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Foreword

This monograph is devoted to integral representations for holomorphic functions
in several complex variables such as: Bochner—Martinelli, Cauchy—Fantappie,
Koppelman, etc. and their applications to analytic continuation functions with
a one-dimensional property of holomorphic extension. This book also contains
multidimensional boundary analogues of the Morera theorem.

Tel-Aviv, Israel Lev Aizenberg
June 2015






Preface

The Bochner—Martinelli integral representation for holomorphic functions of several
complex variables appeared in the works of Martinelli (1938) and Bochner (1943).
It was the first essentially multidimensional representation with integration taking
place over the whole boundary of the domain. This integral representation has a
universal kernel (not depending on the form of the domain), like the Cauchy kernel
in C'. However, in C" when n > 1, the Bochner—Martinelli kernel is harmonic, but
not holomorphic. For a long time, this circumstance hindered the wide application
of the Bochner—Martinelli integral in multidimensional complex analysis.

Interest in the Bochner—Martinelli representation grew in the 1970s in connection
with the increased attention to integral methods in multidimensional complex anal-
ysis. Moreover, it turned out that the very general Cauchy—Fantappie representation
suggested by Leray is easily obtained from the Bochner—Martinelli representation
(Khenkin). Koppelman’s representation for exterior differential forms, which has
the Bochner—Martinelli representation as a special case, emerged at the same time.

The Cauchy-Fantappi¢ and Koppelman representations were extensively used
in multidimensional complex analysis: yielding good integral representations for
holomorphic functions, explicit solution of the d-equation and estimates of this
solution, uniform approximation of holomorphic functions on compact sets, etc.

In the early 1970s, it was shown that, notwithstanding the non-holomorphicity
of the kernel, the Bochner—Martinelli representation holds only for holomorphic
functions. In 1975, Harvey and Lawson obtained a result for odd-dimensional
manifolds on spanning by complex chains; the Bochner—Martinelli formula lies
at its foundation. In the 1980s and 1990s, the Bochner—Martinelli formula was
successfully exploited in the theory of function of several complex variables: in
multidimensional residues, in complex (algebraic) geometry, in questions of rigidity
of holomorphic mappings, in finding analogues of Carleman’s formula, etc.

The school of multidimensional complex analysis promoted by L.A. Aizenberg
and A.P. Yuzhakov in Krasnoyarsk in the 1960s last century was involved in
the development of the theory of integral representations and residues and their
applications. A series of monographs on integral representations and residues by
L.A. Aizenberg, Sh.A. Dautov, A.P. Yuzhakov, A.K. Tsih, A.M. Kytmanov, and
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viii Preface

N.N. Tarkhanov were published in the 1980s and 1990s. Over the 20 years since
then, new results have been obtained and new areas of research explored.

Our monograph summarizes the results obtained by the authors in recent years,
including in particular the studies on different families of complex lines and curves
sufficient for analytic continuation of functions from the boundary of a bounded
domain, multidimensional boundary analogues of the Morera theorem.

In a sense, this monograph is a sequel to an earlier book of one of the authors
[45]. In any case, the first two chapters of our book are almost entirely taken from
[45].

The results of the monograph were delivered as part of specialized courses
at the Institute of Mathematics and Computer Science of the Siberian Federal
University between 1995 and 2015.

Chapters are numbered throughout the monograph, sections are numbered throu-
ghout the chapters. All statements, comments, formulas, and examples are tied to
the number of the respective section.

Krasnoyarsk, Russia Alexander Kytmanov
June 2015 Simona Myslivets
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Chapter 1
Multidimensional Integral Representations

Abstract The theory of integral representations is important in multidimensional
complex analysis. It continues to develop rapidly and is finding new applications
in multidimensional complex analysis, as well as in other areas of mathematics
[see, for example, monographs Aizenberg and Yuzhakov (Integral Representations
and Residues in Multidimensional Complex Analysis. AMS, Providence, 1983),
Khenkin (Several Complex Variables I. Encyclopedia of Mathematical Sciences,
vol. 7, pp. 19-116. Springer, New York, 1990), Krantz (Function Theory of Several
Complex Variables, 2nd edn. Wadsworth & Brooks/Cole, Pacific Grove, 1992),
Kytmanov (The Bochner—Martilnelli Integral and Its Applications. Birkhduser
Verlag, Basel, 1995), Rudin (Function Theory in the Unit Ball of C". Springer,
New York, 1980), Shabat (Introduction to Complex Analysis. Part 2: Functions of
Several Complex Variables. AMS, Providence, 1992), Vladimirov (Methods of the
Theory of Functions of Many Complex Variables. MIT Press, Cambridge, 1966)].
This chapter provides those integral representations, which are then used in other
chapters. Of course, we do not have space to mention all integral formulas known
at this time. We leave out of the scope of this book the formulas of integration by
manifolds of smaller dimension (such as the multiple Cauchy formula). The theory
of multidimensional residues will be used just a little in the final chapters. We will
only dwell on the formulas where integration is performed over the entire boundary
of domain. The presentation is designed to show the logic of proceeding from the
classical Bochner—-Green formula to the Khenkin—Ramirez formula that has found a
number of important applications in multidimensional complex analysis.

1.1 The Bochner-Green Integral Representation

We consider an n-dimensional complex space C" with the variables z = (z, ..., z,)-
If z and w are points in C", then we write

(z,w) = 1wy + -+ - + zyWy, Iz| = V{2, 2),

© Springer International Publishing Switzerland 2015 1
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2 1 Multidimensional Integral Representations

where z = (21, ..., Zs)- The topology in C" is given by the metric (z, w) + |z — w|.
If z € C", then

Rez = (Rezy,...,Rez,) € R”, Imz = (Imz,...,Imz,) € R".

We write Rez; = x; and Imz; = yj, ie, z;7 = x + iy for j=1,...,n
Thus C" ~ R?". Orientation of C" is determined by the coordinate order
(X153 X0, Y15 - - - ). Accordingly, the volume form dv is given by

dv =dxy N---Ndxy Ndyy A+ Ndy, = dx ANdy
i\" _ i\ _
= (5) dzndz = (—5) dz A dz.

As usual, a function f on an open set U C C" belongs to the space €*(U),
ie., f € €%U), if f is k times continuously differentiable in U as 0 < k < oo, and
¢°(U) = €(U).If M is aclosed set in C", then f € €*(M), when f extends to some
neighborhood U of M as a function of class ¢’*(U). We will also consider the space
¢"(U) or ¢ (M) when r > 0 is not necessarily an integer. A function f € ¢”(U) if
it lies in the class €11(U), where [r] is the integer part of r, and all its derivatives of
order [r] satisfy the Holder condition on U with the exponent(r — [r]).

The space O'(U) consists of those functions f that are holomorphic on the
open set U. When M is a closed set, &' (M) consists of those functions f, that
are holomorphic in some neighborhood of M (a different neighborhood for each
function). A function f belongs to the space o7 (U), if f is holomorphic in U and
continuous on the closure U, i.e.,f € 0(U) N € (V).

We will also consider the Sobolev space #*(U) = #,’(U), s € N. This space
consists of the measurable functions f € .#%(U) such that all generalized derivatives
0°f of order up to s lie in the Lebesgue space .Z2(U).

As usual, we will denote Z(U) the space of infinitely differentiable functions
with compact support on the open set U with the inductive limit topology, and
&(U) = ¢°*°(U) will denote the space of infinitely differentiable functions on U
with the topology of uniform convergence of the functions and all their derivatives
on compact subsets of U.

A domain D in C” has a boundary dD of class €* (we write 0D € €*), if

D={zeC": p(z) <0},

where p is the real-valued function of class €* in some neighborhood of the closure
of D, and the differential dp # 0 on dD. If k = 1, then we say that D is a domain
with a smooth boundary. We will call the function p a defining function for the
domain D. The orientation of the boundary dD is induced by the orientation of D.
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A domain D with a piecewise-smooth boundary 9D will be understood as a
smooth polyhedron, that is, a domain of the form

D={zeC": pi(z) <0,j=1,....m},

where the real-valued functions p; are class 4’ in some neighborhood of the closure
D, and for every set of distinct indices ji, . . .,j; we have dpj, A+ Adpj, # 0 on
the set {z € C": p;,(z) = -+ = p;,(z) = 0}. It is well known that Stokes’ formula
holds for such domains D and surfaces dD.

We denote a ball of radius ¢ > 0 with the center at the point z € C" by

B(z,e) ={0 € C": | —z] <¢j,
and its boundary by S(z, ¢), i.e., S(z, &) = dB(z, €).

Consider the exterior differential form (the Bochner—Martinelli kernel) U(C, z)
of type (n,n — 1) given by

U =" Z(— i B A, (L)

(2 )” [

where di[k] = dly A--- AdE_y Adigr A+ AdEy, dE = dy A ... A dE,. When
1 d
n = 1, the form U(¢, 7) reduces to the Cauchy kernel D It is clear that the
wTLC —2
form U(¢, z) has the coefficients that are harmonic in C" \ {z}, and it is closed with
respect to ¢, i.e., d;U({,z) = 0.
Let g(¢, z) be a fundamental solution to the Laplace equation:

(n—2)' 1 n> 1
gt =1 @m0 [E -z ’ (1.1.2)
glnIC—ZI2 n=1.

Then

U,2) = Z( 1)“ 7 4l A df = (—1)"""dcg Ay _dCIK AdE[K],  (1.13)

k=1

where the operator d is given by

" d
J = e, —.
2 g,
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We will write the Laplace operator A in the following form:

_” 1 92 32 1 %
Zazkasz ( )_4A'

If é'k = X + iy, then

ad 1 ( ad ) ) ad 1 ( ad n ad )
— ==|=——-i— — == —+i—
3§k 2 \ Ox; Byk 8§k 2 \ Ox; Byk

When f € €' (U), we define the differential form y via

pr = 30 L aggi n di,
k=1 98k

Theorem 1.1.1 (Green’s Formula in a Complex Form) Let _D be a bounded
domain in C" with a piecewise-smooth boundary, and let f € €2(D). Then

/ FOUE2) — / $(C. Dur() + / $(.DAF(Q) dE A dt
oD oD D

- {f@’ eb g
0, z¢D,
where the integral in (1.1.4) converges absolutely.
Proof Since
i (FQU.2) = 8. Dy (D) + 8L ) Af dE A dE =0, (1.1.5)

Stokes’s formula implies that (1.1.4) holds for z ¢ D. If z € D, then from (1.1.5)
and Stokes’ formula we obtain that

/ FOUE2) — / 8Dy 0) + / §(6.DAF(Q) dE A dt
oD oD

D\B(z,¢)

- roues- /S PRI

S(z,¢)



1.2 The Bochner—Martinelli Integral Representation 5
for sufficiently small positive e. When n > 1

. -2
/sm) 8(, Z),va@)‘ = Qayer— /S(Z )qul < Cs,

ie.,

lim 8, pur(6) = 0.
e—>—+40 S(z.8) 4

(The argument for n = 1 is analogues.) However,

_ ooy L
S(Z’g)f QU2 = Qriye S(M)f 9] ;( DENE — 20)dE[k] A dE

_ (=D

©@ri)e? Jpe |: nf(§) + Z _(gk _Zk)] de A de.
Since

1 u )f ~ B

81_,1130 2 /B(M) ; (Z(Ck - Zk)) dt AdE =0,

we have,

dim [ QUG

S(z,¢)

f©)dE A dE = Jim

/ F©dv = f()

n!
= lim ———
e=+0 (2mi)"e?" Jp( ) +0 7 82"

(by the mean-value theorem). |

1.2 The Bochner-Martinelli Integral Representation

Let us formulate some consequences of the Bochner—Green formula (1.1.1) for
various classes of functions f.

Corollary 1.2.1 (Bochner [16]) Let D be a bounded domain in C" with_ a
piecewise-smooth boundary, and let f be a harmonic function in D of class €' (D).



6 1 Multidimensional Integral Representations
Then

. _ )@, zeD,
/an(z)U(z,z) /BDg(z,sz(z)—{O’ LS (12.1)

Corollary 1.2.2 (Koppelman [35]) Let D be a boundeg domain in C" with a
piecewise-smooth boundary, and let f be a function in €' (D). Then

_ f(), zeD,
/ FOUE) — / 3 (0 AUE.2) = i (122)
oD D 0, z ¢ D,
where
_ ")
8 = d -_—,
; b 2

and the integral in (1.2.2) converges absolutely.
Formula (1.2.2) is the Bochner—Martinelli formula for smooth functions.

Proof Suppose first that f € €>(D). We transform the integral

- N of dg -
a N - —_—d d = a
D/f(c)w@z) /Dk;agka;k e = [ ey

= [ acton - [ sarainas = [ eu— [ oaraénac

(here we have applied Stokes’s formula, since all the integrals converge absolutely).
Then for z € D, formula (1.1.4) implies that

/ 3 AUE?) = / FOUE. D) —f Q).
D oD

Now if f € € (D), we obtain (1.2.2) by approximating f (in the metric of %" (D))
by functions of class €2 (D). O

Corollary 1.2.3 (Bochner [16] and Martinelli [62]) If D is a bounded domain in
C" with a piecewise-smooth boundary, and f is a holomorphic function in D of class

€ (D), then

f(@, zeD,
/ FOUE,2) = B (1.2.3)
D 0, z¢D.
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Formula (1.2.3) was obtained by Martinelli, and later separately by Bochner by
different methods. It is the first integral representation for holomorphic functions in
C" where the integration is carried out over the whole boundary of the domain. By
now this formula has become classical and found its place in many textbooks on
multidimensional complex analysis (see, for example, [9, 39, 45, 69, 71, 73, 81]).

Formula (1.2.3) reduces to Cauchy’s formula when n = 1, but unlike Cauchy’s
formula, the kernel in (1.2.3) is not holomorphic in z and { when n > 1. By splitting
the kernel U(¢, z) into real and imaginary parts, it is easy to show that

/ FOUE.)
oD

is the sum of the double-layer potential and the tangential derivative of a single-layer
potential. Namely, Martinelli observed that if two continuous vector fields v({) and
s(¢) are chosen on the boundary of a bounded domain, provided v = is (v is the
field of outer unit normals to dD), then the restriction of the kernel U(, z) on 0D
coincides with

0 . d
(a_v + lg) g(¢, z)do.

Consequently, the Bochner—Martinelli integral inherits some of the properties
of the Cauchy integral and some of the properties of the double-layer potential. It
differs from the Cauchy integral in not being a holomorphic function, and it differs
from the double-layer potential in having a somewhat worse boundary behavior. At
the same time, it establishes a relation between harmonic and holomorphic functions
in C" whenn > 1.

Formula (1.2.2) implies the jump theorem for the Bochner—Martinelli integral.
Let D be a bounded domain in C" with piecewise-smooth boundary, and let f be
a function in €' (D). We consider the Bochner-Martinelli integral

MFG) = /a QU 2 aD. (12.4)

We will write MTf(z) for z € D and M~f(z) for z ¢ D. The function Mf(z) is
a harmonic function for z ¢ dD and Mf(z) = O(|z|'™%") as |z| — oc.

Corollary 1.2.4 Under these conditions the function M f has a continuous exten-
sion on D, the function M~ f has a continuous extension on C* \ D and

M¥F(z) =M f(z) = f(z), ze€D. (1.2.5)

Formula (1.2.5) is the simplest jump formula for the Bochner—Martinelli integral.
There exist many jump theorems for different classes of functions: Holder functions
[60], continuous functions [19, 30], integrable functions [42, 43], distributions [18],
hyperfunctions [54].
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Later on we will need formula (1.2.3) for the Hardy spaces 57 (D), so we now
recall some definitions [34, 76]. Let D be a bounded domain and suppose that dD is
a connected Lyapunov surface, i.e., 3D € €%, a > 0. It is known that the Green
function (for the Laplace equation) G(¢,z) has a good boundary behavior in such
domains: for fixed z € D, the function G(¢, z) € €' (D).

We say that a holomorphic function f belongs to #7 (D) (where p > 0), if

sup | [f (€ —ev(O)|P do < oo,

were do is the surface area element on dD and v(¢) is the outer unit normal vector
to the surface dD. A holomorphic function f belongs to .72°°(D), if sup | (z)| < oo.

D

The class .7#7(D) may also be defined in the following way. Let domain D =
{z € C" : p(z) < 0} for the defining function p, and let D, = {z € D : p(z) < —¢}
for e > 0. A holomorphic function f € #7 (D), if

e>0

sup /3 P do <.

As is shown in [76], this definition does not depend on the choice of the smooth
defining function p.

Corollary 1.2.5 Ifp > 1 then formula (1.2.3) holds for the function f € F#P(D).

Proof If f € s#7(D) for p > 1, then f has a normal boundary values almost
everywhere on dD (see [34, 76]) producing a function of class .Z7(dD) (we denote
these boundary values again by f). Moreover, the function f can be reconstructed in
D from its boundary values by’s

@) = /3 QP2 do

(where P(¢,z) is the Poisson kernel for D). Since the Green function G(¢,z) =
gL, 2) + h(¢, 7), where for fixed z € D the function 4(¢, z) is harmonic in D of class
€'t (D), we have

n a _
P((.2)do = U(,2)|,p+ Z(—l)"“ a—g d¢[k] A dg|,,.
k=1

Since the differential form

- _ k—la_h >
; D! 7 dElk A dg
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is closed, we have

et O
[REDC T

_ $ B k—l% ‘ _
-/ f(é“)d<;( ) agkdaklmz) 0

Consequently, formula (1.2.3) holds for f € J#7(D). O

1.3 The Cauchy-Fantappie Integral Representation

1.3.1 The Leray (Cauchy-Fantappie) Integral Representation

We start by noting that the Cauchy—Fantappie formula, which was obtained by Leray
[58, 59], can be derived from the Bochner—Martinelli formula (1.2.3).

Let D be a bounded domain with a piecewise-smooth boundary, and suppose
that for a fixed point z € D there is defined on dD a continuously differentiable
vector-valued function

1) = (m@©).....1(2)

such that

> G—zm@) =1, ¢ €.

k=1

Theorem 1.3.1 (Leray) Every function f € o/ (D) satisfies the equation

_ (mn=1! ,
10 =T [ rowm ade e, 13.1)
where
o' () =Y (=1 "nednlk]. (13.2)

k=1

Proof Khenkin’s proof goes as follows. In the space C?" of the variables

(Uag)z(ﬂly‘--,nmél,---,é‘n)
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consider the analytic hypersurface
Lo={m.)eC: Y G—wm@) =1},
k=1

on which the form w’(n) A d¢ is closed. The two cycles

T ={n0:tedDn=G-—2d"j=1....n

and

Ly ={0.0): LeaD,ny=ni(0),j=1,....n}

in L, are homotopic in L,, the homotopy being given by the formula

== 1), 0=i<1,

That is, these are homologous cycles. Consequently,

/ FO' ) A d = / FO () A de
¥ I

when f is a holomorphic function. But

l El - En — Zn _ (27”)}1
¢ <|z—z|2""’ |z—z|2) T

Hence (1.3.1) follows. |

Differential form (1.3.2) is called the Leray form. The Cauchy-Fantappie
representation has turned out to be very useful, and it has many applications in
multidimensional complex analysis.

1.3.2 The Khenkin—Ramirez Integral Representation

The bounded domain D is called a strongly pseudo-convex domain if there exists
a neighborhood U D D and a real-valued function p € €>(U) such that

D={z€U: p(z) <0},
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where grad p # 0 on dD and the function p is a strongly plurisubharmonic function
in U, i.e., the inequality

holds forz € U and allw € C", w # 0.

Strongly pseudo-convex domains play an important role in multidimensional
complex analysis. Any domain of holomorphy can be approximated from inside
by these domains [9, Sect. 25].

Here are some auxiliary notations and statements we will need in the future. We
denote

Ds={zeU: p(z) <8}, Vs={zeU: |p(z)| <38},
Ues ={(8,2): £ €Vs, z€ Dy, |§—2| <e},

where ¢ > 0,8 > 0. Let €' (Vs, ) be the space of functions of class €' in V
with values in space .77

Lemma 1.3.1 ([9]) For every strongly pseudo-convex domain D there exist positive
constants ¢, § and functions F € €' (Uy5), G € €' (U, 5), ® € €' (V5. O(Ds)) such
that:

1. ®=FGonU.s; F(z,7) = 0; |G| > 8 on U, |®| > & outside U, s;
2. We have the inequality

2ReF(8,2) = p(Q) — p(2) +¥[E =2, ¥ >0

onUgs
3. |dF(E.2)| -, = |d:F(5.2)|=. = Op.

Proof See the monograph Aizenberg and Yuzhakov [9, Lemma 10.1].

Lemma 1.3.2 ([9]) Let D = {z € U : p(z) < 0} be a strongly pseudo-convex
domain. For every point {' € 0D there is a biholomorphic map of the neighborhood
U~ of the point { to a neighborhood W of zero in space C},, such that the mapping

domam DN U is biholomorphically equivalent to the convex domain in C}!, while
the inverse mapping turns the strongly plurisubharmonic function p into a strongly
convex function.

Proof Parallel translation can be arranged so that the point E is zero, then in some
neighborhood of zero the Taylor expansion is valid

ap(0 a*p(0 92p(0
p() = 2Re Z s a‘_’g),m Z 20 g+ o)
i %j0%k k= dz;0

asz — 0.
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By the implicit function theorem the local coordinates in a smaller neighborhood
of zero can be assumed to be given by the function

. 9p(0 92p(0
W1(Z)=ZZ gi) Z ,0()
j=1

0z;0z k
and any linear functions wy, . . . , w,, being the coordinates of the complex hyperplane
ap(0 dp(0
%zE(C": p()Zl—i-...—i- p()znZO}.
BZ] aZn

Strong pseudoconvexity p at 0 now means that

n

> ankic = ylEP
jk=1
3?p(0)

dw; 0wy
In the new local coordlnates of w the function p is of the form

where y > 0 and aj =

p(w) = Rew; + Z apwiwy + o(jw]?). (1.3.3)
k=1

Function (1.3.3), as is easily seen, is strongly convex in the coordinates of w. If
& > 0 is sufficiently small, then W N D is a convex domain in the coordinates of w,
where

W={weC": |w| <e)

O

Remark 1.3.1 If we first perform a unitary transformation and make a shift so that
the plane Rez; = 0 is now a tangent plane at the point 0, and then repeat the whole
procedure described in the previous lemma, we will find that locally the domain D
is given by the function

o(w) = Rew; + Z apwiwy + o(|w|?).
k=2

Applying unitary transformation and stretching to the last equation, we can get a
function p that will have the form [15, Chap. 6, Sect. 4]

p(w) = Rewy + Y wil” + o(|w]). (1.3.4)
k=2
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Lemma 1.3.3 ([9]) Under the conditions of Lemma 1.3.1

(L.2) = ) Pl (G — ), (13.5)

k=1

where Py(¢,2) € €' (Vs, O(Ds)), k=1,...,n, ¢ € Vs, 7 € D;.
Proof We denote

C(.z,w) = @(8,2) — (L, w),
then
C(L.z.w) € €' (Vs. O(Ds x Dy)).

For a fixed { € Vj the function C belongs to the ideal J of holomorphic functions
equal to zero on the set

{(z.w): z€ Ds, w € Ds, z=w}.
By the Hefer theorem (see, for example, [9, Sect. 25]) the ideal J has generators
Wi —21---sWn— 2

and decomposition of C(¢,z,w) for these generators can be made continuously
differentiable to the parameter ¢ (see [9, Theorem 25.2']), i.e., there are functions

(& z,w) € €' (Vs, O(Ds x Dg)), k=1,....n,

such that

CGzw) =) Oull, 2, w) (Wi — 20).

k=1
Note that F(¢, ) = 0, hence ©(¢, ¢) = 0, therefore

O(L,2) = C(,2.0) = ) Pl ) (G — ),
k=1

where P({,2) = Ox(¢,2,8), k= 1,...,n. So formula (1.3.5) holds. O
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Consider the Leray form (1.3.2)
o' () =Y _(=1Y"nidnlj]
j=1
for a given smooth function n = n(¢, z, A) with values in C", where
¢,z,A) e C"xC" x R.

Then we can write

> w;(n)) AdE A dz,

q=0

(a)’(n)) AdEAdz = (

where a)‘;(n) is the differential form of type (n — g — 1) by d and dA and type ¢

by dz. In particular, the form ey is a form of type 0 by dz and type (n — 1) by dt
and dA. In what follows we will assume that w’ | = 0. We note the obvious identity
satisfied by the form a) [33, Sect. 8.2]:

dla) + 84(0 +9 a)q 1 =0. (1.3.6)

From Theorem 1.3.1 and Lemma 1.3.3 we get the Khenkin—Ramirez integral
formula (see [33, Sect. 4.2]).

Theorem 1.3.2 (Khenkin, Ramirez) For any function f € <7 (D) the following
integral representation is true

wo(P(§,2)) A dE
/f(é) T z €D, (1.3.7)

where the vector function P({,7) = (P1 &, 2),...,Pu(¢, Z))

f@@) =

(2m)”

Formula (1.3.7) is one of the most successful realizations of the general Cauchy—
Fantappié formula in multidimensional complex analysis (see [33, 71]).
1.3.3 The Cauchy-Szego (Hua Loken) Integral Representation

Let B be a unit ball in C", i.e

={zeC": |zl < 1}
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then its boundary S has the form
S={zeC": |z =1}.
We define the Cauchy—Szegd kernel K (¢, z) for the ball by the formula

-1 1
Q@ri" (1—(.2)"

K(,2) =

It can also be written as a matrix product: if we assume z to be a column vector,
then (¢, z) = ¢7 - z, where the superscript T denotes the transpose of the matrix. We
define the differential form o({) by the formula

o(§) =Y (=D& dt[k] A de.

k=1

where d{ = d; A ... A d(,, and de[k] is obtained from d¢ by removing the
differential d¢;. On the boundary of the ball the restriction of the form o ()
coincides up to a constant with the Lebesgue boundary measure for S.

Theorem 1.3.3 (Hua Loken [32]) Ifa function f € </ (B), then

ﬂd=LﬂDK@da®,zeB. (13.8)

Moreover, the integral operator defined by (1.3.8), yields an orthogonal pro-
jection of the Hilbert space .#?(S) onto the subspace of functions allowing
holomorphic extension from S to B (i.e., ##2(B)).

Proof is immediately obtained from formula (1.3.7), if we put p(¢) = 1 —|¢|>. O

1.3.4 The Andreotti-Norguet Integral Representation

Another generalization of formula (1.2.3) is the Andreotti-Norguet formula (a
different method of proof can be found in [63]). Suppose D is a bounded domain
with a piecewise-smooth boundary, @ = (&1, . .., ®,) is a multi-index, f is a function
holomorphic in D and continuous on D, and

el ¢
a 8z‘f‘ Oz
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where ||| = o1 + - - + a,. Consider the following differential form:

(n—Dlay!. .. a! Zn: (=D (& — 2) dCH K] A dE

Us(C,2) = - ,
«(:2) 2mi)n (|1¢1 = z1 2@+ 4o 4 |, — z,| 2@+ D)n

k=1

where
dEa_H[k] — déi)é1+l /\_”/\dé'-zti—11+l /\dé'.ll:fi1+l /\---/\dff[”“.

Theorem 1.3.4 (Andreotti, Norguet) The formula

0/(2) = /3 UL, (13.9)

holds for every point z € D and every multi-index o.

Proof (given in [9, p. 60]) goes as follows. First verify that U, is a closed form, so
integration over dD can be replaced by integration over the set

{é‘ eC": |§1 _le2a1+2 + -+ Ign _Zn|2a”+2 = 52}.

Expand the function f in powers ({ — z) in a neighborhood of z, and integrate the
series termwise against the form U, (Z, z). We obtain d“f(z) as the result of direct
calculation. When o = (0, ..., 0), formula (1.3.9) reduces to (1.2.3). O

We note that (1.3.9) can be generalized in the spirit of the Cauchy—Fantappie
formula [9, p. 61]. Analogues of the Bochner—Martinelli formula have also been
considered in quaternionic analysis [80] and in Clifford analysis [75].

1.4 The Logarithmic Residue Formula

Let D be a bounded domain in C" with a piecewise-smooth boundary dD, and
let w = v¥(z) = (Y1, ..., V¥,) be a holomorphic map from D into C" with a finite
number of zeros Ey, in D and no zeros on dD.

Recall the (dynamic) definition of the multiplicity of zero of a map ¥ [9,
Sect. 2]. We denote a ball of radius R > 0 with the center at the point z € C”
by B(z,R) = {{ : |¢ —z| < R} and its boundary by S(z,R) = 0B(z,R). Let a be a
zero of the map i and B(a, R) have no other zeros in B(a, R). Then there is a ball
B(0, r) such, that for almost all { € B(0, r) the map w = ¥ — ¢ has the same number
of zeros in B(a, R). This number is called the multiplicity of zero a and is denoted

by fta -
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Consider the differential form

Ulw) =

(n— 1)' Z( )k | Wi dwlk] Adw, (141)

Qmi) w[>

where dw = dw, A. .. Adwy,, and dw[k] is obtained from the form dw by eliminating
the differential dwy, i.e., U(w) = U(w, 0) is the Bochner—Martinelli kernel at zero.

Theorem 1.4.1 ([45]) Letf € €' (D), then the formula

/8 , SO U - /D YA = Y (142)

a€ky
holds. (The integral over D converges absolutely.)

Proof Leta € Ey. Let us prove that the integral

/ 3 A U (D)
D

converges absolutely. It is enough to show that the integral

/ dg; AU (D))
K

converges absolutely, where K is some compact, containing the point a and not
containing any other points of Ey, j = 1, ..., n. Consider compacts of the form:

By(r)=1{zeC": [y|=r}, Sy()={zeC": |y|=r}

and By (r) C K. The surface Sy (r) is smooth and compact for almost all 7, 0 < r <
ro by Sard’s theorem. Then

/B ol U] = /0 i /S "
<c/ dr/sw)wwn—cl/ /Sw)

by Fubini’s theorem. Restriction of the form

Z( D dyr (k] A dy

oy = Y (=D aylk Ady

k=1
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to Sy (r) (up to a constant) is a positive measure, since restriction of the form
n

o= Z(—l)k_lv"vk dwlk] A dw to the sphere S = {w : |w| = 1} is the Lebesgue
k=1
measure on S up to a constant. And oy is obtained from o by replacing the variables

w — ¥ (£). Then the integral
= Cz/ Oy
Sy (r)

/Sw(r)
= Czn/ d& ANdy = Czan/ dwAdw = Cs rZ”,
B\/,(V) B(r)

n

D =D dylk] A dy

k=1

where B(r) = {w: |w| < r}.
Further proof is standard. Considering an auxiliary domain

D; ={feD: [y(O]> e},
yields

/ FUW©) — / AU = [ FQOUWQ©).
BDg D, )

ST/’ (8

If the zero of the map  is simple, i.e., ¥ is biholomorphic in the neighborhood of
a, then choosing ¢ small enough and making the replacement of variablesw = ¥ ({),
we obtain that

FOUWE) = /S(O )f(w_l(W)) Ulw) = /S(O )f(w_l(W)) U(w.0).

Sy (&)

The last integral tends to f (1 (0)) = f(a) at ¢ — 0 (see the proof of Bochner-Green
formula (1.1.4)). Thus formula (1.4.2) is proved for a map with simple zeros.

If a is a multiple zero of the map v/, then, by considering the map ¥, = ¥ —pin
a neighborhood K of the point a, we obtain that the map v, has u, simple zeros in
K for almost all smaller-module p (this is a (dynamic) definition of the multiplicity
of zero (see [9, Sect. 2])). Applying (1.4.2) in K to map ¥, using closedness of
the form U(y) and passing over to the limit as |[p| — O we obtain the required
assertion. O

Let D be a bounded domain in C", n > 1, with a connected piecewise-smooth
boundary, and let ¥ = (1, ..., ¥,) be a map consisting of holomorphic functions
Y, defined in some neighborhood

Kp={w:w=C(—2z z(e€D}

and having a unique zero as the origin of multiplicity u.
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Corollary 1.4.1 Iff € €' (D), then

i ).z €D,
/ f(i)U(I/f(é—z))—/ afAU<w<z—z))=§“ PEET 43
D¢ Dy 0,z¢D.

(The integral over D converges absolutely, and 7 is fixed.)

Corollary 1.4.2 The following formula holds

@) = /a QU2 zeD, (14.4)
¢

where the functionf is holomorphic in D and continuous on D (i.e., f € o/ (D)). The
vector z in the form U(Y ( — 7)) is fixed.

Formula (1.4.4) is a special case of the multidimensional logarithmic residue for
the map ¥ (see [9, Chap. 1]).

Corollary 1.4.3 [ff € €' (D), and

M,;Lf(z), z €D,
/ FOUWC—p =] " - (14.5)
3D; wa(Z),ZQ/D,

then the functions Mff(z) are continuous up to the boundary of the domain and

Mf(@) —M,f(z) = uf(z). z € dD.

Proof directly follows from (1.4.2) and the continuity of the integral on the domain
Din (1.4.2). O

Remark 1.4.1 As shown by the proof of Theorem 1.4.1, integrals of the form

&j alﬁvl 3&&171 al//il 3%” -
s, 2 de A d
| o, g, oo, N

absolutely converge.



Chapter 2
Properties of the Bochner—Martinelli Integral
and the Logarithmic Residue Formula

Abstract In this chapter, we will consider the boundary behavior of the Bochner—
Martinelli integral. Most of the statements have been collected in the book (Kyt-
manov, The Bochner—Martilnelli Integral and Its Applications. Birkhéduser Verlag,
Basel, 1995). Some of these results can be obtained from the general theory
of integral operators. But we seek to provide independent and more elementary
proofs thereof. Since many of them will be used in the subsequent chapters, we
decided to reproduce these in the book. The last section of this chapter contains the
results of possible connection of the holomorphic continuation of functions with
the homogeneous d-Neumann problem, emphasizing the relationship between the
harmonic and complex analysis in C".

2.1 Boundary Behavior of the Bochner—Martinelli Integral

2.1.1 The Sokhotskii—Plemelj Formula

Let D be a bounded domain with a piecewise-smooth boundary, and let f be
an integrable function on 9D (f € .£'(dD)). We consider the Bochner—Martinelli
(type) integral (1.2.4):

AWFAMMM,ww

We recall that this is a function which is harmonic in both D and C" \ D, moreover
M(z) = O(|z|'™?") for |z] — oo. Like in Sect. 1.2, we will write MTf(z) for
integral (1.2.4) when z € D, and M~f(z) when z ¢ D. When z € 0D, integral (1.2.4)
generally speaking does not exist as an improper integral, since the integrand has the
singularity |¢ —z|'~2". Therefore, for z € dD, we will consider the Cauchy principal
value of the Bochner—Martinelli integral:

pv. [ FOUGD = tim FOUE2). zeiD
aD e=>+0 Jop\B(z.¢)
© Springer International Publishing Switzerland 2015 21
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Below we will frequently omit the sign of the principal value p.v., that is, we
will always assume an integral of the form (1.2.4) to be understood in terms of the
principal value when z € dD.

In this section we are interested in analogues of the Sokhotskii—Plemelj formula
for the Bochner—Martinelli integral, that is, in the relation between the boundary
values of the functions M* (z) and the singular integral. First we will consider a
simple case when density f satisfies the Holder condition with the exponent & > 0,
ie.,

IF(©) —fml < CIE—nl 2.1.1)

for {,n € dD and C = const. Generally speaking, these formulas can be deduced
from the properties of potentials, but we will provide a direct proof.

We need to compute the restriction to 3D of the differential forms d¢[k] A d¢ and
d¢[k] A d¢ in terms of the Lebesgue surface measure do. Suppose D = {z € C" :
0(z) < 0}, where p € ¢€'(C") and dp # 0 on dD.

Lemma 2.1.1 Restriction of the form dZ[k] A d¢ to the boundary 3D is equal to

dp do
3¢ | grad p|”

2n—lin(_1)k—l

and restriction of the form d¢[k] A d¢ to 3D is equal to

2n—lin(_1)n+k—l@ dU ,
¢y | grad pl
where
ap ap
dop=(—...., .
Erep (azl azn)

Proof 1t is well known that restriction of the forms dx[k] A dy and dx A dy[k] to
the boundary 0D are equal to

dxk] A dy‘a = (=)ydo,
o (2.1.2)
dx A dy[k]‘aD P
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where y; are the direction cosines of the normal vector to dD: namely

Yk = 8_,0 !
O n 9 9 ’
MG+
_ !
Vitn = P = . . .
Y{Ge) + G
= : :

We obtain the assertion of the lemma by using (2.1.2) and the formulas

= _—

8p_1(3p .8p)’ o _ dp

0 2\dm  ow 0z 0
1 "/ 0p\2 dp\2 - A
| grad p| = 3 Z[(S_xj) + <3_y,) i|, dzi N dzg = —2idxy A dyg.

From Lemma 2.1.1, we have

=D L% dp do()
U.2)|,, = o ;k—zlha_fklgradp(t)l_F@’Z)da@’ (2.1.3)

When z € dD, we use t(z) for the expression

. vol{S(z,e) N D}
7(z) = lim ———
e—>+0  volS(z,¢)

In other words, t(z) is a solid angle of the tangent cone to the surface dD at z. Since

we consider a domain D with a piecewise-smooth boundary, the quantity 7(z) is
defined and different from zero.

Lemma 2.1.2
p.v. /aD Ui,z =1()

forz € dD.
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Proof By definition

p.v./ U(,z) = lim U, z).
aD

e=~>+0 J3D\B(z.e)

But

/3D\B(Zs£) via = /B(D\B(z,s)) vEa+ /s+ (2.6) U2,

where S (z, ¢) is the part of the sphere S(z, €) lyingin D, i.e., St (z,€) = D N S(z, ¢).
The sign of the second term has been changed because the orientation of S(z, ¢)
(induced by the orientation of the ball B(z,¢)) is opposite to that of dD. Since
z ¢ D\ B(z, ¢) while the form U(Z, z) is closed, the integral

/ U(.2) =0,
d(D\B(z,¢))

SO

/ U@n=/ U.2)
ID\B(z,¢) St (z.e)

=D /S Z(—l)k_l(é:k — Z0)dC[K] A dL.

(271’ i)"&‘z" +(z.) —

From Lemma 2.1.1 it follows that the restriction of the forms equals

n

;ew*@—mﬁmAmm;w%ﬂmm

where do is the area element on the sphere.
Thus

vol St (z, ¢)
Ul2d)= ——— —> (@
/BD\B(z,a) vol S(z, &)
as ¢ — +0. O

We extend f(z) to a neighborhood V(dD) as a function satisfying the Holder
condition on V(dD) with the same exponent ¢, and we again denote it by f(z).
Consider the integral

®&)=[;G@)ﬁﬂdﬂK§@- (2.1.4)
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If z ¢ D, then integral (2.1.4) has no singularity, whereas if z € dD, then

IF() —f@IUE.2)] = CIg —2|*F"do (£),

so the integral ®(z) is absolutely convergent.

Lemma 2.1.3 If the function f satisfies the Holder condition in V(0D) with the
exponent o, where 0 < a < 1, then the function ®(z) satisfies the Holder condition
in V(0D) with the same exponent q.

Proof Let z! and 72 be points in V(dD) with |z! — 72| = §, where § is sufficiently
small. Consider a ball B(z',28) C V(dD), and set o5 = dD N B(z', 28). Then

[0 -s@nvea| < [ 18- < o

for j = 1,2. When o5 is a smooth surface, it is easy to obtain this inequality by
replacing 7/ by their projections onto o5 and using the integral over o3 instead of the
integral over a (2n — 1)-dimensional sphere of radius §, and passing over to polar
coordinates in this sphere. If 05 is piecewise smooth, we estimate the integral over
each smooth piece of o5 that way.

We consider the difference of integrals (2.1.4) over D \ oy at the points z' and
Z2, which equals

[, t@-r@)we -ve.)

L (FE) 1) / Ued).  @15)
dD\og

We have already dealt with the second integral in Lemma 2.1.2 (except that there
z! € dD), from which we obtain

/ U2
dD\os

<1

Consequently,

1 _ 2 1 < o
") f(z)\‘/ww U 2H| < Cs8°.
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Now we estimate the first term in (2.1.5). If { € dD \ o3, then

2 _

6-% 58 |_lgogl o) !
_ < 7 _
|§_11|2n |§_12|2n |§_21|2n J J |§_21|2n |§_22|2n
2n—1 s+1—2n
U (Ut N ok 5 i RS
I e A [l B SR T Al &=z~
since |¢ — z!| < 2|¢ — Z?|. Thus
| (') — ()] < Cs8 + Cob |t — 2 "do.
dD\os

If o3 is a smooth surface, then by replacing the point z! by its projection onto o5 we
obtain

[ e-eas < o,
dD\og

|

Remark 2.1.1 As in the case of the Cauchy-type integral, when o = 1 the function
®(z) will satisfy the condition

|@(z") — ()| < Clz' = 2| | In|z" = 2],

since
[ e=aas < Gl
dD\og

Theorem 2.1.1 Let D be a bounded domain with a piecewise-smooth boundary 0D
and let f € €*(0D), where 0 < « < 1. Then the Bochner—Martinelli integral
M™f extends continuously to D as a function of class €* (D), while M~f extends
continuously to C*\ D as a function of class €*(C" \ D). Moreover, the Sokhotskii—
Plemelj formulas are valid for 7 € dD:

M@ = (1— 1@ Q) + pov. / FOUE.2),
w (2.1.6)

M @) = —2() + p.v. /3 0.
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Proof The first part of the theorem follows from Lemma 2.1.3. We consider the
integral

p.y. / FOUE.2) = / (O —FUE.2) + Q)
oD oD

(by Lemma 2.1.2). Since ®(z) is continuous in V(dD) (by Lemma 2.1.3),

/w(f(é) ~f@)U(&.2) = MTf(2) — ().

that is,

MTf(z) = (1-t@)f () +P.V./ FOUE.2).
oD

On the other hand,

/3 O —FUED = M)

Remark 2.1.2 1f we introduce the norm

Ifll¢e = sup |f| + sup w
D tneop 1€ —l

in the space ¢’* (D) of functions f satisfying the Holder condition with the exponent
o, then Lemmas 2.1.2 and 2.1.3 show that the Bochner—Martinelli integral and the
Bochner—Martinelli singular integral define bounded operators in this space for 0 <
o < 1 (when dD € €V).

Lemma 2.1.3 is contained in the paper by Chirka [18]. Various versions of
Theorem 2.1.1 have been quoted on numerous occasions. Look and Zhong [60]
proved (2.1.6) for domains with a boundary of class €. Later these formulas were
obtained by Harvey and Lawson [30] for domains with a smooth boundary.

Corollary 2.1.1 IfdD € €', then for z € dD formula (2.1.6) takes the form

1
M@ = 3@ +p. [ FOUE),
w 2.1.7)

MA@ = 5@ + . [ FOUE)

and therefore the Bochner—Martinelli singular integral also satisfies the Holder
condition with the exponent & on 0D.
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Corollary 2.1.2 If 0D is piecewise smooth, then

MY f(@) =M f(z) = f(2)

forz € dD.

2.1.2 Analogue of Privalov’s Theorem

In this subsection, we consider a bounded domain D with a boundary of class ¢!
and functions f that are integrable on dD (i.e., f € .Z'(dD)). Let z° € dD. Consider
a right circular cone Vo with the vertex at z° and the axis that coincides with the
normal to 3D at z°, the angle 8 between the axis and the generator of the cone being

g
less than 7 Let z € D N V. Suppose that z° is a Lebesgue point for f, i.e.,

Jim &= / IF(¢) — ()| do = o.
ADNB(Z0,¢)

e—>+0

Theorem 2.1.2 ([45]) Ifz € DN Vy, then

lim [ / (F©) —F) U(E.2) — / (F(©) —FE) UG, zﬂ — 0.
oD OD\B(z°,]z—2%])

Z—)ZO
ZEV o

This theorem is an analogue of Privalov’s theorem for an integral of Cauchy type.

Proof We make a unitary transformation of C" and a translation so that z° goes to
0 and the tangent plane to dD at z° goes to the plane T = {w € C" : Imw, = 0}.
The surface dD in a neighborhood of the origin will then be given by the equations

Cl = Wls..n, é‘n—l = Wp—1, Cn = un+l(p(w)s

where w = (Wi,...,wu—1, u,) € T; the function ¢ € €' (W), where W is a
neighborhood of the origin in the plane T; and ¢(w) = o(|w|) as w — 0. We
denote the projection of z onto the Im w,, axis by z. Then

lz—z| < zZltan B, [2| < [2] .
cos B

Fix g9 > 0, and choose a (2n — 1)-dimensional ball B’ in the plane T with the
center at 0 and radius ¢ such that

1. B C W,
2. |w—12| < C|¢(w) — z| forw € B, where C is a constant independent of w and z.
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Condition (2) is ensured by the relations
w =2 = lpw)| = o(lw]), |w| = 0;

wl <lw=2. 2 <w-2l.

w—=2 < [w=CW)|+1EW) —z[ + |z =2| < lpW)| + |E(w) — 2| + [z tan B
< le)| + 1E(w) — 2| 4 tan B(lw — EW)[ + [E(w) —2])
= (1 +tan B)(lpw)| + [E(w) —2]) = C|¢(w) — 2.

We note that the ball B’ and the constant C may be taken to be independent
of the point z° = 0. If 0 is a Lebesgue point for the function f(¢), then 0 is also a
Lebesgue point for the function f({ (w)). It is clear that the form of the kernel U(¢, 7)
is not affected by the translation.

Lemma 2.1.4 The kernel U(C,z) is invariant with respect to unitary transforma-
tions.

Proof Suppose the unitary transformation has the form ¢ = A{’, where A is the
unitary matrix A = [|all},—,. Then the distance |{ — z| will not change, d{ =
detAd¢’ = eVdl', and

Z( DN (G — ) dE k] = Z( Dt lza,k(z —z)ZApkdz [p),

k=1

where A, is the minor of the matrix A corresponding to the element a, so

0, j ,
Z( 1) _la]kApk— J#p
(=1l detA, j=p.
O
We now continue with the proof of Theorem 2.1.2. Let |z| = &. Transform the

difference of the integrals as follows
[ vo-rowea-[ @ -ropueo
oD dD\B(0,s)

- / (F(©) —FONUE.2) — UE.0)) + / (F(©) — FONULE.2).
ID\B(0.¢)

dDNB(0.¢)
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Now
1 C
|é‘ _ Z|2n—l = €2n—l ’
since
ClE(w) —z| = |[w—2z| > [z] = ecos B,
SO
C
[ w@-rowea| <55 [ g0 -0l —o
ADNB(0,e) & ADNB(0,e)

as ¢ — 0. Now consider the difference

G-z § :5( o 1)_ %
&=z g Y Ng =P g =

We have
5l _ . E E
m — 3 sizn 3 2 1 132y
1§ —z lw—1z] (Iwl> + 2%
However
2n—1
oL 1 _|§,~|||z|—|§—zl\z !
Iz e GI1E—2 & [FIE— 2=
2n—1 1
<|z| _—
2 =
We have

[E(w)| = C4lw| = Cs|lw —Z],

|w
lw—Z]
constant because this fraction equals the cosine of the angle between the vectors w

since ¢ ¢ B(0,¢), and the fraction is bounded from below by a positive

and w — Z, and that angle cannot be greater than % Thus

Cs|z| do
U(C,2) = U, 0)] < W
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Since do < C;7dS, where dS is the area element of the plane 7', we obtain

/ Q) O] U 2) — U 0)]
B(0.60)NdD\B(0,¢)
|z| dS
< FE0) —F(O)] —
B(0,60)NT\B(0.¢) (Iw]? + [z]?)"
|z| dS
<G e Ol e @1)
B(0,60)NT (Iw]? + 1z
If ¢ — 40, then |z| — 0, while the expression ﬁ is the Poisson kernel
w )"
for the half-space. Since 0 is the Lebesgue point of f({(w)), it is well known that
this integral converges to zero as ¢ — +0 (see, for example, [77]). O

Theorem 2.1.2 shows that the existence of the Bochner—Martinelli singular
integral at z° is equivalent to the existence of the limit of M (z) as z — 2° along

nontangential paths. Therefore, if the singular integral exists, so lim0 M (z) exists,
>z

and so the Sokhotskﬁ—Plemelj formula (2.1.7) holds.

2.2  Jump Theorems for the Bochner—Martinelli Integral

We saw in Sect.2.1 that the Sokhotskii—Plemelj formula implies a jump theorem
(see Corollary 2.1.2). As a rule, the jump theorem is more readily proved than
the Sokhotskii—Plemelj formula, and moreover the difference M*f — M~f may
have a limit on dD even when the functions M*f and M~f themselves do not.
Therefore jump theorems hold for a wider class of functions than do Sokhotskii—
Plemelj formulas.

2.2.1 |Integrable and Continuous Functions

First we study the case when D is a bounded domain with a boundary of class
¢!, and f € (D). Let us consider a right circular cone Vo with the vertex at
7% € D whose axis coincides with the normal to D at z°, the angle B between the

. . v .
axis and the generator being less than 7 We take two points z© € V,o N D and

7= € Vo N (C"\ D) such that alzt — °| < |z7 —2°| < b|z+ — 20|, where a and b
are constants not depending on z*¥, and 0 < a < b < oo.



32 2 Properties of the Bochner—Martinelli Integral and the Logarithmic Residue. ..

Theorem 2.2.1 ([45]) If2° is a Lebesgue point of the function f € £ (dD), then

lim (Mf(z) —Mf(z)) = f(2°) (2.2.1)

Z——>Z
(where Mf is defined by (1.2.4)). If f € € (dD), then limit (2.2.1) exists for all points

2% € D, and it is attained uniformly if the angle B and the constants a and b are
fixed.

Proof By Lemma 2.1.4, using a unitary transformation and translation, we take z°
to 0 and the tangent plane to D at z° to the plane T = {w € C" : Imw, = 0}. The
surface dD will then be given in a neighborhood of 0 by a system of equations

é-l =Wlyenn, gn—l = Wp—1, é-n =u, + l(P(W),
where w = (wi,...,w,—1,u,) € T, the function @(w) is of class ' in a

neighborhood W of 0 in the plane 7, and ¢(w) = o(Jw|) as w — 0. We denote
the projections z* onto the Im w,, axis by z*. Then

+ _ ot =+ + |z
|z% -2 < [ZF[ tan B, |zF[ < —,
., cosp (2.2.2)
- - _ blz7]
alzt| cosp < [z7] = —.
os B
We fix a ball B’ in the plane T with the center at 0 and of radius ¢ such that

1. B cw,
2. |w—7F| < Cl¢(w) — z%| for w € B, where C is the constant independent of
the point z° = 0. Here B’ = B(z°,¢) N T and I = B(z°,¢) N dD.

Consider the difference

MPGH) — Mf) = /3 (O~ FENUE)
- / () —FENUE ) +FE) / UG — UE.)).
oD oD
Since
/ U~ U = 1,
oD

it is enough to show that

lim aD(f(é) —fENUE.H) - UE ) =0.

Ez
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In the integral
/ (O —FENUE. ) - U2,
AD\T

we can take the limit inside, since z° ¢ 9D \ T. It remains to consider this integral
over the set I". From condition (2) on the choice of B’ and the inequality

|E(w)| < Cilw| < Cilw —7F|

we obtain

&=zt =z

‘ & &

2n— —id1—
:‘ o1 Zl|zk||z—z i
E—2F -] ¢ =P
2n—1 m
s . |zk| [
= |lt -2 - ||Z e =Tt
-q sz”zl L (A 1 SR
e . e

We may assume that a; = acosf < I, then |w — z%| > |w — a,Z*] in view of
(2.2.2). Therefore from (2.2.3) we have that

d|zt|
- |W _ Cl12+|2n ’

‘ & &

&=zt =

where d depends only on a, b, C, Cy, and B. In precisely the same way,

2

B 2| 5l __ difZ]
E—ztPr e =z

o=t g T w—adt P

Finally, do < d»dS, where dS is the surface area element on the surface 7, and d> is
independent of z°. Therefore

FE) =FOLEH] ¢

<ds =
(Iw]> + ailz*]?)"

‘/F(f(é) —fO)UE.z5) = UE&.2)

(2.2.4)
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Since
|zt
(Iw]? + aflz*+?)

is the Poisson kernel for the half-space and O is a Lebesgue point for f(¢(w)), the
last expression tends to zero as |ZT| — 0 (see [77, Theorem 1.25]).

If f is continuous on dD, then for each § > 0, we choose a ball B’ of radius ¢
such that [f(¢(w)) —f(0)| < & for w € B’ (where ¢ may be taken independent of the
point z° = 0). Then from (2.2.4) we obtain

‘ /F (F(©) —FONUE.H) — U, z_))‘

a|z*t|dS a|z*|dS
= did T 2Ry = 2 1 2+ 2y
B (W] 4+ ailz*]?) r (WP + iz %)
and the last integral equals the constant independent of 7. O

Theorem 2.2.1 for continuous functions can be found in [19].

Corollary 2.2.1 Let f € € (D). If M*f extends continuously to D, then M~f
extends continuously to C" \ D, and vice versa.

This corollary, given in [19], was also remarked by Harvey and Lawson in [30].
We now give an example to show that when f is continuous, the function Mf may fail
to extend to certain points of the boundary dD. This example is contained in [19].

Example 2.2.1 Let D be a domain such that D is contained in a unit ball B(0, 1),
and 0D contains a (2n — 1)-dimensional ball B’ of radius R < 1 with the center at
the point 0 in the plane 7 = {z € C" : Imz, = 0}. We set f({) = Ky

€] In |¢]
so that f € € (D). We will show that Mf(z) is unbounded in any neighborhood of

the origin.

on dD,

Setz = (0,...,0,iy,), with y, > 0. It suffices to show that the integral
10 = [ roues

is unbounded in any neighborhood of the origin. Now de[k] A d¢ = 0 on the set B’
for k # n, so

(= DU [ (= iv)dEln] A dE
1 = ,
© @iy /B RETGIEEEE
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where 1, = Re {,,. As in Theorem 2.2.1,

/ ) yndln] A dE Nayad€ln] A dg

yndS
<C| —— < (.
IS +yH |~ /T(Iél“ry)"_

If we introduce polar coordinates in B’, then dS = |¢|**~2d|¢| A dw, where dw is
the surface area element on the unit sphere in R?"~!. Integrating over o yields,

n,dS . 21>d|g|
=C
h= /B IS I (S]] (S + y)” 2/0 1S I (S]] (S + v

N (14
C .
= 2/8 I (21| (P + 52"

However

ko eptdig koo
lim/ :/ —In|InR| 4+ In|Ing|.
w=0Je T[T CR+32)" S TglTmie)

Fix N > 0. If we take ¢ sufficiently small, then In|Ilng| —In|InR| > 2N, and so
I, > N for sufficiently small y,,.

2.2.2 Functions of Class £?

Again, let D be a bounded domain in C" with a smooth boundary dD, and f €
£P(dD) with p > 1. We denote the unit outer normal to dD at { by v ().

Theorem 2.2.2 ([45]) If Mf(z) is an integral of the form (1.2.4), then

e—>+40

lim / \Mf(z —¢ev(z)) — Mf(z + ev(2)) —f(z)|pdcr =0,
aD
and in addition
/ Mf (z — £v(2)) — Mf(z + ev(2))|"do < C / |fPdo, (22.5)
D D

where the constant C is independent of f and ¢ (for sufficiently small €, the point
z—ev(z) €D, andz+ ev(z) € C"\ D). If f € £°°(0D), then

sup |[Mf(z — ev(z)) — Mf(z + ev(z))| < Cesssup|f].
aD aD
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Proof We write 7t = z—ev(z) and z~ = z+ v(z). For each point { € 9D, we take
aball B(¢, r) of radius r not depending on ¢ such that, for z € D N B(¢, r), we have

& =25 > k(lw = ¢* + &%)

for e < % (here k is independent of ¢ and ¢), where w is the projection of z onto

the tangent plane T; to dD at {. This can always be done because
e =wl =8 =zl = |w—z[=o(f = wl)

as w — ( (see the proof of Theorem 2.2.1). We have

/a MI) = MA@ do

=/ do(z)
aD
p—1
5/ dcr(Z)(/ IU(Z,Z+)—U(§,Z_)|> x
aD aD

X /w FQ) —f@F [UEz") - UE2)

p

/3 (O =) = UED)

by Jensen’s inequality (see, for example [31, Sect. 2.2]) applied to the integral
P
( | v -rol ueh - ve.o)| do) .

We estimated the integral / | U, zH)—-Ute, z_)| in Theorem 2.2.1 and showed

aD
it to be bounded by the constant not depending on &, while the integral

/ do () [ F©) —F@PIUE ) — U )
oD D

Cm_z;n’— Cm_Z,;

P = |

<c 2 /3 do(®) /3 NG



2.2 Jump Theorems for the Bochner—Martinelli Integral

If z € B(¢, r) N dD, then

Em_Zm _ Em—Zm
[C—zF[P e =z |

2n—1 1

= b= llls =11~ 6= X =

6en
< 7
Tk (lw— el + €2)

while

2e
< .
k'(jw = + €2)

gV EVp
+
‘w — T =

Then

Cm_znt _ g“m—Z,;
=zt |G —z |

elf(§) —f (Z(W))lp dS(w) = dI,.

do(2)

/ F©) — QI
ADNB(Er)

<d

- /TmB@,r) (lw—=¢1>+¢?)

w—¢

Introducing the variable t = —= in R*"~!, we obtain that
P

N[ MOl
Lelel<ry

(7> + 1)

and the integral
10 = [ ) =1l + o

converges to zero as ¢ — +0 for fixed z. Also I;(r) < A||f||",,. Therefore

[F (&) —f(z(& + el
/au do ) /{s|t|<r} (> 4+ D as()

- O Lo
- /{elrkr} Qi+ 1y PO = /,;zn_l i+ B0

37
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where I (1) = I.(¢) inside the ball {r : ¢|7| < r}, and I} (f) = O outside this ball.
In the last integral, we may take the limit as ¢ — +0 under the integral sign by
Lebesgue’s dominated convergence theorem.

It remains to consider the integral

Em_zy-:,_ _ Em_zz
[ =zt > ¢ =z |

/ do(¢) IF&) —f@F do(2).
aD dD\B(¢.r)

:I:”

. r
Since | — z| > r, we have |¢ — zF| > ‘|C—Z|—|Z—Z >r—e> E.Then

Em_Zm _ Em—Zm
[C—zF[P e =z |

2n—1 1

<|ln—Zal 7" =271 ) . - <de,
- _ oy — 20— —
S

while
EVm U
'|§—z+|2n+|z—z—|2" =Dae
that is,
Cm - Z;n’— Cm - Z;

do(z)

[ do (0) F©) — QP
aD ID\B(L.r)

&=zt [E—z

2
< d_o,a(/3 [flpda) .
D

Inequality (2.2.5) is proved analogously. O

2.3 Boundary Behavior of Derivatives
of the Bochner—Martinelli Integral

2.3.1 Formulas for Finding Derivatives

Suppose D is a bounded domain with a piecewise-smooth boundary, f € €' (dD),
and Mf is the Bochner—Martinelli integral (1.2.4).
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Lemma 2.3.1 Derivatives of Mf may be found by the formulas

M) _ [ i
= g VG + D /Za—m—gdmdq] (2.3.1)

(M) ) o o
Py /@U@ 9+ / Zaa s dlm ndz. 232

where g = g(C, z) is the fundamental solution to Laplace’s equation (see Sect. 1.1).

Proof We prove, for example, formula (2.3.1), formula (2.3.2) is proved analo-
gously. Recall that

U2 = Z( 1)“ (ZZ)dé[k]/\dC

Now

a(Mf)
/ f@)a U2 = / 0+ /BD T UG,

however

0 [ g (g ) diwnar = aysn [ () natio

since

0

) ag
A(F g, ) A A dsn) = (=1 (5 ) A gl
d a
DT () R A
Consequently

a(Mf) n+m

- ; L U2+ (1) Z/Da;k G ) dE ndzi
_ af n+m
- [ sEvea+ e Z/Da—ga—gd“d“ .

due to g being a harmonic function. O
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Now consider a domain D with a boundary of class %, and suppose that f €
€'(0D).1f D = {z € C" : p(z) < 0} and p € €*(D) with dp # 0 on 3D, we denote
dp
Oz | gradp|

and p; = pk. The surface area element is then

n

do = i7"2'7" Y (=1 ppd k] A dE ]
k=1

n

_ i—nzl—" Z(—l)k_lpkdg[k] A d§|3D

k=1

(see Lemma 2.1.1).

Lemma 2.3.2 For z ¢ 0D, let

P(z) = i"2""! /an(é)g(Z, 2)do(£)

be a single-layer potential. Then

0P
== /3 @OV
nAAn—1 . 3 - a T
+i"2 kél /30 [Pk@(fpk) - me_Ek(fpk)} 8(¢.2)do(9), (2.3.3)
0P
- /3 @OV

#rzty /w [pkagm(fpk) oi gk(fp;)}g(é,z)da(é)- 2.3.4)

Proof We have
/ £ % i Zpk( D™ 1dg k] A dE
=20 o YN
k=1 n

— 3y / 5o os) deli) A
k=1 mn
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Just as in Lemma 2.3.1, we obtain
d
aD Bé-m

A

_1\ntk
D op 08k

(fprg) dtlk] AdE = (1)t (fprg) dtlm] A dE.

Therefore

aﬁ_ - _1\ntk—1 i ~ —
ey = 2V [, A, A0sEA A A

_1\ntm & i _ m __l-n n—1 . _%
et [ s adtn adt -~ 273 [ gaig oo

n a _
-3 D[(—l)"“—lf(fp,;) dE 1K) A dE
k=1 m

3 _
+ (=1 (fpp) dE[m] A d@}g(f, 2) — / fonU(E, 2).
9k D

Formula (2.3.4) is proved analogously. O

Theorem 2.3.1 If0D € €2 andf € €*(0D), then the integral Mf extends to D and
to C"\ D as a function of class €11 for 0 < a < 1. Moreover

aMp) _ /w ( o _ pka_f) )

BZm aé-m =1 3§k
4! / V1Ot do (©). (2.3.5)
oD
where
_y [, 0 -3_f)_ i( B_f)}
¥ ;1 [pk 7 (/Ompk iz )~ Pz iz ) |-
and

o [ (Y
azm _/BD (aé—_m pmk=1pkagk) U(sz)

4! /a RAGRGERIG! (23.6)
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where
o[, 2 --3_f)__i(__3_f)}
V2 ; [Pk i (pmpk iz ) P e )|

Proof Formulas (2.3.5) and (2.3.6) follow from Lemmas 2.3.1 and 2.3.2 while the
boundary behavior of the integral Mf follows from Theorem 2.1.1 and the properties
of the single-layer potential. O

Formulas (2.3.1)—(2.3.6) are essentially classical formulas of the potential theory.

2.3.2  Jump Theorem for Derivatives

Corollary 2.3.1 If 0D € €2 and f € €>(0D), then the jump of the derivatives of
Mf is given by

At dMp) _ o

n af
— Pm - s € 8D,
o k§=1 0% Prs 2

aZm azm azm
(2.3.7)
IM*f) oM —f) _ of —~ of
- = pa Y pi €D,
i i LD Y

If we are only concerned with the jump of derivatives (that is, with formula
(2.3.7)), then we can weaken the conditions on dD and on f.

Let D be a bounded domain with a boundary of class ¢! and D = {z € C" :
p(z) < 0}, where p € €'(C"), and dp # 0 on dD. If 7 € 9D, then z* € D and
7~ ¢ D and we denote points on the normal to dD at z such that |77 —z| = |77 —z|.

Lemma 2.3.3 Let

9e(t.2) -
B, 1) = /a ) g;fm@ JEK A de, 2 ¢ oD,

0 , _
B (2) = /aD ga(; D gl A dE. = ¢ D.

m

Then

lim (®,,7(") = ®,2() = (=" pzpm,

>z

lim (i(z") — (7)) = (=" orpin,

>z

and these limits are uniformly attained in z.
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The proof is analogues to the proof of Theorem 2.2.1.

Theorem 2.3.2 (Aronov) Supposef € €' (dD), and Mf is the Bochner—Martinelli
integral (1.2.4). Then

L L A U A
=2 ( o7k %% )_ __szpmazm, (2.3.8)

£z

. (a(Mf(z+))_8(Mf(z‘))) o kZ pm . @39

zi —Z BZ]—: azk_

and these limits are uniformly attained in 7 € dD.

Proof By (2.3.2), we have

oM [ of " 9 dg
0z _/Da; v+ 1)/ Za;mﬂzmdé ne.

a
By Theorem 2.2.1, the jump of the first integral equals af , and we represent the
2k

second integral in the form

of dg
/ 30 B, A

_ [ s o e
=5 ) @dg“[k]AdC—i-/D(@ p= )Bgmdé[k]Adé

By Lemma 2.3.3, the jump of the first integral equals

)
(—1)"“% PH(Dom(2).

and the jump of the second integral is zero (this is proved the same way as in
Theorem 2.2.1). O

We obtain the following assertion from Theorem 2.3.2 by induction.
Corollary 2.3.2 IfdD € €* and f € €™(dD), where m < k, and M™f € ‘to”’"(_ﬁ),
then M—f € €™(C" \ D). Conversely, if M—f € €"™(C" \ D), then M*f € €™(D).

Remark 2.3.1 Just as for Theorem 2.2.1, Theorem 2.3.2 can be obtained when f
is differentiable on dD and all its derivatives are integrable on dD. Jump formulas
(2.3.8) and (2.3.9) for derivatives will then hold at Lebesgue points of the derivatives

of f.
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Corollary 2.3.3 If0D € €' andf € €', then the jump of the derivative

- oM
3, (Mf) = Z (a 7) (2.3.10)
k=1
is zero.

Expression (2.3.10) will be called a d-normal derivative of Mf.

2.3.3 Jump Theorem for the 3-Normal Derivative

Corollary 2.3.3 shows that the jump of the d-normal derivative én(Mf) of the
Bochner—Martinelli integral is zero. It turns out that this assertion is valid even for
continuous functions f if the boundary of the domain is assumed to be class ¢
smooth.

In this case, we may take the defining function to be

—inf [{—z|, zeD;

@) t€dD
inf | —z|, zeC"\D.
gleBD ¢ | \

Then D = {z € C" : p(z) < 0}. Moreover, when dD € €2 we have the following
(see, for example, [83, Sect. 2]):

1. There is a neighborhood V of D such that p € €*(V);

2. |gradp| = ! 1n V;

3. If ¥ € Vare the points on the normal to dD at z such that |zt —z| = |77 — 2],
then ;—i(zi) = g—;(z) and ;—g(zi) = é;{)—;((z) fork=1,2,....n

ap ap
and pp = 2— Hence

In this case p = 2—
P = 0z 0Zx

— d(Mf) — d(Mf) dp
Y Wy =2y M2

oz x % 0z

0, (Mf) =

k=1

Theorem 2.3.3 ([45]) If f € ¥(0D), then the integral Mf of the form (1.2.4)

satisfies

hm (8 (Mf(zH)) — 8, (Mf(z~ ) =

Z—)Z
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This limit is attained uniformly with respect to z € 9dD. If 3,(Mf(z1)) extends
continuously to D, then 0,(Mf(z7)) extends continuously to C" \ D, and vice versa.

Proof If f is constant, then E_)an = 0. Thus, we may assume that f(z) = 0 at
the point z € dD. By formula (2.1.3), the restriction of the kernel U(¢, z) to dD has
the form

(n— 1! ¢ Z I (Cx —Z) Jo.

T S A
Consequently,
0,M (z+) — 0.M(27)

__o=n) PO 11
= /f@)z 9% (lz—z+|2" |z—z—|2")d"

k=1
n a _
+— / f@)[(Z—@k +>Z%@m—';:>)|z—z—|—2—2"
m=1 m
( (Ck_z")za; (Cn =7, )l@—z |72~ zn]do

Denote the first integral by /; and the second one by /. Make a unitary transforma-
tion and translation so that z is taken to 0 and the tangent plane to dD at z is taken to
the plane

={weC": Imw, = 0}.

In a neighborhood of the origin, the boundary dD will be given by a system of
equations

Cl =Wls.un, é‘n—l = Wp—1, é.n = un+l(p(w)s

where w = (wi,...,w,_1,u,) € T. The function ¢(w) is class €2 in a
neighborhood W of the origin, and & = (0,...,0, £iy,). The surface dD is the
Lyapunov surface with the Holder exponent equal to 1, so the following estimates
hold [82, Sect. 22]:

lp(w)| = Clwl, wew,

)3 )<C1|w| i=1,....n 2.3.11)

‘—‘p <ciwl,  j=1,...n—1,
dv;
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dp ap /4 dp ap

where u; = Rew; and v; = Imw;. Since a_w, = _a_w,» 3yn’ and )ayn >C, >0
for w € W, it follows that

dp

52 CoN| = Capwl, \ (0| = Gl (23.12)

forweWandk=1,...,n—1.
We note that the constants do not depend on the point z under consideration.
Finally,

[E(w)] < Calw|. (2.3.13)

We fix ¢ > 0, take a ball B’ in the plane T with the center at the origin, and choose
a > 0 such that

1. B CW,

2. f€Cw))| < sforwe B,

3.{zeC": (z1,...,z1-1.Rezy) € B/, |Imz,| <a} C W,

4. C(2lys] + Clw|*) < d < 1 for |y,| < aand w € B’ (the constant C being

borrowed from (2.3.11)).
Since z+ = (0, ..., 0, £iy,), the identity

1E0w) =257 = W] + (£y — o(w)?
holds. Hence
6 =272 = Iw =2 (1 = (20— )W =)
But

| 203, — ¢7| _ ClwP(2lyal — Clwl?)
w—EP S WPt

< CQlyl +ClwP) =d <1
for |y,| < aand w € B'. Consequently

(£2¢y, — )
(1= (£20y, — pH)w —25[2) ™ Z T

= 1+ (£2¢y, — ¢2)|w — 25| 2h(w, 2)
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and the function (w, z) is uniformly bounded for w € B’ and |y,| < a. Therefore
=257 = lw =71+ (205 — D)W — 25 P hi(w, ), (2.3.14)
=277 = =2 (14 (200 — D)W =25 Pia(w, 7)) (2.3.19)
and the functions & and h, are uniformly bounded for w € B” and |y,| < a.

WesetI' = {¢ € dD : { = {(w), w € B’} and estimate the integral I, over
the surface I'. Using (2.3.14) and (2.3.15), we obtain

16— 25172 =18 =17 = 2(12¢w] + D) w = [
< G5yl + CwP) (Wl +y) ™

Supposing that do < CedS, where dS is the surface area element of the plane 7', we
have

-1 do 0
1l = )‘/f(é)zapa? — =) do
k

< eCr [ @l + CwPY WP +53)77ds.

Now
[l 32775 < [ il + 5275 = const
B T
while
[ WP s < [ ol 5D as,
B B
Introducing polar coordinates in the ball B/, we have dS = |w|*"2d|w| A dw,

where dw is the surface area element in the unit sphere in R*~!, so

/ (Wl +32)'~"dS = 03 [ (WP +32)'"dlw| < Romr.
B/

Here R is the radius of the ball B’, and 0,,—; is the area of the unit sphere in R,
Therefore |I; | < Cge, where the constant Cg is independent of z and y,,. Obviously
the integral I; over the surface dD \ T can be made as small as desired as z+ — 0.
We now show that the form of the integral I, is not affected by the unitary
transformation. Indeed, the distance does not change, so the functions p, do, and
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|¢ — z| do not change either. Consider the expression
n ap
> 5 =0,
k=1 0%k

Suppose the unitary transformation is given by the matrix A = [|ajc|},—,, i.e., by

n

’ 2 :

= Clijj, k=1,...,n,
j=1

and the inverse transformation is given by the matrix B = ||bj||7;—,. Then

n
E aybs = 8js,
k=1

where §; is the Kronecker symbol. Therefore

Z_(é‘k_Zk) Z a/ak/ vk(é‘

kj,s=1
—Za, 8s(L, — Z?@ —2)).
js=1

It can be shown in the same way that the sum

n

Za—g (G — %)

k=1

does not change. Thus, the form of the integral /, is invariant under unitary
transformation. Then

Z—( )@k—zuzaz Cn—75)
__i _ = g 3_p - _ =%
- z(gn Zn )mXZ:l agm (é-m Zm)

:__Zazm En(Cn — i)_if(” + 9"+ 3, F 20y).
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We split the integral I, over the surface I' into three integrals:

, ap dp e
/ f(C(W))(Nynaén )] laémzmyn)w 22,

I;:im

(T(u + @ + yp £ 20y,)

Z 8{ é-m(gn i)) (ZEZ(pyn — (,02)]’12|W _ Z+|_4_2nd0/,

where do’ is the image of do under the mapping w — ¢(w), and h, is defined in
(2.3.15). Using (2.3.11)—(2.3.15), we find that

1] < M18/ (Ma|wP [yl + Mslw|?[yal)w — 2 |722dS
B/

< Mye / bl (WP + 2)~"dS = Mse.
T

Now

+
|15

< Mee / W22lya] + ClwP) (Ml + Mslwllya] + Moy2) (wl? + y2)>~"ds
B/
< Myge / Dl (W + 32)7"dS + Mye / (WP + y2)17"dS < Mye.
B B

The integral I, over dD \ I" also tends to zero. O

Theorem 2.3.3 is an analogue of Lyapunov’s theorem on the jump of the normal
derivative of a double-layer potential. Just as in Theorem 2.2.1, it can be shown that
for f € .Z1(0D), the difference

O (Mf(ZT)) = 0,(MF(z7)) — O

as z¥ — z at Lebesgue points of f.

Remark 2.3.2 Theorem 2.3.3 does not hold for the derivative

"9
aap) = 3 10

=
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2.4 The Hodge Operator

Let us define the Hodge star operator (x) for differential forms with respect to
the Euclidean metric in C" (see, for example, [84, Chap. 5, Sect. 1]). Consider a
differential form of type (p, ¢)

/
y =Y yis@duy Adz. 24.1)
1J
where I = (i1,...,i,) and J = (ji,...,j,) are the multi-indices of order p and ¢

respectively, and 0 < p, g < n. The prime on the summation sign indicates that the
sum is taken over increasing multi-indices

I<i<...<ip=<n 1=Zji<...<j;=<n

Let the differential forms dz; and dz; have the form dz; = dz;; A ... ANdz;,, dzy =
del VANVAN deq. Then

*y = ZVI,J(Z) * (dzg N dzy),
1

and
x(dzy A dzy) = 22T (=1)" "o (I)o (J)dz[J] A dZ]1],

where the form dz[J] is obtained from dz by eliminating the differentials dz;,, ...,
dz;,, and the symbols o (/) is defined by dz; A dz[l] = o (I)dz. Thus, the form *y is
a form of type (n — g, n — p).

We now dwell on the basic properties of the Hodge operator.

Lemma 2.4.1 Ify and ¢ are forms of type (p, q), then

1 xxy = (=1)Ptay,

2. dz; A dZy A *(dzy A dzy) = 2°Y9dv, where dv is the volume form in C",

3. % % (dzr A dzy) = (—=1)P1dz A dzy,

4. xy = %y,

5. %y AQ = (=1)PTy A %¢.

This lemma is well known (see, for example, [84, Chap. 5]) and follows directly
from the definition of the Hodge operator.

A scalar product (y, ¢) may be defined for (p, g)-forms y and ¢ with coefficients
of class .Z?(D) by

v.e) = /DV/\*QZ’-



2.4 The Hodge Operator 51

This scalar product is called the Hodge product. Then ||y| = +/(y, y) is the Hodge
norm.

By using the Hodge operator, it is easy to find the operators * and 9* formally
dual to d and 0, namely 0* = — % d% and 0* = — * 0*. Recall that for the form y
the operators d and 9 are defined by the following equations:

n

_ '3 &
8y:ZZay—lkdekAdZI/\dZJ, aV—Zzﬂde/\dzlAdZJ
k=1 1J k=1 1J

Let us find, for example, O*.If yisa(p,g— 1)-form and ¢ is a (p, g)-form, y and
@ have smooth coefficients of class &’ 2(D) and ¢ has compact support in D, then
(3y.9) = (y.9"¢) and

(éy,go)=/E_)y/\*q'):/dy/\*(p:/d(y/\*¢)+(—1)”+‘1/y/\d*¢‘)
D D D D
:(—1)"+’1/)//\E_)*gz_)z—/f/\*(*f)*fp),
D D

S0 9* = — % 9x. In just the same way, we can see that 3* = — % dx. The operator
d* carries forms of type (p, ¢) into forms of type (p, g — 1). By definition, 3* = 0
for forms of type (p, 0).

Example 2.4.1 If f is a smooth function, then

n of % 0 S T
*Jf = *(Za—szdzk) =2 Z(—l)" la_sz dz[k] A dz = 27" (—1)" g
k=1

k=1

Hence uy = i”Z”_l(*éf).

Example 2.4.2 U(¢,z) = 21" (* dg(¢, z))
We consider the operator

0= 9%+ 99",

which is known as the complex Laplacian. If ¢ is a function, then

g = 9%0¢ —8*Z—dzk —*8221_”"( 1)"1 dz[k]/\dz

" 9% 0%¢
=—x2"" N Az Adz =2 = —2Agp,
; vt CNE= 20 Y
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i.e., 0 = —2A for the functions and this identity continues to hold for the forms as
well (see, for example, [28, p. 106]). Thus, in C" the harmonic forms in the sense of
O are forms with harmonic coefficients. It is also easy to show that (0 = d9* + 9*0.

2.5 Holomorphic Functions Represented
by the Bochner-Martinelli Integral

2.5.1 Statement of the d-Neumann Problem

Suppose n > 1,and D = {z € C" : p(z) < 0} is a bounded domain in C" with
a boundary of class €', where p is the defining function. If f € €’ (D), then denote

- "L of
Of = Z = Pk,
= 0%

aip 1 - _

where p, = 3_p m The derivative d,f is the d-normal derivative of function f.
2k |0p _ _

We say that the tangential part d.f of df equals zero on dD if

/ 5fA<p:O
aD

for all forms ¢ € 2™"2(C"). (Here 2""~2(C") is the space of differential forms
of type (n,n — 2) with coefficients of space Z(C").) But this means precisely that
fAdp=0o0nadD.

_ _ P _
If we write the form as f = d.f + Aﬁ, then A = 9,f. If we denote the outer
0

unit normal to dD at z by v(z), and s(z) = iv(z), then

Ly o

On the other hand from Example 2.4.1 and the equalities

ik A dE|,,=2""'i"(=1)*" py do,
ek A dE|,,= 2"""i"(—1)" o do,

we have

Of do = #dflop = 2' " (=1)" 1t
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So the normal part of the form df has moved to the tangent part of the form #0f.
If we consider the function
(n—2)! 1
2h Ié- _ Z|2n—2 ’

8L =2""g(L,2) = —

then formula (1.2.1) can be rewritten as follows.

Corollary 2.5.1 Let D be a bounded domain with a piecewise-smooth boundary,
and let f be a harmonic function in D of class € (D). Then

_ _ f@, zeD,
[ s@wes - [ aonse - - 25.1)
oD oD 0, z ¢ D.
We consider the d-Neumann problem for functions.

2.5.1 For given function ¢ on dD, find a function f on D such that

E_inf =g, on dD,
2.5.2)
Of =0, in D.

This problem is an exact analogue of an ordinary Neumann problem for harmonic
functions.

Just as the ordinary Neumann problem, problem (2.5.2) is not always solvable.
There is a necessary orthogonality condition to be satisfied. Indeed, if f is a
harmonic function of class €' (D), then %0f is a d-closed form in D, since

0= 0Of = 5*3f = — * 0(xdf).

i.e., 9(xdf) = 0. Hence, if ¢ = 9,f on dD, and h is a holomorphic function on D,
then

/an(pilda:/3Dil(*5f):/Da(il*éf):/Dila(*éf):O'

Thus, a necessary condition for solvability of (2.5.2) is the orthogonality condition

/(p}_zdcrzo
D

forall h € O(D).
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Compare problem (2.5.2) with the following problem: for given function v, find
a function f such that

é,f =0, on 0D,
(2.5.3)
Of = v, in D.

If we ignore the smoothness of the functions, then (2.5.2) and (2.5.3) are equivalent.
Indeed, the volume potential f;, is one of the solutions to the second equation in
(2.5.3). Subtracting it from the solution of (2.5.3), we obtain

OFf —f,) =0 and 9,(f—fy) =¢

on dD, i.e., we have (2.5.2). Conversely, given (2.5.2), we take the single-layer
potential f(;t for ¢ and extend f,” into D as a smooth function to obtain

0.(f £ +£;)=0 on D,
and
O¢ —f£F +£,) = ¥

i.e., we have (2.5.3).

Problem (2.5.2) is more adequate for studying the boundary properties of
holomorphic functions. We will not dwell any further on the development of the
inhomogeneous Neumann problem in this book. Several results on its solvability
can be found in [45]. Here we will focus on the homogeneous problem.

2.5.2 The Homogeneous d-Neumann Problem

We first consider the homogeneous d-Neumann problem

0f =0, on 0D,
2.5.4)
Of =0, in D.

It is clear that holomorphic functions f satisfy (2.5.4). We will show that the

converse is also true. First we reformulate the problem. Recall that Mf is the
Bochner—Martinelli integral (1.2.4)

M) = /a QU < aD.
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Theorem 2.5.1 ([44]) Let D be a domain such t_hat a set C" \ D is connected,
and let f be a harmonic function in D of class €' (D). The following conditions are
equivalent:

1. 3,f = 00ndD;

2. MYf =finD;

3. M f=0inC"\D.

Proof Conditions (2) and (3) are equivalent by the jump theorem for the Bochner—
Martinelli integral (see Corollary 1.2.4) and by the uniqueness theorem for harmonic
functions.

If 9,/ = 0 on D then formula (2.5.1) yields M*f = f in D.If M*f = f in D,
then M~f = 0 outside D. Thus from (2.5.1) we obtain

3. (0)
/D T2 00 =

for all z ¢ dD. Applying the Keldysh-Lavrent’ev theorem (see, for example, [56,
p. 418]) on the density of fractions of the form

1
|c — 7|2

in the space %’ (dD), we obtain that 3,/ = 0 on dD. O

Theorem 2.5.2 (Folland and Kohn [21]; Aronov and Kytmanov [10]) Letf be a
harmonic function in D of class €' (D). The following conditions are equivalent:

1. 3,f = 00ndD;

2. MYf = finD;

3. M f=0inC"\ D;
4. f is holomorphic in D.

Proof Ttis sufficient to prove that condition (1) implies condition (4). Since the form
xdf is d-closed, then

0= / Fxdp) = / OF A wif = 2 / 3Pz n dz =2 / 13 Pdv.
oD D D D

)
Hencea‘Tf=Oian0ra11k=1,...,n,sof€ﬁ(D). O
Zk

Conditions (2), (3), (4) are equivalent without requirement that f is harmonic
in D.
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2.5.3 Holomorphic Functions Represented
by the Bochner—Martinelli Integral

Letn > 1.

Theorem 2.5.3 ([45]) If M f is holomorphic in D, f € €'(dD), and D € €' is
connected, then the boundary value of MTf coincides with f.

It is clear that Theorem 2.5.3 is not true when n = 1. This is not true either if
aD is not connected: it suffices to set f = 1 on just one connected component of dD
and f = 0 on the remaining components.

Consider a continuous function.

Theorem 2.5.4 ([46]) Let D be a bounded domain with a connected bouﬁdary of
class €°. A necessary and sufficient condition for the function f € € (D) to be
holomorphic in D is that M f = f in D.

Proof If M f = f in D, then M~ f extends continuously to C"\ D, and M~f =0on
dD. By the uniqueness theorem for harmonic functions, M~f = 0. Then d,(M~f) =

0, so by Theorem 2.3.3, 0,(M*f) = ,f extends continuously to D, and d,f = 0 on
aD. Let p(z) be a defining function for D, and D, = {z € D : p(z) < —¢&}, & > 0.

Then
/ Fedp) = 217 /D

a
when ¢ — +0. Henceaf—Oianorallkzl,...,n. O
Zk

We get the corollaries from this theorem, Theorem 2.2.1 on the jump of the
Bochner—Martinelli integral and Corollary 2.2.1.

Corollary 2.5.2 If f € €(0D) and 0D € €2, then a necessary and sufficient
condition for f to extend into D as a function F of class /(D) is that M—f = 0
outside D.

Corollary 2.5.3 Supposen > 1, 9D € €? is connected, and f € € (0D). f MY f is
holomorphic in D, then MTf € € (D), and MY f = f on dD.

Proof Since Mt is holomorphic in D, then 3,M*f = 0in D. Using Theorem 2.3.3

dZ/\dz—>0

¢ k=1

we obtain 3,M~f = 0 on dD. Since M~ f = O(|z]'~2"), and Mf _ = O(|z]™%") as
Fé
|z] = oo, by applying Stokes’ formula we find that
o= [ g (einrg) =2 [ S PI Py g
oD CN\D 1= Zk
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Consequently, M~f is holomorphic in C" \ D, and by Hartogs’ theorem it extends
holomorphically in C". But then M~f = 0, since M~ f — 0 as |z| — oo (here
we assume that n > 1 and dD is connected). Now applying Theorem 2.2.1 and
Corollary 2.2.1, we obtain the required assertion M*f = f on dD. O

2.5.4 Homogeneous Harmonic Polynomials Expansion
of the Bochner—-Martinelli Kernel

Let B = B(0, 1) be a unit ball in C* with the center at the origin, and let S = S(0, 1)
be its boundary. Consider a set of homogeneous harmonic polynomials that form a
complete orthonormal system of functions (basis) in the space .#%(S) with respect
to the Lebesgue measure do on S. We denote these polynomials as Py, where k
is the degree of homogeneity, k = 0,1,2,...,and s = 1,2,...,0(k), a(k) =
2(n+k—2)(k+2n—3)!
kl(n —2)!

polynomials of degree k (see, for example, [74, Chap. 10]). It is clear that o (k)
is a polynomial (in k) of degree (2n — 2) with the higher coefficient —2(n — 2)!.

is the number of linearly independent homogeneous

Theorem 2.5.5 ([45, 46]) If {Py,} is a complete orthonormal system of homo-
geneous harmonic polynomials in the space £*(S), then the Bochner—Martinelli
kernel has the expansion

" n+k—1

Ut=-Y Prs() [*alg;’;ffk)_z}, (2.5.5)

where series (2.5.5) converges uniformly on compact sets in the domain
{2 e C™: [¢] > |2}
Likewise, we have the expansion

Pk.s(z)
Ul,z)=— ' — * (0P5(0)), (2.5.6)
%:(n+k—l)|z|2 F2k—2 k

where series (2.5.6) converges uniformly on compact sets in the domain

{62 € C 1 [5] < fal}-

Proof We denote the restriction of the polynomial Py on S by Yy . Then {Y} is
an orthonormal basis in .#?(S), consisting of spherical functions. Let { € S,z € B
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and

1 _
| — |2n 2 = ZC/”Y/"‘V

k,s

(z being fixed here), where
Yis
@) = [ s do ).

If we express | — z|>~%" in terms of the Poisson kernel P(Z, z) for the ball, where

(n—1)! 1—]z?
2 |¢ =2

P, 2) =

then

o 1—(6.2) — (§.2) + |2
0@ = o [ P o @)

It is easy to verify that the functions

1 aPlc v(é‘) 2
GPO) = gy g (4P =
and
= 1 aPks(C)
GP) = g, (P =D

give harmonic extension of the functions ;Y ; and E Yks in B from the sphere S.
Therefore

1) = o 1| (0 PP~ 2P+

|Z|2—1 " _ aPk.S aPkY 27"
(= = Pes(2).
+n+k—1;(zj o 9o ) =2t k=2 (=@

Then

1 21" 1 —
= Ps(2) Yis(8). 257
P2 2} n k1K (@) Yis(©) (2.5.7)

- (n—2)1 4
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Series (2.5.7) converges in ¢ in the sense of .#%(S) and z uniformly on compact
subsets of B. The harmonic extension on ¢ in series (2.5.7) on B is given by

(1[5 -

Applying the Kelvin transformation in ¢ to both sides in (2.5.8), we find

2—2n 2t 1 B
) - (n—2)! ; et k—1 Pi5(2) Pis(9). (2.5.8)

1 2" Z Pis(z)  Prs(0)

C—222 ~ (n—2)\ = ntk—1 |g|r+k2

k,s

where the series converges uniformly on compact sets in {(z, &) € C*" : |¢| > |z|}.

Since

(n—2)!
2mh

U(t,z)=— * 0p | — 2>

(Example 2.4.2), we obtain the required equality (2.5.5).
Similarly, by exchanging ¢ and z in formula (2.5.7), we obtain

1 2m"

1 —
T o k1 O T 259)

where ¢ € B, z € S. Harmonic extension of the left- and right-hand sides of (2.5.9)
on z in B results in

(1

Applying the Kelvin transformation in z to (2.5.10), we obtain

2—2n 2 1 B
) = =2 kz k=1 Pes©) Prs(@). (2.5.10)

Z
R

1 27" 3 Pes(©)  Prs(2)

=22 " (=2 = ntk—1 |2

ks

where the series converges uniformly on compact sets in {(z, {) € C*" : |¢| < |z|}.
From this and Example 2.4.2 we obtain expansion (2.5.6). O

Corollary 2.5.4 Suppose 0D € €7 is connected, and f € € (0D). A necessary and
sufficient condition for f to extend into D as a function F € </ (D) is that

/ FOrOPL,) = 0
oD

forallk,s.
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Proof The function M~f is harmonic outside D, so to prove M~f = 0 outside D it
suffices to prove that M~—f = 0 outside some ball B(0,R) D D. When z ¢ B(0, R),
the function |¢ — z|>~2" is harmonic in ¢ in B(0, R), and therefore the kernel U(¢, z)
can be represented by uniformly convergent series (2.5.6) on B(0, R). We thus obtain
the required equality

/ FOUE2) =0
D

forz ¢ B(0,R). O

When n = 1, Corollary 2.5.4 reduces to the classical criterion for the existence of
a holomorphic extension, which consists in orthogonality of f to the monomials z*,
k=0,1,...,since in this case P s; = azk + b7, and so *%0Pys; = cZFdz, k> 1.

2.6 Boundary Behavior of the Integral (of Type)
of the Logarithmic Residue

Suppose D is a bounded domain in C" with a piecewise-smooth boundary dD and
w = ¥ (z) is a holomorphic mapping on D in C" having a finite number of zeros Ey
on D. Similarly to Sect. 1.4, consider the multiplicity 1z, of zero a of this map.

For a point z € Ey N 0D we consider a ball B(z, R), that does not contain any
other zeros of v, and use 7y (z) to denote

i Z2TSO.) N Y(BGR) N D))
() = lim Z=1[$(0, r)] ’

where .#?"~! is (2n — 1)-dimensional Lebesgue measure. In other words, we
consider the solid angle of the tangent cone of the image ¥ (B(z, R) N D) at the
point O rather than the solid angle of the tangent cone to the domain D at the point
z. (The definition of the tangent cone can be found in [20, Sect. 3.1.21].)

By Sard’s theorem, for z € Ey and a sufficiently small neighborhood of V, of
the point z the set By (z,r) = {{ € V, : | ({)| < r} is relatively compact in V,, and
the set Sy (z,r) = {{ € V; : |¥({)| = r} is a smooth (2n— 1)-dimensional cycle (for
almost all sufficiently small » > 0).

We define the principal value p.v.¥ of the integral of a measurable function ¢ at
the point z € Ey, on neighborhood S of the point z of the surface dD as follows:

pv.Y /S p(©)d2”(©) = lim 9(Q)dL> (D).

T0Js\By (z.r)

This definition differs from the conventional definition of the Cauchy principal value
p.v. in that we remove the curved ball By, (z, r) rather than the ball neighborhood of z.
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Consider the kernel of U(y({)) that is used in the multidimensional logarithmic
residue in Sect. 1.4. It is obtained by substituting w = v (z) from the Bochner—
Martinelli kernel U(w), defined by formula (1.4.1). The kernel U(y({)) is a closed
differential form of type (n,n — 1) on D with singularities at a € Ey.

We now formulate the main result of this section.

Theorem 2.6.1 ([65]) If a holomorphic function f in D satisfies the Holder condi-
tion with the exponent’y > 0 on D (i.e., f € €7 (D)), then

p.v. /BDf(z)U(w(c))z D nd@+ Y ry@pda).

a€EyND a€EyNOD

This formula is the formula of a multidimensional logarithmic residue with
singularities on the boundary. If the zeros of mapping ¥ do not lie on the boundary,
this formula turns into the ordinary logarithmic residue formula [9, Sect. 3]. In the
case of simple zeros a € 9D, it gives the theorem from [68]. Furthermore, this
theorem is a generalization of Theorem 20.7 in [45], where additional conditions
are imposed on the boundary dD and the map .

For the proof we need the following Theorem 3.2.5 from [20].

Suppose that the map ¥ : R™ — R" is the Lipschitz one and m < n. Then

[ srupmazne = [ sonwian e, e

if the set A is £"-measurable, g : R" — R and N(Y'|A, y) < oo for " for almost
all y.

Here J,,¥(x) is the m-dimensional Jacobian of the mapping v, £ is the
m-dimensional Lebesgue measure, 5#" is the m-dimensional Hausdorff measure,
N(¥]A,y) is the function of multiplicity of the mapping v, i.e., the number of
inverse images ¥ ' (y), lying in A.

First we prove the theorem for the principal value p.v.”.

Lemma 2.6.1 Under the hypotheses of Theorem 2.6.1 the equality

et [ JOUr©) = ¥ w0+ Y s

a€EyND a€EyNoD

holds.

Proof In the domain

D,=D\ |J By@.nr

a€EyNOD
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by the multidimensional logarithmic residue formula (1.4.2) we have

| roveer = ¥ wi,

a€EyND
and
p.v.Y / fOUW () = lim FOU{ (D).
oD =>+0Jap\ U By(an
aEEwﬂ’()D
So that

/3 L IOUD) = [3 NRGUCTCIEDS [S FOUWQ©),

w(a,r) ND

and

/ FOUW©)
Sy (a.r)ND

= / (F (&) = @U@ () +f(a) Uy(). (26.2)
Sy (a.r)ND

Sy (a.r)ND

Next, we use the Lojasiewicz inequality [61, p. 73]

€ —al = Cly(O)I* (2.6.3)

for some positive numbers o and C and points ¢ from a sufficiently small
neighborhood a. We show that the first integral in (2.6.2) tends to zero as r — +-0.
Using the Holder condition for the function f, equality (2.6.1) and inequality (2.6.3),
we obtain

Vel | —
— f(a T A d
/Sw(a,r)m) () —fla) |¢(§)|2n| VKl Ady|

sa [ wre Ay
Sy (a,r)ND
< Clﬂa/ |W|ya+l—2n d%Zn—l(W)
S(0,rNyY (D)

< CZ/ |W|ya+l—2n dzzn—l (W),
S(0,r)
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since the mapping v is smooth, therefore J#2"~1((S)) < C3.2*"'(S), and the
last integral obviously tends to zero as r — +0. For the second integral in (2.6.2)
we apply equality (2.6.1) and obtain

lim U (©) = lim g, / UGw) = paty (@),
r—40 Su,(a,r)ﬂD r—>—+0 S(O,r)ﬂlﬂ(D) W
since
2271[8(0,r) Ny (D))
Ulw) = 1
SO.NNY(D) Z22=1S8(0,1)]
by Lemma 2.1 from [45]. O

Now let ¥ = (Y1,...,V¥,) be a holomorphic mapping from C" to C", that
consists of entire functions and has the only zero at the origin. Multiplicity of zero
of the mapping v will be denoted by L.

Asin (1.4.5), we denote the integrals by the formula

M;'f(z), z €D,
/ FOUWE —2) = " (2.6.4)
Dy M, f(z), z¢D.

Lemma 2.6.2 Iff € €7(dD), y > 0, then the integrals Mlﬂ;f extend continuously
to 3D and M} f(z) — M, (z) = iif (z) on dD.

Proof We extend f in a neighborhood V of the boundary of the domain D to
a function, satisfying the Holder condition with the exponent y in this neighborhood.
We now prove that the functions

/ (F©) —FUW(E —2)
3Dg

are continuous in V. To do this, we need to show that integrals of the form

A

s;(f@) —f ))IW(C EYET dy Ikl A dy

converge absolutely (here S is the neighborhood of z on the surface dD). Inequal-
ity (2.6.3), when applied to the ¥ ({ — z), and the Holder condition of f yields

fF(©) —f@I = el —2l” = ey (=)™
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for ¢ from a sufficiently small neighborhood of z. Using (2.6.1), as we did when
proving Lemma 2.6.1, we obtain

[¥i (€ —2)

W@ —op [ VH Y]

/ F©) £
St
< [ W= Ady] < [ )
St v (s)
< ya+1-—2n 2n—1
<c [ wl dL7 (w),
S

and the last integral obviously converges.
The formula

My z€D,
/ U —2) = B
D 0, 7 ¢ D,

completes the proof. O
Let us return to the original mapping V.

Lemma 2.6.3 For the functionf € €7 (dD), y > 0 the equality

pv.¥ /S FOUWE©) = pov. / FOUW©)
S

holds.

This lemma generalizes the statement from [68] about equality of the principal
values for the case of simple zeros of the mapping .

Proof As shown in Lemma 2.6.2, the integral

/S (@) —FUW Q)

converges absolutely, so the principal values are equal to the given integral. Hence,
we only need to prove that

pv.¥ / U () = pv. / U Q).

N N
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We transform the integral (r is small enough), taking S = D N B(z, R),

/‘ UW@D=/ UW@D—/ U (©)
S\By (z.r) d(DNB(z.R)\By (z,r)) DNS(z,R)

* /Dmsw(z,r) U(W(C)) T /Dms(z,R) U(W(C)) * /Dmsl/,(z,r) U(W(C))

according to the multidimensional logarithmic residue formula. Therefore, it
remains to prove that

lim U©) = lim U @),

r=>+0 Jpnsy z.r) DNS(z.r)

By Theorem 3.2.5 in [20] (equality (2.6.1)) we have

/ mezm/ Uw).
DNSy (z.r) ¥ (D)NS(0.r)

/ mezm/ UGw).
DNS(z.r) Y (DNS(z,r))

Therefore, we need to show that

lim Uw) = lim U(w).
=>+0 Jy(D)ns(.r) r=>+0 Jy(DNS(z.r)

In this equality the tangent cone of IT to ¥ (D) at 0 can be chosen instead of ¥ (D).
We show that

/ U(w) :/ Uw).
NSs(,r) 1Ny (S(z.r2))

Consider the domain G bounded by the surfaces IT N S(0, ry), IT N Y (S(z, r2))
and the part of the conical surface M N dIT (r; and r, are chosen so that the ball
B(0, r;) contains the surface ¥ (S(z,72))). By the Bochner—Martinelli formula we
have

AGUwoza

therefore

Uw) — U = Uw).
/HQS(OJ]) (W) /1;01/1(8&,0)) (W) /M (W)
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We show that

/MU(W) = 0.

We pass from the complex coordinates w to real ones w; = & + i§,4,j = 1,...,n.
Then (see [68] or [45])

ReU(w) =

|§|2n d& (K],

ImU(w)=—(n4 - (Z e kn+k]) n>1,

and whenn =1

dln |g|?

ImUw) = — pp

The restriction of the differential form Re U(w) onto the conical surface M (at
smooth points of M) equals 0. In fact, let M be given by a zero set of a homogeneous
real-valued function p: M = {& : ¢(&) = 0}. Then at the points of smoothness M
3

38, | grad g
direction cosines of the normal and do is an element of the surface M. Then

are the

the restriction of d£[k] to M equals (—1)*~'y,do, where y; =

2n
PG Vit k]’
po |s| "

‘0t |gfad</)||§|2" | grad o[>

by virtue of Euler’s formula for homogeneous functions (I is the degree of
homogeneity of ¢); the (2n — 1)-dimensional measure of the set of points of non-
smoothness is zero.

Integration over M will be done with real lines on M of the form

lb:{él Sj:bjtvj: 1,...,2n,tER},

where |b| = 1. For a fixed b € S(0, 1) the variable 7 changes from some r, () to ry.
The function r, () is measurable. Thus, M is a bundle over the cycle /T N S(0, 1).
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In these variables
Im U(w) d(thZ:tb dblj, k +k]) thZn:db[k + K]
w) = Cp - s K, N = Chp— ,n 3
t kj ' -

as the form containing a product of more than 2n — 2 differentials db; is equal to
zeroon S N dI1. Then

p— rl &
/M ImU(w) = ¢, / In ) édb[k, n+ k.

$(0,1)NIIT

Variables by, b, 4+ at almost all points of SNdIT are the functions of the remaining
variables b;, j # k, n + k. Therefore, the last integral takes the form

n

/ > nd(br,....[K.....[n+K.....by)dblk.n+K]
S(0.HNAIT =

:/ d(Zlncpk(bl,...,[k],...,[n+k],...,b2n)db[k,n+k]) =0
$(0,1)NIT =1

by Stokes’s formula. O
Proof of Theorem 2.6.1 follows from Lemmas 2.6.1 and 2.6.3. O

Lemma 2.6.2 adds strength to Theorem 1 from [49], which was proved for
smooth functions.

2.7 On the Holomorphicity of Functions Represented
by the Logarithmic Residue Formula

Suppose D is a bounded domain in C" with a piecewise-smooth boundary dD. We
want to prove the converse assertion to Corollary 1.4.2: if equality (1.4.4) is valid
for a function f, then this function is holomorphic in D.

Theorem 2.7.1 ([48]) Iff € €' (3D) satisfies the condition
M;f(z) =0, z¢D, 2.7.1)

then f extends holomorphically into D as a function F € €' (D).

For the proof we will need some of the properties of determinants made up of
differential forms. Consider n-dimensional vectors 6', ..., 6™ consisting of exterior



68 2 Properties of the Bochner—Martinelli Integral and the Logarithmic Residue. ..

differential forms. We introduce determinants of order n:

Dy, (0'....07), (2.7.2)

where the first v; columns are the vectors 8!, the second v, columns are the vectors
62, and so on, and the last v,, columns are the vectors 6", v; + --- + v,, = n. The
properties of these determinants can be found in [8, Sect. 1]. Consider the vector

n= ‘& :(1/_/1 1r/_/n)
W25 2 ylr )

then (n, ¥) = my¥1 + --- + n,¥, = 1 outside the zeros of the map 1. The kernel
w(¥) takes the form

o) = o )nnln 10 8cn) A dyr

1

1
(27”)n e Di1 (¥, 9c¥) A dy. (2.1.3)

By virtue of the properties of determinants in the expression Dy ,_, the first
column can be replaced by any column such that (r,y¥) = 1. Indeed, the
determinant

Dy, 1(n—7,017) =0

due to the lines (n — 7,¥) = 0 and (5;7], vy = E_);(n,l//) = 0 being linearly
dependent.
Let ® = ¥1¢1 + -+ + ¥,@,, where the functions ¢; = ¢;({,2),j =1,...,nare
1
holomorphicin C" x C", and 7 = a(qol, ..., @), then (7, ¥) = 1 outside the zeros

of the function ®.
We introduce the determinant

1

on )nDnn 2(z, 0, 0g) A dp.

Up =

Lemma 2.7.1 The equality 5; Us = w holds outside the zeros of ®.

The assertion of Lemma 2.7.1 can be checked by direct computation using the
equation d;t = 0.

Lemma 2.7.2 Forallj=1,2,...,nwe have the equations

ad _on—1
* 7 @riy

D12 ( ¥ acn) Ady + De,

05
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where
n—2 an
& = (27r—i)"D1’1’1’"_3 (T /R % 3w) Ndy
(§ =0forn=2).
Proof Indeed
0 1
_ = — Dy 1. —., 0 d
YT Vha 2( % “’) nay
n-2 ( 9 5.8 ) Ady
n— T, N — ) .
(2 iy Diiia-3 n 3z, ¢, 0¢n

On the other hand
an
D111 (T, — % ,3;77

8 an
Dllnz( 3;n)+D111n3(T 77,3§a 3§77)

Hence we have the required result. O

Lemma 2.7.3 The following formulas
—w(y) = —13 a:D .0 Ady (2.7.4)
(271 X 1.1.n—2 3_' en e

hold for all ¢ # z.

Proof From Lemmas 2.7.1 and 2.7.2 we have

—1. -
o) = BBy (”a_z,.’af”) Ay,

The determinant

an
Dy (r -1, = % ,Bgn)

by virtue of the linear dependence of the lines

d d -
(= n.v) =0, <—”,w> = Ly =0. Gy =o.

3Zj 3Zj

from which (2.7.4) follows. |
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Lemma 2.7.3 shows that the derivatives with respect to z; of form w(y) are

d-exact differential forms with the point singularities { = z.

Remark 2.7.1 Using the homogeneity property of the determinant, formula (2.7.4)
can be rewritten as

1o 1 oy
o) = i [W . z(w ¥ agw)Adw]

Lemma 2.7.4 The following equalities

0 o 1 W
—o() = i |:Z 52, (le” 5D z( 3;1/f) /\dé‘):|,

hold, where A® is the i-th column of cofactors A’k to the elements of the Jacobi

v, |"

Zk

matrix

s,k=1
Proof 1Tt is not hard to check that

Z aZSAk =0

s=1

forallk =1,2,...,n. Then

-
ZazY [Wﬂ Dt ( % a“”)w}
1
_Zaz (s ) P ( = 3“")”5

n Z wk 31? n W L
(n_ 1)2 |w|2n Z( 1)m IAY D’lnn 2 (a_Z]’aU/,) /\d§
W —
D’fn > (a—z,azw) Ady

=—(n— )|W|2"Dl Ln— 2( w 351/f) Ady,

oz

— _ _ k—1
=—(n 1)2( 1) Wﬂ
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o —
were D'l”n_2 (a—w 3;1//) is the determinant obtained from the determinant
' Zj

- —
Dy (w, % 3;1//) by deleting the first column and the n-th line. O
j

Proof of Theorem 2.7.1 Consider the differential form

B =7 Brdikl Adz,

k=1

_ k ad
b= 5 o (1 35 ]

Then B € ¥ (C") and they are real-analytic outside the boundary of the domain D.

Indeed, the form
_ 1 o
* [IW" 7D ( % M) Adg}

has absolutely integrable coefficients in D by Remark 1.4.1. Then by Stokes’
formula

7
/ faf |:|w|2n leln 2 (Aksa—zj,aéw) /\dé':|
:/éifAéé ——— Dy (AL z Adt |,
D |1/f|2" - 0z’

and the last integral is a continuous functionin C*, k,j = 1,2,...,n. .
From the condition of Theorem 2.7.1, the function M, f(z) = 0 outside D, then

where

0 _
BTM‘;f(Z) = 0. By Lemmas 2.7.3 and 2.7.4, we obtain that the form g is d-closed
Zj _
outside D. Now we need the solution to the d-problem in a ball Bg(z°) = {z € C" :
|z —z°| < R}, discussed in [9, Sect. 25] for the case of strongly convex domains.
Let p = |z —z°|*> — R?, then Br(z’) = {z € C" : p(z) < 0}. Consider the
vector-valued function

0 0
P(Z)Z(Pl"”’Pn): (8_51”%) = (Zl_ztl)v---aZn_Zg)
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and the functions

O(z,w) = ) PG —w) =’ — G w) — (& 2) + ),

Jj=1

Dz, w) = Dz, w) — p(z) = R* — (Z,w) + (0, w) — |2 + (2, 2).

We introduce the vector-valued functions

u(z,w) = Csz(sz)’
u(z,w) = (1 — )L) _|2 + Au(z, w), A elo,1],

and

(zm—-1_(@LW)”k_(_fﬂ>)k”1(®@wq ‘
ple ) = &D(Z, w) B &)(Z, w) i D(z,w) ’

J=

If z,w € Bg(z") and z # w, then ®(z, w) # 0.
Define the operators G to be

m%mw=—/ B2) 01 (2 W) Unna @ W)
Bg(z")

+ / B@) A D.0u(z W) A Wnea (ua, z,w),  (2.7.5)
Br(z%)x[0,1]

where
Un,n—Z(Zs W) (2 )nDl n—2, 1(t(Z, W) a Z, a t) A dW
Wn,n—Z(L W) = _—.Dl,n—Z,l (u)w éwuka ézuk) A dWa
Qmi)r
andt(z,w) = 2o < |2 (see [9, Sect. 25]). Then by Theorems 25.6 from [9] atk = 2,
we get

0GB =B

in a ball Bg(z°) not intersecting D, and the coefficients of G*f are continuous on the
closure of Bg(z") and real-analytic in this ball.



2.7 On the Holomorphicity of Functions Represented by the Logarithmic. .. 73

Consider the form y(w,z0,R) = G*B in an arbitrary ball Bg(z"). We show that
for w ¢ 0D, this form is real-analytic for w, z%, R. Let w® ¢ dD. Take a ball B,(w°)
that does not intersect the boundary D, and break each of the integrals in formula
(2.7.5) into two sets: B, (w°) and Bg(z°) \ B.(w"). The integrals over Bg(z") \ B.(w°)
are obviously real-analytic in B.(w") due to the real-analytic kernels and absence of
singularities. In the integrals over B, (w") we replace the variables z — w — 7.

Since the denominators responsible for singularity in the kernels depend on z—w,
we get the integrals

7z,

/ A2 Rw,Z) == dZ AdZ
Be(w—2) |

with coefficients depending real-analytically on the variables. Expanding these
coefficients in a series in z — w and integrating, we obtain the desired result.
Thus, in the ball Bg(z°) € C"\ D the equality

3.y 2", R) = B(2) (2.7.6)

holds. Because of being real-analytic, equality (2.7.6) will also hold in the case when
the ball Bg(z°) intersects the boundary D. Taking R and z° such that Bg(z°) D D, we
obtain that on the set Bg(z°) \ D the form y yields a solution to the E_)-problem for
the form S.

Furthermore, the form y has real-analytic coefficients in D, and equality (2.7.6)
on the boundary 9D is satisfied by virtue of continuity. The coefficients of 8 are
generalized potentials, for which the maximum modulus theorem holds (see [56,
Chaps. 6, 8, 9]), and the coefficients of the form y are integrals of the form S, i.e., the
uniform limits of such potentials. Then the maximum modulus theorem is also true
for the coefficients of the form y. Therefore, if Eq. (2.7.6) holds on the boundary D,
then it is also valid in the domain D. Consequently, the form g is d-closed in D. This

1
means that the function F' = —M;’ f is holomorphicin D and gives continuation of
I

in D. This continuation F belongs to € (D), but since f € €' (dD), then F € €' (D).
O

Corollary 2.7.1 Let D be a bounded domain in C" with a connected smooth
boundary. If the integral M,,f(z) = 0 outside D for the function f € €Y (0D) then
the function f extends holomorphically to domain D.

Proof repeats the proof of Theorem 1 from [49] using Lemma 2.6.2 instead of
Corollary 1 from [49]. O

Theorem 2.7.2 ([48]) Let the function M;;f(z) be a holomorphic function in D
1

for a function f € €'(dD). Then the function F = —M;'f is a holomorphic
I

continuation of f from the boundary of the domain D into D.
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Proof repeats the proof of Theorems 2.7.1, we only have to use the fact that
M; f(z) = 0as |z] = +o00. Therefore, having the holomorphicity of functions M; f

outside D, we get M, f=0. O
1

Corollary 2.7.2 If for the function f € €'(0D) the integral —M;'f gives a
I

1
continuous extension of f from the boundary of D into D, then the extension —M;; f
n

is holomorphic.

Proof By Corollary 1.4.3 the function M f(z) = 0 on oD and M, f(z) — 0 as
|z| = +o00. Then M, f = 0, since the integral M, f is a generalized potential [56,
Chaps. 6, 8, 9]. O

Remark 2.7.2 Theorem 2.7.2, Corollaries 2.7.1 and 2.7.2 are also valid for func-
tions f € €7 (D).



Chapter 3
On the Multidimensional Boundary Analogues
of the Morera Theorem

Abstract This chapter contains some results related to the analytic continuation
of functions given on the boundary of a bounded domain D C C", n > 1, to this
domain. The subject is not new. Results about the continuation of the Hartogs—
Bochner theorem are well known and have already became classical. They are
the subject of many monographs and surveys (see, for example, Aizenberg and
Yuzhakov, Khenkin, Rudin, and many others). Here we will discuss boundary
multidimensional variants of the Morera theorem. We desire to show how integral
representations can be applied to the study of analytic continuation of functions.
The same question about continuation connected with the direction about gluing
discs can also be applied to the above Morera theorems based on the theory of
extremal discs, developed by Lempert. However, since it is based on other ideas and
methods, it does not fit into our book devoted to integral representations and their
applications.

3.1 Functions with the Morera Property Along Complex
and Real Planes

Let D be a bounded domain in C" (n > 1) with a connected smooth boundary 0D
of class €2.

Definition 3.1.1 We say that a continuous function f on dD (f € ¥ (dD))
satisfies the Morera property (condition) along a complex plane / of dimension &,
1<k<n-—1,if

fOBE) =0 (3.1.1)
oDNl

for any differential form 8 of type (k, k — 1) with constant coefficients.
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It is assumed that the plane / transversely intersects the boundary of the domain D.
If [ is a complex line intersecting dD transversally, then the Morera property along
I consists of the equality

fz+ br)dt = / f@m+bit,....20+ but)dt =0
aDNl aDNl

for the given parametrization { = z 4 bt (z,b € C", t € C) of the complex line /.
Clearly, the boundary values of functions F € /(D) satisfy this property.
Moreover, the same is true for continuous CR-functions f on dD. Recall that

Definition 3.1.2 A function f € €' (dD) is called a CR-function on dD if

/ﬂo%@zo 3.12)
D

for all exterior differential forms « of type (n, n — 2) with coefficients of class €'
in D.
Conditions (3.1.2) are called the tangential Cauchy—Riemann equations.

The Hartogs—Bochner theorem, which is now classical, tells us that any continu-
ous function f on 0D is a CR-function if and only if it is holomorphically extended
to D up to a certain function F € o7 (D) (the boundary of D is connected).

In [26], the following inverse problem was considered: let a function f € €’ (D)
satisfy the Morera property (3.1.1) along any complex k-plane [/ intersecting dD
transversely. Is it true that f is a CR-function on dD?

Obviously, the greater the dimension k of the complex plane, the weaker the
Morera property along complex k-planes. Therefore, if the Morera property holds
along all complex lines, so it does along all complex hyperplanes. The following
theorem is the first sufficiently general assertion on the solution of this problem.

Theorem 3.1.1 (Globevnik and Stout [26]) Letr 1 < k < n — 1, and let a
function f € €(dD) satisfy the Morera property (3.1.1) along any complex k-plane
[ intersecting 0D transversely, then f is a CR-function on 0D (and, therefore, it is
holomorphically continued to D by the Hartogs—Bochner theorem).

Proof Let f satisfy the condition of the theorem. We show that f satisfies condi-
tions (3.1.2), i.e., it is a CR-function on dD. Without loss of generality, we can
assume that

o = A(L)dt A dtn—1,n],

where A({) is a smooth function in C" with compact support, d§ = d¢; A ... A dG,,
and d¢[n — 1, n] is obtained from d¢ by removing the differentials d¢,—, and d¢,,.
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Let us represent A as an inverse Fourier transform. If we denote the Fourier
transform of A by A and set ({,z) = {121 + ... + {u2s, then

AG) =c / AR)e'ReCDdz A d7
(Crl

for some constant c¢. Then

/féaszéA(;)AdgAdE[n—l,n]
aD aD

—< [ 5

Changing the order of integration, we obtain

/anE_ia :c/@A(z)

For a fixed z, the inner integral equals 0. To see this, we make a non-singular
linear change of variables with respect to ¢ so that in the new coordinates w =
(Wi, ...,wy), we have w; = (¢, 7). Then if f*(w) = f(¢(w)) and D* is the domain
in the new variables w, we obtain

/ A(2)de R dz A dZ} de Ade[n—1,n).

/ F(@)dreREDde A den—1, n]} dz A d7.
aD

/ F(©)0ge®EAde A d[n— 1,n]
oD

= / Frw)e DI gn A dw A Qw),  (3.1.3)
aD*

where ¢/ is some constant and Q(w) stands for the form d[n — 1,n] in the
variables w. Therefore,

QW)= Y Budwlj.k]

1<j<k=n

for some constants 8. Since

dw A Q = Z Bukdwlk],

2<k<n
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the integral on the right-hand side of formula (3.1.3) is equal to the sum of integrals
of the form

I = F*w)e DT gy A dwlk], k>2.
aD*

Each of the integrals [; equals 0. Indeed, consider the integral ,. Let IT :
C" — C"* be the projection ITI(wy,...,w,) = w = (wi,...,w,—). By Fubini’s
theorem, we have

I, = / /D wi+in) / W) dWp—it1 A ... AdwaA
n(D*) = (w)Nap*

A d"_"n—k+l VAN d"_"n—l} dwi A AN AWy Adwy A LA AWy

For almost all w' € T1(D*), the inner integral equals zero:

/ FORE) =0
aDN[

by the condition of the theorem, where 7 is the form
de—k+l Ao A dw, A d"_Vn—k+l Ao ANdwy—y

in the old variables ¢. That is, 7 is a (k, k — 1)-form with constant coefficients. O

A more exact analysis shows that Theorem 3.1.1 holds for real planes. By
definition, the CR-dimension of a real plane / in C" is the dimension of the maximal
complex plane belonging to /. Denote by dimg [ and dimcg / the real dimension of
the plane / and the CR-dimension of /, respectively. Then, obviously,

max (0, dimg [ — n) < dimcgl < .

A continuous function f on dD satisfies the Morera condition along a real k-
dimensional plane / of CR-dimension p that transversally intersects the boundary
aD if

fB=0
apnI

for all (k — p, p — 1)-differential forms 8 with constant coefficients.

Theorem 3.1.2 (Govekar [27]) Let2 < k < 2n—1andmax(l,k—n) <p < [k/2].
A continuous function f on 0D is a CR-function if and only if f satisfies the Morera
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property along any k-dimensional plane | of CR-dimension p that intersects 0D
transversely.

In particular, for real hypersurfaces, the previous theorem yields the following
assertion.

Theorem 3.1.3 (Govekar [27]) A function f € € (dD) is a CR-function on D if
and only if

fB=0

aDNl

for all real hyperplanes [ intersecting 0D transversely and for all differential forms
B of type (n, n — 2) with constant coefficients.

For complex k-planes /, we have dimg!/ = 2k and p = k, therefore, Theo-
rem 3.1.2 transforms into Theorem 3.1.1.

By definition, a complex k-wave function is a function f in C" depending on
k variables under a certain linear change of variables. As was shown in [26], linear
combinations of complex waves form dense sets in spaces of smooth functions. This
allows us to substantially reduce the sets of planes along which the Morera property
ensures holomorphic extension of the function.

Let G(n,k) be the Grassmann manifold of complex k-planes in C”", passing
through 0.

Theorem 3.1.4 (Globevnik and Stout [26]) Letr 1 < k < n— 1, and let W be
an open set in G(n, k). If a function f € € (D) satisfies the Morera property along
each complex k-plane | of the form z+ X, ¥ € W, intersecting dD transversely, then
f is a CR-function on dD.

Theorem 3.1.5 (Globevnik and Stout [26]) Let 1| < k < n— 1, and K be a
compact convex set in D. Assume that the function f € € (dD) satisfies the Morera
property along all complex k-planes not intersecting K. Then f is a CR-function on
the boundary of D.

Theorem 3.1.6 (Globevnik and Stout [26]) Let B be a ball lying in C"\D. Assume
that a function f € € (0D) satisfies the Morera property along all complex k-planes
intersecting B. Then f is a CR-function on the boundary of D.

3.2 Functions with the Morera Property Along Complex
Lines

Let D be a bounded domain in C* (n > 1) with a connected smooth boundary dD of
class €%. The classical Hartogs’ theorem asserts that any function f is holomorphic
in the domain D if its restriction to any complex line parallel to one of the coordinate
complex lines is holomorphic.
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The following natural question arises: for which sets of complex one-dimensional
cross-sections of the domain does the existence of holomorphic continuations along
the cross-sections imply the existence of a holomorphic continuation to the whole
domain?

A set of all complex lines intersecting a given domain with a twice smooth
boundary is sufficient. For the case of a complex ball, this was proved by
Agranovskii and Val’skii in [4], Nagel and Rudin in [66], and Grinberg [29]. For
an arbitrary domain, an analogues result was proved by Stout [78]. Let us formulate
it here.

Consider one-dimensional complex lines / of the form

I={teC: §=z+bt.j=1.....n, t€C} (3.2.1)

passing through a point z € C” in the direction of a vector b € CP"~! (the direction
of b is determined with an accuracy of up to multiplication by a complex number
A # 0). By Sard’s theorem, for almost all z € C* and almost all b € CP"',
the intersection / N dD is a finite set of piecewise-smooth curves (except for the
degenerate case where dD N[ = @). Let us give the following definition.

Definition 3.2.1 The function f € % (dD) has the one-dimensional holomorphic
extension property along complex line [ of the form (3.2.1) if for any line / such that
dD Nl # @, there exists a function F having the following properties:

1. Fe€(DNI,

2. F =fonthesetdD NI,

3. The function F is holomorphic at interior (with respect to the topology of /) points
of the set D N L.

An analogues definition can be made for complex k-planes. Clearly, if a function
f satisfies the holomorphic extension property along all complex k-planes, then it
satisfies this property along complex lines. Therefore, in what follows, we restrict
ourselves to consideration of this case.

Theorem 3.2.1 (Stout [78]) If a function f € €(0D) has the one-dimensional
holomorphic extension property along complex lines of the form (3.2.1), then f is
holomorphically extended into D.

A more narrow set of complex lines sufficient for the holomorphic continuation
was considered by Agranovskii and Semenov [3]. Consider an open set V C D and
a set £y of complex lines intersecting this set.

Theorem 3.2.2 (Agranovskii and Semenov [3]) If a function f € € (dD) has the
one-dimensional holomorphic extension property along lines from the set Ly for a
certain open set V. C D, then the function f is holomorphically extended into D.

The strengthening of the previous results consists of assertions dealing with the
boundary analogues of the Morera theorem, since they are completely implied by
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them. We now formulate the assertion belonging to Globevnik and Stout [26] (a
particular case of Theorem 3.1.1).

Theorem 3.2.3 (Globevnik and Stout [26]) Let a function f € €(0D), and for
almost all z € C" and almost all b € CP"™', et

fz+bt)dt = / f@ +bit,....2y + byt)dt = 0. (3.2.2)
aDNl aDNl

Then the function f is holomorphically extended into D up to a function F € € (D).
(If 0D Nl = @, then the integral in (3.2.2) is assumed to be equal to zero.)

We note that without the connectivity condition of the boundary of the domain,
Theorem 3.2.3 is obviously false.

In [26], the problem of finding sufficient sets of complex lines £ = {I} for which
condition (3.2.2) for I € £ implies a holomorphic extension of the function f to D
was posed. For example, is a set £y of lines / intersecting a certain open set V C D
such a sufficient set? In paper [3] Agranovskii and Semenov give an affirmative
answer to this question; Theorem 3.2.3 is generalized there. In paper [47] Kytmanov
and Myslivets obtained a statement from which Theorems 3.2.1, 3.2.2, 3.2.3 follow.

Theorem 3.2.4 ([47, 49]) Let k be a fixed non-negative integer and let a function
f € €OD). If. for almost all z € C" and almost all b € CP"™'| the condition

fz+bit, ...,z + ) dt =0 (3.2.3)
abNl

holds, then f is holomorphically extended to D.
For k = 0, we obtain Theorem 3.2.3.

Theorem 3.2.5 ([47, 49]) For a fixed k and a function f € € (dD), let condition
(3.2.3) hold for almost all_lines [ (of the form (3.2.1)) intersecting an open set V. C D
(or an open set V C C"\ D), then the function f is holomorphically extended into D.

Proof of the theorem is performed for the case of the set V C D.
Let U(¢, z) be a Bochner—Martinelli kernel of the form (1.1.1). Consider complex
lines  of the form (3.2.1) passing through z in the direction of the vector b € CP"'.

Lemma 3.2.1 The Bochner—Martinelli kernel in the coordinates t and b has the
form

U(¢,2) =Ab) A th

where A(b) is some differential form of the type (n — 1,n— 1) in CP"" independent
of t.
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Proof Assume that z = 0. Express the Bochner—Martinelli kernel in the variables ¢
and b. We obtain

Z( DA1Gdg (k] A dg

veo =R E
e e Z( Dk 1bkdb[k]AZ( D bdblk]
@) o :
_x(b)Ad_t

|

Lemma 3.2.2 [f condition (3.2.3) holds for a point z € C* \ dD and for almost all
b e CP"", then

€= O UK 2 =0, (3.2.4)
Dy
where a = (a1, ...,Qy,) is an arbitrary multi-index such that

lall =1+ +an=k+1. and (—2)% = (G —20)" - (G — )™

Proof We use the representation of the Bochner—Martinelli kernel from
Lemma 3.2.1. Then by Fubini’s theorem, we have

/X&wV@U@n=/ 2o [ bt by = 0
oD cpr!

aDNI

by condition (3.2.3). O

Lemma 3.2.3 Let condition (3.2.4) hold for points z € V, then the function f is
holomorphically extended into D.

Proof If (3.2.4) holds for z € V, then it also holds for all points z € D by the
real-analyticity of the integral in (3.2.4). Let us rewrite (3.2.4) in a different form.
Introduce the following differential forms U,(¢, z), considered for the first time by
Martinelli [63] (see also [45, Chap. 2]):

Ui = S (Z( e df
j=1

+ Z( 1y~ 1 g, IZ" 2d§[s ]]) AdL. (3.25)

Jj=s+1
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It is easy to verify that

é( : Ly z)) — Ut
s — s

for {s # z5, s = 1,...,n. Then condition (3.2.4) can be written in the form
[ 103 (@-auca) =0 zep. (3.26)
aD

for all monomials (¢ — z)? with || 8] = k.

Let us show that condition (3.2.6) also holds for the monomials ({ — z)? with
llyll < k. Indeed, consider such a monomial ({ —z)? and ||y || = k— 1. Then (3.2.6)
holds for monomials of the form

(é‘_z)y(gm_zm)7 m=1,...,n,

since the degree of these monomials is equal to k.
We have

d
f ((C - Z)y(é‘m - Zm)US(Zv Z)) = (Vm + 1)(; - Z)VUX(C’ Z)

(é‘m - Zm)(Em - Zm)
| —zf?

Summing relations (3.2.7) with respect to m, we obtain

—(n=1D( -2 Ust2).  (32.7)

"9
> f((é“ = 2" (G —zm) Us(8.2)) = (lyll + D —2)" Us(€. 2). (3.2.8)
m=1 m

Since condition (3.2.6) can be differentiated in z and the derivatives in z and ¢ of
the integrand are equal, (3.2.8) implies that the degree of the monomial in (3.2.6)
can be reduced by 1. Sequentially reducing this degree, we arrive at the conditions

/ O =0, €D s=1.....n.
aD

i.e.,

/ (&—2)fO UKL 2)=0,z€D, s=1,....n (3.2.9)
aD
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Applying the Laplace operator

92 92
= 4.4 :
02107, 02,07,

to the left-hand side of relation (3.2.9), we obtain

%/f(C)U(E—Z)ZO,ZED,s:l,...,n

Here, we have used the harmonicity of the kernel U({ — z) and the identity

of ah af oh
A = hAf +fAh + -
() =haf +f Z 0z 31, — 07 03
Therefore, the Bochner—Martinelli-type integral of f of the form (1.2.4)

Mf(2) = /a O UG

is a function holomorphic in the domain D. Therefore, taking F(z) = Mf(z) and
applying Corollary 2.5.3, according to which, in this case, F € %(D) and the
boundary value of the function F coincides with f on dD, we obtain the desired
extension of the function f(z). O

The proposition is also true in the case where the open set V C C* \ D. Instead
of Corollary 2.5.3 we need to apply Corollary 2.5.2.
Theorems 3.2.4 and 3.2.5 are consequences of Lemmas 3.2.2 and 3.2.3.

Corollary 3.2.1 Let A be an algebraic hypersurface in C". If condition (3.2.3) for
a function f holds for almost all complex lines [ intersecting A, then the function f
is holomorphically extended into D.

Proof Since almost every complex line / intersects A, condition (3.2.3) holds for
almost all z € C". |
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3.3 Holomorphic Extension Along Complex Curves
and Analogues of the Morera Theorem

3.3.1 Holomorphic Extension Along Complex Curves

Consider classes of complex curves [, ;, of the following types:

Type 1: algebraic curves
lz,b = {CE(C"Z Cl =2 +lkl, éj:zj+b,~tkf,j:2,...,n, IE(C},

where the constants k; € N are fixed, j = 1,...,n, and the vector b =
(1,b,,...,b,) € Cr
Type 2:  complex curves of the form

Ly={eC": si=za+t §=z5+bl 30, j=2,....,n, 1 €C},

where y;() are the entire holomorphic functions in the variable ¢, and, moreover

these functions do not vanish at any point,j = 2, ..., n;
Type 3:  complex curves of the form

Ly= {;E(Cnl sl :Zl+l'k1, gj:Zj+bjtkj)(j(l'kl),j:2,...,n, Z‘G(C},
(3.3.1)

where x;(7) are the entire complex functions of the variable 7 that do not vanish
at any point,j = 2,...,n.

The case of algebraic curves was examined in [48], Type 2 in [48], and Type 3
in [64]. We note that for k; = 1, the curves of the second type are obtained from
curves of the form (3.3.1) and for y; = 1 (j = 2, ..., n), we obtain algebraic curves;
therefore, we will consider curves of the form (3.3.1).

The third class of curves also contains curves of the form

Ly = {CGC": L=a+0(0.=2+bjgi(t),j=2,....n, te(C},

where ¢;(¢) are the entire functions in the variable ¢ having one zero of the first order
at the point r = 0. Indeed, in this case, we can introduce a different parametrization
taking the first function ¢; as the parameter ¢.

If we fix a point z € C”, then for any point ¢ such that z; # {;, there exists a
curve I, passing through ¢ (subject to appropriate choice of the vector b). For a
fixed z, all curves [, intersect at the point 0. If they also intersect at another points,
it is easy to show that the j-coordinates of the vectors b for these points are obtained

7Tkj

from each other by rotation by an angle that is a multiple of . Therefore, to

1
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uniquely find the vector b, we assume that the argument b; satisfies the condition

0 <argh; <2mr;, j=2,...,n, (3.3.2)

k:
where 7; is the fractional part of the number k_j (if k; is dividable by ki, then no
1
conditions are imposed on arg b;).

In fact, /., is a parameterization of the following complex curves given in an
explicit form:

{8 G=z5+b(% _Zl)ﬁ){j(gl —z1), j=2,...,n}.

Therefore, for a fixed z, we obtain fibering of C" \ {¢ : {; = z;} into the curves
L, » for vectors b satisfying condition (3.3.2). Then Sard’s theorem shows that for
almost all b satisfying this condition, the intersection of / ;, with the boundary aD is
either empty or is a union of a finite set of closed piecewise-smooth curves. Perhaps,
class (3.3.1) is the most general class of curves having such properties.

Introduce the following holomorphic functions:

&
nQ) =" Yi=—r— j=2,....n, (3.3.3)
BRI
where the natural numbers p; are chosen so that piky = ... = p,k, = p. These

functions are holomorphic in C" and have only one common zero, the origin of
multiplicity & = p; - - - p,. Consider the kernel w(¢) = U(¢,0) and w(¥ (¢ —z)) =
U(¥ (¢ —2), 0) in the new coordinates ¢, b. The symbol * will mean transition from
variables ¢ to the new variables (¢, b).

Lemma 3.3.1 In the coordinates t, b the kernel (W (¢ — z)) has the form
% dt
oy (1.0)) = — A A(Db), (3.3.4)

where

pn—1D! (=1)"7'dBy A~ AdB" A AV A - A db
2 \n n n
( 7[1) (1 + Z |bj|2pf)

Jj=2

A(b) =

Proof Indeed, ¥ (1,0) = &, Y (1.b) = bfj #,j=12,...,n. Therefore the module

W - = b)) = lf'”(1 2 |b,.|2”’)_

Jj=2
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We have
dy* =dyf A Adyr =pP T dEAdD? A - A dbY
and the form

n

S DAYt = Pdyy A AdyE + Y (<1 dy (K

k=1 k=2

= ""db? A+ AdbP + ptT! (Z(—l)f_zbffdt AdBY A -] A dbPr
=2

+ Z(—l)k—lbfk’ktp"—ldm dv? A ...[k].../\dbgn) = 1""db? A+ A db.
k=2

This completes the proof. O
This statement generalizes Lemma 3.2.1.

Definition 3.3.1 A function f € %(3dD) has the one-dimensional holomorphic
extension property along complex curves of the form [, if for any curve [, such
that 0D N[, # @, there exists a function F_;(¢) having the following properties:

1. F;p € %(B Nip),

2. F,, = fontheset dD N L,

3. The function F_, is holomorphic with respect to ¢ in interior (in the topology of
I.;) points of the set D N [, .

Therefore, this definition is completely analogues to that of functions with the
one-dimensional holomorphic extension property along lines.

Proposition 3.3.1 If a function f € € (0D) has the one-dimensional holomorphic
extension property along complex curves of the form (3.3.1), then

[ FO oW & —2) =0,
oD

for all 7 & D, for the functions (1, . .., ¥,) of the form (3.3.3).

Proof By Sard’s theorem, almost all complex curves [, intersect the boundary
of the domain D along piecewise-smooth curves. Therefore Fubini’s theorem and
Lemma 3.3.1 give the equality

d
/ FO oW —2) = / o [ ren®
oD cn—1 t

aDN
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However the inner integral is zero if z ¢ D, since f has the one-dimensional
holomorphic extension property. O

Theorem 3.3.1 ([48, 64]) Let 0D € €2, and a function f € € (D) has the one-
dimensional holomorphic extension property along complex curves l,;, then f is
holomorphically extended into D.

Theorem 3.3.1 is a direct consequence of Theorem 2.7.1 and Proposition 3.3.1.
This assertion generalizes Stout’s theorem 3.2.1 on functions with the one-dimen-
sional holomorphic extension property along complex lines.

Let us consider sufficient families of curves /,; the holomorphic extension along
which can ensure the holomorphic extension to the domain D. The first such family
comprises the curves I, ;, with the point z belonging to a certain open set V. C C"\ D,
and b being any vector. In this case, the integral in Proposition 3.3.1 is equal to zero
in V, and, therefore, it is equal to zero everywhere (by its real-analyticity) outside D
and Theorem 3.3.1 is applicable.

Consider an open set V C D, and denote the set of curves [, intersecting this
set by L£y.

Theorem 3.3.2 ([48]) Let a bounded domain D with a smooth connected boundary
be such that dD is the Shilov boundary for the function algebra ©(D) N € (D) (for
example, D is a strictly pseudo-convex domain). If a function f € €' (3D) has the
one-dimensional holomorphic extension property along complex curves from the set
Ly for a certain open set V C D, then the function f is holomorphically extended
into D.

Proof Let a function ¢ € ¢(D) N €' (D), then ¢f has also the one-dimensional
property of holomorphic extension along complex curves of the set £y. We have
the equality

| vor@owe—a
—[ o[ senrenT=e@ [ 1@owe-o).
cn—1 DN aD
i.e.,

/ POF O —2) = p(2) / FOOWE—2). zeV.
oD oD

By virtue of the real-analyticity of this integral this equation is satisfied every-
where in D. Denote the integrals by M$ f (as in formula (1.4.5)). Then

My lof] = oMf (3.3.5)
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in domain D. For points z € D, the relations: MI}/" 1 = pand M;,' ¢ = Ko hold,
because ¢ is holomorphic in D. Then from (3.3.5) we obtain

M7 [p(©) (F(§) —f@)] = ¢@M[[f(Q) —f(2)]. z€D. (3.3.6)

Here we took a continuation of f to a function of class €' (D). Since ¢f € €' (D),
then |f($)—f(z)| < ¢|¢—z| and the integral Ml;/" [f(¢)—f(z)] converges absolutely for
z € 3D (see the proof of Theorem 1.4.1). Therefore, in Eq. (3.3.6) we can go to the
limit for z tending to dD. And, therefore, equality (3.3.6) holds for points z € daD.

By the hypothesis of Theorem 3.3.2, the boundary dD is a closure of the points
for algebra & (D) N €' (D). Let z € dD be a peak point and ¢ be the peak function,
ie., ¢(z) = 1 and |@p(¢)| < 1 for points ¢ # z.

Consider the functions ¢* and apply equality (3.3.6) to them. We obtain

M0 Q) ©) = @] = ¢“ @M () — ()] (3.3.7)

By Lebesgue’s theorem and the inequality |@¥| < 1 there exists a limit in (3.3.7)
when k — co. We have

M1 () —f@)] — 0,

then formula (3.3.6) yields

M) —f()] =0

for the peak points z € dD. And since they are dense in dD and this integral is
a continuous function, we obtain that the boundary values of the function MJ f

1
coincide with uf. This means that the function F = —M;,' f is holomorphic in

D by Corollary 2.7.2 and is an extension of the function f. O

3.3.2 Some Integral Criteria of Holomorphic Extension
of Functions

As in Sect. 2.7, we consider the map v = (Y, ..., ¥,) and the differential form
w(w).

Proposition 3.3.2 If 0D € €9 (d > 1), then every functionf € €' (0D),0 <1 <d
is the limit in the metric €' (D) of linear combinations of fractions of the form
i AL~ AL (€ ~2)
k=1 hﬁ(é‘ - Z)Izn_2

ssm=1,2,...,n, (3.3.8)
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where z € 0D, and { is a fixed point not lying on 0D. Here A; are the cofactors to

0
the elements ﬂ in the Jacobi matrix of the map . Instead of fractions of the form

(3.3.8) we can aYs well take fractions of the form

|1/f(; W =2 (Z Yr(§ — AU — Z)) (Z Yp(C — DA — z)). (3.3.9)

r=1

Proof Consider the determinants

of the form (2.7.2).
Lemma 3.3.2 The kernel w(¥ (¢ — z)) can be represented as

1 "\ 0 1
o) = (n—l)(zm)"ga_zs(w" D (4 a“/’)) e

where A® is a column of cofactors A}, k =1,2,...,n.

Proof From formula (2.7.3) we have

1 1
— d d
o) = G Ty L (9.39) nay.
Since
"\ 0AS
Yok =0 k=1...n
0z,
s=1
we obtain

" a( )
o Dy, (A 0¥ ) | AdE
;aZS T2ES l( ‘ )
n J 1 S .
" (W) Dues (A.007) At

IR L
=1y = T Y YA, (3cy) Adg
s=1 j=1



3.3 Holomorphic Extension Along Complex Curves and Analogues of the. .. 91

=(n—-1) Z IW"( 1D7IDS_, () A dyr

-1
- (YWzn)Dln l(w agl/f) AdY = (n—1)Q2ri)" ().

Here DL_ 1(8¢_1p) is the determinant of the (n — 1)-th order, that is obtained from
D, (A‘V, 3;_1//) by deleting the first column and the j-th row. O

Lemma 3.3.3 The kernel U(y, 0) can be represented as

(G R T e
e (2m)n Z 9z, mZ: [y 22 (;AkAk)dC[m]/\dC-

Proof follows from Lemma 3.3.2 and the identity

Dy, (4% 0c0) = (1 — 1)!;(—1)"’—1 (;A%Z’) dg[m]

O

From formula (1.4.2), Lemmas 3.3.2 and 3.3.3 we can easily obtain the proof
of Proposition 3.3.2. Indeed, consider a sufficiently small neighborhood V of the
boundary of the domain dD (where all functions of V;({ — z) are defined). The
function f continues in V to a function of class %" with compact support in V.
Approximating f in V in the metric 4’ by functions of class €’>, we can assume
that the function f is infinitely differentiable. In the neighborhood V we apply
formula (1.4.2). Then we obtain

=] YOroWE=2) =u(). <€D
¢
Making the replacement { = z + w, we have

- /C 0z +w) Ao (Y (W) = ufx). z€dD.

In this equation we can find the derivatives up to order / with respect to the
variable z and z by differentiating under the integral sign (by virtue of absolute
convergence of the integral).

Therefore, choosing a sufficiently small neighborhood V' of the boundary 0D,
we find that the integral over V' can be made arbitrarily small in the metric €.
And, in the integral over V \ V' let us replace the integrand by the integral sums,
and the derivatives by the difference ratios (using Lemmas 3.3.2 and 3.3.3). The
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resulting fractions are arbitrarily close to the function f in the metric 4. The density
of (3.3.9)-type fractions follows directly from representation (2.7.3) using fractions
of the form (3.3.8). O

Corollary 3.3.1 Iff € €(0D) satisfies the moment conditions

n

- AL - DA (C—2) -
0 k k dcji, dt = 3.3.10
/abf(z)g(;:lj s )A E.p) A dE =0 (3:3.10)

forall z ¢ 0D and all j, s, m,p = 1,....n, then f is holomorphically extended into
D up to a function F € % (D).

Proof From Proposition 3.3.2 we obtain that

/a PO (a0) A dElip) A D) =0

for all smooth functions «(¢{) defined in the neighborhood of the boundary dD.
Hence f is a CR-function on dD. Since dD is connected, then the function f extends
holomorphically to D. O

Corollary 3.3.1 is one of the variants of the Hartogs—Bochner theorem. We note
that in this statement equality (3.3.10) can be demanded to be satisfied only for
points z in some openset V. C Dor V C C"\ D.

As we will see later, the condition of Morera’s theorem turns into the following
orthogonality condition:

/a FOOE =G0 =0. 3¢ 0D, 3.3.10)
(e

for the function f € ¥’ (dD) and a function ® of the form

Pw) = g1 (W Y1 (W) + ... + @) (W), (33.12)

where the functions ¢;(w) (as well as functions ;(w)) are holomorphic in some
neighborhood of compact Kp, or ¢; are meromorphic and such that the form ®w
has no singularities for { # z. First we study condition (3.3.11) for a special choice
of a function ® of the form (3.3.12).

Lemma 3.3.4 Equality (3.3.11) can be rewritten as

_ 1 -
/aD;f@)aZ [W Di 12 (<P(§ —2).¥(¢ —2), BU/f) A dl/fi| =0,

where z ¢ 0D, and ¢ is a column of functions ¢;, j =1, ..., n.
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Proof Consider columns t = % and

S L
[y ]2 Py )

By Lemma 2.7.1

o(Y(§ —2)) = 9 Up = D1 a2 (t(C —2). 0 —2).0:n(¢ —2)) AdY

(2 0"

outside zeros of the function ®({ — z). Using the homogeneity property of the
determinant D of the differential forms, we obtain

1
- Do (¢ ~2) = G
1

x 9 [W Dy jn— <¢(§ —2),Y(( —2),0:¥( —z))} Ady.

Lemma 3.3.5 Equality (3.3.11) can be rewritten as

Z/ﬂo[ (M%JmM4@NE@Aa}w, (33.13)

ifz ¢ 0D, andn > 2.

Proof is the same as in Lemma 3.3.2.
|
We show that for a special choice of the functions ¢; in condition (3.3.13) the
derivatives with respect to z; can be taken out from under the integral sign. Let
the vector-column ¢ have the form

p(w) = lA"

where J is the determinant of the Jacobian matrix of the map ¥ (J # 0), and A* is
the column of the cofactorsAly‘n, m=1,....n,k=1,...,n

Lemma 3.3.6 Condition (3.3.11) can be rewritten as

S [ 00 v (455 ) na] =0 63
N A Ik O el

if z ¢ dD.
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Although the determinant of J may be 0 on some surface as we shall see from
the proof of Lemma 3.3.6, the determinants D, standing under the integral sign in
(3.3.14), have no singularities.

1
Proof Let ¢ = jAl. To prove the lemma it is sufficient to show (by Eq. (3.3.13)),
that

According to Laplace’s theorem, we have

1 +r
Z_DIIHZ(AT’AX’W) Z Z( 1)[’

p<r

D‘”Z(EW)

A1 AY

where Dﬁ_rz is the determinant obtained from D;;,—» by deleting the first two
columns and rows with numbers p, r. By the property of the determinants of the
cofactors we find that

(3.3.15)

where A},:‘; are the cofactors in the Jacobi matrix of the map 1, which stand at
the intersection of the first and s-th columns, and the p-th and r-th rows.
On the other hand (as is easy to show)

- 9 Ls
> A =0. (3.3.16)

§=2

From this and from (3.3.15) we obtain the desired result. Moreover, (3.3.15) implies
that the determinants D | ,— in equality (3.3.14) do not have singularities. O

The proof of this lemma shows that equality (3.3.14) is equivalent to
n 9 _
S | F@©BcBiAdt =0 for z¢ oD, (3.3.17)
sk aZ; aD

where

Brs = WZZ( DAL (¢ — AR — 2)dElLm).

p<r I<m



3.3 Holomorphic Extension Along Complex Curves and Analogues of the. .. 95

Therefore, we need to verify the density of linear combinations of fractions of a
more general form than in Proposition 3.3.2 in the class *(dD).

Proposition 3.3.3 Let n > 2 and 0D € 6*°. Linear combinations of fractions of
the form

Al (E = DAPF(E -
(& =2

Ql,s,m,k(z - Z) = Z
1<p<r<n
z¢ 0D, ¢ € D, k,s,m,l,=1,...,n, are dense in the space €"(0D), 0 < u < d.
Proof From identity (3.3.16) we obtain the following (forall s,p,r =1, ..., n):

Zaz; b ;a—ZZAj,i:. (3.3.18)

Indeed, we replace in identity (3.3.16) the variable z; with z;, and z; with z;. Then
we put the first columns in the resulting expression back in their place, and obtain

(3.3.18).
Let p < r, the identity

AS, if g=np,
0 0 :
Z Iy lv Z quvl =14 if g=r. (3.3.19)
I< azl 0 i
s . if g#p.r

holds. This identity is obtained using the rules for decomposition of the determinant

by one of the lines and the signs of cofactors Aﬁ;f, and A Using Eqs. (3.3.18) and
(3.3.19), we have (for fixed s, m, k)

;a lemk Za Qvlmk
P pLAIES  Ere

<r gq I<s
=—(n-2)~
|1//|2n —2

- Rs,m,k-



96 3 On the Multidimensional Boundary Analogues of the Morera Theorem

Then again using Eqgs. (3.3.18) and (3.3.19), we obtain (for fixed s, k)

Z aZm vmk Z a_ vkm

m<k
_ al// —mk al// —km
Gl ( )

p<r
aw —m.k aw —km
—AS rA
(m<k aZm Z aZm Pr):|

m>k
-1 EI%
D s [ T

m<k q m

p<r

Z_kmzwq ]: |1/,|2nzZ:(ArAr"*”43 )

m>k p<r

—2)(n—1 - - - -
' % 5 (s — ) (98— i)

p<r
_(n=2)(n—1) 5
B () ()

Replacing the derivatives by the difference ratio and applying Proposition 3.3.2, we
obtain the desired result. O

Theorem 3.3.3 ([64]) Let 0D € 62, andf € € (dD). If
, FE)Pr(¢ — oY ({ —2)) =0 (3.3.20)
;

forallz ¢ oD, k = 1,...,n, where
1 n
O —2) = ——— > AL -yt —2).
(& —2) TC— & sC=2¥s(—2)

then the function f is holomorphically extended into D up to a function F € € (D).

Condition (3.3.20) (as shown by formula (2.7.3)) is equivalent to the following:

S AK(E — DY —2)

s=1 T A _
SO DR Ads =0
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however, in spite of the Jacobian J in the denominator, the integrand in formula
(3.3.20) has no singularities at { # z.

Proof Let n > 2. We write the condition of the theorem in the form of equality
(3.3.17). Using Lemma 3.3.6 and Proposition 3.3.3, we approximate the function
|¢ — z|*2" by linear combinations of fractions in this proposition from the class
€*(dD), ¢ € 3D, and z is fixed and does not lie on dD. Then for z ¢ 3D from
(3.3.20) we obtain

d A 1 Ak As 9+ N —
gf)_zx/auf@)ag [WDl,l,n—z (A A% 0:(C Z)) Adt} =0,

where A* are the respective cofactors in the identity mapping ¥ ({ —z) = ¢ — z.
Lemmas 3.3.4 and 3.3.5 show that this condition can be written as

/an(é')(é'k—Zk)U(é',z) =0, z¢dD, k=1,...,n

Applying to the left side of the last equation the Laplace operator

5 5
= a0n T o,

and using harmonicity of the coefficients of the Bochner—Martinelli kernel, we have

a
a—Zk/an(é‘)U(é‘,z)zO, z¢ 0D, k=1,...,n

Thus, the Bochner—Martinelli integral of the function f is a holomorphic function
outside the boundary of D. Since dD is connected and this integral tends to 0 as
|z] — oo, then it equals zero outside D. By Corollary 1.2.4 about the jump of
the Bochner—Martinelli integral we obtain that the desired holomorphic extension is
given by the Bochner—Martinelli integral. O

3.3.3 Analogues of the Morera Theorem

Let D be a bounded domain in C" (n > 1) with a connected smooth boundary dD
of class €’!. Assume that for a function f € ¥ (dD) integrals over D N [ are equal
to zero for all complex curves / in a certain class. Our goal is to answer the question
whether f extends holomorphically to D as a function of n complex variables. This
question was investigated for the case of complex lines by Globevnik and Stout in
[26], Semenov and Agranovskii in [3], and by us in [47].
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As in Sect.3.3.1, we consider a class of complex curves I, ;, of the form (3.3.1)
Ly={(eC": =0+ §=g+bty(@).j=2,....n, te C}

with the same properties. Similarly, we introduce holomorphic functions of the form
(3.3.3):

.
g

X))

n@Q =4 ¥= ji=2

having the properties as in Sect.3.3.1. For these functions, Theorem 3.3.3 holds.
By Lemma 3.3.1 in the coordinates 7, b the kernel w(y (¢ — z)) will have the form
(3.3.4):

d
W 0.0) = T A M),

where
p(n—D (=1)"7'ab?> A--- AdDEr AdDEE A -+ A dDD
2 \n n n
(2mi) (1 + Z |bj|2pj)
=

J

A(b) =

Here y*(t, b) is the composition of the map ¥ ({ — z) and the map ¢ — z, defining
the curves [, .

To see how condition (3.3.20) in Theorem 3.3.3 will change for the mapping
¥, in particular, we find the functions ®; in the new coordinates #, b. Denote the

1
functions —- by y;,j = 2,...,n. We have

X]f’}
JC=2)=p1palli— 2" G — ) 2 G —21) - ya(G — 20).

The column vectors A* take the form

A =(p2puQ =) G =) 2 Y, 0,...,0),
A =(—p3-puQ —2) (G =) G — 2 YAV Vs
i3 oG — )P NG =) (G — ) iy v, 0,10, 0),

A" =(=p2-pua1(Ca — 2) 7 (Gt — 201 T G — ) Y2 Va1V
0,....pt - Pue1(C1 — 20" e (Gamt = =)y ).
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Calculating the function ®;, we obtain

qDl(C_Z) :é‘l _Zl’
P1

®,(¢ - 2) b G- Zz)Vﬁ’
D2 V212

D, —2) :tn —Zn 1=z — Zn)J/,/,.

Pn YnP1Pn

In the coordinates ¢, b, these functions take the form
* 4 l,/q /
@y (1,b) =;( )

2:0.) :% (@) (3.3.21)

ey

b,t
®*(1,b) = (" xa (1))

Theorem 3.3.4 ([64]) Let 0D € €2, and a function f € €(0D) satisfy the
conditions

/ FHb)d(E ) = 0
DN,

forallj =1,... n, of almost all points z, lying in a neighborhood of D, and almost
all vectors b, satisfying condition (3.3.2), then the function f is holomorphically
extended into D up to a function F of the class € (D) (we believe that for j = 1 the
function y; = 1).

Proof From Theorem 3.3.3, the kind (3.3.4) of the differential form w(y) and the
kind (3.3.21) of the functions ®; in the coordinates ¢, b, as well as from Fubini’s
theorem, it follows that

/f(é)q>j(§—2)w(1/f(§—2))= / Ao [ by = 0.
BD; cn—1 0.

DN,

Then the function f extends holomorphically into D. O

Theorem 3.3.4 is a generalization of the boundary Morera theorem given in
[26] (see Theorem 3.2.3), where the case of complex lines I, is considered. If all
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functions y; = 1, j = 1,...,n, then Theorem 3.3.4 becomes one of the boundary
version of the Morera theorem for algebraic curves.

3.4 Morera Theorem in Classical Domains

In this section, we consider the boundary variant of the Morera theorem for classical
domains. The starting point of this theorem is the result of Nagel and Rudin [66],
which says that if a function f is continuous on the boundary of a ball in C" and the
integral

2
F@(e®,0...,0) e dp =0
0

for all (holomorphic) automorphisms i of the ball, then the function f is holomor-
phically extended to the ball.

An alternative proof of the theorem of Nagel and Rudin was given by Kos-
bergenov in [37]. It allows this assertion to be generalized for the case of classical
domains.

In [2] Agranovskii gives a description of Mdbius-invariant spaces of continuous
functions in classical domains of tubular type, i.e., those classical domains for which
the real dimension of the Shilov boundary coincides with the complex dimension of
the domain. In [2] by using this description, the assertion which essentially coincides
with Theorem 1.3.2 for classical domains of tubular type was proved.

3.4.1 Classical Domains

We recall certain definitions and introduce notations needed for further discussion.
By a classical domain D C CV (see [32, p. 9]), we mean an irreducible bounded
symmetric domain of several complex variables of one of the following four
types:

1. The domain Dy is formed by matrices Z consisting of m rows and n columns
(entries of matrices are complex numbers) and satisfying the condition

I —7z* > 0.
Here, I is the identity matrix of order m, Z* = 7 is the matrix complex-

conjugate to the transposed matrix Z’, and, as usual, the inequality H > 0 for a
Hermitian matrix H means that this matrix is positive definite.
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2. The domain Dy; is formed by symmetric (square) matrices Z of order n satisfying
the condition

1™ —77 > 0.

3. The domain Dy is formed by skew-symmetric matrices Z of order n satisfying
the condition

1™ +7Z > 0.
4. The domain Dyy is formed by n-dimensional vectors z = (zy, ..., z,) satisfying
the condition
27| + 1 —277 > 0, lzZ| < 1.
: . .. nn+1)
The complex dimension of these four types of domains is equal to mn, —

nn—1) . . . .
————, and n, respectively. These domains are complete circular convex domains.

In our case, the domain D means a domain of one of the types presented above.
Let S be the Shilov boundary for the domain D (see [32, p. 10]).

1. S; is formed by matrices U consisting of m rows and n columns with the condition
that

vu* = 1™,

In particular, for m = n, the manifold S; coincides with the set of all unitary
matrices U(n).

2. Sy is formed by all symmetric unitary matrices of order n.

3. Sy is defined in different ways depending on the evenness or oddness of n. If
n is even, then Sy is formed by all skew-symmetric unitary matrices of order
n. If n is odd, then Sy is formed by all matrices of the form UFU’, where U is
an arbitrary unitary matrix and

01 . 01 . .
(0 0)+(50) 40
4. Syy is formed by vectors of the form e’ x, where x is the real n-dimensional vector
satisfying the condition xx’ = 1,0 < ¢ < 2.
nn+1)
2 9

, and, n, respectively. All these manifolds are

The manifolds S;, Sy, Si;, Siv have the real dimension m(2n — m),

nn—1) wm=1)
T"‘(l"‘(—l)) 5

generic CR-manifolds, and, moreover, in the case where their dimension is equal to
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the (complex) dimension of the space CV, these manifolds are totally real (i.e., have
no complex tangent vectors).

3.4.2 Morera Theorem in Classical Domains

We define the class 2! (D) as a class of all functions f, holomorphic in D such that

O<r<

sup / () < +oc.
S

were r{ = (r{1,...,rn), and du is the normalized Lebesgue measure on the
manifold S, which is a Haar measure, and, therefore, it is invariant with respect
to rotations.

For any function f in D and any ¢ € S, consider a cut-functionf; in A = {r e C :
|t| < 1} of the following form: f; () = f(¢{). This cut-function allows us to relate
certain N-dimensional properties of the function f to one-dimensional properties
Offg.

Fix a point X9 € S (A9 = (A%,...,A%)) and consider the following embedding
of adisk A in the domain D:

{teC¥: =), j=1,....N, |f| <1}. (34.1)

Under this embedding, the boundary 7 of the disk A moves to a circle lying
on S. If ¥ is an arbitrary (holomorphic) automorphism of the domain D (i.e., a
biholomorphic self-map of the domain D), then the set of the form (3.4.1) passes to
a certain analytic disk with the boundary on S under the action of this automorphism.

Theorem 3.4.1 ([38]) If a function f € € (S) satisfies the condition

/ f(W(tro))dt =0 (3.4.2)
T

Jfor all automorphisms y of the domain D, then the function f is holomorphically
extended into D up to a function F of class € (D).

For the case of classical domains of tubular type, this assertion is presented in [2].

Proof A subgroup of automorphisms leaving O fixed acts on S transitively. They are
called unitary transformations, since they are linear, and given by unitary matrices
for the case of domains consisting of square matrices. Since S is invariant with
respect to unitary transformations (like the domain D), condition (3.4.2) also holds
for arbitrary points A € S.
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Let us parametrize the manifold S as follows:
E=1tA, t=¢% 0<¢<2m, ALeS,

if £ € S. The manifold §’ is defined differently for domains D of different types.
For domains of the first type and m = n, this is a group SU(n) of special unitary
matrices, for domains of the fourth type, it is a sphere, and so on. The measure du
can be written in the form

d 1 dt
dp = S5 A dpo(h) = >—= Adpio(d),
2 2mi t
where do(A) is a differential form defining a positive measure on §’.

Multiplying relation (3.4.2) by duo and integrating over S’, we obtain from
(3.4.2) that

/S FW©) & du(©) = 0, (3.4.3)

where {; are the components of the vector {, k = 1,...,N.

Consider an automorphism 4 transforming the point A in D into 0. It is defined
with accuracy up to a unitary transformation. Then substituting the automorphism
¥ ! instead of ¥ in (3.4.3) and making the change of variables W = v/, ({), we
obtain

/S FOWY Y (W) dp (s (W) = 0, (3.4.4)

where ! are the components of the automorphism 4. As was shown in [36,
Lemma 3.4] (for the case of square matrices, see the proof of Theorem 4.6.3 in
(32]),

dp(a(W)) = P(W,A) dpu(W),

where P(W, A) is the invariant Poisson kernel of the domain D. Therefore, we obtain
from condition (3.4.4) that

/S FMYE(W) P(W,A)dp(W) =0 (3:4.5)

for all points A from D and allk = 1,...,N.

A further proof of Theorem 3.4.1 follows from Theorem 5.7.1 in [32] on the
properties of the Poisson integral of continuous functions and analogue of the
Hartogs—Bochner theorem. O
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3.4.3 Analogue of the Hartogs—Bochner Theorem in Classical
Domains

Theorem 3.4.2 ([38]) If a function f € L' (S) and condition (3.4.5) for this
function holds for all automorphisms Y4 of the domain D, that transform a point
A from D into 0, and for allk = 1, ..., N, then the function f is the radial boundary
value of a certain function F € 7' (D).

Proof

1. Let D be a domain of the first type and suppose for certainty that m < n. The
invariant Poisson kernel for the domain D has the form (see [32, p. 98])

(det(7™ — AA¥))" (det(™ — AA%))"
P(W,A) = = .
| det(I0) — AW*)|2n det(I0™ — AW*)" det(I0") — WA*)"
Let the matrices be A = |agll and W = [wy| (s = 1,....m;p = 1,...,n).
Now we compute the expression

n

PW.A)
ZZ as Br (3.4.6)

s=1 p=1

We denote 1™ — WA* = ||| (¢.j = 1,...,m), where

n
Olqj:&ij— E qut_ljk, q,jzl,...,m,
k=1

and §,; is the Kronecker symbol (§,; = 0 for ¢ # j, and §,4 = 1).
Using the usual rule for differentiating a determinant, it is easy to check that
foranys=1,...,m

(2401 (230) Aim

n _ adet(l(m) _ WA*) ...... D

E awT =[O ... 05 — 1... Olgm
— sp

p=L T e e

Ol « oo Opg oo Ol

= det(I™ — WA*) — det(I"™ — WA*)]s, ],
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where det(I" — WA*)[s, s] means the cofactor to the element o, in the matrix
(I™ — WA*). Then

n

T 0det(T™M — WA*) " “ "
> ZQ‘YPT = mdet(I"™ — WA*) = ) " det(I"” — WA*)[s.s].

s=1 p=1 s=1

Similarly,

L~ ddet(I™ — AA¥) " = .
ZZ“W’T = mdet(I" — AA*) = ) " det(I"™ — AA*)[s. s].

s=1 p=1 s=1
Hence we have that expression (3.4.6) equals

S det(I™ — WA™)[s,s] 3" det(I™ — AA*®)[s, s]

s=1 s=1
P(W,A —
mP( ) det(I™m — WA*) det(Im — AA¥)

= mP(W,A) [e(™ — WA*)™" — (1" — AA*)7'], (3.4.7)

where tr W denotes the trace of the matrix W.
As is known, the conditions

I™—77*>0 and IW—Z7*Z=1"—-7'(Z)*>0

are equivalent (see [32, p. 37]). Therefore, the map Z — Z' transforms the
domain D to a domain D’ also of a first type.

Consider the automorphism ¥4/ transforming a point A’ in D’ into 0 of the
following form:

Y (W) = Q' (W —AYI™ — AY*W)'®)™

(see [32, p. 85]), where non-degenerate nxn-matrix Q' and non-degenerate mXxm-
matrix R’ are chosen so that

R/(I(m) _A/(A/)*)(Rl)* — I(m), Q/(I(n) _ (A/)*A/)(Q/)* — I(n)

Then the automorphism ¥4 (W) of the domain D, transforming the point A into 0
will have the form

Ya(W) = R™'(I" — WA*) ™' (W — A)Q.
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If condition (3.4.5) holds for components of the map ¥4, then the same condition
holds for components of the map

pa(W) = (I — AAM) LA™ — WAT) TH (W — A),
since the matrices P, Q, (I"” — AA*) are non-degenerate and depend only on A.

Denoting components ¢4 (W) by gos/;(W), s=1,....m p=1,...,n, from
(3.4.5) we obtain

/S S(W)gg, (W) P(W, A) dp(W) = 0. (3.4.8)

We find the sum
2D by
s=1 p=1
Obviously, the desired expression equals
tr(pa(W)A™).

We need the following property of the matrix trace

tr(AB) = tr(BA), (3.4.9)
where the rectangular matrices A and B are such that the products AB and BA are
defined. Indeed, if m x n-matrix A consists of elements ay,, Kk = 1,...,m, s =
1,...,n,and n x m-matrix B consists of elements by, [ = 1,...,n;q=1,...,m
then

tr(AB) = Z Z aksbsk = tr(BA).

k=1 s=1
Using the form of the map ¢4 and property (3.4.9) of the matrix trace, we
obtain
tr(pa(W)A*) = tr[(I™ — AA*) 71 (I — WA*) ™ (W — A)A*]
= tr[(1™ — AA*)TII — WA*)TH(WA* — 1™ + (I — AA¥))]
= [ —WA*)T - (1™ - 44", (34.10)
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Comparing formulas (3.4.7) and (3.4.10), from condition (3.4.8) we obtain

m n F A
ZZamw =0, (3.4.11)
where

FW=£ﬂMHWMWW)

is the Poisson integral of the function f.
Function F(A) is real-analytic in D so expanding it in a Taylor series in a
neighborhood of 0, we obtain

FA)= ) cqpaa

lal.|B1=0

where @ = ||ayill and B = ||B4ll (9 = 1.....m,j = 1,...,n) are the matrices
with non-negative integer entries,

|ot] :ZZaqj and a“:l_[naz].q’.
g=1j=1 g=1j=1
Then from condition (3.4.11) we obtain

ZZ‘_"YP%FL—Z—E:) = Z |B| capa®a® =0,

|oe|>0.|8]>0

hence all the coefficients ¢, g with |8| > 0 are equal to 0. Therefore, the function
F(A) is holomorphic in D and belongs to the class .2#' (D).

2. For domains of type Dy and Dy the proof repeats the proof for domains D;. In
this case it is however less involved since for a domain of the second type Z' = Z
is true, and for a domain of the third type Z' = —Z is true.

3. Let D = Dyy. We will denote points on S by w, and points in D by a. So, we have

[ 090 Pov.a)dien) = 0 (3.4.12)

for all points a € D and all components ' (w) of the automorphism v, (w).



108 3 On the Multidimensional Boundary Analogues of the Morera Theorem

The Poisson kernel for a domain of the fourth type has the form (see [32,
p- 99D

P,y (L e @ ~2la?)8

(w—a,w—a)|"
Here and below

w,2) =wd =wiz1 + ... + Wz

Calculating
", _ 0P(w,a)
Ak
k=1 %
we obtain
", _ 0P(w,a) la)> =1 (w,a) — (w,w)
r———— = nP(w,a) 5 ;.
=1 dak 1+ [{a,a)|* —2|a {a—w,a—w)
Using the representation w = ex, where x is the real vector such that

(x,x) = 1, we have

n

Z _ dP(w,a) P(w.a) la)?> — 1
ay———— = nP(w,a
= [+ [{a,a)F = 2laP?

(w,a) —1 ]
— — . (3.4.13)
1 4+ (w,w){a,a) —2{w, a)

An automorphism v, has the form (see [32, p. 88])

1

Ya(w) = % [(%(ww’ +1), %(ww’ — 1)) A —wX(/)A/i| (1)}_ X
X {WQ/ - (%(ww’ +1), é(ww’ - 1)) XOQ’} ,
where

A= 20+ a2} =) a7 2)
: ,

ad + ad +2 i(ad' — ad’)

X _;( a+a—(a(ad) + a(ad)) )
T 1= aad|? \i(a—a) + i(a (ad) —a (ad')) )’
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and the non-degenerate matrix Q is chosen so that
U™ —XpXo)Q' = 1".

Let us write this automorphism v, in our notation:

2 23 B
e (O

1 + (w,w){a,a) —2(w,a) (a —a{a, a))) 0.

Since the non-degenerate matrix Q depends only on a, then condition (3.4.12)
will be satisfied for components of the map as well

: R A VAT P
1+ (w,w)(a,a) —2(w,a) (W @t 1— |{a,a) (a a(d,a))).

Pa (W) =

Next we find the sum (g,, @), which appears to be equal to the expression

1
1+ (w,w){a,a)

T x((w, )~ o + 420 G - |a|2)) |

Obviously, this expression differs from (4.2.4) only in the factor P(w, a) and the
factor that depends only on a. Thus, from (3.4.12) we have

where F(a) (as above) is the Poisson integral of the function f and further proof
is the same as in Item 1. O

Let the classical domain D be such that the dimension of § is strictly greater
than N. Recall that the function f € .Z'(S) is a CR-function if

/S F©w A dE) =0

for all exterior differential forms w with coefficients of class 4 in the neighbor-
hood of S, of the corresponding dimension, where d¢ is the exterior product of all
differentials d{y.

The Rossi—Vergne Theorem [70] says that any CR-function f € .Z!(S) is the
radial boundary value on S of a function F € s#!(D).

The Poisson kernel in the classical domain D is expressed through the Cauchy—
Szego kernel C(W, A) as follows:

C(W,A)CA, W)

P(w.4) = C@A,A)
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As was shown in [7], the expression C(W,A)du(W) is a restriction on S
of the Cauchy—Fantappié kernel Q(W,A), which is a 0-closed differential form.
Therefore, in condition (3.4.5) of Theorem 3.4.2, we obtain a product of the
Cauchy-Fantappié kernel €2 and the holomorphic function that vanishes at the point
A. In this case, this product is a certain d-exact form with coefficients of class €
in a neighborhood of S. Therefore, Theorem 3.4.2 is a generalization of the Rossi—
Vergne theorem from [70].

The proof of Theorem 3.4.2 shows that it remains true if condition (3.4.5) holds
only for those automorphisms 4 for which point A belongs to a certain open set
V C D. It suffices to apply the uniqueness theorem for real-analytic functions.
Therefore, the following generalization of Theorem 3.4.2 holds.

Theorem 3.4.3 ([38]) If a function f € ZL'(S) satisfies condition (3.4.5) for
all points A belonging to a certain open V. C D and all components of the
automorphism Y4, then f is the radial boundary value on S of a certain function

F e 27" (D).
Therefore, Theorem 3.4.1 also admits a generalization.

Theorem 3.4.4 ([38]) Let afunctionf € €(S), and let condition (3.4.2) hold for all
automorphisms Y, transforming the point 0 to points of a certain open set V.C D,
then f is holomorphically extended into D up to a certain function F € € (D).

In the case of the ball D, this theorem generalizes the Nagel-Rudin theorem from
[66]. Denote by Ay, the analytic disk of the form

Ay ={8: {=Y(tho), |t <1},

where A is a fixed point from the skeleton S and v is the automorphism of the
domain D. Then the boundary Ty of this analytic disk lies on S.

Corollary 3.4.1 ([1, 38]) If a function f € € (S) is holomorphically extended (with
respect to t) to analytic disks Ay for all automorphisms v (or for all automorphisms
Y transforming the point 0 into points of a certain fixed open set V. C D), then the
function f is holomorphically extended into D.

In [1] Agranovskii proved this assertion for the case of all automorphisms
of the domain D. In the same paper, M.L. Agranovskii described % -invariant
subspaces of the space %(S) in the classical domain and formulated integral
conditions for the holomorphic extension of a continuous function from the skeleton
S to the domain D, which are similar to but do not coincide with conditions (3.4.3).
His proof was based on the description of the boundary values of holomorphic
functions from [8].

Corollary 3.4.1 is an analogue of the Stout theorem [78] on functions with the
one-dimensional holomorphic extension property for classical domains (see also
[4, 26, 48]). Moreover, it generalizes (for the given class of domains S) Theorem 5.5
of Tumanov, which says that if a smooth function f is holomorphically extended to
all analytic disks with a boundary on S, then f is a CR-function on S [79].
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3.5 Multidimensional Analogue of the Morera Theorem
for Real-Analytic Functions

This section contains some results related to the analytic continuation of real-
analytic functions given on the boundary of a bounded domain to this domain.
We consider functions that satisfy the Morera property (Definition 3.1.1). So let
us consider a set of complex lines intersecting the germ of a real-analytic manifold
of real dimension (2n — 2) to be a sufficient set.

Let D C C" (n > 1) be a bounded domain with a connected real-analytic
boundary of the form

D={zeC": p(z) <0},

where p(z) is a real-analytic real-valued function in a neighborhood of the set D
such that dp‘a ,7 0. We identify C" with R?" in the following way: z = (z1.... . Z),
wherez; = x; + iy, x;, y; €R, j=1,...,n

Consider complex lines [, of the form (3.2.1)

Ly={eC": =z +bt,j=1,....,n, t€C}

passing through the point z € C”" in the direction of the vector b = {by,...,b,} €
CP"! (the direction b is determined up to multiplication by a complex number
A #0).

Let I be the germ of a real-analytic manifold of real dimension (2n — 2). We
assume that 0 € I' and the manifold I" has the form

[={teC": &) +i¥(©) =0},

in some neighborhood of zero, where ®, W are the real-analytic real-valued
functions in the neighborhood of the point 0. Here { = (1, ..., {,) and §; = &§+in;,
&.n € R,j=1,...,n The smoothness condition of the manifold I" can be written
down as

a0 0o 09 D

0g, T 0E, omy T A,

atevery point ¢ € T.
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Consider complex lines of the form (3.2.1), and let b; = ¢; + id;, ¢j,d; € R,
j=1,...,nandt = u + iv, u,v € R. Then lines /., will be defined as

Ly=1neR": § = xj+cu—dv, nj =yj+du+c, j=1,....n} (3.5.1)

in real coordinates.

Lemma 3.5.1 Let the vectorb® = (b?,...,b°) € CP"™! be such that DNy, # 2.
Then there exists ¢ > 0 such that for any z such that |z| < &, and any b such that
|b—b°| < &, the intersection D N 1., # @ and T N I, # 2.

Proof The intersection I' N [, is given by the system of equations

@Z,b(”’ U) = qD(Sls e Ennls ) ﬂn),
Wz,b(”s U) = \Ij(glv ) Sn’]l» ) ﬂn),

where §; and 7; are given by Eq. (3.5.1).
Choose the vector b° such that the determinant

3<P0,b0 3<P0,b0

= 2 % 10020 (3.5.2)
8¢0’b0 31ﬁ0qbo
ou du

Indeed, since

0,40 _ Xn: 3_q>cj 4 ana;{)d
j =1

j?
ooy T Sy
3(p0’bo _ " 3@ " 3@
TR oF, o

9 "o " oW
% ZZ_Cj-’_Z:_'dj’

o 0 VL 17
o Z‘;_dﬂfz—.%
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then the determinant (3.5.2)

0P " 0P oD
;B_SjCj+;3 j Z n'Cj

]

|| = .
IEEED N “’.
. — an
D 9D D 9P
=Z —cid; 8_5‘]8_& + cicy 8_§-',8_m
, THow | 7 av 0@
D 9D D 9P
—didy gg ji’; + dicy gg 2’;’)‘ . (35.3)
an; Oy an; O

Suppose expression (3.5.3) is equal to zero for all b such that ' N Iy, # @
and b is an open set in CP"~!. Then expression (3.5.3) is identically equal to zero
since it is a real-analytic function with respect to b; = ¢; + id;. Without generality
restriction we may assume b; = 1 4 i0. Then expression (3.5.3) acquires the form

a® 0P 0® 0P 0® 00
& om ‘ 081 08, 081 Oy
J| = +3 | -a +
1= 1w aw ; “low aw| T Y ow aw
0&1 oy 08 0& 0&; any
a0 0P 00 09
- & 08 & oy
—cid :
+ij=:2 9w gw| T e gw
0&; 0k 0&; Ok
00 0P 0® 00
an; 0k an; On
—d;d ) d; ’ =0.
How aw| T ow v
an; 98k an; Ik

Then the determinants of all second-order minors of the matrix A vanish, which
contradicts the smoothness of T at 0. Therefore there exists a vector b° such that
|J|750andlo’boﬂl—'75®. O
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Lemma 3.5.2 For { € dD N L, let the function p, defining the domain D, satisfy
the condition

) a_ff by # 0, (3.5.4)

for some z and all {, b such that D N I}, # @, then the curves 0D N I, ;, are smooth
and analytically dependent on the parameter b.

Proof Consider the function
@p(1) = pz1 + but, ... zu + bat),

then
(99 9\ (3¢ d¢
et = (5.7 ) = (5’ 5) |

d
Therefore grad ¢, ;,(f) # 0 if and only if _(p # 0. Hence the smoothness condition

dep
for the curve DN, 4 is equivalent the condition 8_ # 0. Finally — Z

implies the statement of the lemma. O

For example, strongly convex or strongly linearly convex domains in C" satisfy
the conditions of Lemma 3.5.2.

Let €“(0D) denote the space of real-analytic functions on the boundary of the
domain D.

Theorem 3.5.1 ([51]) Let a domain D C C" satisfy conditions (3.5.4) for the points
z, lying in the neighbourhood of a manifold T" such that 0D NT" = @. Let a function
f € €“(0D) satisfy the generalized Morera property, i.e.,

/ F@ A+ bty 20+ bat)t"dt = 0 (35.5)
DN,

forall z € T, b € CP""! and for a fixed integral non-negative number m. Then
the function f has the holomorphic extension into the domain D.

Proof Consider the Bochner—Martinelli kernel of the form (1.1.1):

— k— l
U(t.z) = (2 )n Z( 1) |2 dz[k] A de.
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By Lemma 3.2.1 the kernel U(¢, z) in terms of the coordinates b and ¢ has the form
dt
U2 =ab) A —.

where A(b) is a differential form of type (n — 1,n — 1) in CP"~! such that it does
not depend on 7, and the point z ¢ dD.
Consider the integral

Mof (o) = /3 €= OUE,
¢

where @ = (a1, ..., a,) is an arbitrary multi-index such that
lell =01 + ...+, =m+1

and

C=2* =G —2) (G —2)™

By the Fubini theorem and Lemma 3.2.1 we obtain

Myf(z) = / b*A(b) f(z1 + bit, ..., 7z, + byt)t"dt.
cp! aDNlL,,

Then by the condition of Theorem 3.5.1 and Lemma 3.5.1 the integrals
/ f@+bit, ...,z + bp)"dt =0
aDN

for any z with a sufficiently small |z| and b close to b°. By the condition of
Theorem 3.5.1 and Lemma 3.5.2 this integral is a real-analytic function with respect
to b, hence it is identically equal to zero, then

Maf () = /a (€= OUE =0 (35.6)
¢

for all z such that |z] < e.



116 3 On the Multidimensional Boundary Analogues of the Morera Theorem

We rewrite the function M,f(z) in a different form. Consider the differential
forms Us(¢, z) of the form (3.2.5):

Uv(ZvZ) ( 1()2(’1)” Z( 1)’ |2n 2d§[/ ]

+§j(1r' Pﬁyﬁbﬂ Adt.

Jj=s+1

It is easy to verify that

aQI U@@)=U@@

at s # z5, 8 = 1,...,n. Then condition (3.5.6) can be rewritten as
f(@)a (¢ -2U(t.2) =0 (3.5.7)

for z such that |z| < & and for all monomials (¢ — z)? with ||| = m.

Let us show that condition (3.5.7) holds for monomials (¢ — z)? with ||y]| < m.
Indeed, consider the monomial ({ — z)” with ||y|| = m — 1. Then condition (3.5.7)
holds for monomials

(=2 & — ), k=1,....n,
since the degree of these monomials is m. The equality

T (€ = 2" (& — 2 Us(8,2)) = (v + D(C = 2)"Us(8,2)

(& — Zk)(sz— %) U(2.2) (3.5.8)
¢ —z]

holds. Summing equalities (3.5.8) by k, we obtain

— (=D -2

"9
> i (€ =27 (G — 2 Us(8,2)) = (lyll + D —2)"Us(8, 2). (3.5.9)
k=1

Since condition (3.5.7) can be differentiated in z for |z| < &, and the derivatives
with respect to z and ¢ in expression (3.5.9) differ only in sign, then from (3.5.9)
it follows that the degree of the monomial in (3.5.7) can be reduced by one.
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Consequentially reducing this degree we obtain the conditions
F©U(&.2) =0
E)D;

for|zl| <eands=1,...,n,ie,

117

(& —z)f(OU,2) =0 (3.5.10)
E)D;
for|z] <eands=1,...,n.
Applying the Laplace operator
9? 0%
= — + ...+,
071071 02,02,
to the left-hand side of (3.5.10) we obtain
ad
= | rouga=o
s D¢
for|z| < eands = 1,..., n. Here we have used the harmonicity of the kernel U(¢, 7)

and the identity
A(gh) = hAg + gAh+ )
j=1
Consequently, the Bochner—Martinelli integral of the function f
e = [ U
E)D;

is a function holomorphic in the neighborhood of zero.

" 0g oh ", dg oh
— 82, 8z,~ =1 BZj 321

If ' € C"\D, then Mf(z) = 0 outside D, and then by Corollary 2.5.3 the function
f is holomorphically extended to the domain D. If I' C D, then by Corollary 2.5.2
the function Mf is holomorphic in D and the boundary values of Mf coincide with f.

|

For m = 0 condition (3.5.5) takes us to the boundary Morera property [26]

/ f@+bit,... .z, + byt)dr = 0.
DAL

(3.5.11)

Corollary 3.5.1 Let a domain D satisfy the conditions of Theorem 3.5.1, and a
function f € €° (D) satisfy condition (3.5.11) for all z € T and b € CP"™", then f

is holomorphically extended into the domain D.



Chapter 4
Functions with the One-Dimensional
Holomorphic Extension Property

Abstract The first result related to our subject was obtained by Agranovskii and
Val’sky in (Sib. Math. J. 12, 1-7, 1971), who studied functions with the one-
dimensional holomorphic extension property in a ball. Their proof was based on
the properties of the automorphism group of the ball. Stout (Duke Math. J. 44, 105—
108, 1977) used the complex Radon transform to extend the Agranovskii—Val’sky
theorem to arbitrary bounded domains with smooth boundaries. An alternative proof
of the Stout theorem was suggested in Integral Representations and Residues in
(Multidimensional Complex Analysis. AMS, Providence, 1983) by Kytmanov, who
applied the Bochner—Martinelli integral. The idea of using integral representations
(those of Bochner—Martinelli, Cauchy—Fantappié, and the logarithmic residue)
turns out to be useful in studying functions with a one-dimensional holomorphic
extension property along complex curves (Kytmanov and Myslivets, Sib. Math. J.
38,302-311, 1997; Kytmanov and Myslivets, J. Math. Sci. 120, 1842—-1867,2004).

4.1 Sufficient Families of Complex Lines Intersecting
a Generic Manifold Lying Outside the Domain

This section contains some results related to the sufficiency of a family of complex
lines intersecting a generating manifold. We will be talking about functions
with the one-dimensional holomorphic extension property along families of such
complex lines.

Let D be a bounded domain in C" (n > 1) with a connected smooth boundary
aD of class €. Consider complex one-dimensional lines / of the form (3.2.1)

l={§€(C":§j=zj+bjt,j=1,...,n,te(C}, “4.1.1)

that pass through a point z € C” in the direction of the vector b € CP""! (the
direction of b is determined up to multiplication by a complex number A # 0).
Consider functions f with the one-dimensional holomorphic extension property
(Definition 3.2.1) along families of complex lines of the form (4.1.1).

In [26], the problem of finding sufficient sets of complex lines £ = {/} for which
conditions of Definition 3.2.1 for [ € £ implies a holomorphic extension of the
function f to D was posed.

© Springer International Publishing Switzerland 2015 119
AM. Kytmanov, S.G. Myslivets, Multidimensional Integral Representations,
DOI 10.1007/978-3-319-21659-1_4
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4.1.1 Examples of Families of Complex Lines that are Not
Sufficient

Itis clear that any family of complex lines passing through one point is not sufficient.
Let us show that, generally speaking, a family of all complex lines passing through
finitely many points is not sufficient either.

Example 4.1.1 ([50]) Suppose that the domain D is a unit ball in C":
D= {ze(C”: Z|Zj|2< 1}.
j=1
Consider a set of parallel complex lines of the form
lep = {ZG C':z1=t, = Cj+bjt,j= 2,...,n, t€ (C}, 4.1.2)

where b = (by,...,b,) € C"! is the fixed vector and ¢ = (c2,...,cp) € Cclis
the current vector. On the sphere D, we have

>+ e+ bt = 1.
j=2

or, equivalently,

P+ 1Y 1P+ D P+ 1) big +1Y by = 1.
j=2 j=2 j=2 =2

Therefore,

M=

n
L= lel> =1 X by
z

Jj=2 J

t(l + Z ijlz) + Z Z)jCj
J=2 Jj=2

1=

on dD. Consider the function f = |z;|2P(z) on dD, where P(z) is the polynomial

P(Z) =71 14+ Z |bj|2 + Zl_)j(zj - jZl) =71+ Zl_Jij.

=2 =2 =2
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On family (4.1.2) (i.e., on the sets dD N [.,, where ¢ € C™!) the function f has
the form

f= |t|2(t(1 +> |b,-|2) + Zz}jqi) =t 1= lgl>—1> by
=2 =2 =2 =2

Therefore, it extends holomorphically along the given family of complex lines from
the curves D N I, to the sets D N I, .

On the other hand, f is not a CR-function on dD, because is does not satisfy
the tangent Cauchy—Riemann equations. For a finite set of points b* = (b%, ..., b%),
where k = 1,...,m, we define f on dD as

f=lal? 1_[ 21 (1 + Z |b]k|2) + Zl_?;((z] - b]’-‘zl)
=1 =2 =2

This function f is not a CR-function on dD either, but it extends holomorphically to
all intersections D N [, ;, where ¢ € Cvandk = 1,...,m. A set of lines of the
form (4.1.2) determines the point in the infinite complex hyperplane IT = CP" \ C".

To obtain sets passing through finite points in C", we transform the plane IT into a
complex hyperplane Ly in C" by a linear-fractional map. This map turns the domain
D into some bounded domain D* and transforms the function f into a function /™.
Since any linear-fractional transformation turns complex lines into complex lines,
we obtain the required example of a domain, a function, and a finite set of points
for which the holomorphic extendability of the function f* along all complex lines
passing through the given point does not imply that f* holomorphically extends to
D*. Note that these points will lie on a complex hyperplane not intersecting the
closure of the domain D*.

Example 4.1.2 Consider a unit ball B in C%:
B={(zw) eC?: 2>+ w] <1}

and the complex manifold I' = {(z,w) € C? : w = 0}, which coincides with its
complex tangent space at each point and intersects B.

Consider the complex lines intersecting I':
l,={(zw)eC*: z=a+bt, w=ct, t € C}. (4.1.3)
These lines pass through the point (a, 0) € I'. The point (a, 0) lies on B for |a| < 1
and it does not for |a| > 1. Without loss of generality, we can assume that |b|> +

|c|?> = 1. The intersection I, N dB forms a circle

|1|> + abt + abt = 1 — |a|* or |t+ ab|® =1—|c|*|al’. (4.1.4)
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This set [, N 3B is not empty, if |a|?|c|> < 1. Thus the condition

1—|af*> — abt

t= = 4.15
t+ ab ( )
holds for I, N dB.
Consider the function
wh+2
falzw) = (1 —azx)—, keZ, k=0.
w

This function is a smooth function of class €’ on 0B, since the ratio of — is bounded,
w
2 k+2

. we . . .
then the function — is continuous and is the €*-smoothness function. On the

w
set [, N 9B the function f;, is equal to

12a@H50 1 by @2 = (¢t + ab) ()2,
1 — |a|? — abt
Thus the restriction of f;, is holomorphically extended to the set /,N B for all complex
lines [,, passing through (a, 0) and intersecting B.
Considering an arbitrary finite set of points (a,,, 0) with |a,| > 1,m =1, ... N,
and the function

Wk+2

N
= m]:[la — G2),

flzw) =

we obtain that f has the one-dimensional holomorphic extension property along
all complex lines [,,, intersecting B. Nevertheless, f can not be extended holo-
morphically into a ball B from the boundary 9B, since it is obvious that f is not
a CR-function on 0B.

Example 4.1.3 In a ball B, we consider a part of the complex manifold I'j} =

e+2
{(z,w) € B: w = 0}. As shown by Globevnik [25], the function f; = id

w
(k € Z, k = 0) has the one-dimensional holomorphic extension property from 9B
along the complex lines of the family £r, this is a smooth function on 0B, which,
however, does not extend holomorphically into B.

Indeed, since equality (4.1.5) holds for complex lines of the form (4.1.3) on 0B,
the function f; on dB takes the form

t+ab
ﬁ = —+ a (Ct)k+2.

1 —|a|* — abt
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jal?

The denominator of this fraction vanishes at the point #p = Substituting

this point into expression (4.1.4), we obtain

1=la 2)2
W+l—|a|2>0 for |a| < 1.
Therefore, the point of the line /,, corresponding to 7y, lies outside the ball B. So,
the function f; extends holomorphically into /, N B.

This motivates the problem of finding families of manifolds (desirably, of
minimal dimension) for which the sets of complex lines intersecting these manifolds
are sufficient for holomorphic extension.

4.1.2 Sufficient Families of Complex Lines

In this section, we consider families of complex lines passing through a generic
manifold. The real dimension of such a manifold is at least 7.

Recall that a smooth manifold I' of class €"° is said to be generic if the complex
linear span of the tangent space 7;(I") coincides with C" for each pointz € I". We
denote the family of all complex lines intersecting I" by £r.

Theorem 4.1.1 ([50]) IfT is a germ of a generic manifold in C" \ D and a function
f € F(0D) has the one-dimensional holomorphic extension property along all
complex lines from L£r, then the function f is holomorphically extended in D.

Proof Consider the Bochner—Martinelli integral of f of the form (1.2.4)

MFG) = /3 FOUED. gD,

where U(¢, z) is the Bochner—Martinelli kernel of the form (1.1.1).

Lemma 4.1.1 Ifz € C" \ D and a function f has the one-dimensional holomor-
phic extension property along almost all complex lines passing through z, then
Mf(z) = O, and all derivatives (by z) of Mf of order o = (a1, ...,ay,) vanish as
well:

*Mf aIIaIIMf
i T

(z) =0,

where ||o|| = o + ... + a,.

Proof Consider complex lines / of the form (4.1.1) passing through the point z in
the direction of the vector b € CP".
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By Lemma 3.2.1 in the coordinates ¢ and b, the Bochner—Martinelli kernel is
written as

U(,2) = A(b) A d{,

where A(b) is a differential form of type (n — 1,n — 1) on CP""! not depending on
t. We need a similar representation for the derivatives of this integral. We have

= [ 0D~ [ poTIED.

We assume that z = 0. Expressing the derivatives of the Bochner—Martinelli
integral in terms of the variables 7 and b, we obtain

(~DelIEe 3 (118l (k] A dg

0UE.0) _ (n+ el = 1)! =
e Qmin RESEEL
_ (1t o = Dt (=Dl _ DTl — 1)
T et pgpler 9T @iy g

b* > (=1 bidblk] A Y (—1)*brdblk]
k=1 k=1
b2l A el

dt

= Aa(b) A o

where 7% = ¢ ... ¢,
These calculations are similar to those performed in Lemma 3.2.1. Since the
point z = 0 is outside D, it follows that

dt
aDmf(blt’ bn) o tlell+1 =0,

therefore, by Fubini’s theorem, we have

B“Mf

dt
0) = /[P’” lla(b) /BDmf(blfu--,bnl‘)W =0

O

Let us go back to the proof of the theorem. Suppose that I' is a germ of a
generic manifold in C" \ D, i.e., there exists an open set W on which I is a smooth
generic manifold of class ¥°. If a function f has the one-dimensional property of
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holomorphic extension along complex lines from £r, then, by Lemma 4.1.1, the
Bochner—Martinelli integral and all of its derivatives with respect to z vanish on I':

9 Mf

Mle=0 |,

=0 for all multi-indices «. (4.1.6)

The generic manifold I" can be reduced by a locally biholomorphic transforma-
tion to the form (see [11])

Ui = R(2a, e T UL ),
) B
U = P (20,00 T UL, e U),
where k +m = n,z; = x; + iy, j = 1,...,k, wg = ug + ivg,and s = 1,...,m.
Moreover, the real-valued vector-function 4 = (hy,...,h,) is of class € in a

neighborhood W of 0, and

oh oh oh
h,(0) =0, —2(0)=—-2(0)=—-2(0)=0
»(0) 3 © =350 = 520
for j,p = 1,...,m, s = 1,...,k. Any biholomorphic transformation turns

derivatives with respect to holomorphic variables into similar derivatives; thus,
condition (4.1.6) can be rewritten as

aa+ﬂMf
Az owh |

Mf|F= 0, =0 for all multi-indices «, B. “4.1.7)

Lemma 4.1.2 [f a real-analytic function Mf defined on the neighborhood W of a
set I satisfies conditions (4.1.7), then it vanishes on W.

Proof Let us show that all Taylor coefficients of the function Mf in a neighborhood
of zero vanish. Forj = 1,...,kand s = 1, ..., m we denote the partial derivatives
of the function Mf(z, u + ih(z, u)) with respect to the variables x;, y;, and u;s by Dy,
Dyj, and D, , respectively. Since

IMf <~ OMF ok ohy
0=D Mf = — —_— — d —(0)=0,
M= 5 ; o
M, M M,
it follows that a—f(O) = 0. Similarly, a—f(O) = 0 and 9 f(O) = 0forj =
0x; 9yj s
I,...,kands = 1,...,m. Since
oM 1 (oM M, oM,
0= A :—( f—i f) and f(O):O,
ows | 2\ Ju v J |p Jdug
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OMf

= 0fors = 1,...,m. Thus, all of the first derivatives of Mf

vanish at 0.
Let us show that the second derivatives vanish at zero as well. We have

PMf |~ IPMf ok,

0=D> Mf =
7 0x;0x; o 0x;0v, 0x;

XjX|

[ 0*Mf oh "\ ( 0°Mf O0h, oh OMf %h
+Z f_p+Z( f _p_q)+_f 4

0v,0x; 0Ox; = dv,dv, 0x; Oxs dv, Ox;ox;

2
The relations aﬁ(O) = 0 and 3%(0) = 0 imply oM (0) = 0. Similar
ax; v 0x;0x;
arguments show that the second derivatives of Mf with respect to the variables x;,
¥j» and ug vanish as well at O .
Consider

2 m 2
ozD_(aﬁf): M N M Oy

Iws dw,0x; = dw;dv, Ox;

oh M
Since —(0) = 0, it follows that i (0) = 0. Thus, we have
0x; Ow,dx;

0= IM o — (32Mf 0 — i M (0)) ad M =0

Ow,0x; du,0 3 50X Ou,0x;
PM PM 2
therefore, P, Bf (0) = 0. Similarly, 3 Bf (0) = 0and %(0) = 0. Further,
_PMf |1 PMf asz 82Mf 0>Mf
ow; 0wy F_ 8u18us E)uzav3 8v18u5 v 0y
PM
hence % laf (0) =0.

Applying induction, we can show in a similar way that all higher-order deriva-
tives of the function Mf vanish at the point 0. Thus, the Taylor expansion of Mf
vanishes at 0, and the function Mf itself vanishes on W. O

Let us complete the proof of the theorem. We have shown that the Bochner—
Martinelli integral vanishes on W. Since this integral is a real-analytic function
and the complement C" \ D is connected, it follows that Mf(z) = 0 on C" \ D.
Applying the assertion that functions representable by a Bochner—Martinelli integral
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are holomorphic (Corollary 2.5.2), we see that the function Mf is holomorphic on
D, and its boundary values coincide with those of f on dD. O

4.2 Sufficiency of a Family of Lines Intersecting a Generic
Manifold Lying Inside the Domain

Let D be a bounded domain in C" (n > 1) with a connected smooth boundary dD of
class €. In the previous section we considered a family of complex lines passing
through the germ of a generic manifold lying outside the domain D. Here we will
deal with the case of a generic manifold lying in the domain.

Let £r denote a set of complex lines of the form

l={§‘€(C”:§j=zj+bjt,j=1,...,n,te(C}, “4.2.1)

passing through the point z € T in the direction of the vector b € CP"'.

In this section we consider the case where the germ of a generic manifold lies in
the domain D, so it will require additional conditions on the domain D. To do this,
we first prove some lemmas. Consider the Bochner—Martinelli integral of the form
(1.2.4) for the function f:

MPG) = /3 FOUED. gD,

where U(¢, z) is the Bochner—Martinelli kernel of the form (1.1.1). We assume that
0 € D and the generic manifold I" is in some neighborhood of W C D, and 0 € I".

The generic manifold I" can be reduced by local biholomorphic transformation
to the form (see [11])

v = /’ll(Z], ey Lk UL, .. ,um),
.............. (4.2.2)
Um = hm(zla e azka ula LI ] um)a
where k + m = n,z; = x;+ iy, j = 1,...,k,wy = ug +ivg, s = 1,...,m,
h = (hy,...,h,) is a real-valued vector-function of class € in the neighborhood

W of 0 and the conditions

0
d

oh oh h ,
h,(0) = 0, a—P(O)z —L©0)==20), jp=1,....m s=1,...k
X; ay; U

hold.
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Lemma 4.2.1 [f a real-analytic function Mf, defined in W, satisfies the conditions

aa+ﬂMf

Mf|.=0, —
fl; azxowt | -

=0 forall multi-indices «, B, (4.2.3)

then it is equal to zero on W.

Proof We show that all coefficients of the expansion of F in a Taylor series vanish
in the neighborhood of zero.

Denote full partial derivatives along the manifold I" with respect to x;, y;, us by
ij,Dyj,Dus,andj =1,...,k,s=1,...,m. Since

Mf - OMf Ohy ah

0=D.Mf = — —(0) =0,
M 0x; Z vy 8x] 8x,( )=
oM, oM, oM,
then —f(O) = 0. Similarly —f(O) =0, —f(O) =0,j=1,....,k,s=1,...,m
an 3yj Oug
Since
M, 1 (oM, M, M,
O=a_f =—(af—|-ia f) and oMf =0,
aWS r aus avs
oMf .. .
then =0,s = 1,...,m. So, all of the first derivatives of the function Mf
vanish at 0.

We now show that all second derivatives also vanish at 0. We have

PMf <~ IMf o,

0x;0x; o ox;0v, Ox;

0=D> Mf=

XjX|

" o*mf on, PMf Oh, Oh,\  OMf 9*h,
+Z Bu,0m % ; (av,,avq W a_x,) T, dxox,

oh oM, 0°M;
Since a—p(O) =0, f(O) = 0, then P f (0) = 0. Similarly, all of the second
X X

;0.
derivatives of F' w1th respect to y;, us vanish at 0.

Consider

2 m 2
O:D}(aMf)_ PMf |~ M Oy

W) T dwdy = owdy, By
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2
Since %(0) = 0, then 3_Mf (0) = 0. Since
0x; 0w, 0x;
0= >y 0) = > mf —(0)+i M —F(0) and > My 0 =0
N 0w, 0x; Ou,0x; v, 0x; Ouy0x; o
P2M 2 2
then Mf (0) = 0. Similarly, oM f (O) 3 Mf (0) = 0. Further
v, 0x; Vg
0= M >Mf N 0*Mf N M 9°Mf
i i —
owows | ouy0u ouy 0V v dug,  0v;0vg
0> Mf
0 B0, (0) =0.

Applying induction, it can be shown just as above, that all higher derivatives of
the function Mf vanish at 0. Thus, the Taylor series at O of the function is zero, so
the function itself is zero in W. O

Clearly, Lemma 4.2.1 is also true for the original variables z (to bring the
manifold I" to the form (4.2.2)).
We define the functions

M;f(Z)=/8Df(§)(§,-—zj)U(§,z), ceD. j=1l....n

They are real-analytic in D.

Lemma 4.2.2 If for real-analytic functions M;f the conditions

I Mf

S ) 424
ot |, .24

hold for all multi-indices o, B at ||| + || B|| > O, then Mif are holomorphic on D.

. oM;f  OMyf
Proof We apply Lemma 4.2.1 to the functions a_‘ , a_‘ ,p=1,..k; s =
Zp W_y
1,...,m, to show that these functions are equal to zero in W, i.e., the functions F;
are holomorphic in W, and therefore in D. O

In what follows we will need the definition of a domain with the Nevanlinna
property (see [17]). Let G C C be a simply connected domain and ¢ = k(t) be a
conformal mapping of the unit circle A = {t : |7| < 1} on G.

Domain G is a domain with the Nevanlinna property, if there are two bounded
holomorphic functions u# and v in G such that almost everywhere on § = dA, the
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equality
- k
Hey - )
v(k(7))
holds in terms of the angular boundary values. Essentially this means
- t
t= o) 0G.
v(r)

Give a characterization of a domains with the Nevanlinna property (Proposition 3.1
in [17]). Domain G is a domain with the Nevanlinna property if and only if k(t)
admits a holomorphic pseudocontinuation through S in C\ A, i.e., there are bounded
ui (1)
v1(7)

holomorphic functions u; and v; in C \ A such that the function I~c(r) =

coincides almost everywhere with the function k(t) on S.

The above definition and statement will be applied to bounded domains G
with a boundary of class %, therefore (due to the principle of correspondence of
boundaries) the function k(t) extends to A as a function of class €' (A). The same
can be said about the function .

Various examples of domains with the Nevanlinna property are given in [17].
For example, if dG is real-analytic, then k(7) is a rational function with no poles on
the closure A. In our further consideration we will need the domain G to possess
a strengthened Nevanlinna property, i.e., the function u;(r) # 0in C\ A and
k(oo) # 0. For example, such domains will include domains for which k(z) is a
rational function with no poles on A and no zeros in C \ A.

Lemma 4.2.3 If the domain G has a strengthened Nevanlinna property, then the

1
function H extends holomorphically from 0G into G.

1
Proof Consider the function 3 ondGandt €S

1 1 o) o (

S —
~

k(z) - % () o (

o1 (3)
i (3)

1
denominator ity () # O at |z| > 1 in h(0) = o) # o0. Therefore, the function
)

~I| =

| —
~

=

Then the function A(t) = is holomorphic in the circle A, since the

—_

h(7) gives a holomorphic extension of the function m in the circle A hence, the
T

1
function H extends holomorphically into G. O
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Consider complex lines / of the form (4.2.1) passing through z in the direction of
the vector b € CP"~!. Consider also the following representation of the Bochner—
Martinelli kernel in the variables ¢ and b):

U(,2) = A(b) A d{,

where A(b) is a differential form of type (n — 1,n — 1) in CP"~! independent of .

Lemma 4.2.4 If a function f € %(0D) has the one-dimensional holomorphic
extension property along almost all complex lines | € £ and the connected
components of the intersection D N [ are domains with the strengthened Nevanlinna
property, then equalities (4.2.4) hold for all multi-indices o with ||«|| > 0 and for
allj=1,...,n

Proof Since
U2 =) (1)~ lag dEf A de,
j=1 /

(n—2)! 1
@riyr ¢ — 22

where g({,z) = — is the fundamental solution of the Laplace

equation, then

QJ

_ flell —
Vi Z( ! éG(C) 4EQ A dt.

Since

#g DMt fal = 21 - 9
aé_-a - (Zﬂi)” |é- _ Z|2n-|-2||o1||—2 ’

then

U (n + ||| = 2)! (& —2)° _
o Qmiy Z( yag, (W) dl[j] A dg

_ (ot llef =2t
N Qi)

N I I R LI (et
) ;:(_1)/ [l@ — zprtllal—2 ¢ — z2tlel } dtljl A d¢
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_ (et =2 Z I

(27[1)”
(n+Jlafl = D! (€ —2)*
ey V62
(n=11 & —zl
Let us calculate this form in the variables b and t,i.e.,{j—z; = b;t,j = 1,...,n

In the calculation we assume that df A dt = 0 on dD N [ and that b € CP"~'. We
obtain

U (n+ ||a|| 2)! Z( y oz,b”‘ ¢

db[j] A Z(—l)‘v_lbsdb[s] A dt
s=1

82“ (27Tl)n t||04|| |b|2”a”
(n+llal =1 b
(mn—1"  lel|p|2lel A(b) A dt.
Thus we see that
Y dt

(& _Zj)ﬁ = pu(b) A el
It remains to show that

fz+ bt)

07
DA tllall

but this follows from Lemma 4.2.3. O

Theorem 4.2.1 ([52]) Let I' be the germ of a generic manifold in D, the function
f € €(0D) has the one-dimensional holomorphic extension property along almost
all complex lines | € £ and the connected components of the intersection D N [ be
domains with the strengthened Nevanlinna property, then there exists a holomorphic
function Mf € € (D) in D that coincides with the function f on the boundary D.

Proof From Lemmas 4.2.1-4.2.4 it follows that M;f(z) is holomorphic in D. Since

M;
AMf = —i)—zf 0
J

in D, then the function Mf is holomorphic in D. Therefore, its boundary values
coincide with f (see Corollary 2.5.3). ]
Consider examples of the domains for which Theorem 4.2.1 is true.

Example 4.2.1 Let D = B be a ball of radius R with the center at the origin, i.e.,
= {{ :|¢| < R}. Then for z € D and |b| = 1, the intersection of this domain with
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the complex line
I={:{=z+bt, j=1,...,n}
is a circle
G=1{t:|t+ (z.b))* <R —|z]* + [{z,b)[*}.

On the boundary of this circle the following holds

l_ t+ (z,b)
i R |2 —1zb)

It is easy to verify that the denominator of this function does not vanish at 0 in G, so

the function H satisfies Lemma 4.2.3 for all points z € B and for all complex lines /.

L:
_Lj((zz)) ,j = 1,...,n, where L;j(z), L(z) are the linear

functions, and zeros of L(z) do not intersect the closure of the ball, then, with this
mapping, the image of the ball B (provided it is biholomorphic on the closure of the
ball B) is a bounded domain, for which Theorem 4.2.1 is valid. Indeed, it is easy to
verify that all intersections of this domain with complex lines are circles.

Example 4.2.2 Let w; =

Example 4.2.3 Let D be a complete circular domain with respect to all points
z € I, then Theorem 4.2.1 is true for it.

Lemma 4.2.3 shows that for Theorem 4.2.1 to be true it is sufficient that the
function H in the sections be holomorphically continued from the boundary of the

section into the cross section itself.

Theorem 4.2.2 ([S52]) Let I' be the germ of a generic manifold in D, and the
function f € € (D) has the one-dimensional holomorphic extension property along

1
almost all complex lines | € £ and the function H holomorphically extends from

oD N linto D N [ on the connected components of the intersection D N I, then there
exists a function Mf € € (D) is holomorphic in D and coincides with the function f
on the boundary oD.

We seek to answer the question: What domains (other than circles) in the
complex plane have such a property.

Example 4.2.4 In the complex plane C consider an open set
{teC: R|f|*" < |P(n]}, 0<R< oo, (4.2.5)

where P(¢) is the polynomial of degree k and P(0) # 0.
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Obviously, this set is bounded and contains a neighborhood of zero. Denote
the connected component containing 0 by G. By Sard’s theorem, for almost all R,
0 < R < 00, the boundary of G consists of a finite number of smooth curves.

For sufficiently small R the domain G is obtained from some domain after the
neighborhoods of zero of the polynomial P have been deleted. If R is sufficiently
large then G is a simply connected neighborhood of zero. Consider the boundary

of G:

S={teC: R = |P@)|} = {t € C: R*F = P)P(r)}.

Denote w =

~I| =—

. Then on S we have the equality

i =P ().

k k
where P(f) = Z szt/, if P(¢t) = Z ajtj. Then

j=0 j=0

- - =1 I
PO = P() = P(=) = —P'ow.
k
where P°(w) = Z szwk_j . Then on § we have the equality
j=0

R2 +1 : 1

Hence
R* 1 = P(rywP* (w),
i.e.,
R2k+1
wP(w) = .
P(1)
From the form of G we also find that in G
R|t|k+1 -1
|P(1)] '

(4.2.6)

(4.2.7)

Consider the function { = ¢(w) = wP*(w), then ¢’(0) = P*(0) # 0, since
the polynomial P has the degree k. Therefore, the function ¢ is a conformal map of
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some neighborhood of zero U,, on the neighborhood of zero V;. Therefore, there is
an inverse functionw = ¢~'({) : V; — U,,. From equality (4.2.6) we have

| R2tk+l
=@ S.
vee (P(r)) o

Since, by virtue of inequality (4.2.7)

Rl.k-‘rl
P(1)

R‘ <R in G,

2k+1
then, for sufficiently small R, the point

is in U,, and the denominator P(r) #
R2{<+1
P(1)

w= 3 extends holomorphically to G. Hence, the following assertion is true.

0 in G. Therefore, the function w = ¢! ( ) is holomorphic in G. Thus

Lemma 4.2.5 For a domain G of the form (4.2.5) for sufficiently small R the
1
function H extends holomorphically from the boundary 0G into G.

Consider a moved domain
Gy ={teC: Rt+af"t" <P}, (4.2.8)
where P, (f) = P(t + a). Then on S, = dG, we have the equality

Rt + &)t @ + @) = PL()P1 (1)

_ 1
and if r = —, then
w

R (t + "1 (1 + aw)**! = P (WP (w).

PS
The function ¢ = ¢ (w) = wl—(w) maps conformally the neighborhood of
(1 + aw)kt!
zero U, onto the neighborhood of zero Vg, therefore, as above, the function
R2 (t + a)k+l)
-1 -1
w = = —_—_—
o=y (S

extends holomorphically to G, for sufficiently small R.
Lemma 4.2.6 For a domain G, of the form (4.2.8) for sufficiently small R the func-

1
tion H extends holomorphically from the boundary 9G into G.
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It is easy to give examples of domains in the complex plane, for which
Lemma 4.2.3 is not satisfied. An ordinary ellipse
2 2
G=t=x+iyeC: —2+y—<1 , ab>0, a#b
a?  b?
is one of such domains. It is not difficult to show that from the ellipse boundary
equation we obtain

_ 1@+ D) £ 2abV2 —a’ + b?
B 4a’b* — 22 (b> — a?) ’

1
w= -
t

This function has two singular points (branch points) in the ellipse G and two poles
outside G. Furthermore

1 dt —-b
b —_ = 4 ?é 0
271 Jog t a+b
Consider a domain in C” of the form
D={zeC": Rlzf" < |P()|]}, 0 <R < oo, (4.2.9)

where P(z) is the k-degree polynomial and P(0) # 0.

It is clear that this domain is bounded and contains a neighborhood of zero and
the boundary D is smooth for almost all R. Intersections of this domain with the
complex lines [ = {¢ : ¢, = bit,..., L, = but} form domains of the form (4.2.5),
while intersections of the domain as in (4.2.9) with the lines

l:{é. Cl:Zl+bltv---s§n:Zn+bnt}

can be reduced to domains of the form (4.2.8) so by Theorem 4.2.2 and Lem-
mas 4.2.5 and 4.2.6 we obtain the assertion.

Corollary 4.2.1 Let I' be the germ of a generic manifold in D of the form (4.2.9)
(R is sufficiently small), 0 € I" and the function f € (dD) has the one-dimensional
holomorphic extension property along almost all complex lines | € £r, then there
exists a function Mf € €(D), that is holomorphic in D and coincides with the
function f on the boundary dD.
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4.3 Sufficient Families of Complex Lines of Minimal
Dimension

4.3.1 Preliminary Results

Consider a bounded simply connected domain D C C" with a connected boundary
dD of class . Let I' be the germ of a complex manifold of dimension (n — 1)
in C", which lies outside D. Having done the shift and unitary transformation,
we can assume that 0 € T, 0 ¢ D and that the complex hypersurface I' in some
neighborhood U of 0 has the form

F={zelU: z=9(). 7 =@G.....2o-1)},
where ¢ is the holomorphic function in a neighborhood of zero in C"~!' and

d
(/’(O):O,—(p(()):(),k:1,...,n—1.
0Zk

Further on we will assume that there is a direction b° # 0 such that
(b°,%) #0 forall ¢ eD. 4.3.1)
Let £r denote a set of complex lines of the form
I={¢eC": {=z+bt, j=1,...,n teC}, (4.3.2)

passing through the point z € T in the direction of b € CP"'.

By Sard’s theorem, the intersection dD N [ is a finite set of piecewise smooth
curves for almost all z € C” and almost all b € CP"~! (excluding the degenerate
case when 0DNI = @). Consider the Bochner—Martinelli integral of the form (1.2.4)
of the function f:

M) = /3 FQUED. <¢ D,

where U(¢, z) is the Bochner—Martinelli kernel of the form (1.1.1).
From Lemma 4.1.1 we obtain the assertion.

Proposition 4.3.1 If a function f € € (D) has the one-dimensional holomorphic
extension property along the complex lines of the family Lr, then for any multi-
indices o the following holds

0 Mf
=0
daz% Ir

Mf|.= 0, (4.3.3)
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Consider a kernel of the form

Uc(t.zw) = (2 )n Z( S R il S’ 2 P
(2@ &G =)
and the integral
o) = [ fQUEzw. (4.3.4)
3Dg

It is clear, that the function ®f(z, w) is holomorphic in a neighborhood of (0,0) €
C?" because 0 ¢ D.

Lemma 4.3.1 Suppose D is simply connected and satisfies (4.3.1), then there is
an unbounded open and connected set @ C C**, (0,0) € Q, in which the function
df (z,w) is defined and holomorphic, and there are ¢ > 0, R > 0 such that points of
the form (tb,w) belong to Q at |w| < &, |[b—b°| < eand |t| > R (t € C).

Proof Consider the denominator of the kernel Uc (¢, th°, w):
Y= (=0 L= w) =0 = (Gow) = 1. 0) + 16" w).
Find conditions under which ¢ # 0. Let

max |¢| =M, min[f|=m>0, min|(t°{)|=c>0.
D D D

Then for |w| < & we obtain that
[(B%, w)| < 16°] ] < elb’],  |{¢,w)| < Me.
Equating ¥ to zero, we obtain

t = M (4.3.5)

(00, 8) — (b0, w)
We estimate the numerator in (4.3.5) for { € D

1SR = (&)l = &P = (& w)| = m* — Me > 0

2
m —
ate < A Now estimate the denominator in (4.3.5) for { € D

1(B°, ) — (B%, w)| = (0%, 2)| — [(B°, w)| = ¢ — [b°]e > O
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ate < |b_CO|' Thus, if |w| < & (where ¢ satisfies both inequalities) the image D under
the mapping

51> = (5. w)
(bO’ E) - (bO,W>

is some compact Ky . in the complex plane C, not containing the point 0. Since
D is simply connected, then the complement Ko . is connected, i.e., O lies in the
unbounded component of the complement.

Therefore, when ¢ ¢ Ko . the function ¥ # 0. In particular, this is true forr = 0,
[w| < e and |t| > R, where R is sufficiently large. It is clear that for all b with
|b— b°| < ¢ this argument remains valid, reducing, if necessary, €. So, the existence
of the domain €2 is ensured. O

From Lemma 4.3.1 and the kernel form Uc(¢, z, w) it follows that the function
df(z,w) and all its derivatives tend to zero as |z| — oo, |[w| — oo and (z,w) € £2.

P I*M;
Note that ®f(z,7) = Mf(z) and f = f. We introduce the differential
0% |,z 0z%
operator in C?"
Ac = Ac(z,w) = .
c (C(Z W) ; 8zk8wk
n 2
When w = Z we obtain the Laplace operator A = Z —. Let I'c denote a
= 0707

complex manifold in C?" of the form
Te={(zw) eUxU: z=¢(@), wa = p(W)}.

Choosing U sufficiently small, we can assume that the function ®f(z, w) is defined
and holomorphicin U x U. Whenw = zwe get ['c = I" or I‘C‘ =1T.

W=2Z

Proposition 4.3.2 If equalities (4.3.3) are satisfies for the function Mf(z), so are
the equalities

0% of

0z |,

of | =0, =0 (4.3.6)

for the function ®f (z, w) and for all multi-indices .

Proof The manifold G = {(z.w) € C* : w = Z} is a generic in C*", i.e., the
complex linear span of the tangent space T,(G) coincides with the tangent space
T,(C?") for each point (z,w) € G . Indeed, writing G in the form

{(z.w) : Re(zj—wj) =0, Re(i(zj +wy)) =0, j=1,...,n}
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and making a nonsingular complex linear transformation z; = zj—w;, w; = i(z;+wj),
j=1,...,n, the manifold G can be rewritten as

G={(zw): Rezj=0,Rew; =0,j=1,...,n}.

So G is, obviously, a generic in C?" in the new coordinates. Since the generatedness
property is not affected by holomorphic transformations, then G is a generic in the
old coordinates as well.

Then, obviously, the submanifold {(z,w) € M : z, = 0, w,, = 0} is a generic in
the manifold {(z, w) € C*": z, = 0, w, = 0}. Hence the manifold I, written as

{Ew) eMNUxU): zn =), wa = (W)}

is a generic in ['c. Here again we use the statement that the generatedness property
does not change under holomorphic transformations.

To prove the proposition, it remains to use the statement that the generic manifold
is a uniqueness set for holomorphic functions [67]. O

Lemma 4.3.2 The kernel Uc(¢, z, w) satisfies the condition
Ac(z,w)Uc(&,z,w) =0

outside the zeros of the denominator of this kernel.
Proof 1Tt suffices to verify this equality for functions of the form

1
(j;(fj — (- Wj))n_l |

Since

j( 1 ): (n =1~ )
- n—1 _ n’
oW ( (G =z — Wj)) ( (G =z — Wj))
J

n n
=1 =1

then

(T (o)
n _ n—1
920w ( =1(§j =) — Wj))

J
zi( (n— D& — ) )=a—mx
HNTG-G-m)
=1

J
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(56 -2E-w) =t~ 20E - w (S -G -w)
=1 J=1

X n - 2n
(Z (G —z)(G — Wj))
=1
(1 =m(X & =) —w) =@~ 20— w)
— J= . - — '
(ZG-2G-w)
And hence,

)
C(<Z(§J Zj)(Ej —Wj))n 1

(1= mn( G =& —w) = 3 € - 2l - w)

= / =0
n - n+1 :
(LG -w)

|

Lemma 4.3.3 The function ®f(z,w) satisfies Ac®f(z,w) = 0 in its domain of
definition.

Lemma 4.3.4 The relation

oh ag Z oh 8g

Ac(hg) = hAcg + gAch + Z Aze Iwg dwie dzc

holds true for holomorphic functions h and g in C*".

We make a holomorphic change of the variables in the neighborhood of the point
(0,0) € C*:

Zn—1 = Up—1 Wp—1 = Up—1

Zn = Uy + (') wn = v, + (V).



142 4 Functions with the One-Dimensional Holomorphic Extension Property

Let U* be the image of the neighborhood U under this change. A reverse change of
the variables looks as follows:

uy =21 vy = wi
Up—1 = Zn—1 Up—1 = Wp—1
Up = 2Zn — (/’(Z/) Up = Wy — @("—V/)

Then under this change, I'c will become part of the plane
I'é={uv)eU*xU*: u, =0, v, =0}.
And the plane I'¢: will become part of the hyperplane
r={uelU": u,=0}

atv = u.

Lemma 4.3.5 Let ®*(u,v) = CDf(z(u), w(v)). Equality (4.3.6) can be rewritten as

O*| =0, (4.3.7)
0% p*
—1 =0, (4.3.8)
3u°‘ FE
8“"'}3/(1)*
| =0 439
3u°‘3vﬂ r* ( )
C

Sor all multi-indices o and multi-indices B’ of the form B’ = (B1, ..., Bn=1,0).

Proof Equality (4.3.7) is obvious. Since the derivatives of ®* in the variables u;,

j = 1,...,n, are expressed only in terms of the derivatives of the function ®f
by zt, k = 1,...,n, equality (4.3.8) follows from (4.3.6). We obtain (4.3.9) from
Egs. (4.3.7), (4.3.8) and the type of the plane I'(:. O

Consider expansion of the function ®*(u, v) in a Taylor series in the variable v,
atv, =0

1 FD*(u,v',0)
k=0 n

Lemma 4.3.6 Let conditions (4.3.7)—(4.3.9) be satisfied for the function ®*(u, v),
then the coefficient ®*(u,v’,0) = 0 in the series (4.3.10) and, therefore,

®*(u, v) = v,¥(u, v).



4.3 Sufficient Families of Complex Lines of Minimal Dimension 143

Proof We expand the function ®* (u, v) in a Taylor series in the neighborhood of
(0, 0) in the variables u and v:

O*(u,v) = E capuv?,
lell=0. 18120
where u® = u{" -+ u®, v = vf‘ b
. . . . 4
We show that in this series there are no monomials of the form c,, ﬂ/u"‘vﬂ , where

B = (Bi,...,Bn-1,0). Indeed, if ¢, g # 0, then applying the differential operator
aa+ﬂ/

I to the function ®*(u, v) and substituting u, = 0, v, = 0, we obtain
u®ov

a power series in the variables u’, v/ with a non-zero free term. This contradicts
equalities (4.3.7)—(4.3.9). O

4.3.2 Sufficient Families Associated with a Complex
Hypersurface

Theorem 4.3.1 ([55]) If the function ®f (z, w) satisfies the conditions (4.3.6), then
df (z, w) = 0 in the neighborhood of (0, 0).

Proof We go back from (u, v) to the old variables z and w. By Lemma 4.3.6 we
obtain the expansion

k
— k! v,
~ 1 ! f 7
=D ol — o )) (z,w o).  (43.11)
k=1"
ad* 09
since o — 3 f.We apply the operator Ac to equality (4.3.11), and obtain
Up Wh

k

o) 9 _
- Z ki [ — (p(v"v’))k aqu) (z. 0, (p(v"v’))i|.

. . . ——\k
Next we regroup the resulting series with respect to the powers (w,, — oW )) , and
obtain

oo

=" (wn — () ez w).

k=0
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All the coefficients ¢ (z, w') = 0 by the uniqueness of decomposition in this series,
which follows from the uniqueness property of decomposition of the power series
in v, obtained in the new variables u, v.

— D
We compute successively Ac from (wn - <P(V_V/))k3_kf’ for k = 1. By
WV!
Lemma 4.3.4 we have
E—T¢)) J—
M{Wm—¢W0)af@mﬂMW»}
Wy
S— dOf 3 (90f\ L9 9 [odf
= (wa — @(W)) A = -y x 2 .
(Wn — (W) C(E)wn) + P (8w,,) 2= 5, 8zk(8wn
Hence
3 Lag 0 \[odf
wW)y==—-) — — =0. 4.3.12
cow) (azn ; i 3zk)(3wn) (4.3.12)
o . of — .
Thus, for fixed w' the derivatives of the function —(z, w ,go(w’)) in the
Wi
. 9 o o
direction of the vector s = | ———, ..., — , 1] are identically equal to zero.
3W1 8wn_1

We fix a point (%, w, ¢(#)) in the domain € from Lemma 4.3.1 such that the
complex line

%

_t7j:15---sn_ls Zn:Z2+t, IEC}
aWj

fery=4-
does not intersect D for sufficiently small [w|. This can be achieved by taking |Z°|

large enough (see Lemma 4.3.1).
By Eq. (4.3.12) on the complex line

R Bl
Lo, = {(z,w’o,go(WO)) eC'xU: Zj=zj(-)—a—(pt,j= L...on—1,
wj

zn=z2+t,te(c}

d (0D d(0d
the derivative — s = — s = 0 for sufficiently small |z|. The domain
ds \ dw, dt\ ow,

2 was chosen in Lemma 4.3.1 so that the function ®f(z, w) is holomorphic in €,
i.e., the denominator of the kernel Uc (¢, z, w) remains nonzero for all { € D and all
(z,w) € Q.
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Consider this denominator on the line [0 ;. We have

n—1

Y G = DG =) + (G — 2 (G — 9(#0))

J=1

n—1
=" G=DEG—w) + G — DG — e
j=1

n—1 —
- =0y _ a_q0 s .0
+1] & — ) ;awj(éj ;)
The expression
n—1
DG =G =) + =G — (W) # 0
j=1

for all ¢ € D. So the values of the expression on the complex plane form a compact
set not containing 0 at { € D and w’ from a compact neighborhood of the point
0 € C". We can assume (making shift in z), that 2 =0.

For z° = 0, w* = 0 the expression

n—1 —
o 3¢ - _
o= o) =3 5= —w)) | =t
= Wi
Since E,, # 0 on D, then the values of the expression
_ . n—1 3(/_) _
b= () = 3 5= (G —w))
= Wi

in the complex plane C also form a compact set not containing 0 for ¢ € D and z,
w’ from a compact neighborhood of (0, 0). Therefore, the denominator of the kernel
Uc(¢, z, w) on the line /0 ; can only become zero for the ¢, lying on a compact of the
complex plane that does not contain zero. Thus, the denominator is not zero outside
this compact, and hence the function ®f(z, w) is holomorphic in the complex line
L0 ; except for some compact set Ko ; not containing zero. Since the addition of this
compact is connected, then (0, 0) lies in the unbounded component of a holomorphy
set ®f (z,w', 0) for all z and w' in some neighborhood of (0, 0).
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ad ad

Hence — 2 = 0in C\ Ky,. So f = const. From (4.3.4) of

oWy o owy, IC\K
the function ®f(z, w) we get that ©f| — 0 and 9of — Qas |t| = o0
u W) W .

z & C\Kzo.x BWn (C\KI().S

ad 0

Therefore f = 0, and so we obtain that f = 0 for all z° and
Wy [C\K Wy IC\K g |

w’ in some neighborhood of 0. From Lemma 4.3.1 we find that the derivative

a0f
ow,
Therefore, series (4.3.11) begins with k = 2. Applying the same argument to

PP PP
the expression Ac |:(w,l — (p(w’))2 3 2f:|, we get that
Wn

2
ow?

Corollary 4.3.1 Let the function Mf(z) satisfy conditions (4.3.3), then Mf(z) = 0
in a neighborhood of zero.

(z,w,0) = 0 in the unbounded component of its domain of definition.

= ( etc. O
C\KZO .5

Theorem 4.3.2 ([55]) Let the function f € €(0D) and conditions (4.3.3) be
satisfied for its Bochner—-Martinelli integral Mf (2), then f extends holomorphically
to the domain D.

Proof follows from Corollary 4.3.1 and Corollary 15.5 from [45]. O

Theorem 4.3.3 ([S55]) Let D be a simply connected bounded domain and condition
(4.3.1) be fulfilled. If the function f € % (0D) and has the one-dimensional
holomorphic extension property along the complex lines of the family Lr, then f
extends holomorphically into the domain D.

Proof follows from Proposition 4.3.1 and Theorem 4.3.2. O

If I is the germ of a complex hypersurface in C", then condition (4.3.1) becomes
superfluous. Indeed, let T’ be a complex hypersurface (a complex manifold of
dimension (7 — 1)) in C" and I' = I N U. The surface " is a connected unbounded
set in C”. Still, T" does not intersect D, whereas I" can intersect D. Then ' N D is a
relatively compact open set on I'. Let T" \ (I' N D) be connected.

We assume that f € % (dD) has the one-dimensional property of holomorphic
extension along the complex lines / € £r, then Proposition 4.3.1 is true for the
Bochner-Martinelli integral F, i.e., equality (4.3.3). Due to the integral being real-
analytic, this condition is fulﬁlled on the whole set I" \ (I' N D). Since the set is
unbounded, there exist a point ° € I" and a direction 5° such that (b°,¢ —z°) # 0
for all £ € D. Thus we come to our orlgmal terms for the domain D and the germ I
already in the neighborhood of the point z°. Thus, the assertion is true

Theorem 4.3.4 ([S5]) Let D be a simply connected bounded domain with a con-
nected smooth boundary, and T be a complex hypersurface in C", provided the set
['\ (T N D) is connected and T = T N U does not intersect D. If the function
f € €(0D) and has the one-dimensional holomorphic extension property along the
complex lines of the family £r, then f extends holomorphically into the domain D.
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Theorems 4.3.3 and 4.3.4, generally speaking, are not true for complex hypersur-
faces, lying in a domain. See Example 18.2.

4.3.3 Sufficient Families on a Generic Manifold, Laying
on the Complex Hypersurface

Lety C I', 0 € y and y be a generic manifold of class 4 in I, i.e., the complex
linear span of the tangent space T,(y) coincides with the tangent space 7,(I") for
every point z € I'. Note that the real dimension of y is at least (n — 1). We use £,
to denote a set of complex lines intersecting y.

Theorem 4.3.5 ([55]) Let D and T satisfy the conditions of Theorem 4.3.3 or
Theorem 4.3.4. If the function f € € (dD) and has the one-dimensional holomorphic
extension property along the complex lines of the family £,, then f extends
holomorphically into the domain D.

Proof Let Mf(z) be an integral of the form (1.2.4), then, by Lemma 4.1.1 the
equalities

9 Mf

Mf(z) =0, P

() =0 4.3.13)

hold for all z € y and all multi-indices «. Again making the change of variables

we get that " goes into I'* = {u € C" : u, = 0} and y goes into the generic
manifold y* C I'*. Since the u-derivatives are expressed in terms of the derivatives
of the same order with respect to z, then from condition (4.3.13) we obtain

0“F*

F*(u) =0,
() o

) =0, uey*,

where F* = Mf(z(u)).

oy ¥

We apply Lemma 4.2.1 to the functions F*(«’,0) and

o Lk

B («',0). These are

equal to zero on y*. We get () = 0 on I'*. Making inverse change in these

o

equations, we find that for the function Mf conditions (4.3.13) are fulfilled forz € T".
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To complete the proof of Theorem 4.3.5, it remains to apply Theorem 4.3.3 or
Theorem 4.3.4. O

Consider the germ y of a real-analytic manifold of real dimension (n—1)in
C" \ D. We can assume that 0 € y, and the manifold y in some neighborhood U of
the point 0 has the form

)/Z{ZG U: Zj=1//j(t1,...,tn_1), t=(l‘1,...,l‘n_1)€ V,j= 1,...,1’!}.
(4.3.14)

The functions /;(¢) are real-analytic functions in the neighborhood V of the point
0e R y;(0) =0,j = 1,...,n, and the rank of the Jacobian matrix is equal to
(n—1),1e.,

rang SV V) (4.3.15)

8(t1, cey tn—l) B
The functions ¥;(¢) in the neighborhood V can be expanded in a Taylor series

vi(n) = Z Cﬁlﬂ, j=1,...,n,
IBl=0

where B = (B1,....Bn1), 1P = z"lg1 Pt

n—1
Consider the complexification I' of the manifold y, then I' has the form

T={zeU: =Vit1,....tau1), t = (tr, ..., 1,-1) €C 1 j=1,....n},

where Iﬂj(t) = > cﬁtﬁ, t € C™!,j=1,...,n. Condition (4.3.15) shows that T"
811=0
is a complex analytic manifold of dimension (n — 1) in U. Let us show that y is a

generic manifold in I". Indeed, the tangent plane T,o(y) at the point z° € y has the
form

n—1
av; .
To(y) = {ze(C": z :g?+za—tl/:’(to)(tk—t,?), reR = ln}
k=1

where ¥;(1°) = z}), j = 1,...,n. Consider the complex linear span of T,0(y),
obviously having the form

n—1 7
3 .
{ze(C": =2+ E a—lf:(to)(tk—t,?), reC! j= ln}
k=1

This set is exactly T,o(I"). Therefore, y is a generic manifold in I".
We will also continue assuming that the domain D satisfies Condition (4.3.1).
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Corollary 4.3.2 Let the function f € € (D) and has the one-dimensional holo-
morphic extension property along the complex lines of the family £,, where y is the
germ of a real-analytic manifold of the form (4.3.14). Then the function f extends
holomorphically to D.

Consider a complex line [, passing through zero and intersecting the domain D.
Assume that 7 is a generic manifold in /.

Theorem 4.3.6 ([55]) Let the domain D C C" be a strictly convex with a boundary
of class €°° and let the functionf € €°°(0D) has the one-dimensional holomorphic
extension property along the complex lines of the family £.. Then f extends
holomorphically to the domain D.

Proof Consider a complex two-dimensional plane I, containing /y and passing
through the point ¢° € dD. The intersection D N Mo is a strictly convex domain
in C? with a boundary of class €°*. The conditions of Theorem 4.3.5 are fulfilled
for the domain D N I, so the function f extends holomorphically to dD N T1;o in
D N I up to the function Mf(z). This function is uniquely defined in D, since
the intersection of two different planes Il and IT,0 coincides with lp. And a
continuation from dD N [y to D N [y is given by the Cauchy integral. Moreover, the
function Mf(z) is a function of class ¥ in the domain D, since its holomorphic
extension from D N Il is given by the Bochner-Martinelli integral infinitely
smoothly dependent on the parameter.

We choose a point z° € D N [y, then the function Mf(z) is holomorphic in D N 1,
where [ is an arbitrary complex line passing through the point z°. Because the lines /
and [, define a two-dimensional plane IT, the function Mf(z) is holomorphic in D N
I1. By the Forelli Theorem [71, Theorem 4.4.5] the function Mf(z) is holomorphic in
some neighborhood z°. And, therefore, by Hartogs’ extension theorem [73, Item 26]
the function Mf(z) is holomorphic in D. O

4.4 Functions with the One-Dimensional Holomorphic
Extension Property in a Ball

Historically, the first statements about the functions with the one-dimensional
holomorphic extension property along the complex lines were obtained in a ball
by Agranovskii and Val’sky [4]. In the proof of their assertion, they used only the
Morera property along complex lines intersecting the ball. So, in fact, they obtained
a boundary Morera theorem. The ball thus became a model example, to obtain a
series of statements, which were then extended to the case of domains of a more
general form.

A number of papers dealt with classes of complex lines (or curves), sufficient
for holomorphic extension into a ball. Thus, in the monograph by Rudin [71,
Theorem 12.3.11] it is shown that if a function f € ¥ (dB) (B is a unit ball in C"
centered at the origin) has the one-dimensional holomorphic extension property
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along all complex lines that are lying at a distance r from the center of the ball for
0 < r < 1, then this is a CR-function on dB. The proof is based on the description
of 7/ -invariant subspaces of functions in the ball. This statement was generalized to
strictly convex domains with a real-analytic boundary by Agranovskii [5].

Finer families of complex lines sufficient for holomorphic continuation, were
studied in [22, 72]. In [23] Globevnik shows that a two-dimensional compact
manifold of complex lines is a sufficient family for holomorphic extension into C2.

Agranovskii and Semenov in [3] prove the following result. Let R be a smooth
analytic disk in C", i.e., R = ¢(A), where A is an open unit disk in the complex
plane C, and ¢ : A — C" is a holomorphic map of class €' (A). Denote the Shilov
boundary of R by y, i.e., y = ¢(dA). We put

Q= |J uy),

u€W (n)

where % (n) is the group of unitary transformations in C". The set 2 is a spherical
layer

Q= {f: min |z] < || gmaxlzl} .
z€y €y

Theorem 4.4.1 (Agranovskii and Semenov [3]) Assume the following conditions
to be fulfilled:

1. 0¢ RUy;
2. y is not contained in any complex line in C", passing through 0.

Let f € €Y(Q) and for any u € % (n) the restriction f on u(y) admits a
holomorphic extension to u(R), which is smooth on u(R). Then f is holomorphic
into 2 (and therefore extends holomorphically in the corresponding ball).

As noted in [3], if we require that the set R be symmetric relative to the mapping
z — Z, then Theorem 4.4.1 remains valid for continuous functions f. Thus it
generalizes the already-mentioned Rudin theorem from [71]. The theorem fails
without the above condition (2).

As already noted, Grinberg [29] was the first to formulate the boundary Morera
theorem for a ball (in the case of complex lines), although one of the assertions by
Nagel and Rudin [66] (see [71, Item 13.4]) can also be treated as a boundary Morera
theorem.

We present one of the theorems of [26], in which the class of complex lines is
significantly narrowed.

Theorem 4.4.2 (Globevnik and Stout [26]) Consider a unit ball B C C?. Suppose
that the given number r, 0 < r < 1, is such that the expression r~'(1 — r?)!/?
is not a root of any polynomial with integer coefficients. Assume that the function
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f € €(0B) and satisfies the Morera property along all complex lines lying at a
distance r from the center of the ball, then f extends to B as a function from <7 (B).

Proof By &, , we denote the space of all homogeneous harmonic polynomials in
Z, Z, having the degree of homogeneity of p for z and ¢ for z.

Let Z° C ¥ (0B) be a subspace of all continuous functions g such that the
condition

/ g(x + €y)e?dh = 0

is fulfilled for each x € C2, |x| = r and each y € C? such that (x,y) = 0, |x|*> +
[y|> = 1. This means that the function g satisfies the Morera property along complex
lines lying at a distance r from the center of the ball.

Then 2 is a closed unitary-invariant subspace in % (dB) (i.e., invariant with
respect to unitary transformations.) Such a subspace was described by Nagel and
Rudin in [66] (see also [71, Chap. 12]).

In order to prove that g extends holomorphically to B, it is enough by the theorem
from [66], to prove that 2~ does not contain any spaces &, , for ¢ > 1. As the
function z7z9 is in &2, ,, it suffices to show that "z does not belong to 2" for
pz0,g=1

Any x € C?, provided |x| = r can be represented as

x = e (p, (F — p})/2ei®),
where 0 < p < rand o, w € R. Then the vector y can be represented as
y =1 —p)"?e, —p)
for t = r~'(1 — r?)!/2. Thus (x,y) = 0 and |x|*> + |[y|> = 1. Let g(z,2) = 'z,

where n = 1, and g € 2. This implies

k4
/ (eiap+ eiﬁt(rZ _p2)l/2e—iw)mx
-1

x (e7™(r? — pH)'2e7 — e P1p)"e?dh =0 (4.4.1)

foreach p,0 < p <randeacho,w € R.

Since
/ e*de =0
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for k # 0, then (4.4.1) yields

0= (Z) (ep)" (1) (2 = g ey (1p) (~1)!

+ (T) (eiap)m—l [l(}’z _ p2)1/2e—iw]l (Z) x

% (e—ia(rz _ p2)l/2€—ia))n—2(tp)2(_l)2

+ (’;) (ei“p)’”_z[t(rz _ p2)1/ze_,'w]2 (131) "

% (e—ia(rZ _ p2)l/26—ia))n—3(tp)3(_1)3 N

(Z) (eiap)m—m [t(r2 _ p2)1/2e—iw]m (m Z_ 1) %

X(e—ia(’l _ p2)1/2e—ia))n—(m+l)(tp)m+1(_1)m+1’ ifn >m+ 1’

( m )(eiap)m—(n—l)[t(’l _ p2)1/2€—iw]n—l (”) <
n—1 n

x (e (r2 — p?)2emi 1= (tp) (—1)", ifn<m+1.

After transformations have been performed, this relation becomes

0= (}’2 _ p2)(n—l)/2(eia)m—n+l(e—ia))n—lpm+lX

LGN ()G

(Z) (m’j_ 1)t21n+1(_1)m+1:|’ itn>m+1.

+

( " )(")ﬂ"—l(—l)n], ifn<m+1.
n—1)\n

The latter relation is impossible, since t = r~'(1 — ?)!/? is not the root of any
polynomial with integer coefficients. O

Example 4.4.1 Consider the example from [26], showing that the condition in

3\1/2
Theorem 4.4.2 is essential. Let r = (g) . Then the function g(z,z) = z;73 has
the Morera property along any complex line lying at a distance r from the center of
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the ball, but obviously, g does not extend holomorphically in B from the boundary
0B.

Indeed, the calculations in Theorem 4.4.2, show that

bie
(eiap + eiOt(},Z _ p2)1/2e—iw)3(e—ia (}’2 _ p2)1/2€—iw _ e—iOtp)2ei9d9

-

_ 2 Y12 (i) 12 (i) )3 3V(2),, v 3V (2) 5, 2
=27 = )" (e) (e )p [(O)Qr( D +(1)(z)r< 1)}

— 271,(’,2 _ pZ)I/ZeZiae—inS(_zt + 3l3) =0,

) ; 3\5
since =2t + 3 = t(3(1 = §)§ - 2) =0.

Recently Agranovskii [6] and Globevnik [25] have shown that a family of
complex lines passing through two fixed points in D is sufficient for holomorphic
extension for real-analytic functions on the boundary of a ball. A family of complex
lines passing through one point on the boundary of a ball was proved to be sufficient
for holomorphic extension by Baracco in [12].

Theorem 4.4.3 (Baracco) Let the point 7o € 0B, and the function f be of class
% (0B), and suppose that | extends holomorphically from 0B along each line
passing through zo. Then f extends holomorphically to B.

Proof

(a) We first prove the result for a ball B in C2. Without loss of generality, we can
assume that zo is the point (0, 1). Disks passing through the point (0, 1), can be
parameterized by parameter a € C as a set of the form

T—1 T—1 —
Dtl = ( ’ 1)5 EAs
O=\re et i

where A is a unit disk in C. We note that when |a| > 1 the disks D, become
close to the complex tangent line to the sphere at zp and, moreover, D, lie in the
neighborhood of 7.
d
Since f € €“(dB) and N is transversal to dB at zg, then f can be extended
&)

holomorphically with respect to z, (Zz = ) to a neighborhood of zy.

1—|z?
We denote this extension again by f. Consider the expansion of f in a power
series at zp:

+o00

f(Z], Zl, Z2) = Z Z bh,k,mzlllzli (ZZ - 1)m

=0 h+k+2m=I
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Then we regroup the terms of the series on weighted degree (by assigning a
weight of 2 to the variable z). Taking |a| large enough, we consider the N-
moment conditions for the disk D,:

0= G(a.N) = /3 RO

_/ N+2°:° Z b r—1 k1 ke -1 md
it e\ T+ a2 ) \T+1aP ) \ivla2) “

=0 h+k+2m=I

We want to prove that the coefficients by, = 0 for kK > 0. For this we take the
smallest weighted degree Iy such that by, 7# 0 for some k > 0, and let ko be
the highest degree in z; in this case. We get G(a, N) = 0 for any N and any a,
in particular, for fa at |a| = 1 and t — +o0.

Using the fact that for k > N

1)h+k+m

N hy= k ma _ x (T —
/MT -D'"@T-D(—-1) dt—/M( 1)—Tk_N dt

— (= 1yrtmkEN= h+k+m
k—1-N)’

we consider the limit

+o00

lim G(ta,N)f* = lim E E 2mi(—1)TmHkN=ly
t——+o00 t—>+00
I=ly h+k+2m=I
k>N

% h —+ k +m th+k+l”aht_lk bh,k,m
k—N-—1 (1 + 2lap2)rtitm

+o00
= lim Z Z 27[i(—1)h+m+k+N_1X

t——+00
I=ly h+k+2m=I
k>N

k—N-—1 2 ( 1

]
_ 2
2 + lal )
h+k+m a'a*|a|®
— ; htm+k+N—1 —
= E 2mi(—1) (k _N— 1) b km P 0

h+k~+2m=ly
k>N
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Now, choosing N = ky— 1, we obtain the following relations for the coefficients
b jem:

h + k
Z (—1)h+m< thot m) by gy ma a0t = 0.

h~+ko+2m=Iy 1
Putting a = ¢/, we obtain
Z (—1)im (h + ko + m) by ek = 0
JKo.m —_— )
h+ko+2m=Iy 1

which implies that by, 4, ,,» = 0 for h 4+ ko + 2m = [y. Therefore, we find that
bpxm = 0 for any weighted degree / when k > 1.

Thus, the series for f converges in the neighborhood of zp and is a

holomorphic function in this neighborhood. By Hartogs’ extension theorem (see
[81, Sect. 15.6]) the function f is a holomorphic function in the ball B. This
completes the proof for dimension 2.
Consider a ball B C C", n > 2. We assume that the point zo = (0,...,0, 1).
According to (a) above f is holomorphic in the section of the ball B of the
two-dimensional plane passing through 0 and zo. The various extensions glue
together to form a single function F(z), defined in B because by Cauchy’s
formula for Ly N dB these coincide in the complex line Ly, passing through
0 and z9, where there is an overlap.

The function F is real-analytic in a ball since its extension into the ball
is given by, for example, the Bochner—Martinelli integral with the set of
integration at the intersection of a two-dimensional complex plane with the
ball B. This integral is a real-analytic function of the parameters. Making the
complex lines pass through the center of the ball we see that F' is a holomorphic
function thereon (since we can construct a complex two-dimensional plane
through these lines and Ly). Therefore, by Forelli’s theorem [71, Sect. 4.4] it
is holomorphic in B. O

4.5 Boundary Analogue of the Forelli Theorem in a Strictly

Convex Domain

Here we generalize Theorem 4.4.3 for the case of a strictly convex domain.

In this section we prove the boundary analogue of the Forelli theorem for real-

analytic functions, that is, we show that any real-analytic function f defined on the
boundary of a bounded strictly convex domain D in a multidimensional complex
space and having the one-dimensional holomorphic extension property along a
family of complex lines passing through the boundary point and intersecting the
domain D, extends holomorphically to D as a function of several complex variables.
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4.5.1 The Multidimensional Case

Consider a strictly convex domain D C C". We recall that the domain D is called

strictly convex, if the function p (wy,...,w,), which defines the domain D, i.e.,
9 0
={w: p(w) <0} and grad p = (—'O,. P ) # 0 on 0D, satisfies the
owg " 0w,

condition

)&

Z aw,,aw, &5+ Z

8w Bw
pi=1 pj=1""P""

n 2

+23° P

oy Owp, Ow;

(WO) Epéj >0

forall £ # 0 and w° € D.

In what follows D is a bounded strictly convex domain in C" (n > 1) with a real-
analytic boundary, that is, the defining function p is real-analytic in a neighborhood
of the closure of D.

We denote a family of complex lines passing through wy, wy € dD, by £,,,.

Theorem 4.5.1 ([41]) Let a function f € %" (dD) have the one-dimensional
holomorphic extension property along all complex lines from £,,, intersecting D,
then the function f extends holomorphically into D.

Proof The proof of this result in the two-dimensional case will be given later in
the following subsections. Here we prove the result for the case n > 2, assuming
the statement to be true in the two-dimensional case.

Let 0 € D. We will take two-dimensional sections of D passing through a
boundary point wy and the point O lying in D. The function defining the boundary
of the two-dimensional section will satisfy the conditions of the theorem in the two-
dimensional case. Therefore, f will continue holomorphically in the interior of these
two-dimensional sections and this function will define the function F in D therein,
since by the assumption of the theorem, these functions coincide at the intersection
of these two-dimensional sections (i.e., on the complex lines). The union of these
two-dimensional sections coincides with the whole domain D. Thus, the function F
is uniquely defined in the whole domain D.

Since the holomorphic extension of f in two-dimensional sections is given
by the two-dimensional Bochner—Martinelli integral or Khenkin—Ramirez integral,
real-analytically dependent on the parameters, then the holomorphic extension of
the function f is a real-analytic function. Thus, the function F belongs to the class
%" in the domain D.

Since the two-dimensional section is defined by two complex lines, then the
function F, being holomorphic throughout the two-dimensional section, is also
holomorphic on complex lines lying in this section. Thus, the function F is
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holomorphic at the intersection of D with each complex line passing through the
point 0.

We adopt the conditions of Forelli’s theorem [71, Theorem 4.4.5], and applying
this theorem, we obtain that the function F is holomorphic in a neighborhood of 0.
Since the function F' is holomorphic in a neighborhood of 0 and real-analytic in D,
then it is holomorphic in the whole domain D. O

4.5.2 The Form of Sections of the Complex Line

In this section, we will describe the first step to the proof of Theorem 4.5.1 in the
two-dimensional case and will prove the assertion about the form of the section of
D C C? of the complex line.

We consider a two-dimensional complex space C2, whose points will be denoted
by w = (wi,w2), z = (z1,22), etc. We make a shift to take the point wy € 9D
to 0 and perform a unitary transformation of coordinates w = w (z) so that in the
neighborhood of the boundary point O after switching from complex coordinates
to real ones, i.e., representing z; = x| + ixp, 2o = X3 + ix4, the boundary defining
function by the implicit function theorem, takes the form

x4 = ¢ (x1,x2,X3) , “4.5.1)

where the function g is real-analytic in a neighborhood of zero and satisfies ¢ (0) =
ad

0, % 0)y=0k=1,2,3.
BXk

Expanding the function ¢ (x1, x2, x3) in (4.5.1) in a Taylor series in the neighbor-
hood of the boundary point 0, by virtue of the conditions on ¢, we have

2
xp =T x,x3) +o(|x]), || =0, ¥ =@x.x3). (4.5.2)
where
_ 2 2 2
T (x1,x2,X3) = c11X] + €22X; + €333 + C12X1X2 + C13X1X3 + €23X2X3

is a positive definite quadratic form (due to the strict convexity of p).
Next, we consider the section D, (t) of D

T T —
Da T) = a, s T € Aas
®© (1 +lal* 1+ |a|2)

passing in the direction of the vector (a, 1) € C2. The domain A, of the change in
the parameter 7 is a domain in the complex plane with a real-analytic boundary (in
the neighborhood of the boundary point 0).
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Lett = u+iv,a = ay + ia,. Then

T _ (ua; —vaz) + i(uay + vay)
1+ |af’ 1+ |af
T U+ iv

1+ a?>  1+|a

3

Thus,

ua); — vap ua, + vay u v
X|=—x", Xp=—-7, X3=—7F, X4=—-; .
L+ L+ Jaf” 1+ |af* 1+ |af®

We write an expression for the quadratic form T (x1, x5, x3):

T (x1,%2,%3) = c110 + €20X3 + €33X3 + CaX1X2 + C1361%3 + €23%0X3
_ 1
(e’

+ C33u2 + c12 (uzalaz + uva% - uva% — vzalaz) +c13 (uzal — uvaz)
+ 3 (uzaz + uval)] = %[vz (cna% + sza% — clzalaz)
(1 +lal?)

+ v (—ZCnualaz + 2cpuaiar + clzua% — clzua% — c13uay + cz3ua1)

[cn (uza% —2uvaia, + Uza%) + ¢ (uza% + 2uvaia; + vza%)

2.2 2 2 2 2 2 2
+ (cnu aj + cputa; + c3zu” + cputajaz + cizutay + co3u az)].

By substituting the x4 from (4.5.1) and T (x1, x2, x3) into Eq. (4.5.2) and reducing
the similar terms, we obtain

2 2 2 2 2
v (c11a2 + cpaj — clzalaz) + v(—2c11ua1a2 + 2cpuaiax + cpuaj — craua;
2 22 2 2 2 2
— cj3uay + cpua; — 1 — |al ) + (cnu ay + cputa; + c3u” + cputaias

+ cizu’a) + cniar) + 0(|a|2) =0, la| — +o0.

Choosing |a| to be large enough, and replacing a by ta, where |a| = 1,1 € R, we
have

vz(cnaéz‘2 + sza%tz — Clzalaztz) + v(—2c11ua1a2t2 + Zszualaztz + clzua%tz
— clzua§t2 — ci3uast + cpzuat — 1 — |a|2 t2) + (clluza%tz + czzuzagtz + cp3u?

+ cpulayaxt® + cpzutagt + cz3u2a2t) + 0(|t|2) =0, t — 4o00.
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Thus, dividing by #> and passing over to the limit as # — +oo0 in this expression, we
obtain
2 2 2
v (Cna2 + cpaj — clzalaz)
+ v (—2¢ 2 2 2 —la)?
nua\az + 2cpuaiay + cpuay — cpuas — |aj
22 2.2 2
+ (c“u ay + cpua; + cau alaz) =0,

i.e.,

C12 C12
2 2 2 2 2
u (Cna1 + cpa; + Clzalaz) + 2uv (—cnalaz + crnajar + Tal — 7612)

+ 2 (Cna% + sza% — clzalaz) —v =0. 4.5.3)

Proposition 4.5.1 The domain A of the change in the parameter t is the interior
of the ellipse in the limiting case when |a| — +o00. Relation (4.5.3) defines the
boundary dA.

Proof We write relations (4.5.3) as
bru® + 2bauv + by + 2byu + 2byv + by = 0 (4.5.4)
with the coefficients

2 2
b1 = ciiay + cna; + cpajaz,

Cl2 » C12 »

b, = —cniaiay + cparar + —aj — —-a;,
2 2
by — 2 2
22 = C114; + Cpnaj — Cpaids,
1
bz:_i’ b1 =0, by=0.

Let A1, A, be the roots of a characteristic equation of the quadratic form by u® +
2b1,uv + byyv?. Then these satisfy the characteristic equation

(b11 —A) (ba — ) — b7, =0,
or

A2 = A (b11 + bxn) + (bubxn —b3,) = 0. (4.5.5)
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Let us find expressions belonging to quadratic equation (4.5.5)

2 2 2 2
bi1 + by = criay + cna; + cpaiay + cia; + cpai — cpaiaz
2, 2 2, 2
= Cll(al + 612) + 022(611 + az) = cy1 + c22,

2 2 2 2 2
biiby — b7, = (cial + €265 + ciparaz) (ciias + cpaj — cipaiaz)

€12/ 5 0>
_< —cnja1az + cpajax + 7(611 — az)

2
c
4 4 22 12( 4 22 4
= cllczz(al +a; + 2a1a2) — —4 (a1 + 2aja; + az)

2

2
2 ¢ 2
= Cllczz(a% + a%) — %(a% + a%) =112 — %
Substituting the values obtained for by| + by, b11bxn —b%z into Eq. (4.5.5), we obtain
the following characteristic equation

2

C
AZ — A (Cll —+ sz) —+ (C11C22 — %) = 0.

The discriminant of this quadratic equation is
2

2 ‘2 2 2 2 2 2
(c11 +cn) — 4(C11€22 — T) =y — 2cnen + ¢35 + e = (e —en)” + oy

Then the roots A1, A, of a characteristic equation of the quadratic form byju® +
2b1,uv + bypv? will have the form

2 2
Ci1 4 — 4/ (c11 —cn)” + ¢y

1 = ’

2

(4.5.6)

e+ en+ \/(611 —cn)’ +c,

A2 5

Due to the positive definiteness of the quadratic form T (xj, x,x3) and from
the expression (4.5.6) for A, we see that A, > 0. In order to show that A; > 0,
it suffices to show that

2

i+ cxn > \/(611 — )’ + 2y,
2 2

(c11 +¢2)* > (c11 —cn)® + cd,

2
2ci1622 > —2c11622 + €15,

2
12
cnen === >0,
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and this is true by virtue of the positive definiteness of the form 7 (x|, x5, x3). Thus,
it is shown that the characteristic roots A; > 0, A, > 0. We make a coordinate
transformation

u=ucosa —v'sina,

4.5.7
v =u'sina + v cosa, ( )
where the angle « is determined from the relation
cos2a by —b
— (4.5.8)

sin 2o B 2]912

After the coordinate transformation (4.5.7) equation (4.5.4) can be written as
A + A0 + 264U + 2650 + by = 0 (4.5.9)
with the coefficients

1
by = by cosa + bysina = ) sina,
{ (4.5.10)
by = —bysina + bycosa = —= cos .

Let us transfer the origin to the point (u(’), v(’)), i.e., perform the transformation

' =u" + up,
v =" + .

4.5.11)
After the coordinate transformation (4.5.11) equation (4.5.9) can be written as

A + 20" + 2 (Mg + b)) u” + 2 (Aavg + by) v” + by = 0, (4.5.12)
where the constant term by, is

by = Aug + v + 2bjuy + 2b5v; + b.

The coordinates (u{), v(’)) are chosen to provide that the coefficients of u” and v”
vanish in (4.5.12), i.e.,

Mg+ by =0, )+ by =0. (4.5.13)

From Eq. (4.5.13) we have

Wy =——, v)=-=2. (4.5.14)
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So, the initial equation (4.5.4) is transformed to
A + 20" + by =0 (4.5.15)

in the new coordinate system.

We proceed to investigate Eq. (4.5.15). Since the coefficients A; and A, have
the same sign, then Eq. (4.5.15) is of elliptic type. Using formula (4.5.14) to find an
expression for b, we obtain

b’z_b_/lz_b_lzzz_ M < 0.
0 FYRR s

Since the common sign of A1 and A, is opposite to bj,, then rewriting Eq. (4.5.15) in
the form

M//z N v//2 .
b
Ay As
by by
shows that both denominators ——2 and _)L_O are positive. We denote these by A2
1 2

and B? and obtain the canonical ellipse equation

M//z v "2

oty !

with semi-axes A and B such that

by _ BRha bR g b _ Ut b2,
A A 12 AA2

A? = (4.5.16)

Let us find the relation between the “old” and “new” variables after coordinate
transformations (4.5.7) and (4.5.11). We obtain

T=u+iv= (u’ + iv’) cosa — v’ sino + iu’ sino
= (' + iv')(cosa + isina) = '€,
where " = u’ + iv’. Denoting

b b,
F=u + i 16=M6+i1)6=_ A2 ,
Mo A
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we obtain

/

O =u 4+

= (" + V") + (up + ivg) = T + 7.
Thus, the coordinate transformation is performed according to the formula
T = (T +1))e”. (4.5.17)

To conclude the proof, we must justify the fact that the angle « in (4.5.8) can
take any value, i.e., the right-hand side is unbounded in expression (4.5.8). We are
to show that the polynomials b;; — by, and b1, (with respect to the variables a;, a>
with |a| = 1) have no common roots, i.e., the system

bi1 — by =0,
b12 =0

has no solution. Since

by — by = (c11 — c) @} + 2cparas + (c2n — c1y) a3,

_c 2 [4 2
by = Ftaj + (c2 — cui)) arax — F a3,

we need to show that the system
Cl12 » Cl12 »

—aj+ (e —cn)aiay— —a; =0

{ (c11 — c) @2 + 2cparar + (e —cip) a3 = 0,
2

2
will have no solutions. We assume that @, # 0. Dividing each equation by a% and

. a .
denoting L= ¥, we obtain the system
a

Cc12 C12
=V +(n—ci)y——— =0.

{ (c11 — c22) ¥* + 2c12y + (c22 —c11) = 0,
2 2

We recall that the resultant of the two quadratic polynomials
g1() =A’ +Aiy+4s, () =By +Biy+B
is an expression
R (g1.82) = (AoB2 — A2B0)” — (AoB1 — A1By) (A1B, — A;B)) .

It is well known that given polynomials with arbitrary leading coefficients, the
resultant of these polynomials is zero if and only if these polynomials have a
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common root or if their leading coefficients are zero. In this case we have

Ag = c11 — e, Ay = 2cq2, Ay = 2 —c11 = —Ao,
C12 A1 C12 A1
B:—:—’ Bi=c»——c :—A’ By=——=—-By= ——.
0 > 1 1 22 — C11 0 ) > 0 2

Then the resultant R (g1, g2) has the form:

A A
R(g1.8) =— (—Aé _AITI) (_AITI + Ao (—Ao))

A2\? 5 2
- (A(z) + Tl) =-— ((611 —cp) + 6%2) < 0.

Thus, we have shown that the polynomials by; — by, and bj» (with respect to the
variables aj, a, with |a| = 1) have no common roots. O

4.5.3 Proof of Theorem 4.5.1 in the Case of a Restriction
Imposed on the Domain

In this section we present the proof of Theorem 4.5.1 for the two-dimensional case,
when there are additional restrictions imposed on the domain D.

Consider the two-dimensional complex space C2. Let D be a bounded strongly
convex domain in C? with a real-analytic boundary dD. Suppose that for all points
of the boundary of D the condition

3,0 32 2
(2 ) 202202 o0 220

dp ?p
+(3_W1(W)) . 2() 0 (45.18)

is fulfilled. We recall that £,,, is a family of complex lines passing through the point
wo, wo € dD.

Theorem 4.5.2 ([40]) Let a function f € %" (0D) have the one-dimensional
holomorphic extension property along all complex lines from £,,, intersecting D,
then the function f extends holomorphically to D.

Proof We make a shift to carry the point wy € dD to 0 and perform an orthogonal
transformation

w = Bz,
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given by the matrix

9 9
S (0) i (0)
“owr (0) la—wz 0)

This transformation is non-degenerate, since |B| # 0. Under this transformation
the real-analyticity of the function p (Bz) = p (z) is preserved. When exploded, this
transformation looks as follows:

9 9
L0y +iL 0z = wi,
8W2 8w1

b 0
_r ©0)z + ifp 0)z2 = w.
ow; owy

Let 71 = x; + ixp, 22 = x3 + ix4. For further proof of the theorem we prove the
following lemma.

Lemma 4.5.1 Under a complex linear coordinate transformation w = Bz, condi-
tion (4.5.18) on the function p (wy, w,), considered at the boundary point wy = 0,
can be written as

% %

32
©=0 50 =550 (45.19)
1 2

8x1 8x2

where the implicit function x4 = ¢ (x1, X2, x3) is defined by the equation
d

p(xl,xz,X3,x4) = 0 and satisfies (0) = 0, a—(p(O) =0k=1,2,3.
Xk

Proof Let us find the relation between the partial derivatives 5(z) and p(w), and also
conditions on the function p(z). We obtain

8/5 _ 8p 8w1 8p 8@1 ap 8W2 ap 8{1)2
dzi 0wy dzy 0wy 0z Owp 071 Own 0z

ap ap ap ap
——(0)— — —(0)—,
aWZ( )8w1 awl( )aWZ

8,6 . 8p 8w1 8p 8@1 ap 8W2 ap 8{1)2
322 Owy 0z | 0wy 922 Owa 0z | Own 02

_.0p Op . 0p = Op
=5, g, Tig, Oz
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From the above calculations, it is evident that

ap
—(0) =0,
311()

and the value

ap
F 0) = (

is purely imaginary.
We consider the second-order partial derivatives of p (z):

0z2 T ow,

82/3_ ap 0 0%p 0w n 02p  Ows
owidw; 0z owy 0wy 0z

ap 0 0%p 8w1+ 0%p  Ows
C ow, owr0w 0z owp 0wy 0z

3 9%p Pp
= (a—w} >) 71‘2—< >a—wZ( >awlaw (a—m( ))

In the shifted coordinates, where the boundary point wy is switched to zero, and
considering condition (4.5.18) on the boundary of the domain D, the last equality
goes to

82”

Further, for convenience we will write p(z) instead of the functions p(z), defining
the boundary of D. In other words,

p(z1,22) =0 (4.5.20)
provided that
0
—'0(0) =0,
az (4.5.21)
8z2 (0) =0

9
and further provided that the value of a_,o (0) # 0 is purely imaginary.
22
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The derivatives with respect to the complex variables can be expressed in terms
of derivatives with respect to real variables as follows:

ap 1 (dp .0p ap 1 /0dp . 0p
— =i, —==—=-i—.
321 2 8x1 axZ 8z2 2 3X3 8x4
Thus from these relations and the set of conditions from (4.5.21), it follows that
B) B B
Loy=0, Lwoy=0, L) =o. (4.5.22)
0x ox; 0x3

Next, we write the second condition in system (4.5.21) in terms of real variables.
We have

p ( 9,0 ) dp ( 3 9 )
a a e s T~ =W\ = s
8x1 821 821 P 8x2 321 811 P

0%p 0 0 p  Op
w-(mw) (@ rw)-

% ?p ?p Fp _*p  Pp 5 ?p

92 | 90z 0zmom | 022 02 02 0udn
Po (3 d\.[0p
(B e P i), P F
022 070z 0z1071 9 0z10z1 922 0
o _ (i+i)i(3_P_3_P) _
0x10x d0z1 071 dz1 07y
Po  p Po  %p\ . [(Pp %
:l(a_z%_ 021021 * 0710z _3_5%) 21(3_2%_3_5%)‘

Thus, by the second condition in system (4.5.21) and taking into account the real-
analyticity of the function p, from the above calculations it follows that conditions
for the function p (x1, x2, x3, x4) Will have the form

?p 0%p 0%p
—(0) = —(©0), —(0)=0. 4.5.23
ax%( ) E)x%( ) 8x18xz( ) ( )

Due to the transition to real coordinates the function defining the boundary of D
takes the form

p (x1,%x2,x3,x4) = 0.
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Since the gradient of p (x1,x2,x3,x4) is nonzero, then by virtue of relations
dp

(4.5.22) we obtain —(0) # 0. Then, by the standard implicit function theorem

in a neighborhood of the boundary point 0, the boundary defining function takes the

form

X4 = @ (x1,X2,X3) (4.5.24)

where

,0 (x1 X2,X3, (p(x1 X2 X3))
a(p £ ’ £ ’

0xy
, k=1,2,3.
o 3_P
0x4

(xl,xz,x3, % (xl,xz,x3))

ad
So the function ¢ satisfies the conditions ¢(0) = 0, a—w(O) =0,k=1,2,3.
X
Next, using relations (4.5.22) and (4.5.23), we find conditions on the function

’p
,j =1,2,3. We obtain
0x 0x;

@ (x1, x2, x3). For this we consider the derivatives

0 8p( ( )) ?p ?p dgp
o A\ X1, X2, X3, X1,X2,X = -~ =
0x; 0x; > %2, %3, § (01, %2, %3 Oxp0x;  0xp0x4 0x;
0%p ap
_ 82,0 axk8x4 8x,
0x 0x; ap
8x4
0 ap( ( )) 0%p Pp dp
0x; 0x4 X2, X3, @ 1X1 X2, %3 Ox40x;  0x40x4 Ox; a
P i
?p axi 0x;
8X48Xj a_p
aX4
Thus
Fo do_ Po B\ _(Fp 0o
82(,0 axkaxj aX4 axkaX4 8xj 8x4 aX4an 8x4 axﬁ an 8xk

anan - ap 3
8x4
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wherein

?p dp ?p dp\ 0o ?p O p I\ Ip
v (50 50 i o) s (o 30~ 0 ) i
ap 3
()

Taking into account conditions (4.5.22) and (4.5.23), it is easy to see that

— =
ox;

0%p
8x1 axZ

_ Po, e
0)=0, a—x%(o) = a—x%(o)-

O

We continue proving the theorem. Later on we will consider a section D, (t) of
the domain D

T T
a’
L+ a? 1+ |a]?

D,(7) = ( ) , V1 e A,

extending in the direction of the vector (a,1) € C2. The domain A, of change of
parameter t is a domain in the complex plane with a real-analytic boundary (in a
neighborhood of the boundary point 0).

Expanding the function ¢ (x, x2, x3) in a Taylor series in the neighborhood of 0
in expression (4.5.24), from the conditions on ¢ we obtain

X4 = T(-xls-x27-x3) +o (|'x/|2) s |.X/| - Os .X/ = (-xls-x27-x3) s (4525)

here T = e + el + el i
where T (x,x2,x3) C11X] + €22Xx5 + €33X5 + C12X1X2 + C13X1X3 + C23X2X3 1S A
positive definite quadratic form (due to the strong convexity of p). Moreover, in

view of conditions (4.5.19) on the function ¢ (x1, x2, x3) for coefficients of the form
T (x1,x2,x3) we have the relations

ci2 =0, c11=cn.

We select real and imaginary parts in the variables z;, z, and write expressions
for xy,xp,x3,x4. Let T = u + iv, a = a; + ia,. Then

T (ua, — vay) + i (ua; + vay)
a= ,
1+ |al? 1+ |al?
T u—+iv

1+]a>  1+]a*
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So

ua; — vap uay + va u v

S R T T+1a?” 2T 1+ T 11

We write an expression for the quadratic form 7 (x;, x;, x3):

2 2 2
T (x1,x2,X3) = ciix] + c11X5 + €333 + C13X1X3 + €23X2X3

1
= —[cn (uza% —2uvaia, + vza%) + c11 (uza% + 2uvaia, + vza%)

2
(1 + |a|2)
+ C33M2 +ci3 (u2a1 — uvaz) + 3 (u2a2 + uval)]

1
= —2[v2 (cna3 + clla%) + v (—ci3uay + cpuay) +

(1 + |a|2)

2 2 2 2 2 2 2
+ (c“u aj + cnuta; + cy3u” + cizuta) + c3u az)].

We substitute the values found for x4 and T (xi, x;, x3) into Eq. (4.5.25) and reduce
the similar terms. We get

v? (Cna% + Cna%) +v (—c13ua2 + cpua; — 1 — |a|2)

+ (cnuza% + clluza% + c33u® + ci3uta) + cz3u2a2) + 0 (|a|2) =0

as |a| = +o00. Choosing |a| large enough, that is, replacing a by fa with |a| = 1,
we obtain

v? (cllagtz + clla%tz) +v (—c13ua2t + cp3uat—1— |a|2t2)
+ (Cnuza%tz + cnuza%tz + C33u2 + cl3u2a1t + Cz3u2a2t) +o0 (|t|2) =0

as t — +oo. Thus, dividing by > and passing over to the limit as  — 400 in this
expression, we obtain

2 2 2 2 22 22
v (cna2 + cnal) —vla|” + cnuay + cniuta; = 0,

cenv? — v+ e = 0.
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We write this equation in a complex form and obtain

v
cit (Uz— — + Mz) =0,
C11

2 1 2
= (711) . (4.5.26)

Thus, we have shown that the domain A of change of the parameter 7 in the

i
‘C__
26‘11

limiting case when |a| — +o0, is a circle of radius rp = —— and centered at
11

i . .. . .
19 = —. The coefficient ¢;; > 0 due to the positive definiteness of the quadratic

c
form T ()lcll ,X2,x3). Relation (4.5.26) defines the boundary 0A.

It should be noted that the tangent to the boundary of the domain D drawn at
the boundary point 0 is the line Imz, = 0. It is easy to see that when |a| — o0,
the section D, (7) is close to the tangent to the boundary of D in the boundary point
0 since

v

Imzp, = —
2T ap

— 0, when |a| = +o0.

Moreover, the section D,(7) lies in the neighborhood of zyp = 0 when |a| — 4oc0.
Namely, if z € D,(t), then

2= |7Plal? <P P

T +1aP)? A+ aP)? 1+ aP

|z —

when |a| — +o00.

The function p(z1,22,71,22) being real-analytic, we solve Eq.(4.5.20) with
respect to the variable z,. Since p (z, z) is a real-analytic function, it can be expanded
in a series in the neighborhood of (0,0) € C* = C? x C?. We pass over from
the variables 7 to the variables ¢, i.e., we make the change

=48, n=~0.

We obtain an analytic function p(z, ¢) in z and ¢ with the conditions

p(z,§) =0,
{=2z
Since the gradient of p (z1, z2, {1, {») is nonzero, then the derivative with respect to
95
one of the variables is different from zero, for example, the derivative B_p # 0.

2
Then, applying the implicit function theorem for holomorphic functions, we can
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express the variable ¢, through other variables:

O =v(z1,22,C1),
2 =141,
22 =10.
Then f (z1,22.21,22) = f(z1.22,21, ¥ (21,22, §1)) is a real-analytic function that

can be expanded in a series of variables z;, z2, {; = Zj, which converges in a
neighborhood of the boundary point (0, 0). Namely

+o0
s h=k
f@,21,22) = Z Z bhikm2i2125 »
1=0 h+k+2m=l

where we have re-denoted the element in the weight degree (giving a weight of 2

to z2).
Choosing |a| large enough, we consider moments of order N on sections D,(7):

G(a,N) = /M ‘L'Nf(Da(‘C)) dt

+o00 T h — k T m
= N Bhkom — ] d
/Ma Y ) b 1+a2?) isep?) Uxap) &

=0 h+k+2m=I

We prove that the coefficients by ,, = 0 for k > 0. Let [y be the smallest weight
degree with the property by x,» # 0 for k > 0 and ko be the greatest degree in z;
for which this holds. By the hypothesis, we have G(a, N) = 0 for all N and a, in
particular, for fa with |a| = 1 and t — +o00. Consider the limit

lim G(ta, N)i®
t——+o0

+oo . h — k
= lim N b 1 1 X
LN AP DEDD h*k*'"(1+|m|2 ) (1+|m|2 )

a I=ly h+k+2m=I

X _r odr
1+ |ta|?

. N—i_o<3 h=k_m Iy h=k 1 1
= lim T Z Z bpimt'T'T P | — | —x
t——+o0 9A H ch
@ I=ly htk+2m=I = +lal?
r
k m
1 1 1 1
X —1 ; tz_k —1 ; ZZTdT
7 + |af 7 + lal
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“+oco
= lim Z Z bh,k,m/ TN‘L’h‘EkTm dt th+k—|—lo—(2h—|—2k—|—2m)ahak><
t——+o0 IA
I=ly h+k+2m=I a

h+k+m—+m—m
1 =
X | ——— = lim Z Z bh,k,m/ Nehtkem g fo~lgh gk x
dA,

1
= + la)? 0 T bkt am=1
/

1 2 m 1 N hek-m ahak|a|2m
x(z_2+|a|) ﬁz Z bh.k.m/aATTT‘L’ dr|a|—2’0:0’

l + |(l|2) h~+k+2m=ly
t2

where 0A is defined by (4.5.26).
Let us calculate the value of the integral / V"5 e™ dr. Expressing T as a

3A
fractional-linear function from (4.5.26), we obtain

2 . .

i - L i - 1
=\|\T—— |7 —_— —_—.
26‘11 2C11 4C%l

Then

i : i n 1 1
T——|°7 —71 —_— = —,
2C11 2C11 4C%l 46‘%1

i i - 2cn
T—— |T=——Tr, T=—
2c11 2c11 o
We substitute the value found for 7 into the integrand expression and obtain

AN LN+htm ok
/ Ntk dr = (——) / —dr
A 2ci1 ) Joa (r— ! )

2C11

i k .CN+h+m+k
=\|—- ? / ﬁ drt.
11 A (r )

26‘11
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Now we compute the integral

.L,N+h+m+k 1 dk—l
/ ———dt =2mi lim pNHhtmtk
A ( i )k (k—1)! v=w drk!

26‘11

‘[—
(N +h+m+k)! Nhtm1
oD e Wxhemtin”

1 (N+h4+m+k) [ i \VThtmt!
k=1 (N+h+m+ D!\ 21y ’

=2r

=2mi

i
where 79 = 2o Thus
C11

. i\ 1 (N+h+m+k)r (o0 YV
Vehthemde = (—— ) 2# — .
2c11 (k—l)'(N+h+m+1)' 2c11

A

Finally, we conclude the proof of the theorem. Since
h ak | a | 2m

_ a
E bhkm rNthrkt”’ dt ———— =0,
|a|210

h+k-+2m=ly

then, substituting the value found for the integral into the expression, we obtain

iV o @ al
Z bhkm( 1) 2 2mi k—1 ||—21():O
htk+2m=lo ‘i a

Choosing N = ko — 1, we obtain the following relation for the coefficients b, 4,

: 2ko+h—+m
PIRGIE ( i ) e (2ko +h+m— 1) b gt _
htko+2m=ly 2en ko —1 ko,

Substituting a = ¢, we obtain a trigonometric polynomial (with respect to the

variable 6)
.\ 2ko+h+m
Z (_1)ko (L) ' 2mi (2k0 thtm— 1) bk, meie(h_kO),
htko+2m=lq 2en ko —1

identically equal to 0.
Thus, we have shown that the function f is holomorphic in a neighborhood of
the boundary point 0. In view of the conditions of the theorem, the function f extends
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holomorphically to the intersection of D with each complex line passing through the
boundary point 0. Consequently, by Hartogs’ extension theorem [73] and subject
to linear fractional transformation (where by the boundary point goes into infinity
and the lines passing through the boundary point become parallel) the function f
holomorphically continues to the whole domain D C C2. These arguments complete
the proof. O

To conclude this section we consider examples of domains satisfying (4.5.18).

Example 4.5.1 Let D = B" be a ball of radius R centered at the origin, i.e.,

D={:|f| <Rj}.

L:
Example 4.5.2 Let {; = L’((W)),j = 1,...,n, where Lj(w), L(w) are the linear
W <
functions. Then the image of the ball B" under this mapping (unless it is degenerate)

is a domain, for which condition (4.5.18) is satisfied.

Example 4.5.3 Let the function p defining the boundary of D have the form

2
’

pwio.owa) = wil* + . wal? = R+ D |L (w)
J

where L; (w) are the linear functions. Then the domain D = {w : p(w) < 0}
satisfies condition (4.5.18).

Example 4.5.4 Let the function p(w, w) be linearly dependent on w and arbitrarily
dependent on w. Then the domain D = {w : p(w) < 0} satisfies (4.5.18).

4.5.4 Computation of Moment Integrals

We continue proving Theorem 4.5.1 in the two-dimensional case. Recall that the
tangent to the boundary of D, drawn at the boundary point 0, is the line Imz, = 0.
It is easy to see that when |a| — 400, the section D,(7) is close to the tangent to
the boundary of D at the boundary point O as

v

Imzy = — — 0
2T ap

for |a|] — +o00. Moreover, the section D,(7) lies in a sufficiently small neighbor-
hood of zo = 0 for |a| — +o00. Namely, if z € D, (t) then
2 2

|2|?

1+ al?

T
—da
1+ |al?

T
1 + |al?

l

|z — 20> = )

as |a] = 4o0.
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Using the real-analyticity of the function p (z1,22,21,22), as we did in the
preceding subsection, we will solve the equation p (z1, 22,21,22) = 0 with respect
to the variable z,. Since p(z, 7) is a real-analytic function, then it can be expanded in
a Taylor series in the neighborhood of (0,0) € C* = C? x C?. We pass over from
the coordinates 7 to the variables ¢, i.e., make the change

z=b, n==04.

We obtain an analytic function p (z, {) of z and ¢ with the conditions

Ié(z’g):()a
=1z

Since the gradient of the function p (z1, 22, {1, 2) is nonzero, so the derivative with

respect to one of the variables is different from zero, for example, the derivative

ap . T . . .

% # 0. Then, applying the implicit function theorem for holomorphic functions,
2

we can express the variable , through other variables:

L=v(@.22.0).
21 =14,
2= 0.
Then f (21,22, 21,22) = f (21,22, &1, ¥ (21, 22, £1)) is a real-analytic function which

can be expanded in a series of variables z;, 25, {; = z; converging in a neighborhood
of the boundary point (0, 0). Namely

400
- _ b hek _m
f@z21,0) = hkmZ1212)
1=0 h+kt+2m=1

on dD, where we have re-denoted the summation index giving a weight of 2 to z.
Choosing |a| large enough, we consider moments G (a, N) on sections D, (t):

G(a,N)Z/TNf(Da(‘C))d‘C

04,

+00 T h — k T m
= [ Biem ) 4
/f IDED BT (1+|a|2“) (1+|a|2“) (1+|a|2) i

aA, =0 h+k+2m=I
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Let us prove that the coefficients by, = 0 for k > 0. Let [ be the smallest weight
degree with the property by, ., 7 0 for k > 0 and ky be the greatest degree in z; for
which this holds. Then from the condition of Theorem 4.5.1 G(a, N) = 0 for all N
and a, in particular, for fa with |a| = 1 and t — +o0. Consider the limit

lim G (ta, N)

t—>+00
+o0 T h — k
= lim ™ E E bhim ( ta) ( ta) X
L 2 2
t—=+00 Jya, =k BTl 1 + |tal 1 + |ta

m +o0o
T
o g — 1 N h=k_m_h ko h=k
X| ——— ) %t = lim T bram T T dha x
(1) e =im [ %

a I=ly hk+2m=1
h k m
1 1 1 1 1 1 d
o Y 2 Y 2 Y
t—2+|a| t—2+|a| t—2+|a|
I—m
+o00 1
= lim Z Z bhk th+k+lo_(2h+2k+2m)ah6_lk - X
t—>~+00 A
=1y h+k+2m=I > + |a|2
t
+o00 1 m
X Vehtkemde = lim Z Z bpamt*ld"ad [ = + |a* ) x
A t—>+o00 ' 2
I=1y h+k+2m=I

1
X —z/ Ntk dr = Z bh,k,mahizk/tNthfkrmdr =0,
(1 ) 3Aq

_2 + IaIZ h+k+2m=l, 9A
t

where 0A is defined by (4.5.3).
We recall that the expressions for A; and A, are defined by (4.5.6), the angle « is
found from relation (4.5.8) and the coefficients b}, and b/, from (4.5.10).

Proposition 4.5.2 The value of the integral equals

/ Nk dr
A

N+h+m+k+1
:eta(N+h+m+1—k) 27i ( )

(_1)N+h+m+k (

1 1 1 N+h+m+1
: )

NZrRa

1 1 k b b N+h+m+k+1
(& (FE
Vii Vi) \WA Vi
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/ / o) tog
b} . b,

X Z (ka) \/A__\/A—l o ﬁ_l\/k_z X
oy tartaztoy SEVANS \//\_24‘ \/A_l b/l +i b/z
=N+h+mFk+1

/TR

SR A IR G [ 1|

(231 [0%]

Proof Conformal mapping [57] of the exterior of an ellipse

u//z v "2

wte !

on the exterior of a unit circle is performed by the function

T4+ /12 =¢2
A+B
where ¢ = ~/A? — B2. Then

%:

A+ B A—B1
La) + —. (4.5.27)
2 2 w

Thus, taking into account coordinate transformation (4.5.17) and representation

(4.5.27) for T we have the required mapping of the exterior of the ellipse (4.5.3) on
the exterior of the unit circle by the formula

B m+_% LAEB A-BIY L
= /\1 l/\z 2 @ 2 w ¢

where the semi-axes A and B are defined by (4.5.16). Then

. by _bh] A+B. A-B1Y
T=|—|——-1i= —_—w+——= e,
A A 2 2
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Let us find the value of the integral / Ve 7k ™ dr by substituting the resulting

A
expressions for 7, T and the differential dr. We get

I:/ NAhtmzk g1 eza(N+h+m+l—k)/ ( |:b’ n b/i|
94 lol=1 PYLEW

A+B A—BI)MMW([M H} A+B1 A-B Y
—_— 0+ —— - — - —+ w| X

+

2 2 w Al Az 2 w 2
A+B A-B1
_ do.
2 2 w?
o 1 . . . 1
We make the substitution @ = — under the integral sign while dow = —? d¢, then

i (N+h-+m-+1-k) by by A+B1  A—B VT
I=e +it |+ ——-+ ——¢ x
S O T T e R

b, W] A+B__A-BI\'(A+B A-B
(-] ) (45 ()

N+h+m
_ eia(N+h+m+l—k)/ (_I:ﬁ + i A :| n A+B1 + ﬂ;) X
e=t\ LA A 2 & 2

b, b,] A+B, A-BI1\"(A-B_, A+B
(n-n]s e ) (et e

— eia(N+h+m+1—k) . 19@-) dé‘,

where

A=B, _ H4_E_§+A+B’HHM
2 T 2
26) = NI x

A+B A A-B\"(A-B_, A+B
(Fre-[n-n)e ) ()
A1 2
We now factorize the quadratic trinomial of the variable ¢, under the integral
sign. First we find the value of the expression A2 — B2. Using relation (4.5.16) we
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obtain

b/lz/\2 + b/22/\1 _ b/lzlz + b/22/\1 _ b_/lz b/22 b/lz b/22

A3 MAZ A2 M LA A

A?—B? =

We find the roots of the quadratic equation

A—B A A+B
2 [ + ]C 2

—2_ JE— p— [
¢ 3, T + 0. (4.5.28)

Its discriminant is

(ﬁ N ib_’z)z_fﬂ:b_’f _B b (”_12 L b_zz)
Al A 4 /\% l% A1As l% AAr A A%
b\ b, b’? b? 1 1 2
=2 172 2 1 b/2 2ib' b _b/z — v b )
llllz AIAZ+AIAZ AIAZ(I—F 1010, 2) AIAZ(I—FZZ)
Then the roots of quadratic equation (4.5.28) are defined by
b} b, 1
—+i== b + ib!
Clz _ /xl /12 /_AIAZ ( 1 2)
' A—-B
Thus
b} b, 1 / b’ b, b,
L i+ —— (P, +iby) L+ 1+(i+ 2)
é. — A1 lz \/klkz ( ! 2) _ /xl Allz /12 Allz
: A—B A—B
1 1 b} A
+ +1i
\m )\ T s
A—-B ’
b} b, 1 ! b b b,
By poray) Db bh__ 5% )
é. — A1 lz \//\1/\2 ( ! 2) _ A1 /\1/\2 /12 Allz
: A—B A—B
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We also consider the quadratic equation

*e, +27% o, (4.5.29)

A+B_, [b, b A—B
50— ¢

Its discriminant is

b/1 b/ AZ _ BZ b/2 b/2 b/ b/ b/12 b/22 b/12 b/22
R —4 — = D] = .

oA 42 2 T\ T an o a2
b,  bE bR 1

Y _
FYF TR W W M W

(b2 — 25— b) = - (b} — ib})"

Then the roots of quadratic equation (4.5.29) are defined by

by _ib_3 + ! (b] — ib})
= M2 Vi b
’ A+ B
Therefore,
b b, 1 b b b, b’
—i2 4+ b —ibh) L= ( + =2 )
§3 _ Al Az «//11/12 ( ! 2) — /\1 /11/12 /\2 AIAZ
A+B A+B
( 1 N 1 )( b} A )
_ VA VA Nl «/_
A+ B
by, b 1 (b’ 'b’) b} b/1 ( b, b, )
2172 —q _
§4 _ Al Az «/lllz ! 2 /\l \//\1/\2 /\2 VAIAZ
A+B A+ B

(Ew) )
A+B

Thus, we have the following factorization for the square trinomials of the variable ¢
under the integral sign:

o L [ e R (S A

A+B , b/ b/ A—B A+ B
75 [Al_kz:|§+T:—(§ $) (=28

A—-B b} b, A+B A-B
e ¢+ 52—
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Then the original integral I can be written as

] — peWN+htm+1-0) (A - B)N+h+m (A + B)k/ Nafafafs dc.
|

2 2 t=1 §N+h+m+k+2

where the functions

fi =@ =)V, fr= =)V, fi=0C-5)",

fi= (€ — 2o, fszA;Béz—A;B.

The point { = 0 is a pole of order (N + & + m + k + 2). We will need the value of
the derivative of the function

(flf2f3f4f5)(N+h+m+k+l)
o (N + I+ m+k+ 1))

— Z fl(al)fz(az)f;%)f‘f%t)fs

a)taxtaztastas=
=N+h+m+k+1

ol ol azlag! as!

Expressions for the function derivatives are as follows:

(1) _ (N + h + m)' (C _ Cl)N+h+m_al

L N+ h+m—ao)! ’
(N 4+ h+ m)! i
2(042) — (C _ KZ)N-H’H— o) ,
N+h+m—ay)!
k! k!
(@3) — . _ k—o3 (or4) — : _ k—oy
3 G—aa)l (=8, 4 k—an! (C =)™,
@) A—B o A-B_, A+B
5 = 2—7 5 - _é‘ _
2 2 2

The order of the derivative is subject to natural limitations:
o SN+h+m oa<N+h+m a3=<k as=k

Thus

(fifafafafs) N HITmERED 0=y (N +h+ mXN +h+ m) 5

I
(N +h+m+k+ 1! a1 o tastag 2= o 2

=N+Fh+mtht1

() (&) o e (i e (37

k
o3 (071
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N+h+m N+h+m k k _ N+h+m—a;
+Z ( o X o XOBXOM)( W )

aytortaztos=
=N-+h+m+k+1

m—ao —a —a. A+B
(e o (g (<418,
Then, the original integral I can be represented as

I = eia(N+h+m+l—k) 27i (O_l + 0_2) ,

where o) corresponds to the part of the sum in the expression for the product
derivative

(flf2f3f4f5)(N+h+m+k+l)
(N+h+m+k+ 1)

©).

in which the parameter s = 2 and o, corresponds to the sum with the parameter
05 = 0, i.e.,

A—B\Vtm 14 4 Bk N+h+m\{N+h+m
op=|— —_— E X
2 2 (03] (0%)
aytartaztag+2=
=NFh+m+k+1

« (k) ( ) (=g NI (L NHibm—e (g ke (_p ke (A ; B) ’

k
a3 (673

A—B\M" rA 4+ B\ N+h+m\N+h+m
o) =|—— —_— E X
2 2 o (0%}
o) t+artoaztas=
=N-+h+m+k+1

8 (k) ( ) (g Ve g N (e gkeas (g ke (A—+B) _

k
o3 (7] 2
In the expression for o we introduce o) + 1 = «f, @, + 1 = &, and obtain
A—B\"t rA 4+ B! N+h+m\N+h+m\ k
=452 (Y (v , .
2 2 a) —1 ay —1 o3

o] +abtoaztas=
=N+h+m+k+1

o (k) (=g )V HIE el (e WA=l £1 (g ykmo (g ke (A - B) .

Oy 2
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We add 0| and 0,, and get

3 3 A—B N~+h+m A+B k k k
o =0|+0, = —2 —2 Z o5 Ao X
o) t+artoaztas= -

=N+h+m+k+1

% (_é—l)N-‘rh-i-m—al (_§Z)N+h+m—az (_;3)](—013 (_;4)](—014 %
N4+h+m\{(N+h+m A—B
x Jae(257)
o) — 1 0y — 1 2
(N+h+mXN+h+m)( A+B)}
+ 22|
o o 2

Next we calculate the degree of (—1):

N4+h+m—oy+N+h+m—oy+k—o3+k—as=2N+h+m+k)
—(a1+artaz+oy) =2(N+h+m+ky«(N+h+m+k+1) = N+h+m+k—1,

then

A—B\NTI s 4 B\ s i i
0:( : ) ( : ) (= LYV A=l e Nhbm N bk e

kY kY o—aio—wro—aso—as| ([N+h+m\N+h+m
x Z ((X3X(¥4)Cl Cz 63 §4 061—1 0{2—1 x

o) tortaztag=
=N-+h+m+k+1

Xéléz(A;B)+(N+h+mXN+h+m) (_A+B)]
o o 2

For the solutions ¢, {», and (3, 4 of the respective quadratic equations (4.5.28)
and (4.5.29) the following relations

A+B A—B
6t = T 5 {384 = 1TE
hold. Thus
N+h+m k N+h+m k
o (A=B A+BY" L vinemeior (A48 A-B\"
2 2 A—B A+ B

kY k\ o c—aro—aso—ay| (N+h+m\(N+h+m
X § é‘l 1 Cz 2&-3 3 §4 4 X
o3 J\ Oy o) — 1 Oy — 1
aytartaztog
=N+h+m-+k+1
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(A+B) (N+h+mXN+h+m)( A+B)
x| —— )+ -
2 o [0%) 2

1 N+h+m+k+1
— (_) (_1)N+h+m+k (A + B)N+h+m+l (A _ B)k e

2
k k —0] 02 «—U3 =.—04
X Z (a3) (a4) SR SR SR Pt
oy tartaztoy

=N+h+m+k+1
o |- N+h+m\ (N+h+m + N+h+m\ (N+h+m
o — 1 oy — 1 o] o) '

Denote C = C(x) = b’f/\z + b’zzkl. Then, using relations (4.5.16) and the
introduced notation we find that

JC JC
Tavm P
So
A_g Y€ Jc o \JC (1 B 1)
WG ik VYR VG VR
JC JC JC 1 1
A= et T~ e (vt )

Then the roots (i, (s, {3, {4 of quadratic equations (4.5.28) and (4.5.29) can be
written as

a:(&wi—)(? %)

A—B s )(b/ y )

\/E (\//T Vi) vl

_ (Vlkl—vlkz) (vbil_ivbiz) _ YAk bl
. A—B JC (J_ J_)

§3=(~/1/1_1+x/1/1_2)(j/_ Jb/_)_FJ_( b/)

A+B _«/E«/_«/_
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)

A+B

ffw——f)( ).
T Rivh) \Vn Tn

Now we find the value of the expression {; ', *2¢; **¢, ™, under the sign of the
sum in the expression for .

Z—m é-—azé.—ag —oy \/A_IN/A_Z - \/A_z-i- \/)t_l -
1 3 «/6 —«/A—— JA_I

(7 A)_a‘(fff ) () ()
1 2

Y, B SR N S T/ e N A e
“(F-7%) ( NG ) (mwx) (7 +x)
B N artortastos N Y B e
‘(ff) (m) («/— f) )
(bq b, )-w—w_( JC )”*"*’"*"+l(¢r—m>““"“‘x
Vs “\Viva VI + VI

(j/_ 5/_)011—1-0:4(5/_ j/_)_(N+h+m+k+l)(j/_ j/_)_al_m

+h+m+k+1 _ o] —a
:( /e ) (2t ‘N+h+'"+k+“(¢x—2—m>‘ .

ViV Vi Vi Vi + VAL

a1t
B b\
Vi VA
b} A
+1
Vi VA

1 N+h+m—+k+1
o= (_) (_1)N+h+m+k (A + B)N+h+m+l (A _B)k %

JC N+htm+k+1 b, v, —(N+h+m-+k+1)
X —
(mm) (f f)

X
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b/ b/ ajtoy
o] —«.
- (ka)(L ﬁ) |m |,
A/ / T 7
a1 tortaztoas= @3 a4 A'Z + A«l b b
=N-+h+m+k+1 \/_ \/_
([ (N+hEmYN+htm)  (N+htm\N+h+m
al_l C(Z—l o o .

We transform the factor standing in front of the sum and obtain

(A+B)N+h+m+l (A—B)k

S

JC N+h+m+tk+1 A —(N+h+m+k+1)
vkwkz) ( )

T h
JC N+h+m+1 ! |\ Nt JC k 1 1 \*
z(mm) (F7%) (JA_JA_) (7 =)
) Ve N+h+m+k+] " B b, )—(N+h+m+k+1)
Vs Vi

N/ A
) ) ()T

b, b, —(N+htmk+1) | | AN 1 \K
x _— _ ) x
(VM v ) VA vkz) («/11 «/lz)
N-thtmk+1 —(N+htmk+1)
(%) (bﬁ L)

/el

:(%_}_%)NMMH(\;X—\/&_) (j/_ j/—)N+h+m+k+l.

Finally, after all of these transformations and calculations have been done, we
have

N+h+m+k+1

) )

X( b/l L b/2 )N+h+m+k+l Z (ka) /\1 o] OIAX
Vi VA o3

o=

N———

1
2

—

ot toaztas= &4 VA2 + &

=N+h+mtk+1
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b/ b/ aytay
L _ ;7
< VA N _ N4+h+m\(N+h+m
bll . blz o] — 1 Oy — 1
+1
Vi VA
+(N+h+mXN+h+m)} (4.5.30)
o] (0%
These arguments complete the proof. O
Lemma 4.5.2 Expression (4.5.30) is not identically zero with respect to the vari-
by _; b,
able equal to M
b} . b
+i—=
Vi VA

Proof We will consider the sum in the expression for o, to be a polynomial of
the variable equal to the fraction

b} A
2

VAL VA

b} by
+1

VA7 Az

Thus, to show that o £ 0, it suffices to show that the sum has at least one term that
is nonzero. We show that the coefficient of power «; + o4 = 1 is nonzero. In this
case, the sets of indices have the following options:

ap=1,04=0 or o =0,04=1.

Then the expression for the coefficient of a power of &1 + o4 = 1 will have the form
1
5 (k) (J—A —fxl) [_(N+h+m) . (N+h+m)x
artormNthtmk N \ VA2 + VA a—1 !
-1
5 (N—i—h—i—m)} iy (k) (k) (N/—A - m) [(N+ h—i—m)}
*2 artanmiinamk 23\ A\ VA + VA @2

- > (R )
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TR e ()]

ar a3 =N-+h+m+k

L ERE) 1)

Vi — VA Vi — VA
(J_+J_> [N+ h+m)— k]+(\/_ J_) (N+ h+m)

VE-VE\ | (YRR (YEmvE)
B VI + VA

Vi +Vh Vi + VA
NIYIVIE
kﬂ¢0.

Thus, we have shown that the coefficient of a power of o} + a4 = 1 is different

from zero in the sum in the expression for o. It follows that o # 0. These arguments
complete the proof of the lemma. O

We continue proving the theorem. Since

Z bhimd'a / Ntk ar = 0,
A

h+k+2m=ly

then, substituting the found value for the integral into the expression and choosing

N = ky — 1, we obtain

Z , 1) Zothtm 1 1\ kothtm
bh,ko,mela(h_‘—m) 27 (_) (_1)2k0+h+m—1 (_+_) %
ht-ko+2m=1o 2 VAL VA
X( 11 ) ( 4 b’ )Zko+h+m Z (kOXko) )
Al A ajtartaztas= o3 /\04

=2ko+h-+m

b/ b/ a1 +og

Vi = VA o \/_ \/_ kh—14+h+m
() | e
7L n

X(k0—1+h+m)+(ko—l+h+ka0—1+h+m):|ah—ko:O.
()[2—1 o] o
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P i andaccondingly & — L _ i
and accordingly £ =
\/_ «/_

Lemma 4.5.3 The following relations hold true

[ (VD) (V4 VE)]. e Lot

Y4 el — e —ciai

We denote ¢ = e®, § = —==.
NZE R/

Proof We first show the validity of the first relation. In accordance with the notation,
we have

v _+E b _§-f

Va2 Vo 2

Then

by=——(E+§). bh=——(-F).

VA - VA -
2
On the other hand, according to relation (4.5.10), we have
’ 1 . ’ 1
b = —5 sine, b, = —5 cosa.

Thus, equating both sides of the expressions for b| and b/, respectively, yields

or

e = VT (€ +). eose =~ Y2 (6B = iVE (6 -8).
So we obtain
Y = e =cosa + isina = iv/A (E— &) —ivAi (£ +§)
= ile (Vi = Var) =& (Va2 + V)]
and thus we have proved the first relation.

To prove the second relation, we write the left- and right-hand sides of expression
(4.5.8), using the previously introduced notation. First we transform the left-hand
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side of expression (4.5.8), and obtain

v —
1-2
cos2a  1—2sin"a ( 2i I ARRY

sin 2« 2sino cos o

Next we transform the right-hand side of expression (4.5.8), and obtain

2 2 2 2
biy —byn  cnaj + cxna; + cpaiax — ciia; — cpaj + cpa1a;

C12 C12
2b1; 2 [_CllalaZ + cpaiap + Ta% - 7@%]

_ C11 (a% — a%) + ¢ (a% — a%) + 2cppa1a; _ (a% — a%) (c11 — ¢cx2) + 2cpa1az

cn
2 [(sz —ci)aias + %

(ai — a%)] 2 [(sz —cn)aiaz + C%z (a%—aé)]
_ (1 —243) (c11 — e2) + 2cnparar

- .
2 [(sz —cn)aiaz + % (1- 2a%)]

Since a = a; + iay, a = a; — iay, |a| = 1, then

a+a a’+1 a—a a?—1
a = = , Gy = — = ;
2 2a 21 2ia
hence
(a2+1)(a2—1) 1—a*.
a\a; = ; = i,
2a 2ia 4q?
22 —1) 4@ +2(a*—24 +1 |
1—2a2 =1+ (@-1) _ ( ) _ @+l
4q2 4q2 2a?

Substitution of these expressions results in expression

(a4 + 1) 1—- a4) )

b —bn _ o (11 —c2) + 261271
2b12 (1 — 614) . C12 (614 + 1)

2 |:(C22 —cn) Tl + 72—az

(a4+ 1) (Cll —C22) C12 (1 —a4)i
- 242 22 _ (@ +1)(en—cn)+en(l-d)i
(cn—cn)(1—a*)i  cn(a*+1) (cn—c)(I—aYi+cp(@*+1)
_l’_
242 242
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Thus, equating the converted left- and right-hand sides of expression (4.5.8) we
obtain the relation
v+l (@ +1)(cn—cn) +en(l—at)i
1= .
Yi—1  (n—ca)(—-aY)it+cn(@+1)

We solve this relation with respect to a*, and obtain

Ui+ 1. a*(ci — e — cii) + (c11 — e + cai)

Yt —1 T (cri — exi 4 c12) + (ei — crii + ¢12)’
a* (c11 — e — cd) (Y4 = 1) + (enn — can + eni) (Y* = 1)
=a* (e — ey + cni) (V4 1) + (c11 — e + i) (¥4 + 1),
a* (ci1 —cn —cpi) (Y4 — 1) —a* (e — ey + cni) (Y + 1)
= (c11 — e+ cni) (Y + 1) — (i — e + cni) (¥ —1).
a*(c11 — e —cni) (Y= 1) +a* (e — caa — ci2i) (W + 1) = 2 (11 — ca2 + cni)

a* (e —cn — ci) 2yt = 2 (c1y — e + cni)
4 I cip —cxn +cpai

a = - )
Yt i — e —cpoi

and thereby our second relation has been proved. These arguments complete the
proof. O

4.5.5 Transformation of Moment Conditions

We continue proving the theorem. Denoting

V-4
T M va

we obtain the following expression for the coefficients by, x, m

0<x<l, 4.5.31)

X

S

5 b (i[5 (Vi = VE) ~E (VI + VL)) (5

h+ko+2m=ly

2ko+h+m—1 1 1 ol 1 1 o 2ko+h+m _h—k
X (—1 0 _— t — PR — S 0 a 0%
( ) (VA.] A’Z) (Q/A,l \/AZ)

)2k0+h+m
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—\ o1 tog
Y (k) (k) (g) [_(ko—l + i;+m) (ko “lth m)
o) +artaztoy o3 &4 g o = o2 —
=2ko+h+m
n (ko—l+h+m) (ko—l+h+m)i| Y
(03] (0%)

The set {n = £} is a generic manifold in C2, which is a set of uniqueness for
holomorphic functions [67], that is this equation is valid for any £ and 7. Therefore,
the equality

> uan (1 (Vi = VE) =0 (Vi VE)]) 2

h-+ko+2m=1,
2ko+h+m ko+h+m k
X (l) ’ (_1)21(()+h+m—1 (L + L) 0 (L _ L) 0 %
2 VA N VA VA
_ ko \( k o N\ (ko= 14+ h4+m
2k()+h+m h k() 0 0 op—aq4f 1 _ 0
X3 ¢ Z (“3)(“4)x (5) o —1 )

o) Fortaztag=
=2ko+h+m

8 (ko—1+h+m) n (ko—l+h+kao—l+h+m)i| _o
oy — 1 oy o)
holds. Moreover, we have the following limitations

ar<ko+h+m oay=<ky+h+m o3=<ky, a4 =<ko

for the summation indices. In the latter relation we reduce similar monomials in the
inner sum, introducing new variables s; and s, to denote the powers of n and £, i.e.,

S1 = o1 + o4, 5o =2ko+h+m— () +ay).

We obtain

th,ko,m e (i [g <\/A__ \/A_1> — (\/A_2+ \/A—l):l)sl'i‘sz—Zko 5

51,82
1 s1+s2—ko 1 1 ko
+ — - — X
Az) ( A2)

1 51452
X 2mi (5) (—1)”"’52_l (

-
5
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% 21 52)—lo—4ko Z ko \ ko coa—a| _ (ST s2— ko — 1 «
o3 J\ 0y o —1

a)tartaztos=

=s1+s2
« (S] +Sz—k()—1) 4 (S] +Sz—k0—1XS1 +S2—k0—1):| =0,
ay—1 o [e%)

h=2(s; + s2) — lp — 3ko, m=1ly+ ko— (s1 + s52).

where

Indeed, since on the one hand i + ko + 2m = Iy, and, on the other hand, according
to the above notation & + m = s; + s, — 2ko, then 51 + s, — kg + m = [y and now
the required expressions for 4 and m are easy to obtain.

Next we write the resulting relation of homogeneous monomials of degree
r = s1 + s,. We obtain

5T e ([ (e v a (V)T
r=2ko s1+s2=r

1 s1+s2 4 . 1 1 s1+s2—ko 1 1 ko
x 2mi | = (=D (— + —) (— - —) x
(2) Vi Vi Al A2

X a2(x1+x2)—lo—4k0 k() YT S1 + 2 — kO -1 %
a3 o] — 1

ayton +a3 +ay=

=s51+s2
St +852—ko—1 S1+S2—k0—1 S1+ 8 —ko—1 -0
062—1 o o
where
h = 2r—1Iy— 3ko, m=Ily+ ko—r, h+m=r— 2k, (4.5.32)

and we have the following limitations
ap <r—ko, oy <r—ko, oa3=<kop, a=<ko (4.5.33)
for the summation indices. Then each homogeneous component is zero, i.e.,

%t ([ (V) (VR VR

s1+sa=r

1\ +52 A 1 1 s1+s2—ko 1 1 ko
x 27i (—) (=112 (— + —) ( - _) X
2 VAL Ar Vi Aa




4.5 Boundary Analogue of the Forelli Theorem in a Strictly Convex Domain 195

% 21 52)—lo—4ko Z ko \ ko coa—a| _ (ST s2— ko — 1 «
o3 J\ 0y o —1

a)tartaztos=
=s1+s2

« (S1 +S2—k0—1) " (S1 + 50 — ko — IXSI +S2—k0—1):| —0.
oy — 1 o (%)
Or, factoring out the terms independent of the summation indices from the summa-
tion sign, we get

(e (V7 ) () 2 (1) o
1

y (L—i_—)r—ko( 1 B 1 )k az,—lo—4ko Z bix nxlészx
\/A_l Az \/A_l As 0

s1+sa=r

k() k() a—ag| }’—k()—l }’—k()—l
g Z (a3Xa4)x o —1 o — 1

o) t+artoaztas=r

Using the fact that the terms outside the summation sign are nonzero, we obtain
the relation

S1 &5 ki k _ r—ky—1
s 2 (L)

s1+sa=r o)t taztas=r

% (r—k()— 1) + (r—k()— 1Xr—k0— 1)i| -0
o —1 o] (0%
If a polynomial of two variables is identically zero, then all its coefficients are zeros.
Thus we obtain the following assertion.

Proposition 4.5.3 The following equality holds

k() k() o —a r—k()—l r—k()—l
briam (063X064)x | 4[_ ( a—1 X a—1 )
o +aytoaztas=r
+ (}’—k()— 1X}’—k()— 1)i| _ 0,
o1 o

where the variable x is defined by (4.5.31), relations (4.5.32) are satisfied for h and
m, and the summation indices o, &z, 03, 04 satisfy limitations (4.5.33).
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4.5.6 Completion of the Proof of Theorem 4.5.1
in the Two-Dimensional Case

Denote

g(-x) = Z kO kO xoq—a4+k0 _ r— kO —1VYr— kO -1
o3 /\%4 ap—1 oy — 1
o) toxtaztas=r
+ (r—ko— IXr—kO_ 1):|
o1 (0%)

Write the difference of products of binomial coefficients in the expression for g (x)
We get

V—k()—l V—k()—l V—k()—l V—k()—l
- +
o —1 oy — 1 (031 (0%
(r—ko—l)!(r—ko—l)!
= - ko — ko —
ol (r— ko — a1 (r—ky —al | 102 T ko @) (r=ko =)

_ r—ko\r—ko l_al"f‘aZ
o o1 (0%) r— k() '
Then g (x) can be written as

s B (X0
a1+a2+az+a4 r

V—k()

Introduce p = oy — a4 + ko, 0 < p < r. Then

_ ko r—ko\Yr—ko o] + o
ORSP ST 3 PR (v (i) 1B = 1
2a1+ar+az—p=r—ko

V—k()

r

Thus, we can write g(x) as g(x) = Z cpx”, where the coefficients ¢, have the form
p=0

.= Z (kOX Xr—kOXr—ko)[ o +Ol2i|
p - —_
201 +oart+az=r+p—ko @+ k()

}’—k()



4.5 Boundary Analogue of the Forelli Theorem in a Strictly Convex Domain 197

Proposition 4.5.4 Coefficients c, and symmetric thereto coefficients c,—, of the
polynomial g(x) relate as

¢p +cr—p =0, (4.5.34)

i.e., unity is the root of the polynomial g(x).

Proof Consider the coefficient

r—ko
k() k() }’—k() }’—k()
e X2 () [ PIWE
as) \a1 +ko—r+p o 1023

a1 =r—p—ko ataz=
=r+r—p—ko—2
o + o
X |1— .
r— k()

Making the change of variables
o) =a; —r+p+ ko, o =) +r—p—ko,
we arrive at the following expression for the coefficient

k() k() r—k() }’—k()
= Z 2 (as)(aiXai +V—P—kOX o0 )X

o] =0 w2 t+a3=r+r—p—ko—
—2041 —2r+2p—+2ko

|: a{+r—p—ko+a2:|
x|1—=

r—k()
:_i: Z (k()X Xp—ker—ko) I:Oll"‘r‘OlZ Pi|

aj=0 tw= @ r—ko

=p+k0—2ai
CEE )
- ’ ’

Zoas=o —a) + ko — 20 — a3

5 oy +p+ko—20)—a3—p
r—k()

_—Zp:i ko —k() r—ko ko—Oéi—Ol:’,
o — \ 03 +k0—20éi—(¥3 r—ko '

0({ =0 a3=0
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On the other hand

S SIC A o ot e

a1=0 artoz=

=r+p—ko—20
r ko
:ZZ(kOX Xr—k()X r—ko )I:al+a3_pi|
a1=0030 o3 Ol1+k0— 20y +a3—p r—ko
if: ko ko r—k() r—ko o1 +az3—p
az \p — oy 200 + a3 — r—ko '
a1 =0a3=0

Making the change of variables
! ’
o), =p—qap, oy =p—Qp,

we arrive at the following expression for the coefficient

R 35 31 () ) F) M | =
ot a3 2000 + o3 r—ko

Making the change of variables

l l
053:/(0—0{3, Ol3:k()—053,

we arrive at the final expression for the coefficient

_ k() —k() V—ko ko—O{g—Oéi
C”‘ZZ( X )Q )Q 2a;+ko—a;)[ r—k |

'0/0

Thus, relation (4.5.34) has been proved for the coefficients of the polynomial g(x).
O

Proposition 4.5.5 The polynomial g(x) has a unique positive root x = 1.

Proof According to Descartes’ theorem, the number of positive roots of a poly-
nomial, each counted as many times as its multiplicity is equal to the number
of sign changes in the system of coefficients of the polynomial (leaving out zero
coefficients), or less than this number by an even number. Thus, for the positive
roots of g(x) to be unique, it is necessary to show the presence of exactly one sign
change in the system of coefficients.
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Consider for example the coefficients cy, ¢y, ¢;.

o= ¥ ()5

artaz=r—ko

(e (o)l
az+a3=r+l—k0 a3 az r= 0

N e =

ayt+az=r—1—ko

o = Z k() r—ko V—k() _}’—k()-l—()[z
" r—k0+k0—r r—ko r— ko

2(r—ko)+or+az=

C1 =

r+r—ko
_Z ( X}’—k())|:_ Olzki|:_z (ker—ko—ll)<O'
ar+a3=ko =k ar+az=ko * “ -

Let us show that the coefficients ¢, > 0, when 0 < p < r/2 < r — ky. Given
relation (4.5.34), this will mean that there is exactly one sign change in the system of
coefficients of the polynomial g(x). Making the change 8 = o] + o2, ap = B — 1,
we obtain the following expression for the coefficient

o= (kOXot1+ko— Xr_ko)(ﬂ:iol)[ rfko}

aj+p+a3

r+p—ko
r—ko k

:Z Z (k()X X}’—k() r—k0)|:"— 0_,3:|
520 ar o= o + k() — ,3 — o r—ko

r+p—ko—p

*‘Zk 5 ( X Xr_kOX —ko)[ (V—ko)}

ﬂ r— k() 011+OR al+k0_ ﬁ_al r_kO

r+p—ko—p
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In the second sum we make the substitution 8’ = 8 — (r — ko), which yields

r+p—ko

r—ko —ko — (r—ko)
ﬂXf:ko m;ag (X“1+kO_X Xﬁ—“l)[ r—ko }

r+p—ko—p

_ P V—k() V—k() ,3/
;0); ,3/—Ol1XOll+ko— X X )I:V—ko:|'

In the first sum of the original expression for ¢, we arrange the S-terms in reverse
order. Making the substitution 8 = r — kg — 8, we obtain

rik:o 2 (kOXOl1+ko— X’_kOXﬁ:’;Ol) [r_rliok_oﬁ}

B=0 a1 +az=r+p—ko—p

e V—k() V—k() ,8/
azoﬂz (P+.3'—011X0l1 + ko — X Xal +.3/) |:r—k0:|

i r—k() r—k() ,3/
+Z 2 Q+ﬂ/—a1Xo¢1+ko—X XO!Hrﬁ/)[V—ko]

a1=0 f/=p—a;+1

Thus

P YD VA PO R 8 (e B ==
P +,3/—061 061+k0— ar+p') Lr—ko

= Oﬂ/—p o +1
P p—al ’
V—k() r—ko)[ ,3 :|
+
DD 21 (R RN AN () B 8 | =
ZZ | ) | =]
o v ,3/—0{1 061+k0— T r—ko
rko—dl ’
P DD S P R () i) ==
o 05/—p . +,3’—a1 oz1+k0— a1+ B ) [ r—ko
(S G e
a0 pm Oll+ko— aq r—ko + B —a \ar + B
k() }’—k()
—p -y Ny = B '
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We write down the difference of products of binomial coefficients, and obtain

Q} k() Xr—ko)_ k() Xr—ko)
+ B —ai \ay + B — B = Ny — B
_ k()' (V—k())! %
(B —a)! (ko —p+ B +an)! (@ + BN (r—ko — a1 + B)!
><[(ko—p—ﬁ/—i-al+l)m(ko—p—i-,B’+a1)(r—ko—a1—,3/+1)~~~X
x(r—kp—ar+p)=(p—p —ar+1)--
cp+ B —ar) (e =B+ 1) (o + B)]

Next we show that for given values «; and 8’ and for 0 < p < r/2 < r — ky the
following relation holds

(ko—p—B +ar+1)--(ko—p+ B +a1)(r—ko—o1 —p' +1)--x
x(r—ko—oe1+B)—(p—B —ar+ 1) (p+p —ar) x
X (g =B 4+ 1) (a1 +p)=0.  (4535)

Note that for 0 < p < r/2 < r — ko the following inequality holds
(p—B —ar+1)---(p+p —at) < (r—ko—ar =B +1)---(r—ko—ar + B').
Moreover, if 0 < p < ko < r/2 <r—ko, then

(=B +1)(+B)<(ko—p—B +ar+1)--(ko—p+ B +a1).
Thus, the desired inequality (4.5.35) holds for p < ko < r/2 < r — ko.

Now we consider the case when ky < p < r/2 < r — ky. In this case, to prove
inequality (4.5.35), it sufficient to prove the following relations:

ko—p—B +ar+Dr—k-—ai=p'+ D= -+ D@ —p +1)

(ko—p+ B +a) (r—ko—c1 + B) = (p+ B — ) (e + B)

We will prove the first and last relations in this group. The interim relations are met
because of their monotony in 8’. Let us prove the first relation:

(ko—p—B +ar+1)(r—ko—ay—f +1)
>(p—p —ar+1)(; =B +1). (4536)
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After expansion we obtain

(ko — p) (r — ko) —atrko — B'ko + c1p + B'p + ko —p — B’ (r — ko) + B'os + B

— B+ (r—k)—af —aif +a+r—ko—a—p +1
>ap—pBp+p—Pa+B?—B -+ —a; +ar—p + 1.
By combining similar terms we obtain
(ko—p) (r —ko) —atko — B'ko + B'p + ko — p — B (r — ko) + a1 (r — ko) + r — ko
>—p'p+p,
—(r—ko) (ko—p—pB +o1) +ko(en +B')—2Bp+2p—r=<0.

Note that kg —p — B’ + a1 = 0, since this is a binomial coefficient. For given values
«; and B’ we consider the positive part ko (o7 + ') — 28'p of this inequality:

ko (051 + ,3/) —2B'p = ko1 + koB' — B'p— B'p
= kooy — B'p+ (ko —p) B’ = kooy — B'p — (p — ko) B'.

For the positive part to have maximum value, we need to take oy = p—1, 8/ =1,
and obtain

—(r—ko)(ko—=2)+ (kg —2)p+2p—r<0.
This inequality holds because p < r/2 < r — k. Thus, we have proved the validity

of (4.5.36).
Let us prove the last relation in the group, namely show that

(ko—p+pB +a)(r—k—a1+p)=(p+p —a1) (e +p). (4537
After expansion we obtain
(ko —p) (r — ko) — ko + a1p + B'ko — B'p + B/ (r — ko) — a1 ' + B
+a; (r—ko) —af + a1 > pay +pp’ + Bar + B —af —a1 B
Summation of similar terms yields

(ko —p) (r — ko) — arko + B'ko — B'p + B’ (r — ko) + a1 (r —ko) —pp’ > 0,
—(r—ko) (ko—p+ B + 1) + ko (a1 — ') + 2pB’ < 0.
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Note that ko—p+ B’ +a; > 0,1 —f’ > 0, since these are the binomial coefficients.
For given values «; and 8/, we consider the positive part ko (o; — 8) + 2pf’ of this
inequality:

ko (1 — B') + 2pB" = koor + pB' + pB’ — kop’ = koor + pp’ + (p — ko) B

For the positive part to have maximum value we need to take oy = p/2, 8’ = p/2,
then
—(r—ko)(ko—p+p/2+p/2)+k(p/2—p/2)+2p 7 =0,

—(r—ko) ko + k% < 0.

NSNfaS’

The last inequality holds because r = 2k.

Thus, we have proved the validity of (4.5.37). From the above arguments and
calculations, we see that the coefficients ¢, > 0, when 0 < p < r/2. These
arguments complete the proof. O

Applying the above proposition, from Proposition 4.5.3 we get that by 4, ,» = 0
forh + ko + 2m = ly. Thus, when k = 1 we have b, ,, = 0 for any weight degree /.
We have shown that the function f is holomorphic in a neighborhood of the
boundary point 0. From the conditions of the theorem, the function f extends
holomorphically to the intersection of D with each complex line passing through the
boundary point 0. Consequently, by Hartogs’ extension theorem [73] the function
f will continue holomorphically to the whole domain D C C?. These arguments

complete the proof of Theorem 4.5.1 in the two-dimensional case.
|

4.6 On a Boundary Analogue of Hartogs’ Theorem in a Ball

In Sect.4.1 we proved that a family of complex lines intersecting the germ of
a generic manifold y, is sufficient for holomorphic extension. In Sect.4.3 we
considered a family of complex lines passing through the germ of a complex
hypersurface, the germ of a generic manifold in a complex hypersurface, and the
germ of a real-analytic manifold of real dimension (rn — 1). In particular, in C? this
can be any real-analytic curve. Various other families are given in [5, 6, 12, 25]. We
emphasize here the papers [6, 25], which show that a family of complex lines passing
through a finite number of points arranged in some way is sufficient for holomorphic
extension. However this is only asserted for real-analytic or infinitely differentiable
functions defined on the boundary of a ball. So, Agranovskii and Globevnik showed
that, in C?, for real-analytic functions defined on the boundary of a ball just two
points lying in the closure of the ball are enough.
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4.6.1 Main Results

Let B = {z € C" : |z] < 1} be a unit ball in C" centered at the origin and let
S = 0B be the boundary of the ball. We recall we say that the function f € %(S)
has the one-dimensional holomorphic extension property along the family £, if
it has the one-dimensional holomorphic extension property along any complex line
l,» € £r, where [, is a complex line of the form (3.2.1).

Recall we will also say that the set £ is sufficient for holomorphic extension,
if the function f € %’(S) has the one-dimensional holomorphic extension property
along all complex lines in the family £, and the function f holomorphically extends
to B (i.e., f is a CR-function on S). In [13, 24, 49, 53] it is shown that for a class
of continuous functions given on the boundary of a ball, a family of complex lines
passing through finite points in the ball will be a sufficient family. Baracco was the
first to prove this result, which was earlier explicitly conjectured by Agranovskii
in [6]. Globevnik [24] suggested an alternative proof, even for the case when the
vertices lie outside the ball. Those results were obtained by completely different
methods.

Theorem A Suppose n = 2 and the function f({) € € (S) has the one-dimensional
holomorphic extension property along the family £y, . s, and the points a, ¢, d € B
do not lie on one complex line in C?, then f({) extends holomorphically into B.

We denote by <7 a set of points qy € B C C", k = 1,...,n + 1, lying outside
the complex hyperplane C".

Theorem B Let a function f() € €(S) have the one-dimensional holomorphic
extension property along the family £, then f(C) extends holomorphically into B.

4.6.2 The Example

Now we give an example based on Globevnik’s example, which shows that for

continuous functions on the boundary S of the family £, where <7 is a set of

points @, € B C C", k =1, ..., nis not enough for holomorphic extension.
Consider part of a complex hyperplane

I={,w)€eB: w=0},

inthe ball B = {(Z,w) € C": |Z|> + |w]> < 1}, where 7 = (z1,...,2,—1),w € C
k+2

and |2 = |z1]? + -+- + |zu—1|%. Then the function f = WT (k € Z, k > 0) has

the one-dimensional property of holomorphic extension from dB along the complex
line of the family £, which is smooth on 9B, but does not extend holomorphically
to B.
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Consider complex lines intersecting I':
ly ={,w)eC": 7/ =d +bt,w=ct, t € C}. (4.6.1)
These lines pass through the point (¢’,0) € T'. When |d’| < 1 the point (¢, 0) € B,

while for |a’| > 1 the point (a’, 0) ¢ B. Without loss of generality, we suppose that
|6')? + |c|> = 1. The intersection I, N B forms a circle

1> + (d. b)i+ (@ byt =1—|d]>, or |t+dD|]=1—|c]!|d|>. (4.62)

where (@', b') = a\by + -+ + ap—1by—1.
Indeed, since for complex lines of the form (4.6.1) on dB
1—1|d)?—={@, bt

E = = s
[+ (. b)

the function f on dB becomes

(1 + (a, b))

k+2
t .
= af =@y "

f:

1 _ |a/|2
(@.v)

The denominator of the fraction is equal to 0 at #p = Substituting this

point into expression (4.6.2), we obtain

(1—d'?)?

P +1—|d)?>0, if |d|<]1.

Therefore the point of the line /,, corresponding to fy lies outside the ball
B. So the function f holomorphically extends to I, N B. Consider the finite set
o ={ay,...,a,—1,0} € B, then there exists a complex hyperplane containing <7
We can suppose, that this is the hyperplane I'".

4.6.3 Complexification of the Poisson Kernel

Consider the invariant Poisson kernel [71, p. 48]

(1- IZIZ)" _ (1-(z 2)"

P, = Cp — = Cp o\ —\\/1°
GO = P T - e B (- @)

n—1)!
where ¢, = ( Zn”) Az =l + -+ 208
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If the function f(z) is .#-harmonic in B and continuous on B, then the integral
representation

F@) = [ 1OPC0 o). 463)
N
holds, where
do§) = 2 3 (1G] n i, @64
k=1

is the Lebesgue measure on S, d§ = d{y A - A dGy, dé‘[k] = dé‘l -A dé_‘k 1A
dCiy1 Ao A dé‘n The function F(z) extends on B as a continuous function and

the boundary values of the function F(z) coincides with f({), i.e., F (z)‘ = f(0).
s

Recall that an ./ -invariant harmonic function satisfies the Laplace equation [71,
pp- 55-56]

AF(z) =0,
where

0°F(z)

AF@) = 4(1— |2 Z(s,k V) G

Jjk=1

and Jj is the Kronecker symbol. The holomorphic functions in the ball B are ./ -
harmonic. Therefore, formula (4.6.3) is an integral representation for holomorphic
functions. Consider a complex line of the form

Ly=1{eC":t=z+bt teC} (4.6.5)

where z € C", b € CP" 1.
Consider a complexification of the Poisson kernel of the form

) (1= (zw)"
"1—(z0)"(1—(&w)"

It is obvious that P(z, {) = Q(z,Z, {). Introduce the function

0@z, w,{) = (4.6.6)
P(om) = /S FOQCw.0) do(?).

This function is holomorphic in the variables (z,w) in B x B C C?", because if
¢ € S and z,w € B, then the denominator in kernel (4.6.6) does not vanish. Note



4.6 On a Boundary Analogue of Hartogs’ Theorem in a Ball 207

that @(z,7) = F(z), and the derivatives

3a+ﬂ@ aa+ﬂF
= —, 4.6.7)
0z%owh | _;  0z%0zP
where
ge b alall+18l
0z owP R
ando = (vq,...,a,), B = (B1,...,Bs) are multi-indices, ||«| = a1 + -+ + @,
18Il = B1+ -+ Ba.

Proposition 4.6.1 Let the function f({) € €(S) have the one-dimensional holo-
morphic extension property along the family £y, then the integral

®&w@==£f@ﬂ%zwx)wﬂ0

D0, w)

has the properties @(0, w) = const and the derivatives e are polynomials

in w of degree not higher than |||

Proof Consider the derivative

aa-l—ﬂ ( 1 )
0z 9w \ (1= (2.))"(1 = (& w))"
Caplt?
= ( ( é—_>)n+||0¢||( <§7 W>)n+||/3|| ’ (4.6.8)
Calculate the derivative of Q(z, w, ¢)
0w D) _ c ot [(1 — (z,w))" 1 :|
oot Mamowr | = oy — o)’

It is clear that

5y, 0 P

_(fg) ozr 9z

O<y=«
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where y < o means that y; < @y, ..., ¥, < a,, and b, is some constant. Therefore
9" Q(z,w, )
az*
g’ 1 3’ .
= Cp Z by/aza_y,( 1 e ] n) W(l — (Z,W)) .
W (1= (. (1= (&w)) 9z

The derivatives

4

K14

g (1= {ew))" = DW= 1) (= Iy (1 = (2w 1 ",

Then

4

9 , /
a7 (1= em)| = DV n—1)- =y hw". (4.6.9)

=

Therefore formulas (4.6.8) and (4.6.9) imply

aaQ(o w, {') Z c, g'vl Y

O<y/<0t 1_ é‘ W)) '

I+ 0(0,w, )

32 owP is a sum of terms of the
w

From here we obtain, that the derivative

Ca,ﬁ,y,g é—_a_y/é_ﬁ_y// 5

form Ty for ||8|| < n and y” < y’. Therefore the derivative

BP0, w) .

“omowf is a linear combination of integrals with the coefficients depending on
w

w

é-a y ;-ﬁ Y’
/f(s‘) )n+”ﬁ” i do(©). (4.6.10)

The form do(¢) in the variables b and ¢, where { = bt, t € C will change as
follows [49]

n

do (bt) = izn|t|2”_2?dt/\ (Xn:(—l)k_lbk db[k]) A (Z(—l)k—liyk di;[k]).

k=1 k=1
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Since on the sphere S the equality 1 = || = |bt| holds, we have || = — and

- lznt|bl|2n dr A (Z( 1)k lbk db[k]) N (Xn:(—l)k_ll_)k dl_)[k])
k=1
= A(b) A d—t

By Fubini’s theorem we obtain

ga yé‘ _V
/f@ (€wy) TP do(©)

17 ”

Fel=ly" By
P
(1 —t(b,w))
/ ) o) ABI=ly”1
= Cp b f bt 77 dt
cpr! SNl t||a||_||y/||+l(l _ t(b,w>)n+”f5”—”)’ I
ABI=lall+1y 1=yl -1

o A 77 =V,
¢ /(CIP’” (b) Sﬂl()bf(bt) (1 t(b, W))’H’”ﬂ”_”)/ I dt 0

—¢, Ab b
c /C e [ e

it Bl > lleell (then I8 = ly”Il > lleell — [l¥’Il), and the function ————is
1 —t(b,w)
1 —
holomorphic in the closed disk {t eC: |1 < m}, i.e.,, in B N lyp. In fact, the
1 _
singular point 7y = o) does not lie in the disk B N Iy, since |(b, w)| < |b]|w]
W
1
and therefore |1y > m if [w| < 1. Hence by virtue of (4.6.10)
* D0, w)
R 4.6.11
9z dwh ( )

for [B]] > [ler]].
Therefore by the Taylor formula for the function @(z, w) at the point (0,0) we

3B (0, w)

get that @(0,w) = const and the derivatives T are polynomials in w of

degree not higher than ||«/|. O
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Corollary 4.6.1 Under the hypotheses of Proposition 4.6.1 the equality

“tPF(0,0)
0z¢9z8
holds for || B]| > |la]|.

Proof Substituting w = Zz into Eq.(4.6.11) and using Eq. (4.6.7), we obtain the
desired result. O

4.6.4 The Application of Automorphisms of a Ball

Recall that the of a ball ¢, (u) transforming the point a into 0, and vice versa, has
the form

a— (u,Zz)a_ V1= |a|2(u - (u,c—z)a)

(a,a) (a,a)
1 —(u,a)

z=@.(u) =

and ¢,(u) is an involution, i.e., ¢! = ¢, [71, p. 34]. Note that (¢u(u), ga(v)) is
the automorphism of B x B, taking the point (a, @) to (0, 0) and vice versa.

Lemma 4.6.1 The automorphism ¢ (1) of a ball B transforms the complex line I. 4,
passing through points c,d € B to a complex line ly 4, passing through points 0 and
a=¢.(d) €B.

Proof Let us show that the automorphism of a ball preserves complex lines. In fact,

letu = ¢ + (d — c)t. We compute (u, c) = |c|*> +1({d.¢) —|c|?), then

c(le]* = (d.e)) — V1 = |c]>(d|c|* = (d.c)c)

le2(1 = le? = #((d.€) — |c]*))

)

ge(c+(d—o)p) =1t

and the singular point of this function does not lie in B. For t = 0 we get ¢, (c +
d- c)O) = ¢.(c) =0, and for t = 1 we get

c(|c|2 —{d, E)) — 1= |c|2(d|c|2 —{d, E)c)
(1 - (d.c))

a=g¢(c+d—0)l)=g(d) =

3

and for other points ¢ it takes the form

1g
ey — €2t7

Pe (C +(d— C)t) =
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181 €121

where g is some vector of C". We put z; = ,thent = —— and
e — eyt g1 + exzs
1g; ez . .
Z = & _ frasl . Therefore ¢, (c + (d — c)t) defines a complex line passing
el —ex  eg
through the points 0 and a. O

As shown in [71, p. 52, Remark] the following equality

do(¢.(n)) = P(a,n) do(n), nes

holds and using Eq. (4.6.6), we obtain

do(p.(n)) = P(a,n) do(n) = Q(a,a,n)do(n), nes.

By Theorem 2.2.2 [71, p. 34] the automorphism ¢, («) is a homeomorphism of the
ball B to itself and homeomorphisms S — S. Also by Theorem 3.3.5 [71, p. 50], the
equality

P(u,
P(gu(u). ¢a(n)) = PEZ Zi
holds. Therefore
O(@a(w), pa (@), pa(n)) = % (4.6.12)

The manifold v = i is generic in C?", and the functions from Eq. (4.6.12) are real-
analytic. Hence

O(@a(u), a(v). gu(n)) = %'

Denote the function
Dufew) = D(¢u.030) = [ FOQ(00).430).8) do0)

Make the change { = ¢,(n) and denote f(¢,(n)) = f.(n). We obtain

P(z.w) = /Sf(%(fl))Q(%(u), 9a(v). 9a(n)) do(¢a(1))

O(u,v,n)0(a,a,n)
Q(a,a,n)

- /S £ D0, v, ) do(n) = Bu(u,v).  (46.13)

- /S Flgulm) do ()
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Proposition 4.6.2 Let the function f({) € €(S) have the one-dimensional holo-
morphic extension property along the family £, a € B, then ®(a, w) = const and

Lo 0YP(a,w) o .
the derivatives a9 polynomials in ¢z (w) of degree not higher than ||«
bl ’

Proof With the help of the automorphism ¢, we translate the point a to 0. Then, by
Proposition 4.6.1, @,(0, v) = const. Using Eq. (4.6.13) we obtain
@(a, go,;(v)) = const, i.e., @(a, w) = const. Similarly, from Proposition 4.6.1 and

%P (a,w)

equality (4.6.13) we get that the derivatives e are polynomials in ¢;(w) of
degree not higher than | «/|. O

Represent the function @(z, w) as a sum of homogeneous polynomials in z and w.
Expand Q(z, w, {) in a power series (z, {), (¢, w). Since

(1 _ ch+k 1 z, )

(l—g“w chﬂlfw

(the series under consideration converges absolutely for { € S, z,w € B, and
uniformly on § x K, where K is an arbitrary compact set in B x B), therefore

0z w, 0)

n(1 = (e.w "ZZCn+k 1Crtim /S FO 2 DX wlda (D). (4.6.14)

k=0 1=0

The integral / F(©O)(z. &), w)'do (¢) is a homogeneous polynomial with the

s
degree of homogeneity k on z and / on w. Multiplying the sum from equality (4.6.14)
by the factor (1 — (z,w))" and regrouping the terms we find

Dw) = Y Puz.w), (4.6.15)

k=0

where Py ;(z, w) are the homogeneous holomorphic polynomials with the degree of
homogeneity & in z and / in w, and the double series converges absolutely in B x B
and uniformly on any compact set in B x B.

Theorem 4.6.1 Let the function f({) € %(S), the point a € B and the function
D(z,w) satisfy the conditions such that ®(0,w) = const, and ®(a,w) = const,
3% P(0,w)

pE” be a polynomial on w of degree not higher than ||« ||, then for any fixed z,
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belonging to the complex line Iy, = {z € C" : z = at, |t| < 1} it is true that

P d(z,w)
awh

Proof We represent the function @(z, w) in the form (4.6.15):

®(z,w) = conston w, i.e., =0at|B| > 0.

D(z,w) = Z Pri(z,w).

k=0

By the hypothesis expansion (4.6.15) takes the form

D(z,w) = Y Pz w),

k>1>0
0+ ®(0,0)

0z% owP

o
Introduce the functions @ (z, w) = >_ Py, (z, w), then
I=k

since the derivatives = 0 under ||B|| > ||«

Pz.w) =) Di(z.w). (4.6.16)
k=0

Consider series (4.6.15) to be a double series converging absolutely in B x B and
uniformly on compact subsets of Bx B, and series (4.6.16) is the same as in (4.6.15).

From the form of the series @(z, w) we get & (1z,w) = tkék(z, w) for each
t € C. By the theorem’s hypothesis

o
®(0.w) = Po(0,w) = Y Po,(0.w) = const (4.6.17)
1=0
and
o0
P(a,w) = Z ®r(a,w) = const.
k=0
Consider
o
D(at,w) = Y Fdi(a.w). (4.6.18)
k=0
Calculate

m

%@(at, w) = m!®,(a,w) + -+ k(k—1)---(k—m+ D" D (a, w) + - - .
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Calculate the same derivative as the derivative of a composite function

a" “D(at,w) |,
d?¢(a[,W) = Z Td .

llerll=m

Equating the derivatives, we obtain

)3 8a¢;:t W) o Zk(k—l) = m + D" D(a, w). 4.6.19)

lecll=m
- . : d"

Substituting + = 0 into Eq.(4.6.19) we obtain that i @0,w) = ml®,(a,w)
is a polynomial of degree not higher than m in w, since the left-hand side of this
equation is a polynomial of degree not higher than m in w by the hypothesis of the
theorem. For m = 0 we get (0, w) = ®y(a, w) = const and from (4.6.17) we have
@(0,w) = Po(a,w) = Po(0, w).

In Eq. (4.6.18) we substitute = 1 and obtain

o0
P(a,w) = Z ®r(a,w) = const.
k=0

Since P(a,w) = Z Pyri(a,w) is a polynomial in w of degree not higher than &,
I=k

o
then Z Pyi(a,w) = Pii(a,w). Therefore
I=k

o0 o
const = @(a,w) = Z Dr(a,w) = ZPk,k(a,w).
k=0 k=0

Hence Py (a, w) = 0 for k > 0. From here @;(a, w) = 0 for k > 0, so from (4.6.18)
P d(at, w)
owb
Corollary 4.6.2 Let the function f({) € € (S) have the one-dimensional holomor-
phic extension property along the family £y 51, then ®(z,w) = const for points z
P D(z, w)
owP
Proof follows from Proposition 4.6.1 and Theorem 4.6.1. O

we get @(at, w) = const and =0at|pB] > 0. O

belonging to the complex line ly, N B, i.e., =0at|B]| > 0.
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Corollary 4.6.3 Under the hypotheses of Corollary 4.6.2 the equality

PF(z) _
-

holds for all points z € Iy, N B and ||B| > 0.

Theorem 4.6.2 Let the function f({) € € (S) have the one-dimensional holomor-

phic extension property along the family £ 4 and c,d € B, then CD(C + (d —

3’3@(6 + (d—o)t, w)
owP

Proof Suppose ¢,d € B. Consider the automorphism ¢.(z) mapping the point ¢

to 0, and vice versa, i.e., ¢.(c) = 0 and ¢.(0) = c. Let the point d under this

automorphism move to the point a = ¢.(d). Denote f.(¢) = f(¢.(¢)) and

c)t,w) = constonw for|t| <1, i.e., =0at|p| > 0.

.(cw) = /S £()0G w0 do(©).

From Eq. (4.6.13) we have ®@(z,w) = CDC(goc(z), qog.(w)). Proposition 4.6.1 implies
that @ (0, z(w)) = const, i.e., @(c, w) = const.

Let us show that an automorphism of the ball preserves complex lines. In fact,
letz = ¢ + (d — ¢)t. We compute (z,¢) = |c|* + #({d. ¢) — |c|?), then

c(lel* = (d.e)) — V1 —|c[>(d|c|* — (d, E‘)C).

le2(1 = [ef? = 1((d. €) — |c[*)

(pc(c + (d - c)t) =t

For t = 0 we get goc(c +(d— c)O) = ¢.(c) =0, fort =1 we get

c(le]* = (d.e)) — V1 = |c]*(d|c|* — (d.c)c)

a=gc+d—0)l) =g(d) =

lc[2(1 = (d. ) ’
and for other points ¢ it takes the form
(p.(c+(d—c)t) - _8
¢ ey — €2t7
, e
where g is the vector of C". We take z; = 81 , then t = il , and
el — et 81+ ey
t .
z = & _ kst . Therefore ¢, (c +(d- c)t) defines a complex line passing
e; — et €181

through the points 0 and a.
By Lemma 4.6.1, the complex line /. 4 transforms to a complex line /y ,. Hence by
Theorem 4.6.1 we have @.(ct, w) = const and likewise, @ (c +(d—o)t, w) = const.
|
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Corollary 4.6.4 Under the hypotheses of Theorem 4.6.2 the equality

P F(z) _
8Zﬁ z=c+(d—c)t_

holds at ||B|| > 0.

4.6.5 Proof of the Main Results

Theorem 4.6.3 Suppose n = 2 and the function f({) € €(S) has the one-
dimensional holomorphic extension property along the family £, . 1y, and the points
P D(z,w)

a, ¢, d € B do not lie on one complex line in C?, then P
W

= 0foranyz € B
and ||| > 0, i.e., F(z) is holomorphic in B.

Proof We move the point d by automorphism ¢ to 0. The conditions for the points
0, ¢(a) and @(c) will remain the same. Therefore the points ¢(a) and ¢(c) again are
denoted by a and c.

Let z be an arbitrary point of the line /,.. Then by Theorem 4.6.2 we have
FD(E,w)

o = 0 at ||B]] > 0, and by Theorem 4.6.1 (@ satisfies the conditions
w

P D(z,w) . . .
of Theorem 4.6.1 at zero), then B 0 for all z € Iz, i.e., for all points z in
w
some open set in B. Substituting w = Z into this equation and using equality (4.6.7),
’IF
we get Tlgz) = 0. Since the points 0, a, ¢ do not lie on one complex line, we have
Z
PF(2) . . :
—F = 0 for all points z in some open set and consequently, at all points of the
Z
oF
ball B due to the real-analyticity of the function F(z). In particular, % = 0 for
%
allze Bandj = 1,...,n, therefore f({) extends holomorphically into B. O

Theorem 4.6.3 implies that in a ball B C C? a sufficient set for a continuous
function defined on the boundary of the ball is the set £¢,.4, where a,c,d are
arbitrary points of the ball not lying on one complex line.

Denote by o7 the set of points ay € B C C", k = 1,...,n + 1 not lying on the
complex hyperplane C".

Theorem 4.6.4 Suppose f({) € €(S) has the one-dimensional holomorphic
P d(z, w)

extension property along the family £./, then TP
w

1Bl > 0 and f (&) extends holomorphically into B.

= 0 for any z € B and
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Proof The proof is by induction on n, based on Theorem 4.6.3 (n = 2). Suppose
the theorem is true for all dimensions k < n. Without loss of generality, we assume
ay+1 = 0 when k = n,.

Consider a complex plane I" passing through the points ay, ..., a,. By assump-
tion, it has the dimension n — 1 and O ¢ I". The intersection I" N B is some ball
in C"~'. The function f | rns 18 continuous and has the property of holomorphic
extension along the family £, where </ = {aj,...,a,}. By the induction
Fo(,w)

owP

7/ € I with the point 0 by Theorem 4.6.1 we get

assumption = 0 at ||8]] > 0 forall 7 € I' N B. Connecting points

b
FPEW) 6o 18] > 0 for
owp

some open set in B. Hence, as in Theorem 4.6.3, F(z) is holomorphic in B. O

Corollary 4.6.5 Under the hypotheses of Theorem 4.6.4 the equality

PF(z) _
0z

holds for any z € B and ||B|| > 0 and f({) extends holomorphically into B.
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