · peλ

iλ
· pf1

j1
pf2

j2
· · · pfμ

jμ
)2 · (pj1 · · · pjμ)

= a2 · b.

The integers pi, qi are unique and thus the integers mi, hj are unique. Hence,
the integers a and b are unique. �

1.4 Rational and irrational numbers

Definition 1.4.1. Any number that can be expressed as the quotient p/q of
two integers p and q, where q �= 0, is called a rational number.
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The set of rational numbers (usually denoted by Q) is a countable set.
An interesting property of this set is that between any two members of it, say
a and b, it is always possible to find another rational number, e.g., (a+ b)/2.

In addition, another interesting property is that the decimal expansion of
any rational number either has finitely many digits or can be formed by a
certain sequence of digits which is repeated periodically.

The notion of rational numbers appeared in mathematics relatively early,
since it is known that they were examined by the ancient Egyptians. It is
worth mentioning that for a long period of time mathematicians believed that
every number was rational. However, the existence of irrational numbers (i.e.,
real numbers which are not rational) was proved by the ancient Greeks. More
specifically, a proof of the fact that

√
2 is an irrational number appears in the

10th book of Euclid’s Elements.
But, we must mention that because of the fact that real numbers are

uncountable and rational numbers countable, it follows that almost all real
numbers are irrational.

We shall now present some basic theorems concerning irrational numbers.

Theorem 1.4.2. If p is a prime number, then
√
p is an irrational number.

Proof. Let us suppose that
√
p is a rational number. Then, there exist two

relatively prime integers a, b, such that

√
p =

a

b
.

Thus, we have
a2 = p b2. (1)

However, by Euclid’s first theorem (see 1.3.1), it follows that p | a. Hence,
there exists an integer k, such that

a = kp.

Therefore, by (1) we obtain that

k2p = b2.

But, by the above relation it follows similarly that p | b. Thus, the prime
number p divides the integers a and b simultaneously, which is impossible
since gcd(a, b) = 1.

Therefore, the assumption that
√
p is a rational number leads to a contra-

diction and hence
√
p is irrational. �

Corollary 1.4.3. By the above theorem it follows that
√

2 is an irrational
number, since 2 is a prime number.

Theorem 1.4.4. The number e is irrational.
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Let us suppose that e is a rational number. Then there exist two relatively
prime integers p, q, such that e = p/q. It is a standard fact that

e = 1 +
1
1!

+
1
2!

+ · · · + 1
n!

+ · · · .

Thus, it is evident that

0 < e−
(

1 +
1
1!

+
1
2!

+ · · · + 1
n!

)
=

1
(n+ 1)!

+
1

(n+ 2)!
+ · · ·

=
1
n!

(
1

n+ 1
+

1
(n+ 1)(n+ 2)

+ · · ·
)

<
1
n!

(
1

n+ 1
+

1
(n+ 1)2

+
1

(n+ 1)3
+ · · ·

)
=

1
n!

· 1
n
.

Therefore, we have

0 < e−
(

1 +
1
1!

+
1
2!

+ · · · + 1
n!

)
<

1
n!

· 1
n
, (1)

for every natural number n.
Hence, (1) will also hold true for every natural number n ≥ q. Conse-

quently, for n ≥ q we obtain

0 <
p

q
n! −

(
1 +

1
1!

+
1
2!

+ · · · + 1
n!

)
n! <

1
n
< 1

and
p

q
n! −

(
1 +

1
1!

+
1
2!

+ · · · + 1
n!

)
n! ∈ N,

which is impossible, since every natural number is greater than or equal to 1.
�

We shall now present a proof of the fact that π2 is an irrational number,
due to Ivan Niven. But first we will prove a useful lemma.

Lemma 1.4.5. Let

f(x) =
xn(1 − x)n

n!
,

where n ∈ N. For every natural number n, the following statements hold true:
(a) The function f(x) is a polynomial of the form

f(x) =
1
n!

(anx
n + an+1x

n+1 + · · · + a2nx
2n),

where an, an+1, . . . , a2n ∈ Z.
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(b) For x ∈ (0, 1), it holds

0 < f(x) <
1
n!
.

(c) For every integer m ≥ 0, the derivatives

dmf(0)
dxm

,
dmf(1)
dxm

are integers.

Proof. (a) It is a standard fact that

(1 − x)n = 1 −
(
n

1

)
x+

(
n

2

)
x2 − · · · + (−1)nxn.

Thus, for f(x) we get

f(x) =
xn(1 − x)n

n!
=

1
n!

(
xn −

(
n

1

)
xn+1 +

(
n

2

)
xn+2 − . . .+ (−1)nx2n

)
.

Hence, the first statement is obviously true.
(b) Since 0 < x < 1, it is clear that

0 < xn < 1

and
0 < (1 − x)n < 1,

for every n ∈ N. Therefore, we obtain

0 < xn(1 − x)n < 1

and thus

0 <
xn(1 − x)n

n!
<

1
n!
.

This completes the proof of the second statement.
(c) By the definition of the function f(x), it follows that

f(x) = f(1 − x).

But, by the above formula, it is clear that

dmf(x)
dxm

= (−1)m dmf(1 − x)
dxm

.

Therefore, for x = 1, we obtain

dmf(1)
dxm

= (−1)m d
mf(0)
dxm

. (1)
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Hence, it suffices to prove that either dmf(1)/dxm or dmf(0)/dxm is an
integer.

However, for m < n or m > 2n, it is evident that

dmf(0)
dxm

= 0

and for n ≤ m ≤ 2n, it follows that

dmf(0)
dxm

=
m !am

n !
∈ Z.

Thus, by (1) it follows that
dmf(1)
dxm

is also an integer.
This completes the proof of the third statement. �

Theorem 1.4.6. The number π2 is irrational.

Proof (Ivan Niven, 1947). Let us assume that the number π2 is rational.
In that case, there exist two positive integers p, q, such that π2 = p/q. Consider
the function

F (x) = qn(π2nf(x) − π2n−2f (2)(x) + π2n−4f (4)(x) − · · · + (−1)nf (2n)(x)), 2

where f(x) is as in Lemma 1.4.5. Then

d

dx
(F (1)(x) sin(πx) − πF (x) cos(πx)) = (F (2)(x) + π2F (x)) sin(πx) . (1)

But

π2F (x) = qn(π2n+2f(x) − π2nf (2)(x) + π2n−2f (4)(x) − · · ·
+ (−1)nπ2f (2n)(x)). (2)

In addition, we have

F (2)(x) = qn(π2nf (2)(x) − π2n−2f (4)(x) + π2n−4f (6)(x) − · · ·
+ (−1)nf (2n+2)(x)). (3)

Hence, by (2) and (3) we get

F (2)(x) + π2F (x) = qnπ2n+2f(x) + (−1)nπ2f (2n+2)(x).

2 f (k)(x) denotes the kth derivative of the function f(x).
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However, since

f(x) =
xn(1 − x)n

n!

it is clear that f (2n+2)(x) = 0. Thus, we obtain

F (2)(x) + π2F (x) = qnπ2n+2f(x). (4)

By (1) and (4), it follows that

d

dx
(F (1)(x) sin(πx) − πF (x) cos(πx)) = qnπ2n+2f(x) sin(πx)

= qn(π2)n+1f(x) sin(πx)

= qn

(
p

q

)n+1

f(x) sin(πx)

=
p

q
pnf(x) sin(πx)

= π2pnf(x) sin(πx).

Therefore, it is evident that

[F (1)(x) sin(πx) − πF (x) cos(πx)]10 = π2pn

∫ 1

0

f(x) sin(πx)dx

⇔ π2pn

∫ 1

0

f(x) sin(πx)dx = π(F (0) + F (1)). (5)

However, in the previous lemma, we proved that

dmf(0)
dxm

and
dmf(1)
dxm

are integers. Thus, it is clear that F (0) and F (1) are also integers. Hence, by
(5) it follows that

I = πpn

∫ 1

0

f(x) sin(πx)dx

is an integer.
Furthermore, in the previous lemma we proved that for n ∈ N and

x ∈ (0, 1) it holds

0 < f(x) <
1
n!
.

Thus, we get

0 < πpn

∫ 1

0

f(x) sin(πx)dx <
πpn

n !
,

for every n ∈ N.
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Moreover, since

lim
n→+∞

πpn

n!
= 0

it is evident that there exists a positive integer N0, such that for every n ≥ N0

we have
πpn

n!
< 1.

Hence, for n ≥ N0 we get

0 < πpn

∫ 1

0

f(x) sin(πx)dx < 1,

which is impossible, since I is an integer. Therefore, the assumption that π2

is a rational number leads to a contradiction.
Hence, the number π2 is irrational. �

Corollary 1.4.7. The number π is irrational.

Proof. Let us suppose that the number π is rational. Then there exist two
positive integers p and q, such that π = p/q. However, in that case

π2 =
p2

q2
=
a

b
,

where a, b ∈ Z. That is a contradiction, since π2 is an irrational number. �

Open Problem. It has not been proved yet whether the numbers

π + e, πe

are irrational or not.

Note. It has been proved that the numbers

eπ, eπ + π

are irrational.
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Arithmetic functions

The pleasure we obtain from music comes from counting,
but counting unconsciously.

Music is nothing but unconscious arithmetic.
Gottfried Wilhelm Leibniz (1646–1716)

In this chapter we shall define the arithmetic functions Möbius μ(n), Euler
φ(n), the functions τ(n) and σa(n) and, in addition, we shall prove some of
their most basic properties and several formulas which are related to them.
However, we shall first define some introductory notions.

2.1 Basic definitions

Definition 2.1.1. An arithmetic function is a function f : N → C with
domain of definition the set of natural numbers N and range a subset of the
set of complex numbers C.

Definition 2.1.2. A function f is called an additive function if and
only if

f(mn) = f(m) + f(n), (1)

for every pair of coprime integers m, n. In case (1) is satisfied for every pair
of integers m, n, which are not necessarily coprime, then the function f is
called completely additive.

Definition 2.1.3. A function f is called a multiplicative function if and
only if

f(1) = 1 and f(mn) = f(m)f(n), (2)

for every pair of coprime integers m, n. In case (2) is satisfied for every pair
of integers m, n, which are not necessarily coprime, then the function f is
called completely multiplicative.
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2.2 The Möbius function

Definition 2.2.1. The Möbius function μ(n) is defined as follows:

μ(n) =

⎧
⎪⎪⎨

⎪⎪⎩

1, if n = 1

(−1)k, if n = p1p2 . . . pk where p1, p2, . . . , pk are k distinct primes

0, in every other case.

For example, we have

μ(2) = −1, μ(3) = −1, μ(4) = 0, μ(5) = −1, μ(6) = 1

Remark 2.2.2. The Möbius function is a multiplicative function, since

μ(1) = 1 and μ(mn) = μ(m)μ(n),

for every pair of coprime integers m, n.
However, it is not a completely multiplicative function because, for

example, μ(4) = 0 and μ(2)μ(2) = (−1)(−1) = 1.

Theorem 2.2.3.
∑

d|n
μ(d) =

{
1, if n = 1

0, if n > 1,

where the sum extends over all positive divisors of the positive integer n.

Proof.

• If n = 1, then the theorem obviously holds true, since by the definition of
the Möbius function we know that μ(1) = 1.

• If n > 1, we can write
n = pa1

1 p
a2
2 · · · pak

k ,

where p1, p2, . . . , pk are distinct prime numbers.
Therefore,

∑

d|n
μ(d) = μ(1) +

∑

1≤i≤k

μ(pi) +
∑

i�=j
1≤i,j≤k

μ(pipj) + · · · + μ(p1p2 · · · pk), (1)

where generally the sum
∑

i1 �=i2 �=···�=iλ

μ(pi1pi2 · · · piλ
)

extends over all possible products of λ distinct prime numbers. (By the
definition of μ(m), we know that if in the canonical form of m some prime
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number appears multiple times, then μ(m) = 0.) Hence, by (1) and the
binomial identity, we obtain

∑

d|n
μ(d) = 1 +

(
k

1

)
(−1) +

(
k

2

)
(−1)2 + · · · +

(
k

k

)
(−1)k

= (1 − 1)k = 0.

Therefore, ∑

d|n
μ(d) = 0, if n > 1. �

Theorem 2.2.4 (The Möbius Inversion Formula). Let n ∈ N. If

g(n) =
∑

d|n
f(d),

then
f(n) =

∑

d|n
μ
(n
d

)
g(d).

The inverse also holds.

Proof.

• Generally, for every arithmetic function m(n), it holds

∑

d|n
m(d) =

∑

d|n
m
(n
d

)
,

since n/d = d′ and d′ is also a divisor of n. Therefore, it is evident that

∑

d|n
μ
(n
d

)
g(d) =

∑

d|n
μ(d)g

(n
d

)
. (1)

But
∑

d|n
μ(d)g

(n
d

)
=

∑

d|n

⎛

⎝μ(d) ·
∑

λ|n
d

f(λ)

⎞

⎠ . (2)

At this point, we are going to express (2) in an equivalent form, where
there will be just one sum at the left-hand side. In order to do so, we
must find a common condition for the sums

∑
d|n and

∑
λ| n

d
. The desired

condition is λd|n.
Hence, we get

∑

d|n
μ(d)g

(n
d

)
=

∑

λd|n
μ(d)f(λ).
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Similarly,
∑

λ|n

⎛

⎝f(λ) ·
∑

d|n
λ

μ(d)

⎞

⎠ =
∑

λd|n
μ(d)f(λ).

Thus,
∑

d|n
μ(d)g

(n
d

)
=

∑

λ|n

⎛

⎝f(λ) ·
∑

d|n
λ

μ(d)

⎞

⎠ . (3)

However, by the previous theorem
∑

d|n
λ

μ(d) = 1 if and only if
n

λ
= 1,

and in every other case the sum is equal to zero. Thus, for n = λ we obtain

∑

λ|n

⎛

⎝f(λ) ·
∑

d|n
λ

μ(d)

⎞

⎠ = f(n). (4)

Therefore, by (1), (3) and (4) it follows that if

g(n) =
∑

d|n
f(d),

then
f(n) =

∑

d|n
μ
(n
d

)
g(d).

• Conversely, we shall prove that if

f(n) =
∑

d|n
μ
(n
d

)
g(d),

then
g(n) =

∑

d|n
f(d).

We have
∑

d|n
f(d) =

∑

d|n
f
(n
d

)

=
∑

d|n

∑

λ|n
d

μ
( n

λd

)
g(λ)

=
∑

dλ|n
μ
( n

λd

)
g(λ)

=
∑

λ|n
g(λ)

∑

d|n
λ

μ
( n

λd

)
.
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The sum ∑

d|n
λ

μ
( n

λd

)
= 1

if and only if n = λ and in every other case it is equal to zero. Hence, for
n = λ we obtain ∑

d|n
f(d) = g(n). �

Historical Remark. August Ferdinand Möbius, born on the 17th of November
1790 in Schulpforta, was a German mathematician and theoretical astronomer.
He was first introduced to mathematical notions by his father and later on by
his uncle. During his school years (1803–1809), August showed a special skill
in mathematics. In 1809, however, he started law studies at the University
of Leipzig. Not long after that, he decided to quit these studies and con-
centrate in mathematics, physics and astronomy. August studied astronomy
and mathematics under the guidance of Gauss and Pfaff, respectively, while
at the University of Göttingen. In 1814, he obtained his doctorate from the
University of Leipzig, where he also became a professor.

Möbius’s main work in astronomy was his book entitled Die Elemente den
Mechanik des Himmels (1843) which focused on celestial mechanics. Further-
more, in mathematics, he focused on projective geometry, statics and number
theory. More specifically, in number theory, the Möbius function μ(n) and the
Möbius inversion formula are named after him.

The most famous of Möbius’s discoveries was the Möbius strip which is a
nonorientable two-dimensional surface.

Möbius is also famous for the five-color problem which he presented in
1840. The problem’s description was to find the least number of colors required
to draw the regions of a map in such a way so that no two adjacent regions have
the same color (this problem is known today as the four-color theorem, as it
has been proved that the least number of colors required is four). A. F. Möbius
died in Leipzig on the 26th of September, 1868.

Problem 2.2.5. Let f be a multiplicative function and

n = pa1
1 p

a2
2 · · · pak

k , where k ∈ N,

be the canonical form of the positive integer n.
Prove that

∑

d|n
μ(d)f(d) =

k∏

i=1

(1 − f(pi)).

Proof. The nonzero terms of the sum
∑

d|n
μ(d)f(d)
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correspond to divisors d, for which

d = pq1
1 p

q2
2 · · · pqk

k , where qi = 0 or 1 and 1 ≤ i ≤ k. (1)

Therefore, ∑

d|n
μ(d)f(d) =

∑

qi=0 or 1

(−1)kf(pq1
1 p

q2
2 · · · pqk

k ), (2)

where the sum at the right-hand side of (2) extends over all divisors d obeying
the property (1). However, if we carry over the operations in the product

(1 − f(p1))(1 − f(p2)) · · · (1 − f(pk)),

we get a sum of the form
∑

qi=0 or 1

(−1)kf(pq1
1 )f(pq2

2 ) · · · f(pqk

k ) =
∑

qi=0 or 1

(−1)kf(pq1
1 p

q2
2 · · · pqk

k ).

Hence, by (2) it is evident that

k∏

i=1

(1 − f(pi)) =
∑

qi=0 or 1

(−1)kf(pq1
1 p

q2
2 · · · pqk

k )

=
∑

d|n
μ(d)f(d). �

Remark 2.2.6. In the special case when f(d) = 1 for every divisor d of n, it
follows that

∑

d|n
μ(d)f(d) =

∑

d|n
μ(d) =

k∏

i=1

(1 − 1) =
⌊

1
n

⌋
, 1

which is exactly Theorem 2.2.3.

2.3 The Euler function

Definition 2.3.1. The Euler function φ(n) is defined as the number of posi-
tive integers which are less than or equal to n and at the same time relatively
prime to n. Equivalently, the Euler function φ(n) can be defined by the formula

φ(n) =
n∑

m=1

⌊
1

gcd(n,m)

⌋
.

1 �r� denotes the integer part (also called integral part) of a real number r.



2.3 The Euler function 21

For example, we have

φ(1) = 1, φ(2) = 1, φ(3) = 2, φ(6) = 2, φ(9) = 6.

Before we proceed on proving theorems concerning the Euler function φ(n),
we shall present two of its most basic properties.

Proposition 2.3.2. For every prime number p, it holds

φ(pk) = pk − pk−1.

Proof. The only positive integers which are less than or equal to pk and at
the same time not relatively prime to pk are the integers

p, 2p, 3p, . . . , pk−1p.

Thus, the number of these integers is pk−1 and therefore the number of positive
integers which are less than or equal to pk and at the same time relatively
prime to pk are

pk − pk−1. �

The Euler function φ(n) is a multiplicative function, since

φ(1) = 1 and φ(mn) = φ(m)φ(n),

for every pair of coprime integers m, n.
We shall present the proof of the above fact at the end of this section.

Theorem 2.3.3. For every positive integer n, it holds

φ(n) =
∑

d|n
μ(d)

n

d
.

Proof. In the previous section, we proved that the sum
∑

d|n μ(d) is equal to
1 if n = 1 and equal to 0 in any other case. Hence, equivalently we have

∑

d|n
μ(d) =

⌊
1
n

⌋
.

Thus, we can write

φ(n) =
n∑

m=1

⌊
1

gcd(n,m)

⌋
=

n∑

m=1

∑

d| gcd(n,m)

μ(d). (1)

In the above sums it is evident that

1 ≤ m ≤ n, d|n,
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and
d|m.

Therefore,

n∑

m=1

∑

d| gcd(n,m)

μ(d) =
∑

d|n

n/d∑

λ=1

μ(d) =
∑

d|n

n

d
μ(d). (2)

Thus, by (1) and (2) we finally get

φ(n) =
∑

d|n
μ(d)

n

d
. �

Theorem 2.3.4. For every positive integer n it holds
∑

d|n
φ(d) = n.

Proof. It is clear that every positive integer k which is less than or equal to
n has some divisibility relation with n. More specifically, either k and n are
coprime or gcd(n, k) = d > 1. Generally, if gcd(n, k) = d, then

(
n

d
,
k

d

)
= 1.

Hence, the number of positive integers for which gcd(n, k) = d is equal to
φ(n/d). However, since the number of positive integers k with k ≤ n is clearly
equal to n we obtain ∑

d|n
φ
(n
d

)
= n.

But, it is evident that ∑

d|n
φ
(n
d

)
=

∑

d|n
φ(d),

thus, ∑

d|n
φ(d) = n. �

Remark 2.3.5. Another proof of the above theorem can be given by the use of
the Möbius Inversion Formula.

Theorem 2.3.6. Let n be a positive integer and p1, p2,. . . , pk be its prime
divisors. Then

φ(n) = n

(
1 − 1

p1

)(
1 − 1

p2

)
· · ·

(
1 − 1

pk

)
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and therefore, for any pair of positive integers n1, n2 it holds

φ(n1n2) = φ(n1)φ(n2)
d

φ(d)
,

where d = gcd(n1, n2).

Proof. We can write
(

1 − 1
p1

)(
1 − 1

p2

)
· · ·

(
1 − 1

pk

)
= 1 +

∑ (−1)λ

pm1pm2 · · · pmλ

,

where mi are λ distinct integers in the set {1, 2, . . . , k} and hence the sum
extends over all possible products of the prime divisors of n. However, by the
definition of the Möbius function we know that

μ(pm1pm2 . . . pmλ
) = (−1)λ,

where μ(1) = 1 and μ(r) = 0 if the positive integer r is divisible by the square
of any of the prime numbers p1, p2, . . . , pk. Therefore, we get

(
1 − 1

p1

)(
1 − 1

p2

)
· · ·

(
1 − 1

pk

)
=

∑

d|n

μ(d)
d

=
φ(n)
n

.

Hence,

φ(n) = n

(
1 − 1

p1

)(
1 − 1

p2

)
· · ·

(
1 − 1

pk

)
.

We shall now prove that

φ(n1n2) = φ(n1)φ(n2)
d

φ(d)
.

From the first part of the theorem, it follows

φ(n1n2) = (n1n2)
∏

p|n1n2

(
1 − 1

p

)
.

But, if n1n2 = pq1
1 p

q2
2 . . . pqm

m , then each of the prime numbers p1, p2, . . . , pm

appears exactly once in the product

∏

p|n1n2

(
1 − 1

p

)
.
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More specifically, distinct primes p appear in distinct factors

1 − 1
p
.

On the other hand, in the product

∏

p|n1

(
1 − 1

p

)
·
∏

p|n2

(
1 − 1

p

)
,

the prime numbers from the set {p1, p2, . . . , pm} which divide both n1 and n2,
appear twice.

Hence, according to the above arguments it is evident that

∏

p|n1n2

(
1 − 1

p

)
=

∏
p|n1

(
1 − 1

p

)
·∏p|n2

(
1 − 1

p

)

∏
p|n1
p|n2

(
1 − 1

p

) .

Thus, we have

φ(n1n2) =
n1

∏
p|n1

(
1 − 1

p

)
· n2

∏
p|n2

(
1 − 1

p

)

∏
p|n1
p|n2

(
1 − 1

p

)

=
φ(n1)φ(n2)
∏

p|d
(
1 − 1

p

)

=
φ(n1)φ(n2)

φ(d)
d

= φ(n1)φ(n2)
d

φ(d)
.

Therefore,

φ(n1n2) = φ(n1)φ(n2)
d

φ(d)
. �

Note. For further reading concerning the Möbius and Euler functions the
reader is referred to [38].

2.4 The τ -function

Definition 2.4.1. The function τ(n) is defined as the number of positive
divisors of a positive integer n, including 1 and n. Equivalently, the function
τ(n) can be defined by the formula
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τ(n) =
∑

d|n
d≥1

1.

Remark 2.4.2. The function τ(n) is a multiplicative function, since

τ(1) = 1 and τ(mn) = τ(m)τ(n),

for every pair of coprime integers m, n.

This property is very useful for the computation of the number of divisors of
large integers.

Theorem 2.4.3. Let n = pa1
1 p

a2
2 · · · pak

k be the canonical form of the positive
integer n. Then it holds

τ(n) = (a1 + 1)(a2 + 1) · · · (ak + 1).

Proof. We shall follow the Mathematical Induction Principle.
For k = 1 we have

τ(n) = τ(pa1
1 ).

Since the divisors of n, where n = pa1
1 , are the positive integers 1, p1, p

2
1, . . . , p

a1
1 ,

it is evident that
τ(n) = a1 + 1.

Let m = pa1
1 p

a2
2 · · · pak−1

k−1 and assume that

τ(m) = (a1 + 1)(a2 + 1) · · · (ak−1 + 1). (1)

In order to determine the divisors of the positive integer n, where

n = pa1
1 p

a2
2 · · · pak

k ,

it suffices to multiply each divisor of m by the powers of the prime pk (i.e.,
p0

k, p
1
k, p

2
k, . . . , p

ak

k ).
Therefore, if dn and dm denote the positive divisors of n and m, respec-

tively, then

τ(n) =
∑

dn|n
1 =

∑

dm|m
1 +

∑

dmpk|n
1 +

∑

dmp2
k|n

1 + · · · +
∑

dmp
ak
k |n

1

and since the number of divisors dm is τ(m), we obtain

τ(n) = τ(m) + τ(m) + τ(m) + · · · + τ(m) = τ(m)(ak + 1). (2)

Hence, by (1) and (2) we obtain

τ(n) = (a1 + 1)(a2 + 1) · · · (ak + 1),

which is the desired result. �
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Remark 2.4.4. Generally, for every positive integer n with

n = pa1
1 p

a2
2 · · · pak

k ,

it holds
τ(n) = τ(pa1

1 )τ(pa2
2 ) · · · τ(pak

k ).

EXAMPLES 2.4.5.

τ(126) = τ(2 · 32 · 7) = (1 + 1)(2 + 1)(1 + 1) = 12

τ(168) = τ(23 · 3 · 7) = (3 + 1)(1 + 1)(1 + 1) = 16

τ(560) = τ(24 · 5 · 7) = (4 + 1)(1 + 1)(1 + 1) = 20

τ(1, 376, 375) = τ(53 · 7 · 112 · 13) = (3 + 1)(1 + 1)(2 + 1)(1 + 1) = 48.

2.5 The generalized σ-function

Definition 2.5.1. The function σa(n) is defined as the sum of the a-th powers
of the positive divisors of a positive integer n, including 1 and n, where a can
be any complex number. Equivalently, the function σ(n) can be defined by the
formula

σa(n) =
∑

d|n
d≥1

d a,

where the sum extends over all positive divisors of n.

Remark 2.5.2. For k = 0 we obtain

σ0(n) = τ(n).

Remark 2.5.3. The function σa(n) is a multiplicative function, since

σa(1) = 1 and σa(mn) = σa(m)σa(n),

for every pair of coprime integers m, n.

Theorem 2.5.4. Let n = pa1
1 p

a2
2 · · · pak

k be the canonical form of the positive
integer n. Then

σ1(n) =
pa1+1
1 − 1
p1 − 1

· p
a2+1
2 − 1
p2 − 1

· · · p
ak+1
k − 1
pk − 1

.

Proof. We shall follow the Mathematical Induction Principle.
For k = 1 we obtain

σ1(n) = σ1(pa1
1 ).
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But, since the divisors of n, where n = pa1
1 , are the integers 1, p1, p

2
1, . . . , p

a1
1 ,

it is evident that

σ1(n) = 1 + p1 + p2
1 + · · · + pa1

1 =
pa1+1
1 − 1
p1 − 1

.

Now let m = pa1
1 p

a2
2 · · · pak−1

k−1 and assume that

σ1(m) =
pa1+1
1 − 1
p1 − 1

· p
a2+1
2 − 1
p2 − 1

· · · p
ak−1+1
k−1 − 1
pk−1 − 1

. (1)

Similarly to the proof of Theorem 2.2.3 let dn and dm denote the positive
divisors of n and m, respectively, where n = pa1

1 p
a2
2 · · · pak

k . Then we have

σ1(n) =
∑

dn|n
dn

=
∑

dm|m
dm +

∑

dm|m
dmpk +

∑

dm|m
dmp

2
k + · · · +

∑

dm|m
dmp

ak

k

= 1 ·
∑

dm|m
dm + pk

∑

dm|m
dm + p2

k

∑

dm|m
dm + · · · + pak

k

∑

dm|m
dm

= (1 + pk + p2
k + · · · + pak

k )
∑

dm|m
dm.

Therefore, by the above result and relation (1), we obtain

σ1(n) =
pa1+1
1 − 1
p1 − 1

· p
a2+1
2 − 1
p2 − 1

· · · p
ak+1
k − 1
pk − 1

. �

Remark 2.5.5. For the function σa(n), it holds

σa(pa1
1 p

a2
2 · · · pak

k ) = σa(pa1
1 )σa(pa2

2 ) · · ·σa(pak

k ).

EXAMPLES 2.5.6.

σ(126) = σ(2 · 32 · 7) =
22 − 1
2 − 1

33 − 1
3 − 1

72 − 1
7 − 1

= 312

σ(168) = σ(23 · 3 · 7) =
24 − 1
2 − 1

32 − 1
3 − 1

72 − 1
7 − 1

= 480

σ(560) = σ(24 · 5 · 7) =
25 − 1
2 − 1

52 − 1
5 − 1

72 − 1
7 − 1

= 1488.

Application. We shall use Theorem 2.5.4 in order to prove that the number of
primes is infinite.
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Proof (George Miliakos). Let us suppose that the number of primes is finite.
If m = pq1

1 p
q2
2 · · · pqk

k and n = m ! = pa1
1 p

a2
2 · · · pak

k are the canonical forms of
m and n, respectively, then it is evident that a1 ≥ q1, a2 ≥ q2,. . . , ak ≥ qk.
Therefore, by Theorem 2.5.4, we obtain

σ(n)
n

=
p1 − 1/pa1

1

p1 − 1
· p2 − 1/pa2

2

p2 − 1
· · · pk − 1/pak

k

pk − 1
. (1)

But, for q1, q2, . . . , qk → ∞ it follows that a1, a2, . . . , ak → ∞. Thus, it follows
that n→ ∞.

Therefore, by (1) we get

lim
n→∞

σ(n)
n

=
p1

p1 − 1
· p2

p2 − 1
· · · pk

pk − 1
. (2)

However, it is clear that

n

1
+
n

2
+
n

3
+ · · · + n

m
≤ σ(n)

and hence
1 +

1
2

+
1
3

+ · · · + 1
m

≤ σ(n)
n

. (3)

But, it is a standard fact in mathematical analysis that
∑∞

n=1 1/n = ∞.
Consequently, for m→ ∞, by (2) and (3) we obtain

p1

p1 − 1
· p2

p2 − 1
· · · pk

pk − 1
= ∞,

which is obviously a contradiction, since we have assumed that the number of
primes is finite. Hence, the number of primes must be infinite. �
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Perfect numbers, Fermat numbers

Perfect numbers like perfect men are very rare.
René Descartes (1596–1650)

In this chapter we shall define perfect numbers and Fermat numbers and we
are going to provide proofs of some of their most basic properties and theorems
which are related to them. Furthermore, some related open problems will be
presented.

3.1 Perfect numbers

Definition 3.1.1. A positive integer n is said to be a perfect number if and
only if it is equal to the sum of its positive divisors without counting n in the
summation. Symbolically, n is a perfect number if and only if

σ1(n) = 2n.

For example, 6 is the first perfect number, with 6 = 1 + 2 + 3 and 28 is the
second perfect number, with 28 = 1 + 2 + 4 + 7 + 14.

Research related to perfect numbers has its roots in ancient times and
particularly in ancient Greece. Euclid in his Elements1 presented one of the
most important theorems regarding perfect numbers.
1 Euclid’s Elements comprise thirteen volumes that Euclid himself composed in

Alexandria in about 300 BC. More specifically, the first four volumes deal with
figures, such as triangles, circles and quadrilaterals. The fifth and sixth volumes
study topics such as similar figures. The next three volumes deal with a primary
form of elementary number theory and the rest study topics related to geometry.
It is believed that the Elements founded logic and modern science. In addition,
it is the oldest and best established surviving ancient-Greek work and has been
suggested to be the second work published after the Bible.

M.Th. Rassias, Problem-Solving and Selected Topics in Number Theory: In the Spirit     

© Springer Science +Business Media, LLC 2011 
of the Mathematical Olympiads, DOI 10.1007/978-1-4419-0495-9_3,  
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Theorem 3.1.2 (Euclid). For every positive integer n for which 2n − 1 is a
prime number, it holds that 2n−1(2n − 1) is a perfect number.

Proof. It suffices to prove that

σ1(2n−1(2n − 1)) = 2n(2n − 1).

Hence, in order to do so, we shall determine the divisors of the positive integer
2n−1 · p, where p = 2n − 1. It is clear though that the integers

1, 2, 22, . . . , 2n−1, p, 2p, 22p, . . . , 2n−1p

are the desired divisors. Hence, we get

σ1(2n−1p) = 1 + 2 + 22 + · · · + 2n−1 + p+ 2p+ 22p+ · · · + 2n−1p

= (p+ 1)(1 + 2 + 22 + · · · + 2n−1)

= (p+ 1)(2n − 1)

= 2n(2n − 1).

Therefore,
σ1(2n−1p) = 2n(2n − 1),

which is the desired result. �

Theorem 3.1.3 (Euler). Every even perfect number can be represented in
the form 2n−1(2n − 1), where n is a positive integer and 2n − 1 is a prime
number.

Proof. Let k be a perfect number and n− 1 be the greatest power of 2 which
divides k. Then, for some positive integer m it holds

2k = σ1(k) = σ1(2n−1m)

= σ1(2n−1)σ1(m),

since 2n−1 and m are relatively prime integers. However, by Theorem 2.5.4
we know that if p is a prime number, then

σ1(pk) =
pk+1 − 1
p− 1

.

Therefore,
2k = (2n − 1)σ1(m)

or
2nm = (2n − 1)σ1(m) (1)
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or
m

σ1(m)
=

2n − 1
2n

.

Clearly the fraction (2n−1)/2n is irreducible, since 2n−1 and 2n are relatively
prime integers. Thus, it is evident that

m = c(2n − 1) and σ1(m) = c2n,

for some positive integer c. We are now going to prove that c can only be
equal to 1.

Let us suppose that c �= 1. In that case,

σ1(m) ≥ m+ c+ 1,

since m has at least m, c, 1 as its divisors. Hence,

σ1(m) ≥ c(2n − 1) + c+ 1 = 2nc+ 1 > σ1(m),

since σ1(m) = 2nc, which is a contradiction.
Therefore, we obtain that c = 1 and consequently we get m = 2n − 1

and k = 2n−1(2n − 1) since k = 2n−1m. The only question which remains
unanswered is whether 2n − 1 is a prime number. However, by (1) we have

(2n − 1)σ1(2n − 1) = 2n(2n − 1)

or
σ1(2n − 1) = 2n = (2n − 1) + 1.

Thus, the only divisors of 2n − 1 are the number itself and 1. Thus, clearly
2n − 1 is a prime number. �

3.1.1 Related open problems

(i) We observe that Euler’s theorem strictly refers to even perfect numbers.
Thus, naturally, the following question arises:

Are there any odd perfect numbers?

The above question is one of the oldest open problems in number theory and
most probably one of the oldest in the history of mathematics.

In 1993, R. P. Brent, G. L. Cohen and H. J. J. te Riele in their joint paper
[14] proved that if there exist odd perfect numbers n, then it must hold

n > 10300.

(ii) Another well-known open problem related to perfect numbers is the
following:

Are there infinitely many even perfect numbers?
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Remark 3.1.4. In the previous two theorems we examined the case when the
integer 2n − 1 was a prime number. Hence, it is worth mentioning that the
integers of that form are called Mersenne numbers, after the mathematician
Marin Mersenne who first investigated their properties.

Marin Mersenne (1588–1648) maintained correspondence with Pierre de
Fermat (1601–1665) and hence Fermat also investigated the prime numbers
of the form 2n − 1. His research in this topic led him to the discovery of
the theorem which is known as Fermat’s Little Theorem. In 1644, Mersenne
formulated the conjecture that the integer

Mp = 2p − 1

is a prime number for p = 2, 3, 5, 7, 13, 17, 19, 31, 67, 127, 257 and composite for
the prime numbers p for which p < 257. But, Pervusin and Seelhoff in the years
1883 and 1886, respectively, independently proved Mersenne’s conjecture to
be false by giving a counterexample. They proved that for p = 61 the integer
2p − 1 is a prime number.

3.2 Fermat numbers

Definition 3.2.1. The integers Fn of the form

Fn = 22n

+ 1,

where n ∈ N ∪ {0}, are called Fermat numbers.

For example, F0 = 3, F1 = 5, F2 = 17, F3 = 257, F4 = 65537.
Fermat formulated the conjecture2 that every number of the form

22n

+ 1

is prime. However, in 1732 Leonhard Euler (1707–1783) proved that

F5 = 225
+ 1

is a composite integer and therefore disproved Fermat’s conjecture. We will
present Euler’s proof at the end of this chapter.

3.2.1 Some basic properties

Corollary 3.2.2. For all Fermat numbers Fm, where m ∈ N, it holds

Fm − 2 = F0F1 · · ·Fm−1.

2 More specifically, the conjecture first appeared in a letter addressed by Fermat
to Mersenne on December 25, 1640.
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Proof. We shall follow the Mathematical Induction Principle.
For m = 1 we get

F1 − 2 = F0,

which is obviously true.
Let us suppose that for some integer k with k > 1 it holds

Fk − 2 = F0F1 · · ·Fk−1.

It suffices to prove that

Fk+1 − 2 = F0F1 · · ·Fk.

But,
(F0F1 · · ·Fk−1)Fk = (Fk − 2)Fk = (22k − 1)(22k

+ 1)

or
F0F1 · · ·Fk = (22k

)2 − 1 = 22k · 22k − 1 = 22·2k − 1 = 22k+1 − 1

or
F0F1 · · ·Fk = Fk+1 − 2. �

Corollary 3.2.3. For all Fermat numbers Fn, with n ∈ N, it holds

Fn | 2Fn − 2.

Proof. By Corollary 3.2.2 we know that

Fm − 2 = F0F1 · · ·Fm−1.

Let n ∈ N with n < m. Then, it is evident that Fn is one of the integers

F0, F1, . . . , Fm−1.

By the Mathematical Induction Principle we can easily prove that n+1 ≤ 2n,
for every positive integer n. Therefore, we can set m to be 2n. In that case,
we obtain

F2n − 2 = F0F1 · · ·F2n−1.

Hence,
Fn | F2n − 2.

However,
F2n = 222n

+ 1 = 2Fn−1 + 1.

Thus, it follows that
Fn | (2Fn−1 − 1).

Therefore, obviously
Fn | 2(2Fn−1 − 1)

or
Fn | (2Fn − 2). �
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Theorem 3.2.4. Fermat numbers are coprime.

Proof. Let us suppose that Fermat numbers are not coprime. Then, there
exists a prime number p, for which

p | Fm and p | Fn,

for some positive integers m, n.
Without loss of generality we may suppose that n < m. By Corollary 3.2.2

we obtain
Fn | Fm − 2

and thus
p | Fm − 2.

But, because of the fact that p also divides Fm, we get p | Fm − (Fm − 2) and
consequently p = 2. But, that is a contradiction since Fermat numbers are
odd integers and therefore are not divisible by 2. �

G. Pólya (1887–1985) used Corollary 3.2.2 in order to give a new proof of
the fact that the number of primes is infinite. His proof is presented below.

Theorem 3.2.5 (Pólya’s Proof). The number of primes is infinite.

Proof. The idea of G. Pólya was to determine an infinite sequence of coprime
integers. Let (ak) be such a sequence. In that case, if a prime number pk divides
the kth term of the sequence (ak), then it cannot divide any other term of
that sequence. Hence, the terms ak+1, ak+2, . . . are divisible by distinct prime
numbers. But, the terms of the sequence are infinite and therefore the number
of primes must be infinite, too.

The sequence which Pólya used to demonstrate his argument was the
sequence of Fermat numbers. �

We have previously mentioned that in 1732 Euler proved that

F5 = 225
+ 1

is a composite integer. It is truly remarkable that while Euler composed that
proof he was completely blind. His proof is presented below.

Euler observed that F5 is divisible by 641 and this is true because

641 = 54 + 24 = 5 · 53 + 16 = 5 · 125 + 15 + 1

= 5(125 + 3) + 1 = 5 · 128 + 1 = 5 · 27 + 1.

Hence,
641 = 54 + 24 = 5 · 27 + 1. (1)
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But,

(54 + 24)(27)4 = 54(27)4 + 24(27)4 = (5 · 27)4 + (2 · 27)4

= 54 · 228 + 232,

therefore
641 | 54 · 228 + 232. (2)

Furthermore, we have

54 · 228 − 1 = 52 · 214 · 52 · 214 − 1

= (52 · 214)2 − 1

= (52 · 214 − 1)(52 · 214 + 1)

= (5 · 27 − 1)(5 · 27 + 1)(52 · 214 + 1).

Therefore, by (1), we obtain that 641 | 54 · 228 − 1 and thus by (2) we get

641 | (54 · 228 + 232) − (54 · 228 − 1)

or
641 | 232 + 1 = 225

+ 1 = F5.

Hence, F5 is not a prime number. More specifically, it holds

F5 = 641 · 6700417. �

It is worth mentioning that 148 years after the presentation of Euler’s
proof, E. Landau proved that F6 is not a prime number. A lot of other Fermat
numbers have been proven to be composite since then.





4

Congruences

Miracles are not to be multiplied beyond necessity.
Gottfried Wilhelm Leibniz (1646–1716)

4.1 Basic theorems

Definition 4.1.1. Two integers a and b are said to be congruent modulo m,
where m is a nonzero integer, if and only if m divides the difference a − b.
In that case we write

a ≡ b (modm).

On the other hand, if the difference a − b is not divisible by m, then we say
that a is not congruent to b modulo m and we write

a �≡ b (modm).

Theorem 4.1.2 (Fermat’s Little Theorem). Let p be a prime number and
a be an integer for which the gcd(a, p) = 1. Then it holds

ap−1 ≡ 1 (mod p).

Proof. Firstly, we shall prove that

ap ≡ a (mod p)

for every integer value of a. In order to do so, we will distinguish two cases.

Case 1. At first, we assume that a is a positive integer. If a = 1, then the
congruence ap ≡ a (mod p) obviously holds for every prime number p. Let us
now assume that ap ≡ a (mod p) is true. We shall prove that

(a+ 1)p ≡ a+ 1 (mod p).
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By the binomial identity we know that

(a+ 1)p = ap +
(
p

1

)
ap−1 + · · · +

(
p

p− 1

)
a+ 1.

But, since p divides each of the integers
(
p

1

)
,

(
p

2

)
, . . . ,

(
p

p− 1

)

it is clear that
(a+ 1)p ≡ ap + 1 (mod p). (1)

But, we have made the hypothesis that ap ≡ a (mod p). Therefore, (1) takes
the form

(a+ 1)p ≡ a+ 1 (mod p).

Hence, by the Mathematical Induction Principle we have proved that

ap ≡ a (mod p),

for every positive integer a.

Case 2. We shall prove that ap ≡ a (mod p) for a ≤ 0.
If a = 0, then ap ≡ a (mod p) is obviously true. If a < 0, then for p = 2

we have
a2 = (−a)2 ≡ (−a) (mod 2),

since −a is a positive integer. Therefore, 2 | a2 + a and thus 2 | a2 + a− 2a or
2 | a2 − a which is equivalent to a2 ≡ a (mod 2).

If p �= 2, in which case p is an odd integer, we get

ap = −(−a)p ≡ −(−a) (mod p),

since −a is a positive integer. Therefore,

ap ≡ a (mod p),

for every integer a.
By the above relation, we get

p | a(ap−1 − 1).

Hence, by Euclid’s First Theorem, the prime number p must divide either a or
ap−1−1. But, since gcd(a, p) = 1, it is evident that p | ap−1−1, or equivalently

ap−1 ≡ 1 (mod p). �

Theorem 4.1.3 (Fermat–Euler Theorem). For every pair of coprime
integers a, m it holds

aφ(m) ≡ 1 (modm)

(where φ(m) is the Euler function).
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Proof. We shall first prove the theorem in the special case when m is a perfect
power of a prime number p. Thus, letm = pk for some positive integer k. Then,
for k = 1, by Fermat’s Little Theorem we get

aφ(m) = aφ(p) = ap−1 ≡ 1 (mod p).

We now assume that
aφ(pk) ≡ 1 (mod pk)

and we are going to prove that

aφ(pk+1) ≡ 1 (mod pk+1).

We have
aφ(pk) − 1 = cpk,

for some integer c. Thus,

apk−pk−1
= 1 + cpk

or
apk+1−pk

= (1 + cpk)p

or
aφ(pk+1) = (1 + cpk)p. (1)

But, by the binomial identity we have

(1 + cpk)p = 1 +
(
p

1

)
cpk + · · · +

(
p

p− 1

)
(cpk)p−1 + (cpk)p,

and since p divides each of the integers
(
p

1

)
,

(
p

2

)
, . . . ,

(
p

p− 1

)
,

it is evident that there exists an integer c′, for which

(1 + cpk)p = 1 + c′pk+1.

Therefore, by (1) we get

aφ(pk+1) = 1 + c′pk+1,

and equivalently
aφ(pk+1) ≡ 1 (mod pk+1).
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Hence, by the Mathematical Induction Principle we deduce that

aφ(pk) ≡ 1 (mod pk),

for every positive integer k.
If m is not a perfect power of a prime number, by the Fundamental

Theorem of Arithmetic we can express m in the form

m = pk1
1 p

k2
2 · · · pkn

n ,

where n ≥ 2 and p1, p2, . . . , pn are the prime divisors of m.
Furthermore, we have proved that the Euler φ-function is multiplicative

for every pair of coprime integers. Thus, we can write

(((aφ(p
k1
1 ))φ(p

k2
2 )) · · · )φ(pkn

n ) ≡ (((1φ(p
k1
1 ))φ(p

k2
2 )) · · · )φ(pkn

n ) (mod pk1
1 )

or
aφ(p

k1
1 p

k2
2 ···pkn

n ) ≡ 1 (mod pk1
1 )

or
aφ(m) ≡ 1 (mod pk1

1 ).

Similarly, we can prove that

aφ(m) ≡ 1 (mod pk2
2 ), . . . , aφ(m) ≡ 1 (mod pkn

n ).

But, generally it is true that if α ≡ β (mod γ1) and α ≡ β (modγ2), with
gcd(γ1, γ2) = 1, then α ≡ β (mod γ1γ2). Therefore, since

gcd(pk1
1 , p

k2
2 , . . . , p

kn
n ) = 1,

we obtain
aφ(m) ≡ 1 (modm). �

The above theorem is a generalization of Fermat’s Little Theorem and was
first proved by Leonhard Euler in 1758.

Theorem 4.1.4. Let a, b, c ∈ Z, where at least one of a, b is nonzero.
If d = gcd(a, b) and d | c, then the diophantine equation

ax+ by = c

has infinitely many solutions of the form

x = x0 +
b

d
n, y = y0 − a

d
n,

where n is a positive integer and (x0, y0) is a solution of the equation.
In case d � | c, the diophantine equation

ax+ by = c

has no solutions.
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Proof.

Case 1. If d | c, then there exists an integer k for which c = kd. But, because
of the fact that d is the greatest common divisor of a and b, by Bezout’s
Lemma we know that there exist integers k1, k2 such that

d = k1a+ k2b

and thus
c = kk1a+ kk2b.

Hence, there is at least one pair of integers x0 = kk1, y0 = kk2 which is
a solution of the diophantine equation. In order to prove that there exist
infinitely many solutions and specifically of the form

x = x0 +
b

d
n, y = y0 − a

d
n,

we set (x, y) to be an arbitrary solution of the diophantine equation. Then,
we have

ax+ by = c

and
ax0 + by0 = c.

Thus,
a(x− x0) + b(y − y0) = 0

or
a(x− x0) = b(y0 − y)

or
a

d
(x − x0) =

b

d
(y0 − y). (1)

Thus,
b

d

a

d
(x − x0).

But

gcd
(
a

d
,
b

d

)
= 1

and therefore
b

d
(x − x0).

Hence, there exists an integer n for which

x = x0 + n
b

d
. (2)

Let us suppose without loss of generality that b �= 0. Then, by (1) and (2)
we obtain

a

d
n
b

d
=
b

d
(y0 − y)
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or
a

d
n = y0 − y

or
y = y0 − a

d
n.

For a �= 0 the procedure is exactly the same and we deduce the same result.
Hence, for a fixed integer n the pair (x, y), where

x = x0 +
b

d
n, y = y0 − a

d
n,

is a solution of the equation ax + by = c. But, if we consider an arbitrary
integer t, for which

x = x0 +
b

d
t, y = y0 − a

d
t,

then we get

c = a

(
x0 +

b

d
t

)
+ b

(
y0 − a

d
t
)

= ax0 +
ab

d
t+ by0 − ba

d
t

= ax0 + by0,

which holds true.
Therefore, the diophantine equation ax + by = c has infinitely many

solutions of the form

x = x0 +
b

d
n, y = y0 − a

d
n, for n ∈ N

Case 2. Let us now suppose that d � | c. But, d | a and d | b, thus

d | ax+ by

and consequently d | c, which is a contradiction.
Thus, in this case, the diophantine equation ax+ by = c has no solutions.

�

Theorem 4.1.5. Let a, b ∈ Z and m ∈ N. If d = gcd(a,m) and d | b, then
the linear congruence

ax ≡ b (modm)

has d, pairwise distinct, solutions modulo m.
If d � | b, then the linear congruence has no solutions.

Remark. Two solutions x1 and x2 are said to be distinct if and only if
x1 �≡ x2 (modm).
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Proof.

Case 1. If d | b, then the linear congruence ax ≡ b (modm) has a solution if
the diophantine equation

ax−my = b (1)

has a solution. But, (1) has infinitely many solutions with

x = x0 − m

d
n,

where (x0, y0) is a solution of (1).
We shall prove that from the infinitely many solutions of the linear

congruence
ax ≡ b (modm),

exactly d are pairwise distinct.
We can observe that all integers

x0, x0 − m

d
, x0 − 2

m

d
, . . . , x0 − (d− 1)

m

d

are solutions of the linear congruence ax ≡ b (modm). These solutions are
pairwise distinct, because if there was a pair of these solutions for which

x0 − n1
m

d
≡ x0 − n2

m

d
(modm),

where n1, n2 ∈ N with 1 ≤ n1, n2 ≤ d− 1, then we would have

n1
m

d
≡ n2

m

d
(modm)

or
m (n1 − n2)

m

d
⇒ d | (n1 − n2),

which is a contradiction since 1 ≤ n1, n2 ≤ d− 1. Therefore, the solutions

x0, x0 − m

d
, x0 − 2

m

d
, . . . , x0 − (d− 1)

m

d

are pairwise distinct. We shall now prove that there are no other solutions of
the linear congruence ax ≡ b ( mod m), such that all solutions remain pairwise
distinct.

Let k ∈ Z be a solution of the linear congruence, different from the above.
Then

ak ≡ b (modm),

while we know that ax0 ≡ b (modm) also holds. Therefore, we get

ak ≡ ax0 (modm). (2)

But, since gcd(a,m) = d, we can write

a = λ1d, m = λ2d,
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where λ1, λ2 are relatively prime integers. Hence, by (2) we obtain

λ1dk ≡ λ1dx0 (mod λ2d).

Thus,
λ2 | λ1(k − x0).

But, since gcd(λ1, λ2) = 1 it is evident that

λ2 | (k − x0).

Thus, there exists an integer ν for which

k = x0 + νλ2.

By the division algorithm we have

ν = dq + r,

for some integers q, r with 0 ≤ r < d. Thus, we get

k = x0 + dλ2q + λ2r

= x0 +mq +
m

d
r

and therefore
mq = k −

(
x0 +

m

d
r
)
.

Hence, equivalently we can write

k ≡ x0 +
m

d
r (modm),

where 0 ≤ r ≤ d−1. Thus, k is not considered to be a distinct solution, which
is a contradiction. This completes the proof in the case that d | b.
Case 2. If d � | b, then the diophantine equation

ax−my = b

does not have any solutions in terms of x, y. Therefore, the linear congruence

ax ≡ b (modm)

does not have any solutions. �

Remark 4.1.6. In the special case when gcd(a,m) = 1, the linear congruence
ax ≡ b (modm) has a unique solution.
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Theorem 4.1.7 (Lagrange Theorem). Consider the polynomial

f(x) = anx
n + an−1x

n−1 + · · · + a1x+ a0,

where a0, a1, . . . , an ∈ Z and an �= 0.
If p is a prime number and an �≡ 0 (modp), then the polynomial

congruence
f(x) ≡ 0 (mod p)

has at most n solutions.

Proof. For n = 1 we have f(x) = a1x+ a0. But, by Remark 4.1.6 it is evident
that the linear congruence

a1x+ a0 ≡ 0 (mod p)

has a unique solution and thus

f(x) ≡ 0 (mod p)

has exactly one solution. Therefore, in this case the theorem is proved.
We now assume that the theorem holds for polynomials up to n−1 degree

and the polynomial congruence

anx
n + an−1x

n−1 + · · · + a1x+ a0 ≡ 0 (mod p)

has at least n+ 1 solutions

x0, x1, . . . , xn.

In that case, we obtain

(anx
n
i + an−1x

n−1
i + · · · + a1xi + a0) − (anx

n
0 + an−1x

n−1
0 + · · · + a1x0 + a0)

= an(xn
i − xn

0 ) + an−1(xn−1
i − xn−1

0 ) + · · · + a1(xi − x0)

= (xi − x0)p(xi), i = 1, 2, . . . , n,

where p(x) is a polynomial of n− 1 degree with integer coefficients.
Because of the fact that

p | (anx
n
i + an−1x

n−1
i + · · · + a1xi + a0)

and
p | (anx

n
0 + an−1x

n−1
0 + · · · + a1x0 + a0)

it is evident that

p | (xi − x0)p(xi), i = 1, 2, . . . , n.
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The integers xi, x0 are distinct solutions and thus

xi �≡ x0 (mod p).

Therefore,
p | p(xi), i = 1, 2, . . . , n,

and consequently the polynomial congruence

p(x) ≡ 0 (mod p)

has n solutions, which is impossible since the polynomial p(x) is of n−1 degree
and we have assumed that the theorem holds true for polynomials of degree
up to n− 1.

Hence, by the Mathematical Induction Principle, it follows that the
polynomial congruence

anx
n + an−1x

n−1 + · · · + a1x+ a0 ≡ 0 (mod p),

where an �≡ 0 (mod p), has at most n solutions. �

Theorem 4.1.8. Consider the polynomial

f(x) = anx
n + an−1x

n−1 + · · · + a1x+ a0,

where a0, a1, . . . , an ∈ Z and an �= 0. If p is a prime number and the
polynomial congruence f(x) ≡ 0 (mod p) has more than n solutions, then p
divides all the coefficients of the polynomial f(x).

Proof. Since the polynomial congruence f(x) ≡ 0 (mod p) has more than n
solutions, it follows that p | an. This happens because if an �≡ 0 (modp),
then by the Lagrange Theorem the congruence f(x) ≡ 0 (mod p) should have
at most n solutions, which contradicts our hypothesis. Therefore, for each
solution x0 of f(x) ≡ 0 (mod p) we obtain

p | an−1x
n−1 + · · · + a1x+ a0.

Thus, the polynomial congruence

an−1x
n−1 + · · · + a1x+ a0 ≡ 0 (mod p)

has more than n solutions. Hence, similarly it follows that

p | an−1.

According to the above arguments, it is evident that for every ν ≤ n, the
polynomial congruence

aνx
ν + aν−1x

ν−1 + · · · + a1x+ a0 ≡ 0 (mod p),

has more than ν solutions. Therefore, p | aν , for every ν = 1, 2, . . . , n. �
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Theorem 4.1.9 (Chinese Remainder Theorem). Let m1,m2, . . . ,mk,
a1, a2, . . . , ak ∈ Z, such that gcd(mi,mj) = 1, for i �= j and gcd(ai,mi) = 1,
for every i, where 1 ≤ i, j ≤ k. If m = m1m2 · · ·mk, then the system of linear
equations

a1x ≡ b1 (modm1)

a2x ≡ b2 (modm2)
...

akx ≡ bk (modmk)

has a unique solution modulo m.

Proof. At first, we shall prove that the system of linear congruences has a
solution modulo m and afterwards we shall prove the uniqueness of that
solution.

Set ri = m/mi. Then, it is obvious that gcd(ri,mi) = 1 and thus, the
linear congruence rix ≡ 1 (modmi) has a unique solution. If r′i denotes that
solution, we have

rir
′
i ≡ 1 (modmi), for i = 1, 2, . . . , k.

Let xi denote the unique solution of the linear congruence

aix ≡ bi (modmi).

We shall prove that the integer

x0 =
k∑

i=1

xirir
′
i,

is a solution modulo m of the system.
Since xi is the unique solution of aix ≡ bi (modmi) we have

aixi ≡ bi (modmi).

But, in addition we know that

rir
′
i ≡ 1 (modmi)

and therefore we obtain

aixirir
′
i ≡ bi (modmi). (1)

Furthermore, in case i �= j it is clear that mi | rj . Thus,

mi | aixjrjr
′
j , for every j �= i. (2)
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However, we have

aix0 − bi = aix1r1r
′
1 + aix2r2r

′
2 + · · · + (aixirir

′
i − bi) + · · · + aixkrkr

′
k.

Hence, by (1) and (2) we obtain that

mi | (aix0 − bi),

or
aix0 ≡ bi (modmi).

Moreover, because of the fact that the integers m1,m2, . . . ,mk are coprime,
it holds

aix0 ≡ bi (modm1m2 · · ·mk)

or
aix0 ≡ bi (modm).

Therefore, it suffices to prove that x0 is the unique solution modulo m of the
system. Let us assume that there exists another solution modulo m of the
system and denote it by x′0. Then

m | (aix
′
0 − bi)

and thus
mi | (aix

′
0 − bi).

But, since mi | (aix0 − bi), it is evident that

mi | ai(x′0 − x0), for every i = 1, 2, . . . , k.

In addition, since gcd(ai,mi) = 1, it yields

x′0 ≡ x0 (modmi).

But, since the integers m1,m2, . . . ,mk are coprime, it follows that

x′0 ≡ x0 (modm).

Hence, the solutions x′0 and x0 are not distinct and thus x0 is the unique
solution of the system of linear congruences. This completes the proof of the
theorem. �

Historical Remark. The Chinese Remainder Theorem is an ancient result
which first appeared in the work of the Chinese mathematician Sun Tzu,
entitled Suanjing, in about the 4th century AD. According to D. Wells
(see [61]), Sun Tzu in his work mentions the following:

There are certain things whose number is unknown.
Repeatedly divided by 3, the remainder is 2,
by 5 the remainder is 3,
and by 7 the remainder is 2.
What will be the number?
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Notwithstanding the fact that the Chinese remainder theorem first appeared
in the work of Sun Tzu, the complete theorem was presented for the first time
in 1247, by the Chinese mathematician Qin Jiushao in his treatise entitled
Shùshū Jiǔzhāng.
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Quadratic residues

Mathematics is concerned only with the enumeration
and comparison of relations.

Carl Friedrich Gauss (1777–1855)

5.1 Introduction

Definition 5.1.1. An integer a is called a quadratic residue modulo c,
if gcd(a, c) = 1 and the congruence x2 ≡ a (mod c) has a solution. If the
congruence does not have any solution, then a is called a quadratic
nonresidue modulo c.

For example,

32 ≡ 1 (mod 4) and 62 ≡ 11 (mod 5).

Therefore, 1 is a quadratic residue modulo 4 and 11 is a quadratic residue
modulo 5.

We shall now present some basic theorems concerning quadratic residues.

Theorem 5.1.2. Let p be an odd prime number and a an integer for which
gcd(a, p) = 1. Then, the congruence

x2 ≡ a (mod p), (1)

will either have two distinct solutions1 or no solutions at all.
1 By distinct solutions we mean solutions which are not equivalent mod p.
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Proof. Let us assume that the congruence x2 ≡ a (mod p) has a solution x0.
Then, we have

x2
0 ≡ a (mod p).

Thus, obviously, we also have

(−x0)2 ≡ a (mod p).

Hence, if x0 is a solution of (1), that yields that −x0 is also a solution of (1).
Moreover, these solutions are distinct, since

x0 �≡ −x0 (mod p).

This happens because if x0 ≡ −x0 (mod p), then it follows that p | x0, which
is a contradiction since p | (x2

0 − a) and gcd(a, p) = 1.
We shall now prove that there are no other distinct solutions of (1).

This follows immediately by Theorem 4.1.8. However, here we will present a
different proof.

Let x′0 be a solution of (1), different than x0 and −x0. Therefore, it is
evident that

x2
0 − (x′0)

2 ≡ 0 (mod p)

or
(x0 − x′0)(x0 + x′0) ≡ 0 (mod p).

Consequently, by Euclid’s first theorem, it follows

p | (x0 − x′0) or p | (x0 + x′0).

Thus, equivalently we have

x0 ≡ x′0 (mod p) or − x0 ≡ x′0 (mod p).

Hence, the solution x′0 is not different than x0 and −x0, which is a
contradiction. �

Theorem 5.1.3. If p is an odd prime, then there exist exactly (p − 1)/2
quadratic residues and (p− 1)/2 quadratic nonresidues mod p.

Proof. It is clear that

p− 1 ≡ −1 (mod p)

p− 2 ≡ −2 (mod p)
...

p− p− 1
2

≡ −p− 1
2

(mod p).
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Therefore, it is evident that

(p− 1)2 ≡ 12 (mod p)

(p− 2)2 ≡ 22 (mod p)

...
(
p− p− 1

2

)2

≡
(
p− 1

2

)2

(mod p).

So, each of the integers 12, 22, . . . ,
(

p−1
2

)2
is a quadratic residue mod p. We shall

now prove that these are also pairwise not congruent mod p.
Let

x1, x2 ∈
{

1, 2, . . . ,
p− 1

2

}
.

Then
1 < x1 + x2 < p. (1)

Therefore, if x2
1 ≡ x2

2 (mod p), where x1 �= x2, it yields p | (x1 − x2)(x1 + x2)
and thus p | (x1 − x2) or p | (x1 + x2). However, by (1) it follows that

p | (x1 − x2).

Since
|x1 − x2| < p,

we get that x1 = x2, which is a contradiction. Hence, according to the above
arguments, it follows that there exist exactly (p−1)/2 quadratic residues and
(p− 1)/2 quadratic nonresidues mod p. More specifically, the integers

12, 22, . . . ,

(
p− 1

2

)2

are the quadratic residues. �

Theorem 5.1.4 (Dirichlet’s Theorem). Let p be a prime number and a be
an integer such that 1 ≤ a ≤ p− 1. If the congruence x2 ≡ a (mod p) does not
have any solutions, then

p | (p− 1)! − a(p−1)/2.

Else, if x2 ≡ a (mod p) has solutions, then

p | (p− 1)! + a(p−1)/2.
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Proof. If the prime number p is even, then the validity of the theorem is
obvious. Thus, we will examine the case when p is an odd prime number.
Let us consider the linear congruence

a1x ≡ a (mod p), (1)

where 1 ≤ a1 ≤ p− 1.
By Remark 4.1.6 we know that (1) has a unique solution and by the proof

of Theorem 4.1.5 it follows that this solution belongs to the set of integers

{0, 1, . . . , p− 1}
or the set {

−p− 1
2

, . . . ,−2,−1, 0, 1, 2, . . . ,
p− 1

2

}
.

Without loss of generality, we assume that x ∈ {1, 2, . . . , p− 1}. The element
0 is excluded since it must hold gcd(a, p) = 1.

If b is a solution of (1), then

a1b ≡ a (mod p). (2)

Therefore, if the congruence

x2 ≡ a (mod p) (3)

has no solutions, it yields that a1 �= b. But, since a1, b ∈ {1, 2, . . . , p−1}, we can
partition this set in (p− 1)/2 distinct pairs (a1, b), with a1 �= b, for which (2)
holds true.

Moreover, if we multiply by parts the linear congruences which are derived
by those pairs, we obtain

(p− 1)! ≡ a(p−1)/2 (mod p).

Thus,
p | (p− 1)! − a(p−1)/2.

If the congruence x2 ≡ a (modp) has solutions, then by Theorem 5.1.2 it
follows that it must have exactly two solutions. Without loss of generality,
we assume again that these solutions belong to the set {1, 2, . . . , p− 1}.

Let k be one of these two solutions of (3). Then, it is clear that p − k is
also a solution and since (3) can only have two solutions, it is obvious that k
and p− k are the only ones.

Let us exclude k and p − k from the set {1, 2, . . . , p − 1} and partition
the p − 3 remaining integers in (p − 3)/2 distinct pairs (a1, b), with a1 �= b,
for which (2) holds true. If we multiply by parts the linear congruences which
are derived by those pairs, we obtain

(p− 1)!
k · (p− k)

≡ a(p−3)/2 (mod p),

where clearly N = (p− 1)!/(k · (p− k)) is a positive integer.
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However,
k · (p− k) = kp− k2 ≡ −a (mod p).

Therefore,
N · k · (p− k) ≡ a(p−3)/2(−a) (mod p),

and hence
(p− 1)! ≡ (−a)(p−1)/2 (mod p).

Thus,
p | (p− 1)! + a(p−1)/2. �

Historical Remark. The above theorem was proved by P. Dirichlet in 1828.
We shall use Dirichlet’s result in order to prove another important theorem,
Wilson’s theorem.

Wilson’s theorem was initially introduced as Wilson’s conjecture and was
announced by his professor Ed. Waring, in 1770. The theorem was proved for
the first time by J.L. Lagrange, in 1771. Two years later, in 1773, L. Euler
presented a different proof. A third proof is presented in Gauss’s book entitled
Disquisitiones Arithmeticae.

Finally, the theorem was named after Wilson, notwithstanding the fact
that G. Leibniz had, almost one hundred years earlier, discovered an equivalent
theorem.

Theorem 5.1.5 (Wilson’s Theorem). If p is a prime number, then

p | (p− 1)! + 1

and conversely if
p | (p− 1)! + 1,

then p is a prime number.

First Proof. We shall first prove that if p is a prime number, then

p | (p− 1)! + 1.

In order to do so, we will use Dirichlet’s Theorem.
Consider the congruence

x2 ≡ 1 (mod p),

which obviously has a solution (for example, x = p− 1).
If we apply Dirichlet’s Theorem for a = 1, we obtain

p | (p− 1)! + 1(p−1)/2

or equivalently
p | (p− 1)! + 1.
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In order to prove the converse, we assume that

p | (p− 1)! + 1,

and we shall prove that p must be a prime number.
It is clear that none of the integers 2, 3, . . . , p − 1 divides (p − 1)! + 1.

Thus, the least positive integer which divides (p − 1)! + 1 is p. However,
in Lemma 1.1.4 we proved that the least nontrivial divisor of every positive
integer greater than 1 is a prime number. Hence, it is evident that p is a prime
number.

Second Proof. (Lagrange). Consider the polynomial

f(x) = (x− 1)(x− 2) · · · (x − (p− 1)) − (xp−1 − 1),

where x = 1, 2, . . . , p− 1 and p is a prime number.
It is evident that gcd(x, p) = 1 and therefore, by Fermat’s Little Theorem

we have
xp−1 ≡ 1 (mod p).

In addition, it is clear that one of the integers x − 1, x − 2, . . . , x − (p − 1)
must be equal to zero. Thus,

p | (x− 1)(x− 2) · · · (x− (p− 1)).

Hence, by the above two relations, we obtain that the polynomial congruence

f(x) ≡ 0 (mod p)

has p − 1 solutions. However, since the polynomial f(x) is of degree p − 2,
by Theorem 4.1.8 it yields that if

f(x) = ap−2x
p−2 + · · · + a1x+ a0,

then
p | a0, p | a1, . . . , p | ap−2.

But a0 = (p− 1)! + 1, thus

p | (p− 1)! + 1.

In order to prove the converse, we follow the same method as in Proof 1. �

5.2 Legendre’s symbol

Definition 5.2.1. Let p be an odd prime number and a be an integer such
that gcd(a, p) = 1. We define Legendre’s symbol

(
a
p

)
by
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(
a

p

)
=
{

1, if a is a quadratic residue mod p

−1, if a is a quadratic nonresidue mod p.

In case p | a, Legendre’s symbol is defined to be equal to zero.
(
a

p

)
= 0, if p | a.

For example,
(

11
7

)
= 1,

(
6
13

)
= −1,

(
15
5

)
= 0.

We shall now prove some basic theorems and properties related to Legendre’s
symbol.

Theorem 5.2.2 (Euler’s Criterion). Let p be an odd prime number and a
an integer such that gcd(a, p) = 1. Then, it holds

(
a

p

)
≡ a(p−1)/2 (mod p).

Proof. Since the hypothesis ensures that p � | a, by the definition of Legendre’s
symbol, we obtain that (

a

p

)
= ±1.

• If
(

a
p

)
= 1, then the integer a is a quadratic residue mod p and thus, there

exists an integer x0, such that

x2
0 ≡ a (mod p).

Therefore,
(x2

0)
(p−1)/2 ≡ a(p−1)/2 (mod p)

or
xp−1

0 ≡ a(p−1)/2 (mod p)

or
a(p−1)/2 ≡ xp−1

0 (mod p). (1)

But, because of the fact that p | (x2
0 − a) and gcd(a, p) = 1, it yields

gcd(x0, p) = 1. Hence, by Fermat’s Little Theorem, we get

xp−1
0 ≡ 1 (mod p). (2)

Thus, by (1), (2) it follows

1 ≡ a(p−1)/2 (mod p)

or (
a

p

)
≡ a(p−1)/2 (mod p).
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• If
(

a
p

)
= −1, then the integer a is a quadratic nonresidue modp and

thus the congruence x2 ≡ a (mod p) does not have any solutions. However,
in this case, Dirichlet’s theorem ensures that

p | (p− 1)! − a(p−1)/2

and therefore
a(p−1)/2 ≡ (p− 1)! (mod p). (3)

But, by Wilson’s Theorem, (3) takes the form

a(p−1)/2 ≡ −1 (mod p)

or
−1 ≡ a(p−1)/2 (mod p).

Hence, we have (
a

p

)
≡ a(p−1)/2 (mod p).

This completes the proof of Euler’s Criterion. �

Theorem 5.2.3. Let p be an odd prime number and a be an integer, such
that gcd(a, p) = 1. If a ≡ b (mod p), then it holds

(
a

p

)
=

(
b

p

)
.

Proof. It is clear that gcd(b, p) = 1, since if p | b, then we would have p | a
which contradicts the hypothesis of the theorem. Therefore, because of the fact
that a ≡ b (mod p), it is evident that a is a quadratic residue (or nonresidue,
respectively) modp if and only if b is a quadratic residue (or nonresidue,
respectively) mod p. Hence, by the definition of Legendre’s symbol, it follows
that (

a

p

)
=

(
b

p

)
. �

Theorem 5.2.4. Let p be an odd prime number and a, b be integers, such
that gcd(ab, p) = 1. Then, it holds

(
ab

p

)
=

(
a

p

)(
b

p

)
.

Therefore, Legendre’s symbol is a completely multiplicative function.

Proof. By Euler’s Criterion, we have
(
ab

p

)
≡ (ab)(p−1)/2 (mod p).
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Thus, equivalently we get
(
ab

p

)
≡ a(p−1)/2b(p−1)/2 (mod p)

≡
(
a

p

)(
b

p

)
(mod p).

Thus, equivalently we have

p

(
ab

p

)
−
(
a

p

)(
b

p

)
. (1)

However, the only possible values of
(

ab
p

)
,
(

a
p

)
and

(
b
p

)
are −1, 1. Hence, the

only possible values of the difference

D =
(
ab

p

)
−
(
a

p

)(
b

p

)

are 0, 2,−2. But, by (1) and the fact that p is an odd prime number, it yields
that D = 0. Therefore, (

ab

p

)
=

(
a

p

)(
b

p

)
. �

Lemma 5.2.5. Let p be an odd prime number. Then, it holds
(−1
p

)
= (−1)(p−1)/2.

Proof. By Euler’s Criterion, we have
(−1
p

)
≡ (−1)(p−1)/2 (mod p).

However, the only possible values of
(−1

p

)
and (−1)(p−1)/2 are 1,−1.

Therefore, since

p

(−1
p

)
− (−1)(p−1)/2

and p is an odd prime number, it follows that
(−1
p

)
= (−1)(p−1)/2. �

Lemma 5.2.6. Let p be an odd prime number. Then, it holds

(−1
p

)
=

{
1, if p ≡ 1 (mod 4)

−1, if p ≡ 3 (mod 4).
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Proof. The prime number p can either take the form 4n+ 1 or 4n+ 3, where
n is a natural number.

If p = 4n+ 1, then by Lemma 5.2.5, it follows
(−1
p

)
= (−1)(p−1)/2 = (−1)2n = 1.

If p = 4n+ 3, then by Lemma 5.2.5, it yields
(−1
p

)
= (−1)(p−1)/2 = (−1)2n+1 = −1. �

Theorem 5.2.7. Let p be an odd prime number. Then it holds

(
2
p

)
= (−1)(p

2−1)/8 =

{
1, if p ≡ ±1 (mod 8)

−1, if p ≡ ±3 (mod 8).

Proof. Consider the following (p− 1)/2 congruences:

p− 1 ≡ 1 · (−1)1 (mod p)

2 ≡ 2 · (−1)2 (mod p)

p− 3 ≡ 3 · (−1)3 (mod p)

4 ≡ 4 · (−1)4 (mod p)

...

k ≡ p− 1
2

· (−1)(p−1)/2 (mod p),

where

k =

{
p−1
2 , if the integer (p− 1)/2 is even
p− p−1

2 , if the integer (p− 1)/2 is odd.

By multiplying by parts the above congruences, we obtain

2 · 4 · 6 · · · (p− 1) ≡
(
p− 1

2

)
!(−1)(p

2−1)/8 (mod p). (1)

However, it is clear that

2 · 4 · 6 · · · (p− 1) ≡ (2 · 1) · (2 · 2) · (2 · 3) · · ·
(

2 · p− 1
2

)

= 2(p−1)/2

(
p− 1

2

)
!.
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Therefore, (1) takes the form

2(p−1)/2

(
p− 1

2

)
! ≡

(
p− 1

2

)
!(−1)(p

2−1)/2 (mod p). (2)

Moreover, since p does not divide
(

p−1
2

)
!, by (2) we get

2(p−1)/2 ≡ (−1)(p
2−1)/8 (mod p). (3)

Hence, by Euler’s Criterion, we have
(

2
p

)
≡ 2(p−1)/2 (mod p). (4)

By relations (3) and (4), we obtain
(

2
p

)
≡ (−1)(p

2−1)/8 (mod p).

However, the only possible values of
(

2
p

)
and (−1)(p

2−1)/8 are −1, 1. Thus,
it is evident that the only possible values of the difference

D =
(

2
p

)
− (−1)(p

2−1)/8

are 0, 2,−2. But, by the fact that p is an odd prime number, it follows that
D = 0 and thus (

2
p

)
= (−1)(p

2−1)/8.

The prime number p can take one of the forms

8n+ 1 or 8n+ 3 or 8n− 3 or 8n− 1, where n ∈ N.

In case p = 8n± 1, it follows that

p2 − 1
8

= 8n2 ± 2n,

which is an even integer.
In case p = 8n± 3, it follows that

p2 − 1
8

= 8n2 ± 6n+ 1,

which is an odd integer. Hence, in conclusion, one has

(
2
p

)
= (−1)(p

2−1)/8 =

{
1, if p ≡ ±1 (mod 8)

−1, if p ≡ ±3 (mod 8). �
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5.2.1 The law of quadratic reciprocity

Theorem 5.2.8 (Gauss’s Lemma). Let p be an odd prime number and a be
an integer, such that gcd(a, p) = 1. Consider the least positive residues mod p
of the integers

a, 2a, 3a, . . . ,
p− 1

2
a.

If s denotes the number of these residues which are greater than p/2, it holds
(
a

p

)
= (−1)s.

Proof. It is clear that each of the integers ma, where m = 1, 2, . . . ,
(p− 1)/2, when divided by p leaves a nonzero remainder, since gcd(a, p) = 1
and gcd(m, p) = 1, for every m. Now, we consider a partition of the set of the
least positive residues mod p of the integers a, 2a, 3a, . . . , ((p− 1)/2)a, in two
distinct sets as follows:

S1 = {r1, r2, . . . , rλ} , if ri <
p

2
, where i = 1, 2, . . . , λ

and
S2 = {e1, e2, . . . , es} , if ei >

p

2
, where i = 1, 2, . . . , s.

It is evident that s + λ = (p − 1)/2, since S1 ∩ S2 = Ø. We shall now try to
construct a third set S3, for which

S1 ∪ S3 = {1, 2, . . . , (p− 1)/2}.
We can observe that each element ri ∈ S1 is different than every wj with
wj = p − ej , where ej ∈ S2. Thus, for every pair (i, j), where i = 1, 2, . . . , λ
and j = 1, 2, . . . , s, it holds ri �= wj . This is true because if we could determine
a pair (i, j), for which wj = ri, we would have p = ri + ej . However, by the
definition of ri and ej, we have

ka = kip+ ri, where 1 ≤ k ≤ p− 1
2

, and i = 1, 2, . . . , λ, (1)

as well as

νa = νjp+ ej, where 1 ≤ ν ≤ p− 1
2

, and j = 1, 2, . . . , s. (2)

Therefore, we would get

(k + ν)a = (ki + νj)p+ (ri + ej)

= (ki + νj)p+ p
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and because of the fact that gcd(a, p) = 1, it should hold

k + ν ≡ 0 (mod p),

which is a contradiction, since

2 ≤ k + ν ≤ p− 1.

Hence, by the above arguments, it follows that the sets S1 and {w1, w2, . . . , ws}
are mutually disjoint. In addition, it is a fact that wj ∈ {

1, . . . , p−1
2

}
for every

j = 1, 2, . . . , s, since
wj = p− ej and ej >

p

2
.

Thus, the set S3 which we were trying to construct, is exactly the set
{w1, w2, . . . , ws}. Therefore,

S1 ∪ S3 = {1, . . . , p− 1
2

}.

By multiplying the elements of the set S1 ∪ S3, we obtain

r1r2 · · · rλw1w2 · · ·ws = 1 · 2 · 3 · · · p− 1
2

and equivalently

r1r2 · · · rλ(p− e1)(p− e2) · · · (p− es) =
(
p− 1

2

)
!.

However, there exists an integer c for which

r1r2 · · · rλ(p− e1)(p− e2) · · · (p− es) = cp− r1r2 · · · rλ(−1)se1e2 · · · es.

But

p r1r2 · · · rλ(p− e1)(p− e2) · · · (p− es) −
(
p− 1

2

)
! = 0.

Thus,

p cp− r1r2 · · · rλ(−1)se1e2 · · · es −
(
p− 1

2

)
!

or

p (−1)sr1r2 · · · rλe1e2 · · · es −
(
p− 1

2

)
!. (3)

By (1), (2) we obtain

ri = ka− kip, where 1 ≤ k ≤ p− 1
2

, i = 1, 2, . . . , λ

and
ej = νa− νjp, where 1 ≤ ν ≤ p− 1

2
, j = 1, 2, . . . , s.
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Hence,

r1r2 · · · rλe1e2 · · · es ≡ a(2a)(3a) · · ·
(
p− 1

2
a

)
(mod p). (4)

Thus, by (3), (4) we get
(
p− 1

2

)
! ≡ (−1)sa(p−1)/2

(
p− 1

2

)
! (mod p).

However, by Euler’s Criterion we have

a(p−1)/2 ≡
(
a

p

)
(mod p).

Therefore, (
p− 1

2

)
! ≡ (−1)s

(
a

p

)(
p− 1

2

)
! (mod p)

or

1 ≡ (−1)s

(
a

p

)
(mod p)

or

(−1)s ≡
(
a

p

)
(mod p),

and since the only possible values of
(

a
p

)− (−1)s are 0, 2,−2, it follows that
(
a

p

)
= (−1)s. �

Theorem 5.2.9 (The Law of Quadratic Reciprocity). Let p, q be distinct
odd prime numbers. Then it holds

(
p

q

)(
q

p

)
= (−1)

(p−1)(q−1)
4 .

Proof. By Gauss’s Lemma, we obtain
(
p

q

)
= (−1)s1 and

(
q

p

)
= (−1)s2 ,

where s1 represents the number of positive residues greater than q
2 , which

occur when the integers

p, 2p, 3p, . . . ,
q − 1

2
p

are divided by q, and s2 represents the number of positive residues greater
than p

2 , which occur when the integers

q, 2q, 3q, . . . ,
p− 1

2
q
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are divided by p. Therefore,
(
p

q

)(
q

p

)
= (−1)s1+s2 .

Step 1. We shall prove that

s1 + s2 ≡
(q−1)/2∑

m1=1

⌊
m1p

q

⌋
+

(p−1)/2∑

m2=1

⌊
m2q

p

⌋
(mod 2).

In order to do so, we must first prove that for the number of residues s, which
we defined in Gauss’s Lemma, it holds

s ≡ (a− 1)
p2 − 1

8
+

(p−1)/2∑

m=1

⌊
ma

p

⌋
(mod 2).

We have

(p−1)/2∑

m=1

m =
λ∑

i=1

ri +
s∑

j=1

wj =
λ∑

i=1

ri +
s∑

j=1

(p− ej)

=
λ∑

i=1

ri + s · p−
s∑

j=1

ej . (1)

In addition, it holds

ma

p
=

⌊
ma

p

⌋
+ υm, where 0 < υ < 1.

Therefore, equivalently, we get

ma =
⌊
ma

p

⌋
p+ υmp. (2)

Set hm = υmp. Then, it is clear that 0 < hm < p and that hm is the least
positive residue which occurs when ma is divided by p. Hence,

λ∑

i=1

ri +
s∑

j=1

ej =
(p−1)/2∑

m=1

hm

and by (2), we obtain

a

(p−1)/2∑

m=1

m− p

(p−1)/2∑

m=1

⌊
ma

p

⌋
=

λ∑

i=1

ri +
s∑

j=1

ej. (3)
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If we add up the relations (1) and (3), it follows

(a+ 1)
(p−1)/2∑

m=1

m− p

(p−1)/2∑

m=1

⌊
ma

p

⌋
= 2

λ∑

i=1

ri + s · p. (4)

However, since p ≡ 1 (mod 2), it is obvious that

sp ≡ s (mod 2)

and

p

(p−1)/2∑

m=1

⌊
ma

p

⌋
≡

(p−1)/2∑

m=1

⌊
ma

p

⌋
(mod 2).

Furthermore, since a+ 1 ≡ a− 1 (mod 2), we also get

(a+ 1)
(p−1)/2∑

m=1

m ≡ (a− 1)
(p−1)/2∑

m=1

m (mod 2).

Therefore, by the above relations, we obtain

s+ p

(p−1)/2∑

m=1

⌊
ma

p

⌋
+ (a+ 1)

(p−1)/2∑

m=1

m

≡ sp+
(p−1)/2∑

m=1

⌊
ma

p

⌋
+ (a− 1)

(p−1)/2∑

m=1

m(mod 2)

and thus, by (4) we get

s+2
λ∑

i=1

ri+sp+2p
(p−1)/2∑

m=1

⌊
ma

p

⌋
≡ sp+

(p−1)/2∑

m=1

⌊
ma

p

⌋
+(a−1)

(p−1)/2∑

m=1

m(mod 2).

Thus,

s ≡
(p−1)/2∑

m=1

⌊
ma

p

⌋
+ (a− 1)

(p−1)/2∑

m=1

m (mod 2)

or, equivalently,

s ≡
(p−1)/2∑

m=1

⌊
ma

p

⌋
+ (a− 1)

p2 − 1
8

(mod 2).

This completes the proof of Step 1. Thus, we have proved that
(
p

q

)(
q

p

)
= (−1)s1+s2 ,

where

s1 + s2 ≡
(q−1)/2∑

m1=1

⌊
m1p

q

⌋
+

(p−1)/2∑

m2=1

⌊
m2q

p

⌋
(mod 2).
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Step 2. We shall prove that
(q−1)/2∑

m1=1

⌊
m1p

q

⌋
+

(p−1)/2∑

m2=1

⌊
m2q

p

⌋
≡ p− 1

2
· q − 1

2
(mod 2).

In the Cartesian plane below, let us consider the lattice points (m2,m1), where
1 ≤ m1 ≤ q−1

2 and 1 ≤ m2 ≤ p−1
2 .

(0, 0) x

y

i1 i2

j1

j2

q/2

p/2

py = qx

Figure 5.1

None of these lattice points lays upon the line with equation py = qx,
for if there existed a pair (m2,m1) such that pm2 = qm1, then we would have
qm1 ≡ 0 (mod p), which is impossible since gcd(q, p) = 1 and 1 ≤ m1 ≤ q−1

2 .
Therefore, each lattice point (m2,m1) will be either above or below the line
with equation py = qx. Thus, we shall distinguish two cases.

• Case 1. If the lattice point (m2,m1) lays above the line py = qx, then it
is clear that

pm1 > qm2

and thus
m2 <

m1p

q
.

Hence, for every fixed value of m1, there exist
⌊

m1p
q

⌋
lattice points, which

lay above the line with equation py = qx. Therefore, the total number of
lattice points laying above the line is

(q−1)/2∑

m1=1

⌊
m1p

q

⌋
.

• Case 2. If the lattice point (m2,m1) lays below the line with equation
py = qx, then it is clear that

pm1 < qm2
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and thus
m1 <

qm2

p
.

Thus, similarly to the previous case, it follows that the total number of
lattice points laying below the line is

(p−1)/2∑

m2=1

⌊
qm2

p

⌋
.

Consequently, the total number of lattice points laying above and below the
line with equation py = qx is

(q−1)/2∑

m1=1

⌊
m1p

q

⌋
+

(p−1)/2∑

m2=1

⌊
qm2

p

⌋
.

However, since 1 ≤ m1 ≤ q−1
2 and 1 ≤ m2 ≤ p−1

2 , it is clear that the total
number of lattice points (m2,m1) is

p− 1
2

· q − 1
2

.

Therefore, we obtain

(q−1)/2∑

m1=1

⌊
m1p

q

⌋
+

(p−1)/2∑

m2=1

⌊
qm2

p

⌋
=
p− 1

2
· q − 1

2
.

This completes the proof of Step 2.
By the results obtained by Steps 1 and 2, we have

s1 + s2 ≡ p− 1
2

· q − 1
2

(mod 2),

or equivalently

s1 + s2 − p− 1
2

· q − 1
2

= 2k, for some k ∈ Z.

Therefore,
(
p

q

)(
q

p

)
= (−1)s1+s2 = (−1)

p−1
2 · q−1

2 (−1)2k

= (−1)
p−1
2 · q−1

2 .

This completes the proof of the law of quadratic reciprocity. �
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Remark 5.2.10. The law of quadratic reciprocity relates the solvability of
the congruence

x2 ≡ p (mod q) (R1)

to the solvability of the congruence

x2 ≡ q (mod p). (R2)

Thus, we have the following two cases:

Case 1. If p ≡ 1 (mod 4) or q ≡ 1 (mod 4), then we obtain
(
p

q

)(
q

p

)
= 1.

Hence, the congruence (R1) has a solution if and only if the congruence (R2)
has a solution.

Case 2. If p ≡ 3 (mod 4) and q ≡ 3 (mod 4), then we obtain
(
p

q

)(
q

p

)
= −1.

Therefore, the congruence (R1) has a solution if and only if the congruence
(R2) does not have a solution.

EXAMPLES.

1. It holds 62 ≡ 5 (mod31), thus we have
(

5
31

)
= 1. But, by the law of

quadratic reciprocity, we obtain
(

31
5

)(
5
31

)
= (−1)

31−1
2 · 5−1

2 = (−1)15·2 = 1.

Therefore, (
31
5

)
= 1,

which means that 31 is a quadratic residue mod 5.
2. It holds

(
29
17

)
= −1. But, by the law of quadratic reciprocity, we get
(

29
17

)(
17
29

)
= (−1)

29−1
2 · 17−1

2 = (−1)14·8 = 1.

Therefore, (
17
29

)
= −1,

which means that 17 is a quadratic nonresidue mod 29.
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3. By the law of quadratic reciprocity, we have
(

7
29

)(
29
7

)
= (−1)

7−1
2 · 29−1

2 = (−1)3·14 = 1.

Hence, the congruence x2 ≡ 7 (mod29) has a solution if and only if
the congruence x2 ≡ 29 (mod7) has a solution. However, we have 62 ≡
7 (mod 29). Thus, since both congruences have a solution, it yields

(
7
29

)
=

(
29
7

)
= 1.

Historical Remark. The law of quadratic reciprocity was discovered for the
first time, in a complex form, by L. Euler who published it in his paper entitled
“Novae demonstrationes circa divisores numerorum formae xx+nyy.” On the
20th of November, 1775, he presented his discovery at the Academy of Saint
Petersburg, followed by a false proof.

Later, Legendre also discovered independently the law of quadratic
reciprocity and in his paper entitled “Recherches d’analyse indétérminée,”
Hist. Acad. Paris, 1785, p. 465ff, he presented an unsubstantiated proof of
the theorem (Legendre proved the law of quadratic reciprocity based on some
hypotheses, which he did not prove).

In 1795, Gauss at the age of 18 also discovered this law independently of
Euler and Legendre. A year later, he presented the first complete proof. The
law of quadratic reciprocity was one of the favorite theorems of Gauss and this
is justified by the fact that during his life, he discovered six different proofs
of the theorem.

The proof which we presented above is due to a student of Gauss, Gotthold
Eisenstein, who presented his proof in his paper “Geometrischer Beweis des
Fundamentaltheorems für die quadratischen Reste,” J. Reine Angew. Math.
28(1844), 246–248.

5.3 Jacobi’s symbol

Jacobi’s symbol2 is a generalization of Legendre’s symbol, which we examined
in the previous section. Legendre’s symbol examines the solvability of the
congruence x2 ≡ a (modp) where p is a prime number and gcd(a, p) = 1.
On the other hand, Jacobi’s symbol is not strictly referred to a prime
number p, but to an arbitrary odd positive integer P and its value does not
necessarily provide information related to the solvability of the congruence
x2 ≡ a (modP ), where gcd(a, P ) = 1. See Remark 5.3.2 for further details.
Of course, in case P is a prime number, the Legendre and Jacobi symbols are
identical.
2 Jacobi’s symbol was named after Carl Gustav Jacobi (1804–1851), who presented

it in 1846.
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Definition 5.3.1. Let P be an odd positive integer and a be an integer such
that gcd(a, P ) = 1. Then, we define Jacobi’s symbol

(
a
P

)
by

( a
P

)
=

⎧
⎨

⎩

1, if P = 1
(

a
p1

)m1 (
a
p2

)m2 · · ·
(

a
pk

)mk

, if P = pm1
1 pm2

2 · · · pmk

k ,

where
(

a
pi

)
stands for Legendre’s symbol.

Jacobi’s symbol is often generalized to obtain a zero value in the case when
gcd(a, P ) > 1.

EXAMPLES.

1.
(

14
17081

)
=
(

14
19·29·31

)
=

(
14
19

)(
14
29

)(
14
31

)
= (−1) · (−1) · 1 = 1.

2.
(

14
324539

)
=
(

14
192·29·31

)
=

(
14
19

)2( 14
29

)(
14
31

)
= (−1)2 · (−1) · 1 = −1.

3.
(

27
9

)
= 0.

Remark 5.3.2. As mentioned above, Jacobi’s symbol does not necessarily
provide information whether a is a quadratic residue modP or not. This
happens because if we assume that

P = p1p2 · · · pk, with k = 2λ, λ ∈ N, 3

and
(

a
pi

)
= −1 for every i = 1, 2, . . . , k, then it follows

( a
P

)
= (−1)k = 1.

However, it is clear that the congruence

x2 ≡ a (mod P )

does not have solutions because if it did, then each of the congruences

x2 ≡ a (mod pi)

would have a solution. In that case, we would have
( a
P

)
= 1,

for every i = 1, 2, . . . , k which, by the hypothesis, is a contradiction.
But, if a is a quadratic residue mod P , then similarly one has

( a
P

)
= 1,

for every prime divisor pi of P . Hence, Jacobi’s symbol is equal to 1.
3 The prime numbers p1, p2, . . . , pk are not necessarily distinct.
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If
(

a
P

)
= −1, then a is not a quadratic residue mod P , because if it was,

then every congruence
x2 ≡ a (mod pi)

would have a solution and therefore it would follow that
(

a
P

)
= 1, which is a

contradiction.
Hence, to sum up, we have:

• If
(

a
P

)
= 1, then one cannot draw a conclusion on whether a is a quadratic

residue mod P .
• If a is a quadratic residue mod P , then it necessarily holds

(
a
P

)
= 1.

• If
(

a
P

)
= −1, then a is not a quadratic residue mod P .

Theorem 5.3.3. Let a be an integer, coprime to two odd positive integers
P,Q. Then, it holds (

a

PQ

)
=
( a
P

)( a

Q

)
.

Proof. Let P = pm1
1 pm2

2 · · · pmk

k and Q = qb1
1 q

b2
2 · · · qbλ

λ , where k, λ ∈ N, be the
canonical forms of P and Q, respectively. Then, by the definition of Jacobi’s
symbol, we have

(
a

PQ

)
=

(
a

pm1
1 pm2

2 · · · pmk

k qb1
1 q

b2
2 · · · qbλ

λ

)

=
(
a

p1

)m1
(
a

p2

)m2

· · ·
(
a

pk

)mk
(
a

q1

)b1 ( a

q2

)b2

· · ·
(
a

qλ

)bλ

=
( a
P

)( a

Q

)
. �

Theorem 5.3.4. Let a, b be integers, coprime to an odd positive integer P .
Then it holds ( a

P

)( b

P

)
=
(
ab

P

)
.

Proof. Let P = pm1
1 pm2

2 · · · pmk

k , where k ∈ N, be the canonical form of P .
Then, we have

( a
P

)( b

P

)
=

(
a

pm1
1 pm2

2 · · · pmk

k

)(
b

pm1
1 pm2

2 · · · pmk

k

)

=
(
a

p1

)m1 ( a

p2

)m2

· · ·
(
a

pk

)mk
(
b

p1

)m1 ( b

p2

)m2

· · ·
(
b

pk

)mk

=
[(

a

p1

)(
b

p1

)]m1

·
[(

a

p2

)(
b

p2

)]m2

· · ·
[(

a

pk

)(
b

pk

)]mk

.

(1)
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However, by Theorem 5.2.4 and (1), we obtain
( a
P

)( b

P

)
=
(
ab

p1

)m1 (ab
p2

)m2

· · ·
(
ab

pk

)mk

=
(
ab

P

)
. �

Corollary 5.3.5. Let a be an integer, coprime to an odd positive integer P .
Then, it holds (

a2

P

)( a

P 2

)
= 1.

Proof. By the above two theorems, we have
( a

P 2

)
=

( a
P

)( a
P

)

and (
a2

P

)
=

( a
P

)( a
P

)
.

But, it is clear that ( a
P

)( a
P

)
= 1

and thus (
a2

P

)
=

( a

P 2

)
= 1. �

Theorem 5.3.6. Let a, b be integers, where a is coprime to an odd positive
integer P . If a ≡ b (mod P ), then it holds

( a
P

)
=
(
b

P

)
.

Proof. Let P = pm1
1 pm2

2 · · · pmk

k , where k ∈ N, be the canonical form of P .
Then, we have

a ≡ b (mod pi), for every i = 1, 2, . . . , k.

However, by Theorem 5.2.3, we obtain
(
a

pi

)
=
(
b

pi

)
, for every i = 1, 2, . . . , k.

Hence,
( a
P

)
=
(
a

p1

)m1
(
a

p2

)m2

· · ·
(
a

pk

)mk

=
(
b

p1

)m1 ( b

p2

)m2

· · ·
(
b

pk

)mk

=
(
b

P

)
. �
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Theorem 5.3.7. Let P be an odd positive integer. Then it holds
(−1
P

)
= (−1)(P−1)/2.

Proof. Let P = pm1
1 pm2

2 · · · pmk

k , where k ∈ N, be the canonical form of P .
Then, by the definition of Jacobi’s symbol, we obtain

(−1
P

)
=
(−1
p1

)m1 (−1
p2

)m2

· · ·
(−1
pk

)mk

. (1)

But, by Euler’s Criterion, we get
(−1
pi

)
= (−1)(pi−1)/2 for every i = 1, 2, . . . , k,

since each pi is odd and thus greater than 2. Therefore, by (1) it follows
(−1
P

)
= (−1)

�k
i=1(pi−1)mi/2.

Let
pm1
1 pm2

2 · · · pmk

k = q1q2 · · · qλ,
where λ = m1+m2+ · · ·+mk and q1, q2, . . . , qλ ∈ {p1, p2, . . . , pk}. We obtain

(−1
P

)
= (−1)

�λ
j=1(qj−1)/2. (2)

However, we have

P =
λ∏

j=1

qj =
λ∏

j=1

[1 + (qj − 1)]

= 1 +
λ∑

j=1

(qj − 1) + 4r,

for a natural number r, since each term qj − 1 is an even integer. Therefore,

1
2

(P − 1) =
1
2

λ∑

j=1

(qj − 1) + 2r.

Hence, (2) takes the form
(−1
P

)
= (−1)(P−1)/2(−1)−2r = (−1)(P−1)/2. �
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Theorem 5.3.8. Let P be an odd positive integer. Then, it holds
(

2
P

)
= (−1)(P

2−1)/8.

Proof. Let us assume that

P = pm1
1 pm2

2 · · · pmk

k = q1q2 · · · qλ,
where λ = m1 + m2 + · · · + mk and q1, q2, . . . , qλ ∈ {p1, p2, . . . , pk}. Then,
we have (

2
P

)
=
(

2
q1

)(
2
q2

)
· · ·

(
2
qλ

)
. (1)

But, by Theorem 5.2.7 we obtain
(

2
p

)
= (−1)(p

2−1)/8.

Thus, (1) takes the form
(

2
P

)
= (−1)

�λ
i=1(q

2
i −1)/8. (2)

Moreover, it holds

P 2 − 1
8

=
q21q

2
2 · · · q2λ − 1

8

=

(
1 + 8 · q2

1−1
8

)(
1 + 8 · q2

2−1
8

)
· · ·

(
1 + 8 · q2

λ−1
8

)
− 1

8
. (3)

However,
(

1 + 8 · q
2
1 − 1
8

)(
1 + 8 · q

2
2 − 1
8

)
· · ·

(
1 + 8 · q

2
λ − 1
8

)
− 1

= 1 +
λ∑

i=1

8(q2i − 1)
8

+

⎛

⎝
∑

i�=j

8(q2i − 1)
8

· 8(q2j − 1)
8

+
∑

i�=j �=k

8(q2i − 1)
8

8(q2j − 1)
8

8(q2k − 1)
8

+ · · ·
⎞

⎠− 1

=
λ∑

i=1

(q2i − 1) +

⎛

⎝
∑

i�=j

8νi · 8νj +
∑

i�=j �=k

8νi · 8νj · 8νk + · · ·
⎞

⎠ ,
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since q2i = 8νi + 1 for some νi ∈ N. Therefore, (3) can be written as

P 2 − 1
8

=
λ∑

i=1

1
8
(q2i − 1) + 2r,

for some positive integer r. Hence, by (2) we obtain
(

2
P

)
= (−1)(P

2−1)/8(−1)−2r = (−1)(P
2−1)/8. �

We shall now present an analogue of the law of quadratic reciprocity for
Jacobi symbols.

Theorem 5.3.9. Let P,Q be odd coprime positive integers. Then it holds
(
P

Q

)(
Q

P

)
= (−1)

(P−1)(Q−1)
4 .

Proof. Let P = p1p2 · · · pλ, λ ∈ N, where the prime numbers p1, p2, . . . , pλ are
not necessarily pairwise distinct. Similarly, let Q = q1q2 · · · qm,m ∈ N, where
the prime numbers q1, q2, . . . , qm are not necessarily pairwise distinct. Then,
it follows (

P

Q

)
=

m∏

i=1

(
P

qi

)
=

m∏

i=1

λ∏

j=1

(
pj

qi

)
.

Similarly, we have

(
Q

P

)
=

λ∏

j=1

(
Q

pj

)
=

λ∏

j=1

m∏

i=1

(
qi
pj

)
.

Therefore,
(
P

Q

)(
Q

P

)
=

λ∏

j=1

m∏

i=1

(
pj

qi

)(
qi
pj

)
. (1)

However, by the law of quadratic reciprocity for Legendre symbols, we know
that (

pj

qi

)(
qi
pj

)
= (−1)

(pj−1)(qi−1)
4 .

Thus, by (1) we obtain
(
P

Q

)(
Q

P

)
= (−1)

�λ
j=1
�m

i=1
1
2 (pj−1) 1

2 (qi−1)

= (−1)
�λ

j=1
1
2 (pj−1)

�m
i=1

1
2 (qi−1). (2)
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But, in the proof of Theorem 5.3.7, we have shown that

1
2
(P − 1) =

1
2

λ∑

j=1

(pj − 1) + 2r1,

for some positive integer r1. Thus, similarly, it follows that

1
2
(Q− 1) =

1
2

m∑

i=1

(qi − 1) + 2r2,

for some positive integer r2. Hence, by (2) we obtain
(
P

Q

)(
Q

P

)
= (−1)−2r1(−1)−2r2(−1)

1
2 (P−1) 1

2 (Q−1)

= (−1)(P−1)(Q−1)/4. �

5.3.1 An application of the Jacobi symbol to cryptography

The Jacobi symbol was used by Robert M. Solovay and Volker Strassen in
their primality test algorithm which was introduced in 1982. A primality test
algorithm is an algorithm which tests whether a positive integer n is a prime
number or not. Before we present the steps of the algorithm, we shall define
some basic notions.

Definition 5.3.10. Let n be an odd composite integer and a be an integer,
such that 1 ≤ a ≤ n− 1. Then

• If
gcd(a, n) > 1 or a(n−1)/2 �≡

( a
n

)
(mod n),

the integer a is said to be an Euler martyr for the integer n.
• If

gcd(a, n) = 1 and a(n−1)/2 ≡
( a
n

)
(mod n),

the integer n is said to be an Euler pseudoprime to the base a and a is
called an Euler liar.

The steps of the algorithm are presented below.

Solovay–Strassen algorithm.

1. Consider an odd positive integer n, with n ≥ 3, which you want to examine
whether it is a prime number.

2. Choose an arbitrary integer from the interval (1, n− 1).
3. Determine the integer x, such that x ≡ a(n−1)/2 (mod n).

If x �= 1 and x �= n− 1, then the positive integer n is composite and the
algorithm terminates at this step. If that is not the case, then
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4. Compute the Jacobi symbol

j =
( a
n

)
.

If x �≡ j (modn), then the positive integer n is composite and the
algorithm terminates at this step.

5. If the algorithm has not been terminated in one of the above steps, for
several values of a, then the positive integer n is probably a prime number.

According to the Solovay–Strassen algorithm, the only case when we can
be led to a false conclusion is when the positive integer n is composite and
the outcome of the algorithm is that n is probably a prime. The number of
Euler liars is at most

φ(n)
2

<
n− 1

2
.

Therefore, the probability that an Euler liar occurs is less than 1/2.

Note. Generally, if the outcome of the algorithm is that n is a composite
integer, then this result is undeniably true. In addition, if n is a prime number,
then it is certain that the algorithm will verify that fact.
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The π- and li-functions

Mathematicians have tried in vain to this day to discover
some order in the sequence of prime numbers,

and we have reason to believe that it is a mystery
into which the human mind will never penetrate.

Leonhard Euler (1707–1783)

6.1 Basic notions and historical remarks

Definition 6.1.1. We define π(x) to be the number of primes which do not
exceed a given real number x.

If we attempt to find a formula in order to describe π(x) we will definitely
understand that this is an extremely difficult task. The most important reason
why this happens is because we don’t know exactly how primes are distributed
among the integers. We can understand this by a simple example. We shall
prove that the gaps among prime numbers can be arbitrarily large. This is
true because we can always find n consecutive composite positive integers,
where n is any natural number. For this consider the sequence of consecutive
integers

(n+ 1)! + 2, (n+ 1)! + 3, . . . , (n+ 1)! + n, (n+ 1)! + (n+ 1).

It is easy to see that none of these integers is prime as

2|(n+ 1)! + 2, 3|(n+ 1)! + 3, . . . , n|(n+ 1)! + n, (n+ 1)|(n+ 1)! + (n+ 1).

One expects that it might be easier to construct an asymptotic formula for
π(x). In 1793, Carl Friedrich Gauss (1777–1855), while conducting research
in number theory, conjectured that
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80 6 The π- and li-functions

π(x) ∼ x

log x
, 1

namely, that π(x) log x/x→ 1, as x→ ∞.
In the same period of time, Adrien-Marie Legendre (1752–1833) formulated

an equivalent conjecture. He assumed that there exist constants A, B such
that

π(x) ∼ x/(A log x+B).2

Both Gauss and Legendre tried to prove this conjecture, which is known today
as the Prime Number Theorem,3 but none of them succeeded. Some of
the most eminent mathematicians of the 19th century failed to give a rigor-
ous proof of the theorem. Among them were Pafnuty Chebyshev (1821–1894)
and Georg Bernhard Riemann (1826–1866), who tried to prove it in his very
well known paper “Ueber die Anzahl der Primzahlen unter einer gegebenen
Grösse” (1859).

We shall outline the basic steps of Riemann’s paper in the next chapter.
The first proof of the Prime Number Theorem was given in 1896 by

the French mathematician Jacques Hadamard (1865–1963) and the Belgian
mathematician Charles-Jean-Gustave-Nicolas de la Vallée-Poussin (1866–
1962), who both provided independent proofs. This was the most important
single result ever obtained in number theory until that time. An elementary
proof of the theorem was given in 1959 by Atle Selberg (1917–2007) and Paul
Erdős (1913–1996). In 1980, a simpler proof was given by D. J. Newman in
[5]. In his proof, Newman just used basic Complex Analysis. Later on, we are
going to analyze Newman’s proof step by step.

Apart from the function x/ logx, there are other functions which can
describe more efficiently the behavior of π(x) for large values of x. For example,
the function

li(x) =
∫ x

2

dt

log t
4

is a better approximation for π(x), since the quotient π(x)/li(x) tends to 1
faster than the quotient π(x) log x/x, as x→ +∞.
1 Throughout the book we consider log with respect to base e.
2 In addition, in 1808, Legendre also formulated another conjecture, according to

which π(x) ∼ x/(log x − A(x)), where limx→∞ A(x) = 1.0836 . . .. Some progress
related to this conjecture has been made by J. B. Rosser and L. Schoenfeld in
[49], where they proved that limx→∞ A(x) = 1 and for x < 106 the function A(x)
actually obtains values close to 1.0836. . . .

3 An interesting corollary of the Prime Number Theorem is the following: For any
pair of positive real numbers a and b, where a < b, there exists a prime number
between the real numbers ac and bc, for sufficiently large values of c.

4 In the literature, the following notations are also used:

Li(x) =

� x

2

dt

log t
, li(x) =

� x

0

dt

log t
.
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By calculating the values of π(x) and li(x) for certain values of x, as
is shown in the table below, it seems that li(x) always counts more prime
numbers than π(x).

x π(x) li(x) − π(x)

108 5761455 753

109 50847534 1700

1010 455052511 3103

1011 4118054813 11587

1012 37607912018 38262

1013 346065536839 108970

1014 3204941750802 314889

1015 29844570422669 1052618

1016 279238341033925 3214631

1017 2623557157654233 7956588

1018 24739954287740860 21949554

1019 234057667276344607 99877774

1020 2220819602560918840 222744643

In 1914, J.E. Littlewood (1885–1977) proved that the difference π(x) − li(x)
changes sign infinitely many times. Some years later, in 1933, Littlewood’s
student Stanley Skewes [56] proved that the first change of sign of π(x)− li(x)
should happen for

x < 10101034

.

However, Skewes in order to prove the above result assumed that the Riemann
hypothesis5 holds true. Twenty-two years later, in 1955, Skewes without being
based on Riemann’s hypothesis or any other open problem, proved in [57] that
the first change of sign of π(x) − li(x) should happen for

x < 1010101000

.

The latest improvement on that bound has been made by C. Bays and
R. Hudson, who proved in [10] that the first change of sign should happen
for

x < 1.3982 · 10316.

5 See next chapter for more details on the Riemann hypothesis.
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6.2 Open problems concerning prime numbers

1. Goldbach’s conjecture: Every even integer greater than two can be
expressed as the sum of two prime numbers.
This conjecture appeared for the first time in a letter of Christian
Goldbach (1690–1764) to Leonhard Euler (1707–1783), on the 7th of June,
1742.

2. Generally two prime numbers p1 and p2 are called twin prime numbers
if |p1 − p2| = 2.

Are there infinitely many twin prime numbers?

3. Consider the sequence (An)n≥1, where

An =
√
pn+1 −√

pn,

and pn denotes the nth prime number. Andrica’s conjecture states that
the inequality

An < 1

holds true for every positive integer n. The conjecture has been verified
for values of n up to 26 · 1010.

Note. From the Prime Number Theorem it follows that there exists an
integer M > 0, such that Andrica’s conjecture is true for all values of n,
where n ≥M .
(Dorin Andrica, Problem 34, Newsletter, European Mathematical Society,
67(2008), p. 44)

4. For any prime number p, where p > 2, there exist two distinct prime
numbers p1, p2, with p1 < p2, such that

p =
p1 + p2 + 1

p1
.

This conjecture can also be stated in the following equivalent form:
For any prime number p, where p > 2, there exist two distinct prime
numbers p1, p2, with p1 < p2, such that the integers (p − 1)p1, p2 are
consecutive.
(Michael Th. Rassias, Open Problem No. 1825, Octogon Mathematical
Magazine, 13(2005), p. 885. See also Problem 25, Newsletter, European
Mathematical Society, 65(2007), p. 47)
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The Riemann zeta function

If I were to awaken after having slept for a thousand years,
my first question would be:

Has the Riemann hypothesis been proven ?
David Hilbert (1862–1943)

7.1 Definition and Riemann’s paper

Definition 7.1.1. The zeta function is defined by

ζ(s) =
+∞∑

n=1

1
ns
,

for all real values of s with s > 1.

This function was defined for the first time in 1737 by Leonhard Euler
(1707–1783). More than a century later, in 1859 Riemann rediscovered the zeta
function for complex values of s, while he was trying to prove the Prime
Number Theorem. In his paper, Riemann formulated six hypotheses. By the
use of those hypotheses, he proved the Prime Number Theorem. As of today,
only five of those hypotheses have been proved. The sixth hypothesis is the
well-known Riemann hypothesis and is considered to be one of the most
difficult open problems in mathematics.
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84 7 The Riemann zeta function

According to the Riemann hypothesis:

the non-trivial zeros1 of the function ζ(s), where s ∈ C, have real part
equal to 1/2.2

We mention very briefly the basic steps of Riemann’s paper.

• In the beginning, he defined the function

H(x) =
+∞∑

k=1

1
k
π(x1/k).

• Afterwards, he proved that

π(x) =
+∞∑

k=1

1
k
μ(k)H(x1/k), (a)

where μ(k) is the Möbius function.
However,

H(x) = li(x) −
∑

ρ

li(xρ) − log 2 +
∫ +∞

x

dt

t(t2 − 1) log t
, (b)

where the series
∑

ρ li(x
ρ) extends over all nontrivial zeros of ζ(s). There-

fore, from (a) and (b), one can construct a formula for π(x) which will
be expressed in terms of specific functions and the nontrivial zeros of
ζ(s).

7.2 Some basic properties of the ζ-function

Property 7.2.1 (Euler’s Identity).

ζ(s) =
∏

p

1
1 − p−s

, s ∈ R, with s > 1,

where the product extends over all prime numbers p.

1 The negative even integers are considered to be the trivial roots of ζ(s). For
further details concerning the trivial roots, see Property 7.2.7.

2 Riemann in his paper considered the function ξ(t) = 1
2
s(s − 1)π−s/2Γ

�
s
2

�
ζ(s),

where s = 1
2
+it and Γ (s) is the well-known gamma function. He conjectured that

all roots of ξ(t) are real. That is the exact statement of the Riemann hypothesis,
which is equivalent to the one we have just introduced above.
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The basic idea of the proof of the above property is the following:

∏

p

1
1 − p−s

=
1

1 − p−s
1

· 1
1 − p−s

2

· · · 1
1 − p−s

k

=
(

1 +
1
ps
1

+
1
p2s
1

+ · · ·
)(

1 +
1
ps
2

+
1
p2s
2

+ · · ·
)
· · ·

×
(

1 +
1
ps

k

+
1
p2s

k

+ · · ·
)
· · · ,

where k ∈ N.
Now, if we carry over the calculations in the above product, we will obtain

an infinite sum of terms of the form

1
pa1
1 p

a2
2 · · · pak

k

,

where in the denominator every possible combination of powers of primes will
occur. However, by the Fundamental Theorem of Arithmetic, it is known that
every positive integer can be represented as the product of prime powers, in
a unique way. Hence, it is evident that

∏

p

1
1 − p−s

=
∑

n≥1

1
ns
, s > 1.

Therefore,

ζ(s) =
∏

p

1
1 − p−s

, s > 1. �

The above identity appeared for the first time in Euler’s book entitled Intro-
ductio in Analysin Infinitorum, which was published in 1748.

Corollary 7.2.2. By Euler’s identity it easily follows that

ζ(2s)
ζ(s)

=
∏

p

1
1 + p−s

.

Property 7.2.3. It holds

1
s− 1

=
∫ +∞

1

1
xs
dx ≤ ζ(s) ≤ 1 +

∫ +∞

1

1
xs
dx = 1 +

1
s− 1

and therefore the function ζ(s) takes a real value, for s > 1.
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Proof. We shall first prove that for any nonnegative, continuous and decreas-
ing function f(x), defined in the interval [1,+∞), it holds

∫ +∞

1

f(x) dx ≤ S ≤ a1 +
∫ +∞

1

f(x) dx,

where an = f(n) and

S = lim
n→+∞Sn = lim

n→+∞(f(1) + f(2) + · · · + f(n)), for n ∈ N.

In order to do so, we consider a partition of the interval [1, n], as is shown in
the figures below.
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f(n) f(n − 1)

Fig. 1 Fig. 2

0 01 12 23 34 4n n
x x

y y

In Fig. 1 we can observe that a set of inscribed rectangles is formed. Hence,
the area of the shaded region is equal to

n∑

k=2

f(k).

Similarly, in Fig. 2 we can observe that a set of circumscribed rectangles is
formed. Hence, the area of the shaded region is equal to

n−1∑

k=1

f(k).

Therefore, by Figs. 1 and 2, it is evident that
n∑

k=2

f(k) ≤
∫ n

1

f(x) dx ≤
n−1∑

k=1

f(k).

But
Sn = f(1) + f(2) + · · · + f(n)

and thus
Sn − f(1) ≤

∫ n

1

f(x) dx ≤ Sn−1
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or
lim

n→+∞(Sn − f(1)) ≤ lim
n→+∞

∫ n

1

f(x) dx ≤ lim
n→+∞Sn−1

or

S − f(1) ≤
∫ +∞

1

f(x) dx ≤ S.

Therefore, ∫ +∞

1

f(x) dx ≤ S ≤ f(1) +
∫ +∞

1

f(x) dx

or ∫ +∞

1

f(x) dx ≤ S ≤ a1 +
∫ +∞

1

f(x) dx.

Hence, for the function ζ(s), we obtain

∫ +∞

1

1
xs

dx ≤ lim
n→+∞

(
1
1s

+
1
2s

+ · · · + 1
ns

)
≤ 1

1s
+
∫ +∞

1

1
xs
dx.

However, ∫ +∞

1

1
xs
dx =

1
s− 1

and

lim
n→+∞

(
1
1s

+
1
2s

+ · · · + 1
ns

)
=

+∞∑

n=1

1
ns
.

Thus,

1
s− 1

=
∫ +∞

1

1
xs
dx ≤ ζ(s) ≤ 1 +

∫ +∞

1

1
xs
dx = 1 +

1
s− 1

. �

Property 7.2.4. It holds

ζ(2) =
π2

6
.

(The above property is known as Basel’s problem.)

Proof. It is a standard fact in mathematical analysis that the series

+∞∑

n=1

1
n2

converges to a real number. However, we shall present a short proof of this
fact. It is evident that

+∞∑

n=1

1
n2

< 1 +
+∞∑

n=2

1
(n− 1)n

= 1 +
+∞∑

n=2

(
1

n− 1
− 1
n

)
= 2.
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Therefore,
+∞∑

n=1

1
n2

< 2,

and thus the series
∑+∞

n=1 1/n2 converges to a real number.
We shall now prove that

+∞∑

n=1

1
n2

=
π2

6
.

The strategy which we will follow is to bound the series
∑+∞

n=1 1/n2 from
above and below with the same limit. In order to do so, we are going to use
the trigonometric inequality

cot2 x <
1
x2

< csc2 x, (1)

for 0 < x < π
2 . However,

cos(nx) + i sin(nx)
(sinx)n

=
(cosx+ i sinx)n

(sinx)n

and by de Moivre’s formula, we obtain

cos(nx) + i sin(nx)
(sinx)n

= (cotx+ i)n =
(
n

0

)
cotn x+

(
n

1

)
cotn−1 x · i+

(
n

2

)
cotn−2 x · i2

+
(
n

3

)
cotn−3 x · i3 + · · · +

(
n

n− 1

)
cotx · in−1 +

(
n

n

)
in

=
[(
n

0

)
cotn x−

(
n

2

)
cotn−2 x+ · · ·

]

+ i ·
[(
n

1

)
cotn−1 x−

(
n

3

)
cotn−3 x+ · · ·

]
.

Therefore,

sin(nx)
(sinx)n

=
[(
n

1

)
cotn−1 x−

(
n

3

)
cotn−3 x+ · · ·

]
.

Set
n = 2m+ 1 and x =

rπ

2m+ 1
, for r = 1, 2, . . . ,m. (2)
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Then, obviously, it holds nx = rπ and thus

sin(nx)
(sinx)n

= 0,

for all values of x, which verify conditions (2). Hence, we obtain
(

2m+ 1
1

)
cot2m x−

(
2m+ 1

3

)
cot2m−2 x+ · · · = 0.

Thus, we have
(

2m+ 1
1

)
(cot2 x)m −

(
2m+ 1

3

)
(cot2 x)m−1 + · · · = 0,

for all values of x, which verify conditions (2). Therefore, the m roots of the
polynomial

p(t) =
(

2m+ 1
1

)
tm −

(
2m+ 1

3

)
tm−1 + · · ·

are the values of cot2 x, for the m different values of x.
Consequently, by Viète’s formulae we obtain

cot2
(

π

2m+ 1

)
+ cot2

(
2π

2m+ 1

)
+ · · · + cot2

(
mπ

2m+ 1

)

=

(
2m+1

3

)
(
2m+1

1

) =
(2m+ 1)
3(2m− 2)

· (2m)
(2m+ 1)

=
2m(2m− 1)

6
.

Thus,

cot2
(

π

2m+ 1

)
+cot2

(
2π

2m+ 1

)
+· · ·+cot2

(
mπ

2m+ 1

)
=

2m(2m− 1)
6

. (3)

It is a standard fact that csc2 x = cot2 x+ 1. Hence, by (3) it follows

csc2

(
π

2m+ 1

)
+ csc2

(
2π

2m+ 1

)
+ · · · + csc2

(
mπ

2m+ 1

)
−m=

2m(2m− 1)
6

or

csc2

(
π

2m+ 1

)
+ csc2

(
2π

2m+ 1

)
+ · · · + csc2

(
mπ

2m+ 1

)

=
2m(2m− 1)

6
+

2 · 3m
6

=
2m(2m+ 2)

6
.

Thus,

csc2

(
π

2m+ 1

)
+csc2

(
2π

2m+ 1

)
+ · · ·+csc2

(
mπ

2m+ 1

)
=

2m(2m+ 2)
6

. (4)
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By (3), (4) and (1) we obtain

cot2
(

π

2m+ 1

)
+ cot2

(
2π

2m+ 1

)
+ · · · + cot2

(
mπ

2m+ 1

)

<
(2m+ 1)2

π2
+

(2m+ 1)2

22π2
+ · · · + (2m+ 1)2

m2π2

< csc2

(
π

2m+ 1

)
+ csc2

(
2π

2m+ 1

)
+ · · · + csc2

(
mπ

2m+ 1

)
.

Therefore,

2m(2m− 1)
6

<
(2m+ 1)2

π2

m∑

n=1

1
n2

<
2m(2m+ 2)

6

and thus
π2

6
2m(2m− 1)
(2m+ 1)2

<

m∑

n=1

1
n2

<
π2

6
2m(2m+ 1)
(2m+ 1)2

.

Hence,

π2

6
lim

m→+∞
2m(2m− 1)
(2m+ 1)2

≤
+∞∑

n=1

1
n2

≤ π2

6
lim

m→+∞
2m(2m+ 1)
(2m+ 1)2

or
π2

6
lim

m→+∞
4m2

4m2
≤ ζ(2) ≤ π2

6
lim

m→+∞
4m2

4m2

or
π2

6
≤ ζ(2) ≤ π2

6
.

Therefore, it is evident that

ζ(2) =
π2

6
. �

Remark 7.2.5 (L. A. Lyusternik, 1899–1981). By the use of the above result
and by Euler’s formula Lyusternik presented a new proof of the infinitude of
prime numbers. His simple proof is the following:

If the number of primes was finite, then the product
∏

p

1
1 − 1/p2

would be a rational number. However,

∏

p

1
1 − 1/p2

= ζ(2) =
π2

6
.

Therefore, π2/6 and thus π2 would be a rational number, which is impossible
as we proved in Theorem 1.4.6. �
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Note. The above proof is due to John Papadimitriou and is probably the most
elementary proof of this theorem.

The problem of the calculation of the value of ζ(2) was first posed in
1644 by Pietro Mengoli. The first mathematician to present a solution of the
problem was Euler, in 1735. Moreover, Riemann in his paper published in
1859, used some of Euler’s ideas concerning generalizations of the problem.
The reason why this problem was labeled as Basel’s problem is because Basel
is the place where Euler was born. We shall now present the basic idea of
Euler’s proof.

Euler considered the relation

sinx
x

=
x− x3

3! + x5

5! + · · ·
x

= 1 − x2

3!
+
x4

5!
− · · · ,

by which he observed that the coefficient of x2 is −1/6. In addition, the zeros
of the function sinx/x are the real numbers ±π, ±2π, ±3π, . . ..

Euler handled the function sinx/x as a polynomial and therefore, he wrote

sinx
x

=
(
1 − x

π

)(
1 +

x

π

)(
1 − x

2π

)(
1 +

x

2π

)(
1 − x

3π

)(
1 +

x

3π

)
· · ·

=
(

1 − x2

π2

)(
1 − x2

22π2

)(
1 − x2

32π2

)
· · · .3

(5)

If we carry over the calculations in (5), it follows that the coefficient of x2 is

− 1
π2

(
1 +

1
22

+
1
32

+ · · ·
)
.

Hence, Euler claimed that

− 1
π2

(
1 +

1
22

+
1
32

+ · · ·
)

= −1
6
,

by which it is clear that

ζ(2) =
π2

6
.

Property 7.2.6. The Riemann ζ-function ζ(s) is equal to a rational multiple
of πs, for every even integer s, with s ≥ 2.

This is true since Euler, in [22], proved that

ζ(2n) =
+∞∑

k=1

1
k2n

= (−1)n−1 (2π)2n ·B2n

2(2n)!
, for n ∈ N,

3 However, this caused some speculation since some mathematicians claimed that
the function ex sin x/x has also the same roots, but certainly cannot be expressed
in the form (5). This led Euler to justify his assumption, which he did successfully.
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where Bn denotes the Bernoulli numbers, which are defined by the following
recursive formula:

B0 = 1, Bn =
n∑

s=0

(
n

s

)
Bs, for n ≥ 2.4

Therefore,

ζ(2) =
π2

6

ζ(4) =
π4

90

ζ(6) =
π6

945

ζ(8) =
π8

9450

ζ(10) =
π10

93555

...

Property 7.2.7. It holds that

ζ(−n) = (−1)nBn+1

n+ 1
, for n ∈ N ∪ {0}. (6)

Previously, we have presented a formula which calculates the value of the
zeta function for all positive even integers. However, by formula (6) we can
calculate the value of the zeta function for all negative integers and for s = 0.
Therefore, since B2n+1 = 0, for n ∈ N ∪ {0}, it follows that

ζ(−2k) = 0,

for every k ∈ N.
That is the reason why the negative even integers are considered to be the

trivial zeros of ζ(s).

Property 7.2.8. It holds that ζ(3) is an irrational number.

In 1979, Roger Apéry proved in [6] that ζ(3) is an irrational number.

Open Problem. Given an odd integer s, where s ≥ 5, determine whether
ζ(s) is an irrational number.
4 B0 = 1, B1 = −1/2, B2 = 1/6, B4 = −1/30, B6 = 1/42, B8 = −1/30, B10 =

5/66, . . ..
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We have

ζ(3) = 1, 202056903 . . .

ζ(5) = 1, 036927755 . . .

ζ(7) = 1, 008349277 . . .

ζ(9) = 1, 002008392 . . .

Property 7.2.9. Let

ζ(s, a) =
+∞∑

n=0

1
(n+ a)s

, 5

for real values of s and a, where s > 1 and 0 < a ≤ 1. Then

Γ (s)ζ(s, a) =
∫ +∞

0

xs−1e−ax

1 − e−x
dx.

The basic idea of the proof of the above property is the following:
By the definition of the Gamma function, we have

Γ (s) =
∫ +∞

0

e−tts−1 dt.

Set t = (n+ a)x, where n ∈ N ∪ {0}. Thus, dt = (n+ a) dx and therefore

Γ (s) = (n+ a)s−1(n+ a)
∫ +∞

0

e−(n+a)xxs−1 dx

= (n+ a)s

∫ +∞

0

e−nxe−axxs−1 dx.

Hence,
1

(n+ a)s
Γ (s) =

∫ +∞

0

e−nxe−axxs−1 dx. (1)

Therefore, in order to construct the product Γ (s)ζ(s, a), it suffices to sum up
all relations of the form (1), for every n ≥ 0. Thus, by the summation, we
obtain

Γ (s)
+∞∑

n=0

1
(n+ a)s

=
+∞∑

n=0

∫ +∞

0

e−nxe−axxs−1 dx

or

Γ (s)ζ(s, a) =
+∞∑

n=0

∫ +∞

0

e−nxe−axxs−1 dx.

5 The function ζ(s, a) is known as the Hurwitz zeta function.
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In order to compute the value of the infinite sum

+∞∑

n=0

∫ +∞

0

e−nxe−axxs−1 dx,

we shall examine whether the relation
+∞∑

n=0

∫ +∞

0

e−nxe−axxs−1 dx =
∫ +∞

0

+∞∑

n=0

e−nxe−axxs−1 dx (2)

holds true. However, this is an immediate consequence of Tonelli’s theorem.
Thus, we obtain

Γ (s)ζ(s, a) =
+∞∑

n=0

∫ +∞

0

e−nxe−axxs−1 dx =
∫ +∞

0

+∞∑

n=0

e−nxe−axxs−1 dx

=
∫ +∞

0

e−axxs−1
+∞∑

n=0

e−nx dx

=
∫ +∞

0

e−axxs−1 1
1 − e−x

.

Therefore,

Γ (s)ζ(s, a) =
∫ +∞

0

xs−1e−ax

1 − e−x
dx.

This completes the proof of the property. �

Remark 7.2.10. In case a = 1 it holds ζ(s, 1) = ζ(1), since

+∞∑

n=1

1
ns

=
+∞∑

n=0

1
(n+ 1)s

,

and thus

Γ (s)ζ(s) =
∫ +∞

0

xs−1e−x

1 − e−x
dx.

The idea of the proof of Property 7.2.9 applies for real values of s. It can also
be proved that the same formula holds for s = a+ bi, for a > 1.

Another useful formula which relates the functions ζ(s) and Γ (s) is the
following:

π−s/2Γ
(s

2

)
ζ(s) =

1
s(s− 1)

+
∫ +∞

1

W (x)(xs/2 + x(1−s)/2)
dx

x
,

where

W (x) =
w(x) − 1

2
, w(y) = θ(iy), with θ(z) =

∑

n∈Z

eπin2z.
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7.2.1 Applications

Application 7.2.11. Using the function ζ(s), prove that the number of primes
is infinite.

Proof. Let us consider that the number of primes is finite. Then, the product

∏

p

1
1 − 1/ps

,

which extends over all prime numbers, should clearly converge to a real
number. Therefore, the same should happen for s → 1+. But, by Euler’s
identity we have

lim
s→1+

∏

p

1
1 − 1/ps

= lim
s→1+

+∞∑

n=1

1
ns

= +∞,

which is a contradiction. �

Application 7.2.12. By the use of the function ζ(s), prove that the series

∑

p

1
p
,

which extends over all prime numbers, diverges (i.e., converges to +∞).

Proof. Because of the fact that lims→1+ ζ(s) = +∞, it follows that

lim
s→1+

(log ζ(s)) = +∞. (1)

However,

log ζ(s) = log

(
+∞∑

n=1

1
ns

)
= log

(
∏

p

1
1 − 1/ps

)

=
∑

p

log
(

1
1 − 1/ps

)

=
∑

p

+∞∑

n=1

1
npns

=
∑

p

(
1
ps

+
+∞∑

n=2

1
npns

)
.

Hence,

log ζ(s) =
∑

p

1
ps

+
∑

p

+∞∑

n=2

1
npns

.
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Thus,

log ζ(s) <
∑

p

1
ps

+
∑

p

+∞∑

n=2

1
pns

.

It is true that
+∞∑

n=2

1
pns

=
1

p2s − ps
,

since
∑+∞

n=2 1/pns is the sum of the terms of a decreasing geometric progres-
sion. Therefore, for s > 1, we obtain that

log ζ(s) <
∑

p

1
ps

+
∑

p

1
p2s − ps

=
∑

p

1
ps

+
∑

p

1
ps(ps − 1)

<
∑

p

1
ps

+
+∞∑

n=2

1
ns(ns − 1)

<
∑

p

1
ps

+
+∞∑

n=2

1
n(n− 1)

<
∑

p

1
ps

+
+∞∑

n=2

1
(n− 1)2

.

Thus, it yields

lim
s→1+

(log ζ(s)) ≤ lim
s→1+

(
∑

p

1
ps

+
+∞∑

n=2

1
(n− 1)2

)

and thus, by (1), it is evident that

lim
s→1+

(
∑

p

1
ps

+
+∞∑

n=2

1
(n− 1)2

)
= +∞.

However, the series
+∞∑

n=2

1
(n− 1)2

converges to a real number. Hence,

lim
s→1+

∑

p

1
ps

= +∞
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and therefore ∑

p

1
p

= +∞. �

Application 7.2.13. Prove that

1
ζ(s)

=
+∞∑

n=1

μ(n)
ns

.

The basic idea of the proof of the above property is the following:
By Euler’s identity we have

1
ζ(s)

=
1∏

p(1 − p−s)−1
=

∏

p

(
1 − 1

ps

)

=
(

1 − 1
ps
1

)(
1 − 1

ps
2

)
· · · .

However, if we perform all possible calculations in the above product, we will
obtain an infinite sum of terms of the form

(−1)k

(pa1
1 p

a2
2 · · · pak

k )s
,

increased by 1, where ai = 0 or 1, for i = 1, 2, . . . , k and it is not possible for
all the exponents to be zero simultaneously.

In the denominators of the fractions of the above terms, one encounters
all possible combinations of multiples of prime numbers to 0 or 1st powers.
Hence, it follows that

1
ζ(s)

= 1 +
∑ (−1)k

(pa1
1 p

a2
2 · · · pak

k )s

=
μ(1)

1
+
∑ (−1)k

(pa1
1 p

a2
2 · · · pak

k )s
+ 0.

But, we can write

0 =
∑ μ(pq1

1 p
q2
2 · · · pqλ

λ )
(pq1

1 p
q2
2 · · · pqλ

λ )s
,

where in the denominators of the terms of the above infinite sum, one
encounters all possible combinations of multiples of prime numbers with
qi ≥ 2, i = 1, 2, . . . , λ. Therefore, it yields

1
ζ(s)

=
μ(1)

1
+
∑ (−1)k

(pa1
1 p

a2
2 · · · pak

k )s
+
∑ μ(pq1

1 p
q2
2 · · · pqλ

λ )
(pq1

1 p
q2
2 · · · pqλ

λ )s
.
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However, each positive integer n with n > 1 can be represented either by the
term pa1

1 p
a2
2 · · · pak

k or by the term pq1
1 p

q2
2 · · · pqλ

λ . Thus, it follows that

1
ζ(s)

=
+∞∑

n=1

μ(n)
ns

. �
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Dirichlet series

The total number of Dirichlet’s publications is not large:
jewels are not weighted on a grocery scale.

Carl Friedrich Gauss (1777–1855)

8.1 Basic notions

Definition 8.1.1. Let f be an arithmetic function. The series

D(f, s) =
+∞∑

n=1

f(n)
ns

,

where s ∈ C, is called a Dirichlet series with coefficients f(n).

In this chapter, we will handle Dirichlet series for s being a real number.
Consider now a Dirichlet series, which is absolutely convergent for s > s0.

• If for these values of s it holds
+∞∑

n=1

f(n)
ns

= 0,

then f(n) = 0, for every integer n with n ≥ 1.
• If for these values of s it holds

D(f, s) = D(g, s),

then by the above argument it holds

f(n) = g(n), for every integer n with n ≥ 1.
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Definition 8.1.2. The summation and multiplication of Dirichlet
series are defined, respectively, as follows:

D(f1, s) +D(f2, s) =
+∞∑

n=1

f1(n) + f2(n)
ns

and

D(f1, s) ·D(f2, s) =
+∞∑

n=1

g(s)
ns

,

where
g(n) =

∑

n1n2=n

f1(n1)f2(n2).

Theorem 8.1.3. Let f be a multiplicative function. Then, it holds

D(f, s) =
∏

p

(
+∞∑

n=0

f(pn)
pns

)
,

where the product extends over all prime numbers p.

The basic idea of the proof of the theorem is the following:
It is true that

∏

p

(
+∞∑

n=0

f(pn)
pns

)

=
∏

p

(
f(1)

1
+
f(p)
ps

+
f(p2)
p2s

+ · · ·
)

=
(
f(1)

1
+
f(p1)
ps
1

+
f(p2

1)
p2s
1

+ · · ·
)(

f(1)
1

+
f(p2)
ps
2

+
f(p2

2)
p2s
2

+ · · ·
)
· · ·1

=
∑ f(pa1

1 ) · · · f(pak

k )
(pa1

1 · · · pak

k )s
, (1)

where the sum extends over all possible combinations of multiples of powers
of prime numbers. But, since the function f(n) is multiplicative, it is evident
that

∑ f(pa1
1 ) · · · f(pak

k )
(pa1

1 · · · pak

k )s
=
∑ f(pa1

1 · · · pak

k )
(pa1

1 · · · pak

k )s

=
+∞∑

n=1

f(n)
ns

= D(f, s). �

1 Here pi denotes the ith prime number (p1 = 2, p2 = 3, . . . ).
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Application 8.1.4. Prove that

D(λ, s) =
ζ(2s)
ζ(s)

,

where λ(n) stands for the Liouville function, which is defined by

λ(n) =

{
(−1)a1+···+ak , for n = pa1

1 p
a2
2 · · · pak

k > 1

1, for n = 1.

Proof. By the previous theorem, we obtain

D(λ, s) =
+∞∑

n=1

(−1)a1+a2+···+ak

ns
=
∏

p

(
+∞∑

n=0

(−1)n

pns

)

=
∏

p

(
1 − 1

ps
+

1
p2s

− 1
p3s

+ · · ·
)

=
∏

p

1
1 − (−1/ps)

=
∏

p

1
1 + 1/ps

=
ζ(2s)
ζ(s)

.

Therefore,

D(λ, s) =
ζ(2s)
ζ(s)

. �
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Special topics

Number theorists are like lotus-eaters
having tasted this food they can never give it up.

Leopold Kronecker (1823–1891)

9.1 The harmonic series of prime numbers

Theorem 9.1.1. The series
∑

p

1
p

=
1
2

+
1
3

+
1
5

+
1
7

+ · · ·

diverges (converges to +∞) when p is a prime number.1

First Proof. Suppose that the series

∑

p

1
p

converges to a real number. Then, there exists a positive integer k, such that

1
pk+1

+
1

pk+2
+ · · · < 1

2
.

Thus,
x

pk+1
+

x

pk+2
+ · · · < x

2
,

where x is a positive integer.
1 We have presented a proof of the fact in the chapter on the function ζ(s).
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Let N(x, pk) be the number of all positive integers n, where n ≤ x, which
are not divisible by any prime number p with p > pk, where x is a positive
integer and pk is the kth prime number in the sequence of primes (p1 = 2,
p2 = 3, . . .).

We express the arbitrary such positive integer n in the form

n = m2
1m,

where

m = 2b13b2 · · · pbk

k with bi = 0 or bi = 1 and i = 1, 2, . . . , k.

There are 2k different values of m and
√
n = m1

√
m, that is, m1 ≤ √

n ≤ √
x .

Therefore, there exist at most
√
x different values of m1. This means that

there are at most 2k
√
x different values of n.

Thus,
N(x, pk) ≤ 2k√x.

However, N(x, pk) > x/2 because one can choose pk such that pk > x/2 if
x is even or pk > (x + 1)/2 if x is odd. Thus, every prime number p with
p > pk does not divide the numbers 1, 2, 3, 4, . . . , pk, which are more than x/2
(or (x+ 1)/2 respectively, depending on x).

Therefore, one has
x

2
< N(x, pk) ≤ 2k

√
x

and thus
x2 < 4 · 22kx⇔ x < 22k+2,

which is not satisfied for x ≥ 22k+2.
Hence, the series ∑

p

1
p

diverges (converges to +∞). �

Second Proof. Let n be a positive integer with n > 1. Then

p1, p2, . . . , pk ≤ n ≤ pk+1

for some positive integer k.
Every positive integer less than or equal to n has prime factors which

belong to the set {p1, p2, . . . , pk}.
Therefore, every one of these integers can be expressed in the form

pa1
1 p

a2
2 · · · pak

k with ai ≥ 0, where i = 1, 2, . . . , k .
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We consider an integer m for which it holds

2m > n.

Then it is obvious that pm
i > n for every prime number pi, where i = 1,

2, . . . , k.
Therefore,

pm
1 p

m
2 · · · pm

k > n or pa1
1 p

a2
2 · · · pm

i · · · pak

k > n, where i = 1, 2, . . . , k.

We know that
1

1 − 1
pi

=
+∞∑

j=0

1
pj

i

.

Thus,
1

1 − 1
pi

> 1 +
1
pi

+
1
p2

i

+ · · · + 1
pm

i

.

We obtain
k∏

i=1

1
1 − 1

pi

>

k∏

i=1

(
1 +

1
pi

+
1
p2

i

+ · · · + 1
pm

i

)
.

If we expand the product,
k∏

i=1

(
1 +

1
pi

+
1
p2

i

+ · · · + 1
pm

i

)
,

we obtain a summation of terms of the form
1

pa1
1 p

a2
2 · · · pak

k

,

where 0 ≤ ai ≤ m, for i = 1, 2, . . . , k. We have shown that

pa1
1 p

a2
2 · · · pm

i · · · pak

k > n, for i = 1, 2, . . . , k.

Therefore, in the denominators of the terms of the summation, all positive
integers 1, 2, . . . , n will appear and in addition, some more positive integers
greater than n will appear too.

Therefore,
k∏

i=1

(
1 +

1
pi

+
1
p2

i

+ · · · + 1
pm

i

)
>

n∑

l=1

1
l
,

that is,
k∏

i=1

1
1 − 1

pi

>

n∑

l=1

1
l
. (1)

We know that

ln(1 + x) =
x

1
− x2

2
+ · · · + (−1)n+1x

n

n
+ · · · , if |x| < 1.
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Thus,

ln
1

1 − 1
pi

= − ln
(

1 − 1
pi

)

= −
(
− 1
pi

− 1
2 p2

i

− 1
3 p3

i

− 1
4 p4

i

− · · ·
)

=
1
pi

+
1

2 p2
i

+
1

3 p3
i

+
1

4 p4
i

+ · · ·

<
1
pi

+
1

2 p2
i

+
1

2 p3
i

+
1

2 p4
i

+ · · ·

=
1
pi

+
1

2 p2
i

(
1 +

1
pi

+
1
p2

i

+ · · ·
)

=
1
pi

+
1

2 p2
i

· 1
1 − 1

pi

.

However,

pi ≥ 2 ⇒ 1
pi

≤ 1
2
⇒ − 1

pi
≥ −1

2
⇒ 1

1 − 1
pi

≤ 1
1 − 1

2

,

thus

ln
1

1 − 1
pi

<
1
pi

+
1

2 p2
i

· 1
1 − 1

pi

≤ 1
pi

+
1

2 p2
i

· 1
1 − 1

2

=
1
pi

+
1
p2

i

.

Therefore,

ln
1

1 − 1
pi

<
1
pi

+
1
p2

i

, for i = 1, 2, . . . , k. (2)

Applying relation (2) we obtain

k∑

i=1

ln
1

1 − 1
pi

<
k∑

i=1

1
pi

+
k∑

i=1

1
p2

i

<
k∑

i=1

1
pi

+
+∞∑

l=1

1
l2
.

But
k∑

i=1

ln
1

1 − 1
pi

= ln
k∏

i=1

1
1 − 1

pi

.

Thus, because of inequality (1) we get

k∑

i=1

1
pi

+
+∞∑

l=1

1
l2
> ln

k∏

i=1

1
1 − 1

pi

> ln

(
n∑

l=1

1
l

)
.
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Therefore,
k∑

i=1

1
pi
> ln

(
n∑

l=1

1
l

)
−

+∞∑

l=1

1
l2
.

If n→ +∞, then obviously k → +∞.
However, we know that

+∞∑

l=1

1
l

= +∞ and
+∞∑

l=1

1
l2

converges to a real number.

Hence, the series
+∞∑

i=1

1
pi

diverges (converges to +∞). �

Third Proof. Suppose that the series

∑

p

1
p

converges to a real number.
Then, there exists a positive integer n such that

1
pn+1

+
1

pn+2
+ · · · < 1

2
,

which means
+∞∑

k=n+1

1
pk

<
1
2
.

Consider the numbers

Qm = 1 +mN, where m = 1, 2, . . . and N = p1p2 · · · pn.

It is evident that none of the numbers Qm is divisible by some of the prime
numbers p1, p2, . . . , pn. Therefore, the prime factors of the numbers of the
form 1 +mN belong to the set {pn+1, pn+2, . . .}.

In the infinite summation
(

1
pn+1

+
1

pn+2
+ · · ·

)
+
(

1
pn+1

+
1

pn+2
+ · · ·

)2

+ · · ·

+
(

1
pn+1

+
1

pn+2
+ · · ·

)t

+ · · ·
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there exists every number of the form

1
pm1

n+1p
m2
n+2 · · · pmλ

n+λ

,

but there also exist infinitely many other different terms.
Thus, we obtain

1
Q1

+
1
Q2

+ · · · + 1
Qm

≤
+∞∑

t=1

(
+∞∑

k=n+1

1
pk

)t

,

that is,
m∑

k=1

1
Qk

≤
+∞∑

t=1

(
+∞∑

k=n+1

1
pk

)t

.

However,
+∞∑

k=n+1

1
pk

<
1
2
,

thus
m∑

k=1

1
Qk

<
+∞∑

t=1

(
1
2

)t

.

But, the series
+∞∑

t=1

(
1
2

)t

converges to a real number, since it is an infinite summation of a decreasing
geometric progression. Therefore, the series

+∞∑

k=1

1
Qk

is bounded, which is not possible because

1
Qm

=
1

1 +mN
>

1
N +mN

=
1

N(m+ 1)
,

and the series
+∞∑

m=1

1
N(m+ 1)

=
1
N

+∞∑

m=1

1
m+ 1

diverges (converges to +∞). Therefore, the assumption that the series

∑

p

1
p
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converges to a real number has led to a contradiction. Hence, the series
∑

p

1
p

diverges (converges to +∞). �

Note. The above proof is due to J. A. Clarkson, On the series of prime reci-
procals, Proc. Amer. Math. Soc. 17(1966), 541.

Fourth Proof. Consider the summation

SN =
N∑

n=1

1
pn
, N ∈ N.

Then, one has

eSN = e
1

p1
+ 1

p2
+···+ 1

pN =
N∏

n=1

e
1

pn . (1)

The Maclaurin’s expansion of ex is given by the formula

ex = 1 +
+∞∑

n=1

xn

n!
, where x ∈ R.

Thus,

e
1

pn = 1 +
1
pn

+
1

2! p2
n

+ · · ·
and therefore

e
1

pn > 1 +
1
pn
.

From (1), we obtain

eSN >

N∏

n=1

(
1 +

1
pn

)
.

After the calculation of the product

N∏

n=1

(
1 +

1
pn

)

the result will get the representation

1 +
∑ 1

pλ1pλ2 · · · pλμ

, with pλ1 �= pλ2 �= · · · �= pλμ .

The greatest value of the denominator of a term, which appears in the
summation ∑ 1

pλ1pλ2 · · · pλμ

,
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is the number
p1p2 · · · pn.

Thus, we obtain
N∏

n=1

(
1 +

1
pn

)
>

∑

q≤N

1
q
,

where q is an arbitrary integer less than or equal to N , which is not divisible
by the square of any prime number (i.e., it is a squarefree integer).

Therefore,

sSN >
∑

q≤N

1
q
.

Suppose that
lim

N→+∞
SN = S,

where S ∈ R. It is evident that

S > Sn, for every n ∈ N

and thus
eS >

∑

q≤N

1
q
, for every N ∈ N. (2)

However, by Lemma 1.3.4, we know that every positive integer can be
represented in the form a2q, where q is a squarefree integer. Therefore, it
holds ⎛

⎝
∑

q≤N

1
q

⎞

⎠ ·
(

N∑

a=1

1
a2

)
>

N∑

n=1

1
n
, where N �= 1.

It is a standard fact from mathematical analysis that

+∞∑

a=1

1
a2

converges to a real number.
Let D be that real number. Then

D >

N∑

a=1

1
a2
.

Hence,
∑

q≤N

1
q
>

1
D

N∑

n=1

1
n
.
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In addition, from mathematical analysis we also know that

+∞∑

n=1

1
n

diverges (converges to +∞).
Thus, we can choose N to be sufficiently large, so that

N∑

n=1

1
n
> DeS .

But then, ∑

q≤N

1
q
> eS ,

which is impossible because of (2).
Therefore, the hypothesis that the series

+∞∑

n=1

1
pn

converges to a real number leads to a contradiction. Consequently, the series
diverges. �

Historical Remark. The question whether the series

+∞∑

k=1

1
pk

diverges was answered for the first time in 1737, by L. Euler.
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9.2 Lagrange’s four-square theorem

The highest form of pure thought is in mathematics.
Plato (428 BC–348 BC)

Leonhard Euler (1707–1783) proved that a positive integer can be expressed
as the sum of two squares of integers, only when certain conditions are being
satisfied. In addition, it has also been proved that it is not possible to express
every positive integer as the sum of three squares of integers.

Joseph-Louis Lagrange (1736–1813) was the first mathematician to prove
that every positive integer can be expressed as the sum of four squares of
integers.

At the beginning of the 20th century, David Hilbert (1862–1943) proved
that

for every positive integer n there exists a number Kn, such that each
positive integer m can be expressed as the sum of no more than Kn

positive nth powers.

Here we shall present the proof of Lagrange’s theorem.

Theorem 9.2.1 (Lagrange’s Theorem). Every positive integer can be
expressed as the sum of four squares of integers.

Proof. By Lagrange’s identity, we have

(x2
1 + x2

2 + x2
3 + x2

4)(y
2
1 + y2

2 + y2
3 + y2

4) − (x1y1 + x2y2 + x3y3 + x4y4)2

=
∣∣∣∣
x1 x2

y1 y2

∣∣∣∣
2

+
∣∣∣∣
x1 x3

y1 y3

∣∣∣∣
2

+
∣∣∣∣
x1 x4

y1 y4

∣∣∣∣
2

+
∣∣∣∣
x2 x3

y2 y3

∣∣∣∣
2

+
∣∣∣∣
x2 x4

y2 y4

∣∣∣∣
2

+
∣∣∣∣
x3 x4

y3 y4

∣∣∣∣
2

= (x1y2 − x2y1)2 + (x1y3 − x3y1)2 + (x1y4 − x4y1)2 + (x2y3 − x3y2)2

+ (x2y4 − x4y2)2 + (x3y4 − x4y3)2

= (x1y2 − x2y1 + x3y4 − x4y3)2 − 2(x1y2 − x2y1)(x3y4 − x4y3)

+ (x1y3 − x3y1 + x4y2 − x2y4)2 + 2(x1y3 − x3y1)(x2y4 − x4y2)

+ (x1y4 − x4y1 + x2y3 − x3y2)2 − 2(x1y4 − x4y1)(x2y3 − x3y2)

= (x1y2 − x2y1 + x3y4 − x4y3)2 + (x1y3 − x3y1 + x4y2 − x2y4)2

+ (x1y4 − x4y1 + x2y3 − x3y2)2 − 2[(x1y2 − x2y1)(x3y4 − x4y3)

− (x1y3 − x3y1)(x2y4 − x4y2) + (x1y4 − x4y1)(x2y3 − x3y2)].
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Thus, we obtain

(x2
1 + x2

2 + x2
3 + x2

4)(y
2
1 + y2

2 + y2
3 + y2

4)

= (x1y1 + x2y2 + x3y3 + x4y4)2 + (x1y2 − x2y1 + x3y4 − x4y3)2

+ (x1y3 − x3y1 + x4y2 − x2y4)2 + (x1y4 − x4y1 + x2y3 − x3y2)2.

Therefore, by the above relation, it follows that the product of two positive
integers, each of which can be expressed as the sum of four squares of integers,
can always be expressed as the sum of four squares of integers.

However, by the Fundamental Theorem of Arithmetic, we know that every
integer can be either a prime number or a product of powers of prime numbers.
Hence, it is evident that it suffices to prove that every prime number p can
be expressed as the sum of four squares of integers.

In the special case when p = 2, it holds

2 = 12 + 12 + 02 + 02.

We shall now prove that for every prime number p, with p > 2, there exist
integers x, y, such that

x2 + y2 + 1 = mp,

where 0 < m < p.
Consider the sets

A =
{
x2 : x = 0, 1, . . . ,

p− 1
2

}

and

B =
{
−1 − y2 : y = 0, 1, . . . ,

p− 1
2

}
.

There does not exist a pair (x2
1, x

2
2) of elements of A, for which

x2
1 ≡ x2

2 (mod p).

This happens because if such a pair existed, then we would have

x2
1 − x2

2 = kp

or
(x1 − x2)(x1 + x2) = kp, for some k ∈ Z

and thus
p | (x1 − x2) or p | (x1 + x2).

But that is a contradiction, since if p | (x1 − x2), then

|x1 − x2| ≥ p.
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However,
x1 <

p

2

x2 <
p

2

⎫
⎪⎬

⎪⎭
⇒ x1 + x2 < p⇒ |x1 − x2| < p.

Moreover, if p | (x1 + x2), then

x1 + x2 ≥ p.

But
x1 <

p

2

x2 <
p

2

⎫
⎪⎬

⎪⎭
⇒ x1 + x2 < p.

Similarly, there does not exist a pair of congruent elements (mod p) of B.
The cardinality of the set A ∪B is p + 1, since each of the sets A, B has

cardinality (p+1)/2. These p+1 elements are clearly pairwise distinct. Thus,
if we divide each of the elements of A ∪ B by p, we obtain p + 1 pairwise
distinct residues.2

However, if we divide any positive integer by p, then the only possible
residues are the integers 0, 1, 2, . . ., p − 1. Thus, we have at most p pair-
wise distinct residues. Hence, by the pigeonhole principle,3 it follows that
there exists at least one pair of congruent (mod p) elements in A ∪ B. Let
(u, v) be such a pair. Then, according to the above arguments it yields u ∈ A
and v ∈ B, since it is not possible for both u and v to belong in the same set.
Hence, we obtain that

u ≡ v (mod p)

or
x2 ≡ (−1 − y2) (mod p)

or
x2 + y2 + 1 = mp, for some m ∈ Z.

But

x2 ≤
(
p− 1

2

)2

and y2 ≤
(
p− 1

2

)2

.

Therefore,

x2 + y2 + 1 ≤ 2
(
p− 1

2

)2

+ 1 =
(p− 1)2

2
+ 1 < p2.

2 If the element is an integer less than p, the residue is the integer itself.
3 The pigeonhole principle (also known as Dirichlet’s box principle) is just the

obvious remark, that states if we place m pigeons in n pigeonholes, where m > n,
then there must be at least one pigeonhole with more than one pigeon. The
pigeonhole principle was first introduced by Dirichlet, in 1834.
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Therefore, it holds 0 < m < p. Thus, there exist integers x, y, where

0 ≤ x <
p

2
and 0 ≤ y <

p

2
,

such that
x2 + y2 + 1 ≡ 0 (mod p).

Hence, it follows that there exist integers

m,x1, x2, x3, x4,
4

where 0 < m < p, such that

mp = x2
1 + x2

2 + x2
3 + x2

4.

The integers x2
1, x

2
2, x

2
3, x

2
4 are not all divisible by p , since if that was the

case, then we would have

mp = k2
1p

2 + k2
2p

2 + k2
3p

2 + k2
4p

2

= (k2
1 + k2

2 + k2
3 + k2

4)p
2,

and thus
m = (k2

1 + k2
2 + k2

3 + k2
4)p > p,

which is a contradiction.
It suffices to prove that the least possible value of m is 1. Thus, let m0p

be the least multiple of p, which satisfies the property

m0p = x2
1 + x2

2 + x2
3 + x2

4,

where m0 > 1 and 0 < m0 < p.

• If m0 is an even integer, then the sum

x1 + x2 + x3 + x4

is also an even integer, for if it was an odd integer we would have

(x1 + x2 + x3 + x4)2

= x2
1 + x2

2 + x2
3 + x2

4 + 2(x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4)

= m0p+ 2(x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4),

which is a contradiction, since the result is an even integer.
Therefore, concerning the integers x1, x2, x3 and x4, one of the following

cases must hold:
4 x1 = x, x2 = y, x3 = 1, x4 = 0.
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(i) All four integers are even.
(ii) All four integers are odd.
(iii) Only two of the integers are even and the other two are odd.

It can be verified that cases (i) and (ii) lead to a contradiction. Hence, let
us suppose that (iii) holds true and without loss of generality that x1, x2 are
even and x3, x4 are odd integers. Then, clearly the integers

x1 + x2, x1 − x2, x3 + x4, x3 − x4

are even numbers.
Furthermore, by the identity

a2 + b2

2
=
(
a+ b

2

)2

+
(
a− b

2

)2

,

it yields

1
2
m0p =

(
x1 + x2

2

)2

+
(
x1 − x2

2

)2

+
(
x3 + x4

2

)2

+
(
x3 − x4

2

)2

.

The squares
(
x1 + x2

2

)2

,

(
x1 − x2

2

)2

,

(
x3 + x4

2

)2

,

(
x3 − x4

2

)2

are not all divisible by p, since if that was the case, we would have

p

(
x1 + x2

2

)
+
(
x1 − x2

2

)

or equivalently
p | x1.

Similarly, we would have p | x2, p | x3 and p | x4 which, as we have shown
previously, leads to a contradiction.

Since we have assumed that m0 is an even integer, it follows that there
exists an integer ν, such that

1
2

2νp =
(
x1 + x2

2

)2

+
(
x1 − x2

2

)2

+
(
x3 + x4

2

)2

+
(
x3 − x4

2

)2

or

νp =
(
x1 + x2

2

)2

+
(
x1 − x2

2

)2

+
(
x3 + x4

2

)2

+
(
x3 − x4

2

)2

,

where ν < m0, which is obviously a contradiction, since we have assumed that
the integer m0p is the least multiple of p which can be expressed as the sum
of four squares of integers.
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• If m0 is an odd integer, then it is not possible for all four integers x1, x2,
x3 and x4 to be divisible by m0, because in that case we would have

m0p = λ2
1m

2
0 + λ2

2m
2
0 + λ2

3m
2
0 + λ2

4m
2
0

= (λ2
1 + λ2

2 + λ2
3 + λ2

4)m
2
0

and thus m0 | p which is impossible, since p is a prime number.
Let us assume that m0 ≥ 3. We can choose integers b1, b2, b3, b4 such that

xi = bim0 + yi,

for i = 1, 2, 3, 4 where

|yi| < 1
2
m0

and
y2
1 + y2

2 + y2
3 + y2

4 > 0.5

Hence,

y2
1 + y2

2 + y2
3 + y2

4 < 4
(

1
4
m2

0

)
= m2

0. (1)

However,

y2
1 + y2

2 + y2
3 + y2

4 = (x1 − b1m0)2 + (x2 − b2m0)2

+ (x3 − b3m0)2 + (x4 − b4m0)2

= (x2
1 + x2

2 + x2
3 + x2

4) − 2x1b1m0

− 2x2b2m0 − 2x3b3m0 − 2x4b4m0

+ (b21 + b22 + b23 + b24)m
2
0

= m1m0,

for some integer m1.
5 Let [a] be the set of all integers, which are congruent to a (mod m0). It is evident

that each of the integers x1, x2, x3, x4 belongs to a set [ai], where i = 1, 2, 3, 4
are not necessarily the same. Hence, if xi ∈ [ai], then there exists yi ∈ [ai].
Thus, it holds xi ≡ yi (mod m0). Therefore, we can choose integers bi, such that
xi = bim0 + yi, where

|yi| <
1

2
m0 and y2

1 + y2
2 + y2

3 + y2
4 > 0.

Here, we make use of the fact that m0 is an odd integer, because if it was
an even integer then m0 ≥ 2 and thus for m0 = 2 we would have |yi| < 1 or
equivalently |yi| = 0. But, this is a contradiction, since in that case we would
have xi = bim0 or equivalently m0 | xi, which is impossible.

Since m0 is an odd integer, its least value is 3. Therefore, for m0 = 3, it follows
that |yi| < 3/2. Hence, it is possible for |yi| to be equal to 1, which is an acceptable
value since 0 < 1 < 3/2.
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It holds 0 < m1 < m0, since if m1 ≥ m0, then m1m0 ≥ m2
0 which, due to

(1), is impossible. Therefore, we have

x2
1 + x2

2 + x2
3 + x2

4 = m0p, (2)

with m0 < p and
y2
1 + y2

2 + y2
3 + y2

4 = m1m0. (3)

Hence, by (2) and (3), it yields

m2
0m1p = (x2

1 + x2
2 + x2

3 + x2
4)(y

2
1 + y2

2 + y2
3 + y2

4) = z2
1 + z2

2 + z2
3 + z2

4 .

But

z1 = x1y1 + x2y2 + x3y3 + x4y4

= x1(x1 − b1m0) + x2(x2 − b2m0) + x3(x3 − b3m0) + x4(x4 − b4m0)

= (x2
1 + x2

2 + x2
3 + x2

4) − (x1b1 + x2b2 + x3b3 + x4b4)m0

= m0p− (x1b1 + x2b2 + x3b3 + x4b4)m0

≡ 0 (modm0).

Similarly, we get
z2, z3, z4 ≡ 0 (modm0).

Therefore, there exist integers t1, t2, t3, t4, such that

m2
0m1p = t21m

2
0 + t22m

2
0 + t23m

2
0 + t24m

2
0

or
m1p = t21 + t22 + t23 + t24,

where p does not divide all four integers t1, t2, t3, t4, since if it did we would
have

m1p = (ξ21 + ξ22 + ξ23 + ξ24)p2

or
m1 = (ξ21 + ξ22 + ξ23 + ξ24)p > p,

which is a contradiction, since 0 < m1 < m0 < p.
Hence, m1p can be expressed as the sum of four squares of integers and

m1 < m0, which contradicts the property of m0p , being the least multiple
of p which can be expressed as the sum of four squares of integers. Thus, the
assumption m0 > 1 leads in every case to a contradiction.

Consequently, m = 1 is the least integer for which mp has the property

mp = x2
1 + x2

2 + x2
3 + x2

4,

for every prime number p. Thus,

p = x2
1 + x2

2 + x2
3 + x2

4.

Therefore, every positive integer can be expressed as the sum of four squares
of integers. �
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Definition 9.2.2. Let rk(n) denote the number of ways a positive integer n
can be expressed as the sum of k squares of integers. We must note that
permutations and sign changes, count as different ways of representation.

We shall now present two very interesting results concerning the sum of
four squares.

Theorem 9.2.3. It holds

r4(2n) =

{
3r4(n), if n is an odd integer

r4(n), if n is an even integer.

Theorem 9.2.4 (Jacobi). It holds

r4(n) =

{
8σ(n), if n is an odd integer

24σ(d), if n is an even integer and d is its largest divisor.
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9.3 Bertrand’s postulate

I’ll tell you once and I’ll tell you again.
There’s always a prime between n and 2n.

Paul Erdős (1913–1996)

The theorem whose proof is presented below is known as Bertrand’s Postulate.
In 1845, the French mathematician Joseph Louis François Bertrand (1822–

1900) formulated the conjecture that there is always a prime number p, such
that n < p ≤ 2n, for every positive integer n, with n ≥ 1. Bertrand veri-
fied his conjecture for every positive integer n up to 3,000,000. A number of
mathematicians tried to prove Bertrand’s Postulate, but the Russian mathe-
matician Pafnuty Lvovich Chebyshev (1821–1894) was the first to give a
proof, in 1852. However, Landau in his book entitled Handbuch der Lehre
von der Verteinlung der Primzahlen, (1909), pp. 89–92, presented a proof of
the Postulate, which is very similar to that of Chebyshev’s. Later, the Indian
mathematician Srinivasa Ramanujan (1887–1920) presented a simpler proof
using properties of the Gamma function Γ (s) and in 1919, he even proved
a more general form of the theorem. The proof presented below is due to
the Hungarian mathematician Paul Erdős (1913–1996), who published it in
1932 (Acta Litt. Ac. Sci. (Szeged), 5(1932), 194–198), at the age of 19. It is
worth mentioning that in 1892, Bertrand’s Postulate was generalized by James
Joseph Sylvester (1814–1897), who proved that

If m, n are positive integers, such that m > n, then at least one of the
positive integers m, m+ 1, m+ 2, . . . ,m+ n− 1 has a prime divisor
greater than n.6

Theorem 9.3.1 (Bertrand’s Postulate). For every positive integer n, with
n ≥ 1, there exists a prime number p, such that n < p ≤ 2n.

Proof. We shall first prove the theorem for every positive integer n, with
n ≥ 4000. For positive integers up to 4000 the proof is elementary and we
shall present it toward the end.

Thus, let us assume that for some positive integer n ≥ 4000 there does not
exist a prime number p, such that n < p ≤ 2n.

By Legendre’s theorem we know that the highest power of p which divides
the integer n ! is7

+∞∑

k=1

⌊
n

pk

⌋
.

6 Bertrand’s Postulate follows if we set m = n + 1.
7 With �x� we denote the integer part of x and with �x	 the least integer, greater

than or equal to x.
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This is true, since the number of terms of n ! which are divisible by p is �n/p�.
More specifically, these terms are the integers

1 · p, 2 · p, . . . ,
⌊
n

p

⌋
· p.

However, some terms of n! are divisible at least by the second power of p,
namely, contain p2 at least one time. These terms are the integers

1 · p2, 2 · p2, . . . ,

⌊
n

p2

⌋
· p2,

which are exactly ⌊
n

p2

⌋

in number.
If we continue similarly for higher powers of p, it follows that the integer

n! contains the prime number p exactly
⌊
n

p

⌋
+
⌊
n

p2

⌋
+ · · · +

⌊
n

pk

⌋
+ · · ·

times and therefore that is exactly the highest power of p which divides n!.
The above sum is finite since for k > r, where pr ≥ n, it holds

⌊
n

pk

⌋
= 0.

Hence, according to Legendre’s theorem, it yields that the integer
(

2n
n

)
=

(2n)!
n!n!

contains8 the prime number p, as many times as p is contained in (2n)! minus
the number of times which it is contained in n!n!. This happens because

(
2n
n

)
=

(2n)!
n!n!

=
pa1
1 p

a2
2 · · · pa · · · paλ

λ

(pq1
1 p

q2
2 · · · pq · · · pqλ

λ ) · (pq1
1 p

q2
2 · · · pq · · · pqλ

λ )
,

where
a1 ≥ 2q1, a2 ≥ 2q2, . . . , a ≥ 2q, . . . , aλ ≥ 2qλ.

Therefore,
(

2n
n

)
=

(2n)!
n!n!

= pa1−2q1
1 pa2−2q2

2 · · · pa−2q · · · paλ−2qλ

λ ,

8 We must clarify that “p is contained in m exactly k times” means that the highest
power of p which divides m is k.
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where a is the number of times that p is contained in the numerator and 2q
is the number of times that p is contained in the denumerator. Thus, it is
evident that the prime number p is contained exactly

S =
+∞∑

k=1

(⌊
2n
pk

⌋
− 2

⌊
n

pk

⌋)

times in (
2n
n

)
.

However, it holds
⌊

2n
pk

⌋
− 2

⌊
n

pk

⌋
<

2n
pk

− 2
(
n

pk
− 1

)
= 2.

Thus, clearly ⌊
2n
pk

⌋
− 2

⌊
n

pk

⌋
= 0 or 1.

Hence, according to the above arguments, the prime numbers p with p >
√

2n
are contained in

(
2n
n

)
at most once. This is true, since

• If k = 1, then S = 0 or 1.
• If k ≥ 2, then S = 0.

In addition, the prime numbers p for which

2
3
n < p ≤ n, where n ≥ 3,

do not divide the integer (
2n
n

)
,

since 3p > 2n and thus only p, 2p could possibly divide 2n. However, both p
and 2p are factors of n! and therefore are eliminated by the numerator of the
fraction (2n)!/(n!n!). The prime number p is a factor of n! since p ≤ n and 2p
is a factor of n! because of the fact that

2p ≤ 2n ≤ n!, for n ≥ 3.

We shall now prove that
4n

2n
≤
(

2n
n

)
. (1)

By the binomial coefficients
(
n

0

)
,

(
n

1

)
, . . . ,

(
n

�n/2�
)
,

(
n

�n/2�
)
, . . . ,

(
n

n

)
,
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the integers (
n

�n/2�
)
,

(
n

�n/2�
)

obtain the greatest value and it holds
(

n

�n/2�
)

=
(

n

�n/2�
)
.

This happens because
(
n

k

)
=

n!
k!(n− k)!

=
n!

(k − 1)!(n− k)!k

=
n− k + 1

k

n!
(k − 1)!(n− k)!(n− k + 1)

=
n− k + 1

k

n!
(k − 1)!(n− (k − 1))!

=
n− k + 1

k

(
n

k − 1

)
.

Hence, (
n

k

)
=
n− k + 1

k

(
n

k − 1

)
.

Therefore, if
n− k + 1

k
< 1,

then (
n

k

)
<

(
n

k − 1

)
.

But, by
n− k + 1

k
< 1,

we obtain equivalently

k ≥ n+ 2
2

=
n

2
+ 1 >

⌊n
2

⌋
.

Hence,

• If k >
⌊

n
2

⌋
, then (

n

k

)
<

(
n

k − 1

)
.

Similarly

• If n−k+1
k > 1, then (

n

k − 1

)
<

(
n

k

)
.
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However, the inequality (n− k + 1)/k > 1 is equivalent to

k ≤ n

2
≤
⌈n

2

⌉
.

Thus, evidently

• If k ≤ ⌈
n
2

⌉
, then (

n

k − 1

)
<

(
n

k

)
.

Therefore, by the above arguments it yields
(
n

0

)
<

(
n

1

)
< · · · <

(
n

�n/2�
)

=
(

n

�n/2�
)
> · · · >

(
n

n

)
.

If we consider the sum

A =
(
n

0

)
+
(
n

1

)
+ · · · +

(
n

n

)
,

then
A = 2n

and thus
A

n
=

2n

n
or

Ā =
2n

n
,

where Ā stands for the mean value of the integers
(
n

0

)
+
(
n

n

)
,

(
n

1

)
,

(
n

2

)
, . . . ,

(
n

n− 1

)
.

Thus, it is obvious that
(

n

�n/2�
)

≥ Ā or
(

n

�n/2�
)

≥ 2n

n
, (2)

since the integer
(

n
	n/2


)
is greater than or equal to each of the integers

(
n

0

)
+
(
n

n

)
,

(
n

1

)
,

(
n

2

)
, . . . ,

(
n

n− 1

)
.

In (2), if we substitute n by 2n we obtain
(

2n
n

)
≥ 4n

2n
.

We shall now prove that
∏

p≤x

p ≤ 4x−1, for every x ≥ 2 , (3)

where the product extends over all prime numbers p, such that p ≤ x. �
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Proof.

• For x = 2, the inequality (3) holds true. Let us suppose that (3) holds true
for every x, such that x < n and n ≥ 3.
• For n = 2r, we obtain

∏

p≤n

p =
∏

p≤2r

p =
∏

p≤2r−1

p ≤ 42r−2 < 42r−1.

• For n = 2r + 1, we have
∏

p≤n

p =
∏

p≤2r+1

p =
∏

p≤r+1

p ·
∏

r+1<p≤2r+1

p ≤ 4r
∏

r+1<p≤2r+1

p.

However,
∏

r+1<p≤2r+1

p ≤
(

2r + 1
r

)
,

since the prime numbers p, where p ∈ (r+ 1, 2r+ 1], appear in the numerator
of the fraction (

2r + 1
r

)
=

(2r + 1)!
r!(r + 1)!

,

but not in the denominator. But
(

2r + 1
r

)
≤ 22r,

since

22r+1 = (1 + 1)2r+1 = 1 +
(

2r + 1
1

)
+ · · · +

(
2r + 1
r

)
+
(

2r + 1
r + 1

)
+ · · · + 1.

We have (
2r + 1
r

)
=

(
2r + 1
r + 1

)
,

and thus

2
(

2r + 1
r

)
< 22r+1.

This completes the proof of inequality (3). Therefore, from the above, it follows
that

4n

2n
≤

(
2n
n

)
≤

∏

p≤√
2n

2n ·
∏

√
2n<p≤ 2

3 n

p ·
∏

2
3 n<p≤2n

p, where n ≥ 3, (4)

since the prime numbers p such that p >
√

2n divide
(
2n
n

)
at most once and

the prime numbers p such that 2n/3 < p ≤ n where n ≥ 3 do not divide
(
2n
n

)
.
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However, we have assumed that there does not exist a prime number in the
interval [n+ 1, 2n]. Hence, ∏

2
3 n<p≤2n

p = 1.

In addition, it holds ∏

p≤√
2n

2n ≤ (2n)
√

2n

since the number of primes p for which p ≤ √
2n does not exceed

√
2n. There-

fore, by (4) we obtain that

4n

2n
≤ (2n)

√
2n ·

∏
√

2n<p≤ 2
3 n

p.

Thus,
4n ≤ (2n)1+

√
2n ·

∏
√

2n<p≤ 2
3 n

p. (5)

By (3), relation (5) takes the form

4n ≤ (2n)1+
√

2n · 42n/3

or
4n/3 ≤ (2n)1+

√
2n. (6)

However, the above inequality does not hold for appropriate value of n. This
happens because by (6) we have

4n ≤ (2n)3(1+
√

2n)

and therefore
22n ≤ (2n)3(1+

√
2n). (7)

But, by applying mathematical induction we can easily prove that

k + 1 < 2k, for k ∈ N with k ≥ 2.

Thus,

2n = ((2n)1/6)6 < (�(2n)1/6� + 1)6 < (2	(2n)1/6
)6

≤ (2(2n)1/6
)6.

Hence,
2n < 26(2n)1/6

.
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Therefore, (7) takes the form

22n ≤ 2(6(2n)1/6)3(1+
√

2n) = 2(2n)1/6(18+18
√

2n).

But, for n ≥ 50 it holds
18 < 2

√
2n,

thus
22n < 2(2n)1/6(2

√
2n+18

√
2n) = 220(2n)1/6√2n = 220(2n)2/3

.

One has
2n < 20(2n)2/3

or
(2n)1/3 < 20

or
n < 4000,

which is a contradiction. Hence, the initial hypothesis that there exists a
positive integer n, with n ≥ 4000, for which there is no prime number p in
the interval (n, 2n], leads to a contradiction. Thus, Bertrand’s Postulate holds
true for all positive integers n ≥ 4000.

Therefore, it suffices to prove the theorem for all positive integers n < 4000.
In order to do so, we are going to use a method which is due to Landau. The
integers

2, 3, 5, 7, 13, 23, 43, 83, 163, 317, 631, 1259, 2503, 4001

form a sequence of prime numbers, each of which is less than the double of
the previous prime in the sequence. Therefore, it is clear that for every positive
integer n < 4000, the interval between n and 2n contains at least one prime
number from the above sequence.

This completes the proof of the theorem. �

Note. The proof of argument (3) is due to Professor N. G. Tzanakis.

Remarks 9.3.2. We must mention that there have been determined much
smaller intervals than (n, 2n], in which at least one prime number exists.

• J. Nagura in his paper: On the interval containing at least one prime number,
Proc. Japan. Acad., 28(1952), 177–181, proved that for any real value of x,
where x ≥ 25, the interval [x, 6x/5] contains at least one prime number.
• H. Rohrbach and J. Weis in their paper: Zum finiten Fall des Bertrandschen
Postulats, J. Reine Angew. Math., 214/215(1964), 432–440, proved that for
every positive integer n with n ≥ 118, the interval (n, 14n/13] contains at
least one prime number.
• N. Costa Pereira in his paper: Elementary estimate for the Chebyshev func-
tion ψ(x) and the Möbius function μ(x), Acta Arith. 52(1989),
307–337, proved that for every prime number x with x > 485492, the interval
[x, 258x/257) contains at least one prime number.
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Historical Remark. Pafnuty Lvovich Chebyshev was born on the 16th of May,
1821, at Okatovo of the former Russian empire and died on the 8th of
December, 1894, in Saint Petersburg.

In 1837, Chebyshev begun his studies at the University of Moscow, from
which he graduated in 1841. Six years later he became a lecturer at the
University of Saint Petersburg. In 1853, he was elected a member of the
Academy of Sciences of Saint Petersburg, where he was bestowed the chair
of Applied Mathematics. The chairs for Pure Mathematics at the Academy
were held at that period by the mathematicians P. H. Fuss (1798–1855),9

M. V. Ostrogradsky (1801–1862) and V. Ya. Bunyakovsky (1804–1889).
Chebyshev conducted research in several areas of mathematics, such as

number theory, probability theory, approximation theory, numerical analysis,
real analysis, differential geometry and kinematics. Due to his vast and pro-
found contribution in pure and applied mathematics, he was elected member
of the Academies of Sciences of several countries, including the Paris Academy
of Sciences (1860), the Berlin Academy of Sciences (1871), the Academy of
Bolonia (1873), London’s Royal Academy (1877), the Italian Royal Academy
(1880) and the Swedish Academy of Sciences (1893).

9 Fuss was a great-grandson of L. Euler.
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9.4 An inequality for the π-function

There are three reasons for the study of inequalities:
practical, theoretical and aesthetic.

On the aesthetic aspects, as has been pointed out,
beauty is in the eyes of the beholder.
However, it is generally agreed that

certain pieces of music, art, or mathematics are beautiful.
There is an elegance to inequalities that makes them very attractive.

Richard E. Bellman (1920–1984)

Theorem 9.4.1. For every positive integer n, where n ≥ 2, the following
inequality holds:

1
6
· n

logn
< π(n) < 6 · n

logn
.10

Proof.

• We claim that

2n ≤
(

2n
n

)
< 4n. (1)

The inequality

2n ≤
(

2n
n

)

follows by mathematical induction.
For n = 2 one has

4 ≤
(

4
2

)
= 6,

which holds. Suppose that (1) is valid for n, i.e.,

2n ≤
(

2n
n

)
.

It suffices to prove (1) for n+ 1.

10 This inequality is known as Chebyshev’s inequality for the function π(n). For
further relative results, the reader is referred to the book by T. Apostol [7].
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It is clear that

(
2n+ 2
n+ 1

)
=

(2n+ 2)!
(n+ 1)!(n+ 1)!

=
(2n)!
n ! n !

(2n+ 1)(2n+ 2)
(n+ 1)2

≥ 2n (2n+ 1)(2n+ 2)
(n+ 1)2

.

It is enough to prove that

(2n+ 1)(2n+ 2)
(n+ 1)2

≥ 2, for n ≥ 2.

However,
(2n+ 1)(2n+ 2)

(n+ 1)2
≥ 2 ⇔ 2n ≥ 0,

which obviously holds.
Thus,

(
2n+ 2
n+ 1

)
≥ 2n+1

and therefore we have proved that

2n ≤
(

2n
n

)

for every positive integer n, where n ≥ 2.
The proof of the right-hand side of inequality (1) follows from the fact

that

(
2n
n

)
<

(
2n
0

)
+

(
2n
1

)
+ · · · +

(
2n
2n

)
= 22n = 4n.

From (1) we get that

log 2n ≤ log
(2n)!
n!n!

< log 4n

and therefore
n log 2 ≤ log(2n)! − 2 logn! < n log 4. (2)

However, from Legendre’s theorem,11 it easily follows that

n! =
∏

p≤n

pj(n,p), (3)

11 The proof of Legendre’s theorem appears in the proof of Bertrand’s postulate.
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where

j(n, p) =
+∞∑

k=1

⌊
n

pk

⌋
.

From (3), it follows that

logn! = log
∏

p≤n

pj(n,p)

=
∑

p≤n

log pj(n,p)

=
∑

p≤n

j(n, p) log p.

By applying this result we get

log(2n)! − 2 logn! =
∑

p≤2n

j(n, p) log p− 2
∑

p≤n

j(n, p) log p

=
∑

p≤2n

(
+∞∑

k=1

⌊
2n
pk

⌋)
log p− 2

∑

p≤n

(
+∞∑

k=1

⌊
n

pk

⌋)
log p.

However,
∑

p≤n

(
+∞∑

k=1

⌊
n

pk

⌋)
log p =

∑

p≤2n

(
+∞∑

k=1

⌊
n

pk

⌋)
log p

since for p > n it is true that
⌊
n

pk

⌋
= 0.

Therefore,

log(2n)! − 2 logn! =
∑

p≤2n

(
+∞∑

k=1

⌊
2n
pk

⌋
− 2

+∞∑

k=1

⌊
n

pk

⌋)
log p

=
∑

p≤2n

[
+∞∑

k=1

(⌊
2n
pk

⌋
− 2

⌊
n

pk

⌋)]
log p.

We have proved (see Bertrand’s postulate) that
⌊

2n
pk

⌋
− 2

⌊
n

pk

⌋
= 0 or 1.
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The terms of the infinite summation
+∞∑

k=1

(⌊
2n
pk

⌋
− 2

⌊
n

pk

⌋)

obtain the value zero for k such that pk > 2n, that means for

k >
log 2n
log p

.

Thus,

+∞∑

k=1

(⌊
2n
pk

⌋
− 2

⌊
n

pk

⌋)
=

� log 2n
log p �∑

k=1

(⌊
2n
pk

⌋
− 2

⌊
n

pk

⌋)

≤
� log 2n

log p �∑

k=1

1.

Hence,

log(2n)! − 2 logn! ≤
∑

p≤2n

⎛

⎜⎝
� log 2n

log p �∑

k=1

1

⎞

⎟⎠ log p

≤
∑

p≤2n

log 2n
log p

log p

=
∑

p≤2n

log 2n

= π(2n) log 2n.

From this relation and inequality (2), it follows that

n log 2 ≤ π(2n) log 2n

⇔ π(2n) ≥ n log 2
log 2n

>
n/2

log 2n
=

2n
4 log 2n

⇔ π(2n) >
1
4
· 2n
log 2n

>
1
6
· 2n
log 2n

. (4)

Therefore, the inequality
1
6
· n

logn
< π(n)

is satisfied if n is an even number. It remains to examine the case when n is
an odd number.
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It is true that

π(2n+ 1) ≥ π(2n)
1
4
· 2n
log 2n

=
1
4
· 2n
2n+ 1

· 2n+ 1
log 2n

1
4
· 2n
2n+ 1

· 2n+ 1
log(2n+ 1)

.

It is evident that
2n

2n+ 1
≥ 2

3
for every positive integer n.

Therefore,

π(2n+ 1)
1
4
· 2
3
· 2n+ 1
log(2n+ 1)

=
1
6
· 2n+ 1
log(2n+ 1)

.

Hence, the inequality
1
6
· n

logn
< π(n)

is also satisfied in the case where n is an odd number.
Thus,

1
6
· n

logn
< π(n),

for every positive integer n, with n ≥ 2.

• We will prove the inequality

π(n) < 6 · n

logn

for every positive integer n with n ≥ 2.
We have already proved that

log(2n)! − 2 logn! =
∑

p≤2n

[
+∞∑

k=1

(⌊
2n
pk

⌋
− 2

⌊
n

pk

⌋)]
log p,

where none of the terms ⌊
2n
pk

⌋
− 2

⌊
n

pk

⌋

is negative.
Therefore, it is clear that

⌊
2n
p

⌋
− 2

⌊
n

p

⌋
≤

+∞∑

k=1

(⌊
2n
pk

⌋
− 2

⌊
n

pk

⌋)
.
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Thus,

log(2n)! − 2 logn! ≥
∑

p≤2n

(⌊
2n
p

⌋
− 2

⌊
n

p

⌋)
log p

≥
∑

n<p≤2n

(⌊
2n
p

⌋
− 2

⌊
n

p

⌋)
log p.

However, for the prime numbers p, such that n < p ≤ 2n one has
⌊

2n
p

⌋
− 2

⌊
n

p

⌋
= 1,

since ⌊
2n
p

⌋
= 1 and

⌊
n

p

⌋
= 0.

Hence,
log(2n)! − 2 logn! ≥

∑

n<p≤2n

log p. (5)

By the definition of Chebyshev’s function ϑ(x), one has

ϑ(x) =
∑

p≤x

log p.

Therefore, (5) can be written as follows:

log(2n)! − 2 logn! ≥ ϑ(2n) − ϑ(n).

Thus, by means of (2), we obtain

ϑ(2n) − ϑ(n) < n log 4. (6)

Suppose that the positive integer n can be expressed as an exact power of 2.
Then from (6) it follows

ϑ(2 · 2m) − ϑ(2m) < 2m log 22

and therefore
ϑ(2m+1) − ϑ(2m) < 2m+1 log 2.

For m = 1, 2, . . . , λ− 1, λ the above inequality, respectively, yields

ϑ(22) − ϑ(2) < 22 log 2

ϑ(23) − ϑ(22) < 23 log 2
...

ϑ(2λ) − ϑ(2λ−1) < 2λ log 2

ϑ(2λ+1) − ϑ(2λ) < 2λ+1 log 2

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

.



9.4 An inequality for the π-function 135

Adding up the above inequalities we get

ϑ(2λ+1) − ϑ(2) < (22 + 23 + · · · + 2λ + 2λ+1) log 2.

But ϑ(2) = log 2, therefore

ϑ(2λ+1) < (1 + 22 + 23 + · · · + 2λ + 2λ+1) log 2

= (2λ+1 − 1) log 2.

Hence,
ϑ(2λ+1) < 2λ+2 log 2. (7)

For every positive integer n we can choose a suitable integer m such that

2m ≤ n ≤ 2m+1.

Then
ϑ(n) =

∑

p≤n

log p ≤
∑

p≤2m+1

log p = ϑ(2m+1)

and by means of (7) it follows that

ϑ(n) < 2m+2 log 2 = 22 · 2m log 2 ≤ 4n log 2. (8)

Let N be the number of primes pi, such that

nr < pi ≤ n,

where 0 < r < 1, for i = 1, 2, . . . , N . Then

lognr < log p1

lognr < log p2

...
lognr < log pN

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

⇒ N lognr <
∑

nr<p≤n

log p,

and therefore
[π(n) − π(nr)] lognr <

∑

nr<p≤n

log p. (9)

It is obvious that
ϑ(n) ≥

∑

nr<p≤n

log p. (10)

Therefore, by means of (8), (9) and (10) one has

[π(n) − π(nr)] lognr < 4n log 2

⇔ π(n) lognr < 4n log 2 + π(nr) lognr

⇔ π(n) <
4n log 2
lognr

+ π(nr)

<
4n log 2
r logn

+ nr.
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Thus, equivalently we obtain

π(n) <
n

logn

(
4 log 2
r

+ nr−1 logn
)
. (11)

�

Consider the function defined by the formula

f(x) =
log x
x1−r

, x ∈ R
+.

Then

f ′(x) =
1
xx

1−r − (1 − r)x−r log x
(x1−r)2

.

It is clear that
f ′(x) = 0

if
x−r = (1 − r)x−r log x ⇔ log x =

1
1 − r

,

which means
x = e1/(1−r).

For x = e1/(1−r) the function f(x) attains its maximal value.
Thus,

f(x) ≤ 1
e(1 − r)

⇒ f(n) ≤ 1
e(1 − r)

,

and therefore
nr−1 logn ≤ 1

e(1 − r)
. (12)

From (11) and (12) it follows

π(n) <
n

logn

(
4 log 2
r

+
1

e(1 − r)

)
.

Set r = 2
3 . Then

π(n) <
n

logn

(
6 log 2 +

3
e

)
.

However, it holds

6 log 2 +
3
e
< 6 and thus π(n) < 6 · n

logn
.

Hence, for every positive integer n, where n ≥ 2, the following inequality
holds:

1
6
· n

logn
< π(n) < 6 · n

logn
. �
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9.5 Some diophantine equations

A)Determine the solution of the diophantine equation

x2 + y2 = z2,

where x, y, z ∈ Z
+ and gcd(x, y, z) = 1.

Solution. The reason why we consider the diophantine equation

x2 + y2 = z2, with gcd(x, y, z) = 1

is because if we considered the equation

(x′)2 + (y′)2 = (z′)2,

with the positive integers x′, y′, z′ not being pairwise relatively prime, then
we would obtain the general solution of the diophantine equation

(x′)2 + (y′)2 = (z′)2

by multiplying the general solution of the equation

x2 + y2 = z2

by the gcd(x′, y′, z′).
It is impossible for both integers x, y to be odd. This happens because if

x = 2k + 1, y = 2λ+ 1, for some k, λ ∈ Z
+,

then we would obtain

(2k + 1)2 + (2λ+ 1)2 = 4(k2 + k + λ2 + λ) + 2 = z2.

Consequently the integer 4(k2 + k + λ2 + λ) + 2 should be a square of an
integer.

However, for every square of an integer, such as z2, the congruence

z2 ≡ 0 or 1 (mod 4)

always holds true, but the congruence

z2 ≡ 2 (mod 4)

never holds true.
Hence, the positive integers x, y will either be both even or one will be

even and the other will be odd. However, the first case is impossible, since if
both integers x and y were even, then we would have gcd(x, y, z) �= 1, which
contradicts the hypothesis.
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Without loss of generality we consider x to be even and y to be odd. Thus,
by the fact that x2 +y2 = z2, it follows that z is an odd integer. We have that

x2 + y2 = z2 ⇔ x2 = (z − y)(z + y). (1)

By the fact that z, y are odd integers, it follows that z− y, z+ y must be even
integers. Thus,

(1) ⇔ x2

4
=
z − y

2
· z + y

2
. (2)

The integers z, y are relatively prime, since if there existed a prime number p
such that p | z and p | y, then we would have

p | (z2 − y2)

and hence
p | x.

In other words, p would divide x, y and z at the same time, which contradicts
the hypothesis.

Therefore, since z, y are relatively prime, the integers

z − y

2
,
z + y

2

must also be relatively prime. This happens because if there existed a prime
number which divided both

z − y

2
,
z + y

2
,

then the same prime number would divide their sum and their difference and
thus would divide z and y, which is impossible.

Since x2/4 is a square of an integer, by a well-known theorem (which we
will prove at the end of the solution) it follows that each of the integers

z − y

2
,
z + y

2

is also a square of an integer. Therefore, we obtain that

z − y

2
= α2,

z + y

2
= β2, where α, β ∈ Z

+.

Hence,
z = α2 + β2, y = β2 − α2

and
x2

4
= α2 · β2,
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due to (2). That is, x = 2αβ. Hence, a general representation of the solution
of the diophantine equation x2 + y2 = z2 is

⎧
⎪⎪⎨

⎪⎪⎩

x = 2αβ

y = β2 − α2

z = β2 + α2,

where β > α and gcd(α, β) = 1.12 �

We shall now present the statement and a proof of the theorem which was
mentioned in the above solution.

Theorem 9.5.1. If q1q2 · · · qμ = An, where q1, q2, . . . , qμ are pairwise rela-
tively prime integers, then each of the integers q1, q2, . . . , qμ can be represented
as the nth power of an integer. That is, qi = an, for every i = 1, 2, . . . , μ, where
a ∈ Z.

Proof. By the canonical form of A, we obtain

A = pa1
1 p

a2
2 · · · pak

k

and thus
An = pna1

1 pna2
2 · · · pnak

k .

Therefore,
q1q2 · · · qμ = pna1

1 pna2
2 · · · pnak

k , where μ ≤ k.

Because of the fact that the integers q1, q2, . . . , qμ are relatively prime, it is
clear that they do not have any common prime divisors. In addition, all
the prime divisors of q1, q2, . . . , qμ belong in the set {p1, p2, . . . , pk}. Hence,
it follows that we can express each qi in the form

qi = p
nak1
k1

p
nak2
k2

· · · pnakp

kp
, where p ≤ k.

Thus,
qi = an

for every i = 1, 2, . . . , μ, where a ∈ Z. �

B) Prove that the diophantine equation

x4 + y4 = z4

does not accept any nonzero integer solutions.
12 We must have gcd(α, β) = 1, since gcd(α, β) ≤ gcd(α2, β2) = 1.
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Proof. It suffices to prove that the equation x4 + y4 = z2 does not accept any
nonzero integer solutions. This happens because if the equation x4 + y4 =
z4 accepted even one nonzero integer solution (xk, yk, zk), then the equation
x4 + y4 = z2 would also accept the nonzero integer solution (xk, yk, z

2
k).

Let us suppose that the diophantine equation x4 + y4 = z2 has at least
one nonzero solution (x, y, z). Consider the integer S, such that

S = xyz.

Let S0 be the least of the values that S obtains for the different integer
solutions (x, y, z). Thus, S0 can be expressed in the form

S0 = x0y0z0.

We shall show that gcd(x0, y0, z0) = 1. In order to do so, it suffices to show
that gcd(x0, y0) = 1, because if there existed a prime number p, such that
p | x0, p | y0 and p | z0, then clearly it would hold gcd(x0, y0) �= 1.

Hence, we assume that there exists a prime number p, such that p | x0

and p | y0. However, we have assumed that the equation x4 + y4 = z2 has at
least one nonzero integer solution (x, y, z). Therefore,

(
x0

p

)4

+
(
y0
p

)4

=
(
z0
p2

)2

∈ Z.

Consequently, p2 | z0 and thus

x1 =
x0

p
, y1 =

y0
p
, z1 =

z0
p2
.

Hence, we obtain

S1 = x1y1z1 =
x0

p

y0
p

z0
p2

< x0y0z0 = S0.

Thus,
S1 < S0,

which is impossible, due to the definition of S0.
According to the above arguments, it follows that for the greatest common

divisor of the integers x0, y0 z0, it holds

gcd(x0, y0, z0) = 1

and thus
gcd(x2

0, y
2
0 , z0) = 1.

Furthermore, the integers x2
0, y

2
0 and z0 form a Pythagorean triple, since

(x2
0)

2 + (y2
0)

2 = z2
0 .

However, we have already shown that a general representation of the solution
of the diophantine equation x2 + y2 = z2 is the following:

x = 2αβ, y = β2 − α2, z = β2 + α2,

where β > α and gcd(α, β) = 1.
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Since one of the numbers x2
0, y

2
0 must be an even integer, without loss of

generality we can assume that x2
0 is even. In that case, it yields

x2
0 = 2γδ, y2

0 = δ2 − γ2, z0 = δ2 + γ2,

where δ > γ and gcd(γ, δ) = 1. Therefore,

δ2 = y2
0 + γ2,

where gcd(δ, y0, γ) = 1 since gcd(γ, δ) = 1. Thus, the triple (δ, y0, γ) is a
Pythagorean triple.

Because of the fact that we have set x2
0 to be even, it is clear that y2

0 and
thus y0 must be an odd integer. Hence, γ is an even integer. Consequently,

γ = 2cd, y0 = d2 − c2, δ = d2 + c2,

where d > c and gcd(c, d) = 1. However, we have shown that

x2
0 = 2γδ.

Therefore,
x2

0 = 2(2cd)(d2 + c2).

Hence, (x0

2

)2

= cd(d2 + c2).

Clearly x0/2 ∈ Z, since x0 is an even integer. Thus,

(x0

2

)2

is a square of an integer.
We can easily prove that the integers c, d, d2 + c2 are pairwise relatively

prime. This happens because:
• If there existed a prime number p1, such that p1 | c and p1 | (d2 + c2),
then we would clearly have p1 | d2 and thus p1 | d, which is impossible since
gcd(c, d) = 1.
• If there existed a prime number p2, such that p2 | d and p2 | (d2 + c2), then
similarly we would have p2 | c2 and thus p2 | c, which is impossible.

Therefore, according to Theorem 9.5.1, it follows that

c = x2
m, d = y2

m, d
2 + c2 = z2

m,

or
x4

m + y4
m = z2

m.

Hence, the triple (xm, ym, zm) is an integer solution of the equation

x4 + y4 = z2.
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Thus, we obtain

Sm = xmymzm =
√
x2

my
2
mz

2
m =

√
cd(d2 + c2)

=
x0

2
< x0y0z0 = S0

or equivalently
Sm < S0,

which is impossible.
Therefore, the assumption that the equation x4 + y4 = z2 has at least

one nonzero integer solution leads to a contradiction. Hence, the equation
x4 + y4 = z4 does not have any nonzero integer solutions. �

Note. The above proof is due to the German mathematician Ernst Eduard
Kummer (1810–1893).

Historical Remark. Ernst Eduard Kummer was born in Germany on the 29th
of January, 1810. In 1828, he entered the University of Halle in order to study
theology. However, during his studies he was deeply influenced by the mathe-
matician Heinrich Ferdinand Scherk (1798–1885), who introduced him to the
areas of algebra and number theory. Thus, Kummer started studying mathe-
matics and on the 10th of September, 1831 he obtained his Ph.D. In 1842 he
was elected professor of mathematics at the University of Breslau, where he
taught for 13 years. In 1855, he was appointed a professor at the War School
of Berlin.

Kummer worked in several areas of mathematics, such as number theory,
algebra, analysis, geometry and applied physics. One of his most significant
contributions in number theory was the proof of the fact that the diophantine
equation

xp + yp = zp

does not have any positive integer solutions for all prime exponents p, with
p ≤ 100. In other words, he proved Fermat’s Last Theorem for exponents less
than or equal to 100.

Ernst Kummer died on the 14th of May, 1893, in Berlin. He is considered
to be the father of algebraic number theory.
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9.6 Fermat’s two-square theorem

Theorem 9.6.1. Every prime number p of the form 4n + 1, n ∈ N, can be
represented as the sum of two squares of integers.

Proof. Firstly, we shall prove that there exists a positive integer k such that
the integer kp can be represented as the sum of two squares of integers. In other
words, we shall prove that there exists a positive integer k, such that

kp = a2 + b2,

where a, b ∈ Z.
By Lemma 5.2.6, we know that

(−1
p

)
=

{
1, if p ≡ 1 (mod 4)

−1, if p ≡ 3 (mod 4).

Therefore, in the case when p = 4n + 1 it follows that the integer −1 is a
quadratic residue mod p. Hence, there exists an integer a such that

a2 ≡ −1 (mod p),

and thus there exist integers a, k, such that

kp = a2 + 12.

Thus, we have shown that there exists k ∈ N such that

kp = a2 + b2.

It suffices now to prove that the least possible value of the positive integer k
is 1.

Let k0 be the least possible value of k. If we assume that k0 > 1, then

k0p = a2
0 + b20. (1)

If we divide the integers a0 and b0 by k0, then the remainders r1 and r2, which
will occur respectively, will belong to the interval

(
−k0

2
,
k0

2

]
.

Therefore, we can consider integers r1 and r2 to have the property

r1 ≡ a0 (mod k0) (2a)

r2 ≡ b0 (mod k0), (2b)
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where

r1, r2 ∈
(
−k0

2
,
k0

2

]
.

Thus,

r21 ≡ a2
0 (mod k0)

r22 ≡ b20 (mod k0),

from which it follows that

r21 + r22 ≡ (a2
0 + b20) (mod k0).

Hence,
k0 [r21 + r22 − (a2

0 + b20)]

and since
k0 (a2

0 + b20),

we get
k0 (r21 + r22).

Therefore, there exists λ ∈ N ∪ {0}, such that

r21 + r22 = λk0. (3)

By (1) and (3), we obtain that

(a2
0 + b20)(r

2
1 + r22) = k2

0λp.

However, it holds that

(a0r1 + b0r2)2 + (a0r2 − b0r1)2 = (a2
0 + b20)(r

2
1 + r22) = k2

0λp. (4)

By the above identity it follows that the product of two integers which can
be represented as the sum of two squares of integers can also be represented
as the sum of two squares of integers.

By (2a) and (2b), we obtain

r21 ≡ a0r1 (mod k0) (5a)

r22 ≡ b0r2 (mod k0) (5b)

and

r1r2 ≡ a0r2 (mod k0) (6a)

r1r2 ≡ b0r1 (mod k0). (6b)
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By (5a), (5b), (6a) and (6b), we get

a0r1 + b0r2 ≡ (r21 + r22) (mod k0)

and
a0r2 − b0r1 ≡ (r1r2 − r1r2) (mod k0).

Thus, since r21 + r22 = λk0 and r1r2 − r1r2 = 0, we obtain

k0 | (a0r1 + b0r2)

and
k0 | (a0r2 − b0r1).

Hence, by the identity (4), it holds
(
a0r1 + b0r2

k0

)2

+
(
a0r2 − b0r1

k0

)2

= λp.

In other words, the integer λp can be represented as the sum of two squares
of integers. However, we have previously assumed that

−k0

2
< r1, r2 ≤ k0

2
.

Therefore,

r21 + r22 ≤ 2 · k
2
0

4
=
k2
0

2
.

By (3) and the above inequality, we get

λk0 ≤ k2
0

2
⇔ λ ≤ k0

2
< k0. (7)

• If λ = 0, then
r21 + r22 = 0 ⇔ r1 = r2 = 0.

Hence, by (2a) and (2b) we obtain

k2
0 | a2

0

and
k2
0 | b20.

By (1) and the above results, it follows that

k0p = mk2
0 ,

for some positive integer m. Thus, p = mk0, which is impossible since p is a
prime number.

It follows that (7) contradicts the property of k0 being the least positive
integer, such that k0p can be represented as the sum of two squares of positive
integers. Thus, the assumption that k0 > 1 leads to a contradiction, thus
k0 = 1.

Therefore, every prime number p of the form 4n + 1, n ∈ N, can be
represented as the sum of two squares of integers. �
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Problems

Problems worthy of attack prove their worth by fighting back.
Paul Erdős (1913–1996)

1) If a positive integer n is perfect, prove that

∑

d|n

1
d

= 2.

2) Let a ≡ b (mod k) and d be an arbitrary common divisor of a and b. Suppose
gcd(k, d) = g, where k is a positive integer. Prove that

a

d
≡ b

d

(
mod

k

g

)
.

Applying the above property prove that if

185 c ≡ 1295 (mod 259),

then c ≡ 0 (mod 7).

3) Prove that there are no integers a, b, c , d such that

abcd− a = 111 . . .1 (The digit 1 appears k times) (a)

abcd− b = 111 . . .1 (The digit 1 appears k times) (b)

abcd− c = 111 . . . 1 (The digit 1 appears k times) (c)

abcd− d = 111 . . .1 (The digit 1 appears k times) (d)

where k ∈ N − {1}.

M.Th. Rassias, Problem-Solving and Selected Topics in Number Theory: In the Spirit     

© Springer Science +Business Media, LLC 2011 
of the Mathematical Olympiads, DOI 10.1007/978-1-4419-0495-9_10,  
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4) Prove that there does not exist any prime number in the sequence of
integers

10001, 100010001, 1000100010001, . . . .

5) Find the last three digits of the integer 79999.

(N.M.M., 1937–38, p. 415, Problem 216. Proposed by Victor Thebault, Le
Mans, France)

6) Determine the last three digits of the integer

200320022001
.

(Canada, 2003)

7) Prove that if the integers a1, a2, . . . , a9 are not divisible by 3, then

a2
1 + a2

2 + · · · + a2
9 ≡ 0 (mod 3).

8) Let a be an integer. Prove that there are no integers b, c with c > 1, such
that

(a+ 1)2 + (a+ 2)2 + · · · + (a+ 99)2 = bc. (a)

(1998 Hungarian Mathematical Olympiad)

9) If m,n,m1, n1 are positive integers such that

(m+ n)(m+ n− 1) + 2m = (m1 + n1)(m1 + n1 − 1) + 2m1, (a)

prove that m = m1 and n = n1.

10) Prove that if m,n are integers, then the expression

E = m5 + 3m4n− 5m3n2 − 15m2n3 + 4mn4 + 12n5

cannot take the value 33.

11) Prove that
(2m+ 1)2

n

= 2n+2λn + 1,

for every positive integer n, with λn ∈ Z.

(Elias Karakitsos, Sparta, Greece)

12) Consider m, n ∈ N, such that m+n is odd. Prove that there is no A ⊆ N

such that for all x, y ∈ N, if |x−y| = m then x ∈ A or y ∈ A, and if |x−y| = n
then x �∈ A or y �∈ A.

(Dimiter Skordev, Problem No. 11074, Amer. Math. Monthly, 2004)
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13) Let p be an odd prime number. If rj is the remainder when the integer
jp−1 − 1/p is divided by p , where j = 1, 2, . . . , p− 1, prove that

r1 + 2r2 + · · · + (p− 1)rp−1 ≡ p+ 1
2

(mod p).

(Dorin Andrica, “Babes-Bolyai” University, Cluj-Napoca, Romania)

14) Find all possible decimal digits a such that, for a given n, the decimal
expansions of 2n and 5n both begin by a, and give a necessary and sufficient
condition to determine all such integers n.

(Konstantinos Drakakis, University College Dublin, Ireland; Newsletter of
the European Mathematical Society, Issue 73, 2009, Problem 48, p. 54)

15) Let a, n be positive integers such that an is a perfect number. Prove that

an/μ >
μ

2
,

where μ denotes the number of distinct prime divisors of an.

(M.Th. Rassias, Proposed problem W. 27, Octogon Mathematical Magazine,
17(1)(2009), p. 311)

16) Prove that the sum

S =
1
2

+
1
3

+ · · · + 1
n
,

where n > 1 cannot be an integer.

17) Let n ≥ 3 be an odd positive integer. Prove that the set

A =
{(

n

1

)
,

(
n

2

)
, . . . ,

(
n

n−1
2

)}

contains an odd number of odd integers.

(Revista Matematică Timisoara, No.2 (1984), Problem 5346)

18) Prove that every positive rational number can be expressed in the form

a3 + b3

c3 + d3
,

where a, b, c, d are positive integers.

19) Prove that every composite positive integer can be represented in the
form

xy + xz + yz + 1,

where x, y, z are positive integers.
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(Problem 1, The Forty-Ninth William Lowell Putnam Mathematical
Competition, 1988)

20) If for the rational number x the value of the expression

2x4 + 3x+ 1

is an integer, prove that x is also an integer.

(School of Aviation Engineers of Greece, Entrance Examinations, 1968)

21) Consider the sequence (xn) of real numbers, which is defined by the
recursive formula

x1 = 0, xn+1 = 5xn +
√

24x2
n + 1,

where n = 1, 2, 3, . . ..
Prove that all the terms of the sequence are integers.

22) Let a ∈ Z, n, k ∈ N with k ≡ −a2 (mod 2n). Prove that

√
2
√
k + a2 ≤ k + a2

2n
+ n ≤ 1

2
(k + a2) + 1.

23) Let n1 = abcabc and n2 = d00d be positive integers represented in the
decimal system, where a, b, c, d ∈ {0, 1, 2, . . . , 9} with a �= 0 and d �= 0.

i) Prove that
√
n1 cannot be an integer.

ii) Find all positive integers n1 and n2 such that
√
n1 + n2 is an integer.

iii) From all the pairs (n1, n2) such that
√
n1n2 is an integer find those for

which
√
n1n2 has the greatest possible value.

(48th National Mathematical Olympiad, Suceava, 1997)

24) Determine the number of real solutions a of the equation
⌊a
2

⌋
+
⌊a
3

⌋
+
⌊a
5

⌋
= a. (a)

(Canadian Mathematical Olympiad, 1998)

25) Let a, b ∈ N. Prove that

⌊
2a
b

⌋
− 2

⌊a
b

⌋
=

⎧
⎨

⎩
0, if

⌊
2a
b

⌋
is an even integer

1, if
⌊

2a
b

⌋
is an odd integer.
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26) Prove that

�√n+
√
n+ 1 +

√
n+ 2� = �√9n+ 8� (1)

for n = 0, 1, 2, . . . .

(Crux Mathematicorum 28(1)(2002). See also Amer. Math. Monthly, 1988,
pp. 133–134)

27) Solve the equation

�3x− 2� − �2x− 1� = 2x− 6, x ∈ R.

(Elias Karakitsos, Sparta, Greece)

28) Solve the equation

�x�2 = �3x− 2�, x ∈ R. (1)

(Elias Karakitsos, Sparta, Greece)

29) Solve the equation

�x2 − 3x+ 2� = 3x− 7, x ∈ R.

(Elias Karakitsos, Sparta, Greece)

30) Prove that for every real number x and a given positive integer n it holds

�x� +
⌊
x+

1
n

⌋
+
⌊
x+

2
n

⌋
+ · · · +

⌊
x+

n− 1
n

⌋
= �nx�.

(Charles Hermite, 1822–1901)

31) Let k be a positive integer. Prove that there exist polynomials P0(n),
P1(n), . . . , Pk−1(n) (which may depend on k) such that for any integer n,

⌊n
k

⌋k

= P0(n) + P1(n)
⌊n
k

⌋
+ · · · + Pk−1(n)

⌊n
k

⌋k−1

.

(Problem B5, The Sixty-Eighth William Lowell Putnam Mathematical
Competition, 2007. Amer. Math. Monthly, 115(2008), pp. 732, 737)

32) A rational number r = a/b, where a, b are coprime positive integers, is
called good if and only if r > 1 and there exist integers N , c, such that for
every positive integer n ≥ N , it holds

|{rn} − c| ≤ 1
2(a+ b)

,

where {r} = r − �r�.
Prove that every good rational number is an integer.

(Chinese National Team Selection Contest, 2007)
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33) Determine the integer part of

109∑

n=1

1
3
√
n2
,

where n ∈ N.

34) Calculate the integer part of

+∞∑

n=1

+∞∑

m=1

1
m2n+mn2 + 2mn

.

35) Find all positive integers a, b such that

a4 + 4b4

is a prime number.

36) Let n and 8n2 +1 be two prime numbers. Prove that the number 8n2 − 1
is also a prime number.

37) Prove that there does not exist a nonconstant polynomial p(n) with
integer coefficients, such that for every natural number n, the number p(n) is
prime.

38) Let n be an odd integer greater than or equal to 5. Prove that
(
n

1

)
− 5

(
n

2

)
+ 52

(
n

3

)
− · · · + 5n−1

(
n

n

)

is not a prime number.

(Titu Andreescu, Korean Mathematical Competition, 2001)

39) Prove that there are infinitely many prime numbers of the form 4n + 3,
where n ∈ N.

40) Let y ∈ Z
∗ = Z − {0}. If x1, x2, . . . , xn ∈ Z

∗ − {1} with n ∈ N and

(x1x2 · · · xn)2y ≤ 22(n+1),

as well as
x1x2 · · ·xny = z + 1 z ∈ N,

prove that at least one of the integers x1, x2, . . . , xn, z is a prime number.

(M. Th. Rassias, Proposed problem W.3, Octogon Mathematical Magazine
15 (1) (2007), p. 291. See also Proposed problem No. 109, Euclid

Mathematical Magazine B’, Greek Math. Soc. 66 (2007), p. 71)
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41) Let p be a prime number. Let h(x) be a polynomial with integer coeffi-
cients such that h(0), h(1),. . ., h(p2 − 1) are distinct modulo p2. Prove that
h(0), h(1),. . ., h(p3 − 1) are distinct modulo p3.

(Problem B4, The Sixty-Ninth William Lowell Putnam Mathematical
Competition, 2008, Amer. Math. Monthly 116(2009), pp. 722, 725)

42) Prove that every odd perfect number has at least three distinct prime
factors.

43) Let (an) be a sequence of positive integers, such that (ai, aj) = 1 for every
i �= j. If

+∞∑

n=0

1
an

= +∞,

prove that the sequence (an) contains infinitely many prime numbers.

(K. Gaitanas, student of the School of Applied Mathematics and Physical
Sciences, NTUA, Greece, 2005)

44) Let pi denote the ith prime number. Prove that

pk
1 + pk

2 + · · · + pk
n > nk+1,

for every pair of positive integers n, k.

(Dorin Andrica, Revista Matematică Timisoara, No. 2(1978), p. 45,
Problem 3483)

45) Prove that 7 divides the number

147 + 247 + 347 + 447 + 547 + 647.

46) Prove that if 3 � | n, then

13 | 32n + 3n + 1,

where n ∈ N.

47) Prove that for every positive integer n the value of the expression

24n+1 − 22n − 1

is divisible by 9.

48) Prove that 7 divides the number

22225555 + 55552222.
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49) If p is a prime number and a, λ are two positive integers such that
pλ| (a− 1), prove that

pn+λ
∣∣ (apn − 1)

for every n ∈ N ∪ {0}.
(Crux Mathematicorum, 1992, p. 84, Problem 1617. Proposed by Stanley

Rabinowitz, Westford, Massachusetts)

50) Prove that for any prime number p greater than 3, the number

2p + 1
3

is not divisible by 3.

51) Determine all positive integers n for which the number n8 − n2 is not
divisible by 72.

(38th National Mathematical Olympiad, Slovenia, 1997)

52) Prove that for every positive integer n the number 3n + n3 is a multiple
of 7 if and only if the number 3n · n3 + 1 is a multiple of 7.

(Bulgarian Mathematical Competition, 1995)

53) Find the sum of all positive integers that are less than 10,000 whose
squares divided by 17 leave remainder 9.

54) What is the largest positive integer m with the property that, for any
positive integer n, m divides n241 − n? What is the new value of m if n is
restricted to be odd?

(Konstantinos Drakakis, University College Dublin, Ireland; Newsletter of
the European Mathematical Society, Issue 77, 2010, Problem 69)

55) Let f be a nonconstant polynomial with positive integer coefficients.
Prove that if n is a positive integer, then f(n) divides f(f(n)+ 1) if and only
if n = 1.

(Problem B1, The Sixty-Eighth William Lowell Putnam Mathematical
Competition, 2007. Amer. Math. Monthly, 115(2008), pp. 731, 735)

56) Let Nn and Dn be two relatively prime positive integers. If

1 +
1
2

+
1
3

+ · · · + 1
n

=
Nn

Dn
,

find all prime numbers p with p ≥ 5, such that

p | Np−4.

(Crux Mathematicorum, 1989, p. 62, Problem 1310. Proposed by Robert E.
Shafer, Berkeley, California)
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57) Given the positive integer n and the prime number p such that pp | n!,
prove that

pp+1 | n!.

(Proposed by D. Beckwith, Amer. Math. Monthly, Problem No. 11158, 2005)

58) Prove that there are no integer values of x, y, z, where x is of the form
4k + 3 ∈ Z, such that

xn = yn + zn,

where n ∈ N − {1}.

59) Let Pn denote the product of all distinct prime numbers p1, p2, . . . , pk,
which are less than or equal to n (where k < n). Prove that Pn divides the
integer

nk

p1−1∑

λ=0

(−1)λ

(
n

λ

)
·

p2−1∑

λ=0

(−1)λ

(
n

λ

)
· · ·

pk−1∑

λ=0

(−1)λ

(
n

λ

)
.

60) Determine all pairs of positive integers (a, b), such that the number

a2

2ab2 − b3 + 1

is a positive integer.

(44th IMO, Tokyo, Japan)

61) Prove that for every integer m ≥ 2 we have

F (Fm+1−1)
m ≡ 1 (mod Fm+1),

where Fm denotes the mth Fermat number.

62) Prove that

φ(n) ≥
√
n

2
for every positive integer n.

63) Let n be a perfect even number. Prove that the integer

n− φ(n)

is a square of an integer and determine an infinity of integer values of k, such
that the integer

k − φ(k)

is a square of an integer.

(Crux Mathematicorum, 1988, p. 93, Problem 1204. Proposed by Thomas E.
Moore, Bridgewater State College, Bridgewater, Massachusetts)
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64) Let n be an integer greater than one. If n = pk1
1 p

k2
2 · · · pkr

r is the canonical
form of n, then prove that

∑

d|n
dφ(d) =

p2k1+1
1 + 1
p1 + 1

· p
2k2+1
2 + 1
p2 + 1

· · · p
2kr+1
r + 1
pr + 1

.

65) Let n be an integer greater than one. If n = pk1
1 p

k2
2 · · · pkr

r is the canonical
form of n, then prove that

∑

d|n
μ(d)φ(d) = (2 − p1)(2 − p2) · · · (2 − pr).

66) Let n, λ ∈ N with λ > 1 and 4 | n. Solve the diophantine equation

Φ(n)x + φ(n)y = φ(n)λ, (a)

where
Φ(n) =

∑

1≤q<n
gcd(n,q)=1

q

and φ(n) is the Euler function.

67) Prove that

σ1(n!) <
(n+ 1)!

2
for all positive integers n, where n ≥ 8.

(Crux Mathematicorum, 1990, Problem 1399, p. 58. Proposed by Sydney
Bulman-Fleming and Edward T.H. Wang, Wilfried Laurier, University of

Waterloo, Ontario)

68) Prove that
+∞∑

n=1

τ(n)
2n

=
+∞∑

n=1

1
φ(2n+1) − 1

.

69) If f is a multiplicative arithmetic function, then

(α) Prove that
∑

d|n
f(d) =

∏

pa‖n

(1 + f(p) + f(p2) + · · · + f(pa)),

where pa‖n denotes the greatest power of the prime number p which
divides n.
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(β) Prove that the function

g(n) =
∑

d|n
f(d)

is multiplicative.
(γ) Prove that ⎛

⎝
∑

d|n
τ(d)

⎞

⎠
2

=
∑

d|n
τ3(d).

70) Consider two arithmetic functions f , g, such that

A(n) =
∑

d|n
f(d)g

(n
d

)

and g are multiplicative.
Prove that f must also be multiplicative.

71) Prove that
+∞∑

n=2

f(ζ(n)) = 1,

where f(x) = x − �x� denotes the fractional part of x ∈ R and ζ(s) is the
Riemann zeta function.

(H. M. Srivastava, University of Victoria, Canada)

72) Prove that
π(x) ≥ log log x,

where x ≥ 2.
(Hint: Prove first the inequality

pn < 22n

,

where pn denotes the nth prime number.)

73) Prove that any integer can be expressed as the sum of the cubes of five
integers not necessarily distinct.

(T. Andreescu, D. Andrica and Z. Feng)

74) Let n be an integer. An integer A is formed by 2n digits each of which is
4; however, another integer B is formed by n digits each of which is 8. Prove
that the integer

A+ 2B + 4

is a perfect square of an integer.

(7 th Balcan Mathematical Olympiad, Kusadasi, Turkey)
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75) Find the integer values of x for which the expression x2 + 6x is a square
of an integer.

76) Express the integer 459 as the sum of four squares of integers.

77) Find the three smallest positive consecutive natural numbers, whose sum
is a perfect square and a perfect cube of a natural number.

(M. Th. Rassias, Proposed problem No. 94, Euclid Mathematical Magazine
B’, Greek Math. Soc., 62(2006), p. 80)

78) Find all prime numbers p such that the number

2p−1 − 1
p

is a square of an integer.

(S. E. Louridas, Athens, Greece)

79) Let n be a positive integer, such that the gcd(n, 6) = 1. Prove that the
sum of n squares of consecutive integers is a multiple of n.

80) Prove that for every m ∈ N − {1, 2}, such that the integer 7 · 4m can be
expressed as a sum of four squares of nonnegative integers a, b, c, d, each of
the numbers a, b, c, d is at least equal to 2m−1.

(W. Sierpiński, 250 Problèmes de Théorie Élémentaire des Nombres, P.W.,
Warsaw, 1970)

81) Let n be a positive integer and d1, d2, d3, d4 the smallest positive integer
divisors of n with d1 < d2 < d3 < d4. Find all integer values of n, such
that

n = d2
1 + d2

2 + d2
3 + d2

4.

82) Let a, b be two positive integers, such that

ab+ 1 | a2 + b2.

Prove that the integer
a2 + b2

a b+ 1
is a perfect square of a positive integer.

(Shortlist, 29 th International Mathematical Olympiad, 1988)
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83) Let k be an integer, which can be expressed as a sum of two squares of
integers, that is,

k = a2 + b2 with a, b ∈ Z.

If p is a prime number greater than 2, which can be expressed as a sum of
two squares of integers c, d for which it holds

(c2 + d2) | (a2 + b2) and (c2 + d2) � | (a+ b),

prove that the integer
a2 + b2

c2 + d2
=
k

p

can be expressed as a sum of two squares of integers.

84) Prove that the integer

p1p2 · · · pn − 1, wheren ∈ N withn > 1,

cannot be represented as a perfect power of an integer.
(By p1, p2, . . . , pn we denote, respectively, the 1st, 2nd, 3rd, . . . , nth prime
number.)

(M. Le, The perfect powers in {p1p2 · · · pn}+∞
n=1, Octogon Mathematical

Magazine 13(2)(2005), pp. 1101–1102)

85) Let f(x) = ax2+bx+c be a quadratic polynomial with integer coefficients
such that f(0) and f(1) are odd integers. Prove that the equation f(x) = 0
does not accept an integer solution.

86) A function f : N → N is defined as follows: writing a number x ∈ N in
its decimal expansion and replacing each digit by its square we obtain the
decimal expansion of the number f(x). For example, f(2) = 4, f(35) = 925,
f(708) = 49064. Solve the equation f(x) = 29x.

(Vladimir Protasov, Moscow State University; Newsletter of the European
Mathematical Society, Issue 77, 2010, Problem 67)

87) Prove that the only integer solution of the equation

y2 = x3 + x

is x = 0, y = 0.

88) Prove that the equation 7x3−13y = 5 does not have any integer solutions.

(S. E. Louridas, Athens, Greece)

89) Show that for any n ∈ N, the equation q = 2p2n + 1, where p and q are
prime numbers, has at most one solution.

(Konstantinos Drakakis, University College Dublin, Ireland; Newsletter of
the European Mathematical Society, Issue 67, 2008, Problem 23, p. 46)
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90) Find all positive integers x, y, z such that

x3 + y3 + z3 − 3xyz = p,

where p is a prime number with p > 3.

(Titu Andreescu and Dorin Andrica, Problem 27, Newsletter of the
European Mathematical Society, 69(2008), p. 24)

91) Prove that there exists an integer n such that

p(p+3)/2

∣∣∣∣∣

[
(p− 1)p−1 − p− 1 +

2a∑

i=0

(p2 − a+ i)m

]

× [(2 · 4 · · · (p− 1))p−1 − n(−1)(p+1)/2],

where m is an odd positive integer, a ∈ N and p is an odd prime number.

92) Find the minimum value of the product xyz over all triples of positive
integers x, y, z for which 2010 divides x2 + y2 + z2 − xy − yz − zx.

(Titu Andreescu, The University of Texas at Dallas, USA; Newsletter of the
European Mathematical Society, Issue 77, 2010, Problem 70)

93) Find all pairs (x, y) of positive integers x, y for which it holds

1
x

+
1
y

=
1
pq
,

where p, q are prime numbers.

94) Let n be a positive integer. Prove that the equation

x+ y +
1
x

+
1
y

= 3n

does not accept solutions in the set of positive rational numbers.

(66th Panhellenic Mathematical Competition, “ARCHIMEDES”)

95) Find all integers n, n ≥ 2, for which it holds

1n + 2n + · · · + (n− 1)n ≡ 0 (mod n).

96) Prove that for every positive integer k, the equation

x3
1 + x3

2 + · · · + x3
k + x2

k+1 = x4
k+2
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has infinitely many solutions in positive integers, such that x1 < x2 < · · · <
xk+1.

(Dorin Andrica, “Babes-Bolyai” University, Cluj-Napoca,
Romania; Newsletter of the European Mathematical Society,

Issue 77, 2010, Problem 71)

97) Prove that for every prime number p , the equation

2p + 3p = an

does not have integer solutions for all a, n with a, n ∈ N − {1}.

98) Let p1, p2 be two odd prime numbers and a, n integers such that a > 1
and n > 1. Prove that the equation

(
p2 − 1

2

)p1

+
(
p2 + 1

2

)p1

= an

accepts integer solutions for a, n only in the case p1 = p2.

(M.Th. Rassias, Proposed problem W. 5, Octogon Mathematical Magazine,
17(1)(2009), p. 307)

99) Find all integer solutions of the equation

a7 − 1
a− 1

= b5 − 1.

(Shortlisted, 47th IMO, Slovenia, 2006)

100) Find all integer solutions of the system

x+ 4y + 24z + 120w = 782 (a)

0 ≤ x ≤ 4 (b)

0 ≤ y ≤ 6 (c)

0 ≤ z ≤ 5. (d)

101) Find all integer solutions of the system

35x+ 63y + 45z = 1 (a)

|x| < 9 (b)

|y| < 5c (c)

|z| < 7. (d)
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102) Find the integer solutions of the system

x2 + 2yz < 36 (a)

y2 + 2zx = −16 (b)

z2 + 2xy = −16. (c)

(National Technical University of Athens, Entrance Examinations, 1946)

103) Let a, b, c be real numbers which are not all equal. Prove that positive
integer solutions of the system

(b− a)x− (c− b)z = 3b (a)

(c− b)y − (a− c)x = 3c (b)

(a− c)z − (b− a)y = 3a (c)

do not exist, except the trivial solution

(x, y, z) = (1, 1, 1),

which occurs only when a+ b+ c = 0.

104) Show that, for any n ∈ N, any k ∈ N which is not equal to a power
of 10, and any sequence of (decimal) digits x0, x1, . . . , xn−1 in {0, 1, . . . , 9},
there exists an m ∈ N ∪ { 0} such that the first n decimal digits of the power
km are, from left to right, xn−1xn−2 · · ·x1x0. As an example, a power of 2
beginning with the digits 409 is 212 = 4096.

(Konstantinos Drakakis, University College Dublin, Ireland; Newsletter of
the European Mathematical Society, Issue 69, 2008, Problem 37, p. 23)

105) In order to file a collection of n books, each book needs a number label
from 1 to n. To form this number, digit stickers are used: for example, the
number 123 will be formed by the three stickers 1, 2, and 3 side by side
(unnecessary zeros in the beginning, such as 00123, are not added, as this
would be a terrible waste).

These stickers are sold in sets of 10, and each decimal digit {0, 1, 2, . . . , 9}
appears exactly once in the set. How many sets of stickers are needed? As an
example, for n = 21 books, digit 1 appears 13 times (in numbers 1, 10–19,
and 21—note that it appears twice in 11!), 2 appears 4 times (2, 12, 20, and
21), and every other digit from 3 to 9 appears exactly twice, so overall 13 sets
are needed.

(Konstantinos Drakakis, University College Dublin, Ireland; Newsletter of
the European Mathematical Society, Issue 73, 2009, Problem 45, p. 52)
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Solutions

You are never sure whether or not a problem is good
unless you actually solve it.

Mikhail Gromov (Abel Prize, 2009)

1) If a positive integer n is perfect, prove that

∑

d|n

1
d

= 2.

Proof. We know that the positive integer n is perfect if and only if

σ1(n) = 2n.

Therefore,
∑

d|n

1
d

=
∑

d|n

1
n/d

=
1
n

∑

d|n
d =

1
n
σ1(n)

=
1
n
· 2n = 2. �

2) Let a ≡ b (mod k) and d be an arbitrary common divisor of a and
b. Suppose gcd(k, d) = g, where k is a positive integer. Prove that

a

d
≡ b

d

(
mod

k

g

)
.

Applying the above property prove that if

185 c ≡ 1295 (mod 259),

then c ≡ 0 (mod 7).

M.Th. Rassias, Problem-Solving and Selected Topics in Number Theory: In the Spirit     

© Springer Science +Business Media, LLC 2011 
of the Mathematical Olympiads, DOI 10.1007/978-1-4419-0495-9_11,  
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Proof.
• Since a ≡ b (mod, k), there exists λ ∈ Z such that

a− b = λk ⇔ a− b

d
d = λk ⇔

(
a

d
− b

d

)
d = λk

⇔
(
a

d
− b

d

)
d

g
= λ

k

g
. (1)

However, we know that
gcd(k, d) = g.

Thus, (
k

g
,
d

g

)
= 1. (2)

From (1), (2) we get
k

g

∣∣∣∣∣

(
a

d
− b

d

)
.

That means
a

d
≡ b

d

(
mod,

k

g

)
.

• For the case when a = 185 c, b = 1295, k = 259 it holds

185 = 5 · 37, 1295 = 5 · 7 · 37 and gcd(37, 259) = 37.

Therefore,
185
37

c ≡ 1295
37

(
mod,

259
37

)

or
5c = 35 (mod, 7),

which means
5c− 35 = mult. 7 ⇒ 5(c− 7) = mult. 7.

However, 7 � 5, thus 7| (c− 7) and therefore

c− 7 = mult. 7,

that is,
c ≡ 7 (mod 7).

Hence,
c ≡ 0 (mod 7). �
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3) Prove that there are no integers a, b, c, d such that

abcd− a = 111 . . .1 (The digit 1 appears k times) (a)

abcd− b = 111 . . .1 (The digit 1 appears k times) (b)

abcd− c = 111 . . .1 (The digit 1 appears k times) (c)

abcd− d = 111 . . .1 (The digit 1 appears k times) (d)

where k ∈ N − {1}.
Proof. One has

(a) ⇔ a(bcd− 1) = 111 · · ·1 (The digit 1 appears k times).

The integer 111 · · ·1 (the digit 1 appears k times) is odd. Therefore, the integer
amust necessarily be odd. Similarly, b, c, dmust also be odd integers. However,
in this case the integers

abcd− a, abcd− b, abcd− c, abcd− d

are even, which is not possible, since the integer

111 · · ·1 (the digit 1 appears k times)

is odd. �

4) Prove that there does not exist any prime number in the sequence
of integers

10001, 100010001, 1000100010001, . . . .

Proof. The above sequence of integers can be expressed by the following
representation:

1 + 104, 1 + 104 + 108, . . . , 1 + 104 + 108 + · · · + 104 n, . . . .

This sequence is a special case of the sequence

1 + x4, 1 + x4 + x8, . . . , 1 + x4 + x8 + · · · + x4 n, . . . ,

where x is an integer with x > 1, n ∈ N. We consider two cases:

Case 1. If n = 2k and k ∈ N, then

1 + x4 + x8 + · · · + x4n = 1 + x4 + x8 + · · · + x4 (2k)

= 1 + x4 + (x4)2 + · · · + (x4)2k
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=
1 − (x4)2k+1

1 − x4

=
1 − (x2k+1)4

1 − x4

=
1 − (x2k+1)2

1 − x2
· 1 + (x2k+1)2

1 + x2

=
1 − (x2)2k+1

1 − x2
· 1 + (x2)2k+1

1 + x2
.

Thus,

1 + x4 + x8 + · · · + x4n = ( 1 + x2 + · · · + (x2)2k) (1 − x2 + · · · + (x2)2k).

Therefore, for every n ∈ N with n = 2k, k ∈ N, the number

1 + x4 + x8 + · · · + x4n

is composite.

Case 2. If n = 2k + 1 and k ∈ N, then

1 + x4 + x8 + · · · + x4n = 1 + x4 + x8 + · · · + x4 (2k+1)

= (1 + x4) + (x8 + x12) + · · · + (x8k + x8k+4)

= (1 + x4) + x8(1 + x4) + · · · + x8k(1 + x4)

= (1 + x4) (1 + x8 + x12 + · · · + x8k).

Therefore, for every n ∈ N with n = 2k + 1, k ∈ N, the number

1 + x4 + x8 + · · · + x4n

is composite.

In the special case when x = 10 and n = 1 we obtain

1 + 104 = 10001 = 73 × 137.

Therefore, in every case, the sequence of integers

1 + x4, 1 + x4 + x8, . . . , 1 + x4 + x8 + · · · + x4 n, . . . ,

where x is an integer with x > 1 and n ∈ N, does not contain prime
numbers. �
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5) Find the last three digits of the integer 79999.

(N.M.M., 1937–38, p. 415, Problem 216. Proposed by Victor Thebault,
Le Mans, France. Solved by D.P. Richardson, University of Arkansas)

Proof. We note that 74 = 2401. Therefore, we obtain

74n = (2401)n = (1 + 2400)n = 1 + n · 2400 +
(
n

2

)
· 24002 + · · · .

In the above expression from the third term onwards, all terms end with at
least four zero digits and therefore do not influence the three final digits of
the number 74n, where n ∈ N.

In order to determine the last three digits of the integer 74n, it is enough
to determine the last three digits of the integer 1 + n · 2400.

However,
1 + n · 2400 = 24n · 100 + 1.

Consider the integer m to be the last digit of 24n.
Then

24n · 100 + 1 = (· · ·m)100 + 1 = · · ·m01,

which means that the integers m, 0, 1 are the last three digits of the integer

24n · 100 + 1.

For n = 2499 one has 24n = 59976 which ends up with 6. Thus, the
number

74n = 79996

ends up with 601.
However, 73 = 343 and therefore

79999 = 79996 · 73 = (· · · 601)(343)

= · · · 143,

where (· · · 143) is easily derived if one multiplies the numbers (· · · 601) and
(· · · 343).

Therefore, the last three digits of the integer 79999 are the numbers
1, 4, 3. �

6) Determine the last three digits of the integer

200320022001
.

(Canada, 2003)
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Solution. It is evident that

200320022001 ≡ 320022001
(mod 1000). (1)

However, we observe that φ(1000) = 400. Therefore, we shall compute

20022001 (mod 400).

But, 2000 ≡ 0 (mod 400). Thus,

20022001 ≡ 22001 (mod 400)

≡ 21997 · 16 (mod 400)

≡ 16 m (mod 400), (2)

for some integer m.
Of course, generally we know that if

a ≡ b (mod k)

and d is any common divisor of a and b, with g = gcd(k, d), then

a

d
≡ b

d

(
mod

k

g

)
.

Hence, in our case, since 400 = 16 · 25, we get

21997 ≡ m (mod 25). (3)

However, we also observe that φ(25) = 20. Hence, we have

220 ≡ 1 (mod 25).

Thus,
22000 ≡ 1 (mod 25).

Therefore, by (3) we get

22000

23
≡ m (mod 25)

or
1
23

≡ m (mod 25)

or
22 ≡ m (mod 25).

By the above congruence and relation (2), we obtain

20022001 ≡ 16 · 22 (mod 400).
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So, by (1) we get

200320022001 ≡ 320022001 ≡ 316·22 (mod 1000)

≡ 9176 ≡ (10 − 1)176 (mod 1000).

But

(10 − 1)176 = 10176 −
(

176
1

)
10175 + · · · +

(
176
2

)
102 −

(
176
1

)
10 + 1

= 1000r+
175 · 176

2
102 − 176 · 10 + 1,

for some integer r1.
Hence,

(10 − 1)176 = 15, 400 · 102 − 1, 760 + 1

and then

200320022001 ≡ 1, 540 · 103 − 1, 760 + 1 ≡ 241 (mod 1000).

Therefore, the last three digits of the integer 200320022001
are 2, 4, 1. �

7) Prove that if the integers a1, a2, . . . , a9 are not divisible by 3, then

a2
1 + a2

2 + · · · + a2
9 ≡ 0 (mod 3).

Proof. Since the integers a1, a2, . . . , a9 are not divisible by 3, it follows that

ai ≡ 1 (mod, 3) or ai ≡ 2 (mod, 3), where i = 1, 2, . . . , 9.

• If ai ≡ 1 (mod, 3), then ai = 3κ+ 1, κ ∈ Z.

Therefore,

a2
i = 9 κ2 + 6 κ+ 1 = 3(3κ2 + 2κ) + 1 = 3μ+ 1,

where μ = 3κ2 + 2κ ∈ Z.
• If ai ≡ 2 (mod, 3), then ai = 3κ+ 2, κ ∈ Z.
Therefore,

a2
i = 9κ2 + 12κ+ 4 = 3(3κ2 + 4κ+ 1) + 1 = 3λ+ 1,

where λ = 3 κ2 + 4 κ+ 1 ∈ Z.
Thus, in every case the integer a2

i can be expressed in the form 3 ρi + 1,
where ρi ∈ Z and i = 1, 2, . . . , 9.

Hence,

a2
1 + a2

2 + · · · + a2
9 = (3ρ1 + 1)2 + (3ρ2 + 1)2 + · · · + (3ρ9 + 1)2

= 9 (ρ2
1 + ρ2

2 + · · · + ρ2
9) + 6 (ρ1 + ρ2 + · · · + ρ9) + 9

≡ 0 (mod, 3).

Consequently,
a2
1 + a2

2 + · · · + a2
9 ≡ 0 (mod, 3). �
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8) Let a be an integer. Prove that there are no integers b, c with
c > 1, such that

(a+ 1)2 + (a+ 2)2 + · · · + (a+ 99)2 = bc. (a)

(1998 Hungarian Mathematical Olympiad)

Proof. Assume that there exist integers a, b, c with c > 1, such that

(a+ 1)2 + (a+ 2)2 + · · · + (a+ 99)2 = bc.

But

(a+ 1)2 + (a+ 2)2 + · · · + (a+ 99)2

= (a2 + 2 · a · 1 + 12) + (a2 + 2 · a · 2 + 22) · · · + (a2 + 2 · a · 99 + 992)

= 99a2 + 2 · 99 · 100
2

· a+
99 · 100 · 199

6

= 33(3a2 + 300a+ 50 · 199).

Therefore,
33(3a2 + 300a+ 50 · 199) = bc (b)

for a, b, c ∈ Z with c > 1. From (b) it follows that

3 | b.
Since c = 2, 3, . . . it follows that

32 | bc.
Then from (b) it should hold

32 | 33(3a2 + 300a+ 50 · 199),

which is not possible. Thus, (a) cannot be satisfied. �

9) If m,n,m1, n1 are positive integers such that

(m+ n)(m+ n− 1) + 2m = (m1 + n1)(m1 + n1 − 1) + 2m1, (a)

prove that m = m1 and n = n1.

Proof. From (a) we obtain

(m+ n)2 + (m− n) = (m1 + n1)2 + (m1 − n1)

or equivalently

(m+ n+m1 + n1)(m+ n−m1 − n1) = m1 − n1 −m+ n. (b)
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Case 1. Suppose that
m1 − n1 −m+ n = 0. (c)

Then because of the fact that m,n,m1, n1 are positive integers and thus m+
n+m1 + n1 �= 0 from (b) and (c) it follows that

m+ n−m1 − n1 = 0. (d)

From (c) and (d) by adding and subtracting, respectively, we get

n = n1 and m = m1.

Case 2. Suppose that
m1 − n1 −m+ n �= 0. (e)

From (b) and (e) it follows that

m+ n−m1 − n1 �= 0,

as well as that

|m1 − n1 −m+ n| = |m+ n+m1 + n1||m+ n−m1 − n1|
= (m+ n+m1 + n1)|m+ n−m1 − n1|,

that is,
|m1 − n1 −m+ n| ≥ m+ n+m1 + n1. (f)

The relation (f) is not possible because from the triangle inequality one has

|m1 − n1 −m+ n| = |(m1 + n) − (n1 +m)|
< |m1 + n| + |n1 +m|
= (m1 + n) + (n1 +m),

that is,
|m1 − n1 −m+ n| < m+ n+m1 + n1,

which contradicts (f).
Hence, if (a) holds, then m = m1 and n = n1. �

10) Prove that if m,n are integers, then the expression

E = m5 + 3m4n− 5m3n2 − 15m2n3 + 4mn4 + 12n5

cannot take the value 33.
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Solution. The expression E can be written as

E = (m5 −m3n2) − 4(m3n2 −mn4) + 3(m4n−m2n3) − 12(m2n3 − n5)

= m3(m2 − n2) − 4mn2(m2 − n2) + 3m2n(m2 − n2) − 12n3(m2 − n2)

= (m2 − n2)(m3 − 4mn2 + 3m2n− 12n3)

= (m2 − n2)[(m3 − 4mn2) + (3m2n− 12n3)]

= (m2 − n2)[m(m2 − 4n2) + 3n(m2 − 4n2)]

= (m2 − n2)(m+ 3n)(m2 − 4n2)

= (m− n)(m+ n)(m+ 3n)(m− 2n)(m+ 2n).

That is,
E = (m− 2n)(m− n)(m+ n)(m+ 2n)(m+ 3n).

It is evident that for n �= 0, n ∈ Z, the expression E has been factored in five
pairwise distinct factors.

Thus, the integer E has at least five pairwise different divisors. But the
number 33 cannot be expressed as a product of five pairwise different factors.
One can write

33 = (−3) · 11 · (−1) · 1 or 33 = 3 · (−11) · (−1) · 1. �

11) Prove that
(2m+ 1)2

n

= 2n+2λn + 1,

for every positive integer n, with λn ∈ Z.

(Elias Karakitsos, Sparta, Greece)

Proof. Let P (n) denote the equality that we want to prove. By the Mathe-
matical Induction Principle we have

• For n = 1, we get

(2m+ 1)2 = 22m2 + 22m+ 1 = 22m(m+ 1) + 1

= 22 · 2λ1 + 1 = 23λ1 + 1

= 21+2λ1 + 1 , where λ1 ∈ Z,

which means that P (1) holds true.
• We shall now prove that if P (n) holds true, then P (n+ 1) also holds true.
In other words, we shall prove that if

(2m+ 1)2
n

= 2n+2λn + 1,
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then
(2m+ 1)2

n+1
= 2n+3λn+1 + 1.

We have

(2m+ 1)2
n+1

= (2m+ 1)2
n·2 = [(2m+ 1)2

n

]2

= (2n+2λn + 1)2 = (2n+2λn)2 + 2 · 2n+2λn + 1

= 22(n+2)λ2
n + 2n+3λn + 1 = 22n+4λ2

n + 2n+3λn + 1

= 2n+3(2n+1λ2
n + λn) + 1 = 2n+3λn+1 + 1.

Hence, with the assumption that P (n) holds true, it follows that P (n + 1)
also holds true. Thus, P (n) holds true for every positive integer n. �

12) Consider m, n ∈ N, such that m + n is odd. Prove that there is
no A ⊆ N such that for all x, y ∈ N, if |x− y| = m then x ∈ A or y ∈ A,
and if |x− y| = n then x �∈ A or y �∈ A.

(Dimiter Skordev, Problem No. 11074, Amer. Math. Monthly, 2004. Solution
by Gerry Myerson, Amer. Math. Monthly, 113(2006), p. 367)

Solution. If we assume that such a set A exists, since y �∈ A and y+m ∈ A,
it follows that A �= ∅.

Suppose that x is an element in A. Now, x+ n �∈ A, thus x + n+m ∈ A
and therefore x + 2n + m �∈ A, that is, x + 2n ∈ A. If one repeats the same
argument, it follows that x+mn ∈ A if and only if m is an even integer.

If, however, x+m+n ∈ A, it follows that x+m �∈ A, and thus x+2m ∈ A,
starting from x ∈ A. If one repeats the same argument, one obtains that
x+mn ∈ A if and only if n is even. So, both m and n have to be even, which
is impossible, since by the hypothesis m+ n is an odd integer. �

13) Let p be an odd prime number. If rj is the remainder when the
integer jp−1 −1/p is divided by p , where j = 1, 2, . . . , p−1, prove that

r1 + 2r2 + · · · + (p− 1)rp−1 ≡ p+ 1
2

(mod p).

(Dorin Andrica, “Babes-Bolyai” University, Cluj-Napoca, Romania)

Proof. For j = 1, 2, . . . , p− 1, we have

jp−1 − 1
p

= ajp+ rj ,

for some integer aj . It follows that

jp − j

p
= jajp+ jrj ,
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hence

jp − j + (p− j)p − (p− j)
p

= jajp+ jrj + (p− j)ap−jp+ (p− j)rp−j .

We obtain

jp + (p− j)p

p
= jajp+ jrj + (p− j)ap−jp+ (p− j)rp−j + 1.

Because

jp + (p− j)p =
(
p

0

)
pp −

(
p

1

)
pp−1j + · · · +

(
p

p− 1

)
pjp−1,

it is evident that p2 | jp + (p− j)p. Therefore, we get

jrj + (p− j)rp−j + 1 ≡ (mod p),

for all j = 1, 2, . . . , p− 1.
Adding up all these relations it follows that

2(r1 + 2r2 + · · · + (p− 1)rp−1) ≡ −(p− 1) (mod p),

hence
r1 + 2r2 + · · · + (p− 1)rp−1 ≡ p+ 1

2
(mod p). �

14) Find all possible decimal digits a such that, for a given n, the
decimal expansions of 2n and 5n both begin by a, and give a neces-
sary and sufficient condition to determine all such integers n.

(Konstantinos Drakakis, University College Dublin, Ireland; Newsletter of
the European Mathematical Society, Issue 73, 2009, Problem 48, p. 54)

Solution. Set

2n = 10m(n)(a(n) + a′(n)), 5n = 10l(n)(b(n) + b′(n)),

so that m, l ∈ N ∪ { 0}, a, b ∈ {1, . . . , 9}, and a′, b′ ∈ [0, 1). It follows that

10n = 5n2n ⇔ (a+ a′)(b+ b′) = 10n−m−l.

However, 1 ≤ (a+ a′)(b+ b′) < 100, forcing n−m− l to be either 0 or 1 only.
The former case leads to

(a+ a′)(b+ b′) = 1 ⇔ a = b = 1, a′ = b′ = 0 ⇔ 2n = 5n = 1 ⇔ n = 0,

while the latter case, setting b = a, leads to

a2 ≤ (a+ a′)(a+ b′) = 10 < (a+ 1)2 ⇔ a = 3.
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This is indeed a possibility, as, for example, 25 = 32, 55 = 3125. But which
values of n lead to such a coincidence?

For such an n, it helps to rewrite

2n = 10m(n)(3 + a′(n)) = 10m(n)(
√

10 + 3 + a′(n) −√
10)

= 10m(n)+ 1
2 (1 + u(n)), u(n) :=

3 + a′(n)√
10

− 1,

and similarly

5n = 10l(n)+ 1
2 (1 + v(n)), v(n) :=

3 + b′(n)√
10

− 1.

Of course, u and v are not independent:

10n = 5n2n = 10m+l+1(1 + u)(1 + v) ⇔ (1 + u)(1 + v) = 1

⇔ v = − u

1 + u
,

and, furthermore,

3√
10

− 1 ≤ u, v <
4√
10

− 1 ⇔ 3√
10

− 1 ≤ u,− u

1 + u
<

4√
10

− 1.

Two inequalities for u have thus been obtained. It follows from the first that

2n = 10m+ 1
2 (1 + u) ⇔ n log 2 = m+

1
2

+ log(1 + u)

⇔ log 3 − 1
2
≤ n log 2 −m− 1

2
< log 4 − 1

2
,

which implies that
[
n log 2 −m− 1

2

]
= 0 ⇔ m =

[
n log 2 − 1

2

]
= �n log 2� .

Here, the square brackets denote rounding to the nearest integer, while the
L-shaped brackets denote the floor function, i.e., truncating to the largest
integer not exceeding the given number. This result is obtained because

−1 < log 3 − 1
2
< 0 < log 4 − 1

2
< 1,

and it implies that

log 3 ≤ n log 2 −
[
n log 2 − 1

2

]
< log 4.
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It follows from the second inequality that

3√
10

− 1 ≤ − u

1 + u
<

4√
10

− 1

⇔ 3√
10

≤ 1
1 + u

<
4√
10

⇔
√

10
4

− 1 < u ≤
√

10
3

− 1,

and, combining the two inequalities,

3√
10

≤ 1 + u = 2n10−
1
2−[n log 2− 1

2 ] ≤
√

10
3
,

which, by taking logarithms, yields

log 3 − 1
2
≤ n log 2 −

[
n log 2 − 1

2

]
− 1

2
<

1
2
− log 3

⇔ log 3 ≤ n log 2 −
[
n log 2 − 1

2

]
< 1 − log 3.

To summarize,

|s− [s]| < 1
2
− log 3, s := n log 2 − 1

2
≈ 0.0228787453,

is a necessary and sufficient condition for 2n and 5n to have the same first
decimal digit in their decimal expansions. The first few such values of n can
be found using a computer:

n = 5, 15, 78, 88, 98, 108, 118, 181, 191, 201, . . . . �

15) Let a, n be positive integers such that an is a perfect number.
Prove that

an/μ >
μ

2
,

where μ denotes the number of distinct prime divisors of an.

(M.Th. Rassias, Proposed problem W. 27, Octogon Mathematical Magazine,
17(1)(2009), p. 311)

Proof. It is a known fact that for every perfect number m it holds

∑

d|m

1
d

= 2.

Therefore, ∑

d|an

1
d

= 2.
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Assume that
an = pk1

1 p
k2
2 · · · pkμ

μ

is the unique prime factorization of the number an. It is obvious that

1
pk1
1

+
1
pk2
2

+ · · · + 1

p
kμ
μ

< 2. (1)

From Cauchy’s arithmetic-geometric mean inequality it follows

μ

√
pk1
1 p

k2
2 · · · pkμ

μ ≥ μ
1

p
k1
1

+ 1

p
k2
2

+ · · · + 1

p
kμ
μ

,

that is,
1
pk1
1

+
1
pk2
2

+ · · · + 1

p
kμ
μ

≥ μ

μ

√
pk1
1 p

k2
2 · · · pkμ

μ

.

Therefore,
1
pk1
1

+
1
pk2
2

+ · · · + 1

p
kμ
μ

≥ μ

an/μ
. (2)

From (1) and (2) it follows that

2 >
μ

an/μ
⇔ an/μ >

μ

2
. �

16) Prove that the sum

S =
1
2

+
1
3

+ · · · + 1
n
,

where n > 1 cannot be an integer.

Proof. If we consider an integer A and we prove that the product A ·S is not
an integer, then we will have proved that S is also not an integer. Therefore,
our purpose is to consider the suitable integer A.

Let k ∈ Z be the greatest integer, such that 2k ≤ n. Consider, also, the
integerB which represents the product of all odd numbers which do not exceed
n.

Obviously 2k−1B ∈ Z. This is exactly the integer A we are looking for.

A · Ss = 2k−1B · S =
2k−1(3 · 5 · · ·λ)

2
+

2k−1(3 · 5 · · ·λ)
3

+ · · ·

+
2k−1(3 · 5 · · ·λ)

2k
+ · · · + 2k−1(3 · 5 · · ·λ)

n
,

where λ is the greatest odd integer, which does not exceed n.
All the terms in the above summation are integers with the exception of

the number
2k−1(3 · 5 · · ·λ)

2k
.

Therefore, A · S /∈ Z. Hence, S /∈ Z. �
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17) Let n ≥ 3 be an odd positive integer. Prove that the set

A =
{(

n

1

)
,

(
n

2

)
, . . . ,

(
n

n−1
2

)}

contains an odd number of odd integers.

(Revista Matematică Timisoara, No.2 (1984), Problem 5346)

Proof. In order to prove that the setA contains an odd number of odd integers,
it is enough to prove that the sum of its elements is an odd integer, because
in every other case the sum of the elements of A is an even number. Let n be
an odd positive integer with n ≥ 3.

Set

Sn =
(
n

1

)
+
(
n

2

)
+ · · · +

(
n

(n− 1)/2

)
.

It is enough to prove that Sn is an odd integer. We know that
(
n

k

)
=

(
n

n− k

)

for k, n ∈ N with k ≤ n.
Therefore, it holds
(
n

1

)
+
(
n

2

)
+ · · · +

(
n

n−1
2

)
=

(
n

n− 1

)
+
(

n

n− 2

)
+ · · · +

(
n

n+1
2

)
.

That is,

2Sn =
(
n

1

)
+
(
n

2

)
+ · · · +

(
n

n− 1

)

=
[(
n

1

)
+
(
n

2

)
+ · · · +

(
n

n

)]
−
[(
n

0

)
+
(
n

n

)]

= 2n − 2.

Therefore,
Sn = 2n−1 − 1.

It is clear that the number Sn is odd. �

18) Prove that every positive rational number can be expressed in
the form

a3 + b3

c3 + d3
,

where a, b, c, d are positive integers.
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Proof. Firstly, we will prove that every rational number in the open interval
(1, 2) can be expressed in the form

a3 + b3

a3 + d3
.

Let κ
λ ∈ (1, 2), where κ, λ are positive integers with gcd(κ, λ) = 1.

Consider a, b, d such that

b �= d and a2 − ab+ b2 = a2 − ad+ d2, then b+ d = a.

Thus, we obtain
a3 + b3

a3 + d3
=
a+ b

a+ d
=

a+ b

2a− b
.

Therefore, for a+ b = 3κ and 2a− b = 3λ, we obtain

a+ b = 3κ
2a− b = 3λ

}
⇔ a = κ+ λ

b = 2κ− λ.

}

Thus, for a = κ+ λ, b = 2κ− λ the claim is proved.
Suppose now that r is any positive rational number, r > 0, and q1, q2 two

positive integers such that

1 <
q31
q32
r < 2.

Therefore, there exist positive integers a, b, d such that

q31
q32
r =

a3 + b3

a3 + d3

and thus

r =
(aq2)3 + (bq2)3

(aq1)3 + (dq1)3
. �

19) Prove that every composite positive integer can be represented
in the form

xy + xz + yz + 1,

where x, y, z are positive integers.

(Problem 1, The Forty-Ninth William Lowell Putnam Mathematical
Competition, 1988)

Proof. It is evident that every composite positive integer can be expressed in
the form a · b, where a and b are positive integers with a, b ≥ 2. Therefore, if
c is a composite positive integer, then

c = a · b.
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Set z = 1 in the expression xy + xz + yz + 1. Then

xy + x+ y + 1 = (x+ 1)(y + 1).

However,
(x+ 1)(y + 1) = a · b

for x = a − 1 and y = b − 1. Therefore, every composite positive integer can
be represented in the form

xy + xz + yz + 1,

where x = a− 1, y = b− 1 and z = 1. �

20) If for the rational number x the value of the expression

2x4 + 3x+ 1

is an integer, prove that x is also an integer.

(School of Aviation Engineers of Greece, Entrance Examinations, 1968)

Proof. Since x is a rational number, it follows that x = a
b where a, b are

integers, such that b �= 0 and gcd(a, b) = 1.
In addition, by hypothesis, it is true that

2x4 + 3x+ 1 = λ, λ ∈ Z. (a)

Thus, (a) can be written in the form

2
(a
b

)4

+ 3 · a
b

+ 1 = λ,

that is,
2a4 + 3ab3 + b4 = λb4.

Therefore,
(λb − b− 3a)b3 = 2a4. (b)

However, gcd(a, b) = 1, thus gcd(a4, b3) = 1.
But λb − b− 3a ∈ Z and

b3 | (λb− b− 3a)b3,

thus
b3 | 2a4. (c)

From (c) and the fact that gcd(a4, b3) = 1, it follows that

b3 | 2.
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This implies that
b3 = ±1 or b3 = ±2.

The case b3 = ±2 is impossible in the set of integers.
Thus, b3 = ±1, that is, b = ±1. Hence, we obtain

x =
a

b
= ±a ∈ Z,

that is, x is an integer. �

21) Consider the sequence (xn) of real numbers, which is defined by
the recursive formula

x1 = 0, xn+1 = 5xn +
√

24x2
n + 1,

where n = 1, 2, 3, . . . .
Prove that all the terms of the sequence are integers.

Proof. It is true that

(xn+1 − 5xn)2 = (
√

24x2
n + 1)2

⇔ x2
n+1 − 10xnxn+1 + 25x2

n = 24x2
n + 1

⇔ x2
n+1 + x2

n − 10xnxn+1 − 1 = 0

⇔ x2
n+1 − 10xnxn+1 + x2

n − 1 = 0. (a)

Therefore, for n ≥ 2 we obtain that

x2
n − 10xnxn−1 + x2

n−1 − 1 = 0. (b)

Consider the equation

y2 − 10xny + x2
n − 1 = 0. (c)

From (a), (b) it follows that the numbers xn+1, xn−1 are roots of the equation
(c). It is obvious that xn+1 > xn > xn−1. Thus, the roots xn+1, xn−1 are
distinct.

Therefore, for n ≥ 2 it follows from Viète’s formulae that

xn+1 + xn−1 = 10xn. (d)

For n = 2 we obtain
x3 + x1 = 10x2. (e)

But, we know that x1 = 0, that is,

x2 = 5x1 +
√

24x2
1 + 1 = 1.

Thus, from (e), one has x3 = 10. Therefore, since x1 = 0, x2 = 1, x3 = 10,
that is, x1, x2, x3 ∈ Z and xn+1 + xn−1 = 10xn, it follows that all the terms
of the sequence (xn) are integers. �
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22) Let a ∈ Z, n, k ∈ N with k ≡ −a2 (mod 2n). Prove that

√
2
√
k + a2 ≤ k + a2

2n
+ n ≤ 1

2
(k + a2) + 1.

Proof. It is evident that n ≥ 1 and k + a2 ≥ 2n. Therefore, it holds

1
2
(k + a2) ≥ n ≥ 1. (a)

Consider the function

f :
[
1,

1
2
(k + a2)

]
→ R, defined by f(x) =

k + a2

2x
+ x.

We will examine the monotonicity of the function f . We have

f ′(x) = −k + a2

2x2
+ 1.

However, the following implications hold:

1 ≤ x ≤ 1
2
(k + a2)

2
k + a2

≤ 1
x
≤ 1

4
(k + a2)2

≤ 1
x2

≤ 1

− 1 ≤ − 1
x2

≤ − 4
(k + a2)2

− k + a2

2
≤ −k + a2

2x2
≤ −2(k + a2)

(k + a2)2

− k + a2

2
+ 1 ≤ −k + a2

2x2
+ 1 ≤ − 2

k + a2
+ 1,

that is,

−k + a2

2
+ 1 ≤ f ′(x) ≤ − 2

k + a2
+ 1.

Therefore, the derivative function f ′ can take both positive and negative
values (because of (a)).

For f ′(x) = 0 we obtain

k + a2

2x2
= 1 ⇔ x = ±

√
k + a2

2
.
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From the definition of f it must be x ≥ 1 > 0 and hence for f ′(x) = 0 one has

x =

√
k + a2

2
=

√
2
√
k + a2

2
.

Thus, for

x ≤
√

2
√
k + a2

2

⇒ x2 ≤ k + a2

2

⇒ 1
x2

≥ 2
k + a2

⇒ − 1
x2

≤ − 2
k + a2

⇒ −k + a2

2x2
≤ −1

⇒ −k + a2

2x2
+ 1 ≤ 0,

that is,
f ′(x) ≤ 0.

Therefore, for

1 ≤ x ≤
√
k + a2

2
the function f is decreasing. Thus, it holds

f(1) ≥ f(x) ≥ f

(√
k + a2

2

)
.

For

x ≥
√

2
√
k + a2

2
⇒ x2 ≥ k + a2

2

⇒ − 1
x2

≥ − 2
k + a2

⇒ −k + a2

2x2
≥ −1

⇒ −k + a2

2x2
+ 1 ≥ 0,
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that is,
f ′(x) ≥ 0.

Thus, for √
k + a2

2
≤ x ≤ 1

2
(k + a2)

the function f is increasing.
Therefore, the function f has total (global) maximum for

x = 1, x =
1
2
(k + a2)

and total (global) minimum for

x =

√
k + a2

2
.

Hence,

f

(√
k + a2

2

)
≤ f(x) ≤ f(1) = f

(
1
2
(k + a2)

)

⇔ k + a2

2
√

k+a2

2

+

√
k + a2

2
≤ k + a2

2x
+ x ≤ k + a2

2
+ 1

⇔ k + a2

√
2
√
k + a2

+
√

2
√
k + a2

2
≤ k + a2

2x
+ x ≤ k + a2

2
+ 1

⇔ √
2
√
k + a2 ≤ k + a2

2x
+ x ≤ k + a2

2
+ 1.

Therefore, the inequality we want to prove is valid for every real value of
x, such that x ∈ [1, 1

2 (k + a2)] and thus it holds for every n ∈ N for which
1 ≤ n ≤ 1

2 (k + a2). Thus,

√
2
√
k + a2 ≤ k + a2

2n
+ n ≤ 1

2(k + a2) + 1
. �

23) Let n1 = abcabc and n2 = d00d be positive integers represented
in the decimal system, where a, b, c, d ∈ {0, 1, 2, . . . , 9} with a �= 0 and
d �= 0.

i) Prove that
√
n1 cannot be an integer.

ii) Find all positive integers n1 and n2 such that
√
n1 + n2 is an

integer.
iii) From all the pairs (n1, n2) such that

√
n1n2 is an integer find

those for which
√
n1n2 has the greatest possible value.

(48th National Mathematical Olympiad, Suceava, 1997)
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Solution.

i) It is clear that
n1 = 1, 001 · abc.

However, 1, 001 = 7 · 11 · 13, thus

n1 = 7 · 11 · 13 · abc.

In case
√
n1 is an integer, that is, n1 is a square of a positive integer,

then abc must necessarily be divisible by the numbers

7, 11, 13.

In that case abcmust be divisible by 7·11·13, namely, it must be divisible
by 1, 001, which is impossible.

ii) We have

n1 + n2 = abcabc+ d00d

= 1, 001 · abc+ 1, 001 · d,

that is,
n1 + n2 = 1, 001 · (abc+ d).

For
√
n1 + n2 to be an integer, it means that n1 + n2 is a square of a

positive integer. This happens if and only if

abc+ d = 1, 001.

This is valid if and only if a = 9, b = 9 and the numbers c, d are digits
with sum c+ d = 11, that is, c = 2, d = 9 or c = 3, d = 8 or c = 4, d = 7
or c = 5, d = 6 or c = 6, d = 5 or c = 7, d = 4 or c = 8, d = 3 or c = 9,
d = 2.

iii) We know that
n1 = 1, 001 · abc

and
n2 = 1, 001 · d.

Thus,
n1 · n2 = 1, 0012 · abc · d.

For
√
n1n2 to be an integer, namely, n1n2 to be a square of a positive

integer, it means that
abc · d

is a square of a positive integer, which takes value not greater than

999 · 9 = 8, 991.
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We can easily see that the greatest square of a positive integer less than
8, 991 is 942 = 22 · 472, which cannot be expressed in the representation

abc · d,

because 472 = 2, 209 is a four-digit integer and thus does not have the
decimal form abc.
However, 932 = 9 · 961 = 32 · 312. Hence, the pair (n1, n2) satisfying the
required property is

(961, 9). �

24) Determine the number of real solutions a of the equation
⌊a

2

⌋
+
⌊a
3

⌋
+
⌊a
5

⌋
= a. (a)

(Canadian Mathematical Olympiad, 1998)

Solution. The number a is an integer since it is the sum of three integers
⌊a
2

⌋
,
⌊a
3

⌋
and

⌊a
5

⌋
.

Set
a = 30k + r,

where k, r are integers and 0 ≤ r < 30.
Then (a) can be written as follows

⌊
15k +

r

2

⌋
+
⌊
10k +

r

3

⌋
+
⌊
6k +

r

5

⌋
= 30k + r,

that is,
31k +

⌊r
2

⌋
+
⌊r
3

⌋
+
⌊r
5

⌋
= 30k + r

or
k = r −

⌊r
2

⌋
−
⌊r
3

⌋
−
⌊r
5

⌋
.

To every value of r, 0 ≤ r < 30, corresponds a unique value of k and thus a
unique value of a. However, r can be any one of the numbers 0, 1, 2, 3, . . . , 29.
Hence, there exist exactly 30 real solutions a of the given equation (a). �

25) Let a, b ∈ N. Prove that

⌊
2a
b

⌋
− 2

⌊a
b

⌋
=

{
0, if � 2a

b � is an even integer
1, if � 2a

b � is an odd integer.
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Proof. Let
⌊

2a
b

⌋
= k. Then, it is clear that

k ≤ 2a
b
< k + 1.

Therefore, it is evident that there exists a real number r, 0 ≤ r < 1, such that
2a
b

= k + r

or
a

b
=
k + r

2
. (1)

• If
⌊

2a
b

⌋
is an even integer, then there exists a positive integer λ, such that

k = 2λ. Thus, by (1) we have
a

b
= λ+

r

2
. (2)

However, since 0 ≤ r/2 < 1, by (2) it follows that
⌊a
b

⌋
= λ.

Thus,
⌊

2a
b

⌋
− 2

⌊a
b

⌋
= k − 2λ

= 2λ− 2λ = 0.

• If
⌊

2a
b

⌋
is an odd integer, then similarly there exists a positive integer λ,

such that k = 2λ+ 1. Hence, we obtain
a

b
= λ+

r + 1
2

. (3)

But, the fact that 0 ≤ r < 1, it follows that
1
2
<
r + 1

2
< 1.

Therefore, by (3) we get ⌊a
b

⌋
= λ.

Thus, ⌊
2a
b

⌋
− 2

⌊a
b

⌋
= k − 2λ = 2λ+ 1 − 2λ = 1. �

26) Prove that

�√n+
√
n+ 1 +

√
n+ 2� = �√9n+ 8� (1)

for n = 0, 1, 2, . . . .

(Crux Mathematicorum 28(1)(2002). See also Amer. Math. Monthly, 1988,
pp. 133–134)
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Proof.
• If n = 0, 1, 2 the relation (1) obviously holds.
• If n ≥ 3, n ∈ N, then from Cauchy’s inequality (arithmetic-geometric-
harmonic mean inequality) one has

√
n+

√
n+ 1 +

√
n+ 2

3
>

3
√√

n
√
n+ 1

√
n+ 2

=
√

3
√
n(n+ 1)(n+ 2) (∗)

>

√
n+

8
9

=
√

9n+ 8
3

.

Therefore, √
n+

√
n+ 1 +

√
n+ 2 >

√
9n+ 8. (2)

Furthermore,

√
n+

√
n+ 1 +

√
n+ 2

3
<

√
(
√
n)2 + (

√
n+ 1)2 + (

√
n+ 2)2

3

=

√
3n+ 3

3
=

√
n+ 1, (∗∗)

that is, √
n+

√
n+ 1 +

√
n+ 2 <

√
9n+ 9. (3)

From (2) and (3) it follows that
√

9n+ 8 <
√
n+

√
n+ 1 +

√
n+ 2 <

√
9n+ 9.

Hence,
�√n+

√
n+ 1 +

√
n+ 2� = �√9n+ 8�. �

Remark 11.1. In the proof above, we used the following inequalities:

(∗) If n ≥ 3, n ∈ N, then

n(n+ 1)(n+ 2) >
(
n+

8
9

)3

.

For the proof of (∗∗) we consider the function f : R → R defined by

f(x) = (x − 1)x(x+ 1) −
(
x− 1

9

)3

.
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(∗∗) If α, β, γ are distinct positive real numbers, then

3
√
αβγ <

α+ β + γ

3
<

√
α2 + β2 + γ2

3
.

27) Solve the equation

�3x− 2� − �2x− 1� = 2x− 6, x ∈ R.

(Elias Karakitsos, Sparta, Greece)

Solution. Set �3x − 2� = a, where a ∈ Z. Then, it follows that there exists
ϑ1, with 0 ≤ ϑ1 < 1, such that

3x− 2 − ϑ1 = a

or
x =

a+ ϑ1 + 2
3

.

Set �2x − 1� = b, where b ∈ Z. Then, it follows that there exists ϑ2, with
0 ≤ ϑ2 < 1, such that

2x− 1 − ϑ2 = b

or
x =

b+ ϑ2 + 1
2

.

Therefore,
a− b = 2x− 6

or
2x = a− b+ 6

or
x =

a− b+ 6
2

.

Thus,
a+ ϑ1 + 2

3
=
b+ ϑ2 + 1

2
=
a− b+ 6

2
.

Hence,
2a+ 2ϑ1 + 4 = 3a− 3b+ 18

or
ϑ1 =

a− 3b+ 14
2

.

Similarly
b+ ϑ2 + 1

2
=
a− b+ 6

2
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or
b+ ϑ2 + 1 = a− b+ 6

or
ϑ2 = a− 2b+ 5.

Since 0 ≤ ϑ1 < 1, we obtain

0 ≤ a− 3b+ 14
2

< 1

or
−14 ≤ a− 3b < −12.

Thus,
a− 3b = −14 or a− 3b = −13.

Furthermore, since 0 ≤ ϑ2 < 1, we obtain

0 ≤ a− 2b+ 5 < 1

or
−5 ≤ a− 2b < −4

or
a− 2b = −5.

By solving the systems of equations

a− 3b = −14

a− 2b = −5

and

a− 3b = −13

a− 2b = −5

it follows that a = 13, b = 9 and a = 11, b = 8, respectively.
The above solutions are acceptable, since a and b are integer numbers.

• For a = 13, b = 9 the solution of the initial equation is

x =
a− b+ 6

2
=

13 − 9 + 6
2

=
10
2

= 5.

• For a = 11, b = 8 the solution of the initial equation is

x =
a− b+ 6

2
=

11 − 8 + 6
2

=
9
2

= 4.5.

Therefore, the real solutions of the equation are the numbers 4.5 and 5. �
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28) Solve the equation

�x�2 = �3x− 2�, x ∈ R. (1)

(Elias Karakitsos, Sparta, Greece)

Solution. Set �x� = a, where a ∈ Z. Then it is evident that there exists θ1,
such that

x = a+ θ1, with 0 ≤ θ1 < 1.

In addition, by (1) we have

a2 = �3x− 2�.
Therefore, there exists θ2, such that

a2 = 3x− 2 − θ2.

Thus,

x =
a2 + θ2 + 2

3
.

By the above equalities, it follows that

a2 + θ2 + 2
3

= a+ θ1

or
3θ1 − θ2 = a2 − 3a+ 2.

However, since 0 ≤ θ1 < 1 and 0 ≤ θ2 < 1, we obtain that

−1 < 3θ1 − θ2 < 3.

Hence,
−1 < a2 − 3a+ 2 < 3

and thus
a2 − 3a+ 2 = 0 or 1 or 2.

If a2 − 3a+ 2 = 0, then a = 2 or a = 1 which are both acceptable values
since a ∈ Z.

If a2 − 3a+ 2 = 1, then a = (3 ±√
5)/2 �∈ Z, which is not acceptable.

If a2 − 3a+ 2 = 2, then a = 0 or a = 3, which are both acceptable values.
Therefore, we shall examine the cases when a = 0 or 1 or 2 or 3.

• For a = 0, we have x = a+ θ1 = θ1 and

3θ1 − θ2 = 2

or
θ2 = 3θ1 − 2.
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However, since 0 ≤ θ2 < 1, we get

0 ≤ 3θ1 − 2 < 1

or
2
3
≤ θ1 < 1.

Hence, the real numbers x = θ1, with 2/3 ≤ θ1 < 1, are solutions of (1).
• For a = 1, we have x = a+ θ1 = 1 + θ1 and

3θ1 − θ2 = 12 − 3 · 1 + 2

or
θ2 = 3θ1.

However, since 0 ≤ θ2 < 1, we get

0 ≤ θ1 <
1
3
.

Hence, the real numbers x = 1 + θ1, with 0 ≤ θ1 <
1
3 , are solutions of (1).

• For a = 2, we have x = a+ θ1 = 2 + θ1 and

3θ1 − θ2 = 22 − 3 · 2 + 2

or
θ2 = 3θ1.

However, since 0 ≤ θ2 < 1, we get

0 ≤ θ1 <
1
3
.

Hence, the real numbers x = 2 + θ1, with 0 ≤ θ1 < 1/3, are solutions of (1)
• For a = 3, we have x = a+ θ1 = 3 + θ1 and

3θ1 − θ2 = 32 − 3 · 3 + 2

or
θ2 = 3θ1 − 2.

However, since 0 ≤ θ2 < 1, we get

2
3
≤ θ1 < 1.

Hence, the real numbers x = 3 + θ1, with 2/3 ≤ θ1 < 1, are solutions of (1).
Therefore, the real numbers

x = θ1,
2
3
≤ θ1 < 1
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x = 1 + θ1, 0 ≤ θ1 <
1
3

x = 2 + θ1, 0 ≤ θ1 <
1
3

x = 3 + θ1,
2
3
≤ θ1 < 1

are all the solutions of (1). �

29) Solve the equation

�x2 − 3x+ 2� = 3x− 7, x ∈ R.

(Elias Karakitsos, Sparta, Greece)

Solution. Set �x2 − 3x + 2� = a, where a ∈ Z. Then, it follows that there
exists ϑ, with 0 ≤ ϑ < 1, such that

x2 − 3x+ 2 − ϑ = a.

Thus,
ϑ = x2 − 3x+ 2 − a. (1)

Furthermore,
3x− 7 = a

or
x =

a+ 7
3

. (2)

By (1) and (2), it follows that

ϑ =
(
a+ 7

3

)2

− 3
(
a+ 7

3

)
+ 2 − a

or

ϑ =
a2 − 4a+ 4

9
.

However, since 0 ≤ ϑ < 1, we get

0 ≤ a2 − 4a+ 4
9

< 1.

Thus, it is evident that
0 ≤ a2 − 4a+ 4

and
a2 − 4a− 5 < 0.

Therefore, in order to determine the integer values of a, it suffices to solve the
following system:
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a2 − 4a+ 4 ≥ 0

a2 − 4a− 5 < 0.

However, a2 − 4a+ 4 ≥ 0 always holds true, since (a− 2)2 ≥ 0, for every real
value of a. Furthermore, by a2 − 4a− 5 < 0 it follows that

−1 < a < 5,

and hence a = 0 or 1 or 2 or 3 or 4. Therefore, the solutions of the equation
can be derived by calculating the value of x = (a+ 7)/3, for a = 0, 1, 2, 3, 4.

• For a = 0, we have x = 0+7
3 = 7

3 .

• For a = 1, we have x = 1+7
3 = 8

3 .

• For a = 2, we have x = 2+7
3 = 9

3 = 3.

• For a = 3, we have x = 3+7
3 = 10

3 .

• For a = 4, we have x = 4+7
3 = 11

3 .

Therefore, the real solutions of the equation are the numbers

7
3
,
8
3
, 3,

10
3

and
11
3
. �

30) Prove that for every real number x and a given positive integer
n it holds

�x� +
⌊
x+

1
n

⌋
+
⌊
x+

2
n

⌋
+ · · · +

⌊
x+

n− 1
n

⌋
= �nx�.

(Charles Hermite, 1822–1901)

Proof. Consider the real-valued function f of the real variable x defined by

f(x) = �x� +
⌊
x+

1
n

⌋
+
⌊
x+

2
n

⌋
+ · · · +

⌊
x+

n− 1
n

⌋
− �nx�. (1)

It follows that

f

(
x+

1
n

)
=
⌊
x+

1
n

⌋
+
⌊
x+

1
n

+
1
n

⌋
+
⌊
x+

1
n

+
2
n

⌋

+ · · · +
⌊
x+

1
n

+
n− 2
n

⌋
+
⌊
x+

1
n

+
n− 1
n

⌋
−
⌊
n

(
x+

1
n

)⌋

=
⌊
x+

1
n

⌋
+
⌊
x+

2
n

⌋
+
⌊
x+

3
n

⌋

+ · · · +
⌊
x+

n− 1
n

⌋
+ �x+ 1� − �nx+ 1�
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=
⌊
x+

1
n

⌋
+
⌊
x+

2
n

⌋
+ · · · +

⌊
x+

n− 1
n

⌋
+ �x� + 1 − �nx� − 1

= f(x).

Therefore, for a given positive integer n, it follows that

f

(
x+

1
n

)
= f(x)

for all real values of x.
This implies that f is a periodic function with period 1/n.
However, for every real value of x such that x ∈ [0, 1/n) the function f

vanishes, because every term in the right-hand side of (1) equals zero. Since
f(x) = 0 for every x ∈ [0, 1/n) and f is periodic with period 1/n, it follows
that f(x) = 0 for every

x ∈
[
k

n
,
k + 1
n

)
for k ∈ Z.

Thus,
f(x) = 0 (2)

for every real number x.
From (1) and (2) it follows that

�x� +
⌊
x+

1
n

⌋
+
⌊
x+

2
n

⌋
+ · · · +

⌊
x+

n− 1
n

⌋
= �nx�. �

31) Let k be a positive integer. Prove that there exist polynomials
P0(n), P1(n), . . . , Pk−1(n) (which may depend on k) such that for any
integer n,

⌊n
k

⌋k

= P0(n) + P1(n)
⌊n
k

⌋
+ · · · + Pk−1(n)

⌊n
k

⌋k−1

.

(Problem B5, The Sixty-Eighth William Lowell Putnam Mathematical
Competition, 2007. Amer. Math. Monthly, 115(2008), pp. 732, 737)

Proof. Assume that
x =

⌊n
k

⌋
.

It follows that x must be equal to exactly one of the numbers

n

k
,
n− 1
k

,
n− 2
k

, . . . ,
n− k + 1

k
.
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Thus,

(
x− n

k

)(
x− n− 1

k

)(
x− n− 2

k

)
· · ·

(
x− n− k + 1

k

)
= 0.

If we expand the above product and bring xk to one side of the equation, we
obtain an equation of the form

xk = P0(n) + P1(n)x + P2(n)x2 + · · · + Pk−1(n)xk−1,

namely,

⌊n
k

⌋k

= P0(n) + P1(n)
⌊n
k

⌋
+ · · · + Pk−1(n)

⌊n
k

⌋k−1

. �

32) A rational number r = a/b, where a, b are coprime positive
integers, is called good if and only if r > 1 and there exist integers
N , c, such that for every positive integer n ≥ N , it holds

|{rn} − c| ≤ 1
2(a+ b)

,

where {r} = r − �r�.
Prove that every good rational number is an integer.

(Chinese National Team Selection Contest, 2007)

Proof. Let us suppose that the rational number r is good and set

An = �rn+1� − �rn�.
Therefore, we get

|(r − 1)rn −An| = |rn+1 − �rn+1� − (rn − �rn�)|
= |{rn+1} − {rn}|
= |{rn+1} − c− ({rn} − c)|
≤ |{rn+1} − c| + |{rn} − c|

≤ 1
2(a+ b)

+
1

2(a+ b)
=

1
a+ b

.

However, since rn = an/bn, it is evident that the denominator of the rational
number |(r − 1)rn −An| is a power of the positive integer b. Thus,

|(r − 1)rn −An| < 1
a+ b

. (1)
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In addition, it holds
(r − 1)rn+1 = (r − 1)rn a

b
or

b(r − 1)rn+1 = a(r − 1)rn.

Therefore,

|bAn+1 − aAn| = | bAn+1 − b(r − 1)rn+1 + a(r − 1)rn − aAn|
= |b(An+1 − (r − 1)rn+1) − a(An − (r − 1)rn)|
≤ |b(An+1 − (r − 1)rn+1)| + |a(An − (r − 1)rn)|.

Hence, by (1) it follows that

|bAn+1 − aAn| < b

a+ b
+

a

a+ b
= 1.

Thus, evidently
|bAn+1 − aAn| = 0

or
An+1 =

a

b
An.

By the above relation, it is clear that

An+m =
am

bm
An,

for every positive integer m.
If b > 1, for m sufficiently large, bm fails to divide An, contradicting the

fact that both Am+n and An are integers, so that necessarily b = 1. �

33) Determine the integer part of

109∑

n=1

1
3
√
n2
,

where n ∈ N.

Solution. Since (
n+

1
3

)3

= n3 + n2 +
n

3
+

1
27

and (
n− 1

3

)3

= n3 − n2 +
n

3
− 1

27
,



198 11 Solutions

for n ∈ N, we obtain
(
n+

1
3

)3

> n3 + n2 and
(
n− 1

3

)3

> n3 − n2.

Therefore, if we divide by n3, we get
(

1 +
1
3n

)3

> 1 +
1
n

and
(

1 − 1
3n

)3

> 1 − 1
n
,

and thus

1 +
1
3n

>

(
1 +

1
n

)1/3

and 1 − 1
3n

>

(
1 − 1

n

)1/3

.

Hence, (
1 +

1
n

)1/3

− 1 <
1
3n

< 1 −
(

1 − 1
n

)1/3

,

or

3

((
1 +

1
n

)1/3

− 1

)
<

1
n
< 3

(
1 −

(
1 − 1

n

)1/3
)
.

Thus,

3((n+ 1)1/3 − n1/3) <
1

n2/3
< 3(n1/3 − (n− 1)1/3).

By the above inequality, for n = 2, 3, . . . , 109, we obtain

3(31/3 − 21/3) <
1

22/3
< 3(21/3 − 1)

3(41/3 − 31/3) <
1

32/3
< 3(31/3 − 21/3)

...

3((109 + 1)1/3 − 103) <
1

(109)2/3
< 3(103 − (109 − 1)1/3).

Therefore, by adding the above inequalities by parts, we get

3((109 + 1)1/3 − 21/3) <
109∑

n=2

1
n2/3

< 3(103 − 1).

Hence,

3((109 + 1)1/3 − 21/3) + 1 <
109∑

n=1

1
3
√
n2

< 3(103 − 1) + 1 = 3 · 103 − 2.
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However,

3 · 103 − 2 − 3((109 + 1)1/3 − 21/3) − 1

= 3 · 103 − 3 − 3(109 + 1)1/3 + 3 · 21/3

= 3 · 21/3 − 3 + (3 · 103 − 3(109 + 1)1/3)

< 3 · 21/3 − 3 < 1.

Hence, ⎢⎢⎢⎣
109∑

n=2

1
3
√
n2

⎥⎥⎥⎦ = 3 · 103 − 2 − 1 = 2997. �

34) Calculate the integer part of

+∞∑

n=1

+∞∑

m=1

1
m2n+mn2 + 2mn

.

Solution.

+∞∑

n=1

+∞∑

m=1

1
m2n+mn2 + 2mn

=
+∞∑

n=1

1
n

+∞∑

m=1

1
m(m+ n+ 2)

=
+∞∑

n=1

1
n

+∞∑

m=1

(
1

(n+ 2)m
− 1

(n+ 2)(m+ n+ 2)

)

=
+∞∑

n=1

1
n(n+ 2)

+∞∑

m=1

(
1
m

− 1
m+ n+ 2

)

=
+∞∑

n=1

1
n(n+ 2)

(
1 +

1
2

+
1
3

+ · · · + 1
n+ 2

)

=
+∞∑

n=1

(
1
2n

− 1
2n+ 4

)(
1 +

1
2

+
1
3

+ · · · + 1
n+ 2

)

=
1
2

+∞∑

n=1

(
1
n
− 1
n+ 2

)(
1 +

1
2

+
1
3

+ · · · + 1
n+ 2

)
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=
1
2

[(
1 − 1

3

)(
1 +

1
2

+
1
3

)]

+
1
2

[(
1
2
− 1

4

)(
1 +

1
2

+
1
3

+
1
4

)]

+
1
2

[(
1
3
− 1

5

)(
1 +

1
2

+
1
3

+
1
4

+
1
5

)]
+ · · ·

= · · · =
7
4
.

Therefore, it is clear that the integer part of

+∞∑

n=1

+∞∑

m=1

1
m2n+mn2 + 2mn

is equal to 1. �

35) Find all positive integers a, b such that

a4 + 4b4

is a prime number.

Solution. We have

a4 + 4b4 = (a4 + 4a2b2 + 4b4) − 4a2b2

= (a2 + 2b2)2 − (2ab)2

= (a2 + 2b2 + 2ab)(a2 + 2b2 − 2ab)

= [(a+ b)2 + b2][(a− b)2 + b2].

However, for all positive integers a, b it holds

(a+ b)2 + b2 > 1,

therefore for the number
a4 + 4b4

to be prime it must be true that

(a− b)2 + b2 = 1.

This happens if
a− b = 0 and b = 1,

namely, when a = b = 1. �
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36) Let n and 8n2 +1 be two prime numbers. Prove that the number
8n2 − 1 is also a prime number.

Proof.
• For n = 2, it follows that 8n2 + 1 = 33, which is a composite number. (This
case is not acceptable by the hypothesis.)
• For n = 3, one has 8n2+1 = 73 and 8n2−1 = 71 which is a prime number.
• For n > 3, n ∈ N, the positive integer n can be expressed in one of the
following forms:

n = 3m+ 1 or n = 3m+ 2,

where n is a prime number by the hypothesis.
If n = 3m+ 1, then

n2 = 9m2 + 6m+ 1 = 3k + 1,

where k = 3m2 + 2m ∈ N.
Therefore, 8n2 + 1 = 8(3k + 1) + 1 = 3λ, where λ = 8k + 3 ∈ N.
Thus, the integer 8n2 +1 is composite. (This case is not acceptable by the

hypothesis.)
If n = 3m+2, then similarly we obtain that the integer 8n2+1 is composite.

(This case is not acceptable by the hypothesis.)

Note. For n > 3, we could also deal with the problem in the following way:
It is evident that 3 | (8n2 − 1)8n2(8n2 + 1). However, since n and 8n2 + 1

are prime numbers, we obtain

3 | 8n2 − 1

or
3 | 9n2 − n2 − 1

or
3 | n2 + 1, (1)

which is impossible, since

• If n = 3m+1, then by (1) it would follow that 3 | 2, which is a contradiction.
• If n = 3m+2, then by (1) it would follow that 3 | 5, which is a contradiction.

In conclusion, the only case where both n and 8n2 + 1 are prime numbers is
when n = 3. In this case 8n2 − 1 is also a prime number. �

37) Prove that there does not exist a nonconstant polynomial p(n)
with integer coefficients, such that for every natural number n, the
number p(n) is prime.



202 11 Solutions

Proof. We consider a polynomial p(x) in its general form

p(x) = akx
k + ak−1x

k−1 + · · · + a1x+ a0, x ∈ N.

Set p(x) = y. Then,

p(by+x) = ak(by+x)k +ak−1(by+x)k−1 + · · ·+a1(by+x)+a0, b ∈ Z. (1)

However, we know that

(x+ y)n = xn +
(
n

1

)
xn−1y + · · · +

(
n

n− 1

)
x yn−1 + yn.

Thus, from (1) we obtain

p(by + x) = ak(λky + xk) + ak−1(λk−1y + xk−1) + · · · + a1(λ1y + x) + a0

= (akλk + ak−1λk−1 + · · · + a1λ1) y

+ (akx
k + ak−1x

k−1 + · · · + a1x+ a0)

= λ y + y,

where λ1, λ2, . . . λk, λ ∈ Z.
Obviously it holds that y | p (by+ x) for every integer b and every natural

number x. �

38) Let n be an odd integer greater than or equal to 5. Prove that
(
n

1

)
− 5

(
n

2

)
+ 52

(
n

3

)
− · · · + 5n−1

(
n

n

)

is not a prime number.

(Titu Andreescu, Korean Mathematical Competition, 2001)

Proof. Set

A =
(
n

1

)
− 5

(
n

2

)
+ 52

(
n

3

)
− · · · + 5n−1

(
n

n

)
.

Then

5A = 5
(
n

1

)
− 52

(
n

2

)
+ 53

(
n

3

)
− · · · + 5n

(
n

n

)

= 1 − 1 + 5
(
n

1

)
− 52

(
n

2

)
+ 53

(
n

3

)
− · · · + 5n

(
n

n

)

= 1 + (−1 + 5)n

= 1 + 4n.



11 Solutions 203

Thus,

A =
1
5
(4n + 1) =

1
5
(4n + 2 · 2n + 1 − 2n+1)

=
1
5
[(2n + 1)2 − (2(n+1)/2)2]

=
1
5
(2n + 2(n+1)/2 + 1)(2n − 2(n+1)/2 + 1)

=
1
5
[(2(n−1)/2 + 1)2 + 2n−1][(2(n−1)/2 − 1)2 + 2n−1].

It is evident that A is a composite integer, since one of the factors within
brackets is divisible by 5 and n is greater than or equal to 5. �

39) Prove that there are infinitely many prime numbers of the form
4n+ 3, where n ∈ N.

Proof. We will apply a similar argument with the one followed by Euclid to
prove that prime numbers are infinitely many. Suppose that the set of prime
numbers of the form 4n+ 3 is finite and that p is the last and largest among
all such primes. Consider the integer q where

q = 22 · 3 · 5 · · · p− 1.

The integer q is of the form 4n+ 3, n ∈ N, because

q = 22 · 3 · 5 · · · p− 1 = 4k − 1,

where k = 3 · 5 · · · p ∈ Z.
Thus,

q = 4k + 3 − 4 = 4(k − 1) + 3, k ∈ N.

The integer q is a prime or it can be represented as a product of powers of
prime numbers.

• If q is a prime number, then there exists a prime number of the form 4n+3
which is greater than p. That is a contradiction. (The fact that q > p can
be easily proved by applying Mathematical Induction.) Therefore the set of
prime numbers of the form 4n+ 3 is infinite.
• If q is not a prime number, then q can be represented as a product of powers
of primes. These prime factors can be represented in the form 4n+1 or 4n+3
(since 4n, 4n+ 2 are not prime numbers).

However, not all prime factors can be expressed in the form 4n+1, because
in that case q should be expressed in the form 4n+ 1. This happens since the
product of two integers of the form 4n+1 is also an integer of the form 4n+1.
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Therefore, at least one of the prime factors of the integer q will be of the form
4n+ 3.

But, none of the prime numbers which are less than or at most equal to p,
divide q. Thus, every prime factor of q of the form 4n+3 will be greater than
p. That is a contradiction. Therefore, in this case too, the prime numbers of
the form 4n+ 3 are infinitely many. �

Remark 11.2. We should mention here that this is an elementary proof of a
general fact, which was proved by Dirichlet using L-series and which asserts
that there are infinitely many primes of the form a + km, where k ∈ N and
gcd(a,m) = 1.

40) Let y ∈ Z
∗ = Z − {0}. If x1, x2, . . . , xn ∈ Z

∗ − {1} with n ∈ N and

(x1x2 · · ·xn)2y ≤ 22(n+1),

as well as
x1x2 · · ·xny = z + 1 z ∈ N,

prove that at least one of the integers x1, x2, . . . , xn, z is a prime
number.

(M. Th. Rassias, Proposed problem W.3, Octogon Mathematical Magazine
15 (1) (2007), page 291. See also Proposed problem No. 109, Euclid

Mathematical Magazine B’, Greek Math. Soc. 66 (2007), p. 71)

Proof. Set x1x2 · · ·xn = x. Then it follows

xy = z + 1.

Assume that the integers x1, x2, . . . , xn, z are not all prime. In this case each
of the integers x1, x2, . . . , xn, z can be expressed as a product of at least two
prime factors. Thus, finally, it holds

xz = pλ1pλ2pλ3 · · · pλm with m ≥ 2(n+ 1), where λ,m ∈ N

(such that the primes pλ1 , pλ2 , pλ3 , . . . , pλm are not necessarily pairwise
distinct).

The inequality m ≥ 2(n+1) holds, because each of the integers x1, x2, . . . ,
xn, z can be expressed as a product of at least two primes, since none of these
is a prime number.

Thus, we obtain
xz ≥ pλ1pλ2pλ3 · · · pλ2(n+1) .

However,
pλi ≥ 2, where i = 1, 2, . . . , 2(n+ 1).

Thus,
xz ≥ 22(n+1).
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Let xz = a, a ∈ Z. Then,

xy = z + 1
xz = a

}
⇒ x2yz = a(z + 1) ⇔ x2y = a

(
1 +

1
z

)
> a.

But
a ≥ 22(n+1),

therefore
x2y > 22(n+1),

that is,
(x1x2 · · ·xn)2y > 22(n+1),

which is a contradiction, because of hypothesis. Therefore, at least one of the
integers x1, x2, . . . , xn, z is a prime number. �

Remark 11.3. If we assume that

x1 = x2 = · · · = xn = β,

where β is not a prime number, then z must necessarily be a prime number.
This means that if y ∈ Z

∗, β ∈ Z
∗ − {1} and z ∈ N such that

β2ny ≤ 22(n+1) and βny = z + 1,

where β is not a prime number, then z must be a prime number.

41) Let p be a prime number. Let h(x) be a polynomial with integer
coefficients such that h(0), h(1), . . . , h(p2 − 1) are distinct modulo p2.
Prove that h(0), h(1), . . . , h(p3 − 1) are distinct modulo p3.

(Problem B4, The Sixty-Ninth William Lowell Putnam Mathematical
Competition, 2008, Amer. Math. Monthly 116(2009), pp. 722, 725)

Proof. Assume that this is not the case. Then there exist a and b such that
0 ≤ a < b < p3 with

h(a) ≡ h(b) (mod p3).

By the hypothesis it follows that the mapping h induces an injection

Z/p2
Z −→ Z/p2

Z,

and thus
a ≡ b (mod p2).

It follows that
h(a+ x) = h(a) + h′(a)x+ x2d(x)
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for certain d(x) ∈ Z[x]. For x = p, applying the property that

h(a+ p) �≡ h(a) (mod p2),

it yields
p � | h′(a).

Set
x = b− a,

then
x = p2c

for a certain value of c ∈ {1, 2, . . . , p− 1}.
Therefore,

0 ≡ h(b) − h(a) ≡ h′(a)p2c+ p4c2d(p2c)

≡ h′(a)p2c (mod p3),

which contradicts the fact that both h′(a) and c are not multiples of p.
Hence, h(0), h(1),. . ., h(p3 − 1) are distinct modulo p3. �

42) Prove that every odd perfect number has at least three distinct
prime factors.

Proof. Let us suppose that there exists an odd perfect number n, which does
not have at least three distinct prime factors. In that case n would either be
of the form

n = pk,

where p is a prime number with p ≥ 3 and k is a positive integer, or of the
form

n = pk1
1 p

k2
2 ,

where p1, p2 are prime numbers with 3 ≤ p1 < p2 and k1, k2 are positive
integers.

However, if n = pk, then

σ1(n) = 1 + p+ p2 + · · · + pk.

By induction, we can easily prove that

1 + p+ p2 + · · · + pk < 2pk = 2n.

Thus, it follows that
σ1(n) < 2n,

which is impossible, since by the hypothesis n is a perfect number.



11 Solutions 207

Furthermore, if n = pk1
1 p

k2
2 , we have

σ1(n) = σ1(pk1
1 p

k2
2 ) = σ1(pk1

1 )σ1(pk2
2 ),

since pk1
1 , pk2

2 are obviously positive coprime integers. Therefore,

σ1(n) = (1 + p1 + p2
1 + · · · + pk1

1 )(1 + p2 + p2
2 + · · · pk2

2 )

= pk1
1

(
1 +

1
p1

+
1
p2
1

+ · · · + 1
pk1
1

)
pk2
2

(
1 +

1
p2

+
1
p2
2

+ · · · + 1
pk2
2

)

< pk1
1 p

k2
2

+∞∑

m=0

1
pm
1

+∞∑

m=0

1
pm
2

= pk1
1 p

k2
2

1
1 − 1/p1

· 1
1 − 1/p2

≤ pk1
1 p

k2
2

1
1 − 1/3

· 1
1 − 1/5

=
15
8
pk1
1 p

k2
2

< 2pk1
1 p

k2
2 = 2n.

Hence,
σ1(n) < 2n,

which is impossible, since by the hypothesis n is a perfect number. �

43) Let (an) be a sequence of positive integers, such that (ai, aj) = 1
for every i �= j. If

+∞∑

n=0

1
an

= +∞,

prove that the sequence (an) contains infinitely many prime
numbers.

(K. Gaitanas, student of the School of Applied Mathematics and Physical
Sciences, NTUA, Greece, 2005)

Proof. Suppose that there exists n0 ∈ N, such that every term of the sequence
with n ≥ n0 is a composite integer. Let pn be the smallest prime divisor of
an (for n ≥ n0). Then

an = pn · q where q ≥ pn.

Thus, an ≥ p2
n, that is, 1/an ≤ 1/p2

n. Therefore,

+∞∑

n=n0

1
an

≤
+∞∑

n=n0

1
p2

n

≤
+∞∑

n=1

1
n2

< +∞.
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Hence, the series
+∞∑

n=n0

1
an

converges in R.
Because of the fact that

+∞∑

n=0

1
an

=
n0−1∑

n=0

1
an

+
+∞∑

n=n0

1
an

and the series
∑+∞

n=n0

1
an

converges, it follows that the series
∑+∞

n=0
1

an

converges as well. That is a contradiction.
Therefore, for every term am, m ∈ N, we can find at least one term am+k,

k ∈ N which is a prime number. There are infinitely many choices for am,
m ∈ N and thus one can find infinitely many primes in the sequence (an). �

44) Let pi denote the ith prime number. Prove that

pk
1 + pk

2 + · · · + pk
n > nk+1,

for every pair of positive integers n, k.

(Dorin Andrica, Revista Matematică Timisoara, No. 2(1978), p. 45,
Problem 3483)

Proof. It is evident that
pi+1 − pi ≥ 2,

for every positive integer i. Thus, by adding the inequalities that occur for
i = 1, 2, . . . , n− 1, it follows that

pn − 2 ≥ 2(n− 1)

or
pn ≥ 2n. (1)

Generally, by the Power Mean Inequality we know that for real numbers r1,
r2, with r1 ≤ r2, r1, r2 �= 0 and positive real numbers ai, i = 1, 2, . . . , n, it
holds (

1
n

n∑

i=1

ar1
i

)1/r1

≤
(

1
n

n∑

i=1

ar2
i

)1/r2

.

Thus, for r1 = 1 and r2 = k, we obtain

1
n

n∑

i=1

pi ≤
(

1
n

n∑

i=1

pk
i

)1/k
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or
n∑

i=1

pk
i ≥ n

(
1
n

n∑

i=1

pi

)k

. (2)

However, by (1) it follows that

1
n

n∑

i=1

pi ≥ 1
n

n∑

i=1

2i >
1
n

n∑

i=1

(2i− 1)

=
1
n

(
2 · n(n+ 1)

2
− n

)
=
n2

n

= n.

Therefore, by (2) we get

n∑

i=1

pk
i > n · nk = nk+1. �

45) Prove that 7 divides the number

147 + 247 + 347 + 447 + 547 + 647.

Proof. It is a standard fact that if a, b are positive integers and n is an odd
positive integer, then

a+ b | an + bn.

Thus,

147 + 647 = (1 + 6) · k where k ∈ N, (1)

247 + 547 = (2 + 5) · l where l ∈ N (2)

and
347 + 447 = (3 + 4) ·m where m ∈ N. (3)

From (1), (2) and (3) it follows that

(147 + 647) + (247 + 547) + (347 + 447) = 7 · (k + l +m),

that is,
147 + 247 + 347 + 447 + 547 + 647 = 7 · r,

where
r = k + l +m ∈ N.

Hence, 7 divides the number

147 + 247 + 347 + 447 + 547 + 647. �
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46) Prove that if 3 � | n, then

13 | 32n + 3n + 1,

where n ∈ N.

Proof. Since 3 � | n, n ∈ N, it follows that

n = 3k + 1 or n = 3k + 2, where k ∈ N.

• If n = 3k + 1, then

32n + 3n + 1 = (33k+1)2 + 33k+1 + 1

= 9 · 272k + 3 · 27k + 1

= 9 · (2 · 13 + 1)2k + 3 · (2 · 13 + 1)k + 1

= 9 · (mult. 13 + 1) + 3 · (mult. 13 + 1) + 1

= 12 · mult. 13 + 13.

Therefore,
32n + 3n + 1 = 13l, where l ∈ N,

that is,
13 | 32n + 3n + 1, where n ∈ N.

• If n = 3k + 2, then

32n + 3n + 1 = (33k+2)2 + 33k+2 + 1

= 92 · 272k + 9 · 27k + 1

= 92 · (2 · 13 + 1)2k + 9 · (2 · 13 + 1)k + 1

= 92 · (mult. 13 + 1) + 9 · (mult. 13 + 1) + 1

= 90 · mult. 13 + 91

= 90 · mult. 13 + 13 · 7.

Thus,
32n + 3n + 1 = 13m, where m ∈ N,

that is,
13 | 32n + 3n + 1.

Hence, in every case if 3 � | n, it follows that

13 | 32n + 3n + 1. �
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47) Prove that for every positive integer n the value of the
expression

24n+1 − 22n − 1

is divisible by 9.

Proof. We have

24n+1 − 22n − 1 = 24n · 2 − 22n − 1 = (24n − 22n) + (24n − 1)

= 22n(22n − 1) + (22n − 1)(22n + 1)

= (22n − 1)(22n + 22n + 1)

= (22n − 1)(22n+1 + 1).

That is,
24n+1 − 22n − 1 = (4n − 1)(22n+1 + 1).

However, for every positive integer n it is clear that

4n − 1 = mult. 3 and 22n+1 + 1 = mult. 3,

since
(4 − 1) | (4n − 1) and (2 + 1) | (22n+1 + 1)

for every positive integer n.
Therefore,

24n+1 − 22n − 1 = mult. 9.

Hence, the value of the expression

24n+1 − 22n − 1

is divisible by 9 for every positive integer n. �

48) Prove that 7 divides the number

22225555 + 55552222.

Solution. We will prove that

22225555 + 55552222 = mult. 7.

We have

22225555 + 55552222 = (22 · 100 + 22)5555 + (55 · 100 + 55)2222

= (22 · 101)5555 + (55 · 101)2222
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= (mult. 7 + 1)5555(mult. 7 + 3)5555

+ (mult. 7 − 1)2222(mult. 7 + 3)2222

= (mult. 7 + 1)(mult. 7 + 3)5555

+ (mult. 7 + 1)(mult. 7 + 3)2222.

That is,

22225555 + 55552222 = mult. 7 + 35555 + mult. 7 + 32222.

However,

35555 = (35)1111 = 2431111 = (245 − 2)1111

= (mult. 7 − 2)1111 = mult. 7 − 21111

as well as

32222 = (32)1111 = 91111 = (7 + 2)1111

= (mult. 7 + 2)1111 = mult. 7 + 21111.

Therefore,

35555 + 32222 = (mult. 7 − 21111) + (mult. 7 + 21111)

= mult. 7.

Hence,
7 | 22225555 + 55552222. �

49) If p is a prime number and a, λ are two positive integers such
that pλ | (a− 1), prove that

pn+λ | (apn − 1)

for every n ∈ N ∪ {0}.
(Crux Mathematicorum, 1992, p. 84, Problem 1617. Proposed by Stanley
Rabinowitz, Westford, Massachusetts. The proof is due to Ian Goldberg,

University of Toronto Schools)

Proof. We will apply the Principle of Mathematical Induction on the natural
number n. Trivially for n = 0 one has pλ | (a − 1), which is true because of
the hypothesis.

Suppose that
pn+λ | (apn − 1).

We will prove that
pn+λ+1 | (apn+1 − 1).
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Set x = apn

. It is enough to prove that

pn+λ+1 | (xp − 1).

However, pn+λ | (x− 1). From this relation it follows

x ≡ 1 (mod, p)

x2 ≡ 1 (mod, p)

...

xp−1 ≡ 1 (mod, p).

It is also true that
1 ≡ 1 (mod, p).

If we add by parts the above congruences we obtain

xp−1 + · · · + x2 + x+ 1 ≡ p (mod, p)

or
p | (xp−1 + · · · + x+ 1). (1)

However, we have assumed that

pn+λ | (x− 1). (2)

Multiplying (1) and (2) by parts we obtain

pn+λ+1 | (x− 1)(xp−1 + · · · + x+ 1)

or
pn+λ+1 | (xp − 1). �

50) Prove that for any prime number p greater than 3, the number

2p + 1
3

is not divisible by 3.

Proof. It is evident that if n is an even integer, one has

2n ≡ 1 (mod 3),

but if n is an odd integer,
2n ≡ 2 (mod 3).
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Using the hypothesis that p is a prime number and p > 3, we obtain

2p + 1
3

=
2p + 1
2 + 1

= 2p−1 − 2p−2 + 2p−3 − 2p−4 + · · · − 2 + 1

≡ (1 − 2) + (1 − 2) + · · · + (1 − 2) + 1 (mod 3)

≡
(
p− 1

2

)
(−1) + 1 (mod 3)

≡
(
p− 1

2

)
2 + 1 (mod 3)

≡ p− 1 + 1 ≡ p (mod 3),

which is nonzero for p > 3. �

51) Determine all positive integers n for which the number n8 − n2

is not divisible by 72.

(38th National Mathematical Olympiad, Slovenia, 1997)

Solution. We have

n8 − n2 = n2(n6 − 1) = n2(n− 1)(n+ 1)(n2 − n+ 1)(n2 + n+ 1)

and
72 = 8 · 9.

We claim that the number n8 − n2 is a multiple of 9.
We examine the following cases:
If n ≡ 0 (mod 3), then n2 ≡ 0 (mod 9).
If n ≡ 1 (mod3), then n − 1 ≡ 0 (mod3) as well as n2 + n + 1 ≡

0 (mod 3).
If n ≡ −1 (mod3), then n + 1 ≡ 0 (mod3) as well as n2 − n + 1 ≡

0 (mod 3).
Therefore, the number n8 − n2 is a multiple of 9 for any positive

integer n.
We will examine whether n8 − n2 is divisible by 8.
In case n is an odd integer, then the number (n − 1)(n+ 1) is a multiple

of 8.
If n is divisible by 4, then n2 ≡ 0 (mod 8).
If n ≡ 2 (mod 4), then n8−n2 is a multiple of 4, but is not a multiple of 8.

Hence, the number n8 −n2 is not divisible by 72 if and only if n ≡ 2 (mod 4).
�

52) Prove that for every positive integer n the number 3n + n3 is a
multiple of 7 if and only if the number 3n · n3 + 1 is a multiple of 7.

(Bulgarian Mathematical Competition, 1995)
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Proof.

• In case 7 divides n, then 7 is neither a divisor of 3n + n2 nor a divisor of

3n · n3 + 1.

• If 7 does not divide n, then 7 divides

n6 − 1 = (n3 − 1)(n3 + 1)

and because of the fact that 7 is a prime number, it follows that 7 must
divide either n3 − 1 or n3 + 1. However,

3n · n3 + 1 = 3n · n3 − 3n − n3 + n3 + 3n + 1

= (n3 − 1)(3n − 1) + (n3 + 3n)

as well as
3n · n3 + 1 = (n3 + 1)(3n + 1) − (n3 + 3n).

Therefore, the number 7 is a divisor of 3n + n3 if and only if 7 is a divisor
of 3n · n3 + 1. �

53) Find the sum of all positive integers that are less than 10,000
whose squares divided by 17 leave remainder 9.

Solution. Let x be any one of these integers.
Then

x2 = 17k + 9, where k ∈ N. (1)

Then

k =
x2 − 9

17
,

that is,

k =
(x− 3)(x+ 3)

17
. (2)

Because of the fact that k ∈ N and 17 is a prime number, it follows that

(x− 3)(x+ 3)
17

∈ N

in the following cases:
x− 3 = 17λ, λ ∈ N (3)

or
x+ 3 = 17λ, λ ∈ N. (4)
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• For case (3), since x depends upon λ, we will denote the solution of (3) by
xλ and thus we get

xλ = 17λ+ 3, λ ∈ N.

Since
xλ < 10, 000

it follows that
17λ+ 3 < 10, 000

which implies

λ < 588
1
7
.

Therefore, λ = 1, 2, 3, . . . , 588.
For these values of λ, from the formula

xλ = 17λ+ 3,

we obtain ⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x1 = 17 · 1 + 3

x2 = 17 · 2 + 3
...

x588 = 17 · 588 + 3.

Adding by parts the above equalities, we get

x1 + x2 + · · · + x588 = 17(1 + 2 + · · · + 588) + 588 · 3,
that is,

x1 + x2 + · · · + x588 = 17 · (588 + 1) · 588
2

+ 588 · 3. (5)

• For case (4), since x depends upon λ, we will denote the solution of (4) by
x̄λ and we have

x̄λ = 17λ− 3, λ ∈ N.

Since
x̄λ < 10, 000

it follows that
17λ− 3 < 10, 000

which implies

λ < 588
7
17
.

Thus,
λ = 1, 2, . . . , 588.
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For these values of λ from the formula

x̄λ = 17λ− 3,

we obtain ⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x̄1 = 17 · 1 − 3

x̄2 = 17 · 2 − 3
...

x̄588 = 17 · 588 − 3.

Adding by parts the above equalities, we have

x̄1 + x̄2 + · · · + x̄588 = 17 · (1 + 2 + · · · + 588) − 588 · 3,

that is,

x̄1 + x̄2 + · · · + x̄588 = 17 · (588 + 1) · 588
2

− 588 · 3. (6)

Hence, the total sum S of

x1, x2, . . . , x588, x̄1, x̄2, . . . , x̄588

is

S =
(

17
2

· (588 + 1) · 588 + 588 · 3
)

+
(

17
2

· (588 + 1) · 588 − 588 · 3
)

= 17 · 589 · 588

= 5, 887, 644.

Therefore,
S = 5, 889, 644. �

54) What is the largest positive integer m with the property that,
for any positive integer n, m divides n241−n? What is the new value
of m if n is restricted to be odd?

(Konstantinos Drakakis, University College Dublin, Ireland; Newsletter of
the European Mathematical Society, Issue 77, 2010, Problem 69)

Solution. To begin with, observe that n241 − n = n(n240 − 1), and that
240 = 24·3·5. Fermat’s Little Theorem guarantees that p | ns−n for all positive
integers n, where p is a prime number, as long as p − 1 | s− 1; furthermore,
assuming that this condition holds, in general p2

� ns − n (although this may
be true for some n it is certainly not true for all n: a counterexample is n = p
for s ≥ 2). In this particular case, which prime numbers p have the property
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that p−1 | 240? Testing exhaustively all integers of the form 2i ·3j ·5k +1 for
primality, where 0 ≤ i ≤ 4, 0 ≤ j, k ≤ 1, the following list of such primes is
obtained: 2, 3, 5, 7, 11, 13, 17, 31, 41, 61, 241, so that m is their least common
multiple, namely, their product: m = 2 · 3 · 5 · 7 · 11 · 13 · 17 · 31 · 41 · 61 · 241 =
9, 538, 864, 545, 210.

Restrict now n to be an odd positive integer. Repeated use of the identities

x2 − 1 = (x− 1)(x+ 1) and x2k+1 + 1 = (x+ 1)
2k∑

i=0

(−x)i

eventually factorizes n241−n into irreducible polynomials of the form
∑l

i=0 ain
i

where ai ∈ {0, 1,−1}. Any such polynomial with an odd number of nonzero
coefficients produces odd values for odd n: to see this, use

n ≡ 1 (mod 2) and − 1 ≡ 1 (mod 2)

to reduce such a polynomial into the sum of an odd number of 1s, which is
equivalent to 1 modulo 2. Thus,

n241 − n = (n− 1)(n+ 1)(n2 + 1)(n4 + 1)(n8 + 1)F (n),

where F (n) is a polynomial producing odd values for odd n.
Since n ≡ 1 ( mod 2) implies both that n2 ≡ 1 ( mod 4) and that 8 ‖n2−11

(these facts are easy to verify), it follows that (n− 1)(n+ 1) has three factors
of 2, and the remaining three binomials one factor of 2 each, hence

26 = 64 ‖n241 − n.

Therefore, the new value of m is

lcm(64; 9, 538, 864, 545, 210)

= 9, 538, 864, 545, 210 · 32 = 305, 243, 665, 446, 720. �

55) Let f be a nonconstant polynomial with positive integer
coefficients. Prove that if n is a positive integer, then f(n) divides
f(f(n) + 1) if and only if n = 1.

(Problem B1, The Sixty-Eighth William Lowell Putnam Mathematical
Competition, 2007. Amer. Math. Monthly, 115(2008), pp. 731, 735)

Proof. Set

f(x) =
m∑

i=0

aix
i.

1 The notation mk ‖n will be used to denote the fact that mk | n but mk+1
� n.
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Then, we obtain

f(f(n) + 1) =
m∑

i=0

ai(f(n) + 1)i

≡
m∑

i=0

ai (mod f(n)),

that is,
f(f(n) + 1) ≡ f(1) (mod f(n)). (1)

If n = 1, (1) yields
f(f(1) + 1) ≡ 0 (mod f(1)),

and therefore
f(1) | f(f(1) + 1).

If
f(n) | f(f(n) + 1),

for some n > 1 it follows from (1) that

f(n) | f(1).

But f is a nonconstant polynomial with positive integer coefficients, thus

f(n) > f(1) > 0,

a contradiction. �

56) Let Nn and Dn be two relatively prime positive integers. If

1 +
1
2

+
1
3

+ · · · + 1
n

=
Nn

Dn
,

find all prime numbers p with p ≥ 5, such that

p | Np−4.

(Crux Mathematicorum, 1989, p. 62, Problem 1310. Proposed by Robert
E. Shafer, Berkeley, California. The solution was given by Colin Springer,

University of Waterloo, Canada)

Solution.

• If p = 5, then

1 =
N5−4

D5−4
,

which implies N5−4 = D5−4, that is, N1 = D1, which is impossible since by
hypothesis Nn and Dn are relatively prime positive integers.
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• If p = 7, then

1 +
1
2

+
1
3

=
N7−4

D7−4
.

This implies that for p = 7 the number p does not divide the number Np−4

since
11
6

=
N3

D3

with gcd(11, 6) = gcd(N3, D3) = 1 yields N3 = 11 with 7 � 11.
• Therefore, let us assume that p ≥ 11. Then,

Np−4

Dp−4
= 1 +

1
2

+
1
3

+ · · · + 1
p− 4

= 1 +
1
2

+
1
3

+
(

1
4

+
1

p− 4

)
+
(

1
5

+
1

p− 5

)
+ · · ·

+
[

1
(p− 1)/2

+
1

(p+ 1)/2

]

after a simple rearrangement of the terms of the summation.
But, in general it holds

1
k

+
1

p− k
= p · 1

k(p− k)
, where p �= k.

Thus, we obtain that

Np−4

Dp−4
=

11
6

+
[

1
4(p− 4)

+
1

5(p− 5)
+ · · · + 1

(p2 − 1)/4

]
.

From the above relation it follows that for the prime number p to divide Np−4

it must hold p | 11, but we have assumed that p ≥ 11, thus

p = 11.

Hence, the only prime number p which solves the problem is p = 11. �

57) Given the positive integer n and the prime number p such that
pp | n!, prove that

pp+1 | n!.

(Proposed by D. Beckwith, Amer. Math. Monthly, Problem No. 11158,
2005)
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Proof.

First way. It is given that pp | n!, that is,

pp | 1 · 2 · 3 · · · p(p+ 1) · · · [p+ (p− 1)]

· 2p(2p+ 1) · · · [2p+ (p− 1)]

· 3p(3p+ 1) · · · [3p+ (p− 1)]

· · ·
· [(p− 1)p][(p− 1)p+ 1] · · · [(p− 1)p+ (p− 1)]

· pp(pp+ 1) · · ·n. (1)

However, it is clear that

p | p, 2p, 3p, . . . , (p− 1)p, pp

and
p � | (kp+ λ), for all k, λ ∈ Z with 1 ≤ λ ≤ p− 1.

Thus, by several eliminations in relation (1) we get

p | pp(pp+ 1) · · ·n,
that is, the inequality

n ≥ pp.

must hold.
In every other case we have

pp � | n!.

Therefore,
p2 | pp(pp+ 1) · · ·n, with n ≥ pp.

Hence,

p3 | (p− 1)p · [(p− 1)p+ 1] · · · [(p− 1)p+ (p− 1)] · pp(pp+ 1) · n.
Thus,

p4 | (p− 2)p · [(p− 2)p+ 1] · · · [(p− 2)p+ (p− 1)]

(p− 1)p · [(p− 1)p+ 1] · · · [(p− 1)p+ (p− 1)]

· pp(pp+ 1) · · ·n.
Following the same argument we get

pp+1 | 1 · p(1 · p+ 1) · · · (1 · p+ p− 1) · · ·
· · · (p− 1)p · [(p− 1)p+ 1] · · · [(p− 1)p+ (p− 1)]

· pp(pp+ 1) · · ·n,
where all the terms of the above product are consecutive integers.
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Hence,
pp+1 | n!

Second way. (Harris Kwong, SUNY at Fredonia, New York)
We will make use of Legendre’s theorem. According to this theorem the
greatest power of p which can divide the number n! is given by the formula

+∞∑

k=1

⌊
n

pk

⌋
.

We will prove that
n ≥ pp.

If n < pp, then
+∞∑

k=1

⌊
n

pk

⌋
=

⌊
n

p

⌋
< p.

This means that the integer pp cannot divide the number n!, which is impos-
sible because of the hypothesis.

Consequently, if
pp | n!, then n ≥ pp.

Therefore,

+∞∑

k=1

⌊
n

pk

⌋
=
⌊
n

p

⌋
+
⌊
n

p2

⌋
+
⌊
n

p3

⌋
+ · · ·

≥
⌊
n

p

⌋
+
⌊
n

p2

⌋

≥ p+ 1.

Hence, the prime number p raised to a power which is at least equal to p+ 1,
divides n!. �

58) Prove that there are no integer values of x, y, z, where x is of
the form 4k + 3 ∈ Z, such that

xn = yn + zn,

where n ∈ N − {1}.

Proof. According to Fermat’s Last Theorem2 the diophantine equation xn =
yn + zn does not accept nonzero integer solutions for x, y, z, where n ≥ 3.
2 See Appendix for more details on Fermat’s Last Theorem.
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Therefore, it suffices to prove that for n = 2, the equation xn = yn + zn

does not accept any nonzero integer solutions, where x is of the form 4k + 3,
k ∈ Z.

However, if the equation x2 = y2 + z2 has a solution, then the equation
x = y2 + z2 has also a solution. This is clear, since if (x0, y0, z0) is a solution
of the equation x2 = y2 + z2, then (x2

0, y0, z0) is a solution of the equation
x = y2 + z2. Therefore, it suffices to prove that the diophantine equation

x = y2 + z2,

where x is of the form 4k + 3, does not accept any nonzero integer solutions.
But, no integer of the form 4k + 3 can be represented as the sum of two

squares of integers. We shall now prove that fact.
Let us suppose that x = y2 + z2, where x = 4k + 3. Then, we obtain

y2 + z2 ≡ 3 (mod 4).

However, generally it holds

a2 ≡ 0 or 1 (mod 4).

This is true, because of the following reasoning.

• If a is an even integer, then a2 = 4λ, λ ∈ Z, and thus

a2 ≡ 0 (mod 4).

• If a is an odd integer, then a2 = 8λ+ 1, λ ∈ Z, and thus

a2 ≡ 1 (mod 4).

Hence, for the sum of two squares of integers, we have

a2 + b2 ≡ 0 or 1 or 2 (mod 4)

and
a2 + b2 �≡ 3 (mod 4).

Therefore, the claim that if x = y2 + z2 then y2 + z2 ≡ 3 (mod 4), leads to a
contradiction.

Thus, the diophantine equation

x = y2 + z2

does not accept any nonzero integer solutions when x is of the form 4k + 3
and hence the diophantine equation

x2 = y2 + z2
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does not accept any nonzero integer solutions when x is of the form 4k + 3.
Therefore, the diophantine equation

xn = yn + zn

does not accept any nonzero integer solutions when x is of the form 4k + 3.
�

59) Let Pn denote the product of all distinct prime numbers p1,
p2, . . . , pk, which are less than or equal to n (where k < n). Prove
that Pn divides the integer

nk

p1−1∑

λ=0

(−1)λ

(
n

λ

)
·

p2−1∑

λ=0

(−1)λ

(
n

λ

)
· · ·

pk−1∑

λ=0

(−1)λ

(
n

λ

)
.

Proof. For the purposes of this proof, we will follow the convention that, for
n > 0,

(
n
−1

)
= 0. Generally, for every integer i, with 1 ≤ i ≤ k, we have

n

pi−1∑

λ=0

(−1)λ

(
n

λ

)
= n

pi−1∑

λ=0

(−1)λ

((
n− 1
λ

)
+
(
n− 1
λ− 1

))

= n

(
pi−1∑

λ=0

(−1)λ

(
n− 1
λ

)
+

pi−1∑

λ=0

(−1)λ

(
n− 1
λ− 1

))

= n

(
pi−1∑

λ=0

(−1)λ

(
n− 1
λ

)
−

pi−2∑

λ=0

(−1)λ

(
n− 1
λ

))

= (−1)pi−1n

(
n− 1
pi − 1

)

= (−1)pi−1 n!
(pi − 1)!(n− pi)!

= pi(−1)pi−1

(
n

pi

)
.

Therefore,

n

pi−1∑

λ=0

(−1)λ

(
n

λ

)
≡ 0 (mod pi).

However, since p1, p2, . . . , pk are relatively prime integers, it follows that

nk

p1−1∑

λ=0

(−1)λ

(
n

λ

)
·

p2−1∑

λ=0

(−1)λ

(
n

λ

)
· · ·

pk−1∑

λ=0

(−1)λ

(
n

λ

)

≡ 0 (mod p1p2 · · · pk)

≡ 0 (mod Pn). �
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60) Determine all pairs of positive integers (a, b), such that the
number

a2

2ab2 − b3 + 1
is a positive integer.

(44th IMO, Tokyo, Japan)

Solution. Let (a, b) be a pair of positive integers, such that

a2

2ab2 − b3 + 1
= m,

where m ∈ N.
Then, clearly

a2 − 2ab2m+ b4m2 = b4m2 − b3m+m.

Thus,
(a− b2m)2 = b4m2 − b3m+m,

which is equivalent to

(a− b2m)2 =
(

(b2m)2 − 2b2m
b

2
+
b2

4

)
− b2

4
+m

or

(a− b2m)2 =
(
b2m− b

2

)2

+
4m− b2

4

=
(2b2m− b)2 + (4m− b2)

4
.

Therefore, we obtain

(2(a− b2m))2 = (2b2m− b)2 + 4m− b2. (1)

Now, we shall distinguish three cases, concerning 4m− b2.

• If 4m− b2 > 0, then by (1) we obtain

4m− b2 = (2(a− b2m))2 − (2b2m− b)2 ≥ (2b2m− b+ 1)2 − (2b2m− b)2

= 2(2b2m− b) + 1.

This holds true, since if we set

M = 2(a− b2m)
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and
N = 2b2m− b,

then due to the fact that M2 − N2 > 0 with N > 0, where M , N ∈ Z, we
obtain

|M | ≥ N + 1.

Therefore,

M2 −N2 ≥ (N + 1)2 −N2

= 2N + 1.

Hence,
2(2b2m− b) + 1 + b2 − 4m ≤ 0

or
4m(b2 − 1) + (b− 1)2 ≤ 0.

But, this is possible only in the case when b = 1. Therefore, it follows that

(a, b) = (2m, 1), m ∈ N,

is a pair of positive integers which satisfies the desired property.
• If 4m− b2 < 0, then by (1) we obtain

4m− b2 = (2(a− b2m))2 − (2b2m− b)2 ≤ (2b2m− b− 1)2 − (2b2m− b)2

= −2(2b2m− b) + 1.

Thus, equivalently, we have

(4m− 1)b2 − 2b+ (4m− 1) ≤ 0. (2)

However,
(4m− 1)b2 − 2b+ (4m− 1)

is a quadratic polynomial with respect to b, with discriminant

D = 4(1 − (4m− 1)2) < 0,

for every m ∈ N. Thus, since 4m − 1 > 0 it follows that (2) can never hold
true. Therefore, in this case there does not exist a pair of positive integers
(a, b) with the desired property.
• If 4m− b2 = 0, then

(2(a− b2m))2 = (2b2m− b)2

and thus
2a− 2b2m = ±(2b2k − b).



11 Solutions 227

Therefore,

• If 2a − 2b2m = −2b2m + b, it follows that b = 2a. Thus, the pair of
positive integers (a, b) = (k, 2k), k ∈ N, satisfies the desired property.

• If 2a− 2b2m = 2b2m− b, it follows that

4b2m− b = 2a. (3)

However, since 4m − b2 = 0 it is evident that b is an even integer.
Therefore, there exists a positive integer c, such that b = 2c and m = c2.
Hence, by (3) we obtain that

a = 8c4 − c.

Thus, the pair of positive integers (a, b) = (8c4 − c, 2c) satisfies the
desired property.

To sum up, the pairs of positive integers (a, b) such that

a2

2ab2 − b3 + 1

is a positive integer are:

(a, b) = (2m, 1), (a, b) = (m, 2m) and (a, b) = (8m4 −m, 2m),

where m ∈ N. �

61) Prove that for every integer m ≥ 2 we have

F (Fm+1−1)
m ≡ 1 (mod Fm+1),

where Fm denotes the mth Fermat number.

Proof. We will construct step by step the first term of the congruence. For
r ≥ 3 we have

F 2r

m = (F 22

m )2
r−2

. (1)

But

F 2
m = (22m

+ 1)2 = 22m+1
+ 2 · 22m

+ 1 = Fm+1 + 2 · 22m

≡ 2 · 22m

(mod Fm+1).

Hence, by the above relation we get

F 22

m ≡ (2 · 22m

)2 ≡ 4 · 22m+1 ≡ 4(Fm+1 − 1)

≡ −22 (mod Fm+1).
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Therefore, by (1) we obtain

F 2r

m ≡ (−22)2
r−2 ≡ 22r−1

(mod Fm+1).

We set r = 2m+1 − 1 in the above relation and we get

F 22m+1−1

m = F 22m+1
/2

m = F (Fm+1−1)/2
m ≡ 222m+1−2

(mod Fm+1). (2)

Also
22m+1−2

2m+2
= 22m+1−m−4.

So, if
2m+1 ≥ m+ 4, (3)

this means that 2m+2 divides 22m+1−2. But (3) holds for every m ≥ 2. There-
fore, there exists a positive integer c such that

22m+1−2 = c · 2m+2.

Then
222m+1−2

= 22c2m+1

and for that reason, (2) can take the form

F (Fm+1−1)/2
m ≡ (22m+1

)2c ≡ (−1)2c ≡ 1 (mod Fm+1). �

62) Prove that

φ(n) ≥
√
n

2
for every positive integer n.

Proof. Let
n = 2a0pa1

1 p
a2
2 · · · pak

k

be the canonical form of n, with a0 > 0 and pi �= 2, for every i = 1, 2,. . ., k.
Then, we have

φ(n) = n

(
1 − 1

2

)(
1 − 1

p1

)(
1 − 1

p2

)
· · ·

(
1 − 1

pk

)

= 2a0−1pa1−1
1 pa2−1

2 · · · pak−1
k (p1 − 1)(p2 − 1) · · · (pk − 1).

However, for every prime number p ≥ 3 it holds

p− 1 >
√
p.
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Hence,

φ(n) > 2a0−1pa1−1
1 pa2−1

2 · · · pak−1
k

√
p1
√
p2 · · ·√pkr

=
2a0

2
· pa1−1/2

1 p
a2−1/2
2 · · · pak−1/2

k .

But, generally, it holds

a− 1
2
≥ a

2
,

for every positive integer a. Therefore, we obtain

φ(n) ≥ 2a0/2p
a1/2
1 p

a2/2
2 · · · pak/2

k

2

=

√
2a0pa1

1 p
a2
2 · · · pak

k

2
or

φ(n) ≥
√
n

2
. �

Remark 11.4. If a0 = 0, that means 2 is not a prime factor of n, similarly we
obtain that

φ(n) >
√
n >

√
n

2
.

63) Let n be a perfect even number. Prove that the integer

n− φ(n)

of k, such that the integer

k − φ(k)

is a square of an integer.

(Crux Mathematicorum, 1988, p. 93, Problem 1204. Proposed by Thomas
E. Moore, Bridgewater State College, Bridgewater, Massachusetts. Solved by

Bob Prielipp, University of Wisconsin–Oshkosh)

Solution. According to Euler’s Theorem 3.1.3 for perfect numbers, we obtain

n = 2λ−1(2λ − 1),

where the integer 2λ − 1 is a prime number. Therefore,

n− φ(n) = 2λ−1(2λ − 1) − φ(2λ−1(2λ − 1)). (1)

is a square of an integer and determine an infinity of integer values
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However, the integers 2λ−1 and 2λ − 1 are relatively prime. Hence,

φ(2λ−1(2λ − 1)) = φ(2λ−1)φ(2λ − 1) = (2λ−1 − 2λ−2)(2λ − 1 − 1), (2)

since the integers 2 and 2λ − 1 are prime numbers.
By (1) and (2), it follows

n− φ(n) = 2λ−1(2λ − 1) − 2λ−1(2λ−1 − 1)

= (2λ−1)2,

which is a square of an integer.
Now, it remains to determine an infinity of integer values of k, such that

the difference
k − φ(k)

is a square of an integer.
Let k = p2m−1, where p is a prime number and m ∈ N. The possible values

of k are infinite. In this case, we have

k − φ(k) = p2m−1 − φ(p2m−1)

= p2m−1 − p2m−1 + p2m−2

= (pm−1)2,

which is a square of an integer. �

64) Let n be an integer greater than one. If n = pk1
1 p

k2
2 · · · pkr

r is the
canonical form of n, then prove that

∑

d|n
dφ(d) =

p2k1+1
1 + 1
p1 + 1

· p
2k2+1
2 + 1
p2 + 1

· · · p
2kr+1
r + 1
pr + 1

.

Proof. Set
F (n) =

∑

d|n
dφ(d).

Because of the fact that the function F (n), as defined above, is multiplicative,
for a prime number p one can write

F (pk) =
∑

d|pk

dφ(d)

= 1φ(1) + pφ(p) + p2φ(p2) + · · · + pkφ(pk)

= 1 + p(p− 1) + p2(p2 − p) + · · · + pk(pk − pk−1)

= 1 + (p2 − p) + (p4 − p3) + · · · + (p2k − p2k−1)
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= 1 − p+ p2 − p3 + p4 − · · · − p2k−1 + p2k

=
(−p)2k+1 − 1

−p− 1

=
p2k+1 + 1
p+ 1

.

Therefore,

F (pk) =
p2k+1 + 1
p+ 1

.

Thus,

F (n) = F (pk1
1 p

k2
2 · · · pkr

r )

= F (pk1
1 )F (pk2

2 ) · · ·F (pkr
r ).

Hence,

F (n) =
p2k1+1
1 + 1
p1 + 1

· p
2k2+1
2 + 1
p2 + 1

· · · p
2kr+1
r + 1
pr + 1

. �

65) Let n be an integer greater than one. If n = pk1
1 p

k2
2 · · · pkr

r is the
canonical form of n, then prove that

∑

d|n
μ(d)φ(d) = (2 − p1)(2 − p2) · · · (2 − pr).

Proof. If n is an integer greater than one with

n = pk1
1 p

k2
2 · · · pkr

r ,

then by Problem 2.2.5 it follows that
∑

d|n
μ(d)φ(d) = (1 − φ(p1))(1 − φ(p2)) · · · (1 − φ(pr))

= (1 − (p1 − 1))(1 − (p2 − 1)) · · · (1 − (pr − 1)).

Hence, ∑

d|n
μ(d)φ(d) = (2 − p1)(2 − p2) · · · (2 − pr). �

66) Let n, λ ∈ N with λ > 1 and 4 | n. Solve the diophantine equation

Φ(n)x + φ(n)y = φ(n)λ, (1)
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where
Φ(n) =

∑

1≤q<n

gcd(n, q)=1

q

and φ(n) is the Euler function.

Proof. We will simplify the expression (1) by finding the value of the function
Φ(n).

The number of positive integers q, where q < n, which are relatively prime
to the positive integer n is φ(n).

Consider the set
A = {q1, q2, . . . , qφ(n)}.

For every qi ∈ A, it follows that

n− qi ∈ A, where i = 1, 2, . . . , φ(n).

This is true because if (n, qi) = 1, then the gcd(n− qi, n) = 1.
Therefore, we obtain

φ(n)∑

i=1

[qi + (n− qi)] = Φ(n) + Φ(n) = 2Φ(n). (2)

However,
φ(n)∑

i=1

[qi + (n− qi)] =
φ(n)∑

i=1

n = nφ(n). (3)

Therefore, by (1) and (2) we get

Φ(n) =
nφ(n)

2
.

Thus, the diophantine equation (1) can be written in the form

nφ(n)
2

x+ φ(n)y = φ(n)λ. (4)

But, by the hypothesis it follows that 4 | n, that is, n ≡ 0 (mod 22).
Set n = 2km, where k ≥ 2. Then from (4), we obtain

2k−1m φ(n)x+ φ(n)y = φ(n)λ,

that is,
2k−1mx+ y = φ(n)λ−1. (5)

Set a = 2k−1m, b = 1 and gcd(a, b) = d. The diophantine equation (5) has
infinitely many integer solutions since gcd(2k−1m, 1) = 1.



11 Solutions 233

It is enough to find one solution (x0, y0) of (5).
One trivial solution is

x0 = 0, y0 = φ(n)λ−1.

Therefore, an infinite family of solutions of (1) is defined by

(x, y) =
(
x0 +

b

d
t, y0 − a

d
t

)
= (t, φ(n)λ−1 − 2k−1mt),

where t ∈ Z. �

67) Prove that

σ1(n!) <
(n+ 1)!

2
for all positive integers n, where n ≥ 8.

(Crux Mathematicorum, 1990, Problem 1399, p. 58. Proposed by Sydney
Bulman-Fleming and Edward T.H. Wang, Wilfried Laurier, University of

Waterloo, Ontario. It was proved by Robert E. Shafer, Berkeley, California)

Proof. Set n! = 2a1 · 3a2 · 5a3 · · · p where p is the greatest prime number such
that p ≤ n. Then according to Theorem 2.5.4 we get

σ1(n!) =
2a1+1 − 1

1
· 3a2+1 − 1

2
· · · p

2 − 1
p− 1

= n! · 2a1+1 − 1
2a1

· 3a2+1 − 1
2 · 3a2

· · · p2 − 1
(p− 1)p

. (1)

However, in general, if n, a ∈ N, n �= 1, it is clear that

na+1 − 1
(n− 1)na

<
n

n− 1
.

If we apply this inequality in (1), we get

σ1(n!) < n! · 2
1
· 3
2
· 5
4
· · · p

p− 1

≤ n! ·
2
1 · 3

2 · 4
3 · 5

4 · · · n
n−1 · n+1

n
4
3 · 6

5 · 8
7 · 9

8

=
(n+ 1)!
72/35

<
(n+ 1)!

2
.
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Therefore,

σ1(n!) <
(n+ 1)!

2
for all positive integers n, where n ≥ 8. �

Remark 11.5. The above inequality holds also for all positive integers n, such
that n < 8. The equality is satisfied when n takes the values 1, 2, 3, 4, 5. The
proof of these claims is a matter of several straightforward calculations.

68) Prove that
+∞∑

n=1

τ(n)
2n

=
+∞∑

n=1

1
φ(2n+1) − 1

.

Proof. We have

+∞∑

n=1

1
φ(2n+1) − 1

=
+∞∑

n=1

1
2n+1 − 2n − 1

=
+∞∑

n=1

1
2n(2 − 1) − 1

=
+∞∑

n=1

1
2n − 1

=
+∞∑

n=1

(
1
2n

1
1 − 1/2n

)
=

+∞∑

n=1

[
1
2n

·
(

1 +
1
2n

+
1

22n
+ · · ·

)]

=
+∞∑

n=1

(
1
2n

+
1

22n
+ · · ·

)
=

+∞∑

n=1

+∞∑

k=1

1
2kn

.

Thus,
+∞∑

n=1

1
φ(2n+1) − 1

=
+∞∑

n=1

+∞∑

k=1

1
2kn

. (1)

But, in the sum
+∞∑

n=1

+∞∑

k=1

1
2kn

,

the integer kn obtains certain values more than once. Therefore, we can write

+∞∑

n=1

+∞∑

k=1

1
2kn

=
+∞∑

λ=1

1
2λ

∑

kn=λ

1 =
+∞∑

λ=1

τ(λ)
2λ

. (2)

By (1) and (2) it follows that

+∞∑

n=1

τ(n)
2n

=
+∞∑

n=1

1
φ(2n+1) − 1

. �
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69) If f is a multiplicative arithmetic function, then

(α) Prove that
∑

d|n
f(d) =

∏

pa ‖n

(1 + f(p) + f(p2) + · · · + f(pa)),

where pa ‖n denotes the greatest power of the prime number p
which divides n.

(β) Prove that the function

g(n) =
∑

d|n
f(d)

is multiplicative.
(γ) Prove that ⎛

⎝
∑

d|n
τ(d)

⎞

⎠
2

=
∑

d|n
τ3(d).

Proof.

(α)
∏

pa ‖n

(1 + f(p) + f(p2) + · · · + f(pa))

= (1 + f(p1) + f(p2
1) + · · · + f(pa1

1 ))·
· (1 + f(p2) + f(p2

2) + · · · + f(pa2
2 )) · · ·

· · · (1 + f(pk) + f(p2
k) + · · · + f(pak

k )), (1)

where the integers p1, p2, . . . , pk denote the prime divisors of n and
a1, a2, . . . , ak satisfy the property

pa1
1 ‖n, pa2

2 ‖n, . . . , pak

k ‖n.
Then if we carry over the calculations in the right-hand side of (1), we will
derive a summation of the form

A = 1 +
∑

p
m1
1 p

m2
2 ···pmk

k |n
f(pm1

1 )f(pm2
2 ) · · · f(pmk

k ),

where 1 ≤ mi ≤ ai, 1 ≤ i ≤ k and therefore

A = f(1) +
∑

p
m1
1 p

m2
2 ···pmk

k |n
f(pm1

1 pm2
2 · · · pmk

k )

=
∑

d|n
f(d).
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(β) Consider two integers m,n such that m,n ≥ 1 and gcd(m,n) = 1. Then

g(mn) =
∑

d|mn

f(d) =
∏

pa ‖mn

(1 + f(p) + f(p2) + · · · + f(pa)).

But gcd(m,n) = 1, thus pa ‖m or pa ‖n, where pa does not divide m and
n, simultaneously.
Thus, if m = pm1

1 pm2
2 · · · pmk

k and n = qn1
1 qn2

2 · · · qnλ

λ , where k, λ ∈ N with
pi �= qj for all i, j such that 1 ≤ i ≤ k, 1 ≤ j ≤ λ, then

g(mn) =
∏

pa ‖mn

(1 + f(p) + f(p2) + · · · + f(pa))·

·
∏

qa ‖mn

(1 + f(q) + f(q2) + · · · + f(qa))

= g(m) · g(n).

Therefore,
g(mn) = g(m) · g(n),

where m,n ≥ 1 and gcd(m,n) = 1.
(γ) Since the function τ(n) is multiplicative, it follows that

⎛

⎝
∑

d|n
τ(d)

⎞

⎠
2

=

⎛

⎝
∏

pa ‖n

(1 + τ(p) + τ(p2) + · · · + τ(pa))

⎞

⎠
2

=

⎛

⎝
∏

pa ‖n

(1 + 2 + 3 + · · · + (a+ 1))

⎞

⎠
2

=
∏

pa ‖n

(1 + 2 + 3 + · · · + (a+ 1))2

=
∏

pa ‖n

(13 + 23 + 33 + · · · + (a+ 1)3)

=
∏

pa ‖n

(13 + τ3(p) + τ3(p2) + · · · + τ3(pa))

=
∑

d|n
τ3(d).

Thus, ⎛

⎝
∑

d|n
τ(d)

⎞

⎠
2

=
∑

d|n
τ3(d). �
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70) Consider two arithmetic functions f , g, such that

A(n) =
∑

d|n
f(d)g

(n
d

)

and g are multiplicative.
Prove that f must also be multiplicative.

Proof. Let us suppose that f is not a multiplicative function. Therefore, there
exists at least one pair of coprime positive integers a, b, such that

f(ab) �= f(a)f(b).

Let a0, b0 be the pair with the above property for which the product a0b0 has
the least possible value.

It is evident that a0b0 �= 1, because if a0b0 was equal to 1, then we would
have a0 = 1 and b0 = 1 and thus

f(a0b0) = f(1)

and
f(a0)f(b0) = f(1)f(1).

Hence,
f(1) �= f(1)f(1)

and thus f(1) �= 1. But in that case, we would have

A(1) = f(1)g(1) = f(1) · 1 �= 1,

which is impossible. Therefore, a0b0 > 1. However, due to the property of a0,
b0 it follows that for every pair of coprime positive integers c, d, such that
cd < a0b0, we obtain f(cd) = f(c)f(d). Hence,

A(a0b0) =
∑

c|a0, d|b0, cd≤a0b0

f(cd)g
(
a0b0
cd

)

= f(a0b0)g(1) +
∑

c|a0, d|b0, cd<a0b0

f(c)f(d)g
(
a0b0
cd

)
.

But, since g is a multiplicative function, we get

A(a0b0) = f(a0b0) +
∑

c|a0, d|b0, cd<a0b0

f(c)f(d)g
(a0

c

)
g

(
b0
d

)

= f(a0b0) +
∑

c|a0

f(c)g
(a0

c

)∑

d|b0
f(d)g

(
b0
d

)
− f(a0)f(b0)

= A(a0)A(b0) + f(a0b0) − f(a0)f(b0).
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However, since A is a multiplicative function, it is evident that

f(a0b0) = f(a0)f(b0),

which is a contradiction. �

71) Prove that
+∞∑

n=2

f(ζ(n)) = 1,

where f(x) = x− �x� denotes the fractional part of x ∈ R and ζ(s) is
the Riemann zeta function.

(H. M. Srivastava, University of Victoria, Canada)

Proof. For n ≥ 2, by the definition of the Riemann zeta function, it is evident
that

1 < ζ(n) ≤ ζ(2) =
+∞∑

n=1

1
n2

=
π2

6
.3

Therefore, for n ≥ 2 we have

0 < ζ(n) − 1 < 1

and hence, for n ≥ 2
ζ(n) − 1 = f(ζ(n)). (1)

Thus, by (1) we obtain

+∞∑

n=2

f(ζ(n)) =
+∞∑

n=2

(ζ(n) − 1) =
+∞∑

n=2

+∞∑

λ=2

1
λn

=
+∞∑

λ=2

+∞∑

n=2

(
1
λ

)n

=
+∞∑

λ=2

((
1 − 1

λ

)−1

− 1 − 1
λ

)

=
+∞∑

λ=2

(
1

λ− 1
− 1
λ

)
= 1. �

72) Prove that
π(x) ≥ log log x

where x ≥ 2.
(Hint: Prove first the inequality

pn < 22n

,

where pn denotes the nth prime number.)

3 For further details concerning the calculation of ζ(2), see Property 7.2.4.
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Proof. Because of the fact that in the inequality that we wish to prove, the
double logarithm log logx appears, we will try to bound the number x between
powers of the form een

, where n ∈ N.
Thus, we consider

een−1
< x ≤ een

, where n ≥ 4. (1)

(We will examine the case n < 4 separately.)

• We will first prove the inequality

pn < 22n

.

For n = 1 it is true that 2 < 22. Assume that pn < 22n

, it is enough to prove
that

pn+1 < 22n+1
.

It is a known fact that

pn+1 ≤ p1p2 · · · pn + 1.

The proof of this inequality follows easily by the fact that none of the primes
p1, p2, . . . , pn divides p1p2 · · · pn + 1. Thus, pn+1 is its smallest possible prime
factor. Therefore,

pn+1 ≤ p1p2 · · · pn + 1 < 221+22+···+2n

+ 1

< 22(2n−1) + 22 < 22(2n−1) · 22 = 22n+1
,

that is,
pn+1 < 22n+1

.

Therefore, by applying mathematical induction, we have shown that

pn < 22n

, for every n ∈ N.

• We will prove by applying again mathematical induction that

en−1 > 2n, forevery n ∈ N with n ≥ 4.

For n = 4 it is true that e3 > 24. We assume that en−1 > 2n holds true and
we shall prove that en > 2n+1.

One has
en = en−1e > 2ne > 2n2 = 2n+1.

Therefore,
en−1 > 2n, for every n with n ≥ 4.

Hence,
een−1

> 22n

.
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• From the above inequality and (1) we derive that

π(x) ≥ π(een−1
) ≥ π(22n

).

But
pn < 22n

and π(pn) = n,

that is,
π(22n

) > π(pn) = n. (2)

Thus,
π(x) ≥ n.

From (1) it follows that
log log x ≤ n. (3)

From (2) and (3) one has

π(x) ≥ log log x, for x > ee3
.

It is enough to prove that

π(x) ≥ log log x, for 2 ≤ x ≤ ee3
(that is, for n < 4).

If 5 ≤ x ≤ ee3
, the proof is obvious because

log log x ≤ 3 and π(x) ≥ π(5) = 3.

If 2 ≤ x ≤ 5, one has log log x ≤ log log 5 < 0.48 and π(x) ≥ π(2) = 1.
Therefore,

π(x) > log log x.

Hence, in general it is true that

π(x) ≥ log log x, for x ≥ 2. �

Remark 11.6. The result in the above property is “very weak,” since the values
of the function π(x) are increasing much faster than the function log logx.

For example, if x = 1012, the inequality gives

π(1012) ≥ 3.318 . . . ,

however
π(1012) = 37607912018.

73) Prove that any integer can be expressed as the sum of the cubes
of five integers not necessarily distinct.

(T. Andreescu, D. Andrica and Z. Feng)
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Proof. It is evident that for every integer m the following equality holds:

(m+ 1)3 + (m− 1)3 − 2m3 = 6m. (1)

Set in (1) in place of m the number

n3 − n

6
, (2)

which is an integer since

n3 − n = (n− 1)n(n+ 1)

is the product of three consequtive integers and thus

n3 − n = mult. 6.

From (1) and (2), one obtains

n3−n =
(
n3 − n

6
+ 1

)3

+
(
n3 − n

6
− 1

)3

−
(
n3 − n

6

)3

−
(
n3 − n

6

)3

. (3)

From (3) it follows

(
n3 − n

6

)3

+
(
n3 − n

6

)3

+
(
−n

3 − n

6
− 1

)3

+
(
−n

3 − n

6
+ 1

)3

+ n3 = n.

Hence,

n3 +
(
n3 − n

6

)3

+
(
n3 − n

6

)3

+
(
n− n3

6
− 1

)3

+
(
n− n3

6
+ 1

)3

= n.

This completes the proof of the property. �

74) Let n be an integer. An integer A is formed by 2n digits each of
which is 4; however, another integer B is formed by n digits each of
which is 8. Prove that the integer

A+ 2B + 4

is a perfect square of an integer.

(7th Balcan Mathematical Olympiad, Kusadasi, Turkey)

Proof. One has

A = 4 4 4 . . . 4︸ ︷︷ ︸
2 n

and B = 8 8 8 . . . 8︸ ︷︷ ︸
n

.



242 11 Solutions

Thus,

A = 4 4 4 . . . 4︸ ︷︷ ︸
2 n

= 4 4 4 . . . 4︸ ︷︷ ︸
n

0 0 0 . . . 0︸ ︷︷ ︸
n

+ 4 4 4 . . . 4︸ ︷︷ ︸
n

= 4 4 4 . . . 4︸ ︷︷ ︸
n

·(10n − 1) + 8 8 8 . . . 8︸ ︷︷ ︸
n

= 4 4 4 . . . 4︸ ︷︷ ︸
n

·(10n − 1) +B.

Therefore,

A = 4 · 1 1 1 . . . 1︸ ︷︷ ︸
n

· 9 9 9 . . . 9︸ ︷︷ ︸
n

+B = 4 · 1 1 1 . . . 1︸ ︷︷ ︸
n

· 9 · 1 1 1 . . . 1︸ ︷︷ ︸
n

+B

= 6 · 1 1 1 . . . 1︸ ︷︷ ︸
n

·6 · 1 1 1 . . . 1︸ ︷︷ ︸
n

+B = (6 6 6 . . . 6︸ ︷︷ ︸
n

)2 +B

= (3 · 2 2 2 . . . 2︸ ︷︷ ︸
n

)2 +B =

⎛

⎝3
4
· 8 8 8 . . . 8︸ ︷︷ ︸

n

⎞

⎠
2

+B =
(

3
4
· B

)2

+B.

Thus, we obtain

A+ 2B + 4 =
(

3
4
· B

)2

+B + 2B + 4

=
(

3
4
· B

)2

+ 2 · 3
4
B · 2 + 22

=
(

3
4
· B + 2

)2

=

⎛

⎝3
4
· 8 8 8 . . . 8︸ ︷︷ ︸

n

+2

⎞

⎠
2

=

⎛

⎝3 · 2 2 2 . . . 2︸ ︷︷ ︸
n

+2

⎞

⎠
2

=

⎛

⎝6 6 6 . . . 6︸ ︷︷ ︸
n−1

8

⎞

⎠
2

,

which is a perfect square of an integer. �

75) Find the integer values of x for which the expression x2 + 6x is
a square of an integer.

Solution. It is enough to determine the integer values of x for which

x2 + 6x = y2, where y ∈ Z. (1)
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From (1), we obtain the quadratic equation for x:

x2 + 6x− y2 = 0.

Therefore,
x = −3 ±

√
y2 + 9, where y ∈ Z. (2)

For (2) to be an integer there must exist u ∈ Z, such that

y2 + 9 = u2,

that is,
u2 − y2 = 9

which implies
(|u| − |y|)(|u| + |y|) = 9. (3)

Equation (3) is equivalent to the following:

(|u| − |y|)(|u| + |y|) = 9 · 1. (4)

However,
|u| − |y| < |u| + |y|, where u, y ∈ Z,

thus (4) can be written in the form of a system
{
|u| + |y| = 9

|u| − |y| = 1.
(5)

From (5), we obtain
|u| = 5, |y| = 4. (6)

Therefore, from (2) and (6) it follows

x = −8 or x = 2.

Hence, the integer values of x for which x2 + 6x is square of an integer are

x = −8, x = 2. �

76) Express the integer 459 as the sum of four squares of integers.

Solution. It is a known fact that if the integers m and n are integers which
can be expressed as the sum of four squares of integers, then the product mn
can also be expressed as the sum of four squares of integers.

More explicitly, by Euler’s identity one has the following:
If

m = a2
1 + a2

2 + a2
3 + a2

4



244 11 Solutions

and
n = b21 + b22 + b23 + b24,

where a1, a2, a3, a4, b1, b2, b3, b4 are integers, then

mn = (a2
1 + a2

2 + a2
3 + a2

4)(b
2
1 + b22 + b43 + b24)

= (a1b1 + a2b2 + a3b3 + a4b4)2

+ (a1b2 − a2b1 + a3b4 − a4b3)2

+ (a1b3 − a2b4 − a3b1 + a4b2)2

+ (a1b4 + a2b3 − a3b2 − a4b1)2.

Thus,

459 = 33 · 17 = 32 · 3 · 17

= 32(12 + 12 + 12 + 02)(42 + 12 + 02 + 02)

= 32[(4 + 1 + 0 + 0)2 + (1 − 4 + 0 − 0)2

+ (0 − 0 − 4 + 0)2 + (0 + 0 − 1 − 0)2]

= 32(52 + 32 + 42 + 12).

Hence,
459 = (3 · 5)2 + (3 · 3)2 + (3 · 4)2 + (3 · 1)2,

that is,
459 = 152 + 92 + 122 + 32. �

77) Find the three smallest positive consecutive natural numbers,
whose sum is a perfect square and a perfect cube of a natural
number.

(M. Th. Rassias, Proposed problem No. 94, Euclid Mathematical Magazine
B’, Greek Math. Soc., 62(2006), p. 80)

Solution. Let n−1, n, n+1 be the three consecutive natural numbers, where
n ∈ N − {1}. Then, we obtain

(n− 1) + n+ (n+ 1) = 3n.

Thus, the natural number 3n must be a perfect square as well as a perfect
cube of a natural number, that is

3n = a2 and 3n = b3, where a, b ∈ N.

Thus,
3 | a2 and 3 | b3,
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and therefore
3 | a and 3 | b

(since 3 is a prime number).
From the Fundamental Theorem of Arithmetic we can write

a = pa1
1 3a2 · · · pak

k and b = pb1
1 3b2 · · · pbk

k ,

where p1, . . . , pk are prime numbers.
Therefore,

p2a1
1 32a2 · · · p2ak

k = p3b1
1 33b2 · · · p3bk

k .

Consequently,
2a2 = 3b2. (1)

This implies that if the natural number 3n is expressed in canonical form, the
exponent of 3 will be simultaneously a multiple of 2 as well as a multiple of
3. For the determination of the smallest natural numbers with the requested
property, the number 3n must be the smallest possible.

This happens if
3n = 3k,

where k is the smallest possible exponent of 3.
From (1) it follows that the number k is the smallest common multiple of

2 and 3.
Therefore,

3n = 36 ⇔ n = 35.

Hence, the requested natural numbers are the following:

35 − 1, 35, 35 + 1.

In fact, one has

(35 − 1) + 35 + (35 + 1) = 3 · 35 = 36 = (33)2 = (32)3. �

78) Find all prime numbers p such that the number

2p−1 − 1
p

is a square of an integer.

(S. E. Louridas, Athens, Greece)

Solution. If p = 2, then obviously

2p−1 − 1
p

=
1
2

is not a square of an integer.
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For p > 2, it follows that

2p−1 − 1
p

=
(2

p−1
2 + 1)(2

p−1
2 − 1)

p
.

Furthermore, we have

gcd(2
p−1
2 + 1, 2

p−1
2 − 1) = 1.

That is true because if there existed a prime number q such that

q | 2
p−1
2 + 1 and q | 2

p−1
2 − 1,

then clearly we would have q | 2 and thus q = 2, which is impossible.
Let us consider that 2

p−1
2 + 1 is divisible by p. Then we obtain that

2
p−1
2 + 1
p

· (2 p−1
2 − 1) = a2,

for some integer a. However, since

gcd

(
2

p−1
2 + 1
p

, 2
p−1
2 − 1

)
= 1,

it is evident that both

2
p−1
2 + 1
p

and 2
p−1
2 − 1

must be squares of integers. Now, set 2
p−1
2 − 1 = b2, where b = 2k+ 1, k ∈ Z.

Thus,
2

p−1
2 − 1 = 4k2 + 4k + 1 = 4k(k + 1) + 1.

But, by the above relation it follows that (p−1)/2 < 2, because if that was not
the case, then 2

p−1
2 would be divisible by 4, which is impossible. Therefore,

2 < p < 5 or p = 3. In this case

2p−1 − 1
p

= 1,

which is a square of an integer.
Let us now set

2
p−1
2 + 1 = c2, where c = 2m+ 1,m ∈ Z.

Then, we obtain that
2

p−1
2 = 4m(m+ 1).
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If m > 1, then because of the fact that either m or m + 1 is odd, it follows
that 4m(m + 1) has an odd divisor and therefore 2

p−1
2 has an odd divisor,

which is impossible. Thus, m = 1 and hence

2
p−1
2 = 8

or
p− 1

2
= 3

or
p = 7.

In this case
2p−1 − 1

p
= 9 = 32.

Therefore,
p = 3 or p = 7. �

79) Let n be a positive integer, such that the gcd(n, 6) = 1. Prove
that the sum of n squares of consecutive integers is a multiple of n.

Proof. Let

k = a2 + (a+ 1)2 + (a+ 2)2 + · · · + (a+ n− 1)2.

Then we obtain

k = a2 + (a2 + 2a+ 1) + (a2 + 2 · 2a+ 22) + · · ·
+ [a2 + 2(n− 1)a+ (n− 1)2]

= na2 + 2 · (n− 1)n
2

a+
(n− 1)n(2n− 1)

6

= na2 + an(n− 1) + n · (n− 1)(2n− 1)
6

.

To complete the proof it is enough to prove that the number

(n− 1)(2n− 1)
6

is an integer.
We know that the gcd(n, 6) = 1, that is, the integer n is odd and therefore

n− 1 is even. Since the gcd(n, 6) = 1, it follows that

n = 3λ+ 1 or n = 3λ− 1, where λ ∈ Z,

because the integer n cannot be a multiple of 3.
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• If n = 3λ+ 1, then n− 1 = 3λ. But, the number n− 1 is also even. Thus,

n− 1 ≡ 0 (mod 6) and thus (n− 1)(2n− 1) ≡ 0 (mod 6).

• If n = 3λ− 1, then 2n− 1 = 3(2λ− 1) ≡ 0 (mod 3).
Since 2 � | n and n = 3λ− 1, it follows that 2 � | λ− 1. Thus, λ− 1 = 2κ− 1,

κ ∈ Z. Therefore, λ = 2κ. Hence, n = 3λ− 1 = 6κ− 1 and thus

n− 1 = 6κ− 2 ≡ 0 (mod 2).

Thus,
(n− 1)(2n− 1) ≡ 0 (mod 6).

Therefore,
(n− 1)(2n− 1)

6
∈ Z

and thus the integer k is a multiple of n, which completes the proof. �

80) Prove that for every m ∈ N − {1, 2}, such that the integer 7 · 4m

can be expressed as a sum of four squares of nonnegative integers
a, b, c, d, each of the numbers a, b, c, d is at least equal to 2m−1.

(W. Sierpiński, 250 Problèmes de Théorie Élémentaire des Nombres, P.W.,
Warsaw, 1970)

Proof. From Lagrange’s theorem we know that every positive integer can be
represented as a sum of four squares of positive integers. Therefore, the integer
7 · 4m can be expressed as a sum of four squares of positive integers.

In the special case of the given integer 7 ·4m, we can prove the above claim
without making use of Lagrange’s theorem and this happens because

7 · 4m = 3 · 4m + 4 · 4m = 3 · (2m)2 + 3 · 4m

= (2m)2 + (2m)2 + (2m)2 + (2m+1)2.

Let
7 · 4m = a2 + b2 + c2 + d2

with one of the numbers a, b, c, d less than 2m−1.
Without loss of generality we assume that

0 ≤ a ≤ 2m−2.

However, we don’t allow a = 0 because in that case the number 7 · 4m will be
represented as a sum of three squares. To prove that

7 · 4m �= k2
1 + k2

2 + k2
3 , for every k1, k2, k3 ∈ N
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let
7 · 4m = k2

1 + k2
2 + k2

3 , for some k1, k2, k3 ∈ N.

Then
4 | 7 · 4m ⇒ 4 | (k2

1 + k2
2 + k2

3).

Therefore, the integer number k2
1+k2

2+k2
3 is even, which means either k1, k2, k3

must all be even or two of the numbers k1, k2, k3 must be odd and the third
one must be even. We will prove that the second case leads to a contradiction.

• If k1, k2, k3 are even numbers, then the claim is obviously true.
• If two of the numbers k1, k2, k3 are odd but the third one is even, then

without loss of generality we consider k3 to be even and k1, k2 to be odd
numbers.
Then

k2
1 + k2

2 + k2
3

4
∈ Z ⇒

(
k1

2

)2

+
(
k2

2

)2

+
(
k3

2

)2

∈ Z.

However, (
k3

2

)2

∈ Z,

thus (
k1

2

)2

+
(
k2

2

)2

∈ Z.

Therefore,
k2
1 + k2

2

4
∈ Z

or
(2λ1 + 1)2 + (2λ2 + 1)2

4
∈ Z, where λ1, λ2 ∈ N

or
(8μ1 + 1)2 + (8μ2 + 1)2

4
∈ Z, where μ1, μ2 ∈ N

or
2(μ1 + μ2) +

1
2
∈ Z,

which is a contradiction.
Therefore, we have proved that all three integers k1, k2, k3 are even.

Thus, we obtain that

7 · 4m = 4(ξ21 + ξ22 + ξ23), where ξ1, ξ2, ξ3 ∈ N,

that is,
7 · 4m−1 = ξ21 + ξ22 + ξ23 .

If m− 1 ≥ 1, then, similarly, the numbers ξ1, ξ2, ξ3 are also even numbers and
therefore we continue in the same way until we come up with the result that



250 11 Solutions

7 · 40 = r21 + r22 + r23, where r1, r2, r3 ∈ N.

This means that the number 7 is written as a sum of three squares. This is
obviously impossible.

Hence, the integer 7 · 4m cannot be written as a sum of three squares of
integers. This implies that a can never take zero value.

Because of the fact that 0 < a ≤ 2m−2, it follows that we can consider a
to be written in the form

a = 2r(2k − 1), where r, k ∈ N with r ≤ m− 2

for suitable values of r, k.
Thus, we obtain that

7 · 4m = a2 + b2 + c2 + d2 ⇔ 7 · 4m − a2 = b2 + c2 + d2

⇔ 7 · 4m − [2r(2k − 1)]2 = b2 + c2 + d2.

Therefore,

7 · 4m − [2r(2k − 1)]2 = 7 · 4m − 4r(8μ+ 1), μ ∈ N

= 4r(7 · 4m−r − (8μ+ 1)).

However,
r ≤ m− 2 ⇔ m− r ≥ 2.

Therefore, in the product form of 4m−r the factor 8 appears at least once.4

That is,
7 · 4m = 4r(8μ′ − 8μ− 1), μ′ ∈ N.

Thus,

7 · 4m = 4r(8z − 1), z ∈ N

= 4r[8(z − 1) + 7].

This implies that the integer 7 · 4m can be written in the form 4r(8n + 7),
n ∈ N. Therefore,

4r(8n+ 7) = b2 + c2 + d2.

We will now prove that a number of the form 4r(8n+7) cannot be represented
as a sum of three squares of integers. If we follow the same method with the
one we used to prove that the integer 7 · 4m cannot be represented as a sum
of three squares of integers, we conclude with the result that

8n+ 7 = b21 + c21 + d2
1,

which is not possible.
4 4m−r ≥ 42 = 4 · 4 = 8 · 2.
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This is the case because if

8n+ 7 = b21 + c21 + d2
1

for some positive integers b1, c1, d1, then these numbers will all be odd or two
of these will be even and the third one will be odd.

• If all integers b1, c1, d1 are odd, then we have

b21 + c21 + d2
1 = (8μ1 + 1) + (8μ2 + 1) + (8μ3 + 1), μ1, μ2, μ3 ∈ N

and therefore

b21 + c21 + d2
1 ≡ 3 (mod 8) ⇒ 8n+ 7 ≡ 3 (mod 8) (1)

However,
8n+ 7 ≡ 7 (mod 8). (2)

From (1) and (2) it follows that

0 ≡ 4 (mod 8),

which is impossible.
• If two of the numbers b1, c1, d1 are even and the third number is odd, then

without loss of generality we can assume d1 to be an odd number.
Thus,

b21 + c21 + d2
1 = 4μ2

1 + 4μ2
2 + 8μ3 + 1 ≡ 1 (mod 4)

⇔ b21 + c21 + d2
1 ≡ 1 (mod 4)

⇔ 8n+ 7 ≡ 1 (mod 4). (3)

But, it is true that
8n+ 7 ≡ 3 (mod 4). (4)

From (3) and (4) it follows that

0 ≡ 2 (mod 4),

which is impossible.

Therefore, in all cases, the hypothesis that at least one of the numbers a, b, c, d
is less than 2m−1, leads to a contradiction.

Hence, each of the positive integers a, b, c, dmust be at least equal to 2m−1.
�

81) Let n be a positive integer and d1, d2, d3, d4 the smallest positive
integer divisors of n with d1 < d2 < d3 < d4. Find all integer values
of n, such that

n = d2
1 + d2

2 + d2
3 + d2

4.
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Proof. If x is an even positive integer, then x2 ≡ 0 (mod 4) and if x is an odd
positive integer, then x2 ≡ 1 (mod 4).

In the case when n is an odd positive integer, then all four of its divisors
d1, d2, d3, d4 are necessarily odd positive integers.

Then
n = d2

1 + d2
2 + d2

3 + d2
4 ≡ 0 (mod 4),

which is not possible.
Therefore, the positive integer n is even, that is 2 | n.
If 4 | n, then d1 = 1 and d2 = 2 and thus

n = 1 + 4 + d2
3 + d2

4. (1)

Because of the fact n is an even number, it follows that one of the numbers
d3, d4 must be odd and the other one must be even.

From (1) we obtain

n = 1 + 4 + (8k + 1) + 4λ = 4(2k + λ+ 1) + 2, where k, λ ∈ N.

Thus,
4 � | n.

It is evident that d3 must be a prime number, because otherwise there should
exist a positive integer m such that m | d3. Then we would have

1 < 2 < m < d3 and m | n,
which is not possible, because in that case d3 would not be the third smallest
divisor of n. However, this contradicts the hypothesis.

Since d3 is an odd number, it follows that d4 will be an even number.
For d4 to obtain the smallest value, it must take the form 2μ, μ ∈ N, where

μ is one of the numbers d1, d2, d3. Thus, it must hold

d4 = 2d3.

Consequently, we obtain (d1, d2, d3, d4) = (1, 2, p, 2p), where p is a prime
number. Therefore,

n = 5(1 + p2), that is, 5 | n.
Thus, p = d3 = 5 and n = 130. Hence, the only positive integer which satisfies
the hypothesis of the problem is the number 130. �

82) Let a, b be two positive integers, such that

a b+ 1 | a2 + b2.

Prove that the integer
a2 + b2

a b+ 1
is a perfect square of a positive integer.

(Shortlist, 29th International Mathematical Olympiad, 1988)
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Proof.
• Set

a2 + b2

a b+ 1
= q ∈ N.

Then
a2 + b2 = q a b+ q. (1)

Without loss of generality we consider a ≤ b. We claim that

q a− a < b ≤ q a. (2)

Proof of (2). It is true that

q a b < q a b+ q = a2 + b2 ≤ ab+ b2

⇔ q a b < a b+ b2

⇔ q a < a+ b

⇔ q a− a < b,

which proves the left-hand side of inequality (2). Suppose that b > qa. Then
b = qa+ c, where c ∈ N. Therefore,

(1) ⇔ a2 + (q a+ c)2 = q a (q a+ c) + q

⇔ a2 + q2a2 + 2 q a c+ c2 = q2a2 + q a c+ q

⇔ a2 + q a c+ c2 = q.

However, it holds

q ≤ q a c < a2 + q a c+ c2 = q ⇔ q < q,

which is not possible. Thus,
b ≤ q a.

This completes the proof of inequality (2).
• From (2) it follows that

b = q a−m,

where 0 ≤ m < a and m ∈ N ∪ {0}.
From (1) it follows that

a2 + b2 = q a b+ q ⇔ a2 + (q a−m)2 = q a (q a−m) + q

⇔ a2 + q2a2 − 2 q am+m2 = q2a2 − q am+ q

⇔ a2 +m2 = q am+ q

⇔ a2 +m2 = q (am+ 1)

⇔ a2 +m2

am+ 1
= q.
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Thus, if there exists a pair (a, b) which satisfies the relation

a2 + b2

a b+ 1
= q,

then there exists a pair (m, a) which satisfies the property

m2 + a2

ma+ 1
= q.

Similarly, since there exists the pair (m, a) which satisfies

m2 + a2

ma+ 1
= q

there will also exist another pair (m1, a) which will satisfy

m2
1 + a2

m1a+ 1
= q.

Continuing with this process and since 0 ≤ m < a ≤ b we get m = 0.
Therefore,

a2 +m2

am+ 1
= q ⇔ q = a2 (for m = 0),

which is a perfect square of a positive integer. �

83) Let k be an integer, which can be expressed as a sum of two
squares of integers, that is,

k = a2 + b2 with a, b ∈ Z.

If p is a prime number greater than 2, which can be expressed as a
sum of two squares of integers c, d for which it holds

(c2 + d2) | (a2 + b2) and (c2 + d2) � | (a+ b),

prove that the integer
a2 + b2

c2 + d2
=
k

p

can be expressed as a sum of two squares of integers.

Proof. We will make use of the following identity:

(x2
1 + x2

2) (x2
3 + x2

4) = (x1x3 ± x2x4)2 + (x1x4 ∓ x2x3)2. (1)

• Set k/p = m ∈ Z. Then,

m =
a2 + b2

c2 + d2
=

(a2 + b2)(c2 + d2)
(c2 + d2)2

.



11 Solutions 255

Therefore, by means of (1), we obtain

m =
(a c± b d)2 + (a d∓ b c)2

(c2 + d2)2
=

(a c± b d)2

(c2 + d2)2
+

(a d∓ b c)2

(c2 + d2)2
. (2)

It is enough to prove that

(c2 + d2) | (a c+ b d) and (c2 + d2) | (a d− b c)

or
(c2 + d2) | (a c− b d) and (c2 + d2) | (a d+ b c).

• We will first prove that

(c2 + d2) | (a c+ b d) or (c2 + d2) | (a c− b d).

In order to prove this, it is the same to show that

(c2 + d2) | (a c+ b d) (a c− b d)

(since c2 + d2 is a prime number).
However,

(a c+ b d)(a c− b d) = a2c2 − b2d2

= a2c2 + b2c2 − (b2c2 + b2d2)

= (a2 + b2)c2 − b2(c2 + d2)

= m(c2 + d2)c2 − b2(c2 + d2)

= (c2m− b2)(c2 + d2).

Thus,
(c2 + d2) | (a c+ b d) or (c2 + d2) | (a c− b d).

• Similarly, we can prove that

(c2 + d2) | (a d− b c) or (c2 + d2) | (a d+ b c)

because

(a d− b c)(a d+ b c) = a2d2 − b2c2

= a2d2 + d2b2 − (d2b2 + b2c2)

= d2(a2 + b2) − b2(c2 + d2)

= d2m(c2 + d2) − b2(c2 + d2)

= (d2m− b2)(c2 + d2).
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Thus,
(c2 + d2) | (a d− b c) or (c2 + d2) | (a d+ b c).

• In the case where (c2 + d2) | (a c+ b d) we will prove that

(c2 + d2) | (a d− b c).

This is true since if c2 + d2 was a divisor of a d+ b c, then we would have

(c2 + d2) | [(a c+ b d) + (a d+ b c)] ⇒ (c2 + d2) | [a(c+ d) + b(c+ d)]

⇒ (c2 + d2) | (a+ b)(c+ d).

Therefore,
(c2 + d2) | (a+ b) or (c2 + d2) | (c+ d).

But c2 + d2 > c+ d, thus

(c2 + d2) | (a+ b),

which is not possible because of the hypothesis.
Thus in this case, because of (2), it follows

m =
(a c+ b d)2

(c2 + d2)2
+

(a d− b c)2

(c2 + d2)2
=
λ2

1(c
2 + d2)2

(c2 + d2)2
+
λ2

2(c
2 + d2)2

(c2 + d2)2
,

where
λ1 =

ac+ bd

c2 + d2
and λ2 =

ad− bc

c2 + d2
,

that is,
m = λ2

1 + λ2
2, where λ1, λ2 ∈ Z,

which proves the claim.
• In the case where (c2 + d2) | (a c− b d) we will prove that

(c2 + d2) | (a d+ b c).

Similarly, this holds because if (c2 + d2) | (a d− b c), then

(c2 + d2) | ac− bd− (ad− bc) ⇒ (c2 + d2) | (a+ b)c− (a+ b)d

⇒ (c2 + d2) | (a+ b)(c− d).

Therefore,
(c2 + d2) | (a+ b) or (c2 + d2) | (c− d).

But
c2 + d2 > |c− d| or c �= d.

It follows that
(c2 + d2) | (a+ b),
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which is not possible. Therefore, in this case, because of (2) it follows that

m =
(a c− b d)2

(c2 + d2)2
+

(a d+ b c)2

(c2 + d2)2

=
λ2

3(c
2 + d2)2

(c2 + d2)2
+
λ2

4(c
2 + d2)2

(c2 + d2)2

= λ2
3 + λ2

4,

where
λ3 =

ac− bd

c2 + d2
and λ4 =

ad+ bc

c2 + d2

and λ3, λ4 ∈ Z. Hence, the integer m can be expressed as a sum of two squares
of integers. �

84) Prove that the integer

p1p2 · · · pn − 1, where n ∈ N with n > 1,

cannot be represented as a perfect power of an integer.
(By p1, p2, . . . , pn we denote, respectively, the 1st, 2nd, 3rd, . . . , nth prime

number.)

(M. Le, The perfect powers in {p1p2 · · · pn}+∞
n=1, Octogon Mathematical

Magazine 13(2)(2005), pp. 1101–1102)

Proof. We assume that the integer

p1p2 · · · pn − 1

can be represented as a perfect power of an integer with n > 1.
Then we obtain

p1p2 · · · pn − 1 = ak, where a, k ∈ N. (1)

• If k ≥ n, then we would have

pn
n+1 > p1p2 · · · pn > ak ≥ an. (2)

We claim that if p is a prime factor of a, then

p ≥ pn+1.

This is true because if p was one of the prime numbers p1, p2, . . . , pn, then p
should divide the integer

p1p2 · · · pn − 1 (because of (1)),

which is impossible.
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Thus, it follows that
an ≥ pn ≥ pn

n+1. (3)

Therefore, from (2), (3) we obtain that

pn
n+1 > pn

n+1,

which is not possible.
Thus, it follows that

k < n < pn.

From this relation, it follows that if q is a prime factor of k, then

q = pi, where 1 ≤ i < n.

Let x = ak/q. Then from (1) it follows that

p1p2 · · · pn − 1 = xq, where x ∈ N. (4)

We will prove that q must necessarily be an odd integer.
• If q = 2, then one has:

The integer
p1p2 · · · pn − 1

is odd and thus
xq = x2

is also odd, that is, x is an odd integer.
Therefore, because of (4) we derive

p1p2 · · · pn = xq + 1 = (2λ+ 1)2 + 1

= 4λ2 + 4λ+ 2, λ ∈ N.

It is true that p2 = 3, that is, 3 | p1p2 · · · pn, and therefore 3 | (4λ2 + 4λ+ 2).
Hence,

3 | (2λ2 + 2λ+ 1), λ ∈ N.

It is possible to express the positive integer λ in the form

λ = 3μ+ r,

where μ ∈ N and r = 0, 1, 2.
Then

2λ2 + 2λ+ 1 = 2(3μ+ r)2 + 2(3μ+ r) + 1

= 18μ2 + 12μr + 2r2 + 6μ+ 2r + 1.

Therefore,
3 | (18μ2 + 12μr + 2r2 + 6μ+ 2r + 1),
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that is,
3 | (2r2 + 2r + 1), where r = 0 or r = 1 or r = 2.

If r = 0: 2r2 + 2r + 1 = 1, but 3 � | 1, that is impossible.
If r = 1: 2r2 + 2r + 1 = 5, but 3 � | 5, that is impossible.
If r = 2: 2r2 + 2r + 1 = 13, but 3 � | 13, that is impossible.
Therefore, q must necessarily be an odd prime number.
Thus, from (4), it follows

xq + 1 = p1p2 · · · pn

and therefore
xq − (−1)q = p1p2 · · · pn

(here we use the fact that q is an odd number).
But, generally it holds that if ap − bp ≡ 0 (mod p), where a, b ∈ N and p

is a prime number, then ap − bp ≡ 0 (mod p2). Indeed this is true.
From Fermat’s Little Theorem it follows

ap ≡ a (mod p) and bp ≡ b (mod p).

Thus,
ap − bp ≡ a− b (mod p),

that is,
p | ap − bp − (a− b).

But p | (ap − bp) and thus p | (a− b).
Consequently,

a− b = kp, where k ∈ Z

and thus

ap = (b+ kp)p

= bp +
(
p

1

)
bp−1kp+

(
p

2

)
bp−2(kp)2 + · · · + (kp)p

= bp + p bp−1kp+
(
p

2

)
bp−2k2p2 + · · · + kpp2pp−2.

Therefore, we get

ap − bp = bp−1kp2 +
(
p

2

)
bp−2k2p2 + · · · + kpp2pp−2 = k1p

2,

where

k1 = bp−1k +
(
p

2

)
bp−2k2 + · · · + kppp−2.
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Thus,
ap − bp ≡ 0 (mod p2).

But, it is true that
xq − (−1)q = p1p2 · · · pn,

that is,
xq − (−1)q ≡ 0 (mod q) (5)

and according to the above

xq − (−1)q ≡ 0 (mod q2). (6)

From (6), it follows that
q2 | (xq + 1),

that is,
q2 | p1p2 · · · pn,

which is impossible, since q should appear twice in the product p1p2 · · · pn,
which is a contradiction. �

85) Let f(x) = ax2 + bx + c be a quadratic polynomial with integer
coefficients such that f(0) and f(1) are odd integers. Prove that the
equation f(x) = 0 does not accept an integer solution.

Proof. Assume that r is an integer solution of the equation f(x) = 0. Then
f(x) is divisible by x− r and

f(x) = (x− r)g(x),

where g(x) is a polynomial with integer coefficients.
It follows that {

f(0) = −rg(0)

f(1) = (1 − r)g(1).
(1)

Then
−rg(0) = 2k + 1 and (1 − r)g(1) = 2l+ 1, (2)

where k, l are integers, since by hypothesis f(0) and f(1) are odd integers.
Thus,

−r, 1 − r, g(0) and g(1)

are integers.
From (2) it follows that

−r and 1 − r

are odd integers, which is impossible, because if r is odd, then the integer
1 − r is even.

Hence, r cannot be an integer solution of the equation f(x) = 0. �
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86) A function f : N → N is defined as follows: writing a number
x ∈ N in its decimal expansion and replacing each digit by its square
we obtain the decimal expansion of the number f(x). For example,
f(2) = 4, f(35) = 925, f(708) = 49064. Solve the equation f(x) = 29x.

(Vladimir Protasov, Moscow State University; Newsletter of the European
Mathematical Society, Issue 77, 2010, Problem 67)

Solution. Let x = d1 . . . dn be the decimal expansion of x. We shall find
successively all the digits from dn to d1.

Let us suppose that dn = 0, then if we divide x by 10, the number f(x) will
be divided by 10 also. Thus, the relation f(x) = 29x remains true. Therefore,
it suffices to consider the case dn �= 0, and then multiply all the solutions by
10m,m ≥ 0.

Hence, dn �= 0. Since the last digit of f(x) is the last digit of 29x, we
obtain

d2
n ≡ 9dn (mod 10).

Therefore, dn = 4, 5 or 9.
• If dn = 4, since 42 = 16 and 4× 29 = 116, we obtain the following equation
on the digit dn−1:

1 + 9dn−1 ≡ 1 (mod 10).

This equation has a unique solution on the set of digits: dn−1 = 0. Then we
obtain the equation on dn−2:

1 + 9dn−1 ≡ 0 (mod 10),

whose unique solution is dn−2 = 1.
At every step we get the next digit in a unique way:

dn−3 = 2, dn−4 = 2, dn−5 = 2, . . . .

We see that the sequence cycles, so this process will never terminate, which
means that there is no solution.
• If dn = 5, by computing the digits successively, we get dn−1 = 2, dn−2 = 3,
and the process terminates. Thus, x = 325 is the only solution in this case.
• If dn = 9, by computing successively the last four digits: x = . . . 9189, we see
that three of these digits have two-digit squares, therefore the number f(x)
has, at least, three digits more than x, and hence f(x) > 100x. Thus, there is
no solution in this case.

Therefore,
x = 325 · 10m. �

87) Prove that the only integer solution of the equation

y2 = x3 + x

is x = 0, y = 0.
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Proof. Let x = x0, y = y0 be an integer solution of the equation

y2 = x3 + x.

Then
y2
0 = x3

0 + x0 = x0(x2
0 + 1).

However, the integers x0, x2
0 +1 are relatively prime. This is the case because

if there was a prime number p such that

p | x0 and p | (x2
0 + 1),

then
p | x2

0 and p | (x2
0 + 1).

Therefore, p | 1, which is impossible.
Since gcd(x0, x

2
0 + 1) = 1 and the product x0(x2

0 + 1) is a perfect power
of an integer, then necessarily the integers x0, x

2
0 + 1 are perfect powers of an

integer.
Therefore, there exists an integer k such that

x2
0 + 1 = k2

and thus
(k − x0)(k + x0) = 1.

But, this can happen only when

k − x0 = k + x0 = 1 or k − x0 = k + x0 = −1.

In both cases we obtain that
x0 = 0.

Thus, it follows that y0 = 0. �

88) Prove that the equation 7x3 − 13y = 5 does not have any integer
solutions.

(S. E. Louridas, Athens, Greece)

Proof. Let us assume that there exist integers x0, y0, such that

7x3
0 − 13y0 = 5. (1)

Then,
7x3

0 ≡ 5 (mod 13)

or
x3

0 ≡ −3 (mod 13)
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and thus
x12

0 ≡ 81 (mod 13). (2)

However, by Fermat’s Little Theorem we obtain

x12
0 ≡ 1 (mod 13).

Therefore, by (2) and the above relation, it follows that

0 ≡ 80 (mod 13),

which is obviously impossible. �

89) Show that for any n ∈ N, the equation q = 2p2n + 1, where p and
q are prime numbers, has at most one solution.

(Konstantinos Drakakis, University College Dublin, Ireland; Newsletter of
the European Mathematical Society, Issue 67, 2008, Problem 23, p. 46)

Solution. It is evident that p ( mod 3) can take three different values, namely,
0, 1, and −1. The former case p ≡ 0 (mod 3) occurs if and only if p = 3, while
the remaining two cases p ≡ ±1 (mod 3) both lead to p2 ≡ 1 (mod 3), so that
2p2n + 1 ≡ 2 · 1 + 1 ≡ 0 (mod 3): in other words, whenever p ≡ ±1 (mod 3),
3 | q > 3, hence q cannot be a prime number. Therefore, q can be a prime
number only if p = 3, so that the given equation has indeed at most one
solution.

For example,

q = 2 · 32 + 1 = 19, q = 2 · 34 + 1 = 163 and q = 2 · 36 + 1 = 1, 459

are all prime numbers, but

q = 2 · 38 + 1 = 13, 123 = 11 · 1, 193

is not a prime number. �

90) Find all positive integers x, y, z such that

x3 + y3 + z3 − 3xyz = p,

where p is a prime number with p > 3.

(Titu Andreescu and Dorin Andrica, Problem 27, Newsletter of the
European Mathematical Society, 69(2008), p. 24)

Proof. From Euler’s identity it follows that

x3 + y3 + z3 − 3xyz = p⇔ (x+ y + z)(x2 + y2 + z2 − xy − yz − zx) = p.
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Obviously one has
x+ y + z > 1.

Since p is a prime number we obtain

x+ y + z = p and x2 + y2 + z2 − xy − yz − zx = 1.

But

x2 + y2 + z2 − xy − yz − zx = 1 ⇔ 2x2 + 2y2 + 2z2 − 2xy − 2yz − 2zx = 2

⇔ (x− y)2 + (y − z)2 + (z − x)2 = 2. (1)

Without loss of generality we consider x ≥ y ≥ z.
If x > y > z, we get

x− y > 0
y − z > 0

}
or

x− y ≥ 1
y − z ≥ 1

}

from which it follows that
x− z ≥ 2.

Thus,
(x− y)2 + (y − z)2 + (z − x)2 ≥ 6 > 2,

which is impossible, due to (1).
Thus, because of the fact that x > y > z does not hold, it follows that

x = y = z or x = y > z or x > y = z.

However, x = y = z cannot hold due to (1).
It follows that

x = y = z + 1 or x− 1 = y = z,

because of the following reasoning.
We have

x = y > z ⇒ x = y = z + a, where a ∈ N

or
x > y = z ⇒ x− a = y = z, where a ∈ N.

However, in both cases, if a ≥ 2, then (1) is not satisfied. Thus, necessarily
we must have a = 1.

• If x = y = z + 1, then

x+ y + z = p⇔ 2x+ (x − 1) = p⇔ x =
p+ 1

3
⇒ y =

p+ 1
3

and therefore
z =

p− 2
3

.

Hence,

x =
p+ 1

3
, y =

p+ 1
3

, z =
p− 2

3
,

such that p = 3k + 2, k ∈ N and p is a prime number.
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• If x− 1 = y = z, then

x+ y + z = p⇔ x+ 2(x− 1) = p⇔ x =
p+ 2

3

⇒ y =
p− 1

3
⇒ z =

p− 1
3

.

Therefore,

x =
p+ 2

3
, y =

p− 1
3

, z =
p− 1

3
,

where p = 3k + 1, k ∈ N and p is a prime number. �

91) Prove that there exists an integer n such that

p(p+3)/2

[
(p− 1)p−1 − p− 1 +

2a∑

i=0

(p2 − a+ i)m

]

× [(2 · 4 · · · (p− 1))p−1 − n(−1)(p+1)/2],

where m is an odd positive integer, a ∈ N and p is an odd prime
number.

Proof. Set

A = (p− 1)p−1 − p− 1 +
2a∑

i=0

(p2 − a+ i)m

and
B = (2 · 4 · · · (p− 1))p−1 − n(−1)(p+1)/2.

Firstly, we shall prove that p2 divides A. We have

2a∑

i=0

(p2 − a+ i)m = (p2 − a)m + (p2 − a+ 1)m + · · ·

+ (p2 + a− 1)m + (p2 + a)m

= [(p2 − a)m + (p2 + a)m]

+ [(p2 + a+ 1)m + (p2 + a− 1)m] + · · · + p2. (1)

However, since m is an odd integer, it is evident that

(p2 − r) + (p2 + r) | (p2 − r)m + (p2 + r)m

or
p2 | (p2 − r)m + (p2 + r)m,
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for any positive integer r. Therefore, by (1) it follows that

p2
2a∑

i=0

(p2 − a+ i)m. (2)

Furthermore, we have

(p− 1)p−1 = pp−1 +
(
p− 1

1

)
pp−2 + · · · +

(
p− 1
p− 2

)
p(−1)p−2 + (−1)p−1

≡ (−1)p−1 + (p− 1)p (−1)p−2 (mod p2)

or
(p− 1)p−1 ≡ 1 − (p− 1)p ≡ 1 + p (mod p2). (3)

Thus, by (2) and (3) we obtain

p2 (p− 1)p−1 − p− 1 +
2a∑

i=0

(p2 − a+ i)m

or
p2 | A. (4)

We shall now prove that there exists an integer n such that p(p−1)/2 | B.
By Wilson’s theorem we know that

p | (p− 1)! + 1.

Hence,

p | 1 · 2 · 3 · · · (p− 1) + 1 = (1 · 3 · · · (p− 2))(2 · 4 · · · (p− 1)) + 1

or equivalently

(1 · 3 · · · (p− 2))(2 · 4 · · · (p− 1)) ≡ (−1) (mod p). (5)

But

(p− 1) ≡ −1 (mod p)

(p− 3) ≡ −3 (mod p)

...

p− (p− 2) ≡ −(p− 2) (mod p).

Therefore, by multiplying the above relations, we get

2 · 4 · · · (p− 3)(p− 1) ≡ (−1)(p−1)/2(1 · 3 · · · (p− 2)) (mod p). (6)
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If we now multiply (5) and (6), we obtain

(22 · 42 · · · (p− 1)2)(1 · 3 · · · (p− 2)) ≡ (−1)(p+1)/2(1 · 3 · · · (p− 2)) (mod p)

or
p | 22 · 42 · · · (p− 1)2 − (−1)(p+1)/2.

Hence,
p(p−1)/2 (22 · 42 · · · (p− 1)2 − (−1)(p+1)/2)(p−1)/2.

Thus, there exists an integer n such that

p(p−1)/2 (22 · 42 · · · (p− 1)2)(p−1)/2 − n(−1)(p+1)/2

or
p(p−1)/2 (2 · 4 · · · (p− 1))p−1 − n(−1)(p+1)/2

or
p(p−1)/2 | B. (7)

By (4) and (7) it is clear that

p2 · p(p−1)/2 | AB
or

p(p+3)/2 | AB. �

92) Find the minimum value of the product xyz over all triples of
positive integers x, y, z for which 2010 divides x2+y2+z2−xy−yz−zx.
(Titu Andreescu, The University of Texas at Dallas, USA; Newsletter of the

European Mathematical Society, Issue 77, 2010, Problem 70)

Solution. Without loss of generality assume that x > y > z and write

x2 + y2 + z2 − xy − yz − zx =
1
2
[(x− y)2 + (y − z)2 + (z − x)2].

Let x− y = a and y − z = b. Then

x2 + y2 + z2 − xy − yz − zx =
1
2
[a2 + b2 + (a+ b)2] = a2 + ab+ b2

and therefore the condition of the problem becomes 2010 | a2 + ab+ b2.
It is clear that if a prime number p ≡ 2 (mod 3) divides a2 + ab + b2,

then p divides a and p divides b. Hence, 2 and 5 divide both a and b and thus
a = 10u and b = 10v for some positive integers u and v.

It follows that
u2 + uv + v2 = 201k,

for some positive integer k.



268 11 Solutions

Since we are seeking the minimum of

xyz = (z + 10u+ 10v)(z + 10v)z,

we must have z = 1 and v ≤ u. For k = 1 the only pair (u, v) of positive
integers with v ≤ u satisfying this equation is (11, 5). Therefore, we obtain
xyz = 161 · 51.

If k > 1 and v ≥ 5, then for each solution (u, v), we would have u > 11,
implying xyz > 161 · 51. Thus, we need to check what happens for v ≤ 4.

If 2 | k, then 2 | u and 2 | v and the equation u2 + uv+ v2 = 201k is either
not solvable or it reduces to the equation

U2 + UV + V 2 = 201 · k
4
,

where u = 2U and v = 2V . In the latter situation we obtain the solution
(2 · 11, 2 · 5), making xyz greater than 161 · 51.

The same argument works for 5 and all other prime numbers of the form
3k + 2 : 11, 17, 23, 29, . . ..

If 3 | k, then since

(u− v)2 + 3uv = 9 · 67
k

3
,

it is evident that 3 divides u− v or 9 divides (u− v)2 and thus 9 divides 3uv.
Therefore, 3 divides u or v. However, since 3 also divides u− v, it follows

that
u = 3s and v = 3t,

for some positive integers s and t.
Hence, we obtain the equation

s2 + st+ t2 = 67,

whose only solution (s, t) with s ≥ t is (7, 2). Thus, (u, v) = (21, 6) and
xyz = 271 · 61 > 161 · 51.

For k ≤ 30, the only values we have to worry about are k = 7, 13, 19.
For k > 30, 201k ≥ 6231. If v = 1, u(u + 1) ≥ 6230, implying u ≥ 79 and
xyz ≥ 801 ·11 > 161 ·51. Because none of the equations u(u+1) = 201 ·7−1,
u(u + 1) = 201 · 13 − 1, u(u + 1) = 201 · 19 − 1 has integer solution, we are
done in the case v = 1. If v = 2 and k ≤ 12, we only need to check that the
equation u(u + 1) = 201 · 7 − 4 has no solution in positive integers, because
k > 12 implies 201k − 4 ≥ 2609, so u(u + 1) ≥ 2609 and so, again, u ≥ 79,
implying xyz ≥ 801 · 21 > 161 · 51. Cases v = 3 and v = 4 are now easy.

In conclusion, the minimum value of xyz is 161 · 51. �
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93) Find all pairs (x, y) of positive integers x, y for which it holds

1
x

+
1
y

=
1
pq
,

where p, q are prime numbers.

Solution. The given equation

1
x

+
1
y

=
1
p q

can be written in an equivalent form as follows:

1
x

+
1
y

=
1
p q

⇔ (x+ y)p q − xy = 0

⇔ p2q2 + xp q + yp q − xy = p2q2

⇔ p2q2 = p2q2 − xp q − yp q + xy

⇔ p2q2 = p2q2 + y(x− p q) − xp q

⇔ p2q2 = p q(p q − x) + y(x− p q)

⇔ (x− p q)(y − p q) = p2q2. (1)

From relation (1) one obtains all possible values of the expressions

x− p q, y − p q.

Thus, we get

x− p q = p2q2

y − p q = 1

}
or

x− p q = 1
y − p q = p2q2

}
or

x− p q = p2

y − p q = q2

}

or
x− p q = q2

y − p q = p2

}
or

x− p q = p

y − p q = p q2

}
or

x− p q = p q2

y − p q = p

}

or
x− p q = q

y − p q = qp2

}
or

x− p q = qp2

y − p q = q

}
or

x− p q = p q

y − p q = p q.

}

Hence, the solutions of the equation are the following:

(x1, y1) = (p q(p q + 1), p q + 1) (x5, y5) = (p (1 + q), p q(q + 1))

(x2, y2) = (p q + 1, p q(p q + 1)) (x6, y6) = (p q(q + 1), p(1 + q))

(x3, y3) = (p (p+ q), q(q + p)) (x7, y7) = (q(1 + p), p q(p+ 1))

(x4, y4) = (q(q + p), p (p+ q)) (x8, y8) = (p q(p+ 1), q(1 + p))

(x9, y9) = (2p q, 2p q). �
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94) Let n be a positive integer. Prove that the equation

x+ y +
1
x

+
1
y

= 3n

does not accept solutions in the set of positive rational numbers.

(66th Panhellenic Mathematical Competition, “ARCHIMEDES”)

Proof. Assume that the equation

x+ y +
1
x

+
1
y

= 3n

has one solution in the set of rational numbers and let

x =
a

b
, y =

c

d
, where gcd(a, b) = 1, gcd(c, d) = 1,

with a, b, c, d ∈ N and bd �= 0, be that solution. Thus, we obtain that

a

b
+
c

d
+
b

a
+
d

c
= 3n⇔ a2 + b2

ab
+
c2 + d2

cd
= 3n

⇔ cd(a2 + b2) + ab(c2 + d2) = 3nabcd. (1)

Since
cd | 3nabcd, that is, cd | [cd(a2 + b2) + ab(c2 + d2)],

it follows that
cd | ab(c2 + d2). (2)

But gcd(cd, c2 + d2) = 1 because if there were a prime number p such that
p | cd and p | (c2 + d2), then we would have

• If p | c, since p | (c2 + d2) it would imply that p | d, which is not possible
since gcd(c, d) = 1.

• If p | d, then similarly p | c since p | gcd(c2 +d2), which is also not possible.

Thus, from (2) it follows that cd | ab.
Similarly, from (1) one obtains

ab | 3nabcd, that is, ab | cd(a2 + b2)

and therefore ab | cd since the gcd(ab, a2+b2) = 1 for exactly the same reasons
for which the gcd(cd, c2 + d2) = 1.

Consequently, since ab | cd and cd | ab it follows that ab = cd.
Thus,

(1) ⇔ 3n(ab)2 = ab(a2 + b2) + ab(c2 + d2)

⇔ 3nab = a2 + b2 + c2 + d2.

Therefore,
3 | (a2 + b2 + c2 + d2). (3)
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From (3) one obtains the following cases:

(α)None of the numbers a, b, c, d is divisible by 3.
(β)Only one of the numbers a, b, c, d is divisible by 3.
(γ)Two of the numbers a, b, c, d are divisible by 3.
(δ) Three of the numbers a, b, c, d are divisible by 3.
(ε) All numbers a, b, c, d are divisible by 3.

Cases (δ), (ε) are not considered because otherwise the conditions

gcd(a, b) = 1, gcd(c, d) = 1

would not be satisfied.
Case (β) can be included in case (γ), because from (β) if for example 3 | a

then 3 | c or 3 | d, since ab = cd.

• If case (α) is satisfied, then

a2 + b2 + c2 + d2 ≡ 1 or 2 (mod 3),

because
a, b, c, d = 3k + 1 or 3k + 2.

But
(3k + 1)2 = 9k2 + 6k + 1

and
(3k + 2)2 = 9k2 + 12k + 4,

therefore there does not exist a linear combination of (3k + 1)2, (3k + 2)2

equal to a multiple of 3, since there does not exist a linear combination of
1 and 4 equal to a multiple of 3.

• If case (γ) is satisfied, then two of the integers a, b, c, d have the form
3k1 + 1, 3k2 + 2 for k1, k2 ∈ N. However, none of the summations

(3k1 + 1)2 + (3k2 + 1)2, (3k1 + 1)2 + (3k2 + 2)2, (3k1 + 2)2 + (3k2 + 2)2

is a multiple of 3.

Therefore, it holds

a2 + b2 + c2 + d2 ≡ 1 or 2 (mod 3).

Therefore, the equation x + y + 1/x + 1/y = 3n does not accept positive
rational solutions. �

95) Find all integers n, n ≥ 2, for which it holds

1n + 2n + · · · + (n− 1)n ≡ 0 (mod n).
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Solution. We will consider two cases:
• If n is an odd integer, then 1, 2, . . . , n−1

2 are all integers.
Consider now the number

Aλ = λn + (n− λ)n, λ ∈ N.

Then

A1 +A2 + · · · +An−1
2

= 1n + (n− 1)n

+ 2n + (n− 2)n

+ 3n + (n− 3)n + · · ·

+
(
n− 3

2

)n

+
(
n+ 3

2

)n

+
(
n− 1

2

)n

+
(
n+ 1

2

)n

,

that is,
A1 +A2 + · · · +An−1

2
= 1n + 2n + · · · + (n− 1)n. (1)

However,

Aλ = λn + nn +
(
n

1

)
nn−1(−λ) + · · · + (−λ)n ≡ 0 (mod n),

since (−λ)n = −λn, because n is an odd number.
Therefore, n divides each term of the set of numbers

A1, A2, . . . , An−1
2
.

Thus, from (1) it follows that

n | (1n + 2n + · · · + (n− 1)n)

if n is an odd integer.
• If n is an even integer, then it can be expressed in the form n = 2rk, where
r, k ∈ N.5

Let r0 be the greatest possible value of r, such that n = 2r0k. Then the
integer k must necessarily be an odd number, because if k was an even number,
then n = 2r0+λ ·m for λ,m ∈ N, which contradicts the assumption that r0 is
the greatest possible value.

We will prove that

1n + 2n + · · · + (n− 1)n ≡ n

2
(mod 2r0).

5 Since 0 /∈ N, the number n is always even.
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If λ is an odd number, then according to Euler’s theorem it holds

λφ(2r0 ) ≡ 1 (mod 2r0) or λ2r0−2r0−1 ≡ 1 (mod 2r0)

or
λ2r0−1 ≡ 1 (mod 2r0).

Therefore, we obtain

λn = λ2r0k = (λ2r0−1
)2k ≡ 12k (mod 2r0)

that is,
λn ≡ 1 (mod 2r0).

Therefore,
1n ≡ 1 (mod 2r0)

3n ≡ 1 (mod 2r0)

...

(n− 3)n ≡ 1 (mod 2r0)

(n− 1)n ≡ 1 (mod 2r0).

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

Adding by parts we get

1n + 3n + · · · + (n− 3)n + (n− 1)n ≡ 0 (mod 2r0). (2)

If λ is an even number (that is, λ = 2ν, ν ∈ N), then we have

λn = (2ν)2
r0k = (2ν)(r0+q)k, q ∈ N,

because
2r0 > r0

and thus
2r0 = r0 + q

(this can be easily proved by mathematical induction).
Hence,

λn = (2ν)r0k+qk = (2ν)r0k · (2ν)qk = (2r0)kνr0k(2ν)qk.

Therefore, it follows

2r0 | λn or λn ≡ 0 (mod 2r0).

Thus,
2n ≡ 0 (mod 2r0)

4n ≡ 0 (mod 2r0)
...

(n− 2)n ≡ 0 (mod 2r0).

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭
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Adding by parts the above relations it follows

2n + 4n + · · · + (n− 2)n ≡ 0 (mod 2r0). (3)

Adding by parts (2) and (3) we obtain

1n + 2n + · · · + (n− 2)n + (n− 1)n ≡ n

2
(mod 2r0). (4)

Thus,
n � | (1n + 2n + · · · + (n− 1)n),

because otherwise

2r0 | (1n + 2n + · · · + (n− 1)n), since 2r0 | n
and thus by (4), it should hold 2r0 | n

2 , that is, 2r0+1 | n, which leads to a
contradiction, due to the property of r0, which we defined above.

Hence,
1n + 2n + · · · + (n− 1)n ≡ 0 (mod n)

holds true only for all odd numbers n. �

96) Prove that for every positive integer k, the equation

x3
1 + x3

2 + · · · + x3
k + x2

k+1 = x4
k+2

has infinitely many solutions in positive integers, such that x1 <
x2 < · · · < xk+1.

(Dorin Andrica, “Babes-Bolyai” University, Cluj-Napoca, Romania;
Newsletter of the European Mathematical Society, Issue 77, 2010,

Problem 71)

Proof. It is a standard fact that for every positive integer n, it holds

13 + 23 + · · · + n3 + (n+ 1)3 + · · · + (n+ k)3 =
(

(n+ k)(n+ k + 1)
2

)2

,

that is,
(
n(n+ 1)

2

)2

+ (n+ 1)3 + · · · + (n+ k)3 =
(

(n+ k)(n+ k + 1)
2

)2

.

Consider the positive integers n, such that the triangular number

tn+k =
(n+ k)(n+ k + 1)

2

is a perfect square. There are infinitely many such integers since the relation
tn+k = u2 is equivalent to Pell’s equation
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(2n+ 2k + 1)2 − 2w2 = 1,

where w = 2u.
The fundamental solution to this equation is (3, 2), i.e., 2n + 2k + 1 = 3

and w = 2. Hence, all these integers are given by the sequence (ns), where

2ns + 2k + 1 + ws

√
2 = (3 + 2

√
2)s,

for sufficiently large values of s, such that ns ≥ 1. We can take

x1 = ns + 1, . . . , xk = ns + k, xk+1 =
ns(ns + 1)

2
, xk+2 = ws.

It is clear that for s large enough we have ns ≥ 1 and n(n + 1)/2 > n + k.
Therefore, we get an infinite family of solutions. �

97) Prove that for every prime number p , the equation

2p + 3p = an

does not have integer solutions for all a, n with a, n ∈ N − {1}.
Proof. Let us assume that the equation has integer solutions for a, n with
a, n ∈ N − {1}.
• If p = 2, the equation

2p + 3p = an

can be written in the form
an = 13,

which does not accept integer solutions with respect to a, n with

a, n > 1.

• If p �= 2, then p is an odd integer and thus

5 | (2p + 3p).

Therefore,
5 | an ⇒ 5 | a⇒ 25 | a2.

But n ≥ 2, therefore
25 | an ⇒ 25 | (2p + 3p).

However,

2p + 3p = 2p + (5 − 2)p

= 2p + 5p +
(
p

1

)
5p−1(−2) + · · · +

(
p

p− 2

)
52(−2)p−2

+
(

p

p− 1

)
5(−2)p−1(−2)p
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= 2p + mult.25 +
(

p

p− 1

)
5 · 2p−1 − 2p, since p ≥ 3

= 5p 2p−1 + mult.25

(by mult.k we denote an integer which is a multiple of k.)
Thus,

2p + 3p = 5p 2p−1 + mult.25.

Therefore,

25 | (5p 2p−1 + mult.25) ⇒ 25 | 5p 2p−1

⇒ 5 | p 2p−1.

This implies that 5 | p or 5 | 2p−1. Thus, 5 | p.
Therefore, p = 5. Hence, the equation 2p + 3p = an reduces to the form

an = 25 + 35 = 275 = 52 · 11,

which does not accept integer solutions with respect to a, n with a, n > 1.
Hence, the equation

2p + 3p = an

does not accept integer solutions for all a, n with a, n ∈ N − {1}. �

98) Let p1, p2 be two odd prime numbers and a, n integers such that
a > 1 and n > 1. Prove that the equation

(
p2 − 1

2

)p1

+
(
p2 + 1

2

)p1

= an

accepts integer solutions for a, n only in the case p1 = p2.

(M.Th. Rassias, Proposed problem W. 5, Octogon Mathematical Magazine,
17(1) (2009), p. 307)

Proof. By the hypothesis it follows that it is not possible to have p1 = 2 and
p2 = 2. Thus, we consider p2 = 2x+ 1, where x ∈ N.

Suppose that the equation accepts at least one integer solution for a, n
with a > 1 and n > 1. Then the given equation

(
p2 − 1

2

)p1

+
(
p2 + 1

2

)p1

= an

can be written as follows

xp1 + (x + 1)p1 = an. (1)
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Because of the fact that p1 is odd, one has

an = xp1 + (x+ 1)p1 = (x+ x+ 1)A = (2x+ 1)A, where A ∈ N.

Thus,
(2x+ 1) | an.

Since the integer 2x+ 1 is a prime number, it follows that

(2x+ 1) | a,
and therefore

(2x+ 1)2 | a2.

However, n > 1, thus

(2x+ 1)2 | an or (2x+ 1)2 | xp1 + (x + 1)p1 . (2)

Hence,

xp1 + (x + 1)p1 = xp1 + [(2x+ 1) − x]p1

= xp1 + (2x+ 1)p1 +
(
p1

1

)
(2x+ 1)p1−1(−x) + . . .

+
(

p1

p1 − 1

)
(2x+ 1)(−x)p1−1 + (−x)p1

= xp1 + (2x+ 1)2B +
(

p1

p1 − 1

)
(2x+ 1)xp1−1 − xp1

=
(

p1

p1 − 1

)
(2x+ 1)xp1−1 + (2x+ 1)2B, where B ∈ Z.

Therefore,

xp1 + (x+ 1)p1 =
(

p1

p1 − 1

)
(2x+ 1)xp1−1 + (2x+ 1)2B.

From (2) it follows

(2x+ 1)2
∣∣∣∣∣

(
p1

p1 − 1

)
(2x+ 1)xp1−1

or

(2x+ 1)

∣∣∣∣∣

(
p1

p1 − 1

)
xp1−1

or
(2x+ 1)|p1x

p1−1.
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Because of the fact that the number 2x+ 1 is prime, it yields

(2x+ 1) | p1 or (2x+ 1) | x.
The second case though is not possible since

2x+ 1 > x and gcd(2x+ 1, x) = 1.

Finally, (2x+ 1) | p1, that is,

p1 = 2x+ 1, since p1 is a prime number.

Thus,
p1 = p2. �

99) Find all integer solutions of the equation

a7 − 1
a− 1

= b5 − 1.

(Shortlisted, 47th IMO, Slovenia, 2006)

Solution. We shall first investigate whether the equation

a7 − 1
a− 1

= b5 − 1

has integer solutions. If it does, then we will determine them. Before we begin
our investigation, we will prove a useful lemma.

Lemma. If a ∈ N and p is a prime number for which p divides (a7−1)/(a−1),
then it holds

p ≡ 1 (mod 7) or p = 7.

Proof. Let us suppose that p ≡ 1 (mod7) does not hold. In this case, the
integers p − 1 and 7 are co-prime. Therefore, by Bezout’s lemma we obtain
that there exist integers x, y for which

7x+ (p− 1)y = 1.

Hence,
a = a7x+(p−1)y = a7x · a(p−1)y. (1)

But, by the hypothesis we know that p | a7 − 1, which means that

a7x ≡ 1 (mod p).

Furthermore, by Fermat’s Little Theorem we also obtain that

a(p−1)y ≡ 1 (mod p).
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Therefore, by (1) we get
a ≡ 1 (mod p). (2)

However,
a7 − 1
a− 1

= 1 + a+ a2 + · · · + a6

and by (2) we derive that

a7 − 1
a− 1

≡ 7 (mod p).

Since p also divides (a7 − 1)/(a − 1), it is evident that p = 7. So, from the
above, we can conclude that either

p ≡ 1 (mod 7) or p = 7.

We shall now proceed to the solution of the initial problem.
If d is a positive divisor of

(a7 − 1)/(a− 1)

and
d = pq1

1 p
q2
2 · · · pqk

k

is its standard form, then either

d = pq1
1 p

q2
2 · · · pqk

k ≡ 1 (mod 7)

or
d = pq1

1 p
q2
2 · · · pqk

k = 7q17q2 · · · 7qk ≡ 0 (mod 7).

In addition, if (a0, b0) is a solution of the equation, then

a7
0 − 1
a0 − 1

= b50 − 1 = (b0 − 1)(1 + b0 + b20 + b30 + b40).

Hence, b0 − 1 is a positive divisor of (a7
0 − 1)/(a0 − 1). So we get

b0 ≡ 2 (mod 7)

or
b0 ≡ 1 (mod 7).

By the above, we obtain also that

1 + b0 + b20 + b30 + b40 ≡ 1 + 2 + 4 + 1 + 2 ≡ 3 (mod 7)

or
1 + b0 + b20 + b30 + b40 ≡ 5 (mod 7).

Both cases contradict the fact that 1+ b0 + b20 + b30 + b40 is a positive divisor of

(a7
0 − 1)/(a0 − 1).

Therefore, the equation (a7−1)/(a−1) = b5−1 does not have any integer
solutions. �
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100) Find all integer solutions of the system

x+ 4y + 24z + 120w = 782 (1)

0 ≤ x ≤ 4 (2)

0 ≤ y ≤ 6 (3)

0 ≤ z ≤ 5 (4)

Solution. From equation (1), we obtain

782 − x = 4y + 24z + 120w,

that is,
782 − x = 4(y + 6z + 30w), (5)

which means that
782 − x = mult. 4. (6)

From (2) and because of the fact that x is an integer it follows that

x = 0, 1, 2, 3, 4. (7)

From (6) and (7) by trial, we get only x = 2.
If we substitute x = 2 in (5), we have

4(y + 6z + 30w) = 780,

which implies
6(z + 5w) = 195 − y (8)

and therefore
195 − y = mult.6. (9)

From (3) and because of the fact y is an integer it follows that

y = 0, 1, 2, 3, 4, 5, 6. (10)

From (9) and (10) by trial, we only obtain y = 3.
For y = 3, equation (8) becomes

6(z + 5w) = 192,

that is,
5w = 32 − z. (11)

From (4) and the fact z is an integer it follows that

z = 0, 1, 2, 3, 4, 5. (12)

From (11) and (12) by trial, we only get z = 2.
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For z = 2, equation (11) implies w = 6.
Hence, the only integer solutions for x, y, z, w of the given system of (1),

(2), (3) and (4) are
x = 2, y = 3, z = 2, w = 6,

that is,
(x, y, z, w) = (2, 3, 2, 6). �

101) Find all integer solutions of the system

35x+ 63y + 45z = 1 (1)

|x| < 9 (2)

|y| < 5 (3)

|z| < 7. (4)

Solution. From equation (1), we obtain

1 − 63y = 35x+ 45z,

that is,
1 − 63y = 5(7x+ 9z), (5)

which implies that
1 − 63y = mult.5. (6)

Inequalities (2), (3) and (4) can be also written in the form

−9 <x < 9 (7)

−5 <y < 5 (8)

−7 <z < 7. (9)

From (8) and the fact that y is an integer it follows that

y = −4,−3,−2,−1, 0, 1, 2, 3, 4. (10)

From (6) and (10) by trial, we get only

y = −3 and y = 2.

For these integer values of y, equation (5) yields the equations

7x+ 9z = 38 (11)

and
7x+ 9z = −25, (12)

respectively.
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• Equation (11) is a diophantine equation with integer solutions

x = −1 − 9k, z = 5 + 7k, where k ∈ Z. (13)

From x = −1 − 9k and (7), we derive

−9 < −1 − 9k < 9,

that is,

−10
9
< k <

8
9
, where k ∈ Z.

Thus, k = −1, k = 0.
From z = 5 + 7k and (9), it follows that

−7 < 5 + 7k < 7,

that is,

−12
7
< k <

2
7
, where k ∈ Z.

Therefore, k = −1, k = 0.
Hence, equations (13) for k = −1 imply

x = 8, z = −2

and for k = 0 imply
x = −1, z = 5.

Therefore, the integer solutions of (1) are the following:

x = 8, y = −3, z = −2

and
x = −1, y = −3, z = 5.

• Equation (12) is a diophantine equation with integer solutions

x = −10 − 9λ, z = 5 + 7λ, where λ ∈ Z. (14)

From (14) and (7), (9) it follows that

−19
9
< λ < −1

9
as well as

−12
7
< λ <

2
7

for λ ∈ Z, which are satisfied for λ = −1.
For λ = −1, equations (14) imply

x = −1, z = −2

and from (2), we get y = 2.
Thus, an integer solution of (1) is the following:

x = −1, y = 2, z = −2.
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Hence, the integer solutions of the system of (1), (2), (3) and (4) are the
following:

(x, y, z) = (8,−3,−2)

(x, y, z) = (−1,−3, 5)

(x, y, z) = (−1, 2,−2). �

102) Find the integer solutions of the system

x2 + 2yz < 36 (1)

y2 + 2zx = −16 (2)

z2 + 2xy = −16. (3)

(National Technical University of Athens, Entrance Examinations, 1946)

Solution. It is evident that if xyz = 0, equations (2) and (3) are not satisfied
for integer values of x, y, z. Thus, for the system of (1), (2) and (3) to accept
integer solutions, it must hold that

xyz �= 0.

From (2) it follows that
2zx = −16 − y2

and therefore
zx < 0. (4)

Similarly from (3) it follows that

2xy = −16 − z2

and thus
xy < 0. (5)

From (4) and (5) it yields x2yz > 0 and thus

yz > 0. (6)

From (4), (5) and (6) we get either

x > 0, y < 0, z < 0

or
x < 0, y > 0, z > 0.

Therefore, the numbers
−x, y, z

are of the same sign.
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The system of (1), (2) and (3) can be written in the following equivalent
forms: ⎧

⎪⎪⎨

⎪⎪⎩

x2 + y2 + z2 + 2xy + 2yz + 2zx < 4

y2 + 2zx = −16

z2 + 2xy = −16
or ⎧

⎪⎪⎨

⎪⎪⎩

(x+ y + z)2 < 4

y2 + 2zx = −16

z2 + 2xy = −16
or ⎧

⎪⎪⎨

⎪⎪⎩

|x+ y + z| < 2

y2 + 2zx = −16

z2 + 2xy = −16
or ⎧

⎪⎪⎨

⎪⎪⎩

−2 < x+ y + z < 2

y2 + 2zx = −16

z2 + 2xy = −16.

(7)

If we subtract (3) from (2) by parts we derive

(y − z)(y + z − 2x) = 0. (8)

However,
−2x, y, z

are of the same sign, therefore

y + z − 2x �= 0.

Thus, from (8), it follows that

y − z = 0.

Hence, the system (7) can be written in the form
⎧
⎪⎪⎨

⎪⎪⎩

−2 < x+ y + z < 2

y − z = 0

z2 + 2xy = −16.

(9)

Because of the fact that x, y, z ∈ Z, it yields x+ y + z ∈ Z and since

−2 < x+ y + z < 2
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one has
x+ y + z = −1 or x+ y + z = 0 or x+ y + z = 1. (10)

From (9) and (10), we obtain the systems

S1 :

⎧
⎪⎪⎨

⎪⎪⎩

x+ y + z = −1

y − z = 0

z2 + 2xy = −16

S2 :

⎧
⎪⎪⎨

⎪⎪⎩

x+ y + z = 0

y − z = 0

z2 + 2xy = −16

S3 :

⎧
⎪⎪⎨

⎪⎪⎩

x+ y + z = 1

y − z = 0

z2 + 2xy = −16.

For S1: From x + y + z = −1 and y − z = 0, we get x = −1 − 2y. However,
z2 + 2xy = −16, therefore

3y2 + 2y − 16 = 0,

whose roots are the numbers y = 2, y = −8/3.
The only integer solution of the equation is y = 2.
The integer solution of S1 is

(x, y, z) = (−5, 2, 2).

For S2: From x + y + z = 0 and y − z = 0, we obtain x = −2y. However,
z2 + 2xy = −16, thus

3y2 = 16,

from which we obtain

y = ±
√

16
3
.

These values are not integers, and thus not acceptable.
For S3: Following the same method as for S1, the integer solution of S3 is

(x, y, z) = (5,−2,−2).

Hence, the only solutions of the given system are

(x, y, z) = (−5, 2, 2), (x, y, z) = (5,−2,−2). �

103) Let a, b, c be real numbers which are not all equal. Prove that
positive integer solutions of the system

(b− a)x− (c− b)z = 3b (1)

(c− b)y − (a− c)x = 3c (2)

(a− c)z − (b− a)y = 3a (3)

do not exist, except the trivial solution

(x, y, z) = (1, 1, 1),

which occurs only when a+ b+ c = 0.
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Proof.

Case I. Suppose that b �= c.
From (1) and (2) we obtain

y =
(a− c)x+ 3c

c− b
, z =

(b− a)x− 3b
c− b

. (4)

But these values of y, z satisfy (3). Therefore, the given system of (1), (2) and
(3) is indefinite and accepts infinite many solutions.

From the two equalities in (4), adding by parts we get

y + z =
(a− c+ b− a)x+ 3(c− b)

c− b

=
−(c− b)x+ 3(c− b)

c− b
.

That is,
y + z = −x+ 3,

or
x+ y + z = 3. (5)

The only positive integer solution of (5) is

(x, y, z) = (1, 1, 1).

that is, x = y = z = 1.
Substituting these values to the initial system and summing the equations

by parts, we obtain that
a+ b+ c = 0.

Case II. If b = c �= a, from (1) we derive

x = − 3b
a− b

(6)

and from (3) we get

y + z =
3a
a− b

. (7)

If we add (6) and (7) by parts, we have

x+ y + z =
3a− 3b
a− b

= 3,

that is,
x+ y + z = 3
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and therefore x = y = z = 1. Then (6) implies

−3b
a− b

= 1,

that is,
a− b = −3b

or
a+ 2b = 0

and hence
a+ b+ c = 0. �

104) Show that, for any n ∈ N, any k ∈ N which is not equal to a
power of 10, and any sequence of (decimal) digits x0, x1, . . . , xn−1 in
{0, 1, . . . , 9}, there exists an m ∈ N ∪ {0} such that the first n decimal
digits of the power km are, from left to right, xn−1xn−2 . . . x1x0. As an
example, a power of 2 beginning with the digits 409 is 212 = 4096.

(Konstantinos Drakakis, University College Dublin, Ireland; Newsletter of
the European Mathematical Society, Issue 69, 2008, Problem 37, p. 23)

Solution. Because k is not a power of 10, the number z = log10 k is irrational:
for z = r/s, r, s ∈ Z, implies that ks = 10r, which is impossible, as the two
sides of the equation do not have the same prime factors. This, in turn, implies
that the sequence S = {iz (mod 1), i ∈ N ∪ {0}} has infinitely many points
in [0, 1], or else there would be two distinct values of u, say N1 and N2, for
which (N2 −N1)z = N ∈ N, implying that z ∈ Q, a contradiction.

Even more, the sequence S is actually dense in [0, 1]. To see this, choose
l ∈ N, consider the l+1 terms of the sequence corresponding to i = 1, . . . , l+1,
and place them into the l intervals (j/l, (j+1)/l), j = 0, . . . , l−1. Necessarily
at least two terms fall into the same interval, say those for i = i1 and i = i2 >
i1, hence, for u = i2 − i1 and some v ∈ N ∪ {0},

|ux− v| < 1
l
,

and, as u is the difference of two integers between 1 and l+1, it further follows
that u ≤ l, so that, finally,

∣∣∣z − v

u

∣∣∣ <
1
lu

≤ 1
u2
.

Now, for any ε > 0, consider l such that 1/l < ε, and find the rational v/u as
above: it follows that

∣∣∣iz − i
v

u

∣∣∣ =
∣∣∣iz (mod 1) −

(
i
v

u

)
(mod 1)

∣∣∣ <
i

lu
<

1
l
< ε,
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for i < u. At this point, note that, if
∣∣∣z − v

u

∣∣∣ >
1
l′
,

repeating the process with l′ instead of l yields a new fraction v′/u′, as
∣∣∣∣z −

v′

u′

∣∣∣∣ <
1
l′u′

<
1
l′
<

∣∣∣z − v

u

∣∣∣ ,

hence infinitely many rational approximations of z are obtainable this way,
whose denominators must therefore grow arbitrarily large. Assuming, without
loss of generality, that u and v are relatively prime, and that 1/u < ε, for any
number w ∈ (0, 1) it is true that

∣∣∣w − i
v

u
(mod 1)

∣∣∣ < ε, (8)

for some i < u, and, therefore,

|w − iz (mod 1)| ≤
∣∣∣w − i

v

u
(mod 1)

∣∣∣ +
∣∣∣iz − i

v

u

∣∣∣ < 2ε.

This implies that, for every interval I of [0, 1], there exist infinitely many pairs
(u, v) ∈ N×N such that uz−v lies in I. Choose then n ∈ N, choose a sequence
of decimal digits x0, x1, . . . , xn−1, form the number

x =
n−1∑

k=0

xk10k,

and set x′ = log10 x (mod 1). For a small ε′ > 0, to be further specified later,
it follows that a number of the form uz − v lies in I = [x′, x′ + ε′] (in fact,
infinitely many such numbers do so):

x′ ≤ u log10 k − v ≤ x′ + ε′ ⇔ x ≤ ku

10v
≤ x10ε′ .

Setting ε′ = log10(1 + ε):

x ≤ ku

10v
≤ x(1 + ε) < x+ 1 ⇔ 0 ≤ ku − 10vx < 10v, for ε <

1
x
.

This, however, implies that ku has at least n + v decimal digits, and that
at most the v least significant ones differ from the decimal digits of 10vx;
therefore, at least the nmost significant digits of ku and 10vx are in agreement.

�

105) In order to file a collection of n books, each book needs a
number label from 1 to n. To form this number, digit stickers are
used: for example, the number 123 will be formed by the three
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stickers 1, 2, and 3 side by side (unnecessary zeros in the beginning,
such as 00123, are not added, as this would be a terrible waste).

These stickers are sold in sets of 10, and each decimal digit
{0, 1, 2, . . . , 9} appears exactly once in the set. How many sets of
stickers are needed? As an example, for n = 21 books, digit 1 appears
13 times (in numbers 1, 10–19, and 21—note that it appears twice
in 11!), 2 appears 4 times (2, 12, 20, and 21), and every other digit
from 3 to 9 appears exactly twice, so overall 13 sets are needed.

(Konstantinos Drakakis, University College Dublin, Ireland; Newsletter of
the European Mathematical Society, Issue 73, 2009, Problem 45, p. 52)

Solution. Assuming n has m digits, it can be written in the form

n =
m−1∑

k=0

nk10k, nk ∈ {0, 1, . . . , 9}, k ∈ {0, 1, . . . ,m− 1}, nm−1 �= 0.

Since unnecessary initial 0s are not used, the first time a particular digit needs
to be considered is when it is equal to 1, and therefore, for any n, no digit
appears more times than 1. As each set contains exactly one sticker of each
decimal digit value, the number of sets needed will equal the number of 1s
needed, and, to determine this, it is enough to count the number of times
each digit becomes equal to 1, and then sum. Consider below the general kth
digit:

nk = 0: The kth digit goes through a complete cycle
∑m−1

l=k+1 nl10l times, and
each cycle contains 1 once, so that the number of 1s needed is

m−1∑

l=k+1

nl10l−1.

Note that k = m− 1 is not allowed in this case.
nk = 1: In addition to the number of 1s counted in the previous case, there

are some extra due to the numbers whose kth digit is actually 1.
These are precisely

1 +
k−1∑

l=0

nl10l.

The added 1 accounts for the number whose kth digit is 1 and all less
significant digits are 0.

nk > 1: Here, in addition to the number counted in the case nk = 0, all of
the numbers whose jth digit is nj , j > k, and whose kth digit is 1
appear as well. These are clearly 10k.
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To summarize, using the boolean function

[P ] =

{
1, P true

0, P false,

the number of times the kth digit equals 1 can be written as

m−1∑

l=k+1

nl10l−1 + [nk = 1]

(
1 +

k−1∑

l=0

nl10l

)
+ [nk > 1]10k,

and therefore the total number of times digit 1 appears is written as

S(n) =
m−1∑

k=0

(
m−1∑

l=k+1

nl10l−1 + [nk = 1]

(
1 +

k−1∑

l=0

nl10l

)
+ [nk > 1]10k

)
. �
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Appendix

The shortest path between two truths in the real domain
passes through the complex domain.

Jacques Hadamard (1865–1963)

12.1 Prime number theorem

A step-by-step analysis of Newman’s proof of the
Prime Number Theorem

We shall present a step-by-step analysis of D. J. Newman’s proof [44] of the
Prime Number Theorem, which we mentioned in Chapter 6. Within the proof,
some other theorems are going to be introduced, some of which may seem
elementary to the reader. However, we present them for the sake of complete-
ness.

Theorem.
π(x) ∼ x

log x
, as x→ +∞.

Proof. We are going to show that for the proof of the Prime Number Theorem,
it is sufficient to prove that ϑ(x) ∼ x, where

ϑ(x) =
∑

p≤x

log p

is the Chebyshev function (where p stands for the prime numbers).
One has

ϑ(x) =
∑

p≤x

log p ≥
∑

x1−k<p≤x

log p , for every k, with 0 < k < 1.

M.Th. Rassias, Problem-Solving and Selected Topics in Number Theory: In the Spirit     

© Springer Science +Business Media, LLC 2011 
of the Mathematical Olympiads, DOI 10.1007/978-1-4419-0495-9_12,  
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From x1−k ≤ p ≤ x we obtain that

(1 − k) log x ≤ log p ≤ log x.

Hence,

ϑ(x) ≥
∑

x1−k<p≤x

(1 − k) log x = [π(x) − π(x1−k)](1 − k) log x. (1)

It is obvious that π(x) = O(x), and hence π(x1−k) = O(x1−k).
Therefore, from (1), we obtain that

ϑ(x) ≥ [π(x) +O(x1−k)](1 − k) log x. (2)

Similarly,
ϑ(x) =

∑

p≤x

log p ≤
∑

p≤x

log x = π(x) log x. (3)

From (2) and (3) we have

[π(x) +O(x1−k)](1 − k) log x ≤ ϑ(x) ≤ π(x) log x.

We consider here x to be a positive real number.
Therefore,

O(x1−k)(1 − k) log x
x

+
π(x)(1 − k) log x

x
≤ ϑ(x)

x
≤ π(x) log x

x
,

that is,

O(x1−k)
x1−k/2

(1 − k) log x
xk/2

+
π(x)(1 − k) log x

x
≤ ϑ(x)

x
≤ π(x) log x

x
. (4)

For x → +∞ it follows that O(x1−k)
x1−k/2 → 0 and (1−k) log x

xk/2 → 0. Thus, for
x→ +∞ if ϑ(x) ∼ x, then from (4), one has

o(1) +
π(x)(1 − k) log x

x
≤ 1 ≤ π(x) log x

x
+ o(1).

Therefore,

(1 + o(1))
x

log x
≤ π(x) ≤ x

(1 − k) log x
(1 + o(1)), for every k, with k > 0 ,

which means that
π(x) ∼ x

log x
, as x→ +∞.

Therefore, as we have just shown, in order to prove the Prime Number
Theorem it is sufficient to prove that ϑ(x) ∼ x. To do so, we are going to
use the following lemma, which is due to D. J. Newman.
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Lemma. Let f(t) be a bounded and locally integrable function for t ≥ 0. Let

F (z) =
∫ +∞

0

f(t)e−ztdt

be a holomorphic function for Re{z} > 0 that can be extended to a function
which is holomorphic for Re{z} ≥ 0. In other words, we assume that there is
a function w(z) that equals F (z) whenever Re{z} > 0 and the function w(z)
is holomorphic in the bigger region Re{z} ≥ 0. Then, the integral

∫ +∞
0

f(t)dt
exists and, in fact,

w(0) =
∫ +∞

0

f(t)dt.

(Note: Re{z} denotes the real part of the complex number z.)

Proof of the Lemma. With some abuse of notation, we will refer to F (z) as
the holomorphic extension of

∫ +∞

0

f(t)e−ztdt to Re{z} ≥ 0.

We have to show that
∫ +∞
0 f(t)dt exists and is equal to F (0). In other words,∫ +∞

0 f(t)dt is equal to the value of the holomorphic extension of F (z) evalua-
ted at z = 0.

It suffices to prove that

lim
L→∞

FL(0) = F (0), whereFL(z) =
∫ L

0

f(t)e−ztdt.

Set

h(z) = [F (z) − FL(z)]ezL

(
1 +

z2

R2

)
,

in the region |z| ≤ R, subject to the condition Re{z} > −ε, where ε > 0 so
that the function F (z) is holomorphic for a specific value of R.

If C is the boundary of that region, then from the Cauchy integral formula
we have

h(0) =
1

2πi

∫

C

1
z
[F (z) − FL(z)]ezL

(
1 +

z2

R2

)
dz

=
1

2πi

{∫

C1

1
z
[F (z) − FL(z)]ezL

(
1 +

z2

R2

)
dz

+
∫

C2

1
z
[F (z) − FL(z)]ezL

(
1 +

z2

R2

)
dz

}
, (L1)

where C1 = C ∩ {z|Re{z} > 0} and C2 = C ∩ {z|Re{z} ≤ 0}.
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On the curve C1 we have
∣∣∣∣
∫

C1

1
z
[F (z) − FL(z)]ezL

(
1 +

z2

R2

)
dz

∣∣∣∣

≤
∫

C1

|F (z) − FL(z)|
∣∣∣∣
ezL

z

(
1 +

z2

R2

)∣∣∣∣ |dz|

≤
∫

C1

∣∣∣∣
∫ +∞

L

f(t)e−ztdt

∣∣∣∣

∣∣∣∣1 +
z2

R2

∣∣∣∣
eRe{z}L

R
|dz|. (L2)

But
∣∣∣∣
∫ +∞

L

f(t)e−ztdt

∣∣∣∣ ≤
∫ +∞

L

|f(t)|e−Re{z}tdt

≤
∫ +∞

L

Me−Re{z}tdt

=
Me−Re{z}L

Re{z} ,

for a certain constant M , since f(t) is a bounded function.
Furthermore, if we express z in the form z = Reiθ, where −π/2 ≤ θ ≤ π/2

since z ∈ C1, we obtain
∣∣∣∣1 +

z2

R2

∣∣∣∣ = |1 + e2iθ| =
√

(1 + cos 2θ)2 + sin2 2θ

=
√

2(1 + cos 2θ) = 2 cos θ =
2Re{z}
R

.

Hence, (L2) can be written in the form
∣∣∣∣
∫

C1

1
z
[F (z) − FL(z)]ezL

(
1 +

z2

R2

)
dz

∣∣∣∣ ≤
2M
R2

πR =
2πM
R

. (L3)

Similarly, on the curve C2 we have
∣∣∣∣
∫

C2

1
z
[F (z) − FL(z)]ezL

(
1 +

z2

R2

)
dz

∣∣∣∣

≤
∣∣∣∣
∫

C2

1
z
F (z)ezL

(
1 +

z2

R2

)
dz

∣∣∣∣ +
∣∣∣∣
∫

C2

1
z
FL(z)ezL

(
1 +

z2

R2

)
dz

∣∣∣∣ . (L4)

Note that with L fixed, the function FL(z) is entire. By an application of
Cauchy’s integral formula, we can deduce that

∫

C2

1
z
FL(z)ezL

(
1 +

z2

R2

)
dz =

∫

C3

1
z
FL(z)ezL

(
1 +

z2

R2

)
dz,
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where C3 = {z : |z| = R and Re{z} ≤ 0}. Here, one considers both C2 and
C3 as being oriented counterclockwise. To see the above, we can subtract the
left-hand side from both sides above. The resulting integral on the right will
be an integral over a closed curve bounding a region in which the integrand
has no poles (since the only pole of the integrand is at 0, and 0 is not in the
region).

For z ∈ C3, we can deduce that
∣∣∣∣
ezL

z

∣∣∣∣ =
eRe{z}L

R
and

∣∣∣∣1 +
z2

R2

∣∣∣∣ ≤
−2Re{z}

R
,

where the negative sign is needed as Re{z} < 0.
But

|FL(z)| ≤
∣∣∣∣∣

∫ L

0

f(t)e−ztdt

∣∣∣∣∣ ≤
∫ L

0

|f(t)||e−zt|dt

≤M

∫ L

0

|e−zt|dt = M

∫ L

0

e−Re{z}tdt

≤M

∫ L

−∞
e−Re{z}tdt = M

e−Re{z}L

−Re{z} .

The first integral on the right-hand side of (L4) is over C2. Now, we break up
C2 into three pieces C4, C5 and C6 as follows:

C4 = {z ∈ C2 : |z| = R, Re{z} ≥ −1/
√
L, Im(z) > 0},

C6 = {z ∈ C2 : |z| = R, Re{z} ≥ −1/
√
L, Im(z) < 0},

C5 = {z ∈ C2 : z �∈ C4 ∪ C6}.

We can observe that each of C4 and C6 has length O(1/
√
L). Also, as

Re{z} < 0 on C4 and C6, we easily have

|ezL| = eRe{z}L ≤ 1, for z ∈ C4 ∪ C6.

On the other hand, for z ∈ C6 and L large enough (that is, L > 1/ε2), we
have Re{z} < −1/

√
L so that

|ezL| = eRe{z}L ≤ e−
√

L, for z ∈ C5.

Note that
∣∣∣∣
∫

C2

1
z
F (z)ezL

(
1 +

z2

R2

)
dz

∣∣∣∣ ≤
∫

C2

∣∣∣∣
1
z
F (z)

(
1 +

z2

R2

)∣∣∣∣ |ezL||dz|

= I4 + I5 + I6,
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where

Ij =
∫

Cj

∣∣∣∣
1
z
F (z)

(
1 +

z2

R2

)∣∣∣∣|ezL||dz|.

We deduce from the above that

I5 ≤
(∫

C5

∣∣∣∣
1
z
F (z)

(
1 +

z2

R2

)∣∣∣∣|dz|
)
e−z

√
L.

The function F (z)(1+(z2/R2))/z is holomorphic in a closed region containing
C2. If M ′ (which depends on R) is a bound for this function in this region,
we obtain for j ∈ {4, 6} that

Ij =
∫

Cj

∣∣∣∣
1
z
F (z)

(
1 +

z2

R2

)∣∣∣∣|ezL||dz| ≤M ′
∫

Cj

|dz| = OR(1/
√
L),

where the subscript R indicates that the implied constant depends on R.
It follows that, for R fixed, I4 + I5 + I6 tends to 0 as L tends to infinity.

Hence, ∣∣∣∣
∫

C2

1
z
F (z)ezL

(
1 +

z2

R2

)
dz

∣∣∣∣ → 0, asL→ +∞. (L5)

From the relations (L1), (L2), (L4) and (L5) one obtains

lim sup
L→+∞

|h(0)| ≤
∣∣∣∣

1
2πi

(
2πM
R

+
2πM
R

)∣∣∣∣ =
2M
R
,

that is,

lim sup
L→+∞

|F (0) − FL(0)| ≤ 2M
R

⇒ lim
L→+∞

FL(0) = F (0),

because R can be arbitrarily large. This proves the lemma. ��
Let

f(t) =
ϑ(et)
et

− 1 , t ≥ 0

and

F (z) =
∫ +∞

0

[
ϑ(et)
et

− 1
]
e−ztdt, z ∈ C.

If we prove that ϑ(x) = O(x), then

f(t) ≤ cet

et
− 1 = c− 1,

where c is a constant, which means that f(t) is a bounded function. It is also
locally integrable. Thus, it satisfies the hypotheses of the lemma. We also want
to prove that F (z) is holomorphic for Re{z} ≥ 0, so that all hypotheses of
the lemma are satisfied.
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We shall begin by proving that ϑ(x) = O(x).
For every n ∈ N, we have

e2n log 2 = 22n =
(

2n
0

)
+
(

2n
1

)
+ · · · +

(
2n
2n

)

≥
(

2n
n

)
=

(n+ 1)(n+ 2) · · · 2n
n!

.

The number n! divides factors of the product (n+ 1)(n+ 2) · · · 2n, but none
of the prime numbers pk ∈ [n+ 1, 2n) is affected and along with them, some
composite integers remain unaffected, too. Hence,

(
2n
n

)
≥

∏

n<p≤2n

p.

Therefore,

e2n log 2 ≥
∏

n<p≤2n

p = exp

⎛

⎝
∑

p≤2n

log p−
∑

p<n

log p

⎞

⎠ = eϑ(2n)−ϑ(n),

which means that
ϑ(2n) − ϑ(n) ≤ 2n log 2.

It follows that for every ε > 0 there exists x(ε) such that for every x ≥ x(ε)

ϑ(x) − ϑ(x/2) ≤ x(ε+ log 2) ≤ Bx,

for some constant B > log 2.
Next, this last inequality implies

ϑ(x) − ϑ(x/2) ≤ Bx,

for all positive values of x. Thus, we have

ϑ(x) − ϑ(x/2) ≤ Bx

ϑ(x/2) − ϑ(x/22) ≤ Bx/2
...

ϑ(x/2r) − ϑ(x/2r+1) ≤ Bx/2r.

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

If we add up the above relations, we obtain

ϑ(x) ≤ Bx ·
(

1 +
1
2

+ · · · + 1
2r

)
+ ϑ(x/2r+1).
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Hence, for r → +∞ it follows

ϑ(x) ≤ 2Bx⇒ ϑ(x) = O(x).

Now, we are going to prove the fact that F (z) is a holomorphic function, for
Re{z} ≥ 0.

We have

F (z) =
∫ +∞

0

f(t)e−ztdt =
∫ +∞

0

[
ϑ(et)
et

− 1
]
e−ztdt

=
∫ +∞

0

ϑ(et)e−t(1+z)dt−
∫ +∞

0

e−ztdt

=
∫ +∞

0

ϑ(et)e−t(1+z)dt− 1
z
, (5)

for Re{z} > 0. Set

A(z) =
∑

p

log p
pz

.

Then, we can express A(z) by a Stieltjes integral as follows:

A(z) =
∑

p

log p
pz

=
∫ +∞

1

dϑ(x)
xz

=
[

1
xz
ϑ(x)

]+∞

1

+
∫ +∞

1

z

xz+1
ϑ(x)dx. (6)

For x = 1, we know that ϑ(1) = 0 and for x→ +∞ we have

lim
x→∞

∣∣∣∣
ϑ(x)
xz

∣∣∣∣ ≤ lim
x→∞

∣∣∣∣
Bx

xz

∣∣∣∣ = 0, for Re{z} > 1,

since ϑ(x) = O(x).
Therefore, (6) takes the form

A(z) = z

∫ +∞

1

ϑ(x)
xz+1

dx

and for x = et, we can write

A(z) = z

∫ +∞

0

ϑ(et)
ezt

dt , for Re{z} > 1.

Therefore, (5) can be written in the form

F (z) =
A(z + 1)
z + 1

− 1
z
, for Re{z} > 0.
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Thus, it suffices to prove that this function is holomorphic for Re{z} ≥ 0.
This is equivalent to prove that the function

A(z)
z

− 1
z − 1

is holomorphic for Re{z} ≥ 1.
By Euler’s formula we know that

ζ(z) =
∏

p

1
1 − 1

pz

, for Re{z} > 1.

Hence, we can write

− d

dz
[log ζ(z)] = − d

dz

[
∑

p

log
1

1 − 1/pz

]
=

∑

p

log p
pz − 1

=
∑

p

pz log p
pz(pz − 1)

=
∑

p

(pz − 1) log p+ log p
pz(pz − 1)

=
∑

p

log p
pz

+
∑

p

log p
pz(pz − 1)

= A(z) +
∑

p

log p
pz(pz − 1)

. (7)

It is obvious that
∣∣∣∣∣
∑

p

log p
pz(pz − 1)

∣∣∣∣∣ ≤
∑

p

∣∣∣∣
log p

pz(pz − 1)

∣∣∣∣ .

Set z = α+ iβ. Then
∣∣∣∣∣
∑

p

log p
pz(pz − 1)

∣∣∣∣∣ ≤
∑

p

log p
pα(pα − 1)

<

+∞∑

n=2

logn
n(n− 1)

.

The last series is convergent, as it can easily be proved by the Cauchy criterion.
Hence, clearly the series

∑

p

log p
pz(pz − 1)

is holomorphic for Re{z} ≥ 1.
At this point, we are going to prove that the Riemann zeta function has

no zeros in the half plane Re{z} ≥ 1.
By expanding the function

log
1

(1 − p−z)
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in a Taylor series, we get

log ζ(z) =
∑

p

log
1

1 − p−z
=

∑

p

+∞∑

n=1

1
np nz

.

Thus,

ζ(z) = exp

{
∑

p

+∞∑

n=1

1
np nz

}
, for Re{z} > 1.

But
+∞∑

n=1

1
np nz

=
+∞∑

n=1

p−niβ

np nα
=

+∞∑

n=1

e−niβ log p

np nα

=
+∞∑

n=1

cos(nβ log p) − i sin(nβ log p)
np nα

and hence

|ζ(z)| =

∣∣∣∣∣exp

{
∑

p

+∞∑

n=1

cos(nβ log p)
np nα

}
· exp

{
−i

∑

p

+∞∑

n=1

sin(nβ log p)
np nα

}∣∣∣∣∣

= exp

{
∑

p

+∞∑

n=1

cos(nβ log p)
np nα

}
.

Therefore, according to the above relation, we get

|ζ3(α)ζ4(α+ iβ)ζ(α + 2iβ)|

= exp

{
∑

p

+∞∑

n=1

3 + 4 cos(nβ log p) + cos(2nβ log p)
np nα

}
.

We know that

2(cos θ + 1)2 = 2 cos2 θ + 4 cos θ + 2 = 3 + 4 cos θ + (2 cos2 θ − 1)

= 3 + 4 cos θ + cos 2θ.

Therefore,
3 + 4 cos(nβ log p) + cos(2nβ log p) ≥ 0

and hence
|ζ3(α)ζ4(α+ iβ)ζ(α + 2iβ)| ≥ 1 , for α > 1.

If we could find even one point z0 of the half plane Re{z} > 1 for which
ζ(z0) = 0, then the above inequality would not hold for that point, which is
a contradiction.
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Now, we are also going to prove that the Riemann zeta function has no
zeros on the line Re{z} = 1. In order to do so, we shall begin by proving that
the function

ζ(z) − 1
z − 1

can be extended to a holomorphic function in Re{z} > 0.
For Re{z} > 1, the series ζ(z) converges and therefore

ζ(z) − 1
z − 1

=
+∞∑

n=1

1
nz

−
∫ +∞

1

1
xz
dx

=
+∞∑

n=1

∫ n+1

n

1
nz
dx−

+∞∑

n=1

∫ n+1

n

1
xz
dx

=
+∞∑

n=1

∫ n+1

n

(
1
nz

− 1
xz

)
dx.

Now
∣∣∣∣∣

+∞∑

n=1

∫ n+1

n

(
1
nz

− 1
xz

)
dx

∣∣∣∣∣ ≤
+∞∑

n=1

∣∣∣∣
∫ n+1

n

(
1
nz

− 1
xz

)
dx

∣∣∣∣

=
+∞∑

n=1

∣∣∣∣z
∫ n+1

n

∫ x

n

1
yz+1

dydx

∣∣∣∣

≤
+∞∑

n=1

|z|
∫ n+1

n

∫ x

n

∣∣∣∣
1

yz+1

∣∣∣∣ dydx. (8)

But, from the limits of the integrals we know that n ≤ y ≤ n+1 and therefore
the maximum value of the integral

∫ n+1

n

∫ x

n

∣∣∣∣
1

yz+1

∣∣∣∣ dydx

is bounded by |1/nz+1| = 1/nα+1, where α = Re{z}.
Hence, by (8), we obtain

∣∣∣∣ζ(z) −
1

z − 1

∣∣∣∣ ≤
+∞∑

n=1

|z|
nα+1

=
+∞∑

n=1

√
α2 + β2

nα+1
, where β = Im{z}.

But, the latter series is convergent for α > 0. Thus, by analytic continuation,
we can say that the function

ζ(z) − 1
z − 1
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can be extended holomorphically for a > 0. Hence, we can write

ζ(z) − 1
z − 1

= g(z),

where g(z) is a holomorphic function.
Therefore,

(α− 1)ζ(a) = 1 + (α− 1)g(a)

from which it follows that

lim
α→1+

(α− 1)ζ(α) = 1.

Similarly,

|ζ(1 + 2ik)| =
∣∣∣∣

1
2ik

+ g(1 + 2ik)
∣∣∣∣ , k �= 0.

Furthermore,
d

dz
ζ(z) = − 1

(z − 1)2
+

d

dz
g(z),

that is, ∣∣∣∣
d

dz
ζ(1 + ik)

∣∣∣∣ =
∣∣∣∣

1
k2

+
d

dz
g(1 + ik)

∣∣∣∣ .

Let us suppose that 1 + iβ, β �= 0, is a root of ζ(z) in the complex plane.
We have already proved that

|ζ3(α)ζ4(α+ iβ)ζ(α + 2iβ)| ≥ 1 , for α > 1.

Therefore, we get

L = [(α − 1)ζ(α)]3
∣∣∣∣
ζ(α+ iβ)
α− 1

∣∣∣∣
4

|ζ(α + 2βi)| ≥ 1
α− 1

, for α > 1. (9)

Hence,

lim
α→1+

[(α− 1)ζ(α)]3
∣∣∣∣
ζ(α + iβ)
α− 1

∣∣∣∣
4

|ζ(α+ 2βi)|

= 1 ·
(

lim
α→1+

∣∣∣∣
ζ(α + iβ)
α− 1

∣∣∣∣
4
)

·
∣∣∣∣

1
2iβ

+ g(1 + 2iβ)
∣∣∣∣ .

However, we have assumed that 1 + iβ is a zero of ζ(s). Therefore, we can
write

lim
α→1+

[(α− 1)ζ(α)]3
∣∣∣∣
ζ(α + iβ)
α− 1

∣∣∣∣
4

|ζ(α + 2βi)|

=
∣∣∣∣

1
2iβ

+ g(1 + 2iβ)
∣∣∣∣ · lim

α→1+

∣∣∣∣
ζ(α+ iβ) − ζ(1 + iβ)

α− 1

∣∣∣∣
4
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=
∣∣∣∣

1
2iβ

+ g(1 + 2iβ)
∣∣∣∣ ·
∣∣∣∣
d

dz
ζ(1 + iβ)

∣∣∣∣
4

=
∣∣∣∣

1
2iβ

+ g(1 + 2iβ)
∣∣∣∣ ·
∣∣∣∣

1
β2

+
d

dz
g(1 + iβ)

∣∣∣∣
4

.

That is a contradiction, because by (9) we can easily see that L→ +∞ when
α→ 1+. Therefore, in general the Riemann zeta function has no zeros in the
half plane Re{z} ≥ 1.

Moreover, by the formulae

ζ(z) = g(z) +
1

z − 1
, for Re{z} > 0

and
d

dz
ζ(z) =

d

dz
g(z) − 1

(z − 1)2
, for Re{z} > 0

where g(z) is a holomorphic function in the positive complex plane, we get

− d

dz
[log ζ(z)] = −

d
dz ζ(z)
ζ(z)

= − [ d
dz g(z)](z − 1)2 − 1

(z − 1)[1 + g(z)(z − 1)]

=
−1
z − 1

· [ d
dzg(z)](z − 1)2 − 1
1 + g(z)(z − 1)

, for Re{z} ≥ 1.

If we expand the function defined by

G(z) =
[ d
dz g(z)](z − 1)2 − 1
1 + g(z)(z − 1)

in a Taylor series around the point 1 + 0i we get

− d

dz
[log ζ(z)] =

−1
z − 1

· [c0 + c1(z − 1) + · · · ] =
−c0
z − 1

+ E(z)

=
−G(1)
z − 1

+ E(z) =
1

z − 1
+ E(z),

where E(z) is a holomorphic function for Re{z} ≥ 1.
Hence,

− d

dz
[log ζ(z)]

is a holomorphic function in the half plane Re{z} ≥ 1, except for the point
z = 1 which is a simple pole.

Therefore, from (7) it follows that A(z) is a holomorphic function in the
half plane Re{z} ≥ 1, except for z = 1, which is a simple pole. Clearly, the
function A(z)/z is also holomorphic in the half plane Re{z} ≥ 1, except for
z = 1. More precisely,
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A(z) =
1

z − 1
+ B(z),

for some function B(z) which is holomorphic for Re{z} ≥ 1.
This implies that

A(z)
z

=
1

z(z − 1)
+
B(z)
z

=
1

z − 1
− 1
z

+
B(z)
z

.

Therefore,
A(z)
z

− 1
z − 1

is a holomorphic function in the half plane Re{z} ≥ 1.
But,

F (z) =
A(z + 1)
z + 1

− 1
z
,

for Re{z} > 0.
Since A(z + 1)/(z+ 1)− 1/z is a holomorphic function for Re{z} ≥ 0 and

this function agrees with F (z) forRe{z} > 0, the functionA(z+1)/(z+1)−1/z
extends F (z) to a holomorphic function for Re{z} ≥ 0.

Thus, the second hypothesis of the lemma is also satisfied.
Hence, the integral

∫ +∞

0

f(t)dt =
∫ +∞

0

(
ϑ(et)
et

− 1
)
dt (10)

exists.
If we set x = et in (10), we obtain that the integral

∫ +∞

1

ϑ(x) − x

x2
dx

exists.
Let us now suppose that the assertion ϑ(x) ∼ x is false. Then, for some

arbitrarily large values of x we can distinguish two cases.

First case. There exists ν > 1 and arbitrarily large values of x for which

ϑ(x) ≥ νx.

In this case, we get
∫ νx

x

ϑ(y) − y

y2
dy ≥

∫ νx

x

νx− y

y2
dy = ν − 1 − log ν > 0

for every possible positive value of x.
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That is a contradiction, because
∫ νx

x

ϑ(y) − y

y2
dy → 0, when x→ +∞

since the integral ∫ +∞

0

(ϑ(x) − x)/x2dy

exists.

Second case. There exists ν < 1 and arbitrarily large values of x for which

ϑ(x) ≤ νx.

In this case
∫ x

νx

ϑ(y) − y

y2
dy ≤

∫ x

νx

νx − y

y2
dy = 1 − ν + log ν < 0

for every possible positive value of x.
That is a contradiction, because

∫ x

νx

(ϑ(y) − y)/y2dy → 0, when x→ +∞

since the integral ∫ +∞

0

(ϑ(x) − x)/x2dx

exists. Therefore, the statement ϑ(x) ∼ x must be true. Hence,

π(x) ∼ x

log x
, as x→ +∞.

This completes the proof of the Prime Number Theorem. ��
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12.2 A brief history of Fermat’s last theorem

I hope that seeing the excitement of solving this problem
will make young mathematicians realize that

there are lots and lots of other problems in mathematics
which are going to be just as challenging in the future.

Andrew Wiles (1953– )

Pierre de Fermat was born in Beaumont de Lomagne, France, in August
1601. He was a professional lawyer and started working on mathematics as
an amateur after the age of 30. He contributed both in pure and applied
mathematics.

Independently of Descartes (also known as Cartesius, 1596–1650), Fermat
discovered analytic geometry. However, in contrast to Descartes who examined
two-dimensional problems, Fermat was the first to apply methods of analytic
geometry to three-dimensional problems. In addition, Fermat along with
Blaise Pascal (1623–1662) developed the theory of probability. We shall talk
about his contribution to number theory later on.1

His most important contribution in applied mathematics was in optics. His
work in this area is considered to be the foundation of wave mechanics. Fermat
is also considered as the founder of modern number theory. An important
achievement of his is the discovery of the method of infinite descent, which he
used in order to prove several theorems. One of the most well-known theorems
he proved by the use of that method is that every prime number of the form
4n+1 can be expressed as the sum of two squares of integers in a unique way.
Fermat mainly dealt with problems related to prime numbers, divisibility and
diophantine equations.

After his death on the 12th of January, 1665, his son Samuel collected
his archives of books and manuscripts. In the second book of Diophantus’
Arithmetica, next to the 8th problem, which is related to the rational solutions
of the diophantine equation

x2 + y2 = z2,

1 For further historical remarks the reader is referred to D. J. Struik, A Concise
History of Mathematics, Dover Publications, Fourth revised edition, London,
1987, pp. 99–103; B. V. Gnedenko (translated from the Russian by B. D. Seckler),
The Theory of Probability, Chelsea Publishing Company, New York, 1968, p. 15;
and D. Abbott (ed.), The Biographical Dictionary of Scientists: Mathematicians,
Blond Educational, London, 1985, pp. 50–51.
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Fermat had made a note written in Latin. The note said the following:

It is impossible to separate a cube into two cubes, a fourth power into
two fourth powers, or in general, any power higher than the second
into two like powers. I have discovered a marvelous proof of this fact,
but this margin is too narrow to contain it.

That note, dated approximately in 1637, known today as Fermat’s Last
Theorem, would remain unproved for approximately 350 years. The problem
can be stated more rigorously as follows:

xn + yn �= zn,

for every x, y, z ∈ Z
+, where n is an integer greater than 2.

Several great mathematicians investigated special cases of the problem.
Among them were Euler (1707–1783), Legendre (1752–1833), Dirichlet (1805–
1859) and Gauss (1777–1855).

During the 18th century, Euler presented a proof of the theorem for the
case when n = 3. However, due to a small gap in his proof, in the beginning
of the 19th century, Gauss presented a complete proof for the same case.
A proof of the theorem for the case when n = 5 was presented independently
by Dirichlet and Legendre.

Some years later, in 1839, Lamé presented a proof for the case when
n = 7. But, the most important progress during the 19th century was made
by Kummer, who proved the theorem for all prime numbers less than or equal
to 31. However, the research which contributed the most toward the proof of
Fermat’s Last Theorem was conducted during the 20th century.

In 1983, the German mathematician Gerhard Faltings presented a very
important result. He proved that the diophantine equation

xn + yn = zn

has at most finite rational solutions for every positive integer n, with n > 2.
In order to obtain this result, Faltings proved another very important con-
jecture known as Mordell’s conjecture. According to this conjecture, every
nonsingular projective curve with genus greater than 1 has at most finitely
many rational points.

In 1984, in a conference held in Oberwolfach, Germany, Gerhard Frey
presented an important observation. Assuming the conjecture of Shimura–
Taniyama–Weil to hold, then Fermat’s Last Theorem follows. According to
the Shimura–Taniyama–Weil conjecture, every elliptic curve over the rational
numbers is modular, that is, there is a nonconstant morphism defined over
the rationals from a modular curve to the elliptic curve.

According to Frey’s argument, if Fermat’s Last Theorem was not true,
then there would exist a triple of integers x0, y0, z0, such that

xn
0 + yn

0 = zn
0 ,
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for n > 2, where n can be considered to be a prime number.2 However, Frey
observed that by the triples of solutions, the elliptic curve

y2 = x(x − an)(x + bn) (1)

occurs. He claimed that this elliptic curve was not modular. But, if the
Shimura–Taniyama–Weil conjecture was true, then the elliptic curve (1)
should be modular. Therefore, if someone managed to prove Frey’s argument,3

then (1) should not exist. Hence, the solutions x0, y0, z0 should not exist and
thus Fermat’s Last Theorem would hold true.

After the presentation of Frey’s argument, Jean-Pierre Serre in a letter
to J. F. Mestre stated some other relevant conjectures. When that letter
went public, Ken Ribet started investigating Serre’s conjectures and in 1990
he proved that the Frey curve, if it exists, cannot be modular. Therefore, the
only thing remaining in order to prove Fermat’s Last Theorem was to prove
the Shimura–Taniyama–Weil conjecture.

When Andrew Wiles was informed about Ribet’s result, he decided to
fulfill his childhood dream and prove Fermat’s Last Theorem.

While Wiles was still at the beginning of his research for the proof, he
realized that it was not necessary to prove the complete Shimura–Taniyama–
Weil conjecture. It would be enough to prove the conjecture for semistable
elliptic curves. That was the type of the elliptic curve that Frey had described.
Wiles, based on the results of several mathematicians, such as Mazur, Serre,
Hida, Flach, Kolyvagin, Langlands, Tunnell and Ribet, managed to prove the
Shimura–Taniyama–Weil conjecture for the cases he needed. Hence, Fermat’s
Last Theorem followed as a result.

On Wednesday, 23 June, 1993, Andrew Wiles presented his proof at the
conference of Number Theory with title L-Functions and Arithmetic, which
was held in Newton’s Institute at Cambridge University. The news that
Fermat’s Last Theorem was finally proved staggered the whole mathematical
community and many researchers started examining his long proof (of about
200 typed pages) in order to verify its validity.

One of the experts who examined the proof was a friend of Wiles named
Nick Katz. In July and August of 1993, Katz went through the proof step
by step and communicated with Wiles whenever he reached a point he did
not understand. Everything seemed to be fine for most of the proof, until
Katz reached an argument he could not understand and Wiles was not able
2 If n is a composite number and n = pa1

1 pa2
2 · · · pak

k is its canonical represen-
tation with at least two of a1, a2, . . . , ak being nonzero, then the diophan-
tine equation xpi + ypi = zpi accepts the solution (xλ

0 , yλ
0 , zλ

0 ), where λ =
pa1
1 pa2

2 · · · pai−1
i−1 pai−1

i p
ai+1
i+1 · · · pak

k .
3 More specifically, Frey observed that the curves of the form (1) are very unlikely

to exist. This observation breaks down into two arguments. The first was that (1)
cannot be modular and the second was the proof of the Shimura–Taniyama–Weil
conjecture for semisimple elliptic curves.
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to explain. Quite simply, Wiles had assumed at that point of the proof that
an Euler system existed, which was not true. Thus, the proof had a gap.

Wiles after hard work and in collaboration with Richard Taylor, managed
to complete the proof of Fermat’s Last Theorem on the morning of the 19th
of September, 1994. He then sent it for publication to the journal Annals
of Mathematics of Princeton University. The whole issue was dedicated to
the proof. After more than 350 years, Fermat’s Last Theorem was finally
proved.
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12.3 Catalan’s conjecture

A mathematician, like a painter or a poet, is a maker of patterns.
If his patterns are more permanent than theirs,

it is because they are made with ideas.
Godfrey Harold Hardy (1877–1947)

Whoever has frequented numbers in a playful manner, has certainly
encountered more than once the particular property of the successive integers
8 and 9 of being a cube and a square, respectively: they satisfy the intriguing
equality

32 − 23 = 1. (1)

Like every simple equality, it can be perceived as a special case of various
patterns. Since the roles of 2 and 3 interchange in the two terms of the left-
hand side, between bases and exponents, one may ask how often can one
encounter the general pattern

xy − yx = 1

with x, y ∈ Z? This is an exercise that can be solved. One may then preserve
the bases and ask if

3m − 2n = 1, m, n > 1

has other solutions with integer m,n, other than the above pair (m,n) =
(2, 3). This question was solved by the 13th century Jewish philosopher and
astronomer Ben Gershon. The complementary approach consists in fixing the
exponents and letting the bases vary, thus obtaining the equation

y2 = x3 + 1,

which was considered by Euler in the 18th century. Here too, it turned out
that the only integer solutions were the ones in (1). We have thus already
three different Diophantine equations which generalize the property (1) in
various ways, and they all have this identity as their unique solution. In view
of this, the Franco–Belgian mathematician Eugène Charles Catalan (1814–
1894) made in 1844 the step of allowing all parameters to vary, thus asking
whether the equation

xm − yn = 1 (2)

has any other nontrivial integer solutions except (1). An immediate
observation shows that we may restrict our attention to prime values of m,
n—at least if we expect that there will be no other solutions than the known
one. Indeed, if (x, y;m,n) is a solution and p | m, q | n are primes, then
(xm/p, yn/q; p, q) is another nontrivial solution, with prime exponents. The
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first prime to look at might be the oddest prime of all, the even p = 2. In fact,
for n = 2, Victor Lebesgue could prove, less than 10 years after Catalan’s
statement of his question, that there are no other nontrivial solutions except
the ones in (1); he used the factorization of numbers in the Gaussian inte-
gers. It took, however, more than 100 years until Chao Ko, a Chinese mathe-
matician who studied at Cambridge University with Mordell, could prove in
the early 1960s that x2 = yq + 1 has no other solutions than the ones in
(1). The proof used recent results on continued fractions and Pell’s equation
x2 + d = y2.

The first general result for odd exponents in this equation was obtained
by J. Cassels. He proved in 1961 that if (2) has an integer solution with prime
exponents m,n, then m | y and n | x and ruled out the first case (p, x−1) = 1.
In fact, Cassels’ fundamental result can be stated as follows:

Suppose that (x, y) are two integers and p, q two odd primes such that

xp − yq = 1.4

Then

x− 1 = pq−1aq and
xp − 1
x− 1

= pvq, y = pav (3)

y + 1 = qp−1bp and
yq + 1
y + 1

= qup, x = qbu,

where a, b and u, v are integers for which (pa, u) = (qb, v) = 1. In particular,
the solutions are particularly large, since |x| > pq−1 and |y| > qp−1. In view
of the approximate equality

log(xp) = p log(x) = log(yq + 1) ∼ log(yq) = q log(y),

we see that the solutions verify p log(x) ∼ q log(y) with a high degree of
accuracy. The relations of Cassels allow one to give an explicit lower bound
in this approximation. This opens the door for the application of a field of
Diophantine approximation which went through a massive renewal in the
1960s, when Alan Baker proved his famous theorem on linear forms in log-
arithms, for which he was awarded the Fields medal in 1967. His result
essentially states that the linear form

F (α,β) =
∑

i

αi log(βi),

in which both αi, βi are algebraic numbers, i.e., zeros of polynomials with
integer coefficients, only vanishes in trivial cases.

Some years later, in 1973, Baker sharpened his result by stating some
explicit lower bounds for the absolute values of F (α,β). This was used by
4 Note that Cassels allows also negative values for x, y, which brings a nice

symmetry in equation (2).
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R. Tijdeman, who proved herewith that (2) accepts at most finitely many
integer solutions. From a qualitative point of view, shared by some mathe-
maticians, the equations were solved, since knowing that it has finitely many
solutions was theoretically sufficient for finding these solutions in some time.5

However, Tijdeman had not even given an upper bound for these solutions in
his initial proof. The first such bound which was developed soon by Langevin
was on the order of |x| < 1010700

—quite a large number indeed. For those who
wanted to know more about the at most finitely many solutions of Catalan’s
equation, the work had to go on. The method of linear forms in logarithms
was successfully improved, thus dramatically lowering the size of the upper
bound. Many authors worked at this problem in the period since Tijdeman’s
breakthrough. Among all, Maurice Mignotte from Strasbourg is most note-
worthy for his continuous strive and number of improvements and partial
results which contributed to keeping the interest in Catalan’s conjecture alive.
The most recent result of Mignotte used linear forms in three logarithms for
proving the following reciprocal bound between p and q:

If
3000 < q < p,

then
p < 2.77 · q(log(p/ log(q)) + 2.333)2 · log(q).

As a consequence,

q < p and q < 7.15 × 1011 and p < 7.78 × 1016. (4)

Although these are more tangible numbers, if one imagines that for each pair
of exponents (p, q) in the above range, one should prove that there either are
no nontrivial solutions to (2), or find all existing ones, then one sees that these
important improvements were still in themselves insufficient for a successful
completion of the answer to Catalan’s question.

Without additional algebraic methods, however, the investigation of
Catalan’s equation would stand only on one leg. While linear forms in
logarithms helped reduce the upper bound on the solutions, the algebraic
conditions increased lower bounds. The algebraic ideas used could draw back
on the long experience and bag of tricks which had been (with only partial
results) applied to Fermat’s equation by myriads of mathematicians, since the
seminal works of Kummer in the 1850s.6

In order to understand the favor of the results that one may obtain here-
with, we have to make some remarks on the arithmetic of these fields. Let
5 The situation was comparable to the one for Fermat’s equation after Falting’s

proof. Mordell’s conjecture implies for Catalan’s conjecture that there should
exist finitely many solutions for fixed p and q.

6 Methods from the field of cyclotomy, i.e., from the study of the algebraic proper-
ties of the fields obtained by adjoining to the rationals Q a complex pth root of
unity.
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this ζ ∈ C be a pth root of unity—one may envision this, for instance, as
ζ = exp(2πı/p), but the algebraist prefers to consider it as a solution of the
equation

Φp(X) =
Xp − 1
X − 1

= 0.

One way or the other, the nice improvement brought about by this extension
is the fact that in the field K = Q[ζ], we have the following factorization,
induced from Cassels’ relations in (3):

vq =
xp − 1
p(x− 1)

=
p−1∏

c=1

x− ζc

1 − ζc
. (5)

If one observes that the factors in the product of the right-hand side of this
equation are all mutually coprime, then a tempting conclusion arises: all of
them must be qth powers. This is almost true, but not really the whole truth.
The reason is that in the integers of K (which are the zeros of polynomials over
Z with leading coefficient 1), we do not have unique factorization any more.
This was observed already by Kummer, who encountered a similar factoriza-
tion in his work on Fermat’s equation, but was careful enough to recognize
in the example of 21 = (1 + 2

√−5)(1 − 2
√−5) a suggestive apprehension of

the loss of unique factorization of integers. This loss is replaced by the unique
factorization of ideals (which were first called ideal factors, by Kummer).
In Kummer’s sight, an ideal factor in the above example would be a factor
which divides both 3 and (1 + 2

√−5). Such numbers do not exist in the field
Q[

√−5], thus he called them ideal. In some sense, the ideal is the greatest
common divisor of the two.

The notion of ideal is now general and simple: the numbers a, b ∈ K

generate the ideal (a, b) which consists of all linear combinations of the two
over ZK, which are the integers of this field. Since we have unique factorization
of ideals, the above equation shows at least that each

αc =
x− ζc

1 − ζc

is the qth power of an ideal, say αc = Aq
c. This is not completely correct, since

it is not the number which is a power, but the ideal that it generates, namely,
the ideal of all its multiples, which is also written as (αc) = ZKαc = Aq

c .
The ideals that are generated by one single integer, like (αc), are particularly
interesting and simple. These ideals are called principal ideals. We have seen
for instance the ideal (3, 1+2

√−5), which cannot be principal. It is releaving
to know that if not all ideals are principal, at least a finite, fixed power h(K)
of theirs is always a principal ideal. The constant h(K) which only depends
on the field K is called the class number of the field, and it measures in
some sense the deviation from unique factorization in the given field. Since
(αc) is the qth power of an ideal, but also A

h(K)
c is principal, while the con-

stant h(K) only depends on K—and thus hardly on q—there is an obvious
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conclusion: for most primes q, namely, for all the ones that do not divide
h(Q[ζ]), the ideal Ac itself must be principal, and thus (αc) = (βq

c ). This
type of observation nurtured results of the type: If (2) has a nontrivial solu-
tion, then either pq−1 ≡ 1(modq2) or q | h(K). Such results, and refinements
thereof, which would require more details in order to be explained properly,
were derived first by the Finnish number theorist Kustaa Inkeri and his school,
and then by various followers. Note that the two conditions occurring above
have the potential of being computable: while it is impossible to search for a
fixed pair of primes p, q, among all integer pairs (x, y) in order to ascertain
that none solves (2), it is conceivable to verify only for the pair of primes
(p, q) that the two conditions pq−1 ≡ 1(modq2) and q | h(K) are not ful-
filled. For the remaining few counterexamples, one then needs some additional
criteria.

This way, between lowering the upper bounds obtained with forms in log-
arithms, and improving the algebraic criteria—both of general kind, like the
one of Inkeri quoted above, and special ones, designed to rule out particular
cases—the domain of possible exceptions to Catalan’s conjecture continued
to be restricted until in 1999 two new results allowed, on the algebraic side,
to separate the conditions q | h(K) and pq−1 ≡ 1(modq2). In that period,
Bugeaud and Hanrot first proved that for p > q, the condition q | h(K) had to
hold necessarily, for any solution to (2). Inspired by their work, P. Mihăilescu
proved several months later that also

pq−1 ≡ 1(modq2) and qp−1 ≡ 1(modp2) (6)

had to hold necessarily. It was this second condition which was particularly
easy to verify on a computer: this triggered a massive effort of computations.
The most successful were Mignotte and Grantham, who had succeeded by the
year 2002 to give the lower bound p, q > 2 · 108 for possible solutions. The
road until lower and upper bounds would cross was, however, still long, if
one compares to the best upper bounds known by then, which are in (4).

When the Catalan conjecture was eventually solved in 2002 by
P. Mihăilescu, his new algebraic insights allowed him to reduce the analytic
apparatus involved in his proof. The main ideas improved upon the methods
from the algebraic track used before, by including deeper, recent insights in
the field of cyclotomic fields, in particular the celebrated Theorem of Francisco
Thaine, which had, in 1988, marked a major cross road in the development
of the Iwasawa theory, by simplifying the proofs of important results of this
field. Basically, the improved algebraic apparatus allowed one to eliminate
the use of linear forms in logarithms, which were too general in order to
provide optimal results for the specific equation under consideration. Instead,
the analytic methods used were simpler, but tightly connected to the alge-
braic results. Without entering into the details of the proof, one may give
the following overview of the ideas involved: starting from equation (5) and
using the Galois actions of K which manifest by σc : ζ �→ ζc and which, being
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automorphisms of the field K, preserve the algebraic operations, one asks the
following question.

Are there, apart from the class number h(K), other expressions which make
all ideal into principal ideals of K?

One allows this time also expressions of the type θ =
∑p−1

c=1 ncσc, where
nc ∈ Z. The world in which these expressions live is called the group ring
Z[Gal (K/Q)] and their action is given by

αθ =
p−1∏

c=1

αnc
c .

If θ has the desired property of making all ideals principal, then we have an
equation of the type αθ = ενq, were the incomodating factor ε here is called a
unit. These are the integers of K that are invertible, such as for instance 1−ζk

1−ζ .
Unlike Z which has only the units ±1, the units of K are numerous. However,
by combining the Theorem of Thaine, with some consequences of Cassels’
result and his own theorem on double Wieferich primes in (6), Mihăilescu
proved that if (2) has a nontrivial solution, then there is θ ∈ Z

+[Gal (K/Q)]
such that

αθ = νq. (7)

The exponent + stands for the fact that this time the expression αθ is a real
number. Plainly, the previous equation implies that ν = αθ/q is a real, alge-
braic integer. The fact that it is a real number has the major consequence, that
the power series development for αθ/q will necessarily yield the correct answer
ν. Thus, instead of using linear forms in logarithms, the analytic apparatus
is reduced to an accurate investigation of the power series related to the qth
root—this series was deduced by Abel and is sometimes named the binomial
series, or Abel series. Following the simple principle that if a certain equation
is meant not to have solutions, then the assumption of some nontrivial solu-
tion should raise a sequence of consequences which eventually should break up
into a contradiction, Mihăilescu pursued the arithmetic investigation of the
Abel series related to (7) and, using the lower bounds on |x|, |y| mentioned
above, showed that the algebraic integer ν would need to satisfy the follow-
ing contradictory properties: it is not vanishing, yet its norm |NK/Q(α)| < 1.
Since this norm must be an integer, the relations contradict ν �= 0. This even-
tually shows that the assumption that (2) has nontrivial solutions must be
wrong.

While the proof of Fermat’s Last Theorem required the use of a highly
technical apparatus involving modular forms and, mainly, the proof of the
Shimura–Taniyama–Weil conjecture related to the L-series of these forms, the
proof of Catalan’s conjecture appears to be almost elementary. However, it is
interesting that, similar as the two equations are in appearance, the methods
used for the proof of Fermat’s Last Theorem fail when applied to Catalan’s
conjecture—so the elementary methods were, somehow, necessary.
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Open problems, generalizing the above two major solved conjectures, con-
cern the following Diophantine equations:

xm + ym = zn, gcd(x, y, z) = 1, m, n > 2

and

xp + yq = zr, gcd(x, y, z) = 1 and p, q, r ≥ 2, 1/p+ 1/q + 1/r < 1.

A more recent, deep conjecture which implies in particular the fact that all
the above-mentioned equations have no solutions is the ABC conjecture. This
was proposed in 1985 by D. Masser and J. Oesterlé based on an analogy
to a similar fact which holds in function fields. It claims that if an equality
A+B = C holds between three positive integers A,B,C, then for every ε > 0
there is some constant kε such that

|A ·B · C| < kε · rad(ABC)ε,

where the radical of an integer n, which we denoted by rad(n), is the product
of all the prime numbers dividing n.
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54. W. Sierpiński, 250 Problèmes de Théorie Élémentaire des Nombres, Panstwoew
Wydawnictwo, Warsaw, 1970.

55. J. H. Silverman, A Friendly Introduction to Number Theory, 3rd edition, Pearson
Prentice Hall, Upper Saddle River, New Jersey, 2006.

56. S. Skewes, On the difference π(x) − Li(x), J. London Math. Soc., 8(1933),
277–283.

57. S. Skewes, On the difference π(x)−Li(x) (II), Proc. London Math. Soc., 5(1955),
48–70.

58. D. R. Stinson, Cryptography Theory and Practice, Chapman & Hall/CRC,
London, 2006.

59. D. J. Struik, A Concise History of Mathematics, Dover Publications, New York,
1987.
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Index of Symbols

N: The set of natural numbers 1, 2, 3, . . . , n, . . .
Z: The set of integers
Z

+: The set of nonnegative integers
Z
−: The set of nonpositive integers

Z
∗: The set of nonzero integers

Q: The set of rational numbers
Q

+: The set of nonnegative rational numbers
Q

−: The set of nonpositive rational numbers
R: The set of real numbers
R

+: The set of nonnegative real numbers
R

−: The set of nonpositive real numbers
C: The set of complex numbers
D(f, s): Dirichlet series with coefficients f(n)
μ(n): Möbius function
σa(n): The sum of the ath powers of the positive divisors of n
τ(n): The number of positive divisors of n
φ(n): Euler phi function
ζ(s): Riemann zeta function
π(x): The number of primes not exceeding x
π: Ratio of the circumference of circle to diameter, π ∼= 3.14159265358 . . .
e: Base of natural logarithm, e ∼= 2.718281828459 . . .
Fn: Fermat numbers, Fn = 22n

+ 1
Mn: Mersenne numbers, Mn = 2n − 1
f(x) ∼ g(x): limx→+∞ f(x)/g(x) = 1, where f , g > 0
f(x) = o(g(x)): limx→+∞ f(x)/g(x) > 0, where g > 0
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f(x) = O(g(x)): There exists a constant c, such that |f(x)| < c g(x) for suffi-
ciently large values of x
a ≡ b (mod m): a− b is divisible by m
gcd(a, b): The greatest common divisor of a and b(

a
p

)
: Legendre symbol

(
a
P

)
: Jacobi symbol

a ∈ A: a is an element of the set A
a �∈ A: a is not an element of the set A
A ∪B: Union of two sets A, B
A ∩B: Intersection of two sets A, B
A×B: Direct product of two sets A, B
a⇒ b: if a then b
a⇔ b: a if and only if b
∅: Empty set
A ⊆ B: A is a subset of B
n ! = 1 · 2 · 3 · · ·n, where n ∈ N

d | n: d divides n
d � | n: d does not divide n
pk || n: pk divides n, but pk+1 does not divide n
�x�: The greatest integer not exceeding x
�x�: The least integer not less than x
��: End of the solution or the proof
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Andrica’s, 82
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diophantine equation, 40
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summation, 100
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Euler pseudoprime, 77
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σa(n), 26
τ (n), 24
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Chebyshev’s, 134
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Euler φ(n), 20
Liouville, 101
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fundamental theorem of arithmetic, 2
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integer
squarefree, 8

integers
congruent, 37
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Lagrange, J. L., 112
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law of quadratic reciprocity, 64
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method
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twin primes, 82
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Seelhoff, 32
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Fermat’s Little Theorem, 32
Fermat’s two-square, 143
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