
ELECTRONIC CAD FRAMEWORKS

THE KLUWER INTERNATIONAL SERIES
IN ENGINEERING AND COMPUTER SCIENCE

VLSI, COMPUTER ARCHITECTURE AND
DIGITAL SIGNAL PROCESSING

Latest Titles

Consulting Editor
Jonathan Allen

Symbolic Analysis for Automated Design of Analog Integrated Circuits,
G. Gielen, W. Sansen,

ISBN: 0-7923-9161-6
High-Level VLSI Synthesis, R. Oimposano, W. Wolf,

ISBN: 0-7923-9159-4
Integrating Functional and Temporal Domains in Logic Design: 171t False Path

Problem and its Implications, P. C. MeGeer, R. K. Brayton,
ISBN: 0-7923-9163-2

Neural Models and Algorithms for Digital Testing, S. T. Chakradhar,
V. D. Agrawal, M. L Bushnell,

ISBN: 0-7923-9165-9
Monte Carlo Device SimulDtion: Full Band and Beyond, Karl Hess, editor

ISBN: 0-7923-9172-1
The Design of Communicating Systems: A Sy5tem Engineering Approach,

C.J. Koomen
ISBN: 0-7923-9203-5

Parallel Algorithms and Architectures for DSP Applications,
M. A. Bayoumi, editor

ISBN: 0-7923-9209-4
Digital Speech Processing: Speech Coding, Synthesis and Recognition

A. Nejat Inee, editor
ISBN: 0-7923-9220-5

Sequential Logic Synthesis, P. Ashar, S. Devadas, A. R. Newton
ISBN: 0-7923-9187-X

Sequential Logic Testing and Verijication, A. Ghosh, S. Devadas, A. R. Newton
ISBN: 0-7923-9188-8

Introduction to the Design of Transconductor-Capacitor Filters,
J. E. Kardontchik

ISBN: 0-7923-9195-0
The Synthesis Approach to Digital Sy5tem Design, P. Michel, U. Lauther, P. Duzy

ISBN: 0-7923-9199-3
Faull Covering Problems in Reconjigurable VLSI Systems, R.Libeskind-Hadas,

N. Hassan, J. Cong, P. McKinley, C. L Liu
ISBN: 0-7923-9231-0

High Level Synthesis of ASICs Under Timing and Synchronization Con5traints
D.C. Ku, G. De Micheli

ISBN: 0-7923-9244-2
The SECD Microprocessor, A Verification Case Study, B.T. Graham

ISBN: 0-7923-9245-0
Field-Programmable Gate Arrays, S.D. Brown, R. J. Francis, J. Rose,

z.G. Vranesie
ISBN: 0-7923-9248-5

Anatomy of A Silicon Compiler, R.W. Brodersen
ISBN: 0-7923-9249-3

ELECTRONIC CAD FRAMEWORKS

by

Timothy J. Barnes
Cadence Design Systems

David Harrison
A. Richard Newton
Rick L. Spickelmier

University of California

Berkeley

~.

" Springer Science+Business Media, LLC

Library of Congress Cataloglng-In-Publication Data

Electronic CAD frameworJcs I by Timothy J. Sarnes ... [et al.].
p. crn. -- (The Kluwer intern<ltion<ll series in engineering and

computer sdence. VLSI, compUTer <Irchitecture, and digit<ll sign<ll
processing)

Inc1udes bibliographiC<lI references.

1. Computer-aided design . 2. Engineering design-Data processing.
I. Barnes, Timothy J. II . Series.
TA174.E39 1992
620'.0042'0285--dc20 92-1 0976

CIP

Copyright O 1992 Springer Science+Business Media New York
Originally published by Kluwer Acadcm ic Publ ishcrs in 1992
Soflcover reprint ofthc hardcover Ist edition 1992

AII Tights reserved. No part of this publication may be reproduced, stored in a retrieval
systemor transmitted in any form ar by noy mcans, mcchanical, photo-copy ing, recording,
or olhcrwise, without the prior written permission of the publisher, Springer
Science+Business Media, LLC.

Primed on acid-free paper.

ISBN 978- 1-4613-6580-8 ISBN 978 (eBook) -1-4615-3558-4
/978-1-4615-3558-4 DOI 10.1007

TABLE OF CONTENTS

Chapter 1: INTRODUCTION 1

1.1 The Nature of a CAD Framework 2

1.2 The Evolution of CAD Frameworks 4

1.3 CAD Frameworks and OpennE!ss 9

1.4 The Rise of Commercial CAD Frameworks 11

1.5 The Impact of Object-Oriented Techniques 11

1.6 The Standardization of CAD Frameworks 13

1.7 Organization of the Book 14

Chapter 2: MAJOR COMPONENTS OF AN
ENGINEERING FRAMEWORK 17

2.1 Overview 17

2.2 Operating System Services 19

vi CAD Frameworks: Integration Technology for CAD

2.3 Tool Integration and Encapsulation 20

2.4 Design Management 21

Chapter 3: DATA REPRESENTATION 29

3.1 Introduction 29

3.2 Databases and Data Structures 30

3.3 Approaches to CAD Databases 32

3.4 Representational Issues 36

3.5 The Nature of Engineering Design
Information 43

3.6 Hierarchy 46

Chapter 4: DATA MANAGEMENT 51

4.1 Introduction 51

4.2 Conventional Database Approaches 52

4.3 Physical Versus Logical Data Management 59

4.4 Managing the History of a Design 64

4.5 Managing Multiple Users of the Data 67

4.6 Concurrency Control 69

4.7 Compatibility with Change 72

vii

Chapter 5: TOOL MANAGEMENT 77

5.1 Introduction 77

5.2 Tool Characterization 78

5.3 Tool Control 80

5.4 Other Tool Management Functions 82

Chapter 6: DESIGN FLOW MANAGEMENT 87

6.1 Introduction 87

6.2 Benefits 88

6.3 DFM Dependencies 89

6.4 Existing Approaches 91

6.5 Describing the Design Flow 95

6.6 The Design Flow Engine 97

6.7 Standardization and Design Flow
Management 99

Chapter 7: USER INTERFACES 101

7.1 Introduction 101

7.2 History of Design Automation User
Interface Systems 105

7.3 Modem Framework User Interfaces 111

7.4 Future Directions for CAD User Interfaces 118

viii CAD Frameworks: Integration Technology for CAD

Chapter 8: EXTENSION LANGUAGES 121

8.1 Introduction 121

8.2 Commercial Extension Languages in CAD 123

8.3 Extension Languages Prototypes 126

8.4 Extension Languages Requirements 128

8.5 Design Issues for Extension Languages 130

8.6 General Applications of Extension
Languages 131

8.7 Language-Based Design 132

8.8 Benefits of an Extension Language 134

8.9 Future Directions 135

Chapter 9: IMPLEMENTING A CAD
FRAMEWORK 139

9.1 Introduction 139

9.2 The CODEM Approach 142

9.3 Commercial Frameworks 144

Chapter 10: THE CAD FRAMEWORK
INITIATIVE 147

10.1 Introduction 147

10.2 The Origins of CFI 148

ix

10.3 Goals and Deliverables 151

10.4 The CFI Organization 152

10.5 Tangible and Intangible Benefits 155

10.6 Technical Activities 156

10.7 CFI in the Future 162

Chapter 11: SUMMARY 163

11.1 Acknowledgments 164

REFERENCES 167

INDEX 185

xi

LIST OF FIGURES

Figure 1.1 Inter-tool data translation in the absence of

standards 5

Figure 1.2 A common exchange format simplifies the

translation problem 6

Figure 2.1 Framework Components 18

Figure 3.1 General Flow of a CAD Data Management

System 34

Figure 3.2 Circuit fragment illustrating

re-use of component types 37

Figure 3.3 Levels of abstraction in a database system 38

Figure 3.4 Partial entity-relationship diagram for

netlist data representation 41

Figure 3.5 An example of an hierarchical circuit description 45

xii CAD Frameworks: Integration Technology for CAD

Figure 3.6 An hierarchical design represented as an

instance hierarchy 47

Figure 3.7 Storage model in a database which uses hierarchy

to reduce storage requirements 49

Figure 4.1 The version and alternative approach

to history management 66

Figure 4.2 The workspace and configuration

approach to history management 68

Figure 4.3 The upward compatibility issue

between database and tools 74

Figure 7.1 Expanded view of user interface

components of a Framework 113

Figure 10.1 CFIOrganization 153

Figure 10.2 CFI Reference Architecture 158

FOREWORD

When it comes to frameworks, the familiar story of the elephant

and the six blind philosophers seems to apply. As each philoso­

pher encountered a separate part of the elephant, each

pronounced his considered, but flawed judgement. One blind

philosopher felt a leg and thought it a tree. Another felt the tail

and thought he held a rope. Another felt the elephant's flank and

thought he stood before a wall.

We're supposed to learn about snap judgements from this alle­

gory, but its author might well have been describing design

automation frameworks. For in the reality of today's product

development requirements, a framework must be many things to

many people.

xiv CAD Frameworks: Integration Technology for CAD

As the authors of this book note, framework design is an optimi­

zation problem. Somehow, it has to be both a superior rope for one

and a tremendous tree for another. Somehow it needs to provide

a standard environment for exploiting the full potential of

computer-aided engineering tools. And, somehow, it has to make

real such abstractions as interoperability and interchangeability.

For years, we've talked about a framework as something that

provides application-oriented services, just as an operating

system provides system-level support. And for years, that simple

statement has hid the tremendous complexity of actually

providing those services.

Until this book, the knowledge of just how a framework will actu­

ally accomplish its goals has been scattered - in professional

papers, in documents of the CAD Framework Initiative, in the

minds of industry experts such as the authors themselves. With

this book, however, anyone whose work is (or will be) touched by

frameworks will gain an appreciation of the breadth and depth of

the problem - and, most important, the methods of its solution.

And the authors also provide us with some very important

lessons. One of the most important is the authors' warning against

Brooks' "second system syndrome," where we sometimes attempt

too much the second time around, because we've learned just

xv

enough from the first experience to be dangerous. As CFI frame­

work standards diffuse through the industry, this is an apt

warning for developers and users against expecting too much too

soon.

But there is one thing we can expect. Today's emphasis on Elec­

tronic CAD Frameworks is only the beginning. Electronic CAD

Frameworks are a pragmatic response to a burning industry need.

But they're also a reflection of the industry's broader desires: to

gain better leverage from its investment in design automation

tools and systems - for all aspects of product development,

including electronics design as well as mechanical design and

software design.

If standards efforts such as those in progress within CFI point the

way to this grander vision, it will be possible because of the

broader appreciation of framework technologies afforded by

books such as this.

Andy Graham

President

CAD Framework Initiative, Inc.

ELECTRONIC CAD FRAMEWORKS

1 INTRODUCTION

It has now been over a quarter century since the computer was

introduced as an important tool in the design of integrated

circuits (IC's) and systems and over the past decade it has

become indispensable. Along with the rapid growth in the

complexity of integrated circuits and digital systems has come

an even more rapid growth in the complexity of the software

tools and associated data needed to represent a design. A typical

Computer-Aided Design (CAD) or Computer-Aided Engi­

neering (CAE) system today consists of over one million lines of

source code and many CAD systems contain over ten million

lines of code. The data needed to describe a state-of-the-art inte­

grated circuit, representing about 500,000 equivalent logic gates

or a million transistors, can exceed two gigabytes. While the

CAD tools themselves are essential to the design process, the

management of such vast amounts of data and its presentation,

in a useful and efficient form, to CAD programs, to designers,

and to manufacturing equipment alike, has become a major issue

in the electronics industry.

2 CAD Frameworks: Integration Technology for CAD

1.1 The Nature of a CAD Framework

The term CAD Framework has come to mean all of the underlying

facilities provided to the CAD tool developer, the CAD system

integrator, and the end user (IC or system designer) which are

necessary to facilitate their tasks.

Broadly speaking, these three groups of people represent the

users of the CAD Framework, each with their own needs and

particular emphaSiS. The CAD Framework plays an analogous

role in the development of engineering-specific, or even elec­

trical-engineering-specific, software systems to the role played

by an operating system for the development of general-purpose

software applications, or the role of a specific programming

environment for software development in a particular program­

ming language. It represents a collection of mechanisms or

facilities (programming libraries, extension languages, data

management facilities, user interface facilities, etc.), at many

different levels of abstraction, that are, to varying degrees,

specific to the electronic CAD world. The use of those mecha­

nisms to develop a particular CAD system, optimized for a
specific set of end-user needs, is then the task of the tool devel­

opers, tool integrators, and often the end users themselves. For

example, a Framework might be used to configure a set of tools

and to develop appropriate interfaces to support schematic

capture, simulation, timing verification and test generation for

gate arrays; or symbolic layout editing, layout compaction, veri­

fication, and mask-pattern generation for custom CMOS; or even

INTRODUCTION 3

entry of a behavioral description, design partitioning into

multiple chips, and design synthesis for a family of digital signal

processors (DSPs).

The major test of a CAD Framework is that it reduce the time and

cost needed to develop or modify a CAD system such that it
meets the needs of its end-users. Unfortunately, this seemingly

simple test represents a very broad and difficult set of require­
ments, many of which represent interacting trade-offs, and most

of which are evolving rapidly with time, as described later.

Another important feature to note about both the definition of a

CAD Framework and the test for success is that neither defini­

tion includes a particular set of features or architectural

requirements. That is, there is no mention of such things as data­

base, editors, data representation, tool flow control or the like in

either definition. The particular way one satisfies the test

presented above has also evolved with time and will continue to

do so as we learn more about the design process, as both the soft­

ware and hardware architectures of computer systems evolve,

and as the needs and priorities of the end-users change. In other

words, there will never be a "right answer" to the engineering

Framework problem, only good answers and better answers! We
believe that a clear understanding of this fact has a very impor­

tant influence on the approach one takes to the design of a CAD
Framework, and that those who believe they know the "right

answer," as many have believed in the past, are doomed to

failure. By the time they have finished their development, either

the needs of the end-user have evolved or the developers have

4 CAD Frameworks: Integration Technology for CAD

chosen an unacceptable set of trade-offs (e.g. performance
versus memory requirements or flexibility). The most successful

Frameworks developed to date have been designed with flexi­

bilityand easy modification as a key goal, from the early file and

translator-based systems of a decade ago to the more sophisti­

cated Frameworks of today.

1.2 The Evolution of CAD Frameworks

In the 1960's, design data management and user interface was

not a major issue for IC design - the entire database often
consisted of a box of punched cards and a hand-drawn roll of

mylar that the designer carried to the mask shop. In the early and
mid 1970's, as circuit complexity increased, proprietary and tool­

dependent textual or binary data formats were developed to

represent particular classes of design data, such as mask layout

data (e.g. [CAL81]) and transistor or gate-level netlist descrip­

tions(e.g. [SZY76, NAG75]). Since most CAD programs were

developed independent of one another and had their own input

formats, coupling them together to form an integrated system for

IC design involved writing translators to and from each
program. In the worst case, for n programs, (n - 1)n translators

would be needed, as illustrated in Figure 1.1. However, as the

CAD tools evolved, their input and output formats changed

along with them. As a result, it was often necessary to keep a

family of translators for each program, with each translator

corresponding to a different version of the input data format.

Maintaining such a family of translators soon became a CAD

INTRODUCTION

Translators

Figure 1.1: Inter-tool data translation in the absence of
standards

5

manager's nightmare! The number of translators can be reduced

to a worst-case of 2n by choosing a common, central format and

translating to and from that format, as shown in Figure 1.2. A

number of de facto standard formats evolved in the late 1970's to

meet the need for a common format and different companies

standardized internally on one format for each class of data. In

the mid and late 1970's, a number of public-domain standard

formats were adopted of which the most successful examples are

the CIF (Caltech Intermediate Form) [MEA79] for mask-level

6 CAD Frameworks: Integration Technology for CAD

Translators

Figure 1.2: A common exchange format simplifies the transla­
tion problem

layout descriptions and SDL (Stanford Design Language)

[SDL76] for gate-level netlist descriptions. While such formats

provide a consistent way of storing the design data, they provide

no support for managing the data. Which copy is the latest

version? Has the layout been changed since the schematic

diagram was updated? If I change this cell, which cells that use

it will be affected? It is the ability to answer such queries that

differentiates a true data management system from a simple data

repository. The data representation question - how the semantics

INTRODUCTION 7

of the design information is represented in the computer - is

addressed in Chapter 3, while the data management aspects of

CAD Frameworks are discussed in Chapter 4.

Collections of files and translators, where each CAD tool had its

own user interface, operated autonomously, and read and wrote

it's own file formats, formed the first primitive CAD Frame­

works. Though one can argue the effectiveness of such an

approach, at the time such systems were the only way to link

tools and users on a common design problem. In fact, this

general approach is still in use in the majority of circuit and

system design companies today. Though many end users rely on

tum-key vendor-supplied CAD systems today, even some of

these vendor-supplied systems still use this loosely-coupled

approach. Over the years, a number of facilities have been added

to improve the quality, data-management, and tool-flow aspects

of such systems and an excellent early example of such work is

the Designer's Workbench [ONE79].

In parallel with this work, a number of companies developed

conventional database systems for managing their IC design

data. Since the CAD tools all had their own user interface, only

shared common operating-system resources at the level of a text­

based terminal or vector plot package, and since most operating

systems only supported a single interactive task per user, it is

understandable that early work on Frameworks focussed on the

data management aspect.

8 CAD Frameworks: Integration Technology for CAD

Often the companies using conventional databases for IC design

were the large computer or system houses who had experience

with the use of database management techniques for discrete

digital system design. These record-oriented database manage­

ment systems (DBMS) were developed to manage IC parts

inventories, part location on standard printed circuit (PC)

boards, and the connections among IC pins necessary to imple­

ment the logic schematic. These lists of connections, used to

guide wire-wrap or stitch-weld machines, are generally referred

to as netlists. While these companies found that the application

of conventional relational, network, or hierarchical database

management techniques [ULL82] was effective for structured,

semi-custom design styles like gate-array and standard-cell,

these approaches were not successful for custom design styles or

in situations where the underlying process technology and

design style was evolving rapidly [ROS80, WEI80]. Some of the

specific reasons why these systems are not sufficient, even today,

are described in more detail in Chapter 3.

The same rapid increases in complexity that makes the use of

conventional database management techniques difficult has

made the need for a unified data management system critical,

especially for full-custom or structured-custom design styles. No

longer is the entire design process the responsibility of a small,

tight-knit group but rather teams of system designers, logic

deSigners, circuit designers, and layout technicians must all

work together and share the vast amount of data representing a

modem IC-based system.

INTRODUCTION 9

The representations of IC design data, such as mask layout, sche­
matic diagrams, documentation, simulator input and output, are

quite diverse and new data representations for this and other

information are being developed continuously. This evolution

requires a flexible data management system which can adapt

readily to new design methods, while maintaining acceptable

performance, and such a facility is a key component of an engi­

neering Framework. The state of developments for engineering

design data management is presented in Chapter 4. In the past

decade, the notion of procedural circuit design [JOH78, BAT80]

and rule-based expert system technology have emerged as key

components in the engineering design process. These paradigms

have broadened the requirements for an engineering data

management system. Each object in a design may be described

by data, such as its mask layout, by a local procedure, such as a

parameterized cell-generator description, by generic synthesis

tools, such as a channel router or a placement program, or by a

combination of all of these techniques. This issue is presented in

more detail in Chapter 3 and Chapter 4.

1.3 CAD Frameworks and Openness

The topic of CAD Frameworks has received a great deal of atten­

tion in the past few years, motivated largely by end-users. As

designs become more complex, the design data represents the

10 CAD Frameworks: Integration Technology for CAD

"life blood" of an IC or electronic system design company. If a

particular design tool does not function correctly under certain

conditions, or a workstation or mainframe computer fails, the

problem can generally be overcome and work can proceed.

However, if the design data were to be lost in the middle of a

large design project, the cost could be astronomical. Not only

would the investment in design effort be lost to that point but

such a situation would also cost valuable time and a market

window might be missed. This is one reason why most IC design

companies have resisted trusting all of their data management

tasks to a single vendor, particularly if it is not possible to

archive all of the data in a non-proprietary format. In addition,

once a company has committed their data to a particular

vendor's system, they are "locked in" to that vendor unless there

is a way of migrating the data to another system. Until recently,

many system houses have used proprietary CAD systems to

augment their internal efforts. That is, the turnkey system is used

as a front-end for certain aspects of the design, the data is then

transferred, usually via a common textual format, into the corpo­

rate design system for final checks and transfer to

manufacturing. By using published textual data formats to

represent the design information at certain stages, CAD vendors

like Dazix, Mentor Graphics, and Viewlogic have provided a

form of loosely-coupled openness that has met the needs of the

INTRODUCTION 11

end user in many situations. Support for industry-standard data

formats such as EDIF [EIA87] and, more recently, VHDL [INT85]

have enhanced this capability.

1.4 The Rise of Commercial CAD Frameworks

The first vendor to use the term Framework in product marketing

and to provide a more tightly-coupled integration of tools was

SDA Systems, now called Cadence Design Systems. Cadence's

Framework products, along with their extension language

SKILLTM [BAR90] have found widespread use in the IC design

market segment, and are increasingly seen in the systems busi­

ness. More recently, EDA Systems Inc. now owned by Digital

Equipment Corporation) has developed a general-purpose CAD

Framework [BR087], with emphasis on the tasks of integrating

"foreign" tools into a single CAD system and managing the

history of the design data. The EDA product played a major role

in popularizing the Framework concept in the electronic CAD

community. More recently Viewlogic, Mentor Graphics and

Dazix have announced Framework products.

1.5 The Impact of Object-Oriented Techniques

As software systems continue to grow in size and complexity,

programmers have turned to object-oriented approaches to code

development and support (for example [M0086, TES81, STE83,

12 CAD Frameworks: Integration Technology for CAD

MEY89, STR78]). The next generation of workstations, with an
order of magnitude increase in performance at the desk top for

comparable price to workstations of today, will be a key factor in

making such approaches practical and affordable outside the

research laboratory. In an analogous way, Ie designers are

already using procedural descriptions of design components,

akin to the objects in many of these languages. In addition, the

database management community is directing its attention to the

management of object-based descriptions of systems. From an Ie

design point of view, these three technologies are converging in

the next generation of data management and programming

systems for Ie design. We expect that the interfaces to these

systems will be indistinguishable from that of an object-oriented,

message-based programming environment. A number of new

companies have been formed to address the issue of object­

oriented data management for engineering applications and

these include Itasca, Object Design, Objectivity, Ontologic, Servi­

ologic and Versant. One of the major challenges these companies

face is that of adding the engineering data management-specific

and design management-specific features to their environments,

while also meeting the very high performance requirements of

the engineering world.

INTRODUCTION 13

1.6 The Standardization of CAD Frameworks

With such a long history of development, many researchers

consider certain aspects of a CAD Framework to be understood
well enough that effective standards can be established. In

parallel with the ongoing Framework research efforts, a number

of groups have begun work to standardize some of the interfaces

to a CAD Framework. This activity was pioneered by the Engi­

neering Information System (EIS) [LIN86a, LIN86b] project of

the US Department of Defense, while the most important

ongoing effort today is that of the CAD Framework Initiative

(CFI), formed by an international group of companies and

university participants. The stated mission of the CFI is to

"develop industry acceptable guidelines for Design Automation

Frameworks which will enable the coexistence and cooperation

of a variety of tools", and they have already been able to demon­
strate significant progress, especially in the area of design

representation.

There is also considerable interest in the development of Frame­

work standards in the European community, based on a number

of significant ongoing research activities. In particular, the work

at NMP-Cadlab [MIL89, GOT87], Delft University [WID88,

WOL88, DEW86], and the Ireen system developed by Piloty et al

[PIL89] has been a major factor in these developments. An active

standardization effort in Europe began some years ago under

14 CAD Frameworks: Integration Technology for CAD

European "CAD Integration Project (ECIP) sponsorship, and has

continued under this and other joint industry-government

programs. In addition, European researchers are playing a

particularly active role in the CFI developments.

The most significant challenges faced by such a group include

choosing the right levels for standardization so as not to

preclude further important research and development in the

future, and the establishment of a forum for evolving appro­

priate standard data representations, in terms of their data

model, for electronic CAD information. These groups are,

however, also addressing the needs of a CAD Framework in the

areas of user interface, inter-tool communication, portability and

methodology management as well.

1.7 Organization of the Book

After presenting a general discussion of the major components

of a CAD Framework mentioned above and their relationships to

one another (Chapter 2: MAJOR COMPONENTS OF AN ENGI­

NEERING FRAMEWORK on page 17), each area is presented in

more detail. A brief review of the state-of-the-art and current

directions for research are presented. Since the approach taken to

the development and enhancement of CAD Frameworks has had

more impact on their success or failure than any particular

design decision, some observations on this topiC are included in

INTRODUCTION 15

Chapter 9: IMPLEMENTING A CAD FRAMEWORK on page
139. Finally, the influence of related disciplines and the ongoing
software standards efforts on the area of CAD environments is

reviewed.

2 MAJOR COMPONENTS OF AN
ENGINEERING FRAMEWORK

2.1 Overview

A coarse view of the major components of an engineering Frame­

work today is shown in Figure 2.1. A w~i?l1-designed Framework

provides many layers of abstraction and, in the most successful

examples, all of these layers are provided to the tool developers

and CAD systems integrators for their use. That is, the systems

integrator can choose to use high-level facilities provided by the

Framework, lower-level facilities, or even system calls provided

by the operating system itself, if necessary. This is analogous to

a systems programmer using a high-level language for some

parts of a program but assembly code for certain critical parts. Of

18 CAD Frameworks: Integration Technology for CAD

CAD Tool Designer and CAD System Integrator

Figure 2.1: Framework Components

MAJOR COMPONENTS OF AN ENGINEERING FRAMEWORK 19

course, a good systems programmer only uses assembly

language when there is no other way of meeting the design goals

of the system.

2.2 Operating System Services

The Framework is built on the existing services provided by the

operating system, which include facilities for manipulating and

organizing files (File Services), running programs (Process

Services), communication with other computers via electronic

networks (Network Services) and communication with the human

users of the computer system (User I/O Services). These services

are usually provided to programs via one or more libraries of

subroutine calls and to human users via a textual interface, often

called a shell.

Since not all operating systems provide~ the same services, these

facilities are often converted to a single abstract operating

system view that can be implemented on many underlying oper­

ating systems but which presents a common interface to the

Framework code itself. This interface involves the major compo­

nents of physical data management and process management.

Physical data management refers to all of the tasks having to do

with the management of raw data either on the host machine or

stored elsewhere on the network and accessible to the Frame-

20 CAD Frameworks: Integration Technology for CAD

work. Process management refers to the facilities needed to run

computer programs (mostly CAD tools in this case) either on the

local machine or on other machines on the network.

2.3 Tool Integration and Encapsulation

The facilities that form the tool integration environment itself, as

seen by the tool developer and the CAD system integrator, also

include higher-level facilities for constructing user interfaces

(User Interface Services), managing the CAD data associated with

the design and coordinating access to the data by multiple CAD

tools or human users (Data Management Services), managing the

evolution, or history, of the design (Version Services), and facili­
ties for defining the legal organization of the data and what
particular data items, and their relationships to other data items,

represent (Data Representation Services). Each of these aspects of

the Framework are described in more detail below.

Unfortunately, CAD system integrators must live with existing

design styles and tools, many of which are not available in

source code form for proprietary or historical reasons. In that

case, the system integrator is forced to encapsulate the tool in

such a way that the tool"sees" the input and output file formats

that it expects, while the data is actually being managed by the
Framework. The software that implements this encapsulation is

known as a Foreign Tool Interface. Sometimes, the foreign tool

MAJOR COMPONENTS OF AN ENGINEERING FRAMEWORK 21

interface actually translates the information to and from the

common data representation provided by the Framework, but in

many cases in simply treats the entire foreign tool's input or

output data as a single data record, storing it in the native format

of the tool. Data manipulated in this way is treated as a single,

coarse-grained "chunk" by the Framework, and is sometimes

referred to as stranger data. In Figure 2.1, CAD tools 1 - n repre­

sent "native" tools that are tightly integrated with the

Framework at a procedural level while tools f1 -I m represent
IIforeign" tools.

2.4 Design Management

In addition to the facilities provided for tool integration, many

CAD Frameworks under development today provide a variety of

meta services - that is, services that use the integration interface

themselves to provide higher-level or peripheral help with the

design. For example, design management services, or design

methodology services, might be provided to help the systems

integrator or (more likely) the end user to specify certain

"recipes" for design that may involve the sequential or concur­

rent execution of many tools on perhaps many different parts of

the design database. Once an end user has determined that a

particular combination of tools is what is required to perform a

particular design task, e.g. standard-cell placement and routing

22 CAD Frameworks: Integration Technology for CAD

or automatic design-rule checking and connectivity verification,

then the flow of tools, along with their input and output needs,

can be captured in a form that can be re-run automatically, as

needed and for new designs. Project management services might

include tools for evaluating and displaying the progress of a

design.

In Figure 2.1, the end user is shown accessing the system via the

operating-system user input-output services to stress the fact

that the CAD Framework, like any other program operating on

the computer, must communicate with the outside world via the

operating system. As mentioned earlier, the area of user interface

has not progressed as rapidly as some other aspects of the

Framework. Until quite recently, a tool developer could not

assume much more than a relatively simple textual input/output

device was available for communicating with the user, and all

tools made the assumption that while they were running no

other tool would be using the terminal. In the case of graphics­

intensive applications, the CAD programs were generally opti­

mized for specific graphics hardware which, again, "owned" the

display. This led to a proliferation of unique, hard-wired inter­

faces for each tool and there has been very little sharing of user­

interface facilities to date, beyond the use of common plotting

libraries in some cases. With the advent of bit-mapped, high­

resolution workstations, some attempts are being made to stan­

dardize user interface facilities and to provide standard features

MAJOR COMPONENTS OF AN ENGINEERING FRAMEWORK 23

at higher levels of abstraction as well [SCH86]. However, this

work has only captured widespread attention in the engineering

community in the past two years.

We believe that the area of user interface and the usability of

CAD systems is key to the success of future CAD Frameworks, if

engineering design systems are to find their way into the broad

base of potential users. Engineers and scientists who are experts

in their particular disciplines should be able to work with a

system that speaks the language of their discipline. They should

not have to learn the often esoteric idiosyncrasies of general­

purpose computer operating systems, like Unix or 005, let alone

the features of a proprietary computer system, to get their job

done. If the CAD tool developer and CAD system integrator are

to be able to provide such domain-specific interfaces at reason­

able cost, in reasonable time, and such that they can be ported to

new generations of hardware platform, the CAD Framework

must provide a wide range of facilities for developing such inter­

faces and these facilities must be based on the evolving

standards. These issues are presented in more detail in Chapter

7.

Even with an efficient data management system and a state-of­

the-art user interface, if the meaning of the numerous bytes

stored and retrieved by the data manager is known only to a

single tool, then the goal of integrating a number of tools to work

24 CAD Frameworks: Integration Technology for CAD

on a common design problem and to share data cannot be met.

For this reason, a common representation for the information

associated with the design must be established so that two tools

which read the same data interpret it the same way. This task is

usually divided into the phases of agreeing on a mechanism for

representing the information - a common way of representing

data items and the relationships between data items - and then a

common meaning for a particular set of data items and their rela­

tionships. This issue has been studied extensively both in the

database area and also the programming semantics area. Unfor­

tunately, a formal semantic model for the representation of data

in electronic design, though possible, is not of much practical use

todayl. Rather, an "axiomatic" approach is taken where groups

of tool developers meet and, after much discussion, agree on a

particular way of representing design information and its

meaning. The process is much like learning a language, where

the meaning of words is learned by example. In addition, the

rules for composing grammatically-correct sentences from

words can be formalized, but the actual meaning of a sentence

generally transcends a straightforward, bottom-up analysis of

the sentence and its components. The mechanisms used for

1. While such models are not practical for mask, PC board, or elec­
tricallevels of description, they are of value for discrete-valued
levels of description -logic gate, register, and behavioral. The use
of formal data models in these areas is a topic of active research at
this time.

MAJOR COMPONENTS OF AN ENGINEERING FRAMEWORK 25

representing information in a CAD Framework, and some exam­

ples of the ways in which they are used, are presented in Chapter

3.

With the facilities provided above, a tool integrator should be

able build a CAD system and an associated set of user interfaces

such that the end-user can complete a design. Unfortunately, for

the complex designs of today, there are a number of important

meta-issues that remain. Most design tasks today are not treated

with a single, "flat" organization. Rather, the design is divided

into sub-modules or sub-cells which are designed separately and

in parallel. The sub-cells may themselves be composed of sub­

cells, to form a hierarchy. During the evolution of the design over

time, different versions of each sub-cell may be developed - the

first version, the improved version, the final version, etc. With

the design of the components of a system being developed in

parallel, often by different designers" on different computer

systems or even at different locations, it is important that when

the final design is assembled, all the right components come

together. Facilities for the management of the history of the

design - versions and alternatives for each component, as well as

specific configurations of collections of components - must be

provided by the Framework. These issues are described in more

detail in Chapter 4.

26 CAD Frameworks: Integration Technology for CAD

While developing a particular design style or design method, it

is not unusual for the Framework user to execute each tool

manually and in a specific order to complete the entire design or

the design of a sub-cell. In this way, the user can experiment with

different approaches to the design and correct errors or omis­

sions in the tools and the design representation. Once a

particular design flow, or tool flow, has been debugged, it is

often useful to record and encapsulate the flow for use by others.

In this way, the collection of tools and their operation as a group

appear as a "super tool" to the user. The facilities necessary to

support this activity fall into a category referred to as design

flow management or methodology management, and are

reviewed in Chapter 6.

As mentioned earlier, the boundaries of what constitutes a

Framework and what does not are not defined in terms of

specific components but rather in terms of the end results of their

application. The boundary is fuzzy and is evolving continually

as new needs arise or take on increased emphasis. For example,

the need for methodology management tools, mentioned above,

has only become a priority in the past few years and is a result of

both the complexities of today's design problems, the need for

experts in relatively narrow disciplines to be able to use

programs and techniques outside of their specialties without

having to understand all of the details and, most significantly,

the particular tool-based architecture that has evolved today as

MAJOR COMPONENTS OF AN ENGINEERING FRAMEWORK 27

the architecture of choice for CAD systems. So at a particular

time, there are many related facilities that can help in the imple­

mentation of a complex system and that are common to many

different design styles. For example, tools for project manage­

ment and documentation management, as well as tools to help

the CAD developer, such as an effective software development

environment, are important today and developments in these

areas are described in Chapter 6.

3 DATA REPRESENTATION

3.1 Introduction

Before describing the various approaches that have been taken to

the management of engineering data, it is necessary to introduce

some common terminology and to describe some of the proper­

ties of engineering information that the data management

facilities of a CAD Framework must be able to represent and

manipulate. The Framework provides a set of mechanisms, or

facilities, for modelling real-world information, and one of the

most important issues in CAD Framework design is choosing a

data model and corresponding implementation that is adequate

for describing all of the information used by the design system,

easily updated to new design styles and technologies, while

remaining efficient and robust enough to meet the performance

needs of engineering design.

30 CAD Frameworks: Integration Technology for CAD

3.2 Databases and Data Structures

Following Ullman [ULL82], we define a database as a collection

of data "that is stored more-or-Iess permanently in a computer"

and "software that allows one or many persons to use and/or

modify this data" is referred to as a database management system
(DBMS). Note that these are intentionally broad definitions. The

concepts of database and data management system are treated

very loosely in the literature and many different definitions of

the particular features a system must support before it can be

considered a database or data management system can be found.

For example, a common characteristic that is used to distinguish

a "database" from a "data structure" is whether the logical struc­

ture - the structure seen by a user or an application program - is

different from the physical structure of the data - the particular

arrangement of bytes and pointers used to implement the data­

base on a permanent storage device. Of course, if the application

program were not told that these two organizations happened to

be the same, it could not tell that they were, and so the distinc­

tion, at this level, is purely syntactic.

Distinguishing between a database and a data-structure based

on the way the data is represented in primary or secondary store

is quite arbitrary. On the other hand, if a correspondence

between the logical and physical descriptions of the data is

DATA REPRESENTATION 31

required in the database, many other desirable attributes of the
system would be difficult or impossible to provide, as described

later, and so it might be considered a poor design for a database.

Other authors who attempt to define what is, and what is not, a

database or a data management system often do so in terms of a

particular model for a database architecture (e.g. the relational

model) and corresponding data management system, excluding

features that might be desirable if a different arrangement of

data were used. Many of these distinctions arise because of the

imprecise and evolving nature of the field in general and for

these reasons, we choose the broad definition, qualifying partic­

ular database models, data management systems, and their

implementations as "more useful" or "less useful," and pointing

out features that are "desirable" or "undesirable" where appro­

priate.

Of course, one of the most important tasks of a DBMS is to

provide an abstract representation of the physical data so that

the user does not have to worry about where, or how, the

computer system chooses to store the data.

32 CAD Frameworks: Integration Technology for CAD

3.3 Approaches to CAD Databases

The majority of successful database systems used in engineering

applications to date have been ad hoc systems. That is, they are

implemented to solve a particular aspect of the data manage­

ment problem and cannot be adapted or expanded easily to deal

with more general data management needs. More specifically,

information about the database itself is built into the interface

seen by the tools or by the end-user. For example, if the interface

contained subroutine calls named getNet, putNet,

getGate, and putGate for storing and retrieving netlist infor­

mation, but did not contain facilities for dealing with other data,

it would be very difficult to use the system to store mask layout

information. On the other hand, if the interface contained the

calls getObject and putObject, where the particular

meaning associated with a given type of object was not known

to the database per se, then the system could be used to manage

many different sorts of data and could be adapted easily to deal

with new data as well. The more general approach has some

drawbacks, as presented later, but is essential in the engineering

world, where the type of information to be managed and its rela­

tionships to other data is evolving continuously as we develop

new technologies, as the need of the marketplace change, and as

we learn more about the process of design itself. An important

DATA REPRESENTATION 33

principle in the development of a successful CAD Framework is

to assume the data model will change, probably quite often,

during the lifetime of the system.

The use of a general-purpose query mechanism for dealing with

the database simply defers the problem of associating meaning
with the data - the particular types of data items and the relation­

ships between data items that are supported in a particular

database. In the example mentioned above, it must be specified

somewhere that a particular object is, in fact, of type net and that

it may have some objects of type portlnstance associated

with it. The particular types of data objects supported in a partic­

ular database and the relationships that may exist between

objects is often referred to as the conceptual scheme or schema for

the database. Many commercial database management systems

provide a special high-level language, called a data definition
language (DDL) for describing the conceptual scheme used in a

particular database.

Another important feature of a database system is the query

language, sometimes called a data manipulation language

(DML), which allows the user (human being or CAD tool) to

extract specific subsets of information from the database, via the

DBMS. This is illustrated in Figure 3.1. The DML might be used

to specify a request of the form "highlight all o[the logic gates in
this design that have an output capacitance greater than 200[F". The

34 CAD Frameworks: Integration Technology for CAD

User Query

Figure 3.1: General Flow of a CAD Data Management System

DATA REPRESENTATION 35

fact that a database may contain an object called a logic gate, and
the fact that it may have an attribute called output capacitance
associated with it, which is able to store values like 200 femto­

farads, is part of the conceptual scheme and was defined by the

DDL. The expressive power of the DML (e.g. the number of DML

statements needed to express a request), the complexity of the

requests that can be made, and the execution efficiency of the

request are important characteristics to consider when evalu­
ating the effectiveness of a particular DML.

One significant difference between engineering data manage­

ment and a common assumption for conventional data

management is that in engineering applications many more

queries are performed by application programs - the CAD tools

- than directly by the end users. In a CAD Framework, the data

manipulation language is often merged with the language inter­

faces to other parts of the system, such as user interface, design

flow management, and history management, to form a common

language interface to all of the facilities in the Framework. This

language is then referred to as an extension language, as described

in more detail in Chapter 8.

The data definition language uses a particular data model in

which to express the conceptual scheme for a particular data­

base. The data model consists of a mathematical notation that is

used to express the data elements and their relationships, along

36 CAD Frameworks: Integration Technology for CAD

with the set of operations that can be applied to the database to
implement queries and other manipulations of the data. Of

course, if a data model is general enough it can be used to repre­

sent any conceptual scheme. However, the choice of an

appropriate data model in a CAD Framework has major implica­

tions, as described in Chapter 4.

3.4 Representational Issues

To illustrate some of the issues encountered in the representation

of electronic design information, we will use elements of the
circuit shown in Figure 3.2. This figure shows two logic NAND

gates connected to form an as latch. Rather than define what is

meant by a NAND gate every time one is used, the gate is defined

once in a master definition that is sometimes referred to as a cell
definition. Each of the NAND gates in the figure is then referred to

as an instance, or copy, of that master gate.

An important principle of engineering design is abstraction.

That is, being able to represent a component or system by an

abstract (less detailed) description. To be able to use an abstrac­

tion of an object, the user must first be able to "encapsulate" it.

So a basic feature of any engineering data management system

is the ability to encapsulate a collection of components and treat

them as a single entity. In Figure 3.2, the NAND gates are abstract

representations of transistors or some other lower-level and

DATA REPRESENTATION

r---------------------------------
1 1

nand2 LATCH 1 1

r in~
~.-----.-q~------~. Q

nandl

in~AND
outpu

~--+-----8--------------4in2 1°
1

1 ______ --------------------- ______ 1

Figure 3.2: Circuit fragment illustrating
re-use of component types

37

more detailed description of the gate. They are then composed,

with some connections, to form another component (the RS

latch) which will be treated as a single, abstract component itself

at some higher level of design. The general process of encapsu­

lation and instantiation, applied in a nested way, results in a

hierarchical description of the design as illustrated in Figure 3.3.

38

User Group 1

User Group 2

User Group

CAD Frameworks: Integration Technology for CAD

...... ==

....... ==w

Definition and mapping
written in DDL

Imp'lementation
on physical device

Figure 3.3: Levels of abstraction in a database system

The instances of the NAND gate are connected together and to the

input and output ports of the latch using nets. For example, the

net called q is used to connect the output port of instance named

nandl with port i.n2 of instance nand2 and with port Q of the

latch. Ports on instances are copies of the ports defined on the

master definition of the cell and so are referred to as port

instances. Similarly, the ports defined on the master cell are

DATA REPRESENTATION 39

referred to as formal ports, in line with their analogy to formal

parameters in a procedure call. The ports Q , ~ , Rand S are the

formal ports of the cell definition of LATCH. The name of an

instance is used to distinguish port instances of the same name,

e.g. nandl/inl and nand2/inl are different. Information

particular to an instance or port instance~ must be associated with

the instance directly (e.g. the output capacitance of a particular

instance of a NAND gate), while information common to all

instances of a cell is associated directly with the master of the cell

(e.g. the ports that the cell defines). To complicate matters

further, in the mask layout of the gate a particular logical connec­

tion pOint such as the output may be represented by multiple

physical connection locations. For example, in standard cell

designs connection point to signals are often available on both

sides of the cell. Multiple connection points for the same logical

port are called port implementations or pins and are illustrated on

the right-hand side of Figure 3.4.

One of the most common mathematical tools used today for

designing a conceptual scheme is the entity-relationship model

[CHE76, CHE80] and we use it to introduce a number of engi­

neering data representation concepts. In this model, the term

entity is used in a very broad sense to mean "a thing that exists

and is distinguishable." [ULL82]l For example, a particular logic

gate, net, rectangle, schematic diagram, or behavioral descrip­

tion would each be regarded as an entity. A group of similar

40 CAD Frameworks: Integration Technology for CAD

entities forms an entity set. So all of the logic gates in a design

might be regarded as an entity set. The adjective "similar" is

used because the precise choice of attributes that are used to

define a particular entity set is an important design decision to

be made in representing the data in the database. Of course, enti­

ties may be members of multiple sets, for example a net may

belong to the entity-set nets, as well as the entity-set unrouted. In

modern programming environments there is a strong analogy

between entities and instance variables and between entity set

and classes.

Entities may have properties associated with them, called

attributes, which associate a value from a particular domain of

values for the attribute with the entity. For example, a logic gate

might have an attribute output capacitance whose value, 200fF, is

selected from the domain "real-numbered values of type capaci­

tance." Attributes can be used to distinguish entities that are

alike. For example, the attribute name for a net in a circuit netlist

could be assigned the unique value output to distinguish it

from other nets.

1. The term "object" is often used in the same sense as "entity"
although some users of the term "object" also imply an associated
set of methods, or programs, which are used to manipulate the
objects of a particular class.

DATA REPRESENTATION

name

portlnstanceOf

connects

portOf

name

name
capacitance

Figure 3.4: Partial entity-relationship diagram for
netlist data representation

41

A relationship among entities is defined as an ordered list of

entity sets and a particular entity set may appear more than once

in a relationship. The simplest form of relationship on two sets is

one-to-one, where each entity in either SE~t can be associated with

at most one member of the other set. One-to-many and many-to-

42 CAD Frameworks: Integration Technology for CAD

many relationships can also be defined. Because of the complex

nature of the relationships between entities, a graphical format,

called an entity-relationship diagram is often used to represent a

particular conceptual scheme in this notation. A fragment of

such a diagram is shown in Figure 3.4. In this figure, the entity

sets are shown as rectangles and the relationships as undirected

edges between them The "crows feet" at the end of an edge are

used to represent a many relationship. For example, a cell (such

as a the cell named NAND in Figure 3.2) may be associated with

many ports (i.nl, i.n2, and output in Figure 3.2); this is a one­

to-many relationship, named i.sPortOf. Each cell may be asso­

ciated with a number of instances or "uses" of itself, each with

its own name (two instances in the example, named nandl and

nand2), each associated with its own portInstances, and each

portInstance associated with at most one net entity (for example,

the portInstance named output, associated with cell nandl, is

itself associated with the net q). This simplified fragment illus­

trates the use of the basic entity- relationship model.

Researchers have embellished this basic model in many ways, by

being more specific about the many relationship, providing

upper and lower bounds, and by assigning predicates to the

edges of the graph, for example.

DATA REPRESENTATION 43

Other models have been used to describe engineering data, most

notably the relational, hierarchical, and network models.

Recently, so called "object oriented" approaches have been

proposed, where the entity-relationship model is implemented

most closely. The issues relating to the use of such models for

engineering data are presented in Chapter 4.

3.5 The Nature of Engineering Design
Information

Before a data model and associated implementation, complete

with DOL and DML, can be evaluated for use in an engineering

Framework, it is necessary to have a clear understanding of the
nature of the information that must be represented and the

requirements imposed by the users of the system, both tool and

designer. A complete description of all of the issues and trade­

offs that make engineering data management "different" from

more conventional needs is beyond the scope of this book, but

some of the most important characteristics are described in the

remainder of this section, along with some of the more difficult

issues facing the Framework designer today.

To begin with, the design of an engineering product often

requires the cooperation of a broad range of specialists, each

with their own needs regarding the particular data they wish to

work with and with own their performance expectations. In

44 CAD Frameworks: Integration Technology for CAD

addition, they do not wish to "see" the data associated with

other aspects of the design. For example, in the design of an inte­

grated circuit, the mask-level layout information consists of

polygons on different mask layers while the gate-level schematic

diagram or netlist consists of a collection of cells, such as nand

gates or inverters, and a list of associated connections between
the terminals or ports of the gates. The mask designer, concerned

with relationships line the spacings between adjacent polygons

on a mask, has no interest in the gate-level netlist but is very

concerned that queries of the form "for each polygon on the

mask layer named P OL Y S I L I CON, highlight all the polygons on

that layer that are within one micron of it" - a two-dimensional

geometric query involving tens of millions of entities. The logic

designer, who has no interest in the mask layout representation

of the design, is very concerned that all of the logic gates are
connected correctly and might ask "for each logic gate, list any

gates whose output ports are connected to more than five input

ports" - a linear, connectivity-oriented request involving

perhaps hundreds of thousands of entities.

In the database literature, an abstract model of a portion of the

complete conceptual database is called a sub-scheme, or view. In

fact, a view might contain information that is actually derived

from the stored data on the fly. This concept is illustrated in

Figure 3.5. In a general-purpose DBMS, a special sub-scheme

DDL and DML might be provided. However, the implementa-

DATA REPRESENTATION

r----------------------------------, , ,
, nand2 LATCH ,
'r inlN , , , , , , , , ,

output Q
in2

nandl

S __ ~------~------------~

8 8

,0-, , , ,
--------,

8 8

Figure 3.5: An example of an hierarchical circuit description

45

46 CAD Frameworks: Integration Technology for CAD

tion of views in practical engineering databases has been more

restrictive to date, largely for performance reasons. Since it is

generally the case that users and tools work with one view at a

time, there is often a close match between a view and a physical

storage unit (e.g. a file), and a common DML is used for manip­

ulating all of the views (e.g. [KEL83, HAR86]). Views are

provided explicitly in both EDIF and VHDL.

3.6 Hierarchy

In a complex engineering design, a standard component type is

often used more than once. For example, a logic design may use

more than one two-input nand gate, as shown in Figure 3.5, or a

mechanical design may use many #181.5in flat-head screws. The

ability to describe a particular component type in detail once (its

master), then refer to that description wherever a copy of that

component type is needed (instances of the master), is a powerful
and important mechanism that is used extensively to reduce the

complexity of an engineering description. Such a description is

often referred to as an hierarchical description.

Hierarchy is a very powerful mechanism. The CAD data

management system can use it to reduce the storage needed to

represent complex designs, provided the same type of compo­

nent is used more than once in the design. But it has its

limitations and they can be a trap for the unwary. To illustrate a

DATA REPRESENTATION

Figure 3.6: An hierarchical design represented as an
instance hierarchy

47

common problem encountered in the use of hierarchy, consider

the latch circuit illustrated in Figure 3.5. The latch contains two

instances of a cell called NAND, and since they are instances of the

same cell type, they contain the same sub-components. Each

NAND uses instances of pMos and of nMos. Each instance is

distinguished by its instance name, and the description could be

represented as an instance hierarchy, shown in Figure 3.6. Each

48 CAD Frameworks: Integration Technology for CAD

box in this figure represents an actual component in the design

and if the design were stored explicitly in the database, each box

would represent a stored entity.

Of course, having four separate copies of HAHD seems a waste

since each one is just a copy of the same master. Also, if one
decides to change H AHD for some reason, the data manager
would have to search the entire database to find all of the copies

of the gate to change them too. For these reasons, most CAD

databases store the hierarchy more along the lines shown in

Figure 3.7. Only one copy of each type of cell is stored, and

instances are simply references to that master version. Signifi­

cant savings in storage are achieved and any change that should

be made to all HAND gates need simply be made to the master

and they will be reflected immediately in all uses of the cell.

Now consider the situation where the designer has finished
drawing the masks and wants to perform a simulation of the

circuit using exact values for the parasitic capacitances derived

from the layout. The value Cout, on the output of a particular

NAND gate shown in Figure 3.5, must now be back annotated to

the simulation view of the design. If the design were stored

explicitly, as in Figure 3.6, it is clear that the attribute and its

value would be associated with nNos mnl in HAND and nandl

in the latch. But where should it be located in the storage scheme

of Figure 3.7? If it is placed with the master on nNo s, as shown

DATA REPRESENTATION

Figure 3.7: Storage model in a database which uses hierarchy
to reduce storage requil'ements

49

in the figure, then it is automatically associated with all four

nNos transistors, not what the designer wants. If it is associated

with the particular instance of n No s mn 1 in NAND, then it is asso­

ciated with the instances of nNos in both of the NANOs in the

latch, again not what the designer wanted. The only way to store

this value correctly is to associate it with the full path name or

unique instance name for each component. In this case that

worud be1atch/nandl/mnl/drain.

50 CAD Frameworks: Integration Technology for CAD

Naive implementations of data managers for CAD systems often
overlook issues like this one, and solving such a problem after­

the-fact is generally very expensive, very inefficient, or both.

Understanding the nature of the relationships that can be

expressed in the data model and being sure to prototype as much

of a data model as possible before production use are key issues

in Framework design.

4 DATA MANAGEMENT

4.1 Introduction

While a storage management system manages a collection of

data items and their relationships with no understanding of the

actual meaning of the data, a design data management system

uses knowledge of the structure of the data and its relationship

to the design project to enforce constraints on the design process.

For example, library management, design configuration

management, and design consistency management are all tasks

taken on by the design data management system.

Data management has been the most studied aspect of a CAD

Framework to date and Katz [KAT85] presents an excellent

review of the topic. Initially, data management consisted of basic

file system protections on groups of files with occasional archival

52 CAD Frameworks: Integration Technology for CAD

backup. Eventually it was recognized that the features offered by

convention DBMS's might help in the management of design

data. The results from this work are mixed, but the work led to

the development of specialized databases for design data

employing many of the features found in conventional database

management systems.

The level of the data to be explicitly managed by the data

management system can vary. Although some data management

systems manage the individual data items or records at the level

of a single transistor or net (fine-grain data), the majority of data

management systems used in electronic CAD applications

manage collections of individual data items without regard to

the contents of the collection (coarse-grain data).

Many of the features of data management systems are described

and the problems encountered in their use for CAD Frameworks

are dealt with in this chapter.

4.2 Conventional Database Approaches

Many design databases have been built on top of commercial

database management systems (DBMS's) [WON79, MIT80,

RaBBI, ZINBI, CHU83, JUL86]. However the use of conven­

tional database approaches has not been very successful due to

their poor performance or difficulty of use for engineering

DATA MANAGEMENT 53

design [SID80, GUT84, KAT85]. Katz [KAT85] presents a number

of the important features of conventional databases and

compares them with the needs of engineering databases. They

include efficient access to secondary storage, transaction

processing, integrity maintenance, protection, concurrency, and

crash recovery. In a DBMS retrieval of a single record of data

from secondary storage is optimized. In an engineering problem

large amounts of data need to be accessed quickly and so most

engineering databases are managed in-memory today.

A key concept in the design of a data management system is that

of a transaction. A transaction is a sequence of operations (such

as the running of a CAD tool or a sequence of CAD tools) that,

when complete, leaves the database in a consistent state.Transac­

tion processing in a DBMS is based on the assumption that the

transactions are atomic, quick, and modify a small amount of

data. This assumption is generally correct for an airline reserva­

tion system or a banking funds transfer system, but is incorrect

for the engineering problem, where the transactions can take

hours or days (a design is checked out, modified, verified, and

then committed back to the database). These design transactions
[KAT85] are more closely related to the software world where a

software module is checked out of a software revision control

system, edited, compiled, tested, and then checked back into the

control system. The engineering modification/verification (or

software edit/compile) sequence can be iterated many times

54 CAD Frameworks: Integration Technology for CAD

before the transaction is finally complete. While the amount of

data in a standard DBMS transaction is quite small (an employee

record), the amount of data processed in an engineering transac­
tions is usually very large (for example the layout of a VLSI
chip).

Conventional DBMSs provide pre-transaction and post-transac­

tion consistency checks to verify that the database is in a

consistent state. These checks are simple and static, such as

ensuring the salary field of an employee record is positive. This

contrasts with the consistency checks in the engineering domain

which are complex and time consuming, such as ensuring the

circuit performs to specifications. Such transitional constraints
deal with the transition from one part of the design process to

the next. In a DBMS, transactions are atomic and so there is no

intermediate state preserved. In an engineering application

where transactions can last hours or days, checkpointing must be

performed in case of system crash. It is not sufficient to recover

to the last consistent "saved" state of the database; the recovery

must be to the last checkpoint. The design can use the versioning

facilities to move back to the last "saved" state if needed.

In data management systems, protection against corruption or

unauthorized modification to the data is very important. In a

conventional DBMS, of primary concern are problems associated
with concurrent access to the data. For example, in airline reser-

DATA MANAGEMENT 55

vation systems, many travel agents may be trying to book a seat

on the same flight at the same time. Interlocks must be in place

to make sure that no more than one travel agent can modify the

data. In engineering applications, the design is often partitioned

in such a way that individuals can work on a single sub-compo­

nent without strong dependence on the actions of other

designers. Of course, the interfaces between the components

must be defined and information regarding changes to the

external constraints must be communicated, but the designer of

an inverter, for example, is generally not concerned about the

actions of another designer working on a NAND gate. While

concurrency control is important in some engineering situations,

access control - the ability to restrict access to design data for

specific operations like reading, writing or modifying the data -

is generally of more concern.

Perhaps the major factor limiting the use of conventional DBMS

technology in the engineering world is performance. For

example, Guttman [GUT84] used the INGRES DBMS [HEL75] to

store geometrical IC mask layout data, and his experiments

showed a slowdown from a factor of 3 in CPU time (a factor of 5

in elapsed time) over an in-memory CAD data structure for

finding all geometries in a design, and a slow down of a factor of

20 in CPU time (a factor of 45 in elapsed time) for geometric

queries, Le. find all geometries in a particular subregion of the

56 CAD Frameworks: Integration Technology for CAD

design. He found a number of problems and proposed solutions

(some were specific to INGRES and some were generic prob­

lems).

Much of the performance problem can be attributed to an under­

lying data representation model that is not well suited to the

type of data stored, nor the sort of queries engineering design

tools make of the database. Many queries in CAD applications

require transitive closure: for example finding all cells of a given

type used in a design. VLSI designs using geometries that have

two and three dimensions. Classical one-dimensional indexing

schemes in a DBMS are not appropriate for the two and three

dimensional data in VLSI designs. As a result, spatial queries are

extremely inefficient, although some researchers have made

progress in this area [GUT84, AST76]. The majority of efficient

geometric search structures for CAD applications are in memory

structures (quad-trees, k-d trees, corner stitching [OUS84]; see

[ROS8S] for a description and analysis of various in-memory

region searching structures). Attempts at quick geometric search

for secondary storage have been oriented towards points and not

regions.

The relational model, which uses tables (called relations) of

elements of a pre-defined format (called tuples) to represent data,

is certainly efficient for representing large amounts of data that

has a relatively fixed static structure (such as employee records

DATA MANAGEMENT 57

or parts inventories), However CAD applications have large

amounts of irregular data. If all N AND !~ates in a design had two

inputs, a relation representing a two-input gate would be suffi­

cient. But if gates can have any number of inputs, the model is

no longer well-suited to the task. Record chaining and other

ways around the issue must be used. Guttman [GUT84] recom­

mended the addition of abstract data types to a relational

database, better use of in-memory data, compiled queries, and

tighter integration of the database system and the CAD applica­

tion to improve performance. Other attempts have been made to

extend relational DBMS to solve some of these problems, but the

resulting DBMS is no longer truly relational and often moves

into the ad hoc category.

Whereas Guttman used a relational database for storage of fine­

grain data (for example individual geometric objects) and their

relationships, Bennett [BEN82] used a relational database for the

storage coarse-grain data and their relationships, leaving tools to

interpret and access the fine grain data. Bennett used this

approach successfully in an early version of the Mentor data

manager.

Conventional DBMS's are optimized for accessing the current

state of the database. The only history is an audit trail that is

used primarily for verification and crash recovery. Previous

states of the database are not saved. In Emgineering applications,

58 CAD Frameworks: Integration Technology for CAD

it is critical that previous versions of data be saved. Having

history allows designers to easily back out of bad design deci­

sions, provides an audit trail showing how the design developed

to its final form, and may be necessary for patent reasons (for

example determining the first time a particular circuit architec­

ture was entered).

In the past few years, attempts have been made to apply general­

purpose object-oriented database systems to engineering design

problems (see for example [BREU88, GUPT89]). Early work

showed discouragingly slow performance, and ongoing work is

focussed on replacing the generic routines provided by such

systems with techniques specific to engineering databases

[GUPT89]. Whereas an engineering database system today

might be able to retrieve on the order of thousands of entities per

second on a workstation, these general-purpose systems show

performance in the tens to hundreds of objects per second.

However, the object-oriented model overcomes many of the

features of the relational model which restrict its efficiency and

has the potential of being a better match to the engineering data

management task. In recent times, the work of the object­

oriented database companies has started to show considerable

promise.

DATA MANAGEMENT 59

4.3 Physical Versus Logical Data Management

Many of the major performance problems in data management

systems can be boiled down to a single issue - that of name reso­
lution. Given the logical name, or handle, of an object, find the

physical, stored data represented by the name. Designers and

tools should deal with the data independent of where or how it

is stored, based on some logical (domain dependent) organiza­

tion. The logical name for a piece of data might contain some

information about the way the data is organized (logically), like

an hierarchical file name, or it might be an arbitrary but unique

token that is translated to both a logical and a physical organiza­

tion dynamically, when such information is needed by the user

or the tool. Such tokens are referred to as object identifiers, or

OIDS [WEIS86]. File names have the advantage of being qUite

understandable to humans. OlD's have the advantages of gener­

ally being shorter than file names and independent of both the

name of the object and a particular logical organization of the

data. Whatever naming scheme is chosen, the logical references

must be translated to the physical location of the data. Logical

references can be context sensitive (full logical name of a refer­

ence depends upon the location of the parent, e.g. OCT

[HARR86]) or must be unique across all designs, e.g. DOSS

[WEIS86]. By using a synthetic name (OlD) rather than a file

name, the translation can be performed by the DBMS rather than

by the operating system. OlD's allow the easy migration of the

60 CAD Frameworks: Integration Technology for CAD

database since it has access to the translation facilities. In a file

name scheme, the translation is done by the operating system.

Translation of the logical reference to the physical reference can

be as simple as looking up the reference in a static table or going
through a multiple level mechanism where a dynamic table on

the local machine is queried, if the translation does not exist, ask

known servers on the network for the translation, and if that fails

broadcast the translation request to the network [WEl86]. How

the tables on the workstations and servers are invalidated and

updated is analogous to the cache conSistency problem in multi­

processors. As data migrates from a server to a workstation

translations for that object in tables on workstations must be

invalidated and possibly updated. Also as servers containing

replicated data go up and down, the tables must be updated to
correspond to the current state of the network. Techniques

developed for multiprocessor memory management, such as

caching of name translations, the use of J/snoopy" protocols

[G0083] to reduce server contention, and replication of shared,

read-only data have been adapted for database name resolution.

Using logical references allows the physical location of the data

to change over time. A shared library may exist on multiple

servers on the network and if one server goes down the copy of

the library on another server should be referenced. When a

portion of a design is checked-out for modification, if should

DATA MANAGEMENT 61

move to the designers workstation. Heavily accessed designs
should also migrate. All of this should be transparent to the

designer.

Shared libraries and large designs rarely entirely reside on a

single workstation and thus are distribution over a network of

machines. In order to make sure that disruption of one or more

machines does not stop work on a deSign, read-only libraries are

usually replicated on many servers on the network. When a
machine serving a currently referenced library goes down, the

logical to physical translation facility modifies the translation

table to point to another server. Note that this can also be accom­

plished on modern operating systems with file names by using

symbolic links and remote file system mounts. 1

In the early stages of a design, a designer may want to experi­

ment with many different alternatives and be able to easily

switch between them. By using a naming scheme that evaluates

the location of the masters of instances at runtime the alterna­

tives can easily be changed by changing run time parameters.

This form of naming is called dynamic binding. The binding

happens when a reference occurs rather than on creation (static
binding). As the design progresses, a single alternative will be

selected for use. At this point in time the references should be

1. For example, this is how shared libraries are handled on certain
networks at Berkeley.

62 CAD Frameworks: Integration Technology for CAD

made static so they will not change due to runtime or environ­

mental changes. Although dynamic binding is particularly

useful early in a design project, where libraries and design orga­

nization change quite often, a dynamic approach can lead to

significant data management problems at the end of a complex

design. The dynamic nature of the name resolution mechanism

can lead to unpredicted side effects, where an apparently

isolated change to a specific reference can cause other references

to change at name resolution time.

Another name resolution and efficiency problem is caused by the

need for change propagation. As the design progresses, there

may be changes to a cell that causes inconsistencies in the data­

base (such as changing the size of the cell or the number of

ports). In order to bring the portions of the design that use the

cells back into conSistency, the changes must be propagated

[CH088]. There are two different ways to propagate the changes:

immediate or lazy. In the immediate mode all references to the

changed object are immediately changed. If the entire database

is in memory and all references have been resolved, which is

rarely the case, then the mechanics of the immediate update

operation are trivial.

Normally, however, a few references will be in memory but most

will not, so the references must be located. If there are back

pointers from the cell to all instances this is straightforward. If

DATA MANAGEMENT 63

there are no back pointers then immediate update is out of the

question. In this case lazy updating is used. In the lazy update

scheme when a cell is referenced the information stored about it

in the instance record (such as timestamps, size, number of

ports) is compared with its current state. If there is a discrepancy,

the instance record is updated. However, if the portion of the

design with the discrepancy is not checked out for modification,

this description will persist and the update will occur every time

that portion of the design is processed.

Some systems [HAR86] take a middle road, in which all refer­

ences that are currently in memory are fixed immediately and

the rest are handled on the next reference to the portion of the

design that has instances of the changed cells is processed.

Whether the changes are immediate or delayed only some can be

automatically handled. In many instances the designer must be

notified. For example, if a cell has a port deleted and there are
connections to that port when that cell is instantiated some form

of manual cleanup must be performed.

In order to reduce the amount of time it takes to do design, reus­

able components are designed for use in other designs.

Examples are TTL parts in printed circuit board design, and

standard-cell and macro-cell libraries in integrated circuit

design. These libraries are different than other parts of the

64 CAD Frameworks: Integration Technology for CAD

design. They are usually in a central location, replicated on other

machines to handle network disruptions and bottlenecks, and

marked read-only to protect against accidental modification.

Since there may be many libraries that can be used in a design, it

may be advantageous to name the references to the library cells

so that library changes can be easily made. This type of naming

is called dynamic. This makes it easy to change libraries by

changing some library search path, but means that the entire

design can be drastically and possibly fatally changed by a very

simple change. Once the design has moved farther along the

library that is used should not change, the references should

change to static.

4.4 Managing the History of a Design

In engineering applications it is very important to maintain the

history of a design [KAT86, CH088]. This allows the viewing of

the progression of a design, exploring alternatives, and the easy

backout of bad design decisions. In engineering applications,

history is normally kept as a sequence over time of a each indi­

vidual design entity. Some systems just copy the entire design

entity, some store try to just store the changes from version to

version. These approaches are analogous to the versioning

facility in provided in operating systems, such as Digital Equip­

ment Corporation's VMS™ operating system, which store

DATA MANAGEMENT 65

copies of each version of a file and which have a mechanism for

cleaning up old versions, and to a revision control system

[TIC82] that keeps the current version and changes ("deltas")

that must be made to recreate the previous version from the

current version of the file, respectively. The latter approach is

more difficult to implement efficiently for engineering design

data, which does not conform to the simple linear record­

oriented structure of a text file. In either case, the version

management system must be able to support both linear

versions of design objects as well as alternatives of any object, as

illustrated in Figure 4.1.

Versions of single design entities usually have relationships to

versions of other design entities and thus can not be thought of

individually. The ability to keep collections of related versioned

design entities together is another important reqUirement of a

design data manager. These collections are called configurations
[BEN82, KAT86], and they allow information about the state of

an entire design to be recorded (called a snapshot). One major

difference between a configuration and a version of a hierarchi­

cally organized design is that the configuration can manage data

objects that are related to the design but may not actually be

instantiated at the time, such as unused cells in a cell library,

whereas the version only represents the data it uses.

66

TIME

CAD Frameworks: Integration Technology for CAD

versions

Figure 4.1: The version and alternative approach
to history management

DATA MANAGEMENT 67

The configuration-based approach to history management is

illustrated in Figure 4.2. If a new configuration is created from an

old one, it appears to the user as if all the design objects and their

relationships have been copied to the new configuration. In

reality, to save storage the configuration is implemented by

storing the new versions of modified design objects, but only

backward references to those components that did not

change. Alternative design configurations can also be imple­

mented by deriving multiple configurations from a single

source.

4.5 Managing Multiple Users of the Data

Engineering designs are logically partitioned into sub-designs

that are worked on separately with very little overlap. Since

there is very little overlap, complex locking procedures found in

conventional database systems are inappropriate and simple

locking is sufficient. More important is access control. The

system must be able to mark some designs read-only (shared

libraries) and to control modification access to sub parts of a

design. A design can have many designers, each working on

different parts, but the entire design should not be modifiable by

all the designers, each designer should only have modification

permission for their particular piece of the design.

68 CAD Frameworks: Integration Technology for CAD

configurations

/+ ~
c=J ALU .. ALU

bug fixed - bug fixed

NAND = :: NAND I NAND
faster

I driver;~ driver I driver
faster

barrel barrel barrel
shifter -- shifter -- shifter

TIME----... ~

Figure 4.2: The workspace and configuration
approach to history management

DATA MANAGEMENT 69

Most design systems work on a check in/ check out paradigm. In

this technique, a designer checks out a portion of the design to a

private area. Depending on the type of check out system, the

portion of the design moved to the private area may be inacces­

sible for modification by others until checked in. On check in,

various validation routines may be run to enforce consistency

requirements.

4.6 Concurrency Control

When multiple users must access the design data concurrently,

steps must be taken to protect the integrity of the system. For

example, if two designers were able to modify the same gate

layout at the same time and yet neithE~r could see the changes

that the other designer was making, chaos would surely be the

result. The minimum protection that the design data manager

must provide is the ability to restrict access to design objects on

a selective basis. For example, certain objects may be marked

read-only for all users except the cell librarian. Other objects

might be tagged read-only by everyone except the owner of the

object, who is permitted to modify it. Such simple access control

mechanisms are necessary and even sufficient in many cases.

Large engineering design tasks are often partitioned into sub­

designs which are implemented separately and with very little

overlap. As there is very little overlap, the complex locking

70 CAD Frameworks: Integration Technology for CAD

procedures found in conventional database systems are inappro­

priate in an engineering context and simple locking techniques

are generally sufficient. Another approach taken to access

control is to break up the libraries and designs into protected

domains known as workspaces [KAT86]. Workspaces can be

organized hierarchically: there may be a workspace for an entire

design while each of the major functional components of the

design may be contained in its own workspace. Workspaces

maintain information about who can check out the contents for

modification and they provide the necessary locking. According

to Katz [KAT86] a workspace should also be the granularity of

the design that is configured. Workspaces are often implemented

as a three-level hierarchy: private (can be modified only by a

single designer), semi-private (workspaces shared by a group of

designers on the same project), and archival (read-only work­

spaces shared by many different projects). A variety of

implementations of the workspace/configuration ideas have

been developed [CH088, SIL89, WEI86].

There are cases, however, where multiple deSigners are

permitted to modify a single design object, provided the data

management system only permits one "writer" at a time. Most

design systems provide this concurrency control capability by

supporting a check-in/ check-out paradigm, like that used in

source code control systems [TIC82]. The designer can check out

a portion of the design to a private area and then that portion

DATA MANAGEMENT 71

becomes "read-only" to all other users until the modified version

is checked back in. References to the object from other parts of

the design may be maintained with the old version or they may

be updated in the new version of the object when it is checked
back in.

Widya et al [WID88] present an excellent description of the prob­

lems associated with concurrency control in engineering

database systems along with some solutions to the problems.

The many forms of control other than those mentioned above

include the use of hard locks, soft locks, lock transfer, and

multiple writers. If a system uses hard locks, when a portion of
a design is checked out, a lock is created (often an entry in the

file system). When others try to check out the same portion of the

design, the database detects the existence of the lock and the

request fails. In a soft lock system, if a second designer tries to

checkout some portion of the design that is already checked out,

a warning is issued but the lock can be overridden. In a lock

transfer system, the lock and the portion of the design checked

out can be transferred from one designer to another, without

checking in and then checking out the locked portion of the

design. The most sophisticated of these schemes does not use

locking explicitly, but rather uses the version-and-alternatives
mechanism described earlier (Figure 4.1). In this approach,

multiple designers can check out the same portion of the design

72 CAD Frameworks: Integration Technology for CAD

for writing, but when they check the design object back in, each

user creates an alternative of the original design rather than a

sequential version.

Of course, merging alternatives into a single object that contains

the union of the changes from the common source is not straight­

forward in general, but it is not really a Framework issue in any

case. Simple locking seems to be sufficient for engineering data­

bases, but Ecklund and Tonge [ECK88] have advocated the

multi-writer technique for engineering databases. Other tech­

niques involving the use of read locks to make sure that a

modification is not made while the database is being read (a

write can not occur until all read locks are removed) have also

been investigated [WID88].

As the time between checkin and checkout may be long, and

other designers may want to see the current status of the design,

nested (or tentative [KAT85]) transactions can be used to obtain a

snapshot of the design between versions.

4.7 Compatibility with Change

One of the major data management problems in the engineering

world is that our understanding of the design process is contin­

uously evolving, along with the technologies which are used to

implement our products. New tools may be added to systems

DATA MANAGEMENT 73

which still use an older version of the data model, and old tools

may be needed to solve problems after the data model has

evolved. These issues are usually classified under the heading of

upward compa.tibility. The possible combinations of situations are

illustrated in Figure 4.3. Changes to the data model can be clas­

sified as structural- those which affect the tool directly, such as

changes in access methods or the meaning of a data value used

by the tool - and non-structural, such as the addition of new

properties to a design object.

Of course, by definition a new tool has no problem with new

data and an old tool can read old data. In the case of a new tool

which is trying to read old data, if the new tool does not depend

on the changes to the data model there is no problem. If the new

tool does depend on the changes, then the old data must be trans­

lated into a format that is suitable for the new tool. Missing data

objects must be created and bound, values with new meanings

must be translated, and so on. Many database systems provide

facilities to support such updating of old data. The task can be

performed dynamically and incrementally (only when the new

tool is run), incrementally with update so that once the data has

been converted to the new representation it is stored in that form

for future use, or the entire database can be updated as a batch
process. The second option is generally the most attractive for

engineering applications.

74

New
Data

Old
Data

New
Data

Old
Data

CAD Frameworks: Integration Technology for CAD

New Tool Old Tool

Translator or
OK impossible

Translator OK

Structural Change

New Tool Old Tool

OK OK

OK OK

Non-Structural Change

Figure 4.3: The upward compatibility issue
between database and tools

If an old tool is expected to read new data, a similar reformatting

task must be performed if the new data involve structurally

significant changes. If the changes in the new data model are

orthogonal to the old model, the old tool should run with no

DATA MANAGEMENT 75

problems. However the updating is implemented, it involves the
equivalent of a translation or re-mapping step, and some
systems provide support for developing such translators.

5 TOOL MANAGEMENT

5.1 Introduction

Tool Management involves the characterization and control of

tools. Successfully running a CAD tool can be very complicated,

as the designer needs to know many details, such as where the
tool is located, the runtime environment required by the tool,

how to invoke the tool, the command syntax of the tool, what

translators need to be run beforehand, and what computer

resources are required. At one stage the number of tools used in

any particular design environment was small enough for

designers to understand all of them. In this situation, with the

absence of automated facilities for controlling the sequencing of

tools, no characterization was necessary. The number of tools has

grown considerably in the past few years, however, and it has

become difficult for a designer to understand all of the tools

78 CAD Frameworks: Integration Technology for CAD

available for design and analysis. Thus work has been done on

building uniform interfaces for tools and providing co~sistent

approaches to tool encapsulation.

5.2 Tool Characterization

One method of encapsulating tools is to build a generic engine

for invoking tools and a language for describing the tools to the

system. Among the features of a tool that can be characterized,

the following are commonly required by tool management

systems:

• tool name

• tool version

• physical location of the tool

• an icon for use by the tool manager user interface

• command line argument syntax

• help information

• computer resoun:e requirements

• input requirements (which may require translation),

• output generated by the tool

• constraints to be satisfied before the tool can be run

• post-conditions to determine exit status of the tool

TOOL MANAGEMENT 79

Tool managers are able to use this information to invoke and

control the tool, removing the understanding of the details from

the designer. Specification of the resources a tool consumes can

be used to do load balancing or to find the machine best suited

for the particular task. By specifying the types of the input and

output files, the tool controller is able to invoke translators to

convert to specified input files into the proper form and to

convert the output of the tool into the requested output format.

Constraint specification allows the tool controller to inform the

designer (or design process manager) that there are constraints

that have not been satisfied and must be satisfied before the tool

can be run. Constraints are usually data consistency checks, such

as making sure the data that was used to derive the input files

has not changed since the input file was created, separate

systems for this task have been developed [KAT86].

Various systems exist for characterizing and controlling tools,

such as Cadence's Design Flow System which also encompasses

methodology management, DEC's PowerFrame [BR087],

ULYSSES [BUS86, BUS89], CADWELD [DAN89] and MCC's

MMS [ALL90, ALL91]. There are a number of systems that

invoke and control tools, but ignore characterization facilities by

requiring the tools to fit into a specific procedural interface, such

as the RPC facility in the OCT /VEM environment [HAR86], the

80 CAD Frameworks: Integration Technology for CAD

dynamic loading of the HAWK/SQUID system [KEL84], and the
MAGIC system [OUS841, which requires linking the tool with

the tool manager.

The CAD Framework Initiative has recently produced a Tool

Abstraction Specification, which describes a textual language

modelled after EDIF specifically for the purpose of character­

izing CAD tools. The abstraction for a set of tools is provided as

input to an abstraction compiler, to ensure that the description is

syntactically correct. The compiler then stores this information

into an internal data structure which may be directly processed

by the Framework to provide access to the encapsulated tool.
The abstraction format was demonstrated successfully at the

ACM/IEEE Design Automation Conference in 1991.

5.3 Tool Control

Tools can generally be controlled by two methods: manual

execution of the tool (including translation of input and output

files, and satisfaction of constraints), or by tool managers. Tool

managers are a special class of CAD tools that invoke and control

other CAD tools. Tool managers can be integral parts of a design

process system, as in ULYSSES, or stand-alone tools that can be

used in a design process system, such as CADWELD. Tool

managers can also invoke tools immediately or schedule them

for processing (as in a batch queue manager). Dedicated tool

TOOL MANAGEMENT 81

managers, such as the PowerFrame system from DEC and

CADWELD, have user interfaces specific to the tool manage­

ment task. Some tool managers are actually the user interfaces to

design systems, such as MAGIC, HAWK, and VEM, and they

provide tight integration to the design system (user interface and

database facilities) [KEL84], [HAR86].

Tool managers which have tool characterization facilities allow

the control of any tool that can be described by the abstractions

available. Tool managers without characterization rely on the

tools conforming to some sort of interface (common input and

output formats or procedural interfaces). This type of manager

requires tools to be developed for the particular system the tool

manager operates in or that 'wrappers' be created that convert

between the standard interface and what the tool wants to see. In

current systems the former is more useful, but as more integrated

environments are built the former becomes more heavily used.

Of course, this is an area where standards activities like the CFI

can have a major impact on Framework development, by

providing standard procedural approaches to tool integration

and control.

A common set of assumptions for tool managers which do not

use characterization is that tools read from standard input, write

to standard output and standard error, and may be controlled at

82 CAD Frameworks: Integration Technology for CAD

startup through a set of command-line options. These assump­

tions are particularly appropriate for Unix-based batch tools,

though they may also be appropriate for some interactive tools.

5.4 Other Tool Management Functions

Tool managers can perform many functions beside basic tool

invocation. These include:

• load balancing

• name serving

• consistency enforcement

• translation

• run logging

• status reporting

• license management.

Tools that do load balancing may work on a single machine or

across a network. Load balancing on a single machine is usually

handled by a batch queue. Batch queue software manages a

sequence of jobs that are run in order, with the ordering based

most commonly upon the priority and resource needs of each

job. The designer (or design process manager) requests that a

tool be invoked and the tool manager places the job in the batch

TOOL MANAGEMENT 83

queue. If the tool manager has access to machines on a network

the tools (assuming the proper binaries exist and the tool has
access to the input data) can be invoked on the ''best machine,"

where best machine takes into account any special requirements

of the tool (for example, runs well on a parallel machine, requires

a lot computer time, uses lots of memory) and the load of the

machine.

Name serving simply removes the need for the designer to know

the location of a tool: it is a similar task to the name resolution

issue for data presented earlier. The tool is referenced by a logical

name - say "spice" - and the tool manager finds the location of

the particular version of the tool which is appropriate to the task
at hand, and initiates execution on the appropriate machine.

Most tool managers allow the user to pick a tool from a list or

menu of icons in a graphical user interface, and hide the details

of the actual name and location of the tool binary.

Consistency enforcement is another important part of tool

management. Before a tool is invoked the inputs to the tool are

checked to verify that they are consistent and up to date, using

some kind of constraint satisfaction mechanism. These

constraints are usually data consistency checks, such as making

sure that the data that were used to derive the input files have

not changed since the input file was created, and which perform

a similar function to that performed by software maintenance

84 CAD Frameworks: Integration Technology for CAD

systems like the Unix make program [FEL79]. If the data are not

up to date, the controller of the tool manager is informed. If the

controller is the designer, then the designer can take the neces­

sary actions to bring the data up to date. If the controller is an

automated design methodology manager the tools necessary to

bring the data up to date (if known) can be invoked. Sometimes

consistency enforcement is handled by the data management

layer that checks out or checks in design data before and after

use [KAT86]. Some early tool control systems were based on

adaptations of software maintenance systems for hardware

design management (see for example [NEW81]), and recently

separate systems for this task have been developed [TIC82].

Tools that have not been developed for an integrated environ­

ment usually represent input and output data as textual files.

While some tools use common formats if they exist many tools

use their own format. Therefore, in order to run many of the tools

in a design system translators must be run in order to convert

from the output format of the previous tool to the input format

of the current tool. It is the job of the tool manager to determine

(based on the types of the input files specified in the tool charac­

terization) which translators need to be run and invoke them to

produce the necessary input data. This process can be thought of

as a simplified version of the problems handled by the consis­

tency enforcement facility and can be folded into it.

TOOL MANAGEMENT 85

Run logging is a useful facility where a closely coupled tool inte­

gration is not possible. The purpose of a run log is simply to

document the activity of a tool, usually in a format which is both

machine and human readable, in order that an audit trail of

design activity is maintained. This can be used both to determine

after the event which files have been read and written by a tool,

and as the basis of some simple post hoc data management. The

CAD Framework Initiative has defined a run logging format.

Run logs can be generated by the tool manager because in

general the tool manager will know which files are passed to a

tool, and additionally some heuristic checks can usually find

modified files after the run completes. The reliability of this

process decreases as the interactivity of the encapsulated tool

increases, however, and tools which have their own access to

data stored anywhere on a network (such as editors) cannot be

reliably encapsulated in this fashion.

Some tool managers are also able to provide status information

on tool execution as a tool run proceeds, and thus allow finer

grain control over the tool. Typical capabilities in this area

include terminating execution of the tool, stopping and

resuming the tool, and changing the execution priority of the

tool.

86 CAD Frameworks: Integration Technology for CAD

Finally, a function which is of considerable importance in

commercial Frameworks is license management, which ensures

that proprietary tools are only used in accordance with the

contract between the user and supplier organizations. Licensing

is usually handled through one or more license files, which

contain encrypted information about tool access privileges, and

one or more licensing daemons, which are small networked

programs which continually maintain state information on

license usage. A variety of licensing schemes are in use: the most

common are host-based licensing, in which case permission is

given to run a certain piece of software on a single machine, and

network licensing, in which case permission is given to concur­

rently run a certain number of copies of an application on a

network, usually defined by a list of host identifiers which are

part of the encrypted license file.

In summary, tool managers provide a way of hiding the details

of the actual invocation of the tool from the designer and also

provide a consistent interface to the tools for an automated

design flow manager.

6 DESIGN FLOW MANAGEMENT

6.1 Introduction

The notion underlying Design Flow Management (DFM), or

Design Methodology Management, is that chip design is a

process, involving a sequence of operations, performed on
design data. DFM software attempts to capture and automate

that process.

A DFM system may be viewed as a meta-tool in the CAD environ­

ment, both in the sense that it deals with other tools as data,

manipulating them to meet some design goal which goes beyond

the scope of any of the individual tools, and also in the sense that

it "packages" groups of tools into higher-level entities which

may be manipulated by the user as a single tool.

88 CAD Frameworks: Integration Technology for CAD

In the introduction to this paper it was stated that the criterion

for success of a CAD Framework is that it reduce the time needed

to develop or modify a CAD system such that the CAD system

meets the needs of its end-users. In the case of design flow

management, CAD system generation and modification is still

part of the issue, but the tool has a function and significance

which not only may make additional demands upon the CAD

system developer, but which offers benefits to the end user

which cannot be realized in the absence of a Framework. Design

Flow Management may therefore be regarded in some sense as

one of the fruits of a good CAD Framework.

6.2 Benefits

Design Flow Management offers two kinds of benefits: firstly

through DFM it is possible to automate tedious sequences of tool

invocations (for example an edit - netlist - simulate cycle);

secondly it is possible to enforce development discipline within

a design team - requiring management sign-off before commit­

ting library changes, or running DRC before approving layout

changes. In addition to the above procedural benefits, it has been

argued [SIE84] that explanation facilities, based upon the meth­

odology and the state of the design are increasingly important as

the tools become more autonomous. This need arises because

under a DFM system, the user leaves some of the decision-

DESIGN FLOW MANAGEMENT 89

making up to the Design Flow Manager, and then if things go

wrong and user intervention is required, it must be possible to

determine how the system arrived at its present predicament. In

this context it is worth noticing that at least one worker has

expressed concern [KAH87b] that with increasing " ... automation

and over dependence on CAD applications there is a danger that

designers will fail to learn from the design experience." Explan­

atory facilities go some way towards alleviating this potential

difficulty.

Design flow management has long been of interest in the ASIC

world, where a large part of the business is logic replacement,

and the typical designer is not highly skilled in the arts of chip

design, as a means of protecting the user from methodological

mistakes. The value of DFM is less obvious in the full custom

environment, but it still has an important part to play in synchro­

nizing the work of a team of designers, and automating multiple

iterations and approval cycles.

6.3 DFM Dependencies

A DFM system depends upon most of the other services

provided by the Framework. The most critical dependencies

concern Tool Management and Data Management. As an

analogy one might think of the interaction between the "make"

utility, file system timestamps, and the compilation and linking

90 CAD Frameworks: Integration Technology for CAD

tools (such as cc) which support software development. make

enforces a sequence upon the execution of the tools, based upon

file modification times.

The DFM software reads in or deduces a specification of a tool

sequence (similar to the dependency graph generated by make)

and it then activates appropriate tools, based both upon infor­

mation about the state of the data (generated by the Data

Manager) and upon the specified tool sequence, or program.

Some design management systems do not clearly distinguish

between data management, tool management and design flow

management. An example of a system which merges all three

functions into a single tool is Sun's Networked Software Envi­

ronment (NSE) [SWA88]. Although this tool was designed

originally for the Computer-Aided Software Engineering

(CASE) market, it has been applied to electronic design within

Sun Microsystems.

The NSE allows different data objects, such as a schematic gener­

ated by a particular tool, to be defined, along with a set of

appropriate methods which may be executed against objects of

that type. This mechanism is used not only in conjunction with

data access controls; it also allows the tool integrator to program

methodologically derived checks to be applied to the tool and

the data at runtime. An additional feature of the NSE which

DESIGN FLOW MANAGEMENT 91

addresses tool and design flow management is the Link Services

Database, which is a daemon-like facility which allows links to

be established between data objects and arbitrary procedures.

An example of the use of this facility would be to send mail to

the users of a cell library whenever a change is made to the

library. This very useful facility provides a general mechanism

for instituting design checks, automatic tool executions, updates

to design logs and the like.

6.4 Existing Approaches

A number of attempts have been made to provide Design Flow

Management, either as part of an integrated CAD system, or as

part of a stand-alone Framework. Notable in the former category
are DEMETER [SIE84] and Ulysses [BUS87, BUS85]. In the latter

category DEC's PowerFrame [BR087] and Atherton Technol­

ogy's "Software Backplane" [ATH89] are perhaps the best
known.

In Digital Equipment Corporation's PowerFrame [BR087],

process-related knowledge is captured in the extension

language, which provides, through a C-like [KER78] syntax,

access to all the data management and user interface facilities of

their Framework. Design flow management is therefore less an

explicit provision of their system than a useful side-effect
resulting from their system architecture. DEC calls the process of

92 CAD Frameworks: Integration Technology for CAD

building these procedural cocoons encapsulation, and the term

embodies some Tool management functionality as well as some

design flow management.

Cadence's Design Flow System is another extension-Ianguage­

based flow system: the design flow engine is driven by a set of
data structures called flowcharts and design steps, which describe

tasks and task dependencies using hierarchical directed graphs.

Branching and looping capabilities add to the richness of the

model. Each step (i.e. each node on the graph) is defined in terms

of a set of procedures and data, defined in the SKILL [BAR90]

extension language, which are activated by the design flow

engine as required. The graphical model is supported by a

graphical user interface which illustrates the flow graph and

supports user interaction through direct manipulation.

The Microelectronics and Computer Technology Consortium's

CAD program has developed a methodology management
system known as MMS [ALL91], which uses MCC's extension

language (Scheme) to describe tasks and processes in a declara­

tive fashion. Some of the particular strengths of this system

include the ability to distribute tasks across multiple hosts, and

to gather together tool management and flow management activ­

ities. MMS takes tool and task descriptions and compiles them

into an internal form which may be traversed by the MMS

engine.

DESIGN FLOW MANAGEMENT 93

Paseman makes the point [ATH89] that what he calls work-flow

control must " ... respect and enforce organizational boundaries

that are already in place" (p73). Many design managers do not

use workstations, and their project records may not be on-line.

Atherton Technology provide an interface to the outside world

" ... by allowing local policies to be implemented as message

refinements and triggers".

SCHEMA [ZIP85], Ulysses, DEMETER, Sidesman [KAH87]

REDESIGN [STI84] and VEXED [MIT85] take a knowledge­

based approach to design: in each case the knowledge base is
applied both in tool selection and for detailed design guidance.

For a general discussion of a range of knowledge-based

approaches to electronic design automation, consult [DAN87] or

[BRE90].

These systems tend to work at a detailed level, applying small

tools to small parts of the problem, and then gradually building

up a complete solution. This is not compatible with current

commercial CAD system architectures, which tend to be

constructed as a relatively small set of "powerful" tools

performing relatively independent functions. The designers of

Sidesman stress [KAH87] " ... the importance of the design of a

complete environment for an 'intelligent' CAD system so that

both rule- driven and conventional applications may be used to

support designers."

94 CAD Frameworks: Integration Technology for CAD

VEXED divides the design flow problem into two parts: knowl­

edge of implementation methods and control knowledge. The

former describes legal operations, while the latter ascribes value

to particular operations. In the DFM domain this maps

(depending upon the granularity of the tools) to a distinction

between tool activation knowledge and intentional knowledge

about how best to proceed with the design. In addition, VEXED

uses a DESIGN PLAN which records design decisions and their

explanations, and also supports design replay for the explora­

tion of alternatives. It seems likely that this kind of record, which

is also maintained by the other knowledge based systems

mentioned above, may well become an important part of future

commercial design systems, both because of its explanatory

value and its support for iterative design refinement approaches.

Rather than specifying tool relationships explicitly, either

through procedures or rules, ELECTRIC [RUB87] schedules

cooperating tools in a round robin arrangement, where the tools

communicate through a change list and a common database. It

appears that this should support tool interaction similar to that

provided by a blackboard; however no explicit tool sequencing

beyond the scheduler loop is used. This architecture thoroughly

blurs the distinction between tool management, inter-tool

communication, data management and design flow manage­

ment.

DESIGN FLOW MANAGEMENT 95

6.S Describing the Design Flow

There are a number of ways in which the intended design flow

may be described to the DFM system. The nature of the descrip­

tion language has important implications for the flexibility of the

DFM: in particular there are significant differences between a

procedural and a declarative style.

The difficulty with a procedural style of data flow description is

that it focuses on the "how", rather than upon the "what" or the

"why". This means that each design flow, created by the tool

integrator, specifies precisely the sequence of operations which

constitutes a design flow, right down to prompting for user

input, requesting tool execution, and checking result status. In

terms of the software development analogy, this is like replacing

makefiles with shell scripts. Not only is this kind of program­

ming difficult, maintenance is extremely difficult, since

interaction between tools and modules has to be described

explicitly, making the addition or deletion of tools problematic.

A declarative style of design flow description has been explored

by some workers. Ulysses describes CAD tool interdependencies

in terms of preconditions, which are essentially assertions which

must hold before a tool (or knowledge source) may be activated.

It seems attractive to extend this notiion to define each tool in

terms of preconditions, actions and post-conditions: the actions

96 CAD Frameworks: Integration Technology for CAD

are essentially procedural, while the post-conditions define the
state of the design after the tool has run successfully. This allows

a number of different execution models for the flow descriptions,

as described below.

The designers of CHESHIRE [DEM87], an object-oriented inte­

gration system, take a rather different approach to design flow

management: their coherence control is associated directly with

the data objects, and is divided into three areas:

• Data level- access methods maintain data consistency

• Application level - a "local automaton" controls the evolu­

tion of a view within a particular tool

• Inter-application level- an automaton associated with each

cell coordinates the evolution of the cell's views.

This style ties data consistency and flow control closely to the

actual data, and shows once again how varied are the options

open to the developer of design flow and data management

tools.

VOV [CAS90] provides automatic creation of flow descriptions

based on the notion of design traces. The idea is that as tools run,

opening and closing files, they can leave a "trace" of their

activity. This trace can be used to generate a graph of dependen­

cies which can subsequently be used to provide records of

DESIGN FLOW MANAGEMENT 97

design history as well as repeatable execution of combinations of
tools. vav automates not only collection of the information

required for a flow, but also the re-running of pre-captured

flows. vav's traces are represented by a " ... bipartite directed.

and acyclic graph, in which the nodes represent either design

data or CAD transactions." [CAS90]. The design trace capture is

implemented either by modifying tools to make calls to vav, or

by wrapping (i.e. encapsulating) the tools with scripts which

keep track of file access at the beginning and end of each tool's

execution.

Finally, a rule-based approach may be used to describing design

flows, as we have seen with VEXED and others.

6.6 The Design Flow Engine

If the design flow is described procedurally, clearly the design
flow engine, which executes the design to the flow specification,

will be an interpreter for the design flow description language.

However, if a declarative or rule-based approach is used, a

number of alternatives appear. af these, the most interesting are:

• An inference engine, which performs a search of the problem

space guided. by the rule base: without explanation facilities

such systems may not be easy either to program or to under­

stand in action

98 CAD Frameworks: Integration Technology for CAD

• A simple procedural evaluator (in the case of a declarative

representation) which treats assertions as procedure calls

• A functional evaluator, which uses data management infor­

mation to minimize the work required to achieve the current

design goal. Such a system may be either eager or lazy, taking

a conservative vs. an optimistic approach to previous design

steps

• A blackboard system, where the state of the design and the

goals of the user are modeled as assertions on the blackboard,

and the design flow engine attempts to match the design state

with the tool preconditions. Such an architecture actually sup­

ports all of the above models.

The important conclusion to draw from all of this is that the

language used to describe design flows should not preclude the

implementation of sophisticated programs for executing the

flow. It is our view that procedural descriptions are significantly

less flexible than declarative ones, because they say too much.

Occam's razor is a valuable principle in CAD Framework design,

because a design which specifies only that which is really

required and understood does not eliminate appropriate exten­

sions.

DESIGN FLOW MANAGEMENT

6.7 Standardization and Design Flow
Management

99

Design Flow Management is very difficult to do without stan­

dards in a number of areas. Without a standard tool execution

model the DFM system requires built-in knowledge about the

execution environments of individual tools. Without a standard

interface to data management it is difficult to determine the state

of the design.

In the absence of a single standard database for electronic CAD,

data interchange standards such as the Electronic Design Inter­

change Format (EDIF) [EIA87] have begun to make it possible to

link groups of tools into sequences.

Another area in which emerging standards will make design

flow management more valuable is user interfaces. The X

Window System [SCH86] not only supports multiple simulta­

neous application displays, but it also allows display on a single

screen of the output from programs running on multiple hosts.

In such a heterogeneous, distributed computing environment,

tools which perform "traffic management" among the tools

make the designer's life somewhat easier. Finally, a single data

model, shared by the CAD tools and the DFM in a single envi­

ronment, will greatly simplify the tool management task, both at

the tool integration level and the design flow management level.

100 CAD Frameworks: Integration Technology for CAD

To date, however, there has been little progress with respect to a
standard model for describing design methodologies. CFI has

focussed on tool management activities rather than attempting

to define either a model or an interface to methodology descrip­

tion or management.

7 USER INTERFACES

7.1 Introduction

The user interface of a software system is that portion designed

to interact with a human user. The focus of work in this field is

in improving the communication between a user and the func­

tional portion of a system. Good user interfaces gather and

present information efficiently and effectively allowing a user to

concentrate on the task at hand not on the software system itself.

Development of such systems can be deceptively difficult. In this

section, we highlight some of the problems in constructing user

interfaces in the context of large Design Automation Frame­

works and some solutions found in stab:! of the art systems.

102 CAD Frameworks: Integration Technology for CAD

Research and development in user interface design is not limited

to design automation. Since all application programs require

human interaction to some degree, work in this area has been

done in nearly all areas of computer research. Much of this work

is informal and only manifests itself in the implementation of the

resulting system. However, a specialized field of endeavor

known as Human Factors has come of age to study this area

exclusively [FOL84].

Conversely, development of user interfaces is heavily influenced

by other unrelated areas of computer research. Advances in

computing hardware have had profound effects on the design of

human/machine interaction. Recent years have seen the devel­

opment of new, more expressive input devices, faster processing

speeds, and distributed computing via networks. These develop­

ments have given us the popular desktop workstation with

multiple-window, pOinter-based, graphic interfaces. Increasing

complexity of software systems has also furthered effort in the

user interface arena. Often, the control of such systems requires

the user to assimilate huge amounts of data and make many

complex decisions. Without an effective user interface, such

systems aren't viable.

The major thrust of research and development of user interfaces

is in two areas: improved application program interfaces and

better interface development environments. Application

USER INTERFACES 103

programs are software a user invokes directly to accomplish a
task. The user interface of such programs interact directly with

the user and thus define the "look and feel" from the user's

perspective of the entire system. Application programs are built

on top of user interface development environments. Develop­

ment environments allow user interface designers to experiment

with new interfaces and build production interfaces qUickly.

Recent development in application interfaces focuses on

designing systems that can be used effectively by those with

little knowledge of computers or programming and efficiently

by those already familiar with the system. Such systems employ

methods that allow entry and display of many different kinds of

information including images, text, graphics and sound. These

methods allow large amounts of data to be manipulated without

overloading the user with too much information. Also, large

software systems often consist of many independent compo­

nents each with different user interface requirements. Modern

systems try to provide common paradigms for interacting with

all of these components in a uniform fashion. This minimizes the

amount of low level system architecture information a user must

learn (and more importantly, relearn) to use the system effec­

tively. Furthermore, these common paradigms help to hide the

often hard to use services provided by even lower levels of the

software system (Le. the operating system or even the under-

104 CAD Frameworks: Integration Technology for CAD

lying hardware). Eventually, such systems become tools that
fade from the consciousness of a user in comparison to the work

at hand.

Developments in the programming environments used to

construct application interfaces are also an important area of
research. Constructing a good user interface for any system is

surprisingly difficult. User interfaces are judged subjectively by

a body of users whose taste, knowledge, and experiences differ.

Even the most careful designer can build interfaces that do not

meet user expectations. Moreover, users often can't accurately

describe what they need in an exact fashion. Even when exact

specifications are available, the resulting system is often unsatis­

factory. Implementing even simple interfaces involves a
substantial amount of work both in design and implementation.

Thus, modem user interface development systems must adapt
quickly and allow (possibly radical) changes without massive

redesign or re-implementation. Well designed architectures are

the first key to such flexible systems. Recent work has yielded

layered architectures that can be extended easily with little

impact on other parts of the system. Embedded extension

languages can also provide the necessary capability for quickly

re-configuring a system. Finally, many systems offer means for a

user to customize an interface directly and interactively. These

techniques are presented in greater detail in section 7.3 on page

111.

USER INTERFACES 105

In the remaining portion of this chapter, we present an overview

of the state of user interfaces developed for design automation

with an emphasis on electric circuits. Throughout much of its

history, the area of electrical CAD has emphasized interaction

with human users, many without detailed knowledge of soft­

ware systems. A short history of these developments is given in

the next section. Ideas used in developing interfaces to electrical

CAD applications are applicable to other areas of CAD and

general user interface development as well. Recently, the devel­

opment of large numbers of design aids for the design engineer

and integration of these tools through the use of Frameworks

have made user interface design an even more important area of

research for CAD professionals. The final part of this chapter will

explore the state of the art in Framework user interfaces and

possible future directions for such work.

7.2 History of Design Automation User
Interface Systems

User interface design has played an important role in the history

of electronic CAD research. New developments in this area have

almost always been incorporated into leading CAD systems.

Conversely, user interfaces (especially graphiC interfaces) have

been heavily influenced by continuing evolution in electronic

design aids.

106 CAD Frameworks: Integration Technology for CAD

Three significant periods are apparent in the history of user

interface design of electronic CAD tools. First, early batch

oriented systems developed in the 1960s laid the foundation for

later innovation in interactive interfaces. Second, starting in the

early to mid 1970s, rapid advances in integrated circuit tech­

nology gave birth to the first interactive graphic interfaces used

in electronic CAD. Finally, in the early 1980s, a boom in the

development of automatic CAD tools for simulation and

synthesis of electronic circuits led to development of Tool Frame­

works with modern modular user interfaces.

Early electronic CAD tools were developed out of necessity. At

the time, electronic circuits were constructed directly from spec­

ifications and diagrams drawn by hand. As designs became more

complex, it became more difficult to check designs for correct­

ness before the circuit was constructed. This problem became

especially acute in the area of integrated circuit design. Early

integrated circuits were laid out by hand by cutting shapes onto

rubylith. With the invention of integrated circuit micro-proces­

sors in the late 1960s, the number of shapes in typical designs

had grown to several thousand; well beyond the capability of

humans to exhaustively examine for error. Thus, computer

programs were developed to aid in the verification of these

deSigns. Since integrated circuit design is a graphic process, the

USER INTERFACES 107

emphasis of such programs was graphic in nature. This

emphasis would have a dramatic impact on graphic interfaces in

the years to come.

In this period, user interfaces for these new computer aids were

dictated by available computing resources. Most computer

systems in this era were centralized batch-oriented facilities.

Furthermore, most of these tools were developed in isolation

with little influence from similar work done elsewhere. Thus,

early user interfaces consisted of diverse card-image oriented

data entry and line-printer oriented data output with no on-line

user interaction. However, manipulation of graphic data using

these kinds of interfaces proved too difficult and error prone.

Off-line digitization tablets and plotting systems like those

produced by David Mann were developed to remedy the

problem. However, the batch nature of computing still ruled out

direct graphic manipulation and interactive feedback.

Despite the batch emphasis of computer systems at this time,

pioneering research in on-line interactive techniques became

quite active [LIC62]. Cathode-ray tube (CRT) displays became

available to researchers in the early 1960s. At this time, ground

breaking work in interactive engineering graphics was done by

Sutherland [SUT64]. His Sketchpad program is one of the earliest

examples of on-line interactive manipulation of graphic images.

108 CAD Frameworks: Integration Technology for CAD

However, it would be another five years before systems devel­
oped for use in the integrated circuit industry would become

available ushering in the next age in CAD user interface design.

Early experiments in interactive programs for manipulating
graphics led to the development of dedicated graphics-entry
workstations in the early 1970s. These commercial systems,

developed by companies like CALMA, Applicon, and Comput­

ervision, allowed users to see designs graphically on CRT

displays and directly manipulate them using digitization tablets

or light pens. Soon after their introduction, these systems

displaced the older text-based and off-line digitization schemes
for preparing graphic information for later analysis and fabrica­

tion. Initially, these systems were very expensive, well over

$130,000 per station. Thus, efficiency became the overriding

influence on the user interface of these workstations. Unlike

modern systems, quick learning time was not emphasized. On

the contrary, dedicated technical personnel were trained specifi­

cally to quickly enter designs and were often kept busy around

the clock to defray the large cost of the system.

Even though these systems emphasized input efficiency above

all else, they contributed important technical innovations and

improvements to the state of graphic user interfaces. Improve­

ments to computing hardware played an important role in these

developments. The greatest influence was the development of

USER INTERFACES 109

the mini-computer. For the first time, it became economically

possible to dedicate a computer to servicing a small number of

users interactively. Coupling these computers to raster displays

allowed designs to be viewed in color and increased interaction

with the user through direct manipulation of shapes on the

screen with immediate feedback. Early versions of these systems
used keyboard input for controlling all non-graphic aspects of

the program. More accurate light pens and digitization devices

caused user interface deSigners to concentrate on using the

pOinter more efficiently. Fixed on-screen menus and command

annotations on digitization tablets required less typing and

reduced hand an arm motion. Some systems even experimented

with unusual forms of input. For example, some Applicon
systems used sophisticated pattern recognition algorithms to

recognize characters drawn freehand on the screen with the

pointer. These characters were then interpreted as commands.

Most of these features appear today in modern interfaces.

In the last five years, the advent of low-cost, high-resolution

bitmap-based graphics workstations has dramatically changed

the user interfaces provided to CAD tool users. In the early

1980s, inexpensive artwork entry systems [BIL83, OUS81 ,

OUS84] and schematic entry systems based on well known inter­

active graphics techniques [NEW73, FOL82] were developed

that rivaled the capabilities of the dedicated graphiCS editors of

the previous era. Instead of hiring and training dedicated

110 CAD Frameworks: Integration Technology for CAD

personnel to operate expensive layout entry systems, new

companies began providing these low-cost systems on the engi­

neer's desk.

The state of computing hardware advanced rapidly in this

period. Lower cost personal computers and workstations made

it possible to provide greater interaction in CAD tool interfaces.

Very inexpensive raster displays with low-cost pointing devices

made it possible for CAD tool developers to write new interfaces

for applications traditionally done on text-based terminals or

through batch systems. The introduction of multiple-window

interfaces soon followed. These interfaces where based on the

pioneering work done in the late 1970s at Xerox [TESB1, SMIB2]

and made popular by Apple in its Macintosh [APPBS] and Lisa

computers. These interfaces incorporated new features now

found in most modern systems: a window for each application,

pop-up or pull-down menu systems, forms-based input with

check boxes, toggle buttons, and text fields, and mouse based

manipulation of items on the screen. As designs became larger

and the demand for faster interactive interfaces for editing

graphiCS increased, new developments in data structures for

dealing with two-dimensional data came into use [BENBO,

ROSBS, OUSB4].

USER INTERFACES 111

At the same time, the reduced cost of computing resources

encouraged CAD tool developers to produce more automated

design aids. Greater use of networks allowed the low-cost

display workstations to be linked to the larger computers used

for checking and processing designs. Entry and display of a

wider class of information (not just graphics) became a necessary

part of new CAD tool development. This led to current work in

user interface frameworks.

7.3 Modern Framework User Interfaces

State of the art user interfaces developed as part of CAD Frame­

works must meet a wide set of requirements. Input to such

systems include high level problem specifications and parame­

ters, design documentation and project management
information, information for controlling a wide selection of

automated design tools, as well as the graphics and design

artwork handled by the older monolithic graphics editors. These

new interfaces must also display new forms of output. These

include intermediate design data (in both graphic and non­

graphic forms), process statistics and management information,

design documentation, status of CAD tools as processing

proceeds, in addition to the final design data for fabrication and

implementation. Furthermore, deSigners increasingly use appli­

cations outside the realm of the CAD Framework. Electronic

112 CAD Frameworks: Integration Technology for CAD

mail, date-book systems, and document preparation tools are a

few examples. Modern Framework interfaces must mesh with

these other applications to provide a complete interface to meet

all the computing needs of a designer.

The problems of designing comprehensive user interfaces that

span many different applications is not unique to Electronic

CAD Frameworks. These problems must be addressed by busi­

ness and finance applications, engineering systems used in other

disciplines, and general system support applications. Early

work in this area was considered proprietary. However, recently

a trend in user interface work has been to produce solutions that

are released to the public domain. These solutions benefit all

application developers by providing a common platform for

developing compatible tools. These solutions are explored in the

paragraphs that follow.

Current user interface architectures consist of several layers of

software, each providing a higher level of user interface services.

As shown in Figure 7.1, these layers consist of a graphics inter­

face for controlling the display hardware, toolkits for building

standard user interface components or widgets, a set of widgets

for constructing the interface itself, and finally a high level

programming interface used by Framework tools.

USER INTERFACES

End User

Figure 7.1: Expanded view of user interface
components of a Framework

113

At the lowest level, a graphics interface provides an abstraction

that hides the details of the underlying graphics input and

output devices. Early work in this area was done before the wide

acceptance of multi-window interfaces like those developed at

Xerox [SMI82] and Apple [MAC82]. The Graphics Kernel System

114 CAD Frameworks: Integration Technology for CAD

[ANS8S] and PHIGS [BR08S] are examples of early graphics

interfaces that have become standards but have not played a

significant role in CAD Frameworks due to limited support for

windowing interfaces. Recently, the X Window System [SCH86,

SCH88] developed at MIT has become a popular choice at this

level due to its heavy emphasis on windowing, wide acceptance

by hardware manufacturers, its capability for making good use

of a large class of high performance bitmap-based workstations,

and for allowing application programs running on one machine

to drive displays on other machines using a network protocol.

The NeWS system [GOS86] developed by Sun Microsystems

provides similar capabilities but may not be as well suited to

CAD engineering due to differences in the imaging model used

for displaying color. Work proceeds in this area toward an

industry wide standard based on X but no such standard yet has

full industry support.

Complex user interfaces often consist of many windows each

displaying different kinds of information and each responding to

different kinds of user input. The basic graphic interface

provides the functionality to implement such an interface but at

a level that requires an overwhelming amount of programming.

Much of this programming is common to most applications.

Toolkits, the next level in the architecture of modern user inter­

faces, have been developed to encapsulate the common portions

of multi-window applications. These toolkits are based on the

USER INTERFACES 115

idea that complex interfaces can be built by combining standard

interface components known as widgets. These components

provide the labels, toggle switches, text input editors, menus,

and other similar features found in multi-window interfaces. The

underlying toolkit exports features for combining widgets on the

screen, controlling their location, dispatching user input to the

appropriate widget, and handling common resources like fonts

and color.

Toolkits and widget sets are often considered a unit even though

this need not be the case. For example, the standard toolkit for X

[SCH88] specifies toolkit functionality without explicit reference

to widgets. Many different widget sets have been built on top of

it and some mixing and matching of widgets from differing

widget sets is possible. Widget sets themselves define the look

and operation of an application. Although a widget set is a

collection of independent components, a cohesive set often

defines conventions for uniform pOinter and keyboard input,

data display, and inter-component communication all using

basic toolkit functionality. Two commercially developed widget

sets, XUI from Digital Equipment Corporation and Open Look

from AT&T, demonstrate this concept by providing components

that when used together form an easily recognizable and consis­

tent user interface.

116 CAD Frameworks: Integration Technology for CAD

Constructing applications using widget sets and toolkits can still

be a complex task. Application designers must still specify the

layout and interaction among widgets using somewhat cumber­

some programming interfaces. Active research in general

purpose user interfaces is now focusing tools for automatically

building widget based applications from high-level descriptions.

The pioneering work in this area was done in the middle 1980s

by Apollo Computer Corporation in what is now known as their

MOTIF system. Recently, Apollo has agreed to work on making

this technology widely available pOSSibly through a specification

that may become industry standard. Current work focuses on

specifying interfaces using a combination of a special purpose

language description for specifying the interaction and control

of widgets and interactive editors for layout and prototyping.

Portions of this ideal have been constructed as part of the devel­

opment of various widget sets and in proprietary systems. For

example, Digital Equipment Corporation provides a language

with its DECWindows widget set for combining the widgets into

forms [DEC89]. However, there are very few widely available

comprehensive application building tools in existence at the

current time. Hypertext systems (such as the Hypercard system

developed at Apple) allow the look of an interface to be

constructed graphically and the semantics to be expressed in a

simple programming language.

USER INTERFACES 117

All modem CAD tool Frameworks use graphics interfaces and

toolkits to integrate a wide range of computer design aids.

However, systems in use today diverge in terms of their basic

integration philosophy. The pioneering work done by EDA

Systems [BR087] and CADWELD [DAN89], uses tool encapsu­

lation to allow older CAD tools with non-graphical interfaces to

be used along with modem tools in a unified user environment.

A modem windowing interface is then used to control the

encapsulated tools. However, no attempt is made to fully inte­

grate interactive tools or those with graphic interfaces. This may

lead to inconsistent user interfaces. Comprehensive Frameworks

with architectures like the one described in Figure 2.1 attempt to

provide one uniform high level procedural interface to user

interface services that can be used by all tools. Frameworks

developed at Berkeley [KEL84, HAR86] and Cadence Design

Systems use this approach. These systems allow tools become

tightly integrated with a provided graphicS editor. Tools can

highlight graphics objects, obtain graphic and textual input, and

carry out editing operations all within a uniform user interface.

Cadence's Framework actually supports both techniques, in the

interests of serving both the internal need for tight coupling

between tools and their operating environment, and the external

need to interface a wide variety of customer-supplied tools.

118 CAD Frameworks: Integration Technology for CAD

7.4 Future Directions for CAD User Interfaces

Major influences for future work in CAD Framework interfaces

will come from increased standardization of toolkit and widget

set functionality and by improvements to the programming

interface provided by the CAD Framework standardization

allows.

Standardization of toolkit and widget set functionality will

allow Framework user interface developers to make greater use
of these systems and thus provide much more powerful inter­

faces than those in existence today. Since these systems will be
standardized, those developing other tools outside the realm of

CAD Frameworks will also begin producing systems meeting

these specifications. The result will be increasingly uniform

computing environments where a designer uses CAD tools and

non-CAD tools in an interchangeable fashion.

Future programming interfaces for CAD Frameworks will allow

Frameworks to export a procedural user interface that is

exported to all other CAD tools in the Framework. The key to the
design of this interface is the realization that the user interface
requirements of all tools can be met by providing the necessary

facilities to construct interactive visual editors capable of editing

any data stored in the Framework. Like advanced application

building tools discussed in the previous section, this interface

USER INTERFACES 119

will provide a high-level abstraction above widget sets and tool­

kits. Unlike general application building tools, this interface can

be made simpler by tailoring the features toward those required

by CAD tools. Widgets can be used to implement basic editing

components like toggle switches, menus, and text editing fields

(among others). Special purpose widgets for displaying design

representation data would also be included (these widgets

would provide functionality similar to that found in the older

dedicated graphics editors). The programming interface to these

widgets would provide higher level functions for creating and

combining these components, means for calling user supplied

functions when interesting operations in these editors occur, and

high level functions for gathering input that can be called in user

supplied functions. The data representation portion of the

Framework provides policy routines for effectively manipu­

lating design data. Together, the user and data representation

interfaces would then be sufficient for creating a wide range of

editors all tightly coupled to both the tool and the Framework.

Hypermedia is rapidly becoming a significant user interface

technology, with obvious application to data browsing, docu­

mentation and training tasks. Cadence's current Framework

offering uses hypertext links to connect the Framework and tool

user interfaces to on-line copies of the documentation, which

may also be traversed directly using hypertext. One of the most

important uses of hypermedia today is for accessing and under-

120 CAD Frameworks: Integration Technology for CAD

standing complex data organizations, and in the future we

expect to see applications to simplify browsing and under­
standing the increasingly complex data hierarchies associated

with large design projects.

These improvements will continue the general thrust of user

interface development toward releasing users from the burden

of understanding underlying system architectures and services.

It is the translation of a user's ideas to and from a form that a

computer program can understand that must be minimized.

Early CAD systems required users to encode graphic informa­

tion textually and interpret numeric output. Through the use of

modern graphic interfaces, much less encoding is involved.

Future systems will continue this trend until users no longer care

about the underlying hardware and software architectures used
to implement the system. Instead, users will focus on the

problem at hand, not on the tool they use to solve the problem.

This kind of tool interchangeability is a primary goal of the CAD

Framework Initiative (Chapter 10).

8 EXTENSION LANGUAGES

8.1 Introduction

Since the earliest interactive software, it has been recognized that
facilities for extending the capabilities of the system are valu­
able. Before programmatic means were available, Ivan

Sutherland's SKETCHPAD system incorporated the notion of

master and instance objects to allow the efficient repetition of a

defined set of drawing operations [SUT64].

This kind of extensibility offers a dramatic reduction in the
number of operations required for a drawing which involves

repetition. When CAD tools first carne into prominence in the

electronics industry, the extremely high running costs encour­

aged the provision of macro capabilities simply in order that

repetitive operations could be grouped and executed as a single

122 CAD Frameworks: Integration Technology for CAD

command. The emphasis here was not on ease of use (the APPL­

ICON and CALMA user was regarded as an expert technologist);

rather the objective was speed, if necessary at the expense of

having to learn a large number of commands performing subtly

different functions. These macro facilities in general only

allowed grouping of existing interactive commands: control

structure and parameterization were not supported.

Some CAD systems provided command logs, or flight recorders,
which were facilities for capturing the commands entered by the

user in such a way that they could be rerun. The primary moti­

vation for this capability was recovery from crashes or major

errors: if design work is lost for some reason, it is possible to edit

the command log manually to remove the offending commands,

and then rerun from the previously saved configuration. In the

Mentor environment, for example, users frequently use these log

files as a mechanism for building the equivalent of keystroke

macros, saving them in separate files as little "programs".

The keystroke macro approach has three major weaknesses:

• There is no control structure (branching, looping, subrou­
tines etc.)

• There is no provision for parameterization of the macros

• There is no provision for local storage within the macro.

EXTENSION LANGUAGES 123

In addition, there is generally no on-line facility for documenting

keystroke macros, so their value is generally restricted to a single

user.

The designers of interactive software have recognized these

problems, and gradually it has become the norm to provide a

specialized extension language to allow users and tool integra­

tors to customize the system in increasingly powerful ways.

To divert briefly from CAD to software engineering, it has long

been recognized that extensibility is important to text editors,

and Stallman's EMACS [STAL87] is a good example of the bene­

fits of extensibility. EMACS is extensible both through keyboard

macros and through a built-in Lisp interpreter. TECO, a popular

character-oriented editor, is almost unusable without its macro

facility.

8.2 Commercial Extension languages in CAD

The success of facilities such as these have not gone unnoticed in

the CAD world; commercial experience with extension

languages includes the following examples:

• AutoLisp from AutoDesk

• SKILL from Cadence Design Syst1ems

• Genie from Mentor Graphics

124 CAD Frameworks: Integration Technology for CAD

• Ample from Mentor Graphics

• GPL from Calma

• E from EDA Systems

AutoDesk's AutoCAD [AUT88], uses a dialect of Lisp called

AutoLisp, derived from Betz' XLISP [FLA87]. XLISP is a subset of

Common Lisp with object-oriented extensions. auto LISP makes

no apology for its lisp heritage: extension language program­

mers work directly in the native lisp syntax.

Cadence Design Systems' Design Framework II uses a propri­

etary language called SKILL [BAR90, LAI86] which is loosely

based on Franz Lisp [FOD83]. From a linguistic point of view,

SKILL is a hybrid of Lisp semantics and C-like syntax. SKILL is

very well regarded by its users, and it is generally believed that

much of the power of the Framework and tools comes from the

extensibility which SKILL provides. SKILL goes well beyond

simply adding control structure, parameterization and vari­

ables: it also provides programmatic interfaces to the database,

the user interface, and to tightly integrated tools. This means

that it is possible to build substantially new functionality with
the extension language.

Mentor Graphics' Genie is a proprietary language, based on Lisp,

which is used primarily for procedural design. Despite being

based on Lisp semantics, Genie supports two non-lisp-like

EXTENSION LANGUAGES 125

syntaxes - one which is almost identical to C, and one which is

more like a shell programming language. Genie was originally

developed by Silicon compiler Systems, prior to their acquisition

by Mentor Graphics

Ample is the extension language of Mentor Graphics' new Frame­

work. Based loosely on C and Pascal (for compatibility with

previous releases of Mentor's CAD tools), Ample provides a

number of extensions which render it suitable for system

customization, including a special command syntax which may
be embedded in Ample programs, automatic memory manage­

ment, and special data structures which are suitable for

interfacing to the design database.

CPL [SMI75] was developed by Calma to provide extensibility

for the GDSH product. The prevailing hardware constraints

caused the entire language system to be shoe-horned into 16Kb;

however the language was able to support an Algol-like syntax,

polymorphic l functions and procedures, programming and

command language capabilities, and both read and write inter­

faces to the database.

EDA Systems developed their language E as part of their Frame­

work product [BR087], to support tool encapsulation and user

interface customization. E is approximately 80% conformant

with C, and where possible adheres to the C semantics. Of the

126 CAD Frameworks: Integration Technology for CAD

commercial extension languages, E has perhaps achieved the

least success, and in current releases of the product, the use of E

is de-emphasized. On reason for this is perhaps that C is

designed as a statically compiled language offering support for

low-level machine operations, while the requirements for an

extension language are focussed around interactive use. E's poor

performance, relative to compiled C was not offset by compen­

satory semantic or syntactic benefits.

8.3 Extension Languages Prototypes

In addition to the above examples which have been used

commercially, there have been a number of other extension

language developments of interest. Examples include:

• OLAF, from Honeywell Systems and Research Center

• Common Lisp, used by the Microelectronics and Comput­

ing Consortium (MCC)

1. A polymorphic function is one which is able to accept arguments
of differing types and automatically handle the differences. This is
provided in C++, for example, through a technique known as over­
loading, in which the programmer defines a function for each dis­
tinct set of allowable argument types, and the compiler uses static
analysis to ensure the correct variant is called. Lisp system sup­
port for polymorphic functions comes through the ability to deter­
mine object types dynamically, and this is one reason for the
popularity of lisp-based extension languages in the CAD indus­
try.

EX1ENSION LANGUAGES 127

• Scheme, used by Intel and MCC

• LightLisp, used by UC Berkeley's OCT /VEM toolset

As part of the Engineering Information System (EIS) project,

Honeywell has developed an extension language called OLAF

[KRU90] which uses lisp semantics, but an Ada-like syntax.

MCC originally used Common Lisp [STE90] as the primary

implementation language for their CAD system. This proved too

slow and difficult to support (especially given the concomitant

requirement to use Symbolics Lisp machines, which were unfa­

miliar to the CAD clients of the system) and so in a second

version of their system, MCC used C as the basic implementation

language, while using Common Lisp to support system extensi­

bility. This approach was much more successful; however the

size of the Common Lisp system was felt to be too great in the

end, and MCC therefore moved to Scheme.

Scheme [STE75, REE86] is a small, powerful dialect of Lisp

developed at the Massachusetts Institute of Technology. Its

primary advantage over Common Lisp is its small size,

combined with semantics which support efficient implementa­

tion. Unlike Common Lisp, Scheme is not burdened by a large

function library, and so it is suitable as an extension language

engine, to be enhanced by CAD-specific function libraries. Intel

have developed a prototype command language system based

128 CAD Frameworks: Integration Technology for CAD

on Scheme. MCC are increasingly using Scheme in the role for

which they previously used Common Lisp: as a mechanism for

prototyping parts of the system where flexibility is more impor­

tant than performance.

LightLisp is a subset of Common Lisp, developed by Wendell

Baker to provide a means of proto typing applications for the

Berkeley CAD tool environment. Versions of LightLisp support

both database access (OctLisp) and editor customization

(VemLisp). LightLisp typically functions as a server, providing

new commands through remote procedure calls from the

graphics editor, VEM. While LightLisp may be used to imple­

ment new commands, it is not a command language: this

function is provided by the command processor within the VEM

process.

8.4 Extension Languages Requirements

Given that one of our primary criteria relative to the goodness of

a Framework is that it be possible to modify the system effi­

ciently, it is clear that a good extension language plays a very

important role. The extension language provides valuable insur­

ance against changing requirements of the overall CAD

environment.

EX1ENSION LANGUAGES 129

CFI has performed a detailed analysis of extension language
requirements [CFI91], and the following is a brief summary of

the more significant ones:

• A safe environment for the programmer, in which errors
are trapped gracefully

• Convenience is more important than execution efficiency

• Support for a range of programming paradigms

• Compatibility with the command language

• Run-time type checking

• Robust error recovery

• Automatic memory management

• Support for a good interactive programming model with

built-in support for a good development environment

• A standard language as opposed to a proprietary one

• A simple syntax

• A good interface to programs and data implemented in
other programming languages, especially C and C++

• Type extensibility

• Support for internationalization.

130 CAD Frameworks: Integration Technology for CAD

It should be noted that none of the candidate languages consid­

ered by CFI met all these requirements perfectly; however

Scheme turned out to be significantly more acceptable than the

other strongly supported candidate: C++ [STR87].

8.S Design Issues for Extension Languages

Despite some notable extension language successes, it not easy

to design a good extension language; nor is it easy to create effi­

cient implementations.

Among the important issues are the following:

• Should a special purpose language be designed, or will an

existing language suffice?

• Should the language be interpreted or compiled?

• How should debugging support be provided?

• Should the language directly manipulate database objects,

or copies, or simply pointers to data?

• How does the language interface to the outside world?

• Should extension language programs be stored in the data­

base, or should they be external entities, managed directly

by the user through the file system?

EXTENSION LANGUAGES 131

The most successful languages to date are proprietary

languages, generally based on Lisp semantics, which support an

alternative syntax. This approach offers the interactive evalua­

tion model and safe memory management which are

characteristic of lisp, while providing a syntax, or "look and feel"

which is more familiar to programmers with a background in the

Unix world.

The advantages of an interpreted language are that it is easy to

build a friendly development environment in which small pieces

of code may be written and tested incrementally. The disadvan­

tage is that interpreted programs run more slowly than their

compiled equivalents, and in some applications where extensive

database traversal is required, this significantly reduces the

usability of the language.

8.6 General Applications of Extension
Languages

Extension language applications cover the whole gamut of

design activities, from control of the design environment to

detailed manipulation of design data through extension

language interfaces to CAD tool capabilities. Some systems do

not distinguish between their command language and their

extension language. In this case, the extension language

supports macro and replay capabilities as well as interactive

132 CAD Frameworks: Integration Technology for CAD

command entry. In most systems the extension language may be

used to perform start-up configuration of the user interface and

the tools.

User interface customization is an important aspect of modern

CAD systems. Menus, dialogs, keystroke accelerators, default

fonts and colors are all subject to user preferences, and these

preferences are generally expressed through the extension

language, perhaps in addition to direct manipulation methods of

setting defaults. In addition, the extension language typically

provides window management functions for the applications

which are part of the Framework.

Even in the case where the command language and the extension

language are separate, there is usually a mechanism to define

commands in the extension language. AutoLisp, for example,

which does not have a syntax which is directly appropriate for

commands, allows commands to be defined as special functions,

with additional arguments specifying the interactive behavior of

the command.

8.7 Language-Based Design

So far, the extension language has been regarded principally as

an extension at the user interface level, providing the end user

with the ability to modify the behavior of the system for reasons

EXlENSION LANGUAGES 133

of end-user efficiency; safety or to provide new command func­

tionality. However, an alternative view of the extension language

is that it allows the user to encapsulate design knowledge in

procedures, which when executed create new instances of design

components.

In the past, module generation languages have been separated

from general purpose extension languages; however it is not

clear that such a distinction is really required. A second distinc­

tion which obtains in current CAD systems is that between

Hardware Description Languages (HDLs) and module genera­

tion languages. However, now that Cadence Design Systems'
VeriloglM language, for example, is taken as input by the
Synopsys suite of synthesis tools, and is used to generate logic

designs, one might view the behavioral modeling language as

performing a function similar to that of a procedural design

language.

Clearly each application of a language within a design system

has specific requirements, not only in terms of evaluation model,

but also in terms of expressive requirements. This explains the

existence of a range of different languages within a single CAD

system. However, it would appear that if the right base language

could be found, one could build a variety of complementary

functional blocks by extending the language base. Some of the

commercial systems are implemented in this way.

134 CAD Frameworks: Integration Technology for CAD

8.8 Benefits of an Extension Language

The most important benefits of an effective extension language

may be summarized as follows:

• Openness: An extension language can support tool inte­

gration by allowing the user to bind in new functionality

through an extension language interface. Another impor­

tant kind of openness which can be provided by an exten­

sion language comes through the provision of callbacks, or

triggers, which may be called by the design system to per­

form some user-specified action at a particular time. Trig­

gers are commonly used to customize user interfaces, and

to allow user-specified actions when data is saved or mod­

ified.

• Packaging:1 1f all system functionality is made available

through the extension language, it is possible to hide exist­

ing functionality as well as adding new functionality

through control of the name space of the extension lan­

guage, and by overriding default command and variable

definitions.

1. The use of the term package for a module comes from Common
Lisp; this technique of providing a controlled interface to a body
of code and data is also known as information hiding.

EXTENSION LANGUAGES 135

• Dynamic: An extension language allows quick customiza­
tion to meet specific needs - especially if the interface is

interpretive. This is a most important benefit, as much of

the customization which is typically performed in the CAD

world takes place on a design in progress, in response to a

particular situation which has arisen in the course of per­

forming real design tasks.

• Safety: An extension language typically provides protected

access to database and human interface, reducing the risk

of either damaging the data structures or locking up the

user interface

• Encapsulation of Design Knowledge: Procedures which

either generate correct-by-construction design components

or traverse designer-specific data structures increase
designer efficiency.

8.9 Future Directions

In the future, we may expect to see more sophisticated uses of

user programming features in CAD systems. For example,

MCC's C Module Editor (CME) uses graphical programming to

specify both constraints and iterative directives. The WireLisp

[EBE89] system allows the designer to freely combine textual

(programmatic) and graphical styles of design description.

136 CAD Frameworks: Integration Technology for CAD

Another method of programmatic system extension involves
what the developers of LOOPS [STE83] call active values:
attaching code to data, such that when the data is accessed, the

code is run. This allows user constraints to be installed very

simply, and goes some way to creating an "intelligent" database,

where behavior can be stored with the data. Mentor Graphics'

recently announced Decision Support System™ is based on a

spreadsheet model, though it provides some computational

capabilities which are traditionally associated with extension

languages.

In fact the notion of storing code with the data is one which has

gained popularity through the increasing visibility of object­

oriented techniques. In an object-oriented system, when a

message is sent to an object, it is unimportant whether or not the

message is implemented by code or by pre-calculated data. This
blurring of the distinction between code and data is familiar to

the artificial intelligence community, where "late binding" of

behavior to symbols is regarded as a valuable technique.

Finally, it is interesting to note that the CAD Framework Initia­

tive's Architecture Technical Subcommittee has recently selected

Scheme, a language derived from Lisp, as the basis of its stan­

dard extension language. This will provide a consistent

environment for system customization from one vendor's

Framework to another. Scheme will be augmented by an alter-

EXTENSION LANGUAGES 137

nate syntax, which will make the language more cosmetically
attractive to users who are not familiar with lisp. In this respect,
the CFI solution closely resembles SKILL and Genie.

9 IMPLEMENTING A CAD
FRAMEWORK

9.1 Introduction

There have not been many success stories to date in the design

and implementation of CAD databases, let alone CAD Frame­
works, although hundreds of millions of dollars have been spent

trying to achieve this goal. We believe that there are important

reasons why this is so and that the reasons have very little to do

with what the designers are trying to build and are almost

entirely concerned with the approach they take to the design and

implementation of the system.

The design and implementation of a CAD Framework is a very

complex task for a number of reasons. Firstly, a framework

consists both of interfaces and implementations, the specifica-

140 CAD Frameworks: Integration Technology for CAD

tions of which are interdependent. Secondly, there is no "theory"

of framework design upon which to base specifications. Instead

there is a great deal of informal, empirical information about the

requirements for the various framework components. Frame­

work design can therefore be viewed as an optimization problem

where the objective function is extremely difficult to calculate,

and where it is additionally extremely difficult to determine the

sensitivity of the objective function to individual system vari­

ables, and where the variables interact quite strongly.

A final issue which militates against complete framework speci­

fication before implementation has to do with the rapid pace at

which the technology of electronic product design is changing.

Not only are new tools being continually developed, but the

hardware, the distributed environment and the operating

system are all undergoing continual refinement. In addition the

end user's requirements are changing as new kinds of tool

become available, with associated representational require­

ments.

We believe therefore, that it must be a principal assumption of

the framework developer that today's best solution will not meet

tomorrow's need. Rather than abandon the venture as being too

difficult, however, one has simply to ensure that the framework

IMPLEMENTING A CAD FRAMEWORK 141

architecture supports extension and is highly modular, in order

to allow gradual replacement of components as they become

obsolete.

These difficulties in specification are not new to software engi­

neering. There are a number of domains in which it has been long

recognized that specifications in the abstract are unlikely to

result in successful implementations. The rapid prototyping

environments beloved of Lisp and Small talk programmers, for

example, exist for precisely this reason. Two more interesting

examples are the processes adopted in the development of MIT's

X Window System [SCH86], and the Common Lisp standard

[STE90). In each of the latter cases, not only was development

incremental, working through a number of prototype implemen­

tations and releases, but it was also highly distributed, involving

principally electronic communication among a scattered

community of experts. Both of these efforts have led to the

creation of industry standards; however neither software system

is without its critics. This is the nature of a democratic process.

Of late two efforts have been initiated to develop CAD Frame­

works through this kind of successive refinement process. Firstly

the Microelectronics and Computer Technology Consortium

(MCC), has adopted a similar methodology to that used by the X

Window System and Common Lisp ,groups, dignified by the

acronym CODEM, which stands for COoperative DEvelopment

142 CAD Frameworks: Integration Technology for CAD

Method [BARBB]. Secondly, the CAD Framework Initiative (CFI)

is attempting to specify CAD framework standards through a

similar cooperative process. The standardization process being

undertaken by CFI is described in more detail in the next chapter.

9.2 The eODEM Approach

The traditional "waterfall" model for software development

involves a cycle of specifications and reviews between the devel­

oper and client. This approach makes sense under the following

conditions:

• The client knows precisely what is required

• The product is not needed for some time

• The product can not be acquired by any other means

• The client is a unified entity

• The requirements will not change significantly during the life

of the project.

• Unfortunately, these conditions do not fit well with CAD

Framework development.

The conditions under which eODEM succeeds are quite

different:

• There are many potential clients with similar, though not nec­

essarily identical needs

IMPLEMENTING A CAD FRAMEWORK 143

• Some software exists which solves part of the problem and
which can be used as a common starting point

• An organization exists which can serve as a focus, both taking

responsibility for managing communication between the co­

operating parties and for integrating and distributing the

emerging software system

• Networked computers are available to all participants, sup­
porting bulletin-board real-time message handling between

the participants

• The software selected as the starting point is modular, with

well defined inter-module interfaces.

• The selected software is available to all interested parties.

These are the conditions under which CAD Frameworks are

beginning to emerge, both through explicit application of the
methodology among MCC and its shareholders, and also as the

CFI meets and communicates to develop framework standards.

The eODEM approach replaces the typical "waterfall" model

for software development with a loop involving three steps:

1) Build a working prototype

2) Determine the most significant weakness with the prototype

3) Develop a solution and return to Step 1.

144 CAD Frameworks: Integration Technology for CAD

This process continues until the effort to improve the system

outweighs the benefits. In the MCC case, the Berkeley Frame­

work [HAR86] was chosen as the common starting point,

because of its modular architecture and use of standards (e.g.

Unix, the X Window System, Remote Procedure Call library).

There is a difference between the approaches taken by the two

groups, however: the MCC group are convinced of the impor­

tance of a working prototype as a check on the viability of design

decisions (they chose OCT /VEM/RPC from UCB), while CFI is

focusing on interface standards, and regards implementations as

secondary.

In retrospect, the eaDEM approach was not as effective at MCC

as had been hoped. The principal reason was probably the lack

of committed resources from the MCC shareholders, which

meant that the benefits of real-time dialogue and widespread use

of the developing technologies were not realized.

9.3 Commercial Frameworks

Cadence Design Systems, Mentor Graphics and Viewlogic have

all been going through the process of releasing framework prod­

ucts over the last two years. In each case, the companies have

experienced difficulty in releasing products with sufficient

performance, functionality and overall performance to satisfy

IMPLEMENTING A CAD FRAMEWORK 145

the customer. EDA Systems was purchased by Digital Equip­

ment Corporation after struggling with a second version of its

PowerFrame product. Interact's framework product was suffi­

ciently poorly received that the framework development team

was disbanded and the product discontinued.

Part of the difficulty is that the industry as a whole is experi­

encing what Brooks [BR075] refers to as the "second system

syndrome". This is a situation in which there is some experience

with the requirements for a product, and the developers become

excessively ambitious in the specification of a successor. This

leads to solutions which are too complex, too large and

unwieldy, and finally too difficult to maintain.

Despite the obvious difficulties experienced by framework
developers, user enthusiasm for frameworks is at an all-time

high, as evidenced by the strong support for CFI.

10 THE CAD FRAMEWORK
INITIATIVE

10.1 Introduction

No description of CAD Frameworks would be complete without

a discussion of the standardization work being promoted by the

CAD Framework Initiative (CFI). This grassroots organization

has not only demonstrated beyond doubt the deep belief in stan­

dards which is shared by CAD users and vendors in both the

Systems and IC markets, but it also has demonstrated remark­

able progress in the first three years of its life: both in the

production of standards specifications, and in the creation of live

demonstrations of interoperability between frameworks and

tools at the Design Automation Conferences of 1990 and 1991.

Increasingly strong financial support augers well for the

continued success of CFr.

148 CAD Frameworks: Integration Technology for CAD

Those who have worked closely with CFI recognize both the

extraordinary level of progress which has been achieved in three

years, and also the frustrations which come from the negotiation

process. In this chapter we examine the origins of CFI; its partic­

ipation; the organizational structure of the organization, and the

technical activities undertaken by CFr.

10.2 The Origins of CFI

The CAD Framework Initiative was the brainchild of Motorola

and EDA Systems, Inc.!, the first and possibly last company to

build an entire business on the framework concept. Such an

organization was attractive to EDA Systems also because of the

publicity and interest which was expected to surround such an

organization. Motorola, an early purchaser of the EDA Systems

product - proposed the standards body on the basis of their expe­

rience of the high cost of tool integration. These two companies

sponsored the inaugural meeting.

CFI was inaugurated by a meeting held in Santa Clara on May

23rd 1988. At this meeting, thirty-eight companies were repre­

sented. Several companies spoke about the difficulties they had

experienced in building and managing design environments.

1. EDA Systems Inc. has subsequently been purchased by Digital
Equipment Corporation

THE CAD FRAMEWORK INITIATIVE 149

These motivational speeches struck a chord with the audience,

and it became clear that the issue was well understood - even if

the solutions were not.

Among the early supporters of CFI, the Microelectronics and

Computer Technology Consortium (MCC) was one of the most

influential. The MCC CAD Program had at that time been in

existence for some years, and had produced a prototype software

system of great complexity embodying a sophisticated object­

oriented architecture for data and tool management, along with

a user interface and integrated editing tools. This technology

having failed to meet the real needs of their shareholders, MCC

had embarked upon a new framework development plan,

building on software from the University of California at

Berkeley: the OCT /VEM system [HAR86]. MCC was strongly

interested in making a visible contribution to the CAD and semi­

conductor industries, and they rapidly took on leadership roles

in the fledgling CFI organization.

As it has matured, CFI has continued to receive strong support

from CAD vendors such as Cadence Design Systems, Mentor

GraphiCS, Racal-Redac and ViewLogic. These companies are

motivated both by the need to meet customer expectations with

regard to standards, and also by the perceived benefits of tool

interoperability for both internal development and external

linkage.

150 CAD Frameworks: Integration Technology for CAD

Hardware vendors - especially the major players in the engi­

neering workstation market - have also taken a strong interest in

CFI. Digital Equipment Corporation, Hewlett-Packard, IBM and

Sun Microsystems, for example, are active both because of their

interest in providing hardware and software products which

optimally support computer-aided engineering and because

they are chip and system designers, standing to benefit from the

standardization efforts. As has been suggested previously, some

of the services we associate with a CAD Framework could well

be provided as part of an engineering computer's operating

system.

A third class of participants is the ASIC system provider. Typi­

cally, an ASIC development system involves a well-defined

design methodology, related to a specific set of manufacturing

technologies, supported by a carefully integrated set of CAD

tools. The ASIC designer is frequently less expert in CAD tool

use than a professional integrated circuit designer, and such

people need a design environment which reduces the opportu­

nity for error. The cooperative nature of ASIC design, where the

ASIC vendor and the customer together produce the final

product, also requires clear direction for each contributor to

minimize the risk of errors associated with miscommunication.

Building such an environment from a heterogeneous set of tools

- some purchased, some specially built - remains an expensive,

tedious and error-prone task. Subsequent modification of the

THE CAD FRAMEWORK INITIATIVE 151

environment can involve changing thousands of lines of integra­

tion code. ASIC system providers are keenly interested in

standards which will simplify tool integration, data manage­

ment and inter-tool communication.

Finally, end users have become increasingly concerned with CFI.

At the June 1991 meeting, held in conjunction with the Design

Automation Conference in San Francisco, a CFI Users Group met
for a full day, to hear about CFI's progress, and to offer its special

perspective to the organization at large. This is an important

development, because it provides a mechanism through which

CFI is kept honest with respect to the needs of the final

customers of framework technology.

Thus, over three years, CFI has grown to take in hardware and

software providers; system integrators and end users. It is an

extremely democratic organization which is making a strong

impact on the entire electronic CAD industry.

10.3 Goals and Deliverables

CFI's goals are centered around achieving tool interoperability.

This will be accomplished by defining a set of programming

interfaces with which tools may be integrated. Each part of the

framework architecture is defined both in terms of its function

152 CAD Frameworks: Integration Technology for CAD

and its interfaces, in order that tools may reliably be constructed

to use the interfaces and thus be integrated with framework

services.

CFI does not attempt to specify the detailed architecture of a

framework, because it is believed that this is an area for research

and the basis for some competitive differences between commer­

cial products. So long as a framework provides the functional

capabilities, represented by the standard set of interfaces, it may

be regarded as being CFI-compliant.1

The first sets of formal deliverables, known respectively as CFI

1.0 and CFI 2.0, are scheduled for release towards the end of 1992

and 1993 respectively.

10.4 The CFI Organization

The structure of CFI was developed at the inaugural meeting,

and until mid-1991 went mostly unchanged. It is detailed in

Figure 10.1.

1. At this writing, the notion of CFI compliance is not well-defined,
because there are no fully ratified standards. The typical practice
of companies who wish to underline their alignment with CFI is
to declare their conformance with a draft standard, especially
those used at the DAC demonstrations.

THE CAD FRAMEWORK INITIATIVE 153

Figure 10.1: CFI Organization

The CFI Board is the formal steering group within CFI. It is popu­

lated by nine executives from the companies which make up

CFI's membership. The Technical Advisory Board is made up of

representatives from the academic world, who are consulted

periodically on questions of approach. The Technical Coordination
Committee, or TCC, is made up of the chairpersons of the Tech­

nical Subcommittees. The TCC acts as a gate through which draft

standards must pass before going to vote by CFI as a whole; it

also performs a tactical and organizational role in facilitating

154 CAD Frameworks: Integration Technology for CAD

progress within the Technical Subcommittees. Finally the Tech­
nical Subcommittees, or TSCs, are the bodies which do the real

work of generating standards. Each major area in the framework

domain is the responsibility of a particular TSC, and they

produce draft standards as the result of discussion and proposals

from the membership. CFI uses Working Groups extensively to

tackle specific tasks within the overall mandate of the TSC. This

allows some parallelization of the standardization process.

CFI was started as a volunteer organization. However, it became

clear at an early stage that in order to be fully effective, CFI

would need permanent staff. To this end, Andy Graham,

formerly head of Motorola's Design Automation Business Unit

and a supporter of CFI from the very first, was appointed to the

first full-time staff position. Since then, with the creation of

corporate sponsorships, further appointments have been made.

The permanent staff perform a number of important functions:

marketing CFI; planning and coordinating progress and deliver­

abIes; providing technical and logistical support to the annual

DAC demonstration projects.

For the first eighteen months, CFI meetings were held quarterly.

This proved to be insufficient, however, and so a program of

eight technical meetings each year with separate meetings for the

TCC and the Board was developed. Meetings typically last five

days, including TSC, Working Group and TCC meeting time.

THE CAD FRAMEWORK INITIATIVE 155

During 1991, the notion of Pilot Projects was developed as a
means of obtaining practical verification of the utility of the stan­

dards proposed by CFI. Each pilot project involves CAD tool

developers and users, and are intended to progress through spec­

ification, prototyping and demonstration phases. This emphasis

on practical work in addition to the meetings which character­

ized CFI's early work is a welcome progression, as it allows for

debugging of proposed standards by both developers and users

in the context of a real need.

The need for CAD Framework standards is by no means limited

to the United States of America. European and Japanese
members now represent 19% and 25% respectively of the total

membership. While in general communication between the US

and other groups has been less than ideal, an annual European

meeting to which the US membership is specifically invited has

improved things somewhat. Framework development in Europe
is primarily taking place within research organizations - partic­

ularly JESSI - while there is strong commercial representation

within the US.

10.5 Tangible and Intangible Benefits

Among the tangible benefits, the draft standards and the demon­

strations clearly show the value of CFI's work. These are the

achievements in which one most easily sees the importance of

156 CAD Frameworks: Integration Technology for CAD

CPl. There are also a number of intangible benefits which are

worth noting. CPI causes the major players in the CAD frame­

work business to come together, several times each year, to

discuss the future of their discipline. This has led to a great deal

of communication between groups who for competitive reasons

would have spent little time together without the impetus of CFI.

From this has gradual emerged a common vision of frameworks,

shared not only by suppliers of the technology, but also by the

user community. This is critical to the creation of a mature frame­

work business, as well as helping to ensure that the needs of

customers who wish to use tools from more than one supplier are

better met.

10.6 Technical Activities

The material included in this section is necessarily based on the

current status of CFI, and the status of each technical group will

change over time. The purpose of including this information

here is to provide a picture of the kinds of things which the tech­

nical community regards as important. The most significant

difference between the work described here and that covered by

the remainder of the book is that this work is rooted in a desire

to find solutions to framework problems which are viable as

commercial standards, rather than vehicles for research. This is

THE CAD FRAMEWORK INITIATIVE 157

not to suggest one is more important than the other; but simply

to emphasize that the goals and therefore the methods applied

are somewhat different.

Architecture

The original set of TSCs did not involve a group with responsi­

bility for the overall architecture of the Framework. This lack

soon became evident, however, as it was realized that the inter­

action between the services provided by each component was of

great significance. To this end a number of documents describing

the overall Framework architecture at a conceptual level have

been developed. Over the life of CFI the detailed picture of the

relationship between framework components has changed;

however CFI's reference architecture diagram (Figure 10.2) has

much in common with Figure 2.1.

Design Representation

The Design Representation TSC is concerned with the structure

and semantics of electronic design data. In many respects this

TSC has been the most successful. The primary reasons for this

are twofold: firstly it is very clear to everyone that a common

schema is a powerful aid to interoperability, and secondly this is

an area which is relatively well understood. Every CAD vendor

and most sophisticated users have implemented design data­

bases at one time or another.

158 CAD Frameworks: Integration Technology for CAD

Design Tools

Framework Applications

Portability
Services

Extension User Interface Storage
Language Toolkit Manager

Figure 10.2: CFI Reference Architecture

THE CAD FRAMEWORK INITIATIVE 159

The first version of the Design Representation Programming

Interface was used at the DAC-90 demonstration, and a second

version, which added bundles to the scalar capabilities of the

first version, was used in the DAC-91 demonstration. This

second version will be part of the eFI 1.0 standard.

Design Methodology Management

Because of the lack of industry-wide agreement about how to do

methodology management, the DMM group has focussed upon

a set of file formats which can be used to statically describe the

character of tool encapsulations, and tool run logs. The Tool
Encapsulation Standard is a useful contribution to framework

standardization, because it specifies a consistent and re-usable

representation for declarative information concerning the encap­

sulation of external tools, without specifying any details of the

implementation of the tool or the encapsulation itself. The Tool

Execution Log format is used as an archival record of tool execu­

tion: it may be written by a framework or by a tool, and it

provides an audit trail which may be used by post hoc design

analysis tools.

Inter-Tool Communication

Given the desire to build an environment from heterogeneous

tools, a means of communication between them is critical. CFI

has tackled this by specifying a protocol for inter-tool messaging,

160 CAD Frameworks: Integration Technology for CAD

along with a message dictionary, the semantics of which define a

language by which tools may communicate both procedural

information and data.

The first output from the ITC TSC was used as the basis of the

1991 DAC demonstration. Messages sent between tools and

frameworks provided by many different suppliers were illustrat­

ed. The specification for this technology will be part of the eFI 1.0

standard.

Operating System Interface

CFI has chosen to limit its standards for system interfaces to the

domain of the Unix operating system. So far, the Systems Envi­

ronment TSC has considered the choice of standard C libraries,

and the design of a standard error handling system for both tools

and framework.

User Interface

There can be few areas of software design which elicit such

strong responses as the design of user interfaces, from program­

mers and users alike. Unfortunately, the state of the art in

objective user interface quality measurement is still poor, and

subjective and political factors playa strong part in the standard­

ization process.

THE CAD FRAMEWORK INITIATIVE 161

There is broad agreement that user interface standards should be

based upon the X Window System, and that OSF's Motif look­

and-feel should be the basis of the standard. Sun Microsystems

has strongly argued that their user interface toolkit and style

guide, - OpenLookTM - should also be part of the standard. This

issue is characteristic of the nature of the standardization

process: vested interests must be recognized and handled in the

negotiation process.

Apart from these issues, work is proceeding with standards

proposals for the command language and for user interface

generation and customization.

Extension Language

As discussed in the previous chapter, CFI's Extension Language

Working Group has selected the Scheme Programming

Language [REE86] as the basis for the CFI-conformant extension

language, while also proposing that an alternative syntax be

defined for use by non-programmers, or those less familiar with

Lisp, from which Scheme is derived. The CFI extension language

is expected to be a part of the CFI 2.0 set of standards.

Continuing work includes specifying the interface between C

code and the extension language, and a variety of CAD-specific

extensions.

162 CAD Frameworks: Integration Technology for CAD

Technology CAD and
Component Information Representation

These two groups are new to CFI. They herald a widening of

CFI's scope from the ECAD domain. The motivation is that

although these areas are somewhat outside the original domain

of CFI, the problems encountered are similar to those to which

CFI is primarily addressed, and so some synergy is anticipated.

10.7 CFI in the Future

In three years the CAD Framework Initiative membership has

demonstrated an unprecedented level of cooperation between

traditionally competitive CAD tool suppliers, semiconductor

and system houses, and hardware vendors. In addition, the tech­

nical progress to date has been very encouraging, with

demonstrable standards for design representation, tool encapsu­

lation and inter-tool communication. Interest in CFI continues

high, and the plans for CFI 2.0 are very ambitious.

The CAD Framework Initiative has provided not only a meeting

ground for the development of standards, but also a hot-house

within which the flower of CAD system standards may burgeon

and grow with a rapidity little imagined by the initiators of the

organization.

11 SUMMARY

In this book we have tried to describe the broad range of issues

facing a CAD Framework designer. The past experiences of those

who have tried to solve this problem is an invaluable guide to

many of the trade-offs that must be made. However, we also

believe that there is no complete CAD Framework and that there

never will be. Technologies and understanding of the engi­

neering design problems are changing far too rapidly for any

system to meet all of the user and CAD tool needs for very long.

It is important that this fact be considered as paramount when

planning and developing a CAD Framework. The successful

examples of similar technologies from the past are ones that were

designed to evolve.

164 CAD Frameworks: Integration Technology for CAD

The development and use of standards, at all levels of the

system, is important if we are to leverage all of the industries -

computers, CAD tools, graphics hardware, software develop­

ment, etc. - that playa key role in CAD system development. But

standards can be a double-edged sword. They must be devel­

oped through, or from, use or they will inevitably not be able to

find the appropriate compromise among the hundreds or thou­

sands of competing factors which determine success.

11.1 Acknowledgments

We thank the members of the framework group at the Microelec­

tronics and Computers Corp., in particular Paul Painter, Sandy

Cavalli, Noel Strader and Laurence Brevard, for many helpful

discussions. We also thank Bob Broderson, Wendell Baker, Paul

Cohen, Rajiv Jain, Randy Katz, Peter Moore, Jan Rabaey, and

Mario Silva for helping us to understand many of the issues

presented in this book, as well as the needs of CAD designers.

Our work in the area of CAD Frameworks has been supported

since it began by DARPA and we would particularly like to

thank Maj. John Toole for his encouragement and support. We

also thank the Digital Equipment Corporation, Hewlett-Packard,

the Microelectronics and Computers Corp., and the Semicon­

ductor Research Corp. for their ongoing support. Finally, we

SUMMARY 165

would like to express our gratitude to Cadence Design Systems
and Objectivity for providing time and resources to pursue the

project in its final stages.

REFERENCES

[ALL90] W. Allen, D. Rosenthal, K. Fiduk, "Distributed Method­

ology Management for Design-in-the-Large" ,

Proceedings of ICCAD-90, pp. 346-349, November

1990.

[ALL91] W. Allen, D. Rosenthal and K. Fiduk, "The MCC CAD

Framework Methodology Management System",

Proceedings of the 28th ACM/IEEE Design Automa­

tion Conference, pp. 694-698, June 1991.

[AND89] P. Anderson and L. Philipson, "Movie - An Interactive

Environment for Silicon Compilation Tools", IEEE

Transactions in CAD of IC's and Systems, Vol 8, No.6,

pp. 693-701, June 1989.

168 CAD Frameworks: Integration Technology for CAD

[ANS85] Americal National Standards Institute, "American

National Standard for Information Systems Computer

graphics - Graphical Kernel System (GKS) Functional

Description", New York, NY, 1985.

[APP85] Inside the Macintosh, Addison-Wesley, Reading, Massa­

chusetts, 1985.

[AST76] M. M. Astrahan et aI, "System R: A relational approach

to data management," ACM Transactions on Database

Systems, Volume 1, pp. 97-137, 1976.

[BAR88] T. Barnes, "CODEM: The Cooperative Development

Model", unpublished paper, National Semiconductor

Corporation, 1988 .

[BAR90] T. Barnes, "SKILL TM: A CAD System Extension

Language", Proceedings of the 27th ACM/I'EEE

Design Automation Conference, pp. 266-271, June 1990.

[BEN82] J. Bennett, II A Database Management System for

Design Engineers", Proceedings of the 19th ACM/IEEE

Design Automation Conference, pp. 268-273, June 1982.

REFERENCES 169

[BEN80] J. Bentley, D. Haken, and R. Hon, "Fast Geometric

Algorithms for VISI Tasks", Proceedings of the IEEE

Compcon, pp. 88-92, Spring 1980.

[BIL83] G. Billingsley, "Program Reference for KIC", Report No.

UCB/ERL M83/ 62, Electronics Research Laboratory,

University of California at Berkeley, 1983.

[BOB81] D. Bobrow and M. Stefik, "The LOOPS Manual", Tech­

nical Report No. KB-VISI- 81-13, Knowledge Systems

Area, Xerox Palo Alto Research Center, 1981.

[BRE88] M. Breuer, et. al., "Cbase 1.0: A CAD Database for VISI

Circuits Using Object Oriented Techniques", Proceed­

ings of the IEEE ICCAD-88, pp 392-395, November

1988.

[BRE90] F. Bretschneider et ai, "Knowledge Based Design Flow

Management", Proceedings of ICCAD-90, pp. 350-353,

November 1990.

[BR075] F. Brooks, Jr., The Mythical Man-Month, Addison-Wesley,

Reading, Mass., 1975

170 CAD Frameworks: Integration Technology for CAD

[BR085] M. Brown, ''Understanding PHIGS: The Hierarchical

Computer Graphics Standard", Proceedings of

Template, San Diego, California, 1985.

[BR087] J. Brouwers and M. Gray, "Integrating the Electronic

Design Process", VISI Systems Design, June 1987.

[BUS85] M. Bushnell and S. Director, ''Ulysses -- An Expert­

System Based VLSI Design Environment", Proceedings

ofISCAS-85, pp 893-896, 1985.

[BUS86] M. Bushnell and S. Director, ''VISI CAD Tool Integra­

tion using the ULYSSES Environment", Proceedings of

the 23rd ACM/IEEE Design Automation Conference,

pp. 55-61, June 1986.

[BUS87] M. Bushnell, ''Ulysses -- An Expert-System Based VISI

Design Environment", Ph. D. Disseration, Department

of Electrical Engineering, Carnegie-Mellon University,

Pittsburgh,1987.

[BUS89] M. Bushnell and S. Director, "Automated Design Tool

Execution in the Ulysses Design Environment", IEEE

Transactions on CAD for IC's and Systems, Vol. 8, No.

I, pp. 279- 287, March 1989.

REFERENCES 171

[CAS90] A. Casotto, A. R. Newton, and A. Sangiovanni-Vincen­

telli, "Design management based on design traces",

Proceedings of the 27th ACM/IEEE Design Automa­

tion Conference, pp. 136-141, June 1990.

[CFI91] T. J. Barnes, editor, "Extension Language: Core

Language Selection", CAD Framework Initiative Docu­

ment # ARCH-91-G-1, May 1991.

[CHE76] P.P.-S, Chen, "The entity-relationship model: Toward a

unified view of data", ACM Transactions on Database

Systems, Vol 1, pp. 9-37, March 1976.

[CHE80] P. P.-S. Chen, editor, Entity-Relationship Approach to

Systems Analysis and Design, North-Holland,

Amsterdam 1980.

[CHE88] G. Chen and T. Parng, "A Database Management

System For A VLSI Design System", Proceedings of the

25th ACM/IEEE Design Automation Conference, pp.

257-262, June 1988.

[CH088] H. Chou and W. Kim, ''Versions and Change Notifica­

tion in an Object-Oriented Database System",

Proceedings of the 25th ACM/IEEE Design Automa­

tion Conference, pp. 275- 281, June 1988.

172 CAD Frameworks: Integration Technology for CAD

[CHU83] K. Chu, et. al., ''VDD - A VLSI Design Database

System" , ACM SIGMOD Conference on Engineering

Design Applications, 1983.

[DAN87] J. Daniell, A. Dewey and S. Director, II Artificial Intelli­

gence Techniques: Expanding VLSI Design Automation

Technology", Research Report No. CMUCAD- 87-38,

SRC-CMU Research Center for Computer-Aided

Design, Carnegie-Mellon University.

[DAN89] J. Daniell, S. Director, II An Object Oriented Approach to

CAD Tool Control Within a Design Framework",

Research Report No. CMUCAD-89-15, SRC-CMU

Research Center for Computer-Aided Design, March

1989.

[DEC89] Guide to the XUI User Interface Language Compiler, Digital

Equipment Corporation, 1989.

[DEM87] L. Demers, P. Jacques, S. Fauvel and E. Cerny,

"CHESHIRE: An Object-Oriented Integration of VLSI

CAD Tools", Proceedings of the 24th ACM/IEEE

Design Automation Conference, pp 750-756, June 1887.

REFERENCES 173

[DEW86] P. Dewilde, Editor, Data Management for Hierarchical and

Multiview VLSI Design, Delft University Press, Delft,

The Netherlands, 1986.

[EBE89] C. Ebeling and Z. Wu, 'WireLisp: Combining Graphics

and Procedures in a Circuit Specification Language",

Proceedings of the 1989 IEEE International Conference

on Computer-Aided Design, pp. 322-325, November,

1989.

[ECK88] D. Ecklund and F. Tonge, "A Context Mechanism to

Control Sharing in a Design Database", Proceedings of

the 25th ACM/IEEE Design Automation Conference,

pp. 344- 350, June 1988.

[EIA87] EDIF Steering Committee, EDIF Electronic Design Inter­

change Format Version 2 00, Electronic Industries

Association, 1987.

[FEL79] S. I. Feldman, "Make - A program for maintaining

computer programs", UNIX Programmers Manual, Bell

Laboratories, Murray Hill, New Jersey, 1979.

[FLA87] B. Fladung, The XLISP Primer, Prentice-Hall, Engle­

wood Cliffs, New Jersey, 1987.

174 CAD Frameworks: Integration Technology for CAD

[FOL82] J. Foley and A. van Dam, Fundamentals of Interactive

Computer Graphics, Addison-Wesley, Reading Mass.,

1982.

[FOL84] J. Foley, Victor Wallace and Peggy Chan, ''The Human

Factors of Computer Graphics Interaction Techniques",

IEEE Computer Graphics and Applications, pp 13-46,

November 1984.

[GOO83] J. R. Goodman, "Using cache memory to reduce

processor-memory traffic", International Symposium

on Computer Architecture, pp. 124-131, June 1983.

[GOS86] J. Gosling, "SunDew - A Distributed and Extensible

Window System", Methodology of Window Manage­

ment (Proceedings of an Alvey Workshop at Cosener's

House), Springer-Verlag, 1986.

[GOT87] K Gottheil, et. aI., ''The Cadlab Workstation CWS - An

Open, Generic System for Tool Integration", Cadlab

Report 3/87, Padderborn, Germany, December 1987.

[GUP89] R. Gupta, et. al., /I An Object-Oriented VLSI CAD

Framework: A Case Study in Rapid Prototyping", IEEE

Computer, Vol. 22, No.5, pp. 28-37, May 1989.

REFERENCES 175

[GUT84] A. Guttman, "New Features for a Relational Database

System to Support Computer Aided Design", Ph. D.

Dissertation, Department of Electrical Engineering and

Computer Sciences, Univesity of California, Berkeley,

1984.

[HAR86] D. Harrison, et. al., "Data Management and Graphics

Editing in the Berkeley Design Environment," Proceed­

ings of the IEEE ICCAD-86, pp. 20-24, November 1986.

[HEL75] G. Held, et. al., INGRES - A Relational Data Base

System, Proceedings of the AFIPS, Vol. 44, pp. 409-416,

1975.

[HOR67] G. Hornbuckle, "The Computer Graphics/User Inter­

face", IEEE Transactions on Human Factors in

Electronics, Vol. 8, No. I, pp. 17-22, March 1967.

[INT85] "VHDL Language Reference Manual, Version 7.2",

Technical Report No. IR- MD-045-2, Intermetrics, Inc.,

Bethesda, MD, August 1985.

[JOH89] N. Johnson, AutoCAD: The Complete Reference, Osbourne

McGraw /Hill, Berkeley, CA, 1989.

176 CAD Frameworks: Integration Technology for CAD

[]UL86] C. Jullien, et. al., 1/ A Database Interface from an Inte­

grated CAD System", Proceedings of the 23rd ACM/

IEEE Design Automation Conference, pp. 760-767, June

1986.

[KAH87] H. Kahn; SIDESMAN: A CAD System for VLSI Design",

Intelligent CAD Systems 1: Theoretical and Methodological

Aspects, North-Holland, 1987.

[KAH87b] H. Kahn; "Do Engineers REALLY need Artificial Intelli­

gence", IEEE International Workshop on AI -­

Applications to CAD-Systems for Electronics, October

1987.

[KAT85] R. Katz, Information Management for Engineering Design,

Springer- Verlag, 1985.

[KAT86] R. Katz, et. al., "A Version Server for Computer-Aided

Design Data", Proceedings of the 23rd ACM/IEEE

Design Automation Conference, pp. 27-33, June 1986.

[KEL84] K. Keller, "An Electronic Circuit Framework", Report

No. UCB/ERL M84/54, Electronics Research Labora­

tory, University of California at Berkeley, 1984.

REFERENCES

[KER87] B. Kernighan and D. Ritchie; The C Programming

Language, Prentice-Hall, Englewood Cliffs, NJ, 1978.

177

[KRU90] J. Krueger, "Experiences with an Extension Language

for Engineering Information Systems", unpublished

paper, Honeywell Systems and Research Center,

Minneapolis, Minnesota.

[LAI86] L Lai and G. Wood, "SKILL - An Interactive Procedural

Design Environment", Proceedings of the CICC '86, pp.

544-547.

[LIC62] J. Licklider, "On-line Man-machine Communication",

Proceedings of the Spring Joint Computer Conference,

Vol. 21, pp. 113-128, 1962.

[LIN86a] J. L. Linn and R. I. Winner editors, The Department of

Defense Requirements for Engineering Information Systems:

Volume 1, The Institute for Defense Analysis, Alexan­

dria, Virginia, 1986.

[LIN86b] J. L. Linn and R. I. Winner editors, The Department of

Defense Requirements for Engineering Information Systems:

Volume 2, The Institute for Defense Analysis, Alexan­

dria, Virginia, 1986.

178 CAD Frameworks: Integration Technology for CAD

[MCC88] J. McCormack, P. Asente and R. Swick, "X Toolkit

Intrinsics - C Language Interface", Massachusetts Insti­

tute of Technology, 1988.

[MCC89] "c Module Editor: Version 2.0 User's Guide", MCC

Technical Report No. CAD- 043-89, Microelectronics

and Computer Corporation, 1989.

[MEY88] B. Meyer, Object-Oriented Software Construction, Pren­

tice-Hall, New York, NY, 1988.

[MIL89] J. Miller et aI, "The object-oriented integration method­

ology of the Cadlab work station design environment",

Proceedings of the 26th ACMjIEEE Design Automa­

tion Conference, Las Vegas, Nevada, pp. 807-810, 1989.

[MIT85] T. Mitchell, L. Steinberg and 1. Shulman, "A Knowl­

edge-Based Approach to Design", LCSR-TR-65,

Department of Computer Science and Laboratory for

Computer Science Research, Rutgers University,

January 1985.

[MOO86] D. Moon, "Object-Oriented Programming with

Flavors", Proceedings of the ACM OOPSLA-86, pp. 1-8,

1986.

REFERENCES

[NEW73] W. Newmann and R. Sproull Principles of Interactive

Computer Graphics, McGraw /Hill, 1973.

179

[NEW81] R. Newton et ai, "Design Aids for VlSI: The Berkeley

Perspective", IEEE Transactions on Circuits and

Systems, vol CAS-28. pp. 668-680, July 1981.

[OUS81] J. Ousterhout, "Caesar: An Interactive Editor for VlSI

Layouts", VlSI Design, Vol. 2, No.4, Fourth Quarter

1981.

[OUS84a] J. Ousterhout, "Corner Stitching: A Data-Structuring

Technique for VLSI Layout Tools," IEEE Transactions

on CAD for IC's and Systems, Vol. 3, No.1, pp. 87-100,

January 1984.

[OUS84b] J. Ousterhout, et. aI., "Magic: A VlSI Layout System",

Proceedings of the 21st ACM/IEEE Design Automation

Conference, pp. 152-159, June 1984.

[PAS89] W. Paseman, "Tools on a New Level", Unix World, pp.

69-77, June 1989.

PIL89] R. Piloty et aI, "IREEN(V3.13) - Data base concepts and

representation of VHDL design data", Technische

180 CAD Frameworks: Integration Technology for CAD

Hochschule Darmstadt No. RO 89/3, Darmstadt,

Germany, June 1989.

[REE86] J. Rees et ai, "Revised3 report on the algorithmic

language scheme", ACM Sigplan Notices, vol 21 No.

12, December 1986.

[ROB81] Roberts, et. al., "A Vertically Organized Computer­

Aided Design Database", Proceedings of the 18th

ACM/IEEE Design Automation Conference, pp. 595-

602, June 1981.

[ROG85] c. Rogers, et. al., "MCNC's Vertically Integrated

Symbolic Design System", Proceedings of the 22nd

ACM/IEEE Design Automation Conference, pp. 62-68,

June 1985.

[ROS85] J. Rosenberg, "Geographical Data Structures

Compared: A Study of Data Structures Supporting

Region Query" , IEEE Transactions on CAD for IC's and

Systems, Vol. 4, No.1, pp. 53-67, January 1985.

[RUB87] S. Rubin, Computer Aids for VLSI Design, Addison­

Wesley, 1987.

REFERENCES

[SCH86] R. Scheifler and J. Gettys, "The X Window System",

ACM Transactions on Graphics, Vol. 5, No.2, pp. 79-

109, April 1986.

[SCH88] R. Scheifler, J. Gettys and R. Newman, X Window

System: C Library and Protocol Reference, Digital Press,

Bedford, Mass., 1988.

181

[51080] T. Sidle "Weakness of Commercial Database Manage­

ment Systems in Engineering Design" , Proceedings of

the 17th ACM/IEEE Design Automation Conference,

June 1980.

[SIE84] D. Sieworek, et. al., "DEMETER Project: Phase 1

(1984)", Research Report CMUCAD-84-35, SRC-CMU

Center for Computer-Aided Design, Department of

Electrical and Computer Engineering, Carnegie-Mellon

University, July 1984.

[SIL89] M. Silva, et. al., "Protection and Versioning for the OCT

Environment", Proceedings of the 26th ACM/lEEE

Design Automation Conference, pp. 264-262, June 1989.

[SMl75] c. Smith, "Calma's GPL TM Language - A Program

Language for Custom, Turnkey Graphic Systems",

Proceedings of the Fall 1975 IEEE Compcon, 1975.

182 CAD Frameworks: Integration Technology for CAD

[SMI82] D. Smith, et. a1., "Designing the Star User Interface",

Byte, pp. 242-282, April 1982.

[SMI88] W. Smith, et. al., "Flexible Module Generation in the

FACE Design Environment", Proceedings of the IEEE

ICCAD-88, pp. 396-399, November 1988.

[STA87] R. Stallman, GNU Emacs Manual, Sixth Edition, Emacs

Version 18, Free Software Foundation, March 1987.

[STE75] G. L. Steele and G.J. Sussman, "Scheme: An Interpreter

for the Extended Lambda Calculus", Memo 349, MIT

Artificial Intelligence Laboratory, 1975.

[STE90] Guy L. Steele, Common Lisp: The Language, 2nd Edition,

Digital Press, Bedford, MA, 1990.

[STE84] L. Steinberg and T. Mitchell, "A Knowledge Based

Approach to VLSI CAD: The REDESIGN System",

Proceedings 21st ACM/IEEE Design Automation

Conference, pp. 412- 418, June 1984.

[STR87] B. Stroustrup, The C++ Programming Language,

Addison-Westley Publishing, Reading, MA., July, 1987.

REFERENCES 183

[SUT63] I. Sutherland, "Sketchpad - A Man-machine Graphical

Communication System", Proceedings IFIPS Spring

Joint Computer Conference, pp. 329-345, 1963.

[SWA88] G. Swan, et. al., "Design Management in a Workstation

Environment", Proceedings of the 22nd Annual Hawaii

International Conference in the System Sciences,

January 1988.

[TES81] L. Tesler, "The Smalltalk Environment", Byte, pp. 90-

147, August 1981.

[TIC82] W. TIchy, "Design, Implementation, and Evaluation of a

Revision Control System", Proceedings of the 6th IEEE

International Conference on Software Engineering,

Tokyo, September 1982.

[ULL82] J. Ullman, Principles of Database Systems, Computer

Science Press, Rockville, MA, 1980

[WEI86] S. Weiss, et. al., "DOSS: A Storage System for Design

Data", Proceedings of the 23rd ACM/IEEE Design

Automation Conference, pp. 41-47, June 86.

184 CAD Frameworks: Integration Technology for CAD

[WID88] J. Widya, et. al., "Concurrency Control in a VLSI Design

Database", Proceedings of the 25th ACMjIEEE Design

Automation Conference, pp. 357-362, June 1988.

[WOL88] P. v. d. Wolf and T. G. R. v. Leuken, "Object type

oriented data modeling for VLSI data management",

Proceedings of the 25th ACM/IEEE Design Automa­

tion Conference, Anaheim, California, pp. 351-356, June

1988.

[WOL89] W. Wolf, "How to Build a Hardware Description and

Measurement System on an Object-Oriented Program­

ming Language", IEEE Transactions on CAD of IC's

and Systems, Vol 8, No.3, pp. 288-301, March 1989.

[WON79] S. Wong and W. Bristo, "A Computer Aided Design

Database" Proceedings of the 16th ACMjIEEE Design

Automation Conference, June 1979.

[ZIP85] R. Zippel and C. Clark, "Schema: An Architecture for

Knowledge Based CAD", Research Report VLSI Memo

No. 85-271, Department of Electrical Engineering and

Computer Science, Mass. Institute of Technology,

October 1985.

INDEX

A
access control 55

Ada. 127

Algol. .. . 125

alternatives. 64

Ample 124, 125

application interfaces. .. 103

Applicon. .. 109

architecture 157

AutoLisp 123

c
C (programming language)
CAD Framework Initiative.

. 125

.. 13, 142, 147

186 CAD Frameworks: Integration Technology for CAD

architecture 157
benefits. . . 155
CFI 1.0 152
component information representation
design methodology management .
design representation .
futures
goals and deliverables . . .
inter-tool communication .
organization.
participants
pilot projects.
systems environment.
technology CAD
user interface .

CAD Frameworks.
components .
definition . . .
evolution
first commercial use
openness
operating system analogy .
standardization. .
users ..

CADWELD .. .
CALMA
CFI 1.0 standard ..
CFI, see CAD Framework Initiative
checkpointing .
CIF ...
CODEM

162
80, 159

157
162
151
159
152
150
155
160
161
160

2,7,139
2

3

4

11

9

2

13
2

79,80
108
152

. 54

. 5

141

INDEX

Common Lisp.
component information representation.
Computervision.
conceptual scheme, see schema

187

126,127
162
108

consistency, database 53

D
data formats

CIF 5
EDIF ... 46
maintainability 4
netlists ... 8

proprietary 4
SDL 6
translation. 4
VHDL ... 46

data management. 6
access control . 55
alternatives .. 64
checkpointing . 54
locking 67
multiple users. 67
name resolution. 59
physical vs. logical . 59
terminology. . . 30
versioning 64

data representation
definition 33
evolution 9,32

188 CAD Frameworks: Integration Technology for CAD

manipulation
databases

........................... 33

ad hoc
and design complexity.
architecture
CFI standardization
commercial
consistency . . .
distributed. . . .
for large designs
models
object-oriented
performance. .
relational. . . .
reusable components.
schema
security
terminology . .
transactions . .

DBMS, see databases
DDL, see data representation, definition .
DDM, see data management
DEMETER

32

8

8

157

52

53

61

61

31
11,12,58

55

56

63

33

54

30
53

. 33

. 91

design data management, see data management
design flow management, see design methodology management
design history . 64

design management, see data management and design
methodology management 21

design methodology management
benefits. . . . 88

CFI standard 159

INDEX

dependencies
design flow engine .
design planning.
flow description .. .
MMS
project management .
standardization . . .

Designer's Workbench . .
digitization tablets
distributed databases, see databases, distributed
DML, see data representation

manipulation
DMS, see data management

189

89

97

94

95

79,92

22

• 99

7

108

. 33

~.••...•......•.•. 59

E
E (extension language) .
EDIF

see also data formats
ELECTRIC
emacs
encapsulation, see tool encapsulation
Engineering Information System (EIS)
expert systems, see knowledge-based techniques
extension language .

applications .
benefits
commercial . . .
flight recorders . .

124,125

11,46

. 94

123

13, 127

35,121,161

131

134

123

122

190 CAD Frameworks: Integration Technology for CAD

future directions

language-based design.

macros ...

prototypes.

requirements

F

135

132

122

126

128,130

flight recorders .. 122

framework components

design data management

extension language. . . .

operating system services .

tool integration and encapsulation .

framework quality test.

frameworks, see CAD Frameworks

Franz Lisp

G
Genie.

GPL ..

Graphics Kernel System

Graphics Toolkits. . .

graphics workstations

21

35

19

20

3

124

123,124

124,125

113

114

109

INDEX

H
Hardware Description Languages
HAWK
HDL, see hardware description languages
history of a design
human factors.
hypermedia

I
implementation .
lNGRES
interactive graphics.
inter-tool communication

CFl standard
lTC, see inter-tool communication

K

191

• 133

SO, 81

· 64
102

119

139

· 55
107

159

knowledge-based techniques . 93

L
light pens.
LightLisp.
locking ..
look and feel (user interface). . .

.. 108

127,128

· 67
.. 103

192 CAD Frameworks: Integration Technology for CAD

M
macros.
MAGIC.
maintainability
MCC
message passing.
MMS
multiple-window interfaces .

N
name binding

· 122

SO, 81

.. 4

127,149

· . 12
79,92

• 110

static and dynamic. 62

name resolution. 59

name translation 60

netlists, see data formats
NSE 90

o
object identifiers.
object-based descriptions.
object-oriented databases, see databases, object-oriented
OCT
OctLisp
OlD, see object identifiers
OLAF

59

12

144,149

.. 128

126,127

INDEX

openness
operating system interface.

p
performance, database .
PHIGS
PowerFrame.
programming environments.
project management . . .
proprietary data formats.

R
REDESIGN ..
relational databases. . .
reusable components. .

193

· 9
. • . . .• 160

. ... 55

. .• 114

. 79,81,91

.• 104

22

• .• 4

93

56

63

rule-based systems, see knowledge-based techniques

s
SCHEMA.
schema.
Scheme ..
SOL
security, database. . .
Sidesman
SKETCHPAD

• 93

· 33
127

6

· 54

• 93
107,121

194 CAD Frameworks: Integration Technology for CAD

SKILL
Software Backplane. .
standardization

openness

T

123,124

91

13

9

technology CAD.• 161

TECO
tool encapsulation.
tool flow, see methodology management
tool management . .

characterization.
control
encapsulation . .
execution status.
integration.
invocation
selection

transactions
translator-based integration .
translators

u

. • • • • •• 123

· . . •. 77,92

· •..... 78

. SO

· 20,78,92, 117

· ..•.•. 85

117

SO

. •... 93

53

4

4

ULYSSES. 79, SO, 91

upward compatibility 73

user interfaces. 101

application. .. 103

INDEX

CFI standard

history

look and feel.

modern

195

160

105

103

111

users. .. 2

v
VEM .. 81, 144, 149

VemLisp .. 128

versioning . 64

VEXED 93

VHDL • .. , 11,46

see also data formats

w
widgets. .. 115

work-flow control. 93

x
X Window System .. 114

XLISP. .. 124

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0033002e00310029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

