


Advanced Information and Knowledge Processing



Also in this series

Gregoris Mentzas, Dimitris Apostolou, Andreas Abecker and Ron Young
Knowledge Asset Management
1-85233-583-1

Michalis Vazirgiannis, Maria Halkidi and Dimitrios Gunopulos
Uncertainty Handling and Quality Assessment in Data Mining
1-85233-655-2

Asunción Gómez-Pérez, Mariano Fernández-López, Oscar Corcho
Ontological Engineering
1-85233-551-3

Arno Scharl (Ed.)
Environmental Online Communication
1-85233-783-4

Shichao Zhang, Chengqi Zhang and Xindong Wu
Knowledge Discovery in Multiple Databases
1-85233-703-6

Jason T.L. Wang, Mohammed J. Zaki, Hannu T.T. Toivonen and Dennis
Shasha (Eds)
Data Mining in Bioinformatics
1-85233-671-4

C.C. Ko, Ben M. Chen and Jianping Chen
Creating Web-based Laboratories
1-85233-837-7

Manuel Graña, Richard Duro, Alicia d’Anjou and Paul P. Wang (Eds)
Information Processing with Evolutionary Algorithms
1-85233-886-0



Yun-Heh Chen-Burger and Dave Robertson

Automating
Business
Modelling
A Guide to Using Logic to Represent
Informal Methods and Support Reasoning

With 104 Figures



Yun-Heh Chen-Burger, MS, MSc, PhD
Dave Robertson, PhD

School of Informatics, The University of Edinburgh, UK

Series Editors
Xindong Wu
Lakhmi Jain

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Cataloging-in-Publication Data
CIP data available.

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be repro-
duced, stored or transmitted, in any form or by any means, with the prior permission in writing of
the publishers, or in the case of reprographic reproduction in accordance with the terms of licences
issued by the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms
should be sent to the publishers.

AI&KP ISSN 1610-3947

ISBN 1-85233-835-0
Springer is a part of Springer Science+Business Media
springeronline.com

© Springer-Verlag London Limited 2005

The use of registered names, trademarks, etc. in this publication does not imply, even in the absence
of a specific statement, that such names are exempt from the relevant laws and regulations and
therefore free for general use.

The publisher makes no representation, express or implied, with regard to the accuracy of the infor-
mation contained in this book and cannot accept any legal responsibility or liability for any errors
or omissions that may be made.

Typesetting: Electronic text files prepared by authors
Printed and bound in the United States of America
34/3830-543210 Printed on acid-free paper SPIN 10968208



To my husband, Albert Burger, and my parents, Ching-Liang
Chen and Peng-Tzu Chiu.

Yun-Heh Chen-Burger



Preface

This book describes different ways of providing automated support for enter-
prise modelling. It firstly introduces different Enterprise Modelling methods
and their relevance to an organisation. This provides an insight to how Enter-
prise Modelling methods may benefit organisations that use them. Technical
knowledge is explained and illustrated by examples that give practical guidance.
This book is therefore suitable for undergraduate students in their senior years
and post-graduate students who are studying in business studies, computer
science and/or artificial intelligence. It will also be suitable for practitioners in
the fields of knowledge management, modelling and software engineering who
wish to apply such technologies.

This book has used a business modelling method, IBM’s BSDM’s Business
Modelling method, as an exemplar to describe how logical methods may be used
to provide automatic support and thus help the modeller to produce higher
quality models in a controlled and speedy manner. Although this book focuses
on one modelling method, the principles demonstrated in the book are generic
and may be used for other modelling methods. Two knowledge based tools,
KBST-BM and KBST-EM have been implemented based on the technology
described in the book. They have been used to support 27 different modelling
methods in practice.

For learning purposes, this book includes normal exercises and advanced
exercises at the end of most chapters. Normal exercises are designed for all
readers of the book and most of the knowledge needed to answer these questions
are included in the book. Advanced exercises are questions that require more
in-depth understanding of the topic and may draw on related knowledge that
is outside of the scope of the book (e.g. knowledge in Business and Knowledge
Management, Artificial Intelligence, Computer Science and Programming) so
these suit those who may be taking related courses at the same time.

The content of this book (with the exception of the introductory chap-
ter to Logic, originally written by Dave Robertson for undergraduate teach-
ing) is an extension and adaptation of Yun-Heh Chen-Burger’s PhD thesis.
Some additional work is derived from AOEM (Air Operations Enterprise Mod-
elling), AKT (Advanced Knowledge Technologies) IRC, CoAKTinG (Collab-



viii Preface

orative Advanced Knowledge Technologies in the Grid) and experience from
commercial projects.

The authors would like to thank Dr. Albert Burger, Ms. Lyn Imeson and
Mr. Michael Koy for their careful proof-reading of the book. They also wish
to acknowledge their colleagues for providing an interesting and inspirational
environment within which to work, and in particular the following people: Dr.
John Mark Agosta, Dr. Stuart Aitken, Mr. Tai-Hung Chen, Mr. Mike Dean,
Dr. Hsiao-Lan Fang, Professor Peter Gray, Dr. Kit-Ying Hui, Dr. Peter Jarvis,
Dr. Yannis Kalfoglou, Mr. Chris Lin, Dr. Fang-Pang Lin, Ms. Christine Lissoni,
Mr. Siu-Wai Leung, Professor Chris Mellish, Professor Enrico Motta, Dr. Steve
Potter, Dr. Alun Preece, Dr. Marco Schorlemmer, Professor Nigel Shadbolt,
Professor Qiang Shen, Dr. Julian Smart, Professor Austin Tate, Mr. Larry
Tonneson, Dr. Chris Walton and Professor Ching-Long Yeh.

Moreover, the authors would like to thank their families for their persistent
support and company over the years.

Edinburgh, UK Yun-Heh (Jessica) Chen-Burger
August 2004 Dave Robertson



Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 The Wider Context: Enterprise Modelling Methods . . . . . . . . . . . 1
1.2 The Focus: Business System Development Method (BSDM) . . . 3
1.3 The Aim: A Different Type of Modelling Support . . . . . . . . . . . . . 4
1.4 Modelling Context and the Support Framework . . . . . . . . . . . . . . 4
1.5 Formal Approach and KBST-BM . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.6 The Use of KBST-BM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.7 Organisation of the Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Background Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 Why Enterprise Modelling? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Enterprise Modelling Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Introducing the Business System Development Method

(BSDM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.1 Business Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.2 BSDM Compared with SE . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Introducing Business Process Models . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5 Review of Existing Enterprise Modelling Tools . . . . . . . . . . . . . . . 19
2.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Problems and Overview of Approach . . . . . . . . . . . . . . . . . . . . . . . 23
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Business Model and Software Engineering . . . . . . . . . . . . . . . . . . . 23

3.2.1 Software Systems Development Cycle . . . . . . . . . . . . . . . . . 23
3.2.2 Software System Seeks Real Goal . . . . . . . . . . . . . . . . . . . . . 25

3.3 Support for Enterprise Modelling Methods . . . . . . . . . . . . . . . . . . . 26
3.3.1 Problems with Enterprise Modelling Methods . . . . . . . . . . 26
3.3.2 BSDM’s Business Modelling . . . . . . . . . . . . . . . . . . . . . . . . . 29



x Contents

3.3.3 Providing a Quality Assurance Life Cycle . . . . . . . . . . . . . . 29
3.3.4 A Logic-Based Formal Method . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.5 Lightweight Logical Method . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.6 A Layered Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3.7 Modelling Support Overview of KBST-BM . . . . . . . . . . . . 34

3.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 Propositional Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2.1 The Notation: Well-Formed Formulae . . . . . . . . . . . . . . . . . 38
4.2.2 Analysing the Structure of Formulae in Propositional

Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2.3 Representing Real World Problems in PL . . . . . . . . . . . . . . 40
4.2.4 Determining the Truth of Formulae by Analysis of their

Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3 First Order Predicate Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3.1 The Notation: Well-Formed Formulae . . . . . . . . . . . . . . . . . 47
4.3.2 Representing Real World Problems in FOPL . . . . . . . . . . . 49
4.3.3 Unification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4 Natural Deduction Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.5 Resolution: A Simplified Proof Mechanism . . . . . . . . . . . . . . . . . . . 57

4.5.1 Normal Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.5.2 Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.6 Prolog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.7 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.7.1 Ambiguity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.7.2 Search Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.7.3 Representational limitations . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5 Formal Support for Data Modelling . . . . . . . . . . . . . . . . . . . . . . . . 75
5.1 Defining a Formal Language: DefBM . . . . . . . . . . . . . . . . . . . . . . . . 77
5.2 Entity Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.3 Representing the Entity Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.4 Representing the Life Cycle Diagram . . . . . . . . . . . . . . . . . . . . . . . . 84
5.5 Representing Domain Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.6 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.6.1 Model Verification Consultation Example . . . . . . . . . . . . . 90
5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.9 Advanced Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94



Contents xi

6 Formal Support for Process Modelling . . . . . . . . . . . . . . . . . . . . . . 95
6.1 Process Model and Process-Entity Matrix . . . . . . . . . . . . . . . . . . . 95
6.2 Representing the Process Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.3 Representing the Life Status of a Process . . . . . . . . . . . . . . . . . . . . 99
6.4 Representing User-Defined Attribute Rules . . . . . . . . . . . . . . . . . . 100

6.4.1 Predicate for User-Defined Attribute Rules . . . . . . . . . . . . 101
6.4.2 Grammar for User-Defined Attribute Rules . . . . . . . . . . . . 101

6.5 Representing Domain Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.6 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.6.1 Process Model Consultation Example . . . . . . . . . . . . . . . . . 113
6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.9 Advanced Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7 Reasoning on and Executing Processes . . . . . . . . . . . . . . . . . . . . . 117
7.1 Introducing the Procedural Model . . . . . . . . . . . . . . . . . . . . . . . . . . 117
7.2 Representing Dynamic Business Models . . . . . . . . . . . . . . . . . . . . . 120
7.3 Representing the Procedural Model . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.3.1 Example Procedural Model and Representation . . . . . . . . 123
7.4 Representing Domain Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.4.1 Actions, Effects and Temporal Relations . . . . . . . . . . . . . . 125
7.4.2 Process Dependencies and Partial Execution Order . . . . . 127
7.4.3 Simulation Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7.5 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
7.5.1 Process Execution Sequence Constructor . . . . . . . . . . . . . . 132
7.5.2 Process Conflict Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
7.5.3 Business Model Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
7.5.4 Example Inference and State Transition Diagram . . . . . . . 138

7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
7.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
7.8 Advanced Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

8 Knowledge Sharing and Reuse of Models . . . . . . . . . . . . . . . . . . . 143
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
8.2 Intelligent Assistance for the Business Modeller . . . . . . . . . . . . . . 143
8.3 Case-Based Reasoning (CBR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
8.4 GMA System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
8.5 Indexing and Domain Knowledge Representation . . . . . . . . . . . . . 148
8.6 Generic Model Library (GML) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

8.6.1 Presentation and Representation Issues . . . . . . . . . . . . . . . 152
8.7 Entity Conceptual Hierarchy (ECH) . . . . . . . . . . . . . . . . . . . . . . . . 153
8.8 Algorithm for Case Retrieving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
8.9 Similarity Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

8.9.1 Matching Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
8.9.2 Discriminating Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
8.9.3 Heuristic Similarity Assessment . . . . . . . . . . . . . . . . . . . . . . 160



xii Contents

8.9.4 User-Definable Similarity Assessment . . . . . . . . . . . . . . . . . 162
8.10 Report Generation and Retaining New Cases . . . . . . . . . . . . . . . . 163
8.11 Example Use of GMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
8.12 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
8.13 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
8.14 Advanced Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

9 Use of KBST-BM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
9.1 Description of DAI Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
9.2 Developing a Business Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

9.2.1 Overview of using KBST-BM . . . . . . . . . . . . . . . . . . . . . . . 172
9.2.2 Workflow for Developing a Business Model . . . . . . . . . . . . 174
9.2.3 Reuse, Verification and Validation Life Cycle . . . . . . . . . . 176

9.3 Developing an Entity Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
9.4 Developing a Process Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
9.5 Developing a Procedural Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
9.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
9.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
9.8 Advanced Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

10 Evaluation of System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
10.2 Evaluation of Support for Method . . . . . . . . . . . . . . . . . . . . . . . . . . 190

10.2.1 Completeness Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
10.2.2 Model Verification Support Assessment . . . . . . . . . . . . . . . 194
10.2.3 BSDM Development Process Support Assessment . . . . . . 199
10.2.4 Knowledge Integration and Sharing: An Evaluation of

GMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
10.3 Comparison with Other Support Tools . . . . . . . . . . . . . . . . . . . . . . 212

10.3.1 Rose Business Process Link and Rose Planner Link . . . . 213
10.3.2 AI0 WIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

10.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
10.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
10.6 Advanced Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

11 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
11.1 A Formal Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
11.2 The System: KBST-BM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
11.3 Evaluation of KBST-BM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
11.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

A Generic Business Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

B Example Business Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

C An Industrial Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235



Contents xiii

D A Model for Family Restaurants . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

E A Model for Academic Environments . . . . . . . . . . . . . . . . . . . . . . . 249

F The Formal Operators in DefBM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
F.1 Notation and Language Conventions . . . . . . . . . . . . . . . . . . . . . . . . 253

G Entity Model Rules and Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . 255
G.1 Entity Model Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
G.2 Entity Model Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

H Process Model Rules and Guidelines . . . . . . . . . . . . . . . . . . . . . . . . 265
H.1 Process Model Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
H.2 Process Model Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

I An Interpreter for User-Defined Rules . . . . . . . . . . . . . . . . . . . . . . 279

J Model Rules and Guidelines by Category . . . . . . . . . . . . . . . . . . . 285
J.1 Entity Model Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
J.2 Entity Model Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
J.3 Process Model Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
J.4 Process Model Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288

K Test Results of Model Rules and Guidelines . . . . . . . . . . . . . . . . 289
K.1 Test Results of Entity Model Rules . . . . . . . . . . . . . . . . . . . . . . . . . 289
K.2 Test Results of Entity Model Guidelines . . . . . . . . . . . . . . . . . . . . . 290
K.3 Test Results of Process Model Rules . . . . . . . . . . . . . . . . . . . . . . . . 291
K.4 Test Results of Process Model Guidelines . . . . . . . . . . . . . . . . . . . . 292

L Example Use of GMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
L.1 Input User Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
L.2 Representation of the User Model . . . . . . . . . . . . . . . . . . . . . . . . . . 294
L.3 Dialogue using GMA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
L.4 Statistical Summary of All Explored Matches . . . . . . . . . . . . . . . 302

M Example Use of Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321



List of Figures

1.1 Three-layered modelling support framework . . . . . . . . . . . . . . . . . . . 5

2.1 A comparison of BSDM with conventional SE methods . . . . . . . . . 14
2.2 The PIF class hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 Royce’s waterfall model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Alan Davis’s software system development model . . . . . . . . . . . . . . 24
3.3 The plan-build-test-refine model development cycle . . . . . . . . . . . . 30
3.4 Overview of approach and goals of the research . . . . . . . . . . . . . . . 31
3.5 An overview of modelling support by KBST-BM . . . . . . . . . . . . . . 35

4.1 A Truth Table for Logic Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 Proving that (P and (P → Q)) → Q is a tautology . . . . . . . . . . . . 45
4.3 Proving that P and not(P ) is inconsistent . . . . . . . . . . . . . . . . . . . . 46
4.4 Some useful sequents in classical logic . . . . . . . . . . . . . . . . . . . . . . . . 53
4.5 Proof rules (Sequent Calculus after Roy Dyckhoff) . . . . . . . . . . . . . 54
4.6 Proof tree for [a, a → b] � b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.7 Proof tree for [b → c] � (a or b) → (a or c) . . . . . . . . . . . . . . . . . . . 57
4.8 Proof tree for [a, not(a and b)] � not(b) . . . . . . . . . . . . . . . . . . . . . . . 58
4.9 A conversion to clausal form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.10 An example of resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.11 Proof rules for basic Prolog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.12 Searching for a Prolog proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.13 A more complicated proof tree for [a, a → b] � b . . . . . . . . . . . . . . . 69
4.14 Prolog’s search strategy permits infinite looping . . . . . . . . . . . . . . . 70

5.1 The Inheritance Class Hierarchy (ICH) of DefBM . . . . . . . . . . . . . 78
5.2 A BSDM Entity Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.3 The Life Cycle Diagram for “Practical Turned In By Person” . . . 84
5.4 A Life Cycle Diagram with error . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.5 A consultation window in KBST-BM . . . . . . . . . . . . . . . . . . . . . . . . 92
5.6 A business model for business account and organisation . . . . . . . . 94



xvi List of Figures

6.1 An example BSDM Process Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.2 A Process-Entity Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.3 An extended BSDM Life Cycle Diagram . . . . . . . . . . . . . . . . . . . . . 99
6.4 Grammar trees for BSDM attribute rules . . . . . . . . . . . . . . . . . . . . . 103
6.5 Example process to illustrate attribute rule . . . . . . . . . . . . . . . . . . . 105
6.6 A BSDM Process Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.7 A Process Model consultation window . . . . . . . . . . . . . . . . . . . . . . . 114

7.1 An example Procedural Model for originate focal processes . . . . . 118
7.2 Instantiation of a business model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
7.3 The Procedural Model for ‘Module Performance Assessment’ . . . . 123
7.4 Process dependency and partial execution order diagram (1) . . . . 132
7.5 Process dependency and partial execution order diagram (2) . . . . 134
7.6 A state transition diagram for originate focal process (1) . . . . . . . 138
7.7 A state transition diagram for originate focal process (2) . . . . . . . 140
7.8 A state transition diagram for originate focal process (3) . . . . . . . 140

8.1 General architecture of a case-based reasoning system . . . . . . . . . . 145
8.2 Architecture of Generic Model Advisor (GMA) . . . . . . . . . . . . . . . . 147
8.3 Starting the Generic Model Advisor (GMA) . . . . . . . . . . . . . . . . . . 148
8.4 An example generic model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
8.5 Notation for Entity Conceptual Hierarchy . . . . . . . . . . . . . . . . . . . . 154
8.6 The Entity Conceptual Hierarchy (ECH) at Layer 1 . . . . . . . . . . . 155
8.7 Possible matching between user models and generic models . . . . . 159
8.8 The preference of matching results . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
8.9 The heuristic similarity evaluation function . . . . . . . . . . . . . . . . . . . 162
8.10 An example consultation session (part I) . . . . . . . . . . . . . . . . . . . . . 164
8.11 The initial business model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
8.12 The recommended generic model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

9.1 Overview of KBST-BM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
9.2 Recording views in BSDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
9.3 Development framework for a business model . . . . . . . . . . . . . . . . . 175
9.4 A high-level view of BSDM workflow . . . . . . . . . . . . . . . . . . . . . . . . . 175
9.5 The plan-build-test-refine development cycle . . . . . . . . . . . . . . . . . . 176
9.6 The (property) definition form for entity “Person” . . . . . . . . . . . . . 177
9.7 The attribute definition form for entity ‘Person’ . . . . . . . . . . . . . . . 178
9.8 Detailed definition form for attribute “Nationality” (1) . . . . . . . . . 178
9.9 Detailed definition form for attribute “Nationality” (2) . . . . . . . . . 179
9.10 Definition form for process Assign Practical Mark (1) . . . . . . . . . 180
9.11 Definition form for process Assign Practical Mark (2) . . . . . . . . . 180
9.12 Dynamic business model with trigger occurrence . . . . . . . . . . . . . . 182
9.13 Definition window for a trigger occurrence . . . . . . . . . . . . . . . . . . . . 183
9.14 Process scope described in a trigger occurrence . . . . . . . . . . . . . . . . 183
9.15 Activation of the business simulator . . . . . . . . . . . . . . . . . . . . . . . . . 184
9.16 Simulation result (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185



List of Figures xvii

9.17 Simulation result (2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

10.1 Overview of course structure in DAI . . . . . . . . . . . . . . . . . . . . . . . . . 195
10.2 Assign/change/cancel course performance processes . . . . . . . . . . . . 196
10.3 Workflow for building a business model . . . . . . . . . . . . . . . . . . . . . . 200
10.4 Hierarchical view of development process in KBST-BM . . . . . . . . 202
10.5 The plan-build-test-refine development cycle . . . . . . . . . . . . . . . . . . 202

A.1 Geographical area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
A.2 Delivery location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
A.3 Legal binding on account . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
A.4 Customer order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
A.5 Relation between organisations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
A.6 Account chargeable to organisational unit . . . . . . . . . . . . . . . . . . . . 232
A.7 Regulation and law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

B.1 Employment contract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
B.2 Deliver product to customer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

C.1 Customer order management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
C.2 Stock management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
C.3 Law and regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
C.4 Marketing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

D.1 A model for family restaurants (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
D.2 A model for family restaurants (2) . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
D.3 A model for family restaurants (3) . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
D.4 A model for family restaurants (4) . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
D.5 A model for family restaurants (5) . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
D.6 A model for family restaurants (6) . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

E.1 Module evaluation: assign practical mark . . . . . . . . . . . . . . . . . . . . . 249
E.2 Module evaluation: assign/review/cancel project mark . . . . . . . . . 250
E.3 Module evaluation: assign exam mark . . . . . . . . . . . . . . . . . . . . . . . . 250
E.4 Course evaluation: assign/change/cancel course performance . . . . 251
E.5 Overview of course structure in DAI . . . . . . . . . . . . . . . . . . . . . . . . . 251
E.6 Personnel management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

L.1 The example input model for GMA . . . . . . . . . . . . . . . . . . . . . . . . . . 293



1

Introduction

1.1 The Wider Context: Enterprise Modelling Methods

Enterprise Modelling (EM) methods are commonly used by entrepreneurs as
an analysis tool for describing and redesigning their businesses. The resulting
product, the enterprise model, is often used as a blueprint for reconstructing
their organisations as part of Business Process Reengineering (BPR) or Busi-
ness Process Improvement (BPI) initiatives[28].

The goal of applying an enterprise modelling method is to seek ways to
improve an organisation’s performance. EM methods are typically informal or
semi-formal. They provide notations which enable business persons to describe
aspects of their business operations. The notation is normally complemented
with semi-formal or natural language descriptions which allows details of the
business operations to be described.

Examples of such EM methods are IBM’s BSDM Business Modelling Lan-
guage [53], Ould’s Business Process Modelling language RAD [82], Dob-
son and Strens’s Organisational Modelling language (ORDIT) [31] , Fox and
Gruninger’s methods to produce ontologies [39], Eriksson and Penker’s business
modelling based on extensions of UML [34], and IDEF methodology’s process
modelling languages such as IDEF3 [72] and IDEF0 [80] . We distinguish be-
tween (enterprise) modelling languages and models: a modelling language is
the language that is used to describe a domain, whereas the description of the
domain (in that modelling language) is the end product of a modelling exercise
and is called a model, or more specifically in this case an Enterprise Model.

Although EM methods have proved to be useful in providing a systematic
working procedure and structural framework to capture and analyse enterprise-
wise information, a key problem that remains is the lack of means to ensure the
quality of the developed models. This problem is to a large extent due to the fact
that models are mostly described using informal or semi-formal languages. To
maintain the quality of such models, manual checking by a human modelling
expert is required. However, a full-sized model for an enterprise is often so
large and complicated that it is too complex a task to be carried out manually.
Furthermore, the system dynamics described by the model are often implicit



2 AUTOMATING BUSINESS MODELLING

and are very difficult to comprehend by the human mind without appropriate
computational aids. All of the above problems are further compounded by the
fact that normally only limited time is allowed for a modelling project. Hence,
when a model has been constructed, little time is left for quality assurance.

It is clear that conventionally labour-intensive modelling tasks can benefit
from appropriate automatic and semi-automatic support. Tools that are cur-
rently used to support modelling activities may be grouped into two types: the
first type of tools provide primarily capturing and report-generation functions
for a specific modelling method, the second type of tools provide documentation
and report-generating functions as well as simulation facilities for the described
models. Although these tools provide useful facilities in assisting model-building
activities, their support is based on the syntax of the model, i.e. its notation.
For more sophisticated verification, validation and other inferencing function-
alities, tools must also be able to process models at the semantic level. How to
achieve this is the primary issue in this book.

This book identifies areas where AI techniques can be usefully applied to
provide automatic tool support at a level beyond that of conventional tools.
The EM method used for illustration is BSDM’s Business Modelling method
[53]. A support framework that covers the life cycle of modelling exercises – the
iterative plan-build-test-refine modelling life cycle – has been introduced; and
based on the methodologies provided by BSDM, a formal method to represent
BSDM Business Models was developed. Based on this formal language, explicit
and implicit information described in the model is extracted (and derived) from
a business model using various AI techniques.

Relevant modelling knowledge that may be helpful for either building, ver-
ifying or simulating an EM model is also captured. Such knowledge may be
extracted from, for instance, modelling guidance provided by the modelling
method, standard (that may not be formally described) modelling practice
that has been commonly deployed in the field, benchmarked standard mod-
els and other domain-specific information. Such modelling expertise provides
a standard to judge the quality of newly created business models: to achieve
this, various techniques have been developed and applied to provide automatic
and semi-automatic modelling support and theorem proving for the modellers.

The formalised expertise is used in different parts of a Three-Layered Frame-
work (which will be introduced in Section 1.4). Based on this framework the
Knowledge Based Support Tool for Business Models (KBST-BM) has been de-
veloped. The tool’s target users are business modellers with a good understand-
ing of IBM’s BSDM Business Modelling method as well as knowledge engineers
who are interested in using BSDM as a modelling tool. Business persons (with
fundamental knowledge of the business modelling method) may also wish to use
the tool for browsing, demonstrating, communicating with others and refining
the business context that has been captured in the business model.

The modelling support framework and the techniques used within it are
generic and may be adapted to provide automatic and semi-automatic support
for other EM modelling methods as well as methods that are similar to BSDM.
KBST-BM has been extended to a new tool KBST-EM (Knowledge Based Sup-



Chapter 1. Introduction 3

port tool for Enterprise Models) that currently includes 29 different modelling
methods that utilise techniques of similar principles. Examples of how those
techniques have been applied to other EM methods will also be illustrated at
appropriate places. Before the support framework and its techniques are intro-
duced, a brief introduction to the main EM method, BSDM, is given in section
1.2.

1.2 The Focus: Business System Development Method
(BSDM)

BSDM (Business Systems Development Method) [53] was developed by IBM. It
provides a business modelling method for developing software systems that are
to be used in a business environment, i.e. a company or an organisation. The
result of the business modelling activity, a business model, is taken as input
for its later activities, Need, Shape and Run, which include scoping, designing
and implementing a business system, including both computing and manual
procedures. Although BSDM’s business modelling method is primarily used to
help design better business IT systems, it also can be, and often is, used as
a business analysis tool and a communication device amongst managers and
between managers and software engineers.

What makes BSDM an interesting method is its provision of a well-
documented description of its modelling approach, model-building procedures,
rich example models and practical evaluation guidelines for good modelling
practice, something that most other EM modelling languages do not have.
These EM methods provide the methodology, i.e. notation and its meaning,
but not a step-by-step method of use of the methodology in practice.1 This
makes BSDM particularly valuable because it provides a reliable foundation
upon which useful model-building automation can be based.

A further advantage of BSDM’s business modelling method is its compre-
hensiveness. It offers coherent guidelines for the whole life cycle, in the natural
sequence, of BSDM model development, rather than merely discrete techniques
for random stages of the development process. These guidelines are also suffi-
ciently concrete so that they can be easily applied in practice. This provides
a basis on which a level of automatic support can be provided by KBST-BM
that has previously not been seen in other tools.

In spite of these advantages and its concise yet powerful notation for busi-
ness managers to capture and analyse a complex business environment, BSDM
suffers from one of the key problems of most enterprise modelling methods: the
quality of the built model is largely dependent on the experience and knowledge
the modellers have of the method (BSDM) and their comprehension about the
enterprise they are trying to model, which makes it difficult to provide qual-
ity assurance for the model. Additionally, like other EMs, developing a BSDM

1 The distinction between methodology and method follows the definition given by
Wieringa [116].



4 AUTOMATING BUSINESS MODELLING

business model is a labour-intensive task which tends to be error-prone when
the modelled domain is complex. This problem is made worse by typical indus-
trial project time constraints that often leave little time for a comprehensive
iterative process of quality checking and refinement once a model has been
built.

Hence, BSDM shares problems typically found in most enterprise modelling
methods, but has also a number of specific characteristics that make it particu-
larly suitable as a target method for automatic and semi-automatic tool support
through the formalisation of models and model-building knowledge. Interest-
ingly, much of those modelling expertise and automatic support, once fully
understood, can be transferred and adapted to be applied to provide similar
support for other enterprise modelling methods. This is particularly interesting
when several different enterprise modelling methods are used in conjunction to
compliment each other. Common information that is stored in each model may
also be used to check against each other to improve the quality of all models.
This work is described in more detail in [20].

1.3 The Aim: A Different Type of Modelling Support

As outlined in the discussion so far, this book introduces a new level of tool
support for business modellers. Specifically, it aims at incorporating various
sources of knowledge into the tool. This will enable the tool to extend its
scope beyond the more traditional features, such as drawing diagrams and
storing information using natural language (e.g. general English descriptions
of the model). New, advanced semantics-based functionalities, enabled through
the underlying formal representation of models and model-building rules are
proposed. These include automatic and semi-automatic consistency checking
across the whole model,2 support for the development of new models through
an existing library of previously built models, automatic checking of compliance
with general quality guidelines of new models, and overview and preview of
possible executions of business processes.

In summary, through the proposed approach, tool support shifts from
merely a documentary role to one in which the tool is used to improve model-
building efficiency and model quality. These aims and how they are achieved
are discussed in more detail throughout the book, beginning with an overview
of the modelling context of the support framework in the next section.

1.4 Modelling Context and the Support Framework

The support framework is provided in a context where modelling activities are
carried out. This section therefore looks at the modelling context of BSDM.
BSDM’s Business Modelling method provides a two-step activity framework

2 As well as across models, when several models are used.



Chapter 1. Introduction 5

for developing business models. The first activity is to build an Entity Model.
During the second activity, processes are added to construct a Process Model.
A business model captures and represents the given business environment in
graphical and textual format. It describes a consensus view of senior managers
in the environment and provides a basis on which to build software (and the
corresponding manual) systems for that environment.

In a typical business modelling session, managers of key business areas and a
BSDM facilitator (expert in BSDM method) work together to create a business
model for the organisation. Normally, flip charts and post-it notes are used
during these sessions. The information is transferred to a drawing and text-
editing tool after the session. An Entity Model, which captures the concepts in
the business as entities and the relationships between them as dependencies, is
created first. The Entity Model is then extended with information about the
processes which manage these entities to form a Process Model. Information
about the life cycle of an entity is described in detail in the corresponding BSDM
Life Cycle Diagrams. Descriptions of entities, processes and their attributes are
included in the BSDM Definition Forms using BSDM notation and English.

�
�
�

�
�
��
�
�

�
�
��
�
�

�
�
�

diagram
for best structure of entity
Model rules and guidelines Execution rules for processes

Procedural model

Process model

Entity model

Inferred information

Over−constrained entity model
Circular dependency of entities

in different processes

in a process scope

by any process

State transitions

Redundant or subsumed processes

Layered models

Entity life cycle not covered

Triggers,

conditions
actions

Entities, Life Cycle,
Dependency

entity functions

Process,

Model rules and guidelines

for relating entities to processes

Inconsistent practice described

Important entities left out
and suggestions for

guidelines violations

Model rules and

correction, process

dependency analysis

correction, organis−

and suggestions for

guidelines violations

Model rules and

ation context analysis

Problems

Domain knowledge

Fig. 1.1. Three-layered modelling support framework

Based on the activity framework that has been provided by BSDM, the
modelling support framework described in Figure 1.1 has been introduced as
part of this work. Three layers are used: the Entity, Process and Procedural
Model. The Entity and Process layers correspond to the activities of building
Entity and Process Models as described in BSDM. The Procedural Model layer
was created to provide the necessary notation to specify the execution details



6 AUTOMATING BUSINESS MODELLING

of a BSDM process which provides a basis for executing BSDM processes and
carrying out relevant verification and validation support. Since the execution
procedure of a process can only be decided after a process has been specified,
the Procedural Model is a natural extension of the existing BSDM modelling
framework.

Figure 1.1 lists example problems that may arise during each modelling ac-
tivity, the types of domain knowledge that have been extracted and formalised,
and example information and automatic support that has been inferred and
provided for in each layer. The domain knowledge for each layer is divided into
two types: information captured in the business model and (standard) mod-
elling rules for creating these models, shown in Figure 1.1 as ellipses and boxes,
respectively. From the Entity and Process Models, violations of modelling rules
or guidelines are detected and possible corrections offered. Organisation con-
textual information may also be inferred to form specific analysis from Entity
and Process models. Dependencies and partially-ordered execution sequences
between the (distributed) processes are derived from the Process Model. On
top of this Process Model is a Procedural Model and the behaviours generated
by the execution of business processes are inferred.

This formal approach is domain independent, i.e. it is generic for the applied
business environment. This approach is well-suited to BSDM [24], it is also suf-
ficiently generic to be usable for other enterprise modelling methods. This for-
mal approach has subsequently been used in other modelling projects: AOEM
(Air Operations Enterprise Modelling), AKT (Advanced Knowledge Technolo-
gies) IRC, CoAKTinG (Collaborative Advanced Knowledge Technologies in the
Grid) and several commercial projects.3 The system KBST-BM has also been
extended to KBST-EM (Knowledge Based Support Tool for Enterprise Models)
where several different types of Enterprise Models, including BSDM, have been
built in the domain of (military) Air Operations [56] [18] [19] and for carrying
out activities such as knowledge model creation, verification and publication
[21], knowledge sharing and inconsistency checking among multiple models [20],
business process modelling and workflow execution [25].

Chapters 5, 6, 7 and 8 provide a more detailed account of how such support
is provided within this framework. The next section briefly describes the formal
basis that enables the semantic support within the modelling framework and
the system KBST-BM.

1.5 Formal Approach and KBST-BM

KBST-BM is based on a formal logical language, the DEFinition language
for Business Models (DefBM), which can be used to express the modelling
knowledge of the method (BSDM) as well as its models using a lightweight
formal approach. This approach helps to obtain and retain BSDM modelling
3 These commercial projects were carried out for Artificial Intelligence Applications

Institute (AIAI) and Centre for Intelligent Systems and Their Applications (CISA),
The University of Edinburgh.



Chapter 1. Introduction 7

knowledge and to use this knowledge to guide the model-building process, i.e. in
a plan-build-test-refine modelling development life cycle (adapted from [83] and
[41]). Because it is a “lightweight” approach, the various benefits are achieved
without having to cope with the overhead that is typical for “heavyweight”
formal methods.

DefBM is based on an adaptation of the Process Interchange Format (PIF)
[62] core class hierarchy, but uses first-order predicate logic to formalise the
concepts within it. It is this formalisation that enables the overall objectives of
increased model quality assurance and increased modelling productivity. Using
DefBM it is possible to capture more model semantics and not just notation,
thereby opening a wider range of automated reasoning features. Logic-based
programming and case-based reasoning techniques are implemented on top of
DefBM.

The formal representation of a business model can be stored and cross-
referenced, as it has a one-to-one mapping to concepts described in the model. A
simulation engine, based on the same formal representation, has been developed
to explore business model dynamics by executing business processes. It provides
the primary support for model validation, but it also allows the modellers to
experiment with various “what-if” scenarios.

A Case-Based Reasoning inference engine, the Generic Model Advisor, has
been developed to allow automatic model checking of BSDM modelling rules
against new business models and to give error-correction advice, where neces-
sary. Using case-based reasoning techniques and the formalised representation
of the models, past business models can be stored in the Generic Model Library
and be reused for comparison and analysis for when new, but similar, business
circumstances are encountered.

1.6 The Use of KBST-BM

As mentioned in Section 1.1, two types of users are envisaged for KBST-BM: the
BSDM modelling experts and modellers/software engineers with fundamental
knowledge of BSDM – they have received training on BSDM and understand
the methodology to a certain extent. Primarily the tool is intended to be used
during business model building working sessions. Either the modelling expert
or one of the participating engineers/managers uses KBST-BM to document
the model as it develops, starting with the Entity Model. At various stages of
the work session, the tool can be used to check that the model developed thus
far is consistent and does not violate any of the modelling rules. It may also be
used to get help in developing the model through the Generic Model Advisor.
Once a stable model has been completed, the process simulation engine can be
used to analyse the dynamic states of the model. This may initially be helpful
in identifying remaining errors in the model, but may also later be used to
investigate various “what-if” business scenarios.

KBST-BM was initially built based on a business modeller requirements;
its capabilities have later on been extended where AI techniques and (generic)



8 AUTOMATING BUSINESS MODELLING

modelling needs meet best. To demonstrate its use, we give five different models
in this book: the standard and example models provided by the method and its
course material, an actual industrial model provided by a company from the
automobile industry, a generic industrial model for small and medium-sized
restaurants and a model for a real example of processing student marks for
academic assessment. Details and rationale for why these different models have
been chosen are given in Section 8.6. Most diagrams of these models, described
using KBST-BM, are available in Appendices A, C, D and E.

1.7 Organisation of the Book

The remainder of this book is organised as follows. Chapter 2 gives a general
introduction to Enterprise Modelling methods, including a more detailed sum-
mary of BSDM, as well as modelling tools currently available and their uses.
Chapter 3 discusses the motivation for a formal framework from the software
engineering point of view as well as from the business point of view, and the
chosen approach. As the foundation technique used within the proposed sup-
port framework is logic based and, in particular, First Order Predicate Logic
(FOPL), an introduction to logic is given in Chapter 4. Chapters 5, 6 and 7
give details of the three parts of the layered modelling support as described in
Section 1.4. Chapter 8 describes how past model-building knowledge may be
stored and reused with case-based reasoning as well as ontology and rule-based
techniques. Chapter 9 gives a brief demonstration of the use of the built system,
KBST-BM, whereas Chapter 10 evaluates the system. Chapter 11 concludes the
book.



2

Background Knowledge

This chapter describes the general background that sets the context for the
work that is described later. It firstly introduces an overview of various Enter-
prise Modelling (EM) methods which are currently available. It then discusses
Business Modelling in the Business System Development Method (BSDM), the
method for which a formalisation is proposed in this book. An introduction
to Business Process Modelling (BPM) follows, since some of the extensions to
BSDM used in this work are based on techniques developed in the area of BPM.
There is also a brief discussion of software systems and other related work.

The purpose of this chapter is not to cover all the background needed in
great detail, but to set the scene for the rest of the book. More details of BSDM
are introduced in subsequent chapters together with the corresponding formali-
sation work. We also defer a brief introduction to Case-Based Reasoning (CBR)
techniques to Chapter 8, where the use of CBR in KBST-BM is explained.

2.1 Why Enterprise Modelling?

The global economy and market in which a business operates and competes
has changed so dramatically in the last decade that traditional business man-
agement and operational methods are no longer sufficient to manage today’s
business. Three main driving forces are behind these changes: rapid advances
of modern computing technology, intensified competition of the world market,
and changing demands from consumers [85].

The advances of modern (computing) technologies have continuously pro-
vided companies with new ways to do their business: both internal and external
to the organisation. Internally they provide more standardised, efficient and
direct control over the working processes which are supported with organised
information that is easily sharable among relevant personnel. Externally they
provide a revolutionary medium to interact with customers and other busi-
nesses. It is no longer necessary to face the customer in person or to provide a
shop floor. Communication with customers and other businesses, such as order-



10 AUTOMATING BUSINESS MODELLING

ing goods and delivering services, can often be done electronically (e.g. through
the Internet).

Modern computing technology and the fact that the world market has be-
come more accessible and exploited by businesses have made the world smaller
and the competition for customers more acute. It is commonplace that similar
kinds of services and goods are produced by companies all over the world. The
boundaries set by countries or geographical distance have become less impor-
tant. Customers can now more easily shop around companies all over the world
to get the best product at the best price. To gain a competitive edge, the modern
enterprise is a virtual entity which consists of many sub-organisations spread
across many different geographical areas each with special functionalities and
business advantages. Customer demands have also changed. Customers today
are more informed and aware of their power. They are no longer satisfied with
mass produced indifferent goods or passive services. Instead they demand more
sophisticated and individualised products and better and quicker service. This
puts pressure on companies to offer high quality, diversified customer-tailored
goods and services, and at the same time to offer them at a reasonable price
and delivered within a relatively short time.

All of these demands require a radical change in how a business operates.
It not only needs to acquire stronger financial backing to be able to compete
on the global market, it also needs to create wider and intense direct contacts
with (potential) customers. Some companies achieve this through the Internet,
some by gaining more business allies, others by becoming larger companies
through merging. More importantly, to cope with these changes, a business
needs to introduce and practise brand new sets of management and organisa-
tional methods. In fact, these changes have forced many of today’s businesses
into fundamentally rethinking and redesigning their strategies and opera-
tions. Instead of adapting various ad-hoc solutions on a trial and error basis,
companies seek methods which help them to analyse their businesses as a whole
systematically and effectively, which in turn help them improve organisational
performance. To address this problem, Enterprise Modelling methods have been
deployed.

2.2 Enterprise Modelling Methods

A variety of enterprise modelling methods have emerged during the last
decade. They provide a structural framework to help an enterprise capture
the enterprise-wide knowledge which forms the basis for the targeted analysis
and helps the re-shaping and re-designing of a business. A key goal of apply-
ing these methods is to seek ways to improve an organisation’s effectiveness,
efficiency and profitability.

Most enterprise modelling methods are influenced by more than one disci-
pline and often overlap with each other in some aspects. It is therefore difficult
to gives an absolute classification for them. Nevertheless, this information is
useful in understanding the different EM methods. We therefore try to cate-



Chapter 2. Background Knowledge 11

gorise them in three groups depending on their origin, the application domains
that use them actively and the way that they are used in a broad sense. The
three types that have been identified are:

• business process modelling,
• business system modelling, and
• organisation context modelling methods.

Business Process Modelling (BPM) methods were initially inspired
by process modelling techniques which provide precise formats to capture pro-
cesses that are practised in a manufacturing environment. By using these tech-
niques, informally practised processes can be made more concrete and formal
analysis of processes can be carried out. More importantly, actions and effects
of these processes can be demonstrated using simulation techniques. The per-
formance of each process can therefore be predicted and used to choose between
competing processes [85].

These techniques have been adapted and extended by business process
modelling methods to capture and standardise processes practised in a non-
manufacturing environment. This has enabled the analysis and re-design of pro-
cesses in the service sector leading sometimes to radical performance improve-
ments. Representative business process modelling methods are described in
the Handbook of Organisational Processes [70], Workflow Reference Model [49],
Process Interchange Format (PIF) [62], Process Specification Language (PSL)
[98],1 Integration DEFinition Language (IDEF3) [72], Integration DEFinition
Language (IDEF0) [80], UML’s Activity Diagram (extension) [94], Event-driven
Process Chains (EPC) [89] and Petri-Nets [87].

In addition, based on fundamental (business) process modelling concepts,
new process languages are being developed to promote understanding and in-
teroperability of process semantics over the Internet (and the Semantic Web).2

These languages are characterised by their chosen representations that are
based on XML, RDF or OWL.3 They may also provide constructs to assist
communication between processes over the Internet. This is a field that is
relatively young and languages in flux. Examples of such languages are Web
Services Business Process Execution Language (BPEL) [4], ebXML Business
Process Specification Schema [64], XML Process Definition Language (XPDL)
[117], Business Process Modelling Language (BPML) [5], and OWL-based Web
Service Ontology (OWL-S) [71].

Because some of the process modelling techniques used by the above meth-
ods have a strong influence on the work of this book, Section 2.4 will describe

1 PSL and PIF provide a common platform for communications between process
modelling languages.

2 Semantic Web is a (conceptual) layer on the Internet. It consists of data and ap-
plications where meaning (or semantics) is encoded to support knowledge sharing.

3 XML, RDF and OWL are representational languages that have been designed to
describe the semantics of data and to support machine processing (vs. human
understanding) over the Internet.



12 AUTOMATING BUSINESS MODELLING

them in more detail. As process languages that have been developed for appli-
cations over the Internet are often a use of the process modelling concepts that
are already included in the fundamental methods, they will not be discussed
further in this book. Readers who are interested in more details are therefore
referred to the above citations for more information.

The creation of Business System Modelling (BSM) methods was in-
spired by the software engineering community where discrepancies were recog-
nised between the vision of software engineers for the software system to be
built and the true need of a business for its procured software system. The
motivation for employing BSM methods is often to provide a clearer picture
and directions for building a better IT system [53].

BSM methods provide the means to describe a business and capture its
operations from a business point of view, not confined by technical, specifically
Information Technology (IT), considerations. This means that for each busi-
ness model there are potentially many different ways to implement a software
system. Examples of BSM methods and techniques are: BSDM’s business mod-
elling method [53], ORDIT [31], Role Activity Diagram (RAD) [82], Meta-Model
by Scacchi et al. [75], Swim-lane Diagram by Rummler et al. [95], the Business
Modelling approach using (extended) UML notation by Eriksson et al. [34] and
by Rational [86], and the reengineering method developed by Jacobson [55].

Organisation Context Modelling (OCM) methods capture and tackle
the wider organisational issues within a business. This includes methods which
capture the functional, structural and/or cultural aspects of an organisation.
It also includes methods which capture the decision making processes as well
as the vocabularies and terms that are used in the business context. To pro-
mote effective organisational knowledge management and utilisation, Macin-
tosh et al. [67] and Schreiber et al. [99] provide a framework to identify, ob-
tain and maintain the required knowledge and skills for an organisation and
the means to make use of them to achieve organisational objectives. Yu, My-
lopoulos and Lesperance [118] provide graphical notations to capture business
strategies and their rationale in the Strategic Dependency and Strategic Ra-
tionale Models which exploit links between business strategies and the actual
operations. To promote better communication via a common language within
and between organisations, ontologies have also been developed for businesses.
Representative examples of work in this area are the Enterprise Ontology de-
veloped by Uschold, King, Moralee and Zorgios [113] [114] and Tove by Fox,
Gruninger et al. [38]. Other OCM methods are Activity-Based Costing (ABC)
[30], Simulation Modelling [100] and Total Quality Management (TQM) [29].

In parallel to the development of the above methods, techniques in Busi-
ness Process Reengineering (BPR) have become a popular management tool
for rapid enterprise re-structuring and re-design. Example literature includes
Hammer et al. [45] and DOD [112]. Instead of using modelling methods, they
provide a collection of generic business management principles coupling with
software engineering methods. When deploying such BPR techniques, OCM
methods, such as ABC and TQM, can also be used as a part of a BPR initia-
tive – although they are often used in their own right. All of the above methods



Chapter 2. Background Knowledge 13

provide the means to record and analyse some aspects of a business environ-
ment and therefore all of them can be used to support BPR initiatives. This
book focuses on one EM method, the Business Modelling method in BSDM,
which is described below.

2.3 Introducing the Business System Development
Method (BSDM)

The Business System Development Method (BSDM) is an enterprise modelling
method which was introduced by IBM [53]. It provides a modelling framework
to capture and analyse a business operation and requirements which helps the
understanding of the complex business environment as well as providing a ba-
sis for strategic analysis and re-structuring of the organisation. It also provides
a specification for the design of a software system from an early stage from
the business point of view and independent of any information technology con-
siderations which makes the developed software system more “business-need-
oriented” rather than “technology-oriented”. The ultimate goal for applying
BSDM is to improve an organisation’s performance.

BSDM consists of four activities: Map, Need, Shape and Run. BSDM firstly
describes business environments, its policies, components and constraints and
represents them in a Business Model during the Map activity. Given this busi-
ness model, BSDM then provides the means to identify and specify require-
ments for a business system during the Need activity.4 Based on these require-
ments, BSDM then allows the user to choose any suitable (software engineer-
ing) methods to design and implement the business system during the Shape
activity.5 The actual deployment of the system takes place during the Run ac-
tivity. Since the most distinctive and important activity of BSDM is the Map
or Business Modelling activity, this book focuses on that activity.

2.3.1 Business Modelling

The main components of a BSDM Business Model are Entity Model, Process
Model, Life Cycle Diagrams, and their supplemental textual descriptions. At
the beginning, business managers together with a BSDM facilitator create an
Entity Model which captures the concepts (abstract and concrete things) in
the business as entities and the relationships between them as dependencies.
The Entity Model is then extended with information about the processes which
manage these entities to form a Process Model. A BSDM process describes the
context of a business process, the circumstances which trigger such a process

4 A suitable business system may not necessarily involve a computing system; it can
be a computing system supported by a manual process, or it can be a purely manual
system depending on the business need.

5 A suitable method for designing and implementing a business system may be a
software engineering method suitable for the organisation.



14 AUTOMATING BUSINESS MODELLING

and the effects of its actions. In parallel to the development of entity and pro-
cess models, Life Cycle Diagrams are built. They describe information about
an entity’s life statuses and how different processes manipulate these entities to
enable transitions between these life statuses. They also indicate the subtle re-
lationships between processes and the operations used to carry out a particular
task.

BSDM provides step-by-step procedures for building business models with
supporting recommendations, guidelines and example models. A business model
is normally built during BSDM workshops over a few months. Conventionally,
the model is initially paper-based. The graphical information is later recorded
in a graphical tool and the textual information in a text-editing tool.6 The
quality of the built model relies entirely on the knowledge and experiences of
the participants in the project. In Chapter 3, the kinds of automatic support
which can be provided for such informal modelling methods will be proposed.
The potential benefits of these kinds of automatic support will also be discussed.

2.3.2 BSDM Compared with SE

BSDM can be used in several different contexts, e.g. as a business analysis
tool, a management tool, or as a support method before a software engineering
method is carried out. To show the relation between BSDM and traditional
Software Engineering (SE) methods, a comparison is given below.

The part which distinguishes BSDM from a conventional software engi-
neering method is the Map or business modelling activity which captures and
specifies business requirements that fills the gap between conventional software
engineering (SE) methods and business modelling needs during the require-
ments analysis phase. Figure 2.1 shows how BSDM is mapped onto conven-
tional software engineering methods, adapted from the comparison given by
Spurr et al. [103].

maintain

BSDM

analyse

Taken for granted

Map Need Shape Run

design build test
requirements

computer
SE

Fig. 2.1. A comparison of BSDM with conventional SE methods

The most significant difference is the lack of business modelling activities
in traditional SE that is the mapping area labelled with “Taken for granted”.
This missing part represents the activities of identification and analysis done
in Map; as well as the activities of evaluating requirements for a business need

6 The graphical tool was not built specifically for BSDM and does not properly
support its notation and use.



Chapter 2. Background Knowledge 15

in Need. Since part of the BSDM Need activity is based on the earlier Map
activity, much of it has no counterpart in SE.

The SE computer requirements, analyse, and the early stage of design, which
include the capturing and analysis of user requirements7 and the logical and
architectural design of a software system, corresponds to the later stage of Need
and the early stage of Shape activities in BSDM. Since the later part of Need
includes user requirements capturing and analysis (for technical and operational
issues), the scoping of a business system as well as the determination of main
system functionalities, it corresponds to computer requirements, analyse and
the early stage of SE design activities. The early activities of Shape include the
logical and architectural design of a business system, and therefore are similar
to the early activities of design in SE.

The rest of the SE phases, the late activities of design and the build, test and
maintain of a software system, are mapped onto the BSDM Shape activity. The
SE maintenance phase correspond to a revisit of Shape after the deployment of
the system, and sometimes even a revisit of Need when necessary. Since Run
indicates the actual use of a business system, it is not considered an SE activity,
therefore it is not mapped onto any phases in the SE method.

The building of a software system is an iterative cycle that is sometimes
described in a Plan-Build-Test-Refine spiral model. The business modelling
activities can also benefit from the same principle. Chapters 3 and 9 illustrate
how our automatic support can help this iterative modelling process.

2.4 Introducing Business Process Models

Although BSDM’s Business Modelling Method is not a “process-oriented” mod-
elling language, nor is it directly influenced by Business Process Modelling
(BPM) methods, techniques used in BPM can be adapted and used to extend
BSDM notations and can amplify and diversify the use of BSDM models. A
brief background description of BPM is first given below.

Since the 1960s and 1970s, process modelling has been applied in the manu-
facturing sector [85]. Motor companies, such as Ford, and aerospace companies,
such as McDonnell Douglas Corporation, have used process models to capture
the processes of designing and manufacturing products. These process models
were also simulated to allow predication and evaluation of trade-offs of current
design, and used to guide the construction and selection of alternative designs.

The early acceptance of process models in manufacturing sectors was mainly
due to the need for frequent change of products which requires frequent and
rapid generation of production processes. It is also due to the fact that working
procedures in a manufacturing environment are comparatively clearly defined
and sometimes formalised. These useful characteristics initially were not obvi-
ous or were believed to be non-existent in the service sector: their procedures
being more informal and open to interpretations that differed depending on the
person who implemented the tasks.
7 With regard to aspects of IT and the actual working procedure considerations.



16 AUTOMATING BUSINESS MODELLING

This situation changed in the early 1990s when a great majority of informal
business processes were found to be similar and repetitive, so they too can be
captured, analysed and improved using modelling techniques similar to those
of process modelling (Harrington et al. [46], Malone et al. [70]). This discovery
encouraged the creation and use of process modelling methods in a more general
business environment rather than in a pure manufacturing context.

Enterprise modelling methods which are evidently influenced by this are
classified as Business Process Modelling methods in this book, as mentioned
earlier in Section 2.2, which includes methods such as the Handbook of Or-
ganisational Processes, PSL, PIF and IDEF3. All of these methods treat the
processes practised by an organisation as the central focus in their modelling
activities. To help understand what a process is, Chris Menzel’s definition is
given below:

An objective real world event, described totally as a sequence of
events (activities, sub-processes) occurring over time containing certain
objects having certain properties standing in certain relations. [98]

This is further elaborated by Jeffery Herrmann:

A process can be decomposed into other processes. A process be-
gins and ends at points in time. One can view a process from different
perspectives that include different things. Objectives or drivers may be
part of one perspective but not another: if included, they could be seen
as instructions. [98]

The descriptions of a process given above are applicable for processes in
many process models including the one described in this book. A process is,
therefore, an event which may include many activities where each activity may
also be itself a process that is decomposable – this is the decomposability prop-
erty. A process often lasts for a period of time during which it may involve the
manipulation of various objects as well as actors who enact or interact with it
at some point of time. It is, therefore, necessary to identify and represent those
temporal relations between those objects and actors and the corresponding pro-
cesses in a process model. These characteristics and their representations will
be discussed later in the section on PIF and in our formal work in Chapter 7.

In summary, in a (hierarchical) process model,8 processes described at a
higher level can be divided into sub-activities. These sub-activities carry out
collaborative and complimentary activities so that together they accomplish
the higher level task. These sub-activities also provide more implementation
details towards the task. In addition, sub-activities may again (recursively) be
divided into even smaller tasks and described in further detail. This is the
concept of process decomposition [72] [70].

In some methods, decomposed (or sub-) processes may include alternative
processes. Those processes are used to describe a process from different view

8 There are some (and not many) process modelling methods can only describe flat
level processes.



Chapter 2. Background Knowledge 17

points, e.g. from a neutral observation view point, or from a particular actor’s
view point [72]. This concept has been extended in this book and FBPML [25]
where alternative processes are competing sub-processes that achieve the
same purpose as a common generic task, but may involve different working
procedures, objects and/or actors. For instance, for a business to receive a
payment from its customer, it may receive it using different methods, e.g. over
a counter, the phone or via the Internet. Each method may involve different
working procedures and objects and may also have different actors. So long as
a business receives a payment, regardless of the method used, the more generic
process “Receive payment from customer” is accomplished.

In parallel, in the Process Handbook project [70], once processes are identified
for an organisation, they are classified and represented in a class hierarchy
(of specialisation). Processes represented at a higher level of abstraction in
the class hierarchy may be specialised into sub-typed processes. For instance,
the more generic process of “Sell product” may be specialised into “Sell by
mail order” and “Sell in retail store” where more details are added. As in
object-oriented programming, processes described at the higher level of the
hierarchy describe more generic tasks, and they often possess characteristics
and properties that are sharable by processes described at the lower level of
the class hierarchy. These common properties can be passed to or inherited
by the more specialised processes described at the lower level of the hierarchy.
This is process specialization.

The benefits of process specialisation and decomposition are essentially in
four areas. Firstly, these reduce the work of developing a new process. By identi-
fying an appropriate position in a class hierarchy for a new process, fundamental
features of that process can be automatically inherited from existing processes
which are at a higher level of the hierarchy. Secondly, they can decrease the
work for maintenance: any error only needs to be corrected once at the highest
level and all of the more specialised processes are corrected. Thirdly, since all
similar processes are grouped together, it is easier to evaluate the trade-offs and
select between them. Lastly, by providing a taxonomic structure, process allo-
cation, searching, combining and creating of new processes can be done more
systematically and efficiently. This combined use of process decomposition and
specialisation was first identified in a process modelling framework [109]9 and
used in the Process Handbook Project and was accepted and used in many later
developed modelling methods.

In this book, the concept of process specialisation has been used to show
how BSDM’s business processes can be classified and reused by incorporating
them as a part of our Inheritance Class Hierarchy and will be introduced in
more detail in Chapter 5. The concept of process decomposition has also been
adapted and used in our devised Procedural Model which will be described
in Chapter 7. By deploying these concepts, our formal architecture is able to
enjoy many of the above benefits, such as inheriting properties from a more
general process to a more specialised one, ease of maintenance, comparison

9 Through its use in hierarchical planning techniques in AI dates from the mid 1970.



18 AUTOMATING BUSINESS MODELLING

and manipulation of processes. Temporal and other constraints which limit
the execution of a task are also included in a process model to describe and
prescribe the implementation of the actual working practice. This information
may be encoded using dependencies and junctions between processes as well as
attributes of processes that will be demonstrated in Chapter 7.

Although it can be used to capture (business) processes, the main purpose of
the Process Interchange Format (PIF) is to provide a common language that
enables different process models to communicate and exchange information
through them. PIF identifies a set of concepts that are fundamental to process
modelling and is commonly used in many different process models. Based on
these concepts, PIF gives precise descriptions for each concept and defines
the relationships between them. Formats based on a frame structure are also
provided by PIF to capture and store information of these concepts – this set
of fundamental concepts for process modelling is called PIF’s core. Specialised
processes that are captured in other process modelling languages which cannot
be described using only PIF’s core may be represented using an extension
format that is described in PIF’s Partially Shared View.

object

timepoint

activity

agent

creates

modifies

performs

uses

successor

activity-status

before

decision

relation

entity

Fig. 2.2. The PIF class hierarchy



Chapter 2. Background Knowledge 19

Figure 2.2 shows the PIF class hierarchy [62]. Modelling concepts such as
entity, activity, object, agent and the notion of time are captured as PIF classes
in the hierarchy. Everything in PIF is a subclass of the root class entity. There
are four subclasses of entity: activity, object, timepoint and relation. Each sub-
class may also have its own subclasses. A subclass is indicated by an outgoing
arrow from itself to the corresponding superclass. This relationship between
the subclass and the superclass is a specialisation relationship. For instance,
in PIF, decision (making) is a special type of activity, and before describes a
particular kind of (temporal) relation.

The benefits of allocating all modelling concepts in a PIF class hierarchy
with the property of inheritance is similar to that of the Process Handbook
Project. The conceptual entities are clearly identified and relationships between
them specified. New concepts can be added to the hierarchy and fundamental
properties can be automatically inherited from their superclasses. This speeds
up the process of creating, manipulating and evaluating process modelling con-
cepts.

In addition to the concept of process specialisation, the PIF class hierarchy
has also been adapted in our formal work to suit BSDM’s business modelling
method, which enables our work to enjoy all of the above benefits of PIF. More-
over, because we have taken an approach similar to PIF, we enabled BSDM’s
business models to more easily communicate with any other process languages
communicating through PIF. It also enables BSDM models to be translated
to other process languages through PIF which already is linked to many other
languages.

2.5 Review of Existing Enterprise Modelling Tools

The field of enterprise modelling, especially business process modelling and
workflow, is a very active area during the past five years in which new research
as well as commercial tools have been built rapidly. This section therefore is not
intended to provide a comprehensive review, but discusses example tools cur-
rently available and their characteristics. From what has been collected, most
modelling tools provide quality related support for some aspects of modelling
activities. Based on their functions, such tools are divided into two categories.

The first category of tools provide primarily capturing and report-generating
functions for specific modelling methods. Examples of such tools are RBPL
[108] which provides its own business process modelling language as well as the
corresponding documentation facilities; Paradigm Plus [84] supports various
modelling methods, such as Booch [10], OMT [93] and UML [11], and export-
ing facilities for these methods; BP WIN [66] provides drawing and report-
generation facilities for IDEF0 [80] and Data Flow Diagrams (DFD); AI0 Win
[60] supports the drawing and documentation of IDEF0 models and can export
its details to other tools, such as ProSim [60]; Win A&D (or Mac A&D) [35] pro-
vides documentation and reporting facilities for various modelling languages,
such as the Class Model, Entity Relational data model and Data Flow Dia-



20 AUTOMATING BUSINESS MODELLING

grams; another relevant business process modelling tool is Procedural Builder
[7] developed by AIAI which allows the user to build an adapted version of
IDEF3 models [72] and can communicate with the Enterprise Toolset that is
supported by knowledge described in the Enterprise Ontology [6].

In addition to providing documentation and report-generation functions,
the second category of tools also provide simulation (and/or process execution)
facilities for the described models. For example, ProSim/ProCap can simulate
its own processes and can import processes that have been drawn using other
tools, e.g. AI0 Win and Visio [76]. Simprocess [17] is an object-oriented process
modelling and analysis tool based on its own simulation language Simscript for
analysing complex, dynamic systems. BPSimulator [110] is a discrete event
simulation tool which simulates business processes using statistical simulation
methods. iThink [47] is a tool for simulating system dynamic models – these
system dynamic models were initially designed to simulate physical systems,
e.g. a fluid system – this technology has been used by iThink to model the
flow of a business environment. ARIS Toolset [54] provides its own modelling
language which supports Activity-Based Costing (ABC) and Balanced Score
Card (BSC) to record and analyse a business performance. Yu, Mylopoulos and
Lesperance [118] capture the actors, actors’ goals and dependencies between
them in a business operation in Strategic Dependency Models and Strategic
Rationale Models which allow simulation of business processes to be carried out
and opportunities, vulnerabilities and patterns of dependencies to be explored.
SAP R/3 [97] offers a client/server architecture and distributed open system
solution whose in-house business processes are under-pinned by the modelling
language EPC (Event-driven Process Chain). Other recent work are to provide
a workflow system that supports business process definitions and execution,
e.g. Oracle Workflow [81] and Staffware [104].

The simulation support given by the tools in the second category is largely
of the type that is usually found in performance studies. It allows the user to
specify type and frequency of business processes and the company resources
required by these processes. Running such simulations can help identify bottle-
necks in the company’s operations, but also means that the user has to specify
numerous input parameters.

In general, there is very little, if any, exploitation of the rich contextual
knowledge that is implicit in the models that have been captured through the
corresponding documentation features of the above tools. One reason for this is
that there is no underlying mechanism to allow such knowledge to be built into
and used by these tools. Consequently, they are unable to provide modelling
support beyond that based on a model syntax.

Together, KBST-BM and GMA support the basic modelling activities such
as drawing, documenting, navigating, summarising and reporting, but they also
provide support related to model semantics, such as consistency checking, error-
correction advice-giving, alternative visualisation of the model (some based
on derived information), simulation of processes, model building and refining
guidance (by referring to and comparing with standard or existing models),
model verification and validation, and model reuse. In particular, much of the



Chapter 2. Background Knowledge 21

model quality checking work can be automated to such an extent to make
it feasible and effective to do so in an applied context.10 More details about
KBST-BM and GMA are given in Chapter 5, 6, 7, 8 and 9.

2.6 Exercises

1. What is an Enterprise Modelling method? Why Enterprise Modelling?
2. What are the different types of Enterprise Modelling (EM) methods? Ex-

plain BSDM’s relation with EM.
3. What is the relationship between BSDM and generic software development

methods in Software Engineering? Can BSDM be useful as a part of soft-
ware development processes?

4. What are the main concepts in a (business) process model?
5. Describe the process interchange language of PIF, and discuss whether it

is useful to have such a language.

10 KBST-BM and its successor KBST-EM have been used in research projects AOEM
[56], AKT [1] and AIAI commercial projects.



3

Problems and Overview of Approach

3.1 Introduction

Enterprise Modelling Methods offer a structure and means to describe and anal-
yse a problem domain (the business) as well as tools for constructing solutions
for problems. While these methods are invaluable in problem understanding,
context analysing and diagnosis, they are also helpful for software system de-
velopment by providing a framework to understand the organisation in which
the software system will be deployed. On the other hand, the process of quality
assurance of the products from these methods, which often is paper-based, can
benefit from innovation from the software engineering community. In this chap-
ter, we describe a framework which has been inspired by the software system
development cycle and an approach that uses formal methods to provide the
means of quality assurance for these informal enterprise modelling methods.

3.2 Business Model and Software Engineering

3.2.1 Software Systems Development Cycle

Computer systems are used extensively either to stay competitive or to gain ad-
vantages over rival companies. The demand for appropriate software is acute.
Software systems are involved in companies’ operations at many levels and
perform ever more complicated tasks. Furthermore, due to the globalisation of
economies and the need to react to market changes quickly, the business or-
ganisations in which software systems are deployed are not only more complex
but also more dynamic than ever before. This leads to constant requirement
changes during system development as well as deployment stages. The chal-
lenges to software engineers to develop systems that are timely and appropriate
have thus increased tremendously over the last decade.

To ensure appropriate software systems are built, there is real pressure on
software developers to find ways of producing high quality software quickly. In
the early days, researchers in this area sought to employ various disciplinary



24 AUTOMATING BUSINESS MODELLING

procedures in software creation. Royce [92] in 1970 first presented “the waterfall
model” which captures a framework for software system development. Figure
3.1 shows the waterfall model proposed by Royce. This model was later seen
to be relatively inflexible as software development stages can only traverse
between neighbouring stages. The U.S. Department of Defence relaxed those
constraints and adopted and created their own version [111]. A more recent
variation of the model was proposed by Alan M. Davis in 1993 [27]; see Figure
3.2.

Design

Coding

Testing

Operations

Requirements

Fig. 3.1. Royce’s waterfall model

Requirements

Preliminary
Design

Detailed

Design

Software
System Test

Planning

Integration
Test

Planning

Unit Test

Planning

Coding

Unit
Testing

Integration
Testing

System

Testing

Delivery
Production

Maintenance
and

Enhancement

Deployment

1

2

3

4

5

6

8

9

10

11

12 7

Fig. 3.2. Alan Davis’s software system development model

In both Figures 3.1 and 3.2, boxes represent stages of activities which are
carried out during the life cycle of a software system’s development and de-



Chapter 3. Problems and Overview of Approach 25

ployment. Arrows show the workflow between these stages. When comparing
these two models, although Alan’s model elaborates somewhat more on the
initial stages, both include stages of requirements, design, coding, testing and
software deployment. Alan, however, particularly stresses planning and testing
activities for all stages, as shown in boxes 10, 11, 12, 5, 6 and 7 in Figure 3.2.
It is implied by Alan’s model that a key factor in producing an appropriate
software system is to test it carefully at each stage. These testing activities
can also be seen as the verification and validation process of the deliverables
at each stage.

Agreeing with the assessment that testing is essential, other scholars offer
theoretical and practical techniques in this area. For example, Perry offers a
structured method for software testing [83], Friedman and Voas offer techniques
in assessing software reliability and safety [41], and Voas and McGraw propose
fault injection techniques to discover errors in software [115]. All of these tech-
niques provide guidance and frameworks for ensuring the quality of the built
software systems, once what is required from the system has been given. How-
ever, in spite of such techniques being available and practised, many software
systems still do not fit the intended organisations.

3.2.2 Software System Seeks Real Goal

While testing is widely recognised as an important technique to uncover soft-
ware errors, more and more evidences indicate that most software errors are
design errors which in general happen at the early stages of a software devel-
opment cycle; in fact at the stages of software specification or requirements
gathering. Jackson has identified this problem:

Requirements engineering is about the satisfaction of goals. But
goals by themselves do not make a good starting point for requirements
engineering. To see why, consider a project to develop a computer-
controlled turnstile guarding the entrance to a zoo ... the real goal is
to ensure the profitability of the zoo. [119]

Only when one discovers the real goals for developing a software system
can one have a chance to develop the “correct” and “appropriate” software
application for that business. Unfortunately, it is not always straightforward
to understand these goals. To make matters worse, the business in which a
software system is to be used may not have clearly defined goals or they may be
changing too frequently. Under such circumstances, developing an application
to support a company’s goals becomes a very difficult task indeed.

Recognising this shortcoming, one approach for discovering these goals is
firstly to understand the business context and where necessary to help the busi-
ness to clarify and formulate its goals. Only then will the software engineers
be able to identify and develop appropriate software solutions. To promote a
better understanding of the domain of a business, several enterprise methods,
including business modelling methods, have been used in the past prior to the
stage of user requirements elicitation and specifications for a software system,



26 AUTOMATING BUSINESS MODELLING

that is described as “requirements” in Figure 3.2. Although, the use of enter-
prise modelling methods is not limited to help build sound software systems, it
remains a good motivation for a business to use them prior to the standard soft-
ware system development process. A brief description of Enterprise Modelling
Methods is therefore given in the next section.

3.3 Support for Enterprise Modelling Methods

3.3.1 Problems with Enterprise Modelling Methods

As mentioned in Chapter 2, a variety of enterprise modelling methods have
emerged. For example, there are methods for business modelling: BSDM [53];
process modelling: PIF [62], Malone et al. [70], PSL [98]; enterprise mod-
elling: IDEF [73]; organisational modelling: ORDIT [32] , ISO standard 13407
[37], Rummler-Brache [95]; business process reengineering: Hammer [45], DOD
[111] [112]; management of enterprise knowledge: Fraser and Macintosh [40],
Hollingsworth [49] and ontological work: enterprise ontology [114] and Tove
[38].

Object-oriented technologies have also been used to depict a business and its
processes: for example, the activity diagrams in UML [11], the Business Models
offered by Rational Rose [86] [108], methods by Jacobson [55] and using UML
for business modelling by Eriksson and Penker [34]. By providing a structural
framework, these methods help an enterprise to capture its enterprise-wide
knowledge which forms the basis for targeted analysis and helps the re-shaping
and re-designing of a business (which normally involves the use of advanced
electronic and computing technologies). These methods also provide a neutral
forum where people of different disciplines can communicate with each other.
The goals of applying these methods are to seek ways to improve an organisa-
tion’s effectiveness, efficiency and profitability.

The benefits of a successful application of these modelling methods can
be tremendous for an enterprise. For example, according to a report by the
U.S. Department of Defence in 1997, the application of a business process
reengineering project, leading to a combined utilisation of modernised business
practice and computing technology in its organisation, has led to 1.6 billion
USD in savings in inventory management in 5 years (1993 to 1997) [112]. There
are also other success stories, for example those cases documented in a survey
published by the BPR Online Learning Center [14] in which over 200 companies
across the world have been included; some other success stories are included
in Berztiss’ book [9]. The potential benefits offered by each of these enterprise
modelling methods have attracted increasing attention from both industry and
researchers. However, not all applications of these methods have been equally
successful.

One key factor in the successful application of these methods is the quality
of the produced model, i.e. to ensure that the produced model is the right
one for the organisation. However, it is hard to determine the quality of the



Chapter 3. Problems and Overview of Approach 27

produced model, and often its suitability and applicability are not known until
it is actually put into action. There are several problems in ensuring the quality
of the produced model, some of which are discussed below.

• Availability of expertise: A large enterprise today is a virtual entity which
consists of many sub-organisations distributed across different geographical
areas, each possessing different expertise. Hence, it may not be possible to
have all of the persons with the right expertise (who are normally senior
and/or middle-level managers) available for model development. Further-
more, the required expertise may change as companies have to react – adapt-
ing their goals and processes – to today’s fast-changing global economies.

• Lack of a comprehensive evaluation method: Most of the enterprise mod-
elling methods mentioned above provide only semantics for their notations,
others provide a procedural description of how to carry out the modelling
tasks and some measurement criteria for how well the model fits reality.
However, none of them supports a comprehensive and systematic approach
with respect to determining the correctness and completeness of a model,
both methodology-wise and enterprise-wise. This is not surprising, because
guaranteeing the correctness and completeness of enterprise-wide knowledge
is extremely difficult. It requires a complete understanding of the enterprise
knowledge for the present and in some methods also for its future, that is the
very knowledge to be captured with the help of the modelling method in the
first place. Guaranteeing correctness and completeness is also complicated
by the fact that in order to determine whether a business has been repre-
sented correctly and fully using a particular method requires knowledge of
the method as well as the business, and few people possess both.

• Informal or semi-formal modelling context: The first step in checking
whether a model is appropriate for its purpose is to understand the content
that a model describes. Many of these enterprise modelling methods are
informal methods, some of them are semi-formal and include pre-defined
diagrammatic symbols supplemented with natural language text. It is gen-
erally difficult or impossible to ensure the correctness and consistency of
informal and semi-formal methods, because the checking normally involves
a person reading and checking all of the details of the model which for a
complete real industrial-sized model is an impossible task.

• Time pressure: Very few projects can enjoy the luxury of not having to
deal with strict time constraints. When trying to keep the organisation
in business and gain a competitive edge over its rivals, time is a critical
factor. It is therefore important to make effective use of all of the resources
allocated. In the model-building context this means that there is a need
to provide an efficient and effective way to maximise the productivity of
the modellers in building a model, verifying and validating it, and finding
and correcting inadequacies in the model. One way to attempt this is by
providing an appropriate software support system. Some such software tools
have been offered, but most of them concentrate on model-building, storage
and report generation, without support for the important aspect of model



28 AUTOMATING BUSINESS MODELLING

validation. This generally means that there is not enough time to carry out
the tedious task of validating a model by hand.

• Lack of modelling support facilities: An enterprise-sized model is often
domain-specific, knowledge-rich and rather complex. In addition, the mod-
ellers need to remember the technical details of the method. Again, it needs
to be remembered that few people posses good knowledge of both. To
achieve an efficient and effective modelling process, a proper (software) tool
should ideally support a knowledge base for the specific business domain as
well as direct support for the method.

• Lack of efficient and effective means of knowledge transfer: As mentioned
above, lack of availability of expertise can be a problem. A related issue is
the lack of efficient and effective knowledge transfer. Enterprise modelling
is intended to help this transfer, but it requires a sufficiently wide use of
a particular method so people can communicate through it. Most methods
do not have wide usage at this stage and would require additional training
of staff. This may be difficult due to internal resistance in the organisation.
Furthermore, a complete enterprise model may be too complicated for un-
aided human comprehension. A tool which eases the communication (using
a particular method) between people could thus be helpful in the transfer
of knowledge.

• Dynamic aspects of a model are complex: An enterprise modelling method
normally captures the static structure of the targeted domain, but it often
implies and/or prescribes the actual activities to be carried out, e.g. ac-
tivities to be carried out in a business process. As many of these dynamic
activities may be happening concurrently and interacting with each other,
to understand the impact of them becomes in general a task too complex
for un-aided human reasoning. Therefore, it is important that these pro-
cesses can be simulated within the model with the help of a software tool
to demonstrate and/or predict their behaviour, to help people understand
their implications and restrictions.

Change is inevitable, except from a vending machine. 1

To cope with the changes of today’s business world caused by the advances
of electronic and computing technologies, business organisations must adjust
and/or re-shape themselves to thrive in the new Post-Industrial Era.2 The
potentially great rewards offered by applying enterprise modelling methods
have encouraged many businesses to use them. Unfortunately, as noted above,
these methods have problems. One particular problem is to determine and
assure the quality of the model.

In this book, we describe our attempt to provide automatic support in
assisting modellers, particularly in providing a “testing” facility for those en-
terprise modelling methods. We focus on one particular method: the Business
System Development Method (BSDM). Before discussing our approach about

1 This is a quote from DOD [112], the original author is unknown.
2 The term “Post-Industrial Era” is taken from [9].



Chapter 3. Problems and Overview of Approach 29

how to tackle the problems, we look into the BSDM method and identify areas
where assistance can be provided to help modelling activities.

3.3.2 BSDM’s Business Modelling

The Business System Development Method (BSDM) is an Enterprise Modelling
Method. It has been promoted and practised by IBM, as well as its clients, as
an effective way to capture a business’ static and dynamic environment and
its constraints. Furthermore, it is designed to fill the gap between business
and IT systems requirements – an area where conventional software engineer-
ing methods appear inadequate [23] [51]. BSDM’s business modelling acts as
a communication tool between software engineers and businessmen who can
now describe a complex business environment using only simple notation. This
simplicity fosters time efficiency when developing models.

However, it is not sufficient from the point of view of software system de-
velopment, since BSDM’s business modelling uses a single notation (entity) to
capture anything that a business would want to manage. It also uses a single
notation (dependency) to represent every kind of relationships within a busi-
ness. This overloading of semantics on a few symbols results in confusion when
one wants to use a business model as the basis for constructing software sys-
tems, since there is not a direct translation from a BSDM model to an existing
requirements engineering model.

Various modelling rules are given by BSDM which describe constraints on
the model that is built during the business modelling activity. Some of these
model rules are obvious, but others are not. A violation of model rules can lead
to an incorrectly structured model. It is, therefore, necessary that these model
rules are described explicitly and unambiguously. There are also guidelines
recommended by BSDM; these are valid for most business cases, but they are
not compulsory to allow flexibility for special circumstances. It is desirable to
express these modelling guidelines explicitly and unambiguously.

Since a part of the business model is written in natural language which
leads to difficulties for automatic correctness and consistency checking (due to
the ambiguities inherent in natural languages), it is, therefore, important to
describe business models in a way that is executable and can be used as a basis
for model validation.

3.3.3 Providing a Quality Assurance Life Cycle

Most issues mentioned above are rooted in the same basic problem: business
models are usually described informally. As is the case for any modelling ac-
tivity, creating a model is only the first step in a larger cycle. Once a model
has been designed, to ensure its quality, it needs to be verified and validated.
In our context, verification is the process of checking that no modelling rules
have been violated. Validation is the process of confirming that the model is
a true representation of the real world.3 The lack of a formal representation
3 Or an intended representation, if the modelled domain is in the future.



30 AUTOMATING BUSINESS MODELLING

in methods like BSDM makes verification of a business model a tedious and
error prone task. To validate a model, the modeller must as a minimum be
able to work through the execution of typical scenarios for business processes
and then compare these with the real world. As mentioned earlier for all but
very simple business models, this is not achievable through a simple paper and
pencil exercise and, hence, detailed validation has not, hitherto, been possible.

Our aim therefore is not to improve the method itself, but help to improve
the quality of its products. One may provide support that is closely tied in with
the method so that the original practices are not disturbed and no unneces-
sary unfamiliarities are introduced to the user. It is important not to disturb
the use of the original method, as this may cause unwanted distortions in the
method and lead to resistance from the practitioners to use the formal method.
The objective of our work is therefore to provide support not only for creating
models, but also for automating, as far as possible, the verification and valida-
tion of business models in a way that is compliant with the method. By doing
so, we provide the means to complete the modelling cycle, i.e. the modeller
can go through several iterations of design, verification and validation until a
satisfactory business model has been produced. This iterative machine-aided
modelling development cycle is illustrated in Figure 3.3.4

Plan Build Test Refine

Fig. 3.3. The plan-build-test-refine model development cycle

In formalising BSDM business modelling, the objective is not only to de-
velop an appropriate formal representation of a model, but also to take ad-
vantage of the knowledge of BSDM about how to build such models and the
existing set of rules about how to evaluate the quality of them. Furthermore,
the formal representation of a BSDM business model must be able to capture
not only the static but also the dynamic aspects of the model.

Although in conventional BSDM the various states of the model can be
captured, there is no explicit way of describing how a process is carried out
and how entities are manipulated by a process. To enable the execution of a
business model, i.e. to simulate the execution of business processes, this knowl-
edge of how to carry out a process is essential. An additional objective was,
therefore, the ability to describe and simulate the dynamic aspects of the mod-
els; because of this, an explicit representation of time had to be introduced into
the formalism. This was not included in the original BSDM model.

4 This verification cycle is small compared with Alan Davis’s model in Figure 3.2, as
it describes activities in the “Requirements” stage (box 1) and stages before that,
i.e. business description and organisation requirements.



Chapter 3. Problems and Overview of Approach 31

Missions

Elements

Vision of Senior Managers

Policies

Relations

Behaviours

Formal Terms

Formal Process Rules

Semantic Structure

Automatic Model Validation

Dynamic Model Reasoning

Rapid Model Prototyping

Knowledge Transfer

Model Building Process Support

Business Business  Models

Formal Representation

of Business Models 

Goals

Fig. 3.4. Overview of approach and goals of the research

A formal framework was developed for describing a business model by rep-
resenting components in the business model in formal terms, and rules written
originally in natural language in the BSDM manuals were interpreted as formal
process rules. A semantic structure was also devised which classifies and inter-
connects the many different notations used in business models. An overview of
the approach and goals of this work is outlined in Figure 3.4.

The leftmost oval represents a business environment. Items inside this oval
are elements and characters of a business which are captured in a business
model. The oval in the middle of the figure represents business models which
capture the business environment described in the left oval. The boxes in this
business model are entities or things in a business, the links between these
boxes represent relationships or constraints between these things. The top right
box shows how business models are formulated, it indicates the use of logical
terms and semantic structures to describe business models. The lower right
box itemises the goals that are the aim of this work. The list below gives a
somewhat more comprehensive list of these goals:

• to classify and distinguish model primitives;
• to clarify ambiguous model rules;
• to enable automatic model checking;
• to provide automatic/semi-automatic reasoning on dynamic business mod-

els;
• to encourage sharing of model-building knowledge;
• to support rapid model prototyping;
• to establish a basis for business strategic planning;
• to bridge business models and software engineering methods;



32 AUTOMATING BUSINESS MODELLING

• to build a foundation towards rapid system generation that is based on
business goals.

3.3.4 A Logic-Based Formal Method

As pointed out earlier, formal methods can be used to help assure the quality
of informal and/or semi-formal enterprise modelling methods. Although it is
desirable to provide these benefits, we do not claim that we can provide all
of these benefits, since there is still a great gap between the informal and/or
semi-formal enterprise modelling methods (or the description of a problem) and
the formal representation of all of its semantics. It is our aim to try to narrow
this gap. Fuchs and Robertson, advocators of applying formal logical methods
in support of informal modelling methods, pointed out three areas which often
cause difficulties in the process of formalisation [43], as given below.

• Concepts, notations, standard practices and problem solving methods in
the domain of application may not be easily mapped to, or reconciled with
the concepts of the formal method.

• Resistance comes from application specialists in applying a new formal
method, other than the one they are already familiar with. This is the
case if they have only dealt with informal or semi-formal methods in the
past.

• A premature mapping from concepts in the domain of application to the do-
main of computational logic, caused by incomplete knowledge of the domain
of application.

The quality of the built model may be weakened by any of these problems.
More importantly, the application of the formal method must not compromise
the working practice of the domain experts or distort the initial design. The
approach that we have taken is to understand the modelling concepts in BSDM
and the relationships between them. We also take a close look at the modelling
process in building a BSDM model. The formal method proposed here is in-
tended to be close to and supportive of the basic concepts as well as the normal
pattern of using BSDM. This is, in general, a good principle when providing a
formal language and/or computational support for any modelling method. This
should therefore reduce the unfamiliarity problem and promote acceptance of
the new approach. The formal method should also manage the transition from
targeted concepts in BSDM to our formal method. Finally, we aim to provide
an executable formal representational language.5

3.3.5 Lightweight Logical Method

To be formal or not to be formal is not the question - how formal
is.6

5 A further publication by Fuchs [42] may be of interest to the reader wanting more
details on why it is preferable to have specifications that are executable.

6 This is modified from one of the well-known quotes of Shakespeare.



Chapter 3. Problems and Overview of Approach 33

Formal logical methods, sometimes referred to as “heavyweight” logical
methods, in spite of being able to help achieve many of the benefits that we
have described in the previous sections, are rarely practised in the context of
enterprise modelling. One major consideration is the low cost-effectiveness im-
plied in applying these formal methods. The application of a “heavyweight”
formal method normally requires lengthy involvement of the domain experts
concerned, which means high costs for the organisation. The end product, the
formal theory and description, is often sophisticated and complicated that it
is not easily understood. As a result, the end product cannot easily be put in
good use.

To address these setbacks, lightweight formal logical methods have been ad-
vocated by a group of scholars, Bowen [13] [12], Robertson and Agusti [90] and
Saiedian [96]. In contrast to “heavyweight” formal methods, “lightweight” for-
mal theories usually focus on a small number of central issues, their primitives
are plainly stated and can be understood intuitively. Their aim is to provide
easier access to the models for the user.

The formal method that we have devised and deployed for BSDM is also
lightweight. One major concern has been pragmatics. We wanted to devise a
formal language which uses logical terms to represent concepts of the busi-
ness model that can be understood intuitively.7 Like many other enterprise
modelling methods, quality assurance is a major problem for business mod-
elling methods. To provide the facility of quality assurance, a framework has
been devised which uses this formal language as a foundation to provide model
verification and validation facilities and various other model building support.
This book describes the formal language and the built tool, KBST-BM, which
provides various forms of automated support based on this formal language.

3.3.6 A Layered Framework

IBM’s Business System Development Method (BSDM) is an informal method
for developing business models. As described in Section 2.1, initially a BSDM
business model consists of an Entity Model, which is later extended to a Process
Model, both of which are specified in a semi-formal way using diagrams and
English text. On top of the Entity and Process Model familiar to conventional
BSDM practitioners, we introduce another layer, the Procedural Model which
extends the Process Model. As previously mentioned, Figure 1.1 illustrates our
layered modelling approach. It points out problems which can occur during
entity and Process Modelling activities. It also shows which domain knowledge
has been formalised for each layer and what kind of information can be inferred
through the formalisation process.

An Entity Model describes the key components of a business’ operation,
e.g. persons, business partners, products, product information, activities and
relationships. The constituent elements of a business are captured and denoted

7 This formalism is also generic, as similar principles has been used to create formal
representations for many other different enterprise models [18] [20] [21] [25].



34 AUTOMATING BUSINESS MODELLING

as entities with dependencies placed between each entity and those others on
which it relies for its existence. A Process Model is a collection of business
processes crucial to the business’ operation. The context of a business process
is described, including the involved entities, the circumstances that trigger a
process and the consequences of its actions. The Procedural Model was devised
on top of BSDM’s Entity and Process Model to enable the logical sequences of
action for processes to be specified and recorded, thus enabling simulation of
business processes in a model.

Problems that can occur while building an Entity Model include methodical
issues, application domain related methodical issues, and pure application do-
main issues. For instance, circular dependency is generally prohibited in many
modelling practices, while the fact that an Entity Model should generally only
have four or fewer layers is a methodical as well as an application domain issue.
Although in general the BSDM method recommends up to four layers in an
entity model, it allows exceptions due to specific domain requirements. Since
this is an application-dependent issue, in practice its treatment is more flexible
[51]. Examples of purely domain-dependent issues are the actual construction of
a model or the acceptable boundary of defining an entity. Domain-dependent
problems vary between different industries, and are therefore not covered in
this book. The generic modelling principles that are considered and applied in
all modelling exercises are captured and formalised as rules.

The domain knowledge for each layer can be divided into two types: model
components and rules, which are shown in Figure 1.1 as ellipses and rectangles,
respectively. From the Entity and Process Models, any violations of modelling
rules or guidelines and possible corrections can be inferred. From the Procedural
Model, the state transitions of the model caused by the execution of business
processes can be inferred. A more detailed description of these layers is given
in the following sections and chapters.

3.3.7 Modelling Support Overview of KBST-BM

The support tool, KBST-BM, was built to provide automatic support for
BSDM’s business modelling activities. Figure 3.5 gives an overview of how
KBST-BM can be used to help modellers in developing BSDM’s business mod-
els. At the beginning the user creates a business model that is described using
BSDM notation. From the model, a formal representation is derived, one for
the static and one for the dynamic aspects of the model, respectively. In addi-
tion, general as well as user-defined modelling rules are formalised. The general
rules are method-derived Entity and Process Model rules and guidelines that
are considered fixed and hence require no user input. The user-defined rules
are domain-specific attributes and business rules created with the help of input
from the user.(At this stage, the Procedural Model is not yet needed.)

The formal representation of the model as well as the rules provide the
input to a reasoning engine which analyses the business model. An interactive
diagnosis report is produced which describes any violation of modelling rules
and makes recommendations for how the model can be improved. The user



Chapter 3. Problems and Overview of Approach 35

Static Modelling User−Defined

State Trans−

Business
Engine

Reasoning

Procedural

Model
Model

BSDM

Dynamic

FactsFacts Rules/Guides Rules

Formal

Represent−

ation

Diagrams
and

English
Text

Procedural

Facts

GUI

Diagnosis

Report

GUI

GUI

GUI

GUI

The User

GUI

ition Model

KBST−BM

Fig. 3.5. An overview of modelling support by KBST-BM

may modify the business model accordingly and start the next iteration of this
process. The cycle is repeated until no further errors and recommendations are
produced, or when the user decides not to incorporate any more of the given
recommendations.8 Once no more modelling rule violations are reported by the
reasoning engine, verification of the model is complete.

Before the user can simulate and therefore validate the model, they must
create the Procedural Model, which can then be formalised and fed into the
reasoning engine. During simulation of the model the user interacts directly
with the reasoning engine – telling it which process to execute from which
starting state. The reasoning engine maintains a state transition model and
information about the various states, which the user can compare with the
effects of business processes in the real world. If the user decides that some
changes in the business model are necessary, these changes must be formalised
and then again input to the reasoning engine.

Details of the underlying formal language, DefBM, for KBST-BM are in-
troduced and examples illustrated in the following chapters. Before more ad-
vanced features are introduced, Chapter 4 gives an introduction to Logic and
uses Prolog as an example language for representation and programming lan-
guage to carry out computational and reasoning tasks. Prolog is a natural
choice of computing language to provide the intelligent support mentioned in
this book, although other languages could be employed for the same purpose.
Understanding logic is the basis for mastering all such languages.

8 Although the system does not impose its recommendations on the user, we assume
the user would not want to leave any errors in his/her model. This support is
provided based on both complete as well as partial information, it is therefore
more flexible in design and is suitable for gradual model development.



36 AUTOMATING BUSINESS MODELLING

3.4 Exercises

1. What role may a business model play for an organisation and for software
system development?

2. Is there any similarity between the process of developing a business model
and that of developing a software system?

3. Discuss general problems when trying to provide automatic support for
informal Enterprise Modelling methods.

4. Why is quality assurance for a business model (or indeed any model) im-
portant?

5. Discuss and compare lightweight vs. heavyweight logical methods.
6. Describe the process and role of verification and validation (V&V) as a part

of the process of developing a model and whether there are any similarities
to the V&V process of software system development.



4

Logic

4.1 Introduction

This chapter gives a brief introduction to logic, in particularly, First Order
Predicate Logic. It also illustrates how informal domain knowledge may be
described using logical languages. This will provide a foundation for the reader
to understand the principles and reasoning techniques that are used in the
following chapters.

Logic appears under various guises in most branches of Artificial Intelli-
gence (AI), either as a knowledge representation language; as a programming
language; or as a tool for analysing AI programs. This chapter connects on
its use as a knowledge representation language. It is not intended as a general
purpose logic text, nor as a comprehensive guide to the use of logic in the AI
community but provides a preliminary sketch of the basic principles, relying pri-
marily on example and informal argument to justify each technique. For more
comprehensive readings on logic and AI representation techniques, the reader
may be interested in additional literatures to compliment the description here,
e.g. [16] [102].

Logic is particularly appealing as a means of representing knowledge because
it has several important characteristics:

• It is expressive, within limits. In other words we can use it to make a wide
variety of different statements.

• It has a clearly defined semantics. That is, the meaning of the notation is
unambiguous and well understood.

• It provides sound rules of inference. This means that given some set of true
statements in logic and sound proof rules we can always guarantee that any
information inferred from those statements will also be true – i.e. we can
trust the inference mechanisms.

The word “logic” has been used as if it referred to a single notation but
there are a multitude of different varieties of logic and also different approaches
to describing each variety. We have chosen to concentrate on the two most com-
mon varieties: Propositional Logic (PL) (Section 4.2) and First Order Predicate



38 AUTOMATING BUSINESS MODELLING

Logic (FOPL) (Section 4.3). Having introduced these notations we demonstrate
how they may be used to perform proofs in two different styles: using Natural
Deduction (Section 4.4) and Resolution (Section 4.5). This forms a basis for in-
troducing Prolog – a successful application of logic as a programming language
(Section 4.6). We conclude, in Section 4.7, by sounding a note of warning to
those with the idea that logic provides the last word on knowledge represen-
tation. Despite its fine qualities it is limited in application and, like any tool,
can be counterproductive if misused.

4.2 Propositional Logic

4.2.1 The Notation: Well-Formed Formulae

Theorem 4.1. A proposition is an atomic statement which is either true or
false.

By “atomic statement” in Theorem 4.1 we mean that the statement is an in-
divisible unit of information, containing no internal structure. The choice about
which statements are atomic in a given formula is up to the person who writes
that formula, although there are some rough guidelines (see Section 4.2.3). For
example, the following are all valid, atomic propositions:

• it is raining.
• dave gets wet.
• tweety is a bird.

The important point about these sorts of statement is that, although we can
see that there is a good deal of structure within each of them, from the point
of view of the logic they are just atomic names. In Section 4.3 we introduce a
notation for representing more explicitly the structure of propositions.

Theorem 4.2. A truth-functional connective is a symbol which is used to build
complex formulae from simpler ones. The standard connectives of the Propo-
sitional Logic are: and, or, not, → (signifying implication), and ↔ (denoting
equivalence).

The term “truth-functional connective” is used because these symbols con-
nect other formulae and they can be evaluated to be either true or false, depend-
ing on the truth or falsity of the formulae which they connect. For example, the
not connective is attached to a single formula and any formula to which not is
applied will be false whenever the formula is true and true whenever the formula
is false. This means that if we apply not to the proposition it is raining and we
know that it is raining is true, then the statement not(it is raining) is false.
Conversely, if the proposition it is raining is false then not(it is raining) is
true.

Theorem 4.3. A well-formed formula in the Propositional Logic is defined ac-
cording to the following rules:



Chapter 4. Logic 39

1. A proposition is a formula.
2. If P and Q are formulae, then the following are also formulae:

• not P
• not Q
• P and Q
• P or Q
• P → Q
• P ↔ Q

3. Only expressions using rules 1 and 2 are formulae.

Note that different authors may use different symbols to represent the same
truth-functional connective. For example: ‘not’ is often written as ‘¬’; ‘and’ as
‘&’ and ‘∧’; and ‘or’ as ‘∨’. These are merely differences in notation and we
shall continue to use the English names for illustration in this chapter given in
Theorem 4.3 above.

4.2.2 Analysing the Structure of Formulae in Propositional Logic

Formulae in the Propositional Logic can be built by first joining together atomic
propositions using one or more truth-functional connectives and then applying
the same procedure to construct yet more complex formulae from these com-
ponents. In this way, “nested” formulae containing subformulae are obtained.
When writing such formulae it is essential to show precisely which parts are
nested inside others. For example, the formula:

it is raininganddave is outside → dave gets wet

is constructed out of the conjunction it is raining and dave is outside, con-
nected by the implication symbol to the proposition dave gets wet. In this
example the implication arrow, →, is referred to as the principal connective in
the formula because it binds together the entire formula. To indicate explicitly
this nesting of formulae, the example above could be written as follows:

1 - (it is raining and dave is outside) → dave gets wet

where the round brackets enclosing it is raining and dave is outside show
that it is to be considered as a “unit” in the formula. There is an alternative
way of bracketing our example, namely:

2 - it is raining and (dave is outside → dave gets wet)

Notice that the meanings of 1 and 2 are different. Formula 1 says that if we
know that it is raining and we know that Dave is outside then we also know
that Dave gets wet. Formula 2 says that we do know that it is raining and if
we know that Dave is outside then we also know that Dave gets wet. In other
words, 1 tells us nothing about whether or not it is raining, while 2 tells us
that it definitely is raining. This demonstrates the importance of knowing how
formulae are nested but how can we avoid having to put brackets around every



40 AUTOMATING BUSINESS MODELLING

nonatomic formula? The solution to this problem is to adopt fixed conventions
about which operator will be principal in any unbracketed formula. This is
referred to as establishing the precedence of operators, where operators of
lower precedence are applied before those of higher precedence in the structure
of a formula. In the absence of explicit bracketing, the operator with the highest
precedence will be the principal operator in a formula.

The standard precedence ordering is normally:

• → and ↔ have highest precedence.
• and and or have next highest precedence.
• not has lowest precedence.
• In cases where two operators of equal precedence appear in a formula and

there is no bracketing to impose an explicit ordering on the operators, then
the operator furthest to the right is taken as the principal operator1.

If we apply these precedence rules to the unbracketed example at the be-
ginning of this section then the bracketing given in formula 1 turns out to be
correct. If we really wanted the nesting shown in formula 2 then we would have
to include the brackets. Below are some examples of more complex, unbrack-
eted formulae along with the equivalent, fully bracketed formulae.

Unbracketed formula Equivalent bracketed form
A and B and C (A and B) and C

not A or A ( not A) or A
A or B and C → D ((A or B) and C) → D

4.2.3 Representing Real World Problems in PL

It is often difficult to decide how to represent, using the Propositional Logic,
the information necessary to solve some problem in the real world. The reasons
for this difficulty include the following:

1. Propositional Logic is of limited expressive power so some things just can’t
be said (more about this in Section 4.3).

2. We want our formulae to be accurate descriptions of some portion of the
real world. It is therefore necessary to talk about the truth of a formula
in some interpretation. For example the proposition dave gets wet is a
symbol which denotes that some object, Dave, gets wet. What do we really
mean when we say that Dave gets wet? Does he get wet to the skin or is
it sufficient for his clothes to become wet? This distinction is important
because if we interpret dave gets wet as denoting that Dave is wet to the
skin then the formula:
it is raining and dave is outside → dave gets wet
might not be true if it is raining denoted very light rainfall (insufficient

1 There are alternative conventions for establishing the precedence of operators but
these need not concern us here.



Chapter 4. Logic 41

to wet Dave to the skin). Frequently, the interpretation in which particular
formulae are assumed to be true is not explicitly stated, relying on the
reader to form their own “common-sense” interpretation.

3. It is difficult to decide what should be the atomic propositions in a given
problem. Taking the running example from Section 4.2.2, we wanted to say
that if it was raining and Dave was outside then Dave would get wet. In
Section 4.2.2 we chose to represent this information using the formula:

it is raining and dave is outside → dave gets wet

but we could have simply represented the precondition as one atomic propo-
sition, thus:

it is raining and dave is outside → dave gets wet

Intuitively, the first representation is more appealing because we know that
and has a special significance in the logic. Unfortunately, it is not always
so easy to find an intuitively obvious representation.

4. Having decided on the atomic propositions, it is still easy to get the mean-
ings of the formulae wrong by applying the logical connectives in the wrong
order. Recall the marked difference in meaning of formulae 1 and 2 in Sec-
tion 4.2.2, caused by differences in bracketing of the “same” formula.

To become proficient at the representation of knowledge in Propositional
Logic (or any other form of knowledge representation notation) takes practice.
The following are some guidelines which might make your task easier:

• Try to retain maximum expressive power. The above discusses two different
ways of representing the same statement: one with an explicit conjunction
(‘and’) of propositions and the other with this conjunction buried as part
of a larger atomic proposition. It is usually better, in such cases, to choose
the version in which the logical operator (in this case the and operator) is
explicit because this gives more information about the logical structure of
the statement.

• Look for smaller propositions within larger ones and represent these sepa-
rately. This is closely linked to the point above since, by teasing out proposi-
tions into smaller and smaller fragments and (using the logical connectives)
reconnecting these fragments to form appropriate nested formulae, one pro-
vides the maximum amount of structure within each formula.

• Look for key words in English which suggest use of one or more of the
logical connectives. The following are some helpful hints for each connective,
although there are no hard and fast rules:
– The ‘not’ connective: Look for negatives like “doesn’t”, “no” or “never”.

For example:

Phrase Possible formula
“does not contain nil value” not contains nil value
“never exceed level 4” not exceeds level four
“have no selflinks” not have selflinks



42 AUTOMATING BUSINESS MODELLING

– The ‘and’ connective: Look for phrases like “also”, “as well as” or “in
addition to”. For example:

Phrase Possible formula
“Entity is a class and model primitive” entity is a class and

entity is a model primitive
“Thing is a class as well as a rootclass” thing is a class and

thing is a rootclass

– The ‘or’ connective: Be careful to distinguish between the use of inclu-
sive and exclusive or connectives. The table below gives two examples
using inclusive or and then two examples using exclusive or.

Phrase Possible formula
“has one or (sometimes) two parentclasses” has one parentclass or

has two parentclasses
“is named process, or activity” named process or

named activity

“dead or alive” (dead or alive) and
not(dead and alive)

“is either one or zero” (one or zero) and
not(one and zero)

Note that in some cases of exclusive or it is possible to avoid the necessity
of excluding explicitly the coexistence of both disjuncts by being careful
about which propositions are used. Taking the “dead or alive” example
from the table above, this could be represented using the more complex
expression: dead or (not dead). We can then use the general theorem
that for any formula P , the statement P and (not P ) is contradictory
in that P and (not P ) cannot be true at the same time to prevent the
coexistence of the two disjuncts.

– The ‘→’ connective: Look for phrases such as “If X then Y ”, “Given X,
then Y” or “Whenever X then Y ”. For example:

Phrase Possible formula
“If large organisation then large organisation
business modelling” → business modelling
“Automation makes modelling easy ” automation

→ easy modelling

It is also possible to find implication statements from English statements
which do not, on first glance, look like implications. Consider, for ex-
ample, the statement that: “Either the witness can’t see properly or she
identified the burglar correctly”. This could be represented directly as
the formula below:

not witness can see properly or witness identified burglar



Chapter 4. Logic 43

but we could also convert it into an equivalent implication by using
the proven equivalence between (not(P ) or Q) and (P → Q) (see Sec-
tion 4.2.4). This gives us the implication below.

witness can see properly → witness identified burglar

– The ‘↔’ connective: Look for phrases such as “X is true if and only if
Y ” or “X is a necessary and sufficient condition for Y ”. For example:

Phrase Possible formula
“You will only shift this nut with a spanner” shift nut ↔ use spanner

Be careful not to use equivalence when you mean only implication. If A
and B are equivalent then whenever one of them is true the other will
be true as well. Expressing this more formally: the formula A ↔ B has
the same meaning as the formula (A → B) and (B → A).

4.2.4 Determining the Truth of Formulae by Analysis of their
Structure

In Sections 4.2.1 to 4.2.3 we have been concerned with the use of Propositional
Logic as a representation language and haven’t bothered much about using
it to solve problems. The key property which logic provides in this respect is
the ability to determine the truth or falsity of a well-formed formula, given
appropriate data in the form of other well-formed formulae. In this section we
consider a simple means of performing this task by analysing the structure of a
formula. In Section 4.4 we consider a more sophisticated proof technique using
proof tactics.

Recall that the truth-functional connectives are so called because they eval-
uate to either true or false, depending on the truth values of the subformulae
which they connect. We can enumerate all the possible results of this evalua-
tion for each of the connectives, as shown in the table in Figure 4.1. This table
is normally referred to as a truth table. To form this table, we write down (in
the first two columns) all possible combinations of truth values for formulae
P and Q. We then make a column for each connective applied to P and/or
Q and enter the appropriate truth value for each row. We use the letter ‘t’ to
represent truth and ‘f’ to denote falsity.

P Q ¬P P and Q P or Q P → Q P ↔ Q

t t f t t t t
t f f f t f f
f t t f t t f
f f t f f t t

Fig. 4.1. A Truth Table for Logic Formula



44 AUTOMATING BUSINESS MODELLING

The truth values allocated to some of the operators are intuitively obvious.
For example, it is not surprising that P and Q is true only when both P and
Q are true; nor is it surprising that P or Q is false only when P and Q both
are false. However the results for P → Q may seem counter intuitive: why is
this true whenever P is false?

Consider a specific example: suppose that the statement we want to repre-
sent is “If it is raining then the ground is wet”, which we represent formally as
raining → ground wet. Given that the implication arrow (→) always makes
ground wet true whenever raining is true, then we can safely say that either it
isn’t raining or the ground must be wet (assuming, as we must in Propositional
Logic, that statements must be either true or false). In formal terms we can
say that raining → ground wet is equivalent to not(raining) or ground wet,
or more generally:

For any two propositions, P and Q: (P → Q) ↔ (not P or Q).

Given this equivalence, we can now switch our attention to the formula
not P or Q in the knowledge that its truth values should be the same as
those for P → Q. Now we know that not P or Q will be true whenever either
not P or Q is true, and we know that not P will be true whenever P is false.
Therefore if P is false, the formula not P or Q is always true.

Since we can now allocate truth values to all the connectives of the Propo-
sitional Logic, we are able to determine the truth or falsity of any formula in
the logic, given the truth values of all the atomic propositions contained in it.
This is done by progressively evaluating the truth of each subformula, starting
with the connectives joining atomic propositions and propagating the truth
values “higher up” in the structure of the formula. Using this method we can
distinguish several useful categories of formula:

• Tautologies: where the formula is always true regardless of the truth values
of the propositions that it contains. The simplest form of tautology is P or
not P. An example formula (P and (P → Q)) → Q is also a tautology, as
we shall demonstrate later.

• Contradiction or Inconsistent formulae: where the formula is always
false regardless of the truth values of the propositions that it contains. For
instance, the formula P and not P is always inconsistent.

• Contingent formulae: where the formula is sometimes true and sometimes
false, depending on the truth values of the propositions that it contains. The
formula P and Q → R is an example.

Figure 4.2 contains a detailed example of this method of establishing truth
values. The goal is to prove that (P and (P → Q)) → Q is a tautology. To
do this, we enumerate each possible combination of truth values for P and
Q (giving four combinations in all) and, for each combination, propagate the
truth values up through the structure of the formula. The curly braces show
the truth values assigned to each part of a formula during this process. The
final truth value assigned to each of the four formulae is ‘true’ so this formula
is a tautology.



Chapter 4. Logic 45

Goal: to prove that (P and (P → Q)) → Q is a tautology. Consider every
possible combination of truth values for P and Q:

If P is true and Q is true then the formula is true:
( P︸︷︷︸

t

and ( P︸︷︷︸
t

→ Q︸︷︷︸
t

)

︸ ︷︷ ︸
t

)

︸ ︷︷ ︸
t

→ Q︸︷︷︸
t

︸ ︷︷ ︸
t

If P is true and Q is false then the formula is true:
( P︸︷︷︸

t

and ( P︸︷︷︸
t

→ Q︸︷︷︸
f

)

︸ ︷︷ ︸
f

)

︸ ︷︷ ︸
f

→ Q︸︷︷︸
f

︸ ︷︷ ︸
t

If P is false and Q is true then the formula is true:
( P︸︷︷︸

f

and ( P︸︷︷︸
f

→ Q︸︷︷︸
t

)

︸ ︷︷ ︸
t

)

︸ ︷︷ ︸
f

→ Q︸︷︷︸
t

︸ ︷︷ ︸
t

If P is false and Q is false then the formula is true:
( P︸︷︷︸

f

and ( P︸︷︷︸
f

→ Q︸︷︷︸
f

)

︸ ︷︷ ︸
t

)

︸ ︷︷ ︸
f

→ Q︸︷︷︸
f

︸ ︷︷ ︸
t

Since the formula is true for all truth values of P and Q, it is a tautology.

Fig. 4.2. Proving that (P and (P → Q)) → Q is a tautology

Proving that a formula is inconsistent is also quite straightforward. An
example appears in Figure 4.3. Again, we establish the truth value for the
entire formula, given each truth value for P . Whatever truth value we assign
to P the formula is false so it is inconsistent. For more details of Propositional
Logic and of the First Order Predicate Logic which we discuss in the next
section the reader should consult a general introductory textbook such as [63].



46 AUTOMATING BUSINESS MODELLING

Goal: to prove that P and not(P ) is inconsistent. Consider every possible
assignment of truth values for P :

If P is true then the formula is false:
P︸︷︷︸
t

and not( P︸︷︷︸
t

)

︸ ︷︷ ︸
f︸ ︷︷ ︸

f

If P is false then the formula is false:
P︸︷︷︸
f

and not( P︸︷︷︸
f

)

︸ ︷︷ ︸
t︸ ︷︷ ︸

f

Since the formula is false for all truth values of P it is a contradiction.

Fig. 4.3. Proving that P and not(P ) is inconsistent

4.3 First Order Predicate Logic

Propositional Logic enables one to make propositions using atomic statements
or atomic statements connecting with logical connectives. It provides a formal
notation in which to perform inferences such as “If Tweety flies then Tweety is
a bird. Tweety flies. Therefore Tweety is a bird”, which we could write as the
formula:

((tweety flies → tweety is a bird) and tweety flies) → tweety is a bird

This formula can be proved to be a tautology, as we demonstrated in Fig-
ure 4.2. Unfortunately it is easy to think of statements which cannot readily
be expressed in the Propositional Logic. Consider the statement: “Anything
which flies is a bird. Tweety flies. Therefore Tweety is a bird.” The only differ-
ence between this and the previous statement is that a general rule has been
introduced, stating that any flying thing is a bird.2 Now, we could represent
this general rule using simple propositions but the problem is that this makes it
impossible to prove that Tweety flies. To convince yourself of this, try proving
that the following representation of our example statement is a tautology (you
won’t succeed).

((anything flies → anything is a bird) and tweety flies) → tweety is a bird

The reason this happens is that there is no way of knowing that anything
could refer to tweety: in the Propositional Logic the two are completely different
strings of symbols, buried within different propositions. We require a way of

2 We ignore, for our present purposes, the fact that this rule isn’t always true.



Chapter 4. Logic 47

unpacking the structure of propositions, thus enabling us to identify more easily
those which are similar. First Order Predicate Logic (FOPL)3 is a standard
notation in which to provide this facility. As a taste of what is to come, our
example expressed in FOPL turns out to be:

((∀X flies(X) → bird(X)) and flies(tweety)) → bird(tweety).

4.3.1 The Notation: Well-Formed Formulae

Many of the techniques which are employed in the Propositional Logic are also
used in First Order Predicate Logic (FOPL) (though sometimes in augmented
form). The difference in the two notations is that in FOPL propositions can
contain substructure and, in particular, may contain variables. We now provide
a simplified definition of well-formedness in the FOPL. A word of warning:
although this definition is adequate for our current purposes some important
details have been sacrificed for the sake of explanation. For a complete definition
refer to [16].

Theorem 4.4. A well-formed formula in the First Order Predicate Logic is de-
fined as follows:

1. A constant can be any number or any unbroken sequence of symbols begin-
ning with a lower-case letter.

2. A variable is any unbroken sequence of symbols beginning with an upper
case letter.

3. A predicate is a term consisting of a functor, the predicate name, and an
ordered set of 0 or more arguments. Predicates with 1 or more arguments
are written in the style: F (A1, · · · , AN ), where F is the functor and N is
the number of arguments (or arity) of the predicate.

4. Predicate names must be constants.
5. Arguments may be either constants or variables. Variables may be quantified

using either universal or existential quantifiers, i.e. ∀ or ∃, respectively.
6. If P and Q are formulae, then the following are also formulae:

• not P
• not Q
• P and Q
• P or Q
• P → Q
• P ↔ Q

7. Only expressions using rules 1 to 6 are formulae.
8. If P is a well-formed term then ∀X P and ∃X P are terms quantified

over X. Any variables not quantified using either ∀ or ∃ are referred to as
free variables in P .

9. A sentence contains no free variables.
10. Only expressions using rules 8 and 9 are sentences.

3 Also often referred to as First Order Predicate Calculus.



48 AUTOMATING BUSINESS MODELLING

Theorem 4.4 (above) introduces some new terminology. To understand what
it all means, we first examine in detail an example of a well-formed formula
in this notation. We return to the statement we introduced earlier, that “all
flying things are birds”:

∀X(flies(X) → bird(X)).

This formula contains two predicates, flies(X) and bird(X), joined using
the connective ‘→’. The variable, X, is quantified using the universal quantifier,
the ∀ operator (read as “forall”). Note that the variable X could refer to any
object that we wanted to talk about. For example, it could be tweety. Why
is the introduction of variables with quantification so important? Recall that
in the Propositional Logic it is possible to determine the truth or falsity of a
formula simply by examining its structure, given the truth values of the propo-
sitions it contains (see Section 4.2.4). This simple technique will not always
work in FOPL because it deals with quantification over variables.

To understand why this creates a problem, consider the problem of deciding
whether the formula ∀X devious(X) is true. Suppose, for the moment, that
we know the set of all possible objects which might be substituted for X in
this formula and that it is [fred, dave, george]. If this is the case then we need
only establish that fred, dave and george are devious in order to establish that
any object (in this problem) is devious. This above formula therefore may be
rewritten into a conjunction in Propositional Logic as below:

devious(fred) and devious(dave) and devious(george).

But what happens if we cannot enumerate all the possible objects that we
want to talk about (e.g. if we want to establish the truth of ∀X devious(X)
for all of the people in the world)? We can no longer form a conjunction of
instances of the formula because we don’t know what these are. At this point
we need to reason with universally quantified formulae without specifying all
the objects to which they apply.

Turning now to the existential quantifier, what if we wanted to estab-
lish whether there existed some devious person (i.e. ∃X devious(X))? Once
again, if we know that the complete set of objects we are concerned with is
[fred, dave, george] then we could establish the truth of this statement if we
know that either fred, dave or george are devious. This corresponds to the
disjunction:

devious(fred) or devious(dave) or devious(george).

But, again, what happens if we don’t know which particular objects we
are dealing with (e.g. we know that someone is devious but we don’t know
who)? One answer is to develop ways of reasoning with existentially quantified
formulae. Another way, which we shall explore in Section 4.5.1, is to replace
existentially quantified variables with “typical instances” of the objects which
they represent.



Chapter 4. Logic 49

4.3.2 Representing Real World Problems in FOPL

We have presented FOPL as an extension of Propositional Logic and, as such,
many of the points made in Section 4.2.3 with respect to the Propositional Logic
still apply. Therefore we shall restrict our attention to the influence of the new
structures which FOPL provides - namely structured terms and quantification.
It is difficult to provide precise guidelines on how to encode statements in FOPL
but here is a rough procedure:

1. First try to identify the things which are objects in the statements you
want to represent. For example, in the statement “If Dave’s alarm clock
rings Dave gets up” there are two objects: daves alarm clock and dave.
Note that these are both constants – i.e. they refer to a particular alarm
clock and a particular person.

2. Having identified the objects involved, try to identify the relations which
apply to those objects. Continuing the example begun above, the relations
are: for the alarm, that it rings; and, for Dave, that he gets up. Therefore
we have two predicates: rings(daves alarm clock) and gets up(dave). We
say that rings is a predicate applying to the object daves alarm clock and
that gets up is a predicate applying to dave.

3. Given suitable definitions of predicates, apply the appropriate logical con-
nectives, in a similar manner to that described in Section 4.2.3. To com-
plete our running example, this gives the formula:

rings(daves alarm clock) → gets up(dave).

4. If variables appear in the expression which you are constructing then these
have to be quantified using either the universal and/or existential quanti-
fiers. Consider these separately.

The universal quantifier: Look for phrases such as “All X are Y ” or
“It is always true that X”. For example, the statement “All politicians
are devious” means that for any object, X, if that object is a politician
then it will be devious. In FOPL this becomes below.

∀X politician(X) → devious(X)

The existential quantifier: Look for phrases such as “There is an X
such that Y ” or “Some X is Y ”. For example, the statement “There is
a/some politician who can be trusted” might be represented using the
formula below.

∃X politician(X) and trustworthy(X)

It is quite common to have a mixture of universal and existential quantifiers
in a statement. For instance, we might want to say that “If all politicians
are devious then none of them are trustworthy”:



50 AUTOMATING BUSINESS MODELLING

(∀X politician(X) → devious(X)) →
not(∃Y politician(Y ) and trustworthy(Y ))

This example can be used to illustrate several important points:
• It is sometimes necessary to restrict quantification to parts of the for-

mula, rather than to the whole thing. In this example, universal quan-
tification over X occurs only in that part of the formula which is to the
left of the second implication arrow.

• Care must be taken to distinguish variables which can represent dif-
ferent objects. Thus, although all the variables in the statement refer
to politicians, it is necessary to have a separate variable name (X) for
devious politicians and for trustworthy politicians (Y ).

• The meaning of a formula can be changed just by altering the scope
of the quantifiers. If we shift the existential quantification of Y in our
example to apply to the whole formula, rather than just the part on the
right of the implication arrow, then we get the formula:

∀X ∃Y (politician(X) → devious(X)) →
not(politician(Y ) and trustworthy(Y ))

which means that for any X, there is some Y such that if X is devious
because he/she is a politician then Y is not a trustworthy politician.
This would allow a single untrustworthy politician, whose lack of trust
was dependent on the deviousness of all the others (and so there could
be some trustworthy politicians). Compare this with the meaning of the
original example, which says that if being a politician implies devious-
ness then none of the politicians are trustworthy.

• As an antidote to the previous point, it is sometimes possible to
change the quantification of a formula without altering its meaning.
For instance, there is a proven equivalence between the statement
not(∃X F (X)) and the statement ∀X not(F (X)) (i.e. saying that there
isn’t an instance of some object with some property is the same as saying
that all objects don’t have that property). We can use this equivalence
to replace the existential quantifier in our original example with a uni-
versal quantifier, thus:

(∀X politician(X) → devious(X)) →
∀Y not(politician(Y ) and trustworthy(Y ))

• The precedence of the quantifiers (see Section 4.2.2) may be important
in determining the meaning of the formula. For example, we might have
a predicate of the form: votes for(X,Y ) which is true if person X votes
for person Y in an election. Suppose that we quantify this as follows:

∀X ∃Y votes for(X,Y )



Chapter 4. Logic 51

To understand what this really means we need to know the precedence
of the quantifiers (i.e. which is dominant in the formula). If the existen-
tial quantifier were dominant then the fully bracketed formula would be:

∃Y (∀X votes for(X,Y ))

or, stated in English: “There is some person for whom everyone votes.”
Alternatively, the universal quantifier might be dominant, giving the
bracketed formula:

∀X(∃Y votes for(X,Y ))

which is read as: “Everyone votes for someone.” The normal convention
is that, in the absence of explicit bracketing, a quantifier further to the
left in a formula will dominate those quantifiers to its right. This makes
the latter of our bracketed examples the correct one.

4.3.3 Unification

In the Propositional Logic of Section 4.2 there was no difficulty in decid-
ing whether two propositions were the same: all that was necessary was to
check that the names of the propositions were identical. Thus the propositions
dave hates someone and someone hates fred are not the same. In FOPL the
method by which we determine whether two terms are the same needs to be
more sophisticated because one or more of the terms may contain variables
and/or constants. The word used to describe this test for matching between
terms is unification. For example, we might want to unify the two FOPL terms
hates(dave, X) and hates(Y, fred), which is possible if X is instantiated to
fred and Y is instantiated to dave. The resulting term, after unification is:
hates(dave, fred). We provide below a description of a simple unification algo-
rithm. For a (comparatively) gentle introduction to more complex unification
algorithms the reader is referred to [58].

Theorem 4.5. Two terms, P and Q, in the FOPL unify when:

1. P and Q are both constants, and the names of P and Q are identical.
2. Otherwise, if P and Q are both variables then P and Q are denoted to be

the same variable.
3. Otherwise, if P is a variable and Q is a nonvariable then P is made equal

to Q. We say that Q is substituted for P .
4. Otherwise, if Q is a variable and P is a nonvariable then Q is made equal

to P . We say that P is substituted for Q.
5. Otherwise, if P is a term with principal functor FP and Q is a term with

principal functor FQ then the names of FP and FQ are identical and their
corresponding argument pairs are unified. To find out how to unify the two
lists of arguments of P and Q follow the procedure below:



52 AUTOMATING BUSINESS MODELLING

• Find the set, [A1, · · · , AN ], of arguments for P , in the order in which
they appear in that term.

• Find the set, [B1, · · · , BN ], of arguments for Q, in the order in which
they appear in that term.

• For each pair of arguments, (AI , BI), where I denotes the position of
the argument in each term, unify each AI and BI pair using all of the
above procedures as applicable.

To illustrate how the unification algorithm given in Theorem 4.5 works,
consider its application to the example we supplied earlier. The task is to test
whether hates(dave, X) and hates(Y, fred) unify. These terms correspond to
P and Q in Theorem 4.5. The terms are not both constants or variables, so
steps 1 and 2 do not apply. Neither are they a variable-and-constant pair, so
steps 3 and 4 do not apply.

However, step 5 can be applied, since both hates(dave, X) and hates(Y, fred)
have hates as their principal functor. The ordered sets of arguments for
hates(dave, X) and hates(Y, fred) are [dave, X] and [Y, fred], respectively. We
now try to unify each pair of arguments in these two sets. First take the pair of
corresponding arguments (dave, Y ). These unify using step 4 in Theorem 4.5,
making Y equal to dave. Next take the pair of arguments (X, fred), which unify
using step 3, making X equal to fred. We can now say that hates(dave, X)
and hates(Y, fred) unify, with dave substituted for Y and fred substituted for
X. Below are some more examples of unification between terms.

Terms Result of unification
hates(X, fred) hates(dave, Y ) hates(dave, fred)
hates(X,X) hates(dave, Y ) hates(dave, dave)

hates(dave, fred) hates(X,X) Don’t unify
hates(dave, X) hates(X, fred) Don’t unify

4.4 Natural Deduction Proofs

The method of establishing the truth or falsity of a propositional formula using
truth tables (see Section 4.2.4) is useful but suffers from several limitations. In
particular:

• It doesn’t provide us with fine control over the tactics which we use to prove
a particular formula – it offers a single “shotgun” approach.

• It will not scale up to problems involving quantification over possibly infinite
sets of objects because truth values cannot be assigned to every instance of
the formula.

An alternative method, which we describe in this section, is to use proof
rules. A proof rule provides a strategy for establishing the truth of a formula,
given the truth of other formulae. For example, we know that A and B is true



Chapter 4. Logic 53

given some set of assumptions, S, if we can prove that A is true, given S and
that B is true, given S. Before performing proofs using rules we must introduce
a new operator ‘�’ which connects a set of assumptions to the formula which
is to be proved using those assumptions, called a Sequent. The operator ‘�’
has a higher precedence than operators → and ↔.4

Theorem 4.6. We write the sequent S � C to denote that the formula, C, can
be proved from the list of assumptions, S. If S is empty, then C is a theorem
(i.e. its truth depends on no assumptions).

Some examples of valid sequents, some of which are expressed as theorems,
are shown in Figure 4.4. Some of these will be referred to in later sections –
particularly when discussing conversion to normal forms in Section 4.5.1.

Commutativity of ‘and’ [] � (A and B) ↔ (B and A)
Associativity of ‘and’ [] � (A and (B and C)) ↔ ((A and B) and C)
Transitivity of ‘→’ [(A → B) and (B → C)] � A → C

Equivalence →, or [] � (P → Q) ↔ (not(P ) or Q)
Equivalence and, or [] � not(P and Q) ↔ (not(P ) or not(Q))
Equivalence or, and [] � not(P or Q) ↔ (not(P ) and not(Q))
Equivalence ↔, → [] � (P ↔ Q) ↔ (P → Q) and (Q → P )
Distribution of or over and [] � (P or (Q and R)) ↔ ((P or Q) and (P or R))

Fig. 4.4. Some useful sequents in classical logic

For reasons which will become clear, a thorough understanding of the sub-
tleties of Natural Deduction proof techniques is not essential to an understand-
ing of the topics which we shall discuss later. However, they do provide a useful
link between “traditional” logic and the more specialised forms of logic used by
AI practitioners. We could explore this topic in the context of more traditional
“Lemmon style” proof rules but we believe that these are not ideally suited to
the task in hand. Instead we introduce a simplified proof technique, inspired
by Roy Dyckhoff’s implementation of Gentzen and Prawitz’s Sequent Calcu-
lus. The proof rules which we shall use in this section are shown in the table
in Figure 4.5. Each row of this table corresponds to a particular proof rule,
consisting of a name, for easy reference; a sequent for which the rule provides
proof; and the supporting proofs which are necessary in order to establish the
truth of this sequent. Below, we restate each of the proof rules in English.

• equiv elim: allows us to prove a formula, A ↔ B, given some assumptions
if we can prove A → B from those assumptions and B → A from those
assumptions.

4 See Section 4.2.2 for explanation on precedence of operators.



54 AUTOMATING BUSINESS MODELLING

Rule name Sequent Supporting proofs
equiv elim F � A ↔ B F � A → B, F � B → A

and intro F � A and B F � A, F � B

and elim F � C A and B ∈ F , [A, B|F ] � C

or intro left F � A or B F � A

or intro right F � A or B F � B

or elim F � C A or B ∈ F , [A|F ] � C, [B|F ] � C

imp intro F � A → B [A|F ] � B

imp elim F � C A → B ∈ F , F � A, [B|F ] � C

contradiction F � C F � false

neg intro F � not(A) [A|F ] � false

neg elim F � C not(A) ∈ F , F � A

double neg F � A F � not(not(A))
immediate F � A A ∈ F
Where: F is some list of assumptions.

A, B and C are well-formed formulae.
X ∈ Y denotes that X is an element of set Y .
[X|Y ] is a list with first element X and remaining

elements Y .

Fig. 4.5. Proof rules (Sequent Calculus after Roy Dyckhoff)

• and intro: states that we can know A and B, given some assumptions if we
can prove A from those assumptions and also prove B from those assump-
tions.

• and elim: allows us to prove a formula, C, from some assumptions if we can
find a conjunction, A and B, among those assumptions and obtain a proof
of C from the assumptions with the addition of A and of B.

• or intro left: gives a proof of a formula, A or B, from some assumptions if
A can be proved from those assumptions.

• or intro right: gives a proof of a formula, A or B, from some assumptions
if B can be proved from those assumptions.

• or elim: allows us to prove a formula, C, from some assumptions if we can
find a disjunction, A or B, among those assumptions and obtain a proof of
C from the assumptions with the addition of A, and then obtain a proof of
C from the assumptions with the addition of B.

• imp intro: states that we can know A → B, given some assumptions if we
can prove B from those assumptions with A added.

• imp elim: allows us to prove a formula, C, from some assumptions F if
we can find an implication, A → B, among those assumptions. We then
obtain a proof of A from the assumptions F ; then find a proof of C from
the assumptions with B added.



Chapter 4. Logic 55

• contradiction: says that any formula C can be proved from some assump-
tions if we can prove that the assumptions are inconsistent (i.e. if we can
prove false from them).

• neg intro: provides a proof of not(A) from some assumptions if we can prove
false from those assumptions with the addition of A.

• neg elim: says that any formula C can be proved from some assumptions if
not(A) appears in those assumptions and we can also prove A from those
assumptions. Since the ability to deduce both not(A) and A indicates that
the assumptions are inconsistent, this is similar to the contradiction rule.

• double neg: provides a proof of a formula A from some assumptions if those
assumptions yield a proof of not(not(A)) (i.e. that the negation of A is
false).

• immediate: provides a proof of a formula A from some assumptions if A is
one of the assumptions.

To understand how these rules are used, consider the following example.
Suppose we want to prove that the proposition, b, is true given the assumptions
a and a → b. This corresponds to the sequent: [a, a → b] � b, which we shall
refer to as a goal to be proved. To prove this sequent we must first select a rule
from those available in Figure 4.5. Assume that we choose the imp elim rule,
unifying the sequent, [a, a → b] � b, with the rule sequent, F � C, and thus
instantiating F to [a, a → b] and C to b. This gives us the instantiated set of
subgoals:
[A → B ∈ [a, a → b], [a, a → b] � A, [B|[a, a → b]] � b]. We then
attempt to satisfy each of these subproofs in turn. First we establish that
A → B ∈ [a, a → b] which instantiates A and B to the propositions a and b.
We then look for a proof of [a, a → b] � a, for which we need to select a rule.
The immediate rule is chosen, which possesses the single, satisfiable condition:
a ∈ [a, a → b]. This leaves the third of our original subproofs: [b, a, a → b] � b
which can be satisfied by again applying the immediate rule to generate the
final satisfiable condition: b ∈ [b, a, a → b]. The proof is now complete.

Although this proof takes some time to explain, it can readily be represented
in diagrammatic form, as shown in Figure 4.6. This figure shows a trace of the
completed proof in the form of a tree diagram. At the root of the tree (at the
top of the diagram!) is shown the initial sequent. The line below this sequent
represents the application of the imp elim rule. At this point the tree splits into
three branches, one for each of the subgoals introduced by the imp elim rule.
The first of these is just a membership test (these tests are enclosed in boxes
to distinguish them from other goals in the proof tree) so there are no further
branches beneath it. However, the other two each have a subbranch correspond-
ing to the application of the immediate rule. This form of tree is referred to as
an and tree because if there is a set of branches [B1, B2, · · · , BN ] arising from
a given sequent then it is necessary to satisfy B1 and B2 and · · · and BN . Us-
ing this diagram, one can reconstruct the temporal sequence of steps taken to
perform the proof by starting at the root node; moving downwards; and always
exploring left-hand branches before those to the right. This form of search is



56 AUTOMATING BUSINESS MODELLING

known as depth-first, left-to-right search because all branches are explored out
to their tips, starting with those farthest to the left.

�
�

�

�
�

[a, a → b] � b

(a → b) ∈ [a, a → b]

[a, a → b] � a

[b, a, a → b] � b

a ∈ [a, a → b]

b ∈ [b, a, a → b]

imp elim

immediate

immediate

Fig. 4.6. Proof tree for [a, a → b] � b

The proof shown in Figure 4.6 was quite straightforward because it involved
only two proof rules. More commonly, a wide range of rules are necessary and
we shall demonstrate this by providing two more examples. The first of these
is shown, using a tree diagram, in Figure 4.4. The proof is of the sequent:
[b → c] � (a or b) → (a or c). Intuitively, this seems valid because if c follows
from b then if some other proposition, a, is true then (a or c) is true; on the
other hand if b is true then c is true and so (a or c) is true. To prove this
formally it is first necessary to apply the imp intro rule to insert (a or b)
among the set of assumptions. We then apply the or elim rule which allows us
to prove (a or c) given the presence of (a or b) in the set of assumptions and
independent proofs of (a or c) from a and from b.

Our second example of the application of proof rules is shown in Figure 4.8.
This example is interesting because it involves proof by contradiction – in
particular, we want to prove the sequent: [a, not(a and b)] � not(b) and do this
by adding b to the set of assumptions and proving that this is inconsistent (using
the neg intro rule). Therefore, since the formula, a, is inconsistent, not(a) must
be true.



Chapter 4. Logic 57

�

�
�

�

�

�

�

�
�

�

�
�

[b → c] � (a or b) → (a or c)

[a or b, b → c] � a or c

(a or b) ∈ [a or b, b → c]

[a, a or b, b → c] � a or c

[a, a or b, b → c] � a

a ∈ [a, a or b, b → c]

[b, a or b, b → c] � a or c

[b, a or b, b → c] � c

(b → c) ∈ [b, a or b, b → c]

[b, a or b, b → c] � b

[c, b, a or b, b → c] � c

b ∈ [b, a or b, b → c]

c ∈ [c, b, a or b, b → c]

imp intro

or elim

or intro left

immediate

or intro right

imp elim

immediate

immediate

Fig. 4.7. Proof tree for [b → c] � (a or b) → (a or c)

4.5 Resolution: A Simplified Proof Mechanism

The natural deduction proofs of Section 4.4 are rigorous and (some might say)
intellectually stimulating. Unfortunately, they are also quite complex. In par-
ticular, it is difficult to know which proof rule to apply at a given stage in the
proof. If the proof process is to be automated it would seem advantageous to
reduce the number of proof rules as far as possible (provided that this doesn’t
restrict the range of sequents which we can prove). In this section, we describe



58 AUTOMATING BUSINESS MODELLING

�

�
�

�

�

�

�

[a, not(a and b)] � not(b)

[b, a, not(a and b)] � false

not(a and b) ∈ [b, a, not(a and b)]

[b, a, not(a and b)] � a and b

[b, a, not(a and b)] � a

a ∈ [b, a, not(a and b)]

[b, a, not(a and b)] � b

b ∈ [b, a, not(a and b)]

neg intro

neg elim

and intro

immediate

immediate

Fig. 4.8. Proof tree for [a, not(a and b)] � not(b)

a technique for reducing the number of proof rules to just one: the Resolu-
tion Rule of Inference [91]. In order for this rule to work, it is necessary
also to simplify the formulae which we are dealing with. We first describe this
simplification process and then explain how resolution works.

4.5.1 Normal Forms

In making various statements using Propositional Logic and FOPL we have
made use of a variety of operators – namely not, and, or, →, ↔, ∀ and ∃. We
know that all of these operators are not strictly necessary – for example, the
→ operator can always be “rephrased” in terms of the ‘not’ and ‘or’ operators
by employing the equivalence: (P → Q) ↔ (not(P ) or Q). By progressively
rewriting a formula in this way, it turns out to be possible to represent any
FOPL formula using only the ‘and’, ‘or’ and ‘not’ operators. Furthermore, it is
possible to further simplify the formula by breaking it up at each ‘and’ symbol;



Chapter 4. Logic 59

converting the resulting propositions (which we shall call literals) into sets; and
finally placing these sets themselves into a set. The result is therefore a set of
(implicitly “and”ed) sets of (implicitly “or”ed) literals. The formula is then said
to be in clausal form. The conversion procedure is described in Theorem 4.7
below.5

Theorem 4.7. The algorithm for conversion of a FOPL formula to clausal form
is as follows:

• Eliminate any ↔ and → operators by rewriting using the following equiva-
lences (where the expression on the left side of the ‘↔’ can be rewritten as
the statement on the right side):
– (P ↔ Q) ↔ ((P → Q) and (Q → P ))
– (P → Q) ↔ (not(P ) or Q)

• Convert to prenex form by moving all quantifiers to the left-hand side of the
formula, using the following equivalences (where X is a quantified variable
and A and B are sub-expressions in the formula):
– not(∀X A) ↔ (∃X not(A))
– not(∃X A) ↔ (∀X not(A))
– ((∀X A) and B) ↔ (∀X A and B)
– ((∃X A) and B) ↔ (∃X A and B)
– (A and (∀X A)) ↔ (∀X A and B)
– (A and (∃X A)) ↔ (∃X A and B)
– ((∀X A) or B) ↔ (∀X A or B)
– ((∃X A) or B) ↔ (∃X A or B)
– (A or (∀X A)) ↔ (∀X A or B)
– (A or (∃X A)) ↔ (∃X A or B)

• Eliminate all existential quantifiers as follows:
– Those outside the scope of any universal quantifier are replaced with

Skolem constants (arbitrary names which don’t appear anywhere else).
For example, the formula: ∃X happy(X) might be converted into happy
(someone), where “someone” is a Skolem constant representing some
arbitrarily selected person.

– Those inside the scope of any universal quantifier are replaced with
Skolem functions, whose arguments are the universally quantified vari-
ables within whose scope the existential occurs. For instance, the for-
mula:

∀X ∃Y hates(X,Y )

might be converted into hates(X, enemy of(X)) where enemy of(X) is
a Skolem function which obtains some enemy for any X.

• Remove all universal quantifiers, on the understanding that all the variables
are implicitly universally quantified. The formula is now free of quantifier
symbols.

5 The full conversion procedure is slightly more complex. We have simplified it in
order to bring out the important features.



60 AUTOMATING BUSINESS MODELLING

• Drive negation in to the individual predicates, using the equivalences:
– not(P and Q) ↔ (not(P ) or not(Q))
– not(P or Q) ↔ (not(P ) and not(Q))
– not(not(P )) ↔ P

• Distribute disjunction over conjunction, using the equivalence:
– (P or (Q and R)) ↔ ((P or Q) and (P or R))
The formula is now said to be in conjunctive normal form.

• Convert each group of disjunctions into a set of atomic formulae and place
each of these sets into an implicitly conjoined set of disjunctions.

• Rename all variables so that the same variable name doesn’t appear in dif-
ferent disjunctive sets.

To illustrate how this procedure works, suppose that we have the following
formula:

∀X (lecturer(X) and not(ai lecturer(X)) → kindly(X)), and
lecturer(dave), and
not(kindly(dave))

This corresponds to the English statement: “Any lecturer who is not an AI
lecturer is kindly. Dave is a lecturer. Dave is not kindly.” We can convert this
formula into clausal form by applying the sequence of transformations shown
in Figure 4.9. We end up with the final normalised formula:

[ [not(lecturer(X)), ai lecturer(X), kindly(X)],
[lecturer(dave)],
[not(kindly(dave))]]

which comprises a set of three subsets. These subsets are implicitly conjoined,
i.e. all three sets must be true. The elements within each subset (where there
is more than one element in a set) are implicitly disjoined, e.g. the first subset
represents the formula:

not(lecturer(X)) or ai lecturer(X) or kindly(X).

This example highlights some important points:

• The ordering of literals within each subset is unimportant, since they are
all “or”ed together and any one would be sufficient to prove the truth of a
subset.

• The ordering of subsets is unimportant because they are all “and”ed to-
gether and all must be proved to prove the truth of the formula.

• It would not be possible to reconstruct the original formula, with all the
logical operators back in place, just by looking at its clausal form. The same
clausal form could have been produced from many different combinations
of logical operators.

• The clausal form is quite difficult for a human to read. By imposing unifor-
mity on our representation we have sacrificed some of its intelligibility.



Chapter 4. Logic 61

Initial formula
∀X (lecturer(X) and not(ai lecturer(X)) → kindly(X))

and lecturer(dave) and not(kindly(dave))
Eliminate ‘→’ operator

∀X not(lecturer(X) and not(ai lecturer(X)) or kindly(X))
and lecturer(dave) and not(kindly(dave))

Drive negation in using not(P and Q) ↔ (not(P ) or not(Q))
∀X (not(lecturer(X)) or not(not(ai lecturer(X))) or kindly(X))

and lecturer(dave) and not(kindly(dave))
Remove double negations using not(not(P )) ↔ P

∀X (not(lecturer(X)) or ai lecturer(X) or kindly(X))
and lecturer(dave) and not(kindly(dave))

Remove universal quantifier
(not(lecturer(X)) or ai lecturer(X) or kindly(X))

and lecturer(dave) and not(kindly(dave))
Convert to sets

[[not(lecturer(X)), ai lecturer(X), kindly(X)], [lecturer(dave)], [not(kindly(dave))]]

Fig. 4.9. A conversion to clausal form

To counter the problem of unintelligibility of formulae in clausal form,
it is possible to apply a further set of transformations which will reintro-
duce the ‘→’ operator. This is done for each of the subsets in the formula
and, once again, makes use of the equivalence: (P → Q) ↔ (not(P ) or Q).
Every subset of literals in clausal form is composed of two sorts of ele-
ments: those which are negated (assume that these consist of the literals
[not(P1), not(P2), · · · , not(PM )]) and those which are nonnegated (assume that
these consist of the literals [Q1, Q2, · · · , QN ]). Since these are implicitly disjoint,
we can replace the ‘or’ operator between all terms, giving us the formula:

(not(P1) or not(P2) or · · · or not(PM ))
or (Q1 or Q2 or · · · or QN )

Now, we can use the equivalence: not(A and B) ↔ (not(A) or not(B)) to
convert the first of these two “or”ed bundles to an “and”ed bundle enclosed by
a negation. Our new formula is therefore:

not(P1 and P2 and · · · and PM )
or (Q1 or Q2 or · · · or QN )

Since we now have a formula of the form not(A) or B, we can use the equiva-
lence: (A → B) ↔ (not(A) or B) to introduce the ‘→’ operator, thus:

(P1 and P2 and · · · and PM ) → (Q1 or Q2 or · · · or QM )

This formula is now said to be in Kowalski form. A more formal definition of
this procedure is given in Theorem 4.8 below.

Theorem 4.8. Given a formula in clausal form, [D1, · · · , DN ], where D1 to
DN are sets of disjunct literals (see Theorem 4.7), this can be converted into
Kowalski form by applying the following sequence of transformations:



62 AUTOMATING BUSINESS MODELLING

• For each disjunctive set, DI :
– Remove the elements of DI which are negated; drop the negations; and

connect these literals with the ‘and’ operator, forming the conjunction
P1 and P2 and · · · and PJ .

– Connect the remaining, nonnegated literals from DI using the ‘or’ op-
erator, forming the disjunction Q1 or Q2 or · · · or QK .

– Connect these conjunctions and disjunctions using the ‘→’ operator.
This leaves us with the formula:
P1 and P2 and · · · and PJ → Q1 or Q2 or · · · or QK .

• The final set of clauses consists of the (implicitly conjoined) set of the results
of applying the translation given above to each element of [D1, · · · , DN ].

If we apply this algorithm to the clausal form example from Figure 4.9 we
get the following set of formulae in Kowalski from:

[lecturer(X) → (ai lecturer(X) or kindly(X)),
→ lecturer(dave),
kindly(dave) →]

Notice in this example that the second formula: → lecturer(dave) would have
been considered ill-formed according to our definition of well-formedness for
FOPL (Theorem 4.3). In Kowalski form these are well-formed and our example
would be interpreted as “lecturer(dave) is true” (i.e. it is a fact, with no pre-
conditions). By contrast, the third formula: kindly(dave) → is interpreted as
“kindly(dave) is false” (i.e. since it is false, you could conclude anything from
it).

An important subgroup of Kowalski formulae are those with a single lit-
eral as a conclusion. These are referred to as Horn clauses.6 For example, the
following are Horn clauses:

→ lecturer(dave)
shifty(X) and devious(X) → politician(X)

but this isn’t: lecturer(X) → (ai lecturer(X) or kindly(X)). Horn clauses
form the basis for the “logic programming language” Prolog because it turns
out that the resolution rule of inference, when applied to Horn clauses, can be
used to run practical programs with reasonable efficiency (see Section 4.6).

Theorem 4.9. A Horn clause is a formula in Kowalski form (see Theorem 4.8)
which has no more than one literal on the right-hand side of the ‘→’ operator.

4.5.2 Resolution

Resolution provides us with a simple way of establishing the truth of a formula
in clausal form, given a set of assumptions also in clausal form. It relies upon
a single proof rule, called the resolution rule of inference. A definition of this
rule appears below.

6 After the person who first recognised their importance.



Chapter 4. Logic 63

Theorem 4.10. The resolution rule of inference permits the following proce-
dure:

• if we have two sets of literals, R and S which are implicit disjunctions in
clausal form (see Theorem 4.7),

• and if we can extract from R an element, P , leaving the remaining elements
R′,

• and if we can extract from S an element, not(Q), leaving the remaining
elements S′,

• and if Q unifies with P , under some consistent substitution for variables in
Q and P (see Theorem 4.5),

• then we can derive the new clause obtained by merging R′ and S′.

As an illustration, consider the two clauses:

[not(lecturer(X)), ai lecturer(X), kindly(X)] and
not(kindly(dave))

from our running example. Applying the resolution rule to these two clauses
allows us to “cancel out” kindly(X) and not(kindly(dave)) (in the process of
substituting dave for X), leaving us with a clause consisting of the remaining
elements from both sets – namely:

[not(lecturer(dave)), ai lecturer(dave)].

Proving the truth of a formula by resolution employs a technique similar to
the “proof by absurdity” approach described in Section 4.4. A (simplified)
restatement of this rule is that the conjunction P and not(P ) is inconsistent.
If we convert this into clausal form then we can say that [[P ], [not(P )]] is
inconsistent. Furthermore, we know that the resolution rule allows us to resolve
[P ] with [not(P )] to obtain the empty clause, []. Therefore, if we can resolve
any of the sets in our set of clauses to obtain the empty clause we have proved
that our clauses are inconsistent. This allows us to prove the truth of a clause,
given some set of assumptions, by negating it; proving that the negated clause,
when combined with the set of assumptions, is inconsistent by resolving until
an empty clause is obtained; and thus concluding that since the negation of
the clause is inconsistent (and therefore false) the original, nonnegated clause
must follow from the truth of the set of assumptions.

Theorem 4.11. A formula, F , in clausal form is true, given a set, A, of as-
sumptions in clausal form if its negation, F ′, can be proved inconsistent with
A by resolution. F ′ is inconsistent with A when an empty set of literals can be
found by some sequence of applications of the resolution rule (see Theorem 4.10)
to the set formed by adding F ′ to A.

Figure 4.10 gives an example of a resolution proof applied to our running
example, in which all lecturers except AI lecturers are kindly; Dave is a lecturer;



64 AUTOMATING BUSINESS MODELLING

and Dave isn’t kindly. We set out to prove that Dave is an AI lecturer: for-
mally ai lecturer(dave). To do this we negate the formula; add it to the set of
assumptions; obtain an empty clause using resolution – thus establishing that
the negated formula causes a contradiction; and so conclude that the original
formula is true.

Given assumptions:

[[not(lecturer(X)), ai lecturer(X), kindly(X)],
[lecturer(dave)], [not(kindly(dave))]]

To prove that ai lecturer(dave) is true:
First, negate the goal to form the clause [not(ai lecturer(dave))].
Then add the negation to the set of assumptions to form the following set of clauses
(numbered for subsequent reference):

1. [not(ai lecturer(dave))] (the negation of our goal)
2. [not(lecturer(X)), ai lecturer(X), kindly(X)]
3. [lecturer(dave)]
4. [not(kindly(dave))]

Now apply the resolution rule until an empty set is obtained.

(1) [not(ai lecturer(dave))]

(2) [not(lecturer(X)),

ai lecturer(X)),

kindly(X)]�
�

��

�
�

��
[not(lecturer((dave)),

kindly(dave)]

(3) [lecturer(dave)]
�

�
��

�
�

��
[kindly(dave)] (4) [not(kindly(dave))]

�
�

��

�
�

��
[ ]

We have now established that not(ai lecturer(dave)) is inconsistent with our orig-
inal assumptions so we conclude that ai lecturer(dave) is true.

Fig. 4.10. An example of resolution

It turns out that the resolution procedure can be proved to be both sound
and complete. By “sound”, we mean that the inference mechanism is guaran-
teed not to produce any false conclusions from a set of true assumptions. By
“complete” we mean that all conclusions which can logically be derived from
a set of assumptions will (in theory) be found using resolution. In practice,
there is a caveat to this statement, which we shall introduce in Section 4.7.2.



Chapter 4. Logic 65

The main application of Resolution theorem proving is in the programming
language, Prolog, but users of Prolog do not have to think about their pro-
grams directly as resolution proofs. It is easier to think about Prolog in terms
of Natural Deduction proofs, despite the fact that what goes on “underneath”
is Resolution. In the next section we describe the bare bones of Prolog in terms
of proof rules, similar to those of Section 4.4.

4.6 Prolog

In Section 4.4 we described quite simple proofs which turned out to be complex
to work out in detail. This complexity was, in part, caused by the variety of
proof rules which could be applied at each stage of the proof. One answer to
this problem is to reduce the range of proof rules which are available. The logic
programming language, Prolog, can be viewed as adopting this strategy and in
this section we shall describe a basic Prolog interpreter using an adapted set
of proof rules from Figure 4.5.

First it is necessary to introduce the basic Prolog notation [15]. Prolog
clauses are Horn clauses (see Theorem 4.9) – that is, they have only one literal in
the conclusion of an implication. Prolog clauses also have the implication arrow
going from right to left (i.e. ‘←’) instead of from left to right as we have drawn
it previously. This is merely a notational variation; all you have to remember is
that the arrow always points at the conclusion from the preconditions. A more
formal definition of the basic Prolog notation appears below:

Theorem 4.12. Basic Prolog clauses must be in one of the following forms:7

• A Prolog rule signifies that some conclusion P is true given that some pre-
condition C is true. It is written as P ← C. The conclusion must always
be a literal. The precondition may be either:
– A literal.
– A conjunction of formulae: A and B, where A and/or B may themselves

be conjunctions or disjunctions.
– A disjunction of formulae: A or B, where A and/or B may be conjunc-

tions or disjunctions.
• A Prolog fact denotes that some literal, L, is always true. This may be

expressed as a rule: L ← true, where the name, true, is a special symbol
which is always true.8

The definition above uses symbols which have been introduced earlier in
order to emphasise the connection between logic and Prolog. In real Prolog
programs the notation is slightly different. The symbol ‘:−’ is used instead of
the ‘←’ operator; a comma replaces the ‘and’ operator; and a semicolon replaces
7 This notation does not correspond exactly to that of Prolog but conforms to the

basic principles on which it depends.
8 In practice, facts are normally written as simple assertions but this need not concern

us here.



66 AUTOMATING BUSINESS MODELLING

the ‘or’ operator. For our present purposes, we shall ignore these notational
differences and retain our own logical notation.

Figure 4.11 shows the set of rules necessary to implement our basic Prolog
interpreter. The first three rules shown in the table (and intro, or intro left
and or intro right) are copied directly from those in Figure 4.5 and give us
procedures for establishing a conjunction and disjunction of goals. The remain-
ing two rules did not appear in Figure 4.5 but are straightforward. The first of
these, the truth symbol rule, allows us to conclude the truth of the statement,
true, at any point in the proof. The second rule, implication, allows us to prove
a statement, A, if our sequent contains the rule A ← B and we can prove B
from that sequent.

Rule name Sequent Supporting proofs
and intro F � A and B F � A, F � B

or intro left F � A or B F � A

or intro right F � A or B F � B

truth symbol F � true unconditional
implication F � A A ← B ∈ F , F � B

Where: F is some list of assumptions.
A and B are well-formed formulae.
X ∈ Y denotes that X is an element of set Y .

Fig. 4.11. Proof rules for basic Prolog

Now that we have a set of proof rules for basic Prolog we need some method
of choosing which rule to apply at any given stage in a proof. Most Prolog
systems use a simple algorithm which is given below:

Theorem 4.13. The basic Prolog search strategy can be defined as a procedure
for selecting an appropriate proof rule from those in Figure 4.11. Given some
sequent to be proved, of form F � P :

• If P is the special symbol, true, then establish it directly using the rule
named truth symbol.

• If P is of the form A and B then use and intro.
• If P is of the form A or B then first try to prove it using or intro left but,

if that fails or you need another proof, then try using or intro right.
• Otherwise, apply the implication rule with the first member of F which is of

form P ← C1. If no proof can be found using this implication statement then
take the next statement, P ← C2, and apply the implication rule again.
Repeat this procedure until either a proof is found or all the implication
statements have been used.

Let us now consider how this search strategy is applied to a particular
problem. Suppose that we want to establish the sequent:



Chapter 4. Logic 67

[a ← b, a ← (d or e), e ← (f and g), f ← true, g ← true] � a
The sequence in which Prolog would search for a proof is shown in Figure 4.12,
where the sequence of application of rules is from top to bottom of the page and
indentation indicates which proofs are subproofs of others. For more details of
the relationship between logic and Prolog see [105].

Problem : [a ← b, a ← d or e, e ← f and g, f ← true, g ← true] � a
Agree to represent the set of assumptions using the symbol F

Goal: F � a
Apply implication given a ← b ∈ F
New subgoal: F � b

No proof rule can be applied to this goal.
So reapply implication given a ← d or e ∈ F
New subgoal: F � d or e

Apply or intro left
New subgoal: F � d

No proof rule can be applied to this goal.
So apply or intro right
New subgoal: F � e

Apply implication given e ← f and g ∈ F
New subgoal: F � f and g

Apply and intro
First new subgoal: F � f

Apply implication given f ← true ∈ F
New subgoal: F � true
Apply truth symbol

Second new subgoal: F � g
Apply implication given g ← true ∈ F
New subgoal: F � true
Apply truth symbol

Fig. 4.12. Searching for a Prolog proof

4.7 Problems

At first glance, logic might seem like the solution to all knowledge representa-
tion problems. It provides inference mechanisms with highly desirable proper-
ties, such as soundness and correctness. It has a long history of development
and so is comparatively well understood. Unfortunately, there remain a large
number of reasons why logic isn’t always the best choice of knowledge represen-
tation language. In this section we draw attention to some of these problems,



68 AUTOMATING BUSINESS MODELLING

starting with the problem of initially converting a problem description into
logical notation. For more details of these and other problems see [44].

4.7.1 Ambiguity

If presented with some description of a real world problem, it isn’t always possi-
ble to represent this as an unambiguous statement in logic. A domain where this
problem surfaces frequently is that of natural language interpretation. Consider
the following statement:

“Visiting Aunts can be a nuisance.”

Does this mean that if some person is visited by an aunt then he/she is incon-
venienced – formally:
visits(Aunt, Person) and aunt of(Aunt, Person) → inconvenienced(Person)
or does it mean that if a person goes to visit an aunt then he/she is inconve-
nienced – formally:
visits(Person, Aunt) and aunt of(Aunt, Person) → inconvenienced(Person)
Although these two representations differ only in the placing of the two argu-
ments to the visiting predicate, their meaning is completely different and there
isn’t enough information in the English statement to allow us to decide which
is the correct representation. The fault here is not with the logic but with the
ambiguity which is often present in everyday speech. Humans are accustomed
to glossing over such ambiguities but logic forces us to be more precise about
what our statements mean.

4.7.2 Search Problems

The Natural Deduction proofs which are performed in Section 4.4 demonstrate
an essential requirement for successful theorem proving: the theorem prover
must know when to apply each proof rule during the construction of a proof.
For human theorem provers, the strategy of proof construction can be left to
“experience” and “intuition” but to obtain proofs by computer it is necessary
to represent formally the method by which a correct proof is obtained.

Having introduced a proof style which is well suited to the representation
of proofs as trees, we now consider the problems involved in constructing these
proof trees. Our first observation is that there are a large number of different
proof trees for the same sequent. Consider, for example, an alternative proof
tree for the sequent, [a, a → b] � b, shown in Figure 4.13. This proof commences
by applying the same rule as in Figure 4.6 but, instead of solving the third
subproof ([b, a, a → b] � b) using the immediate rule, the double neg rule is
used to introduce the new subproof: [b, a, a → b] � not(not(b)). This, in turn,
requires a sequence of application of the neg intro, contradiction and neg elim
rules in order to complete the proof.

In retrospect, the proof tree of Figure 4.6 is preferable to that of Figure 4.13,
since it is more compact. However, it is not always easy, when in the midst of
performing a proof, to decide on the optimum search strategy. In Figure 4.13 the



Chapter 4. Logic 69

�
�

�

�
�

�

�

�
�

�

[a, a → b] � b

(a → b) ∈ [a, a → b]

[a, a → b] � a

[b, a, a → b] � b

a ∈ [a, a → b]

[b, a, a → b] � not(not(b))

[not(b), b, a, a → b] � false

[not(b), b, a, a → b] � false

not(b) ∈ [not(b), b, a, a → b]

[not(b), b, a, a → b] � b

b ∈ [not(b), b, a, a → b]

imp elim

immediate

double neg

neg intro

contradiction

neg elim

immediate

Fig. 4.13. A more complicated proof tree for [a, a → b] � b



70 AUTOMATING BUSINESS MODELLING

application of the double neg rule is clearly superfluous because the immediate
rule (which introduces no further subproofs) would have done the same job. The
decision would have been much more difficult if the choice had been between,
say, imp elim and contradiction whose success or failure would depend on
further subproofs for which the outcome is unknown.

But what about Prolog, which is built on the sound foundation of the Reso-
lution principle (Section 4.5.2) and which, when viewed in terms of proof rules
(Section 4.6), possesses a straightforward way of deciding which rule to apply?
Although Resolution itself is, theoretically, complete and so should find a proof
of a formula if such a proof is available, it is easy to think of sequents for which
Prolog’s simple search strategy will never find a proof. Suppose that we give
Prolog the task of proving the sequent:
[a ← b, a ← true, b ← a] � a
There is a trivial proof of this sequent by implication from the assumption
a ← true but Prolog’s search strategy isn’t “smart” enough to spot this. It is
committed to following the first applicable implication statement which it can
find in the set of assumptions (see Theorem 4.13) so the search sequence for
this problem would be that shown in Figure 4.14. What happens is that Prolog
gets caught in an infinite loop of trying to establish ‘a’ using a ← b and then
trying to establish ‘b’ using b ← a.

Problem : [a ← b, a ← true, b ← a] � a
Agree to represent the set of assumptions using the symbol F

Goal: F � a
Apply implication given a ← b ∈ F
New subgoal: F � b

Apply implication given b ← a ∈ F
New subgoal: F � a

Apply implication given a ← b ∈ F
New subgoal: F � b

And so on ad infinitum...

Fig. 4.14. Prolog’s search strategy permits infinite looping

To summarise, although a proof may in theory be possible from a given set
of assumptions, whether it is actually found may depend on the search strategy
used to perform the proof.

4.7.3 Representational limitations

Our discussion of logic has been confined to Propositional Logic and First Order
Predicate Logic. These are the most commonly used logics because their proof
theory is well understood and robust, comparatively efficient proof mechanisms



Chapter 4. Logic 71

are available for them. Unfortunately, there are many facilities which might be
useful for knowledge representation which Propositional Logic and FOPL don’t
provide. Consider, for example, the statement:

“John hates everything about Mary.”

The most natural way to represent this statement is to say that any character-
istic possessed by Mary will be hated by John – formally:
∀P characteristic(P ) and P (mary) → hates(john, P )
Unfortunately this takes us beyond FOPL because we have used a variable, P ,
as a predicate name. Logics which allow variables as predicate names in this
way are referred to as second order and yet higher order logics are also possible.
These higher order logics are more difficult to automate and are likely to be
less efficient (for one thing, the unification process is more complex). Of course,
we could get around this representational problem by making P in our example
an argument to some “more general” predicate, for example:
∀P characteristic(P ) and property of(P, mary) → hates(john, P )
but this just glosses over the problem without addressing the basic cause of it.

A further problem with the logics which we have described is that they lack
facilities to deal directly with the use of hypothetical arguments. For instance,
we might make the following argument:

“If Dave ruled the world he would make everyone his slave. Anyone
who enslaves another is hateful. Therefore, Dave is hateful.”

We could try to represent this as the sequent:⊗
[∀X rules world(dave) → enslaves(dave, X),
∀Y ∃X enslaves(Y, X) → hateful(Y )] � hateful(dave)

but this is not a provable sequent9 because it includes no evidence that Dave
rules the world. We could make it provable by adding the extra formula:
rules world(dave), obtaining the sequent:

[rules world(dave), ∀X rules world(dave) → enslaves(dave, X),
∀Y ∃X enslaves(Y, X) → hateful(Y )] � hateful(dave)

Unfortunately, if we want our logical description to maintain integrity with the
real world we are not allowed to add this formula because Dave, in reality,
doesn’t rule the world. We must move beyond FOPL in order to deal with this
sort of hypothetical argument in a principled way.

Another failing of Propositional Logic and FOPL is their inability to han-
dle directly the notions of sequences of events and temporal change. We shall
present two examples which demonstrate different aspects of this problem. The
first example concerns reasoning about a sequence of events. Suppose that we
have the following simple problem:

“John gave Mary his lecture notes and Mary gave them to Dave. Who
ends up with the lecture notes?”

9 We shall adopt the convention of tagging invalid sequents with a
⊗

symbol.



72 AUTOMATING BUSINESS MODELLING

The answer to this problem is obviously “Dave” but how can we represent this
using FOPL formulae? We could try proving:⊗

[gives(john, mary, lecturenotes), gives(mary, dave, lecturenotes)] �
has(dave, lecturenotes)

but this is of little use because there is no general mechanism which relates
the gives predicates to the has predicate; nor is there a way of detecting that
the gives predicates form a temporal sequence. Temporal logics have been
developed with the specific aim of representing this sort of inference.

Our final example concerns what has become known as the frame problem.
Imagine that we want to describe, in simple terms, what happens when some-
thing is on fire. For one thing, we can say that it will be hot. It will also be
charred if it is made of the appropriate material. These statements can be made
using FOPL, as shown below:

on fire(X) → hot(X)
on fire(X) and can char(X) → charred(X)

We now can add the information that Dave’s chair is on fire and that Dave’s
chair can char and prove the following sequents:

[on fire(chair), on fire(X) → hot(X)] � hot(chair)
[on fire(chair), can char(chair), on fire(X) and can char(X)
→ charred(X)] � charred(chair)

Now suppose that we want to follow through the time sequence to a point after
which the fire on Dave’s chair has gone out, so on fire(chair) is no longer true.
This means that neither hot(chair) nor charred(chair) can be inferred. The
loss of the former conforms to our ideas of what happens in the real world (the
chair wouldn’t normally be hot after the fire had stopped) but we didn’t want
to lose the ability to deduce that the chair was charred, since this is a property
which should persist between time frames. The problem is how to decide which
parts of a description should persist over time and which should be transient.
This problem has been tackled by many researchers in various contexts but a
universally acceptable solution has yet to emerge.

4.8 Exercises

Section 4.2.1: Which of the following are well-formed formulae in the Proposi-
tional Logic?
1. a not b
2. a and not(b and) c
3. (a or b → not(c and d)) or e

Section 4.2.2: Write each of the following as a fully bracketed formula:
1. a and b or c
2. a or b and c → not a or b



Chapter 4. Logic 73

3. a → b or c → d and e
Section 4.2.3: Convert the following English statements into the Propositional

Logic:
1. “Either Dave is crazy or AI is the world’s most interesting subject.”
2. “If Maggie was shy she wouldn’t be Prime Minister. Maggie is Prime

Minister. Therefore she isn’t shy.”
3. “Anyone who is Scottish likes Haggis. Dave is Scottish. Therefore Dave

likes Haggis.”
Section 4.2.4: Show which of the following are tautologies and which are in-

consistencies.
1. (not(P ) or Q) ↔ (P → Q)
2. (P → Q) and P and not(Q)
3. not(not(P )) and not(P )
4. not(P and Q) ↔ (not(P ) or not(Q))
5. not(P or Q) ↔ (not(P ) and not(Q))
6. (P and Q) and (not(P ) or not(Q))

Section 4.3.1: Which of the following are well-formed formulae in the First
Order Predicate Logic?
1. ∀X flies(X) → submarine(X)
2. flies(X) → bird(X)
3. ∀X ∀Y property of(X,Y ) → X(Y )
4. not true(∀X flies(X) → submarine(X))

Section 4.3.2: Convert the following English statements into the First Order
Predicate Logic:
1. “All politicians are devious. Dave isn’t devious so he isn’t a politician.”
2. “All Scots are British. Some Scots are stingy. Therefore some British

people are stingy.”
3. “All Scots are British. Not all Scots are stingy. Therefore some British

people are not stingy.”
Section 4.3.3: Which of the following formulae unify and, if they do, what is

the resulting unified term?
1. p name(a, A, B, b) p name(C, C, D, D)
2. p name(a, A, b) p name(B, B, B)
3. p name(a, A, b, A) p name(B, C, C, D)

Section 4.4: Prove the following sequents using the proof rules from Figure 4.5:
1. [] � (a and (a → b)) → b
2. [P → Q,P → not(Q)] � not(P )

Section 4.5.1: Convert the following formulae into clausal form:
1. ∀X scottish(X) → british(X)
2. ∃X scottish(X) and stingy(X)
3. not(∃X british(X) and stingy(X))

Section 4.5.2: Use the normalised formulae from your answers to Exercise 4.5.1
(above) to provide a resolution proof of the formula below:
∃X british(X) and stingy(X), given the assumption:
∀X scottish(X) → british(X), and the assumption:
∃X scottish(X) and stingy(X).



74 AUTOMATING BUSINESS MODELLING

Section 4.6: Using the diagrammatic notation from Section 4.4, draw the final
proof tree produced by the search shown in Figure 4.12. Then describe the
sequence of search for the proof:
[a ← b and (c or d), b ← c or e, d ← e, e ← true] � a



5

Formal Support for Data Modelling

Based on the modelling support framework provided in Figure 1.1, this chapter
and the following ones describe how automatic support may be constructed to
help develop BSDM’s Business Models. This chapter focuses on the means
to provide such support for the Entity Model. Chapters 6 and 7 describe the
formalisation and reasoning of the Process and Procedural models.

The automation of this modelling support framework described in Figure
1.1 is based on manipulation of a formal logical language DefBM that has been
developed using a lightweight approach as described in Section 3.3.5. Before
we go into detail about DefBM and the automated support, we should firstly
understand the domain within which we are working: BSDM’s business models.

BSDM business models are informal models. To clarify what we mean by
an informal or a semi-formal model, one may describe an informal model as
a model that does not have precise semantics, in particular computational se-
mantics. Such models hence may result in different understanding and inter-
pretations. Consequently, inconsistent or error interpretations of a model may
occur. A semi-formal model provides formal or precise definition for parts of a
model but not all of it. The ambiguity caused by an informal model is similar
to the one that may exhibit in natural language text (e.g. English) that some-
times an English sentence may be interpreted differently by different persons
and under different circumstances, see Section 4.7.1 for more detail. The cause
of ambiguity in an informal model is rooted in the ambiguity of the modelling
language used. There are two causes: the informal nature of notations used in
a method and the allowance of describing a domain using informal represen-
tations. The former indicates imprecise semantics of modelling notations that
allows different interpretations and use of the same notation. The latter refers
to the use of natural language.

In Section 3.3.5, we advocated a lightweight formal approach that fo-
cuses formalisation effort on selective aspects of a domain that are of impor-
tance to our task, as opposed to a heavyweight approach. In the context of
formalising an informal model, it translates to formalising the notation, or
modelling primitives, of a modelling language rather than formalising the
entire methodology of a modelling language. In doing so, there are a few general



76 AUTOMATING BUSINESS MODELLING

rules of thumb that readers may wish to follow when they formalise an informal
or semi-formal model using a lightweight approach. These are described below:

• To identify the main modelling primitives used in the language that are used
to capture concepts in an application domain. For instance, if the modelling
language is a type of organisational model, then the main modelling primi-
tives are perhaps notations that capture different types of organisations. On
the other hand, if it is an activity model, then perhaps the main modelling
primitives are nodes that capture activities, actors and objects.

• To identify relationships between the main modelling primitives and un-
derstand the boundary for each relationship. One important relationship
to look out for is the subtype or subclass relationships that enable one to
describe a concept to be a specialisation of another concept in a model.
To find out the boundary of a relationship, for instance, the relationship
“followed-by” in an activity model defines that an activity A can only be
followed-by another activity B, and that it is a one-to-one relationship. The
boundary of this relationship is therefore a binary one and can only be used
to connect two activities given a definite (temporal execution) semantics.

• To identify properties for each modelling primitive described above. This
includes the names of the properties, the allowed data types and/or range
for values for the property.

• To identify instances (or occurrences) for each modelling primitives de-
scribed above, when applicable. Modelling primitives are often used to cap-
ture the type of things1 rather the actual “things” themselves. It is some-
times, however, necessary to be able to describe the actual instance instead
of its type only. In this book we use terms “type” and “class” interchange-
ably to mean a classification that describe a set of instances that shares some
common properties. Some representation languages choose not to represent
instances, as they are not used in their (reasoning) applications.

• To identify attributes for each instance with its type defined using the mod-
elling primitives as described above. Similarly, this includes the names of
the attributes, the allowed data types and/or range of its values. Some
representation languages may choose not to distinguish between instance
attributes and class properties. The decision about whether to make this
distinction often depends on the application of the representation language.

• To identify other auxiliary modelling primitives, the relationships between
them and other modelling primitives and their attributes. Auxiliary mod-
elling primitives are primitives that are used during a modelling process but
often only served for annotation or navigation purposes. Example auxiliary
modelling primitives are the annotations for a model (that is often writ-
ten in natural language and of no particular format or required content),
indexes between different parts of a model (e.g. labelling of diagrams in a
model). Such auxiliary modelling primitives, although important as a part
of the modelling process, may not be essential for automation tasks.

1 Those things are sometimes called instances or occurrences.



Chapter 5. Formal Support for Data Modelling 77

Once the modelling primitives and their semantics are identified and clari-
fied, the next task of formalisation is Knowledge Representation. The task
of Knowledge Representation is concerned with finding an appropriate repre-
sentation of concepts in a domain. To judge whether a representation is appro-
priate for a modelling language, in addition to correctly represent semantics of
the language, it often involves a close examination of the desirable reasoning
mechanism.

As this book focuses on predicate calculus, we will restrict ourselves to rep-
resentations using first order predicate calculus. Detailed representation tech-
niques have been discussed in Chapter 4, particularly Sections 4.2.3 and 4.3.2.
Generally speaking, the types of concepts (classes) as well as the types of re-
lationships and attributes are represented as predicates. The domain concepts
that are described by the concepts/classes/relationships/attributes are repre-
sented as arguments of a predicate. In the context of representing a modelling
language, the modelling primitives may be represented using predicates and
the content that a modelling primitive described as arguments. For instance,
the modelling primitive “activity” may be described using the predicate:

activity(X)

where X is used to defined an activity (class). The predicate activity(‘Accept
Customer Order’) therefore denotes that “Accept Customer Order” is an ac-
tivity. On the other hand, the predicate

attribute(Class, Attribute, Att value)

is used to denote a particular attribute of a class. For instance, attribute(’Accept
Customer Order’, precondition, null) indicates the class “Accept Customer Or-
der” does not have a precondition. Combining our knowledge of the previous
activity predicate we know that “Accept Customer Order” is an activity that
does not have a precondition. Also note that the allowed types of the argu-
ments for each predicate are fixed and predetermined that form a part of the
definition of a predicate.

Using this approach, this chapter and the following ones describe the formal
language DefBM and how it has been used in practice to provide automated
support for business models. This formal work has been implemented in the
tool KBST-BM, as depicted in Figure 3.5.

5.1 Defining a Formal Language: DefBM

The formal representation of modelling concepts in BSDM is organised in an
Inheritance Class Hierarchy (ICH) where a concept is modelled in a class. It
was inspired by the core class hierarchy of the Process Interchange Format
(PIF) [62]. As mentioned in Figure 2.2, PIF is a formal “translation” language
which aims at providing a communication channel for concepts captured in
process models built in different formats and schemas. Since a BSDM’s business



78 AUTOMATING BUSINESS MODELLING

model includes a process model and exhibits similarities to a business process
model, it is advantageous to make use of this format when constructing a
formal language. However, since BSDM is different from PIF in several aspects,
the initial hierarchy has been modified and extended. Figure 5.1 shows the
inheritance class hierarchy, on which the formal language DefBM has been
defined.

time_point

�� time
time_cost

��rootclass

activity�� action_type action

Class

Abstract
Class

��

Notation Used

�
�
�
�

��

��

�
�
�
�

DataType
DefBM_

trigger_type

precondition_type

postcondition_type

alternative_parents

generic_alternative_parents

is_a

�
�
�
�

entity_type_rel

entityentity_family

��
��
��
�� ��

��

process

originate

change

originate_fo_if

originate_normal

change_focal_on

change_normal

originate_no_if

change_normal_on

originate_focal

change_focal

��
��
��
��

��
��
��
��

��
��
��
��

��

��

��

property

attribute

parent_type

relation−
ship

entity_function

process_cond

dependency

property_rel

originate_focal_fun

originate_normal_fun

originate_if_fun

change_focal_fun

change_normal_fun

refer_normal_fun

refer_master_fun

precondition

postcondition

entity_guideline

process_guidelinebusiness_rule

attribute_rule

rule

guideline

model_rule process_model_rule

entity_model_rule

trigger_information

Fig. 5.1. The Inheritance Class Hierarchy (ICH) of DefBM

Our aim is not to define the semantics of the BSDM method, but to use it as
an example to provide a framework that makes use of the knowledge embedded
in the method to demonstrate various kinds of automated support. The aim
of this inheritance hierarchy, therefore, is two-fold: (1) to provide a structure



Chapter 5. Formal Support for Data Modelling 79

to identify and relate concepts which are used in a business modelling context;
(2) to support an appropriate automated inference mechanism.

Two types of classes are included in this hierarchy: the Abstract Class and
the Normal/Concrete Class, shown respectively as a rectangle with a shaded
corner and a plain rectangle in the figure. An abstract class is a class which is
matched to an aggregate and/or abstract concept in a BSDM business model,
except for rootclass which was devised as a class to include all concepts that are
described in the business modelling context. The main purpose of an abstract
class is to provide a structure to identify and distinguish different concepts in a
business model, that each concept is modelled as a class in the class hierarchy,
and to allow the classification of the more specialised subclasses. Therefore,
members of an abstract class are other abstract classes (to enable further spe-
cialisation) or normal classes.

An abstract class describes a primitive concept in a BSDM business model,
but it may or may not have a one-to-one mapping to modelling primitives
in a conventional BSDM business model because we have added extra class
types which are used for the model but are not prescribed by the BSDM model
primitives. Added classes are, for instance, the class time which is an important
concept in the description of the dynamics of the model and therefore useful
for our purposes, but it is not a primitive found in the BSDM manual. The
classes process cond, rule and activity are mentioned and used in BSDM but
are not explicitly captured in a business model: BSDM does not define notations
and structures to record them. The classes entity family and abstract entity are
classes applicable to BSDM but not used by BSDM: we include them in the
formal language to enable some of the automated support that we intend to
provide. With these extended classes, various aspects of an instantiation of a
business model can now be explicitly represented and handled by this class
hierarchy and the defined formal language.

A normal class maps to a set of concrete or abstract things described in
a business model. The members of a normal class are other normal classes as
described in Figure 5.1, or instances that may occur in a business world. For
example, the members of class action type is another class action which defines
all of the possible actions that may happen in a business process; whereas
the members of class attribute (of an entity occurrence/instance) are all of the
attributes that any entity occurrence may have, e.g. the name, address and
birthday of a person. Again, a normal class may or may not have a direct
mapping to the existing model primitives in a BSDM model due to the added
classes to the formal language, DefBM.

The DefBM language was defined to represent the architecture and meaning
of a business model in BSDM. It is based on first order predicate logic and
follows the same convention of the Prolog syntax for arguments, i.e. we use any
words starting with a capital letter to denote a variable and any words starting
with a lower case letter to denote a constant. DefBM has also been used to
represent the model rules and guidelines which are described in BSDM.



80 AUTOMATING BUSINESS MODELLING

In DefBM, the predicate abstract class indicates an abstract class in the
Inheritance Class Hierarchy. For example, the root of the hierarchy, rootclass,
is denoted as

abstract class(rootclass).

There are (currently) in total 17 abstract classes and each one of them
is represented in an abstract class predicate. A normal class is denoted by a
predicate normal class. For example, the class originate focal is represented as

normal class(originate focal).

The predicate super class is used to denote the membership of a subclass
to a superclass in this inheritance hierarchy: the class Super is a superclass of
the class Sub, as shown in the predicate below.

super class(Super, Sub).

An example instantiation of predicate super class is that rootclass is a su-
perclass of process. This is formally represented below.

super class(rootclass, process).

In this class hierarchy, both super and subclasses can be abstract classes; or
a superclass can be an abstract class and its subclass can be a normal class; or
both of them can be normal classes. It is not allowed that a normal class has
an abstract class as a subclass because this is conceptually incompliant with
the class hierarchy convention. The top-down allocation of classes is partly to
ensure that the more general and higher level of abstraction always appears
first in the hierarchy before the more specialised and concrete concepts are
introduced.

Similar to the PIF class hierarchy, properties associated with a superclass
are passed on to its subclasses through the inheritance hierarchy. Unlike the PIF
hierarchy, however, this hierarchy not only captures the facts about a business
model, but also includes classes that represent modelling rules. For example,
classes model rule and guideline are the formalised modelling practice recom-
mended by the method, whereas business rule and attribute rule are domain-
dependent rules which are constructed by the modellers.

A rule may be applied to a class anywhere in the hierarchy and may be
associated with one or more classes. Because of the class hierarchy, subclasses
inherit the association with rules from their parents. For example, if a particular
rule has been associated with a particular class originate (process), then that
rule applies to all subclasses of originate. Modelling these rules as their own
set of classes allows for easier identification of the modelling rules that apply
to a particular domain.

Later in this chapter and in Chapters 6 and 7 we describe in detail about
how this formal language has been used to represent things that are described
and implied in the context of business modelling. Before taking a closer look
at the use of this language, a brief summary of the concepts of a BSDM Entity
Model is given.



Chapter 5. Formal Support for Data Modelling 81

5.2 Entity Model

A BSDM business model gives an integrated view over various important as-
pects of an organisation. This overview is captured in a so-called master map.
Its content is divided into the different business operations within an organisa-
tion. Each of the local business functions is called a local map. In other words, a
complete business model consists of many local maps: although each local map
is responsible for describing a different operation of the business, as a whole
they should be consistent and form a converged view of a company.

Figure 5.2 shows part of an example BSDM business model, a local map,
as it appears in our system KBST-BM, in which we named a local map a
view. The notation used in the tool is that described in the BSDM manuals
[51] so existing BSDM practitioners should be conversant with the notation.
This simplified model describes the selection and evaluation of modules at a
university.

Fig. 5.2. A BSDM Entity Model

Boxes show the entities involved: ‘Person’, ‘Module’, ‘Practical’, ‘Practical
Assigned to Module’, ‘Practical Turned In By Person’, ‘Module Selection’ and
‘Module Performance’. An entity denotes a class of things in the described



82 AUTOMATING BUSINESS MODELLING

world. In this case, ‘Person’ denotes the class of the individual persons who are
in connection with the university, and ‘Practical Turned In By Person’ denotes
the group of all practical homeworks turned in by every (known) person for a
(known) assigned practical and a (known) module.

Lines with a circle at one end denote a dependence relationship between two
entities: the entity with the circle ending is the “parent” entity, whereas the line
ending entity is the “child” entity. As it is named, a dependence relationship
places a “dependent” relationship to the “child” entity. Every occurrence of a
“child” entity can only exist if the occurrence of the corresponding “parent”
entity exists. For instance, in this example, the entity ‘Module Selection’ has
two parent entities: ‘Person’ and ‘Module’. This means that it is impossible
to select a module (i.e. to create an occurrence of entity ‘Module Selection’)
without knowing the particular person and module involved.

The dependence constraint is transferable to child entities (connected by de-
pendencies) and to further “descendent” entities, which also provides tractabil-
ity between occurrences in the different layers of the model. For example, the
entity ‘Practical Turned In By Person’ is a direct descendent of entities ‘Per-
son’ and ‘Practical Assigned To Module’ which means that every occurrence
of ‘Practical Turned In By Person’, namely every recorded practical homework
turned in by a student, must identify the particular person (student) who did it
and the particular practical which has been assigned to the module. This entity
is also a “descendent” entity of ‘Module’ and ‘Practical’ via entity ‘Practical
Assigned to Module’ which allows it to trace back to the corresponding module
and practical. Therefore, according to this model, any practical homework can
be traced back to its author, its assigned practical and module.

5.3 Representing the Entity Model

As mentioned earlier, an entity represents a class of things in the world.
Each ‘Person’, ‘Module’, ‘Practical’, ‘Practical Assigned to Module’, ‘Practical
Turned In By Person’, ‘Module Selection’ and ‘Module Performance’ is a spe-
cific kind of entity, and they are therefore represented as subclasses of entity
in the inheritance class hierarchy. Using this class hierarchy, we can represent
all entities shown in this business model. For example, the entity ‘Person’ is
represented as:

class(entity, ‘Person’).

Recall that earlier in this chapter we mentioned that a predicate is normally
used to denote a class. The symbol ‘class’ is therefore used here to denote a
class. As we also wish to specify the different types of classes in a predicate,
i.e. Entity and the different types of Processes, one additional argument was
added to indicate the types of classes. In this case, the symbol ‘entity’ was
used to denote an entity class. Representation for different process classes will
be illustrated in Chapter 6. To represent the dependence relationship between
entities, the predicate



Chapter 5. Formal Support for Data Modelling 83

parent type(Entity, Set of Parents)

is used, where Entity denotes the child entity and Set of Parents is the set
of parent entities of this entity. For example, ‘Person’ does not have a parent
entity, therefore, its Set of Parents is empty as shown below; whereas ‘Practical
Assigned To Module’ has two parent entities, therefore these two entities are
enclosed in the set, also shown below.

parent type(‘Person’, [])
parent type(‘Practical Assigned to Module’, [‘Module’, ‘Practical’])

BSDM gives a static and sharable set of properties to each entity: (entity)
name, parents preposition, definition, (occurrence/instance) examples, inclu-
sions, exclusions, query, notes, identifier, originated by, originated date, last
revised by, last revised date, controller and status. Conventionally, the values
of the properties are recorded in a BSDM form: the Entity Definition Form.
During construction of the business models, the modellers need to fill in values
for these properties. These are usually written in natural language and some
in structured natural language.

A property, as described above, is a definition or characteristic of an entity
and is shared by every occurrence of this entity (class). For instance, the prop-
erty definition defines the meaning and boundary of an entity type, therefore
every occurrence of this entity must be bound by this definition. It is repre-
sented in the property predicate below, where Entity Name is the corresponding
entity, Property Name is the name of the property, and Property Content is the
value of the property.

property(Entity Name, Property Name, Property Content).

Occurrences of an entity also have their own attributes. These are the char-
acteristics of the individual occurrence and are not shared with other occur-
rences. Examples of attributes of an occurrence are the name of an occurrences
or a certain date relevant to a particular occurrence. For instance, an entity
person may have several occurrences whose individual names are mary, john
and mike, etc. Hence, a predicate attribute is used in the formalism to represent
attributes of a particular occurrence.

attribute(Entity Name, Att Name, Attribute Type)

Similar to the property predicate, Entity Name represents the name of an
entity, Att Name represents the name of an attribute, and Attribute Type stores
a set of allowed types of values for the attribute. Unlike properties, attribute
names are not provided by the method, but given by the modellers after an
entity has been created. The information about an attribute is recorded in a
conventional BSDM Attribute Definition Form.

The actual value of an attribute for an entity occurrence is not recorded in
the definition form, and is only meaningful when a particular occurrence of an
entity has been created which is normally not part of the Entity Model building
exercise. However, because we provide a simulation facility to demonstrate the



84 AUTOMATING BUSINESS MODELLING

dynamic aspects of a model, attribute values are also formalised which will be
described in Chapter 7.

Since an attribute value is dynamic and manipulated by other compo-
nents (processes) of the model, it is useful to define its value types using
Attribute type. The types of values are ‘STRING’, ‘INTEGER’, or a predeter-
mined finite set of “landmark” values. A landmark value is a value which shows
the representative state of the system. Since we are only concerned with values
which are significant to the modeller, we will only record landmark values. A
good example of using landmark values is the specification of life statuses of
an entity occurrence, which is illustrated in the following section. While land-
marks are expressed in linear and discrete values, it is also possible to show a
value that is between two landmark values in the form of [landmark value 1,
landmark value 2] to show a value that is greater than landmark value 1 and
smaller than landmark value 2.

A qualitative approach has been deployed for assignment of attributes val-
ues. This approach has enabled KBST-BM to derive finite states of the model.
Each derived state is significant in its meaning to the modeller, and is dis-
tinctive from other states which include entity occurrences with representative
attributes. Attributes which are not restricted are mostly used for documenta-
tion (e.g. STRING) and with limited computational usage.

5.4 Representing the Life Cycle Diagram

The instantiation of an entity, an entity occurrence, has a life cycle which
starts when it is “created” (or originated) and ends when it is “terminated” in
a model. When an occurrence is “terminated”, it becomes a history record in
the model and will be used for reference only. It no longer plays any active role
or may be treated as an active instance in the model. BSDM uses Life Cycle
Diagrams (LCD) to capture this information.

Fig. 5.3. The Life Cycle Diagram for “Practical Turned In By Person”



Chapter 5. Formal Support for Data Modelling 85

Figure 5.3 shows an example Life Cycle Diagram for the entity Practical
Turned In By Person as it is used in BSDM. According to this diagram, occur-
rences of this entity may have four different possible life statuses: handed-in,
marked, cancelled and reviewed. This means that the work of a practical as-
signment can be ‘handed-in’ (by a student), ‘marked’ (by a first marker), or
become ‘cancelled’ (e.g. in the case of a new submission of a practical from the
same student which automatically cancels the previous submissions) and the
grade of the practical work can be ‘reviewed’ by a second marker after it has
been ‘marked’ by the first marker. The diagram does not limit the situation
to where the first marker and the second marker are the same person, but it
points out that a grade has to be reviewed. Had there been a policy that all
practical work has to be reviewed by a different marker, it would have been
documented as a business rule.

The left-to-right arrows in a Life Cycle Diagram point to the allowed start-
ing statuses for any occurrence of the corresponding entity type. Figure 5.3
specifies that when an occurrence of Practical Turned In By Person is created,
its life status is ‘handed-in’. This example gives only one starting life status,
though in other situations there may be more than one starting status for an
entity which would be denoted by the additional left-to-right arrows in the
corresponding LCD diagram.

The top-down arrows in a Life Cycle Diagram define the possible transitions
between life statuses: with the beginning of line aligned to the “begin” or
“start” life status and the arrow ending aligned to the designated life status.
For example, in Figure 5.3, the two left top-down arrows start with status
“handed-in”, but one ends with status “marked” and the other ends with status
“cancelled”, denoting that when a practical work has been handed in by a
student, it can either be marked or cancelled afterwards. The right-most top-
down arrow denotes that a practical is reviewed after it has been marked. Note
that there is no arrow which leads from status cancelled downward; in fact,
a cancelled practical is an inactive instance and is only stored for reference.
Also note that in this figure any marked practical cannot be cancelled and any
reviewed practical stays the way it is. This reflects the marking policy of the
university.

The definition of life cycle status and the allowed transitions between life
statuses of an entity is an important attribute of an entity which not only
reflects the policies of an organisation, it also decides the dynamic state of an
entity occurrence and that of the whole model. Therefore, it is important that
they are represented and handled in the formal language.

The predicates life cycle start status, life cycle end status as well as
life cycle transit, are used to represent three different kinds of life status
information respectively. Predicate life cycle start status stores a possible life
status in Life status of an entity occurrence when an occurrence of the corre-
sponding Entity name has been created; whereas predicate life cycle end status
stores a possible life status in Life status of an entity occurrence when an oc-
currence of the corresponding Entity name has been terminated; the predicate



86 AUTOMATING BUSINESS MODELLING

life cycle transit records one directional transition, going from the From status
to the To status. These predicates are shown below.

life cycle start status(Entity name, Life status)
life cycle end status(Entity name, Life status)
life cycle transit(Entity name, From status, To status)

Therefore, Figure 5.3 can now be formally represented using the predicates
below.

life cycle start status(‘Practical Turned In By Person’, handed-in)
life cycle end status(‘Practical Turned In By Person’, cancelled)
life cycle end status(‘Practical Turned In By Person’, reviewed)
life cycle transit(‘Practical Turned In By Person’, handed-in, marked)
life cycle transit(‘Practical Turned In By Person’, handed-in, cancelled)
life cycle transit(‘Practical Turned In By Person’, marked, reviewed)

5.5 Representing Domain Knowledge

BSDM provides advice on how to build good business models. We extract this
advice and formalise it under the abstract class rule in the class hierarchy
shown in Figure 5.1. Some pieces of advice are applicable to Entity Models and
others to process models. Each piece of advice is recommended with different
strength. According to the degree of enforcement on a model, we classify them
in two categories: model rules and guidelines. A model rule is a rule which must
be followed if the model is to be sound. Model guidelines are recommendations
for a model of good style. They are classified in the classes of entity model rule,
process model rule, entity guideline and process guideline which are subclasses
of model rule and guideline which are subclasses of rule in the class hierarchy
in Figure 5.1.2 To distinguish these two different strengths of enforcement, two
implication operators are deployed in our formalism: ‘⇒’ is used to represent a
model rule and is read as ‘must be’; ‘�’ is used for model guidelines and is read
as ‘should be’. Formula ‘P ⇒ Q’ reads ‘if P is true then Q must be true’, and
formula ‘P � Q’ reads ‘if P is true then Q should be true’. More details about
this naming convention are in Appendix F.

The advice that is given by the method can be categorised into three kinds:
general methodical issues, application domain related methodical issues, and
pure application domain issues. The advice of purely methodical issues is the
advice which is normally associated with the strongest recommendation which
when violated often leads to an error in the model. We classify this type of
advice as model rules. Advice of application domain related methodical issues
is more flexible. This type of advice provides guidelines for standard practice
for most organisations. However, since the final decision of design very often
depends on the particular circumstances and requirements of the organisation

2 The classes business rule and attribute rule are introduced in Chapter 6.



Chapter 5. Formal Support for Data Modelling 87

concerned, exceptions are also acceptable. We classify this type of advice as
model guidelines. Advice regarding purely domain-dependent issues is general
advice about the construction of a model or the acceptable boundary of defining
of an entity, or an error checking mechanism for spotting model inappropriate-
ness. Such advice is mostly used to judge the discrepancy between the built
model and business reality. Since the final recommendation for any particular
circumstances for an organisation cannot be pre-determined without knowing
the particular organisation in depth, this type of advice is not (and cannot
be) formalised as rules and guidelines. (However, some such knowledge can be
obtained by comparing with similar business models. We deploy Case-Based
Reasoning techniques to store and reuse business models to provide additional
support. Chapter 8 provides more details.)

The text below gives an illustration of how an entity guideline and model
rule can be formalised using our formal language DefBM.

Example Entity Model Rule

A dependence in BSDM means that occurrences of a parent entity must
have already been created or are created at the same time as occurrences of
its child entities are created. A natural deduction of the above observation is
a model rule which states that any circular dependence relationship (a parent
being dependent on its child) must not be allowed in a business model.

To describe this rule, we introduce a predicate ancestor(P, Q) to mean that
P is an ancestor entity of Q, if P is a parent entity of Q, formally defined by
the parent type predicate, or that it is an ancestor entity of Q through the
transitivity property of the parent type predicate. The ancestor predicate can
be described formally in the two expressions below:

∀X,Y,E.parent type(X,Y ) ∧ E ∈ Y
⇒
ancestor(E,X)

∀X,Y,E,Z.parent type(X,Y ) ∧ E ∈ Y ∧ ancestor(Z,E)
⇒
ancestor(Z,X)

The circular dependence rule is then represented by the expression below
which can be read as “if X is an entity, then X cannot be its own ancestor”.

∀X.class(entity, X) ⇒ ¬ancestor(X,X)

Example Entity Guideline

BSDM recommends that the depth of an Entity Model should normally
be no more than four layers, i.e. four steps through the dependency links. It
also provides the types of entities which should be placed in each layer, they
are collectively called Entity Families. The recommendation for the number of
entity layers is to prevent a model from being over-constrained by several layers
of dependencies through levels of entities. Since this is only “soft” advice and



88 AUTOMATING BUSINESS MODELLING

the final decision very much depends on the application, it has been formalised
as a guideline in our formal language.

If we define property(Entity, level, N) to mean that an entity Entity is
located at level N in the business model, then this “4-layer” guideline can be
described as:

property(Entity, level, N) � N < 5.

Folklore Rule

In addition to advice given explicitly in BSDM manuals, there is a small
number of the rules which are not mentioned in the method but are natural
consequence of the method itself and, therefore, must be followed to create a
sound model. These rules are also identified and captured as part of the for-
malisation. An example of this kind of folklore rule is the “circular dependency
rule” that we have shown in the example above. Since these rules are derivable
from the method itself and they do not require any treatment which differs
from the explicit ones, we do not use separate classes to accommodate them.

Entity Families

Within the domain of an Entity Model, BSDM provides guidance about
the structure and example entities to be used in an entity model. They are
collectively called Entity Families. This information is formalised in our Entity
Conceptual Hierarchy and represented in DefBM. This information is used as
background knowledge in our system, KBST-BM, for understanding the seman-
tics of an entity and to assist in determining the appropriateness of the selection
of an entity during automated Entity Model verification and consultation ses-
sions. A detailed discussion of Entity Families and their representation is given
in Section 8.7.

Obviously, there are more aspects in an Entity Model that have been for-
malised but are not described in this chapter. A list of the Entity Modelling
rules and guidelines used in the system is given in Appendix G.

5.6 Inference

As different Entity Model rules and guidelines may verify different aspects of
the model, similar rules and guidelines are grouped together in KBST-BM to
enable an iterative, systematic and topical verification process. It gives the user
the freedom to either run a complete check on the model or to choose to work
on a particular aspect of the model, i.e. to use certain rules/guidelines only,
in a smaller “Plan-Build-Test-Refine” cycle. This helps the user to focus on a
particular design issue and not be overloaded by too much advice which is of
no immediate concern.

Each of these model rules and guidelines are also implemented modularly
and therefore can operate independently. This enables the user to verify the



Chapter 5. Formal Support for Data Modelling 89

model in his/her preferred order. It is also advantageous if the rule base is to
be modified or extended in the future.

There are in total eleven sets of Entity Model rules and six sets of guide-
lines. Based on these sets of rules and guidelines and (partial) information
about an Entity Model, so-called critiques are inferred. These critiques pro-
vide help to the modeller during model verification. They do not replace the
manual verification process entirely, because not all errors and solutions can be
standardised or made available, as has been mentioned in the previous section.
Instead, partial verification and validation is provided to complement human
efforts. In fact, due to the common lack of automatic verification and validation
methods for informal methods, partial verification and validation methods can
be especially interesting and helpful in quality assurance.

Several types of critiques are provided.

• Correctness critiques detect structural, syntactical and semantic errors.
• Completeness critiques identify incomplete information in the model and

suggest which missing concepts may need to be included.
• Consistency critiques point out discrepancies in different parts of the model.
• Appropriateness critiques show deviations from standard practices.
• Presentation critiques highlight awkward use of naming style which can lead

to misunderstandings or conceptual errors.
• Alternative critiques search for similar standard and past models and

present them as alternatives to a given modelling decision. This critique
makes use of a case library of business models (see Chapter 8 for more
comments on the use of Case-Based Reasoning techniques).

To provide these critiques, each of the above logic expressions are translated
into semantically equivalent CLIPS rules [79] which use the above introduced
representation of primitives (such as class, parent type and ancestor ) in the
model.3

For example, logical expressions of the form below:

• property1(X) ⇒ property2(X) (must always be true), and
• property3(X) � property4(X) (should always be true)

are firstly negated and formalised into a standardised Conjunction Normal
Form. For instance, the above model rule and guideline is negated and for-
malised respectively as the formula below.

Model rule: must always be true
¬(property1(X) ⇒ property2(X))(negation)
= ¬(¬property1(X) ∨ property2(X))(normalisation)
= property1(X) ∧ ¬(property2(X))

3 Because the system that we have chosen for our implementation uses CLIPS, our
formal expressions are translated into CLIPS rules. These formal rules can also be
programmed in Prolog, as we have done in our first version of the system, or any
other suitable language.



90 AUTOMATING BUSINESS MODELLING

Model guidelines: should always be true
¬(property3(X) � property4(X))(negation)
= ¬(¬property3(X) ∨ property4(X))(normalisation)
= property3(X) ∧ ¬(property4(X))

If any of the normalised formulae are true, a violation is found. This forms
the precondition part of a model rule or guideline in CLIPS which checks a
model by searching for instances satisfying the precondition (it can consecu-
tively find all instances). If any instance is found, then the corresponding model
rule and guideline is violated. The CLIPS rule below can be implemented, where
rule n and guideline n1 denote the identifiers of the corresponding model rules
and guidelines.

property1(X) ∧ (not(property2(X)))
=>
advise(rule n, X)

property3(X) ∧ (not(property4(X)))
=>
advise(guideline n1, X)

In response to the user’s request to verify a business model, the inference
engine dynamically represents the user model using the formal language and
tries to prove each rule n and guideline n1 to be true by actively searching
all violation instances in the model. If any violation has been found for a rule
or guideline, the corresponding modelling rule or guideline has been broken in
the model, and explanation and advice are given to the user, via the function
advise(Violation id, Source data).

Having the knowledge about these rules and guidelines embedded in the
system, the inference engine can provide information which it has found is the
cause of the violation. It is also able to give advice on how to correct the error.
For instance, if the system has found a cyclic dependence in the model, a warn-
ing is given to the user containing information about this violation. It provides
a list of entities which are involved in the cycle and suggests possible depen-
dence links to be erased. An example use of KBST-BM for model verification
is given below.

5.6.1 Model Verification Consultation Example

Figure 5.4 modifies the example Life Cycle Diagram shown in Figure 5.2. In
this figure, one additional top-down arrow ‘(1)’ is added. Arrow (1) is incorrect
because it is initially intended that a ‘cancelled’ practical from a student should
not be processed any further. However, this intention may have been lost during
a complex modelling exercise and arrow (1) was added at a later stage.

Terminating life statuses of all entities are specified in two ways: by the
modellers during model-building activities, normally leading to a status which
is only applicable to a particular entity; or as a standard terminating life status



Chapter 5. Formal Support for Data Modelling 91

Life Status

Entity: Practical Turn In By Person

handed-in

marked

cancelled

reviewed

(1)

Fig. 5.4. A Life Cycle Diagram with error

which is applicable to all entities, such as “cancelled” and “closed” provided
by BSDM. This knowledge can be used to support parts of the checking to
determine whether an entity’s life cycle has been defined correctly. For instance,
if there exists a transition out of a known terminating life status, as indicated
by arrow (1), an error has been made and the system should detect it and give
appropriate advice.

The model rule which can be used to detect this error uses this knowledge
is described formally in the expression below (the two types of terminating
life statuses are each formally represented as life cycle end status and termi-
nated life status). Although this rule is sufficiently self-explanatory, a more de-
tailed description is given in Appendix G.

life cycle transit(Entity, From life, To life)
⇒
¬terminated life status(Entity, From life) ∧
¬life cycle end status(From life)

An example model verification and consultation window for this error is
shown in Figure 5.5. The top left slot labelled ‘Verify Model Type’ indicates the
type (or the part) of the business model that the system will be checking: there
are currently two types of models that can be checked: an entity or a process
model and in this case it is the Entity Model that the system is verifying. The
second slot ‘Verify Rule/Guideline’ indicates that either a set of the modelling
rules (R) or guidelines (G) is used: as ‘R’ is given it means a set of modelling
rule is applied. Slot ‘Verify Rule/Guideline Set(1-11/6)’ indicates that there
are 11 sets of modelling rules and 6 sets of guidelines which can be used for
verification: as illustrated it is the Entity Modelling rule set 11 that is used.
When all of this information has been given, the user can press the button
‘Verify NOW’ to activate the verification process.

After checking the Entity Model, 5 violations have been found and are shown
in the ‘Rule/Guideline Violation List’ Window. The user can now highlight any



92 AUTOMATING BUSINESS MODELLING

Fig. 5.5. A consultation window in KBST-BM

particular violation to see more details. Figure 5.5 shows that the user has high-
lighted the violation ‘Wrong Termination’ which involves the entity ‘Practical
Turn In By Person’. A detailed explanation about this violation, the violated
instance and the suspected erroneous properties, and the corresponding advice
for the user to correct this error are given in the following three sub-windows



Chapter 5. Formal Support for Data Modelling 93

in the consultation window. Similar violation instances are grouped together
and displayed in the same “list” window, therefore making it easier to work
with as has been shown in this example. To see all of the violations listed in
this window, the user can highlight any instance to see more details.

5.7 Conclusion

This chapter demonstrated how an informal or semi-formal method, such as
BSDM’s Business Modelling Method, can benefit by applying a formal method.
To capture the knowledge of a business model a formal language, DefBM, has
been devised which is based on an inheritance class hierarchy. This inheritance
hierarchy acts as a meta-model which provides a backbone of categories for
distinguishing different types of model concepts allowing attributes to be passed
on and model rules and guidelines to be applied to similar types of model
primitives.

A BSDM Entity Model can be formalised and represented using DefBM.
Knowledge, model rules and guidelines are formalised and embedded in a
knowledge-based support tool, called KBST-BM. Standard and generic knowl-
edge of the method and the business domain is stored as facts in the database
of KBST-BM; modelling rules and guidelines are stored as rules. Together they
are used by KBST-BM to infer and inspect the user Entity Models and provide
advice for errors. This capability of KBST-BM supports the iterative Plan-
Build-Test-Refine model development cycle, it also allows relevant parts of the
model which may be scattered within the model to be examined collectively
and systematically using the original method. Compared with many EM tools
which are little more than “electronic paper”, KBST-BM provides useful addi-
tional assistance to modellers.

5.8 Exercises

1. Discuss benefits and limitations of knowledge representation techniques. Is
it possible (or useful) to represent all the knowledge there is to know?

2. Describe the overall modelling support process and how a formal language
may play a part in that.

3. Describe steps in creating a formal language. Can all informal models be
formalised?

4. Given different goals, different formal languages are created. Can you illus-
trate the different goals and how the design of a language should be altered
accordingly?

5. Represent the business model in Figure 5.6 using DefBM.
6. Discuss the requirements when designing a model support tool and give

examples of how a design may meet such requirements.
7. Discuss the different types of verification and validation (V&V) techniques

that may be offered for a formalised Enterprise Model. What are the con-
siderations when providing such support to the user?



94 AUTOMATING BUSINESS MODELLING

8. Verification and validation must be based upon existing knowledge. Discuss
the potential sources of such knowledge.

Fig. 5.6. A business model for business account and organisation

5.9 Advanced Exercises

1. This chapter includes two different types of inference rules: model rules
and guidelines. Explain their semantics and discuss whether this approach
complies with First Order Logic (FOL).

2. Continuing from the previous question, explain how the different types of
inference rules may (or may not) differ, in terms of implementation, when
compared with the normal inference connectives in FOL. Refer back to
Sections 4.2 and 4.3 for more details on FOL.

3. Take the three example Entity Model rules of Section 5.5 and implement
them using an appropriate programming language, such as Prolog, Lisp,
Clips or Java, using the formal language DefBM.



6

Formal Support for Process Modelling

When an Entity Model is completed, the next BSDM activity is to build the
Process Model. Following the same formal framework which has been used for
the Entity Model (illustrated in Figure 5.1), one will be able to formally rep-
resent model primitives and properties of a Process Model using the devised
formal language DefBM. As previously, advice for building business models
in BSDM has been extracted from the user manuals to construct model rules
and guidelines. Extensions of modelling rules and guidelines in connection with
the execution of business processes have also been derived from BSDM and
formalised. These formalised modelling rules and guidelines form the basis for
automatic verification and validation facilities in our support tool KBST-BM.
This chapter describes the components of a Process Model, their formal rep-
resentation, and the corresponding automatic modelling support which is pro-
vided in KBST-BM. An example verification and consultation session using
KBST-BM is illustrated at the end of this chapter. An extensive description of
all of the captured and formalised modelling rules and guidelines can be found
in Appendix H.

6.1 Process Model and Process-Entity Matrix

Modellers can extend an Entity Model with information about how a business
operates to form a Process Model. Instead of describing the detailed current
practice to accomplish certain goals, a process model captures the necessary
logical steps, in business terms, to achieve these goals. Things which need to
be known or managed in a process are represented as entities and are normally
already identified during the Entity Model building activity, though additional
entities can be added by revisiting this activity. The set of relevant entities
are included in a Process Scope. Figure 6.1 shows a screen-shot of our system
describing an example Process Model which was built on top of the Entity
Model, previously shown in Figure 5.2. Two example processes are shown: ‘Ac-
knowledge Handed-In Practical’ and ‘Module Performance Assessment’. Each
includes four entities in its scope.



96 AUTOMATING BUSINESS MODELLING

Fig. 6.1. An example BSDM Process Model

Before we go into more details about BSDM’s Process Model, it may be
a good time to introduce the concept of classes and occurrences in a Process
Model. As has been described in Section 5.2 for BSDM’s Entity Model, that
an entity in BSDM denotes a class of things in the described world and that
each entity includes a set of things.1 Similarly, in a BSDM Process Model, a
process denotes a type of process instances or occurrences so that each process
may include a set of actual processing events being carried out in the described
world.

A BSDM process includes at least one entity in its scope. The relationship
between a process and an included entity is specified by the role that an en-
tity plays in the process. This relationship is called an entity function and is
normally summarised in matrices like the one in Figure 6.2. There are seven
entity functions in BSDM:

• originate focal,
• originate normal,
• originate in-flight,
1 They are often called occurrences or instances.



Chapter 6. Formal Support for Process Modelling 97

Process-Entity Matrix
Ack. Handed-In Practical Module Performance Ass.

Person refer normal
Module refer normal
Practical Assign to Module refer normal refer normal
Practical Turn In By Person originate focal originate in-flight
Module Selection refer normal
Module Performance originate focal

Fig. 6.2. A Process-Entity Matrix

• change focal,
• change normal,
• refer normal, and
• refer master.

An entity function which includes the key word “focal”, i.e. originate focal
or change focal, indicates that the main purpose of the process is to create
an originate focal entity occurrence (instance) or to modify attributes of the
change focal entity occurrence. The originate type of entity functions, such
as originate focal, normal and in-flight, specify the creation of occurrences of
the entity type. The change type of entity functions, such as change focal and
normal, represent update operations carried out on the properties of the entity.
The refer type of entity functions, such as refer normal and master, capture the
referencing of an entity during process execution. The three types used in our
example are originate focal, refer normal and originate in-flight. The matrix
in Figure 6.2 shows the relationships (entity functions) between the processes
and entities shown in Figure 6.1.

The BSDM modeller specifies the role of each entity in a process. The pri-
mary purpose of the process ‘Acknowledge Handed-in Practical’ is to acknowl-
edge the fact that the practical work which has been handed in by a person
(student) is received, i.e. its purpose is to create an occurrence of the Practical
Turn In By Person entity (the originate focal entity). To create the occurrence,
information stored in relevant entities, i.e. Person, Module and Practical As-
sign to Module, is used. These entities, hence, are refer normal entities. In the
process of Module Performance Assessment, the entity Practical Turn In By
Person is an originate in-flight entity. This indicates that records of practical
must be known before Module Performance can be calculated. Otherwise, the
corresponding practicals must be recorded and relevant marks assigned,2 as
part of the assessment process, before the overall Module Performance can be
determined.

2 The mark is null if a practical has not been handed in.



98 AUTOMATING BUSINESS MODELLING

6.2 Representing the Process Model

There are two main kinds of processes in a BSDM model: originate and change.
For the KBST-BM system, we classify these two kinds of processes respec-
tively as originate and change classes in the inheritance hierarchy (Figure 5.1).
They are subclasses of process. We further distinguish each process into sub-
categories, according to the functions that they carry out. Similar to the rep-
resentation of an entity, a process is formally represented through a class pred-
icate:

class(Process type, Process name).

In the example given in Figure 6.1, the process Acknowledge Handed-In
Practical is an originate focal process, because its main function is to originate
an entity which is its focal entity. On the other hand, the process Module Per-
formance Assessment is an originate focal if process, because its main function
includes not only to originate its focal entity but also to manage its in-flight
entity. The class originate focal if is a subclass of originate focal, which is a
subclass of originate process in the inheritance class hierarchy. The example’s
two processes can be formally represented as follows:

class(originate focal, ‘Acknowledge Handed-In Practical’)
class(originate focal if, ‘Module Performance Assessment’)

A process is a class described by a set of common characteristics which are
shared by a collection of business processes. As was the case for entities, these
common characteristics are recorded through the use of a property predicate:
property(Process name, Property name, Property Content). The values of these
properties are static, i.e. they remain unchanged during the simulation of the
model.3

As mentioned earlier, entity functions are relationships between processes
and entities. They are therefore modelled as subclasses of relationship and en-
tity function in the inheritance class hierarchy. To represent entity functions,
a predicate Entity function(Process name, Entity name) is used. The formal
representation of the three entity functions which are used in the example Pro-
cess Model (Figure 6.1, refer normal, originate focal and originate in-flight) for
process ‘Module Performance Assessment’ is given below.

refer normal fun(‘Module Performance Assessment’,
‘Practical Assign to Module’)

refer normal fun(‘Module Performance Assessment’,
‘Module Selection’)

originate focal fun(‘Module Performance Assessment’,
‘Module Performance’)

3 Dynamic aspects, i.e. issues dealing with the execution of a business model, are
covered in Chapter 7, when we discuss the procedural model.



Chapter 6. Formal Support for Process Modelling 99

originate if fun(‘Module Performance Assessment’,
‘Practical Turn In By Person’)

Since each entity in a process must play a role in a process, i.e. has an
entity function, the collective information of entity functions define the process
scope. This derived process scope can be used to check the drawing of a Process
Model. It can also be used to understand the purpose of a process which forms
the basis for checking whether two processes can be merged or whether one is
subsumed by the other.

6.3 Representing the Life Status of a Process

Based on the Life Cycle Diagram completed during the Entity Model building
sessions, BSDM allows the modellers to further specify the relationships be-
tween entities, their life statuses and processes. For example, Figure 6.3 adds
information about which processes are involved in the calculation of a practical
mark by extending the Life Cycle Diagram which was initially built during the
Entity Model building activity (see Figure 5.3).

Fig. 6.3. An extended BSDM Life Cycle Diagram

As one can see, four processes have been identified: one originate process
Acknowledge Handed-In Practical and three change processes Mark Practical,
Cancel Practical and Review Practical. To represent this new process informa-
tion, we use predicates orgprocess and chgprocess.

orgprocess(Process name, Entity name, Life)
chgprocess(Process name, Entity name, Start, End)



100 AUTOMATING BUSINESS MODELLING

The orgprocess states that process Process name is an originate process,
and that its actions include the creation of occurrences for entity Entity name
with a (starting) life status Life. The chgprocess predicate states that process
Process name is a change process, and that its actions include the changing of
life statuses for occurrences of entity Entity name from a life status Start to
another life status End.

This information is used to help safeguard a complete and appropriate tran-
sit of an entity life cycle. Furthermore, it can be used to derive information
needed for cross-checking the design of process scope. Part of this checking
is carried out as a part of automatic Process Model verification, which is de-
scribed in Section 6.6, another part is implemented via the procedural model
and its simulator which is described in Chapter 7.

6.4 Representing User-Defined Attribute Rules

BSDM allows derivable attributes for entity occurrences. The value of a deriv-
able attribute is the result of a calculation based on one or more attribute values
of itself or other entity occurrences. Derivable attributes normally provide ag-
gregate information taken from different resources and data for management
and analytical purposes. The function used to derive values for these attributes
must consist of three types of information: the derivable attribute and the en-
tity occurrence involved, other entity occurrences and their attributes which
provide the basis for the calculation, and the derivation method which provides
the means to generate the result.

We do not intend to cover all possible derivation methods, because they
come in many varieties and it is not feasible to provide comprehensive coverage.
Instead, we provided a framework which demonstrates how formal methods can
be used to allow the modellers to define their own derivation methods for the
derivable attributes using structured English.

As mentioned above, under this framework the modeller must specify the
targeted entity occurrence (and its derivable attributes), the derivation func-
tion, and indices for identifying the data which will be used for the calculation.
The first piece of information is given when through the user interface the user
identifies the targeted entity occurrence and the derivable attribute. For the
second part, two mathematical functions, summation and average, which are
normally used in a derivation method are built into KBST-BM. The modellers
can choose to use these derivation functions or build their own functions using
Prolog expressions.

As not all data items can be identified directly, some searching and iden-
tifying methods must be provided. Since entities are linked by dependencies
throughout the model, entity occurrences are also connected by dependency
occurrences. Following the structure of dependency occurrences, relevant en-
tity occurrences can be found and identified. The third part of the information,
therefore, is for the user to provide the identifying information which enables
the system to search for and identify the individual data items which are used



Chapter 6. Formal Support for Process Modelling 101

as a basis for calculating the attribute value. We call the identifying informa-
tion an index because it is used as an index to identify entity occurrences. The
following explains in more detail.

6.4.1 Predicate for User-Defined Attribute Rules

All of the relevant information is described by the predicate derive att rule
given below.

derive_att_rule(Ent_name, Ent_ID, Ent_parents
Att_name, Att_value,
List_of_index_entities,
List_of_data_items,
Derivation_method,
Attribute_rule_content).

The information of entity name (Ent name) and entity ID (Ent ID) to-
gether identify a particular entity occurrence. Ent parents stores the occur-
rences of the corresponding entity parents. Att name is the name of the deriv-
able attribute, whereas Att value stores the (eventually) derived attribute val-
ues. List of index entities gives the set of all entity occurrences which are used
as indices to identify the referring entity occurrences. An index can be a partic-
ular entity occurrence or an ancestor entity occurrence of the referring entities.
List of data items specifies the pairs of entity (type) and attribute name of the
referring entity occurrences which hold the necessary data for deriving the re-
sult. Derivation method is either an empty list which indicates that a built-in
function of KBST-BM has been used, or a list containing the user-defined func-
tions. Attribute rule content specifies the derivation and search method which
generates the final result.

Four types of statements can be used in the Attribute rule content. The
underlying grammar for these statements is described next, followed by some
examples of how the derive att rule predicate is used.

6.4.2 Grammar for User-Defined Attribute Rules

BSDM mentions entity occurrences and their attributes, and the need to specify
attribute rules which specify how attribute values can be derived from other
attributes, but it does not specify how the relevant information that is scattered
in different parts of the model can be put together to generate values for the
derivable attributes, nor does it describe how the attribute rules are used in a
process. We need to provide a mechanism which can capture this information
and produce the corresponding answers. We first try to understand BSDM
attribute rules in an attempt to draw the necessary requirements and design
structure for representing them:

• Not all information needed is known even at run-time: to generate a deriv-
able attribute value, attribute values of other entity occurrences are often



102 AUTOMATING BUSINESS MODELLING

needed. However, those values are often generated dynamically during the
simulation, therefore cannot be obtained when the attribute rules are de-
fined. Furthermore, it is also common that the referred entity occurrences
themselves are not known, since they are also created dynamically. There
is, therefore, a need for a mechanism which relates the known information
to the unknown to help identify and retrieve the set of “base” values needed
for calculation at run-time.

• Several types of base/referred data items may be included in a derivation
function: known distinctive and particular values enumerated by the mod-
eller; entity attributes which share common characteristics; results of other
derivation methods; or a combination of any of the above situations.

• The derivation or calculation function is often application domain and case
dependent. Since the calculation function may come in any arbitrary form
(arithmetic or not), the design must be as flexible as possible, in fact prefer-
ably completely open-ended to allow the user’s own design, but supplied
with some commonly used functions.

• The attribute rule must be easy to read: since most of the modellers are
not familiar with formal languages, describing attribute rules using formal
notations is not appropriate. The more desirable descriptions should be easy
to design, understand and use.

To accommodate the above requirements for BSDM attribute rules, we have
used the approach below:

• To allow the dynamic identification of referring attributes which are not
known to the modellers when derivation methods are specified, an indexing
and searching mechanism is provided to enable the automatic identifica-
tion of those attributes during process execution. Since all BSDM entity
occurrences can be identified through dependency links, we have used this
property for searching and navigation in the dynamic business model.

• To accommodate and capture the diversified relationships between the re-
ferring data and the calculation functions, we have provided a grammar
(for Attribute rule content) which allows the user to specify the parent or
ancestor entity occurrences as indices to search for the desirable referring
entity occurrences and attributes. It is also possible to use a combination
of complex and compound sentences and phrases to obtain inter-medium
results from the collected entity attributes and use the results as an input
to the derivation function.

• To provide the maximum flexibility for calculation functions, commonly
used functions are provided in the system and can be called by the calcu-
lation function. We also allow the user to design their own functions using
Prolog expressions which will be used by KBST-BM.

• For easier design, use and understanding of attributes rules, we use struc-
tured English to express these rules. The aim of being “easy to design” is
somewhat contradictory to the previous aim of “maximum flexibility” which
inevitably requires more skills from the user. One compromise is through
the use of a form of structured English which provides the needed syntax



Chapter 6. Formal Support for Process Modelling 103

and semantics for computational operations for automation and is intended
to give an intuitive understanding for its users.

FunctionV

call

VP1Adj-P Closing-statement

V NP1 P2 NP2 NP3 Adv-P2

VP1

VP2

Statement Type I

NV

Call-statementVP_content*Adv-P**

Statement Type II

Prop Closing-statementAdv-P*Adj-PVP2

Statement Type IV

Statement Type I* VP_content*VP1 Call-statementStatement Type I* Call-statementVP1

Statement Type III

(* This construct can be used more than once, when connected by a comma)

(** This construct can be used more than once, when connected by the connective word "and")

Fig. 6.4. Grammar trees for BSDM attribute rules

Figure 6.4 shows the grammar for four types of statements which can be
used to describe BSDM attribute rules: each type is labelled with statement
type I, II, III or IV. The grammar trees adapts the convention used in the field
of natural language processing [74] [77]. The abbreviation VP stands for “Verb
Phrase”, NP stands for “Noun Phrase”, Adj-P for “Adjective Phrase” and Adv-
P for “Adverb Phrase”; wherever there is an ID attached to them, it indicates
the uniqueness of the corresponding phrases. For example, VP1 and VP2 are
different Verb Phrases, because each may deploy different key words for verbs,
or even with slightly different syntactic structure. There is a collection of words
and combinations of phrases (clauses) that are recognisable by this system. For
instance, there are two kinds of closing clauses that can terminate an attribute
rule: the “closing-statement” and the “call-statement”, as they are shown in
the grammar tree. There is also a set of verbs which are acceptable by the
grammar, i.e. calculate, compute, use, search and find, where each verb is used
in a phrase where its meaning is the most appropriate for the context. The
set of recognisable vocabularies can be extended quite easily by extending the
system’s dictionary; the grammar structure of the rules is predetermined.

The grammar design satisfies the requirements mentioned above for BSDM
attribute rules. Domain-specific (terminal) phrases have been introduced: closing-
statement and call-statement. Both statements indicate the enactment of the
specified evaluation function. Call-statement also specifies the input parame-
ters and the obtained result(s). In order to support the complicated constraints
which can be applied when retrieving data and the diversity of calculation
methods, repetitive use of some phrase structures is possible: these are marked
by ‘*’ or ‘**’ in the figure. For instance, Adv-P can be used several times in



104 AUTOMATING BUSINESS MODELLING

a sentence to define the multiple constraints applied when retrieving data. A
statement type I may therefore has the syntactical structure of VPI, Adj-P,
Adv-P and Closing-statement; or it may be VPI, Adj-P, two Adv-Ps and the
Closing-statement.

The full grammar is formally defined using a DCG (Definite Clause Gram-
mar) and is given in Appendix I. Based on this grammar, generic templates are
derived for the predicate derive att rule which provide the necessary structure
to be instantiated by attribute rules. An example template is given below.

(1) Example Template

derive_att_rule(Ent_name, Ent_id, Ent_Parents, }
Att_name, AttValue,
[Ref_EntityOcc1, Ref_EntityOcc2],
[Base_entity, Base_attName],
[],

[calculate, the, summation, of, attribute, Base_attName,
for, every, entity, Base_entity,
with, condition,
entity-ancestor, Ref_EntityOcc1,
and, with, condition,

entity-ancestor, Ref_EntityOcc2,
when, finished, save, the, result, in, AttValue] ).

The predicate above can be understood as “To infer the derivable value
AttValue for attribute Att name of entity occurrence Ent id with entity type
Ent name, one needs to sum up all of the values of attribute Base attName of
all entity occurrences with entity type Base entity. However, not all of those
entities occurrences with entity type Base entity are valid for this calculation,
but only those which have entity occurrence Ref EntityOcc1 and entity oc-
currence Ref EntityOcc2 as ancestor entities, which is specified using the key
word ‘entity-ancestor’. When all of the correct data items (attribute values)
are collected and summed up, the result is stored in the variable AttValue.”

The sentence [calculate, the, summation,... ] follows the grammar struc-
ture for Statement Type I, which specifies the derivation method (summation)
and the targeted attribute name (Base attName) in VP1 (Verb Phrase type I)
‘calculate, the, summation, of, attribute, Base attName’. It also specifies the
searching method in the Adj-P, i.e. ‘for, every, entity, Base entity’, which in-
dicates that every entity occurrence with the entity name Base entity which at
the same time satisfied the conditions specified in the Adv-Ps should be col-
lected. Two Adv-Ps are used to specify the additional identification method in
the phrase ‘with, condition, entity-ancestor, Ref EntityOcc1’, and ‘with, condi-
tion, entity-ancestor, Ref EntityOcc2’ connected by the key word ‘and’. Finally,
the ’closing-statement’ is ‘when, finished, save, the, result, in, AttValue’ which
indicates to store the result of the calculation in the variable AttValue.

The sentence is written in a predetermined syntax and is used in place of
the argument Attribute rule content as shown in the derive att rule predicate



Chapter 6. Formal Support for Process Modelling 105

above. When the key word summation is replaced by average, the derivation
function is changed to average. To modify the “conditions” for collecting dif-
ferent data sources, the List of index entities and List of data items can either
be shortened or extended.

It is also possible to give more constraints on searching for the data items by
giving multiple “with condition...” phrases. This is denoted as a Adv-p (Adverb
Phrase) and the possibility of the repetition of this phrase is marked with ‘**’
in Figure 6.4. Each new Adv-p is connected with an “and” key word with the
previous phrase (as it is shown in this example where two Adv-Ps have been
used).

(2) Construction and Execution

Fig. 6.5. Example process to illustrate attribute rule

Figure 6.5 shows a business model with process Assign Average Practical
Mark and Module Performance Assessment. To illustrate the instantiation of
a user-defined attribute rule, the relevant attributes of the corresponding en-
tities are labelled: Average Practical Mark, Exam Mark and Module Mark are



106 AUTOMATING BUSINESS MODELLING

derivable attributes for entity Module Performance, and Practical Mark is
a “normal” attribute for entity Practical Turn In By Person.

To specify the derivation method for calculating Average Practical Mark
which will be used and carried out by process Assign Average Practical Mark,
the template mentioned earlier is instantiated below.

derive_att_rule(‘Module Performance’, Ent_id),
[(‘Person’, Parent1), (‘Module’, Parent2)],
"’Average Practical Mark’", AttValue,
[(‘Person’, Parent1), (‘Module’, Parent2)],
["’Practical Turn In By Person’", "’Practical Mark’"],
[],

[calculate, the, average, of, attribute, "’Practical Mark’",
for, every, entity, "’Practical Turn In By Person’",
with, condition,
entity-ancestor, (‘Person’, Parent1),
and, with, condition,

entity-ancestor, (‘Module’, Parent2),
when, finished, save, the, result, in, AttValue] ).

This predicate provides a framework for executing an attribute rule and is
specified by the modeller when the Process Model is developed. Its variables,
such as Ent id, Parent1 and Parent2, are instantiated dynamically when the
simulation of the model is carried out, therefore are not known when the rules
are defined. ‘Person’ Parent1 and ‘Module’ Parent2 are the parent occurrences
of the targeting occurrence ‘Module Performance’ Ent id and, in this case,
happen to be the indices for searching. There are two blocks of “with condition”
statements, because the entities occurrences of Practical Turn In By Person
must have both ‘Person’ Parent1 and ‘Module’ Parent2 as ancestors.

During the simulation, when a process occurrence of Assign Average Prac-
tical Mark is created, the ‘Module Performance’ Ent id entity occurrence is
specified, but the referring Practical Turn In By Person entity occurrences
are not known. One therefore must identify the relationships between these
two entities. Given the particular entity occurrence of Module Performance,
to calculate the attribute Average Practical Mark one must first identify the
Person and Module concerned before all of the relevant Practical Marks can
be collected. However, both Person and Module are parent entities of Module
Performance, they can therefore be identified from this relationship. The lo-
cated Person and Module entity occurrence IDs are instantiated in Parent1 and
Parent2.

Upon locating the two ancestor entity occurrences, one can then follow the
dependency links downward to identify all of the descending Practical Turned
In By Person entity occurrences. Once all of the Practical Turned In By Person
entity occurrences are found, the relevant Practical Marks can be obtained and
the average of the marks can be calculated using the system built-in function,
average. The result is returned in AttValue which is stored in the attribute
Average Practical Mark of the Module Performance entity occurrence.



Chapter 6. Formal Support for Process Modelling 107

In summary, when the process Assign Average Practical Mark was created,
it only had the information of Module Performance and Module Selection entity
occurrences. The needed data set (Practical Marks) for the derivation function
was not known to the process and was only loosely connected to the target-
ing attribute. However, given the necessary indices and specifications in the
predicate, the system is able to locate the missing information and generate
the desirable value. It was based on the observation that most of the referring
entity attributes and the target entity attributes share common characteristics,
in this case the common ancestor entities. In the case when common ancestors
cannot be identified, the specific indexing entity occurrences are provided at
run-time.

This example demonstrated how a generic template is instantiated by a
particular attribute rule, why the indexing and searching method are much
needed and most importantly how the grammar provides syntax for attribute
rules which gives a framework to instruct the gathering of dynamic information
and producing of desirable result. The next example illustrates the construction
of a user-defined attribute rule using a user-defined function.

(3) User-Defined Attribute Rule Using User-Defined Functions

Users can also define their own derivation functions using the above generic
template with only minor modification. For example, the user-defined function
given below (written in Prolog) uses again the example model of Figure 6.5.
This rule states that the final Module Mark (Res) of a module is taken as
70% of the Examination Mark (Exam) and 30% of the Average Practical Mark
(AvePractical).

derive_module_mark(Exam, AvePractical, Res) :-
Res is (0.7 * Exam + 0.3 * AvePractical).

This user-defined derivation function can also be represented. The attribute
rules description used here is of Statement Type II. Several places are modified:
(1) the calculation function is specified to the full name of the Prolog rule,
derive module mark, to specify the particular function to use and the sentence
is started with the use description to improve the readability of the sentence; (2)
two VP content constructs are used, starting with key words, ‘find attribute’,
which in themselves identify the referring entity occurrences (with the key
word ‘for entity’) and attributes; (3) at the end of the rule description a call-
statement is used instead of a closing-statement, which indicates that a user-
defined function is called. The corresponding predicate and rule description is
given below.

derive_att_rule("’Module Performance’", Ent_id,
[ParentOcc1, ParentOcc2],
"’Module Mark’" , AttValue,
[ParentOcc1, ParentOcc2],
["’Module Performance’", "’Average Practical Mark’",
"’Exam Mark’" ],

[derive_module_mark(AttValue1, AttValue2, AttValue)],



108 AUTOMATING BUSINESS MODELLING

[use, the, derive_module_mark(Exam, AvePractical, AttValue),
for, calculation,

find, attribute, "’Exam Mark’", for, entity, "’Module Performance’",
with, condition,
entity-ancestor, ParentOcc1,
and, with, condition,

entity-ancestor, ParentOcc2,
when, finished, save, the, result, in, Exam,

find, attribute, "’Average Practical Mark’",
for, entity, "’Module Performance’",
with, condition,
entity-ancestor, ParentOcc1,
and, with, condition,

entity-ancestor, ParentOcc2,
when, finished, save, the, result, in, AvePractical,

call, derive_module_mark(Exam, AvePractical, AttValue)
] ).

6.5 Representing Domain Knowledge

BSDM suggests standards of good practice. It also provides several check lists
of rules and guidelines which are designed to help the modellers to review
whether a developed model is correct and appropriate. Similar to the advice
given for Entity Models, the BSDM advice on process models concerns three
kinds of issues: general methodical issues, application domain related method-
ical issues and pure application related issues. We have captured the first two
types of advice in our formal language. Since the third type of advice is applica-
tion domain dependent, there may not be a consensus regarding which advice
should be given, therefore we leave (most of) this issue to the modellers (some
such advice is embedded in generalised sector-specific BSDM models and there-
fore provided by the Generic Model Adviser (GMA), a Case-Based Reasoning
component of KBST-BM, which will be described in detail in Chapter 8). We
have also added modelling guidelines which are not described in BSDM, but
a derivation from it, and thus also appropriate for guiding Process Modelling.
They give rise to the following four kinds of rules and guidelines.

1. Rules concerned with a single process and its entities: i.e. the checking of
correctness and appropriateness within the process. This includes the check-
ing of the appropriateness of the naming style of a process, the provision
of the required trigger information for a process, and the appropriateness
of the defined content of a process scope and entity functions. For exam-
ple, according to BSDM, each process can only include one focal entity, i.e.
there must be only one originate focal entity or one change focal entity in
any process.



Chapter 6. Formal Support for Process Modelling 109

2. Rules concerned with several processes: i.e. to determine the appropriate-
ness of process scopes by observing the relations between processes. For
example, by comparing two process scopes, one can determine whether one
process is subsumed by another and therefore decide whether these two pro-
cesses should be merged. A further example is the detection of processes
which may cause errors in their execution, such as leading to a deadlock
between two or more processes. The latter example is given in BSDM but a
derivation from BSDM and is illustrated as an example extended rule later
in this section.

3. Rules concerned with several processes and entities: i.e. to determine
whether all entities are handled properly and consistently by all processes.
For example, according to BSDM, each entity must be covered by at least
one process, and each process must include at least one entity.

4. Rules concerned with the definition of a process and the actual drawing of
the Process Model and the life cycle diagram: i.e. the consistency check-
ing between the process scopes (from KBST-BM definition form) and its
graphical displays. For example, for any entity whose start life status is cre-
ated by a particular process, this entity must be included in that process
scope as either an originate focal, originate normal or an originate in-flight
entity (function).

Example Process Model Rule (Type 1)

BSDM states that each process can only include one focal entity in its scope,
i.e. there must only be one originate focal entity or only one change focal entity
in any process. The rule below formalises the fact that if there is an originate
focal entity in the process scope, then there should not be another originate
focal or change focal entity in the scope.

originate focal fun(Process name, Entity name1)
⇒

¬

⎛
⎜⎜⎝

(
originate focal fun(Process name, Entity name2)∧
Entity name1 �= Entity name2

)
∨(

change focal fun(Process name, Entity name2)∧
Entity name1 �= Entity name2

)
⎞
⎟⎟⎠

Similarly, to formally represent the fact that if there is a change focal entity
in the process scope, then there should not be another originate focal or change
focal entity in the same process scope, one can write:

change focal fun(Process name, Entity name1)
⇒

¬

⎛
⎜⎜⎝

(
originate focal fun(Process name, Entity name2)∧
Entity name1 �= Entity name2

)
∨(

change focal fun(Process name, Entity name2)∧
Entity name1 �= Entity name2

)
⎞
⎟⎟⎠



110 AUTOMATING BUSINESS MODELLING

Since this rule should be strictly followed, it is represented as a model rule
which uses the strong inference symbol, ⇒, in our formal language.

Example Extended Process Model Guideline (Type 2)

Deadlock, in the context of Process Modelling, occurs when two or more
processes cannot be executed because the information which is needed to exe-
cute one process is generated by the other process(es), however, the execution
of these process(es) can only take place after the initial process has already ex-
ecuted. Since these processes depend on each other’s information for execution,
no processes can be carried out.

In BSDM, originate in-flight entity occurrences in a process must be present
or created before the occurrence of the originate focal entity can be originated.
However, it is also possible that the demand for creation of the originate in-
flight entity triggers another process. A deadlock will happen if this newly
triggered process requires the presence (or creation) of the above-mentioned
originate focal entity occurrence; or it will happen if it subsequently invokes
other processes which require the presence (or creation) of the above-mentioned
originate focal entity occurrence.

In general, a deadlock situation in BSDM may be found when a group of
processes are inter-dependent through triggering a chain of originate in-flight
entity functions. To specify the fact that the creation of an in-flight entity oc-
currence in a process invokes another process, the predicate originate if invoke
is used. We can then present the chain of inter-dependency between processes
in the formal expressions below.⎛

⎝ originate focal fun(Process name, X)∧
originate if fun(Process name, Y )∧
originate if invoke(Process name)

⎞
⎠ ⇒ inflight chain(X,Y )

⎛
⎜⎜⎝

originate focal fun(Process name, X)∧
originate if fun(Process name, Y )∧
originate if invoke(Process name)∧
inflight chain(Y, Z)

⎞
⎟⎟⎠ ⇒ inflight chain(X,Z)

The first formula states that the creation of X is dependent on the creation
of Y, whereas the second formula indicates that the creation of X depends on
the creation of Z, because the creation of X depends on Y, and the creation of
Y depends on Z. This chain of dependency is derivable from the definition of
the originate in-flight entity function.

Given the definition of the predicate inflight chain, the guideline which de-
tects the possibility of deadlock between processes can be formally given as:⎛

⎝ originate focal fun(Process name, X)∧
originate if fun(Process name, Y )∧
originate if invoke(Process name)

⎞
⎠ � ¬(inflight chain(X,X))



Chapter 6. Formal Support for Process Modelling 111

This rule is not expressed in BSDM, but a logical deduction from it. It can
also be understood in business terms. The existence of deadlock among business
processes may very well indicate the contradictions existing in the policies for
business operations. For instance, if a business always checks the credentials of
a company before it opens a customer account for it (that is having a process
including “customer order” as the originate focal entity, and “credential” as the
originate in-flight entity) then there should normally not be another process
which requires the creation of a current customer account in order to gain in-
formation as a basis for credential assessment. However, since this testing only
takes place at a very high level, i.e. only looking at entities and their functions
in a process, it does not take into account any of the details within the business
environment. It therefore merely forms a guideline.

Example Process Model Guideline (Type 3)

As all entities included in an Entity Model are “fundamental” and “impor-
tant” to a business,4 it is reasonable to assume that the creation methods of
all entities should be documented and included in processes. Therefore, BSDM
has the check below:

Are all entities originated (created) by at least one process?

However, since the modeller may decide that the creation of a particular
entity lies outside the scope of his/her model, this question forms a guideline,
rather than a strict rule in our formal language. Since an entity can be created
in either of the three entity functions, originate focal, originate normal or orig-
inate in-flight entity function, this guideline states that each entity should play
the role of either originate focal, originate normal or originate in-flight entity
function in at least one process.

class(entity, Entity name)
�

∃Process name.

(
originate focal fun(Process name, Entity name)∨
originate normal fun(Process name, Entity name)∨
originate if fun(Process name, Entity name)

)

Given the above guideline, we infer a less restrictive rule with a stronger
recommendation which states that all entities in the model must be included
in at least one process for some roles. For this, we use the following rule.

Both the rule and guideline above are example critiques regarding the ap-
propriate inclusion of (or relationship between) entities in processes. Therefore
they belong to the third kind of advice.

More Process Model rules and guidelines are given in detail in Appendix H.
They all follow the same basic notation as the examples given above.

4 The definition of a BSDM Entity Model.



112 AUTOMATING BUSINESS MODELLING

class(entity, Entity name)
⇒

∃Process name.

⎛
⎜⎜⎜⎜⎜⎜⎝

originate focal fun(Process name, Entity name)∨
originate normal fun(Process name, Entity name)∨
originate if fun(Process name, Entity name)∨
change focal fun(Process name, Entity name)∨
change normal fun(Process name, Entity name)∨
refer normal fun(Process name, Entity name)∨
refer master fun(Process name, Entity name)

⎞
⎟⎟⎟⎟⎟⎟⎠ [1]

6.6 Inference

The Process Model analysis detects errors which violate any of the four types of
process-related model rules and guidelines (within a process, among processes,
in the inter-relationships between entities and processes, and the usages of
entities across the model) and provides advice on how to correct such errors.

Similar to the verification facilities for the Entity Model, processes rules
and guidelines are grouped into sets for error detection and advice display.
The Process Model rules and guidelines are also implemented modularly and
operate independently. Therefore, they enjoy the same benefits that Entity
Model verification facilities offer.

There are in total 19 sets of Process Model rules and 13 sets of Process
Model guidelines. Inferencing techniques similar to the ones used for the entity
model in Chapter 5 are also applied here. Several types of critiques are offered
below.

• Correctness critiques cover structural, syntactic and semantic errors in a
process.

• Completeness critiques alert the user to missing information in a process
and potentially missing links between processes and entities.

• Consistency critiques highlight contradictions in process properties and
entity-process relationships.

• Appropriateness critiques point out differences between the user model and
standard practices.

• Presentation critiques identify discrepancies existing in process properties
and drawings which have been defined in different places of the model.

• Alternative critiques find subsumed and over-specialised processes and sug-
gest alternative processes (in contrast to entity models, this is not done by
GMA,5 but using guidelines).

Inference using the Process Model follows the same approach as described
for the Entity Model. Model primitives and their properties are each repre-
sented formally by logical expressions. Rules and guidelines are negated and
translated into CLIPS rules which make use of the given class hierarchy and
the formalisation of the primitives and the derived information. Once a CLIPS
5 Generic Model Advisor is a subsystem in KBST-BM which is described in Chapter

8.



Chapter 6. Formal Support for Process Modelling 113

goal has been proved to be true (detecting a violation), an explanation of the
modelling problem and possible solutions are suggested.

6.6.1 Process Model Consultation Example

Fig. 6.6. A BSDM Process Model

An example Process Model consultation window is given in Figure 6.76

which is based on the Process Model given in Figure 6.6, extending the Process
Model given in Figure 6.1 with three change processes. BSDM has deployed
graphical symbols such as ‘*’, ‘o’, ‘>’, ‘+’, ‘x’, ‘-’ and ‘=’ to denote the different
entity functions. We have used them to label the commonly shared change focal,
change normal and refer normal entities for these processes with ‘+’, ‘x’ and ‘-’

6 Due to the limited space available for the advice window, part of the advice is not
shown in Figure 6.7. In practice, the user can scroll down the window bar to see the
rest of the advice. The part of the advice which is not shown in this figure states:
“Since entity ‘Practical’ is the parent entity, it may store the needed information for
these process operations. In this context, we consider Focal, Normal and In-Flight
entity functions to be important.”



114 AUTOMATING BUSINESS MODELLING

Fig. 6.7. A Process Model consultation window

symbols, accordingly. The process model now includes two parts (each is shown
in a window in KBST-BM): one part is shown in Figure 6.1 and the other in
Figure 6.6. The verification takes both parts into account.7

Figure 6.7 shows that the Process Model rule, set (3), has been applied.
One violated model rule was found “Process Rule Violation Type (3)”8 which
was given as an example in the previous section. The layout and the usage of
the consultation window follows the same structure as the one used for Entity
Models. In this verification session, one error has been found: entity Practical
was found not to be included in any process and has been reported to the user.
It was also suggested that it may be included in the processes of Mark Practi-
cal, Review Practical and Cancel Practical. This advice was based on the fact
that Practical is a parent entity of Practical Assign To Module. Since Practical
Assign To Module somehow plays an important role to all of these processes,
entity Practical as a parent entity of this entity may carry information needed

7 During the consultation, every part in the business model is taken into account.
8 Each rule set may have its own numbering system.



Chapter 6. Formal Support for Process Modelling 115

for the execution of these processes. In this context, we consider the following
entity functions to be important: originate focal, originate normal, originate
in-flight, change normal and change master.

6.7 Conclusion

The second activity in BSDM business modelling is to build process models. All
of the information specified during the building of Process Models is expanded
upon the information given during the entity model building activities. This
includes adding process information to Life Cycle Diagrams and Entity Models.
In this chapter, the formal representation of a Process Model, including pro-
cess information recorded in the Life Cycle Diagram and user-defined attribute
rules, has been described. In addition, modelling advice given by BSDM for
Process Models has been formalised into modelling rules and guidelines which
use the above formal representation as a basis for detecting possible errors and
generate advice to assist the user in aligning their model to standard practice.

BSDM’s model-building process is incremental and iterative. Our formal
framework fully supports this principle. Based on the Inheritance Class Hier-
archy described in Chapter 5, the formal language DefBM extends this with
process information, stating with diagrammatic annotations and adding process
rules, therefore allowing the knowledge base to be enlarged incrementally. The
added process knowledge can also be automatically verified, even when only
partial information is available. This facility assists the user in going through
the iterative plan-build-test-refine cycle which is a common way to build models.

The formal representation of processes also provides a basic foundation for
model simulation which is described in detail in the next chapter.

6.8 Exercises

1. Discuss the potential use of an entity function in a BSDM Process Model.
Refer back to the Inheritance Class Hierarchy (ICH) in Figure 5.1, explain
the semantics (meaning) of an entity function and its relationship to the
ICH.

2. Discuss the common and potential different life statuses of a process and
whether it is useful to have such a facility. Can the life statuses of a process
conflict with each other, e.g. via transition?

3. Compare the types of inference that may be carried out on a BSDM Process
Model with those for an Entity Model, and discuss any similarities between
them.

4. Are user-defined attribute rules useful? What are their main functions in a
Process Model?

5. Compare BSDM’s Process Model with another existing process modelling
language, e.g. IDEF3, PSL, PIF, Petri-Nets, BPEL4WS, etc.



116 AUTOMATING BUSINESS MODELLING

6.9 Advanced Exercises

1. Based on DefBM, implement the two Process Model rules of type 1, Section
6.5, using an appropriate programming language, e.g. Prolog, Lisp, Clips
or JAVA.

2. Repeat the previous question, but implement the three process model guide-
lines of type 2 instead.

3. Repeat the previous question, but implement the two process model guide-
lines type 3 instead.



7

Reasoning on and Executing Processes

Conventional BSDM business models describe semi-formally what processes
are, what they consist of and what can be done by them. The BSDM method,
however, is not specific about how a process may be executed. In order to
allow the execution of BSDM business processes, we introduced an additional
modelling facility; the Procedural Model, which specifies the logical sequence
and components of a process’ execution. This is not the only possible form of
execution consistent with the earlier stages of BSDM, but is characteristic of
the sort of execution which fits well with the style of modelling. The notation
used to describe this stage of modelling is not present in conventional BSDM
manuals, so practitioners require training to use it.

7.1 Introducing the Procedural Model

The Procedural Model was inspired by modelling methods such as the organisa-
tional process modelling methods [70], process modelling methods IDEF3 [73],
PIF [62], PSL [98], workflow modelling method [49] and planning theories [2].
These methods concentrate on specifying and managing tasks which are oper-
ational and have a close (if not direct) mapping to the actual practices in an
organisation, e.g. the process of designing, building, testing and manufacturing
a new product, or the procedure of a billing system.

The Procedural Model, on the other hand, has been designed to specify the
logical and internal execution sequence of a business process which enables a
conventional BSDM processes to be executable. The specified procedure is still
independent of an organisation’s current working practice and therefore can
be implemented in several different ways depending on the organisation’s goal
and requirements. In other words, it specifies the data to be manipulated and
conditions to be considered, but not how to do them in the real world. This
is consistent with the declarative style of conventional BSDM which concerns
itself with things which should be done, and does not give a deterministic order
of execution or specify any implementation details in practice. However, some
commitments to the sequence of execution are required at this stage of design



118 AUTOMATING BUSINESS MODELLING

to enable process execution, and these are reflected in the successive layers of
Figure 7.1.

Fig. 7.1. An example Procedural Model for originate focal processes

The figure shows an “un-instantiated” generic Procedural Model for origi-
nate focal processes. It specifies the structures and components of an originate
focal Procedural Model but leaves their parameters un-instantiated. The struc-
ture of the successive layers of tasks can be used as a template to derive most
originate focal processes. An originate focal is the most basic kind of originate
process in our process classification which was shown in the inheritance hier-
archy in Figure 5.1. BSDM only distinguishes between originate and change
processes. We classify them further depending on the purpose of a process,
because it is clearer and easier for us to distinguish between different types of
processes and inherit functions from them.

An originate focal process includes only one originate type of entity function
in its scope, i.e. an originate focal entity function. A combinational addition
of originate normal and/or originate in-flight entity functions makes it a more



Chapter 7. Reasoning on and Executing Processes 119

specialised process, such as an originate normal or originate normal if process
which are shown as subclasses of originate focal process in the inheritance
hierarchy in Figure 5.1.

Process execution follows the arrows in a Procedural Model, as in Figure
7.1. It always begins with a ‘start’ node after which is a ‘trigger’ node which is
followed by preconditions and an ‘and’ node which leads to two layers of actions
connected by an ‘and’ node. After the actions come the postconditions and fi-
nally the ‘end’ node. In this generic procedural sequence, there is an empty
bracket “()” in each precondition, action and postcondition node. The empty
bracket will be filled with the corresponding entity name when this procedural
sequence is instantiated by a particular process. The instantiated procedural
model defines the dynamic behaviour for that process, i.e. requirements to be
fulfilled and activities to be carried out. This information provides a frame-
work for the user to fill in the detailed occurrence information for entities and
processes at execution time.

BSDM provides text-based forms for the user to describe triggers and entity
functions in a process. A trigger represents a request to invoke a particular
process. It can be caused externally (by the user) or internally (by another
process). If a trigger is present, all preconditions specified in the procedure
must be satisfied before any actions can be carried out. All postconditions will
be confirmed after all actions are finished.

Each BSDM entity function designates particular actions for a process to be
carried out on the corresponding entity. These actions are represented as actions
in the Procedural Model and are specified in two layers: in the first layer are those
actions which represent the main purpose of the corresponding process (e.g.
the creation of entity occurrences, the changing of entity attributes); actions
in the second layer cover the inclusions of the newly created or manipulated
entity occurrences in the newly created (executed) process occurrence: this
case includes the originate focal and refer normal entity occurrences to the
process occurrence. Although precondition and postcondition statements are
not explicitly specified in BSDM, they are derivable from entity functions, as
shown in the figure. The user can also specify their own preconditions and
postconditions.

All of the model primitives in the Procedural Model, i.e. trigger, precondi-
tions, actions and postconditions of a process, are specified by the user prior the
execution. At execution time, the entity occurrence information for all precon-
ditions, postconditions and actions are specified interactively by the user and
automatically instantiated. If all preconditions of a process have been satisfied,
this process can be executed: a new process occurrence will be created which
may create new entity occurrences, and/or modify existing (entity occurrence)
attributes – those entity occurrence which have been manipulated are included
in the scope of the corresponding process occurrence. This form of interactive
process execution illustrates the corresponding possible dynamic states of a
business model. Before the formal description of a Procedural Model and its
instantiation are described, the next section illustrates the formal representa-
tion of a dynamic business model.



120 AUTOMATING BUSINESS MODELLING

7.2 Representing Dynamic Business Models

Fig. 7.2. Instantiation of a business model

Chapters 5 and 6 have described the static structure of a business model
described in BSDM and our corresponding formal representation for them. We
have also demonstrated how this formal representation can be used as a basis
to represent the extracted “strongly recommended” model rules and “gener-
ally recommended” guidelines from the method. Such rules and guidelines give
KBST-BM the needed knowledge to provide systematic and automatic help for
model verification. However, to demonstrate and thus evaluate the dynamic
behaviour of the business model, one must be able to display and capture the
dynamic state changes of a business model. In our work, a graphical nota-
tion has been used to capture and display the dynamic aspects of a business
model in a Dynamic Business Model. Formal representations have also been
devised to capture the dynamic details which form the basis for the necessary
reasoning for its behaviour.

Figure 7.2 shows an example Dynamic Business Model which is automati-
cally generated by KBST-BM from the static business model given in Figure
6.1. In addition to the information initially displayed in Figure 6.1, the user
fills in the individual information about a particular entity occurrence, known
information about this occurrence would be inferred and filled-in automatically.
Each entity occurrence is linked via the corresponding dependency occurrences
to other relevant entity occurrences.

In this figure, six entity occurrences are specified: one person (John), one
module (ES), two practicals (p1 and p2), and two practical assignments (‘ES-
p1’, ‘ES-p2’). These entity occurrences represent a snapshot at some point of
time that this business model may describe. Our first aim is to represent these



Chapter 7. Reasoning on and Executing Processes 121

occurrences and any corresponding attributes using the formal language DefBM
in a way which is consistent with what has been used for Entity and Process
models. Based on those formal descriptions, inference methods can then be
devised and dynamic behaviours of a business model can be derived.

Two predicates have been used to capture entity occurrences and their
attributes. The predicate name dyn indicates the dynamic nature of an occur-
rence.

dyn(ent occ(Ent name, Ent ID, Parents))
dyn(ent occ att(Ent name, Ent ID, Att name, Att value))

Following the convention used in BSDM that “entity name” and “entity ID”
together identify a unique entity occurrence, the same principle is also applied in
our formal language. In both predicates, Ent name stores the name of the entity
(e.g. Person), whereas Ent ID stores the name of the entity ID (e.g. John). The
argument Parents stores the corresponding parent entity occurrences of this
entity occurrence. Att name and Att value store the name of the attribute and
the value of the attribute. For instance, the representation of a person ‘John’
and the fact that he is male is given below:

dyn(ent occ(’Person’, ’John’, []))
dyn(ent occ att(’Person’, ’John’, ’gender’, ’male’))

Since the entity “Person” is at the top level of this business model, none of
the occurrences of entity “Person” will have a parent entity. This is represented
as an empty list ’[ ]’ in the Parent argument. The entity occurrence attributes
have been identified by the modeller during the Entity Modelling exercise,
and have been formally represented in the attribute predicates as previously
described in Section 5.3.

A similar approach has been adapted for representing business processes.
The representation of a process occurrence is given below:

dyn(pro occ(Process name, Process ID))
dyn(pro occ att(Process name, Process ID, Att name, Att value))

The interpretation of these predicates is the same as those used for entity
occurrences, only they are applicable to processes in this case. Building on the
representation of the dynamic aspects discussed in this section, the next section
introduces the representation of Procedural Models.

7.3 Representing the Procedural Model

Several important components have to be specified and instantiated before a
process can be executed: the trigger, preconditions, postconditions and actions
of a process. These components deal with the state changes of a model and must
therefore in their formal description include the kind of dynamic information
which will be referred to and used when generating new data.



122 AUTOMATING BUSINESS MODELLING

A trigger needs to specify which (type of) process it invokes and when a
process should start to act. Each process occurrence (instance) is unique and is
invoked by a unique trigger occurrence which can be dynamically generated. A
trigger occurrence must, therefore, also be able to distinguish itself from other
trigger occurrences. This information together with the actions which are to be
carried out by the process is represented in a trigger information predicate, as
shown below, for conciseness:

trigger information(Begin time, Process name, Trigger ID, Action list)

More details about this predicate are given in a later paragraph when de-
scribing process actions. An example instance of this predicate is also given
later in this section.

Preconditions for a process are requirements which make sure that process
actions can be carried out successfully. Their existence is often linked to the
actions to be carried out by a process. For instance, in Figure 7.1 the first
precondition used is ‘notexists originate focal entity’, i.e. if a process is to
generate its originate focal entity (occurrence), then this entity (occurrence)
must not already exist. The generic precondition expression and this particular
precondition are described formally below:

precondition(Process_name,
Entity_function_name,
Precondition_statement)

precondition(‘MODULE PERFORMANCE Assessment’,
originate_focal_entity,
[notexists, originate_focal_entity(Ent, EntID)]).

This predicate specifically instructs the checking of the ‘non-existence’ for
the originate focal entity occurrence with entity name Ent and entity ID EntID
in the process MODULE PERFORMANCE Assessment. The users can also
define their own precondition statements using the same form, where the ar-
gument Entity function name is still used to indicate which entity (function)
it is referring to. Also, the Precondition statement starts with the key word
exists or notexists followed by a normal dynamic predicate. This format pro-
vides some flexibility for the modeller to specify simple business and attributes
preconditions for any properties of an entity. The representation of a postcon-
dition is similar to that of a precondition; the predicate name is replaced with
‘postcondition’.

Actions that a process carries out are of two types: actions which realise
the purposes of a process, and actions which link the relevant entity occurrences
with the newly generated process occurrences. These actions are displayed in
two consecutive layers in the Procedural Model.

Process actions described in the Action list of the trigger information
predicate are the main actions and are described in the first layer. Each action
node as shown in Figure 7.1 is represented as one single predicate in the Ac-
tion list. Example actions are the creation of the originate focal or the originate



Chapter 7. Reasoning on and Executing Processes 123

normal entities, the generation, modification and derivation of entity occurrence
attributes, and the reference of entity occurrences and its attributes. An exam-
ple of how these actions are represented in the Action list is given at the end
of this section.

Actions of the second type are also part of a process, because they link entity
occurrences to the corresponding process occurrence. They are the “standard”
actions of a process, therefore they are not specified in the trigger predicate.
Standard action types which are currently handled by KBST-BM include all of
the entity functions that are described in BSDM. Extensions of these actions
can be easily made based on the existing formal structure, if desired.

7.3.1 Example Procedural Model and Representation

Fig. 7.3. The Procedural Model for ‘Module Performance Assessment’



124 AUTOMATING BUSINESS MODELLING

Figure 7.3 shows an example Procedural Model for the process Module Per-
formance Assessment in Figure 6.1. Each node in the Procedural Model is
labelled with the corresponding entity name. Since there are five action nodes
specified in the model, there will be five corresponding actions specified in the
Action list of the corresponding trigger information predicate: these actions
are ‘create originate focal entity’, ‘create originate in-flight entity’, and three
‘derive attribute’ nodes.

This Procedural Model is an extension of the one described in Figure 7.1
which is a generic model for any originate focal process. Since this process also
includes originate in-flight entities, it must fulfil requirements for this entity
function, which are shown in all of the additional originate in-flight related
precondition, action and postcondition nodes. A trigger information predicate
which invokes the process Module Performance Assessment can be described
formally below:

trigger_information(Begin_time,
‘MODULE PERFORMANCE Assessment’, Trigger_ID,
[originate_focal_entity(’Module Performance’, EntID),
originate_if_entity(’Practical Turn In By Person’, EntID2),
derive_att(’Module Performance’, EntID, ’Average Practical Mark’),
derive_att(’Module Performance’, EntID, ’Exam Mark’),
derive_att(’Module Performance’, EntID, ’Module Mark’) ])

It should be apparent that the particular Begin time, Trigger ID and the
particular entity occurrence of the originate focal entity (EntID), and that of
the originate in-flight entity (EntID2) (i.e. the entity occurrences of Module
Performance and Practical Turn In By Person) can only be decided when a
particular process is to be invoked and the process occurrence to be created.
Therefore, the values of these arguments are not instantiated here, but will be
specified when a particular process instance is to be created.

There are five process actions described in the Action list argument. Since
the process Module Performance Assessment includes one originate focal and
one originate in-flight entity, the main process actions are to carry out actions
specified by these entity functions. The process must firstly refer to the (dy-
namically designated) occurrence of the originate in-flight entity (which needs
to be created if it does not already exist): this action is denoted by the pred-
icate originate if entity in the Action list in the trigger information predicate.
Secondly, the process needs to create an occurrence of the originate focal entity
of the process. This is denoted in the predicate originate focal entity, also in
the Action list in the trigger information predicate.

The originate focal entity of the process, Module Performance, includes
three derivable attributes: Average Practical Mark, Exam Mark and Module
Mark (as illustrated in Figure 6.5). Since these attributes are considered to
be a part of the process, the values of these attributes are also calculated
and generated when the entity occurrence is created.1 The derivation of these

1 The decision whether these derivable attributes or any attributes are to be gener-
ated by one process or another relies entirely on the modeller’s judgement.



Chapter 7. Reasoning on and Executing Processes 125

attributes is specified in the three derive att predicates which indicate the entity
occurrence involved and the derivable attributes. The actual derivation method
is defined in the derive att rule predicate which was described in Section 6.4.

Given an ‘instantiated’ dynamic business model and Procedural Model for
the processes with corresponding time references, the business model may now
be simulated, given the appropriate simulation procedure. A simulation al-
gorithm is described in Subsection 7.4.3. Before the simulation algorithm is
introduced, we provide a way to predict the dynamic behaviours without any
simulation.

7.4 Representing Domain Knowledge

7.4.1 Actions, Effects and Temporal Relations

As mentioned in Section 7.1, BSDM specifies trigger and entity functions in a
process. Since the trigger and each of the entity function has a special meaning
in BSDM, we are able to derive the corresponding preconditions, actions and
postconditions for a process, and describe them in the procedural model.

BSDM also allows complex conditions to be specified within a trigger. These
conditions can be described in complex decision trees and involve internal
and/or external factors: internal factors are information that is derivable from
the model, whereas external ones cover information which is not captured in
the model. We simplify the meaning of a trigger as the prerequisite of its pres-
ence before a process execution in our system, and allow internal conditions
to be specified as “preconditions” in our formal notation. The satisfaction of
external conditions are assumed in our system when the trigger is present.

Although BSDM describes the sketch of a process without specifying any
execution mechanism, the dynamic behaviours of its processes exhibit some
similar characteristics compared with the actions or events described in a plan-
ning system. Therefore, issues which concern a planning system are also of
interest to a BSDM process. Some key characteristics of BSDM processes are
given below:

• Business processes take time. A business process is normally not instanta-
neous and must take a period of time to accomplish. Furthermore, the effect
of a business process is normally not realised until the process is completed.
This is due to the authority and/or commitment that bonds a business and
all participants which is given only on completion of a process. This au-
thority also allows the business to take further actions and execute other
processes.
For instance, a business will not fulfil a contract unless it is signed by
all parties. This is because the contract is not legally binding unless the
negotiation of drawing the contract is finished and it is signed by all parties
involved – which is the completion state of a contract-drawing process. If
it is necessary to indicate the intermediate state of the business during
process execution, it is perhaps more appropriate to represent it in more



126 AUTOMATING BUSINESS MODELLING

than one processes to reflect these intermediate states. For example, the
above contract-drawing process can be modelled in two separate processes:
“draft contract” and “sign contract” to reflect the two different states in the
contract-drawing process. In fact, it is also important to indicate whether
a contract is closed or cancelled which may be represented in another two
separate processes: “close contract” and “cancel contract”:

• Business processes may be carried out concurrently. As a result, these pro-
cesses may contradict each other or change effects of the other process while
it has been executed. Interferences normally happen when more than one
process tries to create or modify the same data item, or when one tries to
create it while the other one tries to modify it. The error when one process
tries to refer to a data item while others try to create it is prevented by the
checking of preconditions.

• Business processes may or may not constrain each other: a business process
sometimes can only be executed after a certain process has been executed,
this constraint is imposed by the fact that for its execution a process may
need information which is provided by another process. For instance, an
entity occurrence cannot be modified unless it has already been created.
Therefore, the process which modifies this entity can only be executed after
the other process which creates this entity has been executed.
On the other hand, some processes may be prohibited from execution, if
certain other processes have been executed. For instance, the entity occur-
rence “contract” cannot be signed and claimed to be valid by any process
after it has been cancelled. This constrain is particularly captured in the
Life Cycle Diagram (Figure 6.3). All of these constraints impose partial
execution orders between processes and are explained in further details in
Subsection 7.4.2.

• Business processes may be influenced by external events. In BSDM external
events are shown as the presence of triggers. The presence of these newly
created triggers will incur the execution of new processes. As a consequence,
new processes are created which may create contradictions with the existing
processes, thus changing the behaviour of the system.

Given these characteristics it is obvious that the notion of time must be
represented in our formal language to indicate the duration that a process
takes and also to recognise and handle any conflicts that may be incurred by
processes that are carried out at the same time. Co-operation and communi-
cation between BSDM processes is done by passing information through entity
occurrences which is only possible when a process has been committed (i.e.
successfully executed). This suggests that a system which simulates processes
concurrently and independently through time and which produces an aggre-
gate effect for all of the processes while resolving the conflicts and constraints
between processes will be suitable for our purpose. The system also needs to
be interactive to accept any new arriving events which can be integrated into
a commonly shared knowledge base which is referred to and updated by all
processes.



Chapter 7. Reasoning on and Executing Processes 127

The dynamic world of a BSDM business model has been represented in
a state-based system where each state is a snapshot of the status of the dy-
namic world at a particular time. Processes are represented as functions which
propagate between these states. Within each state a set of fluents are used to
describe the property of the state. These fluents are without individual time
stamps. The absence of a particular fluent indicates, by default, the negation
of its property.

Time reference points have been used to indicate time points of the model.
A period of time is marked by a begin and an end time stamp. The life span
of any process or entity occurrence therefore is indicated by two time points,
i.e. the creation and terminating time of the occurrence. Since at any point
of time there is only one set of fluents available in the system, the changes of
fluents between states are recorded. These recorded changes allow the system to
restore any previous state of the world and, hence, allow the system to exploit
a different route of expedition from the previous state.

Because the system is interactively accepting new events from users, these
new external events are supplied to the system and subsequently change the
course of action of the system.

7.4.2 Process Dependencies and Partial Execution Order

Although an automatic simulator can predict the future by running through
several hypothetical business scenarios, often there are potentially an infinite
number of combinations for process execution sequences which can be tested.
It therefore would be useful if the system could suggest possible sequences
for process execution based on the static description given in the Entity and
Process models thus decreasing the testing space.

During close examination of the Process Model, we discovered ways to de-
termine process relationships which can be automatically inferred from a Pro-
cess Model. These relationships can be used to outline an overview of process
relationships and operations and are helpful to get an insight into process ex-
ecutions without any actual simulations. These relationships are process de-
pendencies, because they are one-directional and impose constraints on the
execution of other corresponding processes.

Four types of process dependencies were found. The first two types of de-
pendencies are drawn from information which describes the operations within a
process and between processes. This information provides clues about (partial)
process execution order. The latter two types of dependencies have been derived
from the requirement for gaining information, which also places limitations on
process executions. These dependencies are described below (in descending or-
der of strength that each dependency imposes on process execution ordering).

Dependency Type I: Process execution order-1

This dependency is derived from the extended Life Cycle Diagrams for en-
tities: one example is shown in Figure 6.3. In the extended Life Cycle Diagram,
processes which can be used to create and transfer an entity’s life status are



128 AUTOMATING BUSINESS MODELLING

described as directional arrows between the corresponding two transitional life
statuses. This information also indicates the possible execution orders between
the two specified processes. Two rules have been derived from Life Cycle Dia-
grams and represented in the following two formulae:

orgprocess(Process1, Entity, Life1) ∧
chgprocess(Process2, Entity, Life1, Life2)
⇒
followed by(Process1, P rocess2)

chgprocess(Process1, Entity, Life0, Life1) ∧
chgprocess(Process2, Entity, Life1, Life2)
⇒
followed by(Process1, P rocess2)

As previously described in Section 6.3, the predicate orgprocess indicates
an originate process, and chgprocess indicates a change process. Both of these
two rules state that if it is specified by the user that Process2 can transfer a
life status Life1 of the entity Entity to another life status Life2, and that Life1
was created by Process1, then we can conclude that Process2 may be the next
process candidate to be executed after Process1 has worked on this entity. This
dependency has been denoted by the predicate followed by and is shown in blue
colour in our system.2

This dependency places the strongest constraint and indicates the closest
relationships between two processes. It states a rather close execution sequence
between two processes, i.e. one process can normally be executed after the com-
pletion of the previous process without any additional processes being required
to be executed.

Dependency Type II: Process execution order-2

This dependency was derived from the definitions of process scope. From
the point of view of manipulating one single entity, an entity cannot be modified
unless it has already been created. Therefore, it is derivable that the process
which modifies it cannot be executed unless the process which creates it has
already been carried out. This rule can be described formally below:(

originate focal fun(Process1, Entity)∨
originate normal fun(Process1, Entity)

)
∧(

change focal fun(Process2, Entity)∨
change normal fun(Process2, Entity)

)
⇒
maybe followed by(Process1, P rocess2)

The predicates originate focal fun and originate normal fun indicate that
Process1 creates the entity Entity as part of its process operations; whereas
change focal fun and change normal fun indicate that Process2 modifies entity

2 In fact, all dependencies are in this colour scheme.



Chapter 7. Reasoning on and Executing Processes 129

Entity as part of its process operations – these predicates have been described in
detail in Chapter 6. The rule above states that if there exists a process Process1
which includes an entity Entity as an originate focal or originate normal entity
(function) and there exists another process Process2 which includes the same
entity as a change focal or change normal entity (function) then Process2 may
only be executed after Process1 has been executed.

This dependency constitutes the second strongest partial process execu-
tion ordering, because it is based on a broader relationship between processes:
there could be many change processes which modify the same entity, but not
all of them can be executed directly after the execution of the corresponding
originate process – some other processes may also need to be executed. These
missing processes are often described in the Life Cycle Diagrams. In reality
due to the limited scope of a project, often not all Life Cycle Diagrams are
captured in a business model. The above rule establishes additional vital rela-
tionships between processes in the situation when incomplete information has
been supplied.

Dependency Type III: Prerequisite of information-1

Prerequisite of information (type 1): this dependency is derived from the
prerequisites for process execution which requires the provision of certain in-
formation before a process can be executed. The process of concern includes at
least one refer normal entity function, therefore by definition it needs to refer
to the specific entity (occurrence) before it can be executed. If the required
information is produced by another process, then this other process must have
been executed and provided the needed information prior to its execution.

The rule below formally describes it:

refer normal fun(Process2, Entity) ∧(
originate focal fun(Process1, Entity)∨
originate normal fun(Process1, Entity)

)
⇒
prerequisite(Process1, P rocess2)

This rule states that if there exists a process Process2 which includes a
refer normal entity Entity and there exists another process Process1 which
originates this entity, then the execution of process Process1 is a prerequisite
for the execution of process Process2.

This type of dependency imposes an even weaker dependency constraint
compared with the previous two types of dependencies, because it only requires
the existence of some information before process execution. It does not indicate
the natural flow of process execution. In fact, it states a minimum prerequisite
for a process execution – that it cannot be executed unless the other processes
have already been executed earlier. In practice, more processes may need to be
carried out before this process can be executed. This dependency relationship
can point out relationships between processes which are not captured in all of
the previous rules and therefore helps to provide a more complete picture for
process inter-relations.



130 AUTOMATING BUSINESS MODELLING

Dependency Type IV: Prerequisite of information-2

This type of dependency is also derived from the prerequisite for a process
execution. In this case, the entity function involved originate in-flight entity
(function). Originate in-flight entity function works, by definition, as a com-
bination of refer normal and originate function: when used it imposes a pre-
requisite for the process to refer to the designated originate in-flight entity
(occurrence) before its execution. However, it can also create this entity (oc-
currence) as a part of its process if it is not already created. This dependency
is described formally below:

originate if fun(Process2, Entity) ∧(
originate focal fun(Process1, Entity)∨
originate normal fun(Process1, Entity)

)
⇒
maybe prerequisite(Process1, P rocess2)

The rule above states that if there exists a process Process2 which includes
an originate in-flight entity Entity and there exists another process Process1
which includes this entity as an originate focal entity (function), then the prior
execution of process Process1 may be a prerequisite for the execution of process
Process2.

Because of the definition of the originate in-flight entity, a process can create
this entity when it is absent, this implies the weakest constraint compared
with all of the previous dependencies. This type of dependency signifies that
a process (Process2) can be executed when the other process (Process1) has
been carried out at a previous time; however, the process (Process2) may also
be carried out without this restriction. This dependency further points out
additional process relationships that have previously not been captured.

Subsection 7.5.1 describes the use of the described dependencies.

7.4.3 Simulation Algorithm

Model rules derived from the Procedural Model are primarily concerned with
the operational aspect of process execution. A process is normally carried out
when its trigger is present and all of the precondition statements are satisfied.
A process may not be applied if the user has chosen to explore a different
route. The operation of the business model simulator can be described in the
algorithm below:

1. If the required simulation time span is finished then stop the simulator and
report the result of the simulation to the user; otherwise, go to 2.

2. Search for all of the triggers in the system. If all of the preconditions for
any of the processes are satisfied and the designated starting time (for
execution) for that process is due or has passed due time, then put them
in the Process Agenda. Go to 3.

3. Check for all of the processes in the Process Agenda and collect into a set
of those processes with an ending time which is due or past due time.



Chapter 7. Reasoning on and Executing Processes 131

Perform a process conflict check on all of the processes in the set; if any
contradictions are found between those processes, then go to 4, otherwise
go to 5.

4. Report any contradictions found between processes, the detailed informa-
tion which has caused this problem, and a brief suggestion for conflict
resolution to the user. The user can decide if any of the processes should be
removed from the Process Agenda, and thus from the system. After com-
municating with the user and performing the operations required by the
user, go to 3.

5. The user can now select eligible processes to be executed. Each selected
process is checked again to make sure that all of the process preconditions
are still satisfied, and that the actions within each process are syntactically
correct and the detailed requirements for executing each action are satis-
fied. The requirements for executing an action are different from a process
precondition, because it concerns the details of the actual execution mecha-
nism, e.g. the attribute of an entity occurrence must not be changed unless
there is already an old attribute value present.
These eligible processes are selected (by the user) and carried out (by the
system) one by one. The user may also choose to ignore some (or indeed all
of the) processes for execution in order to explore a specific execution route.
When this happens, the ignored processes are left untouched in the Pro-
cess Agenda. After each process execution, the postconditions are checked.
Report to the user, if any irregularities have been found. Go to 6.

6. Advance the system to a new time. Advance the system to a new state if
any changes have been made to the current state. Enquire whether the user
wishes to “rollback” the system and specifically which state he/she wishes
to restore. If the answer is yes, restore the system to the specified state. Go
to 1.

As a result of a process execution, an occurrence of a process is created,
its begin and end time are also specified as part of these actions. The begin
and end time of a process are denoted by the occ begin time and occ end time
predicates, as shown below:

occ begin time(Process name, Process Id, Begin time)
occ end time(Process name, Process Id, End time)

The same predicates are also used to denote the lifespan of entity occur-
rences, but the attributes Process name and Process ID with Entity name and
Entity ID are also instantiated. The predicates which identify Entity and Pro-
cess occurrences and those which describe the attributes of them, together with
other system predicates which indicate the time and the state of the system,
constitute a set of fluents which describe the state of the system.

The properties of a state of the system are recorded as a set of fluents, the
changes made by processes to these fluents between states are recorded in a
special change predicate. As described earlier, these recorded changes allow the
system to rollback and restore any previous state of the world and allow the
user to exploit a different route of expedition from the previous path.



132 AUTOMATING BUSINESS MODELLING

Details about what kinds of conflicts can be detected during process exe-
cution and the use of the simulator are given in the following chapter. In this
chapter, the use of process dependencies is demonstrated next.

7.5 Inference

7.5.1 Process Execution Sequence Constructor

Based on the inferencing rules for process dependencies given in Subsection
7.4.2, the Process Execution Sequence Constructor automatically gener-
ates Process Dependency and Partial Execution Order Diagrams. Fig-
ure 7.4 shows one such diagram which was automatically generated by KBST-
BM. (This is automatically generated from the Process Model developed for
the university (course) management domain which consists of 44 processes in
more than 30 diagrams. Some of them are given in Appendix E.)

Fig. 7.4. Process dependency and partial execution order diagram (1)



Chapter 7. Reasoning on and Executing Processes 133

Three types of process dependencies have been captured in this diagram.
They are dependency type I, III and IV. Each of these dependency links is
drawn as an arrow from a starting process to a depending process node. Each
link indicates a type of dependency constraint on the depending process that
is dominated by the starting process.

This diagram shows an overview of relationships between processes and
at the same time the dependencies between them. For instance, the type I
dependency arrow3 leaving from “Acknowledge Person” to “Archive Person”
states that (the information of) a person cannot be archived unless he/she
has been acknowledged (i.e. known to the organisation) before. Because this
dependency type was derived from a Life Cycle Diagram which describes the
logical sequence of processes, it indicates a strong relationship between the two
processes. It also means that it is possible to archive a person right after he/she
has been acknowledged (despite the fact that it may not be useful to do that
right away).

Dependency type IV is derivable from originate in-flight entity functions.4

The one shown in the diagram connects “Acknowledge Person” to “Accept Em-
ployment Contract”. This dependency type is relatively weaker compared with
dependency type I, because it only imposes a “may be” constraint. According
to this particular dependency, a person can draw an employment contract with
the organisation (in this case the university) if he/she is already known to the
university; otherwise, the university first needs to acknowledge this person be-
fore signing a contract with him/her. In other words, the process “Acknowledge
Person” does not necessarily need to be carried out before the process “Accept
Employment Contract” is executed.

Indication of this type of dependency is particularly useful for detecting
any misuse of originate in-flight entities. For instance, the starting process may
depend on other processes, which means that some other processes need to
be executed before the designated entity can be originated (created). Conse-
quently, the assignment of an originate in-flight entity may be too weak – if
this is the case, the assignment of a refer normal entity may be an alternative
choice.5

The most used links in this diagram are of the dependency type III.6 The
central node in the figure that leads to many other processes is “Acknowledge
Person” which means that this process has the most freedom and least restric-
tion to be carried out and it provides (generates) commonly shared information
for many other processes. These arrows indicate how information flows between
processes as well as prerequisites for process execution (this has been discussed
previously in Subsection 7.4.2 in detail).

3 Dependency type I is denoted as a blue dashed arrow in KBST-BM.
4 Dependency type IV is denoted as a red dashed arrow in KBST-BM.
5 It is also possible that instead of creating the originate in-flight entity by the process

itself, it can be specified that the initial process which originates it is to be invoked.
If this is the case, this particular type of error can be avoided.

6 Dependency type III is denoted as a black dashed arrow in KBST-BM.



134 AUTOMATING BUSINESS MODELLING

One interesting observation which can be made in this diagram is to look for
any isolated (process) nodes. One such node “Cancel Exam Allocation To Mod-
ule” has been identified in the diagram. An isolated node normally indicates the
lack of integration with other processes, or that the needed information is not
provided by other processes. In this particular case it indicates the boundary of
the design, the process which supplies the needed information for this process,
is outside the scope of the project (i.e. it was intentionally not included in the
Process Model).

Figure 7.5 shows another example process dependency and partial execu-
tion order diagram which has also been automatically generated by KBST-BM
from the same DAI process model. In addition to the previous three types of
dependencies as shown in Figure 7.4, this diagram also includes dependency
type II. Furthermore, wherever there is a dependency type II present, all of the
corresponding dependencies of type III which link to the particular depending
process node are removed. As a result, the weaker relations (referral depen-
dency type III) are deleted from the diagram and replaced by the stronger
relations (update dependency type II).

Fig. 7.5. Process dependency and partial execution order diagram (2)



Chapter 7. Reasoning on and Executing Processes 135

This has simplified the diagram and clustered relevant processes in groups.7

Each group of processes indicates operations which are carried out in some
relevant business areas. This enables the user to examine relevant processes
together and to identify relationships between these groups. One interesting
observation in this diagram is that the isolated node, “Cancel Exam Alloca-
tion To Module”, has now disappeared. Although the process which provides
information for it is not captured in the Process Model, it has been identified
as relating to a group of processes because it operates on the same entity as
others work on. As a result, each of these two types of diagrams show some
properties that the other one does not.

Several observations can be made from these diagrams and insights and
warnings for errors can be further drawn from the business model. This is
described below:

• Isolated processes: indicate “orphan” processes which do not use information
produced by any other processes nor do they produce data useful for other
processes. Such phenomena may indicate the incompleteness or error in the
model. As described previously, an isolated process signifies the boundary of
the model design. It can, however, also mean that more potential processes
are yet to be captured in the Process Model.

• Process nodes with few or no in-coming arrows but many out-going arrows:
this type of processes are carried out with relatively little restrictions, and
provide commonly shared information to many other processes. It also in-
dicates the boundary of the design.

• Process nodes with many in-coming arrows: this type of processes requires
lots of information for its operations. It can be a process which produces
analytical information or a process of decision making. Because the con-
straints imposed by a process dependency are transferable, processes at the
other end of any leaving arrows from the node are also constrained by the
constraints imposed by all of the incoming dependencies to the node. It is
therefore important to ensure that a process is not over-constrained.

• Process nodes with many in-coming and out-going arrows: this type of pro-
cesses capture the central actions in a business’s operation.

• Leaf processes: this type of processes does not have any out-going arrows.
It normally indicates the boundary of the model design, or that the actions
it carried out are terminal for some of the dealing entity occurrences. This
means that no other processes can work on those entity occurrences (other
than just passively refer to them) after this process has been carried out.

• Process nodes with similar relationship architecture: when two processes
have many common in-coming and out-going arrows, then it may be worth
checking the overlap of these two processes.

• Process nodes with in-coming originate in-flight arrows: these arrows indi-
cate originate in-flight entity functions in the process, which refers to the
need of referring a piece of information, yet they also indicate the freedom
to create this information when it is absent. It is, therefore, important that

7 Dependency type II is denoted as a green dashed arrow in KBST-BM.



136 AUTOMATING BUSINESS MODELLING

this freedom has not been misused. Whether this freedom has been given
wrongly to a process is determined by the “source process” which is ini-
tially responsible for generating this piece of information. If there are any
dependencies which have been imposed at the “source process”, then this
arrow should not be allowed but should be replaced by a more conserva-
tive referral dependency: i.e. a refer normal entity function should be used
instead by that process.

Ideally, in a well established business model where life cycle transitions are
well-defined, all process nodes are connected via dependency type I, since they
indicate the direct relationships between processes and data. It also gives the
strongest constraints on the order of process execution. However, it is often
not possible to get a business model that has been modelled at this level of
detail. When this is true, other types of dependencies are inferred to fill the
gap. Advantages of using the Process Execution Order Constructor are given
below:

• It provides an overview for inter-relationships between processes which was
not obvious or given in the business model: it indicates how information is
used, shared and passed between processes.

• It establishes a partial process execution order which is not previously
known to the model, based on which the user can construct potential busi-
ness scenarios which make use of a series of business processes.

• It provides another way to analyse the business model; more importantly, it
gives the user another chance to examine the appropriateness of the context
of process scopes and the sufficiency of the existing processes.

• It cuts down the search space for testing what-if business scenarios: the
workflow which is suggested in the process dependency and partial execution
order diagram is constrained; workflows or business scenarios which violate
these constraints depicted in the diagram violate constraints that have been
put on the business model and will not be acceptable by the simulator. This
facility, therefore, not only helps to give the user an initial and integral view
of potential business workflow and helps the user to construct useful testing
scenarios, it also saves the user effort in testing fruitless business scenarios.

• This facility is relatively intuitive as it is visual-based and all operations are
mouse–menu activated. No additional information is required from the user
rather than the already developed Process Model: therefore it is a very sim-
ple and easy way to get a lot more insight into a developed business model.
Furthermore, the method which has been used to derive this information
entirely complies with BSDM which increases the acceptability of the tool
by this group of users.8

8 In KBST-BM, the process dependency and partial execution order diagram is color-
coded, it therefore greatly enhances the readability.



Chapter 7. Reasoning on and Executing Processes 137

7.5.2 Process Conflict Detector

It is often the case that several processes are proposed to be carried out con-
currently in the system. It is, therefore, important to ensure that only coherent
processes are carried out at the same time. Several error checking facilities on
the Entity and Process Model are provided and have been described in Chap-
ters 5 and 6. For instance, the potential for deadlocks between processes can
be detected during the verification of the Process Model using the guideline
deadlock prevention among processes which identifies possible deadlocks from
the static structure of processes. A more detailed description of these rules is
given in Appendix H.

In addition to the static checking of process conflicts, during the execution
of a model, the process conflict detector looks for potential contradictory pro-
cesses dynamically. It examines particular data items (entity occurrences and
attributes) that are involved in a process’ execution, checking for three types
of errors:

• Inconsistent handling of a data item is reported to the user when two pro-
cesses are found to be creating the same entity occurrence, or updating
the same entity attribute, or one process refers to an entity and the other
one modifies it at the same time. (The case where one process creates an
entity occurrence while the other is updating it is actually prevented from
happening in our system through the use of preconditions.)

• Erroneous handling of a data item occurs when a process tries to manipu-
late an entity occurrence which is already “terminated” in terms of its life
status, since a “terminated” entity occurrence can only be used for archive
purposes, i.e. only for reference but not for active data manipulation.

• Suspended processes are those processes which stay in the Process Agenda
for a long time and cannot be executed. There are two ways of notify-
ing/alerting the user of this type of error: a passive reminder and an active
warning. The passive reminder is given to the user through viewing the
content of the Process Agenda. With this the user can keep track of which
processes are in the queue and for how long. An active warning is given to
the user when a predetermined threshold of waiting time duration is expired.
When the user finds a suspended process, he/she can ask for an explana-
tion from the system for the delay of execution (i.e. to identify the failing
preconditions of the process and type checking on the specified actions) and
possible ways of fixing this problem.

Process conflict detector works as a part of the business model simulator
and is carried out before process executions. The next subsection describes the
use of the simulator.

7.5.3 Business Model Simulator

The inference engine, Business Model Simulator, generates the dynamic be-
haviour of the model, i.e. it simulates the execution of processes, according to



138 AUTOMATING BUSINESS MODELLING

the instructions given by the user. The user can see how the model behaves
under the current design by exploring the model using potential business sce-
narios. More specifically, the user gives the length of time for simulation and
the set of triggers for processes to be enacted. The scheduler of the inference
engine selects a set of triggers which is appropriate for invoking processes which
are then added to a Process Agenda.

For those processes in the agenda which have all of their preconditions
fulfilled, the process occurrences are created and actions executed. This leads
to a new system state. The corresponding feedback is given to the user and the
system time advanced. The next cycle begins with the new system state and the
user decides whether or not to supply some new triggers. The model simulation
ends when the specified simulation time period is finished. The inference engine
is able to backtrack to any previous system state (going backwards in time),
thereby allowing the user to experiment with alternative paths of execution of
the model.

The transition from one state to another could be the result of more than
one process. We, therefore, must insure that processes which are carried out
at the same time are not in conflict with each other. To prevent conflicting
processes from executing at the same time, a process conflict detector is used
before any process execution. When a conflicting set of processes have been
found, the user is notified and one or more conflicting process(es) are selected
by the user and removed from the Process Agenda.

The execution history and the changes made in each state can be described
in a state transition diagram. An example use of the business model simulator
and the resulting state transition diagram is given next.

7.5.4 Example Inference and State Transition Diagram

RP2

Review Practical 

Mark 75 to Practical

for John and Module ES

State=S3

Time=9

Assignment ES-p1

MP2 RP1

Create Practical 

Mark 80 to Practical

Assignment ES-p2

for John and Module ES

State=S2

Time=6

Person: John

Module: ES

Practical: p1

Practical: P2

Practical Assignment: ES-p1

Practical Assignment: ES-p2

Time=0

State=S0

MP1 MPA

Review Practical 

Mark 80 to Practical

Assignment ES-p2

for John and Module ES

State=S4

Time=12

State=S5

Time=16

Create Practical 

Mark 75 to Practical

Assignment ES-p1

Time=3

State=S1

for John and Module ES

Create Module

Performance and assign

78 for Average Practical Mark

and A to Module Performance

for Module ES and John

Fig. 7.6. A state transition diagram for originate focal process (1)

Figure 7.6 shows an example state transition diagram which demonstrates
a possible sequence of states generated by the system. It uses three processes
specified in the Process Model given in Figures 6.1 and 6.6. These are Mark
Practical, Review Practical and Module Performance Assessment.

The first oval denotes the initial state S0 at time 0, which is also described
in the Dynamic Business Model in Figure 7.2. Assuming that in the initial
state we only have a few facts (occurrences): a person John, a module ES, two



Chapter 7. Reasoning on and Executing Processes 139

practicals, p1 and p2, and their assignments to module ES: ES-p1 and ES-p2.
We also assume that initially five triggers are given by the user: two invoke the
‘Mark Practical’ processes which assign the practical marks for John for ES-
p1 and ES-p2, two invoke the ‘Review Practical’ processes which confirm the
practical marks assigned for John for ES-p1 and ES-p2, and one trigger that
invokes the process ‘MODULE PERFORMANCE Assessment’ which assigns
the average practical mark and module performance for John and ES.9 Notice
that in this example we have assumed that all triggers are given up front at
the initial state and all with the begin time zero for simplicity, although these
triggers could alternatively be specified by the user at different times, since the
reasoning engine is interactive.

The directed link MP1 denotes that process MP1 was executed. It trans-
ferred the initial state S0 to state S1. Assuming that process MP1 ends at time
3, the newly created state S1 is generated at time 3. Process MP1 has assigned
a practical mark 75 to practical assignment ES-p1 for John and module ES.
Process MP2 furthermore assigned practical mark 80 to practical assignment
ES-p2 for John and module ES. This process also transfers state S1 to state
S2 denoted by a link labelled MP2. Since process MP2 has ended at time 6,
this has become the system time of the state. By the same reasoning, states
S3, S4 and S5 are determined by processes RP1, RP2 and MPA which review
the above assigned practical marks and assigns 78 to Average Practical Mark
and A to module performance for module ES for John, and the system time is
16 at state S5.

This demonstrates one possible way of executing a process. The process
execution sequence is: MP1, MP2, RP1, RP2 and MPA. The user can decide to
backtrack this execution to find an alternative execution sequence, e.g. MP1,
RP1, MP2, RP2 and MPA. This alternative execution sequence is added to
the previous diagram and shown in Figure 7.7. One other possible sequence is
to execute multiple processes concurrently, e.g. MP1+MP2, RP1+RP2, MPA
which is shown in Figure 7.8.

The processes involved are partially ordered: a practical mark must be given
before it can be reviewed, and the average practical mark and module per-
formance cannot be determined unless all practical marks are reviewed. This
partially ordered sequence is determined by triggers and requirements of these
processes (which are also influenced by entity functions). The possible execu-
tion sequence of processes obeys the process dependencies which have been
described in Subsections 7.4.2 and 7.5.1.

Chapter 9 gives a comprehensive view of how KBST-BM can be used in
assisting the development life cycle as a whole for building business models in
BSDM.

9 We assume that no exams have been set for this module, therefore the module
performance is solely determined by the performance of the practicals.



140 AUTOMATING BUSINESS MODELLING

RP2

Review Practical 

Mark 75 to Practical

for John and Module ES

State=S3

Time=9

Assignment ES-p1

MP2 RP1

Create Practical 

Mark 80 to Practical

Assignment ES-p2

for John and Module ES

State=S2

Time=6

Person: John

Module: ES

Practical: p1

Practical: P2

Practical Assignment: ES-p1

Practical Assignment: ES-p2

Time=0

State=S0

MP1 MPA

Review Practical 

Mark 80 to Practical

Assignment ES-p2

for John and Module ES

State=S4

Time=12

State=S5

Time=16

Create Practical 

Mark 75 to Practical

Assignment ES-p1

Time=3

State=S1

for John and Module ES

RP1

Review Practical 

Mark 75 to Practical

for John and Module ES

State=S6

Time=6

Assignment ES-p1

MP2

Create Practical 

Mark 80 to Practical

Assignment ES-p2

for John and Module ES

State=S7

Time=6 RP2

Create Module

Performance and assign

78 for Average Practical Mark

and A to Module Performance

for Module ES and John

Fig. 7.7. A state transition diagram for originate focal process (2)

Person: John

Module: ES

Practical: p1

Practical: P2

Practical Assignment: ES-p1

Practical Assignment: ES-p2

Time=0

State=S0

MP1 MPA

Review Practical 

Mark 80 to Practical

Assignment ES-p2

for John and Module ES

State=S4

Time=12

State=S5

Time=16

Create Practical 

Mark 75 to Practical

Assignment ES-p1

Time=3

State=S1

for John and Module ES

RP1

Review Practical 

Mark 75 to Practical

for John and Module ES

State=S6

Time=6

Assignment ES-p1

MP2

Create Practical 

Mark 80 to Practical

Assignment ES-p2

for John and Module ES

State=S7

Time=6 RP2

Create Module

Performance and assign

78 for Average Practical Mark

and A to Module Performance

for Module ES and John

MP1+MP2

Time=3

State=S8

Create Practical 

Mark 75 to Practical

Assignment ES-p1

for John and Module ES

MP2 RP1

Create Practical 

Mark 80 to Practical

Assignment ES-p2

for John and Module ES

State=S2

Time=6

Create Practical 

Mark 80 to Practical

Assignment ES-p2

for John and Module ES

RP1+RP2 Time=6

State=S9

RP2

Review Practical 

Mark 75 to Practical

for John and Module ES

State=S3

Time=9

Assignment ES-p1

Review Practical 

Mark 75 to Practical

Assignment ES-p1

for John and Module ES

Mark 80 to Practical

Assignment ES-p2

for John and Module ES

MPA

Review Practical 

++

Fig. 7.8. A state transition diagram for originate focal process (3)

7.6 Conclusion

Conventional BSDM provides informally a structure and declarative method
for capturing a complicated business environment in a business model. The fun-
damental and important “things” and processes are represented and described
statically as entities and processes. These static structures have strong implica-
tions on the behaviour of the business model. When a business model describes
a relatively complex and large organisation, it is very difficult to understand
all these implications. Therefore, it is useful if this dynamic behaviour of a
business model can be demonstrated in a way which reveals how the defined



Chapter 7. Reasoning on and Executing Processes 141

business rules, policies and arrangements will affect the business when it is
actually in operation. There is, however, in general a lack of support in most
business modelling methods, including BSDM, for such facilities.

To illustrate the dynamic behaviours of a business model, an additional
layer, the Procedural Model, was devised. It specifies the requirements, actions,
logical sequence and elements of a process’ execution. Given this information
in a Procedural Model, a business model can be enacted by the execution of its
processes. Since there are potentially infinite ways to “run” a business model, it
is impossible to obtain all of the different outcomes of a large and complex busi-
ness model by execution. Our Process Execution Sequence Constructor makes
use of the constraints imposed on the processes which limit how an entity can
be manipulated. It identifies process dependencies and provides a high level
and integral view of relationships between processes which was not previously
described by the method. The generated Process Dependency and Partial Exe-
cution Order Diagram is intended to help the modellers to construct their own
business scenarios more speedily. It also gives the user another way to analyse
and verify the Process Model, in addition to the support which was given in
Chapters 5 and 6.

Our Process Conflict Detector dynamically detects possible conflicting pro-
cesses and informs the modeller about it, together with advice for conflict
resolution. This is an attempt to free modellers from the technical details of
process execution so that they can concentrate on fundamental flaws in the
business model.

The aim of the Business Model Simulator, which has been built as a part of
our tool KBST-BM, to provide a means to demonstrate the dynamic aspects
of an initially statically described business model has been achieved through
the use of the Procedural Model. The system helps the modeller validate the
appropriateness of a business model, one of the most important issues in the
business modelling community.

7.7 Exercises

1. Why is an additional layer needed for BSDM’s Process Model? Discuss how
the layer of Procedural Model integrates with BSDM’s modelling method
and its complimentary role.

2. Why is a representation for the dynamic aspects of business model needed?
Can one carry out verification and validation (V&V) on a process model
without this facility?

3. What are the relationships between triggers, actions, pre- and postcondi-
tions of a process with that of dependency between processes?

4. Based on the different verification and validation techniques carried out on
BSDM’s models, discuss the different types of V&V techniques that may
be applied on a model.

5. Discuss whether these verification and validation techniques are generic and
whether they may be adapted to be used on other modelling methods.



142 AUTOMATING BUSINESS MODELLING

6. To help understanding a domain, different models/diagrams are often used
to illustrate the different aspects of a domain. Identify the different types
of models/diagrams that have been used in this book so far.

7. Explain the function of the Process Conflict Detector and its role in a
business model simulation.

8. Based on the semantics given in a BSDM Process Model and its Entity
Functions, can you identify any other types of dependencies, other than
the ones already mentioned in the book, that will constrain the order of
process execution?

7.8 Advanced Exercises

1. Provide a logical description for another modelling method, e.g. IDEF3
[72] or UML’s activity diagram [94]. Explain model requirements and your
design rationale.

2. Based on the above chosen modelling method, propose the types of V&V
that may be carried out on it. Describe details of these V&V firstly in
natural language (English) and then in logical formulae.

3. Design and provide automatic V&V support for the above chosen modelling
method.

4. Not all process modelling method provides a facility to describe the data
that is manipulated by its processes. Can you list some of those meth-
ods? Explain whether it is important to have such a facility and any
(dis)advantages associated with it.



8

Knowledge Sharing and Reuse of Models

8.1 Introduction

As mentioned in the previous chapters, KBST-BM is integrated with GMA, the
Generic Model Advisor. GMA is a Case-Based Reasoning (CBR) engine which
facilitates the analysis of new BSDM business maps by comparing them with
existing BSDM models. It also retains the newly developed business models in
its library and uses them for future consultations. By gaining new knowledge,
GMA is able to enhance its consultation capability over time [22].

This chapter investigates how human modellers work and the intelligent as-
sistance that GMA may provide for the modellers as well as how GMA can assist
in completing the life cycle of CBR. After a brief introduction to Case-Based
Reasoning in general, a detailed account of the design and implementation of
GMA is given and an example use of GMA described (a more comprehensive
example consultation using GMA is given in Appendix L).

8.2 Intelligent Assistance for the Business Modeller

A BSDM entity model consists of two basic components: entities and depen-
dencies. Entities are things that a business needs to manage and dependencies
are the relationships between these things. Certain kinds of scenarios or rela-
tionships between entities are common to many businesses. Hence, one would
expect the corresponding BSDM maps to reflect these commonalities. It would
be an advantage if a library of these maps for such common cases could be
provided. The modeller of a new business map could then reuse these generic
models or use them as a reference for comparison with his/her own maps. We
will firstly look at how these reusable knowledge components can be used in
practice by BSDM practitioners. We will then suggest means to provide auto-
matic support for the reuse of this knowledge.

In practice, IBM provides a catalogue of small-size generic entity models [50]
[51] as well as more domain-oriented full-sized generic models for selected sec-
tors. Provided with these models, BSDM practitioners help clients build their



144 AUTOMATING BUSINESS MODELLING

business model by using this information implicitly or explicitly. For BSDM
consultancy, an experienced IBM consultant, Martin King, suggested three pos-
sible ways of reusing a generic model [57].

• Back-Pocket Approach: the clients are made aware of the existence of these
generic models, but they are only used to support consultancy. The client
will see little or none of the generic model. A consultant keeps these generic
models at the back of his/her mind and tailors them to the clients’ special
requirements.

• Reference Model Approach: supply the client with a relevant complete
generic model with a detailed description, together with a contractual con-
sultancy service which provides help for the interpretation and use of the
model.

• Software System Solution: provide developed software systems as packages
which are based on generic industrial models. These software systems can
then be used by the clients. The client may or may not see the generic
business model which was used to develop the required software system.

The first two suggested approaches make direct use of the relevant generic
models while developing new business models. In the first approach, since
generic models are kept in the background, several relevant generic models
may be deployed by a consultant. In the second approach, normally only one
specific generic model is chosen and supplied to the client for reference.

A BSDM business model consists of several business areas, or views, where
each view is a representation of some sub-domain knowledge of an organisation.
There may be several different ways to represent a view. For the first two
approaches, it seems appropriate to reuse generic models (presented in views)
by developing a tool that provides a retrieval mechanism for relevant generic
BSDM models, and making them available to the users (IBM consultants and
the clients). It can also be used to analyse the user’s model with respect to
existing generic models. By providing this facility, the known generic models
can be shared among users, and a structural method of reusing this knowledge
is provided via the tool.

Although there are existing business modelling tools (as discussed in the
literature review in Chapter 2 and later on in Chapter 10), most of them focus
on the capturing and storing of a business model. The tool that we propose
(GMA) takes a pro-active role which encourages good modelling practice and
provides correction advice of models, if needed. The user can also systematically
explore why a model is different from a generic one. Furthermore, when a new
business model is correctly built, this newly built model can be generalised and
retained by the tool in its memory, thereby enabling the reuse of this new model
and enabling the tool to enrich its knowledge through time. The GMA tool uses
a technique called Case-Based Reasoning (CBR). Before GMA is described in
more detail, a brief introduction to case-based reasoning is given.



Chapter 8. Knowledge Sharing and Reuse of Models 145

8.3 Case-Based Reasoning (CBR)

Case-based reasoning was inspired by observing human reasoning. People per-
form CBR on a daily basis: they solve new problems based on their past ex-
perience in similar situations. They learn how to solve particular problems by
remembering solutions successfully applied to similar problems in the past and
hence becoming more competent in dealing with these problems over time.

In the same way, a CBR system solves new problems by comparing them
with old problems and their solutions, which are stored in the system’s memory.
Old solutions are adapted for new problems, and new solutions are stored back
into the system’s memory for future reference; this is how a CBR system learns
[61] [88]. General knowledge and heuristic judgment is sometimes used to guide
the choice of old problems, to determine how well a new situation matches an
old one, and to choose adaptation strategies from old to new solutions.

Indexing Rules

Case Memory

Store

Assign Indices

Predictive Features
Explain

Writing

Solution
Test

Failure Description

Causal Analysis
Repair

Repair Rules

Adaptation Rules

Match RulesRetrieve

Input+Indices

Assign Indices

Input

Problem

Retrieved Case

Proposed Solution

New Solution

Adapt

Fig. 8.1. General architecture of a case-based reasoning system

Figure 8.1 presents the general architecture of a case-based reasoning sys-
tem. A past experience is called a case which consists of an old problem and
its (successful) solutions. Cases are stored in a case memory. Different cases in
the system are identified by their indexes. Indexes are significant features of
cases that allow the system to distinguish between them. The first task of the
system is to identify and assign indexes to the new problem, an activity which
is governed by indexing rules. Match rules are used to compare the assigned



146 AUTOMATING BUSINESS MODELLING

indexes of a case with those in the case memory; a case with a similar problem
as the new one can be identified and retrieved. Adaptation rules are applied
to the solution of the previous case to adapt it to the new situation. If the
proposed (adapted) solution is appropriate for the given problem and worthy
of recording in the case memory then new indexes are assigned to it and it is
stored in the case memory. If the proposed solution failed to solve the problem,
an explanation of failure is produced and an attempt is made to repair the
solution, i.e. the solution is modified according to repair rules and then tested
again. If the failure is due to the inappropriate indexing of the current problem,
new indexes are assigned and the mechanism starts again from the beginning.
In many applications, modification and testing of solutions is carried out by
the user.

In the past, several CBR systems have been built to support design: Cadet
[78] [107] supports better conceptual design for electro-mechanical devices;
Cadsyn [69] provides guidance for architectural design and adapts existing de-
signs for new buildings; Casecad [68] and AskJef [8] use multimedia technology
to store and present their cases to the user, the former in the domain of archi-
tectural design, the latter in the domain of human–machine interface design.
Other example CBR systems are Archie-II [33], Cadre [36], Kritik-II [106] and
Julia [48].

8.4 GMA System Architecture

The Generic Model Advisor analyses a given user-defined BSDM model by
comparing it with generic models in the Generic Model Library (GML) – GML
corresponds to the case memory of the general CBR architecture in Figure 8.1
– and by reporting the various matches back to the user. It is important to
note that in this CBR system the problem as well as the solution are BSDM
maps: the system takes the description of a user-defined map as the problem
and suggests as a solution appropriate generic models from its case memory.
While this is not a solution to the problem of BSDM modelling in itself, it
assists the user in finding a good BSDM model for his/her particular business.

Figure 8.2 shows the architecture of the Generic Model Advisor (GMA).
After the user has created a (partial) user business model using KBST-BM,
he/she can choose to export this model to GMA automatically from KBST-
BM. Upon invoking GMA from KBST-BM, a user interface of GMA is shown
to the user which gives instructions to the user and accepts user commands for
further actions. Figure 8.3 gives a screen shot of GMA when it is started.

After the user has started GMA (typed ‘run.’), GMA firstly identifies and
assigns indexes to the problem, i.e. the user-defined BSDM model. These in-
dexes, together with background contextual information, in our case the Entity
Conceptual Hierarchy, are passed to the pattern-matching algorithm. Equipped
with this background knowledge, the pattern-matching algorithm compares the
indexes of the user’s model with those of the generic models in the case mem-



Chapter 8. Knowledge Sharing and Reuse of Models 147

KBST−BM

Generic Model Advisor

Simulation

Model Rules

User−Defined
BSDM Model

Matching
Library

Assign Indices

Generic Model
Pattern

Case

Choose Best

ModifyGeneralise

of a business model development.

Verification*

Validation*

Assign Indices
Assessment Method

Similarity

Report

Match Rules

Hierarchy
Conceptual

Entity

* This function can be applied at any stage

Model Information + Indices

Generic Models

Matching for the Same User Model

Seeking for Another

The Best Matching

Similarity/Disimilarity Analysis
and Explanation

Generic

Models

User−Defined BSDM Model

Fig. 8.2. Architecture of Generic Model Advisor (GMA)

ory, in our case the Generic Model Library, to retrieve a set of models which
exhibit similar characteristics to the input model.

The retrieved models are past cases relevant to the current problem. After
they have been retrieved they are examined for their relative degree of similarity
with the user’s model. For such a comparison, GMA provides a heuristic method
for assessing which is a better match for the current problem. Alternatively,
the user can dynamically define his/her own similarity assessment function by
alternating the weights of designated measuring features during a consultation
session. (More details on similarity assessment below.)

The best matching case according to the similarity assessment method is
chosen and an analysis report of similarities and differences between the user
model and the retrieved model, together with some explanations, are given to
the user. The user can then either read the report or ask the system to present a
different matching result for another retrieved model, if there are any. Matches
are shown in descending order of their scores in the chosen similarity assessment
method.



148 AUTOMATING BUSINESS MODELLING

Fig. 8.3. Starting the Generic Model Advisor (GMA)

A user-defined model may include more than one generic model, in which
case the user can look through all of these matches. Given a reference case
model, the user can choose to modify his/her model and repeat the above
cycle, i.e. to assign indexes to the problem, retrieve reference models, present
the best match and give an analysis and recommendation report. The user
may decide to modify/extend his/her model based on the retrieved cases and
its reports. When the user is reasonably happy with his/her model, he/she
can retain this new model within GMA by firstly generalising this new model,
verifying and validating the generalised model using the integrated KBST-BM,
and then storing the new generic model back to the Generic Model Library.
The Case-Based Reasoning Cycle is now completed, and GMA’s knowledge
can be enriched and evolved through time via the inclusion of newly acquired
knowledge during operations.

The smaller KBST-BM system box in Figure 8.2 illustrates how KBST-BM
can assist in completing the CBR cycle. It is equivalent to the “Test” activity in
the standard CBR process shown in Figure 8.1. Since verification and validation
can be carried out at any stage of model development, it is also appropriate
during the “Modify” activity in Figure 8.2.

The following sections describe the various components of GMA in more
detail.

8.5 Indexing and Domain Knowledge Representation

As mentioned in Section 8.3, indexes are features which can be used to dis-
tinguish cases in the case memory and to find appropriate matches between a
given problem and previous cases. In the context of GMA, these indexes must
describe the characteristics of a BSDM business model and, at the same time,
the differences and commonalities between models.



Chapter 8. Knowledge Sharing and Reuse of Models 149

As was mentioned above, a business model is presented in several views. A
view is a building block of a business model, and is also the way that a business
model is read. Although each view of a model has a view name associated with
it, these names alone are not always useful when trying to identify common
features of BSDM maps. It is, therefore, necessary to look at the actual BSDM
maps. Simply looking at the graphical representation of maps, however, is not
sufficient.

For example, drawing an existing map upside-down does not make it a
different map, the semantics of the inter-relationships (dependencies) between
entities must be taken into account. Furthermore, the business contextual simi-
larities may be disguised. For instance, if a business model is a more elaborated
or specialised version of another one (or vice versa), then these two models nor-
mally will not have the same architecture (e.g. one may expand parts of the
model in some areas), and often they do not share the same entities (e.g. using
domain-specific vocabularies instead). However, because they are essentially
describing the similar business operations, it will be useful to refer one to the
other.

To be able to make meaningful comparisons between BSDM models, one
must have an integral understanding of the business context which is described
in both the architecture of a model as well as the business context that each
entity represents. The dependence (link) which connects two entities and de-
notes the relationship between entities embeds this information. Therefore,
these dependencies are used as indexes for BSDM models in GMA. To enable
a concise and explicit representation of information needed for matching, new
predicates are introduced in addition to those already introduced in Chapter
5. The data arc predicate represents an Arc, the dependency relationship, from
parent entity Ent to the dependent entity Dependent ent:

data arc(Arc, Ent, Dependent ent)

To capture a more comprehensive understanding of a business map, we
include entities as another index. This enables the system to select a model
based on the similarities of both, entity architecture as well as the covered
business domain. This information is captured in a data ent predicate:

data ent(Entity)

where Entity is the name of an entity. At the beginning of a GMA consultation
session, this information is automatically derived by KBST-BM and exported
to GMA.

A dependency is described by the parent and child entities, and an entity
is described by words which are appropriate in the corresponding domain. To
match two models, one needs to match dependencies and entities between them.
The difficulty that arises is to map entities representing similar but not the same
concepts: while a more generic model may be referring to more general things,
e.g. “party”, a more specialised model is likely to use two separated entities
to express this, e.g. “business” and “person”; or one may be using similar but



150 AUTOMATING BUSINESS MODELLING

different names but at the same level of abstraction, e.g. “trade agreement”
and “business arrangement”.

Differences at the same level of abstraction may also be caused by business-
dependent vocabularies (e.g. a “customer order request” to a store is similar to a
“reservation” for a restaurant). Although they make commitments to different
things, one for the product to be ordered, the other for a space to sit, they
really are expressing a similar concept: to express an informal request for a
purchase which must be dealt with by a business accordingly. To handle such
different levels of abstraction and to recognise the analogy of two similar entity
concepts, the concept of an entity conceptual hierarchy is introduced (Section
8.7).

Since a view name is normally given by the user when a model is built and is
conveniently available, we therefore also make it an index and provide a simple
substring matching mechanism. However, this index is only useful if the user is
very familiar with the internal naming scheme of the Generic Model Library.
As in our own assessment (Chapter 10), we found that the provision of view
name is not crucial for a successful retrieval.

Sections 8.7, 8.8 and 8.9 describe in detail how these indexes are used to
retrieve the relevant generic models for a user model. However, before more
details are given, an introduction to the Generic Model Library is described.

8.6 Generic Model Library (GML)

A Generic Model Library (GML) stores a set of Generic Models. A Generic
Model may be a standardised, generalised or example BSDM business model.
Four different sources have provided models for the Generic Model Library used
for experimentation with the prototype implementation of GMA:

• the standard and example business models provided by the method, i.e.
business models given in the BSDM manuals and its teaching materials;

• an industrial business model that was developed by IBM for its client in
the sector of automobile parts distribution (which is sometimes referred to
as the automobile model for short in the book);

• a generic business model that has been developed for small and medium
sized restaurants;

• a business model that has been developed for course management and eval-
uation for the Department of Artificial Intelligence (DAI), The University
of Edinburgh.1

BSDM provides a catalogue of standard models that describe business con-
texts that are commonly exhibited within different organisations. It also pro-
vides stereotypical example business models to illustrate the selected business
operations. Together they naturally form the foundation of the content of GML.

1 The Department of Artificial Intelligence is now a part of the University’s newly
formed Informatics Division.



Chapter 8. Knowledge Sharing and Reuse of Models 151

These models are interesting to us, because they are generic and therefore may
be used as references for many businesses and in various sectors. A set of such
standard models are given in Appendix A for readers’ interest, other example
business models can be found in Appendix B.

Obtaining business models which are developed and used by industry is
difficult. This is mainly due to the large cost for industry in building them
and, for those that have been built, their content is usually confidential (as
it often conveys a business’ trade secrets). However, we were fortunate to get
permission from one company, which operates in the sector of automobile parts
distribution,2 and obtained a small portion of their model. This model is valu-
able because it is a realistic model which was independently built and used
by a commercial company. It is intriguing because it gives insights into busi-
ness operations in a specialised context, i.e. in the domain of automobile parts
distribution. As a result, it contributes to both the realism and “specialisa-
tion” properties of GML. A model similar to this industrial model is given in
Appendix C for readers’ interest.

To further enrich GML, another industrial model was developed by me by
talking to the industry directly. As a result, a generic model for small and
medium-sized restaurants has been built. The business areas covered include
such issues as customer inquiring, ordering, invoicing and stock control. This do-
main is representative, because the above business areas are commonly shared
by Small and Medium-sized Enterprises (SMEs) in other sectors. Since SMEs
are organisations of smaller size, we imagine there are similarities in their busi-
ness structures, implying commonalities in their business models. The business
model of an SME is also useful for larger organisations, because although small
and medium-sized enterprises are smaller in scale compared with international
trading companies, such a model covers most of the typical core business op-
erations, but describes them in a much more concise way. It is therefore in-
teresting to see whether the built business model can be used to help build
business models on a much larger scale and describe more complex operations
in similar business areas. This issue will be explored in Chapter 10. The generic
restaurant model is given in Appendix D.

To further extend the GML, a business model was built by me for the
Department of Artificial Intelligence (DAI), The University of Edinburgh. It
consists of 35 individual diagrams and covers the areas of Module Evalua-
tion, Course Structure, Personnel Management, Course Evaluation and Degree
Evaluation.3 The model was built to demonstrate the generality of the BSDM
business modelling method and that it is able to describe a variety of organi-
sations. It was also built for testing the automatic Verification and Validation
(V&V) abilities of KBST-BM. Since this model is also realistic, it may be used
for reference if another similar model were to be built for another university in
the future. The model is given in Appendix E.

2 The company wishes to keep their name confidential.
3 A small part and a much simplified version of the “module evaluation” part of

the model have been used as a self-contained model in the previous chapters to
illustrate the formal aspects of the work.



152 AUTOMATING BUSINESS MODELLING

All of the above-mentioned business models form the current content of
GML. Since a business model is presented in views, this is also the form that
is stored in the GML.

8.6.1 Presentation and Representation Issues

A Generic Model is essentially a BSDM business model. However, since it plays
a different role (an advisory role) in our system, a different but similar nota-
tion should be deployed for its presentation to the user. It is important to use a
similar notation because then the user can easily recognise the notation with-
out additional training. It is important to use a different notation so that the
advisory role of the generic model is explicit for the system and for the user.
The underlying development platform of KBST-BM, Hardy [101], a hypertext
diagramming tool, provides diagram card facilities that allow its system de-
velopers to design and define new types of modelling notation. In this case a
BSDM diagram card has been designed and used to capture a BSDM business
model and a Generic Model Library diagram card has been designed and used
to capture a BSDM Generic Model stored in the Generic Model Library. More
details about the implementation of KBST-BM will be given in Chapter 9.
Figure 8.4 shows an example generic model present in a GML diagram card in
KBST-BM.4

For the same reason, the formal representation of model primitives in a
generic model are also different from a normal business model. We report two
main predicates: gml link and gml ent. A dependency relationship in a generic
model is formally represented in a gml link predicate:

gml link(Card id, Link id, Ent, Dependent ent).

where Card id is the GML diagram card5 ID and Link id is the link ID of the
dependency that connects Ent, that is the parent entity, and Dependent ent,
that is the child entity. Since there may be many diagram cards (distinguished
by their IDs) representing the same business area differently in views, all of the
above information is needed to identify a particular link. An entity in a generic
model is represented in a gml ent predicate:

gml ent(Card id, Entity)

where Card id is the GML diagram card ID and Entity is the described entity.
These two predicates above will be used to compare with data arc and data ent
predicates mentioned earlier to provide a basis to determine the similarities
between two models.

In the next section, the link which enables the mapping from a user model
to a generic model is described.

4 In KBST-BM, entities in a generic model diagram are shown in orange to distin-
guish them from the light-blue coloured entities in a BSDM diagram.

5 A Hardy card type determines the subset of the notation that is allowed to be used
for this card.



Chapter 8. Knowledge Sharing and Reuse of Models 153

Fig. 8.4. An example generic model

8.7 Entity Conceptual Hierarchy (ECH)

BSDM recommends that four or fewer layers (or levels) of entities are normally
built in a business model, i.e. each entity in a business model normally does
not have more than three dependent entities (child entities). BSDM further
exemplifies the “sorts” of entities and actual entities that are frequently used
in an entity layer that are named Entity Families [51]. Since there are four
recommended entity layers, we adapt those examples and group them in a
hierarchical structure of Entity Families in the four categories corresponding
to the recommended layers: layer One, Two, Three and Four.

The Entity Family hierarchy records the commonly used entities in a struc-
tural way and may be referenced during a model-building session. This infor-
mation is highly reusable and bears important contextual information about
entities. We capture these Entity Families in our devised Entity Conceptual
Hierarchy (ECH) which gives entity families a hierarchical and graphical rep-
resentation. In addition, it allows subclass relationships to be described between
entities using directional subtype links that are not included in BSDM.



154 AUTOMATING BUSINESS MODELLING

Figure 8.5 shows the notation used in an Entity Conceptual Hierarchy which
is captured in an Entity Conceptual Hierarchy diagram (card) using KBST-BM.

Fig. 8.5. Notation for Entity Conceptual Hierarchy

Two kinds of nodes are defined for the Entity Conceptual Hierarchy: the
Abstract Entity Type and the Concrete Entity Type. An Abstract Entity Type,
a greyed rectangular box, captures the “sort” or the categorical concept of a
Concrete Entity Type which may be used in a business model. It is used to
identify and distinguish the different concepts that are represented by entities.
There can be several levels of Abstract Entity Types at a particular path which
allows the exploration of the more specialised areas of interest. Since an abstract
entity type describes the categorical and contextual information of an entity
type, it is at a higher level of abstraction, which means it is represented at
a higher level in the Entity Conceptual Hierarchy. A Concrete Entity Type, a
clear rectangular box, is the actual entity that may be included in a business
model. A Concrete Entity Type is always at a lower level of an abstract entity
type or another concrete entity type.

The Entity Conceptual Hierarchy serves a similar purpose to that of a con-
text tree which describes the hierarchical structure in an is-a relationship. An
is-a link may describe the relationship between two concrete entity types, be-
tween a concrete and an abstract entity type, or between two abstract entity
types. For example, an employment contract (concrete entity type) is a special
kind of contract (concrete entity type) which is a special kind of trade binding
(abstract entity type).

At the highest level of abstraction for all BSDM entities is the abstract
entity type Things. All (other) concepts are grouped into four subclasses at
the next level of abstraction, the four layers of the entity family. We represent



Chapter 8. Knowledge Sharing and Reuse of Models 155

each of them as an abstract entity type: “Layer 1 Entity”, “Layer 2 Entity”,
“Layer 3 Entity”, and “Layer 4 Entity”. For example, in the branch of “Layer 1
Entity” (Figure 8.6), at the next level of abstraction, things are classified into:
“External Item”, “Agent”, “Physical Thing”, “Abstract Thing”, “Category”
and “Group of Things”.6

Fig. 8.6. The Entity Conceptual Hierarchy (ECH) at Layer 1

These categories are then further subdivided at the next lower level of ab-
straction. The Entity Conceptual Hierarchies do not have to be “strict” tree
structures: an entity at one level of abstraction may have an is-a relationship
with more than one entity at a higher level. This design is to allow automatic
reasoning for the approximate meaning of an entity without the burden of hav-
ing to produce an “absolute” taxonomy to suit all cases – as this is extremely
difficult, since not everything in the real world is a clear-cut case; also doing so

6 “Group of Things” and its sub-hierarchy are not shown in the figure, because it is
only a partial diagram of the entity families in layer one.



156 AUTOMATING BUSINESS MODELLING

may not be necessary, since the main purpose is to identify the analogy between
entities but not to classify them.

Figure 8.6 shows a part of the entity hierarchy diagram card containing the
suggested entities for the top layer (layer 1) of a BSDM entity model using
KBST-BM. The shaded rectangular boxes represent the Abstract Entity Types,
and the clear rectangular boxes represent real entities, Concrete Entity Types.
An arrow from entity B to entity A indicates an is-a relationship from B to A,
i.e. B is-a A.

In the Generic Model Advisor, the is-a relationship is represented in an is a
predicate:

is a(Generic-entity, Specific-entity)

where the Generic and Specific entities can be an abstract or a real (concrete)
entity type. Given this entity (family) conceptual hierarchy, entities in the user
model can be mapped onto this hierarchy, and its context better understood.
This information is also used by GMA to match generic business models stored
in GML and the user model to provide automatic support in developing and
“debugging” the user models.

A detailed description of the matching algorithm is provided in the next
section.

8.8 Algorithm for Case Retrieving

As previously illustrated in Figure 8.2, after the indexes are automatically as-
signed for the user-defined BSDM business model, pattern-matching is carried
out. The pattern-matching algorithm compares the architecture and context
between the given user model and all of the reference models stored in the
Generic Model Library. For each comparison between the user model and a ref-
erence model, the matching ratio for various discriminating criteria for match-
ing qualities are stored. A set of the matched reference models along with their
matching results are kept. When a particular similarity assessment function is
chosen by the user, the corresponding matching ratios are applied in the assess-
ment function to determine which is a better match, therefore determining the
recommendation/selection order of the matches to the user. More information
about the discriminating criteria and the similarity assessment function will be
given in Subsections 8.9.2 and 8.9.3.

As explained in Section 8.5, view names, dependencies and entities are the
indexes used for matching two entity models. For a modeller familiar with the
naming scheme used by GML, a view name may bear important discriminating
information when it is given correctly for the user model and appropriately
to the GML. A simple approach is therefore taken to matching between view
names: a user view name is matched to the view name of a reference model, if
it is a substring of the latter.

Two dependencies match if their child and parent entities match. In other
words, a dependence in the user model is matched to a dependence in the



Chapter 8. Knowledge Sharing and Reuse of Models 157

generic model, if the parent entity of the dependence in the user model can be
mapped to the parent entity of the dependence in the generic model, and if the
child entity of the dependence in the user model can be mapped to the child
entity of the dependence in the generic model. The declarative nature of this
matching of two dependencies is well-suited for the declarative programming
style of Prolog. Furthermore, for each user model it is possible to find more
than one matching generic model. The additional matching models can be
automatically found when making use of Prolog’s built-in back-tracking facility.
It was, therefore, decided to use Prolog as the implementation language for
GMA.

The above matching algorithm of dependencies can thus be illustrated with
the following Prolog predicate match-dependency:7

match-dependence(Generic-model-id,
Data-model-id,
Dependence-in-user-model(parent-entity-1, child-entity-1),
Dependence-in-generic-model(parent-entity-2, child-entity-2) )
:-
map-entity(parent-entity-1, parent-entity-2),
map-entity(child-entity-1, child-entity-2).

The question that remains is how an entity in one model can be mapped to
an entity in a different model. This mapping must take account of the Entity
Conceptual Hierarchy (ECH) which means that all entities used in the user
models and the generic models must be recorded in the entity conceptual hi-
erarchies. In summary, using the entity conceptual hierarchy, two entities are
matched if (1) one entity is at a higher level of abstraction of the other, or (2)
both entities are at the same level of abstraction and are grouped under similar
conceptual classes in the ECH. Without the entity conceptual hierarchy only
identical entities can be matched.

The following Prolog predicates are used to map entities between models:8

(1) Identical entities
map-entity(Entity-1, Entity-2) :-

Entity-1 = Entity-2.

(2) Subsumed entity I
map-entity(Entity-1, Entity-2) :-

is_a(Entity-1, Entity-2).

(3) Subsumed entity II
map-entity(Entity-1, Entity-2) :-

is_a(Entity-2, Entity-1).

7 The actual implementation is more complicated; unnecessary details are left out
for clarity.

8 Again, a more complicated version of the predicates is used in GMA, but details
are omitted here for clarity.



158 AUTOMATING BUSINESS MODELLING

(4) Sibling relationship
map-entity(Entity-1, Entity-2) :-

is_a(Shared-class, Entity-1),
is_a(Shared-class, Entity-2).

(5) Distant subsumed entity I
map-entity(Entity-1, Entity-2) :-

is_a(Intermediate-class, Entity-2),
map-entity(Entity-1, Intermediate-class).

(6) Distant subsumed entity II
map-entity(Entity-1, Entity-2) :-

is_a(Intermediate-class, Entity-1),
map-entity(Entity-2, Intermediate-class).

The first clause of map-entity maps two entities at the same level of abstrac-
tion; the entities are identical. The second and third clauses map an entity to
another entity at the level of abstraction immediately above. The fourth clause
maps two entities at the same level of abstraction; these entities have similar or
identical semantics that share one common entity at one immediate higher level
of abstraction. The fifth and sixth clauses extend all of the above mappings to
one additional level of abstraction, i.e. similar entity types located at two levels
of abstraction away can also be matched. The closer the relationship is between
two entities in the ECH, the higher the quality of the match is rated.

The aggregative quality of matching from one model to another is evaluated
by the similarity evaluation function which is given in the next section.

8.9 Similarity Assessment

8.9.1 Matching Models

As mentioned in the previous section, a user model may include several generic
models. On the other hand, a generic model may include or partially overlap
with the user model. Therefore, there are four possible kinds of matches between
a user model and a generic model, as described below:9

• Case 1: the generic model is entirely included in the user model;
• Case 2: only parts of both models are matched;
• Case 3: the user model and the generic model are fully matched;
• Case 4: the user model is entirely included in the generic model.

9 The no-match case is not discussed here, since the corresponding generic model is
not relevant to the user model and therefore will not provide useful advice to the
user; it will not be presented to the user.



Chapter 8. Knowledge Sharing and Reuse of Models 159

Case 1 Case 2 Case 3 Case 4

G U U G G U G U

U: user model

G: generic model

Fig. 8.7. Possible matching between user models and generic models

Figure 8.7 uses an ellipse marked “G” to represent a generic model and one
marked “U” to represent a user model to further illustrates the above matching
cases. We use the same type of diagram to describe which match types are
preferred; Figure 8.8 elaborates the above four general matching results into
eight different matching outcomes and lists them in the order of preference.

U

CASE I CASE I CASE II II

CASE IV

G G

Equivalent

CASE V

User model is included in the generic model

G U

G

U G

G

U G U G

User model is partially overlapping with the generic model

CASE VI

User model is not included in the generic model, but the generic model is fully included in the User Model

U

U U

CASE VII CASE VIII

Fig. 8.8. The preference of matching results



160 AUTOMATING BUSINESS MODELLING

As our aim is to seek for the best match, naturally a 100% match (CASE
I) is always given the highest priority. The second preference goes to a match
in which a user model is fully included in the selected generic model, hence
CASEs II and III. However, CASE II is superior to CASE III since it has less
additional, and potentially distracting, model components.

If the user model is not included in the selected generic model, the next
preference lies with matches where the generic model is fully included in the user
model (CASEs IV and V), with an advantage in the case where the unmatched
part of the user model is less, i.e. CASE IV better than CASE V.

If neither the user model is included in the generic model nor vice versa,
we opt for the match where the overlap is greatest (CASEs VI and VII) and if
there is no difference in the overlap, prefer the case where the unmatched part
of the generic model is less (CASE VI better than CASE VII).

These preferences bear various implications; when the details of the match-
ing algorithm are given below, these implications are explained. Based on our
preferences, discriminating criteria are identified and the selection mechanism
formed, as discussed next.

8.9.2 Discriminating Criteria

It is common that an input user model will cause several generic models to be
retrieved. When a generic model is retrieved from the Generic Model Library,
the quality of the match between the generic and the user model must be
evaluated. For each matching possibility, a similarity assessment between the
two models is computed; the match which is evaluated to be the most similar
is presented to the user first. The similarity assessment function embedded in
GMA uses the following discriminating criteria:

• Match-View: Match-view = 1, if the input user view name is a substring of
the generic model’s view name; 0, otherwise.

• Match-Data-Link: Ratio of the matched dependencies in the user model.
Match-Data-Link = Number-of-matched-dependencies / Total-number-of-
dependencies-in-user-model.

• Match-Data-Entity: Ratio of the matched entities in the user model. Match-
Data-Entity = Number-of-matched-entities / Total-number-of-entities-in-
user-model.

• Match-Case-Link: Ratio of the matched dependencies in the generic model.
Match-Case-Link = Number-of-matched-dependencies / Total-number-of-
dependencies-in-generic-model.

• Match-Case-Entity: Ratio of the matched entities in the generic model.
Match-Case-Entity = Number-of-matched-entities / Total-number-of-entities-
in-generic-model.

8.9.3 Heuristic Similarity Assessment

GMA provides a heuristic similarity assessment function which makes use of
the above five criteria to determine the quality of matches. In this heuristic



Chapter 8. Knowledge Sharing and Reuse of Models 161

function, we assume that the user will provide a view name for matching only
when they are sufficiently familiar with the view naming-scheme of the case
library. If this is the case, then this index will provide good discrimination.

When comparing two matches, the heuristic method prefers the one with
a matched view name, i.e. Match-View = 1. When the matching results of
the view names are the same, i.e. either both found a matching view name or
both didn’t, GMA will rate higher the model which matches the most of the
dependencies in the user model with dependencies in the generic model (i.e.
the match with the maximum ratio of Match-Data-Link). This is desirable,
since dependencies embed the architectural information of a model. The higher
ratio of Match-Data-Link indicates more aspects of the user model are also
represented in the corresponding generic model.

Although the ratio Match-Data-Link covers most of the architectural sim-
ilarity between two models, it does not include the case when an architecture
is a specialisation of another. In this situation, the more specialised architec-
ture will have more entities and dependencies to describe a situation where
the more general one will use less entities and dependencies. As a consequence,
although similar concepts have been captured in the two models, the relevant
links can no longer be matched because the corresponding parent–child entity
set doesn’t exist in the representation of a link. To take this into account, an
independent entity-matching algorithm is carried out and the ratio, Match-
Data-Entity, is made the third discriminating criterion. In the case when two
matches have the same values for Match-View and Match-Data-Link, the one
with the higher Match-Data-Entity rate is designated the better fit.

If both matches have equal ratios for Match-View, Match-Data-Link and
Match-Data-Entity, then they are probably equally good matches for the user
model. Therefore further discrimination may not be as crucial. However, in the
case when many generic models are retrieved, it is time-consuming to review all
of these matches, thus it is important that all of the retrieved cases are classified
and presented in a meaningful order. To further classify these matches, GMA
looks at how well the generic model has been matched to the user model, i.e. it
chooses the match with the higher Match-Case-Link, i.e. the match which has a
higher ratio of matching dependencies. This heuristic has a hidden consequence,
i.e. when two generic models have the same number of matching dependencies,
GMA prefers the generic model which is smaller in size. This is desirable, since
smaller models are normally simpler and therefore easier to understand. If
they are presented first, the user can use them for confirming the correctness of
their own models, before they continue to examine larger and more complicated
models.

If all of the above-mentioned discriminating criteria have not been able to
distinguish two matches, then the match which has a higher Match-Case-Entity
is preferred. Figure 8.9 summarises the selection of a better match.



162 AUTOMATING BUSINESS MODELLING

Given two matches, X and Y

match−data−link(X) = match−data−link(Y) and
else if match−view(X) = match−view(Y) and

else if match−view(X) = match−view(Y) and

else if match−view(X) = match−view(Y) and
match−data−link(X) = match−data−link(Y) and

else if match−view(X) = match−view(Y) and
match−data−link(X) = match−data−link(Y) and

match−case−link(X) =  match−case−link(Y) and

else SELECT   Y

match−data−link(X) > match−data−link(Y) then SELECT   X

match−case−link(X) >  match−case−link(Y) then SELECT  X

if match−view(X) >  match−view(Y) then SELECT   X

match−data−entity(X) >  match−data−entity(Y) then SELECT   X

match−data−entity(X) =  match−data−entity(Y) and

match−data−entity(X) =  match−data−entity(Y) and

match−case−entity(X) >  match−case−entity(Y) then  SELECT X

HEURISTIC SIMILARITY ASSESSMENT FUNCTION

Fig. 8.9. The heuristic similarity evaluation function

8.9.4 User-Definable Similarity Assessment

The heuristic function has been designed in such a way that the most suitable
matches are presented to the user first. In our experiments (reported in Chapter
10), the test results were favourable. What exactly constitutes the best match
in reality is not entirely clear. It depends on the nature of the input user model
as well as which general models are currently in the library, not to mention the
intention of the user.

One solution to solve this problem is to supply a more generic and dynamic
selection method, i.e. to use a Weighted City-Block Function [3] (also called
Nearest-Neighbour Ranking [61]) for similarity assessment. There are several
possible implementations. We have chosen to use the five identified discrimi-
nating criteria above as key features of the function and allow weights to be put
on them. The matching results of these key features can either be strengthen
or weaken and therefore influence the summarised comparison result. This al-
lows the user to dynamically define their own similarity assessment function by
changing the weights of the above five measure criteria.

The user-definable evaluation function, SA(U, G), is given below, where
U represents the user model ID, and G is the generic model ID; and W1 to
W5 are the corresponding user-definable weights (between 0 and 1) for the five
discriminating criteria presented earlier.



Chapter 8. Knowledge Sharing and Reuse of Models 163

SA(U, G) = W1 * Match-View(U,G) + W2 * Match-Data-Link(U,G) +
W3 * Match-Data-Entity(U,G) + W4 * Match-Case-Link(U,G) +
W5 * Match-Case-Entity(U,G)

Using this evaluation function, the match with a higher value of SA(U, G)
is preferred by GMA, and therefore is presented to the user first. Since the
weights of the function can be dynamically defined, GMA is very flexible in
retrieving and presenting generic models. It also provides a means for the user
to explore the generic models stored in the Generic Model Library in differ-
ent dimensions. Because of the nature of the similarity assessment functions
that we have chosen, GMA’s presentation operation is independent from the
storage method of the Generic Model Library. This is advantageous compared
with a case base reasoner which employs a deductive approach for retrieving a
reference case.

8.10 Report Generation and Retaining New Cases

GMA produces a two-stage report for its matching results. The first part of this
report is a summary about how well the retrieved generic model is matched
with the user model. It informs the user about which generic model has been
retrieved and the matching ratios of the five discriminating criteria mentioned
in Subsection 8.9.2. It tells the user the number of dependencies and entities in
the user model which could and could not be mapped to the generic model. It
also gives the number of dependencies and entities in the generic model which
could and could not be mapped to the user model. This overview gives the user
a good idea how well the user model and the generic model match each other
as well as the size of the retrieved generic model. Figure 8.10 shows an example
of the first part of the report. A full dialogue of an example use of GMA and
its reports are given in Appendix L.

The second part of the report provides the user with the matching details.
It gives the name of the selected generic model and describes which dependence
in the user model was mapped to which dependence in the generic model, and
which entity in the user model was mapped to which entity in the generic
model. Furthermore, it describes which dependencies in both models could
not be mapped. In addition, simple explanations are given why the models
could not be matched. For example, it may be the case that no corresponding
entities existed; or even though matching entities were found, no corresponding
dependencies were found. This could be a hint to the user that they may have
left out an important aspect in the user model.

Based on the comparison between the user model and the retrieved generic
model, the user may wish to modify or extend their model, or view the next
matched generic model. A separate statistical summary report is produced in
a file format which records the mapping results for all of the matches that
have been viewed by the user. This summary report is useful for the user to



164 AUTOMATING BUSINESS MODELLING

Fig. 8.10. An example consultation session (part I)

gain an even greater overview over all of the relevant generic models. It also
provides the user with a convenient means to refer back to a particular match.
One example of such a report is given in the following section. A more detailed
example is given in Appendix L.4.

When the user finished their new model, the user may wish to retain this
newly developed model for future reference. The user can generalise this new
model and use KBST-BM’s verification and validation facility to help ensure the
correctness and appropriateness of the model, and use GMA to automatically
store this newly developed model back to the Generic Model Library. Once the
new model is added to the Generic Model Library, it is ready to be reused for
the next consultation. This final step also completes the life cycle of CBR.

8.11 Example Use of GMA

This section gives an example of how GMA can be used to help the modeller
design a new model from scratch and how to provide a head-start by providing
relevant generic models and modelling guidance for the user in the problem do-
main. In the chosen example, the user wants to build a model in the business
area of customer order handling. Initially, the user identified only two funda-
mental concepts in the domain: the individual customers who place customer
orders with the company and those customer orders placed by them. Based on
a certain amount of training and experience with BSDM, one recognises that
these two concepts may be represented as entities “Person” and “Customer



Chapter 8. Knowledge Sharing and Reuse of Models 165

Order”, respectively. The two entities, therefore, which form the initial model
(as shown in Figure 8.11) will be used as the input (user) model to the GMA
for consultation.

Fig. 8.11. The initial business model

Before the consultation of GMA can begin, the background knowledge
of GMA, i.e. the most recent Generic Case Library and Entity Conceptual
Hierarchy, must be made available to GMA. The user can do so by select-
ing menu-items “Custom Menu/Export Case Library to CBR” and “Custom
Menu/Export Entity Conceptual Hierarchy” from any of the Generic Model
Library or Entity Hierarchy diagram cards in KBST-BM.

The user exports the initial model to GMA in a similar fashion, i.e. selects
the menu-item “Custom Menu/Export User Model to GMA” on the (BSDM)
diagram card which captures the initial model. The user can then activate
GMA by selecting the menu-item “Custom Menu/ Run Generic Model Adviser”
from the same BSDM diagram card. This will trigger the creation of a separate
window which automatically loads the GMA inference engine and the necessary
background knowledge. The activated GMA is shown in a Prolog window: the
welcome messages and instructions generated by GMA are given below:

******* Welcome to KBST-BM Generic Model Advisor *******
Please type "run." to take the specific input from KBST-BM.
Press control+d to quit the program. Bye for now.
| ?-

Since the user wants to use their own model as input, they type “run.” to
take the newly exported user model as input. GMA then compares the user
model with generic models in the case library and collects all of the models
that match. After the collection process is finished, GMA comes back to the



166 AUTOMATING BUSINESS MODELLING

user and asks for the selection method for presenting those generic models.
This part of the GMA dialogue is given below.

| ?- run.
************** Retrieving User Model ****************
**** Matching Generic Models in the Case Library ****
******* Choose Similarity Assessment Method *********
All of the relevant cases to the user model have been retrieved
and will be presented to you one at a time. The sequence of display
may be determined using the default method. Alternatively, if you wish,
you can design your own method by changing the weights on selected
features.
How would you like to optimise the presentation:
(1) Use The Default Method
(2) Redefine The Optimisation Method

|: 1.

Since the user does not wish to redesign the default method, the option “1”
has been taken which leads to the first recommended case: the generic model
“Deliver Product to Customer”. The generated analysing report is given below.

*********** Finished Optimising Solution *********
********** Stage Report No. 1 **********
********** Fitness Measure of Matching **********

(A) The matched CASE model is:
BSDM: Deliver Product to Customer.
The overall similar assessment ratio is: 0.23

* Matching View Name: no
* The link matching ratio of the retrieved CASE model: 0
The entity matching ratio of the retrieved CASE model: 0.14

There are 2 entities matched,
and there are 12 entities not matched.
There are in total 14 entities in the CASE model.

* The link matching ratio of the USER model: 0
* The entity matching ratio of the USER model: 1.0

There are 2 entities matched,
and there are 0 entities not matched.
There are in total 2 entities in the USER model.

******** Stage Report No. 2 *********
******** Result Analysis & Suggestion *********

(1) The selected matching case model is:
BSDM: Deliver Product to Customer.

(2) Matching of entities:



Chapter 8. Knowledge Sharing and Reuse of Models 167

- There are 2 sets of entities found matched:

- The Entity "Customer Order" in the USER model.
was found to be matching with
the Entity "Order" in the CASE model.

- The Entity "Person" in the USER model.
was found to be matching with
the Entity "Organisation" in the CASE model.

(3) An independent match from User to Case Model:

- No dependency was found to be matched.

============= End of Report =============

In this report, a summary of the overall matching is given in the first stage
of the report followed by detailed supporting evidences in the second stage of
the report. If the user wishes to see the above selected generic model, they can
use KBST-BM to view it and modify/extend their own model accordingly. The
above recommended generic model is shown in full in Figure 8.12.

Alternatively, the user may wish to see another matching model for the
same user model. In that case, they may type “y.” at the end of the first GMA
consultation session to ask GMA to present the next best matching. This part
of the dialogue is given below.

============= End of Report =============
Do you want to see an alternative matching ? (y. or n.)
|: y.

GMA will repeatedly ask whether the user wish to see an alternative match
until the user answers “n.”, or until all of the appropriate options have been
displayed. In this fashion, all of the matching generic models may be displayed
to the user in the order based on the chosen selection method. If the user decides
to make direct use of any of the selected generic model, the user can export
that model out of the Generic Model Library using KBST-BM by choosing the
menu-item “Custom Menu/ Export GML to BSDM” on that generic model.
This will cause KBST-BM to automatically generate a new BSDM (user) model
from that generic model.

A more comprehensive consultation example of GMA including the corre-
sponding underlying formal representation of the user model is given in Ap-
pendix L.

8.12 Conclusion

Since common business scenarios exist in different business environments, it is
an obvious advantage if one can reuse already existing generic business models.



168 AUTOMATING BUSINESS MODELLING

Fig. 8.12. The recommended generic model

As observed earlier in this book, not all human reasoning about how to build an
appropriate business model can be formalised as rules. In responding to both
of these two issues, Case-Based Reasoning was used to provide supplemental
support to the user in addition to the support which is already provided by
KBST-BM.

A Case-Based Reasoning Engine, Generic Model Advisor (GMA), has been
developed and was described in this chapter. Also, a brief introduction to the
standard CBR life cycle was given, followed by the system architecture of GMA.
Integrated with KBST-BM, GMA is able to store business models which are
provided by the method as well as newly developed generic models. It can
retrieve and recommend relevant business models to the user when only given
a partial model.

A concept similar to that of the context tree has been deployed by GMA,
namely the building of an Entity Conceptual Hierarchy (ECH). The Entity Con-
ceptual Hierarchy provides a framework to express the entity concepts which
are captured in a business model as well as the inter-relations between them.
This knowledge was used to match two business models (it is also used to de-



Chapter 8. Knowledge Sharing and Reuse of Models 169

termine if a business model has been over- or under-specialised as described in
Chapter 5).

A heuristic similarity assessment function has been provided by the tool.
This heuristic was found to be successful in our tests (as reported in Chapter
10). To provide more flexibility towards the retrieval of generic models, GMA
allows the user to dynamically alter the similarity assessment function. Both
of these two similarity assessment methods allow an independent operation of
the case presentation to the user from the storage method of generic models in
the GML.

Combined with KBST-BM’s verification and validation facilities, a business
model’s correctness can be verified and its appropriateness examined, new mod-
els can be retained to the Generic Model Library and subsequently the retained
models can be used for future GMA consultation sessions, thereby completing
the life cycle of GMA.

8.13 Exercises

1. Explain why reusing past models is useful. How does it compare with nor-
mal BSDM practice?

2. What is CBR? How is it related to reusing past models?
3. What is GML? What kind of models are worth of storing in it?
4. What is ECH? What is its role in a CBR cycle? Can one carry out a CBR

without it?
5. Explain how new cases are matched with past cases in this chapter. Explain

the rationale behind this method. Can you propose a matching method for
another modelling method, e.g. UML’s Class Diagram?

6. New cases may be overlapped with past cases in various different ways. List
those and provide possible explanations for their outcomes.

7. Explain the heuristic similarity assessment function used in this chapter.
Describe the rationale behind this method. Can you propose an assessment
function for another modelling method, e.g. UML’s Class Diagram?

8. Explain the analysis report given in this chapter and its design rationale.
Can you propose a report design using an alternative modelling method,
e.g. UML’s Class Diagram?

8.14 Advanced Exercises

1. Based on the above self-proposed matching algorithm and heuristic simi-
larity assessment function, implement a CBR engine.

2. Based on the above self-proposed analysis report style, implement a report
generation facility for the CBR engine described above.



9

Use of KBST-BM

The Knowledge Based Support Tool for Business Models (KBST-BM) is built
upon a diagramming and hypertext development tool Hardy [101] which was de-
veloped and provided by the Artificial Intelligence Application Institute (AIAI)
at The University of Edinburgh. Since Hardy has embedded within it the ex-
pert system shell CLIPS [79], we are able to enrich the built tool with method
and application domain knowledge. KBST-BM is a design tool which uses our
formal method to provide the user with intelligent support throughout the
development life cycle of building business models using the Business System
Development Method (BSDM).

KBST-BM has the following characteristics:

• it is event-driven;
• it is diagram and hypertext-based;
• it is knowledge-rich;
• it provides an automatic verification facility for business models;
• it extends BSDM’s business modelling method with the Procedural Model

and provides means to enable the simulation for the business model;
• it provides a notation to display a dynamic BSDM business model;
• it discovers process dependencies in business models and infers process ex-

ecution order that was not previously known to BSDM;
• it accumulates model-building knowledge through time using the built-in

system, Generic Model Advisor;
• it supports the full model development cycle and can be used to record

design rationale.

This chapter describes an example user-scenario that deploys KBST-BM to
build a business model in BSDM, thereby demonstrating the use of KBST-BM
in the context of actual model-building.



172 AUTOMATING BUSINESS MODELLING

9.1 Description of DAI Case

As mentioned in Section 8.6, a business model has been developed for the
Department Artificial Intelligence (DAI), The University of Edinburgh during
this research project which will be referred to as the DAI model for short
here. A much simplified and partial view of the area of module evaluation at
the same department was used in the previous chapters to provide example
business models when explaining concepts and support of the tool. We will be
referring back to some of the example models which have been shown in those
chapters to keep our description more concise. We will, however, also use a
more complete model to show aspects of the tool that have not already been
shown.

In the more complete model, five interesting business areas have been iden-
tified for the AI department and they are categorised as views in the business
model: “Module Evaluation”, “Course Structure”, “Personnel Management”,
“Course Evaluation” and “Degree Evaluation”. The view “Module Evaluation”
specifies the (business) context that is related to the assessment of student per-
formance for a module that mainly involves the assessment for undergraduate
and MSc students in the department. The evaluation of module performance
for a student depends on two criteria: the performance of examination and
practicals for that module which are illustrated as business processes in the
view. We will use the development for the view “Module Evaluation” as a case
study example.

9.2 Developing a Business Model

9.2.1 Overview of using KBST-BM

Once an organisation has decided to build a business model, the first consid-
eration is to divide the business operations into several business areas. Each
business area is built as a part of the business model: they sometimes form a
view or several views in the model.

KBST-BM provides a tree hierarchy of cards to capture the business model.1

Figure 9.1 shows the top-level control window which displays one possible or-
ganisation of a business model. Each text node indicates the name of a “card”
which is a window of either the type of a Text Card, Hypertext Card, BSDM
Card (which captures the BSDM business model), Life Cycle Diagram, Dy-
namic Business Model card, Procedural Model card, Generic Model Library
card, Entity Hierarchy card, Workflow Management card, Process Sequence Di-
agram card, Entity Relational Diagram or a State Transition Diagram.2 Hardy
provides two text card types: Text Card and Hypertext Card, the rest of the

1 This mechanism is provided by the underlying development tool Hardy.
2 All of these card types have been introduced and shown in previous chapters; the

Workflow Management card will be described here.



Chapter 9. Use of KBST-BM 173

cards were devised based on BSDM and other appropriate notations using
drawing facilities provided by Hardy.

Figure 9.1 shows the tree hierarchy of the title of the cards stored in KBST-
BM.

Fig. 9.1. Overview of KBST-BM

When modellers start to build a model, they create a “top card” in KBST-
BM. The top card “A DAI Model” has been created as a root node for the
hierarchy. There can only be one root node in KBST-BM. A text card, a card
that only contains text, has been used in this case which gives a brief de-
scription (in natural language) about the captured model. Cards that share
common interests are grouped together as sub-trees and expanded from the
top card. For instance, the card stud35: Degree Evaluation View: Take a Re-



174 AUTOMATING BUSINESS MODELLING

search Project by Person and its sub-tree describe the context of handling a
student’s research project. Other example BSDM Cards that have been used
to capture the business model are shown in Appendix E.

9.2.2 Workflow for Developing a Business Model

Fig. 9.2. Recording views in BSDM

The major business areas that have been identified by the user as “views”
are stored in a Workflow Management card in KBST-BM as shown in Figure
9.2.3 There are five business views that have been identified for this model,
each is captured as a Workflow View node, a rectangle, in this card. This
card provides an overview of the important business areas; it can be further
extended with sub-trees of other Workflow Management cards which capture
the framework for the development life cycle for a business model in BSDM,
as shown in Figure 9.1.

Figure 9.3 shows a Workflow Management card which is at the top level
of the framework for developing a business model in the business area Module
Evaluation using KBST-BM. Three sets of BSDM model-building activities are
described in the three Workflow Process nodes: entity mapping, process map-
ping and procedural mapping. Although modelling activities captured in this
figure include only one business area, they can be used to cover several busi-
ness areas. The Workflow arrows which connect two Workflow Process nodes
suggest the developing sequence and iterative process.

The above development framework is compliant with BSDM [52]. An ex-
ample development workflow for building a Business Model in BSDM is shown

3 The notion of Workflow Management is a KBST-BM device.



Chapter 9. Use of KBST-BM 175

Fig. 9.3. Development framework for a business model

Identify Processes

1. Identify Originate Processes
2. Identify Change Processes

3

Define Processes

2. Document Business Rules
1. Identify Triggers

5

Define Attribute Processing

1. Document Value Rules
2. Document Derivation Rules

6

2
Identify and Define Attributes

1. Identify Candidate Attributes
2. Review Attributes
3. Define Attributes

Process Mapping
Knowledge of Business

Entity Mapping

1
Identify and Define Entities

1. Identify Candidate Entities
2. Create Working Diagrams
3. Verify the Entities
4. Create Formal Diagrams
5. Define Entities

Establish Process Scope

2. Summarise Process−Entity Interactions
1. Identify Process Scope

4

Fig. 9.4. A high-level view of BSDM workflow

in Figure 9.4.4 The procedural mapping, on the other hand, is an extension to
BSDM that is the model-building process for the procedural model. It is a new
component added to BSDM and is similar to those described above for process
mapping.

Each Workflow Process node can be further divided into more detailed activ-
ities and described as Workflow Action nodes in other Workflow Management
cards which are shown at a lower level in the hierarchy.

4 BSDM does not have a notion of workflow. We use it here for illustration and to
provide assistance for modelling activities.



176 AUTOMATING BUSINESS MODELLING

When business views have been identified and recorded in figures similar to
the one in Figure 9.2, the modellers can now follow the building procedure which
is given by BSDM and recorded in the Workflow Management cards. Three
kinds of nodes have been devised and provided for the Workflow Management
cards: they are Workflow View, Workflow Process and Workflow Action. Table
(9.1) below shows the attributes of these node.

The Workflow Management card was designed to capture the process of
developing a BSDM business model. The fact that design processes and actions
can be decomposed and their progress and design rationale can be recorded
allows modellers to use KBST-BM for project management. It has deployed its
own set of notation and terminologies to present an integral view for modelling
management. A conceptual mapping between the terminologies used in BSDM
and in the WorkFlow Management Card will be given in Table 10.2.

Table 9.1: Nodes and their attributes in workflow diagrams

Workflow View Workflow Process Workflow Action
View Name Process Name Action Name

Support Facility Support Facility
Description Description Description

Version Version Version
Creation Date Creation Date Creation Date

Author Author Author
Working Status Working Status Working Status
Working Time Working Time Working Time

Notes Notes Notes

9.2.3 Reuse, Verification and Validation Life Cycle

The model-building process for BSDM is an iterative process which can be
described as a plan-build-test-refine development cycle as shown in Figure 9.5
(adapted from the software development cycle in [83] and [41]). We provide
facilities that analyse the model from different aspects and give error correction
advice to help the modellers complete their tasks.

Plan Build Test Refine

Fig. 9.5. The plan-build-test-refine development cycle

9.3 Developing an Entity Model

An example Entity Model has been described in Chapter 5 and a part of the
model is shown in Figure 5.2. To begin with, the user can decide on a particular



Chapter 9. Use of KBST-BM 177

business area to work with. The user can identify the key entities in this area
and the dependencies between them. The user can then use this partial model
as input to the Generic Model Advisor, which retrieves parts of (reference)
models from the Generic Model Library which are in the similar business cir-
cumstances, together with a comparison and analysis report between the user
and the retrieved models. The user can choose some of these retrieved models
and have them automatically exported to the user’s own model. The user can
now adapt the newly retrieved model as his/her own model.

Fig. 9.6. The (property) definition form for entity “Person”

The creation of entities and dependencies on these cards is done using
mouse–menu interactions. After an entity is created, property values of this
entity can be entered through the definition form provided for in KBST-BM.
Figure 9.6 shows the definition form for entity “Person”. The attributes for the
entity occurrences can also be specified at this time. Recall that entity prop-
erties are the commonly shared properties for every occurrence of an entity;
whereas the values of entity attributes are only applicable to the particular en-
tity occurrence (a concept that has been described in Chapter 5). Figure 9.7
shows the Attribute List Menu through which the user can create and define
entity attributes for entity “Person”.

Several entity attributes have been identified for a person: to name a few,
“First Name”, “Last Name”, “Other Name”, “Birthday” and so on. Each entity
attribute can be further specified. Figures 9.8 and 9.9 show the definition forms
for the attribute “Nationality” for entity “Person”. The actual instantiation
of values for these entity attributes can only be done when the corresponding
entity occurrence has been created; this is done in the Dynamic Business Model
which has been described in Chapter 6 and will be briefly shown again later.



178 AUTOMATING BUSINESS MODELLING

Fig. 9.7. The attribute definition form for entity ‘Person’

Fig. 9.8. Detailed definition form for attribute “Nationality” (1)

To help the user navigate around the model, several convenient facilities
using mouse–menu activations have been provided: e.g. the facility to auto-
matically browse/close/iconise/save all cards, to show the name of the file that
physically stores the card, to see the type of the card, to get a summary infor-
mation for all entities and processes in a particular card or in the whole model,
to generate a summary report for all entities and processes in the model, to
browse and search for all cards/processes which include a particular entity, to
locate the Life Cycle Diagram for an entity anywhere in the model, to auto-
matically infer the parents for all entities (because not all entity parents are
included in all cards), and to infer the correct level for each entity in the model.

As the Entity Model is developing, the user may identify important entities
for which the transition of life states needs to be specified. This information



Chapter 9. Use of KBST-BM 179

Fig. 9.9. Detailed definition form for attribute “Nationality” (2)

is recorded in Life Cycle Diagrams: one such example was given in Figure
5.3. At any stage of building the Entity Model, the user can decide to use the
Generic Model Advisor again to gather further comparison results using the
newly developed model. The user can also use the model verification facility in
the KBST-BM at any stage of model development.

To carry out model verification, the user first needs to enact the representa-
tion of the model followed by the activation of a consultation window for entity
model verification, both using a mouse–menu interaction. One such consulta-
tion window was shown in Figure 5.5. Verification of entity and process models
is done by the application of sets of model rules and guidelines. The user can
use all of the rules and guidelines to verify the model by specifying each set
systematically in the consultation window and to adjust the model according
to the automatically generated analysis and advice.

Since the process of the model development is iterative, the user may choose
to review, verify, validate and modify the model using the appropriate support
facilities provided by KBST-BM at any appropriate time. When the developed
Entity Model is correct and adequate, the newly built Entity Model can be
automatically imported into the Generic Model Library enabling future reuse
of the model and increasing the knowledge of the Generic Model Advisor over
time. Having finished building the Entity Model to a certain extent, the user is
now ready to extend the model with processes.

9.4 Developing a Process Model

Based on the BSDM Entity Model, the modellers can now identify processes
that manipulate those entities. Figure 6.1 shows an example process model us-
ing KBST-BM. Once a process is created, the user can define the process using
definition forms in KBST-BM. Figures 9.10 and 9.11 show the definition forms
for process “Assign Practical Mark” with which the user can define properties
for the process and specify the corresponding process scope.



180 AUTOMATING BUSINESS MODELLING

Fig. 9.10. Definition form for process Assign Practical Mark (1)

Fig. 9.11. Definition form for process Assign Practical Mark (2)

The user can also decide to extend existing entity Life Cycle Diagrams
(LCD) with processes or create new entity LCDs, and relate them to the iden-
tified processes in the model. To help the user cross-check the correctness,
completeness and appropriateness of the process model, the user can use the
automatic model verification facilities at any stage. The way of using this fa-
cility is the same as the one applied for entity model verification. Having the
errors (if any) identified and potential inadequacies pointed out by the tool, the
user can modify the model accordingly. The user can also use the navigation
facilities which are provided for in KBST-BM at any stage to assist the process
model development.

When the process model is completed to a sufficient stage, the user can
decide to use the Process Execution Constructor to infer the dependencies and



Chapter 9. Use of KBST-BM 181

constraints for process execution (Subsections 7.4.2 and 7.5.1). Two types of
Process Dependencies and Partial Execution Order diagrams can be generated,
one shows dependency types I, III and VI, and the other shows types I, II, III
and IV. In the second diagram the type III dependencies are replaced by type
II wherever type II dependencies are present since type II and III dependencies
indicate similar (but not the same) relationships. Each of these two types of
diagram shows some properties that other ones do not. An example of each
type of diagrams was given in Figures 7.4 and 7.5. Both of these diagrams were
generated using the DAI model given in Appendix E.

Given these diagrams, the users are provided with another independent
way to evaluate the adequacy of processes and the relationships between them,
and can determine if any overlapped processes should be merged or missing
processes created. Possible conclusions that the user can infer from the Process
Dependencies and Partial Execution Order and actions the user can take were
described in detail in Subsection 7.5.1. Since those process dependencies also
indicate the constraints for process execution orders the user can gain an insight
into the dynamic behaviours of a business model even before the simulation
begins.

9.5 Developing a Procedural Model

If the user wishes to perform simulations based on the business model, then
he/she will need to learn our extension to BSDM, the Procedural Model, which
captures the operational details of a process. The building of a procedural
model is supported with standard procedural models. The user can select for
adaptation the standard procedural model which has the same process type as
the desired process (the process types are described in the Inheritance Hier-
archy). The procedural model will then be instantiated with entity types and
actions, which will be used to provide a framework for executing the process.
Examples of standard and instantiated Procedural Models were given in Figures
7.1 and 7.3.

Having specified the Procedural Model the user can now design business
scenarios that will be used to test the adequacy of the business model. To gain
an overview and short cut in doing so, the Process Dependencies and Partial
Execution Order diagrams can be used to help prune the “search space” by
avoiding business scenarios that violate the constraints that have been stated
in these diagrams. In fact, the system will not allow the user to simulate many
of the scenarios in which the process execution contradicts the partial orders
that have been derived and displayed in the Process Dependencies and Partial
Execution Order diagrams. For example, the business model simulator make
sure that an entity occurrence is already created before it allows a process
to create an attribute for it. After the testing business scenarios have been
decided, the user may invoke KBST-BM to automatically create a Dynamic
Business Model from the Process Model using simple mouse–menu actions.



182 AUTOMATING BUSINESS MODELLING

The user can instantiate the entity and process types in the Dynamic Busi-
ness Model with the corresponding occurrences. An instantiated diagram was
given in Figure 7.2. These occurrences constitute the initial state for the busi-
ness model simulation. The user also needs to create process trigger occur-
rences5 in the Dynamic Business Model. The content of a trigger occurrence
follows the information specified in the Procedural Model for that process and
will invoke the corresponding process occurrence to be created and executed,
when all required constraints are satisfied.

After this is done, the user can export the business model including the
dynamic information to the business model simulator and activate the simu-
lator. During export, fundamental errors such as missing of information may
be found by the tool and messages shown to the user. These errors should be
corrected before using the simulator.

Fig. 9.12. Dynamic business model with trigger occurrence

Entity, process and trigger occurrences are normally scattered across sev-
eral Dynamic Business Model cards, but can be exported as a whole to the
simulator. A trigger occurrence includes all of the information that is needed
to invoke the corresponding process: i.e. the actions, preconditions, postcondi-
tions and IDs of the entity occurrences involved. Figure 9.12 shows one trigger
occurrence (in diamond shape): the trigger ID is 111, the process name is “Ac-
knowledge Handed-In Practical”, the time cost is 2 (units) and the process is
to be activated at time 0.

5 The trigger occurrence actually includes all information needed to execute a pro-
cess, therefore it is not only a trigger occurrence, but also a trigger information
pack. An example is given later in this chapter.



Chapter 9. Use of KBST-BM 183

Fig. 9.13. Definition window for a trigger occurrence

Fig. 9.14. Process scope described in a trigger occurrence

Figure 9.13 shows the definition window for the trigger occurrence which
includes all of the information described above and control buttons which lead
to other definition windows for additional details. Figure 9.14 shows the ad-
ditional definition window Dynamic Process Scope which describes the entity
occurrences that are included in the process Acknowledge Handed-In Practical,
in which entity types are automatically generated based on the information
specified in the corresponding procedural model. Since entity occurrence infor-
mation is changed every time a new trigger occurrence is created, it is gathered
by the user dynamically either through mouse or keyboard interactions.

The business model simulator can be activated from the Dynamic Business
Model or from any BSDM Cards. Upon activation, a window that runs the
simulator is opened and the user can give instructions for how many simulation



184 AUTOMATING BUSINESS MODELLING

Fig. 9.15. Activation of the business simulator

steps the system should take. Figure 9.15 shows the simulator window.6 In this
example, the user has issued the command top “(1)” to enable the system to
infer one step (one system time unit). The system reports back to the user
about the progress of its actions and at the end of the execution asks the user
for any new trigger occurrences that can be imported from a Dynamic Business
Model. Since the user has decided not to supply a new trigger occurrence, the
command “n.” was given. The simulation has now ended.

The initial state consists of a system state ID “0”, time 0 and all of the
dynamic information that was imported from the model. To see which state
the system is currently in, the “look.” command is issued in the simulator. This
command can be used at any stage when the simulator is not executing. Figure
9.16 shows the results of the simulator. As mentioned in Chapter 7, trigger
occurrences are represented in a trigger information predicate:

trigger information(Begin time, Process name, Trigger ID, Action list).

Since the above trigger occurrence suits the time requirement at time “0” and
all corresponding preconditions were satisfied at that time, this trigger occur-
rence is put inside the process agenda. The trigger information predicate is

6 The simulator is written in Prolog.



Chapter 9. Use of KBST-BM 185

Fig. 9.16. Simulation result (1)

therefore deleted and an agenda predicate inserted (shown in Figure 9.16 ):7

agenda(process(Process name, Trigger ID,Action list, (Begin time, End time))).

At this stage, since no processes have been executed yet, no changes are made
to the dynamic state of the system. The system therefore still stays at “state 0”
(the initial state)8 and has used up one time unit and stops before the entering
of time 1.

The user has now decided to advance the system for another 2 time steps,
hence gives the command “top(2)”. The process trigger is now matured (time-
wise) and its effects are realised. Figure 9.17 shows how the system operates
and reports to the user. The user may decide to execute several processes
at any time point, if there are more than one matured processes. The user
may also decide not to execute a process and postpone the execution until
later. However, if a matured process has been postponed for too long (a pre-
determined time span), a warning/reminder will be given to the user. Note
that before a process can be executed, various aspects must be checked: the
detection of any potential conflicts between any competing processes (described
in Subsection 7.5.2), the correct syntax of the triggers and its actions, the
satisfaction of the process preconditions (stated by the user in the procedural

7 End time is the dynamic Begin time when a process is in the agenda plus the
necessary time cost to execute the process.

8 A system state can only be changed if a process has been executed.



186 AUTOMATING BUSINESS MODELLING

Fig. 9.17. Simulation result (2)

model) and any other prerequisites for process actions (system built-in). If
any of the above checks fails, the execution is aborted and the user will be
prompted with error messages and advice. The aborted process execution can
be continued in the next time step if the error has been corrected.

After executing the process, the user may decide to issue another “look.”
command to the simulator to see the changes made to the system state. He/she
will find that the process has been executed and effects realised: the correspond-
ing entity and process occurrences and attributes have been created, and the
state is now advanced to “state 1”, because of the process execution. A full
dialogue of this operation is given in Appendix M.

In the above case, no conflicts between processes have been found. However,
in a case when a potential conflict is present the tool is able to detect that and
report it to the user. As mentioned in Chapter 7, the execution of processes and
changes made to the dynamic states of the business model can be described
in a State Transition Diagram. The user can use the business model simulator
to help predict if the design of the business model will allow the business
organisation to behave in certain ways.



Chapter 9. Use of KBST-BM 187

9.6 Conclusion

The process of developing BSDM’s business model is an iterative one. Parallel to
the development framework, which was summarised in Figure 9.3, is the plan-
built-test-refine development cycle as shown in Figure 9.5. The development
process of a business model is captured and represented in a workflow diagram,
which enables the user to keep track of the current status of model development
and the design rationale. As the model is extended, the user can decide to carry
out verification and validation checks. If the user feeds the relevant process and
procedural information into a model, further validation checking can be carried
out. Based on the checking results, the user can modify the model to eliminate
errors and repeat the plan-build-test-refine cycle until the model is complete.
The tool also helps the user to reuse and retain model-building knowledge.

In summary, KBST-BM provides a knowledge-rich system which enables
the reuse, verification and validation of business models. Its capabilities can be
improved over time due to its GMA component. As a result, it can be used to
improve the quality of business models and speed up the model-building pro-
cess. KBST-BM complies with the method (BSDM) and can demonstrate the
dynamic behaviours of a business model. It can, therefore, be used as a com-
municator (especially for those who are not BSDM professionals) and increase
user confidence in the model.

9.7 Exercises

1. What are the characteristics of KBST-BM? What are the main purposes
of KBST-BM?

2. Describe a typical workflow for using KBST-BM to build a business model.
3. KBST-BM supports several different graphical methods. List them and

discuss how they complement each other to support the user.
4. Discuss how logical methods play a part in KBST-BM.
5. How does KBST-BM help as a part of the business modelling life cycle? Is

this approach generic? Can you discuss how this approach may be applied
to developing other modelling methods?

9.8 Advanced Exercises

1. KBST-BM is a graph-based tool that support various graph-based meth-
ods, but not all modelling methods are graph-based. Discuss how a graph-
based (sometimes called a visual-based) method may (or may not) be useful
compared with one that is not graph based.

2. You may have heard of black- and white-box testing from your experiences
of Software Engineering. How would you compare those techniques with
those V&V and critiquing techniques used in KBST-BM to test models?



10

Evaluation of System

10.1 Introduction

The functionality of KBST-BM was evaluated and improved as a consequence
of using it to build the different business models described in this book. The
usefulness of the tool was also demonstrated when it was successfully used for
a large Multi-Perspective Enterprise Modelling project, AOEM, for (military)
Air Operations [56] [19]. There, using KBST-BM, a BSDM Business Model
has been built, including 41 BSDM diagrams, describing 162 different types of
entities and 28 different types of processes.

This chapter describes an evaluation of KBST-BM based on work carried
out during PhD research, i.e. not including many further details on AOEM. The
main part of this analysis focuses on the level of support the tool provides for
the method (BSDM), although a brief comparison with other similar modelling
tools and a discussion of our experiences in using a logic-based method to
provide such support are also included.

KBST-BM was built to test the idea proposed in the book: following a
logic-based approach, it is possible to provide automatic support for informal
methods. As mentioned in Section 8.6, business models in five different ar-
eas have been built using KBST-BM as a part of the research. They are the
standard and example business models provided by the method, an industrial
business model that was developed by IBM for its client in the sector of au-
tomobile parts distribution, a generic business model that was developed for
small and medium-sized restaurants, a business model developed for course
management and evaluation for the The Department of Artificial Intelligence
(DAI), The University of Edinburgh.1

The actual use and evaluation of the tool has shown that it facilitates a level
of automation of modelling tasks and support of the method that was previously
not available. The tool previously used by IBM BSDM experts, FlowMark
[65], has none of the sophisticated automation tools and only provides various

1 The department of Artificial Intelligence has now been merged and forms part of
the School of Informatics.



190 AUTOMATING BUSINESS MODELLING

documentation facilities for BSDM. The aim of this chapter is to evaluate how
well AI techniques can be used to help business modelling activities; but not
to assess the usability or user-friendliness of KBST-BM or GMA. Once the
conceptual experimental work is proved successful, building industrial strength
graphical user interfaces is better left to interested commercial vendors.

The evaluation of how well KBST-BM supports the method uses the fol-
lowing criteria:

• Completeness: how well the tool covers the user requirements which are
needed to apply the BSDM method.

• Model Verification Support: how well the modelling rules and guidelines
that BSDM specifies and which are used to check syntactic and semantic
correctness of a model are included in the tool. The evaluation assesses to
what extent these model rules are incorporated into the tool and used for
verification and validation purposes and why certain rules were not included.

• BSDM Development Process Support: how well the tool supports
the BSDM model development process. Does the tool support every model
development stage? Do the practitioners and modellers need to change their
modelling practices in order to use the tool?

• Knowledge Integration and Sharing: while it is useful to share model-
building knowledge, it is generally difficult to do so because the knowledge
is normally scattered around different documents to which not everyone has
access and unique model experiences can be possessed by several individuals.
How well the tool can help to integrate these forms of modelling knowledge
and make good use of it to provide modelling guidance is the key question
here. This test is particularly carried out on GMA.

A comparison of KBST-BM with other similar tools, the Rose Business
Process Link (from Ensemble Systems Inc.) and AI0WIN (Knowledge Based
Systems, Inc.), is given in Section 10.3.

10.2 Evaluation of Support for Method

10.2.1 Completeness Assessment

In this section, KBST-BM was evaluated against the user requirements of a
typical BSDM modeller and the standard BSDM method. It does not include
any BSDM extensions proposed as part of this book. The newly-added pro-
cedural model, the simulation ability of the tool and the workflow diagrams
provided in the tool are discussed in later sections.

Business models are normally built during workshop sessions by business
managers and a BSDM facilitator (business model expert), who makes use of
flip charts and post-it notes for communication and documentation purposes.
A diagramming and an editing tool are used after the workshop to record this
information. It was suggested that the current tool in use (FlowMark [65]) is
not satisfactory due to two main reasons: it does not support the method, i.e.



Chapter 10. Evaluation of System 191

the tool does not provide direct support for the BSDM notation or its documen-
tation, and the current tool lacks automatic facilities such as communication
and error checking – the tool offers process execution abilities, but these are not
applicable for BSDM processes. Therefore, a more suitable electronic support
tool is much needed.

At an early stage of this research, several meetings were held to talk to
an experienced BSDM business modeller (who later became the user of the
tool) together with two AI scientists to draw up initial requirements for po-
tential modelling support. These initial requirements formed the foundation of
the tool design. To gain early feedback the tool was regularly demonstrated
to and evaluated by the IBM expert (the intended user) while the tool was
under development. Each feedback was taken into account during subsequent
development work. The tool was given to the modeller for further evaluation
when it was finished.

Table 10.1: Requirements and their priorities for tool

Requirements Functions Priority Provision
IBM AI

Entity:
Entity Definition 1 h l yes
Attribute Definition 1 h l yes
Attribute List 1 m l part
Entity Family Specification 2 m m yes
Show Entity Dependence 2 m m yes
Entity Dependence Check 3 l m yes
Entity Occurrence Example 2 m l yes
Entity Life States 1,2 m m yes
Process:
Process Scope Description 1,2 h l yes
Process Display 1,2 m l yes
Process Definition 1,2 h m yes
Process Generation 4 l m yes
Process Definition Check 4 l m yes
Others:
Search Ability 2 h l yes
Diagram Repositioning 2 m m yes*
Generic Model Library 1,2 m m yes
Generic Model Advisor 4 l h yes
Report Generation 2 h l yes
Process/Entity Matrix 2 m l no
Model Browser 1,2 h h yes

• Functions:
1. Capture abilities: capture BSDM notation and descriptions,
2. Analytical and Communication abilities: automatic support for analysing and

information deriving, searching, model traversing, summarising of informa-
tion, diagram repositioning/layout and report generation.



192 AUTOMATING BUSINESS MODELLING

3. Syntactic checking ability,
4. Semantic checking ability.

• Priority: indicates the priority for development from the user’s, the modeller’s,
and AI’s (or research’s) point of view. The user and the modeller’s view is given
in the column “IBM”, AI experts’ view is given in the column “AI”: h = high
priority, m = medium priority, l = low priority.

• Provision: Whether the function has been provided by KBST-BM: yes = provided,
no = not provided, part = partially provided.

• ‘*’: indicates that the automatic diagramming layout facility is provided by the
development platform, Hardy.

Table 10.1 is an extension of a similar table originally described in [26] that
gives a list of initial coarse-grained user requirements for the tool obtained from
several user requirement meetings. In this table, requirements are partitioned
in terms of which activities they support during model development: support
provided for entity and process modelling activities are grouped into ‘Entity’
and ‘Process’ categories; support which is applicable to all areas is grouped
into the ‘Others’ category. There are roughly four different types of support
functions (specified as 1–4) that these requirements specify. Detailed documen-
tation about the held user requirement sessions is available in [26]. The initial
built tool is described in [26] and [23].

Firstly, it is essential that the tool can accurately capture the correct shape
of the notations and forms used in the method. Having to borrow notations
from other methods would not only be confusing to the user, but might lead
to misunderstandings of the model itself. This type of requirement is described
as function (1). Secondly, the provision of analytical information, including the
automatic generation of derivable information, and communication facilities
are important in assisting the modeller to make sound design decisions and
convey a clearer vision described in the model to the user. These are described
as function (2). Functions (3) and (4) describe the automatic syntactic and
semantic (error) checking of the model as described in the method.

Among the four specified functions, function (1) has been overall rated as
the highest priority by the user, and lowest priority by AI experts since less AI
techniques are required to fulfil these requirements. These facilities allow the
user to draw proper entity and process models and record their properties in
the corresponding (definition) forms. Being built on top of Hardy, KBST-BM
is able to utilise the diagramming facilities provided by Hardy to capture the
exact notations, i.e. the exact shape of drawing and the correct way of using
entity, process and dependence, in the method. The definition forms in BSDM
are also accurately captured in KBST-BM (implemented in CLIPS which is
the language supplied by Hardy): some with added functions, and some with
automatically generated derivable properties, but all are built in accordance
with the method. A ‘yes’ is given in the “Provision” column to indicate that
these requirements are accurately fulfilled in the tool; this could simply be
checked by comparing existing BSDM model diagrams and forms with those
provided by the tool. Although it wasn’t initially specified as a requirement for
the tool and is therefore not included in the table, some support for the BSDM



Chapter 10. Evaluation of System 193

concept of a “Life Cycle Diagram” has been provided, partly because it stores
information that can be used by some of the advanced features of the tool, such
as automatic model properties inferencing and simulation. Evaluation of these
features will be discussed later.

Function (2) includes communication facilities that enable the user to
browse, traverse and examine the model and therefore provide a “communi-
cation” channel to the user, as well as facilities which generate analytical (de-
rived) information from the model. The communication facilities are provided
by KBST-BM. For example, the user can browse through diagrams, entities
and processes using the diagram and entity/process browsers, the user can also
traverse the diagrams following the hierarchical tree structure which is pre-
sented at the top level of the tool. The user can also browse diagrams and
processes which include a particular selected entity. Together, these facilities
enable the user to examine the model from different perspectives, therefore
providing adequate communication support.

Analytical information about architecture and properties of the model is
also provided by the tool and described in function (2). It is derived using
axioms and the knowledge stored in the tool. One such example of inferred in-
formation is the content of a process scope, which is determined from the actual
drawing of a process and can be used by the automatic modelling checker to
decide if it is consistent with the scope portrayed by the set of entity-functions.
Other examples are the automatically generated Process Dependencies and
Partial Execution Order diagrams and the summarised information of all the
entities and processes in the model.

Details of functions (3) and (4) will be discussed in more detail in the next
subsection.

Evaluation Summary

After the user requirements were drawn, an initial tool was developed and
was brought back to the original user for evaluation. The result of the evaluation
was satisfactory since the tool met a majority of the necessary requirements.

Since then the tool has been extended and refined to reach its current form,
KBST-BM, and has provided all of the “Capture” facilities needed to describe
and store the fundamental information of a business model, except for one,
the “attribute list” which is only partially supported due to time limitations –
although the recording of this information is not provided by a specific facility,
but it can be done using a conventional Hardy hypertext or text card.

The majority of the required “Analytical and Communication” facilities
are provided, except for the “Entity/Process Matrix” of BSDM, which was left
out also due to time limitations. The inter-relationships between entities and
processes described in the matrix can be gained using the “search by entity”
facility which lists all of the processes and diagram cards that involved the par-
ticular entity in question. These inter-relationships have also been extracted
automatically to derive Process Dependency and Partial Execution Order Di-
agrams, which provide an aggregate and an useful overview of entity-process
relationships, as mentioned in Subsection 7.4.2.



194 AUTOMATING BUSINESS MODELLING

Overall, all important user requirements have been fulfilled. The end-
product has been successfully used to build experimental as well as industrial
business models during PhD research. Further evaluation of the “Syntactic”
and “Semantic Checking” capabilities of KBST-BM will be discussed in more
detail in the next subsection.

10.2.2 Model Verification Support Assessment

In this subsection, the model verification abilities which are specified as func-
tions (3) and (4) in the requirements table are examined in terms of the extent
to which they support the method.

Automatic syntactic and semantic model checking functionalities in the tool
are derived from the model rules in BSDM. They are formalised as model rules
or guidelines in the system; the formal representation and explanation of them
is detailed in Appendices G and H, which also give the original references from
the manual.

To test the tool, it is impossible to find realistic and detailed models which
are in use by industry and which exhibit all of the described errors in the
method, as designers work hard to avoid these. Consequently, real models will
not be sufficient for our testing purposes, as they do not possess all of the error
examples. For this reason, an example model was built (the DAI example) as
our testing case, given in Appendix E. Error-injection techniques [115] were
also used to confirm the tool’s error testing capability, i.e. to inject errors into
the testing model and then test the performance of the system.

Case Study

A realistic business model was developed for the Department of Artificial
Intelligence (DAI) in the University of Edinburgh2 which was used to evaluate
the tool’s automatic model error detection and advice providing abilities. This
model, referred to as the DAI model in this book, captures fundamental in-
formation and operations which are essential to the AI department to manage
data about its students, evaluate their performance and award earned credits.

There are in total 55 entities and 41 processes captured in this model.
Application domain knowledge is divided into five sub-areas which each forms
a view: course structure, personnel management, course evaluation, module
evaluation and degree evaluation. The entity model gives a relatively more
complete skeleton of the overall structure of DAI, where processes captured in
the model are mostly related to the assessment of student performance and
awarding of credits.

The KBST-BM example window shown in Figure 10.1 describes an overview
of the course structure in DAI. Each of the type degree/diploma, certifi-
cate/credit, course, theme and module which are known and offered by DAI

2 The Department of Artificial Intelligence is now called the School of Artificial
Intelligence, but since DAI is used throughout this book when referring to the
model, the original name is used here.



Chapter 10. Evaluation of System 195

Fig. 10.1. Overview of course structure in DAI

are recorded as entity types (class): “Degree/diploma”, “Certificate/credit”,
“Course”, “Theme” and “Module”. The actual courses, themes and modules
which are offered each term are recorded as occurrences of these entity types,
“Course”, “Theme” and “Module”, where each of them is associated with a par-
ticular “Duration”, e.g. a course that is offered during autumn term 1998. En-
tities which are placed at the second or third layers are contracts, relationships
and associations of their parents, e.g. an entity occurrence of “Degree/diploma
Taken by Person” is created when a person officially follows a degree/diploma
with the department; and an occurrence of “Course offered by Degree/diploma”
is created when a particular course is offered by a selected degree/diploma.

Figure 10.2 gives an example process “Take Course by Person”. This process
states that for a person to take a course, (s)he must also decide the theme that
(s)he will be taking for the course (if not already done so), that the selected
course must conform with the requirements of the degree/diploma that (s)he is
pursuing, and that the chosen theme must also confirm with the selected course.
When a person has taken a course and the according theme, the relationship
between them is linked (with “Theme Selected By Person For Course”).

The whole model is described in 34 separate cards (presented in windows)
using KBST-BM. To evaluate the model verification facilities, 465 errors were
injected into the testing model. After errors had been injected into the model,
the tool was used to formalise the erroneous model, and a model verification was
carried out. Appendix K describes these errors in more detail and the model
rules/guidelines which are responsible for detecting them. We found that all
of the errors known to the system, i.e. error detections which are formalisable
and have been formalised and implemented in the tool, were detected by the
system, but that an error can sometimes cause violations of more than one
rule/guideline. For example, a circular dependency error can add extra layers
to the model due to the newly introduced dependencies, which may as a result



196 AUTOMATING BUSINESS MODELLING

Fig. 10.2. Assign/change/cancel course performance processes

add too many layers and introduce a violation of the 4-entity-layer rule. On
the other hand, as one would expect therefore, the removal of one error can
sometimes remove more than one violation.

As a consequence, the usefulness of advice given to the user depends on the
execution order of the rules/guidelines. For instance, for the above error, the
more appropriate advice for the user is the “circular dependency error” rule
and not the “4-entity-layers” guideline, since the former is the real cause of the
problem. For an experienced modeller this kind of error can be relatively easily
corrected once it is identified. For a naive user, this may not be so obvious.
Fortunately, the system has classified BSDM rules into model rules and guide-
lines, where model rules deal with more fundamental modelling errors. Since
it is normal practice to check on rule violations before dealing with guideline
violations, many of the above situations can be resolved. For example, in the
above case the user would have been given advice on the violation of the circular
dependency error, rather than the 4-entity-layers problem. When the problem
is not resolved in this way, the responsibility lies with the user to make a ratio-
nal decision. The following paragraphs elaborate on model verification ability
assessment in more detail.

Results

Model rules and guidelines which are formalised and provided in the tool
can be distinguished into the three categories below.

• Exact Match: These model rules/guidelines are given in the method explic-
itly and all errors described by such rules are detectable by the tool and
correct advice can be given.



Chapter 10. Evaluation of System 197

• Partial Match: These model rules/guidelines are given in the method ex-
plicitly, but only part of the specified errors are detectable by the tool with
correct advice given.

• No Match: These types of model rules in the method are completely un-
formalisable.

Exact Match

For this type of rule, all of the errors described in the method can be
correctly detected by the tool and accurate advice given whenever an error is
detected. Consider the following statement for dependence:

As a general rule, entities have either two parents or none. This,
however, is NOT an absolute rule, and you must treat it with cau-
tion.(page 43 [51])

This description is formalised as a Null or two parents only guideline
in the formalism and is implemented accordingly in the tool. The actual for-
malisation is given below. A detailed explanation can be found in appendix G.
Since it has been explicitly described as a general rule, but not an absolute rule
in the BSDM manual, it was formalised as a guideline in our system, i.e. it is
only provided as a reference, but not as a rule to be followed strictly.

As discussed in the previous chapters, to indicate this weaker enforcement of
the rule, a triangle symbol, �, is used. The logic expression below can therefore
be read as “if there exists a dependency (relationship) between a dependent
entity (denoted as Entity) and its parent entities (denoted as Parents), then
the dependent entity should have either no parents or two parents in this
dependence.”3

parent type(Entity, Parents)
�
member no(Parents) = 0 ∨
member no(Parents) = 2 (entity guideline 20)

Since the tool explicitly distinguishes between rules and guidelines, the ac-
tivation of guideline detection is separate from that of the model rules, and
the advice that is given to the user is less forceful. The explanation and advice
given by the tool for the above guideline is shown below.

Explanation: under normal circumstances, an entity normally has
either none or two parents, i.e. a binary entity-relationship between the
two parents, since it is normally the most clear way to describe a rela-
tionship and therefore the best way for modelling.

Advice: under special circumstances you can assign one parent to
an entity; if you have more than two dependencies linked to this entity,

3 A dependent entity is also called a child entity in BSDM.



198 AUTOMATING BUSINESS MODELLING

then you either need to delete the spurious links, or create new entities
which can then be used to describe this missing relationship between this
entity and its parents, or only between its parents.

Since the dependent entity can be seen as a “relationship” between its
parent entities, in the case when more than two parent entities are involved,
it is possible that either a spurious link is involved, or new entities should be
introduced to capture the missing relationship between them (pages 18 and
43 in [51]). Other example rules of this type are that each entity should be
originated by at least one process, and each process should have at least one
trigger identified (page 74 in [51] and page 62 in [52]).

Partial Match

Rules and guidelines that fall into this category are error cases which may
not all be detectable by the system. The inability of detecting all of them
is caused by the fact that it is impossible to record all knowledge which is
necessary to detect all kinds of modelling errors and for all kinds of business
organisations. Particularly, since business circumstances differ between compa-
nies and contradicting practices may exist between them, it is not possible to
generalise rules such that they apply to all companies.

For example, a rule which judges the appropriateness of the identified en-
tities in a model is to inspect the name of an entity, and by doing so some
conceptual errors may be revealed. For instance, things that are a representa-
tion of (the real) things are unlikely to be modelled as an entity. For example,
Purchase Order Form is merely a means to capture and describe purchase or-
der information, but not the information itself. It is therefore unlikely to be
included in a BSDM business model (page 25 in [51]). Based on this under-
standing, we derive that words such as form, documentation and note should
generally not be included and used as part of an entity name, unless that is
genuinely what the business is managing (page 39 in [51]).

To approximate this sort of modelling rule, we have devised a predicate
form name(Name) which stores all of the known terms generally regarded as
“representation” of real things, rather than the “real things” that need to be
captured in the model. Given this knowledge, we can then use pattern-matching
techniques to search for their usage in any user-defined entities. If any of these
form names have been used in any entity, we can then suggest that this entity
name is not appropriate. This rule is formalised as an entity model rule, “An
entity is a representation of real things”, and its formal representation is given
below.

class(entity, Entity)
⇒
¬∃Name.

(
form name(Name) ∧ sub string(Name, Entity)

)
(entity model rule 10)

The effectiveness of such a type of rule relies on accurate and sufficient
generic business knowledge being embedded in the system as well as business-



Chapter 10. Evaluation of System 199

specific input from the user. When such knowledge is not available in the sys-
tem, some common sense must be applied by the user. It is not likely that the
tool can provide a high coverage of detection of such errors.

A further typical example is to determine whether an entity has been de-
fined at an appropriate level, i.e. if it has been over-specialised and could be
generalised and/or merged with other entities into a new entity. This type of
error may be spotted by a comparison to an automatically retrieved standard
model from the case library, or by a comparison with similar entity types in-
cluded in the Entity Conceptual Hierarchy, but the final decision must rely on
the modeller’s judgement. More details about the use of case-based reasoning
will be given in Subsection 10.2.4.

No Match

These types of modelling rules are un-formalisable due to the difficulty in
gaining a complete and comprehensive understanding of the application domain
knowledge, the common business knowledge, and/or the natural language in-
volved. Examples of this type of model rules are evaluation criteria applied
to business models such as: “Is each entity interesting enough to be managed
(and described in the model)?” (page 74 in [51]) and “Does the business model
cover the scope of the study?” (page 63 in [52]). To answer these two questions
correctly, one must have both an insight into the specific business itself as well
as some general business knowledge. The acquisition and formalisation of such
knowledge is outside the scope of our research.

Summary

There are in total 60 rules/guidelines (Appendices G and H) derived from
the method which are implemented in 46 sets of CLIPS rules in the tool (Ap-
pendix J). Around 70% of all BSDM model rules have been implemented.

Out of the 465 system-known errors which have been injected into the
model, a majority of model rules/guidelines (85%) detect all of the specified
errors, and are therefore classified as Exact Match. A smaller portion (15%)
of these rules detect only some of the corresponding errors and therefore are
categorised as Partial Match. More detailed information is given in Appendix
J.4

10.2.3 BSDM Development Process Support Assessment

BSDM Business Model Building Process

The approach of BSDM and its practitioners towards building a business
model is firstly to divide the whole of the application domain knowledge (the
business knowledge) into sub-domains. The sub-domain knowledge is then cap-
tured and recorded in views or local maps of a business map. The summation

4 Out of these formalised model rules, some (17%) of them are classified as folklore
rules; and some (28%) are classified as enhanced rules.



200 AUTOMATING BUSINESS MODELLING

Identify Processes

1. Identify Originate Processes
2. Identify Change Processes

3

Define Processes

2. Document Business Rules
1. Identify Triggers

5

Define Attribute Processing

1. Document Value Rules
2. Document Derivation Rules

6

2
Identify and Define Attributes

1. Identify Candidate Attributes
2. Review Attributes
3. Define Attributes

Process Mapping
Knowledge of Business

Entity Mapping

1
Identify and Define Entities

1. Identify Candidate Entities
2. Create Working Diagrams
3. Verify the Entities
4. Create Formal Diagrams
5. Define Entities

Establish Process Scope

2. Summarise Process−Entity Interactions
1. Identify Process Scope

4

Fig. 10.3. Workflow for building a business model

of these views and local maps is called a master map which is also called a
Business Model. The developers can build a master map by starting with the
construction of a chosen view or local map. BSDM provides a detailed in-
cremental step-by-step model-building procedure for the practitioners. Figure
10.3 is taken from a BSDM manual and summarises the necessary stages in
producing a business model.

Within each view, one firstly builds an entity model (Entity Mapping),
then based on this entity model, one can build a process model (Process Map-
ping). This working process is sequential, incremental, iterative and flexible.
It is sequential, because activities are carried out in a sequential order. It is
incremental because the activities carried out at later stages are based on data
provided at earlier stages. It is iterative, because the modeller will go through
several modelling cycles of adding new data to the model and regularly review-
ing the model to identify possible improvements. It is flexible, because designers
have the freedom to choose the order of the subject area (view) to work on and
can decide to omit the specification of some knowledge for pragmatic reasons.



Chapter 10. Evaluation of System 201

Evaluation of Representing BSDM Development Processes

Since we have seen that the BSDM development process is incremental, se-
quential, iterative and flexible, we shall examine if the support tool has similar
characteristics. The workflow diagram is an integral part of KBST-BM and is
used as electronic paper to capture the above development process and assist
the user in using the tool in modelling development.

The workflow diagram captures and represents the BSDM development pro-
cess in a hierarchical structure. It provides notation to capture all domain-
specific concepts. For instance, the representation of sub-domain knowledge in
views, the activities carried out to produce maps, and the stages involved in each
activity. Table 10.2 shows the conceptual mapping between BSDM’s terminol-
ogy and that of the tool’s workflow diagram. Figure 10.4 shows a hierarchical
view of how these concepts are linked in the tool [51] [52].

Table 10.2: Mapping between BSDM and KBST-BM workflow concepts

BSDM WorkFlow Diagram Content Example Instance
view view sub-domain business knowledge order view

activity process a list of actions entity mapping
stage action actions to be carried out identify entities

At the highest level of a workflow diagram is a “Business Domain Knowledge
Overview” where each view in the domain is represented and recorded. Each
view leads to a sequential three-step work process: entity mapping, process
mapping and procedural mapping (the procedural mapping is not included in
the method, but is provided with the tool, therefore it is also included in the
workflow diagram). The tasks which are to be carried out for each mapping
process are specified as actions. Since each BSDM model-building stage may
be further decomposed, the tool also provides the facility to break down actions
into a more detailed granularity. As shown in the figure, the business action
“Identify and Define Entities” has been decomposed and represented at a more
detailed level of business actions.

The workflow diagram gives a framework for using the tool which is consis-
tent with the working procedures specified in the method. Furthermore, since
each view, process and activity is represented as model concepts in the tool,
the usually more intangible factors such as working status and design decision
rationale can now be recorded via their attributes as a part of model develop-
ment, and therefore support the BSDM development method.

As an integrated part of KBST-BM, the use of the tool was found to be
compliant with the principles of the BSDM development method. The designer
can sequentially follow the workflow diagrams and use the tool to iteratively
build a business model. The built knowledge can be incrementally added to
using the tool. It gives the designer the flexibility to choose which part of
the business area to work on. If a part of the model is left unfinished, errors
may be found by the tool. However the designer may choose to “ignore” the
recommendations and decide to come back to correct the model later – the



202 AUTOMATING BUSINESS MODELLING

View-1 View-2

View-3 View-4

Entity

Mapping

Process

Mapping

Procedural

Modelling

Identify + 
Define Entity
Attributes

Identify +

Define Entities

Identify
Candidate
Entities

Create
Verify
Entities

Define
Entities

Working
Diagrams

34

2

1

Business Actions Business Actions

Business Mapping Processes

Business Domain Knowledge Overview

Fig. 10.4. Hierarchical view of development process in KBST-BM

tool merely points out the errors with possible corrections, it does not force the
designer to comply.

Two essential aspects of KBST-BM support for BSDM its iterative and
incremental model-building style which will be discussed further below.

Evaluation of Support for Iterative Development Cycle

Plan Build Test Refine

Fig. 10.5. The plan-build-test-refine development cycle

Model-building is an iterative process, following the “plan-build-test-refine”
development cycle shown in Figure 10.5. In the context of BSDM, this iterative
building cycle is indicated by the directions of the arrows as shown in Figure
10.5.

One key activity carried out in this process is “test”, i.e. the detection of
errors (model verification) and inappropriateness (model validation) that exists
in the model. Because of the complexity and variety of knowledge required to
make a good judgement in testing a model, this review process is conventionally
done by hand. The automatic model verification ability enables KBST-BM to
support the development cycle, in part because this facility can be used given
only partial knowledge. It is suitable for error detection at all stages through-



Chapter 10. Evaluation of System 203

out entity mapping and process mapping. As mentioned earlier in this book, all
of the verification model rules and guidelines can be applied independently of
each other. The user can select “focus” areas to work on to avoid too many er-
rors/inconsistencies being report by the tool. At early stages of model-building,
it can also be used as a reminder for adding missing information.

The model validation facility can be used for process mapping. It is ac-
complished through information provided in procedural models. This newly
added model type has been kept compliant with the method, because its con-
tent is based on the BSDM concept of entity functions and their relationships
with processes. BSDM processes, which originally could only be modelled in a
declarative way without definition of any actions that can be carried out by
them, can now be simulated through the use of the procedural model. Auto-
matic model validation is only available when a process model has been built
and an appropriate procedural model has been derived. It can reveal errors in
both the entity and the process model, since it captures the dynamic aspects of
the entity as well as the process models. In summary, KBST-BM supports the
iterative development cycle because it supports the planning of the model (by
using workflow diagrams), building of the model (by using KBST-BM BSDM
cards), testing of the model (by using the verification and validation facilities
of the tool), and refinement of the model (using all of the above facilities).

Evaluation of Information Passing

In BSDM’s business modelling method, all information that is entered into
entity models is later used as a basis for process modelling. This is the incre-
mental aspect of the model development. For instance, the life cycle status of
an entity is closely linked to the life status of a process which is responsible for
manipulating this entity. Another example are the significant attributes of an
entity which may determine the validation of a process execution. In BSDM,
processes retrieve data from and store data in entities, though they manipulate
only the data of entities which are in their process scope. User-defined attribute
rules, which constrain what manipulations are permitted on the attributes, and
business rules which may involve more than a single entity are also used for
process operations, because these rules control process execution.

A closer look at how KBST-BM incorporates this close relationship be-
tween BSDM’s entities and processes shows that the system is able to capture
the exact definition of entities and processes as they are described in the BSDM
manuals, and is therefore able to capture the corresponding boundary between
entities and processes as well as the subtle relationship between them. In the
tool, entities are the constituent body of a process and are related to a process
through entity functions. The attributes and business rules are captured within
an entity and are accessible to any process which needs to use them. Further-
more, trigger and entity function information which is specified in a process
model is extracted and used to derive a standard procedural model. Overall,
KBST-BM information passing closely follows that of BSDM itself.



204 AUTOMATING BUSINESS MODELLING

Summary

BSDM is an incremental, sequential, iterative and flexible method. These prop-
erties are also reflected in KBST-BM. The important facilities in the tool which
provide this support for BSDM Business Model development are the workflow
diagrams, the automatic model verification and the validation functions.

10.2.4 Knowledge Integration and Sharing: An Evaluation of GMA

The capturing of modelling knowledge and formalising it in rules and guidelines
allows repeated reuse and knowledge sharing for new models/modellers. One
of the main knowledge sharing components of KBST-BM is the Generic Model
Advisor (GMA), a Case-Based Reasoning (CBR) engine. This section therefore
focuses on the evaluation of the Generic Model Advisor. In GMA, the sharing
and reusing of knowledge is done through an iterative process of matching,
ranking, retrieving and comparing of new and past models stored in the Generic
Model Library. As in the discipline of CBR, imperial testing is often carried
out. This section therefore uses one of the existing empirical testing methods.

Various types of knowledge and capabilities are used to help build a sound
and appropriate business model. These are normally found in the following
sources: (1) the standard and example business models provided by the method;
(2) real and generic business models from industry; (3) the standard entities
that are normally used in a business model which are captured in the entity
families and from the method; (4) the conceptual relationships between entities
from the method and from experience; (5) the ability to detect model errors
and adhere to standard design practice; (6) the ability to retain and reuse
knowledge from model-building experiences.

It is the case that the stake holders of this knowledge are scattered around
different places and that only very experienced modellers will have full access
and the ability to use them. Since the possession of such knowledge is essential
for good-quality model building, it would be advantageous if this knowledge
could be integrated in a tool and shared between modellers.

In this subsection, we will evaluate how the Generic Model Adviser (GMA)
component of KBST-BM integrates the above knowledge to help the user de-
velop models. As mentioned in Chapter 8, GMA is a Case-Based Reasoner. Its
main task is to provide a framework for organising and storing past modelling
experiences, and to provide a mechanism to produce references and guidance
for new model-building projects.

The evaluation is concerned with the following issues: (1) to what extent can
the tool provide a starting point to help build a new model; (2) how capable is
the tool in helping to detect model errors by retrieving the appropriate reference
models; (3) how well can the system help to retain new knowledge and store it
for future reuse? In short, it will be interesting to determine how well the tool
can help to speed-start model-building, encourage good modelling practice and
accumulate model-building knowledge.

Althoff et al. [3] proposed an evaluation framework to test both the theo-
retical and practical aspects of Case-Based Reasoning systems. They have also



Chapter 10. Evaluation of System 205

carried out comprehensive tests and reviews on several CBR systems. Since
some of their evaluation methods are appropriate to GMA, their testing meth-
ods were adopted and used in this book – the testing results are given below.

Types of Business Models

As previously mentioned in Section 8.6, five types of business models which
have been developed based on four different resources are included in the
Generic Model Library. They are the standard and example models from the
BSDM method, the industrial models in the automobile and restaurant domain,
and a business model built for the education domain (the DAI model).

The standard and example models from the BSDM method are included
because they capture the typical way of describing common business scenarios
for most industries, which makes them a useful resource to provide advice. They
are also useful in the sense that they provide a standard for model-building
exercises.

The argument for including the automobile example is three-fold: a) it pro-
vides a real, industrial example of a large multi-national company, b) it is an
independently developed model, and c) it is very useful in determining whether
the Case-Based Reasoning techniques used are helpful in giving advice in a very
specialised domain given only generic knowledge, or knowledge in a similar but
different domain.

Although the business model built for small and medium-sized restaurants
is relatively small, it covers most of the common and important operations in
the business domain, such as customer enquiring, billing and invoicing. The
model is, therefore, relatively generic and can be used as a test case for this
very important modelling domain. Furthermore, it can be reused to provide
concise advice and an overview of the important concepts for other different
business examples.

The DAI business model describes an education domain example and was
built to help the development, testing and improvement of KBST-BM. Al-
though it covers a different domain from most of the models stored in the
library, it is nevertheless a legitimate business model and, therefore, serves as
further evidence that KBST-BM is a generic modelling tool. The model did,
however, not play an essential role in the evaluation of GMA in this book, due
to the lack of sufficient similar models. Due to its importance as an external,
industrial model, the automobile case study is explained in further detail next.

Case Study: the Automobile Model

We were able to obtain part of a real industrial model which was developed
by an international automobile parts company.5 A part of the model has been
used for testing the capability of GMA: these parts are the business areas of
“order”, “parts”, “rules” and “marketing information”. There are in total five
views involved, where each view describes a particular business area. The reason
why we have chosen these business areas is that they are more commonly seen

5 The company wishes to keep their identity confidential.



206 AUTOMATING BUSINESS MODELLING

across industries. Although, as an international automobile parts company it
follows a specialised business logic which fits its requirements, we nevertheless
would expect to find some common features between these models and our
generic models.

The model is described in two parts: a graphical model which is presented
in several views and a separate supporting textual document for the model
which is written in English. Both notational and textual information has been
successfully captured using KBST-BM. The relevant textual information of
corresponding notation is associated with the notation using its definition forms
in the tool. Since GMA focuses on the semantics and architectural information
described in the graphic model, the textual information is not used by GMA.

An example textual information of an entity, Customer Order, is given
below:

Entity Name: Customer Order

Description: a request to supply one or part types and
services that WE* are prepared to offer, which once confirmed,
becomes a contract. It may not be a recognised part number. It
must be a recognised customer to take order.

Inclusion: Forward Orders, Advanced Orders.

Life Cycle: Received, Accepted, Rejected, Cancelled.

Note: the rules by which a received order is validated prior
to acceptance can vary significantly according to the type
of order.

In addition, BSDM models are normally organised in views. This is reflected
in KBST-BM, GML and GMA. Example models are displayed in the Appendix
of this book. In the following subsections, the above model as well as models
mentioned in Chapter 8 and Subsection 10.2.4 will be used to test the ability
of GMA. Appendix C gives a similar industrial model which is captured and
produced by KBST-BM; Appendix A lists generic models similar to those stored
in the generic model library. All of the test results below were obtained using
the built-in similarity assessment heuristic in GMA as described in Subsection
8.9.3. An example GMA consultation output is given in Appendix L.

Test I

In this first test, the ability of GMA to help the user to have a head start
building new models was checked. It was assumed that the user provides only
very little information for the GMA to look for the appropriate cases, but
expects GMA to provide some relevant examples. Those tests were carried out
by providing the input data model with (1) only short view names, (2) view
name and few key entities and, (3) view name and some key entities and their
dependencies.



Chapter 10. Evaluation of System 207

I have chosen to use view names, entities and dependencies of different de-
grees of sufficiency in order to test the capability of GMA, since when a modeller
decides to build a model, the first things he/she must decide is which business
area to work on (view), the fundamental concepts (e.g. actors, products, legal
binding and things) involved (entities) and the relationships between them (de-
pendencies). The test was designed to determine how well the system behaves
when given only partial information.

Working with the Generic Model Library described in Appendices A, B, C,
D and E, three sets of partial models in the business area of “customer order”,
“rule” and “purchase invoice” (represented in view names) were used as input
to test the ability of GMA to retrieve the correct, relevant models.

Test I Results:

1. Given only view names, does the system retrieve ANY relevant model
(where there is one available) ?

customer order: yes
rule: no (the current implementation performs partial

matching; since ‘‘rule’’ is not part of any
known view name, no model is retrieved. Skip
question 2 for this set of data)

purchase invoice: yes

2. Given only view name, does the system include ALL relevant matches
in its retrieval ?

customer order: yes (retrieved 2 good matching cases)
purchase invoice: yes (retrieved 2 good matching cases)

3. Given view name and partial model, i.e. two to three key entities,
does the system retrieve any good matching models (i.e. where there
is one available)? What is the recommendation order (in 1st place,
2nd place, etc.)?

customer order: yes, 1 and 2 (given 2 entities retrieved 13 cases)
rule: yes, 6 (given 2 entities retrieved 12 cases,

p.s. GMA was able to retrieve
relevant models without any
matching view names.)

purchase invoice: yes, 1 and 2 (given 3 entities retrieved 12 cases)

4. Given view name, three key entities and two dependencies, does
the system recommend good matches? What is the recommendation order?

customer order: yes, 1 and 2
rule: yes, 6
purchase invoice: yes, 1 and 2



208 AUTOMATING BUSINESS MODELLING

The experiments show that even when given only partial data, the system
was able to retrieve relevant reference cases, if any existed in the library. The
matching result is influenced by the view name of the data model, e.g. the view
name “rule” fails to match any generic model in experiment 1. However, in the
absence of a matching view name, GMA can still retrieve good matching cases
from the library as long as some entities and dependencies are provided. This is
desirable, since the system should not rely on the user’s knowledge about GML
for matching, but should provide relevant models through similarity analysis
based on the modelled context.

During our experiments, we found that case models which have greater
matching numbers (i.e. the number of matching dependencies) with the test
model are given higher priority. However, when there are equal numbers of
matching, the smaller-sized cases are presented first. For example, say 2 refer-
ence models called cases A and B, have been found to have 2 pairs of matching
dependencies with the user model. However, since case A includes 4 dependen-
cies and case B has 8, case A is presented first because it has a greater matching
ratio (2/4 > 2/8).

This result is beneficial for the user, because smaller reference models are
normally easier to understand and can provide confirmation for a portion of
the user model. Moreover, in the current library, most of the small-sized mod-
els are standard models extracted from the method itself. They give a good
introduction to the user before more complicated and specialised models are
introduced.

Test II

This experiment tested the correctness and robustness of the matching
mechanism of GMA.

GMA uses indexing features to distinguish one business model diagram from
another. Its successful application, therefore, heavily relies on the appropriate-
ness of the chosen indexing features. To achieve high-quality performance, it is
equally important that the similarity assessment function of GMA is suitable
for the domain since it decides what is a better match. Therefore, this test
determines whether the indexing features chosen for BSDM’s Business Model
and the similarity assessment function chosen for GMA has been appropriate.

To evaluate the correctness and robustness of the system, noisy models
are used as input to test the capability of the system. Initially some reference
models from the case library have been chosen as input data with some fixed
portion of information randomly deleted from them, i.e. having 0%, 10%, 30%
and 50% of their entities, with the corresponding dependencies and view names
deleted. We then observed if the system can still fetch the correct case models
and recommend them in a reasonable preference order.

To enlarge the test base, we included the automobile (parts) company’s
model (a similar model is included in Appendix C) in the case library, and
chosen three representative case models from each of the three main sources:
i.e. “Customer Order and Delivery” (from the BSDM method), “Employee
Management” (from the restaurant example), and “Rule” (from the automobile



Chapter 10. Evaluation of System 209

company example). (Although only three test examples are reported here, we
tested the tool with more examples during the development of the system.)

Test II Results:

1. Delete 0% of information from the initial model and its view
name, does the system recommend the initial model? If so,
what is the recommendation order?

Customer Order and Delivery: yes, 1
Employee Management: yes, 1
Rule: yes, 1

2. Delete at least 10% of information from the initial model and
its view name, does the system recommend the initial model?
If so, what is the recommendation order?

Customer Order and Delivery: yes, 1 (delete a level 3 entity)
Employee Management: yes, 1 (delete a level 1 entity)
Rule: yes, 1 (delete a level 2 entity)

(p.s. when an entity is deleted, the associated dependencies
are also deleted.)

3. Delete at least 30% of information from the initial model and
its view name, does the system recommend the initial model?
If so, what is the recommendation order?

Customer Order and Delivery: yes, 1 (delete 5 out of 14 entit-
ies, the deletion are
evenly distributed in the
model)

Employee Management: yes, 1 (delete 4 out of 12 entit-
ies, the deletion are
evenly distributed in the
model)

Rule: yes, 1 (delete 3 out of 7 entit-
ies, the deletion is on
the same path.)

4. Delete at least 50% information of the initial model and
its view name, does the system recommend the initial model?
If so, what is the recommendation order?

Customer Order and Delivery: yes, 1 (delete 7 entities)
Employee Management: yes, 1 (delete 6 entities)



210 AUTOMATING BUSINESS MODELLING

Rule: yes, 1 (delete 4 entities)

5. Delete at least 70% information of the initial model and its
view name, does the system recommend the initial model? If so,
what is the recommendation order?

Customer Order and Delivery: yes, 1 (delete 10 entities)
Employee Management: yes, 1 (delete 9 entities)
Rule: yes, 1 (delete 5 entities)

6. Randomly choose another view ‘‘Customer Order’’ from the
restaurant example. Have its view name and 70% of the model
deleted. We check if it confirms the above result.

test 1: delete the entities from left to right, top to bottom.
Result: the intended model is retrieved and at the first

place.

test 2: delete the entities from right to left, bottom to top.
Result: the intended model is retrieved and at the first

place.

Our test results consistently show that although a lot of information was
lost in the testing model, the intended reference model was always retrieved and
given in a highly favourable order (in our test examples, they are in the first
place which is the most favourable position). This test raises our confidence in
the correctness and robustness of the system.

Although the above tests have been proved to be successful, we can imagine
circumstances where the system may not produce similarly successful results,
i.e. instead of using a correct partial model, it gives an erroneous model with
vital mistakes. For example, a business model which uses an entirely wrong
view name or a partial business model which is grossly mis-represented. When
the input model is given in such a way, it will misguide the system to believe
that it is more similar to another reference model, hence the retrieval case will
be less likely to be successful. We, however, believe that the modellers normally
have sufficient judgement not to make such vital mistakes.

Test III

In this test, the automobile business model has been taken out of the case
library and used as input data, which leaves standard and example BSDM
models, and restaurant models in the case library. Since the automobile model
has been independently developed by and for a real business, it is a good testing
vehicle to demonstrate if CBR techniques can be used to contribute to general
business model-building exercises. I have chosen two business areas from the
model, views “Order” and “Rule”, because some of the case models in the



Chapter 10. Evaluation of System 211

library cover such areas. The test was to determine if GMA can retrieve similar
cases from the library, given sufficiently different model architecture and entity
names.

Test III Results:

1. Was any case retrieved, if there is a similar case existing
in the library?

Order: yes
Rule: yes

2. Are similar cases retrieved? If so, are they recommended in
a favourable order?

Order: the best and good matched cases were present in the
first and second place.

Rule: the best match was presented in the first place.

3. Are there any favourable cases which are given a much lower
priority?

Order: one relevant but not the best matching case could be
given a more favourable order.

Rule: no, since there are not many relevant cases in the
library.

For each of the above chosen views, GMA was able to retrieve some similar
reference models for it, and present them in a reasonable order of preference
with similarity analysis. The quality of the matching obviously is closely linked
to the cases stored in the library. In our situation, we do not have full access to
all the industrial models. Therefore, we could not have a well-balanced library.
The testing result, however, shows that although some of our cases in the library
are much less complicated and smaller in scale and most of them are indeed in
a different domain of business, useful similarities (in the same business areas
across sectors) have still been identified using GMA. We also found that cases
highly recommended by the system cover the best or good matching models,
although sometimes relevant (not the best) matching cases are given a lower
priority than deserved.

Interestingly, the system also identified case models which describe different
business areas exhibiting significant similarities in their architecture to the test
model that was not clear before running these tests. Such matching cases bring
to people’s attention how business practices are similar to each other. This
result also provides useful indications to help software engineers to understand
and decide the business function boundaries when designing their systems.



212 AUTOMATING BUSINESS MODELLING

Discussion

One vital step for a Case-Based Reasoner is its ability of retaining new
knowledge for future reference. Given the above newly acquired industrial au-
tomobile model we were able to retain all of this model into our case library
and integrate it with the rest of the knowledge base using KBST-BM. The
correctness of the newly built model relies on a joint effort of the human and
the automatic verification and validation abilities provided by KBST-BM.

The fact that KBST-BM integrates with GMA provides a more complete
framework for CBR, including automatic indexing of input data, retrieving
relevant cases from the library, comparing and analysing input with selected
cases, revising cases for current problems, verifying and validating input, and
retaining new input for future reference. We claim that with this support we
are able to enhance the level of knowledge sharing and problem solving ability.
Indeed, not only can new business models be automatically exported from the
case library, the newly built business model can also be integrated into the
library. This bi-directional knowledge flow provides a fuller support towards
completing the development life cycle of building business models.

Summary

In our experiments, we found that GMA can provide relevant reference mod-
els given incomplete information. Its matching ability is sound and consistent
throughout multiple tests, and appears robust against noisy data. All similari-
ties and differences between the new model and the retrieved reference models
are listed, each with reasons and remedy explained. One real industrial model
was obtained for testing our case library. It showed that although its scale
and domain is much different from our cases in the library, similarities have
been identified which demonstrated the value of reusing knowledge and the
usefulness of GMA.

A part of the vital cycle of CBR is the retention and reuse of newly acquired
knowledge. We were able to retain all parts of the industrial model using KBST-
BM and integrate them in the case library, thus making them available in the
full modelling system KBST-BM. Verification and validation of the correctness
and appropriateness of the newly acquired model is supported by KBST-BM
which together with GMA provides fuller support throughout the modelling
life cycle.

10.3 Comparison with Other Support Tools

As mentioned previously in Section 2.5, two types of modelling tools are cur-
rently available: those which primarily provide drawing and documentation
facilities, and those which also provide process simulation functionalities. This
section looks at two representative modelling support tools and compares them
with KBST-BM (and GMA). The rationale of our selection of tools was based



Chapter 10. Evaluation of System 213

on the relevance of the domain that the tool was built for as well as the accep-
tance of the selected tool by practitioners in the business modelling community.
I have firstly chosen Rose Business Process Link which is a business modelling
tool based on an extended method which is a part of UML. UML is one of
the most widely used Object-Oriented (OO) modelling languages. OO methods
are well established and widely used by software engineers and more recently
by business modellers. I have also chosen the AI0 WIN business process mod-
elling tool. AI0 WIN is a “knowledge-oriented” tool which is developed and
distributed by Knowledge Based Systems Inc. (KBSI), a reputable company in
both software engineering and knowledge management communities.

Both tools are well established and widely accepted by their users. An in-
troduction to each tool is given, followed by a brief comparison between these
tools and the tools presented in this book. Our aim is not to determine which
tool is a better one, nor will we give an extensive usability comparison. Instead,
our discussion will focus on the potential support that the modelling tools can
provide for the user.

10.3.1 Rose Business Process Link and Rose Planner Link

Rose Business Process Link (RBPL) is a business modelling tool developed by
Ensemble Systems Inc. who have been closely collaborating with Rational Soft-
ware Corporation (RSC) and have developed several software packages for it in
the past. The tool, RBPL, adapts and extends the Activity Diagram of UML
(Unified Modelling Language) for its business modelling method. As business
modelling methods have been used to understand a business and to capture
business requirements, it is often the starting point of a software system devel-
opment project. This tool, therefore, is often used in practice in conjunction
with Rose Planner Link (also developed by Ensemble Systems Inc.), and which
provides a framework, the Rational Unified Process, for software system devel-
opment.

Based on the extended method, RBPL enables the user to describe a busi-
ness’ workflow, activities, actors, business objects, responsibilities of actors,
events, business decision points (branching decision for the next activities) and
the synchronisation of activities. These modelling elements are organised in
a hierarchical browser which allows the user to traverse the model easily. Al-
though the facility of a simulation for the workflow is not provided, it supports
a “story-boarding” facility which allows the user to step through a business
workflow and therefore enhance its communication ability for its users. It also
automatically generates reports and the finished model can be exported to the
object-oriented modelling tool Rational Rose.

RBPL is a typical (conventional) modelling tool which supports specific
modelling methods with its elaborated electronic record-keeping facilities. The
important issues of quality assurance, extraction/derivation and presentation
of embedded (linking) information, or provision of guidance for good modelling
practice for the built models, which are the essence and motivations for our
tool KBST-BM, are somewhat left out and not fully supported by RBPL.



214 AUTOMATING BUSINESS MODELLING

10.3.2 AI0 WIN

AI0 WIN [59] is a business function and process modelling tool developed by
Knowledge Based Systems, Inc. (KBSI).6 It is based on the Activity-Based
Costing (ABC) method which provides an evaluation means to determine the
performance of a business activity and to identify the sources which cause cost
and limit profits. It, therefore, provides a means for the managers to carry
out activity-based cost-benefit analysis. To support the use of ABC, AI0 WIN
utilises the functional modelling method IDEF0 [80] as a framework to enable
its users to capture, visualise, build and analyse a business environment. The
information which is stored in AI0 WIN can also be exported to a set of other
tools which are mostly also built by the same company: e.g. process simulation
tools, spreadsheet packages, data modelling tools, cost calculation tools, and
project management tools.

Among them, ProSim, the process simulation tool, takes the output from
AI0 WIN and simulates the business workflow which was portrayed in AI0
WIN. ProSim uses its own process modelling language (an adaptation of
IDEF3) to enable the user to specify business processes in more detail. Since
ProSim is related to our work, It will be combined with AI0 WIN in our com-
parison below.

AI0 WIN is similar to KBST-BM in the sense that they are both business
support tools and they both provide automatic support to help the user build
models of an underlying business method, i.e. ABC/IDEF0 and BSDM. They
are also similar in the sense that the underlying methods are similar in principle:
they are both business models; they both use graphical notations to capture
“things” in the world and use natural language to define and describe these
things; they both capture processes and are concerned not only with the static
but also the dynamic side of the world. Above all, both tools try to provide
automatic support to some degree to help the user better understand the model,
avoid erroneousness, and produce higher-quality models.

ProSim takes output from AI0 WIN and simulates the process model us-
ing statistical simulation methods: processes are instantiated, frequencies of
events assigned and resources allocated before and during the execution of a
simulation. These provide a measurement for efficiency analysis on the current
design and bottlenecks of the process can be identified. In order to make use
of this method, additional system parameters, such as various frequencies and
amount of resources have to be added. KBST-BM, on the other hand, makes
use of symbolic reasoning techniques which infer system behaviours based on
the existing business model.

A further important difference lies in the level of abstraction at which pro-
cesses are modelled. The processes used by ProSim contain more details of the
business that is modelled and can, therefore, be more easily mapped onto a
company’s operations. In KBST-BM processes are logical business processes,

6 KBSI is a company which was commissioned by the U.S. Air Force to develop sev-
eral parts of the IDEF method which later became a standard method for software
systems development.



Chapter 10. Evaluation of System 215

they are at a higher level of abstraction. Although details of data used by a
process are specified clearly and the relationships between them are well de-
scribed, the relationships and constraints between processes are only specified
when necessary which allows more flexibility in implementing BSDM processes.

These differences are probably rooted in the different motivation for the two
domains. In a process modelling domain, the modelling purpose often lies in
the immediate improvement on efficiency and effectiveness of current working
procedures, which are often influenced by the introduction of new machinery,
products, change of practices and allocation of resources. The designed process
models often take current circumstances and technologies into account and are
therefore designed in greater detail. The designed processes are “immediately
implementable” but will have to evolve or be abandoned as a result of changes
in circumstances.

By contrast, processes which are described in a BSDM business model cap-
ture business logic which is core to a business operation. Therefore, these pro-
cesses are relatively robust and can remain unchanged for a long time. They
are also independent of current technologies or any other limitations that an
organisation may have, e.g. no particular machinery or technology will be as-
sumed for use in these processes. The detailed (implementation) requirements
and actions within and between processes are often not specified. The resulting
business models, therefore, are not limited to any particular implementation.
Although the implementation details are not given in the model (by the user), it
is important to note that KBST-BM can still simulate these processes, although
at a more abstract level, and therefore gain an insight into their dynamics (the
purpose of our procedural model).

AI0 WIN, in general, focuses more on providing high-quality facilities to
capture and structure business related knowledge. It also focuses on commu-
nication with other tools. It, however, does not provide guidance in model
building or error correction. KBST-BM, on the other hand, focuses on this.

A number of other business modelling support tools are available. They
mostly provide an electronic record keeping and organising system. Most of
them do not provide method-dependent and/or domain-dependent verification
and validation support for the built model and therefore entirely rely on the
modellers’ effort to produce a sound product. Some business process modelling
tools when given sufficient details can produce a simulation of the process which
provides verification and validation support to some degree.

The gap that is still left to be filled for all of the current tools is to provide
automatic support beyond record keeping and simulation functions. The nov-
elty of the approach and the tool developed in this book lies in the provision
of a mechanism that empowers a tool to “understand” a model and therefore
provide support at the semantic level with embedded modelling knowledge.



216 AUTOMATING BUSINESS MODELLING

10.4 Conclusion

In this chapter we have evaluated KBST-BM and GMA with respect to the
level of support which they provide for BSDM’s business modelling method.
Theoretical and empirical tests have been carried out, where appropriate. A
real industrial model was obtained and used to show the fitness of GMA.

We have also compared KBST-BM and GMA with two other existing, rep-
resentative business modelling tools. Unlike the tools developed in this book,
existing industrial tools were found to have little, if any, support for pro-active
model-building guidance, automatic error detection and amendment. They also
did not provide continuous support throughout the modelling development life
cycle. Furthermore, these industrial tools lacked KBST-BM’s ability to pro-
vide adaptive support that evolves through time to provide a better quality of
modelling guidance to its users.

It was shown that based on a logical formal method, we are able to form
a coherent knowledge base which integrates expertise of different resources,
which allows us to provide model guidance, verification and validation, devel-
opment life cycle management, and can improve its knowledge through time
(by updating and enriching its case library in GMA).

10.5 Exercises

1. What are the evaluation criteria for testing KBST-BM? Are they generic?
Do they apply to other modelling tools?

2. General speaking, there are two types of testing that one can carry out on
a tool – theoretical and empirical testing. In your view, which categories
do those tests (for KBST-BM) fall into?

3. In the Completeness Assessment, a table of user requirements were used.
Discuss its organisation and its significance in helping to build a correct
tool. (You may need to refer to earlier chapters.)

4. Explain the tests carried out on the Model Rules and Guidelines. Interpret
the test outcomes of Exact, Partial and No Match.

5. One of the knowledge sharing components of KBST-BM is its CBR engine,
GMA. Explain the test being carried out on it.

6. Discuss the different types of past models being included in the evaluation
for GMA and their different roles in the test.

10.6 Advanced Exercises

1. List user requirements for yourself as a modeller and user of a similar
modelling tool. Try to prioritise and categorise them.

2. Do you know any other modelling tools? Compare those tools with KBST-
BM. What are your criteria for comparison?



Chapter 10. Evaluation of System 217

3. You may have heard of black- and white-box testing from the discipline
of Software Engineering. How will you compare those with the evaluation
techniques used in this chapter for GMA?



11

Conclusion

Enterprise Modelling (EM) methods are interesting to the business community,
because they offer ways of analysing and “redesigning” an organisation that
may lead to significant improvement in business performance. They are also
interesting to the academic research community, because despite of their wide
acceptance and potential benefits for businesses, there are still a variety of open
problems that are not satisfied by any single existing EM method.

One particular problem is quality assurance of the produced models. Several
reasons for this problem are explained below:

• Availability of expertise: A modern enterprise today is a virtual entity which
consists of many sub-organisations which are distributed across different
geographical areas, each possessing different expertise. Hence, it may not
be possible to have all of the persons with the right expertise (who are
normally senior and/or middle-level managers) available for model develop-
ment. Furthermore, the required expertise may change as companies have
to react – adapting their goals and processes – to today’s fast changing
global economies.

• Lack of comprehensive evaluation method: Most EM modelling methods do
not provide a comprehensive evaluation method for the models they build.
As a result, a standardised evaluation and appraisal of the quality of models
cannot easily be obtained. Therefore, the quality of the model cannot be
ensured.

• Informal or semi-formal modelling context: Since parts of such methods
incorporate natural language text, it is difficult to perform detailed verifi-
cation and validation on the models (due to the ambiguities inherited from
the informality of natural language).

• Lack of modelling support facilities: An enterprise-sized model is often
domain-specific, knowledge-rich and comparatively complex. In addition,
the modellers need to keep in mind the technical details of the method they
are using. Since few people possess good knowledge of both, to achieve an
efficient and effective modelling process, a proper (software) tool should ide-
ally provide the knowledge required for the specific business domain as well



220 AUTOMATING BUSINESS MODELLING

as direct support for the method. There is currently a lack of such tools,
which means that more generic, domain-independent tools need to be used
instead.

• Flexibility in representing a domain: As is the case in most modelling activ-
ities, there is no single correct way to describe a domain. Several different
models may all be acceptable and describe a domain sufficiently correctly.
The decision of which model is better suited for a domain may, therefore,
not be a clear-cut one. This also contributes to the difficulties in determining
a good model since several different models may be rated similarly.

• Time pressure: Very few projects can enjoy the luxury of not having to deal
with strict time constraints. In the model-building context this means that
after the model has been created there is often not sufficient time to carry
out systematic and comprehensive model validation and verification, since
due to the lack of appropriate tools this would take a significant amount of
time, especially when dealing with model dynamics (see below).

• Lack of efficient and effective knowledge transfer means: Enterprise mod-
elling methods are intended to help knowledge transfer through their mod-
els, but this requires sufficiently wide use of a particular method that people
can communicate through. However, most methods do not have wide usage
at this stage. A tool that conveys the semantics of the model using alter-
native intuitive visualisation or simulation techniques can ease the commu-
nication between people and could thus be very helpful in the transfer of
knowledge.

• Dynamic aspects of a model are complex: An enterprise modelling method
normally captures the static structure of the targeted domain, but often also
implies and/or prescribes the actual activities to be carried out. As many
of these dynamic activities may be happening concurrently and interacting
with each other, to understand the impact of them becomes in general a task
that is too complex for unaided human reasoning. It is therefore important
that these processes can be simulated and their effects demonstrated clearly
by a software tool.

All the above problems are shared by many EM methods. This is not surpris-
ing considering that they have a common fundamental characteristic: they are
either informal or semi-formal, i.e. a large part of their models are described in
natural language. To provide a highly expressive EM language which captures
and describes any versatile (business) domain, a certain degree of informality
is perhaps unavoidable. The informality existing in the modelling method pro-
vides the flexibility necessary to model any domain and express anything worth
mentioning, but it at the same time also introduces uncertainty to its quality.
As a result, the semantics of these models may be interpreted differently by
different people. Furthermore, two different models may seem to be describing
the same scenario, i.e. the interpretation of the two models can be the same.

The interesting issue here is, therefore, to understand how one can introduce
formality to such an informal method without disturbing the practice of the
original method, or in other words, how can one gain the benefits of a formalised



Chapter 11. Conclusion 221

approach without having to cope with the disadvantages that usually come with
it?

11.1 A Formal Approach

The primary objective of this research was to develop an approach for using
AI techniques to improve the model development process in informal modelling
methods, with particular emphasis on the process for quality evaluation and
assurance. Despite its importance for the EM field, very little work has been
done in this area so far.

A lightweight formal approach was proposed in this book, i.e. instead of
applying a comprehensive formalisation of all aspects of an informal modelling
method, formalisation was carried out where it is appropriate. This approach
avoids the prohibitively high cost normally associated with a “heavyweight”
formal approach, but still enjoys the benefits of precision gained from applying
a formal approach. It can also be argued that a heavyweight formal approach
would not be feasible in this domain, since not all necessary knowledge is avail-
able for formalisation. The proposed lightweight formal approach is based on
a new formal language, DefBM, which was adapted from the PIF core class
hierarchy. Since PIF is one of the more accepted process languages, business
processes described in DefBM inherit this generality. It will, therefore, be easier
to communicate with other process models.

DefBM is a formal language based on First-Order Predicate Logic (FOPL).
FOPL was chosen because it offers a declarative, precise and concise nota-
tion which promotes intuitive understanding of the described semantics. These
characteristics are effective in clarifying ambiguities exhibited in the informal
method. Furthermore, FOPL is supported with a sound inference mechanism
that allows automated deduction to be naturally performed on the acquired
information.

The lightweight formal approach proved to be useful: it captures valuable
knowledge effectively and facilities the integration of different types of knowl-
edge. The use of this knowledge can help reduce the time required to design
and refine new business models, and the quality of models can be improved,
since through the formalisation of the models using DefBM errors that pre-
viously would have been very difficult to discover can now be found through
automated deductions.

A disadvantage of deploying FOPL is that not all of the informal knowl-
edge can be formalised and used for automated reasoning. This disadvantage,
however, may not be avoidable even if a different computational method were
used, since such support often requires background knowledge that may not
be available. One other disadvantage of using FOPL is that the users require
training before they can understand the formal representation – this also ap-
plies to any other computational languages used. Nevertheless, this drawback
is not very significant, if a suitable user interface and explanation facility is



222 AUTOMATING BUSINESS MODELLING

provided. In that case, the user may never need to see the underlying formal
representation, as is true in the case of KBST-BM.

To address the problem that not all modelling knowledge can be captured
using a formal method, Case-Based Reasoning techniques were employed. CBR
provides us with two main benefits: 1) modelling knowledge that is not well
understood can be inferred and used by referring to standardised and past
models, 2) modelling knowledge is enriched and critiquing abilities improved
by collecting a large set of models over time. The disadvantage of applying
CBR in our experience is the difficulty of acquiring a large set of real industrial
models. It was, thus, very useful that BSDM provides a catalogue of standard
models. However, more reference models are needed to take full advantage
of CBR techniques. To overcome this problem, a few realistic business models
have been developed for selected domains which provide examples for using and
testing the approach. Within a company making use of business modelling, this
problem is not likely to be serious, as they can add their own models over time.

Based on the above formal approach a three-layer framework was created to
fit BSDM’s modelling activities. This framework was useful because it not only
suggests a structure as to where and which AI techniques fit in the modelling
activities, it also extends the existing BSDM modelling activities to an auto-
mated execution phase without disturbing the practice of the original method.
This framework adds value to applying BSDM, because the modellers receive
method-specific guidelines and critiques without extra effort, and alternative
modelling options are suggested where appropriate as a part of the framework.

11.2 The System: KBST-BM

KBST-BM was built as a proof of concept for the proposed formal approach.
Before building KBST-BM, a few issues had to be considered. For instance,
what type of automated support is useful to the modellers? What kind of
knowledge is needed to provide such support? Is this knowledge available? Is it
generic or method- and/or application-domain dependent? If such knowledge
is available, can it be formalised and realised in a computational tool? What
kind of support would the user be particularly interested in? To obtain answers
to some of these questions, user requirement meetings were held regularly with
the main user type for the tool, a BSDM business modeller, during the early
stages of tool development. During these, user requirements were drawn up
and prioritised which provided a useful and reliable foundation for building the
initial tool.

The next task was to collect standard and practical modelling knowledge
that AI techniques can manipulate to provide useful automated support. The
modelling knowledge was found embedded in several different sources: the
method, the business models, the modelling experts and the domain experts
(when a specific application is involved), and all of them were informal. The
next task was, therefore, to formalise the knowledge as far as possible and to
apply suitable AI techniques which take full advantages of them. This pro-



Chapter 11. Conclusion 223

cess was very much an experimental task, as there is no clear guideline for
which knowledge will be useful for which modelling task and how the various
modelling support may fit together. After several iterations through the devel-
opment process, the combined tools of KBST-BM and GMA were produced.

This work has demonstrated how key components of an originally infor-
mally specified method, BSDM, and its business models can be formalised
using first order predicate logic and realised in a support tool, KBST-BM.
Having achieved this transition from an informal to a formal representation of
models and modelling rules it was possible to provide guidance and consistency
checking during the life cycle of a model – making use of techniques such as
case-based reasoning. The tool was also able automatically to derive knowledge
from the model which was initially not known. For example, business process
dependencies and their partial execution order constraints can automatically
be determined. It also allowed us to complement the original method with a
model execution phase – using the Procedural Model. This extends the scope of
BSDM and, more importantly, it adds to our understanding of how this kind
of seemingly informal method can fit into parts of the design life cycle which
require formal models.

The underlying formal representation of the model and the modelling knowl-
edge together with the appropriate inferencing engines provide the modeller
with support throughout the iterative Plan-Build-Test-Refine process, i.e. the
planning, building, testing, error correcting and refining of the models are all
supported. The modeller can use WorkFlow Diagrams to keep track of the
model development process. To gain a quick head start in model-building, the
Generic Model Advisor, GMA, can be used to provide standard and past models
for the current business domain. During model-building, the automated model
management and verification facilities of the tool can be of assistance. GMA is
used to retrieve similar models from a case library and compare them with the
newly built model. Advice is given to the user, if any discrepancies are found.
The modeller can repeat the iterative Plan-Build-Test-Refine cycle as often as
necessary.

To explore the system dynamics of the built model, i.e. how the processes
interact with each other and change the business world, Process Dependency
and Partial Execution Order diagrams are automatically drawn to provide an
initial overview. Since this knowledge has not previously been available to the
method and does not require any additional input from the user, this is a direct
benefit of using formal methods. A simulator was built to further explore and
demonstrate the dynamic behaviours of models, which is based on a model
extension, the Procedural Model.

Throughout the model development life cycle, the developed tools provide
significant aid for modellers wanting to achieve a high level of confidence in
their models. This is possible because of the incorporation of domain-specific
knowledge about business modelling into the system, which in turn allows much
of the complex and often tedious work of model validation and verification to
be pushed into the software.



224 AUTOMATING BUSINESS MODELLING

It should be noted that none of the basic techniques applied here are specific
to business modelling. Hence, other modelling domains that need to deal with
informal and/or semi-formal information may benefit from the same approach.
The results of this research have proved useful and sufficiently generic when a
similar approach was successfully used in a later project, AOEM [56], which
extended KBST-BM to KBST-EM to include in total seven different types of
enterprise models, including BSDM, IDEF3, Role Activity and Communication
Diagram (RACD) [18] and UML. Overall around 80 diagrams and 200 pages of
textual documentations have been produced which also proved the extendibility
of the above tool. Under the same project, KBST-BM was used as a working
tool to build a real industrial business model which consisted of 41 BSDM
business diagrams describing 162 different types of entities and 28 different
types of processes.

11.3 Evaluation of KBST-BM

KBST-BM was built as a proof of concept to test the idea, proposed in the
book, that based on a logic-based approach useful automated support can be
provided for informal methods. The intended users for the tool are mainly
BSDM business modellers. To help build, refine and then evaluate the developed
tools, a set of business models have either been collected or newly created for
different domains.

A business model, the DAI model, which describes course management and
evaluation of student performance for the former Artificial Intelligence Depart-
ment, the University of Edinburgh, was initially built to provide a realistic
business model that makes use of the tool. In addition, standard and example
business models provided by the method, an industrial business model which
was developed by IBM for its client in the sector of automobile parts distribu-
tion, and a generic business model that was developed by myself for small and
medium-sized restaurants have also been used to test the rule-based and case-
based engines and other peripheral facilities in KBST-BM. All of the above
models are stored in the Generic Model Library which provides reference mod-
els for the Case-Based Reasoning engine, GMA.

Theoretical and practical evaluations have been carried out on the tool
using the above models. Although other models are also included, the DAI
model was mainly used to test general facilities in KBST-BM. The rest of the
models were primarily used to test the ability of the Generic Model Advisor
(GMA), since they describe similar business domains. Furthermore, to test the
capabilities of GMA, an integrated part of KBST-BM, the Althoff et al. [3]
evaluation framework was adapted and used.

To evaluate KBST-BM, four criteria were considered. Firstly, Completeness
Assessment: how well the tool covers the user requirements which are needed
to apply the BSDM method. At the early stages of tool development, meetings
were held regularly with a real business modeller, the intended type of user for
the tool. Feedback was collected from the user during these meetings and used



Chapter 11. Conclusion 225

to refine the tool. At the end of these initial stages, an evaluation was carried
out. Since most of the requirements were successfully implemented and the
additional tool support features did not disturb the original modelling practice,
the review of this part of the evaluation was highly satisfactory.

Secondly, an evaluation of the Model Verification support was carried out
to determine the coverage of tool support compared with guidelines provided
by the method. The DAI model was chosen as the test case and was injected
with errors using error-injection techniques [115]. Three types of test results
were identified: Exact, Partial and No Match. Exact and Partial Match are
model rules (and guidelines) that are explicitly given in the method and which
were successfully formalised. No Match is the case when model rules are not
formalisable. Exact and Partial Match rules are implemented in the tool for
error-detecting and advice-giving: Exact Match rules discover all of the included
errors, whereas Partial Match rules discover part of them.

The reason for the inability to detect all possible errors is the fact that it
is impossible to record all knowledge which is necessary to detect all kinds of
modelling errors and for all kinds of business organisations. In particular, since
business circumstances differ between companies and contradicting practices
may exist between them, it is not possible to generalise rules such that they
apply to all companies.

No Match model rules tend to be quite high level which therefore require
(commercial) experience and relevant generic and specific background knowl-
edge to make a good judgement. Unfortunately, as mentioned earlier, it is im-
possible to obtain this. In fact, it is probable that different business modellers
may make a different or even contradicting recommendation for the model.
One further obstacle identified during the evaluation is that much information
is given in the informal description of the business model. To formalise this
would require sophisticated natural language processing ability equipped with
sound background knowledge as mentioned above, which is outside the scope
of this book.

It is fair to say that it is probably impossible to provide a complete quality
proof for a business model. Hence the motivation during this research to provide
partial verification and validation based on a lightweight formal approach, and
not to attempt to formalise every aspect of the method and the produced model.
The overall test results were nevertheless encouraging. The majority of model
rules (85%) detected all of the targeted errors. A smaller portion of model
rules (15%) only partially detected errors. Such model rules provide quality
control beyond pure syntactical checking. They extended model checking to
include model semantics, which made the developed tools superior compared
with model support that is currently available in other existing tools.

Thirdly, theoretical analysis was carried out to determine the extent to
which the tool support covers the different stages of the business model de-
velopment life cycle. BSDM is an incremental, sequential, iterative and flexible
method. These properties were also found to be the case for KBST-BM, which
provides the concept of a workflow diagram to capture the various steps in



226 AUTOMATING BUSINESS MODELLING

BSDM’s development life cycle to provide a framework for using the tool in the
context of BSDM modelling.

As an integrated part of KBST-BM, the use of the tool was found to be fully
compliant with the principles of the BSDM development method. The designer
can sequentially follow the workflow diagrams and use the tool to iteratively
build a business model. The built knowledge can be incrementally added to
using the tool. It also gives the designer the flexibility to choose which part of
the business area to work on, and when and how to fix an error. KBST-BM
merely gives suggestions which allows the designer to make the final decision.

KBST-BM was found not only to provide full support for BSDM model
development, but also to promote effective management during model build-
ing exercises by providing facilities for recording design rationale and current
working status (which was not originally supported by the method).

Finally, a series of test were carried out to determine the degree of tool
support for integration and sharing of modelling knowledge that is scattered
across different resources. This part of the test was primarily focusing on the
CBR engine, GMA.

Three issues were of main concern: (1) to which extent can the tool help
building a new model; (2) how capable is the tool in helping to detect model
errors by retrieving the appropriate reference models; (3) how well can the sys-
tem help to retain new knowledge and store it for future reuse? In short, the
test was to determine how well the tool can help to speed-start model-building,
encourage good modelling practice and accumulate model-building knowledge.
The evaluation method was adapted from Althoff et al.’s [3] evaluation frame-
work.

In our experiments, we found that GMA can provide relevant reference
models given only little, discrete information. This means that new, usually
smaller, models can get a head-start by learning from existing standard models.
The matching ability was sound and consistent throughout multiple tests, and
appeared robust against noisy data. All similarities and differences between
the new model and the retrieved reference models are listed, each with reasons
and remedy provided. One real industrial model was obtained for testing. It
showed that although its scale and domain is much different from the cases
in our library, similarities could still be identified, thereby demonstrating the
value of reusing knowledge and the usefulness of GMA.

It has also been shown that knowledge that exists in different knowledge
sources can been integrated and used to provide a “collective” knowledge base
for advice and reuse – this was demonstrated by a combinational use of GMA
and KBST-BM. A part of the vital cycle of CBR is the retention and reuse of
newly acquired knowledge. We were able to retain all parts of the industrial
model using KBST-BM and integrate it in the case library, thus making it
available in the full modelling system KBST-BM.

In addition, a comparison of KBST-BM with other similar existing tools was
carried out. We coarsely divided existing modelling support tools into two cate-
gories: the type of tools that primarily provide capturing and report-generating
functions for specific modelling methods, and the type of tools which, in addi-



Chapter 11. Conclusion 227

tion to the above functions, also provide simulation facilities. In particularly,
two typical modelling tools of each category, the Rose Business Process Link
(from Ensemble Systems Inc.) and AI0 WIN and ProSim (Knowledge Based
Systems, Inc.) were looked at in detail.

In general, in both categories of tools there is very little, if any, exploitation
of the knowledge that is implicit in the models that have been captured through
the corresponding documentation features of the tools. This is primarily due
to the fact that there is no underlying formalisation and logical representation
of models and model-building knowledge built into these tools. Consequently,
they are unable to provide the type of semantics-based modelling support that
is offered by KBST-BM and GMA.

While most other tools only provide support at the beginning of the de-
velopment life cycle, leaving the task of verification, validation and refinement
of the built model to the modellers, simulation tools, such as ProSim provide
V&V to some extent. However, the simulation is carried out at a lower level of
abstraction and requires a significant additional input from the user. In com-
parison, KBST-BM extracts the necessary information for process simulation
from the model already developed. Its processes are also at a higher level of
abstraction and therefore less prone to changes in company procedures or use
of specific technologies.

In summary, KBST-BM provides useful automated support which fits well
with the BSDM model development process. The advice given was sound and
adequate, as it adheres to BSDM guidelines. The support has proved to be
useful and time-saving. It has been successfully used for a later project, Air
Operations Enterprise Project [56] and is currently used in the IRC AKT project
[1]. In both projects, KBST-BM has been extended using a similar formal
approach and tool design rationale to the ones describes in this book.

Although the work described in this book makes a valuable contribution to-
wards building better business models, the possibility of errors remains. Unless
there is a way of making sure that all domain and modelling method knowl-
edge has been built into a tool such as KBST-BM and all informal aspects of
EM methods can be eliminated, absolute proof will not be possible. For these
reasons, we believe that similar type of work should not focus on achieving the
elusive goal of absolute correctness, but that further research should be carried
out in applying similar techniques described here to the domain of software de-
velopment methods. Since increasingly business models are built as a first step
of building a software system, there may be great benefits in investigating the
link between these two activities and how the formalisation approach presented
in this work could be exploited.

11.4 Exercises

1. Based on your overall knowledge of the book, discuss the value of Busi-
ness or Enterprise modelling for an organisation. How do they complement



228 AUTOMATING BUSINESS MODELLING

business practice and improve performance? Can you find examples in the
real world to support this?

2. Discuss whether automated support is useful for business or enterprise mod-
elling. What are the main contributions? What do we lose without such
support?

3. Discuss how logical methods may play a part in providing automated sup-
port. Can such methods be used in other circumstances?



A

Generic Business Models

This appendix and Appendix B include generic and example business models
that are similar to those in IBM’s BSDM [51] when describing similar business
circumstances. A generic business model that was built for small and medium-
sized restaurants for the evaluation purpose of GMA is given in Appendix D.

Fig. A.1. Geographical area



230 AUTOMATING BUSINESS MODELLING

Fig. A.2. Delivery location

Fig. A.3. Legal binding on account



Appendix A. Generic Business Models 231

Fig. A.4. Customer order

Fig. A.5. Relation between organisations



232 AUTOMATING BUSINESS MODELLING

Fig. A.6. Account chargeable to organisational unit

Fig. A.7. Regulation and law



B

Example Business Models

Those are example business models that are coherent to BSDM modelling prac-
tice and are similar to those models in BSDM when describing similar business
circumstances [51].

Fig. B.1. Employment contract



234 AUTOMATING BUSINESS MODELLING

Fig. B.2. Deliver product to customer



C

An Industrial Model

Obtaining business models which are developed and used by the industry is
difficult. This is mainly due to the large cost for industry in building them and,
for those which have been built, their content is usually confidential (as it often
conveys a business’ trade secrets). However, we were fortunate to gain the per-
mission of one company which is in the sector of automobile parts distribution1

and obtain a small portion of their model.
This model is valuable because it is a realistic model which was indepen-

dently built and used by a commercial company. It is also intriguing because
it gives insights to business operations in a specialised context, in this case, in
the domain of automobile parts distribution. As a result, it contributes to both
the realism and “specialisation” properties of GML.

The source model was described in two parts: a graphical model which
is presented in several diagrams and a separate supporting textual document
for the model which is written in English. Both of the notational and textual
information are captured in KBST-BM.

An example textual information of an entity, “Customer Order”, from the
source document is given below:

Entity Name: Customer Order

Description: a request to supply one or part types and
services that WE* are prepared to offer, which once confirmed,
becomes a contract. It may not be a recognised part number. It
must be a recognised customer to take order.

Inclusion: Forward Orders, Advanced Orders.

Life Cycle: Received, Accepted, Rejected, Cancelled.

Note: the rules by which a received order is validated prior
to acceptance can vary significantly according to the type

1 The company wishes to keep their name confidential.



236 AUTOMATING BUSINESS MODELLING

of order.

This textual information of the corresponding notation, in this case the
entity “Customer Order” is associated with the entity itself using the Definition
Form facility of the tool.

Four business areas of the model have been selected and stored in the GML:
“order”, “parts”, “rules” and “marketing information”. The reason that these
business areas have been chosen is that they are more commonly seen across
industries. Although as an international automobile company it follows spe-
cialised business logic which fits its requirements, nevertheless one expect to
find some common features between these models and our generic models.
There are in total four views involved, where each view describes a particular
business area. Adapted versions of those models are included below for readers’
interest.

Fig. C.1. Customer order management



Appendix C. An Industrial Model 237

Fig. C.2. Stock management



238 AUTOMATING BUSINESS MODELLING

Fig. C.3. Law and regulation



Appendix C. An Industrial Model 239

Fig. C.4. Marketing information



D

A Model for Family Restaurants

I have chosen to build a generic business model for small and medium-sized
family restaurants. The reason for selecting an example in this industry is firstly
that we had access to the stake holders of the business which was essential in
building realistic business models. Secondly, and perhaps more importantly,
a small business such as the one of a family restaurant covers important and
essential business aspects. Their business operations are also simpler, compared
with the complications of a large company. The resulting business model is
likely to be easier to understand, and may be more generic and hence more
relevant to other business (since they cover a simpler version of the essential
business operations such as customer ordering and purchasing).

Several interviews were conducted with former restaurant owners here in
Edinburgh, in an attempt to build a realistic but generic business model for
small–medium sized family restaurants. Five common and important business
areas were identified: Customer Order, Purchase Invoice, Stock Control, Em-
ployment Management and Tax Payment. Each business area is described in
one or two BSDM diagrams.

Prior to the meetings with our business correspondents (the restaurant own-
ers), an initial business model was developed. Because of the simplicity of the
model and time limitation, we took a simple approach in interviewing the busi-
nessmen. There were two stages in the meetings. During the first stage, a short
introduction to BSDM was given. In the second stage, the already developed
model was presented to the businessmen, the semantics of the model were ex-
plained, and example business scenarios described by the model illustrated.

The focus and aims of these meetings were two-fold: (1) to gain positive
confirmation of the correctness of the developed model and to identify mis-
captures in the model, and seek and make appropriate modifications to the
model based on the feedback on our business correspondent in order to make
the model as realistic as possible and at the same time as generic as possible;
(2) to identify any important aspects in the business which were left out in the
model, those aspects were added to the model as appropriate.

The resulting business model consists of six diagrams which cover the above
five business areas. The model is relatively small in scale compared with a full-



242 AUTOMATING BUSINESS MODELLING

sized business model from a large company which has complex business require-
ments and covers wider services, but since I have chosen a rather simple and
straightforward business environment – a small–medium sized family restau-
rant – the resulting model is satisfactory to our stakeholders in describing the
necessary issues for their business operations.

The graphical part of the business model is given below.

Fig. D.1. A model for family restaurants (1)



Appendix D. A Model for Family Restaurants 243

Fig. D.2. A model for family restaurants (2)



244 AUTOMATING BUSINESS MODELLING

Fig. D.3. A model for family restaurants (3)



Appendix D. A Model for Family Restaurants 245

Fig. D.4. A model for family restaurants (4)



246 AUTOMATING BUSINESS MODELLING

Fig. D.5. A model for family restaurants (5)



Appendix D. A Model for Family Restaurants 247

Fig. D.6. A model for family restaurants (6)



E

A Model for Academic Environments

The DAI business model was built based on the Department of Artificial In-
telligence here in the University of Edinburgh.1 There are in total 35 diagrams
included in five different business areas which are: Module Evaluation, Course
Evaluation, Degree Evaluation, Course Structure and Personnel Management.
Among them, three areas, Module, Course and Degree Evaluation, have been
developed in more detail. Each of these three areas describes the architecture
and processes for evaluating undergraduate and postgraduate students per-
formance and assigning marks for the taken module, course, or project and
eventually the awarding of a degree.

This appendix gives some example diagrams from the model.

Fig. E.1. Module evaluation: assign practical mark

1 Now incorporated into the Division of Informatics.



250 AUTOMATING BUSINESS MODELLING

Fig. E.2. Module evaluation: assign/review/cancel project mark

Fig. E.3. Module evaluation: assign exam mark



Appendix E. A Model for Academic Environments 251

Fig. E.4. Course evaluation: assign/change/cancel course performance

Fig. E.5. Overview of course structure in DAI



252 AUTOMATING BUSINESS MODELLING

Fig. E.6. Personnel management



F

The Formal Operators in DefBM

The formal representation used in this book is based on an extended version
of First Order Predicate Logic. We use a Prolog-like syntax for argumentation
in our logical expressions. The following operators, naming conventions and
predicate names are used throughout the devised formal language, DefBM.

F.1 Notation and Language Conventions

This book follows the naming conventions of Prolog: constants start with lower-
case letters; whereas variables start with capital letters. Model rules are de-
scribed in terms of First-Order Predicate Logic. To avoid any possible ambigu-
ity, some symbols used in this documents are defined below.

• True: true
The term “true” will be used to denote something that is true.

• False: false
The term “false” will be used to denote something that is false.

• Inference Symbol: ⇒
⇒ is the normal inference symbol. A ⇒ B means if A is true, then B must
be true.

• Bi-directional Inference Symbol: ⇔
⇔ is semantically equivalent to two normal inference symbols ⇒. A sentence
“A ⇔ B” means that if A is true, then B must be true, and that if B is true
then A must also be true.

• Weak Inference Symbol: �
� is the weaken inference symbol which indicates the possible leading con-
clusion. A � B reads “if A is true, then B should be true”.

• Membership Symbol: ∈
∈ represents the membership of a list/set. For example, E ∈ S means E is an
element of set/list S. Therefore, if S is a list consisting of many lists, then E
can be one of the lists. For instance, the statement [1, 2, 3] ∈ [[1, 2, 3], [4, 5, 6]]
is true, and business(ibm) ∈ [business(hp), business(ibm)] is also true.



254 AUTOMATING BUSINESS MODELLING

• Time Operators: <, >,=<, >=,=
The above operators represent the time sequence in the system. For exam-
ple, time-unit T6 < time-unit T8, if T6 happens before T8.

• Empty set/list: [ ]
Following the Prolog convention, [ ] used in this document represents an
empty set or list.

• iff: if and only if
The word iff is sometimes used in the English text when explaining a logic
expression. Its logical meaning is “if and only if” or the bidirectional impli-
cation symbol ⇔. A statement “A iff B” is true only when both statements
“if A is true, then B is true” and “if B is true, then A is true” are true.



G

Entity Model Rules and Guidelines

In its manual, BSDM defines an entity model and recommends good practices in
developing a business model [51]. There are also other modelling rules which are
not documented in the manual, but are standard practice or natural deductions
from the method. Some of these recommendations are necessary to follow to
build a sound business model, others are circumstantial rules.

This appendix catalogues the recommendations relevant to entity mod-
elling, the first activity toward developing a business model. According to the
strength of enforcement of these recommendations, they are divided into two
main categories: model rules and guidelines. A user-defined business model will
be checked upon using these model rules and guidelines at the request of the
user. Model rules are strong recommendations which if not followed, will proba-
bly cause an error in the business model or cause KBST-BM to behave wrongly.
Model guidelines, on the other hand, should be followed most of the time, but
there can be exceptions depending on the business’ circumstances.

The formal language chosen to describe these rules is First Order Pred-
icate Logic complemented with the argumentation convention of Prolog, i.e.
arguments starting with capital letters are variables, otherwise, constants. The
actual implementation of these rules is introduced in Chapter 9.

A strong inference symbol ⇒ is used to represent the stronger enforcement
of rules, whereas � is used to represent the weaker enforcement of guidelines.

G.1 Entity Model Rules

• An entity is not isolated No isolated entity is allowed in the model, i.e.
each entity must be linked with at least one other entity via a dependence
relationship. Since a dependence relationship is represented in a predicate
parent type in the formalism, this rule can be interpreted as “each entity
must have at least one parent or child entity”. This rule is a deduction from
BSDM.



256 AUTOMATING BUSINESS MODELLING

class(entity, Entity)
⇒

∃X.

⎛
⎜⎜⎝

(
parent type(Entity, Set of parents)∧

X ∈ Set of parents

)
∨(

parent type(X,Parents)∧
Entity ∈ Parents

)
⎞
⎟⎟⎠ (1)

• No circular dependence link Any circular dependence relationship (an
entity being depended on its own descendents via dependence links) are not
allowed in a business model. To describe this rule, we define ancestor(Q,
P) to mean that P is either a parent entity of Q, formally defined by the
parent type predicate, or that it is an ancestor entity of Q through the
transitivity property of the parent type predicate. The “circular depen-
dence” rule is then represented by the expression below. This rule is also a
deduction from the method.

class(entity, X) ⇒ ¬ancestor(X,X) (2)

The ancestor predicate can be described formally in the two expressions
below:

parent type(X,Y ) ∧ E ∈ Y
⇒
ancestor(X,E)

parent type(X,Y ) ∧
E ∈ Y ∧
ancestor(E,Z)
⇒
ancestor(X,Z) (3)

• An entity must be defined Every entity must be given a definition state-
ment by the modeller about the context and boundary of this entity. Since
an entity definition is the most fundamental means to define the nature,
purpose and relationships to its parent entities, it is essential to have each
entity defined. This is a derived BSDM model rule from the entity manual
(page 34 [51]).

class(entity, Entity type)
⇒
∃Definition content.(

property(Entity type, definition, Definition content)∧
Definition content �= nil

)
(4)

• A child entity occurrence must be created after its parents The oc-
currence of a child entity cannot exist, unless the corresponding occurrences
of its parent entities already exist (Note that parent and child entity occur-



Appendix G. Entity Model Rules and Guidelines 257

rences can be created at the same time within the same process by BSDM,
and this is ensured by the execution of a process.) Occurrence of an entity
is represented by an occ(Entity type, Occ name, Parent occurrences)
predicate, where Entity type is the entity type name of the occurrence,
Occ name is the name of the occurrence, and Parent occurrences is the set
of the corresponding parent occurrences. Predicate occ exists(P) is defined
to be true if occurrence P exists in the system.

occ(Entity type, Occ name, Parent occurrences)
⇒
∀P.(P ∈ Parents occurrences ∧ occ exists(P )) (5)

• All entities are unique Every entity included in a business model must
be unique and used consistently throughout the model (page 32 [51]). In
a business model, operations of a business area are usually shown through
a “view” or several “views” of the business model. Each view includes the
relevant entities and processes. Quite often an entity appears in several
views, for reference and/or to introduce a new entity function in another
process.
It is hence important that the same entity has not been redefined in different
views. The consistency checking of entity uniqueness includes consistency
checking on the dependence links between entities, entity definitions, and
the values of entity properties. Given that dependencies between entities is
represented by a predicate parent type(Entity, Set of Parents), and that an
entity uses the same dependence definition throughout all views, then the
rule below must hold within a business model.

parent type(Entity, Parents)
⇒
¬∃Parents2.

(
parent type(Entity, Parents2)∧

Parents �= Parents2

)
(6)

A set of alternative parents is an alternative set of entity parents which
is also applied to the same entity. An entity can have alternative parents
by depending itself to an alternative parents box in a business model. The
alternative parents of an entity must also be uniquely and consistently de-
fined throughout different parts of the model. In this document, we refer to
a part of the model as a view and it is shown in a window in KBST-BM.
The predicate alternative parent(Entity, Alt par) is true if Alt par is the
complete set of alternative parents to Entity.

alternative parent(Entity, Alt par)
⇒
¬∃Alt par2.

(
alternative parent(Entity, Alt par2)∧

Alt par �= Alt par2

)
(7)



258 AUTOMATING BUSINESS MODELLING

Similarly, the properties of the same entity must be consistent throughout
a business model. An entity’s property is represented in a predicate prop-
erty(Entity, Property name, Property content) where Entity is the name
of the entity concerned, Property content stores the value of a particular
property, which is stored in Property name.

property(Entity, Property name, Property content)
⇒
¬∃Content2.

(
property(Entity, Property name, Content2)∧

Property content �= Content2

)
(8)

• An entity is a representation of real things Entities included in a
business model are the reflection of the existence of things in the real world.
The role that an object plays in a business should not be captured as an
entity, nor should its identifiers, documentation or representations. One way
to ensure this mistake does not happen is to make sure that any entity name
does not include one of those “avoided names”, i.e. role names, identifiers,
documentations and representations (pages 25, 27, 33, 39 [51]).
Let predicate role name(Name) be defined to be true if Name is a role name,
such as teacher, student, customer, employee, and a predicate sub string(
String1, String2) be defined to be true if String1 is a part of String2, then
the first part of the rule, “An entity name should not be a role name or in-
corporate a role name as part of its name”, can be described formally below.

class(entity, Entity)
⇒
¬∃Name.

(
role name(Name)∧

sub string(Name, Entity)

)
(9)

Words such like ‘link’, ‘form’, ‘documentation’ and ‘note’ are either the
representations or documentation of the real things, therefore they should
also be avoided when naming an entity. This rule provides a safeguard to
mistakenly creating entities which may be a representation of a particular
implementation of a business model, instead of the higher-level abstraction
of those possible implementations. Let predicate form name(Name) be de-
fined to be true if Name is a form name, such as link, form, documentation
and note; this rule can be described formally below.

class(entity, Entity)
⇒
¬∃Name

(
form name(Name)∧

sub string(Name, Entity)

)
(10)

• Derivable attributes must have derivation means Attributes are the
properties of an entity occurrence; some attributes are derivable from at-
tributes of other entity occurrences. The corresponding deriving rules are
given by the user, therefore the derivable attribute is defined, and can be
calculated when the reference data is available (page 55 [51]).



Appendix G. Entity Model Rules and Guidelines 259

The attribute rule is stored in a predicate attribute rule( Entity, At-
tribute name, Variable list, Attribute rule) where Entity is the name of the
entity, Attribute name is the name of the attribute, Attribute rule is the
logical and mathematical means of deriving the attribute value; the data
for reference is stored in the Variable list.
The expression below states that if an Attribute name, denoted as in de-
rive attribute, is a derivable attribute of Entity, then there must exist an
attribute rule which defines how its value can be calculated.

derive attribute(Entity, Attribute name)
⇒
∃V ariable list, Attribute rule.
attribute rule(Entity, Attribute name, V ariable list, Attribute rule)(11)

• An entity should be associated with the entity families Any en-
tity in a business model can be an existing entity recorded in the entity
family or a specialised type of an existing entity in the entity family (page
26 [51]). Entity families are the standard entities which are common to
many businesses and therefore have great reusability when developing new
business models. The entity families are organised in an entity family hierar-
chy in KBST-BM: each entity in the hierarchy is represented in a predicate
entity family(Entity). The predicate special type of(General, Special) is de-
fined to be true if the Special entity is a special type of the more General
entity type.
Although a complete association between entities in a business model and
standard entities in the entity families is not required by the user in BSDM,
this establishment, however, is necessary in order to make use of the contex-
tual information embedded in entity families, and to utilise CBR techniques
to help building, verification and validation of a new business model (refer
to Chapter 8). The established association between newly identified entities
and standard entities is therefore strongly recommended in KBST-BM, and
is represented as a model rule.
The model rule below states that each newly identified entity must be an
existing standard entity in the entity families, or a specialised type of it.

class(entity, Entity)
⇒
entity family(Entity) ∨
∃General entity.

(
entity family(General entity)∧

special type of(General entity, Entity)

)
(12)

The predicate special type of is defined by is a relation links. An entity
family hierarchy includes entities as nodes which are connected by is a rela-
tionship. This relationship is one-directional and transitive. A more formal
definition for predicate special type of based on transitive is a relational



260 AUTOMATING BUSINESS MODELLING

links is given below.

entity family(General ent) ∧
class(entity, Special ent) ∧
is a(General ent, Special ent)
⇒
special type of(General ent, Special ent) (13)

entity family(General ent) ∧
entity family(Special ent) ∧
is a(General ent, Special ent)
⇒
special type of(General ent, Special ent) (14)

special type of(General ent, Special ent) ∧
class(entity, New ent) ∧
is a(Special ent, New ent)
⇒
special type of(General ent, New ent) (15)

• Each entity must be given at least two life statuses Processes are
responsible for originating entity occurrences, creating their initial life sta-
tuses, and transferring their current life statuses to the next ones. The life
status of an entity indicates not only the state of an entity occurrence but
also that of the corresponding process occurrence which creates or updates
it (page 41 [52]).
To represent the life status of an entity occurrence, at least two (landmark)
values must be used, i.e. the starting and ending life statuses. If no signifi-
cant life status has been identified then at least two life status: “valid” and
“invalid” should be given to an entity. This forms the advice of this rule
and is not given in the logical expression below.
The predicate life cycle start status(Entity, Life) is defined to be true if Life
is a valid start life status for all entity occurrences of entity type Entity.
The predicate life cycle transit(Entity, Life1, Life2) is defined to be true
for all entity occurrences with entity type Entity whose life status may be
propagated from Life1 to Life2.

There must be a start life status for each entity and this life status
must be transferable The expression below states that for each entity,
there must exist (at least) one start life cycle status, denoted as Life, and
that it must be transferable to another life status – which means that there
must exist at least one transition possibility which transfers it to another
life status Next life.



Appendix G. Entity Model Rules and Guidelines 261

class(entity, Entity)
⇒
∃Life,Next life.

(
life cycle start status(Entity, Life)∧

life cycle transit(Entity, Life, Next life)

)
(16)

There must be an end life status for each entity and this life sta-
tus must be reachable The expression below states that for each entity,
there must exist (at least) one terminating life cycle status, which is defined
as the argument End life, and that it must be reachable – this means that
there must exist at least one life status Life which leads to this ending life
status End life.

class(entity, Entity)
⇒
∃End life, Life.

(
life cycle end status(Entity, End life)∧
life cycle transit(Entity, Life, End life)

)
(17)

Detecting of error life status transition BSDM has offered key words
for denoting the ending life status of an entity, e.g. cancelled, terminated
and closed (pages 55, 71 [52]). We have represented them together with
“invalid” as the key words to denote the standard ending life statuses of an
entity occurrence in the system. Those ending life statuses are stored in the
terminated life status predicate. The user can also define the specific ending
life status for an entity; this is stored in the life cycle end status predicate.
The expression below states that any transition which transfers a standard
ending life status or a user-defined ending life status to any other life status
is not allowed.

life cycle transit(Entity, From life, End life)
⇒
¬terminated life status(From life) ∧
¬life cycle end status(From life) (18)

The expression below states that any transition which transfers a life status
to a start life status is not allowed.

life cycle transit(Entity, From life, End life)
⇒
¬life cycle start status(End life) (19)

G.2 Entity Model Guidelines

As we have previous mentioned, some model rules which are in or derived
from BSDM are with flexibility, that is their compliance is only relative to
the circumstances. Those model rules are represented as model guidelines in
the formalism using a weaker inference symbol �. When a guideline is violated,



262 AUTOMATING BUSINESS MODELLING

advice given to the user is with milder warnings compared with a normal model
rule.

• A business model should be within 4 layers Certain entities are very
common that they are being reused in different modelling projects. It is
therefore useful to look for them when considering entity candidates. Inde-
pendent entities are at the top level of the entity family hierarchy. Contract
entities are generally at level two. Content type entities are at level three.
Reconciliation type of entities are often at level four (page 26 [51]).
BSDM recommends that the depth of an entity model should not be more
than 4 layers, i.e. 4 steps through parent links. This is to prevent a model
from being over-constrained by several layers of dependencies through levels
of entities (pages 26 and 77 [51]). This rule is formally described below.

property(Entity, level, N) � N < 5 (20)

• Null or two parents only BSDM promotes the practice that each entity
should only depend on zero or two parent entities. This rule, however, is
not strictly enforced in all situations. There are, in fact, exceptions that the
user may choose to use one-parent entities. The user is, however, generally
encouraged to create only zero or two-parent entities. This rule is therefore
represented as a guidelines. (pages 18 and 43 [51])

parent type(Entity, Parents)
�
member no(Parents) = 0 ∨
member no(Parents) = 2 (21)

• Entity names should be short Entity names should be as short as pos-
sible (page 33 [51]), e.g. less than 20 characters.

class(entity, Entity)
�
string length(Entity) =< 20 (22)

• Entity names should be general Entity names should be as general as
possible therefore to provide the maximum flexibility for the business to
cover all cases, i.e. all possible occurrences must be covered by the entity
class (page 33 [51]).
A possible way to accomplish the above check is to match entities to the
entity family hierarchy, which can give some contextual information about
those entities to detect any possible generalisation to the identified entities.
In the expression below, each Entity is the highest possible generalisation
of entities, and there isn’t another entity Special ent in the model which
together with the Entity can become a more general entity name. Note that
there are situations when a general entity needs to be specialised, therefore



Appendix H. Process Model Rules and Guidelines 263

this is only a recommendation.

class(entity, Entity) ∧
special type of(General ent, Entity)
�

¬∃Special ent.

⎛
⎝ class(entity, Special ent)∧

special type of(General ent, Special ent)∧
Special ent �= Entity

⎞
⎠ (23)

• Entity names should be singular nouns The entity name should always
be a single noun or noun-phrase, because each occurrence of an entity repre-
sents a single object or thing in the real business world. The user must avoid
words which end with -s, -es and -ies. This rule is described formally below
using a predicate string ending to identify the ending words of a string. The
predicate string ending(String, Ending) is defined to be true when Ending
is the ending string of String. One can find exceptional words with ending
-s, -es or -ies that still represent singular noun, therefore this rule again is
a recommendation.

class(entity, Entity)
�

¬
⎛
⎝ string ending(Entity,′ s′)∨

string ending(Entity,′ es′)∨
string ending(Entity,′ ies′)

⎞
⎠ (24)

• Probably a mis-usage of alternative parents A possible error of using
alternative parents is to allow more than two sets of alternative parents for
an entity. Since this is an unusual usage of alternative parents, it may be
useful to remind the modeller of it. This is a derived rule from the method.
The predicate alternative parent(Entity, Alt par) is true if Alt par is the
set of alternative parents to Entity. It is normally the case that two sets
of parents are included in the Alt par to indicate that they are alternative
to each other; this is graphically denoted by one dependency linked to the
alternative-parent box and the other linked to the one of the parent entity
directly. This will be the case when three sets of alternative parents are
included when both dependencies are linked to the alternative-parent box
which is perhaps less common. More alternative parents may be included in
the set if more than two entities are included in the alternative-parent box.
The rule below formally describes that an entity normally has two sets of
alternative parents, if there are any.

alternative parents(Entity, Parents)
�
member no(Parents) = 2 (25)



H

Process Model Rules and Guidelines

This appendix documents the formalisation of the recommendation of busi-
ness modelling in the BSDM process manual [52]. The formal language used is
First Order Predicate Logic complement with the argumentation convention of
Prolog, i.e. arguments that start with capital letters are variables, otherwise,
constants.

BSDM defines a process model and recommends good practices in devel-
oping a sound business model [51]. There are also other modelling rules which
are not documented in the manual, but are standard practice or natural deduc-
tions from the method. Some of these recommendations are necessary to follow
to build a correct business model, others are circumstantial rules. Similarly to
those given in Appendix G, according to the strength of enforcement of the
recommendations on models, they are distinguished into two main categories:
model rules and guidelines. A user-defined business model will be checked us-
ing these model rules and guidelines at the request of the user. Model rules are
strong recommendations which if not followed will probably cause an error in
the business model or cause KBST-BM to behave wrongly. Model guidelines,
on the other hand, are normally followed but there can be exceptions depending
on each business’ circumstances.

A strong inference symbol ⇒ is used to represent the stronger enforcement
of rules, whereas � is used to represent the weaker enforcement of guidelines.

H.1 Process Model Rules

• Each process must have a trigger A BSDM process is identified by its
trigger and (entity) functions (pages 10, 30, 62 [52]). Therefore, each pro-
cess must be given at least one trigger by the modeller.

class(process, Process)
⇒
∃Trigger content.trigger(Process, Trigger content) (1)



266 AUTOMATING BUSINESS MODELLING

• Each process must include at least one entity Each process must
include at least one entity in its scope. Assuming each entity is given an
entity function, this rule is represented below:

class(process, Process)
⇒
∃Entity function, Entity.
entity function(Entity function, Process, Entity) (2)

• There are only seven different kinds of entity functions Each pro-
cess may include one or more entity functions in its scope. Those entity
functions are pre-determined and can only be one of the following seven
different kinds: originate focal, normal and if-flight entity functions, change
focal and normal entity functions, and refer normal and master entity func-
tions.

entity function(Entity function, Process, Entity)
⇒
Entity function = originate focal fun ∨
Entity function = originate normal fun ∨
Entity function = originate if fun ∨
Entity function = change focal fun ∨
Entity function = change normal fun ∨
Entity function = refer normal fun ∨
Entity function = refer master fun (3)

• Each entity must be included in at least one process It is sensible to
state that each entity in the model must be included in at least one process
with one of the permitted entity functions. For this, we use the following
rule:

class(entity, Entity)
⇒
∃Process, Entity function.
entity function(Entity function, Process, Entity) (4)

• Main purpose of an originate process An originate process’ primary
purpose is to originate at least one entity occurrence in its scope (pages 14,
21 [52]). To be more precise, its main purpose is to originate the entity oc-
currences of its originate focal entity, and perhaps also its originate normal
and in-flight entities, if any exist (pages 29, 30, 62 [52]).
This can be summarised as: given any process which is an originate process
then (a) it must included an originate focal entity-function in scope and one
of its process actions must be to create an entity occurrence of the corre-
sponding originate focal entity-function; and (b) it also creates entity occur-



Appendix H. Process Model Rules and Guidelines 267

rences of the corresponding originate normal and in-flight entity-functions,
if it includes any of them in scope. The predicate
process action(create originate focal entity, Process, Entity, Occurrence)
means that an action of process Process is to create an entity occurrence
of the corresponding originate focal entity of that process. This entity has
an entity type Entity, and the corresponding occurrence is Occurrence. The
same predicate is used to denote a process action which generates entity
occurrences of the corresponding originate normal and originate in-flight
entities, with the replacement of the first argument of the predicate with
originate normal entity and originate if entity, respectively.
The logic expressions below state that each originate process must include
at least one originate focal entity function, and that it must create an entity
occurrence of this entity function as a part of its process actions.

class(originate process, Process)
⇒
∃Entity, Occ.⎛
⎝ entity function(originate focal fun, Process, Entity)∧

process action(create originate focal entity,
Process, Entity, Occ)

⎞
⎠ (5)

The two logic expressions below state that if an originate process includes
an originate normal or an originate in-flight entity function in its scope,
then it must create or confirm the entity occurrence of this entity function
as a part of its process actions. (The creation of an absent originate if entity
is handled by the business model simulator.)

class(originate process, Process) ∧
entity function(originate normal fun, Process, Entity)
⇒
∃Occ.process action(create originate normal entity,
Process, Entity, Occ) (6)

class(originate process, Process) ∧
entity function(originate if fun, Process, Entity)
⇒
∃Occ.process action(confirm originate if entity,
Process, Entity, Occ) (7)

• Main purpose of a change process A change process’ primary purpose
is to change attributes of at least one entity occurrence in its scope (pages
14, 22 [52]). To be more precise, its main purpose is to change attributes
of entity occurrences of its change focal entity, and also its change normal
entities, if any exist (pages 29, 30, 62 [52]).
In other words, given any change process, then (a) it must include a change
focal entity in scope and one of its actions must be to change an attribute
value of an entity occurrence of its change focal entity; and (b) it also



268 AUTOMATING BUSINESS MODELLING

changes attribute values of entity occurrences of its change normal entity
functions, if it has included any such entity function in scope. The predicate
process action(update change focal entity, Process, Entity, Att, Old, New)
means that a particular action of a process Process is to update the value
of attribute Att from Old to New of the corresponding change focal entity
of Process. The entity type is Entity. The same predicate is used to denote
a process action which changes attribute values of entity occurrences of the
corresponding change normal entities, with a replacement of the first argu-
ment of the predicate with change normal entity.

class(change process, Process)
⇒
∃Entity, Att, Old, New.⎛
⎝ entity function(change focal fun, Process, Entity)∧

process action(update change focal entity,
Process, Entity, Att, Old, New)

⎞
⎠ (8)

The expression below states that if a change process includes a change nor-
mal entity in its scope, then it must include at least one process action
which carries out the update of at least one attribute of this change normal
entity.

class(change process, Process) ∧
entity function(change normal fun, Process, Entity)
⇒
∃Att, Old, New.
process action(update change normal entity,
Process, Entity, Att, Old, New) (9)

• Focal originate entity applies only to originate processes A focal
originate entity function constitutes the primary purpose of an originate
process. By definition, this process must be an originate process and can-
not be any other kind of process (page 30 [52]).

entity function(originate focal fun, Process, Entity)
⇒
∀Process type.

(
class(Process type, Process)∧

Process type = originate process

)
(10)

• Each entity in the process scope must have an entity function Each
entity which is physically drawn within a process scope, must be assigned
with an entity function for this process. On the other hand, any entity may
not have any functional relationship (entity function) with a process un-
less it is within the process scope of that process (pages 29, 30, 62 [52]). A
bi-directional symbol ⇔ is used here which is equivalent to two ⇒ which
enforce the property of the other one once one property is true.



Appendix H. Process Model Rules and Guidelines 269

process scope(Process, Entity)
⇔
∃Entity function.entity function(Entity function,
Process, Entity) (11)

• One entity function per entity in a process Each entity which is physi-
cally drawn within a process scope must be assigned with an entity function
for this process. Furthermore, this entity function should be the unique one
which was assigned to the entity, i.e. an entity cannot play two roles in
a process therefore cannot bear more than one different entity functions
within a process (pages 29, 30, 62 [52]).

entity function(Entity function, Process, Entity)
⇒
¬∃Entity function2.(

entity function(Entity function2, P rocess, Entity)∧
Entity function �= Entity function2

)
(12)

• Derivable attributes are not the primary purpose of a change
process A derivable attribute alone is not considered to be independent
and sufficiently significant for a BSDM business process – a change of its
value can always be derived whenever it is needed. Therefore, a process
must not be created such that its primary or sole purpose is to produce or
update the value of a derivable attribute. When a change of the derivable
attribute is important to the business, the values which cause the changes
are important. A derivable attribute should be dynamically recalculated if
any of the calculation basis has been changed (pages 15, 22, 58, 60 [52]).
The above rule can be interpreted as: for any attribute-updating action
where the updated attribute is a derivable attribute, there must be another
primary action carried out by this process.

process action(update change focal entity, Process, Entity, Attribute, Old, New)
∧
derive attribute(Entity, Attribute)
⇒
∃Attribute2, Old2, New2.(

process action(update change focal entity,
Process, Entity, Attribute2, Old2, New2)∧

Attribute2 �= Attribute

)
(13)

• The calculation base for derivable variables must be in the process
scope If a process has an originate focal or originate normal or originate
in-flight entity function in scope, then it will need to produce this entity’s
attribute values when it creates this entity. If any of these originated at-
tributes is a derivable attribute, then those other entities, whose attribute
values are used as a calculation basis in the derivation rule, must be in-



270 AUTOMATING BUSINESS MODELLING

cluded in the scope of the process (pages 28, 58 [52]).

class(process, Process) ∧
∃Entity, Attribute.⎛
⎝

(
entity function(originate focal fun, Process, Entity)∨
entity function(originate normal fun, Process, Entity)

)
∧

derive attribute(Entity, Attribute)

⎞
⎠

⇒
∃Att value, Referred entities, Attribute rule content.(

attribute rule(Entity, Attribute, Att value, Referred entities,
Attribute rule content)

)
∧

∀X, ∃Process scope.⎛
⎝ X ∈ Referred entities∧

process scope(Process, Process scope)∧
X ∈ Process scope

⎞
⎠ (14)

• Consistency checking between Life Cycle Diagram and Process
Model If a process has been included in an entity’s Life Cycle Diagram
then this must be reflected in the process scope. This means that if an orig-
inate process has been identified in an entity’s Life Cycle Diagram (denoted
as in the orgprocess predicate), then this entity must be originated by that
process, i.e. it must either be an originate focal, normal or in-flight entity
in that process; if a change process has been included in an entity’s Life
Cycle Diagram (denoted as in the chgprocess predicate), then that entity
must be changeable by the process, i.e. it must be a change focal or normal
entity in that process. These two rules are described formally below.

orgprocess(Process, Entity, Life)
⇒⎛
⎝ entity function(originate focal fun, Process, Entity)∨

entity function(originate normal fun, Process, Entity)∨
entity function(originate if fun, Process, Entity)

⎞
⎠ (15)

chgprocess(Process, Entity, Start, End)
⇒(

entity function(change focal fun, Process, Entity)∨
entity function(change normal fun, Process, Entity)

)
(16)

H.2 Process Model Guidelines

• Each process should have a business rule A BSDM process is also de-
fined by its business rules(page 10 [52]). Therefore, it is recommended that
each process should be given at least one business rule by the modeller.



Appendix H. Process Model Rules and Guidelines 271

class(process, Process)
�
∃Rule content.business rule(Process, Rule content) (17)

• Each entity should be originated by at least one process Each entity
should be originated (created) by at least one process (pages 41, 63 [52]).
Each entity included in a business model is of significance and therefore
theoretically, the origination of an entity occurrence should be controlled
and described in a business process. However, since the modeller may de-
cide that the creation of some particular entity occurrence lies outside the
scope of his/her modelling activities, this forms a guideline, rather than a
strict model rule. The guideline states that each entity must either be an
originate focal, originate normal or in-flight entity in at least one process
(note that this is a more specific version of model rule 2).

class(entity, Entity)
�
∃Process.⎛
⎝ entity function(originate focal fun, Process, Entity)∨

entity function(originate normal fun, Process, Entity)∨
entity function(originate if fun, Process, Entity).

⎞
⎠ (18)

• Naming convention of a process BSDM has recommended a convention
for naming a process to ensure that the name of a process is meaningful
and consistent throughout the model. A process name should indicate what
the process does and the main affected entity (page 24 [52]).
The rule for naming is “a verb followed by a simple noun”. The noun used
can be an entity name, written in capitals, e.g. “Take CUSTOMER OR-
DER”, or “Open CUSTOMER ACCOUNT”. The simple process name can
also be extended to give more information about the process, e.g. “Ac-
cept BUSINESS as Trading Partner”, or “Discontinue Trade with BUSI-
NESS”, or “Accept PAYMENT against CUSTOMER ACCOUNT”. Com-
monly used verbs are access, confirm, propose, define, make, transform,
assemble, move, predict, issue, receive, take, open, close, discontinue, cre-
ate.
In short, a standardised process name should begin with a simple verb fol-
lowed by a capitalised entity name. Therefore, we formalise it below.

class(process, Process name)
�
∃Begin word, Entity name.⎛
⎜⎜⎜⎜⎝

begin string(Process name, Begin word)∧
simple verb(Begin word)∧

class(entity, Entity name)∧
sub string(Entity name, Process name)

⎞
⎟⎟⎟⎟⎠ (19)



272 AUTOMATING BUSINESS MODELLING

• Unique focal entity in a process It is generally recommended that only
one focal originate or focal change entity is included in a process which forms
the primary reason for the existence of the process. The expression below
states that each process can have one and only one originate focal entity
function in its scope.

entity function(originate focal fun, Process, Entity)
�

¬∃Entity2.

⎛
⎝ entity function(originate focal fun,

Process, Entity2)∧
Entity �= Entity2

⎞
⎠ (20)

The expression below states that each process can have one and only one
change focal entity function in its scope.

entity function(change focal fun, Process, Entity)
�

¬∃Entity2.

⎛
⎝ entity function(change focal fun,

Process, Entity2)∧
Entity �= Entity2

⎞
⎠ (21)

• Parents of focal and normal entities In any process, if any of its focal
and normal entities are dependent entities, then when their entity occur-
rences are to be created or changed, the occurrence of its parent entities
may also be needed for the process execution. Their parents can be in one of
the three possibilities: (1) the parent entity occurrence will always already
exist, (2) the parent entity occurrence will usually exist but not always be
present, (3) the parent entity occurrence will normally not be present but is
created as a part of the process. It is a prerequisite in the method that par-
ent entity occurrences must be created before or at the same time when the
dependent entity occurrence is created, so that the necessary information
from the parent entity occurrence can be used for the creation.
There are three different ways to model the parent entities in the process.
In the first situation, as a reference entity function in the process, since
the required information already exist. In the second case, an originate in-
flight because it sometimes already exist, but can be originated if absent. In
the third case, as an originate change entity function, because it is always
co-created during the process of originating the initial originate focal and
normal entities. This rule, however, does not have to be strictly followed,
since the assignment of an entity function is business dependent and mod-
elling project dependent (i.e. it may lie outside the scope of the modelling
project) (page 29 [52]).

An originate process is responsible for the origination of entity occurrences
in addition of merely referring to those entity occurrences. The above rule is
formalised in two expressions which deal with parents of an originate focal
and originate normal entity.



Appendix H. Process Model Rules and Guidelines 273

entity function(originate focal fun, Process, Entity) ∧
parent type(Entity, Parents)
�
∀X.X ∈ Parents ∧⎛
⎜⎜⎝

entity function(refer normal fun, Process, X)∨
entity function(refer master fun, Process, X)∨
entity function(originate if fun, Process, X)∨

entity function(originate normal fun, Process, X)

⎞
⎟⎟⎠ (22)

entity function(originate normal fun, Process, Entity) ∧
parent type(Entity, Parents)
�
∀X.X ∈ Parents ∧⎛
⎜⎜⎝

entity function(refer normal fun, Process, X)∨
entity function(refer master fun, Process, X)∨
entity function(originate if fun, Process, X)∨

entity function(originate normal fun, Process, X)

⎞
⎟⎟⎠ (23)

As a change process primarily modifies existing entity occurrences, we as-
sume that parent entity occurrences of the focal and normal entity occur-
rences always already exist. Therefore, we only need to refer to them. This
is formalised below.

entity function(change focal fun, Process, Entity) ∧
parent type(Entity, Parents)
�
∀X.X ∈ Parents ∧(

entity function(refer normal fun, Process, X)∨
entity function(refer master fun, Process, X)

)
(24)

entity function(change normal fun, Process, Entity) ∧
parent type(Entity, Parents)
�
∀X.X ∈ Parents ∧(

entity function(refer normal fun, Process, X)∨
entity function(refer master fun, Process, X)

)
(25)

• Identification of subsumed process If there are two processes whose
process actions are identical, or the actions of one are subsumed by the
other one, then there may be a chance of overlapping the definition of these
two processes (page 62 [52]).

process action set(Process, Actions)
�

¬∃Process2, Actions2.

(
process action set(Process2, Actions2)∧

Actions ⊆ Actions2

)
(26)



274 AUTOMATING BUSINESS MODELLING

• Identification of complementary process If two processes are raised
(triggered) by the same event and each carries out a part of the activities
which together belong to a bigger process, then these two processes should
be combined into a larger process (page 62 [52]).
The representation of the above rule is not straightforward, because of the
difficulties in identifying the above situation. The above situation cannot
be identified using only process actions, because each will be different as a
partial process and complementary of each other; nor can the situation be
identified using the trigger alone, i.e. to find the two partial processes by
identifying processes which share the same trigger.
A more accurate judgement would take both factors into account. To de-
termine if two process are complementary to each other, we can probably
consider the primary purpose of each process, i.e. the focal entities of each
process. We can then describe this as: if there are two processes which are
invoked by the same trigger, and the primary purpose of one process is
either to originate or change the direct parent or child entity of the pri-
mary focal entity of the other process, then these two processes might be
combined.
To translate the above observation into formal representations, we can again
rewrite this as: if one can find two processes which are invoked by the same
trigger, and that the focal entity of one is the direct parent (or child) entity
of the other process’ focal entity, then these two processes may be combined.
The final judgement of whether two processes should be kept separate or
combined is again made by the individual business. We represent this rule
as a guideline in the two expressions below, each dealing with an originate
and a change process.

trigger(Process, Trigger content) ∧
entity function(originate focal fun, Process, Entity) ∧
parent type(Entity, Parents)
�
¬∃Process2, Entity2.⎛
⎜⎜⎝

trigger(Process2, T rigger content)∧
Process �= Process2∧

entity function(originate focal fun, Process2, Entity2)∧
Entity2 ∈ Parents

⎞
⎟⎟⎠ (27)



Appendix H. Process Model Rules and Guidelines 275

trigger(Process, Trigger content) ∧
entity function(change focal fun, Process, Entity) ∧
parent type(Entity, Parents)
�
¬∃Process2, Entity2.⎛
⎜⎜⎝

trigger(Process2, T rigger content)∧
Process �= Process2∧

entity function(change focal fun, Process2, Entity2)∧
Entity2 ∈ Parents

⎞
⎟⎟⎠ (28)

• All important attributes are covered by processes If an entity has an
attribute which is of importance to a business, it is essential to document
how the attribute values are changed. This is particularly true when changes
in an attribute value reflect changes in the status of the entity occurrence,
i.e. life cycle status of an entity occurrence. In other words, one or more
change processes should be defined to carry out the changes of this value
(pages 22, 41 [52]).
The formal expression below states that for each entity Entity, if its life cy-
cle status can be changed from one state Old to the other New, then there
should exist at least one change process Process which includes the Entity
either as its change focal or change normal entity and that one of its process
actions should be to change this entity’s life cycle status from Old to New.

life cycle transit(Entity, Old, New)
� ∃Process.⎛
⎜⎜⎜⎜⎜⎝

(
entity function(change focal fun, Process, Entity)∧

process action(update change focal entity, Process, Entity,
lifestatus, Old, New)

)
∨(

entity function(change normal fun, Process, Entity)∧
process action(update change normal entity, Process, Entity,

lifestatus, Old, New)

)
⎞
⎟⎟⎟⎟⎟⎠ (29)

Other important attributes can be identified by the modeller and repre-
sented in a predicate important attribute(Entity, Attribute). This predicate
is defined to be true, iff Attribute is an “important” attribute to entity
Entity and the business being modelled. The decision about whether an at-
tribute is important or not is determined by each business, therefore is not
discussed here.
The logical sentence below states that all important attributes must be han-
dled by at least one change process which updates it. (The attributes may
be given at the creation of the entity occurrence therefore are not specified
here.)



276 AUTOMATING BUSINESS MODELLING

important attribute(Entity, Attribute) ∧
�

∃Process, Old, New.⎛
⎜⎜⎜⎜⎜⎝

(
entity function(change focal fun, Process, Entity)∧

process action(update change focal entity, Process, Entity,
Attribute, Old, New)

)
∨(

entity function(change normal fun, Process, Entity)∧
process action(update change normal entity, Process, Entity,

Attribute, Old, New)

)
⎞
⎟⎟⎟⎟⎟⎠ (30)

For those important attributes whose values are specified in the attribute
transit predicate, the above rule is formalised below.

important attribute(Entity, Attribute) ∧
attribute transit(Entity, Attribute, Old, New)
�

∃Process, Actions.⎛
⎜⎜⎜⎜⎜⎝

(
entity function(change focal fun, Process, Entity)∧

process action(update change focal entity,
Process, Entity, Attribute, Old, New)

)
∨(

entity function(change normal fun, Process, Entity)∧
process action(update change normal entity,

Process, Entity, Attribute, Old, New)

)
⎞
⎟⎟⎟⎟⎟⎠ (31)

• Deadlock prevention among processes Deadlock, in the context of pro-
cess modelling, is the situation when two or more processes cannot be exe-
cuted because the information which is needed for execution is absent and
will have to be generated by other process(es); however, the execution of
these process(es) can only be done if the initial process is already executed.
Since all of these processes depend on each other’s information for execu-
tion, no processes can be carried out.
In BSDM, the prerequisite for executing a process is through the origi-
nate in-flight entity function and the ability of triggering another process
to generate it, which if not careful may invoke a chain of invocation for
processes. This interdependency of process execution can be described in
the inflight chain predicate.⎛
⎝ entity function(originate focal fun, Process name, X)∧

entity function(originate if fun, Process name, Y )∧
entity function(originate if invoke, Process name)

⎞
⎠

⇒
inflight chain(X,Y )



Appendix H. Process Model Rules and Guidelines 277⎛
⎜⎜⎝

originate focal fun(Process name, X)∧
originate if fun(Process name, Y )∧
originate if invoke(Process name)∧
inflight chain(Y, Z)

⎞
⎟⎟⎠

⇒
inflight chain(X,Z) (32)

Given the definition of the predicate inflight chain, the guideline which de-
tects the possibility of deadlock between processes can be formally given
below.⎛
⎝ entity function(originate focal fun, Process name, X)∧

entity function(originate if fun, Process name, Y )∧
entity function(originate if invoke, Process name)

⎞
⎠

�
¬(inflight chain(X,X)) (33)

A more detailed explanation about what deadlock is in BSDM and these
rules is given in Section 6.5.

• Inconsistent handling of entities We could perhaps assume that nor-
mally a business policy is carried out consistently even in different business
operations. Based on this assumption, we may expect that two closely re-
lated entities play similar roles even in different processes.
For instance, if an entity occurrence Y is always created when an entity
occurrence X is created, then when expressed in a process scope, entity X
will be the originate focal entity, and Y will be the originate normal entity.
We may then think it is inconsistent with the standard practice if there is
another process, Process name2, which specifies X be the originate normal
entity and Y be the originate focal entity. If this is applicable, a similar prin-
ciple can also be applied to the relationships for change focal and change
normal entity functions. These are the extended guidelines which are a nat-
ural deduction from BSDM. They are described formally below.(

entity function(originate focal fun, Process, Entity1)∧
entity function(originate normal fun, Process, Entity2)

)
�

¬∃Process2.(
entity function(originate focal fun, Process2, Entity2)∧
entity function(originate normal fun, Process2, Entity1)

)
(34)

(
entity function(change focal fun, Process, Entity1)∧
entity function(change normal fun, Process, Entity2)

)
�

¬∃Process2.(
entity function(change focal fun, Process2, Entity2)∧
entity function(change normal fun, Process2, Entity1)

)
(35)



I

An Interpreter for User-Defined Rules

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% File: derive.pl 1999-6-17
%
% This document records the design for derivation methods for
% entity attributes.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Main Program (1)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% statement --> verb_phrase + noun_phrase +
% adj_phrase + adv_phrase +
% closing_phrase
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%% Type 1: statement

statement([type1, function(Function), attname(Attname),
att_value(Att_list), res(Result)] )
--> vp(Function, Attname),

adj_p(Entity), adv_p(Entity, [], EntOccs),
closing_statement(Result),
{find_all_attvalues(Attname, EntOccs, Att_list),
compute(Function, Att_list, Result) }.

%%%%% Type 2: statement

statement([type2, function(Function), res(Result)] )

--> vp(Function),
vp_content(Result),



280 AUTOMATING BUSINESS MODELLING

call_statement(Function),
{(\+ var(Function), call(Function);
var(Function) ) }.

%%%%% Type 3: statement

statement([type3, function(Function), res(Result)] )

--> vp(Function),
s1_block(Result),
call_statement(Function),
{(\+ var(Function), call(Function);
var(Function) ) }.

%%%%% Type 4: statement

statement([type4, function(Function), res(Result)] )

--> vp(Function),
s1_block(Res1), vp_content(Res2),

call_statement(Function),
{(\+ var(Function), call(Function);
var(Function) ),
append(Res1, Res2, Result) }.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

s1_block([type1|Result]) --> statement([type1| Result]).

s1_block([type1|Result]) --> statement([type1| Res1]),
[and],
statement([type1| Res2]),

{append(Res1, [type1| Res2], Result) }.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

vp_content([Result]) -->
vp2(Attname), adj_p(Entity),
adv_p(Entity, [], EntOccs),
closing_statement(Result),

{write(EntOccs),nl,
write(Entity),write(ID),nl,
member( (Entity, ID), EntOccs),
dyn(ent_occ_att(Entity, ID, Attname, Result)) }.



Appendix I. An Interpreter for User-Defined Rules 281

vp_content(Result) -->
vp2(Attname), adj_p(Entity), adv_p(Entity, [], EntOccs),
closing_statement(Res1),

vp_content(Res2),
{member( (Entity, ID), EntOccs ),
dyn(ent_occ_att(Entity, ID, Attname, Res1)),
append([Res1], Res2, Result) }.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% (1) Verb and Verb Phrase

verb --> [calculate], {write(’verb’),nl}.
verb --> [compute], {write(’verb’),nl}.
verb --> [use], {write(’verb’),nl}.
verb --> [search], {write(’verb’),nl}.
verb --> [find], {write(’verb’),nl}.

%%%%%

vp(Function, Attname) -->
verb, [the, Function, of, attribute, Attname],

{write(’vp’),nl}.

vp(Function) --> verb, [the, Function, for], noun,
{nl, write(’vp’),nl}.

vp(Function, Attname) -->
verb, [the], function(Function),

[of, attribute, Attname],
{write(’vp’),nl}.

vp2(Attname) --> verb , [attribute, Attname],
{write(’vp2’),nl}.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (2) Noun and Noun Phrase

noun --> [computation].
noun --> [calculation].

function(average) --> [average].
function(summation) --> [summation].

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%



282 AUTOMATING BUSINESS MODELLING

% (3) Adj Phrase

adj_p(Entity)--> [for, every, entity, Entity],
{write(’adj_p’),nl}.

adj_p(Entity)--> [for, entity, Entity], {write(’adj_p’),nl}.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (4) find all relevant Entity Occurrences

%% find a special set of ent occs.
adv_p(Entity, InOcc, OutOcc) -->

[with, condition, entity-ancestor, ParOcc],
{write(’adv_p1’),nl,
find_all_ent_occ(Entity, ParOcc, InOcc, OutOcc)}.

adv_p(Entity, InOcc, OutOcc) -->
[with, condition, entity-ancestor, ParOcc, and],

adv_p(Entity, InOcc, MidOcc),
{write(’adv_p2’),nl,
find_all_ent_occ(Entity, ParOcc, MidOcc, OutOcc)
}.

%% know the particular entity occ
adv_p(Entity, InOcc, OutOcc) -->

[with, condition, entity-id, EntID],
{write(’adv_p1’),nl,
find_one_ent_occ(Entity, EntID,
InOcc, OutOcc)}.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (5)
closing_statement(Result) -->

[when, finished, save, the, result, in, Result],
{write(’close’),nl}.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (6)
call_statement(Function) --> [call, Function],

{\+ var(Function), write(’call statement’),nl}.

call_statement(Function) --> [call, Function],
{var(Function),
write(’Error: User defined function is not given !’),
nl}.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%



Appendix I. An Interpreter for User-Defined Rules 283

% find_all_ent_occ(Entity, ParOcc, InOcc, OutOcc)
%
% Given Parent Occurrence, find all relevant entity occurrence.
%
% Output = [(Entity, ID), (Entity2, ID2),...]
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

find_all_ent_occ(Entity, ParOcc, InOcc, OutOcc) :-
findall( (Entity, ID),

( dyn(ent_occ(Entity, ID, _)),
ancestor( (Entity, ID), ParOcc)

),
NewOcc ),

append(InOcc, NewOcc, Mid),
set(Mid, OutOcc).

find_all_ent_occ(Entity, _, InOcc, InOcc) :-
dyn(ent_occ(Entity, _, [])),
write(’An Error was found: The Entity "’),
write(Entity),write(’"’),nl,
write(’is without a parent.’),nl.

find_all_ent_occ(Entity, [], InOcc, InOcc) :-
write(’An Error was found: The Entity "’),
write(Entity),write(’"’),nl,

write(’cannot be found without given parent occurrences.’),
nl.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% find_one_ent_occ(Entity, EntID, InOcc, OutOcc)
%
% Given the Entity name and Entity ID, the particular Ent Occ is
% retrieved and added to InOcc and return in Outocc.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

find_one_ent_occ(Entity, EntID, InOcc, OutOcc) :-
dyn(ent_occ(Entity, EntID, _)),
append(InOcc, [(Entity, EntID)], Out),
set(Out, OutOcc).

find_one_ent_occ(Entity, EntID, InOcc, InOcc) :-
\+ dyn(ent_occ(Entity, EntID, _)),
write(’Warning: An entity occurrence is required for the

derivable attribute rule, but it does not exist.’),nl,
write(’The entity Name: ’), write(Entity),nl,
write(’The entity ID: ’), write(EntID),nl.



284 AUTOMATING BUSINESS MODELLING

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% find_all_attvalues(Attname, EntOccs, Output_list),
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

find_all_attvalues(Attname, EntOccs, Output_list) :-

findall( AttValue,
( member( (Ent, ID), EntOccs),
dyn(ent_occ_att(Ent, ID, Attname, AttValue)) ),

Output_list).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% compute(Function, Input_list, Result)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

compute(average, [], 0) :- !.

compute(average, Input_list, Result) :-

compute(summation, Input_list, R1),
length(Input_list, Len),
Result is R1 / Len.

%%%%%%%%%%%%%%%%%

compute(summation, [], 0) :- !.

compute(summation, Input, Result) :-
my_sum(Input, 0, Result).

%%%%%%%%%%%%%%%%%

my_sum([], Res, Res) :- !.

my_sum([X|List_of_data], Input, Res) :-
Sum is X + Input,
my_sum(List_of_data, Sum, Res).



J

Model Rules and Guidelines by Category

This appendix categories all of the model rules and guidelines described in the
book in four categories and list them in four tables.

Explanation of the four categories of model rules and guidelines are given
below:

1. Exact Match: These model rules/guidelines are given in the method explic-
itly and all errors described by such rules are detectable by the tool and
correct advice can be given.

2. Partial Match: These model rules/guidelines are given in the method ex-
plicitly, but only a part of the specified errors are detectable by the tool
with correct advice given.

3. Folklore Rules: This type of rules are not explicitly stated in the method,
but assumed or inferable from it and are normally used by practitioners.
Folklore model rules are modelling rules which are normally applied in
practice. Although they are not explicitly stated in the method, they can
be inferred from BSDM guidelines.

4. Enhanced Rules: The use of enhanced modelling rules is only possible when
applying DefBM or KBST-BM. This is due to the extension of BSDM
that is made available in our modelling framework. Such extensions are
the provision of the Entity Conceptual Hierarchy, Process Dependency and
Partial Execution Order Diagrams, extended Life Cycle Diagrams, Procedu-
ral Model and the checking functionalities provided by the business model
simulator.

The model rules and guidelines are described in the following sections. The
IDs of the model rules and guidelines are used correspondingly in Appendices
G and H.



286 AUTOMATING BUSINESS MODELLING

J.1 Entity Model Rules

Rule ID Entity Model Rules Category
1 No entity should be isolated 1, 3
2,3 No circular dependency is allowed 1, 3
4 Each entity must be defined 1
5 A child entity occurrence must be

created only after its parent
occurrences are created 1, 4

6,7,8 Each entity is unique 2
9,10 Each entity represents real things 2
11 Each derivable variable must have

a derivation mean 1
12,13,14,15 Each entity should be associated

with members in the entity families 1, 4
16 Each entity must have a start life

status 1,4
17 Each entity must have a terminating

life status 1,4
18,19 Each entity must have a correct

life cycle transition 1,4

J.2 Entity Model Guidelines

Guideline ID Entity Model Guidelines Category
20 An entity model should be within

4 layers 1
21 None or two entity parents only 1
22 Entity name should be short 1
23 Entity name should be general 2, 4
24 Entity names are singular nouns 2
25 One dependency to an alternative

box only 1, 3



Appendix J. Model Rules and Guidelines by Category 287

J.3 Process Model Rules

Rule ID Process Model Rules Category
1 Each process must have a trigger 1
2 Each process must include at least

one entity 1
3 There are only seven different kinds

of entity functions 1
4 Each entity must be included in

at least one process 1
5 Each originate process must define

the creation of its originate focal entity 1, 4
6 An originate process must define

the creation of its originate normal
entity if it has any 1, 4

7 An originate process must define
the creation of its originate in-flight
entity if it has any 1, 4

8 A change process must define the
creation of its change focal entity 1, 4

9 A change process must define the
creation of its change normal
entity, if it has any 1, 4

10 Originate focal entity is only
applicable for originate process 1

11 Each entity in a process must be
assigned an entity function 1

12 Each entity can only have one entity
function in any process 1

13 Creation and modification of values
of derivable variables cannot be the
primary purpose of a process 1

14 The calculation base for derivable
variables must be included in the
corresponding process scope 1

15, 16 Consistency checking for
life cycle diagrams and processes 2, 3, 4



288 AUTOMATING BUSINESS MODELLING

J.4 Process Model Guidelines

Guideline ID Process Model Guidelines Category
17 Each process should include

least one business rule 1
18 Each entity should be originated by

at least one process 1
19 Process name should obey the standard

naming convention 1
20 There is only one originate focal

entity in an originate process 1
21 There is only one change focal

entity in a change process 1
22,23 Parent entities of originate

entities in a process may also be
included in the same process 1

24,25 Parent entities of change
entities in a process may also be
included in the same process 1

26 Checking for subsumed processes 2
27 Checking for the possibility of

combining originate processes 2
28 Checking for the possibility of

combining change processes 2
29 The transition of all life statuses

should be handled by at least one process 1, 4
30 Important attributes should be

handled by at least one process 1, 4
31 Known transition of attribute

values should be handled by at least
one process 1, 4

32,33 Deadlock by process definitions 1,3,4
34,35 Inconsistent handling of entities 1,3,4



K

Test Results of Model Rules and Guidelines

K.1 Test Results of Entity Model Rules

Number Error Description Error Found Rule ID
1 An entity without definition 41 4
2 An entity with different parents

defined in different cards 1 6
3 An entity with inconsistent

class attribute values 2 8
4 Add an isolated entity 1 1
5 Insert two dependencies from

Duration to its descendant to
create a circular dependency 4 2

6 An entity occurrence was created
but its parent occurrences were
not created - 5*

7 Name an entity “Registration
Form” 1 10

8 Entities not associated with
entity families 52 12

9 Entities not specifying its starting
life status 56 16

10 Entities not specifying its ending
life status 56 17



290 AUTOMATING BUSINESS MODELLING

11 Transferring the ending life status
of an entity to another life status 1 18

12 Give an entity a start life status
but does not give it a transition
means to another status 1 16

13 Give an entity an ending life status
but does not give it a transition
means to arrive it 2 17

14 Give an entity a life status
transition cycle which does not end 1 18

* This error is only checkable in the dynamic business card, and is prevented
in the business model simulator.

K.2 Test Results of Entity Model Guidelines

Number Error Description Error Found Guideline ID
1 Insert a one-parent entity 1 21
2 Insert a three-parent entity 1 21
3 Long entity names 1 22
4 Two entities which divide the

concept of place in two entities 1 23
5 A plural entity name is used 1 24
6 Too many layers due to circular

dependencies placed in the model 26 20
7 Without planted the error of

circular dependencies but with one
extra entity injected at the button
of the model 1 20

8 One entity which is dependent on
alternative parents box only 1 25



Appendix K. Test Results of Model Rules and Guidelines 291

K.3 Test Results of Process Model Rules

Number Error Description Error Found Rule ID
1 Processes not defined a trigger event 37 1
2 Process not include an entity 1 2
3 Entities which are not included by

at least one process 37 4
4 Originate process without defining

its originate focal actions 11 5
5 Originate process without defining

its originate normal actions 2 6
6 Originate process without defining

its originate in-flight actions 3 7
7 One change process not

having a change focal entity 1 8
8 Change processes not specifying its

change focal actions 29 8
9 Change processes not specifying its

change normal actions 2 9
10 One originate focal entity is added

in a change process 1 10
11 Assign an entity to a process, but

do not give it an entity function 1 11
12 Assign an entity with two entity

functions in a process 1 12
13 A process was specified to originate an

entity’s life status in the LCD*, but
is not specified in the corresponding
process scope 1 15

14 A process was specified to change an
entity’s life status in the LCD*, but
is not specified in the corresponding
process scope 1 16

* LCD stands for Life Cycle Diagram.



292 AUTOMATING BUSINESS MODELLING

K.4 Test Results of Process Model Guidelines

Number Error Description Error Found Guideline ID
1 Define a process but does not specify

a business rule for it 41 17
2 Creates entities in the model, but

does not define any process to
originate them 43 18

3 Define two originate focal entities
in a process 1 20

4 Define two change focal entities
in a process 1 21

5 An entity which is with inconsistent
parents, but is also at the same
time being an originate focal entity
for a process 4 22

6 An entity which is with inconsistent
parents, but is also at the same
time being a change focal entity
for a process 4 24



L

Example Use of GMA

This appendix gives an example use of GMA and the generated reports.

L.1 Input User Model

Fig. L.1. The example input model for GMA



294 AUTOMATING BUSINESS MODELLING

L.2 Representation of the User Model

data_ent(hardy, ’Reservation Of Future Supply’).
data_ent(hardy, ’Association Of Customer Order With Enquiry’).
data_ent(hardy, ’Applicability Of Term To Order’).
data_ent(hardy, ’Allocation Of Part Type To Request’).
data_ent(hardy, ’Purchase Ordered Part Type’).
data_ent(hardy, ’Association Of Part Type With Enquiry’).
data_ent(hardy, ’Requested Item’).
data_ent(hardy, ’Customer Order Enquiry’).
data_ent(hardy, ’Customer Order’).
data_ent(hardy, ’Purchase Order’).
data_ent(hardy, ’Trade Agreement’).
data_ent(hardy, ’Contract Term’).
data_ent(hardy, ’Part Type’).
data_ent(hardy, ’Party’).
data_view(hardy, ’Order’).
data_arc(hardy, ’7143’, ’Allocation Of Part Type To Request’,

’Reservation Of Future Supply’).
data_arc(hardy, ’7139’, ’Purchase Ordered Part Type’,

’Reservation Of Future Supply’).
data_arc(hardy, ’7075’, ’Requested Item’, ’Allocation Of Part Type To

Request’).
data_arc(hardy, ’7135’, ’Customer Order Enquiry’,

’Association Of Customer Order With Enquiry’).
data_arc(hardy, ’7131’, ’Customer Order Enquiry’,

’Association Of Part Type With Enquiry’).
data_arc(hardy, ’7119’, ’Customer Order’,

’Association Of Customer Order With Enquiry’).
data_arc(hardy, ’7103’, ’Customer Order’, ’Applicability Of Term To

Order’).
data_arc(hardy, ’7059’, ’Customer Order’, ’Requested Item’).
data_arc(hardy, ’7063’, ’Purchase Order’, ’Purchase Ordered Part

Type’).
data_arc(hardy, ’7111’, ’Contract Term’, ’Applicability Of Term To

Order’).
data_arc(hardy, ’7127’, ’Part Type’, ’Association Of Part Type With

Enquiry’).
data_arc(hardy, ’7115’, ’Part Type’, ’Allocation Of Part Type To

Request’).
data_arc(hardy, ’7071’, ’Part Type’, ’Purchase Ordered Part Type’).
data_arc(hardy, ’6982’, ’Part Type’, ’Customer Order Enquiry’).
data_arc(hardy, ’6978’, ’Part Type’, ’Customer Order Enquiry’).
data_arc(hardy, ’6974’, ’Part Type’, ’Customer Order’).
data_arc(hardy, ’6970’, ’Part Type’, ’Customer Order’).
data_arc(hardy, ’6934’, ’Party’, ’Trade Agreement’).
data_arc(hardy, ’6926’, ’Party’, ’Trade Agreement’).
data_arc(hardy, ’6922’, ’Party’, ’Purchase Order’).
data_arc(hardy, ’6918’, ’Party’, ’Purchase Order’).



Appendix L. Example Use of GMA 295

L.3 Dialogue using GMA

merlin[myprolog] SICStus 3 #5: Tue Aug 26 10:14:51 BST 1997
| ?- [cbr].
{consulting /hame/jessicac/kbst-bm/myprolog/cbr.pl...}
{consulting /hame/jessicac/kbst-bm/myprolog/case.db...}
{/hame/jessicac/kbst-bm/myprolog/case.db consulted, 80 msec
26896 bytes}
{consulting /hame/jessicac/kbst-bm/myprolog/enthrc.db...}
{/hame/jessicac/kbst-bm/myprolog/enthrc.db consulted, 40 msec
19968 bytes}

******* Welcome to KBST Generic Model Advisor *******
Please type "run." to take the specific input from Hardy.
Press control+d to quit the program. Bye for now.
{/hame/jessicac/kbst-bm/myprolog/cbr.pl consulted, 250 msec
87104 bytes}
yes

| ?- run.
{consulting /hame/jessicac/kbst-bm/myprolog/cbr.db...}
{/hame/jessicac/kbst-bm/myprolog/cbr.db consulted, 10 msec
3184 bytes}

************** Retrieving User Model ****************
**** Matching Generic Models in the Case Library ****
******* Choose Similarity Assessment Method *********

All of the relevant cases to the user model have been retrieved,
and will be presented to you in order. The sequence of display
can be given by default order. Alternatively, if you wish,
you can influence the sequence of the cases which are presented
to you by changing the weight on the selected features.

How would you like to optimise the solution presentation:

(1) Use The Default Method
(2) Redefine The Optimisation Method

|: 1.
******* Finished Optimising Solution ********

********** Stage Report No. 1 **********
********** Fitness Measure of Matching **********

(A) The matched CASE model is: Restaurant: Customer Order
The similar assessment ratio is: 0.50

* Matching View Name: yes
* The link matching ratio of the retrieved CASE model: 0.29
The entity matching ratio of the retrieved CASE model: 0.39



296 AUTOMATING BUSINESS MODELLING

There are 7 links matched,
and there are 17 links not matched.
There are in total 24 links in the CASE model.

There are 7 entities matched,
and there are 11 entities not matched.
There are in total 18 entities in the CASE model.

(B) The input USER model is: Order

* The link matching ratio of the USER model: 0.33
* The entity matching ratio of the USER model: 0.5

There are 7 links matched,
and there are 14 links not matched.
There are in total 21 links in the USER model.

There are 7 entities matched,
and there are 7 entities not matched.
There are in total 14 entities in the USER model.

******** Stage Report No. 2 *********
******** Result Analysis & Suggestion *********

(1) The selected matching case model is: Restaurant:
Customer Order

- The input USER model is: Order

(2) Matching of entities:
- There are 7 sets of entities found matched:

- The Entity "Allocation Of Part Type To Request"
in the USER model was found to be matching with
the Entity "Association Of Customer Order
With Reservation" in the CASE model

- The Entity "Applicability Of Term To Order"
in the USER model was found to be matching with
the Entity "Applicability Of Trade Agreement For
Customer Order" in the CASE model

- The Entity "Contract Term" in the USER model.
was found to be matching with
the Entity "Promotion" in the CASE model

- The Entity "Customer Order" in the USER model.
was found to be matching with
the Entity "Customer Order" in the CASE model



Appendix L. Example Use of GMA 297

- The Entity "Customer Order Enquiry" in the
USER model was found to be matching with
the Entity "Customer Reservation" in the
CASE model.

- The Entity "Party" in the USER model.
was found to be matching with
the Entity "Business" in the CASE model

- The Entity "Trade Agreement" in the USER model.
was found to be matching with
the Entity "Trade Agreement" in the CASE model

(3) An independent architecture matching:

- Matching a Valid Dependency:
The link from entity "Customer Order Enquiry" to
"Association Of Customer Order With Enquiry"
in the USER model MATCHES with
the link from entity "Customer Reservation" to
"Association Of Customer Order With Reservation"
in the CASE model.

- Matching a Valid Dependency:
The link from entity "Customer Order" to "Association
Of Customer Order With Enquiry"
in the USER model MATCHES with
the link from entity "Customer Order" to "Association
Of Customer Order With Reservation" in the CASE model.

- Matching a Valid Dependency:
The link from entity "Customer Order" to "Applicability
Of Term To Order"
in the USER model MATCHES with
the link from entity "Customer Order" to "Applicability
Of Trade Agreement For Customer Order"
in the CASE model.

- Matching a Valid Dependency:
The link from entity "Party" to "Trade Agreement"
in the USER model MATCHES with
the link from entity "Business" to "Trade Agreement"
in the CASE model.

- Matching a Valid Dependency:
The link from entity "Party" to "Trade Agreement"
in the USER model MATCHES with
the link from entity "Business" to "Trade Agreement"
in the CASE model.



298 AUTOMATING BUSINESS MODELLING

- Matching a Valid Dependency:
The link from entity "Party" to "Purchase Order"
in the USER model MATCHES with
the link from entity "Business" to "Customer Order"
in the CASE model.

- Matching a Valid Dependency:
The link from entity "Party" to "Purchase Order"
in the USER model MATCHES with
the link from entity "Business" to "Customer Order"
in the CASE model.

(4) Unmatched dependencies:

- There is a link from entity "Trade Agreement" to
"Applicability Of Trade Agreement For Customer Order"
in the case model which could not be matched with any
links in the data model.

Analysis: because the corresponding entities of
"Trade Agreement" and "Applicability Of Trade Agreement
For Customer Order" in the data model could not be found.

<< ... details omitted ... >>

============= End of Report =============
Do you want to see an alternative matching ? (y. or n.)
|: y.
Show an alternative solution:

******* Finished Optimising Solution ********
********** Stage Report No. 1 **********

********** Fitness Measure of Matching **********

(A) The matched CASE model is: Subject Of Transaction:
Ordered Batch
The similar assessment ratio is: 0.66

* Matching View Name: yes
* The link matching ratio of the retrieved CASE model:
1.0
The entity matching ratio of the retrieved CASE model:
1.0

There are 2 links matched,
and there are 0 links not matched.
There are in total 2 links in the CASE model.



Appendix L. Example Use of GMA 299

There are 3 entities matched,
and there are 0 entities not matched.
There are in total 3 entities in the CASE model.

(B) The input USER model is: Order

* The link matching ratio of the USER model: 0.10
* The entity matching ratio of the USER model: 0.21

There are 2 links matched,
and there are 19 links not matched.
There are in total 21 links in the USER model.

There are 3 entities matched,
and there are 11 entities not matched.
There are in total 14 entities in the USER model.

******** Stage Report No. 2 *********
******** Result Analysis & Suggestion *********

(1) The selected matching case model is: Subject Of
Transaction: Ordered Batch

- The input USER model is: Order

(2) Matching of entities:
- There are 3 sets of entities found matched:

- The Entity "Customer Order" in the USER model.
was found to be matching with
the Entity "Customer Order" in the CASE model

- The Entity "Part Type" in the USER model.
was found to be matching with
the Entity "Product Type" in the CASE model

- The Entity "Purchase Ordered Part Type" in the USER model.
was found to be matching with
the Entity "Ordered Batch" in the CASE model

(3) An independent architecture matching:

- Matching a Valid Dependency:
The link from entity "Part Type" to "Purchase Ordered
Part Type" in the USER model MATCHES with
the link from entity "Product Type" to "Ordered Batch"
in the CASE model.

- Matching a Valid Dependency:
The link from entity "Purchase Order" to "Purchase Ordered



300 AUTOMATING BUSINESS MODELLING

Part Type" in the USER model MATCHES with
the link from entity "Customer Order" to "Ordered Batch"
in the CASE model.

(4) Unmatched dependencies:

- All dependences in the Case Model are matched.

============= End of Report =============

Do you want to see an alternative matching ? (y. or n.)
|: y.
Show an alternative solution:

******* Finished Optimising Solution ********
********** Stage Report No. 1 **********

********** Fitness Measure of Matching **********

(A) The matched CASE model is: BSDM: Customer Order And
Delivery The similar assessment ratio is: 0.32

* Matching View Name: yes
* The link matching ratio of the retrieved CASE model: 0.09
The entity matching ratio of the retrieved CASE model: 0.21

There are 2 links matched,
and there are 20 links not matched.
There are in total 22 links in the CASE model.

There are 3 entities matched,
and there are 11 entities not matched.
There are in total 14 entities in the CASE model.

(B) The input USER model is: Order

* The link matching ratio of the USER model: 0.10
* The entity matching ratio of the USER model: 0.21

There are 2 links matched,
and there are 19 links not matched.
There are in total 21 links in the USER model.

There are 3 entities matched,
and there are 11 entities not matched.
There are in total 14 entities in the USER model.

******** Stage Report No. 2 *********
******** Result Analysis & Suggestion *********



Appendix L. Example Use of GMA 301

(1) The selected matching case model is: BSDM: Customer
Order And Delivery

- The input USER model is: Order

(2) Matching of entities:
- There are 3 sets of entities found matched:

- The Entity "Customer Order" in the USER model.
was found to be matching with
the Entity "Customer Order" in the CASE model

- The Entity "Party" in the USER model.
was found to be matching with
the Entity "Business" in the CASE model

- The Entity "Purchase Ordered Part Type" in the USER model.
was found to be matching with
the Entity "Product On Order" in the CASE model

(3) An independent architecture matching:

- Matching a Valid Dependency:
The link from entity "Purchase Order" to "Purchase
Ordered Part Type" in the USER model MATCHES with the
link from entity "Customer Order" to "Product On Order"
in the CASE model.

- Matching a Valid Dependency:
The link from entity "Party" to "Purchase Order"
in the USER model MATCHES with
the link from entity "Business" to "Customer Order"
in the CASE model.

(4) Unmatched dependencies:

- There is a link from entity "Business" to "Order
Receiving Point" in the case model which could not be
matched with any links in the data model.

Analysis: because the corresponding entities of
"Business" and "Order Receiving Point"
in the data model could not be found.

<< ... details omitted ... >>

============= End of Report =============
Do you want to see an alternative matching ? (y. or n.)
|: y.
Show an alternative solution:



302 AUTOMATING BUSINESS MODELLING

<< All of the alternative solutions have been explored by
the user, but the details are omitted here. A summary
of the retrieved cases and their reports are given in
the next section. >>

L.4 Statistical Summary of All Explored Matches

A Summary Report of Matching Results
Input USER model: Order

Matching Ratios:
(1) Match-View/Match-case-ent/Match-user-ent

Match-case-link/Match-user-link
(2) All-User-Links/Matched-Links/Unmatched-Links

All-Case-Links/Matched-Case-Links/Unmatched-Case-Links
(3) All-User-Ents/Matched-Ents/Unmatched-Ents

All-Case-Ents/Matched-Case-Ents/Unmatched-Case-Ents

Restaurant: Customer Order:
1 0.39/0.5 0.29/0.33
21/7/14 24/7/17
14/7/7 18/7/11

Subject Of Transaction: Ordered Batch:
1 1.0/0.21 1.0/0.10
21/2/19 2/2/0
14/3/11 3/3/0

BSDM: Customer Order And Delivery:
1 0.21/0.21

0.09/0.10
21/2/19 22/2/20
14/3/11 14/3/11

Purchase Invoice and Payment:
0 0.42/0.36 0.38/0.29
21/6/15 16/6/10
14/5/9 12/5/7

Restaurant: Purchase Invoice And Delivery:
0 0.45/0.36 0.25/0.19
21/4/17 16/4/12
14/5/9 11/5/6

Restaurant: Stock Control:
0 0.6/0.43 0.3/0.14
21/3/18 10/3/7



Appendix M. Example Use of Simulator 303

14/6/8 10/6/4

BSDM Manual: Employee Management:
0 0.4/0.14 0.33/0.10
21/2/19 6/2/4
14/2/12 5/2/3

Restaurant: Tax Payment:
0 0.13/0.14 0.1/0.10
21/2/19 20/2/18
14/2/12 16/2/14

Business Function: Delivery:
0 0.33/0.07 0/0
0/0/0 2/0/2
14/1/13 3/1/2

Contract and Account:
0 0.25/0.07 0/0
0/0/0 6/0/6
14/1/13 4/1/3

Inter-Business Relationship:
0 0.2/0.07 0/0
0/0/0 6/0/6
14/1/13 5/1/4

Contract And Organisation Management:
0 0.2/0.07 0/0
0/0/0 6/0/6
14/1/13 5/1/4

Application Of Law:
0 0.2/0.07 0/0
0/0/0 4/0/4
14/1/13 5/1/4

Restaurant: Employee Management:
0 0.08/0.07 0/0
0/0/0 14/0/14
14/1/13 12/1/11



M

Example Use of Simulator

This example is given as a supportive document to the illustration given in
Section 9.5.

SICStus 3 #5: Tue Aug 26 10:14:51 BST 1997
{compiling /hame/jessicac/kbst-bm/simulator/top.pl...}
{consulting /hame/jessicac/kbst-bm/simulator/library.pl...}
{/hame/jessicac/kbst-bm/simulator/library.pl consulted,
10 msec 3456 bytes}
{consulting /hame/jessicac/kbst-bm/simulator/store.pl...}
{/hame/jessicac/kbst-bm/simulator/store.pl consulted,
0 msec 400 bytes}
{consulting /hame/jessicac/kbst-bm/simulator/conflict.pl...}
{/hame/jessicac/kbst-bm/simulator/conflict.pl consulted,
20 msec 10336 bytes}
{consulting /hame/jessicac/kbst-bm/simulator/cond.pl...}
{/hame/jessicac/kbst-bm/simulator/cond.pl consulted,
30 msec 9936 bytes}
{consulting /hame/jessicac/kbst-bm/simulator/exe.pl...}
{/hame/jessicac/kbst-bm/simulator/exe.pl consulted,
20 msec 8816 bytes}
{consulting /hame/jessicac/kbst-bm/simulator/model.pl...}
{/hame/jessicac/kbst-bm/simulator/model.pl consulted,
10 msec 3696 bytes}
{consulting /hame/jessicac/kbst-bm/simulator/derive.pl...}
{/hame/jessicac/kbst-bm/simulator/derive.pl consulted,
20 msec 12848 bytes}
{consulting /hame/jessicac/kbst-bm/simulator/data/cond.db...}
{/hame/jessicac/kbst-bm/simulator/data/cond.db consulted,
0 msec 3408 bytes}
{consulting /hame/jessicac/kbst-bm/simulator/data/dyn.db...}
{/hame/jessicac/kbst-bm/simulator/data/dyn.db consulted,
0 msec 1344 bytes}
{consulting /hame/jessicac/kbst-bm/simulator/data/entity.db...}
{/hame/jessicac/kbst-bm/simulator/data/entity.db consulted,
0 msec 2528 bytes}



306 AUTOMATING BUSINESS MODELLING

{consulting /hame/jessicac/kbst-bm/simulator/data/process.db...}
{/hame/jessicac/kbst-bm/simulator/data/process.db consulted,
0 msec 6224 bytes}
{consulting /hame/jessicac/kbst-bm/simulator/data/trigger.db...}
{/hame/jessicac/kbst-bm/simulator/data/trigger.db consulted,
10 msec 2864 bytes}
**********************************************************
Welcome to The Business Model Simulator for BSDM
This simulator is a part of the tool KBST-BM
Please activate this program by typing top(X).
Where as X is the number of steps required for simulation.
At the end of the simulation type look to see results.
**********************************************************
{/hame/jessicac/kbst-bm/simulator/top.pl compiled,
260 msec 79824 bytes}
| ?- top(1).
>>>>> Searching for Processes
>>>>> Searching for Triggers
>>>>> Searching for Triggers
End Time: 0
Step left: 0
Would you like to add new occurrences to the system? (y./n.)
|: n.
End of simulation, Simulation stops at time: 1
****** export_data_to_archive ******
System States are saved in sim.out

yes
| ?- look.
------- report dynamic system state -------
Shown State: 0 State Time: 0. It is now time: 0

ent_occ(’Practical’, p1, []).

ent_occ(’Practical Assign To Module’, ’ES-p2’,
[(’Practical’,p2),(’Module’,’ES’)]).

ent_occ(’Practical Assign To Module’, ’ES-p1’,
[(’Module’,’ES’),(’Practical’,p1)]).

ent_occ(’Practical’, p2, []).

ent_occ(’Module’, ’ES’, []).

ent_occ(’Person’, ’John’, []).

ent_occ_att(’Practical’, p1, lifestatus, valid).

ent_occ_att(’Practical Assign To Module’, ’ES-p2’, lifestatus, valid).



Appendix M. Example Use of Simulator 307

ent_occ_att(’Practical Assign To Module’, ’ES-p1’, lifestatus, valid).

ent_occ_att(’Practical’, p2, lifestatus, valid).

ent_occ_att(’Module’, ’ES’, lifestatus, valid).

ent_occ_att(’Person’, ’John’, lifestatus, valid).

occ_begin(’Person’, ’John’, 1).

occ_end(’Person’, ’John’, 2).

current_state(0).

state(0, time(0)).

ent_fun(’Acknowledge Handed-in Practical’, ’111’,
originate_focal_entity,
dyn(ent_occ(’Practical Tun In By Person’,’John-ES-P1’,
[(’Practical Assign To Module’,’ES-p1’),(’Person’,’John’)]))).

ent_fun(’Acknowledge Handed-in Practical’, ’111’,
refer_normal_entity,
dyn(ent_occ(’Module’,’ES’,[])).

ent_fun(’Acknowledge Handed-in Practical’, ’111’,
refer_normal_entity,
dyn(ent_occ(’Person’,’John’,]))).

ent_fun(’Acknowledge Handed-in Practical’, ’111’,
refer_normal_entity,
dyn(ent_occ(’Practical Assign To Module’,’ES-p1’,[(’Module’,’ES’),
(’Practical’,p1)]))).

state_id(0).
agenda(process(’Acknowledge Handed-in Practical’,’111’,
[originate_focal_entity(’Practical Turn In B Person’,’John-ES-P1’),
add_att(’Practical Turn In By Person’,’John-ES-P1’, lifestatus,
’handed-in’), refer_normal_entity(’Person’,’John’),
refer_normal_entity(’Module’,’ES’),refer_normal_entity(
’Practical Assign To Module’,’ES-p1’)],(0,2))).

change((0,0), (’Acknowledge Handed-in Practical’,’111’),
[dyn(trigger(0,’Acknowledge Handed-in Practical’,’111’,
[originate_focal_entity(’Practical Turn In By Person’,’John-ES-P1’),
add_att(’Practical urn In By Person’, ’John-ES-P1’, lifestatus,
’handed-in’),
refer_normal_entity(’Person’,’John’), refer_normal_entity(’Module’,
’ES’),
refer_normal_entity(’Practical Assign To Module’,’ES-p1’)]))],



308 AUTOMATING BUSINESS MODELLING

[dyn(agenda(process(’Acknowledge Handed-in Practical’,’111’,
[originate_focal_entity(’Practical Turn In By Person’,’John-ES-P1’),
add_att(’Practical Turn In By Person’,’John-ES-P1’,lifestatus,
’handed-in’),refer_normal_entity(’Person’,’John’),
refer_normal_entity(’Module’,’ES’),refer_normal_entity(
’Practical Assign To Module’,’ES-p1’)],(0,2))))]).

current_time(1).

skip_process(no).

yes
| ?- top(2).
>>>>> Searching for Processes
>>>>> Searching for Triggers
End Time: 1
Step left: 1
Would you like to add new occurrences to the system? (y./n.)
|: n.
>>>>> Searching for Processes
********************************************
All processes in the Agenda are given below:

Acknowledge Handed-in Practical,111

********************************************
* Searching for contradictory processes...
No contradictory processes found.

**********************************
Would you like to execute process:

Acknowledge Handed-in Practical
Trigger ID: 111
**********************************
Execution? (y/n) y.

**********************************
Process Execution Phase

**********************************
* Checking the triggers....
checking triggers succeed.

* Checking then preconditions....
checking precond succeed.

* Checking the referred attributes...
checking referred attributes succeed.

* Checking the adding attributes...
checking adding attributes succeed.

* Checking for the changing attributes...
checking changing attributes succeed.



Appendix M. Example Use of Simulator 309

* Executing the process ...
Process execution succeed.

* Verifying the postconditions...
Verifying postconditions succeed.

>>>>> Searching for Processes
>>>>> Searching for Triggers
End Time: 2
Step left: 0
Would you like to add new occurrences to the system? (y./n.)
|: n.
End of simulation, Simulation stops at time: 3
****** export_data_to_archive ******
System States are saved in sim.out

yes
| ?- look.
------- report dynamic system state -------
Shown State: 1 State Time: 2. It is now time: 2

ent_occ(’Practical’, p1, []).

ent_occ(’Practical Assign To Module’, ’ES-p2’,
[(’Practical’,p2),(’Module’,’ES’)]).

ent_occ(’Practical Assign To Module’, ’ES-p1’,
[(’Module’,’ES’),(’Practical’,p1)]).

ent_occ(’Practical’, p2, []).

ent_occ(’Module’, ’ES’, []).

ent_occ(’Person’, ’John’, []).

ent_occ_att(’Practical’, p1, lifestatus, valid).

ent_occ_att(’Practical Assign To Module’, ’ES-p2’, lifestatus, valid).

ent_occ_att(’Practical Assign To Module’, ’ES-p1’, lifestatus, valid).

ent_occ_att(’Practical’, p2, lifestatus, valid).

ent_occ_att(’Module’, ’ES’, lifestatus, valid).

ent_occ_att(’Person’, ’John’, lifestatus, valid).

occ_begin(’Person’, ’John’, 1).

occ_end(’Person’, ’John’, 2).

state(0, time(0)).



310 AUTOMATING BUSINESS MODELLING

change((0,0), (’Acknowledge Handed-in Practical’,’111’),
[dyn(trigger(0,’Acknowledge Handed-in Practical’,’111’,
[originate_focal_entity(’Practical Turn In By Person’,’John-ES-P1’),
add_att(’Practical urn In By Person’,’John-ES-P1’,lifestatus,
’handed-in’), refer_normal_entity(’Person’,’John’),
refer_normal_entity(’Module’,’ES’), refer_normal_entity(’Practical
Assign To Module’,’ES-p1’)]))], [dyn(agenda(process(
’Acknowledge Handed-in Practical’,’111’,
[originate_focal_entity(’Practical Turn In By Person’,
’John-ES-P1’), add_att(’Practical Turn In By Person’,
’John-ES-P1’,lifestatus,’handed-in’), refer_normal_entity(
’Person’,’John’),refer_normal_entity(’Module’,’ES’),
refer_normal_entity(’Practical Assign To Module’,’ES-p1’)],(0,2))))]).

ent_occ(’Practical Turn In By Person’, ’John-ES-P1’,
[(’Practical Assign To Module’,’ES-p1’),(’Person’,’John’)]).

occ_begin(’Practical Turn In By Person’, ’John-ES-P1’, 2).

change((0,1), (’Acknowledge Handed-in Practical’,’111’), [],
[dyn(ent_occ(’Practical Turn In By Person’,’John-ES-P1’,
[(’Practical Assign To Module’,’ES-p1’),(’Person’,’John’)])),
dyn(occ_begin(’Practical Turn In By Person’,’John-ES-P1’,2))]).

ent_occ_att(’Practical Turn In By Person’, ’John-ES-P1’,
lifestatus, ’handed-in’).

change((0,1), (’Acknowledge Handed-in Practical’,’111’), [],
[dyn(ent_occ_att(’Practical Turn In By Person’,’John-ES-P1’,
lifestatus,’handed-in’))]).

occ_originate_focal(’Acknowledge Handed-in Practical’, ’111’,
’Practical Turn In By Person’, ’John-S-P1’).
change((0,1), (’Acknowledge Handed-in Practical’,’111’), [],
[dyn(occ_originate_focal(’Acknowledge anded-in Practical’,’111’,
’Practical Turn In By Person’,’John-ES-P1’))]).

occ_refer_normal(’Acknowledge Handed-in Practical’, ’111’,
’Module’, ’ES’).

change((0,1), (’Acknowledge Handed-in Practical’,’111’), [],
[dyn(occ_refer_normal(’Acknowledge Handed-in Practical’,’111’,
’Module’,’ES’))]).

occ_refer_normal(’Acknowledge Handed-in Practical’, ’111’,
’Person’, ’John’).

change((0,1), (’Acknowledge Handed-in Practical’,’111’), [],
[dyn(occ_refer_normal(’Acknowledge Handed-in Practical’,’111’,



Appendix M. Example Use of Simulator 311

’Person’,’John’))]).

occ_refer_normal(’Acknowledge Handed-in Practical’, ’111’,
’Practical Assign To Module’, ’ES-p1’).

change((0,1), (’Acknowledge Handed-in Practical’,’111’), [],
[dyn(occ_refer_normal(’Acknowledge Handed-in Practical’,’111’,
’Practical Assign To Module’,’ES-p1’))]).

pro_occ(’Acknowledge Handed-in Practical’, ’111’).

occ_begin(’Acknowledge Handed-in Practical’, ’111’, 0).

occ_end(’Acknowledge Handed-in Practical’, ’111’, 2).

change((0,1), (’Acknowledge Handed-in Practical’,’111’),
[dyn(agenda(process(’Acknowledge Handed-in Practical’,’111’,
[originate_focal_entity(’Practical Turn In By Person’,’John-ES-P1’),
add_att(’Practical Turn In By Person’,’John-ES-P1’,lifestatus,
’handed-in’),refer_normal_entity(’Person’,’John’),
refer_normal_entity(’Module’,’ES’),refer_normal_entity(
’Practical Assign To Module’,’ES-p1’)],(0,2)))),
[dyn(pro_occ(’Acknowledge Handed-in Practical’,’111’)),
dyn(occ_begin(’Acknowledge Handed-in Practical’,’111’,0)),
dyn(occ_end(’Acknowledge Handed-in Practical’,’111’,2))]).

change((0,1), (’Acknowledge Handed-in Practical’,’111’),
[dyn(ent_fun(’Acknowledge Handed-in Practical’,’111’,
originate_focal_entity,dyn(ent_occ(’Practical Turn In By Person’,
’John-ES-P1’,[(’Practical Assign To Module’,’ES-p1’),(’Person’,
’John’)]))))], []).

change((0,1), (’Acknowledge Handed-in Practical’,’111’),
[dyn(ent_fun(’Acknowledge Handed-in Practical’,’111’,
refer_normal_entity,dyn(ent_occ(’Module’,’ES’,[]))))], []).

change((0,1), (’Acknowledge Handed-in Practical’,’111’),
[dyn(ent_fun(’Acknowledge Handed-in Practical’,’111’,
refer_normal_entity,dyn(ent_occ(’Person’,’John’,[]))))], []).

change((0,1), (’Acknowledge Handed-in Practical’,’111’),
[dyn(ent_fun(’Acknowledge Handed-in Practical’,’111’,
refer_normal_entity,dyn(ent_occ(’Practical Assign To Module’,
’ES-p1’,[(’Module’,’ES’),(’Practical’,p1)]))))], []).

current_state(1).

state_id(1).

state(1, time(2)).



312 AUTOMATING BUSINESS MODELLING

current_time(3).
skip_process(no).
yes
| ?-



References

1. AKT Consortium. Advanced Knowledge Technologies (AKT) Interdisciplinary
Research Collaborations (IRC) EPSRC project, 2004. http://www.aktors.org.

2. James F. Allen, Henry A. Kautz, Richard N. Pelavin, and Josh D. Tenenberg.
Reasoning About Plans. Morgan Kaufmann, San Mateo, California, 1991.

3. Klaus-Dieter Althoff, Eric Auriol, Ralph Barletta, and Michel Manago. A Re-
view of Industrial Case-Based Reasoning Tools. An AI Perspective Report. AI
Intelligence, P.O.Box 95, Oxford OX2 7XL, 1995.

4. Tony Andrews, Francisco Curbera, Hitesh Dholakia, Yaron Goland, Jo-
hannes Klein, Frank Leymann, Kevin Liu, Dieter Roller, Doug Smith, Satish
Thatte, Ivana Trickovic, and Sanjiva Weerawarana. Business Process Execu-
tion Language for Web Services (BPEL). ed. Satish Thatte. http://www-
106.ibm.com/developerworks/library/ws-bpel/.

5. Assaf Arkin. Business Process Modelling Language (BPML), 2002.
http://www.bpmi.org/.

6. Artificial Intelligence Application Institute. http://www.aiai.ed. ac.uk.
7. Artificial Intelligence Application Institute. Procedural Builder, Enterprise

Project. http:// www.aiai.ed.ac.uk/project/enterprise.
8. J. Barber, S. Bhatta, A. Goel, M. Jacobsen, M. Pearce, L. Penberthy,

M. Shankar, and E. Stroulia. Integrating Case-Based Reasoning and Multimedia
Technologies for Interface Design Support. In Artificial Intelligence in Design,
ed. J.G. Boston, Kluwer Academic, 1992.

9. Alfs Berztiss. Software Methods for Business Reengineering. Springer-Verlag
New York, 1996.

10. Grady Booch. Object Oriented Design with Applications. Benjamin/Cummings,
1991.

11. Grady Booch, James Rumbaugh, and Ivar Jacobson. The Unified Modelling
Language User Guide. Object Technology. Addison-Wesley, February 1999.

12. Jonathan P. Bowen. Seven more myths of formal methods. IEEE Software, 7(5),
September 1990. pp. 11-19.

13. Jonathan P. Bowen. Ten commandments of formal methods. IEEE Computer,
28(4), April 1995. pp. 56-63.

14. BPR Online Learning Center: the Reengineering Directory. ProSci, January
1999. http://www.prosci.com/.

15. Ian Bratko. Prolog Programming for Artificial Intelligence (2nd edition). Addi-
son Wesley, 1986. ISBN 0-201-41606-9.



314 References

16. Alan Bundy. The Computer Modelling of Mathematical Reasoning. Academic
Press, 1983. ISBN 0-12-141352-0.

17. CACI Products Company. Simprocess. http://www.simprocess.com.
18. Yun-Heh Chen-Burger. A knowledge based multi-perspective framework for

enterprise modelling. Technical report, Informatics, University of Edinburgh.,
February 2001.

19. Yun-Heh Chen-Burger. Knowledge sharing and inconsistency checking on multi-
ple enterprise models. International Joint Conference on Artificial Intelligence,
Knowledge Management and Organizational Memories Workshop, IJCAI 2001,
Seattle, Washington, August 2001. Also available as Informatics Division Tech-
nical Report, University of Edinburgh.

20. Yun-Heh Chen-Burger. Sharing and Checking Organisation Knowledge.
Knowledge Management and Organizational Memories. ed. Rose Dieng-
Kuntz, Nada Matta. Kluwer Academic, Boston, ISBN 0-7923-7659-5, 2002.
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/cadet/ftp/docs/CADET.html.

21. Yun-Heh Chen-Burger. AKT Research Map, Technology Showcase. Advanced
Knowledge Technologies (AKT) Project, 2003. http://www.aiai.ed.ac.uk/
jessicac/project/3-akt-res-map-tech-profile-sub/details.html.

22. Yun-Heh Chen-Burger, Dave Robertson, and Jussi Stader. A case-based rea-
soning framework for enterprise model building, sharing and reusing. Proceed-
ings of ECAI Workshop: Knowledge Management and Organizational Memories,
Berlin, August 2000.

23. Yun-Heh Chen-Burger, David Robertson, John Fraser, and Christine Lissoni.
KBST: A support tool for business modelling in BSDM. Proceedings of Expert
Systems 95: Applications and Innovations in Expert Systems III, Cambridge,
UK, December 1995.

24. Yun-Heh Chen-Burger, David Robertson, and Jussi Stader. Formal support
for an informal business modelling method. International Journal of Software
Engineering and Knowledge Engineering, February 2000.

25. Yun-Heh Chen-Burger and Jussi Stader. Formal Support for Adaptive Workflow
Systems in a Distributed Environment. ed. Layna Fischer. Future Strategies,
USA. Published in association with Workflow Management Coalition., April
2003.

26. Yun-Heh (Jessica) Chen-Burger. KBST: a support tool for business modelling in
BSDM. MSc thesis, Artificial Intelligence Department, University of Edinburgh,
September 1994.

27. Alan M. Davis. Software Requirements: Objects, Functions and States. Prentice-
Hall, 1993. ISBN 0-13-805763-x.

28. Delphi Group. BPM 2002: Market Milestone Report, February 2002.
29. Department of Defense. Framework for Managing Process Improvement, De-

cember 1994. http://www.dtic.mil/c3i/bprcd/3003.html.
30. Department of Defense. ABC Guidebook, June 1995. http://www.dtic.mil/

c3i/bprcd/.
31. J.E. Dobson, A.J.C. Blyth, J. Chudge, and M.R. Strens. The ORDIT Ap-

proach to Organisational Requirements. Requirements Engineering: Social and
Technical Issues. ed. Marina Jirotka and Joseph A. Goguen. Academic Press
Professional, San Diego, CA, 1994.

32. John Dobson and Ros Strens. Organizational requirements definition for infor-
mation technology systems. Technical report, Department of Computing Sci-
ence, University of Newcastle upon Tyne, NE1 7RU, 1992.



References 315

33. E. Domeshek, J. Kolodner, and C. Zimring. The design of a tool kit for case-
based design aids. Proceedings of the Third International Conference on Artifi-
cial Intelligence in Design, 1994.

34. Hans-Erik Eriksson and Magnus Penker. Business Modeling with UML: Business
Patterns at Work. John Wiley and Sons, 2000.

35. Excel Software. Win A&D and Mac A&D, 2001. http://www.excelsoftware
.com.

36. B. Faltings. Case Reuse By Model-Based Interpretation. Issues and Applica-
tions of Case-Based Reasoning in Design. ed. M.L. Maher and P. Pu. Lawrence
Erlbaum Associates, Hillsdale, NJ, 1997. pp. 30-60.

37. International Organization for Standardization. Human centred design processes
for interactive systems. ISO DIS 13407. http://www.iso.ch/.

38. M.S. Fox and M. Gruninger. Ontologies for enterprise integration. Proceedings
of the 2nd Conference on Cooperative Information Systems, Toronto, Ontario,
1994. Also available at http://www.eil.utoronto.ca/enterprise-modelling/papers
/index.html.

39. M.S. Fox and M. Gruninger. Enterprise modelling. AI Magazine, AAAI press,
Fall, 1998. pp. 109-121.

40. John Fraser and Ann Macintosh. Enterprise state of the art sur-
vey, the enterprise consortium. Technical report, Artificial Intelligence
Applications Institute (AIAI), University of Edinburgh, September 1994.
http://www.aiai.ed.ac.uk/project/enterprise/papers/soa svy/.

41. Michael Friedman and Jeffrey Voas. Software Assessment: Reliability, Safety,
Testability. John Wiley and Sons, 1995.

42. Norbert E. Fuchs. Specifications are (preferable) executable. Software Engineer-
ing Journal, September 1992.

43. Norbert. E. Fuchs and David Robertson. Declarative specifications. The Knowl-
edge Engineering Review, 11(4), 1996. pp. 317-331.

44. M.R. Genesereth and N.J. Nilsson. Logical Foundations of Artificial Intelligence.
Morgan Kaufmann, 1987.

45. Michael Hammer and James Champy. Reengineering the Corporation: A Mani-
festo for Business Revolution. Harper Business, May 1995.

46. J.H. Harrington. Business Process Improvement: The Breakthrough Strategy
for Total Quality, Productivity, and Competitiveness. McGraw-Hill, New York,
1991.

47. High Performance Systems. Ithink. http://www.hps-inc.com.
48. T.R. Hinrichs. Towards an architecture for open world problem solving. In

Proceedings of CBR workshop. Morgan Kaufmann, San Francisco, 1988. pp.
182-189.

49. David Hollingsworth. Workflow Management Coalition, The Workflow Refer-
ence Model. Workflow Management Coalition, Avenue Marcel Thirty 204, 1200
Brussels, Belgium, 1994.

50. IBM Education Services, Sudbury, UK. Business System Development Method:
Business Mapping, July 1994. IS03 Course Notes.

51. IBM, UK. Business System Development Method: Business Mapping Part 1:
Entities, 2nd edition, May 1992.

52. IBM, UK. Business System Development Method, Business Mapping Part 2:
Processes, 2nd edition, May 1992.

53. IBM, UK. Business System Development Method, Introducing BSDM, 2nd edi-
tion, May 1992.



316 References

54. IDS Scheer International. Aris Toolset. http://ids-scheer.com/english/index.
php.

55. Ivar Jacobson, Maria Ericsson, and Agneta Jacobson. The Object Advantage –
Business Process Reengineering with Object Technology. Addison Wesley, 1995.

56. Joint Force Air Component Commander, Defense Advanced Research
Projects Agency Program. Air Operation Enterprise Modelling Project.
http://www.darpa.mil /iso/jfacc/index.htm, 1999-2001.

57. Martin King. Knowledge reuse in business domains experience with IBM BSDM.
Technical report, Artificial Intelligence Application Institute, 1995.

58. K. Knight. Unification: a multidisciplinary survey. ACM Computing Surveys,
21(1):93–124, 1989.

59. Knowledge Based Systems. http://www.kbsi.com/.
60. Knowledge Based Systems. Business Process Modelling Tool: AI0 WIN and

ProSim. http://www.kbsi.com/software/ai0win.htm, http://www.kbsi.com/
software/prosim.htm.

61. Janet Kolodner. Case-Based Reasoning. Morgan Kaufmann, SanMateo, CA,
1993.

62. Jintae Lee, Michael Gruninger, Yan Jin, Thomas Malone, Austin Tate, Gregg
Yost, and other members of the PIF working group. The PIF interchange for-
mat and framework. The Knowledge Engineering Review, 13(1), March 1998.
http://ccs.mit.edu/pif/, http://www.aiai.ed.ac.uk/project/pif/.

63. E.J. Lemmon. Beginning Logic. Van Nostrand Reinhold, 1965.
64. Paul Levine, Jim Clark, Cory Casanave, Kurt Kanaskie, Betty Harvey,

Jamie Clark, Neal Smith, John Yunker, and Karsten Riemer. ebXML
Business Process Specification Schema. UN/CEFACT and OASIS, 2001.
http://www.ebxml.org/specs/ebBPSS.pdf.

65. Frank Leymann and Dieter Roller. Business process management with flowmark.
IEEE, 1994.

66. Logic Works. BPwin: Business Process Modelling Tool. http://www.shi.com.
67. Ann Macintosh, Ian Filby, and Austin Tate. Knowledge asset road maps. Pro-

ceedings of the 2nd International Conference on Practical Aspects of Knowledge
Management, Basel Switzerland, October 1998.

68. M.L. Maher, B. Balachandran, and D.M. Zhang. Case-Based Reasoning in De-
sign. Lawrence Erlbaum, 1995.

69. M.L. Maher and A. Gomez de Silva Garza. Developing case-based reasoning
for structural design. IEEE Expert, Intelligent Systems and Their Applications,
11(3), June 1996.

70. Thomas W. Malone, John Quimby, Kevin Crowston, Abraham Bernstein, Jintae
Lee, George A. Herman, Brian T. Pentland, Mark Klein, Chrysanthos Dellaro-
cas, Charles S. Osborn, George M. Wyner, and Elisa O’Donnell. Tools for
inventing organizations: Toward a handbook of organizational processes. The
MIT Process Handbook, 2003. pp. 13-37, http://ccs.mit.edu/ph/.

71. David Martin, Mark Burstein, Grit Denker, Daniel Elenius, Jerry Hobbs,
Lalana Kagal, Ora Lassila, Drew McDermott, Deborah McGuinness, Sheila
McIlraith, Massimo Paolucci, Bijan Parsia, Terry Payne, Marta Sabou, Evren
Sirin, Monika Solanki, Naveen Srinivasan, and Katia Sycara. OWL-based
Web Service Ontology (OWL-S) , 2004. http://www.daml.org/services/owl-s/,
http://www.daml.org/services/owl-s/1.1B/.

72. Richard Mayer, Christopher Menzel, Michael Painter, Paula Witte,
Thomas Blinn, and Benjamin Perakath. Information Integration for
Concurrent Engineering (IICE) IDEF3 Process Description Capture



References 317

Method Report. Knowledge Based Systems (KBSI), September 1995.
http://www.idef.com/overviews/idef3.htm.

73. Richard J. Mayer, Michael K. Painter, and Paula S. deWitte. IDEF family
of methods for concurrent engineering and business re-engineering applications.
Technical report, Knowledge Based Systems, 1992. http://www.idef.com.

74. Chris S. Mellish. Computer Interpretation of Natural Language Descriptions.
Ellis Horwood, 1985.

75. Peiwei Mi and Walt Scacchi. A meta-model for formulating knowledge-based
models of software development. Decision Support Systems, 1996.

76. Microsoft. Visio, 2002. http://www.microsoft.com/office/visio/.
77. Glyn V. Morrill. Type Logic Grammar: Categorical Logic of Signs. Kluwer

Academic, 1994.
78. S. Narashiman, K. Sycara, and D. Navin-Chandra. Representation and Synthesis

of Non-Monotonic Mechanical Devices. Issues and Applications of Case-Based
Reasoning in Design. ed. M.L. Maher and P. Pu. Lawrence Erlbaum Associates,
Hillsdale, NJ, 1997. pp. 187-220.

79. NASA Johnson Space Center (JSC). C Language Integrated Production System.
Clips 6.0 Reference Manual. Software Technology Branch, June 1993.

80. National Institute of Standards and Technology. Integration Definition for Func-
tion Modelling (IDEF0), December 1993.

81. Oracle Workflow. http://www.oracle.com/appsnet/products/procurement/ col-
lateral/ds workflow.html.

82. Martyn A. Ould. Business Processes: Modelling and Analysis for Re-engineering
and Improvement. John Wiley and Sons, 1995.

83. William Perry. Effective Methods for Software Testing. John Wiley and Sons,
1995.

84. Platinum Technology. Paradigm plus.
85. David Profozich. Managing Change with Business Process Simulation. Prentice

Hall, 1998.
86. Rational Software Corporation. http://www.rational.com/index.jtmpl, 1999.
87. W. Reisig. Petri nets, an introduction. EATCS, Monographs on Theoretical

Computer Science, 1985.
88. Christopher K. Riesbeck and Roger C. Schank. Inside Case-Based Reasoning.

Lawrence Erlbaum, 1989.
89. Peter Rittgen. Paving the road to business process automation. European Con-

ference on Information Systems (ECIS) 2000, Vienna, Austria, July 2000. pp.
313-319.

90. Dave Robertson and Jaume Agusti. Software Blueprints: Lightweight Uses of
Logic in Conceptual Modelling. Addison Wesley, May 1999.

91. J.A. Robinson. A machine oriented logic based on the resolution principle. J
Assoc. Comput. Mach., 12:23–41, 1965.

92. W. Royce. Managing the development of large software systems. IEEE
WESCON, August 1970. pp. 1-9. Reprinted in Ninth IEEE International Confer-
ence on Software Engineering, Washington DC, Computer Society Press, 1987.

93. James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy, and
William Lorensen. Object-Oriented Modelling and Design. Prentice Hall, 1991.

94. James Rumbaugh, Ivar Jacobson, and Grady Booch. The Unified Modeling
Language Reference Manual. Addison Wesley Longman, 1999.

95. Geary A. Rummler and Alan P. Brache. Improving Performance: How to Man-
age the White Space on the Organizational Chart. Jossey-Bass, May 1995.



318 References

96. Hossein Saiedian. An invitation to formal methods. IEEE Computer, April
1996.

97. SAP. SAP R/3 System, 2001. http://www.sap.com.
98. Craig Schlenoff, Amy Knutilla, and Steven Ray. Proceedings of the Process

Specification Language (PSL) Roundtable. NISTIR 6081, National Institute of
Standards and Technology, Gaithersburg, MD, 1997. http://www.nist.gov/psl/.

99. Guus Schreiber, Hans Akkermans, Anjo Anjewierden, Robert de Hoog, Nigel
Shadbolt, Walter Van de Velde, and Bob Wielinga. Knowledge Engineering
and Management: The CommonKADS Methodology. MIT Press, 2000. ISBN
0262193000.

100. R. E. Shannon. System Simulation. Prentice-Hall, Englewood Cliffs, NJ, 1975.
101. Julian Smart. User Manual for HARDY. Artificial Intelligence Applications

Institute, University of Edinburgh, August 1994. http://www.aiai.ed.ac.uk/
project/hardy/.

102. John F. Sowa. Knowledge Representation: Logical, Philosophical and Computa-
tional Foundations. Brooks/Cole, Thomson Learning, 2000.

103. Kathy Spurr and Paul Layzell, editors. Case: Current Practice, Future Prospects.
John Wiley and Son, 1992.

104. Staffware. http://www.staffware.com/.
105. L. Sterling and E. Shapiro. The Art of Prolog. MIT Press, 1986. ISBN 0-262-

69105-1.
106. E. Stroulia and A.K. Goel. Generic teleological mechanisms and their use in case

adaptation. Proceedings of the Fourteenth Annual Conference of the Cognitive
Science, 1992. Erlbaum, Northvale, NJ.

107. K. Sycara, R. Guttal, J. Koning, S. Narasimhan, and D. Navinchandra. Cadet:
A case-based synthesis tool for engineering design. International Journal for Ex-
pert Systems, 4(2), 1992. pp. 157-188, http://www.cs.cmu.edu/afs/cs.cmu.edu
/project/cadet/ftp/docs/CADET.html.

108. Ensemble Systems. Rose Business Process Link (RBPL), 2000. Business
Modelling Support Tool Integrated with Rational Rose Tool Set, http://www.
ensemble-systems.com.

109. Austin Tate. Generating project networks. Proceedings of the 5th International
Joint Conference on Artificial Intelligence, 2, August 1977. pp. 888-893.

110. Technology Economics International. BPSimulator. http://www.reengineering.
com/articles/jun96/techwtch.html.

111. U.S. Department of Defense. Military Standard: Defense System Software De-
velopment, June 1985.

112. U.S. Department of Defense. Leading Change in a New Era, May 1997.
113. Mike Uschold, Martin King, Stuart Moralee, and Yannis Zorgios. The Enterprise

Ontology. Artificial Intelligence Application Institute, University of Edinburgh,
1995. Also available at http://www.aiai.ed.ac.uk/ entprise/enterprise/ontology.
html.

114. Mike Uschold, Martin King, Stuart Moralee, and Yannis Zorgios. Enterprise on-
tology. The Knowledge Engineering Review: Special Issue on Putting Ontologies
to Use, 13, 1998. Also available as technical report from AIAI, University of
Edinburgh (AIAI-TR-195).

115. Jeffrey M. Voas and Gary McGraw. Software Fault Injection Inoculating Pro-
grams Against Errors. John Wiley and Sons, 1998.

116. Roel J. Wieringa. Requirements Engineering – Frameworks for Understanding.
John Wiley and Sons, 1996.



References 319

117. Workflow Management Coalition. XML Process Definition Language (XPDL),
2002. http://www.wfmc.org/standards/docs.htm.

118. Eric S.K. Yu, John Mylopoulos, and Yves Lesperance. Modelling the organiza-
tion: New concepts and tools for re-engineering. IEEE Expert: AI Models for
Business Process Reengineering, August 1996.

119. Pamela Zave and Michael Jackson. Four dark corners of requirements engineer.
ACM Transactions on Software Engineering and Methodology, 6(1), January
1997. pp. 1-30.



Index

Abstract Class, 79
Alternative Process, 16

BSDM, 1, 3
Business Model, 1, 2, 172

DAI Business Model, 172, 249
Example Business Model, 233, 241
Generic Business Model, 229
Industrial Business Model, 235

Business Model Simulator, 305
Business Process Improvement (BPI), 1
Business Process Modelling (BPM), 11
Business Process Reengineering (BPR),

1
Business System Development Method

(BSDM), 13, 29
Business System Modelling (BSM), 12

Case-Based Reasoning (CBR), 143, 145,
156

Class
Entity, 82
Instance, 76
Occurrence, 76
Process, 96

Class Specialisation, 76
CLIPS, 171
Completeness, 190
Concrete Class, 79
Critique, 89

DefBM, 75, 77, 253
Discriminating Criteria, 160
Dynamic Business Model, 120

Enterprise Model (EM), 1

Entity
Entity Occurrence, 119
Class, 82
Entity Function, 96
Entity Occurrence, 120
Subclass, 18

Entity Conceptual Hierarchy (ECH), 88,
153, 155

Entity Family, 88
Entity Model, 75, 81, 176
Evaluation, 285, 289

First Order Predicate Logic (FOPL)
Clausal Form, 58

First Order Predicate Logic (FOPL) , 46
Formal Method

Bridging Gaps, 32
Executable Representation, 32

Functor, 47

Generic Model Advisor (GMA), 143,
144, 146, 164, 229, 293

Generic Model Library (GML), 150, 229

Heuristic Similarity Assessment, 160

IDEF, 1, 11, 16, 117
Inheritable Modelling Rules, 80
Inheritance Class Hierarchy (ICH), 77

Knowledge Based Support Tool for
Business Models (KBST-BM), 171,
172

Knowledge Representation, 77
Knowledge Sharing, 143, 190



322 Index

Life Cycle Diagram, 5, 13, 84, 99, 126,
172, 177, 203

Lightweight Formal Approach, 33, 75,
221

Lightweight Formal Logical Methods, 33
Logical Connectives, 38, 47

Precedence, 40, 53

Map
Local, 81
Master, 81

Model Rules and Guidelines, 86
Entity Model, 255
Process Model, 265

Modelling Life Cycle, 176
Modelling Primitives, 75

Natural Deduction Proofs, 52
Normal Class, 79

Ontology, 1
ORDIT, 1, 12, 26
Organisation Context Modelling (OCM),

12

Pattern-Matching Algorithm, 156, 198
Plan-Build-Test-Refine, 15, 30, 88, 93,

115, 176, 202, 223
Procedural Model, 117, 181

Action, 119, 125
Effect, 125
Execution Dependency, 127
Originate Focal, 118
Postcondition, 119
Precondition, 119
Temporal Relation, 125
Trigger, 119

Process
Process Occurrence, 119
Entity Function, 96
Process Entity Matrix, 96
Process Instance, 96
Process Occurrence, 96

Process Conflict Detector, 137
Process Decomposition, 16
Process Dependency and Partial

Execution Order Diagram, 132
Process Execution Sequence Construc-

tor, 132
Process Interchange Format (PIF), 18,

77
Process Model, 179

Execution Dependency, 127
Originate Focal, 118

Process Specialization, 17
Prolog, 65
Proof Rule, 52

RAD, 1, 12
Resolution, 62

Rule of Inference, 57
Unification, 51

Reuse, 143, 176

Sequent, 53
Sequent Calculus, 53

Similarity Assessment, 158
Software Engineering, 23
Subclass, 76
Subtype, 76

Theorem Proving, 68
Truth Table, 43
Truth-Functional Connective, 38

Unification, 51
User Requirements, 187
User-Defined Rules, 279

Verification and Validation, 25, 29, 88,
176

Analysis, 135
Dynamic Behaviour, 132

View, 81, 144, 172

Workflow Management, 174




