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Preface

The field of seabird ornithology has developed dramatically in recent years, partially owing to the
application of new technology to this diverse group of birds. For instance, the advent of satellite
tracking studies has helped us learn about an aspect of seabirds that was unknown previously —
their lives at sea. Because of this we now have a much better knowledge of the energy budgets of
adults and what energetic constraints they experience. Another factor that has limited our ability
to understand the lives of marine birds is their long life span. Without information spanning at least
one generation of individuals, there are many facets of the life history of seabirds that are difficult
to impossible to interpret. But, for seabirds, a generation can be 20 to 30 years, longer than most
ornithological studies on any species. Over the past 20 to 30 years, however, some excellent long-
term studies have been carried out. Our aim with the present work is to provide an examination
and summary of the research on seabirds, and also to provide a guide to the relevant literature for
those desiring further information.

This book discusses and summarizes our current knowledge of the biology of marine birds
today. It provides information on the biology, ecology, physiology, evolution, behavior, environ-
mental threats, and conservation of marine birds. It also provides information on key questions for
researchers to address, and for public policy makers involved in management of coastal lands and
marine reserves. We felt that marine birds needed to be examined from a wider perspective: not
only that of the biologist, but also that of those who are concerned about conservation, management,
and public policy. We provide the basis for understanding the biology of marine birds, as well as
their role in and relationship to coastal and oceanic ecosystems.

We explore all facets of the lives of the four main orders of seabirds, examining their fossil
history, taxonomy, distribution, life histories, population dynamics, foraging behavior, nesting
ecology, physiology, energetics, the effects of pollution and other human activities on the birds,
and needs for conservation. Each chapter presents the basics of our current knowledge about that
topic and many chapters also include a guide to yet unanswered questions and suggestions of
potential research paths.

Once into the project we realized that an entire book could be written about each topic we had
selected as a chapter. However, we were required to limit the length of each chapter, and to include
only the most important information and examples. The literature section for each chapter is
extensive and provides an overview of the subject for researchers, conservationists, managers, and
policy-makers.

We also faced the difficulty of defining marine birds (or seabirds; see Chapter 1). While some
orders contain birds that almost entirely live in coastal and marine environments, others do not.
Moreover, some birds not usually considered “marine” spend a great deal of their time in coastal
environments (herons, egrets, some shorebirds), and we have included separate chapters on these
groups, highlighting their marine lives.

We have included three chapters on conservation issues: Chapter 15 (Effects of Chemicals and
Pollution on Seabirds), Chapter 16 (Interactions between Fisheries and Seabirds), and Chapter 17
(Seabird Conservation). As man’s influence reaches the most remote parts of the world, our effect
on seabirds’ lives is increasing. Every aspect of seabird biology and ecology is affected. Many
seabird colonies have been extirpated already and others are disappearing as human development
and disturbance expand. Researchers have estimated that seabird populations today are 10% or less
of what they were a thousand years ago before humans reached many islands (Steadman et al.
1984, Pregill et al. 1994). As the human population expands, invading seabird nesting habitats, we



are going to see the extinction of many species unless we can learn to value this resource, learn to
coexist, and have the science to effect conservation measures.

While the fossil origins of marine birds are not certain, we do know that they enjoy a worldwide
distribution today, from the poles to the tropics, and from urban coasts to remote oceanic islands.
And there are ornithologists studying them in all these habitats: some of us wear multiple layers
and try to take measurements with heavy gloves on while conducting Arctic field work, and others
wear shorts while enjoying the tropics. Our field studies often take us away from home for extended
periods and we continually try to outthink birds as we devise new ways to accomplish our research
goals. We frequently have to invent our own equipment — from capturing devices, to weighing
scales, to temperature probes, or to adapting new cutting edge technologies to fit our needs. Studying
seabirds can be a daily excursion or a seasonal expedition, and can involve hours driven by car or
days flown by air. All the authors of these chapters are active field researchers working on seabirds.
As you read you can try to imagine the thousands, or perhaps millions, of hours of field work the
knowledge in this book represents, and, for most seabird species, we have only begun. The field
is open, with many, many possibilities for new studies. As soon as we think we have found the
answer to a question, some bird does it differently, so we are forced to use words like most,
sometimes, maybe, often, generally — words you will see used often in this text. But that’s part
of what keeps the discovering fascinating.

In reviewing the chapters, we find that there is important research that needs to be conducted
on nearly every group of seabirds, in all aspects from basic breeding biology and communication
to contaminants. Effects of long-term phenomena such as El Nifio—Southern Oscillation events and
global warming on seabird biology and their evolution are difficult to study, making our task that
much more challenging. The task for managers and policy-makers will be to translate the biology
detailed in this book into action to enhance breeding populations, protect nesting and foraging
seabirds, reduce adverse interactions between human activities and seabirds, and enhance the
opportunities for people to study and watch seabirds, thereby ensuring their continued survival.

We feel particularly privileged to have worked with such a superb group of our colleagues in
creating this book. They were all dedicated, responsive, a pleasure to work with, and, we believe,
have created an exceptional volume. We know that the quality of our work herein was significantly
increased by the dedicated reviewers, who, in spite of their busy schedules, took time to provide
thoughtful insight and feedback: Keith Bildstein, Claus Bech, Glen Fox, Mike Gochfeld, David
Goldstein, William Montevecchi, David Nettleship, Storrs Olson, Robert Ricklefs, Peter Stetten-
heim, Causey Whittow, and all those who must remain anonymous.

E.A. Schreiber
Joanna Burger
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1 Seabirds in the Marine
Environment

E. A. Schreiber and Joanna Burger
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1.1 INTRODUCTION

Marine birds are equally at home on land, in the air, and in the water. While many organisms can
go from land to water (amphibians, some reptiles, some insects), others generally live in only one
medium during their lives. Marine birds switch from one to the other, often daily. Such flexibility
requires unique physiological and morphological adaptations to the environment, a medium that
has also exerted selective forces on the behavior, ecology, and demography of these birds. Amaz-
ingly, marine birds have adapted to essentially all environments on the earth, from those able to
survive winters in Antarctica to those who can sit for days incubating their eggs in the tropical sun.
Trying to learn about and explain this diversity may be why we find the study of them so fascinating:
How does their structure and function interact with the marine environment to produce their
particular life histories?

There is no one definition of marine birds or seabirds. For this book, we define marine birds
as those living in and making their living from the marine environment, which includes coastal
areas, islands, estuaries, wetlands, and oceanic islands (Table 1.1). But many Charadriiformes
(shorebirds) and Ciconiiformes (erons, egrets, ibises) that feed near shore or along the coastlines
are generally not considered to be true seabirds. Seabirds are a subset of the birds in Table 1.1,
those that feed at sea, either nearshore or offshore; this excludes all the Ciconiiformes and the
shorebirds from the Charadriiformes. The one common characteristic that all seabirds share is that
they feed in saltwater, but, as seems to be true with any statement in biology, some do not.

In this book we have attempted to provide a thorough examination of the biology of seabirds:
all the Sphenisciformes and Procellariiformes, all the Pelecaniformes except anhingas, and all the
Charadriiformes except shorebirds (Figure 1.1). Because we felt the book should be useful to land
managers, public policy-makers, and conservationists (who must knowledgeably manage our
quickly disappearing wetlands and estuaries), we have included gulls as seabirds (although few go
to sea) and also summary chapters on wading birds (Ciconiiformes) and shorebirds. These birds
are particularly dependent on nearshore habitat for both feeding and nesting.

Seabirds exemplify one of the reasons for man’s fascination with birds — the ability to fly and
live so far from the mainland. They are among the most aerial of birds, able to spend weeks,

0-8493-9882-7/02/$0.00+$1.50 1
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2 Biology of Marine Birds

TABLE 1.1
Marine Birds Include Birds in the Following Orders

Order Types of Birds

Sphenisciformes Penguins

Procellariiformes ~ Albatrosses, petrels, storm-petrels, fulmars, shearwaters

Ciconiiformes Herons, egrets, storks, ibis, spoonbills

Pelecaniformes Pelicans, frigatebirds, gannets, boobies, cormorants, anhingas
Charadriiformes Shorebirds, skuas, jaegers, gulls, terns, skimmers, auks, guillemots, puffins

Note: The Ciconiiformes, anhingas, shorebirds, and skimmers are not considered to be seabirds.

FIGURE 1.1 Representatives of the four major seabird orders: (a) Sphenisciformes: King Penguins incubating
their eggs on their feet; (b) Procellariiformes: a Wedge-tailed Shearwater on Midway Island; (c) Pelecani-
formes: a Brown Pelican incubates its three eggs; (d) Charadriiformes: a Blue Noddy on Christmas Island.
(Photos a and b by J. Burger; c and d by E. A. Schreiber.)
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(d)

FIGURE 1.1 Continued.

months, and, in some cases, even years at sea. This habit of spending long periods at sea, out of
sight of land, has also made them among the most difficult of bird species to study and understand.
Much of their life is spent where we cannot observe or study them, although this is changing with
advances in technology such as satellite transmitters that are light enough to be carried by a bird.

Although the open ocean seems to us to be a uniform environment, a tremendous diversity of
seabirds has evolved to feed in this environment in a great variety of ways. Such diversity suggests
that the marine environment is not as homogeneous as we once thought, at least to the organisms
that live there. The apparent uniformity was reflected in our inability to detect and measure the
heterogeneity. We now know that the seas vary on seasonal cycles as well as stochastically and
spatially (see Chapters 6 and 7). We are not as at home on the ocean as seabirds and have learned
to take lessons from birds. Mariners often relied on seabirds to tell them they were near land, while
fishermen today still rely on feeding flocks to help locate schools of fish. Mutiny on Columbus’
voyage to the New World was thwarted by seabirds: when the crew finally saw feeding flocks of
seabirds, they knew they were close to land (Couper-Johnston 2000).



4 Biology of Marine Birds

TABLE 1.2

Comparison of Characteristics of Seabirds and Passerines
Life History Characteristic Seabirds Passerines
Age of first breeding 2-9 years 1-2 years
Clutch size 1-5 4-8

Incubation period 20-69 days 1218 days
Nestling/fledging period 30-280 days 20-35 days
Maximum life span 12-60 years 5-15 years

1.2 WHY ARE SEABIRDS DIFFERENT?

Seabirds have dramatically different life-history characteristics, or demography, from most land
birds, such as members of the order Passeriformes (Table 1.2). In fact, their life history character-
istics are often referred to as extreme: long life (20 to 60 years), deferred maturity (breeding age
delayed to up to 10 years of age), small clutch size (in many cases one egg), and extended chick-
rearing periods (often up to 6 months). Passerine birds, in comparison, have shorter lives and larger
clutches of eggs, and chicks grow to fledging age much faster. Seabirds also tend to be larger than
land birds, less colorful in plumage, and sexually monomorphic. Plumage colors of seabirds are
mainly white, gray, black, or brown, or some combination thereof, another area that needs research.

Basically the two life styles exemplified by seabirds and passerines represent two different
ways to accomplish the same end: leave enough offspring to replace yourself in the population.
Red-footed Boobies (Sula sula) commonly live 16 years, begin reproducing (one young per year)
at 3 years of age, and 35 to 40% of their young survive to reproduce (Schreiber et al. 1996). A
pair thus has the potential to produce about five breeding offspring (birds), although there are
generally a few failed breeding seasons owing to the occurrence of El Nifio events (see Chapter
7). More coastal species, such as Black Skimmers (Rynchops niger), live for about the same time
and are capable of raising two or three young a season, but colonies can also fail completely in
some years due to heavy rains and thermal stress (Burger and Gochfeld 1991; see Chapter 7).
Robins (Turdus migratorius), a typical passerine, commonly live 3 years, first lay at 1 year of age
(lay an average of four eggs), and can raise two broods in some years; about 20% of their young
survive to reproduce (Sallabanks and James 1999). So in a lifetime they can raise about five young
that survive to reproduce. They also can have failed years when no young are produced, but it is
less likely to occur throughout a whole region as it does in seabirds.

Why have these two very different lifestyles evolved? They may reflect conditions imposed on
seabirds by living in the marine environment (Ashmole 1963, Lack 1968), and also conditions
imposed on land birds by predation (Slagsvold 1982). Seabirds may not have been exposed to
predation historically, although the human introduction of mammalian predators to both coastal
and oceanic islands has been a major source of mortality for seabirds that did not evolve with this
threat (Moors and Atkinson 1984, Burger and Gochfeld 1994).

Early hypotheses on the reasons for the life-history characteristics of seabirds have come to be
called the “energy-limitation hypotheses.” David Lack (1968) proposed that seabirds’ unusual
demography evolved owing to energetic constraints on adults’ ability to supply food to chicks.
Birds feeding at sea were viewed as randomly searching a vast area for patchily distributed food
that then had to be caught and carried long distances back to a colony. Philip Ashmole (1963) also
suggested that dense aggregations of birds in one area, such as in seabird colonies, depressed local
food resources, causing density-dependent limitations on breeding and nest success (Figure 1.2).
He proposed that seabirds were perhaps over-fishing the area around colonies and adults could not
find enough food to raise more young or faster-growing young. Specifically then, small clutch sizes
and slow growth of young were considered to be adaptations to an imposed low rate of food delivery
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FIGURE 1.2 Cape Gannets (South Africa) are one of the most densely nesting seabirds. Neighbors can easily
peck each other if they have a disagreement and thus much signaling of intentions (behavioral posturing) goes
on to forestall any misunderstanding. Shown is Michael Gochfeld. (Photo by J. Burger.)

to chicks. Additionally, seabird chicks (particularly Procellariiformes) lay down large amounts of
fat during development, which, presumably, was necessary to carry them through periods when
adults could not find enough food (Lack 1968, Ashmole 1971).

These hypotheses have been the driving force behind many studies on seabirds over the past
35 years and, interestingly, they are hypotheses for which it is hard to find support. Their role in
the development of seabird biology was critical. However, as with any discipline, hypotheses change
as we gather more information, and the energy-limitation hypothesis proved particularly difficult
to validate. Some studies do not support the hypotheses, and other studies show that they could be
true. We believe that biologists will never prove one way or the other why seabirds are different
from land birds. It is undoubtedly a combination of selective factors. Indeed, it may be more of a
continuum than we had believed. The discussion that follows is intended to highlight some issues
for future study. It is also necessary to note that marine birds may appear food limited today because
of the rapidly intensifying competition with fisheries and increasing human pressure.

Potential support for the energy-limitation hypothesis comes from clutch size, colony size, and
foraging area comparisons. Seabirds that feed offshore generally have smaller clutches than those
that feed nearshore (Nelson 1983; see Chapter 8). Pelicans, cormorants, gulls, and skimmers feed
primarily nearshore and have average clutches of two to four eggs (see Appendix 2), presumably
because they feed close by, making use of highly productive nearshore and estuarine resources.
Offshore-feeding seabirds, such as albatrosses, petrels, boobies, and some terns, have clutches of
one. Lower clutch size in itself does not prove offshore feeders are energy limited, however.

If there were a correlation between colony size and productivity of local waters, one might
expect the smallest colonies to be in tropical waters away from cold water upwelling areas such
as in the Humboldt Current where food is abundant. There certainly are some very large colonies
in the Humboldt and Benguela Current areas, but there are also large concentrations of breeding
birds in tropical non-upwelling areas such as on Midway Island (approximately one million seabirds;
U.S. Fish and Wildlife Service 1996) and on Christmas Island (an estimated 12 million seabirds;
Schreiber and Schreiber 1989), both in the central Pacific.

If adults are energy limited, you might expect to see populations with high mortality rates of
growing chicks when feeding conditions deteriorate at all. There is little evidence for this occurring.
Nest success rates in seabird colonies on oceanic islands are frequently on the order of 75% or
greater, and failed nests are often those of young, inexperienced birds (see Chapter 8). Years with
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FIGURE 1.3 Multispecies assemblages of breeding seabirds often have overlapping diets, foraging zones,
and foraging methods, raising the question of the significance of competition in their evolution. Least Auklets
(left) and Parakeet Auklets often nest in colonies (around the Alaskan coast) with several other species. (Photo
by J. Burger.)

high chick mortality occur infrequently, and are generally associated with an unusual weather
occurrence such as an El Nifio event, when starvation of chicks occurs because of a disappearance
of, or great reduction in, the food source (see Chapter 7; Schreiber and Schreiber 1989).

If adults are limited in their ability to provide food to chicks because of an irregular or
unpredictable food supply, daily feeding rates of young should be sporadic and irregular. As you
might expect, with the great diversity of seabird species, there is some evidence on both sides of
this prediction. Some studies of feeding rates of chicks found that chicks are fed on a more regular
basis than expected by chance alone and that fat stores are not needed for periods of fasting (Taylor
and Konarzewski 1989, Navarro 1992, Hamer 1994, Hamer and Hill 1994, Cook and Hamer 1997,
Schreiber 1994, Reid et al. 2000). Other studies have found a degree of unpredictability in food
delivery which indicates fat reserves may be useful in carrying a chick through lean times (Hamer
et al. 2000). Reid et al. (2000) suggested that fat stores in albatross chicks may have evolved to
carry chicks through fledging while they learn to feed themselves.

Dense aggregations of breeding seabirds trying to raise hungry young might be expected to
over-fish an area, but there is little evidence for this happening, and it would be difficult to prove.
With high nest success rates (in non-El Nifio years) in some very huge seabird colonies, such as
that on Christmas Island (Central Pacific Ocean), it appears that birds may not over-fish an area
(Schreiber and Schreiber 1989). Birt et al. (1987) found some inconclusive evidence for prey
depletion around a colony of Double-crested Cormorants (Hypoleucos auritus).

A possible indication that food supply is an energy-limiting factor would be the evolution of
the reliance on separate food sources in sympatrically breeding species as a way to avoid competition
for the resource (Figure 1.3). Ornithologists have reconciled the discrepancy between high repro-
ductive success and limited food resources by claiming that seabirds are partitioning the food
resource by either taking different prey species, foraging in different areas, or breeding at different
times of the year. However, there is little direct support for this. Ashmole and Ashmole (1967)
found a large degree of overlap in the species and sizes of fish and squid taken by eight tropical
seabird species breeding on Christmas Island (central Pacific). There is also extensive overlap in
the size of fish and squid taken by the Pelecaniform species nesting on Johnston Atoll (central
Pacific; E. A. Schreiber unpublished). In both locations, breeding seasons of the nesting seabirds
overlap extensively. Large overlap in the prey base has been found in other studies (Whittam and
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Siegel-Causey 1981, Ainley 1990). Thus, diet differences may be important in some colonies, but
they are far from the rule. Conversely, reliance on different types of food may have been a pre-
adaptation to cohabitation, but which came first?

Studies on seabird populations of the Farallon Islands, off northern California, found that
feeding-niche segregation mainly occurred during difficult times such as an El Nifio event (Ainley
and Boekelheide 1990). Ainley’s (1990) suggestion that Farallon seabird communities appeared to
be operating much like grassland shrub-steppe communities of birds with regards to food (foraging
opportunistically on a highly variable, but nonlimiting resource with no evident competition) brings
to mind the question: Are seabirds any more energy limited than land birds? The biological
importance of differences that are detected should be examined: When differences are small, but
statistically significant, was there actually selection pressure to avoid competition?

The diets of the six main seabird species breeding on Bird Island, South Georgia, show extensive
overlap in krill size taken (Croxall and Prince 1980, Croxall et al. 1988, Croxall et al. 1997).
However, Croxall et al. (1997, see Figure 1.2) report significant differences in the mean sizes of
krill taken, implying dietary segregation in spite of the large degree of overlap in sizes. To seabirds,
the statistical differences may not be biologically relevant, and more studies are needed to examine
the significance of such differences.

Several authors have examined feeding-niche separation in species nesting and foraging in
coastal habitats. The question of niche separation has been examined extensively in Common
(Sterna hirundo) and Roseate Terns (Sterna dougallii) along the east coast of North America. Duffy
(1986) suggested that the two species appeared to partition food on the basis of patchiness, with
Common Terns being more successful over larger patches of prey than were Roseate Terns. He
made the important point that it is essential to examine foraging behavior at sea, and not rely only
on the traditional methods of examining diet, and identifying prey species and prey size at the
colony. However, he did not measure prey availability, nor examine the foods parents brought back
to their young. Safina and Burger (1985), working in the same general area, used sonar to demon-
strate that terns fished in areas with high concentrations of prey fish (usually with predatory fish),
but there was no correlation between number of feeding terns and prey density, as one would expect
if prey were limited.

In Australia, Hulsman (1987, 1988) similarly found that the niches of several tern species
varied, and that the size and type of prey in a bird’s diet were a function of the bird’s morphology,
foraging method, foraging zones, and interactions with other birds and predatory fish. Even so,
most species of terns fed solitarily (except for Black Noddy, Anous minutus) and fed near the
colony (except for Lesser Crested Tern, Sterna bengalensis), and there was overlap in the sizes of
prey taken (Hulsman 1988). The data suggested that the guilds are dynamic, and that terns exhibit
a wide range of foraging habitats and foraging methods and take a variety of prey sizes and types
(Hulsman 1988).

Tests of the energy-limitation hypotheses have also included experiments designed to determine
whether adult seabirds are bringing the maximum amount of food to chicks that they can. If birds
can be induced to work harder, this would prove they are not normally working at full capacity
(Figure 1.4). Doubling experiments have been conducted where two chicks are put in a nest of
species that normally raise only one to see if increased demand causes adults to supply more food.
This also implies that adults feeding young respond to the amount of food demanded and are not
just bringing the maximum amount they can. In many cases parents were able to successfully
provision these enlarged broods (Harris 1970 [Swallow-tailed Gull, Creagrus furcatus], Nelson
1978 [Northern Gannets, Morus bassanus], Navarro 1991 [Cape Gannets, Morus capensis],
Schreiber 1996 [Red-tailed Tropicbirds, Phaethon rubricaudal]). Experiments on most Procellari-
iformes have failed, but the reasons why remain unknown; it may not be due to lack of ability to
increase effort, but to behavioral limitations (Boersma et al. 1980, Ricklefs et al. 1987).

If the amount of food brought to the chick is somewhat regulated by the chick, mediated by
food begging, as many studies have found (Nelson 1964, Henderson 1975, Navarro 1991, Anderson
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FIGURE 1.4 It is hypothesized that energy limitation prevents most seabirds from raising more than one
young. Brown Boobies lay two eggs but rarely raise more than one chick. However, on Johnston Atoll (Pacific
Ocean), about 0.5% of nesting pairs raise two young. (Photo by E. A. Schreiber.)

and Ricklefs 1992, Schreiber 1996, Cook and Hamer 1997), then food limitation may not account
for the slow growth and long fledging period of seabird chicks. Adults are simply responding to
chick needs, not bringing the maximum amount of food possible. There may be physiological or
genetic constraints on growth rate in chicks as found in some studies (Place et al. 1989 [Leach’s
Storm-petrel, Oceanodroma leucorhoa], Konarzewski et al. 1990 [several species of altricial and
precocial birds], Ricklefs 1992 [Leach’s Storm-petrel]). Or the nutritional content of food may be
the limiting factor (Prince and Ricketts 1981 [Grey-headed Albatross, Thalassarche chrysostoma,
and Black-browed Albatross, T. melanophris)).

Parent seabirds appear to have flexible time budgets that allow them to increase feeding effort
in years of poor food availability (Drent and Daan 1980, Burger and Piatt 1990, Schreiber 1996).
Spare time is notably present in many seabirds, such as boobies, gulls, terns, and alcids where both
members of a pair often have time to loaf together at the nest, even during the chick-rearing period
(Burger 1984, Schreiber et al. 1996, Norton and Schreiber in press). The presence of spare time
in birds’ lives would imply that they are not normally energy limited.

Mass loss of adult birds during breeding has often been interpreted to indicate stress or increased
effort (Bleopol’skii 1956, Ricklefs 1974, Harris 1979, Gaston and Nettleship 1981). This seems to
be a reasonable explanation, and there are some data in support of it (Drent and Daan 1980,
Monaghan et al. 1991, Chastel et al. 1995). Yet, an alternative hypothesis proposes that loss of
mass is adaptive, resulting in lower wing loading and more efficient flight that enables adults to
fly farther in search of food (Blem 1976, Norberg 1981, Croll et al. 1991).

Chick growth rate might be constrained (slow in seabirds) by the inability of tissues to mature
at a faster rate. There is some evidence that metabolizable energy is limited simply because the
digestive tract cannot assimilate food faster (Ricklefs 1969, Konarzewski et al. 1990, Diamond and
Obst 1992). In domestic fowl, the gut capacity of chicks to assimilate nutrients is closely matched
to the chick’s requirements, suggesting that there are constraints on growth rate (Obst and Diamond
1992). We might expect a difference in growth rate between the altricial chicks of Pelecaniformes
(hatching naked and helpless) and the semiprecocial chicks of Charadriiformes (hatching with a
full coat of down and able to move about; Ricklefs et al. 1998). In fact, the more mature semi-
precocial chicks grow more slowly than altricial chicks, also suggesting that functional maturity
of tissues might limit growth rate (Ricklefs et al. 1998). If chicks lacked physiological constraints
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on growth, you might also expect to see them exhibit spurts of high growth (compensatory growth)
following periods of starvation, which apparently does not happen (Schew and Ricklefs 1998).

Continuing investigations of growth in seabirds, and understanding the effects of constraints
on growth, are needed before we can fully understand the evolution of seabird life histories.
Experimental studies across phylogenetic lines can provide one of the most fruitful avenues of
investigation. We need to know if chicks can make use of extra food and alter growth rates
significantly. We do not yet understand how maturation of tissues and growth are controlled. The
role of nutrient reserves, in the form of fat, is not fully understood. However, as Ricklefs et al.
(1998) acknowledge, “Testing an hypothesis about a growth rate-function is exceedingly difficult
because several tissues may assume synmorphic relationships to a single most limiting tissue,
several tissues may constrain growth simultaneously, and limiting tissues may differ between age
or different developmental types.”

1.3 COLONIAL LIVING

While this topic is considered in detail in Chapter 4, some mention is warranted here. Lack (1954)
thought about birds living in colonies and the potential for competition for space as well as food.
Seabirds must be one of the ultimate examples of colonial living! Colonies can consist of several
species and millions of individuals, providing a ripe environment for investigations of topics such
as competitive exclusion (see Chapter 8). There are few data on population dynamics in most
seabird species. And even for those few species on which we have good data, we do not truly
understand how populations are regulated or the effect of density-dependent mechanisms.

If large colonies of seabirds deplete the food resource around the colony you might see a
decrease in the breeding population size or an effect in some other aspect of reproductive biology
(Figure 1.5). This has been documented in a few colonies (Hunt and Butler 1980, Anderson et al.
1982, Piatt 1987, Safina et al. 1988), but not in most others (see discussion in Chapter 4). However,
in many cases adults apparently have some spare time in their budget and can compensate for
reductions in the food supply (Drent and Daan 1980, Burger and Piatt 1990, Schreiber 1996),
implying they are able to cope with potential competition for food.

Over 95% of seabirds are colonial, with colony sizes ranging from a few pairs to many
thousands. Some colonies are almost unbelievably large, numbering in the millions of pairs. Living

FIGURE 1.5 The largest Magellanic Penguin colony in the world, at Punta Tombo, Argentina, consumes
many tons of fish from local waters during the nesting season. (Photo by P. D. Boersma.)
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in colonies makes communication among birds a necessary part of daily life and thus colonies can
be exceptionally noisy. Colonies of more densely nesting birds are often noisier and it may be that
the proximity of neighbors makes communicating their intentions more important (Figure 1.2; see
discussion in Chapter 10).

Understanding population dynamics of seabirds requires long-term studies of individually
marked birds. Ideally a study should last at least one generation of a species, if not more, to truly
understand what is driving changes in population levels, survival, and demographics. With long-
lived species, such as seabirds, this can mean a researcher’s entire lifetime of field work spent
on one species. Studies such as John Dunnet’s on Northern Fulmars (Fulmaris glacialis; Dunnet
and Ollason 1978, Dunnet et al. 1979), John Coulson’s on Black-legged Kittiwakes (Rissa
tridactyla; Coulson 1966, 1983, 1985, Coulson and Thomas 1983, Coulson and White 1956,
1958), John Mill’s on Red-billed Gulls (Larus scopulinus; Mills 1973, 1980, Mills et al. 1996),
and the British Antarctic Surveys’ long-term commitment to Antarctic studies (Croxall 1992,
Croxall and Rothery 1991, 1994, Croxall et al. 1988, 1992, 1997, Prince 1985, Prince and Ricketts
1981, Prince et al. 1994) have given us tremendous insights into seabird breeding biology, ecology,
physiology, and demography.

1.4 ADAPTATIONS AND LIFESTYLES OF MARINE BIRDS

Life at sea and feeding on marine organisms presents several challenges to seabirds, and it undoubt-
edly has played an important role in shaping their life histories and physiology. Feeding in the
marine environment requires that seabirds deal with high physiological salt loads. One of the
methods they use to accomplish this is through their salt glands, an extra-renal kidney located in
the orbit of the eye (see Chapter 14). They also limit their ingestion of salt water, getting most of
their fluids from the high water content of the food they eat. For instance, seawater contributes
about 8.5% of the total water influx in Diving Petrels (Pelecanoides spp.; Green and Brothers 1989).
Life at sea also involves other challenges, such as dealing with foraging conditions that are greatly
impacted by weather (see Chapter 7), with natural and anthropogenic contaminants (see Chapter
15), and with increasing competition from fisheries worldwide (see Chapter 16).

Seabirds have diversified to live in all areas of the globe and to feed by a great variety of means
(Chapter 6). Some seabird species fly vast distances to their feeding grounds (albatrosses) and their
long, narrow wings make them well adapted for this. The dynamic soaring of albatrosses enables
them to fly without flapping, making headway in almost any kind of weather and expending little
energy to do so. Smaller birds, such as auks and puffins, flap hard and fast to stay airborne, and
feed closer to shore, probably because of the high energy cost of flapping flight (Rahn and Whittow
1984: see discussion in Chapter 11). Feeding methods of seabirds are just as diverse, from piracy
and cannibalism (frigatebirds, skuas) to sitting on the ocean surface plucking squid and krill
(albatrosses, petrels), to plunge diving (boobies and Brown Pelicans [Pelecanus occidentalis]), to
deep diving (penguins, see Chapter 6).

Bills, feet, and body shapes also show a myriad of adaptations to the various lifestyles of
seabirds. Many of the adaptations are for swimming and diving. Most have webbed feet to aide in
propulsion through the water. Frigatebirds are an exception, with greatly reduced webs, but they
never enter the water. Bill adaptations for various types of feeding are diverse. They all use their
bills to capture and handle food, except for pelicans (Pelecanus sp.) who capture fish in their large
pouches. For the albatrosses and petrels, a hook on the end of the beak helps hold their food
(generally squid and krill). They do not have tremendous closing strength in the bill, possibly
because they do not take strong, muscular prey. Frigatebirds (Fregata sp.) often take large flying
fish, using their hooked bills to pin the fish between the mandibles until they can flip them around
and swallow them. The hooked bill of pelicans seems to be used primarily for preening, and rarely
serves a purpose in feeding. Boobies, tropicbirds, cormorants, gulls, and terns that feed on fish
generally catch them sideways in the bill. Some bills are serrated on the edge, with the teeth angled
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toward the throat so that fish cannot wriggle out of their grasp (boobies). Boobies and tropicbirds
have a hinge on the upper mandible at the base which allows them to exert greater pressure at the
tip, further ensuring that prey do not get away. The lower mandible of skimmers (Rhynchops sp.)
is compressed laterally and is longer then the upper mandible. They catch fish by flying along at
the water surface with the lower mandible slicing through the water, searching for prey by tactile
means. The bill is snapped shut as soon as a prey item is encountered. The bill of puffins is
impossible to explain in terms of a functional food-catching mechanism, and its evolution may be
related to its use in courtship.

Bodies of boobies and gannets are compressed to a bullet shape, making them efficient divers.
Most seabirds are black, white, or black and white, and most are basically sexually monomorphic.
Given the colorful variety and wonderful sexual differences found within land birds, one wonders
why seabirds are so “dull.” Several polar nesting species are white, such as the Ivory Gull (Pagophila
eburnea), providing cryptic coloration. Yet other Polar species have large amounts of black, like
penguins, and even young penguins (supposedly more vulnerable to predators) are not cryptically
colored. But predation is a problem for few seabirds that nest on islands or remote cliffs free of
predators. White in some birds is considered conspicuous coloration, offering at-sea feeding birds
an opportunity to see others who might have found food and head toward the source. White on the
belly of seabirds has been considered to provide them with less conspicuous coloring to avoid
being seen by the fish for which they are searching (Simmons 1972). Yet, immature birds of several
species (such as Brown, Sula leucogaster, and Red-footed Boobies) are dark below, presumably
putting these amateur fishers at a disadvantage if this theory is true. Indeed immatures are usually
less efficient foragers than adults (see Chapter 6). Many aspects of seabird biology are, as yet,
unexplained.

1.5 LOOKING TO THE FUTURE

The past 20 years have seen tremendous progress in our knowledge about marine birds and about
their relationships with their environment, competitors, predators, and prey. Early scientists
observed seabirds, but now we have multiple methodologies to examine them. New developments
in technology and techniques are allowing us to examine aspects of birds’ lives that were once
unknowable. These include physiological studies of energetics, the connection of weather patterns
to seabird ecology, DNA studies examining taxonomic relationships and populational relationships,
stable isotope studies of diet and trophic level, tracking daily and annual movements at sea with
satellite telemetry, and collecting dive depth and frequency data electronically.

As the chapters in this book indicate, answering questions about the biology, ecology, and
conservation of marine birds is challenging, and will continue to be so for years to come. There
are still many unanswered questions in need of research, particularly by those willing to make a
long-term commitment to studying a single species. New improvements in technology now allow
us to follow seabirds during the periods they are at sea, a new frontier in seabird research. Changing
concepts of the uniformity—heterogeneity of the ocean, and of the scales (both temporal and spatial)
on which the oceanic environment operates, have advanced our ability to ask the right questions
(see Chapter 6). One of the threads you will find woven throughout this book is that the more we
learn about seabirds, the more we find they have adapted and are adaptable to the situation at hand.
For instance, the diversity of morphology in seabird families which allows them to exploit a broad
range of resources and environments has resulted in differing demographic strategies worldwide
(see Chapter 5). We encourage students of seabirds to keep an open mind, think broadly, and
question and test what they read. We still have much to learn.

Exciting research directions that need to be taken include: comparisons of coastal- vs. oceanic-
nesting species, studies of traditional seabirds in comparison with others heavily using marine
environments (marine shorebirds), examinations of conspecifics nesting on oceanic vs. coastal
islands, and investigations of “energy limitation” in conspecifics in large vs. small colonies.
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Addressing the issue of statistical vs. biological significance to marine birds would make major
contributions to the fields of ecology, evolution, and biostatistics. Consideration of the continuum
from an oceanic existence to coastal, and finally to a truly land-based life-history strategy within
seabirds will also advance our knowledge. While answering these questions, most seabird biologists
will admit to the exhilaration of watching these fascinating birds on land or at sea, among urban
waterways or amidst some of the most spectacular scenery anywhere on earth. It is an exciting
time in marine bird biology.
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2.1 INTRODUCTION

Most seabird systems (e.g., species, communities, populations) are large in both temporal and
spatial scale. For example, it is now firmly established that many seabird populations and commu-
nities are affected by climatic cycles, some of which operate globally and over periods extending
from several years to decades (e.g., El Niflo—Southern Oscillation and the North Pacific decadal
oscillation; see Chapter 7). In general, seabirds are long lived with each bird experiencing a variety
of climatic conditions during its lifetime. The longevity of individual seabirds and the fact that
these birds live in environments that are affected by large-scale phenomena have prompted a plethora
of long-term studies of seabird populations and communities (e.g., Coulson and Thomas 1985,
Ainley and Boekelheide 1990, Harris 1991, Wooler et al. 1992). In fact, there is a lengthy history
of long-term studies of seabird populations (e.g., Rickdale 1949, 1954, 1957, Serventy 1956) and
communities (e.g., Uspenski 1958, Belopol’skii 1961).

The long-term history of seabird systems is even more remarkable when we consider the fossil
record. Contrary to “common knowledge,” birds have a rather extensive fossil record (Olson 1985a)
that is most informative. Owing to the fact that seabirds generally live or lived in depositional
environments (e.g., nearshore marine) rather than erosional environments (e.g., upland), the fossil
record of seabirds represents a large percentage of the total fossil record of all birds (see Olson
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1985a). Given this relatively good but clearly incomplete fossil record, it is possible to use seabird
fossils as a tool not only to study the truly long-term history of seabirds, but also to help interpret
the biogeographical patterns and community structure of modern-day seabird systems.

In this chapter, I summarize first the fossil history of seabirds, here defined as Sphenisciformes,
Procellariiformes, Pelecaniformes (excluding Anhingidae), Laridae, and Alcidae. This summary
includes a comprehensive table (Appendix 2.1) listing each fossil taxon, with its corresponding
temporal, spatial, and bibliographic information. I then discuss the importance of fossils and the
paleontological record in elucidating many aspects of seabird ecology and evolution. I introduce
what fossils can tell us about biology, geography, and time, and provide a series of examples of
how the study of seabird fossils presents essential information to our understanding of the long-
term and large-scale development of seabird communities. Finally, I conclude with a discussion of
the fossil history of the Alcidae. I highlight the Alcidae for several reasons. First, the fossil record
of alcids is one of the best fossil records of all seabirds because of the large amount of material
that has been collected and described, and the high degree of taxonomic diversity resulting from
these descriptions. Second, the alcids encapsulate many of the discussions that are emphasized
throughout this chapter. That is, to correctly understand the biogeographic and phylogenetic rela-
tionships of alcids requires knowledge of the alcid fossil record. Third, the fossil history of alcids
is enigmatic and presents some interesting questions requiring future research.

2.2 THE FOSSIL RECORD OF SEABIRDS

I have provided a list of fossil seabird taxa in Appendix 2.1 (368 entries, including 253 taxa
described to species, 28 of which are assigned or have affinities to modern species). Although this
list is comprehensive, undoubtedly it is not complete, and it does not include modern seabird taxa
found in Pleistocene or Holocene deposits (see Brodkorb 1963, 1967; and Tyrberg 1998 for listing
of Pleistocene fossils of modern seabirds). There are at least two published revisions of a fossil
taxon (penguins from New Zealand and Antarctica; Fordyce and Jones 1990, Myrcha in press) that
were not included in this analysis. In Appendix 2.2, 23 additional fossil taxa are listed that are now
considered synonymous with a species listed in Appendix 2.1.

It is tempting to compare the diversity among some higher taxa based on a list of species;
however, these species were probably not described using the same set of procedures. For example,
one author might feel justified naming a new species based on fragmentary material (e.g., Harrison
1985), while another author might be reluctant to do so or will wait until a greater number of higher
quality material is in hand (Olson and Rasmussen 2001). The lack of a standard in describing new
fossil species will result in some higher taxa having a greater number of described species than
other taxa simply because of authors’ biases rather than a product of true morphological diversity.
That being said, I will still make some rudimentary comparisons among the higher taxa listed in
Appendix 2.1.

Pelecaniformes is the most diverse order in this list in terms of both the number of entries
(141) and described species (94). Procellariidae is the most diverse family with 68 entries and 42
described species, followed by the Alcidae (46 entries, 31 species) and Spheniscidae (45 entries,
38 species). The oldest taxon in the list is Tytthostonyx glauconiticus, from the late Cretaceous of
New Jersey (see Figure 2.1 for time scale), tentatively placed in the Procellariiformes by Olson
and Parris (1987). Following this species there are several taxa described from the Paleocene and
Eocene, most of which are either archaic penguins or Pelagornithidae, an extinct group of bony-
tooth pelecaniforms (see below). In fact, the Paleogene (Paleocene through Oligocene; Figure 2.1)
appeared to be dominated by extinct Pelecaniformes (Pelagornithidae and Plotopteridae), Procel-
lariidae, and large-sized penguins (Figure 2.2). Except for Puffinus (P. raemdonckii, from the early
Oligocene of Belgium), modern genera of seabirds do not appear until the early Miocene or 16 to
23 million years ago (mya), and do not become taxonomically diverse until the middle Miocene
(11 to 16 mya). The middle Miocene (Fauna I in Warheit 1992; see Figure 2.1) marked the onset
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FIGURE 2.2 A reconstruction of one of the largest fossils in the Plotopteridae (Pelecaniformes). This plo-
topterid was larger than Emperor Penguins and had paddle-like wings similar to penguins. Its hindlimb and
pelvic morphology were similar to Anhingas. It used its wings to swim underwater, an adaptation that has
evolved several times in birds (Olson and Hasegawa 1979). (After Olson and Hasegawa 1979.)

of a permanent East Antarctic ice cap, a drop in sea level, and an increase in the latitudinal thermal
gradient of the world’s oceans (Warheit 1992). The steepening of this thermal gradient intensified
the gyral circulation of surface currents, and strengthened the coastal and trade winds that promote
upwelling (Barron and Bauldauf 1989). Indeed, there appears to be a temporal correlation between
these climatic and oceanographic events and the taxonomic diversification of seabirds (see also
Warheit 1992).

I discuss some of these issues and other aspects of the seabird fossil record in the next few
sections. However, I would like to highlight here two groups of extinct seabirds: Pelagornithidae
and Plotopteridae. The Pelagornithidae or pseudodontorns first appeared in the eastern North
Atlantic (England) in the late Paleocene and early Eocene (49 to 61 mya) and in the eastern North
Pacific and Antarctica in the middle and late Eocene, respectively. This group was truly global in
distribution, occurring in fossil deposits in North and South America, Europe, Asia, Africa, New
Zealand, and Antarctica, and survived some 57 to 59 million years (Appendix 2.1). The birds were
also remarkable in their morphology: gigantic in size, one species was estimated to have a wingspan
of almost 6 m (K. Warheit and S. Olson, unpublished data), with bony projections on their rostrum
and mandible (Olson 1985a). Their mandible was also composed of a hinge-like synovial joint and
lacked a bony symphysis (Zusi and Warheit 1992). Zusi and Warheit (1992) speculated that the
birds captured prey on or near the surface of the water while in flight or by lunging while sitting
on the water surface. Their extinction is enigmatic, but may be related to fluctuations in local or
global food resources (Warheit 1992).

The Plotopteridae were pan-North Pacific in distribution and ranged in size from over 2 m in
length to the size of a Brandt’s Cormorant (Olson and Hasegawa 1979, Olson 1980, Olson and
Hasegawa 1996; Figure 2.2). These seabirds were closely related to sulids, cormorants, and anhin-
gas, but were flightless and possessed paddle-like wings remarkably convergent with those of
penguins and flightless alcids (Olson and Hasegawa 1979, Olson 1985a). They disappeared in the
early and middle Miocene from the eastern and western Pacific, respectively (Appendix 2.1). Olson
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and Hasegawa (1979) and Warheit and Lindberg (1988) considered the evolution and radiation of
gregarious marine mammals as a possible cause for the extinction of the plotopterids, while Goedert
(1988) suggested that a sharp rise in ocean temperature was a better explanation for their demise
(see Warheit 1992 for discussion of both hypotheses).

2.3 THE IMPORTANCE OF SEABIRD FOSSILS
2.3.1 PALEONTOLOGY AND THE STRUCTURE OF SEABIRD COMMUNITIES

Press and Siever (1982) define paleontology as “the science of fossils of ancient life forms, and
their evolution” and define a fossil as “an impression, cast, outline, track, or body part of an animal
or plant that is preserved in rock after the original organic material is transformed or removed.”
Olson and James (1982a) extended the definition of fossil to also include subfossil bones (bones
that have not become mineralized), such as those present in archeological midden sites, and I will
adhere to this definition of fossil throughout this chapter. Because fossils, especially seabird fossils,
occur in rocks that may also contain the fossiliferous remains of climate-sensitive microorganisms
such as foraminiferans, it is possible to associate a particular climatic régime to a particular fossil
community. Furthermore, since fossil-bearing rocks also can be placed geographically and dated
either relatively or absolutely using a variety of methods, we can associate a fossil with a specific
time and place. As such, if fossils are grouped together based on time, they can provide information
on what species co-occurred during a specific period and in a specific place, and under the influence
of a specific climatic régime. Therefore, fossils are not simply a collection of broken bones, but
are in fact treasure troves that provide us with information about the morphology, anatomy,
physiology, and behavior of individual organisms, as well as composition of past ecological
communities.

Recent and historical processes contribute to the structure of seabird communities today. That
is, those that can be measured in ecological time (e.g., predation, competition, dispersal) as well
as factors that are measured in geological time (e.g., plate tectonics and the origin of modern
oceanic currents), and perhaps random luck (see Jablonski 1986 and Gould 1989 for examples of
the importance of random extinctions and historical contingencies, respectively), are responsible
for the composition of the seabird communities today. I argue that in order to understand the
structure of seabird communities today, we must not only study predation, competition, dispersal,
etc., but we must also study fossils. Without incorporating history, an incomplete or a potentially
incorrect story is built. To emphasize this point, I provide three examples of how studies of fossils
and geological history have contributed essential components to our understanding of seabird
communities. The first two examples (North Pacific and South African seabirds) provide information
on how continental drift, sea level, and associated changes in climate and oceanography may have
been responsible for profound changes in the composition of seabird communities. The final
example concerns how the Polynesian colonization of oceanic islands in the Pacific Ocean resulted
in extensive extinctions of both land- and seabird taxa prior to European exploration of the Pacific
or written history.

2.3.1.1 North Pacific Seabird Communities

I have previously reviewed the fossil history of seabirds from the North Pacific and related this
history to plate tectonics and paleooceanography (Warheit 1992). In what follows I highlight some
of the findings from this study, focusing primarily on the seabird communities from central and
southern California. The California Current upwelling system today is one of the primary eastern
boundary systems, and, along with the Benguela and Humboldt upwelling systems of the Southern
Hemisphere, currently support abundant and diverse seabird faunas. These three upwelling systems
have many of the same types of seabirds. That is, each