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Preface

This book is a study of the many refinements and incarnations of the Hardy
inequality

Z
�

jru.x/jpdx � C.p; �/
Z
�

ju.x/jp

ı.x/p
dx; u 2 C1

0 .�/; (1)

where � is a domain (an open connected set) in R
n; n � 1, with non-empty

boundary @�, ı.x/ is the distance from x 2 � to @�, 1 � p < 1, and C.p; �/ is a
positive constant depending on p and� in general. The original continuous form of
the inequality was for � D .0;1/; ı.x/ D jxj, and appeared in [72], having been
motivated by work of Hardy on a discrete analogue and a double series inequality of
Hilbert. It attracted the attention of other mathematicians, notably Landau, and was
highlighted by Hardy et al. in [75]; see [91] for a detailed account of the history. In
its many guises, the inequality has played an important role in mathematical analysis
and mathematical physics, which is way beyond what could have been expected at
its humble beginning. Extensions and refinements to a multitude of function spaces
have been studied extensively, which, apart from their intrinsic interest, have had
significant implications for the function spaces and the relationships between them,
and important applications to differential equations. The case p D 2; � D R

n n
f0g; ı.x/ D jxj of (1) is a mathematical representation of Heisenberg’s uncertainty
principle in quantum mechanics, which asserts that the momentum and position of
a particle can’t be simultaneously determined. Furthermore, the spectral analysis
of quantum mechanical systems involving Coulomb forces between constituent
particles features this L2.Rn/ version of Hardy’s inequality in a natural way. In his
book A Mathematician’s Apology [74], Hardy expresses the view that for a theorem
to be significant, it must have both generality and depth. He also asserts that nothing
he had ever done was useful. The role of his inequality in mathematics undoubtedly
confirms his notion of “significance”, while its implications in quantum mechanics,
with its tentacles affecting every aspect of modern life, would contradict Hardy’s
feeling about its “uselessness”.
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viii Preface

In the first two sections of Chap. 1, a general form of the Hardy inequality
is proved, initially in RC WD .0;1/ and subintervals .a; b/ of R and then
in R

n for n � 2, optimal constants being obtained. The rest of Chap. 1 is a
cornucopia of techniques and results, which will be of subsequent importance.
These include a brief description of Sobolev spaces and the inequalities of Sobolev,
Friedrichs and Poincaré; Fourier transforms, rearrangements and their application
to making a comparison of the Hardy and Sobolev inequalities; the Cwikel, Lieb,
Rosenbljum (CLR) inequality concerning the number of negative eigenvalues of
the Dirichlet Laplace operator in L2.�/ and a comparison of the CLR and the
appropriate Sobolev inequality; Kato’s inequality and relativistic analogues of
Hardy’s inequality.

Chapter 2 is on properties of a general domain �, which are of significance to
the function ı. For instance, the skeleton S.�/ is the subset of � consisting of
points, which are equidistant from more than one point on the boundary, and this
coincides with the set of points at which ı is not differentiable. Another important
subset of � is the ridge, or central set, R.�/, which lies between S.�/ and its
closure. It is shown that the closure of the ridge is the cut locus, which is a concept
used extensively by Li and Nirenberg in [108]. Properties of ı when� is convex, or
R

n n� is convex, are established, and when � is a domain with smooth boundary,
an explicit formula for �ı.x/ is determined for all x 2 � n R.�/. The principal
curvatures of a C2 boundary, and the mean curvature of @�, feature prominently in
the second part of the chapter, and indeed, the rest of the book.

The study of inequalities of type

Z
�

jru.x/jpdx � C.p; �/
Z
�

� ju.x/jp

ı.x/p
C a.x; ı.x//ju.x/jp

�
dx (2)

starts in earnest in Chap. 3, the case a D 0 being of particular interest and referred
to as Hardy’s inequality on �. We begin with a list of some important results in
the literature to set the scene, which bring in, inter alia, the notions of capacity
and fatness, the Hausdorff and Aikawa dimensions of the boundary, and the mean
distance function ıM;p introduced by Davies in [41] in the case p D 2 for an arbitrary
�. Included subsequently are a proof of the optimal constant for a convex domain
�, and of Ancona’s lower bound for the constant C.2;�/ when � is a simply
connected planar domain. Some of the main results in this chapter are based on ones
from [20, 107], using tools developed in the previous chapter. Of special note is the
result from [107] that if � has a C2 boundary and a non-positive mean curvature (a
so-called weakly mean convex domain), then

�p.�/ WD inf
C1

0 .�/

R
�

jrf jpdxR
� jf=ıjpdx

D
�

p � 1

p

�p

; (3)

which extends a well-known result for convex domains.
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In [118], Maz’ya proved the inequality

Z
R

n
C

�
jruj2 � juj2

4x2n

�
dx � Kn;2

 Z
R

n
C

juj 2n
n�2 dx

! n�2
n

; (4)

for u 2 C1
0 .R

nC/, where R
nC is the half-space R

n�1 � RC and x D .x0; xn/; x0 2
R

n�1; xn 2 RC. This is the prototype of the Hardy-Sobolev-Maz’ya (HSM)
inequalities, which combine elements of both the Hardy and Sobolev inequalities,
and Chap. 4 is devoted to them. We present the following result of Frank and Loss
from [62] for a general domain � ¤ R

n, in which the mean distance function ıM;p

plays the role of the distance function ı : there exists a constant Kn;p, depending only
on n and p, such that for all u 2 C1

0 .�/ and p � 2,

Z
�

 
jrujp �

�
p � 1

p

�p jujp

ı
p
M;p

!
dx � Kn;p

�Z
�

juj np
n�p dx

� n�p
n

: (5)

If � is convex, ıM;p � ı, and (5) becomes an extension of the HSM inequality
obtained by Filippas et al. in [60] for a bounded convex domain � with a C2

boundary and p D 2, and answers in the affirmative their query if the constant
can be chosen to be independent of �. Chapter 4 also includes HSM inequalities
featuring the mean curvature of the boundary of �, and one of Gkikas in [69] for
exterior domains.

The first part of Chap. 5 is on Schrödinger operators involving magnetic fields of
Aharonov-Bohm type. The Laptev-Weidl inequality in L2.R2/ is derived, followed
by related Sobolev and CLR inequalities. Hardy-type inequalities for Aharonov-
Bohm magnetic fields with multiple singularities are proved, and also a generalised
Hardy inequality for magnetic Dirichlet forms. Finally in Chap. 5, there is a
discussion of Pauli operators in R

3 with magnetic fields, and inequalities of Hardy,
Sobolev and CLR type are proved to exist if the Pauli operator has no zero modes.

Chapter 6 is concerned with the Rellich inequality

Z
Rn

j�u.x/j2dx � n2.n � 4/2
16

Z
Rn

ju.x/j2
jxj4 dx: (6)

A proof of an Lp.Rn/ version of the inequality is given, based on that of Davies
and Hinz in [45], and this is followed by a Rellich-Sobolev inequality in L2.�/
for a domain � � R

n due to Frank (private communication, 2007). Inequalities
involving Aharonov-Bohm type magnetic potentials in L2.Rn/ are established,
which are analogous to the Laptev-Weidl inequality of Chap. 5, and a CLR-type
inequality for associated bi-harmonic operators is proved.

The book is primarily designed for the mathematician, but we hope that it will
also appeal to the scientist who has an interest in quantum mechanics. A good basic
knowledge of real and complex analysis is a prerequisite. Also, familiarity with
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the Lebesgue integral, spectral analysis of differential operators, and elementary
differential geometry would be helpful, but only the barest essentials of these areas
are assumed, and background information is always provided; where necessary,
precise references to the literature are given.

Chapters are divided into sections and sections are sometimes divided into
subsections. Theorems, Corollaries, Lemmas, Propositions, Remarks and equations
are numbered consecutively. At the end of the book, there are author, subject and
notation indices.

Cardiff, UK Alexander A. Balinsky
Cardiff, UK W. Desmond Evans
Birmingham, AL, USA Roger T. Lewis



Basic Notation

R W Real numbers
R

n W n-Dimensional Euclidean space
N: Positive integers
N0 D N [ f0g
Z W Integers
C W Complex numbers
� W Domain—a connected open subset of Rn

@� W Boundary of �
� W Closure of�
*W Weak convergence
X ,! Y W X is continuously embedded in Y
Lp.�/; 1 � p < 1 W Lebesgue space of functions f with jf jp integrable on

�

k � kp or k � kp;� W Norm on Lp.�/

lp; 1 � p < 1 W Space of sequences fxngn2N such that
P1

nD1 jxnjp < 1
Wk;p.�/;Hk;p.�/ W Sobolev spaces
C1
0 .�/ W Infinitely differentiable functions with compact

supports in �
Wk;p
0 .�/ W Closure of C1

0 .�/ in Wk;p.�/

!n D �n=2=�.1C n=2/ W Volume of unit ball in R
n

xi





Contents

1 Hardy, Sobolev, and CLR Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Hardy’s Inequality in R

n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.1 The Case n D 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.2 Weighted Hardy-Type Inequalities on Intervals . . . . . . . . . . . . . . . 5
1.2.3 The Case n > 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.4 A Weighted Hardy-Type Inequality

on � � R
n; n > 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2.5 The Case n D p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3 Sobolev Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3.1 The Spaces Wk;p.�/ and Wk;p
0 .�/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3.2 Boundary Smoothness and Wk;p.�/ . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.3.3 Truncation Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.3.4 Rearrangements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.3.5 Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.3.6 The Dirichlet and Neumann Laplacians . . . . . . . . . . . . . . . . . . . . . . . 24

1.4 Comparison of the Hardy and Sobolev Inequalities . . . . . . . . . . . . . . . . . . . 25
1.5 The CLR Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.5.1 Background Theory.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.5.2 Comparison of the CLR and Sobolev Inequalities . . . . . . . . . . . . 34

1.6 The Uncertainty Principle and Heisenberg’s Inequality .. . . . . . . . . . . . . . 36
1.7 Relativistic Hardy-Type Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2 Boundary Curvatures and the Distance Function . . . . . . . . . . . . . . . . . . . . . . . . 49
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.2 The Ridge and Skeleton of � . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.3 The Distance Function for a Convex Domain . . . . . . . . . . . . . . . . . . . . . . . . . 59
2.4 Domains with C2 Boundaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.5 Mean Curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
2.6 Integrability of ı�m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

xiii



xiv Contents

3 Hardy’s Inequality on Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.2 Boundary Smoothness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.3 The Mean Distance Function .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.3.1 A Hardy Inequality for General � . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.4 Hardy’s Inequality on Convex Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.4.1 Optimal Constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.4.2 A Generalisation on C1

0 .G.�//; G.�/ D � n R.�/ . . . . . . . 89
3.4.3 Domains with Convex Complements . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.5 Non-convex Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.5.1 A Strong Barrier on � . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.5.2 Planar Simply Connected Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.6 Extensions of Hardy’s Inequality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
3.6.1 Inequalities of Brezis and Marcus Type in L2.�/ . . . . . . . . . . . . . 99
3.6.2 Analogous Results in Lp.�/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
3.6.3 Sharp Results of Avkhadiev and Wirths . . . . . . . . . . . . . . . . . . . . . . . 109

3.7 Hardy Inequalities and Curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
3.7.1 General Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
3.7.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
3.7.3 Proposition 3.7.2 and Domains with C2 Boundaries . . . . . . . . . . 121

3.8 Doubly Connected Domains. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4 Hardy, Sobolev, Maz’ya (HSM) Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
4.2 An HSM Inequality of Brezis and Vázquez.. . . . . . . . . . . . . . . . . . . . . . . . . . . 136
4.3 A General HSM Inequality in Lp.�/. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
4.4 Weakly Mean Convex Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
4.5 Exterior Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
4.6 Equivalence of HSM and CLR Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

5 Inequalities and Operators Involving Magnetic Fields . . . . . . . . . . . . . . . . . . 165
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
5.2 The Magnetic Gradient and Magnetic Laplacian .. . . . . . . . . . . . . . . . . . . . . 166
5.3 The Diamagnetic (Kato’s Distributional) Inequality . . . . . . . . . . . . . . . . . . 168
5.4 Schrödinger Operators with Magnetic Fields . . . . . . . . . . . . . . . . . . . . . . . . . . 170

5.4.1 The Free Magnetic Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
5.4.2 Gauge Invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

5.5 The Aharonov-Bohm Magnetic Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
5.5.1 The Laptev-Weidl Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
5.5.2 An Inequality of Sobolev Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

5.6 A CLR Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
5.7 Hardy-Type Inequalities for Aharonov-Bohm Magnetic

Potentials with Multiple Singularities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
5.7.1 Inequality for Doubly Connected Domains . . . . . . . . . . . . . . . . . . . 186
5.7.2 Inequality for Punctured Planes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189



Contents xv

5.8 Generalised Hardy Inequality For Magnetic Dirichlet Forms . . . . . . . . 192
5.8.1 Magnetic Forms.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
5.8.2 Case n D 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
5.8.3 A Partition of Unity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
5.8.4 Proof of Theorem 5.8.1 .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
5.8.5 Results for n � 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
5.8.6 Proof of Theorem 5.8.6 .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

5.9 Pauli Operators in R
3 with Magnetic Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

6 The Rellich Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
6.2 Rellich and Rellich-Sobolev Inequalities in L2 . . . . . . . . . . . . . . . . . . . . . . . . 214

6.2.1 The Rellich Inequality .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
6.2.2 Rellich-Sobolev Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

6.3 The Rellich Inequality in Lp.Rn/; n � 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
6.4 The Rellich Inequality with Magnetic Potentials . . . . . . . . . . . . . . . . . . . . . . 223

6.4.1 A General Theorem .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
6.4.2 An Inequality for D D ��A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

6.5 Eigenvalues of a Biharmonic Operator
with an Aharonov-Bohm Magnetic Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
6.5.1 Some Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
6.5.2 Forms and Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
6.5.3 Estimating the Number of Eigenvalues .. . . . . . . . . . . . . . . . . . . . . . . 244

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

Subject Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263



Chapter 1
Hardy, Sobolev, and CLR Inequalities

1.1 Introduction

The Hardy and Sobolev inequalities are of fundamental importance in many
branches of mathematical analysis and mathematical physics, and have been
intensively studied since their discovery. A rich theory has been developed with the
original inequalities on .0;1/ extended and refined in many ways, and an extensive
literature on them now exists. We shall be focusing throughout the book on versions
of the inequalities in Lp spaces, with 1 < p < 1. In this chapter we shall be
mainly concerned with the inequalities in .0;1/ or Rn; n � 1. Later in the chapter
we shall also discuss the CLR (Cwikel, Lieb, Rosenbljum) inequality, which gives
an upper bound to the number of negative eigenvalues of a lower semi-bounded
Schrödinger operator in L2.Rn/. This has a natural place with the Hardy and Sobolev
inequalities as the three inequalities are intimately related, as we shall show. Where
proofs are omitted, e.g., of the Sobolev inequality, precise references are given, but
in all cases we have striven to include enough background analysis to enable a reader
to understand and appreciate the result.

In [73], Hardy proved the inequality

Z 1

0

�
1

x

Z x

0

f .t/dt

�p

dx �
�

p

p � 1
�p Z 1

0

f .x/pdx (1.1.1)

for non-negative functions f ; with 1 < p < 1. Landau showed in [94] that the

constant
�

p
p�1
�p

is sharp, and that equality is only possible if f D 0; Hardy had,

in fact, drawn attention to the sharpness of the constant in an earlier paper; see the
Appendix in [91] where interesting information on the historical background may
be found. A more familiar form of the inequality is obtained by setting F.x/ D
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R x
0

f .t/dt; which gives

Z 1

0

F.x/p

xp
dx �

�
p

p � 1

�p Z 1

0

F0.x/pdx: (1.1.2)

The analogue of this inequality in R
n for n > 1 is

Z
Rn

j f .x/jp

jxjp
dx �

ˇ̌
ˇ̌ p

p � n

ˇ̌
ˇ̌p Z

Rn
jrf .x/jpdx;

where rf D .@f=@x1; � � � ; @f=@xn/ is the gradient of f ; this holds for all f 2 C1
0 .R

nn
f0g/ if n < p < 1, and for all f 2 C1

0 .R
n/ if 1 � p < n. The constant is sharp and

equality can only be attained by functions f D 0 a.e.
After discussing the Hardy inequalities in the first section, we define the Sobolev

spaces W1;p
0 .�/ and W1;p.�/ on a domain � � R

n, and give a brief coverage of
embedding theorems, boundary smoothness criteria and the Friedrichs and Poincaré
inequalities. Using the theory of rearrangements, the Hardy and Sobolev inequalities
on R

n; n > p are then compared.
The background material for the CLR inequality in L2.Rn/; n � 3, is provided,

but only references to the independent and challenging proofs of Cwikel, Lieb and
Rosenbljum are given. Using the approach of Levin and Solomyak, we show how
the Sobolev and CLR inequalities in L2.Rn/; n � 3, compare.

Finally in this chapter we discuss Kato’s inequality, which is a relativistic form
of Hardy’s inequality.

1.2 Hardy’s Inequality in R
n

1.2.1 The Case n D 1

The first theorem gives general forms of the Hardy inequality involving weighted
Lp spaces on .0;1/. Special choices of the weights will yield the prototypes of the
inequalities to be considered throughout the book. The proof uses the full force of
Hölder’s inequality; that if 1 < p < 1 and p0 D p=.p � 1/, then for non-negative
functions f ; g;

Z 1

0

jf .x/g.x/jdx �
�Z 1

0

jf .x/jpdx

� 1
p
�Z 1

0

jg.x/jp0

dx

� 1
p0

;

with equality if and only if there exist constants A;B, not both zero, such that
Ajf .x/jp D Bjg.x/jp0

.
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Theorem 1.2.1 Let 1 < p < 1 and set F.x/ D R x
0

f .t/dt: Then for all f such that
x"f .x/ 2 Lp.0;1/; where " < .1=p0/ D 1 � 1=p; we have

Z 1

0

jF.x/jpxp."�1/dx � Cp;"

Z 1

0

jf .x/jpxp"dx (1.2.1)

for some positive constant Cp;" which is independent of f : If " > .1=p0/; then the
inequality takes the form

Z 1

0

jG.x/jpxp."�1/dx � Cp;"

Z 1

0

jf .x/jpxp"dx; (1.2.2)

where G.x/ D R1
x f .t/dt: The best possible constants Cp;" are the same, and given

by

Cp;" D j"� 1=p0j�p; (1.2.3)

and equality can only be attained by f D 0.

Proof We may assume, without loss of generality, that f is real-valued and non-
negative, since the theorem will follow if we prove it for jf j. For " < 1=p0; we have,
by Hölder’s inequality,

F.x/x."�1=p0/ � x."�1=p0/

�Z x

0

f p.t/t"pdt

�1=p �Z x

0

t�"p0

dt

�1=p0

D .1 � "p0/�1=p0

�Z x

0

f p.t/t"pdt

�1=p

;

which tends to zero as x ! 0: On integration by parts, it follows that with 0 < X <
1;

Z X

0

Fp.x/xp."�1/dx D Fp.X/Xp."�1=p0/

p."� 1=p0/

� p

p."� 1=p0/

Z X

0

Fp�1.x/f .x/xp."�1=p0/dx

� 1

j."� 1=p0/j
Z X

0

Fp�1.x/f .x/xp."�1=p0/dx

D 1

j."� 1=p0/j
Z X

0

�
Fp.x/xp."�1/�1=p0

.f p.x/xp"/1=p dx



4 1 Hardy, Sobolev, and CLR Inequalities

and hence, by Hölder’s inequality,

Z X

0

Fp.x/xp."�1/dx � 1

j." � 1=p0/j
�Z X

0

Fp.x/xp."�1/dx

�1=p0

�
�Z X

0

f p.x/x"pdx

�1=p

and

Z X

0

Fp.x/xp."�1/dx � 1

j." � 1=p0/jp

Z X

0

f p.x/x"pdx:

The inequality (1.2.1), with Cp;" D j." � 1=p0/j�p; follows on allowing X ! 1: In
the penultimate step, in which Hölder’s inequality is applied, the resulting inequality
is strict, unless there are constants A;B, not both zero, such that AFp.x/xp."�1/ D
Bf p.x/xp". But this would mean that f .x/ D F0.x/ is a power of x and

R1
0

f p.x/xp"dx
is divergent. Consequently, (1.2.1) is a strict inequality for f ¤ 0.

To prove that the constant (1.2.3) is sharp in (1.2.1), we choose f .x/ D
x�1=pC˛�.0;a/.x/; where ˛ C " > 0; a > 0; and �.0;a/ is the characteristic function
of .0; a/: Then x"f .x/ 2 Lp.0;1/ and

Z 1

0

f p.x/x"pdx D ap.˛C"/

p.˛ C "/
;

F.x/ D
8<
:

x˛C1=p0

.˛C1=p0/
if x � a;

a˛C1=p0

.˛C1=p0/
if x > a;

and

Z 1

0

Fp.x/xp."�1/dx D ap.˛C"/

p.˛ C 1=p0/p

�
1

˛ C "
C 1

1=p0 � "
	
:

This gives

R1
0

Fp.x/xp."�1/dxR1
0

f p.x/x"pdx
D 1

.˛ C 1=p0/p

�
1C .˛ C "/

.1=p0 � "/
	

which tends to j" � 1=p0j�p as ˛ ! �": It follows that the constant j" � 1=p0j�p

in (1.2.1) is sharp. The inequality (1.2.2), with sharp constant (1.2.3) is proved
similarly, and so is the fact that equality can only be attained if f D 0. ut
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The choices " D 0; 1; in Theorem 1.2.1 yield the following familiar forms of the
Hardy inequality:

Corollary 1.2.2 Let 1 < p < 1: Let F be a locally absolutely continuous function
on .0;1/ which is such that F0 2 Lp.0;1/ and limx!0C F.x/ D 0: Then

Z 1

0

jF.x/jp

jxjp
dx �

�
p

p � 1

�p Z 1

0

jF0.x/jpdx: (1.2.4)

If G is locally absolutely continuous on .0;1/ and is such that xG0.x/ 2
Lp.0;1/ and limx!1 G.x/ D 0; then

Z 1

0

jG.x/jpdx �
�

p

p � 1

�p Z 1

0

jxG0.x/jpdx: (1.2.5)

The constant in (1.2.4) and (1.2.5) is sharp, and equality can only be attained in
each inequality by the zero function.

1.2.2 Weighted Hardy-Type Inequalities on Intervals

In (1.2.1), consider the following substitutions:

h.x/ D x"f .x/; .Hh/.x/ WD x"�1F.x/ D x"�1
Z x

0

t�"h.t/dt:

Then Theorem 1.2.1 expresses the fact that H is a bounded linear operator of
Lp.0;1/ into itself, and the best possible constant is given by its norm:

Cp;" D kH W Lp.0;1/ ! Lp.0;1/kp:

We now determine a necessary and sufficient condition for a general Hardy-type
operator T of the form

Tf .x/ WD v.x/
Z x

a
u.t/f .t/dt (1.2.6)

to be bounded as a map from Lp.a; b/ into itself, for �1 � a < b � 1 and
1 � p � 1, i.e., for all functions f 2 Lp.a; b/; there exists a constant C > 0 such
that

Z b

a
jTf .x/jpdx � C

Z b

a
jf .x/jpdx:
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The associated inequality is therefore

Z b

a

ˇ̌
ˇ̌v.x/

Z x

a
u.t/f .t/dt

ˇ̌
ˇ̌p dx � C

Z b

a
jf .x/jpdx

with best constant C D kTkp; on setting F.x/ D R x
a u.t/f .t/dt, the last inequality

becomes

Z b

a
jv.x/F.x/jp dx � C

Z b

a

ˇ̌
ˇ̌F0.x/

u.x/

ˇ̌
ˇ̌p dx: (1.2.7)

We shall assume that u; v are prescribed real-valued functions such that for all X 2
.a; b/,

u 2 Lp0

.a;X/; (1.2.8)

v 2 Lp.X; b/; (1.2.9)

where p0 D p=.p � 1/I thus u … Lp0

.a; b/; v … Lp.a; b/ are possibilities. The
following theorem is a special case of general results which may be found in [49],
Chap. 2; see the references therein for a comprehensive treatment.

We denote the standard Lq.I/ norm on a sub-interval I � .a; b/ by kf kq;I and

write kf kq when I D .a; b/I thus kf kq;I D
� R

I jf .x/jqdx
�1=q

if 1 � q < 1, and

ess supI jf .x/j if q D 1:

Theorem 1.2.3 Let 1 � p � 1, and suppose that (1.2.8) and (1.2.9) are satisfied
for all X 2 .a; b/. Then the Hardy-type operator T in (1.2.6) is a bounded linear
map of Lp.a; b/ into itself if and only if

A WD sup
a<X<b

˚kukp0 ;.a;X/kvkp;.X;b/


< 1: (1.2.10)

In this case

A � kTk � 4A: (1.2.11)

Proof We first prove that for all X 2 .a; b/,

˛X WD inf
n
kf kp W f 2 Lp.a; b/;

Z X

a
jf .t/u.t/jdt D 1

o
D kuk�1

p0;.a;X/: (1.2.12)

Since

Z X

a
jf .t/u.t/jdt � kf kpkukp0 ;.a;X/;
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by Hölder’s inequality, we have that ˛X � kuk�1
p0 ;.a;X/ for 1 � p � 1. If p > 1, the

choice

f .x/ D jup0�1.x/j�.a;X/.x/kuk�p0

p0 ;.a;X/;

where �.a;X/ is the characteristic function of .a;X/, gives

Z X

a
jf .t/u.t/jdt D 1

and as p.p0 � 1/ D p0, this implies that

˛X � kf kp D kuk�1
p0 ;.a;X/;

which proves (1.2.12) for 1 < p � 1. If p D 1, the assumption (1.2.8) becomes
u 2 L1.a;X/, which means that u is bounded a.e. on Œa;X�. Given " > 0, there
exists a non-null set S � Œa;X� such that for all x 2 S; ju.x/j > .1C "/�1kuk1;.a;X/.
On choosing f .x/ D �S.x/Œ

R
S ju.t/jdt��1, we have

Z X

a
jf .t/u.t/jdt D 1:

Hence

˛X � kf k1 D jSjR
S ju.t/jdt

� 1C "

kuk1;.a;X/
;

and (1.2.12) again follows, on taking " ! 0.
Let p < 1 and define I D Z when u … Lp0

.a; b/ and I D fk 2 Z W �1 < k �
Mg for some M 2 Z when u 2 Lp0

.a; b/. For f 2 Lp.a; b/ and i 2 I, let

Xi WD supfx 2 .a; b/ W
Z x

a
jf .t/u.t/jdt D 2ig: (1.2.13)

Then fXi W i 2 Ig generates a partition of .a; b/ and we have

kTf kp
p �

X
i2I

Z XiC1

Xi

ˇ̌
ˇ̌v.x/

Z x

a
jf .t/u.t/jdt

ˇ̌
ˇ̌p dx

�
X
i2I

2p.iC1/kvkp
p;.X;b/

� Ap
X
i2I

2p.iC1/˛p
X
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by (1.2.10) and (1.2.12). Since

Z Xi

Xi�1

jf .t/u.t/jdt D 2i � 2i�1

it follows that

˛Xi � 21�ikf�ŒXi�1;Xi�kp

and consequently

kTf kp
p � .4A/p

X
i2I

kf�ŒXi�1;Xi�kp
p

D .4A/pkf kp
p:

We have therefore proved that if 1 � p < 1, (1.2.10) is sufficient for the
boundedness of T and that kTk � 4A. The proof for p D 1 is similar.

To establish the necessity of (1.2.10), we choose, for a given " > 0 and X 2
.a; b/, an f 2 Lp.a; b/ such that uf � 0;

R X
a f .t/u.t/dt D 1 and kf kp � ˛X.1C "/.

Then jTf .x/j � jv.x/j for all x 2 ŒX; b/, and if T W Lp.a; b/ ! Lp.a; b/ is bounded,
we have

˛X.1C "/kTk � kTkkf kp � kTf kp � kvkp;.X;b/:

This and (1.2.12) yield

.1C "/kTk � kukp0 ;.a;X/kvkp;.X;b/;

whence (1.2.10) and kTk � A. The theorem is therefore proved. ut
Remark 1.2.4 Theorem 1.2.3 was established by Chisholm and Everitt in [37] for
the case p = 2, and by Muckenhoupt in [121] for 1 < p < 1. The finiteness of
the quantity A in (1.2.10) is generally referred to as the Muckenhoupt condition. In
[126] (see Comment 3.6 on page 27), the upper bound

kTk � p
1
p .p0/

1
p0 A

is derived. This is best possible, for on taking a D 0; b D 1; u.t/ D t" and
v.t/ D t"�1, with " < 1=p0, we obtain

n
p
1
p .p0/

1
p0 A
op

D
�
1

p0 � "
��p

;

which was shown to be optimal for the Hardy inequality in Theorem1.2.1.
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1.2.3 The Case n > 1

Our main concern in the book will be with multi-dimensional Hardy inequalities,
and we make a start in this section with analogues in R

n; n > 1; of the results in
Sect. 1.1.

Theorem 1.2.5 Let 1 � p < 1; n > 1; and "�1Cn=p ¤ 0: Let f be differentiable
a.e. in R

n, and such that jxj"�1Cn=pf .x/ tends to zero as jxj ! 0C if "�1Cn=p < 0,
and as jxj ! 1 if " � 1C n=p > 0. Then

Z
Rn

�jxj"�1jf .x/j�p dx � j" � 1C n=pj�p
Z
Rn

�jxj"�1j.x � r/f .x/j�p dx (1.2.14)

where rf D .@f=@x1; � � � ; @f=@xn/: The constant j"� 1C n=pj�p is sharp.

Proof Let 0 < ı; N < 1; and choose polar co-ordinates x D r!; r D jxj; ! 2
S

n�1: On integration by parts

Z N

ı

r."�1/pjf .r!/jprn�1dr �
�

r."�1/pCn

." � 1/p C n
jf .r!/jp

�N

ı

D �
Z 1

ı

r."�1/pCn

." � 1/p C n

@

@r
jf .r!/jpdr

� j."� 1/p C nj�1
Z 1

0

r."�1/pCnj @
@r

jf .r!/jpjdr:

We next let ı ! 0 and N ! 1, and use the hypothesis to obtain

R1
0 r."�1/pjf .r!/jprn�1dr

� j"� 1C n=pj�1 R1
0 r."�1/pCnjf .r!/jp�1j @

@r .jf .r!/j/jdr

� j" � 1C n=pj�1 R1
0

r."�1/pCnjf .r!/jp�1j @
@r .f .r!//jdr

� j" � 1C n=pj�1 �R1
0

r."�1/pjf .r!/jprn�1dr
�1=p0

�
�R1

0
r"pj @f .r!/

@r jprn�1dr
�1=p

;

where we have used the fact that j@=@rjf .r!/jj � j@f .r!/=@rj (see Theorem 1.3.8
below), and Hölder’s inequality. Therefore, since r@f=@r D .x � r/f ;

Z
Rn

jxj."�1/pjf .x/jpdx � j" � 1C n=pj�1
�Z

Rn
jxj."�1/pjf .x/jpdx

�1=p0

�
�Z

Rn
jxj."�1/pj.x � r/f .x/jpdx

�1=p
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and (1.2.14) follows.
To prove that the constant is sharp, we consider radial functions f .x/ D f .r/; r D

jxj; which satisfy the hypothesis of the theorem. Then (1.2.14) becomes

Z
Sn�1

Z 1

0

jr	�1f .r/jpdrd! � j	� 1=p0j�p
Z
Sn�1

Z 1

0

jr	f 0.r/jpdrd!; (1.2.15)

where 	 D " C .n � 1/=p: Suppose 	 � 1=p0 D " � 1 C n=p < 0, and let f .r/ DR r
0

.t/dt, where for some a > 0,


.t/ D t�
1
p C˛

�.0;a/.t/; ˛ C 	 > 0;

so that

f .r/ D

8̂
<̂
ˆ̂:

r
˛C

1
p0

.˛C 1
p0
/
; if r � a;

a
˛C

1
p0

.˛C 1
p0
/
; if r > a:

Then f satisfies the hypothesis and, as in the proof of Theorem 1.2.1,

lim
˛!�	

( R1
0

f p.r/rp.	�1/drR1
0

f 0.r/prp	dr

)
D 1

.�	C 1
p0
/p

D 1

j"� 1C n
p jp
:

The constant is therefore sharp. The case " � 1C n=p > 0 is treated similarly. ut
The choices " D 0; 1 of Theorem 1.2.5 yield the following corollary: we use the

notation jrf .x/j D �Pn
iD1 j@f=@xij2

�1=2
:

Corollary 1.2.6 The inequality

Z
Rn

jf .x/jp

jxjp
dx �

ˇ̌
ˇ̌ p

p � n

ˇ̌
ˇ̌p Z

Rn
jrf .x/jpdx (1.2.16)

holds for all f 2 C1
0 .R

n n f0g/ if n < p < 1 and for all f 2 C1
0 .R

n/ if 1 � p < n:
Moreover, for all f 2 C1

0 .R
n/ and 1 � p < 1;

Z
Rn

jf .x/jpdx �
�p

n

�p
Z
Rn

j.x � r/f .x/jp dx; (1.2.17)

and hence
Z
Rn

jf .x/jpdx �
�p

n

�p
Z
Rn
.jxjjrf .x/j/p dx: (1.2.18)
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The constants in (1.2.16), (1.2.17) and (1.2.18) are sharp.

Remark 1.2.7 The classical Hardy inequality (1.2.16) is invariant under orthogonal
transformations and scaling, but is not invariant under general linear transforma-
tions. The inequality (1.2.17) is an affine invariant version of (1.2.16). More-
over, (1.2.18) implies (1.2.16) if 1 < p < n. This follows from

r.jxjf .x// D x
jxj f .x/C jxjrf .x/:

For if we suppose that f satisfies (1.2.18), then, with k � k denoting the Lp.Rn/ norm,

kr.jxjf /k � kjxjrf k � kf k

�
�

n � p

p

�
kf k;

whence (1.2.16) on replacing f .x/ by f .x/=jxj.

1.2.4 A Weighted Hardy-Type Inequality on � � R
n; n > 1

The inequality in the next theorem will be needed in Chap. 6. It is proved in [45] for
the case �V < 0, but the case p D 2 was proved earlier by the same technique in
[105], Lemma 2.

Theorem 1.2.8 Let � be a domain in R
n; n > 1, and let V be a real-valued

function in L1loc.�/ with partial derivatives of order up to 2 in L1loc.�/, and is such
that �V is of one sign a.e.. Then, for all u 2 C1

0 .�/,

Z
�

j�Vjjujpdx � pp
Z
�

jrVjp

j�Vjp�1 jrujpdx: (1.2.19)

Proof Suppose, for definiteness, that �V < 0. Let v" WD .juj2 C "2/1=2 � ". Then
v

p
" 2 C1

0 .�/ and

Z
�

j�Vjvp
"dx D �

Z
�

�Vvp
"dx D

Z
�

rV � rvp
"dx

� p
Z
�

� jrVj
j�Vj.p�1/=p

�
j�Vj.p�1/=pvp�1

" jrv"jdx:
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Since 0 � v" � juj and

rv" D .juj2 C "2/�1=2jujrjuj;

we have that

vp�1
" jrv"j � jujp�1jrjujj:

Also jrjujj � jruj a.e.; see Theorem 1.3.8 below. Hence

Z
�

j�Vjvp
"dx � p

Z
�

� jrVj
j�Vj.p�1/=p

jruj
�

j�Vj.p�1/=pjujp�1dx

� p

�Z
�

� jrVjp

j�Vj.p�1/ jrujp

�
dx
	 1=p �Z

�

j�Vjjujpdx
	 .p�1/=p

by Hölder’s inequality, whence (1.2.19), by dominated convergence, on allowing
" ! 0. ut
Corollary 1.2.9 For any � 2 .�1;1/;

Z
Rn

ju.x/jp

jxj�C2 dx �
ˇ̌
ˇ̌ p

� � n C 2

ˇ̌
ˇ̌p Z

Rn

jru.x/jp

jxj.�C2�p/
dx (1.2.20)

for all C1
0 .R

n n f0g/ if � C 2 > n; and all u 2 C1
0 .�/ if � C 2 < n: In particular,

when � D p � 2; (1.2.20) coincides with (1.2.16).

Proof To deduce (1.2.20), choose V.x/ D jxj�� for � ¤ 0 and V.x/ D log jxj
if � D 0: Then, �V.x/ D �.� C 2 � n/jxj�.�C2/; .� ¤ 0/; �V.x/ D
.n � 2/jxj�2; .� D 0/ and the conditions of the theorem are satisfied. ut

The inequality (1.2.20) was proved for the case p D 2 by Allegretto in [6] where
an earlier proof is attributed to Piepenbrink.

1.2.5 The Case n D p

We shall now show that when n D p, there is no valid Hardy inequality, i.e., there is
no positive constant C such that

Z
Rn

jrf .x/jndx � C
Z
Rn

jf .x/jn

jxjn
dx for all f 2 C1

0 .R
n/I (1.2.21)

in fact we shall prove it is invalid on the set of radial functions.
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Let f .x/ D F.r/; r D jxj, and suppose that F 2 C1
0 ..a; b//, where a > 0, b < 1

are arbitrary. Then (1.2.21) implies that

Z b

a
jF0.r/jnrn�1dr � C

Z b

a

jF.r/jn

r
dr: (1.2.22)

Therefore (1.2.7) is satisfied with p D n; v.r/n D r�1; u.r/�n D rn�1 and
in (1.2.10)

sup
a<X<b

kukp0;.a;X/kvkp;.X;b/ D sup
a<X<b

�Z X

a

1

r
dr

�1=n0 �Z b

X

1

r
dr

�1=n

D sup
0<C<1

C1=n0

.1 � C/1=n
Z b

a

1

r
dr

� 1

2

Z b

a

1

r
dr:

Since a > 0; b < 1 are arbitrary, (1.2.22) is contradicted by Theorem 1.2.3.
In [2], Theorem 4.6, it is proved that in the case n D p D 2, for all f 2 C1

0 .R
2 n

f0g/ satisfying
R
1<jxj<2 f .x/dx D 0, there exists a constant C > 0 such that

Z
R2

jf .x/j2
jxj2.1C log2 jxj/dx � C

Z
R2

jrf .x/j2dx: (1.2.23)

It is observed in [138] that the logarithmic factor is needed only for radial functions,
and can be removed for functions satisfying

R
jxjDr f .x/dx D 0 for all r > 0:

1.3 Sobolev Spaces

In this section we give a brief description of those aspects of Sobolev spaces which
are relevant to the content of this book. Where proofs of results quoted are not
included, precise references are given. Comprehensive treatments may be found in
[1, 48] .

1.3.1 The Spaces Wk;p.�/ and Wk;p
0

.�/

Let� be a non-empty open subset of Rn; n � 1; with closure� and boundary @�:
For p 2 Œ1;1�; k 2 N; points x D .x1; � � � ; xn/ 2 R

n and n-tuples ˛=.˛1; � � � ; ˛n/ 2
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N
n
0; we write

jxj D
0
@ nX

jD1
x2j

1
A
1=2

; j˛j D
nX

jD1
˛j; D˛ D

nY
jD1

D
˛j

j ;

where Dj D �i@j; @j D @
@xj

, and the derivatives are taken in the weak sense. We

recall that f 2 L1loc.�/ has weak derivative g DW Djf if g 2 L1loc.�/ and

Z
�

f .x/Dj'.x/dx D �
Z
�

g.x/'.x/dx

for all ' 2 C1
0 .�/; here L1loc.�/ denotes the set of functions which are integrable

on all compact subsets of �: We define

Wk;p.�/ WD fu W D˛u 2 Lp.�/ for j˛j � kg

endowed with the norm

kukk;p;� D
8<
:
�P

0�j˛j�k kD˛kp
p;�

�1=p
; for 1 � p < 1;�P

0�j˛j�k kD˛k1;�

�
; for p D 1:

;

k � kp;� being the standard Lp.�/ norm, namely

kukp;� WD
�Z

�

ju.x/jpdx
�1=p

:

In particular, when k D 1 and 1 � p < 1;

kukp
1;p;� D kukp

p;� C krukp
p;�;

where

krukp;� D kjrujkp;�; jruj WD
 

nX
iD1

j@iuj2
!1=2

:

When � D R
n; we shall write k � kk;p and k � kp for the norms on Wk;p.Rn/

and Lp.Rn/ respectively. For p 2 Œ1;1�;Wk;p.�/ is a Banach space, being
separable if p 2 Œ1;1/ and reflexive if p 2 .1;1/: For p 2 Œ1;1/; the linear
subspace C1.�/\ Wk;p.�/ is dense in Wk;p.�/I hence Wk;p.�/ coincides with the
completion Hk;p.�/ in the Wk;p.�/ norm, of the set of functions f in C1.�/ which
are such that kf kk;p;� < 1I see [48], Theorem V.3.2.
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The closure of C1
0 .�/ in Wk;p.�/ is denoted by Wk;p

0 .�/: In general Wk;p
0 .�/ ¤

Wk;p.�/; but Wk;p
0 .R

n/ D Wk;p.Rn/; see [48], Sect. V.3.1. Another space with a
prominent role is D1;p

0 .�/, which is defined as the completion of C1
0 .�/ with

respect to the norm

kuk
D
1;p
0 .�/

WD krukp;� D
�Z

�

jru.x/jpdx
�1=p

: (1.3.1)

In general, D1;p
0 .�/ is not embedded in Lp.�/ and contains W1;p

0 .�/ as a proper
subspace, W1;p

0 .�/ being continuously embedded in D1;p
0 .�/ since krukp;� �

kuk1;p;� for all u 2 W1;p
0 .�/I for instance, D1;p

0 .R
n/ is not embedded in Lp.Rn/:

However D1;p
0 .�/ coincides with W1;p

0 .�/ if there exists a positive constant C such
that

kukp;� � Ckrukp;�; .u 2 C1
0 .�//: (1.3.2)

For then, the norms k � k
D
1;p
0 .�/

and k � k1;p;� on C1
0 .�/ are equivalent. The

inequality (1.3.2) is the Friedrichs inequality. Examples of domains on which it
is satisfied are given next.

Proposition 1.3.1

(i) Let � be a bounded domain in R
n with volume j�j. Then for 1 � p � 1,

kukp;� �
� j�j
!n

�1=n

krukp;�; .u 2 C1
0 .�//: (1.3.3)

(ii) Let � lie between 2 parallel hyperplanes at a distance ` apart. Then for 1 �
p < 1,

kukp;� � `krukp;�; .u 2 C1
0 .�//: (1.3.4)

Proof

(i) On setting u.x/ D 0 outside �, we may suppose that u 2 C1
0 .R

n/. For all
x 2 � and 
 2 Sn�1,

u.x/ D �
Z 1

0

@

@r
u.x C r
/dr:

Hence, on using the Chain Rule,

n!nu.x/ D �
Z 1

0

Z
Sn�1

@

@r
u.x C r
/d
dr

D
Z
�

jx � yj�n
nX

iD1
.xi � yi/@iu.y/dy
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and so

n!nju.x/j �
Z
�

jx � yj�nC1jru.y/jdy

�
�Z

�

jx � yj�nC1jru.y/jpdy
�1=p �Z

�

jx � yj�nC1dy
�1�1=p

:

If BR.x/ is the ball centre x, radius R and volume equal to j�j, then since jx �
yj�nC1 increases as y tends to the centre of the ball, we have

Z
�

jx � yj�nC1dy �
Z

BR.x/
jx � yj�nC1dy

D nR!n;

and !nRn D j�j: Therefore

.n!n/
p
Z
�

ju.x/jpdx � .nR!n/
p�1

Z
�

�Z
�

jx � yj�nC1jru.y/jpdy
�

dx

� .nR!n/
p
Z
�

jru.y/jpdy;

whence (1.3.3) since !nRn D j�j:
(ii) We again take u.x/ D 0 outside �, and we assume, without loss of generality,

that � lies between the hyperplanes x1 D 0 and x1 D `. Then, for all x 2 �,

ju.x/j D
ˇ̌
ˇ̌Z x1

�1
@1u.t; x2; � � � ; xn/dt

ˇ̌
ˇ̌

�
�Z x1

�1
j@1u.t; x2; � � � ; xn/jpdt

�1=p

`1�1=p:

Hence

Z t

0

ju.x1; x2; � � � ; xn/jpdx1 � `p
Z t

�1
j@1u.t; x2; � � � ; xn/jpdt

and therefore
Z
�

ju.x/jpdx � `p
Z
�

jru.x/jpdx;

as asserted. ut
A necessary and sufficient condition on� for the Friedrichs inequality to hold is

given in [48], Theorem VIII.2.10.
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If� has finite measure, the Friedrichs inequality does not hold for W1;p.�/ since
W1;p.�/ contains non-trivial constant functions which invalidate the inequality. By
subtracting integral means, an analogue of the Friedrichs inequality for the space
W1;p.�/ is obtained in the form of the Poincaré inequality which we now consider.
An example is given in the following proposition.

Proposition 1.3.2 Let � be a bounded convex domain in R
n and 1 � p � 1. Then

for all u 2 W1;p.�/,

ku � u�kp;� �
�
!

j�j
�1�1=n

Œdiam.�/�nkrukp;�; (1.3.5)

where diam.�/ denotes the diameter of � and u� is the integral mean

u� WD 1

j�j
Z
�

u.x/dx:

Proof We again extend u by zero outside�. For any x; y 2 �,

u.x/� u.y/ D �
Z jx�yj

0

@

@r
u.x C r!/dr; ! D x � y

jx � yj ;

and so

u.x/� u� D � 1

j�j
Z
�

Z jx�yj

0

@

@r
u.x C r!/drdy:

Put y � x D �!; with j!j D 1 and � � �0 � diam.�/. Then

ju.x/� u�j � 1

j�j
Z �0

0

Z
j!jD1

Z �0

0

ˇ̌
ˇ̌ @
@r

u.x C r!/

ˇ̌
ˇ̌ �n�1drd!d�

D Œdiam.�/�n

nj�j
Z �0

0

Z
j!jD1

ˇ̌
ˇ̌ @
@r

u.x C r!/

ˇ̌
ˇ̌ d!dr

� Œdiam.�/�n

nj�j
Z
�

jx � yj�nC1jru.y/jdy:

The rest of the proof follows that of Proposition 1.3.1(i). ut
We refer to [48], Sect. V.5, for an interesting connection between the Poincaré

inequality and the measure of non-compactness of the embedding W1;p.�/ ,!
Lp.�/.

In the next theorem, we collect two results of fundamental importance: they
are special cases of (i) the Sobolev embedding theorem, and (ii) the Rellich-
Kondrachov theorem; see [48], Theorems V.3.6 and V.3.7.
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Theorem 1.3.3

(i) Suppose that 1 � p < n; and put p� D np=.n�p/: Then D1;p
0 .�/ is continuously

embedded in Ls.�/ for any s 2 Œp; p�� and there is a constant C, depending only
on p and n; such that for all u 2 D1;p

0 .�/;

kukp�;� � Ckrukp;�: (1.3.6)

(ii) If q 2 Œ1; p�/ and� is bounded, then D1;p
0 .�/ is compactly embedded in Lq.�/:

The inequality (1.3.6) is the Sobolev inequality and p� is the Sobolev conjugate
of p: Part (i) of the theorem asserts that any u 2 D1;p

0 .�/ (and thus any element
of W1;p

0 .�/ too) can be identified with a unique element of Lp�

.�/ and that in
terms of this identification map (that is, the embedding), (1.3.6) is satisfied. To say
that the embedding is compact in Part (ii) means that it takes bounded sequences
into relatively compact sequences, that is, ones with convergent subsequences.
Analogues of Theorem 1.3.3 may also be found in [48], Sect. V.3.3 when n < p <
1 and p D n. For instance, if � is bounded, W1;p

0 .�/ is continuously embedded in
the space C0;� .�/; � D 1 � n=p; of continuous functions which are locally Hölder
continuous with exponent � on �; the embedding being compact if � < 1 � n=p:
When p D n and � is bounded, W1;p

0 .�/ is continuously embedded into Lq.�/

for every q 2 Œ1;1/I more generally the embedding maps into an Orlicz space,
but we refer to [48] for any further discussion of this case. There are corresponding
results for Wk;p

0 .�/I see [48], Theorem V.3.7. For instance if kp < n; Wk;p
0 .�/ is

continuously embedded in Ls.�/ for s 2 Œp; np=.n � kp/�, the embedding being
compact if � is bounded and s 2 Œp; np=.n � kp//:

Remark 1.3.4 The inequality (1.2.16) holds for all f 2 D1;p
0 .R

n nf0g/ if n < p < 1,
and all f 2 D1;p

0 .R
n/ if 1 � p < n:

Remark 1.3.5 The inequality (1.3.6), with � D R
n, was established by Sobolev in

[137] for 1 < p < n, the case p D 1 being later proved by Gagliardo [67] and
Nirenberg [124]. The optimal constant for p D 1 was determined independently by
Federer and Fleming in [59] and by Maz’ya in [118], and is .n!1=n

n /�1I thus

kukn=.n�1/ � .n!1=n
n /�1kruk1 .u 2 D1;1

0 .R
n// (1.3.7)

It is closely related to the isoperimetric inequality for a measurable subset E of Rn

with finite n-dimensional Lebesgue measure jEj and perimeter P.E/, namely,

jEj1=n0 � .n!1=n
n /�1P.E/; n0 D n=.n � 1/:

The inequality (1.3.7) is strict for non-zero u in D1;1
0 .R

n/. However it has a natural
extension to the space of bounded variation in which characteristic functions of arbi-
trary balls are extremals. This extension is, in fact, equivalent to the isoperimetric
inequality.
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For p > 1 it was proved independently by Aubin in [9] and Talenti in [140] that
the best possible value of the constant C in (1.3.6) is

��1=2n�1=p

�
p � 1

n � p

�.p�1/=p �
�.1C n=2/�.n/

�.n=p/�.1C n � n=p/

	
; (1.3.8)

and equality is attained for functions u of the form

u.x/ D Œa C bjxjp=.p�1/�1�n=p;

where a and b are positive constants.

Remark 1.3.6 We note for subsequent use, that if � is a bounded open subset of
R

n, and 1 � p < n, then D1;p
0 .R

n/ and W1;p
0 .Rn/ are compactly embedded in

Lp�

.�/; p� D np=.n � p/. To see this, let B be an open ball containing � and
' 2 C1

0.B/ such that '.x/ D 1 for x 2 �. Then multiplication by ' is a bounded map
of D1;p

0 .R
n/ into W1;p

0 .B/. The compactness of the embedding W1;p
0 .B/ ,! Lp�

.B/
and the fact that ' W Lp�

.B/ ! Lp�

.�/ is bounded confirms the assertion.

1.3.2 Boundary Smoothness and Wk;p.�/

In order for the space Wk;p.�/ to have similar embedding properties to those of
Wk;p
0 .�/; the boundary @� has to have a certain amount of smoothness. A standard

smoothness class is the Hölder space Ck;� .�/ which we now define. First, we define
Ck.�/ to be the vector space of all bounded functions u 2 Ck.�/ such that u and all
its derivatives D˛u with j˛j � k can be extended so as to be bounded and continuous
on�. Then Ck;� .�/ is the space of functions u 2 Ck.�/ which satisfy the condition
that, given any ˛ 2 N

n
0 with j˛j D k, there exists a constant C > 0 such that

jD˛u.x/� D˛u.y/j � Cjx � yj� ; for all x; y 2 �:

Definition 1.3.7 Let n � 2; k 2 N0 and � 2 Œ0; 1�: The boundary @� of an open
set � � R

n is said to be of class Ck;� if:

(i) @� D @�;
(ii) given any point a 2 @�; there exist an open neighbourhood U.a/ of a,

local Cartesian coordinates y D .y1; y2; � � � ; yn/ D .y0; yn/ (where y0 D
.y1; � � � ; yn�1/), with y D 0 at x D a, a convex, open subset G of Rn�1 with
0 2 G; and a function h 2 Ck;� .G/ such that @� \ U.a/ has a representation

yn D h.y0/; y0 2 G:

We shall write Ck in place of Ck;0 and C for C0;0:
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We refer to [48], Sect. V.4 for a comparison of various smoothness criteria on
@�. It is proved in [48], Theorem V.4.2, that the boundary of a convex open set is
in the Lipschitz class C0;1. A consequence is that � has the extension property,
which means the following (see [48], Theorem V.4.12): with

W.�/ WD
[

k2N0; p2Œ1;1�

Wk;p.�/;

there is a map E W W.�/ ! W.Rn/ such that Eu D u for u 2 W.�/ and given
any k 2 N0 and p 2 Œ1;1�; E 2 B.Wk;p.�/;Wk;p.Rn//, the set of bounded linear
operators mapping Wk;p.�/ into Wk;p.Rn/.

If � has the extension property, it is easy to establish embedding results for
Wk;p.�/ which are similar to those for Wk;p

0 .�/ in Sect. 2.1. For suppose � is a
bounded open set with the extension property and that� is contained in a ball B. Let
' 2 C1

0 .B/ be such that 0 � ' � 1 and ' D 1 on �. Then, if u 2 Wk;p.�/; Eu 2
Wk;p.Rn/ and

kukk;p;� � k'Eukk;p;B � C.'/kEukk;p;B � C.'/kEukk;p;Rn

� C.'/C.k; p; �/kukk;p;�;

where C.k; p; �/ denotes the norm of E. Thus inequalities known to hold for the
element 'Eu of Wk;p

0 .B/ may be translated into similar inequalities relating to u 2
Wk;p.�/. For example, if kp < n; Wk;p.�/ is continuously embedded in Ls.�/ for
all s 2 Œp; np=.n � kp/�, the embedding being compact if s 2 Œp; np=.n � kp//.

1.3.3 Truncation Rules

Next, we record an important result concerning the gradient of the absolute value juj
of a function u 2 W1;p.�/, and truncation rules on W1;p.�/. Proofs may be found
in [111], Theorem 6.17 and [48], Sect. VI.2.

Theorem 1.3.8 Let u 2 W1;p.�/; 1 � p � 1, and define juj.x/ WD ju.x/j.
Then juj 2 W1;p.�/ and j.rjuj/.x/j � j.ru/.x/j a.e. If u is real-valued, then
j.rjuj/.x/j D j.ru/.x/j a.e.

Let u; v be real-valued members of W1;p.�/ and define max.u; v/.x/ WD
maxfu.x/; v.x/g and min.u; v/.x/ WD minfu.x/; v.x/g. Then max.u; v/ and
min.u; v/ belong to W1;p.�/. If u; v 2 W1;p

0 .�/, then max.u; v/ and min.u; v/
belong to W1;p

0 .�/.
If � is unbounded, u 2 W1;p.�/ is real-valued, and ˛ 2 R, then u _ ˛ WD

minfu; ˛g 2 W1;p.�/ if and only if ˛ � 0, and u ^ ˛ WD maxfu; ˛g 2 W1;p.�/ if
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and only if ˛ � 0. The gradients are given by

r.u _ ˛/.x/ D
� ru.x/ if u.x/ < ˛;
0 if u.x/ � ˛;

and

r.u ^ ˛/.x/ D
� ru.x/ if u.x/ > ˛;
0 if u.x/ � ˛:

If u 2 W1;p
0 .�/ then u _ ˛ 2 W1;p

0 .�/ if ˛ � 0 and u ^ ˛ 2 W1;p
0 .�/ if ˛ � 0.

1.3.4 Rearrangements

Definition 1.3.9 The distribution function of a Lebesgue measurable function f
on an open subset � of Rn is the map �f W Œ0;1/ ! Œ0;1/ defined by

�f .�/ D jfx 2 � W jf .x/j > �gj;
where jf�gj denotes the Lebesgue measure of the set. The non-increasing rear-
rangement of f is the function f � W Œ0;1/ ! Œ0;1/ defined by

f �.t/ D inff� 2 Œ0;1/ W �f .�/ � tgI
the convention that inf ¿ D 1 is used.

Since the distribution function �f is decreasing we have that

f �.t/ D supf� 2 Œ0;1/ W �f .�/ > tg; t � 0;

so that f � is the distribution function of �f : It can be shown that �f is right
continuous and this implies that in the definition of f �, the infimum is really a
minimum. Moreover, f � is a non-negative, decreasing and right-continuous function
on Œ0;1/. If �f is continuous and strictly decreasing, then f � is the inverse of �f :

The functions f and f � are equimeasurable in the sense that they have the same
distribution function; i.e., �f .�/ D �f � .�/ for all � � 0: A consequence of this is
that if 0 < p < 1,

Z
�

jf .x/jpdx D p
Z 1

0

�p�1�f .�/d� D
Z 1

0

f �.t/pdt

and

ess sup
x2�

jf .x/j D inff� W �f .�/ D 0g D f �.0/:
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It is sometimes desirable to work with the symmetric non-increasing rear-
rangement of a function, which we now define. First we define the symmetric
rearrangement AF of a set A of finite volume as

AF WD fx 2 R
n W !njxjn D jAjg;

that is, the open ball centred at the origin, whose volume is that of A; if jAj D 1
we set AF D R

n.

Definition 1.3.10 The symmetric non-increasing rearrangement of f is the
function fF defined by

fF.x/ D f �.!njxjn/; x 2 �F:

The function fF is non-negative, radially symmetric and radially non-increasing.
Furthermore, fF and jf j are equimeasurable and

fF.x/ D
Z 1

0

�fjf j>tgFdt

The following are the main properties of symmetric non-increasing rearrange-
ments that we shall need; for their proofs and other important properties of �f ; f �
and fF see [49], 3.2 and [111], 3.3.

(i) fF is non-negative, radially symmetric and non-increasing, i.e., fF.x/ D
fF.y/ if jxj D jyj and fF.x/ � fF.y/ if jxj � jyj:

(ii) Let f ; g be Lebesgue measurable on �. Then,

Z
�

jf .x/g.x/jdx �
Z
�F

fF.x/gF.x/dx:

(iii) For any f 2 Lp.Rn/ and 1 � p � 1,

kf kLp.Rn/ D kfFkLp.Rn/;

where kfFkL1.Rn/ D ess supx2Rn fF.x/ D f .0/:
(iv) For any real-valued function f 2 C1

0.R
n/ and 1 � p < 1;

krf kLp.Rn/ � krfFkLp.Rn/:

In fact, this inequality holds for all f 2 D1;p
0 .R

n/; see [49], Theorem 3.2.21 and
Remark 3.2.23.
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1.3.5 Fourier Transform

The Fourier transform Ff , or Of , of a function f 2 L1.Rn/ is defined by

.Ff /.p/ WD 1

.2�/n=2

Z
Rn

e�ip�xf .x/dx; (1.3.9)

where p � x D Pn
jD1 pjxj with p D .p1; p2; � � � ; pn/; x D .x1; x2; � � � ; xn/: Let S.Rn/

denote the Schwartz space of C1.Rn/ functions which go to zero at infinity faster
than any power of xI thus f 2 S.Rn/ if and only if f 2 C1.Rn/, and for all ˛; ˇ 2
N0;

supfjx˛Dˇf .x/j W x 2 R
ng < 1:

We shall need the following basic properties of the space; see [48], V.1.5 for
details.

(i) F is a linear bijection of S.Rn/ onto itself and its inverse is given by

.F�1f /.p/ WD 1

.2�/n=2

Z
Rn

eip�xf .x/dx D .Ff /.�p/: (1.3.10)

(ii) F is a continuous linear map of L1.Rn/ into L1 and kFukL1.Rn/ � kukL1.Rn/I
it is not invertible.

(iii) For f ; g 2 L1.Rn/,

F.f 	 g/ D F.f /F.g/; (1.3.11)

where f 	 g is the convolution

.f 	 g/.x/ WD 1

.2�/n=2

Z
Rn

f .x � y/g.y/dy:

Moreover, for f ; g 2 S.Rn/; Of 	 Og 2 S.Rn/, and

F
�1.Of 	 Og/ D fg: (1.3.12)

(iv) For f 2 S.Rn/ and ˛ 2 N0;

fFD˛
F

�1gf .p/ D p˛f .p/ (1.3.13)

(v) Plancherel’s theorem The map f 7! Of has a unique extension to a unitary
isomorphism of L2.Rn/ onto itself; thus, for all f 2 L2.Rn/,

Z
Rn

jf .x/j2dx D
Z
Rn

jOf .p/j2dp:
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If f and g belong to L2.Rn/, Parseval’s formula holds:

Z
Rn

f .x/g.x/dx D
Z
Rn

Of .p/Og.p/dp:

It is standard for the Sobolev spaces W1;2
0 .�/; W1;2.�/ to be denoted by

H1
0.�/; H1.�/, respectively; this is compatible with the comment in Sect. 1.3.1

that Wk;p.�/ coincides with the completion Hk;p.�/ in the Wk;p.�/ norm, of
C1.�/ \ Wk;p.�/. When � D R

n; it follows from (1.3.13) that

kuk2H1.Rn/
D
Z
Rn

jOu.p/j2.1C jpj2/dp: (1.3.14)

1.3.6 The Dirichlet and Neumann Laplacians

We denote by �D;�u, the Dirichlet Laplacian of u 2 H1
0.�/; it is the Laplacian of

u in the weak sense, namely that v D �D;�u 2 L1loc.�/ and for all ' 2 C1
0 .�/;

Z
�

ru � r'dx D �
Z
�

v'dx:

In L2.�/; TD;� WD ��D;� is a non-negative self-adjoint operator with domain

D.TD;�/ D fu 2 H1
0.�/\ W2;2

loc .�/ W �u 2 L2.�/g:

If @� is of class C2 then

D.TD;�/ D H1
0.�/ \ W2;2.�/:

The Neumann Laplacian �N;�u of u 2 H1.�/ is defined by the conditions that
v D �N;�u 2 L1loc.�/ and for all ' 2 C1

0 .R
n/;

Z
�

ru � r'dx D �
Z
�

v'dx:

In L2.�/; TN;� WD ��N;� is a non-negative self-adjoint operator with domain

D.TN;�/ D fu 2 H1.�/\ W2;2
loc .�/ W �u 2 L2.�/g:
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1.4 Comparison of the Hardy and Sobolev Inequalities

We now show how the Hardy and Sobolev’s inequalities in R
n are intimately related.

Hardy’s inequality will be seen to imply Sobolev’s inequality, while Sobolev’s
inequality only implies a weak form of Hardy’s inequality. In each direction the
constants determined are not optimal.

Proposition 1.4.1 For all f 2 C1
0 .R

n/ and 1 � p < n; Hardy’s inequality (1.2.16)
implies Sobolev’s inequality (1.3.6),

Proof First observe that since jrjf .x/jj � jrf .x/j a.e. by Theorem 1.3.8, it is
sufficient to establish our claim for non-negative functions. Also, as we know from
the properties of symmetric non-increasing rearrangements that kf kp� D kfFkp�

and krf kp � krfFkp;we may suppose that our functions f are non-negative, radial
and non-increasing. Thus, on mimicking the argument in [134], p. 8, we have that
for any y 2 R

n; 0 < a < 1 and q � 1 (to be selected later),

Z
Rn

f .x/qdx �
Z

ajyj�jxj�jyj
f .x/qdx � Cnjyjnf .y/q;

where Cn D Œ.1 � an/=n�!n: Hence

�Z
Rn

f .x/qdx
�p=n

f .y/pjyj�p � Cp=n
n jyjpf .y/qp=nf .y/pjyj�p

D Cp=n
n f .y/qp=nCp

On choosing q D p� D np=.n � p/, we obtain qp=n C p D p	 and

Cp=n
n

Z
Rn

f .y/p
�

dy �
�Z

Rn
f .y/p

�

dy
�p=n Z

Rn

f .y/p

jyjp
dy:

Thus, if f satisfies (1.2.16),

Cp=n
n

�Z
Rn

f .y/p
�

dy
�1�p=n

�
�

p

n � p

�p Z
Rn

jrf .x/jpdx

which gives (1.3.6) with constant C � p
.n�p/C

�1=n
n . ut

The reverse implication involves the weak space Lq;1.Rn/ defined as the space
of Lebesgue measurable functions f on R

n which are such that

sup
t>0

tq�f .t/ < 1; (1.4.1)
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where �f .t/ D jfx 2 R
n W jf .x/j > tgj; is the distribution function of f . From the

proof of Proposition 3.4.2 in [49], it is readily seen that for all 0 < q < 1;

fsup
t>0

tq�f .t/g1=q D sup
t>0

t1=qf �.t/ DW kf kq;1I

for 1 < q � 1; kf kq;1 is a norm on Lq;1.Rn/; see [49], Lemma 3.4.6 and
Theorem 3.4.7. Since, for any t � 0,

Z
Rn

jf .x/jqdx � tq
Z
�f .t/

��f .t/.x/dx D tq�f .t/;

it follows that we have the continuous embedding Lq.Rn/ ,! Lq;1.Rn/, with

kf kq;1 � kf kq: (1.4.2)

We need the following weak form of Hölder’s inequality which is proved in [21]

Lemma 1.4.2 Let 1 < p < 1 and p0 D p=.p � 1/: If f 2 Lp;1.Rn/ and g 2
Lp0;1.Rn/ then fg 2 L1;1.Rn/ and

kfgk1;1 � p01=p0

p1=pkf kp;1kgkp0 ;1

Proof Let " > 0; t > 0 be arbitrary and set

A D fx 2 R
n W "jf .x/j > t1=pg;

B D fx 2 R
n W "�1jg.x/j > t1=p0g;

E D fx 2 R
n W jf .x/g.x/j > tg:

Since

jf .x/g.x/j � p�1."jf .x/j/p C p0�1."�1jg.x/j/1=p0

;

we have E � A [ B and this implies that tjEj � tjAj C tjBj: On substituting s WD
"�1t1=p; r WD "t1=p0

; it follows that

tjEj � "pspjfx W jf .x/j > sg C "�p0

rp0 jfx W jg.x/j > rg
� "pkf kp

p;1 C "�p0kgkp0

p0 ;1:

The minimum value of the right-hand side is

h
.p0=p/1=p0 C .p=p0/1=p

i
kf kp;1kgkp0;1 D p1=pp01=p0kf kp;1kgkp0 ;1;

attained when " D .p0kgkp0

p0;1=pkf kp
p;1/1=pp0

. ut
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We are now ready to prove

Proposition 1.4.3 For 1 � p < n; Sobolev’s inequality (1.3.6) with best possible
constant C, implies the weak Hardy inequality

kf=j � jkp;1 �
�

n � p

p

� 1
n
�

n

n � p

� 1
p

!nCkrf kp; .f 2 C1
0 .R

n//:

Proof It is readily seen that





 f

j � j






p;1
D





�

f

j � j
�p





1;1

and by Lemma 1.4.2 with 1 < q < 1,






�

f

j � j
�p





1;1
� q1=qq01=q0kf pkq;1k 1

j � jp
kq0;1

D q1=qq01=q0kf kp
pq;1k 1

j � j k
p
pq0;1:

We now choose q D p�=p, and so q0 D n=p, to get






�

f

j � j
�p





1;1
�
�

n

p

� 1
n
�

p�

p

� 1
p�

kf kp� ;1k 1

j � j kn;1

D
�

n

p

� 1
n
�

p�

p

� 1
p�

!nkf kp� ;1;

since k 1
j�j kn;1 D !n. The proposition follows from (1.4.2). ut

1.5 The CLR Inequality

In [39, 110, 131], Cwikel, Lieb and Rosenbljum independently proved an inequality
for the number of negative eigenvalues of the self-adjoint operator �� � V in
L2.Rn/, which has important implications in semi-classical spectral analysis, in
which the transition between classical and quantum mechanics is studied. This
inequality is usually referred to as the CLR inequality, with the authors’ names
listed alphabetically and in the reverse chronological order of discovery. We
proceed to give a presentation of the background theory, but leave the reader
to consult the references given later for the very different original proofs of the
inequality. Brief reminders about notions and results from operator theory, and
especially on quadratic forms, will be given within the background theory, but for
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a comprehensive account, [48] may be consulted. The inner product and norm on
L2.Rn/ will be denoted by .�; �/ and k � k respectively.

1.5.1 Background Theory

We shall assume that the potential V is a real-valued function which satisfies the
conditions

V � 0; V 2 Ln=2.Rn/; n � 3I (1.5.1)

it is in fact sufficient to assume that V 2 L1loc.R
n/ with its positive part VC WD

1
2
.jVj � V/ 2 Ln=2.Rn/: The operator �� � V is defined in the form sense, which

we now recall. Consider the quadratic form

tŒu; '� WD
Z
Rn

fru.x/ � r N'.x/� V.x/u.x/ N'.x/g dx; u; ' 2 C1
0 .R

n/; (1.5.2)

and let .�; �/ and k � k denote the L2.Rn/ inner product and norm respectively. We
shall prove in the lemma below that t is bounded below and closable, i.e., tŒu� WD
tŒu; u� � �kkuk2 for some constant k and all u 2 C1

0 .R
n/, and the completion Q of

C1
0 .R

n/ with respect to the norm

kukQ WD ˚
tŒu�C .k C 1/kuk2
1=2

is continuously embedded in L2.Rn/, and therefore can be identified with a subspace
of L2.Rn/. Note that for all k � 0, the norms k � kQ are equivalent and hence the
corresponding spaces Q are isomorphic. Let E denote the embedding Q ,! L2.Rn/.
The adjoint E� of E is defined by

.E�v/.u/ D .v;Eu/; u 2 Q; v 2 L2.Rn/;

and since

j.v;Eu/j � kvkkEuk � kEkkvkkukQ;

E� therefore maps L2.Rn/ linearly into the space of bounded, conjugate linear
functionals on Q; this space is called the adjoint of Q and denoted by Q�. We
therefore have the triplet of spaces

Q ,! L2.Rn/ ,! Q�;
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with respective embeddings E and E� which are continuous, injective and have
dense ranges. If t is closable and fumg; fvmg � Q, are such that um ! u; vm ! v

in Q, then the closure Nt of t is defined on Q by

NtŒu; v� D lim
m!1 tŒum; vm�:

Moreover, t is said to be closed if t D Nt, and to have domain Q.
Let t now stand for the closure of the quadratic form defined by (1.5.2); t is

therefore a closed quadratic form with domain Q. It then follows from Kato’s
representation theorems ([83], Sect. VI.2) that there exists a self-adjoint operator
T with the following properties:

(i) the domain D.T/ of T lies in Q and

tŒu; '� D .Tu; '/; for u 2 D.T/; ' 2 QI

(ii) D.T/ is a core of t, i.e. D.T/ is dense in Q;
(iii) D..T C k/1=2/ D Q and tŒu� D k.T C k/1=2uk2 for u 2 D..T C k/1=2/.

The space Q is called the form domain of T. Given a symmetric operator T0
in our Hilbert space L2.Rn/ which is bounded below, the form t0Œ�� defined by
t0Œu; v� D .T0u; v/ has a closure tŒ�� and in this case the self-adjoint operator T
in Kato’s theorem is the Friedrichs extension of T0.

In (i), a strictly separate identification of the spaces Q and L2.Rn/ would require
us to write, for u 2 D.T/; ' 2 Q

tŒu; '� D .Tu;E'/ D .E�Tu; '/ WD .E�Tu/.'/:

For u 2 C1
0 .R

n/, by the Hölder and Sobolev inequalities, we have

kV1=2uk2 D
Z
Rn

Vjuj2dx

�
�Z

Rn
Vn=2dx

�2=n �Z
Rn

juj2n=.n�2/dx
�.n�2/=n

� �nkVkn=2kruk2

where �n is the norm of the Sobolev embedding H1.Rn/ ,! L2.Rn/. It will be shown
in the proposition below that H1.Rn/ and Q are isomorphic. Hence .V1=2u;V1=2u/
is a bounded quadratic form on Q�Q, and so there exists a bounded linear operator
OV W Q ! Q� such that

. OVu; v/ D .V1=2u;V1=2v/; u; v 2 Q:
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Multiplication by V is said to be compact relative to the form t0Œu� D kruk2
if OV W Q ! Q� is compact, where the norm of Q is now given by kukQ D�
t0Œu�C kuk2�1=2 D kukH1 . Setting T0 W �� and OT0 WD E�T0, we have

tŒu; v� D . OTu; v/; OT D OT0 � OV;

for u 2 D.T/ � Q and v 2 Q. Thus OT W D.T/ � Q ! Q�.
To prepare the ground for the CLR inequality we begin with the following

proposition. We refer to [48] for the information required on the essential spectrum.

Proposition 1.5.1 Suppose that the conditions (1.5.1) on V are satisfied. Then the
quadratic form t is bounded below and closable on C1

0 .R
n/, and multiplication

by V is compact relative to the form t0. Then T has essential spectrum Œ0;1/,
and in .�1; 0/, the spectrum of T consists only of isolated eigenvalues of finite
multiplicity.

Proof Since C1
0 .R

n/ is dense in Ln=2.Rn/, given any " > 0, there exists U 2
C1
0 .R

n/ with support�" say, such that

kV � Ukn=2 < " and sup
x2�"

jU.x/j < k"

for some k" > 0. Then, for all ' 2 C1
0 .R

n/, on using the Hölder and Sobolev
inequalities,

kV1=2'k2 � kV � Ukn=2k'k22n=.n�2/ C kUk1k'k2�"
� "kr'k2 C k"k'k2�" : (1.5.3)

Hence

tŒ'� � .1 � "/kr'k2 � k"k'k2;

and on choosing " < 1, we see that t is bounded below. Furthermore

tŒ'� � .1C "/kr'k2 C k"k'k2:

Thus k � kQ is equivalent to the H1.Rn/ norm .kr � k2 C k � k2/1=2 for any choice of
" 2 .0; 1/.

Let f'mg be a bounded sequence in Q which converges weakly to zero. Then,
from (1.5.3), for arbitrary " > 0,

. OV'm; 'm/ D kV1=2'mk2
� "k'mk2H1 C k"k'mk2�":
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Since the embedding Q ,! L2.�"/ is compact,(as Q is isomorphic to H1.Rn/),
k'mk�" ! 0 as m ! 1 and consequently, with k'mkQ � K say,

lim sup
m!1

kV1=2'mk � K2":

Hence, since " is arbitrary, we have that kV1=2'mk ! 0 as m ! 1. This implies
that

k OV'mkQ� D sup
kukQD1

j. OV'm; u/j

D sup
kukQD1

.V1=2'm;V
1=2u/

� sup
kukH1D1

kV1=2'mkkV1=2uk

� sup
kukH1D1

kVkn=2kuk2n=.n�2/kV1=2'mk

� CkVkn=2kV1=2'mk
! 0

as m ! 1. Thus OV W Q ! Q� is compact. We now show that this property of V
ensures that T and �� have the same essential spectra, namely Œ0;1/, and hence
that the spectrum of T in .�1; 0/ consists only of isolated eigenvalues of finite
multiplicity.

From (1.5.3), and for arbitrary " > 0 and u 2 Q,

k OVuk2Q� � "kruk2 C k"kuk2:

Let b2 D k"=" and define on Q the equivalent norm

kukQ D k.T1=20 C ib/uk D �kruk2 C b2kuk2�1=2 :
Then

k OVuk2Q� � "kuk2Q: (1.5.4)

For z 2 R,

OT � izE� D OT0 � izE� � OV
D fIQ� � OV. OT0 � izE�/�1g. OT0 � izE�/; (1.5.5)
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where IQ� is the identity on Q�. We shall now prove that . OT � izE�/�1 2 B.Q;Q�/,
the space of bounded linear operators mapping Q into Q�, and

k. OT � izE�/�1kB.Q;Q/ � 1C b2=jzj: (1.5.6)

Since T0 is self-adjoint, we know that, with I the identity on L2.Rn/, the range of
T0 � izI; R.T0 � izI/, coincides with L2.Rn/, and so R. OT0 � izE�/ is dense in Q�.
Let ' 2 R.T0 � izI/; � D .T1=20 � ibI/�1' and jzj � b2. Then since T0 and T1=20

commute,

k.T0 � izI/�1'k2Q D k.T1=20 C ibI/.T0 � izI/�1'k2

D k.T0 C b2I/.T1=20 � ibI/�1.T0 � izI/�1'k2
D k.T0 C b2I/.T0 � izI/�1�k2
D kT0.T0 � izI/�1�k2 C 2b2

�
T0.T0 � izI/�1�; .T0 � izI/�1�

�
C b4k.T0 � izI/�1�k2
� k.T0 � izI/.T0 � izI/�1�k2
C 2b2kT0.T0 � izI/�1�kk.T0 � izI/�1�k;

on using b2 � jzj and the identity

k.T0 � izI/uk2 D kT0uk2 C z2kuk2:

Hence, kT0uk2 � k.T0 � izI/uk2; kuk � jzj�1k.T0 � izI/uk and

k.T0 � izI/�1'k2Q � k�k2 C 2b2k�kk.T0 � izI/�1�k

�
�
1C 2b2

jzj
�

k�k2

�
�
1C b2

jzj
�2

k�k2: (1.5.7)

Furthermore, if '� WD E�',

k'�kQ� D sup
k kQ�1

j.'�;  /j

D sup
k kQ�1

j.';E /j

D sup
k kQ�1

ˇ̌
ˇ.ŒT1=20 � ibI��1'; ŒT1=20 � ibI� /

ˇ̌
ˇ
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D k.T1=20 � ibI/�1'k
D k�k: (1.5.8)

Thus k�k D kE�'kQ� � k'k and

k.T0 � izI/�1k � 1C b2

jzj : (1.5.9)

As E� is injective, OT0 � izE� D E�.T0 � izI/ has an inverse, and for '� D E�' 2
R. OT � izE�/ and  2 Q,

ˇ̌
ˇ̌�. OT0 � izE�/�1'�;  

�
Q

ˇ̌
ˇ̌ D

ˇ̌
ˇ�.T0 � izI/�1';  

�
Q

ˇ̌
ˇ

� k.T0 � izI/�1'kQk kQ:

Therefore, we have from (1.5.7) and (1.5.8),

k. OT0 � izE�/�1'�kQ � k.T0 � izI/�1'kQ

�
�
1C b2

jzj
�

k'�kQ� :

Since R. OT0 � izE�/ is dense in Q�, . OT0 � izE�/�1 extends by continuity to a map in
B.Q�;Q/, and (1.5.6) follows.

From (1.5.4) and (1.5.6),

k OV. OT0 � izE�/�1kQ� � "

�
1C b2

jzj
�
: (1.5.10)

Hence in (1.5.5), for " < 1 and jzj large enough,

fIQ� � OV. OT0 � izE�/�1g�1 2 B.Q�/ WD B.Q�;Q�/;

and consequently . OT � izE�/�1 2 B.Q�;Q/. Moreover .T � izI/�1 D
. OT � izE�/�1E� 2 B.L2.Rn/;Q/ � B.L2.Rn//. It now follows from (1.5.5)
that

.T � izI/�1 � .T0 � izI/�1 D . OT � izE�/�1 OV.T0 � izI/�1; (1.5.11)

where .T0 � izI/�1 is understood as a map from L2.Rn/ to Q. Since we have shown
that OV W Q ! Q� is compact, the right-hand side of (1.5.11) is compact in L2.Rn/

and hence by Weyl’s Theorem (see [48], Theorem IX.2.1), T and T0 have the same
essential spectrum. As this is Œ0;1/ for T0, the proof is complete. ut

The CLR inequality can now be given.
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Theorem 1.5.2 Let V satisfy (1.5.1). Then the number N.T/ of negative eigenvalues
of the self-adjoint operator T defined in Proposition 1.5.1, counting multiplicities,
satisfies the inequality

N.T/ � Cn

Z
Rn

Vn=2.x/dx; n � 3; (1.5.12)

for some constant Cn.

We refer the reader to [39, 110, 131], for the original proofs of Theorem 1.5.2,
which use very different techniques. Later proofs were obtained by Li and Yau
in [109] and Conlon [38]. The optimal value of the constant Cn in (1.5.13) is not
known; the best known estimate is that obtained by Lieb in [110].

1.5.2 Comparison of the CLR and Sobolev Inequalities

The inequality (1.5.12) is sharp in the following sense. On replacing V by ˛V , where
˛ > 0 is a large coupling constant, and denoting the corresponding operator �� �
˛V by T˛ , (1.5.12) becomes

N.T˛/ � Cn˛
n=2
Z
Rn

Vn=2.x/dx: (1.5.13)

But N.T˛/ is known to satisfy the asymptotic formula

lim
˛!1 ˛�n=2N.T˛/ D cn

Z
Rn

Vn=2.x/dx; cn D .2
p

n/�nŒ�.1C n=2/��1I

see [112], Sect. 4.1.1. Thus (1.5.13) is sharp both in the power of ˛ and in the
function class of V .

Theorem 1.5.2 has the following special case of Sobolev’s embedding theorem,
Theorem 1.3.3, as converse.

Theorem 1.5.3 Suppose that Theorem 1.5.2 is satisfied. Then

kuk22n=.n�2/ � C2=n
n kruk2; for all u 2 H1.Rn/:

Proof Suppose that (1.5.12) is satisfied. Then

Cn

Z
Rn

Vn=2.x/dx < 1
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implies that N.T/ D 0; thus T is non-negative and for all u 2 H1.Rn/,

Z
Rn

jruj2dx �
Z
Rn

Vjuj2dx: (1.5.14)

Let W be an arbitrary member of Ln=2.Rn/ with kWkLn=2.Rn/ D 1, and set

V D .eCn/
�2=njWj; for any eCn > Cn:

Then

Cn

Z
Rn

Vn=2dx D .Cn=eCn/

Z
Rn

jWjn=2dx < 1

and we infer from (1.5.14) that

ˇ̌
ˇ̌Z

Rn
Wjuj2dx

ˇ̌
ˇ̌ �

Z
Rn

jWjjuj2dx � eCn
2=n
Z
Rn

jruj2dx; u 2 H1.Rn/:

From this it follows that juj2 belongs to Ln=.n�2/.Rn/, the dual of Ln=2.Rn/, and

�Z
Rn

juj2n=.n�2/dx
�.n�2/=n

D kjuj2kLn=.n�2/.Rn/

D sup
kWkn=2D1

ˇ̌
ˇ̌Z

Rn
Wjuj2dx

ˇ̌
ˇ̌

� eCn
2=n
Z
Rn

jruj2dx:

Since eCn > Cn is arbitrary, the theorem follows. ut
The proof of Li and Yau in [109] is of particular interest to us as it only uses the

Sobolev inequality (1.3.6) and the fact that the kernel of the heat operator exp.t�/
is positive; recall that (see [111])

.exp.t�/f / .x/ D
�
1

4�t

�n=2 Z
Rn

exp

�
�jx � yj2

4t

�
f .y/dy:

Therefore Li and Yau’s result and Theorem 1.5.3 imply that the Sobolev and CLR
inequalities in R

n are equivalent in view of the positivity of the heat operator. In
[103], Levin and Solomyak derive an abstract version of Li and Yau’s proof, in
which the quadratic form is given by tŒu� D qŒu�� R� Vjuj2d� , where q is a general
quadratic form associated with a Markov generator and .�; �/ is a measure space
with sigma-finite measure. Such a quadratic form q has an abstract description given
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by the following Beurling-Deny conditions in which q is bounded below and closed,
and its domain is denoted by H1.q/:

(a) qŒu C iv� D qŒu�C qŒv� for real u; v 2 H1.q/;
(b) if u 2 H1.q/ is real, then juj 2 H1.q/ and qŒjuj� � qŒu�;
(c) if 0 � u 2 H1.q/, then u ^ 1 WD minfu; 1g 2 H1.q/ and qŒu ^ 1� � qŒu�.

These conditions are satisfied by our quadratic form t0Œu� D kruk2 in L2.Rn/ in
view of Theorem 1.3.8. The approach of Levin and Solomyak in [103] applies inter
alia to analogous discrete problems on graphs. Their theory will be of relevance to
our discussion in Chap. 4, Sect. 4.3, below.

1.6 The Uncertainty Principle and Heisenberg’s Inequality

In quantum mechanics, the state of a system consisting of a single particle in R
3 is

described by a wave function  2 L2.R3/ satisfying

Z
R3

j .x/j2dx D 1:

The function j j2 is interpreted as the probability density of the position of the
particle; the probability that the particle is in a set N is given by

Z
R3

j .x/j2�Ndx;

where �N is the characteristic function of N. On taking Planck’s constant to be
normalised, i.e., „ D 1; the momentum of the particle is defined to be �ir .x/.
In view of (1.3.13), the operator �ir is unitarily equivalent to multiplication by
p, which justifies the standard use of p to represent the momentum; p is also
the standard notation for momentum in classical mechanics. From Plancherel’s
theorem,

Z
R3

j O .p/j2dp D
Z
R3

j .x/j2dx D 1

and j O .p/j2 is interpreted as the probability density of the particle’s momentum.
Heisenberg’s uncertainty principle asserts that the position x and momentum

p can not be determined simultaneously. The position x and momentum p D �ir
are now linear operators, and the readily verified commutator identity

Œp � a; x � b� WD .p � a/.x � b/� .x � b/.p � a/ D �i.a � b/; .a; b 2 C
3/ (1.6.1)
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implies intuitively that jxj and jpj can not be simultaneously small. The principle is
enshrined in the Hardy inequality

Z
R3

jp O .p/j2dp D
Z
R3

jr .x/j2dx

� 1

4

Z
R3

j .x/j2
jxj2 dx; (1.6.2)

for it implies that if the particle is localized at the origin (i.e., the wave function is
supported in a neighbourhood of the origin), jxj and jpj cannot both be small.

On choosing a D b D .ı1j; ı2j; ı3j/ in (1.6.1), where ıij is the Kronecker delta,
we have for  2 C1

0 .R
3/,

.�i@j/.xj .x// � xj.�i@j .x// D �i .x/;

for j D 1; 2; 3, and integration by parts gives

�i
Z
R3

j .x/j2dx D
Z
R3

 .x/
�
.�i@j/.xj .x// � xj.�i@j .x//

�
dx

D 2iRe
Z
R3

h
.@j .x//.xj .x//

i
dx:

Hence,

3

Z
R3

j .x/j2dx � 2

3X
jD1

Z
R3

j@j .x/jjxj .x/jdx

� 2

�Z
R3

jxj2j .x/j2dx
� 1

2
�Z

R3

jr .x/j2dx
� 1

2

D 2

�Z
R3

jxj2j .x/j2dx
� 1

2
�Z

R3

jp O .p/j2dp
� 1

2

Thus, if
R
R3

j .x/j2dx D 1, the uncertainty principle takes the form of Heisenberg’s
inequality

�Z
R3

jxj2j .x/j2dx
� 1

2
�Z

R3

jp O .p/j2dp
� 1

2

� 3=2: (1.6.3)

It’s analogue in R
n; n � 3; is

�Z
Rn

jxj2j .x/j2dx
� 1

2
�Z

Rn
jp O .p/j2dp

� 1
2

� n=2;
Z
Rn

j .x/j2dx D 1:

(1.6.4)
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Heisenberg’s inequality (1.6.4) is a consequence of Hardy’s inequality (1.2.16)
in L2.Rn/, but with a smaller constant. For, by the Cauchy-Schwarz inequality,

�Z
Rn

jf .x/j2dx
�2

�
�Z

Rn
jxj2jf .x/j2dx

��Z
Rn

1

jxj2 jf .x/j2dx
�
;

and on substituting (1.2.16), this yields, for n � 3;

�Z
Rn

jxj2jf .x/j2dx
� 1

2
�Z

Rn
jrf .x/j2dx

� 1
2

�
�

n � 2

2

�Z
Rn

jf .x/j2dx: (1.6.5)

1.7 Relativistic Hardy-Type Inequalities

Hardy’s inequality (1.2.16) with p D 2 and n � 3, is associated with the Dirichlet
Laplacian ��, and can be expressed in terms of the L2.Rn/ inner-product and norm
as

.��u; u/ �
�

n � 2
2

�2 



 u

j � j





2

;

first on C1
0 .R

n/, and then by extension to D1
n WD D1;2

0 .R
n/, which contains H1

n WD
H1;2.Rn/ as a proper subspace; H1

n is the form domain of �� and is the domain
of the square root,

p��. There is a relativistic analogue due to Kato in which the
Laplacian is replaced by the pseudo differential operator

p��; whose definition is
motivated by (1.3.13):

�
F

p��f
�
.p/ D jpj.Ff /.p/; (1.7.1)

where F is the Fourier transform. Its domain as a self-adjoint operator in L2.Rn/ is

D.
p��/ D ff W Of ; jpj1=2Of 2 L2.Rn/g; Of D Ff W

equivalently, D.p��/ is the completion of the Schwarz space S.Rn/ with respect
to the norm

kukH1=2.Rn/ WD
n
kOuk2L2.Rn/

C kj � j1=2 Ouk2L2.Rn/

o1=2
:
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In the statement of Kato’s inequality that follows, we make use of Plancherel’s
theorem to give

Z
Rn

jpjjOf .p/j2dp D
Z
Rn

f .x/
p��f .x/dx: (1.7.2)

Note that the Fourier transform in [111] is defined as
R
Rn e�2� i.p�x/f .x/dx, which

accounts for the differences between some identities in this book and their analogues
in [111].

Theorem 1.7.1 For all f 2 S.Rn/; n � 2;

Z
Rn

jf .x/j2
jxj dx � c2n

Z
Rn

jpjjOf .p/j2dp; (1.7.3)

D c2n

Z
Rn

f .x/
p��f .x/dx; (1.7.4)

where the best possible value of the constant cn is

cn D �. n�1
4
/p

2�. nC1
4
/
I

thus, in particular c3 D p
�=2. The inequality is strict for non-trivial functions f .

Theorem 8.4 in [111] gives the following Sobolev inequality corresponding
to (1.7.3).

Theorem 1.7.2 Let n � 2 and q D 2n=.n � 1/. Then, for all f 2 S.Rn/,

kf k2q � Cn

Z
Rn

jpjjOf .p/j2dp; (1.7.5)

where the best possible constant is

Cn D
n
.n � 1/2

1
n�

3nC1
2n

o�1
�

�
n C 1

2

� 1
n

:

There is equality if and only if f is a constant multiple of a function of the form
Œ�2 C .x � a/2��.n�1/=2, with � > 0 and a 2 R

n arbitrary.

Kato’s inequality is a special case of the following general inequality obtained
by Herbst in [77], which also contains the Hardy inequality.



40 1 Hardy, Sobolev, and CLR Inequalities

Theorem 1.7.3 Let ˛ > 0 and n˛�1 > q > 1. Then the operator jxj�˛jpj�˛ defines
a bounded linear operator C˛ from Lq.Rn/ into itself with norm

kC˛ W Lq.Rn/ ! Lq.Rn/k D �.n; ˛/ WD �.1
2
Œnq�1 � ˛�/�. 1

2
n.q0/�1/

2˛�. 1
2
Œn.q0/�1 C ˛�/�. 1

2
nq�1/

;

(1.7.6)

where q0 D q=.q � 1/: If q � n˛�1 or q D 1, then C˛ is unbounded.

In the case q D 2, (1.7.6) implies that

Z
Rn

1

jxj2˛ jf .x/j2dx � �2.n; ˛/
Z
Rn

jpj2˛jOf .p/j2dp; (1.7.7)

for all functions f for which the right-hand side is finite. This is Hardy’s inequality
when ˛ D 1 and Kato’s inequality when ˛ D 1=2.

We establish Kato’s inequality in the case n D 3, and follow the proof given
in [15], Theorem 2.2.4. Two preliminary lemmas, and some auxiliary results from
Fourier theory are required. The first lemma involves the normalised spherical
harmonics Yl;m and the Legendre function of the second kind, namely

Ql.z/ D 1

2

Z 1

�1
Pl.t/

z � t
dt; (1.7.8)

where the Pl are the Legendre polynomials; [150] may be consulted for all the
properties of Legendre polynomials that we use. We recall that in spherical polar
co-ordinates x D .x1; x2; x3/ D r!; ! 2 S

2,

x1 D r sin � cos'; x2 D r sin � sin '; x3 D r cos';

the normalised spherical harmonics are given in terms of the associated Legendre
polynomials

Pk
l .x/ D .�1/k

2llŠ
.1 � x2/k=2

dkCl

dxkCl
.x2 � 1/l

by

Yl;k.�; '/ D
s
.2l C 1/.l � k/Š

4�.l C k/Š
eik'Pk

l .cos �/; k > 0;

Yl;�k.�; '/ D .�1/kYl;k.�; '/I

we adopt the convention that Yl;k D 0 for jkj > l. From our perspective, the most
important role played by the normalised spherical harmonics is that they form an
orthonormal basis for L2.S2/.
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Lemma 1.7.4 Let p D p!p; p0 D p0!p0 2 R
3. Then

Z
S2

Z
S2

1

jp � p0j2Yl0 ;m0.!p0/Yl;m.!p/d!p0 d!p D 2�

pp0 Ql

�
p02 C p2

2pp0

�
ıll0ımm0 ;

(1.7.9)

where ı denotes the Kronecker delta.

Proof We set z D .p2 C p02/=2pp0 and p � p0 D pp0 cos � . Then, from [150],
Chap. XV, we have that

1

jp � p0j2 D 1

2pp0.z � cos �/

D 1

2pp0
1X

l00D0
.2l00 C 1/Ql00.z/Pl00.cos �/

D 4�

2pp0
1X

l00D0
Ql00.z/

l00X
m00D�l00

Yl00;m00.!p/Yl00;m00.!p0/: (1.7.10)

The lemma follows from the orthonormality of the spherical harmonics, ut
The next lemma is a consequence of the generalisation of Hilbert’s double series

inequality established in [75], Chap. IX, Sect. 319.

Lemma 1.7.5 For u; v 2 L2.RCI xdx/ and l 2 N0,

Il D
Z 1

0

Z 1

0

u.x/v.y/Ql

�
1

2

�
x

y
C y

x

��
dxdy

� Cl

�Z 1

0

xju.x/j2dx

��Z 1

0

yjv.y/j2dy

�
; (1.7.11)

where

Cl D
Z 1

0

Ql

�
1

2

�
x C 1

x

��
x�1dx

is sharp. In particular,

Cl D
�
�2=2; if l D 0;

2; if l D 1;
(1.7.12)

and Cl � 2 for l > 2:
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Proof Since the functions

K.x; y/ WD x�1=2y�1=2Ql

�
1

2

�
x

y
C y

x

��

are homogeneous of degree �1, that is, K.�x; �y/ D ��1K.x; y/, the inequality
( 1.7.11) follows immediately from Hilbert’s inequality, and the exhibited constant
Cl is sharp.

To prove (1.7.12), we use the result from [150], Chap. XV, Sect. 32, that for t > 1,
the Legendre functions Ql.t/ have the integral representation

Ql.t/ D
Z 1

tCp
t2�1

z�l�1
p
1 � 2tz C z2

dz; (1.7.13)

to infer that for t > 1;

Q0.t/ � Q1.t/ � � � � � Ql.t/ � 0: (1.7.14)

Thus Cl � C0 if l 2 N0, and Cl � C1 if l 2 N. Furthermore

C0 D
Z 1

0

Q0

�
1

2

�
x C 1

x

��
x�1dx D

Z 1

0

ln

ˇ̌
ˇ̌x C 1

x � 1
ˇ̌
ˇ̌ dx

x

D 2

Z 1

0

ln

ˇ̌
ˇ̌x C 1

x � 1

ˇ̌
ˇ̌ dx

x

D 4

Z 1

0

 1X
kD0

x2k

2k C 1

!
dx

D 4

1X
kD0

1

.2k C 1/2

D �2

2
; (1.7.15)

and

C1 D
Z 1

0

Q1

�
1

2

�
x C 1

x

��
x�1dx

D 2

Z 1

0

Q1

�
1

2

�
x C 1

x

��
x�1dx

D 2

Z 1

0

�
1

2

�
x C 1

x

�
ln

ˇ̌
ˇ̌x C 1

x � 1
ˇ̌
ˇ̌ � 1

	
dx

x
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D 2 lim
"!0C;ı!1�

�
1

2

�
x C 1

x

�
ln

ˇ̌
ˇ̌x C 1

x � 1

ˇ̌
ˇ̌
�ı
"

D 2; (1.7.16)

as asserted in (1.7.12). The lemma is therefore proved. ut
Finally we need the following result which follows from Corollary 5.10 in

[111] on using (1.3.10), with an adjustment for the difference between our Fourier
transform and that in [111]. For f 2 S.Rn/ and

Og.p/ D
 r

2

�
j � j�2 	 Of

!
.p/

D 1

.2�/3=2

r
2

�

Z
R3

jp � p0j�2Of .p0/dp0;

we have

g.x/ D 1

jxj f .x/: (1.7.17)

At a formal level,

�q
2
�

j � j�2
�
.x/ D F

�j � j�1� .x/, and this would imply (1.7.17)

by (1.3.12). However, this has to be justified since j � j�1 … L1.R3/. Corollary 5.10
in [111] provides us with a way to sidestep this problem.

We are now ready to prove Kato’s inequality.

Proof of Theorem 1.7.1 By Parseval’s formula (1.3.12),and (1.7.17),

I D 1

.2�/3=2

r
2

�

Z
R3

Z
R3

jp � p0j�2Of .p0/Of .p/dp0dp

D
Z
R3

( r
2

�
j � j�2

!
	 Of
)
.p/Of .p/dp

D
Z
R3

F
�1
( r

2

�
j � j�2

!
	 Of
)
.x/F�1

�Of
�
.x/dx

D
Z
R3

jf .x/j2
jxj dx: (1.7.18)

Since the spherical harmonics fYl;mg form an orthonormal basis of L2.S2/, then, in
terms of polar co-ordinates p D p!p, we can write

Of .p/ D
X
l;m

cl;m.p/Yl;m.!p/; cl;m.p/ D
Z
S2

Of .p!p/Yl;m.!p/d!p;
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where the summation is over m D �l;�l C 1; � � � ; l � 1; l; l 2 N0: On substituting
in the integral I of (1.7.18), and using Lemma 1.7.4, we obtain

I D 1

2�2

X
l;m

X
l0 ;m0

Z 1

0

Z 1

0

p2p02cl0;m0.p0/cl;m.p/dp0dp

�
Z
S2

Z
S2

1

jp � p0j2 Yl0 ;m0.!p0/Yl;m.!p/d!p0 d!p

D 1

�

X
l;m

Z 1

0

Z 1

0

pp0Ql

�
p2 C p02

2pp0

�
cl;m.p

0/cl;m.p/dp0dp

D 1

�

Z 1

0

Z 1

0

Ql

�
1

2

�
p

p0 C p0

p

�� �
p0cl0m0.p0/

� �
pcl;m.p/

�
dp0dp:

(1.7.19)

It now follows from Lemma 1.7.5 and (1.7.14) that

I � �

2

X
l;m

Z 1

0

p3jcl;m.p/j2dp

D �

2

Z
R3

jpjjOf .p/j2dp;

with sharp constant �=2. Theorem 1.7.1 is therefore proved.�
The operator

p�� is the “massless” case of the so-called quasi-relativistic
operator

p��C m2 which has been used as a model for a free relativistic spin
zero particle of mass m; see [77, 147, 148]. The massless case of the Dirac operator
is

˛ � .�ir/ D �i
3X

jD1
˛j@j; @j WD @

@xj
; (1.7.20)

where the ˛j are the Dirac matrices,which in the standard representation, are given
by

˛j D
�
0 �j

�j 0

�
; j D 1; 2; 3; (1.7.21)

and the �j are the Pauli matrices

�1 D
�
0 1

1 0

�
�2 D

�
0 �i
i 0

�
�3 D

�
1 0

0 �1
�

I



1.7 Relativistic Hardy-Type Inequalities 45

the Pauli matrices are Hermitian and satisfy

�j�k C �k�j D 2I2ıjk; (1.7.22)

where I2 is the unit 2� 2 matrix, and ıjk is the Kronecker delta. The massless Dirac
operator is therefore determined by the Weyl-Dirac operator

D0 WD � � .�ir/ (1.7.23)

which acts on C
2-valued functions, whereas the massless Dirac operator acts

on C
4-valued functions. In [46], the following theorem featuring a Hardy-type

inequality involving the Weyl-Dirac operator is established. We use the notation
H1.R3IC2/; L2.R3IC2/; C1

0 .R
3IC2/ to denote the spaces of C2-valued functions

whose components lie in H1;2.R3/; L2.R3/; C1
0 .R

3/, respectively.

Theorem 1.7.6 For all ' 2 H1.R3IC2/,
Z
R3

� j.� � r/'j2
1C jxj�1 C j'j2

�
dx �

Z
R3

j'.x/j2
jxj dx: (1.7.24)

On replacing '.x/ by "�1'."�1x/ and allowing " ! 0, (1.7.24) yields

Z
R3

jxjj.� � r/f .x/j2dx �
Z
R3

jf .x/j2
jxj dx; f 2 C1

0 .R
3IC2/: (1.7.25)

Proof We shall follow the analytic proof given in [47]. The following facts will be
needed:

(i) If h is a radial function which is differentiable in RC D .0;1/, then

Œ.� � r/; .� � x/h� D jxjh0 C 2.1C � � L/h C h; (1.7.26)

where Œ� � � � is the commutator, and L D �ix ^ r.
(ii) L is the orbital angular momentum operator; it acts only on the angular

variables.
(iii) 1C � � L is a self-adjoint operator in L2.R3/ whose spectrum is the discrete set

f˙1;˙2; � � � g.
(iv) We denote by X˙, the positive and negative spectral subspaces of 1C� � L, and

by P˙, the associated projections.

For ' 2 H1.R3;C2/, let '˙ WD P˙'. Then, from (1.7.26) and (iii),

.Œ.� � r/; .� � x/h� 'C; 'C/ �
Z
R3

�
3h.x/C h0.x/jxj� j'C.x/j2dx (1.7.27)
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and

.Œ.� � r/; .� � x/h� '�; '�/ �
Z
R3

��h.x/C h0.x/jxj� j'�.x/j2dx: (1.7.28)

We now use in (1.7.27) the fact that .� � r/ is a skew-symmetric operator in
L2.R3/ since the Pauli matrices are Hermitian, and then apply the Cauchy-Schwarz
inequality. For any positive function g (to be chosen later), we have that

I WD
Z
R3

.3h C h0jxj/j'Cj2dx

� � ..� � r/'C; .� � x/h'C/ � ..� � x/h'C; .� � r/'C/

� 2kg�1=2.� � x/h'Ckkg1=2.� � r/'Ck

�
Z
R3

gj.� � r/'Cj2dx C
Z
R3

1

g
j.� � x/h'Cj2dx

�
Z
R3

gj.� � r/'Cj2dx C
Z
R3

1

g
jxj2h2j'Cj2dxI (1.7.29)

the last inequality follows since j.� � x/j2 D P
j;k xjxk�j�k D jxj2. Similarly,

from (1.7.28),

Z
R3

.h�h0jxj/j'�j2dx �
Z
R3

gj.� �r/'�j2dx C
Z
R3

1

g
j.� �x/h'�j2dx: (1.7.30)

We now choose h.x/ D 1
jxj and g.x/ D jxj

1Cjxj . Then 3h C h0jxj D h � h0jxj D 2
jxj ,

and hence from (1.7.29) and (1.7.30),

Z
R3

1

jxj j'Cj2dx �
Z
R3

1

1C jxj�1 j.� � r/'Cj2dx C
Z
R3

j'Cj2dx; (1.7.31)

and
Z
R3

1

jxj j'�j2dx �
Z
R3

1

1C jxj�1 j.� � r/'�j2dx C
Z
R3

j'�j2dx: (1.7.32)

Since ' D 'C C'� and the subspaces XC and X� are orthogonal, it follows that

Z
R3

j'j2dx D
Z
R3

j'Cj2dx C
Z
R3

j'�j2dx:

The proof will be completed by Lemma 5 in [47], which asserts that

P�.� � r/2PC D PC.� � r/2P� in H1.R3;C2/: (1.7.33)
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To verify this, the crucial point is that .� � r/ anticommutes with 1C � � L, and this
is shown by direct computation. Therefore .� � r/2 commutes with 1C � � L. Now
let ˆ˙ 2 X˙ be eigenvectors of 1C � � L corresponding to eigenvalues �˙; �� <
0 < �C. Then

..� � r/ˆ�; .� � r/ˆC/ D � 1

�C
�
ˆ�; .� � r/2Œ1C � � L�ˆC

�

D � 1

�C
�
ˆ�; Œ1C � � L�.� � r/2ˆC

�

D � 1

�C
�
Œ1C � � L�ˆ�; .� � r/2ˆC

�

D ���
�C

�
ˆ�; .� � r/2ˆC

�

D ��
�C

..� � r/ˆ�; .� � r/ˆC/

which is only possible if ..� � r/ˆ�; .� � r/ˆC/ D 0, or equivalently, (1.7.33)
holds. This gives

k.� � r/.'C C '�/k2 D k.� � r/'Ck2 C k.� � r/'�k2
C 2Re Œ..� � r/'C; .� � r/'�/�

D k.� � r/'Ck2 C k.� � r/'�k2:

The theorem therefore follows from (1.7.31) and (1.7.32). ut
Remark 1.7.7 The case � D �1; n D 3; p D 2 of (1.2.20) gives

Z
R3

ju.x/j2
jxj dx �

Z
R3

jxjjru.x/j2dx; u 2 C1
0 .R

3/: (1.7.34)

However, one shouldn’t be misled into thinking that (1.7.25) is a consequence
of (1.7.34); it is not, for

R
R3

jxjj.� � r/u.x/j2dx ¤ R
R3

jxjjru.x/j2dx when u 2
C1
0 .R

3IC2/! The inequalities (1.7.34) and (1.7.25) are sharp. Indeed, it is shown in
[46] that the powers of jxj and the constants in (1.7.24) are optimal.

Theorem 1.7.6 is a special case of a more general inequality with weights,
obtained in [51]. In [2], Adimurthi and Tintarev established the following result
in L2.Rn/ for all n � 2. Let 2m D 2n=2, when n is even, and 2m D 2.nC1/=2 when n
is odd, and let �j; j D 1; 2; � � � ;m be Hermitian m � m matrices satisfying

�i�j C �j�i D 2ıij; i; j D 1; 2; � � � ;mI
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when n D 3, the �j; j D 1; 2; 3; are the Pauli matrices. The result in [2] is

Theorem 1.7.8 Let b 2 R and n � 2. Then for all f 2 C1
0 .R

n n f0gICm/,

Z
Rn

jxj�bj.� � r /f .x/j2dx � cn;b

Z
Rn

jxj�b�2j f .x/j2dx; (1.7.35)

where

cn;b D min
k2Znf1;2;��� ;n�2g

�
k � n � 2 � b

2

�2
(1.7.36)

is the best possible constant. In particular, c3;�1 D 1 and so (1.7.25) is recovered.

Note that the maximum value of cn;b is Œ.n � 2/=2�2 which is attained when b D 0

and (1.7.35) becomes Hardy’s inequality. Also, c2;0 D 0, when the Hardy inequality
is known to be invalid.

In [2], Theorem 1.2, the following Sobolev-type inequality is derived.

Theorem 1.7.9 Let b 2 R; n > 2 and 2� D 2n=.n � 2/. Suppose that in (1.7.36),
cn;b ¤ 0. Then there exists a positive constant C which depends only on n and b,
such that for all f 2 C1

0 .R
n n f0gICm/

Z
Rn

jxj�bj.� � r/f .x/j2dx � C

�Z
Rn

jxjˇjf .x/j2�

dx
�2=2�

; (1.7.37)

where ˇ D bn=.n � 2/.



Chapter 2
Boundary Curvatures and the Distance Function

2.1 Introduction

Let � be an open subset of Rn; n � 2; with non-empty boundary, and set

ı.x/ WD inffjx � yj W y 2 R
n n�g

for the distance of x 2 � to the boundary @� of �. Our main objective in this
chapter is to gather information about the regularity properties of ı. This is of
intrinsic interest for the way it relates to the geometry of � and its boundary.
However we have an additional motive in that it prepares the ground for the study
in subsequent chapters of inequalities of the form

Z
�

jrf .x/jpdx �
�

p � 1
p

�p Z
�

f1C a.ı; @�/.x/g jf .x/jp

ı.x/p
dx; f 2 C1

0 .�/I

the case when a.ı; @�/ D 0 is the Hardy inequality for�. To give a flavour to what
follows, we note that the subset of�which we introduce below and call the skeleton,
is such that it is precisely the set of points in� at which ı ceases to be differentiable.
If @� is assumed to belong to the class C2 then ı 2 C2 outside the skeleton, and
its Laplacian is given by an explicit formula involving the principal curvatures at
@�. This is obviously of value for the analysis of inequalities like the above. For the
properties of ı on the skeleton, and another related set called the ridge, to be defined
below, we follow the treatment of Evans and Harris in [53]. However there are other
earlier works on these topics, notably those of Bunt [33], Motzkin [120] and Federer
[58], and these will be cited where appropriate. Furthermore, ideas from Balinsky,
Evans and Lewis in [20], and Lewis et al. in [107] will be used in the inequalities
which feature the boundary curvatures. The Appendix on boundary curvatures and
the distance function in [68] is also an important reference.

© Springer International Publishing Switzerland 2015
A.A. Balinsky et al., The Analysis and Geometry of Hardy’s Inequality,
Universitext, DOI 10.1007/978-3-319-22870-9_2
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2.2 The Ridge and Skeleton of �

Suppose that � does not contain a half-space. We shall call the set N.x/ WD fy 2
@� W ı.x/ D jx � yjg the near set of x on @�: when N.x/ D fyg we usually write
y D N.x/. The following lemma follows easily from the definition.

Lemma 2.2.1

(1) For each x 2 �, the set of near points N.x/ is compact.
(2) If B is a bounded subset of �; then [x2BN.x/ is bounded.
(3) Let .xi/ be a sequence in � which converges to x 2 �. If yi 2 N.xi/ for all i

and yi ! y, then y 2 N.x/.

Lemma 2.2.2 Let x 2 �, y 2 N.x/ and u D tx C .1 � t/y, where 0 < t < 1: Then
N.u/ D y:

Proof Suppose to the contrary that there exists a y0 2 N.u/ which also lies in the
ball B.u; jy � uj/ centre u and radius jy � uj. Then

jx � y0j � jx � uj C ju � y0j
< jx � uj C jy � uj
D jx � yj

which contradicts the fact that y 2 N.x/. ut
An immediate consequence of the last lemma is

Corollary 2.2.3 For x 2 � and y 2 N.x/, let

� W supft 2 .0;1/ W y 2 N.y C tŒx � y�/g:

Then, for all t 2 .0; �/; N.y C tŒx � y�/ D y.

This leads to the following notions introduced in [53]; see also [49], Sect. 5.1.1.

Definition 2.2.4 For x 2 �; y 2 N.x/ and � defined in Corollary 2.2.3, the point
p.x/ WD y C�.x � y/ is called the ridge point of x in� and the set R.�/ D fp.x/ W
x 2 �g is called the ridge of �.

In [65], the set of centres of maximal open balls contained in �, denoted by
RC.�/, is called the central set of �, and the following is proved.

Lemma 2.2.5 The ridge R.�/ and central set RC.�/ of a proper open subset �
of Rn coincide.

Proof Following the proof in [65], Proposition 3A, we show that RC.�/ is the set
of points in � not lying in any open interval .x; y/, where x 2 � and y 2 N.x/:

Set Ux WD fu W ju � xj < ı.x; @�/g; the largest open ball centre x which lies in
�: Then RC.�/ D fw W w 2 �;Uw ª Ux for every x 2 �g. If w … R.�/; then
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by Corollary 2.2.3, w 2 .x; y/ where x 2 � and y 2 N.x/: Therefore Uw � Ux and
so w … RC.�/:

Suppose that w … RC.�/: Then there exists x 2 � such that Uw � Ux: If
y 2 N.w/ then the spheres @Uw; @Ux must be tangent at y and y 2 N.x/. Thus
w 2 .x; y/ and w … R.�/: ut

Note that the point of assuming that � contains no half space is to ensure that
p.x/ is defined for all x 2 �; if � does contain a half-space, then for some x 2 �,
� D 1 in Corollary 2.2.3 and we put p.x/ D 1. It follows from Lemma 2.2.2
that if x … R.�/ then card N.x/ D 1, i.e., N.x/ is a unique point. The converse
is not true as is easily seen from the example of an ellipse; in that case the ridge is
the straight line along the major axis joining the centres of curvatures A;B of the
points C;D, say, of intersection of the major axis and @�, whereas N.A/ D fCg and
N.B/ D fDg.

Definition 2.2.6 The skeleton of � is the set

S.�/ WD fx 2 � W card N.x/ > 1g: (2.2.1)

The significance of the skeleton S.�/ was exposed by the work of Federer in
[58], but even earlier by Bunt in [33] and Motzkin in [120]. Sets � for which
S.�/ D ; are of particular interest in arbitrary metric spaces and are sometimes
called Chebyshev sets. The proof of the next theorem follows that in [53], but the
result was established by Motzkin in [120].

Theorem 2.2.7 The function ı is differentiable at x 2 � if and only if the
cardinality of N.x/ D 1, i.e. N.x/ contains only one element. If ı is differentiable
at x then rı.x/ D .x � y/=jx � yj, where y D N.x/. Also rı is continuous on its
domain of definition.

Proof Suppose that N.x/ D fyg and that y C k 2 N.x C h/. Then

ı.x C h/2 � ı.x/2 D jy C k � x � hj2 � jy � xj2
D 2.x � y/ � h C 2.y � x/ � k � 2h � k C jhj2 C jkj2
D 2.x � y/ � h C 	;

where 	 D 2.y � x/ � k � 2h � k C jhj2 C jkj2: But jy � xj2 � jy C k � xj2 and
jy C k � x � hj2 � jy � x � hj2, so that

0 � �2.x � y/ � k C jkj2

and

0 � 2.x � y C h/ � k � jkj2:



52 2 Boundary Curvatures and the Distance Function

Therefore

�2h � k C jhj2 � 	 � jhj2;

and as jhj ! 0; 	 D o.jhj/; since jkj ! 0 by Lemma 2.2.1(3). Thus ı2 is
differentiable at x with gradient 2.x � y/ and so ı is differentiable with

rı.x/ D .x � y/
jx � yj :

Conversely, suppose that ı is differentiable at x and that y 2 N.x/. Let u D
txC .1� t/y;where 0 < t < 1: Then y 2 N.u/ by Lemma 2.2.2, and as ju�xj ! 0,
we have

�ju � xj D ju � yj � jx � yj D ı.u/� ı.x/
D rı.x/ � .u � x/C o.ju � xj/:

On dividing through by 1 � t and letting t ! 1, we obtain

�jy � xj D rı.x/ � .y � x/:

Now jı.x C h/� ı.x/j � jhj so that jrı.x/j � 1: It follows that

rı.x/ D .x � y/
jx � yj :

and hence

y D x � ı.x/rı.x/I

y is therefore unique. The continuity of rı on its domain of definition follows from
Lemma 2.2.1(3). ut

A consequence of the last theorem is that S.�/ is the set of points in� at which ı
is not differentiable. It is readily shown that ı is uniformly Lipschitz. For if x; y 2 �,
choose z 2 @� such that ı.y/ D jy � zj. Then

ı.x/ � jx � zj � jx � yj C ı.y/

together with the inequality obtained by interchanging x and y, yield

jı.x/� ı.y/j � jx � yj:
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It follows from Rademacher’s theorem that S.�/ is of zero Lebesgue measure.
Whether or not R.�/ is of zero Lebesgue measure is not known in general, but
it is proved in [65], Proposition 3N, that it is if � is a proper open subset of R2.

Another important subset of � which is relevant to our needs is †.�/ WD � n
G.�/, where G.�/ is the good set defined by Li and Nirenberg in [108] as the
largest open subset of � such that every point x 2 G.�/ has a unique near point.

Lemma 2.2.8

.1/: S.�/ � R.�/ � S.�/; (2.2.2)

.2/: †.�/ D R.�/ D S.�/; (2.2.3)

where the closures are relative to �.

Proof

(1). This is proved in [65]. Let x 2 S.�/ and y 2 N.x/: If x … R.�/; then by
Corollary 2.2.3, for some r > 1; y D N.y C tŒx � y�/ for all t < r. But this
implies that y is the unique member of N.x/, contrary to x 2 S.�/: Hence
S.�/ � R.�/:

To prove that R.�/ � S.�/; we shall show that assuming the existence of
an x0 2 R.�/nS.�/ leads to a contradiction. Let f W x 7! N.x/ W RnnS.�/ !
R

n n �, which by Theorem 2.2.7 is continuous. Let x0 2 R.�/ n S.�/, set
� D ı.x0; @�/; and let " > 0 be such that the open ball B".x0/, centre x0
and radius ", lies in � n S.�/ and ı.f .z/; f .x0// � � for all z 2 B".x0/: Set
E WD fz W ı.z; x0/ D "g: Then x0 … tz C .1 � t/f .z/ for any z 2 E; t 2 Œ0; 1�:

There is therefore a homotopy in R
n n fx0g between the identity function on

E and fE; the restriction of f to E: On projecting this homotopy onto E from
the centre x0; we have a homotopy in E between the constant function on E
and a function taking values in the contraction K of f ŒE� back onto E: But as
f ŒE� � B� .f .x0//; K ¤ E; which is impossible by Theorems 3-4a in [93],
Sect. 59.IV. Therefore there is no such point x0 and R.�/ � S.�/:

(2). Since S.�/ is the set containing all x 2 �with non-unique near points, S.�/ �
†.�/ implying that S.�/ � †.�/. Since S.�/ � R.�/ � S.�/, then
R.�/ D S.�/ � †.�/. The set � n R.�/ is an open set containing only
points with unique near points. Therefore � n R.�/ � G.�/ since G.�/ is
the largest such set. We now have that x … R.�/ implies that x … †.�/ or,
equivalently,†.�/ � R.�/ which completes the proof. ut

Finally, we show that

R.Rn n�/ D S.Rn n�/ D ¿
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if and only if � is convex. The result is attributed to independent work of Bunt [33]
and Motzkin [120], but it is usually called Motzkin’s Theorem.

Theorem 2.2.9 Let � be a subset of Rn and let ı.�/ be the distance function in
�

c WD R
n n�. The following are equivalent:

(i) � is convex.
(ii) ı.x/ is differentiable at every point in �

c
.

(iii) For every x 2 �c
there is a unique point in � at minimal distance from x, i.e.,

S.�c
/ D ;.

Proof The equivalence of (ii) and (iii) is shown in Theorem 2.2.7. It will suffice to
show the equivalence of (i) and (iii).

Suppose that � is convex. Let z 2 N.x/ � � for some x 2 �
c
. Since � is

convex, then for any y 2 � and any " 2 Œ0; 1�, z C ".y � z/ 2 � which implies that

jx � zj2 � jx � .z C ".y � z//j2 D jx � zj2 � 2" < x � z; y � z > C"2jy � zj2;

where< �; � > denotes the scaler product. By letting " ! 0, we see that< x �z; y �
z >� 0, and on letting " D 1 in the expression above, we have that

jx � yj2 D jx � zj2 � 2.x � z; y � z/C jy � zj2 > jx � zj2

indicating that (i) implies (iii).
Our proof of the reverse implication is based on that of Theorem 2.1.30 in [80].

Assume that� is not convex. It will suffice to show that there is an open ball B with
B \ � D ; such that B \ � contains more than one point. Since � is not convex
there exist distinct points x1; x2 2 � such that the open segment between x1 and x2
is contained in�

c
. We may assume that the midpoint of this segment is the origin so

that x2 D �x1. Choose � > 0 so that B.0; �/\� D ;; thus B.0; �/ is at a positive
distance from �. Let S be the set of points .!; r/ in R

nC1 which are such that the
family of balls fB.!; r/g satisfy

B.!; r/ 
 B.0; �/; B.!; r/ \� D ;:

Then

r � j!j C �; j! ˙ x1j2 � r2I

hence

.j!j C �/2 � r2 � 1

2
.j! C x1j2 C j! � x1j2/ D j!j2 C jx1j2:
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From this we infer that

j!j � jx1j2 � �2

2�
; r � jx1j2 C �2

2�
: (2.2.4)

It follows that S is bounded, and since it is clearly closed, it is a compact subset of
R

nC1. Let .!0; r0/ 2 S be such that r0 is maximal amongst the points .!; r/ in SI
this implies that B.!0; r0/must intersect the boundary of�: Let y1 2 B.!0; r0/\�
and suppose it is unique. We shall prove that this leads to a contradiction.

Let � be any vector with h�; !0 � y1i > 0: Then for small " > 0; we have that

B.!0 C "�; r0/\� D ¿: (2.2.5)

We claim that B.!0 C "�; r0/ © B.0; �/: Otherwise, .!0 C "�; r0/ 2 S, which, in
view of (2.2.5), contradicts the maximality of r0: Thus B.!0C"�; r0/must intersect
B.0; �/, and so there exists a point y" 2 @B.!0 C "�; r0/ \ @B.0; �/: On allowing
" ! 0; y" ! y2 2 @B.!0; r0/ \ @B.0; �/: Since r0 > �; y2 is unique, and as
B.0; �/\� D ¿ then y2 ¤ y1 and the segment between y1 and y2 lies in B.!0; r0/.
For small " > 0; B.!0 C ".y2 � y1/; r0/ 
 B.0; �/ and

B.!0 C ".y2 � y1/; r0/\� D ¿: (2.2.6)

Hence .!0 C ".y2 � y1/; r0/ 2 S; and (2.2.6) contradicts that r0 is maximal. ut
Theorem 2.2.10 The functions p and ı ı p are continuous on� if and only if R.�/
is closed relative to �.

Proof If p is continuous, then so is the map x ! p.x/� x and hence R.�/ D fx 2
� W p.x/� x D 0g is closed.

Our proof of the converse implication, uses the fact that r WD ı ı p is upper
semi-continuous. To prove this, we show that if fxng is a sequence of points in �
which converges to x 2 � and is such that fr.xn/g tends to a limit or infinity, then
limn!1 r.xn/ � r.x/: Let yn 2 N.xn/ and

�n WD min

�
r.xn/

ı.xn/
;
2r.x/
ı.x/

	

so that 1 � �n � 2r.x/=ı.x/. Then p.xn/ D yn C r.xn/

ı.xn/
.xn �yn/. By Lemma 2.2.1(2),

fyng is bounded and hence there exists a subsequence fyn.k/g converging to y say,
and such that f�n.k/g converges to some � � 1. Since

yn 2 N .yn C �n.xn � yn// ;
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it follows from Lemma 2.2.1(3) that y 2 N.y C�.x � y// and hence � � r.x/=ı.x/.
Therefore

� D lim
n!1fr.xn/=ı.xn/g

and so limn!1 r.xn/ D �ı.x/ � r.x/, as asserted.
Suppose now thatR.�/ is closed. Since r is upper semi-continuous, it is bounded

above on compact subsets of � and so is jpj. Therefore to prove that p, and
consequently r, is continuous on�, it is sufficient to show that if fxng is a sequence
in � which converges to x, and fp.xn/g converges to z say, then z D p.x/. Since
R.�/ is assumed to be closed, it follows that z lies on R.�/. If y 2 N.x/ is the
limit of fyng; yn 2 N.xn/, then the straight line through y and x meets R.�/ at z.
This implies that z D p.x/ and the continuity of p and r is established. ut
Remark 2.2.11 Let n.y/ denote the unit inward normal at y 2 @�, and suppose that
n.y/ exists for all y 2 @�. Then we can write

p.x/ D y C Ns.y/n.y/ DW m.y/; y 2 N.x/; (2.2.7)

where

Ns.y/ D supft > 0 W y 2 N.y C tn.y//g D ı ı p.x/I (2.2.8)

we set m.y/ D y if y 2 R.�/ \ @�. If R.�/ is closed, then

Ns.y/ D supft > 0 W y C tn.y/ 2 G.�/g: (2.2.9)

Note that the function m.�/ is defined on @�. In the terminology of [108], m.y/ is a
cut point and the set fm.y/ W y 2 @�g is called the cut locus. It is shown in [108],
Corollary 4.11, that if � has a C2;1 boundary,†.�/ is the cut locus, and as we saw
in (2.2.3), this is R.�/:

The following lemma clarifies the connections between notions and terminology
in [53, 108].

Lemma 2.2.12 Let n.�/ be continuous on @�. Then the following are equivalent:

(1) p and ı ı p are continuous on �;
(2) m and Ns are continuous on @�;
(3) R.�/ is closed and equal to †.�/:

Proof Since the equivalence of (1) and (3) follows from Lemma 2.2.8 and Theo-
rem 2.2.10, it is sufficient to prove that (1) and (2) are equivalent.

Suppose that p is continuous, and hence R.�/ is closed by Theorem 2.2.10. Let
yi 2 @�; yi ! y; y … R.�/. Then there exist xi 2 G such that yi D N.xi/. Since
the sequence .xi/ is bounded, it contains a subsequence .xk.i// which converges to
some point x say. Hence by Lemma 2.2.1, .yk.i// converges to y 2 N.x/. Therefore
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m.yk.i// D p.xk.i// ! p.x/ D m.y/;

and

Ns.yk.i// D ı ı p.xk.i// ! .ı ı p/.x/ D Ns.y/:

Conversely, suppose that m and Ns are continuous on @� and let xi ! x in �.
Let yi 2 N.xi/: Then the sequence .yi/ is bounded and so contains a convergent
subsequence .yk.i// whose limit must be y 2 N.x/, by Lemma 2.2.1. Thus

.ı ı p/.xk.i// D Ns.yk.i// ! Ns.y/ D .ı ı p/.x/

and

p.xk.i// D m.yk.i// ! m.y/ D p.x/:

ut
Remark 2.2.13

(1) It is shown in [65] that if � is connected, the sets S.�/ and R.�/ are
connected.

(2) For any proper open subset � of R2, it is proved in [65] that R.�/ has zero
two-dimensional Lebesgue measure.

(3) In [115], p.10, an example is given of a convex open subset � of R2 with a
C1;1 boundary, which is such that S.�/ has non-zero Lebesgue measure. Thus,
in view of the previous remark and Lemma 2.2.8, R.�/ is not closed in this
example.

(4) Let � be bounded and with a C2;1 boundary; see Definition 1.3.7. Then it is
proved in [81, 108] that its cut locus †.�/ is arcwise connected, and its .n �
1/-dimensional Hausdorff measure is finite, thus implying that†.�/ has zero n-
dimensional Lebesgue measure. Furthermore, m; Ns 2 C0;1

loc.@�/, which in view
of Lemmas 2.2.8 and 2.2.12, means that the cut locus†.�/ of� coincides with
R.�/.

For further details and properties of S.�/, R.�/, and †.�/ we refer the reader
to [49, 53], Chap. 5, and [108].

Suppose that n and the functions m; Ns defined in (2.2.7) and (2.2.8) lie in
C.@�/; note Remark 2.2.13(4) above. We then have from Theorem 2.2.10 and
Remark 2.2.11(1) that R.�/ is closed in � and is the cut locus †.�/:

For

ƒ.x/ WD Ns.N.x// D ı ı p.x/;
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define the normalized distance function by

h.x/ WD ı.x/
ƒ.x/

; x 2 G.�/;

with h.x/ D 1 on †.�/ and 0 on @�. We then have the following lemma proved in
[107].

Lemma 2.2.14 Let R.�/ be closed and n 2 C.@�/. Then, for x 2 G.�/; 0 <
h.x/ < 1; and for each Nx 2 †

lim h.x/
x!Nx; x2G

D 1: (2.2.10)

Hence h 2 C.�/.

Proof The fact that h.x/ 2 .0; 1/ for x 2 G.�/ follows since ı.x/ < ƒ.x/ in G.�/.
As †.�/ D fm.y/ W y 2 @�g, for each Nx 2 †.�/, there exists y 2 @� such that

Nx D m.y/ D y C Ns.y/n.y/: (2.2.11)

Let

fxig � G.�/ for xi ! Nx 2 †.�/; (2.2.12)

and let yi D N.xi/I thus jxi � yij D ı.xi/. Then ƒ.xi/ > jxi � yij D ı.xi/, which
implies that

lim inf
i!1 ƒ.xi/ � ı.Nx/: (2.2.13)

It will suffice to show that, for fxig given in (2.2.12),

lim sup
i!1

ƒ.xi/ � ı.Nx/: (2.2.14)

Suppose that (2.2.14) does not hold. Then, there is an ˛ > 0 such that

ƒ.xi/ > ı.Nx/C ˛

for i sufficiently large and hence, since ƒ is continuous on �,

ƒ.Nx/ � ı.Nx/C ˛: (2.2.15)

Since jyi � xij D ı.xi/ converges to ı.x/, the sequence fyig is bounded and hence
contains a subsequence (still called fyig) which converges to a limit Oy say, in @.�/:
Also si WD ı.xi/ ! ı.Nx/. Furthermore,

xi D yi C sin.yi/;



2.3 The Distance Function for a Convex Domain 59

implies that

Nx D Oy C ı.Nx/n.Oy/:

Since ı.Nx/ < ƒ.Nx/�˛ by (2.2.15), it follows that Nx 2 G.�/, contrary to assumption.
Consequently (2.2.14) must hold, and the lemma is proved. ut

2.3 The Distance Function for a Convex Domain

In the next chapter use will be made of the result we shall now prove, that for a
convex domain �, ��ı is a non-negative Radon measure on �. This means that
there exists a non-negative Radon measure � on � such that

�
Z
�

ı.x/�'.x/dx D
Z
�

'.x/d�.x/; for all ' 2 C1
0 .�/: (2.3.1)

A Radon measure is a measure which is locally finite and inner regular, these
properties being defined respectively by

(1) every point has a neighbourhood of finite measure,
(2) for any measurable set A, �.A/ D supf�.K/ W K � A;K compactg:
The proof given in Theorem 2.3.2 below is taken from [52], Theorem 2, p. 239.
The result will be seen to be a consequence of the fact that ı is a concave function
of �, and the Riesz representation theorem, which we now recall. Let C0.�/ be
the set of continuous functions on � which are compactly supported in �, and let
L W C0.�/ ! Œ0;1/ be a non-negative linear functional with the property that, for
any compact subset K of �, there exists a constant MK such that

jL.f /j � MKkf k1; kf k1 WD sup
x2�

jf .x/j;

for all f 2 C0.�/ with support in K. Then the Riesz representation theorem asserts
that there exists a non-negative Radon measure � such that

L.f / D
Z
�

f .x/d�.x/

for all f 2 C0.�/: In fact we shall need the Riesz theorem in the following form:

Corollary 2.3.1 Let L be a linear functional on C1
0 .�/ which is non-negative on

C1
0 .�/:

L.'/ � 0 for all ' 2 C1
0 .�/; ' � 0: (2.3.2)
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Then there exists a non-negative Radon measure � on � such that

L.'/ D
Z
�

'.x/d�.x/; for all ' 2 C1
0 .�/: (2.3.3)

Proof Let ' 2 C1
0 .�/ have support in a compact subset K of �, and let � 2

C1
0 .�/ be such that � D 1 on K and 0 � � � 1: Set g D k'k1� � ': Then g � 0

and (2.3.2) implies that

0 � L.g/ D k'k1L.�/� L.'/

and so

L.'/ � Ck'k1;

where C D L.�/: We now contend that L extends to a linear functional on C0.�/
satisfying the hypothesis of the Riesz representation theorem. This follows since
any non-negative function f 2 C0.�/ is the uniform limit of a sequence of non-
negative functions in C1

0 .�/: To be specific, let f" be a regularisation of f defined
by a mollifier �, a C1

0 .R
n/ function supported in the unit ball B.0; 1/. Thus if x 2 �

and " < ı.x/,

f".x/ WD
Z

B.0;1/
�.z/f .x � "z/dz: (2.3.4)

If K � � contains the support of f and " < dist.K; @�/, then f" 2 C1
0 .�/ and as

" ! 0; f" converges uniformly on K to f . If f � 0 so are f" � 0 and hence our needs
are satisfied. The corollary therefore follows. ut
Theorem 2.3.2 Let� be a convex domain in R

n: Then ı is concave on� and ��ı
is a non-negative Radon measure in the sense of (2.3.1).

Proof To prove that ı is concave on �, we repeat the argument in [23], Example 2.
Let x; y 2 � and for � 2 .0; 1/, set z D �x C .1 � �/y: Since � is assumed to be
convex, z 2 �: Let z0 2 N.z/ and denote by T.z0/, the tangent plane to @� at z0;
T.z0/ is therefore orthogonal to the vector z � z0. Let x0; y0, be the projections of
x; y, respectively on T.z0/. It follows from the convexity of� and a simple similarity
argument that

ı.z/ D jz � z0j D �jx � x0j C .1 � �/jy � y0j � �ı.x/C .1 � �/ı.y/

which proves that ı is concave.
Let f .x/ D �ı.x/; f is therefore convex on �. As " ! 0; the regularisations f"

of f defined by (2.3.4) converge uniformly to f on any open subset �0 of � which
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is such that �0 � �, and is convex since, for sufficiently small ",

f".�x C .1 � �/y/ D
Z

B.0;1/
�.z/f .�Œx � "z�C .1 � �/Œy � "z�/dz:

� �f".x/C .1 � �/f".y/:

Also f" 2 C1.�0/: It follows that D2f" � 0, where D2f" D .@i@jf"/1�i;j�n is the
Hessian of f". Thus D2f" has non-negative eigenvalues and its trace �f" is non-
negative. We therefore have for all ' 2 C1

0 .�/ with ' � 0;

Z
�

f".x/�'.x/dx D
Z
�

'.x/�f".x/dx � 0:

On allowing " ! 0, we conclude that

L.'/ WD
Z
�

f .x/�'dx � 0:

The hypothesis of Corollary 2.3.1 is therefore satisfied and the theorem is proved.
ut

The following result is established in [35].

Proposition 2.3.3 For any proper open subset � of Rn;

.n � 1/� ı�ı � 0 (2.3.5)

in the distributional sense

Proof The proof uses the fact that A.x/ WD jxj2 � ı2.x/ defines a convex function
on R

n: To see this, let x 2 R
n and y 2 @� such that ı.x/ D jx � yj: Then, for all

z 2 R
n;

A.x C z/C A.x � z/� 2A.x/

D 2jzj2 � ˚
ı2.x C z/C ı2.x � z/ � 2ı2.x/


� 2jzj2 � ˚jx C z � yj2 C jx � z � yj2 � 2jx � yj2
 D 0:

Since A is continuous it is therefore convex. We therefore infer, as in the proof of
the previous theorem, that for all ' 2 C1

0 .�/; ' � 0;

Z
�

A.x/�'.x/dx � 0;
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and this gives

0 �
Z
�

f2n � 2div.ırı/g'.x/dx D 2

Z
�

.n � 1 � ı�ı/'.x/dx

which yields the proposition. ut
The above proposition is shown to have the following interesting consequence in

[127], Lemma 2.2 and Theorem 2.7.

Theorem 2.3.4 Let � be a proper open subset of Rn: Then for all u 2 C1
0 .�/ and

s � 1;

Z
�

jruj
ıs�1 dx � .s � 1/

Z
�

juj
ıs

dx C
Z
�

juj
ıs�1 .��ı/dx (2.3.6)

where �ı is meant in the distributional sense. Therefore, if ��ı � 0;

Z
�

jruj
ıs�1 dx � .s � 1/

Z
�

juj
ıs

dx: (2.3.7)

The constant .s � 1/ in (2.3.7) is sharp.
If � is bounded and ��ı � 0; all the constants in (2.3.6) are sharp and

equality holds for u" D ı.x/s�1C"; " > 0I this function lies in the weighted Sobolev
space W1;1

0 .�I ı1�s/, which is the completion of C1
0 .�/ with respect to the normR

�
.jru.x/j C ju.x/j/ı.x/1�sdx.

Proof For any vector field V on �, we have for all u 2 C1
0 .�/, on integration by

parts,

Z
�

divVjujdx D �
Z
�

V � rjujdx

and hence since jrjujj � jruj a.e. on �;

Z
�

divVjujdx �
Z
�

jVjjrujdx:

The inequality (2.3.6) follows on choosing V D �ı1�srı: To prove that the constant
is sharp in (2.3.7) we pick y 2 @� to be the centre of a ball B�.y/ of small radius
�, and define the family of functions u".x/ WD '.x/.ı.x//s�1C"; " > 0; where
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' 2 C1
0 .B�.y//; 0 � ' � 1; and ' D 1 in B�=2.y/. Then

I WD
R
�

jru"j
ıs�1 dxR

�
ju"j
ıs dx

� s � 1C "C
R
�

jr'jı"dxR
�
'ı�1C"dx

� s � 1C "C CR
�\B�=2.y/

ı�1C"dx
;

where C is a constant independent of ": Since ı.x/ � jx � yj, the integral in the last
inequality diverges as " ! 0. Hence I � s � 1 C o.1/ as " ! 0I it follows that
.s � 1/ is sharp. The fact that u" gives equality is readily verified. ut

Under the hypothesis of Theorem 2.3.4 but with s � n, it is proved in [10] that

Z
�

jruj
ıs�1 dx � .s � n/

Z
�

juj
ıs

dx;

the proof involving a covering of� by cubes. An elementary proof of this inequality
is given in [127], Theorem 2.3.

2.4 Domains with C2 Boundaries

In the following lemma, it is assumed that � has a C2 boundary. This means that
locally, after a rotation of coordinates, @� is the graph of a C2 function. To be
specific (see also Sect. 1.2.4), for any y 2 @�, let n.y/;T.y/ denote respectively the
unit inward normal to @� at y and the tangent plane to � at y. The @� is said to
be of class C2 if, given any point y0 2 @� there exists a neighbourhood N .y0/ in
which @� is given in terms of local coordinates by xn D '.x1; x2; � � � ; xn�1/; ' 2
C2.T.y0/\N .y0//, xn lies in the direction of n.y0/ and with x0 D .x1; x2; � � � ; xn�1/,
we have

D'.y0
0/ � .D1;D2; � � � ;Dn�1/'.y0

0/

� Œ.@=@x1; @=@x2; � � � ; @=@xn�1/'�.y0
0/ D 0:

The principal curvatures �1; � � � ; �n�1 of @� at y0 are the eigenvalues of the
Hessian matrix

ŒD2'.y0
0/� D .DiDj'.y0

0//i;jD1;��� ;n�1

and the corresponding eigenvectors are called the principal directions. By a
rotation of coordinates, we can assume that the coordinate axes lie in the principal
directions at y0: Then with respect to this coordinate system we have that y 2 N .y0/
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can be expressed as

y D �.s1; s2 � � � sn�1/;� D .�1; � � � ; �n; /; (2.4.1)

where �j 2 C2.T.y0/ \ N .y0//: At y0

@�

@si
DW vi D .v1i ; � � � ; vn

i /; i D 1; 2; � � � ; n � 1;

are unit vectors in the direction of the principal directions and we have

hvi; vji D ıi;j; hvi;ni D 0;

@n.s0/
@si

D �i.s0/
@�.s0/
@si

D �i.s0/vi.s0/; (2.4.2)

where the angle brackets denotes scalar product and n.s0/ is the unit inward normal
vector at �.s1; s2 � � � sn�1/. In (2.4.2), the signs of the principal curvatures are
determined by the direction of the normal n. If� is convex, the principal curvatures
of @� are non-positive, while if the domain under consideration is �

c D R
n n �,

the principal curvatures are non-negative.

Lemma 2.4.1 Let � be a domain in R
n, n � 2, with a C2 boundary. Let �j.y/,

j D 1; : : : ; n � 1, be the principal curvatures at y 2 @� with respect to the unit
inward normal. Then for x 2 G.�/ D � n R.�/ and y D N.x/,

1C ı.x/�j.y/ > 0; j D 1; : : : ; n � 1:

Proof If �j.y/ � 0, the inequality is trivial. Suppose �j.y/ < 0 for some y 2 @�

which is the unique near point of x 2 G.�/. Let Bı.x/ be the ball centered at x with
radius ı.x/ satisfying

fyg D Bı.x/\ R
n n�:

Recall that the principal radius ri is the radius of the osculating circle and for y 2
@�, ri D 1=j�i.y/j. Since @� is C2, then ı.x/ � ri, for otherwise, Bı.x/ would
enclose the osculating circle and would intersect @� more than once, contradicting
the fact that y is the unique nearest point of x. Therefore,

1C ı.x/�i.y/ � 0 (2.4.3)

for any x 2 G.�/.
Since x is in the open set G.�/, there is an open neighborhood O".x/ centered

at x with radius " > 0 also contained in G.�/. From the definition of a ridge in
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Definition 2.2.4, there is a � such that for all t 2 .0; �/,

fyg D N.y C tŒx � y�/ D N.y C tı.x/n/

where n is the unit inward normal at y. Clearly, � � 1 and, in fact, � > 1 since
otherwise x … G. Consequently, there is an s 2 .0; "/ such that

xs WD y C .ı.x/C s/n 2 O".x/ � G.�/

and fyg D N.xs/, i.e., ı.xs/ D s C ı.x/. Since xs 2 G.�/, we may apply (2.4.3) to
conclude that

1C ı.x/�i.y/ > 1C .ı.x/C s/�i.y/ � 0

which completes the proof. ut
Lemma 2.4.2 Let � be a domain in R

n, n � 2, with C2 boundary, and ı.x/ WD
dist.x; @�/: Then ı 2 C2.G.�//; G.�/ D � n R.�/, and for g.x/ D g.ı.x//; g 2
C2.RC/;

�xg.x/ D @2g

@ı2
.x/C

n�1X
iD1

�
�i.y/

1C ı.x/�i.y/

�
@g

@ı
.x/; x 2 � n R.�/; (2.4.4)

where the �i.y/ are the principal curvatures of @� at the unique near point y of x.
In particular,

�xı.x/ D Q�.y/ WD
n�1X
iD1

�
�i.y/

1C ı.x/�i.y/

�
; x 2 � n R.�/; y D N.x/: (2.4.5)

Proof For x0 2 G.�/, let y0 D N.x0/, and consider the coordinate system in (2.4.1)
for points in N .y0/. We define a mapping � from U D T.y0/\ N .y0/ � R into R

n

by

x D �.�.s0/; sn/ D �.s0/C snn.s0/; (2.4.6)

where x 2 G.�/ is such that N.x/ D y D �.s0/ and sn D ı.x/. Then, for i D
1; 2; � � � ; n,

@xi

@sj
D @�i

@sj
C sn

@ni

@sj
; j D 1; 2; � � � n � 1;

@xi

@sn
D ni; (2.4.7)
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and so, by (2.4.2), at y0 D �.s0
0/,

@x
@sj

D .1C ı�j/vj; j D 1; 2; � � � ; n � 1; @x
@sn

D n: (2.4.8)

It follows that the Jacobian matrix of � at .�.s0
0/; ı.x0//, where y0

0 D �.s0
0/ and

y0 D N .x0/, is

0
B@
.1C ı�1/v

1
1 � � � .1C ı�n�1/v1n�1 n1

:::
:::

:::

.1C ı�1/v
n
1 � � � .1C ı�n�1/vn

n�1 nn

1
CA (2.4.9)

This has the inverse

0
BBB@

.1C ı�1/
�1v11 � � � .1C ı�1/

�1vn
1

:::
:::

.1C ı�n�1/�1v1n�1 � � � .1C ı�n�1/�1vn
n�1

n1 � � � nn

1
CCCA (2.4.10)

and hence the Jacobian (2.4.9) has a non-zero determinant. Since � 2 C1.U/, it
follows from the inverse mapping theorem that for some neighbourhood M D
M.x0/ of x0, the inverse map is in C1.M/. From

x D y C ı.x/n.y/ D �.s0/C ı.x/n.s0/ (2.4.11)

we have that ı.x/ D .x � �.s0// � n.s0/ and so Dı.x/ D n.s0/. Thus ı 2 C2.M/ and
consequently ı 2 C2.G.�//.

Since .@s=@x/ D .@x=@s/�1, it follows that .@s=@x/ at y0 is the matrix (2.4.10),
and for j D 1; 2; � � � n; i D 1; 2; � � � n � 1;, this yields at y0

@si

@xj
D Œ1C ı�i�

�1vj
i ;

@sn

@xj
D n j: (2.4.12)

As ı.x/ D sn, we have on employing the usual summation convention,

@2ı

@x2j
D @nj

@si

@si

@xj
;

which at y0 is

n�1X
iD1
Œ1C ı�i�

�1vj
i

@nj

@si
C @nj

@ı
nj:
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Consequently, at y0,

�ı D
nX

jD1

(
n�1X
iD1
Œ1C ı�i�

�1vj
i

@nj

@si
C nj @nj

@ı

)

D
n�1X
iD1
Œ1C ı�i�

�1hvi;
@n
@si

i C hn;
@n
@ı

i

D
n�1X
iD1

�iŒ1C ı�i�
�1 (2.4.13)

by (2.4.2). From the Chain Rule, we have

@g

@xj
D @g

@si

@si

@xj
C @g

@ı

@ı

@xj
D @g

@ı

@ı

@xj

and

�xg D @

@sk

�
@g

@ı

@ı

@xj

�
@sk

@xj

D
�
@2g

@sk@ı
nj C @g

@ı

@nj

@sk

�
@sk

@xj
:

Hence at y0, we get from (2.4.12)

�xg D @2g

@ı2
C @g

@ı

nX
jD1

n�1X
kD1

�kv
j
kŒ1C ı�k�

�1vj
k

D @2g

@ı2
C @g

@ı

n�1X
kD1

�kŒ1C ı�k�
�1:

The lemma is therefore proved. ut
Corollary 2.4.3 Let � be a convex domain in R

n; n � 2; with a C2-boundary.
Then ı is superharmonic ( i.e. �ı � 0) in G.�/ D � n R.�/ and subharmonic
(i.e.�ı � 0) in R

n n�.

Proof We noted in the paragraph following (2.4.2) that if � is convex, then the
principal curvatures of @� are non-positive in � and those of the boundary of
R

n n � are non-negative in R
n n �. The corollary is therefore a consequence of

Lemma 2.4.1, (2.4.5) and Lemma 2.2.8. It was first proved in [8] by a different
method. ut
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Remark 2.4.4 It follows from (2.4.12) that Œ�i=.1 C ı�i/�.y/; i D 1; 2; � � � ; n � 1;

are the principal curvatures of the level surface of ı through x at x.

Remark 2.4.5 From Lemmas 2.4.1 and 2.4.2 it follows that the inequality (2.3.5) is
strict in G.�/.

Remark 2.4.6 If � is a domain with a C2 boundary, there exists " > 0 such that
�" WD fx 2 � W ı.x/ < "g � G.�/. For� satisfies a uniform sphere condition: this
means that for each point y0 2 @�, there exists a ball B, depending on y0, which is
such that B \ .Rn n�/ D y0, and the radii of the balls B are bounded from below by
a positive constant, ", say. Moreover, any x 2 �" has a unique near point y on @�,
with x D y C n.y/ı.x/. Hence, �" � G.�/.

2.5 Mean Curvature

The mean curvature of @� at y is defined to be

H.y/ WD 1

n � 1
n�1X
jD1

�j.y/; y 2 @�;

where we adopt the convention that the standard unit sphere S
n�1 � R

n has mean
curvature �1 everywhere. From Lemma 2.4.1, we have that

1C ı.x/H.y/ > 0; y D N.x/; x 2 G.�/: (2.5.1)

As noted in the paragraph after (2.4.2), if � is convex and has a C2 boundary,
then the principal curvatures satisfy �i � 0, i D 1; 2; � � � ; n � 1. It is well-known
(see [143], Chap. 13) that � is strictly convex if and only if �j < 0 for each j D
1; 2; � � � ; n � 1. A weaker property is now introduced.

Definition 2.5.1 A domain � � R
n with a C2 boundary @� is said to be mean

convex (with respect to the inward normal) if

H.y/ < 0; y 2 @�;

and weakly mean convex if

H.y/ � 0; y 2 @�:

If H � 0 on @� then @� is said to be a minimal surface.
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Example 2.5.2 Let � be the ring torus in R
3 with minor radius r and major radius

R � 2r. This is the “doughnut-shaped" domain generated by rotating a disc of radius
r about a co-planar axis at a distance R from the center of the disc. The ridge of �
is clearly

R.�/ D fx W �.x/ D 0g;

where �.x/ is the distance from the point x in � to the center of the cross-section
and ı.x/ D r � �.x/.

For x D .x1; x2; x3/ 2 �nR.�/; let y D .y1; y2; y3/ D N.x/ have the parametric
co-ordinates

y1 D .R C r cos s2/ cos s1

y2 D .R C r cos s2/ sin s1

y3 D r sin s2
;

where s1; s2 2 .��; ��. The principal curvatures at y 2 @� are

�1 D �1
r
; �2 D � cos s2

R C r cos s2
;

e.g., see Kreyszig [90]. Hence

H.y/ D � R C 2r cos s2

2r.R C r cos s2/
� � R � 2r

2r.R � r/
: (2.5.2)

Therefore � is mean convex if R > 2r and weakly mean convex if R D 2r. This
is a classic example of a domain which is mean (or weakly mean) convex, but not
convex.

It follows from (2.4.5) that

�ı.x/ D
2X

iD1

�
�i

1C ı�i

�
.y/ D � R C 2.r � ı/ cos s2

.r � ı/.R C .r � ı/ cos s2/

D �
q

x21 C x22 C .r � ı/ cos s2

.r � ı/

q
x21 C x22

� 0;

since R C r cos s2 D
q

x21 C x22 C ı.x/ cos s2 and R � 2r: The fact that �ı � 0 was
proved by Armitage and Kuran [8].

An interesting result is obtained in [107], Proposition 2.6, on the relationship
between �ı.x/ in � and the mean curvature of the boundary, by the use of an
inequality involving the elementary symmetric functions of a vector � 2 R

n. Recall
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that the kth elementary symmetric function of the vector � 2 R
n is given by

�k.�/ WD
X

1�i1<���<ik�n

�i1 � � ��ik ; � D .�1; : : : ; �n/ 2 R
n;

for k D 0; 1; : : : ; n, with �0 D 1, �1.�/ D �1C� � �C�n, and �n.�/ D �1 � � ��n. The
elementary symmetric means are defined as

Mk.�/ WD �k.�/
ı�n

k

�
; k D 0; 1; : : : ; n:

The following inequality is due to Newton [123] and MacLaurin [114]. If � D
.�1; : : : ; �n/ with each �i � 0, then

Mk.�/
2 � Mk�1.�/MkC1.�/; 1 � k � n � 1; (2.5.3)

with equality if, and only if �1 D � � � D �n, and consequently, for �k > 0, k D
1; : : : ; n,

�n�1.�/
�n.�/

� � � � � c.n; k/
�k�1.�/
�k.�/

� � � � � n2
1

�1.�/
(2.5.4)

where c.n; k/ WD n.n�kC1/
k . The equalities hold if, and only if �1 D � � � D �n.

Proposition 2.5.3 Let � be a domain in R
n, n � 2, with a C2 boundary. Let �j.y/,

j D 1; : : : ; n � 1, be the principal curvatures at y 2 @� with respect to the unit
inward normal, and let H.y/ be the mean curvature at y. Then for all x 2 G.�/ and
y D N.x/ 2 @�,

�ı.x/ D Q�.y/ WD
n�1X
iD1

�
�i.y/

1C ı.x/�i.y/

�
� .n � 1/H.y/
1C ı.x/H.y/

; (2.5.5)

where 1C ı.x/H.y/ > 0 by (2.5.1). Equality holds if, and only if �1 D � � � D �n�1.

Proof Let

�i WD 1C ı.x/�i.y/; i D 1; : : : ; n � 1;

which is positive-valued according to Lemma 2.4.1. Then

ı.x/ Q�.y/ WD
n�1X
iD1

ı.x/�i.y/
1C ı.x/�i.y/

D
n�1X
iD1

�i � 1

�i
D n � 1�

n�1X
iD1

1

�i
:
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But, for � D .�1; : : : ; �n�1/ 2 R
n�1,

�n�2.�/
�n�1.�/

D
P

1�i1<���<in�2�n�1 �i1 � � ��in�2

�1 � � ��n�1
D

n�1X
iD1

1

�i

and

�n�2.�/
�n�1.�/

� .n � 1/2
1

�1.�/

with �1.�/ D P
�i. Therefore

n � 1 � ı.x/ Q�.y/ D
n�1X
iD1

1

�i
� .n � 1/2

1Pn�1
iD1 �i

;

and so,

ı.x/ Q�.y/ � .n � 1/
ı.x/H.y/

1C ı.x/H.y/
:

ut
As an immediate consequence of Lemma 2.4.1, (2.4.5), and (2.5.5) we now

know that if @� is C2 and weakly mean convex, the distance function ı.x/ is
superharmonic in G.�/ D � n R.�/. In fact, there is an equivalence here which
was proved in [107].

Proposition 2.5.4 Let � have a C2 boundary. The distance function ı.x/ is
superharmonic in G.�/ D � n R.�/ if and only if � is weakly mean convex.
Moreover,

sup
x2G.�/

Œ�ı.x/� D sup
y2@�

.n � 1/H.y/; y D N.x/: (2.5.6)

Proof Noting the representation of �ı given in (2.4.5), we observe that when
viewed as a function of ı only,

P �i
1Cı�i

decreases as ı increases irrespective of
the sign of �i. Therefore, for each x 2 G.�/ and y D N.x/

�ı.x/ D
n�1X
iD1

�i

1C ı�i
�

n�1X
iD1

�i D .n � 1/H.y/;

i.e.,

sup
x2G.�/

Œ�ı.x/� � .n � 1/ sup
y2@�

ŒH.y/�; y D N.x/:
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Conversely, for n.y/ the unit inward normal at y 2 @� and y D N.x/, define

xt WD y C tn.y/:

Then for all t > 0 sufficiently small, xt 2 G.�/, implying that

sup
x2G.�/

Œ�ı.x/� � �ı.xt/ D
n�1X
iD1

�i

1C ı.xt/�i
:

Since ı.xt/ ! 0 as t ! 0, we may conclude that

sup
x2G.�/

Œ�ı.x/� � lim
t!0
Œ�ı.xt/� D

n�1X
iD1

�i D .n � 1/H.y/:

Thus (2.5.6) holds, which implies the equality in the proposition. The implication
of the penultimate sentence in the proposition follows from (2.5.5) ut

Finally, we show that for bounded C2 domains �, the continuity of the mean
curvature H.y/ on @� is inherited from the continuity of �ı in G.�/.

Proposition 2.5.5 If @� 2 C2 and � is bounded, then the mean curvature H.y/ is
continuous on @�.

Proof Let y; y0 2 @� and define

x0.t/ WD y0 C tn.y0/; x.t/ WD y C tn.y/;

where n.y/ is the unit inward normal at y 2 @�. For t sufficiently small in order that
t � t0 < �, x.t/ and x0.t/ are in

�� WD fx 2 � W ı.x/ < �g

and we have that

x.t/ � x0.t/ D y � y0 C tŒn.y/ � n.y0/�:

Since n.�/ is continuous on @� it follows that

y ! y0 H) x.t/ ! x0.t/

uniformly for t � t0. By the continuity of�ı.�/ in G.�/ established in Lemma 2.4.2
(see also Lemma 14.16 of [68]) it follows that

lim
y!y0

�ı.x.t// D �ı.x0.t//
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uniformly in t � t0. Hence,

lim
y!y0

flim
t!0

�ı.x.t//g D lim
t!0

�ı.x0.t//;

implying that

lim
y!y0

H.y/ D H.y0/:

ut

2.6 Integrability of ı�m

To end this chapter, we establish a connection between a regularity condition on
the boundary of a bounded domain � and the rate of decay of ı.x/ as x tends
to the boundary. The regularity condition will be expressed in terms of the inner
Minkowski dimension of @�, while the decay rate of ı will be measured in terms of
the integrability of negative powers of ı. To define the inner Minkowski dimension
of @�, we set

M�
�.@�; r/ WD r�.n��/j.@�C Br.0//\�j;
M�
�.@�/ D lim sup

r!0C
M�
�.@�; r/

and

dimM;�.@�/ WD inff� W M�
�.@�/ < 1g

where @�CBr.0/ is the set of balls of radius r and centred at a point on the boundary
of �. The inner Minkowski dimension of � is the quantity dimM;�.@�/. The
corresponding quantities obtained by replacing j.@� C Br.0// \ �j by j.@� C
Br.0//j are denoted by M�.@�; r/;M�.@�/, and dimM.@�/, the last of these being
the Minkowski dimension of @�. To establish the connection with the decay of ı
at the boundary, we use the notion of a Whitney covering W of a bounded domain
�. This is a family of closed cubes Q, each with sides parallel to the co-ordinate
axes and with side length `Q D 2�k and diameter dQ D 2�kpn for some k 2 N,
such that

(1) � D S
Q2W QI

(2) the interiors of distinct cubes are disjoint;
(3) for all Q 2 W ; 1 � dist.Q; @�/=dQ � 4:
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Such a covering is known to exist; see [139], p. 16, Theorem 3. Condition (2) implies
that

`Q
p

n � ı.x/ � 5`Q
p

n:

Set

Wk WD fQ 2 W W `Q D 2�kg; k 2 N;

and let n.k/ be the number of cubes in Wk. The way in which W is constructed then
implies that

Q � fx 2 � W p
n2�k � ı.x/ � 5

p
n2�kg: (2.6.1)

The following result is proved in [32]; see also [49], Lemma 4.3.7.

Lemma 2.6.1 Let � be a bounded domain in R
n and let 0 < � � n. Then

M�
�.@�/ < 1 if and only if there are positive constants K and k0 such that

n.k/ � 2�kK for all k � k0; k 2 N.

Proof First suppose that M�
�.@�/ < 1. Then there exist K; r0 > 0 such that

j.@�C Br.0//\�j � Krn��

for all r 2 .0; r0�. Take k 2 N; k � .log 2/�1 log.12
p

n=r0/ and set r D 6
p

n2�k.
Then 2r � r0. By a standard covering theorem (see, for example, Theorem XI.5.3
in [48]), there are points x1; x2; � � � ; xm 2 @� and a positive constant C, depending
only on n, such that

@� �
m[

jD1
Br.xj/;

mX
jD1

�Br.xj/ � C:

Every cube Q 2 W is contained in at least one of the balls B2r.xj/; j D 1; 2; � � � ;m.
For given x 2 Q, choose y 2 @� so that ı.x/ D jx � yj W y 2 Br.xj/ for some
j 2 f1; 2; � � � ;mg. Thus, for every z 2 Q we have

jz � xjj � jz � xj C jx � yj C jy � xjj D 12
p

n2�k D 2r:

Let nj.k/ be the number of cubes Q 2 Wk which are contained in B2r.xj/. Then
clearly

n.k/ �
kX

jD1
nj.k/ �

kX
jD1

jB2r.xj/\�/j=j�j

� C2nkj.@�C B2r.0//\�j
� CK.12

p
n/n��2�k:
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Conversely, suppose that n.k/ � K2�k for all k � k0; k 2 N. We may suppose
that � < n since

lim sup
r!0

j.@�C Br.0//\�j D j@�j < 1:

Fix r > 0 with r � p
n2�k0 and choose k0 � k0 such that

p
n2�k0�1 � r <

p
n2�k0

:

Then by (2.6.1),

.@�C Br.0//\� �
[
k�k0

Wk:

Hence

j.@�C Br.0//\�j �
1X

kDk0

K2k.��n/ D K2k0.��n/

1� 2��n
:

Thus

r�.n��/j.@�C Br.0//\�j � K2k0.��n/

.1 � 2��n/.
p

n2�k0�1/n��

� K2n��

.1 � 2��n/n.n��/=2

and the result follows. ut
The connection between the Minkowski dimension and the distance function that

we were after, can now be given.

Theorem 2.6.2 Let � be a bounded domain in R
n. Then the following conditions

are equivalent:

(1) dimM;�.@�/ < n;
(2) there exists � 2 .0; n/ such that

R
�
ı.x/��dx < 1:

Proof Suppose that (1) holds. Let W be a Whitney covering of � and put � D
dimM;�.@�/. Then if � > 0,

Z
�

ı.x/��dx D
X

Q2W

Z
Q
ı.x/��dx D

1X
kD1

X
Q2Wk

Z
Q
ı.x/��dx

� C
1X

kD1
n.k/2�kn.2�k/�� � C

1X
kD1

2.��nC�/k;
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for some positive constant C. Since � < n, the last sum is finite for a suitable
� < n � �.

Conversely, suppose that (2) holds and that dimM;�.@�/ D n. Then by
Lemma 2.6.1, no matter what K > 0 and � 2 .0; n/ are chosen, n.k/ > K2�k for
all k. Thus if we take � D n � �, there is a sequence of natural numbers kj D kj.�/

such that n.kj/ > 2
�kj . Then

Z
�

ı.x/��dx D
1X

kD1

X
Q2Wk

Z
Q
ı.x/��dx � C

1X
kD1

n.k/.2�k/��jQj

� C
1X

jD1
n.kj/.2

�kj/��2�kjn >

1X
jD1

2kj.�C��n/ D 1:

This contradiction completes the proof. ut



Chapter 3
Hardy’s Inequality on Domains

3.1 Introduction

Let � be a domain (an open, connected set) in R
n with non-empty boundary, 1 <

p < 1, and denote by ı.x/ the distance from a point x 2 � to the boundary @� of
�; i.e.,

ı.x/ WD inffjx � yj W y 2 R
n n�g:

The basic inequality to be considered in this chapter is

Z
�

jrf .x/jpdx � c.n; p; �/
Z
�

jf .x/jp

ı.x/p
dx; f 2 C1

0 .�/I (3.1.1)

equivalently, the inequality is to hold for all f 2 W1;p
0 .�/: We shall say that the

inequality is valid if there is a positive constant c.n; p; �/ which, as indicated, may
be dependent on n; p and�; but not on f :

It was proved by Lewis in [104] that if n < p < 1; the inequality (3.1.1) holds
for all proper open subsets of Rn. For 1 < p � n; the situation is more complicated,
as assumptions on the boundary of� are necessary. A wide assortment of boundary
conditions which are sufficient to ensure a valid inequality may be found in the
literature, and many authors have contributed.

3.2 Boundary Smoothness

In this section we give brief descriptions of what we regard to be some of the
highlights of the results concerning boundary conditions and the validity of the
Hardy inequality; a comprehensive up-to-date coverage may be found in [146].

© Springer International Publishing Switzerland 2015
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(i) In [119], Maz’ya showed that (3.1.1) can be characterised in terms of the
p-capacity Cp.K; �/ of compact subsets K � � relative to �, defined by

Cp.K; �/ D inf

�Z
�

jru.x/jpdx W u 2 C1
0 .�/; u.x/ � 1 for all x 2 K

	
:

(3.2.1)

He proved that (3.1.1) is valid if and only if there exists an absolute constant
C > 0 such that

Z
K

1

ı.x/p
dx � C � Cp.K; �/I (3.2.2)

a simplified proof is given by Kinnunen and Korte in [86].
(ii) The relative p-capacity Cp.K; �/ also features in a theorem of Lewis in [104]

involving the notion of uniform p-fatness: a closed set E � R
n is said to be

uniformly p-fat if there is a constant � > 0 such that for all x 2 � and all
r > 0;

Cp

�
E \ B.x; r/;B.x; 2r/

�
� �Cp

�
B.x; r/;B.x; 2r/

�
D �c.n; p/rn�p

for some positive constant c.n; p/ dependent only on n and p. The following
examples may help to put this definition in perspective:

(1) If n < p < 1; every non-empty closed set is uniformly p-fat.
(2) Every closed set satisfying the interior cone condition is uniformly p-fat

for every p 2 .1;1/ W a closed set E � R
n satisfies the interior cone

condition if there exists a cone V such that every x 2 E is the vertex of a
cone Vx � E which is congruent to V, i.e., Vx D x C Lx.V/, where Lx is
a rotation operator.

(3) The complement of a Lipschitz domain is uniformly p-fat for every p 2
.1;1/: � is a Lipschitz domain if it is a rotation of a set of the form

fx D .x0; xn/ D .x1; � � � ; xn�1; xn/ 2 R
n W xn > 
.x0/g;

where 
 W Rn�1 ! R is Lipschitz continuous.
(4) If there is a constant � > 0 such that for all x 2 E and all r > 0;

jE \ B.x; r/j � � jB.x; r/j;

then E is uniformly p-fat for every p 2 .1;1/:

The aforementioned result of Lewis in [104] is the following:

Theorem 3.2.1 If n < p < 1; the inequality (3.1.1) holds for all open sets
� ¤ R

n. If 1 < p � n and � is an open set in R
n which is such that
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R
n n � is uniformly p-fat, then the Hardy inequality (3.1.1) is valid. When

p D n; (3.1.1) holds if and only if Rn n� is uniformly p-fat.

In particular then, for 1 < p � n; (3.1.1) is valid for a Lipschitz domain.
(iii) The uniform p-fatness of Rn n � was proved in [100, 101] to be equivalent

to the pointwise q-Hardy inequality for some q 2 .1; p/; this notion was
introduced by Hajłasz in [71] and is that there exists a positive constant
c.n; q/, depending only on n and q such that for all f 2 C1

0 .�/ (extended
to all of Rn by 0),

jf .x/j
ı.x/

� c.n; q/ ŒM.jrf jq.x//�1=q
; (3.2.3)

where Mf is the maximal function defined for f 2 L1loc.R
n/ by

Mf .x/ WD sup
r>0

1

jB.x; r/j
Z

B.x;r/
jf .y/jdy:

That the pointwise q Hardy inequality for some q 2 .1; p/ implies the Hardy
inequality (3.1.1) is a consequence of the classical result that M is a bounded
map from Lp=q.Rn/ into Lp=q.Rn/ since p > q.

(iv) In view of the connection established in Theorem 2.6.2 between integrability
properties of ı.�/ and the Minkowski dimension of @�, the “dimension" of
@� and the Hardy inequality can be expected to be intimately related. This is
known to be the case if the Hausdorff and Aikawa notions of dimension are
used. We recall the definitions. For a set E in R

n and � � 0, the �-Hausdorff
content of E is defined to be

H�.E/ WD inff
1X

jD1
r�j W E �

1[
jD1

B.xj; rj/; xj 2 E; rj > 0g;

where B.xj; rj/ is the ball centre xj and radius rj. It is readily shown that there
is a unique �0 2 Œ0; n� such that

H�.E/ D
� 1; if � < �0;
0; if � > �0:

The Hausdorff dimension of E is then defined by

dimH.E/ WD supf� � 0 W H�.E/ D 1g D inff� � 0 W H� D 0gI

see [57] for details. The Aikawa dimension of a set E � R
n is defined as

dimA.E/ WD inf
n
t > 0 W

Z
B.x;r/

1

ı.y;E/n�t
dy < Ctr

t; x 2 E; r > 0
o
;
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where ı.y;E/ is the distance from y to E and Ct is a constant which may
depend on t.

In [100] Lehrbäck proved that if Rn n� is uniformly p-fat, then the Hardy
inequality (3.1.1) is valid and dimH.@�/ > n � p. This is complemented in
[101], where Lehrbäck proves that if dimA.@�/ < n � p, then (3.1.1) is valid.
It is proved in [87, 101] that if (3.1.1) is valid, there exists " D ".p; n/ such
that either dimH.@�/ � n � p C " or dimA.@�/ � n � p � ": In fact this
result is local in nature, in the sense that, if ! 2 @� and r > 0, then either
dimH.@�\B.!; r// > n�p or dimA.@�\B.!; r// < n�p whenever (3.1.1)
is valid. This means that if � is a punctured disc in R

2 and p D 2, there is no
valid Hardy inequality.

For any set E it is known that dimH.E/ � dimA.E/, and indeed, if E is
bounded, the Hausdorff, Minkowski and Aikawa dimensions are related by

dimH.E/ � dimM.E/ � dimA.E/I

see [57, 102, 113] .
(v) A natural question following from Hardy’s inequality is if u 2 W1;p.�/ and

u=ı 2 Lp.�/ imply that u 2 W1;p
0 .�/: That this is indeed the case is proved

in [48], p. 223; furthermore, in [116], Lemma 1.1, it is proved that if � is a
bounded domain with a C2 boundary, then the space

QW1;p.�/ WD fu 2 W1;p
loc .�/ W krukLp.�/ C ku

ı
kLp.�/ < 1g

with norm

kuk QW1;p.�/ WD krukLp.�/ C ku

ı
kLp.�/

is equivalent to W1;p
0 .�/ with norm krukLp.�/: An extension of the quoted

result from [48] was obtained by Kinnunen and Martio who prove in [85]
that the requirement u=ı 2 Lp.�/ can be weakened to u=ı 2 Lp;1.�/; the
weak-Lp space defined as the set of functions f satisfying

sup
�>0

�pjfx 2 � W jf .x/j > �gj < 1:

(vi) We now turn from the question of when (3.1.1) is valid to that of finding
the best constant when it is. This is naturally associated with the variational
problem of determining

�p.�/ WD inf
u2W

1;p
0 .�/

R
�

jrujpdxR
�

ju=ıjpdx
(3.2.4)
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and the existence, or otherwise, of a minimizer. Clearly (3.1.1) holds if and
only if �p.�/ > 0I and if �p.�/ > 0 then the best constant is �p.�/.
When n D 1 it is easily shown that �p.�/ D .1 � 1=p/p (see (3.3.4)
below), but when n > 1 the situation is more complicated. The problem
was resolved for convex domains by Matskewich and Sobolevskii [117] in
the case p D 2 and by Marcus et al. [116] in general. They proved that,
for a convex domain � which is smooth in a neighbourhood of some point,
�p.�/ D .1 � 1=p/p D cp, which is equal to the one-dimensional value; see
Theorem 3.1 below. Lewis et al. show in [107] that the convexity condition
on � to achieve �p.�/ D cp can be relaxed to weak mean convexity; this
result is reproduced in Theorem 3.7.14 below.

In [116], it is proved that for all bounded domains in R
n with boundaries

of class C2,

�p.�/ � cp WD
�

p � 1

p

�p

:

If there is no minimizer then �p.�/ D cp; the existence of a minimizer and
�p.�/ D cp being shown to be equivalent in the case p D 2:

It follows from the case n D 1 that, for the half-space R
nC WD fx D

.x0; xn/ W x0 2 R
n�1; xn > 0g, we have

�p.R
nC/ D cp: (3.2.5)

For, if 
 2 C1
0 .R

nC/, jr
.x/j � j.@
=@xn/.x/j implies that �p.R
nC/ �

�p.RC/, while if 
 is radial, then jr
.x/j D j.@
=@r/.x/j and hence
�p.R

nC/ � �p.RC/.
(vii) For non-convex domains (and ones not weakly mean convex), the value of

�p.�/ is not known in general, but for arbitrary planar, simply connected
domains�, there is the celebrated result of Ancona in [7] that�2.�/ � 1=16;
see Sect. 3.4 below. The Ancona result is generalised by Laptev and Sobolev
in [98], where the “degree" of convexity of� is quantified in the lower bound
obtained for �2.�/. This is achieved by establishing a stronger version of
Koebe’s 1=4 theorem on which Ancona’s proof was based.

We note the example of a punctured disc in item (iv) above for which
there is no valid Hardy inequality. When � D R

n n f0g, it is shown in [116],
Example 4.1, that it is sufficient to consider the evaluation of �p.�/ over
radially symmetric functions and then

�p.R
n n f0g/ D

ˇ̌
ˇ̌1 � n

p

ˇ̌
ˇ̌p : (3.2.6)

(viii) In [41], Davies introduced a mean distance function ıM , and proved
that (3.1.1) holds in the case p D 2 for arbitrary domains if ı is replaced by
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ıM. This was extended to general values of p in .1;1/ by Tidblom in [144].
The mean distance function will be the subject of the following Sect. 3.2.

(ix) An extension of Hardy’s inequality of the form

Z
�

jru.x/j2dx � 1

4

Z
�

ju.x/j2
ı.x/2

dx C C.�/
Z
�

ju.x/j2dx; u 2 C1
0 .�/;

was established by Brezis and Marcus in [30], for � convex and C.�/ D
1=4 diam.�/. Since then there have been many improvements, notably the
sharp result of Avkhadiev and Wirths in [12] in which C.�/ D �20=ı

2
0, where

ı0 is the inradius of� and �0 is the first zero in .0;1/ of the Bessel function
equation J0.t/ � 2J1.t/ D 0: Section 3.6 will be devoted to such extensions,
including analogues in Lp.�/.

(x) Ward proves in [146] that, for an arbitrary domain �, the Schrödinger
operator H D �� C V defined on C1

0 .�/, is essentially self-adjoint if V
is locally bounded in � and, close to the boundary of �, it satisfies

V.x/ � 1

ı.x/2

�
1 � �2.�/ � 1

logŒı.x/�1�
(3.2.7)

� 1

logŒı.x/�1� log logŒı.x/�1�
� � � �

� 1

logŒı.x/�1� log logŒı.x/�1� � � � log log � � � logŒı.x/�1�

	

for some finite number of logarithmic terms. This extends to arbitrary
domains, a result of Nenciu and Nenciu in [122] for bounded domains with
C2 boundaries. In particular then, H is essentially self-adjoint if

V.x/ � 1 � �2.�/

ı.x/2
:

This recovers the Kalf, Walter, Schmincke, Simon criterion (see [136])

V.x/ � �n.n � 4/

4jxj2

for the case of� D R
2 n f0g, since then �2.�/ D .1� n=2/2 by (1.2.16) and

ı.x/ D jxj.
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3.3 The Mean Distance Function

3.3.1 A Hardy Inequality for General �

In [41], Davies introduced the following notion:

Definition 3.3.1 The mean distance function ıM is defined by

ıM.x/�2 WD n
Z
Sn�1

�
.x/�2d!.
/; (3.3.1)

where �
.x/ is the least distance from x 2 � to @� in the direction of either 
 or
�
 and d!.
/ is the normalized measure on S

n�1, i.e.,
R
Sn�1 d!.
/ D 1. Note that

the factor n is excluded in [41].

For general p 2 .1;1/, there is the analogue (see [144])

ıM;p.x/�p WD
p
��

�
nCp
2

�

�
�

pC1
2

�
�
�

n
2

�
Z
Sn�1

�
.x/�pd!.
/; (3.3.2)

where ıM;2 D ıM.
The following theorem is proved in [41] in the case p D 2, and in [144] for any

p 2 .1;1/:

Theorem 3.3.2 For all f 2 D1;p
0 .�/; 1 < p < 1, and any domain� in R

n,

Z
�

jrf .x/jpdx �
�

p � 1
p

�p Z
�

jf .x/jp

ıM;p.x/p
dx: (3.3.3)

Proof The root of the result is the one-dimensional inequality

Z b

a
j' 0.t/jpdt �

�
p � 1

p

�p Z b

a

j'.t/jp

�.t/p
dt; .' 2 C1

0 .a; b//; (3.3.4)

where �.t/ D minfjt � aj; jt � bjg. To prove this we obtain an inequality in each half
of the interval .a; b/ separately. Let ' be real. With c WD .1=2/.a C b/,

Z c

a

j'.t/jp

.t � a/p
dt D

Z c

a
.t � a/�p

�Z t

a
Œj'.x/jp�0dx

�
dt

D
Z c

a
Œj'.x/jp�0

�Z c

x
.t � a/�pdt

�
dx
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D
Z c

a
Œj'.x/jp�0.p � 1/�1f.x � a/�pC1 � .c � a/�pC1gdx

� p

p � 1

Z c

a

j'.x/jp�1j' 0.x/j
.x � a/p�1 dx;

since jj'.x/j0j D j' 0.x/j a:e:; by Theorem 1.3.8. Similarly

Z b

c

j'.t/jp

.b � t/p
dt � p

p � 1
Z b

c

j'.x/jp�1j' 0.x/j
.b � x/p�1 dx

and the two inequalities combine to give

Z b

a

j'.t/jp

�.t/p
dt �

�
p

p � 1
�Z b

a

j'.x/jp�1j' 0.x/j
�.x/p�1 dx

�
�

p

p � 1
��Z b

a

j'.x/jp

�.x/p
dx

�1�1=p �Z b

a
j' 0.x/jpdx

�1=p

;

whence (3.3.4).
Let 
 2 S

n�1, and denote the partial derivative in the direction of 
 by @
 ; hence
from (3.3.4),

Z b


a


j@
'.t/jpdt �
�

p � 1

p

�p Z b


a


j'.t/jp

�
.t/p
dt; .' 2 C1

0 .a
; b
//; (3.3.5)

where .a
; b
/ is the interval of intersection of � with the ray in the direction 
.
Furthermore, @
' D 
 � r' D jr'j cos.
;r'/, where for ! 2 R

n, .
; !/ denotes
the angle between 
 and !. On integrating both sides of (3.3.5) with respect to the
normalised measure d!.
/ we obtain

Z
�

Z
Sn�1

j cos.
;r'.x//jpd!.
/jr'.x/jpdx

�
�

p � 1
p

�p Z
�

Z
Sn�1

1

�
.x/p
d!.
/j'.x/jpdx: (3.3.6)

For any fixed unit vector e 2 R
n,

Z
Sn�1

j cos.
;r'.x//jpd!.
/ D
Z
Sn�1

j cos.
; e/jpd!.
/;
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and a calculation gives

Z
Sn�1

j cos.
; e/jpd!.
/ D
�
�

pC1
2

�
�
�

n
2

�
p
��

�
nCp
2

� : (3.3.7)

The inequality (3.3.3) follows from (3.3.6) for any real ' 2 C1
0 .�/, and hence

for all real functions in D1;p
0 .�/. Suppose ' 2 C1

0 .�/ is not necessarily real. Then,
since j'j 2 D1;p

0 .�/ and jrj'jj � jr'j (see Theorem 1.3.8) (3.3.3) is a consequence
of the already established inequality for real functions in D1;p

0 .�/. The theorem is
therefore proved for all ' 2 C1

0 .�/ and hence for all ' 2 D1;p
0 .�/. ut

Thus if the distance function ı is replaced by the mean distance function ıM;p,
the resulting Hardy-type inequality is always valid. We shall see in Sect. 3.5 below
that this knowledge can be useful in the analysis of the Hardy inequality in many
dimensions, by effectively reducing the problem to an easier one in one dimension.
Furthermore, the natural quest for conditions which ensure that ıM;p and ı are
comparable provides a valuable geometric insight into the inequality. It is obviously
always true that

ı
p
M;p.x/ � B.n; p/ıp.x/;

where

B.n; p/ D
�
�

pC1
2

�
�
�

n
2

�
p
��

�
nCp
2

� I

thus B.n; 2/ D 1=n. If @� is sufficiently regular, an inequality in the reverse
direction is available, in which case

ı.x/ � B.n; p/�1=pıM;p.x/ � cı.x/ (3.3.8)

for some c > 1 and the Hardy inequality is valid. An example of this is given in
[41], Theorem 18. The boundary @� is said to satisfy a �-cone condition if every
x 2 @� is the vertex of a circular cone Cx of semi-angle � which lies entirely in
R

n n �. Let s.˛/ denote the solid angle subtended at the origin by a ball of radius
˛ < 1, whose centre is at a distance 1 from the origin. Explicitly

s.˛/ D 1

2

Z arcsin˛

0

sinn�2 tdt=
Z �=2

0

sinn�2 tdt:
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Theorem 3.3.3 If @� satisfies a �-cone condition, then for all x 2 �,

ı.x/ � B.n; p/�1=pıM;p.x/ � 2Œs.
1

2
sin �/��1=pı.x/:

Proof Let x 2 �; y 2 @� and ı.x/ D jx � yj. If 
 is the unit vector directed along
the axis of the cone Cy in R

n n �, then the ball with centre y C ı.x/
 and radius
ı.x/ sin � lies inside Cy and hence outside � The solid angle ƒ subtended by this
ball at x is at least s. 1

2
sin �/ and every line from x within this solid angle meets @�

at a distance at most 2ı.x/ from x. Consequently

B.n; p/

ı
p
M;p.x/

� 1

jSn�1j
Z
ƒ

1

Œ2ı.x/�p
d!.
/ � s. 1

2
sin �/

Œ2ı.x/�p

and the theorem is proved. ut
Another result of interest from [43], Exercise 5.7 or [144], p. 2270, is

Theorem 3.3.4 If � is convex, then

ıM;p.x/ � ı.x/; (3.3.9)

and hence

Z
�

jrf .x/jpdx �
�

p � 1

p

�p Z
�

jf .x/jp

ı.x/p
dx: (3.3.10)

Proof Let e be a unit vector in R
n which is such that �e.x/ D ı.x/. Then, if � is

convex, it follows that

�
.x/ cos.e; 
/ � ı.x/:

Hence
Z
Sn�1

1

�
.x/p
d!.
/ �

Z
Sn�1

j cos.e; 
/jp 1

ı.x/p
d!.
/

D
Z
Sn�1

j cos.e; 
/jpd!.
/
1

ı.x/p

D �. pC1
2
/�. n

2
/p

��.
nCp
2
/

1

ı.x/p
;

by (3.3.7), whence (3.3.9). ut
In Corollary 3.7.14 we shall prove the result established in [107], Theorem 1.2,

that (3.3.10) holds for a domain� which is weakly mean convex, a condition which
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is weaker than convexity; for instance, a ring torus with minor radius r and major
radius R, with R � r, is weakly mean convex.

3.4 Hardy’s Inequality on Convex Domains

3.4.1 Optimal Constant

We shall now prove the result established in [116] that for a convex domain which
is smooth in the neighbourhood of one of its boundary points, the optimal constant

in (3.2.4) satisfies �p.�/ � cp WD
�

p�1
p

�p
: When coupled with Theorem 3.3.4 we

shall then have �p.�/ D cp:

Theorem 3.4.1 Let � � R
n; n � 2; be a convex domain and suppose there is a

point P 2 @� such that � 2 C2 in a neighbourhood of P. Then

�p.�/ WD inf
u2W

1;p
0 .�/

R
� jrujpdxR
�

ju=ıjpdx
D cp: (3.4.1)

Proof In view of Theorem 3.3.4, it is sufficient to prove that �p.�/ � cp. Let … be
a tangent plane at P 2 @�. We may assume, without loss of generality, that P D 0,
… D fx W xn D 0g, and that there is a line segment f.0; xn/ W xn 2 .0; b/g � � for
some b > 0. Let H be the half-space H WD fxn > 0g and " 2 .0; 1/; where we have
written any point x 2 R

n in the form x D .x0; xn/; x0 2 R
n�1: From (3.2.5)

�p.H/ D cp WD
�

p � 1
p

�p

:

Hence, with

RH.u/ WD
R

H jrujpdxR
H ju=ıjpdx

; (3.4.2)

we have that there exists 
 2 C1
0 .H/ such that jRH.
/ � cpj < ". Moreover, there

exists A > 0 such that

supp 
 � K WD fx 2 R
n W xn > 0; jx0j < Axng

and a neighbourhood U of 0 such that for all x 2 U \�,

jdist .x;…/� ı.x/j � o.1/jxj; (3.4.3)
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where o.1/ ! 0 as x ! P: Since RH and K are invariant with respect to
transformations of the form x ! ax, a > 0, we may assume that

supp 
 � U \� and ı.x/ < .1C "/xn for all x 2 supp 
:

On collecting all this together, we see that

R�.
/ � .1C "/RH.
/ � .1C "/.cp C "/:

Since " is arbitrary, it follows that �p.�/ � cp as asserted. ut
Remark 3.4.2 The following results are also proved in [116].

(1) If � is bounded and satisfies the conditions of the Theorem 3.4.1 except that of
convexity, then�p.�/ � cp, with equality if the variational problem determined
by (3.4.1) has no minimiser; if p D 2, there is equality if and only if there is no
minimiser.

(2) Let �1;�2 be bounded Lipschitz domains in R
n with �1 � �2; put �0 D

R
nn�1; � D �0\�2 and�k D �0\.k�2/; k 2 N. Then with �p;i D �p.�i/,

i D 0; 1; 2,

�p;0�p;2

�p;0 C �p;2
� �p.�/:

If 0 2 � then

�p.�/ � min

�
cp;

ˇ̌
ˇ̌n � p

p

ˇ̌
ˇ̌p
	

and so �n.�0/ D 0. Thus there is no valid Hardy inequality

Z
Rnnf0g

jrf .x/jndx � c
Z
�

jf .x/jn

ı.x/n
dx:

(3) If � is either Rn n B.0;R/;B.0;R/ n B.0; r/ where 0 < r < R, or B.0;R/ n f0g,
then

�2.�/ D
�
0 if n D 2;

1=4 if n � 3:
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3.4.2 A Generalisation on C1
0

.G.�//; G.�/ D � n R.�/

In [16], the following inequality was established, which is the analogue for a domain
� of the affine invariant inequality (1.2.17) in R

n. It requires�ı to be defined, which
in view of Lemma 2.4.2, means that it applies to functions supported outside the cut
locus †.�/ D R.�/. Additional smoothness assumptions on the boundary of �
enable the class of functions to be extended to C1

0 .�/, as will be demonstrated in
Sect. 3.5 below.

Theorem 3.4.3 Let � be an open convex subset of Rn and G.�/ D � n R.�/,
where R.�/ is the ridge. Then, for all f 2 C1

0 .G.�//,

Z
�

jrı � rf jpdx �
�

p � 1

p

�p Z
�

ı�pjf jpdx; (3.4.4)

and hence

Z
�

jrf jpdx �
�

p � 1
p

�p Z
�

ı�pjf jpdx: (3.4.5)

Proof For any differentiable vector field V W Rn ! R
n; we have on integration by

parts and the application of Hölder’s inequality,

Z
�

divVjf jpdx D �pRe
Z
�

.V � rf /jf jp�2f dx

� p

�Z
�

jV � rf jphpdx
�1=p �Z

�

jf jph�p0

dx
�.p�1/=p

� "p
Z
�

jV � rf jphpdx C .p � 1/"�p=.p�1/
Z
�

jf jph�p0

dx; (3.4.6)

where h is any positive function, and we have used Young’s inequality

ab � ."a/p

p
C ."�1b/p0

p0 ; p0 D p=.p � 1/;

with " > 0 arbitrary.
We choose V D rı�2m, where m is to be determined; thus on G.�/,

divV D mı�2.m�1/�ı�2 C 4m.m � 1/ı�2.mC1/jrıj2: (3.4.7)

For any x 2 G.�/, rotate the co-ordinate system so that x D .�1; �
0/, where

�1 D ı.x/, measured along the line L from x to its nearest point on @�, and
� 0 D .�2; � � � ; �n/ lies in the .n � 1/-dimensional orthogonal complement L.n�1/
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of L in R
n. Then, in view of the rotational invariance of the Laplacian,

�ı�2 D @21�
�2
1 C�0ı�2;

where �0 is the Laplacian in L.n�1/. Since � is assumed to be convex,�0ı�2 � 0;

and hence

�ı�2 � @21�
�2
1 D 6��4

1 D 6ı�4:

Consequently, in (3.4.7),

divV � 2m.2m C 1/ı�2.mC1/:

On substituting this in (3.4.6) and setting hp0 D ı2.mC1/, we derive

Z
G.�/

jrı�2 � rf jpı4p�2.mC1/dx � J."/
Z

G.�/
jf jpı�2.mC1/dx;

where

J."/ D 2.2m C 1/

mp�1 "�p � .p � 1/

mp
"�p2=.p�1/

�
�
2.2m C 1/

p

�p

;

the maximum being attained for "�1 D f2m.2m C 1/=pg.p�1/=p. It follows that

Z
�

ˇ̌rı�2 � rf
ˇ̌p
ı4p�2.mC1/dx �

�
2.2m C 1/

p

�p Z
�

jf jpı�2.mC1/dx;

and the choice m D .p=2/� 1 completes the proof. ut

3.4.3 Domains with Convex Complements

The technique used in Theorem 3.4.3 can be used effectively for a domain� whose
complement�c is convex. In this case one has the advantage that G.�/ D � since
the cut locus is empty by Motzkin’s Theorem 2.2.9.

Theorem 3.4.4 Let � be a domain in R
n whose complement �c is convex, and let

ı.x/ WD dist.x; �c/. Then, for all f 2 C1
0 .�/, and m � 1,

Z
�

ı2.m�1/ ˇ̌rı2 � rf
ˇ̌p

dx �
�
2.2m � 1/

p

�p Z
�

ı2.m�1/jf jpdx (3.4.8)
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Proof We set V.x/ D rı2m.x/ in (3.4.6). Then in any compact subset of �,

div V D
nX

iD1
@iŒ@iı

2m�

D mı2.m�1/�ı2 C 4m.m � 1/ı2.m�1/jrıj2
D mı2.m�1/�ı2 C 4m.m � 1/ı2.m�1/

since jrıj D 1, a.e. On substituting in (3.4.6) and using the Hölder and Young
inequalities, we get

R
�

fm�ı2 C 4m.m � 1/gı2.m�1/jf jpdx

� p
Z
�

jrı2m � rf jjf jp�1dx

� p

�Z
�

jrı2m � rf jpı�2.p�1/.m�1/dx
�1=p �Z

�

ı2.m�1/jf jpdx
�1�1=p

� mp"p
Z
�

jrı2 � rf jpı2.m�1/dx C .p � 1/"�p=.p�1/
Z
�

ı2.m�1/jf jpdx:

(3.4.9)

We now proceed as in the proof of Theorem 3.4.3 and define the co-ordinates x D
.�1; �

0// where �1 D ı.x/. Then, with the same notation, we have that

�ı2.x/ D @21�
2
1 C�0ı2.x/:

Since �c is convex, �0ı2.x/ � 0, and so �ı2.x/ � 2: It therefore follows
from (3.4.9) that

Z
�

jrı2 � rf jpı2.m�1/dx �
Z
�

ı2.m�1/K."/jf jpdx; (3.4.10)

where

K."/ D
�
2.2m � 1/

mp�1

�
"�p �

�
p � 1

mp

�
"�p2=.p�1/:

It is readily shown that K."/ attains its maximum value of Œ2.2m � 1/=p�p at " D
Œp=2m.2m � 1/�.p�1/=p: The theorem then follows from (3.4.10). ut
Corollary 3.4.5 Let � be a domain in R

n whose complement�c is convex, and let
ı.x/ WD dist.x; �c/. Then, for all g 2 C1

0 .�/ and � > �1=p,

Z
�

ıp.�C1/jrgjpdx � .� C 1=p/p
Z
�

ıp� jgjpdx: (3.4.11)



92 3 Hardy’s Inequality on Domains

Proof On substituting f D g=ı˛ in (3.4.8), we have

jrı2 � rf j � 2fı�˛C1jrgj C ˛ı�˛ jgjg

and



ıŒ2.m�1/=p�˛C1�rg


 �

�
.2m � 1/

p
� ˛

� 

ıŒ2.m�1/=p�˛�g


 ;

where k�k is the Lp.Rn/ norm. The corollary follows on setting � D 2.m�1/=p�˛.
ut

3.5 Non-convex Domains

3.5.1 A Strong Barrier on �

We show in the following lemma that for any domain �, an inequality is satisfied
(in the sense of quadratic forms) by the Laplacian in terms of a general vector field;
this has a geometrical flavour and leads to the notion of strong barrier on � which
has an important role in [7]. Without loss of generality, we shall assume throughout
that functions are real.

Lemma 3.5.1 Let � be a domain in R
n; n � 1 and V W � ! R

n a real,
differentiable vector field. Then,

�� � �divV � kVk2 (3.5.1)

in the sense that for all real f 2 C1
0 .�/,

Z
�

jrf j2dx �
Z
�

��divV � kVk2� f 2dx: (3.5.2)

On choosing V.x/ D rŒlog s.x/�, where s is a strictly positive C2.�/ function, it
follows that

Z
�

jrf j2dx �
Z
�

���s

s

�
f 2dx: (3.5.3)

Let � have a non-empty boundary, and ı.x/ WD dist.x; @�/. If there exists a
strictly positive superharmonic function s which is such that ��s=s � "=ı2 for
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some positive number ", then

Z
�

ˇ̌
ˇ̌u.x/
ı.x/

ˇ̌
ˇ̌2 dx � c�

Z
�

jru.x/j2dx; u 2 C1
0 .�/; (3.5.4)

where c� D 1=":

Proof Let V D .v1; v2; � � � ; vn/. Then,

0 �
nX

iD1

Z
�

�
@f

@xi
� fvi

�2
dx

D
nX

iD1

Z
�

(�
@f

@xi

�2
� 2

�
@f

@xi

�
.fvi/C f 2v2i

)
dx

D
nX

iD1

Z
�

(�
@f

@xi

�2
C f 2

@vi

@xi
C f 2v2i

)
dx

and (3.5.2) is proved.
The choice V.x/ D rŒlog s.x/� gives �divV � kVk2 D �� s=s and the rest of

the lemma follows. ut
For a strictly positive superharmonic function s to qualify as a strong barrier on

� in accordance with [7], it is sufficient for it to satisfy �s C ."=ı2/s � 0 only in
the weak (distributional) sense, that is, for all non-negative 2 C1

0 .�/.

Z
�

�
�s C ."=ı2/s

�
 dx D

Z
�

�
� C ."=ı2/ 

�
sdx � 0; (3.5.5)

which is less than what is required for (3.5.4) above. In the next proposition, which is
Proposition 1 in [7], the existence of a strong barrier in this weak sense is equivalent
to the validity of the Hardy inequality (3.5.4).

Theorem 3.5.2 The Hardy inequality (3.5.4) holds with a finite positive constant
c�, if and only if there exists a strictly positive superharmonic function s on � and
a positive number " such that

�s C "

ı2
s � 0 (3.5.6)

in the weak sense of (3.5.5). The largest value of " in (3.5.5) is 1=c�, where c� is
the best possible constant in (3.5.4).

Proof Suppose that (3.5.4) is satisfied for some finite positive constant c�. Consider
the Hilbert space

H D ff 2 L2loc.�/ W rf 2 L2.�/; ı�1f 2 L2.�/g;
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equipped with the norm

kf kH D �krf k2 C kı�1f k2�1=2 ;
and let H0 denote the closure of C1

0 .�/ in H. The quadratic form

aŒf ; g� WD
Z
�

rf � rgdx � "

Z
�

ı�2fgdx

is bounded on H � H since there exists a constant M > 0 such that

jaŒf ; g�j � Mkf kHkgkH :

Moreover, aŒ�; �� is coercive on H if " < 1=c� since

aŒf ; f � � .1 � "c�/
Z
�

jrf j2dx �
�
1 � "c�
1C "c�

�
kf k2H :

Therefore by the Lax-Milgram theorem (see [48], Chap. IV), given a non-negative
 2 C1

0 .�/, there exists a unique s 2 H0 such that

aŒs; '� D
Z
�

 'dx; for every ' 2 C1
0 .�/: (3.5.7)

Hence �s C ."=ı2/s D � in the weak sense. Moreover, we claim that s is strictly
positive. Suppose otherwise, and set s�.x/ WD minf0; s.x/g. We have that s� 2 H0

as in Theorem 1.3.8, and also note that (3.5.7) is valid for all ' 2 H0 by continuity.
Hence

0 � aŒs�; s�� D aŒs; s�� D
Z
�

 s�dx � 0:

The claim is therefore verified and (3.5.4) has been shown to imply the existence of
a strong barrier on �.

Conversely, suppose there exists a strong barrier s on�, and let ! be a relatively
compact open subset of�. Then ���"=ı2 defines a self-adjoint operator in H0.!/

whose spectrum is discrete and bounded below. Denote its first eigenvalue by �0
and the corresponding eigenfunction by u0. Then

T WD �� � �0 � "=ı2 � 0:
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The form domain Q of T, is the domain of its square root T1=2, and if u 2 Q, then
juj 2 Q and

kT1=2jujk2 D
Z
!

�jrjujj2 � Œ�0 C "=ı2�juj2� dx

�
Z
!

�jruj2 � Œ�0 C "=ı2�juj2� dx

D kT1=2uk2:

It follows from [42], Theorem 1.3.2 that if ' 2 Q and ' � 0,

R
!

�
�ju0j C Œ�0 C "=ı2�ju0j

�
'dx

D � �T1=2ju0j;T1=2'�

�
�

u0ju0j Tu0; '
�

D 0:

Suppose that �0 is negative. Then

0 �
Z
!

˚
�ju0j C Œ�0 C ."=ı2/�ju0j



sdx

D
Z
!

˚
�s C Œ�0 C ."=ı2/�s


 ju0jdx � �0

Z
!

sju0jdx < 0

which is a contradiction. It follows that, for all C1
0 .�/,

�
Z
�

.� / dx � "

Z
�

ı�2 2dx � 0;

which is Hardy’s inequality (3.5.4) with c� D 1=", since " is independent of !. ut
It is proved in [7], Lemma 3 and Theorem 1, that if n � 3 and there is a constant

c > 0 such that, for all x 2 @� and r > 0,

c j�c \ B.x; r/j � crn�2; (3.5.8)

then a strong barrier exists on �. When n � 3, the condition (3.5.8) is equivalent
to � being uniformly �-regular; this property is defined for all n � 2 and is that
there is a constant "1 2 .0; 1/ such that, for all x 2 @� and r > 0, the harmonic
measure !x;r of @B.x; r/\� in � \ B.x; r/ satisfies !x;r � 1 � "1 on @B.x; r=2/.
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If n D 2, the following three properties are proved to be equivalent in [7],
Theorem 2:

(i) � is uniformly�-regular,
(ii) there is a strong barrier for�,

(iii) Hardy’s inequality (3.5.4) holds.

We refer to [7] for the terminology and details.

3.5.2 Planar Simply Connected Domains

The best possible constant for weakly mean convex domains was determined in
[107], Theorem 1.2; see Corollary 3.6.14 below. However, in general, for non-
convex domains (and ones which are not weakly mean convex), the best possible
constant c� in (3.5.4) is not known. Some specific examples of such domains were
considered in [44] (see also Tidblom [145]). For example, for � D R

2 n R
C, with

R
C D Œ0;1/, it was found that c� D 4:86902 : : :. From the many important

contributions to the study of Hardy inequalities in [7], the one of special concern to
us in this section is Ancona’s application of Koebe’s one-quarter theorem to prove
that for a simply connected domain in the plane, the constant c� in (3.5.4)is no
greater than 16. The proof of this has three ingredients:

The Riemann mapping theorem. If U is a non-empty simply connected open subset
of the complex plane C which is not all of C, then there exists a conformal (bijective
analytic) map f from U onto the open unit disk D D fz 2 C W jzj < 1g; this is known
as a Riemann map. A corollary of the theorem is that any two simply connected open
subsets of the Riemann sphere which both lack at least two points of the sphere can
be conformally mapped into each other.

Koebe’s 1=4 theorem. Let D WD fz 2 C W jzj < 1g, the open unit disc in C, and let
f W D ! C be a Riemann map. Then the image f .D/ in C contains the disc centre
f .0/ and radius jf 0.0/j=4.

Conformal invariance of the Dirichlet integral
R
� jru.x/j2dx: To see this, let f W

� ! �0 be conformal, and set y D f .x/, y D .y1; y2/ and x D .x1; x2/; R2 and C

are identified by z D x1 C ix2. Then, with f 0 denoting the complex derivative,

dy D
ˇ̌
ˇ̌det

�
@.y1; y2/

@.x1; x2/

�ˇ̌
ˇ̌ dx D jf 0.x/j2dx;

and

rxu D ryu

�
@.y1; y2/

@.x1; x2/

�t

;
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implying that

jrxuj2 D jryuj2jf 0.x/j2:

Consequently,

Z
�

jrx.u ı f /.x/j2 dx D
Z
�0

ˇ̌ryu.y/
ˇ̌2

dy;

which confirms the asserted invariance.
To proceed, we need the following consequence of the Koebe theorem.

Lemma 3.5.3 Let � � C; � ¤ C be a simply connected domain, and let CC WD
fz D x C iy 2 C W y > 0g. Then for any conformal mapping f W CC ! �, Koebe’s
theorem implies that

ı .f .z// � x

2
jf 0.z/j; z D x C iy: (3.5.9)

Proof We follow the proof in [98], Theorem 3.2. For arbitrary z 2 CC, define

g.w/ D gz.w/ D f .h.w// ; h.w/ D zw C z
1 � w

;

where w 2 D. For each fixed z 2 CC the function h maps D onto CC, and h.0/ D
z; g.0/ D f .z/. Furthermore

g0.w/ D z C z
.1 � w/2

f 0 .h.w// ;

so that g0.0/ D 2�f 0.z/: Koebe’s theorem now implies that

ı .f .z// D ı .g.0// � 1

4
jg0.0/j D 1

2
xjf 0.z/j

as required. ut
We are now able to prove Ancona’s result:

Theorem 3.5.4 Let � � R
2; � ¤ R

2 be a simply connected domain. Then the
Hardy inequality (3.5.4) holds with c� � 16.

Proof The Hardy inequality on .0;1/ clearly implies that

Z
CC

juj2
x2

dxdy � 4

Z
CC

jruj2dx; u 2 C1
0 .CC/; (3.5.10)
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where we have identified CC and the upper-half plane with z D xCiy. Let f W CC !
� be the conformal map in Lemma 3.5.3. Then, since canonical maps preserve the
Dirichlet integral, we have from (3.5.10),

Z
�

jru.x/j2dx D
Z
CC

jr .u ı f / j2dz

� 1

4

Z
CC

j.u ı f /j2
x2

dz

D
Z
CC

j.u ı f /j2
4x2jf 0.z/j2 jf 0.z/j2dz

� 1

16

Z
CC

juŒf .z/�j2
ıŒf .z/�2

jf 0.z/j2dz

on using (3.5.9). As f 0.z/ is the complex derivative, the substitution w D f .z/, with
w D u C iv, gives

dw D
ˇ̌
ˇ̌det

�
@.u; v/

@.x; y/

�ˇ̌
ˇ̌ dz D jf 0.z/j2dz;

and the theorem follows. ut
In view of Theorem 3.5.4 and the fact that for convex planar domains � the

inequality (3.5.4) holds with c� D 4, it is natural to ask if we can get a value of
c� lying between 4 and 16, for simply connected planar domains with some degree
of non-convexity which can be quantified. This question was posed by Laptev and
Sobolev in [98]. They introduced two possible “measures” of non-convexity and
obtained extensions of Koebe’s theorem which led to a positive answer to their
question.

We shall briefly describe one of the results in [98], and encourage the reader to
consult the paper for further details. For any simply connected domain � � C,
� ¤ C, let us denote by A.�/ the class of all conformal maps f from � onto the
open unit disk D. We denote by K� , � 2 Œ0; ��, the open sector

K� D fz 2 C W j arg zj < �g:

So, K� is symmetric with respect to the real axis and with the angle 2� at the
vertex. We also assume that for any non-zero complex number z 2 C, the argument
arg z 2 .��; ��. The domains � to be considered are assumed to satisfy the
following condition:

Condition 3.5.1 There exists a number � 2 Œ0; �� such that for each w 2 �c one
can find a 
 D 
w 2 .��; �� such that

� 2 K� .w; 
w/;
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where K� .w; 
w/ is the transformation of K� through rotation by angle
w 2 .��; ��
and translation by w, i.e. K� .w; 
w/ D ei
wK� C w.

This condition means that the domain� satisfies an exterior cone condition with
infinite cone. Since the cone is infinite, Condition 3.5.1 is equivalent to itself if stated
for the boundary points w 2 @� only. If the Condition 3.5.1 is satisfied for some � ,
then automatically � � �=2 and the equality � D �=2 holds for convex domains.

For domains satisfying Condition 3.5.1, we set

r� .�/ D �

4�
: (3.5.11)

In [98] it was shown that for domains with the Condition 3.5.1 and any f 2 A.�/,
Koebe’s theorem holds with r D r� .�/. This implies, by the same argument as in
Ancona’s paper [7], the following stronger version of the Hardy inequality (3.5.4).

Theorem 3.5.5 Suppose that the domain � � R
2, � ¤ R

2 satisfies Condi-
tion 3.5.1 with some � 2 Œ�=2; ��. Then, for any  2 C1

0 .�/, the Hardy
inequality (3.5.4) holds with

c� D 1=r2� .�/:

Remark 3.5.6 The constant c� in Theorem 3.5.5 runs from 16 to 4 when � varies
from � to �=2. For the domain � D K� , the theorem does not give the best known
result, for in [44], it is shown that c� remains equal to 4 for the range � 2 Œ0; �0�,
where �0 � 2:428, which is considerably greater than �=2.

3.6 Extensions of Hardy’s Inequality

3.6.1 Inequalities of Brezis and Marcus Type in L2.�/

A considerable amount of interest was generated by the paper of Brezis and
Marcus [30] in which the inequality in Theorem 3.3.4 for a convex domain with
p D 2 is improved by the addition of a positive term to the right-hand side. To be
explicit, it is proved in [30] that, for every smooth bounded domain � � R

n, there
exists � 2 R such that

Z
�

jruj2dx � 1

4

Z
�

ju=ıj2dx � �

Z
�

juj2dx; u 2 H1
0.�/:

The largest such constant � is precisely

��.�/ WD inf
u2H1

0.�/

R
� jruj2dx � 1

4

R
� ju=ıj2dxR

� juj2dx
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and this infimum is shown not to be achieved. There are smooth bounded domains
for which ��.�/ < 0; but for convex domains with a C2-boundary, it is proved that

��.�/ � 1

4 diam2.�/
: (3.6.1)

Thus, for D.�/ WD diam.�/ we have that

Z
�

jruj2dx � 1

4

Z
�

ju=ıj2dx � 1

4D.�/2

Z
�

juj2dx; u 2 H1
0.�/:

In [30] the question was posed as to whether the diameter in (3.6.1) could be
replaced by the volume of �, i.e., whether

��.�/ � ˛.vol.�//�2=n; (3.6.2)

for some universal constant ˛ > 0. This was answered (in the affirmative) in [78]
using the mean distance function (3.3.1). We follow the approach in [56] which
used much of the analysis from [78]. However, in [56] different one-dimensional
inequalities (given in Lemmas 3.6.1 and 3.6.2 below) produce an improved constant
˛.

Lemma 3.6.1 Let u 2 C1
0.0; 2b/; �.t/ WD minft; 2b � tg, and let f 2 C1.0; b� be

monotonic on Œ0; b�: Then for p > 1,

Z 2b

0

jf 0.�.t//jju.t/jpdt � pp
Z 2b

0

jf .�.t// � f .b/jp

jf 0.�.t//jp�1 ju0.t/jpdt: (3.6.3)

Proof First let u WD v�
.0;b� , the restriction to .0; b� of some v 2 C1

0.0; 2b/. For any
constant c

� R b
0
Œf .t/ � c�0ju.t/jpdt D �Œf .t/ � c�ju.t/jp

ˇ̌
ˇb
0

C R b
0
Œf .t/ � c� p

2
Œju.t/j2� p

2�1Œju.t/j2�0dt:

By choosing c D f .b/, we have that

� R b
0 f 0.t/ju.t/jpdt D p

R b
0 Œf .t/ � f .b/�ju.t/jp�2ReŒu.t/u0.t/�dt: (3.6.4)

Similarly, for u D v�
Œb;2b/ , v 2 C1

0.0; 2b/, we have

� R 2b
b f 0.2b � s/ju.s/jpds

D p
R 2b

b Œf .2b � s/ � f .b/�ju.s/jp�2ReŒu.s/u0.s/�ds:
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Therefore, since f is monotonic, for any u 2 C1
0.0; 2b/

R 2b
0

jf 0.�.t//jju.t/jpdt

D p
R 2b
0

jf .�.t//� f .b/jju.t/jp�2ReŒu.t/u0.t/�dt

� p
R b
0

jf 0.�.t//j p�1
p ju.t/jp�1 jf .�.t//�f .b/j

jf 0.�.t//j.p�1/=p ju0.t/jdt

� p
h R b

0
jf 0.�.t//jju.t/jpdt

i p�1
p
h R b

0
jf .�.t//�f .b/jp
jf 0.�.t//jp�1 ju0.t/jpdt

i 1
p

on applying Hölder’s inequality. Inequality (3.6.3) now follows. ut
Lemma 3.6.2 Define �.t/ WD 2b � �.t/. For all u 2 C1

0.0; 2b/

Z 2b

0

ju0.t/j2dt � 1

4

Z 2b

0

�.t/�2
h
1C

�2�.t/
�.t/

�i2ju.t/j2dt: (3.6.5)

Proof On setting f .t/ D 1=t and p D 2 in (3.6.3), we get

Z 2b

0

�.t/�2ju.t/j2dt � 4

Z 2b

0

ˇ̌
1 � �.t/

b

ˇ̌2ju0.t/j2dt (3.6.6)

for u 2 C1
0.0; 2b/. We claim that the substitution v.t/ D Œ1 � �

�.t/
b

�
�u.t/ in (3.6.6)

gives

Z 2b

0

jv0.t/j2dt � 1

4

Z 2b

0

�.t/�2
h
1 �

��.t/
b

�i�2jv.t/j2dt: (3.6.7)

For

jv0.t/j2 D b�2ju.t/j2 � b�1�0.t/
�
1 � �

�.t/
b

��
Œjuj2�0

C�1 � �
�.t/

b

��2ju0.t/j2

which implies that

R 2b
0 jv0.t/j2dt D R 2b

0

�
1 � � �.t/

b

��2ju0.t/j2dt ; (3.6.8)

since

1

b

Z 2b

0

ju.t/j2dt D
Z b

0

�
1 � t

b

�
Œjuj2�0dt �

Z 2b

b

�
1 � 2b � t

b

�
Œjuj2�0dt:
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Therefore, (3.6.7) follows from (3.6.6). Since

.1 � �

b
/�2 D Œ1C 2�

� � �
�2 � Œ1C 2�

�
�2;

the proof is complete. ut
The next theorem corresponds to Theorem 1 in [56] in which weights ı.x/� were

also included.

Theorem 3.6.3 For any u 2 C1
0.�/,

Z
�

ˇ̌ru.x/
ˇ̌2

dx � 1

4

Z
�

ju.x/j2
ıM.x/2

dx C 3

2
K.n/

Z
�

ju.x/j2
j�xj 2n

dx; (3.6.9)

where K.n/ WD n
� sn�1

n

�2=n
, sn�1 WD jSn�1j, and

�x WD fy 2 � W x C t.y � x/ 2 �; 8t 2 Œ0; 1�gI

i.e., �x is the set of all y 2 � that can be “seen" from x 2 �.
If � is convex,�x D � and, for any u 2 C1

0.�/,

Z
�

ˇ̌ru.x/
ˇ̌2

dx � 1

4

Z
�

ju.x/j2
ı.x/2

dx C 3K.n/

2j�j 2n
Z
�

ju.x/j2dx: (3.6.10)

Proof For each x 2 � and 
 2 S
n�1 define

�
.x/ WD minfs > 0 W x C s
 62 �g;
�
.x/ WD minf�
.x/; ��
.x/g;
�
.x/ WD maxf�
.x/; ��
.x/g;
D
.x/ WD �
.x/C ��
.x/:

We recall that the mean distance function ıM is given by

ı�2
M .x/ D n

Z
Sn�1

��2

 .x/d!.
/; (3.6.11)

and that for a convex�, ıM.x/ � ı.x/ by (3.3.9).
Let @
u, 
 2 S

n�1, denote the derivative of u in the direction of 
, i.e., @
u D

 � .ru/. It follows from Lemma 3.6.2 that

Z
�

ˇ̌
@
u

ˇ̌2
dx � 1

4

Z
�

�
.x/�2
�
1C �2�
.x/

�
.x/

��2ju.x/j2dx: (3.6.12)
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The last integrand satisfies

�
.x/�2
�
1C � 2�
 .x/

�
.x/

��2 D �
.x/�2 C 4
�
 .x/�
.x/

C 4
�
.x/2

� �
.x/�2 C 4
�
 .x/��
.x/

C 4
�
 .x/2C��
.x/2 :

(3.6.13)

Since
Z
Sn�1

�2
 .x/d!.
/ D
Z
Sn�1

�2�
.x/d!.
/;

we have from the Cauchy-Schwarz inequality,

R
Sn�1 �
.x/��
.x/d!.
/ � R

Sn�1 �
.x/2d!.
/

� �R
Sn�1 �
.x/nd!.
/

�2=n

D
h

n
sn�1

j�xj
i2=n

:

Moreover,

1 �
Z
Sn�1

Œ�
.x/��
.x/�d!.
/
Z
Sn�1

Œ�
.x/��
.x/��1d!.
/;

and from this we derive

R
Sn�1 Œ�
.x/��
.x/��1d!.
/ � �R

Sn�1 �
.x/��
.x/d!.
/
��1

�
h

n
sn�1

j�xj
i�2=n

:

For the third term in inequality (3.6.13)

R
Sn�1 .�
.x/2 C ��
.x/2/d!.
/ D 2

R
Sn�1 �
.x/2d!.
/

and this gives

R
Sn�1 .�
.x/2 C ��
.x/2/�1d!.
/ � 1

2

�
n

sn�1
j�xj�� 2

n :

All in all, we have that

R
Sn�1 �
.x/�2

�
1C � 2�
 .x/

�
.x/

��2
d!.
/ � 1

nı
�2
M .x/C 6

�
n

sn�1
j�xj�� 2

n

D 1
n

˚
ıM.x/�2 C 6K.n/j�xj�2=n



:

(3.6.14)
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Upon combining this fact with (3.6.12) we have

1
4

R
�

˚
ıM.x/�2 C 6K.n/j�xj�2=n


ju.x/j2dx

� n
R
�

R
Sn�1

ˇ̌
@
u.x/

ˇ̌2
d!.
/dx

D n
R
�

R
Sn�1 j cos.
;ru.x//j2d!.
/ˇ̌ru.x/

ˇ̌2
dx:

(3.6.15)

On noting that

Z
Sn�1

j cos.
;ru.x//j2d!.
/ D
Z
Sn�1

j cos.
; e/j2d!.
/

for any fixed unit vector e in R
n and

Z
Sn�1

j cos.
; e/j2d!.
/ D 1

n
;

the inequality (3.6.9) is seen to follow.
The inequality for � convex follows from the fact that �x D � for any x 2 �

and (3.3.9). ut
Filippas et al. [60] estimate ��.�/ in (3.6.1) in terms of the “interior diameter"

Dint.�/ WD 2 supx2� ı.x/. Clearly Dint.�/ � D.�/ and a significant fact is that �
need not be bounded, nor have a finite volume, in order for Dint.�/ to be finite. They
prove for � convex that

��.�/ � 3

Dint.�/2
: (3.6.16)

In Sect. 3.4 below we shall present a sharp result obtained by Avkhadiev and
Wirths [12] by a method reminiscent of those above, in that it is based on one-
dimensional inequalities, but not using the mean distance function.

Following Theorem 3.1 in [60], we give here an L2-Hardy inequality in the form
introduced in [17]; since jrıj D 1 the standard form of the inequality is immediate.
We make use of the fact, proved in Theorem 2.3.2, that in a convex domain, �ı.x/
is a convex function of x and ��ı.x/ is a nonnegative Radon measure. The proof
remains valid if the requirement that � be convex is replaced by the assumption
that ��ı � 0 in the distributional sense. For n D 2 this is equivalent to convexity,
but is a weaker condition than convexity for n � 3; note the result from [107] in
Proposition 2.5.4, that if� has C2 boundary, ��ı.x/ � 0 is equivalent to the mean
curvature of the boundary of � being non-positive.

Theorem 3.6.4 Let � � R
n be a convex domain. Then for any ˛ > �2 and all

u 2 H1
0.�/,

Z
�

jrı � ruj2dx � 1

4

Z
�

juj2
ı2

dx � C˛
Dint.�/˛C2

Z
�

ı˛juj2dx (3.6.17)
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with

C˛ D
�
2˛.˛ C 2/2; ˛ 2 .�2;�1/;
2˛.2˛ C 3/; ˛ 2 Œ�1;1/:

Proof For u 2 C1
0 .�/ and v.x/ WD ı.x/� 1

2 u.x/, it follows that

Z
�

ı˛juj2dx D
Z
�

ı˛C1jvj2dx; (3.6.18)

and since jrıj D 1 a.e.,

Z
�

jrı � ruj2dx � 1

4

Z
�

juj2
ı2

dx D
Z
�

ıjrı � rvj2dx C 1

2

Z
�

.��ı/jvj2dx:

(3.6.19)

Then on integration by parts,

R
�
ı˛C1jvj2dx D 1

˛C2
R
�
.rı˛C2 � rı/jvj2dx

D � 1
˛C2

R
�
ı˛C2div .jvj2rı/dx

D � 2
˛C2Re

R
� ı

˛C2v.rı � rv/dx C 1
˛C2

R
� ı

˛C2.��ı/jvj2dx:

Using the last identity we have for Rint WD 1
2
Dint.�/

.˛ C 2/
R
�
ı˛C1jvj2dx � 2

�R
�
ı˛C1jvj2dx

� 1
2
�R
�
ı˛C3jrı � rvj2dx

� 1
2

CR˛C2
int

R
�
.��ı/jvj2dx

� "
R
� ı

˛C1jvj2dx C 1
"

R
� ı

˛C3jrı � rvj2dx

CR˛C2
int

R
�
.��ı/jvj2dx

� "
R
�
ı˛C1jvj2dx

CR˛C2
int

�
1
"

R
�
ıjrı � rvj2dx C R

�
.��ı/jvj2dx

�
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since ��ı � 0. Consequently,

.˛ C 2 � "/

Z
�

ı˛C1jvj2dx � R˛C2
int

�
1

"

Z
�

ıjrı � rvj2dx C
Z
�

.��ı/jvj2dx
�
:

(3.6.20)

Choose " D minf 1
2
; ˛C2

2
g. Then, by (3.6.18) and (3.6.19),

".˛ C 2 � "/ R� ı˛juj2dx � R˛C2
int

�R
� ıjrı � rvj2dx C 1

2

R
�.��ı/jvj2dx

�

D
�

Dint.�/

2

�˛C2 �R
�

jrı � ruj2dx � 1
4

R
�

juj2
ı2

dx
�

and (3.6.17) follows by making the appropriate choice of ". ut
Another class of inequalities which extend the Hardy inequality is that of the

so-called Hardy-Sobolev-Maz’ya inequalities. An example, which we state in the
case p D 2 only, is one established by S. Filippas, V. Maz’ya, and A. Tertikas (for
2 � p < n) in [61], that if � has a finite interior diameter, Dint.�/, and ��ı � 0

then

Z
�

jru.x/j2dx � 1

4

Z
�

ju.x/j2
ı.x/2

dx C C�

�Z
�

ju.x/j2n=.n�2/dx
�.n�2/=n

; (3.6.21)

for n � 3 and all u 2 C1
0 .�/. Inequalities of this type will be the subject of Chap. 4.

3.6.2 Analogous Results in Lp.�/

In the proof of Lemma 3.6.2 a key substitution v.t/ D Œ1 � .
�.t/

b /�u.t/ was made
that led to the Hardy inequality in Theorem 3.6.3 when p D 2. In the absence of
such a substitution we treat the case for other values of p > 1 using the methods of
Tidblom, cf. Theorems 1.1, 2.1, in [144].

Lemma 3.6.5 Let u 2 C1
0.0; 2b/, p 2 .1;1/. Then

R 2b
0

ju0.t/jpdt �
h

p�1
p

ip R 2b
0 f�.t/�p C .p � 1/b�pg ju.t/jpdt: (3.6.22)

Proof By (3.6.4), for a monotonic function f and a positive function g,

R b
0

jf 0.t/jju.t/jpdt � R b
0

pjf .t/ � f .b/jju.t/jp�1ju0.t/jdt

� p
hR b
0

g.t/ju0.t/jpdt
i1=p

�R b
0

� jf .t/�f .b/jp
g.t/

�1=.p�1/ ju.t/jpdt

�1�1=p

:
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Consequently,

pp
Z b

0

g.t/ju0.t/jpdt �
�R b

0
jf 0.t/jju.t/jpdt

�p

�R b
0

� jf .t/�f .b/jp
g.t/

�1=.p�1/ ju.t/jpdt

�p�1 :

From Young’s inequality for q D p=.p � 1/, we have that

AB
p
q � Ap

p
C Bp

q
H) Ap=Bp�1 � pA � .p � 1/B;

which implies, for A D R b
0

jf 0.t/jju.t/jpdt and B D R b
0

� jf .t/�f .b/jp
g.t/

�1=p�1 ju.t/jpdt,

that

pp
R b
0

g.t/ju0.t/jpdt

� R b
0

�
pjf 0.t/j � .p � 1/

� jf .t/�f .b/jp
g.t/

�1=.p�1/	 ju.t/jpdt:
(3.6.23)

We now choose f .t/ D t�pC1 and g.t/ D .p � 1/�.p�1/. Then

� jf .t/�f .b/jp
g.t/

�1=.p�1/ D .p � 1/t�p
h�
1 � �

t
b

�p�1�pi 1
p�1

:

Consequently, for t 2 .0; b/,

pjf 0.t/j � .p � 1/
� jf .t/�f .b/jp

g.t/

�1=.p�1/

D .p � 1/
�

p t�p � .p � 1/t�p
h�
1 � �

t
b

�p�1�pi 1
p�1

	

D .p � 1/t�p

�
1C .p � 1/

�
1 �

h
1 � �

t
b

�p�1i p
p�1

�	

� .p � 1/t�p
n
1C .p � 1/

�
t
b

�p�1o
� .p � 1/ ˚t�p C .p � 1/

�
1
bp

�

;

(3.6.24)

since

h
1 �

� t

b

�p�1i p
p�1 � 1 �

� t

b

�p�1
:

As in the proof of Lemma 3.6.1, we let u WD v�.0;b� for v 2 C1
0.0; 2b/, and

use (3.6.24) in (3.6.23) to conclude that

R b
0

ju0.t/jpdt �
h

p�1
p

ip R b
0 f�.t/�p C .p � 1/b�pg ju.t/jpdt:

A similar analysis on Œb; 2b/ completes the proof. ut
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Using Lemma 3.6.5 we are able to prove Theorem 2.1 in [144]and, in the case
of p D 2, Theorems 3.1 and 3.2, of [78]. Note that inequality (3.6.25) for the case
p D 2 is weaker than that given by (3.6.9). We shall use the terminology from the
proof of Theorem 3.6.3.

Theorem 3.6.6 Let p 2 .1;1/, and

K.n; p/ WD .p � 1/
hsn�1

n

ip=n
=B.n; p/;

where

B.n; p/ WD �. pC1
2
/ � �. n

2
/p

� �. nCp
2
/

I

thus B.n; 2/ D 1=n and K.n; 2/ D K.n/. Then for all u 2 C1
0.�/,

R
�

jru.x/jpdx �
�

p�1
p

�p n R
�

ju.x/jp
ı

p
M;p.x/

dx C K.n; p/
R
�

ju.x/jp
j�xj p

n
dx
o
: (3.6.25)

If � is convex,

R
�

jru.x/jpdx �
�

p�1
p

�pn R
�

ju.x/jp
ı.x/p dx C K.n;p/

j�jp=n

R
�

ju.x/jpdx
o
: (3.6.26)

Proof From Lemma 3.6.5 we have that for any 
 2 S
n�1 and u 2 C1

0.�/,

R
� j@
u.x/jpdx � � p�1

p

�p R
�

˚
�
.x/�p C .p�1/2p

D
 .x/p

ju.x/jpdx: (3.6.27)

The next step is to integrate in (3.6.27) over S
n�1 with respect to d!.
/ and

substitute the identity

Z
Sn�1

j@
u.x/jpd!.
/ D jru.x/jp
Z
Sn�1

j cos.
;ru.x//jpd!.
/

D jru.x/jp
Z
Sn�1

j cos.
; e/jpd!.
/

D B.n; p/jru.x/jp; (3.6.28)

where e is any unit vector in R
n. In order to evaluate the integral of .2=D
.x//p with

respect to d!.
/, we proceed as in [144]. Since f .t/ D tp is convex for p > 1, we



3.6 Extensions of Hardy’s Inequality 109

have by Jensen’s inequality,

1 �
� Z

Sn�1

� 2

D
.x/

�
d!.
/

�p� Z
Sn�1

�D
.x/
2

�
d!.
/

�p

�
� Z

Sn�1

� 2

D
.x/

�p
d!.
/

�� Z
Sn�1

�D
.x/
2

�
d!.
/

�p
;

and hence

R
Sn�1

�
2

D
.x/

�p
d!.
/ �

� R
Sn�1

D
.x/
2

d!.
/
��p

: (3.6.29)

But,

R
Sn�1

D
.x/
2

d!.
/ D 1
2

R
Sn�1 .�
.x/C ��
.x//dx

D R
Sn�1 �
.x/dx

� �R
Sn�1 �

n

 .x/dx

� 1
n

D
�

nj�xj
sn�1

� 1
n
:

(3.6.30)

Therefore, the conclusion follows on using (3.6.30) in (3.6.29) and (3.6.28)
in (3.6.27). ut

3.6.3 Sharp Results of Avkhadiev and Wirths

We now present the sharp inequality of Avkhadiev and Wirths [12] for convex
domains � with finite inradius ı0 WD supx2� ı.x/. Let J0 and J1 denote the Bessel
functions of order 0 and 1, respectively, with �0 representing the first zero in .0;1/

of the function

g.x/ WD J0.x/� 2xJ1.x/ � J0.x/C 2xJ0
0.x/:

The next proposition is proved in [12].

Proposition 3.6.7 Let f be a real absolutely continuous function in Œ0; 1� such that
f .0/ D 0 and f 0 2 L2Œ0; 1�. If f .x/ 6� 0 then

Z 1

0

f 0.x/2dx >
1

4

Z 1

0

f .x/2

x2
dx C �20

Z 1

0

f .x/2dx: (3.6.31)
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Proof Let

f0.x/ WD p
xJ0.�0x/: (3.6.32)

Then,

f 0
0.x/ D g.�0x/

2
p

x
:

Since Jn is a solution of Bessel’s differential equation

x2y00 C xy0 C .x2 � n2/y D 0;

then a calculation shows that f0.x/ is a solution of the differential equation

y00 C
�
1

4x2
C �20

�
y D 0:

Also, f 0
0.1/ D 0, and since �0 is the first zero of g in .0;1/, f0.x/ > 0 and f 0

0.x/ > 0
for x 2 .0; 1/.

Since f 0
0 … L2Œ0; 1�, then f0 6� f and

0 <
R 1
0

�
f 0.x/ � f 0

0.x/
f0.x/

f .x/
�2

dx

D R 1
0 f 0.x/2dx C R 1

0

�
f 0

0.x/
2

f0.x/2
C
�

f 0

0.x/
f0.x/

�0�
f .x/2dx C limx!0C

f 0

0.x/
f0.x/

f 2.x/

D R 1
0

f 0.x/2dx � R 1
0

�
1
4x2

C �20
�

f .x/2dx C limx!0C

f 0

0.x/
f0.x/

f 2.x/:

In order to show that the limit in the last expression is zero, note that

f 0
0.x/

f0.x/
D g.�0x/

2xJ0.�0x/
; x 2 Œ0; 1�;

and f .x/2=x ! 0 as x ! 0C since

f .x/2 �
�Z x

0

jf 0.t/jdt

�2
� x

Z x

0

jf 0.t/j2dt; (3.6.33)

which completes the proof. ut
The sharpness of �0 in (3.6.31) will now be examined.
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Proposition 3.6.8 For each "0 > 0, there exists a real function f 2 C1
0.0; 2/ such

that f 0.1/ D 0 and

Z 1

0

f 0.x/2dx <
1

4

Z 1

0

f .x/2

x2
dx C .�20 C "0/

Z 1

0

f .x/2dx: (3.6.34)

Proof For f0 defined in (3.6.32) and " > 0, let

f".x/ WD
�

x
"
2 f0.x/; x 2 Œ0; 1�;

f".2 � x/; x 2 .1; 2�:

We shall prove that, for sufficiently small ", f" satisfies (3.6.34); this will suffice by
standard density arguments, since f" 2 H1

0.0; 2/. Now for x 2 Œ0; 1�,

f 0
".x/

2 D "2

4
x"�2f0.x/2 C "

2
x"�1.f 20 .x//0 C x"f 0

0.x/
2;

implying that

R 1
0

f 0
".x/

2dx D 2"�"2
4

R 1
0

x"�2f0.x/2dx C "
2
J0.�0/2 C R 1

0
x"f 0

0.x/
2dx

by the use of (3.6.33). On the other hand, it follows from the identity

�f 00
0 D .

1

4x2
C �20/f0

that

R 1
0
. 1
4x2

C �20/f".x/
2dx D � R 1

0
x"f 00

0 f0.x/dx

D R 1
0

x"Œf 0
0.x/�

2dx C "
2
J0.�0/2

� "."�1/
2

R 1
0

x"�2f0.x/2dx:

Consequently, for all " sufficiently small,

R 1
0

f 0
".x/

2dx � R 1
0
. 1
4x2

C �20/f".x/
2dx � "0

R 1
0

f".x/2dx

D "2

4

R 1
0 x"�2f0.x/2dx � "0

R 1
0 x"f0.x/2dx < 0

;

completing the proof. ut
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Proposition 3.6.9 Let f be a real function in H1
0.a; b/ and ˛ WD .b�a/=2 2 .0;1/.

If f 0.x/ 6� 0, then

Z b

a
f 0.x/2dx >

1

4

Z b

a

f .x/2

.minfx � a; b � xg/2 dx C �20
˛2

Z b

a
f .x/2dx; (3.6.35)

where the constants 1
4

and �20=˛
2 are sharp.

Proof For d D .a C b/=2, (3.6.35) is implied by the inequalities

Z d

a
f 0.x/2dx >

1

4

Z d

a

f .x/2

.x � a/2
dx C �20

˛2

Z d

a
f .x/2dx

and

Z b

d
f 0.x/2dx >

1

4

Z b

d

f .x/2

.b � x/2
dx C �20

˛2

Z b

d
f .x/2dx;

each of which, by the respective change of variable x � a D t and b � x D t, being
equivalent to the inequality

Z ˛

0

f 0.x/2dx >
1

4

Z ˛

0

f .t/2

t2
dx C �20

˛2

Z ˛

0

f .t/2dt (3.6.36)

for f 2 H1
0.0; 2˛/, f 6� 0. However, the change of variable t D ˛x in (3.6.36)

reduces it to (3.6.31). Proposition 3.6.9 therefore follows from Proposition 3.6.7
and Proposition 3.6.8. ut

The one-dimensional results above will now be used to produce results for higher
dimensional cases. An essential ingredient in this analysis is an approximation result
of Hadwiger [70] for convex domains. In particular, for a convex domain � � R

n

and any compact set K � �, there exists a convex n-dimensional polytope Q such
that K � int Q � �; thus, for any f 2 C1

0 .�/, there is a convex n-dimensional
polytope Q such that

supp f � int Q � �: (3.6.37)

In this manner, the proof of certain n-dimensional Hardy inequalities is reduced to
the application of one-dimensional inequalities. We shall give the L2.�/ case of
[10], Theorem 11; Avkhadiev considers the general Lp.�/; p > 1; case and also
includes weights of the form ı.x/s. Results with weights of this type can be used to
study the spectral properties of certain elliptic differential operators which have a
degeneracy at the boundary of � measured in terms of ı.x/, e.g., see [106], Sect. 3.
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Theorem 3.6.10 Let � � R
n be an open, convex set with finite inradius ı0 WD

sup
x2�

ı.x/. If, for ˛ 2 .0; ı0� and nonnegative constants b, c,

Z ˛

0

f 0.t/2dt � b2
Z ˛

0

f .t/2

t2
dt C c2

ı20

Z ˛

0

f .t/2dt; f 2 H1
0.0; 2˛/; (3.6.38)

then

Z
�

jrf .x//j2dx � b2
Z
�

jf .x/j2
ı.x/2

dt C c2

ı20

Z
�

jf .x/j2dx; f 2 H1
0.�/: (3.6.39)

Proof Choose f 2 C1
0 .�/ and let Q be an n-dimensional polytope satisfy-

ing (3.6.37). It will suffice to show that (3.6.39) holds on Q. Let S1; S2; : : : Sm denote
the .n � 1/-dimensional faces of Q. The polytope Q can be decomposed as follows:

Q D [m
jD1Qj; int Qj \ Qk D ; for j ¤ k; (3.6.40)

in which each Qj is convex and compact. To see this, let nj.x0/ be the inward unit
normal to Sj at x0 2 Sj and define

˛j.x0/ WD maxft 2 .0;1/ W B.x0 C tnj.x0/; t/ � Qg

in which B.x; t/ is the ball with centre x and radius t. It follows that

Qj WD Sj [ fx D x0 C t˛j.x0/ W t 2 .0; ˛j.x0/�; x0 2 Sjg

is a closed, n-dimensional, convex set, and fQjgm
jD1 satisfies (3.6.40). By the

convexity of each Qj we have that [m
jD1@Qj has measure zero, implying the important

feature that for any g 2 L1.Q/

Z
Q

g.x/dx D
mX

jD1

Z
Qj

g.x/dx D
mX

jD1

Z
Sj

Z ˛j.x0/

0

g.x0 C tnj.x0//dtdx0

by Fubuni’s theorem. On applying this to (3.6.38) and recalling Theorem 1.3.8, we
have that

R
Q

�
b2

ı.x/2 C c2

ı20

�
jf .x/j2dx

D Pm
jD1

R
Qj

�
b2

ı.x/2 C c2

ı20

�
jf .x/j2dx

D Pm
jD1

R
Sj

R ˛j.x0/

0

�
b2

t2
C c2

ı20

�
jf .x0 C tnj.x0//j2dtdx0

� Pm
jD1

R
Sj

R ˛j.x0/

0 jrf .x0 C tnj.x0//j2dtdx0

D R
Q jrf .x/j2dx;
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where we have used the facts that ı.x/ D t and ı.x/ � ˛j.x0/ � ı0 for x D
x0 C tnj.x0/ 2 Qj, as well as

@f

@t
jxDx0Ctnj.x0/ D rf � nj.x0/:

That completes the proof. ut
We now examine the sharpness of the inequality for n > 1.

Proposition 3.6.11 Let �n WD .0; 2/ � R
n�1 for n � 2 and �1 WD .0; 2/. For any

"0 > 0 there exists fn 2 C1
0.�n/ such that

Z
�n

jrfnj2dx <
1

4

Z
�n

jfn.x/j2
ı.x/2

dx C .�20 C "0/

Z
�n

jfn.x/j2dx: (3.6.41)

Proof In order to prove the proposition by mathematical induction on the dimension
n we note that the case for n D 1 is given by Proposition 3.6.8. Suppose that (3.6.41)
holds for some dimension n � 1 and some function fn 2 C1

0.�n/. Then we must
show that it holds for dimension n C 1 and some fnC1 2 C1

0.�nC1/. To this end we
define fnC1 WD fnC1;" 2 C1

0.�nC1/, " > 0, by

fnC1;".x/ D fn.x0/g".xnC1/; x0 2 �n; xnC1 2 R

where

g".t/ WD
8<
:
1; t 2 Œ0; 1="�;
.1 � .t � 1="/2/2; t 2 .1="; 1C 1="/;
0; t 2 Œ1C 1=";1/
g".�t/; t < 0:

Define

An WD
Z
�n

jrfnj2dx � 1

4

Z
�n

jfn.x/j2
ı.x/2

dx � .�20 C "0/

Z
�n

jfn.x/j2dx

and g.t/ WD .1� t2/2. Note that

ı.x/ D dist.x0; @�n/; x D .x0; xnC1/ 2 �nC1:

Calculations show that

AnC1 D 2

"
An C Bn � Cn
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in which

Bn D 2

Z 1

0

Z
�n

Œjrfn.x0/j2g.t/2 C fn.x0/2g0.t/2�dx0dt

and

Cn D 2

Z 1

0

g.t/2dt

�
1

4

Z
�n

fn.x0/2

ı2
dx0 C .�20 C "0/

Z
�n

fn.x0/2dx0
�
:

Since Bn and Cn are not dependent upon " and An < 0 (by the induction assumption),
it is clear that AnC1 < 0 for all " sufficiently near zero and positive. That completes
the proof of the induction step and the proposition is proved. ut

In summary, we have proved the following result which is Theorem 1 in [12]:

Theorem 3.6.12 Let � � R
n be convex. If the inradius ı0 < 1, then

Z
�

jrf .x//j2dx � 1

4

Z
�

jf .x/j2
ı.x/2

dx C �20
ı20

Z
�

jf .x/j2dx; f 2 H1
0.�/ (3.6.42)

where �0 D 0:940 : : : is the first zero in .0;1/ of

J0.t/ � 2tJ1.t/:

Inequality (3.6.42) is sharp for n � 1.

3.7 Hardy Inequalities and Curvature

3.7.1 General Inequalities

Most of the inequalities discussed to this point have required that the domain � be
convex. In order to broaden our applications beyond that requirement we will use
the connection between the curvature of the boundary @� and the distance function
ı.x/ as discussed in Chap. 2.

We first establish the following general inequality which will serve as a guide to
needed improvements; it also extends Theorem 3.4.3.

Proposition 3.7.1 Let � � R
n; n � 2; be a domain having a ridge R.�/ and a

sufficiently smooth boundary for Green’s formula to hold. Let ı.x/ D dist.x;Rnn�/:
Then for all f 2 C1

0 .� n R.�// and p 2 .1;1/;

Z
�

jrı � rf jpdx �
�

p � 1
p

�p Z
�

�
1 � pı�ı

p � 1
	 jf jp

ıp
dx: (3.7.1)
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Proof For any vector field V we have the identity

Z
�

.divV/jf jpdx D �p

�
Re
Z
�

.V � rf /jf jp�2f dx
�

(3.7.2)

for all f 2 C1
0 .� n R.�//. Choose

V D �prı=ıp�1:

Then, for any " > 0;

Z
�

divVjf jpdx � p2
�Z

�

jrı � rf jpdx
�1=p �Z

�

jf jp

ıp
dx
�1�1=p

� p"p
Z
�

jrı � rf jpdx C p.p � 1/"�p=.p�1/
Z
�

jf jp

ıp
dx

which gives, since divV D .p � 1/pı�p � pı1�p�ı for x 2 � n R.�/,
Z
�

jrı � rf jpdx � "�p
Z
�

�
.p � 1/� .p � 1/"�p=.p�1/ � ı�ı� jf jp

ıp
dx:

The proof of (3.7.1) is completed on choosing " D Œp=.p � 1/� .p�1/
p : ut

The requirement that (3.7.1) only applies to functions f that are supported away
from the ridge R.�/ can be obviated. Working with examples like those below we
are led to some additional requirements ((i) and (ii) below) described in Theorem 2
of [20] and the next Proposition. Subsequently, it is shown that those requirements
are met under quite general assumptions.

Proposition 3.7.2 Let � � R
n; n � 2; satisfy the hypothesis of Proposition 3.7.1

and furthermore, assume that

(i) † D R.�/ has Lebesgue measure zero and is the intersection of a decreasing
family of open neighborhoods fS" W " > 0g with smooth boundaries and a unit
inward normal 	".x/, x 2 @S";

(ii) for all sufficiently small "

.rı � 	"/.x/ � 0; x 2 @S"I (3.7.3)

and
(iii)

p � 1

p
� Œı�ı�.x/; x 2 G.�/ D � n R.�/: (3.7.4)
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Then, for all f 2 C1
0 .�/ and p 2 .1;1/;

Z
�

jrı � rf jpdx �
�

p � 1
p

�p Z
�

�
1 � pı�ı

p � 1
	 jf jp

ıp
dx: (3.7.5)

Proof We proceed as in the proof of Proposition 3.7.1, but now with f 2 C1
0 .�/,

and account for the contribution of the boundary of S". For any vector field V , we
have the identity

Z
�nS"

.divV/jf jpdx D
Z
@S"

.V � 	"/jf jpdx � p

�
Re
Z
�nS"

.V � rf /jf jp�2f dx
�

(3.7.6)

for all f 2 C1
0 .�/. Choose

V D �prı=ıp�1;

which implies that V � 	" � 0 according to (3.7.3). Then, for any a > 0;

Z
�nS"

.divV/jf jpdx � p2
�Z

�nS"

jrı � rf jpdx
�1=p �Z

�nS"

jf jp

ıp
dx
�1�1=p

� pap
Z
�nS"

jrı � rf jpdx C p.p � 1/a�p=.p�1/
Z
�nS"

jf jp

ıp
dx

which gives, since divV D .p � 1/pı�p � pı1�p�ı for x 2 G.�/,

Z
�nS"

jrı � rf jpdx � a�p
Z
�nS"

�
.p � 1/� .p � 1/a�p=.p�1/ � ı�ı

� jf jp

ıp
dx:

On choosing a D Œp=.p � 1/�
.p�1/

p we obtain

R
� jrı � rf jpdx � R

�nS"
jrı � rf jpdx

�
�

p�1
p

�p R
�

h
1� p

p�1 ı�ı
i jf jp
ıp ��nS"

dx:

The proof concludes on using (3.7.4) and the monotone convergence theorem. ut
In Remark 2.2.13, we noted the results from [81, 108] that if @� 2 C2;1, the

ridge R.�/ is closed and the cut locus †.�/ D R.�/ D R.�/ is null (i.e., it
has zero n-dimensional Lebesgue measure). We have not been able to prove if this
continues to hold if @� 2 C2, nor found any reference to it in the literature, even
in R

2; cf., Remark 3.8 in [115]. In what follows, we shall assume that the domains
considered with C2 boundaries have, where necessary, null cut locus, rather than
suppose at the outset that they have C2;1 boundaries.
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If � is weakly mean convex, we may apply (3.7.4) in (2.5.5) to obtain

Corollary 3.7.3 Let � � R
n; n � 2; be a weakly mean convex domain. If (i) and

(ii) of Proposition 3.7.2 hold then, for all f 2 C1
0 .�/ and p 2 .1;1/;

R
�

jrı � rf jpdx �
�

p�1
p

�p R
�

n
1 � p

p�1 ı.x/ Q�.y/
o jf jp
ıp dx

�
�

p�1
p

�p R
�

n
1 � p

p�1 ı.x/H.y/
o jf jp
ıp dx;

(3.7.7)

where y 2 N.x/ and Q� D Pn�1
iD1 �i=.1 C ı�i/: For a weakly mean convex domain,

Q� � .n � 1/H.y/ � 0.

Proof The first inequality follows from (3.7.5) and (2.5.5). The second inequality
follows from the observation, already made in the proof of Proposition 2.5.4, that Q�i

is a decreasing function of ı irrespective of the signs of the �i and is not greater than
H.y/. The remainder of the proof was established in Proposition 2.5.3. ut

3.7.2 Examples

As first shown in [20], Proposition 3.7.2 can be applied directly to some nonconvex
domains such as the torus to obtain Hardy inequalities for those classical nonconvex
domains. We present a few of those examples using Corollary 3.7.3, with the more
convenient application of mean curvature as in [107].

We begin with an easy example of a cylinder which is a convex domain with
infinite volume.

Example 3.7.4
Let � be the infinite cylinder � D B.0; r/ � R, where B.0; r/ is the ball, radius

r and centre the origin in R
2. Clearly � is convex and R.�/ is the x3-axis. The

distance function is ı.x/ D r �
q

x21 C x22,

rı.x/ D �.r � ı.x//�1.x1; x2; 0/; 	" D �"�1.x1; x2; 0/ on @S";

and �ı D �.r � ı/�1, where S" D fx D .x21; x
2
2; x

2
3/ 2 � W x21 C x22 < "g.

Therefore (3.7.3) and (3.7.4) are seen to be satisfied for all p > 1. Inequality (3.7.5)
follows: for all f 2 C1

0 .�/ and p 2 .1;1/;

Z
�

jrı � rf jpdx �
�

p � 1
p

�p Z
�

�
1C pı

.p � 1/.r � ı/
	 jf jp

ıp
dx: (3.7.8)

Any one of the many Hardy inequalities for convex domains could have been
applied to the infinite cylinder described above. That is not the case for the
nonconvex torus in the next example.
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Example 3.7.5
Let � be the ring torus with minor radius r and major radius R � 2r in

Example 2.5.2. The mean curvature satisfies

H.y/ D 1

2
.�1 C �2/ � � R � 2r

2r.R � r/
; (3.7.9)

so that � is weakly mean convex if R � 2r and mean convex if R > 2r. Rather
than using the estimate (2.5.5) as in Corollary 3.7.3 we may use (2.4.5) directly in
Proposition 3.7.2 since we know the principal curvatures.

The ridge of the torus is

R.�/ D fx W �.x/ D 0g;

where �.x/ is the distance from the point x in � to the centre of the cross-section
and ı.x/ D r � �.x/. Clearly, the ridge is closed with measure zero. Moreover, in
the notation of Proposition 3.7.2,

S" D fx W �.x/ < "g;

and points on the surface of S" are on the level surface �.x/ D ", so that the unit
inward normal to @S" is 	" D �r�.x/=jr�.x/j D rı.x/. Therefore rı � r	" > 0.

We have proved the following corollary to Proposition 3.7.2.

Corollary 3.7.6 Let� � R
3 be the interior of a ring torus with minor radius r and

major radius R � 2r. Then the ridge R.�/ is closed and of measure zero. Moreover
�ı < 0 in � n R.�/ and

Z
�

jrı � rf jpdx �
�

p � 1

p

�p Z
�

jf jp

ıp
dx

C
�

p � 1

p

�p�1 Z
�

0
B@ 1

.r � ı/
� 1q

x21 C x22

1
CA jf jp

ıp�1 dx

(3.7.10)

for all f 2 C1
0 .�/, where x 2 � has coordinates .x1; x2; x3/.

As a more accessible alternative to (3.7.10), we can use the second inequality
in (3.7.7) with (3.7.9) to conclude that for a ring torus � � R

3 with minor ring r
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and major ring R � 2r, we have for all f 2 C1
0 .�/,

Z
�

jrı � rf jpdx �
�

p � 1
p

�p Z
�

jf jp

ıp
dx

C
�

p � 1
p

�p�1 R � 2r

r.R � r/

Z
�

jf jp

ıp�1 dx: (3.7.11)

Our next example is a domain that is not mean convex. In fact, the mean curvature
is everywhere non-negative.

Example 3.7.7
We apply Proposition 3.7.1 to the 1-sheeted hyperboloid

� D f.x1; x2; x3/ 2 R
3 W x21 C x22 < 1C x23g: (3.7.12)

This is non-convex and unbounded with infinite volume and infinite interior
diameter Dint.�/. To calculate the principal curvatures, we choose the following
parametric co-ordinates for y 2 @�:

y1.s; t/ D p
s2 C 1 cos t;

y2.s; t/ D p
s2 C 1 sin t;

y3.s; t/ D s;

for t 2 Œ0; 2�/ and s 2 .�1;1/. A calculation then gives (see [90], p. 132)

�1 D � 1

Œ2s2 C 1�3=2
; �2 D 1p

2s2 C 1
;

so that the mean curvature

H.y/ D s2

Œ2s C 1�
3
2

� 0:

If y D N.x/; x 2 � n R.�/, then by Lemma 2.4.2,

�ı.x/ D Q� WD
2X

iD1

�i

1C ı�i
D � 1

w3 � ı
C 1

w C ı
; (3.7.13)

where w D p
2s2 C 1 is the distance of y from the origin, and the ridge is R.�/ D

f.x1; x2; x3/ W x1 D x2 D 0; x3 2 .�1;1/g.
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To find y D N.x/, we first determine the vector normal to @� at y, namely

ys � yt D
ˇ̌
ˇ̌
ˇ̌

i j k
sp

s2C1 cos t sp
s2C1 sin t 1

�p
s2 C 1 sin t

p
s2 C 1 cos t 0

ˇ̌
ˇ̌
ˇ̌

D Œ�
p

s2 C 1 cos t�i C Œ�
p

s2 C 1 sin t�j C sk:

The inward unit normal vector at y is therefore

n D fŒ�
p

s2 C 1 cos t�i C Œ�
p

s2 C 1 sin t� j C skg=
p
2s2 C 1:

The distance from y to the ridge point p.x/ of x is given by
p

s2 C 1= cos �; where
cos � D .z � n/=jzj; and

z D Œ�
p

s2 C 1 cos t�i C Œ�
p

s2 C 1 sin t�j:

Hence

p
s2 C 1= cos � D

p
2s2 C 1 D w:

Consequently, the near point of x is the point on the boundary of � which is
equidistant from the ridge point p.x/ of x and the origin, which shows that ı.x/ 2
.0;w/ for x 2 G.�/. Therefore�ı.x/ changes sign in �:

We therefore have from Proposition 3.7.1

Corollary 3.7.8 Let� � R
3 be the 1-sheeted hyperboloid (3.7.12). Then, the mean

curvature of @� is non-negative, and, for all f 2 C1
0 .� n R.�//;

R
�

jrı � rf jpdx �
�

p�1
p

�p R
�

jf jp
ıp dx �

�
p�1

p

�p�1 R
�

Q� jf jp
ıp�1 dx; (3.7.14)

where Q� is given in (3.7.13), with w D jyj D ı.p.x//, y D N.x/ and p.x/ the ridge
point of x.

3.7.3 Proposition 3.7.2 and Domains with C2 Boundaries

The torus and one-sheeted hyperbola are examples of nontrivial, non-convex
domains for which (i) and (ii) of Proposition 3.7.2 can be verified easily as shown
in [20]. In this section we present methods of Lewis et al. [107] which a priori
allow for elimination of conditions (i) and (ii) to prove the Hardy inequality
given in Proposition 3.7.2. We assume throughout this subsection that � has C2
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boundary and null cut locus†.�/. This implies that the function Ns defined in (2.2.8)
and (2.2.9) is positive on @�.

As well as improving Proposition 3.7.2, we also wish to prove that (2.5.5) holds
on all of � in the distributional sense, i.e., for all ' 2 C1

0 .�/; ' � 0,

Z
�

rı.x/ � r'.x/dx �
Z
�

�.n � 1/H.y/
1C ı.x/H.y/

'.x/dx: (3.7.15)

Since ' in (3.7.15) has compact support in a ball B.0;R/, for all R sufficiently
large, we may assume that there is a bounded domain�R with supp.'/ � �R � �,
having a C2 boundary and such that the distance function ıR.x/ in�R coincides with
ı.x/ for all x 2 supp.'/. That is, we may assume, for the sake of this proof, that �
is bounded, and hence that the function Ns defined in (2.2.8) is strictly positive.

Lemma 3.7.9 Let @� 2 C2 and for every k 2 C2.@�/ satisfying

0 < k.y/ < Ns.y/; y 2 @�;

let

S WD fy C k.y/n.y/ W y 2 @�g:

Then S is a C1 hypersurface with

rı.x/ � nS.x/ > 0; x 2 S; (3.7.16)

where nS.x/ denotes the unit outward normal of the boundary of

fy C tk.y/n.y/ W y 2 @�; 0 < t < 1g:

Proof For all y 2 @�, we have

B.m.y/; Ns.y// � �; and y 2 @B.m.y/; Ns.y//; (3.7.17)

where m is defined in (2.2.7). For a fixed point y 2 @�, we may assume, without
loss of generality, that Ns.y/ D 1. After a translation and rotation, we may assume
that y D 0 2 R

n and the boundary in some neighborhood of 0 is given by

xn D g.x0/; x0 D .x1; � � � ; xn�1/;

where g is a C2 function in some neighborhood of 00 2 R
n�1 satisfying

g.00/ D 0; and rg.00/ D 0;
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with the Hessian matrix .r2g.00// being diagonal. The unit inward normal to @� at
.x0; g.x0// near 0 is given by the graph of

n.x0/ WD .�rg.x0/; 1/p
1C jrg.x0/j2 :

(cf. [68], Appendix 14.6.) The set S is given locally by

X.x0/ WD .x0; g.x0//C Qk.x0/n.x0/;

where Qk.x0/ D h.x0; g.x0// is a C2 function near 00. We know that Qk.00/ < Ns.y/ D 1.
Clearly X 2 C1. Now, we need to show that S has a tangent plane at X.00/. To

that end, let

e1 D .1; 0; � � � ; 0/; : : : ; en D .0; � � � ; 0; 1/:

We have, for 1 � ˛ � n � 1,

@X
@x˛
.00/ D e˛ C Qkx˛ .0

0/en C Qk.00/ @n
@x˛
.00/

D Œ1 � Qk.00/gx˛x˛ .0
0/�e˛ C Qkx˛ .0

0/en:

By (3.7.17) and the fact that Ns.y/ D 1, the unit ball centred at en lies in fx W xn �
g.x0/g near 0. It follows that gx˛x˛ .0

0/ � 1. Thus

1 � Qk.00/gx˛x˛ .0
0/ > 0: (3.7.18)

Consequently, S has a tangent plane at X.00/. Since Ns.y/ D 1, we have

ı.ten/ D t; for t 2 .0; 1/;

and therefore

rı.ten/ D en; 0 < t < 1:

Since nS.k.0/en/ is the outward normal to the set, and �.t/ WD tk.0/en belongs to
the set for 0 < t < 1, we have

nS.k.0/en/ � rı.k.0/en/ D nS.k.0/en/ � en D 1

k.0/
nS.k.0/en/ � � 0.1/ � 0:
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Moreover, in view of (3.7.18),

span f @X

@x˛
.00/g D span fe˛ C a˛eng; for some constants a˛;

which does not contain en. The inequality (3.7.16) follows. ut
We are now able to extend Proposition 2.5.3 from an inequality on G.�/ D

� n†.�/ to an inequality on the entire domain� if @� 2 C2 and j†.�/j D 0.

Theorem 3.7.10 Let� � R
n, n � 2, have a C2 boundary and null cut locus†.�/.

Then

��ı.x/ � �.n � 1/H.N.x//
1C ı.x/H.N.x//

; x 2 �; (3.7.19)

in the distributional sense, i.e., for any ' 2 C1
0 .�/, ' � 0, we have

Z
�

rı.x/ � r'.x/dx �
Z
�

�.n � 1/.H ı N/.x/
1C ı.x/.H ı N/.x/

'.x/dx: (3.7.20)

Since j†.�/j D 0, .H ı N/.x/ is a well defined L1 function in �.

Proof We may continue to assume that Ns is strictly positive on @�. For " > 0 small,
we construct Ns" 2 C2.@�/ satisfying

jNs".y/� Ns.y/j � "Ns.y/; y 2 @�;

the construction being guaranteed by the Stone-Weierstrass theorem. Now, let

†" WD fy C .1 � "/Ns".y/n.y/ W y 2 @�g

and

�" WD fy C t.1 � "/Ns".y/n.y/ W y 2 @�; 0 < t < 1g: (3.7.21)

Clearly, @�" D †" [ @�. By Lemma 3.7.9,†" is a C1 hypersurface satisfying

rı � n" � 0 on †"; (3.7.22)

where n" is the unit outward normal of @�", and we see that

[">0�" D G.�/:
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Since ı 2 C2 on N�" � G.�/[ @�, we may apply Green’s formula to obtain

Z
�"

rı.x/ � r'.x/dx D �
Z
�"

'.x/�ı.x/dx C
Z
@�"

'.s/
@ı

@n"
.s/ds

� �
Z
�"

'.x/�ı.x/dx

� �
Z
�"

.n � 1/.H ı N/.x/
1C ı.H ı N/.x/

'.x/dx; (3.7.23)

where the last two inequalities follow from (3.7.22) and (2.5.5) respectively. Letting
" ! 0 in (3.7.23) completes the proof. ut

An immediate consequence of Theorem 3.7.10 is the following extension of
Theorem 2.3.2 in which � was assumed to be convex.

Corollary 3.7.11 Let � � R
n; n � 2, be weakly mean convex and have a null cut

locus. Then ��ı � 0 in the distributional sense.

The next theorem uses the methods of [107] described above to improve
Proposition 3.7.2.

Theorem 3.7.12 Let � � R
n; n � 2; be a domain with a C2 boundary and null cut

locus. Assume that for p 2 .1;1/

p � 1

p
� Œı�ı�.x/; x 2 G: (3.7.24)

Then for all f 2 C1
0 .�/

Z
�

jrı � rf jpdx �
�

p � 1
p

�p Z
�

�
1 � pı�ı

p � 1
	 jf jp

ıp
dx: (3.7.25)

Proof It will suffice to show that (i) and (ii) in Proposition 3.7.2 hold.
Let

S" WD � n�"

for �" given in (3.7.21). Then (i) and (ii) in Proposition 3.7.2 are satisfied by the
family fS" W " > 0g. That completes the proof. ut

We have the following as an immediate corollary of Theorems 3.7.10 and 3.7.12.

Corollary 3.7.13 Let � � R
n; n � 2; have a C2 boundary and null cut locus.

Assume that for p 2 .1;1/ and y D N.x/, the near point of x,

p � 1
p

� .n � 1/ı.x/H.y/
1C ı.x/H.y/

; x 2 G: (3.7.26)
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Then for all f 2 C1
0 .�/

Z
�

jrı � rf jpdx �
�

p � 1

p

�p Z
�

�
1 � p.n � 1/ı.x/H.y/

.p � 1/Œ1C ı.x/H.y/�

	 jf jp

ıp
dx:

(3.7.27)

When � is weakly mean convex, the right side of (3.7.26) is non-positive
(see (2.5.1)) so that the inequality is trivially satisfied. However, some positivity
of the mean curvature is permissible in order for (3.7.26) to hold. In particular, it is
not hard to see that (3.7.26) holds when

DintHM � 2.p � 1/
p.n � 2/C 1

; (3.7.28)

where HM WD supy2@� H.y/ and the interior diameter of � is given by Dint WD
2 supx2� ı.x/.

Since jrıj D 1; a:e:; we have from (3.7.27) that, if � is a weakly mean convex
domain, then

Z
�

jrf jpdx �
�

p � 1

p

�p Z
�

jf jp

ıp
dx:

for all f 2 C1
0 .�/: This yields the following improvement (established in [107],

Theorem 1.2) of Theorem 3.4.1 if j†.�/j D 0.

Corollary 3.7.14 Let � be a weakly mean convex domain in R
n; n � 2; with

j†.�/j D 0, and 1 < p < 1: Then,

�p.�/ WD inf
C1

0 .�/

R
�

jrf jpdxR
�

jf=ıjpdx
D cp D

�
p � 1

p

�p

: (3.7.29)

Remark 3.7.15 The weakly mean convexity condition in Corollary 3.7.14 is sharp
in the sense that the inequality fails if only H � " is assumed for " > 0. This is
demonstrated in [107] where counterexamples are given based on ideas from [11]
and [116]. See Example 3.8.7 below.

The Brézis-Marcus type results derived for convex domains in Sect. 3.6 can also
be extended to weakly mean convex domains. The following is Theorem 4.3 in
[107].

Corollary 3.7.16 Let � be a weakly mean convex domain in R
n; n � 2; with

j†.�/j D 0, and 1 < p < 1: Then, for all f 2 C1
0 .�/;

Z
�

jrf jpdx �
�

p � 1
p

�p Z
�

jf jp

ıp
dx C �.n; p; �/

Z
�

jf jpdx; (3.7.30)

where �.n; p; �/ D
�

p�1
p

�p�1
infG.�/

��ı
ıp�1 � p.n � 1/ inf@� jHjp:
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Proof We have in (3.7.27)

Z
�

jrf jpdx �
�

p � 1

p

�p Z
�

jf jp

ıp
dx �

�
p � 1

p

�p�1 Z
�

�.n � 1/H

.1C ı H/

jf jp

ıp�1 dx:

Now let g.t/ WD .atp�1�tp/�1;with a > 0: The minimum of g.t/ in .0; a/ is attained
at t0 D a.p � 1/=p and this gives that

g.t/ � pp

ap.p � 1/p�1 ; t 2 .0; a/:

For H.N.x// ¤ 0, choose a D 1=jHj and t D ı (note (2.5.1)) to give, for x 2 G.�/;

�H.N.x//
Œ1C ı.x/H.N.x//�ıp�1.x/

� ppjH.N.x//jp

.p � 1/p�1 :

This continues to hold if H.N.x// D 0 and so from (3.7.19),

�ı�ı
ıp

�
�

p

p � 1

�p�1
p.n � 1/jHj:

The theorem follows from (3.7.25), since it is assumed that †.�/ D � n G.�/ is
of zero measure. ut

The proof of Corollary 3.7.16 above can be adapted to give the following
inequality for domains which are not weakly mean convex.

Corollary 3.7.17 Let � be a domain with C2 boundary in R
n; n � 2; j†.�/j D 0;

and H0 WD supy2@� H.y/ > 0: Then, for all f 2 C1
0 .�/ and 1 < p < 1;

Z
�

jrf .x/jpdx C
�

p � 1
p

�p�1
.n � 1/H0

Z
�

jf .x/jp

ı.x/p�1 dx

�
�

p � 1
p

�p Z
�

jf .x/jp

ı.x/p
dx: (3.7.31)

Proof The proof follows that of Corollary 3.7.16, on observing that

.n � 1/H

1C ıH
� .n � 1/H � .n � 1/H0:

ut
For an application of Corollary 3.7.17 we return to Example 3.7.7 and obtain a

Hardy-type inequality with a domain that is not weakly mean convex.
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Example 3.7.18 In Example 3.7.7 we studied the 1-sheeted hyperboloid (3.7.12),
and showed that the mean curvature

H.y.s; t// D s2

.2s2 C 1/
3
2

; s 2 .�1;1/; t 2 Œ0; 2�/:

Calculations show that this function of s assumes its maximum at s D ˙1 so that
H0 D 3� 3

2 . Consequently, for � given by (3.7.12)

Z
�

jrf .x/jpdx C 2

3
3
2

�
p � 1

p

�p�1 Z
�

jf .x/jp

ı.x/p�1 dx

�
�

p � 1

p

�p Z
�

jf .x/jp

ı.x/p
dx (3.7.32)

for 1 < p < 1 and all f 2 C1
0 .�/.

3.8 Doubly Connected Domains

Domains that are not weakly mean convex present special problems. A domain� �
R
2 � C is doubly connected if its boundary is a disjoint union of 2 simple curves.

If it has a smooth boundary then it can be mapped conformally onto an annulus
��;R D BR n B� D fz 2 C W � < jzj < Rg; for some �;RI see [149], Theorem 1.2.
In order to proceed, we need the following inequality on an annulus, which is an
analogue of Theorem 1 in [11].

Theorem 3.8.1 Let �1, �2; be convex domains in R
n; n � 2; with C2 boundaries

and N�1 � �2: For x 2 � WD �2 n N�1 denote the distances of x to @�1; @�2 by
ı1; ı2; respectively. Then, for all f 2 C1

0 .� n R.�//
Z
�2n N�1

jrf .x/j2dx � 1

4

Z
�2n N�1

�
.n � 1/.n � 3/

jxj2 C 1

ı21
C 1

ı22

� 2�ı1

ı1
� 2�ı2

ı2
� 2rı1 � rı2

ı1ı2

C 2.n � 1/x � rı1
jxj2ı1 C 2.n � 1/x � rı2

jxj2ı2
	

jf .x/j2dx:

(3.8.1)
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Proof Our starting point is again (3.7.2), which, for a differentiable vector field V
and arbitrary " > 0, yields the inequality

Z
�2n N�1

.divV/jf .x/j2dx � "2
Z
�2n N�1

jrf j2dx C "�2
Z
�2n N�1

jVj2jf j2dx: (3.8.2)

Guided by the proof of Corollary 1 in [11], the theorem follows on setting

V.x/ D 2.n � 1/
rjxj
jxj � 2

rı1.x/
ı1.x/

� 2
rı2.x/
ı2.x/

(3.8.3)

and " D 2: ut
Notice that ı1.x/ and ı2.x/ in Theorem 3.8.1 coincide with ı.x/ only for certain
values of x.

In the next corollary we account for behavior near the ridge in order to prove an
inequality for f 2 C1

0 .�/.

Corollary 3.8.2 For all f 2 C1
0 .BR n B�/

R
BRnB�

jrf .x/j2dx � 1
4

R
BRnB�

�
.n�1/.n�3/

jxj2 C
�

1
ı1.x/

C 1
ı2.x/

�2	 jf .x/j2dx

� 1
4

R
BRnB�

n
.n�1/.n�3/

jxj2 C 1
ı2.x/

o
jf .x/j2dx

(3.8.4)

in which ı1.x/ D dist.x; @B�/, ı2.x/ D dist.x; @BR/, and ı.x/ D dist.x; @.BR n B�//.

Proof For �1 D B� and �2 D BR; R > �; the ridge R.BR n B�/ D @Bc, c WD
.R C �/=2, has measure zero. In this case we use (3.7.6) with S" D BcC" n Bc�" and
p D 2. Namely

Z
�nS"

.divV/jf j2dx D
Z
@S"

.V � 	"/jf j2dx � 2
�

Re
Z
�nS"

.V � rf /f dx
�
: (3.8.5)

For V defined in (3.8.3), consider the terms appearing in V � 	" in which 	" is the
inward normal on @S",

R
@S"

jf j2 @ı1
@	"

ds D R
@BcC"

jf j2rı1 � �x
jxj ds C R

@Bc�"
jf j2rı1 � x

jxj ds
D � R

@BcC"
jf j2ds C R

@Bc�"
jf j2ds

and

R
@S"

jf j2 @ı2
@	"

ds D R
@BcC"

jf j2rı2 � �x
jxj ds C R

@Bc�"
jf j2rı2 � x

jxj ds
D R

@BcC"
jf j2ds � R

@Bc�"
jf j2ds:
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We therefore have that

0 D
Z
@S"

jf j2 @ı1
@	"

ds C
Z
@S"

jf j2 @ı2
@	"

ds

A similar calculation shows that
Z
@S"

jf j2 @jxj
@	"

ds D 0

and we conclude from (3.8.3) that

Z
@S"

.V � 	"/jf j2dx D 0:

Then, using this fact in (3.8.5) and applying (3.8.2) (with " replaced by ˛), we obtain

R
�nS"

.divV � ˛�2jVj2/jf .x/j2dx � ˛2
R
�

jrf j2dx: (3.8.6)

Observe that in this case ı1 D jxj � �, ı2 D R � jxj,

�ı1 D n � 1

jxj ; �ı2 D �n � 1
jxj

and rı1 D �rı2 D x=jxj, implying that

.divV/ � 1

4
jVj2 D .n � 1/.n � 3/

jxj2 C
� 1
ı1

C 1

ı2

�2
:

On choosing ˛ D 2 and allowing " ! 0 in (3.8.6), we establish the first
inequality (3.8.4). The last inequality follows since

1

ı1
C 1

ı2
D
(
1
ı

C 1
ı2

in Bc n B�;
1
ı1

C 1
ı

in BR n Bc:

ut
Lemma 3.8.3 Let �1 � �2 � C and B� � BR � C, 0 < � < R, where Br is the
disc of radius r centred at the origin. Let

F W �2 n N�1 ! BR n B�

be analytic and univalent. Then for z D x1 C ix2, x D .x1; x2/ 2 �2 n N�1,

F.z/ WD �jF0.z/j2
jF.z/j2 C jF0.z/j2

�
1

jF.z/j � � C 1

R � jF.z/j
	 2

(3.8.7)
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is invariant under scaling, rotation, and inversion. Hence, F does not depend on the
choice of the mapping F, but only on the geometry of �2 n N�1.

Proof The fact that F is invariant under scaling and rotations is straightforward. To
see that it is also invariant under inversions, suppose that F.z/ D 1=G.z/. Then,
under inversion, F.z/ becomes

� jG0.z/j2
jG.z/j2 C jG0.z/j2

jG.z/j4
�

1
1

jG.z/j ���1
C 1

R�1� 1
jG.z/j

	 2

D � jG0.z/j2
jG.z/j2 C jG0.z/j2

jG.z/j2
n

�

��jG.z/j C R
jG.z/j�R

o2

D � jG0.z/j2
jG.z/j2 C jG0.z/j2

jG.z/j2
n

.��R/jG.z/j
.��jG.z/j/.jG.z/j�R/

o2

D � jG0.z/j2
jG.z/j2 C jG0.z/j2

n
1

��jG.z/j C 1
jG.z/j�R

o2

implying that F is invariant under inversions. The rest of the lemma follows from
[88], p. 133. ut

In applying the last Lemma we regard�1, �2 as domains in R
2 with z D x C iy

and x D .x; y/.

Theorem 3.8.4 For� WD �2 n N�1 � R
2,

Z
�

jru.x/j2dx � 1

4

Z
�

F.x/ju.x/j2dx:

Proof From (3.8.4), it follows that for all u 2 H1
0.BR n B�/,

Z
BRnB�

jru.y/j2dy � 1

4

Z
BRnB�

"
�1
jyj2 C

�
1

ı�.y/
C 1

ıR.y/

�2#
ju.y/j2dy;

where ı�.y/ WD jyj � � and ıR.y/ WD R � jyj. Let F W � ! ��;R be analytic and
univalent, and set y D F.x/, with y D .y1; y2/, x D .x1; x2/. Then, as we saw in
Sect. 3.4.2, with F0 denoting the complex derivative,

dy D
ˇ̌
ˇ̌det

�
@.y1; y2/

@.x1; x2/

�ˇ̌
ˇ̌ dx D jF0.x/j2dx;

and

rxu D ryu

�
@.y1; y2/

@.x1; x2/

�t

;

implying that

jrxuj2 D jryuj2jF0.x/j2:

The theorem follows from Lemma 3.8.3. ut
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Example 3.8.5 Let ˆ.z/ D .z � 1/.z C 1/ and

� D fz W �2 < jˆ.z/j < R2g

for 0 < � < R: The function F.z/ D p
ˆ.z/ is analytic and univalent in � and

F W � ! ��;R:

A calculation gives

F.z/ D � jzj2
jz2 � 1j2

C jzj2
jz2 � 1j

.R � �/2
.
pjzj2 � 1 � �/2.R �pjzj2 � 1/2 :

We end this chapter with an example of a doubly connected domain formed with
ellipsoids. First, we need a result of Avkhadiev [10].

Lemma 3.8.6 Let � < R and�2 WD BR n B� � R
2. The best constant �.�2/ in the

Hardy inequality

Z
�2

jruj2dx � �.�2/

Z
�2

ju.x/j2
ı.x/2

dx; u 2 H1
0.�2/;

satisfies

2

�
ln

R

�
� 1

�.�2/
� ln

R

�
C k0

where k0 D �. 14 /
4

2�2
D 8:75 : : : .

Example 3.8.7 For n � 3 and any " > 0 there exist ellipsoids E1, E2 with E2 �
E1 � R

n, and a function f 2 C1
0.E1 n E2/, such that

Z
E1nE2

jrf j2dx � "

Z
E1nE2

jf .x/j2
ı.x/2

dx (3.8.8)

where ı.x/ is the distance from x 2 E1 n E2 to the boundary of E1 n E2. Moreover,
the mean curvature H.N.x// � " for all x 2 E1 n E2.

Proof Note that �.�2/ ! 0 as R=� ! 1; more precisely, for " > 0 and R > e
�
" �,

we have that �.�2/ < "=2. Since �.�2/ is the best constant in Example 3.8.6, for
each " > 0, there is a title function f" 2 C1

0.�2/ such that

Z
�2

jrf".x0/j2dx0 � "

2

Z
�2

jf".x0/j2
ı.x0/2

dx0; x0 WD .x1; x2/: (3.8.9)
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For each s > 0, construct a function gs 2 C1
0.R

1/ to satisfy

gs.t/ D
(
1; jtj � s;
0; jtj > 1C s;
.1 � .jtj � s/2/2; s < jtj � 1C s:

Note that
Z 1

�1
gs.t/

2dt D 2s C c1 and
Z 1

�1
Œg0

s.t/�
2dt D c2;

in which c1 and c2 do not depend upon s. Define �n WD �2 � R
n�2 and

f .x/ WD f".x0/…n
jD3gs.xj/; x D .x1; : : : ; xn/:

Then, f 2 C1
0.�n/ and

jrf j2 D jrf"j2…n
jD3gs.xj/

2 C jf"j2
nX

kD3

h
g0

s.xk/
2…n

jD3;j¤kgs.xj/
2
i
:

Therefore,

Z
Rn

jrf .x/j2dx D .2s C c1/
n�2

Z
R2

jrf"j2dx0 C C.2s C c1/
n�3

Z
R2

jf"j2dx0;
(3.8.10)

where c1 and C do not depend upon s.
Observe that the distance ı.x/ from x 2 �n to the boundary @�n, is just the

distance from x0 to @�2, i.e., ı.x0/. Hence,

R
�n

jf .x/j2
ı.x/2 dx D R

�2

jf".x0/j2
ı.x0/2

dx0…n
jD3

R1
�1 jgs.xj/j2dxj

D .2s C c1/n�2 R
�2

jf".x0/j2
ı.x0/2

dx0:

Using the fact that

ı.x/ D ı.x0/ � R � � < �.e�" � 1/;

Eqs. (3.8.9) and (3.8.10) we have

R
Rn jrf .x/j2dx D .2s C c1/n�2 R

R2
jrf"j2dx0 C C.2s C c1/n�3 R

R2
jf"j2dx0

� .2s C c1/n�2 "
2

R
R2

jf"j2
ı.x0/2

dx0 C C.2s C c1/�1
R
Rn jf j2dx

� Œ "
2

C C�2.e�"�1/2
2sCc1

�
R
Rn

jf j2
ı.x/2 dx

� "
R
Rn

jf j2
ı.x/2 dx

for s large.



134 3 Hardy’s Inequality on Domains

Now, choose ellipsoids E1 and E2 defined respectively by

x21 C x22
R2

C x23 C � � � x2n
b2

and
x21 C x22

a2
C x23 C � � � x2n

b2
;

with a WD 1
2
Œ� C minx02supp.f"/jx0j� and b sufficiently large in order that supp f �

E1 n E2. Inequality (3.8.8) follows.
Recall that the principal radius is the reciprocal of the principal curvature, i.e.,

ri D 1=�i. Therefore, if we rescale by replacing x with �x for some constant � > 0,
then ı.�x/ D �ı.x/, indicating that the rescaled principal curvature is �i=� . Such
a scaling leaves inequality (3.8.8) invariant, but the new mean curvature scales to
H.x/=� . Consequently, we can rescale in order that H.y/ < ", y 2 @E2. Since E1 is
convex, then H.y/ < 0, y 2 @E1. It follows that H.N.x// < " for all x 2 E1nE2. ut

As mentioned earlier, a consequence of Example 3.8.7 is the fact that the weakly
mean convexity requirement, H.y/ � 0, in Corollary 3.7.14 of Chap. 3 cannot be
replaced by the global condition H.y/ < " for any arbitrarily small " > 0. In
contrast, Theorem 4 of [10] shows that we are able to obtain a Hardy inequality with
a sharp constant if E2 in Example 3.8.7 is replaced by a ball B� that approximates
the ellipsoid E1 according to the inequality

.n � 2/ı.x/ � �; x 2 E1 n B�:

If n D 3 and E1 D BR, the inequality reduces to R � 3�. See (3.8.4) for the case in
which E1 D BR and E2 D B� with � < R.



Chapter 4
Hardy, Sobolev, Maz’ya (HSM) Inequalities

4.1 Introduction

From the Hardy and Sobolev inequalities

krukp
p;� � CHku=ıkp

p;�; krukp
p;� � CSkukp

p�;�; u 2 D1;p
0 .�/;

where ı.x/ D dist.x; @�/;CH;CS are the optimal constants and p� D np=.n � p/, it
follows that for 0 < ˛ � CH ;

krukp
p;� � ˛ku=ıkp

p;� � .1 � ˛=CH/ krukp
p;�

� .1 � ˛=CH/CSkukp
p�;�: (4.1.1)

In this chapter, we discuss the existence of inequalities involving the left-hand side
of (4.1.1) with ˛ D CH , and of the form

krukp
p;� � CHku=ıkp

p;� � C.n; p; �/kukp
q;�

for some q 2 .1; p��. Such inequalities are known as Hardy, Sobolev, Maz’ya
(which we abbreviate to HSM) inequalities. An early example was provided by
Maz’ya in [118], Corollary 3, p. 97, where the following is proved: denoting points
in R

nCm by x D .y; z/; y 2 R
n; z 2 R

m, with n C m > 2,

Z
RnCm

�
jruj2 � .m � 2/2

4

juj2
jyj2

�
dx � Kn;m

�Z
RnCm

juj 2.nCm/
nCm�2 dx

� nCm�2
nCm

;
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for all u 2 C1
0 .R

nCm/, subject to the condition that u.y; 0/ D 0 in the case m D 1.
With R

nC WD fx 2 R
n W xn > 0g D R

n�1 � RC, it follows that for n � 3,

Z
R

n
C

�
jruj2 � juj2

4x2n

�
dx � Kn;2

 Z
R

n
C

juj 2n
n�2 dx

! n�2
n

; (4.1.2)

for all u 2 C1
0 .R

nC/. These inequalities are refinements of both the Hardy and
Sobolev inequalities on R

nCm and R
nC respectively.

We shall return to the proof of (4.1.2) later, in Corollary 4.3.2.

4.2 An HSM Inequality of Brezis and Vázquez

In [31], Brezis and Vázquez proved the following theorem:

Theorem 4.2.1 Let � be a bounded domain in R
n; n > 2, and 1 < q < 2� D

2n=.n � 2/. Then, for every u 2 H1
0.�/,

kuk2q � cj�j2
n
1
q � 1

2�

o Z
�

 
jruj2 �

�
n � 2
2

�2 juj2
jxj2

!
dx (4.2.1)

for some positive constant c.

The proof of (4.2.1) in [31] depends on the following result which is of
independent interest.

Theorem 4.2.2 For any bounded domain� � R
n, n � 2, and every u 2 H1

0.�/,

Z
�

jruj2dx �
�

n � 2
2

�2 Z
�

juj2
jxj2 dx � H2

�
!n

j�j
� 2

n
Z
�

juj2dx: (4.2.2)

The constant H2 is the first eigenvalue of the Laplacian on the unit ball in R
2, hence

positive and independent of n. The constants .n � 2/2=4 and H2 are optimal when
� is a ball.

Proof It suffices to prove (4.2.2) on C1
0.�/. For once it is established on C1

0.�/, it
follows that

kuk WD
(Z

�

 
jruj2 �

�
n � 2

2

�2 juj2
jxj2

!
dx

) 1=2
(4.2.3)

is a norm on C1
0.�/, and (4.2.2) continues to hold on the completion, H.�/ say,

of C1
0.�/ with respect to this norm. Furthermore, in view of (4.2.2), we have the
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continuous embeddings

D1;2
0 .�/ ,! H.�/ ,! L2.�/

and D1;2
0 .�/ coincides with H1

0.�/. Hence, in particular, (4.2.2) holds on
H1
0.�/.
From the list of properties of symmetric non-increasing rearrangements after

Definition 1.3.10, we note that

krukp;� � krjujkp;� � krjujFkp;�

and

Z
�

ju.x/j2
jxj2 dx �

Z
�F

.ju.x/jF/2
jxj2 dx

where �F is the ball BR centre the origin with volume j�j, hence !nRn D j�j.
Also the L2.�/ norm of u on � is equal to that of jujF on BR. It follows that
the symmetric non-increasing rearrangement decreases the left-hand side of (4.2.2)
while the right-hand side is unchanged. As the symmetric rearrangement jujF of
juj is a non-negative, radial function it will suffice to prove (4.2.2) in the radially
symmetric case.

For n D 2 the result is the Friedrichs inequality and H2 is the first eigenvalue
of the Dirichlet Laplacian on B1. Equality is satisfied by the corresponding
eigenfunction, which is the Bessel function J0.zr/, where z � 2:4048 is the first
zero of J0. Then H2 D z2 � 5:7832.

Suppose n � 3 and that u is a non-negative radial function in the ball B1. Define
the function

Qu.x/ D jxj� n�2
2 ; n > 2;

which is not in D1.B1/ and satisfies

�Qu.x/C
�

n � 2
2

�2
jxj�2 Qu.x/ D 0:

We use Qu to make a dimension reduction from n to 2 dimensions by introducing a
new variable

v.r/ WD u.r/r
n�2
2 ; r D jxj:
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It is readily shown that

Z
BR

"
jru.x/j2 �

�
n � 2

2

�2 ju.x/j2
jxj2

#
dx

D n!n

�Z R

0

jv0.r/j2rdr � n � 2

2

Z R

0

Œv2.r/�0dr

�

D n!n

Z R

0

jv0.r/j2rdr: (4.2.4)

since u 2 C1
0.BR/. The penultimate integral in (4.2.4) can be bounded below using

the Friedrichs inequality in two dimensions,

Z R

0

jv0.r/j2rdr � H2

R2

Z R

0

jv.r/j2rdr: (4.2.5)

The proof is completed on noting that

Z
BR

ju.x/j2dx D n!n

Z R

0

jv.r/j2rdr:

ut
Remark 4.2.3 The inequality (4.2.2) implies that

Z
�

jru.x/j2dx >
�

n � 2
2

�2 Z
�

ju.x/j2
jxj2 dx;

for any non-trivial function u 2 H1
0.�/. Also, in (4.2.2), H2.!n=j�j/ is not attained

in H1
0.�/, for that would imply equality in (4.2.5) with R D 1 and v.r/ D cJ0.zr/.

Hence u.x/ D cJ0.zr/=r.n�2/=2, which is not in H1
0.B1/.

Before embarking on the proof, we first note that in the case n D 2, we have the
Sobolev inequality

Z
BR

exp

� jf .x/j
c1krf .x/k2;BR

�2
dx � c2jBRj (4.2.6)

for all f 2 D1
0.BR/, where c1; c2 are positive constants; see [49], Theorem V.3.16. It

therefore follows that, for all p 2 Œ1;1/;

Z
BR

� jf .x/j
krf k2;BR

�2p

dx � cjBRj
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for some positive constant c, and hence, on applying the Cauchy-Schwarz inequality,

kf kp;BR � jBRj1=2pkf k2p;BR

� cR2=pkrf k2;BR I

if f is radial,

Z R

0

jf .r/jprdr � cR2
�Z R

0

jf 0.r/j2rdr

�p=2

: (4.2.7)

Proof of Theorem 4.2.1 For the radial functions u and v in the proof of Theo-
rem 4.2.2, on setting H D Œ.n � 2/=2�2, we have from (4.2.4) and (4.2.7),

Z
BR

�
jru.x/j2 � H

u2.x/
jxj2

�
dx D n!n

Z R

0

Œv0.r/�2rdr

� cR�4=pkvk2p;BR

D cR�4=p

�Z R

0

u.r/pr.n�2/p=2rdr

�2=p

:

(4.2.8)

Furthermore, for ˛ > 0 (to be determined), and 1 < q < p,

�
1

n!n
kukq

q

�2=q

D
�Z R

0

jujqr˛rn�2�˛rdr

�2=q

�
�Z R

0

jujpr˛p=qrdr

�2=p �Z R

0

r.n�2�˛/� rdr

�2=q�

; (4.2.9)

where we have used Hölder’s inequality with 1=� C q=p D 1; � > 1 since q < p.
The strategy of the proof is to choose ˛ such that the last integral in (4.2.9) is finite,
and the right-hand side of (4.2.9) is less than a constant multiple of the right-hand
side of (4.2.8). Thus we choose ˛ so that ˛p=q D p.n � 2/=2, i.e.,

˛ D q.n � 2/=2;

and we require n � 2 � .n � 2/q=2 > �2=� D �2.1� q=p/, i.e.,

n > q

�
n � 2

2
C 2

p

�
: (4.2.10)
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We now choose 2=p D Œ.n � 2/=2�", where " is sufficiently small that q=p D
qŒ.n � 2/=4�" < 1; then (4.2.10) becomes

n > q

�
n � 2

2

�
.1C "/;

which is satisfied for small enough " as q < 2n=.n � 2/ D 2�.
From (4.2.8) and (4.2.9), we now have

Z
BR

�
jru.x/j2 � H

u2.x/
jxj2

�
dx � cRf� 4

p � 2
q .n�2�˛/� 4

q� gkuk2q;BR

D cR2n. n�2
2n � 1

q /kuk2q;BR
:

Therefore

kuk2q;BR
� cR2n. 1q � 1

2�
/

Z
BR

�
jru.x/j2 � H

u2.x/
jxj2

�
dx:

The theorem follows on recalling that j�j D !nRn. �

The following result is similar to (1.4) in [63], where it is observed that " > 0 is
necessary.

Corollary 4.2.4 For any bounded domain� � R
n, n > 2, and every u 2 H1

0.�/

Z
�

 
jruj2 �

�
n � 2

2

�2 juj2
jxj2

!
dx � C.2; n; "/kuk2 2n

n�2C"

(4.2.11)

where C.2; n; "/ ! 0 as " ! 0.

Proof Let q D 2n=.n �2C"/ for arbitrary small " > 0. Then ˛ D n.n�2/
n�2C" in (4.2.9),

and we choose p to be such that � D 1C ". The last integral in (4.2.9) becomes

�Z R

0

r.n�2�˛/� rdr

�1=�
D
�Z R

0

r
.n�2/.1C"/.�2C"/

n�2C" C1dr

�1=.1C"/

which converges to 0 as " ! 0. The proof of (4.2.11) follows by using this fact in
the proof of Theorem 4.2.1. ut
Remark 4.2.5 Theorem 4.2.1 is reminiscent of Theorem 2.3 in [63] for fractional
HSM inequalities. The fractional analogue of the Hardy inequality is

Z
Rn

ju.x/j2
jxj2s

dx � C�1
s;n

Z
Rn

jpj2sjOu.p/j2dp; u 2 C1
0 .R

n/; (4.2.12)
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which is valid for 0 < 2s < n, and where the sharp constant is

Cs;n WD 22s�
2.Œn C 2s�=4/

�2.Œn � 2s�=4/
;

established in [77, 151]. The aforementioned result proved in [63] is the following:

Theorem 4.2.6 Let 0 < s < minf1; n=2g and 1 � q < 2�
s WD 2n=.n � 2s/. Then

there exists a positive constant Cq;n;s such that for any domain � � R
n of finite

measure j�j,

kuk2q � Cq;n;sj�j2
�
1
q � 1

2�s

� �Z
Rn

jpj2sjOu.p/j2dp � Cs;n

Z
Rn

ju.x/j2
jxj2s

dx
�
; (4.2.13)

for all u 2 C1
0 .�/.

It is noted in [31] that q must be strictly less than the critical exponent 2�
s .

4.3 A General HSM Inequality in Lp.�/

In [60], Filippas, Maz’ya and Tertikas proved that for a bounded convex domain �
with a C2 boundary, there exists a constant C D C.�/ depending on �, such that

Z
�

�
jruj2 � juj2

4ı.x/2

�
dx � C

�Z
�

juj 2n
n�2 dx

� n�2
n

; u 2 C1
0 .�/; (4.3.1)

and posed the problem: can C be chosen to be independent of�? This was answered
in the affirmative by Frank and Loss in [62] who proved it as a consequence of a
more general inequality, which holds for an arbitrary domain � ¤ R

n; this is that
for n � 3, there exists a positive constant Kn, independent of �, such that

Z
�

�
jruj2 � juj2

4ıM.x/2

�
dx � Kn

�Z
�

juj 2n
n�2 dx

� n�2
n

; u 2 C1
0 .�/; (4.3.2)

where ıM D ıM;2 is the mean distance function of Definition 3.3.1. Since ıM.x/ �
ı.x/ if� is convex, by Theorem 3.3.4, (4.3.1) follows from (4.3.2) with C � Kn. As
noted in [62], an application of Hölder’s inequality to the right-hand side of (4.3.1)
yields the inequality

Z
�

�
jruj2 � juj2

4ı.x/2

�
dx � Knj�j�2=n

Z
�

juj2dx; u 2 C1
0 .�/; (4.3.3)

which was discussed in Sect. 3.3.1.
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Another important consequence of (4.3.2) is Maz’ya’s inequality (4.1.2) when
� D R

nC. In the case n D 3, the optimal constant in this inequality was obtained in
[28]: to be specific, they proved that with R

3C D R
2 � RC, for all f 2 C1

0 .R
3C/,

Z
R
3
C

rjf .x/j2dx �
Z
R
3
C

jf .x/j2
4jxj2 dx C S3

 Z
R
3
C

jf .x/j6dx

!1=3
; (4.3.4)

where S3 is optimal, and given by

S3 D 3.�=2/4=3; (4.3.5)

which is the sharp constant in the Sobolev inequality (1.3.6) in three dimensions.
The inequality is also shown to be strict for non-zero functions f .

In [62], an Lp analogue of (4.3.2) is obtained for p � 2, and it is this result which
will be the centre-piece of this section. It is

Theorem 4.3.1 (Frank and Loss [62]) Let p 2 Œ2; n/. Then there is a constant Kn;p,
depending only upon n and p, such that for any domain� ¤ R

n and all u 2 C1
0 .�/

Z
�

�
jrujp �

�
p � 1

p

�p jujp

ıM;p.x/p

�
dx � Kn;p

�Z
�

juj np
n�p dx

� n�p
n

: (4.3.6)

By Theorem 3.3.4, an immediate consequence is

Corollary 4.3.2 Let � ¤ R
n; n � 3; be a convex domain. Then there exists a

positive constant Kn;p, p 2 Œ2; n/, depending only upon n and p, such that

Z
�

�
jrujp �

�
p � 1

p

�p jujp

ı.x/p

�
dx � Kn;p

�Z
�

juj np
n�p dx

� n�p
n

for all u 2 C1
0 .�/.

Before embarking on the proof of Theorem 4.3.1, we need some preparatory
results.

Lemma 4.3.3 For all a; b 2 C, and p � 2;

ja C bjp � jajp C pjajp�2ReŒab�C cpjbjp (4.3.7)

for some cp 2 .0; 1�.
Proof Let x D ja C bj2; y D jaj2 and f .t/ D tp=2; t 2 .0;1/: Then since f 00.t/ � 0,
we have by Taylor’s theorem,

f .x/ � f .y/C .x � y/f 0.y/
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and so

ja C bjp � jajp C �jbj2 C 2ReŒab�
� p

2
jajp�2

D jajp C pReŒab�jajp�2 C p

2
jbj2jajp�2: (4.3.8)

Suppose that jaj � cjbj for some positive constant c < 1 to be determined later.
Then, from (4.3.8)

ja C bjp � jajp C pReŒab�jajp�2 C p

2
cp�2jbjp (4.3.9)

and so (4.3.7) is satisfied.
Let z D jaj2 C jbj2. Then

f .x/ � f .z/C .x � z/f 0.z/

yields

ja C bjp � �jaj2 C jbj2�p=2 C 2ReŒab�
p

2

�jaj2 C jbj2� p�2
2 ; (4.3.10)

and on the right-hand side

�jaj2 C jbj2�p=2 � jajp C jbjp:

Suppose now that jaj � cjbj. Then in (4.3.10), for some constant K (independent of
jaj and jbj),

�jaj2 C jbj2� p�2
2 � .jaj C jbj/p�2 D jbjp�2

�
1C jaj

jbj
	 p�2

� K.jbjp�2/: (4.3.11)

Hence from (4.3.10),

ja C bjp � jajp C jbjp C pReŒab�jajp�2

C pReŒab�

��jaj2 C jbj2� p�2
2 � jajp�2

	

and

p

ˇ̌
ˇ̌ReŒab�

��jaj2 C jbj2� p�2
2 � jajp�2

	 ˇ̌
ˇ̌

� pjajjbj �Kjbjp�2 C Œcjbj�p�2� � pcjbjp.K C cp�2/:



144 4 Hardy, Sobolev, Maz’ya (HSM) Inequalities

Therefore, for c sufficiently small, (4.3.7) is again satisfied and the proof is
complete. ut
Proposition 4.3.4 Let q � p � 2. There is a constant Cp;q (where C2;q � .q C 2/2)
such that for every f 2 C1

0 .�1; 1/ and for every t 2 Œ�1; 1�,

jf .t/jq.p�1/Cp � Cp;q
R 1

�1
�
jf 0jp �

�
p�1

p

�p jf jp
.1�jsj/p

�
ds �

�R 1
�1 jf jqds

�p�1
:

(4.3.12)

Proof This is Proposition 2.5 in [62]. Let f .t/ D .1 � jtj/.p�1/=pg.t/. Then on
using (4.3.7), we have

R 1
�1
�
jf 0jp �

�
p�1

p

�p jf jp
.1�jsj/p

�
ds

D R 1
�1
hˇ̌
ˇ.1 � jsj/.p�1/=pg0 � p�1

p sgn.s/.1 � jsj/�1=pg
ˇ̌
ˇp �

�
p�1

p

�p jgjp
1�jsj

i
ds

� R 1
�1
�
�p

�
p�1

p

�p�1
sgn.s/jgjp�2ReŒNgg0�C cp.1 � jsj/p�1jg0jp

�
ds

D R 1
�1
�

p
2

�
p�1

p

�p�1
sgn.s/ 2p

��jgj2�p=2�0 C cp.1 � jsj/p�1jg0jp

	
ds

D 2
�

p�1
p

�p�1 jg.0/jp C cp
R 1

�1.1 � jsj/p�1jg0jpds

We shall show that, for d D 2c�1
p . p�1

p /p�1 and some positive constant C D
C.p; q/,

jg.t/jq.p�1/Cp � C.1 � jtj/� .p�1/.pCq.p�1//
p

�R 1
�1.1 � jsj/p�1jg0jpds C djg.0/jp

�

�
�R 1

�1 jgjq.1 � jsj/ q.p�1/
p ds

�p�1
:

(4.3.13)
It will then follow that

2.
p�1

p /
p�1jg.0/jp C cp

R 1
�1.1 � jsj/p�1jg0jpds

� C�1cp

�R 1
�1 jf jqds

�1�p jf .t/jq.p�1/Cp

which is (4.3.12) with Cp;q D C=cp.
By symmetry it suffices to show (4.3.13) only for t 2 Œ0; 1�. Since .1 �

t/Œ.p�1/.q.p�1/Cp/�=p2 is decreasing in Œ0; 1� we have that

jg.t/j q.p�1/Cp
p � jg.0/j q.p�1/Cp

p

� Œq.p � 1/C p�

p

Z t

0

jgj q.p�1/
p jg0jds
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� Œq.p � 1/C p�

p.1� t/
.p�1/.q.p�1/Cp/

p2

Z 1

0

jgj q.p�1/
p jg0j.1� s/

.p�1/.q.p�1/Cp/
p2 ds

� Œq.p � 1/C p�

p.1� t/
.p�1/.q.p�1/Cp/

p2

�
�Z 1

0

jg0jp.1 � s/p�1ds

� 1
p
�Z 1

0

jgjq.1 � s/
q.p�1/

p ds

� p�1
p

:

Thus it remains to show that

jg.0/jq.p�1/Cp � C

�Z 1

�1
jg0jp.1 � jtj/p�1dt C djg.0/jp

�

�
�Z 1

�1
jgjq.1 � jtj/ q.p�1/

p dt

�p�1
: (4.3.14)

To that end we choose a free parameter T 2 .0; 1/ and a Lipschitz function � with
0 � � � 1, �.0/ D 1, �.t/ D 0 when jtj 2 ŒT; 1�. Let

L WD
�Z 1

�1
j�0.s/j pq

q�p ds

� q�p
pq

:

Choose another parameter A, to be fixed later and depending upon T and L, and
distinguish two cases as to whether or not the inequality

jg.0/jq � A
p

p�1

Z 1

�1
jg.s/jq.1� jsj/ q.p�1/

p ds (4.3.15)

holds.
If (4.3.15) holds, then as an immediate consequence we have that

jg.0/j q.p�1/Cp
p � Ajg.0/j

�Z 1

�1
jg.t/jq.1 � jtj/ q.p�1/

p dt

� p�1
p

� Ad� 1
p

�Z 1

�1
jg0jp.1 � jtj/p�1dt C djg.0/jp

� 1
p

�
�Z 1

�1
jgjq.1� jtj/ q.p�1/

p dt

� p�1
p

;

which implies (4.3.14).
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Suppose

jg.0/jq > A
p

p�1

Z 1

�1
jg.s/jq.1 � jsj/ q.p�1/

p ds; (4.3.16)

and define g0 WD �g. Since g0.T/ D g0.�T/ D 0

jg0.0/j
q.p�1/Cp

p � q.p � 1/C p

2p

Z T

�T
jg0j

q.p�1/
p jg0

0jds

� q.p � 1/C p

2p
.1� T/

� .p�1/.pCq.p�1//

p2

�
Z 1

�1
jg0j

q.p�1/
p jg0

0j.1 � jsj/
.p�1/.pCq.p�1//

p2 ds

� q.p � 1/C p

2p.1� T/
.p�1/.pCq.p�1//

p2

�Z 1

�1
jg0
0jp.1 � jsj/p�1ds

� 1
p

�
�Z 1

�1
jg0jq.1 � jsj/ q.p�1/

p ds

� p�1
p

:

We recall that g0.0/ D g.0/, and the last term satisfies

Z 1

�1
jg0jq.1 � jsj/ q.p�1/

p ds �
Z 1

�1
jgjq.1 � jsj/ q.p�1/

p ds:

For the integral involving g0, we use the triangle inequality for Lp:

�Z 1

�1
jg0
0jp.1 � jsj/p�1ds

� 1
p

�
�Z 1

�1
jg0jp�p.1 � jsj/p�1ds

� 1
p

C
�Z 1

�1
jgjpj�0jp.1 � jsj/p�1ds

� 1
p

�
�Z 1

�1
jg0jp.1 � jsj/p�1ds

� 1
p

C L

�Z 1

�1
jgjq.1 � jsj/ q.p�1/

p ds

� 1
q

�
�Z 1

�1
jg0jp.1 � jsj/p�1ds

� 1
p

C LA� p
q.p�1/ jg.0/j

� 2
p�1

p

�Z 1

�1
jg0jp.1 � jsj/p�1ds C LpA� p2

q.p�1/ jg.0/jp

� 1
p

I
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in the penultimate inequality we have used (4.3.16). Choosing A large enough in

order that LpA� p2

q.p�1/ � d, we arrive at (4.3.14) again, and hence the proof is
complete. ut
Corollary 4.3.5 Let q � p � 2. For every open set � ¤ R and all f 2 C1

0 .�/,
there exists a positive constant Cp;q such that

sup
t2�

jf .t/jq.p�1/Cp � Cp;q

Z
�

�
jf 0jp �

�
p � 1

p

�p jf jp

dist.t; �c/p

�
dt

�
�Z

�

jf jqdt

�p�1
: (4.3.17)

Proof First note that (4.3.17) follows from (4.3.12) for any interval by a translation
and a dilation. The extension to an arbitrary open set � ¤ R follows from the fact
that every proper open subset of R is the union of countably many, pairwise disjoint,
open intervals. ut

In order to pass from the one-dimensional inequality of Corollary 4.3.5 to n
dimensions, Frank and Loss [62] apply an argument of Gagliardo and Nirenberg
(see Sect. 4.5 in [52]), which we now describe. We use the notation

Oxj WD .x1; : : : ; xj�1; xjC1; : : : ; xn/ 2 R
n�1:

Lemma 4.3.6 For n � 2 and f1; : : : ; fn 2 Ln�1.Rn/, the function f defined by
f .x/ WD f1.Ox1/ � � � fn.Oxn/, belongs to L1.Rn/ and

kf kL1.Rn/ � …n
jD1kfjkLn�1.Rn�1/: (4.3.18)

Proof The proof is trivial for n D 2. For n � 3, we have by Hölder’s inequality

Z
Rn

jf .x/jdx D
Z
Rn�1

jf1j
�Z

R

jf2 � � � fnjdx1

�
d Ox1

� kf1kLn�1.Rn�1/

 Z
Rn�1

�Z
R

jf2 � � � fnjdx1

� n�1
n�2

d Ox1
! n�2

n�1

:

Similar successive applications of Hölder’s inequality gives

kf kL1.Rn/ � kf1kLn�1.Rn�1/ � � � kfkkLn�1.Rn�1/

�
 Z

Rn�k

�Z
Rk

jfkC1 � � � fnj n�1
n�k dx1 � � � dxk

	 n�k
n�k�1

dxkC1 � � � dxn

! n�k�1
n�1
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for k D 1; 2; � � � ; n � 2: Thus with k D n � 2,

kf kL1.Rn/ � kf1kLn�1.Rn�1/ � � � kfn�2kLn�1.Rn�1/

�
 Z

R2

�Z
Rn�2

jfn�1fnj n�1
2 dx1 � � � dxn�2

	 2
dxn�1dxn

! 1
n�1

� …n
jD1kfjkLn�1.Rn�1/;

as asserted. ut
Proof of Theorem 4.3.1 Let fe1; : : : ; eng be the standard basis in R

n and define

�j.x/ D �ej WD inffjtj W x C tej 2 �cg:

Let

gj.Oxj/ WD
Z
R

�ˇ̌
ˇ̌@u.x/
@xj

ˇ̌
ˇ̌p �

�
p � 1

p

�p ju.x/jp

�j.x/p

�
dxj

and

hj.Oxj/ WD
Z
R

ju.x/jqdxj; q D np

n � p
;

for j D 1; : : : ; n. By Corollary 4.3.5, as q.p � 1/C p D p2.n � 1/=.n � p/,

ju.x/j � .Cp;qgj.Oxj/hj.Oxj/
p�1/

n�p
p2.n�1/ :

Therefore,

ju.x/jn � C
n.n�p/

p2.n�1/
p;q …n

jD1.gj.Oxj/hj.Oxj/
p�1/

n�p
p2.n�1/ I

so

ju.x/jq � C
n

p.n�1/
p;q …n

jD1.gj.Oxj/hj.Oxj/
p�1/

1
p.n�1/ ;

and, by Lemma 4.3.6,

R
Rn ju.x/jqdx � C

n
p.n�1/
p;q

R
Rn …

n
jD1.gj.Oxj/hj.Oxj/

p�1/
1

p.n�1/ dx

� C
n

p.n�1/
p;q …n

jD1
hR

Rn�1 .gj.Oxj/hj.Oxj/
p�1/

1
p d Oxj

i 1
n�1

:
(4.3.19)
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Also, note that for j D 1; : : : ; n

khjkL1.Rn�1/ D
Z
Rn

ju.x/jqdx:

We now apply Hölder’s inequality followed by the arithmetic-geometric inequality
to get

…n
jD1

R
Rn�1 gj.Oxj/

1
p hj.Oxj/

p�1
p d Oxj � …n

jD1kgjk
1
p

L1.Rn�1/
khjk

p�1
p

L1.Rn�1/

D kuk
nq.p�1/

p
q …n

jD1kgjk
1
p

L1.Rn�1/

� kuk
nq.p�1/

p
q

h
1
n†

n
jD1kgjk1=p

L1.Rn�1/

in

� kuk
nq.p�1/

p
q

h
1
n†

n
jD1kgjkL1.Rn�1/

i n
p
;

where k � kq denotes the Lq.Rn/ norm. On using the last inequality in (4.3.19), we
conclude that

R
Rn ju.x/jqdx � C

n
p.n�1/
p;q kuk

nq.p�1/
p.n�1/

q

h
1
n†

n
jD1kgjkL1.Rn�1/

i n
p.n�1/

;

which gives

kuk
q.n�p/
p.n�1/
q � C

n
p.n�1/
p;q

h
1
n†

n
jD1kgjkL1.Rn�1/

i n
p.n�1/

;

and thus, since q D np=.n � p/,

kukp
q � Cp;q

n
†n

jD1kgjkL1.Rn�1/:

On recalling the definition of gj, this is the inequality

�R
Rn ju.x/jqdx

� p
q � Cp;q

n †
n
jD1

R
Rn

�ˇ̌
ˇ @u.x/
@xj

ˇ̌
ˇp �

�
p�1

p

�p ju.x/jp
�j.x/p

�
dx:

Thus, if we use the notation of Sect. 3.3.1, namely, that, for 
 2 S
n�1; �
.x/ denotes

the distance from x 2 � to @� in the direction 
 or �
; @
 the derivative along 

and d!.
/ the normalised measure on S

n�1, then

�Z
Rn

ju.x/jqdx
� p

q

� Cp;q

Z
Rn

Z
Sn�1

�
j@
u.x/jp �

�
p � 1

p

�p ju.x/jp

�
.x/p

�
d!.
/dx:
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Since @
u.x/ D ru.x/ � 
 D jru.x/j cos.ru.x/; 
/, we have from (3.3.7)

Z
Rn

Z
Sn�1

j@
u.x/jpd!.
/dx

D
Z
Rn

Z
Sn�1

j cos.ru.x/; 
/jpjru.x/jpd!.
/dx

D �. pC1
2
/�. n

2
/p

��.
nCp
2
/

Z
Rn

jru.x/jpdx

D Bn;p

Z
Rn

jru.x/jpdx:

Hence

�Z
Rn

ju.x/jqdx
� p

q

� Cp;qBn;p

Z
Rn

�
jru.x/jp �

�
p � 1

p

�p �
B�1

n;p

Z
Sn�1

d!.
/

�
.x/p

�
ju.x/jp

	
dx

D Cp;qBn;p

Z
Rn

�
jru.x/jp �

�
p � 1

p

�p ju.x/jp

ıM;p.x/p

	
dx

which gives (4.3.6).

4.4 Weakly Mean Convex Domains

We explore further results of Filippas et al. in [61]. Conditions designated by (C)
and (R) were of central importance, and we begin by introducing and discussing
these.

Let K be a C2 manifold without boundary embedded in R
n, of co-dimension k,

1 � k < n. When k D 1 assume that K D @� and when 1 < k < n assume that
K \ N� ¤ ;. In general ı.x/ WD dist.x;K/. For p > 1 and p ¤ k condition (C) is
defined as follows:

��pı
p�k
p�1 � 0 on � n K; .C/

where�pu WD div.jrujp�2ru/ is the p-Laplacian.
We shall only be concerned with the case k D 1 in which condition (C) reduces

to the requirement that ��ı � 0 on �. From Proposition 2.5.4, we know that
��ı � 0 in � n †.�/ if and only if � is weakly mean convex. Moreover, by
Corollary 3.7.11, ��ı � 0 in � in the distributional sense if � is weakly mean
convex and has null cut locus †.�/.
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In condition (R) there exists "� > 0 and a positive constant c0 such that for all
x 2 �" WD fx 2 � W ı.x/ < "g

jı.x/�ı.x/j � c0 ı.x/; for each " 2 .0; "��: .R/

Condition (R) allows for some unbounded domains, e.g., � D �0 � R with
�0 � R

n�1 convex and bounded.

Lemma 4.4.1 Let � be a weakly mean convex domain with a null cut locus. Then
condition (C) holds for k D 1. Condition (R) holds if either � is bounded or B WD
supy2@�

Pn�1
jD1 j�j.y/j < 1.

Proof It follows from Corollary 3.7.11 that (C) holds in the distributional sense for
the case k D 1.

Suppose� is bounded. We recall from Remark 2.4.6, that there exists " > 0 such
that �" WD fx 2 � W ı.x/ < "g � G.�/. By Lemma 2.4.2, �ı is continuous in
G.�/, and by Proposition 2.5.4, supx2G.�/ j�ı.x/j D .n �1/ supy2@� jH.y/j, where
�ı.x/ and H.y/ are non-positive. Also, as x ! y D N.x/ in G.�/, ı.x/ ! 0 and so
�ı.x/ ! .n � 1/H.y/, the convergence being uniform in a closed neighbourhood
of @�. Hence, given any 	 > 0, we may choose "� sufficiently small such that
�"� � G.�/ and

j�ı.x/j < .n � 1/jH.y/j C 	 � H0 C 	; for x 2 �"� ;

where H0 WD maxy2@� jH.y/j < 1. Now, let c0 D .n � 1/H0 C 	 and (R) follows.
Suppose now that B WD supy2@�

Pn�1
jD1 j�j.y/j < 1. Choose " in order that�" �

G.�/ and "� WD "B < 1. For each x 2 �" and the corresponding y D N.x/, let
JC WD fj W �j.y/ � 0g and J� WD fj W �j.y/ < 0g. Then for each x

��ı D �Pj2JC

�j

1Cı�j
�P

j2J�

�j

1�ıj�j j
� �Pj2JC

�j

1C"� �P
j2J�

�j

1�"� :

Let H˙ WD 1
.n�1/

P
j2J

˙

�j: Then

��ı � .n � 1/
˚ �1
1C"� HC C �1

1�"� H�



D .n � 1/
n�HC"�.HC�H�/

1�."�/2
o

� 1
1�."�/2

hPn
jD1 j�jj C "�Pn

jD1 j�jj
i

� B
1�"� D B

1�"B :

Therefore condition (R) holds with c0 D B
.1�"B/ . ut

The next lemma is Lemma 2.2 in [61].
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Lemma 4.4.2 Let � be a domain satisfying condition (R). Then for any C 2
.0; 1

2
n!1=n

n / and a > 0, there exists "0 D "0.a=c0/ such that for all " 2 .0; "0�,

Ckıavk n
n�1 ;�"

�
Z
�"

ıajrvjdx; v 2 C1
0 .�"/; (4.4.1)

where �" WD fx 2 � W ı.x/ < "g
Proof By the Gagliardo-Nirenberg-Sobolev inequality (1.3.7),

n!1=n
n kf k n

n�1 ;�"
� krf k1;�" ; f 2 W1;1

0 .�"/; (4.4.2)

where !n is the volume of the unit ball in R
n. On substituting f D ıav for v 2

C1
0 .�"/, we have

n!1=n
n kıavk n

n�1 ;�"
�
Z
�"

ıajrvjdx C
Z
�"

aıa�1jvjdx: (4.4.3)

The last term may be estimated as follows: for " < "0

a
R
�"
ıa�1jvjdx D R

�"
.rıa � rı/ jvjdx

D � R
�"
ıa.�ı/jvjdx � R

�"
ıa.rı � rjvj/dx

� c0
R
�"
ıajvjdx C R

�"
ıajrjvjjdx

� c0"
R
�"
ıa�1jvjdx C R

�"
ıajrvjdx;

where we have used condition (R). Thus,

.a � c0"/
Z
�"

ıa�1jvjdx �
Z
�"

ıajrvjdx;

and on substituting in (4.4.3),

n!1=n
n kıavk n

n�1 ;�"
�
�
1C a

a � c0"

	 Z
�"

ıajrvjdx:

The proof is completed by choosing ". ut
The following theorem is an alternative form of Theorem 2.5 in [61].

Theorem 4.4.3 Let� be a weakly mean convex domain in R
n with a null cut locus,

and suppose that it satisfies condition (R) with D D supx2� ı.x/ < 1. Then, for
any p 2 .1; n/ there exists a positive constant C D C.n; p; c0D/ such that

Z
�

ıp�1jrvjpdx C
Z
�

.��ı/jvjpdx � Ckı p�1
p vk np

n�p ;�

for all v 2 C1
0 .�/.
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Proof Let ˛ 2 C1Œ0;1/ be a non-increasing function with the property that
j˛0.t/j � K0 and

˛.t/ D
�
1; t 2 Œ0; 1

2
/;

0; t � 1:

Then the function 
 defined by 
".x/ WD ˛.ı.x/="/ is in C2
0.�"/ with jr
"j � K0

"
.

We set v D 
"vC.1�
"/v for every v 2 C1
0 .�/ and apply Lemma 4.4.2 to obtain,

for arbitrary a > 0 and C 2 .0; n!1=n
n =2/,

Ckıa
"vk n
n�1 ;�"

�
Z
�"

ıajr.
"v/jdx; v 2 C1
0 .�/: (4.4.4)

By the Gagliardo-Nirenberg-Sobolev inequality (1.3.7),

n!1=n
n k.1 � 
"/vk n

n�1 ;�
� krŒ.1 � 
"/v�k1;�; v 2 C1

0 .�/:

Since, for x 2 supp.1�
"/v, ı.x/ 2 Œ "
2
;D�, where D WD supx2� ı.x/, it follows that

n!1=n
n

Da
kıa.1 � 
"/vk n

n�1 ;�
� .2="/a

Z
�

ıajrŒ.1 � 
"/v�jdx: (4.4.5)

On combining (4.4.4) and (4.4.5), we have for some positive constant C D
C.n; p; a; "=D/,

Ckıavk n
n�1 ;�

�
Z
�n�"=2

ıajrŒ.1 � 
"/v�jdx C
Z
�"

ıajr.
"v/jdx

�
Z
.�n�"=2/[�"

ıaj
"jjrvjdx

C 2

Z
�"n�"=2

ıajr
"jjvjdx

�
Z
�

ıajrvjdx C 2K0

Z
�"n�"=2

ıa�1jvjdx;

where we have used the fact that ı.x/ < " for x 2 �" n�"=2. As a consequence, we
have the L1 estimate

Ckıavk n
n�1 ;�

�
Z
�

ıajrvjdx C
Z
�"n�"=2

ıa�1jvjdx: (4.4.6)
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In order to derive the Lp estimate for p > 1, we substitute vs, s D p.n�1/
n�p , for v

in (4.4.6) to obtain

C

�Z
�

ı
an

n�1 jvj np
n�p dx

� n�1
n

� s
Z
�

ı
a n�p

p.n�1/ jrvjıa n.p�1/
p.n�1/ jvj n.p�1/

n�p dx

C
Z
�"n�"=2

ı.a�1/c1 jvjı.a�1/c2 jvj n.p�1/
n�p dx;

where c1 C c2 D 1. By the choice

.a � 1/c1 WD a.n � p/

p.n � 1/
� 1; .a � 1/c2 D an.p � 1/

p.n � 1/ ;

and the application of Hölder’s inequality, we derive

C
�R

� ı
an

n�1 jvj np
n�p dx

� n�1
n

�
�

s
�R

�
ı

a.n�p/
.n�1/ jrvjpdx

�1=p

C
�R

�"n�"=2 ı
a.n�p/

n�1 �pjvjpdx
�1=p

�

�
�R

�
ı

an
.n�1/ jvj np

n�p dx
� p�1

p
;

which yields,

C
�R

�
ı

an
n�1 jvj np

n�p dx
� n�p

np

� s
�R

�
ı

a.n�p/
.n�1/ jrvjpdx

�1=p

C
�R

�"n�"=2 ı
a.n�p/

n�1 �pjvjpdx
�1=p

:

(4.4.7)

Now select a D .n�1/.p�1/
n�p > 0. The inequality jx C yjp � 2p�1.jxjp C jyjp/ then

gives

C.n; p; "D /kı
p�1

p vkp
np

n�p ;�
� R

�
ıp�1jrvjpdx C R

�"n�"=2 ı
�1jvjpdx: (4.4.8)

We need an estimate for the last term in (4.4.8). For � > 0

.
"

2
/p�
Z
�"n�"=2

ı�1jvjpdx �
Z
�"n�"=2

ı�1Cp� jvjpdx �
Z
�

ı�1Cp� jvjpdx:

The identity

div.ı�prı/ D �pı�1Cp� C ı�p�ı
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and integration by parts leads to

�p
R
�
ı�1Cp� jvjpdx

D R
� ı

�p.��ı/jvjpdx C R
� div.ı�prı/jvjpdx

D R
�
ı�p.��ı/jvjpdx � p

R
�
ı�pjvjp�1Œrı � rjvj�dx;

and since jrjvjj � jrvj, the last term satisfies

p
ˇ̌R
�
ı�pjvjp�1Œrı � rjvj�dx

ˇ̌
� p"2

R
�
ı�1C�pjvjpdx C pC"2

R
�
ıp�1Cp� jrvjpdx;

for an arbitrary "2 > 0. Therefore

.�p � p"2/
R
�
ı�1Cp� jvjpdx

� R
�
ı�p.��ı/jvjpdx C pC"2

R
�
ıp�1Cp� jrvjpdx;

so that for "2 < �

C.p; �/
R
�
ı�1Cp� jvjpdx � R

�
ı�p.��ı/jvjpdx C R

�
ıp�1Cp� jrvjpdx:

From this and supx2� ı.x/ D D, we infer that

C.p; �/
�
"
D

�p� R
�"n�"=2 ı

�1jvjpdx � C.p; �/D�p�
R
�
ı�1Cp� jvjdx

� R
�.��ı/jvjpdx C R

� ı
p�1jrvjpdx: (4.4.9)

We now choose � D 1 and combine (4.4.9) with (4.4.8) to complete the proof. ut
We are now in a position to prove an extension of Corollary 4.3.2 to weakly mean

convex domains (cf. Theorem 5.3 of [107]).

Theorem 4.4.4 Let� be a weakly mean convex domain in R
n with a null cut locus,

and suppose that it satisfies condition (R) with D D supx2� ı.x/ < 1. Then, for
any p 2 Œ2; n/, there exists a constant C D C.n; p; c0D/ such that

Z
�

jrujpdx �
�

p � 1
p

�p Z
�

jujp

ıp
dx � C

�Z
�

juj np
n�p dx

� n�p
n

(4.4.10)

for all u 2 C1
0 .�/.

Proof Set u.x/ D ı.x/
p�1

p w.x/, so that

rjuj D p � 1

p
ı

p�1
p �1jwjrı C ı.x/

p�1
p rjwj DW A C B; (4.4.11)
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say. For A D .aj/
n
1; B D .bj/

n
1 2 R

n, define the norm and inner product

jAj D
0
@ nX

jD1
jajj2

1
A
1=2

; A � B D
nX

jD1
ajbj:

Then, we claim that, for p � 2

jA C Bjp � jAjp � cpjBjp C pjAjp�2A � B (4.4.12)

for some cp 2 .0; 1�. The proof follows similar lines to that for Lemma 4.3.3, after
first dividing the inequality by jAj to consider it in the form

ˇ̌
ˇ̌ A

jAj C B

jBj
ˇ̌
ˇ̌p � 1 � cp

� jBj
jAj
�p

C p

�
A

jAj � B

jAj
�
:

On applying (4.4.12) to (4.4.11) we obtain

jrujp �
�

p�1
p

�p
ı�1jwjp

� cpı
p�1jrjwjjp C p

�
p�1

p

�p�2
ı

� p�2
p jwjp�2

�
p�1

p

�
ı

p�2
p jwjrjwj � rı/

D cpı
p�1jrjwjjp C p

�
p�1

p

�p�1 jwjp�1.rjwj � rı/
D cpı

p�1jrjwjjp C
�

p�1
p

�p�1
.rjwjp � rı/;

since jrjujj � jruj. Therefore

c�1
p

R
�
Œjrujp �

�
p�1

p

�p
ı�pjujp�dx

� R
�
Œıp�1jrjwjjp C .rjwjp � rı/�dx

D R
�
Œıp�1jrjwjjp C .��ı/jwjp�dx:

Theorem 4.4.3 can be shown to apply to v D jwj by a standard density argument.
On making this application, the theorem follows. ut

A corollary to Theorem 4.4.4 follows from Lemma 4.4.1.

Corollary 4.4.5 Let � be a weakly mean convex domain in R
n.

(1) If � is bounded, then, for any p 2 Œ2; n/, there exists a constant C D
C.n; p;H0;D/ such that (4.4.10) holds for H0 WD supy2@� jH.y/j.

(2) Alternatively, if B WD supy2@�
Pn�1

jD1 j�j.y/j < 1, then, for any p 2 Œ2; n/, there
exists a constant C D C.n; p;BD/ such that (4.4.10) holds.
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4.5 Exterior Domains

In [69], Gkikas established HSM inequalities on domains which are unbounded,
these being exterior domains in the sense that they are open, connected subsets of
R

n whose complements �c WD R
n n � are connected and compact, and contain a

neighborhood of the origin. It is also assumed in [69] that � has a C2 boundary.
Theorem 4.3.1, which is given in terms of the mean distance function ıM, is
applicable for exterior domains, and, as we noted in Sect. 4.3, yields the prototypical
Maz’ya’s inequality’s (4.1.2) when� D R

nC, since then the mean distance function
is equivalent to the distance function, by (3.3.9). Outside such examples, Gkikas
provides an alternative approach.

To prove HSM inequalities for exterior domains, Gkikas [69] makes the assump-
tion that

F.x/ WD ��ı.x/C .n � 1/
rı.x/ � x

jxj2 � 0; (4.5.1)

holds in the distributional sense
Z
�

F.x/'.x/dx � 0; 8' 2 C1
0 .�/; ' � 0:

This implies that (4.5.1) must hold in the pointwise sense for all x 2 G.�/.
In the following lemma, � is not an exterior domain in part (ii), and is not

necessarily so in part (iii).

Lemma 4.5.1 Condition (4.5.1) holds when

(i) � D BR.0/
c,

(ii) � D R
nC D f.x0; xn/ 2 R

n W xn > 0g, and
(iii) � is a bounded, mean convex domain.

Proof It is straightforward to show that (i) and (ii) imply (4.5.1). To see that (iii)
does, first recall from Proposition 2.5.5, that H.y/ is continuous on @�. Therefore,
H.y/ assumes its maximum at some y0 2 @� with H.y0/ < 0. From the proof of
Proposition 2.5.4, for fyg D N.x/

��ı.x/ � �.n � 1/H.y/ � �.n � 1/H.y0/ � .n � 1/" > 0; x 2 G.�/;

for some " > 0. Proceeding as in the discussion after (2.1) in [69], we choose
x0 2 �c such that jx0 � xj > 1=" for all x 2 �. It follows that

��ı.x/C .n � 1/
rı.x/ � .x � x0/

jx � x0j2 � 0; x 2 �:

The change of variables z D x � x0 completes the proof. ut
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It is shown in Lemma 2.1 of [69] that, for a compact set K with a C2 boundary,

F.x/ � 0 on @K

implies that K is a closed ball centred at 0. However, if� is the exterior of an ellipse
in R

2, (4.5.1) does not hold. Indeed, using the representation �ı.x/ D �=.1C �ı/

where � is the curvature at the near point N.x/ of x, it can be shown that for some x
in the exterior of the ellipse

F.x/ � � �

1C �ı
C 1

jxj < 0:

The following theorem is Theorem 2.2 in Gkikas [69].

Theorem 4.5.2 Let� � R
n, n � 4, be an exterior domain in R

n not containing the
origin, which satisfies (4.5.1), and has a C2 boundary @�. Then there is a constant
Cn.�/ > 0 depending only upon n and� such that, for all u 2 C1

0 .�/,

Z
�

jruj2dx � 1

4

Z
�

ju.x/j2
ı.x/2

dx � Cn.�/

�Z
�

ju.x/j 2n
n�2 dx

� n�2
n

: (4.5.2)

Here Cn.�/ D C.�; �0; n/, where

� WD sup
x2@�

jxj; �0 WD inf
x2@� jxj:

Proof Let

u.x/ D jxj� n�1
2 ı.x/

1
2 v.x/:

Then

ru D �n � 1
2

jxj� nC1
2 ı

1
2 v

x
jxj C 1

2
jxj� n�1

2 ı� 1
2 .rı/v C jxj� n�1

2 ı
1
2 rv

and this leads to

Z
�

jruj2dx D
Z
�

ı.x/jrvj2
jxjn�1 dx C 1

4

Z
�

jv.x/j2
ıjxjn�1 dx

C .n � 1/2
4

Z
�

ı.x/jvj2
jxjnC1 dx � n � 1

2

Z
�

jv.x/j2
jxjnC1 .x � rı/dx

� n � 1
2

Z
�

ı.x/
jxjnC1 Œx � rjvj2�dx C 1

2

Z
�

rı � rjvj2
jxjn�1 dx:
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Integration by parts gives

Z
�

ı.x/
jxjnC1 Œx � rjvj2�dx D �

Z
�

x � rı
jxjnC1 jvj2dx C

Z
�

ıjvj2
jxjnC1 dx

and, on using (4.5.1),

Z
�

rı � rjvj2
jxjn�1 dx D

Z
�

� ��ı C .n � 1/x � .rı/
jxj2

� jvj2
jxjn�1 dx � 0:

Since

Z
�

jv.x/j2
ı.x/jxjn�1dx D

Z
�

ju.x/j2
ı2.x/

dx;

then

Z
�

jru.x/j2dx � 1

4

Z
�

ju.x/j2
ı2.x/

dx

�
Z
�

ı.x/jrv.x/j2
jxjn�1 dx C Œ

.n � 1/2

4
� n � 1

2
�

Z
�

ı.x/jv.x/j2
jxjnC1 dx

D
Z
�

ı.x/jrv.x/j2
jxjn�1 dx C .n � 1/.n � 3/

4

Z
�

ı.x/jv.x/j2
jxjnC1 dx:

It is therefore sufficient to prove that

Z
�

ı.x/jrv.x/j2
jxjn�1 dx C .n � 1/.n � 3/

4

Z
�

ı.x/jv.x/j2
jxjnC1 dx

�
 Z

�

ı.x/
n

n�2 jv.x/j 2n
n�2

jxj n.n�1/
n�2

dx

! n�2
n

; (4.5.3)

for all v 2 C1
0 .�/:

We may choose " sufficiently small such that�" WD fx 2 � W ı.x/ � "g � G.�/
by Remark 2.4.6, and we have that

"

�C "
� ı.x/

jxj � 1; for x 2 �c
" WD � n�"; (4.5.4)

and

�0 � jxj � �C "; for x 2 �": (4.5.5)
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The next step is to define cut-off functions supported near the boundary. Let
f 2 C1.Œ0;1// be a non-increasing function satisfying

f .t/ D
�
1; for t 2 Œ0; 1=2/;
0 for t � 1

and jf 0.t/j � C0: Set '".x/ WD f .ı.x/="/; thus, since �" � G, we have that '" 2
C2.�"/ and jr'".x/j D jf 0.ı.x/="/jjrı.x/j=" � C0="I also '" D 1 on �"=2 and 0
on �c

".
From (4.5.4),

R
�c
"=2

ı.x/jr.Œ1�'".x/�v.x//j2
jxjn�1 dx C .n�1/.n�3/

4

R
�c
"=2

ı.x/jŒ1�'".x/�v.x/j2
jxjnC1 dx

� C."; �/
�R

�c
"=2

jr.Œ1�'".x/�v.x//j2
jxjn�2 dx C .n�1/.n�3/

4

R
�c
"=2

jŒ1�'".x/�v.x/j2
jxjn dx

�
� C."; �/

R
�c
"=2

�jrw.x/j2 C jw.x/j2� dx;

(4.5.6)

where w.x/ D .1 � '".x//v.x/=jxj.n�2/=2 and we have used the assumption that
n � 4. Hence w 2 W1;2

0 .�c
"=2/, and we may therefore invoke the Sobolev embedding

theorem to obtain

R
�c
"=2

ı.x/jr.Œ1�'".x/�v.x//j2
jxjn�1 dx C .n�1/.n�3/

4

R
�c
"=2

ı.x/jŒ1�'".x/�v.x/j2
jxjnC1 dx

� C."; �/

�R
�c
"=2

j.1�'".x//v.x/j 2n
n�2

jxjn dx
� n�2

2

� C."; �/

�R
�c
"

ı.x/
n

n�2 j.1�'".x//v.x/j 2n
n�2

jxj n.n�1/
n�2

dx
� n�2

2

(4.5.7)

since �c
" � �c

"=2 and on using (4.5.4).
We next derive a similar estimate for the corresponding integrals involving '".

From (4.4.1) applied to vs, where s D 2.n�1/=.n�2/ and with a D .n�1/=.n�2/,
we obtain for small enough ",

C
�R

�"
ı

n
n�2 jvj 2n

n�2 dx
� n�1

n � s
R
�"
ı

n�1
n�2 jvj n

n�2 jrvjdx

� s
�R

�"
ı

n
n�2 jvj 2n

n�2 dx
� 1
2
�R

�"
ıjrvj2dx

� 1
2

� s�
�R

�"
ı

n
n�2 jvj 2n

n�2 dx
� 1
2 C C�

�R
�"
ıjrvj2dx

� n�1
n�2

(4.5.8)
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on using the inequality ab � �a
2.n�1/

n C C�b
2.n�1/

n�2 , with arbitrary � > 0. It follows
from(4.5.5)that

R
�"

ı.x/jr.'".x/v.x//j2
jxjn�1 dx C .n�1/.n�3/

4

R
�"

ı.x/j'".x/v.x/j2
jxjnC1 dx

� C."; �; �0/
�R

�"

ı.x/
n

n�2 j'".x/v.x/j 2n
n�2

jxj n.n�1/
n�2

dx
� n�2

2

: (4.5.9)

The addition of (4.5.7) and (4.5.9) gives

C."; �; �0/
�R

�"

ı
n

n�2 j'"vj 2n
n�2

jxj n.n�1/
n�2

dx
� n�2

2

CC."; �/

�R
�c
"

ı
n

n�2 j.1�'"/vj 2n
n�2

jxj n.n�1/
n�2

dx
� n�2

2

� R
�"

ıjr.'"v/j2
jxjn�1 dx

C R
�c
"=2

ıjrŒ.1�'"/v�j2
jxjn�1 dx C 2

.n�1/.n�3/
4

R
�

ıjvj2
jxjnC1 dx

� C."/
�R

�"n�"=2
ıjvj2

jxjn�1 dx
�

CC.n/
�R

�
ıjrvj2
jxjn�1 dx C .n�1/.n�3/

4

R
�

ıjvj2
jxjnC1 dx

�
;

(4.5.10)

where in the last inequality we have used the fact that r'" is supported in�" n�"=2

and jr'"j � C0=". Finally, by (4.5.5),

Z
�"n�"=2

ıjvj2
jxjn�1 dx � .� C "/2

 Z
�"n�"=2

ıjvj2
jxjnC1 dx

!
:

From this and (4.5.10), the inequality (4.5.3) follows and the theorem is proved. ut
Gkikas also establishes the following theorem for the case n D 3.

Theorem 4.5.3 Let � be an exterior domain in R
3 with a C2 boundary, which

satisfies (4.5.1) with strict inequality, i.e.,

��ı.x/C 2
rı.x/ � x

jxj2 > 0:
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Then, for all u 2 C1
0 .�/,

Z
�

jruj2dx � 1

4

Z
�

juj2
ı2

dx � C.�/

�Z
�

X4.
jxj
D
/juj6dx

� 1
3

; (4.5.11)

where X.t/ D .1C log t/�1 and 0 < D < inffjxj W x 2 @�g. The power 4 of X can
not be replaced by a smaller power.

4.6 Equivalence of HSM and CLR Inequalities

In Sect. 1.5.2, we discussed the equivalence of the Sobolev and CLR inequalities
implied by the Li-Yau proof of the CLR inequality in [109] and briefly described an
abstract extension due to Levin and Solomyak which applies to

tŒu� D qŒu��
Z
�

V.x/juj2dx (4.6.1)

for all quadratic forms q associated with Markov generators in a sigma-finite
measure space .�; dx/. In [64], Frank, Lieb and Seiringer develop a more general
theory for examining the equivalence of Sobolev and Lieb-Thirring (in particular
CLR) inequalities, and this is shown in [62] to be capable of dealing with the
example

qŒu� D
Z
�

jruj2dx � .n � 2/2

4

Z
�

juj2
ı.x/2

dx; (4.6.2)

T WD �� � .n � 2/2

4ı.x/2
� V; (4.6.3)

when � is convex. In [64], the Beurling-Deny conditions on the quadratic form q
(with domain H1.q/) in [103] are generalised to the following:

(a) qŒu C iv� D qŒu�C qŒv� for real u; v 2 H1.q/;
(b) if u 2 H1.q/ is real, then juj 2 H1.q/ and qŒjuj� � qŒu�;
(c) there is a measurable function ! which is positive a.e. and is such that if

u 2 H1.q/ is non-negative, then min.u; !/ 2 H1.q/ and qŒmin.u; !/� � qŒu�.
Moreover, there is a dense subspace D of H1.q/ (a core of q) such that !�1D is
dense in L2.�; !2�=.��1//.
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Thus the Beurling-Deny conditions correspond to the special case ! D 1. The
main theorem in [64] is

Theorem 4.6.1 Let q satisfy the above generalised Beurling-Deny conditions for
some � > 1, and let T be the self-adjoint operator in L2.�/ associated with the
quadratic form t in (4.6.1). Then the following are equivalent:

(i) there is a positive constant S such that for all u 2 H1.q/,

tŒu� � S

�Z
�

jujsdx
�2=s

; s WD 2�=.� � 1/I (4.6.4)

(ii) there is a positive constant L such that for all 0 � V 2 L�.�/,

N.T � V/ � L
Z
�

V�dx: (4.6.5)

Moreover,

S�� � L � e��1S��:

In the case of q being the quadratic form in (4.6.2), parts (a) and (b) of the
generalised Beurling-Deny conditions above are clearly satisfied. Following [62],
we demonstrate that the theorem applies when � � R

3 and is convex, with the
choices ! D ı1=2 and D D C1

0 .�/ in part (c). For u D !v;

qŒu� D
Z
�

�
jruj2 � juj2

4ı2

�
dx

D
Z
�

�
ıjrvj2 C 1

2
Œ.rı/ � .rjvj2/�C 1

4ı
jrıjjvj2 � 1

4ı
jvj2

�
dx

D
Z
�

�
jrvj2 � �ı

2ı
jvj2

�
ıdx DW QqŒv�:

Note that in Qq, ��ı � 0 in the distributional sense by Theorem 2.3.2, and so
QqŒv� � 0. The map M W u 7! u=! is an isometry of L2.�/ onto the weighted
space L2.�I ı/, and in view of the denseness of C1

0 .�/ in the form domain of q,
extends by continuity to an isometry of H1.q/ onto the form domain H1.Qq/ of Qq in
L2.�; ı/, equipped with the norm

�
QqŒv�C

Z
�

jvj2ıdx
�1=2

:
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Let 0 � u 2 H1.q/ and u D !v. Then min.u; !/ D !min.v; 1/ and

rŒmin.v; 1/� D
� rv; if v < 1;
0; if v > 1;

which implies that

jrŒmin.v; 1/�j � jrvj:

Hence

qŒmin.u; !/� D QqŒmin.v; 1/�

�
Z
�

�
jrvj2 �

�
�ı

2ı

�
jvj2

�
ıdx

D QqŒv� D qŒu�:

Since multiplication by !�1 is an isometry of L2.�; !4=.n�2// onto L2.�; !2n=.n�2//
and C1

0 .�/ is dense in L2.�; !4=.n�2//, part (c) of the generalised Beurling-
Deny conditions is satisfied. Consequently Theorem 4.6.1 holds, and in view of
Corollary 4.3.2, we conclude that

N.�� � .n � 2/2

4ı.x/2
� V/ �

Z
�

Vn=2dx: (4.6.6)

Note that the theorem and (4.6.6) are also satisfied if � is a bounded, weakly mean
convex domain with a C2 boundary and null cut locus, on account of Theorem 4.4.4.

For a general domain � � R
n, it is proved in [62] that the theorem continues

to hold if ı is replaced by the mean distance ıM , but the proof is much more
complicated and uses a modified form of the generalised Beurling-Deny conditions
which still imply the main theorem in [64]. We refer to [62] for the details.



Chapter 5
Inequalities and Operators Involving Magnetic
Fields

5.1 Introduction

In classical mechanics the motion of charged particles depends only on electric and
magnetic fields E, B which are uniquely described by Maxwell’s equations:

r � E D 4��;

r � B D 0;

r � E D �@B
@t
;

r � B D 4�J C @E
@t
:

These equations determine the relationships between the classical electric field
E, the magnetic field B, the electric current density J and the charge density �.
Most of classical electrodynamic can be described by Maxwell’s equations together
with the Lorentz forces on the charged particles, namely,

EFi D ei.E C vi � B/;

when the ith particle has charge ei and velocity vi. We see from the second Maxwell
equation that the magnetic field is always divergence free, and this implies that it
has the form

B D r � A

© Springer International Publishing Switzerland 2015
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for some (not uniquely defined) field A which is called a magnetic vector potential.
Similarly, we can always rewrite the third Maxwell equation in the form

E D �r
 � @A
@t

for some scalar potential 
. The representation of electric and magnetic fields in
terms of a scalar potential 
 and magnetic potential A is very useful since we need
only the four component of .
;A/ to describe the electromagnetic field instead of
the six components of .E;B/. Until the development of quantum mechanics, it was
widely believed that potentials .
;A/ are only nice mathematical constructions to
simplify calculations and representations, and that they do not have real physical
significance. However, quantum mechanics brought the realisation that .
;A/ play
important roles, since the Schrödinger equation contains potentials .
;A/ and not
fields .E;B/, as we shall see in subsequent sections.

In 1959, Yakir Aharonov and his doctoral advisor David Bohm in [3] proposed
an experiment to understand the role and significance of potentials in quantum
mechanics. They predicted that a wave function can acquire some additional
observable phase when traveling through non-simply connected domains with no
electromagnetic fields ( i.e., E D 0;B D 0) but with non-zero potentials .
;A/.
Such a phase shift was confirmed experimentally by R.G. Chambers in 1960, see
[36] and also [25]. This is the famous Aharonov-Bohm effect, sometimes called
the Ehrenberg-Siday-Aharonov-Bohm effect; in their 1961 paper [4], Aharonov
and Bohm acknowledge the work of Werner Ehrenberg and Raymond E. Siday who
had been the first to predict the effect in their 1949 paper [50]. The Aharonov-
Bohm effect is so fundamental to our understanding of quantum physics that it was
chosen by the New Scientist magazine as one of the “ seven wonders of the quantum
world”. We refer the reader to the seminar by Kregar, published in [89], for a clear
and comprehensive account.

5.2 The Magnetic Gradient and Magnetic Laplacian

The introduction of magnetic fields calls for changes to be made to the expressions
which, in appropriate units, represent the momentum p D .1=i/r and kinetic energy
(the free Hamiltonian) �� of a charged particle. The new expressions are

pA D 1

i
rA WD 1

i
.@1 C iA1; � � � ; @3 C iA3/

��A WD �
3X

jD1
.@j C iAj/

2;
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where A D .A1;A2;A3/ W R3 ! R
3 is the vector potential, which determines the

magnetic field B by the equation

B.x/ D curl A.x/: (5.2.1)

In general n-dimensions we shall consider A D .A1;A2; � � � ;An/ W Rn ! R
n and

write

rA D .@1 C iA1; � � � ; @n C iAn/

for the covariant derivative with respect to A. We refer to rA as the magnetic
gradient. In the language of differential forms, the magnetic potential is a 1-form,
A D Pn

jD1 Ajdxj, and the corresponding magnetic field B is a 2-form, dA, which is
the exterior derivative of A given by

dA D
nX

jD1
dAj ^ dxj D

nX
i;jD1

@Aj

@xi
dxi ^ dxj D

X
i<j

�
@Aj

@xi
� @Ai

@xj

�
dxi ^ dxj:

The changes make it necessary to introduce new Sobolev spaces which depend
on the vector potential A.

If Aj 2 L2loc.�/; j D 1; � � � ; n, for � 2 R
n; n � 2, then

. f ; g/H1
0;A.�/

WD
nX

jD1

Z
�

�
.@j C iAj/f

� �
.@j C iAj/g

�
dx C

Z
�

f gdx (5.2.2)

is an inner product on C1
0 .�/. We denote the completion of C1

0 .�/ with respect to

the norm k � kH1
0;A.�/

WD .�; �/1=2
H1
0;A.�/

by H1
0;A.�/; when � D R

n we shall write H1
A.

The kinetic energy operator ��A is the self-adjoint operator in L2.�/ determined
by the quadratic form

nX
jD1

Z
�

�
.@j C iAj/f

� �
.@j C iAj/g

�
dx

on H1
0;A.�/; the expectation value of ��A f for f in the domain of ��A is given by

. f ;��A f /L2.�/ D
nX

jD1

Z
�

j.@j C iAj/f j2dx:
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More generally, for � � R
n; Aj 2 Lp

loc.�/ and 1 < p < 1, we may define
spaces H1;p

0;A.�/ as the completion of C1
0 .�/ with respect to the norms determined

by

k f kp

H
1;p
0;A.�/

WD
nX

jD1

Z
Rn

ˇ̌�
@j C iAj

�
f
ˇ̌p

dx C
Z
Rn

j f jpdx: (5.2.3)

5.3 The Diamagnetic (Kato’s Distributional) Inequality

The inequality (5.3.2) in the following theorem is known as the diamagnetic
inequality. It has a prominent role in problems involving magnetic fields.

Theorem 5.3.1 Let A D .A1;A2; � � � ;An/ W � ! R
n be such that Aj 2 Lp

loc.�/,
and let f 2 H1;p

0;A.�/. Then j f j 2 H1;p
0 .�/ .D W1;p

0 .�//, and for j D 1; 2; � � � ; n,

@jj f j.x/ D ReŒsgn. Nf /.x/.@j C iAj/f .x/�; a:e: x 2 �; (5.3.1)

where

sgn. Nf /.x/ D
( Nf .x/

f .x/ ; if f .x/ ¤ 0;

0; if f .x/ D 0:

Hence j@jj f .x/jj � j.@j C iAj/f .x/j; a:e: x 2 �, and f 7! j f j maps H1;p
0;A.�/

continuously into H1;p
0 .�/ with norm � 1. Thus, when � D R

n and p D 2,

jrj f .x/jj � jrAf .x/j; a:e: x 2 R
n: (5.3.2)

Proof The diamagnetic inequality is equivalent to Kato’s distributional inequality

�j f .x/j � ReŒsgn. Nf /.x/�A f .x/�; a:e: x 2 R
n; (5.3.3)

(see [84], Lemma A), and the following proof is a straightforward adaptation of
Kato’s L2 proof to the more general result stated.

We begin by supposing that f 2 C1
0 .R

n/. Then, with " > 0 and f" WD .j f jp C
"/1=p, we have

f p�1
" .@jf"/ D j f jp�2ReŒf @jf � D j f jp�2ReŒf .@j C iAj/f �;
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and hence

@jf" D
� j f j

f"

�p�2
ReŒ

f

f"
.@j C iAj/f � DW

� j f j
f"

�p�2
ReŒF". f /�; (5.3.4)

say.
The next step is to show that (5.3.4) holds for any f 2 H1;p

0;A.�/. With this in

mind, let f .m/ 2 C1
0 .�/ be such that f .m/ ! f in H1;p

0;A.�/, and also pointwise a.e.;

note that such a sequence . f .m// exists since H1;p
0;A.�/ ,! Lp.�/. We have

F". f /� F". f .m// D f .m/

f .m/"

˚
.@j C iAj/f � .@j C iAj/f

.m/



C
 

f

f"
� f .m/

f .m/"

!
.@j C iAj/f :

As m ! 1, the first term on the right-hand side tends to zero in Lp.�/ since
.@j C iAj/f .m/ ! .@j C iAj/f in Lp.�/ and j f .m/=f .m/" j � 1. The same is true for the
second term, by the dominated convergence theorem and since the bracketed term
converges a.e. to zero pointwise. Hence F". f /� F". f .m// ! 0 in Lp.�/. Moreover,
with

G". f / WD
� j f j

f"

�p�2
ReŒF". f /�;

it follows that G". f / � G". f .m// ! 0 in Lp.�/. We therefore have that, for all
' 2 C1

0 .�/; j D 1; 2; � � � ; n, and m ! 1,

Z
�

f"@j'dx D �
Z
�

'G". f /dxI (5.3.5)

thus (5.3.4) is established for f 2 H1;p
0;A.�/. We now let " ! 0 in (5.3.5). Since

f" ! j f j uniformly, jf=f"j � 1 and f=f" ! sgn. f /, we conclude that

Z
�

j f j@j'dx D �
Z
�

'G0. f /dx D �
Z
�

'Re
�
sgn.f /.@j C iAj/f

�
dx

and

@jj f j.x/ D ReŒsgn.f /.x/.@j C iAj/f .x/�

for a.e x 2 �. This completes the proof. ut
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In [111], Sect. 7.20, H1
A.R

n/ is defined as the space of functions f W R
n ! C

which are such that

f ; .@j C iAj/f 2 L2.Rn/; for j D 1; 2; � � � ; n;

with inner product (5.2.2) and p D 2, and then it is proved in Theorem 7.22 that
C1
0 .R

n/ is a dense subspace. Therefore this definition agrees with that given above.
Note that for f 2 H1

A.R
n/, rAf 2 L2.Rn/, but rf and Af need not separately be in

L2.Rn/.

5.4 Schrödinger Operators with Magnetic Fields

5.4.1 The Free Magnetic Hamiltonian

In the presence of the magnetic field B given in terms of the magnetic potential A
in (5.2.1) (or, more generally, as the 2-form dA), the free Hamiltonian HA WD ��A

in L2.Rn/, is the non-negative, self-adjoint operator associated with the closure hA

of the quadratic form

.HA'; '/ D
Z
Rn

jrA'j2dx; ' 2 C1
0 .R

n/;

this being defined if Aj 2 L2loc.R
n/; j D 1; � � � ; n. The form domain of HA (i.e., the

domain of hA) is therefore H1
0;A.R

n/, and its domain is

D.HA/ WD f f W f 2 H1
0;A.R

n/;��A f 2 L2.Rn/g;

this being a dense subspace of H1
0;A.R

n/. In view of the diamagnetic and Hardy
inequalities,

hAŒf � �
Z
Rn

jrj f j.x/j2 dx � C.n;Rn/

Z
Rn

j f .x/j2
jxj2 dx; (5.4.1)

with the optimal constant C.n;Rn/ D ˇ̌
n�2
2

ˇ̌2
for n > 2; we saw in Sect. 1.2.5 that

for n D 2, there is no Hardy inequality and we only deduce from (5.4.1) that hA � 0.
However, the presence of a magnetic field can improve the situation significantly, as
we shall now demonstrate. Let n D 2 and consider the symmetric operators

L1 WD �i@1 C A1; L2 WD �i@1 C A2
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on C1
0 .R

2/. Then,

0 � .L1 ˙ iL2/.L1 ˙ iL2/
�

D .L1 ˙ iL2/.L1 
 iL2/

D L21 C L22 
 i.L1L2 � L2L1/

D L21 C L22 
 .@1A2 � @2A1/

D jrAj2 
 B

where B D curlA: Consequently

Z
R2

jrA'j2 dx � ˙
Z
R2

Bj'j2dx; ' 2 C1
0 .R

2/; (5.4.2)

and this holds for both signs. If B is of one sign and jBj is big, then (5.4.2) implies
a significant lower bound on hA, but in general, it may not be of much use if B has
variable sign. The free Hamiltonian HA in R

3 associated with a constant magnetic
field B D .0; 0;B/; B � 0; and magnetic vector potential

A D 1

2
.�Bx2;Bx1; 0/:

is known to have a spectrum which has least point B; see Sect. 3 of [13], and so

kHA'k � Bk'k; ' 2 C1
0 .R

3/:

With A D .A1;A2/ and B D @1A2 � @2A1, HA can be regarded as an operator in
L2.R2/ defined by the quadratic form

hAŒ'� D
Z
R2

jŒr C iA.x/�'.x/j2 dx:

This is called the Landau Hamiltonian associated with the magnetic field of
magnitude B . Its spectrum consists of discrete eigenvalues

.2k C 1/B W k D 0; 1; 2; : : :

of infinite multiplicity called the Landau levels; see p. 171 in [95].
In section below, we shall discuss work of Laptev and Weidl in [99] in which

they consider Aharonov-Bohm type magnetic fields for which it is possible for the
angular part of hA to have a positive lower bound and a Hardy inequality for hA is
available for n D 2 and B D 0 in R

2 n f0g.
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5.4.2 Gauge Invariance

Let L be any linear differential operator in L2.�/; � � R
n, and 
 W � ! U.1/ WD

fz 2 C W jzj D 1g. The transformation

u 7! 
�1u; L
 WD 
�1L
;

is called a gauge transformation. It preserves the pointwise norm of u and P W u 7!

�1u is a unitary map on L2.�/. Thus L and L
 D PLP�1 are unitarily equivalent.

If L D rA, then

L
 D r C iA C 
�1r
 DW r QA;

and so a new magnetic gradient r QA is formed with magnetic potential

QA D A C 1

i

�1r
: (5.4.3)

However, the magnetic field remains unchanged:

B D curlA D curl QA:

Moreover, the operators HA and H QA are unitarily equivalent and hence have the
same spectral properties. The magnetic potentials A and QA are said to be gauge
equivalent

In a simply connected domain�, any continuous function 
 W � ! U.1/ can be
written as 
.x/ D eif .x/, for some continuous f W � ! R, and from (5.4.3),

QA � A D rf : (5.4.4)

If � is not simply-connected, there are gauge transformations which can not be
represented in the form 
.x/ D eif .x/. An example in R

2, which will be of particular
interest in the next section, is


.x/ D .z=jzj/k; k 2 Z n f0g; z D x C iy 2 C n f0g; (5.4.5)

where x D .x; y/ 2 R
2 n f0g. Then

1

i

�1r
 D k

1

.x2 C y2/
.�y; x/: (5.4.6)

In R
2 n f0g, let .r; �/ be polar co-ordinates, and consider the vector potential

A.r; �/ WD  .�/

r
e� ; (5.4.7)
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where e� is the unit vector .� sin �; cos �/, which is orthogonal to the radial vector
er D x=r D .cos �; sin �/. Set

‰ WD 1

2�

Z 2�

0

 .�/d�:

We have that curlA D 0 in R
2 n f0g, and A is in the so-called transversal (or

Poincaré) gauge characterized by A � er D 0. This involves no loss of generality
as any vector potential is gauge equivalent to one in Poincaré gauge (see [141],
Sect. 8.4.2). What is assumed in (5.4.7) is that the flux (or circulation) of A about
the origin, namely the integral

‰.A/ WD 1

2�

Z 2�

0

A.r; �/ � e� rd�;

is independent of r, and equal to the constant ‰. Let A0 be any vector potential in
R
2 n f0g which is such that curlA0 D 0 and ‰.A0/ D ‰, and define

QA0 WD A0 � ‰

r
e� :

Then curl QA0 D 0 and ‰. QA0/ D 0. Therefore, for any x0; x 2 R
2 n f0g, the line

integral

f .x/ D
Z x

x0

QA0.z/ � dz

is independent of the path from x0 to x. It follows that

QA0 D rf

and so

A0.r; �/ � ‰

r
e� D rf .r; �/: (5.4.8)

We therefore infer that A0 is gauge equivalent to .‰=r/e� . In particular, this is true
for A0 D A. We also note from (5.4.3) and (5.4.6) that A and

QA D A C k

r
e� ; k 2 Z;

are gauge equivalent, and

‰. QA/ D ‰.A/C k; ‰.A/ D ‰:

Thus under the gauge transformation (5.4.3), the flux of A is transformed to ‰C k.
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5.5 The Aharonov-Bohm Magnetic Field

5.5.1 The Laptev-Weidl Inequality

We know that there is no Hardy inequality in R
2, and (5.4.1) gives only trivial

information. A natural question is if there are magnetic potentials A for which there
is a constant c > 0 such that

Z
R2

jrAuj2dx � c
Z
R2

juj2
jxj2 dx; u 2 C1

0 .R
2 n f0g/;

and the corresponding magnetic field B is bounded on R
2 n f0g; note that by (5.4.2),

the inequality is satisfied for B.x/ D c=jxj2, which is not bounded on R
2 n f0g. The

question was answered in the affirmative by Laptev and Weidl in [99], where the
following theorem is proved for magnetic potentials of Aharonov-Bohm type.

Theorem 5.5.1 Let

A D  .�/

r
e� ; (5.5.1)

where  2 L1.0; 2�/, and

‰.A/ D ‰ D 1

2�

Z 2�

0

 .�/d�: (5.5.2)

Then, for all u 2 C1
0 .R

2 n f0g/,
Z
R2

j.r C iA.x//u.x/j2 dx � .min
k2Z jk C‰j/2

Z
R2

ju.x/j2
jxj2 dx: (5.5.3)

The constant .mink2Z jk C‰j2/ is sharp.

Proof From the discussion in Sect. 5.4.2, it follows that the magnetic poten-
tial (5.5.1) is gauge equivalent to

A.r; �/ D ‰r�1.� sin �; cos �/; ‰ WD ‰.A/: (5.5.4)

Therefore, we may, and shall, assume that A is given by (5.5.4).
In polar co-ordinates, the form

Z
R2

j.r C iA.x//u.x/j2 dx
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becomes

hA WD
Z 1

0

Z 1

0

 ˇ̌
ˇ̌@u

@r

ˇ̌
ˇ̌2 C r�2jK�uj2

!
rdrd�;

where K� WD i @
@�

C ‰. The operator K� has domain H1.S1/ in L2.S1/, eigenvalues
�k D k C‰; k 2 Z, and corresponding eigenfunctions

'k.�/ D 1p
2�

exp.�ik�/:

The sequence f'kg is an orthonormal basis of L2.S1/ and hence any u 2 L2.S1/ has
a representation

u.r; �/ D
X
k2Z

uk.r/'k.�/;

where

uk.r/ D
Z 2�

0

u.r; �/'k.�/d�:

For any u 2 H1.S1/,

hAŒu� D
X
k2Z

Z 1

0

�
ju0

k.r/j2 C �2k
r2

juk.r/j2
�

rdr

and so

Z
R2

ju.x/j2
jxj2 dx D

X
k2Z

Z 1

0

juk.r/j2
r2

rdr

�
X
k2Z

1

mink2Z �2k

Z 1

0

�2k
juk.r/j2

r2
rdr

� 1

.mink2Z jk C‰j/2 hAŒu�;

which proves (5.5.3).
To verify that the constant is sharp, suppose that the minimum is attained at

k D k0, and let u.r; �/ D v.r/'k0 .�/; v 2 C1
0 .0;1/. Then

hAŒu� � .k0 C‰/2
Z 1

0

Z 2�

0

ju.r; �/j2
r2

rdrd� D
Z 1

0

v0.r/2rdr: (5.5.5)
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The constant will have been proved to be sharp if we can show that, for any " > 0,
there exists v 2 C1

0 .0;1/ such that

Z 1

0

v0.r/2rdr � "

Z 1

0

v2.r/=rdr:

On making the substitution r D ex; Qv.x/ D v.ex/, this becomes

Z
R

j Qv0.x/j2dx � "

Z
R

j Qv.x/j2dx

which is satisfied for some Qv 2 C1
0 .R/ since the Laplacian � d2

dx2
on R has spectrum

Œ0;1/. ut
Remark 5.5.2 If the flux ‰ is an integer, then the operator HA defined by the form
hA in Theorem 5.5.1 is unitarily equivalent to �� and there is no Hardy inequality.
For suppose that ‰.A/ D k 2 Z. Then from (5.4.6) and (5.4.8),

A D 1

i

�1r
 C rf ;

for some f 2 R
2 n f0g. Hence A is gauge equivalent to rf and hence to 0.

5.5.2 An Inequality of Sobolev Type

Closely associated with the Hardy-type inequality in Theorem 5.5.1 is a Sobolev
inequality featuring the Aharonov-Bohm potential A defined in (5.5.1). The inequal-
ity is expressed in terms of the space

X WD L1.RCI L2.S1/I rdr/ � L1.RCI rdr/˝ L2.S1/; (5.5.6)

with norm

kukX WD ess supr>0

(�Z 2�

0

ju.r; �/j2d�
�1=2)

: (5.5.7)

We shall denote H1
A.R

2 n f0g/ by H1
A throughout this section.

Theorem 5.5.3 Let A be given by (5.5.1) and suppose that its flux‰.A/ D ‰ … Z.
Then, for all u 2 H1

A,

k.r C iA/uk2 � .min
k2Z jk C‰j/kuk2X: (5.5.8)
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Proof We may again assume, without loss of generality, that A is given by (5.5.4).
In the proof of Theorem 5.5.1, we used polar co-ordinates to write hA as

hAŒu� D
X
k2Z

�Z 1

0

�
ju0

k.r/j2 C �2k
r2

juk.r/j2
�

rdr

	
;

where the uk.r/ are Fourier coefficients of u.r; �/ and �k D kC‰. For any t 2 .0;1/,

juk.t/j2 D 2Re
Z t

0

uk.r/u
0
k.r/dr

� 2

�Z t

0

ju0
k.r/j2rdr

�1=2 �Z t

0

juk.r/j2 dr

r

�1=2

D 2

j�kj
�Z t

0

ju0
k.r/j2rdr

�1=2 �
�2k

Z t

0

juk.r/j2 dr

r

�1=2

� 1

j�kj
�Z 1

0

�
ju0

k.r/j2 C �2k
r2

juk.r/j2
�

rdr

	
:

Hence

Z 2�

0

ju.t; �/j2d� D
X
k2Z

juk.t/j2

� 1

mink2Z j�kj k.r C iA/uk2;

whence (5.5.8). ut
Remark 5.5.4 It follows from the theorem that the set of radial functions in H1

A is
continuously embedded in L1.R2/. This is not true for H1.R2/.

5.6 A CLR Inequality

In view of the close relationship between the Hardy, Sobolev and CLR inequalities
described in Chap. 1, it is only to be expected that a CLR inequality exists for an
operator HA CV , when A satisfies the conditions of Theorem 5.5.1 with non-integer
flux, and V is a real-valued function which satisfies some appropriate conditions.
To establish such a result, we need some preliminaries. The first concerns a
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compactness property of the operator of multiplication by V , when V is a member
of the space

Y WD L1.RCI L1.S1/I rdr/ D L1.RCI rdr/˝ L1.S1/ (5.6.1)

endowed with the norm

kukY WD
Z 1

0

 
ess sup

�2.0;2�/
ju.r; �/j

!
rdr: (5.6.2)

The inequality (5.5.8) implies that HA has no eigenvalue at zero, and hence H1=2
A

is injective and its domain D.H1=2

A / and range R.H1=2

A / are dense in L2.R2/. Let D1
A

denote the completion of D.H1=2

A / with respect to the norm

k'kD1A
WD kH1=2

A 'k D k.r C iA/'k; (5.6.3)

where k � k is the standard L2.Rn/ norm. Note that D1
A is not a subspace of L2.R2/,

but it lies in the weighted space L2.R2I jxj�2dx/ on account of Theorem 5.5.1.

Lemma 5.6.1 Let A be given by (5.5.1) with ‰.A/ D ‰ … Z, and let V 2 Y. Then
the operator P WD H�1=2

A jVjH�1=2
A is compact in L2.R2/. Hence, V W D1

A W! L2.R2/
is compact.

Proof It is sufficient to prove that

T WD jVj1=2H�1=2
A is compact;

since P D T�T.
Given " > 0, choose W 2 C1

0 .R
CI L1.S1// such that kV � WkY < ", with

support in

�" D B.0; k"/ n B.0; 1=k"/

for some constant k" > 0, and such that kWkL1.R2/ � k". Let 'n * 0 in L2.R2/.

Then, with  n D H�1=2
A 'n, we have that  n * 0 in D1

A and

kT'nk2 D kjVj1=2 nk2 � kjWj1=2 nk2 C kjV � Wj1=2 nk2

� k"

Z
�"

j nj2dx C kV � WkY k nk2X

� k"

Z
�"

j nj2dx C C"kH1=2
A  nk2; (5.6.4)
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by (5.5.8). For any  2 C1
0 .R

2 n f0g/, there exists a constant C."/, depending on
", such that

k k2L2.�"/ � C."/k k2X � C."/k.r C iA/ k2;

by (5.5.8), and

kr kL2.�"/ � k.r C iA/ k2 C C."/k k2L2.�"/
� C."/k.r C iA/ k2:

This implies that D1
A is continuously embedded in the standard Sobolev space

H1.�"/. Since H1.�"/ is compactly embedded in L2.�"/ by the Rellich-
Kondrachov theorem, it follows that  n ! 0 in L2.�"/ as n ! 1. Hence,
from (5.6.4),

lim sup
n!1

kT'nk2 � C"kH1=2

A  nk2 D C"k'nk2:

As " is arbitrary, this means that kT'nk ! 0 and the lemma is proved. ut
Lemma 5.6.2 Let A satisfy (5.5.1). Then �.HA/ D Œ0;1/.

Proof Take  .�/ D .2� � ˛/�1Œ1 � �.0; ˛/�‰; 0 < ˛ < �=2, where �.0; ˛/
denotes the characteristic function of the interval .0; ˛/ . In the sector

S˛ WD f.r; �/ W 0 < r < 1; 0 < � < ˛g

the Laplace operator with Dirichlet boundary conditions, has essential spectrum
Œ0;1/, and there exists a Weyl singular sequence f ng for any point � 2 .0;1/,
with each  n supported in S˛; see [49], Theorem X.6.5. Since A n D 0 in S˛ for
each n, f ng is also a singular sequence at � for HA and the lemma follows. ut

Lemma 5.6.1 asserts that the multiplication operator V is compact relative to
the quadratic form krA � k (see Sect. 1.5.1), with the result that HA � V is defined
as a form sum with form domain Q.HA/ D H1

A, and HA � V and HA have the
same essential spectra, namely Œ0;1/ by Lemma 5.6.2. The following theorem
establishes an analogue of the CLR inequality for HA � V .

Theorem 5.6.3 Let A be given by (5.5.1) and suppose that its flux‰ D ‰.A/ … Z.
Let V be a real-valued function in L1loc.R

2 n f0g/ which satisfies

VC WD max.V; 0/ 2 Y D L1.RCI L1.S1/I rdr/:
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Then N.TA.V//, the number of negative eigenvalues of TA.V/ WD HA � V is finite
and

N.TA.V// �
0X

m2Z

1

4�jm C‰jkVCkY ;

where
P0

m2Z indicates that all summands less that 1 are omitted.

Proof The operator TA.V/ WD HA � V is the self-adjoint operator associated with
the lower semi-bounded quadratic form

qŒu� WD
Z
R2

fj.r C iA/uj2 � Vjuj2gdx; u 2 C1
0 .R

2 n f0g/: (5.6.5)

The form domain of TA.V/ is the domain of the closure of q (which we continue to
denote by q), and this coincides with H1

A.
As in the proof of Theorem 5.5.1, we take A to be given by (5.5.4), namely

A D ‰

r
.� sin �; cos �/:

Let

W.r/ WD kVC.r; �/kL1.S1/; (5.6.6)

so that

kWkL1.RC;rdr/ D kWkL1.RCIL1.S1/Irdr/

D kVCkL1.RCIL1.S1/Irdr/ < 1: (5.6.7)

Thus Lemma 5.6.1 also implies that TA.W/ is lower semi-bounded, self-adjoint and
has essential spectrum Œ0;1/. Since TA.V/ � TA.W/, we have that

N.TA.V// � N.TA.W//;

and so the theorem will follow if we prove it with V replaced by W.
Let u 2 H1

A D Q.TA.W//, and let u.r; �/ have Fourier coefficients um.r/; m 2 Z.
Then, as we saw in the proof of Theorem 5.5.1,

R
R2

�j.r C iA/uj2 � Wjuj2� dx

D P
m2Z

R1
0

�
ju0

mj2 C .mC‰/2
r2

jumj2 � Wjumj2
�

rdr:
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It follows that

TA.W/ D
M
m2Z

f.Dm � W/˝ 1mg; (5.6.8)

where Dm is the (Friedrichs) operator in L2..0;1/I rdr/ associated with the form

hmŒu� WD
Z 1

0

�
ju0

m.r/j2 C .m C‰/2

r2
jum.r/j2

�
rdr:

Furthermore, the negative spectrum of TA.W/ is the aggregate of the negative
eigenvalues of the operators Dm � W. To complete the proof, we use the Bargmann
estimate

N.Dm � W/ � 1

2jm C‰j
Z 1

0

W.r/rdr;

from [24]; see also [132], where it is proved that the inequality is sharp. In view
of (5.6.8), this yields

N.TA.W// �
0X

m2Z

1

2jm C‰j
Z 1

0

W.r/rdr;

and the theorem follows since 2�
R1
0

W.r/rdr D kVCkY . ut
The following theorem is also obtained in [18], on applying a result from [97].

Theorem 5.6.4 Suppose the hypothesis of Theorem 5.6.3 is satisfied. Then

N.TA.V// � c.‰/kVCkY ; (5.6.9)

where c.‰/ is a constant depending only on ‰.

Proof For any n 2 Z, the gauge function f .r; �/ 7! ein� f .r; �/ in (5.4.8) takes
‰ D ‰.A/ into ‰ C n and gives rise to unitarily equivalent operators. Therefore,
we may assume that ‰ 2 .0; 1/. For m � 0;

Dm � �1
r

d

dr

�
r

d

dr

�
C ‰2

r2
C m2

r2
; (5.6.10)

and, for m < 0;

Dm � �1
r

d

dr

�
r

d

dr

�
C .1 �‰/2

r2
C .m C 1/2

r2
: (5.6.11)
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The two-dimensional case of the operator considered by Laptev and Netrusov is of
the form

L.bI W/ � ��C b

jxj2 � W D
M
m2Z

f.Lm.b/� W/˝ 1mg; b > 0; (5.6.12)

in

M
m2Z

�
L2.RCI rdr/˝

�
eim


p
2�

�	
;

where Œ�� denotes the linear span; in (5.6.12),

Lm.b/ WD �1
r

d

dr

�
r

d

dr

�
C b

r2
C m2

r2

and Lm.b/ � W is defined by the associated quadratic form in L2.RCI rdr/. In
Theorem 1.2 in [97], it is proved that

N.L.bI W// � C.b/kWkL1.RCIrdr/: (5.6.13)

By (5.6.10) and (5.6.11),

N.
M
m�0

f.Dm � W/˝ 1mg/ � N.
M
m�0

f.Lm.‰
2/ � W/˝ 1mg/

� N.Lm.‰
2I W// (5.6.14)

and

N.
M
m<0

f.Dm � W/˝ 1mg/ � N.
M
m<0

f.Lm.Œ1 �‰2�/ � W/˝ 1mg/

� N.Lm.Œ1 �‰2�I W//: (5.6.15)

Therefore, from (5.6.13),

N.TA.W// � c.‰/kWkL1.RCIrdr/ D c.‰/kVCkY

and the theorem is proved. ut
Remark 5.6.5 For V.x/ D V.jxj/, Laptev obtains in [96], Sect. 3.4, the inequality

N.TA.V// � R.‰/

4�

Z
R2

V.x/dx;
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with the sharp constant

R.‰/ D sup
k2Z

˚

�1=2 �]fk W �
 C .k �‰/2 < 0g�
 :

5.7 Hardy-Type Inequalities for Aharonov-Bohm Magnetic
Potentials with Multiple Singularities

In this section we are interested in Hardy type inequalities for magnetic Dirichlet
forms with Aharonov-Bohm vector potentials that have multiple singularities.

Let P1 D .x1; y1/; : : : ;Pn D .xn; yn/ be n different points in R
2. We can identify

R
2 with C by the correspondence .x; y/ 7! z D xC iy and the points P1; : : : ;Pn then

correspond to the complex numbers z1 D x1 C iy1; : : : ; zn D xn C iyn.
Consider a smooth vector potential A D .A1.x; y/;A2.x; y// in the punctured

plane M D R
2 n fP1; : : : ;Png with zero magnetic field (5.7.1):

B WD curl A D 0: (5.7.1)

If we denote by !A the differential 1-form A1.x; y/dx C A2.x; y/dy, then (5.7.1) says
that !A is a closed differential form in M, i.e. d!A D 0, where d is the exterior
derivative. Such a vector potential A is known as a magnetic vector potential of
Aharonov-Bohm type with multiple singularities. The condition (5.7.1) implies
that in any simply connected, open subset of M, there exists a gauge function f such
that A D rf , as we saw in Sect. 5.4.2.

For each point Pk (k D 1; : : : ; n) let us define a circulation of A round Pk as

ˆk D 1

2�

I

�k

A1.x; y/dx C A2.x; y/dy; (5.7.2)

where �k is a small circle in M which winds once around Pk in an anticlockwise
direction; see Fig. 5.1. Condition (5.7.1) implies that (5.7.2) is invariant under

P1

P2

Pn

Pk

kγ

Fig. 5.1 Small circle
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continuous deformations of �k inside the punctured plane M D R
2 n fP1; : : : ;Png.

Furthermore, if the circulationsˆ D .ˆ1; : : : ; ˆn/ of two distinct Aharonov-Bohm
type vector potentials A and A0 on the punctured plane M are equal modulo Z

n then
A and A0 are equivalent under some gauge transformation 
 W M ! U.1/ D fz 2
C W jzj D 1g, i.e. A0 D A C 1

i 

�1r
.

We now introduce the special magnetic potentials

A. j/ WD ˆj

r2j
� .�y C yj; x � xj/; j D 1; : : : ; n;

where r2j D .x � xj/
2 C .y � yj/

2 and ˆj is the circulation of A round Pj. Each A. j/

satisfies (5.7.1) on R
2 n fPjg and has the circulationˆj round Pj and the circulations

zero round Pi, i ¤ j. Then A � P
j A. j/ is a magnetic potential with zero magnetic

field and zero circulations on the punctured plane M. Therefore, for any magnetic
vector potential A satisfying (5.7.1) in M there exists a gauge function f such that

A.x; y/�
nX

jD1

ˆj

r2j
� .�y C yj; x � xj/ D .rf /.x; y/;

Given the vector potential A, we define the corresponding magnetic Dirichlet
form on C1

0 .M/ by

QAŒu� D
Z

M

j.r C iA/uj2dxdy; u 2 C1
0 .M/: (5.7.3)

Our main goal in this section is to find an estimate from below for (5.7.3) by a
Hardy-type expression

QAŒu� �
Z

M

H.x; y/ju.x; y/j2dxdy; u 2 C1
0 .M/ (5.7.4)

with a suitable nonnegative function H.x; y/ on M.
Under a gauge transformation u 7! 
 � u with an arbitrary smooth function 
 W

M ! U.1/, the Dirichlet form QAŒu� becomes QA0 Œu� with A0 D A C 1
i 


�1r
.
The right hand side of (5.7.4) is invariant under this gauge transform. Hence, it
is sufficient to establish (5.7.4) for any A from a given gauge equivalent class of
magnetic vector potentials.

For any real number ‰, we denote by p.‰/ the distance from ‰ to the set of
integers Z, i.e.

p.‰/ WD min
k2Z jk �‰j: (5.7.5)
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There may be many functions H.x; y/ that give the inequality (5.7.4). By analogy
with the Laptev-Weidl inequality, we are interested in finding those H.x; y/ that
satisfy the following conditions.

1 H.x; y/ depends on A only through the circulations ˆ1;ˆ2; : : : ; ˆn and the
coordinates of Pj, j D 1; : : : ; n. That is, we would like to find functions H.x; y/
that are the same for equivalent magnetic potentials.

2 H.x; y/ behaves like

. p.ˆj//
2

.x � xj/2 C .y � yj/2

near each point Pj, j D 1; 2; : : : ; n, and H.x; y/ behaves like

. p.ˆ1 Cˆ2 C : : :Cˆn//
2

x2 C y2

near infinity.

Such a class of functions H.x; y/ was discovered in [14]; we shall now describe
the main properties. To be specific, we show that any analytic function F.z/ on C

with zero set fP1;P2; : : : ;Png and F.1/ D 1 generates a function H.x; y/ with the
properties 1 and 2 above.

Before going into the general description, for the reader’s convenience, we
present an example of H.x; y/ in the case of two points P1 D �1 and P2 D 1 in
C with the circulations c1 � ˆ1 and c2 � ˆ2, respectively.

Example 5.7.1 Let P1 D .�1; 0/, P2 D .1; 0/ be two points in R
2, M D R

2 n
fP1;P2g and suppose that A is a magnetic vector potential of Aharonov-Bohm type
in M with the circulations cj round Pj, j D 1; 2. Then the inequality (5.7.4) holds
with

H.x; y/ D C.x; y/ �
ˇ̌
ˇ̌ 2z

z2 � 1

ˇ̌
ˇ̌2; z D x C iy;

where C.x; y/ is the piecewise constant function on R
2 shown in Fig. 5.2.

In Fig. 5.2, C is the curve .x2 � y2 � 1/C 4x2y2 D 1 which divides the plane R2

into three regions �1, �2 and �1, where P1 2 �1 and P2 2 �2; C.x; y/ equals
. p.c1//2 in �1, . p.c2//2 in �2 and . p.c1 C c2//2=4 in �1.

The general case of (5.7.4) will be made clearer by first considering a special
case of magnetic potentials with zero magnetic fields in doubly connected domains
in R

2.
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Fig. 5.2 Function C.x; y/

5.7.1 Inequality for Doubly Connected Domains

Let � denote a bounded doubly connected domain (i.e. the boundary of � is a
disjoint union of two closed simple curves) with a smooth boundary in the plane
R
2 D C; � is homeomorphic to an open annulus.
Let �r;R (r < R) be an annulus in C with internal radius r, external radius R and

with centre at the origin, thus,

�r;R D fz 2 C j r < jzj < Rg:

From the theory of functions of one complex variable we know (see [149,
Theorem 1.2]) that any doubly connected domain can be conformally mapped onto
an annulus�r;R for some r and R, as illustrated in Fig. 5.3.

For any such conformal mapping F W � ! �r;R we define a function B�;F.x; y/
on � by

B�;F.x; y/ D
ˇ̌
ˇ̌F0

z.z/

F.z/

ˇ̌
ˇ̌2; (5.7.6)

where z D x C iy and F0
z denote the complex derivative of F.

Lemma 5.7.2 The function B�;F defined by (5.7.6) does not depend on the choice
of the conformal mapping F.
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Fig. 5.3 Conformal mapping

Proof Consider any other conformal mapping QF from � onto �Qr; QR. From Theo-
rem 1.3 [149] we know that

R

r
D QR

Qr :

Hence, since the right-hand side of (5.7.6) is invariant under scaling F 7! const � F,
we can assume that r D Qr and R D QR. The mapping QF ı F�1 is a conformal auto-
morphism of �r;R. Since any holomorphic automorphism of �r;R is a composition
of rotations and reflections (see p. 133 in [88]), we have to check that the right-hand
side of (5.7.6) is invariant under F 7! � � F (for � a unimodular constant) and under
F 7! r�R

F . This is clear and hence the proof is completed. ut
We shall use the notation B� instead of B�;F.
Let A D .A1.x; y/;A2.x; y// be a smooth magnetic vector potential in � with

zero magnetic field (5.7.1). Recall that a circulationˆ of A in the doubly connected
domain� is

ˆ D 1

2�

I

�

A1.x; y/dx C A2.x; y/dy;

where � is a closed path which parameterizes the “internal” component of the
boundary of �. The last integral is invariant under continuous deformations of � .

The following theorem explains the importance of the function B� for establish-
ing a Hardy type inequality for a bounded doubly connected domain in R

2:

Theorem 5.7.3 Let� be a bounded doubly connected domain in R
2 with a smooth

boundary. For any smooth function f 2 C1.�/ we have

Z

�

j.r C iA/f j2dxdy � . p.ˆ//2
Z

�

B�.x; y/j f .x; y/j2dxdy; (5.7.7)

where B�.x; y/ is defined by (5.7.6) and p.ˆ/ is defined by (5.7.5).
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Proof First we prove the following inequality for �r;R and QA D ˆ
x2Cy2

.�y; x/:

Z

�r;R

j.r C i QA/f j2dxdy � . p.ˆ//2
Z

�r;R

j f .x; y/j2
x2 C y2

dxdy; (5.7.8)

for any f 2 C1.�r;R/ (see [99] for more general results). The left-hand and
right-hand sides are both invariant under rotation of R

2 around the origin. So,
it is sufficient to establish (5.7.8) for spherical functions f .r/ein� , n 2 Z and
r D p

x2 C y2. For such functions

Z

�r;R

j.r C i QA/f .r/ein� j2dxdy D
Z

�r;R

.j f 0
r j2 C 1

r2
j f .r/j2 � .n Cˆ/2/dxdy

�
Z

�r;R

1

r2
j f .r/j2 � .n Cˆ/2dxdy � . p.ˆ//2

Z

�r;R

j f .r/ein� j2
r2

dxdy:

Now, let F W � ! �r;R be a conformal mapping, F.x; y/ D .u.x; y/; v.x; y//.
Denote by AF.u; v/ D .AF

1 .u; v/;A
F
2 .u; v// a magnetic vector potential in �r;R such

that F�.!AF / D !A, i.e.,

AF
1 .u; v/du C AF

2 .u; v/dv D A1.x; y/dx C A2.x; y/dy:

The magnetic vector potential AF also has zero magnetic field and the same
circulationˆ as A since the integral of a differential form and the property of being
closed are invariant under diffeomorphisms.

Since F is a conformal mapping, the reader will have no difficulty in showing
that, for any f 2 C1.�r;R/,

Z

�r;R

.j.ru C iAF
1 .u; v//f .u; v/j2 C j.rv C iAF

2 .u; v//f .u; v/j2/dudv D

Z

�

.j.rxCiA1.x; y//f .u.x; y/; v.x; y//j2Cj.ryCiA2.x; y//f .u.x; y/; v.x; y//j2/dxdy:

(5.7.9)

Since AF is gauge equivalent to the magnetic vector potential ˆ
u2Cv2 .�v; u/ and the

inequality (5.7.8) is also invariant under gauge transformations, we have that

Z

�

j.r C iA/f .u.x; y/; v.x; y//j2dxdy � . p.ˆ//2
Z

�r;R

j f .u; v/j2
u2 C v2

dudv: (5.7.10)
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Taking into account that

Z

�r;R

j f .u; v/j2
u2 C v2

dudv D
Z

�

j f .u.x; y/; v.x; y//j2 jF0
zj2

jFj2 dxdy;

we obtain from (5.7.10) the inequality (5.7.7). This completes the proof. ut

5.7.2 Inequality for Punctured Planes

In this section we establish a Hardy type inequality for a punctured plane.
Theorem 5.7.3 gives us a Hardy-type inequality for a magnetic vector potential of
Aharonov-Bohm type in a bounded doubly connected domain. For a more general
domain �, e.g. a Riemann surface or multiply connected domain, our strategy will
be:

(a) find a decomposition, up to a zero measure set, of the domain � into doubly
connected domains;

(b) find conformal mappings of these doubly connected domains into annuli and
apply Theorem 5.7.3.

The most general tool for decomposing a manifold into simple parts is the
classical Morse theory. We don’t need the full power of the Morse theory here,
the simple version that we now present being adequate.

Let � be a two-dimensional manifold and f W � ! .0;1/. The map f is said
to be proper if the pre-image under f of a compact set is compact, and ! 2 �

is a critical point of f if rf .!/ D 0; f .!/ being called a critical value. We
assume that f has a finite number of critical points in �, and that there is no critical
value in Œa; b� � .0;1/. Then the pre-image f �1.Œa; b�/ � � is diffeomorphic to
f �1.a/� Œa; b�. To show this, we consider a regular vector field in f �1.Œa; b�/ defined
by rf=krf k. This is a well-defined vector field of length one which is orthogonal to
level sets. Integral curves of this vector field will define the required diffeomorphism
between f �1.Œa; b�/ and f �1.a/� Œa; b�. Since a is not a critical point, the pre-image
f �1.a/ is a one-dimensional compact manifold, i.e., a union of closed simple curves.
Thus, f �1.Œa; b�/ is a union of doubly connected domains.

In general, finding a conformal mapping from a doubly connected domain into
�r;R is a difficult problem. The idea in [14] is to use a function jFj for constructing
a Morse complex, where F W � ! C is an holomorphic function. In this case, the
function jFj provides a decomposition and F provides the conformal mapping. We
apply this idea in the case of the punctured plane M D C n fP1;P2; : : : ;Png with a
smooth magnetic vector potential A of Aharonov-Bohm type.

Let F W C ! C be an analytic function with zero set fP1;P2; : : : ;Png, i.e.,
F�1.0/ D fP1;P2; : : : ;Png, and F.1/ D 1. Consider the strictly positive function
f D jFj W M ! .0;1/. Then the critical points of f coincide with the zero set of
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the complex derivative F0
z of the function F. This can be shown as follows. We have

that rf .x; y/ D 0 iff r. f 2/.x; y/ D 0 and f 2 D F � NF. If

@x.F � NF/ D Fx � NF C F � NFx D 0;

and

@y.F � NF/ D Fy � NF C F � NFy D 0;

then

.Fx � iFy/ � NF C F � Fx C iFy D 0:

Since the function F is an analytic function, Fx C iFy D 0 and this implies that
Fx � iFy D 0, i.e., the complex derivative F0

z of the function F is equal to zero.
Denote by ordPjF, the order of zero of F at Pj. Let fQ1;Q2; : : : ;Qlg be the zero set

of the complex derivative F0
z of the function F, i.e., fQ1;Q2; : : : ;Qlg D .F0

z/
�1.0/,

and denote by CritF the following subset of RC D fx 2 R W x � 0g:

CritF D f0; jF.Q1/j; : : : ; jF.Ql/jg:

Under the map jFj W C ! RC the pre-image of CritF is a zero measure set Fc.
We shall now define a piecewise constant function CF on R

2. For any .x; y/ 2
R
2, x C iy … Fc, the set jFj�1.jFj.x C iy// is a disjoint union of smooth simple

curves in C; let �.x;y/ denote one of them that goes through the point .x; y/. This
�.x;y/ divides C into two domains, a bounded domain �int.�.x;y// and an unbounded
domain�ext.�.x;y//. Then

CF.x; y/ WD

�
p
� P

Pk2�int.�.x;y//

ˆk
��2

.ord�.x;y/F/
2

; (5.7.11)

whereˆk is a circulation of A round Pk and

ord�.x;y/F D
X

Pk2�int.�.x;y//

ordPkF: (5.7.12)

We can now state our main result.

Theorem 5.7.4 Let CF be defined in (5.7.11) for the analytic function F. For any
u 2 C1

0 .M/ the following inequality holds

Z

M

j.r C iA/uj2dxdy �
Z

M

CF.x; y/

ˇ̌
ˇ̌F0

z.x C iy/

F.x C iy/

ˇ̌
ˇ̌2ju.x; y/j2dxdy: (5.7.13)
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Proof Let RC n CritF D S
m2Z

Œam; bm� such that .am; bm/ \ .am0 ; bm0/ D ; for

m ¤ m0. From Morse theory we know that jFj�1..am; bm// is a disjoint union of
doubly connected domains. Let�0 be any connected component of jFj�1..am; bm//.
Then Fj�0 W �0 ! �am;bm is a holomorphic function from �0 onto an annulus
�am;bm . Since we are away from the critical set of F, the holomorphic map Fj�0 is a
covering map from�0 onto the annulus�am;bm . From the Argument Principle (see,
e.g. [5]) the degree of Fj�0 equals to ord�.x;y/F defined in (5.7.12), where .x; y/ 2 �0.

Therefore the function .Fj�0/1=ord�.x;y/F is well defined and is a conformal mapping
from�0 onto an annulus�rm;Rm , where

rm D .am/
1=ord�.x;y/F and Rm D .bm/

1=ord�.x;y/F:

From Theorem 5.7.3

Z

�0

j.r C iA/uj2dxdy �
Z

�0

�
p
� X

Pk2�int.�.x;y//

ˆk
��2ˇ̌ˇ̌ ..Fj�0/1=ord�.x;y/F/0z

.Fj�0/1=ord�.x;y/F

ˇ̌
ˇ̌2juj2dxdy

D
Z

�0

CF.x; y/

ˇ̌
ˇ̌F0

z.x C iy/

F.x C iy/

ˇ̌
ˇ̌2ju.x; y/j2dxdy: (5.7.14)

Summing (5.7.14) over all connected component of jFj�1..am; bm// and over all
m 2 Z, we obtain Theorem 5.7.4. This conclude the proof. ut

Remark 5.7.5 Choosing F.z/ D
nQ

jD1
.z � zj/ we obtain a function

HF.x; y/ D CF.x; y/

ˇ̌
ˇ̌F0

z.x C iy/

F.x C iy/

ˇ̌
ˇ̌2

which satisfies the conditions 1 and 2 from the introduction to this section.
Another interesting choice is

F.z/ D 1
nP

jD1
p.ˆj/

.z�zj/

;

which yields HF.x; y/.
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5.8 Generalised Hardy Inequality For Magnetic Dirichlet
Forms

In this section we present some results from [22], where lower bounds for the
magnetic Dirichlet form

hŒu� D
Z

j.r C iA/uj2dx

on C1
0 .R

n/; n � 2; were obtained.
For n D 2, the results generalise a well known lower bound by the magnetic field

strength, where the actual magnetic field B is replaced by an non-vanishing effective
field (the precise definition will be given below) which decays outside the support of
B as dist.x; supp B/�2. In the case d � 3 the magnetic form is bounded from below
by the magnetic field strength if one assumes that the field does not vanish and its
direction is slowly varying.

We consider separately two cases: n D 2 and n � 3. To derive a meaningful
estimate for n D 2we exploit two elementary ideas. The first of them is the standard
lower bound established in (5.4.2),

hŒu� �
Z

˙Bjuj2dx;

which holds with either of the signs ˙; with A D .A1;A2/; the magnetic field B
is identified with the scalar B D @1A2 � @2A1. The second ingredient is the Hardy
inequality for domains with Lipschitz boundaries. Put together, they yield a bound
of the form

hŒu� � c
Z

QBjuj2dx;

with an effective magnetic field QB, which coincides with ˙B on its support, and
decays outside the support as distfx; supp Bg�2. The constant c in the above estimate
depends only on the support of B; see Theorem 5.8.1 for the precise statement. The
constant c is explicit and does not depend on the flux.

In the case n � 3 the problem becomes more complicated, as the magnetic field
B D dA D curlA may now change its direction; see Sect. 5.8.5 for the precise
definition of this notion. Assuming that the field never vanishes, and under some
extra conditions on the smoothness of B, we prove the Sobolev-type bound

hŒu� � c
Z

jBjjuj2dx;

in Theorem 5.8.6.
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5.8.1 Magnetic Forms

Let A D .A1;A2; : : :An/ be a real-valued vector function with Aj 2 L2loc.R
n/ for

j D 1; � � � ; n . Then the symmetric quadratic form

hŒu� D
Z

j.r C iA/uj2dx;

is closable on C1
0 .R

d/, and the magnetic Laplacian HA D ��A is the unique self-
adjoint operator associated with its closure. Assume that the magnetic field B D dA
exists in the sense of distributions and it is measurable on R

n. We shall need the
notation

Bjk D @jAk � @kAj; k; j D 1; 2; : : : ; n:

Since the two-form B is antisymmetric, it is fully determined by the components Bjk

with j < k; the number of these components is

~n D n.n � 1/=2:

We measure the strength of the field by the quantity

jBj D
sX

j<k

B2jk:

In the two- and three-dimensional cases, this quantity coincides with the length of
the magnetic field vector. If n D 2, the only non-zero components of B are B12 and
B21 D �B12, i.e., in our previous notation, B and �B..

In the next two subsections we state our results separately for two cases: n D 2

and n � 3. They have much in common but due to the simplicity of the magnetic
field structure for n D 2, our results in this case are obtained under more general
assumptions on the field than for n � 3. For both cases we need to introduce a
positive continuous functions ` which plays the role of a slowly varying spatial
scale reflecting variations of the magnetic field. We associate with the function ` the
open ball

K.x/ D fy 2 R
2 W jx � yj < `.x/g:

The precise conditions on the function ` for n D 2 and n � 3 are slightly different
and will be specified in each case separately.
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5.8.2 Case n D 2

We revert to our original notation and denote by B.x/ the component B12.x/. The
scale ` is assumed to satisfy the conditions

` 2 C1
0.R

2/I jr`.x/j � 1; `.x/ > 0; 8x 2 R
2: (5.8.1)

To specify further conditions on B we need to divide R
2 into sets relevant to the

strength of the field. For a (measurable) set C � R
2 define

C" D [x2CK.x/: (5.8.2)

With the field B we associate two open sets �;ƒ � R
2, such that �" � ƒ and

.R2 n ƒ/" \ �" D ;; the case ƒ D R
2 is not excluded. Let ł0 > 0 be the lowest

eigenvalue of the Laplace operator �� on the unit disk, with Dirichlet boundary
conditions. Put

A0 D 5.2C 4
p

ł0/p
2

; (5.8.3)

and assume that

jB.x/j`.x/2 � 2A20; a.e. x 2 ƒ: (5.8.4)

The physical meaning of the sets�,ƒ, is that on� the field B is “large”, on R
2 nƒ

the field B is negligibly small, and the set ƒ n� is a “transition zone”.
Before stating the main result we remind the reader about an important constant

depending on �. Suppose that the boundary of � is Lipschitz, and let ı.x/ denote
the distance from x 2 R

2 to �. Then there exists a positive constant � � 1=4 such
that for any u 2 H1

0.�
0/, �0 D R

2 n�, one has the Hardy inequality

Z
�0

jru.x/j2dx � �

Z
�0

ju.x/j2
ı.x/2

dxI (5.8.5)

see Theorem 3.2.1 and comment (vi) in Sect. 3.1. If �0 is a union of convex
connected components, one has � D 1=4. In view of the diamagnetic inequality

Z
j.r C iA/uj2dx �

Z
jrjujj2dx; 8u 2 C1

0.R
2/; (5.8.6)

we immediately infer from (5.8.5) that

Z
�0

j.r C iA/u.x/j2dx � �

Z
�0

ju.x/j2
ı.x/2

dx;8u 2 C1
0.�

0/: (5.8.7)
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Theorem 5.8.1 Let� be an open set with Lipschitz boundary. Let the function ` be
as specified in (5.8.1), and let the field B satisfy (5.8.4). Suppose also that the field
B is either non-negative or non-positive for a.e. x 2 R

2. Then

hŒu� � �

2

Z ju.x/j2
`.x/2 C ı.x/2

dx

for all u 2 DŒh�, the domain of h.

To apply Theorem 5.8.1, the first step is to make an appropriate choice of the
function ` for a given magnetic field. Below we illustrate how it can be done in the
case n D 2 for two special cases. Both examples are deliberately made strongly
radially asymmetric in order to guarantee that the separation of variables is not
applicable.

Example 5.8.2 The first example is a compactly supported magnetic field. We
denote by DR.x; y/ the open disk in R

2 of radius R, centred at .x; y/ 2 R
2; let

x0 > R > 0 and ƒ D DR.x0; 0/[ DR.�x0; 0/. Assume that

B.x/ D 0; x … ƒ; B � B0; x 2 ƒ (5.8.8)

with some positive constant B0, and define the function `.x/ by

`.x/ � `0 D
q
2A20=B0; x 2 R

2: (5.8.9)

Clearly, ` satisfies the conditions (5.8.1) and (5.8.4) on the set ƒ. Moreover, .R2 n
ƒ/" \�" D ;. If 2`0 < R, then � can be chosen as follows: � D DR�2`0 .x0; 0/[
DR�2`0.�x0; 0/. Now Theorem 5.8.1 leads to the inequality

hŒu� � �

2

Z ju.x/j2
`20 C ı.x/2

dx; u 2 DŒh�; (5.8.10)

where, with x D .x; y/,

ı.x; y/ D

8̂
ˆ̂<
ˆ̂̂:

0; if .x; y/ 2 �;
p
.x � x0/2 C y2 � .R � 2`0/; if x � 0 and .x; y/ … �;

p
.x C x0/2 C y2 � .R � 2`0/; if x � 0 and .x; y/ … �:
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Example 5.8.3 Next, we consider an “opposite” example: a magnetic field with
holes in its support. Suppose as above, that R < x0, assume again that B
satisfies (5.8.8) with the set

ƒ D R n DR.x0; 0/[ DR.�x0; 0/;

and define ` by (5.8.9). If 2`0 < x0 � R, define � by

� D R
2 n DRC2`0.x0; 0/[ DRC2`0.�x0; 0/:

Then Theorem 5.8.1 yields again (5.8.10) with the distance function ı.x/ D ı.x; y/
given by

ı.x; y/ D

8̂
ˆ̂<
ˆ̂̂:

0; if .x; y/ 2 �;
.R C 2`0/�p

.x � x0/2 C y2; if .x; y/ 2 DRC2`0.x0; 0/;

.R C 2`0/�p
.x C x0/2 C y2; if .x; y/ 2 DRC2`0.�x0; 0/:

Moreover, since�0 D R
2 n� is a union of two convex sets (namely disks), one has

� D 1=4; see the comment after formula (5.8.5).
Note that in both cases the effective field

QB.x/ D 1

`20 C ı.x/2

in (5.8.10), shows the following behaviour in the strong field regime, that is when
B0 ! 1: if x 2 �, then QB ! 1 as well. For x 2 R

2 n ƒ the function QB behaves
like ı.x/, and thus, effectively, it “does not feel” the magnetic field, irrespective of
its strength. The setƒn�, which consists of two rings of width B�1=2

0 , is a transition
region.

Obviously, both examples can be generalised to any number of disks.
Before presenting proof of Theorem 5.8.1, we describe a very useful partition of

unity in two-dimensions.

5.8.3 A Partition of Unity

Let �;ƒ � R
2 be the sets introduced in the previous subsection , and let �" be

as defined in (5.8.2). As was previously mentioned, Theorem 5.8.1 trivially follows
from (5.8.4) and (5.8.24) if ƒ D R

2. Henceforth we assume that R2 nƒ 6D ;.
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Let ‡ 2 C1
0.R

2/ be a non-negative function such that ‡.x/ D 0 for jxj � 1 andR
‡.x/2dx D 1; set

� D �.‡/ D
Z

jr‡.x/j2dx: (5.8.11)

Then, by the min-max variational principle, the lowest eigenvalue�0 of the Dirichlet
Laplacian on the unit disk is given by

�0 D inf
‡
�: (5.8.12)

Lemma 5.8.4 Suppose that ` satisfies (5.8.1). Then the function


.x/ D 1

`.x/2

Z
�"

‡

�
x � y
`.x/

�2
dy

possesses the following properties:

(i) 
 2 C1.R2/, and jr
.x/j � .2C 4
p
�/`.x/�1;

(ii) 
.x/ D 1 for x 2 �, 
.x/ D 0 for x 2 R
2 nƒ, and 0 � 
.x/ � 1.

Proof The inclusion 
 2 C1.R2/ is obvious, since ` 2 C1.R2/. The estimate for
r
 is checked by a direct calculation:

jr
.x/j � 2jr`.x/j
`.x/3

Z
�"

‡.y/2dy

C 2

`.x/3

Z
�"

j‡.y/jjr‡.y/j
�
1C jx � yj

`.x/
jr`.x/j

�
dy

� 2

`.x/
C 4

`.x/3

Z
�"

j‡.y/jjr‡.y/jdy

� 2

`.x/
C 4

`.x/

�Z
jr‡.x/j2dx

� 1
2

D 2C 4
p
�

`.x/
:

Here we have taken into account that jr`.x/j � 1.
In view of the formula

R
‡.x/2dx D 1, we always have 
.x/ � 1. Furthermore,

if x 2 �, then by definition, K.x/ � �", and hence


.x/ D 1

`.x/2

Z
R2

‡

�
x � y
`.x/

�2
dy D 1;

as required. Otherwise, if x 2 R
2 nƒ, then by definition,‡

�
.x � y/`.x/�1

� D 0 for
all y 2 �", and therefore 
.x/ D 0. ut
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This Lemma allows one to introduce a convenient partition of unity:

Lemma 5.8.5 Let the domains� andƒ be as in Theorem 5.8.1, and let Rnƒ 6D ;.
Then there exist two functions �; 	 2 C1.R2/ such that

(i) 0 � � � 1; 0 � 	 � 1;
(ii) �.x/ D 1 for x 2 �, 	.x/ D 1 for x 2 R

2 nƒ;
(iii) �2 C 	2 D 1;
(iv) jr�j � A`�1, jr	j � A`�1 with

A D 5.2C 4
p
�/p

2
: (5.8.13)

Proof Let 
 be the function constructed in Lemma 5.8.4, and let  D 1 � 
. It is
straightforward to check that 
2 C  2 D 2.
 � 1=2/2 C 1=2 � 1=2. Define

� D 
p

2 C  2

; 	 D  p

2 C  2

:

These functions, obviously satisfy properties (i), (ii), (iii). To prove (iv) note that

jr�j � 5

2
p

2 C  2

jr
j � 5p
2

jr
j;

and a similar bound holds for r	. The required estimate now follows from
Lemma 5.8.4. ut

5.8.4 Proof of Theorem 5.8.1

We are now ready to present a proof of Theorem 5.8.1. Suppose that the conditions
of Theorem 5.8.1 are fulfilled. Our next step is to split the magnetic form hŒu� into
two parts that will be estimated in two different ways. Let �; 	 be the functions from
Lemma 5.8.5. Since �2 C 	2 D 1, we have for any u 2 C1

0.R
2/:

hŒu� D
Z

j�.r C iA/uj2dx C
Z

j	.r C iA/uj2dx

D hŒ�u�C hŒ	u� �
Z
.jr�j2 C jr	j2/juj2dx:

We use the following decomposition:

hŒu� D 1

2

�
hŒu� �

Z
.jr�j2 C jr	j2/juj2dx

�
C 1

2
hŒ�u�C 1

2
hŒ	u�: (5.8.14)
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Since B does not change sign, it follows from (5.8.24) that hŒu� � .jBju; u/. Let
us estimate from below the first term on the right-hand side of (5.8.14), bearing in
mind that r� and r	 are supported on the set ƒ:

hŒu��
Z
.jr�j2 C jr	j2/juj2dx �

Z
ƒ

�
jBj � .jr�j2 C jr	j2/

�
juj2dx:

In view of the condition (5.8.4) and of the fact that jr�j2 C jr	j2 � 2A2`�2, the
right-hand side is bounded from below by �
E.u/ with

E.u/ D
Z
ƒ

1

`.x/2
ju.x/j2dx; 
 D 2.A2 � A20/ � 0:

Next we estimate the remaining two terms in (5.8.14). For the term with � use (5.8.4)
again, keeping in mind that � is supported on ƒ:

hŒ�u� �
Z

jB.x/j�.x/2ju.x/j2dx � 2A20

Z
1

`.x/2
�.x/2juj2dx:

For the term with 	 we use Hardy’s inequality (5.8.7):

hŒ	u� � �

Z
	.x/2

ju.x/j2
ı.x/2

dx:

Collecting all the estimates, we obtain the lower bound

2hŒu� � 2A20

Z
�2

juj2
`2

dx C �

Z
	2

juj2
ı2

dx � 2
E.u/:

Since 2A20 � 100 and � � 1=4, one can write

2hŒu� � �

Z juj2
ı2 C `2

dx � 2
E.u/:

Neither the right-hand side nor the left-hand side depends on the function ‡ .
Therefore we can take the sup of both sides over all admissible ‡ . In view of
definitions (5.8.3) and (5.8.13), the equality (5.8.12) yields sup‡.�
/ D inf‡ 
 D
0. This leads to the required bound from below and thus completes the proof of
Theorem 5.8.1.
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5.8.5 Results for n � 3

In this case our conditions on B are more restrictive. To state the precise conditions,
let us begin with the function `. We assume that

j`.x/� `.y/j � %jx � yj; 0 � % < 1; `.x/ > 0; 8x; y 2 R
n: (5.8.15)

Assume that for some ˆ > 0

jB.x/j`.x/2 � ˆ; a.e. x 2 R
n: (5.8.16)

This assumption guarantees that the field B never vanishes. Denote by n D fnjkgn
j;kD1

the matrix with the components

njk.x/ D Bjk.x/
jB.x/j ; j; k D 1; 2; : : : ; n:

One may loosely call n the direction matrix for the field B. Our second assumption
on B is that for all k; l D 1; 2; : : : ; n and z 2 R

n

jn.x/� n.y/j � ˛;8x; y 2 K.z/; (5.8.17)

with some 0 � ˛ �
q
~�1

d =4. This assumption implies that the direction n of the
field varies slowly with x. Note that this condition is automatically fulfilled in the
case n D 2 with ˛ D 0.

Theorem 5.8.6 Let n � 3. Let the function ` be as specified in (5.8.15), and let
the field B be a continuous function satisfying (5.8.16) and (5.8.17). Then for a
sufficiently large ˆ > 0 in (5.8.16) we have

hŒu� � c
Z

jB.x/jju.x/j2dx (5.8.18)

for all u 2 DŒh�, with some positive constant c depending on % and ˆ.

Theorem 5.8.6 holds for the case n D 2 as well, but it is a trivial corollary of
Theorem 5.8.1.

Note that in contrast to Theorem 5.8.1 we do not specify the constant c in the
inequality (5.8.18), neither do we provide any precise estimates on the value of ˆ
sufficient for (5.8.18) to hold. In fact, as a careful examination of the proof will
show, one can always control the constants in all the estimates, but their values will
hardly be optimal.
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5.8.6 Proof of Theorem 5.8.6

Suppose that the condition of Theorem 5.8.6 are fulfilled, and in particular, the
function ` satisfies (5.8.15).

The keystone of the proof is the following partition of unity associated with the
scale function `.x/.

Lemma 5.8.7 Let `.x/ (resp. `.x/) be a continuous function satisfying (5.8.15).
Then there exists a set of points xj 2 R

n, j 2 N such that the open balls Kj D
K.xj/ form a covering of Rn with the finite intersection property (i.e. each ball Kj

intersects with no more than QN D QN.%/ < 1 other balls). Moreover, there exists a
set of non-negative functions 
j 2 C1

0 .Kj/, j 2 N, such that

X
j


2j D 1; (5.8.19)

and

j@m
jj � Cm`
�jmj; 8m; (5.8.20)

uniformly in j.

We note that the square in (5.8.19) will be convenient for us, though the common
definition of the partition of unity requires

P
j 
j D 1. Proof of this lemma is

analogous to that of Theorem 1.4.10 from [79] and we do not reproduce it here.
We rephrase the finite intersection property for balls Kj as follows: setting

mj D fk 2 N W Kj \ Kk 6D ;g;

then

cardmj � N.%/ WD QN.%/C 1;

with the number QN.%/ defined in Lemma 5.8.7.
The next step is to use the partition of unity constructed in Lemma 5.8.7. For

u 2 C1
0.R

n/, a simple calculation, similar to that in the proof of Theorem 5.8.1,
yields

hŒu� D
X

k

hŒ
ku��
X

k

Z
jr
kj2juj2dx: (5.8.21)

The first term on the right-hand side satisfies

N
X

k

hŒ
ku� �
X

k

X
l2mk

hŒ
lu�; N D N.%/:
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Let k 2 N be fixed, and let j; l 2 Œ1; d� be a pair of integers such that jBjl.xk/j �q
~�1

d jB.xk/j; such a pair always exists. Assume, without loss of generality, that
Bjl > 0. Then, in view of (5.8.17),

Bjl.x/ � 3

4
p
~d

jB.x/j; x 2 Kk:

On using (5.8.17) again, we obtain

Bjl.x/ � 1

2
p
~d

jB.x/j; x 2 [s2mkKs:

From (5.8.23), we have the lower estimate

X
s2mk

hŒ
su� �
Z

Bjl

X
s2mk


2s juj2dx � 1

2
p
~d

Z
jBj

X
s2mk


2s juj2dx;

the last integral being bounded from below by

1

2
p
~d

Z
Kk

jBjjuj2dx:

Here we have used the fact that
P

s2mk

s.x/2 D 1 for all x 2 Kk, which follows

from the definition of mk. Consequently

X
k

hŒ
ku� � 1

N

X
k

X
s2mk

hŒ
su� � 1

2N
p
~d

X
k

Z
Kk

jBj juj2dx: (5.8.22)

We estimate hŒu� from below using (5.8.21) and (5.8.22):

hŒu� �
X

k

Z
Kk

�
1

2N
p
~d

jBj � jr
kj2
�

juj2dx;

where we have used the fact that r
k is supported on Kk. According to (5.8.16)
and (5.8.20) we have

jr
kj2 � c2`�2 � c2ˆ�1jBj;

so that

hŒu� �
�

1

2N
p
~d

� c2ˆ�1
�X

k

Z
Kk

jBj juj2dx:
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If we assume thatˆ is sufficiently large that the factor before the integral is positive,
we then obtain

hŒu� � c
Z

jBj juj2dx; u 2 C1
0.R

n/:

This is the required bound. The proof of Theorem 5.8.6 is now complete.

Remark 5.8.8 In [22], Sect. 2.4, there is the following illuminating discussion of
Theorems 5.8.1 and 5.8.6.

The simplest known source of lower bounds for the magnetic Schrödinger
operator is the following representation for the quadratic form hŒu�. Set Lk D
@k C iAk. Then

kLkuk2 C kLluk2 D k.Lk ˙ iLl/uk2 ˙ .Bklu; u/; u 2 C1
0.R

n/;

for any pair k; l D 1; 2; : : : ; n. This identity implies that

hŒu� � ˙.Bklu; u/; 8k; l D 1; 2; : : : ; n: (5.8.23)

If one knows that, for some k; l, the quantity Bkl preserves its sign, and cjBj � jBklj,
then the above inequality leads to the lower bound (5.8.18) in Theorem 5.8.6. The
bound is especially useful in the case n D 2, when it can be rewritten as

hŒu� � ˙.Bu; u/; u 2 C1
0.R

2/; (5.8.24)

as we saw in Sect. 5.4.1. In fact, Theorem 5.8.1 trivially follows from this estimate
and (5.8.4) if one assumes that ƒ D R

2. In this case, assuming, for instance, that
B > 0, one uses (5.8.24) with the “C” sign, which leads, in view of (5.8.4), to the
bound

hŒu� � 2A20

Z ju.x/j2
`.x/2

dx:

Since 2A20 � 100 and � � 1=4, this implies the sought lower bound. If, on the
other hand, B � 0 and the support of the field does not coincide with R

2, then
Theorem 5.8.1 yields a bound similar to (5.8.24), but with an effective magnetic
field

QB.x/ D 1

`.x/2 C ı.x/2
;

which, loosely speaking, coincides with B inside the support, and decays away from
it. It is important that this effective field does not vanish in contrast to B.
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In the multi-dimensional situation the picture is different: the field B is allowed to
change its direction. In these circumstances the estimate (5.8.23) is not very helpful
as all the components Bkj may change their signs. Theorem 5.8.6 is specifically
designed to handle this situation. We need to assume however that B never vanishes.

A lower bound of a type similar to (5.8.18) was proved in [76]. Instead of
the function jBj the inequality in [76] features a specific weight function, which
coincides with jBj in the case of a polynomial magnetic field. Another instance
when such an inequality is known to hold, is described in [135]. If the magnetic
field is assumed to belong to a certain reverse Hölder class, then it is shown in
[135] that hŒu� C kuk2 � c.`�2u; u/ with some explicitly defined scale function `.
Theorem 5.8.6 is close in the spirit to these results, but the proof in [22] is much
more elementary, and is based on a natural partition of unity associated with the
scale function `.

5.9 Pauli Operators in R
3 with Magnetic Fields

In relativistic quantum mechanics, when electron spin is taken into account, the
Schrödinger operator HA discussed in Sect. 5.4 is replaced by the Pauli operator,
which in R

3, is formally given by

PA D
�
��� �
�
1

i
r C Ar C Ar C A

�	 2
�

3X
jD1

�
�j

�
1

i
@j C Aj

�	 2
; (5.9.1)

where A D .A1;A2;A3/ is a vector potential associated with the magnetic field B D
curlA, and ��� D .�1; �2; �3/ is the triple of Pauli matrices

�1 D
�
0 1

1 0

�
�2 D

�
0 �i
i 0

�
�3 D

�
1 0

0 �1
�
:

The expression (5.9.1) can also be written in the convenient form

PA D SA C ��� � B; B D curlA; (5.9.2)

where we have written SA for the magnetic Schrödinger operator as an operator in
L2.R3IC2/, namely,

SA D
�
1

i
rrr C A

�2
I2 �

3X
jD1

�
1

i
@j C Aj

�2
I2; (5.9.3)

where I2 is the 2�2 identity matrix, and ��� �B is called the Zeeman term. To simplify
notation in this section, we denote L2.R3IC2/ by H and its standard inner-product
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and norm by .�; �/ and k � k respectively: for f D f f1; f2g; g D fg1; g2g 2 H

. f ; g/ D
2X

jD1

Z
R3

fj.x/ Ngj.x/dx; kf k2 D . f ; f /:

Suppose that Aj 2 L2loc.R
3/; j D 1; 2; 3. Then, as an operator in H, SA is the

Friedrichs operator associated with the form

( 




�
1

i
rrr C A

�
'






2

C k'k2
) 1

2

: (5.9.4)

It is non-negative and has no zero modes, i.e., no eigenvalue at zero. Its form domain
is the completion of C1

0 .R
3IC2/ with respect to the norm determined by (5.9.4),

which we denote by k � k1;A.
Our objective in this section is to establish Sobolev, Hardy and CLR type

inequalities for the Pauli operator which are analogous to those of SA. An obstacle
is the fact that the Pauli operator may have zero modes. This means that in order
to obtain the aforementioned inequalities, the zero modes must be avoided and
the inequalities should reflect this. To achieve these aims,we need some technical
preliminary results which lead to the introduction of a Birman-Schwinger type
operator. Initially we shall assume that jAj 2 L3.R3/, but later jBj 2 L3=2.R3/ is
also needed. However, it is proved in [66], Theorem A1 in Appendix A, that, given
jBj 2 L3=2.R3/, there is a unique magnetic potential A with the properties

jAj 2 L3.R3/; curl A D B; div A D 0;

this being given by

A.x/ D 1

4�

Z
R3

.x � y/
jx � yj � B.y/dy:

We shall approach the problem through the Weyl-Dirac (or massless Dirac)
operator

DA W � � p C � � A; p WD 1

i
r;

where we have use the standard notation p for the momentum operator, but note that
it now operates on C

2-valued functions. The first lemma determines the domain of
DA.
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Lemma 5.9.1 Let jAj 2 L3.R3/. Then, given " > 0, there exists k" > 0 such that for
all ' 2 H1.R3IC2/, the Sobolev space H1 D W1;2 on R

3 for C2-valued functions,

k.� � A/'k � "kr'k C k"k'k: (5.9.5)

Proof We may choose jAj D a1C a2, where ja1.x/j � k" and ka2kL3.R3/ < ": Then,
by Hölder’s inequality and Sobolev’s embedding theorem,

k.� � A/'k � ka1'k C ka2'k � k"k'k C "k'kL6.R3/

� k"k'k C �"kr'k;

where � denotes the norm of the embedding D1;2.Rn/ ,! L6.Rn/. ut
It follows from the lemma and a well-known result on relative bounded pertur-

bations of self-adjoint operators (see [48], Corollary III.8.5) that DA is the operator
sum

DA D � � p C � � A;

with domain

D.DA/ D D.� � p/ D H1.R3IC2/:

The Pauli operator PA can now be defined as the non-negative self-adjoint operator
associated with the form

kDA'k2 C k'k2; ' 2 D.DA/;

which is the square of the graph norm of DA on its domain; D.DA/ is therefore the
form domain of PA and

D.P1=2A / D D.DA/ D H1.R3IC2/: (5.9.6)

Similarly, if jAj 2 L3.R3/, p C A is an operator sum and the form domain of the
Schrödinger operator SA is

D.S1=2A / D D.p C A/ D H1.R3IC2/:

To proceed, we need some more notation.

(i) The operator

P D PA C jBj
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is the non-negative self-adjoint operator associated with

pŒ'� D pŒ'; '� D .ŒPA C jBj�'; '/ D .P'; '/:

If jBj 2 L3=2.R3/, then for all ' 2 H1.R3IC2/,

.jBj'; '/ � kBkL3=2.R3/k'k2L6.R3/ � �kBkL3=2.R3/kr'k2:

Therefore P has the same form domain as PA, namely H1.R3IC2/ by (5.9.6).
The operator SA does not have an eigenvalue at 0, and clearly, neither does P.
Therefore SA and P are injective and have dense domains and ranges in H.

(ii) We denote by H1
A the completion of D.S1=2A / with respect to the norm

k'kH1
A

WD kS1=2A 'k: (5.9.7)

Note that in this notation, H1
0 has norm kr'k, and is therefore the C

2-vector
version of the space denoted by D1;2

0 in Sect. 1.3.1.
(iii) We shall also need the space H

1
B which is the completion of D.P1=2/ with

respect to

k'k
H
1
B

WD kP1=2'k: (5.9.8)

(iv) The spaces H1
A;H

1
B do not lie in H, but they both contain C1

0 .R
3IC2/ as dense

subspaces, and since P � SA by (5.9.2), we have the natural embedding

H
1
B ,! H1

A: (5.9.9)

The diamagnetic inequality asserts that f 7! j f j maps H1
A continuously into

H1
0 , and hence, by the Sobolev’s embedding theorem, we have

f 7! j f j W H1
A ! H1

0 ,! L6.R3;C2/: (5.9.10)

Furthermore, Hardy’s inequality yields

H1
A ,! L2.R3I jxj�2dx;C2/:

This also implies that

D.P1=2/ D H
1
B \ H; (5.9.11)

with norm

fkP1=2'k2 C k'k2g1=2I
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the embedding H
1
B ,! L6.R3IC2/ guarantees the completeness to estab-

lish (5.9.11), since convergent sequences in H
1
B therefore converge pointwise

to their limits, a.e..

Let

bŒ'�I D .jBj'; '/: (5.9.12)

Then

0 � bŒ'� � pŒ'�

and it follows that there exists a bounded self-adjoint operator B on H
1
B such that

bŒ'� D .B'; '/
H
1
B
; ' 2 H

1
B: (5.9.13)

For ' 2 R.P1=2/, the range of P1=2,

kP�1=2'k
H
1
B

D k'k;

and hence, since D.P1=2/ and R.P1=2/ are dense subspaces of H1
B and H, respec-

tively, P�1=2 extends to a unitary map

U W H ! H
1
B; U D P

�1=2 on R.P1=2/: (5.9.14)

Define

S WD jBj1=2U W H ! H: (5.9.15)

Note that

kjBj1=2uk2 � kjBjkL3=2.R3/kuk2L6.R3IC2/ � Ckuk2
H
1
B
; (5.9.16)

for some positive constant C, by (5.9.9) and (5.9.10).
The results we seek rely on the properties of the Birman Schwinger type

operator SS�. For f 2 R.P1=2/; g 2 D.P1=2/;

. f ;S�f ; g/ D .Sf ; g/ D .jBj1=2Uf ; g/

D .Uf ; jBj1=2g/
D .P�1=2f ; jBj1=2g/I
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note that jBj1=2g 2 H by (5.9.16). Hence jBj1=2g 2 D.P�1=2/ and P
�1=2jBj1=2g D

S�g. In other words

S� D P
�1=2jBj1=2 on D.P1=2/; (5.9.17)

Hence

SS� D jBj1=2U2jBj1=2 on D.P1=2/; (5.9.18)

and this extends by continuity to a bounded operator on H.

Lemma 5.9.2 If jBj 2 L3=2.R3/, the operator SS� W H ! H is compact.

Proof It is sufficient to prove that jBj1=2 W H
1
B ! H is compact, for then it will

follow that S D jBj1=2U W H ! H is compact. Let f ng be a sequence which
converges weakly to zero in H

1
B, and hence j nj * 0 in H1

0 by (5.9.9) and (5.9.10).
Then, in particular, kj njkH1

0
� k for some constant k. Given " > 0; set jBj D B1 C

B2; where B1 2 C1
0 .R

3/ with support �" and jBj � k" say, and kB2kL3=2.R3/ < ".
Then

kjBj1=2 nk2 � k"k nk2L2.�"IC2/ C �2kB2kL3=2.R3/kj njk2
H1

0

� k"k nk2L2.�"IC2/ C �2"kj njk2
H1

0
:

The first term tends to zero as n ! 1 by the Rellich-Kondrachov theorem. Hence

lim sup
n!1

kjBj1=2 nk2 � k�2":

Since " is arbitrary, it follows that jBj1=2 W H1
B ! H is compact, and the lemma is

proved. ut
The last result we need before giving the main theorem in this section concerns

the number of zero modes of the Pauli operator PA, that is, the dimension of the
kernel of PA; this is denoted by nul PA where nul stands for nullity.

Lemma 5.9.3

nul PA D dimfu W Bu D u; u 2 H
1
B \ Hg

� nul F;

where F D 1 � SS�. There is equality if and only if

Fu D 0 ) Uu 2 H
1
B \ H:
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Proof Let u; v 2 D.P1=2/. Then

pAŒu; v� D pŒu; v� � bŒu; v�

D .u � Bu; v/
H
1
B
:

Hence u 2 ker PA � D.P1=2/, if and only if, Bu D u, with u 2 H. Moreover, for
any f ; g 2 H,

.Sf ;Sg/ D .BUf ;Ug/
H
1
B
;

whence

.ŒS�S � 1�f ; g/ D .ŒB � 1�Uf ;Ug/
H
1
B
:

Since nul ŒS�S � 1� D nul ŒSS� � 1�, we see that

PAu D 0 , F.U�1u/ D 0;

where it is understood that u 2 D.PA/ � H
1
B: The lemma follows. ut

The following theorem is proved in [19]

Theorem 5.9.4 Let jAj 2 L3.R3/ and jBj 2 L3=2.R3/. Let S be given by (5.9.15)
and F D 1 � SS�. Suppose that for some B, the operator F has no zero mode, and
set

ı.B/ WD inf
k f kD1; Uf 2H1B\H

kŒ1 � S�S�f k2: (5.9.19)

Then ı.B/ > 0 and

PA � ı.B/SA: (5.9.20)

The following hold for all ' 2 D.P
1
2

A/ D H1.R3;C2/ W
(i) (Sobolev-type inequality)





P
1
2

A'






2

� ı.B/
�2

k'k2
ŒL6.R3/�2 ; (5.9.21)

where � is the norm of the embedding H1.R3/ ,! ŒL6.R3/�2;
(ii) (Hardy-type inequality)

kP 1
2

A'k2 � ı.B/
4





 'j � j





2

I (5.9.22)
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(iii) (CLR-type inequality) for V� 2 L
3
2 .R3/, the number N.PA C V/ of negative

eigenvalues f��ng of PA C V satisfies

N.PA C V/ � c

ı.B/
3
2

Z
R3

V
3
2�dx; (5.9.23)

where c is the best constant in the CLR inequality for SA;
(iv) (Lieb-Thirring-type inequalities)

X
n

�
n � c

ı.B/
3
2

Z
R3

V
C 3
2� dx (5.9.24)

for any 
 � 0.

Proof If F has no zero mode, the compact operator SS� on H does not have
eigenvalue 1 and hence neither does S�S, since

�.SS�/ n f0g D �.S�S/ n f0gI

see [141], Sect. 5.2. Hence, ı.B/ > 0, and for any f 2 H with Uf 2 H \ H
1
B,

ı.B/kf k2 � k.1 � S�S/f k2
D kf k2 � 2.S�Sf ; f /C kS�Sf k2:

Let f D P
1
2 ' for ' 2 H. Then Uf D ' and Sf D jBj 12 ' from (5.9.14).

Consequently

ı.B/kP 1
2 'k2 � kP 1

2 'k2 � 2kjBj 12 'k2 C kS�jBj 12 'k2
D kPA

1
2 'k2 � kjBj 12 'k2 C kS�jBj 12 'k2; (5.9.25)

since P D PA C jBj in the form sense. Also if g 2 R.P 1
2 /,

kSgk D kjBj 12P� 1
2 gk � kgk

as P � jBj. Since R.P 1
2 / is dense in H, we have that kS�k D kSk � 1. It follows

from (5.9.25) that

ı.B/kP 1
2 'k2 � kPA

1
2 'k2;

whence PA � ı.B/P � ı.B/SA.
The inequalities exhibited are now consequences of (5.9.20) and the correspond-

ing standard inequalities featuring ��, on using the diamagnetic inequality. ut
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Remark 5.9.5 If any one of the inequalities (5.9.21)–(5.9.24) is satisfied, then PA

has no zero mode. Whether or not nul PA D 0 implies nul F D 0 is not clear. It is
of interest to observe that in (5.9.19), the infimum is taken over the subspace of H
in which PA and F have common nullity.

In [27] it is proved that if B 2 L3=2.R3/ is such that ı.B/ D 0 and there exist
ˇ > 0;C � 0 and r0 � 0 such that

jB.x/j � Cjxj�2�ˇ

for all jxj � r0, then the associated Pauli operator PA has a zero mode.



Chapter 6
The Rellich Inequality

6.1 Introduction

In lectures delivered at New York University in 1953, and published posthumously
in the proceedings [128] of the International Congress of Mathematicians held in
Amsterdam in 1954, Rellich proved the following inequality which bears his name:
for n ¤ 2

Z
Rn

j�u.x/j2dx � n2.n � 4/2

16

Z
Rn

ju.x/j2
jxj4 dx; u 2 C1

0 .R
n n f0g/; (6.1.1)

while for n D 2, the inequality continues to hold but for a restricted class of
functions u; see Remark 6.4.4 below.

Since Rellich’s proof, many versions of the inequality have been proven in
various settings, and we present some of these in this chapter. First, we review
methods due to Schminke [133] and Bennett [29] for proving the inequality in
L2.Rn/, n > 4, which are different from those used in [128, 129]. These motivated
the proof of a weighted Lp.Rn/ version of the inequality for any 1 < p < 1,
obtained by Davies and Hinz in [45]; we give a full account of the proof in
[45], and also note an earlier paper by Okazawa [125] in which a more general
inequality is proved and then applied to establishing the Rellich inequality and
the accretiveness of Schrödinger operators in Lp.Rn/, (see Lemmas 3.5 and 3.8
of [125]). Rellich-Sobolev inequalities derived by Frank (private communication,
2007) for convex domains are then discussed and shown to hold on weakly mean
convex domains. Finally, a Rellich inequality in L2.Rn/ with magnetic potentials is
proved by methods reminiscent of those in Rellich’s original proof. These methods
provide a path to studying the eigenvalues of biharmonic operators ��2

A � V ,
where A is a magnetic potential of Aharonov-Bohm type. Bounds for the number of
negative eigenvalues are established which depend upon the magnetic flux Q‰ of A.

© Springer International Publishing Switzerland 2015
A.A. Balinsky et al., The Analysis and Geometry of Hardy’s Inequality,
Universitext, DOI 10.1007/978-3-319-22870-9_6
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6.2 Rellich and Rellich-Sobolev Inequalities in L2

6.2.1 The Rellich Inequality

The following proof of an inequality in L2.Rn/ associated with the Rellich inequality
is much in the spirit of an elegant proof given by Schmincke [133], (and a
generalisation by Bennett in [29]), which recovers Rellich’s inequality for n > 4. It
resembles the Hardy inequality in Theorem 1.2.8 .

Theorem 6.2.1 Let � � R
n for n � 2. If a real-valued function V 2 C2.�/ and

�V.x/ < 0, then for all u 2 C1
0 .�/ and any " > 0,

Z
�

jVj2
j�Vj j�uj2dx � 2"

Z
�

Vjruj2dx C ".1� "/

Z
�

j�Vjjuj2dx: (6.2.1)

Proof Since �V.x/ < 0 in �,

Z
�

j�Vjjuj2dx D �
Z
�

V�juj2dx D �2
Z
�

VŒRe.u�u/C jruj2�dx:

Then

Z
�

j�Vjjuj2dx � 2Œ
1

"

Z
�

jVj2
j�Vj j�uj2dx�

1
2 Œ"

Z
�

j�Vjjuj2dx�
1
2

�2
Z
�

Vjruj2dx

� 1

"

Z
�

jVj2
j�Vj j�uj2dx C "

Z
�

j�Vjjuj2dx (6.2.2)

�2
Z
�

Vjruj2dx

and the conclusion follows. ut
Corollary 6.2.2 If n > ˛ C 4 for some ˛ > �2, then

Z
Rnnf0g

j�uj2
jxj˛ dx � .n C ˛/2.n � ˛ � 4/2

16

Z
Rnnf0g

juj2
jxj˛C4 dx (6.2.3)

for all u 2 C1
0 .R

n n f0g/.
Proof Let V.x/ D jxj�.˛C2/ in Theorem 6.2.1, and so

rV D �.˛ C 2/jxj�˛�4x; �V D �.˛ C 2/.n � ˛ � 4/jxj�.˛C4/:
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Set c.n; ˛/ D .˛ C 2/.n � ˛ � 4/, and observe that �V D �c.n; ˛/jxj�.˛C4/ < 0

for jxj ¤ 0. It follows from (6.2.1) that

R
Rnnf0g

j�uj2
jxj˛ dx � 2c.n; ˛/"

R
Rnnf0g

jruj2
jxj˛C2 dx

Cc.n; ˛/2".1 � "/ R
Rnnf0g

juj2
jxj˛C4 dx:

(6.2.4)

To derive (6.2.3), we first apply the Hardy inequality (1.2.19) with V.x/ D
jxj�.˛C2/ to get that, for ˛ 2 .�2; n � 4/,

Z
Rnnf0g

jruj2
jxj˛C2 dx � .n � ˛ � 4/2

4

Z
Rnnf0g

juj2
jxj˛C4 dx;

and then let " D .n C ˛/=4.˛C 2/ in (6.2.4), which is the choice of " that gives the
maximum right-hand side. ut
Remark 6.2.3 The case ˛ D 0 of (6.2.3) is, of course, the Rellich inequality (6.1.1)
for n > 4. Following the original technique of Rellich, Allegretto proved (6.2.3) in
[6], Corollary 3, but required ˛ � 0 and n � 1Cp

.˛ C 1/.˛ C 3/: That result is a
corollary of Theorem 6.4.1 below; see Remark 6.4.2.

Remark 6.2.4 Note that Corollary 6.2.2 is valid for a different range of values ˛
than Corollary 3 in [6]. For example, Corollary 6.2.2 holds for n D 3 or n D 4 if
˛ 2 .�2; n � 4/, whereas Allegretto’s Corollary 3 does not apply. When n � 5,
Corollary 6.2.2 is applicable for ˛ 2 .�2; n � 4/ and Allegretto requires 0 � ˛ �
�2Cp

.n � 1/2 C 1. Thus, on combining these results we are able to conclude that
for n � 5; (6.2.3) holds for ˛ 2 .�2;�2Cp

.n � 1/2 C 1/. The weighted Rellich
inequality in Lp.Rn/; p 2 .1;1/, corresponding to Corollary 6.2.2 will be given in
Corollary 6.3.4.

In [34], an inequality similar to (6.2.3) is obtained for all u 2 C1
0 .�nf0g/, where

� is a cone fr� W r > 0; � 2 †g, with † a domain with C2 boundary in the unit
sphere. Their inequality holds for all real ˛ and the constant is sharp.

Remark 6.2.5 We shall return to the cases n D 2; 3; and 4 of the Rellich inequality
in Sect. 6.4.2 below. On page 91 in [129], it is proved that when n D 2, the Rellich
inequality still holds, but only for functions u 2 C1

0 .R
2 n f0g/ which also satisfy

Z 2�

0

u.r; �/ cos �d� D
Z 2�

0

u.r; �/ sin �d� D 0: (6.2.5)

This is recovered within the general result proved in Sect. 6.4.
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6.2.2 Rellich-Sobolev Inequalities

In a private communication, Rupert Frank showed how to prove certain refinements
of the Rellich inequality. In order to present these here, we first need a corollary of
the Hardy-type inequality (1.2.19): we recall, for convenience, that for �V � 0 in
the distributional sense, (1.2.19) is

Z
�

j�Vjjuj2dx � 4

Z
�

jrVj2
j�Vj jruj2dx; u 2 C1

0 .�/:

For ˛ ¤ 0, make the substitution, V.x/ D �Œ.˛ C 1/=˛�ı.x/�˛, and for ˛ D 0, let
V.x/ D ln ı.x/: Then, jrVj2 D .˛ C 1/2ı�2.˛C1/, and when�ı � 0,

��V D .˛ C 1/2ı�.˛C2/ C .˛ C 1/ı�.˛C1/.��ı/ � .˛ C 1/2ı�.˛C2/;

whence

Corollary 6.2.6 Let � � R
n, n � 2, be such that �ı � 0 in the distributional

sense. Then, if ˛ > �1,

.˛ C 1/2
Z
�

juj2
ı.x/˛C2 dx � 4

Z
�

jruj2
ı.x/˛

dx; u 2 C1
0 .�/:

This yields

Corollary 6.2.7 Let � � R
n, n � 2, be such that �ı � 0 in the distributional

sense. Then
Z
�

j�uj2dx � 9

16

Z
�

juj2
ı4

dx; u 2 C1
0 .�/; (6.2.6)

Proof We first claim that

Z
�

j�uj2dx D
nX

jD1

Z
�

jr.@ju/j2dx; u 2 C1
0 .�/: (6.2.7)

where @j WD @=@xj. For, with the notation uj D @ju; ujk D @j@ku and ujkl D @j@k@lu,
we have

Z
�

j�uj2dx D
nX

j;kD1

Z
�

ujjukkdx

D
X
jDk

Z
�

jujjj2dx �
X
j¤k

Z
�

ujujkkdx

D
X
jDk

Z
�

jujjj2dx C
X
j¤k

Z
�

ujkujkdx
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and hence (6.2.7). On applying Corollary 6.2.6 twice to (6.2.7), the first time with
˛ D 0 and then with ˛ D 2, the corollary follows. ut
Remark 6.2.8 If � is convex, then we proved in Theorem 2.3.2 that the hypothesis
of Corollary 6.2.7 is satisfied. Also in Corollary 3.7.11, we showed that � being
weakly mean convex with null cut locus is sufficient for the hypothesis to be
satisfied. The weak mean convexity of � was shown in Proposition 2.5.4 to be
equivalent to �ı � 0 in G.�/.

We can also use Corollaries 6.2.6 and 6.2.7 to obtain inequalities which are
analogous to the HSM inequalities of Chap. 4.

Proposition 6.2.9 Let� ¤ R
n; n � 3; be convex with inradius ı0 WD sup� ı < 1.

Then, for all u 2 C1
0 .�/,

Z
�

�
j�uj2 � 9

16

juj2
ı4

�
dx � �20

4ı20

Z
�

juj2
ı2

dx C �40

ı40

Z
�

juj2dx; (6.2.8)

where �0 is the first zero in .0;1/ of J0.x/� 2xJ1.x/:

Proof From (6.2.7) and the Avkhadiev/Wirths result reproduced in Theorem 3.6.12,

Z
�

j�uj2dx �
nX

jD1

�
1

4

Z
�

j@juj2
ı2

dx C �20
ı20

Z
�

j@juj2dx
	

D 1

4

Z
�

jruj2
ı2

dx C �20
ı20

Z
�

jruj2dx

� 9

16

Z
�

juj2
ı4

dx C �20
ı20

�
1

4

Z
�

juj2
ı2

dx C �20
ı20

Z
�

juj2dx
	
;

whence (6.2.8). ut
The assumption that� be convex can be dropped in favour of weak mean convexity
if we use Corollary 3.7.16 instead of the Akhadiev/Wirths theorem.

Proposition 6.2.10 Let� be a weakly mean convex domain in R
n; n � 2, with null

cut locus. Then

Z
�

�
j�uj2 � 9

16

juj2
ı4

�
dx � �.n; �/2

4

Z
�

juj2
ı2

dx C�.n; �/4
Z
�

juj2dx; (6.2.9)

where �.n; �/ D .1=2/ infG ı
�1.��ı/ � 2.n � 1/ inf@� jHj2.

From Corollary 4.3.2, if � ¦ R
n; n � 3; is convex, there exist a constant K such

that

Z
�

�
jruj2 � 1

4

juj2
ı2

�
dx � K

�Z
�

juj 2n
n�2 dx

� n�2
n

(6.2.10)
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for all u 2 C1
0 .�/. From this follows

Proposition 6.2.11 Let � ¦ R
n; n � 5; be convex. Then

Z
�

�
j�uj2 � 9

16

juj2
ı4

�
dx � K

�Z
�

juj2n=.n�4/dx
�.n�4/=n

: (6.2.11)

for all u 2 C1
0 .�/.

Proof The proposition follows from the use of (6.2.7), (6.2.10) and the Sobolev
inequality

�Z
�

juj2n=.n�4/dx
�.n�4/=n

� Cn

nX
jD1

 Z
�

ˇ̌
ˇ̌ @u

@xj

ˇ̌
ˇ̌2n=.n�2/

dx

!.n�2/=n

obtained from (1.3.6) with p D 2n=.n � 2/. ut
A similar inequality to (6.2.11) can be obtained for bounded weakly mean convex
domains from Theorem 4.4.4.

6.3 The Rellich Inequality in Lp.Rn/; n � 2

In [45], Davies and Hinz obtain a Rellich-type inequality in Lp.�/; 1 � p < 1;

when � is a bounded region in a complete Riemann manifold. A consequence of
their result is the inequality

Z
Rn

ju.x/jp

jxjˇ dx � c.d;m; p; ˇ/p
Z
Rn

j�mu.x/jp

jxjˇ�2mp
dx; u 2 C1

0 .R
n n f0g/; (6.3.1)

for 2.1C .m �1/p/ < ˇ < n, with an explicit constant c.d;m; p; ˇ/ which is shown
to be sharp. A special case is the Rellich inequality in Lp.Rn n f0g/ for n > 2p. An
earlier proof of this Rellich inequality was in fact established by Okazawa in [125];
see also [92]. However the proof we shall give is that in [45], because it is more
in line with our overall approach. Okazawa’s main concern is with an analysis of
the operator �� C 1=jxj2 in Lp.Rn/, and determining when it is m-accretive and
m-sectorial in Kato’s sense.

The first lemma is a basic tool in the approach, and is motivated by Theo-
rem 1.2.8.

Lemma 6.3.1 If V � 0, �V < 0, and there is a constant c � 0 such that for all
u 2 C1

0 .�/

c
Z
�

j�Vjjujpdx � p.p � 1/
Z

fx2�;u.x/¤0g
Vjujp�2jruj2dx; (6.3.2)
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then

.1C c/p
Z
�

j�Vjjujpdx � pp
Z
�

Vp

j�Vjp�1 j�ujpdx; u 2 C1
0 .�/: (6.3.3)

If p D 1 then the lemma holds for c D 0.

Proof The first step is to show that we may assume that the functions u are real-
valued. To prove this, we use the following identity from [40]: for all z 2 C,

jzjp D A
Z �

��
jReŒz� cos � C ImŒz� sin � jpd�; A WD

�Z �

��
j cos � jpd�

��1
:

(6.3.4)

It is proved by putting z D r.cos � C i sin �/; r D jzj, and simplifying. Suppose
that (6.3.3) has been proved for real-valued functions. Then, on setting u D u1Ciu2,
we have by (6.3.4), and changing the order of integration,

.1C c/p
Z
�

j�Vjjujpdx

D .1C c/pA
Z �

��

Z
�

j�Vjju1 cos � C u2 sin � jpdxd�

� ppA
Z �

��

Z
�

Vp

j�Vjp�1 j�Œu1 cos � C u2 sin ��jpdxd�;

D pp
Z
�

Vp

j�Vjp�1 j�ujpdx; u 2 C1
0 .�/;

on using (6.3.4) again. The claim is therefore verified, and we assume hereafter that
u is real-valued.

Let " > 0 and set u" WD .juj2 C "2/p=2 � "p. Then 0 � u" 2 C1
0 and

Z
�

j�Vju"dx D �
Z
�

.�V/u"dx D �
Z
�

V�u"dx

D �
Z
�

V
˚
p.p � 2/u2.u2 C "2/.p�4/=2 C p.u2 C "2/.p�2/=2
 jruj2dx

� p
Z
�

Vu.u2 C "2/.p�2/=2�udx:

Hence
Z
�

h
j�Vju" C V

˚
p.p � 2/u2.u2 C "2/.p�4/=2 C p.u2 C "2/.p�2/=2
 ijruj2dx

� p
Z
�

Vjuj.u2 C "2/.p�2/=2j�ujdx:
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We now let " ! 0. The integrand on the right is bounded by V.max juj2 C
1/.p�1/=2 max j�uj, which is integrable since u 2 C1

0 .�/, and so the integral tends
to
R
�

Vjujp�1j�ujdx, by dominated convergence. The integrand on the left is non-
negative and tend to j�Vjjujp C p.p � 1/Vjujp�2jruj2 pointwise, only for u.x/ ¤ 0

when p < 2, otherwise for all x. It follows by Fatou’s lemma that

Z
�

j�Vjjujpdx C
Z

fx2�Iu.x/¤0g
˚
p.p � 1/Vjujp�2jruj2
 dx

� p
Z
�

Vjujp�1j�ujdx;

and on substituting (6.3.2), followed by Hölder’s inequality,

.1C c/
Z
�

j�Vjjujpdx � p
Z
�

Vjujp�1j�ujdx

� p

�Z
�

j�Vjjujpdx
� p�1

p
�Z

�

Vp

j�Vjp�1 j�ujpdx
� 1

p

:

The lemma follows from this. ut
The next lemma meets the requirement (6.3.2).

Lemma 6.3.2 Let p 2 .1;1/. If 0 < V 2 C.�/; �V < 0 and �Vı � 0 for some
ı > 1, then

.ı � 1/
Z
�

j�Vjjujpdx � p2
Z

fx2�;u.x/¤0g
Vjujp�2jruj2dx < 1

for all u 2 C1
0 .�/.

Proof We shall use

0 � �.Vı/ D ıVı�2f.ı � 1/jrVj2 C V�Vg (6.3.5)

and hence

.ı � 1/jrVj2 � Vj�Vj:

Under the conditions imposed on V , this needs to be justified by regularisation.
However, for the application we have in mind, it is sufficient to assume that V 2
C2.�/. From Theorem 1.2.8

.ı � 1/

Z
�

j�Vjjuj2dx � 4.ı � 1/

Z
�

jrVj2
j�Vj jruj2dx
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� 4

Z
�

Vjruj2dx D 4

Z
fx2�Iu.x/¤0g

Vjruj2dx;

(6.3.6)

the last equality following since fx 2 �I u.x/ D 0; jru.x/j ¤ 0g is of measure
zero. The lemma is therefore proved in the case p D 2.

For p ¤ 2, put v" D .u2 C "2/p=4 � "p=2, and let " ! 0. Since 0 � v" � juj, the
left-hand side of (6.3.6), with u replaced by v", tends to .ı � 1/

R
�

j�Vjjujpdx by
dominated convergence. Also,

jrv".x/j2V.x/ D fp

2
u.x/.u2.x/C "2/.p�4/=4ru.x/g2V.x/

! p2

4
ju.x/jp�2jru.x/j2V.x/

if u.x/ ¤ 0. It follows as in the proof of Lemma 6.3.1, through the use of Fatou’s
lemma, that the right-hand side of (6.3.6) tends to

Z
fx2�Iu.x/¤0g

Vjujp�2jruj2dx

and this completes the proof. ut
By Lemma 6.3.2, we may put c D Œ.p � 1/=p�.ı � 1/ in Lemma 6.3.1 to obtain

Theorem 4 in [45], which is an extension of the case p D 2 in [29], Theorem 5; thus

Theorem 6.3.3 If 0 < V 2 C.�/ with �V < 0 and �.Vı/ � 0 for some ı > 1,
then

Z
�

j�Vjjujpdx � p2p

Œ.p � 1/ı C 1�p

Z
�

Vp

j�Vjp�1 j�ujpdx;

for all u 2 C1
0 .�/.

The choice V.x/ D jxj�.˛�2/; ı D .n � 2/=.˛ � 2/ yields

Corollary 6.3.4 Let 2 < ˛ < n. Then, for all u 2 C1
0 .R

n n f0g/,
Z
Rn

ju.x/jp

jxj˛ dx � c.n; p; ˛/p
Z
Rn

j�u.x/jp

jxj˛�2p
dx; (6.3.7)

where

c.n; p; ˛/ D p2

.n � ˛/Œ.p � 1/n C ˛ � 2p�
: (6.3.8)
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The special case of Rellich’s inequality is given prominence and extended to
functions in the Sobolev space W2;p.Rn/ D W1;p

0 .Rn/; this means, in particular, that
the inequality holds for all functions in C1

0 .R
n/.

Corollary 6.3.5 Let 1 < p < 1 and n > 2p. Then, for all u 2 W1;p.Rn/

Z
Rn

ju.x/jp

jxj2p
dx � c.n; p/p

Z
Rn

j�u.x/jpdx; (6.3.9)

where

c.n; p/ D p2

n.p � 1/.n � 2p/
(6.3.10)

is sharp.

Proof We first note that C1
0 .R

n n f0g/ is dense in W2;p.Rn/. To see this let 
 2
C1
0 Œ0; 1/ be such that 
.r/ D 1; for 0 � r � 1=2, and 0 for r > 1=2, and set

".r/ WD 
.r="/, where " > 0. Then, if u 2 C1

0 .R
n/, we have that Œ1 � 
"�u 2

C1
0 .R

n n f0g/ and

k
"ukW2;2.Rn/ ! 0

as " ! 0 if n > 2p; this establishes the assertion.
It remains to show that c.n; p/ is sharp. Consider u.x/ D jxj�� near the origin

with 0 < � < n�2p
p . Then u 2 W2;p.B1/ for B1 WD B1.0/, the unit ball in R

n. A
calculation gives

j�u.x/j D �.n � � � 2/jxj�2u.x/:

In fact, for � D n�2p
p

j�u.x/j D c.n; p/�1jxj�2ju.x/j; x ¤ 0:

Let �k WD n�2p� 1
k

p and uk.x/ WD jxj��k�B1 2 W2;p.B1/. Then,

c.n; p/�1 � infu2W2;p.Rn/
k�ukp

kjxj�2ukp
� infk2N k�ukkp

kjxj�2ukkp

� limk!1 �k.n � �k � 2/ D c.n; p/�1;

implying that c.n; p/ is sharp. ut
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6.4 The Rellich Inequality with Magnetic Potentials

6.4.1 A General Theorem

We proved in Sect. 1.2.5 that there is no valid Hardy inequality in Ln.Rn/. In the
case n D 2, it is a consequence of the fact that, for any � > 0, cos.� ln jxj/ and
sin.� ln jxj/ are linearly independent, oscillatory solutions of

��' D �2

jxj2 '; x 2 R
2:

The function  .x/ WD �A.x/ sin.� ln jxj/, where �A is the characteristic function
of the annulus A WD fe�=� < jxj < e2�=�g, lies in the closure of C1

0 .R
2 n f0g/ in

the W1;2.R2/ norm, and so if Hardy’s inequality is valid, it must be satisfied by  .
However,

R
R2
Œjr .x/j2 � �2

j .x/j2
jxj2 �dx

D R
R2
Œ�� sin.� ln jxj/� �2

jxj2 sin.� ln jxj/� .x/dx D 0;
(6.4.1)

which is a contradiction since � can be arbitrarily small.
For any magnetic potential A W R

n ! R
n in L2loc.R

nIRn/, the diamagnetic
inequality (5.3.2) applied to the Hardy inequality yields

C
Z
Rn

ju.x/j2
jxj2 dx �

Z
Rn

j.r C iA/u.x/j2dx; u 2 C1
0 .R

n/; (6.4.2)

with C D .n�2/2=4, and therefore no non-trivial information for n D 2 is gathered.
However, we saw in Sect. 5.5 that if A is an Aharonov-Bohm magnetic potential
with non-integer flux, there is a valid inequality (6.4.2) with C > 0 when n D 2. To
summarize Theorem 5.5.1, the magnetic field B D curlA D 0 in R

2 n f0g, and A is
gauge equivalent to

A.r; �/ WD ‰

r
.� sin �; cos �/; ‰ WD ‰.A/; (6.4.3)

where x D .r cos �; r sin �/ 2 R
2 n f0g, and ‰.A/ is the flux of A. One then has the

Laptev-Weidl inequality

Z
R2

ju.x/j2
jxj2 dx � dist.‰;Z/2

Z
R2

j.r C iA/u.x/j2dx; (6.4.4)

with sharp constant. If ‰ 2 Z, the magnetic Laplacian ��A is unitarily equivalent
to ��, as operators in L2.R2/, and there is no valid inequality.
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Motivated by the work of Laptev and Weidl [99], Rellich-type inequalities for
magnetic Laplacians ��A with magnetic potentials having similar characteristics
to those of the Aharonov-Bohm potential were obtained in [54]. The main theorem
established makes it possible to analyse the Rellich inequality in the cases n D 2

and n D 4 when (6.1.1) is trivial.
The theorem and proof that follow uncover the basic elements of Rellich’s

approach in [129], Theorem 1, p. 91, and is based on [54]. Polar coordinates in
R

n will be denoted by .r; !/ with r WD jxj, ! D x=jxj for x 2 R
n. We shall denote

the L2.Rn/ norm by k � k.

Theorem 6.4.1 Let ƒ! be a non-negative, self-adjoint operator with domain
D.ƒ!/ � L2.Sn�1I d!/; whose spectrum is discrete, consisting of isolated eigen-
values �m; m 2 I, for some countable index set I. Let

Lr WD � @2

@r2
� n � 1

r

@

@r
(6.4.5)

and define the operator D WD Lr C 1
r2
ƒ! on its domain in L2.Rn/ given by

D0 WD ff 2 C1
0 .R

n n f0g/ W f .r; �/ 2 D.ƒ!/ for r > 0;Df 2 L2.Rn/g:

Then, for all f 2 D0 such that j � j�˛=2Df 2 L2.Rn/, we have that

Z
Rn

jDf .x/j2
jxj˛ dx � C.n; ˛/

Z
Rn

j f .x/j2
jxj˛C4 dx; (6.4.6)

where

C.n; ˛/ D inf
m2I

�
�m C

�
n C ˛

2

��
n � ˛ � 4

2

�	 2
: (6.4.7)

Remark 6.4.2 If D D ��; ƒ! is the Laplace-Beltrami operator on S
n�1. In that

case �m D m.m C n � 2/, m 2 I D f0; 1; : : : g, and (6.4.6) reduces to

Z
Rn

j�f j2
jxj˛ dx � C.n; ˛/

Z
Rn

j f .x/j2
jxj˛C4 dx;

for f 2 C1
0 .R

n n f0g/ and ˛ 2 R. Hence, with ˛ D 0,

Z
Rn

j�f j2dx � C.n; 0/
Z
Rn

j f .x/j2
jxj4 dx;
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for f 2 C1
0 .R

n n f0g/, where

C.2; 0/ D 0; C.3; 0/ D 9

16

and

C.n; 0/ D
�

n.n � 4/
4

�2
I

Rellich’s inequality is therefore recovered. Also Lemma 2 of Allegretto [6] is
recovered:

C.n; ˛/ � .n C ˛/2.n � ˛ � 4/2

16

for ˛ � 0 and n � 1Cp
.3C ˛/.1C ˛/.

Proof of Theorem 6.4.1 Since the spectrum of ƒ! is assumed to be discrete, its
normalized eigenvectors um; m 2 I (with the eigenvalues f�mg repeated according
to multiplicity) form an orthonormal basis of L2.Sn�1I d!/. For f 2 D0, set

Fm.r/ WD
Z
Sn�1

f .r; !/um.!/d!: (6.4.8)

Then Fm 2 C1
0 .RC/ and, on using Parseval’s identity, we obtain

X
m2I

kLrFmk2L2.RC;rn�1dr/ D
Z 1

0

X
m2I

jLrFm.r/j2rn�1dr

D kLrf k2 < 1; (6.4.9)

with

LrFm.r/ D
Z
Sn�1

Lrf .r; !/um.!/d!:

Also, Lrf ; Df 2 L2.Rn/ imply that j � j�2ƒ! f 2 L2.Rn/ and

X
m2I

�2m

Z 1

0

jFm.r/j2rn�5dr D
Z 1

0

X
m2I

�2mjFm.r/j2rn�5dr

D kj � j�2ƒ! f k2 < 1: (6.4.10)
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In fact, if j � j�˛=2Df 2 L2.Rn/, then j � j�2�˛=2ƒ! f 2 L2.Rn/ and

X
m2I

Z 1

0

jFm.r/j2rn�˛�5dr D kj � j�2�˛=2f k2 < 1; (6.4.11)

X
m2I

Z 1

0

jLrFm.r/j2rn�˛�1dr D kj � j�˛=2Lrf k2 < 1; (6.4.12)

X
m2I

�2m

Z 1

0

jFm.r/j2rn�˛�5dr D kj � j�2�˛=2ƒ! f k2 < 1: (6.4.13)

To prove the theorem, we start with

Z
Rn

jDf j2 dx
jxj˛ D

Z
Rn

jLrf j2 dx
jxj˛ C 2Re

�Z
Rn

Lrfƒ! f
dx

jxj˛C2

�

C
Z
Rn

jƒ! f j2 dx
jxj˛C4 : (6.4.14)

The choices p D 2; " D t=2C1 in Theorem 1.2.1 lead to the Hardy-type inequality

Z 1

0

jF0.r/j2rtC2dr �
�

t C 1

2

�2 Z 1

0

jF.r/j2rtdr; t 2 R; (6.4.15)

for all F 2 C1
0.0;1/. On integrating by parts, we obtain

R1
0

jLrFm.r/j2rn�˛�1dr

D R1
0
.jF00

m.r/j2 C 2.n�1/
r ReŒF00

mF0
m�

C .n�1/2
r2

jF0
m.r/j2/rn�˛�1dr

� �
n�˛�2
2

�2 R1
0

jF0
m.r/j2rn�˛�3dr

�.n � 1/.n � ˛ � 2/ R1
0

jF0
m.r/j2rn�˛�3dr

C.n � 1/2
R1
0 jF0

m.r/j2rn�˛�3dr

D
h
.n � 1/.˛ C 1/C �

n�˛�2
2

�2i R1
0

jF0
m.r/j2rn�˛�3dr

� �
nC˛
2

�2 � n�˛�4
2

�2 R1
0

jFm.r/j2rn�˛�5dr:

Thus, from (6.4.11) and (6.4.12),

Z
Rn

jLrf j2
jxj˛ dx �

�
n C ˛

2

�2 �n � ˛ � 4

2

�2 Z
Rn

j f j2
jxj˛C4 dx: (6.4.16)
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Since
Z
Sn�1

Lrf .r; !/um.!/d! D LrFm.r/

and
Z
Sn�1

ƒ! f .r; !/um.!/d! D �mFm.r/;

it follows from Parseval’s identity that in (6.4.14),

Z
Rn

Lrfƒ! f

jxj˛C2 dx D
Z 1

0

X
m2I

�mFm.r/LrFm.r/r
n�˛�3dr: (6.4.17)

Integration by parts yields

2Re
hR1
0

Fm.r/LrFm.r/rn�˛�3dr
i

D 2Re
�R1
0 F0

m

�
F0

mrn�˛�3 C .n � ˛ � 3/Fmrn�˛�4� dr
�

C.n � 1/.n � ˛ � 4/
R1
0

jFmj2rn�˛�5dr

D 2
R1
0

jF0
mj2rn�˛�3dr

C˚ � .n � ˛ � 3/C .n � 1/


.n � ˛ � 4/

R1
0

jFmj2rn�˛�5dr

�
n
2
�

n�˛�4
2

�2 C .n � ˛ � 4/.˛ C 2/
o R1

0
jFmj2rn�˛�5dr

.by (6.4.15)/;

D 1
2
.n � ˛ � 4/.n C ˛/

R1
0

jFmj2rn�˛�5dr:

This gives in (6.4.17)

2Re

"Z
Rn

Lrfƒ! f

jxj˛C2 dx

#
�1
2
.n � ˛ � 4/.n C ˛/

�
X
m2I

�m

Z 1

0

jFm.r/j2rn�˛�5dr: (6.4.18)

Finally in (6.4.14), by (6.4.13),

Z
Rn

jƒ! f j2
jxj˛C4 dx D

X
m2I

�2m

Z 1

0

jFm.r/j2rn�˛�5dr: (6.4.19)
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The theorem follows on substituting (6.4.16), (6.4.18) and (6.4.19) in (6.4.14) and
noting (6.4.11). ut

6.4.2 An Inequality for D D ��A

We now apply Theorem 6.4.1 to the magnetic Laplacian associated with a magnetic
potential A which is of Aharonov-Bohm type when n D 2, and has analogous
characteristics for other values of n. In order to handle the case n D 4, it will be
necessary to discuss the case n D 3, which we sketch, referring the reader to [54]
for further details. For values of n > 4 and higher order Rellich inequalities, see
[142]. The anomalous n D 2 and n D 4 results for the Rellich inequality (6.1.1) will
be consequences of the main theorem.

The Case n D 2

The magnetic potential A is now assumed to satisfy (6.4.3), with non-integer flux
‰. With er WD .cos �; sin �/ and e� WD .� sin �; cos �/; we have

rA WD r C iA D er
@

@r
C e�

1

r

�
@

@�
C i‰

�
(6.4.20)

and

��A D � @2

@r2
� 1

r

@

@r
C 1

r2

�
i
@

@�
�‰

�2
: (6.4.21)

Thus, in the notation of Theorem 6.4.1, ƒ! D ƒ� is the non-negative self-adjoint
operator in L2.0; 2�/ defined byƒ� D K2

� , where

K�u.�/ D i
du

d�
�‰u.�/ (6.4.22)

with domain

˚
u W u 2 ACŒ0; 2��; u.0/ D u.2�/



;

where ACŒ0; 2�� denotes the set of functions which are absolutely continuous on
Œ0; 2��. Clearly K� has eigenvalues m�‰;m 2 Z, and the corresponding normalized
eigenfunctions are

um.�/ D 1p
2�

e�im� ; (6.4.23)
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which constitute an orthonormal basis of L2.S1/.
For m 2 Z;U W f 7! e�im� f is unitary on L2.R2/ and

U�1rAU D r QA;

where QA D .‰�m/
r e� : The magnetic potentials A; QA are gauge equivalent and their

fluxes differ by m. Therefore we may assume that ‰ 2 Œ0; 1/:
Since D0 D C1

0 .R
2 n f0g/, we have from Theorem 6.4.1

Corollary 6.4.3 For all f 2 C1
0 .R

2 n f0g/,
Z
R2

j�Af .x/j2 dx
jxj˛ � C.2; ˛/

Z
R2

j f .x/j2 dx
jxj˛C4 ; (6.4.24)

where

C.2; ˛/ D inf
m2Z

�
.m C‰/2 � .˛ C 2/2

4

	 2
: (6.4.25)

If ‰ … Z (‰ 2 .0; 1/ without loss of generality), we have

C.2; 0/ D minf.‰2 � 1/2; ‰2.‰ � 2/2g
D
�
.‰2 � 1/2 if ‰ 2 Œ 1

2
; 1/;

‰2.‰ � 2/2 if ‰ 2 Œ0; 1
2
/:

(6.4.26)

Remark 6.4.4 If ‰ 2 Z, then C.2; 0/ D 0. However, if F1 D F�1 D 0 in (6.4.8),
i.e.,

Z 2�

0

f .r; �/ cos �d� D
Z 2�

0

f .r; �/ sin �d� D 0;

then the infimum in (6.4.25) is over m 2 Z n f�1; 1g and this gives C.2; 0/ D 1:

Hence, Rellich’s result in ([129], p. 91) for n D 2, as noted in Remark 6.2.5, is
recovered.

The Case n D 3

In spherical polar coordinates, we define the orthonormal vectors

e0 WD x
jxj D .cos �1; sin �1 cos �2; sin �1 sin �2/;

e1 WD .� sin �1; cos �1 cos �2; cos �1 sin �2/;
e2 WD .0;� sin �2; cos �2/;
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where r D jxj 2 .0;1/, �1 2 .0; �/, and �2 2 .0; 2�/. We now take

A WD 1

r sin �1
 .�2/e2;  2 L1.0; 2�/;  .0/ D  .2�/;

on R
3 n L3, where L3 D f.r; �1; �2/ W r sin �1 D 0g. It is in Poincaré gauge and

curlA D 0 in R
3 n L3.

Then

rA D r C iA D e0
@

@r
C e1

1

r

@

@�1
C e2

1

r sin �1

�
@

@�2
C i .�2/

�
(6.4.27)

and

��A D � @2

@r2
� 2

r

@

@r
C 1

r2
ƒ.�1; �2/; (6.4.28)

where

ƒ.�1; �2/ D � @2

@�21
� cot �1

@

@�1
C 1

sin2 �1
K2
�2

(6.4.29)

and

K�2 D i
@

@�2
�  .�2/: (6.4.30)

The self-adjoint operator K�2 in L2.S1/ has eigenvalues k � ‰, k 2 Z, with ‰ WD
1
2�

R 2�
0
 .�2/d�2, and corresponding eigenvectors

uk.�2/ D 1p
2�

exp

"
�i

 
�2.k �‰/C

Z �2

0

 .	/d	

!#

which form an orthonormal basis of L2.S1/. Identifying L2.S2/with
L

k2Z
�
L2.0; �I

sin �1d�1
�Nfukg

�
, we shall take the operatorƒ! of Theorem 6.4.1 to be

ƒ! D
M
k2Z

�
ƒk.�1/

O
Ik

�
; (6.4.31)

where Ik denotes the identity on fukg and ƒk.�1/ is a self-adjoint realisation of the
operatorƒ0

k.�1/ defined on C1
0 .0; �/ by

ƒ0
k.�1/u D

�
� d2

d�21
� cot �1

d

d�1
C .k �‰/2

sin2 �1

�
u: (6.4.32)
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Before we are able to apply Theorem 6.4.1 we must first make a suitable choice of
the operatorsƒk.�1/ for all k 2 Z and determine their eigenvalues. The information
required is contained in the next two lemmas. They require knowledge of the
following topics:

• the Hermann Weyl limit point/ limit circle characterisation of a singular
formally self-adjoint second-order differential expression L, say, defined on an
interval .a; b/;

• the essential self-adjointness of an operator realisation of L in L2.a; b/;
• the Friedrichs extensions defined by quadratic forms associated with L.

A brief description of these notions follows as an aid to the understanding of the
lemmas, but see [48] or [83] for further details.

The differential expression L is in the limit-point case at the end point a if, for any
� 2 CnR, there exists a unique (up to constant multiples) solution u of .L��/u D 0

which is square integrable in a neighbourhood of a, i.e., u 2 L2.a;X/ for X 2 .a; b/.
Otherwise, all solutions are in L2.a;X/ for all � 2 C, and this constitutes the limit-
circle case. The end-point b is characterised similarly. The operator T defined by
L on C1

0 .a; b/ is said to be essentially self-adjoint if its closure is self-adjoint, and
this is so if and only if the end points a; b are both in the limit-point case. If T
is not essentially self-adjoint, other ways have to be found to generate self-adjoint
operators from T. A favourite candidate is the Friedrichs extension determined by
the quadratic form associated with T; see Sect. 1.5. The quadratic form has to be
semi-bounded for the Friedrichs extension to be defined, a requirement which is met
in the application made here, in fact T � 0. In the case of T not being essentially
self-adjoint, the domains of self-adjoint extensions are determined by boundary
conditions at the end points of the interval .a; b/.

Lemma 6.4.5 For � 2 Œ0;1/, the associated Legendre equation

d2u

d�2
C cot �

du

d�
C
�
� � �2

sin2 �

�
u D 0; � 2 C; (6.4.33)

is in the limit-circle case at 0 and � if � 2 Œ0; 1/ and in the limit-point case at 0 and
� otherwise.

Let

D� WD
n
u W u; sin �

du

d�
2 ACloc.0; �/; u;L�u 2 L2..0; �/I sin �d�/

o
; (6.4.34)

where

L� WD � d2

d�2
� cot �

d

d�
C �2

sin2 �
;

and denote the restriction of L� to C1
0 .0; �/ by ƒ0

�. Then ƒ0
� is non-negative. It is

essentially self-adjoint if and only if � 2 Œ1;1/ and for � 2 Œ0; 1/ its Friedrichs
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extensionƒ� is the realisation of L� on the following domains:

• if � 2 .0; 1/,

D.ƒ�/ D ˚
u W u 2 D�; sin� � u.�/ ! 0 as � ! 0 and �


I (6.4.35)

• if � D 0,

D.ƒ�/ D
n
u W u 2 D�; u.�/=j ln.cot

�

2
/j ! 0 as � ! 0 and �

o
I (6.4.36)

• if � 2 Œ1;1/;ƒ� is the closure of ƒ0
� and

D.ƒ�/ D D�: (6.4.37)

For � 2 Œ0; 1/;ƒ� � �.�C 1/.

Proof On substituting x D cos � , (6.4.33) becomes

��u WD � d

dx

˚
.1 � x2/

du

dx


C �2

1 � x2
u D �u; x 2 .�1; 1/ (6.4.38)

and L2..0; �/I sin �d�/ becomes L2.�1; 1/: Denote the restriction of �� to
C1
0 .�1; 1/ by T0�. Clearly T0� � 0.

Define the functions

f .x/ D .1 � x2/�=2

g.x/ D f .x/h.x/; h.x/ WD
ˇ̌
ˇ̌
Z x

0

.1 � t2/�1��dt

ˇ̌
ˇ̌ :

It is shown in [54] that f ; g are respectively principal and non-principal solutions
of the equation ��u D �.� C 1/u. If � � 1, g is proved to be neither in L2.�1; 0/
nor L2.0; 1/; hence both end-points 
1 are in the limit-point case and consequently
T0� is essentially self-adjoint; denote the closure of T0� by T�. For � 2 Œ0; 1/, f and g
are both in L2.�1; 1/ and therefore the two end-points are in the limit-circle case. To
characterise the Friedrichs extension T� of T0�, Rosenberger’s Theorem 3 in [130] is
applied. Results of Kalf in [82] are used to prove the final resultƒ� � �.�C1/ ut
Lemma 6.4.6 The operator T� in the proof of Lemma 6.4.5 has a discrete spectrum
consisting of eigenvalues


j.�/ D �
j � ��� j C 1 � �

�
; j 2 Z

0

; (6.4.39)

where Z
0 D fj 2 Z W . j � �/. j C 1 � �/ � 0g:



6.4 The Rellich Inequality with Magnetic Potentials 233

Proof For any � 2 C n R, there exist solutions  1; 2 of T�u D �u which satisfy
 1 2 L2.�1; 0/;  2 2 L2.0; 1/, and which are unique, up to constant multiples.
These are so-called Titchmarsh-Weyl solutions. The spectrum of T� is discrete, the
eigenvalues being the zeros of the Wronskian  2 0

1 �  1 
0
2. The lemma is proved

with the help of asymptotic formulae for the Titchmarsh-Weyl solutions and their
first derivatives obtained from [26]. We refer to [54], Lemma 2 for details. ut
Corollary 6.4.7 For all f 2 C1

0 .R
3 n L3/; we have

Z
R3

j�Af .x/j2 dx
jxj˛ � C.3; ˛/

Z
R3

j f .x/j2 dx
jxj˛C4 ; (6.4.40)

where

C.3; ˛/ WD inf
m2Z0

�
.m �‰/.m �‰ C 1/� .3C ˛/.1C ˛/

4

	 2
; (6.4.41)

and Z
0 D fm 2 Z W .m �‰/.m �‰ C 1/ � 0g:

Proof We may clearly suppose that j � j�˛=2�Af 2 L2.R3/: Then ƒ! f .r; !/ D
ƒ.�1; �2/f .r; !/ 2 L2.R3/ and ƒ.�2; �2/f .r; !/ 2 L2.S2/ for all r 2 .0;1/: If
ƒk.�1/ denotes provisionally the formal operator in (6.4.32) and

Fk.r; �1/ WD
Z 2�

0

f .r; �1; �2/uk.�2/d�2;

where the uk are the functions in (6.4.23), then we have

Z 2�

0

jƒ.�1; �2/f .r; �1; �2/j2d�2 D
X
k2Z

jƒk.�1/Fk.r; �1/j2:

Hence, for any k 2 Z and r 2 .0;1/;ƒk.�1/Fk.r; �1/ 2 L2..0; �/I sin �1d�1/: Since
Fk.r; �/ 2 L2..0; �/I sin �1d�1/ and the boundary conditions given in Lemma 6.4.5
are satisfied, it follows that Fk.r; �/ lies in the domain of the operator ƒk.�1/ and
f .r; �/ 2 D.ƒ!/:

From Lemmas 6.4.5 and 6.4.6 the eigenvalues of the operatorƒk in (6.4.31) are


j.k/ D . j � jk �‰j/. j C 1 � jk �‰j/; (6.4.42)

for j 2 Z such that 
j.k/ � 0: Denote the corresponding normalised eigenvectors by
Pj;k.�1I‰/. Then

Yj;kI‰.�1; �2/ WD Pj;k.�1I‰/uk.�2/; j; k 2 Z;
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are the eigenvectors of ƒ! corresponding to the eigenvalues 
j.k/, and form an
orthonormal basis of L2.S2/. The corollary follows from Theorem 6.4.1. ut
Remark 6.4.8 When ˛ D 0 and ‰ D 0, (6.4.40) holds on C1

0 .R
3 n f0g/ and

C.3; 0/ D 9
16

. Corollary 6.4.7 therefore gives the Rellich inequality in this case,
and recovers the constant obtained by Rellich [129], Theorem 1, p. 91. Note also
that C.3; 0/ D 0 when ‰ D 1=2:

The Case n D 4

In this case we define the orthonormal vectors

e0 D x
jxj D .cos �1; sin �1 cos �2; sin �1 sin �2 cos �3; sin �1 sin �2 sin �3/

e1 D .� sin �1; cos �1 cos �2; cos �1 sin �2 cos �3; cos �1 sin �2 sin �3/
e2 D .0;� sin �2; cos �2 cos �3; cos �2 sin �3/
e3 D .0; 0;� sin �3; cos �3/;

where �1; �2 2 .0; �/; �3 2 .0; 2�/. In this case,

r D e0
@

@r
C e1

�
1

r

@

@�1

�
C e2

�
1

r sin �1

@

@�2

�
C e3

�
1

r sin �1 sin �2

@

@�3

�
:

We now take

A WD 1

r sin �1 sin �2
 .�3/e3; ‰ 2 L1.0; 2�/;  .0/ D  .2�/;

(6.4.43)

in R
4 n L4, where L4 WD fx D .r; �1; �2; �3/ W r sin�1sin�2 D 0g. We then have

��A D Lr C 1

r2
ƒ

for Lr defined in (6.4.5), where

ƒ D � @2

@�21
� 2 cot�1

@

@�1
C 1

sin2 �1

(
� @2

@�22
� cot �2

@

@�2
C K2

�3

sin2 �2

)
(6.4.44)

with

K�3 WD i
@

@�3
�  .�3/:
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On repeating the procedure described in the case of n D 2 and using the same
notation, we take ƒ! to be

ƒ! D
M
j;k2Z

�
ƒj;k.�1/

O
Ij;k

�
; (6.4.45)

whereƒj;k.�1/ is the self-adjoint operator generated by

ƒj;k.�1/ D � @2

@�21
� 2 cot �1

@

@�1
C 
j.k/

sin2 �1
(6.4.46)

in L2..0; �/I sin2 �1d�1/. The operator ƒj;k.�1/ is again chosen to be the Friedrichs
extension of the operator defined on C1

0 .0; �/: To apply Theorem 6.4.1 we need

Lemma 6.4.9 The Friedrichs extension of the operator ƒj;k.�1/
ˇ̌
C1

0 .0;�/
in

L2..0; �/I sin2 �1d�1/ has eigenvalues

�`. j; k/ D .`�Œ
j.k/C1=4� 12 /.`�Œ
j.k/C1=4� 12 C1/� 3
4
; ` 2 Z

00 (6.4.47)

where 
j.k/ is given by (6.4.42) and Z
00 WD f` 2 Z W �`. j; k/ � 0g.

Proof On substituting x D cos �1, the equationƒj;k.�1/u D �u becomes

.1 � x2/
d2u

dx2
� 3x

du

dx
C
�
� � 
j.k/

1 � x2

�
u D 0:

Further, set w D .1 � x2/
1
4 u to obtain

.1 � x2/
d2w

dx2
� 2x

dw

dx
C
 
�C 3

4
� 
j.k/C 1

4

1 � x2

!
w D 0 (6.4.48)

with L2.�1; 1/ for the underlying Hilbert space. The problem is therefore reduced
to that for (6.4.38) with � C 3

4
instead of � and 
j.k/ C 1

4
for �2, and the lemma

follows from Lemma 6.4.6. ut
From (6.4.42), 
j.k/ D . j � jk �‰j/. j C 1 � jk �‰j/, which implies that


j.k/C 1

4
D
�

j � jk �‰j C 1

2

�2
:
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Thus, from (6.4.47), �`. j; k/ D .`� j C jk �‰j/2 � 1 if j � jk �‰j C 1=2 � 0 and
�`. j; k/ D .`C j � jk �‰j C 1/2 � 1 otherwise. These can be enumerated as

�m D .m �‰/2 � 1; m 2 Z
0;

where Z0 WD fm W .m �‰/2 � 1g.
It follows by an argument similar to that in the proof of Corollary 6.4.7 that for

any f 2 C1
0 .R

4 n f0g/ with �Af 2 L2.R4/, we have f .r; �/ 2 D.ƒ!/: Hence, from
Theorem 6.4.1,

Corollary 6.4.10 Let f 2 C1
0 .R

4 n L4/: Then

Z
R4

j�Af .x/j2 dx
jxj˛ � C.4; ˛/

Z
R4

j f .x/j2 dx
jxj˛C4 (6.4.49)

where

C.4; ˛/ WD inf
m2Z0

( �
.m �‰/2 � 1 � ˛.˛ C 4/

4

�2)
;

and Z
0 WD fm 2 Z W .m �‰/2 � 1g. In particular, when ˛ D 0 and ‰ 2 .0; 1/;

C.4; 0/ D minfŒ.1 �‰/2 � 1�2; Œ.�2 �‰/2 � 1�2g > 0:

When ‰ D 0, (6.4.49) is satisfied on C1
0 .R

4 n f0g/. The inequality is trivial if
C.4; 0/ D 0, but if F1 D F�1 D 0 (see (6.4.8)), then the infimum is attained for
m D ˙2, giving C.4; 0/ D 9; which is an analogue for n D 4 of the result for n D 2

in Remark 6.4.4.

6.5 Eigenvalues of a Biharmonic Operator
with an Aharonov-Bohm Magnetic Field

We now apply results from the previous section to give bounds for the number of
eigenvalues of biharmonic operators given formally by�2

A � V , with the Aharonov-
Bohm type magnetic potential A considered there. In particular, upper bounds of
Cwikel-Lieb-Rosenblum type will be obtained; cf. [55].

6.5.1 Some Inequalities

The following inequalities play a pivotal roll in the subsequent analysis.
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Theorem 6.5.1 For D and D0 defined in Theorem 6.4.1

kDf k2 C max
m

f�m.2 � �m/g
R
Rn

j f .x/j2
jxj4 dx

� sup
r2.0;1/

frn�2 R
Sn�1 j @f

@r j2d! C 2 min
m

f�mgrn�4 R
Sn�1 j f j2d!g (6.5.1)

for f 2 D0.

Proof For Lr given by (6.4.5) and Fm.r/ by (6.4.8), we have, on using Parseval’s
identity, that for all f 2 D0,

Z
Rn

jDf j2dx

D
Z
Rn

jLrf j2dx C 2ReŒ
Z
Rn

Lrfƒ! f
dx
jxj2 �

C
Z
Rn

jƒ! f j2 dx
jxj4 (6.5.2)

D
X

m

f
Z 1

0

jLrFmj2rn�1dr C 2ReŒ�m

Z 1

0

FmLrFmrn�3dr�

C�2m
Z 1

0

jFm.r/j2rn�5drg

DW
X

m

fI1 C 2�mI2 C �2mI3g:

It follows that

I1;m D R1
0

h
jF00

mj2 C 2 n�1
r RefF00

mF0
mg C .n�1/2

r2
jF0

mj2
i

rn�1dr

D R1
0

�jF00
mj2 C n�1

r2
jF0

mj2� rn�1dr;

I2;m D R1
0

�jF0
mj2r�2 C .n � 4/jFmj2r�4� rn�1dr;

and

I3;m D
Z 1

0

jFmj2
r4

rn�1dr:

Thus,

kDf k2 D P
m

˚ R1
0

�jF00
mj2 C n�1C2�m

r2
jF0

mj2 C 2.n�4/�mC�2m
r4

jFmj2�rn�1dr


:

(6.5.3)
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Since Fm 2 C1
0 .0;1/,

2Re
Z r

0

tn�4Fm.t/F
0
m.t/dt D rn�4jFm.r/j2 � .n � 4/

Z r

0

tn�5jFm.t/j2dt

and

2Re
Z r

0

tn�2F0
m.t/F

00
m.t/dt D rn�2jF0

m.r/j2 � .n � 2/
Z r

0

tn�3jF0
m.t/j2dt;

which imply that

rn�4jFm.r/j2 �
Z r

0

jF0
m.t/j2tn�3dt C .n � 3/

Z r

0

tn�5jFm.t/j2dt

and

rn�2jF0
m.r/j2 �

Z r

0

jF00
m.t/j2tn�1dt C .n � 1/

Z r

0

tn�3jF0
m.t/j2dt:

By substituting these inequalities into (6.5.3) and using Parseval’s identity, we may
conclude that, for 0 < r < 1,

kDf k2 � P
m

˚
rn�2jF0

m.r/j2 C 2�mrn�4jFm.r/j2

C R1
0

�m.�m�2/
r4

jFm.r/j2rn�1dr



� rn�2 R
Sn�1 j @f

@r j2d! C 2 min
m

f�mgrn�4 R
Sn�1 j f j2d!

�max
m

f�m.2 � �m/g
R
Rn

j f .x/j2
jxj4 dx;

whence (6.5.1). ut
Corollary 6.5.2 For C.n; ˛/ defined in (6.4.7) and all f 2 D0,




rn�2k @f
@r kL2.Sn�1/ C 2 min

m
f�mgrn�4k f kL2.Sn�1/





L1.0;1/

� kDf k2 C max
m

f�m.2 � �m/gkjxj�2f k2

�
�
1C maxmf�m.2��m/g

C.n;0/

�
kDf k2;

(6.5.4)

if (for the last inequality),

C.n; 0/ WD inf
m2If�m C n.n � 4/

4
g2 ¤ 0 (6.5.5)

and maxmf�m.2 � �m/g � 0.
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Proof The proof follows from (6.4.6) and Theorem 6.5.1. ut
Note that maxf�m.2 � �m/g � 1, with equality attained only if some �m D 1. In

particular, when n D 4 and min
m
�m > 0, then

kk f kL2.S3/kL1.0;1/ � CkDf k2

for a positive constant C. Hence, for radial f 2 D0, it follows that f 2 L1.0;1/

We shall assume that n D 2; 3,or 4; in order to make use of results already
established. From Sect. 6.4, we see that for n D 2; 4; C.n; 0/ > 0 and minf�mg > 0
if ‰ 2 .0; 1/. For n D 3, minf�mg > 0 if ‰ 2 .0; 1/ and C.3; 0/ > 0 if ‰ 2
Œ0; 1

2
/[ . 1

2
; 1/. Therefore, by Corollary 6.5.2, we have

Corollary 6.5.3 If ‰ 2 .0; 1/ when n D 2; 4; and ‰ 2 .0; 1
2
/[ . 1

2
; 1/ when n D 3,

it follows that for all f 2 D0,

krn�2k@f=@rk2L2.Sn�1/
kL1.0;1/; krn�4kf kL2.Sn�1/kL1.0;1/ � Ck�Af k2 (6.5.6)

for some positive constant C.

6.5.2 Forms and Operators

We shall assume hereafter that n D 2; 3, or 4. For larger values of n and higher order
operators, see [142]. Define

D0
0 WD C1

0 .R
n n Ln/I

note that

D0
0 � D0

and consequently, Theorem 6.5.1 and Corollary 6.5.2 apply for f 2 D0
0.

Let S2A denote the Friedrichs extension of the restriction of �2
A to D0

0. The form
domain Q.S2A/ D H.SA/ of S2A, is the completion of D0

0 with respect to Œk�Af k2 C
k f k2� 12 . Therefore H.SA/ is the Hilbert space defined by the inner product

.';  /SA D ..SA C i/'; .SA C i/ /L2.Rn/

D .SA'; SA /L2.Rn/ C .';  /L2.Rn/; ';  2 D.SA/;

which induces the graph norm associated with SA W D.SA/ ! L2.Rn/, where D.SA/

denotes the domain of SA.
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Lemma 6.5.4 Assume the hypothesis of Corollary 6.5.3. Let BC be the operator of
multiplication by the function bC, where

0 � bC 2 L1.RCI L1.Sn�1/I r3dr/ � L1.RCI r3dr/˝ L1.Sn�1/:

Then, B
1
2C W H.SA/ ! L2.Rn/ is bounded and B

1
2C.SA C i/�1 is compact on L2.Rn/.

Proof For ' 2 D0
0 D C1

0 .R
n n Ln/,

j.BC'; '/j D R
Sn�1

R1
0

bC.r; !/j'.r; !/j2rn�1drd!

� R1
0 kbCkL1.Sn�1/r

3dr sup
0<r<1

�
rn�4 R

Sn�1 j'j2d!�
� CkbCkL1.RCIL1.Sn�1/Ir3dr/kSA'k2

(6.5.7)

by Corollary 6.5.2. Thus, D.SA/ lies in the form domain of BC and B
1
2C W H.SA/ !

L2.Rn/ is bounded.
Let '` * 0 in L2.Rn/ and set ` D .SA Ci/�1'`. Then, ` 2 D.SA/ and ` * 0

in H.SA/. Given " > 0, choose QbC such that

QbC 2 C1
0 .RCI L1.Sn�1//; supp QbC � �" D B.0I k"/ n B.0I 1=k"/;

kQbCkL1.Rn/ < k"; and


kbC � QbCkL1.Sn�1/




L1.RCIr3dr/ < "

for some k" > 1.
Furthermore,

kB
1
2C.SA C i/�1'`k2 D kB

1
2C `k2 D .BC `;  `/

D R
Rn

QbCj `j2dx C R
Rn.bC � QbC/j `j2dx

� k"
R
�"

j `j2dx

CkkbC � QbCkL1.Sn�1/kL1.RCIr3dr/ sup
0<r<1

˚
rn�4 R

Sn�1 j `j2d!



� k"
R
�"

j `j2dx C "CkSA `k2

(6.5.8)

by Corollary 6.5.3.
For u 2 D0

0 D C1
0 .R

n n Ln/

krAuk2 D .��Au; u/ � k�Aukkuk

� 1

2

�k�Auk2 C kuk2�

D 1

2
k.SA C i/uk2:
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Hence,

krA lk � 1p
2

k'lk;

and by the diamagnetic inequality

krj ljk � krA lk � 1p
2

k'lk:

It follows that the sequence fj `jg must be bounded in H1.Rn/. Since H1.�"/ is
compactly embedded in L2.�"/, it follows that  ` ! 0 in L2.�"/. The result now
follows from (6.5.8) and the fact that " can be chosen arbitrarily small. ut
Remark 6.5.5 The compactness of B

1
2C.SA C i/�1 W L2.Rn/ ! L2.Rn/ established

in Lemma 6.5.4 implies that B
1
2C is SA-compact, and consequently, by [48] (Corol-

lary III.7.7), B
1
2C has SA-bound zero. This implies that the form .BCu; u/ is relatively

bounded with respect to the form .SAu; SAu/ with relative bound zero. Therefore,
�2

A˙BC is defined in the form sense, and has form domain D.SA/ by Kato’s Second
Representation Theorem; see [48, 83].

Lemma 6.5.6 Let n D 4 and suppose that ‰ 2 .0; 1/. For

0 � V 2 L1.RCI L1.S3/; r3dr/;

let B� be a nonnegative self-adjoint operator with form domain D.SA/ which
satisfies the following condition: given " > 0, there is k."/ such that for all
' 2 D.SA/,

.B�'; '/ � "
R1
0

R
S3 r

ˇ̌
@
@r'.r; !/

ˇ̌2
d!dr

Ck."/
R1
0

R
S3 V.r; !/j'.r; !/j2d!dr:

(6.5.9)

Then B
1
2�.SA C i/�1 is compact on L2.R4/.

Proof As in the proof of Lemma 6.5.4, given ı > 0, we may choose QV such that for
some kı > 1,

QV 2 C1
0 .RCI L1.S3//; supp QV � �ı D B.0I kı/ n B.0I 1=kı/;

k QVkL1.R4/ < kı; and


kV � QVkL1.S3/




L1..0;1/Ir3dr/

< ı:
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Let '` * 0 in L2.R4/ with k'`k � 1, and set  ` D .SA C i/�1'`. Then,  ` * 0 in
H.SA/ and, on using (6.5.9),

kB
1
2�.SA C i/�1'`k � "

R1
0

R
S3 r

ˇ̌
@
@r `.r; !/

ˇ̌2
d!dr

Ck."/
˚
kı
R
�ı

j `.x/j2dx

CıC sup
0<r<1

R
S3

j `.r; !/j2d!



� "
R1
0

R
S3 r

ˇ̌
@
@r `.r; !/

ˇ̌2
d!dr

Ck."/
˚
kı
R
�ı

j `.x/j2dx C ıCkSA `k2


;

by (6.5.6). Now, note that for the case n D 4 and I1;m defined in the proof of
Theorem 6.5.1,

3

Z 1

0

Z
S3

r
ˇ̌ @
@r
 `.r; !/

ˇ̌2
d!dr �

X
m

I1;m � kSA `k2;

by (6.5.2) and since minf�mg > 0. Consequently,

kB
1
2�.SA C i/�1'`k � "

3
k'`k2 C k."/

˚
kı
R
�ı

j `.x/j2dx C ıCk'`k2


:

We therefore conclude, as in the proof of Lemma 6.5.4, that

lim sup
`!1

kB
1
2�.SA C i/�1'`k � "C Ck."/ı:

Since ı and " are arbitrary, the lemma follows. ut
At this point it should be helpful to explore examples of multiplication operators

B� that satisfy the hypothesis of Lemma 6.5.6.

Lemma 6.5.7 Let b.r/ � 0 on .0;1/ and

Z 1

0

Z 1

r
b.s/s2dsdr < 1;

Z 1

0

r
� Z 1

r
b.s/s2ds

�2
dr < 1: (6.5.10)

Then, there is a function W 2 L1..0;1/I r3dr/ such that, for any " > 0,

Z 1

0

b.r/j'.r/j2r3dr � "

Z 1

0

rj' 0.r/j2drCk."/
Z 1

0

W.r/j'.r/j2r3dr; (6.5.11)

for all ' 2 C1
0 .0;1/ and some constant k."/ > 0. We can take

r3W.r/ D r

�Z 1

r
b.s/s2ds

�2
C
Z 1

r
b.s/s2ds: (6.5.12)
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Proof Let

r
3
2

p
!.r/ D

Z 1

r
b.s/s2ds: (6.5.13)

According to Opic and Kufner [126], Theorem 5.9, p. 63, the inequality

Z 1

0

b.r/j'.r/j2r3dr � c
Z 1

0

d

dr
.rj'.r/j2/r 32

p
!.r/dr (6.5.14)

is satisfied for some c > 0 if and only if

C WD sup
0<r<1

�Z 1

r
t2b.t/dt � sup

0<t<r

˚
Œt
3
2

p
!.t/��1


�
< 1

with c D C the best possible constant for (6.5.14); this is derived from Theo-
rem 1.2.3 on taking Remark 1.2.4 into account. On choosing (6.5.13), it follows
that C � 1. From (6.5.14) with c � 1

R1
0 b.r/j'.r/j2r3dr � 2

R1
0 rj'.r/' 0.r/jr 32p!.r/dr

C R1
0 j'.r/j2r 32p!.r/dr

� "
R1
0

rj' 0.r/j2dr C 1
"

R1
0

j'.r/j2!.r/r4dr

C R1
0

j'.r/j2r 32p!.r/dr:

The choice (6.5.12) yields (6.5.11) with k."/ D "�1 C 1 and W 2 L1..0;1/I r3dr/
in view of (6.5.10). ut
Theorem 6.5.8 Assume the hypothesis of Lemma 6.5.4, and when n D 4, assume
the hypothesis of Lemma 6.5.6. Then we have the following:

(i) The form .SAu; SAv/ is closed with core D0
0 and S2A is the associated self-

adjoint operator.
(ii) The symmetric form tAŒu; v� D .SAu; SAv/ C .BCu; v/ is closed and bounded

below with core D0
0. Let T2A D S2A C BC denote the operator associated with

tA. It has form domain Q.tA/ D Q.S2A/ D D.SA/ and �ess.T2A/ D �ess.S2A/ D
Œ0;1/.

(iii) For TA defined as the positive square root of T2A and n D 4, B
1
2�.TA C i/�1 is

compact on L2.R4/ and T2A � B� is defined in the form sense with form domain
D.SA/. Moreover,

�ess.S
2
A C BC � B�/ D �ess.S

2
A/ D Œ0;1/:

Proof The proof of (i) follows as in [83], Examples VI.2.13 & VI.1.23.
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The first part of (ii) follows from Remark 6.5.5. The fact that Q.tA/ D Q.S2A/ D
D.SA/ follows from Kato’s Second Representation Theorem; see [83], p. 331. Since

B
1
2C.SA C i/�1 is compact in L2.Rn/ by Lemma 6.5.4, Theorem IV.4.4 of [48] applies

(with p2 D 0) showing that Theorem IV.4.2 (vi) in [48] holds: equivalently, in the
language of Sect. 1.5.1, the form .BC�; �/ is compact relative to the form .SA�; SA�/.
This fact implies that �ess.T2A/ D �ess.S2A/.

To show (iii), we begin by observing that, for f 2 D.SA/,

kSAf k2 � kTAf k2 D kSAf k2 C .BCf ; f /;

implying that for some C > 0,

k.SA C i/f k2 � k.TA C i/f k2 D Ck.SA C i/f k2;

by (6.5.7). Then with f D .TA C i/�1g, we have that

k.SA C i/.TA C i/�1gk � kgk;

so that from Lemma 6.5.6 we have that B
1
2�.TA C i/�1 is compact on L2.R4/. The

remainder of the proof of part (iii) follows that of part (i) above. ut

6.5.3 Estimating the Number of Eigenvalues

Theorem 6.5.9 Let the hypotheses of Lemmas 6.5.4 and 6.5.6 be satisfied. Then

(i) LA WD S2A C BC � B� is a self-adjoint operator defined in the form sense;

(ii) B
1
2�.TA C i/�1 is compact in L2.R4/, where T2A D S2A C BC;

(iii) �ess.LA/ D Œ0;1/;
(iv) if ‰ 2 .0; 1/ and n D 4, there exists a positive constant C D C.‰/ such that

the number N.LA/ of negative eigenvalues of LA satisfies

N.LA/ � C.‰/


kVkL1.S3/




L1..0;1/Ir3dr/; (6.5.15)

where V is given in Lemma 6.5.6 and the constant C.‰/ is dependent upon the
distance of ‰ from the boundary values 0 and 1.

Proof Parts (i)–(iii) are covered in Theorem 6.5.8 and are included here for
completeness.

For part (iv), we see from (6.5.3) that for n D 2; 3; 4;

k�Af k2 D
X

m

Z 1

0

FmDmFmrn�1dr;
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where Fm is given by (6.4.8) and

Dm D 1
rn�1

d2

dr2

�
rn�1 d2

dr2

�� .n�1/C2�m

rn�1
d
dr

�
rn�3 d

dr

�
C 2.n�4/�mC�2m

r4
:

(6.5.16)

Define

W.r/ WD kV.r; �/kL1.S3/:

Thus, when n D 4, since

B� � "

r3
d

dr
.r

d

dr
/C k."/W.r/

from (6.5.9), we have

�2
A C BC � B� � �2

A � B�
� ˚

m2Z00

n�
Dm C "

r3
d
dr .r

d
dr / � k."/W.r/

�˝ Im

o
(6.5.17)

where

Z
00 WD fm 2 Z W .m �‰/2 � 1g;

Im is the identity on the orthonormal basis fumgm2Z00 of L2.S3/, and �m D .m �
‰/2 � 1 as shown in Sect. 6.4.2. In (6.5.17)

Dm C "

r3
d

dr

�
r

d

dr

� D 1

r3
d2

dr2
�
r3

d2

dr2
� � 3C 2�m � "

r3
d

dr

�
r

d

dr

�C �2m
r4
:

We also have that

�2 C c

r4
D ˚

jmj�1
˚
ŒD0

m C c

r4
�˝ Im




in which

D0
m C c

r4
D 1

r3
d2

dr2
�
r3

d2

dr2
� � 3C 2�0m

r3
d

dr

�
r

d

dr

�C .�0m/
2 C c

r4
;

with �0m D m2 � 1. If m 2 Z
00, then either m � 1, in which case

�m � �0m C‰2; �2m � .�0m/
2 C‰4;
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or m � �2 and thus

�m � .m C 1/2 � 1C .1 �‰/2 D �0mC1 C .1 �‰/2;

�2m � .�0mC1/2 C .1�‰/4:

As a consequence, for m � 1

Dm C "

r3
d

dr

�
r

d

dr

� � D0
m C c

r4

if " < 2‰2 and c < ‰4. For m � �2

Dm C "

r3
d

dr

�
r

d

dr

� � D0
mC1 C c

r4

if " < 2.1 � ‰/2 and c < .1 � ‰/4. Hence, if " < 2minf‰2; .1 � ‰/2g and
c < minf‰4; .1 �‰/4g, then

N
�

m̊�1
�
Dm C "

r3
d
dr

�
r d

dr

� � k."/W.r/
�˝ Im

�

� N
�

m̊�1
�
D0

m C c
r4

� k."/W.r/
�˝ Im

�

and

N
�

˚
m��2

�
Dm C "

r3
d
dr

�
r d

dr

� � k."/W.r/
�˝ Im

�

� N
�

˚
m��1

�
D0

m C c
r4

� k."/W.r/
�˝ Im

�
:

Now, Theorem 1.2 of Laptev and Netrusov [97] and the last two inequalities
imply (6.5.15); cf. the proof of Theorem 5.6.4. ut
Theorem 6.5.10 Let ‰ satisfy Corollary 6.5.3, V.x/ � 0, and

V 2 L1.RCI L1.Sn�1/; r3dr/:

Then, the operator S2A � V is defined in the form sense and has essential spectrum
Œ0;1/. Moreover, for �m given in Sect. 6.4.2,

N.S2A � V/ �
X

0 4

j4�m C n.n � 4/j
p

n2 C 8�m

Z 1

0

r3kV.r; �/kL1.Sn�1/dr;

where
P

0

indicates that all summands less than 1 are omitted.

Proof The fact that S2A � V is defined in the form sense and has essential spectrum
Œ0;1/ follows as in Lemma 6.5.4 and Theorem 6.5.8.
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For all f 2 D0
0 D C1

0 .R
n n Ln/ and

Fm.r/ WD
Z
Sn�1

f .r; !/um.!/d!;

we have from (6.5.3) with n D 2; 3; 4;

k�Af k2 D P
m

˚ R1
0

�jF00
mj2 C n�1C2�m

r2
jF0

mj2 C 2.n�4/�mC�2m
r4

jFmj2�rn�1dr



� P
m

˚ R1
0

� 1
4 .n�2/2Cn�1C2�m

r2
jF0

mj2 C 2.n�4/�mC�2m
r4

jFmj2�rn�1dr



by Hardy’s inequality. On making the substitutions

c.n; �m/ WD n2 C 8�m and 'm.r/ WD
p

c.n; �m/

2
r.n�3/=2Fm.r/;

we have that

k�Af k2 � P
m

R1
0

�j' 0
mj2 C .n�3/.n�5/C16�m.�mC2.n�4//c.n;�m/

�1

4r2
j'mj2�dr:

Therefore, for f 2 D0
0 and

K.n; �m/ WD .n � 3/.n � 5/C 16�m.�m C 2.n � 4//.n2 C 8�m/
�1;

it follows that

..�2
A � V/f ; f / � P

m

R1
0

�j' 0
mj2 C K.n;�m/

4r2
j'mj2 � 4r2

n2C8�m
W.r/j'mj2�dr;

(6.5.18)

with W.r/ WD kV.r; �/kL1.Sn�1/. Bargmann’s estimate from [24] (see the proof
of Theorem 5.6.3) for the number of negative eigenvalues applies to the Sturm-
Liouville operator associated with the integral on the right-hand side of (6.5.18),
i.e.,

�.n;m/ WD � d2

dr2
C K.n; �m/

4r2
� 4r2

n2 C 8�m
W.r/; n D 2; 3; 4;

if

K.n; �m/ > �1: (6.5.19)

In that case,

N.�.n;m// <
4

.n2 C 8�m/
p

K.n; �m/C 1

Z 1

0

r3W.r/dr:
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We first note that

K.n; �m/C 1 D Œ4�m C n.n � 4/�2=.n2 C 8�m/ � 0

since minf�mg > 0. In fact, it is easy to show that the strict inequality (6.5.19) holds
with this hypothesis on substituting the values of �m, namely

�m D .m �‰/2; m 2 Z; for n D 2I
�m D .m �‰/.m �‰ C 1/; m 2 Z

0; for n D 3I
�m D .m �‰/2 � 1; m 2 Z

00; for n D 4:

(6.5.20)

In view of (6.5.18), the proof is complete. ut
We now are able to use these results to give explicit criteria for the absence of

negative eigenvalues.

Corollary 6.5.11 Assume the hypothesis of Theorem 6.5.10. Then S2A � V has no
negative eigenvalues if for n D 2,

Z 1

0

r3kV.r; �/kL1.Sn�1/dr <
n
2‰.2 �‰/p3 � 4‰C 2‰2 for ‰ 2 .0; 1

2
�;

2.1 �‰2/
p
1C 2‰2 for ‰ 2 . 1

2
; 1�I
(6.5.21)

for n D 3,

Z 1

0

r3kV.r; �/kL1.Sn�1/dr <
n j‰.1C‰/� 3

4
jp9C 8‰.1C‰/ for ‰ 2 Œ0; 1

2
�;

j‰2 � 3‰C 5
4
jp25 � 24‰C 8‰2 for ‰ 2 . 1

2
; 1/I

(6.5.22)

for n D 4,

Z 1

0

r3kV.r; �/kL1.Sn�1/dr <
n
2
3
2 ‰.2C‰/

p
2C 2‰C‰2 for ‰ 2 .0; 1

2
�;

2
3
2 ..2 �‰/2 � 1/

p
1C .2 �‰/2 for ‰ 2 . 1

2
; 1/:

(6.5.23)

Proof Define

B.�m; n/ WD 1

4
j4�m C n.n � 4/j

p
n2 C 8�m:

Then by Theorem 6.5.10 there will be no eigenvalues if

Z 1

0

r3kV.r; �/kL1.Sn�1/dr < min
m

fB.�m; n/g

for m 2 Z further restricted according to (6.5.20).



6.5 Eigenvalues of a Biharmonic Operator with an Aharonov-Bohm Magnetic. . . 249

The functions B.x; n/, n D 2; 3; 4, are minimized on Œ0;1/ for some x 2 .0; 2/

and accordingly, in order to minimize B.�; n/ we may restrict our attention to those
�m given in (6.5.20) that lie in the interval .0; 2/. Noting that �m D �m.‰/, the
estimate (6.5.21) follows from the fact that

min
m2Z B.�m; 2/ D min

‰2.0;1/fB.�0; 2/;B.��1; 2/gI

(6.5.22) follows from the fact that

min
m2Z B.�m; 3/ D min

‰2Œ0;1/fB.��1; 3/;B.�1; 3/gI

and (6.5.23) follows from the fact that

min
m2Z B.�m; 4/ D min

‰2.0;1/fB.�1; 4/;B.��2; 4/g:

ut
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