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Preface of Surveys in Differential Algebraic
Equations III

We are pleased to present the third volume of survey articles in various fields of
differential-algebraic equations (DAEs), and we stress that a fourth volume will
appear within the series “Differential-Algebraic Equations Forum”.

In this volume, we again extend the list of survey articles in the sense that they
are of theoretical interest and equally relevant to applications.

The chapter “The Flexibility of DAE Formulations” shows that DAEs are not
only the outcome of modeling; they may further lead to more elegant formulations
in control and observer design problems, their numerical solution, and simulation. In
the chapter “Reachability Analysis and Deterministic Global Optimization of DAE
Models”, an overview on (optimal) control of parameterized DAEs is given. The
chapter “Numerical Linear Algebra Methods for Differential-Algebraic Equations”
is about numerical treatment of controller design and optimal control problems for
large-scale differential-algebraic systems. The final chapter “Boundary-Value Prob-
lems for Differential-Algebraic Equations: A Survey” is a survey about boundary
value problems for DAEs. Problems of this kind occur, for instance, in optimal
control.

We hope that this issue will contribute to complete the picture of the latest
developments in DAEs. The collection of survey articles may also indicate that
DAEs are now an established field in applied mathematics.

Ilmenau, Germany Achim Ilchmann
Hamburg, Germany Timo Reis
May 2015
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The Flexibility of DAE Formulations

Stephen L. Campbell

Abstract There has been extensive research on DAEs and their applications. One
major reason given for the usefulness of DAEs is that they are the initial way that
many complex systems are most naturally modeled. But there are other ways that
DAE formulations are useful. This survey focuses on a number of problems where
the extra flexibility of a DAE formulation permits the solution of a problem that
would be hard to solve otherwise.

Keywords Delays • Differential-algebraic equation • Numerical methods •
Observer • Optimal control

MSC: 34A09, 65L80, 93B07, 49J15, 34A40

1 Introduction

There has been extensive research on differential algebraic equations (DAEs) and
their applications. Note the books [1, 22, 33, 61–63, 84, 86] and such survey papers
as [5, 24]. One major reason given for the usefulness of DAEs is that they are
the initial way that many complex systems are most naturally modeled. This is
especially true in chemical, electrical, and mechanical engineering and with models
formed by interconnecting various submodels. But there are other ways that DAE
formulations are useful. This survey focuses on a number of problems where the
extra flexibility of a DAE formulation permits the solution of a problem that would
be hard to solve otherwise. This survey takes the form of carefully chosen case
studies where the DAE formulation has been found useful. Our examples are taken
from work on control problems, their numerical solution, and simulation. Some
examples are from our work and some is from the work of others. No attempt is
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2 S.L. Campbell

made at completeness. So perhaps “essay” is a more accurate word to describe this
paper than “survey.”

We shall assume that the reader is familiar with what a DAE is. In particular,
we will assume that readers have heard of the index of a DAE. There are several
definitions of index. We take the differential index based off the derivative array
as discussed just before (2.40). See also [22, 23, 62]. However, we do not assume
that they are familiar with the different control and numerical topics we discuss.
For material that has appeared in journal articles we omit some of the proofs
and technical detail unless they are relevant to the point being made. For material
that has only appeared in conference papers, especially if the proceedings are not
immediately accessible, more details are provided. In sections with material that has
not appeared anywhere full details in establishing the statements are given.

Section 2 will give some examples from control theory and in particular observer
design. We will not discuss the design of observers for DAEs, this is done,
for example, in [24]. Rather, we will present two different examples where the
flexibility of a DAE formulation when designing observers can be exploited. In
Sect. 2.1 the use of a DAE observer allows us to get linear error dynamics which is
very useful in observer design. Section 2.2 discusses the estimation of disturbances.
Section 3 turns to the examination of optimal control problems. It turns out that the
advantages and disadvantages of a DAE formulation are highly dependent on the
type of numerical methods used. We will focus on direct transcription both because
it is widely used and because the computational theory is not always what one first
thinks it is. Section 3 starts by describing what direct transcription is. Then two
illustrations of the advantages of a DAE formulation are given in Sects. 3.1 and 3.2.
Two distinct examples are given in Sects. 3.1.1 and 3.1.2. Section 4 discusses the
optimal control of delayed systems and the advantages of DAE formulations of
them. Finally some conclusions are in Sect. 5. Enough citations are given to enable
the reader to follow up on a given comment, example, or application, but citing all
relevant work would make the bibliography as long as the text and so many relevant
citations are omitted.

2 Observer Design

Observers play a fundamental role in control theory and applications. There is an
extensive literature on observers. Observers and the system being observed can
be continuous or discrete time, deterministic or stochastic. We focus here on the
continuous time deterministic case. The basic idea is that there is a dynamical
system

F.Px; x; u;  ; t/ D 0; (2.1a)
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and an output equation

y D h.x; u;  ; t/: (2.1b)

Here x is the state, u is the control or input, y is the output or measurements.
 if present represents noise or uncertainty or faults. The particular assumptions
on  will depend on which application is being discussed, but in general it is at
least piecewise smooth. Both u and y are considered known. Unless necessary for
clarity we delete the “.t/” from functions such as x; y; u;  ; Ox; Oy; z. The goal is to get
estimates Ox of x. Later we include  in Sect. 2.2.

An observer is another dynamical system for Ox,

OF.POx; Ox; Oy; y; u; t/ D 0 (2.2a)

and an output equation

Oy D Oh.Ox; u; t/: (2.2b)

If x.0/ D Ox.0/ and  D 0, then x D Ox for all t > 0. If  D 0 and x.0/ � Ox.0/ ¤ 0,
then we want x � Ox ! 0 as t ! 1. This convergence of x � Ox can be global or local
if x.0/� Ox.0/ has to be small to begin with where small is determined by the amount
of nonlinearity. If  ¤ 0, then we either want x.0/� Ox.0/ to go to zero if  goes to
zero fast enough or for x.0/� Ox.0/ to become small if  is small.

System (2.1) is the actual physical system with variables to be estimated. All that
is known is u and y. On the other hand (2.2) exists in software or hardware and
Ox; u; Oy; y; t are all known and available.

For the linear time invariant system

Px D Ax C Bu C R (2.3a)

y D Cx C Du C S ; (2.3b)

the Luenberger observer takes the form

POx D AOx C Bu C L.y � Oy/ (2.4a)

Oy D COx C Du (2.4b)

and the error equation for the estimation error e D x � Ox is

Pe D .A � LC/e C R � LS : (2.5)

L is chosen to make A � LC asymptotically stable if possible.
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If A is n � n, then

� D

2
6664

C
CA
:::

CAn�1

3
7775

is called the observability matrix. The pair fA;Cg is observable if rank.�/ D n. If
fA;Cg is not observable, then the nullspace of �, N.�/, is an A invariant subspace
called the unobservable subspace. Eigenvalues of A restricted to N.�/ are called the
unobservable eigenvalues.

If fA;Cg is an observable pair, then L can be chosen to place the eigenvalues of
A � LC arbitrarily. fA;Cg is called detectable if any unobservable eigenvalues have
negative real part. If fA;Cg is detectable, then L can be chosen so that A � LC is
asymptotically stable and the observable eigenvalues can be placed arbitrarily.

Observers for DAEs and observers which are DAEs have been discussed
extensively in the literature. Notes [17, 24, 30, 35–40, 102] and the bibliography
of [24]. Our emphasis here is different. We focus on how using a DAE, or a higher
index DAE, or a higher dimensional DAE, can provide advantages over a more
standard observer.

2.1 Nonlinear Observers

If the dynamics of the system being observed is nonlinear, then either the observer
dynamics, or the error equation, or both are nonlinear. This makes the design
of the observer so that the error equation is asymptotically stable more difficult.
There are several approaches to trying to design the observer. One is to try to
reformulate the problem so that the error equation becomes linear. If the error
equation becomes linear, then it is much easier to stabilize the error equation by
choosing L appropriately. This is the approach of this section.

Observers are usually formulated as explicit systems of differential equations and
implemented using standard ODE solvers. In this section, we show that there can be
advantages in formulating the observer as a DAE even if the system is originally an
ODE. We first review the general idea of DAE observer design of Nikoukhah [78].
We then give two special normal forms for which DAE observer design yields an
observer with linear error dynamics. The idea to use DAE observer normal forms is
introduced on index one DAE observers and then extended to index two Hessenberg
DAEs. This allows us to enlarge the class of nonlinear systems for which linear
observer error dynamics can be achieved. This section is based on the work of Von
Wissel [96] and von Wissel et al. [97]. Note also [56].
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Consider the nonlinear systems

Px D f .x; u/ (2.6a)

y D h.x/: (2.6b)

where f and h are smooth vector fields on Rn and Rp, and the p measurements
y in (2.6b) are independent. The problem of observer design consists in finding a
nonlinear system

0 D Of . P!;!; u; y/ (2.7a)

Ox D Og.!; u; y/ (2.7b)

that generates an estimate Ox.t/ of the true value x.t/.
There are essentially three approaches that have been used in the past for

nonlinear observer design with a number of variations on each approach. The first
approach is a natural extension of linear observers and is very commonly adopted,
for example see the techniques presented in the comparative study of [100]. The
other approach to observer design is to work directly with system equations (2.6),
either formulating the estimation problem as a nonlinear algebraic system of
equations which must be solved periodically using for example Newton’s method,
see for example [76], or formulating it as an optimization problem over some sliding
finite horizon which is again solved periodically [75]. The third approach is to use
specially designed Lyapunov equations to stabilize the dynamics of the nonlinear
error equation.

We present an alternative to these three approaches. We show that there can be
advantages in formulating the observer as a DAE which can then be solved using
a numerical DAE solver. For index one DAEs the numerical integration can, for
example, be done by the DAE solver DASSL [22, 82]. More importantly, if (2.6)
has a special form and verifies some algebraic conditions, we can easily construct a
DAE index one observer that has linear time invariant observer error dynamics.

The class of nonlinear systems is even larger if we allow (2.7) to be an index two
Hessenberg DAE [22]. Index two Hessenberg DAEs are of particular interest since
this type of DAE can also be safely solved by differential algebraic system solvers,
for instance DASSL with fixed stepsize [22] or Radau5 [47]. The usefulness of this
approach will be shown on a simple example. For a more detailed analysis of DAE
index two design and its application to mechanical type problems see [96].

2.1.1 Index One DAE Observer

System (2.6) is a DAE in x since u and y are supposed to be known. This DAE is
over-determined with n unknowns and n C p equations. This DAE describes all
the constraints that we have for constructing Ox. To make this DAE numerically
integrable, we can do relaxation by introducing a p-dimensional vector function
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� into this DAE. One way to introduce � is in the algebraic part which is the
observation (2.6b). Then we have

POx D f .Ox; u/C g.�/ (2.8a)

0 D y � h.Ox/C �; (2.8b)

which means that we relax the entire estimate Ox. Note that (2.8) is now a DAE in Ox; �
and the number of unknowns equals the number of equations. It is easy to see that
introducing � as in (2.8) leads to the usual explicit formulation of the observer. In
particular, for the linear system (2.3a) with  D 0, solving (2.8b) for � and having
g.�/ D L� gives the Luenberger observer in (2.4).

The other way to regularize (2.6) is to introduce � in the differential part (2.6a).
In this case we constrain partially the estimate Ox through h.Ox/ by the observation y
and relax only the remaining part. This is the way index one DAE observer design
is introduced in [78].

System (2.13) which follows can be motivated by the linear time invariant case.
Given

Px D Ax C Bu (2.9a)

y D Cx (2.9b)

with C full row rank, the system

Px D Ax C CT�C Bu (2.10a)

y D Cx (2.10b)

with u; y known is index two in x; �. However,

Px D Ax C CT. P�C G�/C Bu (2.11a)

y D Cx (2.11b)

is index one in x; �. To see that (2.11) is index one, note that if we do one
differentiation of the constraint (2.11b) the coefficient matrix of the derivatives
fPx; P�g becomes invertible since C has full row rank. In fact,

�
I �CT

C 0

��1
D
�

I � C�C C�

.C�/T .CCT /�1
�
;

where C� is the Moore–Penrose generalized inverse of C [28].
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Note that (2.11) can be written as

Px � CT P� D Ax C Bu C CTG� (2.12a)

0 D y � Cx; (2.12b)

which is in the form of (2.13) with ˚ D �CT , f D Ax C Bu, � D CTG.
Throughout the remainder of this section we say the DAE of the form

POx C ˚.Ox/ P� D f .Ox; u/C � .Ox; u/� (2.13a)

0 D y � h.Ox/ (2.13b)

is the canonical observer DAE for system (2.6). For ˚ D �hx.x/ D �@h.x/=@x,
� any matrix of appropriate dimensions depending on Ox and u, we recover the
canonical index one DAE observer form of [78].

For the remainder of this paper we will sometimes use the MATLAB notation
for stacking matrices or vectors. Thus if matrices H;K have the same number of
columns, then ŒHI K� D ŒHT ;KT �T . Under appropriate observability conditions,
� ! 0 implies that Ox � x ! 0 for Ox.0/ ¤ x.0/. � has to be chosen such that
� ! 0. To see what type of conditions suffice, observe that for sufficiently small
observation error e D Ox � x we have

�
I �˚.Ox/
0 0

� � Pe
P�
�

D
�

fx.Ox/ � .Ox; u/
hx.Ox/ 0

� �
e
�

�
CO.kek2/: (2.14)

System (2.14) has an equilibrium point at ŒeI�� D 0. Then from [78] we have
Theorem 2.1.

Theorem 2.1 Suppose that f ; fx; h; and hx are bounded in a neighborhood of
.x.t/; u.t//. If

�
I �˚.Ox/
0 0

� � Pe
P�
�

D
�

fx.Ox/ � .Ox; u/
hx.Ox/ 0

� �
e
�

�
(2.15)

is exponentially asymptotic stable at the origin, then the estimation error Qx D Ox � x
associated with the canonical index one DAE observer with ˚.Ox/ D �hx.Os/
converges exponentially to zero provided Qx.0/ and �.0/ are sufficiently small.

For fixed ŒOxI u�we may chose � such that this equilibrium point is stable for all fixed
ŒOxI u�. If ŒOxI u� varies slowly against Œ�I e�, stability of (2.14) for fixed ŒOxI u� implies
stability for varying ŒOxI u�. See the discussion of extended linearization in [2].
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2.1.2 Exact Linearization of the Error Equation

If system (2.6) is in the special form

Px1 D f1.x1; u/C F1.x1; u/x2 (2.16a)

Px2 D f2.x1; u/C F2.x1; u/x2 (2.16b)

y D x1; (2.16c)

we will refer to (2.16) as the index one DAE observer normal form. If we chose

˚ D
�

˝�1
1 .y/

˝�1
1 .y/˝2.y/

�
; � D

�
�1.y/
�2.y/

�
;

then (2.13) is an index one DAE which will be referred to as the index one canonical
DAE observer form and (2.14) becomes the linear time varying system

� P�
PQx2
�

D
�

˝1�1 ˝1F1
�2 �˝2�1 F2 �˝2F1

� �
�

Qx2
�
; (2.17)

where Qx is an approximation of e. There exist a number of methodologies to
stabilize (2.17) by use of ˝ and � such as extended linearization and Lyapunov
design, for example. Here we consider the case where (2.17) can be made linear time
invariant. For that we need that the matrices F1 and F2 have a particular structure.

Theorem 2.2 Let F2.Ox1; u/ D F2 C QF2.Ox1; u/ where F2 is a constant matrix. If

1. there exists an invertible matrix ˝1 such that ˝1F1 is constant,
2. F2 can be chosen such that the matrix pair fF1;F2g is observable and there exists

a matrix F�
2 such that QF2 D F�

2F1;

then the approximate error equation (2.17) can be made linear time invariant and
its modes can arbitrarily be placed by proper choice of �1 and �2 for ˝2 D F�

2 .

Proof If (2.16) has Properties 1 and 2 of Theorem 2.2, the error equation (2.17) is

� P�
PQx2
�

D
�

˝1�1 ˝1F1
�2 � F�

2 �1 F2

� �
�

Qx2
�
: (2.18)

Since ˝1F1 is constant and ˝1 is invertible, (2.18) is a linear time invariant system
for �1 D ˝�1

1 K1 and �2 D K2 C F�
2 �1, where K1 and K2 are constant matrices. The

modes of (2.18) can arbitrarily be set by a proper choice of K1 and K2 if the matrix
pair

� �
I 0
�
;

�
0 ˝1F1
0 F2

��

is observable which is the case if the matrix pair f˝1F1;F2g is observable.
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2.1.3 Index Two DAE Observer

The idea of using DAEs as observers for (2.6) can be extended to the case
where (2.13) is in Hessenberg semi-explicit index two form. Recall that a DAE
is in Hessenberg semi-explicit index two form if it has the structure

P!1 D Of .t; !1; !2/ (2.19a)

0 D Og.t; !1/; (2.19b)

where .@Og=@!1/.@Of =@!2/ is nonsingular.
Hessenberg forms are of interest for several reasons. For one, many applications

such as constrained mechanical system are index two or index three Hessenberg
systems. Also there are numerical integrators for index two Hessenberg DAEs such
as Radau5 [47]. Fixed step k-step BDF will converge after k C 1 steps [22] for
Hessenberg index two DAEs.

The generalization of DAE index one observer design is, for example, of interest
in the case where (2.6) can be put in the form

Px1 D x2 (2.20a)

Px2 D f2.x1; x2; u/C F2.x1; u/x3 (2.20b)

Px3 D f3.x1; x2; u/C F3.x1; u/x3 (2.20c)

y D x1: (2.20d)

This particular form is frequently encountered in mechanical type systems where x2
is velocity. Flexible joint robots are, for example, in this form [96]. System (2.20)
will be referred to as the index two DAE observer normal form. The observer is the
canonical observer DAE (2.13) with

˚ D
2
4
0

˝�1
1 .y/

˝�1
1 .y/˝2.y/

3
5 ; � D

2
4
0

�1.y; Ox2; u/
�2.y; Ox2; u/

3
5 ;

which we will refer to as index two canonical DAE observer form.
One way to insure numerical integrability of the observer equations is to show

that the index two canonical DAE observer form can be transformed into Hessenberg
form. Since the transformation involves a number of equations, we will summarize
it in Lemma 2.3.

Lemma 2.3 The change of coordinates

!1 D Ox1 (2.21a)

!2 D Ox2 (2.21b)
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!3 D Ox3 �˝2.Ox1/Ox2 (2.21c)

!4 D �C˝1.Ox1/Ox2 (2.21d)

transforms (2.20) into the Hessenberg semi-explicit index two form

P!1 D !2 (2.22a)

P!3 D Of2.!1; !2; !4; u/C OF2.!1; !2; u/!3 (2.22b)

P!4 D Of3.!1; !2; !4; u/C OF3.!1; !2; u/!3 (2.22c)

0 D y � !1; (2.22d)

where

Of2 D f3 �˝2 f2 � � P̋
2 � F3˝2 C˝2F2˝2

	
!2 C .�2 �˝2�1/� (2.23a)

Of3 D ˝1 f2 C˝1

� P̋
1 C F2˝2

	
!2 C˝1�1� (2.23b)

OF2 D F3 �˝2F2; (2.23c)

OF3 D ˝1F2 (2.23d)

and � D !4 �˝1!1.

The system (2.21) is not a pure Hessenberg system but rather a cascade of two
systems. Equations (2.22a) and (2.22d) form a Hessenberg index two system in
!1; !2 for a given y. This system is then cascaded into (2.22b) and (2.22c) which is
an ODE in !3; !4. Then (2.22) is index two in f!1; !2; !3; !4g if y and u are known.
We shall prove this directly.

Proof We have

P!3 D POx3 � P̋
2 Ox2 �˝2

POx2 (2.24a)

P!4 D P�C P̋
1 Ox2 C˝1

POx2: (2.24b)

Elimination of ˝2
POx2 in (2.24a) by use of (2.24b) and the left multiplication

of (2.24b) by˝�1
1 yields

P!3 C˝2˝
�1
1 P!4 D

nPOx3 C˝2˝
�1
1

P�
o

� � P̋
2 �˝2˝

�1
1

P̋
1

	 Ox2

˝�1
1 P!4 D

nPOx2 C˝�1
1

P�
o

C˝�1
1

P̋
1 Ox2:

The sums in the curly brackets on the right-hand side of the equations are the
left-hand side of the third and second block row of the index two DAE observer
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form. Together with (2.21) and (2.22) we get

0 D Of2 C˝2˝
�1
1

Of3 C

 OF2 C˝2˝

�1
1

OF3
�
.Ox3 �˝2 Ox2/ �

f3 � F3 Ox3 � �2�C � P̋
2 �˝2˝

�1
1

P̋
1

	 Ox2
0 D ˝�1

1
Of3 C˝�1

1
OF3.Ox3 �˝2 Ox2/ � f2 � F2 Ox3 � �1� �˝�1

1
P̋
1 Ox2;

which yield Eq. (2.23).

2.1.4 Exact Linearization of the Error Equation

We can proceed as in the index one case due to the assumption that (2.6a) is in index
two DAE observer normal form (2.20). The error equation is the linear time varying
system,

� P�
PQx3
�

D
�

˝1�1 ˝1F2
�2 �˝2�1 F3 �˝2F2

� �
�

Qx3
�
: (2.25)

To get a linear time invariant error equation we need that F2 and F3 have a particular
structure.

Theorem 2.4 Let F3.Ox1; Ox2; u/ D F3 C QF3.Ox1; Ox2; u/ where F3 is a constant matrix.
If

1. there exists an invertible matrix ˝1 such that ˝1F2 is constant,
2. F3 can be chosen such that the matrix pair fF2;F3g is observable and there exists

a matrix F�
3 such that QF3 D F�

3F2,

then the error equation (2.25) can be made time invariant and its modes can
arbitrarily be placed by proper choice of �1 and �2 for ˝2 D F�

3 .

2.1.5 Example

To illustrate the previous discussion we use as an example the model (2.26) of a
three-phase current motor [18, 78]. We show on this model how to apply index one
DAE observer design if (2.6) is in index one DAE normal form. Furthermore, we
show that DAE index two observer design may yield linear error dynamics even
if the DAE index one observer design does not. This shows that the extension of
DAE observer design to index two DAEs allows us to enlarge the class of nonlinear
systems with linearizable error dynamics.
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Example 2.1 (Three Phase Current Motor) The model equations are

Px1 D x2 (2.26a)

Px2 D B1 � A1x2 � A2x3 sin.x1/C 1

2
sin.2x1/ (2.26b)

Px3 D D u � D1x3 C D2 cos.x1/; (2.26c)

where x D Œx1; x2; x3�T is the state, u a control input, and B1, A1, A2, D1, and D2 are
constants. We will consider several outputs in the discussion that follows.

Index One Observer

For the index one DAE observer design we use the output

y D Œx1; x2�
T : (2.27)

It can easily be seen that (2.26) and (2.27) is in index one DAE normal form (2.16).
We have

f1.y; u/ D
�

x2
B1 � A1x2 C 1

2
sin.2x1/

�

F1.y; u/ D
�

0

�A2 sin.x1/

�

f2.y; u/ D u C D2 cos.x1/

F2.y; u/ D �D1:

To see that (2.26) has for the output (2.27) a linear time invariant error equation we
need to show that F1 and F2 satisfy Theorem 2.2 which is the case since F2 D �D1

is a constant scalar.
This result is consistent with [18] where it is shown that (2.26) admits a linear

time invariant error equation for the output (2.27).
For

�1 D
"

k1 0

0 � k2
k3

A2 sin.x1/

#
; �2 D �

k4 k5
�
; ˝2 D �

0 0
�
;

and (2.27) we obtain the DAE index one observer

POx1 D Ox2 � P�1 C k1�1

POx2 D B1 � A1 Ox2 � A2 Ox3 sin.Ox1/C 1

2
sin.2Ox1/C A2 sin.Ox1/ 1

k3
. P�2 � k2�2/
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POx3 D u � D1 Ox3 C D2 cos.Ox1/C k4�1 C k5�2

y1 D Ox1
y2 D Ox2;

which has the linear time invariant error equation

2
4

P�1P�2
PQx3

3
5 D

2
4

k1 0 0

0 k2 k3
k4 k5 �D3

3
5
2
4
�1
�2
Qx3

3
5 :

Now, instead of two observations, we take just one,

y D x1: (2.28)

It can easily be seen that for this observation, system (2.26) is no longer in
index one DAE observer normal form (2.16). More importantly, the Lie bracket
conditions of nonlinear observer design of [18, 59], or [58] for the single output
case, applied to (2.26) and (2.28) show that (2.26) and (2.28) cannot be transformed
into nonlinear observer form and, consequently, that it has no linear error equation
for the output (2.28).

Index Two Observer

If we use DAE index two observer design for (2.26) with the output (2.28), we
obtain a linear time invariant observer error equation. In fact, (2.26) is in index two
DAE observer normal form (2.21), where

f2.y; Py; u/ D B1 � A1x2 C 1

2
sin.2x1/ (2.29a)

F2.y; Py; u/ D �A2 sin.x1/ (2.29b)

f3.y; Py; u/ D D2 sin.x1/C u (2.29c)

F3.y; Py; u/ D �D3: (2.29d)

Furthermore, F3 and F2 satisfy Theorem 2.4. Since we have F3 D F3, the choice

˝1 D � �2

A2 sin.x1/
(2.30)
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yields ˝1F2 D �2 and the pair fF2;F3g is observable as F3 D D1 is constant. For
�1 D ��1A2 sin.x1/=�2, �2 D �3, and ˝2 D 0, the DAE index two observer is

POx1 D Ox2
POx2 D B1 � A1 Ox2 � A2 Ox3 sin.Ox1/C 1

2
sin.2Ox1/C A2 sin.x2/

1

�2
. P� � �1�/

POx3 D u � D1 Ox3 C D2 cos.Ox1/C �3�

y D Ox1;

which is an index two DAE provided Ox1 ¤ �k; k D 0;˙1;˙2; � � � . The error
equation is

� P�
PQx3
�

D
�
�1 �2

�3 �D1

� �
�

Qx3
�
:

To insure numerical integrability we transform the index two DAE into Hessen-
berg form, that is we need that the observer (2.7) be in the special form (2.22). We
have for the observer (2.7)

0 D

2
664

P!1 � !2
P!3 � Of2.!1; !2; !4; u/� OF2.!1; !2; u/!3
P!4 � Of3.!1; !2; !4; u/� OF3.!1; !2; u/!3

y � !1

3
775 ;

where ŒOx1; Ox2; Ox3� D Œ!1; !2; !3�, and

Of2 D D2 sin.!1/C u C �3� (2.31a)

Of3 D ��2
A2 sin.!1/

�
B1 � A1!2 C 1

2
sin.2!1/C �!22 cos!1

A2 sin2.!1/



C �1�

(2.31b)

OF2 D �A2 sin.!1/ (2.31c)

OF3 D �2 (2.31d)

� D !4 C �2!1=.A2 sin.!1/: (2.31e)

The resulting DAE is in Hessenberg semi-explicit index two form.
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Numerical Simulation

For the following computer simulation we use the same values for the model
parameters as in [18, 78]. That is, A1 D 0:2703, A2 D 12:01, B1 D 39:19,
B2 D �48:04, D1 D 0:3222, and D2 D 1:9. The index two DAE observer includes
the effect of numerical differentiation. To show the impact of a perturbation in the
observation, we have perturbed the constraint by v.t/ D 0:001 cos.10t/, i.e., the
perturbed constraint is 0 D Ox1 � y C v. The perturbation on Ox1 is obviously v.t/
and that on Ox2 is Pv.t/ D �0:01 cos.10t/. If the observation is not perturbed Ox2 jumps
immediately to its true value x2. If Ox1.0/ ¤ y.0/, then observation Ox2 is impulsive at
t D 0.

Some of the simulation results are shown in the next four figures. Figure 1
shows x3 and the estimate Ox3 while Fig. 2 gives the estimation error. Without any
perturbation, Fig. 1 shows the estimate Ox3 (dotted line) converges to the true value
x3 (solid line). If the observation is perturbed, then Ox3 converges to a neighborhood
of x3 as shown by the solid line in Fig. 2.
� is a measurement of the violation of the hidden constraint (2.32b) and the

observation error Qx3. Without perturbation � goes to zero for growing time as shown

Fig. 1 Estimate Ox3 (dotted
line) and the true value x3
(solid line)
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Fig. 2 Estimation error on x3
with (solid line) and without
perturbation (dotted line)
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Fig. 3 Additional state �
with no perturbation
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Fig. 4 Additional state �
with and without perturbation
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in Fig. 3. However, if the observation is perturbed, � stays in the neighborhood of
zero as shown in Fig. 4.

The simulation shows that the additional state � in the observer is a relaxation
for hidden constraints. The constraint 0 D y � Ox1 includes two hidden constraints:

0 D Py � Ox2 (2.32a)

0 D Ry � Of2.Ox1; Ox2; �/; (2.32b)

where Of2.Ox1; Ox2; �/ D B1 � A1 Ox2 � A2Ox3 sin.Ox1/ C 1
2

sin.2Ox1/ C ˝�1
1

P� C �1�. The
integration by BDF integration schemes assures that the hidden constraint (2.32a) is
verified for all t > 0. The hidden constraint (2.32b) is relaxed by the supplementary
state �. The constraint error Ry � Of2 goes asymptotically to zero if � ! 0.

2.2 Estimation of Disturbances

A different use of the DAE formulation in designing observers can be found in [44],
note also [57]. Here the utilization of a DAE formulation assists in estimating some
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disturbances. In Sect. 2.2.1 we will briefly summarize the idea of Gao and Wang
[44] when the observer is a DAE but the system being estimated is an ODE. Then in
Sect. 2.2.2 we will present an extension to the case where the original model is also
a DAE.

2.2.1 Original Model Is an ODE

The original idea of [44] has been extended by Gao and others to cover a variety
of types of disturbances. It suffices here to present part of the original idea. Both
actuator and sensor faults can be handled by this approach given appropriate
assumptions but we shall consider just sensor faults here.

The starting point is the usual linear time invariant model.

Px D Ax C Bu (2.33a)

y D Cx C !; (2.33b)

which is a special case of (2.3). As usual, u is the input or known control. y is the
output and ! is the sensor noise.

The usual Luenberger observer (2.4) for estimating x has error dynamics

Pe D .A � KC/e � K!: (2.34)

If fA;Cg is detectable, then K can be found so that A � KC has eigenvalues with
negative real part. In the absence of !, then e goes to zero as t goes to infinity. That
is, the error in the estimate goes to zero.

Since y; u are considered known, we can try to set up an observer for both x and
!. Adding the equation

x! D ! (2.35)

to the ODE system (2.33) we get the DAE with output

NEPNx D NANx C NBu C NN! (2.36a)

y D NCNx; (2.36b)

where

Nx D
�

x
x!

�
; NB D

�
B
0

�
; NN D

�
0

I

�
;

NE D
�

I 0
0 0

�
; NA D

�
A 0

0 �I

�
; NC D �

C I
�
; NC0 D �

C 0
�
:
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The Luenberger observer is based on using just a matrix multiple of the
difference between the observed output y and the estimated output Oy. That is, it
uses proportionality. In the case being considered here we wish to integrate some
of the terms so we get a PD (proportional derivative) observer. Thus the estimate
of Ox is made up both of a term that depends on y and a term that is the solution of
differential equation. This extra term is the 	 in (2.37).

Then in [44] it is shown that given (2.33), suppose that A is a stable matrix. Then
there are matrices NK; NL so that the observer

. NE C NL NC/ P
 D . NA � NN NC0 � NK NC/
 C NBu (2.37a)

ONx D 
 C . NE C NL NC/�1 NLy (2.37b)

provides an asymptotic estimate of Nx. Note that ONx is estimating both x and the
disturbance !.

If A is not stable, then one can still construct the observer with an additional
assumption. Suppose that A;C is detectable and the noise ! is bounded. Then there
are matrices NK; NL so that the observer

. NE C NL NC/ P
 D . NA � NK NC/
 C NBu C NA. NE C NL NC/�1 NLy (2.38a)

ONx D 
 C . NE C NL NC/�1 NLy (2.38b)

provides an asymptotic estimate of Nx. In (2.37) and (2.38) the NL is to make NE C NL NC
invertible. The stabilization is then done by NK. Algorithms for computing NL and NK
are given in [44].

2.2.2 Extension to When Original Model Is a DAE

The previous idea of expanding the observer to a larger DAE can be exploited in
several ways. Here we consider the case when the original system is itself modeled
by a DAE rather than an ODE. This section is from [87] and uses the idea of a
completion of a DAE. A completion of a DAE is an ODE that includes the solutions
of the DAE. Completions can be computed numerically for many DAEs of interest.
At the same time that the completion is computed, a set of constraint equations
characterizing the solution manifold can also be computed. Completions and their
computation are studied in [23–26, 62, 79, 80] among other places. Completions are
used extensively in [24].

Consider the descriptor system

EPx D Fx C Bu C D1f (2.39a)

y D Hx C D2g; (2.39b)



The Flexibility of DAE Formulations 19

where x 2 R
n is the state vector, u 2 R

m is the control, y 2 R
p is the measurement

output vector, g 2 R
p is a sensor fault, and f 2 R

q is a process fault. To formally
get the completion we form the derivative array by differentiating (2.39a) k times.
Formally this gives us the system

E MPx D F Mx C B Mu C D1
Mf ; (2.40)

where Mz indicates z and several of its derivatives. The key assumption is that there
is a value of k so that

�
E F

�
has full row rank and the first n columns of E are

linearly independent of the rest of the columns. This is called 1-fullness in the
literature. If the system (2.39) is linear time varying, then these assumptions are
to hold for all t. The smallest value of k for which these assumptions hold is called
the differentiation index of the DAE. From the derivative array (2.40) there are a
number of completions that can be computed. For example, one could solve (2.40)
for MPx in the least squares sense and use the first n components for x0. This is called
the least squares completion.

However, no matter which way you do it you get a system

Px D OAx C OBNu C OGMf (2.41a)

0 D Gx C QBNu C QGMf (2.41b)

y D Hx C D2 g: (2.41c)

Equation (2.41b) characterizes all solutions of the DAE (2.39a). That is, it charac-
terizes the solution manifold and provides all constraints. Equation (2.41a) is an
ODE whose solutions include all the solutions of the DAE. The extra solutions
of (2.41a) are called the extra dynamics. The extra dynamics vary depending on
how the completion is computed. See [24] for example or [25].

For a simple purely algebraic system x D f , (2.41a) and (2.41b) become just

Px D Pf (2.42a)

0 D x � f : (2.42b)

Gao and Wang [44] considered (2.41a) and (2.41c) and estimated constant addi-
tive faults, using a modified proportional, derivative, and integral (PID) observer.

However, faults are often not constant but can be generated by another system.
The problem considered here is estimating a time varying fault Pf D Mf , where

M 2 R
q�q. Then Mf D �

I M .MT/2 : : : .MT/k
�T

f , where k is the index of (2.39).

Letting NNG D OG �I MT .MT /2 : : : .MT/k
�T

, the system under consideration is thus

Px D OAx C OBNu C NNGf (2.43a)

y D Hx C D2 g; (2.43b)
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if (2.41b) is ignored. Note that we are not saying the original system is an ODE. We
are working with an ODE that has been computed from the DAE with some of the
ODEs solutions from the DAE and some from our construction. The behavior of the
extra dynamics must be taken into account. For this discussion, we also assume g is
a constant fault. An augmented descriptor system

NEPNx D NANx C NBu C NNg C NGf (2.44a)

y D NH Nx (2.44b)

can be formed if we denote

Nx D
�

x
g

�
; NH D �

H Ip

�
; NH0 D �

H 0
�
; NG D

" NNG
0

#
; NB D

� OB
0

�

NN D
�
0

Ip

�
; NE D

�
In 0

0 0

�
; NA D

� OA 0

0 �Ip

�
:

Modified PID Observer

We will include a full proof of the material in this section.

Corollary 2.5 If the pair f OA; Hg is detectable, rank

� � NG
sIq � M

�
D q, and

rank

2
4

NA NG
0 M
NH 0

3
5 D n C p C q, and g is bounded, then there exist gain matrices

NL; NK and K1 for the following observer

. NE C NL NH/ P� D . NA � NK NH/� C NBu C NA. NE C NL NH/�1 NLy C NGf (2.45a)

POf D �K1 NH� C MOf (2.45b)

such that Ox D �C. NEC NL NH/�1 NLy is an asymptotic estimate of Nx and Of is an asymptotic
estimate of f .

Proof Let Ne D Nx � NOx and Ped D f � Of . The proof follows along the same lines as in
the ODE case, but (32) in [44] becomes

Ped D �K1 NHNe C Med (2.46)
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so that (33) in [44] is

� NE C NL NH 0

0 Iq

� � PNe
Ped

�
D
�� NA NG
0 M

�
�
� NK

KI

� � NH 0
�
 � Ne

ed

�
C
� NN
0

�
g (2.47a)

or equivalently,

EL
PQe D � QA � QK QH	 Qe C

2
4

�L1
I C HL1

0

3
5 .L2/�1g: (2.48)

As shown in [44], a NL exists to make NE C NL NH invertible and to reduce the
amplification of the bounded fault g. A stabilizing QK exists if for all s 2 CC,

n C p C q D rank

�
sI � . QEL/

�1 QA
QH

�
(2.49a)

D rank

2
4

s. NE C NL NH/� NA � NG
0 sIq � G
NH 0

3
5 (2.49b)

which is equivalent to the following conditions:

1. For all Re(s) � 0, s ¤ 0,

rank

�
s. NE C NL NH/� NA

NH
�

D n C p (2.50a)

rank

� � NG
sIq � M

�
D q: (2.50b)

2. For s D 0,

rank

2
4

NA NG
0 M
NH 0

3
5 D n C p C q: (2.51)

Note that (2.50a) holds if . OA; H/ is detectable.
The eigenvalues of OA are the finite eigenvalues of (2.39) and the additional

dynamics generated by the completion. The additional eigenvalues generated by
the stabilized least squares completion are �� of multiplicity k if the differential
operator used for the derivative array is D D d=dt C �, for real � > 0, and k is the
index of the DAE [79].
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If the finite eigenvalues of (2.39) are observable or stable, then f OA; Hg can
always be made detectable when OA is calculated using the stabilized least squares
completion [20, 79].

A major disadvantage of using the differential operator D D d=dt C � is limited
observability. Specifically, the additional eigenvalues will be repeated k times; thus,
they may have unobservable subspaces [65]. One way to overcome this is to choose
the differential operator to be D D d=dt C�, where Re.s/ > 0 for all eigenvalues
s of �. The advantages to this approach is that if the DAE is index one, then there
exists a � stabilized completion with distinct stable eigenvalues [25].

Suppose the DAE is in Hessenberg index two form,

J Px1 D Ax1 C Bx2 (2.52a)

0 D Cx1; (2.52b)

where CJ�1B is invertible, B is full column rank, and C is full row rank. Let
� be a diagonal matrix with positive entries on the diagonal. Then the least
squares completion has stabilized dynamics, but the eigenvalues may not be distinct.
Analogous ideas relating the eigenvalues of� to those of the completion do not hold
for Hessenberg index three DAEs [25].

The second assumption implies that OGv ¤ 0 for any eigenvector v of M with
corresponding eigenvalue Re.s/ � 0. For if OGv D 0, then

� � NG
sIq � M

�
v D

2
666666664

� OG

2
6664

I
M
:::

Mk

3
7775

0

sIq � M

3
777777775
v D 0:

But this is a contradiction because, by assumption,

� � NG
sIq � M

�
has full column rank.

Recall the time varying fault obeys Pf D Mf . Hence, the fault is of the form

f .t/ D
X

civie
sit; (2.53)

where .vi; si/ are eigenvector/eigenvalue pairs and ci are scalars. Repeated eigen-
values may create terms with powers of t in them. OGv ¤ 0 ensures that faults of this
form will be visible in the completion as they will not lie in the null space of OG.

If M is invertible, then the third assumption implies

n C p D rank

� NA
NH
�

D rank

2
4

OA 0

0 �Ip

H Ip

3
5 :
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The second column of this block matrix has rank p, so the assumption simplifies to

rank

� OA
H

�
D n. If n D q, note that this is equivalent to f OA;Hg is an observable pair.

3 Optimization by Direct Transcription

Suppose that we are given a DAE with a control u of the form

F.Px; x; t; u/ D 0: (3.1)

If we have a given choice of u and wish to perform a simulation, then the index of the
DAE plays its usual role in the theory of numerical DAE integrators. For example,
for the linear system

APx C Bx D Du; (3.2)

if the index of the matrix pencil fA;Bg is greater than 1, then differentiation of u
may be present depending on D. In general we have to deal with the usual numerical
issues of integrating DAEs [22].

Suppose now that we have an optimal control problem

minL.x; u/ (3.3a)

F.Px; x; u; t/ D 0 (3.3b)

g.x; u; t/ D 0: (3.3c)

Here (3.3b) are the dynamics. Equation (3.3c) are any constraints on the time
interval, and (3.3a) is some cost functional of x; u and possibly some parameters
which is to be optimized. There may be additional inequality constraints not
shown in (3.3) which we will discuss later in Sect. 3.2. Various initial and terminal
equalities and inequalities may also hold.

One way to try to solve such problems is to parametrize the set of u, run
integrations of the DAE given by (3.3b), (3.3c) to evaluate the cost (3.3a) for a given
control u and parameter values and then feed this as a cost function to a general
purpose optimizer. This is sometimes referred to as a control parameterization
technique. This method can often be successful. However, it does mean that the
usual DAE integration theory must be used and also that working with (3.3c) can be
problematic if in addition there are inequality constraints since inequality constraints
may go active and inactive causing changes in the DAE being integrated. Satisfying
terminal conditions can also be an issue.

One popular alternative approach for solving industrial grade optimal control
problems is direct transcription. The philosophy of direct transcription is completely
different. One starts on a coarse time grid and discretizes the entire problem. This
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nonlinear programming problem (NLP) is then fed to an optimization package. The
solution is then evaluated and if necessary the grid is refined and the problem is
solved again using the previous solution as an initial guess. The grid refinement
is sometimes done by a process that tries to focus on where the computational
difficulty is. The result is usually highly nonuniform grids. Some direct transcription
softwares use uniform grids.

The necessary conditions of the original optimal control problem are never
formulated and the approach has been very successful in solving many hard
problems. Note that these direct transcription programs often do not actually
worry too much about verifying optimality. They do worry about making sure the
dynamics are integrated well. Thus the user can be sure that if the computed control
is used, and the models are good, then the computed control will produce close to
the computed cost.

It turns out that when a direct transcription approach is used that the usual DAE
theory does not always apply [8, 31] and the software is able to solve some problems
that at first glance should not be solvable. In this section we will discuss why that is
the case and give examples in Sects. 3.1.1, 3.1.2, and 3.2.

Two popular examples of direct transcription codes that can work with some
DAEs are GPOPS II and SOCX.

There are several optimal control problem solvers currently available for use.
Pseudospectral Optimal Control Solver (PSOPT ) is an open source optimal
control package written in C++ that uses direct collocation methods, which include
pseudospectral as well as local discretizations [3]. General Pseudospectral OPtimal
Control Software (GPOPS) is an open source MATLAB based optimal control
software that implements the Gauss and Radau hp-adaptive pseudospectral methods
[85]. The latest GPOPS II requires a license. When using either of these optimal
control packages, one must also incorporate NLP solvers such as Sparse Nonlinear
OPTimizer (SNOPT) [45] or Interior Point Optimizer (IPOPT) [98]. As noted,
both software packages employ pseudospectral schemes which solve optimal
control problems by approximating the time-dependent variables using orthogonal
polynomials. A basic pseudospectral method is typically employed as a p-method
where a single segment is used, and convergence is achieved by increasing the
degree p of the polynomial [34]. In nice enough situations these methods display fast
convergence in the states, controls, and costates. However, when solving problems
with rapidly changing solutions, applying a very large-degree polynomial may not
even guarantee a respectable solution. hp methods use several intervals with a
polynomial on each subinterval.

Another direct transcription package is SOCX (Sparse Optimal Control
Extended), a general purpose industrial grade software package capable of solving
optimal control problems with both state and control delays and state and control
constraints and is available from Applied Mathematical Analysis. SOCX is
part of the Sparse Optimization Software (SOS) and is written in FORTRAN.
SOCX can be used also with problems that have delays. This is discussed later
in Sect. 4. As described later SOCX uses either the trapezoid or the Hermite-
Simpson Runge-Kutta methods for discretization. It has available either a sequential
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quadratic program (SQP) general optimizer or an interior point optimizer to solve
the nonlinear programming problem formed by the discretization.

3.1 Virtual Index

For the remainder of this section we shall assume that the dynamics and path
constraints take the form of

Px1 D f1.x1; x2; u; t/ (3.4a)

0 D f2.x1; x2; u; t/: (3.4b)

Thus (3.4b) includes both any algebraic constraints in a DAE model and also any
constraints for the optimization. x1 is often called a differential variable since it
is differentiated. The variables x2; u are called algebraic variables since they only
occur algebraically.

It does not make sense to talk of the index of (3.4) without additional information
about how (3.4) is being used and interpreted. For example, in a simulation, or if
using control parameterization, then u becomes known and we have a DAE in terms
of x1; x2.

However, there are situations where u is not known such as when solving optimal
control problems by direct transcription. Then the DAE is in terms of fx1; x2; ug.

There has been considerable discussion of this situation in terms of trying to
determine a good control. This research is part of what is known as the behavioral
approach. That is, the behavior is the set of all fx1; x2; ug that satisfy (3.4). Properties
like index are then determined after the choice of the control. The behavioral
approach was promoted by Willems [70, 83] and others. We note [50] for a more
DAE oriented behavioral approach. Generally these works seek to make choices of
state and control that produce an index one system. For a nonlinear problem this
may be difficult.

We shall do something a little different. We shall give two illustrations in
Sects. 3.1.1 and 3.1.2 where these ideas are exploited but not necessarily by the
user in the obvious way.

We shall say that (3.4) has virtual index one, if there is a differentiable and
invertible transformation of fx2; ug into fOx2; Oug so that the DAE is index one in
terms of x1; Ox2 [41]. See also [27]. The variables Ou are called the virtual control.
The variables fOx2; Oug may be in a different coordinate system than fx2; ug is written
in. However, in many cases, including Sects. 3.1.1 and 3.1.2, the new coordinate
system is just a reordering of the old one. The existence of this different coordinate
system has major consequences. In general the concepts of differential index and
tractability index [63] are different. However in our particular context, for a system
having virtual index one, the two types of index are the same. Note that there are
more general definitions of virtual and tractability index, see Chap. 10 of [63], but
here we are talking about specific applications which are then solved by direct
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transcription codes. These codes require, perhaps after a constant coordinate change,
a semi-explicit formulation. Since this suffices to make our observations, we do not
discuss the more general definitions here.

3.1.1 Utilized by the Software

Normally when faced with a DAE optimal control problem that does not have
bounds on the controls, one wants the dynamics to be index one and for the control
to appear in a nonlinear way in the cost. The exact statement is a bit more technical
than this in particular in terms of what a good nonlinearity in the control is, but
thinking of locally convex suffices for now.

In the solution of an optimal control problem by direct transcription, when there
are not bounds on the controls or virtual controls, what is needed is that the virtual
index is one and that the virtual controls appear in the cost in a good nonlinear
manner. However, it is not necessary that the user see how this is done nor what the
virtual controls are. What counts is only that such a choice of variables exists. This
is automatically exploited in the optimization. If the control appears linearly in the
cost or is absent from the cost, then control bounds are usually needed.

In optimal control problems the cost is part of the design process with some terms
in the cost for performance reasons and some terms in the cost to help the numerics.
Thus instead of the usual practice of making sure the control is included in the cost,
when presented with higher index DAE dynamics, the correct thing to do is often
to make sure that all the algebraic variables are included in the cost thereby making
sure that the virtual controls, whatever they are, are included.

To illustrate how this can naturally occur consider a constrained mechanical
system with a control u in the form of

Rx D f .x; Px; u; t/C gx.x; u; t/
T� (3.5a)

0 D g.x; u; t/; (3.5b)

or equivalently,

Px D v (3.6a)

Pv D f .x; v; u; t/C gx.x; u; t/
T� (3.6b)

0 D g.x; u; t/: (3.6c)

Assume that gx is full row rank. Here (3.6c) is a state constraint that perhaps can
be changed by the control u. The term gx.x; u; t/T� can be interpreted as the force
that is exerted by this constraint.

If u is treated as a known function, then (3.6) is an index three DAE in the
state variables x; v; � as is often the case with constrained mechanics problems.
Mechanical systems can have index higher than 3 [19]. However, in a direct
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transcription setting x; v are the differential variables and u; � are the algebraic
variables. If (3.6) is a lower index DAE in x; v; �, for some virtual control, then
the direct transcription numerics will reflect this. The user can still use u as
their control but in the solution of the numerical optimization, the software can
automatically exploit the fact that there exists a lower index choice of control.
Rigorous mathematical development of these statements can be found in [41]

A specific example from [41] is Example 3.1.

Example 3.1 (Hockey Puck Problem) A simple instance of the problem (3.6) can
be stated as follows:

min x1.1/
2 C x2.1/

2 C
Z 1

0

q1L
2 C q2b

2 C q3c
2 dt (3.7a)

x0
1 D v1 (3.7b)

x0
2 D v2 (3.7c)

v0
1 D �v1 C L (3.7d)

v0
2 D �v2 � bL (3.7e)

0 D x1 � bx2 � c (3.7f)

�1 D x1.0/; 1 D x2.0/ (3.7g)

�2 D v1.0/; 2 D v2.0/: (3.7h)

The dynamics and constraint (3.7f) can be thought of as a flat surface pushing an
object at .x1; x2/ across a smooth flat surface which has the usual type of friction
model proportional to the velocity. The friction coefficient is �1 in (3.7d), (3.7e).
The controls L; b; c determine the location and slope of the pushing surface. The
initial conditions specify that the object starts at point .�1; 1/, moving away from
the origin with initial velocity .�2; 2/. The objective is to push the object close to
the origin (x1.1/2 C x2.1/2 penalizes not ending near the origin), while keeping the
algebraic variables bounded, or small, depending on the weights q1; q2; q3.

In [41] it is shown that for some classes of problems we can determine whether a
given choice of virtual coordinates are properly weighted in the cost. This problem
can be put in that form. If we take

�
U1 U2

� D
2
4
0 1 0

0 0 �1
�1 0 x2

3
5 ;

then the nonnegativity of

UT
2r2

L;b;c
0U2 D
�

q1 0

0 q2 C x22q3

�
; (3.8)
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Fig. 5 Calculated trajectory of the object in x1 � x2 space with time-lapsed view of the pushing
surface for Example 3.1, qi D 0:01

Fig. 6 L; b; c vs time for Example 3.1, qi D 0:01

where 
0 is the integrand of the cost (3.7a), determines whether we have a proper
choice of virtual control.

We solve this optimal control problem using SOCX. The calculated trajectory of
the object in x1 � x2 space and the values of L; b; c versus time for q1 D q2 D q3 D
0:01 are shown in Figs. 5 and 6. This trajectory achieves x1 D �0:1155; x2 D 0:0074

at time t D 1, so that kx.1/k D 0:0134. Figure 5 also shows the orientation of the
pushing surface at each temporal grid point. All values are rounded to four decimal
places. The trajectories look the same when q3 is changed to zero since (3.8) is still
nonsingular.

As expected, SOCX fails to come up with a solution when just q1 is changed to
zero and (3.8) is always singular. When both q2 and q3 are set to zero, the resulting
b and c trajectories oscillate wildly as shown in Figs. 7 and 8. This solution gives
x.1/ D Œ�0:1271; 0�T ; kx.1/k D 0:0162. If we consider getting the object close
to the origin to be our main objective, and the second part of the cost function as
merely there for regularization, then this is worse by 21% than the first solution.
When q2 D 0 and q1; q3 are positive, the computed trajectories in Fig. 9 look similar



The Flexibility of DAE Formulations 29

Fig. 7 Calculated trajectory of the object in x1 � x2 space for Example 3.1, q1 D 0:01;

q2 D q3 D 0

Fig. 8 L; b; c vs time for Example 3.1, q1 D 0:01; q2 D q3 D 0

Fig. 9 Calculated trajectory of the object in x1 � x2 space for Example 3.1, q1 D q3 D 0:01;

q2 D 0
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Fig. 10 L; b; c vs time for Example 3.1, q1 D q3 D 0:01; q2 D 0

to Fig. 6 except at the last node, where b takes a sharp dive and x2 is pushed a little
closer to 0. Controls for this case are in Fig. 10. This is due to the x22q3 term being
near singular when x2 is close to 0 resulting in a near singularity of (3.8). In this case
x.1/ D Œ�0:1183; 0:0042�T and kx.1/k D 0:014, which is 4% worse than the first
solution. The fact that the main objective is not satisfied as well does not necessarily
mean that the solutions we obtained are suboptimal for their respective problems,
but our theory allows us to conclude that the first solution is definitely optimal in
the case q1 D q2 D q3 D 0:01.

We conclude our discussion of this example by noting that other variations of this
problem, such as more realistic spatially dependent friction models, curved pushing
surfaces, and motor models for the actuators, naturally lead to examples with greater
nonlinearity, and in the case of included actuator dynamics, higher index.

3.1.2 Utilized by the User

Our next example is one where the user has a control u they want to determine but
the extra flexibility of a DAE formulation is exploited in a different manner.

Fault detection is an important part of most industrial processes and devices.
Extensive work has been done on fault detection. We note only [44, 49, 52, 77, 81].
Fault detection approaches can be loosely placed into two types. One is passive and
the other is active. In a passive approach, outputs from the system are monitored
and used to try to tell when a fault has occurred. The system is not acted on. Usually
design decisions have to make the trade off between having false positives and
missing a fault. Passive approaches have been used on many applications. However,
a passive approach may not be able to detect faults before they become serious.
Sometimes developing faults are masked by the action of controllers or exist in
subsystems that are only activated in critical conditions.
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In an active approach, a test signal is used over a short time horizon to try to
detect a fault if it is there, but to also not disturb the system performance any more
than necessary. The goal is to detect the fault before it becomes too serious.

For both active and passive approaches the system and models may be determin-
istic or stochastic and continuous or discrete time.

We shall focus here on one model based active approach for guaranteed fault
detection. Our discussion follows that in [88] which is an outgrowth of that begun
in [29] where the models are ordinary differential equations. For our purposes here,
it suffices to consider the additive uncertainty case. Model uncertainty is discussed
in [88].

We assume that we have two DAE models of the form (3.9). Model i D 0models
the situation with no fault while i D 1 models the fault. We have a test horizon
Œ0; T�. The models are both

Ei Pxi C Fixi D Biu C Mi�i (3.9a)

yi D Cixi C Ni�i: (3.9b)

Here �i; �i represent such things as model error, sensor error, and disturbances. The
initial values xi.0/ are also unknown. The coefficient matrices are assumed constant.
yi is the output from model i that is available to determine if the fault is present, that
is, if model i is the correct model. States x1 and x0 do not have to be the same size.
However, y0 and y1 have to have the same dimension.

The general approach is as follows. A bound is assumed on the total amount
of uncertainty. Given a test signal u, if y0 D y1 implies the uncertainty bound is
violated, then the signal u is called proper. That is, from a proper signal we cannot
get the same output from both models. We then seek the smallest u that are proper.
We assume that Mi;Ni are invertible. That is, we allow uncertainty into all of the
equations. A proper u found this way will also be proper if any of the Mi, Ni are not
invertible.

Unlike most of the work in this area, we do not assume that the (3.9a) are index
one. We allow them to have any index but take the index at least one, otherwise
the results are known [29]. There are several ways to measure the uncertainty. The
uncertainty consists of f�0; �1; �0; �1; x0.0/; x1.0/g. Here we take the uncertainty
bound as

G.x.0/; �; �/ D x0.0/
TP0x0.0/Cx1.0/

TP1x1.0/C
Z T

0

k�k2Ck�k2 < 1; (3.10)

where� has components�0; �1 and the same holds for x; �; x.0/. Bounds other than
one are treated with the same analysis. Other ways to measure the size of the test
signal are discussed in [29].
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For a given u, let �.u/ be the size of the smallest amount of uncertainty for which
y0 D y1. That is, the inner minimization problem is

�.u/ D min
x.0/;�;�

G.x.0/; �; �/ (3.11a)

E0 Px0 C F0x0 D B0u C M0�0 (3.11b)

E1 Px1 C F1x1 D B1u C M1�1 (3.11c)

0 D C0x0 C N0�0 � C1x1 � N1�1: (3.11d)

Note that (3.11b)–(3.11d) is a DAE even if E0 and E1 are invertible.
If the size of u is measured by the L2 norm, we get the final outer minimization

problem is

min
u

Z T

0

kuk2dt (3.12a)

�.u/ � 1: (3.12b)

It is the constraint (3.12b) that makes the outer problem challenging. The cost of u
in (3.12a) can be modified to reduce the effect of the test signal at the end of the
testing period.

Direct transcription software, because they iterate on grids, often do not have the
ability to call themselves in problems that involve multiple optimizations some of
which occur in constraints like the one discussed here, or in function evaluations. In
order to put our problem which minimizes subject to a minimization constraint in
the form that can be quickly solved with optimization software we replace the inner
minimization problem with equations that characterize that minimum. If the Ei are
invertible, as in [29], we just solve (3.11d) for one of the noise variables and the
inner problem reduces to a linear quadratic regulator (LQR) problem with known
necessary conditions. So suppose that the Ei are not invertible and the models are
DAEs. Because of how the noise is measured we are best restricted to orthogonal
changes of coordinates. Using a singular value decomposition (SVD) of each Ei,

Ei D Wi

�
Ei1 0

0 0

�
Si;

where the Ei1 are nonsingular, in fact positive definite, and performing coordinate
changes based on the orthogonal matrices Wi; Si for each model, we have

Fi D Wi

�
Fi11 Fi12

Fi21 Fi22

�
Si; WT

i Mi D
�

Mi1

Mi2

�
; WT

i Bi D
�

Bi1

Bi2

�
;

CiS
T
i D �

Ci1 Ci2

�
:
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Then (3.11) becomes

�.u/ D min G.x.0/; �; �/ (3.13a)

E01 Px01 C F011x01 C F012x02 D B01u C M01�0 (3.13b)

E11 Px11 C F111x11 C F112x12 D B11u C M11�1 (3.13c)

F021x01 C F022x02 D B02u C M02�0 (3.13d)

F111x11 C F112x12 D B11u C M12�1 (3.13e)

C01x01 C C02x02 C N0�0 D C11x11 C C12x12 C N1�1: (3.13f)

The differential variables are x01; x11. The remaining variables are algebraic.
Using the flexibility of the DAE formulation we want to have new control
variables appear in the cost and the remaining DAE be index one since then the
analysis can proceed as before. The coefficient matrix of the algebraic variables
fx02; x12; �0; �1; �0; �1g in the algebraic constraints is

A D
2
4

F022 0 �M02 0 0 0

0 F122 0 �M112 0 0

C02 �C12 0 0 N0 �N1

3
5 : (3.14)

If

2
4

F022 0

0 F122
C02 �C12

3
5

is full column rank and A is full row rank, then there is a partition of the
f�0; �1; �0; �1g which when considered part of the state gives an index one DAE
and one may use the previously developed analysis. Note that by our assumptions
A is always full row rank.

Uncertainty on the initial condition of any of the algebraic variables is a situation
that can lead to numerical problems during optimization. Let

QPi D
� OPi 0

0 0

�
(3.15a)

such that QPi � VT
i P0i Vi (3.15b)

OPi > 0 (3.15c)

for each model. Then we get a more conservative noise measure for each model,

� 2
i .xi1.0/; xi2.0/; 	i; �i/ D 1

2
xT

i1.0/
OPix

T
i1.0/C 1

2

Z T

0

k	ik2 C k�ik2 dt; (3.16)
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and the total noise measure is � 2
0 C� 2

1 . The u found using this measure will still be
proper for the original measure.

To illustrate we give one example from [88].

Example 3.2 Let the normal and faulty model take the form of (3.9) where the fault
under consideration occurs in Ei and Fi. The model coefficients are

E0 D

2
66666664

1 2 3 0 0 0

0 2 3 0 5 0

0 0 3 4 0 6

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

3
77777775
; E1 D

2
66666664

1 2 3 0 0 0

0 �2 3 0 5 0
0 0 3 4 0 6

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

3
77777775
;

F0 D

2
66666664

0 0 0 �1 1 �1
0 0 1 1 0 0

0 �1 0 0 0 0

�1 1 0 �4 0 0

1 0 0 0 �2 0

1 0 0 0 0 0

3
77777775
; F1 D

2
66666664

0:5 1 1:5 �1 1 �1
0 �1 2:5 1 2:5 0

0 �1 1:5 2 0 3

�1 1 0 �4 0 0

1 0 0 0 �2 0

1 0 0 0 0 0

3
77777775
:

The rest of the parameters are

B0 D B1 D �
1 1 �1 0 0 0�T

; D0 D D1 D
2
4
0

1

0

3
5 ;

C0 D C1 D
2
4
0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 1 0 0

3
5 ;

P00 D

2
66666664

0:1116 0:1522 0:1946 �0:0449 �0:1777 �0:0674
0:1522 0:3166 0:4049 �0:0934 0:0304 �0:1401
0:1946 0:4049 0:6652 0:0773 0:0389 0:1159

�0:0449 �0:0934 0:0773 0:2899 �0:0090 0:4348

�0:1777 0:0304 0:0389 �0:0090 0:9645 �0:0135
�0:0674 �0:1401 0:1159 0:4348 �0:0135 0:6522

3
77777775
;

P01 D

2
66666664

0:0813 0:1788 0:1870 �0:0432 �0:0407 �0:0647
0:1788 0:5025 0:2720 �0:0628 �0:3622 �0:0942
0:1870 0:2720 0:7563 0:0562 0:2550 0:0844

�0:0432 �0:0628 0:0562 0:2947 �0:0589 0:4421

�0:0407 �0:3622 0:2550 �0:0589 0:7021 �0:0883
�0:0647 �0:0942 0:0844 0:4421 �0:0883 0:66311

3
77777775
;
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Fig. 11 Minimal proper u for the L2 bound—Example 3.2

and M0 D M1 D I6�6. N0 D N1 D I3�3. Hence, model 0 is index 3 and model 1 is
index 1. The noise for model i is given by (3.10) and we assume the total noise in
the L2 measure is bounded by � D 1. With the choices for P00 and P01 , OP0 D OP1 D I
are selected to satisfy (3.15). Then, P0 D I in (3.10).

The software package chosen for implementation is GPOPS-II. Figure 11 shows
the minimal proper u for this example. The test signal being zero at the end of the
test interval is typical since the closer to the end of the test the less effect a signal
can have. The exception is when the interval the test signal is applied on is shorter
than the interval the output is observed on [90].

Even if our assumptions are not all met for particular higher index DAEs, it is
sometimes possible to get a useful auxiliary signal. This is discussed in [87] and
[89].

3.2 Differential Algebraic Inequalities

The next example is a case where the combination of a direct transcription approach
along with a DAE formulation leads to good, but surprising results. This section is
based on the work of Biehn [8].

Suppose that we are solving an optimal control problem of the form

min
Z T

0

L.x; u; t/ dt C �.x.T/;T/ (3.17a)

Px D f .x; u; t/ (3.17b)

0 � g.x; u; t/ (3.17c)

x.0/ D x0: (3.17d)
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Equation (3.17b) could be a DAE but that is not important for what we wish to
discuss in this particular section.

It is important to distinguish the case when gx D 0 from the gx ¤ 0 case. If g
only depends on u and t, then it is called a control constraint and can often be dealt
with using standard software although solutions can be bang-bang if u is not in the
cost in a nice enough nonlinear manner.

However, if g depends on x and gu is not full column rank, which includes when
g depends only on x; t, then we have state inequality constraints present although
the constraints may be implicit. That is the case that interests us most here. For the
remainder of this section we assume that (3.17c) is a state inequality constraint. To
simplify the discussion we will take gu D 0 so that the state inequality constraint is
explicit.

Inequality constraints such as (3.17c) often occur for safety and design or
physical reasons. For example, a robot must stay within a certain workspace or a
reaction must be kept below a certain temperature. If the constraint is never active,
that is g > 0 at the optimum, then for this discussion, we have an unconstrained
problem. If the constraint is not active at the minimum, but the minimum is very
near where g D 0, then the comments made later about touch points and direct
transcription apply.

If the constraint is always active, then (3.17b) and (3.17c) form a DAE which
could easily be high index. If the dynamics were originally in the form Rx D
Of .x; Px; u; t/, and g depends on just x; t, then the resulting DAE will be at least index
three in x; u.

However, often the constraint will be active part of the time and inactive part of
the time. In [6] there is an example with over ten state constraints that are frequently
going active and inactive. If the optimal control software being used is based on
integrators, numerous challenges are presented. For one, the integrator needs to
figure out when the constraint is active in order to know what DAE it is integrating
at any given time. This is often difficult. Even if the integrator knows when the
constraint is active, the integration can involve a higher index DAE and integration
can fail for stability or other reasons.

If direct transcription is being used, then the first difficulty is not so important.
Feasible solutions can often still be found.

However, something else happens that is surprising. On a number of problems,
where the optimal solution has subintervals where the constraints were active,
the resulting DAE was one where the usual numerical DAE theory said the
discretization used by the optimizer was not convergent and yet the software found
a good solution.

The usual DAE numerical theory said that the error equation was unstable and
thus a small error at the start would lead to a very large error later. However, a careful
examination of the solutions obtained showed that in a DAE direct transcription
solution, the optimizer has a choice in how close to solve the inequality. To the
optimizer the instability of the error equation meant that a small perturbation at the
start of the active interval could cancel out the large error later. Several examples
and analysis verifying this can be found in [8, 31].
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Another place where DAE theory and the numerical solution by direct transcrip-
tion is different is with touch points [9, 54]. A touch point is when g D 0 at isolated
values of t along the optimal solution. If integrating a DAE, then touch points can
be a problem since the touch point means that the DAE has a singularity of some
type.

However, with direct transcription the optimal solution is only asked to satisfy the
inequality constraint up to the requested accuracy which is usually much larger than
machine precision. We have seen examples where mathematically there were touch
points in the theoretical solution and small bumps in the solution connecting the
touch points in the mathematical solution, but the optimization would regularize the
problem and avoid the bumps by small perturbations off the inequality. Since given
the control found, the state is found to high accuracy this regularized optimal control
could be used for the optimal control for all practical purposes. Also a formulation of
the necessary conditions would be difficult and if formulated it would be extremely
hard to solve numerically. We give one illustration from [9] where this is discussed
much more carefully. It is a simplified problem that captures the behavior of more
practical problems in [9].

Consider

J D min
v

1

2

Z 1

0

�.x1 � 1/2 C v2 dt (3.18a)

x0
1 D x2; x1.0/ D x1.1/ D 0 (3.18b)

x0
2 D x3; x2.0/ D 1 D �x2.1/ (3.18c)

x0
3 D v; x3.0/ D 2 D x3.1/ (3.18d)

x1.t/ � 0:134; (3.18e)

where � � 0. Note that (3.18e) is a state inequality constraint. For the choice of
� D 0, problem (3.18) is the problem studied in [54]. Our problem is motivated in
part by the observation that in a number of applications there can be very different
weightings on the control and the state. For example, if we have a control weighting
of 10�3 and a state weighting of 104, which amounts to 102 on the norm of x, then
the corresponding value of � is 107. It is known from [54] that the constraint will be
active for a range of L values when � D 0. We take one of these values, L D 0:134,
throughout this section. The left side of Fig. 12 shows the computed state x1 and the
right side shows the computed control. Figure 13 expands the view of state x1 near
the constraint x D 0:134 by several orders of magnitude.

Figure 12 seems to show the state variable x1 riding the constraint over the
middle of the interval. However, a classical result in the literature [54] which says
that under certain mild appearing technical assumptions the solution of an odd
order state constrained problem of order 3 or higher cannot ride a constraint over
a nonzero length interval. The only possibility is one or more touch and goes.
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Fig. 12 Computed x1 and control v for � D 1:5� 105, J D 60;148
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Fig. 13 Five touch points for x1 . Large nonlinear magnification near the state constraint

That is, the constraint intervals have zero length. The actual result from [54] (for
the single constraint case) assumes that there is a pth order arc, the dynamics
and constraint are p C 1 times continuously differentiable, the control is p times
continuously differentiable along the boundary arc if there is a boundary arc, and the
pth derivative of the inequality constraint along the optimal solution has a nonzero
derivative with respect to the control. In addition, the Hamiltonian is assumed to
have unique minimums in u for a given x.t/; �.t/ from the variational equations.
Also, the optimal control is p � 1 times differentiable except at the junction points.
Then the only way that there can be a boundary arc if p is odd is if the control has a
continuous pth derivative at the junction points. This can be shown to not occur for
the problems considered here, like for most smooth problems, since this condition
at the end of a boundary arc would overdetermine the solution in an inconsistent
way.
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Thus what is observed in Fig. 12 seems to contradict the mathematical theory.
Figure 13 greatly blows up the graph of x1 by several orders of magnitude near
the constraints in a nonlinear manner. We now see touch points emerging but on a
very small scale. This is an example where the correct necessary conditions are very
difficult to solve because they involve phenomena that are extremely ill conditioned.
Yet this fine scale phenomena is not practically important. The direct transcription
solution in Fig. 12 has regularized the numerical solution to only find those aspects
of the solution that are computationally relevant.

Direct transcription’s philosophy and theory is much closer to that of a boundary
value solver rather than an initial value integrator. The equations are all solved at
once rather than sequentially. Also any equation error tends to be distributed across
the equations rather than accumulated sequentially. Inside the software the cost is
also given dynamically so that doing a good job of finding the dynamics includes
producing a solution whose actual cost is close to the computed cost.

4 Delayed DAEs

Many physical systems are naturally modeled as differential algebraic equations or
DAEs. Many physical systems also possess delays either in the dynamics or in the
application of the control. As noted earlier, direct transcription is a popular approach
in industry for numerically solving nondelayed optimal control problems because of
its ability to handle problems with constraints. In this section, we focus on how the
use of the DAE formalism allows for the consideration of a much greater variety of
delays.

Direct transcription has the advantage that it does not require forming the
necessary conditions of an optimal control problem [7]. As just noted, this is
especially useful when there are various operational constraints that go active and
inactive. Some direct transcription software has been extended to handle delay
problems [12]. The solution of delayed DAE optimal control problems is not a
standard feature of optimal control codes. It also turns out that computational
behavior is implementation dependent. The next section quickly describes the
algorithm we are using. Our focus here is on how the capability to work with delayed
DAEs (DDAEs) allows the solution of a much wider class of delayed systems.

For simpler problems or problems which are not DAEs and for which there are
no state constraints, there are a number of ways to approach an optimal control
problem particularly if the cost does not have endpoint conditions. For example,
control parameterization can sometimes be used.

Time varying delays are of interest in a number of applications [32, 48, 51].
In [11, 12] examples are given to show that our direct transcription approach
works well for problems with time varying state delays and constant control delay
problems on uniform grids. We will not discuss time varying delays any further in
this paper. In this section the way a particular software package implements direct
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transcription may impact on the observations. All our computations were done in
this section with SOCX.

In [10] it is pointed out that there can be computational problems with our
approach when nonuniform grids are used on control delayed problems. This is
not part of the main theme of this paper but will be briefly discussed at the end of
Sect. 4.2.4. Recent research provides one way to work around this issue [92]. This
section focuses on the power of the DAE formulation and its ability to describe a
wide range of different appearing state and state derivative delay problems and then
showing that our type of direct transcription algorithms can solve these challenging
problems.

4.1 Direct Transcription Algorithm

Our particular direct transcription implementation is called SOCX (Sparse Optimal
Control Extended) and is part of the SOS (Sparse Optimization Suite) package
of software which is available from Applied Mathematical Analysis. Research
oriented academic users can obtain a copy from Applied Mathematical Analysis.
SOCX is a direct transcription software package that is being designed to solve
nonlinear optimization, optimal control, parameter estimation, and delay problems.
However, the information in this section is not specific to SOCX. This information
can be used to aid or improve code for both nondelay and delay optimal control
systems when the software has a similar philosophy to ours. The software begins
by rewriting the dynamics of the properly formulated optimal control problem as
a DAE or DDAE. This step aids in simplifying the problem, yet adds constraints
to the formulation. Multiple varying delays and state and control delays can be
accommodated. Determining the best way to formulate and solve a delayed optimal
control problem when using direct transcription is still a research question.

Here we consider the optimal control delay problem formulation to mini-
mize (4.1a) with constraints (4.1b)–(4.1e). To simplify the presentation, we continue
to drop the dependence on just t from the variables in our notation, but keep the
dependence on delayed or advanced variables. Thus x.t/; Px.t/; u.t/ and similar terms
will be usually be written as x; Px; u while x.t � r/ will remain as x.t � r/.

J D �.tf /C
Z tf

t0
L.x; u; x.!.t//; u.	.t//; t; p/dt (4.1a)

Px D f .x; t; x.!.t//; u; u.	.t//; p/; t0 � t � tf (4.1b)

0 D g.x; t; x.!.t//; u; u.	.t//; p/; t0 � t � tf (4.1c)

x D ˛.t/; �r � t < 0; x0 D q; (4.1d)

u D ˇ.t/; �s � t < 0; (4.1e)
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with �.tf / D �.x.tf /; u.tf /; tf ; p/, non-dynamic parameter vector p, and time delay
functions !.t/; 	.t/. Parameters r; s always denote the length of the prehistory and
are constant. In the case of a single constant state and control delays, !.t/ D t � r
and 	.t/ D t � s. However, we also consider time varying delays in which case
we just write !.t/ and 	.t/. The problem features cost (4.1a), DDAE (4.1b), (4.1c),
and prehistory functions (4.1d) and (4.1e). Our implementation allows for several
delays, state and control inequality constraints, and inequality constraints on
initial and terminal conditions. In particular, there can be another vector equation
like (4.1c) which gives any state or control inequality constraints. Note that even if
the original process is an ODE, that a DAE can result if inequality state constraints
become active. However, to simplify the presentation in this section we will use the
simpler formulation (4.1) which has only equality constraints and one delay in the
state and one delay in the algebraic or control variables. This suffices to make the
desired points.

We will see that having DAEs gives much greater flexibility in the handling
of different types of problems. Ideally the DAE would be index one, but SOCX
can sometimes work with higher index DAEs depending on the cost function
[41]. This is because in (4.1) the variable u denotes all algebraic variables.
That is, those variables that do not appear differentiated in the equations. In a
particular application where the process is a DAE, x would be the dynamic state
variables while u is both the algebraic state variables and the control variables. This
has positive consequences when solving numerically with direct transcription as
discussed in [41] and Sect. 3.1.

Optimal control problems with delays require start-up functions on the delayed
intervals (4.1d), (4.1e). Here r and s are taken to be positive. Systems of differential
equations sometimes model phenomena requiring knowledge of the future state
and/or control variables. In that case, r; s < 0 and (4.1d) and (4.1e) are replaced
by post-history functions. Some of these types of problems with advances and other
combinations of time shifted variables will be discussed later.

For simplicity, we consider (4.1) with no parameter vector p. When delays are
present, it becomes necessary to relate variables and their delayed counterparts in
an automatic way. The algorithm does this by reformulating the optimal control
problem by enforcing consistency relationships between x.!.t//, u.	.t// and pseudo
variables, v.t/ and w.t/. Then the DAE (4.1b) and (4.1c) can be rewritten as a DDAE
of the form

Px D f .x; u; v;w; t/; (4.2a)

0 D g.x; u; v;w; t/; (4.2b)

0 D v � x.!.t//; (4.2c)

0 D w � u.	.t//: (4.2d)
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System (4.2) is written as if v is the same size as x and w is the same size as u.
Actually (4.2c) only holds for those components of x that are delayed. In the same
manner (4.2d) only holds for those components of u that are delayed.

Note that (4.2) is a DDAE even if (4.1c) is missing and the original model
was a delayed ordinary differential equation. Also it is important to note that this
reformulation is done within the software and is invisible to the user. Later we shall
consider some reformulations that are done by the user so we will try to make it clear
which reformulations are done by the user and which are done by the software.

Let us consider a DDAE system of the form (4.2), and show how the software
approaches the problem. To simplify the presentation temporarily assume there are
no parameters and a single state delay function !. Define new algebraic variables
v.t/, and require they be consistent with the delayed state variables. The original
DDAE system can now be written as the larger DDAE

Px D f .x; u; v; t/ (4.3a)

0 D g .x; u; v; t/ (4.3b)

0 D v � z.!.t//; (4.3c)

where z are just those entries in x that are delayed.
It is worth noting that in (4.3) that z is still a state variable since it consists of

parts of x. The new variable v is a new algebraic variable. Thus in the case of state
delays the reformulation keeps the delays to the state variables. This is important
since computationally we observe more reliable solution behavior on state delay
problems than on control delay problems. This will be commented on more later.

The basic idea is to first discretize the problem thereby creating a finite
dimensional approximation. Large scale optimization methods can then be used to
adjust the variables that define the discretization in order to find a minimum of the
approximate problem. Then this solution is evaluated and if necessary used as the
starting value for the solution of a finer approximation. The user can decide on the
initial grid but further grid refinement is done automatically by the algorithm.

The direct transcription approach introduces a discretization of the problem by
subdividing the time domain into M segments or intervals

0 D t1 < t2 < � � � < tM D tf ; (4.4)

where the points are referred to as node, mesh, or grid points. For the remainder of
this section, and only in this section, we use yk as the variable for the estimate of
variable y at time tk for y D x; u; v. Thus one treats

m D .x1; u1; v1; : : : ; xM; uM; vM/ (4.5)

from the discretization as optimization variables in a nonlinear programming
problem. We then approximate the differential equation using a nonlinear algebraic
constraint. When the discretization is based on an implicit Runge-Kutta (IRK)
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scheme the control problem is transcribed into a finite dimensional nonlinear
program.

The algorithm uses the trapezoid (TR) and Hermite Simpson (HS) discretiza-
tions which are known to be second order and fourth order as ODE integrators. The
user can specify either discretization but the default is to start with TR and then
switch to HS after a couple of grid refinements.

For the trapezoidal method, we approximate the differential equations (4.3a)
and algebraic constraints (4.3b) by a set of usually nonlinear algebraic constraints
given by

0 D xkC1 � xk � hk

2
. fk C fkC1/ D 
k; (4.6a)

for k D 1; : : : ;M � 1 and

0 D gk; for k D 1; : : : ;M; (4.6b)

where (4.6a) are referred to as the defect constraints which are made small when
solving the NLP. This discretization is implicit because the optimization variables
.xk; uk; vk/ appear as arguments in the nonlinear functions fk � f .xk; uk; vk/ and
gk � g.xk; uk; vk/.

Now in order to evaluate the right-hand side functions in (4.3a) and (4.3b) we
must express the consistency relationship (4.3c) in terms of the NLP optimization
variables. When the delay argument is exterior to the phase, that is when !k < 0,
or !k > tM , the value of the delayed state is given by the user defined function
˛.p; !k/. When the delay argument is interior to the phase, 0 � !k � tf , let us
define the interval Jk such that

tJk � !.tk/ � tJkC1: (4.7)

Then for ık D .!k � tJ/=hJk D .!k � tJk /=.tJkC1 � tJk/ the interpolated value for the
delayed state is just

z.!.tk//
:D z.!k/ D c1zJk C c2zJkC1 C c3PzJk C c4PzJkC1; (4.8)

where the Hermite interpolation coefficients are

c1 D .1� ık/
2.1C 2ık/; c2 D ı2k .3 � 2ık/;

c3 D ık.1 � ık/
2; c4 D �ı2k .1 � ık/:

(4.9)

Thus to enforce consistency at the grid points we can impose the NLP constraints

v.tk/ D z.!.tk// D
(

z.!k/ if 0 � !k � tM;

˛.p; !k/ otherwise:
(4.10)
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Of course these consistency constraints are also implicit, since they involve the
derivatives PzJ and PzJC1 which are given by the right-hand sides of (4.3a).

Time delay and time advance variables are permitted in a single problem.
However, such variables are restricted from changing orientations, i.e., a time
delayed variable cannot become a time advanced variable. To date, we cannot handle
state dependent state delays with direct transcription. If no control is present the
solution becomes a boundary value problem simulation. More information on the
general philosophy of direct transcription can be found in [7] and technical details
on how we are discretizing state delay problems are in [12].

4.2 DAEs and Delays

A key in dealing with some types of the delays is to be able to work with
reformulations which are DAE models. This section will illustrate how to do this
reformulation and what some of the advantages are. That a DAE formulation
allows one to alter the appearance of a delay system is not a new observation [4].
However, those discussions were theoretical and we are interested in computational
capabilities here. Sections 4.2.1–4.2.4 are based on [14, 92].

4.2.1 Advances

Problems with advances at first glance would seem to be less common than problems
with delays. However, problems with advances do occur and, in fact, are common in
some application areas. Some examples of applications with advances can be found
in [53, 66]. For example, some control systems can look ahead. Pursuit and evasion
problems can also involve advance information.

The existing methods for solving optimal control problems which rely on
numerical integrators have trouble dealing with advances in the states. Depending
on the problem, they can also have trouble with advances in the control. Since direct
transcription discretizes the entire problem without a preference for the direction,
and then uses sparse solvers, it does not matter to the software whether there is a
delay or an advance or both. Advances are solved as easily as with delays as shown
in [14].

The mixed-type problems discussed later in Sect. 4.2.3 also involve advances.

4.2.2 Neutral Systems

Neutral delay systems have both a delayed state and delayed state derivatives. Such
systems appear in a variety of biological models [46] and in problems with networks



The Flexibility of DAE Formulations 45

with lossless transmission lines [42]. While neutral equations are not immediately
in the form of (4.1b), (4.1c), in practice many of them can be written in the required
form. For example, given a neutral equation which is linear in the derivatives,

Px C BPx.t � r/ D F1.t; x; x.t � s/; u; u.t � �// (4.11a)

0 D F2.t; x; x.t � s/; u; u.t � �//; (4.11b)

we could let z D x C Bx.t � r/ and get the larger DDAE

Pz D F1.t; x; x.t � s/; u; u.t � �// (4.12a)

0 D F2.t; x; x.t � s/; u; u.t � �// (4.12b)

0 D z � x � Bx.t � r/; (4.12c)

which is in a form that we can handle. Again note that the DAE (4.12a), (4.12c)
results even if the original problem was not a DAE and only the ODE (4.11a).

We illustrate the reformulation of a neutral system (4.13) with a nonlinear
biological model from [101]. This particular example is not a control problem so
just a solution of the delayed equation is sought,

d

dt
Œx � 1

2
x.t � r/� D cos.4t/x C 2 sin.4t/x.t � r/� 4Œx � 1

2
x.t � r/�2:

(4.13)

We rewrite (4.13) as the nonlinear DDAE in x; z

Pz D cos.4t/x C 2 sin.4t/x.t � r/ � 4z2 (4.14a)

0 D z � x C 1

2
x.t � r/: (4.14b)

As in [101] we take r D 0:3, the interval of interest to be Œ0; 4�, and the prehistory
in x to be x D 1 for t 2 Œ�0:3; 1� and z.0/ D 1

2
. The solution found is given in

Figs. 14 and 15.

4.2.3 Mixed-Type

Mixed-type or forward-backward systems have both delays and advances in the
equations. These types of systems arise as the necessary conditions for optimal
control problems with state delays and as models in a number of applications [43].
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Fig. 14 State trajectory for neutral problem (4.13) using DDAE formulation (4.12)
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Fig. 15 z for the neutral delay problem (4.13) using DDAE formulation (4.14)

As an illustration of a mixed-type problem we use one example from [43]
which is

Example 4.1

Px D cx C 2x.t � 1/C 3x.t C 1/; 0 � t � 3 (4.15a)

x D e3t; �1 � t � 0 (4.15b)

x D e3t; 3 � t � 4; (4.15c)

with c D 3 � 2e�3 � 3e3.
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This example was constructed so that the solution is e3t. The software reformu-
lates (4.15a) as a DDAE in x; z;w.

Px D cx C 2z C 3w; (4.16a)

0 D z � x.t � 1/; (4.16b)

0 D w � x.t C 1/: (4.16c)

To illustrate how a mixed-type problem arises when using the necessary condi-
tions consider the state delay optimal control problem

Px D Ax C Cx.t � r/C Bu; (4.17)

with cost

1

2

Z b

a
xTQx C uTRu dt:

Then the necessary conditions which hold almost everywhere in Œa; b� are

Px D Ax C Cx.t � r/C Bu; (4.18a)

�P� D Qx C AT�C �Œa;b�r�.t/C
T�.t C r/ (4.18b)

0 D Ru C BT� (4.18c)

�.b/ D 0 (4.18d)

u D  ; t 2 Œa � s; a/ (4.18e)

x D �; t 2 Œa � r; a�; (4.18f)

where �Œa;b�r�.t/ is the characteristic function of the interval Œa; b � r�. That is,
�Œa;b�r�.t/ D 1 if t is inside the interval and zero otherwise. If R is invertible, which
frequently occurs when there are no control constraints, system (4.18) can be written
more succinctly as

Px D Ax C Cx.t � r/ � BR�1BT�; (4.19a)

�P� D Qx C AT�C CT�.t C r/ (4.19b)

� D 0; t 2 Œb; b C r� (4.19c)

x D �; t 2 Œa � r; a�: (4.19d)

If instead of the linear problem given here, the nonlinear problem equivalent
of (4.18c) is nonlinear in u, then it might be preferable to consider the original
DDAE (4.18a)–(4.18c) instead of (4.19).
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Note that the system composed of (4.18a) through (4.18c) forms a mixed-type
delay.

Another way that mixed-type problems arise is from problems involving integral
operators with varying integration range. Consider for example, the operator


 D
Z tCb

t�a
g.t; x; u/dt; (4.20)

which looks like an averaging operator. This operator can be replaced by the system

Pz D g.t; x; u/ (4.21a)


 D z.t C b/� z.t � a/ (4.21b)

and appropriate initial and terminal conditions.

4.2.4 Mixed-Type Neutral

By repetitively utilizing the above types of transformations a user can transform
more complicated systems into ones that fit our formulation. Consider a system in
which there are both past and future derivatives of state variables of the form

APx.t � r/C BPx C CPx.t C s/ D F; (4.22)

where F depends on t and present, past, and future values of x; u. Then as before
with the neutral equations, let z D Ax.t � r/C Bx and (4.22) becomes

Pz C CPx.t C s/ D F (4.23a)

z D Ax.t � r/C Bx: (4.23b)

Repeating the process on (4.23) with w D z C Cx.t C s/ we get the delayed DDAE

Pw D F (4.24a)

z D Ax.t � r/C Bx (4.24b)

w D z C Cx.t C s/; (4.24c)

which is now in the correct form for our software.
This example also illustrates how the rewriting to get a delayed DAE in the

correct form is often not unique. For example, instead of (4.24) we could have gotten

Pw D F (4.25a)

z D Bx C Cx.t C s/ (4.25b)

w D z C Ax.t � r/ (4.25c)
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or

Pw D F (4.26a)

w D Ax.t � r/C Bx C Cx.t C s/: (4.26b)

The examples given all had continuous solutions. Smoothness was not required.
If there is a loss of smoothness (discontinuity of the derivative), then the software
just refines the grid near the discontinuity of the derivative. This is seen in some of
the computational grid plots. If there is a discontinuity in the solution, and it is a
jump discontinuity, then we often get a good idea of what the optimal solution looks
like but there will be some computational noise near the jump. This is like what
happens with bang-bang controls. Bang-bang controls can often be best solved for
using phases.

A numerical difficulty arises with control delays and nonuniform grids which are
needed for some problems. A shown in (4.2c), (4.2d) both delayed differential and
algebraic variables are handled in the same way. Additional variables denoted v;w
in (4.2c), (4.2d) are introduced. This produces no observed difficulty in the solution
of state delayed problems in the numerous examples solved to date. However,
with the delayed controls the relationship (4.2d) can lead to some free variables
in the optimization of the discretized NLP problem. This is carefully examined and
illustrated in [15, 92].

An approach called EIC (Exogenous Input Parameterization) for dealing with
this problem has been presented in [13]. Simply put EIC turns the algebraic variable
of interest into a differential variable by adding dynamics w0 D z and lightly
weighting z in the cost. Computational examples suggest that EIC can be very
useful. Mathematical analysis and algorithm development of the EIC method is
given in [15, 92]. Some issues remain. While this explains why there are problems
with control delays and gives a way to address them, we are also in the process
of explaining precisely why state variable delays are handled so much better than
control delays. The key appears to be in the different types of interpolation that are
involved in determining delayed state values as opposed to delayed control values.

In working with non-delayed optimal control problems the ability to formulate
the problem as having several phases is often very helpful. We are looking at
the problem of implementing phases within the delay setting. However, doing so
in a naive way can destroy the sparsity which is so important for efficiency in
implementing direct transcription approaches.

Often optimal control problems with delays have places of reduced smoothness.
An optimal control model that describes the immune response of a pathogenic
disease process is developed in Stengel, Ghigliazza, Kulkarni, and Laplace and
illustrates a loss of smoothness [91]. The goal is to minimize the therapeutic
treatment cost quantified by

F D 1

2

�
x21.tf /C x24.tf /

	C 1

2

Z tf

0

x21 C x24 C kuk2 dt (4.27)
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subject to the nonlinear delay equations

Px1 D .a11 � a12x3/x1 C b1u1; (4.28a)

Px2 D a21.x4/a22x1.t � r/x3.t � r/� a23.x2 � x�
2 /

Cb2u2; (4.28b)

Px3 D a31x2 � .a32 C a33x1/x3 C b3u3; (4.28c)

Px4 D a41x1 � a42x4 C b4u4: (4.28d)

For 0 � t � tF D 10 with state delay r D 1, and startup functions given by

x1.t/ D 0 � r � t < 0 (4.28e)

x3.t/ D 3 � r � t < 0: (4.28f)

Define

a21.x4/ D
�

cos�x4 if 0 � x4 � 1
2
;

0 if 1
2

� x4
(4.28g)

x.0/ D Œ3 ; 2; 4=3; 0�T : (4.28h)

The problem coefficients are defined as a11 D 1; a12 D 1; a22 D 3; a23 D 1; a31 D
1; a32 D 1:5; a33 D 0:5; a41 D 1; a42 D 1; b1 D �1; b2 D 1; b3 D 1; b4 D
�1; x�

2 D 2. Note that a21 is not differentiable at x4 D 0:5.
The graphs of the optimal control and state trajectories are in Figs. 16 and 17

respectively.

Fig. 16 Optimal control for
the state delay problem (4.28)
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Fig. 17 Optimal state trajectories for the state delay problem (4.28)
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Fig. 18 Second to last grid for (4.28)

The state trajectory x4 starts at zero and rises above 0.5. The corners in the other
two state trajectories correspond to when x4 crosses 0.5 again. The solution was
verified by setting up a method of steps formulation with no delays and solving that
problem. Solution of the method of steps formulation took 8.5 s. Solution of the
delay problem by SOCX took 0.95 s. This and all other computations in this paper
were done on a server consisting of dual 3 GHz quad core Intel Xeon processors (8
total cores) with 8 GB RAM. The final automatically generated grid had 192 points.
The default of two iterations with TR and then switching to HS was followed.

The grid refinement strategy results in highly nonuniform grids. The initial grid
for (4.28) was 10 uniformly spaced points. The final automatically generated grid
was 192 points. Since it is easier to visualize, the second to last grid which had
83 points is plotted in Fig. 18. Note that the grid plotted in Fig. 18 has many more
points near the beginning when the solutions are changing rapidly. In particular, the
grid is very fine near the corners on the solution graphs.
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Another example from [16] but with piecewise states is based on the hydraulic-
transients model Example 2.1 from [95] except that we take specific parameter
values.

Ex0 D Mx C Nx.t � 1/ (4.29a)

x1.0/ D 3 (4.29b)

x2.t/ D 1; �1 < t � 0 (4.29c)

x3.t/ D 2; �1 � t � 0 (4.29d)

E D
2
4
1 0 0

0 0 0

0 0 0

3
5 ; M D

2
4

�2 0 0

0 �1 0

0 0 �1

3
5 ; N D

2
664
0 0 2

0 0 �1
4

0 �1 0

3
775 : (4.29e)

This problem is solved with SOCX. Figure 19 shows the solution using the
Hermite Simpson discretization and a step of h D 0:22. This value of h was chosen
to not divide the delay evenly. Figure 20 shows the solution with h D 0:1

With direct transcription the problem of points of reduced order at points of
reduced continuity is handled by the grid getting to be very fine near the reduced
continuity point and thus its contribution is very marginal. The sophisticated grid
refinement strategy of SOCX estimates the error along the whole solution and then
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Fig. 19 States x1; x2; x3 of (4.29) using HS with constant stepsize h D 0:22
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Fig. 20 States x1; x2; x3 of (4.29) using HS with constant stepsize h D 0:1
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Fig. 21 Iteration 3 grid when solving (4.29) with TR and initial uniform stepsize h D 0:22 on
[0, 10]

iteratively adds additional grid points where they are needed. Figure 21 shows the
computational grid on [0; 10] for (4.29). This is the grid from iteration 3 with
Trapezoid when the error was down to 10�5. Note the highly nonuniform nature of
the grid. The grid becomes much sparser to the right since although the some of the
state variables continue to have discontinues these discontinuities have magnitude
below the computational accuracy and thus can be ignored.

4.2.5 Delayed DAEs and RK Method Stability

In concluding, we give one more example where the combination of direct
transcription and DAEs gives greater flexibility in the choice of discretization than
one would expect based on the numerical initial value DAE theory. This discussion
is from [16].

Consider the neutral delay DAE, or NDDAE,

EPx D Lx C Mx.t � �/C N Px.t � �/; t � 0 (4.30a)

x D �; �� � t � 0; (4.30b)

where fE;Lg is a regular pencil, that is det.	E C L/ ¤ 0 for some scalar 	. Also the
delay variable � > 0.

Numerical methods and preservation of stability of delay problems are studied
in [60, 93–95]. Theorem 2.4 of [95] gives three conditions that jointly imply
delay-independently asymptotically stable. They then give formulas for Lagrange
interpolation for delayed quantities based on three parameters ˛; ˇ;m. A numerical
method is then defined to be NAGP-stable if for systems meeting the assumptions
of their Theorem 2.4, the coefficient matrix of the Runge-Kutta method is invertible,
and the numerical solutions of the homogenous system goes to zero for consistent
initial conditions whenever ˇ � m C 1.
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Then for our purposes the key result from [93] is that if the Lagrange interpola-
tion satisfies ˛ � ˇ � ˛C2 and m � ˇC1, then the numerical processes generated
by the Gauss, Lobatto IIIA, and Lobatto IIIB methods combined with the Lagrange
interpolation are not NAGP-stable. The numerical processes generated by the Radau
IA, Radau IIA, and Lobatto IIIC methods combined with the Lagrange interpolation
are NAGP-stable. An example is given for a delayed DAE for which the instability
holds.

The trapezoid and Hermite Simpson methods we have discussed earlier are
Lobatto IIIA methods. The cited results would seem to suggest that these two
methods would not be good choices for some delay problems. However, when the
same examples from [93] are solved with SOCX asymptotically stable solutions
are computed. There are two reasons for this. One is that our interpolation is a bit
different that of [93] in how we compute prior values. However, experimentation
shows that is not the primary reason. The difference lies in using the boundary value
like direct transcription as opposed to an initial value approach. This is another
example where one cannot just apply initial value theory to understanding the
numerical behavior of direct transcription codes.

5 Conclusion

We have seen that allowing for the consideration of DAEs provides greater flexibility
in solving a number of problems especially those in control and simulation. This
is true for both ODE and DAE modeled processes. This flexibility has even more
uses and advantages when it is combined with a direct transcription approach.
Examples have included design of observers with linear error dynamics, estimation
of disturbances, optimal control of high index dynamics, fault detection with DAE
models, inequality constrained optimal control problems, and solving a variety of
delayed optimal control problems.

Partial differential equations (PDEs) often have a boundary value type behavior
in part to their solution. There has been some work on PDAEs, that is partial
differential algebraic equations. The flexibility illustrated for delay DAEs carries
over to PDAEs and many types of PDEs and PDAEs can be incorporated once a
PDAE framework is included. A discussion of this is outside the scope of this paper.
Such a survey would be of great interest, but the author is not the best person to
write it. We note only [21, 55, 64, 67–69, 71–74, 99].
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in the sense that they concern the parametric solutions of a DAE model over a
potentially large range of model parameters, rather than locally about a single value.
Many techniques are available for computing such global information for functions
known in closed-form (i.e., factorable functions). Two of the simplest and most
flexible techniques are interval arithmetic and McCormick’s relaxation technique.
The methods reviewed herein extend these techniques to functions defined as
the solutions of DAE models, which are notably non-factorable. In doing so, we
repeatedly exploit the idea that the factorable representations of the DAE governing
equations, combined with insights from dynamical systems theory, can be used to
infer global information about the DAE solutions. This concept is first used to derive
methods for computing interval bounds and more general convex enclosures of the
solutions of DAE models over a range of model parameters. Subsequently, these
enclosures are employed in a branch-and-bound algorithm for deterministic global
dynamic optimization with DAE’s embedded. The article closes with an illustrative
case study in parameter estimation and some prospects for future work.

Keywords Convex relaxations • Dynamic optimization • Global optimization •
Interval methods • Reachability analysis

MSC: 93B03, 90C26, 34A09, 34A40, 34A60, 49J15, 49M37

J.K. Scott (�)
Department of Chemical and Biomolecular Engineering, Clemson University, Clemson,
SC 29609, USA
e-mail: jks9@clemson.edu

P.I. Barton
Department of Chemical Engineering, MIT, Cambridge, MA 02139, USA
e-mail: pib@mit.edu

© Springer International Publishing Switzerland 2015
A. Ilchmann, T. Reis (eds.), Surveys in Differential-Algebraic Equations III,
Differential-Algebraic Equations Forum, DOI 10.1007/978-3-319-22428-2_2

61

mailto:jks9@clemson.edu
mailto:pib@mit.edu


62 J.K. Scott and P.I. Barton

1 Introduction

Systems of differential-algebraic equations (DAEs) are used to model an incredible
variety of dynamic phenomena. In the chemical process industry in particular,
the numerical simulation of detailed DAE models has become a cornerstone of
many core activities including process development, economic optimization, control
system design, and safety analysis.

The purpose of this article is to review recent progress in numerical methods
for the reachability analysis and deterministic global optimization of DAE models.
These problems are highly interrelated, and are global problems in the sense that
they concern the parametric solutions of a DAE model over a potentially large
range of model parameters, rather than locally about a single value. This global
information makes it possible to address a number of challenging problems in the
design and control of chemical processes, thus motivating significant development
of these techniques within the chemical engineering community over the past
decade.

Given a DAE model, the reachable set at time t is defined to be the set of all
states that can be reached by a solution of the DAEs at time t given initial conditions
and model parameters in some specified sets. Reachability analysis generally refers
to the characterization of this set. In modern process control, the computation of
approximations or enclosures of reachable sets is an active area of research and
finds quite extensive application. Such computations have been used, for example,
for state estimation from online measurements in chemical and biological processes
[54, 63, 64], feedback controller synthesis [46, 61], robust model predictive control
[38, 39], and fault detection for chemical processes [33, 43]. Reachable sets also
provide a means to quantify the effects of uncertainties in model parameters or
inputs. A particular example of interest comes from models of chemical reaction
kinetics, where the rate parameters are often only known to within an order of
magnitude or worse [72, 88]. Since these models are nearly always nonlinear, the
effects of such uncertainty on the model solution can be extremely difficult to infer.
Reachable set enclosures have been applied in this context for uncertain chemical
kinetics models [76, 88], ecology models [26, 42], and biological systems [54, 64].

A large variety of methods have been developed for computing enclosures
of the reachable sets of dynamic systems. However, the vast majority of these
methods apply only to systems of explicit ordinary differential equations (ODEs),
rather than to DAEs, and often under further simplifying assumptions. For linear
ODEs, enclosures are typically computed in the form of ellipsoids [37, 73] or
polytopes [3, 14]. Many of these methods have been extended to treat nonlinear
ODEs using local linearizations with a rigorous bound on the approximation error
[4, 13]. However, a more efficient and widely used approach for nonlinear systems
is to compute time-varying interval enclosures of the reachable set, either through
interval Taylor series methods [57, 58] and their refinements [9, 31, 42], or through
the solution of differential inequalities [26, 64, 76, 80, 87].
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Two methods have been proposed for extending interval bounding methods for
ODEs to the case of semi-explicit index-one DAEs [65, 78, 79]. In both methods,
the addition of implicit algebraic equations is addressed through the use of interval
Newton methods [59]. The methods differ in the treatment of the differential states,
which is done using interval Taylor series methods in [65] and using differential
inequalities in [78, 79]. In this article, we review the essential concepts and results
from [78, 79], keeping in mind that the treatment of the algebraic equations is
conceptually similar to that in [65]. Two further approaches that we do not review
here can be found in [16, 28]. The method in [28] applies to implicit ODEs and
could potentially be extended to treat semi-explicit DAEs. The method in [16]
extends so-called level set methods for ODEs [51] to the case of semi-explicit index-
one DAEs. However, methods of this type are designed to provide an accurate
approximation of the reachable set, rather than a rigorous enclosure of it, and are
therefore inappropriate for the applications of primary interest here.

Recently, it has been shown that generic convex enclosures of the reachable
set can be characterized by convex and concave relaxations of the state variables
with respect to the model parameters [75]. These relaxations are customarily used
for solving global dynamic optimization problems, as discussed below. In the
case of nonlinear ODEs, numerous methods for computing state relaxations have
been developed over the past decade, exclusively within the chemical engineering
community [62, 70, 71, 77, 82, 84, 87]. These methods require interval enclosures
as input, and can therefore be thought of as refinements of these enclosures.
Empirically, convex and concave state relaxations are known to provide tighter
enclosures than the underlying interval methods, and have superior convergence
behavior. Of the methods above, those in [82, 84] have been extended to semi-
explicit index-one DAEs in [74, 81]. The main concepts of these approaches are
reviewed herein.

The second problem addressed in this article is the global solution of dynamic
optimization problems constrained by DAE models. Specifically, these are optimiza-
tion problems in which the decision variables appear as parameters or control inputs
in a DAE model, and the solution of this model in turn appears in the objective
and constraints of the optimization problem. If control inputs are present among
the decision variables, these problems are also commonly called optimal control
problems. Dynamic optimization problems arise in a wide variety of applications.
In the chemical process industry, dynamic optimization techniques are routinely
used to locate optimal process designs, operating conditions, and control actions.
For example, open-loop control of batch processes can be formulated as a dynamic
optimization problem and has been widely studied in this context, particularly with
application to high-value added industries such as specialty chemicals, pharmaceu-
ticals, and bioprocessing [10, 47, 90]. Dynamic optimization problems also arise
when considering processes with periodic dynamic behavior, such as pressure swing
adsorption and simulated moving bed chromatography [19, 34]. Even for processes
that are nominally operated at steady-state, several important problems require
dynamic optimization, including the determination of optimal start-up and shut-
down procedures [8, 12] and optimal policies for changeover from one product to
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another [25]. A more fundamental application is the problem of estimating unknown
parameters in a dynamic model from a given set of data [40, 55, 88]. Here, the model
parameters are the decision variables, and the optimization algorithm finds those
parameters which minimize the deviation of the model prediction from the measured
data. This problem is extremely important, for example, for the determination of
chemical reaction mechanisms from kinetic data [55, 88].

Solving dynamic optimization problems to local optimality is a very mature
technology and can be done efficiently even for large and complex DAE models.
The methods used in most modern codes can be classified as either sequential or
simultaneous. In both approaches, any control inputs among the decision variables
are first discretized through a procedure called control parameterization [93]. In
the simultaneous approach, the DAEs themselves are also discretized, typically
by collocation on finite elements [11, 17, 94]. This provides a representation of
the state and control functions in terms of finitely many real parameters, so that
the resulting optimization problem is a standard nonlinear program (NLP) on a
Euclidean space with a large system of equality constraints approximating the
original DAEs. This procedure makes standard methods in nonlinear programming
applicable in principle, but typically generates very large-scale NLPs. On the
other hand, the resulting NLPs are also highly structured, and the development
of specialized interior point algorithms over the past several years has made this
approach attractive for many problem classes [11].

In contrast, the sequential approach makes use of state-of-the-art dynamic
simulation software to embed the DAE solution in the evaluation of the objective
and constraint functions. This again leads to a standard NLP, with the caveat that
the objective and constraint functions are not known explicitly as functions of the
decision variables, but rather are evaluated by numerical solution of the embedded
DAEs. The primary advantage of this scheme is that the resulting NLP is potentially
much smaller than the NLP generated through the simultaneous approach because
no decisions are introduced through discretization. On the other hand, the objective
and constraint functions of this NLP, as well as their derivatives, can be costly to
evaluate and have limited accuracy due to the embedded simulation. Nonetheless,
this approach has become quite powerful due to the development of efficient and
robust methods for numerical integration and sensitivity analysis of DAE systems
[6, 24, 27, 49].

In general, local dynamic optimization algorithms require much less compu-
tational time than global algorithms. Unfortunately, local algorithms can only
guarantee globally optimal solutions under restrictive convexity assumptions which
are often violated in practical applications. For example, it has been shown that
dynamic optimization problems arising in chemical engineering applications are
very commonly nonconvex and exhibit multiple suboptimal local minima, espe-
cially when nonlinear models of chemical reaction kinetics are involved [45, 55].
The search for global solutions is well motivated in many such applications. One
need only consider the problem of maximizing the profitability of a process.
Clearly, a significant economic penalty may be incurred by designing and operating
such a process according to a suboptimal local solution [85]. However, other
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applications pose more serious problems. In parameter estimation problems, one
is often interested in determining whether a model, equipped with its best fit
parameter estimates, is consistent with measured data according to a statistical
significance test. However, if only locally optimal parameter estimates are available,
any conclusions drawn from such an analysis are dubious [52, 88].

One approach for solving dynamic optimization problems globally is the so-
called dynamic programming approach, based on Bellman’s principle of optimality
[7]. However, this requires the solution of a boundary value problem in PDEs that
becomes intractable for systems with many states [93]. Thus, more versatile algo-
rithms have been developed as global extensions of the sequential and simultaneous
approaches discussed above. Since both of these methods involve a reformulation
of the original dynamic optimization problem to a standard NLP on a Euclidean
space, the main idea is to combine these reformulations with the spatial branch-
and-bound (B&B) global optimization framework for NLPs [67]. In the case of
the simultaneous approach, this is conceptually straightforward [15, 21]. However,
spatial B&B has worst-case exponential scaling in the number of decisions, which
is problematic for the large-scale NLPs generated by the simultaneous approach.
As a result, recent efforts in global dynamic optimization have primarily focused
on the sequential approach. However, for this approach the application of spatial
B&B is challenging. In particular, the objective and constraint functions in the
resulting NLP are not known explicitly, but rather are defined implicitly through
the solution of the embedded dynamic system, and this fact precludes the use of
standard lower bounding procedures in the spatial B&B algorithm (see Sect. 7.1). In
fact, establishing a valid lower bounding procedure for the sequential formulation
requires a method for computing an enclosure of the reachable set, thus establishing
the fundamental connection between global dynamic optimization and reachability
analysis.

The first method for overcoming this problem was proposed in [20] using a lower
bounding procedure based on a dynamic extension of the ˛BB method [1] known as
ˇBB. However, the validity of the procedure depends on a user specified parameter,
which must exceed a threshold value that is not known in general. This procedure
was first made generally valid in [62] using an interval-based reachable set enclosure
method. Notably, this method applies only to embedded ODE systems. In [86, 89],
an alternative method was proposed based on the use of convex and concave
relaxations of the state variables in the underlying reachability computation. Lin
and Stadtherr proposed a further method in [41] using a sophisticated variant of
the interval Taylor series reachable set enclosure methods discussed above [42].
Developments in this area are ongoing and have been primarily focused on improved
state relaxation techniques for use in the spatial B&B algorithm [30, 70, 71, 82, 84].
Recently, the state relaxation methods in [82, 84] have been extended to treat
semi-explicit index-one DAEs in [74, 81], making it possible to solve dynamic
optimization problems with DAEs embedded to guaranteed global optimality for
the first time. The essential features of this optimization algorithm are reviewed
herein.
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The purpose of this article is to give a self-contained review of the major con-
cepts and tools necessary to address reachability analysis and global optimization
problems for DAE systems. The problems considered here are stated formally in
Sect. 2. In Sect. 3, the basic tools for computing global information about a given
function, such as interval bounds and convex and concave relaxations, are presented
for functions known explicitly in closed-form. The essential concepts here are the
factorable representation of a function and its natural interval and McCormick
extensions. These concepts are applied in Sect. 4 to obtain methods for bounding
and relaxing the parametric solutions of systems of nonlinear algebraic equations.
This is a direct prerequisite for treating differential-algebraic systems in subsequent
sections, and is also the first example of a reoccurring theme: global information can
be obtained for non-factorable functions that are defined as the solutions of equation
systems with factorable governing equations. In Sects. 5 and 6, this theme is taken
further to provide bounds and relaxations of the parametric solutions of DAEs.
With these reachability algorithms as the enabling technology, global dynamic
optimization is considered in Sect. 7. A numerical case study is presented in Sect. 8,
and concluding remarks are given in Sect. 9.

Finally, we note that this review is intended as a tutorial overview of the specific
results of several recent papers by the authors, rather than a high level survey of a
large body of literature. This is primarily because the field is nascent, and with few
exceptions noted above, the material reviewed here is the only available approach.
At the same time, alternative approaches for problems with ODEs that seem likely
to have fruitful extensions to DAEs are based on such similar foundational concepts
that this review should serve as a useful introductory reference for them as well. In
their original published form, the results and methods reviewed herein are presented
in a highly technical manner, and are distributed among several papers in such a
way that their synthesis into complete algorithms is difficult to appreciate. Thus, our
intent is to provide a clear but thorough introduction that will encourage and direct
further research into reachability and global optimization problems with nonlinear
DAE models.

2 Problem Formulation

2.1 Notation

In the remainder of this article, vector quantities are denoted in bold, while scalar
quantities are written without emphasis. For any v 2 R

n, the standard p-norms are

denoted by kvkp D �Pn
iD1 jvijp

	1=p
, 1 � p < 1, and kvk1 D maxi jvij. For

v;w;u 2 R
n, the order relations v � w and v < w denote that these relations

hold component-wise. Similarly, min.v;w/ and max.v;w/ denote the vectors with
components min.vi;wi/ and max.vi;wi/, respectively, and mid.v;w;u/ denotes the
vector where each component is the middle value of vi, wi, and ui. Let Ck.D;Rm/
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denote the set of k-times continuously differentiable functions from D into R
m. For

Ds � R
ns , Dr � R

nr , and ` 2 Ck.Ds � Dr;R
m/, let @`

@r .Os; Or/ denote the Jacobian
matrix of `.Os; �/ at Or 2 Dr.

2.2 Semi-explicit Index-One DAEs

This article considers exclusively the initial value problem in semi-explicit index-
one DAEs

Px.t;p/ D f.t;p; x.t;p/; y.t;p//
0 D g.t;p; x.t;p/; y.t;p//

�
; (2.1a)

x.t0;p/ D x0.p/; (2.1b)

where t is the independent variable, p is the vector of problem parameters, Px.t;p/
denotes the derivative of x.�;p/ at t, t0 is the initial time, and x0 specifies the
parametric initial conditions. It is assumed that f 2 C1.Dt � Dp � Dx � Dy;R

nx/,
g 2 C1.Dt � Dp � Dx � Dy;R

ny/, and x0 2 C1.Dp;Dx/, where Dt � R, Dp � R
np ,

Dx � R
nx , and Dy � R

ny are open sets. A function .x; y/ 2 C1.I � P;Dx/ �
C1.I � P;Dy/ is called a solution of (2.1) on I � P � Dt � Dp if (2.1) holds for all
.t;p/ 2 I � P.

The special form of the DAEs (2.1) is called the semi-explicit form. In addition
to considering this special form, we will further restrict our attention to index-one,
or regular solutions (although it is customary to refer to a DAE system as index-one
or high-index, the differential index is actually a property of solutions). A solution
.x; y/ 2 C1.I � P;Dx/ � C1.I � P;Dy/ is called an index-one solution, or a regular
solution, if

det
@g
@y
.t;p; x.t;p/; y.t;p// ¤ 0; 8.t;p/ 2 I � P: (2.2)

Note that, for any regular solution of (2.1) on I � P, a single differentiation of the
algebraic equations g gives the underlying ODEs

Px.t;p/ D f.t;p; x.t;p/; y.t;p//; (2.3)

Py.t;p/ D �
�
@g
@y


�1  
@g
@x

f.t;p; x.t;p/; y.t;p//C @g
@t

!
; (2.4)

for all .t;p/ 2 I � P, where all derivatives of g are evaluated at .t;p; x.t;p/; y.t;p//.



68 J.K. Scott and P.I. Barton

The DAEs (2.1) have the following existence and uniqueness properties (see
Theorems 4.13 and 4.18 in [36]):

• Given any point .t0; Op; Ox0; Oy0/ such that x0. Op/ D Ox0, g.t0; Op; Ox0; Oy0/ D 0,
and det @g

@y .t0; Op; Ox0; Oy0/ ¤ 0, there exists a regular solution .x; y/ of (2.1)
defined on some sufficiently small open ball around .t0; Op/ and satisfying
.x.t0; Op/; y.t0; Op// D .Ox0; Oy0/.

• If .x; y/ and .x�; y�/ are solutions of (2.1) on I � P, .x; y/ is regular, P is
connected, and there exists Op 2 P such that y.t0; Op/ D y�.t0; Op/, then x.t;p/ D
x�.t;p/ and y.t;p/ D y�.t;p/, 8.t;p/ 2 I � P.

In order to guarantee that (2.1) has a unique regular solution, the conditions above
suggest that we must add a further specification on the initial condition of the form
y.t0; Op/ D Oy0. Indeed, without this condition, it is possible for (2.1) to have multiple
solutions, even if both solutions are regular. The regularity only implies that any two
such solutions must be completely isolated from one another (i.e., they cannot both
satisfy y.t0; Op/ D Oy0). The following example illustrates the need for this condition.

Example 2.1 Let I � Œ0; ı� � Dt D R, Dp D ;, Dx D Dy D R, and define
g.t; zx; zy/ D z2y � zx. With fixed initial condition x0 D 1 at t0 D 0, there are two
possible values for y.t0/ satisfying g.t0; x.t0/; y.t0// D 0; y.t0/ D 1 and y.t0/ D �1.
Letting f .t; zx; zy/ D 1, clearly x.t/ D 1 C t satisfies Px.t/ D 1 D f .t; x.t/; y.t//
for any y W I ! R. However, both y.t/ D p

1C t and y.t/ D �p
1C t result in

g.t; x.t/; y.t// D .y.t//2 � x.t/ D 0. In particular, y.t/ D p
1C t satisfies (2.1) with

the additional specification y.t0/ D 1, while y.t/ D �p
1C t satisfies (2.1) along

with the additional specification y.t0/ D �1.

2.3 Reachable Set Enclosures

This article considers two types of enclosures of the reachable set of (2.1). The
first type of enclosure, discussed in Sect. 5, is an interval enclosure described by
component-wise upper and lower bounds on each state. In particular, let I D Œt0; tf �,
let P be a compact, convex set, and let .x; y/ be a regular solution of (2.1) on I � P.
Then, our objective is to compute functions xL; xU W I ! R

nx and yL; yU W I ! R
ny

such that

xL.t/ � x.t;p/ � xU.t/ and yL.t/ � y.t;p/ � yU.t/; 8.t;p/ 2 I � P:
(2.5)

These functions are referred to as state bounds for the solution .x; y/. An interesting
feature of the methods discussed is that the existence of a unique regular solution
satisfying the given initial data need not be assumed; it can be verified computation-
ally by the bounding method.
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The second type of reachable set enclosure, discussed in Sect. 6, is characterized
by convex and concave relaxations. Recall that, for D � R

n convex, a vector
function w W D ! R

m is called convex if each component is convex; i.e.,

w.�z1 C .1 � �/z2/ � �w.z1/C .1 � �/w.z2/; 8.�; z1; z2/ 2 Œ0; 1� � D � D;

and it is called concave if the opposite (weak) inequality holds. For arbitrary w W
D ! R

m with D convex, the functions wcv;wcc W D ! R
m are called convex and

concave relaxations for w on D, respectively, if wcv is convex on D, wcc is concave
on D, and

wcv.z/ � w.z/ � wcc.z/; 8z 2 D: (2.6)

Returning to (2.1), given a regular solution .x; y/ on I � P, our objective is to
compute functions xcv; xcc W I � P ! R

nx and ycv; ycc W I � P ! R
ny such that

xcv.t;p/ � x.t;p/ � xcc.t;p/ and ycv.t;p/ � y.t;p/ � ycc.t;p/; (2.7)

for all .t;p/ 2 I � P, and, for each t 2 I, xcv.t; �/ and ycv.t; �/ are convex on P, and
xcc.t; �/ and ycc.t; �/ are concave on P. These functions are called state relaxations
for .x; y/ on I�P. In Sect. 6, it will be shown that these relaxations describe a convex
enclosure of the reachable set that can be outer-approximated by a polytope of any
desired complexity [75]. State relaxations often provide a tighter enclosure of the
reachable set than do state bounds. Moreover, state relaxations are better suited for
use in a global dynamic optimization algorithm, as will be shown in Sect. 7.

2.4 Global Dynamic Optimization

The second problem considered in this article is the global solution of the dynamic
optimization problem

min
p2P

�.p; x.tf ;p/; y.tf ;p//

s:t: �.p; x.tf ;p/; y.tf ;p// � 0:
(2.8)

Above, � and � are continuous functions of the form .�;�/ W Dp � Dx � Dy !
R�R

nc , and .x; y/ satisfies (2.1) on I �P, along with the additional initial condition

y.t0; Op/ D Oy0; (2.9)
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where Op 2 P and Oy0 2 Dy satisfy g.t0; Op; x0. Op/; Oy0/ D 0 and det @g
@y .t0; Op; x0. Op/;

Oy0/ ¤ 0. Note that x and y are well-defined functions of .t;p/ 2 I � P only if the
solution of (2.1) with (2.9) exists and is unique for all .t;p/ 2 I � P. As discussed in
Sect. 2.2, the condition (2.9) ensures local existence. For (2.8) to be well-posed, it is
assumed that a solution exists on all of I � P. Given this assumption, (2.9) ensures
uniqueness on I � P. In most applications, there is a consistent initial condition of
interest, so that the specification (2.9) is easily made. On the other hand, if one is
interested in an optimization problem that considers all possible solutions of (2.1),
then some additional method will be required for exhaustively enumerating such
solutions. No such method has yet been proposed in the literature.

As discussed in Sect. 1, there are many algorithms available for solving (2.8) to
local optimality. In contrast, our concern here is with algorithms that are guaranteed
to terminate finitely with an �-global optimum p�. In particular, for a user specified
� > 0, p� satisfies �.p�; x.tf ;p�/; y.tf ;p�// � 0 and

�.p�; x.tf ;p�/; y.tf ;p�// � �.p; x.tf ;p/; y.tf ;p//C �; (2.10)

for all p 2 P such that �.p; x.tf ;p/; y.tf ;p// � 0.
Note that (2.8) considers only optimization problems with a real vector of

decision variables p. Although many dynamic optimization problems take this form
(e.g., parameter estimation), there are also many problems of practical interest
involving continuous control inputs u.t/ as decisions. For such problems, the
methods discussed here can be used only after applying control parameterization.
Control parameterization refers to the approximation of the control inputs by
functions that can be characterized by a finite number of real parameters (e.g.,
polynomials, piece-wise affine controls, etc.). In most cases, control parameteri-
zation can be done with minimal error, and is common practice in state-of-the-art
dynamic optimization algorithms [93]. Nonetheless, the reader should note that the
guarantee of global optimality provided by the method discussed herein applies to
the parameterized problem (2.8), and any inferences about the original problem are
subject to the parameterization error. A method for overcoming this limitation in the
case of ODE embedded problems has recently been proposed in [30].

Without yet considering the details of solving (2.8) globally, it is possible
to intuitively appreciate the relationship between (2.8) and reachability analysis.
In short, a global solver must provide a guarantee that the located solution p�
minimizes the function �.�; x.tf ; �/; y.tf ; �// among all feasible p 2 P. Clearly such
a guarantee cannot be made unless one has characterized all possible values of
x.tf ; �/ and y.tf ; �/ that can be obtained with p 2 P, which is exactly the reachability
problem discussed in the previous section.
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The problem (2.8) admits several generalizations that we have omitted for
notational convenience:

1. Integral terms can be included in the objective and constraints; i.e.,

min
p2P

�.p; x.tf ;p/; y.tf ;p//C
Z tf

t0

 .s;p; x.s;p/; y.s;p//ds

s:t: �.p; x.tf ;p/; y.tf ;p//C
Z tf

t0

`.s;p; x.s;p/; y.s;p//ds � 0:

(2.11)

Problems of this type can always be recast in the form of (2.8) by introducing
quadrature variables as described in [74].

2. The objective and constraints may contain values of the states at multiple time
points t0; : : : ; tm 2 I:

min
p2P

�.p; x.t0;p/; : : : ; x.tm;p/; y.t0;p/; : : : ; y.tm;p//

s:t: �.p; x.t0;p/; : : : ; x.tm;p/; y.t0;p/; : : : ; y.tm;p// � 0:
(2.12)

The algorithm for solving (2.8) presented in Sect. 7 is easily extended to this case.
The restriction to final time terms only simplifies the notation.

3 Factorable Functions, Interval Arithmetic,
and McCormick Relaxations

Computing interval bounds and/or convex and concave relaxations of a given
function requires global information about that function. In general, local char-
acterizations of a function, such as its value or its derivative at a point, are not
enough. Rather, one requires information about the behavior of the function on the
entire domain of interest. An essential tool in this regard is the so-called factorable
representation of a function [50, 56]. Indeed, the primary complication in computing
the state bounds and state relaxations defined in Sect. 2.3 is that the parametric
solutions x.t; �/ and y.t; �/ are not known in closed-form, but rather are evaluated by
numerical integration. Because of this, they have no known factorable representation
to work from. Nonetheless, factorable representations, as well as the methods for
computing bounds and relaxations of them, will be central to the state bounding and
relaxation methods for DAEs presented in the following sections. Therefore, these
concepts are developed in detail in this section.

Informally, a function is called factorable if it can be written as a finite sequence
of simple operations, including basic arithmetic operations as well as intrinsic
functions available on a computer. For example, the function

h.s1; s2/ D 10s1 C s2e
s2 (3.1)
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is factorable because it can be evaluated for any .s1; s2/ 2 R
2 by executing the

following sequence of simple computations:

v1.s1; s2/ D s1;

v2.s1; s2/ D s2;

v3.s1; s2/ D 10v1.s1; s2/;

v4.s1; s2/ D exp.v2.s1; s2//;

v5.s1; s2/ D v2.s1; s2/ � v4.s1; s2/;
v6.s1; s2/ D v3.s1; s2/C v5.s1; s2/;

h.s1; s2/ D v6.s1; s2/:

Each of the intermediates vi is called a factor, and the factorable representation is the
sequence v1; : : : ; v6. In essence, any function written explicitly in computer code is
factorable.

To formalize the notion of a factorable function, we must first define the set
of operations that will be permissible in the sequence of computations defining
such functions. This set will contain binary addition, binary multiplication, and
elements of a library of univariate functions u W B � R ! R, denoted by L .
The elements of L will be used to represent functions such as

p
s, sn, es, sin s,

etc. Furthermore, L should include the negative and reciprocal functions �s and
1=s, so that subtraction and division can be achieved by combination with binary
addition and multiplication. Any univariate function of interest may be included in
L , provided that certain information related to bounding and relaxing u is available
(see Assumptions 3.1–3.2). This information has been collected for a large number
of common univariate operations in [83].

Definition 3.1 A function h W Ds � R
n ! R

m is factorable if it can be expressed
in terms of a finite number of factors v1; : : : ; vq W Ds ! R such that vi.s/ D si for
i D 1; : : : ; n, vk.s/ is defined for each n < k � q as either

(a) vk.s/ D vi.s/C vj.s/, with i; j < k, or
(b) vk.s/ D vi.s/vj.s/, with i; j < k, or
(c) vk.s/ D uk.vi.s//, with i < k, uk 2 L ,

and h.s/ D .vi.1/.s/; : : : ; vi.m/.s// for some indices i.1/; : : : ; i.m/ 2 f1; : : : ; qg.

3.1 Interval Arithmetic

For a; b 2 R, a � b, define the interval Œa; b� as the compact, connected set fx 2
R W a � x � bg. The set of all nonempty intervals is denoted IR. Intervals are
denoted by capital letters, S 2 IR. Since S is a subset of R, the notation s 2 S is
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well-defined. The set of n-dimensional interval vectors is denoted IR
n. In particular,

S 2 IR
n has elements Si 2 IR, i D 1; : : : ; n. Every S 2 IR

n can be regarded as a
subset of Rn defined by the Cartesian product S1 � : : : � Sn, so that s 2 R

n satisfies
s 2 S if si 2 Si, i D 1; : : : ; n. The set of n�m interval matrices is denoted IR

n�m and
defined analogously to IR

n; A 2 IR
n�m has elements Aij 2 IR, for all i 2 f1; : : : ; ng

and j 2 f1; : : : ;mg, and, for any A 2 R
n�m with elements aij, A 2 A if aij 2 Aij for

all indices i and j. For any D � R
n, let ID denote the set fS 2 IR

n W S � Dg. This
notation is also used for D � R

n�m.
If v;w 2 R

n and v � w, then Œv;w� denotes the n-dimensional interval Œv1;w1��
: : :� Œvn;wn�. Moreover, for any S 2 IR, the notation sL; sU 2 R

n will be commonly
used to denote the vectors such that S D ŒsL; sU�. The notation m.S/ denotes the
midpoint of S, m.S/ � 0:5.sLCsU/, and w.S/ denotes the width of S, w.S/ � sU�sL.
For A 2 IR

n�m, m.A/ and w.A/ are real-valued matrices defined analogously. For
any s 2 R

n, the singleton Œs; s� is called a degenerate interval.
The central task in interval analysis is to compute an interval which encloses the

range of a given function [56].

Definition 3.2 Let h W Ds � R
n ! R

m. An interval mapping H W IDs ! IR
m is

an inclusion function for h if h.S/ � H.S/, 8S 2 IDs, where h.S/ is the image of S
under h.

Typically, inclusion functions are derived from a simpler object known as an interval
extension. The function H is an interval extension of h if, for every s 2 Ds,
H.Œs; s�/ D Œh.s/;h.s/�. It is inclusion monotonic if

S1 � S2 H) H.S1/ � H.S2/; 8S1; S2 2 IDs: (3.2)

The following theorem is a central result in interval analysis:

Theorem 3.1 Let h W Ds � R
n ! R

m. If H W IDs ! IR
m is an inclusion monotonic

interval extension of h, then it is an inclusion function for h.

Inclusion monotonic interval extensions for binary addition and multiplication
are given by the formulas

S C Q D ŒsL C qL; sU C qU�; (3.3)

SQ D Œmin.sLqL; sLqU; sUqL; sUqU/;max.sLqL; sLqU; sUqL; sUqU/�; (3.4)

where S D ŒsL; sU� and Q D ŒqL; qU�. Moreover, formulas are readily available for
many common univariate functions [56, 59]. We make the following assumption
throughout:

Assumption 3.1 For every u 2 L , u W B � R ! R, an inclusion monotonic
interval extension Œu� W IB ! IR is available and can be evaluated computationally.

For any factorable function h, one can compute a particular interval extension
called the natural interval extension and denoted by Œh� W IDs ! IR

m (the notations
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Œh�L.S/ and Œh�U.S/ are used to denote the lower and upper bounds of Œh�.S/,
respectively). The natural interval extension is computed by recursively applying
the known interval extensions of the factors of h. That is, each operation in the
definition of h (Definition 3.1) is replaced by its interval counterpart. For example,
if h is defined by (3.1), then

Œh�.S1; S2/ D 10S1 C S2Œexp�.S2/; (3.5)

D Œ10sL
1 ; 10sU

1 �C ŒsL
2 ; s

U
2 �Œe

sL
2 ; esU

2 �; (3.6)

D Œ10sL
1 ; 10sU

1 �C Œmin.sL
2esL

2 ; sL
2esU

2 ; sU
2 esL

2 ; sU
2 esU

2 /; (3.7)

max.sL
2esL

2 ; sL
2esU

2 ; sU
2 esL

2 ; sU
2 esU

2 /�;

D Œ10sL
1 C min.sL

2esL
2 ; sL

2esU
2 ; sU

2 esL
2 ; sU

2 esU
2 /; (3.8)

10sU
1 C max.sL

2esL
2 ; sL

2esU
2 ; sU

2 esL
2 ; sU

2 esU
2 /�: (3.9)

The natural interval extension of a factorable function is inclusion monotonic, and
therefore defines an inclusion function. The reader is referred to [56, 59] for further
details on interval analysis.

3.2 McCormick Relaxations

McCormick’s relaxation technique [50] is a method for computing convex and
concave relaxations of a given factorable function h W Ds � R

n ! R
m. Given an

interval S D ŒsL; sU� � Ds and a point s 2 S, the method computes three quantities
associated with each factor vk in Definition 3.1: Vk.S/, vcv

k .S; s/, and vcc
k .S; s/. Vk.S/

is an interval bound for vk on S computed using interval arithmetic. The remaining
numbers vcv

k .S; s/ and vcc
k .S; s/ are the values of convex and concave relaxations

of vk on S, respectively, evaluated at s. For every k � n, we have vk D sk, so
these quantities can be trivially assigned as .Vk.S/; vcv

k .S; s/; v
cc
k .S; s// D .Sk; sk; sk/.

For every successive factor vk, relaxations and bounds are computed recursively
using known rules based on the definition of vk in Definition 3.1. For example, if
vk.s/ D vi.s/C vj.s/, we assign

Vk.S/ D Vi.S/C Vj.S/; (3.10)

vcv
k .S; s/ D max.VL

i .S/; v
cv
i .S; s//C max.VL

j .S/; v
cv
j .S; s//; (3.11)

vcc
k .S; s/ D min.VU

i .S/; v
cc
i .S; s//C min.VU

j .S/; v
cc
j .S; s//: (3.12)

It is straightforward to see that vk.s/ 2 Œvcv
k .S; s/; v

cc
k .S; s/�, 8s 2 S, and convexity

of vcv
k .S; �/ (resp. concavity of vcc

k .S; �/) follows from the well-known results that
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the minimum (resp. maximum) of two convex (resp. concave) functions is convex
(resp. concave) and the sum of two convex (resp. concave) functions is convex (resp.
concave). Rules for multiplication and composition with many common univariate
functions are readily available [83]. Noting that h.s/ D .vi.1/.s/; : : : ; vi.m/.s//,
this procedure provides convex and concave relaxations for h on S through the
definitions hcv

j .s/ D vcv
i. j/.S; s/ and hcc

j .s/ D vcc
i. j/.S; s/, j D 1; : : : ;m.

On account of the initialization .Vk.S/; vcv
k .S; s/; v

cc
k .S; s// D .Sk; sk; sk/, k �

n, McCormick’s relaxation procedure can be thought of as a mapping of the
form .S; s/ 7! .H.S/;hcv.s/;hcc.s//. However, in [83], it was observed that
generalizing this initialization to .Vk.S/; vcv

k .S; s/; v
cc
k .S; s// D .Sk; scv

k ; s
cc
k /, k � n,

where the inputs satisfy S \ Œscv; scc� ¤ ;, results in a generalized mapping
.S; scv; scc/ 7! .H.S/;u.scv; scc/; o.scv; scc//with an interesting interpretation: u and
o are composite relaxations for h on S.

Definition 3.3 Let h W Ds � R
n ! R

m and let S � Ds be convex. Two functions
u; o W Rn � R

n ! R
m are called convex and concave composite relaxations for h

on S, respectively, if the following condition holds: For any convex set P � R
q

and any functions s; scv; scc W P ! R
n such that s.p/ 2 S, 8p 2 P, and scv

and scc are, respectively, convex and concave relaxations of s on P, convex and
concave relaxations of the composite mapping h.s.�// are given by u.scv.�/; scc.�//
and o.scv.�/; scc.�//, respectively.

Composite relaxations are central to the relaxation theory for DAEs presented in
Sect. 6. Given a function W P ! R

m defined by  .p/ � h.s.p// with s W P ! Ds,
composite relaxations of h provide a means to compute relaxations for on P given
bounds and relaxations for s on P. Note that this requires factorability of h, but not
of  . The notion of composite relaxations can also be used to treat the case where
h W P � Ds ! R

m and  .p/ � h.p; s.p//. By initializing the factors corresponding
to the arguments p as in the standard relaxation procedure and using the generalized
initialization for the factors corresponding to s, one obtains a mapping of the form
.S;p; scv; scc/ 7! .H.S/;u.p; scv; scc/; o.p; scv; scc// with the obvious properties.

Since McCormick’s relaxation technique is based on the recursive application of
relaxation rules for a set of basic operations, it is convenient to denote the procedure
explicitly for a given function, e.g., for (3.1) as

fhg.S1;S2/ D 10S1 C S2fexpg.S2/: (3.13)

Formalizing this type of expression requires a more abstract development of
McCormick’s procedure and is intimately related to the concept of composite
relaxations. To begin, we define the space of McCormick objects

MR
n � fS D .SB; SC/ 2 IR

n � IR
n W SB \ SC ¤ ;g: (3.14)

Elements of MR
n are denoted by script capitals. For any S 2 MR

n, the notations
SB; SC 2 IR

n, and sL; sU ; scv; scc 2 R
n will commonly be used to denote the intervals

and vectors satisfying S D .SB; SC/ D .ŒsL; sU�; Œscv; scc�/. As with intervals, the set
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MR
n�m can be defined analogously to MR

n; A 2 MR
n�m has elements Aij 2 MR,

for all i 2 f1; : : : ; ng and j 2 f1; : : : ;mg. For any D � R
n, let MD denote the set

fS 2 MR
n W SB � Dg. This notation is also used for D � R

n�m.
Now, consider again a factorable function h W Ds � R

n ! R
m. Using the notation

above, the McCormick relaxation of h can be formalized as a mapping of the form
fhg W MDs ! MR

m, as suggested by (3.13). This mapping is a relaxation function
for h.

Definition 3.4 Let h W Ds � R
n ! R

m and let S � Ds be convex. A function
H W MDs ! MR

m is a relaxation function for h if, for every S D .S; Œscv; scc�/,
H .S / D .H.S/; Œu.S; scv; scc/; o.S; scv; scc/�/, where H is an inclusion function
for h and u.S; �; �/ and o.S; �; �/ are, respectively, convex and concave composite
relaxations for h on S.

To construct fhg, McCormick’s procedure makes use of relaxation functions for the
basic operations C, �, and u 2 L appearing in the factorable representation of h.
For example, the relaxation function for binary addition is defined as

X C Y D .XB C YB; .XC \ XB/C .YC \ YB//; (3.15)

which agrees with (3.10). A relaxation function for binary multiplication can be
similarly defined [74], and relaxation functions for many common univariate func-
tions and are compiled in [74, 83]. We make the following assumption throughout.

Assumption 3.2 For every u 2 L , u W B � R ! R, a relaxation function fug W
MB ! MR is available and can be evaluated computationally.

Naturally, fhg is constructed by applying the relaxation functions of the basic
operations C, �, and u 2 L sequentially according to the factorable representation
of h. Thus, fhg is a particular relaxation function for h called the natural McCormick
extension of h. For example, the natural McCormick extension of (3.1) is given
by (3.13), which is now well-defined. The fact that this procedure defines a
relaxation function for h is a consequence of the following basic composition result.

Theorem 3.2 Let v W Ds � R
n ! R

m and o W B � R
m ! R have relaxations

functions V W MDs ! MR
m and O W MB ! MR, respectively. If v.Ds/ � B and

V .MDs/ � MB, then O ı V is a relaxation function for o ı v.

Remark 3.1 For simplicity of exposition, the definition of a relaxation function
here is slightly different than the original definition in [74]. For a function H W
MDs ! MR

m, it can be shown that if H is a relaxation function as defined
here, then it is also a relaxation function as defined in [74]. The converse holds
provided that H satisfies an inclusion monotonicity property (Definition 2.4.13,
[74]). Accordingly, the composition result in [74] (Lemmas 2.4.15 and 2.4.17)
require inclusion monotonicity, while Theorem 3.2 here is a direct consequence of
Definitions 3.3 and 3.4 above.
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For any S D .S; Œscv; scc�/ 2 MDs, the natural McCormick extension of
h evaluates to fhg.S / D .Œh�.S/; Œu.S; scv; scc/; o.S; scv; scc/�/, where Œh� is the
natural interval extension of h and u.S; �; �/ and o.S; �; �/ are convex and concave
composite relaxations for h on S, respectively. Convex and concave relaxations are
recovered from fhg by simply considering arguments of the form S D .S; Œs; s�/
for s 2 S. This is equivalent to the initialization .Vk.S/; vcv

k .Sk; s/; vcc
k .S; s// D

.Sk; sk; sk/, k � n, discussed above. For any such S , we have fhg.S / D

.Œh�.S/; Œu.S; s; s/; o.S; s; s/�/, and convex and concave relaxations of h on S are
given by the definitions hcv.s/ D u.S; s; s/ and hcc.s/ D o.S; s; s/, respectively.
This follows from Definition 3.3 after choosing P � S and observing that the
identity mapping P D S 3 s 7! s 2 S is both a convex and a concave relaxation of
itself on P. The reader is referred to [53, 74, 83] for a comprehensive treatment of
McCormick relaxations.

3.3 Implementation

Several computational tools are available for performing interval and McCormick
arithmetic operations. Of course, any function written explicitly in computer code
is factorable, and its factorable representation can be generated automatically by
parsing this code. Thus, it is possible to use code generation to create additional
subroutines that compute the natural interval and McCormick extensions of such
a function by replacing the standard arithmetic operations with interval and
McCormick operations, respectively. A more flexible way to achieve this is through
so-called operator overloading, which is available in most object oriented program-
ming languages (e.g., C++). In this scheme, one can create interval and McCormick
objects as new variable types with defined rules for the standard arithmetic
operations. Then, the existing code for a factorable function can be executed with
these objects to obtain the natural interval and McCormick extensions. A number of
libraries defining interval objects and their associated arithmetic are freely available.
For example, the Boost interval library in C++ (http://www.boost.org/doc/libs/
1_55_0/libs/numeric/interval/doc/interval.htm) and the MATLAB toolbox INTLAB
(http://www.ti3.tu-harburg.de/~rump/intlab/). Similarly, relaxation functions can be
computed using the McCormick arithmetic library MC++ (http://www3.imperial.ac.
uk/people/b.chachuat/research).

4 Bounds and Relaxations for Implicit Functions

In this section, procedures are derived for computing interval bounds and convex
and concave relaxations for functions defined implicitly as the solutions of systems
of algebraic equations. This is a fundamental step required for treating DAEs in the

http://www.boost.org/doc/libs/1_55_0/libs/numeric/interval/doc/interval.htm
http://www.boost.org/doc/libs/1_55_0/libs/numeric/interval/doc/interval.htm
http://www.ti3.tu-harburg.de/~rump/intlab/
http://www3.imperial.ac.uk/people/b.chachuat/research
http://www3.imperial.ac.uk/people/b.chachuat/research


78 J.K. Scott and P.I. Barton

following two sections. In general, we consider the nonlinear algebraic equations

`.s; r/ D 0; (4.1)

where ` 2 Ck.Ds � Dr;R
n/, k � 1, and Ds � R

ns and Dr � R
n are open sets.

Given an interval S � Ds, our primary interest is in the case where (4.1) defines
a unique implicit function h W S ! R

n such that `.s;h.s// D 0, 8s 2 S. In this
case, bounds and relaxations for h on S are well-defined. More generally, we can
define inclusion and relaxation functions for h on S of the form H W IS ! IR

n and
H W MS ! MR

n, respectively.
In doing so, the key challenge that must be addressed is that h is implicitly

defined via (4.1), and hence no factorable representation of h is available in general.
Of course, this implies that the methods of Sect. 3 cannot be applied directly. Instead,
the key idea here is to use the factorable representation of `, and hence the ability to
compute inclusion and relaxation functions for `, to infer the required information
about h through (4.1). This approach originated with the development of so-
called interval Newton methods [59], and has recently been extended to compute
relaxations in [91]. To follow this approach here, the following basic assumption is
required.

Assumption 4.1 The functions ` and @`
@r are factorable and have natural interval

and McCormick extensions Œ`� W IDs � IDr ! IR
n, Œ @`

@r � W IDs � IDr ! IR
n�n,

f`g W MDs � MDr ! MR
n, and f @`

@r g W MDs � MDr ! MR
n�n.

Remark 4.1 Although any factorable function w W D ! R
n has natural interval

and McCormick extensions, the content of the above assumption is that these are
defined on all of ID and MD, respectively. For example, w.s/ D 1=.s � p

s/ is well
defined on D D .1;C1�. However, overestimation in the interval evaluation of the
denominator leads to a division by zero error for S D Œ4; 100� 2 ID, so that the
interval extension is not defined at this point: Œw�.S/ D 1=.Œ4; 100� � Œ2; 10�/ D
1=Œ�6; 98� D NaN. Assuming well-defined interval and McCormick extensions
on all of MD is not essential for the following developments, but simplifies the
presentation.

This simplest way to infer information about h from the factorable representation
of ` is through a direct rearrangement of (4.1) of the form r D h.s/, 8s 2 Ds.
However, such a rearrangement is rarely possible. Instead, we pursue the more
modest feat of deriving a factorable function  that satisfies r D  .s; r/ for all
.s; r/ 2 Ds � Dr such that `.s; r/ D 0. In general, even this cannot be accomplished
precisely as written due to some technicalities discussed below. However, we
will derive a similar expression and then provide a computational test capable of
verifying that this expression is well-defined, and that a unique implicit function h
exists, on some given intervals S � R. This then implies that h.s/ D  .s;h.s//,
8s 2 S, which provides the opportunity to compute inclusion and relaxation
functions for h through iterative procedures.
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We begin by presenting the details of a particular interval Newton method called
the interval Hansen-Sengupta method [59]. The existence of a unique implicit
function to be bounded is not assumed a priori. Instead, the algorithm is centered
around the following more general task: Given intervals S � Ds and R � Dr,
compute a refined interval R0 � R that contains every r 2 R for which (4.1) holds
for some s 2 S. If it is possible to derive a factorable function  satisfying the
implication

.s; r/ 2 S � R; `.s; r/ D 0 H) r D  .s; r/; (4.2)

then this task is accomplished by the update R0 D R \ Œ �.S;R/, where Œ � is the
natural interval extension of  .

The key step in deriving such a function is an application of the mean-value
theorem. Choose a fixed reference point Qr 2 R. For each fixed s 2 S and
i 2 f1; : : : ; ng, applying the mean-value theorem to the function `i.s; �/ ensures
that there exists �i.s/ 2 Œ0; 1� such that

@`i

@r
.s; Qr C �i.s/.r � Qr// .r � Qr/ D `i.s; r/ � `i.s; Qr/: (4.3)

Define � W S ! Œ0; 1� by choosing �i.s/ in this way for all s 2 S and every i 2
f1; : : : ; ng. Additionally, define

M.s; r;�0/ �

2
64
@`1
@r .s; Qr C �0

1.r � Qr//
:::

@`n
@r .s; Qr C �0

n.r � Qr//

3
75 ; 8.s; r;�0/ 2 Ds � Dr � R

n: (4.4)

Then, from the definition of �, M.s; r;�.s// .r � Qr/ D `.s; r/ � `.s; Qr/, 8.s; r/ 2
S � R. In particular,

.s; r/ 2 S � R; `.s; r/ D 0 H) M.s; r;�.s// .r � Qr/ D �`.s; Qr/: (4.5)

Thus, any .s; r/ satisfying (4.1) must have .r � Qr/ as a solution of an n � n linear
system. To obtain (4.2) from (4.5), we consider rearrangements of these linear
equations that isolate each ri on the left-hand side. Assume for the moment that the
diagonal elements of M.s; r;�.s// are nonzero. Then, the ith linear relation above
can be rearranged as

ri D Qri C 1

mii.s; r;�.s//

0
@�`i.s; Qr/ �

X
j¤i

mij.s; r;�.s//.rj � Qrj/

1
A : (4.6)
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With this in mind, we make the following definition for every .s; r;�0/ 2 Ds � Dr �
R

n such that mii.s; r;�0/ ¤ 0 for all i 2 f1; : : : ; ng:

 .s; r;�0/ � r0; (4.7)

where, using the abbreviation mij D mij.s; r;�0/, for i D 1; : : : ; n,

r0
i D Qri C 1

mii

0
@�`i.s; Qr/�

X
j<i

mij.r
0
j � Qrj/�

X
j>i

mij.rj � Qrj/

1
A : (4.8)

The reason for splitting the sum above will become clear shortly. In any case, it is
easily shown from (4.6) that this definition satisfies

.s; r/ 2 S � R; `.s; r/ D 0 H) r D  .s; r;�.s//: (4.9)

In this last implication,  is not quite in the form we set out to derive due to the
third argument, �.s/. However, in this form,  is a factorable function wherever
it is defined. Indeed, by Assumption 4.1, both ` and @`

@r are factorable. Thus, M is
factorable, and by (4.8), so is  . On the other hand, � is a theoretical construct that
is known to exist on account of the mean-value theorem, but does not have a known
factorable representation. Fortunately, we are assured that �.s/ 2 Œ0; 1�, 8s 2 S, so
that a factorable representation is not necessary in order to bound �. Thus, our task
of computing a refined interval R0 is now accomplished through the update

R0 D R \ Œ �.S;R; Œ0; 1�/: (4.10)

Here Œ � is the natural interval extension of  , derived by applying interval
arithmetic to (4.7) and (4.8). In particular, Œ �.S;R; Œ0; 1�/ � R0, where, using the
abbreviation Œmij� D Œmij�.S;R; Œ0; 1�/,

R0
i D Qri C 1

Œmii�

0
@�Œ`i�.S; Qr/�

X
j<i

Œmij�.R
0
j � Qrj/ �

X
j>i

Œmij�.Rj � Qrj/

1
A : (4.11)

For the moment, it is assumed that 0 … Œmii�.S;R; Œ0; 1�/ for every i, so that interval
division by Œmii�.S;R; Œ0; 1�/ is defined [56]. Note that, by splitting the sum in the
definition of  , we have arranged that Œ i� is computed with the updated intervals
R0

j in place of Rj for all j < i, which helps to tighten the refinement R0 in (4.10).
In fact, a further improvement can be achieved by carrying out the intersection
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in (4.10) component-wise during the computation of Œ �. Thus, we further define
Œ \�.S;R; Œ0; 1�/ � R0, where, using the abbreviation Œmij� D Œmij�.S;R; Œ0; 1�/,

R0
i D Ri \

0
@Qri C 1

Œmii�

0
@�Œ`i�.S; Qr/�

X
j<i

Œmij�.R
0
j � Qrj/ �

X
j>i

Œmij�.Rj � Qrj/

1
A
1
A :

(4.12)

This gives the modified update R0 D Œ \�.S;R; Œ0; 1�/.
In order to extend the definition of Œ \� to intervals S and R such that 0 2

Œmii�.S;R; Œ0; 1�/ for some i, it is necessary to define a special interval operator:

� .A;B;Z/ � hull .fz 2 Z W az D b; a 2 A; b 2 Bg/ ; (4.13)

where hull.Q/ denotes the smallest interval containing the set Q. Given an a priori
bound Z, � .A;B;Z/ is a bound on the solutions z 2 Z of a single interval linear
equation, even when rearranging that equation for z would involve division by an
interval containing zero. It has been shown that � can be evaluated computationally
through the simple rules

� .A;B;Z/ �

8̂
<̂
ˆ̂:

.B=A/\ Z if 0 … A
hull

�
Znint.ŒbL=aL; bL=aU�/

	
if 0 2 A and bL > 0

hull
�
Znint.ŒbU=aU; bU=aL�/

	
if 0 2 A and bU < 0

Z if 0 2 A and 0 2 B

; (4.14)

where int.Q/ is the interior of Q [59]. Using � , we now define Œ � �.S;R; Œ0; 1�/ �
R0, where, using the abbreviation Œmij� D Œmij�.S;R; Œ0; 1�/,

R0
i D Qri C �

0
@Œmii�;�Œ`i�.S; Qr/ �

X
j<i

Œmij�.R
0
j � Qrj/�

X
j>i

Œmij�.Rj � Qrj/; .Ri � Qri/

1
A :

(4.15)

In contrast to Œ \�, Œ � � is defined for all arguments with .S;R/ 2 IDs � IDr.
Moreover, we have the following variant of Theorem 5.1.8 in [59] proven in [78]:

Theorem 4.1 Let S 2 IDs, R 2 IDr, Qr 2 R, and define R0 � Œ � �.S;R; Œ0; 1�/. The
following conclusions hold:

1. If .s; r/ 2 S � R satisfies `.s; r/ D 0, then r 2 R0.
2. If R0 D ;, then À.s; r/ 2 S � R such that `.s; r/ D 0.
3. If Qr 2 int.R/ and ; ¤ R0 � int.R/, then 9h 2 Ck.S;R0/ such that, for every

s 2 S, r D h.s/ is the unique element of R satisfying `.s; r/ D 0. Moreover,
ŒM�.S;R; Œ0; 1�/ does not contain a singular matrix and does not contain zero in
any of its diagonal elements.
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Remark 4.2 Since Qr 2 R, it is straightforward to show that Qr C Œ0; 1�.R � Qr/ D R,
and hence

ŒM�.S;R; Œ0; 1�/ �

2
64
Œ @`1
@r �.S;R/
:::

Œ @`n
@r �.S;R/

3
75 D

�
@`

@r

�
.S;R/: (4.16)

The statement of Theorem 4.1 in [78] uses this substitution. Conclusion 3 of
Theorem 4.1 then states that if Qr 2 int.R/ and the inclusion ; ¤ Œ � �.S;R; Œ0; 1�/ �
int.R/ holds, then

�
@`
@r

�
.S;R/ contains no singular matrices and does not contain

zero in any of its diagonal elements. In practice, it is almost always necessary
to precondition (4.1) by a non-singular matrix C 2 R

n�n for this to be true, and
hence for the desired inclusion to hold. A common choice is the midpoint inverse,

C � �
m.
�
@`
@r

�
.S;R//

	�1
, in which case ŒM�.S;R; Œ0; 1�/ D C

�
@`
@r

�
.S;R/ is an

interval enclosure of the identity matrix. For ease of notation, the preconditioner
C is omitted from Theorem 4.1 and all subsequent developments.

Without further note, we will always define Œ � �.S;R; Œ0; 1�/ with Qr D m.R/,
so that Qr 2 int.R/ whenever R has nonempty interior. Now, suppose that intervals
S� and R� have been found such that ; ¤ Œ � �.S

�;R�; Œ0; 1�/ � int.R�/. Then,
Conclusion 3 of Theorem 4.1 ensures the existence of an implicit function satisfying
`.s;h.s// D 0 on all of S�, and further ensures that h is the only such function taking
values in R�. Thus, the inclusion test of Conclusion 3 isolates a single parametric
solution branch of (4.1), and provides the bound h.S�/ � Œ � �.S

�;R�; Œ0; 1�/ �
int.R�/. Applying Conclusion 1 of Theorem 4.1, this bound can be iteratively refined
by the scheme

RkC1 D Œ � �.S
�;Rk; Œ0; 1�/; R0 D R�: (4.17)

This is known as the interval Hansen-Sengupta method. More generally, this scheme
defines a sequence of progressively tighter inclusion functions Hk W IS� ! IR

n for
h via

HkC1.S/ D Œ � �.S;Hk.S/; Œ0; 1�/; H0.S/ D R�; 8S 2 IS�: (4.18)

The fact that ŒM�.S�;R�; Œ0; 1�/ does not contain zero in any of its diagonal
elements also has important consequences. Most importantly, it follows that the
matrix M.s; r;�.s// has nonzero diagonals for all .s; r/ 2 S� � R�, so that  is
defined on all of .s; r/ 2 S� � R� and, by (4.9),

h.s/ D  .s;h.s//; 8s 2 S�: (4.19)



Reachability Analysis and Deterministic Global Optimization of DAE Models 83

Additionally, it can be shown that Œ � �.R; S; Œ0; 1�/ D Œ \�.R; S; Œ0; 1�/, 8.S;R/ 2
IS� � IR�, and, using the fact that ; ¤ Œ � �.S

�;R�; Œ0; 1�/ � int.R�/,

Œ � �.R
�; S�; Œ0; 1�/ D Œ \�.R�; S�; Œ0; 1�/ D Œ �.R�; S�; Œ0; 1�/: (4.20)

We are now prepared to show how the developments of Sect. 3.2 can be used to
compute convex and concave relaxations of the implicit function h on S 2 IS�. It is
assumed that the inclusion test of Theorem 4.1 has been passed with .S�;R�/, so that
h W S� ! R� exists. Moreover, it is assumed that an inclusion function H W IS� !
IR

n is available, e.g., by truncation of (4.18). By analogy to (4.18), we will derive
an iterative scheme that generates refined inclusion functions Hk W MS� ! MR

n.
Recall that MS� contains all S D .S; Œscv; scc�/ with S � S� (although we will be
primarily concerned with arguments of the form S D .S; Œs; s�/ with s 2 S). To
initialize this scheme, we note that one relaxation function is given by

H0.S / D .H.S/;H.S//; 8S D .S; Œscv; scc�/ 2 MS�: (4.21)

Using the notation ŒhL.S/;hU.S/� D H.S/, this is true because the constant functions
hcv.s/ D hL.S/ and hcc.s/ D hU.S/ are trivially convex and concave relaxations of
h on S.

In order to refine H0, we again use the semi-explicit characterization of h given
in (4.19). To begin, note that �.s/ 2 Œ0; 1�, 8s 2 S, so that the constant function
MS� 3 S 7! L � .Œ0; 1�; Œ0; 1�/ 2 MR

n is a relaxation function for � on MS�.
Now, since  is factorable, the natural relaxation function f g can be computed
by simply applying McCormick arithmetic to (4.8). However, it is more useful to
define f \g by analogy to Œ \� as

f \g.S ;R;L / � R 0; (4.22)

where, using the abbreviation fmijg D fmijg.S ;R;L /,

R 0
i � Ri \

 
Qri C 1

fmiig

 
�f`ig.S ; Qr/ �Pj<ifmijg.R 0

j � Qrj/

�Pj>ifmijg.Rj � Qrj/

!!
: (4.23)

The intersection above is defined for arbitrary R and R in MR
n by R \ R D

.RB \R
B
;RC \R

C
/. Division by a McCormick object is defined whenever its interval

part does not contain zero. But, for anyS 2 MS�, fmiig.S ;R;L / has interval part
Œmii�.S;R; Œ0; 1�/ � Œmii�.S�;R�; Œ0; 1�/, which is guaranteed not to contain zero.
Thus, f \g is defined for all S 2 MS�, and the same is easily seen to be true
of f g.

Now, a sequence of progressively refined relaxation functions Hk W MS� !
MR

n can be defined via

HkC1.S / D f \g.S ;Hk.S /;L /; H0.S / D .H.S/;H.S//; (4.24)
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for all S D .S; Œscv; scc�/ 2 MS�. Convex and concave relaxations of h on any S �
S� are evaluated computationally at a particular point s 2 S by simply setting S D
.S; Œs; s�/ and executing the iteration (4.24). For any k � 0, the result is a McCormick
object Hk.S / D .Hk.S/; Œhcv

k .s/;h
cc
k .s/�/ with the obvious interpretation.

To see that this works in more detail, denote Hk.S / D .Hk.S/; Œhcv
k .s/;h

cc
k .s/�/

and assume that hcv
k and hcc

k are convex and concave relaxations of h on S, which
is trivially true for k D 0. Now consider a single iteration of (4.24). Using the
definition of a relaxation function in terms of composite relaxations (see Sect. 3.2),
the computation of hcv

kC1 and hcc
kC1 in (4.24) can be expressed as

hcv
kC1.s/ D max.hcv

k .s/;u .s; s;h
cv
k .s/;h

cc
k .s///; (4.25)

hcc
kC1.s/ D min.hcc

k .s/; o .s; s;h
cv
k .s/;h

cc
k .s///; (4.26)

where u and o are convex and concave composite relaxations of on S � Hk.S/,
respectively. Since hcv

k and hcc
k are convex and concave relaxations of h on S

by hypothesis, the properties of composite relaxations ensure that the functions
s 7! u .s; s;hcv

k .s/;h
cc
k .s// and s 7! o .s; s;hcv

k .s/;h
cc
k .s// are, respectively, convex

and concave relaxations of s 7!  .s;h.s// (and hence of h) on S. The same is
true of hcv

kC1 and hcc
kC1 because the maximum (resp. minimum) of two convex (resp.

concave) functions is convex (resp. concave).

4.1 Example

Section 8 presents a parameter estimation problem in semi-explicit DAEs with the
following algebraic equation:

0 D y31 C 2m3y
2
1 C Kby1 � .Kb C y21/x2; (4.27)

where m3 and Kb are known constants. As discussed in the following section, the
methods of this section are applied to the algebraic equations in semi-explicit DAE
systems by interpreting r D y as the dependent variables and s D .t;p; x/ as the
independent variables. Thus, we may write (4.27) in the notation of this section as

0 D r3 C 2m3r
2 C Kbr � .Kb C r2/s: (4.28)

The derivative @`
@r is given by

@`

@r
.s; r/ D r.3r C 2.2m3 � s//C Kb: (4.29)
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The equations above are written to represent the specific factorable representa-
tions used in the computation of bounds and relaxations of the implicit function
h.s/ below. They are arranged so as to reduce the conservatism of the bounds
and relaxations of these expressions when they are evaluated with interval- or
McCormick-valued arguments. In general, this is done by minimizing the number
of appearances of interval- or McCormick-valued variables. As a simple example,
a.b C c/ is preferred to ab C ac because a appears twice in the latter expression.
Since these appearances of a will be considered independent when evaluated, e.g., in
interval arithmetic, the latter expression gives a weaker enclosure. With A D Œ2; 3�,
B D Œ�2;�1�, and C D Œ1; 2�, the first expression gives Œ2; 3�.Œ�2;�1�C Œ1; 2�/ D
Œ2; 3�Œ�1; 1� D Œ�3; 3�, whereas the second gives Œ2; 3�Œ�2;�1� C Œ2; 3�Œ1; 2� D
Œ�6;�2� C Œ2; 6� D Œ�4; 4�. In arranging (4.28), we have used the observation
that the evaluations of this function needed for computing Œ � � and f \g always
use a real-valued reference value for r. Thus, multiple appearances of r are not
problematic. On the other hand, (4.28) is evaluated with interval- and McCormick-
valued arguments for s. Thus, (4.28) is arranged so that s appears only once, which
would not be the case if, for example, the r2 terms were collected. In contrast to
the situation with (4.28), computing Œ � � and f \g does involve evaluating (4.29)
with interval- and McCormick-valued arguments for r. Moreover, (4.29) cannot be
arranged so that r appears only once. The preferred arrangement in this case is the
so-called Horner’s form [56].

Using (4.28) and (4.29), Eqs. (4.15) and (4.23) become, respectively,

R0 D Qr C
�
.R � Qr/\

��Qr3 � 2m3Qr2 � KbQr C .Kb C Qr2/S
R.3R C 2.2m3 � S//C Kb


�
; and (4.30)

R 0 D Qr C
�
.R � Qr/\

��Qr3 � 2m3Qr2 � KbQr C .Kb C Qr2/S
R.3R C 2.2m3 � S //C Kb


�
; (4.31)

provided that no division by an interval or McCormick object containing zero
occurs. Choosing the values m3 D 100, Kb D 36

540
, and S D Œ4; 8� � 10�3, we

find that ; ¤ R0 � int.R/ with R D Œ0:96164; 1:5531� � 10�3. This R interval
was found using a nonsmooth Newton iteration as described in [79]. It follows from
Theorem 4.1 that there exists a unique implicit function r D h.s/ satisfying (4.28)
on S and bounded by R. This bound changes by less that 10�6 after ten iterations
of (4.30). Relaxations of h can now be computed by iteration on (4.31) with R
initially set to .R;R/ and S D .S; Œs; s�/ for values of s in S. The resulting
relaxations after five iterations are given in Fig. 1.
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Fig. 1 Interval bounds
(dot-dashed) and convex and
concave relaxations (dashed)
for the implicit solution
y1 D h.x2/ of (4.27) (solid)
computed via (4.30)
and (4.31)
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5 State Bounds for Semi-explicit Index-One DAEs

In this section, we summarize the main results in [78, 79] for the computation of
interval bounds on the reachable set of (2.1), which we restate here for convenience:

Px.t;p/ D f.t;p; x.t;p/; y.t;p//
0 D g.t;p; x.t;p/; y.t;p//

�
; (5.1a)

x.t0;p/ D x0.p/: (5.1b)

In what follows, we consider a regular solution .x; y/ of (5.1) on I � P and compute
functions xL; xU W I ! R

nx and yL; yU W I ! R
ny such that

xL.t/ � x.t;p/ � xU.t/ and yL.t/ � y.t;p/ � yU.t/; 8.t;p/ 2 I � P:

These functions are referred to as state bounds for the solution .x; y/. As mentioned
in Sect. 2.3, the existence and uniqueness of .x; y/ on I �P is verified by the method
and need not be assumed. The behavior of the method for DAEs with multiple
solutions is discussed below, after some key results are in place.

Exactly as in Sect. 4, the difficulty in computing state bounds for .x; y/ is
that these functions have no known factorable representation, so that the methods
of Sect. 3 cannot be applied directly. This complication was overcome in Sect. 4
by instead exploiting the factorable representation of the algebraic system there
(specifically, ` and @`

@r ) to obtain global information about the function of interest
(the implicit function h). Our approach in this section and the next is exactly
analogous, although the functions of interest here are defined as the solutions
of DAEs, so that some additional insights are required. In brief, the factorable
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representation of the governing equations in (5.1) will be used to derive an auxiliary
system of DAEs describing bounding trajectories xL, xU, yL, and yU as its solutions.
Accordingly, we make the following assumption on (5.1) throughout.

Assumption 5.1 The functions f, x0, g and @g
@y are factorable with natural interval

and McCormick extensions Œx0� W IDp ! IR
nx , fx0g W MDp ! MR

nx , Œf� W IDt �
IDp � IDx � IDy ! IR

nx , ffg W MDt � MDp � MDx � MDy ! MR
nx , Œg� W

IDt � IDp � IDx � IDy ! IR
ny , fgg W MDt � MDp � MDx � MDy ! MR

ny ,
Œ @g
@y � W IDt � IDp � IDx � IDy ! IR

ny�ny , and f @g
@y g W MDt �MDp �MDx �MDy !

MR
ny�ny .

5.1 Theoretical Considerations

The treatment of the algebraic equations in (5.1) follows exactly the developments
in Sect. 4. The first step is to apply the main result Theorem 4.1 to the algebraic
equations g.t;p; zx; zy/ D 0. In the semi-explicit form (5.1), the role of the algebraic
equations g is essentially to specify the algebraic variables zy given fixed values
of t, p, and the differential variables zx. Thus, in applying Theorem 4.1 to these
equations, we identify the dependent variable r with zy and the independent variable
s with .t;p; zx/. With these substitutions, the functions M,  , Œ �, Œ \�, and Œ � �

can be defined exactly as in Sect. 4. For example, in this case (4.4) becomes

M.t;p; zx; zy;�
0/ �

2
664

@g1
@y .t;p; zx; Qzy C �0

1.zy � Qzy//

:::
@gny

@y .t;p; zx; Qzy C �0
ny
.zy � Qzy//

3
775 ; (5.2)

for all .t;p; zx; zy;�
0/ 2 R

1CnpCnxCnyCny , where Qzy 2 R
ny is a fixed reference point.

Theorem 4.1 yields the following Corollary:

Corollary 5.1 Let .J;P;Zx;Zy/ 2 IDt � IDp � IDx � IDy, Qzy 2 Zy, and define

Z0
y � Œ � �.J;P;Zx;Zy; Œ0; 1�/: (5.3)

The following conclusions hold:

1. If .t;p; zx; zy/ 2 J � P � Zx � Zy satisfies g.t;p; zx; zy/ D 0, then zy 2 Z0
y.

2. If Z0
y D ;, then À.t;p; zx; zy/ 2 J � P � Zx � Zy such that g.t;p; zx; zy/ D 0.

3. If Qzy 2 int.Zy/ and ; ¤ Z0
y � int.Zy/, then 9h 2 C1.J � P � Zx;Z0

y/ such that, for
every .t;p; zx/ 2 J �P�Zx, zy D h.t;p; zx/ is the unique element of Zy satisfying
g.t;p; zx; zy/ D 0. Moreover, ŒM�.J;P;Zx;Zy; Œ0; 1�/ does not contain a singular
matrix and does not contain zero in any of its diagonal elements.
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Remark 5.1 As in Remark 4.2, note that Qzy 2 Zy implies Qzy C Œ0; 1�.Zy � Qzy/ D Zy,
and hence

ŒM�.J;P;Zx;Zy; Œ0; 1�/ D
�
@g
@y

�
.J;P;Zx;Zy/: (5.4)

The statement of Corollary 5.1 in [78] uses this substitution. As mentioned in
Sect. 4, it is almost always necessary to precondition the system g.t;p; zx; zy/ D 0
in order to pass the inclusion test of Conclusion 3, but we omit the preconditioner
for brevity.

Conclusion 3 of Corollary 5.1 is crucial to the state bounding method presented
below. First, it provides a computational test for the existence and uniqueness of
an implicit function h W J � P � Zx ! R

ny satisfying g.t;p; zx;h.t;p; zx// D 0,
8.t;p; zx/ 2 J � P � Zx. The existence of this implicit function makes (5.1)
equivalent to an explicit system of ODEs on I � P, which provides an inroad for
the application of state bounding methods for ODEs. However, the complication
remains that h is not factorable. Thus, the second essential piece of information
gained from Conclusion 3 is the a priori bound h.J;P;Zx/ � Z0

y � int.Zy/.
As discussed in Sect. 4, the inclusion test in Conclusion 3 of Corollary 5.1 has

some further useful consequences. Specifically, when it holds for some .J;P;Zx;Zy/,
it implies that  .t;p; zx; zy;�

0/ is defined for all .t;p; zx; zy;�
0/ 2 J � P � Zx � Zy �

Œ0; 1�, and satisfies

h.t;p; zx/ D  .t;p; zx;h.t;p; zx/;�.t;p; zx//; 8.t;p; zx/ 2 J � P � Zx: (5.5)

Moreover, we have Œ � �.J;P;Zx;Zy/ D Œ \�.J;P;Zx;Zy/ D Œ �.J;P;Zx;Zy/. We
will use both of these facts below.

The following theorem is the main result from [78] that enables the computation
of state bounds. One of the main hypotheses is that the inclusion test of Conclusion
3 in Corollary 5.1 is satisfied pointwise in time; i.e., with J D Œt; t� and time-varying
bounds X.t/ and Y.t/ in place of Zx and Zy.

Theorem 5.2 Let .I;P/ 2 IDt �IDp. Suppose that yL; yU W I ! R
ny are continuous,

xL; xU W I ! R
nx are absolutely continuous, and for all t 2 I, xL.t/ � xU.t/,

yL.t/ � yU.t/, X.t/ � ŒxL.t/; xU.t/� 2 IDx, and Y.t/ � ŒyL.t/; yU.t/� 2 IDy. Let the
following hypotheses hold:

(IC): x0.p/ 2 X.t0/, 8p 2 P.
(ALG): For every t 2 I, ; ¤ Œ � �.Œt; t�;P;X.t/;Y.t/; Œ0; 1�/ � int.Y.t//.
(RHS): For a.e. t 2 I and each index i,

1. PxL
i .t/ � fi.t;p; zx; zy/ for all .p; zx; zy/ 2 P � X.t/� Y.t/ such that zx;i D xL

i .t/
and g.t;p; zx; zy/ D 0,

2. PxU
i .t/ � fi.t;p; zx; zy/ for all .p; zx; zy/ 2 P �X.t/�Y.t/ such that zx;i D xU

i .t/
and g.t;p; zx; zy/ D 0.
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Then every regular solution of (5.1) on I � P with y.t0; Op/ 2 Y.t0/ for at least one
Op 2 P must satisfy .x.t;p/; y.t;p// 2 X.t/ � Y.t/ for all .t;p/ 2 I � P.

The proof of Theorem 5.2 is quite technical and can be found in Theorem 5.5.6 of
[78]. However, the main ideas are not difficult to appreciate. Consider a solution
.x; y/ as in the statement of the theorem. First, note that Hypothesis (ALG) and
Conclusion 3 of Corollary 5.1 imply that, for every t 2 I, there exists h.t; �; �/ W
P � X.t/ ! int.Y.t// such that h.t;p; zx/ solves g.t;p; zx; �/ D 0 uniquely among
elements of Y.t/, provided that .p; zx/ 2 P �X.t/. With zx D x.t;p/, y.t;p/ satisfies
this equation by definition. Thus, we have the following implication for all .t;p/ 2
I � P:

x.t;p/ 2 X.t/; y.t;p/ 2 Y.t/ H) y.t;p/ D h.t;p; x.t;p// 2 int.Y.t//:
(5.6)

Then, from Hypotheses (IC) and the assumption that y.t0; Op/ 2 Y.t0/, continuity
of y.t0; �/ implies that y.t0; �/ is confined to the interior of Y.t/ on all of P. Thus,
.x.t0;p/; y.t0;p// 2 X.t0/ � Y.t0/ for all p 2 P.

Now, in order for .x.t;p/; y.t;p// to leave the bounds X.t/ � Y.t/ at some t > t0
and for some p 2 P, it must happen that .x.t;p/; y.t;p// first intersects the boundary
of X.t/ � Y.t/. Here again, (5.6) implies that y.t;p/ cannot reach the boundary
of Y.t/ before x.t;p/ leaves X.t/. Thus, if a violation is to occur, we must come
to a point such that .x.t;p/; y.t;p// 2 X.t/ � Y.t/ and either xi.t;p/ D xL

i .t/ or
xi.t;p/ D xU

i .t/ for at least one i. Supposing that the first case occurs, we now note
that .x.t;p/; y.t;p// satisfies all of the conditions imposed on .zx; zy/ in Hypothesis
(RHS).1 of the theorem, and it follows that

PxL
i .t/ � fi.t;p; x.t;p/; y.t;p// D Pxi.t;p/: (5.7)

From the inequality PxL
i .t/ � Pxi.t;p/ and some further technical conditions it can then

be shown that it is impossible for Pxi.�;p/ to cross PxL
i at t, completing the argument.

Note that Hypotheses (IC) and (RHS) in Theorem 5.2 involve global information
about the functions f and x0 in the form of bounds on their images. The content
of Theorem 5.2 is then to deduce global information about the solution .x; y/ from
global information about the system equations. In this sense, Theorem 5.2 is well
aligned with our strategy so far. Not surprisingly, the implementation of these ideas
in the next section uses the techniques of Sect. 3 to obtain the required bounds on
the system equations, which have known factorable representations.

5.2 Implementation

Using the theoretical developments of the previous two sections, we now derive
an auxiliary system of semi-explicit DAEs that describes valid state bounds as its
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solutions. Let BL
i ;B

U
i W IRnx ! IR

nx be defined byBL
i .Œv;w�/ D fz 2 Œv;w� W zi D

vig and BU
i .Œv;w�/ D fz 2 Œv;w� W zi D wig, for every i D 1; : : : ; nx. Moreover, let

Œf�L and Œf�U denote the upper and lower bounds of Œf�, and defined Œ �L and Œ �U

analogously. For any continuous and pointwise positive � W I ! R, consider the
initial value problem in DAEs

PxL
i .t/ D Œ fi�

L �Œt; t�;P;BL
i .X.t//;Y.t/

	
; (5.8)

PxU
i .t/ D Œ fi�

U �Œt; t�;P;BU
i .X.t//;Y.t/

	
; (5.9)

0 D yL.t/ � Œ �L .Œt; t�;P;X.t/;Y.t/; Œ0; 1�/ C 1�.t/; (5.10)

0 D �yU.t/C Œ �U .Œt; t�;P;X.t/;Y.t/; Œ0; 1�/ C 1�.t/; (5.11)

for all i D 1; : : : ; nx, with initial conditions

ŒxL.t0/; xU.t0/� D Œx0�.P/: (5.12)

A solution of (5.8)–(5.12) is any xL; xU W I ! R
nx and yL; yU W I ! R

ny

satisfying (5.8)–(5.12) for all t 2 I, with xL and xU continuously differentiable and
yL and yU piecewise C1 (see [22] for a definition of this class of functions).

The main result of [79] is that any solution of (5.8)–(5.12) provides state
bounds for a unique regular solution of (2.1) on I � P. Of course, this is a direct
application of Theorem 5.2. Clearly, (5.12) verifies Hypothesis (IC) since natural
interval extensions are inclusion functions (see Sect. 3). Furthermore, (5.10) and
(5.11), along with positivity of � , imply that Œ � .Œt; t�;P;X.t/;Y.t/; Œ0; 1�/ is strictly
contained in Y.t/. Typically, � D 10�6 works well in practice. Observing that
Œ � D Œ � � for all arguments such that (5.10) and (5.11) hold (see the discussion
following Corollary 5.1), Hypothesis (ALG) is verified. The function Œ � is used
in place of Œ � � here for numerical reasons that are beyond the scope of this
review [79]. Finally, (5.8) and (5.9) establish Hypothesis (RHS), again through the
inclusion properties of the natural interval extension (note that the operators BL

i
and BU

i are used to reflect the conditions zx;i D xL
i .t/ and zx;i D xU

i .t/ in Hypothesis
(RHS), respectively).

With some technical modifications to Eqs. (5.8)–(5.12) that are beyond the scope
of this article, it is possible to assert the existence of a regular solution within
the computed bounds [79, Theorem 6.6.4]. Note that Theorem 5.2 does not assert
existence.

Theorem 5.3 Let .xL; xU ; yL; yU/ be a solution of (5.8)–(5.12) on I. Then there
exists a unique regular solution .x; y/ of (2.1) on I � P satisfying x.t;p/ 2 X.t/ and
y.t;p/ 2 Y.t/, 8.t;p/ 2 I � P.

In light of the discussion above, state bounds are given by solving the DAEs
(5.8)–(5.12) for xL, xU, yL, and yU. This can be done using any state-of-the-art DAE
solver, for example, IDA [27]. Moreover, the required natural interval extensions
can be computed automatically using operator overloading as described in Sect. 3.



Reachability Analysis and Deterministic Global Optimization of DAE Models 91

The only caveat is that the governing equations in (5.8)–(5.12) are nonsmooth and
are undefined for certain arguments, e.g., xL

i .t/ > xU
i .t/. Arguments of this type do

not occur along solution trajectories, but may occur during numerical integration.
For these reasons, some specialized methods are required, as discussed in [79].

Given (5.12), consistent initial conditions for yL and yU can be computed by
solving (5.10) and (5.11) at t0. If (5.1) has multiple regular solutions, then there
may be multiple consistent initial conditions, and which one is chosen determines
which solution branch will be bounded by the solution of (5.8)–(5.12). In particular,
at t0, (5.10) and (5.11) verifies the existence of an implicit function h.t0; �; �/ W P �
X.t0/ ! Y.t0/ providing the unique solution of g.t0;p; x.t0;p/; �/ D 0 within Y.t0/,
but says nothing about potential solutions outside of Y.t0/. Thus, there may exist
other solutions that lie outside Y.t0/ for all p 2 P, and these solutions will not be
bounded. Example 2.1 provides a simple DAE of this type.

The bounding equations (5.8)–(5.12) only apply to regular (i.e., index-one)
solutions. In particular, the algebraic equations (5.10) and (5.11) cannot be satisfied
by any X.t/ and Y.t/ containing a solution that is not regular at t. This is because
satisfaction of (5.10) and (5.11) implies by Conclusion 3 of Corollary 5.1 that
@g
@y .t;p; zx; zy/ is non-singular for every .p; zx; zy/ 2 P � X.t/ � Y.t/. Thus, the
solution of (5.8)–(5.12) will cease to exist if the bounded solution approaches a
bifurcation point. In general, even in the case of a unique regular solution, there is
no guarantee that (5.8)–(5.12) has a solution for a given I and P. However, (5.8)–
(5.12) has been shown to have solutions providing tight state bounds for several
examples of practical interest [79]. Moreover, whenever a solution of (5.8)–(5.12)
does exist, it is guaranteed that a unique regular solution of (5.1) exists within the
computed bounds.

It is possible to tighten the bounds given by the solution of (5.8)–(5.12) quite
considerably by refining the argument Y.t/ in (5.8) and (5.9). In fact, this is
the standard procedure as presented in [79] and was initially omitted here only
for simplicity of exposition. To develop this refinement procedure, we note that
from (5.6) we have

y.t;p/ D h.t;p; x.t;p//; 8.t;p/ 2 I � P: (5.13)

Then, using (5.5) with J D Œt; t�, Zx D X.t/, and Zy D Y.t/, it follows that

y.t;p/ D  .t;p; x.t;p/; y.t;p/;�.t;p; x.t;p///; 8.t;p/ 2 I � P: (5.14)

Thus, we may refine Y.t/ at each t through the iteration

YkC1.t/ D Œ � �.Œt; t�;P;X.t/;Yk.t/; Œ0; 1�/; Y0.t/ D Y.t/: (5.15)

Further refinement is possible if we consider refining only the particular interval
Y.t/ that will be used to evaluate Œ fi�L in (5.8). Of course, analogous procedures
also apply to the argument of Œ fi�U , and for j ¤ i. Considering the condition that
Œ fi�L must satisfy according to Hypothesis (RHS) in Theorem 5.2, the argument Y.t/
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in (5.8) can be refined by the iteration

YkC1.t/ D Œ � �.Œt; t�;P;B
L
i .X.t//;Yk.t/; Œ0; 1�/; Y0.t/ D Y.t/: (5.16)

In practice, these refinements have been found to lead to much sharper results than
applying (5.8)–(5.12) directly.

5.3 Alternative Approaches

As mentioned in the Sect. 1, an alternative state bounding approach for semi-explicit
DAEs has been proposed in [65]. The treatment of the algebraic equations in this
method is very similar to that presented here, using an interval Newton method as
described in Sect. 4. However, in [65] the interval Krawczyk method is used instead
of the interval Hansen-Sengupta method. The interval Krawczyk method is based
on a different rearrangement of (4.5) that leads to a weaker enclosure but avoids the
issue of division by an interval containing zero. The reader is referred to [59] for a
comprehensive description and comparison of the two methods.

In its treatment of the differential equations, the method proposed in [65] differs
significantly from the developments here. Rather than deriving a bounding system
which can be solved numerically to obtain state bounds [e.g., (5.8)–(5.12)], the
method applies the interval Krawczyk method to the differential equations as
well. In essence, the authors propose a time-stepping scheme in which, in each
interval Œtj; tjC1�, the interval Krawczyk method is applied to the nonlinear system
of equations

0 D �� x C f.t;p; xj C .t � tj/� x; zy/; (5.17)

0 D g.t;p; xj C .t � tj/� x; zy/: (5.18)

Above, � x and zy are dummy variables for Px and y, respectively, and the remaining
variables are known to lie within interval bounds at the beginning of the time step
(e.g., t 2 Œtj; tjC1�, p 2 P, xj 2 Xj). The authors of [65] claim that, if an inclusion test
similar to that in Conclusion 3 of Theorem 4.1 is passed with some intervals Zy and
˙x, then a unique solution of the DAE system is guaranteed to exist on Œtj; tjC1�� P,
and y.t;p/ 2 Zy and Px.t;p/ 2 ˙x, 8.t;p/ 2 Œtj; tjC1� � P. These intervals can then
be refined by interval iteration on (5.17)–(5.18) as described in Sect. 4. Finally, the
differential state is bounded by

x.t;p/ D x.tj;p/C
Z t

tj

Px.s;p/ds 2 Xj C Œ0; .tjC1 � tj/�˙x; (5.19)

for all .t;p/ 2 Œtj; tjC1� � P, and the next time step can be initialized.
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The existence and uniqueness claim is not proven in [65], and does not follow
from a careful application of Theorem 4.1 to (5.17) and (5.18). Thus some
skepticism is warranted. However, it is likely that the method can be shown to be
valid using a fixed-point result for ODE solutions, such as the successive substitution
method. A similar proof is used to establish an interval existence and uniqueness test
for DAE solutions in Theorem 4.2 of [79].

Compared to the method presented in Sects. 5.1 and 5.2, the method of [65]
has the apparent disadvantage that it requires an interval inclusion test to pass on
Eqs. (5.17) and (5.18), which notably involve equations related to the differential
equations in addition to the original algebraic equations. As discussed in [78],
and briefly in Sect. 8, passing the interval inclusion test numerically can be quite
difficult when P is large in width. Thus, applying such a test to an inflated system
of equations may cause unnecessary failure of the method for some problems.
Ultimately, a thorough computational comparison of these two methods will be
required to clarify the possible advantages and disadvantages of each approach.

6 State Relaxations for Semi-explicit Index-One DAEs

In this section, we take up the computation of state relaxations for (5.1). It assumed
throughout that state bounds have been computed via the procedure of Sect. 5. Thus,
X W I ! IR

nx and Y W I ! IR
ny satisfying (5.8)–(5.12) are available, and hence we

are ensured that a unique regular solution .x; y/ of (5.1) exists satisfying

.x.t;p/; y.t;p// 2 X.t/ � Y.t/; 8.t;p/ 2 I � P: (6.1)

Thus, the objective of this section is to compute functions xcv; xcc W I � P ! R
nx

and ycv; ycc W I � P ! R
ny such that

xcv.t;p/ � x.t;p/ � xcc.t;p/ and ycv.t;p/ � y.t;p/ � ycc.t;p/; (6.2)

for all .t;p/ 2 I � P, and, for each t 2 I, xcv.t; �/ and ycv.t; �/ are convex on P, and
xcc.t; �/ and ycc.t; �/ are concave on P. These functions are called state relaxations
for .x; y/ on I � P. More generally, functions X W I � MP ! MR

nx and Y W
I � MP ! MR

ny will be computed such that, for each fixed t 2 I, X .t; �/ and
Y .t; �/ are relaxation functions for x.t; �/ and y.t; �/, respectively.

As in the previous section, we begin by treating the algebraic equations.
However, matters here are much simpler since existence and uniqueness of the
solution .x; y/ has already been established by the state bounding procedure. The
remaining task is simply to derive a procedure that computes the inclusion function
Y supposing that X is known. This will then be used during the computation
of X described below to obtain X and Y simultaneously. The starting point for
this derivation is the relation (5.14), established in the previous section. Mirroring
the developments of Sect. 4, this relation immediately suggest that a sequence of
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progressively refined relaxation functions for y.t; �/ can be computed through the
iteration

YkC1.t;P/ D f \g.t;P;X .t;P/;Yk.t;P/;L /;

Y0.t;P/ D .Y.t/;Y.t//;
(6.3)

for all P 2 MP, where L D .Œ0; 1�; Œ0; 1�/ is a relaxation function for � in (5.14).
Of course, Y0.t; �/ is trivially a relaxation function for y.t; �/ by (6.1). Assuming
this is true of Yk.t; �/, and further considering that X .t; �/ is assumed to be a
relaxation function for x.t; �/, the properties of f \g imply that YkC1.t; �/ is also a
relaxation function for y.t; �/, as discussed in Sect. 4. Finally, note that all divisions
by McCormick objects in the evaluation of f \g above are guaranteed to be defined
for all P 2 MP on account of Conclusion 3 of Corollary 5.1 and (5.10) and (5.11),
provided that the interval part ofX .t/ is X.t/. Then, convex and concave relaxations
of y.t; �/ on P0 � P are evaluated computationally at a particular point p 2 P0 by
simply setting P D .P0; Œp;p�/ and executing the iteration (6.3). For any k � 0,
the result is a McCormick object Yk.P/ D .Yk.t;P0/; Œycv

k .t;p/; y
cc
k .t;p/�/ with the

obvious interpretation. Moving forward, we use the notation

Y .t;P/ D HK.t;P;X .t;P//; 8P 2 MP; (6.4)

to denote the relaxation function Y .t;P/ computed from X .t;P/ through the
iteration (6.3) truncated at K > 0.

We are now prepared to state the main result from [81] used to compute state
bounds for .x; y/. By Assumption 5.1, f is factorable, so we can consider its natural
McCormick extension, ffg. Below, we use the notation ffg D .Œf�; Œffgcv; ffgcc�/.

Theorem 6.1 Let K > 0 and, for every P 2 MP, and let X cv.�;P/;X cc.�;P/ W
I ! R

nx be solutions of the following initial value problem in ODEs

PX cv.t;P/ D ffgcv.t;P;X .t;P/;Y .t;P//; (6.5)

PX cc.t;P/ D ffgcc.t;P;X .t;P/;Y .t;P//; (6.6)

X .t;P/ D .X.t/;X.t/\ ŒX cv.t;P/;X cc.t;P/�/; (6.7)

Y .t;P/ D HK.t;P;X .t;P//; (6.8)

X .t0;P/ D fx0g.P/: (6.9)

Then, for each t 2 I, X .t; �/ and Y .t; �/ are relaxation functions for x.t; �/ and
y.t; �/, respectively. In particular, state relaxations for .x; y/ on P0 � P are given by
the definitions,

xcv.t;p/ D X cv.t; .P0; Œp;p�//; ycv.t;p/ D Y cv.t; .P0; Œp;p�//; (6.10)

xcc.t;p/ D X cc.t; .P0; Œp;p�//; ycc.t;p/ D Y cc.t; .P0; Œp;p�//; (6.11)

for all .t;p/ 2 I � P.
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By Theorem 6.1, convex and concave relaxations of x.t; �/ and y.t; �/ on P0 � P
are evaluated computationally at a particular point p 2 P0 by simply setting
P D .P0; Œp;p�/ and solving (6.5)–(6.9). Since Y .t;P/ can be computed explicitly
given X .t;P/ [i.e., through a fixed number of iterations of (6.3)], this system
can be treated as a system of explicit ODEs. Thus, (6.5)–(6.9) can be solved by
any numerical integration code (e.g., CVODES [27]), using a McCormick arithmetic
library (see Sect. 3).

The proof of Theorem 6.1 is based on the integral form of the differential
equations in (5.1) ,

x.t;p/ D x0.p/C
Z t

t0

f.s;p; x.s;p/; y.s;p//ds; 8.t;p/ 2 I � P: (6.12)

Based on a similar rearrangement of (6.5) and (6.6) we define a sequence of
functions X cv;`.�;P/;X cc;`.�;P/ W I ! R

nx with ` 2 N by

X cv;`C1.t;P/ D fx0gcv.P/C
Z t

t0

ffgcv.s;P;X `.s;P/;Y `.s;P//ds;

(6.13)

X cc;`C1.t;P/ D fx0gcc.P/C
Z t

t0

ffgcc.s;P;X `.s;P/;Y `.s;P//ds;

(6.14)

X `.t;P/ D .X.t/;X.t/ \ ŒX cv;`.t;P/;X cc;`.t;P/�/; (6.15)

Y `.t;P/ D HK.t;P;X `.t;P//: (6.16)

Using some regularity properties of ffg, it can be shown that these sequences con-
verge to the true solutions of (6.5)–(6.9), for every P 2 MP and every continuous
choice of X cv;0.�;P/ and X cc;0.�;P/. Choosing these initial approximations such
that ŒX cv;0.t;P/;X cc;0.t;P/� D X.t/ for all t 2 I and P 2 MP, it follows that
X 0.t; �/ is a relaxation function for x.t; �/ for each t 2 I. Assuming that this is true
of X `.t; �/ it is shown for X `C1.t; �/ as follows. First, from the definition of HK

above, it is guaranteed that Y `.t; �/ is a relaxation function for y.t; �/ for each t 2 I.
Then, the definition of ffg and the composition theorem for relaxation functions
(Theorem 3.2) imply that P 7! ffg.t;P;X `.t;P/;Y `.t;P// is a relaxation
function for p 7! f.t;p; x.t;p/; y.t;p//. Using basic properties of the integral, it
can therefore be shown that the right-most terms in (6.13) and (6.14) together form
a relaxation function for the right-most term of (6.12). In fact, this same relationship
is also true of the first terms on the right-hand sides of (6.13), (6.14), and (6.12). It
follows then that X `C1.t; �/ is a relaxation function for x.t; �/ for each t 2 I. This
recovers the inductive hypothesis at `C1, and hence for all `, and taking limits then
guarantees that X .t; �/ is a relaxation function for x.t; �/ for each t 2 I, which proves
the theorem. For a formal mathematical argument, the reader is referred to [81].
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The state relaxations described by (6.5)–(6.9) can be considerably tightened
through a slightly more involved formulation [74]:

PX cv
i .t;P/ D f figcv.t;P;X .i; t;P/;Y .i; t;P//; (6.17)

PX cc
i .t;P/ D f figcc.t;P;X .i; t;P/;Y .i; t;P//; (6.18)

X .i; t;P/ D .X.t/;BL
i .ŒX

cv.t;P/;X cc.t;P/�//; (6.19)

X .i; t;P/ D .X.t/;BU
i .ŒX

cv.t;P/;X cc.t;P/�//; (6.20)

Y .i; t;P/ D HK.t;P;X .i; t;P//; (6.21)

Y .i; t;P/ D HK.t;P;X .i; t;P//; (6.22)

X .t0;P/ D fx0g.P/: (6.23)

The argument that the solutions of this system provide state relaxations is much
more involved than that for (6.5)–(6.9). The validity of the bounding relations (6.2)
in this case results from an argument similar to that given after Theorem 5.2 with
regard to the constraints zx;i D xL

i .t/ and zx;i D xU
i .t/ appearing in Hypothesis

(RHS) of that theorem. For this reason, the interval operators B
L=U
i appear

in (6.17)–(6.23), as they did in the bounding system (5.8)–(5.12). The convexity
and concavity of the state bounds obtained via (6.17)–(6.23) again rely on the
composition properties of relaxation functions (Theorem 3.2), but the argument
is made difficult by the use of B

L=U
i . In fact, due to these difficulties, (6.17)–

(6.23) can only be guaranteed to provide valid state relaxations when the solutions
satisfy ŒX cv.t;P/;X cc.t;P/� � X.t/, 8t 2 I. However, this can be ensured by
a modification of (6.17)–(6.23) that yields a hybrid system with sliding modes. The
reader is referred to [74] for these technical details (an analogous development for
explicit ODEs can be found in [82]).

In the next section, it is shown that the convex and concave parameter dependence
of state bounds is very useful for solving global dynamic optimization problems.
However, for standard problems in reachability analysis, it is typically desirable to
have an enclosure that is not parameter dependent. Of course, state bounds provide
exactly this kind of enclosure. However, state relaxations can be used to provide a
sharper enclosure E.t/ � R

nxCny through the definition

E.t/ �
[
p2P

.Œxcv.t;p/; xcc.t;p/� � Œycv.t;p/; ycc.t;p/�/ ; 8t 2 I: (6.24)

It is straightforward to argue that .x.t;p/; y.t;p// 2 E.t/, 8.t;p/ 2 I � P, and
moreover that E.t/ is convex for each fixed t 2 I. From this last observation, it
follows that E.t/ can be outer-approximated by a polytope of the form

Epoly.t/ � f.zx; zy/ W �T
k zx C � T

k zy � ck.t/; k D 1; : : : ;Kg; (6.25)
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by defining

ck.t/ � max
p2P

Œ

nxX
iD1

max.�k;ix
cv
i .t;p/; �k;ix

cc
i .t;p// (6.26)

C
nyX

iD1
max.�k;iy

cv
i .t;p/; �k;iy

cc
i .t;p//�;

for all t 2 I. Using the convexity/concavity properties of the state relaxations, it is
straightforward to show that these maximizations are concave for any �k 2 R

nx and
� k 2 R

ny , and can therefore be solved efficiently [74, 75].

6.1 Alternative Approaches

At present, no alternative approaches have been proposed for computing state
relaxations for DAEs. However, several methods are available for ODEs that can
likely be extended to the DAE case without undue complications. Indeed, once
state bounds have been computed, the issue of existence and uniqueness is resolved
and the relaxation procedure can be seen as a refinement of the bounds. In this
context, one promising direction is the extension of the state relaxation methods
for ODEs in [70, 71]. These methods are fundamentally different from the state
relaxation method proposed here in that they do not define a relaxed dynamic
system to be solved numerically [e.g., as in (6.17)–(6.23)]. Rather, these methods
first discretize the dynamics, and then compute state relaxations for an approximate
solution that is essentially known in factorable form. These relaxations are then
made valid by adding a bound on the approximation error. Despite this difference,
these methods are quite similar to the method proposed here in their use of factorable
representations and McCormick relaxations as fundamental building blocks (in
addition to so-called Taylor-model arithmetic, a more complex enclosure method
for factorable functions that was not discussed in Sect. 3). Thus, the extension of
these methods to DAEs following the developments of Sect. 4 is a plausible and
potentially fruitful area for future research.

7 Global Optimization with Semi-explicit Index-One DAEs
Embedded

In this section, we review the method in [74] for deterministic global optimization
problems with DAEs embedded. The specific problem under consideration is dis-
cussed in detail in Sect. 2.4. As mentioned in Sect. 1, all existing global optimization
algorithms for dynamic problems are based on the spatial branch-and-bound (B&B)
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framework originally developed for standard NLPs [29, 69]. Accordingly, we begin
with a brief overview of this approach, and subsequently extend it to DAE embedded
problems using the developments of the last several sections.

7.1 The Spatial Branch-and-Bound Global Optimization
Algorithm

Consider the standard NLP

min
p2P

J.p/

s:t: G.p/ � 0;
(7.1)

where P 2 IR
np , and J and G are continuous on P. To solve this problem to

global optimality, the spatial B&B method considers a sequence of subproblems
in which (7.1) is restricted to a subinterval Pl � P:

min
p2Pl

J.p/

s:t: G.p/ � 0;
(7.2)

The basic requirement for applying spatial B&B is that, for any subinterval Pl � P
(which may be P itself), procedures are available that compute guaranteed upper
and lower bounds on the optimal objective value of (7.2). These bounds are denoted
by UBDl and LBDl, respectively. Since the value of the objective function at any
feasible point provides an upper bound on the optimal objective value of (7.2), UBDl

can be computed by solving (7.1) to local optimality. Computing a lower bound
is substantially more difficult and is the key step in the spatial B&B algorithm.
Methods for accomplishing this are discussed below.

Supposing that upper and lower bounding procedures are available, the spatial
B&B algorithm proceeds as follows. First, upper and lower bounds are computed
for the optimal objective value of (7.1). Since these bounds apply to the original
problem of interest, rather than to the subproblem (7.2), they are denoted by UBD
and LBD, respectively. If it happens that UBD�LBD is less than a specified tolerance
", then the B&B algorithm terminates, having bracketed the optimal objective value
of (7.1) within the given tolerance. An estimate of the solution value p� is then
given by the value which attained the upper bound UBD. If this termination test
fails, then P is partitioned into two subintervals, termed branching, typically by
bisection in its dimension of largest width. These subintervals inherit the bounds
UBD and LBD, which are obviously valid for the corresponding subproblems (7.2)
on account of being valid for (7.1). These two subintervals are then added to a
stack˙ of subintervals, or nodes, to be processed that is maintained throughout the
algorithm.
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At the beginning of a generic iteration of the algorithm, UBD and LBD are
the best known upper and lower bounds on the optimal objective value of (7.1),
respectively, and the stack ˙ contains a number of nodes Pl, each of which is
equipped with upper and lower bounds UBDl and LBDl that have been inherited
from the parent node from which it was generated through bisection. Collectively,
the nodes Pl may not form a partition of P, but the complement of [lPl in P will
have been proven not to contain the optimal solution of (7.1) through the procedures
below. The iteration proceeds by selecting from the stack a node Pl for which
LBDl D LBD. The upper and lower bounds UBDl and LBDl are then refined by
computing bounds on the optimal objective value of (7.2) using the procedures that
we have assumed to be available. If it is found that (7.2) is infeasible, then Pl is
eliminated from further consideration and a new element is selected from the stack.
In this case, we say that Pl is fathomed by infeasibility. Otherwise, upper and lower
bounds on the optimal objective value of the original problem (7.1) are updated
according to

UBD WD min
k

UBDk and LBD WD min
k

LBDk; (7.3)

where the min is taken over all elements of˙ . These assignments are valid because
the complement of [kPk in P has been shown not to contain a global optimum
of (7.1). Moreover, if Pl was the only element of ˙ for which LBDl D LBD at
the beginning of the iteration, and if LBDl was improved by the application of the
lower bounding procedure to (7.2), then LBD is improved by this assignment. If
UBD is improved by this assignment, then there is an opportunity to fathom some
nodes in the stack. This is done by checking the inequality LBDk > UBD for every
Pk 2 ˙ . If this is true for some Pk, then the optimal solution cannot lie in Pk and
Pk is eliminated from further consideration. In this case, Pk is said to be fathomed
by value dominance. If Pl has not been fathomed either by infeasibility or by value
dominance, then it is bisected and the two resulting nodes are added to the stack.

The iteration outlined above is repeated until either the stack becomes
empty, indicating that (7.1) is infeasible, or it is found in some iteration that
UBD � LBD < ", indicating that a point p� has been found which achieves an
objective value within " of the globally optimal objective value. Roughly, if the
lower bounding procedure has the property that it provides sharper bounds on
smaller intervals Pl and becomes exact in the limit as Pl tends toward a singleton,
then it can be shown that one of these outcomes will occur after finitely many
iterations [29]. A notable exception to this result can occur in the presence of
inequality constraints if the algorithm is unable to find feasible points at which to
compute upper bounds. In the following discussion, we assume that upper bounds
can be computed without difficulty.

Due to the repeated partitioning of P, the spatial B&B algorithm exhibits worst-
case exponential run-time with respect to the dimension of p and the magnitude of
1=". In practice, the primary determinants of the run-time are the computational cost
and the accuracy of the lower bounding procedure. In addition, a number of more



100 J.K. Scott and P.I. Barton

advanced techniques have been developed which can greatly accelerate convergence
through the use of domain reduction techniques [67–69]. Thus, while it is true
that the basic procedure outlined above can be prohibitively expensive, impressive
results have been achieved for many challenging problems using advanced imple-
mentations of the method [66, 67, 85, 92].

Several methods are available for computing lower bounds on the optimal
objective value of the subproblem (7.2). If J is factorable, we may use the lower
bound of the natural interval extension ŒJ�.Pl/, as described in Sect. 3. Although
some early implementations are based on this approach [32], the lower bounds
computed in this way are relatively weak. Moreover, these bounds obey a first-order
convergence rate property [56], while it has been demonstrated that at least second-
order convergence is required to avoid serious convergence problems in spatial B&B
algorithms [95]. In most modern implementations, lower bounds are computed by
constructing and solving convex underestimating programs [5, 23, 50, 92]. A convex
underestimating program for (7.2) is a program that is convex and has an optimal
objective value that is guaranteed to underestimate that of (7.2). Although there are
many ways to accomplish this, we consider the program

min
p2Pl

Jcv
l .p/

s:t: Gcv
l .p/ � 0;

(7.4)

where Jcv
l and Gcv

l are convex relaxations of J and G on Pl, respectively. This
program is clearly convex, and hence solvable to global optimality using standard
local optimization techniques. Moreover, its optimal objective value is easily seen
to underestimate that of (7.2). If J and G are factorable functions, Jcv

l and Gcv
l can

be obtained from the natural McCormick extensions fJg and fGg, as described in
Sect. 3. In fact, when J and G are factorable, a number of approaches are available
for constructing a convex relaxations [1, 2, 5, 50], and more generally to construct
convex underestimating programs for (7.2) [92]. This last method is used in the
popular code BARON.

7.2 A Lower Bounding Procedure for Optimization with DAEs

We now consider the application of spatial B&B global optimization to the dynamic
optimization problem (2.8), which we restate here for convenience:

min
p2P

�.p; x.tf ;p/; y.tf ;p//

s:t: �.p; x.tf ;p/; y.tf ;p// � 0:
(7.5)
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Recall that .�;�/ W Dp � Dx � Dy ! R � R
nc are continuous, and .x; y/ is a regular

solution of (5.1) on I � P that uniquely satisfies the additional initial condition

y.t0; Op/ D Oy0; (7.6)

where Op 2 P and Oy0 2 Dy satisfy g.t0; Op; x0. Op/; Oy0/ D 0 and det @g
@y .t0; Op; x0. Op/; Oy0/ ¤

0. The existence of such a solution can be verified by the state bounding algorithm of
Sect. 5, and in fact this will be done during the course of the optimization algorithm
described here.

The optimization problem (7.5) can be written in the form of the standard
optimization problem (7.1) with the definitions

J.p/ � �.p; x.tf ;p/; y.tf ;p//; (7.7)

G.p/ � �.p; x.tf ;p/; y.tf ;p//: (7.8)

Thus, spatial B&B is applicable to (7.5), provided that upper and lower bounds on
the subproblems (7.2) can be computed, for any P � P, with the definitions (7.7)
and (7.8). Any local dynamic optimization algorithm can be used to compute the
required upper bounds. Moreover, a valid lower bound can be computed by solving
the convex problem (7.4) locally, provided that convex relaxations Jcv and Gcv

can be derived for (7.7) and (7.8). Although many methods for computing convex
relaxations were discussed above, the key assumption in all of these techniques is
that the objective and constraint functions are factorable functions of p. Of course,
this is not the case for (7.7) and (7.8), precisely because the parametric DAE
solutions x.tf ; �/ and y.tf ; �/ are not factorable. Thus, we find ourselves in the now
familiar situation of requiring global information about non-factorable functions.

The difficult work needed to address this problem has already been done in the
last several sections, leading to state relaxations for .x; y/. What remains is only
propagate these relaxations through � and � to obtain Jcv and Gcv. To do this,
we will use the factorable representations of � and � to compute their natural
McCormick extensions, and subsequently leverage the composition theorem for
relaxation functions. The following assumption is required:

Assumption 7.1 The functions � and � are factorable with natural McCormick
extensions f�g W MDp�MDx�MDy ! MR and f�g W MDp�MDx�MDy ! MR

nc .

Relaxation functions .J ;G / W MP ! MR � MR
nc for .J;G/ can now be

defined through the following procedure for each P D .Pl; Œpcv;pcc�/ 2 MP:

1. Compute state bounds X.t/ and Y.t/ on Pl by solving (5.8)–(5.12) with Pl in
place of P.

2. Evaluate the relaxation functions X .tf ; �/ and Y .tf ; �/ at P by solving (6.17)–
(6.23).
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3. Assign

J .P/ � f�g.P;X .tf ;P/;Y .tf ;P//; (7.9)

G .P/ � f�g.P;X .tf ;P/;Y .tf ;P//: (7.10)

Since X .tf ; �/ and Y .tf ; �/ have been shown to be relaxation functions for x.tf ; �/
and y.tf ; �/, respectively, and f�g is a relaxation function for � by definition,
Theorem 3.2 implies that J is a relaxation function for J. An analogous argument
holds for G . As discussed previously, the required McCormick arithmetic in these
computations can be done automatically using the McCormick arithmetic library
MC++ (http://www3.imperial.ac.uk/people/b.chachuat/research).

Now, using the notation J D .ŒJ L;J U�; ŒJ cv;J cc�/, and similarly for G ,
define

Jcv
l .p/ � J cv..Pl; Œp;p�//; Gcv

l .P/ � G cv..Pl; Œp;p�//: (7.11)

By the properties of relaxation functions with arguments of the form .Pl; Œp;p�/, it
follows that Jcv

l and Gcv
l are convex relaxations of J and G as defined by (7.7) and

(7.8), respectively (see Sect. 3.2). Thus, a valid lower bounding problem for (7.5) on
Pl is given by

min
p2Pl

Jcv
l .p/

s:t: Gcv
l .p/ � 0:

(7.12)

Since the procedure for evaluating Jcv
l .p/ and Gcv

l .p/ outlined above involves the
solution of (6.17)–(6.23) for each p, (7.12) is itself a dynamic optimization problem.
However, it is guaranteed to be convex, so that it can be solved to global optimality
using a local solver, thereby providing the lower bound required by the spatial
B&B algorithm. Note that the bounding system (5.8)–(5.12) is solved only once
during the solution of (7.12) because (5.8)–(5.12) depend only on P0, and not on p.
Implementing this requires that one stores the interpolating polynomial used by the
integrator in each time step of the state bounds integration, so that accurate bound
values can be recovered during integration of the state relaxations. This information
can be obtained as output from the DAE solver IDA [27].

Due to the use of McCormick’s relaxation technique, it is possible that the
objective and constraints in (7.12) are non-differentiable. However, subgradients
can be computed using the subgradient propagation rules for McCormick relax-
ations developed in [53], along with the developments for state relaxations in
[74]. These subgradients can be computed automatically using the McCormick
arithmetic library MC++ (http://www3.imperial.ac.uk/people/b.chachuat/research).
Because (7.12) is a potentially nonsmooth convex optimization problem, it is best
to solve it using a specialized nonsmooth solver, such as a bundle method [44, 48].
However, these methods are not as mature as those for differentiable problems,

http://www3.imperial.ac.uk/people/b.chachuat/research
http://www3.imperial.ac.uk/people/b.chachuat/research
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and the available solvers of this type remain problematic. Numerical experiments
using the sequential quadratic programming code SNOPT are presented in [74],
without serious numerical difficulties. An alternative approach is to use the values
Jcv

l . Op/ and Gcv
l . Op/ for some fixed Op 2 Pl, along with subgradients at this point, to

construct affine underestimators for J and G on Pl. This reduces the lower bounding
problem to a linear program and thereby avoids the issue of nonsmoothness. The
lower bounds generated by this scheme are more conservative. However, there is a
significant advantage in terms of the computational cost-per-node because (6.17)–
(6.23) are integrated only once during the solution of the lower bounding problem.
This method is used in the case study in Sect. 8.

7.3 Alternative Approaches

As mentioned in Sect. 1, an alternative approach to global dynamic optimization is
to combine the simultaneous formulation, in which the dynamics are discretized
in time and reduced to a large system of algebraic equations, with state-of-
the-art branch-and-bound codes for standard NLPs [15]. A serious drawback of
this approach is that it generates a very large number of new decision variables
representing the values of the differential and algebraic states at each time point in
the discretization scheme. While the special structure of this large-scale NLP makes
it tractable for the purposes of local optimization, it has not been demonstrated that
this structure can mitigate the characteristic worst-case exponential dependence of
branch-and-bound run-time on the number of decision variables. However, even if
this could be done, there is a more subtle problem that we are now in a position
to appreciate. For a branch-and-bound search to be exhaustive, upper and lower
bounds on the permissible values of all decision variables must be provided by
the user. Given the fact that the decisions in the simultaneous formulation include
the state variables themselves, at numerous time points throughout the horizon of
interest, it follows that a reachable set enclosure must be provided as input. Thus, the
primary complication of the sequential approach appears again in the simultaneous
formulation and apparently eliminates the advantages of discretization.

Looking toward future improvements in relaxation theory for dynamic optimiza-
tion problems, it is useful to note that state-of-the-art branch-and-bound codes for
standard NLPs do not typically apply McCormick’s relaxation technique directly,
nor do they use the simplistic relaxation of (7.2) by (7.4). In particular, it is
widely appreciated that accounting for the interdependence of the objective and
constraint functions, as well as the interdependence of individual terms within
each of these equations, is essential to obtaining tight relaxations in general. In the
context of dynamic optimization problems, these observations have not been applied
principally because of the lack of factorable expressions for the states, objective,
and constraints. Indeed, the generality of McCormick’s relaxation technique, and
specifically its composition properties, are central to overcoming this problem.
Moreover, moving beyond this approach is not a straightforward application of
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existing relaxation techniques for NLPs. This is because the interdependence of
different equations and sub-expressions in dynamic optimization problems are most
often a result of correlations between the state variables. Thus, these interdepen-
dencies cannot be detected by methods that rely on a factorable representation.
Rather, they are properties of the differential-algebraic system that must be inferred
from the factorable representations of the governing equations using insights from
dynamical systems theory. This is an open challenge that needs to be addressed
moving forward. As a specific example, it suggests an alternative approach in which
the state variables are not relaxed component-wise, as is done in (6.17)–(6.23).
Instead, one might try for a more general convex enclosure of the reachable set
as a whole. At present, this idea has not been investigated in the state relaxation
literature, either for ODEs or DAEs, and is a promising area for future investigations.

8 Numerical Results and Directions for Improvement

In this section, the methods developed in Sects. 5–7 are demonstrated on a parameter
estimation problem from [35]. Shortcomings and directions for future research are
also highlighted.

8.1 Problem Formulation

Consider the following two-component signal transduction network:

ATP C KdpD • ADP C KdpDp (8.1)

KdpDp C KdpE • KdpD C KdpEp
f (8.2)

KdpEp
f C KdpD ! KdpE C KdpD (8.3)

2KdpEp
f C DNAf • KdpE-DNA (8.4)

This network provides a simplified description of the regulation of KC uptake in
E. coli, and is mechanistically similar to a variety stimulus response mechanisms
found in bacteria, archaea, and plants [35]. A superscript p above denotes a
phosphorylated species. Thus, reaction (8.1) describes the autophosphorylation of
KdpD, (8.2) is a phosphoryl transfer reaction, (8.3) describes the dephosphorylation
of KdpEf , and (8.4) describes the binding of DNA to form the transcription complex
KdpE-DNA.

In [35], purified KdpD, KdpE, and DNA fragments were combined in a mixture
of ATP/ADP, and the concentrations of the phosphorylated proteins were measured
over time. Specifically, the measured concentrations were CKdpDp and CKdpEp

f
C

2CKdpE-DNA, where the latter figure is the total concentration of phosphorylated
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KdpE in both its free and complexed forms. The concentration of ATP/ADP were
essentially constant during the experiments.

To present the model equations for this system in the notation of previous
sections, we write

x � .CKdpDp ;CKdpEp
f

C 2CKdpE-DNA/; (8.5)

y � .CKdpEp
f
;CDNAf ;CKdpD;CKdpE/: (8.6)

We further collect some known initial concentrations in the vector m defined as

m � .CATP0;CADP0;CDNA0;CKdpD0;CKdpE0/ D .100; 8; 100; 1; 4/ �M: (8.7)

Finally, the forward and reverse rate constants of reaction i are denoted as ki

and k�i, the reactions (8.1)–(8.4) are numbered consecutively from 1 to 4, and
the equilibrium constant for DNA binding in (8.4) is denoted by Kb. With these
definitions, the model equations are

Px1 D k1m1y3 � k�1m2x1 � k2x1y4 C k�2y3y1; (8.8)

Px2 D k2x1y4 � k�2y3y1 � k3y3y1; (8.9)

0 D �x2 C y1 C 2
y21y2
Kb

; (8.10)

0 D �m3 C y2 C y21y2
Kb

; (8.11)

0 D �m4 C y3 C x1; (8.12)

0 D �m5 C y4 C x2: (8.13)

To arrive at these equations, differential species balances are first derived for x1,
x2, and CKdpE-DNA assuming mass-action kinetics in (8.1)–(8.4). In this form, the
system specification is completed by three algebraic equations that specify the
concentrations of KdpD, KdpE, and DNA using the observation that the total
concentration of each of these species in all its phosphorylated, unphosphorylated,
and complexed forms must equal CKdpD0, CKdpE0, and CDNA0, respectively. This
model is then reduced by the observation that DNA binding is fast relative to the
other reactions, and can therefore be assumed to be in quasi-equilibrium. This leads
to the algebraic relation

y21y2 D KbCKdpE-DNA; (8.14)

which is substituted throughout to arrive at the DAEs (8.8)–(8.13).
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Table 1 Data used for the
parameter estimation
problem (8.15), based on
experimental data from
Fig. 3(B) in [35]

` t` (min) Ox1 (�M) Ox2 (�M)

0 0 0 0

1 1 0.0027 0.003

2 2.5 0.0068 0.0075

3 5 0.0068 0.0108

4 7.5 0.0063 0.0148

5 10 0.0069 0.019

6 12.5 0.0067 0.0205

7 15 0.0072 0.0230

In [35], parameter estimation was done using a local dynamic optimization
method to find the unknown rate constants ki and k�i for all i 2 f1; : : : ; 4g. Here,
we consider solving this problem globally. To simplify the problem, we fit only k1
and k3, which were found to be the parameters with the highest sensitivities in [35].
Thus, we solve the optimization problem

min
k1;k3

1

7

7X
`D1

"�
x1.t`; k1; k3/ � Ox1.t`/

Ox1.t`/

2

C
�

x2.t`; k1; k3/ � Ox2.t`/
Ox2.t`/


2#

s:t: k1 2 Œ0:001; 0:01� (h�M)�1; k3 2 Œ10; 300� (h�M)�1;

(8.8)–(8.13) hold 8t 2 Œ0; 0:25� h;

x.t0; k1; k3/ D 0 �M;

y.t0; k1; k3/ D .0;m3;m4;m5/ �M:

(8.15)

Above, Ox1 and Ox2 denote measured values, which are given in Table 1. These data are
based on experimental values reported in [35]. Unfortunately, the measured values
were not reported directly, so the data in Table 1 are estimated from Fig. 3(B) in
[35]. Although inaccurate, this data is sufficient for the illustrative purposes of this
example. The fixed rate constants in (8.15) are set to the optimal values found in
[35]: k�1 D 0:0029 (h�M)�1, k2 D 108 (h�M)�1, k�2 D 1080 (h�M)�1, Kb D 36

540

(�M)2.

8.2 Global Dynamic Optimization

For the purposes of solving (8.15) to global optimality, some further rearrangements
of (8.8)–(8.13) are helpful. First, the final three algebraic equations are solved
analytically for y2, y3, and y4 respectively, and substituted into the remaining
equations to arrive at a system of two differential equations and one nonlinear alge-
braic equation. Secondly, the resulting equations are rearranged to give factorable



Reachability Analysis and Deterministic Global Optimization of DAE Models 107

representations that are favorable for interval and McCormick computations. The
final form used for the computations below is

Px1 D k1m1.m4 � x1/� k�1m2x1 � k2x1.m5 � x2/C k�2.m4 � x1/y1; (8.16)

Px2 D �Œ.k�2 C k3/y1 C k2.m5 � x2/�.m4 � x1/C k2m4.m5 � x2/; (8.17)

0 D y31 C 2m3y
2
1 C Kby1 � .Kb C y21/x2: (8.18)

The global dynamic optimization algorithm is also provided with the analytical
derivative of the algebraic equation with respect to y1 with the factorable repre-
sentation

@g

@y1
D y1.3y1 C 2.2m3 � x2//C Kb: (8.19)

The purpose of these rearrangements is to reduce the conservatism of the
enclosures obtained through the interval and McCormick methods described in
the preceding sections. The analytical solution of (8.11)–(8.13) avoids potentially
conservative interval and McCormick iterations on these equations using the
methods of Sect. 4. These iterations are applicable to general nonlinear equations,
and do not always reduce to the natural interval extension of the analytical solution
when the latter is possible. The factorable representations used in (8.18) and (8.19)
have already been justified in Sect. 4.1, and are designed to minimize the number
of appearances of variables that will be interval- or McCormick-valued in the
interval or McCormick evaluations of these expressions. The rearrangements to
the right-hand side of (8.17) are similarly motivated. In this case, we note that the
state bounding method of Sect. 5 uses exclusively interval evaluations of (8.17) in
which x2 is a degenerate interval, while x1, y1, and k3 are potentially nondegenerate
intervals. Thus, the rearranged equation reduces the appearances of x1 from 2 to 1,
without concern for the additional appearances of x2 so generated. Rearrangements
of the type discussed here and in Sect. 4.1 are standard in interval computations
and are typically not difficult to perform. However, good arrangements depend on
which variables will be interval- or McCormick-valued in a given expression, and
can become cumbersome for large systems. Automating these rearrangements is an
interesting topic for future research at the intersection of numerical and symbolic
computations.

Using Eqs. (8.16)–(8.18), the least-squares estimation problem (8.15) was solved
to global optimality using branch-and-bound as described in Sect. 7. In each node,
upper bounds were determined by simply evaluating the objective at the midpoint
pl

mid of the parameter interval Pl. To compute a lower bound for the optimal objective
value on Pl, state bounds were first computed on Pl by solving (5.8)–(5.11). The
parameter � in (5.10) and (5.11) was set to 10�6 and (5.8)–(5.11) were solved
using IDA [27] with relative and absolute tolerances of 10�6. Subsequently, state
relaxations were computed at pl

mid by solving (6.17)–(6.23) with K D 5 using
CVODES [27] with relative and absolute tolerances of 10�6. Additionally, sensitivity
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equations for (6.17)–(6.23) were integrated in order to provide subgradients for
the state relaxations as described in detail in [74]. The state relaxations and
subgradients were then propagated through the least-squares objective in (8.15)
using McCormick arithmetic along with the subgradient propagation rules in [53].
This gives the relaxation value Jcv

l .p
l
mid/ along with the associated subgradient at

pl
mid. Using this information, an affine relaxation of the objective was formulated and

minimized on the box Pl to obtain the final lower bound. The termination condition
for the branch-and-bound algorithm was specified as jUBD � LBDj � 10�5. No
domain reduction techniques were used. Branching was done using a weighted-
width heuristic that bisects the ith parameter interval if i 2 argmax.Wiw.Pl

i//. Here,
w denotes the interval width and Wi 2 RC is a weighting factor. For the present
problem, W1 D 105 and W2 D 1 were specified based on the observation that the
sensitivity of the objective function to k1 at pmid of the root node is larger than that
with respect to k3 by a factor of 105.

The �-global minimum objective value was found to be 0:029069, which is
attained at p� D .k�

1 ; k
�
3 / D .4:31348 � 10�3; 162:9297/ (h�M)�1. This optimal

solution is quite different from that found in [35]; .k1; k3/ D .2:9 � 10�3; 90/
(h�M)�1. However, while it is likely that the value found in [35] is not globally
optimal, the discrepancy here is probably primarily due to the error introduced in
our estimation of the experimental data from Fig. 3(B) in [35].

The global solution for (8.15) was found in 52s. The optimization was done
on a virtual machine with 4 GB of memory running Ubuntu 12.04 on a Macbook
Pro OSX 10.9.2 host with a 2.6 GHz Intel Core i7 CPU. The branch-and-bound
algorithm visited 1587 nodes in total, generating the partition of the search space
shown in Fig. 2. The state bounds and the relaxation of the objective function
computed in the 1100th node visited by the algorithm are shown in Figs. 3 and 4
as representative examples.

Although the state bounds in Fig. 3 are relatively sharp, the bounding technique
can generate rapidly diverging bounds on the larger Pl intervals that occur early in
the branch-and-bound tree. This is a common problem in reachability analysis and
also occurs for problems with ODEs embedded. However, a unique feature of the
DAE methods here is the need to pass an inclusion test to verify the existence of a
solution of the algebraic equations as described in Sect. 4. This manifests itself in the
state bounding method through the need to satisfy Eqs. (5.10) and (5.11) everywhere
along the bounding trajectories, which can become difficult or impossible when the
interval arguments become large in width. For example, the state bounds computed
in the 900th node visited by the branch-and-bound algorithm are shown in Fig. 5.
These are clearly divergent, and although the bounding procedure succeeds, slightly
larger parameter intervals cause it to fail due to an inability to satisfy (5.10) and
(5.11) for t near the end of the horizon. For such nodes, the lower bound is set to
�1 and the node is branched. These failures make a significant contribution to the
overall number of nodes visited by the branch-and-bound algorithm, as well as to
the CPU time. Thus, an area for future research is in deriving sharper inclusion tests
that can potentially succeed on larger parameter intervals.
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Fig. 2 Intervals in the search space P D Œ0:001; 0:01� � Œ10; 300� that were fathomed by value
dominance during the branch-and-bound global solution of (8.15). The diamond indicates the
global solution found
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Fig. 3 Upper and lower state bounds for x2 (circles) computed on P1100 D Œ1:421875 �
10�3; 1:4921875 � 10�3� � Œ136:875; 145:9375�, as well as true solution trajectories of (8.16)–
(8.18) (solid) computed on a uniform 12 � 12 grid of P1100. P1100 is the interval corresponding to
the 1100th node processed by the branch-and-bound algorithm while solving (8.15)
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Fig. 4 Objective function of (8.15) on P1100 (upper surface), along with its convex relaxation
(middle surface) and interval lower bound (lower surface). P1100 is the interval corresponding to
the 1100th node processed by the branch-and-bound algorithm while solving (8.15)
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Fig. 5 Upper and lower state bounds for x2 (circles) computed on P900 D Œ1:5625 �
10�3; 1:703125� 10�3�� Œ118:75; 127:8125�, as well as true solution trajectories of (8.16)–(8.18)
(solid) computed on a uniform 12� 12 grid of P900. P900 is the interval corresponding to the 900th
node processed by the branch-and-bound algorithm while solving (8.15)
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A further area for research in DAE state bounding is to consider the use of
a priori information that is known about the DAE reachable set, for example,
through physical arguments. This has been studied in the case of ODE state
bounding techniques in [76, 80]. It was shown there that many models of interest
in chemical engineering applications satisfy affine solution invariants of the form
M.x.t;p/ � x0.p// D 0, 8.t;p/ 2 I � P, and that these invariants can be exploited
within the state bounding procedure to provide dramatically improved bounds
in many cases. The same observation likely holds for DAE models. Indeed, the
algebraic equations (8.12) and (8.13) are derived from species balances and are used
to replace differential balances on y3 and y4. However, if these differential balances
were included in the model, then (8.12) and (8.13) would be redundant and would
describe affine solution invariants. Experience with ODEs suggest that these could
be used in the bounding procedure to significantly improve the computed bounds on
larger Pl intervals. What remains to be done is to establish methods for exploiting
this information within the DAE state bounding theory in a manner analogous to the
ODE methods in [76, 80].

Figure 2 clearly shows that there is a large accumulation of small intervals
Pl surrounding the unconstrained global minimum, which adds significantly to
the computational cost of global optimization. This phenomenon is known as the
cluster problem and has been investigated in a number of articles [18, 95]. The
severity of this problem is known to be related to the convergence order of the
relaxation method used; i.e., the rate at which the convex relaxations converge to
the original objective function as the parameter interval Pl tends toward degeneracy
at a global minimizer, Pl ! Œp�;p��. The cluster problem is severe for first-order
convergent methods, non-existent for third-order convergent methods, and second-
order methods constitute a boundary case in which the behavior is determined by
the size of the pre-factor in the convergence order estimate. In general, computing
a third-order convergent relaxation is thought to be NP-hard [60]. At present, there
are no published results on the convergence order of relaxation methods for dynamic
optimization problems. However, preliminary research suggests that the ODE state
relaxation methods in [82, 84] are both second-order convergent, with the pre-
factor for the latter being potentially much better than for the former. However,
the relaxation methods for implicit functions presented in Sect. 4 are thought to be
only first-order convergent, which would then imply first-order convergence of the
DAE relaxation methods presented here. Thus, a third area for future research is in
developing second-order convergent relaxation methods for implicit functions, and
hence for DAE solutions. It is expected that such a development would result in
a very substantial reduction in CPU time for DAE embedded global optimization
problems.
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9 Conclusions

In this article, we have given a tutorial overview of the main concepts and tools used
for reachability analysis and deterministic global optimization of nonlinear DAE
models. These problems are highly interrelated, and are global problems in the sense
that they concern the parametric solutions of a DAE model over a potentially large
range of model parameters, rather than locally about a single value. The fundamental
tool used to compute global information in the methods presented here, as well
as similar methods in the literature, is the factorable representation of a function,
along with its natural interval and McCormick extensions. The primary challenge
when dealing with DAE systems is that the solutions are not factorable in general.
To circumvent this, the methods detailed in this article repeatedly used the key
idea that global information can be computed for a non-factorable function if that
function is fully specified as the solution of a system of factorable equations. Using
this theme, bounds and relaxations were computed for the solutions of implicit
functions, and these methods were then extended to DAEs using some key theorems
relating global properties of the DAEs to global properties of the solutions. In
particular, these extensions led to computational methods for computing interval
bounds, as well as convex and concave relaxations for the parametric solutions
of semi-explicit index-one DAEs. Interestingly, these methods were also shown to
be capable of computationally verifying the existence and uniqueness of a DAE
solution within the computed bounds. Finally, we have highlighted the importance
of reachability analysis in the context of global dynamic optimization, and argued
that reachable set enclosure methods are a key enabling tool for the application
of powerful global optimization algorithms to dynamic problems. In particular, we
have illustrated the use of reachable set enclosures described in terms of convex and
concave relaxations to extend the spatial branch-and-bound framework to dynamic
optimization problems, leading a guaranteed global optimization algorithm for
problems with semi-explicit DAE models embedded.
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Abstract A survey of methods from numerical linear algebra for linear constant
coefficient differential-algebraic equations (DAEs) and descriptor control systems
is presented. We discuss numerical methods to check the solvability properties
of DAEs as well as index reduction and regularization techniques. For descriptor
systems we discuss controllability and observability properties and how these can
be checked numerically. These methods are based on staircase forms and derivative
arrays, obtained by real orthogonal transformations that are discussed in detail. Then
we use the reformulated problems in several control applications for differential-
algebraic equations ranging from regular and singular linear-quadratic optimal
and robust control to dissipativity checking. We discuss these applications and
give a systematic overview of the theory and the numerical solution methods.
In particular, we show that all these applications can be treated with a common
approach that is based on the computation of eigenvalues and deflating subspaces
of even matrix pencils. The unified approach allows us to generalize and improve
several techniques that are currently in use in systems and control.

Keywords Canonical form • Controllability • Descriptor system • Differential-
algebraic equation • Dissipativity • Even matrix pencil • H1 control • Kro-
necker index • L1-norm • Linear-quadratic optimal control • Observability

AMS Subject Classification (2010): 15A21, 15A22, 34A09, 65F15, 65L80,
93C05, 93D09

Notation

N, N0 The set of natural numbers, N0 D N [ f0g
R, C The fields of real and complex numbers, resp.
C

�, CC The sets of complex numbers with negative and positive real
parts, resp.

i The imaginary unit
u The roundoff unit
RŒs�; CŒs� The rings of polynomials with real and complex coefficients

in the indeterminate s, resp.
R.s/ The field of real-rational functions in the indeterminate s
Rm;n The sets of m � n matrices with entries in a ring R

AT , AH, A�1 Transpose, conjugate transpose, and inverse of the matrix A
range A, ker A Range and kernel of the matrix A, resp.
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diag.A1; : : : ;Ak/ WD

2
64

A1
: : :

Ak

3
75

�.A/ The spectrum of A 2 R
n;n

�.E;A/ The set of finite eigenvalues of sE � A 2 RŒs�m;n

1 Introduction

In modern modeling and simulation software packages such as MODELICA1 or
MATLAB/SIMULINK,2 the mathematical models are generated via a network of
standardized submodels. This network approach has become the industrial standard
in many physical and engineering domains, see, e.g., [8, 58, 68, 83, 101, 103–
106, 112], and leads to differential-algebraic equations (DAEs), or descriptor
systems in the control setting. The models include differential equations that model
the dynamical behavior and algebraic equations that model constraints, interface
and boundary conditions, or balance equations.

In this survey we study linear constant coefficient DAEs and descriptor systems,
which arise from general nonlinear DAEs or descriptor systems by linearizing
around a stationary solution [46], or via realization procedures [3, 4]. Linear
constant coefficient DAEs take the form

EPx.t/ D Ax.t/C f .t/; x.0/ D x0; (1.1)

and linear time-invariant descriptor systems have the form

EPx.t/ D Ax.t/C Bu.t/; x.0/ D x0; (1.2a)

y.t/ D Cx.t/C Du.t/; (1.2b)

with matrices E; A 2 R
k;n, B 2 R

k;m, C 2 R
p;n and D 2 R

p;m. Here, x W Œ0;1/ ! R
n

represents the state, u W Œ0;1/ ! R
m denotes a control input signal, y W Œ0;1/ !

R
p is the output signal, and f W Œ0;1/ ! R

k is a given inhomogeneity.
For a uniform presentation, we combine both DAE and descriptor system in the

form

EPx.t/ D Ax.t/C Bu.t/C f .t/; x.0/ D x0; (1.3a)

y.t/ D Cx.t/C Du.t/; (1.3b)

1https://www.modelica.org/.
2http://www.mathworks.com/.

https://www.modelica.org/
http://www.mathworks.com/
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where in the DAE case the term Bu.�/ and the output equation are missing, whereas
in the descriptor system case the inhomogeneity f .�/ is dropped.

The survey is organized as follows. In Sect. 2 we briefly discuss the existence
and uniqueness of solutions, as well the consistency of initial values. With a
given DAE or descriptor system we can carry out numerical simulation, control,
and optimization tasks. However, in the automatically generated models many
difficulties arise which require a preliminary treatment, a reformulation, or a
regularization, see [47]. In the case of linear constant coefficient DAEs or descriptor
systems, this preliminary treatment is achieved using techniques from numerical
linear algebra. In Sect. 3 the methods are based on derivative arrays and in Sect. 4 on
staircase forms. These numerically stable methods allow us to check solvability and
consistency of initial values for DAEs, as well as controllability and observability
properties of descriptor systems.

After discussing the analysis and regularization techniques, we can proceed
to more advanced control and optimization applications for descriptor systems.
All these applications lead to generalized eigenvalue problems for even matrix
pencils. Therefore, in Sect. 5 we discuss their structured condensed forms as well
as the appropriate numerical methods. Afterward we consider the linear-quadratic
regulator problem in Sect. 6 and the H1 optimal control problem in Sect. 7. In
Sect. 8 we consider the computation of the L1-norm for continuous-time descriptor
systems and finally, in Sect. 9 the dissipativity checking problem. Conclusions and
comments on open problems complete the paper.

2 Solvability Theory

We begin our survey with the solvability theory of system (1.3a). This can done in
terms of Kronecker canonical form (KCF) of the matrix pencil sE �A 2 RŒs�k;n, see,
e.g., [43, 60].

Theorem 2.1 (Kronecker Canonical Form) Let sE � A 2 RŒs�k;n be given. Then
there exist nonsingular matrices P 2 C

k;k and Q 2 C
n;n such that

P.sE � A/Q D diag
�
L"1.s/; : : : ;L"k.s/;Lı1.s/

T ; : : : ;Lı`.s/
T ;

N�1.s/; : : : ;N�q.s/;J�1 .s/; : : : ;J�r .s/
	
;

where

(i) each L"j.s/ is an "j � ."j C 1/ right singular block with right minimal index
"j 2 N0 and form

s

2
664
0 1

: : :
: : :

0 1

3
775�

2
664
1 0

: : :
: : :

1 0

3
775 I
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(ii) each Lıj.s/
T is a .ıj C1/�ıj left singular block with left minimal index ıj 2 N0

and form

s

2
666664

0

1
: : :

: : : 0

1

3
777775

�

2
666664

1

0
: : :

: : : 1

0

3
777775

I

(iii) each N�j.s/ is a �j � �j infinite eigenvalue block with index �j 2 N and form

s

2
666664

0 1

: : :
: : :

: : : 1

0

3
777775

�

2
666664

1

: : :

: : :

1

3
777775

I

(iv) each J�j.s/ is a �j � �j Jordan block with index �j 2 N and finite eigenvalue
�j 2 C and form

s

2
666664

1

: : :

: : :

1

3
777775

�

2
666664

�j 1

: : :
: : :

: : : 1

�j

3
777775
:

The Kronecker canonical form is unique up to permutation of the blocks, i.e., the
kind, size, and number of the blocks are invariants of the pencil sE � A.

In the real version of the KCF, the blocks J�j.s/ are in real Jordan form [69] and
the transformation matrices P; Q are real. Based on the KCF we have the following
definition.

Definition 2.1

(i) A matrix pencil sE�A 2 RŒs�k;n is called regular, if k D n and det.�E�A/ ¤ 0

for some � 2 C. Otherwise the pencil is called singular.
(ii) If sE � A is regular, then a complex number �0 is a finite eigenvalue of sE � A,

if det.�0E � A/ D 0. The finite eigenvalues are associated with the J�j.s/
blocks in the KCF whereas the N�j.s/ blocks are said to be corresponding the
infinite eigenvalues of the pencil sE � A.

(iii) If sE � A is a singular pencil, then its eigenvalues are the eigenvalues of
the regular blocks in its Kronecker canonical form, i.e., the union of the
eigenvalues of the N�j.s/ and J�j .s/ blocks in Theorem 2.1.

(iv) The Kronecker index of a regular matrix pencil sE � A is the size of the largest
block N�j.s/ in Theorem 2.1. It is denoted by � D ind.E;A/.
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In the DAE case (Bu � 0), it is clear from the KCF that for an arbitrary
inhomogeneity f .�/ and for arbitrary consistent initial conditions, to have a chance
for a unique solution of (1.1), the pencil sE � A has to be regular [44]. Nevertheless,
if the pencil is singular, then for special f .�/ and special initial conditions, a solution
may exist and it even may be unique. Characterizations of existence and uniqueness
of solutions can also be analyzed by different condensed forms, for instance the
quasi-Kronecker form, see [24, 25]. For descriptor control systems (1.2a) the
regularity of sE � A is good to have, but not necessary.

In the regular case, the KCF specializes to the Weierstraß canonical form (WCF),
see, e.g., [41, 60].

Theorem 2.2 (Weierstraß Canonical form (WCF)) If sE � A 2 RŒs�n;n is a
regular pencil, then there exist nonsingular matrices X D �

Xf X1
� 2 C

n;n and

Y D �
Yf Y1

� 2 C
n;n for which

YH.sE � A/X D
�

YH
f

YH1

�
.sE � A/

�
Xf X1

� D s

�
Ir 0

0 N

�
�
�

J 0

0 In�r

�
; (2.1)

where sIr � J 2 CŒs�r;r with J 2 C
r;r in Jordan canonical form contains the finite

eigenvalues of sE � A, whereas the pencil sN � In�r 2 RŒs�n�r;n�r with a nilpotent
N 2 R

r;r in Jordan canonical form corresponds to the infinite eigenvalues of sE �A.

Again there exists a real version of the WCF where J is in real Jordan canonical
form and the transformation matrices X and Y are real. Since we prefer real-valued
solutions we assume in the following considerations that the pencil sE � A is
transformed to real WCF and hence that X; Y as in Theorem 2.2 are real. With
the notation of (2.1), classical continuously differentiable solutions of (1.3a) attain
the form

x.t/ D Xfx1.t/C X1x2.t/;

where x1.�/; x2.�/ are solutions of

Px1.t/ D Jx1.t/C YT
f .Bu.t/C f .t//

N Px2.t/ D x2.t/C YT1.Bu.t/C f .t//;

respectively. With � D ind.E;A/, there are the explicit solution formulas

x1.t/ D eJtx1.0/C
Z t

0

eJ.t��/YT
f .Bu.�/C f .�// d�;

x2.t/ D �
��1X
iD0

di

dti

�
NiYT1.Bu.t/C f .t//

	
: (2.2)
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In the descriptor system case this shows that the input functions must belong to
some suitable function space Uad. In particular, they must be sufficiently smooth.

Equation (2.2) also shows that the possible values of the initial condition x0
are restricted. The initial state must be an element of the set of consistent initial
conditions

S WD
(

Xfx0;1 C X1x0;2 W x0;1 2 R
r;

x0;2 D �
��1X
iD0

di

dti

�
NiYT1.Bu.0/C f .0//

	
; u.�/ 2 Uad

)
:

To ensure a smooth response for every continuous input u.�/ and every consistent
initial value, it is necessary for the system to be regular and have index less than or
equal to one.

The presented existence and uniqueness results are useful from a theoretical point
of view, but it is well known that arbitrarily small perturbations can radically change
the kind and number of the Kronecker blocks, and thus it is problematic to compute
the KCF or WCF with a numerical algorithm in finite precision arithmetic [109].

A better way to obtain the full information about the characteristic invariants in
the WCF and KCF is staircase algorithms, which use a sequence of rank decisions,
orthogonal matrix multiplications, and small perturbations to transform a pencil
into a generalized upper triangular (GUPTRI) form [52–54, 113], see Sect. 4. These
staircase forms can be used to check solvability conditions and consistency of initial
conditions. However, if the system violates the above-mentioned consistency and
solvability conditions, or is close to such a system (in the sense that there exist small
perturbations of the data that lead to a system that violates these conditions), then
it is necessary to remodel or regularize the system such that further simulation and
control methods are applicable. Again this should be done via numerically stable
methods and this is the topic of the next section.

3 Regularization and Derivative Arrays

If not all the information about the characteristic quantities in the KCF is needed,
then a very good alternative to the staircase form is to use a derivative array, see
[45, 75]. This leads to a numerically stable method that allows us to check solvability
and consistency of initial conditions [51]. Furthermore, if some of the conditions do
not hold, then this approach can be used to obtain a regularization of the system.
For general nonlinear DAEs and descriptor systems this general procedure has been
presented in [47]. Here we briefly summarize this regularization procedure for the
linear constant coefficient case.
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In the following we assume that B and CT have full column rank, otherwise we
can just remove the kernels, by considering fewer inputs and outputs, respectively.
This can be achieved by performing a singular value decomposition (SVD) or QR
decomposition with column pivoting.

One first writes (1.3a) in behavior form, by combining input and state to a joint

vector z.�/ D �
x.�/T u.�/T�T

as

E Pz.t/ D A z.t/C f .t/ (3.1)

with E D �
E 0

�
, A D �

A B
�

partitioned analogously. Then for given � 2 N, one
forms an enlarged DAE, namely

M�Pz�.t/ D N�z�.t/C ��.t/;

where

M� D

2
6664

E

�A E
: : :

: : :

�A E

3
7775 2 R

.�C1/k;.�C1/.nCm/;

N� D

2
66664

A 0 : : : 0

0 0
:::

:::
: : :

:::

0 : : : : : : 0

3
77775

2 R
.�C1/k;.�C1/.nCm/;

z�.�/ D

2
6664

z.�/
Pz.�/
:::

z.�/.�/

3
7775 ; ��.�/ D

2
6664

f .�/
Pf .�/
:::

f .�/.�/

3
7775 :

With the above notation, the pair .M�;N�/ is called derivative array [45]. One
obtains the following theorem, see [74, 75, 78].

Theorem 3.1 Let the system (3.1) be given. Then there exist integers �, d, a, and v
such that .M�;N�/ has the following properties:

(i) corankM�C1 � corankM� D v:

(ii) rankM� D .�C 1/k � a � v, i.e., there exists a matrix Z 2 R
.�C1/k;aCv with

orthonormal columns and maximal rank, satisfying ZTM� D 0.

(iii) rank ZTN�

�
InCm 0 : : : 0

�T D a, i.e., Z can be partitioned as Z D �
Z2 Z3

�
,

with Z2 2 R
.�C1/k;a and Z3 2 R

.�C1/k;v such that OA2 WD ZT
2N�

�
InCm 0 : : : 0

�T
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has full row rank a and ZT
3N�

�
InCm 0 : : : 0

�T D 0. Furthermore, there exists

a matrix T2 with orthonormal columns of maximal rank satisfying OA2T2 D 0.
(iv) rankE T2 D d D k � a � v, i.e., there exists Z1 2 R

k;d with orthonormal
columns and maximal rank satisfying OE1 WD ZT

1 E with rank OE1 D d.

Furthermore, system (3.1) has the same solution set as the strangeness-free system

2
4

OE1
0

0

3
5 Pz.t/ D

2
4

OA1
OA2
0

3
5 z.t/C

2
4

Of1.t/
Of2.t/
Of3.t/

3
5 ; (3.2)

where OE1 D ZT
1 E , OA1 D ZT

1A , Of1.�/ D ZT
1 f .�/, and Ofi.�/ D ZT

i ��.�/, i D 2; 3.

The number � is called the strangeness-index of the DAE. It is equal to the size of
the largest block of types L".s/ or N� .s/ and is equal to � � 1 with � D ind.E;A/
if the pencil is regular with � > 0, see [75, 78]. It satisfies � D 0 if the
system is regular and of index at most one. If � is known, then the coefficients of
the differential-algebraic system (3.2) can be computed by using three nullspace
computations, which can be implemented via singular value decompositions or
QR decompositions with column pivoting. If � is not known, then one proceeds
recursively, increasing � until the form (3.2) can be numerically safely determined.

System (3.2) is a reformulation of (3.1) (using the original system and its
derivatives), without changing the solution set, since no transformation of the vector
z.�/ has been made. The constructed submatrices OA1 and OA2 have been obtained from
the block matrix

2
6664

A B
0 0
:::
:::

0 0

3
7775 2 R

.�C1/k;nCm

by transformations from the left, and this means that no derivatives of u.�/ are
needed, and hence, there are no additional smoothness requirements for u.�/.
Furthermore, we immediately obtain again a descriptor system of the form

E1Px.t/ D A1x.t/C B1u.t/C Of1.t/; x.0/ D x0 (3.3a)

0 D A2x.t/C B2u.t/C Of2.t/; (3.3b)

0 D Of3.t/; (3.3c)

y.t/ D Cx.t/C Du.t/; (3.3d)
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where

E1 D OE1
�

In

0

�
; Ai D OAi

�
In

0

�
; Bi D OAi

�
0

Im

�
; i D 1; 2;

and E1; A1 2 R
d;n, while A2 2 R

a;n.
The equations in (3.3c) characterize the solvability of (1.3a), which is given if

Of3 � 0. If Of3 6� 0, then the system does not have a classical solution. In this case
either the model should be discarded or one can perform a regularization by just
setting Of3 � 0 and release a warning that the system has been modified. In the latter
case these equations can just be removed from the system and one continues with a
modified state equation of d C a equations in n state variables

E1Px.t/ D A1x.t/C B1u.t/C Of1.t/; x.0/ D x0 (3.4a)

0 D A2x.t/C B2u.t/C Of2.t/; (3.4b)

y.t/ D Cx.t/C Du.t/; (3.4c)

together with the given initial conditions.
Consistency of initial values can be easily checked, they have to satisfy the

equation

A2x0 C B2u.0/C Of2.0/ D 0; (3.5)

and this also restricts the set of admissible inputs u.�/. Again if the given initial
conditions do not satisfy (3.5), then a regularization would make them consistent.

In (3.4a) and (3.4b) we have d C a equations and n variables in x.�/ and m
variables in u.�/. In order for this system to be uniquely solvable for all sufficiently
smooth inputs u.�/, and all consistent initial conditions, as a necessary condition
we would need that d C a D n [44, 75]. In a reasonable model, this should be
the case, but since automatically generated models typically have redundancies, and
also there may be modeling errors, a mismatch may happen which can, however, be
easily fixed. If d C a < n, then for given u.�/ we cannot expect a unique solution,
so we can just attach n � d � a variables from x.�/ to u.�/ and if d C a > n, then
we just attach d C a � n of the input variables in u.�/ to x.�/. Note that we must
also change the output equation by moving appropriate columns from D to C or
vice versa. There is some freedom in this renaming of variables, which should be
resolved by considering the application, and actually this step is not needed in some
of the applications that we discuss below.

As a result of a possible reinterpretation of variables we obtain a remodeled
system

QE1 PQx.t/ D QA1 Qx.t/C QB1 Qu.t/C Qf1.t/; Qx.0/ D Qx0;
0 D QA2 Qx.t/C QB2 Qu.t/C Qf2.t/;

y.t/ D QCQx.t/C QDQu.t/;
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where

� QE1
0

�
;

� QA1
QA2
�

2 R
Qn;Qn,

� QB1
QB2
�

2 R
Qn; Qm, and Qn, Qm are the numbers of state and input

variables of the reinterpreted system, respectively.
It is also often useful to remove the feed-through term QDQu.�/ in the output

equation. This can be achieved by performing a row compression with an orthogonal

matrix P such that PT QD D
� QD1

0

�
with QD1 2 R

p1; Qm having full row rank. By setting

(with an accordant partitioning)

PTy.�/ D
�Qy1.�/

Qy2.�/
�
; PT QC D

� QC1
QC2
�
;

with QC1 2 R
p1;Qn, then we obtain a new system without feed-through term of the form

EPx.t/ D Ax.t/C Bu.t/C f .t/; x.0/ D x0; (3.6a)

y.t/ D Cx.t/; (3.6b)

with data

E D
2
4

QE1 0
0 0

0 0

3
5 2 R

n;n; A D
2
4

QA1 0
QA2 0
QC1 �Ip1

3
5 2 R

n;n; B D
2
4

QB1
QB2
QD1

3
5 2 R

n;m;

C D QC2 2 R
p;n;

x.�/ D
� Qx.�/

Qy1.�/
�
; y.�/ D Qy2.�/; u.�/ D Qu.�/; f .�/ D

2
4

Qf1.�/
Qf2.�/
0

3
5 ;

where n D Qn C p1, m D Qm, and p D p � p1. The resulting system may not be of
index at most one as a free system with u � 0. In this case, see [41, 78], one can
construct a linear state feedback u.t/ D Kx.t/ C w.t/, with K 2 R

m;n such that in
the closed-loop system

EPx.t/ D .A C BK/x.t/C Bw.t/C f .t/; x.0/ D x0; (3.7a)

y.t/ D Cx.t/; (3.7b)

the matrix .A2 C B2K/S1 is nonsingular, where S1 is a matrix that spans ker E1.
This implies that the DAE in (3.7a) is regular and of index at most one as a free
system with w � 0. A similar index reduction can also be constructed via output
feedback [40, 41, 78], it would however require a change of basis in the state space,
and thus a change of the physical meaning of the state variables. See Sect. 4 for more
details. The flowchart given in Fig. 1 summarizes the regularization procedure.



128 P. Benner et al.

Fig. 1 Regularization procedure

Note that several of the steps in the regularization procedure may be void if the
system has adequate properties and for some of the applications discussed below
also a preliminary regularization may not be necessary. Note furthermore that in
this procedure no changes have been performed in the state variables, except for
the possible reinterpretation of variables or the extension of the state space in the
case of feed-through removal. In any case, the original physical meaning of the
state variables is still present in the system. This is of great importance and a clear
advantage of the derivative array approach compared to the staircase forms that we
discuss below.

Example 3.1 To illustrate the regularization procedure, consider the following
example:

E D
2
4
0 1 0

0 0 0

0 0 0

3
5 ; A D

2
4
1 0 0

0 1 0

0 0 0

3
5 ; B D

2
4
1

0

0

3
5 ; f .t/ D

2
4

f1.t/
f2.t/
f3.t/

3
5 ;

C D
�
1 0 0

0 0 1

�
; D D

�
1

0

�
:
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The corresponding behavioral system (3.1) is given by

E D
2
4
0 1 0 0

0 0 0 0

0 0 0 0

3
5 ; A D

2
4
1 0 0 1

0 1 0 0

0 0 0 0

3
5 ; f .t/ D

2
4

f1.t/
f2.t/
f3.t/

3
5

The strangeness index of this system is 1. Thus we obtain the derivative array

.M1;N1/ D

0
BBBBBBB@

2
66666664

0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

�1 0 0 �1 0 1 0 0
0 �1 0 0 0 0 0 0

0 0 0 0 0 0 0 0

3
77777775
;

2
66666664

1 0 0 1 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

3
77777775

1
CCCCCCCA
:

With the notation of Theorem 3.1 we obtain

ZT
2 D

�
1 0 0 0 1 0

0 1 0 0 0 0

�
; ZT

3 D
�
0 0 1 0 0 0

0 0 0 0 0 1

�
:

Then we obtain

OA2 WD ZT
2N1

�
I4
0

�
D
�
1 0 0 1

0 1 0 0

�
;

and consequently we have

T2 D

2
664

�1 0
0 0

0 1

1 0

3
775 :

We obtain E T2 D 0 and thus Z1 is void. Overall, the strangeness-free system (3.2)
reads

0 D

2
664

1 0 0 1

0 1 0 0

0 0 0 0

0 0 0 0

3
775

2
664

x1.t/
x2.t/
x3.t/
u.t/

3
775C

2
664

f1.t/C Pf2.t/
f2.t/
f3.t/
Pf3.t/

3
775 ;

y.t/ D
�
1 0 0

0 0 1

�2
4

x1.t/
x2.t/
x3.t/

3
5C

�
1

0

�
u.t/:
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We see that in order for the system to be solvable at all, we need f3 � 0. Therefore,
assume that f3 � 0. Then the reduced system (3.4) is given by

0 D
�
1 0 0

0 1 0

�2
4

x1.t/
x2.t/
x3.t/

3
5C

�
1

0

�
u.t/C

�
f1.t/C Pf2.t/

f2.t/

�
;

y.t/ D
�
1 0 0

0 0 1

�2
4

x1.t/
x2.t/
x3.t/

3
5C

�
1

0

�
u.t/;

from which we can directly read off the condition for consistency by setting t D 0.
Since 2 D a C d ¤ n D 3, a reinterpretation of variables is necessary. Thus, by
setting u1.�/ WD u.�/ and u2.�/ WD x3.�/, we obtain the square system

0 D
�
1 0

0 1

� �
x1.t/
x2.t/

�
C
�
1 0

0 0

� �
u1.t/
u2.t/

�
C
�

f1.t/C Pf2.t/
f2.t/

�
;

y.t/ D
�
1 0

0 0

� �
x1.t/
x2.t/

�
C
�
1 0

0 1

� �
u1.t/
u2.t/

�
:

Now we remove the feed-through matrix D. Thus the feed-through-free system (3.6)
reads

0 D

2
664

1 0 0 0

0 1 0 0

1 0 �1 0

0 0 0 �1

3
775

2
664

x1.t/
x2.t/
y1.t/
y2.t/

3
775C

2
664

1 0

0 0

1 0

0 1

3
775
�

u1.t/
u2.t/

�
C

2
664

f1.t/C Pf2.t/
f2.t/
0

0

3
775 ;

which is regular and of index one. Note that the output equation has vanished
during the last step in the regularization procedure. In fact, it is included in the
state equation.

4 Staircase Forms and Properties of Descriptor Systems

In this section we discuss the system theoretic properties of descriptor systems
and present the staircase forms that allow us to check these properties. We focus
on concepts like controllability, stabilizability and the related dual notions of
observability and detectability. For brevity we only introduce these for the case
of square systems and systems where the feed-through term D has been removed,
so we assume that the system is already in the form (3.6) as generated by the
regularization procedure of Sect. 3. Also, instead of defining these properties in
system theoretic terms, we directly introduce equivalent algebraic characterizations.
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These are very useful for numerically checking these properties. Note that there are
several different concepts of controllability at infinity introduced in [102, 115] and
compared in [22, 23, 41, 49, 50]. Furthermore, different observability notions are
reviewed in [26].

Proposition 4.1 Let sE � A 2 RŒs�n;n be regular, B 2 R
n;m, C 2 R

p;n. Furthermore,
let S1; T1 be matrices with range S1 D ker E and range T1 D ker ET. Then the
triple .E;A;B/ is called

(i) behaviorally stabilizable if rank
�
�E � A B

� D n for all � 2 C
C [ iR;

(ii) behaviorally controllable if rank
�
�E � A B

� D n for all � 2 C;

(iii) impulse controllable if rank
�
E AS1 B

� D n;
(iv) strongly stabilizable if it is both behaviorally stabilizable and impulse control-

lable;
(v) strongly controllable if it is both behaviorally controllable and impulse

controllable;
(vi) completely controllable if it is both behaviorally controllable and

rank
�
E B

� D n.

In a dual fashion, the triple .E;A;C/ is called

(vii) behaviorally detectable if rank
�
�ET � AT CT

� D n for all � 2 C
C [ iR;

(viii) behaviorally observable if rank
�
�ET � AT CT

� D n for all � 2 C;

(ix) impulse observable if rank
�
ET ATT1 CT

� D n;
(x) strongly detectable if it is both behaviorally detectable and impulse observ-

able;
(xi) strongly observable if it is both behaviorally observable and impulse observ-

able;
(xii) completely observable if it is both behaviorally observable and rank�

ET CT
� D n.

To check whether a given descriptor system satisfies these conditions one can use
the staircase form of [40, 41, 113], which can be implemented as a sequence of
orthogonal transformations to the system [28].

Theorem 4.2 ([40]) If E; A 2 R
n;n, B 2 R

n;m, C 2 R
p;n, then there exist orthogonal

matrices U; V 2 R
n;n, W 2 R

m;m, Y 2 R
p;p such that

UTEV D
2
4

t1 n � t1

t1 ˙E 0

n � t1 0 0

3
5;
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UTAV D

2
6666666666664

t1 s2 t5 t4 t3 s6

t1 A11 A12 A13 A14 A15 A16

t2 A21 A22 A23 A24 0 0

t3 A31 A32 A33 A34 ˙35 0

t4 A41 A42 A43 ˙44 0 0

t5 A51 0 ˙53 0 0 0

t6 A61 0 0 0 0 0

3
7777777777775

;

UTBW D

2
6666666666664

k1 k2 k3

t1 B11 B12 0

t2 B21 0 0

t3 B31 0 0

t4 0 0 0

t5 0 0 0

t6 0 0 0

3
7777777777775

;

YT CV D

2
6664

t1 s2 t5 t4 t3 s6

l1 C11 C12 C13 0 0 0

l2 C21 0 0 0 0 0

l3 0 0 0 0 0 0

3
7775:

(4.1)

The matrices ˙E; ˙35;˙44;˙53 are nonsingular diagonal matrices, B12 has full
column rank, C21 has full row rank, and the matrices

�
B21
B31

�
2 R

k1;k1 ;
�
C12 C13

� 2 R
l1;l1 ;

with k1 D t2 C t3 and l1 D s2 C t5 are nonsingular.

For numerical examples for the above decomposition we refer to the appendix of
[41]. Impulse controllability and observability and some further properties can be
checked via the following corollary.

Corollary 4.3 ([40]) Let E; A; B; C with regular sE � A be given as in the
condensed form (4.1). Then the following statements are satisfied.

(i) The triple .E;A;B/ is impulse controllable if and only if t6 D 0, i.e., the last
block row of A is void.
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(ii) The triple .E;A;C/ is impulse observable if and only if s6 D 0, i.e., the last
block column of A is void.

(iii) The condition rank
�
E B

� D n is satisfied if and only if t4 D t5 D t6 D 0.

(iv) The condition rank
�
ET CT

� D n is satisfied if and only if t4 D t3 D s6 D 0.
(v) The triple .E;A;B/ is completely controllable if and only if t4 D t5 D t6 D 0

and the system is behaviorally controllable.
(vi) The triple .E;A;C/ is completely observable if and only if t4 D t3 D s6 D 0

and the system is behaviorally observable.

If properly implemented, see [52–54, 113], these techniques determine the char-
acteristic invariants of a least generic system within a tolerated perturbation, see
[56, 57]. In this way the staircase form (4.1) presents an alternative way to check
some of the properties compared to the derivative array as in Sect. 3. But the
computation of the staircase form is much more subtle numerically, since the
consecutive rank decisions of the transformed matrices have to be made in a
proper way, see [113]. In contrast to the derivative array approach, two-sided
transformations are used, i.e., also changes of basis in the state space. This allows us
to check observability and controllability conditions simultaneously, but at the cost
of changing the physical meaning of the state variables. This is clearly no problem
when the data is produced from a realization or model reduction process [3, 4],
where the state variables have no direct physical interpretation, but this may be a
problem when the model directly arises from a physical model. In this case it is
suggested to first perform the regularization procedure of Sect. 3 and then perform
the staircase algorithm to check the properties.

If only the first step of the regularization via derivative arrays has been performed
and the system (3.4) has been filtered out of the derivative array and d C a D n, i.e.,
no more reinterpretation of variables is necessary, then the system is already impulse
controllable. If the system is not impulse observable, then this is critical because
impulse observability cannot be achieved by removing equations and variables. In
this case, impulses in the solution (that appear, e.g., for inconsistent initial values)
cannot be observed and this is an indication of a problem in the modeling, see
[42]. In some of the applications that we discuss below, the solvability depends
on these properties and an alternative model should be created to ensure that they
are satisfied.

If the system is impulse controllable and impulse observable, then the other
properties, i.e., behavioral controllability or stabilizability and behavioral observ-
ability or detectability can be checked via the following controllability/observability
decompositions, see [50, 113, 114]. Let Qc; Zc be real orthogonal matrices, such that

QT
c EZc D

�
Ec 	
0 Enc

�
; QT

c AZc D
�

Ac 	
0 Anc

�
;

QT
c B D

�
Bc

0

�
; CZc D �

Cc Cnc

�
;

(4.2)
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where the subsystem given by the matrices Ec; Ac; Bc; Cc contains the controllable
subsystem of the original system, i.e., the triple .Ec;Ac;Bc/ is behaviorally con-
trollable. If the subpencil sEnc � Anc corresponding to the uncontrollable part of
the system has no finite eigenvalues with nonnegative real part, then the system is
behaviorally stabilizable, otherwise it is not.

Similarly, one can determine an observability decomposition

QT
o EZo D

�
Eo 0

	 Eno

�
; QT

o AZo D
�

Ao 0

	 Ano

�
;

QT
o B D

�
Bo

Bno

�
; CZo D �

Co 0
�
;

(4.3)

where Qo; Zo are orthogonal matrices and the subsystem given by the matrices
Eo; Ao; Bo; Co contains the observable subsystem of the original system, i.e.,
the system .Eo;Ao;Co/ is behaviorally observable. If the subpencil sEno � Ano

corresponding to the unobservable part of the system has no finite eigenvalues with
nonnegative real part, then the system is behaviorally detectable, otherwise it is not.
Methods for the computation of these decompositions are described in [114] and
implemented as TG01HD, TG01ID in the SLICOT library.3

For some applications, in particular those where the influence of the inputs to
the outputs is crucial, it is not suitable to analyze the descriptor system in the time
domain, i.e., in the form (1.2). Instead, one turns to the frequency domain. For this,
assume that the system is square and that the pencil sE � A is regular. Then we can
apply the Laplace transformation to the functions x.�/, u.�/, and y.�/ and under the
assumption that Ex.0/ D 0 we obtain the transfer function

G.s/ WD C.sE � A/�1B C D 2 R.s/p;m; (4.4)

that directly maps the Laplace transformed inputs to the Laplace transformed
outputs [50]. These transfer functions are typically associated with certain function
spaces. Consider the normed spaces RH p;m1 and RL p;m1 of all real-rational
C

p;m-valued functions that are analytic and bounded in the open right half plane
C

C; and bounded on the imaginary axis iR, respectively. Obviously, the inclusion
RH p;m1 � RL p;m1 holds. For G 2 RL p;m1 , the L1-norm is given by

kGkL
1

D sup
!2R

�max.G.i!//;

where �max.�/ denotes the maximum singular value. For G 2 RH p;m1 , the L1-norm
is equal to the H1-norm. These norms play an important role in many applications,
in particular as robustness measures in robust control. Details on this will be pointed
out in Sects. 7 and 8.

3http://slicot.org/.

http://slicot.org/


Numerical Linear Algebra Methods for Linear Differential-Algebraic Equations 135

5 Even Matrix Pencils

After briefly introducing the basic concepts, some of the system theoretic properties
and numerical methods to check these properties, we now turn to several important
applications in control theory. As we will see later in the forthcoming sections, these
are based on generalized eigenvalue problems for even matrix pencils. A matrix
pencil sN � M 2 RŒs�n;n is called even, if NT D �N and MT D M. Besides the
applications presented in this paper, even matrix pencils also play a role in linearized
models that occur in the vibration analysis of buildings, machines, and vehicles
[27, 61, 82, 87, 91, 111].

If the dimension of an even matrix pencil is even, i.e., n D 2m, then it is closely
related to so-called skew-Hamiltonian/Hamiltonian matrix pencils [14, 90, 92, 95].
A matrix pencil sS � H 2 RŒs�2m;2m is called skew-Hamiltonian/Hamiltonian if
Jm.sS � H/ is even, where

Jm D
�
0 Im

�Im 0

�
;

that means S is skew-Hamiltonian (i.e., .JmS/T D �JmS) and H is Hamiltonian
(i.e., .JmH/T D JmH).

Since even pencils are so closely related to skew-Hamiltonian/Hamiltonian
pencils, it is easy to show that they exhibit the Hamiltonian spectral symmetry,
i.e., if � is a finite eigenvalue of sN � M, then �� is an eigenvalue as well. This
means that nonreal and nonimaginary finite eigenvalues of an even pencil appear
in quadruples .�;��; �;��/ while for purely real or purely imaginary eigenvalues
they form pairs .�;��/; .�; �/ on the real or imaginary axis, respectively. The
only exceptions are the eigenvalues 0 and 1. Furthermore, it is also well known
that even pencils possess a structured Kronecker canonical form [110] as well as a
corresponding staircase form under orthogonal congruence transformations [37, 43].
We briefly recall these forms within the next subsection. A structured Smith form
is available as well [88]. The staircase form allows us to filter out a regular even
pencil which has Kronecker blocks at 1 of size at most one for which we can
apply structure-preserving methods for skew-Hamiltonian/Hamiltonian eigenvalue
problems. These are discussed in Sect. 5.2.

5.1 Structured Condensed Forms

Even pencils have a special Kronecker canonical form under congruence trans-
formations which preserve the even structure, see [110]. This canonical form is
described in the following theorem. Besides the usual invariants occurring in the
Kronecker canonical form, the even Kronecker form has further invariants associ-
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ated with each purely imaginary eigenvalue, called sign-characteristics. These arise
due to the fact that congruence transformations preserve inertia.

Theorem 5.1 If sN � M 2 RŒs�n;n with N D �NT and M D MT, then there exists a
nonsingular matrix X 2 R

n;n such that

XT.sN � M/X D diag.KS .s/;KI .s/;KZ .s/;KF .s//;

where

KS .s/ D diag
�
S�1.s/; : : : ;S�k.s/

	
;

KI .s/ D diag .I2"1C1.s/; : : : ;I2"lC1.s/;I2ı1.s/; : : : ;I2ım.s// ;

KZ .s/ D diag
�
Z2�1C1.s/; : : : ;Z2�rC1.s/;Z2�1 .s/; : : : ;Z2�t .s/

	
;

KF .s/ D diag
�
R�1.s/; : : : ;R�u.s/;C 1.s/; : : : ;C v .s/

	

and the blocks have the following properties:

(i) each S�j.s/ is a .2�j C 1/ � .2�j C 1/ block (�j 2 N0) that combines a right
singular block and a left singular block, both of minimal index �j. It has the
form

(ii) each I2"jC1.s/ is a .2"j C 1/� .2"j C 1/ block ("j 2 N0) that contains a single
block corresponding to the eigenvalue � D 1 of size 2"j C 1. It has the form

where � 2 f1;�1g is the sign-characteristic of the block;
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(iii) each I2ıj.s/ is a 4ıj � 4ıj block (ıj 2 N) that combines two 2ıj � 2ıj blocks
associated with � D 1. It has the form

(iv) each Z2�jC1.s/ is a .4�j C 2/ � .4�j C 2/ block (�j 2 N0) that combines two
.2�j C 1/� .2�j C 1/ Jordan blocks corresponding to the eigenvalue � D 0. It
has the form

(v) each Z2�j .s/ is a 2�j � 2�j block (�j 2 N) that contains a single Jordan block
corresponding to the eigenvalue � D 0. It has the form

where � 2 f1;�1g is the sign-characteristic of this block;
(vi) each R�j.s/ is a 2�j � 2�j block (�j 2 N) that combines two �j � �j Jordan

blocks corresponding to nonzero real eigenvalues aj and �aj. It has the form
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(vii) the entries C j.s/ take two slightly different forms:

(a) one possibility is that C j.s/ is a 2 j � 2 j block ( j 2 N) combining
two  j �  j Jordan blocks corresponding to purely imaginary eigenvalues
ibj;�ibj (bj > 0). In this case it has the form

where � 2 f1;�1g is the sign-characteristic;
(b) the other possibility is that C j.s/ is a 4 j � 4 j block ( j 2 N) combining

 j �  j Jordan blocks for each of the complex eigenvalues aj C ibj; aj �
ibj;�aj C ibj;�aj � ibj (with aj ¤ 0 and bj ¤ 0). In this case it has the
form

with ˝ D
�
0 1

1 0

�
and �j D

��bj aj

aj bj

�
.

This structured Kronecker canonical form is unique up to permutation of the blocks,
i.e., the kind, size, and number of the blocks as well as the sign-characteristics are
invariants of the pencil sN � M under congruence transformations.

An even pencil is called regular if and only if no blocks of type (i) occur in the even
Kronecker form. The (Kronecker) index of the pencil is the size of the largest block
of type (ii) and (iii) in the even Kronecker form, thus a regular pencil is of index
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at most one if and only if there are no blocks of type (iii) and the blocks of type
(ii) are of size at most one. In some of the applications discussed below, it will be
necessary to detect whether an even matrix pencil is regular and of index at most
one and whether there exist finite eigenvalues with real part 0. In other applications
the computation of the stable deflating subspace, i.e., the subspace spanned by
the eigenvectors and generalized eigenvectors, associated with all eigenvalues in
the open left-half plane is the goal. The structured Kronecker form reveals this
information but usually it cannot be computed numerically, because arbitrary small
perturbations may change the structural information and since the transformation
matrices may be unbounded.

A computationally attractive alternative is the staircase form under orthogonal
transformations. It allows us to check regularity and to determine the index within
the usual limitations of rank computations in finite precision arithmetic, see [43]
for a detailed discussion of the difficulties. This is an essential preparation for the
computation of the eigenvalues and deflating subspaces.

Theorem 5.2 ([43]) For every even pencil sN � M 2 RŒs�n;n, there exists a real
orthogonal matrix U 2 R

n;n such that

(5.1)
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where q1 � s1 � q2 � s2 � : : : � qw � sw, l D rwC1 C awC1, and for
i D 1; : : : ; w, we have Ni;i D �NT

i;i, Mi;i D MT
i;i. Furthermore,

Nj;2wC1�j 2 R
sj;qjC1 ; 1 � j � w � 1;

NwC1;wC1 D
�
� 0

0 0

�
; � D ��T 2 R

rwC1;rwC1 ;

Mj;2wC2�j D �
�j 0

� 2 R
sj;qj ; �j 2 R

sj;sj ; 1 � j � w;

MwC1;wC1 D
�
˙11 ˙12

˙21 ˙22

�
; ˙11 2 R

rwC1;rwC1 ; ˙22 2 R
awC1;awC1 ;

MwC1;wC1 D MT
wC1;wC1;

and the blocks ˙22 and� and �j, j D 1; : : : ;w (if they occur) are nonsingular.

Production code implementations for the computation of these and other related
structured staircase forms via a sequence of singular value decompositions have
been presented in [37]. Since the staircase form uses congruence transformations,
all the invariants of the even Kronecker canonical form are preserved, as discussed
in the following corollary.

Corollary 5.3 ([43]) Consider an even pencil and its staircase form 5.1.

(i) The pencil is regular if and only if si D qi for i D 1; : : : ;w.
(ii) The pencil is regular and of index at most one if and only if w D 0.

(iii) The block .NwC1;wC1;MwC1;wC1/ contains the regular part associated with
finite eigenvalues and blocks associated with the infinite eigenvalues of index
at most one.

(iv) The finite eigenvalues of the pencil are the eigenvalues of

s� � �
˙11 �˙12˙

�1
22 ˙21

	
:

(v) For every purely imaginary eigenvalue �0 2 iR, satisfying

�
�0� � �

˙11 �˙12˙
�1
22 ˙21

		
x0 D 0

for x0 2 C
rwC1 n f0g, the sign-characteristic of �0 is given by the sign of the

real number ixH
0 �x0.

Thus, once the staircase form has been computed, for the computation of eigen-
values and invariant subspaces one can restrict the methods to the middle regular
index one block of the staircase form. We recall the appropriate methods in the next
subsection.
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5.2 Computing Eigenvalues and Deflating Subspaces
of Regular Index One Even Pencils

For the computation of eigenvalues, eigenvectors, and deflating subspaces associ-
ated with finite eigenvalues of even pencils, we need eigenvalue methods for regular
even pencils of index at most one that can be applied to the middle block in the
staircase form 5.1

sNwC1;wC1 � MwC1;wC1 D s

�
� 0

0 0

�
�
�
˙11 ˙12

˙21 ˙22

�
: (5.2)

In the special case that this even pencil has no infinite eigenvalues, i.e., if the
second block row and column are not occurring, and hence awC1 D 0, then we
have a pencil s� � ˙11, where � is nonsingular (and thus of even dimension). In
this case one can perform a Cholesky-like decomposition, see [13, 39] of the form
� D U TJrwC1=2U with an upper-triangular matrix U . If the factorization is well
conditioned and if U is well conditioned with respect to inversion, then one can
turn this even eigenvalue problem into an eigenvalue problem for the Hamiltonian
matrix H D J T

rwC1=2
U �T˙11U �1 and apply the structure-preserving methods

for Hamiltonian eigenvalue problems [48, 94]. If, however, the computation and
inversion of U is ill-conditioned or if the pencil sNwC1;wC1 � MwC1;wC1 has infinite
eigenvalues, then it is better to proceed with the pencil formulation.

Recently, in [93], a new structure-preserving method to deflate the infinite
eigenvalues via an orthogonal congruence transformation has been derived for the
pencil case. Consider the even pencil sNwC1;wC1 � MwC1;wC1 as in (5.2). This
procedure works by using a rank-revealing QR-decomposition or a singular value
decomposition to determine an orthogonal matrix VwC1 such that

�
˙21 ˙22

�
VwC1 D �

0 Ȯ
22

�
;

with nonsingular Ȯ
22. By forming

VT
wC1 .sMwC1;wC1 � NwC1;wC1/VwC1 D s

� Q�11
Q�12

� Q�T
12

Q�22

�
�
� Q̇

11
Q̇
12

Q̇ T
12

Q̇
22

�
;

partitioned accordingly, it has been shown in [93] that the eigenvalues of the even
pencil s Q�11 � Q̇

11 are exactly the finite eigenvalues of sNwC1;wC1 � MwC1;wC1 and
also the eigenvectors and invariant subspaces can be easily recovered.
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The detailed error analysis of this procedure in [93] analyzes when this deflation
procedure is reliable and when it is more reasonable to proceed with the index one
pencil formulation. In the following we assume that this decision has been made, and
that we either proceed with an even pencil with only finite eigenvalues, which means
that the dimension is even or with an index one even pencil. Since for skew-Hamil-
tonian/Hamiltonian pencils eigenvalue methods are well established and have been
professionally implemented [9, 14, 20, 21, 59, 85, 92, 95], we just adapt these for the
even pencil case. However, we suggest that in the long run these methods should be
implemented to directly work for the even case, since it may happen that the middle
block sNwC1;wC1 � MwC1;wC1 in the even staircase form (i.e., the regular index one
part) is of odd dimension. To apply the methods for skew-Hamiltonian/Hamiltonian
pencils to this middle block in the odd-dimensional case, we consider an embedded
2k � 2k pencil

sS � H D Jk

�
s

�
NwC1;wC1 0

0 0

�
�
�

MwC1;wC1 0
0 1

�


which has an additional eigenvalue 1, right eigenvector e2k (the 2kth unit vector)
and left eigenvector J T

k e2k, which are orthogonal to all the other eigenvectors. So
in the following, whenever an eigenvalue method for regular even pencils of index
at most one is needed, then we can perform this embedding and employ a solver for
the skew-Hamiltonian/Hamiltonian pencil sS � H 2 RŒs�2k;2k.

For the computation of the eigenvalues and deflating subspaces of skew-Hamil-
tonian/Hamiltonian pencils we make use of Jk-congruence transformations of the
form

sQS � QH WD JkQ
TJ T

k .sS � H/Q

with nonsingular matrices Q, which preserve the skew-Hamiltonian/Hamiltonian
structure. In general we would hope that we can compute an orthogonal matrix Q
such that

JkQ
TJ T

k .sS � H/Q D s

�
S11 S12
0 ST

11

�
�
�

H11 H12

0 �HT
11

�

is in skew-Hamiltonian/Hamiltonian Schur form, i.e., the subpencil sS11 � H11 is
in generalized Schur form [62]. Unfortunately, not every skew-Hamiltonian/Hamil-
tonian pencil has this structured Schur form, since certain simple purely imaginary
eigenvalues, or multiple purely imaginary eigenvalues with even algebraic multi-
plicity, but uniform sign-characteristic, cannot be represented in this structure. An
embedding into a pencil of the double size solves this issue as follows.
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We introduce the orthogonal matrices

Y D
p
2

2

�
I2k I2k

�I2k I2k

�
; P D

2
664

Ik 0 0 0

0 0 Ik 0

0 Ik 0 0

0 0 0 Ik

3
775 ; X D Y P;

and define the matrix pencil

sBS � BH WD X T

�
s

�
S 0
0 S

�
�
�

H 0

0 �H

�

X 2 RŒs�4k;4k;

which is still regular and of index at most one.
It can be easily observed that sBS � BH is again real skew-Hamiltonian/Ha-

miltonian with the same eigenvalues (now with double algebraic, geometric, and
partial multiplicities, but with appropriate mixed sign-characteristic) as the pencil
sS�H. To compute the eigenvalues of sBS�BH one uses the generalized symplectic
URV decomposition of sS � H, see [10, 11], i.e., there exist orthogonal matrices
Q1; Q2 2 R

4k;4k such that

QT
1SJkQ1J

T
k D

�
S11 S12
0 ST

11

�
;

JkQT
2J

T
k SQ2 D

�
T11 T12
0 TT

11

�
;

QT
1HQ2 D

�
H11 H12

0 H22

�
;

(5.3)

where S12 and T12 are skew-symmetric and the formal matrix product
S�1
11 H11T�1

11 HT
22 is in periodic Schur form [31, 67, 71].

Applying this result to the specially structured pencil sBS �BH , we can compute
an orthogonal matrix Q such that

J2kQ
TJ T

2k.sBS � BH/Q D s

2
664

S11 0 S12 0

0 T11 0 T12
0 0 ST

11 0

0 0 0 TT
11

3
775 �

2
664

0 H11 0 H12

�HT
22 0 HT

12 0

0 0 0 H22

0 0 �HT
11 0

3
775

with Q D PT

�
JkQ1J

T
k 0

0 Q2

�
P .
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Note, that for these computations we never explicitly construct the embedded
pencils. It is sufficient to compute the necessary parts of the matrices in (5.3).

The eigenvalues of sS � H can then be computed as ˙i
p
�j where the �j, j D

1; : : : ; k, are the eigenvalues of the formal matrix product S�1
11 H11T�1

11 HT
22 which can

be determined by evaluating the entries on the 1�1 and 2�2 diagonal blocks of the
matrices only. In particular, the finite, purely imaginary eigenvalues correspond to
the 1� 1 diagonal blocks of this matrix product. Provided that the pairwise distance
of the simple, finite, purely imaginary eigenvalues with mixed sign-characteristics
is sufficiently large, they can be computed in a robust way without any error in
the real part. This property of the algorithm plays an essential role for many of the
applications that we will consider in subsequent sections.

If also the deflating subspaces associated with certain eigenvalues are desired,
then one computes the real skew-Hamiltonian/Hamiltonian Schur form of the
embedded pencil where the eigenvalues are reordered in such a way such that the
desired ones appear in the leading principal subpencil. By determining also the
sign-characteristics of the purely imaginary eigenvalues, one can (at least in exact
arithmetics) check whether a Hamiltonian Schur form exists. It should be noted that
if the problem has computed eigenvalues very close to the imaginary axis (within
a strip of width

p
u), then these may be the result of a perturbation of size u of

a double purely imaginary eigenvalue with mixed sign-characteristic. This does not
prevent the existence of a Hamiltonian Schur form, however, in the neighborhood of
this problem there is then a problem with two simple purely imaginary eigenvalues
of mixed sign-characteristic, but with no Hamiltonian Schur form, see [1].

The structure-preserving Algorithm 1 was introduced in [12] and has been
updated and improved in [85]. It is available as the SLICOT subroutine MB04BD.
While the classic unstructured QZ algorithm applied to the 2k � 2k pencil would
require 528k3 flops or 240k3 flops for the eigenvalues [62], this algorithm needs
roughly 60 % of this, see [12]. Note that there are many more structure-exploiting
algorithms for Hamiltonian and even eigenvalues problems in the dense but also in
the sparse setting, see, e.g., [9, 17, 48, 72, 84, 94, 95, 107].

In later sections, when discussing applications for even pencils, we will always
use the algorithm presented here, since the preservation of the spectral symmetry is
essential for the robustness of the methods. For illustration, Fig. 2 from [21] plots
the computed eigenvalues of a skew-Hamiltonian/Hamiltonian pencil that results
from the stability analysis of a linearized gyroscopic system. A necessary condition
for stability is that all eigenvalues are on the imaginary axis. The figure shows that
the structure-preserving algorithm captures this behavior whereas the standard QZ
algorithm fails to do so and therefore does not allow us to make any statement about
stability.
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Algorithm 1 Computation of stable eigenvalues and associated stable deflating
subspaces of a real skew-Hamiltonian/Hamiltonian pencil
Input: A regular real skew-Hamiltonian/Hamiltonian pencil sS � H 2 RŒs�2k;2k of index at most

one.
Output: The eigenvalues of sS � H and a matrix P�

V whose columns form an orthogonal basis
of the r-dimensional deflating subspace associated with the eigenvalues in the open left half
plane.

1: Compute the generalized symplectic URV decomposition [85, Algorithm 2] of the pencil sS �
H and determine orthogonal matrices Q1, Q2 such that

QT
1 SJkQ1J

T
k D

�
S11 S12
0 ST

11

�
;

JkQT
2J

T
k SQ2 D

�
T11 T12
0 TT

11

�
;

QT
1HQ2 D

�
H11 H12

0 H22

�
;

where the generalized matrix product S�1
11 H11T

�1
11 HT

22 is in periodic Schur form.
2: Apply [85, Algorithm 3] to determine orthogonal matrices Q3 and Q4 such that

sS11 � H11 WD QT
4

�
s

�
S11 0

0 T11

�
�
�

0 H11

�HT
22 0

�

Q3

is in generalized Schur form. Update

S12 WD QT
4

�
S12 0

0 T12

�
Q4; H12 WD QT

4

�
0 H12

HT
12 0

�
Q4

and set

sBS � BH WD s

�
S11 S12

0 S T
11

�
�
�
H11 H12

0 �H T
11

�
:

3: Apply the eigenvalue reordering method [85, Algorithm 4] to the pencil sBS�BH to determine
an orthogonal matrix OQ such that

s QBS � QBH WD J2k OQTJ T
2k .sBS � BH/ OQ

is still in structured Schur form, but the eigenvalues with negative real part of s QBS � QBH are
contained in the leading 2r � 2r principal subpencil of sS11 � H11.

4: Set

V D �
I2k 0

��
Y

�
JkQ1J

T
k 0

0 Q2

�
P

�
Q3 0

0 Q4

�
OQ

�

I2r

0

�

and compute P�

V , an orthonormal basis of range V, using any numerically stable orthogonal-
ization scheme.
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Fig. 2 Computed eigenvalues from a skew-Hamiltonian/Hamiltonian pencil with only purely
imaginary eigenvalues resulting from a linearized gyroscopic system

6 Linear-Quadratic Optimal Control

In this section we consider the linear quadratic optimal control problem of minimiz-
ing

J .x.�/; u.�// D 1

2

Z 1

0

�
x.t/T Qx.t/C 2x.t/TSu.t/C u.t/TRu.t/

	
dt (6.1)

with Q D QT 2 R
n;n, S 2 R

n;m, and R D RT 2 R
m;m subject to the linear descriptor

system of the form (1.2a) with initial value x.0/ D x0 and the stabilization condition
limt!1 x.t/ D 0. If an output equation (1.2b) is also given, then the cost functional
is usually given as QJ .y.�/; u.�// which can then easily be transformed to the form
given in (6.1) by inserting the output equation. This yields

QJ .x.�/; u.�// D 1

2

Z 1

0

�
x.t/T QQx.t/C 2x.t/T QSu.t/C u.t/T QRu.t/

	
dt
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with

QQ WD CTQC; QS WD CTQD C CTS; QR WD DTQD C DTS C STD C R: (6.2)

Optimal control problems for equations of this form arise in mechanical multibody
systems [64, 65, 108], electrical circuits [63], and many other applications like the
linearization of general nonlinear systems along stationary trajectories [46].

In order for an optimal control to exist, for the initial value one needs the
condition ECEx0 D x0 with the Moore-Penrose inverse EC of E, see [76]. Further
additional assumptions are needed to ensure that (6.1) is bounded from below. A
quite common assumption in the literature is

�
Q S
ST R

�
� 0:

In [117] it has been further shown that for square systems, strong stabilizability and
the feasibility of a certain linear matrix inequality are sufficient conditions for the
boundedness of (6.1) from below, even in the case of an indefinite cost functional.

To solve this problem in the most general situation, we replace the DAE
constraint by the strangeness-free formulation

OEPx.t/ D OAx.t/C OBu.t/; (6.3)

where

OE D
� OE1
0

�
; OA D

� OA1
OA2
�
; OB D

� OB1
OB2
�
;

with the additional property that the matrix

� OE1 0
OA2 OB2

�

has full row rank, see also Sect. 3. The necessary optimality system is then given by

2
4
0 OE 0

� OET 0 0

0 0 0

3
5 d

dt

2
4

O�.t/
x.t/
u.t/

3
5 D

2
4
0 OA OB
OAT Q S
OBT ST R

3
5
2
4

O�.t/
x.t/
u.t/

3
5 ; (6.4)

with boundary conditions x.0/ D x0, and limt!1 OET O�.t/ D 0. Solving this system
will give the optimal input u.�/, state x.�/, and the Lagrange multiplier O�.�/.
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Instead of first computing a strangeness-free formulation and forming the
optimality system (6.4), we can instead directly form and solve the formal optimality
system [7, 47, 76, 77, 81] given by

2
4

0 E 0
�ET 0 0

0 0 0

3
5 d

dt

2
4
�.t/
x.t/
u.t/

3
5 D

2
4
0 A B

AT Q S
BT ST R

3
5
2
4
�.t/
x.t/
u.t/

3
5; (6.5)

with boundary conditions x.0/ D x0, and limt!1 ET�.t/ D 0. One has the
following relation between the true and the formal optimality system which we cite
here for constant coefficient systems, for the general case of variable coefficient
systems see [77].

Theorem 6.1 Suppose that the formal necessary optimality system (6.5) has a

solution
�
�.�/T x.�/T u.�/T�T

. Then there exists a function O�.�/ replacing the function

�.�/ such that
hO�.�/T x.�/T u.�/T

iT
solves the necessary optimality conditions (6.4).

Theorem 6.1 shows that it is enough to solve the boundary value problem (6.5) in
the original data, provided it is solvable. Since this is a homogeneous differential-
algebraic system, the solvability of the boundary value problem depends on the
consistency of the boundary conditions and the solvability of the linear system that
relates initial and terminal conditions, see [5, 79, 80]. Since the boundary value
problem is of the form

NPz.t/ D Mz.t/; P1z.0/ D P1z0; lim
t!1 P2z.t/ D 0;

with z.�/ D �
�.�/T x.�/T u.�/T�T

, and some matrices P1, and P2, the simplest way
to perform these computations is to apply the congruence transformation to even
staircase form

UTNUPQz.t/ D UTMUQz.t/; P1UQz.0/ D P1UQz0; lim
t!1 P2UQz.t/ D 0;

with Qz.�/ D UTz.�/, and Qz0 D UTz0.
This allows us to check the unique solvability by checking the regularity as in

Corollary 5.3 and the consistency of the boundary conditions, see [43] for details.
By partitioning Qz.�/ D �Qz1.�/T ; : : : ; Qz2wC1.�/T

�T
analogous to (5.1), the last w blocks

yield the consistency conditions Qz1 � 0; : : : ; Qzw � 0. The middle block system can
be expressed as

NwC1;wC1PQzwC1.t/ D MwC1;wC1QzwC1.t/; (6.6)
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with appropriately transformed boundary conditions. This system is regular and has
index at most one. If we make use of the semi-explicit form (5.2) and split

QzwC1.�/ D
�
	.�/

.�/

�
;

then we obtain

�
� 0

0 0

� � P	.t/
P
.t/

�
D
�
˙11 ˙12

˙21 ˙22

� �
	.t/

.t/

�
:

It follows that 
.�/ D �˙�1
22 ˙21	.�/, which gives further consistency conditions on

QzwC1.�/ and

� P	.t/ D .˙11 �˙12˙
�1
22 ˙21/	.t/:

Then we can perform a factorization � D U TJrwC1=2U with nonsingular upper
triangular matrix U [39]. If the factorization is well conditioned and the factor U is
well conditioned with respect to inversion, then we set H WD J T

rwC1=2
U �T.˙11 �

˙12˙
�1
22 ˙21/U �1 and �.t/ WD U 	.t/ to obtain the Hamiltonian boundary value

problem

P�.t/ D H �.t/: (6.7)

With appropriate boundary conditions ˘1�.0/ D ˘1�0, and limt!1˘2�.t/ D 0.
This system has the general solution �.t/ D exp .H t/ �0 and therefore,

QzwC1.t/ D
�

	.t/
�˙�1

22 ˙21	.t/

�
D
�

U �1 exp .H t/ �0
�˙�1

22 ˙21U �1 exp .H t/ �0

�
: (6.8)

It is important to note that one does not have to compute the exponential function
in (6.8) explicitly.

With a decomposition of the boundary value problem as

� P�1.t/P�2.t/
�

D
�
H11 H12

H21 �H T
11

� �
�1.t/
�2.t/

�
; H12 D H T

12 ; H21 D H T
21 ;

one rather computes the stable invariant subspace spanned by the matrix V D�
V1
V2

�
2 R

rwC1;rwC1=2 which satisfies

�
H11 H12

H21 �H T
11

� �
V1
V2

�
D
�
V1
V2

�
QH
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with �
� QH

	 � C
�. The appropriate structure-preserving methods for this

computation are outlined in [10] and implemented as the routine MB03ZD
in SLICOT.

By defining Y WD �V2V �1
1 , Q�1.�/ WD �1.�/, and Q�2.�/ WD Y�1.�/C �2.�/ we get

" PQ�1.t/PQ�2.t/

#
D
�

IrwC1=2 0

Y IrwC1=2

� �
H11 H12

H21 �H T
11

� �
IrwC1=2 0

�Y IrwC1=2

� � Q�1.t/Q�2.t/
�

D
� QH11

QH12

0 � QH T
11

� � Q�1.t/Q�2.t/
�
; (6.9)

with �
� QH11

	 � C
� and the boundary conditions Q�1.0/ D Q�1;0, limt!1 Q�2.t/ D 0.

Since � QH T
11 is an unstable matrix, we obtain Q�2.�/ � 0 by backwards integration.

This results in

PQ�1.t/ D QH11
Q�1.t/; Q�1.0/ D Q�1;0;

which can be efficiently solved by a further transformation of QH11 to Schur form.
From that we can easily reconstruct QzwC1.�/ as in (6.8).

This can be further used to determine QzwC2.�/; : : : ; Qz2wC1.�/ in terms of QzwC1.�/,
and the consistency conditions Qz1 � 0; : : : ; Qzw � 0 via a backward substitution
process applied to the first w block rows of 5.1. This recursive process leads to

Mw�jC1;wCjC1QzwCjC1.t/ D
 

wCjX
iDwC1

Nw�jC1;iPQzi.t/�
wCjX

iDwC1
Mw�jC1;iQzi.t/

!
; (6.10)

which requires w differentiations to be carried out, see [43]. The complete procedure
is graphically displayed in Fig. 3. Note that if sN � M is regular, then MwCjC1 D
�w�jC1 is nonsingular and Qz.�/ is uniquely determined. Otherwise, some of the
variables remain undetermined and thus the optimal solution trajectory might not
be unique.

We illustrate the whole procedure using the following example.

Example 6.1 Consider the linear-quadratic optimal control problem of minimizing

J .x.�/; u.�// D
Z 1

0

�
x1.t/

2 C x2.t/
2 C u.t/2

	
dt
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formal optimality system

even staircase form: extract
regular index one part

boundary condi-
tions consistent?

form Hamiltonian boun-
dary value problem

compute stable in-
variant subspace

solve Hamiltonian boun-
dary value problem

reconstruct optimal
input, state, and La-

grange multiplier

error: boundary con-
ditions not consistent

no

yes

Fig. 3 Algorithm flowchart for solving linear-quadratic optimal control problems

subject to

2
666664

1 0 0 0 0

0 1 0 0 0

0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

3
777775

2
666664

Px1.t/
Px2.t/
Px3.t/
Px4.t/
Px5.t/

3
777775

D

2
666664

1 1 0 0 0

�1 1 0 0 0
0 0 1 0 0

0 0 0 1 0

0 0 0 0 0

3
777775

2
666664

x1.t/
x2.t/
x3.t/
x4.t/
x5.t/

3
777775

C

2
666664

1

1

�1
0

0

3
777775

u.t/;

2
666664

x1;0.t/
x2;0.t/
x3;0.t/
x4;0.t/
x5;0.t/

3
777775

D

2
666664

1

�1
0

0

0

3
777775
:

with

Q D

2
666664

1 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

3
777775
; S D

2
666664

0

0

0

0

0

3
777775
; R D 1:
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The formal optimality system is given by (6.5) with the boundary condition for
the Lagrange multiplier given by limt!1 �1.t/ D limt!1 �2.t/ D limt!1 �3.t/ D
0. With the notation of Theorem 5.2, a reduction to even staircase form yields the
structural characteristics

w D 1; s1 D 2; q1 D 4:

In particular, since q1 � s1 D 2 ¤ 0, the formal optimality system is singular. Thus
the transformed formal optimality system attains the form

2
4

N1;1 N1;2 0
�NT

1;2 N2;2 0
0 0 0

3
5
2
4

PQz1.t/
PQz2.t/
PQz3.t/

3
5 D

2
4

M1;1 M1;2 M1;3

MT
1;2 M2;2 0

MT
1;3 0 0

3
5
2
4

Qz1.t/
Qz2.t/
Qz3.t/

3
5 : (6.11)

The regular index one part is given by

2
666664

0 �1 0 0 0

1 0 0 0 0

0 0 0 �1 0
0 0 1 0 0

0 0 0 0 0

3
777775

2
666664

Pz2;1.t/
Pz2;2.t/
Pz2;3.t/
Pz2;4.t/
Pz2;5.t/

3
777775

D

2
666664

1 1 0 �1 0

1 0 1 0 �1
0 1 1 1 0

�1 0 1 0 �1
0 �1 0 �1 1

3
777775

2
666664

z2;1.t/
z2;2.t/
z2;3.t/
z2;4.t/
z2;5.t/

3
777775
;

2
666664

z2;1.t/
z2;2.t/
z2;3.t/
z2;4.t/
z2;5.t/

3
777775

D

2
666664

�x1.t/
��1.t/
�x2.t/
��2.t/

u.t/

3
777775
:

A further reduction to a Hamiltonian boundary value problem yields

2
664

P�1;1.t/P�1;2.t/P�2;1.t/P�2;2.t/

3
775 D

2
664

1 1 �1 �1
�1 1 �1 �1
�1 0 �1 1

0 �1 �1 �1

3
775

2
664

�1;1.t/
�1;2.t/
�2;1.t/
�2;2.t/

3
775 ;

�
�1;1.0/

�1;2.0/

�
D
��x1.0/
�x2.0/

�
D
��1
1

�
; lim

t!1

�
�2;1.t/
�2;2.t/

�
D lim

t!1

���1.t/
��2.t/

�
D
�
0

0

�
:
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The stable invariant subspace of the Hamiltonian matrix is spanned by

V D

2
664

�0:2041 �0:1727
�0:2317 �0:4438
�0:9511 0:1548

�0:0106 �0:8656

3
775 ;

and thus the Hamiltonian boundary value problem (6.9) reduces to

2
66664

PQ�1;1.t/PQ�1;2.t/PQ�2;1.t/PQ�2;2.t/

3
77775

D

2
664

�4:1813 1:4142 �1:0000 �1:0000
�6:1813 1:4142 �1:0000 �1:0000

0 0 4:1813 6:1813

0 0 �1:4142 �1:4142

3
775

2
664

Q�1;1.t/Q�1;2.t/Q�2;1.t/
Q�2;2.t/

3
775 ;

� Q�1;1.0/Q�1;2.0/
�

D
��1
1

�
; lim

t!1

� Q�2;1.t/Q�2;2.t/
�

D
�
0

0

�
;

which can now be solved by a numerical integrator. One first integrates the last two
equations backward in time and stores the the trajectories either in discrete time
points or in a collocation representation. Then the first two equations are integrated
forward in time, making use of the already computed variables which then act as
inhomogeneities. If the integrator needs this inhomogeneity in points different from
the stored points, either these have to be recomputed or obtained by interpolation. It
remains to determine Qz1.�/ and Qz3.�/ in (6.11). For this we have

Qz1.t/ D
�
�3.t/

�x4.t/

�
D 0;

which is consistent to the boundary conditions. For our example, (6.10) further
yields

�
1 0 0 0

0 1 0 0

�
2
664

z3;1.t/
z3;2.t/
z3;3.t/
z3;4.t/

3
775 D �

�
0 0 0 0 �1
0 0 0 0 0

�
2
666664

z2;1.t/
z2;2.t/
z2;3.t/
z2;4.t/
z2;5.t/

3
777775
; (6.12)

i.e., we have x3.t/ D z3;1.t/ D z2;5.t/ D u.t/, and ��2.t/ D z3;2.t/ D 0 which
are both in agreement to our state equation and the boundary conditions. Note
that z3;3.t/ D �5.t/ and z3;4.t/ D x5.t/ remain undetermined and thus the optimal
solution is not unique. This observation is also in agreement to the state equation,
since there x5.�/ is already free. To deal with this situation one either removes the last
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equation and the variable x5.�/ already in the original state equation or one chooses
another cost functional, see [73] for a discussion.

Remark 6.1 A similar decoupling procedure can also be constructed in the finite-
time horizon problem by decoupling the forward and backward integration via
the solution of a Riccati differential equation or by using other boundary value
methods [5].

Remark 6.2 In [99, 117] the linear-quadratic optimal control problem has been
solved by directly using the deflating subspaces of an even matrix pencil that is
related to the boundary value problem (6.5), in particular in the context of singular
control problems.

7 H1 Optimal Control

Our second application is the H1 optimal control problem which is one of the
major tasks in robust control. We consider descriptor systems of the form

P W

8̂
<̂
ˆ̂:

EPx.t/ D Ax.t/C B1v.t/ C B2u.t/; x.0/ D x0;

z.t/ D C1x.t/C D11v.t/C D12u.t/;

y.t/ D C2x.t/C D21v.t/C D22u.t/;

(7.1)

where E; A 2 R
n;n, Bi 2 R

n;mi , Ci 2 R
pi;n, and Dij 2 R

pi;mj for i; j D 1; 2. In
this system, x W Œ0;1/ ! R

n is the state, u W Œ0;1/ ! R
m2 is the control input,

and v W Œ0;1/ ! R
m1 is an exogenous input that may include noise, linearization

errors, and unmodeled dynamics. The function y W Œ0;1/ ! R
p2 contains measured

outputs, while z W Œ0;1/ ! R
p1 is a regulated output or an estimation error.

The H1 optimal control problem is typically formulated in the frequency
domain. Its goal is to stabilize the system, while minimizing the H1-norm of the
closed-loop transfer function Tzv.�/ mapping noise or disturbance to error signals
[122]. The value of kTzvkH

1

is used as a measure for the worst-case influence of
the disturbances v on the output z. A more rigorous formulation is given in the
following definition [86].

Definition 7.1 (The Optimal H1 Control Problem) For the descriptor sys-
tem (7.1), determine a controller (dynamic compensator)

K W
( OEPOx.t/ D OAOx.t/C OBy.t/;

u.t/ D OCOx.t/C ODy.t/;
(7.2)
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with OE; OA 2 R
N;N , OB 2 R

N;p2 , OC 2 R
m2;N , OD 2 R

m2;p2 , and transfer function K.s/ D
OC.s OE � OA/�1 OB C OD such that the closed-loop system resulting from the combination
of (7.1) and (7.2), given by

EPx.t/ D



A C B2 ODZ1C2
�

x.t/C B2Z2 OCOx.t/C



B1 C B2 ODZ1D21

�
v.t/;

OEPOx.t/ D OBZ1C2x.t/C

 OA C OBZ1D22

OC
�

Ox.t/C OBZ1D21v.t/;

z.t/ D



C1 C D12Z2 ODC2
�

x.t/C D12Z2 OCOx.t/C



D11 C D12
ODZ1D21

�
v.t/

(7.3)

with Z1 D



Ip2 � D22
OD
��1

and Z2 D



Im2 � ODD22

��1
, has the following

properties:

(i) System (7.3) is internally stable, i.e., the solution

�
x.�/
Ox.�/
�

of the system with

v � 0 is asymptotically stable, in other words lim
t!1

�
x.t/
Ox.t/

�
D 0.

(ii) The closed-loop transfer function Tzv.�/ from v to z satisfies Tzv 2 RH p1;m11
and is minimized in the H1-norm.

Such an interconnection of a system with a controller is depicted in Fig. 4. Solving
the optimal H1 control problem by trying to directly minimize the H1-norm of
Tzv.�/ over the complicated set of internally stabilizing controllers proves difficult
or impossible by conventional optimization methods, since it is often unclear if a
minimizing controller exists [122] and if one exists, it is typically not unique, there
even exist infinitely many. So usually one studies two closely related optimization
problems, the modified optimal H1 control problem and the suboptimal H1
control problem [15, 122].

Fig. 4 Interconnection of a system P with a controller K
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Definition 7.2 (The Modified Optimal H1 Control Problem) For the descriptor
system (7.1), let � be the set of positive real numbers � for which there exists
an internally stabilizing dynamic controller of the form (7.2) so that the transfer
function Tzv.�/ of the closed-loop system (7.3) satisfies Tzv 2 RH p1;m11 with
kTzvkH

1

< � . Determine �mo D inf� . If no internally stabilizing dynamic
controller exists, we set � D ; and �mo D 1.

This problem is usually solved by an iterative process, which is often called the
� -iteration.

Definition 7.3 (The Suboptimal H1 Control Problem) For the descriptor sys-
tem (7.1) and � 2 � with � > �mo, determine an internally stabilizing dynamic
controller of the form (7.2) such that the closed-loop transfer function satisfies
Tzv 2 RH

p1;m11 with kTzvkH
1

< � . We call such a controller � -suboptimal
controller or simply suboptimal controller.

To obtain an existence and uniqueness result we make the following assumptions:

(A1) The triple .E;A;B2/ is strongly stabilizable and the triple .E;A;C2/ is strongly
detectable.

(A2) rank

�
A � i!E B2

C1 D12

�
D n C m2 for all ! 2 R.

(A3) rank

�
A � i!E B1

C2 D21

�
D n C p2 for all ! 2 R.

(A4) With matrices S1; T1 2 R
n;n�r satisfying range S1 D ker E, range T1 D

ker ET and r WD rank E we have

rank

�
TT1AS1 TT1B2
C1S1 D12

�
D n C m2 � r;

rank

�
TT1AS1 TT1B1
C2S1 D21

�
D n C p2 � r:

In Assumption (A1), the conditions of impulse controllability and impulse observ-
ability are necessary to avoid impulsive solutions which cannot be controlled
or observed. To check these conditions one can use the condensed forms of
Theorem 4.2 with the characterization of Corollary 4.3. The property that the
system is behavioral stabilizable and behavioral detectable is necessary for the
existence of an internally stabilizing controller. To verify these conditions we use
the decompositions (4.2) and (4.3) which can be computed via the codes TG01HD,
TG01ID in the SLICOT library. These routines can also be used to check (A2)
and (A3).
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To verify that assumption (A4) is satisfied, we check that the ranks of the
extended matrices fulfill

rank

2
4
0 E 0

ET A B2
0 C1 D12

3
5 D n C m2 C r;

and

rank

2
4
0 E 0

ET A B1
0 C2 D21

3
5 D n C p2 C r:

This check is performed by applying a rank-revealing QR (RRQR) decomposition
[62]. The corresponding routine DGEQP3 is available in LAPACK.4 For details on
the implementation we refer to [29, 30, 55].

Once we have assured that the assumptions (A1)–(A4) hold, we can form the two
even matrix pencils

sNH � MH.�/ D

2
666664

0 �sET �AT 0 0 �CT
1

sE � A 0 �B1 �B2 0

0 �BT
1 ��2Im1 0 �DT

11

0 �BT
2 0 0 �DT

12

�C1 0 �D11 �D12 �Ip1

3
777775
; (7.4)

and

sNJ � MJ.�/ D

2
666664

0 �sE � A 0 0 �B1
sET � AT 0 �CT

1 �CT
2 0

0 �C1 ��2Ip1 0 �D11

0 �C2 0 0 �D21

�BT
1 0 �DT

11 �DT
21 �Im1

3
777775
: (7.5)

We determine the semi-stable deflating subspaces of both pencils, i.e., the deflating
subspaces corresponding to the eigenvalues in the open left complex half-plane and
a part of the deflating subspaces associated with the purely imaginary eigenvalues
with even algebraic multiplicity and uniform sign-characteristic. Suppose that these

4http://www.netlib.org/lapack/.

http://www.netlib.org/lapack/
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subspaces are spanned by the columns of the matrices

XH.�/ D

2
666664

XH;1.�/

XH;2.�/

XH;3.�/

XH;4.�/

XH;5.�/

3
777775
; XJ.�/ D

2
666664

XJ;1.�/

XJ;2.�/

XJ;3.�/

XJ;4.�/

XJ;5.�/

3
777775
;

which are partitioned according to the block structure of the pencils sNH � MH and
sNJ � MJ .

We use the following result to solve the modified optimal H1 control problem.

Theorem 7.1 ([86]) Consider system (7.1) and the even pencils sNH � MH.�/ and
sNJ �MJ.�/ as in (7.4) and (7.5), respectively. Suppose that assumptions (A1)–(A4)
hold.

Then there exists an internally stabilizing controller such that the transfer
function from v to z satisfies Tzv 2 RH

p1;m11 with kTzvkH
1

< � if and only if
� is such that the following conditions C1)–C4) hold.

C1) The index of both pencils (7.4) and (7.5) is at most one.
C2) There exists a matrix XH.�/ such that

C2.a) the space range XH.�/ is a semi-stable deflating subspace of sNH �
MH.�/ and range

�
EXH;1.�/

XH;2.�/

�
is an r-dimensional isotropic subspace

of R2n;
C2.b) rank EXH;1.�/ D r.

C3) There exists a matrix XJ.�/ such that

C3.a) the space range XJ.�/ is a semi-stable deflating subspace of sNJ �
MJ.�/ and range

�
ETXJ;1.�/

XJ;2.�/

�
is an r-dimensional isotropic subspace

of R2n;
C3.b) rank ETXJ;1.�/ D r.

C4) The matrix

Y .�/ D
"

��XT
H;2.�/EXH;1.�/ XT

H;2.�/EXJ;2.�/

XT
J;2.�/E

TXH;2.�/ ��XT
J;2.�/E

TXJ;1.�/

#
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is symmetric, positive semi-definite, and satisfies rankY .�/ D kH C kJ, where
kH and kJ are such that for all sufficiently large �H;1; �H;2, and �J;1; �J;2 the
conditions

rank ETXH;2.�H;1/ D rank ETXH;2.�H;2/ D kH;

rank EXJ;2.�J;1/ D rank EXJ;2.�J;2/ D kJ

hold.

Furthermore, the set of values � satisfying the conditions C1)–C4) is nonempty.

To check condition C4), we make use of the LDLT decomposition, described in
[6] and implemented in LAPACK by DSPTRF which decomposes a real symmetric
matrix A as A D LDLT , where L is a product of permutation and lower triangular
matrices, and D is symmetric and block diagonal with 1 � 1 and 2 � 2 diagonal
blocks.

Using Theorem 7.1, we can use a bisection type algorithm to determine the
suboptimal value �mo, see [85].

After completing the bisection process, one has the option to either use the result
directly, or to perform a strong validation, by dividing the interval .0; �mo/ at a
desired number of points and checking the four conditions C1)–C4) again at these
points. If the conditions C1)–C4) are fulfilled for another � 2 .0; �mo/, we have
obviously found a better value for �mo. We can either use this new value or continue
with the � -iteration to find an even better value. Once a satisfactory � is found, it
remains to compute the controller. The trick that we use to determine the controller
is to compute an index-reducing static output feedback u.t/ D Fy.t/C u.t/, whose
application leads to a new descriptor system of the form (7.1) with an index of at
most one. It can be shown that the application of the feedback does not change
the solution of the modified H1 optimal control problem [85, 86]. The feedback
is computed using the condensed form (4.1) and the techniques presented in [40],
which yield s2 D t2 and

F D
�

F11 0
0 0

�
2 R

m;p; F11 D
�

B21
B31

��1
.Is2 � A22/

�
C12 C13

��1
: (7.6)

Note that due to the construction of the condensed form (4.1), the matrices

�
B21
B31

�
;

�
C12 C13

�

can be kept in factored form as a product of an orthogonal and a diagonal matrix. So
the computation of F can be carried out by the inversion of two diagonal matrices.
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check C4)

Fig. 5 Algorithm flowchart for solving H
1

optimal control problems

We can use this new descriptor system to compute the controller. The controller
formulas themselves and their derivation are rather involved. Therefore, we only
refer to the robust controller formulas for the standard system case in [16], and
based on that, the controller formulas for the descriptor system case in [85].

Figure 5 presents a flow chart for the solution of the optimal solution. First
one checks the four assumptions (A1)–(A4), using the condensed forms from
Theorem 4.2, the decompositions (4.2) and performing some rank checks. Then one
uses a bisection type algorithm to find the optimal value of � , by checking the four
conditions from Theorem 7.1 in each step by using the staircase form from Theo-
rem 5.2, the computation of the semi-stable deflating subspaces using Algorithm 1,
and the LDLT decomposition from [6]. Here, the structure-preservation aspect of
Algorithm 1 is very important, since using these methods, it cannot happen that
eigenvalues from the left half plane move to the right half plane and vice versa due
to round-off errors. Therefore, the computed subspaces are guaranteed to have the
correct dimensions. Once the suboptimal value is found, one has the option to use a
strong validation by checking the aforementioned four conditions again at a desired
number of points. Then it remains to compute an index reducing feedback (7.6)
and to compute the controller formulas given in [16, 85]. For an illustration of the
method by numerical examples we refer to [16, 85].
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8 L1-Norm Computation

In the previous section we have seen that the H1-norm of a transfer function is
an important measure for the robustness of a linear system. This section is devoted
to the actual computation of this norm. We will directly present this for the more
general case of the L1-norm. Consider a square descriptor system (1.2) with
regular pencil sE � A and transfer function G.�/ as in (4.4).

Before we can turn to the actual norm computation, we have to ensure that
G 2 RL p;m1 . First, we check whether the transfer function is proper, i.e., that
lim!!1 kG.i!/k < 1. For this we make use of the following result of Benner
et al. [18] and Voigt [116] in a modified formulation.

Theorem 8.1 Consider a descriptor system (1.2a) given in the condensed
form (4.1). Then, G.�/ is proper if and only if the subpencil

s

�
˙E 0

0 0

�
�
�

A11 A12
A21 A22

�

is regular and of index at most one, i.e., if A22 is invertible.

Therefore, to check properness, we first reduce the system to the condensed
form (4.1) and subsequently check A22 for invertibility, e.g., by employing condition
estimators [62].

When we have checked the transfer function for properness, it remains to
check whether G.�/ has finite, purely imaginary poles. For this, we first determine
the controllability and observability decompositions (4.2) and (4.3) to extract
the controllable and observable subsystem. The finite eigenvalues of the pencil
associated with this subsystem are poles of G.�/ and we check whether there are
eigenvalues that lie in a thin strip around the imaginary axis. The thickness of this
strip depends on the multiplicity of the pole which is generally not known. In finite
precision, eigenvalues in this region cannot be distinguished from eigenvalues on
the imaginary axis. Generically, a pole will be simple and therefore, in the code
we choose the thickness as a small multiple of machine precision. After we have
ensured that G 2 RL

p;m1 , we can compute the norm value. For this we make use of
the even matrix pencils

sN � M.�/ D

2
664

0 sE � A 0 �B
�sET � AT 0 �CT 0

0 �C � Ip �D
�BT 0 �DT � Im

3
775 : (8.1)
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The following theorem connects the singular values of G.i!/ with the finite, purely
imaginary eigenvalues of sN � M.�/, see [18, 19, 116] for details.

Theorem 8.2 Assume that sE � A has no purely imaginary eigenvalues, G 2
RL p;m1 , � > 0 and !0 2 R. Then � is a singular value of G.i!0/ if and only if
i!0N � M.�/ is singular.

A direct consequence of Theorem 8.2 is the following result, see [18, 19].

Theorem 8.3 Assume that sE � A has no purely imaginary eigenvalues, G 2
RL p;m1 and suppose that � > inf!2R �max.G.i!//. Then kGkL

1

� � if and only if
sN � M.�/ in (8.1) has finite, purely imaginary eigenvalues.

This directly yields an algorithm for the computation of the L1-norm, similarly as
in [32–34]. Given an initial value of � with inf!2R �max.G.i!// < � < kGkL

1

,
we check if sN � M.�/ has purely imaginary eigenvalues. If yes, we denote these
eigenvalues with positive imaginary part by i!1; : : : ; i!q. To obtain the next (larger)
value of � , we determine new test frequencies mj D p

!j!jC1, j D 1; : : : ; q � 1.
Then, the new value of � is chosen as

� D max
1�j�q�1 �max.G.imj//:

To check whether a prespecified relative error " has already been achieved, we would
have to check whether the pencil sN � M. O�/ with O� D �.1 C 2"/ has no purely
imaginary eigenvalues. To avoid the additional check in every step, we can directly
incorporate this into the algorithm by always working with O� instead of � when
determining the eigenvalues of the even pencils.

It can be shown that this algorithm converges globally with a quadratic rate and
a guaranteed relative error of " when assuming exact arithmetics. We refer to [18,
19, 116] for details on the implementation and the algorithm properties. Note again
that the decision about the existence of purely imaginary eigenvalues is crucial for
a robust execution of this algorithm and does require a structured eigensolver as
described in Sect. 5.2. A graphical interpretation is given in Fig. 6.

Note that when assuming that G 2 RL p;m1 , the algorithm runs on the original
data without performing any system reductions beforehand. However, sE � A could
still have uncontrollable or unobservable eigenvalues on the imaginary axis. If
one does not perform the system reductions to extract the behavioral controllable
and observable subsystem, then it remains to check whether sE � A has no finite,
purely imaginary eigenvalues. The complete procedure is summarized in Fig. 7. An
illustrative numerical example can be found in [18], whereas in [19] one can find a
more detailed analysis of the behavior of the algorithm.
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Fig. 6 Graphical interpretation of the algorithm for computing the L
1

-norm. Here, �.i/ and
�.i C 1/ denote the iterates at the ith and .i C 1/st step, respectively
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imaginary axis?

G p,m
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norm within de-
sired tolerance

evaluate G at new
test frequencies

increase g

no

yes
no

yes

yes

no

lN − M(g (1 + 2)e))

g

Fig. 7 Flowchart for computing the L
1

-norm

9 Dissipativity Check

The notion of dissipative systems is one of the most important concepts in systems
and control theory, see for instance [118–120]. It naturally arises in many physical
problems, especially when energy considerations are of importance. Roughly
speaking, dissipative systems cannot internally generate energy. Equivalently, the
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system cannot supply more energy to its environment than energy that has been
supplied to the system. Typical areas where such systems appear are the modeling
of electrical circuits [100] (where, e.g., resistors consume a part of the energy and
transform it into heat), or thermodynamic processes (where a part of the energy is
transformed into an increase of entropy due to the second law of thermodynamics).

When modeling real-world processes it is often desired or necessary to reflect the
dissipative nature of the problem in the model structure. This is important in order
to obtain physically meaningful results when performing simulations. This section
presents a method to check a certain notion of dissipativity for linear time-invariant
descriptor systems of the form (1.2) based on a spectral characterization for even
pencils.

We first introduce a precise mathematical formulation of dissipativity. For this
we need the notion of supply rates which measure the power supplied to the system
at time t. In the following we restrict ourselves to quadratic supply functions of the
form

s.u.t/; y.t// D
�

y.t/
u.t/

�T �
Q S
ST R

� �
y.t/
u.t/

�
; (9.1)

where Q D QT 2 R
p;p, S 2 R

p;m, and R D RT 2 R
m;m. Then the energy supplied to

the system in a time interval Œt0; t1� is measured by

Z t1

t0

s.u.t/; y.t//dt:

There are many different notions of dissipativity in the literature. In this survey, we
stick to the notion of cyclo-dissipativity which has been introduced in [35, 36] in
the context of behavior systems.

Definition 9.1 A descriptor system (1.2) is called cyclo-dissipative with respect to
s.�; �/, if

Z T

0

s.u.t/; y.t//dt � 0

for all T � 0 and all smooth trajectories .u.�/; x.�/; y.�// solving (1.2) with the
boundary conditions Ex.0/ D Ex.T/ D 0.

Remark 9.1 Cyclo-dissipativity is only a property of the strongly controllable part
of the system. A more general definition of dissipativity would require the existence
of a storage function � W im E ! R with �.0/ D 0 such that the dissipation
inequality

�.Ex.t1// � �.Ex.t0//C
Z t1

t0

s.u.t/; y.t//dt
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is fulfilled for all t0 � t1 and all smooth solution trajectories .u.�/; x.�/; y.�// such
that the supply rate is locally square-integrable, see [36]. If the system (1.2) is
strongly controllable, then both definitions coincide. However, not every cyclo-
dissipative system has to possess a storage function. A counter-example is given
in [36].

Remark 9.2 In the definition of cyclo-dissipativity it is only required that trajecto-
ries that start at zero and return to zero in some finite time do not generate energy.
A stronger definition, that would require all trajectories that start at zero not to
generate energy, exists as well. Special cases of this stronger notion are passivity
and contractivity (see below). Closely related to this is then nonnegativity of the
storage function (if it exists). Unfortunately, its general treatment is much more
involved. However, under the condition that the pencil sE � A is regular, stable, and
its Kronecker index is at most one, and Q is negative semidefinite, then this stronger
definition coincides with Definition 9.1, see [38].

In practice, two particular cases for the choice of the supply rate are of great
interest. If a descriptor system (1.2) is dissipative (in the sense of the stronger
definition in Remark 9.2) with respect to the supply rate s.u.t/; y.t// D u.t/Ty.t/,
i.e., if k D n, p D m and

�
Q S
ST R

�
D 1

2

�
0 Im

Im 0

�
;

then the system is called passive. This situation typically arises in models for RLC
circuits [2, 96–98].

The other special case is that the supply rate is given by s.u.t/; y.t// D ku.t/k22�
ky.t/k22, i.e., k D n and

�
Q S
ST R

�
D
��Ip 0

0 Im

�
:

In this case, a dissipative system (in the sense of the stronger definition in
Remark 9.2) is called contractive. Usually this structure occurs if (1.2) is a
realization of scattering parameters [89], but similar structures also appear in H1
control, see Sects. 7 and 8.

For square systems (with k D n), a well-known relation of cyclo-dissipativity
defined above between the time and frequency domain is given by the so-called
Popov function

H.�; 
/ WD
�
.�E � A/�1B

Im

�H � QQ QS
QST QR

� �
.
E � A/�1B

Im

�
;

with QQ, QS, and QR as in (6.2). One has the following theorem of [35, 36].
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Theorem 9.1 The square descriptor system (1.2) is cyclo-dissipative with respect
to s.�; �/ if and only if H.i!; i!/ � 0 for all i! 62 �.E;A/.
For the cases of passivity and contractivity we get more general relations. These are
summarized in the following theorem [2].

Theorem 9.2 Consider a square descriptor system of the form (1.2) with p D m.

(i) The system is passive if and only if G.�/ is positive real, i.e.,

(a) G.�/ is analytic in C
C; and

(b) H.�; �/ D G.�/C G.�/H � 0 for all � 2 C
C.

(ii) The system is contractive if and only if G.�/ is bounded real, i.e.,

(a) G.�/ is analytic in C
C; and

(b) H.�; �/ D Im � G.�/HG.�/ � 0 for all � 2 C
C.

It is very important to note that similar equivalent conditions of Theorem 9.2 do
in general not hold for systems that are dissipative in the sense of the stronger
definition in Remark 9.2. A counterexample is given in [121]. There are many
algebraic characterizations to check if a given system (1.2) is cyclo-dissipative.
These are mainly based on solvability of certain linear matrix inequalities or matrix
equations, see [66]. Instead we make use of the following spectral characterization
of even matrix pencils. For this, we need the sign-sum function [35, 36, 38] of a
Hermitian matrix T which is defined as

	.T/ D �C C �0 � ��;

where �C, �0, and �� are the numbers of positive, zero, and negative eigenvalues
of T, respectively. Furthermore, we can define the rank of a polynomial matrix P.s/
over the field of real-rational functions (often called normal rank), given by

rankR.s/ .P.s// WD max
�2C rank .P.�// : (9.2)

The maximum in (9.2) is attained for almost all values of � 2 C, there is only a
finite set of points, where the rank drops.

Theorem 9.3 ([36, Theorem 3.11]) Consider the system (1.2) with supply
rate (9.1). Let

r WD rankR.s/
��

sE � A �B
�	

(9.3)
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and define ` WD k C n C m C 2p. Consider the even pencil

N .s/ D sN � M D

2
666664

0 0 0 sE � A �B
0 0 Im �C �D
0 Im Q 0 S

�sET � AT �CT 0 0 0

�BT �DT ST 0 R

3
777775

2 RŒs�`;`: (9.4)

Then the system given by (1.2) is cyclo-dissipative if and only if

	.N .i!// D k C n C m � 2r

for all ! 2 R with rank
��

i!E � A �B
�	 D r.

To better understand this theorem, we present a visualization in terms of the so-
called spectral plot. This plot is constructed by plotting the ` eigenvalues of N .i!/
depending on !, see Fig. 8 for an example.

The general framework for checking cyclo-dissipativity then consists of two
steps. First, we check if the assumptions of Theorem 9.3 are fulfilled. If the normal
rank is unknown, then the GUPTRI form [53, 54, 70] is a suitable tool to compute it.

The next step consists in checking the sign-sum condition in Theorem 9.3. We
exploit the fact that 	.N .i!// can only change at purely imaginary eigenvalues (of
the regular index one part) and remains constant between two subsequent purely
imaginary eigenvalues. We construct the pencil (9.4) and apply the even staircase
algorithm from Theorem 5.2 to get the regular index one part sNwC1;wC1�MwC1;wC1.
Then we compute its purely imaginary eigenvalues with positive imaginary part,
denoted by i!1; : : : ; i!q, with !1 < !2 < : : : < !q. This is done using Algorithm 1.

Fig. 8 Spectral plot. Here cyclo-dissipativity is violated, since the sign-sum function changes for
varying !
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compute normal rank

form pencil
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compute purely imag-
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sign-sum criterion fulfilled?

system dissipative

system not dissipative

yes

no

Fig. 9 Algorithm flowchart for dissipativity check

Next, we set !0 WD 0 and !qC1 WD 1. For j D 0; : : : ; q, we choose points ˛j 2
.!j; !jC1/ with rank

��
i˛jE � A �B

�	 D r. Finally, for j D 0; : : : ; q we compute the

inertia .� j
C; �

j
0; �

j�/ of the Hermitian matrix N .i˛j/ and thus obtain 	.N .i˛j// D
�

j
C C �

j
0 � � j�. Then the system is dissipative if and only if 	.N .i˛j// D k C n C

m � 2r for all j. Figure 9 summarizes the complete procedure in a diagram.
We further illustrate the algorithm by means of the following example.

Example 9.1 We consider a slightly modified circuit example from [116, Sect.
1.1.1] resulting from a modified nodal analysis given by the following data:

E D

2
6666666664

0 0 0 0 0 0 0

0 104 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 10�3 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0

3
7777777775

; A D

2
6666666664

0 0 0 0 �1 0 �1
0 0 0 0 1 �10 0

0 0 0 0 0 1 0

0 0 0 10�2 0 0 0

1 �1 0 0 0 0 0

0 10 �1 0 0 0 0

1 0 0 0 0 0 0

3
7777777775

;

C D BT D
�
0 0 0 0 0 0 �1
0 0 1 �1 0 0 0

�
; D D 0:
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Due to the special structure of the matrices, the corresponding descriptor system is
passive [96]. In particular, the system is cyclo-dissipative with respect to the supply
rate defined by the weighting matrices

�
Q S
ST R

�
D
�
0 I2
I2 0

�
:

We now verify this by checking the spectrum of the even pencil (9.4). First, we
reduce the pencil to even staircase form. Using the notation of Theorem 5.2 we
obtain the following structural information:

w D 3; s1 D 1; s2 D 1; s3 D 0; q1 D 1; q2 D 1; q3 D 1:

In particular, since q3 � s3 D 1 ¤ 0, the pencil is singular. The regular index one
part is given by

sN4;4 � M4;4 D � diag .1:9021; 1:6194; 1:414; 2:1756; 0:6217;

�0:6144;�1:4142;�1:6167;�1:9021; 10:0504;
1:9962;�0:0075;�1:1756;�1:9987;�10:0504/ 2 RŒs�15;15;

which has only (semisimple) infinite eigenvalues. Therefore, it is sufficient to
evaluate the sign-sum function at a single point, for instance for ! D 0 we obtain

	.N .0// D 	.�M/ D 2 D k C n C m � 2r:

Hence, it is confirmed that the system is cyclo-dissipative.

10 Conclusions

This paper provides a uniform treatment of differential-algebraic equations by
methods from numerical linear algebra. First, we have presented the solution theory
of such equations as well as regularization procedures. Based on that we have
discussed several important applications from control and optimization of DAEs.
These are based on the solution of even eigenvalue problems. We have presented
several canonical forms of even pencils and discussed their properties. These
canonical forms can be employed to numerically treat the presented applications
in a uniform framework. The methods discussed here are usable for small-scale
problems, i.e., to problems of size up to a few hundred. Here, the main computa-
tional bottleneck are the complexity and the storage requirements for solving even
and skew-Hamiltonian/Hamiltonian eigenvalue problems.
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Thus a big issue is the development of algorithms for large and sparse problems,
which are widely unexplored. For instance, it is not clear how to determine all
desired eigenvalues of a large-scale even pencil, e.g., the purely imaginary ones
or how to approximate the complete subspace associated with all eigenvalues in the
left half plane by a sparse representation.
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Abstract We provide an overview on the state of the art concerning boundary-
value problems for differential-algebraic equations. A wide survey material is
analyzed, in particular polynomial collocation and shooting methods. Moreover,
new developments are presented such as the theory of linear boundary-value
problems for arbitrary-index differential-algebraic equations as counterpart of the
well-known classical version.

Keywords Boundary-value problems • Differential-algebraic equation • Numeri-
cal methods • Well-posedness

AMS Subject Classification (2010): 34A09, 65L80, 34B05, 34B15

1 Introduction

Usually, a differential-algebraic equation (DAE) has a family of solutions; to pick
one of them, one has to supply additional conditions. In an initial value problem
(IVP), the solution is specified by its value at a single point. A genuine boundary
value problem (BVP) assigns solution and derivative values at more than one point.
Most commonly, the solutions are fixed at just two points, the boundaries. IVPs can
be seen as relatively simple special cases of BVPs.
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BVPs constitute an important area of applied mathematics for explicit ordinary
differential equations (ODEs), e.g., [13]. This applies even more for DAEs. We
follow [13] in mainly concentrating on two-point BVPs.

Up to now, both analytical theory and numerical treatment of DAEs have mainly
been focused on IVPs. The more complex BVPs have not been studied with similar
intensity. The related early work up to 2001 is carefully summarized in [102,
Sect. 81]. With the present chapter we intend to provide an actual survey of this
field.

Optimal control is one of the traditional sources of BVPs for DAEs. As is well
known, extremal conditions for optimal control problems subject to constraints
given by explicit ODEs yield BVPs for semi-explicit DAEs. If the constraints
themselves are given by DAEs, the extremal conditions lead to BVPs for DAEs
(e.g., [33, 54]) even more.

An important area yielding DAEs is network modeling in different application
fields, for instance, electrical networks [86, 103, 104], and multibody systems [45,
109]. One is interested in BVPs transforming one state or position into another, often
also in periodic solutions.

DAEs in applications usually need an involved technical description and show
high dimensions. Here, we avoid repeating extensive case studies and prefer small,
clear, possibly academic examples. We hint at some essentials by means of easy
examples. We recognize features coming from the well-known classical ODE
theory, but we also indicate further difficulties emerging from the DAE context.
The first example is taken from [20].

Example 1.1 Minimize the cost

J.x/ D
tfZ

0

.x3.t/
2 C .x4.t/ � R2/2/dt

subject to the constraints

x0
1.t/C x2.t/ D 0; x1.0/ D r;

x0
2.t/ � x1.t/ � x3.t/ D 0; x2.0/ D 0;

x1.t/
2 C x2.t/

2 � x4.t/ D 0;

with constants r > 0, R > 0. The component x3 can be seen as a control
function. For arbitrary given function x3 the resulting components x1; x2; x4 are
uniquely determined. In particular, if x3.t/ vanishes identically, the remaining IVP
has the unique solution x1.t/ D r cos t, x2.t/ D r sin t, x4.t/ D r2. Then the point
.x1.t/; x2.t// orbits the origin with radius r and the cost amounts to J .x/ D 13:5.

By minimizing the cost, the point .x1.t/; x2.t// is driven to the circle of radius R,
with low cost of x3.t/. Figure 1 shows a locally optimal solution for tf D 3, r D 1,
R D 2, yielding the cost J .x/ D 4:397, which was generated by means of the
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Fig. 1 Solution of the optimal BVP in Example 1.1
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associated extremal condition, the so-called optimality BVP,

x0
1.t/C x2.t/ D 0;

x0
2.t/ � x1.t/ � x3.t/ D 0; x1.0/ D r;

x1.t/
2 C x2.t/

2 � x4.t/ D 0; x2.0/ D 0;

�x0
5.t/ � x6.t/ � 2x1.t/x7.t/ D 0; x5.tf / D 0;

�x0
6.t/C x5.t/ � 2x2.t/x7.t/ D 0; x6.tf / D 0;

x6.t/C x3.t/ D 0;

x7.t/ � x4.t/C R2 D 0:

This BVP is solvable and locally well-posed, see [94, Example 6.4]. Owing
to the given initial condition in the minimization problem, the optimality BVP
shows separate boundary conditions. We emphasize that, for well-posedness of
the optimality BVP, one necessarily needs appropriate initial conditions in the
minimization problem. For instance, requiring additionally that x4.0/ D 0 is not
a good idea.

We observe that any solutions of the DAE, among them the solution of the BVP,
must reside in the obvious restriction set

M0 D fx 2 R
7 W x21 C x22 � x4 D 0; x6 C x3 D 0; x7 � x4 C R2 D 0g:

Replacing the given constant R in the problem by a time-varying function R.�/ does
not change the well-posedness of the BVP. However, then one is confronted with
a time-varying restriction set M0.t/ such that x.t/ 2 M0.t/ holds for all DAE
solutions wherever they exist. ut
The next example ([31], cf. [84]) shows a semi-explicit DAE describing a minimal
instance of an electrical network.

Example 1.2 The DAE

x0
1.t/ D �GL

C1
x1.t/C F.�.x1.t/C x3.t///

C1
;

x0
2.t/ D � 1

C2RQ
.x2.t/C x3.t/C E.t//;

0 D � 1

RQ
.x2.t/C x3.t/C E.t//C F.�.x1.t/C x3.t/// � F.x3.t//;

describes the voltage doubling network from Fig. 2, where

E.t/ D 3:95 sin


2�

t

T

�
kV; T D 0:064; F.u/ D 5 � 10�5.e630u � 1/mA
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D2

Voltage x1 = node 1 – node 0

Voltage x2 = node 2 – node 3

Voltage x3 = node 0 – node 2D1

C1

C2

E(t)

RQ

RL

3

2

1
0

Fig. 2 Voltage doubling network in Example 1.2

and

C1 D C2 D 2:75 nF; GL D 1

RL
; RQ D 0:1M�; RL D 10M�:

We ask for a solution of this DAE which satisfies the nonseparated boundary
condition

x1.0/� x1.T/ D 0;

x2.0/� x2.T/ D 0:

The BVP proves to be solvable and locally well-posed in its natural setting. Again,
the right number of boundary conditions plays its role for well-posedness. The
solution is T-periodic. It is displayed in Fig. 3 and can only be provided numerically.

Replacing the above boundary condition by x.0/ D x.T/ leads to a solvable BVP,
but it is no longer well-posed because there are too many conditions.

Furthermore, the T-periodic solution is asymptotically stable, a fact which is
checked in [84], via the eigenvalues of the monodromy matrix. Again all solutions
of the DAE must reside in a restriction set, now in

M0.t/ D fx 2 R
3 W � 1

RQ
.x2 C x3 C E.t//C F.�.x1 C x3// � F.x3/ D 0g:

Although here the dimension is lower than in Example 1.1, the restriction set looks
less transparent. ut
Time-varying restriction sets are typical for DAEs in applications, and the solutions
are not expected to feature high smoothness. From this point of view, the popular
opinion that DAEs are nothing but vector fields on smooth manifolds is somewhat
limited. Nevertheless, corresponding case studies are helpful to gain insights.
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Fig. 3 T-periodic solution of the DAE in Example 1.2

Example 1.3 Consider the DAE

x0
1.t/C x1.t/ � x2.t/ � x1.t/x3.t/C .x3.t/ � 1/ sin t D 0;

x0
2.t/C x1.t/C x2.t/ � x2.t/x3.t/C .x3.t/ � 1/ cos t D 0;

x1.t/
2 C x2.t/

2 C x3.t/ � 1 � ˛.t/ D 0;

with a given scalar function ˛, and the separated, nonlinear boundary conditions

x1.0/ D 0;

x1.2�/
2 C x2.2�/

2 D 1:

Here, we have the transparent restriction set

M0.t/ D fx 2 R
3 W x21 C x22 C x3 � 1 � ˛.t/ D 0g

moving in R
3. The BVP has the solution

x� 1.t/ D sin t; x� 2.t/ D cos t; x� 3.t/ D ˛.t/:

This BVP turns out to be locally well-posed, no matter how ˛ behaves, see
Example 2.6.
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Replacing the boundary conditions by the new ones

x1.0/� x1.2�/ D 0;

x2.0/� x2.2�/ D 0;

causes the situation to change. Assume ˛ to be a 2�-periodic function, so that the
restriction set M0.t/ moves periodically and each BVP solution has the property
x.0/ D x.2�/. We speak then shortly of a periodic BVP. Clearly, the above solution
x� of the DAE satisfies at the same time the periodic BVP.

The periodic BVP turns out to be locally well-posed for most functions ˛, among
them ˛ D 0, see Example 2.6.

In contrast, the periodic BVP is no longer well-posed for ˛ � 1. Then there is
an entire family of solutions: For arbitrary parameters c1; c2 2 R, c21 C c22 D 1, the
function

x��.t/ D
2
4

c1 cos t C c2 sin t
c2 cos t � c1 sin t

1

3
5

is a 2�-periodic solution of the DAE. Here, we observe a phenomenon known
from classical BVPs in explicit ODEs. A correct number of boundary conditions is
necessary but not sufficient for the well-posedness of a BVP. It is also necessary that
the boundary conditions are consistent with the flow. Of course, the same remains
true for DAEs.

It is quite difficult to picture the flow of a DAE. Figure 4 sketches the flow on M0

for the easier case ˛ � 0. It is dominated by the asymptotically stable 2�-periodic
solution

x�1.t/ D sin t; x�2.t/ D cos t; x�3.t/ D 0;

of the DAE, which also satisfies the BVPs and the unstable stationary solution

x�1.t/ D 0; x�2.t/ D 0; x�3.t/ D 1:

ut
Example 1.4 The solutions of the DAE

x0
1.t/C x1.t/ D 0;

x2.t/ x0
2.t/ � x3.t/ D 0;

x1.t/
2 C x2.t/

2 � 1C 1

2
cos.�t/ D 0;
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X2

X1

X3

X*

Fig. 4 Flow on the constraint set in Example 1.3 for identically vanishing ˛

reside in the set

M0.t/ WD fx 2 R
3 W x21 C x22 � 1C 1

2
cos.�t/ D 0g:

A further look at this DAE makes clear that there is another set the solution
values have to belong to. Namely, for any solution x�.�/, differentiating the identity
x�1.t/2Cx�2.t/2�1C 1

2
cos.�t/ D 0 and replacing the expressions for the derivatives

we obtain the new identity

�2x�1.t/2 C 2x�3.t/ � 1

2
� sin.�t/ D 0:

Therefore, all solution values x�.t/ must also satisfy this hidden constraint, that is,
they must belong to the set

H.t/ WD fx 2 R
3 W �2x21 C 2x3 � 1

2
� sin.�t/ D 0g:
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Fig. 5 Constraint set M1 at t D 0 and t D 1
2

in Example 1.4

The presence of hidden constraints complicates the matter. The obvious restriction
set M0.t/ contains points which are no longer consistent, but the consistent values
must belong to the proper subset

M1.t/ WD M0.t/ \ H.t/ � M0.t/:

Figure 5 shows M1.t/ for t D 0 and t D 1
2
.

Regarding the boundary condition

x1.0/� x1.2/ D ˛; j˛j < 1

2
.1 � e�2/;

the BVP has two solutions,

x� 1 D ce�t; x� 2 D .1 � 1

2
cos�t � c2e�2t/

1
2 ; x� 3 D 1

4
� sin�t C c2e�2t;

and

x�� 1 D ce�t; x�� 2 D �.1 � 1

2
cos�t � c2e�2t/

1
2 ; x�� 3 D 1

4
� sin�t C c2e�2t;

where c WD ˛=.1 � e�2/. In particular, for ˛ D 0, thus c D 0, the first solution
component which governs the inherent dynamics becomes stationary.

The boundary condition proves to be accurately stated locally around x�. Namely,
for each arbitrary sufficiently small � , the BVP with perturbed boundary condition

x1.0/� x1.2/ D ˛ C �;

possesses a unique solution x in the neighborhood of x� and the inequality

kx � x�k1� 2

1 � e�2 j� j
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is valid. This can be checked by straightforward computations. An analogous result
can be derived regarding the reference solution x��. Nevertheless, the BVP fails to
be locally well-posed in the natural setting. Still, it will be shown that it becomes
well-posed in a special advanced setting, see Example 2.7. ut

Usually, DAEs are given either in standard form

f.x0.t/; x.t/; t/ D 0 (1.1)

or in the advanced form

f ..Dx/0.t/; x.t/; t/ D 0; (1.2)

with an extra matrix function D indicating which derivatives are actually involved.
Most of the DAEs arising in applications originally show the latter form [35, 45,
103]. For large classes of DAEs of interest in the context of BVPs, for instance
semi-explicit DAEs, Eq. (1.1) can be also written in the form (1.2) as

f..Dincx/0.t/; x.t/; t/ D 0;

with a constant incidence matrix Dinc. For instance, in Example 1.3 we can simply
choose

D D
�
1 0 0

0 1 0

�
; f .y; x; t/ D

2
4

y1 C x1 � x2 � x1x3 C .x3 � 1/ sin t
y2 C x1 C x2 � x2x3 C .x3 � 1/ cos t

x21 C x22 C x3 � 1 � ˛.t/

3
5 :

In the present chapter we deal with DAEs of the form (1.2), which is more
comfortable from the analytic point of view [86, 96]. Most results remain valid
accordingly for the standard form (1.1).

The well-posed BVPs in Examples 1.1–1.3 rely on regular index-1 DAEs which
behave quite similarly to regular ODEs. In contrast, the solutions of any higher-
index DAE show an ambivalent character unlike the solutions of explicit ODEs: they
are smooth with respect to the integration constant as for explicit ODEs, however,
concerning perturbations of the right-hand side, the solution becomes discontinuous
in the natural setting. We refer to the illustrative example [86, Example 1.5] and
its functional-analytic interpretation in [96]. The discontinuity concerning the right-
hand side causes well-known difficulties in numerical integration procedures and in
the numerical treatment of BVPs as well.

Our exposition relies on the projector-based analysis [86]. In particular, if not
explicitly indicated otherwise, the notion index stands for tractability index. We
notice to this end that, for large classes of DAEs, the tractability index coincides
with the differentiation index and the perturbation index.

We see herein a twofold benefit of the projector-based analysis: it serves as an
integrative framework for the wide survey material and, at the same time, as a source
of new developments such as the linear BVP theory as a counterpart of the classical
version in [13].
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2 Analytical Theory

2.1 Basic Assumptions and Terminology

To tie in with the general discussion in [86, 96] we deal with DAEs of the form

f ..Dx/0.t/; x.t/; t/ D 0; (2.1)

which exhibit the involved derivative by means of an extra matrix-valued function D.
The function f W Rn �Df �If �! R

m, Df �If 
 R
m �R open, is continuous and has

continuous partial derivatives fy and fx with respect to the first two variables y 2 R
n,

x 2 Df . The partial Jacobian fy.y; x; t/ is everywhere singular. The matrix function
D W If ! L.Rm;Rn/ is at least continuous, often continuously differentiable, and
D.t/ has constant rank r on the given interval If . Always, im D is supposed to be a
C1-subspace varying in R

n.
We concentrate on two-point boundary conditions

g.x.a/; x.b// D 0 (2.2)

described by the continuously differentiable function g W Df � Df ! R
l and two

different points a; b 2 If . The number l � m of boundary conditions will be
specified below. It strongly depends on the structure of the DAE.

We are looking for classical solutions of the DAE (2.1), that is, for functions from
the function space

C1D.I;Rm/ WD fx 2 C.I;Rm/ W Dx 2 C1.I;Rn/g;

defined on an interval I 
 If , with values x.t/ 2 Df ; t 2 I, and satisfying the DAE
pointwise on I.

Evidently, for each arbitrary given function x 2 C1D.I;Rm/, with values x.t/ 2
Df ; t 2 I 
 If , the resulting expression

q.t/ WD f ..Dx/0.t/; x.t/; t/; t 2 I;

yields q 2 C.I;Rm/. We say that this function space setting is the natural setting of
our DAE.

The element x0 2 Df is said to be a consistent value of the DAE at time t0 2 If ,
if there is a solution x 2 C1D.I;Rm/ given on an interval I 3 t0 such that x.t0/ D x0.

When dealing with BVPs (2.1), (2.2) we suppose the compact interval I D Œa; b�
and seek functions from C1D.I;Rm/ that satisfy the DAE (2.1) and, additionally, the
boundary condition (2.2).
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Supposing a compact interval I we equip the function spaces C.I;Rm/ and
C1D.I;Rm/ with the norms

kxk1 WD max
t2I jx.t/j; x 2 C.I;Rm/;

kxkC1D WD kxk1 C k.Dx/0k1; x 2 C1D.I;Rm/;

respectively. This yields Banach spaces.

Definition 2.1 The DAE (2.1) has a properly involved derivative, also called a
properly stated leading term, if ker fy is another C1-subspace varying in R

n, and
the transversality condition

ker fy.y; x; t/˚ im D.t/ D R
n; .y; x; t/ 2 R

n � Df � If ; (2.3)

is valid.

Below, except for Sect. 3.4 on singular problems, we always assume the
DAE (2.1) to have a properly stated leading term. To simplify matters we
further assume the nullspace ker fy.y; x; t/ to be independent of y and x. Then, the
transversality condition (2.3) pointwise induces a projector matrix R.t/ 2 L.Rn/,
the so-called border projector, such that

im R.t/ D im D.t/; ker R.t/ D ker fy.y; x; t/; .y; x; t/ 2 R
n � Df � If : (2.4)

Since both subspaces im D and ker fy are C1-subspaces, the border projector function
R W If ! L.Rn/ is continuously differentiable, see [86, Lemma A.20].

Note that, if the subspace ker fy.y; x; t/ actually depends on y, then one can
slightly modify the DAE by letting Qf .y; x; t/ WD f .D.t/D.t/Cy; x; t/ such that
ker Qfy.y; x; t/ D .im D.t//? depends on t only.

Since D.t/ has constant rank r, we may choose a continuous projector-valued
function P0 2 C.If ;L.Rm// such that

ker P0.t/ D ker D.t/ D ker fy.y; x; t/D.t/

for all possible arguments. Denote the complementary projector function by Q0,

Q0.t/ WD I � P0.t/:

Additionally, the four conditions

D.t/D.t/�D.t/ D D.t/;

D.t/�D.t/D.t/� D D.t/�;

D.t/D.t/� D R.t/;

D.t/�D.t/ D P0.t/;
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determine the pointwise generalized inverse D.t/� of D.t/ uniquely, and the
matrix function D�.t/ WD D.t/� depends continuously on its argument, see [86,
Proposition A.17].

A considerable part of the relevant literature (e.g. [51, 106]) restricts the interest
to semi-explicit DAEs consisting of m D m1 C m2 equations,

x0
1.t/C k1.x1.t/; x2.t/; t/ D 0;

k2.x1.t/; x2.t/; t/ D 0;
(2.5)

with n D m1,

f .y; x; t/ D
�

y C k1.x; t/
k2.x; t/

�
; D.t/ D �

I 0
�
; P0.t/ D

�
I 0
0 0

�
; D.t/� D

�
I
0

�
; R D I:

Notice that special semi-explicit DAEs play their role in multibody dynamics [45].
The semi-explicit form confirms the clear significance of our solution notion. Here,
we seek continuous functions x having a continuously differentiable component
x1. We emphasize that there is no natural reason for requiring x2 also to be
differentiable.

Well-posedness in the sense of Hadamard in appropriate settings constitutes the
classical basis of a safe numerical treatment. In view of the numerical treatment, as
for most nonlinear problems, we suppose that there exists a solution to be practically
approximated and we agree upon a local variant of well-posedness.

Definition 2.2 Let x� 2 C1D.I;Rm/ be a solution of the BVP (2.1), (2.2), I D Œa; b�.
The BVP (2.1), (2.2) is said to be well-posed locally around x� in its natural setting,
if the slightly perturbed BVP

f ..Dx/0.t/; x.t/; t/ D q.t/; t 2 I; (2.6)

g.x.a/; x.b// D �; (2.7)

is locally uniquely solvable for each arbitrary sufficiently small perturbations q 2
C.I;Rm/ and � 2 R

l, and the solution x satisfies the inequality

kx � x�kC1D � �.j� j C kqk1/; (2.8)

with a constant �. Otherwise the BVP is said to be ill-posed in the natural setting.

Instead of the inequality (2.8) one can use the somewhat simpler inequality

kx � x�k1 � �.j� j C kqk1/; (2.9)

which is sometimes more convenient, see Remark 2.12.
The constant � in the inequality (2.9) is called the stability constant of the BVP,

e.g., in [10, 13, 51]. Here we do not use this notation.
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Representing the linear BVP

A.t/.Dx/0.t/C B.t/x.t/ D q.t/; t 2 I; Gax.a/C Gbx.b/ D �;

as operator equation T x D .q; �/ by the linear bounded operators

Tx WD A.Dx/0 C Bx; T x WD .Tx;Gax.a/C Gbx.b//; x 2 C1D.I;Rm/;

T 2 L.C1D.I;Rm/; C.I;Rm//; T 2 L.C1D.I;Rm/; C.I;Rm/ � R
l/;

it becomes evident that the linear BVP is well-posed if and only if T is bijective,
and then � in (2.8) is nothing but an upper bound of kT �1k.

The next notion is concerned with the boundary conditions only. It is, of course,
important to apply exactly the right number of conditions, neither to under-specify
nor to over-specify. As we will see later, this task is essentially more difficult to
realize for DAEs than for explicit ODEs. Also stating initial conditions accurately
is a challenging task for DAEs quite unlike the case of explicit ODEs.

Definition 2.3 Let x� 2 C1D.I;Rm/ be a solution of the BVP (2.1), (2.2), I D Œa; b�.
The BVP (2.1), (2.2) has accurately stated boundary conditions locally around x� if
the BVP with slightly perturbed boundary conditions

f ..Dx/0.t/; x.t/; t/ D 0; (2.10)

g.x.a/; x.b// D �; (2.11)

is uniquely solvable for each arbitrary sufficiently small � 2 R
l, and the solution

satisfies the inequality

max
t2I jx.t/ � x�.t/j � �j� j; (2.12)

with a constant �.

It is evident that x� is locally the only solution of a BVP with accurately stated
boundary conditions. On the contrary, local uniqueness does not necessarily require
accurately stated boundary conditions, see Example 2.1 below.

Even though, for explicit ODEs, a BVP is well-posed, exactly if its boundary
conditions are accurately stated (cf. [13]), the situation is different for DAEs. Here,
well-posedness implies accurately stated boundary conditions, too. However, the
opposite is not true as the following example shows.

Example 2.1 Consider several BVPs (actually IVPs) for the DAE

x0
1.t/C x3.t/ D 0;

x0
2.t/C x3.t/ D 0; (2.13)

x2.t/ � sin.t � a/ D 0;
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and the different sets of boundary conditions

x1.a/ D 0; x2.a/ D 0; x3.a/ D 0; (2.14)

x1.a/ D 0; x2.a/ D 0; (2.15)

x1.a/C ˛x2.a/C ˇx3.a/ D 0; ˛; ˇ 2 R; (2.16)

x2.a/ D 0: (2.17)

The DAE possesses the general solution

x.t/ D
2
4

c C sin.t � a/
sin.t � a/

� cos.t � a/

3
5 ; t 2 I;

with an arbitrary constant c 2 R.
Obviously, the BVP (2.13), (2.14) fails to be solvable, and the BVP (2.13), (2.17)

is satisfied by all solutions with arbitrary c.
The BVP (2.13), (2.15) and the BVP (2.13), (2.16) are both uniquely solvable,

and their solutions x� are given by c D 0 and c D ˇ, respectively. However,
inspecting the corresponding BVPs with perturbed boundary conditions, we learn
that only the BVP (2.13), (2.16) has accurately stated boundary conditions.

To check whether the BVP (2.13), (2.16) is also well-posed we consider the fully
perturbed BVP. This BVP possesses a unique solution for each � 2 R and each
continuous function q having a continuously differentiable component q3, but not
for all continuous q. The solution reads

x.t/ D

2
6664
� C sin.t � a/C q3.t/ � q3.a/C

tR
a
.q1.s/ � q2.s//ds

sin.t � a/C q3.t/
q2.t/ � q0

3.t/ � cos.t � a/

3
7775 ; t 2 I:

The difference

x.t/ � x�.t/ D

2
6664
� C q3.t/ � q3.a/C

tR
a
.q1.s/ � q2.s//ds

q3.t/
q2.t/ � q0

3.t/

3
7775 ; t 2 I;

cannot be estimated by an inequality (2.8). The BVP is ill-posed in its natural
setting. ut

Besides the original BVP (2.1), (2.2) we consider also the DAE linearized along
the reference solution x�,

A�.t/.Dx/0.t/C B�.t/x.t/ D 0; t 2 I; (2.18)
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with continuous coefficients

A�.t/ WD fy..Dx�/0.t/; x�.t/; t/;

B�.t/ WD fx..Dx�/0.t/; x�.t/; t/; t 2 I;

and the linearized boundary conditions

G� ax.a/C G� bx.b/ D 0; (2.19)

where

G� a WD @g

@xa
.x�.a/; x�.b//; G� b WD @g

@xb
.x�.a/; x�.b//:

The linear DAE (2.18) inherits the properly stated leading term from the original
DAE (2.1). The linearized BVP (2.18), (2.19) is said to be the variational problem
for the original BVP (2.1), (2.2) at x� (e.g., [13, p. 90]).

Next we tie in with the notions locally unique solution and isolated solution
commonly used in the context of BVPs for explicit ODEs (cf. [13]).

Definition 2.4 A solution x� 2 C1D.I;Rm/ of the BVP (2.1), (2.2) is said to be
locally unique if there is a “tube” around it where it is unique, i.e., there is a � > 0

such that in the class of functions

˚
x 2 C1D.I;Rm/ W kx � x�k1 � �

� DW BC.x�; �/

x� is the only solution of the BVP.

This notion is consistent with the general meaning that a solution x� 2 C1D.I;Rm/

is locally unique if it has a neighborhood in C1D.I;Rm/ with no further solution.
Namely, if there is no further solution in BC.x�; �/, then a fortiori, x� is the only
solution in the ball

n
x 2 C1D.I;Rm/ W kx � x�kC1D � �

o
DW BC1D.x�; �/ � BC.x�; �/:

Conversely, assume that there is no such � > 0 as required in Definition 2.4.
Then there is a sequence of solutions xi 2 C1D.I;Rm/ of the BVP such that

kxi � x�k1
i!1���! 0. Applying the arguments from Remark 2.12 we obtain the

inequality k.Dxi � Dx�/0k1 � k1kxi � x�k1 and hence, kxi � x�kC1D
i!1���! 0. Then

x� has no neighborhood in C1D.I;Rm/ with no further solution.

Definition 2.5 A solution x� 2 C1D.I;Rm/ of the BVP (2.1), (2.2) is said to be
isolated if the variational problem (2.18), (2.19) has the unique solution x D 0.
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In the case of explicit ODEs, an isolated solution x� of a BVP is locally unique
and the BVP is well-posed if and only if the boundary conditions are accurately
stated. The notion of isolatedness can be seen as a practical tool to check local
uniqueness and well-posedness. An explicit ODE of dimension m has m degrees
of freedom, and it is beyond dispute to formulate l D m boundary conditions. If
the variational problem has only the zero solution, then the boundary conditions are
stated accurately, thus the BVP is locally well-posed.

A similar situation is given for regular index-1 DAEs, with l D r D rank D.t/,
e.g., [55, 90, 96, 111], cf. also Sect. 2.5 below, and for certain singular index-1 DAEs
[43].

In general, for DAEs, it is no longer plain to secure the right number l of boundary
conditions. It is further an open question to what extent the notion isolatedly
solvable is justified in a similar sense. We refer to Remark 2.7 for further details.

2.2 The Flow Structure of Regular Linear DAEs

Each linear DAE

A.t/.Dx/0.t/C B.t/x.t/ D q.t/; t 2 I; (2.20)

which is regular with arbitrary tractability index � 2 N in the sense of [86,
Definition 2.25] (cf. Definition 6.2 below) and has sufficiently smooth (at least
continuous) coefficients, can be decoupled into its two structurally characteristic
parts, namely the inherent explicit regular ODE (IERODE) and the algebraic part
housing all differentiations, by means of certain smartly constructed continuous
projector-valued functions beginning with P0. If P0; : : : ;P��1 2 C.I;L.Rm// are
those fine decoupling projector functions for the DAE (2.1), then the products

˘can WD .I � H0/˘��1; ˘��1 WD P0 � � � P��1; D˘canD� D D˘��1D�;
(2.21)

with a coefficient H0 described in terms of the coefficients A;D;B in Appendix
6.1, are also projector-valued functions. In particular, ˘can has a special meaning
independent of the choice of the corresponding factors (e.g., [86, Sect. 2.4]).
Namely, for every t 2 I it holds that

im˘can.t/ D fx.t/ 2 R
m W x 2 C1D.I;Rm/; A.Dx/0 C Bx D 0g;

ker˘can.t/ D ker˘��1.t/ D ker P0.t/C � � � C ker P��1.t/:

Both subspaces im˘can.t/ and ker˘can.t/ are independent of the choice of the
admissible projector functions P0; : : : ;P��1 (e.g., [86, Chap. 2]). The subspace
im˘can.t/ represents the linear space of all consistent values at time t of the
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homogeneous DAE. On the other hand, ker˘can.t/ is such that

x 2 C1D.I;Rm/; A.Dx/0 C Bx D 0; and x.t/ 2 ker˘can.t/

imply x to vanish identically.
The projector function ˘can is said to be the canonical projector function

associated with the DAE (2.20).˘can has constant rank; denote

l WD rank˘can.t/ D rank˘��1.t/; t 2 I: (2.22)

The rank l can be computed by means of the matrix function sequence supporting
the regularity notion, see [86, Sect. 7.4] and Definitions 6.1, 6.2 below.

In the simpler case of constant coefficients A;D;B, the projector matrix ˘can

takes the role of the spectral projector of the matrix pair fAD;Bg [86, Sect. 1.4].
The canonical projector function depends strongly on the index. In particular,

the canonical projector function of a regular index-1 DAE (2.20) is given by the
subspaces

im˘can.t/ D S0.t/ WD fz 2 R
m W B.t/z 2 im A.t/ D im A.t/D.t/g;

ker˘can.t/ D N0.t/ WD ker D.t/ D ker A.t/D.t/;

but for all regular higher-index DAEs the intersection N0.t/ \ S0.t/ is no longer a
trivial one.

The following example describes the canonical projector function of semi-
explicit index-1 DAEs in more detail.

Example 2.2 We have

A.t/ D
�

I
0

�
; D.t/ D �

I 0
�
; B.t/ D

�
B11.t/ B12.t/
B21.t/ B22.t/

�
;

with B22.t/ remaining nonsingular,

im˘can.t/ D S0.t/ WD fz 2 R
m W B21.t/z1 C B22.t/z2 D 0g;

ker˘can.t/ D N0.t/ WD fz 2 R
m W z1 D 0g;

and hence

˘can.t/ D
�

I 0

�B22.t/�1B21.t/ 0

�
:

We observe that ˘can.t/ is often far from being symmetric, the subspaces are far
from being orthogonal, and j˘can.t/j2 can become large. In the particular instance
m1 D m2, B21.t/ D I, B22.t/ D ˛I, ˛ > 0 small then, if ˛ tends to zero, the angle
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between the subspaces N0.t/ and S0.t/ becomes more and more acute, and j˘can.t/j2
becomes larger and larger. ut
In the following, we assume the DAE (2.20) to be regular with index � 2 N. We
omit the less interesting case � D 0.

For arbitrary fixed Nt 2 I, there is a unique matrix function X.�; Nt/ satisfying the
IVP [86, Sect. 2.6]

A.t/.DX/0.t/C B.t/X.t/ D 0; t 2 I; X.Nt/ D ˘can.Nt/: (2.23)

The columns of X.�; Nt/ are functions from C1D.I;Rm/. X.t; Nt/ is called the maximal-
size fundamental solution matrix normalized at Nt. It can be also determined by the
IVP

A.t/.DX/0.t/C B.t/X.t/ D 0; t 2 I; ˘��1.Nt/.X.Nt/� I/ D 0; (2.24)

with initial conditions built by arbitrary admissible projector functions. This is
considerably easier to realize in practice than providing the canonical projector
˘can.Nt/ and fine decoupling projectors (cf. [86]).

For DAEs, different kind of fundamental solution matrices make sense, in
particular so-called maximal size and minimal size ones (cf. [28, 29, 86]). The
minimal size fundamental solution is rectangular with full column-rank l, the
maximal size (shortly: maximal) fundamental solution has m columns. The great
advantage of the latter consists in useful group properties to describe the flow ([86,
Sect. 2.6], also Remark 2.4).

In contrast to regular ODEs with always nonsingular fundamental solution
matrices, any fundamental solution matrix of a regular DAE fails to be nonsingular.

We have (e.g., [86, Sect. 2.6])

im X.t; Nt/ D im˘can.t/; ker X.t; Nt/ D ker˘can.Nt/; rank X.t; Nt/ D l: (2.25)

In the particular case of a regular constant coefficient DAE in Weierstraß–Kronecker
form

�
Il 0

0 N

�
x0 C

�
W 0

0 Im�l

�
x D q; (2.26)

with a nilpotent matrix N, it simply results that

˘can D
�

Il 0

0 0

�
; X.t; Nt/ D

�
e�.t�Nt/W 0

0 0

�
:

In the general case, the (maximal) fundamental solution matrix X.t; Nt/ can be
described by

X.t; Nt/ D ˘can.t/D.t/
�U.t; Nt/D.Nt/˘can.Nt/; (2.27)
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whereby U.t; Nt/ denotes the classical nonsingular fundamental solution matrix of
the IERODE

u0 � .D˘��1D�/0u C D˘��1G�1
� B�D�u D D˘��1G�1

� q (2.28)

normalized by the condition U.Nt; Nt/ D I. Recall that the matrix functions G� and B�
are built from the DAE coefficients A;D;B and G� is nonsingular (cf. Definitions 6.1
and 6.2 below).

The generalized inverse X.t; Nt/� of X.t; Nt/ determined by the four relations

XX�X D X; X�XX� D X�; XX� D ˘can.t/; X�X D ˘can.Nt/;

shows the structure

X.t; Nt/� D ˘can.Nt/D.Nt/�U.t; Nt/�1D.t/˘can.t/:

For all t1; t2; t3 2 I we have that

X.t1; t2/
� D X.t2; t1/; X.t1; t2/X.t2; t3/ D X.t1; t3/: (2.29)

The general solution of the DAE (2.20), with admissible right-hand side q, can now
be expressed as

x.t/ D X.t; Nt/c C xq.t/; t 2 I; (2.30)

whereby xq 2 C1D.I;Rm/ is the unique solution of the IVP [86, Theorem 2.52]

A.Dx/0 C Bx D q; ˘can.Nt/x.Nt/ D 0; (2.31)

and c 2 R
m is a free constant. It follows that

x.t/ D X.t; Nt/c C xq.t/ D X.t; Nt/˘can.Nt/c C xq.t/; t 2 I;

x.Nt/ D X.Nt; Nt/c C xq.Nt/ D ˘can.Nt/c C xq.Nt/:

Obviously, only the component ˘can.Nt/c serves as effective integration constant.
The complementary component .I � ˘can.Nt//c has no impact on the solution. The
dynamical degree of freedom results as l D rank˘can.Nt/.

Take a closer look at the solution xq of the IVP (2.31), which has a quite involved
structure. Let q be admissible and the function uq be the classical solution of the
explicit ODE (2.28) that satisfies the initial condition u.Nt/ D 0. By means of
fine decoupling projector functions we obtain the coefficients applied below ([86,
Sect. 2.4], also Appendix 6.1.2) from the given coefficients A;D;B and then we
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determine consecutively

v��1 D L��1q;

v��2 D L��2q � N��2; ��1.Dv��1/0;

: : :

v1 D L1q �
��1X
lD2

N1; l.Dvl/
0 �

��1X
lD3

M1; lvl;

v0 D L0q �
��1X
lD1

N0; l.Dvl/
0 �

��1X
lD2

M0; lvl � H0D
�uq:

Let us introduce further

Qv0 D v0 C H0D
�uq:

We have v0 D Qv0 in the case of completely decoupling projector functions. We
emphasize that to obtain v��2 one has to differentiate the term Dv��1 D DL��1q
and so on. That means an admissible right-hand side q is basically continuous,
possibly with certain additional smoothness properties. We refer to [86, Sect. 2.4]
for a detailed description.

Inspecting the decoupling procedure (Appendix 6.1.2) we find that ˘canvi D 0

for i D 0; : : : ; �� 1. We introduce the additional function

vq WD Qv0 C v1 C � � � C v��1: (2.32)

Regarding the identity D˘canD�uq D uq we then obtain the relations

xq D D�uq C vq � H0D
�uq D .I � H0/D

�uq C vq D ˘canD�uq C vq;

.I �˘can/xq D vq;

D˘canxq D D˘canD�uq D uq; ˘canxq D ˘canD�uq D D�uq:

The solution component .I � ˘can/xq is fully fixed by the part .I � ˘can/G�1
� q of

the right-hand side q. Furthermore, we derive the useful representations

˘can.t/xq.t/ D ˘can.t/D.t/
�
Z t

Nt
U.t; s/D.s/˘can.s/G

�1
� .s/q.s/ds

D
Z t

Nt
X.t; s/G�1

� .s/q.s/ds
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and

xq.t/ D
Z t

Nt
X.t; s/G�1

� .s/q.s/ds C vq.t/; t 2 I:

In summary, the general solution of the DAE (2.20) reads

x.t/ D X.t; Nt/c C
Z t

Nt
X.t; s/G�1

� .s/q.s/ds C vq.t/; t 2 I; (2.33)

and the consistent values at Nt have the form

x.Nt/ D ˘can.Nt/c C vq.Nt/: (2.34)

Comparing with the general solution of an explicit ODE, the first and second terms
of the general DAE solution (2.33) have counterparts, however, in the DAE solution
there emerges the additional new term vq.

For each fixed right-hand side q, and thus fixed vq, the flow of the regular
DAE (2.20) is restricted to the time-varying affine subspace

M��1.t/ D fx C vq.t/ W x 2 im˘can.t/g D f˘can.t/c C xq.t/ W c 2 R
mg;

which precisely consists of all consistent values at time t.
We recall that, in all higher-index cases, to obtain vq one has to carry out

certain differentiations of parts of q. Therefore, an admissible right-hand side q
has to be smooth enough. Solely for index-1 DAEs, the space of admissible func-
tions coincides with the continuous function space C.I;Rm/. For all higher-index
DAEs, the spaces of admissible functions C ind �.I;Rm/ represent proper nonclosed
subsets of the continuous function space, see [86, 96], also Appendix 6.1.4. This
fact constitutes the ambivalent character of the solutions of higher-index DAEs:
they are as smooth as expected coming from explicit ODEs with respect to the
integration constant ˘can.Nt/c, but, in strict contrast to the ODE case, they behave
discontinuously concerning the right-hand side.

We refer to [86, Example 1.5] and its functional-analytic interpretation in [96]
for a deeper insight. The discontinuity concerning the right-hand side causes well-
known difficulties in numerical integration procedures.

We take a closer look to the special cases of index-1 and index-2 DAEs (2.20)
(cf. [86, pp. 104–107] for the specification for semi-explicit systems).

Index-1 DAE: Let (2.20) be regular with tractability index 1.
Form G0 WD AD, r0 D rank G0 D rank D < m, ˘0 D P0 and G1 WD G0 C BQ0. G1

remains nonsingular. The DAE decoupling reads

.Dx/0 � R0Dx C DG�1
1 BD�Dx D DG�1

1 q;

Q0x C Q0G
�1
1 BD�Dx D Q0G

�1
1 q;



200 R. Lamour et al.

vq D Qv0 D Q0G
�1
1 q;

x D .I � H0/D
�Dx C Q0G

�1
1 q:

We have here u D Dx, further H0 D Q0G�1
1 BP0. The dynamical degree of freedom

is l D r0. The canonical projector ˘can.t/ D .I � H0.t//˘0.t/ is actually the
projector onto

S0.t/ WD fz 2 R
m W B.t/z 2 im G0.t/g along ker G0.t/:

The DAE is solvable for each arbitrary q 2 C.I;Rm/.

Index-2 DAE: Let (2.20) be regular with tractability index 2.
Form G0 WD AD, r0 D rank G0 D rank D < m, ˘0 D P0, G1 WD G0 C BQ0,
r1 D rank G1 < m. Owing to the index-2 property the decomposition R

m D S1.t/˚
ker G1.t/ is valid, with

S1.t/ WD fz 2 R
m W B1.t/z 2 im G1.t/g:

We choose P1.t/ to be the projector onto S1.t/ along ker G1.t/. Then we form˘1 D
P0P1, B1 WD BP0 � G1D�.D˘1D�/0D˘0, and G2 WD G1 C B1Q1. G2 remains
nonsingular. The DAE decoupling results in

.D˘1x/
0 � .D˘1D

�/0D˘1x C DG�1
2 B1D

�D˘1x D D˘1G
�1
2 q;

v1 D ˘0Q1G
�1
2 q;

Qv0 D Q0P1G
�1
2 q C Q0Q1D

�.D˘0Q1G
�1
2 q/0;

vq D Qv0 C v1;

x D .I � H0/D
�D˘1x C vq:

We have here u D D˘1x. The dynamical degree of freedom is l D r0 C r1 � m. The
coupling coefficient H0 is now more elaborate,

H0 D Q0P1G
�1
2 B˘1 C Q0P1D

�.D˘1D
�/0D˘1:

The DAE is solvable for precisely each arbitrary

q 2 fw 2 C.I;Rm/ W D˘0Q1G
�1
2 w 2 C1.IRn/g DW C ind 2.I;Rm/;

which is a proper nonclosed subset in C.I;Rm/. We take a closer look at the size-2
Hessenberg DAE.
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Example 2.3 For the Hessenberg size-2 system of m1 C m2 D m equations,
m2 � m1,

x0
1 C B11x1 C B12x2 D q1;

B21x1 D q2;

with nonsingular product B21B12, we obtain r0 D m1; r1 D m1, l D m1 � m2, and

˘can D
�

I �˝ 0

B�
12.B11 �˝ 0/.I �˝/ 0

�
; ˝ D B12B

�
12; B�

12 WD .B21B12/
�1B21:

Further the projectors

P0 D
�

I 0
0 0

�
;P1 D

�
I �˝ 0

B�
12 I

�
;

provide a fine decoupling, D˘��1D� D I �˝ , and

D˘0Q1G
�1
2 D Œ0 B12.B21B12/

�1�:

The set of admissible right-hand sides is

C ind 2.I;Rm/ D fq 2 C.I;Rm/ W B12.B21B12/
�1q2 2 C1.I;Rm2 /g:

2.3 Accurately Stated Two-Point Boundary Conditions

This section provides solvability statements for the BVPs

A.Dx/0 C Bx D q; Gax.a/C Gbx.b/ D �: (2.35)

The DAE is supposed to be regular with l WD rank˘can.a/ D rank˘��1.a/ on the
compact interval I D Œa; b�. The right-hand side q is supposed to be admissible
such that the DAE has a solution in C1D.I;Rm/ (cf. [86, Sect. 2.6.4]). The boundary
condition is given by the matrices Ga;Gb 2 L.Rm;Rl/, which is in full accordance
with the number of free integration constants as described in the previous section.

We follow the well-known classical lines to treat BVPs for ODEs (e.g., [13]). We
apply the general solution expression (2.33) with Nt D a,

x.t/ D X.t; a/c C
Z t

a
X.t; s/G�1

� .s/q.s/ds C vq.t/; t 2 I: (2.36)
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and insert it into the boundary condition. This yields an equation system for c,
namely

.GaX.a; a/C GbX.b; a/ /c D O�; (2.37)

O� W D � � �q � Gb

Z b

a
X.b; s/G�.s/

�1q.s/ds;

�q W D Gavq.a/C Gbvq.b/:

Now it is evident that the so-called solvability matrix

S WD GaX.a; a/C GbX.b; a/ (2.38)

actually plays the key role for solvability of the BVP. By construction, it holds that
ker˘can.a/ 
 ker S. This fits the fact that the components .I � ˘can.a//c do not
matter at all for the DAE solutions. The boundary condition must precisely fix the
component˘can.a/c. Consequently, we have to request that ker S D ker˘can.a/. If
this is given, then S has full row-rank l. Then we introduce the generalized inverse
S� of S by

SS�S D S; S�SS� D S�; SS� D I; S�S D ˘can.a/; (2.39)

and further the so-called Green’s matrix function of the BVP

G.t; s/ WD
�

X.t; a/S�GaX.a; a/X.s; a/�; if t � s
� X.t; a/S�GbX.b; a/X.s; a/�; if t < s:

(2.40)

After the idea of conditioning constants for classical BVPs (e.g., [13]) we denote

�1 WD max
t2I jX.t; a/S�j; �2 WD sup

s;t2I
jG.t; s/j; �3 WD max

t2I j˘can.t/G�.t/
�1j:

As in the classical ODE case, the expressions X.t; a/S� and G.t; s/ do not change if
one uses an arbitrary Nt 2 I instead of Nt D a. The first two quantities �1 and �2 are
counterparts of the classical conditioning constants for ordinary BVPs. The extra
quantity �3 is independent of the boundary condition; for an explicit ODE we would
have˘can.t/G�.t/�1 � I, thus �3 D 1.

In general, the expression ˘can.t/G�.t/�1 represents a generalized inverse of
G�.t/˘can.t/ D G0.t/˘can.t/.

Inspecting the regularity notion one observes that scaling a given regular DAE
by G�.t/�1 and using the same admissible projector functions for the scaled DAE
again, leads to G�.t/ � I and �3 WD maxt2I j˘can.t/j for the scaled version. As
pointed out in Sect. 2.2, the canonical projector function˘can is an essential inherent
feature of the DAE.
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Theorem 2.1 Let the DAE in (2.35) be regular with index � 2 N on the interval
I D Œa; b� and l D rank˘can.a/. ˘can is the canonical projector function of the
DAE. Given are the matrices Ga;Gb 2 L.Rm;Rl/. Then the following statements
hold:

(1) The BVP (2.35) is uniquely solvable for each arbitrary � 2 R
l and each

arbitrary admissible right-hand side q, if and only if the conditions

im ŒGa Gb� D R
l and ker S D ker˘can.a/ (2.41)

are valid.
(2) If (2.41) is satisfied, then the BVP solution can be represented as

x.t/ D X.t; a/S�.� � �q/C
Z b

a
G.t; s/G�.s/

�1q.s/ds C vq.t/;

by means of the fundamental solution matrix normalized at Nt D a (2.23),
the solvability matrix (2.38), Green’s matrix function (2.40), the function vq

defined by (2.32), �q given in (2.37), and the matrix function G� constructed
via Definition 6.1.

(3) If (2.41) is satisfied, then the BVP solution can be estimated by

max
t2I jx.t/j � �1j� � �qj C �2�3 max

t2I jq.t/j C max
t2I jvq.t/j:

(4) If (2.41) is satisfied, then the BVP (2.35) has accurately stated boundary
conditions in the sense of Definition 2.3.

(5) Let (2.41) be satisfied. Then the BVP (2.35) is well-posed in its natural setting,
if and only if � D 1, and ill-posed otherwise.

We point out that the first condition in (2.41) is a consequence of the second one,
since ker S D ker˘can.a/ implies rank S D l thus Rl D im S 
 im ŒGa Gb� 
 R

l.
Here, we explicitly indicate that condition because of its practical meaning.

Proof Let � 2 R
l be given, q be admissible, and O� WD � � Gavq.a/ � Gbvq.b/ �

Gb
R b

a X.b; s/G�.s/�1q.s/ds. Owing to condition (2.41), the equation Sc D O� yields
˘can.a/c D S� O� , hence a solution of the BVP. The BVP solution is unique, since
the homogenous BVP has the zero solution only.

Conversely, if all BVPs are uniquely solvable, then S must have full rank, and
ker S D ker˘can.a/ must be valid for reasons of dimensions. The first assertion is
verified.

The assertions (2)–(4) can be proved by straightforward standard calculations.
By Definition 2.2, well-posedness necessarily requires the inequality kvqk1 �

kkqk1, but that is valid exactly for the case � D 1, with vq D L0q. This proves
assertion (5). ut
In particular, condition (2.41) serves as a criterion indicating whether the initial
conditions are stated accurately.
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Corollary 2.2 Let the DAE be regular, l D rank˘can.a/ and C 2 L.Rm;Rl/. Then
the IVP

A.Dx/0 C BX D q; Cx.a/ D � (2.42)

is uniquely solvable for each arbitrary � 2 R
l and each arbitrary admissible

right-hand side q, if and only if ker C \ im˘can.a/ D f0g.

Proof This is a special BVP with solvability matrix S D CX.a; a/ D C˘can.a/. ut
The most natural way to state initial conditions is to let ker C D ker˘can.a/
which directly implies ker C \ im˘can.a/ D f0g. By this, the initial condition
is immediately directed to the IERODE.

In contrast, for practical reasons, one can be interested in prescribing other
components. Then one has to take into account that the condition ker C \
im˘can.a/ D f0g possibly requires additional regularity conditions concerning the
DAE as in the following example.

Example 2.4 Consider the semi-explicit system with m1 C m2 D m equations

x0
1 C B11x1 C B12x2 D q1;

B21x1 C B22x2 D q2:

Let B22 be nonsingular such that the DAE is regular with index 1 and l D m1,

˘can.a/ D
�

I 0

�B22.a/�1B21.a/ 0

�
:

For C D ŒC1 C2� we compute S D C˘can.a/ D ŒC1 � C2B22.a/�1B21.a/; 0 �. This
makes clear that letting C D ŒI 0� is the natural choice of initial conditions.

Put, in contrast, m1 D m2 and C D Œ0 I� yielding S D C˘can.a/ D
Œ�B22.a/�1B21.a/; 0 �. Now for accurate initial conditions it is necessary that also
B21 is nonsingular. ut
Our next small example demonstrates how the condition ker C \ im˘can.a/ D f0g
restricts the possible choice of the initial condition in a reasonable way.

Example 2.5 Consider the semi-explicit index-2 system

x0
1 C x1 D 0;

x0
2 C x1 C x3 D 0;

x2 C x4 D 1;

x4 D 1C sin t;
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yielding the canonical projector

˘can.a/ D

2
664

1 0 0 0

0 0 0 0

�1 0 0 0
0 0 0 0

3
775 :

We have l D rank˘can.a/ D 1, thus we state the initial condition using the matrix

C D �
c1 c2 c3 c4

�
:

The condition ker C \ im˘can.a/ D f0g is satisfied exactly if c1 ¤ c3. Therefore,
the initial condition Cx.a/ D � is accurately stated if and only if c1 ¤ c3. A look
at the DAE shows that this condition is reasonable. If c1 D c3, then the condition
Cx.a/ D � represents a certain consistency requirement, but the free integration
constant is no longer fixed. ut

The structure of the fundamental solution matrix X.t; a/ given by (2.27) tempts
us to consider the associated BVP induced for the IERODE (2.28).

We rewrite the solvability matrix S as

S D GaX.a; a/C GbX.b; a/

D Ga˘can.a/D.a/
�U.a; a/D.a/˘can.a/C Gb˘can.b/D.b/

�U.b; a/D.a/˘can.a/

D .Ga˘can.a/D.a/
�U.a; a/C Gb˘can.b/D.b/

�U.b; a/ /„ ƒ‚ …
DWSIERODE

D.a/˘can.a/

DW SIERODED.a/˘can.a/: (2.43)

By construction, owing to the property

˘can.t/D.t/
�U.t; a/ D ˘can.t/D.t/

�U.t; a/D.a/˘can.a/D.a/
�;

it results in

SIERODED.a/˘can.a/D.a/
� D SIERODE;

ker D.a/˘can.a/D.a/
� 
 ker SIERODE;

rank SIERODE � l:

The solvability matrix S has rank l exactly if SIERODE 2 L.Rn;Rl/ has rank l, and
equivalently, if ker SIERODE D ker D.a/˘can.a/D.a/�.

Let the additional matrix Ca 2 L.Rn;Rn�l/ be such that

ker Ca D im D.a/˘can.a/D.a/
�:
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Then, Ca has rank n � l, and the classical inherent BVP

u0 � .D˘��1D�/0u C D˘��1G�1
� B�D�u D D˘��1G�1

� q; (2.44)

Cau.a/ D 0; (2.45)

Ga˘can.a/D.a/
�u.a/C Gb˘can.b/D.b/

�u.b/ D O� (2.46)

is uniquely solvable and well-posed. This yields the further representation of the
solution of the BVP (2.35), namely

x D D�u C vq;

with the solution u of the BVP (2.44)–(2.46). We summarize what we obtained in
the next proposition.

Proposition 2.3 Let the DAE in (2.35) be regular with index � and l D
rank˘can.a/. Given are the matrices Ga;Gb 2 L.Rm;Rl/. Then the BVP (2.35)
is uniquely solvable for each arbitrary � 2 R

l and each arbitrary admissible
right-hand side q if and only if the homogeneous version of the classical inherent
BVP (2.44)–(2.46) has the zero solution only.

If one is able to provide vq by analytically performing the differentiations, and if
the IERODE is available, then it remains only to solve the classical well-posed
BVP (2.44)–(2.46).

It is noteworthy that the IERODE (2.44) which lives in R
n can be condensed to a

so-called essential underlying ODE living in R
l,

	0 C W	 D �q;

by letting 	 D �lu, with a suitable transformation �l 2 C1.I;L.Rn;Rl//

[86, Theorem 4.5]. Then, condition (2.45) becomes redundant and the boundary
condition (2.46) transforms via u D � �

l 	.
In [102, Sect. 13], for linear DAEs, a gradual index reduction procedure

is established, which comprises analytical transformations and differentiations.
Thereby, the given linear BVP for the DAE is reduced to a BVP for an explicit
ODE, which is in essence a condensed version of our BVP (2.44)–(2.46).

A comparable approach consists in forming analytically the derivative array
system, extracting a relevant index-0 or index-1 DAE from the derivative array
system, and then turning to the regularized form for further investigations as in
[111].
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2.4 Conditioning Constants and Dichotomy

Already in the classical theory of ordinary BVPs it is established (cf. [13]) that the
key quantity for well-conditioning of a BVP is �2. There are problems where �1 is
moderate but �2 can be made arbitrary large. Moreover, although a scaling of the
boundary condition does not change the solution, the quantity �1 changes. Namely,
if we multiply the boundary condition by the nonsingular matrix L 2 L.Rl/, we
arrive at X.t; a/S�L�1 instead of X.t; a/S�.

For appropriately scaled boundary conditions the quantity �1 can be bounded
by �2. Furthermore, there is a close relation between dichotomy, appropriately
boundary conditions, and the moderate size of �2. We are going to adapt these
well-known classical results to the case of DAEs. The following lemma allows a
useful scaling of the boundary conditions.

Lemma 2.4 Given is the matrix ŒBa Bb� 2 L.Rm;Rl/ with full row-rank l, ka WD
rank Ba � l, kb WD rank Bb � l.

Then ka C kb � l and there are orthogonal matrices Qa;Qb 2 L.Rm/, and
V 2 L.Rl/, and a nonsingular R 2 L.Rl/ such that

Ba˘can.a/ D V

2
4

Il�kb

�a 0 � � �0
0

3
5Qa; Bb˘can.b/DV

2
4
0

�b 0 � � �0
Il�ka

3
5Qb;

whereby the blocks �a; �b 2 L.RkaCkb�l/ have diagonal form with diagonal
elements belonging to the interval Œ0; 1�.

Proof First, applying a Householder factorization we obtain

Œ QBa QBb� WD R�1ŒBa Bb� D ŒIl 0„ƒ‚…
m�l

0„ƒ‚…
m

�H;

with orthogonal H, such that Œ QBa QBb� has orthogonal rows and QBa QB�
a C QBb QB�

b D I.
Then we apply the singular value decomposition QG�

a D Q�
a˙

�
a V�, with ˙a D

ŒDa 0� and

Da D

2
666666666664

�1
�2
: : :

�ka

0
: : :

0

3
777777777775

2 L.Rl/; �1 � � � � � �ka > 0:
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It follows that QBa QB�
a D V�D2

aV and QBb QB�
b D V�.I � D2

a/V . It holds that 1� �2i � 0,
since QBb QB�

b is positive semi-definite. Because of rank QBb QB�
b D kb it must hold that

l � kb � ka and �1 D � � � D �l�kb D 1. Finally we obtain the factorization QB�
b D

Q�
b˙

�
b V with˙b D ŒDb 0�, Db D diag .0;�b; Il�kb/.�b is absent if ka Ckb D l. For

ka C kb � l C 1, the values .1� �2l�kbCi/
1
2 , i D 1; : : : ; l � kb � ka, form the diagonal

of �b. ut
Theorem 2.5 Let the DAE in (2.35) be regular with index � and l D rank˘can.a/.
˘can denotes the canonical projector function of the DAE. Given are the matrices
Ga;Gb 2 L.Rm;Rl/. Let condition (2.41) be valid. Then the following assertions
hold:

(1) The matrix function � defined by �.t/ WD X.t; a/S�; t 2 I; is the minimal
fundamental solution matrix of the DAE associated with the BVP such that

SBVP WD Ga�.a/C Gb�.b/ D I:

Thereby X.t; a/ denotes the fundamental solution matrix normalized at a
(see (2.23)), and S is the solvability matrix (2.38).

(2) The Green’s function can be represented as

G.t; s/ WD
�

�.t/Ga�.a/�.s/�; if t � s
� �.t/Gb�.b/�.s/�; if t < s;

with the generalized inverse �.t/� D SX.t; a/� satisfying the four conditions

���� D �; ����� D ��; ��� D ˘can; ��� D I:

(3) The boundary conditions can be scaled so that

Ga˘can.a/D
2
4

Il�kb

�a 0 � � �0
0

3
5Qa; Gb˘can.b/D

2
4
0

�b 0 � � � 0
Il�ka

3
5Qb;

with orthogonal matrices Qa;Qb 2 L.Rm/, ka WD rank Ga˘can.a/, and kb WD
rank Gb˘can.b/. The blocks �a; �b 2 L.RkaCkb�l/ have diagonal form with
diagonal elements belonging to the interval .0; 1/, and�2

a C�2
b D I.

(4) If the boundary conditions are scaled as described in (3), then it holds that

j�.t/j2 � jG.t; a/j2 C jG.t; b/j2; t 2 I;

which leads to �1 � 2�2 when applying the Euclidean and spectral norms.

Proof

(1) �.t/ has full column-rank l since �.t/z D 0, i.e., X.t; a/S�z D 0 implies S�z D
.I �˘can.a//S�z, thus z D SS�z D S.I �˘can.a//S�z D 0.
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(2) can be shown by straightforward calculation.
(3) Writing

S D GaX.a; a/C GbX.b; a/ D ŒGa˘can.a/ Gb˘can.b/�

�
X.a; a/
X.b; a/

�
(2.47)

makes clear that the factor ŒBa Bb� WD ŒGa˘can.a/ Gb˘can.b/� also has full
row-rank l. We apply Lemma 2.4 and scale by V�1.

(4) We recall that

j�.t/j2 D
ˇ̌
ˇ̌
ˇ̌�.t/

2
4

I 0 0

0 �2
a 0

0 0 0

3
5
ˇ̌
ˇ̌
ˇ̌
2

C
ˇ̌
ˇ̌
ˇ̌�.t/

2
4
0 0 0

0 �2
b 0

0 0 I

3
5
ˇ̌
ˇ̌
ˇ̌
2

�
ˇ̌
ˇ̌
ˇ̌�.t/

2
4

I 0 0

0 �a 0

0 0 0

3
5
ˇ̌
ˇ̌
ˇ̌
2

C
ˇ̌
ˇ̌
ˇ̌�.t/

2
4
0 0 0

0 �b 0

0 0 I

3
5
ˇ̌
ˇ̌
ˇ̌
2

D
ˇ̌
ˇ̌
ˇ̌�.t/

2
4

I 0 0 0 : : : 0

0 �a 0 0 : : : 0

0 0 0 0 : : : 0

3
5
ˇ̌
ˇ̌
ˇ̌
2

C
ˇ̌
ˇ̌
ˇ̌�.t/

2
4
0 0 0 0 : : : 0

0 �b 0 0 : : : 0

0 0 I 0 : : : 0

3
5
ˇ̌
ˇ̌
ˇ̌
2

D
ˇ̌
ˇ̌
ˇ̌�.t/

2
4

I 0 0 0 : : : 0

0 �a 0 0 : : : 0

0 0 0 0 : : : 0

3
5Qa

ˇ̌
ˇ̌
ˇ̌
2

C
ˇ̌
ˇ̌
ˇ̌�.t/

2
4
0 0 0 0 : : : 0

0 �b 0 0 : : : 0

0 0 I 0 : : : 0

3
5Qb

ˇ̌
ˇ̌
ˇ̌
2

D j�.t/Ga˘can.a/j2 C j�.t/Gb˘can.b/j2 D jG.t; a/j2 C jG.t; b/j2 :

ut
For dichotomic explicit ODEs, one obtains a moderate conditioning quantity �2, if
the asymptotically nonincreasing mode is fixed by boundary conditions at the left
border of the interval and the asymptotically nondecreasing mode is fixed at the
right boundary. In other words, the conditioning constants, if they have moderate
size, indicate that the boundary conditions fit well into the dynamics of the ODE.
For dichotomic DAEs the situation is quite similar. To be more precise we quote the
dichotomy notion [86, Definition 2.56].

Definition 2.6 The regular DAE (2.20) with index � is said to be dichotomic if
there are constants K; ˛; ˇ � 0 and a nontrivial projector (not equal to the zero or
identity matrix) Pdich 2 L.Rm/ such that Pdich D ˘can.a/Pdich D Pdich˘can.a/, and
the following inequalities apply for all t; s 2 I:

jX.t; a/PdichX.s; a/�j � Ke�˛.t�s/

jX.t; a/.I � Pdich/X.s; a/
�j � Ke�ˇ.s�t/:

If ˛; ˇ > 0 one speaks of an exponential dichotomy.
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The notion is independent of the choice of the reference point a; one can use any
other point Nt 2 I. An equivalent definition works with the minimal fundamental
solution � and the projector P�;dich D SPdichS� 2 L.Rl/:

j�.t/P�;dich�.s/
�j � Ke�˛.t�s/;

j�.t/.I � P�;dich/�.s/
�j � Ke�ˇ.s�t/:

Theorem 2.6 Let the DAE in (2.35) be regular with index � and l D rank˘can.a/.
˘can denotes the canonical projector function of the DAE. Given are the matrices
Ga;Gb 2 L.Rm;Rl/. Let condition (2.41) be valid. Let the DAE be dichotomic and
let the boundary condition be such that

Ga˘can.a/.I � Pdich/ D 0; Gb˘can.b/Pdich D 0: (2.48)

Then the Green’s function satisfies the inequalities

jG.t; s/j � Ke�˛.t�s/ for s � t;

jG.t; s/j � Ke�ˇ.s�t/ for s > t:

Proof The conditions (2.48) can be rewritten as

Ga�.a/.I � P�;dich/ D 0; Gb�.b/P�;dich D 0:

We derive

Gb�.b/ D Gb�.b/.I � P�;dich/ D .I � Ga�.a//.I � P�;dich/

D I � P�;dich � Ga�.a/C Ga�.a/P�;dich;

thus P�;dich D Ga�.a/P�;dich. Then we compute for s < t

G.t; s/ D �.t/Ga�.a/�.s/
� D �.t/Ga�.a/P�;dich�.s/

�

D �.t/P�;dich�.s/
�;

which yields

jG.t; s/j D j�.t/P�;dich�.s/
�j � Ke�˛.t�s/:

The part s > t is proven analogously. ut
We emphasize that the concerns mentioned in [13] related to the fact that dichotomy
of ODEs is thought for infinite intervals to feature the asymptotic flow behavior
applied likewise for DAEs.
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2.5 Nonlinear BVPs

The solutions of linear regular DAEs always exist on the entire given interval I D
Œa; b�. We are able to precisely describe all these solutions. In particular, if x� 2
C1D.I;Rm/ satisfies the regular index-� DAE

A.t/.Dx/0.t/C B.t/x.t/ � q.t/ D 0; t 2 I; (2.49)

and the matrix C 2 L.Rm;Rl/ describing the initial condition

Cx.a/ D Cz; z 2 R
m; (2.50)

satisfies the condition ker C D ker˘can.a/, then the solutions of all IVPs (2.49),
(2.50) are given on the entire interval, e.g., by

x.t; z/ D x�.t/C X.t; a/.z � x�.a//; t 2 I: (2.51)

The nonlinear regular DAE (2.1), that is,

f ..Dx/0.t/; x.t/; t/ D 0 (2.52)

is much more difficult to deal with. If x� 2 C1D.I;Rm/ satisfies this DAE on the
entire interval I D Œa; b�, we form the linearized DAE

A�.t/.Dx/0.t/C B�.t/x.t/ D 0; t 2 I: (2.53)

If the graph of the reference function x� resides within an index-� regularity region
of the DAE, then the linear DAE (2.53) is also regular with index � and shares
with (2.52) further characteristics, see Appendix 6.1.3. We then denote by˘� can and
X�.t; a/ the canonical projector function associated with (2.53), and the fundamental
solution matrix of (2.53) normalized by X�.a; a/ D ˘� can.a/.

After the idea of (2.51) we form the function

Qx.t; z/ D x�.t/C X�.t; a/.z � x�.a//; t 2 I; (2.54)

with values Qx.t; z/ 2 Df for all z sufficiently close to x�.a/. This function satisfies
the condition

C� Qx.a; z/ D C�z; z 2 R
m; (2.55)

with any matrix C� 2 L.Rm;Rl/ such that ker C� D ker˘� can.a/. In the nonlinear
case, the function Qx satisfies the DAE only approximately. We have

max
t2I j f ..DQx/0.t; z/; Qx.t; z/; t/j D o.jz � x�.a/j/

for all z close enough to x�.a/.
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Regarding the boundary condition (2.2), i.e.,

g.x.a/; x.b// D 0; (2.56)

and introducing the solvability matrix of the linearized BVP,

S� WD G� aX�.a; a/C G� bX�.b; a/; (2.57)

one obtains that

g.Qx.a; z/; Qx.b; z// D S�.z � x�.a//C o.jz � x�.a/j/:

If the linearized BVP has accurately stated boundary conditions, then the prop-
erty (2.55) implies S�.z�x�.a// D 0, and hence jg.Qx.a; z/; Qx.b; z//j D o.jz�x�.a/j/.
In summary, the function Qx satisfies the BVP approximately for all sufficiently small
z � x�.a/.

The last consideration raises the expectation that solutions of nonlinear DAEs
can be provided under reasonable conditions, or at least that there exist solutions
neighboring to a given reference solution on the entire interval.

For index-1 and index-2 DAEs useful perturbation results are available which
ensure the existence of DAE solutions satisfying perturbed initial conditions on the
entire interval and allow the shooting approach and a sensitivity analysis. In the case
of higher-index DAEs the hitherto known respective results are much too restrictive.
We describe more details in the next two subsubsections.

As yet, there is a lack of precise general conditions ensuring the existence of
solutions. In the literature the existence of solutions is usually assumed, either
frankly by a comprehensive solvability notion (e.g. in [38]) or somewhat covertly in
special hypotheses (e.g. in [74, 76]), cf. Remark 2.7 for details. In [5] solvability of
multipoint BVPs for special weakly nonlinear index-1 DAEs is proved by means of
Schauder’s fixed point theorem.

In contrast to the flow of a regular ODE that propagates in the entire Rm, the flow
of a DAE (2.52) is restricted to certain lower-dimensional subsets determined by
the so-called obvious constraint and possibly additional hidden constraints which
are quite difficult to recognize. In any case, the solution values at time t must reside
within the obvious constraint set (cf. [86, pp. 317–318])

M0.t/ W D fx 2 Df W 9y 2 R
n W f .y; x; t/ D 0g

D fx 2 Df W 9y 2 R
n W y 2 im D.t/; f .y; x; t/ D 0g

D fx 2 Df W 9Šy 2 R
n W y 2 im D.t/; f .y; x; t/ D 0g:

We note that also the obvious constraint set is not necessarily clearly manifested in
fact, as e.g., in Example 1.2.
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2.5.1 BVPs Well-Posed in the Natural Setting

Theorem 2.7 Let x� 2 C1D.I;Rm/ satisfy the BVP (2.52), (2.56), r WD rank D.a/.
Then the following assertions are equivalent:

(1) The original nonlinear BVP is locally well-posed in the natural setting.
(2) The linearized along x� BVP is well-posed in the natural setting.
(3) The linearized DAE is regular with index 1, and the linearized BVP has

accurately stated boundary conditions with l D r.
(4) The graph of x� resides in a index-1 regularity region of the DAE (2.52), and

the linearized BVP has accurately stated boundary conditions with l D r.
(5) x� is an isolated solution of the BVP, l D r, and the linearized DAE is regular

with index 1.

Proof We first formulate the DAE (2.52) and the BVP (2.52), (2.56) as the operator
equations F.x/ D 0 and F.x/ D 0 in Banach spaces, with F W dom F 

C1D.I;Rm/ ! C.I;Rm/, F W dom F 
 C1D.I;Rm/ ! C.I;Rm/ � R

l,

.Fx/.t/ WD f ..Dx/0.t/; x.t/; t/; t 2 I; x 2 dom F;

Fx WD .Fx; g.x.a/; x.b///; x 2 dom F:

The definition domain dom F is a neighborhood of x� in C1D.I;Rm/ (e.g., [86, 89,
96]). F and thus F are Fréchet differentiable,

F0.x�/x D A�.Dx/0 C B�x; x 2 C1D.I;Rm/:

The linear equation F 0.x�/x D 0 represents the homogenous version of the
linearized along x� BVP.

(1)!(2): In the context of nonlinear functional analysis, local well-posedness of
the equation Fx D 0 means that F is a local diffeomorphism at x�. Then the
derivative F 0.x�/ is necessarily a homeomorphism. In turn, the boundedness of
.F 0.x�//�1 means that the linearized BVP is well-posed.

(2)!(3): This is a consequence of Theorem 2.1(5).
(3)!(4): Consider the matrix function

G.y; x; t/ WD fy.y; x; t/D.t/C fx.y; x; t/Q0.t/; y 2 R
n; x 2 Df ; t 2 If :

Owing to the index-1 property of the linearized DAE,

G..Dx�/0.t/; x�.t/; t/ WD A�.t/D.t/C B�.t/Q0.t/; t 2 I;

remains nonsingular. Since the interval I and thus the graph are compact, there
is an open neighborhood N� 
 R

n � Df � If of the graph so that G.y; x; t/ is
nonsingular also on N�. This means, that N� is actually an index-1 regularity
region.
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(4)!(1): Here the linearized DAE is regular with index 1 and its boundary
conditions are stated accurately. This means that F 0.x�/ is a homeomorphism
and F is a local diffeomorphism.

(5)�(3): This is a direct consequence of Definitions 2.4 and 2.5.
ut

Example 2.6 We continue considering Example 1.3. The homogenous DAE lin-
earized along the solution x� reads

2
4
1 0

0 1

0 0

3
5 .
�
1 0 0

0 1 0

�
x/0.t/C

2
4
1 � ˛.t/ �1 0

1 1 � ˛.t/ 0
2 sin t 2 cos t 1

3
5 x.t/ D 0; t 2 I D Œa; b�;

where a D 0 and b D 2� . Compute

Q0 D
2
4
1 0 0

0 1 0

0 0 0

3
5 ; G� 1.t/ D

2
4
1 0 0

0 1 0

0 0 1

3
5 :

The linearized DAE has index 1 owing to the nonsingularity of G� 1.t/. We obtain
the canonical projector function

˘� can.t/ D
2
4

1 0 0

0 1 0

�2 sin t �2 cos t 0

3
5 ;

and the homogenous IERODE

u0.t/C
�
1 � ˛.t/ �1

1 1 � ˛.t/
�

u.t/ D 0;

with the fundamental solution matrix

U�.t; 0/ D e
�

tR
0

.1�˛.s//ds
�

cos t sin t
� sin t cos t

�
:

The fundamental solution matrix of the linearized DAE results in

X�.t; 0/ D ˘� can.t/

2
4
1 0

0 1

0 0

3
5U�.t; 0/

�
1 0 0

0 1 0

�
˘� can.0/

D
2
4

1 0

0 1

�2 sin t �2 cos t

3
5U�.t; 0/

�
1 0 0

0 1 0

�
:
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The linearization of the nonlinear boundary condition leads to

G� a D
�
1 0 0

0 0 0

�
; G� b D

�
0 0 0

0 2 0

�
;

thus,

S� D
�
1 0 0

0 0 0

�
C
�
0 0

0 2

�
U�.2�; 0/

�
1 0 0

0 1 0

�
D
2
4
1 0 0

0 2e
�
2�R
0

.1�˛.s//ds
0

3
5 :

This proves that the linearized boundary conditions are accurately stated, and hence
the linearized BVP and also the nonlinear BVP are well-posed.

The BVP with periodic boundary condition in Example 1.3 leads to

G� a D
�
1 0 0

0 1 0

�
; G� b D

��1 0 0

0 �1 0
�
;

thus,

S� D

2
664
1 � e

�
2�R
0

.1�˛.s//ds
0 0

0 1� e
�
2�R
0

.1�˛.s//ds
0

3
775 ;

so that the periodic BVP is well-posed if
R 2�
0
.1 � ˛.s//ds ¤ 0. In particular, this is

the case for identically vanishing ˛ as illustrated in Fig. 4, Example 1.3.
If
R 2�
0 .1 � ˛.s//ds D 0, the BVP is no longer well-posed. If ˛.t/ � 1, then, for

arbitrary parameters c1; c2 2 R, c21 C c22 D 1, the functions given by

x��.t/ D
2
4

c1 cos t C c2 sin t
c2 cos t � c1 sin t

1

3
5

are 2�-periodic and satisfy the DAE. ut
Theorem 2.7 clearly points out that only BVPs for index-1 DAEs can be well-posed
in the natural setting. This fact is in full concert with the general computational
experience. At this place we allude to a peculiar definition of well-posed BVPs in
[74, 76], which seemingly says that also BVPs for higher-index DAEs could be
well-posed. We refer to Remarks 2.6 and 2.7 for a further discussion.

We concentrate now briefly on index-1 problems which have been well under-
stood for a long time. So the next perturbation results are nothing more than useful
updates of [89, Theorem 4]. We refer to [86, Part II] for a recent elaborate exposition.
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Theorem 2.8 Let x� 2 C1D.I;Rm/ satisfy the DAE (2.52), and the linearized along
x� DAE (2.53) be regular with index 1. Let ˘� can denote the canonical projector
function of the linear DAE (2.53). Let the matrix C 2 L.Rm;Rl/, l D r, be such that

ker C \ im˘� can.a/ D f0g: (2.58)

Then the IVP

f ..Dx/0.t/; x.t/; t/ D 0; t 2 I; Cx.a/ D Cz: (2.59)

has a locally unique solution x.�I a; z/ 2 C1D.I;Rm/ for each arbitrary z 2 R
m,

j˘� can.a/.z � x�.a//j sufficiently small.
Moreover, there exists the sensitivity matrix

X.t; z/ WD @

@z
x.tI a; z/

with columns in C1D.I;Rm/, and it satisfies the variational equation

fy..Dx/0.tI a; z/; x.tI a; z/; t/.DX/0.t; z/C fx..Dx/0.tI a; z/; x.tI a; z/; t/X.t; z/ D 0;

C.X.a; z/� I/ D 0:

Proof The assertion follows from the implicit function theorem applied to the
equation H.x; z/ D 0,

H.x; z/ WD .Fx;C.x.a/� z//; x 2 dom F; z 2 R
m;

with the differential-algebraic operator F from the proof of Theorem 2.7. ut
An index-1 regularity region G of the DAE (2.52) is an open connected subset of

the definition domain of f characterized by the nonsingularity of the matrix function

G.y; x; t/ WD fy.y; x; t/D.t/C fx.y; x; t/Q0.t/; y 2 R
n; x 2 Df ; t 2 If ;

on G, or, equivalently, by the decomposition

R
m D S.y; x; t/˚ ker D.t/; (2.60)

S.y; x; t/ W D fz 2 R
m W fx.y; x; t/z 2 im fy.y; x; t/g;

or, equivalently, by a regular matrix pencil �fy.y; x; t/D.t/Cfx.y; x; t/with Kronecker
index 1 (e.g., [86, Part II]).

The decomposition (2.60) defines the canonical projector function ˘can of the
index-1 DAE by

im˘can.y; x; t/ D S.y; x; t/; ker˘can.y; x; t/ D ker D.t/:
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It holds that

˘can.y; x; t/ D I � Q0.t/G
�1.y; x; t/fx.y; x; t/:

Formulating the initial condition in (2.59) by a matrix C that has the same nullspace
as D.a/ or choosing C D D.a/makes condition (2.58) trivially fulfilled. This means
that the initial condition is directed promptly to the dynamical component and yields
the following practically most useful special case of Theorem 2.8.

Corollary 2.9 The assertions of Theorem 2.8 remain valid if the condition (2.58) is
replaced by the easier condition

ker C D ker D.a/:

For the further analysis the decoupled form (e.g., [55, 86])

u0.t/ � R0.t/u.t/ D D.t/!.u.t/; t/; (2.61)

x.t/ D D.t/�u.t/C Q0.t/!.u.t/; t/; (2.62)

of the index-1 DAE (2.52) is approved to be useful. The decoupling function w D
!.u; t/ is uniquely defined from the equation

f .D.t/w;D.t/�u C Q0.t/w; t/ D 0

locally around a reference solution x�.�/ or points Nx 2 M0.Nt/ by the implicit
function theorem. The function ! is continuous and has the continuous partial
derivative [86, Theorem 4.5]

!u.u; t/ D �.G�1fx/.D.t/!.u; t/;D.t/�u C Q0.t/!.u; t/; t/:

We additionally quote a solvability result from [86, Theorem 4.11]:

Theorem 2.10 Given is the DAE (2.52) with the index-1 regularity region G, and
.y0; x0; t0/ 2 G. Then, if additionally x0 2 M0.t0/, the DAE possesses a solution
x� 2 C1D.I�;Rm/ defined at least on a neighborhood I� 
 If of t0 and passing
through x�.t0/ D x0. The solution x� 2 C1D.I�;Rm/ is locally unique.

The solution x� from Theorem 2.10 can be continued at least as long as its graph
resides in the regularity region. It also may happen that a solution crosses the border
of a maximal regularity region [86, Sect. 3.3].

2.5.2 BVPs Well-Posed in an Advanced Setting

By Theorem 2.7, BVPs for higher-index DAEs are essentially different since they
are never well-posed in the natural setting—even if the boundary conditions are
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accurately stated. In some situations, a weaker well-posedness by means of an
adapted image space Y with stronger topology instead of the continuous function
space might be helpful, but, as described in detail in [96], one should be highly
cautious concerning the actual practical meaning. The following can be seen as a
quite straightforward generalization of index-2 results from [96, Sect. 4.3.3] and
[86, Sect. 3.9] for the case of arbitrary higher index.

Definition 2.7 Let x� 2 C1D.I;Rm/ be a solution of the BVP (2.1), (2.2), I D Œa; b�.
Let Y 
 C.I;Rm/ be a complete normed linear space, and kqkY � kqk1, q 2 Y.
The BVP (2.1), (2.2) is said to be well-posed in the advanced setting with image
space Y locally around x�, if the slightly perturbed BVP

f ..Dx/0.t/; x.t/; t/ D q.t/; t 2 I; (2.63)

g.x.a/; x.b// D �; (2.64)

is locally uniquely solvable for each arbitrary sufficiently small perturbation q 2 Y,
� 2 R

l, and the solution x satisfies the inequality

kx � x�kC1D � �.j� j C kqkY/; (2.65)

with a constant �. Otherwise the BVP is said to be ill-posed in the advanced
Y-setting.

Instead of the inequality (2.65) one can use the somewhat simpler inequality

kx � x�k1 � �.j� j C kqkY/; (2.66)

which is sometimes more convenient, see Remark 2.12.
Representing the linear BVP

A.t/.Dx/0.t/C B.t/x.t/ D q.t/; t 2 I; Gax.a/C Gbx.b/ D �; (2.67)

with a regular index-� DAE, as operator equation T x D .q; �/ by the linear
bounded operators

Tx WD A.Dx/0 C Bx; T x WD .Tx;Gax.a/C Gbx.b//; x 2 C1D.I;Rm/;

T 2 L.C1D.I;Rm/;Y/; T 2 L.C1D.I;Rm/;Y � R
l/; Y D C ind�.I;Rm/;

we know (cf. Appendix 6.1.4) that the linear BVP is well-posed in the advanced
setting with Y if and only if T is bijective, and then � in (2.8) is nothing other than
an upper bound of kT �1kŒY�Rl!C1D�.

Theorem 2.11 Let x� 2 C1D.I;Rm/ satisfy the DAE (2.52). Let the linearized along
x� DAE (2.53) be regular with index �, ˘� can denote the canonical projector
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function of the linear DAE (2.53), and l D rank˘� can.a/. Let Y� denote the
associated Banach space of admissible right-hand sides with the norm k � kY

�

.
Assume that there exists a radius � > 0 such that

x 2 C1D.I;Rm/; kx � x�kC1D � � ) f .Dx/0.�/; x.�/; �/ 2 Y�: (2.68)

Then the following assertions are valid:

(1) Let x� also satisfy the boundary condition (2.56). Then the BVP (2.53), (2.56) is
locally well-posed in the advanced setting with Y� if and only if x� is an isolated
solution.

(2) Let the matrix C 2 L.Rm;Rl/ be such that

ker C \ im˘� can.a/ D f0g: (2.69)

Then the IVP

f ..Dx/0.t/; x.t/; t/ D 0; t 2 I; Cx.a/ D Cz: (2.70)

has a locally unique solution x.�I a; z/ 2 C1D.I;Rm/ for each arbitrary z 2 R
m

with sufficiently small difference j˘� can.a/.z � x�.a//j. Moreover, there exists
the sensitivity matrix

X.t; z/ WD @

@z
x.tI a; z/

with columns in C1D.I;Rm/, and it satisfies the variational equation

fy..Dx/0.tI a; z/; x.tI a; z/; t/.DX/0.t; z/C fx..Dx/0.tI a; z/; x.tI a; z/; t/X.t; z/D0;
C.X.a; z/� I/D0:

Proof We again formulate the DAE (2.52) and the BVP (2.52), (2.56) as the
operator equations F.x/ D 0 and F.x/ D 0 in Banach spaces, this time, owing to
condition (2.68), with definition domain dom F D fx 2 C1D.I;Rm/ W kx � x�kC1D <
�g and advanced image spaces,

F W dom F 
 C1D.I;Rm/ ! Y�; F W dom F 
 C1D.I;Rm/ ! Y� � R
l;

.Fx/.t/ WD f ..Dx/0.t/; x.t/; t/; t 2 I; Fx WD .Fx; g.x.a/; x.b//; x 2 dom F:

Regarding condition (2.68) and Appendix 6.1.4, the operators F andF can be shown
to be Fréchet-differentiable also in this setting, and

F 0.x�/x D .A�.Dx/0 C B�x; G� ax.a/C G� bx.b//; x 2 C1D.I;Rm/:
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(1) The composed map F is a local diffeomorphism if and only if F 0.x�/ 2
L.C1D.I;Rm/;Y� �R

l/ is bijective. Since F 0.x�/ is surjective by construction of
Y�, bijectivity becomes equivalent with injectivity. In turn, F 0.x�/ is injective
exactly if the solution x� is isolated.

(2) The assertion follows from the implicit function theorem applied to the equation
H.x; z/ D 0, with H.x; z/ WD .Fx;C.x.a/� z//; x 2 dom F; z 2 R

m. ut
Example 2.7 We turn once again to Example 1.4 and take x� as a reference solution.
Similar arguments will then apply to the case of the second solution x��. Inspecting
the matrix function sequence we know that the DAE has two maximal regularity
regions, both with characteristics r0 D r1 D 2, r2 D 3, � D 2, and l D 1. The
border of the regularity regions is given by the plane x2 D 0. It holds that x�.t/ � 1

4

for all t 2 Œ0; 2�, so that the graph of x� resides within an index-2 regularity region.
Then, Theorem 2.7 excludes well-posedness in the natural setting.

The homogenous BVP linearized along x�
2
4
1 0

0 x� 2
0 0

3
5 .
�
1 0 0

0 1 0

�
x/0 C

2
4

1 0 0

0 x0� 2 0
2x� 1 2x� 2 0

3
5 x D 0;

x1.0/� x1.2/ D 0;

has only the trivial solution, and hence x� is an isolated solution. The linearized
DAE inherits from the nonlinear original the characteristics r0 D r1 D 2, r2 D 3,
� D 2, and l D 1. Inspecting the admissible right-hand sides of the linearized DAE
we find that

C index2� .I;R3/ D fq 2 C.I;R3/ W q3 2 C1.I;R/g
does not depend on x�. We set Y D C index2� .I;R3/. Equipped with the norm

kqkY WD kqk1 C kq0
3k1;

Y is a Banach space. Furthermore, for each arbitrary x 2 C1D.I;R3/ and

q.t/ WD f ..Dx/0.t/; x.t/; t/ D
2
4

x0
1.t/C x1.t/

x2.t/x0
2.t/ � x3.t/

x1.t/2 C x2.t/2 � 1C 1
2

cos�t

3
5 ; t 2 I;

it results that q 2 Y. Finally, owing to Theorem 2.11 the nonlinear BVP proves to be
well-posed in the advanced setting with image space Y. In particular, the perturbed
BVPs with sufficiently small j� j and kqk1 C kq0

3k1 are locally uniquely solvable
and the solutions satisfy the inequality

kx � x�k1 � �.j� j C kqk1 C kq0
3k1/:

ut
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Although Theorem 2.11 sounds promising there are serious objections to it concern-
ing the relevance for practical computations:

(1) The advanced image space Y� and its norm are rarely available in practice.
(2) The higher the index � the more unsuitable is the norm k � kY

�

for practical
needs, see [96, Sect. 2].

(3) Condition (2.68) seems to be quite acceptable. However, in the light of possible
variations of im F0.x/ with x (see [96, Example 4.3]), there are more restrictions
on the classes of nonlinear DAEs the higher the index is.

The situation turns out to remain more or less acceptable only in the easier
index-2 case, as already demonstrated by Example 2.7. The general solution of a
linear regular index-2 DAE is established in Sect. 2.2, in particular, the canonical
projector function is given there. In Example 2.3 the particular case of index-2 DAEs
in Hessenberg form is specified.

The subspace

C ind 2.I;Rm/ WD fw 2 C.I;Rm/ W D˘0Q1G
�1
2 w 2 C1.I;Rn/g

serves as set of admissible right-hand sides of the linear index-2 DAE (2.49). The
dynamical degree of freedom amounts to l D r0 C r1 � m. It becomes clear that the
linear BVP (2.67) for an index-2 DAE, with accurately stated boundary condition is
well-posed in the advanced setting with Y D C index2.I;Rm/.

In [8], for linear Hessenberg index-2 DAEs, an inequality like (2.66) is obtained
and the constant � is called a stability constant. Further, if � is of moderate size,
the BVP is said to be well-conditioned. In essence, in our context this means
well-posedness in the advanced setting, and moderate conditioning constants.

Accordingly, if the linearized DAE (2.53) is regular with index 2, then the
associated set of admissible right-hand sides is given by

Y� D C ind 2� .I;Rm/ WD fw 2 C.I;Rm/ W D˘0Q� 1G�1� 2w 2 C1.I;Rn/g:

The asterisk-index indicates the possible dependence of the reference solution x�.
For index-2 DAEs (2.52), we are aware of more transparent sufficient criteria

for condition (2.68) to be valid. Namely, if the structural restriction (cf. [92], [86,
Sect. 3.9.2])

W� 0.t/ff .y; x; t/ � f .0;P0.t/x; t/g 2 im W� 0.t/B�.t/Q0.t/; (2.71)

with W� 0.t/ D I � A�.t/A�.t/�, or, equivalently,

f .y; x; t/ � f .0;P0.t/x; t/ 2 im G� 1.t/; (2.72)

is satisfied, then condition (2.68) is guaranteed. Fortunately, often the subspaces
im A�.t/ and im G� 1.t/ are actually independent of the reference solution x�.
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Index-2 DAEs in Hessenberg form serve as particular instances of DAEs satisfying
condition (2.71).

Formulating the initial condition in (2.70) by a matrix C that has the nullspace
as ker C D ker˘� can.a/ D ker˘���1.a/ makes condition (2.69) trivially
fulfilled. This means that the initial condition is directed promptly to the dynamical
component and yields the following useful assertion.

Corollary 2.12 The second assertion of Theorem 2.11 remains valid if the condi-
tion (2.69) is replaced by the simpler condition

ker C D ker˘���1.a/ D ker D.a/˚ ker G� 1.a/: (2.73)

Example 2.8 For the index-2 DAE in Hessenberg form in Example 2.3 we obtain
ker˘� can.a/ D fz 2 R

m1Cm2 W z1 D ˝�z1g, with ˝� D B� 12B�� 12. ut
In contrast to the index-1 case in Corollary 2.9, in fact now also the matrix C in
formula (2.73) depends on x�. This foreshadows one of the challenging difficulties
concerning higher-index DAEs, the determination of consistent initial values.

2.6 Other Boundary Conditions

As established for explicit ODEs in [13], various conditions are applied to fix
solutions in different applications, for instance, multipoint conditions, integral
conditions, and separated conditions, and BVPs of different forms can be converted
to each other. The same happens for DAEs. Here we address some of the related
topics.

We call attention to the fact that the dynamical degree of freedom l � m of a
regular DAE strongly depends on the structure of this special DAE. In the context
of the projector-based analysis (cf. Appendix 6.1) l is determined as

l D m �
��1X
iD0
.m � ri/: (2.74)

Another way providing l using derivative arrays is described in [38]. Evidently the
number of initial or boundary conditions must be chosen accordingly.

Except for the index-1 case, where l D r0 D r D rank D.a/, the number l is
rarely a priori available. Usually, l has to be computed (e.g. [86, Chap. 7], [38]).

In the present chapter we decide on mainly stating the boundary condition in R
l

(following [8, 23, 38, 41], [13, p. 474]) and most notably accenting that the right
number of conditions should be given.

In contrast, it is also just and equitable to state the boundary condition in R
m

(e.g., [4, 5, 55, 89, 90]) and so to emphasize that l has to be determined. Then, a
consistency condition has to be respected. We address this topic in Sect. 2.6.2 below.
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For practical computations it is recommended to regard the relation

ker˘can D ker˘��1 D N0 C � � � C N��1;

which is an inherent property of all admissible matrix function sequences for a
regular DAE. It is much easier to calculate some admissible sequence than to
provide the canonical projector function by a completely decoupling sequence (cf.
[86]). In general, the canonical projector function is of great avail in theory, however,
although there are constructive approaches, as yet, there are no efficient means to
provide it practically.

2.6.1 General Boundary Conditions in R
l

The most general linear condition for fixing solutions of DAEs is given by a linear
bounded map as

� x D �; � W C.I;Rm/ ! R
l:

In particular, this comprises IVPs, two-point BVPs, multipoint BVPs, and problems
with the integral condition by

� x W D Cx.a/;

� x W D Gax.a/C Gbx.b/;

� x W D
sX

iD0
Gix.	i/; a D 	0 < � � � < 	s D b;

� x W D
Z b

a
G.t/x.t/dt;

respectively. The notion of well-posedness and accurately stated boundary condition
can be immediately resumed.

Supposing a regular index-� DAE

A.Dx/0 C Bx D q (2.75)

and applying the solution representation (2.30) with Nt D a we see that � x D �

actually means � X.�; a/c D � � � xq. The solvability matrix

S WD � X.�; a/ 2 L.Rm;Rl/



224 R. Lamour et al.

inherits the property ker˘can.a/ D ker X.t; a/ 
 ker S. The general BVP for (2.75)
has accurately stated boundary condition exactly if (cf. (2.41))

im� D R
l; ker S D ker˘can.a/: (2.76)

The general linear BVP is well-posed in the natural setting exactly if the boundary
condition is accurately stated and, furthermore, the DAE has index 1. Then, one has
simply l D rank D.a/, cf. Sect. 2.5.1.

Nonlinear versions of those well-posed BVPs are treated, e.g., in [23, 41].
It might often be convenient to utilize for problems originally given with different

boundary conditions well-approved software written for two-point BVPs—as is
common practice for regular ODEs (cf. [13]).

For a BVP with integral condition one introduces the additional continuously
differentiable function y by

y.t/ D
Z t

a
G.s/x.s/ds:

The augmented two-point BVP

�
A 0
0 I

���
D 0

0 I

� �
x
y

�
0
C
�

B 0

�G 0

� �
x
y

�
D
�

q
r

�
; (2.77)

�
0 I
0 0

� �
x.a/
y.a/

�
C
�
0 0

0 I

� �
x.b/
y.b/

�
D
�
 

�

�
; (2.78)

is uniquely solvable for each arbitrary q 2 C ind�.I;Rm/, r 2 C.I;Rl/, �;  2 R
l, if

and only if condition (2.76) is valid. If so, then the augmented BVP with r D 0 and
 D 0 reproduces as x-component the solution of the original BVP.

A multipoint BVP with given points a D 	0 < � � � < 	s D b can be converted
by linear changes of the variable t mapping each subinterval Œ	i�1; 	i� to Œ0; 1�.
Introduce the functions xi;Ai;Di;Bi; qi, all given on the interval Œ0; 1�, by

xi.�/ D x.t/ D x.	i�1 C �.	i � 	i�1//; t D 	i�1 C �.	i � 	i�1/; � 2 Œ0; 1�;

and so on. Then we turn to the sm-dimensional two-point BVP on Œ0; 1�,

Ai
1

	i�	i�1

d
d� .Dixi/C Bixi D qi; i D 1; : : : ; s; (2.79)

Ci.xi.1/� xiC1.0// D 0; i D 1; : : : ; s � 1;

s�1X
iD0

GixiC1.0/C Gsxs.1/ D �:

(2.80)
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It is evident that the augmented DAE (2.79) is regular with index � and the
dynamical degree of freedom is sl, if the original DAE (2.75) is regular with index
� and dynamical degree of freedom l. If we choose matrices Ci 2 L.I;Rl/ such
that ker Ci D ker˘can.	i/, we have the right number of boundary conditions. It is
straightforward to prove that the boundary conditions (2.80) are accurately stated if
the original BVP has accurately stated boundary condition, i.e., if

ker S D ker˘can.a/; S WD
sX

iD0
GiX.	i; a/ 2 L.Rm;Rl/:

Replacing in (2.80) the matrices Ci by the identity I 2 L.Rm/ and so requiring the
l C .s � 1/m boundary conditions

xi.1/ D xiC1.0/; i D 1; : : : ; s � 1;

s�1X
iD0

GixiC1.0/C Gsxs.1/ D �: (2.81)

leads to a consistent overdetermined problem.
BVPs for explicit ODEs with so-called switching points are discussed in [13]. In

the case of DAEs, this corresponds in some sense to the BVP (2.79), (2.80) with
unknown points 	1; : : : ; 	s�1. Up to now it remains open whether the usual trick to
introduce constant functions 	i by adding the trivial differential equations 	0

i D 0,
i D 1; : : : ; s � 1, can be here also adapted to work.

2.6.2 General Boundary Conditions in R
m

Often one formulates IVPs with the initial condition

x.a/ D xa 2 R
m: (2.82)

This makes good sense for regular ODEs. For DAEs, this initial condition fails to
be accurately stated. Such an IVP is solvable if and only if xa is a consistent value,
otherwise the IVP is overdetermined. Recall that the number of initial conditions
should be chosen in accordance with the dynamical degree of freedom l < m of the
DAE.

Consider the general BVP for the DAE (2.75) with boundary conditions stated
in R

m,

� x D �; � W C.I;Rm/ ! R
m; (2.83)

whereby � is a linear bounded map describing initial, two-point boundary, multi-
point boundary, and integral conditions as in Sect. 2.6.2. Let the DAE be regular
with index �. The so-called solvability matrix (also: shooting matrix)

S WD � X.�; a/ 2 L.Rm;Rm/
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has the properties

ker˘can.a/ 
 ker S; rank S � l:

We represent the BVP as operator equation T x D .q; �/ by means of � and the
additional bounded linear operators (cf. Appendix 6.1.4)

T W C1D.I;Rm/ ! C.I;Rm// � R
m; T x W D .Tx; � x/;

T W C1D.I;Rm/ ! C.I;Rm//; Tx W D A.Dx/0 C Bx:

The subspace im� 
 R
m has necessarily finite dimension. Also the nullspace of T

is finite-dimensional, more precisely,

kerT D fX.�; a/c W c 2 ker S \ im˘can.a/g; dim kerT D l � rank S:

The boundary condition (2.83) is said to be accurately stated if and only if

im S D im�; ker S D ker˘can.a/: (2.84)

Condition (2.84) requires rank S D l and dim im� D l. If the condition (2.84) is
valid, then the operatorT is a bijection between C1D.I;Rm/ and C ind�.I;Rm/�im� .
In comparison with the basic Definition 2.3 now the role of Rl is resumed by the
l-dimensional subspace im� 
 R

m. The condition � 2 im� can be seen as a trivial
consistency condition.

If, additionally, the DAE has index 1, then C.I;Rm/ D C ind�.I;Rm/, and T has
a bounded inverse. Then the inequality

kxk1 � kxkC1D � kT �1k.kqk1 C j� j/

is satisfied by each arbitrary pair .q; �/ 2 C.I;Rm/ � im� and the solution x D
T �1.q; �/. Then the BVP is said to be well-posed—in accordance with the basic
Definition 2.2, with im� substituting for Rl.

Nonlinear versions of well-posed two-point BVPs for standard form index-1
DAEs and boundary conditions stated in R

m are treated, e.g., in [55, 88, 89, 91].
Linear and nonlinear multipoint BVPs for index-1 DAEs are studied in [4–6]. Recall
that in several early papers after [55] one speaks of transferable DAEs instead of
(regular) index-1 DAEs. In [4–6], the BVP for a transferable DAE is said to be
regular if the condition (2.84) is satisfied, and irregular otherwise. We do not use
this notation.

In [6] it is shown that well-posedness of multipoint BVPs persists under some
special small perturbations.

If the DAE is regular with index 1, but the condition (2.84) no longer holds,
then the operator T has the closed image im T D C.I;Rm/ � im S with finite
codimension m � rank S (cf. [4]). This means that T is actually a Fredholm operator
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(Noether operator in [4]) with ind fredholm D l � m D �.m � r0/ D � dim ker D.a/.
A representation of the general solution of such a BVP including the resulting
consistency condition is developed in [4] by means of projectors onto kerT and
imT .

We emphasize that for higher-index DAEs this approach no longer works since
then imT fails to be closed in the given natural setting (cf. [96]).

By the initial condition of the form

Cx.a/ D Cz; with z 2 R
m;

mostly written as C.x.a/ � z/ D 0, one trivially ensures the consistency condition
Cz DW � 2 im C. The component of z belonging to the nullspace of C does not
impact the solution of the IVP.

The condition (2.84) simplifies here to ker C \ im˘can.a/ D f0g. Recall that
ker˘��1.a/ D ker˘can.a/ is valid for arbitrary admissible projector functions.

An important special case is given if C is any matrix C 2 L.Rm;Rm/ such that
ker C D ker˘��1.a/. Then this condition is evidently satisfied. In particular, one
can put C D ˘��1.a/ and C D ˘can.a/.

2.6.3 Separated Boundary Conditions

The boundary condition

Gax.a/C Gbx.b/ D � (2.85)

is said to be separated, if

Ga D
�

Ga;1

0

�
; Gb D

�
0

Gb;2

�
:

Separated boundary conditions turn out to be pleasant. Exploiting this structure the
computational costs of shooting algorithms can be reduced [38] and, furthermore,
if the boundary conditions are placed in accordance with a dichotomy (see
Theorem 2.6), then the conditioning constant �2 is moderate, thus the BVP is
well-conditioned. Moreover, transfer methods relying on the description of solution
subspaces (cf. Sect. 5.2) can be applied.

If the boundary condition (2.85) fails to be separated, then the BVP can be
converted to an augmented BVP with separated boundary condition by the same
trick used for ODEs, see [13, Sect. 1.1]. For this one can utilize if either Ga or Gb is
rank deficient.

Consider the BVP with boundary condition (2.85) of the form

Ga D
�

Ga;1

Ga;2

�
; Gb D

�
0

Gb;2

�
2 L.Rm;Rl/; Gb;2 2 L.Rm;Rl�s/; � D

�
�1
�2

�
;
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with 0 � s � l for the regular index-� DAE

A.Dx/0 C Bx D q: (2.86)

Introduce the additional function z 2 C1.I;Rl�s/ and add the equation z0 D 0 to the
DAE. The resulting DAE

�
A 0
0 I

���
D 0

0 I

� �
x
z

�
0
C
�

B 0
0 0

� �
x
z

�
D Oq (2.87)

is regular with index �, too. The dynamical degree of freedom is Ol D l C l � s. State
for (2.87) separated boundary conditions

�
Ga K
0 0

� �
x.a/
z.a/

�
C
�
0 0

Gb;2 I

� �
x.b/
z.b/

�
D O�; K D

�
0

�I

�
2 L.Rl�s;Rl/: (2.88)

Letting

Oq D
�

q
0

�
; O� D

2
4
�1
0

�2

3
5 ;

the function z becomes constant, thus z.a/ D z.b/. Then the boundary condi-
tion (2.88) yields

Ga;1x.a/ D �1;

Ga;2x.a/� z.a/ D 0;

Gb;2x.b/C z.b/ D �2;

and hence Gax.a/ C Gbx.b/ D � . Therefore, the x-component of the solution of
the BVP (2.87), (2.88) reproduces the solution of the original BVP (2.85), (2.86).
If the boundary conditions of the original BVP are stated accurately, then so are the
boundary conditions of the augmented one.

Another possibility to convert a BVP to a new one with separated bound-
ary conditions is Moszyński’s trick [99]. We adapt this tool for converting the
BVP (2.85), (2.86) to the augmented BVP on the half interval Œa; aCb

2
�,

�
A.t/ 0

0 A.a C b � t/

���
D.t/ 0

0 D.a C b � t/

�
Ox.t/


0
C
�

B 0
0 0

�
D Oq (2.89)
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with

Ox.t/ D
�

x.t/
x.a C b � t/

�
; Oq.t/ D

�
q.t/

q.a C b � t/

�
; t 2 Œa; a C b

2
�;

and the separated boundary condition

�
Ga Gb

0 0

�
Ox.a/C

"
0 0

C aCb
2

�C aCb
2

#
Ox.b/ D

�
�

0

�
; (2.90)

with a matrix C aCb
2

2 L.Rm;Rl/ such that ker C aCb
2

D ker˘can.
aCb
2
/. This

manipulation changes neither the index of the DAE nor the accurateness of the
boundary condition. The new solvability matrix is

OS D
�

GaX.a; a/ GbX.b; a/
0 0

�
C
"

0 0

C aCb
2

X. aCb
2
; a/ �C aCb

2
X. aCb

2
; a/

#
2 L.R2m;R2l/:

(2.91)

The inclusion ker˘��1.a/�ker˘��1.a/ 
 ker OS is a consequence of the respective
property of the fundamental solution matrix. On the other side, OSz D 0 yields
GaX.a; a/z1 C GbX.b; a/z2 D 0 and ˘can.a/.z1 � z2/ D 0, thus .GaX.a; a/ C
GbX.b; a//z1 C GbX.b; a/.z2 � z1/ D Sz1 D 0. Therefore, if ker S D ker˘can.a/
then it follows that z1 2 ker˘can.a/, further z1 2 ker˘can.a/, and finally

ker OS D ker˘��1.a/ � ker˘��1.a/:

2.7 Further References, Comments, and Open Questions

Remark 2.1 (C1-Solutions) Often in the literature one insists on C1-solutions. This
is less appropriate from a functional-analytic viewpoint as shown in detail in [96]. In
any case, the basic structural characteristics of the DAE such as index, characteristic
values, and regularity regions, are independent of the smoothness of the solutions.
Occasional additional smoothness requirements concerning the data imply each
existing C1D-solution also belongs to class C1.

The axiomatic use of C1-solutions, e.g., in [74, 76], necessitates additional
smoothness requirements in principle. For instance, in the linear index-1 system, to
ensure surjectivity in the respective setting C1.I;Rm/ ! C.I;Rm1 / � C1.I;Rm2 /,

�
I 0
0 0

�
x0.t/C

�
B11.t/ B12.t/
B21.t/ B22.t/

�
x.t/ D

�
q1.t/
q2.t/

�
;
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with B22.t/ remaining nonsingular, one has to assume that B21;B22 as well as q2 are
continuously differentiable. Therefore, in this approach, q2 cannot serve as a control
function, being only continuous.

Remark 2.2 (The Class of DAEs) Relations between DAEs in standard form (1.1)
and DAEs showing a properly involved derivative (1.2) have been discussed at great
length in [86, 96]. The setting with properly involved derivative indicates solutions
from C1D.I;Rm/. We emphasize that these are classical solutions; they satisfy the
DAE at all points t 2 I. The present chapter is concerned with classical analytical
theory and the respective numerical treatment.

We do not consider generalized solutions. To this end we mention that, for
special DAEs, measurable solutions satisfying the DAE a.e. on I and distributional
solutions are treated, e.g., in [54, 56, 86, 96, 112].

Remark 2.3 (Regularization) The structure of solutions of BVPs for certain linear
index-1 and index-2 DAEs is investigated in [64] via regularization by singular
perturbations. In particular, it is discussed how consistent boundary conditions can
be stated. Already these case studies show the immense complexity of that approach.
Further related profound studies concerning classes of linear and nonlinear BVPs
are reported in [46, 57–59].

Remark 2.4 (Fundamental Solution Matrices) Given is a regular linear DAE (2.20)
with index �, l D rank˘can.a/, and l � k � m. Each matrix function X W I !
L.Rk;Rm/ with columns from C1D.I;Rm/, satisfying

A.DX/0 C BX D 0;

is said to be a fundamental solution matrix of the DAE if the relation

im X.t/ D im˘can.t/; t 2 I;

is valid. One speaks of maximal(-size) and minimal(-size) fundamental solution
matrices if k D m and k D l, respectively. These notions have been introduced
in [28] for index-1 DAEs in standard form and in [29] for properly stated DAEs
with index 1 and index 2, and in [86] for regular DAEs with arbitrary index.

Given a maximal-size fundamental solution matrix X, a time Nt 2 I, and a matrix
C 2 L.Rl;Rm/ with full column-rank l such that

ker X.Nt/\ im C D f0g; (2.92)

then the product XC is a minimal-size fundamental solution matrix and X.Nt/C
represents a basis of im˘can.Nt/. Namely, X.Nt/Cz D 0 implies Cz D 0, thus z D 0.

If the maximal-size fundamental solution matrix X is normalized at Nt by X.Nt/ D
˘can.Nt/, then the above condition (2.92) simplifies to

ker˘can.Nt/ \ im C D f0g:
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Conversely, if the given fundamental solution matrix X has minimal size and the
matrix C 2 L.Rm;Rl/ has full row-rank l, the product XC is a maximal-size
fundamental solution matrix. To get one that is normalized at Nt, we choose the
special C D X.Nt/� which is the generalized inverse of X.Nt/ defined by

X.Nt/X.Nt/�X.Nt/ D X.Nt/�; X.Nt/�X.Nt/X.Nt/� D X.Nt/�;
X.Nt/X.Nt/� D ˘can.Nt/; X.Nt/�X.Nt/ D I:

In fact, we have then X.Nt/C D X.Nt/X.Nt/� D ˘can.Nt/.
A considerable part of the relevant former literature relies on minimal-size funda-

mental solution matrices, e.g., [38], whereas normalized maximal-size fundamental
solution matrices are used in other parts, e.g., [55]. We mention that maximal-
size fundamental solution matrices are applied for obtaining general solution
representations for linear time-invariant DAEs by means of Drazin inverses and
Wong sequences (e.g., [55, 112]).

The relations between the different fundamental solution matrices of a given
DAE and those of the adjoint DAE are studied in [26, 28, 29]. A generalization
for arbitrary index DAEs is open so far—it seems to be possible in the light of the
projector based analysis.

Remark 2.5 (Shooting Approach) The solvability matrix is often named the shoot-
ing matrix. The shooting approach by maximal fundamental solution matrices to
obtain solvability results is already applied for nonlinear index-1 DAEs in [55, 89]
and for linear standard form DAEs with arbitrary index in [91]. Here we present
a comprehensive generalization for linear DAEs with arbitrary index by means
of the projector-based analysis given in [86], which is straightforward within this
framework. We also address nonlinear DAEs.

Supposing in essence the solution structure (2.30) by a special involved solv-
ability notion for linear DAEs, the shooting approach is justified for linear arbitrary
index (standard form) DAEs in [38]. It is also pointed out that one has to provide
the correct number of boundary conditions l, whereby l is determined by the
investigation of the derivative array system. In contrast to our approach, an arbitrary
minimal fundamental solution matrix  .t; a/ 2 L.Rl;Rm/ which has full column-
rank is applied in [38] instead of the maximal solution matrix X.t; a/ 2 L.Rm;Rm/.
Because of the relations X.t; a/W D  .t; a/, with a full column-rank constant
matrix W 2 L.Rl;Rm/, this yields the quadratic solvability matrix

QS WD Ga .a; a/C Gb .b; a/ D .GaX.a; a/C GbX.b; a//W D SW;

which depends on W, that is on the chosen basis  .a/ of im˘can.a/. Nevertheless,
QS is nonsingular if and only if ker S D ker˘can.a/.

The approach in [111] repeats and extends that of [38] on the slightly different
background of the strangeness-index regularization concept. In particular, a basis
 .a/ of the subspace im˘can.a/ with orthogonal columns is constructed.
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Remark 2.6 (Well-Posedness) Well-posedness and ill-posedness are traditionally
named correctness and noncorrectness in the Russian literature.

Definition 2.2 constitutes a local specification of Hadamard’s well-posedness
notion. It has been used, e.g., in [55, 90]. Actually, it says that the operator represent-
ing the BVP in its natural setting as operator equation is a local diffeomorphism at
x� (cf. [90, 96]). General nonlinear BVPs for index-1 DAEs with accurately stated
boundary conditions are shown to be well-posed in [90] and the ill-posedness for
DAEs with higher index is indicated.

In [111] one can find a further proof of well-posedness in the natural setting for
the so-called regularized BVP, which consists of a special form index-1 DAE and
appropriate boundary conditions.

In [76] well-posedness of BVPs for index-1 DAEs in reduced form (2.98), (2.99)
is obtained in the setting (cf. also Remarks 2.1 and 2.7)

C1.I;Rm/ ! C.I;Rl/ � C1.I;Ra/ � R
l;

which is about C1-solutions.
A different well-posed notion purpose-built for Hessenberg form DAEs describ-

ing multibody systems is agreed upon in [51]. There certain components of the
perturbation are set to zero.

Remark 2.7 (Isolated Solvability) We conjecture that, if the solution x� of the BVP
is located within a regularity region of the DAE, then x� is locally unique exactly if
it is isolated in the sense of Definition 2.5.

Up to now, explicit proofs are known for the general index-1 case and also for
higher-index cases under certain structural restrictions. Such a result is obtained
in [51] for periodic solutions of multibody DAEs. The hitherto applied structural
restrictions become more and more annoying with increasing index, see Sect. 2.5,
[86, Remark 4.5]. It is open to what extent one can do without those restrictions.

Of course, if the original DAE can be reduced locally around the wanted solution
x� to an index-1 DAE possessing the same solutions as the original DAE, and if
x� is an isolated solution of the reduced BVP, then x� is at the same time a locally
unique solution of the original BVP. Unfortunately, this fine idea is not so easy to
predicate on precise criteria. With the notion of a regular solution of the BVP the
authors of [76] attempt to provide such a criterion. We take a closer look.

In [74, 76], nonlinear BVPs

f.x0.t/; x.t/; t/ D 0; t 2 I D Œa; b�; (2.93)

g.x.a/; x.b// D 0; (2.94)

with sufficiently smooth data, are addressed by means of the strangeness-index
reduction framework. A solution is defined to be a sufficiently smooth function
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x� 2 C.I;Rm/ satisfying the system

f.x0�.t/; x�.t/; t/ D 0; t 2 I; (2.95)

f�.P�.t/; x�.t/; t/ D 0; t 2 I; (2.96)

g.x�.a/; x�.b// D 0; (2.97)

where f� denotes the derivative array function and P� W I ! R
m.�C1/ is some

smooth function that coincides with x0�.t/ in its first m components. Under quite
involved hypotheses, there are functions Z� 1;Z� 2, and K�, all depending on x�,
such that the reduced system of l C a D m equations

Of1.x0.t/; x.t/; t/ D 0; (2.98)

Of2.x.t/; t/ D 0; t 2 I; (2.99)

results, with

Of1.x1; x; t/ WD Z� 1.t/T f.x1; x; t/;

Of2.x; t/ WD Z� 2.t/T f�.K�.x; t/; x; t/:

The reduced system has index 0 if a D 0, and otherwise index 1.
Then the solution x� is said to be a regular solution of the original BVP [76],

if the linearized at x� reduced BVP has the trivial solution only. In our context
this means that the reduced BVP is locally well-posed in the related setting (cf.
Remark 2.6). However, this does not say that the original BVP is well-posed! On
this background the claim [76] that the original BVP (2.93), (2.94) takes the form of
the operator equation F.x/ D 0, with F acting in Banach spaces X and Y (perhaps
X D C1.I;Rm/, Y D C.I;Rl/ � C1.I;Ra/ � R

l),

F.x/.t/ WD
2
4

Of1.x0.t/; x.t/; t/
Of2.x.t/; t/

g.x.a/; x.b//

3
5 ; t 2 I;

with a bijective Fréchet derivative F 0.x�/, becomes rather misleading.
As the specific feature of derivative array approaches all involved derivatives

are prepared analytically. This is, in the linear case, comparable to preparing
analytically the functions vq in Sects. 2.2 and 2.3.

Remark 2.8 (Segregation of Solution Subspaces by Means of the Adjoint Equation)
Similarly as is well known for explicit ODEs, any affine linear subspace of
solutions within the whole solution set of a regular index-� DAE, � D 1 or
� D 2, can be segregated by means of solutions of the homogeneous adjoint
DAE [27, 30, 100, 101]. Thereby, the interval I is not necessarily compact. The



234 R. Lamour et al.

generalization for arbitrary high index seems to be possible. We quote the main
result from [30].

Let the DAE (2.49) be regular with index 1 or index 2, and the right-hand side q
be admissible, l D rank˘can.a/, 1 � k � l, s D l � k.

Then a set L � C1D.I;Rm/ is a k-dimensional affine-linear subspace of solutions
of the DAE if and only if it is described by

x 2 L ” x.t/ 2 L.t/; t 2 I;

L.t/ D fz 2 R
m W Y.t/�A.t/D.t/z C �.t/ D 0; z 2 M��1.t/g; t 2 I;

with matrix functions Y W I ! L.Rs;Rm/, � W I ! R
s such that rank Y.t/ D s and

�D�.A�Y/0 C B�Y D 0;

�0 C Y�q D 0:

Linear BVPs for explicit ODEs with separated boundary conditions can be success-
fully solved by so-called transfer methods. Relying on the above representation,
corresponding methods can be created for DAEs, see Sect. 5.2.

Remark 2.9 (Conditioning Constants) In [13], dealing with BVPs for explicit
ODEs, the constant � in the inequality (2.9) and the quantities �1; �2 introduced
in Sect. 2.3 are called conditioning constants. If they have moderate size, then one
speaks of well-conditioned BVPs.

Our presentations in Sects. 2.3 and 2.4 are generalizations of the results in [87,
88] by means of the projector-based analysis from [86].

It should be emphasized once again that the conditioning constants for index-
1 DAEs and higher-index DAEs have essentially different meanings. For index-1
DAEs, the quantities �1; �2; �3 can be seen as specifications of �, which is in turn
actually a bound of the inverse of the operator representing the BVP in its natural
setting.

In case of higher-index DAEs the BVP is necessarily ill-posed in the natural
setting such that a constant � no longer exists, but �1; �2; �3 exist and can show
moderate size. Therefore, for higher-index DAEs, it may happen that a BVP can
be ill-posed but well-conditioned! One should avoid confusions! Here, a well-
conditioned BVP is given, if the boundary condition fits well to the dynamic part of
the DAE. Thereby, the index does not matter.

Special studies concerning the conditioning constants of IVPs for linear Hes-
senberg index-1 and index-2 DAEs, and their sensitivity with respect to several
small parameters are described in [114]. The conditioning of BVPs for index-2
Hessenberg systems is addressed in [8] by means of the reduction to the essential
underlying ODE. In essence, in our context this means well-posedness in the
advanced index-2 setting along with conditioning constants �1; �2; �3 of moderate
size.
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Remark 2.10 (Structural Restriction in Theorem 2.11) Consider the nonlinear
DAE (2.52). If the reference solution x� resides within an index-� regularity
region, then the linearized along x� DAE (2.53) is regular with index �, too, see
Appendix 6.1.3.

The converse is true only for the index-1 case. If the linearized along x�
DAE (2.53) is regular with index 1, then there is a neighborhood of the graph of
x� being an index-1 regularity region.

In contrast, it may well happen that (2.53) is regular with index � � 2, but there
is no regularity region housing the graph of x�, e.g., [86, 95].

If � D 2, then the additional condition (2.68) ensures that x� resides in a
regularity region [92]. We think that the same is true also for arbitrary � � 2,
but a correct proof is not yet available.

There arises a challenging question: To what extend could objectionable condi-
tion (2.68) be replaced by the requirement that x� resides within a regularity region?
Up to now, no answer is in sight.

Remark 2.11 (Scaling of the DAE) It is convenient to analyze the regular implicit
ODE A.t/x0.t/ C B.t/x.t/ D 0 in the explicit form x0.t/ C A.t/�1B.t/x.t/ D 0.
However, for practical computations one usually prefers the implicit form.

As mentioned in Sect. 2.3, the scaling of a given regular index-� DAE by G�1
�

leads, for the scaled DAE, to G� D I. As for regular implicit ODEs, it is unlikely
that this fact could be qualified to practical consequences.

Nevertheless, some useful basic scalings would be welcome for both implicit
regular ODEs and regular DAEs. As yet, there is no solution in sight.

Remark 2.12 (Inequalities (2.9) and (2.8)) In the context of BVPs for explicit
ODEs (e.g., [13]), with good cause, one commonly uses the practically more
convenient norm k � k1 instead of k � kC1 . Analogously, one is allowed to replace
the inequality (2.8) by the simpler inequality (2.9) by the following arguments: The
inequality (2.8) immediately implies (2.9), that is,

kx � x�k1 � kx � x�kC1D � �.j� j C kqk1/:

Conversely, (2.8) follows from (2.9). Namely, for x 2 BC1D.x�; �/, the identities

f ..Dx�/0.t/; x�.t/; t/ D 0; f ..Dx/0.t/; x.t/; t/ D q.t/; t 2 I;

imply

AŒx;x
�

�.t/.Dx � Dx�/0.t/C BŒx;x
�

�.t/.x.t/ � x�.t// D q.t/; t 2 I; (2.100)
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with uniformly bounded coefficients

AŒx;x
�

�.t/ WD
Z 1

0

fy..Dx�/0.t/C s..Dx/0.t/ � .Dx�/0.t/; x�.t/C s.x.t/ � x�.t//; t/ds;

BŒx;x
�

�.t/ WD
Z 1

0

fx..Dx�/0.t/C s..Dx/0.t/� .Dx�/0.t/; x�.t/C s.x.t/ � x�.t//; t/ds:

We have rank AŒx;x
�

�.t/ � rank A�.t/ D rank D.t/ D r because of ker AŒx;x
�

�.t/ D
ker R.t/ and, if � is sufficiently small, rank AŒx;x

�

�.t/ � rank A�.t/ D rank D.t/ D r,
since

AŒx;x
�

�.t/ D A�.t/C RŒx;x
�

�.t/; jRŒx;x
�

�.t/j � k0kx � x�kC1D � k0�;

and hence

ker AŒx;x
�

�.t/ D ker A�.t/ D ker R.t/ D im D.t/; rank AŒx;x
�

�.t/ D r; t 2 I:

Choosing a continuous generalized inverse AŒx;x
�

�.t/� such that AŒx;x
�

�.t/�AŒx;x
�

�.t/ D
R.t/ and multiplying equation (2.100) by AŒx;x

�

�.t/� leads to

R.t/.Dx � Dx�/0.t/C AŒx;x
�

�.t/
�BŒx;x

�

�.t/.x.t/ � x�.t// D AŒx;x
�

�.t/
�q.t/; t 2 I;

further

.Dx � Dx�/0.t/ � R0.t/.Dx � Dx�/.t/C AŒx;x
�

�.t/
�BŒx;x

�

�.t/.x.t/ � x�.t//

D AŒx;x
�

�.t/
�q.t/; t 2 I;

and then

k.Dx � Dx�/0k1 � k1k.x � x�k1 C k2kqk1:

Regarding (2.9) we finally obtain

kx � x�kC1D � .k1 C 1/�.j� j C kqk1/C k2kqk1 � K.j� j C kqk1/:

The same arguments also apply to the respective inequalities associated with
well-posedness in advanced settings.
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3 Collocation Methods for Well-Posed BVPs

Piecewise polynomial collocation is an accepted method to approximately solve
classical well-posed BVPs for regular ODEs. Several general purpose codes are
implemented, which have been successfully applied to a great variety of practical
problems. For instance, the package COLSYS [12] and its later modification
COLNEW [13, 21] can be used to solve multipoint BVPs for mixed-order systems of
explicit ODEs. This leads to the idea to treat additional constraints, i.e., derivative-
free equations, as zero-order ODEs as done in [62] for semi-explicit DAEs

x0
1.t/C k1.x1.t/; x2.t/; t/ D 0; (3.1)

k2.x1.t/; x2.t/; t/ D 0; (3.2)

with index 1. The package COLDAE [11] also uses this approach, but for a wider
class of DAEs. The MATLAB code BVPSUITE [16] is designed to solve systems of
implicit ODEs of arbitrary order including order zero, which includes an implicit
version of (3.1).

We restrict our interest to two-point BVPs and refer to Sect. 2.6 for other
boundary conditions.

As pointed out in Sect. 2.5, BVPs for DAEs may be locally well-posed in
different senses: in the natural setting, in the advanced setting and in the setting
associated to the special reduced form, see Remark 2.6,

f1.x
0.t/; x.t/; t/ D 0; (3.3)

f2.x.t/; t/ D 0; (3.4)

which inter alia arises by reduction from derivative array systems (e.g., [76]). In
addition to the regular DAEs we also consider singular index-1 DAEs featuring a
singular inherent explicit ODE. In the latter case, it is more difficult to state the
boundary conditions and to achieve well-posedness.

The semi-explicit DAE (3.1), (3.2) indicates the different smoothness of the first
and second components, which can be reasonably resumed for their approximations
(e.g., [11, 23, 42, 62, 73]). A useful generalization of this class of DAEs is given by
DAEs with properly involved derivatives

f ..Dx/0.t/; x.t/; t/ D 0; (3.5)

which satisfy the basic assumption from Sect. 2.1, and, additionally,

im D.t/ D R
n; t 2 Œa; b� D I; (3.6)
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which leads to the border projector R.t/ � I. Then the enlarged DAE

f .u0.t/; x.t/; t/ D 0; (3.7)

u.t/� D.t/x.t/ D 0 (3.8)

features partitioned variables. For each solution x� of (3.5), the pair .Dx�; x�/ solves
the enlarged DAE. Conversely, if .u�; x�/ is a solution of the enlarged DAE, then
the component x� is a solution of (3.5).

Furthermore, the enlarged DAE is regular with index 1, exactly if the original
DAE is regular with index 1. It can be seen by straightforward computations that, in
the index-1 case, both DAEs have the same IERODE,

u0.t/ D D.t/!.u.t/; t/ (3.9)

and the dynamical degree of freedom l D n D rank D.a/. Thereby, ! is the
decoupling function introduced in Sect. 2.5.1 for index-1 problems.

With the boundary condition

g.x.a/; x.b/ D 0; (3.10)

a well-posed BVP (3.5), (3.10), yields a well-posed BVP (3.7), (3.8), (3.10), and
vice versa.

As pointed out in [61], [86, Chap. 5], in the context of integration methods, it is
reasonable to turn to models with constant border projector, so-called numerically
qualified DAEs and to arrange numerical approximations via the enlarged DAE.
Owing to the time-invariance of the border projector, the methods are transferred
to the IERODE with no mutation. Otherwise the methods might change substan-
tially, for instance, the implicit Euler method might be converted into its explicit
counterpart.

For the collocation methods, we define meshes

� WD fa D t0 < t1 < � � � < ti < tiC1 < : : : < tN D bg;

with step sizes hi WD tiC1 � ti; i D 0; : : : ;N � 1. We allow equidistant meshes
hi D h; i D 0; : : : ;N � 1, and non-uniform meshes which have a limited variation
in the step sizes, i.e.,

h WD max
iD0;:::;N�1 hi � � min

iD0;:::;N�1 hi;

with a general constant �.
In each subinterval Œti; tiC1� we insert s collocation points �ik WD ti C hi�k; k D

1; : : : ; s, using s distinct canonical points

0 � �1 < � � � < �s � 1:
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Fig. 6 The computational grid

A grid with equidistant interior collocation points is illustrated in Fig. 6.
We denote by Bj

�;s the linear space of vector-valued functions with j components
given on Œa; b� so that, according to the mesh � , each component is a piecewise
polynomial function of degree � s. To be precise, we agree upon right continuity at
the mesh points t0; : : : ; tN�1.

An attractive feature of collocation schemes is their possible high accuracy at the
mesh points t0; : : : ; tN , called superconvergence [39]. For classical BVPs in regular
first order ODEs one usually approximates the solution by continuous piecewise
polynomial functions. This leads to a uniform error order s. Depending on the
canonical collocation points, the order at the mesh points can be higher. More
precisely, if there is an integer s < sC � 2s, and the canonical collocation points
�1 < � � � < �s satisfy the orthogonality relations

Z 1

0

tj
sY

iD1
.t � �i/dt D 0; j D 0; : : : ; sC � s; (3.11)

then sC is the superconvergence order in the context of nonstiff regular explicit
ODEs. For instance, one has sC D 2s for Gauss schemes, sC D 2s � 1 for Radau
schemes, and sC D 2s � 2 for Lobatto schemes [39].

There are a variety of possible collocation approaches for DAEs. As emphasized
in [11], collocating the differential components by continuous piecewise polynomial
functions and allowing generally discontinuous piecewise polynomial functions
for the algebraic components is most natural, see Sects. 3.1.1 and 3.3. Alterna-
tive approaches suppose continuous (Approach A in Sect. 3.1.2, Approach C in
Sect. 3.1.4, and Sect. 3.2) or discontinuous (Approach B in Sect. 3.1.3) piecewise
polynomial functions uniformly for all components.

In contrast to regular ODEs, any solution x� of a DAE proceeds within the
so-called obvious constraint set of the DAE, x�.t/ 2 M0.t/ for all t. This leads to
the extra question in the context of DAEs whether the approximation values x�.ti/
are consistent, which means x�.ti/ 2 M0.ti/.

3.1 BVPs Well-Posed in the Natural Setting

Let the BVP (3.5), (3.10), satisfy the basic assumptions described in Sect. 2.1, let
the DAE have a properly involved derivative, and let (3.6) be valid. Let x� denote
the required solution, and u� D Dx�.
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Theorem 2.7 provides precise criteria for the local well-posedness in the natural
setting. Therefore we assume that the DAE is regular with index 1, the boundary
conditions are stated accurately and l D rank D.a/.

3.1.1 Partitioned Component Approximation

We continue considering the well-posed BVP (3.5), (3.10) by means of the enlarged
version (3.7), (3.8), (3.10). Let u� 2 Bn

�;s \ C.I;Rn/ and x� 2 Bm
�;s�1 serve as

approximations of u� and x�, respectively. The required continuity of u� means

u�.t
�
i / D u�.ti/; i D 1; : : : ;N � 1; (3.12)

and therefore, we have to determine n.s C 1/N C msN � n.N � 1/ D .n C m/sN C n
remaining unknowns. The boundary condition (3.10) yields

g.x�.a/; x�.b// D �; (3.13)

which contains n equations. To create a balanced system, we apply the .n C m/sN
collocation equations

f .u0
�.�ik/; x�.�ik/; �ik/ D 0; (3.14)

u�.�ik/� D.�ik/x�.�ik/ D 0; k D 1; : : : ; s; i D 0; : : : ;N � 1: (3.15)

If �1 D 0, then u0
�.�i1/ is the right derivative at �i1 D ti; if �s D 1, then u0

�.�is/ is
defined as the left derivative at �is D tiC1.

By means of the decoupling function the scheme (3.14), (3.15) transforms to

x�.�ik/ D D.�ik/
�u�.�ik/C Q0.�ik/!.u�.�ik/; �ik/; (3.16)

u0
�.�ik/ D D.�ik/!.u�.�ik/; �ik/; k D 1; : : : ; s; i D 0; : : : ;N � 1: (3.17)

On the other hand, we are given the solution representation (cf. (2.61), (2.62))

x�.t/ D D.t/�u�.t/C Q0.t/!.u�.t/; t/; (3.18)

u0�.t/ D D.t/!.u�.t/; t/; t 2 Œa; b�: (3.19)

In particular, u� satisfies the IERODE (3.9). Obviously, the collocation
scheme (3.14), (3.15), (3.12) results in the classical collocation scheme for the
IERODE subject to the boundary conditions. Therefore, u� is uniquely determined,
and, in turn, x� is also unique by (3.16).

The next theorem represents a straightforward extension of [23, Theorem 3.2]
which concerns semi-explicit index-1 DAEs. It can be proved analogously.
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Theorem 3.1 Let the BVP (3.5), (3.10) be well-posed locally around its solution x�
in the natural setting. Let condition (3.6) hold and the data of the DAE be sufficiently
smooth for respective order conditions.

Then, for the collocation scheme (3.14), (3.15), (3.13), (3.12), the following
statements hold:

(1) There is a h� > 0, such that, for meshes with h � h�, there exists a unique
collocation solution u� , x� in the sufficiently close neighborhood of u�, x�.

(2) With a sufficiently good initial guess, the collocation solution can be generated
by the Newton method, which converges quadratically.

(3) It holds that

kx� � x�k1 D O.hs/; ku� � u�k1 D O.hs/:

(4) If there is an integer s < sC � 2s, and the canonical collocation points satisfy
the orthogonality relations (3.11), then the superconvergence property

max
iD0;:::;Nju�.ti/� u�.ti/j D O.hs

C/

holds for the smooth component.
(5) If �1 D 0; �s D 1, then the approximations become smoother. More precisely,

u� 2 Bn
�;s \ C1.I;Rn/ and x� 2 Bm

�;s�1 \ C.I;Rn/.
(6) For Lobatto points the superconvergence applies to all components,

max
iD0;:::;Njx�.ti/ � x�.ti/j D O.h2s�2/:

Except for methods with canonical points �1 D 0; �s D 1, such as Lobatto methods,
the generated values at mesh points x�.ti/ do not necessarily belong to the obvious
constraint M0.ti/, means which they may fail to be consistent. This might be seen
to be a drawback. For methods with canonical points �1 > 0; �s D 1, such as the
Radau IIA method, one obtains x�.ti/ 2 M0.ti/ for i > 0. This is widely appreciated
in the context of numerical integration.

3.1.2 Uniform Approach A

Again we consider the well-posed BVP (3.5), (3.10) by means of the enlarged
version (3.7), (3.8), (3.10). Now we approximate all components by continuous
piecewise polynomials of the same degree. Let u� 2 Bn

�;s \ C.I;Rn/ and x� 2
Bm
�;s \ C.I;Rm/ serve as approximations of u� and x�, respectively. The required

continuity means

u�.t
�
i / D u�.ti/; x�.t

�
i / D x�.ti/; i D 1; : : : ;N � 1; (3.20)
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and we have to determine .n C m/.s C 1/N � .n C m/.N � 1/ D .n C m/.sN C 1/

further coefficients. The boundary condition (3.10) contains n equations. We now
apply the .n C m/sN collocation equations and the boundary conditions

f .u0
�.�ik/; x�.�ik/; �ik/ D 0; (3.21)

u�.�ik/� D.�ik/x�.�ik/ D 0; k D 1; : : : ; s; i D 0; : : : ;N � 1; (3.22)

g.x�.a/; x�.b// D �; (3.23)

with �1 > 0. If �s D 1, then u0
�.�is/ is defined as the left derivative at �is D tiC1.

By inspection, we see that m further conditions are necessary to close the system
for the numerical treatment and these additional conditions have to be consistent
with the original DAEs. For this purpose we introduce a matrix function QW.y; x; t/ 2
L.Rm;Rm�n/ such that ker QW.y; x; t/ D im fy.y; x; t/ and complete the above scheme
by the following n C .m � n/ D m equations:

D.a/x�.a/� u�.a/ D 0; QW.u0
�.a/; x�.a/; a/f .u

0
�.a/; x�.a/; a/ D 0: (3.24)

Observe that �1 D 0 would lead to �0 1 D t0 D a and cause the second part of the
consistency condition (3.24) and the collocation (3.21) for i D 0, k D 1 to become
redundant.

If the DAE is given with separated derivative-free equations

f1..D.t/x.t//
0; x.t/; t/ D 0;

f2.x.t/; t/ D 0;

where f1 and f2 have n and m � n components, respectively, then we can augment
the scheme by

D.a/x�.a/� u�.a/ D 0; f2.x�.a/; a/ D 0:

We observe that �1 D 0 yields �0 1 D t0 D a. Again, Eqs. (3.21), (3.22) can be
decoupled,

x�.�ik/ D D.�ik/
�u�.�ik/C Q0.�ik/!.u�.�ik/; �ik/; (3.25)

u0
�.�ik/ D D.�ik/!.u�.�ik/; �ik/; k D 1; : : : ; s; i D 0; : : : ;N � 1: (3.26)

Therefore, the related equations from (3.21), (3.22), (3.20), (3.23) result in the
classical collocation scheme for the IERODE, and hence u� is uniquely determined.
In turn, for given u� , the approximation x� is uniquely determined by the condi-
tions (3.25), (3.24) together with the continuity conditions (3.20).

The following theorem is a byproduct of the investigations in [43, 72] which were
originally devoted to problems featuring a singularity at t D a. An analogous result
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is valid for �s < 1 instead of �1 > 0, if one states condition (3.24) accordingly at
the right interval end b.

Theorem 3.2 Under the assumptions of Theorem 3.1, the following statements hold
for the collocation scheme (3.21), (3.22), (3.23), (3.20), (3.24) with �1 > 0:

(1) There is a h� > 0, such that, for meshes with h � h�, there exists a unique
collocation solution u� , x� in the sufficiently close neighborhood of u�, x�.

(2) For a sufficiently good initial guess, the collocation solution can be generated
by the Newton method, which converges quadratically.

(3) It holds that

kx� � x�k1 D O.hs/; ku� � u�k1 D O.hs/:

At the time being, there is only an experimental observation of the superconvergence
properties described below. The analysis of this aspect of the collocation is still
missing. For collocation points satisfying (3.11) the following observation have
been made:

kx� � x�k1 D O.hs/; ku� � u�k1 D O.hsC1/

and

ju�.ti/� u�.ti/j D 0.hs
C/; i D 0; : : : ;N:

In case of a sufficiently smooth solution x�, its global error for s equidistant
collocation points is O.hs/ uniformly in t, while for Gauss and Radau points, the
global error is O.hsC1/ uniformly in t. For the global error concerning the part u, the
superconvergence order seems to hold, at least for Radau points. Clearly, when the
solution of the problem is not sufficiently smooth, order reductions are observed, in
line with classical collocation theory.

Example 3.1 The BVP

2
4
1 �t t2

0 1 �t
0 0 0

3
5 x0.t/C

2
4
1 �.t C 1/ t2 C 2t
0 �1 t � 1
0 0 1

3
5 x.t/ D

2
4
0

0

sin t

3
5 ; t 2 I D Œ0; 1�;

x1.0/ D 1;

x2.1/� x3.1/ D e;

serves as test problem in [38]. The unique solution is

x1.t/ D e�t C tet; x2.t/ D et C t sin t; x3.t/ D sin t:
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We used the equivalent formulation of the DAE with properly stated leading term

2
4
1 �t
0 1

0 0

3
5
��
1 0 0

0 1 �t

�
x


0
.t/C

2
4
1 �.t C 1/ t2 C t
0 �1 t
0 0 1

3
5 x.t/ D

2
4
0

0

sin t

3
5 :

The DAE is regular with index 1, the boundary conditions are accurately stated, and
the BVP is well-posed.

In [38] the implicit midpoint rule is applied, and it is reported that the error
behaves consistently as O.h2/. Tables 1, 2, 3, 4, 5, and 6 show the results generated
by the collocation scheme (3.20)–(3.23), for s D 1; 2; 3, each with uniform and
Gauss collocation. gex� and geu� denote the maximal global errors in the mesh
points, and gexunif and geuunif are discrete maxima taken over 1000 equidistributed
points. �

Table 1 Example 3.1, s D 1, uniform collocation

s=1, uniform gex� gexunif

N h Error Order Error Order

40 0.025 2.92676e�04 1.999 4.53226e�04 1.976

80 0.0125 7.31839e�05 2.000 1.14392e�04 1.986

160 0.00625 1.82969e�05 2.000 2.87355e�05 1.993

320 0.00313 4.57429e�06 2.000 7.09675e�06 2.018

s=1, uniform geu� geuunif

N h Error Order Error Order

40 0.025 2.02790e�04 2.000 4.53226e�04 1.976

80 0.0125 5.06967e�05 2.000 1.14392e�04 1.986

160 0.00625 1.26741e�05 2.000 2.87355e�05 1.993

320 0.00313 3.16853e�06 2.000 7.09675e�06 2.018

Table 2 Example 3.1, s D 1, Gauß collocation

s=1, Gaussian gex� gexunif

N h Error Order Error Order

40 0.025 2.92676e�04 1.999 4.53226e�04 1.976

80 0.0125 7.31839e�05 2.000 1.14392e�04 1.986

160 0.00625 1.82969e�05 2.000 2.87355e�05 1.993

320 0.00313 4.57429e�06 2.000 7.09675e�06 2.018

s=1, Gaussian geu� geuunif

N h Error Order Error Order

40 0.025 2.02790e�04 2.000 4.53226e�04 1.976

80 0.0125 5.06967e�05 2.000 1.14392e�04 1.986

160 0.00625 1.26741e�05 2.000 2.87355e�05 1.993

320 0.00313 3.16853e�06 2.000 7.09675e�06 2.018

Table 3 Example 3.1, s D 2, uniform collocation

s=2, uniform gex� gexunif

N h Error Order Error Order

40 0.025 5.48222e�05 2.000 5.48222e�05 2.000

80 0.0125 1.37054e�05 2.000 1.37054e�05 2.000

160 0.00625 3.42635e�06 2.000 3.42635e�06 2.000

320 0.00313 8.56588e�07 2.000 8.56588e�07 2.000

s=2, uniform geu� geuunif

N h Error Order Error Order

40 0.025 5.48222e�05 2.000 5.48222e�05 2.000

80 0.0125 1.37054e�05 2.000 1.37054e�05 2.000

160 0.00625 3.42635e�06 2.000 3.42635e�06 2.000

320 0.00313 8.56588e�07 2.000 8.56588e�07 2.000

Table 4 Example 3.1, s D 2, Gauß collocation

s=2, Gaussian gex� gexunif

N h Error Order Error Order

40 0.025 1.59617e�05 2.000 1.59617e�05 2.000

80 0.0125 3.99043e�06 2.000 3.99043e�06 2.000

160 0.00625 9.97608e�07 2.000 9.97608e�07 2.000

320 0.00313 2.49402e�07 2.000 2.49402e�07 2.000

s=2, Gaussian geu� geuunif

N h Error Order Error Order

40 0.025 2.98818e�09 4.000 1.29681e�06 2.984

80 0.0125 1.86771e�10 4.000 1.62452e�07 2.997

160 0.00625 1.16747e�11 4.000 2.04121e�08 2.993

320 0.00313 7.24754e�13 4.010 2.52902e�09 3.013



Boundary-Value Problems for Differential-Algebraic Equations: A Survey 245

Table 5 Example 3.1, s D 3, uniform collocation

s=3, uniform gex� gexunif

N h Error Order Error Order

40 0.025 4.22512e�09 3.999 4.93475e�09 3.976

80 0.0125 2.64144e�10 4.000 3.10976e�10 3.988

160 0.00625 1.65843e�11 3.993 1.93570e�11 4.006

320 0.00313 1.04050e�12 3.994 1.21325e�12 3.996

s=3, uniform geu� geuunif

N h Error Order Error Order

40 0.025 2.96391e�09 4.000 4.93475e�09 3.976

80 0.0125 1.85253e�10 4.000 3.10976e�10 3.988

160 0.00625 1.15774e�11 4.000 1.93570e�11 4.006

320 0.00313 7.23421e�13 4.000 1.21281e�12 3.996

Table 6 Example 3.1, s D 3, Gauß collocation

s=3, Gaussian gex� gexunif

N h Error Order Error Order

40 0.025 2.50651e�09 3.999 2.77352e�09 3.993

80 0.0125 1.56677e�10 4.000 1.74531e�10 3.990

160 0.00625 9.78662e�12 4.001 1.09468e�11 3.995

320 0.00313 6.16396e�13 3.989 6.83453e�13 4.002

s=3, Gaussian geu� geuunif

N h Error Order Error Order

40 0.025 2.13163e�14 5.965 2.77352e�09 3.993

80 0.0125 8.88178e�16 4.585 1.74530e�10 3.990

160 0.00625 1.77636e�15 �1.000 1.09472e�11 3.995

320 0.00313 5.32907e�15 �1.585 6.83009e�13 4.003

3.1.3 Uniform Approach B

Any regular index-1 DAE in standard form

E.t/x0.t/C F.t/x.t/ D q.t/ (3.27)

can be reformulated as regular index-1 DAE with properly stated leading term

A.t/.Dx/0.t/C B.t/x.t/ D q.t/ (3.28)

by means of a proper factorization E D AD, and B D E � AD0. The BVP for (3.27)
and the boundary condition

Gax.a/C Gbx.b/ D � (3.29)

is well-posed in the natural setting exactly if this is the case for the
BVP (3.28), (3.29).

This time we approximate the solution x� of the linear well-posed BVP by a
possibly discontinuous x� 2 Bm

�;s and consider the system

A.�ik/.Dx�/
0.�ik/C B.�ik/x�.�ik/ D q.�ik/; k D 1; : : : ; s; i D 0; : : : ;N � 1;

(3.30)

D.ti/.x�.t
�
i /� x�.ti// D 0; i D 1; : : : ;N � 1; (3.31)

x�.ti/ 2 M0.ti/; i D 0; : : : ;N � 1; (3.32)

Gax�.a/C Gbx�.b/ D �; (3.33)
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which consists of the usual smN collocation conditions (3.30), .N � 1/n continuity
conditions applying only to the component Dx� which approximates the smooth
solution component Dx�, further, N.m � n/ consistency conditions (3.32), and the
n boundary conditions. Altogether one has .s C 1/Nm conditions to determine all
.s C 1/Nm coefficients of x� .

If �1 D 0, then (3.30) already contains the condition x�.�01/ D x�.t0/ 2 M0.t0/
and the equation (3.32) with i D 0 is redundant.

For �1 > 0, the approximation x� is uniquely determined. It should be
emphasized that x� is not necessarily continuous, but the product Dx� is so. The
values x�.t1/; : : : ; x�.tN/ are consistent by construction. In the case of �s D 1, in
particular for Radau IIa, x� is continuous in t1; : : : ; tN .

This approach partly reflects ideas of both Sects. 3.1.2 and 3.1.1. It was intro-
duced and studied in [22–24] for BVPs in standard form DAEs with the aim to
preserve superconvergence properties of Gauss and Radau collocations. The system
originally proposed in [23, p. 39] reads:

E.�ik/x
0
�.�ik/C F.�ik/x�.�ik/ D q.�ik/; k D 1; : : : ; s; i D 0; : : : ;N � 1;

(3.34)

E1.ti/.x�.t
�
i /� x�.ti// D 0; i D 1; : : : ;N � 1; (3.35)

F2.ti/x�.ti/ � q2.ti/ D 0; i D 0; : : : ;N � 1; (3.36)

Gax�.a/C Gbx�.b/ D �; (3.37)

whereby the transformation

S.t/E.t/ D
�

E1.t/
0

�
; S.t/F.t/ D

�
F1.t/
F2.t/

�
; S.t/q.t/ D

�
q1.t/
q2.t/

�
;

is applied. Since rank E1.t/ D n, this corresponds to the factorization

E.t/ D S.t/�1
�

E1.t/
0

�
D .S.t/�1

�
I
0

�
/E1.t/ DW A.t/D.t/:

Consequently, Eqs. (3.31)–(3.33) coincide with (3.35)–(3.37), respectively. The
relation

E.�ik/x
0
� D A.�ik/D.�ik/x

0
� D A.�ik/.Dx�/

0.�ik/ � A.�ik/D
0.�ik/x�.�ik/

is valid for the right derivatives. This shows that also (3.30) and (3.34) coincide. The
next theorem is a consequence of [23, Theorem 5.11].

Theorem 3.3 Let the linear BVP (3.27), (3.29) be well-posed in the natural setting.
Let the data of the DAE be sufficiently smooth for respective order conditions.
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Then, for the collocation scheme (3.14)–(3.37), with �1 > 0 , the following
statements hold:

(1) There is a h� > 0, such that, for meshes with h � h�, there exists a unique
collocation solution x� .

(2) It holds that

kx� � x�k1 D O.hmin.sC1; s
C

//:

(3) For Radau and Gauss points the superconvergence order holds,

max
iD0;:::;Njx�.ti/� x�.ti/j D O.hs

C/:

The method is applied in [23] to well-posed nonlinear BVPs

f.x0.t/; x.t/; t/ D 0; t 2 Œa; b�;
g.x.a/; x.b// D 0:

To this aim, it is supposed that there is a transformation S depending at most on x
and t such that

S.x; t/fx0.x0; x; t/ D
�

E1.x0; x; t/
0

�
; rank E1.x

0; x; t/ D n:

Then it follows that the second part of Sf is independent of x0 [23, Lemma 7.1], and
thus

S.x; t/f.x0; x; t/ DW
�

F1.x0; x; t/
F2.x; t/

�
:

Finally the corresponding collocation scheme reads:

f.x0
�.�ik/; x�.�ik/; �ik/ D 0; k D 1; : : : ; s; i D 0; : : : ;N � 1; (3.38)

E1.x
0
�.�ik/; x�.�ik/; �ik/.x�.t

�
i /� x�.ti// D 0; i D 1; : : : ;N � 1; (3.39)

F2.x�.�ik/; �ik/ D 0; i D 0; : : : ;N � 1; (3.40)

g.x�.a/; x�.b// D 0: (3.41)

For s > 2, Theorem 3.3 applies accordingly also to this nonlinear case, in particular
the desired superconvergence properties for Radau and Gauss points are retained,
see [23, Theorems 7.5 and 7.6]. If the function f is linear in x0, this is also valid for
s D 2.
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3.1.4 Uniform Approach C

As proposed in [111], one can approximate the solution x� of the linear well-posed
BVP (3.27), (3.29) by a continuous piecewise polynomial function x� 2 Bm

�;s \
C.I;Rm/ using the system

E.�ik/x
0
�.�ik/C F.�ik/x�.�ik/ D q.�ik/; k D 1; : : : ; s; i D 0; : : : ;N � 1;

(3.42)

x�.t
�
i /� x�.ti/ D 0; i D 1; : : : ;N � 1; (3.43)

F2.a/x�.a/� q2.a/ D 0; (3.44)

Gax�.a/C Gbx�.b/ D �; (3.45)

or, equivalently (cf. Sect. 3.1.3), by

A.�ik/.Dx�/
0.�ik/C B.�ik/x�.�ik/ D q.�ik/; k D 1; : : : ; s; i D 0; : : : ;N � 1;

(3.46)

x�.t
�
i / � x�.ti/ D 0; i D 1; : : : ;N � 1; (3.47)

x�.a/ 2 M0.a/; (3.48)

Gax�.a/C Gbx�.b/ D �: (3.49)

Again, one has to determine .sC1/Nm coefficients of x� by means of the .sC1/mN
collocation conditions, m.N � 1/ continuity conditions, the consistency condition
with m � n equations, and the n boundary conditions. We see that the number
of unknown coefficients and the number of conditions are the same. In [111], the
discussion is restricted to the case

�1 > 0; �s D 1;

and Radau methods are in the focus of interest. We quote results given in [111, Sätze
5.1, 5.2, and 5.3].

Theorem 3.4 Let the linear BVP (3.27), (3.29) be well-posed in the natural setting.
Let E and F be twice continuously differentiable.

Then, for the collocation scheme (3.42)–(3.45), with �1 > 0 and �s D 1, the
following statements hold:

(1) There is a h� > 0, such that, for meshes with h � h�, there exists a unique
collocation solution x� 2 Bm

�;s \ C.I;Rm/.
(2) If the data of the DAE is sufficiently smooth, then

kx� � x�k1 D O.hs/:
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(3) For Radau points the superconvergence order holds,

max
iD0;:::;Njx�.ti/ � x�.ti/j D O.h2s�1/:

3.2 Partitioned Equations

For the DAE (3.3), (3.4) featuring explicitly the derivative-free equation one has the
option to apply different collocation points in the first and second equations. This
is proposed in [74–76] by combining the Gauss scheme with s points for the first
equation and the Lobatto scheme with s C 1 points for the second one.

The BVP for the DAE (3.3), (3.4), with n and m � n equations, and the boundary
condition (3.10) is now assumed to be well-posed in the modified setting with
pre-image space C1.I;Rm/ and image space C.I;Rn/ � C1.I;Rm�n/ � R

n, see
Remarks 2.1 and 2.6. We discuss here the case when m � n > 0. This means that
the DAE has index 1.

The linear BVP for the partitioned index-1 DAE with n and m � n equations

E1.t/x
0.t/C F1.t/x.t/ D q1.t/; (3.50)

F2.t/x.t/ D q2.t/; (3.51)

is treated in [75] by means of the symmetric scheme

E1.�ik/x
0
�.�ik/C F1.�ik/x�.�ik/ D q1.�ik/; k D 1; : : : ; s; i D 0; : : : ;N � 1;

(3.52)

F2.�
L
ik/x�.�

L
ik/ D q2.�

L
ik/; k D 0; : : : ; s; i D 0; : : : ;N � 1;

(3.53)

T2.ti/
�.x�.t�i /� x�.ti// D 0; i D 1; : : : ;N � 1; (3.54)

Gax�.a/C Gbx�.b/ D � (3.55)

with Gauss points 0 < �1 < � � � < �s < 1 and Lobatto points 0 D �L
0 < � � � <

�L
s D 1. The matrix T2.t/ 2 L.Rn;Rm/ has, by construction, full column-rank n and

satisfies the condition F2.t/T2.t/ D 0 for all t 2 Œa; b�.
To compute the m.s C 1/N unknowns of x� 2 Bm

�; s one has sNn C .s C 1/N.m �
n/ C n.N � 1/ C n D .s C 1/Nm conditions so that the system is balanced. The
following theorem combines parts of [75, Theorems 3.1–3.3].

Theorem 3.5 Let the linear BVP (3.50), (3.51), (3.10) be well-posed in the modified
index-1 setting. Let E and F be twice continuously differentiable.
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Then, if h is sufficiently small, the following statements hold:

(1) There is a unique continuous collocation solution x� 2 Bm
�;s \ C.I;Rm/ that

satisfies the collocation conditions (3.52) and (3.53), the boundary condi-
tion (3.10) as well as the consistency conditions (3.54).

(2) It holds that

kx� � x�k1 D O.hs/:

(3) If the data of the DAE is sufficiently smooth, then superconvergence order holds,

max
iD0;:::;Njx�.ti/� x�.ti/j D O.h2s/:

Condition (3.54) is no longer mentioned in Theorem 3.5. It only ensures the
continuity of the differential component, similar to condition (3.35). In fact, (3.54)
could be replaced by the easier conditions (3.35). Namely, for each fixed 1 � i �
N � 1, one has from (3.53) the equations

0 D F2.ti/x�.�
L
i�1 s/C q2.ti/ D F2.ti/x�.t

�
i /C q2.ti/;

0 D F2.ti/x�.�
L
i 0/C q2.ti/ D F2.ti/x�.ti/C q2.ti/;

thus, F2.ti/.x�.t�i /�x�.ti// D 0. Regarding, additionally, one of the two conditions

T2.ti/
�.x�.t�i /� x�.ti// D 0; E1.ti/.x�.t

�
i /� x�.ti// D 0;

implies x�.t�i /� x�.ti/ D 0, since both matrices,

�
T2.ti/�
F2.ti/

�
and

�
E1.ti/
F2.ti/

�

are nonsingular.
The approach is extended in [74, 76] to nonlinear BVPs with partitioned

DAEs (3.3), (3.4) by means of the scheme

f1.x
0
�.�ik/; x�.�ik/; �ik/ D 0; k D 1; : : : ; s; i D 0; : : : ;N � 1; (3.56)

f2.x�.�
L
ik/; �

L
ik// D 0; k D 0; : : : ; s; i D 0; : : : ;N � 1; (3.57)

g.x�.a/; x�.b// D 0: (3.58)

For the above scheme, a result analogous to Theorem 3.5 is given. The continuity
conditions are now hidden in the claim concerning the continuity of x� 2 Bm

�;s.
The convergence and error investigations in [74–76] are solely directed to the

partitioned index-1 DAE, which is seen there as reduced system of a general
arbitrary index DAE satisfying a series of hypotheses, see Remark 2.7. The
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collocation procedure described in [74, 76] is strongly interlinked with the reduction
procedure via the derivative array system. Possible errors in the reduction procedure
are neglected.

3.3 BVPs for Index-2 DAEs

BVPs for higher-index DAEs are ill-posed in the natural setting even though the
boundary conditions are accurately stated—this is the clear message of Theo-
rem 2.7. Fortunately, for a large class of index-2 DAEs, the BVPs with accu-
rately stated boundary conditions become well-posed in the advanced setting, see
Sect. 2.5.2. In this case, the associated inequality (2.66) reads:

kx � x�k1 � � . j� j C kqk1 C k.DQ� 1G�1� 2q/0k1/: (3.59)

The linear Hessenberg system of m1 and m2 � m1 equations,

x0
1.t/C B11.t/x1.t/C B12.t/x2.t/ D q1.t/;

B21.t/x1.t/ D q1.t/;

with sufficiently smooth coefficients and B21.t/B12.t/ remaining nonsingular,
belongs to this class, cf., Example 2.3. We have to provide l D m1 � m2 boundary
conditions

Gax.a/C Gbx.b/ D �:

For boundary conditions which are accurately stated, the homogeneous linear BVP
has the trivial solution x� D 0 only. For the solutions of the inhomogeneous linear
BVPs the inequality (3.59) simplifies to

kx � x�k1 � � . j� j C kqk1 C k.B12.B21B12/�1q2/0k1/

� Q� . j� j C kqk1 C kq0
2k1/:

(3.60)

A direct investigation of the linear index-2 DAE by linear decoupling makes evident
that the first solution component x1 is actually independent of the term q0

2. A related
inequality is derived in [9], and the BVP is said to be well-conditioned, if Q� has
moderate size.

Here, it should be again emphasized that the notions well-posed, stable, and well-
conditioned are used in different places with different meanings, cf., Remarks 2.9
and 2.6.
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In particular, the inequality (3.60) applies to the nonlinear index-2 DAE

x0
1.t/C b1.x1.t/; x2.t/; t/ D 0; (3.61)

b2.x1.t/; t/ D 0; (3.62)

with Bij.t/ replaced by the partial derivatives B� ij.t/ WD @bi
@xj
.x�.t/; t/, and nonlinear

boundary conditions.
Regarding the discretization of index-2 problems, errors in the derivative-free

equation (3.62) can be significantly amplified, at least by a factor h�1. Therefore, it
is a good idea to keep the defects in this equation reasonable small. For this purpose,
so-called projected Runge–Kutta methods and projected collocation are introduced
in [8, 9].

It is proposed to complete the standard collocation methods locally at fixed
time points by an additional backward projection onto the constraint given by
Eq. (3.62). More precisely, let tl be fixed and xl;1; xl;2 denote already computed
approximations of x1.tl/, x2.tl/. The defect b2.xl;1; tl/ represents the deviation of
the given approximation away from the obvious constraint. If b2.xl;1; tl/ ¤ 0, a new
approximation xnew

l;1 ; x
new
l;2 is constructed such that

b2.x
new
l;1 ; tl/ D 0: (3.63)

This is accomplished by the ansatz

xnew
l;1 WD xl;1 C B12.x

new
l;1 ; x

new
l;2 ; tl/�l; (3.64)

xnew
l;2 WD xl;2; (3.65)

where Bij WD @bi
@xj

. If the given approximations are sufficiently accurate, then the
values xnew

l and �l are locally uniquely determined by (3.63)–(3.65). A Newton step

starting from the initial guess xnew;.0/
l D xl, �

.0/
l D 0 yields

xnew;.1/
l;1 D xl;1 � Flb2.xl;1; xl;2; tl/; (3.66)

where Fl denotes B12.B21B12/�1 taken at .xl;1; xl;2; tl/. The m1 � m1 matrix ˝l WD
FlB21.xl;1; xl;2; tl/ represents a projector, and hence, formula (3.66) means in more
detail

˝lx
new;.1/
l;1 D ˝lxl;1 � Flb2.xl;1; xl;2; tl/;

.I �˝l/x
new;.1/
l;1 D .I �˝l/xl;1;

which shows that only the particular ˝-component is affected. The .I � ˝l/-
component corresponds to the IERODE, cf., Example 2.3, thus the true differential
component is not changed.
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In contrast to the index-1 case, the accurate number of boundary conditions
is now m1 � m2. For completing the collocation schemes one has always to find
additional m2 conditions. The usual choice is b2.x.a/; a/ D 0 and �1 > 0. This
seems to exclude uniform approaches for the different components.

Completing a collocation scheme at the mesh points ti > a, by equations
corresponding to (3.63)–(3.65) has proved its value in various cases. If the BVP
is locally well-posed (in the advanced setting) with a moderate Q� and the problem
data is sufficiently smooth, then, owing to [9, Theorem 3.3], there are locally unique
approximations x�;1 2 Bm1

�;s and x�;2 2 Bm2
�;s�1 satisfying the projected collocation

scheme and the error estimates

kx�;1 � x�;1k1 D O.hmin.sC1; s
C

//; kx�;2 � x�;2k1 D O.hs/;

jx�;1.ti/ � x�;1.ti/j D O.hs
C/; i D 0; : : : ;N;

hold. In contrast to the results for index-1 problems, now x�;1 is generally discon-
tinuous due to the backward projection.

The projected collocation is extended to some more general semi-explicit index-2
DAEs [7, 11], whereby the components to be changed by projections are locally
identified by means of a singular value decomposition. This procedure is called
selective projected collocation.

The package COLDAE [11] includes the options to treat BVPs for index-2 DAEs
in Hessenberg form by projected collocation and for more general semi-explicit
index-2 DAEs by selective projected collocation.

3.4 BVPs for Singular Index-1 DAEs

In recent years, motivated by numerous applications a lot of effort has been put
into the analysis and numerical treatment of BVPs in ODEs which can exhibit
singularities (e.g., [13, 15, 17, 43, 68, 72] and references therein). Such problems
are typically given as

t˛u0.t/ D M.t/u.t/C h.u.t/; t/; t 2 .0; 1�; g.u.0/; u.1// D 0; (3.67)

with ˛ � 1. For ˛ D 1, one refers to a singularity of the first kind. For instance, a
singularity of the first kind may arise from a reduction of a PDE to an ODE owing to
cylindrical or spherical symmetry. Naturally, DAEs may feature those singularities
more than ever, as is the case in the following two examples.

Example 3.2 The DAE taken from [72],

�
1

1

� ��
1 �1� x

	0
.t/C

�
2 0

0 t C 2

�
x.t/ D 0; (3.68)
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has index 1 on the interval .0; 1� and yields there the inherent ODE

t u0.t/ D �.2t C 4/u.t/; u.t/ D x1.t/ � x2.t/; (3.69)

showing a singularity of the first kind. The inherent ODE (3.69) possesses the
general solution

u.t/ D c0 e�2tt�4;

with a constant c0. Except for the trivial solution, that is, for c0 D 0, all solutions
of the inherent ODE grow unboundedly for t ! 0. The canonical projector of the
DAE (3.68)

˘can.t/ D I � Qcan.t/ D
2
4
1C 2

t � 2Ct
t

2
t 1 � 2Ct

t

3
5

is unbounded for t ! 0. The general DAE solution is given by

x.t/ D ˘can.t/

�
1

0

�
u.t/ D ˘can.t/

�
1

0

�
c0 e�2tt�4 D c0 e�2tt�4

�
1C 2

t
2
t

�
:

Except for the case c0 D 0, the DAE solutions are unbounded. By means of the
condition D.0/x.0/ D 0 one picks up the only bounded solution. �

Example 3.3 The DAE (cf. [98]),

2
4

t 0
0 t
0 0

3
5
��
1 0 0

0 1 0

�
x


0
.t/C

2
4
1 0 1

1 0 0

0 1
2
1
2

3
5 x.t/ D q.t/; (3.70)

has index 1 on the interval .0; 1� and yields the inherent ODE

t u0.t/ D
��1 1
�1 0

�
u.t/C

�
q1.t/ � 2q3.t/

q2.t/

�
; u.t/ D

�
x1.t/
x2.t/

�
: (3.71)

The canonical projector is now constant,

˘can.t/ D
2
4
0 0 0

0 0 0

0 1 1

3
5 ;
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and it trivially has a continuous extension for t ! 0. All solutions of the DAE (3.70)
can be expressed as

x.t/ D ˘can.t/

2
4
1 0

0 1

0 0

3
5 u.t/C

2
4

0

0

q3.t/

3
5 D

2
4
1 0

0 1

0 �1

3
5 u.t/C

2
4

0

0

q3.t/

3
5 ;

which shows that the bounded solutions of the inherent ODE (3.71) correspond to
the bounded solutions of the DAE (3.70). �

In the context of classical singular BVPs (3.67), seeking a solution that is
continuous on the closed interval, one has to state the boundary conditions in a
special smart way depending on the spectrum of the matrix M.0/ (see [40, 68]). In
the case of DAEs, this procedure becomes a much tougher job. Below, we bring out
the mathematical background of the case when the DAE represents an index-1 DAE
with a singularity at t D 0 and the inherent ODE is singular with a singularity of the
first kind. We deal with the BVP

f ..D.t/x.t//0; x.t/; t/ D 0; t 2 .0; 1�; (3.72)

Gax.0/C Gbx.1/ D �; (3.73)

where, as before, f .y; x; t/ 2 R
m, D.t/ 2 R

n�m, y 2 R
n, x 2 D, with D 
 R

m open,
t 2 Œ0; 1�, n � m, and the data f ; fy; fx;D are assumed to be at least continuous on
their definition domains. Moreover, now we require that

ker fy.y; x; t/ D f0g; .y; x; t/ 2 R
n � D � .0; 1�; (3.74)

im .D.t// D R
n; t 2 Œ0; 1�: (3.75)

Conditions (3.74) and (3.75) mean that the matrix D.t/ has again full row-rank n
on the closed interval, but fy.y; x; t/ has full column-rank n on R

n�D�.0; 1� only. At
t D 0 the matrix fy.y; x; t/may undergo a rank drop as is the case for the DAE (3.70).
The structural conditions (3.74) and (3.75) guarantee that the system (3.72) has a
properly stated leading term at least on R

n � D � .0; 1�, with the border-projector
function R.t/ D I.

Let the boundary condition (3.73) be such that

Ga D B0D.0/; Gb D B1D.1/; B0;B1 2 L.Rn/;

which will result in a BVP for the inherent ODE with respect to the component Dx.
Let I D Œ0; 1�. We are looking for a solution of the BVP (3.72), (3.73) which

belongs at least to the function space C.I;Rm/\ C1D..0; 1�;Rm/.
The further structure of the boundary conditions (3.73) which is necessary and

sufficient for the BVP (3.72)–(3.73) to become well-posed in a special sense will
be specified in the course of the discussion. Here, we argue without function space
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settings, but adopt the understanding of well-posed BVPs common in the framework
of singular ODEs (e.g., [68]). Although first existence and uniqueness results
are given for a special class of singular DAEs in [98], more general solvability
statements justifying well-posedness of BVPs in appropriate function spaces are
missing up to now. As we will see, well-posedness in this special sense incorporates
aspects of well-conditioning.

We define

N0.t/ WD ker D.t/; t 2 Œ0; 1�;

and note that

ker fy.y; x; t/D.t/ D N0.t/; .y; x; t/ 2 R
n � D � .0; 1�;

ker fy.y; x; t/D.t/ � N0.t/; .y; x; t/ 2 R
n � D � f0g:

Below, the pointwise generalized inverse D� of D is defined as in the regular case
in Sect. 2.1.

In [43, 72], well-posed BVPs in linear and nonlinear index-1 DAEs featuring
inherent ODEs with a singularity of the first kind are specified and approximated by
polynomial collocation. It is shown that for a well-posed BVP having a sufficiently
smooth solution the global error of the collocation scheme converges with the order
O.hs/, where s is the number of collocation points. Superconvergence cannot be
expected in general due to the singularity, not even for the differential components
of the solution. We outline the main results; for proofs and technical details, we refer
to [43, 72].

3.4.1 Linear Case

Following the lines of [72] we first decouple the DAE in order to formulate sufficient
conditions ensuring a singularity of the first kind for the inherent ODE and the well-
posed boundary conditions. Consider the linear DAE

A.t/.Dx/0.t/C B.t/x.t/ D q.t/; t 2 .0; 1�; (3.76)

and assume that the DAE is regular with index 1 on .0; 1�. Here, A.t/ may undergo
a rank drop at t D 0. We have from (3.74), (3.75) that

ker A.t/ D f0g; t 2 .0; 1�; (3.77)

im D.t/ D R
n; t 2 Œ0; 1�: (3.78)
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We decouple the DAE on the interval .0; 1� as described in Sect. 2.2. With Q0 being
a continuous projector function onto ker D, and P0 WD I � Q0 we form

G0.t/ WD A.t/D.t/; t 2 Œ0; 1�; (3.79)

G1.t/ WD G0.t/C B.t/Q0.t/; t 2 Œ0; 1�: (3.80)

Owing to the index-1 property, the matrix G1.t/ is nonsingular for t 2 .0; 1�. Now,
we assume G1.0/ to be singular.

If A.t/, and therefore G0.t/, undergoes a rank drop at t D 0, as in Example 3.3,
then G1.0/ is necessarily singular. Applying the classification of critical points
arising in DAEs from [86, 97, 103, 105], in this case, t D 0 represents a critical
point of type 0. As in Example 3.2, it may happen that G0.t/ has constant rank on
the closed interval I, but G1.0/ is singular. Then t D 0 is said to be a critical point
of type 1–A.

We incorporate the case where the inherent ODE associated with (3.76) exhibits
a singularity of the first kind. To this end, we decouple the solution of DAE (3.76) on
.0; 1� into the differential component Dx and the algebraic component Q0x. While
u D Dx satisfies the inherent explicit ODE,

u0.t/C D.t/G1.t/
�1B.t/D.t/�u.t/ D D.t/G1.t/

�1q.t/; t 2 .0; 1�; (3.81)

the algebraic component is given by

Q0.t/x.t/ D �Q0.t/G1.t/
�1B.t/D.t/�u.t/C Q0.t/G1.t/

�1q.t/; t 2 .0; 1�:
(3.82)

If u.t/ represents the general solution of the inherent ODE (3.81), then the general
solution of the DAE (3.76) can be expressed as

x.t/ D D.t/�u.t/C Q0.t/x.t/ D ˘can.t/D.t/
�u.t/C Q0.t/G1.t/

�1q.t/; t 2 .0; 1�;

whereby

˘can.t/ D I � Q0.t/G1.t/
�1B.t/; t 2 .0; 1�;

is the canonical projector function. We are interested in solutions being at least
continuous on the whole interval Œ0; 1�. The asymptotic behavior of the ODE (3.81),
typical for the singularity of the first kind, is observed when G1.0/ is singular but
tG1.t/�1 has a continuous extension on Œ0; 1�. Then, we can rewrite the matrix
D.t/G1.t/�1B.t/D.t/� and obtain

D.t/G1.t/
�1B.t/D.t/� DW �1

t
M.t/; (3.83)
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where M 2 C.Œ0; 1�;L.Rn//. For the subsequent existence and uniqueness analysis
we require M 2 C1.Œ0; 1�;L.Rn// which means that the problem data needs to be
appropriately smooth. Denoting the right-hand side of (3.81) by p.t/ we arrive at the
inherent explicit ODE of the form

u0.t/ D 1

t
M.t/u.t/C p.t/; t 2 .0; 1�: (3.84)

As mentioned before, we are interested in bounded solutions x and therefore u needs
to be at least in C.Œ0; 1�;Rn/. It turns out that the smoothness of u depends on
the smoothness of p and, additionally, the eigenstructure of M.0/. The theoretical
background for this problem class, where p 2 C.Œ0; 1�;Rn/, is discussed in detail in
[40]. In order to use this standard theory, we assume that G1.t/�1q.t/ and thus p.t/
are continuous on the whole interval Œ0; 1�. Then, by [40], the bounded solutions of
the ODE (3.84) can be represented in the form

u.t/ D Ec C tf .t/; t 2 Œ0; 1�; (3.85)

where the columns of the matrix E form a basis of ker M.0/ and f 2 C.Œ0; 1�/;Rn/.
Next, we provide conditions to guarantee that, given a bounded solution u.t/, the
solution x.t/ of the DAE resulting via (3.82) is also bounded.

Proposition 3.6 Let the DAE (3.76) be regular with index 1 on .0; 1� and satisfy
conditions (3.77), (3.78), and let the problem data be sufficiently smooth.

Let G1.0/ be singular, but the matrix functions

tG1.t/
�1; G1.t/

�1q.t/; Q0.t/G1.t/
�1B.t/D.t/�E; t 2 .0; 1�; (3.86)

have continuous extensions on the closed interval Œ0; 1�,

ŒtG1.t/
�1�ext; ŒG1.t/

�1q.t/�ext; ŒQ0.t/G1.t/
�1B.t/D.t/�E�ext:

Then the inherent explicit ODE of the DAE exhibits a singularity of the first kind
and each bounded solution of the DAE has the form

x.t/ DŒ˘can.t/D.t/
�E�extc C Œt˘can.t/�

extD.t/�f .t/C Q0.t/ŒG1.t/
�1q.t/�ext;

t 2 Œ0; 1�, with a constant c 2 R
n0 , n0 WD n � rank M.0/.

If the matrix M.0/ is nonsingular, then E disappears. In this case, the last term
in (3.86) vanishes identically and has trivially the continuous extension.

If the canonical projector Qcan.t/ D I � ˘can.t/ has a continuous extension on
Œ0; 1�, which is possible if t D 0 is a critical point of type 0, see Example 3.3,
then also the term Q0.t/G1.t/�1B.t/D.t/�E D Qcan.t/D.t/�E has the continuous
extension.
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The inherent ODE (3.84) is augmented by the boundary conditions

Bau.0/C Bbu.1/ D �: (3.87)

These boundary conditions have to be chosen such that a well-posed singular
BVP results for u. In [72], the attention is focused on BVPs for singular ODE
systems (3.84) which can equivalently be expressed as a well-posed IVP with initial
conditions at t� D 0 or terminal conditions at t� D 1. This means a restriction on the
spectrum of the matrix M.0/ from (3.83), see [69, 70] for a detailed explanation of
this fact. The reason for the above assumption is that a shooting argument is applied
in the course of the analysis of polynomial collocation approximation.

A singular IVP posed at t� D 0 for the differential equation (3.84) is well-posed
if and only if the spectrum of M.0/ contains no eigenvalues with positive real parts
and the initial value satisfies u.0/ 2 ker M.0/. A singular terminal value problem
posed at t� D 1 is well-posed if and only if the spectrum of M.0/ contains no
eigenvalues with negative real parts and the invariant subspace associated with the
eigenvalue zero coincides with the nullspace of M.0/ [40, 70].

Under the assumptions of Proposition 3.6, polynomial collocation methods
are analyzed in [71, 72]. The meshes � are specified as before in this section.
Motivated by the singularity, the collocation points are chosen in the interior of
the subintervals, with �1 > 0 and �s < 1. We approximate x and u by continuous
piecewise polynomial functions x� 2 Bm

�;s \ C.I;Rm// and u� 2 Bn
�;s \ C.I;Rn//

as in Sect. 3.1.1. The numerical scheme defining x� and u� has the form

A.�ik/u
0
�.�ik/C B.�ik/x�.�ik/ D q.�ik/; (3.88)

D.�ik/x�.�ik/ � u�.�ik/ D 0; k D 1; : : : ; s; i D 0; : : : ;N � 1; (3.89)

B0u�.0/C B1u�.1/ D �: (3.90)

As in Sect. 3.1.1, further conditions are necessary to close the system for the
numerical computations. We choose these additional conditions as

B.0/x�.0/� q.0/ 2 lim
t!0C

im .A.t//; u�.0/ D D.0/x�.0/; (3.91)

or

B.1/x�.1/� q.1/ 2 im .A.1//; u�.1/ D D.1/x�.1/: (3.92)

The convergence results in the case of a singular inherent ODE are quite similar
to the regular index-1 DAE case. Owing to the assumptions of Proposition 3.6, for
arbitrary collocation points, stage order s uniformly in t is ensured in the case that the
solutions of the DAE and the inherent ODE, respectively, are sufficiently smooth,

ku� � u�k1 D O.hs/; kx� � x�k1 D O.hs/:
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Note that for Gauss collocation points the superconvergence behavior O.h2s/ in �
does not hold in general, a well-known fact in the context of singular ODEs. Rather,
the orders

ku� � u�k1 D O.hsC1/

hold. If the BVP for the inherent ODE is a terminal value or BVP, the analysis in
[72] additionally requires

Qcan 2 C.Œ0; 1�;L.Rm// (3.93)

to ensure this optimal convergence behavior. If the assumptions (3.86) and (3.93) are
violated, order reductions in the algebraic components might occur. In particular,
order reductions can be due to the behavior of the canonical projector Qcan.t/ for
t ! 0C, in the case when Qcan becomes unbounded in this limit. We illustrate this
important aspect by the next example picked from [71, 72]. Therein, we highlight
additional order reductions in the sense that the stage order is no longer observed.

Example 3.4 We consider the following four-dimensional semi-explicit DAE:

A.Dx/0 C
�

B11 B12
B21 B22.t/

�
x.t/ D q.t/; (3.94)

with

A D
�

I
0

�
; D D Œ I 0 �; D� D

�
I
0

�
;

B11 D
�
0 0

0 0

�
; B12 D

�
3 �1

�2 1

�
; B21 D

�
1 1

2 3

�
; B22.t/ D

�
t 0
0 t
5

�
:

This yields

G1.t/ D
�

I B12
0 B22.t/

�
; G1.t/

�1 D
�

I �B12B22.t/�1
0 B22.t/�1

�
; B22.t/

�1 D 1

t

�
1 0

0 5

�

which shows that tG1.t/�1 has a continuous extension onto Œ0; 1�. In contrast, the
canonical projector

Qcan.t/ D Q0G1.t/
�1B.t/ D

�
0 0

B22.t/�1B21 I

�
(3.95)
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is unbounded on .0; 1�. Moreover, it holds that

DG1.t/
�1B.t/D� D B11 � B12B22.t/

�1B21 D �1
t

��7 �12
8 13

�
DW �1

t
M:

Since M is nonsingular, we have E D 0, and the matrix functions Q0G1.t/�1B.t/D�
E D 0 has trivially a continuous extension on Œ0; 1�. We consider the continuously
differentiable solution

x.t/ D

2
664

t� sin.t/
tıet

cos.t/
t`e�t

3
775 ;

with parameters specified below. The respective right-hand side q.t/ is such that
G1.t/�1q.t/ is actually continuous on Œ0; 1�. In summary, all three matrix function
in (3.86) possess the requested continuous extensions on Œ0; 1�.

The matrix M has the eigenvalues 1 and 5. Since they are both positive, we
may state a well-posed terminal problem prescribing the values of the differential
components x1.t/ and x2.t/ at t D 1.

Therefore, we consider system (3.94) subject to the boundary conditions

x1.1/ D sin.1/; x2.1/ D e:

The additional conditions

x1.1/C x2.1/C x3.1/ D q3.1/;

2x1.1/C 3x2.1/C 1

5
x4.1/ D q4.1/

are consistent boundary conditions for the algebraic components to complete the
collocation scheme used in BVPSUITE. These conditions simply reflect the obvious
constraint at time t D 1.

Note that we solve a terminal value problem which is more likely to show order
reductions when Qcan.t/ becomes unbounded when t ! 0.

Problem 1 For ` D 3; � D 1; ı D 1 all solution components are smooth.

Problem 2 For ` D 5
2
; � D 6

5
; ı D 5

2
the differential components x1 and x2

become unsmooth.

The numerical results obtained from BVPSUITE for this example are given in
Table 7. For more details see [71, Tables 192–200, 228–236]. For the case when the
differential solution components, u.t/, are smooth no order reduction is observed,
although the projection matrix (3.95) is unbounded for t ! 0.
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Table 7 Problems 1 and 2: experimentally observed convergence rates for different collocation
schemes with s D 3; 4, cf. [72] for details

s D 3 s D 4

gex geu gex geu

Problem Collocation � �coll � �coll � �coll � �coll

Problem 1 Equidistant 3 3 4 4 4 4 4 4

Gaussian 3 3 4 4 4 4 5 5

Problem 2 Equidistant 0.3 0.3 1.2 1.2 0.3 0.3 1.2 1.2

Gaussian 0.3 0.3 1.3 1.3 0.3 0.3 1.2 1.2

Here, the global error in x is denoted by gex and the global error in u by geu. � means that the
maximum of the global error was calculated using its values at the mesh points in � . We denote
by �coll the union of the mesh points and the collocation points. Then, �coll indicates that the
maximum of the global error is computed using its values at points in �coll. Order reductions are
highlighted in italic

In Problem 2 we observe order reductions due to the fact that the canonical
projector (3.95) is unbounded for t ! 0. One would expect to see the convergence
order O.h2:5/ owing to the properties of x, especially the differential components.
However, one loses approximately one additional power of h which can be attributed
to the O.1=t/ behavior of Qcan.t/. �

3.4.2 Nonlinear Problem

Now we turn to the nonlinear BVP (3.72), (3.73). We assume the DAE to be regular
with index 1 overall for t > 0, but allow a critical point at the left boundary which
causes a singularity in the inherent nonlinear ODE. In [43], the case when the
inherent ODE system is singular with a singularity of the first kind is studied and
polynomial collocation applied to the original DAE system is analyzed. It is shown
that for a certain class of well-posed BVPs in DAEs having a sufficiently smooth
solution, the global error of the collocation scheme converges uniformly with the
stage order. Due to the singularity, superconvergence at the mesh points does not
hold in general. We outline some aspects from [43].

Regarding the experience with conditions (3.86) for linear BVPs, it is assumed
that

tG1.y; x; t/
�1 (3.96)

has a continuous extension for t ! 0, where

G0.y; x; t/ WD fy.y; x; t/D.t/;

G1.y; x; t/ WD G0.y; x; t/C fx.y; x; t/Q0.t/; .y; x; t/ 2 R
n � D � Œ0; 1�:
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Additionally, to prevent the additional difficulties caused by unbounded canonical
projectors known in the linear case, in [43] the canonical projector function ˘can

along ker D given by

˘can.y; x; t/ WD I � Q0.t/G1.y; x; t/
�1fx.y; x; t/

is assumed to remain bounded for t ! 0. The following practical criterion of the
latter property is given in [43]. Let W.y; x; t/ 2 R

m denote the orthoprojector matrix
onto im fy.y; x; t/?, pointwise for all arguments. Since fy.y; x; t/ has constant rank n
for t > 0, W.y; x; t/ depends continuously on its arguments for t > 0. We assume
that W has a continuous extension Wext for t ! 0, such that, for t > 0,

Wext.y; x; t/ D W.y; x; t/:

We emphasize that, due to a possible rank drop of fy.y; x; t/ at t D 0, in general
Wext.y; x; 0/ ¤ W.y; x; 0/, but Wext.y; x; 0/fy.y; x; 0/ D 0. Then the canonical
projector function˘can has a continuous extension exactly if

rank

�
Wext.y; x; 0/fx.y; x; 0/

D.0/

�
D m: (3.97)

An inspection of Examples 3.2 and 3.3 confirms this criterion.
To apply standard linearization arguments, the BVP (3.72)–(3.73) is supposed

to possess a solution x? 2 C1D.Œ0; 1�;Rm/ and the linearization of the DAE (3.72)
along x?,

A?.t/.D.t/z.t//
0 C B?.t/z.t/ D 0; t 2 .0; 1�; (3.98)

is considered. Since the matrix

G? 1.t/ WD A?.t/D.t/C B?.t/Q0.t/ D G1..D.t/x?.t//
0; x?.t/; t/

is nonsingular for t 2 .0; 1�, the linear DAE (3.98) is regular with tractability index
1 on the interval .0; 1�. Thus the linearized BVP can be treated as in Sect. 3.4.1.

In analogy to Definition 2.5, one says that the solution x? of the BVP (3.72)–
(3.73) is isolated if and only if its linearization

A?.t/.D.t/z.t//
0 C B?.t/z.t/ D 0; t 2 .0; 1�;

B0D.0/z.0/C B1D.1/z.1/ D 0;

has only the trivial solution. In this case, as common in the theory of singular explicit
ODEs (e.g., [68, 70]), also the nonlinear BVP (3.72), (3.73) is said to be well-posed
in [43].
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The decoupling function ! W D! � .0; 1� ! R
m and the decoupled form

(cf., (2.61), (2.62)) of the nonlinear DAE (3.72),

u0.t/ D D.t/!.u.t/; t/; t 2 .0; 1�; (3.99)

x.t/ D D.t/�u.t/C Q0.t/!.u.t/; t/; t 2 .0; 1�; (3.100)

can be used for t > 0 in order to specify the inherent explicit ODE associated with
the nonlinear DAE.

To apply the standard analysis for singular boundary value problems, cf. [40, 68],
it is assumed that the decoupling function ! satisfies

D.t/!.u; t/ D 1

t
M.t/u C q.u; t/; u 2 D!; t 2 .0; 1�; (3.101)

where the n � n matrix function M and the function q are appropriately smooth for
t ! 0. Note that in [43] a special class of quasi-linear DAEs is shown to meet
the conditions (3.96), (3.101), as well as to feature a bounded canonical projector
function.

This yields the BVP

u0.t/ D 1

t
M.t/u.t/C q.u.t/; t/; t 2 .0; 1�; (3.102)

B0u.0/C Bbu.1/ D �: (3.103)

In turn, the linearization of the last BVP reads,


 0.t/ D D.t/!u.u?.t/; t/
.t/ D 1

t
M?.t/
.t/; t 2 .0; 1�; (3.104)

B0
.0/C B1
.1/ D 0; (3.105)

with

M�.t/ WD �tD.t/G�;1.t/�1B�.t/D.t/�; t 2 .0; 1�:

We can now specify the necessary and sufficient conditions for the linear ODE
problem (3.104), (3.105) to have only the trivial solution. It was shown in [40] that
the form of the boundary conditions (3.105) which guarantee that (3.104), (3.105)
has only the trivial solution depends on the spectral properties of the coefficient
matrix M?.0/. Note that (3.101) implies

M?.t/ D M.t/C tgu.u?.t/; t/; t 2 .0; 1�
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and therefore M?.0/ D M.0/. To avoid fundamental modes of (3.104) which have
the form cos.� ln.t//C i sin.� ln.t//, we assume that zero is the only eigenvalue of
M.0/ on the imaginary axis.

Now, let RC denote the projection onto the invariant subspace which is associated
with eigenvalues of M.0/ which have strictly positive real parts. Let QM be a
projection onto the kernel of M.0/. Finally, define

U WD RC C QM; V WD I � U; (3.106)

The BVP (3.104), (3.105) is well-posed if and only if the boundary condi-
tions (3.105) can equivalently be written as [40]

V
.0/ D 0; RC
.1/ D 0; QM
.0/ D 0; or QM
.1/ D 0: (3.107)

The first set of homogeneous initial conditions specified in (3.107) are necessary
and sufficient for 
 to be continuous on the closed interval Œ0; 1�.

The polynomial collocation methods (uniform approach A) described in
Sect. 3.1.2 are used in [43] to approximate the solution of well-posed singular
nonlinear BVPs (3.72), (3.73). The basic collocation scheme

u�.t
�
i / � u�.ti/ D 0; i D 1; : : : ;N � 1;

x�.t
�
i /� x�.ti/ D 0; i D 1; : : : ;N � 1;

f .u0
�.�ik/; x�.�ik/; �ik/ D 0; k D 1; : : : ; s; i D 0; : : : ;N � 1

u�.�ik/ � D.�ik/x�.�ik/ D 0; k D 1; : : : ; s; i D 0; : : : ;N � 1;

B0u�.a/C B1u�.b// D �;

is completed by the consistency conditions

D.a/x�.a/� u�.a/ D 0; Wext.u0
�.a/; x�.a/; a/f .u

0
�.a/; x�.a/; a/ D 0:

By means of the analytical decoupling and the commutativity of discretization
and decoupling, one obtains a classical collocation scheme for the component u� .
According to [68, Theorem 3.1], there exists a unique collocation solution u� 2
Bn
�;s \ C.Œ0; 1�;Rn/, under the assumptions that the underlying analytical problem

is well-posed with sufficiently smooth data, and that the mesh is sufficiently fine.
Finally, x� 2 Bm

�;sC.Œ0; 1�;Rm/ is uniquely specified by its values at all collocation
points, see (3.25), and the consistency conditions. This results in

kx� � x�k1 D O.hs/; ku� � u�k1 D O.hs/:
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3.5 Defect-Based a posteriori Error Estimation
for Index-1 DAEs

When designing error estimation procedures, one usually has different choices. One
of the most popular is a very robust and easy to implement h � h=2 strategy, where
the basic method is carried out first on a given, not necessarily uniform, grid and
then repeated on a grid with double the number of subintervals. This procedure is
used often in software for BVPs in ODEs and DAEs, for instance, in COLNEW,
COLDAE, see [11]. Since in the context of collocation methods this procedure is
quite expensive, it seems reasonable to look for cheaper alternatives.

Here, we describe a computationally efficient a posteriori error estimator for col-
location solutions to linear index-1 DAEs in properly stated formulation proposed
in [18]. The procedure is based on a modified defect correction principle, extending
an established technique from the ODE context to the DAE case. The resulting error
estimate is proved to be asymptotically correct and tested in numerical experiments
with IVPs. For all technical details, we refer the reader to [18].

Let us consider a regular index-1 DAE with properly stated leading term

A.t/.Dx/0.t/C B.t/x.t/ D q.t/; t 2 Œa; b�; (3.108)

satisfying the general assumptions in Sect. 2.1, and, additionally, condition (3.6)
yielding the border projector R D I. Moreover, here we assume the coefficient
D to be even constant. Otherwise one can turn to the enlarged version according
to (3.7), (3.8) of the DAE under consideration.

We consider a well-posed BVP (cf. Sect. 2.3) for the DAE (3.108) and the
collocation equations

A.�ik/u
0
�.�ik/C B.�ik/x�.�ik/ D q.�ik/; (3.109)

Dx�.�ik/� u�.�ik/ D 0; k D 1; : : : ; s; i D 0; : : : ;N � 1; (3.110)

with

s even, �s D 1:

Note, in particular, that �s D 1 is essential for the analysis. This ensures in a natural
way stability of the integration schemes, cf. [60, 86] for a more detailed discussion.
We also assume that s is even, which will be necessary to guarantee the asymptotic
correctness of our error estimator to be defined in Sect. 3.5.2.

The focus is now on the effective design and analysis of an asymptotically
correct a posteriori error estimator for collocation solutions to (3.108), with a
uniform, “black box” treatment of the differential and algebraic components, and
an appropriate handling of the case where D.t/ is not constant. The generalization
of the method and its analysis for DAEs with a singular inherent ODE can be found
in [19].
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3.5.1 The Main Idea of the Defect-Based Error Estimation

A posteriori error estimation in ODEs based on the defect correction principle is an
old idea originally due to Zadunaisky [115] and further developed by Stetter [110].
In the context of regular and singular ODEs, this approach was refined and analyzed
in [15, 17] and implemented in [14]. In particular, for a special realization of the
defect, an efficient, asymptotically correct error estimator, the QDeC estimator,
was designed in [15] for collocation solutions on arbitrary grids. These ideas have
been extended to the DAE context in [18], which appears not to be straightforward
because of the coupling between differential and algebraic components. In abstract
notation, the basic structure of a defect-based estimator can be described as follows:
Consider a numerical solution �� which approximates the vector of exact solution
values x�

� , �� � x�
� , for a problem

F.x.t// D 0; t 2 Œa; b�; (3.111)

on a grid � . Define the defect d D d.t/ by interpolating �� by a continuous
piecewise polynomial function p.t/ of degree � s and substituting p.t/ into (3.111),

d.t/ WD F.p.t//; t 2 Œa; b�: (3.112)

Obviously, p.t/ is the exact solution to a neighboring problem

F.x.t// D d.t/ (3.113)

related to the original problem (3.111). Now we use a procedure of low effort (typi-
cally a low order scheme), the so-called auxiliary scheme QF, to obtain approximate
discrete solutions Qx� and Qxdef

� for both the original and neighboring problems on the
grid � , i.e., QF.Qx�/ D 0 and QF.Qxdef

� / D d� , where d� is an appropriate restriction of
d.t/ to the grid � .

Since (3.111) and (3.113) differ only by the (presumably) small defect d, we
expect that

"� WD Qxdef
� � Qx� (3.114)

is a good estimate for the global error

e� WD �� � x�
� : (3.115)

In other terms,

e� WD �� � x�
� � F�1.d/� F�1.0/

� QF�1.d�/� QF�1.0/ D Qxdef
� � Qx� D "� :

(3.116)
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This is exactly the procedure originally proposed in [110]. However, in concrete
applications, the auxiliary scheme QF and a suitable representation for the defect
d� have to be carefully chosen. In particular, in [15] collocation for the ODE case
was considered. For QF chosen as the backward Euler scheme, it was shown that a
modified version of the pointwise defect (3.112) has to be used in order to obtain an
asymptotically correct estimator for the error of a given collocation approximation
x�.t/ yielding �� . In the following section this approach (the “QDeC estimator”) is
described in more detail and will be extended to the DAE case.

3.5.2 The QDeC Estimator for DAEs

Now we apply the procedure described in Sect. 3.5.1 to the linear DAE (3.108). In
addition to the collocation method, we use a scheme of backward Euler type over
the collocation nodes as an auxiliary method. Let hik WD �ik � �i;k�1 and consider the
grid function "ik satisfying the auxiliary scheme

A.�ik/
D"ik � D"i;k�1

hik
C B.�ik/"ik D Ndik; (3.117)

with homogeneous initial condition "0;0 D 0 and the backward Euler scheme
playing the role of QF. According to (3.112), the straightforward, classical way to
define the defect Ndik would be to substitute x�.t/ into (3.108) in the pointwise sense,

d.t/ WD A.t/.Dx�/
0.t/C B.t/x�.t/ � q.t/; t 2 Œa; b�; (3.118)

and using the pointwise defect Ndik WD d.�ik/ in (3.117). However, as has been pointed
out in [15] in the ODE context, this procedure does not lead to successful results. For
collocation this is obvious: Since, by definition of the collocation solution (3.109),
the defect d.�ik/ which enters the backward Euler scheme, vanishes at each point �ik

(i D 0 : : :N � 1; k D 1 : : : s), the error estimate ".�ik/ would always be zero.
In a slight variation of the procedure introduced in [15], we now define a modified

defect via the integral means

Ndik WD
sX

lD0
˛kld.�il/ D 1

hik

Z �ik

�i;k�1

d.t/dt C O.hsC1/; (3.119)

for i D 0; : : : ;N � 1; k D 1; : : : ; s, where the ˛kl are quadrature coefficients for the
integral means in (3.119), i.e.,

˛kl D 1

�k � �k�1

Z �k

�k�1

Ll.t/dt; k D 1 : : : s; l D 0 : : : s; (3.120)

with the Lagrange polynomials Ll of degree s, such that Ll.�k/ D ıkl. Note that, in
contrast to collocation at s nodes in each subinterval excluding the left endpoint ti,
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we now include the additional node �i0 WD ti C hi�0 with �0 D 0, for the polynomial
quadrature defining (3.119).

The following result is shown in [18].

Theorem 3.7 While the global error of the collocation method (3.109) is of order
hs, i.e.,

e.t/ D x�.t/ � x�.t/ D O.hs/; (3.121)

the error estimate of the global error (3.121) based on the modified defect (3.119)
and the auxiliary scheme (3.117) is asymptotically correct, i.e.,

"ij � e.�ij/ D O.hsC1/: (3.122)

Example 3.5 We consider the IVP

�
et

et

�
.
�
1 0
�

x/0.t/C
�

et.1C cos2 t/ cos2 t
et.�1C cos2 t/ � cos2 t

�
x.t/ D

�
sin2 t.1 � cos t/ � sin t

sin2 t.�1 � cos t/ � sin t

�
;

(3.123)

on Œa; b� D Œ0; 1�, with initial condition x1.0/ D 1. We use a realization of our
method in MATLAB, based on collocation at equidistant points with s D 4; on N D
2; 4; 8; 16; 32 subintervals of length 1=N. In the following tables, the asymptotical
order " � e D O.hsC1/ is clearly visible; see also Fig. 7.

–7.5

–7

–6.5

–6

0 0.2 0.4 0.6 0.8 1

Fig. 7 log10-plot for first solution component, N D 4 of Example 3.5. Open circle: error
je1.t/j D jx�;1.t/ � x

�;1.t/j; open square: error estimate j"1.t/j; open diamond: error of error
estimate j"1.t/� e1.t/j
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 First solution component, at t D 1 :

N e ord e "� e ord "�e

4 �2.466e�06 3.8 8.513e�08 4.6

8 �1.634e�07 3.9 2.989e�09 4.8

16 �1.051e�08 4.0 9.886e�11 4.9

32 �6.664e�10 4.0 3.180e�12 5.0


 First solution component, maximum absolute values over all collocation points
2 Œ0; 1� :

N e ord e "� e ord "�e

4 2.732e�06 4.0 1.272e�07 5.3

8 1.711e�07 4.0 3.578e�09 5.2

16 1.074e�08 4.0 1.074e�10 5.1

32 6.734e�10 4.0 3.311e�12 5.0


 Second solution component, at t D 1 :

N e ord e "� e ord "�e

4 2.906e�05 3.8 �7.927e�07 4.6

8 1.522e�06 3.9 �2.783e�08 4.8

16 9.788e�08 4.0 �9.206e�10 4.9

32 6.205e�09 4.0 �2.961e�12 5.0

�

3.6 Further References, Comments, and Open Questions

Remark 3.1 In essence, for s D 3 and Lobatto points �1 D 0; �2 D 1
2
; �3 D 1,

Theorem 3.1 reflects results obtained in [41, 42, 73] in a quite different way using
a rigorous functional-analytic discretization theory. This work applies to DAEs
f .Px/0.t/; x.t/; t/ D 0 showing a constant projector matrix instead of the matrix
function D in (3.5), which allows to restrict the consideration directly to u� D Px�,
v� D .I � P/x� and their approximations. Degenhardt [41, Theorem 4.13] provides
superconvergence of order 4. Moreover, a stability inequality is verified and global
error estimations by defect correction are provided.
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Remark 3.2 The early work [113] deals with BVPs providing periodical solutions.
A special collocation method using trigonometrical polynomials is developed.

Remark 3.3 Here, we did not regard the possible implementations of the various
collocation approaches for BVPs in DAEs. Of course, the special ansatz of the
piecewise polynomial functions x� , the arrangement of the finite-dimensional
nonlinear equations to be solved, the linear and nonlinear equation solvers play an
important role as do the error estimates and mesh control as well.

As noted, e.g., in [55, 89], if integration methods approved for regular ODEs
are applied to index-1 DAEs, then additional stability conditions might appear. In
particular, the implicit midpoint rule applied to the simple equation x.t/ D 0; t 2
Œ0; 1�, leads, in the worst case, to a linear growth of the involved perturbations. It is
unclear whether and to what extent those effects can be resolved.

Concerning the different collocation approaches to DAEs, up to now it remains
generally open which versions will prove to be more favorable. This question is
closely related to the aspects of possible implementations.

Remark 3.4 Singularities of the flow of a DAE might be caused by a singular
inherent ODE as in Sect. 3.4, but also by the other components of a DAE, see
[86, 102, 103]. In the context of the projector-based DAE analysis, regular points
are supported by several constant-rank conditions. By definition, for critical points
at least one of these rank conditions is violated. In general, among critical points
there might be so-called harmless ones [44, 86], however, this does not happen for
singular index-1 DAEs.

Attempts to detect DAE singularities in practice are reported in [49, 50]. First
solvability results justifying the notion well-posed BVPs for singular index-1 DAEs
are shown in [98].

Remark 3.5 Linear BVPs in DAEs are treated in [56] by means of least squares
collocation, which represents a special method created for ill-posed problems. It is
an open question whether such approaches could be advanced to become practicable
for a considerable class of BVPs.

Remark 3.6 The projected collocation is adapted in [51] to work for BVPs associ-
ated with periodic motions in multibody system dynamics. The collocation scheme
is applied to an index-2 formulation of the related DAE. Besides the projections at
the meshpoints, an extra boundary projection is introduced.

Remark 3.7 The idea of backward projection has been used for numerical inte-
gration of regular ODEs and index-1 DAEs for maintaining given invariants
numerically, e.g., [52, 106, 108]. A generalization of backward projection and
selective backward projection as projected defect correction is developed in [93]
for a quite large class of nonlinear index-2 DAEs. We conjecture that it would also
work for general regular index-2 DAEs (3.5) satisfying (3.6). Possibly, this way,
projected collocation for the corresponding BVPs could work well.



272 R. Lamour et al.

4 Shooting Methods

The shooting method or initial-value adjusting method—a description used in the
very first publications—is a classical method to solve two-point boundary value
problems (TPBVP) but also multi-point BVPs for ODEs and DAEs.

The first papers dealing with DAEs and shooting methods are [38, 55, 79, 89].
The idea is to imbed the BVP into a family of IVPs, with unknown initial values,
and then to seek among them for the true one.

We consider the TPBVP

f ..Dx/0.t/; x.t/; t/ D 0; t 2 Œa; b� (4.1)

g.x.a/; x.b// D 0; (4.2)

and we assume that the DAE (4.1) is regular with index � and that the TPBVP has
a locally unique solution x�. Set z� WD x�.a/.

As is well known for explicit ODEs, there is a neighborhood N� 
 R
m around

z� so that all IVPs with the initial condition x.a/ D z 2 N� are uniquely solvable,
their solutions exist on the entire interval Œa; b� and depend smoothly on z.

In contrast, for DAEs, the extra condition z 2 M��1.a/ is necessary for
solvability, whereby the associated set of consistent initial values M��1.a/ is a
lower dimensional subset of Rm. For linear DAEs, an explicit theoretical description
is given in Sect. 2.2. Generally, no direct description is available, except for the
index-1 case, where M0.a/ is the obvious restriction set.

We try to overcome this difficulty by formulating the corresponding IVPs with
the initial condition

C.x.a/� z/ D 0; z 2 N� (4.3)

with an appropriate singular matrix C 2 L.Rm;Rl/. As shown in Sect. 2, linear IVPs
have unique solutions existing on Œa; b�, if C is such that

ker C D ker˘can D ker˘��1; (4.4)

and IVPs in nonlinear index-1 DAEs are uniquely solvable with solutions existing
on Œa; b�, if

ker C D ker˘can D ker˘0 D ker D.a/:

For nonlinear higher-index DAEs the situation is much more difficult since then C
itself might become solution dependent.

If the IVPs (4.1), (4.3) are uniquely solvable on Œa; b�, then one looks for a z such
that the boundary condition (4.2) is satisfied. This is the basic idea of the shooting
method.
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4.1 Solution of Linear DAEs

We consider the linear TPBVP (2.35) and a related IVP

A.Dx/0 C Bx D q; (4.5)

C.x.a/� z/ D 0; (4.6)

and C is chosen fulfilling (4.4) with given value z. We assume that the DAE (4.5) is
regular with index �. The solution of the IVP is represented in (2.33) as

x.t/ D X.t; a/z C
Z t

a
X.t; s/G�1

� .s/q.s/ds C vq.t/

and using the structure of X (cf. (2.27)) from

X.t; a/z D X.t; a/D.a/�D.a/˘��1.a/z;

we discover that the solution x depends for a given right-hand side q from the initial
value � WD D.a/˘��1.a/z only and not from the whole vector z. The component
.I �˘can.a//z does not matter at all.

We denote the solution of an IVP (4.5), (4.6) by x.tI a; �/. This means that we
implicitly assume, for the moment, that we also know the solution at t D a. This is
the difficult problem of computing consistent initial values, which is discussed later
on. Thus x.aI a; �/ D x.a/ D X.a; a/� C vq.a/. At t D b we have with the general
solution expression (2.36) that

x.bI a; �/ D x.b/ D X.b; a/D.a/�� C
Z b

a
X.b; s/G�1

� .s/q.s/ds C vq.b/:

x.�I a; �/ solves the DAE (4.5) and to solve the TPBVP (2.35) the boundary condition
also has to be fulfilled. The relation to determine � is given by

Gax.a/C Gbx.b/ D Ga.X.a; a/D.a/�� C vq.a//C Gb.X.b; a/D.a/��

C
bR

a
X.b; s/G�1

� .s/q.s/ds C vq.b// D �:

(4.7)

We obtain the linear system

.GaX.a; a/C GbX.b; a//„ ƒ‚ …
DS

D.a/�� D O�
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with O� D � � Gavq.a/ � Gb.
R b

a X.b; s/G�1
� .s/q.s/ds C vq.b// (cf. (2.37)). Theo-

rem 2.1 provides a unique initial value D.a/��. The solution of the IVP (4.5) and
the initial condition

D.a/˘��1.a/.x.a/� D.a/��/ D 0;

i.e., C D D.a/˘��1.a/, has the solution of the TPBVP represented by the solution
of an IVP with the initial value �. Because C.x.a/�D.a/��/ D D.a/˘��1.a/.x.a/�
D.a/��/ D 0 it follows that D.a/˘��1.a/x.a/ D D.a/˘��1.a/D.a/�� D �.

For the practical application of the shooting method two of our assumptions are
difficult to realize. First, the used choice of the matrix C in the initial condition
usually differs from D.a/˘can.a/ (see Remark 4.1) and second, in general, the
integration codes do not provide consistent initial values, i.e., the full vector x.a/.
But in contrast to IVPs we have to know the whole vector x.a/ to evaluate the
boundary condition (4.2). Additionally, consistent initial values are very helpful to
start the integration itself.

4.1.1 Computation of Consistent Initial Values

The computation of consistent initial values in the index-� case is a nontrivial task.
In the literature we find several papers which focus on that topic using various ways
to compute consistent initial values. Lamour [79] and England and Lamour [47]
propose for index-1 DAEs the use of the tractability index concept. Amodio and
Mazzia [2], Brown et al. [36], and Kiehl [67] assume a semi-explicit structure of
the DAE, which makes the computation much easier. Gerdts [53] considers special
structured index-2 DAEs, which are reduced to index 1 by differentiation.

We investigate proper formulated linear index-� DAEs. We have to compute at
an interesting time point Nt vectors y WD .D�.Dx/0/.Nt/ and v WD .I � ˘��1.Nt//x.Nt/.
These values have with known value � WD D.Nt/˘��1.Nt/x.Nt/ at least to fulfill

ADy C B.D�� C v/ D q.Nt/: (4.8)

Because rank D D r0 and rank .I � ˘��1/ D m � l we have to determine d WD
r0 C m � l unknowns but we have m natural conditions only. Using the dynamical
degree l (cf. (2.74)) we see that for � D 1 we have d D m and if � > 1 we obtain
d > m, i.e. we need additional conditions to compute consistent initial values. These
additional conditions are the so-called hidden constraints, which are computed by
differentiating suitable relations.

We define an operator I�, which computes for linear index-� DAEs y and v
depending on a known � as

�
y
v



D I�.�; Nt/: (4.9)

We demonstrate the operator I� for index-1 and index-2 DAEs.
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The index-1 case:
We have to compute d D r0 C m � l D m values. We define y as before and

v WD .I � P0.Nt//x.Nt/ D Q0.Nt/x.Nt/. Equation (4.8) looks like

ADy C B.D�� C v/ D q.Nt/; (4.10)

Q0y C P0v D 0: (4.11)

Equation (4.11) ensures that y and v lie in the right subspaces. The initial condition
reads with C D D.Nt/ as

D.Nt/.x.Nt/� z/ D 0

with given z. The Jacobian matrix of (4.10), (4.11) with respect to y; v is the regular

matrix J1 WD
�

G0 B
Q0 P0



. Using the inverse J�1

1 D
�

P0G�1
1 Q0 � P0G�1

1 BP0
Q0G�1

1 .I � Q0G�1
1 P0/P0



we

obtain

�
y
v



D J�1

1

�
q � BD��

0



DW I�.�/:

With

v D Q0G
�1
1 .q � BD��/ (4.12)

we obtain @v
@�

D �Q0G�1
1 BD� D �H0 for index 1 (cf. (6.9)).

The index-2 case:
The number of unknowns is d D r0 C m � l D 2m � r1. We are looking as in

the index-1 case for y D D�.Dx/0.Nt/ and now v WD .I � ˘1.Nt//x.Nt/. In contrast to
the index-1 case we have to add a relation to describe the hidden constraint (cf. [86,
Chaps. 2.10.3 and 10.2.2.1]). For that reason we differentiate the equation

W1Bx D W1q

resulting from the multiplication of (4.5) by the projector W1 projecting along im G1

and we obtain with W1BQ0 D 0

W1B D�.Dx/0„ ƒ‚ …
Dy

C.W1BD�/0Dx D .W1q/
0:

This leads to the system

ADy C B.D�� C v/ D q.Nt/; (4.13)

W1By C .W1BD�/0.� C Dv/ D .W1q/
0.Nt/; (4.14)

Q0y C˘1v D 0: (4.15)
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We solve Eqs. (4.13)–(4.15) explicitly for a given value � D D˘1D��. Multiply-
ing (4.13) by Q1G�1

2 provides using the relations v D .I � ˘1/v from (4.15) and
the admissible projector Q1 D Q1G�1

2 B1, which realizes a fine decoupling,

Q1G
�1
2 Bv D Q1G

�1
2 q.Nt/ � Q1G

�1
2 BD�D„ ƒ‚ …

Q1

P1D
�� and we obtain

Q1v D Q1G
�1
2 q.Nt/;

i.e., P0v D ˘1v„ƒ‚…
D0

CP0Q1v D P0Q1G�1
2 q.Nt/. The multiplication of (4.14) by Q1G�1

2

results because Q1G�1
2 W1 D Q1G�1

2 and Dv D DP0v

Q1G
�1
2 BP0„ ƒ‚ …

DQ1

y D Q1G
�1
2 ..W1q/

0.Nt/� .W1BD�/0.� C Dv//:

From Eq. (4.13) we obtain by scaling with G�1
2

G�1
2 G0y C G�1

2 BQ0v D G�1
2 .q.Nt/� BD�.� C Dv//;

.˘1 � Q0Q1/y C Q0v D G�1
2 .q.Nt/� BD�.� C Dv//;

˘1y C Q0v D G�1
2 .q.Nt/� BD�.� C Dv//C Q0Q1y: (4.16)

Multiplying Eq. (4.16) by˘1 respectively Q0, we obtain

˘1y D ˘1G
�1
2 .q.Nt/ � BD�.� C Dv//; respectively

Q0v D Q0G
�1
2 .q.Nt/ � BD�.� C Dv//C Q0Q1y:

Summarizing the components of y and v we obtain

y D ˘1G
�1
2 .q.Nt/� BD�.� C Dv//C P0Q1G

�1
2 ..W1q/

0.Nt/ � .W1BD�/0.� C Dv//;

v D .I �˘1/G
�1
2 q.Nt/ � Q0G

�1
2 BD�.� C Dv/C Q0Q1y: (4.17)

Later on we will need the relation between v and �. With (4.17) we obtain

@v

@�
D �Q0G

�1
2 BD� � Q0Q1G

�1
2 .W1BD�/0 D �H0 (4.18)

for the index-2 case (cf. Appendix (6.9)).

Lemma 4.1 The linear DAE (4.8) has index 2 and let v be the solution of
Eqs. (4.13)–(4.15). We choose the fine decoupling projector Q1 D Q1G�1

2 B1 and
assume that Q0Q1G�1

2 ;Q0Q1D� 2 C1 then .D� � @v
@�
/D˘1 D ˘can;2.
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Proof Using Eq. (4.18) we consider

.D� � @v

@�
/D˘1 D .D� � Q0G

�1
2 BD� � Q0Q1G

�1
2 .W1BD�/0/D˘1:

It holds that Q0G�1
2 B˘1 D Q0.P1 C Q1/G

�1
2 B˘1„ ƒ‚ …

D0
D Q0P1G�1

2 B˘1 and

Q0Q1G
�1
2 .W1BD�/0D˘1 D Q0..Q0Q1D

�/0 � .Q0Q1G
�1
2 /

0W1BD�/D˘1D
�D˘1;

D � Q0Q1D
�

„ ƒ‚ …
D�Q0P1D�

.D˘1D
�/0D˘1

� Q0.Q0Q1G
�1
2 /

0W1G2 Q1G
�1
2 BD�D˘1„ ƒ‚ …

D0

because of W1 D W1G2Q1G�1
2 . Now we have with (4.18) the representation

.D� � @v

@�
/D˘1 D .D� � .Q0P1G

�1
2 BD� C Q0P1D

�.D˘1D
�/0//D˘1;

D .D� � H0D
�/D˘1 D .I � H0/D

�D˘1 D ˘can;2:

ut
The relation described in Lemma 4.1 between the v-component of I� and the
canonical projector also holds for arbitrary index �.

Lemma 4.2 We consider the regular index-�DAE (4.5). We choose fine decoupling
projectors Q0;Q1; : : : ;Q��1 (cf. Sect. 6.1.2) then

@I�;v
@�

.�; Nt// D @I�;v
@�

.�; Nt//D.Nt/D.Nt/� and (4.19)

.D.Nt/� � @I�;v
@�

.�; Nt//D.Nt/˘��1.Nt/ D ˘can.Nt/: (4.20)

hold.

Proof We are interested in the v-component of I� only. It holds that v D
.I � ˘��1x/ and v D v0 C � � � C v��1. We refer to the decomposition (6.9)
which explicitly represent the components vi; i D 0; : : : ; � � 1. For a fine
decoupling (6.9) specializes to H1; : : : ;H��1 D 0. We observe that v0 depends

on � only and therefore @I�;v
@�

D H0D�. This relation shows (4.19). With .D.Nt/� �
H0D.Nt/�/D.Nt/˘��1.Nt/ D .I �H0/D.Nt/�D.Nt/˘��1.Nt/ D ˘can.Nt/ (cf. Sect. 6.1.2) the
proof is done. ut
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The realization of algorithms to compute consistent initial values using (6.9) is very
expensive. For higher-index systems it would be helpful to take advantage of a given
structure like Hessenberg form etc.

4.1.2 Single Shooting

Here we deal with linear regular index-� DAEs. In contrast to the ODE-case
a shooting method consists not only in the integration of the DAE but also in
providing consistent initial values. In [38] we find that the “Knowledge of the
solution manifold . . . is required . . . at the initial time point t0 D a : : :”. The shooting
method proposed in [79] combined the computation of consistent initial values with
the shooting procedure for index-1 DAEs. We generalize this idea to index-�DAEs.

We consider the TPBVP (2.35) and a related IVP

A.Dx/0 C Bx D q; (4.21)

C.x.a/� z/ D 0: (4.22)

The solution of the IVP (4.21), (4.22) at t D b is applying (2.33) given by

x.bI a; u/ D X.b; a/D.a/�� C
Z b

a
X.b; s/G�1

� .s/q.s/ds C vq.b/

and at t D a we obtain from (2.33) x.a/ D X.a; a/D.a/�� C vq.a/. The boundary
condition fixes the unknown � we are looking for

Ga.X.a; a/D.a/
�� C vq.a//C Gbx.bI a; �/ D 0; (4.23)

.I � D.a/˘��1.a/D.a/�/� D 0 (4.24)

and (4.24) fixes that � 2 im D.a/˘��1.a/. But for a realization of (4.23) we have
to know vq.a/ too. Therefore we combine (4.23) with the equations describing
consistent initial values at t D a (cf. (4.9))

�
y
v



� I�.�; a/ D 0: (4.25)

Lemma 4.3 Let the BVP (2.35) be uniquely solvable and the admissible projectors
Qi; 0 � i � � � 1 realize a fine decoupling. The Jacobian matrix of (4.23)–(4.25)
with respect to �; y; v has full column rank.
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Proof The Jacobian matrix is given by

J� D

0
BBBBBB@

.Ga C GbX.b; a//D.a/� 0 Ga

I � D.a/˘��1.a/D.a/� 0 0

@I�;y
@�

I 0

@I�;v
@�

0 I

1
CCCCCCA
:

We consider the equation J�

0
@

z�
zy

zv

1
A D 0 and we show that z D 0. If (2.35) is uniquely

solvable then ker S D ker˘��1.a/ (cf. Theorem 2.1). We obtain zv D � @I�;v
@u z� D

� @I�;v
@u D.a/D.a/�z� using (4.19). From the second equation of J�z D 0 we have the

relation z� D D.a/˘��1.a/D.a/�z� and therefore

.Ga.D.a/
� � @I�;v

@�
D.a/D.a/�/C GbX.b; a/D.a/�/z� D 0;

.Ga.D.a/
� � @I�;v

@�
/D.a/˘��1.a/D.a/�/C GbX.b; a/D.a/�/z� D 0:

Applying Lemma 4.2, .D.a/� � @I�;v
@�
/D.a/˘��1.a/ D ˘can.a/ D X.a; a/, we

consider SD.a/�z� D 0 which leads to ˘��1.a/D.a/�z� D 0 and finally to z� D 0.
Applying the last two equations results in zy D 0; zv D 0. ut
The implementation of a single shooting method for index-� DAEs requires an
algorithm to compute consistent initial values and an integration method to solve an
IVP and to compute the fundamental matrix X.b; a/.

The algorithmic procedure solving a BVP by a single shooting method starts
with an initial guess z0. Consistent initial values are computed obtaining the related
values �0; v0; y0. We solve the IVP (4.21)–(4.22) and obtain the solution x.bI a; u0/.
The corrections��;�v are the solutions of the linear system

0
B@
.Ga C GbX.b; a//D.a/� Ga

I � D.a/˘��1.a/D.a/� 0

H0 I

1
CA
 
��

�v

!
D

0
B@

Ga.D.a/��0 C v0/C Gbx.bI a; �0/� �

0

0

1
CA :

(4.26)

The solution of the TPBVP (2.35) at t D a is x.a/ D D.a/�.�0 ���/C v0 ��v.
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It is straightforward that the relation for�� finally looks like

.GaX.a; a/C GbX.b; a//D.a/��� D SD.a/���

D Ga.D.a/
��0 C v0/C Gbx.bI a; �0/� �:

The rectangular coefficient matrix can be arranged in such a way that it may
handle quadratic matrices. We have to combine the first two rows of equation
system (4.26) (cf. for the index-2 case [77]), because the first row contains the l
boundary conditions and the second row the m � l-dimensional subspace condition
for��.

4.1.3 Multiple Shooting

The single shooting has also for DAEs the disadvantages known from the ODE case.
The chosen (unknown) initial value may not have a calculable solution of the IVP
over the whole interval Œa; b�. We overcome that by the multiple shooting method.

The idea of multiple shooting is the subdivision of Œa; b� into smaller subintervals

a D t0 < t1 < : : : < tN�1 < tN D b:

The aim is the reduction of the sensitivity of the IVP by shorter integration intervals
and a smaller condition number of the resulting coefficient matrix of the linear
systems compared with the single shooting coefficient matrix (cf. (4.26)).

We discuss here the case of multiple forward (parallel) shooting only. Methods
shooting in different directions are analogously applicable like in the ODE case (cf.
[78]).

On every subinterval Œtj�1; tj�; j 2 Œ1;N� we solve an IVP. At matching points
tj we require continuity of the dynamic component u of the solution (cf. Sect. 2.2).
We obtain

D˘��1.tj/.D.tj/��j � x.tjI tj�1; �j�1// D 0; 1 � j � N � 1 or shorter
(4.27)

uj � D˘��1.tj/x.tjI tj�1; �j�1/ D 0; (4.28)

with �j WD u.tj/ and from the boundary condition

Ga.D
��0 C v0/C Gbx.tN I tN�1; �N�1/ D 0: (4.29)
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The unknowns are .�0; �1; : : : ; �N�1; v0; y0/, i.e., we have to extend the system by
the computation of consistent initial values at t0 to determine v0,

�
y0
v0



� I�.�0; t0/ D 0 (4.30)

and the restriction of �i to the subspace im D˘��1.ti/; i D 0; : : : ;N � 1 by

.I � D.ti/˘��1.ti/D.ti//��i D 0 (4.31)

as in the single shooting case. For an implementation of the multiple shooting
methods for DAEs these additional equations computing consistent initial values are
necessary at every shooting point. (This was mentioned for the first time in [38].)

Below we apply the notations

���1.t/ WD D.t/˘��1.t/D.t/� D D.t/˘can.t/D.t/
�;

Y.t; Nt/ WD D.t/˘��1.t/X.t; Nt/D.Nt/� D D.t/X.t; Nt/D.Nt/�
D���1.t/U.t; Nt/���1.Nt/ D U.t; Nt/���1.Nt/:

We refer to (2.21) and [86, (2.82)] for the properties used
We obtain the following Jacobian matrix of the system (4.28)–(4.31) with respect

to �0; : : : ; �N�1; y0; v0

J� D

2
666666666666666666666666666664

GaD.t0/� GbX.tN ; tN�1/D.tN�1/
� 0 Ga

�Y.t1; t0/ ���1.t1/

�Y.t2; t1/ ���1.t2/

: : :
: : :

�Y.tN�1; tN�2/ ���1.tN�1/

I � ���1.t0/

I � ���1.t1/

I � ���1.t2/

: : :

I � ���1.tN�1/
@I�;y0
@�0

I 0
@I�;v0
@�0

0 I

3
777777777777777777777777777775

:

(4.32)
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There is, for practical reasons, the possibility to compress J� by mixing (4.27)
with (4.31). We obtain

NJ� D

2
66666666666664

GaD.t0/� GbX.tN ; tN�1/D.tN�1/� 0 Ga

�Y.t1; t0/ I
�Y.t2; t1/ I

: : :
: : :

�Y.tN�1; tN�2/ I
I � ���1.t0/

@I�;y0
@u0

I 0
@I�;v0
@u0

0 I

3
77777777777775

(4.33)

The use of (4.28) for computing the Jacobian matrix leads immediately to (4.33).
As for the single shooting method, we show a regularity condition for the

matrix (4.32).

Lemma 4.4 Let the BVP (2.35) be uniquely solvable and the admissible projectors
Qi; 0 � i � � � 1 realize a fine decoupling.

The interval Œa; b� is subdivided into N subintervals

a D t0 < t1 < : : : < tN�1 < tN D b;

then the Jacobian matrix (4.32) has full column rank.

Proof To show the column regularity of J� we consider J�z D 0 with z D
.zT
0 ; z

T
1 ; : : : ; z

T
N�1; zT

y ; z
T
v /

T . Because ���1.ti/zi D D.ti/X.ti; ti�1/D.ti�1/�zi�1 for
i D 1; : : : ;N � 1, the second to the Nth equation leads to ���1.tN�1/zN�1 D
D.tN�1/X.tN�1; t0/D.t0/�z0. Using this result, the first equation looks like

.Ga C GbX.tN ; t0//D.t0/
�z0 C Gazv D 0

and the last but one equation gives zv D � @I�;v
@�0

z0. From the last equation we obtain
z0 D ���1.t0/z0 which leads for the first equation to

.GaX.t0; t0/C GbX.tN ; t0//D.t0/
�z0 D SD.t0/

�z0 D 0:

From (2.39) we have that then ˘��1.t0/D.t0/�z0 D 0, therefore z0 D 0 and
successively using (4.31) zi D 0; i D 1; : : : ;N � 1 it at last follows that zv D 0,
zy D 0. ut
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We are interested in the relation of the multiple shooting method of a DAE with
the inherent ODE. For that we use the v-component of (4.30) in (4.29) and we
consider the system (4.27) and (4.29). Its Jacobian matrix looks like

Smult D

2
666666664

GaX.t0; t0/D.t0/� GbX.tN ; tN�1/D.tN�1/�
0n�l;n

�Y.t1; t0/ ���1.t1/

�Y.t2; t1/ ���1.t2/
: : :

: : :

�Y.tN�1; tN�2/ ���1.tN�1/

3
777777775
:

(4.34)

For (4.34) we have the representation Smult D Smult;ODE˘r with

Smult;ODE D

2
6666664

Ga˘can.t0/D.t0/� Gb˘can.tN/D.tN/�U.tN ; tN�1/

Ca

�U.t1; t0/ I
: : :

: : :

�U.tN�1; tN�2/ I

3
7777775
;

˘r D

2
66664

���1.t0/

���1.t1/
: : :

���1.tN�1/

3
77775
:

The matrix Smult;ODE has the known structure of the Jacobian matrix of the
parallel shooting method for ODEs, here the inherent ODE, and is related to the
TPBVP (2.44)–(2.46). Its inverse is given by

S�1
mult;ODE D

2
64

U.t0; t0/S�1
ODE

NG.t0; t1/ � � � NG.t0; tN�1/
:::

:::
:::

U.tN�1; t0/S�1
ODE

NG.tN�1; t1/ � � � NG.tN�1; tN�1/

3
75
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with the nonsingular matrix SODE D
�

SIERODE

Ca

�
and the Green’s function

NG.t; s/ D

8̂
ˆ̂<
ˆ̂̂:

U.t; t0/S�1
ODE

�
Ga˘canD.t0/�

Ca

�
U.s; t0/�1; t � s

�U.t; t0/S�1
ODE

�
Gb˘canD.tN/�

0n�l;n

�
U.tN ; t0/U.s; t0/�1; t < s

(cf. for the Green’s function (2.40) and for SIERODE (2.43)).
In [13, Sect. 4.3], for classical BVPs in ODEs, it is pointed out that the single

shooting matrix may have a very large condition number (in the block row sum
norm) when unstable IVPs have to be integrated. The responsible factor is eL.b�a/,
with a positive constant L given by the original data. In contrast, roughly speaking,
the condition number of the multiple shooting matrix depends on terms of eLh, with
h D max

1�i�N
ti � ti�1.

The BVPs in DAEs inherit the difficulties of the single shooting, but also the
advantages of the multiple shooting. The canonical projector ˘can.t/ is uniformly
bounded in Œa; b� and so is ���1.t/. If ���1.t/ is bounded, then there is a bound K of
˘r independent of N. K is a factor in the bounds of both the single and the multiple
shooting matrices. Comparing the condition numbers, the size of K does not matter.

This makes clear that we can reduce the condition number by the multiple
shooting approach as in the ODE case (cf. [13]).

Theorem 4.5 A reflexive inverse S�
mult of the multiple shooting matrix Smult is

given by

S�
multD˘rS

�1
mult;ODE D diagD

2
64

X.t0; t0/S� G.t0; t1/ � � � G.t0; tN�1/
:::

:::
:::

X.tN�1; t0/S� G.tN�1; t1/ � � � G.tN�1; tN�1/

3
75 diagD�

with diagD WD diag .D.t0/; : : : ;D.tN�1// and diagD� WD diag .D.t0/�; : : : ;
D.tN�1/�/.

Proof We have to show the reflexivity properties Smult D SmultS�
multSmult and S�

mult D
S�

multSmultS�
mult. We consider S�

multSmult D ˘rS�1
mult;ODESmult;ODE˘r D ˘r and obtain

the required relations. ut
The relation of Theorem 4.5 was shown for index-1 DAEs in [88].
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4.2 Nonlinear Index-1 DAEs

The most realizations of shooting methods are done for index-1 DAEs or for
DAEs reduced to index-1. A reduction of the index is mostly done by applying
the differentiation index concept [38] or the strangeness index concept [74, 111].
In the latter, the realization of the shooting procedure is strongly interlocked with
the reduction from the derivative array system. Gerdts [53] investigated a special
structured index-2 DAE, which is reduced to index 1 by differentiation. See also
Remark 2.5. In [25, 37, 47, 79, 80] the shooting method is investigated for index-
1 DAEs. We find many papers considering very special applications. Lamour [80]
and Baiz [25] focus on periodic BVPs. The necessary conditions of optimal control
problems are investigated and shooting methods applied in [32, 37, 53, 63]. A lot of
papers deal with single problems in science and techniques which are then solved
by shooting methods.

We consider the TPBVP (2.1), (2.2). We subdivide the interval Œa; b� into N
subintervals a D t0 < t1 < � � � < tN D b. At every subinterval we have to integrate
and to compute consistent initial values. The IVP at a point Nt is represented by

D.Nt/.x.Nt/ � N̨ / D 0

for given N̨ . The computation of consistent initial values at Nt using y WD
D.Nt/�.Dx/0.Nt/ can be done by the solution of the equations

f .D.Nt/y;P0.Nt/ N̨ C Q0v; Nt/ D 0; (4.35)

Q0y C P0v D 0; (4.36)

which have in the index-1 case the nonsingular Jacobian matrix (cf. for a related
proof [86, Lemma 4.12] )

�
fyD fxQ0

Q0 P0

�
:

The matching conditions are given by

D.ti/.D.ti/
��i � x.tiI ti�1; �i�1// D 0 for i D 1; : : : ;N � 1: (4.37)

The system to solve consists of (2.2) as

g.D.t0/
��0 C v0; x.bI tN�1; �N�1// D 0; (4.38)

the matching conditions (4.37) and the determination of v0 using (4.35), (4.36) at
Nt D t0.
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The Jacobian matrix with respect to �0; �1; : : : ; �N�1; y0; v0 is related to (4.32)
with the linearization (cf. Sect. 2.5) of g and Y�.tj; ti/ WD D.tj/X�.tj; ti/D.ti/�

J1 D

2
6666666666666666666666664

G
�aD.t0/� G

�bX
�

.tN ; tN�1/D.tN�1/
� 0 G

�a

�Y
�

.t1; t0/ R.t1/

�Y
�

.t2; t1/ R.t2/
: : :

: : :

�Y
�

.tN�1; tN�2/ R.tN�1/

I � R.t0/

I � R.t1/
: : :

I � R.tN�1/

�P0G�1
1 fxD.t0/� I 0

�Q0G
�1
1 fxD.t0/� 0 I

3
7777777777777777777777775

with R.ti/ WD D.ti/D.ti/�. The column regularity of J1 follows from Lemma 4.4.
All techniques for solving nonlinear overdetermined systems are applicable. As
mentioned above a formulation as a square system is also possible, which results
in a nonsingular Jacobian matrix of the system.

If the DAE is represented with a full rank matrix D the system dimension
decreases because R.t/ � I. This holds because of the nonsingularity of DDT

(D D DD�D ) DD� D I), i.e., all equations related to (4.31) vanish.
Very often a semi-explicit structure of f is assumed (see (2.5)). Semi-explicit

structure means that D D ŒI 0� and D� D
�

I
0

�
. Therefore R D DD� D Im1 and

I � R D 0. This reduces the dimension of J1 drastically, because the blocks, e.g.
Y�.tj; ti/, have now dimension m1�m1 and not the full dimension of the DAE m�m
and D also has full rank.

A semi-explicit structure of the DAE is assumed, e.g., in [63, 67, 106].

4.3 Further References, Comments, and Open Questions

Remark 4.1 (Take Advantage of (Partially) Separated Boundary Conditions) If the
boundary conditions Gax.a/ C Gbx.b/ D � are structured such that a part is
separated at t D a we should take advantage of such explicitly required initial
values. This can be done by using for shooting an adapted initial value condition
C.x.a/� z/ D 0 which includes the separated boundary conditions. For DAEs up to
index 2 a proposal can be found in [48, 81].
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The advantage of partially separated boundary conditions is also considered in
[38]. Here a possible reduction of “the number of IVPs to be solved” is discussed.

Remark 4.2 (Avoiding Inconsistent Values for Semiexplicit Index-1 DAEs) In [34],
(cf. also [45]) for semi-explicit index-1 DAEs, a special way to avoid the computa-
tion of consistent initial values at every shooting point is proposed. The following
DAE is considered:

y0 D f .t; y; u; p/

0 D g.t; y; u; p/:

The algebraic condition g.t; y; u; p/ D 0 is replaced at every shooting interval by
g.t; y; u; p/ � g.rj; s

y
j ; s

u
j ; p/ D 0, where y.rj/ D sy

j ; u.rj/ D su
j describes the current

values of the Newton iteration values of the jth interval. Additionally it is secured
that g.rj; s

y
j ; s

u
j ; p/ ! 0 over the Newton iteration.

Remark 4.3 (Realizations for Higher-Index DAEs) Very few papers investigate
higher-index DAEs directly, i.e., without an index reduction.

In [77] a shooting method for index-2 DAEs in standard formulation is proposed;
the necessary differentiation for calculating consistent initial values are realized by
finite differences.

Consistent initial values for Hessenberg index-2 and index-3 DAEs using
boundary value methods are considered in [3] and for general index-3 DAEs in
[83].

The computation of consistent initial values of index-2 DAEs in standard
formulation using the tractability index concept is considered in [48] and for
properly stated index-2 DAEs in [81].

5 Miscellaneous

5.1 Periodic Solutions

Periodic solutions of DAEs are studied in the context of applications in multibody
system dynamics and circuit simulation, e.g., [25, 51, 107, 113]. As for explicit
ODEs, one can provide periodic solutions via BVPs with periodic boundary
conditions.

As pointed out already in [80], when formulating periodic boundary conditions,
one should try for a well-posed BVP and regard the accurate number of boundary
conditions. In contrast to the classical ODE case, the full condition x.0/� x.T/ D 0

is overdetermined for DAEs, cf. our Examples 1.2 and 1.3.
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In full analogy to explicit ODEs, the right number of boundary conditions is
necessary but not sufficient for well-posedness, cf. Example 1.3. The boundary
conditions must be consistent with the flow.

For autonomous DAEs one applies the usual trick to introduce the auxiliary
equation T 0 D 0 for the unknown period T and an additional boundary condition for
fixing the phase (e.g., [51, 80]).

Lyapunov stability criteria for periodic solutions of index-1 and index-2 DAEs
are provided in [84, 85] by means of an appropriate generalization of the Floquet
theory. Thereby the maximal normalized fundamental solution matrix plays its role
yielding the monodromy matrix and Floquet exponents. Note that certain structural
conditions restrict the class of index-2 DAEs in [85]. In essence, from an actual point
of view, these conditions ensure that the reference solution belongs to an index-
2 regularity region. We conjecture that the respective results remain valid if the
structural conditions are replaced by assuming the reference solution to proceed in
a stability region.

5.2 Abramov Transfer Method

The Abramov transfer method is extended to BVPs for index-1 DAEs in [27, 100]
and for index-2 DAEs in [30, 101]. We do not go into detail, but explain the main
idea for the case of explicit ODEs only.

It is well known that the solution space M.t/ � R
m of the classical IVP

x0.t/C B.t/x.t/ D 0; t 2 Œa; b�; (5.1)

Cax.a/ D 0; (5.2)

with Ca 2 L.Rm;Rk/, rank Ca D k � m, can be described by the relation

ya.t/
�x.t/ D ya.a/

�x.a/ D 0;

if the matrix-valued function ya solves the IVP

y0.t/ � B.t/�y.t/ D 0; t 2 Œa; b�; (5.3)

y.a/ D C�
a : (5.4)
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The subspace M.t/ D ker y.t/� D .im y.t//? has dimension m � k. BVPs for (5.1)
and separated boundary conditions

Cax.a/ D 0; Cbx.b/ D 0 (5.5)

can be traced back to the linear system

ya.t/
�x.t/ D 0;

yb.t/
�x.t/ D 0;

by solving an IVP and a terminal value problem for the adjoint equation. We
emphasize that there is no need for well-posedness of the BVP. As a byproduct
one gathers a constructive criterion of unique solvability.

Generally the adjoint ODE is not easier to integrate than the original ODE. The
idea behind the Abramov transfer method [1] consists of a continuous orthogonal-
ization by demanding y�y0 D 0 and turning to the nonlinear equation

y0.t/ � .I � y.t/.y.t/�y.t//�1y.t/�/B.t/�y.t/ D 0; t 2 Œa; b�; (5.6)

instead of (5.3). Equation (5.6) has nice theoretical and practical solvability proper-
ties. Slightly modified versions of this approach apply to inhomogeneous BVPs. To
provide an opinion of the capability of the Abramov transfer method we mention
the test problem [13, p. 121],

x0.t/ �
� �� cos.2!t/ ! C � sin.2!t/
�! C � sin.2!t/ � cos.2!t/

�
x.t/ D 0; t 2 Œ0; ��;

with the fundamental solution matrix

X.t/ D
�

cos.!t/ sin.!t/
� sin.!t/ cos.!t/

� �
e��t 0

0 e�t

�
:

As mentioned in [13], the Riccati method does not work well for � D 1 and greater
!, whereas it performs well for ! D 1 and greater �. In [100, 101] it is recorded
that the Abramov transfer method provides good results for ! from 1 to 1000 and �
from 1 to 200.

5.3 Finite-Difference Methods

For classical BVPs in explicit ODEs, finite-difference methods generally turn out to
be less efficient than collocation methods. The same is true for BVPs in DAEs. We
will take only a quick look at the topic.
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Diverse one-step and multi-step finite-difference schemes for approximating the
solution of the BVP

f ..Dx/0.t/; x.t/; t/ D 0; t 2 Œa; b�;
g.x.a/; x.b/ D 0;

on a grid � W a D t0 < � � � < tN D b have been studied in [89].
For well-posed BVPs, thus for regular index-1 DAEs, stability inequalities and
convergence results are provided by means of the well-known discretization theory
developed in [65, 66]. From the difference approach concerning the DAE on each
subinterval, one generally obtains mN equations for determining the unknowns
x0; : : : ; xN . In contrast to the case of explicit ODEs, the boundary condition yields
n D rank D.a/ < m conditions, and hence, one needs an additional m�n consistency
equations to obtain a balanced scheme. In comparison to the case of explicit ODEs,
also certain extra stability conditions are needed.

Finite-difference methods for index-1 DAEs in standard form have been treated
in [55] accordingly.

Respective convergence results have been offered in [38] for smoothly solvable
linear BVPs with no restriction concerning the DAE index. Instead, the availability
of a globally O.hs/-convergent method for solving the corresponding IVPs is
postulated and the additionally needed consistency conditions are supposed to be
given by means of a derivative array system.

A further detailed convergence proof is described in [111] for linear index-1
DAEs with separated derivative-free equations.

In general, it seems that multi-step methods may be affected by varying inherent
subspaces and one-step methods perform better (e.g., [91, p. 169]).

5.4 Newton–Kantorovich Iterations

Newton–Kantorovich iteration methods applied to BVPs for index-1 and index-2
DAEs are studied in [92, 101], see also [96].

The BVP

f ..Dx/0.t/; x.t/; t/ D 0; t 2 Œa; b� D I; (5.7)

g.x.a/; x.b/ D 0; (5.8)

can be formulated as an operator equation (cf. the proofs of Theorems 2.7 and 2.11).
Let DF 
 Df be open. We associate with the DAE (5.7) the nonlinear operator

F W dom F 
 C1D.I;Rm/ ! C.I;Rm/;

dom F W D fx 2 C1
D.I;Rm/ W x.t/ 2 DF for all t 2 Ig;

.Fx/.t/ W D f ..Dx/0.t/; x.t/; t/; t 2 I; x 2 dom F; (5.9)
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such that the DAE (5.7) is represented as the operator equation

Fx D 0: (5.10)

F is said to be a nonlinear differential-algebraic operator. The operator equa-
tion (5.10) reflects the classical view of a DAE: the solutions belong to C1D.I;Rm/

and satisfy the DAE pointwise for all t 2 I. The arguments in [96] enable us to
speak of the natural Banach space setting.

The operator F is Fréchet differentiable and the map F0.x�/ defined by

F0.x�/x D A�.Dx/0 C B�x; x 2 C1D.I;Rm/;

is the Fréchet derivative of F at x�. The linear operator equation

F0.x�/x D q

stands now for the linearization of the original DAE at x�, that is, for the linear DAE

A�.Dx/0 C B�x D q: (5.11)

The composed operator

F W dom F 
 C1D.I;Rm/ ! C.I;Rm/ � R
m�l;

Fx W D .Fx; g.x.a/; x.b///; x 2 dom F; (5.12)

is Fréchet differentiable since F is so. The equation Fx D 0 represents the
BVP (5.7), (5.8), whereas the equation Fx D .q; �/ is the operator form of the
perturbed BVP

f ..D.t/x.t//0; x.t/; t/ D q.t/; t 2 I; g.x.a/; x.b// D �: (5.13)

Suppose that the composed operator F associated with the BVP is a local
diffeomorphism at x� 2 domF and F.x�/ D 0, then the well-known Newton–
Kantorovich iteration

xkC1 D xk � F 0.xk/
�1F.xk/; k � 0; (5.14)

can be applied to approximate x�. If the initial guess x0 is sufficiently close to x�,
then these iterations are well-defined and xk tends to x�. Practically, one solves the
linear equations

F 0.xk/z D �F.xk/; k � 0; (5.15)
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and, having the solution zkC1 of the linear problem (5.15), one puts

xkC1 D xk C zkC1: (5.16)

The linear problem (5.15) represents the linear BVP

fy..Dxk/
0.t/; xk.t/; t//.Dz/0.t/C fx..Dxk/

0.t/; xk.t/; t//z.t/ D �f ..Dxk/
0.t/; xk.t/; t//;

t 2 I;

Ga.xk.a/; xk.b//z.a/C Gb.xk.a/; xk.b//z.b/ D �g.xk.a/; xk.b//;

with partial derivatives Ga;Gb of the function g with respect to its first and second
arguments.

A damping parameter is usually incorporated, and instead of (5.16) one applies

xkC1 D xk C ˛kC1zkC1; with ˛kC1 2 .0; 1�: (5.17)

Usually the damping parameter is chosen so that the residuum F.xkC1/ becomes
smaller in some sense, that is

kF.xkC1/kres < kF.xk/kres;

with a suitable measure of the residuum, for instance,

kF.x/kres WD kF.x/k D kF.x/k1 C jg.x.a/; x.b//j
and kF.x/k2res WD kF.x/k2L2 C jg.x.a/; x.b//j2:

Sufficient conditions for the composed operator F to be a local diffeomorphism in
the natural setting are described in [96, Sect. 4.3.2]. Then the BVP is well-posed in
the natural setting and the DAE has index 1, see Sect. 2.5.1.

In [96, Sect. 4.3.3] and Sect. 2.5.2 one finds conditions for BVPs for a class of
index-2 problems being well-posed in an advanced setting.

Next we take a look at the differentiable functional

J.x/ WD 1

2
kF.x/k2L2 C 1

2
jg.x.a/; x.b//j2; x 2 domF : (5.18)

Of course, the problem to solve the equation F.x/ D 0 can be regarded as the
problem to minimize this functional.

For x 2 domF and z 2 C1D.I;Rm/, the directional derivative reads

J0.x/z D .F0.x/z;F.x//L2

C h ba.x.a/; x.b//z.a/C be.x.a/; x.b//z.b/; b.x.a/; x.b// i:
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If x0 2 domF is fixed, F.x0/ ¤ 0, and if there exists a solution zN of the linear
equation,

F 0.x0/z D �F.x0/; k � 0; (5.19)

then it results that

J0.x0/zN D �kF.x0/k2L2 � jg.x0.a/; x0.b//j2 < 0

thus J.x0 C ˛zN/ < J.x0/ for all sufficiently small ˛ > 0. Therefore, the so-called
Newton direction zN serves as the descent direction. Constructing a descent method
by applying Newton directions is essentially the same as the damped Newton–
Kantorovich iteration. This works under the conditions described above, that is, for
index-1 and a restricted class of index-2 problems (cf. [92, 101]).

In [101] the Newton–Kantorovich iteration has been applied in combination
with the Abramov transfer method for solving linear BVPs, with differing success.
Although the linear BVPs could be solved successfully, the intermediate processing
to prepare the next iteration could not be managed in an efficient way. Although a
collocation solver for the linear BVPs seems to be less accurate than the transfer
method, because of a possibly much better intermediate processing from one
iteration level to the next one, the Newton–Kantorovich iteration combined with
collocation can be expected to work well for the mentioned classes of DAEs. No
related practical experience has been reported up to now.

Following [96], for equations F.x/ D 0 involving higher-index differential-
algebraic operators F, there are two principal difficulties concerning Newton descent
and Newton–Kantorovich iteration:

1. The linear equation (5.15) resp. (5.19) is essentially ill-posed and might not be
solvable. Changing to least-squares solutions does not make a great deal of sense,
since the linearizations F 0.x/ are not normally solvable.

2. For an essentially ill-posed problem a small residuum F.xk/ does not mean that
xk is close to a solution, see [86, Sect. 1.1].

Among the methods for ill-posed problems one finds generalizations of Newton-
like methods using outer inverses. Instead of the unbounded inverse F.xk/

�1
in (5.14) one uses a bounded outer inverse. Such an outer inverse is provided by
[96, Theorem 4.2]. It seems that no practical experience is available in this context
up to now.
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6 Appendix

6.1 Basics Concerning Regular DAEs

We collect basic facts on the DAE

f ..Dx/0.t/; x.t/; t/ D 0; (6.1)

which exhibits the involved derivative by means of an extra matrix-valued function
D. The function f W Rn � Df � If �! R

m, Df � If 
 R
m � R open, is continuous

and has continuous partial derivatives fy and fx with respect to the first two variables
y 2 R

n, x 2 Df . The partial Jacobian fy.y; x; t/ is everywhere singular. The matrix
function D W If ! L.Rm;Rn/ is continuously differentiable and D.t/ has constant
rank r on the given interval If . Then, im D is a C1-subspace in R

n. We refer to [86]
for proofs, motivation, and more details.

6.1.1 Regular DAEs, Regularity Regions

The DAE (6.1) is assumed to have a properly stated leading term. To simplify
matters we further assume the nullspace ker fy.y; x; t/ to be independent of y. Then,
the transversality condition (2.3) pointwise induces the continuously differentiable
(see [86, Lemma A.20]) border projector R W Df � If ! L.Rn/ given by

im R.x; t/ D im D.t/; ker R.x; t/ D ker fy.y; x; t/; .y; x; t/ 2 R
n �Df � If : (6.2)

Next we depict the notion of regularity regions of a DAE (6.1). For this aim we
introduce admissible matrix function sequences and associated projector functions
(cf. [86]). Denote

A.x1; x; t/ W D fy.D.t/x
1 C D0.t/x; x; t/ 2 L.Rn;Rm/;

B.x1; x; t/ W D fx.D.t/x
1 C D0.t/x; x; t/ 2 L.Rm/;

G0.x
1; x; t/ W D A.x1; x; t/D.t/ 2 L.Rm/;

B0.x
1; x; t/ W D B.x1; x; t/ 2 L.Rm/ for x1 2 R

m; x 2 Df ; t 2 If :

The transversality condition (2.3) implies ker G0.x1; x; t/ D ker D.t/. We introduce
projector valued functions Q0;P0;˘0 2 C.If ;L.Rm// such that for all t 2 If

im Q0.t/ D N0.t/ WD ker D.t/; ˘0.t/ WD P0.t/ WD I � Q0.t/: (6.3)

Since D has constant rank, the orthoprojector function onto N0 is as smooth as D.
Therefore, as Q0 we can choose the orthoprojector function onto N0 which is even
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continuously differentiable. Next we determine the generalized inverse D.x; t/� of
D.t/ pointwise for all arguments by

D.x; t/�D.t/D.x; t/� D D.x; t/�;

D.t/D.x; t/�D.t/ D D.t/;

D.x; t/�D.t/ D P0.t/;

D.t/D.x; t/� D R.x; t/:

The resulting function D� is continuous, if P0 is continuously differentiable then so
also is D�.

Definition 6.1 Let the DAE (6.1) have a properly involved derivative and let G 

Df � If be open connected.

For the given level � 2 N, we call the sequence G0; : : : ;G� an admissible matrix
function sequence associated with the DAE (6.1) on the set G, if it is built pointwise
for all .x; t/ 2 G and all arising xj 2 R

m by the rule:
set G0 WD AD; B0 WD B; N0 WD ker G0,
for i � 1:

Gi WD Gi�1 C Bi�1Qi�1; (6.4)

Ni WD ker Gi;
_
Ni WD .N0 C � � � C Ni�1/\ Ni;

find a complement Xi such that N0 C � � � C Ni�1 D _
Ni ˚ Xi;

choose a projector Qi such that im Qi D Ni and Xi 
 ker Qi;

set Pi WD I � Qi; ˘i WD ˘i�1Pi;

Bi WD Bi�1Pi�1 � GiD
�.D˘iD

�/0D˘i�1; (6.5)

and, additionally,

(a) the matrix function Gi has constant rank ri on R
mi � G, i D 0; : : : ; �,

(b) the intersection
_
Ni has constant dimension ui WD dim

_
Ni there,

(c) the product function˘i is continuous and D˘iD� is continuously differentiable
on R

mi � G, i D 0; : : : ; �.

The projector functions Q0; : : : ;Q� linked with an admissible matrix function
sequence are said to be admissible themselves.

An admissible matrix function sequence G0, : : :, G� is said to be regular
admissible, if

_
Ni D f0g for all i D 1; : : : ; �:

Then, also the projector functions Q0; : : : ;Q� are called regular admissible.
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The numbers r0 D rank G0; : : : ; r� D rank G� and u1; : : : ; u� are named
characteristic values of the DAE on G.

To shorten the wording we often speak simply of admissible projector functions
having in mind the admissible matrix function sequence built with these admissible
projector functions. Admissible projector functions are always cross-linked with
their matrix function sequence. Changing a projector function yields a new matrix
function sequence.

We refer to [86] for many useful properties of the admissible matrix function
sequences. It always holds that

r0 � � � � � r��1 � r� :

The notion of characteristic values makes sense, since these values are independent
of the special choice of admissible projector functions and invariant under regular
transformations.

In the case of a linear constant coefficient DAE, the construct simplifies to
a sequence of matrices. In particular, the second term in the definition of Bi

disappears. It is long-known that a pair fE;Fg of m � m matrices E;F is regular
with Kronecker index � exactly if an admissible sequence of matrices starting with
G0 D AD D E, B0 WD F yields

r0 � � � � � r��1 < r� D m: (6.6)

Thereby, neither the factorization nor the special choice of admissible projectors
matter. The characteristic values describe the structure of the Weierstraß–Kronecker
form: we have l D P��1

jD0 .m � rj/ and the nilpotent part N contains altogether s D
m � r0 Jordan blocks, among them ri � ri�1 Jordan blocks of order i, i D 1; : : : ; �,
see [86, Corollary 1.32].

For linear DAEs with time-varying coefficients, the term .�/0 in (6.5) means the
derivative in time, and all matrix functions are functions in time. In general, the term
.�/0 in (6.5) stands for the total derivative in jet variables and then the matrix function
Gi depends on the basic variables .x; t/ 2 G and, additionally, on the jet variables
x1; : : : ; xiC1 2 R

m. Owing to the total derivative .D˘iD�/0 the new variable xiC2 2
R

m comes in at this level, see [86, Sect. 3.2].
Owing to the constant-rank conditions, the terms D˘iD� are basically continu-

ous. It may happen, for making these terms continuously differentiable, that the data
function f must satisfy additional smoothness requirements. A precise description of
this smoothness is much too involved and an overall sufficient condition, say f 2 Cm,
is much too superficial. To indicate that there might be additional smoothness
demands we restrict ourselves to the wording f is sufficiently smooth.

The next definition ties regularity to the inequalities (6.6) and so generalizes
regularity of matrix pencils for time-varying linear DAEs as well as for nonlinear
DAEs. We emphasize that regularity is supported by several constant-rank condi-
tions.
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Definition 6.2 Let the DAE (6.1) have a properly involved derivative. Let G 

Df � If be an open, connected subset. The DAE (6.1) is said to be

(1) regular on G with tractability index 0, if r0 D m,
(2) regular on G with tractability index�, if an admissible matrix function sequence

exists such that (6.6) is valid on G,
(3) regular on G, if it is, on G, regular with any index (i.e., case (1) or (2) applies).

The open connected subset G is called a regularity region or regularity domain.
A point .Nx; Nt/ 2 Df �If is a regular point if there is a regularity region G 3 .Nx; Nt/.
If D 
 Df is an open subset and I 
 If is a compact subinterval, then the

DAE (6.1) is said to be regular on D � I if there is a regularity region G such that
D � I � G.

Example 6.1 (Regularity Regions) We write the DAE

x0
1.t/C x1.t/ D 0;

x2.t/x0
2.t/ � x3.t/ D 0;

x1.t/2 C x2.t/2 � 1 � �.t/ D 0;

in the form (6.1), with n D 2; m D k D 3,

f .y; x; t/ D
2
4

y1 C x1
x2y2 � x3

x21 C x22 � �.t/� 1

3
5 ; fy.y; x; t/ D

2
4
1 0

0 x2
0 0

3
5 ;

D.t/ D
�
1 0 0

0 1 0

�
;

for y 2 R
2, x 2 Df D R

3, t 2 If D R.
The derivative is properly involved on the open subsets R2 � GC and R

2 � G�,
GC WD fx 2 R

3 W x2 > 0g � If , G� WD fx 2 R
3 W x2 < 0g � If . We have there

G0 D AD D
2
4
1 0 0

0 x2 0
0 0 0

3
5 ; B0 D

2
4
1 0 0

0 x12 �1
2x1 2x2 0:

3
5 :

Letting

Q0 D
2
4
0 0 0

0 0 0

0 0 1

3
5 ; yields G1 D

2
4
1 0 0

0 2x2 �1
0 0 0

3
5 :
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G1 is singular but has constant rank. Since N0 \ N1 D f0g we find a projector
function Q1 such that N0 
 ker Q1. We choose

Q1 D

2
64
0 0 0

0 1 0

0 1
x2
0

3
75 ; P1 D

2
64
1 0 0

0 0 0

0 � 1
x2
1

3
75 ; ˘1 D

2
4
1 0 0

0 0 0

0 0 0

3
5 ; D˘1D

� D
�
1 0

0 0

�
;

and obtain B1 D B0P0Q1, and then

G2 D
2
4
1 0 0

0 2x2 C x12 �1
0 2x2 0

3
5 :

The matrix G2 D G2.x1; x; t/ is nonsingular for all arguments .x1; x; t/ with
x2 ¤ 0. The admissible matrix function sequence terminates at this level. The open
connected subsets GC and G� are regularity regions, here both with characteristics
r0 D 2, r1 D 2, r2 D 3, and tractability index � D 2. �

For regular DAEs, all intersections
_
Ni are trivial ones, thus ui D 0, i � 1. Namely,

because of the inclusions

_
Ni 
 Ni \ NiC1 
 NiC1 \ NiC2 
 � � � 
 N��1 \ N�;

for reaching a nonsingular G�, which means N� D f0g, it is necessary to have
_
Ni D f0g, i � 1. This is a useful condition for checking regularity in practice.

Observe that each open connected subset of a regularity region is again a
regularity region. A regularity region consist of regular points having uniform
characteristics. The union of regularity regions is, if it is connected, a regularity
region, too. Further, the nonempty intersection of two regularity regions is also a
regularity region. Only regularity regions with uniform characteristics may yield
nonempty intersections. Maximal regularity regions are then bordered by so-called
critical points. Solutions may cross the borders of maximal regularity regions and
undergo there bifurcations etc., see examples in [82, 86, 95]. No doubt, much further
research is needed to elucidate these phenomena.

6.1.2 The Structure of Linear DAEs

The general DAE (6.1) captures linear DAEs

A.t/.Dx/0.t/C B.t/x.t/ � q.t/ D 0 (6.7)
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as f .y; x; t/ WD A.t/y C B.t/x � q.t/; t 2 If . Now, admissible matrix function
sequences depend only on time t; and hence, we speak of regularity intervals instead
of regions. A regularity interval is open by definition. We say that the linear DAE
with properly leading term is regular on the compact interval Œta; te�, if there is an
accommodating regularity interval, or equivalently, if all points of Œta; te� are regular.

If the linear DAE is regular on the interval I, then it is also regular on each
subinterval of I with the same characteristics. This sounds a triviality; however,
there is a continuing profound debate about some related questions, cf. [96,
Sect. 4.4].

If the linear DAE (6.7) is regular on the interval I, then (see [86, Sect. 2.4]) it
can be decoupled by admissible projector functions into an IERODE

u0 � .D˘��1D�/0u C D˘��1G�1
� B�D�u D D˘��1G�1

� q (6.8)

and a triangular subsystem of several equations including differentiations

2
66664

0 N01 � � � N0;��1
0
: : :

:::
: : : N��2;��1

0

3
77775

2
6664

0

.Dv1/0
:::

.Dv��1/0

3
7775 (6.9)

C

2
66664

I M01 � � � M0;��1
I

: : :
:::

: : : M��2;��1
I

3
77775

2
6664

v0

v1
:::

v��1

3
7775C

2
6664

H0

H1

:::

H��1

3
7775D�u D

2
6664

L0
L1
:::

L��1

3
7775 q:

The subspace im D˘��1 is an invariant subspace for the IERODE (6.8).
This structural decoupling is associated with the decomposition

x D D�u C v0 C v1 C � � � C v��1:

The coefficients are continuous and explicitly given in terms of an admissible matrix
function sequence as

N01 WD �Q0Q1D
�

N0j WD �Q0P1 � � � Pj�1QjD
�; j D 2; : : : ; � � 1;

Ni;iC1 WD �˘i�1QiQiC1D
�;

Nij WD �˘i�1QiPiC1 � � � Pj�1QjD
�; j D i C 2; : : : ; � � 1; i D 1; : : : ; � � 2;

M0j WD Q0P1 � � � P��1MjD˘j�1Qj; j D 1; : : : ; � � 1;
Mij WD ˘i�1QiPiC1 � � � P��1MjD˘j�1Qj; j D i C 1; : : : ; � � 1; i D 1; : : : ; � � 2;
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L0 WD Q0P1 � � � P��1G
�1
� ;

Li WD ˘i�1QiPiC1 � � � P��1G
�1
� ; i D 1; : : : ; � � 2;

L��1 WD ˘��2Q��1G
�1
� ;

H0 WD Q0P1 � � � P��1K˘��1;

Hi WD ˘i�1QiPiC1 � � � P��1K˘��1; i D 1; : : : ; � � 2;
H��1 WD ˘��2Q��1K˘��1;

with

K WD .I �˘��1/G�1
� B��1˘��1 C

��1X
lD1
.I �˘l�1/.Pl � Ql/.D˘lD

�/0D˘��1;

Mj WD
j�1X
kD0
.I �˘k/fPkD�.D˘kD�/0 � QkC1D�.D˘kC1D�/0gD˘j�1QlD

�;

l D 1; : : : ; � � 1:

The IERODE is always uncoupled from the second subsystem, but the latter is tied to
the IERODE (6.8) if among the coefficientsH0; : : : ;H��1 there is at least one which
does not vanish. One speaks about a fine decoupling, if H1 D � � � D H��1 D 0, and
about a complete decoupling, if H0 D 0, additionally. A complete decoupling is
given, exactly if the coefficient K vanishes identically.

If the DAE (6.7) is regular and the original data are sufficiently smooth, then the
DAE (6.7) is called fine. Fine DAEs always possess fine and complete decouplings,
see [86, Sect. 2.4.3] for the constructive proof. The coefficients of the IERODE
as well as the so-called canonical projector function ˘can D .I � H0/˘��1 are
independent of the special choice of the fine decoupling projector functions.

It is noteworthy that, if Q0; : : : ;Q��1 generate a complete decoupling for a
constant coefficient DAE Ex0.t/C Fx.t/ D 0, then ˘��1 is the spectral projector of
the matrix pencil fE;Fg. In this way, the projector function ˘��1 associated with
a complete decoupling of a fine time-varying DAE represents the generalization of
the spectral projector.

6.1.3 Linearizations

Given is now a reference function x� 2 C1D.I�;Rm/ on an individual interval
I� 
 If , whose values belong to Df . For each such reference function (here not
necessarily a solution!) we may consider the linearization of the (6.1) along x�, that
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is, the linearized DAE

A�.t/.Dx/0.t/C B�.t/x.t/ D q.t/; t 2 I�; (6.10)

with coefficients

A�.t/ WD fy..Dx�/0.t/; x�.t/; t/; B�.t/ WD fx..Dx�/0.t/; x�.t/; t/; t 2 I�:

The linear DAE (6.10) inherits from the nonlinear DAE (6.1) the properly stated
leading term.

We denote by Cm
ref .G/ the set of all Cm functions x�, defined on individual intervals

Ix
�

, and with graph in G, that is, .x�.t/; t/ 2 G for t 2 Ix
�

. Clearly, then we also
have x� 2 C1D.Ix

�

;Rm/. By the smoothness of the reference functions x� and the
function f we ensure that also the coefficients A� and B� are sufficiently smooth for
regularity.

Next we adapt the necessary and sufficient regularity condition from [86,
Theorem 3.33] to our somewhat simpler situation.

Theorem 6.1 Let the DAE (6.1) have a properly involved derivative and let f be
sufficiently smooth. Let G 
 Df � If be an open connected set. Then the following
statements are valid:

(1) The DAE (6.1) is regular on G if the linearized DAE (6.10) along each arbitrary
reference function x� 2 Cm

ref .G/ is regular, and vice versa.
(2) If the DAE (6.1) is regular on G with tractability index � and characteristic

values r0 � � � � � r��1 < r� D m, then all linearized DAEs (6.10)
along reference functions x� 2 Cm

ref .G/ are regular with uniform index � and
characteristics r0 � � � � � r��1 < r� D m.

(3) If all linearized DAEs (6.10) along reference functions x� 2 Cm
ref .G/ are regular,

then they have uniform index and characteristics, and the nonlinear DAE (6.1)
is also regular on G, with the same index and characteristics.

Corollary 6.2 Let the DAE (6.1) have a properly involved derivative and let f be
sufficiently smooth. Let D 
 Df be an open connected set and I � If be a compact
interval. Then the following statements are valid:

(1) The DAE (6.1) is regular on D � I if the linearized DAE (6.10) along each
arbitrary reference function x� 2 Cm.I;Rm/ with values in D is regular, and
vice versa.

(2) If the DAE (6.1) is regular on D�I with tractability index� and characteristic
values r0 � � � � � r��1 < r� D m, then all linearized DAEs (6.10) along
reference functions x� 2 Cm.I;Rm/ with values in D are regular with uniform
index � and characteristics r0 � � � � � r��1 < r� D m.

(3) If all linearized DAEs (6.10) along reference functions x� 2 Cm.I;Rm/ with
values in D are regular, then they have uniform index and characteristics, and
the nonlinear DAE (6.1) is also regular on D � I, with the same index and
characteristics.
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Proof Statement (1) is a consequence of Statements (2) and (3).
Statement (2) follows from the construction of the admissible matrix function

sequences. Namely, for each x� 2 Cm.I;Rm/, with values in D, we have

G0.x
0�.t/; x�.t/; t/ DW G� 0.t/;

Bi�1.x.iC1/� .t/; � � � ; x0�.t/; x�.t/; t/ DW B� i�1.t/;

Gi.x
.iC1/
� .t/; � � � ; x0�.t/; x�.t/; t/ DW G� i.t/; t 2 I; i D 1; : : : ; �;

which represents an admissible matrix function sequence for the linearized along x�
DAE.

Statement (3) is proved along the lines of [86, Theorem 3.33 ] by means of so-
called widely orthogonal projector functions. The proof given in [86] also works if
one supposes solely compact individual intervals Ix

�

.
By Lemma 6.3 below, each reference function given on an individual compact

interval can be extended to belong to x� 2 Cm.I;Rm/, with values in D. ut
The next assertion is proved in [96].

Lemma 6.3 Let D 
 R
m be an open set and I � R be a compact interval. Let

I� � I be a compact subinterval and s 2 N.
Then, for each function x� 2 Cs.I�;Rm/, with values in D, there is an extension

Ox� 2 Cs.I;Rm/, with values in D.

6.1.4 Linear Differential-Algebraic Operators

Let the linear DAE (6.7) be regular with tractability index � 2 N on the interval
I D Œa; b�. The function space

C1D.I;Rm/ D fx 2 C.I;Rm/ W Dx 2 C1.I;Rn/g

equipped with the norm kxkC1D WD kxk1Ck.Dx/0k1 is a Banach space. We consider
the regular linear differential-algebraic operator (cf. [96])

Tx WD A.Dx/0 C Bx; x 2 C1D.I;Rm/;

and, supposing accurately stated boundary conditions in the sense of Definition 2.3,
the composed operator

T x WD . Tx; Gax.a/C Gbx.b/ /; x 2 C1D.I;Rm/;

so that the equations Tx D q and T x D .q; �/ represent the DAE and the BVP,
respectively.
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We consider different image spaces Y and Y �R
l for the operators T and T . The

natural one is

Y D C.I;Rm/:

T and T are bounded in this setting:

kTxk1 � .kAk1k.Dx/0k1 C kbk1kxk1/ � kkxkC1D ; x 2 C1D.I;Rm/:

The operator T is surjective exactly if the index � equals one. Otherwise im T is
a proper nonclosed subset in C.I;Rm/, see [86, Sect. 3.9.1], also Appendix 6.1.2.
More precisely, one obtains

im T D fq 2 C.I;Rm/ W v��1 WD L��1q; Dv��1 2 C1.I;Rn/; for j D � � 2; : : : ; 1 W

vj WD Ljq C
��1X

iDjC1

Mj;ivi C
��1X

iDjC1

Nj;i.Dvi/
0; Dvj 2 C1.I;Rn/g DW Cind�.I;Rm/:

If � D 1, then T acts bijectively between Banach spaces so that the inverse T �1
is also bounded and the BVP T x D .q; �/ is well-posed.

If � > 1, then the BVP T x D .q; �/ is essentially ill-posed in this natural setting
because of the nonclosed image of T.

Let � > 1. In an advanced setting we choose

Y D C ind�.I;Rm/

and by introducing the norm kqkind � WD kqk1 C k.Dv��1/0k1 C � � � C k.Dv1/0k1
we obtain again a Banach space. Regarding the structure of the DAE (cf. Sect. 6.1.2)
one knows the operators t and T to be bounded again. Namely, we derive for each
arbitrary x 2 C1D.I;Rm/ that

kTxkind � WD kTxk1 C k.D˘��2Q��1x/0k1 C � � � C k.D˘0Q1x/
0k1:

Taking into account that

.D˘��2Q��1x/0 D .D˘��2Q��1D�/0Dx C D˘��2Q��1D�.Dx/0

etc. one achieves the required inequality kTxkind � � kind �kxkC1D .
In this advanced setting, as a bounded bijection acting in Banach spaces, T has a

bounded inverse and the BVP is well-posed. This sounds fine, but it is quite illusory.
The advanced image space C ind�.I;Rm/ as well as its norm k:kind � strongly depend
on the special coefficients A;D;B. To describe them, one has to be aware of the full
special structure of the given DAE. Except for the index-2 case, there seems to be
no way to practice this formal well-posedness.
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Furthermore, the higher the index the stronger the topology given by the norm
k:kind �, see [86, Sect. 3.9.1], [96, Sect. 2]. It seems to be impossible to capture errors
in practical computational procedures using these norms.

6.2 List of Symbols and Abbreviations

L.X;Y/ Set of linear operators from X to Y
L.X/ D L.X;X/
L.Rm;Rn/ is identified with R

n�m

K� Transposed matrix
K� Generalized inverse
KC Orthogonal generalized (Moore–Penrose) inverse
dom K Definition domain of the map K
ker K Nullspace (kernel) of the operator K
im K Image (range) of the operator K
ind fE;Fg Kronecker index of the matrix pair fE;Fg
h�; �i Scalar product in R

m

.�; �/ Scalar product in function spaces
j � j Vector and matrix norms
k � k Norms on function spaces, operator norms
DAE Differential-algebraic equation
ODE Ordinary differential equation
IVP Initial value problem
BVP Boundary value problem
IERODE Inherent explicit ODE
LSS Least squares solution
TPBVP Two-point BVP
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