Lecture Notes in Artificial Intelligence 5360
Edited by R. Goebel, J. Sieckmann, and W. Wahlster

Subseries of Lecture Notes in Computer Science



Wayne Wobcke Mengjie Zhang (Eds.)

Al 2008: Advances 1n
Artificial Intelligence

21st Australasian Joint Conference on Artificial Intelligence
Auckland, New Zealand, December 1-5, 2008
Proceedings

@ Springer



Series Editors

Randy Goebel, University of Alberta, Edmonton, Canada
Jorg Siekmann, University of Saarland, Saarbriicken, Germany
Wolfgang Wahlster, DFKI and University of Saarland, Saarbriicken, Germany

Volume Editors

Wayne Wobcke

University of New South Wales

School of Computer Science and Engineering
Sydney NSW 2052, Australia

E-mail: wobcke@cse.unsw.edu.au

Mengjie Zhang

Victoria University of Wellington

School of Mathematics, Statistics and Computer Science
P.O. Box 600, Wellington 6140, New Zealand

E-mail: mengjie.zhang@mcs.vuw.ac.nz

Library of Congress Control Number: 2008938719

CR Subject Classification (1998): 1.2, F.4.1, H.3, H.2.8, F.1
LNCS Sublibrary: SL 7 — Artificial Intelligence

ISSN 0302-9743
ISBN-10 3-540-89377-6 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-89377-6 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12566891 06/3180 543210



Preface

AT 2008, the 21st Australasian Joint Conference on Artificial Intelligence, was,
for the first time, held in New Zealand, in Auckland during December 1-5, 2008.
The conference was hosted by Auckland University of Technology.

AT 2008 attracted 143 submissions from 22 countries, of which 42 (29%) were
accepted as full papers and 21 (15%) as short papers. Submissions were subject
to a rigorous review process. Each paper was reviewed by at least three (often
four, and in one case, six) members of the Programme Committee. Authors could
then provide a “rebuttal” to these reviews. The Senior Programme Committee
members coordinated discussion on the papers to provide a recommendation
of acceptance or rejection to the Programme Committee Co-chairs. Both full
papers and short papers were presented at the conference.

We would first like to thank all those who submitted papers to AI 2008.
Special thanks to the Programme Committee members for their detailed reviews
completed in a timely manner, and to the Senior Programme Committee for their
considered judgements and recommendations on the papers. We are sure authors
would like to know that the rebuttal and subsequent discussion phases made a
difference to the outcome in numerous cases. We are confident that this process
has improved the decision making for final paper selection, and that the overall
quality and reputation of the conference is enhanced as a result. Thanks also to
EasyChair for the use of their conference management system to facilitate this
complex process and the preparation of these proceedings.

AT 2008 featured three invited talks, from Tony Cohn (“Steps Towards Cog-
nitive Vision”), Reinhard Klette (“Stereo-Vision-Based Driver Assistance”) and
Zbigniew Michalewicz (“Intelligence, Business Intelligence, and Adaptive Busi-
ness Intelligence”). These talks contributed greatly to the intellectual environ-
ment of the conference, and were highly appreciated by all participants.

Being the first “Australasian” conference continuing the series of Australian
conferences, this year was somewhat of an experiment. We would like to ac-
knowledge the large number of New Zealand researchers who submitted papers
and served on the Programme Committee of AT 2008, helping to make this con-
ference a success. We would like to thank Auckland University of Technology for
organizing the conference, and the Australian Computer Society, the University
of New South Wales and the University of Wollongong for financial support.

December 2008 Wayne Wobcke
Mengjie Zhang
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Stereo-Vision-Support for Intelligent
Vehicles - The Need for Quantified Evidence

Reinhard Klette

The .enpeda.. Project, The University of Auckland
Auckland, New Zealand

Abstract. Vision-based driver assistance in modern cars has to perform
automated real-time understanding or modeling of traffic environments
based on multiple sensor inputs, using ‘normal’ or specialized (such as
night vision) stereo cameras as default input devices. Distance measure-
ment, lane-departure warning, traffic sign recognition, or trajectory cal-
culation are examples of current developments in the field, contributing
to the design of intelligent vehicles.

The considered application scenario is as follows: two or more cameras
are installed in a vehicle (typically a car, but possibly also a boat, a
wheelchair, a forklift, and so forth), and the operation of this vehicle (by
a driver) is supported by analyzing in real-time video sequences recorded
by those cameras. Possibly, further sensor data (e.g., GPS, radar) are also
analyzed in an integrated system.

Performance evaluation is of eminent importance in car production.
Crash tests follow international standards, defining exactly conditions
under which a test has to take place. Camera technology became recently
an integral part of modern cars. In consequence, perfectly specified and
standardized tests (‘camera crash tests’) are needed very soon for the
international car industry to identify parameters of stereo or motion
analysis, or of further vision-based components.

This paper reports about current performance evaluation activities in
the .enpeda.. project at The University of Auckland. Test data are so far
rectified stereo sequences (provided by Daimler A.G., Germany, in 2007),
and stereo sequences recorded with a test vehicle on New Zealand’s roads.

Keywords: intelligent vehicle, vision-based driver support, stereo analy-
sis, motion analysis, performance analysis, camera crash tests.

1 Introduction

Current research in vision-based driver assistance asks for the generation of
‘ground truthf] for real-world sequences, and its use for performance evaluation
of various algorithms for stereo image sequence analysis.

! The term ground truth was coined in photogrammetry when comparing analysis
results, derived from aerial imaging, against measured data (‘on the ground’). The
presence of a measurement error means that ground truth is not truth, but expected
to be close to it.

W. Wobcke and M. Zhang (Eds.): AI 2008, LNAI 5360, pp. 1-[i7] 2008.
© Springer-Verlag Berlin Heidelberg 2008



2 R. Klette

Fig. 1. Left: page in the 1976 report [21], offering eight color images and one multispec-
tral image. Right: ‘Lena’ and results of various edge detectors. Those 1976 test images
are still in use today when demonstrating research on low-level image processing.

Fig. 2. Rubik cube on a microwave turntable at DEC, the 1971 “Hamburg Taxi”, “SRI
Trees”, and two more “sequences” as used in the 1990s. Lower left: color representation
of calculated optical flow for the taxi scene. These short sequences did not come with
ground truth, and are still used sometimes today (e.g., for student assignments).

Evaluations have a long history in image processing. In a first generation of
test images in the 1970s (e.g., see [21] for images such as Lena, Mandrill, peppers,
tiffany, or zelda; “copies of the IPI data base” were “supplied on magnetic tape,
9 track, 800 BPI, on 2400-ft. reels”; Fig. [l shows nine of those test images),
there were no stereo images, and no image sequences at all at that time in the
test data base. Very short sequences of images became popular in the 1980s,
such as those shown in Fig. Bl which allowed to compare results for optical
flow. The lower left in Fig. 2l shows a calculated vector field (as obtained in a
student assignment in the 1990s in one of my classes) in common hue-intensity
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Fig. 3. Demonstration of calculated optical flow [23], using the 1984 Yosemite sequence
as discussed on [2]. This sequence is still a popular way for demonstrating optical flow
results.

Fig. 4. Stereo pairs as used in the 1996 textbook [I1] for evaluating the performance
of various stereo matching algorithms. An example of a reconstructed face is shown on
the right.

representation. The taxi sequence was actually recorded in 1971 (!) in the group
of H.-H. Nagel [17].

The Yosemite sequence (by L. Quam [19]; see Fig. [B) “has been used exten-
sively for experimentation and quantitative evaluation of optical flow methods,
camera motion estimation, and structure from motion algorithms.” [2] This is a
synthetic sequence of 316 x 252 images, simulating a flight through a valley, with
ground truth motion data (quantized to 8 bits) for rigid objects in the scene.

Test data for stereo analysis should be in standard binocular stereo geometry;
[11] offered those based on using an optic bench in the lab and careful camera
adjustments; see Fig. @l There was no ground truth provided, and evaluation
was based on subjective (visual) comparisons.

Automated stereo pair rectification [I5] maps today stereo images into stan-
dard binocular stereo geometry [8]. This allows to generate sets of stereo images,
ready for correspondence analysis. Laser-range finders may be used to generate
ground truth for such stereo images by modeling real scenes [9].
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Fig. 5. Illustration of four stereo image sets on the Middlebury vision website: map,
sawtooth, venus, and Tsukuba with depth map, illustrating ground truth as available
for those data sets on this website

Fig. 6. An illustration for seven stereo night vision sequences available since 2007 on
the .enpeda.. website [4] for performance evaluation. Left: one out of close to 2,000
rectified stereo pairs in total. Right: screenshot of an avi showing one original sequence
(lower left) and disparity data.

The Middlebury vision page [16] (of D. Scharstein, R. Szeliski, et al.) provided
in its ‘pre-2008-web-server-crash’ version only a few engineered samples of input
images for stereo and motion analysis; see four stereo sets illustrated in Fig.
This website stimulates current progress in computer vision (and a web-server
crash in August 2008 was followed with eagerness in the computer vision com-
munity worldwide). Currently the website is revised, now also featuring more
data sets for performance evaluation, but still focussing on indoor, engineered,
high contrast imagery.

Driver assistance systems (DAS), see, for example, [5], the monograph [3] of
E.D. Dickmanns, or proceedings [22], have to deal with stereo image sequences



Stereo-Vision-Support for Intelligent Vehicles 5

Fig. 7. Test vehicle HAKA1 with a pair of cameras for stereo image sequence capture,
recording stereo sequences on Auckland’s roads since July 2008

recorded under any possible weather or lighting condition. See Fig. [ for an il-
lustration of DAS stereo sequences: seven rectified night-vision stereo sequences
are available since 2007 on the .enpeda.. website [4] for motion and stereo
performance evaluation; the sequence data have been provided by Daimler AG
(group of U. Franke) and prepared in 2007 by T. Vaudrey and Z. Liu for online
presentation (with camera calibration and motion data for the ego-vehicle).

DAS sequences may contain unpredictable events and all kinds of variations in
recorded image data, for example due to a partially ‘faulty’ camera, generating
more blurry images in the left camera than in the right camera, or due to different
brightness in left and right camera. More rectified stereo real-world sequences
will be made available on the .enpeda.. website [4] soon, including those recorded
with a test vehicle (HAKA1, ‘High Awareness Kinematic Automobile no. 1’) in
Auckland (see Fig. 7).

Obviously, it is a challenge to provide ground truth (3D environment, poses
of agents) for such sequences. Three approaches appear to be possible options for
satisfying the needs of camera crash tests as indicated in the Abstract of this paper:

(1) Post-modeling of recorded 3D environments: based on recorded stereo se-
quences, apply (possibly manual) 3D modeling software to generate a 3D
dynamic model of the recorded scene.

(2) Accumulated evidence for 3D environments: in extension of the post-modeling
approach, drive repeatedly into the same (static) 3D environment, and at-
tempt to improve the 3D model (shape plus texture) by accumulation, merg-
ing, or unification of obtained 3D data (also using other sensors).

(3) Pre-modeling of recorded 3D environments: use 3D modeling approaches
such as laser-range finders or sensor technology to generate an accurate 3D
model (shape plus texture) of a defined environment and operating agents
(vehicles or persons), and of poses of ego-vehicle and also of agents during
recording.
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Fig. 8. Examples of manually specified rectangular regions for approximated ground
truth: in original sequences of Set 1 on [4] (left) and in Sobel-based BP results (right)

This paper will report in the second section about work towards the first
approach. For the second or third approach, see, for example, [6], where also
a laser-range finder is mounted on a mobile platform, used for modeling city
scenes. Laser-range finders allow very accurate 3D large-scale models, see [9].
For example, a particular area might be 3D modeled, such as a courtyard which
is basically ‘static’, and this area may then serve as a ‘camera crash test site’,
similar to crash test halls at car companies. For combining various sensors for
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3D modeling, see, for example, [12]. Alternatively, large scale modeling may also
utilize technology as developed for the generation of 3D maps [I], also discussed
in [9].

2 Approximate Ground Truth

In a recorded stereo sequence, we may identify simple geometric shapes and
identify their 3D location, using automated or manual measurements; see Fig. 8
(The figure also shows identified rectangular areas in depth maps calculated
using belief propagation as specified in [7].) As a more general option [14], we
may assume an approximate planar road surface, using known parameters of
ego-vehicle and cameras (as saved for Set 1 on [4] in the camera.dat file and in
the file header of every frame; see [13]).

2.1 Disparities on Road Surface

We assume that test sequences are ego-motion compensated, which means that
the horizon is always parallel with the row direction in the images, and pixels
on the same image row have the same depth value if a projection of the planar
road surface.

A side-view of the camera setting is shown in Figure [ where 6 is the tilt
angle, P is a road surface point which is projected into p = (x,,yp) on the image
plane, H is the height of the camera. It follows that

Z =d.(OP.) = de(OP)cosp = cos (1)

H
sin(0 + v)
According to the stereo projection equations, the disparity d can be written as

FELAY bt (2)

H o
Z sin(6+1)) COb¢

Image plane

Ad infinitum

H

Y- p  Road surface

—
- P .

Fig. 9. Projection of a point P of the road surface
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Original left image Road surface mask

Compurted disparity Disparity mask

Fig. 10. Generation of a disparity mask: input image, generated road mask, depth map
of a planar road, and resulting disparity mask

where angle ¥ can be calculated as follows, using focal length f and pixel coor-
dinate y, in the image:

(yp _fyo)sy) (3)

Here, yo is the y-coordinate of the principal point, and s, is the pixel size in
y-direction. We can also compute the y-coordinate of a line that projects to
infinity

1) = arctan (

Yo — f -tanf
Yinf =
Sy
This is the upper limit of the road surface, and points on it should have zero
disparity (if no objects block the view).

Figure [0 illustrates the process of generating an approximated disparity map
on road surface areas, also using manual input for a conservative outline of the
road area in a given image. In the given camera setting (of the seven sequences),
there is a yaw angle (0.01 radian) which makes the cameras looking a little bit
to the left. This angle can be ignored because it only defines the right camera
to be about 3 mm behind the left camera.

2.2 Recalibration of Tilt Angle

Although a camera tilt angle is already given for these sequences, we noticed
that the angle is not always true when verifying the data. This problem might be
caused by several reasons, for example, the road surface is changing (downhill,
uphill), the car coordinate system is not parallel to the road surface in some
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Table 1. Results of tilt angle estimation for the given seven sequences

Sequence name Tilt angle (radian)
1: 2007-03-06 121807 0.01608
2: 2007-03-07 144703 0.01312
3: 2007-03-15 182043 0.02050
4: 2007-04-20 083101 0.06126
5: 2007-04-27 145842 0.06223
6: 2007-04-27 155554 0.06944
7: 2007-05-08 132636 0.05961

situations (acceleration, braking), drivers of different weight, or driving with flat
tires, or the installation of cameras may change for some reasons. (Actually,
changes are easy to detect by reading the position of the Mercedes star in the
given images.)

The outlined process for obtaining approximate stereo ground truth identified
the importance of the tilt angle for the estimated values. We propose a method
to estimate the average tilt angle for a given sequence of frames. This method
is similar to the road surface stereo approximation, just in a reverse order. We
estimate the tilt angle based on given depth at some feature points (i.e., with
known disparities) which can be measured or identified manually.

See Figure[I0land assume a given pair of corresponding points, with disparity
d. By Equation (2)) we have that the tilt angle can be written as follows:

Hcosvy -d

o) - (4)

6 = arcsin (

where 9 is as given in Equation (3]).
Altogether, at first, we randomly select five or six frames from a sequence of
frames, then, we calculate or choose pairs of corresponding pixels on the road
surface area, and obtain disparities between those. Each disparity (of one pixel
pair) can be used to calculate a tilt angle using Equation (@), and a mean of those
provides a tilt angle estimation; see Table [I] for results for the seven sequences.

2.3 2D Motion on Road Surface

Speed and direction (yaw rate) of the ego-vehicle are given for all frames of those
seven sequences. The road is, obviously, static, what makes the calculation of rela-
tive movement of road surface points (with respect to the camera) straight forward.

Given a pixel p on the image plane at time ¢, which is projected to a road
surface point P. Let P move to a new position P’ at time ¢ + 6t, where 6t is the
time interval between two consecutive frames (called CycleTime in the seven
sequences, either equals 0.04 s or 0.08 s). Then, P’ is projected back to the
image plane at p’; see Figure [[I1 The approximation of 2D motion (i.e., local
displacement) at a pixel can then proceed as follows:

First, assume that the vehicle speed equals v at time ¢, and v’ at time ¢ + t;
the average speed during this time interval equals 6t is v = "'g" , having 6t very
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v Image plane

road

H

Road surface

[
[
[
[
t I
P P o,

Fig. 11. Approximation of 2D motion in y-direction: P and P is the same road surface
point, just in two consecutive frames. P is projected into p = (x,y) in the image plane,
P is projected into p = (z ,y ).

@)

-
X
Ego Vehicle

Fig. 12. Change in relative position between road surface point P and ego-vehicle

small in the sequences. Distances (in Z,,qq coordinates) of moving points are
defined as follows:

[vi] + |va] p1+ P2
= cos
2 Uy
where @1 and 9 are the yaw angles of the ego-vehicle at ¢t and ¢t + 1, and ¢, is
the yaw angle of the camera installation (see Figure[I2)). Therefore, the distance
between the point P and the ego-vehicle becomes

dz (P, P") = |v|cos(¢ + ©.)bt + )bt

H
Zp =dz(0,,P') =dz(0,,P) — dz(PP') = om0+ ) dz(PP')

Then, the angle between the projection ray OP’ and the optical axis of the
camera may be determined as follows:

H

¢’ = arctan ( ) —ezarCtan(dZ(O”P)—dZ(P,P')) -

H
dZ(OT7 PI)

where dZ(Oru P) = tan(g+w)'
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Fig. 13. A rotation of the ego-vehicle

Therefore, according to Equation (@), the y-coordinate of 2D motion u at
point P’ can be written as

(f ~tan(y)’)

U= 5y +yO)_yp

Thus, we are also able to specify the position of point P in z-direction as follows

o
Xp = Pfxp

with Zp = sin(g ) COS 1, which is actually already a known value from the
previous stereo ground truth approximation.

The position of P’ (for the next frame) can then be calculated by using speed
v and time interval 6t,

Xp = Xp — |v|sin(p + ¢.)6t
Now we have the new relative position between the road surface point and the
vehicle at time t + 6t. - In a next step, we need to rotate the vehicle coordinate
system by an angle according to the yaw rate given in the vehicle movement
parameters; see Figure [[3] Therefore, the final (relative) position equals

(37 ] = [t o] [ X7 ]

In a final step, point P is projected back to a pixel p’ on the camera’s image
plane. Then, 2D motion is obtained by comparing locations of p and p’, as follows:

P = arctan(zflé ) -6
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o

. | b

Fig. 14. Two projections of a moving disk, at times ¢ and ¢ + 1

v = )y,
Yy
;X

U=Tp —Tp = - Tp

sin(eliw ) COS(¢/)

2.4 Change in Depth for Image Features

As another option for modeling recorded scenes, we may use a scale-space based
estimation of changes in depth [20]. Consider a disk of radius p moving towards
an ideal pinhole-type camera of focal length f. Without loss of generality, let
the radius move parallel to the Y-axis of the XY Z-camera coordinate system
(ie., r =Y. =Y, for center P. and an edge point P, of the disk). A 3D point
P = (X,Y,Z) in the world (in camera coordinates) projects into a point p =
(z,y, f) in the image plane, with z = f)Z( and y= fg Point P, projects into
DPe = (Tey Yo, f), and P projects into pe = (e, Ye, f)- The moving disk is at time
t at distance Z;, and projected into image I; as a disk of radius r; (see Fig. [[4]).
We obtain the following for the area of this projected disk:

Aim i = mlyomy ) = T (Vam Vo) = f
- e Zz e T Y 72

Radius p of the disk is constant over time, thus, the product A;Z? ~ p? will also
not change over time.

We consider projections of the disk at times ¢ and ¢ 4+ 1. Because the ratio of
square roots of areas is proportional to the inverse of the ratio of corresponding
Z-coordinates of the disk, we are able to define a z-ratio

A Z
pe= VA 6
\/At+1 Zy

either by area or Z-values.
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Such a z-ratio can also be defined just for a pair of projected points P, =
(X4, Y, Xy) and Prp1 = (Xgt1, Vg1, Ziv1) (Just by the ratio of Z-coordinates).
Using the central projection equations for both projected points, we obtain for
their x-ratio and y-ratio the following:

X1 Zipr T Tit1
= = . = 6
Ha X, Z s Hz s (6)
1y = Yit1 _ Zit1 Yy o Yit1 X
Y Y; Zy Yt "y

Altogether, this may also be expressed by the following update equation:

Xt ez 00 X
Yipr | =0y 0] [V (8)
Ziia 0 0 ps Zy

with fig, pty, and g, as in Equations (@), (7), and (5)) respectively. In other words,
knowing p, and ratios wf;trl and yttl allows to update the position of point P;
into P;4+1. Assuming that P, and P41 are positions of one tracked 3D point
P, from time ¢ to time ¢ + 1, we only have to solve two tasks: (1) decide for
a technique to track points from ¢ to ¢ + 1, and (2) estimate p.. If an initial
position Py of a tracked point P is known then we may identify its 3D position
at subsequent time slots. Without having an initial position, we only have a 3D
direction P; to P41, but not its 3D position.

For identifying u., an ‘area of influence’ is assigned to each tracked feature
point, basically taking the role of a tracked disk.

For tracked points, a scale-space-based measure is computed for the ‘exten-
sion of the local image structure’ in a local (or semi-local) neighborhood. Such

Fig. 15. Disks with radii defined by maxima of scale space characteristics
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measures, computed independently for each pair of points, are used to deter-
mine a scale ratio (based on associated intensity profiles of scale characteristics
of those feature points), which is finally used as an estimate of the z-ratio p..
For details, see [20]. Figure [[H illustrates disks assigned to tracked features.

3 Evaluation

We use quality metrics to measure the quality of calculated stereo correspon-
dences or motion vectors with respect to approximated ground truth.

35 T T T
DP.Seql ——

¥ DPs.Seql — s
T XT DPr.Seql —s— |
¥ DPts.Seql —=—
Sl .

Bad Match (%)

0 50 100 150 200 250 300

Frames

Fig. 16. Percentages of bad matches for dynamic programming stereo and its variants

80

180 T T T
PyrLK.Angular.Seq6 —+—

160 PyrLK.EndPoint.Seq6 —
140
120
100

80 -

Angular Error
End Point Error

60 -

40

50 100

Frames

Fig. 17. Angular errors and endpoint errors for PyrLK on Sequence 6
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3.1 Stereo

The general approach of stereo evaluation is to compute error statistics based
on given ground truth. We use the same error measurements as on [16], namely
the root mean squared error between the disparity map d(z,y) and the ground
truth map dr(x,y), defined as follows:

B = (), o ld(ey) - dr(e,p)P) 0

where n is the total number of pixels, and the percentage of bad matching pizels,
defined as follows:

B = ) S2(d(wy) — dr(e.p)] > ba) (10)

where 84 is the threshold of disparity tolerance.

Quality metrics for optical flow evaluation have to measure the result in a 2D
space. We use the common angular error defined as the average angle between
estimated optical flow vector u and the true flow vector ur,

1 u-ur
Fag = arccos 11
0 2 ) -
where |u| denotes the length (magnitude) of a vector, and the end point error
which measures the absolute distance between the end points of vectors u and

v Egp = /(u —ur)? + (v — vr)? (12)

3.2 Examples of Results

The discussed approximate ground truth has been used in [7I14] for evaluating
stereo and motion analysis techniques, such as variants of dynamic program-
ming (including Birchfield-Tomasi), belief propagation, semi-global matching,
or variants of optical flow calculation (using sources in OpenCV [I§] where
available, D. Huttenlocher’s belief propagation sources from [I0], or our own
implementation).

For example, Fig. shows bad matches for Sequence 1 (of Set 1 on [4]),
comparing a common dynamic programming approach with modifications, also
using spatial or temporal propagation (only one of those, or both combined).
The figure shows values for all the 300 stereo pairs of this sequence. It clearly
indicates that temporal propagation (see DPt in the diagram) is of benefit if
evaluating within the described road mask of estimated disparities.

Figure [[7 summarizes angular and end point errors of the pyramid Lucas-
Kanade technique for all 250 frames of the left camera of Sequence 6.

We will not start a comparative discussion here, and point the reader to [7I14].
The two examples of diagrams are given here to illustrate an important property
of these evaluations based on real-world sequences: here we have long sequences,
basically of arbitrary length, and we may use this for improving results (e.g.,
by applying a Kalman filter), but also for deriving statistically more relevant
performance evaluation results.
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4 Conclusions

Vision-based driver assistance systems have moved into modern cars in recent
years, and there will be an ‘exponential growth’ in demands not only with re-
spect to deriving accurate and real-time computer vision solutions, but also in
evaluating these solutions, to ensure that they satisfy international standards
(still to be defined by major car manufacturers).

This will require that testing is based on real-world data, without eliminating
any possible visual effect, and with aiming at ‘robust’ testing. A vision system
may be ‘robust’ if being fairly invariant with respect to changes in brightness
or contrast; obviously, a smoke detection system should not have this type of
‘robustness’. We conclude that ‘robustness’ needs to be defined for the particular
needs of DAS.

Evaluation not only needs to be done also on stereo real-world sequences;
we may expect that the car industry will define the state of the art in stereo
and motion analysis with their (expected) quality standards very soon. Image
analysis will also work on rainy days, even in the night, and so forth.

Acknowledgement. The author acknowledges valuable support of, or collab-
oration with (in alphabetic order) Je Ahn, Ali Al-Sarraf, Eduardo Destefanis,
Shushi Guan, Zhifeng Liu, Jorge Sanchez, and Tobi Vaudrey.
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Abstract. We model the forgetting of propositional variables in a modal
logical context where agents become ignorant and are aware of each oth-
ers’ or their own resulting ignorance. The resulting logic is sound and
complete. It can be compared to variable-forgetting as abstraction from
information, wherein agents become unaware of certain variables: by em-
ploying elementary results for bisimulation, it follows that beliefs not
involving the forgotten atom(s) remain true.

Keywords: modal logic, forgetting, abstraction, action logic, belief
change.

1 There Are Different Ways of Forgetting

Becoming unaware. In the movie ‘Men in Black’, Will Smith makes you forget
knowledge of extraterrestrials by flashing you with a light in the face. After that,
you have forgotten the green ooze flowing out of mock-humans and such: you
do not remember that you previously had these experiences. In other words,
even though for some specific forgotten fact p it is now the case that —=Kp and
=K —p, the flash victims have no memory that they previously knew the value
of p. Worse, they forgot that p is an atomic proposition at all. This sort of
forgetting is dual to awareness—in a logical setting this means that parameters
of the language, such as the set of atoms, shrink.

Becoming ignorant. A different sort of forgetting is when you forgot which 