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Foreword

This monograph is devoted to integral representations for holomorphic functions
in several complex variables such as: Bochner–Martinelli, Cauchy–Fantappiè,
Koppelman, etc. and their applications to analytic continuation functions with
a one-dimensional property of holomorphic extension. This book also contains
multidimensional boundary analogues of the Morera theorem.

Tel-Aviv, Israel Lev Aizenberg
June 2015
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Preface

The Bochner–Martinelli integral representation for holomorphic functions of several
complex variables appeared in the works of Martinelli (1938) and Bochner (1943).
It was the first essentially multidimensional representation with integration taking
place over the whole boundary of the domain. This integral representation has a
universal kernel (not depending on the form of the domain), like the Cauchy kernel
in C1. However, in Cn when n > 1, the Bochner–Martinelli kernel is harmonic, but
not holomorphic. For a long time, this circumstance hindered the wide application
of the Bochner–Martinelli integral in multidimensional complex analysis.

Interest in the Bochner–Martinelli representation grew in the 1970s in connection
with the increased attention to integral methods in multidimensional complex anal-
ysis. Moreover, it turned out that the very general Cauchy–Fantappiè representation
suggested by Leray is easily obtained from the Bochner–Martinelli representation
(Khenkin). Koppelman’s representation for exterior differential forms, which has
the Bochner–Martinelli representation as a special case, emerged at the same time.

The Cauchy–Fantappiè and Koppelman representations were extensively used
in multidimensional complex analysis: yielding good integral representations for
holomorphic functions, explicit solution of the N@-equation and estimates of this
solution, uniform approximation of holomorphic functions on compact sets, etc.

In the early 1970s, it was shown that, notwithstanding the non-holomorphicity
of the kernel, the Bochner–Martinelli representation holds only for holomorphic
functions. In 1975, Harvey and Lawson obtained a result for odd-dimensional
manifolds on spanning by complex chains; the Bochner–Martinelli formula lies
at its foundation. In the 1980s and 1990s, the Bochner–Martinelli formula was
successfully exploited in the theory of function of several complex variables: in
multidimensional residues, in complex (algebraic) geometry, in questions of rigidity
of holomorphic mappings, in finding analogues of Carleman’s formula, etc.

The school of multidimensional complex analysis promoted by L.A. Aizenberg
and A.P. Yuzhakov in Krasnoyarsk in the 1960s last century was involved in
the development of the theory of integral representations and residues and their
applications. A series of monographs on integral representations and residues by
L.A. Aizenberg, Sh.A. Dautov, A.P. Yuzhakov, A.K. Tsih, A.M. Kytmanov, and
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viii Preface

N.N. Tarkhanov were published in the 1980s and 1990s. Over the 20 years since
then, new results have been obtained and new areas of research explored.

Our monograph summarizes the results obtained by the authors in recent years,
including in particular the studies on different families of complex lines and curves
sufficient for analytic continuation of functions from the boundary of a bounded
domain, multidimensional boundary analogues of the Morera theorem.

In a sense, this monograph is a sequel to an earlier book of one of the authors
[45]. In any case, the first two chapters of our book are almost entirely taken from
[45].

The results of the monograph were delivered as part of specialized courses
at the Institute of Mathematics and Computer Science of the Siberian Federal
University between 1995 and 2015.

Chapters are numbered throughout the monograph, sections are numbered throu-
ghout the chapters. All statements, comments, formulas, and examples are tied to
the number of the respective section.

Krasnoyarsk, Russia Alexander Kytmanov
June 2015 Simona Myslivets
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Chapter 1
Multidimensional Integral Representations

Abstract The theory of integral representations is important in multidimensional
complex analysis. It continues to develop rapidly and is finding new applications
in multidimensional complex analysis, as well as in other areas of mathematics
[see, for example, monographs Aizenberg and Yuzhakov (Integral Representations
and Residues in Multidimensional Complex Analysis. AMS, Providence, 1983),
Khenkin (Several Complex Variables I. Encyclopedia of Mathematical Sciences,
vol. 7, pp. 19–116. Springer, New York, 1990), Krantz (Function Theory of Several
Complex Variables, 2nd edn. Wadsworth & Brooks/Cole, Pacific Grove, 1992),
Kytmanov (The Bochner–Martilnelli Integral and Its Applications. Birkhäuser
Verlag, Basel, 1995), Rudin (Function Theory in the Unit Ball of C

n. Springer,
New York, 1980), Shabat (Introduction to Complex Analysis. Part 2: Functions of
Several Complex Variables. AMS, Providence, 1992), Vladimirov (Methods of the
Theory of Functions of Many Complex Variables. MIT Press, Cambridge, 1966)].
This chapter provides those integral representations, which are then used in other
chapters. Of course, we do not have space to mention all integral formulas known
at this time. We leave out of the scope of this book the formulas of integration by
manifolds of smaller dimension (such as the multiple Cauchy formula). The theory
of multidimensional residues will be used just a little in the final chapters. We will
only dwell on the formulas where integration is performed over the entire boundary
of domain. The presentation is designed to show the logic of proceeding from the
classical Bochner–Green formula to the Khenkin–Ramirez formula that has found a
number of important applications in multidimensional complex analysis.

1.1 The Bochner–Green Integral Representation

We consider an n-dimensional complex space Cn with the variables z D .z1; : : : ; zn/.
If z and w are points in Cn, then we write

hz;wi D z1w1 C � � � C znwn; jzj D
p

hz; Nzi;

© Springer International Publishing Switzerland 2015
A.M. Kytmanov, S.G. Myslivets, Multidimensional Integral Representations,
DOI 10.1007/978-3-319-21659-1_1
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2 1 Multidimensional Integral Representations

where Nz D .Nz1; : : : ; Nzn/. The topology in Cn is given by the metric .z;w/ 7! jz � wj.
If z 2 Cn, then

Re z D .Re z1; : : : ;Re zn/ 2 R
n; Im z D .Im z1; : : : ; Im zn/ 2 R

n:

We write Re zj D xj and Im zj D yj, i.e., zj D xj C iyj for j D 1; : : : ; n.
Thus Cn ' R2n. Orientation of Cn is determined by the coordinate order
.x1; : : : ; xn; y1; : : : ; yn/. Accordingly, the volume form dv is given by

dv D dx1 ^ � � � ^ dxn ^ dy1 ^ � � � ^ dyn D dx ^ dy

D
� i

2

�n
dz ^ dNz D

�
� i

2

�n
dNz ^ dz:

As usual, a function f on an open set U � Cn belongs to the space C k.U/,
i.e., f 2 C k.U/, if f is k times continuously differentiable in U as 0 � k � 1, and
C 0.U/ D C .U/. If M is a closed set in Cn, then f 2 C k.M/, when f extends to some
neighborhood U of M as a function of class C k.U/. We will also consider the space
C r.U/ or C r.M/ when r � 0 is not necessarily an integer. A function f 2 C r.U/ if
it lies in the class C Œr�.U/, where Œr� is the integer part of r, and all its derivatives of
order Œr� satisfy the Hölder condition on U with the exponent.r � Œr�/.

The space O.U/ consists of those functions f that are holomorphic on the
open set U. When M is a closed set, O.M/ consists of those functions f , that
are holomorphic in some neighborhood of M (a different neighborhood for each
function). A function f belongs to the space A .U/, if f is holomorphic in U and
continuous on the closure U, i.e., f 2 O.U/\ C .U/.

We will also consider the Sobolev space W s.U/ D W s
2 .U/, s 2 N. This space

consists of the measurable functions f 2 L 2.U/ such that all generalized derivatives
@˛f of order up to s lie in the Lebesgue space L 2.U/.

As usual, we will denote D.U/ the space of infinitely differentiable functions
with compact support on the open set U with the inductive limit topology, and
E .U/ D C1.U/ will denote the space of infinitely differentiable functions on U
with the topology of uniform convergence of the functions and all their derivatives
on compact subsets of U.

A domain D in Cn has a boundary @D of class C k (we write @D 2 C k), if

D D fz 2 C
n W �.z/ < 0g;

where � is the real-valued function of class C k in some neighborhood of the closure
of D, and the differential d� ¤ 0 on @D. If k D 1, then we say that D is a domain
with a smooth boundary. We will call the function � a defining function for the
domain D. The orientation of the boundary @D is induced by the orientation of D.



1.1 The Bochner–Green Integral Representation 3

A domain D with a piecewise-smooth boundary @D will be understood as a
smooth polyhedron, that is, a domain of the form

D D fz 2 C
n W �j.z/ < 0; j D 1; : : : ;mg;

where the real-valued functions �j are class C 1 in some neighborhood of the closure
D, and for every set of distinct indices j1; : : : ; js we have d�j1 ^ � � � ^ d�js ¤ 0 on
the set fz 2 Cn W �j1 .z/ D � � � D �js.z/ D 0g. It is well known that Stokes’ formula
holds for such domains D and surfaces @D.

We denote a ball of radius " > 0 with the center at the point z 2 Cn by

B.z; "/ D f� 2 C
n W j� � zj < "g;

and its boundary by S.z; "/, i.e., S.z; "/ D @B.z; "/.
Consider the exterior differential form (the Bochner–Martinelli kernel) U.�; z/

of type .n; n � 1/ given by

U.�; z/ D .n � 1/Š

.2�i/n

nX

kD1
.�1/k�1 N�k � Nzk

j� � zj2n
d N�Œk� ^ d�; (1.1.1)

where d N�Œk� D d N�1 ^ � � � ^ d N�k�1 ^ d N�kC1 ^ � � � ^ d N�n, d� D d�1 ^ : : : ^ d�n. When

n D 1, the form U.�; z/ reduces to the Cauchy kernel
1

2�i

d�

� � z
. It is clear that the

form U.�; z/ has the coefficients that are harmonic in Cn n fzg, and it is closed with
respect to �, i.e., d�U.�; z/ D 0.

Let g.�; z/ be a fundamental solution to the Laplace equation:

g.�; z/ D

8
<̂

:̂

� .n � 2/Š
.2�i/n

1

j� � zj2n�2 ; n > 1;

1

2�i
ln j� � zj2; n D 1:

(1.1.2)

Then

U.�; z/ D
nX

kD1
.�1/k�1 @g

@�k
d N�Œk�^ d� D .�1/n�1@�g ^

nX

kD1
d N�Œk�^ d�Œk�; (1.1.3)

where the operator @ is given by

@ D
nX

kD1
d�k

@

@�k
:



4 1 Multidimensional Integral Representations

We will write the Laplace operator� in the following form:

� D
nX

kD1

@2

@�k@ N�k

D 1

4

nX

kD1

�
@2

@x2k
C @2

@y2k

�
D 1

4
�R:

If �k D xk C iyk, then

@

@�k
D 1

2

�
@

@xk
� i

@

@yk

�
;

@

@ N�k

D 1

2

�
@

@xk
C i

@

@yk

�
:

When f 2 C 1.U/, we define the differential form �f via

�f D
nX

kD1
.�1/nCk�1 @f

@ N�k

d�Œk� ^ d N�:

Theorem 1.1.1 (Green’s Formula in a Complex Form) Let D be a bounded
domain in Cn with a piecewise-smooth boundary, and let f 2 C 2.D/. Then

Z

@D
f .�/U.�; z/ �

Z

@D
g.�; z/�f .�/C

Z

D
g.�; z/�f .�/ d N� ^ d�

D
(

f .z/; z 2 D;

0; z … D;
(1.1.4)

where the integral in (1.1.4) converges absolutely.

Proof Since

d�
�
f .�/U.�; z/� g.�; z/�f .�/

�C g.�; z/�f d N� ^ d� D 0; (1.1.5)

Stokes’s formula implies that (1.1.4) holds for z … D. If z 2 D, then from (1.1.5)
and Stokes’ formula we obtain that

Z

@D
f .�/U.�; z/ �

Z

@D
g.�; z/�f .�/C

Z

DnB.z;"/
g.�; z/�f .�/ d N� ^ d�

D
Z

S.z;"/
f .�/U.�; z/�

Z

S.z;"/
g.�; z/�f .�/
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for sufficiently small positive ". When n > 1

ˇ
ˇ
ˇ̌
ˇ

Z

S.z;"/
g.�; z/�f .�/

ˇ
ˇ
ˇ̌
ˇ

� .n � 2/Š

.2�/n"2n�2

Z

S.z;"/
j�f j � C";

i.e.,

lim
"!C0

Z

S.z;"/
g.�; z/�f .�/ D 0:

(The argument for n D 1 is analogues.) However,

Z

S.z;"/
f .�/U.�; z/ D .n � 1/Š

.2�i/n"2n

Z

S.z;"/
f .�/

nX

kD1
.�1/k�1. N�k � Nzk/d N�Œk� ^ d�

D .n � 1/Š
.2�i/n"2n

Z

B.z;"/

"

nf .�/C
nX

kD1

@f

@ N�k

. N�k � Nzk/

#

d N� ^ d�:

Since

lim
"!C0

1

"2n

Z

B.z;"/

nX

kD1

�
@f

@ N�k

. N�k � Nzk/

�
d N� ^ d� D 0;

we have,

lim
"!C0

Z

S.z;"/
f .�/U.�; z/

D lim
"!C0

nŠ

.2�i/n"2n

Z

B.z;"/
f .�/d N� ^ d� D lim

"!C0
nŠ

�n"2n

Z

B.z;"/
f .�/dv D f .z/

(by the mean-value theorem). ut

1.2 The Bochner–Martinelli Integral Representation

Let us formulate some consequences of the Bochner–Green formula (1.1.1) for
various classes of functions f .

Corollary 1.2.1 (Bochner [16]) Let D be a bounded domain in Cn with a
piecewise-smooth boundary, and let f be a harmonic function in D of class C 1.D/.
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Then

Z

@D
f .�/U.�; z/�

Z

@D
g.�; z/�f .�/ D

(
f .z/; z 2 D;

0; z … D:
(1.2.1)

Corollary 1.2.2 (Koppelman [35]) Let D be a bounded domain in Cn with a
piecewise-smooth boundary, and let f be a function in C 1.D/. Then

Z

@D
f .�/U.�; z/�

Z

D

N@f .�/ ^ U.�; z/ D
8
<

:

f .z/; z 2 D;

0; z … D;
(1.2.2)

where

N@ D
nX

kD1
d N�k

@

@ N�k

;

and the integral in (1.2.2) converges absolutely.

Formula (1.2.2) is the Bochner–Martinelli formula for smooth functions.

Proof Suppose first that f 2 C 2.D/. We transform the integral

Z

D

N@f .�/ ^ U.�; z/ D
Z

D

nX

kD1

@f

@ N�k

@g

@�k
d N� ^ d� D

Z

D
@�g ^ �f

D
Z

D
d�.g�f /�

Z

D
g�f d N� ^ d� D

Z

@D
g�f �

Z

D
g�f d N� ^ d�

(here we have applied Stokes’s formula, since all the integrals converge absolutely).
Then for z 2 D, formula (1.1.4) implies that

Z

D

N@f .�/ ^ U.�; z/ D
Z

@D
f .�/U.�; z/ � f .z/:

Now if f 2 C 1.D/, we obtain (1.2.2) by approximating f (in the metric of C 1.D/)
by functions of class C 2.D/. ut
Corollary 1.2.3 (Bochner [16] and Martinelli [62]) If D is a bounded domain in
Cn with a piecewise-smooth boundary, and f is a holomorphic function in D of class
C .D/, then

Z

@D
f .�/U.�; z/ D

8
<

:

f .z/; z 2 D;

0; z … D:
(1.2.3)
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Formula (1.2.3) was obtained by Martinelli, and later separately by Bochner by
different methods. It is the first integral representation for holomorphic functions in
Cn where the integration is carried out over the whole boundary of the domain. By
now this formula has become classical and found its place in many textbooks on
multidimensional complex analysis (see, for example, [9, 39, 45, 69, 71, 73, 81]).

Formula (1.2.3) reduces to Cauchy’s formula when n D 1, but unlike Cauchy’s
formula, the kernel in (1.2.3) is not holomorphic in z and � when n > 1. By splitting
the kernel U.�; z/ into real and imaginary parts, it is easy to show that

Z

@D
f .�/U.�; z/

is the sum of the double-layer potential and the tangential derivative of a single-layer
potential. Namely, Martinelli observed that if two continuous vector fields �.�/ and
s.�/ are chosen on the boundary of a bounded domain, provided � D is (� is the
field of outer unit normals to @D), then the restriction of the kernel U.�; z/ on @D
coincides with

�
@

@�
C i

@

@s

�
g.�; z/d	:

Consequently, the Bochner–Martinelli integral inherits some of the properties
of the Cauchy integral and some of the properties of the double-layer potential. It
differs from the Cauchy integral in not being a holomorphic function, and it differs
from the double-layer potential in having a somewhat worse boundary behavior. At
the same time, it establishes a relation between harmonic and holomorphic functions
in Cn when n > 1.

Formula (1.2.2) implies the jump theorem for the Bochner–Martinelli integral.
Let D be a bounded domain in Cn with piecewise-smooth boundary, and let f be
a function in C 1.D/. We consider the Bochner–Martinelli integral

Mf .z/ D
Z

@D
f .�/U.�; z/; z … @D: (1.2.4)

We will write MCf .z/ for z 2 D and M�f .z/ for z … D. The function Mf .z/ is
a harmonic function for z … @D and Mf .z/ D O.jzj1�2n/ as jzj ! 1.

Corollary 1.2.4 Under these conditions the function MCf has a continuous exten-
sion on D, the function M�f has a continuous extension on Cn n D and

MCf .z/ � M�f .z/ D f .z/; z 2 @D: (1.2.5)

Formula (1.2.5) is the simplest jump formula for the Bochner–Martinelli integral.
There exist many jump theorems for different classes of functions: Hölder functions
[60], continuous functions [19, 30], integrable functions [42, 43], distributions [18],
hyperfunctions [54].
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Later on we will need formula (1.2.3) for the Hardy spaces H p.D/, so we now
recall some definitions [34, 76]. Let D be a bounded domain and suppose that @D is
a connected Lyapunov surface, i.e., @D 2 C 1C˛ , ˛ > 0. It is known that the Green
function (for the Laplace equation) G.�; z/ has a good boundary behavior in such
domains: for fixed z 2 D, the function G.�; z/ 2 C 1C˛.D/.

We say that a holomorphic function f belongs to H p.D/ (where p > 0), if

sup
">0

Z

@D
jf .� � "�.�//jp d	 < 1;

were d	 is the surface area element on @D and �.�/ is the outer unit normal vector
to the surface @D. A holomorphic function f belongs to H 1.D/, if sup

D
jf .z/j < 1.

The class H p.D/ may also be defined in the following way. Let domain D D
fz 2 Cn W �.z/ < 0g for the defining function �, and let D" D fz 2 D W �.z/ < �"g
for " > 0. A holomorphic function f 2 H p.D/, if

sup
">0

Z

@D"

jf .�/jp d	" < 1:

As is shown in [76], this definition does not depend on the choice of the smooth
defining function �.

Corollary 1.2.5 If p � 1 then formula (1.2.3) holds for the function f 2 H p.D/.

Proof If f 2 H p.D/ for p � 1, then f has a normal boundary values almost
everywhere on @D (see [34, 76]) producing a function of class L p.@D/ (we denote
these boundary values again by f ). Moreover, the function f can be reconstructed in
D from its boundary values by’s

f .z/ D
Z

@D
f .�/P.�; z/ d	;

(where P.�; z/ is the Poisson kernel for D). Since the Green function G.�; z/ D
g.�; z/C h.�; z/, where for fixed z 2 D the function h.�; z/ is harmonic in D of class
C 1C˛.D/, we have

P.�; z/ d	 D U.�; z/
ˇ
ˇ
@D

C
nX

kD1
.�1/k�1 @h

@�k
d N�Œk� ^ d�

ˇ
ˇ
@D
:

Since the differential form

nX

kD1
.�1/k�1 @h

@�k
d N�Œk� ^ d�
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is closed, we have

Z

@D
f .�/

nX

kD1
.�1/k�1 @h

@�k
d N�Œk� ^ d�

D
Z

D
f .�/d

 
nX

kD1
.�1/k�1 @h

@�k
d N�Œk� ^ d�

!

D 0:

Consequently, formula (1.2.3) holds for f 2 H p.D/. ut

1.3 The Cauchy–Fantappiè Integral Representation

1.3.1 The Leray (Cauchy–Fantappiè) Integral Representation

We start by noting that the Cauchy–Fantappiè formula, which was obtained by Leray
[58, 59], can be derived from the Bochner–Martinelli formula (1.2.3).

Let D be a bounded domain with a piecewise-smooth boundary, and suppose
that for a fixed point z 2 D there is defined on @D a continuously differentiable
vector-valued function


.�/ D �

1.�/; : : : ; 
n.�/

�

such that

nX

kD1
.�k � zk/
k.�/ D 1; � 2 @D:

Theorem 1.3.1 (Leray) Every function f 2 A .D/ satisfies the equation

f .z/ D .n � 1/Š

.2�i/n

Z

@D
f .�/!0.
/ ^ d�; z 2 D; (1.3.1)

where

!0.
/ D
nX

kD1
.�1/k�1
k d
Œk�: (1.3.2)

Proof Khenkin’s proof goes as follows. In the space C2n of the variables

.
; �/ D .
1; : : : ; 
n; �1; : : : ; �n/
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consider the analytic hypersurface

Lz D
n
.
; �/ 2 C

2n W
nX

kD1
.�k � zk/
k.�/ D 1

o
;

on which the form !0.
/ ^ d� is closed. The two cycles

�1 D f.
; �/ W � 2 @D; 
j D . N�j � Nzj/j� � zj�2; j D 1; : : : ; ng

and

�2 D f.
; �/ W � 2 @D; 
j D 
j.�/; j D 1; : : : ; ng

in Lz are homotopic in Lz, the homotopy being given by the formula

Q
j D t
N�j � Nzj

j� � zj2 C .1 � t/
j.�/; 0 � t � 1:

That is, these are homologous cycles. Consequently,

Z

�1

f .�/!0.
/ ^ d� D
Z

�2

f .�/!0.
/ ^ d�

when f is a holomorphic function. But

!0
 N�1 � Nz1

j� � zj2 ; : : : ;
N�n � Nzn

j� � zj2
!

D .2�i/n

.n � 1/Š
U.�; z/:

Hence (1.3.1) follows. ut
Differential form (1.3.2) is called the Leray form. The Cauchy–Fantappiè

representation has turned out to be very useful, and it has many applications in
multidimensional complex analysis.

1.3.2 The Khenkin–Ramirez Integral Representation

The bounded domain D is called a strongly pseudo-convex domain if there exists
a neighborhood U � D and a real-valued function � 2 C 2.U/ such that

D D fz 2 U W �.z/ < 0g;
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where grad � ¤ 0 on @D and the function � is a strongly plurisubharmonic function
in U, i.e., the inequality

nX

j;kD1

@2�.z/

@zj@Nzk
wj Nwk > 0

holds for z 2 U and all w 2 Cn, w ¤ 0.
Strongly pseudo-convex domains play an important role in multidimensional

complex analysis. Any domain of holomorphy can be approximated from inside
by these domains [9, Sect. 25].

Here are some auxiliary notations and statements we will need in the future. We
denote

Dı D fz 2 U W �.z/ < ıg; Vı D fz 2 U W j�.z/j < ıg;
U";ı D f.�; z/ W � 2 Vı; z 2 Dı; j� � zj < "g;

where " > 0, ı > 0. Let C 1.Vı;H / be the space of functions of class C 1 in Vı
with values in space H .

Lemma 1.3.1 ([9]) For every strongly pseudo-convex domain D there exist positive
constants ", ı and functions F 2 C 1.U";ı/, G 2 C 1.U";ı/,ˆ 2 C 1.Vı;O.Dı// such
that:

1. ˆ D FG on U";ı; F.z; z/ D 0; jGj > ı on U";ı; jˆj > ı outside U";ı;
2. We have the inequality

2Re F.�; z/ � �.�/ � �.z/C � j� � zj2; � > 0I

on U";ı

3.
ˇ
ˇd�F.�; z/

ˇ
ˇ
�Dz D jdzF.�; z/j�Dz D @�.

Proof See the monograph Aizenberg and Yuzhakov [9, Lemma 10.1].

Lemma 1.3.2 ([9]) Let D D fz 2 U W �.z/ < 0g be a strongly pseudo-convex
domain. For every point Q� 2 @D there is a biholomorphic map of the neighborhood
QUQ� of the point Q� to a neighborhood W of zero in space Cn

w, such that the mapping

domain D \ QUQ� is biholomorphically equivalent to the convex domain in Cn
w, while

the inverse mapping turns the strongly plurisubharmonic function � into a strongly
convex function.

Proof Parallel translation can be arranged so that the point Q� is zero, then in some
neighborhood of zero the Taylor expansion is valid

�.z/ D 2Re
nX

jD1

@�.0/

@zj
zj C 1

2

nX

j;kD1

@2�.0/

@zj@Nzk
zjNzk C Re

nX

j;kD1

@2�.0/

@zj@zk
zjzk C o.jzj2/

as z ! 0.
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By the implicit function theorem the local coordinates in a smaller neighborhood
of zero can be assumed to be given by the function

w1.z/ D 2

nX

jD1

@�.0/

@zj
zj C

nX

j;kD1

@2�.0/

@zj@zk
zjzk

and any linear functions w2; : : : ;wn being the coordinates of the complex hyperplane

�
z 2 C

n W @�.0/
@z1

z1 C : : :C @�.0/

@zn
zn D 0

	
:

Strong pseudoconvexity � at 0 now means that

nX

j;kD1
ajk
j

N
k � � j
j2;

where � > 0 and ajk D @2�.0/

@wj@ Nwk
.

In the new local coordinates of w the function � is of the form

�.w/ D Re w1 C
nX

j;kD1
ajkwj Nwk C o.jwj2/: (1.3.3)

Function (1.3.3), as is easily seen, is strongly convex in the coordinates of w. If
" > 0 is sufficiently small, then W \ D is a convex domain in the coordinates of w,
where

W D fw 2 C
n W jwj < "g:

ut
Remark 1.3.1 If we first perform a unitary transformation and make a shift so that
the plane Re z1 D 0 is now a tangent plane at the point 0, and then repeat the whole
procedure described in the previous lemma, we will find that locally the domain D
is given by the function

�.w/ D Re w1 C
nX

j;kD2
ajkwj Nwk C o.jwj2/:

Applying unitary transformation and stretching to the last equation, we can get a
function � that will have the form [15, Chap. 6, Sect. 4]

�.w/ D Re w1 C
nX

kD2
jwkj2 C o.jwj2/: (1.3.4)
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Lemma 1.3.3 ([9]) Under the conditions of Lemma 1.3.1

ˆ.�; z/ D
nX

kD1
Pk.�; z/.�k � zk/; (1.3.5)

where Pk.�; z/ 2 C 1.Vı;O.Dı//, k D 1; : : : ; n, � 2 Vı, z 2 Dı.

Proof We denote

C.�; z;w/ D ˆ.�; z/ �ˆ.�;w/;

then

C.�; z;w/ 2 C 1
�
Vı;O.Dı � Dı/

�
:

For a fixed � 2 Vı the function C belongs to the ideal J of holomorphic functions
equal to zero on the set

f.z;w/ W z 2 Dı; w 2 Dı; z D wg:

By the Hefer theorem (see, for example, [9, Sect. 25]) the ideal J has generators

w1 � z1; : : : ;wn � zn

and decomposition of C.�; z;w/ for these generators can be made continuously
differentiable to the parameter � (see [9, Theorem 25.20]), i.e., there are functions

Qk.�; z;w/ 2 C 1
�
Vı;O.Dı � Dı/

�
; k D 1; : : : ; n;

such that

C.�; z;w/ D
nX

kD1
Qk.�; z;w/.wk � zk/:

Note that F.�; �/ D 0, hence ˆ.�; �/ D 0, therefore

ˆ.�; z/ D C.�; z; �/ D
nX

kD1
Pk.�; z/.�k � zk/;

where Pk.�; z/ D Qk.�; z; �/, k D 1; : : : ; n. So formula (1.3.5) holds. ut
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Consider the Leray form (1.3.2)

!0.
/ D
nX

jD1
.�1/j�1
jd
Œj�

for a given smooth function 
 D 
.�; z; �/ with values in Cn, where

.�; z; �/ 2 C
n � C

n � R:

Then we can write

�
!0.
/

�
^ d� ^ dz D

 
nX

qD0
!0

q.
/

�
^ d� ^ dz;

where !0
q.
/ is the differential form of type .n � q � 1/ by d N� and d� and type q

by dNz. In particular, the form !0
0 is a form of type 0 by dNz and type .n � 1/ by d N�

and d�. In what follows we will assume that !0�1 D 0. We note the obvious identity
satisfied by the form !0

q [33, Sect. 8.2]:

d�!
0
q C N@�!0

q C N@z!
0
q�1 D 0: (1.3.6)

From Theorem 1.3.1 and Lemma 1.3.3 we get the Khenkin–Ramirez integral
formula (see [33, Sect. 4.2]).

Theorem 1.3.2 (Khenkin, Ramirez) For any function f 2 A .D/ the following
integral representation is true

f .z/ D .n � 1/Š
.2�i/n

Z

@D
f .�/

!0
0.P.�; z// ^ d�

Œˆ.�; z/�n
; z 2 D; (1.3.7)

where the vector function P.�; z/ D �
P1.�; z/; : : : ;Pn.�; z/

�
.

Formula (1.3.7) is one of the most successful realizations of the general Cauchy–
Fantappiè formula in multidimensional complex analysis (see [33, 71]).

1.3.3 The Cauchy–Szegö (Hua Loken) Integral Representation

Let B be a unit ball in Cn, i.e.,

B D fz 2 C
n W jzj < 1g
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then its boundary S has the form

S D fz 2 C
n W jzj D 1g:

We define the Cauchy–Szegö kernel K.�; z/ for the ball by the formula

K.�; z/ D .n � 1/Š

.2�i/n
1

.1 � hN�; zi/n :

It can also be written as a matrix product: if we assume z to be a column vector,
then h N�; zi D N�T � z, where the superscript T denotes the transpose of the matrix. We
define the differential form 	.�/ by the formula

	.�/ D
nX

kD1
.�1/k�1 N�k d N�Œk� ^ d�;

where d� D d�1 ^ : : : ^ d�n, and d N�Œk� is obtained from d N� by removing the
differential d N�k. On the boundary of the ball the restriction of the form 	.�/

coincides up to a constant with the Lebesgue boundary measure for S.

Theorem 1.3.3 (Hua Loken [32]) If a function f 2 A .B/, then

f .z/ D
Z

S
f .�/K.�; z/ 	.�/; z 2 B: (1.3.8)

Moreover, the integral operator defined by (1.3.8), yields an orthogonal pro-
jection of the Hilbert space L 2.S/ onto the subspace of functions allowing
holomorphic extension from S to B (i.e., H 2.B/).

Proof is immediately obtained from formula (1.3.7), if we put �.�/ D 1� j�j2. ut

1.3.4 The Andreotti–Norguet Integral Representation

Another generalization of formula (1.2.3) is the Andreotti–Norguet formula (a
different method of proof can be found in [63]). Suppose D is a bounded domain
with a piecewise-smooth boundary,˛ D .˛1; : : : ; ˛n/ is a multi-index, f is a function
holomorphic in D and continuous on D, and

@˛f D @k˛kf

@z˛11 : : : @z˛n
n
;
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where k˛k D ˛1 C � � � C ˛n. Consider the following differential form:

U˛.�; z/ D .n � 1/Š˛1Š : : : ˛nŠ

.2�i/n

nX

kD1

.�1/k�1. N�k � Nzk/ d N�˛CIŒk� ^ d�

.j�1 � z1j2.˛1C1/ C � � � C j�n � znj2.˛nC1//n
;

where

d N�˛CI Œk� D d N�˛1C11 ^ � � � ^ d N�˛k�1C1
k�1 ^ d N�˛kC1C1

kC1 ^ � � � ^ d N�˛nC1
n :

Theorem 1.3.4 (Andreotti, Norguet) The formula

@˛f .z/ D
Z

@D
f .�/U˛.�; z/: (1.3.9)

holds for every point z 2 D and every multi-index ˛.

Proof (given in [9, p. 60]) goes as follows. First verify that U˛ is a closed form, so
integration over @D can be replaced by integration over the set

f� 2 C
n W j�1 � z1j2˛1C2 C � � � C j�n � znj2˛nC2 D "2g:

Expand the function f in powers .� � z/ in a neighborhood of z, and integrate the
series termwise against the form U˛.�; z/. We obtain @˛f .z/ as the result of direct
calculation. When ˛ D .0; : : : ; 0/, formula (1.3.9) reduces to (1.2.3). ut

We note that (1.3.9) can be generalized in the spirit of the Cauchy–Fantappiè
formula [9, p. 61]. Analogues of the Bochner–Martinelli formula have also been
considered in quaternionic analysis [80] and in Clifford analysis [75].

1.4 The Logarithmic Residue Formula

Let D be a bounded domain in Cn with a piecewise-smooth boundary @D, and
let w D  .z/ D . 1; : : : ;  n/ be a holomorphic map from D into Cn with a finite
number of zeros E in D and no zeros on @D.

Recall the (dynamic) definition of the multiplicity of zero of a map  [9,
Sect. 2]. We denote a ball of radius R > 0 with the center at the point z 2 Cn

by B.z;R/ D f� W j� � zj < Rg and its boundary by S.z;R/ D @B.z;R/. Let a be a
zero of the map  and B.a;R/ have no other zeros in B.a;R/. Then there is a ball
B.0; r/ such, that for almost all � 2 B.0; r/ the map w D  �� has the same number
of zeros in B.a;R/. This number is called the multiplicity of zero a and is denoted
by �a .
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Consider the differential form

U.w/ D .n � 1/Š
.2�i/n

nX

kD1
.�1/k�1 Nwk d NwŒk� ^ dw

jwj2n
; (1.4.1)

where dw D dw1^: : :^dwn;, and d NwŒk� is obtained from the form d Nw by eliminating
the differential dwk, i.e., U.w/ D U.w; 0/ is the Bochner–Martinelli kernel at zero.

Theorem 1.4.1 ([45]) Let f 2 C 1.D/, then the formula

Z

@D�

f .�/U. .�// �
Z

D�

N@f ^ U. .�// D
X

a2E 

�af .a/: (1.4.2)

holds. (The integral over D converges absolutely.)

Proof Let a 2 E . Let us prove that the integral

Z

D

N@f ^ U. .�//

converges absolutely. It is enough to show that the integral

Z

K
d N�j ^ U. .�//

converges absolutely, where K is some compact, containing the point a and not
containing any other points of E , j D 1; : : : ; n. Consider compacts of the form:

B .r/ D fz 2 C
n W j j � rg; S .r/ D fz 2 C

n W j j D rg

and B .r/ � K. The surface S .r/ is smooth and compact for almost all r, 0 � r �
r0 by Sard’s theorem. Then

Z

B .r0/

ˇ
ˇd N�j ^ U. .�//

ˇ
ˇ D

Z r0

0

Z

S .r/

ˇ
ˇ
ˇd�j ^ U. /

ˇ
ˇ
ˇ

� C
Z r0

0

dr
Z

S .r/
jU. /j D C1

Z r0

0

dr

r2n

Z

S .r/

ˇ
ˇ
ˇ
ˇ
ˇ

nX

kD1
.�1/k�1 N k d N Œk� ^ d 

ˇ
ˇ
ˇ
ˇ
ˇ

by Fubini’s theorem. Restriction of the form

	 D
nX

kD1
.�1/k�1 N k d N Œk� ^ d 
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to S .r/ (up to a constant) is a positive measure, since restriction of the form

	 D
nX

kD1
.�1/k�1 Nwk d NwŒk� ^ dw to the sphere S D fw W jwj D 1g is the Lebesgue

measure on S up to a constant. And 	 is obtained from 	 by replacing the variables
w !  .�/. Then the integral

Z

S .r/

ˇ
ˇ
ˇ
ˇ
ˇ

nX

kD1
.�1/k�1 N k d N Œk� ^ d 

ˇ
ˇ
ˇ
ˇ
ˇ

D C2

Z

S .r/
	 

D C2n
Z

B .r/
d N ^ d D C2n�

Z

B.r/
d Nw ^ dw D C3 r2n;

where B.r/ D fw W jwj < rg.
Further proof is standard. Considering an auxiliary domain

D" D f� 2 D W j .�/j > "g;
yields

Z

@D�

f U. .�// �
Z

D"

N@f ^ U. .�// D
Z

S ."/
f .�/U. .�//:

If the zero of the map is simple, i.e., is biholomorphic in the neighborhood of
a, then choosing " small enough and making the replacement of variables w D  .�/,
we obtain that

Z

S ."/
f .�/U. .�// D

Z

S.0;"/
f . �1.w//U.w/ D

Z

S.0;"/
f . �1.w//U.w; 0/:

The last integral tends to f . 1.0// D f .a/ at " ! 0 (see the proof of Bochner–Green
formula (1.1.4)). Thus formula (1.4.2) is proved for a map with simple zeros.

If a is a multiple zero of the map  , then, by considering the map  � D  �� in
a neighborhood K of the point a, we obtain that the map  � has �a simple zeros in
K for almost all smaller-module � (this is a (dynamic) definition of the multiplicity
of zero (see [9, Sect. 2])). Applying (1.4.2) in K to map  �, using closedness of
the form U. / and passing over to the limit as j�j ! 0 we obtain the required
assertion. ut

Let D be a bounded domain in Cn, n > 1, with a connected piecewise-smooth
boundary, and let  D . 1; : : : ;  n/ be a map consisting of holomorphic functions
 j, defined in some neighborhood

KD D fw W w D � � z; z; � 2 Dg

and having a unique zero as the origin of multiplicity �.
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Corollary 1.4.1 If f 2 C 1.D/, then

Z

@D�

f .�/U. .� � z// �
Z

D�

N@f ^ U. .� � z// D
(
�f .z/; z 2 D;

0; z 62 D:
(1.4.3)

(The integral over D converges absolutely, and z is fixed.)

Corollary 1.4.2 The following formula holds

�f .z/ D
Z

@D�

f .�/U. .� � z//; z 2 D; (1.4.4)

where the function f is holomorphic in D and continuous on D (i.e., f 2 A .D/). The
vector z in the form U. .� � z// is fixed.

Formula (1.4.4) is a special case of the multidimensional logarithmic residue for
the map  (see [9, Chap. 1]).

Corollary 1.4.3 If f 2 C 1.@D/, and

Z

@D�

f .�/U. .� � z// D
(

MC
 f .z/; z 2 D;

M�
 f .z/; z 62 D;

(1.4.5)

then the functions M ̇ f .z/ are continuous up to the boundary of the domain and

MC
 f .z/� M�

 f .z/ D �f .z/; z 2 @D:

Proof directly follows from (1.4.2) and the continuity of the integral on the domain
D in (1.4.2). ut
Remark 1.4.1 As shown by the proof of Theorem 1.4.1, integrals of the form

Z

D

N j

j j2n

@ N s1

@ N�j1

� � � @
N sn�1

@ N�jn�1

@ i1

@�1
� � � @ in

@�n
d N� ^ d�

absolutely converge.



Chapter 2
Properties of the Bochner–Martinelli Integral
and the Logarithmic Residue Formula

Abstract In this chapter, we will consider the boundary behavior of the Bochner–
Martinelli integral. Most of the statements have been collected in the book (Kyt-
manov, The Bochner–Martilnelli Integral and Its Applications. Birkhäuser Verlag,
Basel, 1995). Some of these results can be obtained from the general theory
of integral operators. But we seek to provide independent and more elementary
proofs thereof. Since many of them will be used in the subsequent chapters, we
decided to reproduce these in the book. The last section of this chapter contains the
results of possible connection of the holomorphic continuation of functions with
the homogeneous N@-Neumann problem, emphasizing the relationship between the
harmonic and complex analysis in C

n.

2.1 Boundary Behavior of the Bochner–Martinelli Integral

2.1.1 The Sokhotskiĭ–Plemelj Formula

Let D be a bounded domain with a piecewise-smooth boundary, and let f be
an integrable function on @D (f 2 L 1.@D/). We consider the Bochner–Martinelli
(type) integral (1.2.4):

Mf .z/ D
Z

@D
f .�/U.�; z/; z … @D:

We recall that this is a function which is harmonic in both D and Cn n D, moreover
M.z/ D O.jzj1�2n/ for jzj ! 1. Like in Sect. 1.2, we will write MCf .z/ for
integral (1.2.4) when z 2 D, and M�f .z/ when z … D. When z 2 @D, integral (1.2.4)
generally speaking does not exist as an improper integral, since the integrand has the
singularity j�� zj1�2n. Therefore, for z 2 @D, we will consider the Cauchy principal
value of the Bochner–Martinelli integral:

p:v:
Z

@D
f .�/U.�; z/ D lim

"!C0

Z

@DnB.z;"/
f .�/U.�; z/; z 2 @D:

© Springer International Publishing Switzerland 2015
A.M. Kytmanov, S.G. Myslivets, Multidimensional Integral Representations,
DOI 10.1007/978-3-319-21659-1_2
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Below we will frequently omit the sign of the principal value p:v:, that is, we
will always assume an integral of the form (1.2.4) to be understood in terms of the
principal value when z 2 @D.

In this section we are interested in analogues of the Sokhotskiĭ–Plemelj formula
for the Bochner–Martinelli integral, that is, in the relation between the boundary
values of the functions M˙.z/ and the singular integral. First we will consider a
simple case when density f satisfies the Hölder condition with the exponent ˛ > 0,
i.e.,

jf .�/� f .
/j 6 Cj� � 
j˛ (2.1.1)

for �; 
 2 @D and C D const. Generally speaking, these formulas can be deduced
from the properties of potentials, but we will provide a direct proof.

We need to compute the restriction to @D of the differential forms d N�Œk�^ d� and
d�Œk� ^ d N� in terms of the Lebesgue surface measure d	 . Suppose D D fz 2 Cn W
�.z/ < 0g, where � 2 C 1.Cn/ and d� ¤ 0 on @D.

Lemma 2.1.1 Restriction of the form d N�Œk� ^ d� to the boundary @D is equal to

2n�1in.�1/k�1 @�
@ N�k

d	

j grad�j ;

and restriction of the form d�Œk� ^ d N� to @D is equal to

2n�1in.�1/nCk�1 @�
@�k

d	

j grad�j ;

where

grad� D
� @�
@�1

; : : : ;
@�

@�n

�
:

Proof It is well known that restriction of the forms dxŒk� ^ dy and dx ^ dyŒk� to
the boundary @D are equal to

dxŒk� ^ dy
ˇ
ˇ
ˇ
@D

D .�1/k�kd	;

dx ^ dyŒk�
ˇ
ˇ
ˇ
@D

D .�1/nCk�1�kCnd	;
(2.1.2)
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where �k are the direction cosines of the normal vector to @D: namely

�k D @�

@xk

1
vu
u
t

nX

jD1


� @�
@xj

�2 C
� @�
@yj

�2�
;

�kCn D @�

@yk

1
vu
u
t

nX

jD1


� @�
@xj

�2 C
� @�
@yj

�2�
:

We obtain the assertion of the lemma by using (2.1.2) and the formulas

@�

@zk
D 1

2

� @�
@xk

� i
@�

@yk

�
;

@�

@Nzk
D @�

@zk
;

j grad�j D 1

2

vu
u
t

nX

jD1


� @�
@xj

�2 C
� @�
@yj

�2�
; dzk ^ dNzk D �2i dxk ^ dyk:

ut
From Lemma 2.1.1, we have

U.�; z/
ˇ
ˇ
@D

D .n � 1/Š
2�n

nX

kD1

N�k � Nzk

j� � zj2n

@�

@ N�k

d	.�/

j grad�.�/j D F.�; z/d	.�/: (2.1.3)

When z 2 @D, we use �.z/ for the expression

�.z/ D lim
"!C0

volfS.z; "/\ Dg
vol S.z; "/

:

In other words, �.z/ is a solid angle of the tangent cone to the surface @D at z. Since
we consider a domain D with a piecewise-smooth boundary, the quantity �.z/ is
defined and different from zero.

Lemma 2.1.2

p:v:
Z

@D
U.�; z/ D �.z/

for z 2 @D.
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Proof By definition

p:v:
Z

@D
U.�; z/ D lim

"!C0

Z

@DnB.z;"/
U.�; z/:

But
Z

@DnB.z;"/
U.�; z/ D

Z

@.DnB.z;"//
U.�; z/C

Z

SC.z;"/
U.�; z/;

where SC.z; "/ is the part of the sphere S.z; "/ lying in D, i.e., SC.z; "/ D D \ S.z; "/.
The sign of the second term has been changed because the orientation of S.z; "/
(induced by the orientation of the ball B.z; "/) is opposite to that of @D. Since
z … D n B.z; "/ while the form U.�; z/ is closed, the integral

Z

@.DnB.z;"//
U.�; z/ D 0;

so
Z

@DnB.z;"/
U.�; z/ D

Z

SC.z;"/
U.�; z/

D .n � 1/Š

.2�i/n"2n

Z

SC.z;"/

nX

kD1
.�1/k�1. N�k � Nzk/d N�Œk� ^ d�:

From Lemma 2.1.1 it follows that the restriction of the forms equals

nX

kD1
.�1/k�1. N�k � Nzk/d N�Œk� ^ d�

ˇ
ˇ
ˇ
S.z;"/

D "2n2n�1ind	;

where d	 is the area element on the sphere.
Thus

Z

@DnB.z;"/
U.�; z/ D vol SC.z; "/

vol S.z; "/
! �.z/

as " ! C0. ut
We extend f .z/ to a neighborhood V.@D/ as a function satisfying the Hölder

condition on V.@D/ with the same exponent ˛, and we again denote it by f .z/.
Consider the integral

ˆ.z/ D
Z

@D

�
f .�/ � f .z/

�
U.�; z/: (2.1.4)
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If z … @D, then integral (2.1.4) has no singularity, whereas if z 2 @D, then

jf .�/ � f .z/j jU.�; z/j � Cj� � zj˛C1�2nd	.�/;

so the integralˆ.z/ is absolutely convergent.

Lemma 2.1.3 If the function f satisfies the Hölder condition in V.@D/ with the
exponent ˛, where 0 < ˛ < 1, then the function ˆ.z/ satisfies the Hölder condition
in V.@D/ with the same exponent ˛.

Proof Let z1 and z2 be points in V.@D/ with jz1 � z2j D ı, where ı is sufficiently
small. Consider a ball B.z1; 2ı/ � V.@D/, and set 	ı D @D \ B.z1; 2ı/. Then

ˇ
ˇ
ˇ
ˇ
ˇ

Z

	ı

.f .�/ � f .zj//U.�; zj/

ˇ
ˇ
ˇ
ˇ
ˇ

� C1

Z

	ı

j� � zjj1C˛�2nd	 � C2ı
˛

for j D 1; 2. When 	ı is a smooth surface, it is easy to obtain this inequality by
replacing zj by their projections onto 	ı and using the integral over 	ı instead of the
integral over a .2n � 1/-dimensional sphere of radius ı, and passing over to polar
coordinates in this sphere. If 	ı is piecewise smooth, we estimate the integral over
each smooth piece of 	ı that way.

We consider the difference of integrals (2.1.4) over @D n 	ı at the points z1 and
z2, which equals

Z

@Dn	ı

�
f .�/ � f .z2/

��
U.�; z2/� U.�; z1/

�

C �
f .z1/� f .z2/

� Z

@Dn	ı
U.�; z1/: (2.1.5)

We have already dealt with the second integral in Lemma 2.1.2 (except that there
z1 2 @D), from which we obtain

ˇ̌
ˇ
ˇ
ˇ

Z

@Dn	ı
U.�; z1/

ˇ̌
ˇ
ˇ
ˇ

� 1:

Consequently,

ˇ
ˇf .z1/� f .z2/

ˇ
ˇ
ˇ̌
ˇ
ˇ

Z

@Dn	ı
U.�; z1/

ˇ̌
ˇ
ˇ � C3ı

˛:
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Now we estimate the first term in (2.1.5). If � 2 @D n 	ı, then

ˇ̌
ˇ
ˇ

N�j � Nz1j
j� � z1j2n

�
N�j � Nz2j

j� � z2j2n

ˇ̌
ˇ
ˇ � jz2j � z1j j

j� � z1j2n
C j�j � z2j j

ˇ̌
ˇ
ˇ

1

j� � z1j2n
� 1

j� � z2j2n

ˇ̌
ˇ
ˇ

� j�j � z2j jjz2 � z1j
j� � z1jj� � z2j

2n�1X

sD0

j� � z2jsC1�2n

j� � z1js
C jz2 � z1j

j� � z1j2n
� C4ıj� � z1j�2n

since j� � z1j � 2j� � z2j. Thus

jˆ.z1/�ˆ.z2/j � C5ı
˛ C C6ı

Z

@Dn	ı
j� � z1j˛�2nd	:

If 	ı is a smooth surface, then by replacing the point z1 by its projection onto 	ı we
obtain

Z

@Dn	ı
j� � z1j˛�2nd	 � C7ı

˛�1:

ut
Remark 2.1.1 As in the case of the Cauchy-type integral, when ˛ D 1 the function
ˆ.z/ will satisfy the condition

jˆ.z1/�ˆ.z2/j � Cjz1 � z2j j ln jz1 � z2jj;

since
Z

@Dn	ı
j� � z1j1�2nd	 � C8j ln ıj:

Theorem 2.1.1 Let D be a bounded domain with a piecewise-smooth boundary @D
and let f 2 C ˛.@D/, where 0 < ˛ < 1. Then the Bochner–Martinelli integral
MCf extends continuously to D as a function of class C ˛.D/, while M�f extends
continuously to Cn n D as a function of class C ˛.Cn n D/. Moreover, the Sokhotskiĭ–
Plemelj formulas are valid for z 2 @D:

MCf .z/ D .1 � �.z//f .z/C p:v:
Z

@D
f .�/U.�; z/;

M�f .z/ D ��.z/C p:v:
Z

@D
f .�/U.�; z/:

(2.1.6)



2.1 Boundary Behavior of the Bochner–Martinelli Integral 27

Proof The first part of the theorem follows from Lemma 2.1.3. We consider the
integral

p:v:
Z

@D
f .�/U.�; z/ D

Z

@D
.f .�/� f .z//U.�; z/C �.z/f .z/

(by Lemma 2.1.2). Since ˆ.z/ is continuous in V.@D/ (by Lemma 2.1.3),

Z

@D
.f .�/� f .z//U.�; z/ D MCf .z/ � f .z/;

that is,

MCf .z/ D .1 � �.z//f .z/C p:v:
Z

@D
f .�/U.�; z/:

On the other hand,

Z

@D
.f .�/ � f .z//U.�; z/ D M�f .z/:

ut
Remark 2.1.2 If we introduce the norm

kf kC ˛ D sup
@D

jf j C sup
�;
2@D

jf .�/� f .
/j
j� � 
j˛

in the spaceC ˛.@D/ of functions f satisfying the Hölder condition with the exponent
˛, then Lemmas 2.1.2 and 2.1.3 show that the Bochner–Martinelli integral and the
Bochner–Martinelli singular integral define bounded operators in this space for 0 <
˛ < 1 (when @D 2 C 1).

Lemma 2.1.3 is contained in the paper by Chirka [18]. Various versions of
Theorem 2.1.1 have been quoted on numerous occasions. Look and Zhong [60]
proved (2.1.6) for domains with a boundary of class C 2. Later these formulas were
obtained by Harvey and Lawson [30] for domains with a smooth boundary.

Corollary 2.1.1 If @D 2 C 1, then for z 2 @D formula (2.1.6) takes the form

MCf .z/ D 1

2
f .z/C p:v:

Z

@D
f .�/U.�; z/;

M�f .z/ D �1
2

f .z/C p:v:
Z

@D
f .�/U.�; z/;

(2.1.7)

and therefore the Bochner–Martinelli singular integral also satisfies the Hölder
condition with the exponent ˛ on @D.
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Corollary 2.1.2 If @D is piecewise smooth, then

MCf .z/� M�f .z/ D f .z/

for z 2 @D.

2.1.2 Analogue of Privalov’s Theorem

In this subsection, we consider a bounded domain D with a boundary of class C 1

and functions f that are integrable on @D (i.e., f 2 L 1.@D/). Let z0 2 @D. Consider
a right circular cone Vz0 with the vertex at z0 and the axis that coincides with the
normal to @D at z0, the angle ˇ between the axis and the generator of the cone being

less than
�

2
. Let z 2 D \ Vz0 . Suppose that z0 is a Lebesgue point for f , i.e.,

lim
"!C0 "

1�2n
Z

@D\B.z0;"/

ˇ
ˇf .�/� f .z0/

ˇ
ˇ d	 D 0:

Theorem 2.1.2 ([45]) If z 2 D \ Vz0 , then

lim
z!z0
z2Vz0


Z

@D

�
f .�/ � f .z0/

�
U.�; z/ �

Z

@DnB.z0;jz�z0j/
�
f .�/� f .z0/

�
U.�; z0/

�
D 0:

This theorem is an analogue of Privalov’s theorem for an integral of Cauchy type.

Proof We make a unitary transformation of Cn and a translation so that z0 goes to
0 and the tangent plane to @D at z0 goes to the plane T D fw 2 Cn W Im wn D 0g.
The surface @D in a neighborhood of the origin will then be given by the equations

�1 D w1; : : : ; �n�1 D wn�1; �n D un C i'.w/;

where w D .w1; : : : ;wn�1; un/ 2 T; the function ' 2 C 1.W/, where W is a
neighborhood of the origin in the plane T; and '.w/ D o.jwj/ as w ! 0. We
denote the projection of z onto the Im wn axis by Qz. Then

jz � Qzj � jQzj tanˇ; jzj � jQzj 1

cosˇ
:

Fix "0 > 0, and choose a .2n � 1/-dimensional ball B0 in the plane T with the
center at 0 and radius " such that

1. B0 � W;
2. jw � Qzj � Cj�.w/� zj for w 2 B0, where C is a constant independent of w and z.
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Condition (2) is ensured by the relations

jw � �.w/j D j'.w/j D o.jwj/; jwj ! 0I

jwj � jw � Qzj; jQzj � jw � Qzj;

jw � Qzj � jw � �.w/j C j�.w/� zj C jz � Qzj � j'.w/j C j�.w/� zj C jQzj tanˇ

� j'.w/j C j�.w/� zj C tanˇ.jw � �.w/j C j�.w/� zj/

D .1C tanˇ/.j'.w/j C j�.w/� zj/ � Cj�.w/� zj:

We note that the ball B0 and the constant C may be taken to be independent
of the point z0 D 0. If 0 is a Lebesgue point for the function f .�/, then 0 is also a
Lebesgue point for the function f .�.w//. It is clear that the form of the kernel U.�; z/
is not affected by the translation.

Lemma 2.1.4 The kernel U.�; z/ is invariant with respect to unitary transforma-
tions.

Proof Suppose the unitary transformation has the form � D A� 0, where A is the
unitary matrix A D kajkkn

j;kD1. Then the distance j� � zj will not change, d� D
det A d� 0 D ei d� 0, and

nX

kD1
.�1/k�1.�k � zk/ d�Œk� D

nX

kD1
.�1/k�1

nX

jD1
ajk.�

0
j � z0

j/

nX

pD1
Apk d� 0Œp�;

where Apk is the minor of the matrix A corresponding to the element apk, so

nX

kD1
.�1/k�1ajkApk D

(
0; j ¤ p;

.�1/p�1 det A; j D p:

ut
We now continue with the proof of Theorem 2.1.2. Let jzj D ". Transform the

difference of the integrals as follows

Z

@D
.f .�/� f .0//U.�; z/�

Z

@DnB.0;"/
.f .�/� f .0//U.�; 0/

D
Z

@DnB.0;"/
.f .�/� f .0//.U.�; z/� U.�; 0//C

Z

@D\B.0;"/
.f .�/� f .0//U.�; z/:
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Now

1

j� � zj2n�1 � C1
"2n�1 ;

since

Cj�.w/� zj � jw � Qzj � jQzj � " cosˇ;

so
ˇ
ˇ̌
ˇ
ˇ

Z

@D\B.0;"/
.f .�/� f .0//U.�; z/

ˇ
ˇ̌
ˇ
ˇ

� C2
"2n�1

Z

@D\B.0;"/
jf .�/� f .0/j d	 �! 0

as " ! 0. Now consider the difference

N�j � Nzj

j� � zj2n
�

N�j

j�j2n
D N�j

�
1

j� � zj2n
� 1

j�j2n

�
� Nzj

j� � zj2n
:

We have

jzjj
j� � zj2n

� C3
jQzj

jw � Qzj2n
D C3

jQzj
.jwj2 C jQzj2/n :

However

j�jj
ˇ
ˇ̌
ˇ

1

j� � zj2n
� 1

j�j2n

ˇ
ˇ̌
ˇ D j�jj

ˇ
ˇj�j � j� � zjˇˇ
j�j j� � zj

2n�1X

sD0

1

j�jsj� � zj2n�s�1

� jzj
2n�1X

sD0

1

j�jsj� � zj2n�s
:

We have

j�.w/j � C4jwj � C5jw � Qzj;

since � … B.0; "/, and the fraction
jwj

jw � Qzj is bounded from below by a positive

constant because this fraction equals the cosine of the angle between the vectors w

and w � Qz, and that angle cannot be greater than
�

4
. Thus

jU.�; z/� U.�; 0/j � C6jQzj d	

.jwj2 C jQzj2/n :
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Since d	 � C7 dS, where dS is the area element of the plane T, we obtain

Z

B.0;"0/\@DnB.0;"/
jf .�/ � f .0/j jU.�; z/ � U.�; 0/j

� C8

Z

B.0;"0/\TnB.0;"/
jf .�.w//� f .0/j jQzj dS

.jwj2 C jQzj2/n

� C8

Z

B.0;"0/\T
jf .�.w//� f .0/j jQzj dS

.jwj2 C jQzj2/n : (2.1.8)

If " ! C0, then jQzj ! 0, while the expression
jQzj

.jwj2 C jQzj2/n is the Poisson kernel

for the half-space. Since 0 is the Lebesgue point of f .�.w//, it is well known that
this integral converges to zero as " ! C0 (see, for example, [77]). ut

Theorem 2.1.2 shows that the existence of the Bochner–Martinelli singular
integral at z0 is equivalent to the existence of the limit of MC.z/ as z ! z0 along
nontangential paths. Therefore, if the singular integral exists, so lim

z!z0
MC.z/ exists,

and so the Sokhotskiĭ–Plemelj formula (2.1.7) holds.

2.2 Jump Theorems for the Bochner–Martinelli Integral

We saw in Sect. 2.1 that the Sokhotskiĭ–Plemelj formula implies a jump theorem
(see Corollary 2.1.2). As a rule, the jump theorem is more readily proved than
the Sokhotskiĭ–Plemelj formula, and moreover the difference MCf � M�f may
have a limit on @D even when the functions MCf and M�f themselves do not.
Therefore jump theorems hold for a wider class of functions than do Sokhotskiĭ–
Plemelj formulas.

2.2.1 Integrable and Continuous Functions

First we study the case when D is a bounded domain with a boundary of class
C 1, and f 2 L 1.@D/. Let us consider a right circular cone Vz0 with the vertex at
z0 2 @D whose axis coincides with the normal to @D at z0, the angle ˇ between the

axis and the generator being less than
�

2
. We take two points zC 2 Vz0 \ D and

z� 2 Vz0 \ .Cn n D/ such that ajzC � z0j � jz� � z0j � bjzC � z0j, where a and b
are constants not depending on z˙, and 0 < a � b < 1.
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Theorem 2.2.1 ([45]) If z0 is a Lebesgue point of the function f 2 L 1.@D/, then

lim
z˙!z0

�
Mf .zC/ � Mf .z�/

� D f .z0/ (2.2.1)

(where Mf is defined by (1.2.4)). If f 2 C .@D/, then limit (2.2.1) exists for all points
z0 2 @D, and it is attained uniformly if the angle ˇ and the constants a and b are
fixed.

Proof By Lemma 2.1.4, using a unitary transformation and translation, we take z0

to 0 and the tangent plane to @D at z0 to the plane T D fw 2 C
n W Im wn D 0g. The

surface @D will then be given in a neighborhood of 0 by a system of equations

�1 D w1; : : : ; �n�1 D wn�1; �n D un C i'.w/;

where w D .w1; : : : ;wn�1; un/ 2 T, the function '.w/ is of class C 1 in a
neighborhood W of 0 in the plane T, and '.w/ D o.jwj/ as w ! 0. We denote
the projections z˙ onto the Im wn axis by Qz˙. Then

jz˙ � Qz˙j � jQz˙j tanˇ; jz˙j � jQz˙j
cosˇ

;

ajQzCj cosˇ � jQz�j � bjQzCj
cosˇ

:

(2.2.2)

We fix a ball B0 in the plane T with the center at 0 and of radius " such that

1. B0 � W;
2. jw � Qz˙j � Cj�.w/ � z˙j for w 2 B0, where C is the constant independent of

the point z0 D 0. Here B0 D B.z0; "/\ T and � D B.z0; "/\ @D.

Consider the difference

Mf .zC/ � Mf .z�/ D
Z

@D
.f .�/� f .z0//U.�; zC/

�
Z

@D
.f .�/� f .z0//U.�; z�/C f .z0/

Z

@D
.U.�; zC/� U.�; z�//:

Since
Z

@D
.U.�; zC/� U.�; z�// D 1;

it is enough to show that

lim
z˙!z0

Z

@D
.f .�/� f .z0//.U.�; zC/� U.�; z�// D 0:
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In the integral

Z

@Dn�
.f .�/� f .z0//.U.�; zC/ � U.�; z�//;

we can take the limit inside, since z0 … @D n � . It remains to consider this integral
over the set � . From condition (2) on the choice of B0 and the inequality

j�.w/j � C1jwj � C1jw � Qz˙j

we obtain

ˇ
ˇ
ˇ
ˇ
ˇ

N�k

j� � zCj2n
�

N�k

j� � z�j2n

ˇ
ˇ
ˇ
ˇ
ˇ

D
ˇ
ˇ
ˇ
ˇ

1

j� � zCj � 1

j� � z�j
ˇ
ˇ
ˇ
ˇ

2n�1X

jD0

j�kj j� � z�jjC1�2n

j� � zCjj

D ˇ
ˇj� � zCj � j� � z�jˇˇ

2n�1X

jD0

j�kj j� � z�jj�2n

j� � zCjjC1

� C1C
2n
2n�1X

jD0

jw � Qz�jj�2n.jzCj C jz�j/
jw � QzCjj

: (2.2.3)

We may assume that a1 D a cosˇ < 1, then jw � Qz˙j � jw � a1QzCj in view of
(2.2.2). Therefore from (2.2.3) we have that

ˇ
ˇ
ˇ
ˇ
ˇ

N�k

j� � zCj2n
�

N�k

j� � z�j2n

ˇ
ˇ
ˇ
ˇ
ˇ

� djQzCj
jw � a1QzCj2n

;

where d depends only on a, b, C, C1, and ˇ. In precisely the same way,

ˇ
ˇ̌
ˇ
ˇ

NzC
k

j� � zCj2n
� Nz�

k

j� � z�j2n

ˇ
ˇ̌
ˇ
ˇ

� jzC
k j

j� � zCj2n
C jz�

k j
j� � z�j2n

� d1jQzj
jw � a1QzCj2n

:

Finally, d	 � d2dS, where dS is the surface area element on the surface T, and d2 is
independent of z0. Therefore

ˇ
ˇ
ˇ
ˇ

Z

�

.f .�/ � f .0//.U.�; zC/ � U.�; z�//
ˇ
ˇ
ˇ
ˇ � d3

Z

B0

jf .�.w//� f .0/j jQzCj
.jwj2 C a21jQzCj2/n dS:

(2.2.4)
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Since

jQzCj
.jwj2 C a21jQzCj2/n

is the Poisson kernel for the half-space and 0 is a Lebesgue point for f .�.w//, the
last expression tends to zero as jQzCj ! 0 (see [77, Theorem 1.25]).

If f is continuous on @D, then for each ı > 0, we choose a ball B0 of radius "
such that jf .�.w//� f .0/j < ı for w 2 B0 (where " may be taken independent of the
point z0 D 0). Then from (2.2.4) we obtain

ˇ
ˇ
ˇ
ˇ

Z

�

.f .�/� f .0//.U.�; zC/� U.�; z�//
ˇ
ˇ
ˇ
ˇ

� d4ı
Z

B0

a1jQzCjdS

.jwj2 C a21jQzCj2/n � d4ı
Z

T

a1jQzCjdS

.jwj2 C a21jQzCj2/n ;

and the last integral equals the constant independent of QzC. ut
Theorem 2.2.1 for continuous functions can be found in [19].

Corollary 2.2.1 Let f 2 C .@D/. If MCf extends continuously to D, then M�f
extends continuously to Cn n D, and vice versa.

This corollary, given in [19], was also remarked by Harvey and Lawson in [30].
We now give an example to show that when f is continuous, the function Mf may fail
to extend to certain points of the boundary @D. This example is contained in [19].

Example 2.2.1 Let D be a domain such that D is contained in a unit ball B.0; 1/,
and @D contains a .2n � 1/-dimensional ball B0 of radius R < 1 with the center at

the point 0 in the plane T D fz 2 C
n W Im zn D 0g. We set f .�/ D �n

j�j ln j�j on @D,

so that f 2 C .@D/. We will show that Mf .z/ is unbounded in any neighborhood of
the origin.

Set z D .0; : : : ; 0; iyn/, with yn > 0. It suffices to show that the integral

I.z/ D
Z

B0

f .�/U.�; z/

is unbounded in any neighborhood of the origin. Now d N�Œk� ^ d� D 0 on the set B0
for k ¤ n, so

I.z/ D .n � 1/Š.�1/n�1

.2�i/n

Z

B0


n.
n � iyn/d N�Œn� ^ d�

j�j ln j�j.j�j2 C y2n/
n
;
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where 
n D Re �n. As in Theorem 2.2.1,

ˇ
ˇ
ˇ
ˇ̌
Z

B0

f .�/

nynd N�Œn� ^ d�

.j�j2 C y2n/
n

ˇ
ˇ
ˇ
ˇ̌ � C

Z

T

yndS

.j�j2 C y2n/
n

� C1:

If we introduce polar coordinates in B0, then dS D j�j2n�2dj�j ^ d!, where d! is
the surface area element on the unit sphere in R2n�1. Integrating over ! yields,

I1 D
Z

B0


2ndS

j�j j ln j�jj .j�j2 C y2n/
n

D C2

Z R

0

j�j2ndj�j
j�j j ln j�jj .j�j2 C y2n/

n

� C2

Z R

"

j�j2n�1dj�j
j ln j�jj .j�j2 C y2n/

n
:

However

lim
yn!0

Z R

"

j�j2n�1dj�j
j ln j�jj .j�j2 C y2n/

n
D
Z R

"

dj�j
j�j j ln j�jj D � ln j ln Rj C ln j ln "j:

Fix N > 0. If we take " sufficiently small, then ln j ln "j � ln j ln Rj > 2N, and so
I1 > C2N for sufficiently small yn.

2.2.2 Functions of Class L p

Again, let D be a bounded domain in Cn with a smooth boundary @D, and f 2
L p.@D/ with p � 1. We denote the unit outer normal to @D at � by �.�/.

Theorem 2.2.2 ([45]) If Mf .z/ is an integral of the form (1.2.4), then

lim
"!C0

Z

@D

ˇ
ˇMf .z � "�.z//� Mf .z C "�.z//� f .z/

ˇ
ˇpd	 D 0;

and in addition
Z

@D

ˇ
ˇMf .z � "�.z//� Mf .z C "�.z//

ˇ
ˇpd	 � C

Z

@D
jf jpd	; (2.2.5)

where the constant C is independent of f and " (for sufficiently small ", the point
z � "�.z/ 2 D, and z C "�.z/ 2 C

n n D). If f 2 L 1.@D/, then

sup
@D

jMf .z � "�.z//� Mf .z C "�.z//j � C ess sup
@D

jf j:
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Proof We write zC D z�"�.z/ and z� D zC"�.z/. For each point � 2 @D, we take
a ball B.�; r/ of radius r not depending on � such that, for z 2 @D \ B.�; r/, we have

j� � z˙j2 � k
�jw � �j2 C "2

�

for " <
r

2
(here k is independent of � and "), where w is the projection of z onto

the tangent plane T� to @D at �. This can always be done because

jj� � wj � j� � zjj � jw � zj D o.j� � wj/

as w ! � (see the proof of Theorem 2.2.1). We have

Z

@D
jMf .zC/� Mf .z�/� f .z/jpd	

D
Z

@D
d	.z/

ˇ
ˇ
ˇ̌
ˇ

Z

@D

�
f .�/� f .z//.U.�; zC/� U.�; z�/

�
ˇ
ˇ
ˇ̌
ˇ

p

�
Z

@D
d	.z/

 Z

@D

ˇ̌
U.�; zC/� U.�; z�/

ˇ̌
!p�1

�

�
Z

@D
jf .�/� f .z/jp

ˇ
ˇU.�; zC/ � U.�; z�/

ˇ
ˇ

by Jensen’s inequality (see, for example [31, Sect. 2.2]) applied to the integral

 Z

@D
jf .�/� f .z/j ˇˇU.�; zC/� U.�; z�/

ˇ
ˇ d	

!p

:

We estimated the integral
Z

@D

ˇ̌
U.�; zC/�U.�; z�/

ˇ̌
in Theorem 2.2.1 and showed

it to be bounded by the constant not depending on ", while the integral

Z

@D
d	.z/

Z

@D
jf .�/ � f .z/jpjU.�; zC/ � U.�; z�/j

� C1

nX

mD1

Z

@D
d	.�/

Z

@D
jf .�/� f .z/jp

ˇ
ˇ
ˇ
ˇ̌

N�m � NzC
m

j� � zCj2n
�

N�m � Nz�
m

j� � z�j2n

ˇ
ˇ
ˇ
ˇ̌ d	.z/:
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If z 2 B.�; r/\ @D, then

ˇ
ˇ
ˇ̌
ˇ

N�m � Nzm

j� � zCj2n
�

N�m � Nzm

j� � z�j2n

ˇ
ˇ
ˇ̌
ˇ

D jN�m � Nzmjˇˇj� � zCj � j� � z�jˇˇ
2n�1X

jD0

1

j� � zCjjC1j� � z�j2n�j

� 6"n

kn
�jw � "j2 C "2

�n ;

while
ˇ
ˇ
ˇ̌
ˇ

"�m

j� � zCj2n
C "�m

j� � z�j2n

ˇ
ˇ
ˇ̌
ˇ

� 2"

kn
�jw � �j2 C "2

�n :

Then

Z

@D\B.�;r/
jf .�/� f .z/jp

ˇ̌
ˇ
ˇ
ˇ

N�m � NzC
m

j� � zCj2n
�

N�m � Nz�
m

j� � z�j2n

ˇ̌
ˇ
ˇ
ˇ
d	.z/

� d
Z

T�\B.�;r/

"jf .�/� f .z.w//jp

�jw � �j2 C "2
�n dS.w/ D dI1:

Introducing the variable t D w � �
"

in R2n�1, we obtain that

I1 D
Z

f"jtj<rg
jf .�/� f .z.� C "t//jp

.jtj2 C 1/n
dS.t/;

and the integral

I".t/ D
Z

@D
jf .�/� f .z.� C "t//jpd	.�/

converges to zero as " ! C0 for fixed t. Also I".t/ 6 Akf kp
L p . Therefore

Z

@D
d	.�/

Z

f"jtj<rg
jf .�/� f .z.� C "t//jp

.jtj2 C 1/n
dS.t/

D
Z

f"jtj<rg
I".t/

.jtj2 C 1/n
dS.t/ �

Z

R2n�1

I�
" .t/

.jtj2 C 1/n
dS.t/;
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where I�
" .t/ D I".t/ inside the ball ft W "jtj < rg, and I�

" .t/ D 0 outside this ball.
In the last integral, we may take the limit as " ! C0 under the integral sign by
Lebesgue’s dominated convergence theorem.

It remains to consider the integral

Z

@D
d	.�/

Z

@DnB.�;r/
jf .�/� f .z/jp

ˇ̌
ˇ
ˇ
ˇ

N�m � NzC
m

j� � zCj2n
�

N�m � Nz�
m

j� � z�j2n

ˇ̌
ˇ
ˇ
ˇ
d	.z/:

Since j� � zj � r, we have j� � z˙j � ˇ
ˇj� � zj � jz � z˙jˇˇ � r � " >

r

2
. Then

ˇ̌
ˇ
ˇ
ˇ

N�m � Nzm

j� � zCj2n
�

N�m � Nzm

j� � z�j2n

ˇ̌
ˇ
ˇ
ˇ

� jN�m � Nzmj jzC � z�j
2n�1X

jD0

1

j� � zCjjC1j� � z�j2n�j
� d1";

while
ˇ
ˇ
ˇ
ˇ
ˇ

"�m

j� � zCj2n
C "�m

j� � z�j2n

ˇ
ˇ
ˇ
ˇ
ˇ

� D2";

that is,

Z

@D
d	.�/

Z

@DnB.�;r/
jf .�/� f .z/jp

ˇ
ˇ
ˇ
ˇ̌

N�m � NzC
m

j� � zCj2n
�

N�m � Nz�
m

j� � z�j2n

ˇ
ˇ
ˇ
ˇ̌ d	.z/

� d3"

 Z

@D
jf jpd	

!2
:

Inequality (2.2.5) is proved analogously. ut

2.3 Boundary Behavior of Derivatives
of the Bochner–Martinelli Integral

2.3.1 Formulas for Finding Derivatives

Suppose D is a bounded domain with a piecewise-smooth boundary, f 2 C 1.@D/,
and Mf is the Bochner–Martinelli integral (1.2.4).
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Lemma 2.3.1 Derivatives of Mf may be found by the formulas

@.Mf /

@zm
D
Z

@D

@f

@�m
U.�; z/C .�1/nCm

Z

@D

nX

sD1

@f

@ N�s

@g

@�s
d N� ^ d�Œm�; (2.3.1)

@.Mf /

@Nzm
D
Z

@D

@f

@ N�m

U.�; z/C .�1/m
Z

@D

nX

sD1

@f

@ N�s

@g

@�s
d N�Œm� ^ d�; (2.3.2)

where g D g.�; z/ is the fundamental solution to Laplace’s equation (see Sect. 1.1).

Proof We prove, for example, formula (2.3.1), formula (2.3.2) is proved analo-
gously. Recall that

U.�; z/ D
nX

kD1
.�1/k�1 @g

@�k
.�; z/ d N�Œk� ^ d�:

Now

@.Mf /

@zm
D �

Z

@D
f .�/

@

@�m
U.�; z/ D �

Z

@D

@

@�m
.fU/C

Z

@D

@f

@�m
U.�; z/;

however

.�1/k
Z

@D

@

@�m

�
f
@g

@�k

�
d N�Œk� ^ d� D .�1/nCm

Z

@D

@

@ N�k

�
f
@g

@�k

�
d N� ^ d�Œm�;

since

d
�

f
@g

@�k

�
d N�Œk� ^ d�Œm� D .�1/k�1 @

@ N�k

�
f
@g

@�k

�
d N� ^ d�Œm�

C .�1/nCm @

@�m

�
f
@g

@�k

�
d N�Œk� ^ d�:

Consequently

@.Mf /

@zm
D
Z

@D

@f

@�m
U.�; z/C .�1/nCm

nX

kD1

Z

@D

@

@ N�k

�
f
@g

@�k

�
d N� ^ d�Œm�

D
Z

@D

@f

@�m
U.�; z/C .�1/nCm

nX

kD1

Z

@D

@f

@ N�k

@g

@�k
d N� ^ d�Œm�;

due to g being a harmonic function. ut
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Now consider a domain D with a boundary of class C 2, and suppose that f 2
C 1.@D/. If D D fz 2 Cn W �.z/ < 0g and � 2 C 2.D/ with d� ¤ 0 on @D, we denote

�k D @�

@zk

1

j grad�j and �Nk D N�k. The surface area element is then

d	 D i�n21�n
nX

kD1
.�1/nCk�1�Nkd�Œk� ^ d N�ˇˇ

@D

D i�n21�n
nX

kD1
.�1/k�1�kd N�Œk� ^ d�

ˇ
ˇ
@D

(see Lemma 2.1.1).

Lemma 2.3.2 For z … @D, let

ˆ.z/ D in2n�1
Z

@D
f .�/g.�; z/d	.�/

be a single-layer potential. Then

@ˆ

@zm
D �

Z

@D
f .�/�m.�/U.�; z/

C in2n�1
nX

kD1

Z

@D



�k

@

@�m
.f�Nk/� �m

@

@�k
.f�Nk/

�
g.�; z/ d	.�/; (2.3.3)

@ˆ

@Nzm
D �

Z

@D
f .�/� Nm.�/U.�; z/

C in2n�1
nX

kD1

Z

@D



�k

@

@ N�m

.f�Nk/ � � Nm
@

@�k
.f�Nk/

�
g.�; z/ d	.�/: (2.3.4)

Proof We have

@ˆ

@zm
D �

Z

@D
f .�/

@g

@�m

nX

kD1
�Nk.�1/nCk�1d�Œk� ^ d N�

D
nX

kD1
.�1/nCk�1

Z

@D

@

@�m
.f�Nk/g.�; z/ d�Œk� ^ d N�

�
nX

kD1
.�1/nCk�1

Z

@D

@

@�m
.f�Nkg/ d�Œk� ^ d N�:
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Just as in Lemma 2.3.1, we obtain

.�1/nCk
Z

@D

@

@�m
.f�Nkg/ d�Œk� ^ d N� D .�1/nCm

Z

@D

@

@�k
.f�Nkg/ d�Œm� ^ d N�:

Therefore

@ˆ

@zm
D

nX

kD1
.�1/nCk�1

Z

@D

@

@�m
.f�Nk/g.�; z/ d�Œk� ^ d N�

C .�1/nCm
nX

kD1

Z

@D

@

@�k
.f�Nk/g.�; z/ d�Œm� ^ d N� � in2n�1

nX

kD1

Z

@D
f�Nk

@g

@�k
�md	

D
nX

kD1

Z

@D



.�1/nCk�1 @

@�m
.f�Nk/ d�Œk� ^ d N�

C .�1/nCm @

@�k
.f�Nk/ d�Œm� ^ d N�

�
g.�; z/�

Z

@D
f�mU.�; z/:

Formula (2.3.4) is proved analogously. ut
Theorem 2.3.1 If @D 2 C 2 and f 2 C 2.@D/, then the integral Mf extends to D and
to Cn n D as a function of class C 1C˛ for 0 < ˛ < 1. Moreover

@.Mf /

@zm
D
Z

@D

 
@f

@�m
� �m

nX

kD1
�k
@f

@ N�k

!

U.�; z/

C in2n�1
Z

@D
 1.�/g.�; z/ d	.�/; (2.3.5)

where

 1 D
nX

s;kD1



�k
@

@�s

�
�m�Nk

@f

@ N�s

�
� �m

@

@�k

�
�m�Nk

@f

@ N�s

��
;

and

@.Mf /

@Nzm
D
Z

@D

 
@f

@ N�m

� � Nm
nX

kD1
�k
@f

@ N�k

!

U.�; z/

C in2n�1
Z

@D
 2.�/g.�; z/ d	.�/; (2.3.6)
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where

 2 D
nX

s;kD1



�k
@

@ N�s

�
� Nm�Nk

@f

@ N�s

�
� � Nm

@

@�k

�
� Nm�Nk

@f

@ N�s

��
:

Proof Formulas (2.3.5) and (2.3.6) follow from Lemmas 2.3.1 and 2.3.2 while the
boundary behavior of the integral Mf follows from Theorem 2.1.1 and the properties
of the single-layer potential. ut

Formulas (2.3.1)–(2.3.6) are essentially classical formulas of the potential theory.

2.3.2 Jump Theorem for Derivatives

Corollary 2.3.1 If @D 2 C 2 and f 2 C 2.@D/, then the jump of the derivatives of
Mf is given by

@.MCf /

@zm
� @.M�f /

@zm
D @f

@zm
� �m

nX

kD1

@f

@Nzk
�k; z 2 @D;

@.MCf /

@Nzm
� @.M�f /

@Nzm
D @f

@Nzm
� � Nm

nX

kD1

@f

@Nzk
�k; z 2 @D:

(2.3.7)

If we are only concerned with the jump of derivatives (that is, with formula
(2.3.7)), then we can weaken the conditions on @D and on f .

Let D be a bounded domain with a boundary of class C 1 and D D fz 2 Cn W
�.z/ < 0g, where � 2 C 1.Cn/, and d� ¤ 0 on @D. If z 2 @D, then zC 2 D and
z� … D and we denote points on the normal to @D at z such that jzC � zj D jz� � zj.
Lemma 2.3.3 Let

ˆm;Nk.z/ D
Z

@D

@g.�; z/

@�m
d N�Œk� ^ d�; z … @D;

ˆ Nm;k.z/ D
Z

@D

@g.�; z/

@ N�m

d�Œk� ^ d N�; z … @D:

Then

lim
z˙!z

�
ˆm;Nk.zC/�ˆm;Nk.z�/

� D .�1/k�1�Nk�m;

lim
z˙!z

�
ˆ Nm;k.zC/�ˆ Nm;k.z�/

� D .�1/k�1�k� Nm;

and these limits are uniformly attained in z.
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The proof is analogues to the proof of Theorem 2.2.1.

Theorem 2.3.2 (Aronov) Suppose f 2 C 1.@D/, and Mf is the Bochner–Martinelli
integral (1.2.4). Then

lim
z˙!z

 
@.Mf .zC//
@NzC

k

� @.Mf .z�//
@Nz�

k

!

D @f

@Nzk
� �Nk

nX

mD1
�m

@f

@Nzm
; (2.3.8)

lim
z˙!z

 
@.Mf .zC//
@zC

k

� @.Mf .z�//
@z�

k

!

D @f

@zk
� �k

nX

mD1
�m

@f

@Nzm
; (2.3.9)

and these limits are uniformly attained in z 2 @D.

Proof By (2.3.2), we have

@.Mf /

@Nzk
D
Z

@D

@f

@ N�k

U.�; z/C .�1/k
Z

@D

nX

mD1

@f

@ N�m

@g

@�m
d N�Œk� ^ d�:

By Theorem 2.2.1, the jump of the first integral equals
@f

@Nzk
, and we represent the

second integral in the form

Z

@D

@f

@ N�m

@g

@�m
d N�Œk� ^ d�

D @f

@Nzm

Z

@D

@g

@�m
d N�Œk� ^ d� C

Z

@D

�
@f

@ N�m

� @f

@Nzm

�
@g

@�m
d N�Œk� ^ d�:

By Lemma 2.3.3, the jump of the first integral equals

.�1/k�1 @f

@Nzm
�Nk.z/�m.z/;

and the jump of the second integral is zero (this is proved the same way as in
Theorem 2.2.1). ut

We obtain the following assertion from Theorem 2.3.2 by induction.

Corollary 2.3.2 If @D 2 C k and f 2 C m.@D/, where m � k, and MCf 2 C m.D/,
then M�f 2 C m.Cn n D/. Conversely, if M�f 2 C m.Cn n D/, then MCf 2 C m.D/.

Remark 2.3.1 Just as for Theorem 2.2.1, Theorem 2.3.2 can be obtained when f
is differentiable on @D and all its derivatives are integrable on @D. Jump formulas
(2.3.8) and (2.3.9) for derivatives will then hold at Lebesgue points of the derivatives
of f .
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Corollary 2.3.3 If @D 2 C 1 and f 2 C 1, then the jump of the derivative

N@n.Mf / D
nX

kD1

@.Mf /

@Nzk
�k (2.3.10)

is zero.

Expression (2.3.10) will be called a N@-normal derivative of Mf .

2.3.3 Jump Theorem for the N@-Normal Derivative

Corollary 2.3.3 shows that the jump of the N@-normal derivative N@n.Mf / of the
Bochner–Martinelli integral is zero. It turns out that this assertion is valid even for
continuous functions f if the boundary of the domain is assumed to be class C 2

smooth.
In this case, we may take the defining function to be

�.z/ D

8
<̂

:̂

� inf
�2@D

j� � zj; z 2 DI
inf
�2@D

j� � zj; z 2 Cn n D:

Then D D fz 2 Cn W �.z/ < 0g. Moreover, when @D 2 C 2 we have the following
(see, for example, [83, Sect. 2]):

1. There is a neighborhood V of @D such that � 2 C 2.V/;

2. j grad�j D 1

2
in V;

3. If z˙ 2 V are the points on the normal to @D at z such that jzC � zj D jz� � zj,
then

@�

@zk
.z˙/ D @�

@zk
.z/ and

@�

@Nzk
.z˙/ D @�

@Nzk
.z/ for k D 1; 2; : : : ; n.

In this case �k D 2
@�

@zk
and �Nk D 2

@�

@Nzk
. Hence

N@n.Mf / D
nX

kD1

@.Mf /

@Nzk
�k D 2

nX

kD1

@.Mf /

@Nzk

@�

@zk
:

Theorem 2.3.3 ([45]) If f 2 C .@D/, then the integral Mf of the form (1.2.4)
satisfies

lim
z˙!z

�N@n.Mf .zC// � N@n.Mf .z�//
� D 0:
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This limit is attained uniformly with respect to z 2 @D. If N@n.Mf .zC// extends
continuously to D, then N@n.Mf .z�// extends continuously to Cn n D, and vice versa.

Proof If f is constant, then N@nMf 	 0. Thus, we may assume that f .z/ D 0 at
the point z 2 @D. By formula (2.1.3), the restriction of the kernel U.�; z/ to @D has
the form

.n � 1/Š

�n

nX

kD1

@�

@ N�k

. N�k � Nzk/

j� � zj2n
d	:

Consequently,

N@nM.zC/� N@nM.z�/

D � .n � 1/Š
�n

Z

@D
f .�/

nX

kD1

@�.z/

@zk

@�.�/

@ N�k

�
1

j� � zCj2n
� 1

j� � z�j2n

�
d	

C nŠ

�n

Z

@D
f .�/

" 
nX

kD1

@�

@zk
.�k � zC

k /

nX

mD1

@�

@ N�m

. N�m � NzC
m /

!

j� � z�j�2�2n

�
 

nX

kD1

@�

@zk
.�k � z�

k /

nX

mD1

@�

@ N�m

. N�m � Nz�
m/

!

j� � z�j�2�2n

#

d	:

Denote the first integral by I1 and the second one by I2. Make a unitary transforma-
tion and translation so that z is taken to 0 and the tangent plane to @D at z is taken to
the plane

T D fw 2 C
n W Im wn D 0g:

In a neighborhood of the origin, the boundary @D will be given by a system of
equations

�1 D w1; : : : ; �n�1 D wn�1; �n D un C i'.w/;

where w D .w1; : : : ;wn�1; un/ 2 T. The function '.w/ is class C 2 in a
neighborhood W of the origin, and z˙ D .0; : : : ; 0;˙iyn/. The surface @D is the
Lyapunov surface with the Hölder exponent equal to 1, so the following estimates
hold [82, Sect. 22]:

j'.w/j � Cjwj2; w 2 W;
ˇ
ˇ
ˇ
@'

@uj

ˇ
ˇ
ˇ � C1jwj; j D 1; : : : ; n (2.3.11)

ˇ
ˇ
ˇ
@'

@vj

ˇ
ˇ
ˇ � C1jwj; j D 1; : : : ; n � 1;
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where uj D Re wj and vj D Im wj. Since
@'

@wj
D � @�

@wj

. @�

@yn
, and

ˇ
ˇ
ˇ
@�

@yn

ˇ
ˇ
ˇ � C2 > 0

for w 2 W, it follows that

ˇ
ˇ
ˇ
@�

@�k
.�.w//

ˇ
ˇ
ˇ � C3jwj;

ˇ
ˇ
ˇ
@�

@ N�k

.�.w//
ˇ
ˇ
ˇ � C3jwj (2.3.12)

for w 2 W and k D 1; : : : ; n � 1.
We note that the constants do not depend on the point z under consideration.

Finally,

j�.w/j � C4jwj: (2.3.13)

We fix " > 0, take a ball B0 in the plane T with the center at the origin, and choose
a > 0 such that

1. B0 � W,
2. jf .�.w//j < " for w 2 B0,
3. fz 2 Cn W .z1; : : : ; zn�1;Re zn/ 2 B0; j Im znj < ag � W;
4. C

�
2jynj C Cjwj2� � d < 1 for jynj < a and w 2 B0 (the constant C being

borrowed from (2.3.11)).

Since z˙ D .0; : : : ; 0;˙iyn/, the identity

j�.w/� z˙j2 D jwj2 C .˙yn � '.w//2

holds. Hence

j� � z˙j�2 D jw � z˙j�2�1 � .˙2'yn � '2/jw � z˙j�2��1:

But

j ˙ 2'yn � '2j
jw � z˙j2 � Cjwj2.2jynj � Cjwj2/

jwj2 C y2n
� C

�
2jynj C Cjwj2� � d < 1

for jynj � a and w 2 B0. Consequently

�
1� .˙2'yn � '2/jw � z˙j�2��1 D

1X

kD0

.˙2'yn � '2/k

jw � z˙j2k

D 1C .˙2'yn � '2/jw � z˙j�2h.w; z/
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and the function h.w; z/ is uniformly bounded for w 2 B0 and jynj 6 a. Therefore

j� � z˙j�2n D jw � z˙j�2n
�
1C .˙2'yn � '2/jw � z˙j�2h1.w; z/

�
; (2.3.14)

j� � z˙j�2�2n D jw � z˙j�2�2n
�
1C .˙2'yn � '2/jw � z˙j�2h2.w; z/

�
(2.3.15)

and the functions h1 and h2 are uniformly bounded for w 2 B0 and jynj � a.
We set � D f� 2 @D W � D �.w/; w 2 B0g and estimate the integral I1 over

the surface � . Using (2.3.14) and (2.3.15), we obtain

ˇ
ˇj� � zCj�2n � j� � z�j�2n

ˇ
ˇ � 2.j2'ynj C '2/jw � zCj�2�2njh1j

� C5.2jynj C Cjwj2/.jwj2 C y2n/
�n:

Supposing that d	 � C6dS, where dS is the surface area element of the plane T, we
have

jI1;� j D .n � 1/Š

�n

ˇ̌
ˇ
ˇ
ˇ

Z

�

f .�/
nX

kD1

@�

@zk

@�

@ N�k

�j� � zCj�2n � j� � z�j�2n
�

d	

ˇ̌
ˇ
ˇ
ˇ

� "C7

Z

B0

.2jynj C Cjwj2/.jwj2 C y2n/
�ndS:

Now
Z

B0

jynj.jwj2 C y2n/
�ndS �

Z

T
jynj.jwj2 C y2n/

�ndS D const;

while
Z

B0

jwj2.jwj2 C y2n/
�ndS �

Z

B0

.jwj2 C y2n/
1�ndS:

Introducing polar coordinates in the ball B0, we have dS D jwj2n�2djwj ^ d!,
where d! is the surface area element in the unit sphere in R2n�1, so

Z

B0

.jwj2 C y2n/
1�ndS D 	2n�1

Z R

0

.jwj2 C y2n/
1�ndjwj � R	2n�1:

Here R is the radius of the ball B0, and 	2n�1 is the area of the unit sphere in R2n�1.
Therefore jI1;� j � C8", where the constant C8 is independent of z and yn. Obviously
the integral I1 over the surface @D n � can be made as small as desired as z˙ ! 0.

We now show that the form of the integral I2 is not affected by the unitary
transformation. Indeed, the distance does not change, so the functions �, d	 , and
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j� � zj do not change either. Consider the expression

nX

kD1

@�

@zk
.�k � zk/:

Suppose the unitary transformation is given by the matrix A D kajkkn
j;kD1, i.e., by

z0
k D

nX

jD1
ajkzj; k D 1; : : : ; n;

and the inverse transformation is given by the matrix B D kbjkkn
j;kD1. Then

nX

kD1
akjbsk D ıjs;

where ıjs is the Kronecker symbol. Therefore

nX

kD1

@�

@zk
.�k � zk/ D

nX

k;j;sD1

@�

@z0
j

akjbsk .�
0
s � z0

s/

D
nX

j;sD1

@�

@z0
j

ıjs.�
0
s � z0

s/ D
nX

jD1

@�

@z0
j

.� 0
s � z0

s/:

It can be shown in the same way that the sum

nX

kD1

@�

@ N�k

. N�k � Nzk/

does not change. Thus, the form of the integral I2 is invariant under unitary
transformation. Then

nX

kD1

@�

@zk
.0/.�k � zk̇ /

nX

mD1

@�

@ N�m

. N�m � Nzṁ /

D � i

2
.�n � zṅ /

nX

mD1

@�

@ N�m

. N�m � Nzṁ /

D � i

2

n�1X

mD1

@�

@ N�m

N�m.�n � zṅ / � i

2

@�

@ N�n

.u2n C '2 C y2n 
 2'yn/:
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We split the integral I2 over the surface � into three integrals:

I0
2 D inŠ

�n

Z

B0

f .�.w//

 

2'yn
@�

@ N�n

C
n�1X

mD1

@�

@ N�m

N�myn

!

jw � zCj�2�2nd	 0;

I2̇ D ˙ inŠ

2�n

Z

B0

f .�.w//

 
@�

@ N�n

.u2n C '2 C y2n ˙ 2'yn/

C
n�1X

mD1

@�

@ N�m

N�m.�n � zṅ /

!

.˙2'yn � '2/h2jw � zCj�4�2nd	 0;

where d	 0 is the image of d	 under the mapping w ! �.w/, and h2 is defined in
(2.3.15). Using (2.3.11)–(2.3.15), we find that

jI0
2j � M1"

Z

B0

�
M2jwj3jynj C M3jwj2jynj�jw � zCj�2�2ndS

� M4"

Z

T
jynj.jwj2 C y2n/

�ndS D M5":

Now

jI2̇ j

� M6"

Z

B0

jwj2.2jynj C Cjwj2/�M7jwj2 C M8jwj2jynj C M9y
2
n

�
.jwj2 C y2n/

�2�ndS

� M10"

Z

B0

jynj.jwj2 C y2n/
�ndS C M11"

Z

B0

.jwj2 C y2n/
1�ndS � M12":

The integral I2 over @D n � also tends to zero. ut
Theorem 2.3.3 is an analogue of Lyapunov’s theorem on the jump of the normal

derivative of a double-layer potential. Just as in Theorem 2.2.1, it can be shown that
for f 2 L 1.@D/, the difference

N@n
�
Mf .zC/

� � N@n
�
Mf .z�/

� ! 0

as z˙ ! z at Lebesgue points of f .

Remark 2.3.2 Theorem 2.3.3 does not hold for the derivative

@n.Mf / D
nX

kD1

@.Mf /

@zk
�Nk:
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2.4 The Hodge Operator

Let us define the Hodge star operator .�/ for differential forms with respect to
the Euclidean metric in C

n (see, for example, [84, Chap. 5, Sect. 1]). Consider a
differential form of type .p; q/

� D
X

I;J

0
�I;J.z/ dzI ^ dNzJ ; (2.4.1)

where I D .i1; : : : ; ip/ and J D .j1; : : : ; jq/ are the multi-indices of order p and q
respectively, and 0 � p; q � n. The prime on the summation sign indicates that the
sum is taken over increasing multi-indices

1 � i1 < : : : < ip � n; 1 � j1 < : : : < jq � n:

Let the differential forms dzI and dNzJ have the form dzI D dzi1 ^ : : : ^ dzip , dNzJ D
dNzj1 ^ : : : ^ dNzjq . Then

�� D
X

I;J

�I;J.z/ � .dzI ^ dNzJ/;

and

�.dzI ^ dNzJ/ D 2pCq�n.�1/npin	.I/	.J/dzŒJ� ^ dNzŒI�;

where the form dzŒJ� is obtained from dz by eliminating the differentials dzj1 , . . . ,
dzjq , and the symbols 	.I/ is defined by dzI ^ dzŒI� D 	.I/dz. Thus, the form �� is
a form of type .n � q; n � p/.

We now dwell on the basic properties of the Hodge operator.

Lemma 2.4.1 If � and ' are forms of type .p; q/, then

1. � � � D .�1/pCq� ,
2. dzI ^ dNzJ ^ �.dzI ^ dNzJ/ D 2pCqdv, where dv is the volume form in Cn,
3. � � .dzI ^ dNzJ/ D .�1/pCqdzI ^ dNzJ,
4. �� D � N� ,
5. �� ^ N' D .�1/pCq� ^ � N'.

This lemma is well known (see, for example, [84, Chap. 5]) and follows directly
from the definition of the Hodge operator.

A scalar product .�; '/may be defined for .p; q/-forms � and ' with coefficients
of class L 2.D/ by

.�; '/ D
Z

D
� ^ � N':
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This scalar product is called the Hodge product. Then k�k D p
.�; �/ is the Hodge

norm.
By using the Hodge operator, it is easy to find the operators N@� and @� formally

dual to N@ and @, namely N@� D � � @� and @� D � � N@�. Recall that for the form �

the operators N@ and @ are defined by the following equations:

N@� D
nX

kD1

X

I;J

0 @�I;J

@Nzk
dNzk ^ dzI ^ dNzJ ; @� D

nX

kD1

X

I;J

0 @�I;J

@zk
dzk ^ dzI ^ dNzJ :

Let us find, for example, N@�. If � is a .p; q � 1/-form and ' is a .p; q/-form, � and
' have smooth coefficients of class L 2.D/ and ' has compact support in D, then
.N@�; '/ D .�; N@�'/ and

.N@�; '/ D
Z

D

N@� ^ � N' D
Z

D
d� ^ � N' D

Z

D
d.� ^ � N'/C .�1/pCq

Z

D
� ^ d � N'

D .�1/pCq
Z

D
� ^ N@ � N' D �

Z

D
f ^ �.�@ � '/;

so N@� D � � @�. In just the same way, we can see that @� D � � N@�. The operator
N@� carries forms of type .p; q/ into forms of type .p; q � 1/. By definition, N@� D 0

for forms of type .p; 0/.

Example 2.4.1 If f is a smooth function, then

�N@f D �
� nX

kD1

@f

@Nzk
dNzk

�
D 21�nin

nX

kD1
.�1/k�1 @f

@Nzk
dzŒk� ^ dNz D 21�nin.�1/n�f :

Hence �f D in2n�1.�N@f /.

Example 2.4.2 U.�; z/ D 2n�1in
��@g.�; z/

�
.

We consider the operator

� D N@� N@C N@N@�;

which is known as the complex Laplacian. If ' is a function, then

�' D N@� N@' D N@�
nX

kD1

@'

@Nzk
dNzk D � � @

nX

kD1
21�nin.�1/k�1 @'

@Nzk
dzŒk� ^ dNz

D � � 21�nin
nX

kD1

@2'

@Nzk@zk
dz ^ dNz D �2

nX

kD1

@2'

@Nzk@zk
D �2�';
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i.e., � D �2� for the functions and this identity continues to hold for the forms as
well (see, for example, [28, p. 106]). Thus, in Cn the harmonic forms in the sense of
� are forms with harmonic coefficients. It is also easy to show that � D @@� C @�@.

2.5 Holomorphic Functions Represented
by the Bochner–Martinelli Integral

2.5.1 Statement of the N@-Neumann Problem

Suppose n > 1, and D D fz 2 C
n W �.z/ < 0g is a bounded domain in C

n with
a boundary of class C 1, where � is the defining function. If f 2 C 1.D/, then denote

N@nf D
nX

kD1

@f

@Nzk
�k;

where �k D @�

@zk

1

j@�j . The derivative N@nf is the N@-normal derivative of function f .

We say that the tangential part N@� f of N@f equals zero on @D if

Z

@D

N@f ^ ' D 0

for all forms ' 2 Dn;n�2.Cn/. (Here Dn;n�2.Cn/ is the space of differential forms
of type .n; n � 2/ with coefficients of space D.Cn/.) But this means precisely that
f ^ N@� D 0 on @D.

If we write the form as N@f D N@� f C �
N@�

j N@�j ; then � D N@nf . If we denote the outer

unit normal to @D at z by �.z/, and s.z/ D i�.z/, then

N@nf D 1

2

�
@f

@�
C i

@f

@s

�
:

On the other hand from Example 2.4.1 and the equalities

d N�Œk� ^ d�
ˇ
ˇ
@D

D 2n�1in.�1/k�1 N�k d	;

d�Œk� ^ d N�ˇˇ
@D

D 2n�1in.�1/nCk�1�k d	;

we have

N@nf d	 D �N@f j@D D 21�nin.�1/n�f

ˇ
ˇ
@D
:
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So the normal part of the form N@f has moved to the tangent part of the form �N@f .
If we consider the function

Qg.�; z/ D 2n�1ing.�; z/ D � .n � 2/Š

2�n

1

j� � zj2n�2 ;

then formula (1.2.1) can be rewritten as follows.

Corollary 2.5.1 Let D be a bounded domain with a piecewise-smooth boundary,
and let f be a harmonic function in D of class C 1.D/. Then

Z

@D
f .�/U.�; z/�

Z

@D
Qg.�; z/N@nf .�/d	 D

8
<

:

f .z/; z 2 D;

0; z … D:
(2.5.1)

We consider the N@-Neumann problem for functions.

2.5.1 For given function ' on @D, find a function f on D such that

8
<

:

N@nf D '; on @D;

�f D 0; in D:
(2.5.2)

This problem is an exact analogue of an ordinary Neumann problem for harmonic
functions.

Just as the ordinary Neumann problem, problem (2.5.2) is not always solvable.
There is a necessary orthogonality condition to be satisfied. Indeed, if f is a
harmonic function of class C 1.D/, then �N@f is a @-closed form in D, since

0 D �f D N@� N@f D � � @.�N@f /;

i.e., @.�N@f / D 0. Hence, if ' D N@nf on @D, and h is a holomorphic function on D,
then

Z

@D
' Nh d	 D

Z

@D

Nh.�N@f / D
Z

D
@.Nh � N@f / D

Z

D

Nh@.�N@f / D 0:

Thus, a necessary condition for solvability of (2.5.2) is the orthogonality condition

Z

D
' Nh d	 D 0

for all h 2 O.D/.



54 2 Properties of the Bochner–Martinelli Integral and the Logarithmic Residue. . .

Compare problem (2.5.2) with the following problem: for given function  , find
a function f such that

8
<

:

N@nf D 0; on @D;

�f D  ; in D:
(2.5.3)

If we ignore the smoothness of the functions, then (2.5.2) and (2.5.3) are equivalent.
Indeed, the volume potential f is one of the solutions to the second equation in
(2.5.3). Subtracting it from the solution of (2.5.3), we obtain

�.f � f / D 0 and N@n.f � f / D '

on @D, i.e., we have (2.5.2). Conversely, given (2.5.2), we take the single-layer
potential f'̇ for ' and extend f �

' into D as a smooth function to obtain

N@n.f � f C
' C f �

' / D 0 on @D;

and

�.f � f C
' C f �

' / D  ;

i.e., we have (2.5.3).
Problem (2.5.2) is more adequate for studying the boundary properties of

holomorphic functions. We will not dwell any further on the development of the
inhomogeneous Neumann problem in this book. Several results on its solvability
can be found in [45]. Here we will focus on the homogeneous problem.

2.5.2 The Homogeneous N@-Neumann Problem

We first consider the homogeneous N@-Neumann problem

8
<

:

N@nf D 0; on @D;

�f D 0; in D:
(2.5.4)

It is clear that holomorphic functions f satisfy (2.5.4). We will show that the
converse is also true. First we reformulate the problem. Recall that Mf is the
Bochner–Martinelli integral (1.2.4)

Mf .z/ D
Z

@D
f .�/U.�; z/; z … @D:
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Theorem 2.5.1 ([44]) Let D be a domain such that a set Cn n D is connected,
and let f be a harmonic function in D of class C 1.D/. The following conditions are
equivalent:

1. N@nf D 0 on @D;
2. MCf D f in D;
3. M�f D 0 in Cn n D.

Proof Conditions (2) and (3) are equivalent by the jump theorem for the Bochner–
Martinelli integral (see Corollary 1.2.4) and by the uniqueness theorem for harmonic
functions.

If N@nf D 0 on @D then formula (2.5.1) yields MCf D f in D. If MCf D f in D,
then M�f D 0 outside D. Thus from (2.5.1) we obtain

Z

@D

N@nf .�/

j� � zj2n�2 d	.�/ D 0

for all z … @D. Applying the Keldysh–Lavrent’ev theorem (see, for example, [56,
p. 418]) on the density of fractions of the form

1

j� � zj2n�2

in the space C .@D/, we obtain that N@nf D 0 on @D. ut
Theorem 2.5.2 (Folland and Kohn [21]; Aronov and Kytmanov [10]) Let f be a
harmonic function in D of class C 1.D/. The following conditions are equivalent:

1. N@nf D 0 on @D;
2. MCf D f in D;
3. M�f D 0 in Cn n D;
4. f is holomorphic in D.

Proof It is sufficient to prove that condition (1) implies condition (4). Since the form
�N@f is @-closed, then

0 D
Z

@D

Nf .�N@f / D
Z

D
@Nf ^ �N@f D 21�nin

Z

D
j N@f j2dz ^ dNz D 2

Z

D
j N@f j2dv:

Hence
@f

@Nzk
D 0 in D for all k D 1; : : : ; n, so f 2 O.D/. ut

Conditions (2), (3), (4) are equivalent without requirement that f is harmonic
in D.
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2.5.3 Holomorphic Functions Represented
by the Bochner–Martinelli Integral

Let n > 1.

Theorem 2.5.3 ([45]) If MCf is holomorphic in D, f 2 C 1.@D/, and @D 2 C 1 is
connected, then the boundary value of MCf coincides with f .

It is clear that Theorem 2.5.3 is not true when n D 1. This is not true either if
@D is not connected: it suffices to set f D 1 on just one connected component of @D
and f D 0 on the remaining components.

Consider a continuous function.

Theorem 2.5.4 ([46]) Let D be a bounded domain with a connected boundary of
class C 2. A necessary and sufficient condition for the function f 2 C .D/ to be
holomorphic in D is that MCf D f in D.

Proof If MCf D f in D, then M�f extends continuously to Cn nD, and M�f D 0 on
@D. By the uniqueness theorem for harmonic functions, M�f 	 0. Then N@n.M�f / 	
0, so by Theorem 2.3.3, N@n.MCf / D N@nf extends continuously to D, and N@nf D 0 on
@D. Let �.z/ be a defining function for D, and D" D fz 2 D W �.z/ < �"g, " > 0.
Then

Z

@D"

Nf .�N@f / D 21�nin
Z

D"

nX

kD1

ˇ
ˇ
ˇ̌ @f

@Nzk

ˇ
ˇ
ˇ̌
2

dz ^ dNz ! 0

when " ! C0. Hence
@f

@Nzk
D 0 in D for all k D 1; : : : ; n. ut

We get the corollaries from this theorem, Theorem 2.2.1 on the jump of the
Bochner–Martinelli integral and Corollary 2.2.1.

Corollary 2.5.2 If f 2 C .@D/ and @D 2 C 2, then a necessary and sufficient
condition for f to extend into D as a function F of class A .D/ is that M�f D 0

outside D.

Corollary 2.5.3 Suppose n > 1, @D 2 C 2 is connected, and f 2 C .@D/. If MCf is
holomorphic in D, then MCf 2 C .D/, and MCf D f on @D.

Proof Since MCf is holomorphic in D, then N@nMCf D 0 in D. Using Theorem 2.3.3

we obtain @nM�f D 0 on @D. Since M�f D O.jzj1�2n/, and
@M�f

@Nzk
D O.jzj�2n/ as

jzj ! 1, by applying Stokes’ formula we find that

0 D
Z

@D
M�f

��N@M�f
� D �21�nin

Z

CnnD

nX

kD1

ˇ
ˇ
ˇ
ˇ
@M�f

@Nzk

ˇ
ˇ
ˇ
ˇ

2

dz ^ dNz:
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Consequently, M�f is holomorphic in Cn n D, and by Hartogs’ theorem it extends
holomorphically in Cn. But then M�f 	 0, since M�f ! 0 as jzj ! 1 (here
we assume that n > 1 and @D is connected). Now applying Theorem 2.2.1 and
Corollary 2.2.1, we obtain the required assertion MCf D f on @D. ut

2.5.4 Homogeneous Harmonic Polynomials Expansion
of the Bochner–Martinelli Kernel

Let B D B.0; 1/ be a unit ball in Cn with the center at the origin, and let S D S.0; 1/
be its boundary. Consider a set of homogeneous harmonic polynomials that form a
complete orthonormal system of functions (basis) in the space L 2.S/ with respect
to the Lebesgue measure d	 on S. We denote these polynomials as Pk;s, where k
is the degree of homogeneity, k D 0; 1; 2; : : :, and s D 1; 2; : : : ; 	.k/, 	.k/ D
2.n C k � 2/.k C 2n � 3/Š

kŠ.n � 2/Š
is the number of linearly independent homogeneous

polynomials of degree k (see, for example, [74, Chap. 10]). It is clear that 	.k/
is a polynomial (in k) of degree .2n � 2/ with the higher coefficient �2.n � 2/Š.
Theorem 2.5.5 ([45, 46]) If fPk;sg is a complete orthonormal system of homo-
geneous harmonic polynomials in the space L 2.S/, then the Bochner–Martinelli
kernel has the expansion

U.�; z/ D �
X

k;s

Pk;s.z/

n C k � 1

"

�@ Pk;s.�/

j�j2nC2k�2

#

; (2.5.5)

where series (2.5.5) converges uniformly on compact sets in the domain

f.�; z/ 2 C
2n W j�j > jzjg:

Likewise, we have the expansion

U.�; z/ D �
X

k;s

Pk;s.z/

.n C k � 1/jzj2nC2k�2 � .@Pk;s.�//; (2.5.6)

where series (2.5.6) converges uniformly on compact sets in the domain

f.�; z/ 2 C
2n W j�j < jzjg:

Proof We denote the restriction of the polynomial Pk;s on S by Yk;s. Then fYk;sg is
an orthonormal basis in L 2.S/, consisting of spherical functions. Let � 2 S, z 2 B



58 2 Properties of the Bochner–Martinelli Integral and the Logarithmic Residue. . .

and

1

j� � zj2n�2 D
X

k;s

ck;sYk;s

(z being fixed here), where

ck;s.z/ D
Z

S

Yk;s.�/

j� � zj2n�2 d	.�/:

If we express j� � zj2�2n in terms of the Poisson kernel P.�; z/ for the ball, where

P.�; z/ D .n � 1/Š

2�n

1 � jzj2
j� � zj2n

;

then

ck;s.z/ D 2�n

.n � 1/Š

Z

S
P.�; z/

1 � h�; Nzi � h N�; zi C jzj2
1 � jzj2 Yk;s.�/ d	.�/:

It is easy to verify that the functions

�jPk;s.�/ � 1

n C k � 1
@Pk;s.�/

@ N�j

.j�j2 � 1/

and

N�jPk;s.�/ � 1

n C k � 1
@Pk;s.�/

@�j
.j�j2 � 1/

give harmonic extension of the functions �jYk;s and N�jYk;s in B from the sphere S.
Therefore

ck;s.z/ D 2�n

.n � 1/Š

1

1 � jzj2


.1C jzj2/Pk;s.z/ � 2jzj2Pk;s.z/C

C jzj2 � 1
n C k � 1

nX

jD1

�
Nzj
@Pk;s

@Nzj
C zj

@Pk;s

@zj

��
D 2�n

.n � 2/Š.n C k � 2/ Pk;s.z/:

Then

1

j� � zj2n�2 D 2�n

.n � 2/Š

X

k;s

1

n C k � 1
Pk;s.z/ Yk;s.�/: (2.5.7)
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Series (2.5.7) converges in � in the sense of L 2.S/ and z uniformly on compact
subsets of B. The harmonic extension on � in series (2.5.7) on B is given by

�
j�j
ˇ
ˇ
ˇ̌ �
j�j2 � z

ˇ
ˇ
ˇ̌
�2�2n

D 2�n

.n � 2/Š
X

k;s

1

n C k � 1 Pk;s.z/ Pk;s.�/: (2.5.8)

Applying the Kelvin transformation in � to both sides in (2.5.8), we find

1

j� � zj2n�2 D 2�n

.n � 2/Š

X

k;s

Pk;s.z/

n C k � 1

Pk;s.�/

j�j2nC2k�2 ;

where the series converges uniformly on compact sets in f.z; �/ 2 C2n W j�j > jzjg.
Since

U.�; z/ D � .n � 2/Š
2�n

� @� j� � zj2�2n

(Example 2.4.2), we obtain the required equality (2.5.5).
Similarly, by exchanging � and z in formula (2.5.7), we obtain

1

j� � zj2n�2 D 2�n

.n � 2/Š

X

k;s

1

n C k � 1 Pk;s.�/ Yk;s.z/; (2.5.9)

where � 2 B, z 2 S. Harmonic extension of the left- and right-hand sides of (2.5.9)
on z in B results in

�
jzj
ˇ
ˇ
ˇ
ˇ

z

jzj2 � �
ˇ
ˇ
ˇ
ˇ

�2�2n

D 2�n

.n � 2/Š

X

k;s

1

n C k � 1 Pk;s.�/ Pk;s.z/: (2.5.10)

Applying the Kelvin transformation in z to (2.5.10), we obtain

1

j� � zj2n�2 D 2�n

.n � 2/Š
X

k;s

Pk;s.�/

n C k � 1

Pk;s.z/

jzj2nC2k�2 ;

where the series converges uniformly on compact sets in f.z; �/ 2 C2n W j�j < jzjg.
From this and Example 2.4.2 we obtain expansion (2.5.6). ut
Corollary 2.5.4 Suppose @D 2 C 2 is connected, and f 2 C .@D/. A necessary and
sufficient condition for f to extend into D as a function F 2 A .D/ is that

Z

@D
f .�@Pk;s/ D 0

for all k; s.
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Proof The function M�f is harmonic outside D, so to prove M�f D 0 outside D it
suffices to prove that M�f D 0 outside some ball B.0;R/ � D. When z … B.0;R/,
the function j� � zj2�2n is harmonic in � in B.0;R/, and therefore the kernel U.�; z/
can be represented by uniformly convergent series (2.5.6) on B.0;R/. We thus obtain
the required equality

Z

@D
f .�/U.�; z/ D 0

for z … B.0;R/. ut
When n D 1, Corollary 2.5.4 reduces to the classical criterion for the existence of

a holomorphic extension, which consists in orthogonality of f to the monomials zk,
k D 0; 1; : : :, since in this case Pk;s;t D azk C bNzs, and so �@Pk;s;t D czk�1dz, k � 1.

2.6 Boundary Behavior of the Integral (of Type)
of the Logarithmic Residue

Suppose D is a bounded domain in Cn with a piecewise-smooth boundary @D and
w D  .z/ is a holomorphic mapping on D in Cn having a finite number of zeros E 
on D. Similarly to Sect. 1.4, consider the multiplicity �a of zero a of this map.

For a point z 2 E \ @D we consider a ball B.z;R/, that does not contain any
other zeros of  , and use � .z/ to denote

� .z/ D lim
r!C0

L 2n�1ŒS.0; r/\  .B.z;R/ \ D/�

L 2n�1ŒS.0; r/�
;

where L 2n�1 is .2n � 1/-dimensional Lebesgue measure. In other words, we
consider the solid angle of the tangent cone of the image  .B.z;R/ \ D/ at the
point 0 rather than the solid angle of the tangent cone to the domain D at the point
z. (The definition of the tangent cone can be found in [20, Sect. 3.1.21].)

By Sard’s theorem, for z 2 E and a sufficiently small neighborhood of Vz of
the point z the set B .z; r/ D f� 2 Vz W j .�/j < rg is relatively compact in Vz, and
the set S .z; r/ D f� 2 Vz W j .�/j D rg is a smooth .2n�1/-dimensional cycle (for
almost all sufficiently small r > 0).

We define the principal value p:v: of the integral of a measurable function ' at
the point z 2 E on neighborhood S of the point z of the surface @D as follows:

p:v: 
Z

S
'.�/ dL 2n�1.�/ D lim

r!C0

Z

SnB .z;r/
'.�/ dL 2n�1.�/:

This definition differs from the conventional definition of the Cauchy principal value
p:v: in that we remove the curved ball B .z; r/ rather than the ball neighborhood of z.



2.6 Boundary Behavior of the Integral (of Type) of the Logarithmic Residue 61

Consider the kernel of U. .�// that is used in the multidimensional logarithmic
residue in Sect. 1.4. It is obtained by substituting w D  .z/ from the Bochner–
Martinelli kernel U.w/, defined by formula (1.4.1). The kernel U. .�// is a closed
differential form of type .n; n � 1/ on D with singularities at a 2 E .

We now formulate the main result of this section.

Theorem 2.6.1 ([65]) If a holomorphic function f in D satisfies the Holder condi-
tion with the exponent � > 0 on D (i.e., f 2 C � .D/), then

p:v:
Z

@D
f .�/U. .�// D

X

a2E \D

�af .a/C
X

a2E \@D

� .a/�af .a/:

This formula is the formula of a multidimensional logarithmic residue with
singularities on the boundary. If the zeros of mapping  do not lie on the boundary,
this formula turns into the ordinary logarithmic residue formula [9, Sect. 3]. In the
case of simple zeros a 2 @D, it gives the theorem from [68]. Furthermore, this
theorem is a generalization of Theorem 20.7 in [45], where additional conditions
are imposed on the boundary @D and the map  .

For the proof we need the following Theorem 3.2.5 from [20].
Suppose that the map  W Rm ! Rn is the Lipschitz one and m � n. Then

Z

A
g. .x//Jm .x/ dL m.x/ D

Z

Rn
g.y/N. jA; y/ dH m.y/; (2.6.1)

if the set A is L m-measurable, g W Rn ! R and N. jA; y/ < 1 for H m for almost
all y.

Here Jm .x/ is the m-dimensional Jacobian of the mapping  , L m is the
m-dimensional Lebesgue measure, H m is the m-dimensional Hausdorff measure,
N. jA; y/ is the function of multiplicity of the mapping  , i.e., the number of
inverse images  �1.y/, lying in A.

First we prove the theorem for the principal value p:v: .

Lemma 2.6.1 Under the hypotheses of Theorem 2.6.1 the equality

p:v: 
Z

@D
f .�/U. .�// D

X

a2E \D

�af .a/C
X

a2E \@D

� .a/�af .a/

holds.

Proof In the domain

Dr D D n
[

a2E \@D

B .a; r/
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by the multidimensional logarithmic residue formula (1.4.2) we have

Z

@Dr

f .�/U. .�// D
X

a2E \D

�af .a/;

and

p:v: 
Z

@D
f .�/U. .�// D lim

r!C0

Z

@Dn S

a2E \@D
B .a;r/

f .�/U. .�//:

So that
Z

@Dr

f .�/U. .�// D
Z

@Dn[aB .a;r/
f .�/U. .�// �

X

a

Z

S .a;r/\D
f .�/U. .�//;

and

Z

S .a;r/\D
f .�/U. .�//

D
Z

S .a;r/\D
.f .�/� f .a//U. .�//C f .a/

Z

S .a;r/\D
U. .�//: (2.6.2)

Next, we use the Lojasiewicz inequality [61, p. 73]

j� � aj � Cj .�/j˛ (2.6.3)

for some positive numbers ˛ and C and points � from a sufficiently small
neighborhood a. We show that the first integral in (2.6.2) tends to zero as r ! C0.
Using the Holder condition for the function f , equality (2.6.1) and inequality (2.6.3),
we obtain

Z

S .a;r/\D
jf .�/ � f .a/j j kj

j .�/j2n
jd Œk� ^ d j

� C1

Z

S .a;r/\D
j .�/j�˛C1�2njd Œk� ^ d j

� C1�a

Z

S.0;r/\ .D/
jwj�˛C1�2n dH 2n�1.w/

� C2

Z

S.0;r/
jwj�˛C1�2n dL 2n�1.w/;
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since the mapping  is smooth, therefore H 2n�1. .S// � C3L 2n�1.S/, and the
last integral obviously tends to zero as r ! C0. For the second integral in (2.6.2)
we apply equality (2.6.1) and obtain

lim
r!C0

Z

S .a;r/\D
U. .�// D lim

r!C0�a

Z

S.0;r/\ .D/
U.w/ D �a� .a/;

since

Z

S.0;r/\ .D/
U.w/ D L 2n�1ŒS.0; r/\  .D/�

L 2n�1ŒS.0; r/�

by Lemma 2.1 from [45]. ut
Now let  D . 1; : : : ;  n/ be a holomorphic mapping from Cn to Cn, that

consists of entire functions and has the only zero at the origin. Multiplicity of zero
of the mapping  will be denoted by �.

As in (1.4.5), we denote the integrals by the formula

Z

@D�

f .�/U. .� � z// D
8
<

:

MC
 f .z/; z 2 D;

M�
 f .z/; z 62 D:

(2.6.4)

Lemma 2.6.2 If f 2 C � .@D/, � > 0, then the integrals M ̇ f extend continuously

to @D and MC
 f .z/ � M�

 f .z/ D �f .z/ on @D.

Proof We extend f in a neighborhood V of the boundary of the domain D to
a function, satisfying the Hölder condition with the exponent � in this neighborhood.
We now prove that the functions

Z

@D�

.f .�/� f .z//U. .� � z//

are continuous in V . To do this, we need to show that integrals of the form

Z

S�

.f .�/ � f .z//
 k.� � z/

j .� � z/j2n
d Œk� ^ d 

converge absolutely (here S is the neighborhood of z on the surface @D). Inequal-
ity (2.6.3), when applied to the  .� � z/, and the Hölder condition of f yields

jf .�/� f .z/j � cj� � zj� � c1j .� � z/j�˛
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for � from a sufficiently small neighborhood of z. Using (2.6.1), as we did when
proving Lemma 2.6.1, we obtain

Z

S�

jf .�/� f .z/j j k.� � z/j
j .� � z/j2n

ˇ
ˇd Œk� ^ d 

ˇ
ˇ

� c1

Z

S�

j .� � z/j�˛C1�2n
ˇ̌
d Œk� ^ d 

ˇ̌ � c1�
Z

 .S/
jwj�˛C1�2n dH 2n�1.w/

� c2

Z

S
jwj�˛C1�2n dL 2n�1.w/;

and the last integral obviously converges.
The formula

Z

@D
U. .� � z// D

8
<

:

�; z 2 D;

0; z … D;

completes the proof. ut
Let us return to the original mapping  .

Lemma 2.6.3 For the function f 2 C � .@D/, � > 0 the equality

p:v: 
Z

S
f .�/U. .�// D p:v:

Z

S

f .�/U. .�//

holds.

This lemma generalizes the statement from [68] about equality of the principal
values for the case of simple zeros of the mapping  .

Proof As shown in Lemma 2.6.2, the integral

Z

S
.f .�/ � f .z//U. .�//

converges absolutely, so the principal values are equal to the given integral. Hence,
we only need to prove that

p:v: 
Z

S

U. .�// D p:v:
Z

S

U. .�//:
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We transform the integral (r is small enough), taking S D @D \ B.z;R/,

Z

SnB .z;r/
U. .�// D

Z

@.D\B.z;R/nB .z;r//
U. .�// �

Z

D\S.z;R/
U. .�//

C
Z

D\S .z;r/
U. .�// D �

Z

D\S.z;R/
U. .�//C

Z

D\S .z;r/
U. .�//

according to the multidimensional logarithmic residue formula. Therefore, it
remains to prove that

lim
r!C0

Z

D\S .z;r/
U. .�// D lim

r!C0

Z

D\S.z;r/
U. .�//:

By Theorem 3.2.5 in [20] (equality (2.6.1)) we have

Z

D\S .z;r/
U. .�// D �z

Z

 .D/\S.0;r/
U.w/;

Z

D\S.z;r/
U. .�// D �z

Z

 .D\S.z;r//
U.w/:

Therefore, we need to show that

lim
r!C0

Z

 .D/\S.0;r/
U.w/ D lim

r!C0

Z

 .D\S.z;r//
U.w/:

In this equality the tangent cone of ˘ to  .D/ at 0 can be chosen instead of  .D/.
We show that

Z

˘\S.0;r1/
U.w/ D

Z

˘\ .S.z;r2//
U.w/:

Consider the domain G bounded by the surfaces ˘ \ S.0; r1/, ˘ \  .S.z; r2//
and the part of the conical surface M \ @˘ (r1 and r2 are chosen so that the ball
B.0; r1/ contains the surface  .S.z; r2//). By the Bochner–Martinelli formula we
have

Z

@G
U.w/ D 0;

therefore
Z

˘\S.0;r1/
U.w/�

Z

˘\ .S.z;r2//
U.w/ D

Z

M
U.w/:
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We show that
Z

M
U.w/ D 0:

We pass from the complex coordinates w to real ones wj D 
j C i
nCj, j D 1; : : : ; n.
Then (see [68] or [45])

Re U.w/ D .n � 1/Š

2�n

2nX

kD1
.�1/k�1 
k

j
j2n
d
Œk�;

Im U.w/ D � .n � 2/Š
4�n

d

 
nX

kD1

1

j
j2n�2 d
Œk; n C k�

!

; n > 1;

and when n D 1

Im U.w/ D �d ln j
j2
4�

:

The restriction of the differential form Re U.w/ onto the conical surface M (at
smooth points of M) equals 0. In fact, let M be given by a zero set of a homogeneous
real-valued function ': M D f
 W '.
/ D 0g. Then at the points of smoothness M

the restriction of d
Œk� to M equals .�1/k�1�kd	 , where �k D @'

@
k

1

j grad'j are the

direction cosines of the normal and d	 is an element of the surface M. Then

2nX

kD1
.�1/k�1 
k

j
j2n
d
Œk�

ˇ
ˇ̌
ˇ
M

D
2nX

kD1

k
@'

@
k

1

j grad'jj
j2n
d	 D l'

1

j grad'jj
j2n
d	 D 0

by virtue of Euler’s formula for homogeneous functions (l is the degree of
homogeneity of '); the .2n � 1/-dimensional measure of the set of points of non-
smoothness is zero.

Integration over M will be done with real lines on M of the form

lb D f
 W 
j D bjt; j D 1; : : : ; 2n; t 2 Rg;

where jbj D 1. For a fixed b 2 S.0; 1/ the variable t changes from some r2.b/ to r1.
The function r2.b/ is measurable. Thus, M is a bundle over the cycle @˘ \ S.0; 1/.
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In these variables

Im U.w/ D cnd

�
dt

t
^
X

k;j

˙bkdbŒj; k; n C k�

�
D cn

dt

t
^

nX

kD1
dbŒk; n C k�;

as the form containing a product of more than 2n � 2 differentials dbj is equal to
zero on S \ @˘ . Then

Z

M
ImU.w/ D cn

Z

S.0;1/\@˘
ln

r1
r2.b/

nX

kD1
dbŒk; n C k�:

Variables bk; bnCk at almost all points of S\@˘ are the functions of the remaining
variables bj, j ¤ k; n C k. Therefore, the last integral takes the form

Z

S.0;1/\@˘

nX

kD1
ln˚k.b1; : : : ; Œk�; : : : ; Œn C k�; : : : ; b2n/ dbŒk; n C k�

D
Z

S.0;1/\˘
d

� nX

kD1
ln˚k.b1; : : : ; Œk�; : : : ; Œn C k�; : : : ; b2n/ dbŒk; n C k�

�
D 0

by Stokes’s formula. ut
Proof of Theorem 2.6.1 follows from Lemmas 2.6.1 and 2.6.3. ut

Lemma 2.6.2 adds strength to Theorem 1 from [49], which was proved for
smooth functions.

2.7 On the Holomorphicity of Functions Represented
by the Logarithmic Residue Formula

Suppose D is a bounded domain in Cn with a piecewise-smooth boundary @D. We
want to prove the converse assertion to Corollary 1.4.2: if equality (1.4.4) is valid
for a function f , then this function is holomorphic in D.

Theorem 2.7.1 ([48]) If f 2 C 1.@D/ satisfies the condition

M�
 f .z/ D 0; z 62 D; (2.7.1)

then f extends holomorphically into D as a function F 2 C 1.D/:

For the proof we will need some of the properties of determinants made up of
differential forms. Consider n-dimensional vectors �1; : : : ; �m consisting of exterior
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differential forms. We introduce determinants of order n:

D�1;:::;�m

�
�1; : : : ; �m

�
; (2.7.2)

where the first �1 columns are the vectors �1, the second �2 columns are the vectors
�2, and so on, and the last �m columns are the vectors �m, �1 C � � � C �m D n. The
properties of these determinants can be found in [8, Sect. 1]. Consider the vector


 D N 
j j2 D

� N 1
j j2 ; : : : ;

N n

j j2
�
;

then h
;  i D 
1 1 C � � � C 
n n D 1 outside the zeros of the map  . The kernel
!. / takes the form

!. / D 1

.2�i/n
D1;n�1.
; N@�
/ ^ d 

D 1

.2�i/n
1

j j2n
D1;n�1. N ; @� / ^ d : (2.7.3)

By virtue of the properties of determinants in the expression D1;n�1, the first
column can be replaced by any column such that h�;  i D 1. Indeed, the
determinant

D1;n�1.
 � �; N@�
/ D 0

due to the lines h
 � �;  i D 0 and hN@�
;  i D N@�h
;  i D 0 being linearly
dependent.

Let ˆ D  1'1 C � � � C  n'n, where the functions 'j D 'j.�; z/, j D 1; : : : ; n are

holomorphic in Cn �Cn, and � D 1

ˆ
.'1; : : : ; 'n/; then h�;  i D 1 outside the zeros

of the functionˆ.
We introduce the determinant

Uˆ D 1

.2�i/n
D1;1;n�2.�; 
; N@�
/ ^ d :

Lemma 2.7.1 The equality N@�Uˆ D ! holds outside the zeros of ˆ.

The assertion of Lemma 2.7.1 can be checked by direct computation using the
equation N@�� D 0.

Lemma 2.7.2 For all j D 1; 2; : : : ; n we have the equations

@

@Nzj
Uˆ D n � 1

.2�i/n
D1;1;n�2

�
�;
@


@Nzj
; N@�


�
^ d C N@�
j;
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where


j D n � 2

.2�i/n
D1;1;1;n�3

�
�; 
;

@


@Nzj
; N@�


�
^ d 

(
j D 0 for n D 2 ).

Proof Indeed

@

@Nzj
Uˆ D 1

.2�i/n
D1;1;n�2

�
�;
@


@Nzj
; N@�


�
^ d 

C n � 2
.2�i/n

D1;1;1;n�3
�
�; 
;

@

@Nzj

N@�
; N@�

�

^ d :

On the other hand

N@�D1;1;1;n�3
�
�; 
;

@


@Nzj
; N@�


�

D �D1;1;n�2
�
�;
@


@Nzj
; N@�


�
C D1;1;1;n�3

�
�; 
; N@� @


@Nzj
; N@�


�
:

Hence we have the required result. ut
Lemma 2.7.3 The following formulas

@

@Nzj
!. / D n � 1

.2�i/n
N@�D1;1;n�2

�

;
@


@Nzj
; N@�


�
^ d (2.7.4)

hold for all � ¤ z.

Proof From Lemmas 2.7.1 and 2.7.2 we have

@

@Nzj
!. / D n � 1

.2�i/n
N@�D1;1;n�2

�
�;
@


@Nzj
; N@�


�
^ d :

The determinant

D1;1;n�2
�
� � 
; @


@Nzj
; N@�


�
D 0

by virtue of the linear dependence of the lines

h� � 
;  i D 0;

�
@


@Nzj
;  



D @

@Nzj
h
;  i D 0; hN@�
;  i D 0;

from which (2.7.4) follows. ut
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Lemma 2.7.3 shows that the derivatives with respect to Nzj of form !. / are
N@-exact differential forms with the point singularities � D z.

Remark 2.7.1 Using the homogeneity property of the determinant, formula (2.7.4)
can be rewritten as

@

@Nzj
!. / D n � 1

.2�i/n
N@�
"

1

j j2n
D1;1;n�2

 
N ; @ 
@zj
; @� 

!

^ d 

#

:

Lemma 2.7.4 The following equalities

@

@Nzj
!. / D � 1

.2�i/n
N@�
"

nX

sD1

@

@zs

 
1

j j2n�2D1;1;n�2

 

As;
@ 

@zj
; @� 

!

^ d�

!#

;

hold, where As is the i-th column of cofactors Ask to the elements of the Jacobi

matrix

�
�
�
�
@ s

@zk

�
�
�
�

n

s;kD1
:

Proof It is not hard to check that

nX

sD1

@

@zs
As

k D 0

for all k D 1; 2; : : : ; n: Then

nX

sD1

@

@zs

"
1

j j2n�2D1;1;n�2

 

As;
@ 

@zj
; @� 

!

^ d�

#

D
nX

sD1

@

@zs

�
1

j j2n�2

�
D1;1;n�2

 

As;
@ 

@zj
; @� 

!

^ d�

D �.n � 1/

nX

sD1

nP

kD1
N k
@ k
@zs

j j2n

nX

mD1
.�1/m�1As

mDm
1;n�2

 
@ 

@zj
; @� 

!

^ d�

D �.n � 1/
nX

kD1
.�1/k�1 N k

j j2n
Dk
1;n�2

 
@ 

@zj
; @� 

!

^ d 

D �.n � 1/
1

j j2n
D1;1;n�2

 
N ; @ 
@zj
; @� 

!

^ d ;



2.7 On the Holomorphicity of Functions Represented by the Logarithmic. . . 71

were Dm
1;n�2

 
@ 

@zj
; @� 

!

is the determinant obtained from the determinant

D1;1;n�2

 
N ; @ 
@zj
; @� 

!

by deleting the first column and the n-th line. ut

Proof of Theorem 2.7.1 Consider the differential form

ˇ D
nX

kD1
ˇk dNzŒk� ^ dz;

where

Ň
k D .�1/k

.2�i/n

Z

@D
f N@�

"
1

j j2n�2D1;1;n�2

 

Ak;
@ 

@zj
; @� 

!

^ d�

#

:

Then ˇk 2 C .Cn/ and they are real-analytic outside the boundary of the domain D.
Indeed, the form

N@�
"

1

j j2n�2D1;1;n�2

 

Ak;
@ 

@zj
; @� 

!

^ d�

#

has absolutely integrable coefficients in D by Remark 1.4.1. Then by Stokes’
formula

Z

@D
f N@�

"
1

j j2n�2D1;1;n�2

 

Ak;
@ 

@zj
; @� 

!

^ d�

#

D
Z

D

N@� f ^ N@�
"

1

j j2n�2D1;1;n�2

 

Ak;
@ 

@zj
; @� 

!

^ d�

#

;

and the last integral is a continuous function in Cn, k; j D 1; 2; : : : ; n.
From the condition of Theorem 2.7.1, the function M�

 f .z/ D 0 outside D, then
@

@Nzj
M�
 f .z/ D 0. By Lemmas 2.7.3 and 2.7.4, we obtain that the form ˇ is N@-closed

outside D. Now we need the solution to the N@-problem in a ball BR.z0/ D fz 2 Cn W
jz � z0j < Rg, discussed in [9, Sect. 25] for the case of strongly convex domains.

Let � D jz � z0j2 � R2, then BR.z0/ D fz 2 Cn W �.z/ < 0g. Consider the
vector-valued function

P.z/ D .P1; : : : ;Pn/ D
�
@�

@z1
; : : : ;

@�

@zn

�
D .z1 � z01; : : : ; zn � z0n/
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and the functions

ˆ.z;w/ D
nX

jD1
Pj.z/.zj � wj/ D jzj2 � hNz;wi � hNz0; zi C hNz0;wi;

Q̂ .z;w/ D ˆ.z;w/ � �.z/ D R2 � hNz;wi C hNz0;wi � jz0j2 C hNz; z0i:

We introduce the vector-valued functions

u.z;w/ D P.z/

ˆ.z;w/
;

u�.z;w/ D .1 � �/
Nz � Nw

jz � wj2 C �u.z;w/; � 2 Œ0; 1�;

and

'k.z;w/ D
"

1 �
�
ˆ.z;w/
Q̂ .z;w/

�2n
#k

D
�

� �.z/
Q̂ .z;w/

�k
 
2n�1X

jD0

�
ˆ.z;w/
Q̂ .z;w/

�j
!k

:

If z;w 2 BR.z0/ and z ¤ w, then ˆ.z;w/ ¤ 0.
Define the operators Gk to be

.Gkˇ/.w/ D �
Z

BR.z0/
ˇ.z/ 'k.z;w/Un;n�2.z;w/

C
Z

BR.z0/�Œ0;1�
ˇ.z/ ^ N@z'k.z;w/ ^ Wn;n�2.u�; z;w/; (2.7.5)

where

Un;n�2.z;w/ D n � 1
.2�i/n

D1;n�2;1.t.z;w/; N@wt; N@zt/ ^ dw;

Wn;n�2.z;w/ D � 1

.2�i/n
D1;n�2;1.u�; N@wu�; N@zu�/ ^ dw;

and t.z;w/ D Nz � Nw
jz � wj2 (see [9, Sect. 25]). Then by Theorems 25.6 from [9] at k > 2,

we get

N@.Gkˇ/ D ˇ

in a ball BR.z0/ not intersecting D, and the coefficients of Gkˇ are continuous on the
closure of BR.z0/ and real-analytic in this ball.
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Consider the form �.w; z0;R/ D Gkˇ in an arbitrary ball BR.z0/. We show that
for w 62 @D, this form is real-analytic for w; z0;R. Let w0 62 @D. Take a ball B".w0/
that does not intersect the boundary D, and break each of the integrals in formula
(2.7.5) into two sets: B".w0/ and BR.z0/nB".w0/. The integrals over BR.z0/nB".w0/
are obviously real-analytic in B".w0/ due to the real-analytic kernels and absence of
singularities. In the integrals over B".w0/ we replace the variables z � w ! z0.

Since the denominators responsible for singularity in the kernels depend on z�w,
we get the integrals

Z

B".w�z/
A.z; z0;R;w; z0/

Nz0
j

jz0j2n
dNz0 ^ dz0

with coefficients depending real-analytically on the variables. Expanding these
coefficients in a series in z � w and integrating, we obtain the desired result.

Thus, in the ball BR.z0/ � Cn n D the equality

N@z�.z; z
0;R/ D ˇ.z/ (2.7.6)

holds. Because of being real-analytic, equality (2.7.6) will also hold in the case when
the ball BR.z0/ intersects the boundary D. Taking R and z0 such that BR.z0/ � D, we
obtain that on the set BR.z0/ n D the form � yields a solution to the N@-problem for
the form ˇ.

Furthermore, the form � has real-analytic coefficients in D, and equality (2.7.6)
on the boundary @D is satisfied by virtue of continuity. The coefficients of ˇ are
generalized potentials, for which the maximum modulus theorem holds (see [56,
Chaps. 6, 8, 9]), and the coefficients of the form � are integrals of the form ˇ, i.e., the
uniform limits of such potentials. Then the maximum modulus theorem is also true
for the coefficients of the form � . Therefore, if Eq. (2.7.6) holds on the boundary D,
then it is also valid in the domain D. Consequently, the form ˇ is N@-closed in D. This

means that the function F D 1

�
MC
 f is holomorphic in D and gives continuation of f

in D. This continuation F belongs to C .D/, but since f 2 C 1.@D/, then F 2 C 1.D/.
ut

Corollary 2.7.1 Let D be a bounded domain in Cn with a connected smooth
boundary. If the integral M�

 f .z/ D 0 outside D for the function f 2 C � .@D/ then
the function f extends holomorphically to domain D.

Proof repeats the proof of Theorem 1 from [49] using Lemma 2.6.2 instead of
Corollary 1 from [49]. ut
Theorem 2.7.2 ([48]) Let the function MC

 f .z/ be a holomorphic function in D

for a function f 2 C 1.@D/. Then the function F D 1

�
MC
 f is a holomorphic

continuation of f from the boundary of the domain D into D.
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Proof repeats the proof of Theorems 2.7.1, we only have to use the fact that
M�
 f .z/ ! 0 as jzj ! C1. Therefore, having the holomorphicity of functions M�

 f

outside D, we get M�
 f 	 0. ut

Corollary 2.7.2 If for the function f 2 C 1.@D/ the integral
1

�
MC
 f gives a

continuous extension of f from the boundary of D into D, then the extension
1

�
MC
 f

is holomorphic.

Proof By Corollary 1.4.3 the function M�
 f .z/ D 0 on @D and M�

 f .z/ ! 0 as
jzj ! C1. Then M�

 f 	 0, since the integral M�
 f is a generalized potential [56,

Chaps. 6, 8, 9]. ut
Remark 2.7.2 Theorem 2.7.2, Corollaries 2.7.1 and 2.7.2 are also valid for func-
tions f 2 C � .@D/.



Chapter 3
On the Multidimensional Boundary Analogues
of the Morera Theorem

Abstract This chapter contains some results related to the analytic continuation
of functions given on the boundary of a bounded domain D � C

n, n > 1, to this
domain. The subject is not new. Results about the continuation of the Hartogs–
Bochner theorem are well known and have already became classical. They are
the subject of many monographs and surveys (see, for example, Aizenberg and
Yuzhakov, Khenkin, Rudin, and many others). Here we will discuss boundary
multidimensional variants of the Morera theorem. We desire to show how integral
representations can be applied to the study of analytic continuation of functions.
The same question about continuation connected with the direction about gluing
discs can also be applied to the above Morera theorems based on the theory of
extremal discs, developed by Lempert. However, since it is based on other ideas and
methods, it does not fit into our book devoted to integral representations and their
applications.

3.1 Functions with the Morera Property Along Complex
and Real Planes

Let D be a bounded domain in Cn .n > 1/ with a connected smooth boundary @D
of class C 2.

Definition 3.1.1 We say that a continuous function f on @D (f 2 C .@D/)
satisfies the Morera property (condition) along a complex plane l of dimension k,
1 � k � n � 1, if

Z

@D\l
f .�/ˇ.�/ D 0 (3.1.1)

for any differential form ˇ of type .k; k � 1/ with constant coefficients.
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It is assumed that the plane l transversely intersects the boundary of the domain D.
If l is a complex line intersecting @D transversally, then the Morera property along
l consists of the equality

Z

@D\l
f .z C bt/dt D

Z

@D\l
f .z1 C b1t; : : : ; zn C bnt/dt D 0

for the given parametrization � D z C bt (z; b 2 Cn, t 2 C) of the complex line l.
Clearly, the boundary values of functions F 2 A .D/ satisfy this property.

Moreover, the same is true for continuous CR-functions f on @D. Recall that

Definition 3.1.2 A function f 2 C .@D/ is called a CR-function on @D if

Z

@D
f .�/ N@˛.�/ D 0 (3.1.2)

for all exterior differential forms ˛ of type .n; n � 2/ with coefficients of class C1
in D.

Conditions (3.1.2) are called the tangential Cauchy–Riemann equations.
The Hartogs–Bochner theorem, which is now classical, tells us that any continu-

ous function f on @D is a CR-function if and only if it is holomorphically extended
to D up to a certain function F 2 A .D/ (the boundary of D is connected).

In [26], the following inverse problem was considered: let a function f 2 C .@D/
satisfy the Morera property (3.1.1) along any complex k-plane l intersecting @D
transversely. Is it true that f is a CR-function on @D?

Obviously, the greater the dimension k of the complex plane, the weaker the
Morera property along complex k-planes. Therefore, if the Morera property holds
along all complex lines, so it does along all complex hyperplanes. The following
theorem is the first sufficiently general assertion on the solution of this problem.

Theorem 3.1.1 (Globevnik and Stout [26]) Let 1 � k � n � 1, and let a
function f 2 C .@D/ satisfy the Morera property (3.1.1) along any complex k-plane
l intersecting @D transversely, then f is a CR-function on @D (and, therefore, it is
holomorphically continued to D by the Hartogs–Bochner theorem).

Proof Let f satisfy the condition of the theorem. We show that f satisfies condi-
tions (3.1.2), i.e., it is a CR-function on @D. Without loss of generality, we can
assume that

˛ D A.�/d� ^ d N�Œn � 1; n�;

where A.�/ is a smooth function in Cn with compact support, d� D d�1 ^ : : : ^ d�n,
and d N�Œn � 1; n� is obtained from d N� by removing the differentials d N�n�1, and d N�n.
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Let us represent A as an inverse Fourier transform. If we denote the Fourier
transform of A by OA and set .�; Nz/ D �1Nz1 C : : :C �nNzn, then

A.�/ D c
Z

Cn

OA.z/ei Re.�;Nz/dz ^ dNz

for some constant c. Then
Z

@D
f N@˛ D

Z

@D
f N@A.�/ ^ d� ^ d N�Œn � 1; n�

D c
Z

@D
f .�/

(Z

Cn

OA.z/N@�ei Re.�;Nz/dz ^ dNz
)

d� ^ d N�Œn � 1; n�:

Changing the order of integration, we obtain

Z

@D
f N@˛ D c

Z

Cn

OA.z/
( Z

@D
f .�/N@�ei Re.�;Nz/d� ^ d N�Œn � 1; n�

)

dz ^ dNz:

For a fixed z, the inner integral equals 0. To see this, we make a non-singular
linear change of variables with respect to � so that in the new coordinates w D
.w1; : : : ;wn/, we have w1 D .�; Nz/. Then if f �.w/ D f .�.w// and D� is the domain
in the new variables w, we obtain

Z

@D
f .�/N@�ei Re.�;Nz/d� ^ d N�Œn � 1; n�

D c0
Z

@D�

f �.w/e.i=2/.w1C Nw1/d Nw1 ^ dw ^�. Nw/; (3.1.3)

where c0 is some constant and �. Nw/ stands for the form d N�Œn � 1; n� in the
variables w. Therefore,

�. Nw/ D
X

1�j<k�n

ˇjkd NwŒj; k�

for some constants ˇjk. Since

d Nw1 ^� D
X

2�k�n

ˇ1kd NwŒk�;
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the integral on the right-hand side of formula (3.1.3) is equal to the sum of integrals
of the form

Ik D
Z

@D�

f �.w/e.i=2/.w1C Nw1/dw ^ d NwŒk�; k � 2:

Each of the integrals Ik equals 0. Indeed, consider the integral In. Let … W
Cn ! Cn�k be the projection ….w1; : : : ;wn/ D w0 D .w1; : : : ;wn�k/. By Fubini’s
theorem, we have

In D
Z

….D�/

e.i=2/.w1C Nw1/
(Z

…�1.w0/\@D�

f �.w/dwn�kC1 ^ : : : ^ dwn^

^ d Nwn�kC1 : : : ^ d Nwn�1

)

dw1 ^ : : : ^ dwn�k ^ d Nw1 ^ : : : ^ d Nwn�k:

For almost all w0 2 ….D�/, the inner integral equals zero:

Z

@D\l
f .�/
.�/ D 0

by the condition of the theorem, where 
 is the form

dwn�kC1 ^ : : : ^ dwn ^ d Nwn�kC1 ^ : : : ^ d Nwn�1

in the old variables �. That is, 
 is a .k; k � 1/-form with constant coefficients. ut
A more exact analysis shows that Theorem 3.1.1 holds for real planes. By

definition, the CR-dimension of a real plane l in Cn is the dimension of the maximal
complex plane belonging to l. Denote by dimR l and dimCR l the real dimension of
the plane l and the CR-dimension of l, respectively. Then, obviously,

max.0; dimR l � n/ � dimCR l �



dimR l

2

�
:

A continuous function f on @D satisfies the Morera condition along a real k-
dimensional plane l of CR-dimension p that transversally intersects the boundary
@D if

Z

@D\l
fˇ D 0

for all .k � p; p � 1/-differential forms ˇ with constant coefficients.

Theorem 3.1.2 (Govekar [27]) Let 2 � k � 2n�1 and max.1; k � n/ � p � Œk=2�.
A continuous function f on @D is a CR-function if and only if f satisfies the Morera
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property along any k-dimensional plane l of CR-dimension p that intersects @D
transversely.

In particular, for real hypersurfaces, the previous theorem yields the following
assertion.

Theorem 3.1.3 (Govekar [27]) A function f 2 C .@D/ is a CR-function on @D if
and only if

Z

@D\l
fˇ D 0

for all real hyperplanes l intersecting @D transversely and for all differential forms
ˇ of type .n; n � 2/ with constant coefficients.

For complex k-planes l, we have dimR l D 2k and p D k, therefore, Theo-
rem 3.1.2 transforms into Theorem 3.1.1.

By definition, a complex k-wave function is a function f in Cn depending on
k variables under a certain linear change of variables. As was shown in [26], linear
combinations of complex waves form dense sets in spaces of smooth functions. This
allows us to substantially reduce the sets of planes along which the Morera property
ensures holomorphic extension of the function.

Let G.n; k/ be the Grassmann manifold of complex k-planes in Cn, passing
through 0.

Theorem 3.1.4 (Globevnik and Stout [26]) Let 1 � k � n � 1, and let W be
an open set in G.n; k/. If a function f 2 C .@D/ satisfies the Morera property along
each complex k-plane l of the form zC†,† 2 W, intersecting @D transversely, then
f is a CR-function on @D.

Theorem 3.1.5 (Globevnik and Stout [26]) Let 1 � k � n � 1, and K be a
compact convex set in D. Assume that the function f 2 C .@D/ satisfies the Morera
property along all complex k-planes not intersecting K. Then f is a CR-function on
the boundary of D.

Theorem 3.1.6 (Globevnik and Stout [26]) Let B be a ball lying in CnnD. Assume
that a function f 2 C .@D/ satisfies the Morera property along all complex k-planes
intersecting B. Then f is a CR-function on the boundary of D.

3.2 Functions with the Morera Property Along Complex
Lines

Let D be a bounded domain in Cn .n > 1/ with a connected smooth boundary @D of
class C 2. The classical Hartogs’ theorem asserts that any function f is holomorphic
in the domain D if its restriction to any complex line parallel to one of the coordinate
complex lines is holomorphic.



80 3 On the Multidimensional Boundary Analogues of the Morera Theorem

The following natural question arises: for which sets of complex one-dimensional
cross-sections of the domain does the existence of holomorphic continuations along
the cross-sections imply the existence of a holomorphic continuation to the whole
domain?

A set of all complex lines intersecting a given domain with a twice smooth
boundary is sufficient. For the case of a complex ball, this was proved by
Agranovskii and Val’skii in [4], Nagel and Rudin in [66], and Grinberg [29]. For
an arbitrary domain, an analogues result was proved by Stout [78]. Let us formulate
it here.

Consider one-dimensional complex lines l of the form

l D f� 2 C
n W �j D zj C bjt; j D 1; : : : ; n; t 2 Cg (3.2.1)

passing through a point z 2 Cn in the direction of a vector b 2 CP
n�1 (the direction

of b is determined with an accuracy of up to multiplication by a complex number
� ¤ 0). By Sard’s theorem, for almost all z 2 Cn and almost all b 2 CP

n�1,
the intersection l \ @D is a finite set of piecewise-smooth curves (except for the
degenerate case where @D \ l D ¿). Let us give the following definition.

Definition 3.2.1 The function f 2 C .@D/ has the one-dimensional holomorphic
extension property along complex line l of the form (3.2.1) if for any line l such that
@D \ l ¤ ¿, there exists a function F having the following properties:

1. F 2 C .D \ l/;
2. F D f on the set @D \ l;
3. The function F is holomorphic at interior (with respect to the topology of l) points

of the set D \ l.

An analogues definition can be made for complex k-planes. Clearly, if a function
f satisfies the holomorphic extension property along all complex k-planes, then it
satisfies this property along complex lines. Therefore, in what follows, we restrict
ourselves to consideration of this case.

Theorem 3.2.1 (Stout [78]) If a function f 2 C .@D/ has the one-dimensional
holomorphic extension property along complex lines of the form (3.2.1), then f is
holomorphically extended into D.

A more narrow set of complex lines sufficient for the holomorphic continuation
was considered by Agranovskii and Semenov [3]. Consider an open set V � D and
a set LV of complex lines intersecting this set.

Theorem 3.2.2 (Agranovskii and Semenov [3]) If a function f 2 C .@D/ has the
one-dimensional holomorphic extension property along lines from the set LV for a
certain open set V � D, then the function f is holomorphically extended into D.

The strengthening of the previous results consists of assertions dealing with the
boundary analogues of the Morera theorem, since they are completely implied by
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them. We now formulate the assertion belonging to Globevnik and Stout [26] (a
particular case of Theorem 3.1.1).

Theorem 3.2.3 (Globevnik and Stout [26]) Let a function f 2 C .@D/, and for
almost all z 2 Cn and almost all b 2 CP

n�1, let

Z

@D\l
f .z C bt/ dt D

Z

@D\l
f .z1 C b1t; : : : ; zn C bnt/ dt D 0: (3.2.2)

Then the function f is holomorphically extended into D up to a function F 2 C .D/.
(If @D \ l D ¿, then the integral in (3.2.2) is assumed to be equal to zero.)

We note that without the connectivity condition of the boundary of the domain,
Theorem 3.2.3 is obviously false.

In [26], the problem of finding sufficient sets of complex lines L D flg for which
condition (3.2.2) for l 2 L implies a holomorphic extension of the function f to D
was posed. For example, is a set LV of lines l intersecting a certain open set V � D
such a sufficient set? In paper [3] Agranovskii and Semenov give an affirmative
answer to this question; Theorem 3.2.3 is generalized there. In paper [47] Kytmanov
and Myslivets obtained a statement from which Theorems 3.2.1, 3.2.2, 3.2.3 follow.

Theorem 3.2.4 ([47, 49]) Let k be a fixed non-negative integer and let a function
f 2 C .@D/. If, for almost all z 2 C

n and almost all b 2 CP
n�1, the condition

Z

@D\l
f .z1 C b1t; : : : ; zn C bnt/tk dt D 0 (3.2.3)

holds, then f is holomorphically extended to D.

For k D 0, we obtain Theorem 3.2.3.

Theorem 3.2.5 ([47, 49]) For a fixed k and a function f 2 C .@D/, let condition
(3.2.3) hold for almost all lines l (of the form (3.2.1)) intersecting an open set V � D
(or an open set V � Cn nD), then the function f is holomorphically extended into D.

Proof of the theorem is performed for the case of the set V � D.
Let U.�; z/ be a Bochner–Martinelli kernel of the form (1.1.1). Consider complex

lines l of the form (3.2.1) passing through z in the direction of the vector b 2 CP
n�1.

Lemma 3.2.1 The Bochner–Martinelli kernel in the coordinates t and b has the
form

U.�; z/ D �.b/^ dt

t
;

where �.b/ is some differential form of the type .n � 1; n � 1/ in CP
n�1 independent

of t.
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Proof Assume that z D 0. Express the Bochner–Martinelli kernel in the variables t
and b. We obtain

U.�; 0/ D .n � 1/Š

.2�i/n

nP

kD1
.�1/k�1 N�kd N�Œk� ^ d�

j�j2n

D .�1/n�1.n � 1/Š

.2�i/n

nP

kD1
.�1/k�1 Nbkd NbŒk� ^

nP

kD1
.�1/k�1bkdbŒk�

jbj2n
^ dt

t

D �.b/ ^ dt

t
:

ut
Lemma 3.2.2 If condition (3.2.3) holds for a point z 2 C

n n @D and for almost all
b 2 CP

n�1, then
Z

@D�

.� � z/˛f .�/U.�; z/ D 0; (3.2.4)

where ˛ D .˛1; : : : ; ˛n/ is an arbitrary multi-index such that

k˛k D ˛1 C � � � C ˛n D k C 1; and .� � z/˛ D .�1 � z1/
˛1 � � � .�n � zn/

˛n :

Proof We use the representation of the Bochner–Martinelli kernel from
Lemma 3.2.1. Then by Fubini’s theorem, we have

Z

@D
.� � z/˛f .�/U.�; z/ D

Z

CP
n�1
�.b/

Z

@D\l
b˛tkf .z C bt/ dt D 0

by condition (3.2.3). ut
Lemma 3.2.3 Let condition (3.2.4) hold for points z 2 V, then the function f is
holomorphically extended into D.

Proof If (3.2.4) holds for z 2 V , then it also holds for all points z 2 D by the
real-analyticity of the integral in (3.2.4). Let us rewrite (3.2.4) in a different form.
Introduce the following differential forms Us.�; z/, considered for the first time by
Martinelli [63] (see also [45, Chap. 2]):

Us.�; z/ D .�1/s.n � 2/Š
.2�i/n

 
s�1X

jD1
.�1/j

N�j � Nzj

j� � zj2n�2 d N�Œj; s�

C
nX

jDsC1
.�1/j�1

N�j � Nzj

j� � zj2n�2 d N�Œs; j�
!

^ d�: (3.2.5)



3.2 Functions with the Morera Property Along Complex Lines 83

It is easy to verify that

N@
�

1

�s � zs
Us.�; z/

�
D U.�; z/

for �s ¤ zs, s D 1; : : : ; n. Then condition (3.2.4) can be written in the form

Z

@D
f .�/N@ �.� � z/ˇUs.�; z/

� D 0; z 2 D; (3.2.6)

for all monomials .� � z/ˇ with kˇk D k.
Let us show that condition (3.2.6) also holds for the monomials .� � z/� with

k�k < k. Indeed, consider such a monomial .� � z/� and k�k D k � 1. Then (3.2.6)
holds for monomials of the form

.� � z/� .�m � zm/; m D 1; : : : ; n;

since the degree of these monomials is equal to k.
We have

@

@�m
..� � z/� .�m � zm/Us.�; z// D .�m C 1/.� � z/�Us.�; z/

� .n � 1/.� � z/�
.�m � zm/. N�m � Nzm/

j� � zj2 Us.�; z/: (3.2.7)

Summing relations (3.2.7) with respect to m, we obtain

nX

mD1

@

@�m
..� � z/� .�m � zm/Us.�; z// D .k�k C 1/.� � z/� Us.�; z/: (3.2.8)

Since condition (3.2.6) can be differentiated in z and the derivatives in z and � of
the integrand are equal, (3.2.8) implies that the degree of the monomial in (3.2.6)
can be reduced by 1. Sequentially reducing this degree, we arrive at the conditions

Z

@D
f .�/ N@Us.�; z/ D 0; z 2 D; s D 1; : : : ; n;

i.e.,

Z

@D
.�s � zs/ f .�/U.�; z/ D 0; z 2 D; s D 1; : : : ; n: (3.2.9)
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Applying the Laplace operator

� D @2

@z1@Nz1 C � � � C @2

@zn@zn
;

to the left-hand side of relation (3.2.9), we obtain

@

@Nzs

Z

@D

f .�/U.� � z/ D 0; z 2 D; s D 1; : : : ; n:

Here, we have used the harmonicity of the kernel U.� � z/ and the identity

�.fh/ D h�f C f�h C
nX

jD1

@f

@Nzj

@h

@zj
C

nX

jD1

@f

@zj

@h

@Nzj
:

Therefore, the Bochner–Martinelli-type integral of f of the form (1.2.4)

Mf .z/ D
Z

@D
f .�/U.�; z/

is a function holomorphic in the domain D. Therefore, taking F.z/ D Mf .z/ and
applying Corollary 2.5.3, according to which, in this case, F 2 C .D/ and the
boundary value of the function F coincides with f on @D, we obtain the desired
extension of the function f .z/. ut

The proposition is also true in the case where the open set V � Cn n D. Instead
of Corollary 2.5.3 we need to apply Corollary 2.5.2.

Theorems 3.2.4 and 3.2.5 are consequences of Lemmas 3.2.2 and 3.2.3.

Corollary 3.2.1 Let A be an algebraic hypersurface in Cn. If condition (3.2.3) for
a function f holds for almost all complex lines l intersecting A, then the function f
is holomorphically extended into D.

Proof Since almost every complex line l intersects A, condition (3.2.3) holds for
almost all z 2 Cn. ut
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3.3 Holomorphic Extension Along Complex Curves
and Analogues of the Morera Theorem

3.3.1 Holomorphic Extension Along Complex Curves

Consider classes of complex curves lz;b of the following types:

Type 1: algebraic curves

lz;b D ˚
� 2 C

n W �1 D z1 C tk1 ; �j D zj C bjt
kj ; j D 2; : : : ; n; t 2 C

�
;

where the constants kj 2 N are fixed, j D 1; : : : ; n, and the vector b D
.1; b2; : : : ; bn/ 2 Cn;

Type 2: complex curves of the form

lz;b D ˚
� 2 C

n W �1 D z1 C t; �j D zj C bjt
kj�j.t/; j D 2; : : : ; n; t 2 C

�
;

where �j.t/ are the entire holomorphic functions in the variable t, and, moreover
these functions do not vanish at any point, j D 2; : : : ; n;

Type 3: complex curves of the form

lz;b D ˚
� 2 C

n W �1 D z1 C tk1 ; �j D zj C bjt
kj�j.t

k1 /; j D 2; : : : ; n; t 2 C
�
;

(3.3.1)

where �j.�/ are the entire complex functions of the variable � that do not vanish
at any point, j D 2; : : : ; n.

The case of algebraic curves was examined in [48], Type 2 in [48], and Type 3
in [64]. We note that for k1 D 1, the curves of the second type are obtained from
curves of the form (3.3.1) and for �j 	 1 .j D 2; : : : ; n/, we obtain algebraic curves;
therefore, we will consider curves of the form (3.3.1).

The third class of curves also contains curves of the form

lz;b D ˚
� 2 C

n W �1 D z1 C '1.t/; �j D zj C bj'j.t/; j D 2; : : : ; n; t 2 C
�
;

where 'j.t/ are the entire functions in the variable t having one zero of the first order
at the point t D 0. Indeed, in this case, we can introduce a different parametrization
taking the first function '1 as the parameter t.

If we fix a point z 2 Cn, then for any point � such that z1 ¤ �1, there exists a
curve lz;b passing through � (subject to appropriate choice of the vector b). For a
fixed z, all curves lz;b intersect at the point 0. If they also intersect at another points,
it is easy to show that the j-coordinates of the vectors b for these points are obtained

from each other by rotation by an angle that is a multiple of
2�kj

k1
. Therefore, to
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uniquely find the vector b, we assume that the argument bj satisfies the condition

0 � arg bj < 2�rj; j D 2; : : : ; n; (3.3.2)

where rj is the fractional part of the number
kj

k1
(if kj is dividable by k1, then no

conditions are imposed on arg bj).
In fact, lz;b is a parameterization of the following complex curves given in an

explicit form:

f� W �j D zj C bj.�1 � z1/
kj
k1 �j.�1 � z1/; j D 2; : : : ; ng:

Therefore, for a fixed z, we obtain fibering of Cn n f� W �1 D z1g into the curves
lz;b for vectors b satisfying condition (3.3.2). Then Sard’s theorem shows that for
almost all b satisfying this condition, the intersection of lz;b with the boundary @D is
either empty or is a union of a finite set of closed piecewise-smooth curves. Perhaps,
class (3.3.1) is the most general class of curves having such properties.

Introduce the following holomorphic functions:

 1.�/ D �
p1
1 ;  j D �

pj

j

�
pj

j .�1/
; j D 2; : : : ; n; (3.3.3)

where the natural numbers pj are chosen so that p1k1 D : : : D pnkn D p. These
functions are holomorphic in Cn and have only one common zero, the origin of
multiplicity � D p1 � � � pn. Consider the kernel !.�/ D U.�; 0/ and !. .� � z// D
U. .� � z/; 0/ in the new coordinates t; b. The symbol � will mean transition from
variables � to the new variables .t; b/.

Lemma 3.3.1 In the coordinates t; b the kernel !. .� � z// has the form

!. �.t; b// D dt

t
^ �.b/; (3.3.4)

where

�.b/ D p.n � 1/Š
.2�i/n

.�1/n�1db
p2
2 ^ � � � ^ db

pn

n ^ dbp2
2 ^ � � � ^ dbpn

n�
1C

nP

jD2
jbjj2pj

�n :

Proof Indeed,  �
1 .t; b/ D tp,  �

j .t; b/ D b
pj

j tp, j D 2; : : : ; n. Therefore the module

j .� � z/j2 D j �.t; b/j2 D jtj2p

 

1C
nX

jD2
jbjj2pj

!

:
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We have

d � D d �
1 ^ � � � ^ d �

n D ptpn�1dt ^ dbp2
2 ^ � � � ^ dbpn

n ;

and the form

nX

kD1
.�1/k�1 �

k d �Œk� D tpd �
2 ^ � � � ^ d �

n C
nX

kD2
.�1/k�1bpk

k tpd �Œk�

D tpndbp2
2 ^ � � � ^ dbpn

n C ptpn�1
 

nX

jD2
.�1/j�2bpj

j dt ^ dbp2
2 ^ � � � Œj� � � � ^ dbpn

n

C
nX

kD2
.�1/k�1bpk

k tpn�1dt ^ dbp2
2 ^ � � � Œk� � � � ^ dbpn

n

!

D tpndbp2
2 ^ � � � ^ dbpn

n :

This completes the proof. ut
This statement generalizes Lemma 3.2.1.

Definition 3.3.1 A function f 2 C .@D/ has the one-dimensional holomorphic
extension property along complex curves of the form lz;b if for any curve lz;b such
that @D \ lz;b ¤ ¿, there exists a function Fz;b.t/ having the following properties:

1. Fz;b 2 C .D \ lz;b/;
2. Fz;b D f on the set @D \ lz;b,
3. The function Fz;b is holomorphic with respect to t in interior (in the topology of

lz;b) points of the set D \ lz;b.

Therefore, this definition is completely analogues to that of functions with the
one-dimensional holomorphic extension property along lines.

Proposition 3.3.1 If a function f 2 C .@D/ has the one-dimensional holomorphic
extension property along complex curves of the form (3.3.1), then

Z

@D
f .�/ !. .� � z// D 0;

for all z 62 D, for the functions . 1; : : : ;  n/ of the form (3.3.3).

Proof By Sard’s theorem, almost all complex curves lz;b intersect the boundary
of the domain D along piecewise-smooth curves. Therefore Fubini’s theorem and
Lemma 3.3.1 give the equality

Z

@D
f .�/ !. .� � z// D

Z

Cn�1

�.b/
Z

@D\lz;b

f �.t; b/
dt

t
:
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However the inner integral is zero if z 62 D, since f has the one-dimensional
holomorphic extension property. ut
Theorem 3.3.1 ([48, 64]) Let @D 2 C 2, and a function f 2 C .@D/ has the one-
dimensional holomorphic extension property along complex curves lz;b, then f is
holomorphically extended into D.

Theorem 3.3.1 is a direct consequence of Theorem 2.7.1 and Proposition 3.3.1.
This assertion generalizes Stout’s theorem 3.2.1 on functions with the one-dimen-
sional holomorphic extension property along complex lines.

Let us consider sufficient families of curves lz;b the holomorphic extension along
which can ensure the holomorphic extension to the domain D. The first such family
comprises the curves lz;b with the point z belonging to a certain open set V � Cn nD,
and b being any vector. In this case, the integral in Proposition 3.3.1 is equal to zero
in V , and, therefore, it is equal to zero everywhere (by its real-analyticity) outside D
and Theorem 3.3.1 is applicable.

Consider an open set V � D, and denote the set of curves lz;b, intersecting this
set by LV .

Theorem 3.3.2 ([48]) Let a bounded domain D with a smooth connected boundary
be such that @D is the Shilov boundary for the function algebra O.D/\C 1.D/ (for
example, D is a strictly pseudo-convex domain). If a function f 2 C 1.@D/ has the
one-dimensional holomorphic extension property along complex curves from the set
LV for a certain open set V � D, then the function f is holomorphically extended
into D.

Proof Let a function ' 2 O.D/ \ C 1.D/, then 'f has also the one-dimensional
property of holomorphic extension along complex curves of the set LV . We have
the equality

Z

@D
'.�/f .�/!. .� � z//

D
Z

Cn�1

�.b/
Z

@D\lz;b

'�.t; b/f �.t; b/
dt

t
D '.z/

Z

@D
f .�/!. .� � z//;

i.e.,

Z

@D
'.�/f .�/!. .� � z// D '.z/

Z

@D
f .�/!. .� � z//; z 2 V:

By virtue of the real-analyticity of this integral this equation is satisfied every-
where in D. Denote the integrals by M ̇ f (as in formula (1.4.5)). Then

MC
 Œ'f � D 'MC

 f (3.3.5)
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in domain D. For points z 2 D, the relations: MC
 1 D � and MC

 ' D �' hold,
because ' is holomorphic in D. Then from (3.3.5) we obtain

MC
 Œ'.�/ .f .�/ � f .z//� D '.z/MC

 Œf .�/ � f .z/�; z 2 D: (3.3.6)

Here we took a continuation of f to a function of class C 1.D/. Since 'f 2 C 1.D/,
then jf .�/�f .z/j 6 cj��zj and the integral MC

 Œf .�/�f .z/� converges absolutely for
z 2 @D (see the proof of Theorem 1.4.1). Therefore, in Eq. (3.3.6) we can go to the
limit for z tending to @D. And, therefore, equality (3.3.6) holds for points z 2 @D.

By the hypothesis of Theorem 3.3.2, the boundary @D is a closure of the points
for algebra O.D/ \ C 1.D/. Let z 2 @D be a peak point and ' be the peak function,
i.e., '.z/ D 1 and j'.�/j < 1 for points � ¤ z.

Consider the functions 'k and apply equality (3.3.6) to them. We obtain

MC
 Œ'

k.�/.f .�/� f .z//� D 'k.z/MC
 Œf .�/ � f .z/�: (3.3.7)

By Lebesgue’s theorem and the inequality j'kj � 1 there exists a limit in (3.3.7)
when k ! 1. We have

MC
 Œ'

k.�/.f .�/� f .z//� ! 0;

then formula (3.3.6) yields

MC
 Œf .�/ � f .z/� D 0

for the peak points z 2 @D. And since they are dense in @D and this integral is
a continuous function, we obtain that the boundary values of the function MC

 f

coincide with �f . This means that the function F D 1

�
MC
 f is holomorphic in

D by Corollary 2.7.2 and is an extension of the function f . ut

3.3.2 Some Integral Criteria of Holomorphic Extension
of Functions

As in Sect. 2.7, we consider the map  D . 1; : : : ;  n/ and the differential form
!.w/.

Proposition 3.3.2 If @D 2 C d (d � 1), then every function f 2 C l.@D/, 0 � l � d
is the limit in the metric C l.@D/ of linear combinations of fractions of the form

nX

kD1

As
k.� � z/A

m
k .� � z/

j .� � z/j2n�2 ; s;m D 1; 2; : : : ; n; (3.3.8)
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where z 2 @D, and � is a fixed point not lying on @D. Here As
k are the cofactors to

the elements
@ k

@�s
in the Jacobi matrix of the map  . Instead of fractions of the form

(3.3.8) we can as well take fractions of the form

1

j .� � z/j2n

 
nX

rD1
 r.� � z/As

r.� � z/

! 
nX

pD1
 p.� � z/Am

p .� � z/

!

: (3.3.9)

Proof Consider the determinants

D�1;:::;�m

�
�1; : : : ; �m

�

of the form (2.7.2).

Lemma 3.3.2 The kernel !. .� � z// can be represented as

!. / D 1

.n � 1/.2�i/n

nX

sD1

@

@zs

�
1

j j2n�2D1;n�1
�

As; @� 
��

^ d�;

where As is a column of cofactors As
k, k D 1; 2; : : : ; n.

Proof From formula (2.7.3) we have

!. / D 1

.2�i/n
1

j j2n
D1;n�1

� N ; @� 
�

^ d :

Since

nX

sD1

@As
k

@zs
D 0; k D 1; : : : ; n;

we obtain

nX

sD1

@

@zs

�
1

j j2n
D1;n�1

�
As; @� 

��
^ d�

D
nX

sD1

@

@zs

�
1

j j2n�2

�
D1;n�1

�
As; @� 

�
^ d�

D �.n � 1/

nX

sD1

nP

kD1
N k
@ k
@zs

j j2n

nX

jD1
.�1/j�1As

j Dj
n�1.@� / ^ d�
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D .n � 1/
nX

sD1

N s

j j2n
.�1/s�1Ds

n�1.@� / ^ d 

D .n � 1/

j j2n
D1;n�1

� N ; @� 
�

^ d D .n � 1/.2�i/n!. /:

Here Dj
n�1.@� / is the determinant of the .n � 1/-th order, that is obtained from

D1;n�1
�

As; @� 
�

by deleting the first column and the j-th row. ut
Lemma 3.3.3 The kernel U. ; 0/ can be represented as

!. / D .n � 2/Š

.2�i/n

nX

sD1

@

@zs

nX

mD1

.�1/m�1

j j2n�2

 
nX

kD1
As

kA
m
k

!

d N�Œm� ^ d�:

Proof follows from Lemma 3.3.2 and the identity

D1;n�1
�

As; @� 
�

D .n � 1/Š

nX

mD1
.�1/m�1

 
nX

kD1
As

kA
m
k

!

d N�Œm�:

ut
From formula (1.4.2), Lemmas 3.3.2 and 3.3.3 we can easily obtain the proof

of Proposition 3.3.2. Indeed, consider a sufficiently small neighborhood V of the
boundary of the domain @D (where all functions of  j.� � z/ are defined). The
function f continues in V to a function of class C l with compact support in V .
Approximating f in V in the metric C l by functions of class C1, we can assume
that the function f is infinitely differentiable. In the neighborhood V we apply
formula (1.4.2). Then we obtain

�
Z

V�

N@f .�/ ^ ! . .� � z// D �f .z/; z 2 @D:

Making the replacement � D z C w, we have

�
Z

Cn

N@f .z C w/ ^ ! . .w// D �f .z/; z 2 @D:

In this equation we can find the derivatives up to order l with respect to the
variable z and Nz by differentiating under the integral sign (by virtue of absolute
convergence of the integral).

Therefore, choosing a sufficiently small neighborhood V 0 of the boundary @D,
we find that the integral over V 0 can be made arbitrarily small in the metric C l.
And, in the integral over V n V 0 let us replace the integrand by the integral sums,
and the derivatives by the difference ratios (using Lemmas 3.3.2 and 3.3.3). The
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resulting fractions are arbitrarily close to the function f in the metric C l. The density
of (3.3.9)-type fractions follows directly from representation (2.7.3) using fractions
of the form (3.3.8). ut
Corollary 3.3.1 If f 2 C .@D/ satisfies the moment conditions

Z

@D
f .�/N@�

 
nX

kD1

As
k.� � z/A

m
k .� � z/

j .� � z/j2n�2

!

^ d N�Œj; p� ^ d� D 0 (3.3.10)

for all z … @D and all j; s;m; p D 1; : : : ; n, then f is holomorphically extended into
D up to a function F 2 C .D/.

Proof From Proposition 3.3.2 we obtain that

Z

@D
f .�/N@�.˛.�/ ^ d N�Œj; p� ^ d�/ D 0

for all smooth functions ˛.�/ defined in the neighborhood of the boundary @D.
Hence f is a CR-function on @D. Since @D is connected, then the function f extends
holomorphically to D. ut

Corollary 3.3.1 is one of the variants of the Hartogs–Bochner theorem. We note
that in this statement equality (3.3.10) can be demanded to be satisfied only for
points z in some open set V � D or V � Cn n D.

As we will see later, the condition of Morera’s theorem turns into the following
orthogonality condition:

Z

@D�

f .�/ˆ.� � z/U. .� � z/; 0/ D 0; z … @D; (3.3.11)

for the function f 2 C .@D/ and a function ˆ of the form

ˆ.w/ D '1.w/ 1.w/C : : :C 'n.w/ n.w/; (3.3.12)

where the functions 'j.w/ (as well as functions  j.w/) are holomorphic in some
neighborhood of compact KD, or 'j are meromorphic and such that the form ˆ! 

has no singularities for � ¤ z. First we study condition (3.3.11) for a special choice
of a function ˆ of the form (3.3.12).

Lemma 3.3.4 Equality (3.3.11) can be rewritten as

Z

@D�

f .�/N@�



1

j .� � z/j2n�2 D1;1;n�2
�
'.� � z/;  .� � z/; @� 

�
^ d 

�
D 0;

where z … @D; and ' is a column of functions 'j, j D 1; : : : ; n.
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Proof Consider columns � D '

ˆ
and


 D
N 

j j2 D
� N 1

j j2 ; : : : ;
N n

j j2
�
:

By Lemma 2.7.1

!. .� � z// D N@�Uˆ D 1

.2�i/n
N@�D1;1;n�2

�
�.� � z/; 
.� � z/; N@�
.� � z/

� ^ d 

outside zeros of the function ˆ.� � z/. Using the homogeneity property of the
determinant D of the differential forms, we obtain

ˆ.� � z/!. .� � z// D 1

.2�i/n
�

� N@�



1

j .� � z/j2n�2 D1;1;n�2
�
'.� � z/;  .� � z/; @� .� � z/

��
^ d :

ut
Lemma 3.3.5 Equality (3.3.11) can be rewritten as

nX

sD1

Z

@D

f .�/N@�


@

@zs

�
1

j j2n�4

�
D1;1;n�2

�
';As; @� 

�
^ d�

�
D 0; (3.3.13)

if z … @D, and n > 2.

Proof is the same as in Lemma 3.3.2.
�

We show that for a special choice of the functions 'j in condition (3.3.13) the
derivatives with respect to zs can be taken out from under the integral sign. Let
the vector-column ' have the form

'.w/ D 1

J
Ak;

where J is the determinant of the Jacobian matrix of the map  (J 6	 0), and Ak is
the column of the cofactors Ak

m, m D 1; : : : ; n, k D 1; : : : ; n.

Lemma 3.3.6 Condition (3.3.11) can be rewritten as

X

s¤k

@

@zs

Z

@D
f .�/N@�



1

j j2n�4 D1;1;n�2
�

Ak

J
;As; @� 

�
^ d�

�
D 0; (3.3.14)

if z … @D.
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Although the determinant of J may be 0 on some surface as we shall see from
the proof of Lemma 3.3.6, the determinants D, standing under the integral sign in
(3.3.14), have no singularities.

Proof Let ' D 1

J
A1. To prove the lemma it is sufficient to show (by Eq. (3.3.13)),

that

nX

sD2

@

@zs
D1;1;n�2

�
A1

J
;As; @ 

�
D 0:

According to Laplace’s theorem, we have

nX

sD2

@

@zs
D1;1;n�2

�
A1

J
;As; @ 

�
D

nX

sD2

@

@zs

X

p<r

.�1/pCr

J

ˇ
ˇ̌
ˇ
A1p As

p

A1r As
r

ˇ
ˇ̌
ˇDp;r

n�2.@ /;

where Dp;r
n�2 is the determinant obtained from D1;1;n�2 by deleting the first two

columns and rows with numbers p; r. By the property of the determinants of the
cofactors we find that

ˇ
ˇ
ˇ
ˇ
A1p As

p

A1r As
r

ˇ
ˇ
ˇ
ˇ D J A1;sp;r; (3.3.15)

where A1;sp;r are the cofactors in the Jacobi matrix of the map  , which stand at
the intersection of the first and s-th columns, and the p-th and r-th rows.

On the other hand (as is easy to show)

nX

sD2

@

@zs
A1;sp;r D 0: (3.3.16)

From this and from (3.3.15) we obtain the desired result. Moreover, (3.3.15) implies
that the determinants D1;1;n�2 in equality (3.3.14) do not have singularities. ut

The proof of this lemma shows that equality (3.3.14) is equivalent to

nX

s¤k

@

@zs

Z

@D
f .�/N@�ˇk;s ^ d� D 0 for z … @D; (3.3.17)

where

ˇk;s D 1

j .� � z/j2n�4
X

p<r

X

l<m

.�1/pCrAk;s
p;r.� � z/Al;m

p;r .� � z/d�Œl;m�:
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Therefore, we need to verify the density of linear combinations of fractions of a
more general form than in Proposition 3.3.2 in the class C k.@D/.

Proposition 3.3.3 Let n > 2 and @D 2 C d. Linear combinations of fractions of
the form

Ql;s;m;k.� � z/ D
X

1�p<r�n

Al;s
p;r.� � z/Am;k

p;r .� � z/

j .� � z/j2n�4 ;

z … @D, � 2 @D, k; s;m; l;D 1; : : : ; n, are dense in the space C u.@D/, 0 � u � d.

Proof From identity (3.3.16) we obtain the following (for all s; p; r D 1; : : : ; n):

X

l<s

@

@zl
Al;s

p;r �
X

l>s

@

@zl
As;l

p;r D 0: (3.3.18)

Indeed, we replace in identity (3.3.16) the variable z1 with zs, and zs with z1. Then
we put the first columns in the resulting expression back in their place, and obtain
(3.3.18).

Let p < r, the identity

X

l<s

@ q

@zl
Al;s

p;r �
X

l>s

@ q

@zl
As;l

p;r D
8
<

:

As
r; if q D p;

�As
p; if q D r;
0; if q ¤ p; r

(3.3.19)

holds. This identity is obtained using the rules for decomposition of the determinant
by one of the lines and the signs of cofactors Al;s

p;r and As
p. Using Eqs. (3.3.18) and

(3.3.19), we have (for fixed s;m; k)

X

l<s

@

@zl
Ql;s;m;k �

X

l>s

@

@zl
Qs;l;m;k

D �.n � 2/

X

p<r

X

q

 
X

l<s

N q
@ q

@zl
Al;s

p;r �
X

l>s

N q
@ q

@zl
As;l

p;r

!

A
m;k
p;r

j j2n�2

D �.n � 2/

X

p<r

� N pAs
r � N rA

s
p

�
A

m;k
p;r

j j2n�2 D Rs;m;k:
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Then again using Eqs. (3.3.18) and (3.3.19), we obtain (for fixed s; k)

X

m<k

@

@Nzm
Rs;m;k �

X

m>k

@

@Nzm
Rs;k;m

D � .n � 2/
j j2n�2

X

p<r

"

As
r

 
X

m<k

@ p

@zm
A

m;k
p;r �

X

m>k

@ p

@zm
A

k;m
p;r

!

�As
p

 
X

m<k

@ r

@zm
A

m;k
p;r �

X

m>k

@ r

@zm
A

k;m
p;r

!#

C .n � 2/.n � 1/

j j2n

X

p<r

� N pAs
r � N rA

s
p

�
"
X

m<k

A
m;k
p;r

X

q

 q
@ q

@zm

�
X

m>k

A
k;m
p;r

X

q

 q
@ q

@zm

#

D � .n � 2/

j j2n�2
X

p<r

�
As

rA
k
r C As

pA
k
p

�

C .n � 2/.n � 1/

j j2n

X

p<r

� N pAs
r � N rA

s
p

� �
 pA

k
r �  rA

k
p

�

D � .n � 2/.n � 1/
j j2n

 
X

r

 rA
s
r

! 
X

p

N pA
k
p

!

:

Replacing the derivatives by the difference ratio and applying Proposition 3.3.2, we
obtain the desired result. ut
Theorem 3.3.3 ([64]) Let @D 2 C 2, and f 2 C .@D/. If

Z

@D�

f .�/ˆk.� � z/!. .� � z// D 0 (3.3.20)

for all z … @D, k D 1; : : : ; n, where

ˆk.� � z/ D 1

J.� � z/

nX

sD1
Ak

s.� � z/ s.� � z/;

then the function f is holomorphically extended into D up to a function F 2 C .D/.

Condition (3.3.20) (as shown by formula (2.7.3)) is equivalent to the following:

Z

@D�

f .�/

nP

sD1
Ak

s.� � z/ s.� � z/

j .� � zj2n
D1;n�1. N ; @� / ^ d� D 0;
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however, in spite of the Jacobian J in the denominator, the integrand in formula
(3.3.20) has no singularities at � ¤ z.

Proof Let n > 2. We write the condition of the theorem in the form of equality
(3.3.17). Using Lemma 3.3.6 and Proposition 3.3.3, we approximate the function
j� � zj4�2n by linear combinations of fractions in this proposition from the class
C 2.@D/, � 2 @D, and z is fixed and does not lie on @D. Then for z … @D from
(3.3.20) we obtain

X

s¤k

@

@zs

Z

@D
f .�/N@�



1

j� � zj2n�4D1;1;n�2
� QAk; QAs; @�.� � z/

�
^ d�

�
D 0;

where QAk are the respective cofactors in the identity mapping Q .� � z/ D � � z.
Lemmas 3.3.4 and 3.3.5 show that this condition can be written as

Z

@D
f .�/.�k � zk/U.�; z/ D 0; z … @D; k D 1; : : : ; n:

Applying to the left side of the last equation the Laplace operator

� D @2

@z1@Nz1 C : : :C @2

@zn@Nzn

and using harmonicity of the coefficients of the Bochner–Martinelli kernel, we have

@

@Nzk

Z

@D
f .�/U.�; z/ D 0; z … @D; k D 1; : : : ; n:

Thus, the Bochner–Martinelli integral of the function f is a holomorphic function
outside the boundary of D. Since @D is connected and this integral tends to 0 as
jzj ! 1, then it equals zero outside D. By Corollary 1.2.4 about the jump of
the Bochner–Martinelli integral we obtain that the desired holomorphic extension is
given by the Bochner–Martinelli integral. ut

3.3.3 Analogues of the Morera Theorem

Let D be a bounded domain in Cn .n > 1/ with a connected smooth boundary @D
of class C 1. Assume that for a function f 2 C .@D/ integrals over @D \ l are equal
to zero for all complex curves l in a certain class. Our goal is to answer the question
whether f extends holomorphically to D as a function of n complex variables. This
question was investigated for the case of complex lines by Globevnik and Stout in
[26], Semenov and Agranovskii in [3], and by us in [47].
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As in Sect. 3.3.1, we consider a class of complex curves lz;b of the form (3.3.1)

lz;b D ˚
� 2 C

n W �1 D z1 C tk1 ; �j D zj C bjt
kj�j.t

k1 /; j D 2; : : : ; n; t 2 C
�

with the same properties. Similarly, we introduce holomorphic functions of the form
(3.3.3):

 1.�/ D �
p1
1 ;  j D �

pj

j

�
pj

j .�1/
; j D 2; : : : ; n;

having the properties as in Sect. 3.3.1. For these functions, Theorem 3.3.3 holds.
By Lemma 3.3.1 in the coordinates t; b the kernel !. .� � z// will have the form
(3.3.4):

!. �.t; b// D dt

t
^ �.b/;

where

�.b/ D p.n � 1/Š
.2�i/n

.�1/n�1d Nbp2
2 ^ � � � ^ d Nbpn

n ^ dbp2
2 ^ � � � ^ dbpn

n�
1C

nP

jD2
jbjj2pj

�n :

Here  �.t; b/ is the composition of the map  .� � z/ and the map � � z, defining
the curves lz;b.

To see how condition (3.3.20) in Theorem 3.3.3 will change for the mapping
 , in particular, we find the functions ˆj in the new coordinates t; b. Denote the

functions
1

�
pj

j

by �j, j D 2; : : : ; n. We have

J.� � z/ D p1 � � � pn.�1 � z1/
p1�1 � � � .�n � zn/

pn�1�2.�1 � z1/ � � ��n.�1 � z1/:

The column vectors As take the form

A1 D�p2 � � � pn.�2 � z2/
p2�1 � � � .�n � zn/

pn�1�2 � � ��n; 0; : : : ; 0
�
;

A2 D��p3 � � � pn.�2 � z2/
p2 .�3 � z3/

p3�1 � � � .�n � zn/
pn�1� 0

2�3 � � ��n;

p1p3 � � � pn.�1 � z1/
p1�1.�3 � z3/

p3�1 � � � .�n � zn/
pn�1�1�3 � � ��n; 0; : : : ; 0

�
;

: : : ;

An D��p2 � � � pn�1.�2 � z2/
p2�1 � � � .�n�1 � zn�1/pn�1�1.�n � zn/

pn�2 � � ��n�1� 0
n;

0; : : : ; p1 � � � pn�1.�1 � z1/
p1�1 � � � .�n�1 � zn�1/pn�1�1�1 � � ��n�1

�
:
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Calculating the functionˆj, we obtain

ˆ1.� � z/ D�1 � z1
p1

;

ˆ2.� � z/ D�2 � z2
p2

� .�1 � z1/.�2 � z2/� 0
2

�2p1p2
;

: : : ;

ˆn.� � z/ D�n � zn

pn
� .�1 � z1/.�n � zn/�

0
n

�np1pn
:

In the coordinates t; b, these functions take the form

ˆ�
1 .t; b/ D t

p
.tk1 /0;

ˆ�
2 .t; b/ Db2t

p

�
tk2�2.t

k1 /
�0
;

: : : ;

ˆ�
n .t; b/ Dbnt

p

�
tkn�n.t

k1 /
�0
:

(3.3.21)

Theorem 3.3.4 ([64]) Let @D 2 C 2, and a function f 2 C .@D/ satisfy the
conditions

Z

@D\lz;b

f �.t; b/ d.tkj�j/ D 0

for all j D 1; : : : ; n, of almost all points z, lying in a neighborhood of D, and almost
all vectors b, satisfying condition (3.3.2), then the function f is holomorphically
extended into D up to a function F of the class C .D/ (we believe that for j D 1 the
function �1 D 1).

Proof From Theorem 3.3.3, the kind (3.3.4) of the differential form !. / and the
kind (3.3.21) of the functions ˆj in the coordinates t, b, as well as from Fubini’s
theorem, it follows that

Z

@D�

f .�/ˆj.� � z/!. .� � z// D
Z

Cn�1

�.b/
Z

@D\lz;b

f �.t; b/ d.tkj�j/ D 0:

Then the function f extends holomorphically into D. ut
Theorem 3.3.4 is a generalization of the boundary Morera theorem given in

[26] (see Theorem 3.2.3), where the case of complex lines lz;b is considered. If all
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functions �j 	 1; j D 1; : : : ; n, then Theorem 3.3.4 becomes one of the boundary
version of the Morera theorem for algebraic curves.

3.4 Morera Theorem in Classical Domains

In this section, we consider the boundary variant of the Morera theorem for classical
domains. The starting point of this theorem is the result of Nagel and Rudin [66],
which says that if a function f is continuous on the boundary of a ball in C

N and the
integral

Z 2�

0

f . .ei'; 0 : : : ; 0// ei' d' D 0

for all (holomorphic) automorphisms  of the ball, then the function f is holomor-
phically extended to the ball.

An alternative proof of the theorem of Nagel and Rudin was given by Kos-
bergenov in [37]. It allows this assertion to be generalized for the case of classical
domains.

In [2] Agranovskii gives a description of Möbius-invariant spaces of continuous
functions in classical domains of tubular type, i.e., those classical domains for which
the real dimension of the Shilov boundary coincides with the complex dimension of
the domain. In [2] by using this description, the assertion which essentially coincides
with Theorem 1.3.2 for classical domains of tubular type was proved.

3.4.1 Classical Domains

We recall certain definitions and introduce notations needed for further discussion.
By a classical domain D � CN (see [32, p. 9]), we mean an irreducible bounded
symmetric domain of several complex variables of one of the following four
types:

1. The domain DI is formed by matrices Z consisting of m rows and n columns
(entries of matrices are complex numbers) and satisfying the condition

I.m/ � ZZ� > 0:

Here, I.m/ is the identity matrix of order m, Z� D Z
0

is the matrix complex-
conjugate to the transposed matrix Z0, and, as usual, the inequality H > 0 for a
Hermitian matrix H means that this matrix is positive definite.



3.4 Morera Theorem in Classical Domains 101

2. The domain DII is formed by symmetric (square) matrices Z of order n satisfying
the condition

I.n/ � ZZ > 0:

3. The domain DIII is formed by skew-symmetric matrices Z of order n satisfying
the condition

I.n/ C ZZ > 0:

4. The domain DIV is formed by n-dimensional vectors z D .z1; : : : ; zn/ satisfying
the condition

jzz0j2 C 1 � 2Nzz0 > 0; jzz0j < 1:

The complex dimension of these four types of domains is equal to mn,
n.n C 1/

2
,

n.n � 1/

2
, and n, respectively. These domains are complete circular convex domains.

In our case, the domain D means a domain of one of the types presented above.
Let S be the Shilov boundary for the domain D (see [32, p. 10]).

1. SI is formed by matrices U consisting of m rows and n columns with the condition
that

UU� D I.m/:

In particular, for m D n, the manifold SI coincides with the set of all unitary
matrices U.n/.

2. SII is formed by all symmetric unitary matrices of order n.
3. SIII is defined in different ways depending on the evenness or oddness of n. If

n is even, then SIII is formed by all skew-symmetric unitary matrices of order
n. If n is odd, then SIII is formed by all matrices of the form UFU0, where U is
an arbitrary unitary matrix and

F D
�
0 1

�1 0
�

u
�
0 1

�1 0
�

u : : :u 0:

4. SIV is formed by vectors of the form ei'x, where x is the real n-dimensional vector
satisfying the condition xx0 D 1, 0 � ' � 2� .

The manifolds SI; SII; SIII; SIV have the real dimension m.2n � m/,
n.n C 1/

2
,

n.n � 1/

2
C .1C .�1/n/ .n � 1/

2
, and, n, respectively. All these manifolds are

generic CR-manifolds, and, moreover, in the case where their dimension is equal to
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the (complex) dimension of the space CN , these manifolds are totally real (i.e., have
no complex tangent vectors).

3.4.2 Morera Theorem in Classical Domains

We define the class H 1.D/ as a class of all functions f , holomorphic in D such that

sup
0<r<1

Z

S

jf .r�/jd� < C1;

were r� D .r�1; : : : ; r�N/, and d� is the normalized Lebesgue measure on the
manifold S, which is a Haar measure, and, therefore, it is invariant with respect
to rotations.

For any function f in D and any � 2 S, consider a cut-function f� in 4 D ft 2 C W
jtj < 1g of the following form: f�.t/ D f .t�/. This cut-function allows us to relate
certain N-dimensional properties of the function f to one-dimensional properties
of f� .

Fix a point �0 2 S (�0 D .�01; : : : ; �
0
N/) and consider the following embedding

of a disk 4 in the domain D:

f� 2 C
N W �j D t�0j ; j D 1; : : : ;N; jtj < 1g: (3.4.1)

Under this embedding, the boundary T of the disk 4 moves to a circle lying
on S. If  is an arbitrary (holomorphic) automorphism of the domain D (i.e., a
biholomorphic self-map of the domain D), then the set of the form (3.4.1) passes to
a certain analytic disk with the boundary on S under the action of this automorphism.

Theorem 3.4.1 ([38]) If a function f 2 C .S/ satisfies the condition

Z

T
f . .t�0// dt D 0 (3.4.2)

for all automorphisms  of the domain D, then the function f is holomorphically
extended into D up to a function F of class C .D/.

For the case of classical domains of tubular type, this assertion is presented in [2].

Proof A subgroup of automorphisms leaving 0 fixed acts on S transitively. They are
called unitary transformations, since they are linear, and given by unitary matrices
for the case of domains consisting of square matrices. Since S is invariant with
respect to unitary transformations (like the domain D), condition (3.4.2) also holds
for arbitrary points � 2 S.
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Let us parametrize the manifold S as follows:

� D t�; t D ei'; 0 � ' � 2�; � 2 S0;

if � 2 S. The manifold S0 is defined differently for domains D of different types.
For domains of the first type and m D n, this is a group SU.n/ of special unitary
matrices, for domains of the fourth type, it is a sphere, and so on. The measure d�
can be written in the form

d� D d'

2�
^ d�0.�/ D 1

2�i

dt

t
^ d�0.�/;

where d�0.�/ is a differential form defining a positive measure on S0.
Multiplying relation (3.4.2) by d�0 and integrating over S0, we obtain from

(3.4.2) that

Z

S
f . .�// �k d�.�/ D 0; (3.4.3)

where �k are the components of the vector �, k D 1; : : : ;N.
Consider an automorphism A transforming the point A in D into 0. It is defined

with accuracy up to a unitary transformation. Then substituting the automorphism
 �1

A instead of  in (3.4.3) and making the change of variables W D  �1
A .�/, we

obtain
Z

S
f .W/  A

k .W/ d�. A.W// D 0; (3.4.4)

where  A
k are the components of the automorphism  A. As was shown in [36,

Lemma 3.4] (for the case of square matrices, see the proof of Theorem 4.6.3 in
[32]),

d�. A.W// D P.W;A/ d�.W/;

where P.W;A/ is the invariant Poisson kernel of the domain D. Therefore, we obtain
from condition (3.4.4) that

Z

S
f .W/ A

k .W/P.W;A/ d�.W/ D 0 (3.4.5)

for all points A from D and all k D 1; : : : ;N.
A further proof of Theorem 3.4.1 follows from Theorem 5.7.1 in [32] on the

properties of the Poisson integral of continuous functions and analogue of the
Hartogs–Bochner theorem. ut



104 3 On the Multidimensional Boundary Analogues of the Morera Theorem

3.4.3 Analogue of the Hartogs–Bochner Theorem in Classical
Domains

Theorem 3.4.2 ([38]) If a function f 2 L 1.S/ and condition (3.4.5) for this
function holds for all automorphisms  A of the domain D, that transform a point
A from D into 0, and for all k D 1; : : : ;N, then the function f is the radial boundary
value of a certain function F 2 H 1.D/.

Proof

1. Let D be a domain of the first type and suppose for certainty that m � n. The
invariant Poisson kernel for the domain D has the form (see [32, p. 98])

P.W;A/ D
�
det.I.m/ � AA�/

�n

j det.I.m/ � AW�/j2n
D

�
det.I.m/ � AA�/

�n

det.I.m/ � AW�/n det.I.m/ � WA�/n
:

Let the matrices be A D kaspk and W D kwspk .s D 1; : : : ;mI p D 1; : : : ; n/.
Now we compute the expression

mX

sD1

nX

pD1
Nasp
@P.W;A/

@Nasp
: (3.4.6)

We denote I.m/ � WA� D k˛qjk (q; j D 1; : : : ;m), where

˛qj D ıqj �
nX

kD1
wqk Najk; q; j D 1; : : : ;m;

and ıqj is the Kronecker symbol (ıqj D 0 for q ¤ j, and ıqq D 1).
Using the usual rule for differentiating a determinant, it is easy to check that

for any s D 1; : : : ;m

nX

pD1
Nasp
@ det.I.m/ � WA�/

@Nasp
D

ˇ
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ̌

˛11 : : : ˛1s : : : ˛1m

: : : : : : : : : : : : : : :

˛s1 : : : ˛ss � 1 : : : ˛sm

: : : : : : : : : : : : : : :

˛m1 : : : ˛ms : : : ˛mm

ˇ
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ̌

D det.I.m/ � WA�/ � det.I.m/ � WA�/Œs; s�;
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where det.I.m/ � WA�/Œs; s� means the cofactor to the element ˛ss in the matrix
.I.m/ � WA�/. Then

mX

sD1

nX

pD1
Nasp
@ det.I.m/ � WA�/

@asp
D m det.I.m/ � WA�/�

mX

sD1
det.I.m/ � WA�/Œs; s�:

Similarly,

mX

sD1

nX

pD1
Nasp
@ det.I.m/ � AA�/

@asp
D m det.I.m/ � AA�/ �

mX

sD1
det.I.m/ � AA�/Œs; s�:

Hence we have that expression (3.4.6) equals

mP.W;A/

2

66
4

mP

sD1
det.I.m/ � WA�/Œs; s�

det.I.m/ � WA�/
�

mP

sD1
det.I.m/ � AA�/Œs; s�

det.I.m/ � AA�/

3

77
5

D mP.W;A/
�
tr.I.m/ � WA�/�1 � tr.I.m/ � AA�/�1

�
; (3.4.7)

where tr W denotes the trace of the matrix W.
As is known, the conditions

I.m/ � ZZ� > 0 and I.n/ � Z�Z D I.n/ � Z0.Z0/� > 0

are equivalent (see [32, p. 37]). Therefore, the map Z ! Z0 transforms the
domain D to a domain D0 also of a first type.

Consider the automorphism  A0 transforming a point A0 in D0 into 00 of the
following form:

 A0.W 0/ D Q0.W 0 � A0/.I.m/ � .A0/�W 0/�1.R0/�1

(see [32, p. 85]), where non-degenerate n�n-matrix Q0 and non-degenerate m�m-
matrix R0 are chosen so that

R0.I.m/ � A0.A0/�/.R0/� D I.m/; Q0.I.n/ � .A0/�A0/.Q0/� D I.n/:

Then the automorphism A.W/ of the domain D, transforming the point A into 0
will have the form

 A.W/ D R�1.I.m/ � WA�/�1.W � A/Q:
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If condition (3.4.5) holds for components of the map A, then the same condition
holds for components of the map

'A.W/ D .I.m/ � AA�/�1.I.m/ � WA�/�1.W � A/;

since the matrices P, Q, .I.m/ � AA�/ are non-degenerate and depend only on A.
Denoting components 'A.W/ by 'A

sp.W/, s D 1; : : : ;m; p D 1; : : : ; n, from
(3.4.5) we obtain

Z

S
f .W/'A

sp.W/P.W;A/ d�.W/ D 0: (3.4.8)

We find the sum

mX

sD1

nX

pD1
Nasp'

A
sp:

Obviously, the desired expression equals

tr.'A.W/A
�/:

We need the following property of the matrix trace

tr.AB/ D tr.BA/; (3.4.9)

where the rectangular matrices A and B are such that the products AB and BA are
defined. Indeed, if m � n-matrix A consists of elements aks, k D 1; : : : ;m, s D
1; : : : ; n, and n � m-matrix B consists of elements blq, l D 1; : : : ; nI q D 1; : : : ;m
then

tr.AB/ D
mX

kD1

nX

sD1
aksbsk D tr.BA/:

Using the form of the map 'A and property (3.4.9) of the matrix trace, we
obtain

tr.'A.W/A
�/ D tr

�
.I.m/ � AA�/�1.I.m/ � WA�/�1.W � A/A��

D tr
�
.I.m/ � AA�/�1.I.m/ � WA�/�1..WA� � I.m//C .I.m/ � AA�//

�

D tr
�
.I.m/ � WA�/�1 � .I.m/ � AA�/�1

�
: (3.4.10)
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Comparing formulas (3.4.7) and (3.4.10), from condition (3.4.8) we obtain

mX

sD1

nX

pD1
Nasp
@F.A/

@Nasp
D 0; (3.4.11)

where

F.A/ D
Z

S
f .W/P.W;A/ d�.W/

is the Poisson integral of the function f .
Function F.A/ is real-analytic in D so expanding it in a Taylor series in a

neighborhood of 0, we obtain

F.A/ D
X

j˛j;jˇj�0
c˛;ˇa˛ Naˇ;

where ˛ D k˛qjk and ˇ D kˇqjk (q D 1; : : : ;m; j D 1; : : : ; n) are the matrices
with non-negative integer entries,

j˛j D
mX

qD1

nX

jD1
˛qj and a˛ D

mY

qD1

nY

jD1
a
˛qj

qj :

Then from condition (3.4.11) we obtain

mX

sD1

nX

pD1
Nasp
@F.A/

@Nasp
D

X

j˛j�0;jˇj>0
jˇj c˛;ˇ a˛ Naˇ D 0;

hence all the coefficients c˛;ˇ with jˇj > 0 are equal to 0. Therefore, the function
F.A/ is holomorphic in D and belongs to the class H 1.D/.

2. For domains of type DII and DIII the proof repeats the proof for domains DI . In
this case it is however less involved since for a domain of the second type Z0 D Z
is true, and for a domain of the third type Z0 D �Z is true.

3. Let D D DIV . We will denote points on S by w, and points in D by a. So, we have

Z

S
f .w/ a

k .w/P.w; a/ d�.w/ D 0 (3.4.12)

for all points a 2 D and all components  a
k .w/ of the automorphism a.w/.
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The Poisson kernel for a domain of the fourth type has the form (see [32,
p. 99])

P.w; a/ D .1C jha; aij2 � 2jaj2/ n
2

jhw � a;w � aijn
:

Here and below

hw; zi D wz0 D w1z1 C : : :C wnzn:

Calculating

nX

kD1
Nak
@P.w; a/

@Nak
;

we obtain

nX

kD1
Nak
@P.w; a/

@Nak
D nP.w; a/

"
jaj2 � 1

1C jha; aij2 � 2jaj2 � hw; ai � hw;wi
ha � w; a � wi

#

:

Using the representation w D ei'x, where x is the real vector such that
hx; xi D 1, we have

nX

kD1
Nak
@P.w; a/

@Nak
D nP.w; a/


 jaj2 � 1
1C jha; aij2 � 2jaj2

� hw; Nai � 1
1C hw;wiha; ai � 2hw; Nai

#

: (3.4.13)

An automorphism  a has the form (see [32, p. 88])

 a.w/ D
�
�

1

2
.ww0 C 1/;

i

2
.ww0 � 1/

�
A0 � wX0

0A
0
��

1

i

�	�1
�

�
�

wQ0 �
�
1

2
.ww0 C 1/;

i

2
.ww0 � 1/

�
X0Q

0
	
;

where

A D 1

2

�
1C jaa0j2 � 2Naa0� 12

� �i.aa0 � aa0/ aa0 C aa0 � 2

aa0 C aa0 C 2 i.aa0 � aa0/

�
;

X0 D 1

1 � jaa0j2
�

a C Na � .a .aa0/C Na .aa0//
i.a � Na/C i.a .aa0/ � Na .aa0//

�
;
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and the non-degenerate matrix Q is chosen so that

Q.I.n/ � X0
0X0/Q

0 D I.n/:

Let us write this automorphism  a in our notation:

 a.w/D .1C jha; aij2 � 2jaj2/ 12
1C hw;wiha; ai � 2hw; Nai

�
w � a C ha; ai � hw;wi

1 � jha; aij2 .Na � aha; ai/
�

Q0:

Since the non-degenerate matrix Q depends only on a, then condition (3.4.12)
will be satisfied for components of the map as well

'a.w/ D 1

1C hw;wiha; ai � 2hw; Nai
�

w � a C ha; ai � hw;wi
1 � jha; aij2 .Na � aha; ai/

�
:

Next we find the sum h'a; ai, which appears to be equal to the expression

1

1C hw;wiha; ai � 2hw; Nai�
�

hw; Nai � jaj2 C ha; ai � hw;wi
1 � jha; aij2 .ha; ai.1 � jaj2/

�
:

Obviously, this expression differs from (4.2.4) only in the factor P.w; a/ and the
factor that depends only on a. Thus, from (3.4.12) we have

nX

kD1
Nak
@F.a/

@Nak
D 0;

where F.a/ (as above) is the Poisson integral of the function f and further proof
is the same as in Item 1. ut
Let the classical domain D be such that the dimension of S is strictly greater

than N. Recall that the function f 2 L 1.S/ is a CR-function if

Z

S
f .�/N@.! ^ d�/ D 0

for all exterior differential forms ! with coefficients of class C 1 in the neighbor-
hood of S, of the corresponding dimension, where d� is the exterior product of all
differentials d�k.

The Rossi–Vergne Theorem [70] says that any CR-function f 2 L 1.S/ is the
radial boundary value on S of a function F 2 H 1.D/.

The Poisson kernel in the classical domain D is expressed through the Cauchy–
Szegö kernel C.W;A/ as follows:

P.W;A/ D C.W;A/C.A;W/

C.A;A/
:
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As was shown in [7], the expression C.W;A/d�.W/ is a restriction on S
of the Cauchy–Fantappié kernel �.W;A/, which is a N@-closed differential form.
Therefore, in condition (3.4.5) of Theorem 3.4.2, we obtain a product of the
Cauchy–Fantappié kernel� and the holomorphic function that vanishes at the point
A. In this case, this product is a certain N@-exact form with coefficients of class C1
in a neighborhood of S. Therefore, Theorem 3.4.2 is a generalization of the Rossi–
Vergne theorem from [70].

The proof of Theorem 3.4.2 shows that it remains true if condition (3.4.5) holds
only for those automorphisms  A for which point A belongs to a certain open set
V � D. It suffices to apply the uniqueness theorem for real-analytic functions.
Therefore, the following generalization of Theorem 3.4.2 holds.

Theorem 3.4.3 ([38]) If a function f 2 L 1.S/ satisfies condition (3.4.5) for
all points A belonging to a certain open V � D and all components of the
automorphism  A, then f is the radial boundary value on S of a certain function
F 2 H 1.D/.

Therefore, Theorem 3.4.1 also admits a generalization.

Theorem 3.4.4 ([38]) Let a function f 2 C .S/, and let condition (3.4.2) hold for all
automorphisms  , transforming the point 0 to points of a certain open set V � D,
then f is holomorphically extended into D up to a certain function F 2 C .D/.

In the case of the ball D, this theorem generalizes the Nagel–Rudin theorem from
[66]. Denote by 4 the analytic disk of the form

4 D f� W � D  .t�0/; jtj < 1g;

where �0 is a fixed point from the skeleton S and  is the automorphism of the
domain D. Then the boundary T of this analytic disk lies on S.

Corollary 3.4.1 ([1, 38]) If a function f 2 C .S/ is holomorphically extended (with
respect to t) to analytic disks 4 for all automorphisms (or for all automorphisms
 transforming the point 0 into points of a certain fixed open set V � D), then the
function f is holomorphically extended into D.

In [1] Agranovskii proved this assertion for the case of all automorphisms
of the domain D. In the same paper, M.L. Agranovskii described U -invariant
subspaces of the space C .S/ in the classical domain and formulated integral
conditions for the holomorphic extension of a continuous function from the skeleton
S to the domain D, which are similar to but do not coincide with conditions (3.4.3).
His proof was based on the description of the boundary values of holomorphic
functions from [8].

Corollary 3.4.1 is an analogue of the Stout theorem [78] on functions with the
one-dimensional holomorphic extension property for classical domains (see also
[4, 26, 48]). Moreover, it generalizes (for the given class of domains S) Theorem 5.5
of Tumanov, which says that if a smooth function f is holomorphically extended to
all analytic disks with a boundary on S, then f is a CR-function on S [79].
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3.5 Multidimensional Analogue of the Morera Theorem
for Real-Analytic Functions

This section contains some results related to the analytic continuation of real-
analytic functions given on the boundary of a bounded domain to this domain.
We consider functions that satisfy the Morera property (Definition 3.1.1). So let
us consider a set of complex lines intersecting the germ of a real-analytic manifold
of real dimension .2n � 2/ to be a sufficient set.

Let D � Cn .n > 1/ be a bounded domain with a connected real-analytic
boundary of the form

D D fz 2 C
n W �.z/ < 0g;

where �.z/ is a real-analytic real-valued function in a neighborhood of the set D
such that d�

ˇ
ˇ
@D¤ 0. We identify C

n with R
2n in the following way: z D .z1; : : : ; zn/,

where zj D xj C iyj, xj; yj 2 R, j D 1; : : : ; n.
Consider complex lines lz;b of the form (3.2.1)

lz;b D f� 2 C
n W �j D zj C bjt; j D 1; : : : ; n; t 2 Cg;

passing through the point z 2 Cn in the direction of the vector b D fb1; : : : ; bng 2
CP

n�1 (the direction b is determined up to multiplication by a complex number
� ¤ 0).

Let � be the germ of a real-analytic manifold of real dimension .2n � 2/. We
assume that 0 2 � and the manifold � has the form

� D f� 2 C
n W ˆ.�/C i‰.�/ D 0g;

in some neighborhood of zero, where ˆ, ‰ are the real-analytic real-valued
functions in the neighborhood of the point 0. Here � D .�1; : : : ; �n/ and �j D 
j Ci
j,

j; 
j 2 R, j D 1; : : : ; n. The smoothness condition of the manifold � can be written
down as

rang A D rang

0

B
B
@

@ˆ

@
1
: : :

@ˆ

@
n

@ˆ

@
1
: : :

@ˆ

@
n
@‰

@
1
: : :

@‰

@
n

@‰

@
1
: : :

@‰

@
n

1

C
C
A D 2

at every point � 2 � .
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Consider complex lines of the form (3.2.1), and let bj D cj C idj, cj; dj 2 R,
j D 1; : : : ; n and t D u C iv, u; v 2 R. Then lines lz;b will be defined as

lz;b D f
; 
 2 R
n W 
j D xjCcju�djv; 
j D yj CdjuCcjv; j D 1; : : : ; ng (3.5.1)

in real coordinates.

Lemma 3.5.1 Let the vector b0 D .b01; : : : ; b
0
n/ 2 CP

n�1 be such that D\l0;b0 ¤ ¿.
Then there exists " > 0 such that for any z such that jzj < ", and any b such that
jb � b0j < ", the intersection D \ lz;b ¤ ¿ and � \ lz;b ¤ ¿.

Proof The intersection � \ lz;b is given by the system of equations

�
'z;b.u; v/ D ˆ.
1; : : : ; 
n
1; : : : ; 
n/;

 z;b.u; v/ D ‰.
1; : : : ; 
n
1; : : : ; 
n/;

where 
j and 
j are given by Eq. (3.5.1).
Choose the vector b0 such that the determinant

jJj D

ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ
ˇ

@'0;b0

@u

@'0;b0

@v

@ 0;b0

@u

@ 0;b0

@u

ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ
ˇ

.0; 0/ ¤ 0: (3.5.2)

Indeed, since

@'0;b0

@u
D

nX

jD1

@ˆ

@
j
cj C

nX

jD1

@ˆ

@
j
dj;

@'0;b0

@v
D �

nX

jD1

@ˆ

@
j
dj C

nX

jD1

@ˆ

@
j
cj;

@ 0;b0

@u
D

nX

jD1

@‰

@
j
cj C

nX

jD1

@‰

@
j
dj;

@ 0;b0

@v
D �

nX

jD1

@‰

@
j
dj C

nX

jD1

@‰

@
j
cj;
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then the determinant (3.5.2)

jJj D

ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ
ˇ̌
ˇ

nX

jD1

@ˆ

@
j
cj C

nX

jD1

@ˆ

@
j
dj �

nX

jD1

@ˆ

@
j
dj C

nX

jD1

@ˆ

@
j
cj

nX

jD1

@‰

@
j
cj C

nX

jD1

@‰

@
j
dj �

nX

jD1

@‰

@
j
dj C

nX

jD1

@‰

@
j
cj

ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ
ˇ̌
ˇ

D
X

j;k

0

B
B
B
@

�cjdj

ˇ̌
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ

@ˆ

@
j

@ˆ

@
k

@‰

@
j

@ˆ

@
k

ˇ̌
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ

C cjck

ˇ̌
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ

@ˆ

@
j

@ˆ

@
k

@‰

@
j

@ˆ

@
k

ˇ̌
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ

�djdk

ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ̌

@ˆ

@
j

@ˆ

@
k

@‰

@
j

@ˆ

@
k

ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ̌
C djck

ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ̌

@ˆ

@
j

@ˆ

@
k

@‰

@
j

@ˆ

@
k

ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ̌

1

C
C
C
A
: (3.5.3)

Suppose expression (3.5.3) is equal to zero for all b such that � \ l0;b ¤ ¿
and b is an open set in CP

n�1. Then expression (3.5.3) is identically equal to zero
since it is a real-analytic function with respect to bj D cj C idj. Without generality
restriction we may assume b1 D 1C i0. Then expression (3.5.3) acquires the form

jJj D

ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ

@ˆ

@
1

@ˆ

@
1

@‰

@
1

@‰

@
1

ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ

C
nX

kD2

0

BB
B
@

�dk

ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ

@ˆ

@
1

@ˆ

@
k

@‰

@
1

@‰

@
k

ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ

C ck

ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ

@ˆ

@
1

@ˆ

@
k

@‰

@
1

@‰

@
k

ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ

1

CC
C
A

C
nX

j;kD2

0

B
B
B
@

�cjdk

ˇ̌
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ

@ˆ

@
j

@ˆ

@
k

@‰

@
j

@‰

@
k

ˇ̌
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ

C cjck

ˇ̌
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ

@ˆ

@
j

@ˆ

@
k

@‰

@
j

@‰

@
k

ˇ̌
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ

�djdk

ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ
ˇ

@ˆ

@
j

@ˆ

@
k

@‰

@
j

@‰

@
k

ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ
ˇ

C djck

ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ
ˇ

@ˆ

@
j

@ˆ

@
k

@‰

@
j

@‰

@
k

ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ
ˇ

1

C
C
C
A

	 0:

Then the determinants of all second-order minors of the matrix A vanish, which
contradicts the smoothness of � at 0. Therefore there exists a vector b0 such that
jJj ¤ 0 and l0;b0 \ � ¤ ¿. ut
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Lemma 3.5.2 For � 2 @D \ lz;b let the function �, defining the domain D, satisfy
the condition

nX

jD1

@�

@�j
bj ¤ 0; (3.5.4)

for some z and all �, b such that D \ lz;b ¤ ¿, then the curves @D \ lz;b are smooth
and analytically dependent on the parameter b.

Proof Consider the function

'z;b.t/ D �.z1 C b1t; : : : ; zn C bnt/;

then

grad'z;b.t/ D
�
@'

@t
;
@'

@Nt
�

D
 
@'

@t
;
@'

@t

!

:

Therefore grad'z;b.t/ ¤ 0 if and only if
@'

@t
¤ 0. Hence the smoothness condition

for the curve D\lz;b is equivalent the condition
@'

@t
¤ 0. Finally

@'

@t
D

nX

jD1

@�

@t
¤ 0,

implies the statement of the lemma. ut
For example, strongly convex or strongly linearly convex domains in Cn satisfy

the conditions of Lemma 3.5.2.
Let C !.@D/ denote the space of real-analytic functions on the boundary of the

domain D.

Theorem 3.5.1 ([51]) Let a domain D � Cn satisfy conditions (3.5.4) for the points
z, lying in the neighbourhood of a manifold � such that @D \� D ¿. Let a function
f 2 C !.@D/ satisfy the generalized Morera property, i.e.,

Z

@D\lz;b

f .z1 C b1t; : : : ; zn C bnt/tmdt D 0 (3.5.5)

for all z 2 � , b 2 CP
n�1 and for a fixed integral non-negative number m. Then

the function f has the holomorphic extension into the domain D.

Proof Consider the Bochner–Martinelli kernel of the form (1.1.1):

U.�; z/ D .n � 1/Š
.2�i/n

nX

kD1
.�1/k�1 N�k � Nzk

j� � zj2n
d N�Œk� ^ d�:
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By Lemma 3.2.1 the kernel U.�; z/ in terms of the coordinates b and t has the form

U.�; z/ D �.b/^ dt

t
;

where �.b/ is a differential form of type .n � 1; n � 1/ in CP
n�1 such that it does

not depend on t, and the point z … @D.
Consider the integral

M˛f .z/ D
Z

@D�

.� � z/˛f .�/U.�; z/;

where ˛ D .˛1; : : : ; ˛n/ is an arbitrary multi-index such that

k˛k D ˛1 C : : :C ˛n D m C 1

and

.� � z/˛ D .�1 � z1/
˛1 � � � .�n � zn/

˛n :

By the Fubini theorem and Lemma 3.2.1 we obtain

M˛f .z/ D
Z

CP
n�1

b˛�.b/
Z

@D\lz;b

f .z1 C b1t; : : : ; zn C bnt/tmdt:

Then by the condition of Theorem 3.5.1 and Lemma 3.5.1 the integrals

Z

@D\lz;b

f .z1 C b1t; : : : ; zn C bnt/tmdt D 0

for any z with a sufficiently small jzj and b close to b0. By the condition of
Theorem 3.5.1 and Lemma 3.5.2 this integral is a real-analytic function with respect
to b, hence it is identically equal to zero, then

M˛f .z/ D
Z

@D�

.� � z/˛f .�/U.�; z/ 	 0 (3.5.6)

for all z such that jzj < ".
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We rewrite the function M˛f .z/ in a different form. Consider the differential
forms Us.�; z/ of the form (3.2.5):

Us.�; z/ D .�1/s.n � 2/Š
.2�i/n

0

@
s�1X

jD1
.�1/j

N�j � Nzj

j� � zj2n�2 d N�Œj; s�

C
nX

jDsC1
.�1/j�1

N�j � Nzj

j� � zj2n�2 d N�Œs; j�
1

A ^ d�:

It is easy to verify that

N@
�

1

�s � zs
Us.�; z/

�
D U.�; z/

at �s ¤ zs, s D 1; : : : ; n. Then condition (3.5.6) can be rewritten as

Z

@D�

f .�/N@ �.� � z/ˇUs.�; z/
� 	 0 (3.5.7)

for z such that jzj < " and for all monomials .� � z/ˇ with kˇk D m.
Let us show that condition (3.5.7) holds for monomials .� � z/� with k�k < m.

Indeed, consider the monomial .� � z/� with k�k D m � 1. Then condition (3.5.7)
holds for monomials

.� � z/ˇ.�k � zk/; k D 1; : : : ; n;

since the degree of these monomials is m. The equality

@

@�k
..� � z/� .�k � zk/Us.�; z// D .�k C 1/.� � z/�Us.�; z/

� .n � 1/.� � z/�
.�k � zk/. N�k � Nzk/

j� � zj2 Us.�; z/ (3.5.8)

holds. Summing equalities (3.5.8) by k, we obtain

nX

kD1

@

@�k
..� � z/� .�k � zk/Us.�; z// D .k�k C 1/.� � z/�Us.�; z/: (3.5.9)

Since condition (3.5.7) can be differentiated in z for jzj < ", and the derivatives
with respect to z and � in expression (3.5.9) differ only in sign, then from (3.5.9)
it follows that the degree of the monomial in (3.5.7) can be reduced by one.
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Consequentially reducing this degree we obtain the conditions

Z

@D�

f .�/N@Us.�; z/ 	 0

for jzj < " and s D 1; : : : ; n, i.e.,

Z

@D�

.�s � zs/f .�/U.�; z/ 	 0 (3.5.10)

for jzj < " and s D 1; : : : ; n.
Applying the Laplace operator

� D @2

@z1@Nz1 C : : :C @2

@zn@Nzn
;

to the left-hand side of (3.5.10) we obtain

@

@Nzs

Z

@D�

f .�/U.�; z/ 	 0

forjzj < " and s D 1; : : : ; n. Here we have used the harmonicity of the kernel U.�; z/
and the identity

�.gh/ D h�g C g�h C
nX

jD1

@g

@Nzj

@h

@zj
C

nX

jD1

@g

@zj

@h

@Nzj
:

Consequently, the Bochner–Martinelli integral of the function f

Mf .z/ D
Z

@D�

f .�/U.�; z/

is a function holomorphic in the neighborhood of zero.
If � � CnnD, then Mf .z/ 	 0 outside D, and then by Corollary 2.5.3 the function

f is holomorphically extended to the domain D. If � � D, then by Corollary 2.5.2
the function Mf is holomorphic in D and the boundary values of Mf coincide with f .

ut
For m D 0 condition (3.5.5) takes us to the boundary Morera property [26]

Z

@D\lz;b

f .z1 C b1t; : : : ; zn C bnt/ dt D 0: (3.5.11)

Corollary 3.5.1 Let a domain D satisfy the conditions of Theorem 3.5.1, and a
function f 2 C !.@D/ satisfy condition (3.5.11) for all z 2 � and b 2 CP

n�1, then f
is holomorphically extended into the domain D.



Chapter 4
Functions with the One-Dimensional
Holomorphic Extension Property

Abstract The first result related to our subject was obtained by Agranovskii and
Val’sky in (Sib. Math. J. 12, 1–7, 1971), who studied functions with the one-
dimensional holomorphic extension property in a ball. Their proof was based on
the properties of the automorphism group of the ball. Stout (Duke Math. J. 44, 105–
108, 1977) used the complex Radon transform to extend the Agranovskii–Val’sky
theorem to arbitrary bounded domains with smooth boundaries. An alternative proof
of the Stout theorem was suggested in Integral Representations and Residues in
(Multidimensional Complex Analysis. AMS, Providence, 1983) by Kytmanov, who
applied the Bochner–Martinelli integral. The idea of using integral representations
(those of Bochner–Martinelli, Cauchy–Fantappié, and the logarithmic residue)
turns out to be useful in studying functions with a one-dimensional holomorphic
extension property along complex curves (Kytmanov and Myslivets, Sib. Math. J.
38, 302–311, 1997; Kytmanov and Myslivets, J. Math. Sci. 120, 1842–1867, 2004).

4.1 Sufficient Families of Complex Lines Intersecting
a Generic Manifold Lying Outside the Domain

This section contains some results related to the sufficiency of a family of complex
lines intersecting a generating manifold. We will be talking about functions
with the one-dimensional holomorphic extension property along families of such
complex lines.

Let D be a bounded domain in Cn .n > 1/ with a connected smooth boundary
@D of class C 2. Consider complex one-dimensional lines l of the form (3.2.1)

l D f� 2 C
n W �j D zj C bjt; j D 1; : : : ; n; t 2 Cg; (4.1.1)

that pass through a point z 2 Cn in the direction of the vector b 2 CP
n�1 (the

direction of b is determined up to multiplication by a complex number � ¤ 0).
Consider functions f with the one-dimensional holomorphic extension property
(Definition 3.2.1) along families of complex lines of the form (4.1.1).

In [26], the problem of finding sufficient sets of complex lines L D flg for which
conditions of Definition 3.2.1 for l 2 L implies a holomorphic extension of the
function f to D was posed.

© Springer International Publishing Switzerland 2015
A.M. Kytmanov, S.G. Myslivets, Multidimensional Integral Representations,
DOI 10.1007/978-3-319-21659-1_4
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4.1.1 Examples of Families of Complex Lines that are Not
Sufficient

It is clear that any family of complex lines passing through one point is not sufficient.
Let us show that, generally speaking, a family of all complex lines passing through
finitely many points is not sufficient either.

Example 4.1.1 ([50]) Suppose that the domain D is a unit ball in Cn:

D D
�

z 2 C
n W

nX

jD1
jzjj2 < 1

	
:

Consider a set of parallel complex lines of the form

lc;b D fz 2 C
n W z1 D t; zj D cj C bjt; j D 2; : : : ; n; t 2 Cg; (4.1.2)

where b D .b2; : : : ; bn/ 2 Cn�1 is the fixed vector and c D .c2; : : : ; cn/ 2 Cn�1 is
the current vector. On the sphere @D, we have

jtj2 C
nX

jD2
jcj C bjtj2 D 1;

or, equivalently,

jtj2 C jtj2
nX

jD2
jbjj2 C

nX

jD2
jcjj2 C t

nX

jD2
bjNcj C Nt

nX

jD2
Nbjcj D 1:

Therefore,

Nt D
1 �

nP

jD2
jcjj2 � t

nP

jD2
bjNcj

t

�
1C

nP

jD2
jbjj2

�
C

nP

jD2
Nbjcj

on @D. Consider the function f D jz1j2P.z/ on @D, where P.z/ is the polynomial

P.z/ D z1

0

@1C
nX

jD2
jbjj2

1

AC
nX

jD2
Nbj.zj � bjz1/ D z1 C

nX

jD2
Nbjzj:
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On family (4.1.2) (i.e., on the sets @D \ lc;b, where c 2 Cn�1) the function f has
the form

f D jtj2
 

t

�
1C

nX

jD2
jbjj2

�
C

nX

jD2
Nbjcj

!

D t

0

@1 �
nX

jD2
jcjj2 � t

nX

jD2
bj Ncj

1

A :

Therefore, it extends holomorphically along the given family of complex lines from
the curves @D \ lc;b to the sets D \ lc;b.

On the other hand, f is not a CR-function on @D, because is does not satisfy
the tangent Cauchy–Riemann equations. For a finite set of points bk D .bk

2; : : : ; b
k
n/,

where k D 1; : : : ;m, we define f on @D as

f D jz1j2
mY

kD1

0

@z1

�
1C

nX

jD2
jbk

j j2
�

C
nX

jD2
Nbk

j .zj � bk
j z1/

1

A :

This function f is not a CR-function on @D either, but it extends holomorphically to
all intersections D \ lc;bk , where c 2 Cn�1 and k D 1; : : : ;m. A set of lines of the
form (4.1.2) determines the point in the infinite complex hyperplane… D CP

n n Cn.
To obtain sets passing through finite points in Cn, we transform the plane… into a

complex hyperplane L0 in Cn by a linear-fractional map. This map turns the domain
D into some bounded domain D� and transforms the function f into a function f �.
Since any linear-fractional transformation turns complex lines into complex lines,
we obtain the required example of a domain, a function, and a finite set of points
for which the holomorphic extendability of the function f � along all complex lines
passing through the given point does not imply that f � holomorphically extends to
D�. Note that these points will lie on a complex hyperplane not intersecting the
closure of the domain D�.

Example 4.1.2 Consider a unit ball B in C2:

B D f.z;w/ 2 C
2 W jzj2 C jwj2 < 1g

and the complex manifold � D f.z;w/ 2 C2 W w D 0g, which coincides with its
complex tangent space at each point and intersects B.

Consider the complex lines intersecting �:

la D f.z;w/ 2 C
2 W z D a C bt; w D ct; t 2 Cg: (4.1.3)

These lines pass through the point .a; 0/ 2 � . The point .a; 0/ lies on B for jaj < 1
and it does not for jaj > 1. Without loss of generality, we can assume that jbj2 C
jcj2 D 1: The intersection la \ @B forms a circle

jtj2 C aNbNt C Nabt D 1 � jaj2 or jt C aNbj2 D 1 � jcj2jaj2: (4.1.4)
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This set la \ @B is not empty, if jaj2jcj2 < 1. Thus the condition

Nt D 1 � jaj2 � Nabt

t C aNb (4.1.5)

holds for la \ @B.
Consider the function

fa.z;w/ D .1 � Naz/
wkC2

Nw ; k 2 Z; k > 0:

This function is a smooth function of class C k on @B, since the ratio of
w

Nw is bounded,

then the function
w2

Nw is continuous and
wkC2

Nw is the C k-smoothness function. On the

set la \ @B the function fa is equal to

1 � Na.a C bt/

1 � jaj2 � Nabt
.t C aNb/ .ct/kC2 D .t C aNb/ .ct/kC2:

Thus the restriction of fa is holomorphically extended to the set la\B for all complex
lines la, passing through .a; 0/ and intersecting B.

Considering an arbitrary finite set of points .am; 0/with jamj > 1, m D 1; : : : ;N,
and the function

f .z;w/ D wkC2

Nw
NY

mD1
.1 � Namz/;

we obtain that f has the one-dimensional holomorphic extension property along
all complex lines lam , intersecting B. Nevertheless, f can not be extended holo-
morphically into a ball B from the boundary @B, since it is obvious that f is not
a CR-function on @B.

Example 4.1.3 In a ball B, we consider a part of the complex manifold �1 D
f.z;w/ 2 B W w D 0g. As shown by Globevnik [25], the function f1 D wkC2

Nw
.k 2 Z; k > 0/ has the one-dimensional holomorphic extension property from @B
along the complex lines of the family L�1 , this is a smooth function on @B, which,
however, does not extend holomorphically into B.

Indeed, since equality (4.1.5) holds for complex lines of the form (4.1.3) on @B ,
the function f1 on @B takes the form

f1 D t C aNb
1 � jaj2 � Nabt

.ct/kC2:
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The denominator of this fraction vanishes at the point t0 D 1 � jaj2
Nab

. Substituting

this point into expression (4.1.4), we obtain

.1 � jaj2/2
jaj2jbj2 C 1 � jaj2 > 0 for jaj < 1:

Therefore, the point of the line la, corresponding to t0, lies outside the ball B. So,
the function f1 extends holomorphically into la \ B.

This motivates the problem of finding families of manifolds (desirably, of
minimal dimension) for which the sets of complex lines intersecting these manifolds
are sufficient for holomorphic extension.

4.1.2 Sufficient Families of Complex Lines

In this section, we consider families of complex lines passing through a generic
manifold. The real dimension of such a manifold is at least n.

Recall that a smooth manifold � of class C1 is said to be generic if the complex
linear span of the tangent space Tz.�/ coincides with Cn for each point z 2 � . We
denote the family of all complex lines intersecting � by L� .

Theorem 4.1.1 ([50]) If � is a germ of a generic manifold in Cn nD and a function
f 2 C .@D/ has the one-dimensional holomorphic extension property along all
complex lines from L� , then the function f is holomorphically extended in D.

Proof Consider the Bochner–Martinelli integral of f of the form (1.2.4)

Mf .z/ D
Z

@D
f .�/U.�; z/; z … @D;

where U.�; z/ is the Bochner–Martinelli kernel of the form (1.1.1).

Lemma 4.1.1 If z 2 C
n n D and a function f has the one-dimensional holomor-

phic extension property along almost all complex lines passing through z, then
Mf .z/ D 0, and all derivatives (by z) of Mf of order ˛ D .˛1; : : : ; ˛n/ vanish as
well:

@˛Mf

@z˛
.z/ D @k˛kMf

@z˛11 � � � @z˛n
n
.z/ D 0;

where k˛k D ˛1 C : : :C ˛n.

Proof Consider complex lines l of the form (4.1.1) passing through the point z in
the direction of the vector b 2 CP

n�1.
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By Lemma 3.2.1 in the coordinates t and b, the Bochner–Martinelli kernel is
written as

U.�; z/ D �.b/^ dt

t
;

where �.b/ is a differential form of type .n � 1; n � 1/ on CP
n�1 not depending on

t. We need a similar representation for the derivatives of this integral. We have

@˛Mf

@z˛
.z/ D

Z

@D
f .�/

@˛U.�; z/

@z˛
D .�1/k˛k

Z

@D
f .�/

@˛U.�; z/

@�˛
:

We assume that z D 0. Expressing the derivatives of the Bochner–Martinelli
integral in terms of the variables t and b, we obtain

@˛U.�; 0/

@�˛
D .n C k˛k � 1/Š

.2�i/n

.�1/k˛k N�˛
nP

kD1
.�1/k�1 N�kd N�Œk� ^ d�

j�j2nC2k˛k

D .n C k˛k � 1/Š

.n � 1/Š

.�1/k˛k N�˛
j�j2k˛k U.�; z/ D .�1/k˛kCn�1.n C k˛k � 1/Š

.2�i/n
�

�
Nb˛

nP

kD1
.�1/k�1 Nbkd NbŒk� ^

nP

kD1
.�1/k�1bkdbŒk�

jbj2nC2k˛k ^ dt

tk˛kC1

D �˛.b/ ^ dt

tk˛kC1 ;

where N�˛ D N�˛11 � � � N�˛n
n .

These calculations are similar to those performed in Lemma 3.2.1. Since the
point z D 0 is outside D, it follows that

Z

@D\l
f .b1t; : : : ; bnt/

dt

tk˛kC1 D 0;

therefore, by Fubini’s theorem, we have

@˛Mf

@z˛
.0/ D

Z

CP
n�1
�˛.b/

Z

@D\l
f .b1t; : : : ; bnt/

dt

tk˛kC1 D 0:

ut
Let us go back to the proof of the theorem. Suppose that � is a germ of a

generic manifold in Cn n D, i.e., there exists an open set W on which � is a smooth
generic manifold of class C1. If a function f has the one-dimensional property of



4.1 Sufficient Families of Complex Lines Intersecting a Generic Manifold. . . 125

holomorphic extension along complex lines from L� , then, by Lemma 4.1.1, the
Bochner–Martinelli integral and all of its derivatives with respect to z vanish on �:

Mf
ˇ
ˇ
�
D 0;

@˛Mf

@z˛

ˇ
ˇ
ˇ̌
�

D 0 for all multi-indices ˛: (4.1.6)

The generic manifold � can be reduced by a locally biholomorphic transforma-
tion to the form (see [11])

� W

8
ˆ̂<

ˆ̂
:

v1 D h1.z1; : : : ; zk; u1; : : : ; um/;

. . . . . . . . . . . . . .

vm D hm.z1; : : : ; zk; u1; : : : ; um/;

where k C m D n, zj D xj C iyj, j D 1; : : : ; k, ws D us C ivs, and s D 1; : : : ;m.
Moreover, the real-valued vector-function h D .h1; : : : ; hm/ is of class C 1 in a
neighborhood W of 0, and

hp.0/ D 0;
@hp

@xj
.0/ D @hp

@yj
.0/ D @hp

@us
.0/ D 0

for j; p D 1; : : : ;m, s D 1; : : : ; k. Any biholomorphic transformation turns
derivatives with respect to holomorphic variables into similar derivatives; thus,
condition (4.1.6) can be rewritten as

Mf
ˇ̌
�
D 0;

@˛CˇMf

@z˛@wˇ

ˇ
ˇ̌
ˇ
�

D 0 for all multi-indices ˛; ˇ: (4.1.7)

Lemma 4.1.2 If a real-analytic function Mf defined on the neighborhood W of a
set � satisfies conditions (4.1.7), then it vanishes on W.

Proof Let us show that all Taylor coefficients of the function Mf in a neighborhood
of zero vanish. For j D 1; : : : ; k and s D 1; : : : ;m we denote the partial derivatives
of the function Mf .z; u C ih.z; u// with respect to the variables xj, yj, and us by Dxj ,
Dyj , and Dus , respectively. Since

0 D Dxj Mf D @Mf

@xj
C

mX

lD1

@Mf

@vl

@hl

@xj
and

@hl

@xj
.0/ D 0;

it follows that
@Mf

@xj
.0/ D 0. Similarly,

@Mf

@yj
.0/ D 0 and

@Mf

@us
.0/ D 0 for j D

1; : : : ; k and s D 1; : : : ;m. Since

0 D @Mf

@ws

ˇ
ˇ
ˇ
ˇ
�

D 1

2

�
@Mf

@us
� i
@Mf

@vs

� ˇˇ
ˇ
ˇ
�

and
@Mf

@us
.0/ D 0;
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it follows that
@Mf

@vs
.0/ D 0 for s D 1; : : : ;m. Thus, all of the first derivatives of Mf

vanish at 0.
Let us show that the second derivatives vanish at zero as well. We have

0 D D2
xjxl

Mf D @2Mf

@xj@xl
C

mX

pD1

@2Mf

@xj@vp

@hp

@xl

C
mX

pD1

0

@ @2Mf

@vp@xl

@hp

@xj
C

mX

qD1

�
@2Mf

@vp@vq

@hp

@xj

@hq

@xl

�
C @Mf

@vp

@2hp

@xj@xl

1

A :

The relations
@hp

@xl
.0/ D 0 and

@Mf

@vp
.0/ D 0 imply

@2Mf

@xj@xl
.0/ D 0. Similar

arguments show that the second derivatives of Mf with respect to the variables xj,
yj, and us vanish as well at 0 .

Consider

0 D Dxj

�
@Mf

@ws

�
D @2Mf

@ws@xj
C

mX

pD1

@2Mf

@ws@vp

@hp

@xj
:

Since
@hp

@xj
.0/ D 0, it follows that

@2Mf

@ws@xj
.0/ D 0. Thus, we have

0 D @2Mf

@ws@xj
.0/ D 1

2

�
@2Mf

@us@xj
.0/� i

@2Mf

@vs@xj
.0/

�
and

@2Mf

@us@xj
.0/ D 0;

therefore,
@2Mf

@vs@xj
.0/ D 0. Similarly,

@2Mf

@vs@yj
.0/ D 0 and

@2Mf

@vs@ul
.0/ D 0. Further,

0 D @2Mf

@wl@ws

ˇ
ˇ̌
ˇ
�

D 1

4

�
@2Mf

@ul@us
� i

@2Mf

@ul@vs
� i

@2Mf

@vl@us
� @2Mf

@vl@vs

�
;

hence
@2Mf

@vl@vs
.0/ D 0.

Applying induction, we can show in a similar way that all higher-order deriva-
tives of the function Mf vanish at the point 0. Thus, the Taylor expansion of Mf
vanishes at 0, and the function Mf itself vanishes on W. ut

Let us complete the proof of the theorem. We have shown that the Bochner–
Martinelli integral vanishes on W. Since this integral is a real-analytic function
and the complement Cn n D is connected, it follows that Mf .z/ 	 0 on C

n n D.
Applying the assertion that functions representable by a Bochner–Martinelli integral
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are holomorphic (Corollary 2.5.2), we see that the function Mf is holomorphic on
D, and its boundary values coincide with those of f on @D. ut

4.2 Sufficiency of a Family of Lines Intersecting a Generic
Manifold Lying Inside the Domain

Let D be a bounded domain in Cn .n > 1/ with a connected smooth boundary @D of
class C 2. In the previous section we considered a family of complex lines passing
through the germ of a generic manifold lying outside the domain D. Here we will
deal with the case of a generic manifold lying in the domain.

Let L� denote a set of complex lines of the form

l D f� 2 C
n W �j D zj C bjt; j D 1; : : : ; n; t 2 Cg; (4.2.1)

passing through the point z 2 � in the direction of the vector b 2 CP
n�1.

In this section we consider the case where the germ of a generic manifold lies in
the domain D, so it will require additional conditions on the domain D. To do this,
we first prove some lemmas. Consider the Bochner–Martinelli integral of the form
(1.2.4) for the function f :

Mf .z/ D
Z

@D
f .�/U.�; z/; z … @D;

where U.�; z/ is the Bochner–Martinelli kernel of the form (1.1.1). We assume that
0 2 D and the generic manifold � is in some neighborhood of W � D, and 0 2 � .

The generic manifold � can be reduced by local biholomorphic transformation
to the form (see [11])

8
ˆ̂
<

ˆ̂
:

v1 D h1.z1; : : : ; zk; u1; : : : ; um/;

. . . . . . . . . . . . . .

vm D hm.z1; : : : ; zk; u1; : : : ; um/;

(4.2.2)

where k C m D n, zj D xj C iyj, j D 1; : : : ; k, ws D us C ivs; s D 1; : : : ;m,
h D .h1; : : : ; hm/ is a real-valued vector-function of class C1 in the neighborhood
W of 0 and the conditions

hp.0/ D 0;
@hp

@xj
.0/ D @hp

@yj
.0/ D @hp

@us
.0/; j; p D 1; : : : ;m; s D 1; : : : k

hold.
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Lemma 4.2.1 If a real-analytic function Mf , defined in W, satisfies the conditions

Mf
ˇ
ˇ
�

D 0;
@˛CˇMf

@Nz˛@ Nwˇ
ˇ
ˇ
ˇ
ˇ
�

D 0 for all multi-indices ˛; ˇ; (4.2.3)

then it is equal to zero on W.

Proof We show that all coefficients of the expansion of F in a Taylor series vanish
in the neighborhood of zero.

Denote full partial derivatives along the manifold � with respect to xj, yj, us by
Dxj , Dyj , Dus , and j D 1; : : : ; k, s D 1; : : : ;m. Since

0 D Dxj Mf D @Mf

@xj
C

mX

lD1

@Mf

@vl

@hl

@xj
and

@hl

@xj
.0/ D 0;

then
@Mf

@xj
.0/ D 0. Similarly

@Mf

@yj
.0/ D 0,

@Mf

@us
.0/ D 0, j D 1; : : : ; k, s D 1; : : : ;m.

Since

0 D @Mf

@ Nws

ˇ
ˇ̌
ˇ
�

D 1

2

�
@Mf

@us
C i

@Mf

@vs

�
and

@Mf

@us
.0/ D 0;

then
@Mf

@vs
.0/ D 0, s D 1; : : : ;m. So, all of the first derivatives of the function Mf

vanish at 0.
We now show that all second derivatives also vanish at 0. We have

0 D D2
xjxl

Mf D @2Mf

@xj@xl
C

mX

pD1

@2Mf

@xj@vp

@hp

@xl

C
mX

pD1

0

@ @2Mf

@vp@xl

@hp

@xj
C

mX

qD1

�
@2Mf

@vp@vq

@hp

@xj

@hq

@xl

�
C @Mf

@vp

@2hp

@xj@xl

1

A :

Since
@hp

@xl
.0/ D 0,

@Mf

@vp
.0/ D 0, then

@2Mf

@xj@xl
.0/ D 0. Similarly, all of the second

derivatives of F with respect to yj, us vanish at 0.
Consider

0 D Dxj

�
@Mf

@ Nws

�
D @2Mf

@ Nws@xj
C

mX

pD1

@2Mf

@ Nws@vp

@hp

@xj
:
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Since
@hp

@xj
.0/ D 0, then

@2Mf

@ Nws@xj
.0/ D 0. Since

0 D @2Mf

@ Nws@xj
.0/ D 1

2

�
@2Mf

@us@xj
.0/C i

@2Mf

@vs@xj
.0/

�
and

@2Mf

@us@xj
.0/ D 0;

then
@2Mf

@vs@xj
.0/ D 0. Similarly,

@2Mf

@vs@yj
.0/ D 0,

@2Mf

@vs@ul
.0/ D 0. Further

0 D @2Mf

@ Nwl@ Nws

ˇ
ˇ
ˇ
ˇ
�

D 1

4

�
@2Mf

@ul@us
C i

@2Mf

@ul@vs
C i

@2Mf

@vl@us
� @2Mf

@vl@vs

�
;

so
@2Mf

@vl@vs
.0/ D 0:

Applying induction, it can be shown just as above, that all higher derivatives of
the function Mf vanish at 0. Thus, the Taylor series at 0 of the function is zero, so
the function itself is zero in W. ut

Clearly, Lemma 4.2.1 is also true for the original variables z (to bring the
manifold � to the form (4.2.2)).

We define the functions

Mjf .z/ D
Z

@D
f .�/.�j � zj/U.�; z/; z 2 D; j D 1; : : : ; n:

They are real-analytic in D.

Lemma 4.2.2 If for real-analytic functions Mjf the conditions

@˛CˇMjf

@Nz˛@ Nwˇ
ˇ
ˇ
ˇ
ˇ
�

D 0 (4.2.4)

hold for all multi-indices ˛; ˇ at k˛k C kˇk > 0, then Mjf are holomorphic on D.

Proof We apply Lemma 4.2.1 to the functions
@Mjf

@Nzp
,
@Mjf

@ Nws
, p D 1; : : : ; k, s D

1; : : : ;m, to show that these functions are equal to zero in W, i.e., the functions Fj

are holomorphic in W, and therefore in D. ut
In what follows we will need the definition of a domain with the Nevanlinna

property (see [17]). Let G � C be a simply connected domain and t D k.�/ be a
conformal mapping of the unit circle � D f� W j� j < 1g on G.

Domain G is a domain with the Nevanlinna property, if there are two bounded
holomorphic functions u and v in G such that almost everywhere on S D @�, the
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equality

Nk.�/ D u.k.�//

v.k.�//

holds in terms of the angular boundary values. Essentially this means

Nt D u.t/

v.t/
on @G:

Give a characterization of a domains with the Nevanlinna property (Proposition 3.1
in [17]). Domain G is a domain with the Nevanlinna property if and only if k.�/
admits a holomorphic pseudocontinuation through S in Cn�, i.e., there are bounded

holomorphic functions u1 and v1 in C n � such that the function Qk.�/ D u1.�/

v1.�/
coincides almost everywhere with the function k.�/ on S.

The above definition and statement will be applied to bounded domains G
with a boundary of class C 2, therefore (due to the principle of correspondence of
boundaries) the function k.�/ extends to � as a function of class C 1.�/. The same
can be said about the function Qk.

Various examples of domains with the Nevanlinna property are given in [17].
For example, if @G is real-analytic, then k.�/ is a rational function with no poles on
the closure �. In our further consideration we will need the domain G to possess
a strengthened Nevanlinna property, i.e., the function u1.�/ ¤ 0 in C n � and
Qk.1/ ¤ 0. For example, such domains will include domains for which k.�/ is a
rational function with no poles on � and no zeros in C n�.

Lemma 4.2.3 If the domain G has a strengthened Nevanlinna property, then the

function
1

Nt extends holomorphically from @G into G.

Proof Consider the function
1

Nt on @G and � 2 S

1

Nt D 1

Nk.�/ D 1

NQk.�/
D Nv1.�/

Nu1.�/ D Nv1
�
1
N�
�

Nu1
�
1
N�
� :

Then the function h.�/ D Nv1
�
1
N�
�

Nu1
�
1
N�
� is holomorphic in the circle �, since the

denominator Nu1
�
1
N�
� ¤ 0 at j� j > 1 in h.0/ D 1

Qk.1/
¤ 1. Therefore, the function

h.�/ gives a holomorphic extension of the function
1

Nk.�/ in the circle � hence, the

function
1

Nt extends holomorphically into G. ut
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Consider complex lines l of the form (4.2.1) passing through z in the direction of
the vector b 2 CP

n�1. Consider also the following representation of the Bochner–
Martinelli kernel in the variables t and b):

U.�; z/ D �.b/^ dt

t
;

where �.b/ is a differential form of type .n � 1; n � 1/ in CP
n�1 independent of t.

Lemma 4.2.4 If a function f 2 C .@D/ has the one-dimensional holomorphic
extension property along almost all complex lines l 2 L� and the connected
components of the intersection D \ l are domains with the strengthened Nevanlinna
property, then equalities (4.2.4) hold for all multi-indices ˛ with k˛k > 0 and for
all j D 1; : : : ; n.

Proof Since

U.�; z/ D
nX

jD1
.�1/j�1 @g

@�j
d N�Œj� ^ d�;

where g.�; z/ D � .n � 2/Š

.2�i/n
1

j� � zj2n�2 is the fundamental solution of the Laplace

equation, then

@˛U

@Nz˛ D .�1/k˛k
nX

jD1
.�1/j�1 @

@�j

�
@˛g

@ N�˛
�

d N�Œj� ^ d�:

Since

@˛g

@ N�˛ D .�1/k˛kC1

.2�i/n
.n C k˛k � 2/Š.� � z/˛

j� � zj2nC2k˛k�2 ;

then

@˛U

@Nz˛ D .n C k˛k � 2/Š

.2�i/n

nX

jD1
.�1/j @

@�j

�
.� � z/˛

j� � zj2nCk˛k�2

�
d N�Œj� ^ d�

D .n C k˛k � 2/Š

.2�i/n
�

�
nX

jD1
.�1/j



˛j.� � z/˛�ej

j� � zj2nCk˛k�2 � .n C k˛k � 1/.� � z/˛

j� � zj2nCk˛k

�
d N�Œj� ^ d�
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D .n C k˛k � 2/Š

.2�i/n

nX

jD1
.�1/j ˛j.� � z/˛�ej

j� � zj2nC2k˛k�2 d N�Œj� ^ d�

C .n C k˛k � 1/Š
.n � 1/Š

.� � z/˛

j� � zj2k˛k U.�; z/:

Let us calculate this form in the variables b and t, i.e., �j � zj D bjt, j D 1; : : : ; n.
In the calculation we assume that dNt ^ dt D 0 on @D \ l and that b 2 CP

n�1. We
obtain

@˛U

@Nz˛ D .n C k˛k � 2/Š

.2�i/n

nX

jD1
.�1/j ˛jb˛�ej

tNtk˛kjbj2k˛k d NbŒj� ^
nX

sD1
.�1/s�1bsdbŒs� ^ dt

C .n C k˛k � 1/Š
.n � 1/Š

b˛

tNtk˛kjbj2k˛k�.b/ ^ dt:

Thus we see that

.�j � zj/
@˛U

@Nz˛ D �.b/ ^ dt
Ntk˛k :

It remains to show that
Z

@D\l
f .z C bt/

dt
Ntk˛k D 0;

but this follows from Lemma 4.2.3. ut
Theorem 4.2.1 ([52]) Let � be the germ of a generic manifold in D, the function
f 2 C .@D/ has the one-dimensional holomorphic extension property along almost
all complex lines l 2 L� and the connected components of the intersection D \ l be
domains with the strengthened Nevanlinna property, then there exists a holomorphic
function Mf 2 C .D/ in D that coincides with the function f on the boundary @D.

Proof From Lemmas 4.2.1–4.2.4 it follows that Mjf .z/ is holomorphic in D. Since

�Mjf D �@Mf

@Nzj
D 0

in D, then the function Mf is holomorphic in D. Therefore, its boundary values
coincide with f (see Corollary 2.5.3). ut

Consider examples of the domains for which Theorem 4.2.1 is true.

Example 4.2.1 Let D D B be a ball of radius R with the center at the origin, i.e.,
D D f� W j�j < Rg. Then for z 2 D and jbj D 1, the intersection of this domain with
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the complex line

l D f� W �j D zj C bjt; j D 1; : : : ; ng

is a circle

G D ft W jt C hz; Nbij2 < R2 � jzj2 C jhz; Nbij2g:

On the boundary of this circle the following holds

1

Nt D t C hz; Nbi
R2 � jzj2 � thNz; bi :

It is easy to verify that the denominator of this function does not vanish at 0 in G, so

the function
1

Nt satisfies Lemma 4.2.3 for all points z 2 B and for all complex lines l.

Example 4.2.2 Let wj D Lj.z/

L.z/
; j D 1; : : : ; n, where Lj.z/; L.z/ are the linear

functions, and zeros of L.z/ do not intersect the closure of the ball, then, with this
mapping, the image of the ball B (provided it is biholomorphic on the closure of the
ball B) is a bounded domain, for which Theorem 4.2.1 is valid. Indeed, it is easy to
verify that all intersections of this domain with complex lines are circles.

Example 4.2.3 Let D be a complete circular domain with respect to all points
z 2 � , then Theorem 4.2.1 is true for it.

Lemma 4.2.3 shows that for Theorem 4.2.1 to be true it is sufficient that the

function
1

Nt in the sections be holomorphically continued from the boundary of the

section into the cross section itself.

Theorem 4.2.2 ([52]) Let � be the germ of a generic manifold in D, and the
function f 2 C .@D/ has the one-dimensional holomorphic extension property along

almost all complex lines l 2 L� and the function
1

Nt holomorphically extends from

@D \ l into D \ l on the connected components of the intersection D \ l, then there
exists a function Mf 2 C .D/ is holomorphic in D and coincides with the function f
on the boundary @D.

We seek to answer the question: What domains (other than circles) in the
complex plane have such a property.

Example 4.2.4 In the complex plane C consider an open set

ft 2 C W RjtjkC1 < jP.t/jg; 0 < R < 1; (4.2.5)

where P.t/ is the polynomial of degree k and P.0/ ¤ 0.
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Obviously, this set is bounded and contains a neighborhood of zero. Denote
the connected component containing 0 by G. By Sard’s theorem, for almost all R,
0 < R < 1, the boundary of G consists of a finite number of smooth curves.

For sufficiently small R the domain G is obtained from some domain after the
neighborhoods of zero of the polynomial P have been deleted. If R is sufficiently
large then G is a simply connected neighborhood of zero. Consider the boundary
of G:

S D ft 2 C W RjtjkC1 D jP.t/jg D ft 2 C W R2tkC1NtkC1 D P.t/P.t/g:

Denote w D 1

Nt . Then on S we have the equality

R2tkC1

wkC1 D P.t/ QP
� 1

w

�
;

where QP.t/ D
kX

jD0
Najt

j; if P.t/ D
kX

jD0
ajt

j: Then

P.t/ D QP.Nt/ D QP
� 1

w

�
D 1

wk
Ps.w/;

where Ps.w/ D
kX

jD0
Najw

k�j. Then on S we have the equality

R2tkC1

wkC1 D P.t/Ps.w/
1

wk
:

Hence

R2tkC1 D P.t/wPs.w/;

i.e.,

wPs.w/ D R2tkC1

P.t/
: (4.2.6)

From the form of G we also find that in G

RjtjkC1

jP.t/j < 1: (4.2.7)

Consider the function � D '.w/ D wPs.w/, then ' 0.0/ D Ps.0/ ¤ 0, since
the polynomial P has the degree k. Therefore, the function ' is a conformal map of
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some neighborhood of zero Uw on the neighborhood of zero V� . Therefore, there is
an inverse function w D '�1.�/ W V� ! Uw. From equality (4.2.6) we have

w D '�1
�

R2tkC1

P.t/

�
on S:

Since, by virtue of inequality (4.2.7)

R

ˇ
ˇ
ˇ
ˇ
RtkC1

P.t/

ˇ
ˇ
ˇ
ˇ < R in G;

then, for sufficiently small R, the point
R2tkC1

P.t/
is in Uw and the denominator P.t/ ¤

0 in G. Therefore, the function w D '�1
�

R2tkC1

P.t/

�
is holomorphic in G. Thus

w D 1

Nt extends holomorphically to G. Hence, the following assertion is true.

Lemma 4.2.5 For a domain G of the form (4.2.5) for sufficiently small R the

function
1

Nt extends holomorphically from the boundary @G into G.

Consider a moved domain

Ga D ft 2 C W Rjt C ajkC1 < jP1.t/jg; (4.2.8)

where P1.t/ D P.t C a/. Then on Sa D @Ga we have the equality

R2.t C a/kC1.Nt C Na/kC1 D P1.t/P1.t/

and if Nt D 1

w
, then

R2.t C a/kC1.1C Naw/kC1 D P1.t/wPs
1.w/:

The function � D  .w/ D wPs
1.w/

.1C Naw/kC1 maps conformally the neighborhood of

zero Uw onto the neighborhood of zero V� , therefore, as above, the function

w D  �1.�/ D  �1
�

R2.t C a/kC1

P1.t/

�

extends holomorphically to Ga for sufficiently small R.

Lemma 4.2.6 For a domain Ga of the form (4.2.8) for sufficiently small R the func-

tion
1

Nt extends holomorphically from the boundary @G into G.
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It is easy to give examples of domains in the complex plane, for which
Lemma 4.2.3 is not satisfied. An ordinary ellipse

G D
�

t D x C iy 2 C W x2

a2
C y2

b2
< 1

	
; a; b > 0; a ¤ b

is one of such domains. It is not difficult to show that from the ellipse boundary
equation we obtain

w D 1

Nt D t.a2 C b2/˙ 2ab
p

z2 � a2 C b2

4a2b2 � z2.b2 � a2/
:

This function has two singular points (branch points) in the ellipse G and two poles
outside G. Furthermore

1

2�i

Z

@G

dt
Nt D �

ˇ
ˇ
ˇ̌ a � b

a C b

ˇ
ˇ
ˇ̌ ¤ 0:

Consider a domain in Cn of the form

D D fz 2 C
n W RjzjkC1 < jP.z/jg; 0 < R < 1; (4.2.9)

where P.z/ is the k-degree polynomial and P.0/ ¤ 0.
It is clear that this domain is bounded and contains a neighborhood of zero and

the boundary D is smooth for almost all R. Intersections of this domain with the
complex lines l D f� W �1 D b1t; : : : ; �n D bntg form domains of the form (4.2.5),
while intersections of the domain as in (4.2.9) with the lines

l D f� W �1 D z1 C b1t; : : : ; �n D zn C bntg

can be reduced to domains of the form (4.2.8) so by Theorem 4.2.2 and Lem-
mas 4.2.5 and 4.2.6 we obtain the assertion.

Corollary 4.2.1 Let � be the germ of a generic manifold in D of the form (4.2.9)
(R is sufficiently small), 0 2 � and the function f 2 .@D/ has the one-dimensional
holomorphic extension property along almost all complex lines l 2 L� , then there
exists a function Mf 2 C .D/, that is holomorphic in D and coincides with the
function f on the boundary @D.
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4.3 Sufficient Families of Complex Lines of Minimal
Dimension

4.3.1 Preliminary Results

Consider a bounded simply connected domain D � C
n with a connected boundary

@D of class C 2. Let � be the germ of a complex manifold of dimension .n � 1/

in C
n, which lies outside D. Having done the shift and unitary transformation,

we can assume that 0 2 � , 0 … D and that the complex hypersurface � in some
neighborhood U of 0 has the form

� D fz 2 U W zn D '.z0/; z0 D .z1; : : : ; zn�1/g;

where ' is the holomorphic function in a neighborhood of zero in Cn�1 and

'.0/ D 0,
@'

@zk
.0/ D 0, k D 1; : : : ; n � 1.

Further on we will assume that there is a direction b0 ¤ 0 such that

hb0; N�i ¤ 0 for all � 2 D: (4.3.1)

Let L� denote a set of complex lines of the form

l D f� 2 C
n W �j D zj C bjt; j D 1; : : : ; n; t 2 Cg; (4.3.2)

passing through the point z 2 � in the direction of b 2 CP
n�1.

By Sard’s theorem, the intersection @D \ l is a finite set of piecewise smooth
curves for almost all z 2 Cn and almost all b 2 CP

n�1 (excluding the degenerate
case when @D\l D ¿). Consider the Bochner–Martinelli integral of the form (1.2.4)
of the function f :

Mf .z/ D
Z

@D
f .�/U.�; z/; z … @D;

where U.�; z/ is the Bochner–Martinelli kernel of the form (1.1.1).
From Lemma 4.1.1 we obtain the assertion.

Proposition 4.3.1 If a function f 2 C .@D/ has the one-dimensional holomorphic
extension property along the complex lines of the family L� , then for any multi-
indices ˛ the following holds

Mf
ˇ̌
�
D 0;

@˛Mf

@z˛

ˇ̌
ˇ
�
D 0 (4.3.3)
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Consider a kernel of the form

UC.�; z;w/ D .n � 1/Š
.2�i/n

nX

kD1
.�1/k�1 N�k � wk

� nP

jD1
.�j � zj/. N�j � wj/

�n
d N�Œk� ^ d�

and the integral

ˆf .z;w/ D
Z

@D�

f .�/UC.�; z;w/: (4.3.4)

It is clear, that the function ˆf .z;w/ is holomorphic in a neighborhood of .0; 0/ 2
C2n because 0 … D.

Lemma 4.3.1 Suppose D is simply connected and satisfies (4.3.1), then there is
an unbounded open and connected set � � C2n, .0; 0/ 2 �, in which the function
ˆf .z;w/ is defined and holomorphic, and there are " > 0, R > 0 such that points of
the form .tb;w/ belong to � at jwj < ", jb � b0j < " and jtj > R (t 2 C/.

Proof Consider the denominator of the kernel UC.�; tb0;w/:

 D h� � tb0; N� � wi D j�j2 � h�;wi � thb0; N�i C thb0;wi:

Find conditions under which  ¤ 0. Let

max
D

j�j D M; min
D

j�j D m > 0; min
D

jhb0; N�ij D c > 0:

Then for jwj < " we obtain that

jhb0;wij � jb0j jwj � "jb0j; jh�;wij � M":

Equating  to zero, we obtain

t D j�j2 � h�;wi
hb0; N�i � hb0;wi : (4.3.5)

We estimate the numerator in (4.3.5) for � 2 D

jj�j2 � h�;wij � j�j2 � jh�;wij � m2 � M" > 0

at " <
m2

M
. Now estimate the denominator in (4.3.5) for � 2 D

jhb0; N�i � hb0;wij � jhb0; N�ij � jhb0;wij � c � jb0j" > 0
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at " <
c

jb0j . Thus, if jwj � " (where " satisfies both inequalities) the image D under

the mapping

j�j2 � h�;wi
hb0; N�i � hb0;wi

is some compact Kb0;" in the complex plane C, not containing the point 0. Since
D is simply connected, then the complement Kb0;" is connected, i.e., 0 lies in the
unbounded component of the complement.

Therefore, when t … Kb0;" the function ¤ 0. In particular, this is true for t D 0,
jwj � " and jtj > R, where R is sufficiently large. It is clear that for all b with
jb � b0j < " this argument remains valid, reducing, if necessary, ". So, the existence
of the domain� is ensured. ut

From Lemma 4.3.1 and the kernel form UC.�; z;w/ it follows that the function
ˆf .z;w/ and all its derivatives tend to zero as jzj ! 1; jwj ! 1 and .z;w/ 2 ˝ .

Note that ˆf .z; Nz/ D Mf .z/ and
@˛ˆf

@z˛

ˇ
ˇ
ˇ
ˇ
wDNz

D @˛Mf

@z˛
. We introduce the differential

operator in C2n

�C D �C.z;w/ D
nX

kD1

@2

@zk@wk
:

When w D Nz we obtain the Laplace operator � D
nX

kD1

@2

@zk@Nzk
. Let �C denote a

complex manifold in C2n of the form

�C D f.z;w/ 2 U � U W zn D '.z0/; wn D '. Nw0/g:

Choosing U sufficiently small, we can assume that the function ˆf .z;w/ is defined
and holomorphic in U � U. When w D Nz we get �C D � or �C

ˇ
ˇ
wDNzD � .

Proposition 4.3.2 If equalities (4.3.3) are satisfies for the function Mf .z/, so are
the equalities

ˆf
ˇ
ˇ
�C

D 0;
@˛ˆf

@z˛

ˇ
ˇ
ˇ
ˇ
�C

D 0 (4.3.6)

for the function ˆf .z;w/ and for all multi-indices ˛.

Proof The manifold G D f.z;w/ 2 C2n W w D Nzg is a generic in C2n, i.e., the
complex linear span of the tangent space Tz.G/ coincides with the tangent space
Tz.C

2n/ for each point .z;w/ 2 G . Indeed, writing G in the form

f.z;w/ W Re.zj � wj/ D 0; Re.i.zj C wj// D 0; j D 1; : : : ; ng
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and making a nonsingular complex linear transformation Qzj D zj�wj, Qwj D i.zjCwj/,
j D 1; : : : ; n, the manifold G can be rewritten as

G D f.Qz; Qw/ W Re Qzj D 0; Re Qwj D 0; j D 1; : : : ; ng:

So G is, obviously, a generic in C2n in the new coordinates. Since the generatedness
property is not affected by holomorphic transformations, then G is a generic in the
old coordinates as well.

Then, obviously, the submanifold f.z;w/ 2 M W zn D 0; wn D 0g is a generic in
the manifold f.z;w/ 2 C2n W zn D 0; wn D 0g. Hence the manifold � , written as

f.z;w/ 2 M \ .U � U/ W zn D '.z0/; wn D '. Nw0/g

is a generic in �C. Here again we use the statement that the generatedness property
does not change under holomorphic transformations.

To prove the proposition, it remains to use the statement that the generic manifold
is a uniqueness set for holomorphic functions [67]. ut
Lemma 4.3.2 The kernel UC.�; z;w/ satisfies the condition

�C.z;w/UC.�; z;w/ D 0

outside the zeros of the denominator of this kernel.

Proof It suffices to verify this equality for functions of the form

1
� nP

jD1
.�j � zj/. N�j � wj/

�n�1 :

Since

@

@wk

 
1

� nP

jD1
.�j � zj/. N�j � wj/

�n�1

!

D .n � 1/.�k � zk/
� nP

jD1
.�j � zj/. N�j � wj/

�n
;

then

@2

@zk@wk

 
1

� nP

jD1
.�j � zj/. N�j � wj/

�n�1

!

D @

@zk

 
.n � 1/.�k � zk/

� nP

jD1
.�j � zj/. N�j � wj/

�n

!

D .1 � n/�
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�

� nP

jD1
.�j � zj/. N�j � wj/

�n � n.�k � zk/. N�k � wk/
� nP

jD1
.�j � zj/. N�j � wj/

�n�1

� nP

jD1
.�j � zj/. N�j � wj/

�2n

D
.1 � n/

� nP

jD1
.�j � zj/. N�j � wj/� n.�k � zk/. N�k � wk/

�

� nP

jD1
.�j � zj/. N�j � wj/

�nC1 :

And hence,

�C

 
1

� nP

jD1
.�j � zj/. N�j � wj/

�n�1

!

D
.1 � n/n

� nP

jD1
.�j � zj/. N�j � wj/�

nP

kD1
.�k � zk/. N�k � wk/

�

� nP

jD1
.�j � zj/. N�j � wj/

�nC1 D 0:

ut
Lemma 4.3.3 The function ˆf .z;w/ satisfies �Cˆf .z;w/ D 0 in its domain of
definition.

Lemma 4.3.4 The relation

�C.hg/ D h�Cg C g�Ch C
nX

kD1

@h

@zk

@g

@wk
C

nX

kD1

@h

@wk

@g

@zk

holds true for holomorphic functions h and g in C2n.

We make a holomorphic change of the variables in the neighborhood of the point
.0; 0/ 2 C2n:

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

z1 D u1

. . . . . . .

zn�1 D un�1
zn D un C '.u0/

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

w1 D v1

. . . . . . . .

wn�1 D vn�1
wn D vn C '. Nv0/:
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Let U� be the image of the neighborhood U under this change. A reverse change of
the variables looks as follows:

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

u1 D z1

. . . . . . .

un�1 D zn�1
un D zn � '.z0/

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

v1 D w1

. . . . . . . .

vn�1 D wn�1
vn D wn � '. Nw0/:

Then under this change, �C will become part of the plane

��
C

D f.u; v/ 2 U� � U� W un D 0; vn D 0g:

And the plane ��
C

will become part of the hyperplane

�� D fu 2 U� W un D 0g

at v D Nu.

Lemma 4.3.5 Let ˆ�.u; v/ D ˆf
�
z.u/;w.v/

�
. Equality (4.3.6) can be rewritten as

ˆ� ˇ̌
��

C

D 0; (4.3.7)

@˛ˆ�

@u˛

ˇ̌
ˇ
ˇ
��

C

D 0; (4.3.8)

@˛Cˇ0

ˆ�

@u˛@vˇ0

ˇ̌
ˇ
ˇ
��

C

D 0 (4.3.9)

for all multi-indices ˛ and multi-indices ˇ0 of the form ˇ0 D .ˇ1; : : : ; ˇn�1; 0/.

Proof Equality (4.3.7) is obvious. Since the derivatives of ˆ� in the variables uj,
j D 1; : : : ; n, are expressed only in terms of the derivatives of the function ˆf
by zk, k D 1; : : : ; n, equality (4.3.8) follows from (4.3.6). We obtain (4.3.9) from
Eqs. (4.3.7), (4.3.8) and the type of the plane ��

C
. ut

Consider expansion of the function ˆ�.u; v/ in a Taylor series in the variable vn

at vn D 0

ˆ�.u; v/ D
1X

kD0

1

kŠ

@kˆ�.u; v0; 0/
@vk

n

vk
n: (4.3.10)

Lemma 4.3.6 Let conditions (4.3.7)–(4.3.9) be satisfied for the function ˆ�.u; v/,
then the coefficientˆ�.u; v0; 0/ D 0 in the series (4.3.10) and, therefore,

ˆ�.u; v/ D vn‰.u; v/:
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Proof We expand the function ˆ�.u; v/ in a Taylor series in the neighborhood of
.0; 0/ in the variables u and v:

ˆ�.u; v/ D
X

k˛k�0; kˇk�0
c˛;ˇu˛vˇ;

where u˛ D u˛11 � � � u˛n
n , vˇ D v

ˇ1
1 � � �vˇn

n .
We show that in this series there are no monomials of the form c˛;ˇ0 u˛vˇ

0

, where
ˇ0 D .ˇ1; : : : ; ˇn�1; 0/. Indeed, if c˛;ˇ0 ¤ 0, then applying the differential operator
@˛Cˇ0

@u˛@vˇ0

to the function ˆ�.u; v/ and substituting un D 0, vn D 0, we obtain

a power series in the variables u0, v0 with a non-zero free term. This contradicts
equalities (4.3.7)–(4.3.9). ut

4.3.2 Sufficient Families Associated with a Complex
Hypersurface

Theorem 4.3.1 ([55]) If the function ˆf .z;w/ satisfies the conditions (4.3.6), then
ˆf .z;w/ 	 0 in the neighborhood of .0; 0/.

Proof We go back from .u; v/ to the old variables z and w. By Lemma 4.3.6 we
obtain the expansion

ˆf .z;w/ D
nX

kD1

1

kŠ

@kˆ�

@vk
n

.u; v0; 0/vk
n

D
nX

kD1

1

kŠ

�
wn � '. Nw0/

�k @
kˆf

@wk
n

�
z;w0; '. Nw0/

�
; (4.3.11)

since
@ˆ�

@vn
D @ˆf

@wn
. We apply the operator�C to equality (4.3.11), and obtain

0 D
1X

kD1

1

kŠ
�C


�
wn � '. Nw0/

�k @
kˆ

@wk
n

�
z;w0; '. Nw0/

��
:

Next we regroup the resulting series with respect to the powers
�
wn � '. Nw0/

�k
, and

obtain

0 D
1X

kD0

�
wn � '. Nw0/

�k
ck.z;w

0/:
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All the coefficients ck.z;w0/ 	 0 by the uniqueness of decomposition in this series,
which follows from the uniqueness property of decomposition of the power series
in vn obtained in the new variables u; v.

We compute successively �C from
�
wn � '. Nw0/

�k @
kˆf

@wk
n

, for k D 1. By

Lemma 4.3.4 we have

�C


�
wn � '. Nw0/

� @ˆf

@wn

�
z;w0; '. Nw0/

��

D �
wn � '. Nw0/

�
�C

�
@ˆf

@wn

�
C @

@zn

�
@ˆf

@wn

�
�

n�1X

kD1

@ N'
@wk

@

@zk

�
@ˆf

@wn

�
:

Hence

c0.z;w
0/ D

 
@

@zn
�

n�1X

kD1

@ N'
@wk

@

@zk

!�
@ˆf

@wn

�
	 0: (4.3.12)

Thus, for fixed w0 the derivatives of the function
@ˆf

@wn

�
z;w0; '. Nw0/

�
in the

direction of the vector s D
�

� @ N'
@w1

; : : : ;� @ N'
@wn�1

; 1

�
are identically equal to zero.

We fix a point
�
z0;w00; '. Nw00/

�
in the domain � from Lemma 4.3.1 such that the

complex line

n
z W zj D z0j � @ N'

@wj
t; j D 1; : : : ; n � 1; zn D z0n C t; t 2 C

o

does not intersect D for sufficiently small jwj. This can be achieved by taking jz0j
large enough (see Lemma 4.3.1).

By Eq. (4.3.12) on the complex line

lz0;s D
n�

z;w00; '. Nw00/
� 2 C

n � U W zj D z0j � @ N'
@wj

t; j D 1; : : : ; n � 1;

zn D z0n C t; t 2 C

o

the derivative
@

@s

�
@ˆf

@wn

�
D d

dt

�
@ˆf

@wn

�
D 0 for sufficiently small jtj. The domain

� was chosen in Lemma 4.3.1 so that the function ˆf .z;w/ is holomorphic in �,
i.e., the denominator of the kernel UC.�; z;w/ remains nonzero for all � 2 D and all
.z;w/ 2 �.
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Consider this denominator on the line lz0;s. We have

n�1X

jD1
.�j � zj/. N�j � w0j /C .�n � zn/. N�n � '. Nw00//

D
n�1X

jD1
.�j � z0j /. N�j � w0j /C .�n � z0n/. N�n � '. Nw00//

C t

0

@ N�n � '. Nw00/�
n�1X

jD1

@ N'
@wj

. N�j � w0j /

1

A :

The expression

n�1X

jD1
.�j � z0j /. N�j � w0j /C .�n � z0n/. N�n � '. Nw00// ¤ 0

for all � 2 D. So the values of the expression on the complex plane form a compact
set not containing 0 at � 2 D and w0 from a compact neighborhood of the point
0 2 Cn. We can assume (making shift in z), that z0 D 0.

For z0 D 0, w00 D 0 the expression

t

0

@ N�n � '. Nw00/�
n�1X

jD1

@ N'
@wj

. N�j � w0j /

1

A D t N�n:

Since N�n ¤ 0 on D, then the values of the expression

N�n � '. Nw00/ �
n�1X

jD1

@ N'
@wj

. N�j � w0j /

in the complex plane C also form a compact set not containing 0 for � 2 D and z,
w0 from a compact neighborhood of .0; 0/. Therefore, the denominator of the kernel
UC.�; z;w/ on the line lz0;s can only become zero for the t, lying on a compact of the
complex plane that does not contain zero. Thus, the denominator is not zero outside
this compact, and hence the function ˆf .z;w/ is holomorphic in the complex line
lz0;s except for some compact set Kz0;s not containing zero. Since the addition of this
compact is connected, then .0; 0/ lies in the unbounded component of a holomorphy
set ˆf .z;w0; 0/ for all z and w0 in some neighborhood of .0; 0/.



146 4 Functions with the One-Dimensional Holomorphic Extension Property

Hence
d

dt

�
@ˆf

@wn

�
D 0 in C n Kz0;s. So

@ˆf

@wn

ˇ
ˇ
ˇ
CnKz0;s

D const. From (4.3.4) of

the function ˆf .z;w/ we get that ˆf
ˇ̌
CnKz0;s

! 0 and
@ˆf

@wn

ˇ̌
ˇ
CnKz0;s

! 0 as jtj ! 1.

Therefore
@ˆf

@wn

ˇ
ˇ
ˇ
CnKz0;s

D 0, and so we obtain that
@ˆf

@wn

ˇ
ˇ
ˇ
CnKz0;s

	 0 for all z0 and

w0 in some neighborhood of 0. From Lemma 4.3.1 we find that the derivative
@ˆf

@wn
.z;w0; 0/ D 0 in the unbounded component of its domain of definition.

Therefore, series (4.3.11) begins with k D 2. Applying the same argument to

the expression�C


�
wn � '.w0/

�2 @2ˆf

@w2n

�
, we get that

@2ˆf

@w2n

ˇ
ˇ
ˇ
CnKz0;s

	 0 etc. ut

Corollary 4.3.1 Let the function Mf .z/ satisfy conditions (4.3.3), then Mf .z/ 	 0

in a neighborhood of zero.

Theorem 4.3.2 ([55]) Let the function f 2 C .@D/ and conditions (4.3.3) be
satisfied for its Bochner–Martinelli integral Mf .z/, then f extends holomorphically
to the domain D.

Proof follows from Corollary 4.3.1 and Corollary 15.5 from [45]. ut
Theorem 4.3.3 ([55]) Let D be a simply connected bounded domain and condition
(4.3.1) be fulfilled. If the function f 2 C .@D/ and has the one-dimensional
holomorphic extension property along the complex lines of the family L� , then f
extends holomorphically into the domain D.

Proof follows from Proposition 4.3.1 and Theorem 4.3.2. ut
If � is the germ of a complex hypersurface in Cn, then condition (4.3.1) becomes

superfluous. Indeed, let Q� be a complex hypersurface (a complex manifold of
dimension .n � 1/) in Cn and � D Q� \ U. The surface Q� is a connected unbounded
set in Cn. Still, � does not intersect D, whereas Q� can intersect D. Then Q� \ D is a
relatively compact open set on Q� . Let Q� n . Q� \ D/ be connected.

We assume that f 2 C .@D/ has the one-dimensional property of holomorphic
extension along the complex lines l 2 L� , then Proposition 4.3.1 is true for the
Bochner–Martinelli integral F, i.e., equality (4.3.3). Due to the integral being real-
analytic, this condition is fulfilled on the whole set Q� n . Q� \ D/. Since the set is
unbounded, there exist a point z0 2 Q� and a direction b0 such that hb0; N� � Nz0i ¤ 0

for all � 2 D. Thus we come to our original terms for the domain D and the germ Q�
already in the neighborhood of the point z0. Thus, the assertion is true

Theorem 4.3.4 ([55]) Let D be a simply connected bounded domain with a con-
nected smooth boundary, and Q� be a complex hypersurface in Cn, provided the set
Q� n . Q� \ D/ is connected and � D Q� \ U does not intersect D. If the function
f 2 C .@D/ and has the one-dimensional holomorphic extension property along the
complex lines of the family L� , then f extends holomorphically into the domain D.
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Theorems 4.3.3 and 4.3.4, generally speaking, are not true for complex hypersur-
faces, lying in a domain. See Example 18.2.

4.3.3 Sufficient Families on a Generic Manifold, Laying
on the Complex Hypersurface

Let � � � , 0 2 � and � be a generic manifold of class C1 in � , i.e., the complex
linear span of the tangent space Tz.�/ coincides with the tangent space Tz.�/ for
every point z 2 � . Note that the real dimension of � is at least .n � 1/. We use L�
to denote a set of complex lines intersecting � .

Theorem 4.3.5 ([55]) Let D and � satisfy the conditions of Theorem 4.3.3 or
Theorem 4.3.4. If the function f 2 C .@D/ and has the one-dimensional holomorphic
extension property along the complex lines of the family L� , then f extends
holomorphically into the domain D.

Proof Let Mf .z/ be an integral of the form (1.2.4), then, by Lemma 4.1.1 the
equalities

Mf .z/ D 0;
@˛Mf

@z˛
.z/ D 0 (4.3.13)

hold for all z 2 � and all multi-indices ˛. Again making the change of variables

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

z1 D u1

. . . . . . .

zn�1 D un�1
zn D un C '.u0/

we get that � goes into �� D fu 2 Cn W un D 0g and � goes into the generic
manifold �� � ��. Since the u-derivatives are expressed in terms of the derivatives
of the same order with respect to z, then from condition (4.3.13) we obtain

F�.u/ D 0;
@˛F�

@u˛
.u/ D 0; u 2 ��;

where F� D Mf .z.u//.

We apply Lemma 4.2.1 to the functions F�.u0; 0/ and
@˛n F�

@u˛n
.u0; 0/. These are

equal to zero on ��. We get
@˛F�

@u˛
.u/ D 0 on ��. Making inverse change in these

equations, we find that for the function Mf conditions (4.3.13) are fulfilled for z 2 � .
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To complete the proof of Theorem 4.3.5, it remains to apply Theorem 4.3.3 or
Theorem 4.3.4. ut

Consider the germ � of a real-analytic manifold of real dimension .n � 1/ in
Cn n D. We can assume that 0 2 � , and the manifold � in some neighborhood U of
the point 0 has the form

� D fz 2 U W zj D  j.t1; : : : ; tn�1/; t D .t1; : : : ; tn�1/ 2 V; j D 1; : : : ; ng:
(4.3.14)

The functions  j.t/ are real-analytic functions in the neighborhood V of the point
0 2 Rn�1,  j.0/ D 0, j D 1; : : : ; n, and the rank of the Jacobian matrix is equal to
.n � 1/, i.e.,

rang
@. 1; : : : ;  n/

@.t1; : : : ; tn�1/
D n � 1: (4.3.15)

The functions  j.t/ in the neighborhood V can be expanded in a Taylor series

 j.t/ D
X

kˇk�0
cˇtˇ; j D 1; : : : ; n;

where ˇ D .ˇ1; : : : ; ˇn�1/, tˇ D tˇ11 � � � tˇn�1

n�1 .
Consider the complexification � of the manifold � , then � has the form

� D fz 2 U W zj D Q j.t1; : : : ; tn�1/; t D .t1; : : : ; tn�1/ 2 C
n�1; j D 1; : : : ; ng;

where Q j.t/ D P

kˇk�0
cˇtˇ , t 2 Cn�1, j D 1; : : : ; n. Condition (4.3.15) shows that �

is a complex analytic manifold of dimension .n � 1/ in U. Let us show that � is a
generic manifold in � . Indeed, the tangent plane Tz0 .�/ at the point z0 2 � has the
form

Tz0 .�/ D
n
z 2 C

n W zj D z0j C
n�1X

kD1

@ j

@tk
.t0/.tk � t0k/; t 2 R

n�1; j D 1; : : : ; n
o
;

where  j.t0/ D z0j , j D 1; : : : ; n. Consider the complex linear span of Tz0 .�/,
obviously having the form

n
z 2 C

n W zj D z0j C
n�1X

kD1

@ Q j

@tk
.t0/.tk � t0k/; t 2 C

n�1; j D 1; : : : ; n
o
:

This set is exactly Tz0.�/. Therefore, � is a generic manifold in � .
We will also continue assuming that the domain D satisfies Condition (4.3.1).



4.4 Functions with the One-Dimensional Holomorphic Extension Property in. . . 149

Corollary 4.3.2 Let the function f 2 C .@D/ and has the one-dimensional holo-
morphic extension property along the complex lines of the family L� , where � is the
germ of a real-analytic manifold of the form (4.3.14). Then the function f extends
holomorphically to D.

Consider a complex line l0, passing through zero and intersecting the domain D.
Assume that � is a generic manifold in l0.

Theorem 4.3.6 ([55]) Let the domain D � Cn be a strictly convex with a boundary
of class C1 and let the function f 2 C1.@D/ has the one-dimensional holomorphic
extension property along the complex lines of the family L� . Then f extends
holomorphically to the domain D.

Proof Consider a complex two-dimensional plane …�0 , containing l0 and passing
through the point �0 2 @D. The intersection D \ …�0 is a strictly convex domain
in C2 with a boundary of class C1. The conditions of Theorem 4.3.5 are fulfilled
for the domain D \…�0 , so the function f extends holomorphically to @D \…�0 in
D \ …�0 up to the function Mf .z/. This function is uniquely defined in D, since
the intersection of two different planes …�0 and …w0 coincides with l0. And a
continuation from @D \ l0 to D \ l0 is given by the Cauchy integral. Moreover, the
function Mf .z/ is a function of class C1 in the domain D, since its holomorphic
extension from @D \ …�0 is given by the Bochner–Martinelli integral infinitely
smoothly dependent on the parameter.

We choose a point z0 2 D \ l0, then the function Mf .z/ is holomorphic in D \ l,
where l is an arbitrary complex line passing through the point z0. Because the lines l
and l0 define a two-dimensional plane…, the function Mf .z/ is holomorphic in D \
…. By the Forelli Theorem [71, Theorem 4.4.5] the function Mf .z/ is holomorphic in
some neighborhood z0. And, therefore, by Hartogs’ extension theorem [73, Item 26]
the function Mf .z/ is holomorphic in D. ut

4.4 Functions with the One-Dimensional Holomorphic
Extension Property in a Ball

Historically, the first statements about the functions with the one-dimensional
holomorphic extension property along the complex lines were obtained in a ball
by Agranovskii and Val’sky [4]. In the proof of their assertion, they used only the
Morera property along complex lines intersecting the ball. So, in fact, they obtained
a boundary Morera theorem. The ball thus became a model example, to obtain a
series of statements, which were then extended to the case of domains of a more
general form.

A number of papers dealt with classes of complex lines (or curves), sufficient
for holomorphic extension into a ball. Thus, in the monograph by Rudin [71,
Theorem 12.3.11] it is shown that if a function f 2 C .@B/ (B is a unit ball in Cn

centered at the origin) has the one-dimensional holomorphic extension property
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along all complex lines that are lying at a distance r from the center of the ball for
0 < r < 1, then this is a CR-function on @B. The proof is based on the description
of U -invariant subspaces of functions in the ball. This statement was generalized to
strictly convex domains with a real-analytic boundary by Agranovskii [5].

Finer families of complex lines sufficient for holomorphic continuation, were
studied in [22, 72]. In [23] Globevnik shows that a two-dimensional compact
manifold of complex lines is a sufficient family for holomorphic extension into C2.

Agranovskii and Semenov in [3] prove the following result. Let R be a smooth
analytic disk in Cn, i.e., R D '.4/, where 4 is an open unit disk in the complex
plane C, and ' W 4 ! Cn is a holomorphic map of class C 1.4/. Denote the Shilov
boundary of R by � , i.e., � D '.@4/. We put

� D
[

u2U .n/

u.�/;

where U .n/ is the group of unitary transformations in Cn. The set � is a spherical
layer

� D
�
� W min

z2� jzj � j�j � max
z2� jzj

	
:

Theorem 4.4.1 (Agranovskii and Semenov [3]) Assume the following conditions
to be fulfilled:

1. 0 … R [ � ;
2. � is not contained in any complex line in Cn, passing through 0.

Let f 2 C 1.�/ and for any u 2 U .n/ the restriction f on u.�/ admits a
holomorphic extension to u.R/, which is smooth on u.R/. Then f is holomorphic
into � (and therefore extends holomorphically in the corresponding ball).

As noted in [3], if we require that the set R be symmetric relative to the mapping
z ! Nz, then Theorem 4.4.1 remains valid for continuous functions f . Thus it
generalizes the already-mentioned Rudin theorem from [71]. The theorem fails
without the above condition (2).

As already noted, Grinberg [29] was the first to formulate the boundary Morera
theorem for a ball (in the case of complex lines), although one of the assertions by
Nagel and Rudin [66] (see [71, Item 13.4]) can also be treated as a boundary Morera
theorem.

We present one of the theorems of [26], in which the class of complex lines is
significantly narrowed.

Theorem 4.4.2 (Globevnik and Stout [26]) Consider a unit ball B � C2. Suppose
that the given number r, 0 < r < 1, is such that the expression r�1.1 � r2/1=2

is not a root of any polynomial with integer coefficients. Assume that the function
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f 2 C .@B/ and satisfies the Morera property along all complex lines lying at a
distance r from the center of the ball, then f extends to B as a function from A .B/.

Proof By Pp;q we denote the space of all homogeneous harmonic polynomials in
z; Nz, having the degree of homogeneity of p for z and q for Nz.

Let X � C .@B/ be a subspace of all continuous functions g such that the
condition

Z �

��
g.x C ei�y/ei�d� D 0

is fulfilled for each x 2 C2, jxj D r and each y 2 C2 such that .x; Ny/ D 0, jxj2 C
jyj2 D 1. This means that the function g satisfies the Morera property along complex
lines lying at a distance r from the center of the ball.

Then X is a closed unitary-invariant subspace in C .@B/ (i.e., invariant with
respect to unitary transformations.) Such a subspace was described by Nagel and
Rudin in [66] (see also [71, Chap. 12]).

In order to prove that g extends holomorphically to B, it is enough by the theorem
from [66], to prove that X does not contain any spaces Pp;q for q � 1. As the
function zpNzq is in Pp;q, it suffices to show that zpNzq does not belong to X for
p � 0; q � 1.

Any x 2 C2, provided jxj D r can be represented as

x D ei˛.�; .r2 � �2/1=2ei!/;

where 0 � � � r and ˛; ! 2 R. Then the vector y can be represented as

y D t..r2 � �2/1=2e�i!;��/

for t D r�1.1 � r2/1=2. Thus .x; Ny/ D 0 and jxj2 C jyj2 D 1. Let g.z; Nz/ D zm
1 Nzn
2,

where n > 1, and g 2 X . This implies

Z �

��
�
ei˛�C ei� t.r2 � �2/1=2e�i!

�m�

� �e�i˛.r2 � �2/1=2e�i! � e�i� t�
�n

ei�d� D 0 (4.4.1)

for each �, 0 � � � r and each ˛; ! 2 R.
Since

Z �

��
eik�d� D 0
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for k ¤ 0, then (4.4.1) yields

0 D
 

m

0

!

.ei˛�/m

 
n

1

!

.e�i˛.r2 � �2/1=2e�i!/n�1.t�/1.�1/1

C
 

m

1

!

.ei˛�/m�1Œt.r2 � �2/1=2e�i!�1

 
n

2

!

�

� .e�i˛.r2 � �2/1=2e�i!/n�2.t�/2.�1/2

C
 

m

2

!

.ei˛�/m�2Œt.r2 � �2/1=2e�i!�2

 
n

3

!

�

� .e�i˛.r2 � �2/1=2e�i!/n�3.t�/3.�1/3 C : : :

C

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
:

 
m

m

!

.ei˛�/m�mŒt.r2 � �2/1=2e�i!�m

 
n

m C 1

!

�

�.e�i˛.r2 � �2/1=2e�i!/n�.mC1/.t�/mC1.�1/mC1; if n � m C 1; 
m

n � 1

!

.ei˛�/m�.n�1/Œt.r2 � �2/1=2e�i!�n�1
 

n

n

!

�

�.e�i˛.r2 � �2/1=2e�i!/n�n.t�/n.�1/n; if n < m C 1:

After transformations have been performed, this relation becomes

0 D .r2 � �2/.n�1/=2.ei˛/m�nC1.e�i!/n�1�mC1�

�
" 

m

0

! 
n

1

!

t.�1/1 C
 

m

1

! 
n

2

!

t3.�1/2 C : : :

C

8
ˆ̂
ˆ̂<

ˆ̂
ˆ̂
:

 
m

m

! 
n

m C 1

!

t2mC1.�1/mC1
#

; if n � m C 1;

 
m

n � 1

! 
n

n

!

t2n�1.�1/n
#

; if n < m C 1:

The latter relation is impossible, since t D r�1.1 � r2/1=2 is not the root of any
polynomial with integer coefficients. ut
Example 4.4.1 Consider the example from [26], showing that the condition in

Theorem 4.4.2 is essential. Let r D
�3
5

�1=2
. Then the function g.z; Nz/ D z31Nz22 has

the Morera property along any complex line lying at a distance r from the center of
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the ball, but obviously, g does not extend holomorphically in B from the boundary
@B.

Indeed, the calculations in Theorem 4.4.2, show that

Z �

��
.ei˛�C ei� t.r2 � �2/1=2e�i!/3.e�i˛.r2 � �2/1=2e�i! � e�i� t�/2ei�d�

D 2�.r2 � �2/1=2.ei˛/1=2.e�i!/�3

" 
3

0

! 
2

1

!

t.�1/1 C
 
3

1

! 
2

2

!

t3.�1/2
#

D 2�.r2 � �2/1=2e2i˛e�i!�3.�2t C 3t3/ D 0;

since �2t C 3t3 D t

�
3
�
1 � 3

5

�5
3

� 2

�
D 0.

Recently Agranovskii [6] and Globevnik [25] have shown that a family of
complex lines passing through two fixed points in D is sufficient for holomorphic
extension for real-analytic functions on the boundary of a ball. A family of complex
lines passing through one point on the boundary of a ball was proved to be sufficient
for holomorphic extension by Baracco in [12].

Theorem 4.4.3 (Baracco) Let the point z0 2 @B, and the function f be of class
C !.@B/, and suppose that f extends holomorphically from @B along each line
passing through z0. Then f extends holomorphically to B.

Proof

(a) We first prove the result for a ball B in C2. Without loss of generality, we can
assume that z0 is the point .0; 1/. Disks passing through the point .0; 1/, can be
parameterized by parameter a 2 C as a set of the form

Da.�/ D
� � � 1
1C jaj2 a;

� � 1
1C jaj2 C 1

�
; � 2 4;

where 4 is a unit disk in C. We note that when jaj � 1 the disks Da become
close to the complex tangent line to the sphere at z0 and, moreover, Da lie in the
neighborhood of z0.

Since f 2 C !.@B/ and
@

@Nz2 is transversal to @B at z0, then f can be extended

holomorphically with respect to z2

�
Nz2 D z2

1 � jz1j2
�

to a neighborhood of z0.

We denote this extension again by f . Consider the expansion of f in a power
series at z0:

f .z1; Nz1; z2/ D
C1X

lD0

X

hCkC2mDl

bh;k;mzh
1Nzk
1.z2 � 1/m:
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Then we regroup the terms of the series on weighted degree (by assigning a
weight of 2 to the variable z2). Taking jaj large enough, we consider the N-
moment conditions for the disk Da:

0 D G.a;N/ D
Z

@4
�Nf .Da.�// d�

D
Z

@4
�N

C1X

lD0

X

hCkC2mDl

bh;k;m

�
� � 1
1C jaj2 a

�h�
� � 1
1C jaj2 a

�k�
� � 1
1C jaj2

�m

d�:

We want to prove that the coefficients bh;k;m D 0 for k > 0. For this we take the
smallest weighted degree l0 such that bh;k;m ¤ 0 for some k > 0, and let k0 be
the highest degree in Nz1 in this case. We get G.a;N/ D 0 for any N and any a,
in particular, for ta at jaj D 1 and t ! C1.

Using the fact that for k > N

Z

@4
�N.� � 1/h. N� � 1/k.� � 1/md� D

Z

@4
.�1/k .� � 1/hCkCm

� k�N
d�

D .�1/hCmCkCN�1
 

h C k C m

k � 1 � N

!

;

we consider the limit

lim
t!C1 G.ta;N/tl0 D lim

t!C1

C1X

lDl0

X

hCkC2mDl
k>N

2�i.�1/hCmCkCN�1�

�
 

h C k C m

k � N � 1

!

thCkClo ah Nak bh;k;m

.1C t2jaj2/hCkCm

D lim
t!C1

C1X

lDl0

X

hCkC2mDl
k>N

2�i.�1/hCmCkCN�1�

�
 

h C k C m

k � N � 1

!

ah Nak

�
1

t2
C jaj2

�m

tl0�l bh;k;m
� 1

t2
C jaj2

�l

D
X

hCkC2mDl0
k>N

2�i.�1/hCmCkCN�1
 

h C k C m

k � N � 1

!

bh;k;m
ah Nakjaj2m

jaj2l0
D 0:
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Now, choosing N D k0�1, we obtain the following relations for the coefficients
bh;k;m:

X

hCk0C2mDl0

.�1/hCm

 
h C k0 C m

1

!

bh;k0;mahCm Nak0Cm D 0:

Putting a D ei� , we obtain

X

hCk0C2mDl0

.�1/hCm

 
h C k0 C m

1

!

bh;k0;mei�.h�k0/ D 0;

which implies that bh;k0;m D 0 for h C k0 C 2m D l0. Therefore, we find that
bh;k;m D 0 for any weighted degree l when k � 1.

Thus, the series for f converges in the neighborhood of z0 and is a
holomorphic function in this neighborhood. By Hartogs’ extension theorem (see
[81, Sect. 15.6]) the function f is a holomorphic function in the ball B. This
completes the proof for dimension 2.

(b) Consider a ball B � Cn, n > 2. We assume that the point z0 D .0; : : : ; 0; 1/.
According to (a) above f is holomorphic in the section of the ball B of the
two-dimensional plane passing through 0 and z0. The various extensions glue
together to form a single function F.z/, defined in B because by Cauchy’s
formula for L0 \ @B these coincide in the complex line L0, passing through
0 and z0, where there is an overlap.

The function F is real-analytic in a ball since its extension into the ball
is given by, for example, the Bochner–Martinelli integral with the set of
integration at the intersection of a two-dimensional complex plane with the
ball B. This integral is a real-analytic function of the parameters. Making the
complex lines pass through the center of the ball we see that F is a holomorphic
function thereon (since we can construct a complex two-dimensional plane
through these lines and L0). Therefore, by Forelli’s theorem [71, Sect. 4.4] it
is holomorphic in B. ut

4.5 Boundary Analogue of the Forelli Theorem in a Strictly
Convex Domain

Here we generalize Theorem 4.4.3 for the case of a strictly convex domain.
In this section we prove the boundary analogue of the Forelli theorem for real-

analytic functions, that is, we show that any real-analytic function f defined on the
boundary of a bounded strictly convex domain D in a multidimensional complex
space and having the one-dimensional holomorphic extension property along a
family of complex lines passing through the boundary point and intersecting the
domain D, extends holomorphically to D as a function of several complex variables.
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4.5.1 The Multidimensional Case

Consider a strictly convex domain D � Cn. We recall that the domain D is called
strictly convex, if the function � .w1; : : : ;wn/, which defines the domain D, i.e.,

D D fw W � .w/ < 0g and grad � D
�
@�

@w1
; : : : ;

@�

@wn

�
¤ 0 on @D, satisfies the

condition

nX

p;jD1

@2�

@wp@wj

�
w0
�

p
j C

nX

p;jD1

@2�

@ Nwp@ Nwj

�
w0
� N
p

N
j

C 2

nX

p;jD1

@2�

@wp@ Nwj

�
w0
�

p

N
j > 0

for all 
 ¤ 0 and w0 2 D.
In what follows D is a bounded strictly convex domain in Cn .n > 1/ with a real-

analytic boundary, that is, the defining function � is real-analytic in a neighborhood
of the closure of D.

We denote a family of complex lines passing through w0, w0 2 @D, by Lw0 .

Theorem 4.5.1 ([41]) Let a function f 2 C w .@D/ have the one-dimensional
holomorphic extension property along all complex lines from Lw0 , intersecting D,
then the function f extends holomorphically into D.

Proof The proof of this result in the two-dimensional case will be given later in
the following subsections. Here we prove the result for the case n > 2, assuming
the statement to be true in the two-dimensional case.

Let 0 2 D. We will take two-dimensional sections of D passing through a
boundary point w0 and the point 0 lying in D. The function defining the boundary
of the two-dimensional section will satisfy the conditions of the theorem in the two-
dimensional case. Therefore, f will continue holomorphically in the interior of these
two-dimensional sections and this function will define the function F in D therein,
since by the assumption of the theorem, these functions coincide at the intersection
of these two-dimensional sections (i.e., on the complex lines). The union of these
two-dimensional sections coincides with the whole domain D. Thus, the function F
is uniquely defined in the whole domain D.

Since the holomorphic extension of f in two-dimensional sections is given
by the two-dimensional Bochner–Martinelli integral or Khenkin–Ramirez integral,
real-analytically dependent on the parameters, then the holomorphic extension of
the function f is a real-analytic function. Thus, the function F belongs to the class
C w in the domain D.

Since the two-dimensional section is defined by two complex lines, then the
function F, being holomorphic throughout the two-dimensional section, is also
holomorphic on complex lines lying in this section. Thus, the function F is
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holomorphic at the intersection of D with each complex line passing through the
point 0.

We adopt the conditions of Forelli’s theorem [71, Theorem 4.4.5], and applying
this theorem, we obtain that the function F is holomorphic in a neighborhood of 0.
Since the function F is holomorphic in a neighborhood of 0 and real-analytic in D,
then it is holomorphic in the whole domain D. ut

4.5.2 The Form of Sections of the Complex Line

In this section, we will describe the first step to the proof of Theorem 4.5.1 in the
two-dimensional case and will prove the assertion about the form of the section of
D � C

2 of the complex line.
We consider a two-dimensional complex space C2, whose points will be denoted

by w D .w1;w2/, z D .z1; z2/, etc. We make a shift to take the point w0 2 @D
to 0 and perform a unitary transformation of coordinates w D w .z/ so that in the
neighborhood of the boundary point 0 after switching from complex coordinates
to real ones, i.e., representing z1 D x1 C ix2, z2 D x3 C ix4, the boundary defining
function by the implicit function theorem, takes the form

x4 D ' .x1; x2; x3/ ; (4.5.1)

where the function ' is real-analytic in a neighborhood of zero and satisfies ' .0/ D
0,
@'

@xk
.0/ D 0, k D 1; 2; 3.

Expanding the function ' .x1; x2; x3/ in (4.5.1) in a Taylor series in the neighbor-
hood of the boundary point 0, by virtue of the conditions on ', we have

x4 D T .x1; x2; x3/C o
�ˇˇx0ˇˇ2�;

ˇ
ˇx0ˇˇ ! 0; x0 D .x1; x2; x3/ ; (4.5.2)

where

T .x1; x2; x3/ D c11x
2
1 C c22x

2
2 C c33x

2
3 C c12x1x2 C c13x1x3 C c23x2x3

is a positive definite quadratic form (due to the strict convexity of �).
Next, we consider the section Da .�/ of D

Da .�/ D
�

�

1C jaj2 a;
�

1C jaj2
�
; � 2 �a;

passing in the direction of the vector .a; 1/ 2 C2. The domain �a of the change in
the parameter � is a domain in the complex plane with a real-analytic boundary (in
the neighborhood of the boundary point 0).
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Let � D u C iv, a D a1 C ia2. Then

�

1C jaj2 a D .ua1 � va2/C i .ua2 C va1/

1C jaj2 ;

�

1C jaj2 D u C iv

1C jaj2 :

Thus,

x1 D ua1 � va2

1C jaj2 ; x2 D ua2 C va1

1C jaj2 ; x3 D u

1C jaj2 ; x4 D v

1C jaj2 :

We write an expression for the quadratic form T .x1; x2; x3/:

T .x1; x2; x3/ D c11x
2
1 C c22x

2
2 C c33x

2
3 C c12x1x2 C c13x1x3 C c23x2x3

D 1

.1C jaj2/2
h
c11
�
u2a21 � 2uva1a2 C v2a22

�C c22
�
u2a22 C 2uva1a2 C v2a21

�

C c33u
2 C c12

�
u2a1a2 C uva21 � uva22 � v2a1a2

�C c13
�
u2a1 � uva2

�

C c23
�
u2a2 C uva1

�i D 1

.1C jaj2/2
h
v2
�
c11a

2
2 C c22a

2
1 � c12a1a2

�

C v
��2c11ua1a2 C 2c22ua1a2 C c12ua21 � c12ua22 � c13ua2 C c23ua1

�

C �
c11u

2a21 C c22u
2a22 C c33u

2 C c12u
2a1a2 C c13u

2a1 C c23u
2a2
�i
:

By substituting the x4 from (4.5.1) and T .x1; x2; x3/ into Eq. (4.5.2) and reducing
the similar terms, we obtain

v2
�
c11a

2
2 C c22a

2
1 � c12a1a2

�C v
��2c11ua1a2 C 2c22ua1a2 C c12ua21 � c12ua22

� c13ua2 C c23ua1 � 1 � jaj2�C �
c11u

2a21 C c22u
2a22 C c33u

2 C c12u
2a1a2

C c13u
2a1 C c23u

2a2
�C o

�jaj2� D 0; jaj ! C1:

Choosing jaj to be large enough, and replacing a by ta, where jaj D 1, t 2 R, we
have

v2
�
c11a

2
2t
2 C c22a

2
1t
2 � c12a1a2t

2
�C v

��2c11ua1a2t
2 C 2c22ua1a2t

2 C c12ua21t
2

� c12ua22t
2 � c13ua2t C c23ua1t � 1� jaj2 t2

�C �
c11u

2a21t
2 C c22u

2a22t
2 C c33u

2

C c12u
2a1a2t

2 C c13u
2a1t C c23u

2a2t
�C o

�jtj2� D 0; t ! C1:
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Thus, dividing by t2 and passing over to the limit as t ! C1 in this expression, we
obtain

v2
�
c11a

2
2 C c22a

2
1 � c12a1a2

�

C v
�
�2c11ua1a2 C 2c22ua1a2 C c12ua21 � c12ua22 � jaj2

�

C �
c11u

2a21 C c22u
2a22 C c12u

2a1a2
� D 0;

i.e.,

u2
�
c11a

2
1 C c22a

2
2 C c12a1a2

�C 2uv
�
�c11a1a2 C c22a1a2 C c12

2
a21 � c12

2
a22
�

C v2
�
c11a

2
2 C c22a

2
1 � c12a1a2

� � v D 0: (4.5.3)

Proposition 4.5.1 The domain � of the change in the parameter � is the interior
of the ellipse in the limiting case when jaj ! C1. Relation (4.5.3) defines the
boundary @�.

Proof We write relations (4.5.3) as

b11u
2 C 2b12uv C b22v

2 C 2b1u C 2b2v C b0 D 0 (4.5.4)

with the coefficients

b11 D c11a
2
1 C c22a

2
2 C c12a1a2;

b12 D �c11a1a2 C c22a1a2 C c12
2

a21 � c12
2

a22;

b22 D c11a
2
2 C c22a

2
1 � c12a1a2;

b2 D �1
2
; b1 D 0; b0 D 0:

Let �1; �2 be the roots of a characteristic equation of the quadratic form b11u2 C
2b12uv C b22v2. Then these satisfy the characteristic equation

.b11 � �/ .b22 � �/� b212 D 0;

or

�2 � � .b11 C b22/C �
b11b22 � b212

� D 0: (4.5.5)
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Let us find expressions belonging to quadratic equation (4.5.5)

b11 C b22 D c11a
2
1 C c22a

2
2 C c12a1a2 C c11a

2
2 C c22a

2
1 � c12a1a2

D c11
�
a21 C a22

�C c22
�
a21 C a22

� D c11 C c22;

b11b22 � b212 D �
c11a

2
1 C c22a

2
2 C c12a1a2

��
c11a

2
2 C c22a

2
1 � c12a1a2

�

�
�

� c11a1a2 C c22a1a2 C c12
2

�
a21 � a22

��2

D c11c22
�
a41 C a42 C 2a21a

2
2

� � c212
4

�
a41 C 2a21a

2
2 C a42

�

D c11c22
�
a21 C a22

�2 � c212
4

�
a21 C a22

�2 D c11c22 � c212
4
:

Substituting the values obtained for b11Cb22, b11b22�b212 into Eq. (4.5.5), we obtain
the following characteristic equation

�2 � � .c11 C c22/C
�

c11c22 � c212
4

�
D 0:

The discriminant of this quadratic equation is

.c11 C c22/
2 � 4

�
c11c22 � c212

4

�
D c211 � 2c11c22 C c222 C c212 D .c11 � c22/

2 C c212:

Then the roots �1, �2 of a characteristic equation of the quadratic form b11u2 C
2b12uv C b22v2 will have the form

�1 D
c11 C c22 �

q
.c11 � c22/

2 C c212
2

;

�2 D
c11 C c22 C

q
.c11 � c22/

2 C c212
2

:

(4.5.6)

Due to the positive definiteness of the quadratic form T .x1; x2; x3/ and from
the expression (4.5.6) for �2 we see that �2 > 0. In order to show that �1 > 0,
it suffices to show that

c11 C c22 >
q
.c11 � c22/

2 C c212;

.c11 C c22/
2 > .c11 � c22/

2 C c212;

2c11c22 > �2c11c22 C c212;

c11c22 � c212
4
> 0;
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and this is true by virtue of the positive definiteness of the form T .x1; x2; x3/. Thus,
it is shown that the characteristic roots �1 > 0, �2 > 0. We make a coordinate
transformation

�
u D u0 cos˛ � v0 sin ˛;
v D u0 sin ˛ C v0 cos˛;

(4.5.7)

where the angle ˛ is determined from the relation

cos 2˛

sin 2˛
D b11 � b22

2b12
: (4.5.8)

After the coordinate transformation (4.5.7) equation (4.5.4) can be written as

�1u
02 C �2v

02 C 2b0
1u

0 C 2b0
2v

0 C b0 D 0 (4.5.9)

with the coefficients

b0
1 D b1 cos˛ C b2 sin ˛ D �1

2
sin ˛;

b0
2 D �b1 sin ˛ C b2 cos˛ D �1

2
cos˛:

(4.5.10)

Let us transfer the origin to the point
�
u0
0; v

0
0

�
, i.e., perform the transformation

�
u0 D u00 C u0

0;

v0 D v00 C v0
0:

(4.5.11)

After the coordinate transformation (4.5.11) equation (4.5.9) can be written as

�1u
002 C �2v

002 C 2
�
�1u

0
0 C b0

1

�
u00 C 2

�
�2v

0
0 C b0

2

�
v00 C b0

0 D 0; (4.5.12)

where the constant term b0
0 is

b0
0 D �1u

02
0 C �2v

02
0 C 2b0

1u
0
0 C 2b0

2v
0
0 C b0:

The coordinates
�
u0
0; v

0
0

�
are chosen to provide that the coefficients of u00 and v00

vanish in (4.5.12), i.e.,

�1u
0
0 C b0

1 D 0; �2v
0
0 C b0

2 D 0: (4.5.13)

From Eq. (4.5.13) we have

u0
0 D � b0

1

�1
; v0

0 D � b0
2

�2
: (4.5.14)
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So, the initial equation (4.5.4) is transformed to

�1u
002 C �2v

002 C b0
0 D 0 (4.5.15)

in the new coordinate system.
We proceed to investigate Eq. (4.5.15). Since the coefficients �1 and �2 have

the same sign, then Eq. (4.5.15) is of elliptic type. Using formula (4.5.14) to find an
expression for b0

0, we obtain

b0
0 D �b02

1

�1
� b02

2

�2
D �

�
b02
1 �2 C b02

2 �1

�1�2

�
< 0:

Since the common sign of �1 and �2 is opposite to b0
0, then rewriting Eq. (4.5.15) in

the form

u002

� b0
0

�1

C v002

� b0
0

�2

D 1;

shows that both denominators � b0
0

�1
and � b0

0

�2
are positive. We denote these by A2

and B2 and obtain the canonical ellipse equation

u002

A2
C v002

B2
D 1

with semi-axes A and B such that

A2 D � b0
0

�1
D b02

1 �2 C b02
2 �1

�21�2
; B2 D � b0

0

�2
D b02

1 �2 C b02
2 �1

�1�
2
2

: (4.5.16)

Let us find the relation between the “old” and “new” variables after coordinate
transformations (4.5.7) and (4.5.11). We obtain

� D u C iv D �
u0 C iv0� cos˛ � v0 sin ˛ C iu0 sin ˛

D �
u0 C iv0��cos˛ C i sin˛

� D � 0ei˛;

where � 0 D u0 C iv0. Denoting

Q� D u00 C iv00; � 0
0 D u0

0 C iv0
0 D �

�
b0
1

�1
C i

b0
2

�2

�
;
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we obtain

� 0 D u0 C iv0 D �
u00 C iv00�C �

u0
0 C iv0

0

� D Q� C � 0
0:

Thus, the coordinate transformation is performed according to the formula

� D � Q� C � 0
0

�
ei˛: (4.5.17)

To conclude the proof, we must justify the fact that the angle ˛ in (4.5.8) can
take any value, i.e., the right-hand side is unbounded in expression (4.5.8). We are
to show that the polynomials b11 � b22 and b12 (with respect to the variables a1; a2
with jaj D 1) have no common roots, i.e., the system

�
b11 � b22 D 0;

b12 D 0

has no solution. Since

b11 � b22 D .c11 � c22/ a21 C 2c12a1a2 C .c22 � c11/ a22;
b12 D c12

2
a21 C .c22 � c11/ a1a2 � c12

2
a22;

we need to show that the system

(
.c11 � c22/ a21 C 2c12a1a2 C .c22 � c11/ a22 D 0;

c12
2

a21 C .c22 � c11/ a1a2 � c12
2

a22 D 0

will have no solutions. We assume that a2 ¤ 0. Dividing each equation by a22 and

denoting
a1
a2

D y, we obtain the system

(
.c11 � c22/ y2 C 2c12y C .c22 � c11/ D 0;

c12
2

y2 C .c22 � c11/ y � c12
2

D 0:

We recall that the resultant of the two quadratic polynomials

g1 .y/ D A0y
2 C A1y C A2; g2 .y/ D B0y

2 C B1y C B2

is an expression

R .g1; g2/ D .A0B2 � A2B0/
2 � .A0B1 � A1B0/ .A1B2 � A2B1/ :

It is well known that given polynomials with arbitrary leading coefficients, the
resultant of these polynomials is zero if and only if these polynomials have a
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common root or if their leading coefficients are zero. In this case we have

A0 D c11 � c22; A1 D 2c12; A2 D c22 � c11 D �A0;

B0 D c12
2

D A1
4
; B1 D c22 � c11 D �A0; B2 D �c12

2
D �B0 D �A1

4
:

Then the resultant R .g1; g2/ has the form:

R .g1; g2/ D �
�

�A20 � A1
A1
4

��
�A1

A1
4

C A0 .�A0/

�

D �
�

A20 C A21
4

�2
D �

�
.c11 � c22/

2 C c212
�2
< 0:

Thus, we have shown that the polynomials b11 � b22 and b12 (with respect to the
variables a1; a2 with jaj D 1) have no common roots. ut

4.5.3 Proof of Theorem 4.5.1 in the Case of a Restriction
Imposed on the Domain

In this section we present the proof of Theorem 4.5.1 for the two-dimensional case,
when there are additional restrictions imposed on the domain D.

Consider the two-dimensional complex space C2. Let D be a bounded strongly
convex domain in C2 with a real-analytic boundary @D. Suppose that for all points
of the boundary of D the condition

�
@�

@w2
.w/

�2
@2�

@w21
.w/ � 2

@�

@w1
.w/

@�

@w2
.w/

@2�

@w1@w2
.w/

C
�
@�

@w1
.w/

�2
@2�

@w22
.w/ D 0 (4.5.18)

is fulfilled. We recall that Lw0 is a family of complex lines passing through the point
w0, w0 2 @D.

Theorem 4.5.2 ([40]) Let a function f 2 C w .@D/ have the one-dimensional
holomorphic extension property along all complex lines from Lw0 , intersecting D,
then the function f extends holomorphically to D.

Proof We make a shift to carry the point w0 2 @D to 0 and perform an orthogonal
transformation

w D Bz;
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given by the matrix

B D

0

B
@

@�

@w2
.0/ i

@�

@ Nw1 .0/

� @�

@w1
.0/ i

@�

@ Nw2 .0/

1

C
A :

This transformation is non-degenerate, since jBj ¤ 0. Under this transformation
the real-analyticity of the function � .Bz/ D Q� .z/ is preserved. When exploded, this
transformation looks as follows:

8
<̂

:̂

@�

@w2
.0/ z1 C i

@�

@ Nw1 .0/ z2 D w1;

� @�

@w1
.0/ z1 C i

@�

@ Nw2 .0/ z2 D w2:

Let z1 D x1 C ix2, z2 D x3 C ix4. For further proof of the theorem we prove the
following lemma.

Lemma 4.5.1 Under a complex linear coordinate transformation w D Bz, condi-
tion (4.5.18) on the function � .w1;w2/, considered at the boundary point w0 D 0,
can be written as

@2'

@x1@x2
.0/ D 0;

@2'

@x21
.0/ D @2'

@x22
.0/; (4.5.19)

where the implicit function x4 D ' .x1; x2; x3/ is defined by the equation

�
�
x1; x2; x3; x4

� D 0 and satisfies '.0/ D 0,
@'

@xk
.0/ D 0, k D 1; 2; 3.

Proof Let us find the relation between the partial derivatives Q�.z/ and �.w/, and also
conditions on the function Q�.z/. We obtain

@ Q�
@z1

D @�

@w1

@w1
@z1

C @�

@ Nw1
@ Nw1
@z1

C @�

@w2

@w2
@z1

C @�

@ Nw2
@ Nw2
@z1

D @�

@w2
.0/

@�

@w1
� @�

@w1
.0/

@�

@w2
;

@ Q�
@z2

D @�

@w1

@w1
@z2

C @�

@ Nw1
@ Nw1
@z2

C @�

@w2

@w2
@z2

C @�

@ Nw2
@ Nw2
@z2

D i
@�

@ Nw1 .0/
@�

@w1
C i

@�

@ Nw2 .0/
@�

@w2
:
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From the above calculations, it is evident that

@ Q�
@z1

.0/ D 0;

and the value

@ Q�
@z2
.0/ D i

 ˇ̌
ˇ
ˇ
@�

@w1
.0/

ˇ̌
ˇ
ˇ

2

C
ˇ̌
ˇ
ˇ
@�

@w2
.0/

ˇ̌
ˇ
ˇ

2
!

¤ 0

is purely imaginary.
We consider the second-order partial derivatives of Q� .z/:

@2 Q�
@z21

D @�

@w2
.0/

�
@2�

@w1@w1

@w1
@z1

C @2�

@w1@w2

@w2
@z1

�

� @�

@w1
.0/

�
@2�

@w2@w1

@w1
@z1

C @2�

@w2@w2

@w2
@z1

�

D
�
@�

@w2
.0/

�2
@2�

@w21
� 2

@�

@w1
.0/

@�

@w2
.0/

@2�

@w1@w2
C
�
@�

@w1
.0/

�2
@2�

@w22
:

In the shifted coordinates, where the boundary point w0 is switched to zero, and
considering condition (4.5.18) on the boundary of the domain D, the last equality
goes to

@2 Q�
@z21

.0/ D 0:

Further, for convenience we will write �.z/ instead of the functions Q�.z/, defining
the boundary of D. In other words,

�.z1; z2/ D 0 (4.5.20)

provided that

8
ˆ̂
<

ˆ̂
:

@�

@z1
.0/ D 0;

@2�

@z21
.0/ D 0;

(4.5.21)

and further provided that the value of
@�

@z2
.0/ ¤ 0 is purely imaginary.
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The derivatives with respect to the complex variables can be expressed in terms
of derivatives with respect to real variables as follows:

@�

@z1
D 1

2

�
@�

@x1
� i

@�

@x2

�
;

@�

@z2
D 1

2

�
@�

@x3
� i

@�

@x4

�
:

Thus from these relations and the set of conditions from (4.5.21), it follows that

@�

@x1
.0/ D 0;

@�

@x2
.0/ D 0;

@�

@x3
.0/ D 0: (4.5.22)

Next, we write the second condition in system (4.5.21) in terms of real variables.
We have

@�

@x1
D
�
@

@z1
C @

@Nz1
�
�;

@�

@x2
D i

�
@

@z1
� @

@Nz1
�
�;

@2�

@x21
D
�
@

@z1
C @

@Nz1
��

@�

@z1
C @�

@Nz1
�

D

D @2�

@z21
C @2�

@Nz1@z1
C @2�

@z1@Nz1 C @2�

@Nz21
D @2�

@z21
C @2�

@Nz21
C 2

@2�

@z1@Nz1 ;

@2�

@x22
D i

�
@

@z1
� @

@Nz1
�

i

�
@�

@z1
� @�

@Nz1
�

D

D �
�
@2�

@z21
� @2�

@Nz1@z1
� @2�

@z1@Nz1 C @2�

@Nz21

�
D 2

@2�

@z1@Nz1 � @2�

@z21
� @2�

@Nz21
;

@2�

@x1@x2
D
�
@

@z1
C @

@Nz1
�

i

�
@�

@z1
� @�

@Nz1
�

D

D i

�
@2�

@z21
� @2�

@Nz1@z1
C @2�

@z1@Nz1 � @2�

@Nz21

�
D i

�
@2�

@z21
� @2�

@Nz21

�
:

Thus, by the second condition in system (4.5.21) and taking into account the real-
analyticity of the function �, from the above calculations it follows that conditions
for the function � .x1; x2; x3; x4/ will have the form

@2�

@x21
.0/ D @2�

@x22
.0/;

@2�

@x1@x2
.0/ D 0: (4.5.23)

Due to the transition to real coordinates the function defining the boundary of D
takes the form

� .x1; x2; x3; x4/ D 0:
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Since the gradient of � .x1; x2; x3; x4/ is nonzero, then by virtue of relations

(4.5.22) we obtain
@�

@x4
.0/ ¤ 0. Then, by the standard implicit function theorem

in a neighborhood of the boundary point 0, the boundary defining function takes the
form

x4 D ' .x1; x2; x3/ ; (4.5.24)

where

@'

@xk
D �

@�

@xk

�
x1; x2; x3; ' .x1; x2; x3/

�

@�

@x4

�
x1; x2; x3; ' .x1; x2; x3/

� ; k D 1; 2; 3:

So the function ' satisfies the conditions '.0/ D 0,
@'

@xk
.0/ D 0, k D 1; 2; 3.

Next, using relations (4.5.22) and (4.5.23), we find conditions on the function

' .x1; x2; x3/. For this we consider the derivatives
@2'

@xk@xj
, j D 1; 2; 3. We obtain

@

@xj

@�

@xk

�
x1; x2; x3; ' .x1; x2; x3/

�
D @2�

@xk@xj
C @2�

@xk@x4

@'

@xj
D

D @2�

@xk@xj
�

@2�

@xk@x4

@�

@xj

@�

@x4

;

@

@xj

@�

@x4

�
x1; x2; x3; ' .x1; x2; x3/

�
D @2�

@x4@xj
C @2�

@x4@x4

@'

@xj
D

D @2�

@x4@xj
�
@2�

@x24

@�

@xj

@�

@x4

:

Thus

@2'

@xk@xj
D �

�
@2�

@xk@xj

@�

@x4
� @2�

@xk@x4

@�

@xj

�
@�

@x4
�
�
@2�

@x4@xj

@�

@x4
� @2�

@x24

@�

@xj

�
@�

@xk
�
@�

@x4

�3 ;
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wherein

@2'

@x2k
D �

�
@2�

@x2k

@�

@x4
� @2�

@xk@x4

@�

@xk

�
@�

@x4
�
�

@2�

@x4@xk

@�

@x4
� @2�

@x24

@�

@xk

�
@�

@xk
�
@�

@x4

�3 :

Taking into account conditions (4.5.22) and (4.5.23), it is easy to see that

@2'

@x1@x2
.0/ D 0;

@2'

@x21
.0/ D @2'

@x22
.0/:

ut
We continue proving the theorem. Later on we will consider a section Da .�/ of

the domain D

Da.�/ D
�

�

1C jaj2 a;
�

1C jaj2
�
; 8� 2 �a;

extending in the direction of the vector .a; 1/ 2 C2. The domain �a of change of
parameter � is a domain in the complex plane with a real-analytic boundary (in a
neighborhood of the boundary point 0).

Expanding the function ' .x1; x2; x3/ in a Taylor series in the neighborhood of 0
in expression (4.5.24), from the conditions on ' we obtain

x4 D T .x1; x2; x3/C o
�jx0j2� ; jx0j ! 0; x0 D .x1; x2; x3/ ; (4.5.25)

where T .x1; x2; x3/ D c11x21 C c22x22 C c33x23 C c12x1x2 C c13x1x3 C c23x2x3 is a
positive definite quadratic form (due to the strong convexity of �). Moreover, in
view of conditions (4.5.19) on the function ' .x1; x2; x3/ for coefficients of the form
T .x1; x2; x3/ we have the relations

c12 D 0; c11 D c22:

We select real and imaginary parts in the variables z1; z2 and write expressions
for x1; x2; x3; x4. Let � D u C iv, a D a1 C ia2. Then

�

1C jaj2 a D .ua1 � va2/C i .ua2 C va1/

1C jaj2 ;

�

1C jaj2 D u C iv

1C jaj2 :
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So

x1 D ua1 � va2
1C jaj2 ; x2 D ua2 C va1

1C jaj2 ; x3 D u

1C jaj2 ; x4 D v

1C jaj2 :

We write an expression for the quadratic form T .x1; x2; x3/:

T .x1; x2; x3/ D c11x
2
1 C c11x

2
2 C c33x

2
3 C c13x1x3 C c23x2x3

D 1
�
1C jaj2

�2
h
c11
�
u2a21 � 2uva1a2 C v2a22

�C c11
�
u2a22 C 2uva1a2 C v2a21

�

C c33u
2 C c13

�
u2a1 � uva2

�C c23
�
u2a2 C uva1

�i

D 1
�
1C jaj2

�2
h
v2
�
c11a

2
2 C c11a

2
1

�C v .�c13ua2 C c23ua1/C

C �
c11u

2a21 C c11u
2a22 C c33u

2 C c13u
2a1 C c23u

2a2
�i
:

We substitute the values found for x4 and T .x1; x2; x3/ into Eq. (4.5.25) and reduce
the similar terms. We get

v2
�
c11a

2
2 C c11a

2
1

�C v
��c13ua2 C c23ua1 � 1 � jaj2�

C �
c11u

2a21 C c11u
2a22 C c33u

2 C c13u
2a1 C c23u

2a2
�C o

�jaj2� D 0

as jaj ! C1. Choosing jaj large enough, that is, replacing a by ta with jaj D 1,
we obtain

v2
�
c11a

2
2t
2 C c11a

2
1t
2
�C v

��c13ua2t C c23ua1t � 1 � jaj2t2�

C �
c11u

2a21t
2 C c11u

2a22t
2 C c33u

2 C c13u
2a1t C c23u

2a2t
�C o

�jtj2� D 0

as t ! C1. Thus, dividing by t2 and passing over to the limit as t ! C1 in this
expression, we obtain

v2
�
c11a

2
2 C c11a

2
1

� � vjaj2 C c11u
2a21 C c11u

2a22 D 0;

c11v
2 � v C c11u

2 D 0:
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We write this equation in a complex form and obtain

c11

�
v2 � v

c11
C u2

�
D 0;

ˇ
ˇ̌
ˇ� � i

2c11

ˇ
ˇ̌
ˇ

2

D
�
1

2c11

�2
: (4.5.26)

Thus, we have shown that the domain � of change of the parameter � in the

limiting case when jaj ! C1, is a circle of radius r0 D 1

2c11
and centered at

�0 D i

2c11
. The coefficient c11 > 0 due to the positive definiteness of the quadratic

form T .x1; x2; x3/. Relation (4.5.26) defines the boundary @�.
It should be noted that the tangent to the boundary of the domain D drawn at

the boundary point 0 is the line Im z2 D 0. It is easy to see that when jaj ! C1,
the section Da .�/ is close to the tangent to the boundary of D in the boundary point
0 since

Im z2 D v

1C jaj2 ! 0; when jaj ! C1:

Moreover, the section Da.�/ lies in the neighborhood of z0 D 0 when jaj ! C1.
Namely, if z 2 Da.�/, then

jz � z0j2 D j� j2jaj2
.1C jaj2/2 C j� j2

.1C jaj2/2 D j� j2
1C jaj2 ! 0;

when jaj ! C1.
The function � .z1; z2; Nz1; Nz2/ being real-analytic, we solve Eq. (4.5.20) with

respect to the variable Nz2. Since � .z; Nz/ is a real-analytic function, it can be expanded
in a series in the neighborhood of .0; 0/ 2 C4 D C2 � C2. We pass over from
the variables Nz to the variables �, i.e., we make the change

Nz1 D �1; Nz2 D �2:

We obtain an analytic function O�.z; �/ in z and � with the conditions

� O�.z; �/ D 0;

� D Nz:

Since the gradient of O� .z1; z2; �1; �2/ is nonzero, then the derivative with respect to

one of the variables is different from zero, for example, the derivative
@ O�
@�2

¤ 0.

Then, applying the implicit function theorem for holomorphic functions, we can
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express the variable �2 through other variables:

8
<

:

�2 D  .z1; z2; �1/ ;
Nz1 D �1;

Nz2 D �2:

Then f .z1; z2; Nz1; Nz2/ D f .z1; z2; Nz1;  .z1; z2; �1// is a real-analytic function that
can be expanded in a series of variables z1, z2, �1 D Nz1, which converges in a
neighborhood of the boundary point .0; 0/. Namely

f .z1; Nz1; z2/ D
C1X

lD0

X

hCkC2mDl

bh;k;mzh
1Nzk
1z

m
2 ;

where we have re-denoted the element in the weight degree (giving a weight of 2
to z2).

Choosing jaj large enough, we consider moments of order N on sections Da.�/:

G.a;N/ D
Z

@�a

�Nf
�

Da.�/
�

d�

D
Z

@�a

�N
C1X

lD0

X

hCkC2mDl

bh;k;m

�
�

1C jaj2 a

�h�
�

1C jaj2 a

�k �
�

1C jaj2
�m

d�:

We prove that the coefficients bh;k;m D 0 for k > 0. Let l0 be the smallest weight
degree with the property bh;k;m ¤ 0 for k > 0 and k0 be the greatest degree in Nz1
for which this holds. By the hypothesis, we have G.a;N/ D 0 for all N and a, in
particular, for ta with jaj D 1 and t ! C1. Consider the limit

lim
t!C1

G.ta;N/tl0

D lim
t!C1

Z

@�a

�N
C1X

lDl0

X

hCkC2mDl

bh;k;m

�
�

1C jtaj2 ta

�h�
�

1C jtaj2 ta

�k

�

�
�

�

1C jtaj2
�m

tl0d�

D lim
t!C1

Z

@�a

�N
C1X

lDl0

X

hCkC2mDl

bh;k;m�
h N� k�mthtktl0ah Nak

0

B
@

1

1

t2
C jaj2

1

C
A

h

1

t2h
�

�

0

B
@

1

1

t2
C jaj2

1

C
A

k

1

t2k

0

B
@

1

1

t2
C jaj2

1

C
A

m

1

t2m
d�
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D lim
t!C1

C1X

lDl0

X

hCkC2mDl

bh;k;m

Z

@�a

�N�h N� k�m d� thCkCl0�.2hC2kC2m/ah Nak�

�

0

B
@

1

1

t2
C jaj2

1

C
A

hCkCmCm�m

D lim
t!C1

C1X

lDl0

X

hCkC2mDl

bh;k;m

Z

@�a

�N�h N� k�m d� tl0�lah Nak�

�
�
1

t2
C jaj2

�m
1

�
1

t2
C jaj2

�l D
X

hCkC2mDl0

bh;k;m

Z

@�

�N�h N� k�m d�
ah Nakjaj2m

jaj2l0
D 0;

where @� is defined by (4.5.26).

Let us calculate the value of the integral
Z

@�

�N�h N� k�m d� . Expressing N� as a

fractional-linear function from (4.5.26), we obtain

ˇ
ˇ̌
ˇ� � i

2c11

ˇ
ˇ̌
ˇ

2

D
�
� � i

2c11

�
N� C i

2c11
� C 1

4c211
:

Then
�
� � i

2c11

�
N� C i

2c11
� C 1

4c211
D 1

4c211
;

�
� � i

2c11

�
N� D � i

2c11
�; N� D

� i

2c11
�

� � i

2c11

:

We substitute the value found for N� into the integrand expression and obtain

Z

@�

�N�h N� k�m d� D
�

� i

2c11

�k Z

@�

�NChCm� k

�
� � i

2c11

�k
d�

D
�

� i

2c11

�k Z

@�

�NChCmCk

�
� � i

2c11

�k
d�:
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Now we compute the integral

Z

@�

�NChCmCk

�
� � i

2c11

�k
d� D 2�i

1

.k � 1/Š lim
�!�0

dk�1

d� k�1 �
NChCmCk

D 2�i
1

.k � 1/Š
lim
�!�0

.N C h C m C k/Š

.N C h C m C 1/Š
�NChCmC1

D 2�i
1

.k � 1/Š

.N C h C m C k/Š

.N C h C m C 1/Š

�
i

2c11

�NChCmC1
;

where �0 D i

2c11
. Thus

Z

@�

�N�h N� k�m d� D
�

� i

2c11

�k

2�i
1

.k � 1/Š
.N C h C m C k/Š

.N C h C m C 1/Š

�
i

2c11

�NChCmC1
:

Finally, we conclude the proof of the theorem. Since

X

hCkC2mDl0

bh;k;m

Z

@�

�N�h N� k�m d�
ah Nakjaj2m

jaj2l0
D 0;

then, substituting the value found for the integral into the expression, we obtain

X

hCkC2mDl0

bh;k;m .�1/k
�

i

2c11

�NChCmCkC1
2�i

�
N C h C m C k

k � 1

�
ah Nakjaj2m

jaj2l0
D 0:

Choosing N D k0 � 1, we obtain the following relation for the coefficients bh;k;m

X

hCk0C2mDl0

.�1/k0
�

i

2c11

�2k0ChCm

2�i

�
2k0 C h C m � 1

k0 � 1
�

bh;k0;mahCm Nak0Cm D 0:

Substituting a D ei� , we obtain a trigonometric polynomial (with respect to the
variable �)

X

hCk0C2mDl0

.�1/k0
�

i

2c11

�2k0ChCm

2�i

�
2k0 C h C m � 1

k0 � 1
�

bh;k0;mei�.h�k0/;

identically equal to 0.
Thus, we have shown that the function f is holomorphic in a neighborhood of

the boundary point 0. In view of the conditions of the theorem, the function f extends
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holomorphically to the intersection of D with each complex line passing through the
boundary point 0. Consequently, by Hartogs’ extension theorem [73] and subject
to linear fractional transformation (where by the boundary point goes into infinity
and the lines passing through the boundary point become parallel) the function f
holomorphically continues to the whole domain D � C2. These arguments complete
the proof. ut

To conclude this section we consider examples of domains satisfying (4.5.18).

Example 4.5.1 Let D D Bn be a ball of radius R centered at the origin, i.e.,

D D f� W j�j < Rg:

Example 4.5.2 Let �j D Lj.w/

L.w/
, j D 1; : : : ; n, where Lj.w/, L.w/ are the linear

functions. Then the image of the ball Bn under this mapping (unless it is degenerate)
is a domain, for which condition (4.5.18) is satisfied.

Example 4.5.3 Let the function � defining the boundary of D have the form

� .w1; : : : ;wn/ D jw1j2 C : : :C jwnj2 � R2 C
X

j

ˇ
ˇLj .w/

ˇ
ˇ2 ;

where Lj .w/ are the linear functions. Then the domain D D fw W � .w/ < 0g
satisfies condition (4.5.18).

Example 4.5.4 Let the function �.w; Nw/ be linearly dependent on w and arbitrarily
dependent on Nw. Then the domain D D fw W �.w/ < 0g satisfies (4.5.18).

4.5.4 Computation of Moment Integrals

We continue proving Theorem 4.5.1 in the two-dimensional case. Recall that the
tangent to the boundary of D, drawn at the boundary point 0, is the line Im z2 D 0.
It is easy to see that when jaj ! C1, the section Da.�/ is close to the tangent to
the boundary of D at the boundary point 0 as

Im z2 D v

1C jaj2 ! 0

for jaj ! C1. Moreover, the section Da.�/ lies in a sufficiently small neighbor-
hood of z0 D 0 for jaj ! C1. Namely, if z 2 Da .�/ then

jz � z0j2 D
ˇ
ˇ̌
ˇ

�

1C jaj2 a

ˇ
ˇ̌
ˇ

2

C
ˇ
ˇ̌
ˇ

�

1C jaj2
ˇ
ˇ̌
ˇ

2

D j� j2
1C jaj2 ! 0

as jaj ! C1.
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Using the real-analyticity of the function � .z1; z2; Nz1; Nz2/, as we did in the
preceding subsection, we will solve the equation � .z1; z2; Nz1; Nz2/ D 0 with respect
to the variable Nz2. Since �.z; Nz/ is a real-analytic function, then it can be expanded in
a Taylor series in the neighborhood of .0; 0/ 2 C4 D C2 � C2. We pass over from
the coordinates Nz to the variables �, i.e., make the change

Nz1 D �1; Nz2 D �2:

We obtain an analytic function O� .z; �/ of z and � with the conditions

� O� .z; �/ D 0;

� D Nz:

Since the gradient of the function O� .z1; z2; �1; �2/ is nonzero, so the derivative with
respect to one of the variables is different from zero, for example, the derivative
@ O�
@�2

¤ 0. Then, applying the implicit function theorem for holomorphic functions,

we can express the variable �2 through other variables:

8
<

:

�2 D  .z1; z2; �1/ ;
Nz1 D �1;

Nz2 D �2:

Then f .z1; z2; Nz1; Nz2/ D f .z1; z2; �1;  .z1; z2; �1// is a real-analytic function which
can be expanded in a series of variables z1; z2; �1 D Nz1 converging in a neighborhood
of the boundary point .0; 0/. Namely

f .z1; Nz1; z2/ D
C1X

lD0

X

hCkC2mDl

bh;k;mzh
1Nzk
1z

m
2

on @D, where we have re-denoted the summation index giving a weight of 2 to z2.
Choosing jaj large enough, we consider moments G .a;N/ on sections Da .�/:

G .a;N/ D
Z

@�a

�Nf
�
Da .�/

�
d�

D
Z

@�a

�N
C1X

lD0

X

hCkC2mDl

bh;k;m

�
�

1C jaj2 a

�h�
�

1C jaj2 a

�k �
�

1C jaj2
�m

d�:
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Let us prove that the coefficients bh;k;m D 0 for k > 0. Let l0 be the smallest weight
degree with the property bh;k;m ¤ 0 for k > 0 and k0 be the greatest degree in Nz1 for
which this holds. Then from the condition of Theorem 4.5.1 G.a;N/ D 0 for all N
and a, in particular, for ta with jaj D 1 and t ! C1. Consider the limit

lim
t!C1 G .ta;N/ tl0

D lim
t!C1

Z

@�a

�N
C1X

lDl0

X

hCkC2mDl

bh;k;m

�
�

1C jtaj2 ta

�h�
�

1C jtaj2 ta

�k

�

�
�

�

1C jtaj2
�m

tl0d� D lim
t!C1

Z

@�a

�N
C1X

lDl0

X

hCkC2mDl

bh;k;m�
h N� k�mthtktl0ah Nak�

�

0

B
@

1

1

t2
C jaj2

1

C
A

h

1

t2h

0

B
@

1

1

t2
C jaj2

1

C
A

k

1

t2k

0

B
@

1

1

t2
C jaj2

1

C
A

m

1

t2m
d�

D lim
t!C1

C1X

lDl0

X

hCkC2mDl

bh;k;mthCkCl0�.2hC2kC2m/ah Nak

0

B
@

1

1

t2
C jaj2

1

C
A

l�m

�

�
Z

@�a

�N�h N� k�m d� D lim
t!C1

C1X

lDl0

X

hCkC2mDl

bh;k;mtl0�lah Nak

�
1

t2
C jaj2

�m

�

� 1
�
1

t2
C jaj2

�l

Z

@�a

�N�h N� k�m d� D
X

hCkC2mDl0

bh;k;mah Nak
Z

@�

�N�h N� k�m d� D 0;

where @� is defined by (4.5.3).
We recall that the expressions for �1 and �2 are defined by (4.5.6), the angle ˛ is

found from relation (4.5.8) and the coefficients b0
1, and b0

2 from (4.5.10).

Proposition 4.5.2 The value of the integral equals

Z

@�

�N�h N� k�m d�

Dei˛.NChCmC1�k/ 2�i

�
1

2

�NChCmCkC1
.�1/NChCmCk

�
1p
�1

C 1p
�2

�NChCmC1
�

�
�

1p
�1

� 1p
�2

�k � b0
1p
�1

C i
b0
2p
�2

�NChCmCkC1
�
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�
X

˛1C˛2C˛3C˛4DNChCmCkC1

�
k
˛3

��
k
˛4

� p
�2 � p

�1p
�2 C p

�1

!˛1�˛4
0

B
B
@

b0
1p
�1

� i
b0
2p
�2

b0
1p
�1

C i
b0
2p
�2

1

C
C
A

˛1C˛4

�

�


�
�

N C h C m
˛1 � 1

��
N C h C m
˛2 � 1

�
C
�

N C h C m
˛1

��
N C h C m

˛2

��
:

Proof Conformal mapping [57] of the exterior of an ellipse

u002

A2
C v002

B2
D 1

on the exterior of a unit circle is performed by the function

! D Q� C pQ�2 � c2

A C B
;

where c D p
A2 � B2. Then

Q� D A C B

2
! C A � B

2

1

!
: (4.5.27)

Thus, taking into account coordinate transformation (4.5.17) and representation
(4.5.27) for Q� we have the required mapping of the exterior of the ellipse (4.5.3) on
the exterior of the unit circle by the formula

� D
�

�



b0
1

�1
C i

b0
2

�2

�
C A C B

2
! C A � B

2

1

!

�
ei˛;

where the semi-axes A and B are defined by (4.5.16). Then

N� D
�

�



b0
1

�1
� i

b0
2

�2

�
C A C B

2
N! C A � B

2

1

N!
�

e�i˛;

d� D
�

A C B

2
� A � B

2

1

!2

�
ei˛d!:
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Let us find the value of the integral
Z

@�

�N�h N� k�m d� by substituting the resulting

expressions for � , N� and the differential d� . We get

I D
Z

@�

�NChCm N� k d� D ei˛.NChCmC1�k/
Z

j!jD1

�
�



b0
1

�1
C i

b0
2

�2

�

C A C B

2
! C A � B

2

1

!

�NChCm�
�



b0
1

�1
� i

b0
2

�2

�
C A C B

2

1

!
C A � B

2
!

�k

�

�
�

A C B

2
� A � B

2

1

!2

�
d!:

We make the substitution ! D 1

�
under the integral sign while d! D � 1

�2
d�, then

I D ei˛.NChCmC1�k/
Z

j�jD1

�
�



b0
1

�1
C i

b0
2

�2

�
C A C B

2

1

�
C A � B

2
�

�NChCm

�

�
�

�



b0
1

�1
� i

b0
2

�2

�
C A C B

2
� C A � B

2

1

�

�k�A C B

2
� A � B

2
�2
��

� 1

�2

�
d�

D ei˛.NChCmC1�k/
Z

j�jD1

�
�



b0
1

�1
C i

b0
2

�2

�
C A C B

2

1

�
C A � B

2
�

�NChCm

�

�
�

�



b0
1

�1
� i

b0
2

�2

�
C A C B

2
� C A � B

2

1

�

�k�A � B

2
�2 � A C B

2

�
1

�2
d�

D ei˛.NChCmC1�k/
Z

j�jD1
˝.�/ d�;

where

˝.�/ D

�
A � B

2
�2 �



b0
1

�1
C i

b0
2

�2

�
� C A C B

2

�NChCm

�NChCmCkC2 �

�
�

A C B

2
�2 �



b0
1

�1
� i

b0
2

�2

�
� C A � B

2

�k �A � B

2
�2 � A C B

2

�
:

We now factorize the quadratic trinomial of the variable �, under the integral
sign. First we find the value of the expression A2 � B2. Using relation (4.5.16) we
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obtain

A2 � B2 D b02
1 �2 C b02

2 �1

�21�2
� b02

1 �2 C b02
2 �1

�1�
2
2

D b02
1

�21
C b02

2

�1�2
� b02

1

�1�2
� b02

2

�22
:

We find the roots of the quadratic equation

A � B

2
�2 �



b0
1

�1
C i

b0
2

�2

�
� C A C B

2
D 0: (4.5.28)

Its discriminant is

�
b0
1

�1
C i

b0
2

�2

�2
�4A2 � B2

4
Db02

1

�21
� b02

2

�22
C 2i

b0
1b

0
2

�1�2
�
�

b02
1

�21
C b02

2

�1�2
� b02

1

�1�2
� b02

2

�22

�

D 2i
b0
1b

0
2

�1�2
� b02

2

�1�2
C b02

1

�1�2
D 1

�1�2

�
b02
1 C 2ib0

1b
0
2 � b02

2

� D 1

�1�2

�
b0
1 C ib0

2

�2
:

Then the roots of quadratic equation (4.5.28) are defined by

�1;2 D
b0
1

�1
C i

b0
2

�2
˙ 1p

�1�2

�
b0
1 C ib0

2

�

A � B
:

Thus

�1 D
b0
1

�1
C i

b0
2

�2
C 1p

�1�2

�
b0
1 C ib0

2

�

A � B
D

b0
1

�1
C b0

1p
�1�2

C i

�
b0
2

�2
C b0

2p
�1�2

�

A � B

D

�
1p
�1

C 1p
�2

��
b0
1p
�1

C i
b0
2p
�2

�

A � B
;

�2 D
b0
1

�1
C i

b0
2

�2
� 1p

�1�2

�
b0
1 C ib0

2

�

A � B
D

b0
1

�1
� b0

1p
�1�2

C i

�
b0
2

�2
� b0

2p
�1�2

�

A � B

D

�
1p
�1

� 1p
�2

��
b0
1p
�1

� i
b0
2p
�2

�

A � B
:
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We also consider the quadratic equation

A C B

2
�2 �



b0
1

�1
� i

b0
2

�2

�
� C A � B

2
D 0: (4.5.29)

Its discriminant is

�
b0
1

�1
� i

b0
2

�2

�2
� 4

A2 � B2

4
Db02

1

�21
� b02

2

�22
� 2i

b0
1b

0
2

�1�2
�
�

b02
1

�21
C b02

2

�1�2
� b02

1

�1�2
� b02

2

�22

�

D �2i
b0
1b

0
2

�1�2
� b02

2

�1�2
C b02

1

�1�2
D 1

�1�2

�
b02
1 � 2ib0

1b
0
2 � b02

2

� D 1

�1�2

�
b0
1 � ib0

2

�2
:

Then the roots of quadratic equation (4.5.29) are defined by

�3;4 D
b0
1

�1
� i

b0
2

�2
˙ 1p

�1�2

�
b0
1 � ib0

2

�

A C B
:

Therefore,

�3 D
b0
1

�1
� i

b0
2

�2
C 1p

�1�2

�
b0
1 � ib0

2

�

A C B
D

b0
1

�1
C b0

1p
�1�2

� i

�
b0
2

�2
C b0

2p
�1�2

�

A C B

D

�
1p
�1

C 1p
�2

��
b0
1p
�1

� i
b0
2p
�2

�

A C B
;

�4 D
b0
1

�1
� i

b0
2

�2
� 1p

�1�2

�
b0
1 � ib0

2

�

A C B
D

b0
1

�1
� b0

1p
�1�2

� i

�
b0
2

�2
� b0

2p
�1�2

�

A C B

D

�
1p
�1

� 1p
�2

��
b0
1p
�1

C i
b0
2p
�2

�

A C B
:

Thus, we have the following factorization for the square trinomials of the variable �
under the integral sign:

A � B

2
�2 �



b0
1

�1
C i

b0
2

�2

�
� C A C B

2
D A � B

2
.� � �1/ .� � �2/ ;

A C B

2
�2 �



b0
1

�1
� i

b0
2

�2

�
� C A � B

2
D A C B

2
.� � �3/ .� � �4/ :
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Then the original integral I can be written as

I D ei˛.NChCmC1�k/

�
A � B

2

�NChCm �A C B

2

�k Z

j�jD1
f1f2f3f4f5

�NChCmCkC2 d�;

where the functions

f1 D .� � �1/NChCm ; f2 D .� � �2/NChCm ; f3 D .� � �3/
k ;

f4 D .� � �4/k ; f5 D A � B

2
�2 � A C B

2
:

The point � D 0 is a pole of order .N C h C m C k C 2/. We will need the value of
the derivative of the function

.f1f2f3f4f5/
.NChCmCkC1/

D
X

˛1C˛2C˛3C˛4C˛5DDNChCmCkC1

f .˛1/1 f .˛2/2 f .˛3/3 f .˛4/4 f .˛5/5

.N C h C m C k C 1/Š

˛1Š ˛2Š ˛3Š ˛4Š ˛5Š
:

Expressions for the function derivatives are as follows:

f .˛1/1 D .N C h C m/Š

.N C h C m � ˛1/Š
.� � �1/

NChCm�˛1 ;

f .˛2/2 D .N C h C m/Š

.N C h C m � ˛2/Š
.� � �2/

NChCm�˛2 ;

f .˛3/3 D kŠ

.k � ˛3/Š .� � �3/
k�˛3 ; f .˛4/4 D kŠ

.k � ˛4/Š
.� � �4/

k�˛4 ;

f .2/5 D 2
A � B

2
; f .0/5 D A � B

2
�2 � A C B

2
:

The order of the derivative is subject to natural limitations:

˛1 � N C h C m; ˛2 � N C h C m; ˛3 � k; ˛4 � k:

Thus

.f1f2f3f4f5/
.NChCmCkC1/

.N C h C m C k C 1/Š
.0/ D

X

˛1C˛2C˛3C˛4C2DDNChCmCkC1

�
N C h C m

˛1

��
N C h C m

˛2

�
�

�
�

k
˛3

��
k
˛4

�
.��1/NChCm�˛1 .��2/NChCm�˛2 .��3/k�˛3 .��4/k�˛4

�
A � B

2

�
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C
X

˛1C˛2C˛3C˛4DDNChCmCkC1

�
N C h C m

˛1

��
N C h C m

˛2

��
k
˛3

��
k
˛4

�
.��1/NChCm�˛1 �

� .��2/NChCm�˛2 .��3/k�˛3 .��4/k�˛4
�

�A C B

2

�
:

Then, the original integral I can be represented as

I D ei˛.NChCmC1�k/ 2�i .	1 C 	2/ ;

where 	1 corresponds to the part of the sum in the expression for the product
derivative

.f1f2f3f4f5/
.NChCmCkC1/

.N C h C m C k C 1/Š
.0/ ;

in which the parameter ˛5 D 2 and 	2 corresponds to the sum with the parameter
˛5 D 0, i.e.,

	1 D
�

A � B

2

�NChCm �A C B

2

�k X

˛1C˛2C˛3C˛4C2DDNChCmCkC1

�
N C h C m

˛1

��
N C h C m

˛2

�
�

�
�

k
˛3

��
k
˛4

�
.��1/NChCm�˛1 .��2/NChCm�˛2 .��3/k�˛3 .��4/k�˛4

�
A � B

2

�
;

	2 D
�

A � B

2

�NChCm �A C B

2

�k X

˛1C˛2C˛3C˛4DDNChCmCkC1

�
N C h C m

˛1

��
N C h C m

˛2

�
�

�
�

k
˛3

��
k
˛4

�
.��1/NChCm�˛1 .��2/NChCm�˛2 .��3/k�˛3 .��4/k�˛4

�
�A C B

2

�
:

In the expression for 	1 we introduce ˛1 C 1 D ˛0
1, ˛2 C 1 D ˛0

2, and obtain

	1D
�

A � B

2

�NChCm �A C B

2

�k X

˛0

1C˛0

2C˛3C˛4DDNChCmCkC1

�
N C h C m
˛0
1 � 1

��
N C h C m
˛0
2 � 1

��
k
˛3

�
�

�
�

k
˛4

�
.��1/NChCm�˛0

1C1 .��2/NChCm�˛0

2C1 .��3/k�˛3 .��4/k�˛4
�

A � B

2

�
:
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We add 	1 and 	2, and get

	 D 	1 C 	2 D
�

A � B

2

�NChCm �A C B

2

�k X

˛1C˛2C˛3C˛4DDNChCmCkC1

�
k
˛3

��
k
˛4

�
�

� .��1/NChCm�˛1 .��2/NChCm�˛2 .��3/k�˛3 .��4/k�˛4 �

�

�

N C h C m
˛1 � 1

��
N C h C m
˛2 � 1

�
�1�2

�
A � B

2

�

C
�

N C h C m
˛1

��
N C h C m

˛2

��
�A C B

2

��
:

Next we calculate the degree of .�1/:

N C h C m � ˛1 C N C h C m � ˛2 C k � ˛3 C k � ˛4 D 2.N C h C m C k/

�.˛1C˛2C˛3C˛4/ D 2.NChCmCk/�.NChCmCkC1/ D NChCmCk�1;

then

	 D
�

A � B

2

�NChCm �A C B

2

�k

.�1/NChCmCk�1 �NChCm
1 �NChCm

2 �k
3�

k
4�

�
X

˛1C˛2C˛3C˛4DDNChCmCkC1

�
k
˛3

��
k
˛4

�
�

�˛1
1 �

�˛2
2 �

�˛3
3 �

�˛4
4


�
N C h C m
˛1 � 1

��
N C h C m
˛2 � 1

�
�

� �1�2
�

A � B

2

�
C
�

N C h C m
˛1

��
N C h C m

˛2

��
�A C B

2

��
:

For the solutions �1; �2, and �3; �4 of the respective quadratic equations (4.5.28)
and (4.5.29) the following relations

�1�2 D A C B

A � B
; �3�4 D A � B

A C B

hold. Thus

	D
�

A � B

2

�NChCm �A C B

2

�k

.�1/NChCmCk�1
�

A C B

A � B

�NChCm �A � B

A C B

�k

�

�
X

˛1C˛2C˛3C˛4DNChCmCkC1

�
k
˛3

��
k
˛4

�
�

�˛1
1 �

�˛2
2 �

�˛3
3 �

�˛4
4


�
N C h C m
˛1 � 1

��
N C h C m
˛2 � 1

�
�
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�
�

A C B

2

�
C
�

N C h C m
˛1

��
N C h C m

˛2

��
�A C B

2

��

D
�
1

2

�NChCmCkC1
.�1/NChCmCk .A C B/NChCmC1 .A � B/k �

�
X

˛1C˛2C˛3C˛4DNChCmCkC1

�
k
˛3

��
k
˛4

�
�

�˛1
1 �

�˛2
2 �

�˛3
3 �

�˛4
4 �

�


�
�

N C h C m
˛1 � 1

��
N C h C m
˛2 � 1

�
C
�

N C h C m
˛1

��
N C h C m

˛2

��
:

Denote C D C .˛/ D b02
1 �2 C b02

2 �1. Then, using relations (4.5.16) and the
introduced notation we find that

A D
p

C

�1
p
�2
; B D

p
Cp
�1�2

:

So

A � B D
p

C

�1
p
�2

�
p

Cp
�1�2

D
p

Cp
�1

p
�2

�
1p
�1

� 1p
�2

�
;

A C B D
p

C

�1
p
�2

C
p

Cp
�1�2

D
p

Cp
�1

p
�2

�
1p
�1

C 1p
�2

�
:

Then the roots �1; �2; �3; �4 of quadratic equations (4.5.28) and (4.5.29) can be
written as

�1 D

�
1p
�1

C 1p
�2

��
b0
1p
�1

C i
b0
2p
�2

�

A � B

D
p
�1

p
�2p

C

�p
�2 C p

�1
�

�p
�2 � p

�1
�
�

b0
1p
�1

C i
b0
2p
�2

�
;

�2 D

�
1p
�1

� 1p
�2

��
b0
1p
�1

� i
b0
2p
�2

�

A � B
D

p
�1

p
�2p

C

�
b0
1p
�1

� i
b0
2p
�2

�
;

�3 D

�
1p
�1

C 1p
�2

��
b0
1p
�1

� i
b0
2p
�2

�

A C B
D

p
�1

p
�2p

C

�
b0
1p
�1

� i
b0
2p
�2

�
;
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�4 D

�
1p
�1

� 1p
�2

��
b0
1p
�1

C i
b0
2p
�2

�

A C B

D
p
�1

p
�2p

C

�p
�2 � p

�1
�

�p
�2 C p

�1
�
�

b0
1p
�1

C i
b0
2p
�2

�
:

Now we find the value of the expression ��˛1
1 �

�˛2
2 �

�˛3
3 �

�˛4
4 , under the sign of the

sum in the expression for 	 .

�
�˛1
1 �

�˛2
2 �

�˛3
3 �

�˛4
4 D

 p
�1

p
�2p

C

!
�˛1  p

�2 C p
�1p

�2 � p
�1

!
�˛1

�

�
�

b0

1p
�1

C i
b0

2p
�2

�
�˛1

 p
�1

p
�2p

C

!
�˛2 �

b0

1p
�1

� i
b0

2p
�2

�
�˛2

 p
�1

p
�2p

C

!
�˛3

�

�
�

b0

1p
�1

� i
b0

2p
�2

�
�˛3

 p
�1

p
�2p

C

!
�˛4  p

�2 � p
�1p

�2 C p
�1

!
�˛4 �

b0

1p
�1

C i
b0

2p
�2

�
�˛4

D
 p

Cp
�1

p
�2

!˛1C˛2C˛3C˛4
 p

�2 � p
�1p

�2 C p
�1

!˛1�˛4 �
b0

1p
�1

� i
b0

2p
�2

�
�˛2�˛3

�

�
�

b0

1p
�1

C i
b0

2p
�2

�
�˛1�˛4

D
 p

Cp
�1

p
�2

!NChCmCkC1  p
�2 � p

�1p
�2 C p

�1

!˛1�˛4
�

�
�

b0

1p
�1

� i
b0

2p
�2

�˛1C˛4 � b0

1p
�1

� i
b0

2p
�2

�
�
.NChCmCkC1/� b0

1p
�1

C i
b0

2p
�2

�
�˛1�˛4

D
 p

Cp
�1

p
�2

!NChCmCkC1 �
b0

1p
�1

� i
b0

2p
�2

�
�
.NChCmCkC1/

 p
�2 � p

�1p
�2 C p

�1

!˛1�˛4
�

�

0

BB
@

b0

1p
�1

� i
b0

2p
�2

b0

1p
�1

C i
b0

2p
�2

1

CC
A

˛1C˛4

:

Thus

	 D
�
1

2

�NChCmCkC1
.�1/NChCmCk .A C B/NChCmC1 .A � B/k �

�
 p

Cp
�1

p
�2

!NChCmCkC1 �
b0
1p
�1

� i
b0
2p
�2

��.NChCmCkC1/
�
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�
X

˛1C˛2C˛3C˛4DDNChCmCkC1

�
k
˛3

��
k
˛4

� p
�2 � p

�1p
�2 C p

�1

!˛1�˛4
0

B
B
@

b0
1p
�1

� i
b0
2p
�2

b0
1p
�1

C i
b0
2p
�2

1

C
C
A

˛1C˛4

�

�


�
�

N C h C m
˛1 � 1

��
N C h C m
˛2 � 1

�
C
�

N C h C m
˛1

��
N C h C m

˛2

��
:

We transform the factor standing in front of the sum and obtain

.ACB/NChCmC1 .A�B/k
 p

Cp
�1

p
�2

!NChCmCkC1�
b0
1p
�1

�i
b0
2p
�2

��.NChCmCkC1/

D
 p

Cp
�1

p
�2

!NChCmC1�
1p
�1

C 1p
�2

�NChCmC1 p
Cp

�1
p
�2

!k�
1p
�1

� 1p
�2

�k

�

�
 p

Cp
�1

p
�2

!NChCmCkC1�
b0
1p
�1

� i
b0
2p
�2

��.NChCmCkC1/

D
�

1p
�1

C 1p
�2

�NChCmC1 �
1p
�1

� 1p
�2

�k � C

�1�2

�NChCmCkC1
�

�
�

b0
1p
�1

� i
b0
2p
�2

��.NChCmCkC1/
D
�

1p
�1

C 1p
�2

�NChCmC1 �
1p
�1

� 1p
�2

�k

�

�
�

b02
1

�1
C b02

2

�2

�NChCmCkC1 �
b0
1p
�1

� i
b0
2p
�2

��.NChCmCkC1/

D
�

1p
�1

C 1p
�2

�NChCmC1 �
1p
�1

� 1p
�2

�k � b0
1p
�1

C i
b0
2p
�2

�NChCmCkC1
:

Finally, after all of these transformations and calculations have been done, we
have

	D
�
1

2

�NChCmCkC1
.�1/NChCmCk

�
1p
�1

C 1p
�2

�NChCmC1 �
1p
�1

� 1p
�2

�k

�

�
�

b0
1p
�1

C i
b0
2p
�2

�NChCmCkC1 X

˛1C˛2C˛3C˛4DDNChCmCkC1

�
k
˛3

��
k
˛4

� p
�2 � p

�1p
�2 C p

�1

!˛1�˛4
�
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�

0

B
B
@

b0
1p
�1

� i
b0
2p
�2

b0
1p
�1

C i
b0
2p
�2

1

C
C
A

˛1C˛4


�
�

N C h C m
˛1 � 1

��
N C h C m
˛2 � 1

�

C
�

N C h C m
˛1

��
N C h C m

˛2

��
: (4.5.30)

These arguments complete the proof. ut
Lemma 4.5.2 Expression (4.5.30) is not identically zero with respect to the vari-

able equal to

b0
1p
�1

� i
b0
2p
�2

b0
1p
�1

C i
b0
2p
�2

.

Proof We will consider the sum in the expression for 	 , to be a polynomial of
the variable equal to the fraction

b0
1p
�1

� i
b0
2p
�2

b0
1p
�1

C i
b0
2p
�2

:

Thus, to show that 	 6	 0, it suffices to show that the sum has at least one term that
is nonzero. We show that the coefficient of power ˛1 C ˛4 D 1 is nonzero. In this
case, the sets of indices have the following options:

˛1 D 1; ˛4 D 0 or ˛1 D 0; ˛4 D 1:

Then the expression for the coefficient of a power of ˛1C˛4 D 1 will have the form

X

˛2C˛3DNChCmCk

�
k
˛3

� p
�2 � p

�1p
�2 C p

�1

!1 

�
�

N C h C m
˛2 � 1

�
C
�

N C h C m
1

�
�

�
�

NChCm
˛2

��
C

X

˛2C˛3DNChCmCk

�
k
˛3

��
k
1

� p
�2 � p

�1p
�2 C p

�1

!�1 
�
N C h C m

˛2

��

D
X

˛2C˛3DNChCmCk

�
k
˛3

� p
�2 � p

�1p
�2 C p

�1

!1 

�
�

N C h C m
˛2 � 1

��
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C
X

˛2C˛3DNChCmCk

�
k
˛3

� p
�2 � p

�1p
�2 C p

�1

!1 

.N C h C m/

�
N C h C m

˛2

��

C
X

˛2C˛3DNChCmCk

�
k
˛3

�
k

 p
�2 � p

�1p
�2 C p

�1

!�1 
�
N C h C m

˛2

��

D
 p

�2 � p
�1p

�2 C p
�1

!1
Œ� .N C h C m/� k�C

 p
�2 � p

�1p
�2 C p

�1

!1
.N C h C m/

C k

 p
�2 � p

�1p
�2 C p

�1

!�1
D �k

 p
�2 � p

�1p
�2 C p

�1

!1
C k

 p
�2 � p

�1p
�2 C p

�1

!�1

D k
4
p
�2

p
�1

�2 � �1
6	 0:

Thus, we have shown that the coefficient of a power of ˛1 C ˛4 D 1 is different
from zero in the sum in the expression for 	 . It follows that 	 6	 0. These arguments
complete the proof of the lemma. ut

We continue proving the theorem. Since

X

hCkC2mDl0

bh;k;mah Nak
Z

@�

�N�h N� k�m d� D 0;

then, substituting the found value for the integral into the expression and choosing
N D k0 � 1, we obtain

X

hCk0C2mDl0

bh;k0;mei˛.hCm/ 2�i

�
1

2

�2k0ChCm

.�1/2k0ChCm�1
�

1p
�1

C 1p
�2

�k0ChCm

�

�
�

1p
�1

� 1p
�2

�k0 � b0
1p
�1

C i
b0
2p
�2

�2k0ChCm X

˛1C˛2C˛3C˛4DD2k0ChCm

�
k0
˛3

��
k0
˛4

�
�

�
 p

�2 � p
�1p

�2 C p
�1

!˛1�˛4
0

BB
@

b0
1p
�1

� i
b0
2p
�2

b0
1p
�1

C i
b0
2p
�2

1

CC
A

˛1C˛4


�
�

k0 � 1C h C m
˛1 � 1

�
�

�
�

k0 � 1C h C m
˛2 � 1

�
C
�

k0 � 1C h C m
˛1

��
k0 � 1C h C m

˛2

��
ah�k0 D 0:
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We denote  D ei˛ , 
 D b0
1p
�1

C i
b0
2p
�2

and accordingly N
 D b0
1p
�1

� i
b0
2p
�2

.

Lemma 4.5.3 The following relations hold true

 D i
h


�p

�2 �
p
�1

�
� N


�p
�2 C

p
�1

�i
; a4 D 1

 4
c11 � c22 C c12i

c11 � c22 � c12i
:

Proof We first show the validity of the first relation. In accordance with the notation,
we have

b0
1p
�1

D 
 C N

2

;
b0
2p
�2

D 
 � N

2i

:

Then

b0
1 D

p
�1

2

�

 C N
� ; b0

2 D
p
�2

2i

�

 � N
� :

On the other hand, according to relation (4.5.10), we have

b0
1 D �1

2
sin˛; b0

2 D �1
2

cos˛:

Thus, equating both sides of the expressions for b0
1 and b0

2 respectively, yields

�1
2

sin˛ D
p
�1

2

�

 C N
� ; �1

2
cos˛ D

p
�2

2i

�

 � N
� ;

or

sin ˛ D �
p
�1
�

 C N
� ; cos˛ D �

p
�2

i

�

 � N
� D i

p
�2
�

 � N
� :

So we obtain

 D ei˛ D cos˛ C i sin ˛ D i
p
�2
�

 � N
� � i

p
�1
�

 C N
�

D i
h


�p

�2 �
p
�1

�
� N


�p
�2 C

p
�1

�i

and thus we have proved the first relation.
To prove the second relation, we write the left- and right-hand sides of expression

(4.5.8), using the previously introduced notation. First we transform the left-hand
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side of expression (4.5.8), and obtain

cos 2˛

sin 2˛
D 1 � 2 sin2 ˛

2 sin˛ cos˛
D

1� 2

�
 � N 
2i

�2

2

�
 � N 
2i

��
 C N 
2

� D  4 C 1

 4 � 1
i:

Next we transform the right-hand side of expression (4.5.8), and obtain

b11 � b22
2b12

D c11a21 C c22a22 C c12a1a2 � c11a22 � c22a21 C c12a1a2

2
h
�c11a1a2 C c22a1a2 C c12

2
a21 � c12

2
a22

i

D c11
�
a21 � a22

�C c22
�
a22 � a21

�C 2c12a1a2

2
h
.c22 � c11/ a1a2 C c12

2

�
a21 � a22

�i D
�
a21 � a22

�
.c11 � c22/C 2c12a1a2

2
h
.c22 � c11/ a1a2 C c12

2

�
a21�a22

�i

D
�
1 � 2a22

�
.c11 � c22/C 2c12a1a2

2
h
.c22 � c11/ a1a2 C c12

2

�
1 � 2a22

�i :

Since a D a1 C ia2, Na D a1 � ia2, jaj D 1, then

a1 D a C Na
2

D a2 C 1

2a
; a2 D a � Na

2i
D a2 � 1

2ia
;

hence

a1a2 D
�
a2 C 1

�

2a

�
a2 � 1

�

2ia
D 1 � a4

4a2
i;

1 � 2a22 D 1C 2
�
a2 � 1

�2

4a2
D 4a2 C 2

�
a4 � 2a2 C 1

�

4a2
D a4 C 1

2a2
:

Substitution of these expressions results in expression

b11 � b22
2b12

D

�
a4 C 1

�

2a2
.c11 � c22/C 2c12

�
1 � a4

�

4a2
i

2

"

.c22 � c11/

�
1 � a4

�

4a2
i C c12

2

�
a4 C 1

�

2a2

#

D

�
a4 C 1

�
.c11 � c22/

2a2
C c12

�
1 � a4

�
i

2a2

.c22 � c11/
�
1 � a4

�
i

2a2
C c12

�
a4 C 1

�

2a2

D
�
a4 C 1

�
.c11 � c22/C c12

�
1 � a4

�
i

.c22 � c11/ .1 � a4/ i C c12 .a4 C 1/
:



192 4 Functions with the One-Dimensional Holomorphic Extension Property

Thus, equating the converted left- and right-hand sides of expression (4.5.8) we
obtain the relation

 4 C 1

 4 � 1 i D
�
a4 C 1

�
.c11 � c22/C c12

�
1 � a4

�
i

.c22 � c11/ .1 � a4/ i C c12 .a4 C 1/
:

We solve this relation with respect to a4, and obtain

 4 C 1

 4 � 1
i D a4 .c11 � c22 � c12i/C .c11 � c22 C c12i/

a4 .c11i � c22i C c12/C .c22i � c11i C c12/
;

a4 .c11 � c22 � c12i/
�
 4 � 1

�C .c11 � c22 C c12i/
�
 4 � 1�

D a4 .c22 � c11 C c12i/
�
 4 C 1

�C .c11 � c22 C c12i/
�
 4 C 1

�
;

a4 .c11 � c22 � c12i/
�
 4 � 1� � a4 .c22 � c11 C c12i/

�
 4 C 1

�

D .c11 � c22 C c12i/
�
 4 C 1

� � .c11 � c22 C c12i/
�
 4 � 1� ;

a4 .c11 � c22 � c12i/
�
 4 � 1�C a4 .c11 � c22 � c12i/

�
 4 C 1

� D 2 .c11 � c22 C c12i/ ;

a4 .c11 � c22 � c12i/ 2 
4 D 2 .c11 � c22 C c12i/ ;

a4 D 1

 4
c11 � c22 C c12i

c11 � c22 � c12i
;

and thereby our second relation has been proved. These arguments complete the
proof. ut

4.5.5 Transformation of Moment Conditions

We continue proving the theorem. Denoting

x D
p
�2 � p

�1p
�2 C p

�1
; 0 < x < 1; (4.5.31)

we obtain the following expression for the coefficients bh;k0;m

X

hCk0C2mDl0

bh;k0;m

�
i
h


�p

�2 �
p
�1

�
� N


�p
�2 C

p
�1

�i�hCm
2�i

�
1

2

�2k0ChCm

�

� .�1/2k0ChCm�1
�

1p
�1

C 1p
�2

�k0ChCm �
1p
�1

� 1p
�2

�k0


2k0ChCm ah�k0�
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�
X

˛1C˛2C˛3C˛4D2k0ChCm

�
k0
˛3

��
k0
˛4

�
x˛1�˛4

 N




!˛1C˛4 

�
�

k0�1C hCm
˛1 � 1

��
k0 � 1C h C m

˛2 � 1
�

C
�

k0 � 1C h C m
˛1

��
k0 � 1C h C m

˛2

��
D 0:

The set f
 D N
g is a generic manifold in C2, which is a set of uniqueness for
holomorphic functions [67], that is this equation is valid for any 
 and 
. Therefore,
the equality

X

hCk0C2mDl0

bh;k0;m

�
i
h


�p

�2 �
p
�1

�
� 


�p
�2 C

p
�1

�i�hCm
2�i�

�
�
1

2

�2k0ChCm

.�1/2k0ChCm�1
�

1p
�1

C 1p
�2

�k0ChCm �
1p
�1

� 1p
�2

�k0

�

� 
2k0ChCm ah�k0
X

˛1C˛2C˛3C˛4DD2k0ChCm

�
k0
˛3

��
k0
˛4

�
x˛1�˛4

�






�˛1C˛4

�
�

k0 � 1C h C m
˛1 � 1

�
�

�
�

k0 � 1C h C m
˛2 � 1

�
C
�

k0 � 1C h C m
˛1

��
k0 � 1C h C m

˛2

��
D 0

holds. Moreover, we have the following limitations

˛1 � k0 C h C m; ˛2 � k0 C h C m; ˛3 � k0; ˛4 � k0

for the summation indices. In the latter relation we reduce similar monomials in the
inner sum, introducing new variables s1 and s2 to denote the powers of 
 and 
, i.e.,

s1 D ˛1 C ˛4; s2 D 2k0 C h C m � .˛1 C ˛4/ :

We obtain

X

s1;s2

bh;k0;m 

s1
s2

�
i
h


�p

�2 �
p
�1

�
� 


�p
�2 C

p
�1

�i�s1Cs2�2k0 �

� 2�i

�
1

2

�s1Cs2

.�1/s1Cs2�1
�

1p
�1

C 1p
�2

�s1Cs2�k0 � 1p
�1

� 1p
�2

�k0

�
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� a2.s1Cs2/�l0�4k0
X

˛1C˛2C˛3C˛4DDs1Cs2

�
k0
˛3

��
k0
˛4

�
x˛1�˛4



�
�

s1 C s2 � k0 � 1

˛1 � 1
�

�

�
�

s1 C s2 � k0 � 1

˛2 � 1

�
C
�

s1 C s2 � k0 � 1
˛1

��
s1 C s2 � k0 � 1

˛2

��
D 0;

where

h D 2 .s1 C s2/� l0 � 3k0; m D l0 C k0 � .s1 C s2/ :

Indeed, since on the one hand h C k0 C 2m D l0, and, on the other hand, according
to the above notation h C m D s1 C s2 � 2k0, then s1 C s2 � k0 C m D l0 and now
the required expressions for h and m are easy to obtain.

Next we write the resulting relation of homogeneous monomials of degree
r D s1 C s2. We obtain

l0Ck0X

rD2k0

X

s1Cs2Dr

bh;k0;m 

s1
s2

�
i
h


�p

�2 �
p
�1

�
�


�p
�2 C

p
�1

�i�s1Cs2�2k0 �

� 2�i

�
1

2

�s1Cs2

.�1/s1Cs2�1
�

1p
�1

C 1p
�2

�s1Cs2�k0 � 1p
�1

� 1p
�2

�k0

�

� a2.s1Cs2/�l0�4k0
X

˛1C˛2C˛3C˛4DDs1Cs2

�
k0
˛3

��
k0
˛4

�
x˛1�˛4



�
�

s1 C s2 � k0 � 1
˛1 � 1

�
�

�
�

s1 C s2 � k0 � 1

˛2 � 1

�
C
�

s1 C s2 � k0 � 1
˛1

��
s1 C s2 � k0 � 1

˛2

��
D 0;

where

h D 2r � l0 � 3k0; m D l0 C k0 � r; h C m D r � 2k0; (4.5.32)

and we have the following limitations

˛1 � r � k0; ˛2 � r � k0; ˛3 � k0; ˛4 � k0 (4.5.33)

for the summation indices. Then each homogeneous component is zero, i.e.,

X

s1Cs2Dr

bh;k0;m 

s1
s2

�
i
h


�p

�2 �
p
�1

�
� 


�p
�2 C

p
�1

�i�s1Cs2�2k0 �

� 2�i

�
1

2

�s1Cs2

.�1/s1Cs2�1
�

1p
�1

C 1p
�2

�s1Cs2�k0 � 1p
�1

� 1p
�2

�k0

�
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� a2.s1Cs2/�l0�4k0
X

˛1C˛2C˛3C˛4DDs1Cs2

�
k0
˛3

��
k0
˛4

�
x˛1�˛4



�
�

s1 C s2 � k0 � 1

˛1 � 1
�

�

�
�

s1 C s2 � k0 � 1

˛2 � 1

�
C
�

s1 C s2 � k0 � 1

˛1

��
s1 C s2 � k0 � 1

˛2

��
D 0:

Or, factoring out the terms independent of the summation indices from the summa-
tion sign, we get

�
i
h


�p

�2 �
p
�1

�
� 


�p
�2 C

p
�1

�i�r�2k0
2�i

�
1

2

�r

.�1/r�1 �

�
�

1p
�1

C 1p
�2

�r�k0 � 1p
�1

� 1p
�2

�k0

a2r�l0�4k0
X

s1Cs2Dr

bh;k0;m 

s1
s2�

�
X

˛1C˛2C˛3C˛4Dr

�
k0
˛3

��
k0
˛4

�
x˛1�˛4



�
�

r � k0 � 1
˛1 � 1

��
r � k0 � 1
˛2 � 1

�

C
�

r � k0 � 1

˛1

��
r � k0 � 1

˛2

��
D 0:

Using the fact that the terms outside the summation sign are nonzero, we obtain
the relation

X

s1Cs2Dr

bh;k0;m 

s1
s2

X

˛1C˛2C˛3C˛4Dr

�
k0
˛3

��
k0
˛4

�
x˛1�˛4



�
�

r � k0 � 1
˛1 � 1

�
�

�
�

r � k0 � 1

˛2 � 1

�
C
�

r � k0 � 1

˛1

��
r � k0 � 1

˛2

��
D 0:

If a polynomial of two variables is identically zero, then all its coefficients are zeros.
Thus we obtain the following assertion.

Proposition 4.5.3 The following equality holds

bh;k0;m

X

˛1C˛2C˛3C˛4Dr

�
k0
˛3

��
k0
˛4

�
x˛1�˛4



�
�

r � k0 � 1

˛1 � 1

��
r � k0 � 1
˛2 � 1

�

C
�

r � k0 � 1
˛1

��
r � k0 � 1

˛2

��
D 0;

where the variable x is defined by (4.5.31), relations (4.5.32) are satisfied for h and
m, and the summation indices ˛1; ˛2; ˛3; ˛4 satisfy limitations (4.5.33).



196 4 Functions with the One-Dimensional Holomorphic Extension Property

4.5.6 Completion of the Proof of Theorem 4.5.1
in the Two-Dimensional Case

Denote

g .x/ D
X

˛1C˛2C˛3C˛4Dr

�
k0
˛3

��
k0
˛4

�
x˛1�˛4Ck0



�
�

r � k0 � 1
˛1 � 1

��
r � k0 � 1
˛2 � 1

�

C
�

r � k0 � 1

˛1

��
r � k0 � 1

˛2

��
:

Write the difference of products of binomial coefficients in the expression for g .x/.
We get

�
�

r � k0 � 1
˛1 � 1

��
r � k0 � 1
˛2 � 1

�
C
�

r � k0 � 1

˛1

��
r � k0 � 1

˛2

�

D .r � k0 � 1/Š .r � k0 � 1/Š

˛1Š ˛2Š .r � k0 � ˛1/Š .r � k0 � ˛2/Š Œ�˛1˛2 C .r � k0 � ˛1/ .r � k0 � ˛2/�

D
�

r � k0
˛1

��
r � k0
˛2

�

1 � ˛1 C ˛2

r � k0

�
:

Then g .x/ can be written as

g .x/ D
X

˛1C˛2C˛3C˛4Dr

�
k0
˛3

��
k0
˛4

��
r � k0
˛1

��
r � k0
˛2

�

1 � ˛1 C ˛2

r � k0

�
x˛1�˛4Ck0 :

Introduce p D ˛1 � ˛4 C k0, 0 6 p 6 r. Then

g .x/ D
X

2˛1C˛2C˛3�pDr�k0

�
k0
˛3

��
k0

˛1 C k0 � p

��
r � k0
˛1

��
r � k0
˛2

�

1 � ˛1 C ˛2

r � k0

�
xp:

Thus, we can write g.x/ as g.x/ D
rX

pD0
cpxp, where the coefficients cp have the form

cp D
X

2˛1C˛2C˛3DrCp�k0

�
k0
˛3

��
k0

˛1 C k0 � p

��
r � k0
˛1

��
r � k0
˛2

�

1 � ˛1 C ˛2

r � k0

�
:
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Proposition 4.5.4 Coefficients cp and symmetric thereto coefficients cr�p of the
polynomial g.x/ relate as

cp C cr�p D 0; (4.5.34)

i.e., unity is the root of the polynomial g.x/.

Proof Consider the coefficient

cr�p D
r�k0X

˛1Dr�p�k0

X

˛2C˛3DDrCr�p�k0�2˛1

�
k0
˛3

��
k0

˛1 C k0 � r C p

��
r � k0
˛1

��
r � k0
˛2

�
�

�


1 � ˛1 C ˛2

r � k0

�
:

Making the change of variables

˛0
1 D ˛1 � r C p C k0; ˛1 D ˛0

1 C r � p � k0;

we arrive at the following expression for the coefficient

cr�p D
pX

˛0

1D0

X

˛2C˛3DrCr�p�k0�
�2˛0

1�2rC2pC2k0

�
k0
˛3

��
k0
˛0
1

��
r � k0

˛0
1 C r � p � k0

��
r � k0
˛2

�
�

�


1 � ˛0

1 C r � p � k0 C ˛2

r � k0

�

D �
pX

˛0

1D0

X

˛2C˛3DDpCk0�2˛0

1

�
k0
˛3

��
k0
˛0
1

��
r � k0
p � ˛0

1

��
r � k0
˛2

�

˛0
1 C ˛2 � p

r � k0

�

D �
pX

˛0

1D0

k0X

˛3D0

�
k0
˛3

��
k0
˛0
1

��
r � k0
p � ˛0

1

��
r � k0

p C k0 � 2˛0
1 � ˛3

�
�

�


˛0
1 C p C k0 � 2˛0

1 � ˛3 � p

r � k0

�

D �
pX

˛0

1D0

k0X

˛3D0

�
k0
˛3

��
k0
˛0
1

��
r � k0
p � ˛0

1

��
r � k0

p C k0 � 2˛0
1 � ˛3

�

k0 � ˛0

1 � ˛3
r � k0

�
:
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On the other hand

cp D
pX

˛1D0

X

˛2C˛3DDrCp�k0�2˛1

�
k0
˛3

��
k0

˛1 C k0 � p

��
r � k0
˛1

��
r � k0
˛2

�

1 � ˛1 C ˛2

r � k0

�

D
pX

˛1D0

k0X

˛3D0

�
k0
˛3

��
k0

˛1 C k0 � p

��
r � k0
˛1

��
r � k0

2˛1 C ˛3 � p

�

˛1 C ˛3 � p

r � k0

�

D
pX

˛1D0

k0X

˛3D0

�
k0
˛3

��
k0

p � ˛1

��
r � k0
˛1

��
r � k0

2˛1 C ˛3 � p

�

˛1 C ˛3 � p

r � k0

�
:

Making the change of variables

˛0
1 D p � ˛1; ˛1 D p � ˛0

1;

we arrive at the following expression for the coefficient

cp D
pX

˛0

1D0

k0X

˛3D0

�
k0
˛3

��
k0
˛0
1

��
r � k0
p � ˛0

1

��
r � k0

p � 2˛0
1 C ˛3

�

˛3 � ˛0

1

r � k0

�
:

Making the change of variables

˛0
3 D k0 � ˛3; ˛3 D k0 � ˛0

3;

we arrive at the final expression for the coefficient

cp D
pX

˛0

1D0

k0X

˛0

3D0

�
k0
˛0
3

��
k0
˛0
1

��
r � k0
p � ˛0

1

��
r � k0

p � 2˛0
1 C k0 � ˛0

3

�

k0 � ˛0

3 � ˛0
1

r � k0

�
:

Thus, relation (4.5.34) has been proved for the coefficients of the polynomial g.x/.
ut

Proposition 4.5.5 The polynomial g.x/ has a unique positive root x D 1.

Proof According to Descartes’ theorem, the number of positive roots of a poly-
nomial, each counted as many times as its multiplicity is equal to the number
of sign changes in the system of coefficients of the polynomial (leaving out zero
coefficients), or less than this number by an even number. Thus, for the positive
roots of g.x/ to be unique, it is necessary to show the presence of exactly one sign
change in the system of coefficients.
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Consider for example the coefficients c0; c1; cr.

c0 D
X

˛2C˛3Dr�k0

�
k0
˛3

��
r � k0
˛2

�

1 � ˛2

r � k0

�
> 0;

c1 D
X

˛2C˛3DrC1�k0

�
k0
˛3

�
k0

�
r � k0
˛2

�

1 � ˛2

r � k0

�
C

C
X

˛2C˛3Dr�1�k0

�
k0
˛3

�
.r � k0/

�
r � k0
˛2

�

1 � 1C ˛2

r � k0

�
> 0;

cr D
X

2.r�k0/C˛2C˛3D
rCr�k0

�
k0
˛3

��
k0

r � k0 C k0 � r

��
r � k0
r � k0

��
r � k0
˛2

�

1 � r � k0 C ˛2

r � k0

�

D
X

˛2C˛3Dk0

�
k0
˛3

��
r � k0
˛2

�

� ˛2

r � k0

�
D �

X

˛2C˛3Dk0

�
k0
˛3

��
r � k0 � 1
˛2 � 1

�
< 0:

Let us show that the coefficients cp � 0, when 0 � p � r=2 � r � k0. Given
relation (4.5.34), this will mean that there is exactly one sign change in the system of
coefficients of the polynomial g.x/. Making the change ˇ D ˛1 C ˛2, ˛2 D ˇ � ˛1,
we obtain the following expression for the coefficient

cp D
X

˛1CˇC˛3
rCp�k0

�
k0
˛3

��
k0

˛1 C k0 � p

��
r � k0
˛1

��
r � k0
ˇ � ˛1

�

1 � ˇ

r � k0

�

D
r�k0X

ˇD0

X

˛1C˛3D
rCp�k0�ˇ

�
k0
˛3

��
k0

˛1 C k0 � p

��
r � k0
˛1

��
r � k0
ˇ � ˛1

�

r � k0 � ˇ

r � k0

�

�
rCp�k0X

ˇDr�k0

X

˛1C˛3D
rCp�k0�ˇ

�
k0
˛3

��
k0

˛1 C k0 � p

��
r � k0
˛1

��
r � k0
ˇ � ˛1

�

ˇ � .r � k0/

r � k0

�
:
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In the second sum we make the substitution ˇ0 D ˇ � .r � k0/, which yields

rCp�k0X

ˇDr�k0

X

˛1C˛3D
rCp�k0�ˇ

�
k0
˛3

��
k0

˛1 C k0 � p

��
r � k0
˛1

��
r � k0
ˇ � ˛1

�

ˇ � .r � k0/

r � k0

�

D
pX

˛1D0

p�˛1X

ˇ0D0

�
k0

p � ˇ0 � ˛1

��
k0

˛1 C k0 � p

��
r � k0
˛1

��
r � k0
˛1 � ˇ0

�

ˇ0

r � k0

�
:

In the first sum of the original expression for cp we arrange the ˇ-terms in reverse
order. Making the substitution ˇ0 D r � k0 � ˇ, we obtain

r�k0X

ˇD0

X

˛1C˛3DrCp�k0�ˇ

�
k0
˛3

��
k0

˛1 C k0 � p

��
r � k0
˛1

��
r � k0
ˇ � ˛1

�

r � k0 � ˇ

r � k0

�

D
pX

˛1D0

p�˛1X

ˇ0D0

�
k0

p C ˇ0 � ˛1
��

k0
˛1 C k0 � p

��
r � k0
˛1

��
r � k0
˛1 C ˇ0

�

ˇ0

r � k0

�

C
pX

˛1D0

r�k0�˛1X

ˇ0Dp�˛1C1

�
k0

p C ˇ0 � ˛1
��

k0
˛1 C k0 � p

��
r � k0
˛1

��
r � k0
˛1 C ˇ0

�

ˇ0

r � k0

�
:

Thus

cp D
pX

˛1D0

r�k0�˛1X

ˇ0Dp�˛1C1

�
k0

p C ˇ0 � ˛1

��
k0

˛1 C k0 � p

��
r � k0
˛1

��
r � k0
˛1 C ˇ0

�

ˇ0

r � k0

�

C
pX

˛1D0

p�˛1X

ˇ0D0

�
k0

p C ˇ0 � ˛1

��
k0

˛1 C k0 � p

��
r � k0
˛1

��
r � k0
˛1 C ˇ0

�

ˇ0

r � k0

�

�
pX

˛1D0

p�˛1X

ˇ0D0

�
k0

p � ˇ0 � ˛1

��
k0

˛1 C k0 � p

��
r � k0
˛1

��
r � k0
˛1 � ˇ0

�

ˇ0

r � k0

�

D
pX

˛1D0

r�k0�˛1X

ˇ0Dp�˛1C1

�
k0

p C ˇ0 � ˛1

��
k0

˛1 C k0 � p

��
r � k0
˛1

��
r � k0
˛1 C ˇ0

�

ˇ0

r � k0

�

C
pX

˛1D0

p�˛1X

ˇ0D0

�
k0

˛1 C k0 � p

��
r � k0
˛1

�

ˇ0

r � k0

� 
�
k0

p C ˇ0 � ˛1
��

r � k0
˛1 C ˇ0

�

�
�

k0
p � ˇ0 � ˛1

��
r � k0
˛1 � ˇ0

��
:
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We write down the difference of products of binomial coefficients, and obtain

�
k0

p C ˇ0 � ˛1
��

r � k0
˛1 C ˇ0

�
�
�

k0
p � ˇ0 � ˛1

��
r � k0
˛1 � ˇ0

�

D k0Š

.p C ˇ0 � ˛1/Š .k0 � p C ˇ0 C ˛1/Š

.r � k0/Š

.˛1 C ˇ0/Š .r � k0 � ˛1 C ˇ0/Š
�

� ��k0 � p � ˇ0 C ˛1 C 1
� � � � �k0 � p C ˇ0 C ˛1

� �
r � k0 � ˛1 � ˇ0 C 1

� � � � �
� �r � k0 � ˛1 C ˇ0� � �

p � ˇ0 � ˛1 C 1
� � � �

� � � �p C ˇ0 � ˛1
� �
˛1 � ˇ0 C 1

� � � � �˛1 C ˇ0��:

Next we show that for given values ˛1 and ˇ0 and for 0 � p � r=2 � r � k0 the
following relation holds

�
k0 � p � ˇ0 C ˛1 C 1

� � � � �k0 � p C ˇ0 C ˛1
� �

r � k0 � ˛1 � ˇ0 C 1
� � � � �

� �r � k0 � ˛1 C ˇ0� � �
p � ˇ0 � ˛1 C 1

� � � � �p C ˇ0 � ˛1
��

� �˛1 � ˇ0 C 1
� � � � �˛1 C ˇ0� � 0: (4.5.35)

Note that for 0 � p � r=2 � r � k0 the following inequality holds

�
p�ˇ0 � ˛1C1

� � � � �p C ˇ0 � ˛1
� � �

r � k0 � ˛1 � ˇ0 C 1
� � � � �r � k0 � ˛1 C ˇ0� :

Moreover, if 0 � p � k0 � r=2 � r � k0, then

�
˛1 � ˇ0 C 1

� � � � �˛1 C ˇ0� � �
k0 � p � ˇ0 C ˛1 C 1

� � � � �k0 � p C ˇ0 C ˛1
�
:

Thus, the desired inequality (4.5.35) holds for p � k0 � r=2 � r � k0.
Now we consider the case when k0 � p � r=2 � r � k0. In this case, to prove

inequality (4.5.35), it sufficient to prove the following relations:

.k0 � p � ˇ0 C ˛1 C 1/ .r � k0 � ˛1 � ˇ0 C 1/ � .p � ˇ0 � ˛1 C 1/ .˛1 � ˇ0 C 1/
:::

.k0 � p C ˇ0 C ˛1/ .r � k0 � ˛1 C ˇ0/ � .p C ˇ0 � ˛1/ .˛1 C ˇ0/ :

We will prove the first and last relations in this group. The interim relations are met
because of their monotony in ˇ0. Let us prove the first relation:

�
k0 � p � ˇ0 C ˛1 C 1

� �
r � k0 � ˛1 � ˇ0 C 1

�

� �
p � ˇ0 � ˛1 C 1

� �
˛1 � ˇ0 C 1

�
: (4.5.36)
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After expansion we obtain

.k0 � p/ .r � k0/� ˛1k0 �ˇ0k0 C ˛1p C ˇ0p C k0 � p �ˇ0 .r � k0/Cˇ0˛1 C ˇ02

� ˇ0 C ˛1 .r � k0/� ˛21 � ˛1ˇ
0 C ˛1 C r � k0 � ˛1 � ˇ0 C 1

� ˛1p � ˇ0p C p � ˇ0˛1 C ˇ02 � ˇ0 � ˛21 C ˛1ˇ
0 � ˛1 C ˛1 � ˇ0 C 1:

By combining similar terms we obtain

.k0�p/ .r � k0/ � ˛1k0 � ˇ0k0 C ˇ0p C k0 � p � ˇ0 .r � k0/C ˛1 .r � k0/C r � k0

� �ˇ0p C p;

� .r � k0/
�
k0 � p � ˇ0 C ˛1

�C k0
�
˛1 C ˇ0� � 2ˇ0p C 2p � r � 0:

Note that k0 � p �ˇ0 C˛1 > 0, since this is a binomial coefficient. For given values
˛1 and ˇ0 we consider the positive part k0 .˛1 C ˇ0/ � 2ˇ0p of this inequality:

k0
�
˛1 C ˇ0� � 2ˇ0p D k0˛1 C k0ˇ

0 � ˇ0p � ˇ0p

D k0˛1 � ˇ0p C .k0 � p/ ˇ0 D k0˛1 � ˇ0p � .p � k0/ ˇ
0:

For the positive part to have maximum value, we need to take ˛1 D p � 1, ˇ0 D 1,
and obtain

� .r � k0/ .k0 � 2/C .k0 � 2/ p C 2p � r � 0:

This inequality holds because p � r=2 � r � k0. Thus, we have proved the validity
of (4.5.36).

Let us prove the last relation in the group, namely show that

�
k0 � p C ˇ0 C ˛1

� �
r � k0 � ˛1 C ˇ0� � �

p C ˇ0 � ˛1
� �
˛1 C ˇ0� : (4.5.37)

After expansion we obtain

.k0 � p/ .r � k0/� ˛1k0 C ˛1p C ˇ0k0 � ˇ0p C ˇ0 .r � k0/� ˛1ˇ
0 C ˇ02

C˛1 .r � k0/ � ˛21 C ˛1ˇ
0 � p˛1 C pˇ0 C ˇ0˛1 C ˇ02 � ˛21 � ˛1ˇ0:

Summation of similar terms yields

.k0 � p/ .r � k0/� ˛1k0 C ˇ0k0 � ˇ0p C ˇ0 .r � k0/C ˛1 .r � k0/ � pˇ0 � 0;

� .r � k0/
�
k0 � p C ˇ0 C ˛1

�C k0
�
˛1 � ˇ0�C 2pˇ0 � 0:
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Note that k0�pCˇ0 C˛1 � 0, ˛1�ˇ0 � 0, since these are the binomial coefficients.
For given values ˛1 and ˇ0, we consider the positive part k0 .˛1 � ˇ0/C 2pˇ0 of this
inequality:

k0
�
˛1 � ˇ0�C 2pˇ0 D k0˛1 C pˇ0 C pˇ0 � k0ˇ

0 D k0˛1 C pˇ0 C .p � k0/ ˇ
0:

For the positive part to have maximum value we need to take ˛1 D p=2, ˇ0 D p=2,
then

� .r � k0/ .k0 � p C p=2C p=2/C k0 .p=2� p=2/C 2p
p

2
� 0;

� .r � k0/ k0 C k20 � 0:

The last inequality holds because r > 2k0.
Thus, we have proved the validity of (4.5.37). From the above arguments and

calculations, we see that the coefficients cp � 0, when 0 � p � r=2. These
arguments complete the proof. ut

Applying the above proposition, from Proposition 4.5.3 we get that bh;k0;m D 0

for h C k0 C 2m D l0. Thus, when k > 1we have bh;k;m D 0 for any weight degree l.
We have shown that the function f is holomorphic in a neighborhood of the

boundary point 0. From the conditions of the theorem, the function f extends
holomorphically to the intersection of D with each complex line passing through the
boundary point 0. Consequently, by Hartogs’ extension theorem [73] the function
f will continue holomorphically to the whole domain D � C2. These arguments
complete the proof of Theorem 4.5.1 in the two-dimensional case.

�

4.6 On a Boundary Analogue of Hartogs’ Theorem in a Ball

In Sect. 4.1 we proved that a family of complex lines intersecting the germ of
a generic manifold � , is sufficient for holomorphic extension. In Sect. 4.3 we
considered a family of complex lines passing through the germ of a complex
hypersurface, the germ of a generic manifold in a complex hypersurface, and the
germ of a real-analytic manifold of real dimension .n � 1/. In particular, in C2 this
can be any real-analytic curve. Various other families are given in [5, 6, 12, 25]. We
emphasize here the papers [6, 25], which show that a family of complex lines passing
through a finite number of points arranged in some way is sufficient for holomorphic
extension. However this is only asserted for real-analytic or infinitely differentiable
functions defined on the boundary of a ball. So, Agranovskii and Globevnik showed
that, in C2, for real-analytic functions defined on the boundary of a ball just two
points lying in the closure of the ball are enough.
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4.6.1 Main Results

Let B D fz 2 Cn W jzj < 1g be a unit ball in Cn centered at the origin and let
S D @B be the boundary of the ball. We recall we say that the function f 2 C .S/
has the one-dimensional holomorphic extension property along the family L� , if
it has the one-dimensional holomorphic extension property along any complex line
lz;b 2 L� , where lz;b is a complex line of the form (3.2.1).

Recall we will also say that the set L� is sufficient for holomorphic extension,
if the function f 2 C .S/ has the one-dimensional holomorphic extension property
along all complex lines in the familyL� , and the function f holomorphically extends
to B (i.e., f is a CR-function on S). In [13, 24, 49, 53] it is shown that for a class
of continuous functions given on the boundary of a ball, a family of complex lines
passing through finite points in the ball will be a sufficient family. Baracco was the
first to prove this result, which was earlier explicitly conjectured by Agranovskii
in [6]. Globevnik [24] suggested an alternative proof, even for the case when the
vertices lie outside the ball. Those results were obtained by completely different
methods.

Theorem A Suppose n D 2 and the function f .�/ 2 C .S/ has the one-dimensional
holomorphic extension property along the family Lfa;c;dg, and the points a; c; d 2 B
do not lie on one complex line in C2, then f .�/ extends holomorphically into B.

We denote by A a set of points ak 2 B � Cn, k D 1; : : : ; n C 1, lying outside
the complex hyperplane Cn.

Theorem B Let a function f .�/ 2 C .S/ have the one-dimensional holomorphic
extension property along the family LA , then f .�/ extends holomorphically into B.

4.6.2 The Example

Now we give an example based on Globevnik’s example, which shows that for
continuous functions on the boundary S of the family LA , where A is a set of
points ak 2 B � Cn, k D 1; : : : ; n is not enough for holomorphic extension.

Consider part of a complex hyperplane

� D f.z0;w/ 2 B W w D 0g;

in the ball B D f.z0;w/ 2 Cn W jz0j2 C jwj2 < 1g, where z0 D .z1; : : : ; zn�1/, w 2 C

and jz0j2 D jz1j2 C � � � C jzn�1j2. Then the function f D wkC2

Nw .k 2 Z; k � 0/ has

the one-dimensional property of holomorphic extension from @B along the complex
line of the family L� , which is smooth on @B, but does not extend holomorphically
to B.
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Consider complex lines intersecting �:

la0 D f.z0;w/ 2 C
n W z0 D a0 C b0t; w D ct; t 2 Cg: (4.6.1)

These lines pass through the point .a0; 0/ 2 � . When ja0j < 1 the point .a0; 0/ 2 B,
while for ja0j > 1 the point .a0; 0/ … B. Without loss of generality, we suppose that
jb0j2 C jcj2 D 1. The intersection la0 \ @B forms a circle

jtj2 C ha0; Nb0iNt C hNa0; b0it D 1 � ja0j2; or jt C a0 Nb0j2 D 1 � jcj2ja0j2; (4.6.2)

where ha0; b0i D a1b1 C � � � C an�1bn�1.
Indeed, since for complex lines of the form (4.6.1) on @B

Nt D 1 � ja0j2 � hNa0; b0it

t C ha0; Nb0i ;

the function f on @B becomes

f D .t C ha0; Nb0i/
1� ja0j2 � hNa0; b0it

.ct/kC2:

The denominator of the fraction is equal to 0 at t0 D 1 � ja0j2
hNa0; b0i . Substituting this

point into expression (4.6.2), we obtain

.1 � ja0j2/2
jha0; bij2 C 1 � ja0j2 > 0; if ja0j < 1:

Therefore the point of the line la0 corresponding to t0 lies outside the ball
B. So the function f holomorphically extends to la0 \ B. Consider the finite set
A D fa1; : : : ; an�1; 0g 2 B, then there exists a complex hyperplane containing A .
We can suppose, that this is the hyperplane � .

4.6.3 Complexification of the Poisson Kernel

Consider the invariant Poisson kernel [71, p. 48]

P.z; �/ D cn

�
1 � jzj2�n

ˇ
ˇ1 � hz; N�iˇˇ2n

D cn

�
1 � hz; Nzi�n

�
1 � hz; N�i�n�

1 � h�; Nzi�n ;

where cn D .n � 1/Š
2�n

, hz; �i D z1�1 C � � � C zn�n.
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If the function f .z/ is M -harmonic in B and continuous on B, then the integral
representation

F.z/ D
Z

S

f .�/P.z; �/ d	.�/; (4.6.3)

holds, where

d	.�/ D 2

in

nX

kD1
.�1/k�1 N�k d N�Œk� ^ d�

ˇ
ˇ̌
S

(4.6.4)

is the Lebesgue measure on S, d� D d�1 ^ � � � ^ d�n, d N�Œk� D d N�1 ^ � � � ^ d N�k�1 ^
d N�kC1 ^ � � � ^ d N�n. The function F.z/ extends on B as a continuous function and

the boundary values of the function F.z/ coincides with f .�/, i.e., F.z/
ˇ
ˇ
ˇ
S
D f .�/.

Recall that an M -invariant harmonic function satisfies the Laplace equation [71,
pp. 55–56]

Q4F.z/ D 0;

where

Q4F.z/ D 4
�
1 � jzj2�

nX

j;kD1
.ıjk � zjNzk/

@2F.z/

@zj@Nzk

and ıjk is the Kronecker symbol. The holomorphic functions in the ball B are M -
harmonic. Therefore, formula (4.6.3) is an integral representation for holomorphic
functions. Consider a complex line of the form

lz;b D f� 2 C
n W � D z C bt; t 2 Cg; (4.6.5)

where z 2 Cn, b 2 CP
n�1.

Consider a complexification of the Poisson kernel of the form

Q.z;w; �/ D cn

�
1 � hz;wi�n

�
1 � hz; N�i�n�

1 � h�;wi�n : (4.6.6)

It is obvious that P.z; �/ D Q.z; Nz; �/. Introduce the function

˚.z;w/ D
Z

S
f .�/Q.z;w; �/ d	.�/:

This function is holomorphic in the variables .z;w/ in B � B � C2n, because if
� 2 S and z;w 2 B, then the denominator in kernel (4.6.6) does not vanish. Note
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that ˚.z; Nz/ D F.z/, and the derivatives

@˛Cˇ˚
@z˛@wˇ

ˇ̌
ˇ
ˇ
wDNz

D @˛CˇF

@z˛@Nzˇ ; (4.6.7)

where

@˛Cˇ˚
@z˛@wˇ

D @k˛kCkˇk˚
@z˛11 � � � @z˛n

n @wˇ11 � � � @wˇn
n

and ˛ D .˛1; : : : ; ˛n/, ˇ D .ˇ1; : : : ; ˇn/ are multi-indices, k˛k D ˛1 C � � � C ˛n,
kˇk D ˇ1 C � � � C ˇn.

Proposition 4.6.1 Let the function f .�/ 2 C .S/ have the one-dimensional holo-
morphic extension property along the family Lf0g, then the integral

˚.z;w/ D
Z

S
f .�/Q.z;w; �/ d	.�/

has the properties ˚.0;w/ D const and the derivatives
@˛˚.0;w/

@z˛
are polynomials

in w of degree not higher than k˛k.

Proof Consider the derivative

@˛Cˇ

@z˛@wˇ

�
1

�
1 � hz; N�i�n�

1 � h�;wi�n

�

D C˛;ˇ N�˛�ˇ
�
1 � hz; N�i�nCk˛k�

1 � h�;wi�nCkˇk : (4.6.8)

Calculate the derivative of Q.z;w; �/

@˛CˇQ.z;w; �/

@z˛@wˇ
D cn

@˛Cˇ

@z˛@wˇ



.1 � hz;wi/n 1

.1 � hz; N�i/n.1 � h�;wi/n
�
:

It is clear that

@˛

@z˛
.fg/ D

X

0���˛
b�
@� f

@z�
@˛��g

@z˛�� ;
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where � � ˛ means that �1 � ˛1; : : : ; �n � ˛n, and b� is some constant. Therefore

@˛Q.z;w; �/

@z˛

D cn

X

0�� 0�˛
b� 0

@˛�� 0

@z˛�� 0

�
1

.1 � hz; N�i/n.1 � h�;wi/n
�
@�

0

@z� 0

.1� hz;wi/n:

The derivatives

@�
0

@z� 0

.1 � hz;wi/n D .�1/k� 0kn.n � 1/ � � � .n � k� 0k/.1 � hz;wi/n�k� 0kw�
0

:

Then

@�
0

@z� 0

.1 � hz;wi/n
ˇ
ˇ
ˇ
zD0D .�1/k� 0kn.n � 1/ � � � .n � k� 0k/w� 0

: (4.6.9)

Therefore formulas (4.6.8) and (4.6.9) imply

@˛Q.0;w; �/

@z˛
D cn

X

0�� 0�˛
C� 0

N�˛�� 0

w�
0

�
1 � h�;wi�n :

From here we obtain, that the derivative
@˛CˇQ.0;w; �/

@z˛@wˇ
is a sum of terms of the

form
C˛;ˇ;�;ı N�˛�� 0

�ˇ�� 00

wı
�
1 � h�;wi�nCkˇk�k� 00k for kık � n and � 00 � � 0. Therefore the derivative

@˛Cˇ˚.0;w/
@z˛@wˇ

is a linear combination of integrals with the coefficients depending on
w

Z

S
f .�/

N�˛�� 0

�ˇ�� 00

�
1 � h�;wi�nCkˇk�k� 00k d	.�/: (4.6.10)

The form d	.�/ in the variables b and t, where � D bt, t 2 C will change as
follows [49]

d	.bt/ D 2

in
jtj2n�2Nt dt ^

� nX

kD1
.�1/k�1bk dbŒk�

�
^
� nX

kD1
.�1/k�1 Nbk d NbŒk�

�
:
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Since on the sphere S the equality 1 D j�j D jbtj holds, we have jtj D 1

jbj and

Nt D 1

tjbj2 . Then

d	.bt/ D 2

in
1

tjbj2n
dt ^

� nX

kD1
.�1/k�1bk dbŒk�

�
^
� nX

kD1
.�1/k�1 Nbk d NbŒk�

�

D �.b/ ^ dt

t
:

By Fubini’s theorem we obtain

Z

S
f .�/

N�˛�� 0

�ˇ�� 00

�
1 � h�;wi�nCkˇk�k� 00k d	.�/

D cn

Z

CP
n�1
�.b/

Z

S\l0;b

f .bt/
Ntk˛k�k� 0ktkˇk�k� 00k

t
�
1� thb;wi�nCkˇk�k� 00k dt

D cn

Z

CP
n�1
�.b/

Z

S\l0;b

f .bt/
tkˇk�k� 00k

tk˛k�k� 0kC1�1 � thb;wi�nCkˇk�k� 00k dt

D cn

Z

CP
n�1
�.b/

Z

S\l0;b

f .bt/
tkˇk�k˛kCk� 0j�k� 00k�1
�
1 � thb;wi�nCkˇk�k� 00k dt D 0;

if kˇk > k˛k (then kˇk � k� 00k > k˛k � k� 0k), and the function
1

1 � thb;wi is

holomorphic in the closed disk
n
t 2 C W jtj � 1

jbj
o
, i.e., in B \ l0;b. In fact, the

singular point t0 D 1

hb;wi does not lie in the disk B \ l0;b, since jhb;wij 6 jbjjwj

and therefore jt0j > 1

jbj if jwj < 1. Hence by virtue of (4.6.10)

@˛Cˇ˚.0;w/
@z˛@wˇ

D 0 (4.6.11)

for kˇk > k˛k.
Therefore by the Taylor formula for the function ˚.z;w/ at the point .0; 0/ we

get that ˚.0;w/ D const and the derivatives
@˛˚.0;w/

@z˛
are polynomials in w of

degree not higher than k˛k. ut
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Corollary 4.6.1 Under the hypotheses of Proposition 4.6.1 the equality

@˛CˇF.0; 0/

@z˛@Nzˇ D 0

holds for kˇk > k˛k.

Proof Substituting w D Nz into Eq. (4.6.11) and using Eq. (4.6.7), we obtain the
desired result. ut

4.6.4 The Application of Automorphisms of a Ball

Recall that the of a ball 'a.u/ transforming the point a into 0, and vice versa, has
the form

z D 'a.u/ D
a � hu; Nai

ha; Naia �p
1 � jaj2

�
u � hu; Nai

ha; Naia
�

1 � hu; Nai

and 'a.u/ is an involution, i.e., '�1
a D 'a [71, p. 34]. Note that

�
'a.u/; 'Na.v/

�
is

the automorphism of B � B, taking the point .a; Na/ to .0; 0/ and vice versa.

Lemma 4.6.1 The automorphism 'c.u/ of a ball B transforms the complex line lc;d,
passing through points c; d 2 B to a complex line l0;a, passing through points 0 and
a D 'c.d/ 2 B.

Proof Let us show that the automorphism of a ball preserves complex lines. In fact,
let u D c C .d � c/t. We compute hu; ci D jcj2 C t

�hd; Nci � jcj2�, then

'c
�
c C .d � c/t

� D t
c
�jcj2 � hd; Nci��p

1 � jcj2�djcj2 � hd; Ncic
�

jcj2�1 � jcj2 � t.hd; Nci � jcj2/� ;

and the singular point of this function does not lie in B. For t D 0 we get 'c
�
c C

.d � c/0
� D 'c.c/ D 0, and for t D 1 we get

a D 'c
�
c C .d � c/1

� D 'c.d/ D c
�jcj2 � hd; Nci� �p

1 � jcj2�djcj2 � hd; Ncic
�

jcj2�1 � hd; Nci� ;

and for other points t it takes the form

'c
�
c C .d � c/t

� D tg

e1 � e2t
;
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where g is some vector of Cn. We put z1 D tg1
e1 � e2t

, then t D e1z1
g1 C e2z1

, and

zj D tgj

e1 � e2t
D e1z1g1

e1g1
. Therefore 'c

�
c C .d � c/t

�
defines a complex line passing

through the points 0 and a. ut
As shown in [71, p. 52, Remark] the following equality

d	.'a.
// D P.a; 
/ d	.
/; 
 2 S

holds and using Eq. (4.6.6), we obtain

d	.'a.
// D P.a; 
/ d	.
/ D Q.a; Na; 
/ d	.
/; 
 2 S:

By Theorem 2.2.2 [71, p. 34] the automorphism 'a.u/ is a homeomorphism of the
ball B to itself and homeomorphisms S ! S. Also by Theorem 3.3.5 [71, p. 50], the
equality

P
�
'a.u/; 'a.
/

� D P.u; 
/

P.a; 
/

holds. Therefore

Q
�
'a.u/; 'Na.Nu/; 'a.
/

� D Q.u; Nu; 
/
Q.a; Na; 
/ : (4.6.12)

The manifold v D Nu is generic in C2n, and the functions from Eq. (4.6.12) are real-
analytic. Hence

Q
�
'a.u/; 'Na.v/; 'a.
/

� D Q.u; v; 
/

Q.a; Na; 
/ :

Denote the function

˚a.z;w/ D ˚
�
'a.u/; 'Na.v/

� D
Z

S
f .�/Q

�
'a.u/; 'Na.v/; �

�
d	.�/:

Make the change � D 'a.
/ and denote f .'a.
// D fa.
/. We obtain

˚.z;w/ D
Z

S
f .'a.
//Q

�
'a.u/; 'Na.v/; 'a.
/

�
d	.'a.
//

D
Z

S
f .'a.
//

Q.u; v; 
/Q.a; Na; 
/
Q.a; Na; 
/ d	.
/

D
Z

S
fa.
/Q.u; v; 
/ d	.
/ D ˚a.u; v/: (4.6.13)
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Proposition 4.6.2 Let the function f .�/ 2 C .S/ have the one-dimensional holo-
morphic extension property along the family Lfag, a 2 B, then ˚.a;w/ D const and

the derivatives
@˛˚.a;w/

@z˛
are polynomials in 'Na.w/ of degree not higher than k˛k.

Proof With the help of the automorphism 'a we translate the point a to 0. Then, by
Proposition 4.6.1, ˚a.0; v/ D const. Using Eq. (4.6.13) we obtain
˚
�
a; 'Na.v/

� D const, i.e., ˚.a;w/ D const. Similarly, from Proposition 4.6.1 and

equality (4.6.13) we get that the derivatives
@˛˚.a;w/

@z˛
are polynomials in 'Na.w/ of

degree not higher than k˛k. ut
Represent the function˚.z;w/ as a sum of homogeneous polynomials in z and w.

Expand Q.z;w; �/ in a power series hz; N�i, h�;wi. Since

1
�
1 � hz; N�i�n D

1X

kD0
Ck

nCk�1hz; N�ik;

1
�
1 � h�;wi�n D

1X

lD0
Cl

nCl�1h�;wik

(the series under consideration converges absolutely for � 2 S, z;w 2 B, and
uniformly on S � K, where K is an arbitrary compact set in B � B), therefore

Q.z;w; �/

D cn
�
1 � hz;wi�n

1X

kD0

1X

lD0
Ck

nCk�1Cl
nCl�1

Z

S
f .�/hz; N�ikh�;wild	.�/: (4.6.14)

The integral
Z

S
f .�/hz; N�ikh�;wild	.�/ is a homogeneous polynomial with the

degree of homogeneity k on z and l on w. Multiplying the sum from equality (4.6.14)
by the factor

�
1 � hz;wi�n

and regrouping the terms we find

˚.z;w/ D
1X

k;lD0
Pk;l.z;w/; (4.6.15)

where Pk;l.z;w/ are the homogeneous holomorphic polynomials with the degree of
homogeneity k in z and l in w, and the double series converges absolutely in B � B
and uniformly on any compact set in B � B.

Theorem 4.6.1 Let the function f .�/ 2 C .S/, the point a 2 B and the function
˚.z;w/ satisfy the conditions such that ˚.0;w/ D const, and ˚.a;w/ D const,
@˛˚.0;w/

@z˛
be a polynomial on w of degree not higher than k˛k, then for any fixed z,
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belonging to the complex line l0;a D fz 2 Cn W z D at; jtj < 1g it is true that

˚.z;w/ D const on w, i.e.,
@ˇ˚.z;w/

@wˇ
D 0 at kˇk > 0.

Proof We represent the function ˚.z;w/ in the form (4.6.15):

˚.z;w/ D
1X

k;lD0
Pk;l.z;w/:

By the hypothesis expansion (4.6.15) takes the form

˚.z;w/ D
X

k�l�0
Pk;l.z;w/;

since the derivatives
@˛Cˇ˚.0; 0/
@z˛@wˇ

D 0 under kˇk > k˛k.

Introduce the functions˚k.z;w/ D
1P

lDk
Pk;l.z;w/, then

˚.z;w/ D
1X

kD0
˚k.z;w/: (4.6.16)

Consider series (4.6.15) to be a double series converging absolutely in B � B and
uniformly on compact subsets of B�B, and series (4.6.16) is the same as in (4.6.15).

From the form of the series ˚k.z;w/ we get ˚k.tz;w/ D tk˚k.z;w/ for each
t 2 C. By the theorem’s hypothesis

˚.0;w/ D ˚0.0;w/ D
1X

lD0
P0;l.0;w/ D const (4.6.17)

and

˚.a;w/ D
1X

kD0
˚k.a;w/ D const :

Consider

˚.at;w/ D
1X

kD0
tk˚k.a;w/: (4.6.18)

Calculate

dm

dtm
˚.at;w/ D mŠ˚m.a;w/C � � � C k.k � 1/ � � � .k � m C 1/tk�m˚k.a;w/C � � � :
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Calculate the same derivative as the derivative of a composite function

dm

dtm
˚.at;w/ D

X

k˛kDm

@˛˚.at;w/

@z˛
a˛:

Equating the derivatives, we obtain

X

k˛kDm

@˛˚.at;w/

@z˛
a˛ D

1X

kDm

k.k � 1/ � � � .k � m C 1/tk�m˚k.a;w/: (4.6.19)

Substituting t D 0 into Eq. (4.6.19) we obtain that
dm

dtm
˚.0;w/ D mŠ˚m.a;w/

is a polynomial of degree not higher than m in w, since the left-hand side of this
equation is a polynomial of degree not higher than m in w by the hypothesis of the
theorem. For m D 0 we get˚.0;w/ D ˚0.a;w/ D const and from (4.6.17) we have
˚.0;w/ D ˚0.a;w/ D ˚0.0;w/.

In Eq. (4.6.18) we substitute t D 1 and obtain

˚.a;w/ D
1X

kD0
˚k.a;w/ D const :

Since ˚k.a;w/ D
1X

lDk

Pk;l.a;w/ is a polynomial in w of degree not higher than k,

then
1X

lDk

Pk;l.a;w/ D Pk;k.a;w/. Therefore

const D ˚.a;w/ D
1X

kD0
˚k.a;w/ D

1X

kD0
Pk;k.a;w/:

Hence Pk;k.a;w/ D 0 for k > 0. From here˚k.a;w/ D 0 for k > 0, so from (4.6.18)

we get ˚.at;w/ D const and
@ˇ˚.at;w/

@wˇ
D 0 at kˇk > 0. ut

Corollary 4.6.2 Let the function f .�/ 2 C .S/ have the one-dimensional holomor-
phic extension property along the family Lf0;ag, then ˚.z;w/ D const for points z

belonging to the complex line l0;a \ B, i.e.,
@ˇ˚.z;w/

@wˇ
D 0 at kˇk > 0.

Proof follows from Proposition 4.6.1 and Theorem 4.6.1. ut
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Corollary 4.6.3 Under the hypotheses of Corollary 4.6.2 the equality

@ˇF.z/

@Nzˇ D 0

holds for all points z 2 l0;a \ B and kˇk > 0.

Theorem 4.6.2 Let the function f .�/ 2 C .S/ have the one-dimensional holomor-
phic extension property along the family Lfc;dg and c; d 2 B, then ˚

�
c C .d �

c/t;w
� D const on w for jtj < 1, i.e.,

@ˇ˚
�
c C .d � c/t;w

�

@wˇ
D 0 at kˇk > 0.

Proof Suppose c; d 2 B. Consider the automorphism 'c.z/ mapping the point c
to 0, and vice versa, i.e., 'c.c/ D 0 and 'c.0/ D c. Let the point d under this
automorphism move to the point a D 'c.d/. Denote fc.�/ D f .'c.�// and

˚c.z;w/ D
Z

S
fc.�/Q.z;w; �/ d	.�/:

From Eq. (4.6.13) we have ˚.z;w/ D ˚c
�
'c.z/; 'Nc.w/

�
. Proposition 4.6.1 implies

that ˚c
�
0; 'Nc.w/

� D const, i.e., ˚.c;w/ D const.
Let us show that an automorphism of the ball preserves complex lines. In fact,

let z D c C .d � c/t. We compute hz; ci D jcj2 C t
�hd; Nci � jcj2�, then

'c
�
c C .d � c/t

� D t
c
�jcj2 � hd; Nci��p

1 � jcj2�djcj2 � hd; Ncic
�

jcj2�1 � jcj2 � t.hd; Nci � jcj2/� :

For t D 0 we get 'c
�
c C .d � c/0

� D 'c.c/ D 0, for t D 1 we get

a D 'c
�
c C .d � c/1

� D 'c.d/ D c
�jcj2 � hd; Nci� �p

1 � jcj2�djcj2 � hd; Ncic
�

jcj2�1 � hd; Nci� ;

and for other points t it takes the form

'c
�
c C .d � c/t

� D tg

e1 � e2t
;

where g is the vector of Cn. We take z1 D tg1
e1 � e2t

, then t D e1z1
g1 C e2z1

, and

zj D tgj

e1 � e2t
D e1z1g1

e1g1
. Therefore 'c

�
c C .d � c/t

�
defines a complex line passing

through the points 0 and a.
By Lemma 4.6.1, the complex line lc;d transforms to a complex line l0;a. Hence by

Theorem 4.6.1 we have˚c.ct;w/ D const and likewise, ˚
�
cC.d �c/t;w

� D const.
ut
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Corollary 4.6.4 Under the hypotheses of Theorem 4.6.2 the equality

@ˇF.z/

@Nzˇ
ˇ
ˇ
ˇ
zDcC.d�c/t

D 0

holds at kˇk > 0.

4.6.5 Proof of the Main Results

Theorem 4.6.3 Suppose n D 2 and the function f .�/ 2 C .S/ has the one-
dimensional holomorphic extension property along the family Lfa;c;dg, and the points

a; c; d 2 B do not lie on one complex line in C2, then
@ˇ˚.z;w/

@wˇ
D 0 for any z 2 B

and kˇk > 0, i.e., F.z/ is holomorphic in B.

Proof We move the point d by automorphism ' to 0. The conditions for the points
0, '.a/ and '.c/ will remain the same. Therefore the points '.a/ and '.c/ again are
denoted by a and c.

Let Qz be an arbitrary point of the line la;c. Then by Theorem 4.6.2 we have
@ˇ˚.Qz;w/
@wˇ

D 0 at kˇk > 0, and by Theorem 4.6.1 (˚ satisfies the conditions

of Theorem 4.6.1 at zero), then
@ˇ˚.z;w/

@wˇ
D 0 for all z 2 l0;Qz, i.e., for all points z in

some open set in B. Substituting w D Nz into this equation and using equality (4.6.7),

we get
@ˇF.z/

@Nzˇ D 0. Since the points 0, a, c do not lie on one complex line, we have

@ˇF.z/

@Nzˇ D 0 for all points z in some open set and consequently, at all points of the

ball B due to the real-analyticity of the function F.z/. In particular,
@F.z/

@Nzj
D 0 for

all z 2 B and j D 1; : : : ; n, therefore f .�/ extends holomorphically into B. ut
Theorem 4.6.3 implies that in a ball B � C2 a sufficient set for a continuous

function defined on the boundary of the ball is the set Lfa;c;dg, where a; c; d are
arbitrary points of the ball not lying on one complex line.

Denote by A the set of points ak 2 B � Cn, k D 1; : : : ; n C 1 not lying on the
complex hyperplane Cn.

Theorem 4.6.4 Suppose f .�/ 2 C .S/ has the one-dimensional holomorphic

extension property along the family LA , then
@ˇ˚.z;w/

@wˇ
D 0 for any z 2 B and

kˇk > 0 and f .�/ extends holomorphically into B.
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Proof The proof is by induction on n, based on Theorem 4.6.3 .n D 2/. Suppose
the theorem is true for all dimensions k < n. Without loss of generality, we assume
anC1 D 0 when k D n,.

Consider a complex plane � passing through the points a1; : : : ; an. By assump-
tion, it has the dimension n � 1 and 0 … � . The intersection � \ B is some ball
in Cn�1. The function f

ˇ̌
�\S

is continuous and has the property of holomorphic
extension along the family LA1 , where A1 D fa1; : : : ; ang. By the induction

assumption
@ˇ˚.z0;w/
@wˇ

D 0 at kˇk > 0 for all z0 2 � \ B. Connecting points

z0 2 � with the point 0 by Theorem 4.6.1 we get
@ˇ˚.z;w/

@wˇ
D 0 at kˇk > 0 for

some open set in B. Hence, as in Theorem 4.6.3, F.z/ is holomorphic in B. ut
Corollary 4.6.5 Under the hypotheses of Theorem 4.6.4 the equality

@ˇF.z/

@Nzˇ D 0

holds for any z 2 B and kˇk > 0 and f .�/ extends holomorphically into B.
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