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Preface

This book is a study of the many refinements and incarnations of the Hardy
inequality

u®P
8(x)r

where 2 is a domain (an open connected set) in R*, n > 1, with non-empty
boundary 92, §(x) is the distance from x € Q2 to 022, 1 <p < oo, and C(p, ) is a
positive constant depending on p and 2 in general. The original continuous form of
the inequality was for Q = (0, 00), 8(x) = |x|, and appeared in [72], having been
motivated by work of Hardy on a discrete analogue and a double series inequality of
Hilbert. It attracted the attention of other mathematicians, notably Landau, and was
highlighted by Hardy et al. in [75]; see [91] for a detailed account of the history. In
its many guises, the inequality has played an important role in mathematical analysis
and mathematical physics, which is way beyond what could have been expected at
its humble beginning. Extensions and refinements to a multitude of function spaces
have been studied extensively, which, apart from their intrinsic interest, have had
significant implications for the function spaces and the relationships between them,
and important applications to differential equations. The case p = 2, Q = R"\
{0},8(x) = |x]| of (1) is a mathematical representation of Heisenberg’s uncertainty
principle in quantum mechanics, which asserts that the momentum and position of
a particle can’t be simultaneously determined. Furthermore, the spectral analysis
of quantum mechanical systems involving Coulomb forces between constituent
particles features this L?(R") version of Hardy’s inequality in a natural way. In his
book A Mathematician’s Apology [74], Hardy expresses the view that for a theorem
to be significant, it must have both generality and depth. He also asserts that nothing
he had ever done was useful. The role of his inequality in mathematics undoubtedly
confirms his notion of “significance”, while its implications in quantum mechanics,
with its tentacles affecting every aspect of modern life, would contradict Hardy’s
feeling about its “uselessness”.

/ IVu(x)|Pdx > C(p, sz)/ ue CP(Q), (1)
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viii Preface

In the first two sections of Chap. 1, a general form of the Hardy inequality
is proved, initially in Ry := (0,00) and subintervals (a,b) of R and then
in R” for n > 2, optimal constants being obtained. The rest of Chap.1 is a
cornucopia of techniques and results, which will be of subsequent importance.
These include a brief description of Sobolev spaces and the inequalities of Sobolev,
Friedrichs and Poincaré; Fourier transforms, rearrangements and their application
to making a comparison of the Hardy and Sobolev inequalities; the Cwikel, Lieb,
Rosenbljum (CLR) inequality concerning the number of negative eigenvalues of
the Dirichlet Laplace operator in L?(2) and a comparison of the CLR and the
appropriate Sobolev inequality; Kato’s inequality and relativistic analogues of
Hardy’s inequality.

Chapter 2 is on properties of a general domain €2, which are of significance to
the function §. For instance, the skeleton S(€2) is the subset of Q2 consisting of
points, which are equidistant from more than one point on the boundary, and this
coincides with the set of points at which § is not differentiable. Another important
subset of 2 is the ridge, or central set, R(£2), which lies between S(£2) and its
closure. It is shown that the closure of the ridge is the cut locus, which is a concept
used extensively by Li and Nirenberg in [108]. Properties of § when €2 is convex, or
R\ Q is convex, are established, and when € is a domain with smooth boundary,
an explicit formula for A§(x) is determined for all x € Q \ R(£2). The principal
curvatures of a C?> boundary, and the mean curvature of 32, feature prominently in
the second part of the chapter, and indeed, the rest of the book.

The study of inequalities of type

[ vueras = co.9 [ (55E+axswmeor)ax @
Q o \ §(x)

starts in earnest in Chap. 3, the case a = 0 being of particular interest and referred
to as Hardy’s inequality on 2. We begin with a list of some important results in
the literature to set the scene, which bring in, inter alia, the notions of capacity
and fatness, the Hausdorff and Aikawa dimensions of the boundary, and the mean
distance function 8, introduced by Davies in [41] in the case p = 2 for an arbitrary
Q. Included subsequently are a proof of the optimal constant for a convex domain
2, and of Ancona’s lower bound for the constant C(2,£2) when Q is a simply
connected planar domain. Some of the main results in this chapter are based on ones
from [20, 107], using tools developed in the previous chapter. Of special note is the
result from [107] that if  has a C?> boundary and a non-positive mean curvature (a
so-called weakly mean convex domain), then

o fQIVfI”dX_(p—l)”
)= 0 e\ p ) @

which extends a well-known result for convex domains.



Preface ix

In [118], Maz’ya proved the inequality

n—2
2 n
/ (|Vu|2 - L:’—z) dx > K2 (/ |u|f”zdx) : )
3 % R

for u € C°(R,), where R, is the half-space R"™! x Ry and x = (x',x,), X' €
R*!, x, € Ry. This is the prototype of the Hardy-Sobolev-Maz’ya (HSM)
inequalities, which combine elements of both the Hardy and Sobolev inequalities,
and Chap. 4 is devoted to them. We present the following result of Frank and Loss
from [62] for a general domain & & R”, in which the mean distance function 8y,
plays the role of the distance function § : there exists a constant K, ,, depending only
on n and p, such that for all u € C5°(£2) and p > 2,

—1 P 4 n ”;p
vup — (2= |l dx > K, |u| 7 dx . (5)
Q p Sy " \a
P

If Q is convex, 8y, < &, and (5) becomes an extension of the HSM inequality
obtained by Filippas et al. in [60] for a bounded convex domain Q with a C?
boundary and p = 2, and answers in the affirmative their query if the constant
can be chosen to be independent of 2. Chapter 4 also includes HSM inequalities
featuring the mean curvature of the boundary of €2, and one of Gkikas in [69] for
exterior domains.

The first part of Chap. 5 is on Schrédinger operators involving magnetic fields of
Aharonov-Bohm type. The Laptev-Weidl inequality in L?(R?) is derived, followed
by related Sobolev and CLR inequalities. Hardy-type inequalities for Aharonov-
Bohm magnetic fields with multiple singularities are proved, and also a generalised
Hardy inequality for magnetic Dirichlet forms. Finally in Chap.5, there is a
discussion of Pauli operators in R? with magnetic fields, and inequalities of Hardy,
Sobolev and CLR type are proved to exist if the Pauli operator has no zero modes.

Chapter 6 is concerned with the Rellich inequality

nz(n—4)2/ |u(x)|*
dx.

A 2dx >
/Rn| w9 Pax = mE

(6)

A proof of an L”(IR") version of the inequality is given, based on that of Davies
and Hinz in [45], and this is followed by a Rellich-Sobolev inequality in L*(£2)
for a domain 2 C R” due to Frank (private communication, 2007). Inequalities
involving Aharonov-Bohm type magnetic potentials in L?>(R") are established,
which are analogous to the Laptev-Weidl inequality of Chap.S5, and a CLR-type
inequality for associated bi-harmonic operators is proved.

The book is primarily designed for the mathematician, but we hope that it will
also appeal to the scientist who has an interest in quantum mechanics. A good basic
knowledge of real and complex analysis is a prerequisite. Also, familiarity with
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the Lebesgue integral, spectral analysis of differential operators, and elementary
differential geometry would be helpful, but only the barest essentials of these areas
are assumed, and background information is always provided; where necessary,
precise references to the literature are given.

Chapters are divided into sections and sections are sometimes divided into
subsections. Theorems, Corollaries, Lemmas, Propositions, Remarks and equations
are numbered consecutively. At the end of the book, there are author, subject and
notation indices.

Cardiff, UK Alexander A. Balinsky
Cardiff, UK W. Desmond Evans
Birmingham, AL, USA Roger T. Lewis



Basic Notation

R:

R™:

N:

No = NU {0}
7 -

C:

Q-

0 :

Q:
X—Y:
I’(Q), 1 <p<oo:

I llporll-lpa :
P 1<p<oo:
WhP(Q), HE?(Q) -
C(Q) :

Wy (R) :
w, =7"?/T(1 +n/2):

Real numbers
n-Dimensional Euclidean space
Positive integers

Integers

Complex numbers

Domain—a connected open subset of R”
Boundary of Q2

Closure of 2

Weak convergence

X is continuously embedded in Y

Lebesgue space of functions f with |f|” integrable on
Q

Norm on L7 (£2)

Space of sequences {x, },en such that }_
Sobolev spaces

Infinitely differentiable functions with compact
supports in

Closure of C5°(£2) in WkP(Q)

Volume of unit ball in R”

o

net | Xnl? < 00
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Chapter 1
Hardy, Sobolev, and CLR Inequalities

1.1 Introduction

The Hardy and Sobolev inequalities are of fundamental importance in many
branches of mathematical analysis and mathematical physics, and have been
intensively studied since their discovery. A rich theory has been developed with the
original inequalities on (0, co) extended and refined in many ways, and an extensive
literature on them now exists. We shall be focusing throughout the book on versions
of the inequalities in L” spaces, with | < p < oo. In this chapter we shall be
mainly concerned with the inequalities in (0, co) or R", n > 1. Later in the chapter
we shall also discuss the CLR (Cwikel, Lieb, Rosenbljum) inequality, which gives
an upper bound to the number of negative eigenvalues of a lower semi-bounded
Schrodinger operator in L2 (R"). This has a natural place with the Hardy and Sobolev
inequalities as the three inequalities are intimately related, as we shall show. Where
proofs are omitted, e.g., of the Sobolev inequality, precise references are given, but
in all cases we have striven to include enough background analysis to enable a reader
to understand and appreciate the result.

In [73], Hardy proved the inequality

® 1 P p p poo
/0 (}/Of(t)‘”) dx = (ﬁ) /0 fOPdx (1.1.1)

for non-negative functions f, with 1 < p < oo. Landau showed in [94] that the
P

constant (p%l) is sharp, and that equality is only possible if f = 0; Hardy had,

in fact, drawn attention to the sharpness of the constant in an earlier paper; see the

Appendix in [91] where interesting information on the historical background may
be found. A more familiar form of the inequality is obtained by setting F(x) =

© Springer International Publishing Switzerland 2015 1
A.A. Balinsky et al., The Analysis and Geometry of Hardy’s Inequality,
Universitext, DOI 10.1007/978-3-319-22870-9_1



2 1 Hardy, Sobolev, and CLR Inequalities

f(; f(#)dt, which gives

/Oo FOY e < ( P ),, /oo F'(xdx. (1.1.2)
o X p—1 0

The analogue of this inequality in R” for n > 1 is

[ Ler,

|x|?

p
p—n

4
/ IVF)Pdx.
RV!

where Vf = (df /0x1,--- , 9f /dx,) is the gradient of f; this holds for all f € C3°(R"\
{0})ifn < p < 0o, and forall f € C5°(R") if 1 < p < n. The constant is sharp and
equality can only be attained by functions f = 0 a.e.

After discussing the Hardy inequalities in the first section, we define the Sobolev
spaces WS’P () and W' () on a domain Q C R”, and give a brief coverage of
embedding theorems, boundary smoothness criteria and the Friedrichs and Poincaré
inequalities. Using the theory of rearrangements, the Hardy and Sobolev inequalities
on R", n > p are then compared.

The background material for the CLR inequality in L>(R"), n > 3,is provided,
but only references to the independent and challenging proofs of Cwikel, Lieb and
Rosenbljum are given. Using the approach of Levin and Solomyak, we show how
the Sobolev and CLR inequalities in L*(R"), n >3, compare.

Finally in this chapter we discuss Kato’s inequality, which is a relativistic form
of Hardy’s inequality.

1.2 Hardy’s Inequality in R"

1.2.1 The Casen =1

The first theorem gives general forms of the Hardy inequality involving weighted
L? spaces on (0, 00). Special choices of the weights will yield the prototypes of the
inequalities to be considered throughout the book. The proof uses the full force of
Holder’s inequality; that if 1 < p < oo and p’ = p/(p — 1), then for non-negative
functions f, g,

/000 Fsl= (/ooo v 'pdx); (/Ow 5) |P’dx) g

with equality if and only if there exist constants A, B, not both zero, such that
Alf(0)|P = Blg)|”.



1.2 Hardy’s Inequality in R" 3

Theorem 1.2.1 Let 1 < p < oo and set F(x) = f(ff(t)dt. Then for all f such that
xXf(x) € LP(0, 00), where e < (1/p') = 1—1/p, we have

/ |F(x)[Px"¢Vdx < C, / If () [P P8 dx (1.2.1)
0 0

for some positive constant C, . which is independent of f. If ¢ > (1/p’), then the
inequality takes the form

o0 o0
/ |G ()P Vdx < C,e / If (x) [P xP% dx, (1.2.2)
0 0

where G(x) = j; * f(t)dt. The best possible constants Cy ¢ are the same, and given
by

Cpe = le—1/p'|7, (1.2.3)

and equality can only be attained by f = 0.

Proof We may assume, without loss of generality, that f is real-valued and non-
negative, since the theorem will follow if we prove it for |f]. For & < 1/p’, we have,
by Holder’s inequality,

x 1/p x 1/p
F(x)x(s—l/p’) < x(s—l/P’) ( / fp(t)tgpdt) ( / t—ap’dt)
0 0
, x 1/p
= (1 —epy ( / f"(t)f"dt) ,
0

which tends to zero as x — 0. On integration by parts, it follows that with 0 < X <
OO,

X FP(X)XPE—1/p)
/ FP ()2 Vx = Faox 7 -
0 ple=1/p)

—1 (e=1/p")
p—(s— W3 / FP (0)f (x)x” P dx

M/ FP () (o)xP e P gy

- P (x) D P e VP gy
= ], e e
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and hence, by Holder’s inequality,

X 1 X 1/p
FP)Pe Dy < ——— (/ FP(x x”(‘g_l)dx)
| P el Uy 7

X 1/p
X ( / Vi (x)x”’dx)
0

and
X (e—1) 1 X
FP(x)x"* Vdx < —/ 7 (x)xP dx.
| e—mp by T

The inequality (1.2.1), with C,, = |(¢ — 1/p")|?, follows on allowing X — co. In
the penultimate step, in which Holder’s inequality is applied, the resulting inequality
is strict, unless there are constants A, B, not both zero, such that AF? (x)x”(s_l) =
BfP(x)x"¢. But this would mean that f(x) = F’(x) is a power of x and fooo SP(x)xP?dx
is divergent. Consequently, (1.2.1) is a strict inequality for f # 0.

To prove that the constant (1.2.3) is sharp in (1.2.1), we choose f(x) =
xTVPFey 6 0 (x), where o + & > 0, a > 0, and (o is the characteristic function
of (0, a). Then x°f(x) € L7(0, o0) and

/oo ap(ot-l—s)
fPO)xPdy = ———,
0 pla+¢)
x"+1/1’/ .
A —— if x <a,
F(x) = (a;trll//ﬁ’) i
[CEsy)) I x> a,
and
00 plate) 1 1
FP(x xp(s—l)dx — @ { + }
/0 ) pla+1/p)y (a+e 1/p—¢
This gives
Jo o PP Ddx 1 { (o + ¢) }
Jo P @)xePdx (a+1/p)y (1/p' —¢)

which tends to |¢ — 1/p/| ™ as @« — —e. It follows that the constant |¢ — 1/p/|™"
in (1.2.1) is sharp. The inequality (1.2.2), with sharp constant (1.2.3) is proved
similarly, and so is the fact that equality can only be attained if f = 0. O
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The choices ¢ = 0, 1, in Theorem 1.2.1 yield the following familiar forms of the
Hardy inequality:

Corollary 1.2.2 Let 1 < p < 00. Let F be a locally absolutely continuous function
on (0, 00) which is such that F' € 7 (0, o) and lim,_o+ F(x) = 0. Then

00 P poo
/ |F(X)|pdx < ( p ) / |F' (x) [P dx. 1.2.4)
o P p=1/ Jo

If G is locally absolutely continuous on (0,00) and is such that xG'(x) €
L7(0, 00) and lim,—, oo G(x) = 0, then

o0 p o0
/ IG()|Pdx < (L) / G’ (x) P dx. (1.2.5)
0 p—1 0

The constant in (1.2.4) and (1.2.5) is sharp, and equality can only be attained in
each inequality by the zero function.

1.2.2 Weighted Hardy-Type Inequalities on Intervals

In (1.2.1), consider the following substitutions:

h(x) = x°f(x), (Hh)(x) :=x*""F(x) = x*! / ) Eh(t)dt.
0

Then Theorem 1.2.1 expresses the fact that H is a bounded linear operator of
LP(0, 0o) into itself, and the best possible constant is given by its norm:

Cps = ||H : L7(0,00) — LP(0,00)||".

We now determine a necessary and sufficient condition for a general Hardy-type
operator T of the form

Tf (x) := v(x)/ u(t)f (t)dt (1.2.6)

to be bounded as a map from L”(a, b) into itself, for —oo < a < b < oo and
1 <p < o0, i.e., for all functions f € L”(a, b), there exists a constant C > 0 such
that

b b
/ T @) Pdx < € / FO0 P,
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The associated inequality is therefore

r

with best constant C = ||T||”; on setting F(x) = fax u(t)f (r)dt, the last inequality
F'(x)

becomes
b b
/ [v(E)Fx)P dx < C/
a a u(‘x)

We shall assume that u, v are prescribed real-valued functions such that for all X €
(a,b),

b
pdxf C/ |f (x)[Pdx

v(x) / " uof (e

p

(1.2.7)

uel’(aX), (1.2.8)
v e’ (X,b), (1.2.9)

where p/ = p/(p — 1); thus u ¢ L (a,b), v ¢ LP(a,b) are possibilities. The
following theorem is a special case of general results which may be found in [49],
Chap. 2; see the references therein for a comprehensive treatment.

We denote the standard L?(I) norm on a sub-interval I C (a, b) by ||f||,s and

1/
write ||f|l; when I = (a,b); thus ||f|l,r = (fl [f(x)|qu) ! if ] < ¢ < oo, and
ess sup; |[f(x)] if ¢ = oo.

Theorem 1.2.3 Let 1 < p < oo, and suppose that (1.2.8) and (1.2.9) are satisfied
for all X € (a,b). Then the Hardy-type operator T in (1.2.6) is a bounded linear
map of P (a, b) into itself if and only if

A= sup {[lully @xllvlpes} < oo (1.2.10)

a<X<b

In this case
A < ||T|| < 4A. (1.2.11)
Proof We first prove that for all X € (a, b),
X
ax = inf{||f||,, f e IP(a,b), / [F(Hu(r)|dt = 1} = lull ey (12.12)

Since

X
/ [f@Ou@)de < |[fllpllellpr (a.x)-
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by Holder’s inequality, we have that ay > ||u] !
choice

P (a.X) forl <p <oo.lfp>1,the

£ = 1 @ 1l -

where y(qx) is the characteristic function of (a, X), gives

X
| rouwia =1
and as p(p’ — 1) = p/, this implies that

—1
< Ifll, = ”M”p’,(a,X)’

which proves (1.2.12) for 1 < p < oo. If p = 1, the assumption (1.2.8) becomes
u € L*(a,X), which means that u is bounded a.e. on [a, X]. Given & > 0, there
exists a non-null set S C [a, X] such that for all x € S, [u(x)| > (1 + &)™ |ul|co.(@x)-
On choosing f(x) = xs(x)[[g lu(f)|df]~", we have

X
/ lf(@u®)|dt = 1.

Hence

|S| - 1+¢
Jslu@ldr = Jlullooax)’

ax < |lflh =

and (1.2.12) again follows, on taking & — 0.
Let p < oo and define J = Z when u ¢ L (a,b) and J = {k e Z:—o00 <k<
M} for some M € Z when u € L (a,b). For f € I”(a,b) and i € 7, let

= sup{x € (a,b) : /X If (u(n)|dt = 2. (1.2.13)

Then {X; : i € J} generates a partition of (a, b) and we have

1771, < v(x) [f(t)u(t)|dt dx
S RTOT
<y b
i€J

< AP Z 2p(i+l)a§
i€
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by (1.2.10) and (1.2.12). Since

Xi . .
| ouola =2 -2
Xi—1
it follows that
ax, < 2" xpemr xallp
and consequently

ITFIE < (4AY > I xpe xall?
i€
= @AY 71l
We have therefore proved that if | < p < oo, (1.2.10) is sufficient for the
boundedness of 7" and that || 7'|| < 4A. The proof for p = oo is similar.
To establish the necessity of (1.2.10), we choose, for a given ¢ > 0 and X €
(a,b), an f € IP(a,b) such that uf > 0, faXf(t)u(t)dt = land |f|l, < ax(1+¢).

Then |Tf (x)| > |v(x)| for all x € [X,b), and if T : IF(a,b) — L[’ (a, b) is bounded,
we have

ax(L+ T = TNl = 1Tl = [llp.cx0)-

This and (1.2.12) yield

L+ DTN = Nully @xllvllp.ces-

whence (1.2.10) and ||T|| > A. The theorem is therefore proved. ]

Remark 1.2.4 Theorem 1.2.3 was established by Chisholm and Everitt in [37] for
the case p = 2, and by Muckenhoupt in [121] for 1 < p < oo. The finiteness of
the quantity A in (1.2.10) is generally referred to as the Muckenhoupt condition. In
[126] (see Comment 3.6 on page 27), the upper bound

1
1Tl < pr ()7 A

is derived. This is best possible, for on taking a = 0, b = oo, u(f) = ¢° and
v(t) = *~, with e < 1/p’, we obtain

{P‘%(P/)‘%A}p = (l% - 5)_p,

which was shown to be optimal for the Hardy inequality in Theorem1.2.1.
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1.2.3 The Casen > 1

Our main concern in the book will be with multi-dimensional Hardy inequalities,
and we make a start in this section with analogues in R",n > 1, of the results in
Sect. 1.1.

Theorem 1.2.5 Let1 <p <oo,n> l,ande—1+n/p # 0. Let f be differentiable
a.e. in R", and such that |x|*~'T"/Pf(x) tends to zero as |x| — 0+ ife—1+n/p < 0,
andas |x| > oo ife —1 +n/p > 0. Then

|0t dx < le = 1+ /ol [ (e Dol ax (1214

where Vf = (0f /0x1,- -+, df /0x,). The constant | — 1 + n/p|™P is sharp.

Proof Let 0 < §, N < oo, and choose polar co-ordinates X = rw, r = |X|,w €
S"!. On integration by parts

r(a— p+n N

N
rEOP I (r) P dr — |:—
|, o - Dp+n ;

00 r(a—l)p-‘rn 9 -
=] Gpraaeere

vw»ﬂ

IA

o ad
(e = Dp +n|™! / r(g_l)"J’”la—lf(rw)l"ldr-
0 r

We next let § — 0 and N — oo, and use the hypothesis to obtain
fooo rE=bp If (rw) |Pr”_ldr
<le=1+n/p|™" [5° rEPHf o) P~ 2L (If (rw) ) |dr
<le—1+n/p|™" 5% rEPHf o) P L (f (rw)) |dr
<le—1+n/p|7" (f;° r(’“‘"_”P[f(rw)lpr”_ldr)l/p/

1/p
« (fooo rspl 3f§l;w) |prn—ldr) ,

where we have used the fact that |0/0r|f (rw)|| < |df (r@)/0r| (see Theorem 1.3.8
below), and Holder’s inequality. Therefore, since rdf /or = (x - V)f,

1/p’
/ XD < o — 1+ n/p” ( / |x|<€—”f’v<x>|?dx)
Rn R»

1/p
X (/ x|~ (x - V)f(X)IPdX)
RVI



10

1 Hardy, Sobolev, and CLR Inequalities

and (1.2.14) follows.

To prove that the constant is sharp, we consider radial functions f(x) = f(r), r =
|x|, which satisfy the hypothesis of the theorem. Then (1.2.14) becomes

[ [ vrrerado <=1 [ [ rorade. a2
sr—1 Jo sn—1 Jo

where n = ¢ + (n — 1)/p. Suppose n — 1/p' = ¢ — 1+ n/p < 0, and let f(r) =
o @ (1)dt, where for some a > 0,

_1
o) =t 1)+“X(0!a)(t), a+n>0,
so that

atL
p

lf r<a
(a 1/) ’ ’
f(r) — P

w-‘r;l/
a -

if r>a.
(@t

Then f satisfies the hypothesis and, as in the proof of Theorem 1.2.1,

i IS fP(rra=ar B 1
| [ wrdr | T ok Ly
0 V4
_ 1
|8 —1 + [_)Ip

The constant is therefore sharp. The case ¢ — 1 + n/p > 0 is treated similarly.

|
The choices ¢ = 0, 1 of Theorem 1.2.5 yield the following corollary: we use the
notation |V (x)| = (X1, [9f/axi2) /.

Corollary 1.2.6 The inequality

R |X[P

r®r - ‘ P
P

)4
/ VF()Pdx (12.16)
Rn

holds for all f € C°(R"\ {0}) if n < p < oo and for allf € CP(R") if1 <p <n.
Moreover; for all f € C°(R") and 1 < p < oo,

/Rn If(x)|Pdx < (5)1’ An Ix- V)F ()| dx,

—n

(1.2.17)
and hence

A; reorax = (2) /R NIV d. (1.2.18)
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The constants in (1.2.16), (1.2.17) and (1.2.18) are sharp.

Remark 1.2.7 The classical Hardy inequality (1.2.16) is invariant under orthogonal
transformations and scaling, but is not invariant under general linear transforma-
tions. The inequality (1.2.17) is an affine invariant version of (1.2.16). More-
over, (1.2.18) implies (1.2.16) if 1 < p < n. This follows from

V(X)) = —f(x) + [x|V/(x).

x|
For if we suppose that f satisfies (1.2.18), then, with || - || denoting the L (R") norm,

IVAXION = [xIVAF = [l

> (J) 171
p

whence (1.2.16) on replacing f(x) by f(x)/|x|.

1.2.4 A Weighted Hardy-Type Inequalityon 2 C R", n > 1

The inequality in the next theorem will be needed in Chap. 6. It is proved in [45] for

the case AV < 0, but the case p = 2 was proved earlier by the same technique in
[105], Lemma 2.

Theorem 1.2.8 Let Q be a domain in R, n > 1, and let V be a real-valued
function in L} () with partial derivatives of order up to 2 in L} (), and is such

loc loc

that AV is of one sign a.e.. Then, for all u € C°(2),

/ |AV||u|de<pP/ VY Gupax (1.2.19)
Q — Ja lAVpPT ' -

Proof Suppose, for definiteness, that AV < 0. Let v, := (|u|® + &*)'/? — . Then
v, € C°(R) and

/lAVlvg’dX:—/ Ava;dX:/VV'va’dx
Q Q Q

[VV| B -
=7 /Q (W |AV|P=DPur Vo |dx.,
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Since 0 < v, < |u| and
Vo, = (luf® + )72 {ul Vul,
we have that
VI V] < [l V.

Also |V]u|| < |Vu] a.e.; see Theorem 1.3.8 below. Hence

[VV| _ _
P 7 (p—D/py,,1p—1
/Q|AV|v£dx 517/9 (|AV|(P_1)/P|VM| |AV| |ulP~" dx

|Vv|p 1/p / (—=D/p
< ——|Vul? | d AV||ulPd
<o [ (aviontur)ad | [ iavipax

by Holder’s inequality, whence (1.2.19), by dominated convergence, on allowing
e — 0. O

Corollary 1.2.9 Forany o € (—00, 00),

4
[ b
R |X|o+2
Sforall C°(R"\ {0}) if o + 2 > n,and allu € C°(RQ) if o + 2 < n. In particular,
when o = p — 2, (1.2.20) coincides with (1.2.16).

Proof To deduce (1.2.20), choose V(x) = |x|7° for 0 # 0 and V(x) = log|x|
if o = 0. Then, AV(X) = o(0 +2 —n)|x|7"™ (¢ # 0), AV(X) =
(n—2)|x|72, (0 = 0) and the conditions of the theorem are satisfied. O

_r
o—n+2

P
/ Vuwp (1.2.20)
R

. x| +2=p)

The inequality (1.2.20) was proved for the case p = 2 by Allegretto in [6] where
an earlier proof is attributed to Piepenbrink.

1.2.5 The Casen =p

We shall now show that when n = p, there is no valid Hardy inequality, i.e., there is
no positive constant C such that

"

re X[

/ |[VF(x)|"dx > C dx forall f € C°(R"); (1.2.21)
R”

in fact we shall prove it is invalid on the set of radial functions.
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Let f(x) = F(r), r = |x|, and suppose that F € C;°((a, b)), wherea > 0,b < oo
are arbitrary. Then (1.2.21) implies that

b b F n
/ \E' (D" dr > C / FOr . (12.22)

r

Therefore (1.2.7) is satisfied with p = n,v(*)" = !, u()™ = ! and
in (1.2.10)

X 1/n b
1 1
sup |[ully @x)llvllp.xpy = sup —dr —dr
a<X<b a<X<b \Ja T x T

b
/ 1
= sup C'" (1—C)1/"/ —dr
0<C<l1 a

1 /b 1
> — —dr.
2), r
Since a > 0,b < oo are arbitrary, (1.2.22) is contradicted by Theorem 1.2.3.

In [2], Theorem 4.6, it is proved that in the case n = p = 2, for all f € CP(R? \
{0}) satisfying f1<\x\<2 f(x)dx = 0, there exists a constant C > 0 such that

1/n

My
/]RZ x]2(1 + log? |X|)dx =C - IVf(x)|dx. (1.2.23)

It is observed in [138] that the logarithmic factor is needed only for radial functions,
and can be removed for functions satisfying f\x\=r f(x)dx = 0 forall r > 0.

1.3 Sobolev Spaces

In this section we give a brief description of those aspects of Sobolev spaces which
are relevant to the content of this book. Where proofs of results quoted are not
included, precise references are given. Comprehensive treatments may be found in
[1,48].

1.3.1 The Spaces W*? () and Wy” ()

Let Q be a non-empty open subset of R”, n > 1, with closure Q and boundary 9<2.
Forp € [1, 0], k € N, points x = (x1,-+ ,x,) € R" and n-tuples a=(v1, -+ ,0t,) €
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Ng, we write

1/2

n n n
M= (X7] el = w0 =T]0
j=1 Jj=1 J=1

where D; = —id;, 0; = ai and the derivatives are taken in the weak sense. We

LY
Xj

recall that f € L} .(2) has weak derivative g =: D;f if g € L}, (Q) and

loc loc
/ FOODpx)dx = — / £ (X)p()dx
Q Q

for all ¢ € C°(R2); here L} (£2) denotes the set of functions which are integrable

loc
on all compact subsets of 2. We define

WEP(Q) = {u : D"u € I7(Q) for || < k}

endowed with the norm

1/p
(Zos\a\sk ||D“||$,Q) , for 1 <p < oo,

”u”k,p,Q = )
(Zos\a\gk 1D ”oo,Q) , for p = oo.

3

| - ll.o being the standard L (£2) norm, namely

1/p
lullpe == (/Q Iu(x)lpdx) .

In particular, when k = 1 and 1 < p < oo,
lull} 0 = lullg + [ Vul g,

where

0 1/2
IVullp.o = Vullpa. [Vul:= (Z I3iu|2) :

i=1

When @ = R", we shall write || - [, and || - ||, for the norms on W*»(R")
and I7(R") respectively. For p € [l,00], W**(Q) is a Banach space, being
separable if p € [1,00) and reflexive if p € (1,00). For p € [1,00), the linear
subspace C*®(2) N W*?(Q) is dense in W*(Q2); hence W*?(R2) coincides with the
completion H*?(Q2) in the W*?(£2) norm, of the set of functions f in C*°(£2) which
are such that ||f |,y < oo; see [48], Theorem V.3.2.
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The closure of C3°(S2) in WXP(Q) is denoted by Wé’p (). In general W(l)(’p(Q) +
WEP(Q2), but Wo”(R") = WEP(R™); see [48], Sect. V.3.1. Another space with a
prominent role is D(l)’P (£2), which is defined as the completion of C{°(2) with
respect to the norm

1/p
Iy i= 19l = [ 19ucorax) (130

In general, Dy”(2) is not embedded in L7(2) and contains W,”(§2) as a proper
subspace, W,” (%) being continuously embedded in Dy”(R) since |Vul,q <
lulli p for all u € WyP(R); for instance, Dy”(R") is not embedded in L7 (R").
However D" () coincides with W,” (%) if there exists a positive constant C such
that

lullpe < ClIVulpa. (ue (). (1.3.2)

For then, the norms || - | and || - |10 on C{°(R2) are equivalent. The

| Dl.p

(€2)
inequality (1.3.2) is the Frieodrichs inequality. Examples of domains on which it
is satisfied are given next.

Proposition 1.3.1
(i) Let Q be a bounded domain in R" with volume |2|. Then for 1 < p < oo,

IQI l/Vl o
lullpo < - Vulpo, (e C3P(R)). (1.3.3)
(ii) Let Q lie between 2 parallel hyperplanes at a distance £ apart. Then for 1 <
p < 00,
lullp.e < €llVulp. (e C(R)). (1.3.4)
Proof

(i) On setting u(x) = 0 outside €2, we may suppose that u € C{°(R"). For all
xeQandv e "1,

u(x) = — /00 %u(x + rv)dr.
0

Hence, on using the Chain Rule,

o 0
nw,u(x) = —/ / a—u(x + rv)dvdr
0 sn—1 Or

_ /Q =y 3 (s — v daey)dy

i=1
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and so

nou(x)] < /Q X — " [ Vay) |y

| 1/p ) 1-1/p
5(/9 x -y |w<y>|f’dy) (/ﬂ x =y dy) .

If Bg(x) is the ball centre x, radius R and volume equal to |€2], then since |x —
y|™"*! increases as y tends to the centre of the ball, we have

/|X—Y|_"+1d)’§/ Ix—y|™"*'dy
Q Br(x)

= nRow,,

and w,R" = |Q2|. Therefore
ony [ Jutix < ko [ ( [ - y|—"+‘|W(y)|de) dx
Q Q Q

< (iRw, )’ / Vu(y)dy.
Q

whence (1.3.3) since w,R" = |2|.
We again take u(x) = 0 outside €2, and we assume, without loss of generality,
that Q2 lies between the hyperplanes x; = 0 and x; = £. Then, for all x € 2,

x|
lu(x)| = ‘/ dru(t,xz, -+, x,)dt

x1 1/p
< (/ |0qu(t, xa, - - - ,xn)|”dt) e,

—0o0

Hence

t t
/ [u(xy, x2, -+, x)[Pdx; < Z"/ [0qu(t, xz, -+, x,)|Pdrt
0

—00

and therefore
/ lu(x)|Pdx < Z"/ [Vu(x)|Pdx,
Q Q

as asserted. O

A necessary and sufficient condition on €2 for the Friedrichs inequality to hold is

given in [48], Theorem VIII.2.10.
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If © has finite measure, the Friedrichs inequality does not hold for W!?(2) since
WP () contains non-trivial constant functions which invalidate the inequality. By
subtracting integral means, an analogue of the Friedrichs inequality for the space
WP (Q) is obtained in the form of the Poincaré inequality which we now consider.
An example is given in the following proposition.

Proposition 1.3.2 Let Q2 be a bounded convex domain in R" and 1 < p < oo. Then
forallu e W'»(Q),

1—1/n
w . n
= ugllq < (@) [diam(@)]" [ Vil (13.5)

where diam(S2) denotes the diameter of Q2 and ugq is the integral mean

ay)
ug = — [ u(x)dx.
12| Jo

Proof We again extend u by zero outside 2. For any x,y € €2,

X—y
Ix—y|’

x—yl
u(x) —u(y) = _/0 ' a%u(x+ ro)dr, o =

and so

1 =yl g
u(x) —uq = —@ /Q /0 Eu(x + rw)drdy.

Puty — x = pw, with |w| = 1 and p < py < diam(£2). Then

u(x) =~ ual < o7 /"0 /w 1/p0
_ [d1a:|1g(2§|2)] /po /|w| 1

- [diam(£2)]" R
< e /Q Ix— ¥ | Vuy) dy.

—u(x + ra))‘ "ldrdwdp

u(x + ra))‘ dowdr

The rest of the proof follows that of Proposition 1.3.1(i). O

We refer to [48], Sect. V.5, for an interesting connection between the Poincaré
inequality and the measure of non-compactness of the embedding W'?(Q) <
LP(Q2).

In the next theorem, we collect two results of fundamental importance: they
are special cases of (i) the Sobolev embedding theorem, and (ii) the Rellich-
Kondrachov theorem; see [48], Theorems V.3.6 and V.3.7.
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Theorem 1.3.3

(i) Supposethat1 < p < n,andput p* = np/(n—p). Then D(l)’P(Q) is continuously
embeddedin L* () for any s € [p, p*| and there is a constant C, depending only
on p and n, such that for all u € D(l)’P(Q),

”"‘“P*,Q = C”V“”p.ﬂ‘ (1.3.6)

(i) Ifq € [1,p*) and Q is bounded, then D(l)’p(Q) is compactly embedded in L1(S2).

The inequality (1.3.6) is the Sobolev inequality and p* is the Sobolev conjugate
of p. Part (i) of the theorem asserts that any u € D(l)”’ (2) (and thus any element
of Wé"’ (2) too) can be identified with a unique element of LP* () and that in
terms of this identification map (that is, the embedding), (1.3.6) is satisfied. To say
that the embedding is compact in Part (ii) means that it takes bounded sequences
into relatively compact sequences, that is, ones with convergent subsequences.
Analogues of Theorem 1.3.3 may also be found in [48], Sect. V.3.3 whenn < p <
oo and p = n. For instance, if 2 is bounded, Wé"’ (£2) is continuously embedded in
the space C®7(Q), y = 1 — n/p, of continuous functions which are locally Holder
continuous with exponent y on 2, the embedding being compact if y < 1 — n/p.
When p = n and © is bounded, W,”(2) is continuously embedded into L9($2)
for every ¢ € [1,00); more generally the embedding maps into an Orlicz space,
but we refer to [48] for any further discussion of this case. There are corresponding
results for W7 (R2): see [48], Theorem V.3.7. For instance if kp < n, W, () is
continuously embedded in L*(R2) for s € [p,np/(n — kp)], the embedding being
compact if Q is bounded and s € [p, np/(n — kp)).

Remark 1.3.4 The inequality (1.2.16) holds for all f D(l)’p(R” \{0}) ifn < p < o0,
andall f € D,”(R")if 1 < p < n.

Remark 1.3.5 The inequality (1.3.6), with 2 = R”", was established by Sobolev in
[137] for 1 < p < n, the case p = 1 being later proved by Gagliardo [67] and
Nirenberg [124]. The optimal constant for p = 1 was determined independently by
Federer and Fleming in [59] and by Maz’ya in [118], and is (na),%/")_l; thus

lttllnjin-1y < (™7 Vully (u € Dy (R™)) (1.3.7)

It is closely related to the isoperimetric inequality for a measurable subset £ of R”
with finite n-dimensional Lebesgue measure |E| and perimeter P(E), namely,

|E|Y" < (nw)/ T P(E), n' =n/(n—1).

The inequality (1.3.7) is strict for non-zero u in D(l)’l (R"). However it has a natural
extension to the space of bounded variation in which characteristic functions of arbi-
trary balls are extremals. This extension is, in fact, equivalent to the isoperimetric
inequality.
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For p > 1 it was proved independently by Aubin in [9] and Talenti in [140] that
the best possible value of the constant C in (1.3.6) is

VT (p - 1)“"“’“’% (1 +n/2)T (1) (138)

n—p L(n/p)T(1+n—n/p)|’

and equality is attained for functions u of the form
u(x) = [a + blx|P/P=D=nlp,

where a and b are positive constants.

Remark 1.3.6 We note for subsequent use, that if 2 is a bounded open subset of
R", and 1 < p < n, then D(l)’P (R") and Wol’p (R") are compactly embedded in
L’ (),p* = np/(n — p). To see this, let B be an open ball containing © and
@ € C}(B) such that p(x) = 1 forx € Q. Then multiplication by ¢ is a bounded map
of Dy” (R") into W,”(B). The compactness of the embedding W,”(B) — L (B)
and the fact that ¢ : L”" (B) — L”" (2) is bounded confirms the assertion.

1.3.2 Boundary Smoothness and W*? ()

In order for the space W*?(Q2) to have similar embedding properties to those of
W(l;’p(Q), the boundary 02 has to have a certain amount of smoothness. A standard
smoothness class is the Holder space C*7 (€2) which we now define. First, we define
C*(2) to be the vector space of all bounded functions u € C¥(2) such that « and all
its derivatives D*u with || < k can be extended so as to be bounded and continuous
on Q. Then C*7 (Q) is the space of functions u € C*(Q) which satisfy the condition
that, given any o € Njj with |or| = k, there exists a constant C > 0 such that

[D*u(x) — D*u(y)| < Clx—y|’, forallx, y€ Q.
Definition 1.3.7 Letn > 2, k € Ny and y € [0, 1]. The boundary €2 of an open

set @ C R” is said to be of class C*V if:

i) 9Q = I%;

(ii) given any point a € 02, there exist an open neighbourhood U(a) of a,
local Cartesian coordinates y = (y1,v2,-++,¥,) = (Y.y.) (where y =
1, ,yu—1)), withy = 0 at x = a, a convex, open subset G of R with
0 € G, and a function i € C*7(G) such that 9Q N U(a) has a representation

ya =h(y), vy €G.

We shall write C* in place of C*° and C for C%°.
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We refer to [48], Sect. V.4 for a comparison of various smoothness criteria on
d<2. It is proved in [48], Theorem V.4.2, that the boundary of a convex open set is
in the Lipschitz class C!. A consequence is that Q has the extension property,
which means the following (see [48], Theorem V.4.12): with

we = |J wr@).

keNy, pe[l,00]

there is a map E : W(2) — W(R") such that Eu = u for u € W(2) and given
any k € Ny and p € [1,00], E € B(WKP(Q), WEP(R™)), the set of bounded linear
operators mapping W?(Q) into W (IR").

If © has the extension property, it is easy to establish embedding results for
WKP () which are similar to those for Wg’p (2) in Sect.2.1. For suppose 2 is a
bounded open set with the extension property and that £ is contained in a ball B. Let
@ € C(B) besuchthat0 < ¢ < 1 and ¢ = 1 on Q. Then, if u € W*?(Q), Eu €
Wk? (R™) and

lullepe = l0Eulips = C@EUlpns < C@)I|Eu]ipre
< C(p)C(k,p, D) ||ullxp.g-

where C(k, p, 2) denotes the norm of E. Thus inequalities known to hold for the
element ¢ Eu of Wé’p (B) may be translated into similar inequalities relating to u €
WP (). For example, if kp < n, W*P(Q) is continuously embedded in L*(£2) for
all s € [p,np/(n — kp)], the embedding being compact if s € [p, np/(n — kp)).

1.3.3 Truncation Rules

Next, we record an important result concerning the gradient of the absolute value |u|
of a function u € W'? (), and truncation rules on W'?(2). Proofs may be found
in [111], Theorem 6.17 and [48], Sect. VI.2.

Theorem 1.3.8 Let u € W'P(Q), 1 < p < oo, and define |u|(x) = |u(x)|.
Then |u| € WY(Q) and |(V|u|)(x)| < |(Vu)(X)| a.e. If u is real-valued, then
I(V[uh®)| = [(Vu)(x)] a.e.

Let u,v be real-valued members of W'?(Q) and define max(u,v)(x) :=
max{u(x), v(x)} and min(u,v)(x) = min{u(x),v(x)}. Then max(u,v) and
min(u, v) belong to W'P(Q). If u,v € Wé’p(Q), then max(u, v) and min(u, v)
belong to Wé’p(Q).

If Q is unbounded, u € W' (Q) is real-valued, and « € R, then u v a =
min{u, o} € W'P(Q) ifand only if o > 0, and u A o := max{u, o} € W'P(Q) if
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and only if o < 0. The gradients are given by

Vu(x) if u(x) < a,

V(MVO{)(X)Z{O if u(x) > o

and

Vu(x) if u(x) > a,

Viure)x) = { 0 if ux) <a.

Ifue Wé’p(Q) thenuV a € Wé’p(Q) ifa>0anduno e Wé’p(Q) ifa <0.

1.3.4 Rearrangements

Definition 1.3.9 The distribution function of a Lebesgue measurable function f
on an open subset  of R" is the map i/ : [0, 00) — [0, 00) defined by

w) = [{xeQ:[fx)]> A},

where |{-}| denotes the Lebesgue measure of the set. The non-increasing rear-
rangement of f is the function /* : [0, c0) — [0, 00) defined by

FE(0) = inf{ € [0,00) : r(A) < 1};

the convention that inf @ = oo is used.

Since the distribution function pis is decreasing we have that
f* (1) =sup{A € [0,00) : pr(A) > 1}, t >0,

so that f* is the distribution function of . It can be shown that py is right
continuous and this implies that in the definition of f*, the infimum is really a
minimum. Moreover, f* is a non-negative, decreasing and right-continuous function
on [0, 00). If iy is continuous and strictly decreasing, then f* is the inverse of p;.
The functions f and f* are equimeasurable in the sense that they have the same
distribution function; i.e., ur(A) = up+(A) for all A > 0. A consequence of this is
that if 0 < p < oo,

B o) - B 00 .
/Q Fx)Pdx = p /0 A7 (h)da = /0 Fropdr
and

esssup [f(x)| = inf{A : s (1) = 0} = f*(0).

XEQ
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It is sometimes desirable to work with the symmetric non-increasing rear-
rangement of a function, which we now define. First we define the symmetric
rearrangement A* of a set A of finite volume as

A¥ = {x e R": w,|x|" = |A[}.

that is, the open ball centred at the origin, whose volume is that of A; if |A| = oo
we set A% = R,

Definition 1.3.10 The symmetric non-increasing rearrangement of f is the
function f* defined by

XX =f*(walx]"), xe€Q*.

The function f* is non-negative, radially symmetric and radially non-increasing.
Furthermore, f* and |f| are equimeasurable and

00
f*(x) = /O X{{f|>t}*dt

The following are the main properties of symmetric non-increasing rearrange-
ments that we shall need; for their proofs and other important properties of (s, f*
andf* see [49], 3.2 and [111], 3.3.

(i) f* is non-negative, radially symmetric and non-increasing, i.e., f*X(x) =

F*)if [x] = |yl and f*(x) = f*(y) if [x] < [y].
(i) Letf, g be Lebesgue measurable on 2. Then,

[ reelax = [ r*mg*coax
Q Q
(iii) Foranyf € [’(R")and 1 <p < oo,

Il @y = IF* Il @,

where [|[f* || oo rn) = €SS SUPyeps f* (X) = £(0).
(iv) For any real-valued functionf € C}(R") and 1 < p < oo,

IVl @y = V¥ @)

In fact, this inequality holds for all f € D(l)’p (R™); see [49], Theorem 3.2.21 and
Remark 3.2.23.
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1.3.5 Fourier Transform

The Fourier transform Ff, orf, of a function f € L'(R") is defined by
EN®) = o [ ™00 (139)
= X)dx, 3.
P =0y Jo €

where p-x = Y, pjx; with p = (p1,pa, -+, pa), X = (X1, X2, -+, X,). Let S(R")

denote the Schwartz space of C*°(R") functions which go to zero at infinity faster
than any power of x; thus f € S(R”) if and only if f € C*°(R"), and for all &, 8 €
No,

sup{|x*DPf(x)| : x € R"} < oc.

We shall need the following basic properties of the space; see [48], V.1.5 for
details.

(1) Fis a linear bijection of S(R") onto itself and its inverse is given by
_ 1 ip-
ENE) = s [ P = EN D). (13.10)
Q@r)2 Jga

(i) F is a continuous linear map of L' (R") into L and ||Ful|zeo®n < [lul|. @)
it is not invertible.
(iif) Forf, g € L'(R"),
F(f * g) = F(H)F(g). (1.3.11)

wheref * g is the convolution
X) = f(X dy
g (2 )n/Z n. y g y

Moreover, for f, g € S(R"), f x 2 € S(R"), and
F'(f  §) = fe. (1.3.12)
(iv) Forf € S(R") and & € Ny,
{FDF~'}f (p) = p"f () (13.13)

(v) Plancherel’s theorem The map f +— f has a unique extension to a unitary
isomorphism of L?(R") onto itself; thus, for all f € L*(R"),

/ FooPdx = [ 7(@)Pdp.
RV! Rﬂ
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If f and g belong to L?(RR"), Parseval’s formula holds:
[ rweoax = [ Foiw.

It is standard for the Sobolev spaces W,?(2), W'2(Q) to be denoted by
H}(Q), H'(R), respectively; this is compatible with the comment in Sect.1.3.1
that W*?(Q2) coincides with the completion H*”(Q2) in the WX?(Q) norm, of
C*®() N WrkP(Q). When Q = R, it follows from (1.3.13) that

leel3 gy = /R |i(p)|*(1 + [p|*)dp. (1.3.14)

1.3.6 The Dirichlet and Neumann Laplacians

We denote by Ap qu, the Dirichlet Laplacian of u € H}(Q); it is the Laplacian of
u in the weak sense, namely that v = Ap qu € L} (S2) and for all ¢ € C3°(R),

loc

/ Vu-Vedx = —/ vedx.
Q Q

In L2(RQ), Tp.q := —Ap.q is a non-negative self-adjoint operator with domain
D(Tpgo) = {u € H(Q) N WA(Q) : Au € L2(Q)}.

loc

If 99 is of class C? then
D(Tpa) = HY(Q) N W(Q).

The Neumann Laplacian Ay qu of u € H 1(Q) is defined by the conditions that
v = Aygqu € L} () and for all p € C°(R"),

loc
/ Vu-Vedx = —/ vedx.
Q Q

In L2(RQ), Ty.q := —Ap.q is a non-negative self-adjoint operator with domain

D(Tyq) = {u € H'(Q) N W2A(Q) : Au € L2(Q)}.

loc
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1.4 Comparison of the Hardy and Sobolev Inequalities

We now show how the Hardy and Sobolev’s inequalities in R" are intimately related.
Hardy’s inequality will be seen to imply Sobolev’s inequality, while Sobolev’s
inequality only implies a weak form of Hardy’s inequality. In each direction the
constants determined are not optimal.

Proposition 1.4.1 Forall f € Ci°(R") and 1 < p < n, Hardy’s inequality (1.2.16)
implies Sobolev’s inequality (1.3.6),

Proof First observe that since |V|f(x)|| < |Vf(x)| a.e. by Theorem 1.3.8, it is
sufficient to establish our claim for non-negative functions. Also, as we know from
the properties of symmetric non-increasing rearrangements that |[f|,« = [[f* ||,
and || Vf|, > |IVf*||,, we may suppose that our functions f are non-negative, radial
and non-increasing. Thus, on mimicking the argument in [134], p. 8, we have that
foranyy € R", 0 <a < 1and g > 1 (to be selected later),

FO0%dx > / F)dx > Gy f(y),
R? aly|<|x|<[y|

where C,, = [(1 — a")/n]w,. Hence

p/n
([ reorax) sorisi™ = qriyprom sy
= Gy

On choosing ¢ = p* = np/(n — p), we obtain gp/n + p = p* and

" " p/n p
e /R Y dy < ( /R oy dy) AL

re |yIP

Thus, if f satisfies (1.2.16),

I=p/n P
ar([rora) " <(G2) [ iwrores

which gives (1.3.6) with constant C < 2 =5 Cn ln, |

The reverse implication involves the weak space L?°°(R") defined as the space
of Lebesgue measurable functions f on R” which are such that

sup t? ¢ () < o0, (1.4.1)

>0
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where ps(f) = |[{x € R" : |[f(x)| > t}|, is the distribution function of f. From the
proof of Proposition 3.4.2 in [49], it is readily seen that for all 0 < g < oo,

{sup 1y (1}1/1 = sup (1) =2 1f g 003

>0 >

for 1 < g < 00, |fllg00 is @ norm on L#*°(R"); see [49], Lemma 3.4.6 and
Theorem 3.4.7. Since, for any ¢t > 0,

F@l4dx > / Yo ()X = 1150,
R wy (@)

it follows that we have the continuous embedding L?(R") < L?*°(R"), with

Ifllg.co < Ifllg- (1.4.2)

We need the following weak form of Holder’s inequality which is proved in [21]

Lemmal4.2 Let 1l < p < ocoandp = p/(p—1).Iff € [P°R") and g €
L7 (R") then fg € L"*°(R") and

Ifgllco < 27 PP 1f lIpooliglly.co
Proof Lete > 0,t > 0 be arbitrary and set

A={xeR":¢[f(x)| >/},
B={xeR: el gx)| > 'y,
E={xeR":|[f(x)g(x)| >t}

Since
F(x)gx)] < p~ Elf & +p 7 (e g x)),

we have E € A U B and this implies that ¢|E| < #]A| + #|B|. On substituting s :=
e /P,y = e'/P it follows that

fE| < e [{x: [F(x)] > s} + e |{x 1 [g(x)] > 7}
<100 + &7 lgll oo

The minimum value of the right-hand side is
(@192 + @/p) | I oo llgllco = P77 I o .00

attained when & = (9811, oo /DIl 00) /77" 0
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We are now ready to prove

Proposition 1.4.3 For 1 < p < n, Sobolev’s inequality (1.3.6) with best possible
constant C, implies the weak Hardy inequality

1

/1o = ("22) () wncl¥rle ¢ € @)

Proof 1t is readily seen that

| N | p.oo | N | 1,00
and by Lemma 1.4.2 with 1 < g < oo,
L g < gla, /4 ¢
=q"q" " P llgeolly5 g0
1) oo |-

, 1
_ ql/qqll/q ”f”qu I ﬁ ||$q/,oo.

1

We now choose ¢ = p*/p, and so ¢’ = n/p, to get
f p n p* F 1
H (— < (2) () il ool oo
1) oo ~ \P p |-
Lo s\ &
n\" (p*\»
= (5) (%) el
p p

since || ﬁ ln.0o = @n. The proposition follows from (1.4.2). O

==

1.5 The CLR Inequality

In [39, 110, 131], Cwikel, Lieb and Rosenbljum independently proved an inequality
for the number of negative eigenvalues of the self-adjoint operator —A — V in
L*>(R™), which has important implications in semi-classical spectral analysis, in
which the transition between classical and quantum mechanics is studied. This
inequality is usually referred to as the CLR inequality, with the authors’ names
listed alphabetically and in the reverse chronological order of discovery. We
proceed to give a presentation of the background theory, but leave the reader
to consult the references given later for the very different original proofs of the
inequality. Brief reminders about notions and results from operator theory, and
especially on quadratic forms, will be given within the background theory, but for
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a comprehensive account, [48] may be consulted. The inner product and norm on
L?(R™) will be denoted by (-,-) and || - || respectively.

1.5.1 Background Theory

We shall assume that the potential V is a real-valued function which satisfies the
conditions

V>0, Vel R"Y, n=>3; (1.5.1)
it is in fact sufficient to assume that V € L} (R") with its positive part V4 :=

% (V| = V) € L"/>(R"). The operator —A — V is defined in the form sense, which
we now recall. Consider the quadratic form

tlu, ¢] ;= /Rn {Vu(x) - Vo(x) — Vx)u(x)¢(x)} dx, u,¢ € CC(R"), (1.5.2)

and let (-,-) and | - || denote the L?>(R") inner product and norm respectively. We
shall prove in the lemma below that ¢ is bounded below and closable, i.e., f[u] :=
tlu, u] > —k||u||* for some constant k and all u € C$°(R"), and the completion Q of
C§° (R") with respect to the norm

1/2
lullg = {elu] + (k + Dllu®}
is continuously embedded in L (R"), and therefore can be identified with a subspace
of L*>(R"). Note that for all k > 0, the norms || - |g are equivalent and hence the
corresponding spaces Q are isomorphic. Let E denote the embedding Q < L?(R").
The adjoint E* of E is defined by
(E*v)(u) = (v,Eu), ue Q, vel’(R"),
and since
|(v, Ew)| < [[o[l|[Eull < IEN]v]{|ulle-

E* therefore maps L?>(R") linearly into the space of bounded, conjugate linear
functionals on Q; this space is called the adjoint of Q and denoted by Q*. We

therefore have the triplet of spaces

Q — [*(R") — Q*,
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with respective embeddings E and E* which are continuous, injective and have
dense ranges. If ¢ is closable and {u,,}, {v,,} C Q, are such that u,, — u, v,, > v
in Q, then the closure  of ¢ is defined on Q by

flu,v] = mlgr;o s V1]

Moreover, ¢ is said to be closed if t = £, and to have domain Q.

Let ¢ now stand for the closure of the quadratic form defined by (1.5.2); ¢ is
therefore a closed quadratic form with domain Q. It then follows from Kato’s
representation theorems ([83], Sect. VI.2) that there exists a self-adjoint operator
T with the following properties:

(i) the domain D(T) of T lies in Q and
tlu, o] = (Tu,¢), for ue D(T), ¢ € Q;
(i) D(T) is a core of t, i.e. D(T) is dense in Q;
(iii) DT + k)'/?) = Q and 1[u] = ||(T + k)"/?ul|? for u € D(T + k)'/?).

The space Q is called the form domain of T. Given a symmetric operator Ty
in our Hilbert space L?(R") which is bounded below, the form f,[-] defined by
tolu,v] = (Tou,v) has a closure #[-] and in this case the self-adjoint operator T
in Kato’s theorem is the Friedrichs extension of 7j.

In (i), a strictly separate identification of the spaces Q and L*(R") would require
us to write, foru € D(T), ¢ € Q

tlu, 9] = (Tu, E@) = (E*Tu, ¢) := (E*Tu)(¢p).

For u € C3°(R"), by the Holder and Sobolev inequalities, we have

Iv2ul = [ VidPa

2/n (n—2)/n
< (/ Vn/ZdX) ( |u|2n/(n—2)dx)
n Rﬂ

= )/n”VHn/ZHVM”2

where y,, is the norm of the Sobolev embedding H' (R") < L?(R"). It will be shown
in the proposition below that H' (R") and Q are isomorphic. Hence (V'/%u, V/%u)
is a bounded quadratic form on Q x Q, and so there exists a bounded linear operator
V: QO — O such that

(Vu, v) = (Vl/zu, Vl/zv), u,v € Q.
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Multiplication by V is said to be compact relative to the form tolu] = |Vul?
if V: Q — QFis compact, where the norm of Q is now given by |julg =
(to[u] + ||u||2)1/2 = |lullzp. Setting Ty : —A and T := E*Ty, we have

tlu, v] = (f‘u, v), T = f‘o — \7,

forue D(T) C Qandv € Q.Thusf‘:D(T) Cc Q - O*
To prepare the ground for the CLR inequality we begin with the following
proposition. We refer to [48] for the information required on the essential spectrum.

Proposition 1.5.1 Suppose that the conditions (1.5.1) on 'V are satisfied. Then the
quadratic form t is bounded below and closable on C°(R"), and multiplication
by V is compact relative to the form ty. Then T has essential spectrum [0, c0),
and in (—00,0), the spectrum of T consists only of isolated eigenvalues of finite
multiplicity.

Proof Since C{°(R") is dense in L'/?(R"), given any & > 0, there exists U €
C5° (R™) with support €2, say, such that

[V—=Uln2 <e and sup |UKX)| <k,

XEQ,

for some k, > 0. Then, for all ¢ € C{°(R"), on using the Holder and Sobolev
inequalities,

V201> < IV = Ullp2l@ 3, /61-2) + 1 Ul ll@ 5,

< ellVol* + kellels,- (15.3)
Hence

el = (1= )| Vol? — ko],
and on choosing ¢ < 1, we see that ¢ is bounded below. Furthermore

flp] < 1+ &) |Vel® + kel ol
Thus || - || is equivalent to the H'(R") norm (||V - ||> + || - |*)!/? for any choice of
g€ (0,1).

Let {¢,,} be a bounded sequence in Q which converges weakly to zero. Then,
from (1.5.3), for arbitrary ¢ > 0,

(‘A/(Pma(pm) = ||V1/2(pm||2
= 5||(pm||12ql + ksu(/’m”%zg'
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Since the embedding Q < L*(,) is compact,(as Q is isomorphic to H'(R")),
l¢mlle, — 0 as m — oo and consequently, with ||¢,|lo < K say,

limsup ||V/%@,| < K.
m—00

Hence, since ¢ is arbitrary, we have that ||V!/2¢,,|| — 0 as m — oo. This implies
that

IVeullox = sup [V, u)l

lullo=1

= sup (Vl/zfpm,Vl/zu)
lulo=1

< sup [[V2@ull[IV!ul
llull 1 =1

=< [V [[n/2 lleel IVl

= sup n/2 ||U{[2n/(n—2) D
lluell 1 =1

< C“V”n/Z”Vl/z(pm”

-0

asm — co. Thus V : Q — Q* is compact. We now show that this property of V
ensures that 7 and —A have the same essential spectra, namely [0, co), and hence
that the spectrum of 7' in (—oo, 0) consists only of isolated eigenvalues of finite
multiplicity.

From (1.5.3), and for arbitrary ¢ > O and u € Q,

IVullye < el Vull® + keull”
Let b?> = k. /¢ and define on Q the equivalent norm
/2, . 1/2
lullg = 1(Ty> + ibyull = (IVal® + 5 u]?)
Then
Vullys < ellulll: (1.5.4)

For z € R,

T—izE* =Ty—izE* -V
= {Ig+ — V(Ty — izE*) "' Y(Tp — izE®), (1.5.5)
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where I o+ is the identity on Q*. We shall now prove that (f‘— iZzE*)"! € B(Q, %),
the space of bounded linear operators mapping Q into Q*, and

(T = izE*) B0y < 1+ b°/12l. (15.6)

Since Ty is self-adjoint, we know that, with I the identity on L?(R"), the range of
Ty — izl, R(Ty — izl), coincides with L>(R"), and so R(Ty — izE*) is dense in Q*.
Let ¢ € R(Ty —izl), 0 = (Tol/2 — ibI)™'¢ and |z| > b%. Then since T, and TS/Z
commute,
n— 12, . R
I(To — izl = (T + ibD)(Ty — iz) |
= [[(To + BD)(Ty* = ib)) ™ (Ty — izD) |2
= (To + b°D)(To — izD) ™16
= ||To(To — iz]) ' 01> + 2b> (To(To — izl)~'6. (To — izl) ~'6)
+ b*|(To — izl) ' 6]
< |I(To — izl)(To — iz)~'6*

+ 20%|| To(To — izD) ' 0| |(To — i) 6.
on using b?> < |z| and the identity

(To — izDu|> = || Toul* + 22|jul|>.

A

Hence, || Toul* < |[(To — izhul?, |lul| < |2I7"|(To — iz)ul| and

1(To — iz) "ol < 011> + 262 0]|[|(To — izl) ™8|

2b?
- (1 + —) Tk
|z|

b\’
< (1 + —) 16]1%. (1.5.7)

|z

Furthermore, if ¢* := E*¢p,

le*lox = sup [(@* ¥
Ivllos

= sup |(, EY)]
lylles!

= sup |(1)” —ibl] . 1, — ibI}y)

lvle=t
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= |I(y”* = ib) g
= ||19]. (1.5.8)
Thus [|0]] = [E*¢|lo+ < ||l and

bZ
I(To —izD)7'| <1+ =k (1.5.9)

As E* is injective, Ty — izE* = E*(T, — izl) has an inverse, and for p* = E*¢ €
R(T — izE*) and ¢ € Q,
‘((fo - izE*)‘lgo*,w)Q' = (@ - 00 9),|
< I(To = iz) "' ¢llall¥llo-

Therefore, we have from (1.5.7) and (1.5.8),

I(To — izE*) ' 9*llo < I(To — izD) " pllo

< (1+2) 10°le-

Since R(Ty — izE*) is dense in Q*, (Ty — izE*)™" extends by continuity to a map in
B(Q*, Q), and (1.5.6) follows.
From (1.5.4) and (1.5.6),

A A b?
IV(To — izE*) Y ox < 5(1 + " |) (1.5.10)

Hence in (1.5.5), for ¢ < 1 and |z large enough,
{Ior — V(Iy — izE*) ™"} 7' € B(Q*) := B(Q*, Q%).

and consequently (T — izE*)™' e B(Q* Q). Moreover (T — izl)~™' =
(T — izE*)"'E* € B(LX(R"),Q) C B(LA(R"). It now follows from (1.5.5)
that

(T—izD)™ = (Ty—iz) ™" = (T —izE")""V(Ty —izl) ™", (1.5.11)

where (To — izl)~ !'is understood as a map from L?(R") to Q. Since we have shown
that V: Q — Q* is compact, the right-hand side of (1.5.11) is compact in L?(R")
and hence by Weyl’s Theorem (see [48], Theorem IX.2.1), T and T, have the same
essential spectrum. As this is [0, co) for Ty, the proof is complete. O

The CLR inequality can now be given.
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Theorem 1.5.2 Let V satisfy (1.5.1). Then the number N(T) of negative eigenvalues
of the self-adjoint operator T defined in Proposition 1.5.1, counting multiplicities,
satisfies the inequality

N(T) = Cn/ V2(x)dx, n >3, (1.5.12)
RVI

for some constant C,,.

We refer the reader to [39, 110, 131], for the original proofs of Theorem 1.5.2,
which use very different techniques. Later proofs were obtained by Li and Yau
in [109] and Conlon [38]. The optimal value of the constant C, in (1.5.13) is not
known; the best known estimate is that obtained by Lieb in [110].

1.5.2 Comparison of the CLR and Sobolev Inequalities

The inequality (1.5.12) is sharp in the following sense. On replacing V by «V, where
a > 0is a large coupling constant, and denoting the corresponding operator —A —
oV by Ty, (1.5.12) becomes

N(T,) < C,a? / V2 (x)dx. (1.5.13)
Rn
But N(T,) is known to satisfy the asymptotic formula

lim o« "?N(Ty) = ¢, / V'2(x)dx, ¢, = /)T +n/2)]7"
Rll

oa—>00

see [112], Sect.4.1.1. Thus (1.5.13) is sharp both in the power of @ and in the
function class of V.

Theorem 1.5.2 has the following special case of Sobolev’s embedding theorem,
Theorem 1.3.3, as converse.

Theorem 1.5.3 Suppose that Theorem 1.5.2 is satisfied. Then
413,/ i—zy < G/ IVull?, forall u e H'(R").

Proof Suppose that (1.5.12) is satisfied. Then

C, / V"2 (x)dx < 1
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implies that N(T) = 0; thus 7 is non-negative and for all u € H'(R"),
|Vu|?dx z/ Vu|*dx. (1.5.14)
R7 R
Let W be an arbitrary member of L"/2(R") with ||W/|| 2@y = 1, and set

V= (6,)‘2/"|W|, for any C, > C,.

Then
cn/ V'2dx = (cn/é;)/ |W|"2dx < 1
n Rll

and we infer from (1.5.14) that

Wu|*dx
RV!

5/ |W||u|*dx < 6;2/"/ |Vul?dx, ue H'(R").
R~ R~

From this it follows that |u|? belongs to L/ =2 (R"), the dual of L"/>(R"), and

(n—2)/n
([ re2as) ™ = Ml
Rﬂ

= sup Wu|?dx
Wl 2=11/Rn
< G2 | |Vulax.
RVI
Since al > C, is arbitrary, the theorem follows. O

The proof of Li and Yau in [109] is of particular interest to us as it only uses the
Sobolev inequality (1.3.6) and the fact that the kernel of the heat operator exp(tA)
is positive; recall that (see [111])

1 \"? w2
eresn® = () [ e (-F50 ) rway

Therefore Li and Yau’s result and Theorem 1.5.3 imply that the Sobolev and CLR
inequalities in R” are equivalent in view of the positivity of the heat operator. In
[103], Levin and Solomyak derive an abstract version of Li and Yau’s proof, in
which the quadratic form is given by #[u] = g[u] — [, V|u|?do, where g is a general
quadratic form associated with a Markov generator and (€2, 0) is a measure space
with sigma-finite measure. Such a quadratic form ¢ has an abstract description given
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by the following Beurling-Deny conditions in which ¢ is bounded below and closed,
and its domain is denoted by H,(g):

(a) qlu + iv] = qlu] + q[v] for real u,v € Hi(q);
(b) if u € Hi(q) is real, then |u| € H;(q) and g[|u|] < q[u];
(¢) if0 <ueHi(q),thenu A1 := min{u, 1} € H(g) and g[u A 1] < g[u].

These conditions are satisfied by our quadratic form #o[u] = ||Vu||? in L*>(R") in
view of Theorem 1.3.8. The approach of Levin and Solomyak in [103] applies inter
alia to analogous discrete problems on graphs. Their theory will be of relevance to
our discussion in Chap. 4, Sect. 4.3, below.

1.6 The Uncertainty Principle and Heisenberg’s Inequality

In quantum mechanics, the state of a system consisting of a single particle in R? is
described by a wave function ¥ € L?(IR?) satisfying

[ W (oPdx = 1.
R3

The function |y|? is interpreted as the probability density of the position of the
particle; the probability that the particle is in a set N is given by

/ 1 ()P g,
R3

where yy is the characteristic function of N. On taking Planck’s constant to be
normalised, i.e., # = 1, the momentum of the particle is defined to be —iVy/(x).
In view of (1.3.13), the operator —iV is unitarily equivalent to multiplication by
p, which justifies the standard use of p to represent the momentum; p is also
the standard notation for momentum in classical mechanics. From Plancherel’s
theorem,

[ 1 () Pdp = / W oPdx = 1
R3 R3

and |g@(p) |? is interpreted as the probability density of the particle’s momentum.

Heisenberg’s uncertainty principle asserts that the position x and momentum
p can not be determined simultaneously. The position x and momentum p = —iV
are now linear operators, and the readily verified commutator identity

[p-a,x-b]:=(p-a)(x-b)—(x-b)(p-a) = —i(a-b), (@, beC® (1.6.1)
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implies intuitively that |x| and |p| can not be simultaneously small. The principle is
enshrined in the Hardy inequality

/ IV (p)dp = / V(0P
R3 ]R3

2
> 1/ VO (1.6.2)
R3

— 4 x|?

for it implies that if the particle is localized at the origin (i.e., the wave function is
supported in a neighbourhood of the origin), |x| and |p| cannot both be small.

On choosing a = b = (8, 82, 63) in (1.6.1), where §;; is the Kronecker delta,
we have for ¢ € C°(R?),

(=i0) (¥ (%)) — x;(—idjy (X)) = =iy (x),

forj = 1,2, 3, and integration by parts gives
—i [ weorax= [ ¥ (i) tw ) — -ty ()] dx
R3 R3
— 2iRe /R 3 [(ajm)(xjw(x))] dx.

Hence,

3
3 [ weorax < Y | v ilyy i

<2( [ weweorax) ([ iwveora)
([ weroeorax) ([ wiera)

Thus, if [5; [V (x) |?dx = 1, the uncertainty principle takes the form of Heisenberg’s
inequality

( / |x|2|w(x>|2dx)2 ( / |pxﬁ(p)|2dp)2 > 3/2. (16.3)
R3 R3

It’s analogue in R", n > 3, is

( [ |x|2|w(x)|2dx)2( [ |p¢(p)|2dp)2
Rn R»

>n/2, / [ (x)|%dx = 1.
. (1.6.4)
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Heisenberg’s inequality (1.6.4) is a consequence of Hardy’s inequality (1.2.16)
in L>(R"), but with a smaller constant. For, by the Cauchy-Schwarz inequality,

( ) lf(x)|2dx)2 < ( [ |x|2v<x>|2dx) ( [ @wmﬁdx) ,

and on substituting (1.2.16), this yields, for n > 3,
1 1
2 2 n—2
( / |x|2[f(x)|2dx) ( / |Vf(x)|2dx) > (—) / Fx®)|Pdx.  (1.6.5)
Rll Rll 2 RVI

1.7 Relativistic Hardy-Type Inequalities

Hardy’s inequality (1.2.16) with p = 2 and n > 3, is associated with the Dirichlet
Laplacian —A, and can be expressed in terms of the L?(R") inner-product and norm

as
2
(—Au, u) > (#)

first on C3°(R"), and then by extension to D! := Dy*(R"), which contains H) :=
H'2(R") as a proper subspace; H! is the form domain of —A and is the domain
of the square root, +/—A. There is a relativistic analogue due to Kato in which the
Laplacian is replaced by the pseudo differential operator ~/—A, whose definition is
motivated by (1.3.13):

2

)

(FV=27) () = IpIEN (D). (1.7.1)
where F is the Fourier transform. Its domain as a self-adjoint operator in L*(R") is
DW=A)={f . "% e PR} f=TFf:

equivalently, D(+~/—A) is the completion of the Schwarz space S(R") with respect
to the norm

1
. ~112 1/2~112
el gy 2= oy + 1200 g
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In the statement of Kato’s inequality that follows, we make use of Plancherel’s
theorem to give

/ Ip|If (p)|*dp = / FX)V=Af(x)dx. (1.7.2)
R~ R~

Note that the Fourier transform in [111] is defined as fR,, e 2PN f(x)dx, which
accounts for the differences between some identities in this book and their analogues
in[111].

Theorem 1.7.1 Forallf € S(R"), n > 2,

F)?

re |X]|

dx < c; A IpIl7(p)|*dp. (1.7.3)
=c IRnJ@v—Af(X)dx, (1.7.4)

where the best possible value of the constant c,, is

o resh
tovarety

thus, in particular c3 = /7 /2. The inequality is strict for non-trivial functions f.

Theorem 8.4 in [111] gives the following Sobolev inequality corresponding
to (1.7.3).

Theorem 1.7.2 Letn > 2 and g = 2n/(n — 1). Then, for all f € S(R"),

11 <G [ wllF@)rap (175)

where the best possible constant is

1
1) —1 1\
an{(n—l)zinszfl} r(”;r ) .

There is equality if and only if f is a constant multiple of a function of the form
[W? + (x —a)?]~"=V/2 with u > 0 and a € R" arbitrary.

Kato’s inequality is a special case of the following general inequality obtained
by Herbst in [77], which also contains the Hardy inequality.
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Theorem 1.7.3 Leto > 0 andna™" > q > 1. Then the operator |x|™*|p|™ defines
a bounded linear operator C,, from L1(R") into itself with norm

L(zIng™" —aT(zn(4)7")

ICa s LR — LR = y(rn) = o3t
2 2

(1.7.6)
where ' = q/(g—1).Ifg > na~" or g = 1, then C, is unbounded.
In the case ¢ = 2, (1.7.6) implies that
1 o
| gl eoPax < e [ ipP iR, 1.7.7)

for all functions f for which the right-hand side is finite. This is Hardy’s inequality
when o = 1 and Kato’s inequality when o = 1/2.

We establish Kato’s inequality in the case n = 3, and follow the proof given
in [15], Theorem 2.2.4. Two preliminary lemmas, and some auxiliary results from
Fourier theory are required. The first lemma involves the normalised spherical
harmonics Y;,, and the Legendre function of the second kind, namely

1 rtp
0i(z) = 5/_1 Zl—_(t)tdt, (17.8)

where the P; are the Legendre polynomials; [150] may be consulted for all the
properties of Legendre polynomials that we use. We recall that in spherical polar
co-ordinates X = (x1,x2,X3) = r®, @ € S?,

xy =rsinfcosg, x, =rsinfsing, x3 =rcosg,

the normalised spherical harmonics are given in terms of the associated Legendre
polynomials

(—l)k dkt
Pi(x) = = (1 =)o (2 = 1)f
by
20+ DU —k)!
Yi(0,9) = we”“"ﬁ‘(cos@), k>0,

4l + k)]
Yl,—k(ev @) = (_l)le,k(es (p)v

we adopt the convention that Y;; = 0 for |k| > . From our perspective, the most
important role played by the normalised spherical harmonics is that they form an
orthonormal basis for L*(S?).
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Lemma 1.7.4 Letp = pwy, p' = p'oy € R Then

P+ 0
Yy () Yim(@p)dwy derp, = — 81t Syt
/SZ/SZ p—pp ) Vin(ep)dop oy Ql( 2pp' ) !
(1.7.9)

where § denotes the Kronecker delta.

Proof We set z = (p* + p'?)/2pp’ and p - p' = pp’cosy. Then, from [150],
Chap. XV, we have that

1 1
Ip—P  2pp'(z—cosy)
1 o0
= + DO (z)Pr(cosy)
2p,
=0
l//
= @ Y. Yo (@pYrw(@y). (1.7.10)
l// 0 m!! =—1"
The lemma follows from the orthonormality of the spherical harmonics, O

The next lemma is a consequence of the generalisation of Hilbert’s double series
inequality established in [75], Chap.IX, Sect. 319.

Lemma 1.7.5 Foru,v € L>(R,; xdx) and ] € Ny,

I= / / u(x)v(y)Ql([ Ddxdy
scl(/o x|u(x)|2dx) (/0 y|v(y)|2dy) (1.7.11)

C = /00 ] (l |:x+ li|))c_ld)c
0 2 X

72/2, if =0,
C _{2’ — (1.7.12)

where

is sharp. In particular,

and C; < 2 forl > 2.
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Proof Since the functions

K(x,y) :=x""2y7'2g, (l [f + XD
21y «x

are homogeneous of degree —1, that is, K(Ax,Ay) = A~'K(x,y), the inequality
( 1.7.11) follows immediately from Hilbert’s inequality, and the exhibited constant
C; is sharp.

To prove (1.7.12), we use the result from [150], Chap. XV, Sect. 32, that for ¢ > 1,
the Legendre functions Q;(f) have the integral representation

[ele] Z_l_l
0i(t) = / ;) (1.7.13)
: NP1 A1 =217+ 72

to infer that for r > 1,

Qo(1) = 01(t) = --- = Qi(r) = 0. (1.7.14)

Thus C; < Cyif Il € Ny, and C; < C; if [ € N. Furthermore

© 1 1 © 1|d
COZ/ Qo(—|:x+—})x_ldx:/ lnx+ i
0 2 X 0 x—1| x
! 1|d
=2/ Rl e
0 x—1| x
1 [ o0 2%
X
=4 dx
| (;2k+1)
> 1
43 Gty
2
k=0(2k+1)
2
b4
=, 1.7.15
> ( )
and
o 1 1 |
C = O {=|x+—-|)x "dx
0 2 X
! 1 1\
=2 Ql — x4+ - X dx
0 2 X
(1 1 1
o (2 X X —
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_ 1 1 x+1[7°
=2 lim —|x+—-)In
e=04,6—>1— | 2 X x—1/|],
=2, (1.7.16)
as asserted in (1.7.12). The lemma is therefore proved. O

Finally we need the following result which follows from Corollary 5.10 in
[111] on using (1.3.10), with an adjustment for the difference between our Fourier
transform and that in [111]. For f € S(R") and

2 R
é(p)=<\/;l-l‘2*f) )
(27[)3/2\/7/ Ip—p'| % (p)dp'.

we have

6 = f(x). 1717
M

At a formal level, (\/gl . |_2) (x) = F(|-|7") (x), and this would imply (1.7.17)

by (1.3.12). However, this has to be justified since | - |~' ¢ L!(R3). Corollary 5.10
in [111] provides us with a way to sidestep this problem.
We are now ready to prove Kato’s inequality.

Proof of Theorem 1.7.1 By Parseval’s formula (1.3.12),and (1.7.17),
1 2 A=
= W\/; / 3 / o=/ () (p)dp'dp
g <\/7| ) } ®) (p)dp
R3
_ / F! g <\/§| : |—2) % jf} (x)F-! (f) (x)dx
R3 b

If (x) |2

(1.7.18)
r|x|

Since the spherical harmonics {Y;,,} form an orthonormal basis of L?(S?), then, in
terms of polar co-ordinates p = pw, we can write

70 = X cunVontwp). ciap) = [ Fpop)Vintp)don.

I.m
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where the summation is overm = —I,—[ + 1,--- ;[ — 1,1, [ € Ny. On substituting
in the integral I of (1.7.18), and using Lemma 1.7.4, we obtain

1 R PP Ner (0
e P N

Lm U'.m’

1
———— Yy (@)Y im(@p)doydow
/SZ/SZ lp—p'I? ’ prEmRR
1 00 [} 172 +p/2 ,
- / / pp’Qz( ; )Cz,m(p’)Cz,m(p)dp dp
wi=Jo Jo 2pp

% /0°° /0°° o (% [,% + %/D (p'erm () (pm) dp'dp.

(1.7.19)

X

It now follows from Lemma 1.7.5 and (1.7.14) that

T ® 5 2
1552/0 Plein(p)dp
I.m

E14 A
== dp.,
2/Rs Ipllf (p)>dp

with sharp constant r/2. Theorem 1.7.1 is therefore proved.O

The operator ~/—A is the “massless” case of the so-called quasi-relativistic
operator ~/—A + m? which has been used as a model for a free relativistic spin
zero particle of mass m; see [77, 147, 148]. The massless case of the Dirac operator
is

3
d
- (—iV) =—iy o0, 0= — (1.7.20)
j=1

= bl
an

where the «; are the Dirac matrices,which in the standard representation, are given
by

a,:(oaf), j=1,2,3, (1.7.21)

and the o; are the Pauli matrices

o (O1) o (0-) L _(1O).
"“\1o 27\i o 7 \o-1 )
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the Pauli matrices are Hermitian and satisfy
00 + 010; = 212(3,'1(, (1.7.22)

where I, is the unit 2 x 2 matrix, and §j is the Kronecker delta. The massless Dirac
operator is therefore determined by the Weyl-Dirac operator

Dy =0 (—iV) (1.7.23)

which acts on C2-valued functions, whereas the massless Dirac operator acts
on C*-valued functions. In [46], the following theorem featuring a Hardy-type
inequality involving the Weyl-Dirac operator is established. We use the notation
H'(R*; C?), L*(R*C?), C°(R?; C?) to denote the spaces of C*-valued functions
whose components lie in H'?(R?), L?(R?), C°(R?), respectively.

Theorem 1.7.6 Forall ¢ € H'(R3; C?),

-V)ol? 2
[ (% n |qo|2) oz [ FRax (1.7.24)

On replacing ¢(x) by e~ '¢(¢7'x) and allowing ¢ — 0, (1.7.24) yields

/ Ix//(o - V)f(0)2dx > / VOP f ¢ e comi), 1725
R3 R |X]

Proof We shall follow the analytic proof given in [47]. The following facts will be
needed:

(i) If 1 is aradial function which is differentiable in R4 = (0, 00), then

[(0-V), (0 -x)h] = x| +2(1 + 0 -L)h + h, (1.7.26)
where [- - -] is the commutator, and L = —ix A V.
(ii) L is the orbital angular momentum operator; it acts only on the angular
variables.

(iii) 1+ o -Lis a self-adjoint operator in L?(IR?) whose spectrum is the discrete set
{£1,£2,---}.

(iv) We denote by X, the positive and negative spectral subspaces of 1 4+ o - L, and
by P4, the associated projections.

For ¢ € H'(R?, C?), let ¢+ := P+¢. Then, from (1.7.26) and (iii),

(@)@ 0 ps92) = [ (3460 + I los 0Pax  (1.7.27

R3
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and
([(0 - V), (0 -x)h]p—, ) < /Rs (—h(x) + K (X)[x]) |- (x)|*dx. (1.7.28)

We now use in (1.7.27) the fact that (¢ - V) is a skew-symmetric operator in
L?(R?) since the Pauli matrices are Hermitian, and then apply the Cauchy-Schwarz
inequality. For any positive function g (to be chosen later), we have that

I:=/ (Bh + K |x])|e4 |*dx
R3

< — (0 - V)4, (0 -x)hpy) — ((0 - X)hp4, (0 - V)p4)
< 2|lg7"%(0 - x)ho4|lIg"*(o - V)o||

1
< [ sl VigsPax + [ o 0hoax
R? R &
1
< / gl(o - Vg [Pdx + / — x| @ | dx; (1.7.29)
R? R §
the last inequality follows since |(o - X)|* = Y, xxojox = |x|*. Similarly,

from (1.7.28),

1
/(h—h’|x|)|<p_|2dx§/ gl(o-V)g_|2dx +/ —|(o-x)hp_|*dx.  (1.7.30)
R3 R3 R §

We now choose h(x) = bl(—‘ and g(x) = IKI‘XI .Then3h+ W |x| = h—H|x| = ;—‘,
and hence from (1.7.29) and (1.7.30),

1 1
/ — o+ ]dx E/ —_1|(0'V)€0+|2dx+/ o+ [2dx, (1.7.31)
r3 [X] ry 1+ [x] R3
and
1 2 1 2 2
“lePdx< | ——— | -V)e_Pdx+ [ Jo_fPax.  (1.732)
r3 [X] rs 1+ x| R3

Since ¢ = ¢4+ + ¢_ and the subspaces X+ and X_ are orthogonal, it follows that

/ o Pdx = [ o4 Pdx + / o Pdx.
R3 R3 R3

The proof will be completed by Lemma 5 in [47], which asserts that

P_(o-V)*Py =P, (0 -V)?P_ in H'(R? C?). (1.7.33)
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To verify this, the crucial point is that (¢ - V) anticommutes with 1 + o - L, and this
is shown by direct computation. Therefore (o - V)> commutes with 1 + ¢ - L. Now
let @4 € X4 be eigenvectors of 1 + ¢ - L corresponding to eigenvalues A4+, A_ <
0 < A4. Then

(6 -V)D_, (0 -V)D,) = —i (D, (0 - V[l +0-L]dy)

_ _i (O_.[1 + 0 - Ll(o - V)’ D)

_ _i ([l + o - (o -V)20y)

A
=3 (P-. (0 -V)*Dy)

Ao
=3 (@ V)P, (0-V)®y)
+

which is only possible if ((o - V)®_, (o - V)®4) = 0, or equivalently, (1.7.33)
holds. This gives

(- V)(p+ + @) = ll(o - VIp+II* + lI(0 - V)|
+ 2Re [((0 - V)@, (0 - V)p-)]
= ll(@ - VIo+|* + ll(a - V)o-|*.
The theorem therefore follows from (1.7.31) and (1.7.32). ]
Remark 1.7.7 Thecaseoc = —1,n = 3,p = 2 of (1.2.20) gives

2
/R} '”ﬁ;)' dx < /RS IX||Vux)Pdx. 1 e CRY). (1.7.34)

However, one shouldn’t be misled into thinking that (1.7.25) is a consequence
of (1.7.34); it is not, for [ps X|[(6 - V)u(x)|?dx # [ps [X||Vu(x)|?dx when u €
CS°(R*; C?)! The inequalities (1.7.34) and (1.7.25) are sharp. Indeed, it is shown in
[46] that the powers of |x| and the constants in (1.7.24) are optimal.

Theorem 1.7.6 is a special case of a more general inequality with weights,
obtained in [51]. In [2], Adimurthi and Tintarev established the following result
in L2(R") for all n > 2. Let 2m = 2"/?, when n is even, and 2m = 2"*1/2 when n
is odd, and leto;,j = 1,2,--- ,m be Hermitian m x m matrices satisfying

O—lo-] +O—]O-l - 281]7 isj = 1727”' , Mg
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when n = 3, the 0;,j = 1, 2, 3, are the Pauli matrices. The result in [2] is

Theorem 1.7.8 Letb € R andn > 2. Then for all f € C°(R" \ {0}; C™),

/ X |(0 - V) ) Pdx > / X2 £ (). (1.735)
RV! RFI
where
—2-b\?
¢y =  min (k _ ”—) (1.7.36)
k€Z\{1.2,-+ n—2} 2

is the best possible constant. In particular, c3 —; = 1 and so (1.7.25) is recovered.

Note that the maximum value of ¢, is [(n — 2)/2]* which is attained when b = 0
and (1.7.35) becomes Hardy’s inequality. Also, ¢ o = 0, when the Hardy inequality
is known to be invalid.

In [2], Theorem 1.2, the following Sobolev-type inequality is derived.

Theorem 1.7.9 Let b € R,n > 2 and 2* = 2n/(n — 2). Suppose that in (1.7.36),
cnp # 0. Then there exists a positive constant C which depends only on n and b,
such that for all f € Cg°(R" \ {0}; C™)

2/2%
/ IX|7?|(0 - V)f(x)|?dx > C (/ |x|ﬂ1f(x)|2*dx) , (1.7.37)
Rll Rll

where 8 = bn/(n —2).



Chapter 2
Boundary Curvatures and the Distance Function

2.1 Introduction

Let 2 be an open subset of R”, n > 2, with non-empty boundary, and set
§(x) ;= inf{|x —y| :y e R"\ Q}

for the distance of x € 2 to the boundary 92 of €. Our main objective in this
chapter is to gather information about the regularity properties of §. This is of
intrinsic interest for the way it relates to the geometry of 2 and its boundary.
However we have an additional motive in that it prepares the ground for the study
in subsequent chapters of inequalities of the form

(=1 FOF oot
[vroras= (") [+ asammn 0 e e e

the case when a(§, 0€2) = 0 is the Hardy inequality for Q2. To give a flavour to what
follows, we note that the subset of 2 which we introduce below and call the skeleton,
is such that it is precisely the set of points in €2 at which § ceases to be differentiable.
If K2 is assumed to belong to the class C? then § € C? outside the skeleton, and
its Laplacian is given by an explicit formula involving the principal curvatures at
d2. This is obviously of value for the analysis of inequalities like the above. For the
properties of § on the skeleton, and another related set called the ridge, to be defined
below, we follow the treatment of Evans and Harris in [53]. However there are other
earlier works on these topics, notably those of Bunt [33], Motzkin [120] and Federer
[58], and these will be cited where appropriate. Furthermore, ideas from Balinsky,
Evans and Lewis in [20], and Lewis et al. in [107] will be used in the inequalities
which feature the boundary curvatures. The Appendix on boundary curvatures and
the distance function in [68] is also an important reference.

© Springer International Publishing Switzerland 2015 49
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2.2 The Ridge and Skeleton of 2

Suppose that 2 does not contain a half-space. We shall call the set N(x) := {y €
dQ2 : §(x) = |x —y|} the near set of x on 9Q2: when N(x) = {y} we usually write
y = N(x). The following lemma follows easily from the definition.

Lemma 2.2.1

(1) For eachx € Q, the set of near points N(X) is compact.

(2) If Bis a bounded subset of 2, then UyepN(X) is bounded.

(3) Let (x;) be a sequence in 2 which converges to x € Q. If y; € N(x;) for all i
andy; =y, then'y € N(x).

Lemma 2.2.2 Letx € Q,y € N(x) andu = 1tx + (1 — 1)y, where 0 <t < 1. Then
N(u) =Y.

Proof Suppose to the contrary that there exists a y’ € N(u) which also lies in the
ball B(u, [y — u|) centre u and radius |y — u|. Then
x—y| < x—ul+u—y]|
<[x—u[+]y—u]

= [x—y|

which contradicts the fact thaty € N(x). O
An immediate consequence of the last lemma is

Corollary 2.2.3 Forx € Q andy € N(x), let
A :sup{r € (0,00) 1y € N(y + t{[x —y])}.

Then, forallt € (0,A), Ny +tx—y]) =Y.
This leads to the following notions introduced in [53]; see also [49], Sect. 5.1.1.

Definition 2.2.4 For x € Q, y € N(x) and A defined in Corollary 2.2.3, the point
p(x) ;= y+ A(x—Yy) is called the ridge point of x in Q2 and the set R(2) = {p(x) :
x € Q} is called the ridge of 2.

In [65], the set of centres of maximal open balls contained in €2, denoted by
Rc(R2), is called the central set of €2, and the following is proved.

Lemma 2.2.5 The ridge R(S2) and central set Rc(2) of a proper open subset Q
of R" coincide.

Proof Following the proof in [65], Proposition 3A, we show that R¢(2) is the set
of points in € not lying in any open interval (X, y), where x € Q andy € N(x).

Set Uy := {u : |[u — x| < §(x,dQ2)}, the largest open ball centre x which lies in
Q. Then Re(RQ2) = {w:we Q, Uy, € Ux forevery x € Q}. If w ¢ R(R2), then
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by Corollary 2.2.3, w € (x,y) where x € Q and y € N(x). Therefore Uy, C Uy and
SOW ¢ Rc(R2).

Suppose that w ¢ Rc(£2). Then there exists x € Q2 such that Uy, C Uy. If
y € N(w) then the spheres dUy, dUx must be tangent at y and y € N(x). Thus
w e (x,y) and w ¢ R(2). O

Note that the point of assuming that 2 contains no half space is to ensure that
p(x) is defined for all x € 2; if 2 does contain a half-space, then for some x € €2,
A = oo in Corollary 2.2.3 and we put p(x) = oo. It follows from Lemma 2.2.2
that if x ¢ R() then card N(x) = 1, i.e., N(x) is a unique point. The converse
is not true as is easily seen from the example of an ellipse; in that case the ridge is
the straight line along the major axis joining the centres of curvatures A, B of the
points C, D, say, of intersection of the major axis and 92, whereas N(A) = {C} and
N(B) = {Dj}.

Definition 2.2.6 The skeleton of 2 is the set
S(Q) :={xeQ:card N(x) > 1}. (2.2.1)

The significance of the skeleton S(£2) was exposed by the work of Federer in
[58], but even earlier by Bunt in [33] and Motzkin in [120]. Sets €2 for which
S(2) = @ are of particular interest in arbitrary metric spaces and are sometimes
called Chebyshev sets. The proof of the next theorem follows that in [53], but the
result was established by Motzkin in [120].

Theorem 2.2.7 The function § is differentiable at x € 2 if and only if the
cardinality of N(x) = 1, i.e. N(X) contains only one element. If § is differentiable
at X then V6(x) = (X —y)/|x —y|, where y = N(X). Also V§ is continuous on its
domain of definition.

Proof Suppose that N(x) = {y} and that y + k € N(x + h). Then

Sx+h?—8x)>=|y+k—x—hP?—|y—x|?
=2(x—y)-h+2(y—x)-k—2h-k+ |h*> + |k|?
=2(x—y)-h+n,

where 7 = 2(y — x) -k — 2h - k + |h|?> + [k|%. But |y — x|> < |y + k — x|? and
ly + k —x —h|?> < |y — x — h|?, so that

0<-2(x—y) -k+ |k
and

0<2(x—y+h)-k— |k
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Therefore
—2h-k+ |h]> <5 < b,

and as |h| — 0, n = o(|h|), since k| — 0 by Lemma 2.2.1(3). Thus §? is
differentiable at x with gradient 2(x — y) and so § is differentiable with

(x—y)

V§(x) = .
Ix —yl

Conversely, suppose that ¢ is differentiable at x and that y € N(x). Let u =
1x+ (1 —1)y, where 0 < t < 1. Theny € N(u) by Lemma 2.2.2, and as [u—x| — 0,
we have

—fu—x| = u—y[ - [x—y| =§u) - §(x)
= Vi(x): (u—x) + o(ju—x|).

On dividing through by 1 — 7 and letting t — 1, we obtain
—ly =x[=Véx) - (y—x).
Now |§(x + h) — §(x)| < |h] so that |V§(x)| < 1. It follows that

(x—y)
Ix—y|

V§(x) =

and hence
y = x—3(x)Vi(x);

y is therefore unique. The continuity of V§ on its domain of definition follows from
Lemma 2.2.1(3). O

A consequence of the last theorem is that S(£2) is the set of points in €2 at which §
is not differentiable. It is readily shown that § is uniformly Lipschitz. Forif x,y € €,
choose z € 02 such that §(y) = |y — z|. Then

§(x) =[x —z| < [x—y| + &(y)

together with the inequality obtained by interchanging x and y, yield

6(x) = 8(y)| < [x—yl.
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It follows from Rademacher’s theorem that S(2) is of zero Lebesgue measure.
Whether or not R(£2) is of zero Lebesgue measure is not known in general, but
it is proved in [65], Proposition 3N, that it is if £ is a proper open subset of R?.
Another important subset of € which is relevant to our needs is X(Q2) := '\
G(R2), where G(R2) is the good set defined by Li and Nirenberg in [108] as the
largest open subset of Q2 such that every point x € G(2) has a unique near point.

Lemma 2.2.8
(D). S(Q) S R(Q) € SQ). (2.2.2)
(2). T(Q) =R(Q) = S(Q), (2.2.3)

where the closures are relative to 2.
Proof

(1). This is proved in [65]. Let x € S(R2) and y € N(x). If x ¢ R(K2), then by
Corollary 2.2.3, for some r > 1, y = N(y + t[x — y]) for all # < r. But this
implies that y is the unique member of N(x), contrary to x € S(2). Hence
S(R2) C R(Q). L

To prove that R(£2) € S(£2), we shall show that assuming the existence of
anxo € R(£2)\S(£2) leads to a contradiction. Letf : x = N(x) : R"\S(2) —
R™ \ 2, which by Theorem 2.2.7 is continuous. Let xo € R(2) \ S(R2), set
y = 6(X9,02), and let ¢ > 0 be such that the open ball B.(x¢), centre X
and radius ¢, lies in Q \ S(2) and §(f(z),f(x0)) < y for all z € B.(Xp). Set
E:={z:68(z,%x0) = ¢}. Thenxo ¢ tz+ (1 —1)f(z) foranyz € E, t € [0, 1].
There is therefore a homotopy in R” \ {X¢} between the identity function on
E and fg, the restriction of f to E. On projecting this homotopy onto E from
the centre X¢, we have a homotopy in E between the constant function on E
and a function taking values in the contraction K of f[E] back onto E. But as
fIE] € By,(f(x0)), K # E, which is impossible by Theorems 3-4a in [93],
Sect. 59.IV. Therefore there is no such point xo and R(Q) € S(Q).

(2). Since S(£2) is the set containing all x € € with non-unique near points, S(2) C
3 (2) implying that S(2) € X (). Since S(22) € R(2) € S(R), then
R(Q) = S(R) € X(R2). The set Q2 \ R(L2) is an open set containing only
points with unique near points. Therefore Q \ R(2) € G(2) since G(L2) is
the largest such set. We now have that x ¢ R(€2) implies that x ¢ () or,
equivalently, ¥(2) € R(2) which completes the proof. O

Finally, we show that

RR"\Q)=SR"\Q) =2
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if and only if Q is convex. The result is attributed to independent work of Bunt [33]
and Motzkin [120], but it is usually called Motzkin’s Theorem.

Theorem 2.2.9 Let Q be a subset of R" and let §(-) be the distance function in
Q =R \ Q. The following are equivalent:

(i) S is convex.
(ii) 8(x) is dlﬁ‘erentlable at every point in [
(iii) For reveryX € Q' thereisa unique point in Q at minimal distance from X, i.e.,

S(Q) =0

Proof The equivalence of (ii) and (iii) is shown in Theorem 2.2.7. It will suffice to
show the equlvalence of (i) and (iii).

Suppose that © is convex. Let z € N(x) C Q for some x € Q°. Since Q is
convex, then for any y € Q and any ¢ € [0, 1], z + e(y — z) € Q which implies that

Xx—z?<|x—(z+ey—2)*=|x—z—2e<x—2z,y—z>+&|y—z/%,

where < -, - > denotes the scaler product. By letting ¢ — 0, we see that < X —2z,y —
z >< 0, and on letting ¢ = 1 in the expression above, we have that

x—yP=x—z-2(x—zy—2) +|y—z > [x -z

indicating that (i) implies (iii).

Our proof of the reverse implication is based on that of Theorem 2.1.30 in [80].
Assume that Q is not convex. It will suffice to show that there is an open ball B with
BN Q = @ such that B N Q contains more than one point. Since Q is not convex
there exist distinct points X, X; € Q such that the open segment between x; and x;
is contained in ©2°. We may assume that the midpoint of this segment is the origin so
that X, = —x;. Choose p > 0 so that B(0, p) N Q = @; thus B(0, p) is at a positive
distance from Q. Let S be the set of points (w, r) in R"*! which are such that the
family of balls {B(w, r)} satisfy

B(w.r) D B(0, p), Bw,r)NQ = @.
Then
2.

r>|lw|+ p, |a):l:X1|22r,

hence

1
(ol +p)? =1 =< (o + X2+ o —x1 ) = o + x|
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From this we infer that

2_ 2 2 2
o] < M= e 22.4)
2p 2p
It follows that S is bounded, and since it is clearly closed, it is a compact subset of
R, Let (wo, r9) € S be such that ry is maximal amongst the points (w, r) in S;
this implies that B(wy, o) must intersect the boundary of 2. Let y; € B(w, r9) N Q
and suppose it is unique. We shall prove that this leads to a contradiction.
Let 0 be any vector with (6, wy —y;) > 0. Then for small ¢ > 0, we have that

B(wy +€0,1) NQ = @. (2.2.5)

We claim that B(wo + €6, r9) 2 B(0, p). Otherwise, (wo + €6, 1) € S, which, in
view of (2.2.5), contradicts the maximality of ry. Thus B(wo + &6, ry) must intersect
B(0, p), and so there exists a point y. € dB(wy + €6, r9) N dB(0, p). On allowing
e > 0, yo = y2 € 0B(wy, rp) N 3B(0, p). Since ry > p, y» is unique, and as
B(0,p) N Q = @ theny, # y; and the segment between y; and y, lies in B(wy, 70).
For small ¢ > 0, B(wy + £(y2 — y1), r0) D B(0, p) and

B(wo + e(y2 —y1).70) N Q = @. (2.2.6)

Hence (wo + €(y2 — ¥1), o) € S, and (2.2.6) contradicts that ry is maximal. O

Theorem 2.2.10 The functions p and § o p are continuous on Q2 if and only if R(S2)
is closed relative to Q.

Proof 1If p is continuous, then so is the map x — p(x) — x and hence R(2) = {x €
Q : p(x) —x = 0} is closed.

Our proof of the converse implication, uses the fact that r := § o p is upper
semi-continuous. To prove this, we show that if {x,} is a sequence of points in
which converges to x € Q2 and is such that {r(x,)} tends to a limit or infinity, then
lim,,— o 7(X,) < r(x). Lety, € N(x,) and

P in{r(xn) 2r(x)}
" 8(xn)" 8(x)

sothat 1 <A, <2r(x)/6(x). Thenp(x,) =y, + gg“”; (X, —¥a). By Lemma 2.2.1(2),
{yn} is bounded and hence there exists a subsequence {y,)} converging to y say,

and such that {1, } converges to some A > 1. Since

Yn € N (Yn + An(Xn — ¥n))
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it follows from Lemma 2.2.1(3) thaty € N(y + A(x —y)) and hence A < r(x)/§(x).
Therefore

A= Tim {r(xa)/8(x)}

and so lim, 0 r(X,) = A§(X) < r(x), as asserted.

Suppose now that R(£2) is closed. Since r is upper semi-continuous, it is bounded
above on compact subsets of € and so is |p|. Therefore to prove that p, and
consequently r, is continuous on €2, it is sufficient to show that if {x,} is a sequence
in  which converges to x, and {p(x,)} converges to z say, then z = p(x). Since
R(2) is assumed to be closed, it follows that z lies on R(2). If y € N(x) is the
limit of {y,},y. € N(x,), then the straight line through y and x meets R(2) at z.
This implies that z = p(x) and the continuity of p and r is established. O

Remark 2.2.11 Letn(y) denote the unit inward normal aty € d€2, and suppose that
n(y) exists for all y € d$2. Then we can write

p(x) =y +5(y)n(y) =:m(y), ye€N(x), (2.2.7)

where
5(y) = sup{r > 0:y € N(y + m(y))} = § o p(x); (2.2.8)

we set m(y) =y if y € R() N dQ. If R(RQ) is closed, then
5(y) = sup{t > 0 : y + m(y) € G(Q)}. (2.2.9)

Note that the function m(-) is defined on 2. In the terminology of [108], m(y) is a
cut point and the set {m(y) : y € 02} is called the cut locus. It is shown in [108],
Corollary 4.11, that if 2 has a c*! boundary, ¥ (£2) is the cut locus, and as we saw
in (2.2.3), this is R(2).

The following lemma clarifies the connections between notions and terminology
in [53, 108].

Lemma 2.2.12 Let n(-) be continuous on 092. Then the following are equivalent:

(1) p and § o p are continuous on 2;
(2) m and s are continuous on 082;

3) R(R) is closed and equal to ¥ (S2).

Proof Since the equivalence of (1) and (3) follows from Lemma 2.2.8 and Theo-
rem 2.2.10, it is sufficient to prove that (1) and (2) are equivalent.

Suppose that p is continuous, and hence R(£2) is closed by Theorem 2.2.10. Let
yi € 02,y; = ¥,y ¢ R(2). Then there exist x; € G such that y; = N(x;). Since
the sequence (x;) is bounded, it contains a subsequence (X)) which converges to
some point X say. Hence by Lemma 2.2.1, (yx(;) converges toy € N(x). Therefore
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m(Yip) = p(Xkpy) — p(x) = m(y),

and

5(Yi@) = 8 o p(Xep)) = (8 0 p)(x) = 5(y).

Conversely, suppose that m and § are continuous on d2 and let x;, — x in Q.
Let y; € N(x;). Then the sequence (y;) is bounded and so contains a convergent
subsequence (yx(;)) whose limit must be y € N(x), by Lemma 2.2.1. Thus

(8 ° p) (@) = 5(¥xi)) = 5(¥) = (§ o p)(x)

and

P(Xkiy) = m(yi)) — m(y) = p(x).

Remark 2.2.13

(1) It is shown in [65] that if € is connected, the sets S(2) and R(S2) are
connected.

(2) For any proper open subset Q of R?, it is proved in [65] that R(2) has zero
two-dimensional Lebesgue measure.

(3) In [115], p.10, an example is given of a convex open subset Q of R? with a
ch! boundary, which is such that S(€2) has non-zero Lebesgue measure. Thus,
in view of the previous remark and Lemma 2.2.8, R(2) is not closed in this
example.

(4) Let  be bounded and with a C>! boundary; see Definition 1.3.7. Then it is
proved in [81, 108] that its cut locus X (£2) is arcwise connected, and its (n —
1)-dimensional Hausdorff measure is finite, thus implying that ¥ (£2) has zero n-
dimensional Lebesgue measure. Furthermore, m, s € Cl(:)'cl_ (0€2), which in view
of Lemmas 2.2.8 and 2.2.12, means that the cut locus X (£2) of 2 coincides with
R(2).

For further details and properties of S(€2), R(£2), and X (£2) we refer the reader
to [49, 53], Chap. 5, and [108].

Suppose that n and the functions m, s defined in (2.2.7) and (2.2.8) lie in
C(092); note Remark 2.2.13(4) above. We then have from Theorem 2.2.10 and
Remark 2.2.11(1) that R(2) is closed in €2 and is the cut locus X (£2).

For

A(x) == 5(N(x)) = § o p(x),
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define the normalized distance function by

_ S

= A’ x € G(R),

h(x)

with 2(x) = 1 on X(2) and 0 on 9€2. We then have the following lemma proved in
[107].

Lemma 2.2.14 Let R(2) be closed and n € C(02). Then, for x € G(2),0 <
h(x) < 1, and for eachx € ¥

limA(x) = 1. (2.2.10)

X—>X, XEG
Hence h € C(R2).

Proof The fact that 2(x) € (0, 1) for x € G(£2) follows since §(x) < A(x) in G(R2).
As 2(Q) = {m(y) : y € 02}, for each X € X (2), there exists y € dS2 such that

X = m(y) =y + 5(y)n(y). 2.2.11)
Let
{x;} C G(Q) for x;, > x € X(Q), (2.2.12)

and let y; = N(x;); thus |x; —y;| = §(x;). Then A(x;) > |x; —y;| = 8(x;), which
implies that

liminf A(x;) > §(X). (2.2.13)

It will suffice to show that, for {x;} given in (2.2.12),

lim sup A(x;) < §(X). (2.2.14)

i—>00
Suppose that (2.2.14) does not hold. Then, there is an & > 0 such that

Ax;) > 6(X) + o
for i sufficiently large and hence, since A is continuous on €2,

AX) > §(X) + c. (2.2.15)
Since |y; — x;| = §(x;) converges to §(x), the sequence {y;} is bounded and hence
contains a subsequence (still called {y;}) which converges to a limit y say, in 9(£2).

Also s; := §(x;) — §(X). Furthermore,

x; =Y + sin(y;),
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implies that
X=y+5Xn(y).

Since §(X) < A(X)—a by (2.2.15), it follows that X € G(£2), contrary to assumption.
Consequently (2.2.14) must hold, and the lemma is proved. O

2.3 The Distance Function for a Convex Domain

In the next chapter use will be made of the result we shall now prove, that for a
convex domain 2, —AS§ is a non-negative Radon measure on €2. This means that
there exists a non-negative Radon measure p on €2 such that

—/ S(X)Aq)(x)dx:/go(x)dp,(x), forall ¢ € C°(R2). (2.3.1)
Q Q

A Radon measure is a measure which is locally finite and inner regular, these
properties being defined respectively by

(1) every point has a neighbourhood of finite measure,
(2) for any measurable set A, u(A) = sup{i(K) : K € A, K compact}.

The proof given in Theorem 2.3.2 below is taken from [52], Theorem 2, p. 239.
The result will be seen to be a consequence of the fact that § is a concave function
of €2, and the Riesz representation theorem, which we now recall. Let Cy(£2) be
the set of continuous functions on 2 which are compactly supported in €2, and let
L : Cy(2) — [0, 00) be a non-negative linear functional with the property that, for
any compact subset K of €2, there exists a constant Mk such that

ILO = Mkllflloos flloo = sup [FI,

for all f € Cy(S2) with support in K. Then the Riesz representation theorem asserts
that there exists a non-negative Radon measure p such that

L) = /Q F@dpx)

for all f € Cy(2). In fact we shall need the Riesz theorem in the following form:

Corollary 2.3.1 Let L be a linear functional on Ci°(2) which is non-negative on
CP():

L(p) >0 forall ¢ € C°(R2), ¢ > 0. (2.3.2)
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Then there exists a non-negative Radon measure |1 on 2 such that

L(p) = /ng(x)dp,(x), forall ¢ € C°(R2). (2.3.3)

Proof Let ¢ € C§°(R2) have support in a compact subset K of €2, and let §{ €
C°(Q2)besuchthat =lonKand0 < ¢ <1.Setg = [[¢|loc§ —¢. Theng >0
and (2.3.2) implies that

0= L(g) = ll¢llooL(§) — L(e)

and so

L(¢) < Cll¢llco-

where C = L({). We now contend that L extends to a linear functional on Cy(£2)
satisfying the hypothesis of the Riesz representation theorem. This follows since
any non-negative function f € Cy(€2) is the uniform limit of a sequence of non-
negative functions in C§°(€2). To be specific, let f, be a regularisation of f defined
by a mollifier p, a C§°(IR") function supported in the unit ball B(0, 1). Thus if x € Q2
and ¢ < §(x),

fo(x) := / p(2)f (x — ez)dz. 2.3.4)
B(0,1)

If K C 2 contains the support of f and ¢ < dist(K, 9R2), then f; € C§°(2) and as
& — 0, f; converges uniformly on K to f. If f > 0 so are f, > 0 and hence our needs
are satisfied. The corollary therefore follows. O

Theorem 2.3.2 Let 2 be a convex domain in R". Then § is concave on Q2 and —A§
is a non-negative Radon measure in the sense of (2.3.1).

Proof To prove that § is concave on €2, we repeat the argument in [23], Example 2.
Letx, y € Q and for A € (0,1),setz = Ax + (1 — A)y. Since €2 is assumed to be
convex, z € Q. Let zy € N(z) and denote by T(zy), the tangent plane to d2 at zy;
T(zo) is therefore orthogonal to the vector z — zy. Let X, yo, be the projections of
X, y, respectively on T'(zo). It follows from the convexity of €2 and a simple similarity
argument that

8(z) = |z — 20| = Alx —xo| + (1 = )|y = yo| = A8(x) + (1 = A)é(y)
which proves that § is concave.

Let f(x) = —8(x); f is therefore convex on 2. As ¢ — 0, the regularisations f,
of f defined by (2.3.4) converge uniformly to f on any open subset Q" of Q which
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is such that Q’ C €2, and is convex since, for sufficiently small ¢,

FOX+(1—2)y) = / p@F(lx — ez] + (1 — D)y — ez])da.
B(0.1)
<AL + (1= DAY).

Also f, € C®(Q). It follows that D?f, > 0, where D*f, = (9;0;f:)1<ij<n is the
Hessian of f,. Thus D?f, has non-negative eigenvalues and its trace Af; is non-
negative. We therefore have for all ¢ € C§°(2) with ¢ > 0,

/ £.(0 Ap(x)dx = / ()AL (x)dx > 0.
Q Q

On allowing ¢ — 0, we conclude that

L(p) == /Q F)Agdx = 0.

The hypothesis of Corollary 2.3.1 is therefore satisfied and the theorem is proved.

O
The following result is established in [35].
Proposition 2.3.3 For any proper open subset Q of R”,
(n—1)—38A6 >0 (2.3.5)
in the distributional sense
Proof The proof uses the fact that A(x) := |x|> — §?(x) defines a convex function

on R". To see this, let x € R" and y € 02 such that §(x) = |x — y|. Then, for all
z e R",

Ax+1z)+Ax—1z) —2A(x)
=2lz> - {SZ(X +2)+8*(x—1z) — 282(x)}
> 20z — {lx+z -y’ + [x—z—y/ - 2x -y} = 0.

Since A is continuous it is therefore convex. We therefore infer, as in the proof of
the previous theorem, that for all ¢ € C3°(£2), ¢ > 0,

/ AX) Ap(x)dx > 0,
Q
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and this gives

0< / {2n — 2div(6Vd)} p(x)dx = 2/ (n—1—-38A8)p(x)dx
Q Q

which yields the proposition. O

The above proposition is shown to have the following interesting consequence in
[127], Lemma 2.2 and Theorem 2.7.

Theorem 2.3.4 Let Q2 be a proper open subset of R". Then for all u € C5°(2) and
s> 1,

|Vul Jut] |u|
i Gordxz (s—1) ) & /Q 5ot (—A8)dx (2.3.6)

where A§ is meant in the distributional sense. Therefore, if —AS > 0,

|Vul Jue]
lax > (s—1) | —ax. (2.3.7)
Q 83—1 Q §s

The constant (s — 1) in (2.3.7) is sharp.

If @ is bounded and —A§ > 0, all the constants in (2.3.6) are sharp and
equality holds for u; = §(x)*~'1¢, & > 0; this function lies in the weighted Sobolev
space Wé’l(Q; §17%), which is the completion of C3°(S2) with respect to the norm

Ja(IVu@)] + (DS ~dx.

Proof For any vector field V on 2, we have for all u € C§°(2), on integration by
parts,

/divV|u|dX:—/ V - V|uldx
Q Q

and hence since |V|u|| < |Vu| a.e. on Q,
/ divV]u|dx < / [V||Vuldx.
Q Q

The inequality (2.3.6) follows on choosing V = —§'=*V§. To prove that the constant
is sharp in (2.3.7) we pick y € 92 to be the centre of a ball B, (y) of small radius
i, and define the family of functions u.(x) = @(x)(§(x))*"'**, ¢ > 0, where
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¢ € Ci°(Bu(y), 0<¢ <1,andp = 1in B, />(y). Then

Vil 7% Vo|§¢dx
i <s— 1454 JalVeldx f1|+
Q %dx fQ @ edx
<s—l+e+ ¢
=5— £ — )
fQﬂBM/z(y)S I*edx

where C is a constant independent of . Since §(x) < |x —y|, the integral in the last
inequality diverges as ¢ — 0. Hence I < s — 1 4+ o(1) as ¢ — 0; it follows that
(s — 1) is sharp. The fact that u, gives equality is readily verified. O

Under the hypothesis of Theorem 2.3.4 but with s > n, it is proved in [10] that

|Vul |ul
e dx > (s—n) ; ydx,

the proof involving a covering of 2 by cubes. An elementary proof of this inequality
is given in [127], Theorem 2.3.

2.4 Domains with C2 Boundaries

In the following lemma, it is assumed that  has a C?> boundary. This means that
locally, after a rotation of coordinates, 2 is the graph of a C? function. To be
specific (see also Sect. 1.2.4), for any y € 92, let n(y), 7(y) denote respectively the
unit inward normal to d$2 at y and the tangent plane to 2 aty. The d<2 is said to
be of class C? if, given any point yo € 92 there exists a neighbourhood A (y) in
which 02 is given in terms of local coordinates by x, = @(x1,x2,-+* ,X,—1), ¢ €
C*(T(y0) NN (yo)), x, lies in the direction of n(yo) and with X’ = (x;, X2, -+ , X,—1),
we have

Do(yy) = (D1, D2, -+, Dy—1)o(¥;)
= [(3/0x1,8/0x2, -+, 3/3x,—1)](yp) = O.

The principal curvatures «,--- ,«,—; of Q2 at yo are the eigenvalues of the
Hessian matrix

[D>(yo)] = (DiDjp(¥))ij=1. n-1

and the corresponding eigenvectors are called the principal directions. By a
rotation of coordinates, we can assume that the coordinate axes lie in the principal
directions at yo. Then with respect to this coordinate system we have thaty € N (yo)



64 2 Boundary Curvatures and the Distance Function
can be expressed as

y=r0i52s-1). ¥y = V10 Vo) (24.1)
where y; € C*(T(yo) NN (yo))- Atyo

o _

. — (] n P
_'Vi_(vja”'7vl' ) 1_1327”'7’1_1’
8s,~

are unit vectors in the direction of the principal directions and we have

(vi,vj) = dij, (vi,m) =0,

nE) _ ()

35, = ki(s') o5, = Ki(s)vi(s), (24.2)

where the angle brackets denotes scalar product and n(s’) is the unit inward normal
vector at y(sy,s2---sy,—1). In (2.4.2), the signs of the principal curvatures are
determined by the direction of the normal n. If 2 is convex, the principal curvatures
of 2 are non-positive, while if the domain under consideration is Q=R \ Q,
the principal curvatures are non-negative.

Lemma 2.4.1 Let Q be a domain in R", n > 2, with a C* boundary. Let k;(y),
j=1,...,n—1, be the principal curvatures at'y € 902 with respect to the unit
inward normal. Then forx € G(RQ) = Q \ R(Q) andy = N(x),

1+8xki(y) >0, j=1,....n—1.

Proof 1f kj(y) > 0, the inequality is trivial. Suppose «;(y) < O for some y € 02
which is the unique near point of x € G(£2). Let Bs(x) be the ball centered at x with
radius §(x) satisfying

¥} =Bs®NR"\ Q.

Recall that the principal radius r; is the radius of the osculating circle and fory €
9, r; = 1/|ki(y)|. Since 92 is C?, then §(x) < r;, for otherwise, Bs(x) would
enclose the osculating circle and would intersect d$2 more than once, contradicting
the fact that y is the unique nearest point of x. Therefore,

14+ 8x)ki(y) >0 (2.4.3)

for any x € G(2).
Since x is in the open set G(£2), there is an open neighborhood O, (x) centered
at x with radius ¢ > 0 also contained in G(€2). From the definition of a ridge in
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Definition 2.2.4, there is a A such that for all # € (0, 1),

{y} =Ny +t[x—y]) = N(y + t5(x)n)

where n is the unit inward normal at y. Clearly, A > 1 and, in fact, A > 1 since
otherwise x ¢ G. Consequently, there is an s € (0, €) such that

X; 1=y + (§(x) + s)n € O.(x) C G(2)

and {y} = N(xy), i.e., 6(x;) = s + §(x). Since x; € G(2), we may apply (2.4.3) to
conclude that

1+ 8X)ki(y) > 14 (8(x) + 9)xi(y) = 0

which completes the proof. O

Lemma 2.4.2 Let Q be a domain in R", n > 2, with C?> boundary, and §(x) :=
dist(x, dQ). Then § € C*(G(R)), G(Q) = Q \ R(RQ), and for g(x) = g(8(x)), g €
C*(RY),

i(y) )%(X), xeQ\R(Q). (44)

~ 82g n—1

where the k;(y) are the principal curvatures of 02 at the unique near point'y of X.
In particular,

n—1

AxS(x) = R(y) := ; (%) . XeQ\R(Q)., y=Nx). (245)

Proof Forxgy € G(R2), letyy = N(X¢), and consider the coordinate system in (2.4.1)
for points in AV (yo). We define a mapping I" from 4 = T(yo) N N (yo) % R into R”
by

x =T (p(s).50) = p(s) + sun(s), (2.4.6)

where x € G(Q2) is such that N(x) = y = p(s’) and s, = §(x). Then, for i =
L,2,---,n,

o, oy om o
X% _ n =121, 2 (2.4.7)

%, =

T = Snm—s
BSj aSj BSj
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and so, by (2.4.2), at yo = p(s),

) 9
a—:=(1+5Kj)yj,j=1,2,...,n—1, aTX:n. (2.4.8)
) n

It follows that the Jacobian matrix of I" at (y(s;), (Xo)), where y; = y(s;) and
Yo = N (xo), is

(1 + 8k} -+ (1 + Skpp)v) | 1!

: : : (2.4.9)
(I + dkp)vy -+ (1 + Skpr)v),_, 1"

This has the inverse
(1 +8k) ol oo (14 8y Mot

(2.4.10)

n

a1+ 5/("_1)_11)3[_1 (1 + 5/("_1)_11)2_1
nl e n

and hence the Jacobian (2.4.9) has a non-zero determinant. Since I' € C'(l), it
follows from the inverse mapping theorem that for some neighbourhood M =
M (xg) of X, the inverse map is in C' (M). From

x =y +8x)n(y) = y(s) + §(x)n(s) (2.4.11)

we have that §(x) = (x — y(s')) - n(s’) and so D§(x) = n(s’). Thus § € C>(M) and
consequently § € C>(G(R)).

Since (ds/0x) = (9x/ds)”", it follows that (ds/0dx) at yo is the matrix (2.4.10),
andforj=1,2,---n, i=1,2,---n—1,, this yields at yq

ds; o .
3—; =1+, T = (2.4.12)
]

As §(x) = s,, we have on employing the usual summation convention,

9268 . o ds;

v

which at yy is
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Consequently, at yj,

n n—1 P P

on/ on/

— 11 — R
A§ = E E [1 + 6« v{a&—i-n’ag

j=1 Ui=1

i on on
= E [1 4 8] (v, 8s,~) + (n, 88)

i=1

n—1
=Y kil + 8k] ! (2.4.13)
i=1

by (2.4.2). From the Chain Rule, we have

e _ dgds | Bed5 _ g 05
ax  Os;dx; 08 dx; 98 dx;

and

Arg d [3g 38:| 08k

" s (880 | By

_ 9’g .+8g8ni 0s
" | 35,08 06 0sy ax,»'

Hence at y(, we get from (2.4.12)

azg ag n n—l . .
Axg = @ + % ZZKkUi[l + (SK](]_IU;(
j=1 k=1
0’g

a n—1 B
— @+3—‘§Zxkﬂ+8m L
k=1

The lemma is therefore proved. O

Corollary 2.4.3 Let Q2 be a convex domain in R*,n > 2, with a Cz-boundary.
Then § is superharmonic ( i.e. A§ < 0) in G(2) = Q \ R(2) and subharmonic
(i.e. A > 0)in R" \ Q.

Proof We noted in the paragraph following (2.4.2) that if 2 is convex, then the
principal curvatures of 92 are non-positive in € and those of the boundary of
R” \ Q are non-negative in R” \ Q. The corollary is therefore a consequence of
Lemma 2.4.1, (2.4.5) and Lemma 2.2.8. It was first proved in [8] by a different
method. O
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Remark 2.4.4 1t follows from (2.4.12) that [«;/(1 + é«;)](y),i = 1,2,--- ,n— 1,
are the principal curvatures of the level surface of § through x at x.

Remark 2.4.5 From Lemmas 2.4.1 and 2.4.2 it follows that the inequality (2.3.5) is
strict in G(L2).

Remark 2.4.6 1f Q is a domain with a C? boundary, there exists & > 0 such that
Q. :={x € Q:68(x) < e} CG(R). For Q satisfies a uniform sphere condition: this
means that for each point yo € 9€2, there exists a ball B, depending on yy, which is
such that BN (R" \ ) = yo, and the radii of the balls B are bounded from below by
a positive constant, &, say. Moreover, any X € €2, has a unique near point y on 9<2,
with x =y + n(y)§(x). Hence, Q2. C G(R2).

2.5 Mean Curvature

The mean curvature of d$2 at y is defined to be
1 n—1
H(y) := mZKj(Y), y €99,
j=1

where we adopt the convention that the standard unit sphere S"~! C R” has mean
curvature —1 everywhere. From Lemma 2.4.1, we have that

1+ 8x)H(y) >0, y=N(Xx), xeG(Q). 2.5.1)

As noted in the paragraph after (2.4.2), if  is convex and has a C*> boundary,
then the principal curvatures satisfy k; < 0,7 = 1,2,--- ,n — 1. It is well-known
(see [143], Chap. 13) that 2 is strictly convex if and only if k; < 0 for each j =
1,2,--- ,n— 1. A weaker property is now introduced.

Definition 2.5.1 A domain Q@ C R”" with a C?> boundary 9 is said to be mean
convex (with respect to the inward normal) if

H(y) <0, y € 092,
and weakly mean convex if
H(y) <0, y € 09.

If H = 0 on 02 then 0€2 is said to be a minimal surface.
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Example 2.5.2 Let Q be the ring torus in R? with minor radius r and major radius
R > 2r. This is the “doughnut-shaped" domain generated by rotating a disc of radius
r about a co-planar axis at a distance R from the center of the disc. The ridge of Q2
is clearly

R(Q) = {x: p(x) = 0},

where p(x) is the distance from the point x in 2 to the center of the cross-section
and §(x) = r — p(x).

For x = (x1,x2,x3) € Q\R(RQ), lety = (y1,y2,y3) = N(x) have the parametric
co-ordinates

y1 = (R + rcoss?) cos s'

y2 = (R + rcoss?) sins! ,
y3 = rsin s

where 5!, s> € (—m, 7. The principal curvatures aty € 9 are

1 cos §2

Kl = ——, Ky = ———————,
r R 4+ rcos s?

e.g., see Kreyszig [90]. Hence

R + 2rcoss? . R-2
2r(R+rcoss?) = 2r(R—r)’

H(y) = (2.5.2)

Therefore 2 is mean convex if R > 2r and weakly mean convex if R = 2r. This
is a classic example of a domain which is mean (or weakly mean) convex, but not
convex.

It follows from (2.4.5) that

2

_ i ___ R+2(r—$§coss’
A0 = ; (1 + axi) O TR p e

/2 + x5+ (r— §) cos s

- - Sos
(r—19) x%—}—x%

since R + rcos s> = /x3 + x3 + §(x) cos s> and R > 2r. The fact that A§ < 0 was
proved by Armitage and Kuran [8].
An interesting result is obtained in [107], Proposition 2.6, on the relationship

between AJ(x) in  and the mean curvature of the boundary, by the use of an
inequality involving the elementary symmetric functions of a vector A € R". Recall
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that the k" elementary symmetric function of the vector A € R" is given by

o) = > A A=A A) €R

1<ij<-<ix<n

fork=0,1,...,n,withog = 1,00(A) = A1 +---+A,,and 0,,(A) = A;---A,.. The
elementary symmetric means are defined as

Mi(A) == or(A)/ (Z) k=0,1,....n

The following inequality is due to Newton [123] and MacLaurin [114]. If A =
(A1,...,A,) witheach A; > 0, then

M(A)? = M (MM (M), 1<k<n-—1, (2.5.3)
with equality if, and only if A; = --- = A,, and consequently, for A; > 0, k =
1,...,n,

on—1(1) 0—1(A) , |

> ... >c(n,k >...>n (2.5.4)
o) "0 o) 7
where c(n, k) := w The equalities hold if, and only if A; = --- = A,.

Proposition 2.5.3 Let Q be a domain in R", n > 2, with a C* boundary. Let k;(y),
Jj = 1,...,n—1, be the principal curvatures at’y € Q2 with respect to the unit
inward normal, and let H(y) be the mean curvature aty. Then for all x € G(2) and
y = N(x) € 0%,

o N ) (n—DH(y)
2800 =7 =) (+5wrew) = 17 5010y 232
where 1 + §(x)H(y) > 0 by (2.5.1). Equality holds if, and only if k1 = - -+ = k1.

Proof Let
Ai =14 §X)k(y), i=1,...,n—1,

which is positive-valued according to Lemma 2.4.1. Then

L Sy
RO 1= 2 T ) Z i _”‘1‘Zx
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But, for A = (A1,..., A1) € R* 1,

0n—2(A) _ 215i1<---<in,25n—1ki1 o zn 2 Z_:
Un—l(k) A1 "'An—l i—1

and

Opn— Z(A) _1\2
oy =7 lm

with o1(A) = >_ A;. Therefore

) 1
n—1-8x)i(y) = Z_ z (- 1)22,:_11 A

and so,

§(X)H(y)

SRM) = (= D5 S HG)

|

As an immediate consequence of Lemma 2.4.1, (2.4.5), and (2.5.5) we now
know that if dQ is C? and weakly mean convex, the distance function §(x) is
superharmonic in G(2) = Q \ R(2). In fact, there is an equivalence here which
was proved in [107].

Proposition 2.5.4 Let Q have a C*> boundary. The distance function 8(x) is
superharmonic in G(2) = Q \ R(RQ) if and only if Q is weakly mean convex.
Moreover,

sup [AS(x)] = sup (n—1)H(y), y = N(x). (2.5.6)
X€G(Q) yEIQ

Proof Noting the representation of A8 given in (2.4.5), we observe that when
viewed as a function of § only, T 8 decreases as § increases irrespective of
the sign of ;. Therefore, for each x € G(Q) andy = N(x)

n—1 n—1
Ki
A =Y 5 = D= (0= DH(),
i=1 ! i=1

i.e.,

sup [AS(X)] < (n—1) Sup [H(y)], y = N(x).
XEG(Q)
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Conversely, for n(y) the unit inward normal aty € 022 and y = N(x), define
X, =y + m(y).

Then for all # > 0 sufficiently small, x, € G(£2), implying that

n—1
Ki
sup [AS(x)] = Ad(x,) = _.
Jup [A5(x)] = AS(x,) ; T
Since 8(x;) — 0 as t — 0, we may conclude that
n—1
sup [AS(x)] = im[AS(x)] = ) ki = (n— DH(y).
t—0

XEG(Q) i=1

Thus (2.5.6) holds, which implies the equality in the proposition. The implication
of the penultimate sentence in the proposition follows from (2.5.5) O

Finally, we show that for bounded C?> domains €2, the continuity of the mean
curvature H(y) on 0€2 is inherited from the continuity of A§ in G(S2).

Proposition 2.5.5 If 0Q € C? and Q is bounded, then the mean curvature H(y) is
continuous on 9€2.

Proof Lety, yo € 02 and define

Xo(f) :=yo +m(yo),  X(1) :=y+m(y),

where n(y) is the unit inward normal at y € d€2. For ¢ sufficiently small in order that
t <ty < W, x(t) and xo(¢) are in

Iyi={xeQ:8x)<u}
and we have that
(1) = Xo(1) =y — yo + 7[n(y) — n(yo)].
Since n(-) is continuous on d<2 it follows that
Yy—=>Yo = X() — x0()

uniformly for 7 < 1. By the continuity of A§(-) in G(2) established in Lemma 2.4.2
(see also Lemma 14.16 of [68]) it follows that

Jim Ad(x(1)) = A8(x0(1))
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uniformly in # < 5. Hence,

lim {lim AS(x(1)} = lim AS(x0(0).

Y—>Yo t—>0

implying that

lim H(y) = H(yo).
Y—Yo

2.6 Integrability of § "

To end this chapter, we establish a connection between a regularity condition on
the boundary of a bounded domain 2 and the rate of decay of §(x) as x tends
to the boundary. The regularity condition will be expressed in terms of the inner
Minkowski dimension of d€2, while the decay rate of § will be measured in terms of
the integrability of negative powers of §. To define the inner Minkowski dimension
of 082, we set

ML, r) == r " V|02 + B.(0)) N 2,

ML(Q) = 1im3ung(aQ,r)
r—>0+

and
dimy o (9Q) := inf{A : M3, (9RQ) < oo}

where 02 4B, (0) is the set of balls of radius r and centred at a point on the boundary
of Q. The inner Minkowski dimension of 2 is the quantity dimy; o(9€2). The
corresponding quantities obtained by replacing |(d2 + B,(0)) N Q| by [(02 +
B,(0))| are denoted by M* (32, ), M*(3S2), and dim,,(92), the last of these being
the Minkowski dimension of d2. To establish the connection with the decay of §
at the boundary, we use the notion of a Whitney covering )V of a bounded domain
Q. This is a family of closed cubes Q, each with sides parallel to the co-ordinate
axes and with side length £, = 27 and diameter dy = 27%/n for some k € N,
such that

1) 2 = Upew ©:
(2) the interiors of distinct cubes are disjoint;
(3) forallQ e W, 1 < dist(Q, 9R)/dp < 4.
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Such a covering is known to exist; see [139], p. 16, Theorem 3. Condition (2) implies
that

Set
Wii={0eW:ly=2"" keN,

and let n(k) be the number of cubes in Wj. The way in which W is constructed then
implies that

Q0C{xeQ:/m27F <§(x) <5 n275}. (2.6.1)

The following result is proved in [32]; see also [49], Lemma 4.3.7.

Lemma 2.6.1 Let Q2 be a bounded domain in R" and let 0 < A < n. Then
Mé(aQ) < oo if and only if there are positive constants K and ko such that
n(k) < 2”‘Kf0r allk > ko, ke N.

Proof First suppose that Méz (02) < o0. Then there exist K, ry > 0 such that
|(0Q + B,(0)) N Q| < Kr"™

for all r € (0, ro]. Take k € N, k > (log2)~'log(12+/n/r) and set r = 6./n27*.
Then 2r < ry. By a standard covering theorem (see, for example, Theorem XI.5.3
in [48]), there are points x, x,,- -+, X, € dQ2 and a positive constant C, depending
only on n, such that

02 C | JB(x). D s =C.
j=1 j=1

Every cube Q € W is contained in at least one of the balls B,,(x;),j = 1,2,--- ,m.
For given x € Q, choose y € 02 so that §(x) = |[x —y| : y € B.(x;) for some
je{l,2,---,m}. Thus, for every z € Q we have

2= x| < |z — x| + [x — ] + Iy x| = 12v/n2 7 = 2r.

Let n;(k) be the number of cubes Q € W, which are contained in B,,(x;). Then
clearly

k

k
n(k) <> k) < > [Ba(x) N Q)|/1Q|

j=1 j=1
< C2*|(9Q + B2 (0)) N Q|
< CK(12+/n)" 2%,
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Conversely, suppose that n(k) < K2** for all k > ko, k € N. We may suppose
that A < n since

limsup [(02 + B,(0)) N | = [9R] < oco.
r—>0
Fix r > O with r < ﬁZ_kO and choose k€’ > kg such that

J2 ¥ < < Um27F,

Then by (2.6.1),

02+ B.(0)NQC | W

k>k
Hence
i) i _ K200
Q + B,.(0) N K28 .
02+ BO)NRI< Y T
k=K'
Thus
sz/(k—n)
~=D10Q + B.(0) N Q| <
RNOR + BN N QI = s
- Kzn—)k
- (1 _2/1—n)n(n—l)/2
and the result follows. O

The connection between the Minkowski dimension and the distance function that
we were after, can now be given.

Theorem 2.6.2 Let Q2 be a bounded domain in R". Then the following conditions
are equivalent:

(1) dimp(02) < n;
(2) there exists pu € (0,n) such that [, §(x)""dx < oo.

Proof Suppose that (1) holds. Let W be a Whitney covering of € and put A =
dimp; o (9€2). Then if u > 0,

/5(x) Fx =) /5(x) “dX—Z > /5(x) “dx

Qew k=1 QeW;

(&) o0
< CY nk27@ M < ) 20k

k=1 k=1
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for some positive constant C. Since A < n, the last sum is finite for a suitable
n<n-—A.

Conversely, suppose that (2) holds and that dimy o(dS2) = n. Then by
Lemma 2.6.1, no matter what K > 0 and A € (0, n) are chosen, n(k) > K2** for
all k. Thus if we take A = n — p, there is a sequence of natural numbers k; = k;j(A)
such that n(k;) > 2*% Then

/ §(x)Hdx = i > / §(x)Mdx > Cinac)(z—k)—w
Q [ k=1

k=1 QeW;

o0 o0
> C Y n(k) @70y 2Tk > Y okt = oo,
j=1 j=1

This contradiction completes the proof. O



Chapter 3
Hardy’s Inequality on Domains

3.1 Introduction

Let €2 be a domain (an open, connected set) in R” with non-empty boundary, 1 <
p < 00, and denote by §(x) the distance from a point x € €2 to the boundary €2 of
Q,i.e.,

§(x) ;= inf{|x —y| : y € R"\ Q}.
The basic inequality to be considered in this chapter is

[Fx)
§(x)?

/ [Vf(®)[Pdx > c(n, p, 9)/ dx, feCP(Q); (3.1.1)
Q Q

equivalently, the inequality is to hold for all f € Wol’p (£2). We shall say that the
inequality is valid if there is a positive constant c(n, p, ) which, as indicated, may
be dependent on n, p and €2, but not on f.

It was proved by Lewis in [104] that if n < p < oo, the inequality (3.1.1) holds
for all proper open subsets of R”. For 1 < p < n, the situation is more complicated,
as assumptions on the boundary of 2 are necessary. A wide assortment of boundary
conditions which are sufficient to ensure a valid inequality may be found in the
literature, and many authors have contributed.

3.2 Boundary Smoothness

In this section we give brief descriptions of what we regard to be some of the
highlights of the results concerning boundary conditions and the validity of the
Hardy inequality; a comprehensive up-to-date coverage may be found in [146].

© Springer International Publishing Switzerland 2015 77
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In [119], Maz’ya showed that (3.1.1) can be characterised in terms of the
p-capacity C, (K, ©2) of compact subsets K C 2 relative to €2, defined by

C,(K.Q) = inf{/ [Vu(x)|Pdx : u € C°(R2), u(x) > 1forallx € K; .
Q
(3.2.1)

He proved that (3.1.1) is valid if and only if there exists an absolute constant
C > 0 such that

1
/K S(X)pdx < C-C,(K. Q) (3.2.2)

a simplified proof is given by Kinnunen and Korte in [86].

The relative p-capacity C, (K, 2) also features in a theorem of Lewis in [104]
involving the notion of uniform p-fatness: a closed set E C R" is said to be
uniformly p-fat if there is a constant y > 0 such that for all x € 2 and all
r>0,

C, (E N B, 1), B(x, 2r)) > yC, (B(x, 7, B(x, 2r)) = ye(n, p)r"™

for some positive constant c(n, p) dependent only on n and p. The following
examples may help to put this definition in perspective:

(1) If n < p < 00, every non-empty closed set is uniformly p-fat.

(2) Every closed set satisfying the interior cone condition is uniformly p-fat
for every p € (1,00) : a closed set E C R" satisfies the interior cone
condition if there exists a cone V such that every X € E is the vertex of a
cone Vx C E which is congruentto 'V, i.e., Vx = X + Lx(V), where Ly is
a rotation operator.

(3) The complement of a Lipschitz domain is uniformly p-fat for every p €
(1, 00): 2 is a Lipschitz domain if it is a rotation of a set of the form

x=&,x) =1, X1, %) €ER" : x, > p(X')},

where ¢ : R"~! — R is Lipschitz continuous.
(4) If there is a constant y > 0 such that for all x € E and all r > 0,

|ENB(x,r)| = y|B(x, )],

then E is uniformly p-fat for every p € (1, 00).
The aforementioned result of Lewis in [104] is the following:

Theorem 3.2.1 [fn < p < o0, the inequality (3.1.1) holds for all open sets
Q £ RUI1 < p < nand Q is an open set in R" which is such that
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(iii)

(iv)

R™ \ Q is uniformly p-fat, then the Hardy inequality (3.1.1) is valid. When
p =n, (3.1.1) holds if and only if R" \ Q is uniformly p-fat.

In particular then, for 1 < p < n, (3.1.1) is valid for a Lipschitz domain.
The uniform p-fatness of R"” \ Q was proved in [100, 101] to be equivalent
to the pointwise g-Hardy inequality for some ¢ € (1, p); this notion was
introduced by Hajtasz in [71] and is that there exists a positive constant
c(n, g), depending only on n and ¢ such that for all f € C§°(2) (extended
to all of R" by 0),

VO o, q) p(VFZ 0] 2 (3.2.3)

$(x)

where M is the maximal function defined for f € L} .(R") by

1
MF(x) := sup BE S IF(y)ldy.

That the pointwise ¢ Hardy inequality for some g € (1, p) implies the Hardy
inequality (3.1.1) is a consequence of the classical result that M is a bounded
map from L/9(R") into 17/4(R") since p > q.
In view of the connection established in Theorem 2.6.2 between integrability
properties of §(-) and the Minkowski dimension of 92, the “dimension" of
d<2 and the Hardy inequality can be expected to be intimately related. This is
known to be the case if the Hausdorff and Aikawa notions of dimension are
used. We recall the definitions. For a set E in R” and A > 0, the A-Hausdorff
content of E is defined to be
o0
HME) :=1inf{) "r} :EC

J=

s

B(Xj, rj),xj € E,}"j > 0},
1

—_

J

where B(x;, r;) is the ball centre x; and radius r;. It is readily shown that there
is a unique A € [0, n] such that

o0, if A <A0,
0, if A > A.

HMNE) = %
The Hausdorff dimension of E is then defined by
dimy (E) := sup{A > 0 : H*(E) = oo} = inf{A > 0 : H* = 0};

see [57] for details. The Aikawa dimension of a set E C R” is defined as

dimy (E) 1= inf{t> 0 :/

— _dy<Cr, x€E, r>0},
B(x,r) S(ys E)n—t '
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where §(y, E) is the distance from y to E and C; is a constant which may
depend on 7.

In [100] Lehrbéck proved that if R” \ 2 is uniformly p-fat, then the Hardy
inequality (3.1.1) is valid and dim#(02) > n — p. This is complemented in
[101], where Lehrbéck proves that if dims (d2) < n — p, then (3.1.1) is valid.
It is proved in [87, 101] that if (3.1.1) is valid, there exists ¢ = &(p, n) such
that either dimy(02) > n — p + ¢ or dimy(02) < n — p — . In fact this
result is local in nature, in the sense that, if ® € dQ2 and r > 0, then either
dimy (0Q2NB(w, r)) > n—p ordimy (02 NB(w, r)) < n—p whenever (3.1.1)
is valid. This means that if Q is a punctured disc in R? and p = 2, there is no
valid Hardy inequality.

For any set E it is known that dimy (E) < dimy(E), and indeed, if E is
bounded, the Hausdorff, Minkowski and Aikawa dimensions are related by

dimy (E) < dimy(E) < dimy(E);

see [57, 102, 113] .

A natural question following from Hardy’s inequality is if u € W!?(2) and
u/é§ € [7(2) imply that u € Wé’p (£2). That this is indeed the case is proved
in [48], p. 223; furthermore, in [116], Lemma 1.1, it is proved that if 2 is a
bounded domain with a C? boundary, then the space

~ D u
WP(Q) := {u e W,2(Q) : | Vulp@ + 15 llr@) < 00}

loc
with norm

u
el @) = IVulw@ + 5@

is equivalent to WS’P (2) with norm ||Vu||zr(e). An extension of the quoted
result from [48] was obtained by Kinnunen and Martio who prove in [85]
that the requirement ©/§ € L”(2) can be weakened to u/§ € LP*°(R2), the
weak-17 space defined as the set of functions f satisfying

sup AP|{x € Q : [f(x)| > A}| < o0.
A>0

We now turn from the question of when (3.1.1) is valid to that of finding
the best constant when it is. This is naturally associated with the variational
problem of determining

pp(@) = inp JalVuldx
p =

(3.2.4)
uew(i'”(mfg |u/8|Pdx
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(vii)

(viii)

and the existence, or otherwise, of a minimizer. Clearly (3.1.1) holds if and
only if u,(2) > 0; and if u,(£2) > O then the best constant is 1,(2).
When n = 1 it is easily shown that u,(2) = (1 — 1/p)? (see (3.3.4)
below), but when n > 1 the situation is more complicated. The problem
was resolved for convex domains by Matskewich and Sobolevskii [117] in
the case p = 2 and by Marcus et al. [116] in general. They proved that,
for a convex domain 2 which is smooth in a neighbourhood of some point,
1p(2) = (1 —1/p)’ = cp, which is equal to the one-dimensional value; see
Theorem 3.1 below. Lewis et al. show in [107] that the convexity condition
on £ to achieve 11,(2) = ¢, can be relaxed to weak mean convexity; this
result is reproduced in Theorem 3.7.14 below.

In [116], it is proved that for all bounded domains in R” with boundaries
of class C2,

—1\?
1y(R) < ¢p 1= (”T) .

If there is no minimizer then y,(£2) = c,, the existence of a minimizer and
1p(£2) = ¢, being shown to be equivalent in the case p = 2.

It follows from the case n = 1 that, for the half-space R’i = {x =
(x',x,) : X € R x, > 0}, we have

1, (R = c,. (3.2.5)

For, if ¢ € CP(RY), [Vo(x)| > [(d¢/0dx,)(x)| implies that w,(R) >
up(Ry), while if ¢ is radial, then |V¢(x)| = [(d¢/0dr)(x)| and hence
pp(RY) < pp(Ry).

For non-convex domains (and ones not weakly mean convex), the value of
M1p(£2) is not known in general, but for arbitrary planar, simply connected
domains €2, there is the celebrated result of Ancona in [7] that 4, (2) > 1/16;
see Sect. 3.4 below. The Ancona result is generalised by Laptev and Sobolev
in [98], where the “degree" of convexity of €2 is quantified in the lower bound
obtained for u,(£2). This is achieved by establishing a stronger version of
Koebe’s 1/4 theorem on which Ancona’s proof was based.

We note the example of a punctured disc in item (iv) above for which
there is no valid Hardy inequality. When = R” \ {0}, it is shown in [116],
Example 4.1, that it is sufficient to consider the evaluation of 11,(2) over
radially symmetric functions and then

P

pp(R"\ {0}) = '1 - g (3.2.6)

In [41], Davies introduced a mean distance function &, and proved
that (3.1.1) holds in the case p = 2 for arbitrary domains if § is replaced by
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(x)

3 Hardy’s Inequality on Domains

du. This was extended to general values of p in (1, co) by Tidblom in [144].
The mean distance function will be the subject of the following Sect. 3.2.
An extension of Hardy’s inequality of the form

L[ e

2
/Q|Vu(x)| dxzz o 5()?

dx + C(Q)/ lu(x)|*dx, u € C(2),
Q

was established by Brezis and Marcus in [30], for € convex and C(2) =
1/4 diam(2). Since then there have been many improvements, notably the
sharp result of Avkhadiev and Wirths in [12] in which C(2) = A2/82, where
8 is the inradius of 2 and A is the first zero in (0, co) of the Bessel function
equation Jo() — 2J,(f) = 0. Section 3.6 will be devoted to such extensions,
including analogues in L7 (£2).

Ward proves in [146] that, for an arbitrary domain €2, the Schrodinger
operator H = —A 4 V defined on C{°(£2), is essentially self-adjoint if V
is locally bounded in 2 and, close to the boundary of €2, it satisfies

1
V(x) > e 1 —pa(2) — TogB ()] (3.2.7)
1
 log[8(x)~Tloglog[§(x)~1]

1
- log[8(x)~1]loglog[8(x)~1] - --loglog - - -log[§(x)~!]

for some finite number of logarithmic terms. This extends to arbitrary
domains, a result of Nenciu and Nenciu in [122] for bounded domains with
C? boundaries. In particular then, H is essentially self-adjoint if

1 — 112(82)

This recovers the Kalf, Walter, Schmincke, Simon criterion (see [136])

n(n—4)

|4 > —
TN

for the case of = R?\ {0}, since then ,(2) = (1 —n/2)? by (1.2.16) and
5(x) = [x|.
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3.3 The Mean Distance Function

3.3.1 A Hardy Inequality for General 2

In [41], Davies introduced the following notion:

Definition 3.3.1 The mean distance function &y, is defined by
Su(x) 2 :=n / ov(X) 2dw(v), (3.3.1)
sn—1

where p,(x) is the least distance from x € Q to 02 in the direction of either v or
—v and dw(v) is the normalized measure on S"71, i.e., fsn—l dw(v) = 1. Note that
the factor n is excluded in [41].

For general p € (1, 00), there is the analogue (see [144])

()
r(E)TG)

S p(x)7 =

/ ov(X) Pdw(v), 3.3.2)
sn—1

where 8y12 = Sp.
The following theorem is proved in [41] in the case p = 2, and in [144] for any
p € (1,00):

Theorem 3.3.2 Forallf € D(l)’p(Q), 1 < p < 0o, and any domain Q2 in R",

/ IVfx)|Pdx > (p; l)p SO ax (3.3.3)
Q

Q SM P (X)‘D

Proof The root of the result is the one-dimensional inequality

/a NP > (p ; l)p / ’ |i§glpdt, (¢ € C(a. b)), (3.3.4)

where p(¢) = min{|t—a|, |t — b|}. To prove this we obtain an inequality in each half
of the interval (a, b) separately. Let ¢ be real. With ¢ := (1/2)(a + b),

“le@®fP ¢ ) ¢ y
/a (t_a)pdf=/a (t—a)” (/ [|<P(x)|‘]dx)dt
= [tocory ([ = arvar) ax
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- /C[W(x)lp]/(l? - D Hex—a) "t — (c—a) P }dx
r [P i,
“p—-1J (x —ay! ’

since [[¢(x)|'] = |¢’(x)| a.e., by Theorem 1.3.8. Similarly

V0l b [l e o)
) (b—r)P””—p—I/C e

and the two inequalities combine to give

P ([ p \ [ @l g
/ap(r)f’””—(p—l)/a o

P Plo@pP N7 1p
= (P - 1) (/a p(x)P dx) (/a lp (X)|de) ,
whence (3.3.4).

Let v € S*', and denote the partial derivative in the direction of v by d,; hence
from (3.3.4),

by, —1\? [t P
/ |8V(p(t)|pdt2(pp )/ llf((tt))lpdt, (@ € CPanby),  (3.3.5)

where (a,, b,) is the interval of intersection of € with the ray in the direction v.
Furthermore, d,¢ = v - Vg = |Vg|cos(v, Vg), where for w € R", (v, w) denotes
the angle between v and w. On integrating both sides of (3.3.5) with respect to the
normalised measure dw(v) we obtain

/ / | cos(v, Vo) Pdo(v) | Ve (x)Pdx
Q Jer

p—1\’ 1
- (T) /Q/S o e Wle)ldx. (3.3.6)

For any fixed unit vector e € R”,

/ | cos(v, Vo(x))|Pdw(v) = / | cos(v, e)|Pdw(v),
sn—1 sn—1
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and a calculation gives
+1

F(%r)r()

n+p ’

NN ES

The inequality (3.3.3) follows from (3.3.6) for any real ¢ € C{°(2), and hence
for all real functions in D(l)’p(Q). Suppose ¢ € C5°(£2) is not necessarily real. Then,
since |p| € D(l)’p(Q) and |V|p|| < |Ve| (see Theorem 1.3.8) (3.3.3) is a consequence

of the already established inequality for real functions in D(l)’p (£2). The theorem is
therefore proved for all ¢ € C{°(2) and hence for all ¢ € D(l)’p (R2). O

[T

/ |cos(v, e)|Pdw(v) = (3.3.7)
sn—1

Thus if the distance function § is replaced by the mean distance function 8y,
the resulting Hardy-type inequality is always valid. We shall see in Sect. 3.5 below
that this knowledge can be useful in the analysis of the Hardy inequality in many
dimensions, by effectively reducing the problem to an easier one in one dimension.
Furthermore, the natural quest for conditions which ensure that 8y, and § are
comparable provides a valuable geometric insight into the inequality. It is obviously
always true that

8, (%) = B(n. p)8 ().

where
+1 n
F(%r)r(ﬂ
B(n.p) = ——4——:
VAT (12)
thus B(n,2) = 1/n. If 0Q2 is sufficiently regular, an inequality in the reverse
direction is available, in which case
3(x) < B(n,p)_l/f’é’M,p(x) < c4(x) (3.3.8)

for some ¢ > 1 and the Hardy inequality is valid. An example of this is given in
[41], Theorem 18. The boundary 0€2 is said to satisfy a 8-cone condition if every
x € 0% is the vertex of a circular cone Cx of semi-angle & which lies entirely in
R™\ Q. Let s(«r) denote the solid angle subtended at the origin by a ball of radius
a < 1, whose centre is at a distance 1 from the origin. Explicitly

1 arcsin o /2
s(a) = = / sin" 2 1dt/ / sin" 2 tdt.
2 Jo 0
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Theorem 3.3.3 [f 092 satisfies a 0-cone condition, then for all x € Q,
1
8(x) < B(n.p)" 78y (x) < 2ls(5 sin 0)]~'78(x).

Proof Letx € Q,y € dQ and §(x) = |x —y|. If v is the unit vector directed along
the axis of the cone Cy in R” \ €2, then the ball with centre y + §(x)v and radius
d(x) sin 8 lies inside Cy and hence outside ©2 The solid angle A subtended by this
ball at x is at least s(% sin #) and every line from x within this solid angle meets <2
at a distance at most 25(x) from x. Consequently

l .
Bp(n,p) . 1_1 / 1 do(v) > s(5 sin6)
Sy (X) T ST A 26 [26(x)1
and the theorem is proved. O

Another result of interest from [43], Exercise 5.7 or [144], p. 2270, is
Theorem 3.3.4 [f Q2 is convex, then

Smp(x) < 3(x), (3.3.9)
and hence
_ p
/ |VF(x)[Pdx > (1’_1) A (3.3.10)
Q P o S(x)

Proof Let e be a unit vector in R” which is such that p.(x) = §(x). Then, if Q is
convex, it follows that

pv(x) cos(e, v) < 8(x).

Hence
/ ! da)(v)>/ | cos(e, v)|? ! dw(v)
g1 pu(X)P ~ Je s(x)r
1
= /Sn_l | cos(e, v)|"dw(v)w
CTrEHrG 1
IRZNCORED
by (3.3.7), whence (3.3.9). O

In Corollary 3.7.14 we shall prove the result established in [107], Theorem 1.2,
that (3.3.10) holds for a domain 2 which is weakly mean convex, a condition which
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is weaker than convexity; for instance, a ring torus with minor radius r and major
radius R, with R > r, is weakly mean convex.

3.4 Hardy’s Inequality on Convex Domains

3.4.1 Optimal Constant

We shall now prove the result established in [116] that for a convex domain which
is smooth in the neighbourhood of one of its boundary points, the optimal constant

in (3.2.4) satisfies 11,(2) < ¢, := ("%)p . When coupled with Theorem 3.3.4 we
shall then have 1,(2) = c,.

Theorem 3.4.1 Let 2 C R",n > 2, be a convex domain and suppose there is a
point P € 32 such that Q € C?* in a neighbourhood of P. Then

Q) inf o Vil (3.4.1)
wy(R):= inf 2—0— =g, 4.
! uEW(i'p(Q),fQ |u/5|de ’

Proof In view of Theorem 3.3.4, it is sufficient to prove that u,(£2) < c,. Let IT be
a tangent plane at P € d2. We may assume, without loss of generality, that P = 0,
IT = {x : x, = 0}, and that there is a line segment {(0, x,) : x, € (0,b)} C Q for
some b > 0. Let H be the half-space H := {x,, > 0} and ¢ € (0, 1), where we have
written any point X € R” in the form x = (x/, x,),x’ € R""!. From (3.2.5)

_1\?
wp(H) = ¢cp 1= (pTl) .

Hence, with

_ Ji |VulPdx

Ry (u) = W,

(3.4.2)

we have that there exists ¢ € C5°(H) such that [Ry(¢) — c,| < &. Moreover, there
exists A > 0 such that

suppp C K :={xeR":x, >0, x| < Ax,}
and a neighbourhood U of 0 such that forallx € U N Q,

|dist (x, TT) — §(x)| < o(1)|x]. (3.4.3)
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where o(1) — 0 as x — P. Since Ry and K are invariant with respect to
transformations of the form x — ax, a > 0, we may assume that

suppp CUNQ and §(x) < (1 + ¢)x, forall x € supp ¢.

On collecting all this together, we see that

Ro(p) < (1 4+ &)Ru(d) < (1 +&)(c, +2).

Since ¢ is arbitrary, it follows that 1, (£2) < ¢, as asserted. O
Remark 3.4.2 The following results are also proved in [116].

(1) If  is bounded and satisfies the conditions of the Theorem 3.4.1 except that of
convexity, then u,(£2) < c,, with equality if the variational problem determined
by (3.4.1) has no minimiser; if p = 2, there is equality if and only if there is no
minimiser.

(2) Let 4, 2, be bounded Lipschitz domains in R" with Q C Qi put Qo =
R\ Q, Q = QoNQ»and QX = QN (kQ,), k € N. Then with j1,,; = w1, (Q),
i=0,1,2,

Hp,oMp.2

< up(L2).
Hpo + Up2 Y
If 0 € Q then

n—p

|
and so 1, (£2p) = 0. Thus there is no valid Hardy inequality

Fl"
o s

(3) If Q is either R* \ B(0, R), B(0,R) \ B(0, r) where 0 < r < R, or B(0,R) \ {0},
then

Hp(2) < min %c,,,

/ V)" >
R*\{0}

0 ifn=2,

na(St) = { 1/4itn > 3.
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3.42 A Generalisation on C3°(G(R)), G(R) = 2 \ R(R)

In [16], the following inequality was established, which is the analogue for a domain
Q of the affine invariant inequality (1.2.17) in R". It requires A¢§ to be defined, which
in view of Lemma 2.4.2, means that it applies to functions supported outside the cut
locus X(2) = R(R). Additional smoothness assumptions on the boundary of
enable the class of functions to be extended to C5°(£2), as will be demonstrated in
Sect. 3.5 below.

Theorem 3.4.3 Let Q be an open convex subset of R" and G(Q) = Q \ R(Q),
where R(S2) is the ridge. Then, for all f € C°(G(£2)),

_ p
/ VS - Vf|Pdx > (p—l) / §P|f|Pdx, (3.4.4)
Q p Q

and hence

_ p
/ [VfIPdx = (pTl) / §P|fIPdx. (3.4.5)
Q Q

Proof For any differentiable vector field V : R* — R", we have on integration by
parts and the application of Holder’s inequality,

/ divV|f|Pdx = —pRe / (V- V)IFIPfdx
Q Q

1/p , (r—1/p
<p ( | IV-VfI”h"dX) ( [ ven dx)
Q Q

< / |V - VPR dx + (p — 1)e?/®~D / [FIPh" dx, (3.4.6)
Q Q
where & is any positive function, and we have used Young’s inequality

N L

with ¢ > 0 arbitrary.
We choose V = V§~2", where m is to be determined; thus on G(2),

divV = m§ 2"V AE™2 4 dm(m — 1)§ 72TV |v§)2 (3.4.7)
For any x € G(), rotate the co-ordinate system so that x = (&,&’), where
& = 6(x), measured along the line L from x to its nearest point on 92, and

g = (&.---,&,) lies in the (n — 1)-dimensional orthogonal complement L,—1)
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of L in R". Then, in view of the rotational invariance of the Laplacian,
AST2 = 01677 + A8,

where A’ is the Laplacian in L(,—y. Since €2 is assumed to be convex, A’ §72>0,
and hence

A2 > RE2 =687 = 6574
Consequently, in (3.4.7),
divV > 2mQ2m + 1)§ 20+,

On substituting this in (3.4.6) and setting #”’ = §2"t)) we derive

/ IVS_Z . Vf|1784p—2(m+1)dx > .](8) lf|178—2(m+1)dx’
G(Q) G(Q2)

where

_202m+ l)s_P - l)s—pz/(p—l)
mp~1

- (2zeny
N p

the maximum being attained for e=' = {2m(2m + 1)/p}?~V/P_ 1t follows that

/ W(g—z ) Vf|P §4=2m D) gy > (2(2’" + 1))p/ P82+ D g
Q p Q

mpP

and the choice m = (p/2) — 1 completes the proof. O

3.4.3 Domains with Convex Complements

The technique used in Theorem 3.4.3 can be used effectively for a domain 2 whose
complement 2¢ is convex. In this case one has the advantage that G(2) = Q2 since
the cut locus is empty by Motzkin’s Theorem 2.2.9.

Theorem 3.4.4 Let Q be a domain in R" whose complement Q€ is convex, and let
8(x) := dist(x, Q°). Then, for all f € C(RQ), andm > 1,

2(2m— 1)\
/52(”’_1) Vs*- V| dx > (L) /SZ(W_I)ledX (3:4.8)
Q p Q
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Proof We set V(x) = V§*"(x) in (3.4.6). Then in any compact subset of £,

divV =" 8;[9;6™]

i=1
= m8> " DA + dm(m — 1)82"V|V§|?
= m§>" VA + dm(m — 1)§>m=D

since |V§| = 1, a.e. On substituting in (3.4.6) and using the Holder and Young
inequalities, we get

Jo {mAS* + 4m(m — 1)}8* " V|f|Pdx

<p / V52 VF|IfP dx
Q

1/p 1=1/p
< p( / |v52'".Vf|f’5—2<f’—1><m—1)dx) ( / 82(’"_1)|f|”dx)
Q Q

< mPe? / V82 VfP82Ddx + (p — 1)e /=) / 52D |f|Pdx.
Q Q
(3.4.9)

We now proceed as in the proof of Theorem 3.4.3 and define the co-ordinates x =
(&1, &")) where & = §(x). Then, with the same notation, we have that

AS*(x) = 01E + A5 (x).

Since Q¢ is convex, A’6%(x) > 0, and so A§?(x) > 2. It therefore follows
from (3.4.9) that

/ V82 . VfP§2m—Dax > / §2m=DK (e)|f|Pdx, (3.4.10)
Q Q
where
K(e) = (M) e P — (E) e/ (=)
mp~! mP '

It is readily shown that K(¢) attains its maximum value of [2(2m — 1)/p]P at e =
[p/2m(2m — 1)]*~V/P_The theorem then follows from (3.4.10). i

Corollary 3.4.5 Let Q2 be a domain in R" whose complement Q€ is convex, and let
8(x) := dist(x, Q). Then, for all g € C3°(2) and y > —1/p,

/ PO\ VglPdx > (y + 1/p)f’/ 877 |g|Pdx. (3.4.11)
Q Q



92 3 Hardy’s Inequality on Domains
Proof On substituting f = g/6% in (3.4.8), we have

V8- Vf| < 2{87F!| Vgl + a8™|gl}
and

2m—1
|sRe-Di-atliy, | > [(mpf) _a} | sRem=Dip=alg]

where || - || is the L7 (R") norm. The corollary follows on setting y = 2(m—1)/p—a.
O

3.5 Non-convex Domains

3.5.1 A Strong Barrier on S2

We show in the following lemma that for any domain €2, an inequality is satisfied
(in the sense of quadratic forms) by the Laplacian in terms of a general vector field;
this has a geometrical flavour and leads to the notion of strong barrier on 2 which
has an important role in [7]. Without loss of generality, we shall assume throughout
that functions are real.

Lemma 3.5.1 Let Q be a domain in R",n > 1 and V : Q@ — R" a real,
differentiable vector field. Then,

— A > —divV — |V (3.5.1)
in the sense that for all real f € C5°(S2),

/ |Vf|2dx > / (—divV — | V|?) f2dx. (3.5.2)
Q Q

On choosing V(x) = V[logs(x)], where s is a strictly positive C*(2) function, it

follows that
—-A
[ rwrpax= [ (=
Q Q s

Let Q2 have a non-empty boundary, and §(x) := dist(x, 02). If there exists a
strictly positive superharmonic function s which is such that —As/s > &/8* for

) f2dx. (3.5.3)
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some positive number ¢, then
2
u(x)

Jo 55

where cq = 1/e.

Proof LetV = (v, v3,--+,v,). Then,

O<Z/ (a—XI—fvl)
—Z ) g(ax) 2 () o0 +122
< ar\? v
—Z/{(a—) gy I

and (3.5.2) is proved.
The choice V(x) = V([log s(x)] gives —divV — |V||*> = —A s/s and the rest of
the lemma follows. O

X < CQ/ [Vu(x)’dx, u e CP(Q), (3.5.4)
Q

dx

For a strictly positive superharmonic function s to qualify as a strong barrier on
Q in accordance with [7], it is sufficient for it to satisfy As + (¢/6%)s < 0 only in
the weak (distributional) sense, that is, for all non-negative ¥ € C5°(2).

/ (As + (/8%)s) yrdx = / (AY + (e/8%)y) sdx < 0, (3.5.5)
Q Q

which is less than what is required for (3.5.4) above. In the next proposition, which is
Proposition 1 in [7], the existence of a strong barrier in this weak sense is equivalent
to the validity of the Hardy inequality (3.5.4).

Theorem 3.5.2 The Hardy inequality (3.5.4) holds with a finite positive constant
cq, if and only if there exists a strictly positive superharmonic function s on Q2 and
a positive number ¢ such that

&
As+ 55 <0 (3.5.6)

in the weak sense of (3.5.5). The largest value of ¢ in (3.5.5) is 1/cq, where cq is
the best possible constant in (3.5.4).

Proof Suppose that (3.5.4) is satisfied for some finite positive constant cq. Consider
the Hilbert space

H= {f € LZOC(Q) : Vf € LZ(Q)’ 5_lf € LZ(Q)}v
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equipped with the norm
_ 1/2
il = (IVAP + 187 71%)
and let Hy denote the closure of C§°(£2) in H. The quadratic form
alf. gl .= / Vf-Vgdx —¢ / § 2 fedx
Q Q
is bounded on H x H since there exists a constant M > 0 such that

lalf. gll < M|fllz gl

Moreover, a[-, -] is coercive on H if ¢ < 1/cq since

1— ECQ
J1=(1— Vf|*dx > -
)= (= eea) [ 97Pax = (1o ) 1
Therefore by the Lax-Milgram theorem (see [48], Chap.IV), given a non-negative
Y € C3°(R2), there exists a unique s € Hy such that

als, ¢] :/Ql//fpdx, forevery ¢ € C3°(RQ). 3.5.7)

Hence As + (¢/8%)s = — in the weak sense. Moreover, we claim that s is strictly
positive. Suppose otherwise, and set s~ (x) := min{0, s(x)}. We have that s~ € H)
as in Theorem 1.3.8, and also note that (3.5.7) is valid for all ¢ € H, by continuity.
Hence

0<als ,s |=als,s]|= / Ys dx < 0.
Q

The claim is therefore verified and (3.5.4) has been shown to imply the existence of
a strong barrier on 2.

Conversely, suppose there exists a strong barrier s on €2, and let @ be a relatively
compact open subset of Q. Then —A — /8% defines a self-adjoint operator in Hy(w)
whose spectrum is discrete and bounded below. Denote its first eigenvalue by A
and the corresponding eigenfunction by u,. Then

T := —A—Ao—s/Szzo.
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The form domain Q of T, is the domain of its square root T2 and if u € Q, then
|u| € Q and

17l |> = / (IV]ull” = Ao + &/8]ul’) dx

< / (IVal> = (Ao + &/82uf?) dx
w
= IT"2ul?.
It follows from [42], Theorem 1.3.2 thatif ¢ € Q and ¢ > 0,

o (Aluol + [Ao + &/8]uol) pdx
= — (1l 7'7%)

> (%Tuo,(p) =0.
Suppose that A is negative. Then
0= [ {8l + Lo+ (e/8Mlal) s
@
= / {As+[Ao + (8/82)]s} lupldx < AO/ slupldx < 0

which is a contradiction. It follows that, for all C5°(£2),

- / (AY)vdx—¢ / 52y %dx = 0,
Q Q

which is Hardy’s inequality (3.5.4) with cq = 1/, since ¢ is independentof w. 0O

It is proved in [7], Lemma 3 and Theorem 1, that if » > 3 and there is a constant
¢ > O such that, forall x € Q2 and r > 0,

c|Q°NB(x,r)| > cr 2, (3.5.8)

then a strong barrier exists on 2. When n > 3, the condition (3.5.8) is equivalent
to 2 being uniformly A-regular; this property is defined for all » > 2 and is that
there is a constant &; € (0, 1) such that, for all x € dQ2 and r > 0, the harmonic
measure wy , of 0B(X, r) N Q2 in & N B(X, r) satisfies wy, < 1 —&; on dB(x, r/2).
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If n = 2, the following three properties are proved to be equivalent in [7],
Theorem 2:

(i) €2 is uniformly A-regular,
(ii) there is a strong barrier for €2,
(iii) Hardy’s inequality (3.5.4) holds.

We refer to [7] for the terminology and details.

3.5.2 Planar Simply Connected Domains

The best possible constant for weakly mean convex domains was determined in
[107], Theorem 1.2; see Corollary 3.6.14 below. However, in general, for non-
convex domains (and ones which are not weakly mean convex), the best possible
constant cg in (3.5.4) is not known. Some specific examples of such domains were
considered in [44] (see also Tidblom [145]). For example, for @ = R? \ RT, with
Rt = [0,00), it was found that cq = 4.86902.... From the many important
contributions to the study of Hardy inequalities in [7], the one of special concern to
us in this section is Ancona’s application of Koebe’s one-quarter theorem to prove
that for a simply connected domain in the plane, the constant cg in (3.5.4)is no
greater than 16. The proof of this has three ingredients:

The Riemann mapping theorem. If U is a non-empty simply connected open subset
of the complex plane C which is not all of C, then there exists a conformal (bijective
analytic) map f from U onto the open unit disk D = {z € C : |z| < 1}; this is known
as a Riemann map. A corollary of the theorem is that any two simply connected open
subsets of the Riemann sphere which both lack at least two points of the sphere can
be conformally mapped into each other.

Koebe’s 1/4 theorem. Let D := {z € C : |z| < 1}, the open unit disc in C, and let
f : D — C be a Riemann map. Then the image f(D) in C contains the disc centre
£(0) and radius |f’(0)|/4.

Conformal invariance of the Dirichlet integral [, |[Vu(x)|>dx. To see this, let f :
Q — Q' be conformal, and sety = f(x),y = (y1,y2) and X = (x1,x2); R? and C
are identified by z = x; + ix,. Then, with f’ denoting the complex derivative,

0(y1,y2) 2
det(a(XI’xz))'dx = | (x)|“dx,

dy =

and

t
= [ 2]

3(X1,X2)
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implying that
2 2 2
|Vxu|® = [Vyul*|f' ®)]".

Consequently,

/ Vo f) ()P dx = / IVyuy) [ dy.
Q Q/

which confirms the asserted invariance.
To proceed, we need the following consequence of the Koebe theorem.

Lemma 3.5.3 Let @ C C, Q # C be a simply connected domain, and let C1 :=
{z =x+iy € C:y> 0}. Then for any conformal mapping f : C;+ — 2, Koebe’s
theorem implies that

5 (f(2)) > ’-z‘[f’(z)|, z=x+iy. (3.5.9)

Proof We follow the proof in [98], Theorem 3.2. For arbitrary z € C., define

W+ Z
1—w

3

8(W) = gu(w) =1 (h(W)), h(w) =

where w € D. For each fixed z € C the function 2 maps D onto C, and £(0) =
z, g(0) = f(z). Furthermore

§ = TS ).

so that g’(0) = 27f’(z). Koebe’s theorem now implies that

5@) = 5(50) = ¢ O] = 32/ @)

as required. O
We are now able to prove Ancona’s result:

Theorem 3.5.4 Let @ C R?, Q # R? be a simply connected domain. Then the
Hardy inequality (3.5.4) holds with cq < 16.

Proof The Hardy inequality on (0, co) clearly implies that

2
/ @dxdy < 4/ |Vul’dx, u e CP(Cy), (3.5.10)
Ct X Ct
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where we have identified C and the upper-half plane withz = x+iy. Letf : C; —
2 be the conformal map in Lemma 3.5.3. Then, since canonical maps preserve the
Dirichlet integral, we have from (3.5.10),

/|Vu(x)|2dx=/ |V (uof) |dz
Q Cq

L[ wop)P

Z/C+ —x2 dz

o wepP
= /c+ rarre Al

1 @I
= 16 L S @P

v

|f'(2)|dz

on using (3.5.9). As f/(z) is the complex derivative, the substitution w = f(z), with
W = u + iv, gives

_ d(u, v) 2
dw = 'det(a(x’y))'dz = |f'(z)|"dz,

and the theorem follows. O

In view of Theorem 3.5.4 and the fact that for convex planar domains €2 the
inequality (3.5.4) holds with cq = 4, it is natural to ask if we can get a value of
cq lying between 4 and 16, for simply connected planar domains with some degree
of non-convexity which can be quantified. This question was posed by Laptev and
Sobolev in [98]. They introduced two possible “measures” of non-convexity and
obtained extensions of Koebe’s theorem which led to a positive answer to their
question.

We shall briefly describe one of the results in [98], and encourage the reader to
consult the paper for further details. For any simply connected domain Q C C,
Q # C, let us denote by A(S2) the class of all conformal maps f from €2 onto the
open unit disk D. We denote by Kj, 6 € [0, ], the open sector

Ko ={zeC: |argz| < 0}.

So, Ky is symmetric with respect to the real axis and with the angle 26 at the
vertex. We also assume that for any non-zero complex number z € C, the argument
argz € (—m,m]. The domains 2 to be considered are assumed to satisfy the
following condition:

Condition 3.5.1 There exists a number 0 € [0, | such that for each w € Q¢ one
canfinda ¢ = ¢, € (—m, | such that

Qe Ky (Wv ¢w),
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where Kg(w, ¢,,) is the transformation of Kg through rotation by angle ¢,, € (—m, ]
and translation by w, i.e. Kg(w, ¢,,) = e® Ky + w.

This condition means that the domain €2 satisfies an exterior cone condition with
infinite cone. Since the cone is infinite, Condition 3.5.1 is equivalent to itself if stated
for the boundary points w € 92 only. If the Condition 3.5.1 is satisfied for some 6,
then automatically 8 > /2 and the equality & = 7/2 holds for convex domains.

For domains satisfying Condition 3.5.1, we set

T

re(2) = 10

(3.5.11)
In [98] it was shown that for domains with the Condition 3.5.1 and any f € A(2),

Koebe’s theorem holds with r = rg(€2). This implies, by the same argument as in

Ancona’s paper [7], the following stronger version of the Hardy inequality (3.5.4).

Theorem 3.5.5 Suppose that the domain Q@ C R? Q # R? satisfies Condi-
tion 3.5.1 with some 0 € [n/2,m]. Then, for any ¥ € C3°(R), the Hardy
inequality (3.5.4) holds with

cq = 1/r2(Q).
Remark 3.5.6 The constant cg in Theorem 3.5.5 runs from 16 to 4 when 6 varies
from 7 to 7r/2. For the domain Q = Kj, the theorem does not give the best known

result, for in [44], it is shown that ¢, remains equal to 4 for the range 6 € [0, 6],
where 6y &~ 2.428, which is considerably greater than /2.

3.6 Extensions of Hardy’s Inequality

3.6.1 Inequalities of Brezis and Marcus Type in L*(2)

A considerable amount of interest was generated by the paper of Brezis and
Marcus [30] in which the inequality in Theorem 3.3.4 for a convex domain with
p = 2 is improved by the addition of a positive term to the right-hand side. To be
explicit, it is proved in [30] that, for every smooth bounded domain 2 C R", there
exists A € R such that

1
/ |Vu|2dx——/ |u/8|2dxz)L/ lu?dx, u e H}(Q).
Q 4 Jg Q

The largest such constant A is precisely

A¥(Q):= inf Jo IVul’dx — 5 Jg lu/8Pdx
ueH) () Jo lul?dx
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and this infimum is shown not to be achieved. There are smooth bounded domains
for which A*(2) < 0, but for convex domains with a Cz-boundary, it is proved that

A*(Q) > (3.6.1)

4 diam?(Q)

Thus, for D(2) := diam(£2) we have that

1 1
2 2 2 1
/Q|Vu| ax — Z/Q lu/8|dx > D) /Q |u|“dx, ue Hy(R).
In [30] the question was posed as to whether the diameter in (3.6.1) could be
replaced by the volume of 2, i.e., whether

A¥(Q) > a(vol(R)) /", (3.6.2)

for some universal constant @ > 0. This was answered (in the affirmative) in [78]
using the mean distance function (3.3.1). We follow the approach in [56] which
used much of the analysis from [78]. However, in [56] different one-dimensional
inequalities (given in Lemmas 3.6.1 and 3.6.2 below) produce an improved constant
o.

Lemma 3.6.1 Let u € C(0,2b), p(r) := min{t,2b — 1}, and let f € C'(0,b] be
monotonic on [0, b]. Then forp > 1,

? f(p(0) —f )

A Wlu’(t) |Pdt. (3.6.3)

2b
| I (e lu(®)"dr < p”

Proof First let u := vy,,,, the restriction to (0, b] of some v € C}(0,2b). For any
constant ¢

— JJIF@) — ' lu(@)Pdt = ~[f (1) — cJlu(r)l?
+ [IF@) — B Tu@ P12 [lu(r) P dr.

b
0

By choosing ¢ = f(b), we have that

— [V F Olu@)lrde = p [LIFE) — FB)]u(@) P> Re[u()u (1)]dr. (3.6.4)

Similarly, foru = vy,,,,, v € Cl(0,2b), we have

— [ £/ (2b — ) |u(s) P ds

= p [21(2b — 5) — F (b)) u(s) " ~*Re[u(s) (5)]ds.
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Therefore, since f is monotonic, for any u € C;(0,2b)

AP () |u(o) Pt
=p [y IF(p(®) — f(B)]|u(®) P~*Re[u(u (1))dt
<P Jy 1 (P)IF )~ HEBLGL o o)

p=t 1
<o Iy Vo lluopdr] [ f; Yoot o) i)

on applying Holder’s inequality. Inequality (3.6.3) now follows. O
Lemma 3.6.2 Define ju() := 2b — p(1). For all u € C}(0, 2b)
2b 1 2b 2p(l)
"(0)*dt > ~ / 21 1)|dt. 3.6.5
| wpar= 5 [0 1+ ()] o (365)

Proof On setting f(t) = 1/t and p = 2 in (3.6.3), we get
2b 2b p()
/ o) u(r)|?dr < 4/ 1— | o (¢)|dt (3.6.6)
0 0

for u € C}(0,2b). We claim that the substitution v(f) = [1 — (%)]u(t) in (3.6.6)
gives

/02b v (5)2dr > %/O% p(t)—2[1 - (%)]_zwmﬁm. (3.6.7)

For

W' @) = b2 u@®)? = b~ p (O 1 = (B2) ][]V
+[ (P(f))] |u’(t)|2

which implies that
J2 W @ Rde = [ [1 = (22) ] (1) 2 (3.6.8)

since

2b b 2b
5 | wod = [T Seyan— [ -2 ey



102 3 Hardy’s Inequality on Domains

Therefore, (3.6.7) follows from (3.6.6). Since

a-02=p+- 2L p=nt 2y,
w—p

the proof is complete. O

The next theorem corresponds to Theorem 1 in [56] in which weights 6(x)° were
also included.

Theorem 3.6.3 Forany u € C}(2),

|u(x)|2 3 |u(x)|2
\v4 X + — — -0.
/ | u(X)i dx e )2 2K(n)/Q | x|% dx, 3.6.9)

where K(n) :=n [J”T_‘]z/n, Sn—1 := [S"71, and
={yeQ:x+ty—x) e, Vi€ [0,1]};

i.e., Qy is the set of all y € 2 that can be “seen” from x € Q.
If Q is convex, Qx = Q and, for any u € C)(S2),

IM(X)I2 3K( ) >
/\vu(x)| dx_Z e 2|9| /| (x)|2dx. (3.6.10)

Proof Foreachx € Q and v € S"~! define

7,(x) ;= min{s > 0 : x + sv & Q},
P (x) := min{z,(x), 7—,(X)},

Wy (x) 1= max{t,(x), 7—, (X)},
Dy(x) := 1,(x) + 17— (X).

We recall that the mean distance function 6y, is given by
5;12()() = n/ pv_z(x)dw(v), (3.6.11)
sn—1

and that for a convex €2, 6y/(x) < §(x) by (3.3.9).
Let d,u, v € S"!, denote the derivative of u in the direction of v, i.e., d,u =
v - (Vu). It follows from Lemma 3.6.2 that

2 1 i 20y (X) 112 )
/Q|avu| dx > Z/qu(x) (1+ [MU(X) 1) lu(x)|dx. (3.6.12)
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The last integrand satisfies

-2 200(®) 1\2 _ -2 4 4
1+ [2F]) =@+ omom T oer

. K y (3.6.13)
2,7+ oo T rero e

Since
/ rvz x)dw(v) = / tEU x)dw(v),
sn—1 sn—1
we have from the Cauchy-Schwarz inequality,

fSn—l 7, (X) -y (X)dw(v) < fSu—l tv(X)zda)(U)
< [forr 1 ®)"deo ()"

2/n
= [ 12a]

Moreover,
1< [ e @le) [ e e o),
Sn— sn—
and from this we derive

S ENCSLNES) IO g ru(x)r7u<x>dw(v)]“
—2/n
= [1ed]

Sn—1

For the third term in inequality (3.6.13)
Jorm1 (1 (®)? + 7=, (X)) dw(v) = 2 [o—i T(X)*dw(v)

and this gives

2
n

fgu—l(f\/(x)z + t—v(x)z)_ldw(v) = %[ = |Qx|]

Sn—1

All in all, we have that

EN(N)

S 2oL+ G2E) ] do(v) = 1620 + 6[ 25 1]

(3.6.14)
= {810 + 6K (n)| /"
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Upon combining this fact with (3.6.12) we have

b o 1m0 + 6K ()| ]2/} |u(x)|Pdx
<1 fo fymr [0u()|*deo(v)dx (3.6.15)
=1 [ fuur | cOS(v, Vu(x))Pdor ()| Vau(x)| dx.

On noting that

/ | cos(v, Vu(x))|*dw(v) = / | cos(v, e)|>dw(v)
sn—1 sn—1

for any fixed unit vector e in R" and

1
/ | cos(v, e)2dw(v) = —,
sn—1 n

the inequality (3.6.9) is seen to follow.
The inequality for 2 convex follows from the fact that Qy = Q2 for any x € Q
and (3.3.9). ]

Filippas et al. [60] estimate A*(£2) in (3.6.1) in terms of the “interior diameter”
Din(2) 1= 2 supyeq 8(x). Clearly D;,,(2) < D(2) and a significant fact is that
need not be bounded, nor have a finite volume, in order for D;,,(€2) to be finite. They
prove for €2 convex that

3
A5(Q) > I (3.6.16)

In Sect.3.4 below we shall present a sharp result obtained by Avkhadiev and
Wirths [12] by a method reminiscent of those above, in that it is based on one-
dimensional inequalities, but not using the mean distance function.

Following Theorem 3.1 in [60], we give here an L?>-Hardy inequality in the form
introduced in [17]; since |V3| = 1 the standard form of the inequality is immediate.
We make use of the fact, proved in Theorem 2.3.2, that in a convex domain, —§(x)
is a convex function of x and —A§(x) is a nonnegative Radon measure. The proof
remains valid if the requirement that €2 be convex is replaced by the assumption
that —Ad > 0 in the distributional sense. For n = 2 this is equivalent to convexity,
but is a weaker condition than convexity for n > 3; note the result from [107] in
Proposition 2.5.4, that if 2 has C? boundary, —A§(x) > 0 is equivalent to the mean
curvature of the boundary of 2 being non-positive.

Theorem 3.6.4 Let 2 C R” be a convex domain. Then for any a > —2 and all
u € H)(Q),

/ |v5-vu|2dx—l %dx> L/ 8%|ul?dx (3.6.17)
Q 4Jg 82 T Din()4F2 Jq o
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with

2% +2)%, a € (=2,-1),
Cy =
2°Qa + 3), a € [—1,0).

Proof Foru € C3°(2) and v(x) :=§ (x)_%u(x), it follows that

/5“|u|2dx:/8°‘+1|v|2dx, (3.6.18)
Q Q
and since |V§| =1 a.e.,
2 |“|2 2 2
|V8 Vu |dx—Z —d = 8|V8 V| dx+ ( Ad)|v|dx.
Q
(3.6.19)

Then on integration by parts,

Jo 8 olPdx = s [ (V82 - VE)|u[Pdx

— L [, 84 2div (Ju[2V8)dx

—5Re [ 8“T2V(VE - Vu)dx + 15 [o 8°TH(—AS)|v|%dx.

Using the last identity we have for R;,; := %Dm,(Q)

(o +2) [, 6T oPdx < 2 (f,, 8+ | 2dx)? ([, 63| V6 - Vuldx)?
+REF2 [ (—A8)|v|dx
< [, 8 [oPdx + L [, 693| VS - Vu|2dx
+R2F? [ (—A8)|v|dx

<e [y 8T v|2dx

+RAF (L [ 81V - VuPdx + [ (—A8)|v[*dx)

nt
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since —A§ > 0. Consequently,

1
(a+2—8)/ set ) 2dx < R&F? (g/ 8|v3-vu|2dx+/(—A8)|v|2dx)
Q Q Q
(3.6.20)

Choose £ = min{3, “I2}. Then, by (3.6.18) and (3.6.19),

el +2—¢g) [ 8%ulPdx < RG> ([ 8IVS - VoPdx + L [ (—~A8)|v|dx)

int

= (2t ®@) " (195 - Vupax — § J, 4 ax)

and (3.6.17) follows by making the appropriate choice of ¢. O

Another class of inequalities which extend the Hardy inequality is that of the
so-called Hardy-Sobolev-Maz’ya inequalities. An example, which we state in the
case p = 2 only, is one established by S. Filippas, V. Maz’ya, and A. Tertikas (for
2 < p < n)in [61], that if © has a finite interior diameter, D;,,(2), and —A§ > 0
then

2 1 |u(x) |2 2 2 =2
/ |Vu(x)|’dx > — —-dx + Cq (/ |u(x) |2/ = )dx) . (3.6.21)
Q 4 Jo (%) Q

forn > 3and all u € C§°(£2). Inequalities of this type will be the subject of Chap. 4.

3.6.2 Analogous Results in 17 (2)

In the proof of Lemma 3.6.2 a key substitution v(r) = [l — (%)]u(z‘) was made
that led to the Hardy inequality in Theorem 3.6.3 when p = 2. In the absence of
such a substitution we treat the case for other values of p > 1 using the methods of
Tidblom, cf. Theorems 1.1, 2.1, in [144].

Lemma 3.6.5 Letu € C}(0,2b), p € (1,00). Then

12 @ pde > [1’ 1] 240ty + (p — Db} u(r)|Pd. (3.6.22)

P

Proof By (3.6.4), for a monotonic function f and a positive function g,

S Ollu@Pde < [ plf(e) — FB)|lu(@)P~! |u/(,)|d, »
—1/p
<p [ sowora]” [fo (Loggor) ™ )|u(t)|pdt] ,
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Consequently,
p
(o 1 @l
-1 r=t
(3 ()™ e

From Young’s inequality for ¢ = p/(p — 1), we have that

b
» /0 g0l (0Pde >

0 AP PP .
AB1 < — + — — AP/B"7 > pA—(p—1)B,
p q

1/p—1
which implies, for A = [” |f'(0)||u(t)|Pdt and B = [* (W) " o,
that

P’ Jo gl (0)rdr
= o= oo (o) opa, 62
We now choose f(f) = t”*! and g(r) = (p — 1)~?~D. Then
oy \ /=D B Sp—1\PT T
(If()g(.zt‘)(b)\ ) —(p—1) ,,[(1 — 2y 1)”] ,
Consequently, for ¢ € (0, b),
/ o\ /=D
PP O] = (p = 1) (L0 |
=o-nfer o[- T
(3.6.24)

=(p—1)t_”{1+(p—1)(1—[1—(£)p l]ﬁ)}
= (=D {T+ (-1 ()
>@-D{r"+@-1D(5)},

since

NP5 t\r—1
-G =G
b - b
As in the proof of Lemma 3.6.1, we let u := vyy for v € C(l)(O,Zb), and
use (3.6.24) in (3.6.23) to conclude that

Sy @rde= [21] 7 @ + (p = Db} (o par.

A similar analysis on [b, 2b) completes the proof. O
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Using Lemma 3.6.5 we are able to prove Theorem 2.1 in [144]and, in the case
of p = 2, Theorems 3.1 and 3.2, of [78]. Note that inequality (3.6.25) for the case
p = 2 is weaker than that given by (3.6.9). We shall use the terminology from the
proof of Theorem 3.6.3.

Theorem 3.6.6 Letp € (1,00), and

Sn

Kop) = -0 [ 180,

n
where
+1 n
L&) T3
n+ ’
Vr T(5FE)

thus B(n,2) = 1/n and K(n,2) = K(n). Then for all u € CL(Q),

B(n,p) :=

p =1y Ju(x) | lu(x)[”
[ IVux)Pdx > ( - ) {fg Feldx + Kn.p) [ m—dx}. (3.6.25)
If Q is convex,
—1\* u 4 n,
[ IVu)Pdx > (1’71) { o W ax + Ko |u(x)|1’dx}. (3.6.26)

Proof From Lemma 3.6.5 we have that for any v € S"! and u € C}(),

Jo 1duuPdx = [E2] [o oy (07 + S22 u(x) Pdx. (3.6.27)

The next step is to integrate in (3.6.27) over S"~! with respect to dw(v) and
substitute the identity

/IM@WMFWMW/IM&WMWWO
g1 =1

= |Vu(x)|"/ | cos(v, e)[Pdw(v)
sn—1
= B(n,p)|Vu(x)|?, (3.6.28)

where e is any unit vector in R”. In order to evaluate the integral of (2/D, (x))” with
respect to dw(v), we proceed as in [144]. Since f(f) = # is convex for p > 1, we
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have by Jensen’s inequality,

I'= (/Sn_l (D x) do()) /S . 2 )
= ([ o) @em)( [, (P52

and hence

Jor (535) do®) = ((fors 22dow) (3.6.29)

But,

Jormt 22 dw(w) = 1 [ (1,(x) + 7oy (x))dx

= e Ty (X)dx
Jorm1 70 (3.6.30)

S

=< [Jom 7 (x)dx]

1
— "lel n
= (52)
Therefore, the conclusion follows on using (3.6.30) in (3.6.29) and (3.6.28)
in (3.6.27). O

3.6.3 Sharp Results of Avkhadiev and Wirths

We now present the sharp inequality of Avkhadiev and Wirths [12] for convex
domains Q with finite inradius 8y := supycg §(X). Let Jy and J; denote the Bessel
functions of order 0 and 1, respectively, with A, representing the first zero in (0, co)
of the function

g(x) == Jo(x) — 2xJ1(x) = Jo(x) + 2xJ5(x).

The next proposition is proved in [12].

Proposition 3.6.7 Let f be a real absolutely continuous function in [0, 1] such that
£(0) = 0andf' € L?[0,1]. If f(x) # O then

1 1 2 1
/O £ (x)%dx > % /0 ! (xxz) dx + A3 /0 f(x)2dx. (3.6.31)
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Proof Let
Jo@) := VxJo(Aox). (3.6.32)
Then,
i) = E40

2/x
Since J,, is a solution of Bessel’s differential equation
2y +xy + (2 =n?)y =0,

then a calculation shows that f;(x) is a solution of the differential equation

1
y”+(ﬁ +lz)y=0.

Also, fj(1) = 0, and since Ay is the first zero of g in (0, 00), fo(x) > 0 and f;j(x) > 0
for x € (0, 1).
Since f; ¢ L*[0, 1], then fy # f and

/(¢ 2
0< [y (£ —29r(x)) ax
/ ) / X
= i gy (5 + (48) )i+ o B3P
= [0/ (2dx — [y (3 + 23) ) dx + lim, g1 D82 (0),

In order to show that the limit in the last expression is zero, note that

o) g(Aox)

- ’ S Os 1 k]
fo(x)  2xJo(Aox) 0.1
and f(x)2/x — 0 as x — 07 since
X 2 X
f@)? = ( / lf/(t)ldt) <x / If' (¢)*dt, (3.6.33)
0 0
which completes the proof. O

The sharpness of A in (3.6.31) will now be examined.
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Proposition 3.6.8 For each gy > 0, there exists a real function f € Cé (0,2) such
that f'(1) = 0 and

1 1 1f(x)2 1
/ f()%dx < ~ / dx 4+ (A2 + e0) / £(x)2dx. (3.6.34)
0 4Jo ** 0
Proof For f; defined in (3.6.32) and ¢ > 0, let

xify(x), xe€0,1],

fe(x) = {fs(z_x), x € (1,2].

We shall prove that, for sufficiently small ¢, f, satisfies (3.6.34); this will suffice by
standard density arguments, since f. € H}(0,2). Now for x € [0, 1],

2
FI00? = T2 + 2T )+ Xh 0

implying that
[0 @)% dx = 222 [1=2f (02dx + £J0(R0)* + [y 2 (x)2dx

by the use of (3.6.33). On the other hand, it follows from the identity

—fy = + Ao

e

that

o Gl + 2Dfe(0)2dx = — [ x*f fo(x)dx
= [} X[ 0Pdx + 50(ho)?

) pl
——8(82 D Jo X £y (x)2dx.

Consequently, for all € sufficiently small,

Jo FL02dx — [ (3L + A (0)2dx — o fi) fo(x)2dx

=7 fol X2y (x)2dx — fol Xfo(x)2dx < 0

completing the proof. O
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Proposition 3.6.9 Let f be a real function in Hé (a,b)and o := (b—a)/2 € (0, 0).
Iff'(x) # 0, then

b b 2 2 b
/ x> + f® dx + % / F()2dx, (3.6.35)

4 J, (min{x —a,b— x})?

where the constants 41'1 and A}/a? are sharp.

Proof Ford = (a + b)/2, (3.6.35) is implied by the inequalities

d , 1 d f(x)z AZ d
/a f(x)%dx > 3 / a)zdx+ a—g / £(x)%dx

(x—
and
b 1 b f(x)2 12 b
/N2 0 2
/df(x) dx>Z ; (b—x)zdx+o7[1f(x) dx,

each of which, by the respective change of variable x —a = f and b — x = ¢, being
equivalent to the inequality

o o 2 2 o
/O £ (x)*dx > % /0 f%)dwr i—g /0 f(0)*dt (3.6.36)

for f € HY(0,2a), f # 0. However, the change of variable 1 = ax in (3.6.36)
reduces it to (3.6.31). Proposition 3.6.9 therefore follows from Proposition 3.6.7
and Proposition 3.6.8. O

The one-dimensional results above will now be used to produce results for higher
dimensional cases. An essential ingredient in this analysis is an approximation result
of Hadwiger [70] for convex domains. In particular, for a convex domain 2 C R”
and any compact set K C €2, there exists a convex n-dimensional polytope Q such
that K C int Q@ C Q; thus, for any f € C3°(S2), there is a convex n-dimensional
polytope Q such that

suppf Cint Q C Q. (3.6.37)

In this manner, the proof of certain n-dimensional Hardy inequalities is reduced to
the application of one-dimensional inequalities. We shall give the L?(Q2) case of
[10], Theorem 11; Avkhadiev considers the general L/(2),p > 1, case and also
includes weights of the form §(x)°. Results with weights of this type can be used to
study the spectral properties of certain elliptic differential operators which have a
degeneracy at the boundary of 2 measured in terms of §(x), e.g., see [106], Sect. 3.
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Theorem 3.6.10 Let Q C R”" be an open, convex set with finite inradius 8y :=

sup 6(x). If; for a € (0, 8o] and nonnegative constants b, c,
XEQ

o 2 2 o
/ f(0)*dt > b* &dt—k / f@®?dt,  feH)0,2a), (3.6.38)
0 0 5(2) 0

then

IFx)|?
o 0(x)?

/ |VF(x))|>dx > b* dt+c—z / Fx)|%dx,  feH)RQ). (3.6.39)
Q 5 Ja

Proof Choose f € Ci°(S2) and let Q be an n-dimensional polytope satisfy-
ing (3.6.37). It will suffice to show that (3.6.39) holds on Q. Let Sy, S5, . .. S,, denote
the (n — 1)-dimensional faces of Q. The polytope Q can be decomposed as follows:

Q=UL,Q.  intQNQ=0forj+#k (3.6.40)

in which each Q; is convex and compact. To see this, let n;j(x’) be the inward unit
normal to S; at X’ € S; and define

o;(x’) := max{t € (0,00) : B(X' + m;(x'),7) C 0}
in which B(x, t) is the ball with centre x and radius ¢. It follows that
Q=S U{x=x+10(x):1€ 0,0(x)],x" €5}

is a closed, n-dimensional, convex set, and {Qj}]’.”=l satisfies (3.6.40). By the
convexity of each Q; we have that U’ | 0Q; has measure zero, implying the important

feature that for any g € L'(Q)

m m aj(x’)
/Qg(x)dx = ; /Q,- g(x)dx = ; /S_,- /0 g(x" + m;(x"))drdx’

by Fubuni’s theorem. On applying this to (3.6.38) and recalling Theorem 1.3.8, we
have that

Jo (5(x)2 + 52) If (x)|dx
=251 o, (5(x)2 + 52) If (x)|*dx
Y- lfS, e (,z %;)) If (X' + m;(x'))|*dtdx’
Sy S IV + my(x)) Paax’
= fQ |Vf(x)|%dx,
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where we have used the facts that §(x) = ¢ and §(x) < o;(x') < & for x =
x' 4+ m;(x’) € Q), as well as

af
E|x=x’+mj(x’) = Vf : nj(x/)'

That completes the proof. O
We now examine the sharpness of the inequality for n > 1.

Proposition 3.6.11 Ler Q, := (0,2) x R"™! forn > 2 and Q, := (0, 2). For any
g0 > O there exists f, € Co(S2,) such that

2 1 Ifo (%)
/W|Vf;l| dx < Z o, 8(X)2

dx + (A3 + &o) / Ifu (%) |2dx. (3.6.41)
QV!

Proof In order to prove the proposition by mathematical induction on the dimension

n we note that the case for n = 1 is given by Proposition 3.6.8. Suppose that (3.6.41)

holds for some dimension n > 1 and some function f, € C}(2,). Then we must

show that it holds for dimension n + 1 and some f;,+ € C(l)(Q,H_l). To this end we

define i1 1= fut1. € Cy(2u41), € > 0, by

For1e(X) = fu(X)ge (Xnt1), X' €Qu xp41 €ER

where
1, te[0,1/¢],
(1) = (1—=@—=1/e)% te (/e 1+ 1/e),
g =190, refl+1/e 00)
g:(—1), t<0.
Define

BT
A, :=/ V2= ) l’;((;‘))l

dx — (A% + &9) / [ﬁ1(x)|2dx
Q,

and g(?) := (1 — 2)2. Note that
8(x) = dist(x’, 0€2,,), X = (X, Xy41) € Qur1.

Calculations show that

2
An+l =-A,+B,—GC,
&
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in which
1
By =2 / / (94,0 Pe (0 + fux'y2e (¢ Jdxdr
o Ja,

and

1 1 ﬁl(x/)z
_ 2 - P ! 2 AV
cn_zfo g(t)dtl:4/9n 5 dx+(ko+so)/9nfn(x)dx:|.

Since B, and C, are not dependentupon € and A, < 0 (by the induction assumption),
itis clear that A, +; < 0 for all ¢ sufficiently near zero and positive. That completes
the proof of the induction step and the proposition is proved. O

In summary, we have proved the following result which is Theorem 1 in [12]:

Theorem 3.6.12 Let Q C R”" be convex. If the inradius &y < oo, then

2 2
/ Vie)Pax > © [ L& dx+k—;) / f)Pdx,  feHNQ) (3.642)
Q 55 Ja

4 Jq 8(x)?
where Ay = 0.940. .. is the first zero in (0, c0) of
Jo(t) — 2tJ1(2).

Inequality (3.6.42) is sharp forn > 1.

3.7 Hardy Inequalities and Curvature

3.7.1 General Inequalities

Most of the inequalities discussed to this point have required that the domain €2 be
convex. In order to broaden our applications beyond that requirement we will use
the connection between the curvature of the boundary €2 and the distance function
8(x) as discussed in Chap. 2.

We first establish the following general inequality which will serve as a guide to
needed improvements; it also extends Theorem 3.4.3.

Proposition 3.7.1 Let Q@ C R",n > 2, be a domain having a ridge R(2) and a
sufficiently smooth boundary for Green’s formula to hold. Let §(x) = dist(x, R"\ Q).
Then forall f € C3°(2\ R(R2)) andp € (1, 00),

_ p
/QWS-VfV’dx > (”Tl) /Q%l—gsTAf} %dx. 3.7.1)
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Proof For any vector field V we have the identity
/ (divV)|f]Pdx = —p [Re / (V- Vf)[f|”_2fdx} (3.7.2)
Q Q

forall f € C°(2 \ R(£2)). Choose
vV =—pVs/srt.

Then, for any ¢ > 0,
1/p IFIP 1-1/p
/ divV|f|Pdx < p? ( / |V5-Vf|de) ( / —dx)
Q Q Q 8P
-1y [ 1P
Eps‘"/ |V§ - Vf|Pdx + p(p — 1)/ >/ “_dx
Q Q o

which gives, since divV = (p — 1)p§™” — p§' P A§ forx € Q \ R(Q),

IF1”

/ |V§ - VFPdx > 5—1’/ [(p —1)—(p—1)eP/PD_ SAS] 5 dx.
Q Q
The proof of (3.7.1) is completed on choosing & = [p/(p — 1)]%1) O

The requirement that (3.7.1) only applies to functions f that are supported away
from the ridge R(€2) can be obviated. Working with examples like those below we
are led to some additional requirements ((i) and (ii) below) described in Theorem 2
of [20] and the next Proposition. Subsequently, it is shown that those requirements
are met under quite general assumptions.

Proposition 3.7.2 Let Q C R",n > 2, satisfy the hypothesis of Proposition 3.7.1
and furthermore, assume that

(i) X = R(Q) has Lebesgue measure zero and is the intersection of a decreasing
family of open neighborhoods {S, : ¢ > 0} with smooth boundaries and a unit
inward normal 1,(X), X € 0S,,

(ii) for all sufficiently small &

(V8- ne)(x) = 0, X € 0S;; (3.7.3)

and

(iii)

’%1 > [BAS](X), X €G(Q) =2\ R(Q). (3.7.4)
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Then, for all f € C3°(2) andp € (1,00),

_ p
/Q|v5-Vf|de > (’”Tl) /9{1—%} %dx. (3.1.5)

Proof We proceed as in the proof of Proposition 3.7.1, but now with f € C5°(£2),
and account for the contribution of the boundary of S.. For any vector field V, we
have the identity

/ (div)|fPdx = / (V-ns)lfl”dx—p[Re / V- VAIFPF dx}
Q\s. 3s. Q\s. 376

for all f € C§°(£2). Choose
V =—pVs/§!,

which implies that V - 5, < 0 according to (3.7.3). Then, for any a > 0,

1/p IFIP 1=1/p
/ (divV)|f]Pdx < p? ( / [V§ - Vf|de) ( dx)
a\s. a\s. a\s, 8

< pd’ / |V§ - VfPdx + p(p — 1)a?/®~D
Q\S;

4
Ui
a\s, 0”

which gives, since divV = (p — 1)p§™ — p§! 7P A§ for x € G(R),

IF

a

/ |V§ - Vf|Pdx > a—P/ [p—1) — (p—1)a ™) —§AS] *—dx.
Q\Se

Ss
=D
On choosinga = [p/(p —1)] » we obtain

Jo IV8 ViV = [\, 195 Vyras
— 4
> (”Tl) Jo [1 - [%ISAS] lg—,‘,)(msgdx.

The proof concludes on using (3.7.4) and the monotone convergence theorem. O

In Remark 2.2.13, we noted the results from [81, 108] that if 9Q € C*!, the
ridge R(£2) is closed and the cut locus ¥(2) = R(2) = R(R2) is null (i.e., it
has zero n-dimensional Lebesgue measure). We have not been able to prove if this
continues to hold if 9 € C2, nor found any reference to it in the literature, even
in R?; cf., Remark 3.8 in [115]. In what follows, we shall assume that the domains
considered with C? boundaries have, where necessary, null cut locus, rather than
suppose at the outset that they have C*>! boundaries.
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If Q2 is weakly mean convex, we may apply (3.7.4) in (2.5.5) to obtain

Corollary 3.7.3 Let Q C R",n > 2, be a weakly mean convex domain. If (i) and
(ii) of Proposition 3.7.2 hold then, for all f € C5°(2) and p € (1, 00),

Jo IV8 - VflPdx = (P‘) fQ{l——S(x»c(y)} 1 ax

> (52) fo {1 - omy)} Yax, e

wherey € N(X) andk = Y i_, /c,/(l + 8k;). For a weakly mean convex domain,
K< (n—1H(y) < 0.

Proof The first inequality follows from (3.7.5) and (2.5.5). The second inequality
follows from the observation, already made in the proof of Proposition 2.5.4, that «;
is a decreasing function of § irrespective of the signs of the «; and is not greater than
H(y). The remainder of the proof was established in Proposition 2.5.3. O

3.7.2 Examples

As first shown in [20], Proposition 3.7.2 can be applied directly to some nonconvex
domains such as the torus to obtain Hardy inequalities for those classical nonconvex
domains. We present a few of those examples using Corollary 3.7.3, with the more
convenient application of mean curvature as in [107].

We begin with an easy example of a cylinder which is a convex domain with
infinite volume.

Example 3.7.4
Let Q2 be the infinite cylinder Q2 = B(0, r) x R, where B(0, r) is the ball, radius
r and centre the origin in R?. Clearly  is convex and R(S) is the x3-axis. The

distance function is §(x) = r — {/x? + x3,
V8(x) = —(r — 8(x)) ' (x1,x2,0), 1. = —& '(x1,%2,0) on 35,
and A§ = —(r —8)7!, where S, = {x = (x},x3,%3) € Q : X} + x5 < &}

Therefore (3.7.3) and (3.7.4) are seen to be satisfied for all p > 1. Inequality (3.7.5)
follows: for all f € C§°(£2) and p € (1, 00),

p—1Y ps 1P

Any one of the many Hardy inequalities for convex domains could have been
applied to the infinite cylinder described above. That is not the case for the
nonconvex torus in the next example.
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Example 3.7.5
Let © be the ring torus with minor radius r and major radius R > 2r in
Example 2.5.2. The mean curvature satisfies

R—2r

H(y) = %(Kl +K2) <

so that €2 is weakly mean convex if R > 2r and mean convex if R > 2r. Rather
than using the estimate (2.5.5) as in Corollary 3.7.3 we may use (2.4.5) directly in
Proposition 3.7.2 since we know the principal curvatures.

The ridge of the torus is

R(Q) = {x: p(x) = 0},

where p(x) is the distance from the point x in 2 to the centre of the cross-section
and §(x) = r — p(x). Clearly, the ridge is closed with measure zero. Moreover, in
the notation of Proposition 3.7.2,

Se = {x: p(x) < ¢},

and points on the surface of S, are on the level surface p(x) = ¢, so that the unit
inward normal to 9S; is . = —Vp(x)/|Vp(x)| = V3(x). Therefore V§ - Vi, > 0.
We have proved the following corollary to Proposition 3.7.2.

Corollary 3.7.6 Let Q C R? be the interior of a ring torus with minor radius r and
major radius R > 2r. Then the ridge R(S2) is closed and of measure zero. Moreover

A§ <0in Q\ R(R) and

_ P )4
/ |V§ . VfPdx > (”—1) VP
Q p Q 6

— 1\ 1 1 P
+ (p_) / 5 5[;{|—1dx
p ol (r—9) 2+

(3.7.10)

forall f € C§°(R2), where x € Q has coordinates (x1, X2, x3).

As a more accessible alternative to (3.7.10), we can use the second inequality
in (3.7.7) with (3.7.9) to conclude that for a ring torus & C R* with minor ring r
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and major ring R > 2r, we have for all f € C{°(£2),

_ p )4
/ |V§ . VfPdx > (p—l) VP
Q p

Q o
p—1 Pl R _2r Vil
dx. 3.7.11
+( » ) (R—n) Jo o1 T

Our next example is a domain that is not mean convex. In fact, the mean curvature
is everywhere non-negative.

Example 3.7.7
We apply Proposition 3.7.1 to the 1-sheeted hyperboloid

Q= {(x1,x,0) e R :x] + x5 < 1 +x3}. (3.7.12)

This is non-convex and unbounded with infinite volume and infinite interior
diameter D;,,(2). To calculate the principal curvatures, we choose the following
parametric co-ordinates fory € 9€2:

yi(s, 1) = /52 + 1cost,
ya(s, 1) = \/ + Isint,

3(S 1) =
forz € [0,27) and s € (—00, 00). A calculation then gives (see [90], p. 132)

1 1
2P T fAeat

so that the mean curvature

S2
Hy) = ———>0.

2s+1]2

Ify = N(x), x € Q \ R(2), then by Lemma 2.4.2,

1+ 8k; w3i—68 w46

2
AS(R) ==Y = I (3.7.13)
i=1

where w = +/2s% + 1 is the distance of y from the origin, and the ridge is R(R2) =
{(x1, %2, x3) 1 x1 = x2 = 0, x3 € (=00, 00)}.
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To find y = N(x), we first determine the vector normal to 02 at y, namely
i J k

Vs Xy, = —%H cost —%H sint 1
—/s2 + Isint v/s2 4+ 1cost 0

= [-+v/s% + 1cost]i + [—V/s% + 1sint]j + sk.

The inward unit normal vector at y is therefore

n = {[—v/s% + 1cost]i + [—V/s% + 1sint]j + sk}/v/2s% + 1.

The distance from y to the ridge point p(x) of x is given by +/s? + 1/ cos 8, where
cos = (z-n)/|z|, and

z=[—vs2+ lcost]i + [V s + 1sinf]j.

Hence

V2 +1/cosf = 252 +1=w.

Consequently, the near point of x is the point on the boundary of € which is
equidistant from the ridge point p(x) of x and the origin, which shows that §(x) €
(0,w) for x € G(R2). Therefore A§(x) changes sign in 2.

We therefore have from Proposition 3.7.1

Corollary 3.7.8 Let Q C R be the I-sheeted hyperboloid (3.7.12). Then, the mean
curvature of 02 is non-negative, and, for all f € C°(2 \ R(L2)),

p p—1
I IV6 - Vflrdx > (P%l)’ L Wax — (P%l)’ S L ax, (3.7.14)
where & is given in (3.7.13), withw = |y| = §(p(X)), y = N(x) and p(X) the ridge
point of X.

3.7.3 Proposition 3.7.2 and Domains with C* Boundaries

The torus and one-sheeted hyperbola are examples of nontrivial, non-convex
domains for which (i) and (ii) of Proposition 3.7.2 can be verified easily as shown
in [20]. In this section we present methods of Lewis et al. [107] which a priori
allow for elimination of conditions (i) and (ii) to prove the Hardy inequality
given in Proposition 3.7.2. We assume throughout this subsection that  has C?
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boundary and null cut locus X (£2). This implies that the function s defined in (2.2.8)
and (2.2.9) is positive on 9€2.

As well as improving Proposition 3.7.2, we also wish to prove that (2.5.5) holds
on all of €2 in the distributional sense, i.e., for all ¢ € C°(2),¢ > 0,

_ [ (= DH()
/Q Vé(x) - Vo(x)dx > /Q T 30H®) p(x)dx. (3.7.15)

Since ¢ in (3.7.15) has compact support in a ball B(0, R), for all R sufficiently
large, we may assume that there is a bounded domain Qg with supp(¢) C Qg C 2,
having a C? boundary and such that the distance function 8z(x) in Q coincides with
8(x) for all x € supp(¢). That is, we may assume, for the sake of this proof, that 2
is bounded, and hence that the function 5 defined in (2.2.8) is strictly positive.

Lemma 3.7.9 Let 0Q € C? and for every k € C?(0Q) satisfying
0 <k(y) <s(y), yeoiQ,
let
S:={y+k(yn(y) : ye< i}
Then S is a C' hypersurface with
Vé(x) - n’(x) > 0, xes, (3.7.16)
where 0’ (x) denotes the unit outward normal of the boundary of
{y +tk(yn(y) : ye o2, 0 <r<1}.
Proof Forally € 02, we have
B(m(y),s(y)) C 2, and y € dB(m(y), s(y)), (3.7.17)
where m is defined in (2.2.7). For a fixed pointy € 02, we may assume, without
loss of generality, that s(y) = 1. After a translation and rotation, we may assume
thaty = 0 € R” and the boundary in some neighborhood of 0 is given by
X =g(x), X' = (x1,++ ,x-1),
where g is a C? function in some neighborhood of 0’ € R"~! satisfying

g(0) =0, and Vg(0') =0,
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with the Hessian matrix (V2g(0')) being diagonal. The unit inward normal to d<2 at
(x', g(x')) near 0 is given by the graph of

(=Vex). 1)

VI+[Vex)[?

(cf. [68], Appendix 14.6.) The set S is given locally by

n(x) :=

X(x) == (¥, g(x')) + k(x')n(x'),
where k(x') = h(x/, g(x')) is a C? function near 0. We know that k(0') < 5(y) = 1.
Clearly X € C'. Now, we need to show that S has a tangent plane at X(0). To
that end, let

e, =(1,0,---,0),...,e, = (0,---,0,1).

We have, forl <a <n-—1,

T(0) = eq + ks, (00, + k(0) 2 (0)
= [1 —k(0) gy, (0)]ex + Ky, (0)e,.

By (3.7.17) and the fact that s(y) = 1, the unit ball centred at e, lies in {x : x, >
g(x")} near 0. It follows that g, ., (0') < 1. Thus

1 —k(0') gy, (0') > 0. (3.7.18)
Consequently, S has a tangent plane at X(0'). Since 5(y) = 1, we have
o(te,) =, fort € (0, 1),
and therefore
Vi(te,) =e,, 0 <t <1.

Since nS(k(0)e,) is the outward normal to the set, and y(f) := tk(0)e, belongs to
the set for 0 < ¢ < 1, we have

n’(k(0)e,) - VE(k(0)e,) = n’(k(0)e,) - &, = ﬁns(km)en) Y/ (1) = 0.
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Moreover, in view of (3.7.18),
X
span {3_(0 )} = span {e, + aqse,}, for some constants a,,
Xo

which does not contain e,. The inequality (3.7.16) follows. O

We are now able to extend Proposition 2.5.3 from an inequality on G(2) =
Q \ 2(R) to an inequality on the entire domain  if 9Q € C? and |Z ()| = 0.

Theorem 3.7.10 Let Q C R", n > 2, have a C* boundary and null cut locus X (S2).
Then

(n — DH(N(x))

— A§(x) > T SHNR) x e Q, (3.7.19)

in the distributional sense, i.e., for any ¢ € Ci°(R2), ¢ > 0, we have

—(n—1)(H o N)(x)

/Q Vi(x) - Vo(x)dx > /Q T80 (H o N)®) p(x)dx. (3.7.20)

Since |Z(2)] = 0, (H o N)(x) is a well defined L*° function in 2.

Proof We may continue to assume that s is strictly positive on d€2. For & > 0 small,
we construct 5, € C2(9Q) satisfying

[5e(y) —s(y)| < es(y).  yeoQ,
the construction being guaranteed by the Stone-Weierstrass theorem. Now, let
e =y + (1 —e)s:(y)n(y) : ye 92}
and
Q. ={y+t(1—¢)s.(ym(y) : yeo2, 0<r<1}. (3.7.21)
Clearly, 0Q, = %, U Q. By Lemma 3.7.9, X, is a C' hypersurface satisfying
Vé-n. >0 on X, (3.7.22)
where n, is the unit outward normal of d€2,, and we see that

Ue=082: = G(R2).
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Since 8§ € C2 on Q, C G() U 92, we may apply Green’s formula to obtain

38
[ Vi Vo= [ peonsast [ ooz
zZ - / P(x) A (x)dx
(n—1)(H o N)(x)
= /Q 1 + 8(H o N)(x) p(x)dx, (3.7.23)

where the last two inequalities follow from (3.7.22) and (2.5.5) respectively. Letting
& — 01in (3.7.23) completes the proof. O

An immediate consequence of Theorem 3.7.10 is the following extension of
Theorem 2.3.2 in which €2 was assumed to be convex.

Corollary 3.7.11 Let Q2 C R", n > 2, be weakly mean convex and have a null cut
locus. Then —AS§ > 0 in the distributional sense.

The next theorem uses the methods of [107] described above to improve
Proposition 3.7.2.

Theorem 3.7.12 Let Q C R*, n > 2, be a domain with a C? boundary and null cut

locus. Assume that for p € (1, 00)

’%1 > [6A8](x), x€G. (3.7.24)

Then for all f € C3°(S2)

_ p )4
/ V6 - VfIPdx > (p—l) / {1—1’—8A5} P (3.7.25)
Q p Q p—1) &

Proof 1t will suffice to show that (i) and (ii) in Proposition 3.7.2 hold.
Let

Se=Q\Q,
for Q. given in (3.7.21). Then (i) and (ii) in Proposition 3.7.2 are satisfied by the
family {S. : ¢ > 0}. That completes the proof. O

We have the following as an immediate corollary of Theorems 3.7.10 and 3.7.12.

Corollary 3.7.13 Let 2 C R",n > 2, have a C? boundary and null cut locus.
Assume that for p € (1, 00) andy = N(X), the near point of X,

p—1_ (n=DIXH(y)

TSRy x €G. (3.7.26)



126 3 Hardy’s Inequality on Domains

Then for all f € C5°(82)
p=1V [, pi— DS@HE) | [P
[ Vf'pd"z( > ) /Q%l &~ DI+ SHW| 5 d(’;

When 2 is weakly mean convex, the right side of (3.7.26) is non-positive
(see (2.5.1)) so that the inequality is trivially satisfied. However, some positivity
of the mean curvature is permissible in order for (3.7.26) to hold. In particular, it is
not hard to see that (3.7.26) holds when

7.27)

2(p—1)
DiwHy < —————, (3.7.28)
pn—2)+1
where Hy = supyeyq H(y) and the interior diameter of €2 is given by Dy, :=

2 Supyeq 6(X).
Since |V8| = 1, a.e., we have from (3.7.27) that, if Q is a weakly mean convex

domain, then
_ p
/ |Vf|de > (p ) lf|
Q - p 81’

for all f € C3°(S2). This yields the following improvement (established in [107],
Theorem 1.2) of Theorem 3.4.1 if | X(2)| = 0.

Corollary 3.7.14 Let 2 be a weakly mean convex domain in R",n > 2, with
|2(R)| =0,and 1 < p < co. Then,

i I T

Remark 3.7.15 The weakly mean convexity condition in Corollary 3.7.14 is sharp
in the sense that the inequality fails if only H < ¢ is assumed for ¢ > 0. This is
demonstrated in [107] where counterexamples are given based on ideas from [11]
and [116]. See Example 3.8.7 below.

The Brézis-Marcus type results derived for convex domains in Sect. 3.6 can also
be extended to weakly mean convex domains. The following is Theorem 4.3 in
[107].

Corollary 3.7.16 Let Q be a weakly mean convex domain in R",n > 2, with
|2(R)]| =0,and 1 < p < co. Then, for all f € C3°(R2),
D p— lf|[7 14
|ViPdx > | —— dx + A(n,p, Q) [f| dx, (3.7.30)
Q p

where A(n,p, Q) = (’%l)p_ infgQ) = 5,,_ > p(n— 1) infyq |H|P.
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Proof We have in (3.7.27)

—1\" P — 1\ [ —=(n=DH |f]r
Q p o & p o (1+8H) &1
Now let g(1) := (a’~'—#)~!, witha > 0. The minimum of g(¢) in (0, a) is attained

atty = a(p — 1)/p and this gives that

T
a’(p — 1)r—1’

For H(N(x)) # 0, choose a = 1/|H| and t = § (note (2.5.1)) to give, for x € G(R2),

g0 = r€(0,a).

—H(N(¥)) _ PIHEN)P
[+ SHNEI ) = (=

This continues to hold if H(N(x)) = 0 and so from (3.7.19),

YN p !
> | = — 1D)|H]|.

o e L
The theorem follows from (3.7.25), since it is assumed that 2(2) = Q \ G(R) is
of zero measure. O

The proof of Corollary 3.7.16 above can be adapted to give the following
inequality for domains which are not weakly mean convex.

Corollary 3.7.17 Let Q be a domain with C* boundary in R",n > 2, |Z(Q)| = 0,
and Hy = supyeyq H(y) > 0. Then, for all f € C3°(2) and 1 < p < o0,

p—1\"" P
/Q|Vf(x)|”dx + (T) (n—1)H, T

_(P=1Y [ P
_( . ) Sy dx. (3.7.31)

Proof The proof follows that of Corollary 3.7.16, on observing that

dx

(?;—;ZI < (n—1)H < (n— 1)H,.

O

For an application of Corollary 3.7.17 we return to Example 3.7.7 and obtain a
Hardy-type inequality with a domain that is not weakly mean convex.
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Example 3.7.18 In Example 3.7.7 we studied the 1-sheeted hyperboloid (3.7.12),
and showed that the mean curvature

2

H(y(s.0) = ———,  se(-00,00), t€[0,27).
@252+ 1)}

Calculati(s)ns show that this function of s assumes its maximum at s = +1 so that
Hy = 372. Consequently, for Q2 given by (3.7.12)

) p—1\"" [ F®P
/ |Vf(X)|'I dx + — (T) i S(X)P_ldx

p=1\ [ fxP
z( . ) s (3.7.32)

for1 <p <ooandallf € C°(R).

3.8 Doubly Connected Domains

Domains that are not weakly mean convex present special problems. A domain 2 C
R? = C is doubly connected if its boundary is a disjoint union of 2 simple curves.
If it has a smooth boundary then it can be mapped conformally onto an annulus
Qp,r = Br\ B, = {z€ C: p < |z] <R}, for some p, R; see [149], Theorem 1.2.
In order to proceed, we need the following inequality on an annulus, which is an
analogue of Theorem 1 in [11].

Theo_rem 3.8.1 Let 21, Q2,, be convex domains in R, n > 2, with C? boundaries
and Q2 C Qj. Forx € Q := Q;, \ Q| denote the distances of X to 921, 02, by
81, 82, respectively. Then, for all f € C§°(22 \ R(2))

1 n—1Dn-23) 1 1
|VF(x)|%dx > —/ {—+—+—
/92\521 4 Jana, x| 512 5%

2A81  2A8, 2V6,-Vé,

81 S 816,
x-Vé;
2 1 2(n—1 24
+ 2(n— )||25+( )||25 f (x)[~dx.

(3.8.1)



3.8 Doubly Connected Domains 129

Proof Our starting point is again (3.7.2), which, for a differentiable vector field V
and arbitrary ¢ > 0, yields the inequality

/ C (divV)[f(x)]Pdx < &2 / | VfPdx + &7 / C[VPPIfPdx. (3.8.2)
Q Q Q

2\ Q) 2\ Qg 2\ Qi
Guided by the proof of Corollary 1 in [11], the theorem follows on setting

Vx| _5 Véi(x) B ZVSZ(X)

e N N N

(3.8.3)

and ¢ = 2. ]

Notice that §;(x) and §,(x) in Theorem 3.8.1 coincide with §(x) only for certain
values of x.

In the next corollary we account for behavior near the ridge in order to prove an
inequality for f € C3°(£2).

Corollary 3.8.2 Forall f € C3°(Bgr \ Bp)

2
1 (n—1)(n—3) 1 1
S, (0 OP = 4 2082 4 (ks 5h5) ) oo

(n=1D)(n—3)

(3.8.4)
1 1
= 4 fyom, {2BE2 + S ()P

in which §,(x) = dist(x, dB,), §,(x) = dist(x, dBg), and §(x) = dist(x, d(Br \ B,)).

Proof For Q1 = B, and Q, = Bg, R > p, the ridge R(Bg \ B,) = 0B, ¢ =
(R + p)/2, has measure zero. In this case we use (3.7.6) with S, = B4, \ B.—. and
p = 2. Namely

/ (divV)|f]?dx = / (V-ns)[flzdx—Z[Re / (V-Vf)fdx] (3.8.5)
Q\S, S, Q\Se

For V defined in (3.8.3), consider the terms appearing in V - 1, in which 7, is the
inward normal on 95S,,

Jas, lff?%ds = fch+g AR s+ Jop_ \FPV61- wds
= _fBBc+s If|>ds + faBE—s If|>ds

and

Jis, VPRds = VP98 5+ [ V98 s
= fon.,, [f1Pds = [y, IfPds.
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We therefore have that

a6
o= PLas+ [ P24
S, o, S, 3775
A similar calculation shows that
ad
lf|2 IXI O
S, 778

and we conclude from (3.8.3) that

/ (V- no)lf2dx = 0.
EAS

Then, using this fact in (3.8.5) and applying (3.8.2) (with ¢ replaced by «), we obtain
fQ\Sg(diVV — a2 |VP)If(x)2dx < o? Jo |Vf|2dx. (3.8.6)

Observe that in this case §; = |x| — p, 6, = R — |x|,

and V§; = —V§, = x/|x|, implying that

) 1 n—1)(n-3) 1 12
divi)— VP = —" i (—+ ).
(@ivv) = |V] et Gry)
On choosing ¢ = 2 and allowing ¢ — 0 in (3.8.6), we establish the first

inequality (3.8.4). The last inequality follows since

Lol
8§ 6

1,1
g+5—1n BC\Bp,
5 +3 in Be\Be.

|

Lemma 3.8.3 Let 2 C 2, C Cand B, C B C C, 0 < p < R, where B, is the
disc of radius r centred at the origin. Let

F:QZ\QI —)BR\B_p
be analytic and univalent. Then for z = x; + ixs, X = (x1,x2) € Q5 \ Q1,

F@P 1 1 )°
F 3.8.7
For O Fa=, TR @) @.8.0

3(@) = -
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is invariant under scaling, rotation, and inversion. Hence, § does not depend on the
choice of the mapping F, but only on the geometry of 2, \ .

Proof The fact that § is invariant under scaling and rotations is straightforward. To
see that it is also invariant under inversions, suppose that F(z) = 1/G(z). Then,
under inversion, §(z) becomes

2
_ldwP | |dw 1 1
Gl t G { G P! + R_l_lG}Z)j
_ _ldmP \G/(z)\z{ P4 R }
GwlZ TGP \p-I6@] T 1G@—R
_ _ldPk | 6@ { (p=R)G()] }2
GwlZ T 6@ \ G-IG@NIG@—R)

_ @) /(N2 1 1
= ~lewr TIG@ {p—\G(z)I + |G<z>\—R}

implying that § is invariant under inversions. The rest of the lemma follows from
[88], p. 133. O

In applying the last Lemma we regard €2, Q5 as domains in R? with z = x + iy
andx = (x,y).

Theorem 3.8.4 For Q := Q,\ Q C R?,

1
[ 1vucoras = 5 [ slucorax
Q 4 Jo
Proof From (3.8.4), it follows that for all u € Hé (Br \ B_p),

1 —1 1 1 \?
Vu(y)|*dy > ~ — 24y,
/BR\BP' v yz4/1;R\Bp[|y|2+(8p(y>+&e<y>)]'”(”' !

where 8,(y) := |y| — p and Sg(y) := R — |y|. Let F : & — Q,r be analytic and
univalent, and set y = F(x), withy = (y1,y2), X = (x1,x2). Then, as we saw in
Sect. 3.4.2, with F’ denoting the complex derivative,

a )
dy = det( 01 yZ))‘dx = |F'(x)|%dx,
a(x1, x2)
and
A1, y2) 7"
Viu = V. ,
e [a(xl,m
implying that

|Vaul* = |Vyul’|F (%),

The theorem follows from Lemma 3.8.3. O
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Example 3.8.5 Let ®(z) = (z—1)(z+ 1) and
Q ={z:p* < |®()| <R%}
for 0 < p < R. The function F(z) = \/@ is analytic and univalent in €2 and
F:Q— Qup.

A calculation gives

|z
|22 =112
|| (R—p)*

TR (P == &= P =1

We end this chapter with an example of a doubly connected domain formed with
ellipsoids. First, we need a result of Avkhadiev [10].

S(@) =—

Lemma 3.8.6 Let p < Rand 2, := Br\ B, C R?. The best constant A(23) in the
Hardy inequality

2
VulPdx > A(Q / e i),
[ vuax= a0 [ @)

satisfies

114
where kg = PG 8.75....

272

Example 3.8.7 For n > 3 and any ¢ > 0 there exist ellipsoids E;, E, with E, C
E; C R", and a function f € C(l)(El \ E3), such that

2 IJC(X)|2
/El\Ez [Vf]7dx < €/E1\E2 50x)? dx (3.8.8)

where §(x) is the distance from x € E; \ E; to the boundary of £} \ E>. Moreover,
the mean curvature H(N(x)) < ¢ forall x € E| \ E,.

Proof Note that A(2,) — 0 as R/p — 0o; more precisely, for e > 0 and R > % p,
we have that A(€2,) < ¢/2. Since A(£22) is the best constant in Example 3.8.6, for
each & > 0, there is a title function f, € C}(£2) such that

12
LIV (x1, %2). (3.8.9)

V. (x' 2ax < £
/Qz| rooray < 5 [ S
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For each s > 0, construct a function g; € C} (R') to satisfy

1, ||
I

(1= (I =922 5 < Itl S

VI/\
_|_

gs(1) = {
Note that
o0 o0
/ gs(*dt =25+ ¢; and / [¢!(O)])dt = c,
—00 —o00
in which ¢; and ¢, do not depend upon s. Define 2, := Q2 x R"2 and

J&X) = f(X) T 8,(x)), X = (X1,...,%).

Then, f € C}(€2,) and

IVA? = [VAPTIZ8, ()% + [f:? Z[gé(xk)z a8 )]
Therefore,

/ [VF(x)|2dx = (25 + ¢1)" > / [V [2dx + C(2s + ¢)" 3 / If.|?dx’,
R R2 R2

(3.8.10)
where ¢; and C do not depend upon s.
Observe that the distance §(x) from x € €, to the boundary 92, is just the
distance from x’ to 925, i.e., §(x’). Hence,

X o (X n
Jo, lgﬁx))IZ dx = [q, VS(X’))Z‘ dx'T1; s [ o0 185 (o) P

= Qs +c)"? fQZ OOl .

Using the fact that
8(x) =8(x) <R—p < p(e™ — 1),
Egs. (3.8.9) and (3.8.10) we have

Jen IVF®)Pdx = (25 + 1) [5 | Ve |22dx’ + C2s+ )" [ Ifel?dX
< (2s+c)%E fRZ Vel” gx' + C2s+cy)™! fR,, If|>dx

2 5(X/)zz
3 Cp(e™*—1) (em—l) Il
=[5+ 55 BT I 52X

<€ fan SJ(TdX

for s large.



134 3 Hardy’s Inequality on Domains

Now, choose ellipsoids E; and E, defined respectively by

SRS SR RISt BRI P

R? b? a? b?

with a := 3[p + minyequpp(s,)|X|] and b sufficiently large in order that supp f C
E\ \ E;. Inequality (3.8.8) follows.

Recall that the principal radius is the reciprocal of the principal curvature, i.e.,
r; = 1/k;. Therefore, if we rescale by replacing x with ox for some constant ¢ > 0,
then 6(0x) = 06(x), indicating that the rescaled principal curvature is x;/o. Such
a scaling leaves inequality (3.8.8) invariant, but the new mean curvature scales to
H(x)/o. Consequently, we can rescale in order that H(y) < &,y € 0E,. Since E| is
convex, then H(y) < 0,y € 0E;. It follows that H(N(x)) < & forallx € E;\E,. O

As mentioned earlier, a consequence of Example 3.8.7 is the fact that the weakly
mean convexity requirement, H(y) < 0, in Corollary 3.7.14 of Chap. 3 cannot be
replaced by the global condition H(y) < e for any arbitrarily small ¢ > 0. In
contrast, Theorem 4 of [10] shows that we are able to obtain a Hardy inequality with
a sharp constant if £ in Example 3.8.7 is replaced by a ball B, that approximates
the ellipsoid E; according to the inequality

(h-28(x)<p. xeE\B,

If n = 3 and E| = Bg, the inequality reduces to R < 3p. See (3.8.4) for the case in
which E| = Bg and E, = Bp with p < R.



Chapter 4
Hardy, Sobolev, Maz’ya (HSM) Inequalities

4.1 Introduction

From the Hardy and Sobolev inequalities
p p 1,
IVullg = Callu/81g. Vullg = Csllulle . u € DY (),

where §(x) = dist(x, 0L2), Cy, Cs are the optimal constants and p* = np/(n—p), it
follows that for 0 < o < Cy,

IVall o —erllu/81 o = (1 — ot/ Cr) ||Vl
> (1 - a/C) Csllull’n . @.1.1)

In this chapter, we discuss the existence of inequalities involving the left-hand side
of (4.1.1) with « = Cpy, and of the form

IVull’ = Cullu/8I.g = Cnp. )llull,

for some ¢ € (1,p*]. Such inequalities are known as Hardy, Sobolev, Maz’ya
(which we abbreviate to HSM) inequalities. An early example was provided by
Maz’ya in [118], Corollary 3, p. 97, where the following is proved: denoting points
inR"™™byx = (y,z), y € R",z € R", withn + m > 2,

n+m—2

— 2 2 n+m n+m
/ R Gt U D / |u 72 dx :
Rntm 4 |y|2 - ’ Rntm
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for all u € C3°(R™™™), subject to the condition that u(y, 0) = 0 in the case m = 1.
With R, := {xeR":x, >0} = R*! x Ry, it follows that for n > 3,

n—2

2 n
/ (|vu|2 ||2)dx / lulizdx | 4.1.2)
RY, 4 RY,

for all u € C°(R",). These inequalities are refinements of both the Hardy and
Sobolev 1nequaht1es on R"*™ and R respectively.
We shall return to the proof of (4.1.2) later, in Corollary 4.3.2.

4.2 An HSM Inequality of Brezis and Vazquez

In [31], Brezis and Vazquez proved the following theorem:

Theorem 4.2.1 Let Q be a bounded domain in R", n > 2, and 1 < g < 2* =
2n/(n—2). Then, for every u € H)(Q),

€L _ 2 2
||u||2<c|S2|{ }/ (lv |>— ("22) %) dx 4.2.1)

for some positive constant c.

The proof of (4.2.1) in [31] depends on the following result which is of
independent interest.

Theorem 4.2.2 For any bounded domain 2 C R", n > 2, and every u € H(l) (),

VuPax — ("2 ’ LIS 2d 422
Q|u| X — QWX |Q| |u| X. 4.2.2)

The constant H, is the first eigenvalue of the Laplacian on the unit ball in R?, hence
positive and independent of n. The constants (n — 2)?/4 and H, are optimal when
Q is a ball.

Proof Tt suffices to prove (4.2.2) on C}(2). For once it is established on C} (), it

follows that
1/2
—2\2 [ul?
]| = / v — (P22} 0 i 4.2.3)
Q 2 [x]?

is a norm on Cé (€2), and (4.2.2) continues to hold on the completion, H(2) say,
of Cé (£2) with respect to this norm. Furthermore, in view of (4.2.2), we have the
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continuous embeddings
Dy* () — H(Q) — LX()

and D(l)’z(Q) coincides with H((€2). Hence, in particular, (4.2.2) holds on
HY(Q).

From the list of properties of symmetric non-increasing rearrangements after
Definition 1.3.10, we note that

IVullp.e = IVIullpe = [1V]ul* [0

and

P (u(|*)?
/ P /Q* m

where Q* is the ball Bk centre the origin with volume |2|, hence w,R" = |L|.
Also the L*(2) norm of u on € is equal to that of |u|* on Bg. It follows that
the symmetric non-increasing rearrangement decreases the left-hand side of (4.2.2)
while the right-hand side is unchanged. As the symmetric rearrangement |u|* of
|u| is a non-negative, radial function it will suffice to prove (4.2.2) in the radially
symmetric case.

For n = 2 the result is the Friedrichs inequality and H> is the first eigenvalue
of the Dirichlet Laplacian on B;. Equality is satisfied by the corresponding
eigenfunction, which is the Bessel function Jy(zr), where z ~ 2.4048 is the first
zero of Jy. Then H, = 72 ~ 5.7832.

Suppose n > 3 and that u is a non-negative radial function in the ball B;. Define
the function

~ _n=2
ax) =x|""7,  n>2,

which is not in D' (B;) and satisfies

Au(X)+( 5 ) x| 2i(x) = 0.

We use u to make a dimension reduction from » to 2 dimensions by introducing a
new variable

v(r) = u(r)r%, r=|x|.
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It is readily shown that
—2\?2 2
[ iwueor - ("52) | ax
Br 2 x|

R _ R
= nw, |:/(; |v’(r)|2rdr — n_22/0 [vz(r)]/dri|

R
= na),,/ |V’ (r)|rdr. (4.2.4)
0

since u € C}(Bg). The penultimate integral in (4.2.4) can be bounded below using
the Friedrichs inequality in two dimensions,

R H2 R )
/O [v'(F)|?rdr > = /O |v(r)|rdr. (4.2.5)

The proof is completed on noting that

R
lu(x)|?dx = nwn/ [v(r)|?rdr.
Bg 0

Remark 4.2.3 The inequality (4.2.2) implies that

) n=2\* [ lux)
/Q|Vu(x)| dx>( . )/Q S

for any non-trivial function u € H} (). Also, in (4.2.2), H>(»,/|€2]) is not attained
in H}(2), for that would imply equality in (4.2.5) with R = 1 and v(r) = cJo(zr).
Hence u(x) = cJo(zr)/r"~2/2, which is not in H}(B)).

Before embarking on the proof, we first note that in the case n = 2, we have the
Sobolev inequality

[F(x)] ?
VA ) 4 4.2.6
/Bk P (Cl ||Vf(X)||2,BR) X < 2l Bl ( )

forall f D(l)(BR), where ¢, ¢, are positive constants; see [49], Theorem V.3.16. It
therefore follows that, for all p € [1, 00),

e \*
/BR (m) dx < c|Bg]
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for some positive constant ¢, and hence, on applying the Cauchy-Schwarz inequality,

IFllp.8e < 1BRIY 21U ll2p.50
< cR¥?||Vf 12,84

if f is radial,

R R p/2
/ [f (r)|Prdr < cR? (/ [f/(r)|2rdr) . 4.2.7)
0 0

Proof of Theorem 4.2.1 For the radial functions u and v in the proof of Theo-
rem 4.2.2, on setting H = [(n — 2)/2]?, we have from (4.2.4) and (4.2.7),

2 uz(x)) _ K 10N12
/BR (|Vu(x)| H ME dx = nwn/() [v'(r)] rdr

—4 2
Rl 5,

R
= cR™4/P ( / u(ryr=2v/ 2rdr)
0
Furthermore, for @ > 0 (to be determined), and 1 < g < p,

1 2/q R 2/q
( ||u||Z) = (/ |u|qr°‘r”_2_°‘rdr)
nwy 0
R 2/p R 2/qy
< (/ |u|Pr“p/qrdr) (/ r("_z_“)yrdr) , (42.9)
0 0

where we have used Holder’s inequality with 1/y 4+ ¢/p = 1; y > 1 since g < p.
The strategy of the proof is to choose « such that the last integral in (4.2.9) is finite,
and the right-hand side of (4.2.9) is less than a constant multiple of the right-hand
side of (4.2.8). Thus we choose « so that ap/q = p(n — 2)/2, i.e.,

A%

2/p

(4.2.8)

a=qn-2)/2,
and we requiren —2 — (n —2)q/2 > =2/y = =2(1 — q/p), i.e.,

n—2 2

n>gq (— + —) . (4.2.10)
2 P
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We now choose 2/p = [(n — 2)/2]e, where ¢ is sufficiently small that ¢/p =
ql(n — 2)/4]e < 1; then (4.2.10) becomes

n>q(#)(l+£),

which is satisfied for small enough ¢ as ¢ < 2n/(n —2) = 2*.
From (4.2.8) and (4.2.9), we now have

/ (IVu<x)|2 —HMZ(X)) o
Br |X|2

4 _2—2—a)—2L
cRUT (2 qy}”u”;BR

A%

n—=2_1
= R0 ul g,

Therefore
2 Zn(l—i) 2 MZ(X)
u < cR™Ma2 u(x)|- — X.
2, = 675 [ (Va0 -5 ) a
' Br x|
The theorem follows on recalling that || = w,R". |

The following result is similar to (1.4) in [63], where it is observed that ¢ > 0 is
necessary.

Corollary 4.2.4 For any bounded domain Q C R", n > 2, and every u € Hé (2)

—2\2 [ul?
| (wwz—(”2 ) %) dx = CQ.mo)ul @2.11)
2 x e

where C(2,n,e) = 0ase — 0.

_ : _ =2
Proof Letq = 2n/(n—2+ ¢) for arbitrary small ¢ > 0. Then o = ;5 in (4.2.9),

and we choose p to be such that y = 1 4 ¢. The last integral in (4.2.9) becomes

R 1y R 1/(1+¢)
(=2)(+e)(=2+e)
(/ r(n—2—0£)yrdr) — (/ r P -Hdr)
0 0

which converges to 0 as ¢ — 0. The proof of (4.2.11) follows by using this fact in
the proof of Theorem 4.2.1. O

Remark 4.2.5 Theorem 4.2.1 is reminiscent of Theorem 2.3 in [63] for fractional
HSM inequalities. The fractional analogue of the Hardy inequality is

|M(X)|2d < C_1 2517 Zd C®(R" 4212
. |X|2s X=Cin - |p| |u(p)| P, uce 0( ), 4.2.12)
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which is valid for 0 < 2s < n, and where the sharp constant is

2 T2 (I + 251/4)

Con =2 (= 2s/4)°

established in [77, 151]. The aforementioned result proved in [63] is the following:

Theorem 4.2.6 Let 0 < s < min{l,n/2}and 1 < g < 2} := 2n/(n — 2s). Then
there exists a positive constant Cy, s such that for any domain Q@ C R" of finite
measure |2],

2(1-L - u(x)|?
ull2 < Cpmil@] (+%) ( / PP li@)Pdp - Con / )] dx), 42.13)
R» R»

P

forallu € C§°(R2).

It is noted in [31] that ¢ must be strictly less than the critical exponent 2.

4.3 A General HSM Inequality in 17 (2)

In [60], Filippas, Maz’ya and Tertikas proved that for a bounded convex domain €2
with a C? boundary, there exists a constant C = C(£2) depending on 2, such that

n—2
|“|2 2n_ o 00
/Q(|Vu|2— 502 dx > C /Q|u|n—zdx , ueCP(Q), 4.3.1)

and posed the problem: can C be chosen to be independent of 2? This was answered
in the affirmative by Frank and Loss in [62] who proved it as a consequence of a
more general inequality, which holds for an arbitrary domain Q & R”; this is that
for n > 3, there exists a positive constant K,,, independent of €2, such that

n=2
2 |“|2 % " o0
/Q(Wm - 48M(X)2)dX2Kn (/Q |u|7 zdx) . ueCP(Q), (432

where §); = Sy is the mean distance function of Definition 3.3.1. Since §y;(x) <
8(x) if 2 is convex, by Theorem 3.3.4, (4.3.1) follows from (4.3.2) with C < K,,. As
noted in [62], an application of Holder’s inequality to the right-hand side of (4.3.1)
yields the inequality

2 |ul? —2/n 2
/Q(|Vu| — 48(X)2)dx > K|~ /Q|u| dx, ue CP(Q), (4.3.3)

which was discussed in Sect. 3.3.1.
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Another important consequence of (4.3.2) is Maz’ya’s inequality (4.1.2) when
2 = R,. In the case n = 3, the optimal constant in this inequality was obtained in
[28]: to be specific, they proved that with R3 =R?x Ry, forallf € C° (R ),

1/3
/ V|f(x)|?dx > F(x )|2d + 83 (/ [f(x)|6dx) , (4.3.4)
3 Ri_

]R’_,’_ 4| |2
where S3 is optimal, and given by
Sy = 3(7/2)*3, (4.3.5)

which is the sharp constant in the Sobolev inequality (1.3.6) in three dimensions.
The inequality is also shown to be strict for non-zero functions f.

In [62], an L? analogue of (4.3.2) is obtained for p > 2, and it is this result which
will be the centre-piece of this section. It is

Theorem 4.3.1 (Frank and Loss [62]) Let p € [2,n). Then there is a constant K, p,
depending only upon n and p, such that for any domain Q G R" and allu € C§°(Q2)

n—p
p—1\" |uP / p_ T

Vulf — | — dx > K, n=r d . 4.3.6

Jo (o= (55 s o s (o @30

By Theorem 3.3.4, an immediate consequence is

Corollary 4.3.2 Let Q@ & R", n > 3, be a convex domain. Then there exists a
positive constant K, ,, p € (2, n), depending only upon n and p, such that

(o (55 5o )

Sforall u € C°(2).

n—p

Before embarking on the proof of Theorem 4.3.1, we need some preparatory
results.

Lemma 4.3.3 Foralla,b e C, andp > 2,
la + blP > |af’ + plal’~*Re[ab] + c,|b|” 4.3.7)

for some ¢, € (0, 1].
Proof Letx = |a+b|?, y = |a|> and f(r) = #/?, t € (0, 00). Then since f”(¢) > 0,

we have by Taylor’s theorem,

fG) = f0) + &= ()
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and so
la+ bl > |al” + (|b|* + 2Re[ab]) g|a|”_2
— |al” + pRe[ab]|alP~2 + 1§’|b|2|a|1’—2. (4.3.8)

Suppose that |a| > c|b| for some positive constant ¢ < 1 to be determined later.
Then, from (4.3.8)

la + b|P > |af’ + pRe[ab]|a + g 72| pJp (4.3.9)

and so (4.3.7) is satisfied.
Let z = |a|?> + |b|*. Then

f@) = £+ «—2f ()
yields

p—2
2
s

la+bP > (ja]? + b)) + 2Re[5b]§ (la)* + [b]?) (4.3.10)

and on the right-hand side
(Ial? + 1bP)""* = lap + [b".

Suppose now that |a| < c|b|. Then in (4.3.10), for some constant K (independent of
|a| and [b]),

p—2

p—2 p—2
(lal” +161) 7 < (lal + [b)"~* = Ibl”_2§1 + M}

|b]
< K(pl). 43.11)
Hence from (4.3.10),
la+ bl > |al” + |bl’ + pRe[ab]|al”>

p—2
2

+ pRe[ab] { (lal? +16[)'T — |a|P—2}
and

p

Refat] {(|a|2 )T - |a|f’—2}

< plal|bl (K62 + [c|b])?) < pelblP (K + ¢572).
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Therefore, for ¢ sufficiently small, (4.3.7) is again satisfied and the proof is
complete. O

Proposition 4.3.4 Let g > p > 2. There is a constant Cy, ; (where C5 4 < (g + 2)*)
such that for every f € C3°(—1,1) and for every t € [—1,1],

lf(t)|61(P—l)+P <Cpy f_‘l (lf’|P ( > ) (%fI‘IW) ds - (f_ll lfl‘ids)l’—l
(4.3.12)

Proof This is Proposition 2.5 in [62]. Let f(f) = (1 — |t|)?~Y/Pg(¢). Then on
using (4.3.7), we have

fl (lf/|p _ (P%l) (1V||C|)P) ds
= [ [|a=1shr g — tsgn(y — s rg| - (554) 5 ] as
> [ [—p (p%)p_ sgn(s)|gl"*Relgg’] + (1 — ISI)"‘IIg’I”} ds
—1 /
= f_ll {’2-’ (’%l)p sgn(s)lz-, ([|g|2]p/2) +cp(1 — |s|)”_1|g/|p} ds

—\P! 1 _
=2(Z)" P + 6 fL (1 = Ishr g s

We shall show that, for d = 26;1(‘,%1)17_1 and some positive constant C =

Cp, 9,

gD+ < (1 = i)~
x (1) lglec1 -

It will then follow that

P=Dp+q(p—=1) _
P (A= syl pds + dlgo)p)

)ds)p_l

(4.3.13)

2Ly g () + ¢ [, (1 = |5 [gPds
1_
= ey (f1 f1eds) e
which is (4.3.12) with C,, = C/c.

By symmetry it suffices to show (4.3.13) only for r € [0,1]. Since (1 —
1)=D@e=D+p)/r* is decreasing in [0, 1] we have that

ap— 1)+p

~150)]
M / 18157 s
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_ (=D gpP=+p)
__lap=1D+p] / P s
— (P—D@p—D+p) 1)(4(/7 D+p)

p(1—1) »”
[g(p — 1) + p]
— (=D @p—D+p)
p(l—1n 7~

! ’ ! wn \ 7
x(/|gwa—«r*m) (/|m%1—w vdﬂ
0 0

Thus it remains to show that

1
O C(/_l Ig’l”(l—Itl)P_ldterlg(O)l”)

1 w-y '
X (/ lgl?(L—e)) » dt) : (4.3.14)
—1

To that end we choose a free parameter T € (0, 1) and a Lipschitz function y with
0<x=1,x0) =1, x(r) =0when [t| € [T, 1]. Let

q—>r
1 pq re
L:= (/ |)(’(s)|q—r’ds) .
-1

Choose another parameter A, to be fixed later and depending upon 7 and L, and
distinguish two cases as to whether or not the inequality

1
18(0)]7 < AFT /1 (4.3.15)

holds.
If (4.3.15) holds, then as an immediate consequence we have that

p—1

—1)tp ! w=-n \ 7
2 wamﬂ([JAM%Lﬁm pdo

1 P
<Ad™r (/ g1 (1 = |y~ dr + dlg(O)Ip)
-1

([

p—1

T
dt) ,

which implies (4.3.14).
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Suppose

1 _
18(0)]7 > AP / QOIS 1) "7 ds, (4.3.16)

and define go := yg. Since go(T) = go(-T) =0

ap=1+p qp—1)+p T gp—1)
g 7 < T lgol 7 |golds
— _ (p—=Dp+qp@—1)
L9 21)+p(1_T) B —
P

X

1 0= (=Dt gp=1)
/ o Tl —1s) T ds
—1

1
qp—1)+p ! )
—D(pFqp—1)) (/ |g6|p(1 - Isl)p ldS
2p(1—T) »”? -1

—1

1 4—1) 5
x / lgol7(1 — [s) 7 ds
—1

We recall that go(0) = g(0), and the last term satisfies

1 q(p—=1) 1 gq(p—=1)
/ Jgol"(1 —15) s = [ 1611 — [s) 5 ds.
- —1

For the integral involving g’, we use the triangle inequality for L?:
: »
(/1o =1siy—tas)
-1

’ 1
P 1 5

P -tsrias) o ([ lerlorar-ias)

-1

1
(/.

l Cof o N\
(/ Ig/|p(1‘|s|)”_ld8) +L(/ Iglq(1—|s|)”p)ds)
(/.

—1

=

IA

1

IA

r p
&P - |s|>P—‘ds) LA g(0)]

—1 1 3 »
<25 ( / |g/|P(1—|s|)P—1ds+LPA‘4¢—1>|g<0>|P) :
—1
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in the penultimate inequality we have used (4.3.16). Choosing A large enough in
2

order that LPA_WLU < d, we arrive at (4.3.14) again, and hence the proof is
complete. O

Corollary 4.3.5 Let g > p > 2. For every open set Q@ S R and all f € C{°(R2),
there exists a positive constant C, 4 such that

— 1\ If1P
t q(p—1)+p < / P _ P t
e P = G J TP iy )

p—1
x (/ [f|th) . (4.3.17)
Q

Proof First note that (4.3.17) follows from (4.3.12) for any interval by a translation
and a dilation. The extension to an arbitrary open set 2 & R follows from the fact
that every proper open subset of R is the union of countably many, pairwise disjoint,
open intervals. O

In order to pass from the one-dimensional inequality of Corollary 4.3.5 to n
dimensions, Frank and Loss [62] apply an argument of Gagliardo and Nirenberg
(see Sect. 4.5 in [52]), which we now describe. We use the notation

% — n—1
X; = (Xl,...,Xj_l,Xj+1,...,xn)ER .

Lemma 4.3.6 For n > 2 and fi,....f, € L' Y(R"), the function f defined by
f(x) :=fi(X1) - - - fu(Xy), belongs to L'(R") and

”f”Ll(R”) S H;l:l”fj”Ln*l(]Rnfl). (4318)

Proof The proof is trivial for n = 2. For n > 3, we have by Holder’s inequality

< il @y (/Rn_l |:/R lfz...fn|dx1:|

Similar successive applications of Holder’s inequality gives

(N}

n

d)

n

1

3
|
N

Il ey < Wfill—r e—1y = =« Wil =1 =1y

n—k—1

_n—k n—1
n—1 n—k—1
X(/ %/ Vk+l"'ﬁl|nkdxl"'dxk} dxk+l"'dxn)
Rn—k Rk
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fork=1,2,--- ,n—2. Thus withk = n — 2,

If 1l ey < Wfill— o1y - =« Wn—2ll =1 @1y

n—1 2 #
X /{ lfn—].ﬁ1|2dx1"'dxn—2} dx,—1dxy,
RrR2 Rn—2

f H7=1 |m||L”_l (Ru—l),

as asserted. q
Proof of Theorem 4.3.1 Let {ey, ..., e,} be the standard basis in R" and define
pj(X) = pe; 1= inf{|r] : X + r¢; € Q°}.
Let
: )" (p—= 1Y [u®P
8i(x)) ;:/ ( —( ) dx;:
J\X] R axj p pj(x)p ]
and
N np
&)= [ e, q= "
R n—p
forj=1,...,n By Corollary 43.5,as g(p — 1) + p = p*(n — 1)/ (n — p),
_n=p_
u(X)| < (Cpqgi(R)hy(X;) )7
Therefore,
ooy _np
)" < Cpg"™" T, (g (R hy(Ry)" ™) 7=
SO
()¢ < Gy " T (g &)y (R,
and, by Lemma 4.3.6,
n .
L u@))%dx < U7 [ T (gi(R)hi(R)P~") 7D dx
Je pa =118/ X)X, @319)

< e (R )P~1) 7 dR -
= Cpyg =1 fR"—l(gi(Xj) i(X))P7) P dX; .
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Also, note thatforj = 1,...,n

Vsl ety = / (x)|“dx.
R”

We now apply Holder’s inequality followed by the arithmetic-geometric inequality
to get

p—1

] lfR” lgj(xj)l)h(xj) r de = Hn 1||gj|| (Rn—l)”hj”Llp(Ru—l)
1

ng(p—1)

= ”””q Y H"l=1||gj||£1 ®—1)
nq(p 1 . y n
<l " [E g

n

ng(p—1) | 2
<lully " [ gl |

where || - ||, denotes the L(R") norm. On using the last inequality in (4.3.19), we
conclude that

ng(p—1)

n
Juo )19 = €5 kg [ 150 g loreoy |

which gives

q(n—p)

n
(n—1)
lly™ < 7 (Ao lglo @™

and thus, since ¢ = np/(n — p),

lJullf, < Cra i1 llgille oy,
On recalling the definition of g;, this is the inequality
P P
_ =1\ luxP
( P ) PP ) dx.

Thus, if we use the notation of Sect. 3.3.1, namely, that, for v € S"™!, p,(x) denotes
the distance from x € 2 to Q2 in the direction v or —v, d, the derivative along v
and dw(v) the normalised measure on S"~!, then

(/ |u(x)|qu)q
Rn
— 1\ [u(x)|?
< P __
Cpq/ /S” 1(|8 u(x)|” — ( p ) o (x )p)dw(u)dx.

4
q

(fuo o)) < Lo [ (

du(x)
Ox;
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Since d,u(x) = Vu(x) - v = |Vu(x)| cos(Vu(x), v), we have from (3.3.7)

/ / [0, u(x)|Pdw(v)dx
n Jen—1
:/ /_ | cos(Vu(x), v)|?|Vu(x)|Pdw(v)dx

_T&Hre
VAT (*32)

= Bn,p/ |Vu(x)|Pdx.
Rll

/ |Vu(x)|Pdx
RV!

Hence

(/ |u(x)|‘1dx)q
R7
-1\’ d
< CpyBnyp /Rn {|Vu(x)|1’ - (177) [3;11, /Sni1 p:)(g;” |u(x)|l’} dx

— P
e | - (551) 55

which gives (4.3.6).

4.4 Weakly Mean Convex Domains

We explore further results of Filippas et al. in [61]. Conditions designated by (C)
and (R) were of central importance, and we begin by introducing and discussing
these.

Let K be a C2 manifold without boundary embedded in R", of co-dimension k,
1 < k < n. When k = 1 assume that K = 02 and when 1 < k < n assume that
K N Q # 0. In general §(x) := dist(x, K). For p > 1 and p # k condition (C) is
defined as follows:

“ASFT >0 on Q\K, (©)

where A,u := div(|Vu[P~2Vu) is the p-Laplacian.

We shall only be concerned with the case k = 1 in which condition (C) reduces
to the requirement that —A§ > 0 on 2. From Proposition 2.5.4, we know that
—A§ > 0in Q \ X(R) if and only if Q is weakly mean convex. Moreover, by
Corollary 3.7.11, —Ag§ > 0 in € in the distributional sense if 2 is weakly mean
convex and has null cut locus X (£2).
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In condition (R) there exists ¢* > 0 and a positive constant ¢y such that for all
XeQ,:={xeQ:6x)<e¢e}

[8(x)AS(x)| < co 8(x), foreach & € (0,&"]. (R)

Condition (R) allows for some unbounded domains, e.g., 2 = 2y x R with
Qo C R*™! convex and bounded.

Lemma 4.4.1 Let Q be a weakly mean convex domain with a null cut locus. Then
condition (C) holds for k = 1. Condition (R) holds if either Q2 is bounded or B :=

SUPyean Yint lKi(¥)] < oo.

Proof It follows from Corollary 3.7.11 that (C) holds in the distributional sense for
the case k = 1.

Suppose €2 is bounded. We recall from Remark 2.4.6, that there exists € > 0 such
that Q. := {x € Q : §(x) < ¢} C G(R2). By Lemma 2.4.2, A§ is continuous in
G(R2), and by Proposition 2.5.4, sup,cg(q) |AS(X)| = (n— 1) supyeyq |H(y)|, where
A§(x) and H(y) are non-positive. Also, as x — y = N(x) in G(R2), §(x) — 0 and so
Ad(x) — (n— 1)H(y), the convergence being uniform in a closed neighbourhood
of d2. Hence, given any n > 0, we may choose ¢* sufficiently small such that
Qe+ C G(£2) and

|AS(X)| < (n—DIH(Y)| +n < Ho+n, for x € Qex,

where Hj := maxyejq |H(y)| < co. Now, let co = (n — 1)Hy + 1 and (R) follows.

Suppose now that B := supyejq er:ll |k;(y)| < oo. Choose ¢ in order that 2, C
G(2) and &* := ¢B < 1. For each x € Q. and the corresponding y = N(x), let
Jy i={j:ki(y) = 0} and J_ := {j : k;(y) < 0}. Then for each x

—A§ = — g K
A8 - Zie-]+ 1+5Kj ZjEJ_ 1—5‘/(]"

_ N Kj
= ZjEJJr 1+&* Zjejf 1—e**

Let Hy := ﬁ e, kj- Then

—A§ < (n— 1) {{=Hy + ==H_}

(n—1) {—H+a*(H+—H,)}

1_(8*)2

1
= ey I:Z;';l lijl + € 225, |Kj|]
B B

IA

1—e* = 1—¢B*

Therefore condition (R) holds with ¢y = ﬁ.

The next lemma is Lemma 2.2 in [61].
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Lemma 4.4.2 Let Q2 be a domain satisfying condition (R). Then for any C &

(0, %na);/") and a > 0, there exists gy = go(a/co) such that for all € € (0, &),

ClIs“v| .2 0, < 8| Vu|dx, v e CP (), 44.1)
Q,
where Q. == {x € Q:6(x) < &}
Proof By the Gagliardo-Nirenberg-Sobolev inequality (1.3.7),

nol "l = . < IVFlha,,  f€ Wy (), (4.4.2)

n—1’

where w, is the volume of the unit ball in R”. On substituting f = §%v for v €
C§°(R2;), we have

nol 67| o g, < / 5 Vvldx + / 46" [v]dx. 443)

Qe &

The last term may be estimated as follows: for ¢ < &g

afszs 8 uldx = fgg (V- V) |v|dx
= — Jq. 8“(A8)|v]dx — [o 8(VS - V|v])dx
< oo fo, 8Ivldx + [5, 64V |v]ldx
< cot [o 87 vldx + [ 8“|Vvldx,

where we have used condition (R). Thus,
(a — coe) / 8§ Nldx < / 84 Vu|dx,
QE Qs

and on substituting in (4.4.3),

a

nw," (|8 2. q, < {1 + } 84 V|dx.
Qe

a— Ccp€

The proof is completed by choosing ¢. O
The following theorem is an alternative form of Theorem 2.5 in [61].

Theorem 4.4.3 Let Q2 be a weakly mean convex domain in R" with a null cut locus,
and suppose that it satisfies condition (R) with D = supycq 6(X) < oo. Then, for
any p € (1, n) there exists a positive constant C = C(n, p, coD) such that

/SP_1|VU|PdX+/(—A8)|v|PdXz C”Spl;’ll)”lg
Q Q r

forallv € C3°(R2).
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Proof Let « € C*°[0,00) be a non-increasing function with the property that
o’ (r)] < Ko and

1
a(t) = 1,tel0,53),
0, t>1.
Then the function ¢ defined by ¢.(x) := «(8(x)/¢) is in Cé(Qg) with |[V¢,| < %
Wesetv = ¢, v+ (1—¢,)v forevery v € C5°(£2) and apply Lemma 4.4.2 to obtain,

for arbitrary ¢ > 0 and C € (0, nw,’"/2),

Cll5%.vll

n—

i@ S /Q 8|V (¢ev)ldx, v e CP(RQ). (4.4.4)

By the Gagliardo-Nirenberg-Sobolev inequality (1.3.7),
no)"[(1 = ¢l 2 0 < [VI(1 = ge)vllie, v e CF(RQ).
Since, for x € supp(1 —¢¢)v, §(x) € [5, D], where D := sup,q §(x), it follows that

1
nowy"

— 1890 = ¢ )v]| a0 < (2/8)“/95"|V[(1 — ¢e)v]|dx. (4.4.5)

Wn
Da
On combining (4.4.4) and (4.4.5), we have for some positive constant C =
C(n,p,a,e/D),

Cls] 2 g < / 5VI(1 — )l dx + [Q 51V (hov) | dx

Q\QS/Z

< / 516 || Vv |dx
(2\Q/2)UQ,

+2/’ 5| Ve | |v]dx
Qe Qs/2

5/5“|Vv|dx+2K0/ 8 vldx,
Q QS\QS/Z

where we have used the fact that §(x) < ¢ for x € Q, \ €/2. As a consequence, we
have the L' estimate

quﬁﬂgfywwu+/ 847 v|dx. (4.4.6)
" Q Q22
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In order to derive the 17 estimate for p > 1, we substitute v, s = 2 (n" pl) for v
in (4.4.6) to obtain

C(/ 8Vllml|’l)|”npﬂdx) /5 ﬂ(ﬂ 1)|Vv|8 p(n 1)| Ill(:p dx
Q

+ / geber p[gleer|p) 055 gy,
Q \Qa/l

where ¢; + ¢, = 1. By the choice

(a— e = aEn 117; 1, (a—l)czzﬁ,

and the application of Holder’s inequality, we derive

n—1

c(fg(sﬂwﬁdx) "
a(n—p) 1/p a(n—p) ; 1/p
X (fQS(n 1)|U|n pdx) s

which yields,

n—p

np
c(/f, s t|v|rdx)"”
(IQ (' | ) y (4.4.7)
a(n—p) p a(n— ﬂ) 1/p
<5 (Jo 80 [Vopax) "+ (fong,, 87 Tlvldx)

Now select a = % > 0. The inequality |x + y|? < 2°7!(|x|? + |y|’) then
gives

—1
C(n,p,%)II(‘)’pTvllp,i 0 = Jo 8 IVuPdx + [ \q " §Hvlrdx. (4.4.8)
n—p’ B

We need an estimate for the last term in (4.4.8). For 6 > 0

&€
(=) / §7 ' vlPdx < / sy Pax < / 5719 y|Pax.
27 Jane,, 2\ Q)2 Q

The identity

div(87V8) = Ops~ 70 + 5P AS
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and integration by parts leads to

Op [ 8PP v |Pdx
= [ 8 (—=AS)|v|Pdx + [, div(877V8)|v|Pdx
= [o 8 (=A8)|v|Pdx —p [, 87 |v[P~1[VS - V|v|ldx,

and since |V|v|| < |Vv]|, the last term satisfies
p UQ 80P [P~ VS - V|v|]dx|
< pes Jo 8 P v|Pdx + pC, [o 8771 HP |V lPdx,
for an arbitrary &, > 0. Therefore
(0p — pe2) [ 87"+ |v[Pdx
< Jo 8% (= A8)|vPdx + pC., [, 87719 |VvlPdx,
so that for e, < 0
C(p.0) [o 8 P vPdx < [, 8% (—A8)|v|Pdx + [, 877179V |Pdx.

From this and sup,cg §(x) = D, we infer that

C(P, 9) (%)pﬁ st\Qs/z 51 |U|de < C(p, 9)D‘[’9 fQ 8—1+179|v|dx
< Jo(=Ad)vlPdx + [o 877! [Voldx. (4.4.9)

We now choose 6 = 1 and combine (4.4.9) with (4.4.8) to complete the proof. O

We are now in a position to prove an extension of Corollary 4.3.2 to weakly mean
convex domains (cf. Theorem 5.3 of [107]).

Theorem 4.4.4 Let Q2 be a weakly mean convex domain in R" with a null cut locus,
and suppose that it satisfies condition (R) with D = supycq, 6(X) < oo. Then, for
any p € [2,n), there exists a constant C = C(n, p, coD) such that

n—p

— 1\ P " n
/ \Vuldx — (p—) 'ZJ dx > C (/ |u|n—”pdx) (4.4.10)
Q p Q of Q

Sforallu € C°(2).

Proof Set u(x) = 5(X)P1;’1W(X), so that

_1 —
Vi = 25"
p

r—

| VS + 8(x)'7 V|w| =: A + B, 44.11)
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say. For A = (a))|, B = (b;)] € R", define the norm and inner product

1/2

A= lal?] . A-B=) ab.
j=1 j=1

Then, we claim that, for p > 2
|A + B]” — |A]” > ¢,|BIP +pl|A]P*A-B (4.4.12)

for some ¢, € (0, 1]. The proof follows similar lines to that for Lemma 4.3.3, after
first dividing the inequality by |A| to consider it in the form

(i 141)

B

s ('Bl)p +
"\

—+
Al |B]

On applying (4.4.12) to (4.4.11) we obtain

Valr = (554) 87

> e, Il +p (50) 5 b (25 87 Vi - V5)

p
= e VIl +p (551) WP~ (Tl V)
—1 1\~
= 8 [Vl + (55) (vlwie - V),

since |V]u|| < |Vu|. Therefore

—_1\?
& JolIVul = (B54) 877 ullax
> [l VWP + (VIw]? - V8)]dx
= Q8" VIW[lP + (—A8)w|]dx.

Theorem 4.4.3 can be shown to apply to v = |w| by a standard density argument.
On making this application, the theorem follows. O

A corollary to Theorem 4.4.4 follows from Lemma 4.4.1.
Corollary 4.4.5 Let Q2 be a weakly mean convex domain in R".

(1) If Q is bounded, then, for any p € [2,n), there exists a constant C =
C(n, p, Ho, D) such that (4.4.10) holds for Hy := supye,q [H(Y)!.

(2) Alternatively, if B := supyeyq Z;:ll |kj(y)| < oo, then, for any p € (2, n), there
exists a constant C = C(n, p, BD) such that (4.4.10) holds.
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4.5 Exterior Domains

In [69], Gkikas established HSM inequalities on domains which are unbounded,
these being exterior domains in the sense that they are open, connected subsets of
R” whose complements ¢ := R"” \ @ are connected and compact, and contain a
neighborhood of the origin. It is also assumed in [69] that Q has a C?> boundary.
Theorem 4.3.1, which is given in terms of the mean distance function &y, is
applicable for exterior domains, and, as we noted in Sect. 4.3, yields the prototypical
Maz’ya’s inequality’s (4.1.2) when 2 = R" , since then the mean distance function
is equivalent to the distance function, by (3.3.9). Outside such examples, Gkikas
provides an alternative approach.

To prove HSM inequalities for exterior domains, Gkikas [69] makes the assump-
tion that

Vi(x) - x -

F(x):=—-Adx)+ (n—1) T

0, (4.5.1)

holds in the distributional sense
[ Fopmixzo. voecr@. pzo
Q

This implies that (4.5.1) must hold in the pointwise sense for all x € G(£2).
In the following lemma, €2 is not an exterior domain in part (ii), and is not
necessarily so in part (iii).

Lemma 4.5.1 Condition (4.5.1) holds when
(i) @ = Br(0),

(i) @ =R%} ={(x".x,) € R": x, > 0}, and

(iii) Q is a bounded, mean convex domain.

Proof 1t is straightforward to show that (i) and (ii) imply (4.5.1). To see that (iii)
does, first recall from Proposition 2.5.5, that H(y) is continuous on 92. Therefore,
H(y) assumes its maximum at some yo € 92 with H(yp) < 0. From the proof of
Proposition 2.5.4, for {y} = N(x)

~A8(x) = —(n— DH(y) > ~(1— DH(yo) = (1—1e >0,  x € G(R),

for some ¢ > 0. Proceeding as in the discussion after (2.1) in [69], we choose
X € Q€ such that |xg — x| > 1/¢ for all x € Q. It follows that

Vé(x) - (x —Xo)

—AS(x)+(n—1) F—

>0, x e Q.

The change of variables z = x — Xo completes the proof. O
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It is shown in Lemma 2.1 of [69] that, for a compact set K with a C> boundary,
F(x)=0 on 0K

implies that K is a closed ball centred at 0. However, if €2 is the exterior of an ellipse
in R?, (4.5.1) does not hold. Indeed, using the representation A§(x) = /(1 + «§)
where k is the curvature at the near point N(x) of x, it can be shown that for some x
in the exterior of the ellipse

F(x) < — +— <0.

1
14+x8  |x|

The following theorem is Theorem 2.2 in Gkikas [69].

Theorem 4.5.2 Let Q2 C R", n > 4, be an exterior domain in R" not containing the
origin, which satisfies (4.5.1), and has a C* boundary 9Q. Then there is a constant
C,.(2) > 0 depending only upon n and 2 such that, for all u € C3°(£2),

1 2 w \'T
/Q|Vu|2dx—z/g 'g‘ggl dx > Co(R) (/Q |u(x)|n—2dx) . 4.5.2)

Here C,(2) = C(p, p’, n), where

/ .
1= sup |x]|, = inf [x]|.
o p x|, o= inf |x|

XEIQ
Proof Let
u(®) = |x7"T §(x)2v(x).
Then
n—1 _s+1.1 X | R _n=l 1
Vu=— |72 §2v— 4+ =|x|” 2 6 2(V8)v + |x|” 2 62V
2 x| 2

and this leads to

2 2
/|Vu|2dx=/—8(x)|vv| dx+l (L] dx
Q Q

x| 4 Jo 8|x|"!

. (n_1)2/§‘25(x)|v|2dx_ l’l—l/g;lv(xﬂz(x.v(‘})dx

4 |X|n+l 2 |X|n+l

18 1 [ V8-V
_n O pol2ldx + —/ V8- VIbF o
2 Jo [x|mtt 2 Jq x|t
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Integration by parts gives

8(x) 2 / 2 /5|U|2
x- V|v|7ldx = dx +
o e X VIvE] ||+1|| e

and, on using (4.5.1),

. 2 2
[ Fax= [ - a5+ a-n= TP a0
Q Q

x| xS x)

Since

lv)[? Jx = Iu(X)I2
o S()[x|"! o 0%(x)

u 2
/ Vu() Pdx— - / '55’(‘)')

§(x)|Vo(x)|? (n— )? _n—1 5(X)|U(X)|2
Z/Q dx + | ]/

|X|n—l |X|n+1

then

:/ 5(X)|VU(X)|2 dx + n—l)(n—3)/ 3(X)|U(X)|2
Q

IXIn—l |X|n+1

It is therefore sufficient to prove that

SIV@P = D=3 [ S@XP
e J, e e
s\

forall v € C{°(R2).
We may choose ¢ sufficiently small such that Q, := {x € Q : §(x) < e} C G(R2)
by Remark 2.4.6, and we have that

8
£ < 5 <1, for x € Q¢ :=Q\ Q., (4.5.4)

p+e x|

and

o <I|x|<p+e for xeQ,. (4.5.5)
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The next step is to define cut-off functions supported near the boundary. Let
f € C*°(]0, 00)) be a non-increasing function satisfying

_ {1, for t€[0,1/2),
f0 = 0 for r>1
and [f' ()] < Co. Set @.(x) := f(8(x)/¢); thus, since 2, C G, we have that ¢, €
C*(Q.) and |V (x)| = |[f'(8(x)/e)||VS(x)|/e < Co/e; also ¢ = 1 on /2 and 0
on Q¢.
From (4.5.4),

f . sV %(X)]U(X))\zd 4 = 1)(ﬂ 3)f s~ ws(X)]v(X)\zd

£/2 [x[n=T Q) P

> C(e, p) ( [ WU gy 1= D) fﬂ;/z - "’j(’ji]”(""z dx) (4.5.6)

Ix|"—2 x

> Ce.p) Jor, (VWP + () d

where w(x) = (1 — qos(x))v(x) /|x|"=2/2 and we have used the assumption that
n > 4.Hencew € W 2(Qe /2) and we may therefore invoke the Sobolev embedding
theorem to obtain

IV ([1—¢e ()] () (n=1)(n=3) 5011~ (00
fﬂz/z X! dx+ 71 fﬂi G dx

n—2

2n 2
11—, n—2
> e (fy, o )

n—2

2
> C(e. p) (f LLdiC Tl dx) 4.5.7)

|x| =2~

since Q¢ C 92/2 and on using (4.5.4).

We next derive a similar estimate for the corresponding integrals involving ¢..
From (4.4.1) applied to v*, where s = 2(n—1)/(n—2) and witha = (n—1)/(n—2),
we obtain for small enough &,

n—1

c(fgssﬁw%dx) "<y, 85 0| Volax

n—1

< s(fﬂasfizw%dx)% (Ja. 8|Vv|2dx)%
2

< s0 (fgs 5?”2|v|ff"zdx)% +Cy (fgs 3|Vv|2dx) "~ (4.5.8)
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on using the inequality ab < " + Cebzgq:zl ), with arbitrary 6 > 0. It follows

from(4.5.5)that

2 2
Jo, ARV jy | =00 Sl

‘x‘n—l |X|”+1

n—2

_n_ 2n_ 2
> C(e, p, ') (IQS %dx) . (4.5.9)

The addition of (4.5.7) and (4.5.9) gives

n—2
n 2n 2
/ 877 g0 2
C(e,p,p) (fgé yee) dx

|x| n—2
n—2

_n_ 2n_ 2
§n—=2 |(1—q, n—2
+C(e. p) (fszg l(—nf—_f)v‘ dx)

x| n=2

81V (pev) 2
ffgg x| dx

‘x‘nfl

— 2 — _ 2
+ o, gl gy 4 =00 BB gy

2
< C(e) (fQS\QE/Z —‘ﬂgll dx)

Voul? n—1)(n— 2
+C(7’l) (fg S‘L‘nﬂ dx + ( IH 3) fQ ‘i“,ﬂrldx) s

(4.5.10)

where in the last inequality we have used the fact that V¢, is supported in Q2 \ Q,/2
and |Vg,| < Cy/e. Finally, by (4.5.5),

Slv|? Slv?
[ ([ 20
Qe\Qs/z |X|n Qg\Qs/z |X|n

From this and (4.5.10), the inequality (4.5.3) follows and the theorem is proved. O

Gkikas also establishes the following theorem for the case n = 3.

Theorem 4.5.3 Let Q be an exterior domain in R? with a C? boundary, which
satisfies (4.5.1) with strict inequality, i.e.,

Vi(x) - x

> 0.
x|

—A§(x) +2
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Then, for all u € C3°(£2),

/|Vu|2dx ﬁ > C(RQ) (/ (I |)| |‘>dx)1 (4.5.11)
i) , 5.

where X(t) = (1 4+ log?)™' and 0 < D < inf{|x| : x € 0Q}. The power 4 of X can
not be replaced by a smaller power.

4.6 Equivalence of HSM and CLR Inequalities

In Sect. 1.5.2, we discussed the equivalence of the Sobolev and CLR inequalities
implied by the Li-Yau proof of the CLR inequality in [109] and briefly described an
abstract extension due to Levin and Solomyak which applies to

tlu] = qlu] — /Q V(x)|u|*dx 4.6.1)

for all quadratic forms ¢ associated with Markov generators in a sigma-finite
measure space (€2, dx). In [64], Frank, Lieb and Seiringer develop a more general
theory for examining the equivalence of Sobolev and Lieb-Thirring (in particular
CLR) inequalities, and this is shown in [62] to be capable of dealing with the
example

-2 2 2
glu] = /Q VuPax— & ; ) ) 8'(”X|)de, (4.62)
g 2P
Tim A= =V, (4.6.3)

when 2 is convex. In [64], the Beurling-Deny conditions on the quadratic form ¢
(with domain #,;(g)) in [103] are generalised to the following:

(@) qlu + iv] = qlu] + q[v] for real u, v € Hi(q);

(b) if u € Hi(q) is real, then |u| € H(q) and g[|u|] < q[u];

(c) there is a measurable function @ which is positive a.e. and is such that if
u € H,(q) is non-negative, then min(u, w) € H,(q) and g[min(u, w)] < q[u].
Moreover, there is a dense subspace D of H1(q) (a core of ¢) such that ' D is
dense in L2(2, /=),
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Thus the Beurling-Deny conditions correspond to the special case @ = 1. The
main theorem in [64] is

Theorem 4.6.1 Let g satisfy the above generalised Beurling-Deny conditions for
some Kk > 1, and let T be the self-adjoint operator in L*(Q2) associated with the
quadratic form t in (4.6.1). Then the following are equivalent:

(i) there is a positive constant S such that for all u € H,(q),

2/s
tu] = S (/ |u|‘dx) , 5:=2k/(k—1); 4.6.4)
Q
(ii) there is a positive constant L such that for all 0 <V € L*(R2),
N(T-V) < L/ Vedx. (4.6.5)
Q

Moreover,
ST <L < el

In the case of g being the quadratic form in (4.6.2), parts (a) and (b) of the
generalised Beurling-Deny conditions above are clearly satisfied. Following [62],
we demonstrate that the theorem applies when Q C R? and is convex, with the
choices w = §'/? and D = C5°(82) in part (c). For u = wv,

qlu] = /Q (qul2 - %) dx

1 1 1
_ 2, L . 2 2 2
= [ (8190 + S8)- (TP + G518 - o) ax

AS
_ 2 2 —. 7
= /Q (|Vv| 25 |v] )8dx 2 g[v].

Note that in g, —Aé > 0 in the distributional sense by Theorem 2.3.2, and so
Gv] = 0. The map M : u +— u/w is an isometry of L>(Q) onto the weighted
space L?(2;8), and in view of the denseness of C3°(2) in the form domain of g,
extends by continuity to an isometry of #;(g) onto the form domain #;(g) of g in
L*(R2, 8), equipped with the norm

1/2
(E][v]—i- /Q |v|28dx) .
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Let0 < u € H,(g) and u = wv. Then min(u, w) = @ min(v, 1) and

Vo, ifv < 1,

Vimin(. DI =100 " iy = 1

which implies that
|V[min(v, 1)]| < |Vv].
Hence

g[min(u, )] = g[min(v, 1)]

< /Q (lVUI2 — [?—;} |v|2) Sdx
= qlv] = qlu].

Since multiplication by @™ is an isometry of L>(, 0* =2 onto L*(Q2, »*"/"~?)
and C°(Q) is dense in L*(Q,w*™?), part (c) of the generalised Beurling-
Deny conditions is satisfied. Consequently Theorem 4.6.1 holds, and in view of
Corollary 4.3.2, we conclude that

(n—2)
45(x)2

N(—A — —-V) < / V2 dx. (4.6.6)
Q

Note that the theorem and (4.6.6) are also satisfied if €2 is a bounded, weakly mean
convex domain with a C2 boundary and null cut locus, on account of Theorem 4.4.4.

For a general domain 2 € R”, it is proved in [62] that the theorem continues
to hold if § is replaced by the mean distance &, but the proof is much more
complicated and uses a modified form of the generalised Beurling-Deny conditions
which still imply the main theorem in [64]. We refer to [62] for the details.



Chapter 5

Inequalities and Operators Involving Magnetic
Fields

5.1 Introduction

In classical mechanics the motion of charged particles depends only on electric and
magnetic fields E, B which are uniquely described by Maxwell’s equations:

V -E = 4np,
V-B=0,

JB
VXxE=——
x ot’

VXB:47rJ+a—E.
ot

These equations determine the relationships between the classical electric field
E, the magnetic field B, the electric current density J and the charge density p.
Most of classical electrodynamic can be described by Maxwell’s equations together
with the Lorentz forces on the charged particles, namely,

Fi = ei(E +v; X B),
when the ith particle has charge e; and velocity v,. We see from the second Maxwell

equation that the magnetic field is always divergence free, and this implies that it
has the form

B=VxA

© Springer International Publishing Switzerland 2015 165
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for some (not uniquely defined) field A which is called a magnetic vector potential.
Similarly, we can always rewrite the third Maxwell equation in the form

E=-Vp——

for some scalar potential ¢p. The representation of electric and magnetic fields in
terms of a scalar potential ¢ and magnetic potential A is very useful since we need
only the four component of (¢, A) to describe the electromagnetic field instead of
the six components of (E, B). Until the development of quantum mechanics, it was
widely believed that potentials (¢, A) are only nice mathematical constructions to
simplify calculations and representations, and that they do not have real physical
significance. However, quantum mechanics brought the realisation that (¢, A) play
important roles, since the Schrodinger equation contains potentials (¢, A) and not
fields (E, B), as we shall see in subsequent sections.

In 1959, Yakir Aharonov and his doctoral advisor David Bohm in [3] proposed
an experiment to understand the role and significance of potentials in quantum
mechanics. They predicted that a wave function can acquire some additional
observable phase when traveling through non-simply connected domains with no
electromagnetic fields (i.e., E = 0,B = 0) but with non-zero potentials (¢, A).
Such a phase shift was confirmed experimentally by R.G. Chambers in 1960, see
[36] and also [25]. This is the famous Aharonov-Bohm effect, sometimes called
the Ehrenberg-Siday-Aharonov-Bohm effect; in their 1961 paper [4], Aharonov
and Bohm acknowledge the work of Werner Ehrenberg and Raymond E. Siday who
had been the first to predict the effect in their 1949 paper [50]. The Aharonov-
Bohm effect is so fundamental to our understanding of quantum physics that it was
chosen by the New Scientist magazine as one of the *“ seven wonders of the quantum
world”. We refer the reader to the seminar by Kregar, published in [89], for a clear
and comprehensive account.

5.2 The Magnetic Gradient and Magnetic Laplacian

The introduction of magnetic fields calls for changes to be made to the expressions
which, in appropriate units, represent the momentum p = (1/i)V and kinetic energy
(the free Hamiltonian) —A of a charged particle. The new expressions are

1 1
pA = ?VA : ;(31 +iAy, -+, 03 +iA3)

3
—Ap ==Y (0 + Ay’

j=1
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where A = (A1,A,,A3) : R3 — R3 is the vector potential, which determines the
magnetic field B by the equation

B(x) = curl A(x). (5.2.1)

In general n-dimensions we shall consider A = (A},A3,---,4,) : R" — R" and
write

Va = (01 +iAy, -+, 0, +1A,)

for the covariant derivative with respect to A. We refer to V, as the magnetic
gradient. In the language of differential forms, the magnetic potential is a 1-form,
A= 27=1 Ajdx;, and the corresponding magnetic field B is a 2-form, dA, which is
the exterior derivative of A given by

. "\ 04, 0A;  0A;
dA = dAjndxp =) a—)édxi Ny =" (a_xl . a_x,) dx; A dx;.

j=1 ij=1 i<

The changes make it necessary to introduce new Sobolev spaces which depend
on the vector potential A.
IfA; €L (Q),j=1,---,n,for Q2 € R",n > 2, then

loc
(f. &)t (@) = > /Q [0 + iA)f] [(9; + iA))g]dx + /Q fgdx (5.2.2)
j=1
is an inner product on C§°(£2). We denote the completion of C§°(£2) with respect to

1/2 n .
the norm || - ”H(l),A(Q) = (-, ')H/&A(Q) by Hé’A(Q); when © = R” we shall write H}.

The kinetic energy operator —A, is the self-adjoint operator in L>(2) determined
by the quadratic form

3 /Q [+ ianf] [0 + iAgldx
=1

on Hé, 4 (£2); the expectation value of —A f for f in the domain of —A is given by

TR P / 10 + iAfPdx.
j=17%
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More generally, for @ € R", A; € L} (Q) and 1 < p < oo, we may define

loc
spaces Hé:f;(Q) as the completion of C3°(£2) with respect to the norms determined
by

P = 4 AN FIP p
11 0 = ; /R M@+ i) " dx+ /R 1. (52.3)

5.3 The Diamagnetic (Kato’s Distributional) Inequality

The inequality (5.3.2) in the following theorem is known as the diamagnetic
inequality. It has a prominent role in problems involving magnetic fields.

Theorem 5.3.1 Let A = (A1, Ay, -+ ,A,) © Q — R be such that A; € L, (Q),
and let f € Hy} (). Then | f| € Hy"(Q) (= Wy” (), and forj = 1,2,-+- ,n,

i fl(x) = Re[sgn(f)(x)(aj +iA)f(x)], ae x€Q, (5.3.1)

where

L if f(x) # 0,

sen(/)(x) = 0, if f(x)=0

Hence |0;|f(x)|| < (9 + iA)f(X)],a.e. x € Q, and f +— |f| maps Hé:i(fz)
continuously into H(l)’p(Q) with norm < 1. Thus, when Q = R" and p = 2,

IVIfX)|| < |Vaf(®)|, a.e. x € R". (5.3.2)

Proof The diamagnetic inequality is equivalent to Kato’s distributional inequality

A|f(x)| > Re[sgn(f)(x) Axf(X)], a.e. x € R", (5.3.3)

(see [84], Lemma A), and the following proof is a straightforward adaptation of
Kato’s L? proof to the more general result stated.

We begin by supposing that f € C{°(R"). Then, with ¢ > 0 and f; := (| f]P +
€)'/ we have

f17H @) = |fIP?Relfayf] = | /P *Relf (9; + iA))f].
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and hence

-2z -2
affs=(%)p Re[}—:(f?ﬁiAj)f] _. (%) Re[F.(/)]. (5.34)

say.
The next step is to show that (5.3.4) holds for any f € Hé;{;(sz). With this in
mind, let f™ € C$°(R2) be such that f™ — f in H(l)ﬁ (2), and also pointwise a.e.;
note that such a sequence (™) exists since Hé:Z(Q) — [7(£2). We have
(m)y — Jm i i (m)
Fe(f) = Fe(f™) = 7 {19 + iADf = (3 + iADF ™}
&

foofm
e O

As m — oo, the first term on the right-hand side tends to zero in LP(€2) since
(0; + iA)f™ — (3; + iA))f in LP($2) and | £ /£ < 1. The same is true for the
second term, by the dominated convergence theorem and since the bracketed term
converges a.e. to zero pointwise. Hence F,.(f) — F.(f"™) — 0in L?(S2). Moreover,
with

i
Ge(f):= (=) RelFe(),

&

it follows that G,(f) — G.(f"™) — 0 in L7(2). We therefore have that, for all
¢ € CP(R),j=1,2,---,n,and m — o0,

/fsajgodx = —/ 0G.(f)dx; (5.3.5)
Q Q

thus (5.3.4) is established for f € H(l):f;(fz). We now let ¢ — 0 in (5.3.5). Since
f. — |f| uniformly, |f/f;| < 1 and f/f. — sgn(f), we conclude that

/ | Fljpdx = — / Go(f)dx = — / oRe [sen()(3; + iA)f] dx
Q Q Q
and

9 f1(x) = Re[sgn(f)(x)(3; + iAp)f (x)]

for a.e x € 2. This completes the proof. O
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In [111], Sect.7.20, H}s(R”) is defined as the space of functions f : R" — C
which are such that

f, (@ +iA)f € LX(R"), for j=1,2,---,n,
with inner product (5.2.2) and p = 2, and then it is proved in Theorem 7.22 that
C5°(R™) is a dense subspace. Therefore this definition agrees with that given above.

Note that for f € H A(R"), Vaf € L*>(R"), but Vf and Af need not separately be in
L*(R™).

5.4 Schrodinger Operators with Magnetic Fields

5.4.1 The Free Magnetic Hamiltonian

In the presence of the magnetic field B given in terms of the magnetic potential A
in (5.2.1) (or, more generally, as the 2-form dA), the free Hamiltonian Hy := —Ax
in L>(R"), is the non-negative, self-adjoint operator associated with the closure /5
of the quadratic form

(Hag.0) = /1; Vagldx, ¢ € CER?),

this being defined if A; € LloC (R™),j = 1,---,n. The form domain of Hy (i.e., the
domain of hy) is therefore Hj ,(R"), and its domain is

D(Ha) :={f:f € Hj,(R"),—Asf € *(R")},

this being a dense subspace of Hé’ A(R"). In view of the diamagnetic and Hardy
inequalities,

2
min= [ viserax= cowy [ 0Fax 4.1

with the optimal constant C(n, R") = \” 2| for n > 2; we saw in Sect. 1.2.5 that
for n = 2, there is no Hardy inequality and we only deduce from (5.4.1) that iy > 0.
However, the presence of a magnetic field can improve the situation significantly, as

we shall now demonstrate. Let n = 2 and consider the symmetric operators

Li:=—id; +A;, L:=—id; +A,
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on C$°(R?). Then,
0 < (L £ilp)(Ly % ily)*
= (L £ iLly) (L1 F iLs)
= Li + L5 Fi(LiLy — LoLy)
= L] + L] F (014> — 0,A))
= |Val’¥B

where B = curlA. Consequently
/ |Vag|* dx > j:/ Blo|%dx, ¢ € C°(R?), (5.4.2)
R2 R2

and this holds for both signs. If B is of one sign and |B| is big, then (5.4.2) implies
a significant lower bound on h4, but in general, it may not be of much use if B has
variable sign. The free Hamiltonian H, in R* associated with a constant magnetic
field B = (0,0, B), B > 0, and magnetic vector potential

1
A= E(—BXQ, Bxl, 0)
is known to have a spectrum which has least point B; see Sect. 3 of [13], and so

IHa@ll = Bligll, ¢ € C°(R?).

With A = (A1,A;) and B = 01A, — d,A;, Ha can be regarded as an operator in
L?(R?) defined by the quadratic form

lgl = [ |11V + iA@Ip0oF dx.

This is called the Landau Hamiltonian associated with the magnetic field of
magnitude B . Its spectrum consists of discrete eigenvalues

(k+1)B:k=0,1,2,...

of infinite multiplicity called the Landau levels; see p. 171 in [95].

In section below, we shall discuss work of Laptev and Weidl in [99] in which
they consider Aharonov-Bohm type magnetic fields for which it is possible for the
angular part of /14 to have a positive lower bound and a Hardy inequality for &4 is
available forn = 2 and B = 0 in R? \ {0}.
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5.4.2 Gauge Invariance

Let L be any linear differential operator in L?>(2),  C R”, and ¢ : @ — U(1) :=
{z € C: |z] = 1}. The transformation

urs ¢ 'u, Ly:= ¢ 'Lo,
is called a gauge transformation. It preserves the pointwise normof u and P : u +—

lu is a unitary map on L2 Q). Thus L and L, = PLP 1 are unitarily equivalent.
y p ¢ yeq
If L = V,, then

Ly =V +iA+ ¢ 'V¢ =: V;,

and so a new magnetic gradient V; is formed with magnetic potential

~ 1
A=A+ -9 'Vg. (5.4.3)
l
However, the magnetic field remains unchanged:
B = curlA = curlA.

Moreover, the operators Hy and Hj are unitarily equivalent and hence have the
same spectral properties. The magnetic potentials A and A are said to be gauge
equivalent

In a simply connected domain €2, any continuous function ¢ : 2 — U(1) can be
written as ¢ (x) = /™, for some continuous f : @ — R, and from (5.4.3),

A—A=Vrf. (5.4.4)

If Q is not simply-connected, there are gauge transformations which can not be
represented in the form ¢ (x) = /™. An example in R?, which will be of particular
interest in the next section, is

d(x) = (z/|zD* k € Z\ {0}, z=x+iyeC\ {0}, (5.4.5)

where x = (x,y) € R?\ {0}. Then

1
7¢>—1v¢> =k (—y, x). (5.4.6)

o +y?)
In R? \ {0}, let (r, §) be polar co-ordinates, and consider the vector potential

A(r,0) = @efg, 5.4.7)
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where ey is the unit vector (— sin @, cos 8), which is orthogonal to the radial vector
e, = x/r = (cos 0, sin 0). Set

1 2w
U= — ¥ (0)do.
21 0

We have that curlA = 0 in R?\ {0}, and A is in the so-called transversal (or
Poincaré) gauge characterized by A - e, = 0. This involves no loss of generality
as any vector potential is gauge equivalent to one in Poincaré gauge (see [141],

Sect. 8.4.2). What is assumed in (5.4.7) is that the flux (or circulation) of A about
the origin, namely the integral

1 2
WA) = —/ A(r, 6) - egrdd,
2 0

is independent of r, and equal to the constant W. Let A’ be any vector potential in
R?\ {0} which is such that curlA’ = 0 and W(A’) = W, and define

A=A — Eeg.
r

Then curlA’ = 0 and W(A’) = 0. Therefore, for any xo,x € R2\ {0}, the line
integral

f(x) = / A(z)-dz
X0
is independent of the path from x to x. It follows that
A =Vf
and so

Al(r,0) — geg = Vf(r,0). (5.4.8)

We therefore infer that A’ is gauge equivalent to (¥/r)ey. In particular, this is true
for A’ = A. We also note from (5.4.3) and (5.4.6) that A and

~ k
A=A+ -ey, keZ,
r
are gauge equivalent, and
VA)=VA) +k YA) =W

Thus under the gauge transformation (5.4.3), the flux of A is transformed to W + k.
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5.5 The Aharonov-Bohm Magnetic Field

5.5.1 The Laptev-Weidl Inequality

We know that there is no Hardy inequality in R?, and (5.4.1) gives only trivial
information. A natural question is if there are magnetic potentials A for which there
is a constant ¢ > 0 such that

2
u
/RZ |Vaul*dx > C/RZ %dx, u € CP(R*\ {0}),

and the corresponding magnetic field B is bounded on R? \ {0}; note that by (5.4.2),
the inequality is satisfied for B(x) = ¢/|x|?, which is not bounded on R? \ {0}. The
question was answered in the affirmative by Laptev and Weidl in [99], where the
following theorem is proved for magnetic potentials of Aharonov-Bohm type.

Theorem 5.5.1 Let

A= @eg, (5.5.1)
where Y € L'(0,2n), and
1 2
VYA =V=— v(0)do. (5.5.2)
21 0
Then, for all u € C3°(R*\ {0}),
2
/ |(V + iA(x)u(x)[2 dx > (min [k + ¥|)2 / WOF e (5.5.3)
R2 kEZ R2 |X|2

The constant (mingez, |k + V|?) is sharp.

Proof From the discussion in Sect.5.4.2, it follows that the magnetic poten-
tial (5.5.1) is gauge equivalent to

A(r,0) = Ur ! (—sinf,cos f), ¥ := W(A). (5.5.4)

Therefore, we may, and shall, assume that A is given by (5.5.4).
In polar co-ordinates, the form

/ |(V + iAX))u(x)]* dx
R2
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becomes

du
or

v [

where Ky := i % + W. The operator Ky has domain H'(S') in L*(S"), eigenvalues
Ar = k + ¥, k € Z, and corresponding eigenfunctions

2
+ r_2|K9u|2) rdrdf,

oi(0) =

1
exp(—ik0).
5 CXP )
The sequence {¢;} is an orthonormal basis of L*>(S!) and hence any u € L*(S') has
a representation

u(r,0) = Z ue ()i (6),

kEZ

where
2
u(r) :/0 u(r, ) (6)do.

For any u € H'(S"),

e’} AZ
mid =% [ (|u’k(r)|2 + 2 )

kEZ

and so

lux)* =~ % Jue(r)|?
/1;2 —|x|2 dx = Z/o 2 rdr

kez
1 % o lu(r)?
SZ—AZ/ A} S rdr
ez Mmigez A Jo r
1
halu],

= : A
(mingez [k + P|)2

which proves (5.5.3).
To verify that the constant is sharp, suppose that the minimum is attained at
k = ko, and let u(r, 0) = v(r)ek,(0), v € C5°(0, 00). Then

e’} 2 2 e’}
halu] — (ko + )2 / / @rdrd@ = / v (r)?rdr. (5.5.5)
0 0 0
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The constant will have been proved to be sharp if we can show that, for any ¢ > 0,
there exists v € C{°(0, oo) such that

/000 v (r)*rdr < 8/000 v2(r)/rdr.

On making the substitution r = ¢*, (x) = v(e*), this becomes
[ 15 < [ l5opar
R R

which is satisfied for some ¢ € C{°(RR) since the Laplacian —% on R has spectrum
[0, 00). O

Remark 5.5.2 1f the flux W is an integer, then the operator Hx defined by the form
ha in Theorem 5.5.1 is unitarily equivalent to —A and there is no Hardy inequality.
For suppose that W(A) = k € Z. Then from (5.4.6) and (5.4.8),

A= %¢—lv¢ + Vf,

for some f € R? \ {0}. Hence A is gauge equivalent to Vf and hence to 0.

5.5.2 An Inequality of Sobolev Type

Closely associated with the Hardy-type inequality in Theorem 5.5.1 is a Sobolev
inequality featuring the Aharonov-Bohm potential A defined in (5.5.1). The inequal-
ity is expressed in terms of the space

X 1= L®R"; L2(S"): rdr) = L®° (R rdr) @ L*(S"), (5.5.6)

with norm

2 1/2
lullx := ess sup,., { (/ lu(r, 9)|2d6) § . 5.5.7)
0

We shall denote H} (R* \ {0}) by Hj throughout this section.

Theorem 5.5.3 Let A be given by (5.5.1) and suppose that its flux V(A) = ¥ ¢ Z.
Then, for all u € H!,

IV + iA)ul* = (min [ + W) ully- (5.5.8)
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Proof We may again assume, without loss of generality, that A is given by (5.5.4).
In the proof of Theorem 5.5.1, we used polar co-ordinates to write s as

o] 2
i = X4 [ (0 + S ) raf

kEZ

where the u; () are Fourier coefficients of u(r, ) and Ay = k+W.Forany ¢ € (0, c0),

(> = 2Re /0 T ()l (r)dr

t 1/2 t dr 1/2
’ 2 2
2 ([wopar) ([ wore)
2 ([ wor ”2( . [ zd_r)”z
i ([ wormr) (32 [Cwops

(] 2
Ml—” { /0 (|u;(r)|2 + %mk(mz) rdr} .

IA

IA

Hence
2
| we.orde = 3 lwiop
0 kez
< ————[(V + iA)ul.
mingez, I/Xk|
whence (5.5.8). O

Remark 5.5.4 1t follows from the theorem that the set of radial functions in H} is
continuously embedded in L (R?). This is not true for H'(R?).

5.6 A CLR Inequality

In view of the close relationship between the Hardy, Sobolev and CLR inequalities
described in Chap. 1, it is only to be expected that a CLR inequality exists for an
operator Hx + V, when A satisfies the conditions of Theorem 5.5.1 with non-integer
flux, and V is a real-valued function which satisfies some appropriate conditions.
To establish such a result, we need some preliminaries. The first concerns a
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compactness property of the operator of multiplication by V, when V is a member
of the space

Y = L'RY;L®(SY: rdr) = LYRY; rdr) @ L®(SY) (5.6.1)

endowed with the norm

0€(0.27)

lully := /00 (ess sup |u(r, 9)|) rdr. (5.6.2)
0

The inequality (5.5.8) implies that Ha has no eigenvalue at zero, and hence HIL/ 2

is injective and its domain D(Hi/ 2) and range R(Hi/ 2) are dense in L?(R?). Let D}A
denote the completion of D(Hli/ 2) with respect to the norm

1/2

lellpy == IH "0l = IV + iM)e]), (5.6.3)

where || - || is the standard L?(R") norm. Note that D} is not a subspace of L?(R?),
but it lies in the weighted space L?(R?; |x|2dx) on account of Theorem 5.5.1.

Lemma 5.6.1 Let A be given by (5.5.1) with W(A) =V ¢ Z, and let V € Y. Then
the operator P := H;l/2|V|H;l/2 is compact in L*(R?). Hence, V : D\ :— L*(R?)

is compact.

Proof 1Tt is sufficient to prove that

1/2

T:= |V|1/2H; is compact,

since P = T*T.
Given ¢ > 0, choose W € CP(R';L>®(S")) such that |V — W)y < &, with
support in

Q, = B(O, ke) \B(O, l/ka)

for some constant k, > 0, and such that |W||;eog2) < ke. Let @, — 0 in L*(R?).

Then, with ¥, = H:/ 20,, we have that ¥, — 0in D} and

IT@all> = VIV 9ull® < W2 0l1% + 1V — WY 212

< k/Q Wal2dx 4+ [V = Wiy vl

<k [ |ynlPdx + Ce|HY %, (5.6.4)
Qe
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by (5.5.8). For any ¥ € C$°(R? \ {0}), there exists a constant C(g), depending on
&, such that

W17, < COIVIE = CEIV +iA)y|?,

by (5.5.8), and

IVl < IV + MY+ COINY T,
< CEIV + My

This implies that D} is continuously embedded in the standard Sobolev space
H'(Q,). Since H'(Q,) is compactly embedded in L?(2,) by the Rellich-
Kondrachov theorem, it follows that ¥, — 0 in L?>(Q;) as n — oo. Hence,
from (5.6.4),

. 1/2
limsup | T, |* < Cel|Hy*val* = Cellgul.
n—>oQ
As ¢ is arbitrary, this means that ||T¢,| — 0 and the lemma is proved. O

Lemma 5.6.2 Let A satisfy (5.5.1). Then a(Hy) = [0, 00).

Proof Take ¥ (0) = 2n —a)7'[1 — x(0,a)]¥, 0 < o < 7/2, where y(0,a)
denotes the characteristic function of the interval (0, ) . In the sector

Se ={(r,0):0<r<o0, 0<6 <a}

the Laplace operator with Dirichlet boundary conditions, has essential spectrum
[0, 00), and there exists a Weyl singular sequence {1, } for any point A € (0, c0),
with each ¥, supported in Sy; see [49], Theorem X.6.5. Since Ay, = 0 in S, for
each n, {1, } is also a singular sequence at A for Hp and the lemma follows. O

Lemma 5.6.1 asserts that the multiplication operator V is compact relative to
the quadratic form ||Vy4 - || (see Sect. 1.5.1), with the result that Hy — V is defined
as a form sum with form domain Q(Hy) = H}x’ and Hy — V and H have the
same essential spectra, namely [0, 00) by Lemma 5.6.2. The following theorem
establishes an analogue of the CLR inequality for Hy — V.

Theorem 5.6.3 Let A be given by (5.5.1) and suppose that its flux V = W(A) ¢ Z.
Let V be a real-valued function in L} (R?\ {0}) which satisfies

loc

Vi :=max(V,0) € Y = L'(R*: L®(S"); rdr).
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Then N(Ta(V)), the number of negative eigenvalues of Ta(V) := Ha — V is finite
and

!
1
N(Tao(V)) < E m”‘@”y,
me”ZL

where Z:nez indicates that all summands less that 1 are omitted.

Proof The operator Tx (V) := Ha — V is the self-adjoint operator associated with
the lower semi-bounded quadratic form

glu] ;= /Rz{|(v + iA)ul* — V|u*}dx, u e CP(R?\ {0}). (5.6.5)

The form domain of Ta (V) is the domain of the closure of ¢ (which we continue to
denote by ¢), and this coincides with H}y
As in the proof of Theorem 5.5.1, we take A to be given by (5.5.4), namely

v
A = —(—sin6,cos0).
r

Let
W(r) == [V4(r, ) oo sty (5.6.6)
so that
Wl @+ rary = IW It @t 000 81)30ar)
= Vil @+:z00syiran < 00 (5.6.7)

Thus Lemma 5.6.1 also implies that T4 (W) is lower semi-bounded, self-adjoint and
has essential spectrum [0, 00). Since TA (V) > Ta (W), we have that

N(Ta(V)) = N(Ta(W)),
and so the theorem will follow if we prove it with V replaced by W.
Letu € H}s = Q(TA(W)), and let u(r, -) have Fourier coefficients u,,(r), m € Z.
Then, as we saw in the proof of Theorem 5.5.1,

Jeo ((V + i&)ul? — Wlu|?) dx

2
=Y, fooo <|uin|2 + @WW,F — W|um|2) rdr.
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It follows that

Ta(W) = PUDn— W) ® 1} (5.6.8)

me7Z

where D,, is the (Friedrichs) operator in L2((0, 00); rdr) associated with the form

() 2
il = [ (|u:n(r>|2 (m + )|m()|2)

Furthermore, the negative spectrum of Tx(W) is the aggregate of the negative
eigenvalues of the operators D,, — W. To complete the proof, we use the Bargmann
estimate

N(D,,— W) < 2| / W(r)rdr,

+‘-IJ|

from [24]; see also [132], where it is proved that the inequality is sharp. In view
of (5.6.8), this yields

/

1 oo
N(TA(W)) = % m /(; W(r)rdr,

and the theorem follows since 27 fooo W(r)rdr = ||V |y O
The following theorem is also obtained in [18], on applying a result from [97].

Theorem 5.6.4 Suppose the hypothesis of Theorem 5.6.3 is satisfied. Then
N(TA(V)) = c(D)[Vly. (5.6.9)

where c(W) is a constant depending only on V.

Proof For any n € Z, the gauge function f(r,0) + e™f(r,0) in (5.4.8) takes
W = W(A) into ¥ + n and gives rise to unitarily equivalent operators. Therefore,
we may assume that ¥ € (0, 1). Form > 0,

1d d w2 2
Dyz—14 (rd—r) A (5.6.10)

and, form < 0,

02 2
p,>_ L4 (’d_r) 1-%)"  m+D” (5.6.11)

~  rdr r2 r2
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The two-dimensional case of the operator considered by Laptev and Netrusov is of
the form

L(b; W) = —A + % —W = P{Ln) = W) @ 1}, b>0. (5.6.12)
mMEZ

in

2 . eim(p}}
%{L(R ,rdr)®|:m .

where [] denotes the linear span; in (5.6.12),

2
Lm(b):z—li( d)+£+m—

=
rdr \_ dr r2 2

and L,,(b) — W is defined by the associated quadratic form in L?(R™;rdr). In
Theorem 1.2 in [97], it is proved that

N(L(b; W) = CO)IWII 1 @+ :rar) - (5.6.13)

By (5.6.10) and (5.6.11),

NEP{Dw— W) ® 1,,}) < NEPILn(T?) = W) & 1})

m=0 m>0

< N(L,(¥?; W)) (5.6.14)

and

NEPLDn = W) & 1,}) < NE@D{Ln([1 = ¥2) = W) & 1})

m<0 m<0

< N(Lp([1 — ¥?]; W)). (5.6.15)
Therefore, from (5.6.13),
N(TA(W)) < c(W) Wl @t iary = c(DIVely

and the theorem is proved. O

Remark 5.6.5 For V(x) = V(|x|), Laptev obtains in [96], Sect. 3.4, the inequality

N(TA(V)) < %‘f) [ voax
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with the sharp constant

R(W) = sup {v™"2 (tk : —v + (k— V)2 < 0})}.
k€EZ

5.7 Hardy-Type Inequalities for Aharonov-Bohm Magnetic
Potentials with Multiple Singularities

In this section we are interested in Hardy type inequalities for magnetic Dirichlet
forms with Aharonov-Bohm vector potentials that have multiple singularities.

Let P = (x1.y1), ..., P, = (x,.y,) be n different points in R?. We can identify
R? with C by the correspondence (x, y) > z = x+ iy and the points Py, ..., P, then
correspond to the complex numbers z; = x| + iyy,...,2 = X + Y.

Consider a smooth vector potential A = (A;(x,y),A2(x,y)) in the punctured
plane M = R?\ {Py, ..., P,} with zero magnetic field (5.7.1):

B :=curlA = 0. (5.7.1)

If we denote by wy the differential 1-form A; (x, y)dx + A2 (x, y)dy, then (5.7.1) says
that w, is a closed differential form in M, i.e. dwa = 0, where d is the exterior
derivative. Such a vector potential A is known as a magnetic vector potential of
Aharonov-Bohm type with multiple singularities. The condition (5.7.1) implies
that in any simply connected, open subset of M, there exists a gauge function f such
that A = Vf, as we saw in Sect. 5.4.2.

For each point P, (k = 1, ..., n) let us define a circulation of A round Py as

1
=5 9§A1 (6. y)dx + Aa(x, )dy. (5.7.2)

Yk

where y; is a small circle in M which winds once around P in an anticlockwise
direction; see Fig.5.1. Condition (5.7.1) implies that (5.7.2) is invariant under

e P,

Yk

Fig. 5.1 Small circle
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continuous deformations of y; inside the punctured plane M = R? \ {Py,...,P,}.
Furthermore, if the circulations ® = (&4, ..., ®,) of two distinct Aharonov-Bohm
type vector potentials A and A’ on the punctured plane M are equal modulo Z" then
A and A’ are equivalent under some gauge transformation ¢ : M — U(l) = {z €
C:lz =1} ie. A=A+ 1971Vgp.

We now introduce the special magnetic potentials

o ‘
AV ::7/'(—y+yj,x—xj), j=1,....n,
J

where rf = (x—x;)? + (y — y;)? and ®; is the circulation of A round P;. Each A"/
satisfies (5.7.1) on R? \ {P;} and has the circulation ®; round P; and the circulations
zero round P;, i # j. Then A — Zi A is a magnetic potential with zero magnetic
field and zero circulations on the punctured plane M. Therefore, for any magnetic
vector potential A satisfying (5.7.1) in M there exists a gauge function f such that

n

A =YD vty ) = (UG,

j=1J

Given the vector potential A, we define the corresponding magnetic Dirichlet
form on C{°(M) by

Oalu] = / |(V + iA)u|’dxdy, ue C(M). (5.7.3)
M

Our main goal in this section is to find an estimate from below for (5.7.3) by a
Hardy-type expression

Oalu] > / H(x,y)|u(x,y)*dxdy, u e C(M) (5.7.4)
M

with a suitable nonnegative function H(x, y) on M.

Under a gauge transformation u +— ¢ - u with an arbitrary smooth function ¢ :
M — U(1), the Dirichlet form Qa[u] becomes Qu/[u] with A" = A + 1¢~'Vg.
The right hand side of (5.7.4) is invariant under this gauge transform. Hence, it
is sufficient to establish (5.7.4) for any A from a given gauge equivalent class of
magnetic vector potentials.

For any real number ¥, we denote by p(¥) the distance from W to the set of
integers Z, i.e.

p(¥) := min |k — P|. (5.7.5)
keZ
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There may be many functions H (x, y) that give the inequality (5.7.4). By analogy
with the Laptev-Weidl inequality, we are interested in finding those H(x,y) that
satisfy the following conditions.

1 H(x,y) depends on A only through the circulations @, ®;,..., P, and the
coordinates of P;, j = 1,...,n. That is, we would like to find functions H(x, y)
that are the same for equivalent magnetic potentials.

2 H(x,y) behaves like

(p(®))?
(r—x)* + (v —yp)?

near each point P;, j = 1,2,...,n, and H(x,y) behaves like

(p(®) + Dy + ...+ D,))?
x2 42

near infinity.

Such a class of functions H(x, y) was discovered in [14]; we shall now describe
the main properties. To be specific, we show that any analytic function F(z) on C
with zero set {P1, P2, ..., P,} and F(co) = oo generates a function H(x, y) with the
properties 1 and 2 above.

Before going into the general description, for the reader’s convenience, we
present an example of H(x,y) in the case of two points P; = —1 and P, = 1 in
C with the circulations ¢; = &, and ¢; = ,, respectively.

Example 5.7.1 Let Py = (—1,0), P, = (1,0) be two points in R?, M = R?\
{P1, P»} and suppose that A is a magnetic vector potential of Aharonov-Bohm type
in M with the circulations ¢; round P;, j = 1, 2. Then the inequality (5.7.4) holds
with

2

2z .
. z=x+iy,

H(xvy) = C(xvy) . ZZTI

where C(x, y) is the piecewise constant function on R? shown in Fig. 5.2.

In Fig. 5.2, C is the curve (x> — y> — 1) + 4x?y?> = 1 which divides the plane R?
into three regions 2, €2, and Q, where P; € 2 and P, € Q5; C(x,y) equals
(p(c1))? in Qy, (p(c2))? in Q5 and (p(c; + ¢2))?/4 in Qeo.

The general case of (5.7.4) will be made clearer by first considering a special
case of magnetic potentials with zero magnetic fields in doubly connected domains
in R2.
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(Pey*c,)’
2

Fig. 5.2 Function C(x,y)

5.7.1 Inequality for Doubly Connected Domains

Let 2 denote a bounded doubly connected domain (i.e. the boundary of 2 is a
disjoint union of two closed simple curves) with a smooth boundary in the plane
R? = C; Q is homeomorphic to an open annulus.

Let 2, (r < R) be an annulus in C with internal radius r, external radius R and
with centre at the origin, thus,

Qr=1{z€C|r<|zl <R}

From the theory of functions of one complex variable we know (see [149,
Theorem 1.2]) that any doubly connected domain can be conformally mapped onto
an annulus €2, ; for some r and R, as illustrated in Fig. 5.3.

For any such conformal mapping F : Q — 2,z we define a function Bq r(x,y)
on 2 by

2

@ (5.7.6)

F(2)

Ba r(x,y) = ‘

where z = x + iy and F/ denote the complex derivative of F.

Lemma 5.7.2 The function Bg, r defined by (5.7.6) does not depend on the choice
of the conformal mapping F.
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Q.

>

Fig. 5.3 Conformal mapping

Proof Consider any other conformal mapping F from € onto Q; . From Theo-
rem 1.3 [149] we know that

R
r

~| =

Hence, since the right-hand side of (5.7.6) is invariant under scaling F' + const - F,
we can assume that = 7 and R = R. The mapping F o F~! is a conformal auto-
morphism of €2, g. Since any holomorphic automorphism of 2, ¢ is a composition
of rotations and reflections (see p. 133 in [88]), we have to check that the right-hand
side of (5.7.6) is invariant under F +— - F (for & a unimodular constant) and under
F— %. This is clear and hence the proof is completed. O

We shall use the notation Bg, instead of Bg f.

Let A = (A;(x,y),A>(x,y)) be a smooth magnetic vector potential in Q with
zero magnetic field (5.7.1). Recall that a circulation ® of A in the doubly connected
domain 2 is

1
o= Sﬁ Ay(x.y)dx + Ay (x. y)dy.
o

where o is a closed path which parameterizes the “internal” component of the
boundary of €2. The last integral is invariant under continuous deformations of o.

The following theorem explains the importance of the function Bg, for establish-
ing a Hardy type inequality for a bounded doubly connected domain in R?:

Theorem 5.7.3 Let 2 be a bounded doubly connected domain in R? with a smooth
boundary. For any smooth function f € C*°(2) we have

/ (V + iA)Pdxdy > (p(®))° / Baa(r.y) | (e, ) Pdxdy, (5.7.7)
Q Q

where Bgq(x,y) is defined by (5.7.6) and p(®) is defined by (5.7.5).
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Proof First we prove the following inequality for Q, z and A = ﬁ (—y, x):

|f )P

212 ———dxdy, (5.7.8)

/ (Y + id)fPdxdy = (p(®))

Qrr

for any f € C®(Q,z) (see [99] for more general results). The left-hand and
right-hand sides are both invariant under rotation of R? around the origin. So,
it is sufficient to establish (5.7.8) for spherical functions f(r)e”’, n € 7 and
r = /X2 + y2. For such functions

- . 1
[ 1+ iRy Pasdy = [ A5 + 10 0+ 0)ady

inf |2
/ |f(r)|2 (n+ q;)dedy - (p(CD))2 / |f( ) | dxdy.

Qrr

Now, let F : Q — €, g be a conformal mapping, F(x,y) = (u(x,y), v(x,y)).
Denote by Af (u, v) = (A (u, v), A5 (u, v)) a magnetic vector potential in 2, g such
that F*(war) = wa, i.e.,

Af(u, v)du + Ag(u, v)dv = A (x, y)dx + Az (x, y)dy.

The magnetic vector potential AF also has zero magnetic field and the same
circulation @ as A since the integral of a differential form and the property of being
closed are invariant under diffeomorphisms.

Since F is a conformal mapping, the reader will have no difficulty in showing
that, for any f € C®(Q2,.z),

/ (Va4 A 0))f s 0) 2+ | (Vo + AT s 0)) (0, v) Py =

/ (1 (Vi (e ))f ((x, ), v (e 9)) P4 (V42 (e )f (u(x. y), v(x, ) [P doedy.
(5.7.9)

Since AF is gauge equivalent to the magnetic vector potential ﬁ(—v, u) and the
inequality (5.7.8) is also invariant under gauge transformations, we have that

|f (. 0)?

o ————dudv. (5.7.10)

/I(V +iA)f (u(x,y), v(x, ) Pdxdy = (p(®))?
Q

Qrr
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Taking into account that

e / P, v ) P Ly,
u2 + v 2 |F|2
Qr.R
we obtain from (5.7.10) the inequality (5.7.7). This completes the proof. O

5.7.2 Inequality for Punctured Planes

In this section we establish a Hardy type inequality for a punctured plane.
Theorem 5.7.3 gives us a Hardy-type inequality for a magnetic vector potential of
Aharonov-Bohm type in a bounded doubly connected domain. For a more general
domain €2, e.g. a Riemann surface or multiply connected domain, our strategy will
be:

(a) find a decomposition, up to a zero measure set, of the domain 2 into doubly
connected domains;

(b) find conformal mappings of these doubly connected domains into annuli and
apply Theorem 5.7.3.

The most general tool for decomposing a manifold into simple parts is the
classical Morse theory. We don’t need the full power of the Morse theory here,
the simple version that we now present being adequate.

Let © be a two-dimensional manifold and f : 2 — (0, o0). The map f is said
to be proper if the pre-image under f of a compact set is compact, and v € 2
is a critical point of f if Vf(w) = 0, f(w) being called a critical value. We
assume that f has a finite number of critical points in €2, and that there is no critical
value in [a, b] C (0, c0). Then the pre-image f~'([a, b]) C Q is diffeomorphic to
f~"(a) x [a, b]. To show this, we consider a regular vector field in f~! ([a, b]) defined
by Vf/||Vf|l. This is a well-defined vector field of length one which is orthogonal to
level sets. Integral curves of this vector field will define the required diffeomorphism
between f~!([a, b]) and f ' (a) x [a, b]. Since a is not a critical point, the pre-image
f~'(a) is a one-dimensional compact manifold, i.e., a union of closed simple curves.
Thus, = ([a, b]) is a union of doubly connected domains.

In general, finding a conformal mapping from a doubly connected domain into
Q, g is a difficult problem. The idea in [14] is to use a function |F| for constructing
a Morse complex, where F : € — C is an holomorphic function. In this case, the
function |F| provides a decomposition and F provides the conformal mapping. We
apply this idea in the case of the punctured plane M = C \ {Py, P,, ..., P,} with a
smooth magnetic vector potential A of Aharonov-Bohm type.

Let F : C — C be an analytic function with zero set {P, P5,...,P,}, i.e.,
F~1(0) = {P|,P,,...,P,}, and F(00) = oo. Consider the strictly positive function
f = |F|: M — (0,00). Then the critical points of f coincide with the zero set of
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the complex derivative F, of the function F. This can be shown as follows. We have
that V£ (x,y) = 0iff V(f?)(x,y) = Oandf> = F - F. If

O0(F-F)=F,-F+F-F, =0,
and

O(F-F)=F,-F+F-F,=0,
then

(F,—iF))-F+F-F, +iF, = 0.

Since the function F is an analytic function, Fy + iF, = 0 and this implies that
Fy—iF, =0, i.e., the complex derivative F’ 2 of the function F is equal to zero.

Denote by OVdeF, the order of zero of F at P;. Let {Q1, 02, . . ., Q;} be the zero set
of the complex derivative F, of the function F, i.e., {01, 0>...., 0/} = (Fg)_l(O),
and denote by Critp the following subset of R4 = {x € R : x > 0}:

Critr = {0, |[F(Q1)|,...,|F(QpI}.

Under the map |F| : C — Ry the pre-image of Critr is a zero measure set F-.

We shall now define a piecewise constant function Cr on R?. For any (x,y) €
R2, x + iy ¢ F., the set |F|~'(|F|(x + iy)) is a disjoint union of smooth simple
curves in C; let () denote one of them that goes through the point (x,y). This
Y(xy) divides C into two domains, a bounded domain £2;,,(¥(xy)) and an unbounded
domain 2,y ((xy)). Then

2
Pr€Qin(Vixy)

Crx,y) = , 5.7.11
r(x,y) (ordy,  F)? ( )
where @, is a circulation of A round P; and
ordy, F= > ordpF. (5.7.12)

Py EQirzt()’(x.y))

We can now state our main result.

Theorem 5.7.4 Let Cr be defined in (5.7.11) for the analytic function F. For any
u € C§°(M) the following inequality holds

Fl(x + iy)

2
2
Fot i) ) |u(x, y)|“dxdy. (5.7.13)

/ I(V + iA)ul*dxdy > / cp<x,y)‘
M M
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Proof Let Ry \ Critp = | [am, bm] such that (@, by) N (ap,by) = @ for
meZ
m # m'. From Morse theory we know that |F|~'((@, b,)) is a disjoint union of
doubly connected domains. Let 2y be any connected component of |F|~! (@, bn)).
Then Flg, : Qo — 24,4, 1S a holomorphic function from € onto an annulus
Q4,5 - Since we are away from the critical set of F, the holomorphic map F|g, is a
covering map from €2 onto the annulus €2, 5,,. From the Argument Principle (see,
e.g. [5]) the degree of F|q, equals to ord,,, , F defined in (5.7.12), where (x, y) € 2.

Therefore the function (F |QO)1/ rdyn" is well defined and is a conformal mapping
from Q2 onto an annulus €2, ,, where

T = (am)l/ordy(xiy)F and R, = (bm)l/ordy(xu\,)F.
From Theorem 5.7.3

2

F l/ordy(x_y)p ’
(( IQO) )z Iulzdxdy

(Flay) /"

/|(V+iA)u|2dxdy2 /(p( > <1>,())2

Qo Qo PkEQint(V(x,y))

=J@@w

0

2

F ]
M lu(x, y)|>dxdy. (5.7.14)

F(x+iy)

Summing (5.7.14) over all connected component of |F|™' (@, b,,)) and over all
m € Z, we obtain Theorem 5.7.4. This conclude the proof. O

Remark 5.7.5 Choosing F(z) = [](z — z;) we obtain a function
j=1

Fl(x + iy) 2

HF(-xvy) = CF(-xvy)‘ F(X+ ly)

which satisfies the conditions 1 and 2 from the introduction to this section.
Another interesting choice is

1
F(z) = 57—,
(@)
=1 (

: Z—fj)
Ji

which yields Hp(x, y).
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5.8 Generalised Hardy Inequality For Magnetic Dirichlet
Forms

In this section we present some results from [22], where lower bounds for the
magnetic Dirichlet form

hM:ﬁW+mWM

on C°(R"), n > 2, were obtained.

For n = 2, the results generalise a well known lower bound by the magnetic field
strength, where the actual magnetic field B is replaced by an non-vanishing effective
field (the precise definition will be given below) which decays outside the support of
B as dist(x, supp B) 2. In the case d > 3 the magnetic form is bounded from below
by the magnetic field strength if one assumes that the field does not vanish and its
direction is slowly varying.

We consider separately two cases: n = 2 and n > 3. To derive a meaningful
estimate for n = 2 we exploit two elementary ideas. The first of them is the standard
lower bound established in (5.4.2),

hlu] > /:l:B|u|2dX,

which holds with either of the signs +; with A = (A}, A;), the magnetic field B
is identified with the scalar B = d;A; — d,A;. The second ingredient is the Hardy
inequality for domains with Lipschitz boundaries. Put together, they yield a bound
of the form

Mﬂzc/éM%x

with an effective magnetic field B, which coincides with +B on its support, and
decays outside the support as dist{x, supp B} 2. The constant ¢ in the above estimate
depends only on the support of B; see Theorem 5.8.1 for the precise statement. The
constant c is explicit and does not depend on the flux.

In the case n > 3 the problem becomes more complicated, as the magnetic field
B = dA = curlA may now change its direction; see Sect.5.8.5 for the precise
definition of this notion. Assuming that the field never vanishes, and under some
extra conditions on the smoothness of B, we prove the Sobolev-type bound

Ml = / 1B [u[2dx.

in Theorem 5.8.6.
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5.8.1 Magnetic Forms

Let A = (Ay,A,,...A,) be a real-valued vector function with A; € Lic (R™) for
j=1,---,n.Then the symmetric quadratic form

h[u] :/|(V+iA)u|2dx,

is closable on C3°(RY), and the magnetic Laplacian Hy = —A, is the unique self-
adjoint operator associated with its closure. Assume that the magnetic field B = dA
exists in the sense of distributions and it is measurable on R". We shall need the
notation

Bjk: 8jAk—8kAj, k,]: 1,2,...,}1.

Since the two-form B is antisymmetric, it is fully determined by the components Bjx
with j < k; the number of these components is

wy =n(n—1)/2.

We measure the strength of the field by the quantity

Bl = Y B
Jj<k

In the two- and three-dimensional cases, this quantity coincides with the length of
the magnetic field vector. If n = 2, the only non-zero components of B are B, and
By = —Bj3, i.e., in our previous notation, B and —B..

In the next two subsections we state our results separately for two cases: n = 2
and n > 3. They have much in common but due to the simplicity of the magnetic
field structure for n = 2, our results in this case are obtained under more general
assumptions on the field than for n > 3. For both cases we need to introduce a
positive continuous functions £ which plays the role of a slowly varying spatial
scale reflecting variations of the magnetic field. We associate with the function £ the
open ball

K(x)={ye R?: x —y| < £(x)}.

The precise conditions on the function £ for n = 2 and n > 3 are slightly different
and will be specified in each case separately.



194 5 Inequalities and Operators Involving Magnetic Fields
5.8.2 Casen =2

We revert to our original notation and denote by B(x) the component B,(x). The
scale £ is assumed to satisfy the conditions

te CyRY); VLX) <1, £(x)>0, VxR (5.8.1)

To specify further conditions on B we need to divide R? into sets relevant to the
strength of the field. For a (measurable) set C C R? define

Ct = UgeeK(x). (5.8.2)

With the field B we associate two open sets 2, A C R2, such that Q' ¢ A and
(R2\ A)' N QT = @; the case A = R? is not excluded. Let , > 0 be the lowest
eigenvalue of the Laplace operator —A on the unit disk, with Dirichlet boundary
conditions. Put

5(2 + 44/1
Ag = —( + \/_0), (5.8.3)
V2
and assume that
|B(x)|€(x)? > 242, ae. x€ A. (5.8.4)

The physical meaning of the sets 2, A, is that on € the field B is “large”, on R?\ A
the field B is negligibly small, and the set A \ Q is a “transition zone”.

Before stating the main result we remind the reader about an important constant
depending on 2. Suppose that the boundary of €2 is Lipschitz, and let §(x) denote
the distance from x € R? to Q. Then there exists a positive constant i < 1/4 such
that for any u € Hy(Q'), Q" = R?\ Q, one has the Hardy inequality

2
/Q/ IVu(x)2dx > ,L/Q/ |;‘g3l dx; (5.8.5)

see Theorem 3.2.1 and comment (vi) in Sect.3.1. If Q' is a union of convex
connected components, one has = 1/4. In view of the diamagnetic inequality

/|(v + iA)u|*dx > / |V |u||?dx, Yu € C}(R?), (5.8.6)

we immediately infer from (5.8.5) that

Ju(x)|?
’ 5(X)2

/ |(V + iA)u(x)|’dx > 1 / dx,VYu € C)(Q). (5.8.7)
Q/ Q
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Theorem 5.8.1 Let Q2 be an open set with Lipschitz boundary. Let the function £ be
as specified in (5.8.1), and let the field B satisfy (5.8.4). Suppose also that the field
B is either non-negative or non-positive for a.e. x € R?. Then

Iz |u(x)?
25 | i+ smr™
for all u € DIh], the domain of h.

To apply Theorem 5.8.1, the first step is to make an appropriate choice of the
function £ for a given magnetic field. Below we illustrate how it can be done in the
case n = 2 for two special cases. Both examples are deliberately made strongly
radially asymmetric in order to guarantee that the separation of variables is not
applicable.

Example 5.8.2 The first example is a compactly supported magnetic field. We
denote by Dg(x,y) the open disk in R? of radius R, centred at (x,y) € R?; let
xo > R > 0and A = Dg(xp,0) U Dr(—xp, 0). Assume that

B(x)=0, x¢ A, B>Bj, xXe A (5.8.8)

with some positive constant By, and define the function £(x) by

€(x) = £y = |/2A2/B,, x € R*. (5.8.9)

Clearly, £ satisfies the conditions (5.8.1) and (5.8.4) on the set A. Moreover, (R? \
A)T N QT = 0.1f 24, < R, then 2 can be chosen as follows: Q = Dr_2¢,(x0,0) U
Dg_2¢,(—x0,0). Now Theorem 5.8.1 leads to the inequality

2
hlul = 2/52%?(' )2 dx, u € D[h], (5.8.10)

where, with x = (x, y),
0, if (x,y) € Q,
3, y) = {V/(x—x0)2 +y2 — (R—24y), if x>0 and (x,y) ¢ 2,
Vi +x0)2+y2—(R—24y), if x<0 and (x,y) ¢ Q.
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Example 5.8.3 Next, we consider an “opposite” example: a magnetic field with
holes in its support. Suppose as above, that R < Xxp, assume again that B
satisfies (5.8.8) with the set

A =R\ Dg(x9,0) U Dg(—xo,0),

and define £ by (5.8.9). If 2£y < xo — R, define Q2 by

Q = R*\ Dra¢, (X0, 0) U D26, (—X0, 0).

Then Theorem 5.8.1 yields again (5.8.10) with the distance function §(x) = §(x, y)
given by

0, if (x,y) € Q,

§(x,y) = ¢ (R+24y) — /(x —x0)> +y%, if (x,¥) € Dryag,(x0,0),
(R +2Lp) — v/ (x + x0)2 +y2, if (x,y) € Dry2¢o(—x0,0).

Moreover, since Q' = R?2 \ € is a union of two convex sets (namely disks), one has
u = 1/4; see the comment after formula (5.8.5).
Note that in both cases the effective field

~ 1
5™ = m e
in (5.8.10), shows the following behaviour in the strong field regime, that is when
By — oc: if x € Q, then B — o0 as well. For x € R? \ A the function B behaves
like §(x), and thus, effectively, it “does not feel” the magnetic field, irrespective of
its strength. The set A \ €2, which consists of two rings of width Bg Y 2, is a transition
region.

Obviously, both examples can be generalised to any number of disks.

Before presenting proof of Theorem 5.8.1, we describe a very useful partition of
unity in two-dimensions.

5.8.3 A Partition of Unity

Let ,A C R? be the sets introduced in the previous subsection , and let Q71 be
as defined in (5.8.2). As was previously mentioned, Theorem 5.8.1 trivially follows
from (5.8.4) and (5.8.24) if A = R?. Henceforth we assume that R> \ A # 0.
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LetY € Cé (R?) be a non-negative function such that Y'(x) = 0 for |x| > 1 and
T (x)2%dx = 1; set
J

A=AMY) = / VY (x)|%dx. (5.8.11)

Then, by the min-max variational principle, the lowest eigenvalue A of the Dirichlet
Laplacian on the unit disk is given by

Ao = inf2. (5.8.12)

Lemma 5.8.4 Suppose that { satisfies (5.8.1). Then the function

1 X—Yy 2
o0 =g [, () #

possesses the following properties:

(i) ¢ € C'(R?), and [V (x)] < (2 + 4V LX)~
(i) ¢(x) =1forxe Q, ¢p(x) =0forx e R\ A, and0 < ¢(x) < 1.

Proof The inclusion ¢ € C'(R?) is obvious, since £ € C'(R?). The estimate for
V¢ is checked by a direct calculation:

2|VEx)|

Vo (x)| < W o

) Y (y)*dy

2 x—yl
+ g L rwivrwi v+ B ve fay

2
/ TW)IVT®)ldy
Qb

- 4
TR

24 2 P 2+4VA
—ﬁ(xﬁe(x)[/ VY d"} TR

Here we have taken into account that [V£(x)| < 1.
In view of the formula [ Y (x)%dx = 1, we always have ¢(x) < 1. Furthermore,
if x € Q, then by definition, KC(x) C Q", and hence

_ 1 x-y\  _
¢(X)—£(T)2/RZT(Z(X))dy_1,

as required. Otherwise, if x € R? \ A, then by definition, Y ((x — y)£(x)™") = 0 for
ally € Q7, and therefore ¢ (x) = 0. O
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This Lemma allows one to introduce a convenient partition of unity:

Lemma 5.8.5 Let the domains Q2 and A be as in Theorem 5.8.1, and let R\ A # @.
Then there exist two functions £, € CY(R?) such that

H0=<¢=<1, 0=n=1;

() ¢(x) =1forxe Q, nx) =1forx e R?\ A;
Gii) 2 +n*=1;
(v) |V¢| < AL7Y, | V| < ALY with

s 52 + 4vX)
==

Proof Let ¢ be the function constructed in Lemma 5.8.4, and let ¥ = 1 — ¢. It is
straightforward to check that ¢ + > = 2(¢p — 1/2)?> + 1/2 > 1/2. Define

(5.8.13)

_ ¢ _ 14
SN N

These functions, obviously satisfy properties (i), (ii), (iii). To prove (iv) note that

5 5
IVl = ——==IVo| = —

Vol
ST V9l = 5178

and a similar bound holds for V5. The required estimate now follows from
Lemma 5.8.4. O

5.8.4 Proof of Theorem 5.8.1

We are now ready to present a proof of Theorem 5.8.1. Suppose that the conditions
of Theorem 5.8.1 are fulfilled. Our next step is to split the magnetic form %[u] into
two parts that will be estimated in two different ways. Let £, ) be the functions from
Lemma 5.8.5. Since {2 + n* = 1, we have for any u € C}(R?):

hlu] = / 1€(V + iA)ul*dx + / [n(V + iA)u|’dx
— hlgu] + il — [ (VS + Vo) luax.
We use the following decomposition:

hlu] = %[h[u] - /(|V§|2 + |Vr)|2)|u|2dx} + %h[éu] + %h[nu]. (5.8.14)
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Since B does not change sign, it follows from (5.8.24) that h{u] > (|B|u, u). Let
us estimate from below the first term on the right-hand side of (5.8.14), bearing in
mind that V¢ and V7 are supported on the set A:

b (Ve +1VaPlufax > /A [|B| —(VeP + |Vn|2>}|u|2dx.

In view of the condition (5.8.4) and of the fact that |V¢|? + |Vn|? < 242072, the
right-hand side is bounded from below by —vE () with

1
E(u) = /A g lu(x)|’dx, v =2(A*—A3) > 0.
Next we estimate the remaining two terms in (5.8.14). For the term with ¢ use (5.8.4)
again, keeping in mind that ¢ is supported on A:

1

) ¢ (x)*|u)dx.

e = [ 1B ueoax = 243 [
For the term with  we use Hardy’s inequality (5.8.7):

|u(x)|?

5(x)2 dax.

hul = / n(x)?

Collecting all the estimates, we obtain the lower bound

2h[u] > 242 gzwd+ Z%d —2VE
ul > 245 szun(gzx VvE(u).

Since ZAé > 100 and < 1/4, one can write

2
2h[u] > p,/ %dx— 2vE(u).

Neither the right-hand side nor the left-hand side depends on the function Y.

Therefore we can take the sup of both sides over all admissible Y. In view of

definitions (5.8.3) and (5.8.13), the equality (5.8.12) yields supy(—v) = infy v =

0. This leads to the required bound from below and thus completes the proof of

Theorem 5.8.1.
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5.8.5 Results forn > 3

In this case our conditions on B are more restrictive. To state the precise conditions,
let us begin with the function £. We assume that

[(x)—L(y)| <olx—Yy|,0<po<1, £(x)>0, Vx,y € R". (5.8.15)
Assume that for some ® > 0
Bx)|{(x)> > ®, ae. x € R". (5.8.16)

This assumption guarantees that the field B never vanishes. Denote by n = {n}7,_;
the matrix with the components

Bj(x)

Ljk=1,2,....n.
IB(x)|

n(x) =

One may loosely call n the direction matrix for the field B. Our second assumption
onBisthatforallk,/=1,2,...,nandz € R"

n(x) —n(y)| < a,Vx,y € K(2), (5.8.17)

with some 0 < o < 4/ de_l /4. This assumption implies that the direction n of the

field varies slowly with x. Note that this condition is automatically fulfilled in the
case n = 2 witha = 0.

Theorem 5.8.6 Let n > 3. Let the function £ be as specified in (5.8.15), and let
the field B be a continuous function satisfying (5.8.16) and (5.8.17). Then for a
sufficiently large ® > 0 in (5.8.16) we have

hlu] > c/ [B(x)||u(x)|*dx (5.8.18)

for all u € DIh], with some positive constant ¢ depending on ¢ and .

Theorem 5.8.6 holds for the case n = 2 as well, but it is a trivial corollary of
Theorem 5.8.1.

Note that in contrast to Theorem 5.8.1 we do not specify the constant ¢ in the
inequality (5.8.18), neither do we provide any precise estimates on the value of ®
sufficient for (5.8.18) to hold. In fact, as a careful examination of the proof will
show, one can always control the constants in all the estimates, but their values will
hardly be optimal.
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5.8.6 Proof of Theorem 5.8.6

Suppose that the condition of Theorem 5.8.6 are fulfilled, and in particular, the
function £ satisfies (5.8.15).

The keystone of the proof is the following partition of unity associated with the
scale function £(x).

Lemma 5.8.7 Let {(x) (resp. £(x)) be a continuous function satisfying (5.8.15).
Then there exists a set of points X; € R", j € N such that the open balls K; =
K(x;) form a covering of R" with the finite intersection property (i.e. each ball IC
intersects with no more than N = N(g) < oo other balls). Moreover, there exists a
set of non-negative functions ¢; € Cg°(K;), j € N, such that

el =1, (5.8.19)
J

and
0"¢y| < Cul ™™, Vi, (5.8.20)

uniformly in j.

We note that the square in (5.8.19) will be convenient for us, though the common
definition of the partition of unity requires ) ;® = 1. Proof of this lemma is
analogous to that of Theorem 1.4.10 from [79] and we do not reproduce it here.

We rephrase the finite intersection property for balls K; as follows: setting

={keN:K;NK # 0},
then
cardm; < N(o) := N(o) + 1,
with the number N (o) defined in Lemma 5.8.7.
The next step is to use the partition of unity constructed in Lemma 5.8.7. For

u € C(l)(R”), a simple calculation, similar to that in the proof of Theorem 5.8.1,
yields

hlu] = Zh[¢k“] - Z/ |V b |* |u|*dx. (5.8.21)
k k
The first term on the right-hand side satisfies

NZh pud = )Y hlpw). N = N(o).

k lemy
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Let k € N be fixed, and let j,/ € [1,d] be a pair of integers such that |Bj;(xy)| >
,/de_l |B(x¢)|; such a pair always exists. Assume, without loss of generality, that

Bj; > 0. Then, in view of (5.8.17),
Bj(x) > 3 IB(x)|, x € K
jl - 4\/%—d ’ k-
On using (5.8.17) again, we obtain

1
le(X) > 2—\/%_d|B(X)I, X € Usemklcy.

From (5.8.23), we have the lower estimate

> Hpa = [ 81y gilufax = ix_d [ 1B1Y 2ua

semy seEmMy semy

the last integral being bounded from below by

|B||u|*dx.

24 [%d J K,

Here we have used the fact that Zsemk q&x(x)2 = 1 for all x € K, which follows
from the definition of m;. Consequently

1 1
Xk:h[mu] > NZ > ko] = W ;/}Ck B |u|2dx. (5.8.22)

k s€my

We estimate /[u] from below using (5.8.21) and (5.8.22):

1 B 2|2
h[”]z;/,ck[zzvm'm Vel ] udx,

where we have used the fact that V¢ is supported on ;. According to (5.8.16)
and (5.8.20) we have

[Vi|> < 272 < 207! B,
so that

- L g 2
h[u]_[ZNM ) :|Zk:/’Ck|B||u|dx.
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If we assume that @ is sufficiently large that the factor before the integral is positive,
we then obtain

hlu] > c/ [B| |u|?dx, u e Cé(R").

This is the required bound. The proof of Theorem 5.8.6 is now complete.

Remark 5.8.8 In [22], Sect.2.4, there is the following illuminating discussion of
Theorems 5.8.1 and 5.8.6.

The simplest known source of lower bounds for the magnetic Schrodinger
operator is the following representation for the quadratic form hfu]. Set L, =
Ok + iAg. Then

IZgwll® + | Lgul|* = [|(Lic % iLp)ul|* £ (Buu.u). u € Cy(R").
for any pair k,/ = 1,2, ..., n. This identity implies that
hlu] > £(Byu,u), Vk,1l=1,2,...,n. (5.8.23)

If one knows that, for some k, /, the quantity By, preserves its sign, and ¢|B| < |By/,
then the above inequality leads to the lower bound (5.8.18) in Theorem 5.8.6. The
bound is especially useful in the case n = 2, when it can be rewritten as

hlu] > +(Bu,u), u € C5(R?), (5.8.24)

as we saw in Sect. 5.4.1. In fact, Theorem 5.8.1 trivially follows from this estimate
and (5.8.4) if one assumes that A = R?. In this case, assuming, for instance, that
B > 0, one uses (5.8.24) with the “+” sign, which leads, in view of (5.8.4), to the
bound

Ju(x)|*
0(x)2

hlu] > 2432 dx.

Since ZA% > 100 and p < 1/4, this implies the sought lower bound. If, on the
other hand, B > 0 and the support of the field does not coincide with R2, then
Theorem 5.8.1 yields a bound similar to (5.8.24), but with an effective magnetic
field

1

P T s

which, loosely speaking, coincides with B inside the support, and decays away from
it. It is important that this effective field does not vanish in contrast to B.
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In the multi-dimensional situation the picture is different: the field B is allowed to
change its direction. In these circumstances the estimate (5.8.23) is not very helpful
as all the components By; may change their signs. Theorem 5.8.6 is specifically
designed to handle this situation. We need to assume however that B never vanishes.

A lower bound of a type similar to (5.8.18) was proved in [76]. Instead of
the function |B| the inequality in [76] features a specific weight function, which
coincides with |B| in the case of a polynomial magnetic field. Another instance
when such an inequality is known to hold, is described in [135]. If the magnetic
field is assumed to belong to a certain reverse Holder class, then it is shown in
[135] that h[u] + |lu]|*> > c(£~>u, u) with some explicitly defined scale function £.
Theorem 5.8.6 is close in the spirit to these results, but the proof in [22] is much
more elementary, and is based on a natural partition of unity associated with the
scale function £.

5.9 Pauli Operators in R with Magnetic Fields

In relativistic quantum mechanics, when electron spin is taken into account, the
Schrodinger operator Hy discussed in Sect. 5.4 is replaced by the Pauli operator,
which in R3, is formally given by

1 2 e 1 2
PAZ{U'(?V-FA)} E;{q,.(7aj+Aj)} : (5.9.1)

where A = (A}, A,, A3) is a vector potential associated with the magnetic field B =
curlA, and 0 = (01, 02, 03) is the triple of Pauli matrices

oo (O1) (0} . _(10
"“\10 27 \io 7 \o-1 )

The expression (5.9.1) can also be written in the convenient form
Pr=Spx+0-B, B=curlA, (5.9.2)

where we have written Sy for the magnetic Schrodinger operator as an operator in
L>(R3; C?), namely,

3

1 2 1 2
=|-V+A)| I, = -0;+A; | [ 9.
Sa (i + ) 2 Z(l,a,+ ,) 2 (5.9.3)

j=1

where II; is the 2 X 2 identity matrix, and o -B is called the Zeeman term. To simplify
notation in this section, we denote L*(R*; C?) by H and its standard inner-product
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and norm by (-, -) and || - || respectively: forf = {f1./>}. g = {g1. 82} € H
2
o =2 [ swzmax I = ..
j=1

Suppose that A; € L2 (R*), j = 1,2,3. Then, as an operator in H, S is the

loc
Friedrichs operator associated with the form

[Grea)e
1

It is non-negative and has no zero modes, i.e., no eigenvalue at zero. Its form domain
is the completion of C$°(R*; C?) with respect to the norm determined by (5.9.4),
which we denote by || - ||1.a-

Our objective in this section is to establish Sobolev, Hardy and CLR type
inequalities for the Pauli operator which are analogous to those of Sx. An obstacle
is the fact that the Pauli operator may have zero modes. This means that in order
to obtain the aforementioned inequalities, the zero modes must be avoided and
the inequalities should reflect this. To achieve these aims,we need some technical
preliminary results which lead to the introduction of a Birman-Schwinger type
operator. Initially we shall assume that |A| € L*(R?), but later [B| € L¥/?(R?) is
also needed. However, it is proved in [66], Theorem A1l in Appendix A, that, given
[B| € L¥/?(R?), there is a unique magnetic potential A with the properties

P :
+ ||g0||2§ . (5.9.4)

|A| € L*(R?), curlA =B, divA =0,
this being given by

_ L[ &=y
4 Jps X —y]|

A(x)

x B(y)dy.

We shall approach the problem through the Weyl-Dirac (or massless Dirac)
operator

1
Da:o-p+o-A, p:= 7V,

where we have use the standard notation p for the momentum operator, but note that
it now operates on C2-valued functions. The first lemma determines the domain of
Da.
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Lemma 5.9.1 Let |A| € L*(R?). Then, given & > 0, there exists k. > 0 such that for
all ¢ € H'(R3; C?), the Sobolev space H' = W'?2 on R? for C*-valued functions,

(o -Aell <elVel + kelle]l. (5.9.5)

Proof We may choose |A| = a; + as, where |a;(x)| < k¢ and ||a2|| 33y < €. Then,
by Hélder’s inequality and Sobolev’s embedding theorem,

(o - Aell < llargll + laxell < kellell + ell@llrsws)
< kelloll + vellVell.

where y denotes the norm of the embedding D'?(R") < L°(R"). O

It follows from the lemma and a well-known result on relative bounded pertur-
bations of self-adjoint operators (see [48], Corollary II1.8.5) that Dy is the operator
sum

Dya=0-p+o0-A,
with domain

D(Ds) = D(o -p) = H'(R*: C?).

The Pauli operator P4 can now be defined as the non-negative self-adjoint operator
associated with the form

IDagl? + llel*, ¢ € DDa),

which is the square of the graph norm of D, on its domain; D(IDy) is therefore the
form domain of P, and

D(PY?) = D(Da) = H'(R*; C?). (5.9.6)

Similarly, if |A| € L3(R?), p + A is an operator sum and the form domain of the
Schrodinger operator Sy is

DSY?) = D(p + A) = H'(R* C?).

To proceed, we need some more notation.

(i) The operator

P = Ps + |B|
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(i)

(iii)

@iv)
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is the non-negative self-adjoint operator associated with
plel = ple. ¢l = ([Pa + [Bllp. @) = (Pe, ¢).
If [B| € L*?(R?), then for all ¢ € H'(R?; C?),
(IBlg, 9) < 1Bl 1911 s sy < vIBlnEs) Vel
Therefore P has the same form domain as P, namely H'(R3; C?) by (5.9.6).

The operator S does not have an eigenvalue at 0, and clearly, neither does P.
Therefore Sp and P are injective and have dense domains and ranges in #.

We denote by H} the completion of D(SL/ 2) with respect to the norm
1/2
lelly == 1Syl (5.9.7)

Note that in this notation, H, has norm ||Vg|, and is therefore the C2-vector
version of the space denoted by D(l)’2 in Sect. 1.3.1.

We shall also need the space IHI]l3 which is the completion of D(P'/?) with
respect to
el = IP'2g]l. (5.9.8)
The spaces H,, , H; do not lie in 7, but they both contain C§° (R3; C?) as dense
subspaces, and since P > Sy by (5.9.2), we have the natural embedding
Hy < H,. (5.9.9)
The diamagnetic inequality asserts that f +> |f| maps H} continuously into
H&, and hence, by the Sobolev’s embedding theorem, we have
f e |fl: Hy — Hy = LY(R*,C?). (5.9.10)
Furthermore, Hardy’s inequality yields
H) — L*(R*; |x|%dx, C?).
This also implies that
D(P'/?) = Hi NH, (5.9.11)
with norm

(P20l + Nl
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the embedding Hy L°(R3; C?) guarantees the completeness to estab-
lish (5.9.11), since convergent sequences in Hll3 therefore converge pointwise
to their limits, a.e..

Let

ble]; = (IBlg, ¢). (5.9.12)

Then

0 =< bly] = plyl

and it follows that there exists a bounded self-adjoint operator 3 on Hy, such that
blgl = (Bp. @)y, ¢ € Hy,. (5.9.13)
For ¢ € R(P'/?), the range of P'/2,
1B~ gl = llol.

and hence, since D(P'/?) and R(P'/?) are dense subspaces of Hj, and H, respec-
tively, P~!/? extends to a unitary map

U:H—H,, U=P"? on R(P?). (5.9.14)
Define
S:=B|"*U:H - H. (5.9.15)
Note that
1B 2ull> < 1Bl zar2) lullZe .oy < Cllullﬁﬂ]l;, (5.9.16)

for some positive constant C, by (5.9.9) and (5.9.10).
The results we seek rely on the properties of the Birman Schwinger type
operator SS*. For f € R(P'/?), g € D(P'/?),
(f.S7f.8) = (f.9) = (B'*Uf.9)
= (Uf.|B|'%g)
= (P71, B|'2g);
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note that |B|'/2g € H by (5.9.16). Hence |B|'/?g € D(P~'/2) and P~'/?|B|'/?g =
S*g. In other words

S* =P~ '2B|'2 on D(P'?), (5.9.17)
Hence
88* = [B|'?U?B|"? on D(P'/?), (5.9.18)

and this extends by continuity to a bounded operator on .
Lemma 5.9.2 If|B| € L/>(R3), the operator SS* : H — H is compact.

Proof 1t is sufficient to prove that |B|'/2 : Hy — H is compact, for then it will

follow that S = |B|'/?U : H — H is compact. Let {1} be a sequence which
converges weakly to zero in HL, and hence |,,| — 0 in Hé by (5.9.9) and (5.9.10).
Then, in particular, |||,]|| Hy = k for some constant k. Given ¢ > 0, set |B| = B +

By, where By € C3°(R?) with support Q. and |B| < k, say, and B2l 1323 < é&.
Then

1B 29ull® < kell¥nllZ2 q.co) + )’2”B2||L3/2(R3)”|wn|”125(&
= kell¥ala o) + Vel IVl
The first term tends to zero as n — oo by the Rellich-Kondrachov theorem. Hence
lim sup [[[B]'/2y, > < ky?e.
n—oo

Since ¢ is arbitrary, it follows that |B|1/ 2. JHI]l3 — H is compact, and the lemma is
proved. O

The last result we need before giving the main theorem in this section concerns
the number of zero modes of the Pauli operator P4, that is, the dimension of the
kernel of Py ; this is denoted by nul P4 where nul stands for nullity.

Lemma 5.9.3

nul Py = dim{u : Bu = u, u € Hy N H}

< nul F,
where F = 1 — SS8*. There is equality if and only if

Fu=0= UuecHyNH.
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Proof Letu,v € D(P'/?). Then

palu.v] = plu, v] = blu, v]

= (u— Bu, U)Hll;.

Hence u € ker Py C D(]Pl/z), if and only if, Bu = u, with u € H. Moreover, for
any f,g € H,

(S.Sg) = (BUF. Ug)gy,
whence
(™S —11f.9) = (B 1]Uf. Ug)y,-
Since nul [§*S — 1] = nul [SS§* — 1], we see that
Pau=0 & FU 'u)=0,
where it is understood that u € D(P5) C Hj. The lemma follows. O

The following theorem is proved in [19]

Theorem 5.9.4 Let |A| € L3(R?) and [B| € L*(R?). Let S be given by (5.9.15)
and F = 1 — 8§S*. Suppose that for some B, the operator F has no zero mode, and
set

§(B) := inf 1 —S*SIf|>. (5.9.19)
Ifl=1. UfeHENH

Then §(B) > 0 and
Pa > §(B)Sa. (5.9.20)
1
The following hold for all ¢ € D(P;) = H'(R*,C?) :
(i) (Sobolev-type inequality)

2 5(B)

1
Pie| = 7||¢||[2L6(R3)]z, (5.9.21)

where y is the norm of the embedding H' (R?) — [L°(R¥)]?;
(ii) (Hardy-type inequality)

; (5.9.22)
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(iii) (CLR-type inequality) for V_ € L> (R?), the number N(Pa + V) of negative

eigenvalues {—A,} of Po + V satisfies
c 3
3 / V2dx,
B)2 Jr?

where c is the best constant in the CLR inequality for Sa;

(5.9.23)

NPy, +V) <

(iv) (Lieb-Thirring-type inequalities)
(5.9.24)

va / Vit idx
8(B)2 R3

foranyv > 0.
Proof If F has no zero mode, the compact operator SS* on H does not have

eigenvalue 1 and hence neither does $*S, since
0(8S*)\ {0} = 0(5*S) \ {0}

see [141], Sect. 5.2. Hence, §(B) > 0, and for any f € H with Uf € H N H},

SBIFI* < 11 = S*S)FII?
= IfII°> = 2(S*Sf.1) + IS*SfIP.
Let f = P2¢ for ¢ € H. Then Uf = ¢ and Sf = [B|2¢ from (5.9.14).
Consequently
S(B)[Pg)” < [P2g|” = 2[BI2g | + 5" Bl o) (5.925)
IPa@ll” = 11Bl2¢l* + [S*[B|z ],

since P = Pa + |B| in the form sense. Also if g € R(P2)
11
ISell = IBI2P~> ¢l < llgll

as P > |B|. Since R(]P’%) is dense in #H, we have that ||S*|| = ||S|| < 1. It follows

from (5.9.25) that
1 1
SB)|P2gl* < [Pa> ¢l

whence Py > §(B)P > §(B)Sa.
The inequalities exhibited are now consequences of (5.9.20) and the correspond-
. . - -

ing standard inequalities featuring —A, on using the diamagnetic inequality
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Remark 5.9.5 If any one of the inequalities (5.9.21)—(5.9.24) is satisfied, then Ps
has no zero mode. Whether or not nul P = 0 implies nul ' = 0 is not clear. It is
of interest to observe that in (5.9.19), the infimum is taken over the subspace of H
in which Ps and F have common nullity.

In [27] it is proved that if B € L¥?(R?) is such that §(B) = 0 and there exist
B > 0,C > 0andry > 0 such that

IB(x)| < C|x|~>7#

for all |x| > ry, then the associated Pauli operator P4 has a zero mode.



Chapter 6
The Rellich Inequality

6.1 Introduction

In lectures delivered at New York University in 1953, and published posthumously
in the proceedings [128] of the International Congress of Mathematicians held in
Amsterdam in 1954, Rellich proved the following inequality which bears his name:
forn # 2

nz(n—4)2/ |u(x)?

2 00 (TN
/”|Au(x)| dx > —— ME dx, ue CPR"\{0}), (6.1.1)

while for n = 2, the inequality continues to hold but for a restricted class of
functions u; see Remark 6.4.4 below.

Since Rellich’s proof, many versions of the inequality have been proven in
various settings, and we present some of these in this chapter. First, we review
methods due to Schminke [133] and Bennett [29] for proving the inequality in
L*(R"), n > 4, which are different from those used in [128, 129]. These motivated
the proof of a weighted L”(R") version of the inequality for any 1 < p < oo,
obtained by Davies and Hinz in [45]; we give a full account of the proof in
[45], and also note an earlier paper by Okazawa [125] in which a more general
inequality is proved and then applied to establishing the Rellich inequality and
the accretiveness of Schrodinger operators in L”(R"), (see Lemmas 3.5 and 3.8
of [125]). Rellich-Sobolev inequalities derived by Frank (private communication,
2007) for convex domains are then discussed and shown to hold on weakly mean
convex domains. Finally, a Rellich inequality in L?(R") with magnetic potentials is
proved by methods reminiscent of those in Rellich’s original proof. These methods
provide a path to studying the eigenvalues of biharmonic operators —A% — V,
where A is a magnetic potential of Aharonov-Bohm type. Bounds for the number of
negative eigenvalues are established which depend upon the magnetic flux W of A.

© Springer International Publishing Switzerland 2015 213
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Universitext, DOI 10.1007/978-3-319-22870-9_6



214 6 The Rellich Inequality

6.2 Rellich and Rellich-Sobolev Inequalities in 1>

6.2.1 The Rellich Inequality

The following proof of an inequality in L? (R") associated with the Rellich inequality
is much in the spirit of an elegant proof given by Schmincke [133], (and a
generalisation by Bennett in [29]), which recovers Rellich’s inequality for n > 4. It
resembles the Hardy inequality in Theorem 1.2.8 .

Theorem 6.2.1 Let Q C R” for n > 2. If a real-valued function V. € C*(Q) and
AV(x) < 0, then for all u € C§°(2) and any & > 0,

V2
/ Vi |Au|2dx22£/ V|Vu|2dx+8(l—e)/ |AV||u|*dx. (6.2.1)
o |[AV] Q Q

Proof Since AV(x) < 0in €2,

/ |AV||u|*dx = —/ VAu|dx = —2/ V[Re(uAu) + |Vu|*]dx.
Q Q Q

Then
2 1 | |2 2 2
|[AV]||u|*dx < 2[- | ——|Au| dx] [e |AV||u| dx]2
—2/ V|Vul?dx
< _/ VP |Au|2dx+s/ |AV]|ux (6.2.2)
AV]
—2/ V|Vul?dx
Q
and the conclusion follows. O

Corollary 6.2.2 Ifn > a + 4 for some o > —2, then

2 2(n— o — 4)? 2
/ [Auf? (4 @) (n—a—4) / ul” (6.2.3)
R R

"\ {0} |x|* - 16 "\ {0} |X|°""'4

forallu e C(R™ \ {0}).
Proof Let V(x) = |x|7©@*? in Theorem 6.2.1, and so

VV =—(a+2)x|7*, AV =—(a+2)(n—a—4)x|~@",
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Set c(n,a) = (« + 2)(n — a — 4), and observe that AV = —c(n, o) |x|~@T < 0
for |x| # 0. It follows from (6.2.1) that
Aul? Vul?
Jangoy BiEdx > 2e(n, ) [ oy bz

" (6.2.4)
+e(n,@)?e(1 =€) fym g0 TrrdX.

To derive (6.2.3), we first apply the Hardy inequality (1.2.19) with V(x) =
|x| =@+ to get that, for & € (—2,n — 4),

Vul? —a—4)? 2
/ | qurde . (n—a—4) / |u|+4dx7
re\{0} [X[* 4 re\{0} [X[*

and then let ¢ = (n + ) /4(a + 2) in (6.2.4), which is the choice of ¢ that gives the
maximum right-hand side. O

Remark 6.2.3 The case @ = 0 of (6.2.3) is, of course, the Rellich inequality (6.1.1)
for n > 4. Following the original technique of Rellich, Allegretto proved (6.2.3) in

[6], Corollary 3, but required « > O andn > 1 + /(@ + 1)(e + 3). That result is a
corollary of Theorem 6.4.1 below; see Remark 6.4.2.

Remark 6.2.4 Note that Corollary 6.2.2 is valid for a different range of values «
than Corollary 3 in [6]. For example, Corollary 6.2.2 holds forn = 3 orn = 4 if
a € (—2,n — 4), whereas Allegretto’s Corollary 3 does not apply. When n > 5,
Corollary 6.2.2 is applicable for @ € (—2,n — 4) and Allegretto requires 0 < o <
—2 4 4/(n—1)? + 1. Thus, on combining these results we are able to conclude that
forn > 5, (6.2.3) holds for @ € (—2,—2 + /(n — 1)2 + 1). The weighted Rellich
inequality in LP(R"), p € (1, 00), corresponding to Corollary 6.2.2 will be given in
Corollary 6.3.4.

In [34], an inequality similar to (6.2.3) is obtained for all u € C5°(£2\{0}), where
Qisacone {ro : r > 0, 0 € X}, with ¥ a domain with C? boundary in the unit
sphere. Their inequality holds for all real « and the constant is sharp.

Remark 6.2.5 We shall return to the cases n = 2, 3, and 4 of the Rellich inequality
in Sect. 6.4.2 below. On page 91 in [129], it is proved that when n = 2, the Rellich
inequality still holds, but only for functions u € C3° (R?\ {0}) which also satisfy

2 2
/ u(r,0) cos 6d6 :/ u(r,0) sin 8d6 = 0. (6.2.5)
0 0

This is recovered within the general result proved in Sect. 6.4.
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6.2.2 Rellich-Sobolev Inequalities

In a private communication, Rupert Frank showed how to prove certain refinements
of the Rellich inequality. In order to present these here, we first need a corollary of
the Hardy-type inequality (1.2.19): we recall, for convenience, that for AV < 0 in
the distributional sense, (1.2.19) is

V2
/ |AV||ul?dx < 4/ ||AVI| IVuldx, ue CP(Q).

For a # 0, make the substitution, V(x) = —[(« + 1)/«]8(x)™%, and for ¢ = 0, let
V(x) = In 8§(x). Then, |[VV|?> = (a + 1)2672@*+D and when A§ < 0,
—AV = (@ 4+ )27 4 (@ + DETOD(—AS) > (a + 1)257@HD),

whence

Corollary 6.2.6 Let Q C R", n > 2, be such that A§ < 0 in the distributional
sense. Then, ifa > —1,

|ul? |Vul?
(a + 1)2/Q 5(x)°‘+2dx <4 T dx, u e CP ().

This yields

Corollary 6.2.7 Let Q@ C R", n > 2, be such that A§ < 0 in the distributional
sense. Then

2
/ |AulPdx > E i '(S“—de ue CP(Q), (6.2.6)
Proof We first claim that
/Q |Aul?dx = Z /Q |V (3ju)|*dx, ue CP(RQ). (6.2.7)
j=1

where 0; := 0/0x;. For, with the notation u; = 0ju, uy = 0;0xu and ujy = 0;0,0.u,
we have

/|Au|2dx— Z/ujjukkdx

Jjk=1

= Z/ |ugji] dx—Z/ Ul dx

JFk

= Z/ |I,t”|2dX+ Z/ Mjkﬁjkdx
j=k 7% k8
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and hence (6.2.7). On applying Corollary 6.2.6 twice to (6.2.7), the first time with
o = 0 and then with o = 2, the corollary follows. O

Remark 6.2.8 1f Q is convex, then we proved in Theorem 2.3.2 that the hypothesis
of Corollary 6.2.7 is satisfied. Also in Corollary 3.7.11, we showed that 2 being
weakly mean convex with null cut locus is sufficient for the hypothesis to be
satisfied. The weak mean convexity of €2 was shown in Proposition 2.5.4 to be
equivalent to A§ < 0in G(L2).

We can also use Corollaries 6.2.6 and 6.2.7 to obtain inequalities which are
analogous to the HSM inequalities of Chap. 4.

Proposition 6.2.9 Let Q & R", n > 3, be convex with inradius 8y 1= supg § < 0o.
Then, for all u € C°(2),

9|u|2 AZ IMIZ 4
Aul> — =— ) dx > /—d 0/ 2dx, 6.2.8
o (o = e o= G [ Groms 3 [ wiax. w29

where Ay is the first zero in (0, 00) of Jo(x) — 2xJ; (x).
Proof From (6.2.7) and the Avkhadiev/Wirths result reproduced in Theorem 3.6.12,

n 2
/QlAu|2dx > 2{4 ) '38'” / 1, u|2dx}

J=1

v

\V/ 2
_Lf ”' dx +—/|Vu|2dx
49

9 |u|2 /\% 1 |u|2 / 2

whence (6.2.8). O

The assumption that €2 be convex can be dropped in favour of weak mean convexity
if we use Corollary 3.7.16 instead of the Akhadiev/Wirths theorem.

Proposition 6.2.10 Let Q2 be a weakly mean convex domain in R", n > 2, with null
cut locus. Then

9 Jul? A, 2)* [ |ul?
Aul> — = Jdx> "2 | Tax+ A sz“/ 24 6.2.9
[ (1 = e Yax= 225 [ B aot [ s, 629

where A(n, Q) = (1/2)infg §~1(=A8) > 2(n — 1) infyq |H|%

From Corollary 4.3.2,if Q & R",n > 3, is convex, there exist a constant K such
that

n—2

/ IVul? — PN s /| EAN (6.2.10)
u u|n— L.
Q 48 - Q
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for all u € C3°(£2). From this follows

Proposition 6.2.11 Let @ & R",n > 5, be convex. Then

9 Iulz (n—4)/n
/ (lAu|2 - ES_‘*) dx > K (/ |u|2"/<"—4>dx) ) (6.2.11)
Q Q

forall u e C°(Q2).
Proof The proposition follows from the use of (6.2.7), (6.2.10) and the Sobolev

inequality
(n—4)/n n o |2 @2 (n=2)/n
( / Jul>/ (”‘4)dX) <G / — dx
Q = Vel
obtained from (1.3.6) with p = 2n/(n — 2). O

A similar inequality to (6.2.11) can be obtained for bounded weakly mean convex
domains from Theorem 4.4.4.

6.3 The Rellich Inequality in 17 (R"), n > 2

In [45], Davies and Hinz obtain a Rellich-type inequality in L/(2), 1 < p < oo,
when €2 is a bounded region in a complete Riemann manifold. A consequence of
their result is the inequality

/ I o < c(d,m,p,ﬂ)P/ A" P e CPR™\{0}), (6.3.1)
R

o |x|B o |x|B=2mp

for2(1 4+ (m—1)p) < B < n, with an explicit constant c¢(d, m, p, ) which is shown
to be sharp. A special case is the Rellich inequality in LZ(R" \ {0}) for n > 2p. An
earlier proof of this Rellich inequality was in fact established by Okazawa in [125];
see also [92]. However the proof we shall give is that in [45], because it is more
in line with our overall approach. Okazawa’s main concern is with an analysis of
the operator —A + 1/|x|? in L”(R"), and determining when it is m-accretive and
m-sectorial in Kato’s sense.

The first lemma is a basic tool in the approach, and is motivated by Theo-
rem 1.2.8.

Lemma 6.3.1 IfV > 0, AV < 0, and there is a constant ¢ > 0 such that for all
ue CP(R)

c/ [AV||ulPdx < p(p — 1)/V|u|”_2|Vu|2dx, (6.3.2)
@ {xeQ,u(x)#0}
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then
vr o
(1 Jrc)f'/Q |AV||u|de§pp/Q WIAMP’(ZX, ueCP(Q).  (633)

If p = 1 then the lemma holds for ¢ = 0.

Proof The first step is to show that we may assume that the functions u are real-
valued. To prove this, we use the following identity from [40]: for all z € C,

b4 -1

|z|P = A/ |Re[z] cos € + Im][z] sin 6|°d6, A := (/ | cos O|7dO

- - (6.3.4)
It is proved by putting z = r(cosy + isiny), r = |z|, and simplifying. Suppose
that (6.3.3) has been proved for real-valued functions. Then, on setting u = u; +iu»,
we have by (6.3.4), and changing the order of integration,

(1+C)P/ |AV||u|Pdx
Q

1+ C)PA/ / |AV||uj cos 0 + uy sin 0P dxdo
- JQ

IA

b4 Vp
pPA/ / Ayt Al cos8 4w sin O] dxao,
- JQ

172
- )4 o0
pP/Q AV |AulPdx, ue Cy°(2),

on using (6.3.4) again. The claim is therefore verified, and we assume hereafter that
u is real-valued.
Let & > 0 and set u; := (|u|> + £2)?/> — &”. Then 0 < u, € C° and

/ |AV|u.dx = —/(AV)usdx = —/ V Au.dx
Q Q Q
= —/ 1% {p(p — D + )PV 4 p® + 82)(”_2)/2} |Vul?dx
Q
— p/ Vu@u® + &2)P72/2 Audx.
Q
Hence
/ [|AV|u£ + V{p(p — D2 + )Y 4 p(u? + ) P22 ]|Vu|2dx
Q

< p/ Viu|(u® + €2)P72/2| Auldx.
Q
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We now let ¢ — 0. The integrand on the right is bounded by V(max |u|> +
1)?=D/2 max | Au|, which is integrable since u € C§°(£2), and so the integral tends
to [o V|uP~'| Au|dx, by dominated convergence. The integrand on the left is non-
negative and tend to |AV||ul? + p(p — 1)V|u|P~2|Vu|? pointwise, only for u(x) # 0
when p < 2, otherwise for all x. It follows by Fatou’s lemma that

/ |AV||ulPdx +/ {p(p— 1)V|u|P_2|Vu|2} dx
Q {x€Q;u(x)#0}

<p / Viul ™! Aulds,
Q

and on substituting (6.3.2), followed by Holder’s inequality,

(1 +c)/ |AV||ulPdx 517/ V]ulP~!| Auldx
Q Q

p=1L VP 1
P P

4 - P
gp(/Q|AV||u| dx) (/ﬂ |Av|p_1|Au| dx) .

The lemma follows from this. O
The next lemma meets the requirement (6.3.2).

Lemma 6.3.2 Letp € (1,00). If0 < V € C(Q), AV < 0 and AV?® < 0 for some
8 > 1, then

6 — 1)/ |AV||ulPdx < p? / V]ulP~2|Vu|*dx < oo
¢ {xeQ,u(x)#0}

forallu € C°(£2).
Proof We shall use
0> A(VY) =8V2{S — 1)|VV|]> + VAV} (6.3.5)
and hence
(6 —D|VV|> < V|AV].
Under the conditions imposed on V, this needs to be justified by regularisation.
However, for the application we have in mind, it is sufficient to assume that V €

C?(R2). From Theorem 1.2.8

[VV[?
|AV]

6 — 1)/ |AV||ul*dx < 4(8 — 1)/ |Vu|*dx
Q Q
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< 4/ V|Vu|?dx = 4/ V|Vu|?dx,
Q {xeQ;u(x)#0}
(6.3.6)

the last equality following since {x € Q;u(x) = 0, |Vu(x)| # 0} is of measure
zero. The lemma is therefore proved in the case p = 2.

For p # 2, put v, = (u® + ?)?/* —¢P/? and let ¢ — 0. Since 0 < v, < |u|, the
left-hand side of (6.3.6), with u replaced by v, tends to (6 — 1) fQ |AV||ulPdx by
dominated convergence. Also,

[Vo:(x)V(x) = {gu(x)(uz(x) + )P AVu(x)}?V (x)
p2 p—2 2
A IR

if u(x) # 0. It follows as in the proof of Lemma 6.3.1, through the use of Fatou’s
lemma, that the right-hand side of (6.3.6) tends to

/ V0ulP~| Vul*dx
{x€Qiu(x) 0}

and this completes the proof. O

By Lemma 6.3.2, we may put ¢ = [(p — 1)/p](§ — 1) in Lemma 6.3.1 to obtain
Theorem 4 in [45], which is an extension of the case p = 2 in [29], Theorem 5; thus

Theorem 6.3.3 If0 < V € C(Q) with AV < 0 and A(V®) < 0 for some § > 1,
then

p¥
AulPdx,
=D+ 1P /Q N ke

/ AV lulPdx <
Q

Sforall u e C°(Q2).
The choice V(x) = |x|7@72), § = (n —2)/(a — 2) yields
Corollary 6.3.4 Let2 < o < n. Then, for all u € C°(R" \ {0}),

|u(x) | |Au(x)[?
/” de < C(n,p,(x)p /R,, |X|04——2de’ (6.3.7)
where
»
c(n,p,a) = (6.3.8)

n—a)(p—Dn+a—-2p]
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The special case of Rellich’s inequality is given prominence and extended to
functions in the Sobolev space W2 (R") = WOl P(R"); this means, in particular, that
the inequality holds for all functions in C§°(IR").

Corollary 6.3.5 Let 1 < p < oo and n > 2p. Then, for allu € W'»(R")

/ n |L|‘f:|‘2)fdx < ¢(n, p)’ A JAu(opds, (6.3.9)
where
c(n,p) = __r (6.3.10)
n(p —1)(n—2p)
is sharp.

Proof We first note that C°(R" \ {0}) is dense in W*?(R"). To see this let ¢ €
C5°[0, 1) be such that ¢(r) = 1, for 0 < r < 1/2, and O for r > 1/2, and set
¢:(r) := ¢(r/e), where ¢ > 0. Then, if u € C{°(R"), we have that [I — ¢.Ju €
C (R \ {0}) and

| petell w22 mny — O

as ¢ — 0 if n > 2p; this establishes the assertion.

It remains to show that c(n, p) is sharp. Consider u(x) = |x|™° near the origin
with 0 < 0 < —sz Then u € W2?(B,) for By := B;(0), the unit ball in R”. A
calculation gives

[Au(x)| = o(n — o — 2)|x| 2u(x).

In fact, foro = "_pi

|Aux)| = c(n.p) x| ux)l,  x#0.

oyl
Let oy := "2+ and ug (x) := |x|™%yp, € W>?(B). Then,

—1 : ”Au”p : ”A“k”p
c(n.p)™ = infuewzr@n =y, = infieN =27,

< limy—00 0% (1 — 0} — 2) = c(n,p)~",

implying that c(n, p) is sharp. O
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6.4 The Rellich Inequality with Magnetic Potentials

6.4.1 A General Theorem

We proved in Sect. 1.2.5 that there is no valid Hardy inequality in L"(R"). In the
case n = 2, it is a consequence of the fact that, for any y > 0, cos(y In|x|) and
sin(y In |x|) are linearly independent, oscillatory solutions of

2

—Agp = y—go, x € R?.
Ix|>

The function ¥(x) := ya(x)sin(y In |x|), where y, is the characteristic function
of the annulus A := {7 < |x| < €*/7}, lies in the closure of C$°(R? \ {0}) in
the W!2(IR?) norm, and so if Hardy’s inequality is valid, it must be satisfied by .
However,

x)|2
JollVY )2 — 2 5l ax 64D
. 2, — S
= [p2[—Asin(y In|x]) — &? sin(y In |x)]¥ (x)dx = 0,
which is a contradiction since y can be arbitrarily small.
For any magnetic potential A : R" — R" in L7

inequality (5.3.2) applied to the Hardy inequality yields

(R"; R™), the diamagnetic

2
C/ IL@' dx < / [(V + iA)ux)Pdx,  ue CPRY, (6.4.2)
n Rr

with C = (n—2)?/4, and therefore no non-trivial information for n = 2 is gathered.
However, we saw in Sect.5.5 that if A is an Aharonov-Bohm magnetic potential
with non-integer flux, there is a valid inequality (6.4.2) with C > 0 when n = 2. To
summarize Theorem 5.5.1, the magnetic field B = curlA = 0 in R? \ {0}, and A is
gauge equivalent to

A(r,0) = %(— sin @, cos 6), U= W(A), (6.4.3)

where x = (rcos 0, rsin #) € R?\ {0}, and W(A) is the flux of A. One then has the
Laptev-Weidl inequality

2
/ IM(X)I de diSt(‘I‘, Z)Z/ I(V+lA)u(X)|2dX’ (644)
R [x|? R?

with sharp constant. If ¥ € Z, the magnetic Laplacian —A 4 is unitarily equivalent
to —A, as operators in L*>(R?), and there is no valid inequality.
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Motivated by the work of Laptev and Weidl [99], Rellich-type inequalities for
magnetic Laplacians —A, with magnetic potentials having similar characteristics
to those of the Aharonov-Bohm potential were obtained in [54]. The main theorem
established makes it possible to analyse the Rellich inequality in the cases n = 2
and n = 4 when (6.1.1) is trivial.

The theorem and proof that follow uncover the basic elements of Rellich’s
approach in [129], Theorem 1, p. 91, and is based on [54]. Polar coordinates in
R will be denoted by (r, w) with r := |x|, ® = x/|x| for x € R". We shall denote
the L?(R") norm by || - ||.

Theorem 6.4.1 Let A, be a non-negative, self-adjoint operator with domain
D(Ay) € L2(S"';dw), whose spectrum is discrete, consisting of isolated eigen-
values A,,, m € I, for some countable index set L. Let

0? n—1 10

L=
a2 r or

(6.4.5)
and define the operator D := L, + V%Aw on its domain in L*(R") given by

Dy = {f € CP(R"\ {0}) : f(r,-) € D(A,) for r > 0,Df € L*(R")}.

Then, for all f € Dy such that | - |~*/>Df € L*>(R"), we have that

|Df(X)|2 |f(X)|2
L= o [ (040
where
2
C(n,a)zrigg{mer(”;“) (”_‘;‘_4)} . (6.4.7)

Remark 6.4.2 If D = —A, A, is the Laplace-Beltrami operator on S"~!. In that
case Ay, =m(m+n—2),me I =1{0,1,...}, and (6.4.6) reduces to

| f|2 If(X)I2
sz e [ (s
for f € C3°(R" \ {0}) and @ € R. Hence, with o = 0,

/ |Af|2dX > C( 0)/ |f(X)|2 X,

Ix[*
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for f € C{°(R™ \ {0}), where

9
C2.0)=0. C(3.0)=

and

2
C(n,0) = ("("4_4)) ;

Rellich’s inequality is therefore recovered. Also Lemma 2 of Allegretto [6] is
recovered:

Cln.a) > (n+a)’(n—oa—4)?
T 16

foro >0andn>1+ /(3 +a)(1 + ).

Proof of Theorem 6.4.1 Since the spectrum of A, is assumed to be discrete, its
normalized eigenvectors u,,, m € Z (with the eigenvalues {1,,} repeated according
to multiplicity) form an orthonormal basis of L?(S"~'; dw). For f € Dy, set

Fp(r) = /Snilf(r, )iy (w)dw. (6.4.8)

Then F,, € C§°(R+) and, on using Parseval’s identity, we obtain

o0
S Ll iy = [ S ILFu) P
0

meT meT

= |LfI* < oo, (6.4.9)
with
L.Fp(r) =/ Lf(r, 0)u,(w)do.
Sn—l

Also, L,f, Df € L*(R") imply that | - |72A,f € L*>(R") and

o0 o0
S [ = [ R iE o
0

meTL 0 meL

=l [2Auf* < co. (6.4.10)
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In fact, if | - |7*/2Df € L*(R"), then | - | >"%/?2Af € L*(R") and

o0
) / [En(r) P~ dr = ||| -] 77Pf|? < oo, (6.4.11)
mez V0
o0
2 / L Fn ()P dr = |- [PLf | < oo, (6.4.12)
mez V0
o0
) R e [ e W CR S CRR )
meL 0

To prove the theorem, we start with
dx dx — dx

[ o = [ ey a+2Re[ [ L,wafTH]
R x| R x| R x|

dax

+ |Amf|2|X|T+4. (6.4.14)
Rn

The choicesp = 2, ¢ = /24 1 in Theorem 1.2.1 lead to the Hardy-type inequality

o0 tH 1\ [®
/ |F’(r)|2r’+2dr2( 2 ) / |F(r)[*r'dr, t € R, (6.4.15)
0 0

for all F € C}(0, 00). On integrating by parts, we obtain

fooo |LF,(r)|>r"—"dr
= [ UF, ()P + 2=URe[F,F ]
.[0 m r m- m
+ =2 () Py dr
> (=52)° [ |F, () P ar
—(1= (1 —a—2) [ |F, ()P dr
=1 [T F, (P dr
= (= D@+ 1) + (=2)?| [ |F () Pr—o2dr
2 0 m

= (1) (=5 S5 IFw ()P,

Thus, from (6.4.11) and (6.4.12),

|L,f|? n+a\ (n—a—4)\> Lf)2
/Rn P dx > (— > /R |X|a+4dx. (6.4.16)
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Since
| oo = 1,7,0)
and
[ At )@ = At

it follows from Parseval’s identity that in (6.4.14),

L,fA,, o —_—
/ HAaf |0 / ZAmFm(r)L,Fm(r)rﬂ—a—?’dr. (6.4.17)
n |X|a+2 0
meL
Integration by parts yields

2Re [ e mL,Fm(r)ﬂ—a—3dr]

=2Re[ ;" F, (Fl,r" 73 + (n— a — 3)F,,”" %) dr]
+(n—1D)(n—o—4) [ |Fulr>dr

=2 [ °|F, [P 3dr
H—(—a=3)+@n—D}n—a—4) [ |Ful>r">dr

> 2(5524) 4+ -0 = (@ + ) 7 IFaPr e Sdr
(by (6.4.15)),

=in—a—4n+a) [ |Ful> " 3dr.

This gives in (6.4.17)

LfAuf 1
2Re [An X[ dx:| Zi(n —a—4)(n+a)

X A / |Fo(r)2F ™ dr. (6.4.18)
me’L
Finally in (6.4.14), by (6.4.13),
|Awf|2 2 2 n—a—>5
/” |X|a+4d x=Y A2 / |Fo(F) |2 dr. (6.4.19)

meZl
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The theorem follows on substituting (6.4.16), (6.4.18) and (6.4.19) in (6.4.14) and
noting (6.4.11). O

6.4.2 An Inequality for D = —A 5

We now apply Theorem 6.4.1 to the magnetic Laplacian associated with a magnetic
potential A which is of Aharonov-Bohm type when n = 2, and has analogous
characteristics for other values of n. In order to handle the case n = 4, it will be
necessary to discuss the case n = 3, which we sketch, referring the reader to [54]
for further details. For values of n > 4 and higher order Rellich inequalities, see
[142]. The anomalous n = 2 and n = 4 results for the Rellich inequality (6.1.1) will
be consequences of the main theorem.

The Casen =2

The magnetic potential A is now assumed to satisfy (6.4.3), with non-integer flux
W, With e, := (cos 6, sin 0) and ey := (—sin 0, cos 6), we have

ad 1/0
Va=V+iA=e—+e—|—=+i¥ (6.4.20)
or r \ 90
and
¥ 19 1.9 2
_AA__W_;E_F}E(;%—\IJ) . (6.4.21)

Thus, in the notation of Theorem 6.4.1, A, = Ay is the non-negative self-adjoint
operator in L?(0, 27r) defined by Ay = K3, where

Kou(0) = ij—g — Tu(0) (6.4.22)

with domain
{u cu € AC[0, 27], u(0) = u(27r)},

where AC[0, 27r] denotes the set of functions which are absolutely continuous on
[0, 27]. Clearly K has eigenvalues m— W, m € 7Z, and the corresponding normalized
eigenfunctions are

un(0) = J%e—fm9, (6.4.23)
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which constitute an orthonormal basis of L?(S').
Form € Z,U : f + e~™0f is unitary on L?(R?) and

U~! VAU = V5,
where A = @eg. The magnetic potentials A, A are gauge equivalent and their

fluxes differ by m. Therefore we may assume that ¥ < [0, 1).
Since Dy = C°(R? \ {0}), we have from Theorem 6.4.1

Corollary 6.4.3 Forallf € C°(R?\ {0}),

d d
[ iswer s = ceoo [ 1Pt (6.424)
R2 |x| R? x|
where
2y 2
C(2,) = inf {(m + W)’ — M} . (6.4.25)
meZ 4

If U ¢ Z (VY € (0, 1) without loss of generality), we have

C(2,0) = min{(¥2 — 1)2, ¥2(¥ — 2)2}
@ -1)? ifveli, (6.4.26)
V(=22 i W elo, D).
Remark 6.4.4 If W € Z, then C(2,0) = 0. However, if F; = F_; = 0 in (6.4.8),
ie.,

2 2

f(r,0)cos0dO = f(r,0)sin0d6 = 0,
0

then the infimum in (6.4.25) is over m € Z \ {—1, 1} and this gives C(2,0) = 1.
Hence, Rellich’s result in ([129], p. 91) for n = 2, as noted in Remark 6.2.5, is
recovered.

The Casen = 3
In spherical polar coordinates, we define the orthonormal vectors

€ = % = (cos 0y, sin 0 cos 6,, sin 6, sin 6,),
e := (—sin 6y, cos 0 cos B, cos 0] sin 6,),
e, := (0, —sin 6,, cos 6,),
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where r = |x| € (0,00), 0; € (0, ), and 6, € (0, 27). We now take

A V(bh)e,, ¥ eL®(0,2n),  ¥(0) =y(2n),

rsin 6,

on R? \ L3, where L3 = {(r,01,0,) : rsinf; = 0}. It is in Poincaré gauge and
curlA = 0in R? \ L.
Then

9 19 1 9
VA=VA+iA=e—+e-—-— +&—— (— + iw(ez)) (6.4.27)
r

ar 30, ' rsinf; \ 06,
and
—A ——82—2a+1A(9 6,) (6.4.28)
AT a2 ror r? 172/ o
where
A ev)——32 —cotf 9 + ! (6.4.29)
DU 02 90, " sinZ0, o
and
9
Ky, = i— — ¥ (6s). (6.4.30)
96,

The self-adjoint operator Kp, in L>(S!) has eigenvalues k — U, k € Z, with ¥ :=

% 02” ¥ (6,)d6,, and corresponding eigenvectors

1 b
Ners exp |:—i (92(k —U) + ; W(n)dn)]

which form an orthonormal basis of L*(S"). Identifying L?(S?) with @, (L2 0, m;
sin 91d91) ®{uk}), we shall take the operator A,, of Theorem 6.4.1 to be

Ao =@ (Ak(el) ®1k) , (6.4.31)

kEZ

ur(62) =

where [; denotes the identity on {u;} and Ay(6;) is a self-adjoint realisation of the
operator A{(6;) defined on C3°(0, ) by

2 W2
d d u)u (6.4.32)

A@O)u = | —— —cot ) —
r(O1)u (d@f cotth g + —r)
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Before we are able to apply Theorem 6.4.1 we must first make a suitable choice of
the operators A (6,) for all k € Z and determine their eigenvalues. The information
required is contained in the next two lemmas. They require knowledge of the
following topics:

e the Hermann Weyl limit point/ limit circle characterisation of a singular
formally self-adjoint second-order differential expression L, say, defined on an
interval (a, b);

+ the essential self-adjointness of an operator realisation of L in L?(a, b);

* the Friedrichs extensions defined by quadratic forms associated with L.

A brief description of these notions follows as an aid to the understanding of the
lemmas, but see [48] or [83] for further details.

The differential expression L is in the limit-point case at the end point a if, for any
A € C\R, there exists a unique (up to constant multiples) solution u of (L—A)u = 0
which is square integrable in a neighbourhood of a, i.e., u € Lz(a, X) for X € (a,b).
Otherwise, all solutions are in L2 (a,X) for all A € C, and this constitutes the limit-
circle case. The end-point b is characterised similarly. The operator T defined by
L on C3°(a, b) is said to be essentially self-adjoint if its closure is self-adjoint, and
this is so if and only if the end points a, b are both in the limit-point case. If T
is not essentially self-adjoint, other ways have to be found to generate self-adjoint
operators from 7. A favourite candidate is the Friedrichs extension determined by
the quadratic form associated with T; see Sect. 1.5. The quadratic form has to be
semi-bounded for the Friedrichs extension to be defined, a requirement which is met
in the application made here, in fact 7 > 0. In the case of T not being essentially
self-adjoint, the domains of self-adjoint extensions are determined by boundary
conditions at the end points of the interval (a, b).

Lemma 6.4.5 For i € [0, 00), the associated Legendre equation

d&? d 2
—u—l—cot@—u—}-(k— s )uzO, A eC, (6.4.33)

do? do sin? 6

is in the limit-circle case at 0 and 7 if i € [0, 1) and in the limit-point case at 0 and
7 otherwise.

Let
. du 2 .
D, = {u L 0,5in 6 25 € ACuc(0.7). . Ly € L2((0. ) sin ede)}, (6.4.34)
where
d? d w?
L= -2 _cotpZ 4
wE e T Tt G e

and denote the restriction of L,, to C§°(0, ) by A?L. Then A?L is non-negative. It is
essentially self-adjoint if and only if pu € [1,00) and for u € [0, 1) its Friedrichs
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extension A is the realisation of L,, on the following domains:
s fue(0),

D(Ay) = {u:ue Dy sin*fu(@) >0as0 — 0and 7 }; (6.4.35)
* fu=0,
D(A,) = {u ‘u € Dy, u(®))] ln(cot§)| 0 asf — 0and rr}; (6.4.36)

* ifu e[l,00), Ay is the closure ofA?L and
D(AL) =Dy (6.4.37)

FOVM € [Os l)s A/,L 2 H(M + 1)
Proof On substituting x = cos 6, (6.4.33) becomes

) d du w?
TU = —E{(l —xz)a} + = Au, xe(—1,1) (6.4.38)

and L2((0,7);sin8d6) becomes L[*(—1,1). Denote the restriction of 7, to
i

C(—1,1) by Tg. Clearly Tﬁ > ().
Define the functions

f(x) = (1 —=xH)H?
8 =fWh().  h(x) := ' / 1=/ ar
0

It is shown in [54] that f, g are respectively principal and non-principal solutions
of the equation t,u = u(u + Du. If o > 1, g is proved to be neither in L?(—1, 0)
nor L%(0, 1); hence both end-points F1 are in the limit-point case and consequently
Tﬁ is essentially self-adjoint; denote the closure of Tg by Ty,.Forn €[0,1),fand g
are both in L?(—1, 1) and therefore the two end-points are in the limit-circle case. To
characterise the Friedrichs extension 7}, of T,Ou Rosenberger’s Theorem 3 in [130] is
applied. Results of Kalf in [82] are used to prove the final result A, > u(n+1) 0O

Lemma 6.4.6 The operator T, in the proof of Lemma 6.4.5 has a discrete spectrum
consisting of eigenvalues

(W) = (j—m)(j+1-p), jeZ, (6.4.39)

whereZ = {jeZ:(j—u)(j+1—p) =0}
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Proof For any A € C\ R, there exist solutions /1, ¥» of T,u = Au which satisfy
Y1 € L*(—1,0),¥» € L*(0,1), and which are unique, up to constant multiples.
These are so-called Titchmarsh-Weyl solutions. The spectrum of T, is discrete, the
eigenvalues being the zeros of the Wronskian v,y — ¥ ;. The lemma is proved
with the help of asymptotic formulae for the Titchmarsh-Weyl solutions and their
first derivatives obtained from [26]. We refer to [54], Lemma 2 for details. O

Corollary 6.4.7 Forallf € C3°(R®\ L3), we have

dx

x|

2 de
| 1P = e [ 1roP = (6.4.40)

where

G+a)(l+a))?’

C(3.,a) := inf {(m—‘l—')(m—\ll +1)— 2 , (6.4.41)

meZ
andZ ={m e Z: (m— V) (m—W¥ + 1) > 0}.

Proof We may clearly suppose that | - [7%/2Asf € L*(R?). Then A, f(r,®) =
A0, 0)f (r,w) € L*(R?) and A(6, 0,)f (r,w) € L*(S?) for all r € (0,00). If
A(6,) denotes provisionally the formal operator in (6.4.32) and

2

Fi(r, 6)) := f(r, 01, 02)ur(02)d0s,
0

where the u; are the functions in (6.4.23), then we have

2
/ |AB1. 02)f (r. 61, 62)*d0y = > " | Ax(61)Fi(r. 61) .
0

kEZ

Hence, forany k € Z and r € (0, 00), A(681)Fi(r, 0;) € L*((0, ); sin 6,d#;). Since
Fi(r,-) € L*((0, 7r);sin ,d6;) and the boundary conditions given in Lemma 6.4.5
are satisfied, it follows that Fy(r,-) lies in the domain of the operator A;(0;) and
£(r.) € D(A,).

From Lemmas 6.4.5 and 6.4.6 the eigenvalues of the operator Ay in (6.4.31) are

vi(k) = (= k=YD + 1= k=W, (6.4.42)

for j € Z such that v;j(k) > 0. Denote the corresponding normalised eigenvectors by
R,;k(él; \IJ) Then

Yiw(01,02) := Pip(01: W)ur(02), j k€ Z,
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are the eigenvectors of A, corresponding to the eigenvalues v;(k), and form an
orthonormal basis of L(S?). The corollary follows from Theorem 6.4.1. O

Remark 6.4.8 When @ = 0 and ¥ = 0, (6.4.40) holds on C°(R3 \ {0}) and
Cc@3,0) = %. Corollary 6.4.7 therefore gives the Rellich inequality in this case,
and recovers the constant obtained by Rellich [129], Theorem 1, p. 91. Note also
that C(3,0) = O when ¥ = 1/2.

The Casen = 4

In this case we define the orthonormal vectors

e = "‘7‘ = (cos 0y, sin B; cos 6, sin 6, sin 6, cos 05, sin 6 sin 6, sin H3)
e; = (—sin 6y, cos 0 cos B, cos 0 sin B, cos B3, cos 0 sin 6 sin 63)

e; = (0, —sin 6, cos 6, cos 63, cos 6, sin 03)

e; = (0,0, —sin 63, cos 03),

where 6;, 6, € (0, ), 63 € (0,27). In this case,

V—ea—i-e13 +e ! 9 +e ! 9
=005 T\ 75, >\ rsin 6, 96, >\ rsinf; sin6, 065 ) °

We now take

1
A= ————Y(0s)es, e L*(0,27), v (0) = y(2n),
7 sin 0; sin 6,
(6.4.43)

in R* \ L4, where L4 := {x = (r, 01, 65, 03) : r sinf;sinf, = 0}. We then have

1
—AA == Lr + _ZA
r
for L, defined in (6.4.5), where
b d 1 b d K;
A=———2cotlj— + —— { —— —cotbh— 2 6.4.44
962 2 g T e ) e T e, T O
with

0
Ky, = 18_93 — ¥ (63).
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On repeating the procedure described in the case of n = 2 and using the same
notation, we take A, to be

Ao = D (160 @ 1) (6.4.45)

JkEZ
where A;(61) is the self-adjoint operator generated by

0? v(k)
—2cotf J
Ta02 7 lael sin? ;

Aj(6)) = (6.4.46)

in L2((0, 7r); sin® #,d#,). The operator Ajx(01) is again chosen to be the Friedrichs

extension of the operator defined on C3°(0, ). To apply Theorem 6.4.1 we need
Lemma 6.4.9 The Friedrichs extension of the operator Aji(0 in

LZ((O, ); sin® 01d0,) has eigenvalues

1)|cg°(o,n)

ve(j, k) = (6—[vj(k)+1/4]%)(€—[vj(k)+1/4]%+1)—%, LeZ’ (6.447)

where v;(k) is given by (6.4.42) and 7" := {{ € Z : y¢(j. k) = 0}.

Proof On substituting x = cos 0y, the equation A;;(6;)u = Au becomes

du (k)
(1—x2)——3 = (A—h)uzo

1 .
Further, set w = (1 — x?)%u to obtain

(k) + 1
(1 —xz)— —2xflw 4 ()L + % - v’f)—z‘*) w=0 (6.4.48)
X — X

with L2(—1, 1) for the underlying Hilbert space. The problem is therefore reduced
to that for (6.4.38) with A + % instead of A and v;(k) + % for 142, and the lemma
follows from Lemma 6.4.6. O

From (6.4.42), v;j(k) = (j — [k — ¥|)(j + 1 — |k — ¥[), which implies that

(k)+1 i — |k \If|+1 ’
Vi - = — |k — -] .
J 4 J )
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Thus, from (6.4.47), ye(j, k) = (L —j+ |k—¥|)> = 1ifj— |k — ¥| 4+ 1/2> 0 and
ve(j. k) = (£ +j— |k — Y| + 1)?> — 1 otherwise. These can be enumerated as

Am = (m—W)> =1, meZ,

where Z/ := {m : (m — ¥)* > 1}.

It follows by an argument similar to that in the proof of Corollary 6.4.7 that for
any f € CP(R* \ {0}) with Axf € L*(R*), we have f(r,-) € D(A,). Hence, from
Theorem 6.4.1,

Corollary 6.4.10 Letf € C3°(R*\ L4). Then

d d
AN P = Cla) | IfGOP =g (6.4.49)
R x| R x|
where
2
C(4.a) := inf gl:(m—‘l-’)z— 1 —M} ,
meZ’ 4

and 7! := {m € Z: (m — W)?> > 1}. In particular, when @ = 0 and ¥ € (0, 1),
C(4,0) = min{[(1 — ¥)* — 1]%, [(-2 — ¥)* — 1]*} > 0.

When ¥ = 0, (6.4.49) is satisfied on C3°(R* \ {0}). The inequality is trivial if
C(4,0) = 0,butif F; = F_; = 0 (see (6.4.8)), then the infimum is attained for
m = %2, giving C(4,0) = 9, which is an analogue for n = 4 of the result forn = 2
in Remark 6.4.4.

6.5 Eigenvalues of a Biharmonic Operator
with an Aharonov-Bohm Magnetic Field

We now apply results from the previous section to give bounds for the number of
eigenvalues of biharmonic operators given formally by A3 — V, with the Aharonov-
Bohm type magnetic potential A considered there. In particular, upper bounds of
Cwikel-Lieb-Rosenblum type will be obtained; cf. [55].

6.5.1 Some Inequalities

The following inequalities play a pivotal roll in the subsequent analysis.
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Theorem 6.5.1 For D and D, defined in Theorem 6.4.1

| Df|I> + max{/\m(z —Am)} S V\(Til dx
> sup {r" 2 o |gf|2da) + Zmln{,lm},,n 4 [ | fPdw}

r€(0,00)

6.5.1)

forf € Dy.

Proof For L, given by (6.4.5) and F,,(r) by (6.4.8), we have, on using Parseval’s
identity, that for all f € Dy,

|Df|dx
RVI
) — dx
= |L.f|"dx + 2Re| erAwf_z]
R” R” x|
dx
+/ |Auf— (6.5.2)
R" x|
o0 OO_
= Z{ / |L.F,|*r" " dr + 2Re[A,, / FoL, Fr" 3 dr]
— Jo 0
o0
+lfn/ |Fm(r)|2r"_5dr}
0
= Z{Il + 24,0 + /1,27113}.
It follows that

L= Jy° [|Fiy/l|2 + 2 Re{FF) ) + m:_21)2|F;n|2] " ldr
= LR+ ],
= Jo IEWPr + (1= |FuPrt ],

o) sz
I3m: | | r"_ldr.
: 4
0 r

n— n n—4)Am+A;,
IDFI2 = {2 (12 + il 7 2 4 20=Dhthiy o 12) 1 g,
(6.5.3)

and

Thus,
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Since F), € C§°(0, 00),

2Re / ' " F,(OF, (dt = " Fu()? — (n—4) / ' " |F,(2)|2dt
0 0

and
2Re /0 ' 2F (OF) (tdt = 2| F (r) — (n—2) /0 ' 3N ()t
which imply that
PP < [ IFOF -3 [ eIRoF
and

"L (P < / O dt + (1 — 1) / £\ (1) P,
0 0

By substituting these inequalities into (6.5.3) and using Parseval’s identity, we may
conclude that, for 0 < r < oo,

IDFI> = A2 F () 4 2 Fu(r)|?
: J2 2l D | () 2 dr
> P Zfs,, . | |2da) +2m1n{km}r” 4fs,, L f)Pdw
—mﬁx{km(Z —Am)} Jgn |f(x)| O gx,

G

whence (6.5.1). O
Corollary 6.5.2 For C(n,«a) defined in (6.4.7) and all f € D,,

721 E 21y + 2 mindanbr =1 flzsy Hmom N
< IDFI? + max{An(2 = Am) HIIx[ 71 (6.5.4)

1 max;, An-l 2 —Am D 2
if(fol the last inequalil V),

C(n.0) == inf {4, + }2 £0 (6.5.5)

and max,, {1, (2 —A,,)} > 0.
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Proof The proof follows from (6.4.6) and Theorem 6.5.1. O

Note that max{A,,(2 — A,,)} < 1, with equality attained only if some A,, = 1. In
particular, when n = 4 and min A,, > 0, then

£z 22 0.00) < CIDFI?

for a positive constant C. Hence, for radial f € Dy, it follows that f € L% (0, co)

We shall assume that n = 2, 3,0r 4, in order to make use of results already
established. From Sect. 6.4, we see that for n = 2,4, C(n,0) > 0 and min{A,,} > 0
if ¥ € (0,1). Forn = 3, min{A,,} > 0if ¥ € (0,1) and C(3,0) > 0if ¥ €
[0, %) U (%, 1). Therefore, by Corollary 6.5.2, we have

Corollary 6.5.3 If W € (0,1) whenn = 2,4, and ¥ € (0, 3) U (3, 1) whenn = 3,
it follows that for all f € D,

12007 /871> i1y leee o0y 1P If 21l 0.00) < ClAAFI? (6.5.6)

for some positive constant C.

6.5.2 Forms and Operators

We shall assume hereafter that n = 2, 3, or 4. For larger values of n and higher order
operators, see [142]. Define

Dy := CR"\ Ly);
note that
D, C Dy

and consequently, Theorem 6.5.1 and Corollary 6.5.2 apply for f € Dj.

Let S%A denote the Friedrichs extension of the restriction of A%A to Dj,. The form
domain Q(S3) = H(Sa) of S3, is the completion of D} with respect to [ Axf]|* +
ILf ||2]% Therefore 7(Sa) is the Hilbert space defined by the inner product

(@, V)5, = ((Sa + Do, (Sa + DV) 2w
= (SA@, SAV) 2wy + (@, V) 2wr)s @, ¥ € D(Sa),

which induces the graph norm associated with Sy : D(Sy) — L*(R"), where D(S,)
denotes the domain of Sy.
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Lemma 6.5.4 Assume the hypothesis of Corollary 6.5.3. Let B+ be the operator of
multiplication by the function b4, where

0<byeLl'Ry:L®S" Y Pdr) = L'(Ry: Pdr) @ L®(S™.

1 1
Then, B : H(Sa) — L*(R") is bounded and B (Sa + i)~ is compact on L>(R").
Proof For ¢ € Dy = C°(R" \ L,),

|B+9. )| = [ [y bt (r, o) |@(r, 0)|*r" drdw
< S b llpoo@—nyridr sup (" fo |o]*dw) (6.5.7)
0<r<oo

=< C”b+||L1(R+;L°°(S”_1);r3dr)”SA@”z

1
by Corollary 6.5.2. Thus, D(S4) lies in the form domain of B and B : H(Ss) —
L*(R™) is bounded.

Let ¢y — 0in L2(R") and set Y¢ = (Sa +i)"'gq. Then, ¥y € D(Sa) and Yy — 0
in H(Sa). Given ¢ > 0, choose b4 such that
by € CP(R4; L®(S"™Y)), supp by C Q. = B(0;k.) \ B(0; 1/k,),
||B+||L°°(]R”) < ké‘s and H ||b+ - B+||L°°(S”71) ||L1(R+;r3dr) <e

for some k, > 1.
Furthermore,

1 1
B3 (Sa + D) el = BLvell* = (B, ¥e)
= fpu by |WePdx + [ (b1 — by)|Yre|*dx
< ke Jo, |Weldx (6.5.8)
+lIb+ — l;+||L°°(S"_1)”L1(R+;r3dr)0Sup (" Jomi [WePdo)
<r<

o0
< ke [q |VelPdx + eC||Savel?

by Corollary 6.5.3.
Foru € D), = C°(R" \ L,)

IVaull® =

~

—Axu,u) < | Axul{lull

IA

(IAAull® + [lull?)

o= N —

1(Sa + dull*.
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Hence,

1
Vayull < —2||§01||,

%

and by the diamagnetic inequality

1
IVIvilll < IVavull = Ellqﬂzll-

It follows that the sequence {|¥|} must be bounded in H'(R"). Since H'(S2,) is
compactly embedded in L?(£2,), it follows that ¥, — 0 in L?(2,). The result now
follows from (6.5.8) and the fact that £ can be chosen arbitrarily small. ]
1
Remark 6.5.5 The compactness of B2 (Sx + i)' : L*(R") — L*(R") established
1
in Lemma 6.5.4 implies that B is Sx-compact, and consequently, by [48] (Corol-

lary I11.7.7), B%_ has Sa-bound zero. This implies that the form (B4 u, u) is relatively
bounded with respect to the form (Sau, Sau) with relative bound zero. Therefore,
A%A + B is defined in the form sense, and has form domain D(S, ) by Kato’s Second
Representation Theorem; see [48, 83].

Lemma 6.5.6 Let n = 4 and suppose that V € (0, 1). For
0<VeL'(Ry;L>®(S), Adr),

let B_ be a nonnegative self-adjoint operator with form domain D(Sy) which
satisfies the following condition: given ¢ > 0, there is k(g) such that for all
@ € D(Sa),

B-g.0) <& [° [si 7|20 (r. )| dodr (6.5.9)
+k(e) [;° [ V(r, )o(r, o) *dwdr.

1
Then B2 (Sx + i)~ is compact on L*>(R*).

Proof As in the proof of Lemma 6.5.4, given § > 0, we may choose V such that for
some ks > 1,

Ve CP Ry L2(S*), supp V C Qs = B(0; ks) \ B(0:; 1/ks),

||‘7||L°°(]R4) < kg, and || ||V — ‘7||L°°(S}) HLI <.

((0,00);r3dr)
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Let o, — 0in L*(R*) with ||g¢|| < 1, and set ¥, = (Sy + i)~ '¢;. Then, ¥, — 0 in
‘H(Sa) and, on using (6.5.9),
1
IBZ(Sa + i) 'pell < &[5 [o | 20e(r, a))\zdwdr
(e ks [, 110 (3) P
+8C sup Jo [V (r. w)|*do)
0

<r<oo

<& [ [ r| 2wt o) dwdr
+Hk(e) (ks [o, [We(®)2dx + 8C|Save?}.

by (6.5.6). Now, note that for the case n = 4 and [, defined in the proof of
Theorem 6.5.1,

00 9 )
3 —Ye(r, )| dodr <Y 1, < ||Satel*
[ [, rgpeerfaod < S < s
by (6.5.2) and since min{A,,} > 0. Consequently,
1
IBZ(Sa + D' oell < §lloell® + k() {ks o, 1We(x)|Pdx + 8Clloe|1*}.
We therefore conclude, as in the proof of Lemma 6.5.4, that

limsup | B2 (Sa + i) ""g¢|| < & + Ck(e)S.

{—00

Since § and ¢ are arbitrary, the lemma follows. O

At this point it should be helpful to explore examples of multiplication operators
B_ that satisfy the hypothesis of Lemma 6.5.6.

Lemma 6.5.7 Let b(r) > 0 on (0, 00) and

/ / b(s)s*dsdr < oo, / r(/ b(s)szds)zdr < 00. (6.5.10)
0 r 0

Then, there is a function W € L'((0, 00); r3dr) such that, for any & > 0,
o0 o o
/ b)) |*rdr < 8/ r|q0/(r)|2dr+k(8)/ W) () |*rdr,  (6.5.11)
0 0 0

forall ¢ € C§°(0, 00) and some constant k(e) > 0. We can take

00 2 00
r3W(V)=r( [ b(s)szds) + [ as (6.5.12)
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Proof Let

r2 Jo(r) = / = b(s)s2ds. (6.5.13)

According to Opic and Kufner [126], Theorem 5.9, p. 63, the inequality

/ b |e(r)|*rdr < ¢ / di(r|<p(r)|2)r%\/w(r)dr (6.5.14)
0 0 r

is satisfied for some ¢ > 0 if and only if

C:= sup |:/oo 2b(f)dt - sup {[t% \/w(f)]_l}:| <00

0<r<oo O<t<r

with ¢ = C the best possible constant for (6.5.14); this is derived from Theo-
rem 1.2.3 on taking Remark 1.2.4 into account. On choosing (6.5.13), it follows
that C < 1. From (6.5.14) with ¢ < 1

I b)) Prdr < 2 [° o' (] Jo(rdr

+ 2 o) Pr2 or)dr
<e [0 rle' (DPdr + 1 57 le(r) Po(r)rdr

+ [ 103 Ja(nr.

The choice (6.5.12) yields (6.5.11) with k(¢) = e~! + 1 and W € L'((0, 00); r*dr)
in view of (6.5.10). ]

Theorem 6.5.8 Assume the hypothesis of Lemma 6.5.4, and when n = 4, assume
the hypothesis of Lemma 6.5.6. Then we have the following:

(1) The form (Sau,Sav) is closed with core D} and S%A is the associated self-
adjoint operator.

(ii) The symmetric form ta[u, v] = (Sau, Sav) + (Byu, v) is closed and bounded
below with core Dj. Let Ti = S%A + B denote the operator associated with
ta. It has form domain Q(ty) = Q(S%A) = D(SA) and Gm(Ti) = crm(S%A) =
[0, 00). 1

(iii) For Ty defined as the positive square root of Ti andn = 4, B2(Ty + i)~ is
compact on L*(R*) and Tﬁ — B_ is defined in the form sense with form domain
D(SA). Moreover,

O—esS(Si + B+ - B—) = O-ess(Si) = [07 OO)

Proof The proof of (i) follows as in [83], Examples VI.2.13 & VI.1.23.
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The first part of (ii) follows from Remark 6.5.5. The fact that Q(ty) = Q(S%A) =
D(Sa) follows from Kato’s Second Representation Theorem; see [83], p. 331. Since
1

B2 (Sa+i)~" is compact in L*(R") by Lemma 6.5.4, Theorem IV.4.4 of [48] applies
(with p, = 0) showing that Theorem IV.4.2 (vi) in [48] holds: equivalently, in the
language of Sect. 1.5.1, the form (B+-, -) is compact relative to the form (Sa-, Sa:).
This fact implies that am(Ti) = Oy (S%A).

To show (iii), we begin by observing that, for f € D(S4),

ISafII? < ITafII* = ISaf 11> + (B+f.1),
implying that for some C > 0,
1(Sa + D17 < I(Ta + DFI7 = ClI(Sa + D117,
by (6.5.7). Then with f = (T + i)~ 'g, we have that

I(Sa + i)(Ta + i) "gll < |lg]l,

1
so that from Lemma 6.5.6 we have that BZ(T, + i)~ is compact on L?(R*). The
remainder of the proof of part (iii) follows that of part (i) above. O

6.5.3 Estimating the Number of Eigenvalues

Theorem 6.5.9 Let the hypotheses of Lemmas 6.5.4 and 6.5.6 be satisfied. Then
1) La := Si + B4+ — B_ is a self-adjoint operator defined in the form sense;
1
(i) BZ(Tx + i)~" is compact in L*(R*), where T2 = S%A + B4;
(111) O—em(LA) = [07 OO);
@iv) if ¥ € (0,1) and n = 4, there exists a positive constant C = C(V) such that
the number N(La) of negative eigenvalues of La satisfies

N(La) = COO) IVl o0 s2 (6.5.15)

) ||L1((0,oo);r3dr)’
where V is given in Lemma 6.5.6 and the constant C(V) is dependent upon the
distance of ¥ from the boundary values 0 and 1.

Proof Parts (i)—(iii) are covered in Theorem 6.5.8 and are included here for
completeness.
For part (iv), we see from (6.5.3) that forn = 2,3, 4,

o0
a2 =Y /0 FuDyFr\dr.
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where F, is given by (6.4.8) and

D, = -1 d? (rn—l d:Z) (n=D)+24,, i(rn—3 1)

T a2 =l dr dr (6.5.16)
L2 4):‘,"“”,.
Define
W(r) :=[[V(r, )| 1oos3)-
Thus, when n = 4, since
d
B LL0D) H kW)
from (6.5.9), we have
A3+ By —B_> A} —B_
(6.5.17)

> @ {[Dm £d(pd )—k(s)W(r)]@Hm}

mez”
where
={meZ:(m—V)>>1},

I, is the identity on the orthonormal basis {u,}mez» of L*(S?), and A, = (m —
W)2 — 1 as shown in Sect. 6.4.2. In (6.5.17)

ed, d 1 &, 5 d 3420, —ed , d )\2

D735 r3 dr( dr) s drz( drz) r3 dr ( dr)

We also have that

Ay S - g {[D?n—kr—i]@]lm}

rt |m|>1
in which

D0+£zld2( dz) %i(;’i +M
"o PBdr2y dr? 3 dr' dr v

with A2 = m? — 1. If m € Z", then either m > 1, in which case

A = A0 W20 A2 > (A0)2 4w,
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or m < —2 and thus

+1)2—1+(1-W)? =20, +(1—-¥)>

> (m
> A0 )P+ (1= vyt

As a consequence, for m > 1

P L
rdr dr "o
ife <2W?andc < W*. Form < =2
+8d( d)>D +
m r—j\) = a
r3dr® dr mtl T4

ife <2(1—¥)?and ¢ < (1 — ¥)* Hence, if ¢ < 2min{¥?, (1 — ¥)?} and
c < min{¥*, (1 — ¥)*}, then
N( & [Dn+ 5L4(rs) KW R T,)

; N( ® D)+ 5 —k(eWr)]® Hm)
and

N & [Dut 54(0rE) — oW ®T,)

m<—2

d
< N( & [DY+ 5 —keW(r)] T )

m<—1 r

Now, Theorem 1.2 of Laptev and Netrusov [97] and the last two inequalities
imply (6.5.15); cf. the proof of Theorem 5.6.4. O

Theorem 6.5.10 Let V satisfy Corollary 6.5.3, V(x) > 0, and
Ve L'(Ry: L®(S"Y), Pdr).

Then, the operator Si — V is defined in the form sense and has essential spectrum
[0, 00). Moreover, for A,, given in Sect. 6.4.2,

4

NSE-v) <Y
* 2 |42 + n(n — 4)|/n? + 84, Jo

OO 3
r ||V(r, -)||L00(Sn71)dr,

where Y " indicates that all summands less than 1 are omitted.

Proof The fact that S3 — V is defined in the form sense and has essential spectrum
[0, 00) follows as in Lemma 6.5.4 and Theorem 6.5.8.
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Forallf € Dy = C°(R" \ £,) and

F(r) :=/ 1f(r, W)y (w)dw,
sn—
we have from (6.5.3) withn = 2,3, 4,
- 2= Am+23, -
|AAFI? = T4 S5° (IFp 2+t P 4 20 | 2) =)
m
1 (=22 +n—1+24,, 2(n—HAmt+A2, -
> S S (AU ey g 20t 2y )
m

by Hardy’s inequality. On making the substitutions

b A’m —_
c(n, Ay) :=n* + 84, and @,(r) = #r(" I2F,(r),

we have that

3)(1=5) 4161 A+ 2(1=4))c(1.2) !
IAAFI? 2 3 57 [l [ 4 Hesitetpstiainir, lar

Therefore, for f € D, and
K(n,Ay) = (n—3)(n—5) 4+ 16A,(A, + 2(n — 4))(n*> + 84,,) ",
it follows that

(AR =N 2 X J5" [lenl + + Kdnd |, 2 — AW ()| gul*dr,
(6.5.18)
with W(r) := [[V(r,")|lpeo(s—1). Bargmann’s estimate from [24] (see the proof
of Theorem 5.6.3) for the number of negative eigenvalues applies to the Sturm-

Liouville operator associated with the integral on the right-hand side of (6.5.18),
i.e.,

&  K(n, )Lm) 4r?
(n,m) == — i + 12 poa 8)MW(}’), n=273,4,
if
K(n,Ay) > —1. (6.5.19)

In that case,

N(t(n,m)) < /00 PW(r)dr.

4
2+ 8A) VK, Ay) + 1 Jo
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We first note that
K, Ap) + 1 = [44y + n(n— )/ (n* + 81,,) = 0

since min{A,,} > 0. In fact, it is easy to show that the strict inequality (6.5.19) holds
with this hypothesis on substituting the values of 1,,, namely

)Lmz(m—\D)z,meZ, for n = 2;
An=m—V)Ym—-V+1), meZ, for n=3; (6.5.20)
An=m—W0)2 -1, meZ", for n = 4.

In view of (6.5.18), the proof is complete. O

We now are able to use these results to give explicit criteria for the absence of
negative eigenvalues.

Corollary 6.5.11 Assume the hypothesis of Theorem 6.5.10. Then Si — V has no
negative eigenvalues if forn = 2,

o 20U (2 — W)/3 — 40 4 292 for ¥ € (0, 1]

3 . oo — 9 2 bl

/0 PV e @ndr < {2(1 WA for ¥ € (1, 1];
(6.5.21)

forn =3,
B V(14 V) —3|/9+8¥(1 + W) for¥ e [0, 1],
/0 r3||V(rs')||L00(§n71)dr< {| ( ) 4 ( ) [ 2]

|W2 —3W + 3|4/25 — 240 + 82 for ¥ € (1, 1);
(6.5.22)

forn =4,
VYR WV2ZF 20+ 92 forW e (0, 1],

o 3 . .
/0 PIVG e < {302 VA AR RS
(6.5.23)

Proof Define

1
B(Ap.n) = Z|4)Lm + n(n—4)|/n? + 84,

Then by Theorem 6.5.10 there will be no eigenvalues if

o
/ r3||V(r, -)||L00(Sn71)dr < mln{B(/Xm,n)}
0 m

for m € Z further restricted according to (6.5.20).
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The functions B(x, n), n = 2,3, 4, are minimized on [0, o) for some x € (0, 2)
and accordingly, in order to minimize B(A, n) we may restrict our attention to those
Am given in (6.5.20) that lie in the interval (0,2). Noting that A,, = A,(¥), the
estimate (6.5.21) follows from the fact that

min B(A,,2) = Wrg(l(){ll){B(ko, 2),B(A-1,2)};

(6.5.22) follows from the fact that

min B(An, 3) = Wrg[gll){B(Ll, 3),B(A1.3)}:

and (6.5.23) follows from the fact that

Ir}llelIZI B(A«ms 4) = \I/Iél(l()l,ll){B(Ah 4)7 B(A'—Zs 4)}
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