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FOREWORD 

When it comes to frameworks, the familiar story of the elephant 

and the six blind philosophers seems to apply. As each philoso­

pher encountered a separate part of the elephant, each 

pronounced his considered, but flawed judgement. One blind 

philosopher felt a leg and thought it a tree. Another felt the tail 

and thought he held a rope. Another felt the elephant's flank and 

thought he stood before a wall. 

We're supposed to learn about snap judgements from this alle­

gory, but its author might well have been describing design 

automation frameworks. For in the reality of today's product 

development requirements, a framework must be many things to 

many people. 
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As the authors of this book note, framework design is an optimi­

zation problem. Somehow, it has to be both a superior rope for one 

and a tremendous tree for another. Somehow it needs to provide 

a standard environment for exploiting the full potential of 

computer-aided engineering tools. And, somehow, it has to make 

real such abstractions as interoperability and interchangeability. 

For years, we've talked about a framework as something that 

provides application-oriented services, just as an operating 

system provides system-level support. And for years, that simple 

statement has hid the tremendous complexity of actually 

providing those services. 

Until this book, the knowledge of just how a framework will actu­

ally accomplish its goals has been scattered - in professional 

papers, in documents of the CAD Framework Initiative, in the 

minds of industry experts such as the authors themselves. With 

this book, however, anyone whose work is (or will be) touched by 

frameworks will gain an appreciation of the breadth and depth of 

the problem - and, most important, the methods of its solution. 

And the authors also provide us with some very important 

lessons. One of the most important is the authors' warning against 

Brooks' "second system syndrome," where we sometimes attempt 

too much the second time around, because we've learned just 
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enough from the first experience to be dangerous. As CFI frame­

work standards diffuse through the industry, this is an apt 

warning for developers and users against expecting too much too 

soon. 

But there is one thing we can expect. Today's emphasis on Elec­

tronic CAD Frameworks is only the beginning. Electronic CAD 

Frameworks are a pragmatic response to a burning industry need. 

But they're also a reflection of the industry's broader desires: to 

gain better leverage from its investment in design automation 

tools and systems - for all aspects of product development, 

including electronics design as well as mechanical design and 

software design. 

If standards efforts such as those in progress within CFI point the 

way to this grander vision, it will be possible because of the 

broader appreciation of framework technologies afforded by 

books such as this. 

Andy Graham 

President 

CAD Framework Initiative, Inc. 
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1 INTRODUCTION 

It has now been over a quarter century since the computer was 

introduced as an important tool in the design of integrated 

circuits (IC's) and systems and over the past decade it has 

become indispensable. Along with the rapid growth in the 

complexity of integrated circuits and digital systems has come 

an even more rapid growth in the complexity of the software 

tools and associated data needed to represent a design. A typical 

Computer-Aided Design (CAD) or Computer-Aided Engi­

neering (CAE) system today consists of over one million lines of 

source code and many CAD systems contain over ten million 

lines of code. The data needed to describe a state-of-the-art inte­

grated circuit, representing about 500,000 equivalent logic gates 

or a million transistors, can exceed two gigabytes. While the 

CAD tools themselves are essential to the design process, the 

management of such vast amounts of data and its presentation, 

in a useful and efficient form, to CAD programs, to designers, 

and to manufacturing equipment alike, has become a major issue 

in the electronics industry. 



2 CAD Frameworks: Integration Technology for CAD 

1.1 The Nature of a CAD Framework 

The term CAD Framework has come to mean all of the underlying 

facilities provided to the CAD tool developer, the CAD system 

integrator, and the end user (IC or system designer) which are 

necessary to facilitate their tasks. 

Broadly speaking, these three groups of people represent the 

users of the CAD Framework, each with their own needs and 

particular emphaSiS. The CAD Framework plays an analogous 

role in the development of engineering-specific, or even elec­

trical-engineering-specific, software systems to the role played 

by an operating system for the development of general-purpose 

software applications, or the role of a specific programming 

environment for software development in a particular program­

ming language. It represents a collection of mechanisms or 

facilities (programming libraries, extension languages, data 

management facilities, user interface facilities, etc.), at many 

different levels of abstraction, that are, to varying degrees, 

specific to the electronic CAD world. The use of those mecha­

nisms to develop a particular CAD system, optimized for a 
specific set of end-user needs, is then the task of the tool devel­

opers, tool integrators, and often the end users themselves. For 

example, a Framework might be used to configure a set of tools 

and to develop appropriate interfaces to support schematic 

capture, simulation, timing verification and test generation for 

gate arrays; or symbolic layout editing, layout compaction, veri­

fication, and mask-pattern generation for custom CMOS; or even 
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entry of a behavioral description, design partitioning into 

multiple chips, and design synthesis for a family of digital signal 

processors (DSPs). 

The major test of a CAD Framework is that it reduce the time and 

cost needed to develop or modify a CAD system such that it 
meets the needs of its end-users. Unfortunately, this seemingly 

simple test represents a very broad and difficult set of require­
ments, many of which represent interacting trade-offs, and most 

of which are evolving rapidly with time, as described later. 

Another important feature to note about both the definition of a 

CAD Framework and the test for success is that neither defini­

tion includes a particular set of features or architectural 

requirements. That is, there is no mention of such things as data­

base, editors, data representation, tool flow control or the like in 

either definition. The particular way one satisfies the test 

presented above has also evolved with time and will continue to 

do so as we learn more about the design process, as both the soft­

ware and hardware architectures of computer systems evolve, 

and as the needs and priorities of the end-users change. In other 

words, there will never be a "right answer" to the engineering 

Framework problem, only good answers and better answers! We 
believe that a clear understanding of this fact has a very impor­

tant influence on the approach one takes to the design of a CAD 
Framework, and that those who believe they know the "right 

answer," as many have believed in the past, are doomed to 

failure. By the time they have finished their development, either 

the needs of the end-user have evolved or the developers have 
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chosen an unacceptable set of trade-offs (e.g. performance 
versus memory requirements or flexibility). The most successful 

Frameworks developed to date have been designed with flexi­

bilityand easy modification as a key goal, from the early file and 

translator-based systems of a decade ago to the more sophisti­

cated Frameworks of today. 

1.2 The Evolution of CAD Frameworks 

In the 1960's, design data management and user interface was 

not a major issue for IC design - the entire database often 
consisted of a box of punched cards and a hand-drawn roll of 

mylar that the designer carried to the mask shop. In the early and 
mid 1970's, as circuit complexity increased, proprietary and tool­

dependent textual or binary data formats were developed to 

represent particular classes of design data, such as mask layout 

data (e.g. [CAL81]) and transistor or gate-level netlist descrip­

tions(e.g. [SZY76, NAG75]). Since most CAD programs were 

developed independent of one another and had their own input 

formats, coupling them together to form an integrated system for 

IC design involved writing translators to and from each 
program. In the worst case, for n programs, (n - 1)n translators 

would be needed, as illustrated in Figure 1.1. However, as the 

CAD tools evolved, their input and output formats changed 

along with them. As a result, it was often necessary to keep a 

family of translators for each program, with each translator 

corresponding to a different version of the input data format. 

Maintaining such a family of translators soon became a CAD 
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Translators 

Figure 1.1: Inter-tool data translation in the absence of 
standards 

5 

manager's nightmare! The number of translators can be reduced 

to a worst-case of 2n by choosing a common, central format and 

translating to and from that format, as shown in Figure 1.2. A 

number of de facto standard formats evolved in the late 1970's to 

meet the need for a common format and different companies 

standardized internally on one format for each class of data. In 

the mid and late 1970's, a number of public-domain standard 

formats were adopted of which the most successful examples are 

the CIF (Caltech Intermediate Form) [MEA79] for mask-level 
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Translators 

Figure 1.2: A common exchange format simplifies the transla­
tion problem 

layout descriptions and SDL (Stanford Design Language) 

[SDL76] for gate-level netlist descriptions. While such formats 

provide a consistent way of storing the design data, they provide 

no support for managing the data. Which copy is the latest 

version? Has the layout been changed since the schematic 

diagram was updated? If I change this cell, which cells that use 

it will be affected? It is the ability to answer such queries that 

differentiates a true data management system from a simple data 

repository. The data representation question - how the semantics 
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of the design information is represented in the computer - is 

addressed in Chapter 3, while the data management aspects of 

CAD Frameworks are discussed in Chapter 4. 

Collections of files and translators, where each CAD tool had its 

own user interface, operated autonomously, and read and wrote 

it's own file formats, formed the first primitive CAD Frame­

works. Though one can argue the effectiveness of such an 

approach, at the time such systems were the only way to link 

tools and users on a common design problem. In fact, this 

general approach is still in use in the majority of circuit and 

system design companies today. Though many end users rely on 

tum-key vendor-supplied CAD systems today, even some of 

these vendor-supplied systems still use this loosely-coupled 

approach. Over the years, a number of facilities have been added 

to improve the quality, data-management, and tool-flow aspects 

of such systems and an excellent early example of such work is 

the Designer's Workbench [ONE79]. 

In parallel with this work, a number of companies developed 

conventional database systems for managing their IC design 

data. Since the CAD tools all had their own user interface, only 

shared common operating-system resources at the level of a text­

based terminal or vector plot package, and since most operating 

systems only supported a single interactive task per user, it is 

understandable that early work on Frameworks focussed on the 

data management aspect. 
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Often the companies using conventional databases for IC design 

were the large computer or system houses who had experience 

with the use of database management techniques for discrete 

digital system design. These record-oriented database manage­

ment systems (DBMS) were developed to manage IC parts 

inventories, part location on standard printed circuit (PC) 

boards, and the connections among IC pins necessary to imple­

ment the logic schematic. These lists of connections, used to 

guide wire-wrap or stitch-weld machines, are generally referred 

to as netlists. While these companies found that the application 

of conventional relational, network, or hierarchical database 

management techniques [ULL82] was effective for structured, 

semi-custom design styles like gate-array and standard-cell, 

these approaches were not successful for custom design styles or 

in situations where the underlying process technology and 

design style was evolving rapidly [ROS80, WEI80]. Some of the 

specific reasons why these systems are not sufficient, even today, 

are described in more detail in Chapter 3. 

The same rapid increases in complexity that makes the use of 

conventional database management techniques difficult has 

made the need for a unified data management system critical, 

especially for full-custom or structured-custom design styles. No 

longer is the entire design process the responsibility of a small, 

tight-knit group but rather teams of system designers, logic 

deSigners, circuit designers, and layout technicians must all 

work together and share the vast amount of data representing a 

modem IC-based system. 
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The representations of IC design data, such as mask layout, sche­
matic diagrams, documentation, simulator input and output, are 

quite diverse and new data representations for this and other 

information are being developed continuously. This evolution 

requires a flexible data management system which can adapt 

readily to new design methods, while maintaining acceptable 

performance, and such a facility is a key component of an engi­

neering Framework. The state of developments for engineering 

design data management is presented in Chapter 4. In the past 

decade, the notion of procedural circuit design [JOH78, BAT80] 

and rule-based expert system technology have emerged as key 

components in the engineering design process. These paradigms 

have broadened the requirements for an engineering data 

management system. Each object in a design may be described 

by data, such as its mask layout, by a local procedure, such as a 

parameterized cell-generator description, by generic synthesis 

tools, such as a channel router or a placement program, or by a 

combination of all of these techniques. This issue is presented in 

more detail in Chapter 3 and Chapter 4. 

1.3 CAD Frameworks and Openness 

The topic of CAD Frameworks has received a great deal of atten­

tion in the past few years, motivated largely by end-users. As 

designs become more complex, the design data represents the 
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"life blood" of an IC or electronic system design company. If a 

particular design tool does not function correctly under certain 

conditions, or a workstation or mainframe computer fails, the 

problem can generally be overcome and work can proceed. 

However, if the design data were to be lost in the middle of a 

large design project, the cost could be astronomical. Not only 

would the investment in design effort be lost to that point but 

such a situation would also cost valuable time and a market 

window might be missed. This is one reason why most IC design 

companies have resisted trusting all of their data management 

tasks to a single vendor, particularly if it is not possible to 

archive all of the data in a non-proprietary format. In addition, 

once a company has committed their data to a particular 

vendor's system, they are "locked in" to that vendor unless there 

is a way of migrating the data to another system. Until recently, 

many system houses have used proprietary CAD systems to 

augment their internal efforts. That is, the turnkey system is used 

as a front-end for certain aspects of the design, the data is then 

transferred, usually via a common textual format, into the corpo­

rate design system for final checks and transfer to 

manufacturing. By using published textual data formats to 

represent the design information at certain stages, CAD vendors 

like Dazix, Mentor Graphics, and Viewlogic have provided a 

form of loosely-coupled openness that has met the needs of the 
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end user in many situations. Support for industry-standard data 

formats such as EDIF [EIA87] and, more recently, VHDL [INT85] 

have enhanced this capability. 

1.4 The Rise of Commercial CAD Frameworks 

The first vendor to use the term Framework in product marketing 

and to provide a more tightly-coupled integration of tools was 

SDA Systems, now called Cadence Design Systems. Cadence's 

Framework products, along with their extension language 

SKILLTM [BAR90] have found widespread use in the IC design 

market segment, and are increasingly seen in the systems busi­

ness. More recently, EDA Systems Inc. now owned by Digital 

Equipment Corporation) has developed a general-purpose CAD 

Framework [BR087], with emphasis on the tasks of integrating 

"foreign" tools into a single CAD system and managing the 

history of the design data. The EDA product played a major role 

in popularizing the Framework concept in the electronic CAD 

community. More recently Viewlogic, Mentor Graphics and 

Dazix have announced Framework products. 

1.5 The Impact of Object-Oriented Techniques 

As software systems continue to grow in size and complexity, 

programmers have turned to object-oriented approaches to code 

development and support (for example [M0086, TES81, STE83, 
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MEY89, STR78]). The next generation of workstations, with an 
order of magnitude increase in performance at the desk top for 

comparable price to workstations of today, will be a key factor in 

making such approaches practical and affordable outside the 

research laboratory. In an analogous way, Ie designers are 

already using procedural descriptions of design components, 

akin to the objects in many of these languages. In addition, the 

database management community is directing its attention to the 

management of object-based descriptions of systems. From an Ie 

design point of view, these three technologies are converging in 

the next generation of data management and programming 

systems for Ie design. We expect that the interfaces to these 

systems will be indistinguishable from that of an object-oriented, 

message-based programming environment. A number of new 

companies have been formed to address the issue of object­

oriented data management for engineering applications and 

these include Itasca, Object Design, Objectivity, Ontologic, Servi­

ologic and Versant. One of the major challenges these companies 

face is that of adding the engineering data management-specific 

and design management-specific features to their environments, 

while also meeting the very high performance requirements of 

the engineering world. 
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1.6 The Standardization of CAD Frameworks 

With such a long history of development, many researchers 

consider certain aspects of a CAD Framework to be understood 
well enough that effective standards can be established. In 

parallel with the ongoing Framework research efforts, a number 

of groups have begun work to standardize some of the interfaces 

to a CAD Framework. This activity was pioneered by the Engi­

neering Information System (EIS) [LIN86a, LIN86b] project of 

the US Department of Defense, while the most important 

ongoing effort today is that of the CAD Framework Initiative 

(CFI), formed by an international group of companies and 

university participants. The stated mission of the CFI is to 

"develop industry acceptable guidelines for Design Automation 

Frameworks which will enable the coexistence and cooperation 

of a variety of tools", and they have already been able to demon­
strate significant progress, especially in the area of design 

representation. 

There is also considerable interest in the development of Frame­

work standards in the European community, based on a number 

of significant ongoing research activities. In particular, the work 

at NMP-Cadlab [MIL89, GOT87], Delft University [WID88, 

WOL88, DEW86], and the Ireen system developed by Piloty et al 

[PIL89] has been a major factor in these developments. An active 

standardization effort in Europe began some years ago under 
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European "CAD Integration Project (ECIP) sponsorship, and has 

continued under this and other joint industry-government 

programs. In addition, European researchers are playing a 

particularly active role in the CFI developments. 

The most significant challenges faced by such a group include 

choosing the right levels for standardization so as not to 

preclude further important research and development in the 

future, and the establishment of a forum for evolving appro­

priate standard data representations, in terms of their data 

model, for electronic CAD information. These groups are, 

however, also addressing the needs of a CAD Framework in the 

areas of user interface, inter-tool communication, portability and 

methodology management as well. 

1.7 Organization of the Book 

After presenting a general discussion of the major components 

of a CAD Framework mentioned above and their relationships to 

one another (Chapter 2: MAJOR COMPONENTS OF AN ENGI­

NEERING FRAMEWORK on page 17), each area is presented in 

more detail. A brief review of the state-of-the-art and current 

directions for research are presented. Since the approach taken to 

the development and enhancement of CAD Frameworks has had 

more impact on their success or failure than any particular 

design decision, some observations on this topiC are included in 
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Chapter 9: IMPLEMENTING A CAD FRAMEWORK on page 
139. Finally, the influence of related disciplines and the ongoing 
software standards efforts on the area of CAD environments is 

reviewed. 



2 MAJOR COMPONENTS OF AN 
ENGINEERING FRAMEWORK 

2.1 Overview 

A coarse view of the major components of an engineering Frame­

work today is shown in Figure 2.1. A w~i?l1-designed Framework 

provides many layers of abstraction and, in the most successful 

examples, all of these layers are provided to the tool developers 

and CAD systems integrators for their use. That is, the systems 

integrator can choose to use high-level facilities provided by the 

Framework, lower-level facilities, or even system calls provided 

by the operating system itself, if necessary. This is analogous to 

a systems programmer using a high-level language for some 

parts of a program but assembly code for certain critical parts. Of 
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CAD Tool Designer and CAD System Integrator 

Figure 2.1: Framework Components 
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course, a good systems programmer only uses assembly 

language when there is no other way of meeting the design goals 

of the system. 

2.2 Operating System Services 

The Framework is built on the existing services provided by the 

operating system, which include facilities for manipulating and 

organizing files (File Services), running programs (Process 

Services), communication with other computers via electronic 

networks (Network Services) and communication with the human 

users of the computer system (User I/O Services). These services 

are usually provided to programs via one or more libraries of 

subroutine calls and to human users via a textual interface, often 

called a shell. 

Since not all operating systems provide~ the same services, these 

facilities are often converted to a single abstract operating 

system view that can be implemented on many underlying oper­

ating systems but which presents a common interface to the 

Framework code itself. This interface involves the major compo­

nents of physical data management and process management. 

Physical data management refers to all of the tasks having to do 

with the management of raw data either on the host machine or 

stored elsewhere on the network and accessible to the Frame-
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work. Process management refers to the facilities needed to run 

computer programs (mostly CAD tools in this case) either on the 

local machine or on other machines on the network. 

2.3 Tool Integration and Encapsulation 

The facilities that form the tool integration environment itself, as 

seen by the tool developer and the CAD system integrator, also 

include higher-level facilities for constructing user interfaces 

(User Interface Services), managing the CAD data associated with 

the design and coordinating access to the data by multiple CAD 

tools or human users (Data Management Services), managing the 

evolution, or history, of the design (Version Services), and facili­
ties for defining the legal organization of the data and what 
particular data items, and their relationships to other data items, 

represent (Data Representation Services). Each of these aspects of 

the Framework are described in more detail below. 

Unfortunately, CAD system integrators must live with existing 

design styles and tools, many of which are not available in 

source code form for proprietary or historical reasons. In that 

case, the system integrator is forced to encapsulate the tool in 

such a way that the tool"sees" the input and output file formats 

that it expects, while the data is actually being managed by the 
Framework. The software that implements this encapsulation is 

known as a Foreign Tool Interface. Sometimes, the foreign tool 
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interface actually translates the information to and from the 

common data representation provided by the Framework, but in 

many cases in simply treats the entire foreign tool's input or 

output data as a single data record, storing it in the native format 

of the tool. Data manipulated in this way is treated as a single, 

coarse-grained "chunk" by the Framework, and is sometimes 

referred to as stranger data. In Figure 2.1, CAD tools 1 - n repre­

sent "native" tools that are tightly integrated with the 

Framework at a procedural level while tools f1 -I m represent 
IIforeign" tools. 

2.4 Design Management 

In addition to the facilities provided for tool integration, many 

CAD Frameworks under development today provide a variety of 

meta services - that is, services that use the integration interface 

themselves to provide higher-level or peripheral help with the 

design. For example, design management services, or design 

methodology services, might be provided to help the systems 

integrator or (more likely) the end user to specify certain 

"recipes" for design that may involve the sequential or concur­

rent execution of many tools on perhaps many different parts of 

the design database. Once an end user has determined that a 

particular combination of tools is what is required to perform a 

particular design task, e.g. standard-cell placement and routing 
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or automatic design-rule checking and connectivity verification, 

then the flow of tools, along with their input and output needs, 

can be captured in a form that can be re-run automatically, as 

needed and for new designs. Project management services might 

include tools for evaluating and displaying the progress of a 

design. 

In Figure 2.1, the end user is shown accessing the system via the 

operating-system user input-output services to stress the fact 

that the CAD Framework, like any other program operating on 

the computer, must communicate with the outside world via the 

operating system. As mentioned earlier, the area of user interface 

has not progressed as rapidly as some other aspects of the 

Framework. Until quite recently, a tool developer could not 

assume much more than a relatively simple textual input/output 

device was available for communicating with the user, and all 

tools made the assumption that while they were running no 

other tool would be using the terminal. In the case of graphics­

intensive applications, the CAD programs were generally opti­

mized for specific graphics hardware which, again, "owned" the 

display. This led to a proliferation of unique, hard-wired inter­

faces for each tool and there has been very little sharing of user­

interface facilities to date, beyond the use of common plotting 

libraries in some cases. With the advent of bit-mapped, high­

resolution workstations, some attempts are being made to stan­

dardize user interface facilities and to provide standard features 
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at higher levels of abstraction as well [SCH86]. However, this 

work has only captured widespread attention in the engineering 

community in the past two years. 

We believe that the area of user interface and the usability of 

CAD systems is key to the success of future CAD Frameworks, if 

engineering design systems are to find their way into the broad 

base of potential users. Engineers and scientists who are experts 

in their particular disciplines should be able to work with a 

system that speaks the language of their discipline. They should 

not have to learn the often esoteric idiosyncrasies of general­

purpose computer operating systems, like Unix or 005, let alone 

the features of a proprietary computer system, to get their job 

done. If the CAD tool developer and CAD system integrator are 

to be able to provide such domain-specific interfaces at reason­

able cost, in reasonable time, and such that they can be ported to 

new generations of hardware platform, the CAD Framework 

must provide a wide range of facilities for developing such inter­

faces and these facilities must be based on the evolving 

standards. These issues are presented in more detail in Chapter 

7. 

Even with an efficient data management system and a state-of­

the-art user interface, if the meaning of the numerous bytes 

stored and retrieved by the data manager is known only to a 

single tool, then the goal of integrating a number of tools to work 
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on a common design problem and to share data cannot be met. 

For this reason, a common representation for the information 

associated with the design must be established so that two tools 

which read the same data interpret it the same way. This task is 

usually divided into the phases of agreeing on a mechanism for 

representing the information - a common way of representing 

data items and the relationships between data items - and then a 

common meaning for a particular set of data items and their rela­

tionships. This issue has been studied extensively both in the 

database area and also the programming semantics area. Unfor­

tunately, a formal semantic model for the representation of data 

in electronic design, though possible, is not of much practical use 

todayl. Rather, an "axiomatic" approach is taken where groups 

of tool developers meet and, after much discussion, agree on a 

particular way of representing design information and its 

meaning. The process is much like learning a language, where 

the meaning of words is learned by example. In addition, the 

rules for composing grammatically-correct sentences from 

words can be formalized, but the actual meaning of a sentence 

generally transcends a straightforward, bottom-up analysis of 

the sentence and its components. The mechanisms used for 

1. While such models are not practical for mask, PC board, or elec­
tricallevels of description, they are of value for discrete-valued 
levels of description -logic gate, register, and behavioral. The use 
of formal data models in these areas is a topic of active research at 
this time. 
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representing information in a CAD Framework, and some exam­

ples of the ways in which they are used, are presented in Chapter 

3. 

With the facilities provided above, a tool integrator should be 

able build a CAD system and an associated set of user interfaces 

such that the end-user can complete a design. Unfortunately, for 

the complex designs of today, there are a number of important 

meta-issues that remain. Most design tasks today are not treated 

with a single, "flat" organization. Rather, the design is divided 

into sub-modules or sub-cells which are designed separately and 

in parallel. The sub-cells may themselves be composed of sub­

cells, to form a hierarchy. During the evolution of the design over 

time, different versions of each sub-cell may be developed - the 

first version, the improved version, the final version, etc. With 

the design of the components of a system being developed in 

parallel, often by different designers" on different computer 

systems or even at different locations, it is important that when 

the final design is assembled, all the right components come 

together. Facilities for the management of the history of the 

design - versions and alternatives for each component, as well as 

specific configurations of collections of components - must be 

provided by the Framework. These issues are described in more 

detail in Chapter 4. 
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While developing a particular design style or design method, it 

is not unusual for the Framework user to execute each tool 

manually and in a specific order to complete the entire design or 

the design of a sub-cell. In this way, the user can experiment with 

different approaches to the design and correct errors or omis­

sions in the tools and the design representation. Once a 

particular design flow, or tool flow, has been debugged, it is 

often useful to record and encapsulate the flow for use by others. 

In this way, the collection of tools and their operation as a group 

appear as a "super tool" to the user. The facilities necessary to 

support this activity fall into a category referred to as design 

flow management or methodology management, and are 

reviewed in Chapter 6. 

As mentioned earlier, the boundaries of what constitutes a 

Framework and what does not are not defined in terms of 

specific components but rather in terms of the end results of their 

application. The boundary is fuzzy and is evolving continually 

as new needs arise or take on increased emphasis. For example, 

the need for methodology management tools, mentioned above, 

has only become a priority in the past few years and is a result of 

both the complexities of today's design problems, the need for 

experts in relatively narrow disciplines to be able to use 

programs and techniques outside of their specialties without 

having to understand all of the details and, most significantly, 

the particular tool-based architecture that has evolved today as 
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the architecture of choice for CAD systems. So at a particular 

time, there are many related facilities that can help in the imple­

mentation of a complex system and that are common to many 

different design styles. For example, tools for project manage­

ment and documentation management, as well as tools to help 

the CAD developer, such as an effective software development 

environment, are important today and developments in these 

areas are described in Chapter 6. 



3 DATA REPRESENTATION 

3.1 Introduction 

Before describing the various approaches that have been taken to 

the management of engineering data, it is necessary to introduce 

some common terminology and to describe some of the proper­

ties of engineering information that the data management 

facilities of a CAD Framework must be able to represent and 

manipulate. The Framework provides a set of mechanisms, or 

facilities, for modelling real-world information, and one of the 

most important issues in CAD Framework design is choosing a 

data model and corresponding implementation that is adequate 

for describing all of the information used by the design system, 

easily updated to new design styles and technologies, while 

remaining efficient and robust enough to meet the performance 

needs of engineering design. 
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3.2 Databases and Data Structures 

Following Ullman [ULL82], we define a database as a collection 

of data "that is stored more-or-Iess permanently in a computer" 

and "software that allows one or many persons to use and/or 

modify this data" is referred to as a database management system 
(DBMS). Note that these are intentionally broad definitions. The 

concepts of database and data management system are treated 

very loosely in the literature and many different definitions of 

the particular features a system must support before it can be 

considered a database or data management system can be found. 

For example, a common characteristic that is used to distinguish 

a "database" from a "data structure" is whether the logical struc­

ture - the structure seen by a user or an application program - is 

different from the physical structure of the data - the particular 

arrangement of bytes and pointers used to implement the data­

base on a permanent storage device. Of course, if the application 

program were not told that these two organizations happened to 

be the same, it could not tell that they were, and so the distinc­

tion, at this level, is purely syntactic. 

Distinguishing between a database and a data-structure based 

on the way the data is represented in primary or secondary store 

is quite arbitrary. On the other hand, if a correspondence 

between the logical and physical descriptions of the data is 
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required in the database, many other desirable attributes of the 
system would be difficult or impossible to provide, as described 

later, and so it might be considered a poor design for a database. 

Other authors who attempt to define what is, and what is not, a 

database or a data management system often do so in terms of a 

particular model for a database architecture (e.g. the relational 

model) and corresponding data management system, excluding 

features that might be desirable if a different arrangement of 

data were used. Many of these distinctions arise because of the 

imprecise and evolving nature of the field in general and for 

these reasons, we choose the broad definition, qualifying partic­

ular database models, data management systems, and their 

implementations as "more useful" or "less useful," and pointing 

out features that are "desirable" or "undesirable" where appro­

priate. 

Of course, one of the most important tasks of a DBMS is to 

provide an abstract representation of the physical data so that 

the user does not have to worry about where, or how, the 

computer system chooses to store the data. 
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3.3 Approaches to CAD Databases 

The majority of successful database systems used in engineering 

applications to date have been ad hoc systems. That is, they are 

implemented to solve a particular aspect of the data manage­

ment problem and cannot be adapted or expanded easily to deal 

with more general data management needs. More specifically, 

information about the database itself is built into the interface 

seen by the tools or by the end-user. For example, if the interface 

contained subroutine calls named getNet, putNet, 

getGate, and putGate for storing and retrieving netlist infor­

mation, but did not contain facilities for dealing with other data, 

it would be very difficult to use the system to store mask layout 

information. On the other hand, if the interface contained the 

calls getObject and putObject, where the particular 

meaning associated with a given type of object was not known 

to the database per se, then the system could be used to manage 

many different sorts of data and could be adapted easily to deal 

with new data as well. The more general approach has some 

drawbacks, as presented later, but is essential in the engineering 

world, where the type of information to be managed and its rela­

tionships to other data is evolving continuously as we develop 

new technologies, as the need of the marketplace change, and as 

we learn more about the process of design itself. An important 
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principle in the development of a successful CAD Framework is 

to assume the data model will change, probably quite often, 

during the lifetime of the system. 

The use of a general-purpose query mechanism for dealing with 

the database simply defers the problem of associating meaning 
with the data - the particular types of data items and the relation­

ships between data items that are supported in a particular 

database. In the example mentioned above, it must be specified 

somewhere that a particular object is, in fact, of type net and that 

it may have some objects of type portlnstance associated 

with it. The particular types of data objects supported in a partic­

ular database and the relationships that may exist between 

objects is often referred to as the conceptual scheme or schema for 

the database. Many commercial database management systems 

provide a special high-level language, called a data definition 
language (DDL) for describing the conceptual scheme used in a 

particular database. 

Another important feature of a database system is the query 

language, sometimes called a data manipulation language 

(DML), which allows the user (human being or CAD tool) to 

extract specific subsets of information from the database, via the 

DBMS. This is illustrated in Figure 3.1. The DML might be used 

to specify a request of the form "highlight all o[ the logic gates in 
this design that have an output capacitance greater than 200[F". The 
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User Query 

Figure 3.1: General Flow of a CAD Data Management System 
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fact that a database may contain an object called a logic gate, and 
the fact that it may have an attribute called output capacitance 
associated with it, which is able to store values like 200 femto­

farads, is part of the conceptual scheme and was defined by the 

DDL. The expressive power of the DML (e.g. the number of DML 

statements needed to express a request), the complexity of the 

requests that can be made, and the execution efficiency of the 

request are important characteristics to consider when evalu­
ating the effectiveness of a particular DML. 

One significant difference between engineering data manage­

ment and a common assumption for conventional data 

management is that in engineering applications many more 

queries are performed by application programs - the CAD tools 

- than directly by the end users. In a CAD Framework, the data 

manipulation language is often merged with the language inter­

faces to other parts of the system, such as user interface, design 

flow management, and history management, to form a common 

language interface to all of the facilities in the Framework. This 

language is then referred to as an extension language, as described 

in more detail in Chapter 8. 

The data definition language uses a particular data model in 

which to express the conceptual scheme for a particular data­

base. The data model consists of a mathematical notation that is 

used to express the data elements and their relationships, along 
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with the set of operations that can be applied to the database to 
implement queries and other manipulations of the data. Of 

course, if a data model is general enough it can be used to repre­

sent any conceptual scheme. However, the choice of an 

appropriate data model in a CAD Framework has major implica­

tions, as described in Chapter 4. 

3.4 Representational Issues 

To illustrate some of the issues encountered in the representation 

of electronic design information, we will use elements of the 
circuit shown in Figure 3.2. This figure shows two logic NAND 

gates connected to form an as latch. Rather than define what is 

meant by a NAND gate every time one is used, the gate is defined 

once in a master definition that is sometimes referred to as a cell 
definition. Each of the NAND gates in the figure is then referred to 

as an instance, or copy, of that master gate. 

An important principle of engineering design is abstraction. 

That is, being able to represent a component or system by an 

abstract (less detailed) description. To be able to use an abstrac­

tion of an object, the user must first be able to "encapsulate" it. 

So a basic feature of any engineering data management system 

is the ability to encapsulate a collection of components and treat 

them as a single entity. In Figure 3.2, the NAND gates are abstract 

representations of transistors or some other lower-level and 
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more detailed description of the gate. They are then composed, 

with some connections, to form another component (the RS 

latch) which will be treated as a single, abstract component itself 

at some higher level of design. The general process of encapsu­

lation and instantiation, applied in a nested way, results in a 

hierarchical description of the design as illustrated in Figure 3.3. 
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Figure 3.3: Levels of abstraction in a database system 

The instances of the NAND gate are connected together and to the 

input and output ports of the latch using nets. For example, the 

net called q is used to connect the output port of instance named 

nandl with port i.n2 of instance nand2 and with port Q of the 

latch. Ports on instances are copies of the ports defined on the 

master definition of the cell and so are referred to as port 

instances. Similarly, the ports defined on the master cell are 
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referred to as formal ports, in line with their analogy to formal 

parameters in a procedure call. The ports Q , ~ , Rand S are the 

formal ports of the cell definition of LATCH. The name of an 

instance is used to distinguish port instances of the same name, 

e.g. nandl/inl and nand2/inl are different. Information 

particular to an instance or port instance~ must be associated with 

the instance directly (e.g. the output capacitance of a particular 

instance of a NAND gate), while information common to all 

instances of a cell is associated directly with the master of the cell 

(e.g. the ports that the cell defines). To complicate matters 

further, in the mask layout of the gate a particular logical connec­

tion pOint such as the output may be represented by multiple 

physical connection locations. For example, in standard cell 

designs connection point to signals are often available on both 

sides of the cell. Multiple connection points for the same logical 

port are called port implementations or pins and are illustrated on 

the right-hand side of Figure 3.4. 

One of the most common mathematical tools used today for 

designing a conceptual scheme is the entity-relationship model 

[CHE76, CHE80] and we use it to introduce a number of engi­

neering data representation concepts. In this model, the term 

entity is used in a very broad sense to mean "a thing that exists 

and is distinguishable." [ULL82]l For example, a particular logic 

gate, net, rectangle, schematic diagram, or behavioral descrip­

tion would each be regarded as an entity. A group of similar 
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entities forms an entity set. So all of the logic gates in a design 

might be regarded as an entity set. The adjective "similar" is 

used because the precise choice of attributes that are used to 

define a particular entity set is an important design decision to 

be made in representing the data in the database. Of course, enti­

ties may be members of multiple sets, for example a net may 

belong to the entity-set nets, as well as the entity-set unrouted. In 

modern programming environments there is a strong analogy 

between entities and instance variables and between entity set 

and classes. 

Entities may have properties associated with them, called 

attributes, which associate a value from a particular domain of 

values for the attribute with the entity. For example, a logic gate 

might have an attribute output capacitance whose value, 200fF, is 

selected from the domain "real-numbered values of type capaci­

tance." Attributes can be used to distinguish entities that are 

alike. For example, the attribute name for a net in a circuit netlist 

could be assigned the unique value output to distinguish it 

from other nets. 

1. The term "object" is often used in the same sense as "entity" 
although some users of the term "object" also imply an associated 
set of methods, or programs, which are used to manipulate the 
objects of a particular class. 
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A relationship among entities is defined as an ordered list of 

entity sets and a particular entity set may appear more than once 

in a relationship. The simplest form of relationship on two sets is 

one-to-one, where each entity in either SE~t can be associated with 

at most one member of the other set. One-to-many and many-to-
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many relationships can also be defined. Because of the complex 

nature of the relationships between entities, a graphical format, 

called an entity-relationship diagram is often used to represent a 

particular conceptual scheme in this notation. A fragment of 

such a diagram is shown in Figure 3.4. In this figure, the entity 

sets are shown as rectangles and the relationships as undirected 

edges between them The "crows feet" at the end of an edge are 

used to represent a many relationship. For example, a cell (such 

as a the cell named NAND in Figure 3.2) may be associated with 

many ports (i.nl, i.n2, and output in Figure 3.2); this is a one­

to-many relationship, named i.sPortOf. Each cell may be asso­

ciated with a number of instances or "uses" of itself, each with 

its own name (two instances in the example, named nandl and 

nand2), each associated with its own portInstances, and each 

portInstance associated with at most one net entity (for example, 

the portInstance named output, associated with cell nandl, is 

itself associated with the net q). This simplified fragment illus­

trates the use of the basic entity- relationship model. 

Researchers have embellished this basic model in many ways, by 

being more specific about the many relationship, providing 

upper and lower bounds, and by assigning predicates to the 

edges of the graph, for example. 
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Other models have been used to describe engineering data, most 

notably the relational, hierarchical, and network models. 

Recently, so called "object oriented" approaches have been 

proposed, where the entity-relationship model is implemented 

most closely. The issues relating to the use of such models for 

engineering data are presented in Chapter 4. 

3.5 The Nature of Engineering Design 
Information 

Before a data model and associated implementation, complete 

with DOL and DML, can be evaluated for use in an engineering 

Framework, it is necessary to have a clear understanding of the 
nature of the information that must be represented and the 

requirements imposed by the users of the system, both tool and 

designer. A complete description of all of the issues and trade­

offs that make engineering data management "different" from 

more conventional needs is beyond the scope of this book, but 

some of the most important characteristics are described in the 

remainder of this section, along with some of the more difficult 

issues facing the Framework designer today. 

To begin with, the design of an engineering product often 

requires the cooperation of a broad range of specialists, each 

with their own needs regarding the particular data they wish to 

work with and with own their performance expectations. In 
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addition, they do not wish to "see" the data associated with 

other aspects of the design. For example, in the design of an inte­

grated circuit, the mask-level layout information consists of 

polygons on different mask layers while the gate-level schematic 

diagram or netlist consists of a collection of cells, such as nand 

gates or inverters, and a list of associated connections between 
the terminals or ports of the gates. The mask designer, concerned 

with relationships line the spacings between adjacent polygons 

on a mask, has no interest in the gate-level netlist but is very 

concerned that queries of the form "for each polygon on the 

mask layer named P OL Y S I L I CON, highlight all the polygons on 

that layer that are within one micron of it" - a two-dimensional 

geometric query involving tens of millions of entities. The logic 

designer, who has no interest in the mask layout representation 

of the design, is very concerned that all of the logic gates are 
connected correctly and might ask "for each logic gate, list any 

gates whose output ports are connected to more than five input 

ports" - a linear, connectivity-oriented request involving 

perhaps hundreds of thousands of entities. 

In the database literature, an abstract model of a portion of the 

complete conceptual database is called a sub-scheme, or view. In 

fact, a view might contain information that is actually derived 

from the stored data on the fly. This concept is illustrated in 

Figure 3.5. In a general-purpose DBMS, a special sub-scheme 

DDL and DML might be provided. However, the implementa-
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tion of views in practical engineering databases has been more 

restrictive to date, largely for performance reasons. Since it is 

generally the case that users and tools work with one view at a 

time, there is often a close match between a view and a physical 

storage unit (e.g. a file), and a common DML is used for manip­

ulating all of the views (e.g. [KEL83, HAR86]). Views are 

provided explicitly in both EDIF and VHDL. 

3.6 Hierarchy 

In a complex engineering design, a standard component type is 

often used more than once. For example, a logic design may use 

more than one two-input nand gate, as shown in Figure 3.5, or a 

mechanical design may use many #181.5in flat-head screws. The 

ability to describe a particular component type in detail once (its 

master), then refer to that description wherever a copy of that 

component type is needed (instances of the master), is a powerful 
and important mechanism that is used extensively to reduce the 

complexity of an engineering description. Such a description is 

often referred to as an hierarchical description. 

Hierarchy is a very powerful mechanism. The CAD data 

management system can use it to reduce the storage needed to 

represent complex designs, provided the same type of compo­

nent is used more than once in the design. But it has its 

limitations and they can be a trap for the unwary. To illustrate a 
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Figure 3.6: An hierarchical design represented as an 
instance hierarchy 
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common problem encountered in the use of hierarchy, consider 

the latch circuit illustrated in Figure 3.5. The latch contains two 

instances of a cell called NAND, and since they are instances of the 

same cell type, they contain the same sub-components. Each 

NAND uses instances of pMos and of nMos. Each instance is 

distinguished by its instance name, and the description could be 

represented as an instance hierarchy, shown in Figure 3.6. Each 
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box in this figure represents an actual component in the design 

and if the design were stored explicitly in the database, each box 

would represent a stored entity. 

Of course, having four separate copies of HAHD seems a waste 

since each one is just a copy of the same master. Also, if one 
decides to change H AHD for some reason, the data manager 
would have to search the entire database to find all of the copies 

of the gate to change them too. For these reasons, most CAD 

databases store the hierarchy more along the lines shown in 

Figure 3.7. Only one copy of each type of cell is stored, and 

instances are simply references to that master version. Signifi­

cant savings in storage are achieved and any change that should 

be made to all HAND gates need simply be made to the master 

and they will be reflected immediately in all uses of the cell. 

Now consider the situation where the designer has finished 
drawing the masks and wants to perform a simulation of the 

circuit using exact values for the parasitic capacitances derived 

from the layout. The value Cout, on the output of a particular 

NAND gate shown in Figure 3.5, must now be back annotated to 

the simulation view of the design. If the design were stored 

explicitly, as in Figure 3.6, it is clear that the attribute and its 

value would be associated with nNos mnl in HAND and nandl 

in the latch. But where should it be located in the storage scheme 

of Figure 3.7? If it is placed with the master on nNo s, as shown 
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Figure 3.7: Storage model in a database which uses hierarchy 
to reduce storage requil'ements 
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in the figure, then it is automatically associated with all four 

nNos transistors, not what the designer wants. If it is associated 

with the particular instance of n No s mn 1 in NAND, then it is asso­

ciated with the instances of nNos in both of the NANOs in the 

latch, again not what the designer wanted. The only way to store 

this value correctly is to associate it with the full path name or 

unique instance name for each component. In this case that 

worud be1atch/nandl/mnl/drain. 
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Naive implementations of data managers for CAD systems often 
overlook issues like this one, and solving such a problem after­

the-fact is generally very expensive, very inefficient, or both. 

Understanding the nature of the relationships that can be 

expressed in the data model and being sure to prototype as much 

of a data model as possible before production use are key issues 

in Framework design. 



4 DATA MANAGEMENT 

4.1 Introduction 

While a storage management system manages a collection of 

data items and their relationships with no understanding of the 

actual meaning of the data, a design data management system 

uses knowledge of the structure of the data and its relationship 

to the design project to enforce constraints on the design process. 

For example, library management, design configuration 

management, and design consistency management are all tasks 

taken on by the design data management system. 

Data management has been the most studied aspect of a CAD 

Framework to date and Katz [KAT85] presents an excellent 

review of the topic. Initially, data management consisted of basic 

file system protections on groups of files with occasional archival 
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backup. Eventually it was recognized that the features offered by 

convention DBMS's might help in the management of design 

data. The results from this work are mixed, but the work led to 

the development of specialized databases for design data 

employing many of the features found in conventional database 

management systems. 

The level of the data to be explicitly managed by the data 

management system can vary. Although some data management 

systems manage the individual data items or records at the level 

of a single transistor or net (fine-grain data), the majority of data 

management systems used in electronic CAD applications 

manage collections of individual data items without regard to 

the contents of the collection (coarse-grain data). 

Many of the features of data management systems are described 

and the problems encountered in their use for CAD Frameworks 

are dealt with in this chapter. 

4.2 Conventional Database Approaches 

Many design databases have been built on top of commercial 

database management systems (DBMS's) [WON79, MIT80, 

RaBBI, ZINBI, CHU83, JUL86]. However the use of conven­

tional database approaches has not been very successful due to 

their poor performance or difficulty of use for engineering 
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design [SID80, GUT84, KAT85]. Katz [KAT85] presents a number 

of the important features of conventional databases and 

compares them with the needs of engineering databases. They 

include efficient access to secondary storage, transaction 

processing, integrity maintenance, protection, concurrency, and 

crash recovery. In a DBMS retrieval of a single record of data 

from secondary storage is optimized. In an engineering problem 

large amounts of data need to be accessed quickly and so most 

engineering databases are managed in-memory today. 

A key concept in the design of a data management system is that 

of a transaction. A transaction is a sequence of operations (such 

as the running of a CAD tool or a sequence of CAD tools) that, 

when complete, leaves the database in a consistent state.Transac­

tion processing in a DBMS is based on the assumption that the 

transactions are atomic, quick, and modify a small amount of 

data. This assumption is generally correct for an airline reserva­

tion system or a banking funds transfer system, but is incorrect 

for the engineering problem, where the transactions can take 

hours or days (a design is checked out, modified, verified, and 

then committed back to the database). These design transactions 
[KAT85] are more closely related to the software world where a 

software module is checked out of a software revision control 

system, edited, compiled, tested, and then checked back into the 

control system. The engineering modification/verification (or 

software edit/compile) sequence can be iterated many times 
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before the transaction is finally complete. While the amount of 

data in a standard DBMS transaction is quite small (an employee 

record), the amount of data processed in an engineering transac­
tions is usually very large (for example the layout of a VLSI 
chip). 

Conventional DBMSs provide pre-transaction and post-transac­

tion consistency checks to verify that the database is in a 

consistent state. These checks are simple and static, such as 

ensuring the salary field of an employee record is positive. This 

contrasts with the consistency checks in the engineering domain 

which are complex and time consuming, such as ensuring the 

circuit performs to specifications. Such transitional constraints 
deal with the transition from one part of the design process to 

the next. In a DBMS, transactions are atomic and so there is no 

intermediate state preserved. In an engineering application 

where transactions can last hours or days, checkpointing must be 

performed in case of system crash. It is not sufficient to recover 

to the last consistent "saved" state of the database; the recovery 

must be to the last checkpoint. The design can use the versioning 

facilities to move back to the last "saved" state if needed. 

In data management systems, protection against corruption or 

unauthorized modification to the data is very important. In a 

conventional DBMS, of primary concern are problems associated 
with concurrent access to the data. For example, in airline reser-
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vation systems, many travel agents may be trying to book a seat 

on the same flight at the same time. Interlocks must be in place 

to make sure that no more than one travel agent can modify the 

data. In engineering applications, the design is often partitioned 

in such a way that individuals can work on a single sub-compo­

nent without strong dependence on the actions of other 

designers. Of course, the interfaces between the components 

must be defined and information regarding changes to the 

external constraints must be communicated, but the designer of 

an inverter, for example, is generally not concerned about the 

actions of another designer working on a NAND gate. While 

concurrency control is important in some engineering situations, 

access control - the ability to restrict access to design data for 

specific operations like reading, writing or modifying the data -

is generally of more concern. 

Perhaps the major factor limiting the use of conventional DBMS 

technology in the engineering world is performance. For 

example, Guttman [GUT84] used the INGRES DBMS [HEL75] to 

store geometrical IC mask layout data, and his experiments 

showed a slowdown from a factor of 3 in CPU time (a factor of 5 

in elapsed time) over an in-memory CAD data structure for 

finding all geometries in a design, and a slow down of a factor of 

20 in CPU time (a factor of 45 in elapsed time) for geometric 

queries, Le. find all geometries in a particular subregion of the 
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design. He found a number of problems and proposed solutions 

(some were specific to INGRES and some were generic prob­

lems). 

Much of the performance problem can be attributed to an under­

lying data representation model that is not well suited to the 

type of data stored, nor the sort of queries engineering design 

tools make of the database. Many queries in CAD applications 

require transitive closure: for example finding all cells of a given 

type used in a design. VLSI designs using geometries that have 

two and three dimensions. Classical one-dimensional indexing 

schemes in a DBMS are not appropriate for the two and three 

dimensional data in VLSI designs. As a result, spatial queries are 

extremely inefficient, although some researchers have made 

progress in this area [GUT84, AST76]. The majority of efficient 

geometric search structures for CAD applications are in memory 

structures (quad-trees, k-d trees, corner stitching [OUS84]; see 

[ROS8S] for a description and analysis of various in-memory 

region searching structures). Attempts at quick geometric search 

for secondary storage have been oriented towards points and not 

regions. 

The relational model, which uses tables (called relations) of 

elements of a pre-defined format (called tuples) to represent data, 

is certainly efficient for representing large amounts of data that 

has a relatively fixed static structure (such as employee records 
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or parts inventories), However CAD applications have large 

amounts of irregular data. If all N AND !~ates in a design had two 

inputs, a relation representing a two-input gate would be suffi­

cient. But if gates can have any number of inputs, the model is 

no longer well-suited to the task. Record chaining and other 

ways around the issue must be used. Guttman [GUT84] recom­

mended the addition of abstract data types to a relational 

database, better use of in-memory data, compiled queries, and 

tighter integration of the database system and the CAD applica­

tion to improve performance. Other attempts have been made to 

extend relational DBMS to solve some of these problems, but the 

resulting DBMS is no longer truly relational and often moves 

into the ad hoc category. 

Whereas Guttman used a relational database for storage of fine­

grain data (for example individual geometric objects) and their 

relationships, Bennett [BEN82] used a relational database for the 

storage coarse-grain data and their relationships, leaving tools to 

interpret and access the fine grain data. Bennett used this 

approach successfully in an early version of the Mentor data 

manager. 

Conventional DBMS's are optimized for accessing the current 

state of the database. The only history is an audit trail that is 

used primarily for verification and crash recovery. Previous 

states of the database are not saved. In Emgineering applications, 
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it is critical that previous versions of data be saved. Having 

history allows designers to easily back out of bad design deci­

sions, provides an audit trail showing how the design developed 

to its final form, and may be necessary for patent reasons (for 

example determining the first time a particular circuit architec­

ture was entered). 

In the past few years, attempts have been made to apply general­

purpose object-oriented database systems to engineering design 

problems (see for example [BREU88, GUPT89]). Early work 

showed discouragingly slow performance, and ongoing work is 

focussed on replacing the generic routines provided by such 

systems with techniques specific to engineering databases 

[GUPT89]. Whereas an engineering database system today 

might be able to retrieve on the order of thousands of entities per 

second on a workstation, these general-purpose systems show 

performance in the tens to hundreds of objects per second. 

However, the object-oriented model overcomes many of the 

features of the relational model which restrict its efficiency and 

has the potential of being a better match to the engineering data 

management task. In recent times, the work of the object­

oriented database companies has started to show considerable 

promise. 
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4.3 Physical Versus Logical Data Management 

Many of the major performance problems in data management 

systems can be boiled down to a single issue - that of name reso­
lution. Given the logical name, or handle, of an object, find the 

physical, stored data represented by the name. Designers and 

tools should deal with the data independent of where or how it 

is stored, based on some logical (domain dependent) organiza­

tion. The logical name for a piece of data might contain some 

information about the way the data is organized (logically), like 

an hierarchical file name, or it might be an arbitrary but unique 

token that is translated to both a logical and a physical organiza­

tion dynamically, when such information is needed by the user 

or the tool. Such tokens are referred to as object identifiers, or 

OIDS [WEIS86]. File names have the advantage of being qUite 

understandable to humans. OlD's have the advantages of gener­

ally being shorter than file names and independent of both the 

name of the object and a particular logical organization of the 

data. Whatever naming scheme is chosen, the logical references 

must be translated to the physical location of the data. Logical 

references can be context sensitive (full logical name of a refer­

ence depends upon the location of the parent, e.g. OCT 

[HARR86]) or must be unique across all designs, e.g. DOSS 

[WEIS86]. By using a synthetic name (OlD) rather than a file 

name, the translation can be performed by the DBMS rather than 

by the operating system. OlD's allow the easy migration of the 
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database since it has access to the translation facilities. In a file 

name scheme, the translation is done by the operating system. 

Translation of the logical reference to the physical reference can 

be as simple as looking up the reference in a static table or going 
through a multiple level mechanism where a dynamic table on 

the local machine is queried, if the translation does not exist, ask 

known servers on the network for the translation, and if that fails 

broadcast the translation request to the network [WEl86]. How 

the tables on the workstations and servers are invalidated and 

updated is analogous to the cache conSistency problem in multi­

processors. As data migrates from a server to a workstation 

translations for that object in tables on workstations must be 

invalidated and possibly updated. Also as servers containing 

replicated data go up and down, the tables must be updated to 
correspond to the current state of the network. Techniques 

developed for multiprocessor memory management, such as 

caching of name translations, the use of J/snoopy" protocols 

[G0083] to reduce server contention, and replication of shared, 

read-only data have been adapted for database name resolution. 

Using logical references allows the physical location of the data 

to change over time. A shared library may exist on multiple 

servers on the network and if one server goes down the copy of 

the library on another server should be referenced. When a 

portion of a design is checked-out for modification, if should 
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move to the designers workstation. Heavily accessed designs 
should also migrate. All of this should be transparent to the 

designer. 

Shared libraries and large designs rarely entirely reside on a 

single workstation and thus are distribution over a network of 

machines. In order to make sure that disruption of one or more 

machines does not stop work on a deSign, read-only libraries are 

usually replicated on many servers on the network. When a 
machine serving a currently referenced library goes down, the 

logical to physical translation facility modifies the translation 

table to point to another server. Note that this can also be accom­

plished on modern operating systems with file names by using 

symbolic links and remote file system mounts. 1 

In the early stages of a design, a designer may want to experi­

ment with many different alternatives and be able to easily 

switch between them. By using a naming scheme that evaluates 

the location of the masters of instances at runtime the alterna­

tives can easily be changed by changing run time parameters. 

This form of naming is called dynamic binding. The binding 

happens when a reference occurs rather than on creation (static 
binding). As the design progresses, a single alternative will be 

selected for use. At this point in time the references should be 

1. For example, this is how shared libraries are handled on certain 
networks at Berkeley. 
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made static so they will not change due to runtime or environ­

mental changes. Although dynamic binding is particularly 

useful early in a design project, where libraries and design orga­

nization change quite often, a dynamic approach can lead to 

significant data management problems at the end of a complex 

design. The dynamic nature of the name resolution mechanism 

can lead to unpredicted side effects, where an apparently 

isolated change to a specific reference can cause other references 

to change at name resolution time. 

Another name resolution and efficiency problem is caused by the 

need for change propagation. As the design progresses, there 

may be changes to a cell that causes inconsistencies in the data­

base (such as changing the size of the cell or the number of 

ports). In order to bring the portions of the design that use the 

cells back into conSistency, the changes must be propagated 

[CH088]. There are two different ways to propagate the changes: 

immediate or lazy. In the immediate mode all references to the 

changed object are immediately changed. If the entire database 

is in memory and all references have been resolved, which is 

rarely the case, then the mechanics of the immediate update 

operation are trivial. 

Normally, however, a few references will be in memory but most 

will not, so the references must be located. If there are back 

pointers from the cell to all instances this is straightforward. If 
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there are no back pointers then immediate update is out of the 

question. In this case lazy updating is used. In the lazy update 

scheme when a cell is referenced the information stored about it 

in the instance record (such as timestamps, size, number of 

ports) is compared with its current state. If there is a discrepancy, 

the instance record is updated. However, if the portion of the 

design with the discrepancy is not checked out for modification, 

this description will persist and the update will occur every time 

that portion of the design is processed. 

Some systems [HAR86] take a middle road, in which all refer­

ences that are currently in memory are fixed immediately and 

the rest are handled on the next reference to the portion of the 

design that has instances of the changed cells is processed. 

Whether the changes are immediate or delayed only some can be 

automatically handled. In many instances the designer must be 

notified. For example, if a cell has a port deleted and there are 
connections to that port when that cell is instantiated some form 

of manual cleanup must be performed. 

In order to reduce the amount of time it takes to do design, reus­

able components are designed for use in other designs. 

Examples are TTL parts in printed circuit board design, and 

standard-cell and macro-cell libraries in integrated circuit 

design. These libraries are different than other parts of the 
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design. They are usually in a central location, replicated on other 

machines to handle network disruptions and bottlenecks, and 

marked read-only to protect against accidental modification. 

Since there may be many libraries that can be used in a design, it 

may be advantageous to name the references to the library cells 

so that library changes can be easily made. This type of naming 

is called dynamic. This makes it easy to change libraries by 

changing some library search path, but means that the entire 

design can be drastically and possibly fatally changed by a very 

simple change. Once the design has moved farther along the 

library that is used should not change, the references should 

change to static. 

4.4 Managing the History of a Design 

In engineering applications it is very important to maintain the 

history of a design [KAT86, CH088]. This allows the viewing of 

the progression of a design, exploring alternatives, and the easy 

backout of bad design decisions. In engineering applications, 

history is normally kept as a sequence over time of a each indi­

vidual design entity. Some systems just copy the entire design 

entity, some store try to just store the changes from version to 

version. These approaches are analogous to the versioning 

facility in provided in operating systems, such as Digital Equip­

ment Corporation's VMS™ operating system, which store 
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copies of each version of a file and which have a mechanism for 

cleaning up old versions, and to a revision control system 

[TIC82] that keeps the current version and changes ("deltas") 

that must be made to recreate the previous version from the 

current version of the file, respectively. The latter approach is 

more difficult to implement efficiently for engineering design 

data, which does not conform to the simple linear record­

oriented structure of a text file. In either case, the version 

management system must be able to support both linear 

versions of design objects as well as alternatives of any object, as 

illustrated in Figure 4.1. 

Versions of single design entities usually have relationships to 

versions of other design entities and thus can not be thought of 

individually. The ability to keep collections of related versioned 

design entities together is another important reqUirement of a 

design data manager. These collections are called configurations 
[BEN82, KAT86], and they allow information about the state of 

an entire design to be recorded (called a snapshot). One major 

difference between a configuration and a version of a hierarchi­

cally organized design is that the configuration can manage data 

objects that are related to the design but may not actually be 

instantiated at the time, such as unused cells in a cell library, 

whereas the version only represents the data it uses. 
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Figure 4.1: The version and alternative approach 
to history management 
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The configuration-based approach to history management is 

illustrated in Figure 4.2. If a new configuration is created from an 

old one, it appears to the user as if all the design objects and their 

relationships have been copied to the new configuration. In 

reality, to save storage the configuration is implemented by 

storing the new versions of modified design objects, but only 

backward references to those components that did not 

change. Alternative design configurations can also be imple­

mented by deriving multiple configurations from a single 

source. 

4.5 Managing Multiple Users of the Data 

Engineering designs are logically partitioned into sub-designs 

that are worked on separately with very little overlap. Since 

there is very little overlap, complex locking procedures found in 

conventional database systems are inappropriate and simple 

locking is sufficient. More important is access control. The 

system must be able to mark some designs read-only (shared 

libraries) and to control modification access to sub parts of a 

design. A design can have many designers, each working on 

different parts, but the entire design should not be modifiable by 

all the designers, each designer should only have modification 

permission for their particular piece of the design. 
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configurations 
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Figure 4.2: The workspace and configuration 
approach to history management 
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Most design systems work on a check in/ check out paradigm. In 

this technique, a designer checks out a portion of the design to a 

private area. Depending on the type of check out system, the 

portion of the design moved to the private area may be inacces­

sible for modification by others until checked in. On check in, 

various validation routines may be run to enforce consistency 

requirements. 

4.6 Concurrency Control 

When multiple users must access the design data concurrently, 

steps must be taken to protect the integrity of the system. For 

example, if two designers were able to modify the same gate 

layout at the same time and yet neithE~r could see the changes 

that the other designer was making, chaos would surely be the 

result. The minimum protection that the design data manager 

must provide is the ability to restrict access to design objects on 

a selective basis. For example, certain objects may be marked 

read-only for all users except the cell librarian. Other objects 

might be tagged read-only by everyone except the owner of the 

object, who is permitted to modify it. Such simple access control 

mechanisms are necessary and even sufficient in many cases. 

Large engineering design tasks are often partitioned into sub­

designs which are implemented separately and with very little 

overlap. As there is very little overlap, the complex locking 
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procedures found in conventional database systems are inappro­

priate in an engineering context and simple locking techniques 

are generally sufficient. Another approach taken to access 

control is to break up the libraries and designs into protected 

domains known as workspaces [KAT86]. Workspaces can be 

organized hierarchically: there may be a workspace for an entire 

design while each of the major functional components of the 

design may be contained in its own workspace. Workspaces 

maintain information about who can check out the contents for 

modification and they provide the necessary locking. According 

to Katz [KAT86] a workspace should also be the granularity of 

the design that is configured. Workspaces are often implemented 

as a three-level hierarchy: private (can be modified only by a 

single designer), semi-private (workspaces shared by a group of 

designers on the same project), and archival (read-only work­

spaces shared by many different projects). A variety of 

implementations of the workspace/configuration ideas have 

been developed [CH088, SIL89, WEI86]. 

There are cases, however, where multiple deSigners are 

permitted to modify a single design object, provided the data 

management system only permits one "writer" at a time. Most 

design systems provide this concurrency control capability by 

supporting a check-in/ check-out paradigm, like that used in 

source code control systems [TIC82]. The designer can check out 

a portion of the design to a private area and then that portion 
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becomes "read-only" to all other users until the modified version 

is checked back in. References to the object from other parts of 

the design may be maintained with the old version or they may 

be updated in the new version of the object when it is checked 
back in. 

Widya et al [WID88] present an excellent description of the prob­

lems associated with concurrency control in engineering 

database systems along with some solutions to the problems. 

The many forms of control other than those mentioned above 

include the use of hard locks, soft locks, lock transfer, and 

multiple writers. If a system uses hard locks, when a portion of 
a design is checked out, a lock is created (often an entry in the 

file system). When others try to check out the same portion of the 

design, the database detects the existence of the lock and the 

request fails. In a soft lock system, if a second designer tries to 

checkout some portion of the design that is already checked out, 

a warning is issued but the lock can be overridden. In a lock 

transfer system, the lock and the portion of the design checked 

out can be transferred from one designer to another, without 

checking in and then checking out the locked portion of the 

design. The most sophisticated of these schemes does not use 

locking explicitly, but rather uses the version-and-alternatives 
mechanism described earlier (Figure 4.1). In this approach, 

multiple designers can check out the same portion of the design 
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for writing, but when they check the design object back in, each 

user creates an alternative of the original design rather than a 

sequential version. 

Of course, merging alternatives into a single object that contains 

the union of the changes from the common source is not straight­

forward in general, but it is not really a Framework issue in any 

case. Simple locking seems to be sufficient for engineering data­

bases, but Ecklund and Tonge [ECK88] have advocated the 

multi-writer technique for engineering databases. Other tech­

niques involving the use of read locks to make sure that a 

modification is not made while the database is being read (a 

write can not occur until all read locks are removed) have also 

been investigated [WID88]. 

As the time between checkin and checkout may be long, and 

other designers may want to see the current status of the design, 

nested (or tentative [KAT85]) transactions can be used to obtain a 

snapshot of the design between versions. 

4.7 Compatibility with Change 

One of the major data management problems in the engineering 

world is that our understanding of the design process is contin­

uously evolving, along with the technologies which are used to 

implement our products. New tools may be added to systems 
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which still use an older version of the data model, and old tools 

may be needed to solve problems after the data model has 

evolved. These issues are usually classified under the heading of 

upward compa.tibility. The possible combinations of situations are 

illustrated in Figure 4.3. Changes to the data model can be clas­

sified as structural- those which affect the tool directly, such as 

changes in access methods or the meaning of a data value used 

by the tool - and non-structural, such as the addition of new 

properties to a design object. 

Of course, by definition a new tool has no problem with new 

data and an old tool can read old data. In the case of a new tool 

which is trying to read old data, if the new tool does not depend 

on the changes to the data model there is no problem. If the new 

tool does depend on the changes, then the old data must be trans­

lated into a format that is suitable for the new tool. Missing data 

objects must be created and bound, values with new meanings 

must be translated, and so on. Many database systems provide 

facilities to support such updating of old data. The task can be 

performed dynamically and incrementally (only when the new 

tool is run), incrementally with update so that once the data has 

been converted to the new representation it is stored in that form 

for future use, or the entire database can be updated as a batch 
process. The second option is generally the most attractive for 

engineering applications. 
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Figure 4.3: The upward compatibility issue 
between database and tools 

If an old tool is expected to read new data, a similar reformatting 

task must be performed if the new data involve structurally 

significant changes. If the changes in the new data model are 

orthogonal to the old model, the old tool should run with no 
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problems. However the updating is implemented, it involves the 
equivalent of a translation or re-mapping step, and some 
systems provide support for developing such translators. 



5 TOOL MANAGEMENT 

5.1 Introduction 

Tool Management involves the characterization and control of 

tools. Successfully running a CAD tool can be very complicated, 

as the designer needs to know many details, such as where the 
tool is located, the runtime environment required by the tool, 

how to invoke the tool, the command syntax of the tool, what 

translators need to be run beforehand, and what computer 

resources are required. At one stage the number of tools used in 

any particular design environment was small enough for 

designers to understand all of them. In this situation, with the 

absence of automated facilities for controlling the sequencing of 

tools, no characterization was necessary. The number of tools has 

grown considerably in the past few years, however, and it has 

become difficult for a designer to understand all of the tools 
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available for design and analysis. Thus work has been done on 

building uniform interfaces for tools and providing co~sistent 

approaches to tool encapsulation. 

5.2 Tool Characterization 

One method of encapsulating tools is to build a generic engine 

for invoking tools and a language for describing the tools to the 

system. Among the features of a tool that can be characterized, 

the following are commonly required by tool management 

systems: 

• tool name 

• tool version 

• physical location of the tool 

• an icon for use by the tool manager user interface 

• command line argument syntax 

• help information 

• computer resoun:e requirements 

• input requirements (which may require translation), 

• output generated by the tool 

• constraints to be satisfied before the tool can be run 

• post-conditions to determine exit status of the tool 
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Tool managers are able to use this information to invoke and 

control the tool, removing the understanding of the details from 

the designer. Specification of the resources a tool consumes can 

be used to do load balancing or to find the machine best suited 

for the particular task. By specifying the types of the input and 

output files, the tool controller is able to invoke translators to 

convert to specified input files into the proper form and to 

convert the output of the tool into the requested output format. 

Constraint specification allows the tool controller to inform the 

designer (or design process manager) that there are constraints 

that have not been satisfied and must be satisfied before the tool 

can be run. Constraints are usually data consistency checks, such 

as making sure the data that was used to derive the input files 

has not changed since the input file was created, separate 

systems for this task have been developed [KAT86]. 

Various systems exist for characterizing and controlling tools, 

such as Cadence's Design Flow System which also encompasses 

methodology management, DEC's PowerFrame [BR087], 

ULYSSES [BUS86, BUS89], CADWELD [DAN89] and MCC's 

MMS [ALL90, ALL91]. There are a number of systems that 

invoke and control tools, but ignore characterization facilities by 

requiring the tools to fit into a specific procedural interface, such 

as the RPC facility in the OCT /VEM environment [HAR86], the 
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dynamic loading of the HAWK/SQUID system [KEL84], and the 
MAGIC system [OUS841, which requires linking the tool with 

the tool manager. 

The CAD Framework Initiative has recently produced a Tool 

Abstraction Specification, which describes a textual language 

modelled after EDIF specifically for the purpose of character­

izing CAD tools. The abstraction for a set of tools is provided as 

input to an abstraction compiler, to ensure that the description is 

syntactically correct. The compiler then stores this information 

into an internal data structure which may be directly processed 

by the Framework to provide access to the encapsulated tool. 
The abstraction format was demonstrated successfully at the 

ACM/IEEE Design Automation Conference in 1991. 

5.3 Tool Control 

Tools can generally be controlled by two methods: manual 

execution of the tool (including translation of input and output 

files, and satisfaction of constraints), or by tool managers. Tool 

managers are a special class of CAD tools that invoke and control 

other CAD tools. Tool managers can be integral parts of a design 

process system, as in ULYSSES, or stand-alone tools that can be 

used in a design process system, such as CADWELD. Tool 

managers can also invoke tools immediately or schedule them 

for processing (as in a batch queue manager). Dedicated tool 
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managers, such as the PowerFrame system from DEC and 

CADWELD, have user interfaces specific to the tool manage­

ment task. Some tool managers are actually the user interfaces to 

design systems, such as MAGIC, HAWK, and VEM, and they 

provide tight integration to the design system (user interface and 

database facilities) [KEL84], [HAR86]. 

Tool managers which have tool characterization facilities allow 

the control of any tool that can be described by the abstractions 

available. Tool managers without characterization rely on the 

tools conforming to some sort of interface (common input and 

output formats or procedural interfaces). This type of manager 

requires tools to be developed for the particular system the tool 

manager operates in or that 'wrappers' be created that convert 

between the standard interface and what the tool wants to see. In 

current systems the former is more useful, but as more integrated 

environments are built the former becomes more heavily used. 

Of course, this is an area where standards activities like the CFI 

can have a major impact on Framework development, by 

providing standard procedural approaches to tool integration 

and control. 

A common set of assumptions for tool managers which do not 

use characterization is that tools read from standard input, write 

to standard output and standard error, and may be controlled at 
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startup through a set of command-line options. These assump­

tions are particularly appropriate for Unix-based batch tools, 

though they may also be appropriate for some interactive tools. 

5.4 Other Tool Management Functions 

Tool managers can perform many functions beside basic tool 

invocation. These include: 

• load balancing 

• name serving 

• consistency enforcement 

• translation 

• run logging 

• status reporting 

• license management. 

Tools that do load balancing may work on a single machine or 

across a network. Load balancing on a single machine is usually 

handled by a batch queue. Batch queue software manages a 

sequence of jobs that are run in order, with the ordering based 

most commonly upon the priority and resource needs of each 

job. The designer (or design process manager) requests that a 

tool be invoked and the tool manager places the job in the batch 
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queue. If the tool manager has access to machines on a network 

the tools (assuming the proper binaries exist and the tool has 
access to the input data) can be invoked on the ''best machine," 

where best machine takes into account any special requirements 

of the tool (for example, runs well on a parallel machine, requires 

a lot computer time, uses lots of memory) and the load of the 

machine. 

Name serving simply removes the need for the designer to know 

the location of a tool: it is a similar task to the name resolution 

issue for data presented earlier. The tool is referenced by a logical 

name - say "spice" - and the tool manager finds the location of 

the particular version of the tool which is appropriate to the task 
at hand, and initiates execution on the appropriate machine. 

Most tool managers allow the user to pick a tool from a list or 

menu of icons in a graphical user interface, and hide the details 

of the actual name and location of the tool binary. 

Consistency enforcement is another important part of tool 

management. Before a tool is invoked the inputs to the tool are 

checked to verify that they are consistent and up to date, using 

some kind of constraint satisfaction mechanism. These 

constraints are usually data consistency checks, such as making 

sure that the data that were used to derive the input files have 

not changed since the input file was created, and which perform 

a similar function to that performed by software maintenance 
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systems like the Unix make program [FEL79]. If the data are not 

up to date, the controller of the tool manager is informed. If the 

controller is the designer, then the designer can take the neces­

sary actions to bring the data up to date. If the controller is an 

automated design methodology manager the tools necessary to 

bring the data up to date (if known) can be invoked. Sometimes 

consistency enforcement is handled by the data management 

layer that checks out or checks in design data before and after 

use [KAT86]. Some early tool control systems were based on 

adaptations of software maintenance systems for hardware 

design management (see for example [NEW81]), and recently 

separate systems for this task have been developed [TIC82]. 

Tools that have not been developed for an integrated environ­

ment usually represent input and output data as textual files. 

While some tools use common formats if they exist many tools 

use their own format. Therefore, in order to run many of the tools 

in a design system translators must be run in order to convert 

from the output format of the previous tool to the input format 

of the current tool. It is the job of the tool manager to determine 

(based on the types of the input files specified in the tool charac­

terization) which translators need to be run and invoke them to 

produce the necessary input data. This process can be thought of 

as a simplified version of the problems handled by the consis­

tency enforcement facility and can be folded into it. 
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Run logging is a useful facility where a closely coupled tool inte­

gration is not possible. The purpose of a run log is simply to 

document the activity of a tool, usually in a format which is both 

machine and human readable, in order that an audit trail of 

design activity is maintained. This can be used both to determine 

after the event which files have been read and written by a tool, 

and as the basis of some simple post hoc data management. The 

CAD Framework Initiative has defined a run logging format. 

Run logs can be generated by the tool manager because in 

general the tool manager will know which files are passed to a 

tool, and additionally some heuristic checks can usually find 

modified files after the run completes. The reliability of this 

process decreases as the interactivity of the encapsulated tool 

increases, however, and tools which have their own access to 

data stored anywhere on a network (such as editors) cannot be 

reliably encapsulated in this fashion. 

Some tool managers are also able to provide status information 

on tool execution as a tool run proceeds, and thus allow finer 

grain control over the tool. Typical capabilities in this area 

include terminating execution of the tool, stopping and 

resuming the tool, and changing the execution priority of the 

tool. 
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Finally, a function which is of considerable importance in 

commercial Frameworks is license management, which ensures 

that proprietary tools are only used in accordance with the 

contract between the user and supplier organizations. Licensing 

is usually handled through one or more license files, which 

contain encrypted information about tool access privileges, and 

one or more licensing daemons, which are small networked 

programs which continually maintain state information on 

license usage. A variety of licensing schemes are in use: the most 

common are host-based licensing, in which case permission is 

given to run a certain piece of software on a single machine, and 

network licensing, in which case permission is given to concur­

rently run a certain number of copies of an application on a 

network, usually defined by a list of host identifiers which are 

part of the encrypted license file. 

In summary, tool managers provide a way of hiding the details 

of the actual invocation of the tool from the designer and also 

provide a consistent interface to the tools for an automated 

design flow manager. 



6 DESIGN FLOW MANAGEMENT 

6.1 Introduction 

The notion underlying Design Flow Management (DFM), or 

Design Methodology Management, is that chip design is a 

process, involving a sequence of operations, performed on 
design data. DFM software attempts to capture and automate 

that process. 

A DFM system may be viewed as a meta-tool in the CAD environ­

ment, both in the sense that it deals with other tools as data, 

manipulating them to meet some design goal which goes beyond 

the scope of any of the individual tools, and also in the sense that 

it "packages" groups of tools into higher-level entities which 

may be manipulated by the user as a single tool. 
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In the introduction to this paper it was stated that the criterion 

for success of a CAD Framework is that it reduce the time needed 

to develop or modify a CAD system such that the CAD system 

meets the needs of its end-users. In the case of design flow 

management, CAD system generation and modification is still 

part of the issue, but the tool has a function and significance 

which not only may make additional demands upon the CAD 

system developer, but which offers benefits to the end user 

which cannot be realized in the absence of a Framework. Design 

Flow Management may therefore be regarded in some sense as 

one of the fruits of a good CAD Framework. 

6.2 Benefits 

Design Flow Management offers two kinds of benefits: firstly 

through DFM it is possible to automate tedious sequences of tool 

invocations (for example an edit - netlist - simulate cycle); 

secondly it is possible to enforce development discipline within 

a design team - requiring management sign-off before commit­

ting library changes, or running DRC before approving layout 

changes. In addition to the above procedural benefits, it has been 

argued [SIE84] that explanation facilities, based upon the meth­

odology and the state of the design are increasingly important as 

the tools become more autonomous. This need arises because 

under a DFM system, the user leaves some of the decision-
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making up to the Design Flow Manager, and then if things go 

wrong and user intervention is required, it must be possible to 

determine how the system arrived at its present predicament. In 

this context it is worth noticing that at least one worker has 

expressed concern [KAH87b] that with increasing " ... automation 

and over dependence on CAD applications there is a danger that 

designers will fail to learn from the design experience." Explan­

atory facilities go some way towards alleviating this potential 

difficulty. 

Design flow management has long been of interest in the ASIC 

world, where a large part of the business is logic replacement, 

and the typical designer is not highly skilled in the arts of chip 

design, as a means of protecting the user from methodological 

mistakes. The value of DFM is less obvious in the full custom 

environment, but it still has an important part to play in synchro­

nizing the work of a team of designers, and automating multiple 

iterations and approval cycles. 

6.3 DFM Dependencies 

A DFM system depends upon most of the other services 

provided by the Framework. The most critical dependencies 

concern Tool Management and Data Management. As an 

analogy one might think of the interaction between the "make" 

utility, file system timestamps, and the compilation and linking 
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tools (such as cc) which support software development. make 

enforces a sequence upon the execution of the tools, based upon 

file modification times. 

The DFM software reads in or deduces a specification of a tool 

sequence (similar to the dependency graph generated by make) 

and it then activates appropriate tools, based both upon infor­

mation about the state of the data (generated by the Data 

Manager) and upon the specified tool sequence, or program. 

Some design management systems do not clearly distinguish 

between data management, tool management and design flow 

management. An example of a system which merges all three 

functions into a single tool is Sun's Networked Software Envi­

ronment (NSE) [SWA88]. Although this tool was designed 

originally for the Computer-Aided Software Engineering 

(CASE) market, it has been applied to electronic design within 

Sun Microsystems. 

The NSE allows different data objects, such as a schematic gener­

ated by a particular tool, to be defined, along with a set of 

appropriate methods which may be executed against objects of 

that type. This mechanism is used not only in conjunction with 

data access controls; it also allows the tool integrator to program 

methodologically derived checks to be applied to the tool and 

the data at runtime. An additional feature of the NSE which 
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addresses tool and design flow management is the Link Services 

Database, which is a daemon-like facility which allows links to 

be established between data objects and arbitrary procedures. 

An example of the use of this facility would be to send mail to 

the users of a cell library whenever a change is made to the 

library. This very useful facility provides a general mechanism 

for instituting design checks, automatic tool executions, updates 

to design logs and the like. 

6.4 Existing Approaches 

A number of attempts have been made to provide Design Flow 

Management, either as part of an integrated CAD system, or as 

part of a stand-alone Framework. Notable in the former category 
are DEMETER [SIE84] and Ulysses [BUS87, BUS85]. In the latter 

category DEC's PowerFrame [BR087] and Atherton Technol­

ogy's "Software Backplane" [ATH89] are perhaps the best 
known. 

In Digital Equipment Corporation's PowerFrame [BR087], 

process-related knowledge is captured in the extension 

language, which provides, through a C-like [KER78] syntax, 

access to all the data management and user interface facilities of 

their Framework. Design flow management is therefore less an 

explicit provision of their system than a useful side-effect 
resulting from their system architecture. DEC calls the process of 
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building these procedural cocoons encapsulation, and the term 

embodies some Tool management functionality as well as some 

design flow management. 

Cadence's Design Flow System is another extension-Ianguage­

based flow system: the design flow engine is driven by a set of 
data structures called flowcharts and design steps, which describe 

tasks and task dependencies using hierarchical directed graphs. 

Branching and looping capabilities add to the richness of the 

model. Each step (i.e. each node on the graph) is defined in terms 

of a set of procedures and data, defined in the SKILL [BAR90] 

extension language, which are activated by the design flow 

engine as required. The graphical model is supported by a 

graphical user interface which illustrates the flow graph and 

supports user interaction through direct manipulation. 

The Microelectronics and Computer Technology Consortium's 

CAD program has developed a methodology management 
system known as MMS [ALL91], which uses MCC's extension 

language (Scheme) to describe tasks and processes in a declara­

tive fashion. Some of the particular strengths of this system 

include the ability to distribute tasks across multiple hosts, and 

to gather together tool management and flow management activ­

ities. MMS takes tool and task descriptions and compiles them 

into an internal form which may be traversed by the MMS 

engine. 
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Paseman makes the point [ATH89] that what he calls work-flow 

control must " ... respect and enforce organizational boundaries 

that are already in place" (p73). Many design managers do not 

use workstations, and their project records may not be on-line. 

Atherton Technology provide an interface to the outside world 

" ... by allowing local policies to be implemented as message 

refinements and triggers". 

SCHEMA [ZIP85], Ulysses, DEMETER, Sidesman [KAH87] 

REDESIGN [STI84] and VEXED [MIT85] take a knowledge­

based approach to design: in each case the knowledge base is 
applied both in tool selection and for detailed design guidance. 

For a general discussion of a range of knowledge-based 

approaches to electronic design automation, consult [DAN87] or 

[BRE90]. 

These systems tend to work at a detailed level, applying small 

tools to small parts of the problem, and then gradually building 

up a complete solution. This is not compatible with current 

commercial CAD system architectures, which tend to be 

constructed as a relatively small set of "powerful" tools 

performing relatively independent functions. The designers of 

Sidesman stress [KAH87] " ... the importance of the design of a 

complete environment for an 'intelligent' CAD system so that 

both rule- driven and conventional applications may be used to 

support designers." 
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VEXED divides the design flow problem into two parts: knowl­

edge of implementation methods and control knowledge. The 

former describes legal operations, while the latter ascribes value 

to particular operations. In the DFM domain this maps 

(depending upon the granularity of the tools) to a distinction 

between tool activation knowledge and intentional knowledge 

about how best to proceed with the design. In addition, VEXED 

uses a DESIGN PLAN which records design decisions and their 

explanations, and also supports design replay for the explora­

tion of alternatives. It seems likely that this kind of record, which 

is also maintained by the other knowledge based systems 

mentioned above, may well become an important part of future 

commercial design systems, both because of its explanatory 

value and its support for iterative design refinement approaches. 

Rather than specifying tool relationships explicitly, either 

through procedures or rules, ELECTRIC [RUB87] schedules 

cooperating tools in a round robin arrangement, where the tools 

communicate through a change list and a common database. It 

appears that this should support tool interaction similar to that 

provided by a blackboard; however no explicit tool sequencing 

beyond the scheduler loop is used. This architecture thoroughly 

blurs the distinction between tool management, inter-tool 

communication, data management and design flow manage­

ment. 
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6.S Describing the Design Flow 

There are a number of ways in which the intended design flow 

may be described to the DFM system. The nature of the descrip­

tion language has important implications for the flexibility of the 

DFM: in particular there are significant differences between a 

procedural and a declarative style. 

The difficulty with a procedural style of data flow description is 

that it focuses on the "how", rather than upon the "what" or the 

"why". This means that each design flow, created by the tool 

integrator, specifies precisely the sequence of operations which 

constitutes a design flow, right down to prompting for user 

input, requesting tool execution, and checking result status. In 

terms of the software development analogy, this is like replacing 

makefiles with shell scripts. Not only is this kind of program­

ming difficult, maintenance is extremely difficult, since 

interaction between tools and modules has to be described 

explicitly, making the addition or deletion of tools problematic. 

A declarative style of design flow description has been explored 

by some workers. Ulysses describes CAD tool interdependencies 

in terms of preconditions, which are essentially assertions which 

must hold before a tool (or knowledge source) may be activated. 

It seems attractive to extend this notiion to define each tool in 

terms of preconditions, actions and post-conditions: the actions 
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are essentially procedural, while the post-conditions define the 
state of the design after the tool has run successfully. This allows 

a number of different execution models for the flow descriptions, 

as described below. 

The designers of CHESHIRE [DEM87], an object-oriented inte­

gration system, take a rather different approach to design flow 

management: their coherence control is associated directly with 

the data objects, and is divided into three areas: 

• Data level- access methods maintain data consistency 

• Application level - a "local automaton" controls the evolu­

tion of a view within a particular tool 

• Inter-application level- an automaton associated with each 

cell coordinates the evolution of the cell's views. 

This style ties data consistency and flow control closely to the 

actual data, and shows once again how varied are the options 

open to the developer of design flow and data management 

tools. 

VOV [CAS90] provides automatic creation of flow descriptions 

based on the notion of design traces. The idea is that as tools run, 

opening and closing files, they can leave a "trace" of their 

activity. This trace can be used to generate a graph of dependen­

cies which can subsequently be used to provide records of 
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design history as well as repeatable execution of combinations of 
tools. vav automates not only collection of the information 

required for a flow, but also the re-running of pre-captured 

flows. vav's traces are represented by a " ... bipartite directed. 

and acyclic graph, in which the nodes represent either design 

data or CAD transactions." [CAS90]. The design trace capture is 

implemented either by modifying tools to make calls to vav, or 

by wrapping (i.e. encapsulating) the tools with scripts which 

keep track of file access at the beginning and end of each tool's 

execution. 

Finally, a rule-based approach may be used to describing design 

flows, as we have seen with VEXED and others. 

6.6 The Design Flow Engine 

If the design flow is described procedurally, clearly the design 
flow engine, which executes the design to the flow specification, 

will be an interpreter for the design flow description language. 

However, if a declarative or rule-based approach is used, a 

number of alternatives appear. af these, the most interesting are: 

• An inference engine, which performs a search of the problem 

space guided. by the rule base: without explanation facilities 

such systems may not be easy either to program or to under­

stand in action 
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• A simple procedural evaluator (in the case of a declarative 

representation) which treats assertions as procedure calls 

• A functional evaluator, which uses data management infor­

mation to minimize the work required to achieve the current 

design goal. Such a system may be either eager or lazy, taking 

a conservative vs. an optimistic approach to previous design 

steps 

• A blackboard system, where the state of the design and the 

goals of the user are modeled as assertions on the blackboard, 

and the design flow engine attempts to match the design state 

with the tool preconditions. Such an architecture actually sup­

ports all of the above models. 

The important conclusion to draw from all of this is that the 

language used to describe design flows should not preclude the 

implementation of sophisticated programs for executing the 

flow. It is our view that procedural descriptions are significantly 

less flexible than declarative ones, because they say too much. 

Occam's razor is a valuable principle in CAD Framework design, 

because a design which specifies only that which is really 

required and understood does not eliminate appropriate exten­

sions. 
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6.7 Standardization and Design Flow 
Management 

99 

Design Flow Management is very difficult to do without stan­

dards in a number of areas. Without a standard tool execution 

model the DFM system requires built-in knowledge about the 

execution environments of individual tools. Without a standard 

interface to data management it is difficult to determine the state 

of the design. 

In the absence of a single standard database for electronic CAD, 

data interchange standards such as the Electronic Design Inter­

change Format (EDIF) [EIA87] have begun to make it possible to 

link groups of tools into sequences. 

Another area in which emerging standards will make design 

flow management more valuable is user interfaces. The X 

Window System [SCH86] not only supports multiple simulta­

neous application displays, but it also allows display on a single 

screen of the output from programs running on multiple hosts. 

In such a heterogeneous, distributed computing environment, 

tools which perform "traffic management" among the tools 

make the designer's life somewhat easier. Finally, a single data 

model, shared by the CAD tools and the DFM in a single envi­

ronment, will greatly simplify the tool management task, both at 

the tool integration level and the design flow management level. 
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To date, however, there has been little progress with respect to a 
standard model for describing design methodologies. CFI has 

focussed on tool management activities rather than attempting 

to define either a model or an interface to methodology descrip­

tion or management. 



7 USER INTERFACES 

7.1 Introduction 

The user interface of a software system is that portion designed 

to interact with a human user. The focus of work in this field is 

in improving the communication between a user and the func­

tional portion of a system. Good user interfaces gather and 

present information efficiently and effectively allowing a user to 

concentrate on the task at hand not on the software system itself. 

Development of such systems can be deceptively difficult. In this 

section, we highlight some of the problems in constructing user 

interfaces in the context of large Design Automation Frame­

works and some solutions found in stab:! of the art systems. 
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Research and development in user interface design is not limited 

to design automation. Since all application programs require 

human interaction to some degree, work in this area has been 

done in nearly all areas of computer research. Much of this work 

is informal and only manifests itself in the implementation of the 

resulting system. However, a specialized field of endeavor 

known as Human Factors has come of age to study this area 

exclusively [FOL84]. 

Conversely, development of user interfaces is heavily influenced 

by other unrelated areas of computer research. Advances in 

computing hardware have had profound effects on the design of 

human/machine interaction. Recent years have seen the devel­

opment of new, more expressive input devices, faster processing 

speeds, and distributed computing via networks. These develop­

ments have given us the popular desktop workstation with 

multiple-window, pOinter-based, graphic interfaces. Increasing 

complexity of software systems has also furthered effort in the 

user interface arena. Often, the control of such systems requires 

the user to assimilate huge amounts of data and make many 

complex decisions. Without an effective user interface, such 

systems aren't viable. 

The major thrust of research and development of user interfaces 

is in two areas: improved application program interfaces and 

better interface development environments. Application 
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programs are software a user invokes directly to accomplish a 
task. The user interface of such programs interact directly with 

the user and thus define the "look and feel" from the user's 

perspective of the entire system. Application programs are built 

on top of user interface development environments. Develop­

ment environments allow user interface designers to experiment 

with new interfaces and build production interfaces qUickly. 

Recent development in application interfaces focuses on 

designing systems that can be used effectively by those with 

little knowledge of computers or programming and efficiently 

by those already familiar with the system. Such systems employ 

methods that allow entry and display of many different kinds of 

information including images, text, graphics and sound. These 

methods allow large amounts of data to be manipulated without 

overloading the user with too much information. Also, large 

software systems often consist of many independent compo­

nents each with different user interface requirements. Modern 

systems try to provide common paradigms for interacting with 

all of these components in a uniform fashion. This minimizes the 

amount of low level system architecture information a user must 

learn (and more importantly, relearn) to use the system effec­

tively. Furthermore, these common paradigms help to hide the 

often hard to use services provided by even lower levels of the 

software system (Le. the operating system or even the under-
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lying hardware). Eventually, such systems become tools that 
fade from the consciousness of a user in comparison to the work 

at hand. 

Developments in the programming environments used to 

construct application interfaces are also an important area of 
research. Constructing a good user interface for any system is 

surprisingly difficult. User interfaces are judged subjectively by 

a body of users whose taste, knowledge, and experiences differ. 

Even the most careful designer can build interfaces that do not 

meet user expectations. Moreover, users often can't accurately 

describe what they need in an exact fashion. Even when exact 

specifications are available, the resulting system is often unsatis­

factory. Implementing even simple interfaces involves a 
substantial amount of work both in design and implementation. 

Thus, modem user interface development systems must adapt 
quickly and allow (possibly radical) changes without massive 

redesign or re-implementation. Well designed architectures are 

the first key to such flexible systems. Recent work has yielded 

layered architectures that can be extended easily with little 

impact on other parts of the system. Embedded extension 

languages can also provide the necessary capability for quickly 

re-configuring a system. Finally, many systems offer means for a 

user to customize an interface directly and interactively. These 

techniques are presented in greater detail in section 7.3 on page 

111. 
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In the remaining portion of this chapter, we present an overview 

of the state of user interfaces developed for design automation 

with an emphasis on electric circuits. Throughout much of its 

history, the area of electrical CAD has emphasized interaction 

with human users, many without detailed knowledge of soft­

ware systems. A short history of these developments is given in 

the next section. Ideas used in developing interfaces to electrical 

CAD applications are applicable to other areas of CAD and 

general user interface development as well. Recently, the devel­

opment of large numbers of design aids for the design engineer 

and integration of these tools through the use of Frameworks 

have made user interface design an even more important area of 

research for CAD professionals. The final part of this chapter will 

explore the state of the art in Framework user interfaces and 

possible future directions for such work. 

7.2 History of Design Automation User 
Interface Systems 

User interface design has played an important role in the history 

of electronic CAD research. New developments in this area have 

almost always been incorporated into leading CAD systems. 

Conversely, user interfaces (especially graphiC interfaces) have 

been heavily influenced by continuing evolution in electronic 

design aids. 
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Three significant periods are apparent in the history of user 

interface design of electronic CAD tools. First, early batch 

oriented systems developed in the 1960s laid the foundation for 

later innovation in interactive interfaces. Second, starting in the 

early to mid 1970s, rapid advances in integrated circuit tech­

nology gave birth to the first interactive graphic interfaces used 

in electronic CAD. Finally, in the early 1980s, a boom in the 

development of automatic CAD tools for simulation and 

synthesis of electronic circuits led to development of Tool Frame­

works with modern modular user interfaces. 

Early electronic CAD tools were developed out of necessity. At 

the time, electronic circuits were constructed directly from spec­

ifications and diagrams drawn by hand. As designs became more 

complex, it became more difficult to check designs for correct­

ness before the circuit was constructed. This problem became 

especially acute in the area of integrated circuit design. Early 

integrated circuits were laid out by hand by cutting shapes onto 

rubylith. With the invention of integrated circuit micro-proces­

sors in the late 1960s, the number of shapes in typical designs 

had grown to several thousand; well beyond the capability of 

humans to exhaustively examine for error. Thus, computer 

programs were developed to aid in the verification of these 

deSigns. Since integrated circuit design is a graphic process, the 
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emphasis of such programs was graphic in nature. This 

emphasis would have a dramatic impact on graphic interfaces in 

the years to come. 

In this period, user interfaces for these new computer aids were 

dictated by available computing resources. Most computer 

systems in this era were centralized batch-oriented facilities. 

Furthermore, most of these tools were developed in isolation 

with little influence from similar work done elsewhere. Thus, 

early user interfaces consisted of diverse card-image oriented 

data entry and line-printer oriented data output with no on-line 

user interaction. However, manipulation of graphic data using 

these kinds of interfaces proved too difficult and error prone. 

Off-line digitization tablets and plotting systems like those 

produced by David Mann were developed to remedy the 

problem. However, the batch nature of computing still ruled out 

direct graphic manipulation and interactive feedback. 

Despite the batch emphasis of computer systems at this time, 

pioneering research in on-line interactive techniques became 

quite active [LIC62]. Cathode-ray tube (CRT) displays became 

available to researchers in the early 1960s. At this time, ground 

breaking work in interactive engineering graphics was done by 

Sutherland [SUT64]. His Sketchpad program is one of the earliest 

examples of on-line interactive manipulation of graphic images. 
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However, it would be another five years before systems devel­
oped for use in the integrated circuit industry would become 

available ushering in the next age in CAD user interface design. 

Early experiments in interactive programs for manipulating 
graphics led to the development of dedicated graphics-entry 
workstations in the early 1970s. These commercial systems, 

developed by companies like CALMA, Applicon, and Comput­

ervision, allowed users to see designs graphically on CRT 

displays and directly manipulate them using digitization tablets 

or light pens. Soon after their introduction, these systems 

displaced the older text-based and off-line digitization schemes 
for preparing graphic information for later analysis and fabrica­

tion. Initially, these systems were very expensive, well over 

$130,000 per station. Thus, efficiency became the overriding 

influence on the user interface of these workstations. Unlike 

modern systems, quick learning time was not emphasized. On 

the contrary, dedicated technical personnel were trained specifi­

cally to quickly enter designs and were often kept busy around 

the clock to defray the large cost of the system. 

Even though these systems emphasized input efficiency above 

all else, they contributed important technical innovations and 

improvements to the state of graphic user interfaces. Improve­

ments to computing hardware played an important role in these 

developments. The greatest influence was the development of 
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the mini-computer. For the first time, it became economically 

possible to dedicate a computer to servicing a small number of 

users interactively. Coupling these computers to raster displays 

allowed designs to be viewed in color and increased interaction 

with the user through direct manipulation of shapes on the 

screen with immediate feedback. Early versions of these systems 
used keyboard input for controlling all non-graphic aspects of 

the program. More accurate light pens and digitization devices 

caused user interface deSigners to concentrate on using the 

pOinter more efficiently. Fixed on-screen menus and command 

annotations on digitization tablets required less typing and 

reduced hand an arm motion. Some systems even experimented 

with unusual forms of input. For example, some Applicon 
systems used sophisticated pattern recognition algorithms to 

recognize characters drawn freehand on the screen with the 

pointer. These characters were then interpreted as commands. 

Most of these features appear today in modern interfaces. 

In the last five years, the advent of low-cost, high-resolution 

bitmap-based graphics workstations has dramatically changed 

the user interfaces provided to CAD tool users. In the early 

1980s, inexpensive artwork entry systems [BIL83, OUS81 , 

OUS84] and schematic entry systems based on well known inter­

active graphics techniques [NEW73, FOL82] were developed 

that rivaled the capabilities of the dedicated graphiCS editors of 

the previous era. Instead of hiring and training dedicated 
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personnel to operate expensive layout entry systems, new 

companies began providing these low-cost systems on the engi­

neer's desk. 

The state of computing hardware advanced rapidly in this 

period. Lower cost personal computers and workstations made 

it possible to provide greater interaction in CAD tool interfaces. 

Very inexpensive raster displays with low-cost pointing devices 

made it possible for CAD tool developers to write new interfaces 

for applications traditionally done on text-based terminals or 

through batch systems. The introduction of multiple-window 

interfaces soon followed. These interfaces where based on the 

pioneering work done in the late 1970s at Xerox [TESB1, SMIB2] 

and made popular by Apple in its Macintosh [APPBS] and Lisa 

computers. These interfaces incorporated new features now 

found in most modern systems: a window for each application, 

pop-up or pull-down menu systems, forms-based input with 

check boxes, toggle buttons, and text fields, and mouse based 

manipulation of items on the screen. As designs became larger 

and the demand for faster interactive interfaces for editing 

graphiCS increased, new developments in data structures for 

dealing with two-dimensional data came into use [BENBO, 

ROSBS, OUSB4]. 
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At the same time, the reduced cost of computing resources 

encouraged CAD tool developers to produce more automated 

design aids. Greater use of networks allowed the low-cost 

display workstations to be linked to the larger computers used 

for checking and processing designs. Entry and display of a 

wider class of information (not just graphics) became a necessary 

part of new CAD tool development. This led to current work in 

user interface frameworks. 

7.3 Modern Framework User Interfaces 

State of the art user interfaces developed as part of CAD Frame­

works must meet a wide set of requirements. Input to such 

systems include high level problem specifications and parame­

ters, design documentation and project management 
information, information for controlling a wide selection of 

automated design tools, as well as the graphics and design 

artwork handled by the older monolithic graphics editors. These 

new interfaces must also display new forms of output. These 

include intermediate design data (in both graphic and non­

graphic forms), process statistics and management information, 

design documentation, status of CAD tools as processing 

proceeds, in addition to the final design data for fabrication and 

implementation. Furthermore, deSigners increasingly use appli­

cations outside the realm of the CAD Framework. Electronic 
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mail, date-book systems, and document preparation tools are a 

few examples. Modern Framework interfaces must mesh with 

these other applications to provide a complete interface to meet 

all the computing needs of a designer. 

The problems of designing comprehensive user interfaces that 

span many different applications is not unique to Electronic 

CAD Frameworks. These problems must be addressed by busi­

ness and finance applications, engineering systems used in other 

disciplines, and general system support applications. Early 

work in this area was considered proprietary. However, recently 

a trend in user interface work has been to produce solutions that 

are released to the public domain. These solutions benefit all 

application developers by providing a common platform for 

developing compatible tools. These solutions are explored in the 

paragraphs that follow. 

Current user interface architectures consist of several layers of 

software, each providing a higher level of user interface services. 

As shown in Figure 7.1, these layers consist of a graphics inter­

face for controlling the display hardware, toolkits for building 

standard user interface components or widgets, a set of widgets 

for constructing the interface itself, and finally a high level 

programming interface used by Framework tools. 
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End User 

Figure 7.1: Expanded view of user interface 
components of a Framework 
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At the lowest level, a graphics interface provides an abstraction 

that hides the details of the underlying graphics input and 

output devices. Early work in this area was done before the wide 

acceptance of multi-window interfaces like those developed at 

Xerox [SMI82] and Apple [MAC82]. The Graphics Kernel System 
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[ANS8S] and PHIGS [BR08S] are examples of early graphics 

interfaces that have become standards but have not played a 

significant role in CAD Frameworks due to limited support for 

windowing interfaces. Recently, the X Window System [SCH86, 

SCH88] developed at MIT has become a popular choice at this 

level due to its heavy emphasis on windowing, wide acceptance 

by hardware manufacturers, its capability for making good use 

of a large class of high performance bitmap-based workstations, 

and for allowing application programs running on one machine 

to drive displays on other machines using a network protocol. 

The NeWS system [GOS86] developed by Sun Microsystems 

provides similar capabilities but may not be as well suited to 

CAD engineering due to differences in the imaging model used 

for displaying color. Work proceeds in this area toward an 

industry wide standard based on X but no such standard yet has 

full industry support. 

Complex user interfaces often consist of many windows each 

displaying different kinds of information and each responding to 

different kinds of user input. The basic graphic interface 

provides the functionality to implement such an interface but at 

a level that requires an overwhelming amount of programming. 

Much of this programming is common to most applications. 

Toolkits, the next level in the architecture of modern user inter­

faces, have been developed to encapsulate the common portions 

of multi-window applications. These toolkits are based on the 
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idea that complex interfaces can be built by combining standard 

interface components known as widgets. These components 

provide the labels, toggle switches, text input editors, menus, 

and other similar features found in multi-window interfaces. The 

underlying toolkit exports features for combining widgets on the 

screen, controlling their location, dispatching user input to the 

appropriate widget, and handling common resources like fonts 

and color. 

Toolkits and widget sets are often considered a unit even though 

this need not be the case. For example, the standard toolkit for X 

[SCH88] specifies toolkit functionality without explicit reference 

to widgets. Many different widget sets have been built on top of 

it and some mixing and matching of widgets from differing 

widget sets is possible. Widget sets themselves define the look 

and operation of an application. Although a widget set is a 

collection of independent components, a cohesive set often 

defines conventions for uniform pOinter and keyboard input, 

data display, and inter-component communication all using 

basic toolkit functionality. Two commercially developed widget 

sets, XUI from Digital Equipment Corporation and Open Look 

from AT&T, demonstrate this concept by providing components 

that when used together form an easily recognizable and consis­

tent user interface. 



116 CAD Frameworks: Integration Technology for CAD 

Constructing applications using widget sets and toolkits can still 

be a complex task. Application designers must still specify the 

layout and interaction among widgets using somewhat cumber­

some programming interfaces. Active research in general 

purpose user interfaces is now focusing tools for automatically 

building widget based applications from high-level descriptions. 

The pioneering work in this area was done in the middle 1980s 

by Apollo Computer Corporation in what is now known as their 

MOTIF system. Recently, Apollo has agreed to work on making 

this technology widely available pOSSibly through a specification 

that may become industry standard. Current work focuses on 

specifying interfaces using a combination of a special purpose 

language description for specifying the interaction and control 

of widgets and interactive editors for layout and prototyping. 

Portions of this ideal have been constructed as part of the devel­

opment of various widget sets and in proprietary systems. For 

example, Digital Equipment Corporation provides a language 

with its DECWindows widget set for combining the widgets into 

forms [DEC89]. However, there are very few widely available 

comprehensive application building tools in existence at the 

current time. Hypertext systems (such as the Hypercard system 

developed at Apple) allow the look of an interface to be 

constructed graphically and the semantics to be expressed in a 

simple programming language. 
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All modem CAD tool Frameworks use graphics interfaces and 

toolkits to integrate a wide range of computer design aids. 

However, systems in use today diverge in terms of their basic 

integration philosophy. The pioneering work done by EDA 

Systems [BR087] and CADWELD [DAN89], uses tool encapsu­

lation to allow older CAD tools with non-graphical interfaces to 

be used along with modem tools in a unified user environment. 

A modem windowing interface is then used to control the 

encapsulated tools. However, no attempt is made to fully inte­

grate interactive tools or those with graphic interfaces. This may 

lead to inconsistent user interfaces. Comprehensive Frameworks 

with architectures like the one described in Figure 2.1 attempt to 

provide one uniform high level procedural interface to user 

interface services that can be used by all tools. Frameworks 

developed at Berkeley [KEL84, HAR86] and Cadence Design 

Systems use this approach. These systems allow tools become 

tightly integrated with a provided graphicS editor. Tools can 

highlight graphics objects, obtain graphic and textual input, and 

carry out editing operations all within a uniform user interface. 

Cadence's Framework actually supports both techniques, in the 

interests of serving both the internal need for tight coupling 

between tools and their operating environment, and the external 

need to interface a wide variety of customer-supplied tools. 
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7.4 Future Directions for CAD User Interfaces 

Major influences for future work in CAD Framework interfaces 

will come from increased standardization of toolkit and widget 

set functionality and by improvements to the programming 

interface provided by the CAD Framework standardization 

allows. 

Standardization of toolkit and widget set functionality will 

allow Framework user interface developers to make greater use 
of these systems and thus provide much more powerful inter­

faces than those in existence today. Since these systems will be 
standardized, those developing other tools outside the realm of 

CAD Frameworks will also begin producing systems meeting 

these specifications. The result will be increasingly uniform 

computing environments where a designer uses CAD tools and 

non-CAD tools in an interchangeable fashion. 

Future programming interfaces for CAD Frameworks will allow 

Frameworks to export a procedural user interface that is 

exported to all other CAD tools in the Framework. The key to the 
design of this interface is the realization that the user interface 
requirements of all tools can be met by providing the necessary 

facilities to construct interactive visual editors capable of editing 

any data stored in the Framework. Like advanced application 

building tools discussed in the previous section, this interface 
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will provide a high-level abstraction above widget sets and tool­

kits. Unlike general application building tools, this interface can 

be made simpler by tailoring the features toward those required 

by CAD tools. Widgets can be used to implement basic editing 

components like toggle switches, menus, and text editing fields 

(among others). Special purpose widgets for displaying design 

representation data would also be included (these widgets 

would provide functionality similar to that found in the older 

dedicated graphics editors). The programming interface to these 

widgets would provide higher level functions for creating and 

combining these components, means for calling user supplied 

functions when interesting operations in these editors occur, and 

high level functions for gathering input that can be called in user 

supplied functions. The data representation portion of the 

Framework provides policy routines for effectively manipu­

lating design data. Together, the user and data representation 

interfaces would then be sufficient for creating a wide range of 

editors all tightly coupled to both the tool and the Framework. 

Hypermedia is rapidly becoming a significant user interface 

technology, with obvious application to data browsing, docu­

mentation and training tasks. Cadence's current Framework 

offering uses hypertext links to connect the Framework and tool 

user interfaces to on-line copies of the documentation, which 

may also be traversed directly using hypertext. One of the most 

important uses of hypermedia today is for accessing and under-
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standing complex data organizations, and in the future we 

expect to see applications to simplify browsing and under­
standing the increasingly complex data hierarchies associated 

with large design projects. 

These improvements will continue the general thrust of user 

interface development toward releasing users from the burden 

of understanding underlying system architectures and services. 

It is the translation of a user's ideas to and from a form that a 

computer program can understand that must be minimized. 

Early CAD systems required users to encode graphic informa­

tion textually and interpret numeric output. Through the use of 

modern graphic interfaces, much less encoding is involved. 

Future systems will continue this trend until users no longer care 

about the underlying hardware and software architectures used 
to implement the system. Instead, users will focus on the 

problem at hand, not on the tool they use to solve the problem. 

This kind of tool interchangeability is a primary goal of the CAD 

Framework Initiative (Chapter 10). 
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8.1 Introduction 

Since the earliest interactive software, it has been recognized that 
facilities for extending the capabilities of the system are valu­
able. Before programmatic means were available, Ivan 

Sutherland's SKETCHPAD system incorporated the notion of 

master and instance objects to allow the efficient repetition of a 

defined set of drawing operations [SUT64]. 

This kind of extensibility offers a dramatic reduction in the 
number of operations required for a drawing which involves 

repetition. When CAD tools first carne into prominence in the 

electronics industry, the extremely high running costs encour­

aged the provision of macro capabilities simply in order that 

repetitive operations could be grouped and executed as a single 
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command. The emphasis here was not on ease of use (the APPL­

ICON and CALMA user was regarded as an expert technologist); 

rather the objective was speed, if necessary at the expense of 

having to learn a large number of commands performing subtly 

different functions. These macro facilities in general only 

allowed grouping of existing interactive commands: control 

structure and parameterization were not supported. 

Some CAD systems provided command logs, or flight recorders, 
which were facilities for capturing the commands entered by the 

user in such a way that they could be rerun. The primary moti­

vation for this capability was recovery from crashes or major 

errors: if design work is lost for some reason, it is possible to edit 

the command log manually to remove the offending commands, 

and then rerun from the previously saved configuration. In the 

Mentor environment, for example, users frequently use these log 

files as a mechanism for building the equivalent of keystroke 

macros, saving them in separate files as little "programs". 

The keystroke macro approach has three major weaknesses: 

• There is no control structure (branching, looping, subrou­
tines etc.) 

• There is no provision for parameterization of the macros 

• There is no provision for local storage within the macro. 
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In addition, there is generally no on-line facility for documenting 

keystroke macros, so their value is generally restricted to a single 

user. 

The designers of interactive software have recognized these 

problems, and gradually it has become the norm to provide a 

specialized extension language to allow users and tool integra­

tors to customize the system in increasingly powerful ways. 

To divert briefly from CAD to software engineering, it has long 

been recognized that extensibility is important to text editors, 

and Stallman's EMACS [STAL87] is a good example of the bene­

fits of extensibility. EMACS is extensible both through keyboard 

macros and through a built-in Lisp interpreter. TECO, a popular 

character-oriented editor, is almost unusable without its macro 

facility. 

8.2 Commercial Extension languages in CAD 

The success of facilities such as these have not gone unnoticed in 

the CAD world; commercial experience with extension 

languages includes the following examples: 

• AutoLisp from AutoDesk 

• SKILL from Cadence Design Syst1ems 

• Genie from Mentor Graphics 
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• Ample from Mentor Graphics 

• GPL from Calma 

• E from EDA Systems 

AutoDesk's AutoCAD [AUT88], uses a dialect of Lisp called 

AutoLisp, derived from Betz' XLISP [FLA87]. XLISP is a subset of 

Common Lisp with object-oriented extensions. auto LISP makes 

no apology for its lisp heritage: extension language program­

mers work directly in the native lisp syntax. 

Cadence Design Systems' Design Framework II uses a propri­

etary language called SKILL [BAR90, LAI86] which is loosely 

based on Franz Lisp [FOD83]. From a linguistic point of view, 

SKILL is a hybrid of Lisp semantics and C-like syntax. SKILL is 

very well regarded by its users, and it is generally believed that 

much of the power of the Framework and tools comes from the 

extensibility which SKILL provides. SKILL goes well beyond 

simply adding control structure, parameterization and vari­

ables: it also provides programmatic interfaces to the database, 

the user interface, and to tightly integrated tools. This means 

that it is possible to build substantially new functionality with 
the extension language. 

Mentor Graphics' Genie is a proprietary language, based on Lisp, 

which is used primarily for procedural design. Despite being 

based on Lisp semantics, Genie supports two non-lisp-like 
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syntaxes - one which is almost identical to C, and one which is 

more like a shell programming language. Genie was originally 

developed by Silicon compiler Systems, prior to their acquisition 

by Mentor Graphics 

Ample is the extension language of Mentor Graphics' new Frame­

work. Based loosely on C and Pascal (for compatibility with 

previous releases of Mentor's CAD tools), Ample provides a 

number of extensions which render it suitable for system 

customization, including a special command syntax which may 
be embedded in Ample programs, automatic memory manage­

ment, and special data structures which are suitable for 

interfacing to the design database. 

CPL [SMI75] was developed by Calma to provide extensibility 

for the GDSH product. The prevailing hardware constraints 

caused the entire language system to be shoe-horned into 16Kb; 

however the language was able to support an Algol-like syntax, 

polymorphic l functions and procedures, programming and 

command language capabilities, and both read and write inter­

faces to the database. 

EDA Systems developed their language E as part of their Frame­

work product [BR087], to support tool encapsulation and user 

interface customization. E is approximately 80% conformant 

with C, and where possible adheres to the C semantics. Of the 
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commercial extension languages, E has perhaps achieved the 

least success, and in current releases of the product, the use of E 

is de-emphasized. On reason for this is perhaps that C is 

designed as a statically compiled language offering support for 

low-level machine operations, while the requirements for an 

extension language are focussed around interactive use. E's poor 

performance, relative to compiled C was not offset by compen­

satory semantic or syntactic benefits. 

8.3 Extension Languages Prototypes 

In addition to the above examples which have been used 

commercially, there have been a number of other extension 

language developments of interest. Examples include: 

• OLAF, from Honeywell Systems and Research Center 

• Common Lisp, used by the Microelectronics and Comput­

ing Consortium (MCC) 

1. A polymorphic function is one which is able to accept arguments 
of differing types and automatically handle the differences. This is 
provided in C++, for example, through a technique known as over­
loading, in which the programmer defines a function for each dis­
tinct set of allowable argument types, and the compiler uses static 
analysis to ensure the correct variant is called. Lisp system sup­
port for polymorphic functions comes through the ability to deter­
mine object types dynamically, and this is one reason for the 
popularity of lisp-based extension languages in the CAD indus­
try. 
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• Scheme, used by Intel and MCC 

• LightLisp, used by UC Berkeley's OCT /VEM toolset 

As part of the Engineering Information System (EIS) project, 

Honeywell has developed an extension language called OLAF 

[KRU90] which uses lisp semantics, but an Ada-like syntax. 

MCC originally used Common Lisp [STE90] as the primary 

implementation language for their CAD system. This proved too 

slow and difficult to support (especially given the concomitant 

requirement to use Symbolics Lisp machines, which were unfa­

miliar to the CAD clients of the system) and so in a second 

version of their system, MCC used C as the basic implementation 

language, while using Common Lisp to support system extensi­

bility. This approach was much more successful; however the 

size of the Common Lisp system was felt to be too great in the 

end, and MCC therefore moved to Scheme. 

Scheme [STE75, REE86] is a small, powerful dialect of Lisp 

developed at the Massachusetts Institute of Technology. Its 

primary advantage over Common Lisp is its small size, 

combined with semantics which support efficient implementa­

tion. Unlike Common Lisp, Scheme is not burdened by a large 

function library, and so it is suitable as an extension language 

engine, to be enhanced by CAD-specific function libraries. Intel 

have developed a prototype command language system based 
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on Scheme. MCC are increasingly using Scheme in the role for 

which they previously used Common Lisp: as a mechanism for 

prototyping parts of the system where flexibility is more impor­

tant than performance. 

LightLisp is a subset of Common Lisp, developed by Wendell 

Baker to provide a means of proto typing applications for the 

Berkeley CAD tool environment. Versions of LightLisp support 

both database access (OctLisp) and editor customization 

(VemLisp). LightLisp typically functions as a server, providing 

new commands through remote procedure calls from the 

graphics editor, VEM. While LightLisp may be used to imple­

ment new commands, it is not a command language: this 

function is provided by the command processor within the VEM 

process. 

8.4 Extension Languages Requirements 

Given that one of our primary criteria relative to the goodness of 

a Framework is that it be possible to modify the system effi­

ciently, it is clear that a good extension language plays a very 

important role. The extension language provides valuable insur­

ance against changing requirements of the overall CAD 

environment. 
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CFI has performed a detailed analysis of extension language 
requirements [CFI91], and the following is a brief summary of 

the more significant ones: 

• A safe environment for the programmer, in which errors 
are trapped gracefully 

• Convenience is more important than execution efficiency 

• Support for a range of programming paradigms 

• Compatibility with the command language 

• Run-time type checking 

• Robust error recovery 

• Automatic memory management 

• Support for a good interactive programming model with 

built-in support for a good development environment 

• A standard language as opposed to a proprietary one 

• A simple syntax 

• A good interface to programs and data implemented in 
other programming languages, especially C and C++ 

• Type extensibility 

• Support for internationalization. 
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It should be noted that none of the candidate languages consid­

ered by CFI met all these requirements perfectly; however 

Scheme turned out to be significantly more acceptable than the 

other strongly supported candidate: C++ [STR87]. 

8.S Design Issues for Extension Languages 

Despite some notable extension language successes, it not easy 

to design a good extension language; nor is it easy to create effi­

cient implementations. 

Among the important issues are the following: 

• Should a special purpose language be designed, or will an 

existing language suffice? 

• Should the language be interpreted or compiled? 

• How should debugging support be provided? 

• Should the language directly manipulate database objects, 

or copies, or simply pointers to data? 

• How does the language interface to the outside world? 

• Should extension language programs be stored in the data­

base, or should they be external entities, managed directly 

by the user through the file system? 
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The most successful languages to date are proprietary 

languages, generally based on Lisp semantics, which support an 

alternative syntax. This approach offers the interactive evalua­

tion model and safe memory management which are 

characteristic of lisp, while providing a syntax, or "look and feel" 

which is more familiar to programmers with a background in the 

Unix world. 

The advantages of an interpreted language are that it is easy to 

build a friendly development environment in which small pieces 

of code may be written and tested incrementally. The disadvan­

tage is that interpreted programs run more slowly than their 

compiled equivalents, and in some applications where extensive 

database traversal is required, this significantly reduces the 

usability of the language. 

8.6 General Applications of Extension 
Languages 

Extension language applications cover the whole gamut of 

design activities, from control of the design environment to 

detailed manipulation of design data through extension 

language interfaces to CAD tool capabilities. Some systems do 

not distinguish between their command language and their 

extension language. In this case, the extension language 

supports macro and replay capabilities as well as interactive 
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command entry. In most systems the extension language may be 

used to perform start-up configuration of the user interface and 

the tools. 

User interface customization is an important aspect of modern 

CAD systems. Menus, dialogs, keystroke accelerators, default 

fonts and colors are all subject to user preferences, and these 

preferences are generally expressed through the extension 

language, perhaps in addition to direct manipulation methods of 

setting defaults. In addition, the extension language typically 

provides window management functions for the applications 

which are part of the Framework. 

Even in the case where the command language and the extension 

language are separate, there is usually a mechanism to define 

commands in the extension language. AutoLisp, for example, 

which does not have a syntax which is directly appropriate for 

commands, allows commands to be defined as special functions, 

with additional arguments specifying the interactive behavior of 

the command. 

8.7 Language-Based Design 

So far, the extension language has been regarded principally as 

an extension at the user interface level, providing the end user 

with the ability to modify the behavior of the system for reasons 
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of end-user efficiency; safety or to provide new command func­

tionality. However, an alternative view of the extension language 

is that it allows the user to encapsulate design knowledge in 

procedures, which when executed create new instances of design 

components. 

In the past, module generation languages have been separated 

from general purpose extension languages; however it is not 

clear that such a distinction is really required. A second distinc­

tion which obtains in current CAD systems is that between 

Hardware Description Languages (HDLs) and module genera­

tion languages. However, now that Cadence Design Systems' 
VeriloglM language, for example, is taken as input by the 
Synopsys suite of synthesis tools, and is used to generate logic 

designs, one might view the behavioral modeling language as 

performing a function similar to that of a procedural design 

language. 

Clearly each application of a language within a design system 

has specific requirements, not only in terms of evaluation model, 

but also in terms of expressive requirements. This explains the 

existence of a range of different languages within a single CAD 

system. However, it would appear that if the right base language 

could be found, one could build a variety of complementary 

functional blocks by extending the language base. Some of the 

commercial systems are implemented in this way. 
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8.8 Benefits of an Extension Language 

The most important benefits of an effective extension language 

may be summarized as follows: 

• Openness: An extension language can support tool inte­

gration by allowing the user to bind in new functionality 

through an extension language interface. Another impor­

tant kind of openness which can be provided by an exten­

sion language comes through the provision of callbacks, or 

triggers, which may be called by the design system to per­

form some user-specified action at a particular time. Trig­

gers are commonly used to customize user interfaces, and 

to allow user-specified actions when data is saved or mod­

ified. 

• Packaging:1 1f all system functionality is made available 

through the extension language, it is possible to hide exist­

ing functionality as well as adding new functionality 

through control of the name space of the extension lan­

guage, and by overriding default command and variable 

definitions. 

1. The use of the term package for a module comes from Common 
Lisp; this technique of providing a controlled interface to a body 
of code and data is also known as information hiding. 
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• Dynamic: An extension language allows quick customiza­
tion to meet specific needs - especially if the interface is 

interpretive. This is a most important benefit, as much of 

the customization which is typically performed in the CAD 

world takes place on a design in progress, in response to a 

particular situation which has arisen in the course of per­

forming real design tasks. 

• Safety: An extension language typically provides protected 

access to database and human interface, reducing the risk 

of either damaging the data structures or locking up the 

user interface 

• Encapsulation of Design Knowledge: Procedures which 

either generate correct-by-construction design components 

or traverse designer-specific data structures increase 
designer efficiency. 

8.9 Future Directions 

In the future, we may expect to see more sophisticated uses of 

user programming features in CAD systems. For example, 

MCC's C Module Editor (CME) uses graphical programming to 

specify both constraints and iterative directives. The WireLisp 

[EBE89] system allows the designer to freely combine textual 

(programmatic) and graphical styles of design description. 
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Another method of programmatic system extension involves 
what the developers of LOOPS [STE83] call active values: 
attaching code to data, such that when the data is accessed, the 

code is run. This allows user constraints to be installed very 

simply, and goes some way to creating an "intelligent" database, 

where behavior can be stored with the data. Mentor Graphics' 

recently announced Decision Support System™ is based on a 

spreadsheet model, though it provides some computational 

capabilities which are traditionally associated with extension 

languages. 

In fact the notion of storing code with the data is one which has 

gained popularity through the increasing visibility of object­

oriented techniques. In an object-oriented system, when a 

message is sent to an object, it is unimportant whether or not the 

message is implemented by code or by pre-calculated data. This 
blurring of the distinction between code and data is familiar to 

the artificial intelligence community, where "late binding" of 

behavior to symbols is regarded as a valuable technique. 

Finally, it is interesting to note that the CAD Framework Initia­

tive's Architecture Technical Subcommittee has recently selected 

Scheme, a language derived from Lisp, as the basis of its stan­

dard extension language. This will provide a consistent 

environment for system customization from one vendor's 

Framework to another. Scheme will be augmented by an alter-
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nate syntax, which will make the language more cosmetically 
attractive to users who are not familiar with lisp. In this respect, 
the CFI solution closely resembles SKILL and Genie. 



9 IMPLEMENTING A CAD 
FRAMEWORK 

9.1 Introduction 

There have not been many success stories to date in the design 

and implementation of CAD databases, let alone CAD Frame­
works, although hundreds of millions of dollars have been spent 

trying to achieve this goal. We believe that there are important 

reasons why this is so and that the reasons have very little to do 

with what the designers are trying to build and are almost 

entirely concerned with the approach they take to the design and 

implementation of the system. 

The design and implementation of a CAD Framework is a very 

complex task for a number of reasons. Firstly, a framework 

consists both of interfaces and implementations, the specifica-
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tions of which are interdependent. Secondly, there is no "theory" 

of framework design upon which to base specifications. Instead 

there is a great deal of informal, empirical information about the 

requirements for the various framework components. Frame­

work design can therefore be viewed as an optimization problem 

where the objective function is extremely difficult to calculate, 

and where it is additionally extremely difficult to determine the 

sensitivity of the objective function to individual system vari­

ables, and where the variables interact quite strongly. 

A final issue which militates against complete framework speci­

fication before implementation has to do with the rapid pace at 

which the technology of electronic product design is changing. 

Not only are new tools being continually developed, but the 

hardware, the distributed environment and the operating 

system are all undergoing continual refinement. In addition the 

end user's requirements are changing as new kinds of tool 

become available, with associated representational require­

ments. 

We believe therefore, that it must be a principal assumption of 

the framework developer that today's best solution will not meet 

tomorrow's need. Rather than abandon the venture as being too 

difficult, however, one has simply to ensure that the framework 
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architecture supports extension and is highly modular, in order 

to allow gradual replacement of components as they become 

obsolete. 

These difficulties in specification are not new to software engi­

neering. There are a number of domains in which it has been long 

recognized that specifications in the abstract are unlikely to 

result in successful implementations. The rapid prototyping 

environments beloved of Lisp and Small talk programmers, for 

example, exist for precisely this reason. Two more interesting 

examples are the processes adopted in the development of MIT's 

X Window System [SCH86], and the Common Lisp standard 

[STE90). In each of the latter cases, not only was development 

incremental, working through a number of prototype implemen­

tations and releases, but it was also highly distributed, involving 

principally electronic communication among a scattered 

community of experts. Both of these efforts have led to the 

creation of industry standards; however neither software system 

is without its critics. This is the nature of a democratic process. 

Of late two efforts have been initiated to develop CAD Frame­

works through this kind of successive refinement process. Firstly 

the Microelectronics and Computer Technology Consortium 

(MCC), has adopted a similar methodology to that used by the X 

Window System and Common Lisp ,groups, dignified by the 

acronym CODEM, which stands for COoperative DEvelopment 
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Method [BARBB]. Secondly, the CAD Framework Initiative (CFI) 

is attempting to specify CAD framework standards through a 

similar cooperative process. The standardization process being 

undertaken by CFI is described in more detail in the next chapter. 

9.2 The eODEM Approach 

The traditional "waterfall" model for software development 

involves a cycle of specifications and reviews between the devel­

oper and client. This approach makes sense under the following 

conditions: 

• The client knows precisely what is required 

• The product is not needed for some time 

• The product can not be acquired by any other means 

• The client is a unified entity 

• The requirements will not change significantly during the life 

of the project. 

• Unfortunately, these conditions do not fit well with CAD 

Framework development. 

The conditions under which eODEM succeeds are quite 

different: 

• There are many potential clients with similar, though not nec­

essarily identical needs 
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• Some software exists which solves part of the problem and 
which can be used as a common starting point 

• An organization exists which can serve as a focus, both taking 

responsibility for managing communication between the co­

operating parties and for integrating and distributing the 

emerging software system 

• Networked computers are available to all participants, sup­
porting bulletin-board real-time message handling between 

the participants 

• The software selected as the starting point is modular, with 

well defined inter-module interfaces. 

• The selected software is available to all interested parties. 

These are the conditions under which CAD Frameworks are 

beginning to emerge, both through explicit application of the 
methodology among MCC and its shareholders, and also as the 

CFI meets and communicates to develop framework standards. 

The eODEM approach replaces the typical "waterfall" model 

for software development with a loop involving three steps: 

1) Build a working prototype 

2) Determine the most significant weakness with the prototype 

3) Develop a solution and return to Step 1. 
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This process continues until the effort to improve the system 

outweighs the benefits. In the MCC case, the Berkeley Frame­

work [HAR86] was chosen as the common starting point, 

because of its modular architecture and use of standards (e.g. 

Unix, the X Window System, Remote Procedure Call library). 

There is a difference between the approaches taken by the two 

groups, however: the MCC group are convinced of the impor­

tance of a working prototype as a check on the viability of design 

decisions (they chose OCT /VEM/RPC from UCB), while CFI is 

focusing on interface standards, and regards implementations as 

secondary. 

In retrospect, the eaDEM approach was not as effective at MCC 

as had been hoped. The principal reason was probably the lack 

of committed resources from the MCC shareholders, which 

meant that the benefits of real-time dialogue and widespread use 

of the developing technologies were not realized. 

9.3 Commercial Frameworks 

Cadence Design Systems, Mentor Graphics and Viewlogic have 

all been going through the process of releasing framework prod­

ucts over the last two years. In each case, the companies have 

experienced difficulty in releasing products with sufficient 

performance, functionality and overall performance to satisfy 
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the customer. EDA Systems was purchased by Digital Equip­

ment Corporation after struggling with a second version of its 

PowerFrame product. Interact's framework product was suffi­

ciently poorly received that the framework development team 

was disbanded and the product discontinued. 

Part of the difficulty is that the industry as a whole is experi­

encing what Brooks [BR075] refers to as the "second system 

syndrome". This is a situation in which there is some experience 

with the requirements for a product, and the developers become 

excessively ambitious in the specification of a successor. This 

leads to solutions which are too complex, too large and 

unwieldy, and finally too difficult to maintain. 

Despite the obvious difficulties experienced by framework 
developers, user enthusiasm for frameworks is at an all-time 

high, as evidenced by the strong support for CFI. 



10 THE CAD FRAMEWORK 
INITIATIVE 

10.1 Introduction 

No description of CAD Frameworks would be complete without 

a discussion of the standardization work being promoted by the 

CAD Framework Initiative (CFI). This grassroots organization 

has not only demonstrated beyond doubt the deep belief in stan­

dards which is shared by CAD users and vendors in both the 

Systems and IC markets, but it also has demonstrated remark­

able progress in the first three years of its life: both in the 

production of standards specifications, and in the creation of live 

demonstrations of interoperability between frameworks and 

tools at the Design Automation Conferences of 1990 and 1991. 

Increasingly strong financial support augers well for the 

continued success of CFr. 
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Those who have worked closely with CFI recognize both the 

extraordinary level of progress which has been achieved in three 

years, and also the frustrations which come from the negotiation 

process. In this chapter we examine the origins of CFI; its partic­

ipation; the organizational structure of the organization, and the 

technical activities undertaken by CFr. 

10.2 The Origins of CFI 

The CAD Framework Initiative was the brainchild of Motorola 

and EDA Systems, Inc.!, the first and possibly last company to 

build an entire business on the framework concept. Such an 

organization was attractive to EDA Systems also because of the 

publicity and interest which was expected to surround such an 

organization. Motorola, an early purchaser of the EDA Systems 

product - proposed the standards body on the basis of their expe­

rience of the high cost of tool integration. These two companies 

sponsored the inaugural meeting. 

CFI was inaugurated by a meeting held in Santa Clara on May 

23rd 1988. At this meeting, thirty-eight companies were repre­

sented. Several companies spoke about the difficulties they had 

experienced in building and managing design environments. 

1. EDA Systems Inc. has subsequently been purchased by Digital 
Equipment Corporation 
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These motivational speeches struck a chord with the audience, 

and it became clear that the issue was well understood - even if 

the solutions were not. 

Among the early supporters of CFI, the Microelectronics and 

Computer Technology Consortium (MCC) was one of the most 

influential. The MCC CAD Program had at that time been in 

existence for some years, and had produced a prototype software 

system of great complexity embodying a sophisticated object­

oriented architecture for data and tool management, along with 

a user interface and integrated editing tools. This technology 

having failed to meet the real needs of their shareholders, MCC 

had embarked upon a new framework development plan, 

building on software from the University of California at 

Berkeley: the OCT /VEM system [HAR86]. MCC was strongly 

interested in making a visible contribution to the CAD and semi­

conductor industries, and they rapidly took on leadership roles 

in the fledgling CFI organization. 

As it has matured, CFI has continued to receive strong support 

from CAD vendors such as Cadence Design Systems, Mentor 

GraphiCS, Racal-Redac and ViewLogic. These companies are 

motivated both by the need to meet customer expectations with 

regard to standards, and also by the perceived benefits of tool 

interoperability for both internal development and external 

linkage. 
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Hardware vendors - especially the major players in the engi­

neering workstation market - have also taken a strong interest in 

CFI. Digital Equipment Corporation, Hewlett-Packard, IBM and 

Sun Microsystems, for example, are active both because of their 

interest in providing hardware and software products which 

optimally support computer-aided engineering and because 

they are chip and system designers, standing to benefit from the 

standardization efforts. As has been suggested previously, some 

of the services we associate with a CAD Framework could well 

be provided as part of an engineering computer's operating 

system. 

A third class of participants is the ASIC system provider. Typi­

cally, an ASIC development system involves a well-defined 

design methodology, related to a specific set of manufacturing 

technologies, supported by a carefully integrated set of CAD 

tools. The ASIC designer is frequently less expert in CAD tool 

use than a professional integrated circuit designer, and such 

people need a design environment which reduces the opportu­

nity for error. The cooperative nature of ASIC design, where the 

ASIC vendor and the customer together produce the final 

product, also requires clear direction for each contributor to 

minimize the risk of errors associated with miscommunication. 

Building such an environment from a heterogeneous set of tools 

- some purchased, some specially built - remains an expensive, 

tedious and error-prone task. Subsequent modification of the 
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environment can involve changing thousands of lines of integra­

tion code. ASIC system providers are keenly interested in 

standards which will simplify tool integration, data manage­

ment and inter-tool communication. 

Finally, end users have become increasingly concerned with CFI. 

At the June 1991 meeting, held in conjunction with the Design 

Automation Conference in San Francisco, a CFI Users Group met 
for a full day, to hear about CFI's progress, and to offer its special 

perspective to the organization at large. This is an important 

development, because it provides a mechanism through which 

CFI is kept honest with respect to the needs of the final 

customers of framework technology. 

Thus, over three years, CFI has grown to take in hardware and 

software providers; system integrators and end users. It is an 

extremely democratic organization which is making a strong 

impact on the entire electronic CAD industry. 

10.3 Goals and Deliverables 

CFI's goals are centered around achieving tool interoperability. 

This will be accomplished by defining a set of programming 

interfaces with which tools may be integrated. Each part of the 

framework architecture is defined both in terms of its function 
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and its interfaces, in order that tools may reliably be constructed 

to use the interfaces and thus be integrated with framework 

services. 

CFI does not attempt to specify the detailed architecture of a 

framework, because it is believed that this is an area for research 

and the basis for some competitive differences between commer­

cial products. So long as a framework provides the functional 

capabilities, represented by the standard set of interfaces, it may 

be regarded as being CFI-compliant.1 

The first sets of formal deliverables, known respectively as CFI 

1.0 and CFI 2.0, are scheduled for release towards the end of 1992 

and 1993 respectively. 

10.4 The CFI Organization 

The structure of CFI was developed at the inaugural meeting, 

and until mid-1991 went mostly unchanged. It is detailed in 

Figure 10.1. 

1. At this writing, the notion of CFI compliance is not well-defined, 
because there are no fully ratified standards. The typical practice 
of companies who wish to underline their alignment with CFI is 
to declare their conformance with a draft standard, especially 
those used at the DAC demonstrations. 
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Figure 10.1: CFI Organization 

The CFI Board is the formal steering group within CFI. It is popu­

lated by nine executives from the companies which make up 

CFI's membership. The Technical Advisory Board is made up of 

representatives from the academic world, who are consulted 

periodically on questions of approach. The Technical Coordination 
Committee, or TCC, is made up of the chairpersons of the Tech­

nical Subcommittees. The TCC acts as a gate through which draft 

standards must pass before going to vote by CFI as a whole; it 

also performs a tactical and organizational role in facilitating 
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progress within the Technical Subcommittees. Finally the Tech­
nical Subcommittees, or TSCs, are the bodies which do the real 

work of generating standards. Each major area in the framework 

domain is the responsibility of a particular TSC, and they 

produce draft standards as the result of discussion and proposals 

from the membership. CFI uses Working Groups extensively to 

tackle specific tasks within the overall mandate of the TSC. This 

allows some parallelization of the standardization process. 

CFI was started as a volunteer organization. However, it became 

clear at an early stage that in order to be fully effective, CFI 

would need permanent staff. To this end, Andy Graham, 

formerly head of Motorola's Design Automation Business Unit 

and a supporter of CFI from the very first, was appointed to the 

first full-time staff position. Since then, with the creation of 

corporate sponsorships, further appointments have been made. 

The permanent staff perform a number of important functions: 

marketing CFI; planning and coordinating progress and deliver­

abIes; providing technical and logistical support to the annual 

DAC demonstration projects. 

For the first eighteen months, CFI meetings were held quarterly. 

This proved to be insufficient, however, and so a program of 

eight technical meetings each year with separate meetings for the 

TCC and the Board was developed. Meetings typically last five 

days, including TSC, Working Group and TCC meeting time. 
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During 1991, the notion of Pilot Projects was developed as a 
means of obtaining practical verification of the utility of the stan­

dards proposed by CFI. Each pilot project involves CAD tool 

developers and users, and are intended to progress through spec­

ification, prototyping and demonstration phases. This emphasis 

on practical work in addition to the meetings which character­

ized CFI's early work is a welcome progression, as it allows for 

debugging of proposed standards by both developers and users 

in the context of a real need. 

The need for CAD Framework standards is by no means limited 

to the United States of America. European and Japanese 
members now represent 19% and 25% respectively of the total 

membership. While in general communication between the US 

and other groups has been less than ideal, an annual European 

meeting to which the US membership is specifically invited has 

improved things somewhat. Framework development in Europe 
is primarily taking place within research organizations - partic­

ularly JESSI - while there is strong commercial representation 

within the US. 

10.5 Tangible and Intangible Benefits 

Among the tangible benefits, the draft standards and the demon­

strations clearly show the value of CFI's work. These are the 

achievements in which one most easily sees the importance of 
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CPl. There are also a number of intangible benefits which are 

worth noting. CPI causes the major players in the CAD frame­

work business to come together, several times each year, to 

discuss the future of their discipline. This has led to a great deal 

of communication between groups who for competitive reasons 

would have spent little time together without the impetus of CFI. 

From this has gradual emerged a common vision of frameworks, 

shared not only by suppliers of the technology, but also by the 

user community. This is critical to the creation of a mature frame­

work business, as well as helping to ensure that the needs of 

customers who wish to use tools from more than one supplier are 

better met. 

10.6 Technical Activities 

The material included in this section is necessarily based on the 

current status of CFI, and the status of each technical group will 

change over time. The purpose of including this information 

here is to provide a picture of the kinds of things which the tech­

nical community regards as important. The most significant 

difference between the work described here and that covered by 

the remainder of the book is that this work is rooted in a desire 

to find solutions to framework problems which are viable as 

commercial standards, rather than vehicles for research. This is 



THE CAD FRAMEWORK INITIATIVE 157 

not to suggest one is more important than the other; but simply 

to emphasize that the goals and therefore the methods applied 

are somewhat different. 

Architecture 

The original set of TSCs did not involve a group with responsi­

bility for the overall architecture of the Framework. This lack 

soon became evident, however, as it was realized that the inter­

action between the services provided by each component was of 

great significance. To this end a number of documents describing 

the overall Framework architecture at a conceptual level have 

been developed. Over the life of CFI the detailed picture of the 

relationship between framework components has changed; 

however CFI's reference architecture diagram (Figure 10.2) has 

much in common with Figure 2.1. 

Design Representation 

The Design Representation TSC is concerned with the structure 

and semantics of electronic design data. In many respects this 

TSC has been the most successful. The primary reasons for this 

are twofold: firstly it is very clear to everyone that a common 

schema is a powerful aid to interoperability, and secondly this is 

an area which is relatively well understood. Every CAD vendor 

and most sophisticated users have implemented design data­

bases at one time or another. 
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Design Tools 

Framework Applications 

Portability 
Services 

Extension User Interface Storage 
Language Toolkit Manager 

Figure 10.2: CFI Reference Architecture 
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The first version of the Design Representation Programming 

Interface was used at the DAC-90 demonstration, and a second 

version, which added bundles to the scalar capabilities of the 

first version, was used in the DAC-91 demonstration. This 

second version will be part of the eFI 1.0 standard. 

Design Methodology Management 

Because of the lack of industry-wide agreement about how to do 

methodology management, the DMM group has focussed upon 

a set of file formats which can be used to statically describe the 

character of tool encapsulations, and tool run logs. The Tool 
Encapsulation Standard is a useful contribution to framework 

standardization, because it specifies a consistent and re-usable 

representation for declarative information concerning the encap­

sulation of external tools, without specifying any details of the 

implementation of the tool or the encapsulation itself. The Tool 

Execution Log format is used as an archival record of tool execu­

tion: it may be written by a framework or by a tool, and it 

provides an audit trail which may be used by post hoc design 

analysis tools. 

Inter-Tool Communication 

Given the desire to build an environment from heterogeneous 

tools, a means of communication between them is critical. CFI 

has tackled this by specifying a protocol for inter-tool messaging, 
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along with a message dictionary, the semantics of which define a 

language by which tools may communicate both procedural 

information and data. 

The first output from the ITC TSC was used as the basis of the 

1991 DAC demonstration. Messages sent between tools and 

frameworks provided by many different suppliers were illustrat­

ed. The specification for this technology will be part of the eFI 1.0 

standard. 

Operating System Interface 

CFI has chosen to limit its standards for system interfaces to the 

domain of the Unix operating system. So far, the Systems Envi­

ronment TSC has considered the choice of standard C libraries, 

and the design of a standard error handling system for both tools 

and framework. 

User Interface 

There can be few areas of software design which elicit such 

strong responses as the design of user interfaces, from program­

mers and users alike. Unfortunately, the state of the art in 

objective user interface quality measurement is still poor, and 

subjective and political factors playa strong part in the standard­

ization process. 
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There is broad agreement that user interface standards should be 

based upon the X Window System, and that OSF's Motif look­

and-feel should be the basis of the standard. Sun Microsystems 

has strongly argued that their user interface toolkit and style 

guide, - OpenLookTM - should also be part of the standard. This 

issue is characteristic of the nature of the standardization 

process: vested interests must be recognized and handled in the 

negotiation process. 

Apart from these issues, work is proceeding with standards 

proposals for the command language and for user interface 

generation and customization. 

Extension Language 

As discussed in the previous chapter, CFI's Extension Language 

Working Group has selected the Scheme Programming 

Language [REE86] as the basis for the CFI-conformant extension 

language, while also proposing that an alternative syntax be 

defined for use by non-programmers, or those less familiar with 

Lisp, from which Scheme is derived. The CFI extension language 

is expected to be a part of the CFI 2.0 set of standards. 

Continuing work includes specifying the interface between C 

code and the extension language, and a variety of CAD-specific 

extensions. 
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Technology CAD and 
Component Information Representation 

These two groups are new to CFI. They herald a widening of 

CFI's scope from the ECAD domain. The motivation is that 

although these areas are somewhat outside the original domain 

of CFI, the problems encountered are similar to those to which 

CFI is primarily addressed, and so some synergy is anticipated. 

10.7 CFI in the Future 

In three years the CAD Framework Initiative membership has 

demonstrated an unprecedented level of cooperation between 

traditionally competitive CAD tool suppliers, semiconductor 

and system houses, and hardware vendors. In addition, the tech­

nical progress to date has been very encouraging, with 

demonstrable standards for design representation, tool encapsu­

lation and inter-tool communication. Interest in CFI continues 

high, and the plans for CFI 2.0 are very ambitious. 

The CAD Framework Initiative has provided not only a meeting 

ground for the development of standards, but also a hot-house 

within which the flower of CAD system standards may burgeon 

and grow with a rapidity little imagined by the initiators of the 

organization. 



11 SUMMARY 

In this book we have tried to describe the broad range of issues 

facing a CAD Framework designer. The past experiences of those 

who have tried to solve this problem is an invaluable guide to 

many of the trade-offs that must be made. However, we also 

believe that there is no complete CAD Framework and that there 

never will be. Technologies and understanding of the engi­

neering design problems are changing far too rapidly for any 

system to meet all of the user and CAD tool needs for very long. 

It is important that this fact be considered as paramount when 

planning and developing a CAD Framework. The successful 

examples of similar technologies from the past are ones that were 

designed to evolve. 
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The development and use of standards, at all levels of the 

system, is important if we are to leverage all of the industries -

computers, CAD tools, graphics hardware, software develop­

ment, etc. - that playa key role in CAD system development. But 

standards can be a double-edged sword. They must be devel­

oped through, or from, use or they will inevitably not be able to 

find the appropriate compromise among the hundreds or thou­

sands of competing factors which determine success. 
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